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Abstract 

The thermal and anionic amino-Cope rearrangement of suitably functionalised 3-amino-l,S

hexadienes could potentially constitute a powerful tool for the stereoselective synthesis of 

highly functionalised acyclic or cyclic systems. 

T T 
R;'N~X Step I. ~N~X _S_te_p_2"",.~ 
~y [3,3] ~y i) E+ H~ E Y 

ii) H30+ 

Incorporation of tl-aminoalcohol auxiliaries into the diene enabled high diastereoselectivity 

to be obtained during the 1,2-addition of the allyl Grignard reagent to a,j3-unsaturated 

imines. Asymmetric anionic amino-Cope rearrangement of the diastereoisomerically pure 

3-amino-l,5-diene substrates furnished the target aldehyde in good yield and with high levels 

of asymmetric induction (up to 94% e.e.). 

The aldehyde obtained was used as a non-racemic starting material to synthesise small 

heterocycles, with high levels of diastereoselectivity in some cases, providing a high yielding 

route to some important chiral building blocks. The successful formation of both 

tetrahydropyrans and lactones without any apparent loss of chirality was achieved and 

provided a background for investigation into the synthesis of piperidines, which could lead to 

a plausible route to biologically significant aza-sugars. 
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1. Introduction 

1:1. [3,3] Sigmatropic Rearrangements 

In the mid 1960's Woodward and Hoffman1 derived a simple classification system for the 

branch of pericyclic reactions now known as sigmatropic rearrangements. A pericyclic 

reaction is one that commonly involves the concerted reorganisation of 1t-electrons through a 

cyclic transition state to give a product containing one or more new a-bonds.2 The term 

'sigmatropic' is used when the reorganisation involves the movement of a a-bond across one 

or two conducting 1t-electron systems whose double bonds are reorganised in the process. 

The Woodward-Hoffman classification employs two numbers set in brackets [i, j] indicating 

atoms along the conducting chains to which each end of the migrating a-bond becomes 

attached. Migration across one chain therefore is classified as [I, j] whilst if two chains are 

involved the classification uses two numbers other than 1. Scheme 1 shows an example of a 

[3,3] sigmatropic rearrangement which results in a six 1t-electron reorganisation, leading to 

the formation of a product containing a new a-bond. 

2 2 

'C 3 ~ '03 
,.~ .. , .. . . -.. 
V 

, 
,. h- 'S ,. ::::,.. 'S 

l! l! 

Scheme 1. [3,3] Sigmatropic Rearrangement 

This is known as the Cope Rearrangemenr and today is recognised as the prototype all

carbon [3,3] sigmatropic rearrangement. 

1.2. Cope Rearrangement 

As indicated in Scheme 1 the Cope rearrangement is reversible and the starting and product 

dienes exist at equilibrium at rearrangement temperature through a cyclic transition state. 

The position of equilibrium can depend on a number of factors outlined below. Alkyl 
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substitution, in the absence of any conjugating substituents, generally causes the reaction to 

favour the side containing more-substituted double bonds. For example a substituent at C-I 

or C-l' would tend to force the equilibrium more to the right hand side. 

Conjugation of one or both of the double bonds with 7t-substituents such as ketone, ester, 

cyano or phenyl causes the conjugated isomer to predominate at equilibrium.4 Incorporation 

of one of the double bonds into an aromatic system is also highly favoured and drives the 

reaction to completion in most cases. S The removal of ring strain in three- and four

membered ring dienes can also force the equilibrium in favour of the formation of less 

strained products.6 

The synthetic value of the Cope rearrangement and its remarkable degree of specificity are 

due to a number of characteristics: 

• Thermal activation is possible thus accommodating acidlbase sensitive groups. 

• The location of the new single and double bonds is unambiguously and predictably 

fixed. 

• The reaction is extremely stereospecific due to the highly ordered cyclic transition 

state. 

• Development of new analogues has enabled the use of lower temperatures and 

allowed easier access to the diene substrates. 

1.2.1. Stereocontrol in the Cope Rearrangement 

The Cope rearrangement and its different analogues all exhibit high levels of stereocontrol 

and this is a consequence of the cyclic transition states involved. Considering only 

suprafacial-suprafacial geometries,7 two limiting conformations are possible for the six

membered transition state, a 'chair' conformation resembling chair cyclohexane and a 'boat' 

conformation similar to boat cyclohexane (Fig 1). 

Introduction 

/~ :---::.::./ 

Chair 

I'~ 
~' 

Boat 

Figure 1. Transition States for the Cope Rearrangement 
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Doering and Roth8 were first to show a preference for the chair conformation in the Cope 

rearrangements of acyclic 1,5-dienes (Scheme 2). meso-3,4-Dimethyl-l,5-hexadiene (1) 

rearranged to the (E, Z)-isomer of 2,5-octadiene with only 0.3% of the (E, E)-isomer whilst 

the racemic starting material (2) afforded 90% of the (E, E)-octadiene and 10% of the (2. Z)

isomer. From these results they were able to calculate a difference of at least 5.7 kcal morl 

in free energies of activation favouring the chair conformation. 

~ ~ --b --=: 

~ 
Chair (E,Z)99.7% 

~ t 
~ meso ~ ~ 

(1) 
--=: 

Boat (E, E) 0.3% 

~ .. ~ 
Chair I 

1 (E, E)90% 

~ .. e: .. ~ ", 

racemic t (2. Z) 10% 
(2) 

F .. ? Boat 
(E, Z)O% 

Scheme 2. Rearrangements performed by DoerIng and Roth8 

Although most rearrangements proceed via the chair-like transition state, the boat 

conformation is still a viable alternative and in the example below (Scheme 3) the lactol ring 

forces the substrate (3) to rearrange in this manner.9 
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190°C 
65% 

(3) 

-

Scheme 3. Rearrangement Through a Boat-like Transition State' 

The preference for a chair conformation during rearrangement is accompanied by a 

propensity for the substituents at spJ carbons to occupy equatorial, rather than axial, 

positions.' In Scheme 2 the racemic diene rearrangement proceeds primarily through the 

diequatorial chair conformation leading to a product with (E)-double bonds and this is a 

common feature for most Cope rearrangements.' 

Finally, and most importantly, the chair transition state enables the transfer of chirality from 

a stereogenic centre in the substrate to a new centre in the product. Scheme 4 highlights the 

work done by Hill and Gilman10 in determining that this was the case and they demonstrated 

that the degree of 'asymmetric transmission' was greater than 97%. 
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:0-- --n-Ph ~ rrPh 

7S% 

)) 
Chair I 

(R)-(E)-diene 
25S"C t • 

~V- AJ-• (R)-(Z)-diene 
2S% • 

Chairn (S)-(Z)-diene 

~Ph 
. --

• ~Ph 
87% 

Chair I 

2SSoC l h 

(S)-(E)-diene 
.. 

~ ~ • 
(R)-(E)-diene 13% • 

Chairn (R)-(Z)-diene 

>97% e.e. in all cases 

Scheme 4. Exclusive Transfer of Chirality During Cope Rearrangements10 

1.2.2. Oxy-Cope Rearrangement 

Despite the benefits of the Cope rearrangement few synthetic applications were seen 

following its discovery and this was probably because the methods available for the 

preparation of the 1,5-diene substrates could often be applied to the direct synthesis of the 

Cope product just as easily. 

The discovery of the oxy-Cope rearrangement by Berson and Jonesll in 1964 greatly altered 

the situation. Substitution of a hydroxy group at carbons C-3 or C-4 of a I,S-diene resulted 
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in an enol (4) after rearrangement which tautomerizes to the 8,E-unsaturated carbonyl 

compound (5) rendering it irreversible (Scheme 5). 

H~ H0 .. 
(4) (5) 

Scheme S. Oxy·Cope Rearrangement 

The carbonyl compound obtained after rearrangement is easily manipulated for further 

synthetic purposes. A further advantage of the oxy-Cope rearrangement is that the substrate 

is easily prepared using either vinyl organometallic reagents or allylic reagents to p,y- and 

a,p-unsaturated carbonyl compounds respectively. 

Rate enhancements of 1010 
- 1017 in oxy-Cope rearrangements can be achieved by forming 

the sodium or potassium alkoxide of the I,S-diene as a substratel2 (Scheme 6). Theoretical 

calculations show that the rate acceleration is primarily due to a weakening of the 1, 1'

carbon-carbon single bondl3 by the alkoxide. Another explanation is that stabilisation of the 

negative charge in the enolate is also a contributing factor.7 

<±le 

H~ K~ 
KH.. V 

Scheme 6. Anionic Oxy-Cope Rearrangement 

1.2.3. Amino-Cope Rearrangement 

The amino-Cope rearrangement is analogous to the oxy-Cope rearrangement with an 

isoelectronic 'NH' in place of the '0' of its oxygen bearing counterpart (Scheme 7). 

Rearrangement of 3-amino-l,S-dienes (6) thus leads to enamines (7) which tautomerise to 

imines or iminium ions (8), depending on the substitution of the starting amine, making the 
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product thennodynamically more favourable. Hydrolysis of the intennediate product then 

gives the familiar carbonyl compound (5) seen with the oxy-Cope rearrangement which can 

be used for further synthetic chemistry. 

0 R2N'C 11 R~0 R2~ H30 + 

~ ~ oc b ~ 

(6) (7) (8) (5) 

Scheme 7. Amino-Cope Rearrangement 

Comparatively little information is available on the amino-Cope rearrangement since most of 

the work to date has concentrated on the effect of substituents on the reaction rate.14 In 1979, 

Wender used the amino-Cope rearrangement in tandem with a Diels-Alder reaction to 

produce cis-hydroisoquinollne (9)15 (Scheme 8). 

(9) 

Scheme 8. Early Synthetic Use of the Amino-Cope Rearrangement 

Interestingly ester (10), the isomer of the precursor to ester (9), does not undergo 

rearrangement because it cannot attain the required transition state and is recovered 

unchanged in high yield (Scheme 9) 

M~}6 
/J X .. No reaction 

Meo.,C-N /, 

(10) 

Scheme 9. Unsuccessful Rearrangement 
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Macdonald and co-workers were fIrst to report a charge accelerated amino-Cope 

rearrangementl6 displaying similar properties to the previously mentioned anionic oxy-Cope 

variant Amines (11 and 12) were prepared from the corresponding alcohol via tosylation, 

and rearrangement was effected by deprotonation with nBuLi at -40 DC to give the aldehyde 

(13) after acidic workup (Scheme 10). 

RHN~ 

Ph~ 
n-BuLi .. 
-4Q DC 

(11), R= i-Pr 
(12), R=Bn 

u@ 

R~~ 
Ph~ 

ue 
~ 

[3,3] .. R '~ 

PhS~ 

Scheme 10. Anionic Amino·Cope Rearrangement 

(13) 

Further examples of the various Cope rearrangements are given in Section 1.5 but fIrst it is 

important to discuss the Claisen rearrangement which has been widely studied over the past 

century. 

1.3. Claisen Rearrangement 

The Claisen rearrangement,I7 discovered in 1912, is closely related to the Cope 

rearrangement but contains a heteroatom within the hexadiene framework (Fig 2). Where 

X=O the reaction is a simple Claisen or 'oxa-Cope' rearrangement but other variants such as 

the aza-Claisen (3-aza-Cope, X=N) and thia- or thio-Claisen (X=S) are also known.17.34 

.. 
X=O,NorS 

Fig 2. CIaisen Rearrangements 
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The simple rearrangement of allyl vinyl ethers has become one of the most powerful tools for 

the stereoselective formation of carbon-carbon bonds18 and can be formally considered as the 

intramolecular SN2' addition of a carbonyl enol to an allylic ether, forming a new a-bond. 

The mechanism of the Claisen rearrangement is usually referred to as being concerted 

although there are a number of possible transition states and stabilisation of any of these by 

resonance interactions may influence the reaction19 (Fig 3) 

o 
X=O.NorS 

Figure 3. Possible Transition States of the CIaisen Rearrangement 

The template Claisen rearrangement, although useful. has been supplemented by a number of 

variants over the years and the main ones of interest synthetically are mentioned briefly 

below. 

1.3.1. Variants of the C1aisen Rearrangement 

1.3.1.1. The Aromatic CIaisen RearrangementZO 

Allyl aryl ethers rearrange at temperatures between 150 and 225 GC to give either ortho

allylphenols (after enolization. (14) to (15) in Scheme 11). or para-allylphenoIs when the 

ortho position is substituted «14) to (16) in Scheme 11). 
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,~ 
7' 

R R=H .. .. 
1.& 

(14) (15) 

lR>. 

R R R 

(16) 

Scheme 11. Aromatic Claisen Rearrangement 

1.3.1.2. The CarroU (Kimel-Cope) and Saucy-Marbet Rearrangements 

Base-catalysed rearrangement of ~-keto esters (17) and allylic alcohols to alkenic ketones 

(18) was performed by Carro1l21 as shown in Scheme 12. 

R R _H_OCH __ ..:2_CH __ =CH--,2~ ... ~ 9('"j? 
~OMe NaOAc,IOO·C ~? 

V 
(17) (18) 

Scheme 12. CarroU Rearrangement 

Saucy and Marbet22 followed two decades later with the acid-catalysed reaction of tertiary 

propargylic alcohols (19) with isoprenyl methyl ether to give ~-ketoallenes (20) in high 

yields (Scheme 13) 
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~ .J.--OMe ~ 
-p-=-T=-s=O=H:':(;;';;ca-t.7") .. 

~ 80"C 

[3,3] ')= 
--..~ ~ 

° 
(19) (20) 

Scheme 13. Saucy-Marbet Rearrangement 

1.3.1.3. The Eschenmoser and Johnson Orthoester Rearrangements 

The preparation of carboxylic acids using the Claisen rearrangement was demonstrated as 

early as 194923 but Echenmoser and co-workers24 developed a more robust method. Heating 

allylic alcohols (21) with amide acetals produced unsaturated ethers that underwent Claisen 

rearrangement in situ generating y,B-unsaturated amides (22) stereo selectively (Scheme 14). 

MX0Me NMe ____ N_~~~~ R'~; 
xylenes, 150 °C .~ 

[3,3] 

(21) (22) 

Scheme 14. Eschenmoser Rearrangement 

The closely related acid-catalysed exchange of orthoacetals with allylic alcohols (21) was 

reported by Johnson and co-workers2S shortly afterwards and further added to the utility of 

[3,3] sigmatropic rearrangements (Scheme 15). 

(21) 

Introduction 

propionic acid (cat.) 
138°C 

[3,3] 

Scheme 15. Johnson Orthoester Rearrangement. 
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Although both of the above rearrangements are performed at elevated temperatures it is 

important to note that these conditions are required to promote alcohol exchange - the 

rearrangement can occur at significantly lower temperatures.26 

1.3.1.4. The lreland-Claisen Rearrangement 

Perhaps the most important development of the Claisen rearrangement came when Ireland 

and co-workers27 used lithium dialkylamide bases2B followed by silylation with TMS-Cl to 

generate reactive silyl ketene acetals (23) at -78 "C (Scheme 16). These rearranged at 

ambient temperature to produce y,/i-unsaturated silyl esters which readily hydrolysed thus 

providing a route to y,/i-unsaturated carboxylic acids (24). 

(23) (24) 

Scheme 16. Ireland Claisen Rearrangement 

Simple control of enolate geometry could be achieved with careful solvent selection making 

the stereoselectivity of the reaction very well defmed. 

Some current synthetic examples of the stereoselective Claisen rearrangement can be found 

in Section 1.5. 

1.4. Other [3,3]-Sigmatropic Rearrangements 

Before exploring the applications of [3,3] sigmatropic rearrangements over the last few years 

it is necessary to touch briefly upon other rearrangements which have gained synthetic utility 

in the past. 
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1.4.1. The Aza-Cope Rearrangement 

0" e 1"-': 
[3,3] 

1"-': .. 
h h 

3-aza-Cope rearrangements 

HN~ [3,3] H(J V .. 

C [3,3] (J 2-aza-Cope rearrangement .. 

C/R [3,3] (:r
R 

1-aza-Cope rearrangements .. 

Scheme 17. Aza-Cope Rearrangements 

Aza-Cope rearrangements are classified as such because the 1,5-hexadiene framework 

contains a nitrogen atom in the C-l, C-2 or C-3 position29 (Scheme 17). As mentioned above 

the nitrogen counterpart of the Claisen rearrangement is also known as the 3-aza-Cope 

rearrangement and can occur in both N-allyl-N-aryl amine30 and N-allyl-N-vinyl amine 

systems31 (Scheme 17). 2-aza-Cope rearrangements are reasonably common in organic 

synthesis and the conditions necessary are relatively mild in most cases.32 In contrast the 1-

aza-Cope ~gement33 has received little use in synthetic chemistry and this is possibly 

due to the greater stability of the starting material when compared with that of the product, a 

3-aza-Cope system (Scheme 17). 

1.4.2. The Thia-Claisen Rearrangement 

The thio- or thia- Claisen rearrangemenf4 is a further extension of the hetero-Claisen family 

and involves a sulfur atom at C-3 of the hexadiene (Scheme 18). Allyl vinyl sulfides are 

converted to thioaldehydes, generally upon mild heating, which can be readily hydrolysed to 

the respective aldehydes. Further examples are noted in Section 1.5. 
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c 
Scheme 18. Thio-Claisen Rearrangement 

1.4.3. Further Examples 

Other well established variations of the Cope and Claisen rearrangement which have not been 

discussed here include the ketene-Claisen rearrangement by Bellus and Malherbe3s (1978) 

and the carbanion accelerated version by Denmar06 (1982). Additionally the work of 

Bergman37 (1935), Lauer8 (1937), Hurd39 (1938) and Arnold40 (1949) is worth mentioning 

along with the less well known photo-41, zwitterionic amino-42, phospha-43 and metaI1o

Claisen44 rearrangements. Many more comprehensive reviews on the oxy_Cope7.4S, Claisen18 

and hetero-Cope46 rearrangements are available along with articles on tandem [3,3]

sigmatropic rearrangementsl8c and general [3,3]-sigmatropic rearrangements47. 

1.5. [3,3]-Sigmatropic Rearrangements in Asymmetric Synthesis 

There is continuing interest in asymmetric variants of sigmatropic rearrangements since these 

protocols can allow the highly stereoselective synthesis of products containing several 

contiguous chira1 centres. 

As we have seen, a common feature of the [3,3]-sigmatropic rearrangements covered in this 

section is that they proceed through highly ordered transition state geometries which allow 

the prediction. and control, of both relative arid absolute stereochemistry in the desired 

product. This is a powerful tool for the synthetic chemist and asymmetric [3.3]-sigmatropic 

rearrangements have found many applications. This section serves as an update to the 

excellent report by Enders47h and co-workers that appeared in 1996 by covering selected 

examples of applications reported since this date, and also summarises work on the amino

Cope rearrangement done by our group. 
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1.5.1. Cope Rearrangements 

1.5.1.1. Aza-Cope Rearrangement 

Kunz48 has used the cationic aza-Cope rearrangement in a useful synthesis of chain extended 

amino-sugars from N-galactosyl-N-homoallylamines (Scheme 19). 

--.....-- OH 

P'JVO.-l..~~-..../ N~Ph 

PIVO V 
(25) 

!.ewis Acid 

Hydrolysis 
P 

IvO 

e 
--....-- OLA r ® 

PJvO.~~~-../ N~Ph 

PIvO V 

Scheme 19. Aza-Cope Rearrangement 

Initially trying to obtain the isomeric I,S-diene (via amino-Cope rearrangement - see Section 

1.5.1.3.) to create a new stereogenic centre, the observed conversion yielded the chain 

extended imino derivative (25) in excellent yield and with high diastereoselectivity. The 

fonnation of (25) is explained by invoking a simple two step sequence, namely coordination 

of the Lewis acid to the ring oxygen atom inducing ring cleavage, followed by a [3,3) 

sigmatropic rearrangement of the intennediate iminium ion. 

The aza-Cope rearrangement has been widely studied by Agami and has included the 

development of a practical synthesis of (-)-allokainic acitf9 (Scheme 20). 
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i Mannich 
: 
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CO~1° .' h 

PIf" <.tl N I 

O-I'Bu 

o 

~'" 
' . 

Allokainic acid 

............ 
'. ene-iminium cyclisation 

................ 
.......... 

'" " 

r 
O-~Bu 

~n' 
O-~Bu 

[3,3] .. 
~ 

HCfJ 

Scl1eme 20. Synthesis of AIlokainic Acid using the Aza-Cope Rearrangement 

Prabhakar and Loboso report using the BF3'etherate induced rearrangement of L-tryptopban 

methyl ester (26) (Scheme 21), Formation of product (27) is presumed to occur via 

consecutive [3.3) and [3.5]- sigmatropic shifts. 

[3,3]. [3,5] 

(26) (27) 

Scheme 21. Tryptostatin B Synthesis 

1.5.1.2. Oxy-Cope Rearrangement 

The oxy-Cope rearrangement has emerged as a powerful tool in the synthesis of many 

complex targets. Paquette has recently reviewed this subject area in detail and readers are 

referred at this point to his report.45• 
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This section therefore concentrates on some recent synthetic applications of the 

stereoselective oxy-Cope rearrangement 

Schneider has developed a stereoselective oxy-Cope rearrangement in order to prepare the 

CI-ClO fragment of the macrolide antibiotic nystatin Al.51 In this study the substrate (28), 

obtained via Evans asymmetric aldol chemistry underwent a thermal silyloxy-Cope 

rearrangement to give a 54% yield of the key intermediate (29) as a single diastereoisomer 

(Scheme 22). Transition state (30), having an axial hydroxy group and equatorial 

carboxirnide group was proposed to rationalise the stereochemical outcome. 

() 
}-o 
o 

135 ·C, 12h 
H PhMe,S 

(28) (29) 

(30) 

Scheme 22. 

Interestingly it has been shown that, in the absence of steric effects, there is little selectivity 

between axial and equatorial oxy-anions in the transition states for anionic oxy-Cope 

rearrangement. This can lead to rather low levels of product stereoselectivity with non

racemic hydroxydiene substrates (Scheme 23).S2 

KH, 18-c-6 
• 

,..r;r H 

",.~ TIIF, 50 ·C, 3h 
o 

100% e.e. 22% e.e. 

Scheme 23. Stereoselectivity of the Oxy-Cope Rearrangement 
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Based on the precedenr3
•
154 that efficient chirality transfer can be achieved when the C-3 

oxyanion and a C-4 substituent are syn to each other since both would prefer to occupy a 

pseudo-equatorial orientation in the transition state, Hartley and Rutherford investigated the 

rearrangement of substrate (31), expecting to see exclusively the Z-enol ether (33) via 

transition state (32) leading to the cyclohexanone product (34), (Scheme 24).54 

It was reasoned that electrostatic repulsion and steric factors would combine to disfavour the 

alternative transition state (35) leading to the E-enol ether and the subsequent cyclohexanone 

product (36). 

Interestingly it was the unexpected product isomer (36) that was produced preferentially as a 

result of rearrangement through "disfavoured" transition state (35). The authors propose, for 

the first time, the involvement of a chelated transition state for anionic oxy-Cope 

rearrangement, with transition state (37) more properly representing the intermediate. 

(35) ~ 

.Le Pit"" 

! 

(33) ! IMHCl(aq) ! IMHCl (aq) 

(34) (36) 

Scheme 24. Oxy-Cope Rearrangement by HartJey and Rutherford54 
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~-t-K Pi 
(37) 

Other related recent work in the Hartley group has included the stereoselective synthesis of 

!3-hydroxycyclohexanones55 and the use of phosphazene bases56 to induce anionic oxy-Cope 

rearrangement (metal-free conditions). 

Paquette has applied the anionic oxy-Cope rearrangement of an enantiomerically pure , 
substrate in a stereoselective synthesis of a decahydro-as-indacene ring system, a useful 

precursor in an approach to the insecticide spinosyn A (Scheme 25). The tricyclic target was 

obtained as a single diastereoisomer and is the product of a boat-like transition state. 57 

Mlev-~ __ 

NaH, TIfF ~ 
MeOH,30min 

OTBS 

Scheme 25. Spinosyn A Precursor 

An interesting approach to an enantiomerically enriched hydrazulenoid skeleton was reported 

by Rajagopalan. The target ring system was prepared by thermal oxy-Cope rearrangement of 

ethynyl alcohol substrate (38), a single diastereoisomer, followed by an in situ transannular 

ene-type reaction (Scheme 26).58 

(38) 
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Scheme 26. 
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1.5.1.3. Amino-Cope Rearrangement 

A short introduction to the amino-Cope and anionic amino-Cope rearrangements was given 

in Section 1.2.3. It is necessary here to give a more in-depth history of the amino-Cope 

rearrangement and its synthetic development over the past twenty years. 

In 1980, Ollis published a series of papers looking at base catalysed rearrangements 

involving ylid intermediates.59 Part of the detailed study involved looking at the [3,3) 

sigmatropic rearrangement of 3-dimethylaminohexa-I,5-dienes and in particular the effect of 

substituents - until now only documented in heteroatom systems for the related oxy-Cope 

rearrangement. 

The required substrates (40 a-c) were synthesised by using the Stevens' rearrangement of 

quaternary ammonium salts (39 a-c) in good yield (Scheme 27). 

I 3 

/~"'-:: R • Base 

a; RI =R3 = Ph, R2 =H 

b; RI =R2 =CH3, R3=Ph 

c;RI =R2=H,R3=Ph 

Scheme 27. Stevens' Rearrangement 

Thermal amino-Cope rearrangements, monitored by NMR analysis were performed on all the 

substrates. Samples (25 mg) were heated in sealed ampoules under an inert nitrogen 

atmosphere at different temperatures and for varying durations. The rearrangement of (40a) 

took place at a relatively low temperature (80 DC) to give enamine (41a). This showed good 

first order kinetics at 100 "C and the enarnine product formed had trans-stereochemistry 

(Scheme 28). They proposed that the stereochemical integrity was either as a consequence 

of the concerted rearrangement of diene (40a), which was present as a single diastereoisomer, 

or as a result of thermal equilibration between the diastereoisomeric enamines. Diene (40b) 

which is highly substituted rearranged at the slightly higher temperature of 100 DC to give the 
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trans-enamine (41b) and the less substituted diene (4Oc) required a much higher temperature 

of 170"C for the rearrangement to proceed, again giving the trans-enamine (41c). 

rH3 fH3 rH3 
H~~Ph H~~Ph H~:~Ph H3 

0 
Ph H3 

(40a) (40b) (40c) 

1[3~31 ID~l ID~l 
rH

3 rH
3 rH

3 

H3C""NCPh "~ .. C""NCPh H3 H3 Ha H 

~ ~ 
Pt; H H 

(41a) (41b) (41c) 

Scheme 28. Thermal Amino-Cope Rearrangements 

Calculated energies for the rearrangements showed that the 4-dimethylamino-substituent had 

a notable effect (t::.G44/4Oc741c 35.1 kcal.morl
; t::.G44l hexa-},5-diene rearrangement 39.6 

kcal.morl ). Similar rate accelerations were observed when both a phenyl substituent 

(40a741a) and 4,4-dimethyl substituent (40b741b) were present (Table 1). 

Table 1 Substituent Effects on the Amino-Cope Rearrangement 

Compound Product T/oC k/s·1 t::.G443* I 

kcal.mor1 

(40a) (41a) 100 6.4 x 104 27.4 

(40b) (41b) 100 3.0x lO's 29.7 

(4Oc) (41c) 170 4.6 x lO's 35.1 

The accelerating effects of 4-aryl substituents in Cope rearrangements has previously been 

noted by Doering et al (1971) and Dewar (1973, 1977).60 The effects are thought to result 

from the electron donating properties of C-4 substituents although steric effects cannot be 

ruled out. 
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Ollis also examined the effects of 3-0R and 3-SR groups on the rearrangement of 3-hetero

substituted 1,5-dienes and concluded that the 3-NMIl2 substituent was more effective at 

lowering the energy of the Cope transition state than both of these. This influence was 

though to be a consequence of its more electron donating properties. 

Kinnse investigated the effect of single heteroatom substituents on the activation parameters 

of [3,3]-sigmatropic rearrangements.61 In order to study the donor substituent effect on the 

rate of rearrangement and gain insight into the reaction mechanism they prepared a series of 

heteroatom substituted 1,5-hexadienes. Amongst these was N,N-dimethyl-l,5-hexadien-3-

amine (43) prepared via Stevens' rearrangement of diallyldimethylammonium bromide (42) 

(Scheme 29). 

H~ /CH3 

~~~ 
e Br 

(42) 

n-BuLi 

(43) 

Scheme 29. Preparation of l,5-Hexadiene Substrates 

Thermolysis of substrate (43) at 224 DC for 12 hours generated the desired enamine (44) after 

amino-Cope rearrangement and the stereochemistry was shown to be exclusively trans from 

the NMR coupling. The rearrangement was found to be reversible and traces (5-10%) of 

aldehyde (45) were observed following enamine hydrolysis despite careful exclusion of water 

during the reaction (Scheme 30). 

yH3 yH3 

~ H
3
c"

N'C !J. 
H3c"N'0 

(FI30 ,) 
~ ------- ----------.. 

(43) (44) (45) 

Scheme 30. Amino-Cope Rearrangement by Kirmse 

The activation energy was found to be 1.4 kcaLmor110wer than that of the parent 

unsubstituted 1,5-hexadiene. The effect of substituent stabilisation on the product was 

IntroductIOn 23 



studied and it was observed that the considerable stabilisation effect of the product had only a 

moderate effect on the activation energy of the Cope rearrangement, the greatest effect being 

seen with the 3-dimethylamino substituent. 

From these studies they concluded that the alkoxy-, alkylthio- and dialkylamino- groups in 

the C-3 position of 1,5-hexadiene and C-2 position of3,3-dimethyl-l,5-hexadiene have only 

small effects of the rate of the Cope rearrangement (up to 60 times). 

In 1995, Hagen used Hine's D values62 to predict the position of equilibrium in the Cope 

rearrangement of multiply substituted I ,5-dienes.63 They studied the Cope rearrangement of 

heterosubstituted 1,5-dienes including oxygen, amino, carbamoyl and thioalkyl (46a-j) 

variants (Scheme 31). Amine substrates (400) and (46f) were prepared as in Scheme 32, via 

alIylation of ethyl2-dimethylaminoethanoate followed by [2,3]-sigmatropic rearrangement, 

reduction and Wittig olefmation. 

, Introduction 

"C(' < > 

R 

(46) 

a)X=OCH3, Y=H,R=H 

b)X=OCH3, Y=CH3,R=H 

c)X=OCH3, Y=CH3,R=CH3 

d) X = N(CH3n, Y = H, R = H 

e)X=N(CH3n, Y=CH3,R=H 

(47) 

f) X = N(CH3n, Y = OCH3, R = H 

g) X = N(CH3)(C02Et), Y = H, R = H 

h) X = N(CH3)(C02Et), Y = CH3, R = H 

i) X = N(CH3)(C02Et), Y = OCH3, R = H 

j)X=SCH3, Y=H,R=H 

Scheme 31. Cope Rearrangements 
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\ B~ 
~--

KOtBu (l /~~C02Et • • 
Br (\ 

[2,3] 

CO:!Et 

l~oo 
I )'6 /N'CY 

Wittig 
C 

(46e) and (46f) 

Scheme 32. Synthesis of Amine Substrates 

Cope rearrangements were carried out on substrates (46a-i) in the gas phase and the extent of 

reaction was estimated from the ratio of (46a-i) to (47a-i) in the resulting NMR spectra. The 

calculated lline D values were said to compare directly with the Keq values. It was 

concluded that a reduction of the 7t-donating character of nitrogen (dimethyamino vs. 

carbamoyl) alters its directing ability giving an aggregate order for reaction rate of N(CH3h 

> OCH3 > Et(hCN(CH3) > CH3 > H. 

From these early reports our group has recognized that the amino-Cope rearrangement of 

suitably functionaIized 3-amino-l,5-diene substrates could potentially constitute a powerful 

tool for the stereoselective synthesis of highly functionaIized product systems in a cascade-

like sequence. 

7 J o x R;NC:X Step 1 /N'J:X Step 2 

H~ R . • • 
[3,3] ~ . i)E+ Y Y E Y 

ii) H30+ 

(47) (48) (49) 

Scheme 33. Synthetic Potential of the Amino-Cope Rearrangement 
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As highlighted in Scheme 33, a successful sigmatropic rearrangement of 3-amino-l,5-diene 

substrates such as (47) would lead to formation of enamine product (48). Substitution at the 

1- or 6-position of the diene moiety in (47) would allow, during Step I, creation of new 

asymmetric centres in product (49). Indeed, high stereoselectivities are known to be induced 

at the chiral centres which are created in related [3,3]-sigmatropic rearrangements.64,65 If this 

synthetic step could be further associated with typical enamine derivatization, as outlined in 

Step 2, up to 3 new asymmetric centres could be introduced in a one-pot reaction. An 

asymmetric centre within the amine component could essentially act as a chiral multiplier: 

producing (and controlling) the stereochemical induction at the three newly created 

asymmetric centres. We have recently reported one key step of the sequence outlined above: 

a successful tandem amino-Cope rearrangementlenamine derivatization reaction (Scheme 

34).128 

i) BnBr 

[3,3] 

69% yield 

Scheme 34. Tandem Amino-Cope Rearrangement/Enamine Alkylation 

In order to study the anionic amino-Cope rearrangement we were required to prepare suitably 

substituted secondary amine substrates. This was achieved as highlighted in Scheme 35 by 

addition of allyl magnesium bromide to the corresponding imines derived from trans

cinnarnaldehyde to yield the desired amines (51a-c) in good yield (Table 2). 

O~Ph 

(50) (51) 

Scheme 35. 
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Table 2. Preparation of 3·amino-l,5-diene substrates 

R Yield 50a-c, % Yield 51a-c, % 

(a) PhCH2- 94 95 

(b) cyclohexyl- 87 72 

(c) (±)-a.-methylb~nzyl- 89 82 

We were pleased to find that the anionic amino-Cope rearrangement proceeded as expected 

with the racemic substrates (51a-c) on employing n·butyllithium as base. The reaction was 

complete in under three hours. The intennediate lithiated enamines were directly hydrolysed 

to yield the desired racemic aldehyde (52) in good yield in all cases (Scbeme 36, Table 3). 

Interestingly no reaction was observed using potassium hydride as base, or with a range of 

non-nucleophilic bases (LOA, I1iMDS, KHMDS, NHMDS) in THF. 

r 
R/N~Ph ____ (_i)~~~ 

V [3,3] 

(ii) 

(51) (52) 

(i) n-BuU (l.5 eq.), TIIF, 25 'Co 3 hr; (it) NaOAclHOAclH20 (11112), A. 2 hr 

Scheme 36. 

Table 3. Anionic amino-Cope rearrangement of substrates 51a-c 

Substrate Yield 52, % 

51a 81 

SIb 64 

SIc 78 

These results were encouraging, prompting further investigation by our group, and 

development of the anionic amino-Cope rearrangement is reported in Section 2. 
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1.5.2. Claisen Rearrangements 

1.5.2.1. Asymmetric Aromatic and Aliphatic Claisen Rearrangements 

It was mentioned earlier that the Claisen rearrangement of allyl vinyl ethers (Scheme 37) has 

been developed into a useful and widely applied tool in organic synthesis. Substitution at C-3 

(or C-3') of the substrate generates new chiral centres in the unsaturated aldehyde product 

and control over the relative and absolute stereochemistries at these centres is now known to 

be provided either through the use of chiral auxiliaries. chiral catalysts or reagents.47b 

Synthetic applications of the asymmetric Claisen rearrangement are contained in a recent 

review by Taguchi and lto6S and are not covered in great detail here but below are some 

more recent examples. 

c Claisen .. 
rearrangement 

allyl vinyl ether 

Scheme 37. The Claisen Rearrangement oC Allyl Vmyl Ethers 

Asymmetric aliphatic Claisen rearrangements have been known for some time,66 but the 

related asymmetric aromatic rearrangement is a recent development. Taguchi and co-workers 

have reported highly enantioselective aromatic Claisen rearrangements of substrates such as 

(53) mediated by a stoichiometric chiral Lewis acid, (54). leading to products with e.e. 's as 

high as 95% (Scheme 38).67 

R~& 
,,-,: 

h 

(53) 

OH 

P)..-.(l'h 
ArC¥!-N, ,.N-S~ 

~r (54) OH 

Scheme 38. Enantioselective Aromatic Claisen Rearrangement 
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The high level of enantioselectivity observed with a range of substrates was rationalised by 

invoking the transition state shown in Figure 4. In this proposed intermediate, the phenolic 

hydroxyl group fonns a a-bond with the chiral Lewis acid followed by co-ordination of the 

allylic oxygen to the boron atom to form a cyclic five-membered complex. Steric shielding 

provided by one of the sulfonamide ligands leads to selective si-face approach of the allyl 

system during rearrangement 

Figure 4 

The utility of chiral Lewis acid (54) in asymmetric Claisen rearrangements has been extended 

by Taguchi to include the rearrangement of allyl difluorovinyl ethers (Scheme 39).68 

Enantiomeric excesses of up to 85% were noted, and a similar transition state model has been 

invoked. 

Scheme 39. Claisen Rearrangement of Allyl DiOuorovinyl Ethers 

Other so-called "designer" chiral Lewis acid catalysts such as (S5) have been developed by 

Yamamoto to mediate the asymmetric Claisen rearrangement of simple substrates.69 It was 

found that bulky substituents on the substrate, such as trialkylsilyl or trialkylgermyl groups, 

were necessary to achieve high levels of enantiomeric excess (Scheme 40). 
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(55) 
Ph 

Q .. 
Scheme 40. Asymmetric Claisen Rearrangement Mediated by a Chiral Lewis Acid 

Complex 

Drawbacks to the development of a general asymmetric aromatic Claisen rearrangement can 

include the high temperatures needed to initiate the rearrangement, racemization during 

rearrangement and synthesis of the non-racemic precursors.70 Such factors were recently 

addressed by Trost in a report detailing the asymmetric 0- and C-alkylation of phenols.71 

The preparation of enantiomerically enriched substrates required for the aromatic Claisen 

rearrangement study was achieved by enantioselective O-alkylation of phenols using an 

asymmetric Pd-catalyzed allylic alkylation protocol (Scheme 41). 

ctRJo0 NH HN 

I ~ I ~ 
fi PPh:! Ph:!P fi 

R 

Scheme 41. Enantioselective O-Alkylation of PhenoIs 

With the enantiomerically enriched allyl aryl ethers in hand, the Claisen rearrangement was 

attempted using typical Lewis acid catalysts such as BCl3 and Et~CI but was found to lead 

to significant racemization. Subsequent use of the lanthanide complex Eu(fod)3 in 

chlorofonn at 50"C led to efficient chirality transfer affording C-alkylation products with up 

to 97% e.e. (Scheme 42). 
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Scheme 42. Catalytic Asymmetric Claisen Rearrangement 

A stereoselective Claisen rearrangement has been applied by Paquette as the key step in the 

synthesis of the natural product (+)-acetoxycrenulide (56), a marine toxin.72 

Diastereoisomerically pure substrate (57) was subjected to selenoxide elimination and 

Claisen rearrangement to yield the desired cyclooctenone core of the target (Scheme 43). 

i, ii .. 

(57) 

j 

(56) 

i) NaIO .. NaHCO" MeOH, H20; ii) Et,N, CH,CH2OCH=CH2, CH,CON(CH,)z, 220'C, sealed tube 

Scheme 43. 
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The rearrangement was found to be most diastereoselective (7.8:1) when carried out by 

heating the substrate in N,N-dimethylacetamide in a sealed tube. 

1.5.2.2 Asymmetric Ireland-Claisen Rearrangement 

Section 1.3.1.4. describes the Ireland Claisen rearrangement as the [3,3]-sigmatropic 

rearrangement of allylic esters as their corresponding ester enolates to give 4,S-unsaturated 

acids (Schemes 16 and 44).27 The more commonly used protocol is the trapping and 

subsequent rearrangement of the enolates as the silyl ketene acetals, a procedure also 

commonly termed an Ireland-Claisen rearrangement. 73 

base. (VR 
yRl 

CE>M$ 

TMS-Cl 

i) [3,3] 

i) [3,3] 
• 

Ireland-Claisen 
(ester enolate) 

Ireland-Claisen 
(silyl ketene acetal) 

Scheme 44. lreland-Claisen Rearrangement and Silyl Ketene Acetal Modification 

There are many examples highlighting the synthetic application of the asymmetric Ireland

Claisen rearrangement. Its popularity in synthesis derives from its mild reaction conditions, a 

high degree of compatibility with substrate types and, not least, the high degree of 

stereoselectivity provided as a result of the control of ketene acetal geometry and the highly 

ordered transition state geometry achieved during rearrangement.27 In general, the 

rearrangement usually proceeds via a chair-like transition state with the stereochemical issues 

determined by the stereochemistry of the silyl ketene acetal and allylic ether double bonds. In 

this section several recent applications are highlighted. 
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Kitazume and co-workers have applied the Ireland Claisen rearrangement in a stereoselective 

approach to trifluoromethylated compounds.74 Such compounds are of general interest due to 

the fact that fluorination of biologically active molecules frequently confers significant 

changes in their chemical and biological activities. 

Table 4 highlights the results obtained for several E and Z-substrates. The corresponding 

silyl ketene acetals needed for rearrangement were generated by adding the substrate to a 

mixture of LHMDS and TMSCl which was stirred at -78 "C for 0.5 hr, followed by warming 

to room temperature and acidic work-up. 

Table 4. Synthesis of trifluoromethylated compounds via Ireland·Claisen 

rearrangement 

Substrate Product anti:syn Yield (%) 

~Bn OFs 

'h ~ OH 

OM. 97: 3 68 

(2) anti 

F3~ _ Bn 

hM. 

OH 

OM. 1: >99 59 

(E) syn 

F~ ~F3 

~' 

~OMe ~OH 96:4 75 OM. 

(2) anti 

F3~ CF3 

~OH .-
d 1: >99 67 

O~OMe OM. 

(E) anti 
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The E-substrates generated the syn product and the alternative Z-isomer delivered the anti 

product The commonly used chair-like transition states were proposed to rationalise the 

stereochemical outcome. Rearrangement of the Z-isomers was slightly less diastereoselective 

than the corresponding E-isomer. It was suggested that the pseudo-axial trifluoromethyl 

group might destabilize transition state (58) causing this slight decrease in anti selectivity 

(Figure 5). 

E-substrates 
_ .. [ ~CF3] 

TMSO OMs 

.. syn products 

Z-substrates - .. [~ ] 
TMSO ;;...-~ CF3 

anti products 

(58) 

FigureS. 

This work was further extended by Kitazume and used to prepare trifluoromethylated 

iodolactones containing four consecutive asymmetric centres.75 Scheme 45 highlights the 

synthesis of one iodo-lactone as a single diastereoisomer, by consecutive Ireland-Claisen 

rearrangement and iodolactonization. 

LHMDS, 
TMS-Cl 

.. Bn 

[3,3] 

CF3 
; , 

OMe 

Scheme 45. 

OH .. 

Careful control of enolate geometry and, accordingly, silyl ketene acetal geometry allowed 

Parsons to prepare a key intermediate in the synthesis of (+)-Prelog-Djerassi lactonic acid 

(59) from diastereoisomeric substrates (Scheme 46).76 
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J)Yt i) IDA/fHF [I r;:SIMOs 1 
i X ii) TBS-Ci ~R 

ill) DMPU OTBS 

Me3S 0 

i)IDA/fHF .. 
ii)DMPU 
ill) TBS-CI 

Scheme 46. 

(59) 

Rearrangement of the syn substrate was achieved via the E-silyl ketene acetal and 

rearrangement of the anti substrate via the Z-silyl ketene acetal. In both cases the 

rearrangement proceeded to give the same single product diastereoisomer. 

Hodgson and co-workers have recently applied the Ireland-Claisen rearrangement in an 

asymmetric approach to a prostaglandin precursor (60) and to (+)-iridomycin (61).77 

Introduction 

(60) 

i)IDA .. 
ii)TBSCI 
HMPA/fHF 

(; 
~ OTas 

Scheme 47. 

(61) 

,,1_ ~&" 
190·C .. 
sealed tube 

(62) 
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Lactone (60) is a known building block for prostaglandin A2 and other primary 

prostaglandins. One key step in the synthesis of (60) is an Ireland Claisen rearrangement of a 

silyl ketene acetal (Scheme 47). The rearrangement takes place under thermal conditions 

(xylenes, 190°C, sealed tube). Further elaboration of the acid product (62) delivers the 

desired lactone (60). 

Acid (64), prepared via a similar enantioselective Ireland Claisen rearrangement of the 

diastereoisomeric substrate (63) was used as a key building block to access (+)-iridomycin 

(61) as shown in Scheme 48. 

as in Scheme 47. 

(OB~ 

CJ"'C02H 
(64) 

Scheme 48. 

Kocienski has applied the stereoselective Ireland-Claisen rearrangement as a key step to set 

up the correct relative stereochemistry at C27 and C28 of the C21-C42 fragment of 

rapamycin (Scheme 49).78 

= 

~ 
¥ 

i) lDA, THF then TMS-CI 

-80°C to r.t, 18hr 
SI, 

ii) tetramethylguanidine I Me! 0 

OMe 

I I~' 
", .•.. 

OMe 

PMBO 

Scheme 49. 
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The Kocienski group has also recently applied the Ireland-Claisen rearrangement to the 

synthesis of the Cll-C19 fragment of the natural herbicide herboxidiene. 79 Rearrangement 

of the E-silyl ketene acetal led to a diastereoisomeric mixture (86:14) of the target acid in 

good yield (Scheme 50). 

OMe 
! 

i)IDA, THF 

ii) TBS-CI. 
DMPU 

Scheme SO. 

-78 DC to r.t. ~ 
ill) aq. HCl 

TBSO 

OMe HO 
I 

Magnus has applied the Ireland-Claisen rearrangement in an approach to the taxane 

skeleton.80 Scheme 51 highlights the key rearrangement step that delivers the target 

compound (65) as a single diastereoisomer. The newly formed C2-C3 bond was formed with 

the correct absolute stereochemistry as required in taxol. 

\" ~'" 

-d-\ ~ 
H lTo 

o 

i) IDA, THF. HMPA, -78 DC 

ii) NEt3. TBS-Cl. -28 DC 
PhMe. reflux 

Scheme SI. 

~ 

(65) 

Angle has applied a conformationally restricted Ireland-Claisen rearrangement in his work 

towards the synthesis of piperidine alkaloids.SI The pipecolic ester (66) was isolated in 96% 

yield from the rearrangement which was carried out at room temperature via generation of 

the silyl ketene acetal using TlPSOTf and triethylamine (Scheme 52). 
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Scheme 52. 

r.t. ~ • 
TIPS N CO2 TIPS 

Bn 

(66) 

Knight used the Ireland-Claisen rearrangement of a nine-membered macrolide to lead. 

stereospecifically. to the tetrahydrofurancarboxylate (67). a key building block for the 

synthesis of severallignans (Scheme 53).82 

c::r i) LOA, TIIF. TMS-Cl o • 
1 -loo·C to r.t. 

Ar 0 ii) MeOH then CH2N2 

~~Me 

Ar.A ) 
(67) (68) 

Scheme 53. 

The rearrangement proceeded to give (67) as a single diastereoisomer. presumably via the 

boat-like transition state (68). 

Kazmaier and co-workers have recently developed an "asymmetric ester enolate Claisen 

rearrangement" protocol (an Ireland-Claisen rearrangement) for the synthesis of y.O

unsaturated amino acids.83 The reaction proceeds through a chelated allylic ester enolate 

intermediate. as shown in Scheme 54. and leads to products displaying high levels of 

diastereoselectivity. When carried out in the presence of a chiral ligand (quinine) the 

reaction proceeds with excellent levels of enantioselectivity (up to 93% e.e.).84 

5.5 eq. LiHMDS 
1.2 eq. Al(OiPrh 

THF. -78 OC to r.t. 
• 

Scheme 54. Diastereoselective Ester Enolate Claisen Rearrangement 
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The reaction appears to be quite general and is applicable to a wide range of substrates, 

including peptides.8s Other synthetic applications which apply this protocol as a key step 

include the synthesis of the potent f3-glycosidase inhibitor 5-epi-isofagomine (69),86 and the 

preparation of N-protected isostatin (70) which is an essential amino acid of the didemnine 

cyclic peptide group that show strong anti-tumour, anti-viral and immunosuppressive 

activity.87 

OH r 
~(r 

H 

= OH 

~C02H 
AHTFA 

(69) (70) 

1.5.2.3. Aza-CIaisen Rearrangement 

Introduction of a nitrogen atom into the typical CIaisen sub-structure gives rise to the aza

CIaisen variant, and the stereochemistry of this sub-frame is transferred to the newly formed 

carbon-carbon bond with high degrees of stereocontrol. Aza-Claisen rearrangements are 

wide ranging in type and a few recent examples of these are presented here. 

Somfai88 has recently reported the use of vinylaziridines in the aza-Claisen rearrangement to 

produce seven-membered lactams in good yield and with excellent levels of 

diastereoselectivity. The results are rationalised by assuming that the reaction proceeds 

through a six-membered boat-like transition state as shown in Scheme 55. Attempts to 

rearrange the vinylaziridine (71), derived from the cis-vinylepoxide were unsuccessful and 

this provided additional support for the proposed model. Quenching of the corresponding 

enolate from (71) with ~O gave only recovered starting material with complete 

incorporation of deuterium at the a position indicating the required transition state for 

rearrangement could not be attained. 
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Scheme 55. Rearrangement of vinylaziridines 

(71) 

Investigation of the zwitterionic aza-Claisen rearrangement was performed by Nubbemeyer89 

during work towards the total synthesis of (+)-dihydrocanadensolide. Heterodienes were 

prepared by treating N-allylpyrrolidine (72) with several types of acid chloride (Table 5, 

Scheme 56) which then underwent [3,3] sigmatropic rearrangement to produce the amides 

(73.76). 

Table 5. Zwitterionic Aza-Claisen Rearrangement of AllylpyrroIidines 

RI Ratio 
Entry Yield (%) 

73 74 75 76 

a H 82 60 40 

b Me 77 90 10 

c CH2CH2Cl 74 70 30 

d CH(CH3)2 45 >97 <1 <1 <1 

e CH=CH2 62 >97 <1 <1 <1 

f CH=CHCH=CH2 60 <1 <1 >97 <1 

g Ph 52 <1 <1 >97 <1 

h Cl 82 96 2 <1 <1 

i O-Bn 83 87 8.7 <1 4.3 
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In most cases the stereochemistry could be rationalised by invoking a chair-like transition 

state, although in the case of entries f and g more complex electronic considerations were 

necessary. Product (73h) was converted to dihydrocanadensolide, thus completing a short 

and highly stereoselective synthesis of this natural product. 

t?f [3,3] ~O H • .....-::: • 
~~' A 6· ~o 

+ (75) 

lJ~O [3,3] ~O ~"" 
R .....-::: o . N 

I • o· 
~o 

~{) (i) + (73) 

~" 0 ~() (72) [3,3] 

~~' ~21 • 
~o 

+ (74) 

t-tJ;f [3,3] t5/rrO ~ ~Rl-:. • ~o 

(76) 

i) RICHZCOCI, KZC03, Me3Al, CHCl3, O"C 

Scheme 56. Aza-Claisen Rearrangement of Allylpyrrolidine Derivatives 

Zhang90 et al have investigated the catalytic enantioselective aza-Claisen rearrangement of 

allylic imidates using palladium (II) ambox ligands (77-80), with some initial success. They 

found that the reaction was very solvent and concentration dependent and the resulting 

enantioselectivity depended greatly on the catalyst system selected. However moderate 

yields and e.e.'s of up to 83% were observed in the preliminary study. 
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rt ::-... 
N 

f;p 9 \. " .. -
Pr Pr 

~'O \ // Ph PIi 

(77) (7S) (79) (SO) 

Al Al 
Rt R2 R3 

~,A ~'NAo Ph 4-CF3CJ4 Pr 

A3:J 
Pd(IT) - L* Ph 4-CF3CJ4 i-Pr 

A3N Ph Ph Pr 
CCl3 H Pr 

Scheme 57. Pd(ll) Catalysis of the Asymmetric Aza-CIaisen Rearrangement 

Palladium catalysis of the imidate CIaisen rearrangement has also been studied by Leung91 

giving an e.e. of79% with Pd complex (SI) (Scheme 58). 

(R)-Sl 

79% e.e. 

(R)-SI 

Scheme 5S. Asymmetric Palladium-catalysed Imidate-Claisen Rearrangement 
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The [3.3]-sigmatropic rearrangement of allyIic thiocyanates has recently been exploited by 

Gonda92 during the course of work on the synthesis of branched-chain amino sugar 

nuc1eosides. Thermal rearrangement of thiocyanate (82) was carried out and gave a high 

yield of crystalline isothiocyanate (83) as the sole product in good yield. The importance of 

the 1.2-0-isopropyIidene group as a key factor in the stereochemical outcome was 

investigated and was found to be more important than the C-4 side-chain in directing the 

rearrangement. A severe non-bonded interaction between the 1.2-isopropylidene group and 

the NCS substituent was thought to be the major factor controlling the stereos electivity of the 

reaction. 

Nes 

(82) 

··"V 
"""0\ 

700C.4h 
xylene. N? 

89% 
)(~.::··"V 

ri' =_,' , .... 'f-J.. 'if\ 
-',-:N 

/f'/ 
s 

(83) 

Scheme 59. Rearrangement of Allylic Tbiocyanates 

Use of a binaphthylamine auxiliary for asymmetric imidate-Claisen rearrangement was 

utilised by Metz93 as part of ongoing work in this area. Introduction of a methyl group at C-3 

of their existing auxiliary increased the stereochemical induction giving exclusively one 

product by NMR spectroscopy (Scheme 60, Table 6). Excellent auxiliary control as well as 

simple (syn!anti) diastereoselectivity was reported and it was found that using a larger excess 

of base in the reaction greatly increased the yield. 
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(84) 

i 
= 

(85) 

Scheme 60. Asymmetric Imidate CIaisen Rearrangement 

Table 6. Claisen Rearrangement of Imidate 84 to Amide 85 

Rearrangement temp LDEA (eq.) Rearrangement time Yield(%) d.s. 

(OC) (h) (%) 

0 2 6 23 98 

0 4 6 54 98 

-10 4 10 48 >98 

-20 4 24 43 >98 

Gonda94 et al have used the aza-Claisen rearrangement in a novel synthesis of lincosamine 

and 7-epi-lincosamine precursors. This group described a simple approach to introducing a 

nitrogen atom at C-6 of galactose with high stereoselectivity via rearrangement of 

trifluoroacetimidates and thiocyanates (Scheme 61, Table 7). 
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(86),X=Q 
(88),X=F 

)"-CX3 

~ HN 

(87), X=CI 
(89),X=F 

200°C 

xylene 

.... ""NHCOCXS 

'i 
/ (90),X=Cl 

(92),X=F 

+ 

~_~NHCOCX3 

(91),X=Cl 
(93),X=F 

Scheme 61. Thermal Rearrangement or Acetimidates 

Table 7. Comparison or trichloro- and tritluoroacetimidates 

Compound Ratio 90:91 Ratio 92:93 Yield(%) Time (hr) 

86 50:50 22 30 

87 50:50 25 30 

88 42:58 93 2 

89 9:91 95 2 

Thermal rearrangement of the trichloroacetimidates, however, proceeded with decomposition 

and gave poor yields with no stereos electivity. Metal catalysis using Hg(ll) and Pd(ll) 

species was attempted on all the acetimidate substrates but gave no rearrangement products. 

Transformation of the rearrangement product (93) to a precursor of lincosamine was 

achieved in 4 subsequent steps. Rearrangement of the allylic thiocyanates (Scheme 62) was 

also achieved in good yield and showed moderate stereoselectivity (75:25). 
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140°C + 
2h 

Scheme 62. Rearrangement of Allylic Thiocyanates 

An unexpected aza-Claisen rearrangement was observed by Spilling9S whilst attempting to 

halocyclise trichloroacetimidates (94a-e) with NBS or NIS. Good yields of amide were 

obtained with both alkyl and aryl allylic phosphonates. 

see table 8 

(94a-e) 

Scheme 63. Rearrangement of AUylic Trichloroacetimidates 

Table 8. Reaction of AUylic Trichloroacetimidates with N·Halosuccinimides 

Ri Ri R3 halide/solventltime Yield(%) 

a (MeOhP(O)- Ph H NBS/CHCI,t24hrs 91 

b (MeOhP(O)- Me H NBSlCH2C1v'CH3CNl24hrs 82 

b (MeOhP(O)- Me H NBSlCHCI)I36hrs 53 

c (MeOhP(O)- cyc-C~lI H NBSlCHCI,t24hrs 89 

d (MeOhP(O)- 2-furanyl H NISlCH2C1,t24hrs 65 

e (MeOhP(O)- n-~lI H NBSlCHCI,t24hrs 55 

The mechanism in Scheme 64 was postulated and fits well with the experimental 

observations. 
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Scheme 64. Stepwise Mechanism for Rearrangement of Imidates 

~ ~~P.cH~·4~ 

Introduction 

o OBn 

(96) 

~+ 2 steps 

• 
~HBoc 

(95) 

PdClz(MeCNh 
(8mol%) 

o can 

(97) 

j 
1) LiAlH.t . 
2) CCl3CN, DBU 

-ic6 ~/'. 
o OBn 

Scheme 65. Conduramine Synthesis 
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Synthesis of the conduramine derivative (95) was achieved by van Boom96 et al using the 

aza-Claisen (Ovennan) rearrangement as a key step (Scheme 65). Acetonide (96) was 

further chain extended using Wittig chemistry and reduced with LiA1l4. The acetimidate 

was formed by reaction of (97) with trichloroacetonitrile which upon treatment with catalytic 

PdCh(MeCNh yielded the desired 1,7 diene. Conversion of the diene to its N-Boc derivative 

gave a suitable compound for ring closing metathesis which gave the conduramine derivative 

with the desired stereochemistry. 

1.5.2.4. Thia-(Thio-) Claisen Rearrangement 

The first example of asymmetric induction in the thio-CIaisen rearrangement was recently 

documented by Metzner et al.97 Preparation of a number of ketene dithioacetals was readily 

achieved in two steps and these compounds spontaneously rearranged at room temperature 

yielding products with excellent diastereoselectivity and in good yield (Scheme 66). The 

postulated mechanism (Scheme 67) involves attack of the allyIic chain anti to the sulfJnyl 

group lone pair, assuming a six-membered transition state, to give the predominant 

diastereoisomer. The range of substrates and results are shown in Table 9. 

[3,3] 
lslJl' 'Xl 

e/+ SMe 0y 
fl2 

Scheme 66. 
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Table 9. Tbio-Claisen Rearrangement 

RI RI time[h] Ratio Yield(%) 

Me H 5 93:7 63 

Me Me 12 94:6 51 

t-Bu H 24 98:2 40 

t-Bu Me 45 >99:1 50 

i-Pr H 12 94:6 42 

i-Pr Me 12 >99:1 50 

c-4H1l H 20 95:5 47 

c-4H1l Me 24 >99:1 60 

~ 
[3,3] £t s H 

00'/-R1 0 ea"t-R1 - •• 

(Z) 'I ~i-L Rl;'~. 5Me 

~ 

}~j~, [3,3] ~ 
Me5 ec,...rR1 - •• 

(E) 

Scheme 67. 

Sree~8 employed zeolites to catalyse the asymmetric thio-Claisen rearrangement of 

simple V-hydroxy ketene dithioacetals (Scheme 68). Simply stirring the substrates in dry 

hexanes under a nitrogen atmosphere with the zeolites generated single diastereoisomers of 

the desired products cleanly and in excellent yield. Interestingly the major isomer obtained in 

the uncatalysed reaction was of opposite stereochemistry to the single isomer obtained when 
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catalysis was used. Transition state model (98) was proposed to explain this observation: 

absorption of the dithioacetal inside the channels of the zeolites in such a way that the bulky 

groups are directed away from the catalytic surface . 

. ~. Zeolite, r.t. 

Hexane,2h 

Scheme 68. Zeolite Catalysed Thio-CIaisen Rearrangement 

~ HO $ 

0-1-0-51-0-1-0 

(98) 

Stereocontrol induced by a hydroxy-substituted adjacent stereocentre was studied by 

Beslin.99 Rearrangement of S-allylic ketene aminothioacetals was achieved with yields as 

high as 70% and syn:anti ratios of greater than 98:2 in some cases. It was thought that the 

control was governed by stereoelectronic effects with formation of the C-C bond occurring 

on the more electron rich face of the ketene acetal that is syn to the hydroxy group 

(Scheme 69). 

r.t., 12-72 h 

Scheme 69. 

An asymmetric synthesis of the sesquiterpene (-)-trichodiene was realised by Meyers100 using 

the thio-C1aisen rearrangement to introduce the two vicinal stereocentres required (Scheme 

70). An extensive study of solvent conditions was required in order to select the optimum 

conditions to boost the equilibrium in favour of the product. The rearrangement proceeds via 

an exo (/3) face attack of the bicyclic system in a chair-like conformation. 
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Scheme 70. Generation of Vicinal Stereocentres via the Thio-Claisen Rearrangement 
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Scheme 71. Synthesis of Chiral Spiro[4.5]decane Systems 

An asymmetric route to novel chiral cyclohexenones with spiro-connected cyclopentenes was 

developed by MeyerslOI following on from the previous work with N.S-ketene acetals 

(Scheme 71). Thio-Claisen rearrangement was utilised to introduce two different allylic 
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moieties in a diastereoselective fashion and treatment of the rearranged product with 

Meerwein's reagent generated an intermediate S-iroinium ion that could be reacted with either 

a hydride or a carbon nucleopbile to generate the corresponding ketoaldehyde or diketone. 

Aldol condensation and olefin metathesis using Grubbs' catalyst enabled the synthesis of 

chiral spiro[4.5]decane systems. 
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Chapter 2 

Results and Discussion 

Application of P.Aminoalcohol Auxiliaries 
in the Asymmetric Amino-Cope Rearrangement 



2.1 Asymmetric Induction in the Anionic Amino-Cope Rearrangement Controlled by 

P-Amlnoalcohol Auxiliaries 

The introduction snmmarizes work on the amino-Cope rearrangement done by a former 

colleague. Dr Martin Button. 

We believe that the asymmetric amino-Cope rearrangement may have significant advantages 

over the analogous oxy-Cope rearrangement in terms of asymmetric induction. The oxy

anion substituent in the anionic oxy-Cope rearrangement is reported to have little 

axiaUequatorial preference in the proposed chair-like transition state and thus delivers 

products with only a moderate level of enantiomeric excess (e.e.).I03 Conversely we believe 

that an amine auxiliary is more likely to hold an equatorial position during rearrangement, 

due to its increased bulk, and should lead to much enhanced e.e. 'SI04 (Scheme 72). 

AmIno-Cope Rearrangement developed by ButtonlO4 

r 
Ph ............... N~Ph 

~V 

i) n-Buli. THF. l!. 
~''''Ph 

175% e.e. I 
Oxy-Cope Rearrangement reported by LeeI03 

i) KH, 18-crown-6. 

THF.l!. ~"'.Ph 

130% e.e·1 

Scheme 72. Asymmetric Amino-Cope vs. Oxy-Cope Rearrangements 
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2.1.1 Synthesis of 3·Amino-l,5·Diene Substrates 

The diastereoselectivity obtained during synthesis of the chiral amino-diene substrates is of 

considerable importance to us, as each diastereoisomer is known to lead to the opposite 

enantiomer of the rearranged product upon amino-Cope rearrangementlO4 (Scbeme 73). 

i) [3,3] ~Ph .. 
Ph (S) - (52) 

~ 
Ph'-./N~Ph n-Buli 

~ 1~ -nrn--, _-7-8-o;~ 
i) [3,3] ~ .•• .Ph .. 

(R) - (52) 

Scheme 73. Rearrangement of Diastereoisomers to Yield Opposite Enantiomers 

Button perfOImed an extensive literature search of diastereoselective imine aIlylations1os and 

the most suitable method was found to be Grignard addition. Early results using 

a-methylbenzylamine as the amine component gave poor d.e.'s during amino-diene 

synthesis, but more importantly the product diene diastereoisomers were separable using 

column chromatography on silica gel. 

The results outlined in this section focus on the enhanced asymmetric induction obtained 

when using l3-aminoalcohol-derived substrates and our investigations on expanding the scope 

of the amino-Cope rearrangement. 
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2.1.1.1. Preparation of3-Amlno-l,5·Diene Substrates using CiDDamaJdehyde 

Previous work by ButtonlO5 has shown that by utilising a-methyl benzylamine the four 

diastereoisomers shown in Table 10 could be obtained. After anionic amino-Cope 

rearrangement, and subsequent hydrolysis, aldehyde (52) was obtained with the e.e. 's ranging 

from 27-75%. 

Table 10. Asymmetric Anionic Amino-Cope Rearrangement by Button 

Substrate Solvent Yield I % e.e.1 % 
Major 

enantiomer 

Ph~N~Ph 

i V THF 
Me 

73 75 R 

Ph~NCPh 
THF 66 33 S 

Ma h-

Ph'tNCPh 
THF 81 27 S 

Ma h-

Ph'TN~Ph 
THF 64 41 R 

Ma ~ 

It was postulated that an increase in the steric bulk of the amine component might lead to 

greater enantioselectivity during the amino-Cope rearrangement. This was based on the 

proposed six-membered transition state model, depicted in Schemes 73 and 74, that involves 

the favoured chair-like conformation, with the amine component occupying a pseudo

equatorial orientation. The absolute stereochemistry of the rearrangement product can be 

predicted using this model and we therefore believed that by increasing the steric bulk of the 

chiraI auxiliary we would disfavour the competing chair-like transition state, in which the 

amine sits pseudo-axially shown in Scheme 74, and thus increase the enantioselectivity of the 

reaction. 
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(R) - (52) 

__ i)_[_3,_3] __ ~~ ~Ph 
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Major 
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Scheme 74. Competing Transition State Conformations for the Amino·Cope 

Rearrangement 

In order to study the effect of the relative size of the amine substituent on product e.e. we 

needed a reliable method of constructing the required l,5-diene substrates. Our group has 

found that the most effective method involves the formation of a stabilised imine using 

cinnamaldehyde and then subsequent attack of this with a suitable nucleophilic allyl species. 

In this way we were able to synthesise a number of aminoalcohol substituted dienes for use in 

the study. The aVailability of both enantiomers of the aminoalcohols was of great importance 

to us, as we would be able to synthesise either enantiomer of our final product at will. 

(99a-f) 

Scheme 75. Synthesis of Imines 
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Table 11. Imine Preparation 

R Imine(%) 

(a)' (S) i-Pr 99 

(b) (R) i-Pr 99 

(c)' (S) t-Bu 99 
(d)a (S) i-Bu 86 

(e) (S)Ph 99 

(f) (S)PhCH2 99 

• Reaction perfonned by M. Button 165 

Imines (99a-f) were prepared by stirring equimolar amounts of the ~-aminoalcohol and 

cinnamaldehyde in dry ether or DCM for up to Ih, monitoring by IR spectroscopy (C=N 

appears at 1634 cm", whilst the e--o stretch of cinnamaldehyde decreases at 1676 cm"). 

Removal of the water fonned during reaction was necessary and we found that the addition 

of anhydrous magnesium sulfate during the reaction worked well with the benefit that it acted 

as a mild Lewis acidic catalyst, thus driving the reaction to completion. The stabilisation 

afforded by the conjugated aryl unit was important in this work as it enabled us to handle the 

imines without them degrading during subsequent reactions. It is interesting that other 

workers'06 have observed that imines such as (9ge) can exist as the ring closed oxazoline 

species (Fig 6) which may also offer increased stability. In the case of our imines however 

we observed solely the ring opened tautomer from our analysis of the 'H NMR spectra in 

deuterated chlorofonn (CH=N - 8 8.1). A reason for this may be that our conditions for 

synthesis are very mild, in contrast Pridgen'06 reports refluxing over magnesium sulfate for 

18 hours before work-up which may force further reaction and result in the formation of ring 

closed products. 

4 • 

Fig 6. Tautomerisation of Imines Derived from ~-Amino Alcohols 
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With the imines in hand we were able to generate the desired amines (100a·f) in good yield 

by reaction with freshly prepared allyl Grignard reagent in diethyl ether (Scheme 76, Table 

12). 

~MgBr 

(99a·f) (l00a'f) 

Scheme 76. Reaction of Imines with Allylmagnesium Bromide 

Table 12. Results from Grignard Reaction 

R Amine % d.e. (%)6 

(a)" (S) i-Pr 78 97 
(b) (R) i·Pr 66 97 
(e)" (S) t-Bu 77 94 

(d)" (S) i-Bu 60 92 
(e) (S)Ph 83 96 
(f) (S)PhCHl 71 82c 

• Reaction performed by M. Button, see Ref 105 6 Detennined by 250 MHz iH NMR spectroscopy 

• Stereochemistry of major isomer confmned by single crystal X-ray analysis 

011 

C[4) 

CI20I 

Fig 7. Single Crystal X-Ray of Amine 100f 
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We encountered some problems with the stability of the allyl Grlgnard reagent and it had to 

be used within an hour of preparation or the reaction yield was lowered. The imines were 

routinely dissolved in dry ether under an inert atmosphere before dropwise addition to the 

Grlgnard solution at room temperature. Some difficulty arose when a precipitate formed 

during the addition. which we believe to be the magnesium salt resulting from deprotonation 

of the alcohol moiety. and the substrate was rendered inactive. We could overcome this in 

most cases by using a large dilution or by gently heating the solution until addition was 

complete. The use of toluene was also beneficial in some instances and did not detract from 

the stereoselectivity. however we found that if THF was used a dramatic decrease in 

diastereoselectivity was seen. Faced with these difficulties and intrigued by the effect that 

solvent choice had on the final diastereoselectivity we decided to investigate the Grignard 

addition further. 

The addition of organometallic species to imines derived from non-racemic l3-aminoalcohols 

and their derivatives is known to be highly diastereoselective. and has been proposed by 

others to proceed through a chelated transition state (Scheme 77).107 The absolute 

stereochemistry inherent to the chiral auxiliary then controls the "sense" of stereochemical 

induction during the imine addition, allowing accurate predictions to be made about the 

relative stereochemistry of the amine product.107 The high degree of stereocontrol in this 

reaction may be attributed to a highly ordered transition state resulting from chelation of the 

alkoxide and imino nitrogen to the metal atom. A further equivalent of allyImagnesium 

bromide will attack from the least hindered face of the carbon-nitrogen double bond108 

(Scheme 77). 
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Scheme 77. Stereoselective Grignard Addition to Imines 

Further competition also arises in the case of a,~-unsaturated imines: That of 1,2 (direct) vs. 

1,4 (conjugate) addition. Other research groups have also addressed this106
•
109 and the 

following generalisations have been made for a,~-unsaturated imine substrates containing 

j3-anIinoalcohol auxiliaries: 

• organolithium, cerium and cuprate reagents undergo 1,2-addition 

• Grignard reagents add exclusively in a l,4-fashion 

Our own results clearly contradict these findings as we observe no l,4-addition products 

(Scheme 76, Table 12). During the allyl Grignard reaction it is reasonable to postulate a six

membered transition state for the addition to our conjugated imines, with magnesium co

ordinating to the imino nitrogen (Scheme 78). 
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6-membered transition state 1,2 addition 
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8-membered transition state 1,4 addition 

Scheme 78. Allyl Grignard Additions to Conjugated Imines 

As shown in Scheme 78, for the allyl Grignard to react in a 1,4 fashion by this mechanism it 

would have to assume the less favoured eight-membered transition state. Our group has also 

prepared the analogous Grignard reagent from I-bromo-2-butene shown in Scheme 79 and 

we have observed that the reaction is much lower yielding, the major product however is still 

that arising from the concerted style of addition highlighted in Scheme 78 above. 

~MgBr 

Major isomer 

Scheme 79 Substituted Allyl Grignard Reaction105 

Alkyl and aryl Grignard reagents are not able to react in this way and a six-membered 

transition state in these cases would lead to the conjugated addition product (Scheme 80). 
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Scheme 80. Alkyl Grignard Addition to Conjugated ImInes 

Pridgen106 has indeed observed this and to verify that the saute was true with our own 

substrates we chose to prepare an alkyl Grignard reagent, ethylmagnesium bromide, and react 

this with one of our imines. We initially attempted the reaction at low temperatures, starting 

at -78 "C, but no reaction could be seen and the starting material was recovered in all cases 

(Scheme 81, Table 13). It was only when we perfonned the addition at room temperature 

followed by reflux of the resulting mixture for 1 hour that we observed any reaction. 

Solvent 

(9ge) (101) 

Scheme 81. Alkyl Grignard Addition 

Table 13. Addition of Ethylmagnesium Bromide to Imine (9ge) 

TempeC) Solvent Result Yield 

-78 TIlF no reaction 

-50 TIlF no reaction 

-45 TIlF no reaction 

-30 Et20 no reaction 

-45 to r.t. TIlF no reaction 

o to r.t. Et20 no reaction 

Oto~ Et20 e.e.4% 19%b 

Oto~ Et20 no reaction' 

• Grignard preparation using ethyliodide • Yield of aldehyde isolated after column chromatography 
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The crude IH NMR spectrum indicated the product was that arising from conjugate addition 

to the imine and subsequent purification of the product using column chromatography on 

silica gel yielded the y-substituted aldehyde. The e.e. of this aldehyde (measured by 

derivatisation with ephedrinell~ was found to be only 4 % which suggests that the chiral 

centre in the imine is too remote to direct the addition in this case. 

Until now we had routinely reacted the imines with a pre-formed Grignard reagent and the 

use of this had caused problems during the reaction because precipitation occurs if the 

Grignard addition is not carefully monitored. To overcome this we wondered if we might be 

able to perform the reaction in one pot thus eliminating the problem of adding the Grignard 

reagent too fast 

The formation of a Grignard reagent in situ is often referred to as the Barbier-type reaction111 

and its application to the allylation of imines was recently reported by Hou.112 Aldimines 

could be efficiently allylated using magnesium foil or commercial zinc powder without any 

further activation (Scheme 82). 

>=\+~ H fI2 Br 

1. M, THF, 0 "C-r.t, 0.5-2 hrs .. 
2. NaHC03 (aq.) 

I M= Mg, Zn (see Table 14 ) I 

Scheme 82. Barbier-type Grignard Reaction Performed by Houll2 

The high efficiency indicated that as soon as the Grignard reagents were generated they were 

instantaneously trapped by the electrophilic C=N bond 113 and the very low concentration of 

the allylic anion meant that the side reactions of imines (Stork1l4 reports enolisation occurs 

rather than addition to the C=N bond in some cases, Figure 8) as well as the coupling and 

dimerization reactions involved in the preparation of allylmagnesium bromide reagents lIS 

were avoided. 
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Figure 8. EnoUsatlon of Imines Reported by Storkl14 

Excellent yields were obtained in all cases although the diastereoselectivity observed with the 

chiral imines was disappointingly low as shown in Table 14. 

Table 14. Examples of the Barbier-type Grignard Reaction with A1dimines 

RI R2 
Yielda,6 

Entry 
Mg Zn 

1 Ph Ph 99 97 

2 Ph Bn 92 95 

3 p-Cl4H4 Bn 98 98 

4 trans-PhCH=CH Bn 82 91 

5 2-Furyl Bn 90 93 

6 'b- Ph 86 90 

7 i-Butyl Bn 85 92 

8 Ph (S)-PhCH(Me) 84 (111) 86 (1/1) 

9 p-Me04H4 (S)-PhCH(Me) 93 (1/1.5) 88 (1/1) 

10 o-Me04H4 (R)-PhCH(Me) 85 (2.5/1) 84 (2/1) 

• Isolated yields. 6 Ratios in parentheses represent the diastereoisomeric ratios obtained by 300 MHz 'H-NMR 

specIIOscopy 

It was interesting to note that when using a cinnamaldehyde derived imine (Entry 4) Hou et 

a1 observed, like ourselves, 1,2 addition although no reference to this was made in the paper. 

The high yields obtained prompted us to try this method with our l3-aminoalcohol derived 

imines, in particular (99f) which was synthesised using phenylalaninol (Scheme 83). 
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Scheme 83. Barbler-type GrigDard Reaction on PhenyJaJaninol Substrate 

The initial reaction was tried following conditions similar to those reported by Hou, stirring 

the dried imine in anhydrous THF with 1.2 equivalents of magnesium foil and 1.1 equivalents 

of allylbromide at 0 °c. There appeared to be no initial reaction however after the solution 

had warmed to room temperature. Over 90 minutes the colour of the reaction mixture 

darkened and the magnesium foil had been consumed. At this point the reaction was 

quenched and worked up in the usual manner to yield clean diene with excellent recovery but 

unfortunately the tie. measured by IH NMR spectroscopy was only 57% (c.f. 82% when 

using the standard Grignard conditions). We then decided to· examine other solvents and 

temperatures, the results of which are shown in Table 15. 

Table 15. Effect of Solvent and Temperature on the Barbier-type Grignard Reaction 

Solvent 
Temperature 

Time tie. (%)" Yieldb 

("C) 

THF Otor.t 90mins 57 70 % • 
EtzO o tor.t 18h 81 50 % conversion· 

THF -78 to r.t. 90mins 89 %" 

EtzO -78 to r.t. 5h 82 80 % conversion" 

EtzOITHF 0 90mins 58 99 %d 

THF -40 to r.t. 18h 75 <5 % conversion" 

THF o to r.t. 18 h 87 % 

1:1 PhCHJ/EtzO -78 to r.t. 3h 78 99 %d 

4:1 PhCHJ/EtzO r.t. 18h 81 99 %d 

DME r.t. 18h 10 70 % reaction 

• Diastereoselectivity measured from crude 250 MHz lH NMR. 6 Purified yield unless otherwise stated. 

" Estimated conversion from crude 250 MHz lH NMR. d Crude product mixtuIe contained no starting 

material. 
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We found that the choice of solvent is crucial when trying to obtain the best 

diastereoselectivity from the Barbier-type reaction. Tetrahydrofuran proved to give a low 

d.e. even when the temperature was lowered during the initial reaction, although the worst 

solvent appeared to be dimethoxyethane giving just 10% diastereomeric excess. The use of 

diethyl ether seems to give consistently high diastereoselectivities but when used in 

conjunction with THF the d.e. is drastically reduced. Solubility of the imine was improved 

by adding toluene in varying amounts and this did not seem to detract from the selectivity of 

the reaction. 

There is clearly a large effect on diastereoselectivity in this particular reaction when changing 

between the various solvents we have used. It is apparent from the work of others116 that at 

low concentrations Grignard reagents exist in solution as monomers and there is evidence to 

suggest that the preferred structure is of the type RMgX'20R'2, with solvent stabilisation 

being of great importance. As shown in Scheme 78 the diastereoselectivity induced during 

Grignard addition relies on the fonnation of a 5-membered chelate. Similar chelated 

structures have been proposed by Fallis117to be highly solvent dependent, with THF proving 

to be a poor solvent choice in such cases. It could be argued then that the poor 

diastereoselectivity we observed when using THF may arise from a disruption to the ordered 

transition state, although further study is required in this area. 

Confirmation of the predicted stereochemistry was achieved when we prepared the diene 

using phenylalaninol as the chiral auxiliary. A crystalline solid was obtained from which we 

were able to grow crystals for single crystal X-ray analysis. Until now the relative 

stereochemistry of the diene had been postulated based on the work of Yamamotol18 and our 

own previous findings.1OS Interpretation of the X-ray data (see Appendix) confirmed that the 

allyl nucleophile does indeed attack the imine from the less hindered face producing the 

expected • anti' stereochemistry as depicted in the preceding schemes. 

2.1.1.2. Preparation of Amino-Diene Substrates using Furfural 

So far we had only begun to examine the sigmatropic rearrangement of dienes which were 

not part of an aromatic framework. It is well known that during the Claisen rearrangement 

electrons from an aromatic system can participate19 and during the Fischer-Indole synthesis 
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there is also an initial loss of aromaticity.l19a It is worth noting however that in both these 

examples the aromaticity is regained at some stage after the initial rearrangement 

Furfural is a readily available aromatic aldehyde and we found it reacted well with valinol to 

produce a stable chiral imine in a similar manner to those made using cinnamaldehyde 

(Scheme 84). 

NJV X ?~ -..;;:: (102&). 80% 

Scheme 84. Preparation oC Furan Imine 

The furan ring. like other heteroarenes. is able to take part in a wide range of electrophilic 

reactionsl19b and if incorporated into our [mal rearrangement product it could be used to 

further derivatise the substrate. For example furans are known to hydrolyse easily under 

mildly acidic conditions to produce a diketone which can be elaborated further if required 

(Scheme 85).120 

/\ .... 
~ol' 

Scheme 85. Hydrolysis oC Furan Ring120 
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Fonnation of the diene was done in a similar manner to before - using allylmagnesium 

bromide in diethyl ether to furnish the amine (103a) with exclusive anti stereochemistry 

(Scheme 86). In this series of experiments we encountered no problems with solubility and 

were able to work with a more concentrated imine solution which greatly simplified working 

under anhydrous conditions. During the course of other work (mentioned in Section 2.2) we 

were using allyl lithium and we found that this was equally effective for obtaining the diene, 

although on a much smaller scale because the reagent was more difficult to prepare in our 

hands. 

~MgBr 

x~ E~O x:e • or ~u 

(102a) 
THF 

(103a) 

Scheme 86. Allyl Additions to Furan Imine 

2.1.1.3 Preparation of Amino-Diene Substrates using 3-(2-Furyl)-acrolein 

The construction of dienes containing different functional groups at the double bond termini 

has been one of the goals of this ongoing project By using 3-(2-Furyl)-acrolein we were 

able to generate an imine analogous to those initially prepared using cinnamaldehyde, in that 

there was still some considerable stabilisation through conjugation to the aromatic ring. We 

chose to use valinol as the chiral aminoalcohol substituent because it was readily available 

and easy to handle following earlier work. The imine was easily prepared by stirring an 

equimolar amount of valinol and 3-(2-Furyl)-acrolein in dichloromethane at room 

temperature (102b, Scheme 87). At the same time we were able to use 5-nitm-2-furan 

acrolein to prepare a similar imine and we hoped to study the effects of the electron 

withdrawing group on the amino-Cope rearrangement (10le, Scheme 87) 
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(I02b, X=H), 97% 
(IOle, X=N02), 95% 

Scheme 87. Preparation of Imines from 3-(2-FuryI)-acroleln Derivatives 

Imine (I02b) reacted in the same manner as its phenyl substituted analogue and as shown in 

Scheme 88 we obtained the diene (103b) almost exclusively as a single diastereoisomer (tie. 

> 95%). Problems were encountered when we tried to use the same conditions with the 

nitrofuran imine (IOle) because it was only sparingly soluble in diethyl ether. In an attempt 

to overcome this hurdle we tried a number of other anhydrous solvents. Toluene initially 

showed some promise but still only dissolved about 10% of the reaction material. 

Tetrahydrofuran was no better than diethyl ether so we finally attempted to use 

dimethoxyethane. Although we were able to dissolve the imine in this solvent the Grignard 

reaction was unsuccessful yielding only starting material (Scheme 88). The failure of this 

reaction was disappointing as it would have been interesting to compare the reactivities of the 

two dienes. It is possible that the DME was not fully anhydrous at the time of use and this 

may have resulting in the Grignard reagent being quenched before it had chance to react with 

the imine. 

(I02b),X=H 
(IOle), X=N02 

~MgBr 

(I03b), 79%. tie > 95% 
(I03c), No reaction 

Scheme 88. Grignard Reactions on Furanacroleln Imines 
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2.1.1.4 Preparation of Amlno-Diene Substrates Using Crotonaldehyde 

To further expand the range of substrates used for the asymmetric amino-Cope rearrangement 

we sought to use a non-aromatic aldehyde and the most obvious choice was crotonaldehyde. 

The diene had been prepared by our group in the pastlO3 but had received little attention so it 

was important to investigate it further. From experience we knew that the imine was unstable 

and could not be isolated - a measure of the stability imparted by aromatic conjugation in the 

preceding examples. However, we could prepare the imine in diethyl ether and after a brief 

work-up this could be reacted with allylmagnesium bromide in the same manner as our other 

imines to form the desired amine (104) in reasonable yield (Scheme 89). 

~ [OH 
, ...... NH2 

~MgBr 
~O .. .. 

(104) 
79%, d.e. >95% 

Scheme 89. Imine and Amine Preparation from Crotonaldehyde 

Purification of amine (104) on silica gel was difficult and we often saw some decomposition 

to crotonaldehyde (seen in the IR spectra). For this reason rapid columning was required and 

as a result the isolated yield was lowered due to several contaminated fractions being 

discarded. The aliphatic nature of the crotonyl diene was hoped to afford increased solubility 

in the less polar solvents and we wished to study this aspect in light of some recent work by 

Macdonald, 121 described in Section 2.2.4. 
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2.2. Amino-Cope Rearrangements of Novel Amino-Diene Substrates 

2.2.1. Anionic Amino-Cope Rearrangement of Cinnamaldehyde Substrates 

The successful rearrangements of a-methylbenzylamine substrates performed by Button104•10! 

were used as a basis for investigatiou of the aminoalcohol substrates. A study of the most 

efficient bases was also performed along with the use of different solvents and it was found 

that using tetrahydrofuran with 2.5 equivalents of base was most effective at this stage. Over 

one equivalent of base was required since the substrate contains a hydroxy group which is 

also deprotonated during the reaction. As shown in Scheme 90 rearrangement was effected 

by dissolving the aminoalcohol-substituted diene in anhydrous TIIF and cooling to -78°C 

before dropwise addition of the base and reflux of the resnlting solution. Unexpectedly the 

rearrangement product appears to be formed as the oxazolidine (105) resnlting from ring 

closure of the hydroxy group onto the intermediate enaminefImine. Purification of the crude 

product on silica gel hydrolysed the heterocycle yielding the aldehyde (52) in moderate to 

good yield as seen in Table 15. 

y~~Ph n-BuLi y~~ .. 
R ~ R ~ 

(100a-f) 

! 8,0' 

H~ 
Si02 ~ ... HN 

H' • '-=::: 

(52) (105) 

Scheme 90. Anionic Amino-Cope Rearrangement of fJ-Aminoalcohol Substituted 

Dienes 
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Measurement of the enantiomeric excess was achieved following the procedure described by 

Agamil10 which involves stirring the aldehyde in dichIoromethane with (IR, 2S)-ephedrine 

and analysis of the diastereomeric oxazoIidines formed by 'H NMR spectroscopy. In general 

the enantiomeric excesses were good, ranging from 71-94%, the highest resulting from the 

use of phenylalaninol as an auxiliary (Table 16). 

Table 16. Anionic Amino Cope Rearrangement of Dienes (l00a-O 

R Aldehyde (%) e.e. (%) 

(a)' (8) i-Pr 60 84 

(b) (R) i-Pr S4 84 

(c)" (8) t-Bu S3 88 

(d)" (8) i-Bu S7 71 

(e) (8) Ph 61 83 

(0 (8)PhCHz 6S 94 

• Reaction performed by M. Button, see Ref 105 

After further work by Button'05 using norephedrine it was revealed that ~-substitution is most 

important in affecting the asymmetry of the rearrangement Rearrangement of substrates 

derived from (R, S) and (S, R) ephedrine gave Iow e.e.'s of 38 and 39% respectively (Scheme 

91) despite containing a bulky phenyl group in the ex-position. 

~~~ l)n-BuU o ~h 

H~ I l • 
~ V 2) H30+, SiOz 

e.e.38% 

o-~\~/~ l)n-BuU ~ • 
~ = ~ 2) H30+, Si02 

H '-'::: 

e.e.39% 

Scheme 91. Rearrangement of Norephedrine Derived Substrates'oS 
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These two results fit well with the observations of Normantl22 and Berlanl23 who found that 

during conjugate organometallic addition to ephedrine derived oxazolidines the 

diastereoselectivity obtained was only 40% (Scheme 92). 

i)MeCuMgCl Me.>l" ., CHO 
PH 

e.e.4O% 

Scheme 92. Organometallic Addition to Ephedrine Derived Oxazolidinesl23 

The stereoselectivity observed in both cases would suggest that the directing effect of a

substituents, whether it involves an extemal nucleophile or a 'concerted' attack by the allyl 

group during Cope rearrangement, is limited. It follows then that a substituent in the /l
position with more steric bulk than a simple methyl group might induce greater 

stereoselectivity and indeed we have observed this in the case of the antino-Cope 

rearrangement of our substrates (Scheme 93). 

y~~Ph i) n-Buli, THF, A 

O~~:r'Ph .. 
A =~ ii)H30 + 

(100a, c-f) (52) 

whereR= 

~ 
I + p) Ph 

e.e. (%)= 71 83 84 88 94 .. 
increase in enantioselectivity 

Scheme 93. Trend of Increasing Enantiomeric Excess with Increasing Steric Bulk 
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Assuming a six-membered transition state (Scheme 73 and 74) the phenylalaninol result fits 

into a trend that the increase in steric bulk leads to progressively higher e.e.'s as shown in 

Scheme 93. The presence of a S-membered chelate is also thought to be responsible for the 

relative increase in stereoselectivity seen with this range of chiral auxiliarieslO7a - effectively 

increasing the bulk of the amine component and forcing the diene to react with the amine 

substituent occupying a pseudo-equatorial orientation (Figure 9). 

Figure 9. Proposed S-Membered ChelatelO7
o,124 

Around the time we obtained these results, a report by Meyers and Houk12S appeared in the 

literature aimed at examining the amino-Cope rearrangement and comparing it with the more 

developed oxy-Cope rearrangement. The mechanism of the oxy-Cope rearrangement is now 

widely considered to be concerted,l08 however the amino-Cope mechanism has yet to be fully 

investigated. Meyers' group prepared five diene systems (106-110, Figure 10) and subjected 

them to conditions similar to our own. They found that none of the compounds underwent 

rearrangement, instead giving (in one case) a dissociated I recombined addition product and 

in all other experiments only recovered starting materials. The full results are given in Table 

17. 
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(106) (107) 

HN~~ 
~h ~h 

i OH E 

HN~ HN~H 

m cY) d) 
(108) (109) (110) 

Figure 10. Diene Systems Synthesised by Meyers et al 

Table 17 Results oCthe Amino-Cope Rearrangement Obtained by Meyersl25 

Amine Conditions Results 

KH I toluene,a overnight, no reaction 
(106) 

MeI quench, KHlDMF, Tt, H30+ deallylated imine 

KH I toluene, rt overnight, no reaction 
(107) 

n-BuLi I THF -78°C to 0 °C butyl addition product' 

KH I toluene, rt to a no reaction 
(108) 

n-BuLi/THF -78°C to rt deallylated product 

KH I toluene, rt to a, no reaction 
(109) 

n-BuLi/THF -78°C to rt decomposition 

KH I toluene, rt to a, no reaction 
(110) 

n-BuLi I THF _780 C to rt no reaction 
a .. 

Addition of n-BuLi to the C=N bond of 'disSOCIated' (107) as determined by 'H and Ilc NMR 

Bond dissociation energies were calculated for the anionic antino-Cope rearrangement and 

compared with those of the oxy-Cope rearrangement. From these calculations they proposed 
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that the amino-Cope mechanism was in fact stepwise, proceeding via dea1lylation and 

subsequent conjugate addition at the double bond terminus (Figure 11). The relevant anionic 

oxy-Cope mechanism is included in Figure 12 for comparison and shows the stationary 

points found. This reaction proceeds via a concerted pathway, with an activation energy of 

9.9 kcaIlmol and is exothermic overall generating 19.1 kcaIlmol. An intrinsic reaction c0-

ordinate calculation indicates no intermediates and the dissociative transition structure occurs 

quite early. The anionic amino-Cope substrate has an unexpectedly different energy surface 

(Figure 11), and proceeds via a stepwise mechanism. The initial barrier to the reaction is 7.4 

kcaIlmol and leads to intermediate (111), a complex of allyl anion and acrolein imine. This 

ion complex then recombines to form the rearrangement product in an exothermic reaction, 

liberating 21.1 kcal/mol. 

0.0 

NH 

~ 

7.4 
(125) 

-0.2 
(7.3) 

"( 
, , 
~ 

~N 
-15 
(75) 

~ 

(111) 
-21.1 

(-20.4) 

NH 

Figure 11. Proposed Dissociation During the Anionic Amino-Cope Rearrangementl25 

Results and Discussion - ~-Aminoa1cohol Auxiliaries 77 



(106) 

'. e .' 
~ 

Too hindered for conjugate 
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Scheme 94. Mechanism Resulting in Deallylation of Diene (106) 

00 

~ 
V 

·191 
(·18.3) 
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Figure 12. Concerted Mechanism of the Oxy·Cope Rearrangement,12S energies in keall 

mol are given in parentheses 

Meyers and Hook suggested that in solution the intermediate (111) would be substantially 

stabilised and dissociated. since it is an allyl anion weakly bonded to acrolein imine. 

Therefore they concluded the anionic amino-Cope rearrangement proceeds via a stepwise 

pathway involving dissociation. Their limited results seem to follow this proposition since 

they saw no rearrangement, only fragmentation and trapping of the intennediate with n-butyl 

anions. In contrast, our own results did not support this. since we observed only 

rearrangement products with no evidence of n-butyl inclusion in any of the cases. It is still 

possible however that the mechanism proceeds via homolytic or heterolytic cleavage of the 

diene followed by recombination. During our own studies we would not be able to verify 
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this because the allyl fragment is symmetrical and would lead to the same product via either 

mechanism (Scheme 95). 

@ 
Li 

I Concerted Mechanism I 

I Stepwise Mechanism I 
n-BuLi JH'O' 

Scheme 95. Possible Mechanisms Cor the Anionic Amino-Cope Rearrangement 

Recent results from the groups of MacDonald121 and Allinl26 suggest that the findings of 

Meyers and Houk may be a truer representation of the mechanism with certain substrates 

under particular reaction conditions. MacDonald has reported seeing evidence of products 

resulting from a formal [1,3] sigmatropic shift in his studies (Section 2.2.4.) and we have 

also observed some cross-over when rearranging diene (112) under our usual conditions 

(Scheme 96). 
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Me 

Scheme 96. Rearrangement of Diene (112) Showing Some Evidence of Dissociation 

The suggestion that the anionic amino-Cope rearrangement may proceed via deallylation 

followed by conjugate attack of the liberated allyl fragment prompted us to investigate the 

addition of allyllithium to our imine precursors. Our first hurdle was the formation of 

allyllithium since there were few synthetic reports that relied on easily obtainable reagents 127 

and it was not commercially available. We first attempted to use lithium metal and 

allylphenylether127c but the conversion was low and there seemed to be a large excess of 

phenol produced which could not easily be removed (Scheme 97). 

12 equiv Li wire 
~u 

THF,-20·C 

Poor recovery 

+ 6 
Present in crude 
IHNMR 

Scheme 97. AlIyllthium Preparation from Al1ylphenylethe~27c 

A more viable method involved using phenyllithium and allyltriphenyl tinl27b which 

produced the insoluble tetraphenyl tin as a by-product (Scheme 98). 
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Ph Phu Ph 

~rph ~ ~U + -?<Ph 
THF,r.t. Ph 

Olive Green Colourless 
Solution Precipitate 

Scheme 98. Use of A1IyltriphenyltinU7b 

AIlyltriphenyltin was dissolved in anhydrous THF and stirred at room temperature whilst a 

solution of phenyIlithium was added dropwise. The resulting characteristic olive green 

aIIyIlithium solution was cooled to -78 "C before addition of a solution of imine (9ge) in 

anhydrous THF. Stirring was continued at this temperature for 4 hours before wanning to 

room temperature and refluxing for a further 2 hours. Work-up revealed that the major 

product was similar to the oxazolidine that we obtain from the amino-Cope rearrangement 

and after purification by column chromatography on silica gel aldehyde (52) was liberated 

(Scheme 99). 

~u 

(9ge) (lOSe) 

Major product 

(52) 

Scheme 99. AIlyllithium Addition to Conjugated Imine (9ge) 
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Derivatisation with ephedrine revealed that the e.e. was only 27 llb, much lower than that 

obtained after amino-Cope rearrangement of the substrate containing the same chiral 

auxilliary. 

We can view this result in one of two ways (Scheme 100) - either the initially formed 

product is an amino-diene with moderate diastereoselectivity (crude IH NMR spectroscopy 

indicates that some 1,2 addition occurs resulting in the diene) which then undergoes tandem 

amino-Cope rearrangement after deprotonation with either allyllithium or excess 

phenyllithium, or the major product is formed from lA-addition to the imine with some 

remote stereos electivity induced by the aminoalcohol auxiliary. 

~N~ H~ 
Ph (9ge) ~ Si~ 

['~ ~7 
(52) 

Scheme 100. Reactions Leading to the Formation of (52) 

The latter process would suggest that if the amino-Cope rearrangement proceeds via a 

heterolytic pathway then the two species must form a close ion-pair that retains some of the 

stereochemistry of the parent substrate in order to achieve a high level of product e.e. The 

involvement of such an ion-pair has also been independently suggested by MacDonald.121 

Looking back at our initial Grignard reactions it is important to note here that the dienes 

formed do not spontaneously rearrange despite the presence of an dianion intermediate in 

solution (Figure 13). 
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X 

Fig 13. Grignard Reaction Leading to Dianion in Solution. 

Although an in-depth study was not performed, a reasonable explanation for this is that the 

charge on both of the heteroatoms is sufficiently delocalised by the co-ordinating Grignard 

counterion that no further reaction can take place. 

2.2.2. Anionic Amino-Cope Rearrangement of Furfural Substrates 

The anionic amino-Cope rearrangement of substrates containing cyclic motifs, both aromatic 

and non·aromatic, within the diene framework was unsuccessful under the conditions 

employed by Meyers. l 2.5 Failure of these substrates to rearrange may be due to their inability 

to attain the correct conformation for rearrangement and in addition the aromatic examples 

may simply be too stable to react. 

We initially attempted rearrangement of furan-derived substrates using the anionic conditions 

previously developed for other substrates used by our group: deprotonation with 2.5 

equivalents of n-BuLi at -78°C in THF followed by warming to room temperature and then 

a period of reflux. The reaction was attempted in this manner a number of times but only 

starting material was recovered, even when reflux was continued overnight (Scheme 101). 

n-BuLiora 
X ~ 

see text 

Scheme 101. Attempted Rearrangement oC Furan Derivative 

We reasoned that the temperature required to effect rearrangement of this substrate may need 

to be higher than reached in THF solvent, either to overcome the aromaticity of the furan ring 

or to force the diene into a more favourable reacting conformer. We changed to using 
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toluene as a solvent and the reaction was eanied out as before but unfortunately there were 

only signs of decomposition after a 2 hour reflux period. 

Undeterred by the lack of reactivity so far we decided to switch to thermal conditions as these 

had worked for some of our subs1rates in the past.IOS.128 A small sample of the diene was 

heated in a sealed tube at 180°C for 2 hours but extraction of the tarry residue showed only 

products of decomposition. The reaction was repeated at 210 °C and 230°C but again we 

observed no sign of rearrangement. 

The lack of reactivity of this substrate under our usual amino-Cope conditions - both anionic 

and thermal- was disappointing but in good agreement with the findings of Meyers et al. l25 

2.2.3. Anionic Amino-Cope Rearrangement of 3-(2-FuryI)-acrolein Substrates 

The diene prepared from 3-(2-furyl)-acrolein was expected to behave in a similar manner to 

that derived from cinnamaldehyde. Unlike the preceding example, the furan ring is now 

adjacent to the double bond and should not affect the conformation of the substrate. Using 

the same anionic conditions as used previously the amine (103a) underwent rearrangement to 

afford the furan substituted aldehyde (113) in good yield after hydrolysis on silica (Scheme 

102) 

(103a) 

l)n-BuLi, TIIF,-78°Ctod 

2) Si02 

.. 
H 

(113) 

73%, e.e. 36% 

Scheme 102. Rearrangement of 3-(2-furyl)-acrolein Substrate 

We were again able to measure the e.e. of this compound by derivatisation with (lR, 2S) 

ephedrine and to our surprise it was only 36%. 
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This important result indicates that the chiral auxiliary is not the only factor to consider when 

assessing the stereoselectivity of the amino-Cope rearrangement of such substrates. As 

mentioned earlier we can envisage that the rearrangement proceeds through a six membered 

chair-like transition state. To obtain high product e.e. 's one transition state must predominate 

with the amine auxiliary occupying either an equatorial or axial position (Scheme 103). 

t~J~FU 
~~ 

(103b) 

n-BuLi 

4 tr H 

Fu Fu 

(113) 

Scheme 103. Transition State Preferences for 3-(2-furyl)-acrolein Diene 

Dienes derived from amino alcohols and cinnamaldehyde have so far been successful in 

delivering products in a highly enantioselective manner. As we have seen, however, in the 

case of the substrate prepared using 3-(2-furyl)·acrolein the rearrangement is not at all 
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enantioselective and this may be due to a lack of discrimination between the two competing 

transition states. 

It has also been mentioned that there is evidence to suggest that the anionic amino-Cope 

rearrangement proceeds via a dissociative mechanism with some substrates. If this is indeed 

the case with our furyl substrate then the loss of enantioselectivity may be due to scrambling 

of the chiral centre (Scheme 104) or dispersion of the perceived close ion-pair formed by this 

mechanism. 

$ u - -

"'~t;~ 
R/~FU 

H30 + 
~FU .. 

C. e .' 
) ~ 

~ 

~ 

- -

Scheme 104. Scrambling of Stereochemistry During Dissociation. 

A more detailed study is required in this area before further comment can be made involving 

dienes with suitably diverse aromatic and aIiphatic substitution at the 1- (and 6-) position. 

2.2.4. Anionic Amino-Cope Rearrangement of Crotonaldehyde Substrates 

MacDonald et al121 have reported that under anionic conditions the 3-amino-1,5-hexadiene 

(114) rearranges to give a [1,3] (crossover) product in addition to the [3,3] (Cope) product. 

This is in sharp contrast to the thermal reaction of (114) which yields only the [3,3] product. 
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(114) 

n-BuLi, -20°C 

or IS00C 
[3,3] 

Scheme 105. Rearrangement of 3-SPh Substrates 

Cope product 

They noted that with some substrates the regioselectivity of the reaction was strongly 

influenced by solvent polarity and that this may be due to a fragmentation pathway being 

favoured by the polar solvent while the non-polar solvents favour the concerted pathway. 

They also performed a cross-over experiment (Scheme 106) and found that little or no 

mixing of the starting material substituents occurred indicating that either a concerted 

pathway was operating to form the [1,3] product, or that a very rapid fragmentation

recombination pathway was taking place. 

r ::c r 
+ H>rN~ 
ToI~ 

1) n-BuLi, THF 
2) HOAc 

3) DffiAL-H 

r r r r 
BnN~ ~PrN~ Bn~ H>rN~ 

+ h + h + h 
Ph To! To! Ph , ), ) 

Y Y 
non-mixed mixed 

non-mixed: mixed > 5:1 

Scheme 106. Cross-over Experiment To Assess the Amino-Cope Mechanism 

With some initial stability problems we were able to synthesise the I-Me substituted diene 

(104) shown in Scheme 107. We wished to study the effect that using a non-polar solvent 
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would have on the rearrangement and whether the resulting product enantiomeric excess 

would be affected. An initial reaction using tetrahydrofuran under the usual conditions had 

yielded some of the expected rearrangement product but after column chromatography the 'H 

NMR spectrum was too messy to interpret fully and there were peaks in the region that would 

interfere with e.e. measurement. Rearrangement in toluene gave similar results although the 

crude NMR spectrum was extremely messy indicating decomposition products were present. 

We were more optimistic about using hexanes as a solvent because the reflux temperature is 

lower than either of the previous solvents and the polarity may favour the concerted reaction 

thus yielding fewer side-products. The amine was dissolved in a small amount of anhydrous 

hexanes and cooled to -20 °C (below this temperature the solvent began to freeze) before 

addition of n-BuLi. The solution darkened suggesting that some deprotonation was occurring 

so the reaction mixture was warmed to room temperature and refluxed for 24 hours. 

Monitoring by TLC showed that some rearrangement product was forming after 2 hours but 

after this time there seemed to be no further reaction and subsequent work-up failed to yield 

enough of the product for NMR and e.e. measurement (Scheme 107). 

C/~~Me_n_-_Buli_·._T_OC_ ... 
~ ~ Solvent 

see text 

(104) 

Scheme 107. Rearrangement of 6-Me Substituted Amine 

2.3. Preparation of O-Me and O-Bn Protected Amine Auxjliaries 

In the previous studies using aminoalcohols as chiral auxiliaries we obtained very high levels 

of enantioselectivity with e.e.·s up to 94% when the diene was prepared using phenylalaninol 

and cinnamaldehyde. We believed that the increase in asymmetric induction was due to the 

formation of a 5-membered chelate during the rearrangement which effectively increased the 

steric bulk of the amine component and we initially aimed to investigate this further by 

preparing amines in which the alcohol was protected as the O-methyl derivative. 
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n-BuLi 

R = Bn; R' = i-Pr III 
or R = Me; R' = PhCH2 R, 

y~Ph 
R' Ft 

major intennediate 

Scheme 108. Proposed Rearrangement Without Chelate Formation 

A postdoctoral researcher, Or Roger Lins, joined us at this point and proceeded to work on 

the synthesis of O-benzyl derivatives to give us further insight into the rearrangement. By 

protecting the alcohol moiety we would eliminate the need for an extra equivalent of base 

and, with this in mind, we also wondered if fonnation of the proposed 5-membered chelate 

would be inhibited or eradicated (Scheme 108). If this were the case we would expect to see 

a reduction in the enantioselectivity of the rearrangement. 

2.3.1. Synthesis of O-Protected Amino Alcohols 

In a related project we were interested in forming the O-Me amino alcohol as there were 

methods available in the literature to do this selectively.129 We set about following a 

procedure by Meyersl29a which used potassium hydride in THF with an overnight 

equilibration period before quenching with the appropriate electrophile, in this case 

iodomethane. Using phenylglycinol we tried a number of times to synthesise the 

methoxyamine (115) selectively but our best yield was only 40% and this still contained 

some impurity thought to be a dimethylated (O-Me) N-Me) species from analysis of the crude 

IH NMR spectrum (Scheme 109, Table 18). 
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;:OH 
R NH2 
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;:

OMO 

and Ma 
R ~/ 

ii)MeX 

(R = Ph or i-Pr) (115) + Major impurity 

Scheme 109. Initial Attempts to Protect Phenylglycinol 

As shown in Table 18 we tried other conditions, including a change to using valinol as the 

l3-aminoalcohol substrate, but without any improvements to the initial synthesis. Solvent 

choice was limited to those that would not react with a strong base but we found none that 

were as effective as tetrahydrofuran, although this could be related to the availability of 

anhydrous solvents as acetonitrile, DME and DMF were all difficult to dry effectively in our 

hands. We chose to use sodium hydride for some of the experiments to see if it would be 

more effective at removing the more acidic proton in the aminoalcohol but it seemed less 

effective at deprotonating either the alcohol or amine moieties. When we used 

methyltosylate in place of iodomethane we observed some reaction, possibly because of the 

better electrophile, although the excess reagent was difficult to remove and a number of side 

reactions seemed to be taking place which led to difficulties in purification. 

R 

Ph 

Ph 

Ph 

Ph 

Ph 

Ph 

i-Pr 

i-Pr 

Table 18. Protection of Aminoalcohols 

Solvent 

TIIF 

MeCN 

PhCH3 

DME 

DMF 

TIIF 

TIIF 

TIIF 

Base 

KH 

KH 

KH 

KH 

KH 

NaH 

NaH 

NaH 

MeX Result 

MeI 40% Yield 

Effervesced 

MeI 

MeI 

MeI 

MeOTs 

MeI 

MeOTs 

Impure 

No reaction 

No reaction 

Impure 

No reaction 

Messy 

This poor selectivity prompted us to try and protect the amine with a group that could be 

removed later in the sequence. Phenylalaninol reacted partly with phthalic anhydride to form 

the phthalimide derivative (116) shown in Scheme 110, but the yield was only 38% and 
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could not be consistently reproduced, with the majority of the product material appearing to 

be the uncyclised species (117) from the crude IH NMR spectrum. The reaction was also 

repeated in the presence of base, and toluene was used as solvent to try and force the 

intermediate to cyclise but none of these modifications led to any improvement in yield. 

cc$ 
o Q;:0H 

~I 
NPhIh 

(116) 

38% 

Scheme 110. Phtbalimide Protection 

+ 

(117) 

In an alternative approach phenylglycinol was successfully protected as its Boc derivative 

(118) but again the yield was low. In this case however a poor recrystallisation step led to a 

further decrease in recovery. As Scheme 111 shows our intended sequence involved 

deprotonation of the alcohol moiety with potassium hydride and we hoped the alkoxide 

would be stable enough to be reacted quicldy with methyl tosylate. 

1)=0 MeTs 

P~~e 01( 

(119) 

,OH 
PhANBoc 

(118) 

i)KH 

ii)MeTs 

KH 

Ph))=o e 

Scheme Ill. Boe Protection and Elimination to form Oxazolidinone (119) 
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However, before the electrophile could be added, the Boc group was attacked by the alkoxide 

leading to an oxazolidinone species which was presumably deprotonated again and 

methylated when we added the methyl tosylate to fann oxazolidinone (119). A similar 

cyclisation was found to have been performed by MacNeill30 to produce bicyclic compounds. 

Our failure to find a reliable method for protecting the ~-aminoalcohols as their O-Me 

derivatives did not prevent us from synthesising a related hexadiene as we were able to use 

!he commercially available O-Me phenylalaninol which is available as !he hydrochloride salt. 

After some modification of literature conditions,131 Roger Lins was able to selectively 

prepare O-Bn valinol (120) in moderate yield with no sign of the troublesome N-alkylated 

species (Scheme 112). Refluxing for Ih after the addition of valinol to the sodium hydride 

seemed essential to effect deprotonation. The use of benzyl chloride was also important. 

When benzyl bromide was used the selectivity decreased and N-Bn aminoalcohols were 

formed as a by-product. In this case we believe that there may be some competing reaction 

from the free amine which is sufficiently nucleophilic in !he presence of a good electrophile. 

i) NaH, THF, A 

ii) BnCl 

(120),55% 

Scheme 112. O-Bn Protection of Valinol 
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2.3.2. Diene Synthesis from Protected Aminoalcohol Substrates 

In the same manner as previously described, we were able to prepare imines (121a) and 

(121b) in excellent yield by stirring equimolar amounts of protected aminoalcohol and 

cinnamaJdehyde in dichlorometbane. At this stage we were developing better methods (as 

discussed earlier in Section 2.1.1.1.) for preparing our amino-Cope precursors and the 

Grignard reaction on imine (121b) was performed under Barbier conditions, yielding the 

desired diene in good yield and as a single diastereoisomer after column chromatography 

(Scheme 113). 

~o 

(121a): R = Bn, R' = i-Pr 
(121b): R = Me, R' = PhCH2 

Method A (R = Bn) 
allylmagnesium bromide, THF, r.t. 30 mins 

Method B (R = Me) 
allyl bromide, Mg, THF, r.t. overnight 

(121a) 99% 
(121b) 99% 

MethodAorB 

(122a) 65%, d.e >95%. 
(122b) 60%, d.e 81%. 

Scheme 113. Preparation of O-Protected Dienes 
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The use of Barbier conditions with the O-Bn imine led to a significant decrease in 

diastereoselectivity of the diene and it was therefore prepared using the standard Grignard 

conditions, also in good yield, with only one diastereoisomer visible in the crude IH NMR 

spectrum. 

2.3.3. Anionic Amino-Cope Rearrangement of O·Protected Amines 

The rearrangement of O-Bn protected amines was studied by Roger Lins and the results will 

be reported in due course. J32 He found that the protected amine does not require conditions 

as harsh as our the previous studies and that amino-Cope rearrangement of such substrates 

can occur without the need for refluxing. Diene (1228) reacted cleanly below 0 °C to give 

enamine (123a) which was easily hydrolysed using column chromatography to yield 

aldehyde (52) (Scheme 114). 

(122a), R = Bn, R' = i-Pr 
(122b), R = Me, R' = Bn 

H 

(52) 

1.1 eq n-BuLi 

THF, -78 GC to r.t. 

Si~ 

(123a orb) 

Scheme 114. Rearrangement of O-Bn Amine Performed by LinsJ32 

We were interested to observe that the enantiomeric excess of the aldehyde this time was 

much lower, close to zero in some cases. It was found that the stereoselectivity could be 

increased to levels similar to those obtained from the unprotected species by carefully 
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controlling the temperature after addition of n-BuIl. Very slow warming in 10"C intervals 

was required over a period of 2 hours until it reached -30 "C at which point the reaction 

could be warmed to room temperature and quenched. This finding suggests that if a 5-

membered chelate is involved in the rearrangement it is much less effective at directing the 

stereochemistry than when the P-hydroxy substituent is unprotected, and additionally may be 

sensitive to very small increases in temperature. 

A similar experiment on the O-Me Phenylalaninol diene, which shows excellent stereocontrol 

when unprotected (e.e. 94%), was perfonned. Amine (l22b) was dissolved in TIIF, cooled 

to -78 "C and n-BuLi was added dropwise down the side of the flask to ensure any heating 

caused by the addition was minimised. The reaction was maintained at -78 "C for 30 minutes 

after which it was allowed to reach room temperature whilst still immersed in the dry ice I 

acetone cooling bath. After stirring at room temperature for 2 hours the reaction was 

quenched with water and work-up afforded enamine (123b) cleanly and in good yield. 

Hydrolysis and purification of the imine on silica gel yielded the aldehyde (52) with no 

enantiomeric excess which further suggests that chelation with the P-hydroxy group is an 

important aspect of this variant of the asymmetric anionic amino-Cope rearrangement. 

2.4. Other Strategies 

Difficulty encountered when attempting to selectively O-protect the aminoalcohol precursors 

of our substrates prompted us to try silyl protecting groups which are more selective for this 

procedure133. Instead of protecting the chiral auxiliary we hoped to use mild conditions to 

incorporate the sUyl group in our hexadiene thus retaining any advantage that the free alcohol 

delivered during the Grignard reaction and previous steps (Scheme 115). 

Ph ,OH 

~NH2 
see ::r Section 2.1.1. H 

_===~ .. :..... N~Ph 
~ 

Scheme 115. Proposed Protection Scheme 
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2A.l. TrimetbylsUyl Protection and Attempted Rearrangement 

Amino-diene (lOOt) was selectively silylated to fono the protected compound (124) after 

deprotonation with n-BuLi at -78 "C and subsequent immediate quenching with 

cblorotrimethylsilane (Scheme 116). The yield from the reaction was only moderate 

however because the protected amine was not stable, reverting to the parent diene if left at 

room temperature for any period of time. 

J i) n-BuLi 5"" ~yvPh _it..:.")_M_e..:.3S_i_a-l"~ ~yvPh 
, 0 THF. = ,-:; 

P ~ -78"Ctor.t. P ~ 

(lOOt) 37% (124) 

Scheme 116. Silyl Protection of Hexadiene 

Purification was accomplished using flash chromatography on silica and the amine was used 

immediately for the anionic amino-Cope rearrangement A solution of the 0-TMS amine 

was cooled to -78 "C and deprotonated with one equivalent of n-BuLi. warmed to room 

temperature and stirred overnight before quenching. After the usual work-up IH NMR 

spectroscopy indicated that only starting material and desilylated starting material were 

present As the protected amine was unstable we were reluctant to use harsher conditions 

such as reflux so we opted for using a different silyl protecting group that may be more 

robust. 

2A.2. t-Butyldimetbylsilyl Protection 

As the trimethylsilyl protecting group was unsuitable for our subtrate we hoped that the 

t-butyl variant would be more stable. In this case we planned to attempt protection of both 0 

and N atolUS of the aminodiene (Scheme 117) and expected to be able to remove this 

protection with TBAFI34 and generate a 'naked' dianion. 
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Y~~Ph 
: .,;::; 

P ~ 

(123c) 

R = ten-butyldimethylsilyl 

SclIeme 117. Proposed Reaction oC Amino-Diene with TBDMS-C1 

By utilising a large counterion we expected to observe no chelation control, thus altering the 

stereoselectivity of the anionic amino-Cope rearrangement (Scheme 118). We also wanted 

to see if the unshielded anion would have any effect on the strength of the C-3/C-4 bond, 

perhaps weakening it, as is widely perceived in the anionic oxy-Cope rearrangement, 6 and 

increasing the reaction rate. 

1) [3,3] 

2)Si02~ H~ 

(52) 

Scheme 118. Diprotected Amino-Diene 

Repeated attempts to synthesise the desired substrate (125) however were fruitless and we 

recovered only the O-silyl protected diene (123c) using either n-Buli, imidazole or 

triethylamine as base. This was not wholly unexpected as the literature indicates that N-silyl 

compounds are extremely difficult to purify - the protecting group is easily cleaved with mild 

acid13S. Although we could have attempted to rearrange the O-protected diene using our 

normal conditions we chose instead to turn our attention towards the synthetic application of 

the amino-Cope rearrangement, discussed in the next chapter. 
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2.5. Conclusion 

Formation of 3-amino-l,5-hexadienes via Grignard addition to imines is an excellent method 

that proceeds with almost exclusive diastereoselectivity and in moderate yield. 

The anionic amino-Cope rearrangement has been performed on a number of substrates 

derived from IJ-amino alcohols with excellent enantioselectivity being demonstrated for the 

cinnamaldehyde series of dienes. Lower stereoselectivity was observed when 

cinnamaldehyde is substituted for 3-(2-furyl)-acrolein indicating that the choice of amino 

alcohol is not the only factor affecting the transition state of the rearrangement, and may 

suggest that an alternative fragmentation mechanism is operating. The selectivity of the 

amino-Cope rearrangement was also found to be altered when the alcohol moiety was 

protected as either the benzyloxy- or methoxy- compound. This reinforces the suggestion 

that the formation of a 5-membered chelate is important for the rearrangement to proceed 

with a high degree of stereocontroI. 
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Chapter 3 

Results and Discussion 

Synthetic Applications of the 
Anionic Amino-Cope Rearrangement 



3.1. Synthetic Applications of the Asymmetric Amino-Cope Rearrangement 

The work we had undertaken on developing the asymmetric amino-Cope rearrangement had 

so far only been used to synthesise the chiral aldehyde (52). We now wished to apply the 

amino-Cope rearrangement as a new approach to the synthesis of useful chiral building 

blocks, and demonstrate their subsequent application in the synthesis of heterocyclic targets. 

H~ e.e.94% I 
(52) 

Our attention was drawn to the work of Greeves, as his group had published work on the 

tandem [2,3] Wittig I anionic oxy-Cope rearrangement136 which led to the synthesis of 

racemic aldehyde (126) with excellent diastereoselectivity (Scheme 119). 

1 ~ n-Bu i 
/y~ • 

"\ 
Ph 

~n-BU 
- PIt''''~o 

(126) 

Major isomer 

[2,3]-Wittig 
• 

~ 

Ph 

H2O 
• 

i) KH, l8-crown-6, DMSO, r.t., lh. 

~-~Vc. e 
PH 0 

JAOC 

~-0- e 
Ph 0 

Scheme 119. Tandem [2,3]-Wittig I Oxy-Cope Rearrangement by Greevesl36 
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In order to measure the diastereoselectivity of the tandem reaction the aldehyde was reduced 

using sodium borohydride to form alcohol (127) which then underwent cyclisation with 

iodine in the presence of sodium hydrogen carbonate (Scheme 120). 

~--M-N-e~-H,-f4"':'O"-l~~ :c: 
(126) (127) 

(128) 

MeCN,-23 ·C 

THF, r.t 

~Pr 

p~"'BU 
o t H 

Major isomer 

Scheme 120. Iodocyclisation of /i,Il·Unsaturated Alcohols 

The resulting iodotetrahydropyran was reduced using tributyltin hydride to yield two 

products as a 4: 1 ratio of diastereoisomers. 

Greevesl36 reports that the cyclisation proceeds via a six-membered chair-like transition state 

with the iodonium cation, phenyl and isopropyl groups all attaining a pseudo-equatorial 

position to form the major isomer (128). The minor isomer resulting from cyclisation onto a 

pseudo-axial iodonium ion is also formed in around 20%. After analysis of the IH NMR 

spectrum, using COSY and decoupling experiments to aid assignment, the major isomer was 

shown to be the all-equatorial iodotetrahydropyran indicating that the iso-propyl and phenyl 

groups were :;yn in the acyclic molecule. 

Similar cyclisation conditions were employed by Willis et aZ137 although they report that the 

addition of base leads to the formation of kinetic productsl38 with their substrates in excellent 

yield (Scheme 121). In the absence of base, thermodynamic control was achieved leading to 

a 4:1 ratio of tetrahydropyrans. 
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i) or ii) 

i) I, (3 eq). NaHCOl • CH3CN; il) 12• (3 eq). CH3CN 

I, .• ~ ..... , .. "OA~Et 

i) 98% yield 1:1 
ii) 60% yield 4:1 

Scheme 121. Tetrahydropyran Synthesis by Willis137 

In a later publication Greeves 139 also reports that lactones can be formed if the aldehyde is 

oxidised to a carboxylic acid group and subjected to cyclisation with a suitable electrophile 

(Scheme 122). 

Oxidation 

R = i-Pr. cyclohexyl or n-Pr Major isomer 

Scheme 122. Cyclisation of Carboxylic Acids by Greevesl39 

Interestingly the major isomer in most cases was seen to exist in a boat-like conformation. 

and there was a suggestion that a boat-like transition state might be involved in the 

cyclisation. 

In 1985 Ganeml40 reported cyclisation of the highly substituted unsaturated amine (130). 

derived from bromoether (129) via reductive elimination. ring opening and reductive 

amination. to form piperidine (131) as shown in Scheme 123. The heterocycle was then be 

used to synthesise the aminoalditols l-deoxynojirimycin and l-deoxymannojirimycin. which 

are potent glycosidase inhibitors. 
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-----I .. ~ 
i) ~ (NHBn BrH:y .•• ,oCH3 

Bna'···· """OBn BnC····· Y'··'OBn 

OBn 

il) BrH9H2c~~n 
enC' .. •· ·• .. ''08n 

OBn OBn 

(129) (130) (131) 

Majorisomer, 61% 

i) Zn dust, BnNH2, NaBH3CN, 19:1 n-PrOHlH20, A; ii) CF3COOHgBr, THF 

Scheme 123. Piperidine Synthesis by Ganeml40 

More recently Gracza et aIUl have reported the synthesis of I-deoXY-L-idonojirimycin (133) 

in a different manner, using Pd(II)-catalysed aminocarbonylation of the highly substituted 

benzylaminoalkene (132) followed by reductive ring opening and deprotection (Scheme 

124). 

_, r IBn 
~y~NHBn O

n 

i) BnO.,.. .. ... )= 
.. 0 

"""1 
N 
Bn 

il), iii) HQ.'··~O ..... 'OH .. 
N ····' ............... OH HHCI OBn 

(132) Major isomer (133) 

i) 0.1 equiv. PdCl2, 3 equiv. CuCl2, 3 equiv. NaOAc, AcOH, 7h, 50 GC; il) liBJ4, 
THF, 0 GC to r.t.; ill) H2 (balloon), 10% PdlC, HC!. MeOH, r.t. overnight 

Scheme 124. Aminocarbonylation performed by Gracza141 

Less 'substituted piperidines were synthesised by Ward142 using PhSeCl or PhSeBr to induce 

cyclisation of carbamates, sulfonamides or amides with high yields and good stereocontrol in 

most cases (Scheme 125, Table 19). 
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OR' 

CC a) orb) 

see Table 18 

(134) 

a: R=C02Et, R'=H 
b: R=C~tBu, R'=H 
c: R=S02C~CH3' R'=H 
d: R=COCH3, R'=H 

OR' ex' .. -,SePh 
~'" 

R 

(135) 

e: R=S~C~CH3' R'=TBDPS 

(136) 

Scheme 125. Cyclisation oC N-protected amines by Ward141 

Table 19. Cyclisation Results 

Substrate 

134a 

134b 

134c 

134d 

134e 

Reaction Conditions1 

a,48 h 

b,18h 

aorb,S days 

a, 48 h 

b, 18 h 

a,48h 

a,S days 

Product Yield (ratio 135:136)2 

57% (3:1) 

61% (5:1) 

No reaction 

59% (3:1) 

58% (5:1) 

41% (3:1) 

_ 27% (3:1) 

1. a = PhSeCl, CH,Ch, -78 "C, 10 min. then to r.t.; b = PhSeBr, CHCh, 0 ·C, 10 min. then to r.t. 

2. isolated yield, product ratios determined by HPLC analysis 

The selenides could be converted to dihydroxy-piperidines by treatment with mCPBA 

followed by aqueous sodium hydroxide (Scheme 126). 

NaOH 
~ 

Scheme 126. Removal oC PhenylselenyI Group 
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N-protected amines were also cyclised by Annstrong143 during the stereoselective synthesis 

of a tricyclic guanidinium model of cylindrospermopsin (Scheme 127). Treatment of a,~

unsaturated methyl ketone (137) with a catalytic amount of pTsOH in retluxing benzene gave 

one diastereoisomer of the corresponding Z-protected piperidine (138). 

pTSA.C~ .. 
TB OTBS tjHZ 

, ¥ 
TBS 

74% 
Me ! 

TBscr' 

(137) (138) 

Scheme 127. Acid Catalysed Cyclisation oC Z-Protected Amine (137)143 

These methods clearly show that it is possible to form a range of heterocycles in a highly 

diastereoselective fashion using relatively simple chemistry. We therefore aimed to exploit 

the syntheses using our own aldehyde as a highly enantio-enriched precursor, with the hope 

that the enantiomeric excess would be carried through to the final heterocycles. 

3.1.1. Large Scale Preparation oC 3-Amino-l,5-Hexadienes 

In order to work on the heterocycle synthesis we needed to fmd a repeatable large scale 

synthesis of the phenylalaninol derived diene to produce enough of the aldehyde (52) with 

high e.e. for subsequent reactions. To prove the enantioselectivity of the heterocycle 

syntheses we also required a comparable high yielding synthesis of racemic aldehyde to act 

as a reference throughout the synthetic development. 

The most obvious way to prepare (52) racemically would be to react imine (139) with a 'Cu' 

Grignard reagent to effect 1,4 addition (Scheme 128). 
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Ph~~~Ph 
(139) 

±(S2) 

Scheme 128. Proposed Reaction oC Benzylamine Imine with Cuprate Reagent 

Despite a similar reaction being reported by PridgenlO6 (Scheme 129) we were unable to 

synthesise the required organometa1Iic reagent from aIlylmagnesium bromide and copper (I) 

iodide and recovered only starting material from the reaction. 

/h 
HN, 

P~c! 
H 

CuI, RMgCl. THF 

Scheme 129. 1,4 Addition Reported by Pridgen106 

Using the same imine it was possible, however. to perform a standard Grignard reaction and 

obtain the racemic diene (140) in excellent crude yield. lOs We were then able to rearrange 

the diene using the conditions we developed for the anionic amino-Cope rearrangement but 

purification of the aldehyde using this method was difficult in large quantities (Scheme 130). 
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~MgBr 1) [3,3] 
±(S2) .. .. 

(139) 

Scheme 130. Diene Preparation Using Benzylamine 

Attempts to purify amine (140) before rearrangement using column chromatography were 

also ineffective as the amine has a strong affinity for silica and alumina, and could not be 

eluted in sufficient purity. Ethereal hydrochloric acid was used to form the salt but amine 

recovery using this method was extremely poor and we therefore decided to abandon this 

route to the aldehyde. 

As purification was a problem we looked at other ways of forming a racemic diene and 

reasoned that by using a larger amine component we might form a crystalline intermediate 

that would be easier to purify. The obvious choice therefore was to use tritylamine and there 

was a literature method for preparing our desired imine.l44 

Following our earlier success at preparing irnines we tried simply stirring tritylamine and 

cinnan1aldehyde in dichloromethane at room temperature. In this case the method was not 

effective and we had to resort to the literature conditions which involved refluxing the 

reagents in toluene with azeotropic removal of water (Scheme 131). This led to a slightly 

lower yield than usual, but imine (141) could be easily recrystallised with recovery similar to 

that reported.l44 
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ph- r 0..... ~ 
"-'-"'N' 'V' ~Ph 

Ph 

(141) 

~ :;MgB' 
Ph 0 
P~~ 

Ph ~ {h 

(142).48% 

Scheme 131. Preparation of Amine from Tritylamine 

Formation of the diene proved to be far from straightforward and we found that even when 

using refluxing tetrahydrofuran the conversion was low and we recovered only a fraction of 

the amine (142) by recrystallisation from the crude product. Interestingly in this case we 

noticed that we could perform column chromatography on silica without any hydrolysis of 

the remaining imine and we were able to recover further quantities of amine (142) along with 

recovered starting material. As this would not be practical on a large scale however we 

decided to explore other means of synthesising the racemic aldehyde. 

We briefly looked at an alternative preparation shown in Scheme 132 which was based on 

the work of Enders14S using (S)- and (R)-2-methoxymethylpyrrolidine. 
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THF,O"C 

Q 
~Ph 

n-BuLi 

NaH, THF 

4MHCl 

±(52) 

Q 
~ Ph 

~0 v-.-.Ph 

Scheme 132. Synthesis of Racemic 3-Phenylhex-l-enal 

By substituting inexpensive pyrrolidine for the chiral auxiliaries (SMP and RMP) used by 

Enders we could feasibly obtain racemic aldehyde in 4 steps (including hydrolysis). 

Formation' of the enamine proceeded slowly when we used cinnamyl chloride and the 

purified yield was low. We managed to obtain enough material to use for the next step but 

this also proceeded in low yield and we were unable to recover significant amounts of the 

aldehyde (52) for study. Although the method could have been useful we were unwilling to 

devote too much time to its development and we opted for a more workable strategy. 

With the failure of previous methods we decided to revert to our more developed synthesis 

using the anionic amino-Cope rearrangement 

Initially we examined the rearrangement using racemic alaninol as an auxilliary because it 

was available in our laboratory and had been used previously by ButtonIOs• Imine formation 

proceeded well to give a solid imine product (143) which was easily manipulated and using 

our standard Grignard reaction conditions we were able to form the hexadiene (144), 

although the yield was extremely poor after recrystallisation. 
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yNH2 
Me 

P~o yN~Ph 
~MgBr 

.. .. 
CH2C12• E~O 

r.t .• 30 mins Me 

(143) (144) 

Scheme 133. Amine Preparation from Racemic AlaninoL 

Rearrangement of this substrate however did not proceed well and we were unable to obtain 

any clean product from the reaction. 

Following this failure we chose to use racemic phenylalanino! as we reasoned that we could 

obtain the aldehyde in good yield following our standard preparation techniques. In order to 

proceed with subsequent reactions of the aldehyde we needed to scale up our synthetic 

strategy and to do this we had to investigate the reduction of commercially available 

phenylalanine. 

3.1.1.1. Preparation of Phenylalaninol 

There are many methods available for the reduction of aminoacidsl46 to aminoalcohols 

although most are reported to proceed with some degree of difficulty. The most obvious 

reagent choice would be lithium aluminium hydride but problems sometimes occur when the 

lithium salt precipitates from the reaction medium (Scheme 134).147 

~ .. 
ethereal 
solvent 

e 0 

~N: x 
Precipitate 

Scheme 134 Aminoacid Reduction 

We found a convenient preparation for small quantities of material was that of Giannis148 

which used Me3SiCI and LiB14 to generate borane in situ (Scheme 135). 
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a) LiBH.VM~SiC1 
or 

b) NaBHtIH2S04 
~ 

THF 

Ph (OH 

~NH2 

(145),87% 

Scheme 135. Reduction of Phenylalanine with BH3·THF 

The reagents were too expensive to use on a large scale however and we searched for other 

similar methods that we could use to scale up the reduction. One such method was that of 

Meyers l49 which used iodine and sodium borohydride to generate the desired reductant but 

the method did not work in our hands. We then turned to a more recent report by AbikolsO 

utilising a mixture of sodium borohydride and sulfuric acid in THF for the reduction of lOOg 

of phenylglycinol with excellent reported yields. Again the reduction takes place by first 

forming borane in situ and in this case does not require the use of anhydrous solvents as an 

excess of reagents is enough to ensure the reaction is not affected by decomposition of the 

borane. 

Following this method on a smaller scale we were able to prepare 20g of racemic 

phenylalaninol (145) which did not need any further purification. We were also able to 

successfully reduce L-phenylalanine to give S-phenylalaninol with an optical rotation 

identical to that reported in the literature. 

With large amounts of racemic and chiral phenylalaninol we then set about optimising the 

conditions for synthesising the amine we required for our rearrangement. 

3.1.1.2. Barbier Grignard Development 

The Barbier Grignard mentioned in Section 2.1.1.1. was preferred over the normal Grignard 

reaction because it omitted the problems with preparing and adding the organometallic 

reagent on a large scale. The reaction was performed on up to 31 g of imine (99f) dissolved 

in toluene:diethyl ether (4:1) with consistently high yields, using three equivalents of allyl 

bromide and magnesium to generate the Grignard reagent in situ. Rigorous solvent or 

glassware drying was found not to be important although the reaction proceeded in slightly 
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higher yield when performed under an inert atmosphere. We were interested to find that 

along with the expected diene (lOot) the reaction also produced a small amount of reduced 

imine (146) which we were able to isolate and characterise (Scheme 136). 

(991) 

+5-~~~ 
(146) 

Reduced imine 

Scheme 136. Barbier Grignard with Anomalous Reduction 

As yet we have no explanation for the formation of this compound other than to suggest that 

the mechanism proceeds via electron transfer from magnesium, suggested by Zhang151 to 

explain side-reactions when performing Barbier reactions on aldehydes (Fig 14). 

I Aldehyde Reduction by Zhang I 
[ RCHOr 

1llll1lIIl + RCHO - ... llllllllll 
Mg Mge+ 

Analogous Reduction of Imine I 

llllllllll 
Mg 

R 
+ ~ 

Ft' 
.. 

Figure 14. Pinacol Coupling and Proposed Reduction Mechanism 

3.1.1.3. Improvements to the Anionic Amino·Cope Rearrangement 

The anionic amino-Cope rearrangement had performed well in the small scale reactions we 

had previously tried, however we encountered some difficulty in isolating and purifying the 
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aldehyde product when the reaction was run on a larger scale. Whereas the crude IH NMR 

spectra seemed identical to our earlier examples, indicating complete conversion of diene 

(100f) into oxazolidine (105), it appeared that the aldehyde was not being liberated to a 

sufficient degree when we performed column chromatography on silica gel. To ensure 

complete hydrolysis of the oxazolidine we therefore used acidic Amberlite® resin before 

columning the crude product. The resin was first activated by stirring in 5M aqueous HCl 

then dried thoroughly by washing with acetonitrile several times. The crude oxazolidine 

dissolved in acetonitrile was then stirred with a large excess of resin and, although this made 

purification much simpler, the yield was still disappointingly low. 

There are many procedures, including one by Zoretic,lS2 which show the cleavage of 

oxazolidines using trifluoroacetic acid to form the parent aldehyde. The formation of acetals 

is a straightforward procedure when performed in methanol in the presence of acid. Since we 

had already determined that we could liberate the aldehyde using strongly acidic conditions 

on resin, without any apparent loss of yield, we therefore wished to attempt to isolate the 

dimethoxyacetal as a means of purification (Scheme 137). 

r OH 

. R·A~R 

Scheme 137. Proposed Acetal Formation from Oxazolidine, via Aldehyde 

To ensure complete hydrolysis we added an excess of trifluoroacetic acid to the crude 

oxazolidine in methanol and refluxed the solution overnight (Scheme 138). 

MeOH 
overnight reflux 

(10Sf) 

MeO....pMe rh 
H~ 

(147),39% 

Scheme 138. One-Pot Acetal Formation from Crude Oxazolidine 
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The reaction appeared complete by tic and simple purification using dry flash column 

chromatography on silica gel gave a moderate 39% yield of the dimethoxy acetal (147). This 

yield was stilI unacceptably low if we were to develop synthetic methods based on this 

protocol so it was necessary to investigate the amino-Cope conditions further. 

Table 20. Variation of the Anionic Amino-Cope Rearrangement Conditions 

Entry Temperature rC) Solvent Time Yield 

1 -78-r.t. TIIF 160mins no reaction 

2 -78 - r.t. TIIF overnight no reaction 

60minsthen 
3 -78 - r.t. TIIF 

overnight· 
25% reaction 

4 -78 - r.t. TIIF overnight b decomposed 

5 -78 - r.t. TIIF 220mins no reaction 

6 -78 - r.t. TIIF overnight 47%0 

7 -78 - r.t. TIIF overnight d decomposed 

8 -78-40 TIIF overnight no reaction 

9 -10-40 TIIF 120mins 50% reaction 

10 0-40 TIIF 90rnins 40% reaction 

11 -78 - r.t. TIIF overnight • 52% 

12 -78 - r.t. THFf overnight no reaction 

13 -78-reflux Et20 overnight 63% (e.e. 54%) 

14 -78-reflux Et20 overnight 78% 

15 -78-reflux Et20:THF (3:1) 60mins 67% (e.e. 63%) 

16 -78 - r.t. DME overnight no reaction 

17 -78 -reflux DME 120mins no reaction 

18 -78-reflux Hexanes:Et20 (4: I) 120mins no reaction 

19 -78-reflux TIIF 60mins 72% 

20 -78-reflux TIIF 90mins 80% (e.e. 90%) 

a) StIrred with 1.1 eq KH for 60 mIDutes atr.L, cooled to-78 "C and added 1.1 eq nBuL! then warmed to r.L--

b) Stirred with 2.2 eq KH and 18-crown-6. c) Only 50% reaction. d) 5 eq nBuLi used. e) Stirred with 2.2 eq 

nBuLi and 0.2 eq 12-crown-4. f) Increased dilution, 74mg amine dissolved in 40 cm3THF. 
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Working with non-racemic substrates the amino-Cope rearrangement was carried out using 

different solvents, temperatures, additives and reaction times to try and find the optimum 

conditions giving us high e.e. 's and also high yields. n-Butyllithium was used in most cases 

as this had previously been determined as the most effective base for the rearrangement 10' 

Table 20 summarizes the results. 

AIl attempts to carry out the rearrangement without a period of reflux (Entries 1-7 and 16) led 

to less than 50% reaction. This suggests that refluxing is required to force the equilibrium in 

favour of the oxazolidine which, when formed, makes the reaction irreversible. Simply 

heating the reaction above room temperature (Entries S-lO) did not aid the reaction in any 

way. Use of 12-crown-4 or IS-crown-6 with nBuLi and KH respectively also failed to drive 

the reaction past 50% conversion. Changing solvent to diethyl ether appeared to give a much 

cleaner reaction as evidenced by the crude IH NMR spectrum and column chromatography 

gave a much purer product than we had previously obtained on this scale. Unfortunately the 

e.e. of the aldehyde obtained was reduced to around 60%. Only starting material was 

recovered when we used either dimethoxyethane or a mixture of hexanes and diethyl ether 

(Entries 16 to IS). As none of these modifications appeared to be more successful than 

traditional methods we returned to the original conditions and ensured that all glassware and 

reagents were rigorously dried. After warming the deprotonated amine solution to room 

temperature it was placed in a pre-warmed oil bath and rapidly brought to reflux. This 

appeared to be an important practice as we were able to obtain high yields of clean aldehyde 

on a 500mg scale (after chromatography) with high e.e. (Entries 19 and 20). 

With this method in hand we were ready to begin investigation of the synthesis of 

heterocycles. 
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3.2. Synthesis of Tetrahydropyrans. 

3.2.1. Electrophillc CycIisation. 

The early work of Or Nick Greeves136 is outlined in Section 3.1, showing examples of the 

utility of aldehydes similar to that obtained after the amino-Cope rearrangement of our 

simple substrates. Later publications by Greeves139
•
IS3 focus on optimisation of the 

cyclisation conditions, using a number of electrophiles, for the synthesis of both di- and tri

substituted tetrahydropyrans. 

For disubstituted tetrahydropyrans, the racemic alcohols (148a-e) were synthesised by 

Greeves using a tandem [2,3]-Wittig-anionic oxy-Cope protocollS4 (Scheme 139). 

(VR 
~Ph 

aR=Me 
bR=n-Bu 
cR=i-Pr 
dR=t-Bu 
eR=n-Pr 

__ 2_.5_eq-=-KH ___ ~ R~ ~ ~ __ N_aB_~"":""-l~~ 
1.5 eq 18-crown-6 ~/ ~) MeOH 

THF, r.t.. 1.5h 0 "C, 30 min 
95% (148a-e) 

Scheme 139. Alcohol Synthesis 

Cyclisation was performed using a number of electrophiIes: Iodine, N-iodosuccinimide 

(NIS) and iodine monochloride (ICI) were examined as sources of r and 2,4,4,6-tetrabromo-

2.5-cyclohexadienone (TBCO) was chosen as a source of Br+. PhenyIsuIfonium, PhS+, and 

phenyIseIenium, PhSe+, ions were also examined. 
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(148a-e) (149) (150) (151) (152) 

Entry 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Method A: lz (3 eq), NaHC03 (3 eq), MeCN, -23 ·C - r.t, 24h 

Method B: NIS (1.2 eq), CHzClz, -78·C - r.t 

Method C: lCI (2 eq), NEt3 (2 eq), CHzClz, -78 "C - r.t. 

Method D: TBCO (1.2 eq), CHzOz, dark, r.t., I week 

Method E: Phenylthiomorpholine (1.1 eq), TfOH (1.1 eq), CHzOz, O"C, 2h 

Method F: NPSP (1.7 eq), PPI'S (0.3 eq), CHzOz, -78·C - r.t., 9h 

Scheme 140. Electrophilic Cyclisation of Alcohols. 

Table 21 

Substratc 
Product ratiob Yield I Substratc R geometry" E" M.thod 

% 149 : 150 : 151 : 152 
E:Z 

148& M. 75:25 ~ A 65 77 23 
148& M. 75 :25 ~ B 39 77 23 

148& M. 75 :25 ~ C 26 77 Z3 

148b n-Bu 79 :Zl ~ A 78 87 13 
148b n-Bu 79:21 Br+ D 56 79 ZI 

148c i-Pr 100:0 ~ A 80 74' 26' 

148d I-Bu 100:0 ~ A 62 lOO 
148c n-Pr 84: 16 PhS+ E 57 Z8d 6d 59d 7d 

148c n-Pr 84: 16 PhS.+ F 86 28d 9d sr 6d 

148d I-Bu 100:0 PhSe+ F 97 S7' 43' 

a) E:Z rabo measured by GC; b) Ratio measured by GC; c) Ratio measured by mass from flash column chromatography 
isolation; d) rabo measured by mass between dIastereolSOmer pair 149,150 and 151,152 and then GC analysis of each pair. 

As shown in Table 21 better yields were found when h (Method A) was used as an 

electrophile, compared with NIS, lCI and TBCO. If the precursor alcohol was geometrically 
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pure (entries 6 and 7) a single diastereoisomer could be isolated, otherwise two 

diastereoisomers of halogenated tetrahydropyrans (149)/(150) were isolated in ratios relating 

to the starting geometry of the alkene. The cyclisation proceeded through a chair-like 

transition state with the halogen ion preferring to occupy an equatorial orientation (Scheme 

141). When using phenylsulfonium or phenylselenium ions, generated by 

phenylthiomorpholine! triflic acid and N-phenylselenophthalimide! PPrS respectively, the 

cyclisation generally gave higher yields and the major product resulted from axial orientation 

of the electrophiIe. 

.. R 

~e±' p \ 
"'OH 

.. 

R = n-Pr, E = PhS, PhSe 
R= i-Pr, E=I 
R = t-Bu, E = PhSe 

I:f 

P~ o 

almost exclusive ca. 2: 1 preference 

Scheme 141. Diastereoselectivity Induced by Different Electrophlles153 

We chose to apply the same synthetic methods to our chiral aldehyde in the hope of 

demonstrating the potential of the amino-Cope rearrangement In doing so we aimed to 

obtain tetrahydropyrans which were highly enantiomerically enriched and with defined 

stereochemistry. 

The first step was to perform a simple reduction of the aldehyde (52) with sodium 

borohydride generating the alcohol (153) which we anticipated would retain the chirality 

from the previous reaction (Scheme 142). 

Results and Discussion - Synthetic Applications 118 



O;)'··.Ph 

NaB14 

HO~"'.Ph .. 
MeOH, O°C, 2h 

99% 
(52) (153) 

e.e.94% e.e.92% 
(byNMR) (byHPLC) 

Scheme 142. Aldehyde Reduction. 

The reduction proceeded in high yield as expected and measurement of the e.e. using chiral 

HPLC (ChiralCel OD, 95:5 HexanelPropan-2-0I, O.5mL min'l) gave a value of 92% which 

was within experimental error of that previously determined by NMR methods for aldehyde 

(52). The racemic aldehyde was also reduced to provide a reference sample for HPLC 

method development during the tetrahydropyran syntheses. 

3.2.1.1. Iodine as an Electrophile. 

Cyclisation using iodine employed the simplest conditions so this reaction was investigated 

first. Following Greevesl53 conditions we were able to observe some reaction although the 

conversion was low and the major component isolated was unreacted starting material. We 

then performed the cyclisation at room temperature and in this way we observed almost full 

conversion to the tetrahydropyran (154a and b, Scheme 143), 

&~ 
,;--1 
i 

HO~".Ph 12,NaHC~ U Ph 

~ + 
4AMS,MeCN 

r.t.,24h 
(153) (l54a),60% (l54b) 

4 1 

Scheme 143. Cyclisation using Iodine. 

Analysis of the crude reaction mixture by IH NMR spectrum revealed a diastereomeric ratio 

of 4: 1 which was in contrast to Greeves results that showed exclusive stereochemical control 

during cyclisation. A possible reason for this is that the alkene used in our case is 
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unsubstituted and the iodonium ion produced would be expected to have less steric bulk. The 

cyclisation temperature was also much higher in our case which may have decreased the 

selectivity of the reaction. However we were able to isolate the major diastereoisomer (154a) 

in 60% yield using column chromatography and eJramination of IH NMR and COSY spectra 

indicated to us that this product resulted from cyclisation onto the equatorial iodonium ion. 

A small amount of the minor isomer (IS4b) was isolated by preparative tic and provided a 

useful IH NMR reference enabling us to calculate the diastereomeric ratio. 

3.2.1.2. Enantiomeric Excess Measurement. 

Determination of the enantiomeric excess proved to be very difficult as the isomers co-eluted 

when we used the Chira1Cel OD column previously employed for measuring the 

enantiomeric excess of alcohol (153). 

We were hopeful that by using NMR shift reagentslSS we could obtain an adequate analysis. 

Initial results using Yb(fodh were encouraging as the peaks appeared to be shifted, however 

when we used a chiral shift reagent, Yb(tfc)J, we saw no movement of the peaks despite 

using up to 40% of this reagent Another lanthanide chiral shift reagent, Eu(hfc )3, was also 

tried without success. 

A widely used chiral derivatising reagent, Mosher's Acidls6, was available to us and we were 

able to react this with racemic tetrahydropyran (±154a) in the presence of potassium 

carbonate and silver nitrate (Scheme 144). Unfortunately we were unable to obtain full 

reaction of the tetrahydropyran so measurement of the e.e. from the crude IH NMR spec~ 

was impossible. 

& Ho-;{:OMG 
o CF. --------.. 

• Ph AgN~, K2C03 
MeCN 

(±154a) 30mins 

&
1f\:'OMG 

o CF. 

• 
Ph 

Unable to identify 

diastereoisomers from 
crude IHNMR 

Scheme 144. Derivatisation with Mosher's Acid. 
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As a final attempt we decided to purchase a new chiral column recommended to us by the 

column manufacturers which they claimed had separated compounds similar to ours in the 

past. The ChiralCel OD-H should exhibit increased resolution due to the smaller particle size 

of the silica used. The racemic material containing both diastereoisomers (:1::1548 and b) was 

used for method development and we found that by using a pre-mixed eluent of 99.5% 

hexane with 0.5% propan-2-ol we obtained baseline separation of the enantiomeric 

compounds, although the minor diastereoisomer in the mixture interfered with one of the 

peaks. It became necessary therefore to isolate the major diastereoisomer (1548) before 

measuring the e.e. in this way. We were pleased to finally obtain a reading of 92% using this 

method which demonstrates that we do not isomerise the chiral centre during cyclisation. 

Although we could not cleanly isolate sufficient amounts of the minor diastereoisomer 

(154b) for HPLC analysis we expect that the e.e. is the same as the major epimer. 

3.2.1.3 Phenylselenium Ion as an Electrophile. 

After our success at using iodine to initiate cyclisation we chose to investigate a further 

variant of this useful reaction. The phenylse1enyl group is a useful 'handle' which allows 

further elaboration of the molecule, for example oxidative cleavage to form a hydroxy 

compound.142 Following Greeves conditions we stirred alcohol (153) in dry dichloromethane 

with pyridinium p-toluenesulfonate (pPTS) at -78"C (Scheme 145). 

NPSP (1.7 eq) &~ 
"..-SePh , 

H~·."Ph 
, 

PPTS (0.3 eq) 

QPh 

.. + 
CH2Cl2 Ph 

-78 ·C to r.t. 
(153) 5h (155a),39% (15Sb),36% 

1 1 

Scheme 145. Cyclisation using NPSP/PPTS. 

After 10 minutes neat N-phenylselenylphthalimide (NPSP) was added generating the required 

cation in situ which initiated cyclisation. The reaction was stirred for 5 hours and after 

workup we were able to isolate each diastereoisomer using column chromatography. The 

major component (155a, 39%) was shown to be the syn isomer resulting from cyclisation 
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onto an equatorial phenylselenonium ion, whilst the minor tetrahydropyran (155b, 36%) 

arose from reaction with an axial intermediate. Analysis of the two separated compounds by 

chiral HPLC showed that tetrahydropyran (15Sb) had an e.e. of 92%, again in good 

agreement with the e.e. of the starting alcohol (153). Tetrahydropyran (155a) was not fully 

resolved although the HPLC trace clearly showed that the compound was highly 

enantiomerically enriched. 

3.2.2. Cyclisation onto an Epoxide 

A further example reported by Greeves1S3 is the acid-catalysed epoxide opening of alcohol 

(157) in Scheme 146 below. 

Ph'C:0H (i) ~h 
// ---~~ ~Bu~OH 

~B" 

+ (157a) 

(156) ~h 

~B"_ ?">-.. ;.. ......... .......... ......., ......., ~OH 

(157b) 

(ii) 
~h 
! 

~ _tlrl Hi1'O/ 
~B" 

(158) 

i) mCPBA (2.5 eq), NaHC03 (2.5 eq), DCM, O·C to r.t., 4.3:1, 70%; ii) CSA (0.1 eq), 
CH2Cl2, 0 ·C, 79% 

Scheme 146. Acid-catalysed Epoxide Opening 

Epoxidation of unsaturated alcohol (156) led to the formation of two diastereoisomeric 

epoxides (157a and b) in the ratio 4.3: 1 which was said to be consistent with the hydrogen

bonded interaction between oxygen and hydrogen atoms of peracid and the unsaturated 

alcohol. m The major anti diastereoisomer (157a) was isolated and exposed to a catalytic 

amount of camphorsulfonic acid (CSA) in dichloromethane inducing cyclisation which 

proceeded with complete diastereoselectivity to form the hydroxy-functionalised 

tetrahydropyran (158). 

Following the same method we were able to synthesise epoxides (159a and b) in good yield 

by using purified mCPBA (Scheme 147). The crude lH NMR spectrum showed that the 

diastereomeric ratio was approximately 2: 1 in favour of the anti epoxide but despite our best 
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efforts we were unable to separate the mixture using conventional chromatographic 

techniques. Although the compounds appeared as separate entities by tic we found that 

chromatography on silica gelled to partial cyclisation and we were unable to recover either 

component with sufficient purity. 

(153) 

racemic 

_m_CP_B_A._N_aH_C_O_3_. ~ + ~ 
CH2CI2, O·C to r.t. ~-''''Ph H~ ""'Ph 

ISh 
(159a) 

2 

f
OH 

U Ph 

(l60a) 
2 

(159b) 
1 

jCSA (0.1 eq) 
CH2Cl2 

/OH 
! 

(160b) 
1 

Scheme 147. Hydroxy-tetrahydropyran Syntbesis. 

Our inability to obtain a pure diastereoisomer of each epoxide was unimportant in this 
\ 

instance as the chiral centre is destroyed during cyclisation. The mixture of epoxides was 

therefore isolated using dry flash chromatography, in order to prevent significant cyclisation, 

then treated with a catalytic amount of CSA in dichloromethane at O·C (Scheme 147). We 

were pleased to observe conversion of the epoxide mixture. after overnight stirring. to the 

hydroxy-substituted tetrahydropyrans (l60a and b). 

The crude IH NMR spectrum showed that the diastereoisomers were present in 

approximately a 2: 1 ratio indicating that with an unsubstituted epoxide. unlike Greeves. the 

cyclisation does not proceed stereoselectively. The tetrahydropyrans were isolated using 

column chromatography to give 28% of the major diastereoisomer (l60a) and 12% of the 

minor diastereoisomer (160b) and by direct comparison with the IH NMR spectra of the 

iodotetrahydropyran we were able to determine to configuration of each epimer. 

Results and Discussion - Synthetic Applications 123 



The key comparison in all the tetrahydropyran spectra arises from the proton attached at C-2, 

adjacent to the ring oxygen atom (Fig 15). Although the coupling is unclear in the hydroxy

tetrahydropyrans it is still possible to qualitatively detect differences in the coupling 

constants. In general the major diastereoisomer displays a large diaxial coupling (ca. 12 Hz) 

to the axial C-3 proton, whereas the minor isomer contains an equatorial proton on C-2 and a 

much weaker axial-equatorial coupling (ca. 4 Hz) is therefore seen. 

X=I, SePhorOH 

~ Jax-ax = 12Hz 

fI 

Major Diastereoisomer 

Ph _-'----r_J.,.. ..... H 

x 
Minor Diastereoisomer 

Fig 15. Coupling in the Tetrahydropyran Series. 

3.3. Synthesis of Lactones. 

The use of aldehydes such as (161a-c) by Greevesl39 to synthesise lactones was highlighted 

earlier in this section. Using sodium chlorite1S8 in the presence of potassium orthophosphate 

buffer and 2-methyl-2-butene as chloride scavenger the aldehydes were converted cleanly to 

carboxylic acids (162a-c) in quantitative yield (Scheme 148). 
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Cyclisation Conditions 

Method A: 12 (3 eq). NaHC03 (3 eq). MeCN. O°C to r.t.. 48h 
Method B : PhSeCl (1.1 eq). pyridine (1.1 eq). CH2Cl2, -78°C to r.t., 24h 

fh eh eh : 

,~ ~Cl 
, 

Ph:C E+ 

E~n c~ -. .. + + 
h- E o' R \'10" 0 0 ,,\.' 0 

(162a-c) (163) (164) (165) 

1 
Na0Cl2 
i;thYI-2-butene 

PRh~ ~ a R = i-Pr; b R = cyclohexyl; c R = n-Pr 

(161a-c) 

Scheme 148. Lactone Synthesis by Greeves139 

The diastereomeric carboxylic acid mixtures underwent cyclisation, using iodine with sodium 

hydrogencarbonate in acetonitrile. to fonn 5-lactones (163 to 165a-c) in good yield as shown 

in Table 21 and Scheme 148. Lactones were also readily obtained if phenylselenyl chloride 

and pyridine1S9 were used to initiate cyclisation. 
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Table 21. B-Lactone Synthesis 

s+ 
YIeld! Product ratio Conformation 

Entry SubstraIC R MeIhod 
% 163 164 165 oU63 

I 162a I-Pr r A 6S lOO boat 

2 162a I-Pr PhSe+ B 71 96 4 boat 

3 162b cyclohexyl r A S9 94 6 boat 

4 162b cyclohexyl PhSe+ B 66 94 6 boat 

5 1620 n-Pr r A 80 30 61 9 chrur 

6 1620 n-Pr PhSe+ B 79 71 29 trace chrur 

The minor diastereoisomer of (162a) did not react and was recovered unchanged leading to 

the isolation of a single diastereoisomer of (163a)_ Whilst the preference for an equatorial 

iodonium ion during cyclisation was maintained both X-ray and IH NMR analysis of the 

methine proton next to the phenyl group showed this lactone to be in a boat conformation_ 

Where R was changed to a less bulky group the selectivity of the reaction altered and the 

product was observed to be in the chair conformation. Formation of disubstituted lactones, 

where R=H, proceeded with much lower stereos electivity (Scheme 149)_ 

Ph~~ 
~R' 

R' 
i-Pr,71% 
t-Bu, 78% 
t-Bu, 75% 

Method A 
Method A 
MethodB 

Ratio 
71 29 
51 49 
41 59 

Scheme 149. Disubstituted Lactone Formation. 

Greeves 139 suggests that the size of alkyl group R and the presence of the sp2 carbonyl group 

govern the preference of boat -chair conformation and in turn the cyclisation stereoselectivity_ 
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3.3.1. Electrophilic Cycllsation of Carboxylic Acids. 

As with previous syntheses, we used the anionic amino-Cope rearrangement of amine (100f), 

using both chiral and racemic samples, to prepared aldehyde (52) in enough quantity for 

investigation of B-lactone synthesis. Using LingrenslS8 conditions the aldehyde was 

converted cleanly to carboxylic acid (163) in good yield (Scheme 150). 

O,;:)""Ph 

Na0C12 

HO:)'" 
.. 

2-methyl-2-butene 
pH 4.0 aq. buffer 

"Ph 

(52) 2h.71% (163) 

Scheme 150. Oxidation of Aldehyde. 

Unfortunately we were unable to measure the e.e. of acid (163) using chiral HPLC, despite 

several attempts using different columns and solvent systems. The optical rotation suggested 

that the acid was non-racemic although it would be incorrect to suggest that the e.e. was 

unchanged from the aldehyde using such a measurement. 

Because of problems with the e.e. determination of carboxylic acid (163) we decided to 

perform the initial B-lactone syntheses using racemic compound. Once again we followed 

Greeves' examples using iodine and sodium hydrogencarbonate in acetonitrile to effect 

cyclisation (Scheme 151). 

(163) 

NaHC03,12 ' ;5
' "' .... ...I 

-4-A-M-S-,-M-e-CN-....... ~ 0 Ph + oD
Ph 

r.t.,24h 
(l64a) 

4 

Scheme 151. Cyclisation of Racemic Acid. 

(l64b) 
1 
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The reaction was complete after overnight stirring and produced two diastereoisomeric 

lactones (l64a and b) in an approximate ratio of 4:1 in favour of the :;yn isomer. The major 

isomer results from ring closure onto the equatorial iodonium ion as in the tetrahydropyran 

syntheses and the minor from cyclisation onto an axial intermediate. The stereochemistry of 

the two diastereoisomers was postulated on the basis of HETCOR and COSY data obtained 

(see Appendix) and also on the chemical shifts obtained from the lH NMR spectra. 

As with the tetrahydropyrans one observes strong diaxial couplings throughout the lH NMR 

spectrum of the major isomer suggesting that the lactone exists in a chair-like configuration. 

The minor isomer however has a much less complex proton spectrum with no obvious diaxial 

or diequatorial couplings. Using coupling data alone it is difficult to be sure whether the 

8-1actones exist wholly in the boat or chair conformation and we were unable to grow 

crystals for X-ray analysis of either isomer to clarify the situation. 

Similar lactone syntheses have been performed on chiral amide (165) by Lutzl60 et al and the 

e.e. of the product was assigned on the basis of the optical purity of the starting material 

(Scheme 152). We therefore tentatively propose that our synthesis would proceed without 

loss of e.e. when using chiral acid as the starting material, thus constituting a 'formal' 

synthesis of enantiomerically enriched o-lactones using the amino-Cope rearrangement. 

I e.e. 74% I 

" . ..L, ..... ,,' U "Ph 
sat. NaHC03 

(165) e.e.74%' 

Scheme 152. Cyclisation of Chiral Amide. 

3.3.2. Hydroxy-lactone Synthesis 

Our previous success at epoxidising alcohol (153) to synthesise hydroxy-tetrahydropyrans led 

us to attempt the same transformation on the racemic carboxylic acid (±163). We treated the 

acid with purified mCPBA and sodium hydrogencarbonate in dichloromethane and obtained 
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a erode mixture of what appeared to be the desired diastereoisomeric epoxides (166a and b) 

and also some cyclised substrate (167) by IH NMR analysis (Scheme 153). Without 

attempting purification the erode mixture was treated with a catalytic amount of 

camphorsulfonic acid in dichloromethane to effect cyclisation. After column 

chromatography we obtained an excellent yield of the diastereoisomerlc lactones (167a and 

b) which, after comparison with the iodolactone IH NMR spectra, appeared to show roughly 

a 2: 1 ratio in favour of the diequatorial compound. The diastereisomeric ratio again appears 

to be determined by the axial I equatorial preference of the epoxide during cyclisation in a six 

membered chair-like conformation. 

H ~ .... ~"Ph 
(l66aand b) 

(:1:163) 

0.1 eq CSA 

(167a) 
2 

+ 

(167b) 
1 

Scheme 153. Epoxidation and Cyclisation of Racemic Acid. 

3.4. Attempted Synthesis of Piperidines 

The introduction to this section highlighted several syntheses of chiral piperidines.I40-143 We 

were primarily interested in synthesising piperidines to demonstrate further applications of 

the amino-Cope rearrangement. Successful synthesis may in future lead to the preparation of 

azasugar analogues, which are known to be potent glycosidase inhibitorsl61 whilst remaining 

metabolically inert. 
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Our initial strategy was similar to the syntheses of Ganem;l40 conversion of the aldehyde (52) 

to an N-protected amine (168) via reductive amination using benzylamine and sodium 

borohydride (Scheme 154). This strategy would also allow us to substitute the reducing 

agent with an organometallic nucleophile allowing for the synthesis of more heavily 

substituted amines if desired. 

1) Ph-NH2, CH2Cl2 

P~~~Ph O~Ph 
r.t., 30 mins 

• 
2) NaB14, MeOH 

O"C to r.t., ISh 

(52) 79% (168) 

Scheme 154_ Reductive Amination of Aldehyde. 

The reaction proceeded well giving an overall yield of 79% over two steps. At this stage the 

reaction was performed solely on the racemic aldehyde whilst the synthetic methods were 

being developed. 

The most obvious reaction with the protected amine was to attempt electrophilic cyclisation 

using iodine and sodium hydrogen carbonate as in the previous heterocycle syntheses. 

Despite a number of attempts we were unable to isolate any of the desired piperidine from the 

reaction mixture, both tIc and NMR evidence indicating that decomposition of the starting 

material had occurred (Scheme 155). 

-& Ph 
MeCN 

(168) 

Scheme 155_ Failed Electrophilic CycIisation of Amine. 

An alternative to electrophilic cyclisation is to fonn an epoxide and treat the compound with 

a catalytic amount of acid to induce ring closure as with the tetrahydropyrans and 8-lactones 
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synthesised previously. We fIrst attempted react the amine (168) directly with mCPBA to 

generate either solely the epoxide or the N-oxidised epoxide, which we could later convert 

back to the amine with triphenylphosphinel62 (Scheme 156). 

Ph ............... ~~Ph .. 

(168) sole oxidation product 

Scheme 156. Unsuccessful Epoxidation using mCPBA 

Using a large excess of peracid however we were unable to obtain any epoxide and the crude 

IH NMR spectrum seemed to indicate that only the N-oxide was being formed. We therefore 

decided to protect the secondary amine as a carbamate adapting a simple method described 

by Greene.163 By using the Cbz protecting group we reasoned that we could remove both N

protecting groups simultaneously using HvPd or, if required, we could explore methods to 

selectively remove either group. The reaction did not appear to be proceeding at fIrst using 

dichloromethane as a solvent so acetonitrile was added to try and increase the effectiveness 

of the base (Scheme 157). After 3h stirring at room temperature the sole product from the 

reaction was isolated in excellent yield using column chromatography and both IR and IH 

NMR data indicated that this was the Cbz-protected amine (169). 

(168) 

Cbz-Cl, KHCO:J 

DCMlMeCN 
r.t,3h 

89% 

... 

Scheme 157. Cbz Protection of Amine. 

(169) 

Using purifIed mCPBA as before we wished to epoxidise the di-protected amine but to our 

surprise the double bond remained intact despite performing the reaction at room temperature 

for 48 hours. As an alternative epoxidising reagent we chose to prepare dimethyldioxirane 

(DMDO) following a descriptive report by Adam.l64 A large excess of DMDO was made as 

Results and Discussion - Synthetic Applications 131 



a solution in acetone and the protected amine was treated directly with this solution at -78 "C 

then allowed to wann slowly to room temperature. After overnight stirring at room 

temperature tlc indicated that the reaction bad gone to completion. The crude IH NMR 

spectrum showed no traces of starting material and along with the IR spectrum it indicated 

that the sole product was the epoxide (170) as a mixture of diastereoisomers (Scheme 158). 

Green solution 
in acetone 

[x] 
loxone@, 

aq.NaHC03 

Jl 

Amine-(169) 

90% 

(170) 

Scheme 158. EpoxidatioD using Dimethyldioxirane. 

To complete the piperidine synthesis we simply needed to remove the anJine protection and 

treat the free amine with an acid catalyst. Unfortunately we were unable to remove either 

protecting group using hydrogenation with PdlC and the crude IH NMR spectrum appeared 

to show decomposition of the starting material. Although this was not a major set-back 

alternative protectionldeprotection strategies would need to be explored in order to make this 

a viable synthetic route to hydroxy-piperidines. 

3.5. Conclusions 

The work undertaken in this section has demonstrated that it is possible to utilise the anionic 

amino-Cope rearrangement as a key step in the synthesis of a number of small heterocyclic 

targets that are themselves potentially useful chiral building blocks. A summary of the 

heterocyc1es synthesised during this work is shown in Scheme 159 below. 
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1: 1 ratio separable isomers 

4:1 ratio separable isomers 

{I /1 

U.: Q,. 
(lS4b) 

~ 

(1558) f1SSb) 
(1548) 

(1648) (l64b) 

4: 1 ratio separable isomers 

2: 1 ratio isomers 

(1608) 

/ 

H 

(1678) 

......... OH 
! , 

(160b) 

2: 1 ratio isomers 

Scheme 159. Heterocyclic Targets Produced from Aldehyde (52). 

With the ongoing development of the anionic amino-Cope rearrangement by other group 

members it is hoped that this preliminary set of compounds can be expanded on and provide 

an alternative, highly stereospecific, route to these important chiral building blocks. 
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Chapter 4 

Experimental 



4.1 General Information 

Solvents and Reagents 

All solvents were dried, distilled and either used immediately or stored over 4A molecular 

sieves. 

acetonitrile: 

dichloromethane: 

diethyl ether: 

ethyl acetate: 

40-60 petroleum ether: 

tetrahydrofuran: 

distilled from calcium hydride 

distilled from phosphorus pentoxide 

distilled from lithium aluminium hydride or 

sodium! benzophenone 

distilled from calcium chloride 

distilled from calcium chloride 

distilled from sodium! benzophenone 

Unless otherwise stated light petroleum refers to 40-60 petroleum ether (fraction boiling 

between 40 and 60 "C). Anhydrous hexanes were purchased from A1drich Chemical Co. Ltd. 

Other chemicals used in this work were obtained from A1drich Chemical Co. Ltd, Lancaster 

Synthesis Ltd., or Acros (Fisher) Chemicals Ltd. and were distilled or recrysta1lised as 

required. 

Chromatographic Procedures 

Flash column chromatography was carried out using Merck Kieselgel 60 H silica. Samples 

were applied as saturated solutions in an appropriate solvent or pre-absorbed onto the 

minimum quantity of silica. Thin layer chromatography (tic) was carried out using aluminum 

backed plates coated with Merck Kieselgel 60 GF2540 Plates were visualised under UV light 

(at 254 and/or 360 nm) or by staining with potassium permanganate or iodine. 

Chiral HPLC was perfonned using a Thennoseparations modular machine (VlOO UV 

Detector, P200 Pump and TSP Chromatographic Integrator) using Chira1Cel OD and OD-H 

columns (250 x 4.6mm) purchased from Merck. 
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Spectra 

Infra red spectra were recorded in the range 4000-600 cm-I using a Perkin E1mer Paragon 

1000 FT-IR Spectrometer, with internal calibration. Solid samples were run as Nujol® mulls 

or dissolved in an appropriate solvent and applied as a thin film to the IR plates. Liquid 

samples were applied neat to the plates and run as thin films. 

IH and 13C Nuclear Magnetic Resonance (NMR) spectra were recorded using a Broker 

AC250 or DPX400 Spectrometer. Multiplicities were recorded as broad peaks (br), singlets 

(s), doublets (d), triplets (t), quartets (q) and multiplets (m). All NMR samples were prepared 

in deuterated solvents using tetramethylsilane (TMS) as an internal standard (0 ppm). 

Coupling constants (J values) are reported when possible in Hertz (Hz). Diastereoisomer 

ratios were calculated from the integration of suitable peaks in the IH NMR spectrum. 

Electron Impact (E.I.) and Fast Atom Bombardment (F.A.B.) mass spectra were recorded on 

a Kratos MS80 Instrument 

Elemental Analysis 

Elemental analyses were carried out on a Perkin Elmer 2400 CHN Elemental Analyser. 

Other Data 

Melting points were determined on a Leica Oalen ill instrument and are uncorrected. Optical 

rotations were performed where possible on a po1AAR 2001 instrument using a O.25dm cell. 

Ali yields are for isolated pure products except where diastereomeric mixtures are noted. 
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4.2 Experimental for Chapter 2 

4.2.1. Preparation of Aminoalcohol Substituted Dienes 

4.2.1.1. Preparation of !mines 

1. (2R).3-methyl.2.(3-pheny1allylideneamino).butan.1-o1 

OH 

'y(~ 
(99b) 

trans-Cinnamaldehyde (1.36 g, 10.3 mmol) in dichloromethane (10 cm3) was added dropwise 

to a stirred solution of R-valinol (1.06 g, 10.3 mmol) in dichloromethane (30 cm3) at room 

temperature and the mixture was left to stir for 10 minutes. Anhydrous magnesium sulfate 

(l g) was added and the reaction stirred for a further 10 minutes. Filtration and removal of 

the solvent under reduced pressure yielded imine (99b) (2.22 g, 99%) as a light yellow oil 

which was used without further purification, [ex] i'i -24.1 (c 1.43, CH2Ch); Vmax (film)/cm·1 

3258 (O-H), 3060, 3027, 2959, 2872, 1636 (C=N), 1618 (C=C, Ar), 1449, 1387, 1164, 1075, 

1028, 983, 750 and 691; Ba (250MHz; CDCh) 0.86 (3H, d, J 6.8, CH(CH3)(CH3», 0.94 (3H, 

d, J 6.8, CH(CH3)(CH3», 1.89 (lH, ID, CH(CH3h), 2.75 (lH, br s, OH), 2.87 (1H, dt, J 6.8, 

CH), 3.81 (2H, ID, CH20H), 6.88 (2H, ID, CH=CHPh), 7.31-7.43 (5H, ID, Ar-H) and 7.98 

(lH, d, J 5.8, CH=N); 5c (63MHz; CDCl]) 19.3 (CH3), 19.6 (CH3), 30.1 (CH), 64.1 (CHv, 

79.1 (CH), 127.2 (2 x CH), 127.3 (CH), 128.6 (2 x CH), 129.1 (CH), 135.5 (q), 142.2 (CH) 

and 163.7 (CH); mlz (El) 217 <W, 13%), 186 (lOO), 174 (31),160 (29),117 (21), 115 (40), 

91 (16), 84 (19) and 49 (15). Found: 217.1467. ClJil~O requires M" 217.1480 
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2. (2S)-2-phenyl-2-<3-phenylallylldeneamino)-ethanol 

~~ 
N I 

h-

(9ge) 

trans-Cinnamaldehyde (1.89 g, 14.3 mmol) in dichloromethane (20 cm3) was added dropwise 

to a stirred solution of S-phenylglycinol (2.04 g, 14.8 mmol) in dichloromethane (50 cm3
) at 

room temperature and the mixture was left to stir for 30 minutes. Anhydrous magnesium 

sulfate (1 g) was added and the reaction stirred for a further 10 minutes. Futration and 

removal of the solvent under reduced pressure yielded imine (9ge) (3.56 g, 99%) as a light 

yellow solid which was used without further purification, mp 103.0-103.7 °C (from ethyl 

acetate); [a]:: +136.2 (c 2.10, CHQ3); Vmax (film)/cm-! 3222 (O-H), 3060, 3028, 2861, 1635 

(C=N), 1493, 1450, 1386, 1164, 1066, 750 and 700; 5a (2S0MHz; CDCh) 2.77 (IH, br s, 

OH), 3.87 (lH, dd, J 11.3 and 4.4, CHHOH), 4.00 (lH, dd, J 11.3 and 8.6, CHHOH), 4.39 

(1H, dd, J 8.6 and 4.4, CHCH20H), 6.83 (IH, d, J 16.1, CH=CHPh), 6.96 (lH, dd, J 16.0 and 

8.3, CH=CHPh), 7.23-7.41 (10H, ID, Ar-H) and 8.10 (lH, d, J 8.3, CH=N); lie (63MHz; 

CDCI]) 67.4 (CH2), 77.0 (CH), 126.7 (CH), 127.1 (CH), 127.4 (CH), 127.9 (CH), 128.5 

(CH), 128.6 (CH), 128.7 (CH), 129.4 (CH), 135.3 (q), 140.5 (q) and 164.8 (CH); mlz (El) 

251 (W, 3%), 220 (100), 115 (42), 91 (19) and 77 (7). Found: C, 81.0; H, 6.8; N, 5.5%; M" 
251.13101. C!7H!7NO requires C, 81.2; H, 6.8; N, 5.6%; W, 251.13101 

3. (2S)-3-phenyl-2-(3-phenylallylideneamino)-propan-l-01 

~ r OH 

~~ 
(991) 

trans-Cinnamaldehyde (1.01 g, 7.7 mmol) in dichloromethane (20 cm3) was added dropwise 

to a stirred solution of S-phenylalaninol (1.16 g, 7.7 mmo1) in dichloromethane (50 cm3) at 

room temperature and the mixture was left to stir for 10 minutes. Anhydrous magnesium 

Experimental 138 



sulfate (1 g) was added and the reaction stirred for a further 10 minutes. Filtration and 

removal of the solvent under reduced pressure yielded imine (991) (2.00 g, 98%) as a 

colourless solid which was used without further purification, mp 115.7-116.7 °C (from ethyl 

acetate); [a] ~ -9.8 (c 3.20, CH202l; v .... (tiIm)/cm·1 3224 (O-H), 3083, 3060, 3027, 2918, 

2856, 1634 (C=N), 1618 (C--C, Ar), 1494, 1451, 1073, 1047, 979, 750, 700 and 691; as 
(400MHz; CDCh) 2.78 (!H, del, J 13.5 and 8.4, PhCHH), 2.93 (IH, dd, J 13.5 and 5.1, 

PhCHH), 3.42 (!H, ID, CHCH20H), 3.78 (lH, del, J 11.3 and 3.8, CHHOH), 3.87 (!H, dd, J 

11.3 and 7.5, CHHOH), 4.23 (1H, br s, OB), 6.65 (lH, d, J 16.0, CH=CHPh), 6.80 (lH, dd, J 

16.0 and 8.5, CH=CHPh), 7.11-7.30 (10H, ID, Ar-B) and 7.63 (IH, d, J 8.5. CH=N); lie 
(lOOMHz; CD03) 39.4 (CH2), 66.2 (CH2). 75.0 (CH). 126.6 (CH), 127.5 (CH), 127.7 (2 x 

CH), 128.7 (2 x CH), 129.1 (2 x CH), 129.7 (CH), 130.0 (2 x CH). 135.8 (q), 138.9 (q), 142.9 

(CH) and 164.5 (CH); mlz (El) 265 (W, 12%), 234 (22), 174 (100), 115 (41) and 91 (34). 

Found: C. 81.3; H, 7.1; N. 5.3%; M., 265.14691. ClsHl~O requires C, 81.5; H, 7.2; N. 

5.3%; W. 265.14666. 

4, (2S)-(I-methoxymethyl-:Z-phenylethyl)-(3-phenylallylidene)-amine 

~ r"-

~ 
(12lh) 

The hydrochloride salt of S-(+)-2-amino-1-methoxy-3-phenylpropane (1.05 g, 0.52 mmol) 

was dissolved in saturated potassium carbonate solution (50 cm\ The aqueous solution was 

extracted with dichloromethane (2 x 25 cm3
) and the organic extracts were dried over 

anhydrous potassium carbonate, filtered and the solvent removed under reduced pressure to 

yield S-(+)-2-amino-1-methoxy-3-phenylpropane as the free amine (0.84 g, 98% recovery). 

trans-Cinnamaldehyde (0.69 g, 5.2 mmol) in dichloromethane (20 cm3) was added dropwise 

to a stirred solution of S-( + )-2-amino-l-methoxy-3-phenylpropane (0.84 g, 5.1 mmol) in 

dichloromethane (20 cm3) at room temperature and the mixture was left to stir for 30 

minutes. Anhydrous magnesium sulfate (1 g) was added and the reaction stirred for a further 

30 minutes. Filtration and removal of the solvent under reduced pressure yielded imine 

(121b) (1.43g, 98%) as a light yellow oil which was used without further purification, 
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[a;)~-18.9 (c 4.44 in CH2Ch); v .... (film)/cm·1 3026. 2921.2878.2850.1635 (C=N). 1619 

(C=C. Ar). 1494. 1450. 1122. 1084. 980. 750. 700 and 692; Os (250MHz; COCh) 2.80 (lH. 

dcl, J 13.4 and 7.6. PhCHH). 2.98 (lH. dd. J 13.4 and 4.1. PhCHH). 3.33 (3H. s. OCH3). 3.50 

(3H, ID, CH20Me and CHCH20Me). 6.77 (IH. cl, J 16.0. CH=CHPh). 6.90 (IH. dcl, J 16.0 

and 8.7. CH=CHPh). 7.13-7.40 (l0H, In, Ar-H) and 7.69 (lH, d. J 8.7. CH=N); Cc (63MHz; 

CDCh) 39.3 (CH2). 59.0 (CH3). 72.1 (CH). 75.8 (CH2). 126.1 (CH). 127.2 (2 x CH). 127.8 

(CH2). 128.2 (2 x CH2). 128.7 (2 x CH). 129.1 (CH). 129.6 (2 x CH). 135.6 (q). 138.6 (q). 

141.9 (CH) and 163.3 (CH); mlz (El) 279 «M + It. 100%). Found: 279.16240. CI9H21NO 

requires (M + It. 279.16231 

5. (2R)-2-[(Furan-2-ylmethylene)-amino)-3-methylbutan-1-o1165 

(1028) 

2-Furaldehyde (0.76 cm3• 9.2 nunol) in dichloromethane (20 cm3) was added dropwise to a 

stirred solution of R-valinol (1.04 g. 10.1 mmol) in dichloromethane (20 cm3) at room 

temperature and the mixture was left to stir for 1 hour. Anhydrous magnesium sulfate (1 g) 

was added and the reaction stirred for a further 10 minutes. Filtration and removal of the 

solvent under reduced pressure yielded imine (1028) (1.46 g. 80%) as a dark brown oil which 

was used without further purification.; Vmax (film)/cm·1 3358 (O-H). 2959. 2877. 1645 (C=N). 

1580. 1584. 1484. 1388. 1367. 1274. 1155. 1080. 1058. 1018. 932. 884 and 748; Os 
(250MHz; COCl3) 0.85 (3H. cl, J 6.7. CH(CH3)(CH3». 0.93 (3H. cl, J 6.7. CH(CH3)(CH3». 

1.92 (!H. ID, CH(CH3n). 2.87 (!H. dt, J 7.5 and 3.8. CH). 3.65 (1H, br s. OH). 3.81 (2H. ID, 

CH20H). 6.42 (lH. dd. J 3.5 and 1.7. Ar-H). 6.70 OH. d. J 3.5. Ar-H) 7.47 (IH. cl, J 1.6. Ar

H) and 7.93 (1H, s. N=CH); mlz (El) 181 (M" 4%). 150 (100). 138 (40). 81 (45) and 55 (18). 

Found: 181.11065. CIOHlsN~ requires M+, 181.11028. 
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6. (2S)-2-(3-furan-2-yl-aIlylideneamino)-3-metbylbutan-l-01 

(102b) 

3-(2-FuryI)-acrolein (1.00 g, 8.2 mmol) in dichloromethane (20 cm3) was added dropwise to 

a stirred solution of S-valinol (0.86 g, 8.3 mmol) in dichloromethane (30 cm3) at room 

temperature and the mixture was left to stir for 10 minutes. Anhydrous magnesium sulfate 

(l g) was added and the reaction stirred for a further 10 minutes. Filtration and removal of 

the solvent under reduced pressure yielded imine (102b) (1.66 g, 97%) as an orange oil 

which was used without further purification [a] -:: +156.2 (c 3.40, CH2Ch); Vmax (film)/cm'\ 

3357 (O-H), 2959, 2871, 1629 (C=N), 1476, 1387, 1159, 1076, 1058, 1016 and 740; Ba 
(400MHz; CDCh) 0.84 (3H, d, J 6.7, CH(CH3)(CH3», 0.93 (3H, d, J 6.7, CH(CH3)(CH3», 

1.87 (lH, In, CH(CH3h», 2.85 (2H, dt, J 6.7 and 4.2, CH and OH), 3.79 (2H, In, CH20H), 

6.41 (2H, d, J 1.4, AI-H), 6.63 (lH, d, J 15.6, CH=CH-Fu), 6.75 (IH, dd, J 15.6 and 8.8, 

CH=CH-Fu), 7.43 (1H, s, AI-H) and 7.89 (IH, J 8.8, CH=N); Bc (lOOMHz; CDCh) 19.7 

(CH3), 20.0 (CH3), 30.5 (CH), 64.7 (CH2), 79.6 (CH), 112.1 (CH), 112.3 (CH), 126.0 (CH), 

129.3 (CH), 144.2 (CH), 152.3 (q) and 163.7 (CH); m/1. (El) 207 (W,4O%), 176 (100), 164 

(31), 134 (38), 117 (l3), 107 (19). 91 (6) and 77 (11). Found: 207.12626. C\2HI1N~ 

requires M+, 207.12593. 

7. (2S)-3-Metbyl-2-[3-(S-nitro-Curan-2-yl)-aIlylideneamino]-butan-l-01 

(102e) 

5-Nitro-2-furylacrolein (1.00 g. 6.0 mmol) in dichloromethane (20 cm3
) was added dropwise 

to a stirred solution of S-valinol (0.66 g, 6.4 mmol) in dichloromethane (10 cm3
) at room 
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temperature and the mixture was left to stir for 20 minutes. Anhydrous magnesium sulfate 

(1 g) was added and the reaction stirred for a further 10 minutes. Filtration and removal of 

solvent under reduced pressure yielded imine (IOlc) (1.43 g, 95%) as an orange solid which 

was used without further purification, mp 124.3-124.9 °C (from ethyl acetate); [a.] ~ +38.5 (c 

1.07, CH2Ch); Vmax (film)/cm-I 3331 (O-H), 3150, 2960, 2871, 1624 (C=N), 1567, 1518, 

1475, 1351, 1258, 1242, 1020,971, 962, 810 and 737; ~ (250MHz; CDC!]) 0.86 (3H, d, J 

6.8, CH(CH3)(CH3», 0.95 (3H, d, J 6.8, CH(CH3)(CH3», 1.89 (lH, ID, CH(CH3)1», 2.32 

(111, br s, OH), 2.92 (lH, q, CH), 3.80 (2H, d, J 5.6, CH10H), 6.66 (1H, d, J 3.8, Ar-H), 6.76 

(lH, d, J 16.1, CH=CH-Fu), 7.09 (lH, dd, J 16.1 and 8.9, CH=CH-Fu), 7.33 (lH, d, J 3.8, 

Ar-H) and 8.01 (lH, J 8.9. CH=N); Bc (63MHz; CDC!]) 19.3 (CH3). 19.5 (CH3). 30.0 (CH). 

64.3 (CH1). 79.1 (CH). lll.7 (CH), 111.9 (CH). 125.6 (CH), 128.9 (CH). 143.7 (CH). 151.8 

(q) and 163.2 (CH); mlz (El) 253 «M + It. 100%). Found: C. 56.9; H, 6.4; N. 10.8%; (M + 

1)\ 253.11853. CI1Hl~104 requires C, 57.13; H, 6.39; N. 11.10%; (M + It, 253.11883. 

4.2.1.1. Preparation of Amines 

8. (2R)-3-Methyl-2-«R)-I-styryl-but-3-enylamlno)·butan-I-ol 

(lOOb) 

Allyl bromide (2.09 cm3• 24.2 mmol) was added dropwise via syringe to magnesium turnings 

(0.58 g. 24.2 mmol) in dry diethyl ether (30 cm3) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 30 minutes. Imine (99b) (2.10 g, 9.7 mmol) in dry diethyl 

ether (lOO cm3
) under an inert atmosphere was added dropwise via cannulation to the stirred 

Grignard solution and the resulting mixture refluxed for 2 hours. The reaction was cooled to 

room temperature and quenched with water until a gelatinous precipitate formed. The 

organic layer was decanted and the gelatinous residue rinsed with diethyl ether (2 x 20 cm3). 

The combined organic layers were washed twice with saturated aqueous sodium hydrogen 

carbonate solution, dried over sodium sulfate, filtered and the solvent removed under reduced 

Expetimental 142 



pressure to yield an orange oil. Flash column chromatography on silica gel, eluting with 

hexane-diethyl ether (6:1) gave amine (IOOb) (1.66 g, 66%) as a light orange oil, [IX):: +59.4 

(c 2.04, CH2Ch); Vmax (film)!cm·\ 3407 (O-H), 3079, 3026, 2958, 1638 (C=C), 1599 (C--C, 

Ar), 1578, 1494, 1466, 1449, 1064,968,915,749 and 694; Sa (250MHz; CDCI) 0.90 (3H, d, 

J 6.8, CH(CH3)(CH3» 0.94 (3H, d, J 6.8, CH(CH3)(CH3» 1.77 (IH, m, CH(CH3)2) 2.32 (2H, 

In, CH2CH=CH2) 2.47 (IH, dt, J 6.7 and 4.5, CH) 3.31 (IH, dd, J 14.9 and 6.4, CH) 3.49 

OH, dd, J 10.7 and 4.9, CHHOH) 3.58 (1H, dd, J 10.7 and 4.3, CHHOH) 5.11 (2H, In, 

CH=CH2) 5.84 (IH, m, CH=CH2) 5.96 (lH, dd, J 15.8 and 8.6, CH=CHPh) 6.43 (lH, d, J 

15.8, CH=CHPh) and 7.23-7.38 (5H, In, Ar-ll); lie (63MHz; CDCh) 18.9 (CH), 19.7 (CH), 

29.4 (CH), 40.6 (CH2), 58.2 (CH), 60.1 (CH2), 60.9 (CH), 117.5 (CH2), 126.2 (2 x CH), 

127.4 (CH), 128.5 (2 x CH), 131.0 (CH), 132.4 (CH), 134.9 (CH) and 137.0 (q); mlz (El) 259 

(W, 2%), 218 (100), 157 (13), 132 (18), 115 (30), 91 (22), 84 (24) and 49 (24). Found: 

259.19329. CI7H:zsNO requires W, 259.19298. 

9. (2S)-2-Phenyl-2-«S)-I-styryl-but-3-enylamlno)-ethanol 

if~ 
(IOOe) 

Allyl bromide (0.50 cm3, 6.0 mmol) was added dropwise via syringe to magnesium turnings 

(0.14 g, 6.0 mmol) in dry diethyl ether (30 cm3) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 30 minutes. Imine (9ge) (0.53 g, 2.1 mmol) in dry diethyl 

ether (40 cm3) under an inert atmosphere was added dropwise via cannulation to the stirred 

Grignard solution and the resulting mixture refluxed for 2 hours. The reaction was cooled to 

room temperature and quenched with ice until a gelatinous precipitate formed. The organic 

layer was decanted and the gelatinous residue rinsed with diethyl ether (2 x 50 cm3). The 

combined organic layers were washed twice with 2M aqueous sodium hydroxide solution, 

once with saturated aqueous sodium chloride solution, dried over sodium sulCate, filtered and 

solvent removed under reduced pressure to yield a yellow oil. Flash column chromatography 

on silica gel, eluting with hexane-diethyl ether (3:1) gave amine (IOOe) (0.51 g, 83%) as a 
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light yellow oil, [a]~ -17.0 (c 3.50, CHCh); Vmax (film)/cm·1 3320 (O-H). 3060, 3025, 2975, 

2925,2867, 1638 (C--C), 1600 (C--C, Ar), 1493, 1451, 1061, 1027, 967. 916, 750 and 700; 

~ (400MHz; COCh) 2.20 (lH, br s, Oll), 2.36 (2H, ID, CH2CH::CH2), 3.34 (lH, dd, J 14.2 

and 6.4, CH), 3.54 (I, dd, J 10.6 and 7.4, CHHOH), 3.90 (IH, del, J 10.6 and 4.6, CHHOH), 

3.90 (lH, dd,J7.4 and 4.6, CHCH20H), 5.11 (2H, ID, CH=CH2) 5.82 (IH. ID, CH2CH=CH2). 

5.95 (lH, dd, J 15.8 and 8.0, CH=CHPh), 6.38 (1H, d, J 15.8, CH=CHPh) and 7.19-7.30 

(10H, ID, Ar-ll); Se (lOOMHz; COa3) 39.8 (CHv, 58.2 (CH), 61.5 (CH). 66.0 (CH2), 117.6 

(CH2), 126.3 (2 x CH), 127.3 (CH), 127.4 (3 x CH), 128.5 (2 x CH), 128.6 (2 x CH), 130.6 

(CH), 132.7 (CH), 134.7 (CH), 136.9 (q) and 141.6 (q); mlz (El) 293 (M+, <1%) and 115 

(lOO). Found: 293.17738. C:wH~O requires W, 293.17796. 

10. (2S)-3-Phenyl-2-((S}-I-styryI-but-3-enylamino)·propan-l-01 

OJOH~r; ~ 
~ I 

.& 

(100f) 

Compound (1001) was prepared using two methods: 

Method A 

Allyl bromide (4.10 cm!, 47.4 mmol) was added dropwise via syringe to magnesium turnings 

(1.13 g, 47.2 mmol) in dry diethyl ether (50 cm3) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 30 minutes. Imine (991) (5.00 g, 18.9 mmol) in dry toluene! 

dry diethyl ether (5:1, 100 cm3) under an inert atmosphere was added dropwise via 

cannulation to the stirred Grignard solution and the resulting mixture stirred at room 

temperature. After overnight stirring the reaction was quenched with water until a gelatinous 

precipitate formed. The organic layer was decanted and the gelatinous residue rinsed diethyl 

ether (2 x 100 cm3). The combined organic layers were washed twice with saturated aqueous 

sodium hydrogen carbonate solution, dried over sodium sulfate, filtered and the solvent 

removed under reduced pressure to yield a yellow SOlid: Recrystallisation from hexanes· 

diethyl ether gave amine (1001) (4.10 g, 71 %) as a colourless powdery solid 
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MethodB 

Imine (991) (4.61 g, 17.4 mmol) was dissolved in toluene! diethyl ether (4:1, l00cm3
) and 

stirred at room temperature with magnesium turnings (1.37 g, 57.1 mmol). Allyl bromide 

(4.93 cm3, 57.1 mmol) was added in two portions to the imine solution and the mixture was 

stirred under an inert atmosphere. After overnight stirring the reaction was quenched with 

water until a gelatinous precipitate formed. The organic layer was decanted and the 

gelatinous residue rinsed with diethyl ether (2 x 100 cm3
). The combined organic layers were 

washed twice with saturated aqueous sodium hydrogen carbonate solution, dried over sodium 

sulfate, filtered and the solvent removed under reduced pressure to yield a yellow solid. 

Recrystallisation from hexane-diethyl ether gave amine (lOot') (3.95 g, 74%) as a colourless 

powdery solid, mp 91.3-92.3 °C (from hexanes: diethyl ether); [ex] r: -18.7 (c I.ll, CH2Ch); 

Vrnax (film)/cm-I 3406 (O-H), 3060, 3025, 2976, 2923, 1639 (C--C), 1600 (C=C, Ar), 1494, 

1452, 1031,968,916,749 and 699; ~ (400MHz; CDCh) 2.23 (2H, t, CH2CH=CH2), 2.75 

(2H, ID, PhCH2), 3.02 (1H, ID, CH), 3.25 (lH, q, CHCH20H), 3.34 (1, dd, J 10.8 and 3.5, 

CHHOH), 3.63 (IH, dd, J 10.8 and 3.9, CHHOH), 5.07 (2H, ID, CH=CH2) 5.72 (2H, ID, 

CH2CH=CH2 and CH=CHPh), 6.38 (lH, d, J 15.8, CH=CHPh) and 7.13-7.32 (lOH, m, Ar-

11); ac (looMHz; CDCh) 39.3 (CH2), 41.3 (CH2), 57.0 (CH), 58.3 (CH), 62.5 (CH2), ll8.0 

(CH2), 126.8 (2 x CH), 126.9 (CH), 127.9 (CH), 129.0 (4 x CH), 129.7 (2 x CH), 131.3 (CH), 

132.5 (CH), 135.3 (CH), 137.2 (q) and 139.1 (q); mlz (FAB) 308 «M + 1)\ 93%), 266 (82), 

216 (20), 157 (91), 129 (50) and 115 (lOO). Found: C, 81.5; H, 8.1; N, 4.3%; (M + 1)+, 

308.20144. C2IH2SNO requires C, 82.0; H, 8.1; N, 4.6%; (M + 1)\ 308.20119. 

X-ray structure analysis of this compound confirmed that the relative stereochemistry is as 

drawn (Appendix). 

11. «2S)-1-Methoxymethyl-2-phenyl-ethyl)-«S)-1-styryI-but-3-enyl)-amine 

(122b) 

Imine (12lb) (0.53 g, 1.9 mmol) was dissolved in THF (20 cm3) and stirred with magnesium 

turnings (O.084g, 2.7 mmol) under an inert atmosphere. Allyl bromide (0.30 cm3, 3.5 mmol) 
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was added dropwise via syringe and the mixture stirred at room temperature. After overnight 

stirring the reaction was quenched with water until a gelatinous precipitate fonned. The 

organic layer was decanted and the gelatinous residue rinsed with dichloromethane (3 x 20 

cm3). The combined organic layers were washed twice with saturated aqueous sodium 

hydrogen carbonate solution, dried over sodium sulfate, filtered and the solvent removed 

under reduced pressure to yield a yellow oil. Flash column chromatography on silica gel, 

eluting with hexane-diethyl ether (6:1) gave a IS: 1 inseparable mixture of (5,8)- and (5, R)

amines (122b) (0.30g, 49%) as a light yellow oil; Vmax (film)/cm'! 3322 (N.H), 3060, 3025, 

2977, 2923, 1639 (C--C), 1600 (C--C, Ar), 1494, 1452, 1ll8, 1070, 967, 915, 748, 694; 8u 
(400MHz; CDCh) (* = minor isomer) 1.52 (lH, br s, NH), 2.28 (2H, t, CH2CH=CH2), 2.77 

(2H, ID, PhCH2), 3.02 (lH, m, CHCH20Me), 3.25 (1H, dd, J 9.4 and 4.4, CHHOMe), 3.35 

(3H, s, CH2OCH3), 3.36 (2H, ID, CHHOMe and CH), 5.09 (2H, ID, CH=CH2) 5.78 (2H, m, 

CH2CH=CH2 and CH=CHPh), 6.37 (1H, d, J 16.0, CH=CHPh) 6.62* (lH, d, J 16.0, 

CH=CHPh) and 7.07-7.22 (lOH, m, Ar'H); Se (lOOMHz, CDCh) 39.7 (CH2), 41.3 (CH2), 

56.4 (CH), 58.7 (CH), 59.4 (CH3), 73.9 (CH2), 117.8 (CH2), 126.5 (CH), 126.7 (CH), 127.7 

(2 x CH), 128.7 (2 x CH), 128.9 (2 x CH), 129.8 (2 x CH), 131.0 (CH), 132.0 (CH), 135.4 

(CH), 137.4 (q) and 139.7 (q); mlz (FAB) 321 «M + It, 60%). Found: 321.20960. 

C22H27NO requires (M + It, 321.20925 

12. 2-Phenyl.l.trimethylsilanyloxymethyl-ethyl)-(l-styryl-but-3-enyl).amine 

(:124) 

Racemic amine (lOOl) (1.83 g, 6.0 mmol) was dissolved in TIiF (40 cm3) and cooled to ·78 

°C in a dry ice! acetone slush bath under an inert atmosphere. A 2.5M solution of n-BuU in 

hexanes (2.86 mL, 7.2 mmol) was added dropwise and the mixture stirred for 5 minutes 

before addition of chlorotrimethylsilane (0.80 mL, 6.3 mmol) and the reaction was stirred at -

78°C for 15 minutes before warming to room temperature. After stirring for a further 12h the 

reaction was quenched with 5mL water, dried over sodium sulfate, filtered through a small 
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pad of Celite and the solvent removed in vacuo to yield a brown oil. Flash column 

chromatography on silica, eluting with light petroleum-ethyl acetate (4:1) gave O-protected 

amine (124) (0.84 g, 37%) as a light yellow oil, v.,.. (film)/cm·1 3061, 3026, 2954, 2860, 

1639 (C--C), 1601 (C=C, Ar), 1494, 1452, 1251, llOO, 1070, 967, 913, 875, 841, 747 and 

699;8a (400MHz, CDCl]) 0.10 (9H, s, Si(CH3h), 1.64 (IH, br s, NH), 2.25 (2H, t, J 6.8, 

CH2CH=CH2), 2.68 (lH, dd, J 13.3 and 7.0, PhCHH), 2.79 (lH, dd, J 13.3 and 7.0, PhCHH), 

2.92 (lH, ID, CHCH20TMS), 3.32 (IH, dei, J 14.6 and 6.5, CH), 3.42 (lH, dei, J 10.2 and 4.3, 

CHHOTMS), 3.49 (lH, dd, J 10.2 and 5.0, CHHOTMS), 5.08 (2H, m, CH=CH2) 5.76 (2H, 

ID, CHzCH=CH2 and CH=CHPh), 6.35 (IH, d, J 15.8, CH=CHPh) and 7.14-7.29 (lOH, ID, 

Ar-B); lie (lOOMHz; CDCl]) 0.3 (3 x CH3), 39.6 (CH2), 41.5 (CH2) 58.1 (CH), 58.8 (CH), 

63.3 (CH2), ll7.9 (CH2), 126.5 (CH), 126.8 (2 x CH), 127.7 (CH), 128.7 (2 x CH), 129.0 (2 

x CH), 129.9 (2 x cm, 131.1 (CH), 133.7 (CH), 135.6 (CH), 137.6 (q) and 140.0 (q). 

Further analysis of this compound was not possible as it decomposes during normal handling. 

13. [l-(tert-Butyl-dimethyl.silanyloxymethyl).2-phenyl-ethyIHl.styryl.but.3-enyl). 

amine 

(±122c) 

Racemic amine (100f) (l08 mg, 0.35 mmol) was dissolved in THF (20 cm3) and stirred at rt 

under an inert atmosphere. tert-Butyldimethylsilyl chloride was added neat in one portion 

and the reaction was stirred for 10 minutes before addition of triethylamine (O.ll cm3, 0.72 

mmol). After stirring for 72 h the reaction mixture was filtered through a small pad of Celite 

and the solvent removed under reduced pressure to yield a light yellow oil. Flash column 

chromatography on silica gel, eluting with hexanes-diethyl ether (4:1) gave O-protected 

amine (122c) (67 mg, 45%) as a colourless oil; Vmax (film)/cm·1 3304 (N-H), 3061, 3026, 

2953, 2928, 2856, 1639 (C=C), 1601 (C--C, Ar), 1495, 1471, 1388, 1360, 1253, 1104, 966, 

915, 836, 776, 747 and 698; Ba (250MHz; CDCl]) 0.10 (6H, s, Si(CH3h), 0.94 (9H, s, 
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C(CH3h), 1.76 (IH, br s, NH), 2.31 (2H, t, J 6.8, CH2CH=CH2), 2.70 (IH, dd, J 13.3 and 6.9, 

PhCHH), 2.82 (IH, del, J 13.3 and 7.2, PhCHH), 2.92 (lH, m, CHCH20TBDMS), 3.38 (lH, 

dd, J 14.6 and 6.7, CH), 3.44 (IH, dd, J 10.1 and 3.8, CHHOTBDMS), 3.58 (lH, del, J 10.1 

and 4.5, CHHOTBDMS), 5.12 (2H, m, CH=CH2), 5.77 (IH, m, CH2CH=CH2), 5.89 (IH, dd, 

J 16.0 and 8.1 CH=CHPh), 6.40 (lH, cl, J 16.1, CH=CHPh) and 7.16-7.38 (lOH, m, Ar-ll); 

15c (63MHz; CDCl3) -5.0 (2 x CH3), 18.6 (q), 26.3 (3 x CH3), 39.4 (CH2), 41.6 (CH2), 58.0 

(CH), 585 (CH), 62.9 (CH2), 117.9 (CHv, 126.4 (CH), 126.7 (2 x CH), 127.6 (CH), 128.6 (2 

x CH), 128.8 (2 x CH), 129.8 (2 x CH), 130.9 (CH), 133.6 (CH), 135.4 (CH), 137.4 (q) and 

140.0 (q); mlz (FAB) 422 «M + I)+' 82%), 380 (82), 330 (21), 157 (63), 129 (28) and 117 

(100). Found: 422.28790. C2,H3~OSi requires (M + It, 422.28792. 

14. (2R)-2-((R)-I-Furan-2-yl-bul-3-enylamino)-3-methyl-butan-l-0116S 

(103a) 

Allyl bromide (2.80 cm3, 31.1 mmol) was added dropwise via syringe to magnesium turnings 

(0.81 g, 33.7 mmol) in dry diethyl ether (25 cm3) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 30 minutes. Imine (1028) (1.95 g, 10.8 mmol) in dry diethyl 

ether (20 cm3) under an inert atmosphere was added dropwise via cannulation over 20 

minutes to the stirred Grignard solution and the resulting mixture refluxed for 3 hours. The 

reaction was cooled to room temperature and quenched with ice until a gelatinous precipitate 

formed. The organic layer was decanted and the gelatinous residue rinsed with diethyl ether 

(2 x 100 cm3). The combined organic layers were washed twice with aqueous sodium 

hydroxide solution (2M), dried over sodium sulfate, filtered and the solvent removed under 

reduced pressure to yield a brown oil. Flash column chromatography on silica gel, eluting 

with light petroleum-ethyl acetate (4:1) gave amine (103a) (0.90 g, 38%) as a brown oil, Vmax 

(film)/cm·1 3408 (O-H), 3078, 2959, 1642 (C--C), 1506, 1467, 1150, 1072, 1048, 1010, 919 

and 734; 5r! (250MHz; CDCh) 0.82 (6H, eI, J 6.8, CH(CH3n>, 1.65 (lH, m, CH(CH3h), 2.27 

(2H, dt, J 6.8 and 4.3, CHCH20H), 2.51 (lH, t, J 7.0, CH2CH=CH2), 3.40 (lH, dd, J 10.9 

and 4.5, CHHOH), 3.57 (lH, dd, J 10.9 and 4.1, CHHOH), 3.74 (IH, t, J 7.0, CH), 5.06 (2H, 
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m. CH=CH2), 5.74 (1H, m. CH=CH2), 6.12 (1H, d, J 3.1, Ar-Il) 6.28 (IH, dei, J 3.1 and 1.9, 

Ar-Il) and 7.34 (lH, d, J 1.9, Ar-Il). 

15. (lR)-2-[(S)-1-(2-Furan-2-yl-vinyl)-but-3-enylamino]-3-methyl-butan.l-01 

(103b) 

Allyl bromide (1.90 cm3, 22.0 mmol) was added dropwise via syringe to magnesium turnings 

(0.52 g, 21.6 mmol) in dry diethyl ether (70 cm3) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 30 minutes. Imine (102b) (l.50 g, 7.2 mmol) in dry toluene 

(25 cm3
) under an inert atmosphere was added dropwise via cannulation to the stirred 

Grignard solution and the resulting mixture warmed to 60 °C for 1.5 hours. The reaction was 

cooled to room temperature and quenched with water until a gelatinous precipitate formed. 

The organic layer was decanted and the gelatinous residue rinsed with diethyl ether (2 x 20 

cm3
). The combined organic layers were washed twice with saturated aqueous sodium 

hydrogencarbonate solution, dried over sodium sulfate, filtered and the solvent removed 

under reduced pressure to yield an orange oil. Flash column chromatography on silica, 

eluting with hexane-diethyl ether (6:1) gave amine (103b) (1.42 g, 79%) as a light orange oil, 

[a] ~ -44.8 (c 5.30, CH202); Vmax (fi1m)/cm-1 3407 (O-H), 3076, 2958, 2928, 2872, 1639 

(C--C), 1561, 1490, 1466, 1151, 1060, 1013, 963, 926 and 733; ~ (400MHz; c003) 0.90 

(3H, d, J 6.7, CH(CH3)(CH3», 0.93 (3H, d, J 6.7, CH(CH3)(CH3», 1.76 (IH, ID, CH(CH3)2), 

2.30 (2H, m, CH2CH=CH2), 2.45 (lH, dt, J 6.7 and 4.4, CH), 3.26 (1H, dt, J 8.6 and 6.5, 

CH)' 3.41 (IH, dd, J 10.6 and 4.9, CHHOH), 3.56 (IH, dei, J 10.6 and 4.2, CHHOH), 5.11 

(2H, m, CH=CH2), 5.82 (lH, m. CH=CH2), 5.94 (lH, dd, J 15.8 and 8.6, CH=CH-Fu), 6.21 

(lH, d, J 3.4, Ar-Il), 6.23 (lH, d, J 15.8, CH=CH-Fu), 6.37 (IH, dd, J 3.4 and 1.7, Ar-Il) and 

7.33 (lH, d, J 1.7, Ar-Il); Se (lOOMHz; c003) 19.3 (CH), 20.0 (CH), 30.0 (CH), 41.3 

(CH2), 58.4 (CH), 60.6 (CH2), 61.3 (CH), 107.8 (CH), 111.5 (CH), 118.0 (CH2), 119.8 (CH), 

131.6 (CH), 135.3 (CH), 142.2 (CH) and 152.8 (q); m/z (FAB) 250 (CM + It, 35%). Found: 

250.17280. ClsH23N~ requires CM + I)+' 250.17288. 
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16. (2R)-2-((S)_1_Allyl_but_2-enyIamino)_3_methyl_butan_l-01105 

(104) 

trans-Crotonaldehyde (1.34 g, 18.9 mmol) in dichloromethane (20 cm3) was added dropwise 

to a stirred solution of R-valinol (1.99 g, 19.2 mmol) in dichloromethane (30 cm3) at room 

temperature. The mixture was left to stir for 30 minutes before addition of magnesium 

sulfate (1 g) and stirred for a further 10 minutes. Filtration and removal of solvent under 

reduced pressure yielded the imine (2.89 g, 96%) (l657cm·1, C=N) as a light yellow oil 

which was used without further purification for the next step. 

Allyl bromide (5.00 cm3, 59.1 mmoI) was added dropwise via syringe to magnesium turnings 

(1.43 g, 59.6 mmol) in dry diethyl ether (20 cm3) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 30 minutes. The imine (2.89 g, 28.0 mmol) in dry diethyl 

ether (20 cm3) under an inert atmosphere was added dropwise via cannulation to the stirred 

Grignard solution and the resulting mixture refluxed for 1.5 hours. The reaction was cooled 

to room temperature and quenched with ice until a gelatinous precipitate formed. The 

organic layer was decanted and the gelatinous residue rinsed with diethyl ether (2 x 25 cm3). 

The combined organic layers were washed twice with saturated aqueous sodium hydrogen 

carbonate solution, dried over anhydrous magnesium sulfate, filtered and the solvent 

removed under reduced pressure to yield a light yellow oil. Flash column chromatography 

on silica gel, eluting with light petroleum-ethyl acetate (4:1) gave amine (104) (2.90 g, 79%) 

as a light yellow oil, Vmax (film)/cm·1 3406 (O·H), 3076, 2959, 1640 (C--C), 1467, 1380, 

1062,995,968,913 and 821; ~ (250MHz, CDCh) 0.89 (3H, d, J 6.7, CH(CH3)(CH3», 0.92 

(3H, d, J 6.7, CH(CH3)(CH3», 1.69 (3H, dd, J 6.3 and 1.6, CH=C(H)CH3), 1.75 (lH, m, 

CH(CH3h), 1.87 (lH, br s, OH), 2.20 (2H, m, CH2CH=CH2), 2.41 (lH, dt, J 6.3 and 4.9, 

CH), 3.07 (1H, dt, J 8.4 and 6.6, CHCH20H), 3.36 (lH, dd, J 10.6 and 5.0, CHHOH), 3.52 

(lH, dd, J 10.6 and 4.3, CHHOH), 5.07 (2H, m, CH=CH2), 5.23 (lH, m, CH=C(H)CH3), 

5.50 (lH, dq, J 15.3 and 6.4, CH=C(H)CH3), and 5.78 (lH, m, CH=CH:z); Oc (63MHz, 

CDCI) 17.6 (CH), 18.8 (CH3), 19.6 (CH3), 29.4 (CH), 40.9 (CH2), 57.8 (CH), 60.0 (CH2), 
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60.7 (CH). 116.9 (CH2). 126.6 (CH). 133.8 (CH). 135.4 (CH); mlz (El, LRMS) 198 (M" 

4%).166 (36).156 (86). 95 (74). 72 (91). 70 (lOO). 67 (67). 60 (57). 55 (69) and 41 (63). 

4.2.2. Anionic Amino-Cope Rearrangements 

17. (S)-3-Phenylhex-5-enal from (2R)-3-Methyl-2-«R)-1-styrylbut-3-enylamino)

butan-I-ol IOS 

H 

(52) 

Amine (IOOb) (0.12 g. 0.46 mmol) was dried in vacuo for 1 h then dissolved in dry 

tetrahydrofuran (20 cm1 under an inert abnosphere and cooled to -78°C in a dry ice! acetone 

slush bath. A 2.5M solution of nButyllithium in hexanes (0.5 cm3
• 1.25 mmol) was added 

dropwise via syringe over 5 minutes and the resulting mixture stirred for 30 minutes before 

warming to room temperature. The reaction was heated to reflux for 1.5 h then quenched 

with water (0.5 cm3
). dried over anhydrous sodium sulfate. filtered through a small pad of 

Celite and the solvent removed under reduced pressure to give an orange oil. Flash column 

chromatography on silica gel. eluting with light petroleum-diethyl ether (10:1) hydrolysed the 

crude oxazolidine giving aldehyde (52) (52 mg. 65%) as a light yellow oil. [a]~ +4.5 (c 0.8. 

CHCl]). 

e.e. 84% measured by derivatisation with ephedrine (Experimental Entry 22). Spectral 

analysis consistent with Entry 19 below. 

18. (R)-3-Phenylhex-5-enal from (2S')-2-phenyl-2-(3-phenylallylideneamino)-ethanoI1OS 

o o -

H~ 
(52) 
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Amine (100e) (1.39 g, 4.8 mmol) was dried in vacuo for 1 h then dissolved in dry 

tetrahydrofuran (20 cm3
) under an inert atmosphere and cooled to -78°C in a dry ice! acetone 

slush bath. A 1.6M solution of nButyllithium in hexanes (7.5 cm3, 12.0 mmol) was added 

dropwise via syringe over 5 minutes and the resulting mixture stirred for 30 minutes before 

warming to room temperature. The reaction was heated to reflux for 2 h then quenched with 

water (0.5 cm3
), dried over anhydrous sodium sulfate, filtered through a small pad of Celite 

and the solvent removed under reduced pressure to give an orange oil. Flash column 

chromatography on silica gel, eluting with light petroleum-diethyl ether (10:1) hydrolysed the 

crude oxazolidine giving aldehyde (52) (0.50 g, 61 %) as a light yellow oil. 

e.e. 83% measured by derivatisation with ephedrine (Experimental Entry 22). Spectral data 

consistent with Entry 19 below. 

19. (R)·3-Phenylhex·5-enal from (2S)-3-phenyl-2-(3-phenyla11ylideneamino )_propan_I-ol10S 

o 
H~ 

(52) 

Amine (lOOt) (0.98 g, 3.2 mmol) was dried in vacuo for 1 h then dissolved in dry 

tetrahydrofuran (20 cm3
) under an inert atmosphere and cooled to -78°C in a dry ice! acetone 

slush bath. A 2.5M solution of nButyllithium in hexanes (3.3 cm3, 8.3mmol) was added 

dropwise via syringe over 5 minutes and the resulting mixture stirred for 30 minutes before 

warming to room temperature. The reaction was heated to reflux for 1 h then quenched with 

water (0.5 cm3
), dried over anhydrous sodium sulfate, filtered through a small pad of Celite 

and the solvent removed under reduced pressure to give an orange oil. Flash column 

chromatography on silica, eluting with light petroleum-diethyl ether (10: 1) hydrolysed the 

crude oxazolidine giving aldehyde (52) (0.40 g, 72%) as a light yellow oil, [ex] ~ -8.3 (c 6.10, 

CHCb); Vmax (film)/cm·1 3064, 3029, 3003,2977, 2922, 2825, 2724, 1724 (C=O), 1640 

(C=C), 1603, 1494, 1453, 1441, 1414, 996, 917, 762 and 701; ~ (400 MHz; CDCh) 2.40 

(2H, m, C(2)H2), 2.71 (lH, ddd, J 16.6, 8.0 and 2.0, CH2CH=CH2), 2.79 (lH, ddd, J 16.6, 6.5 

and 2.0, CH), 3.30 (lH, m, PhCH), 5.01 (2H, m, CH=CH2) 5.66 (lH, m, CH=CH2), 7.20 (3H, 

m, Ar-H), 7.31 (2H, m, Ar-H) and 9.67 (lH, t, J 2.0, CH=O); mlz (El) 174 (W, 3%), 156 

Experimental 152 



(26), 130 (31), 105 (100), 91 (7) and 77 (11). Found: 174.10464. CI2iI140 requires M+, 

174.10446. 

e.e. 94% measured by derivatisation with ephedrine (Experimental Entry 22). 

20. (R).3·Phenylhex·5-enal from «2S)-I-Methoxymethyl-2-phenyl-ethyl)-«S)-1-styryl-but-

3-enyl)-amine 

o 
H~ 

(52) 

Amine (122b) (92 mg, 0.29 mmol) was dried in vacuo overnight then dissolved in dry 

tetrahydrofuran (10 cm3
) under an inert atmosphere and cooled to -78°C in a dry ice! acetone 

slush bath. A 2.SM solution of nButyllithium in hexanes (0.20 cm3, 0.5 mmo1) was added 

dropwise via syringe over 5 minutes and the resulting mixture stirred for 30 minutes before 

warming to room temperature. The reaction was stirred for 1 h then quenched with water 

(0.5 cm\ dried over anhydrous sodium sulfate, filtered through a small pad of Celite and the 

solvent removed under reduced pressure to give an orange oil. Flash column 

chromatography on silica gel, eluting with hexanes-diethyl ether (9:1) hydrolysed the crude 

oxazolidine giving aldehyde (52) (34mg, 68%) as a light yellow oil. The aldehyde was 

immediately derivatised with ephedrine (see Experimental Entry 22 for full method) and the 

e.e. measured from the resulting lH NMR spectrum was effectively 0%. 

21. (3R)·3-Furan·2-ylhex·S-enal 

(113) 

Amine (103a) (0.47 g, 1.9 mmol) was dried in vacuo for 1 h then dissolved in dry 

tetrahydrofuran (20 cm3) under an inert atmosphere and cooled to -78°C in a dry ice/ acetone 
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slush bath. A 1.6M solution of nButyllithium in hexanes (3.2 cm3
, 5.1 mmol) was added 

dropwise via syringe over 5 minutes and the resulting mixture stirred for 10 minutes before 

warming to room temperature. The reaction was heated to reflux for 1 h then quenched with 

water (0.5 cm3), dried over anhydrous magnesium sulfate, filtered through a small pad of 

Celite and the solvent removed under reduced pressure to give an orange oil. Flash column 

chromatography on silica gel, eluting with light petroleum-ethyl acetate (4:1) hydrolysed the 

crude oxazolidine giving aldehyde (113) (0.22 g, 73%) as a light yellow oil [(X)~ -6.9 (c 

5.20, CHCl]); Vmax (film)!cm'! 3117, 3078, 2926, 2828, 2725, 1725 (C=O), 1641 (C--C), 

1506,1148,1012,920,735 and 598: Sa (250 MHz; CDCl]) 2.44 (2H, In, C(2)H2), 2.72 (2H, 

In, CH2CH=CH2), 3.42 (IH, In, CH), 5.05 (2H, In, CH=CH2) 5.69 (IH, m, CH2CH=CH2), 

6.04 (lH, d, J 3.3, Ar-H), 6.28 (lH, dd, J 3.3 and 2.0, Ar-H) 7.32 (IH, d, J 2.0, Ar-H) and 

9.73 (lH, t, J 2.0, CH=O); 8c (63 MHz; CDCl]) 32.9 (CH2), 37.9 (CH2), 46.5 (CH), 105.4 

(CH2), 110.0 (CH), 117.5 (CH), 135.1 (CH), 141.3 (CH), 163.2 (q) and 201.1 (CH); ml1. (En 

164 (M", 17%), 147 (62),121 (lOO), 95 (72), 81 (48),67 (39), 55 (31) and 41 (36). Found: 

164.08359. CIOH!2<h requires M" 164.08373 

e.e. 36% measured by derivatisation with ephedrine (see Experimental Entry 22 for example 

method). 

4.2.3. Measurement of Enantiomeric Excess (and Determination of Absolute 

Configuration) by Derivatlsation with (_)_Ephedrlnello 

22. (25, 4S, SR)-3,4-dimethyl-2-[(2R)-2-phenylpent-4-enyl)-1,3-0xazoUdine and (25, 4S, 

SR).3,4-dimethyl·2-[(2S)·2·phenylpent-4-enyl)·1,3-0xazolidine 

'(S)'-diastereoisomer '(R)'-diastereoisomer 
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Derivatisation of (3S)-3-phenylhex-5-enal (S-52), (3R)-3-phenylhex-5-enal (R·52) and (3R)-

3-Furan-2-ylhex-5-enal (R·I13) with (-)-ephedrine to give the diastereoisomeric 

oxazolidines was undertaken as follows: 

1 equivalent of aldehyde (52) was dissolved in dichloromethane(5 to 2S cm3) and stirred with 

activated 4A molecular sieves. (-)-Ephedrine (1 equiv.) was added and the mixture was 

stirred at room temperature overnight then filtered through a thin pad of Celite. The solvent 

was removed under reduced pressure to give the mixture of oxazolidines as a light yellow oil. 

lH NMR analysis of the diastereoisomeric mixture enabled measurement of the d.e. which 

could be directly related to the e.e. of the starting aldehyde. 

Oxazolidine data from derivatising (R)-3-phenylhex-5-enal (e.e. 94%); ~ (400 MHz; CDCh) 

0.53 (3H, d, J 6.8, CH3CH, S-isomer), 0.57 (3H, d, J 6.8, CH3CH, R-isomer), 2.00 (2H, m, 

CHlCHPh, both isomers), 2.02 (3H, s, N-CH3, S-isomer), 2.16 (3H, S, N-CH3, R-isomer), 

2.36 (2H, m, CHlCH=CHl, both isomers), 2.52-2.62 (lH, m, CH3CH, both isomers), 3.00 

(lH, m, CHPh, both isomers), 3.43 (lH, m, C(4)-H, S-isomer), 3.95 (1H, m, C(4)-H, R

isomer), 4.88 (3H, ID, PhCH and CH=CH2, both isomers), 5.60 (lH, m, CH=CHl, both 

isomers) and 7.12-7.25 (10H, m, Ar-If); lie (100 MHz; CDCh) 15.31 (CH, S-isomer), 15.52 

(CH, R-isomer), 36.62 (CH3, S-isomer), 37.29 (CH3, R-isomer), 40.17 (CHl, S-isomer), 40.69 

(CHl, R-isomer), 42.36 (CH, both isomers), 42.65 (CHl, both isomers), 64.47 (CH, S

isomer), 64.67 (CH, R-isomer), 82.12 (CH, R-isomer), 82.31 (CH, S-isomer), 95.95 (CH, S

isomer), 96.18 (CH, R-isomer), 116.67 (CH2, S-isomer), 116.75 (CHl, R-isomer), 126.45 to 

128.78 (lO x Ar-CH, both isomers), 136.92 (CH, R-isomer), 137.02 (CH, S-isomer), 140.56 

(q, both isomers) and 145.07 (q, both isomers). 
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4.2.4. Ethyl Grignard Reaction and e.e. Determination 

23. 3-PhenylpentanaIl66 

(101) 

Ethyl bromide (0.45 cm3• 2.0 mmol) was added dropwise via syringe to magnesium turnings 

(137mg. 5.7 mmol) in dry diethyl ether (5 cm3
) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 15 minutes. Imine (9ge) (0.47 g. I.S mmol) in dry diethyl 

ether (30 cm3) was added dropwise via syringe to the stirred Grignard solution at 0 °C under 

an inert atmosphere and the resulting mixture refluxed for 3 hours. The reaction was cooled 

to room temperature and quenched with ice until a gelatinous precipitate fonned. The 

organic layer was decanted and the gelatinous residue rinsed with diethyl ether (2 x 50 cm\ 

The combined organic layers were washed twice with 2M aqueous sodium hydroxide 

solution, twice with saturated aqueous sodium chloride solution. dried over anhydrous 

magnesium sulfate. filtered and the solvent removed under reduced pressure to yield an 

orange oil. Flash column chromatography on silica gel. eluting with light petroleum-acetone 

(24:1) gave aldehyde (101) (59 mg. 19%) as a light yellow oil. 8a (250 MHz; CDCh) O.SO 

(3H. t, J 7.3. CH2CH3). 1.66 (2H. m, CH2CH3). 2.71 (2H. dd. J 7.3 and 2.2. CH2). 3.0S (1H, 

m, PhCH). 7.16-7.30 (5H. m, Ar-H) and 9.65 (IH. t, J2.1. CH=O); 1lc(63 MHz; CDCh) I1.S 

(CH). 27.5 (CH2). 41.7 (CH). 50.2 (CH2). 126.5 (CH). 127.5 (2 x CH). 128.1 (2 x CH). 143.6 

(q) and 201.8 (CH). 

e.e. 4% measured by derivatisation with ephedrine (Experimental Entry 22). 
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4.3 Experimental for Chapter 3 

4.3.1. Tetrahydropyran Synthesis 

24. (3R)-3-Phenylhex-5-enoI167 

o , 
! 

H~ 
(153) 

Aldehyde (52) (0.20 g, 1.2 mmol) was dissolved in methanol (20 cm3
) and cooled to 0 °C in 

an ice bath. Sodium borohydride (0.13 g, 3.5 mmol) was added neat in two portions and the 

mixture stirred for 2 h whilst wanning slowly to rt. The solvent was removed under reduced 

pressure and the gelatinous residue was dissolved in dichloromethane (30 cm\ to which 

flash silica (0.50 g) was added and the solvent removed again. Flash column 

chromatography on silica, eluting with hexane-diethyl ether (4:1) gave alcohol (153) (0.20 g, 

99%) as a colourless oil, Vmax (film)/cm'l 3334 (OH), 3076, 3027, 2928, 1640, 1602, 1494, 

1452, 1440, 1047, 1028,994,913,761 and 701; ~ (400 MHz; CDCl]) 1.25 (1 H, br s, Oll), 

1.80 (1 H, m, CHHCH20H), 1.99 (1 H, m, CHHCH20H), 2.38 (2 H, t, J 7.0, CH2CH=CH2), 

2.80 (1 H, m, CHPh), 3.46 (l H, m, CHHOH), 3.54 (1 H, m, CHHOH), 4.96 (2 H, m. 

CH=CH2), 5.67 (1 H. ID, CH=CH2), 7.19 (3 H. m, Ar-ll) and 7.30 (2 H, m, Ar-ll); lie (100 

MHz; CDCl]) 39.0 (CH2), 41.7 (CH2), 42.7 (CH), 61.3 (CH2), 116.6 (CH2), 126.7 (CH), 

128.0 (2 x CH), 128.8 (2 x CH), 137.1 (CH) and 144.9 (q); m/z (El) 176 (M+, 3%),158 (9). 

135 (43), 131 (8), 117 (9), 105 (100), 91 (52) and 77 (6). Found: 176.12008. CI2HI60 

requires~, 176.12011. 

HPLC analysis (ChiralCeI OD, Hexanesl Propan-2-01 95: 5, 0.6 mL.min,l, r.t. 18.9 (R) and 

22.2 (S) mins) gave an e.e. of 92% which is in good agreement with the e.e. of the starting 

aldehyde measured by IH NMR. 
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25. (2R,4S) and (25, 4S)-2-Iodomethyl-4-phenyltetrahydropyran 

major minor 

(154a) and (l54b) 

A solution of alcohol (153) (0.08 g, 0.57 mmol) in acetonitrile (15 cm3
) was stirred with 4A 

MS and sodium hydrogencarbonate (0.15 g, 1.8 mmol) at room temperature. Iodine (0.44 g, 

1.7 mmol) was added in one portion and the mixture stirred for 24 h before quenching with 

saturated aqueous sodium thiosulfate solution (2 cm3). The acetonitrile was removed under 

reduced pressure and the residue was partitioned between ethyl acetate and water (40 cm3
, 

1: 1). The organic layer was removed and the aqueous portion extracted with a further 20 cm3 

of ethyl acetate. The combined organic layers were dried over anhydrous sodium sulfate, 

flltered and the solvent removed under reduced pressure to give a yellow oil which was 

shown to be a mixture of diastereoisomers (4:1) by IH NMR. Flash column chromatography 

on silica gel, eluting with light petroleum-ethyl acetate (10:1) gave the major diastereoisomer 

(l54a) (0.08g, 60%) as a colourless oil (the minor diastereoisomer (154b) was isolated using 

preparative tIc to provide a IH NMR reference thus enabling de measurement). 

(l54a) analysis 

V""'" (fllm)/cm·1 3060, 3026, 2934, 2828, 1602, 1494, 1452, 1378, 1254, 1193, 1125, 1084, 

1029, 1012,756 and 699; 8a (400 MHz; CDCh) 1.39 (I H, dt, J 12.3 and 11.1, C(3)HaxH), 

1.77 (2 H, ID, C(5)H2), 2.04 (1 H, ID, C(3)HHeq), 2.82 (1 H, tt, J 11.6 and 4.4, CHaxPh), 3.22 

(1 H, cid, J 10.4 and 6.4, CHlfl), 3.25 (1 H, dd, J 10.4 and 5.2, CHHl), 3.46 (1 H, ID, 

C(2)Hax), 3.63 (1 H, ID, CHaxHO), 4.19 (1 H, ddd, J 11.6, 4.4 and 1.8, CHHeqO) and 7.21-

7.34 (5 H, ID, Ar-ll); Bc (100 MHz; CDCh) 9.9 (CH2), 33.4 (CH2), 39.6 (CH2), 41.8 (CH), 

68.9 (CH2), 77.4 (CH), 126.9 (CH), 127.1 (2 x CH), 129.1 (2 x CH) and 145.4 (q); mlz (El) 

302 (M" 32%), 175 (33), 161 (100), 131 (28), 117 (23), 104 (25), 91 (43), 77 (12) and 43 

(15). Found: 302.01672. Cl2H1sIO requires M+, 302.01676 
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HPLC analysis (ChiralCel OD-H, Hexanes/ Propan-2-o1 99.5: 0.5, 0.25 mLmin·1) gave an 

e.e. of 92% which is in good agreement with the e.e. of the starting alcohol. 

(lS4b) analysis 

~ (400 MHz; CDCI3) 1.91 (4 H, m, C(3)H2 and C(5)H2), 3.08 (1 H, m, CH .. Ph), 3.41 (2 H, 

m, CH2f), 3.80 (2 H, 1, CH20), 3.95 (1 H, m, C(2)Heq) and 7.22-7.37 (5 H, m, AI-H). 

26. (2R,4S) and (28, 4S)-4-Phenyl-2-phenylselenylmetbyJtetrahydropyran 

major 

(155a) and (15Sb) 

A solution of alcohol (153) (68 mg, 0.39 mmol) in dry dichloromethane (20 cm3) was cooled 

to -78°C. Pyridinium p-toluenesulfonate (32 mg, 0.12 mmol) was added and the mixture 

was stirred for 10 minutes before addition of N-phenylselenylphthalimide (208 mg, 0.68 

mmol) neat in one portion. The reaction was stirred at -78°C for 2 h then for a further 3h at 

o °C. When the reaction was complete by tic the solution was filtered through Celite to 

remove excess diphenyldiselenide. Removal of solvent under reduced pressure furnished a 

yellow oil which was shown to be a mixture of diastereoisomers (1:1) by lH NMR. Flash 

column chromatography on silica gel, eluting with light petroleum-ethyl acetate (7:1) gave 

(155a) (48 mg, 39%) and (15Sb) (45mg, 36%) as a light yellow oils; 

(155a) analysis 

Vmax (film)/cm'! 3056, 3025, 2932, 2845, 1601, 1577, 1493, 1477, 1451, 1436, 1377, 1251, 

1155, 1124, 1085, 1072, 1022, 1012, 756, 736, 691 and 669; BH (400 MHz; CDCh) 1.51 (1 

H, m, C(3)HaxH), 1.77 (2 H, m, C(5)H2), 2.03 (1 H, ID, C(3)HHeq), 2.77 (1 H, m, CHaxPh), 

2.98 (1 H, dei, J 12.0 and 5.6, CHHSePh), 3.13 (1 H, dd, J 12.0 and 6.8, CHHSePh), 3.60 (2 

H, m, C(2)H ... and CH .. HO), 4.15 (I H, ID, CHHeqO) and 7.19-7.30 (8H, m, AI-H), 7.51-7.53 

(2 H, m, AI-H); l5c (100 MHz; CDCh) 33.3 (CH2), 33.5 (CH2), 39.2 (CH2), 41.6 (CH), 68.5 

(CH2), 77.3 (CH), 126.4 (CH), 126.7 (CH), 126.8 (2 x CH), 128.6 (2 x CH), 129.1 (2 x CH), 
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130.6 (q), 132.5 (2 x CH) and 145.4 (q); ml1. (El) 332 (W, 74%), 161 (99), 143 (23), 131 

(31), 117 (3S), 105 (46), 91 (100), 77 (32), 57 (19) and 43 (24). Found: 332.06S27. 

C18H200Se requires W, 332.06793. 

HPLC analysis (ChiralCel OD-H, Hexanesl Propan-2-o1 99.5: 0.5, 0.25 mL.min· l ) clearly 

showed that the sample was greatly enantiomerically enriched when compared to an 

authentic racemic sample, although full baseline separation was not achieved. 

(15Sb) analysis 

[ex] ':i -20.0 (c 0.6, CHCh); v .... (ftlm)/cm·1 3056, 3025,2932,2845, 1601, 1577, 1493, 1477, 

1451,1436, 1377, 1251, 1155, 1124, lOSS, 1072, 1022,1012,756,736,691 and 669; &t (400 

MHz; CDCh) 1.91 (3 H, ID, C(3)H2 and C(5)HH.,J, 2.09 (1 H, ddd, J 13.6, 9.2 and 4.4, 

C(5)HeqH), 3.01 (1 H, ID, CHaxPh), 3.10 (1 H, dd, J 12.0 and 7.2, CHHSePh), 3.35 (1 H, dd, J 

12.0 and 7.2, CHHSePh), 3.79 (2 H, ID, C(2)Heq and CHaxHO), 4.06 (1 H, tt, J 7.2 and 4.S, 

CHHeqO), 7.1S-7.32 (SH, ID, Ar-H), 7.51-7.55 (2 H, ID, Ar-H); lie (100 MHz; CDCh) 30.5 

(CH2), 32.1 (CH2), 35.2 (CH), 35.3 (CH2), 62.2 (CH2), 72.4 (CH), 126.2 (CH), 127.0 (CH), 

127.1 (2 x CH), 12S.5 (2 x CH), 129.1 (2 x CH), 130.1 (q), 132.9 (2 x CH), 144.6 (q); ml1. 

(El) 332 (W,40%), 161 (lOO), 143 (17), 131 (24), 117 (2S), 105 (35),91 (73),77 (23), 57 

(l4) and 43 (1S). Found: 332.06S11. CIsH200Se requires M+, 332.06793. 

The e.e. determined by HPLC analysis was in good agreement with that of the starting 

alcohol (92%, ChiralCel OD-H, Hexanesl Propan-2-o199.5: 0.5, 0.25 mL.min·I). 

27. (35, 5R) and (35,5S)-4-0xiranyl-3-phenylbutan-1-ol 

o 
H~ 

major 

o , 
: ... ,\.q 

H~ 
minor 

(159a) and (159b) 

Alcohol (153) (0.20 g, 1.1 mmol) was dissolved in dichloromethane (20 cm3
) and cooled to 0 

°C in an ice bath. Purified 3-chloroperbenzoic acid (0.49 g, 2.S mmol) was added portion

wise over 5 minutes to the stirred alcohol solution followed by sodium hydrogen carbonate 
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(0.27 g. 3.2 mmol). After 18 h the crude reaction mixture was washed with saturated sodium 

sulfite solution (2 x 20 cm3
) to remove excess mCPBA and the organic layer was dried over 

anhydrous sodium sulfate. Filtration and evaporation of solvent under reduced pressure 

furnished the crude epoxide. To prevent spontaneous cyclisation, flash column 

chromatography on silica gel, eluting with diethyl ether-hexane (2:1). had to be performed 

quickly and gave a mixture of epoxides (159a) and (159b) (0.16 g. 73%) as a light yellow oil 

with a diastereomeric ratio of 2:1, Vmax (film)/cm·1 3405, 3027. 2930. 1602. 1494. 1453. 

1261, 1047, 847, 764 and 702j Ba (400 MHz, CDCh) (* = minor isomer) 1.66-2.07 (4 H, m, 

CH2CH(Ph)CH2), 2.22 (1 H, br s, Om, 2.29 (1 H, dd, J 4.9 and 2.8, CH(O)CHH), 2.44* (1 

H, dd, J 4.9 and 2.8, CH(O)CHH), 2.58 (1 H, t, J 4.9, CH(O)CHH), 2.60* (1 H, t, J 4.9, 

CH(O)CHH), 2.73 (1 H, ID, CH(O)CH2), 2.80* (1 H, ID, CH(O)CH2), 2.99 (1 H, ID, PhCH), 

3.48 (2 H, ID, CH20H) and 7.19-7.32 (5 H, ID, Ar-H); Se (lOO MHz, CDCl) (* = minor 

isomer) 39.1* (CH2). 39.7 (CH2). 39.9* (CH2). 40.2* (CH), 40.4 (CH2), 40.5 (CH), 47.7* 

(CH2), 47.9 (CH2), 51.2* (CH), 51.5 (CH), 60.9 (CH2), 126.9 (CH), 127.9* (CH), 128.0 (2 x 

CH), 129.0 (2 x CH), 144.4* (q) and 144.5 (q)j mlz. (El) 192 (W, 5%), 161 (45), 156 (16). 

143 (36), 129 (48), 117 (52), 105 (100), 91 (92), 77 (22) and 71 (16). Found: 192.11486. 

Cl~l~ requires ~, 192.11503. 

28. (25, 4R) and (lR, 4R)-(4-Phenyltetrahydropyran-2-yl)-methanol 

major 

(l60a) and (160b) 

A solution of epoxides (159a and b) (153 mg, 0.80 mmol) in dichloromethane (20 cm3) was 

stirred at room temperature with a catalytic amount of camphorsulfonic acid (19 mg, 0.08 

mmol) for 20 h. The organic layer was washed once with saturated aqueous sodium 

hydrogen crubonate solution, dried over magnesium sulfate, filtered and the solvent removed 

under reduced pressure to give a colourless oil which was shown to be a mixture of 

diastereoisomers (2:1) by lH NMR. Flash column chromatography on silica gel, eluting with 
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diethyl ether-hexanes (2:1) gave tetrahydropyrans (1603) (43 mg, 2S%) and (l60b) (1S mg, 

12%) as colourless oils, 

(l60a) analysis 

Vmax (film)/cm·1 3421, 3027, 2934, 2849, 1602, 1495, 1452, 13S1, 1259, 1131, 10S6, 1069, 

1040, 996, 75S and 700; 8a (400 MHz; CDCh) 1.53 (1 H, ID, C(3)HaxH), 1.84 (3 H, ID, 

C(3)HHeq and C(5)H2), 2.43 (1 H, br s, Oll), 2.S1 (1 H, ID, CHuPh), 3.62 (4 H, ID, CH20H, 

C(2)H ... and CH.,.HO), 4.19 (1 H, ddd, J 11.6,6.0 and 3.6, CHHeqO) and 7.19-7.36 (5 H, m, 

Ar-ll); lie (63 MHz, CDCh) 33.9 (CH2), 35.3 (CH2), 41.6 (CH), 66.6 (CH2), 68.4 (CH2), 7S.5 

(CH), 126.S (CH), 127.1 (2 x CH), 128.9 (2 x CH) and 140.6 (q); mlr. (El) 192 (M" 10%), 

161 (100), 143 (14), 131 (12), 117 (24), 105 (25), 91 (27) and 77 (S). Found: 192.11503. 

CI2HIA requires ~, 192.11503 

(l60b) analysis 

Su (400 MHz; CDCh) I.S2 (1 H, ID, C(3)HuH), 2.00 (3 H, m, C(3)HHeq and C(5)H2), 2.43 (1 

H, br s, OH), 3.0S (1 H, ID, CH",Ph), 3.57 (1 H, m, C(2)Heq), 3.84 (4 H, CH20H and 

CHaxCHeqO) and 7.19-7.36 (5 H, ID, Ar-ll); lie (63 MHz, CDCh) 32.0 (CHz), 32.7 (CH2), 

35.5 (CH), 62.7 (CHz), 63.6 (CH2), 73.7 (CH), 126.5 (CH), 127.6 (2 x CH), 12S.9 (2 x CH) 

and 140.5 (q). 

4.3.2. Lactone Synthesis 

29. (3R)-3-Phenyl-hex-5-enoic acid168 

o 
o~ 

(163) 

Aldehyde (52) (lOO mg, 0.57 mmol) was dissolved in aqueous buffer (PH 4.0, 20 cm3
) and 

cooled to 0 °C in an ice bath. Sodium chlorite (SO% w/w, 195 mg, 1.72 mmol) was added 

neat in two portions followed by 2-methyl-2-butene (2.0 M, 0.S6 cm3, 1.72 mmol) and the 

mixture stirred vigorously for 2 h. The aqueous solution was extracted with dichloromethane 

(3 x 30 cm3
), dried over anhydrous magnesium sulfate, filtered and the solvent removed 
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under reduced pressure to furnish a yellow oil. Flash column chromatography on silica gel, 

eluting with hexanes-diethyl ether (4:1) gave carboxylic acid (163) (77 mg, 71%) as a light 

yellow oil, [a.];' -22.9 (c 1.43, CH2Ch); v .... (film)/cm,1 3064, 3030, 2921, 1709 (C--Q), 

1640,1604, 1495, 1454, 1418,1241, 1157,916,865,762 and 70; ~ (250 MHz, CDCI) 2.44 

(2 H, t, J 7.1, CH2CH=CH2), 2.64 (1 H, del, J 15.7 and 8.2, CHHC(O)OH), 2.77 (1 H, dd, J 

15.7 and 6.7, CHHC(O)OH), 3.24 (1 H, m, CHPh), 5.05 (2 H, m, CH=CH2), 5.70 (1 H, m, 

CH=CH2) and 7.22-7.34 (5 H, m, Ar-H); Se (63 MHz, CDCI) 40.6 (CH2), 41.0 (CH2), 41.7 

(CH), 117.5 (CH2), 127.0 (CH), 127.8 (2 x CH), 128.9 (2 x CH), 136.1 (CH), 143.6 (q), 

179.2 (q); ml1. (El) 190 (M., 25%), 149 (100), 130 (94), 107 (99), 91 (39) and 79 (68), 

Found: 190.09937. C12H1402 requires M" 190.09938 

30. (2R,4R) and (2S, 4R)-6-Iodometbyl-4-phenyltetrahydropyran.2-0nel60 

(l64a) and (l64b) 

A solution of carboxylic acid (163) (45 mg, 0.24 mmol) in acetonitrile (15 cm3
) was stirred 

with 4..\ MS and sodium hydrogen carbonate (197 mg, 0.79 mmol) at room temperature. 

Iodine (67 mg, 0.79 mmol) was added in one portion and the mixture stirred for 24 h before 

quenching with saturated aqueous sodium thiosulfate solution (2 cm3
). The acetonitrile was 

removed under reduced pressure and the residue was partitioned between dichloromethane 

and brine (40 cm3
, 1:1). The organic layer was removed and the aqueous portion extracted 

with a further 20 cm3 of dichloromethane. The combined organic layers were dried over 

anhydrous magnesium sulfate, filtered and the solvent removed under reduced pressure to 

give a yellow oil which was shown to be a mixture of diastereoisomers (4:1) by lH NMR. 

Flash column chromatography on silica gel, eluting with hexanes-dietbyl ether (1: 1) gave the 

major diastereoisomer (l64a) (40 mg, 54%) as a light yellow solid and the minor 

diastereoisomer (l64b) (14 mg, 19%) as a colourless oil; 

Experimental 163 



(1648) analysis 

mp 80.9-82.2 °C (from diethyl ether); v .... (film)/cm-I 3055, 2922, 1736 (C--o), 1496, 1454, 

1381, 1265, 1229, ll81, 1073, 1050, 738 and 701; ~ (400 MHz, COCl3) 1.86 (1 H, ID, 

C(3)H",H), 2.43 (1 H, ddt, J 13.7, 3.4 and 2.1, C(3)HHeq), 2.57 (1 H, cid, J 17.9 and 11.9, 

C(5)Hu H), 2.92 (1 H, ddd, J 17.9, 5.6 and 2.1, C(5)HHeq), 3.24 (1 H, ddt, J 12.2, 5.6 and 3.5, 

CH(Ph», 3.39 (1 H, cid, J 10.6 and 6.2, cmm, 3.44 (l H, dd, J 10.6 and 4.4, CHHI), 4.40 (1 

H, dddd, J ll.4, 6.2,4.4 and 3.2, CHaxCH21) and 7.20-7.39 (5 H, ID, Ar-H); lie (100 MHz, 

CDCl3) 8.2 (CH2), 36.7 (CH2), 37.4 (CH), 37.6 (CH2), 78.9 (CH), 126.9 (2 x CH), 127.9 

(CH), 129.5 (2 x CH), 142.5 (q) and 170.2 (q). 

(l64b) analysis 

Vmax (film)/cm-I 3055, 2922, 1736 (C--o), 1496, 1454, 1381, 1265, 1229, ll81, 1073, 1050, 

738, 701; ~ (400 MHz, COCl3) 2.25 (2 H, 1, J 6.4, C(3)HaxHeq), 2.78 (l H, cid, J 17.2 and 

7.6, C(5)HH), 2.84 (1 H, ddd, J 17.2 and 6.0, C(5)HH), 3.34 (1 H, dd, J 10.6, and 6.8, 

cmm, 3.39 (1 H, dd, J 10.6 and 4.8, CHHl), 3.40 (1 H, ID, CH(Ph», 4.36 (1 H, ddd, J 13.2, 

6.8, and 4.8, CHeqCH21) and 7.20-7.39 (5 H, ID, Ar-H); lie (lOO MHz, CDCl3) 7.0 (CH2), 34.8 

(CH), 35.4 (CH2), 35.9 (CH2), 76.2 (CH), 126.9 (2 x CH), 127.8 (CH), 129.5 (2 x CH), 142.6 

(q) and 170.7 (q). 

The IH and 13C assignment for the major isomer was done with the aid of HETCOR and for 

the minor isomer with COSY. 

31. (2R, 4R)- and (2S, 4R)-6-Hydroxymethyl-4-phenyltetrahydropyran-2-GneI69 

(1678) and (167b) 

A solution of acid (163) (55 mg, 0.29 mmol) was dissolved in dichloromethane (20 cm3
) 

cooled to 0 °C in an ice bath. Purified 4-chloroperbenzoic acid (126 mg, 0.73 mmo1) was 

added portionwise over 5 minutes to the stirred alcohol solution followed by sodium 
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hydrogen carbonate (59 mg. 70 mmol). After 18 h the crude reaction mixture was washed 

with saturated sodium sulfite solution (2 x 20 cm3) to remove excess mCPBA and the organic 

layer was dried over magnesium sulfate. Futration and evaporation of solvent under reduced 

pressure furnished a white semi-solid which appeared to a mixture of epoxide and cyclised 

material by crude lH NMR. No attempt was made to isolate the epoxide and the crude 

material was dissolved in dichloromethane (20 cm3
) and stirred at room temperature with a 

catalytic amount of camphorsulfonic acid (7 mg. 0.03 Dlmol) for 22 h. The organic layer was 

washed once with saturated aqueous sodium hydrogen carbonate solution. dried over 

anhydrous magnesium sulfate. filtered and the solvent removed under reduced pressure to 

give a colourless oil. Flash column chromatography on silica gel. eluting with diethyl ether

hexanes (2:1) gave a mixture oflactones (167a) and (167b) (49 mg. 83%) as a light yellow 

oil with a diastereomeric ratio of 1:1. Vmax (film)/cm·l 3416 (br). 3029. 2921. 2850. 1725 

(C--o). 1603. 1496. 1454. 1381. 1245. 1160. 1079.973 and 760; ~ (250 MHz. CDCh) (* = 
axial isomer) 1.91-2.34 (2 H, br ID, C(3)Hl + C(5)H",*). 2.56 (l H. dei, J 17.8 and 11.8. 

C(5)HaxH). 2.89 (1 H. ID, C(5)HHoq). 3.23 (1 H. ID, CHaxPh) 3.43* (1 H. ID, CH",Ph). 3.79 (2 

H. ID, CH10H). 4.46 (1 H. ID, C(2)HOX>. 4.56* (1 H. ID, C(2)Hoq) and 7.19-7.39 (5 H. m. Ar

H); &: (63 MHz. CDCh; MCl.\Si) (* = axial isomer) 31.6 (CH2). 32.0* (CH1). 35.1 (CH). 

36.1 * (CH). 37.6 (CH2). 38.0* (CHz).65.1 (CHz).65.2* (CH2). 78.2 (CH). 81.3 (CH). 126.7* 

(2 x CH), 126.9 (2 x cm. 127.6 (2 x CH). 127.7* (2 x CH). 129.4 (CH [and *]). 142.4 (q 

[and *]). and 174.5 (q [and *]). 

4.3.3. Piperidine Synthesis 

32. Benzyl-(3-phenylhex-5-enyl)-amine 

(168) 

A solution of aldehyde (52) (294 mg. 1.69 Dlmol) in dichloromethane (15 cm3
) was stirred at 

room temperature while benzylamine (182 mg. 1.69 Dlmol) was added dropwise. Stirring 
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was continued for 30 minutes before addition of anhydrous magnesium sulCate. After a 

further 10 minutes the mixture was filtered and the solvent removed under reduced pressure. 

The resulting light yellow oil was re-dissolved in methanol (30 cm3
) and the solution cooled 

to 0 °C in an ice bath. Sodium borohydride (204 mg, 5.39 mmol) in methanol (10 cm3) was 

added and the solution allowed to warm to room temperature overnight with stirring. The 

crude product was absorbed onto flash silica gel and subsequent flash column. 

chromatography, eluting with hexanes-ethyl acetate (9:1 to 1:1) gave amine (168) as a 

colourless oil (364 mg, 79%), v .... (fllm)/cm·t 3331 (N-H), 3061, 3026, 2974, 2923, 1639, 

1602,1493, 1452, 1358, 1118, 1028,912,760 and 734; Sa (400 MHz; CDCh) 1.35 (1 H, br 

s, NB). 1.77 (1 H, m, C(2)RH), 1.91 (1 H, m, C(2)HH). 2.35 (2 H. t, C(4)H2), 2.49 (2 H, In, 

C(1)H2), 2.70 (1 H, m, C(3)B), 3.65 (1 H, d, J 8.3, PhCHH), 3.70 (1 H, d, J 8.3, PhCHH), 

4.94 (2 H, In, CH=CH2) 5.64 (1 H, m, CH=CH2) and 7.13-7.28 (10 H, In, Ar-B); Bc (100 

MHz; CDCh) 36.6 (CH2), 41.9 (CH2), 44.2 (CH), 47.9 (CH2), 54.4 (CH2), 116.5 (CH2), 

126.6 (CH), 127.2 (CH), 128.0 (2 x CH), 128.6 (2 x CH), 128.8 (4 x CH). 137.3 (CH). 140.9 

(q) and 145.3 (q); mlz (El) 265 (W, 9%), 236 (10),176 (49), 117 (100), 91 (54),77 (4) and 

65 (7); Found: M+, 265.18380 CJ9H23N requires M+, 265.18305. 

33. Benzyl.(3-phenylhex.S-enyl)-carbamic acid benzyl ester 

~N ~ 

V~ 
(169) 

A solution of amine (168) (347 mg, 1.31 mmol) in dichloromethane (15 cm3) was stirred at 

room temperature with potassium hydrogen carbonate (205 mg, 2.05 mmol) while 

benzylchloroformate (0.32 cm3
, 2.24 mmol) was added dropwise via syringe. After 2 h 

stirring no reaction was seen so acetonitrile (20 cm1 was added to increase the effectiveness 

of the base. The reaction immediately began to change colour (light yellow to peach) and 

was stirred for a further hour before quenching with dilute aqueous hydrochloric acid (5 

cm3
). The organic layer was washed with saturated aqueous sodium chloride solution, dried 
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over anhydrous magnesium suIfate and the solvent removed under reduced pressure to 

furnish a pink oil. Flash column chromatography on silica gel, eluting with light petroleum

ethyl acetate (12:1) gave Cbz-amine (169) as a colourless oil (467 mg, 89%), Vmax (film)/cm·1 

3064, 3029, 2926, 1698 (C--Q), 1640 (C=C), 1604, 1495, 1471, 1454, 1422, 1366, 1229, 

1165, 1112, 1076, 1029, 993, 914, 765 and 735; ~ (400 MHz; CDCh) 1.67 (1 H, br s, 

C(2)HH), 1.76 (1 H, br s, C(2)HH), 2.28 (2 H, br cl, C(4)H2), 2.49 (1 H, br cl, C(3)H2), 3.08 (2 

H, m, C(I)H2), 4.39 (2 H, ID, PhCH2), 4.91 (2 H, ID, CH=CH2), 5.14 (2 H, m, OCH2Ph), 5.58 

(1 H, brs, CH=CH2) and 7.02-7.64 (15 H, ID, Ar-H). 

34. Benzyl-(4-oxiranyl-3-phenylbutyl)-carbamic acid benzyl ester 

(170) 

Dimethyldioxirane was prepared by stirring sodium hydrogen carbonate (29 g) and Oxone® 

(60 g) in a mixture of HPLC grade acetone and deionised water (1.5:1). The reaction was 

cooled with ice when it became too vigorous and after 15 minutes a moderate vacuum (20 

mmHg) was applied to remove the dimethyldioxirane (DMDO), formed as a solution in 

acetone (50 cm3
, ca 0.04 M). This solution was used without any further purification or 

characterisation. 

Protected amine (169) (185 mg, 0.46 mmol) was dissolved in a solution of acetone containing 

DMDO (50 cm3
, ca 0.04 M) at -78°C and allowed to warm to room temperature with 

stirring. The reaction was monitored by TLC and after 18 h the reaction was dried over 

sodium suIfate, filtered and the acetone removed under reduced pressure to yield epoxide 

(170) as a colourless oil (173 mg, 90%) which needed no further purification, Vmax (film)/cm-1 

3061, 3029, 2928, 1702 (C--Q), 1603, 1495, 1474, 1452, 1421, 1365, 1231, 1166, 1122, 

1075, 1028, 913, 833 and 737; ~ (250 MHz; CDCh) (* = syn isomer) 1.50-2.08 (4 H, m, 

CH2CH(Ph)CH2 H), 2.25 (1 H, ID, CH(O)CHH), 2.36* (1 H, m, CH(O)CHH), 2.56 (1 H, t, J 

4.6, CH(O)CHH), 2.63* (1 H, ID, CH(O)CHH), 2.74 (1 H, ID, CH(O)CH2), 2.75 (1 H, m, 
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PhCH), 3.04 (2 H, In, NCH2), 4.40 (2 H, In, PhCH2), 5.14 (1 H, br s, OCH~h) and 7.06-7.32 

(l5H, In, Ar-H). 

4.3.4. MisceIlaneous Compounds from Chapter 3. 

35. (±)-2-(3.Phenylallylldeneamino)-propan-l-01105 

(±143) 

rac-Alaninol (1.16 g, 15.4 mmol) in dichloromethane (20 cm3) was added dropwise to a 

stirred solution of trans-Cinnamaldehyde (2.04 g, 15.4 mmol) in dichloromethane (30 cm3) 

at room temperature and the mixture was'left to stir for 10 minutes. Anhydrous magnesium 

sulfate (1 g) was added and the reaction stirred for a further 10 minutes. Futration and 

removal of the solvent under reduced pressure yielded a light yellow solid. Trituration with 

light petroleum-diethyl ether (4:1) furnished imine (143) (2.30 g, 79%) as a light yellow 

powder, Vmax (film)/cm·1 3328 (O-H), 3059, 2967, 2928, 2865, 1635 (C=N), 1618 (C--C, Ar), 

1493, 1450, 1167, 1051,983,750 and 691; ~ (400MHz; CDCh) 1.16 (3H, d, J 6.4, CH3), 

3.40 (lH, In, CH3CH), 3.66 (2H, In, CH20H), 4.01 (lH, br s, OH), 6.84 (2H, In, CH=CHPh), 

7.29-7.40 (5H, In, Ar-H) and 8.01 (lH, dd, 17.6 and 0.8, CH=N); Oc (I00MHz; CDCh) 18.3 

(CH3), 67.0 (CH2), 67.6 (CH), 127.3 (2 x CH), 127.5 (CH), 128.8 (2 x CH), 129.2 (CH), 

135.5 (q), 142.3 (CH) and 163.0 (CH); m/z (El) 189 (M+, 11 %), 158 (lOO), 130 (6), 115 (59), 

103 (4), 91 (10) and 77 (4). Found: 189.11515. Cl2H1SNO requires M+, 189.11536. 
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36. 2-(1-8tyryl.but.3-enylamino )-propan.1-o1105 

(:t144) 

Allyl bromide (2.70 cm3• 31.9 mmol) was added dropwise via syringe to magnesium turnings 

(0.76 g. 31.7 mmol) in dry diethyl ether (50 cm3) under an inert atmosphere. An ice bath was 

used to cool the reaction when it became too vigorous and after addition the reaction was 

stirred at room temperature for 30 minutes. Imine (143) (2.00 g, 10.6 mmol) in dry diethyl 

ether (150 cm3) under an inert atmosphere was added dropwise via cannulation to the stirred 

Grignard solution and the resulting mixture refluxed for 2.5 hours. The reaction was cooled 

to room temperature and quenched with water until a gelatinous precipitate formed. The 

organic layer was decanted and the gelatinous residue rinsed with diethyl ether (2 x 20 cm3). 

The combined organic layers were washed three times with sodium hydroxide solution (2M), 

once with brine and dried over sodium sulfate. Filtration and removal of solvent under 

reduced pressure gave an orange solid. The crude product was recrysta1lised from light 

petroleum-diethyl ether yielding amine (144) (0.57 g. 23%) as a light yellow solid. ~ 

(400MHz, c003) 1.07 (3H. d, J 6.5 CH3), 2.05 (lH. br s, OH). 2.31. (2H. 1, J 7.0. 

CH2CH=CH2), 2.88 (lH. m, CHCH3), 3.25 (lH. dd, J 10.5 and 5.6, CHHOH), 3.33 (IH, dd, 

J 14.9 and 6.4. Cll). 3.59 (lH, dd, J 10.5 and 4.2. CHHOH). 5.11 (2H, ID, CH=CHl), 5.82 

(lH. ID, CH=CH2) 6.04 (lH, dd, J 15.8 and 8.3. CH=CHPh) 6.44 (IH, d, J 15.8, CH=CHPh) 

and 7.22-7.39 (5H, ID, Ar-ll); lie (looMHz, c003) 19.1 (CH3), 41.2 (CHl), 51.8 (CH). 58.7 

(CH). 65.1 (CH1). 118.0 (CH2), 126.7 (2 x CH). 127.9 (CH). 129.0 (2 x CH), 131.1 (CH), 

133.2 (CH), 135.3 (CH) and 137.3 (q). 
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37. 3-Phenyl.2-(3-phenyl·aIlylamino)·propan·1-o1 

(:t146) 

Following the usual Barbier Grignard reaction conditions (cfGrignard Method B, Entry 11) 

on a large scale enabled the isolation of an impurity. Racemic imine (990 (31.40 g, 118.5 

mmol) was dissolved in toluene (1500 cm3) and tetrahydrofuran (200 cm3) and stirred at 

room temperature with magnesium turnings (7.74 g, 322.5 mmol). Allyl bromide (27.0 cm3
, 

312.4 mmol) was added in four portions over 2 h to the imine solution and the mixture was 

stirred under an inert atmosphere. After overnight stirring the reaction was quenched with 

water until a gelatinous precipitate formed. The organic layer was decanted and the 

gelatinous residue rinsed with diethyl ether (2 x 200 cm3). The combined organic layers were 

washed twice with saturated aqueous sodium hydrogencarbonate solution, dried over sodium 

suifate, filtered and the volume reduced under vacuum to yield a light brown oil. 

RecrystaIlisation from hexane-diethyl ether gave amine (146) (3.88g, 12%) as a colourless 

powdery solid, mp 115.8-116.8 °C (from hexanes: diethyl ether); Vmax (Nujol®)lcm'l 3272 

(N-H), 3025, 1344, 1306, 1120, 1040, 984, 971, 922, S71, 804, 738. 703 and 693; Bs 
(4ooMHz, CDCI,) 1.94 (IH, br s, OH), 2.75 (Ill, dd, J 13.6 and 7.2, PhCRH), 2.81 (IH, dd, 

J 13.6 and 6.S, PhCHH), 2.99 (IH, m, CH), 3.35 (lH, dd, J 10.S and 5.2, CHHOH), 3.40 

(2H, dd, J 6.4 and 1.6, NHCH2), 3.64 (lH, dd, J 10.S and 4.0, CHHOH), 6.15 (lH, dt, J 16.0 

and 6.0, CH=CHPh), 6.44 (lH, d, J 16.0, CH=CHPh) and 7.18-7.32 (lOH, m, Ar-H); Se 
(looMHz, CDC!,) 3S.6 (CHu, 49.4 (CH2), 59.7 (CH), 63.0 (CH2), 126.7 (2 x CH), 126.9 

(CH), 127.8 (CH), 12S.6 (CH), 128.9 (2 x CH), 129.0 (2 x CH), 129.6 (2 x CH), 131.7 (CH), 

137.3 (q) and 13S.9 (q); mlz (El) 267~, <1%), 236 (10),176 (53),117 (lOO), 91 (22),77 

(2) and 65 (4). Found: C, 80.7; H, 7.9; N, 5.15%; W, 267.16236. C1sH21NO requires C, 

SO.9; H, 7.9; N, 5.2%; W,267.16231. 
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38. [l-(2,2-Dimethoxyethyl).but.3-enyl]·benzene 

(147) 

Trifluoroacetic acid (0.53 cm3, 6.8 mmol) was added to a stirred solution of o;xazo/idine 

(1050 (0.51 g, 1.76 mmo1) in methanol (25 cm3) and the resulting dark orange solution 

refluxed overnight. The solvent was removed under reduced pressure to yield an orange oil 

that was purified by dry flash chromatography, eluting with 3 x 30 cm3 portions of light 

petroleum-ethyl acetate (4:1), to furnish acetal (147) (0.15 g, 39%) as a yellow oil, Vmax 

(fihnYcni1 3062,3027,2927,2830, 1640, 1602, 1494, 1453, 1385, 1369,1189,1127, lOSS, 

1030, 994, 914, 761 and 701; Sa (400 MHz, CDCl]) 1.82 (lH, ddd, J 13.9, 10.4 and 3.7, 

C(2)HH), 2.07 (lH, ddd, J 13.9,8.1 and 4.9, C(2)HH), 2.39 (2H, t, J7.0, CH2CH=Clh), 2.81 

(lH, ID, PhCH), 3.24 (3H, s, OCH3), 3.30 (3H, s, OCH3), 4.13 (IH, dd, J 8.3 and 3.9, 

CH(OMeh), 5.00 (2H, ID, CH=CH2), 5.65 (lH, ID, CH=CH2) and 7.16-7.30 (SH, ID, Ar-H); 

Bc (lOO MHz, CDCI3) 38.9 (CHv, 41.8 (CH2), 41.9 (CH), 53.0 (CH3), 53.l (CH3), 103.2 

(CH), 116.7 (CHz), 126.7 (CH), 128.1 (2 x CH), 129.0 (2 x CH), 136.9 (CH), 144.9 (q). 
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Table 1. Crystal data and structure refinement for 1. 

Xdentification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume. Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

e range for data collection 

Limiting indices 

Reflection. collected 

Xndependant reflections 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [X>2~(X)1 

R indices (all data) 

Absolute structure parameter 

Extinction coefficient 

Largest diff. peak and hole 
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4 
Table 2. Atomic coordinates [ x 10 I and equivalent isotropic 

displacement parameters IA2 x 10
31 for 1. tf(eq) is defined as 

one third of the trace of the orthogona1ized U!j tensor. 

x y z tf (eq) 

0(1) 9112 (2) 6260 (6) 9206(2) 73 (1) 
e(l) 8950(2) 7239(9) 8270(3) 61(1) 
e (2) 9074(2) 9928(8) 8332 (3) 49(1) 
N(3) 8815 (2) 11214 (7) 8997 (2) 49 (1) 
e(4) 8182(2) 10812 (9) 8832(3) 60 (1) 
e(5) 7847(2) 11563(10) 7850(3) 61(1) 
e (6) 7440 (2) 10257(9) 7267(4) 64 (1) 
e (7) 7073 (2) 10876(10) 6310 (4) 61(1) 
e(8) 6623(3) 9369(12) 5867(4) 86(l) 
e(9) 6254 (3) 9843(16) 4971 (5) 102 (2) 
e(10) 6355 (3) 11881(15) 4503 (4) 101(2) 
e(ll) 6798(3) 13344 (15) 4917 (5) 95(2) 
e(12) 7164(3) 12893(12) 5805 (4) 83 (l) 
e(13) 9728 (2) 10459(9) 8618 (3) 56 (1) 
e(14) 10014 (2) 9966(9) 7843 (3) SO (1) 
e(15) 9937 (2) 11540(11) 7087(3) 73 (l) 
e(16) 10200(3) 11189(14) 6378(4) 89 (2) 
e(17) 10526(3) 9190(14) 6385(5) 97 (2) 
e(18) 10606(3) 7578(12) 7106 (6) 112 (3) 
e(lg) 10346 (3) 7976 (11) 7848 (4) 90 (2) 
e(20) 7981(2) 12251(10) 9574 (4) 73 (2) 
e(21) 8283 (3) 11559 (14) 10563(4) 88 (') 
e(22) 8546(3) 12880 (17) 11186(5) 132 (3) 



Table 3. Bond lengths [A] and angles [0] for 1. 

O(l)-C(l) 
C(2)-N(3) 
N(3)-C(4) 
C(4)-C(20) 
C(6)-C(7) 
C(7) -C(12) 
C(9) -C(10) 
C(11)-C(12) 
C(14)-C(19) 
C(15)-C(16) 
C(17)-C(18) 
C (20)-C (21) 

O(1)-C(1)-C(2) 
N(3)-C(2)-C(13) 
C(2)-N(3)-C(4) 
N(3)-C(4)-C(20) 
C (6)-C (5)-C (4) 
C(S)-C(7)-C(12) 
C(12)-C(7)-C(6) 
C(10)-C(9)-C(S) 
C(10)-C(11)-C(12) 
C(14)-C(13)-C(2) 
C(19)-C(14)-C(13) 
C(16)-C(15)-C(14) 
C(16)-C(17)-C(lS) 
C(14)-C(19)-C(lS) 
C{22)-C(21)-C(20) 

1.425(5) 
1.476 (5) 
1.4S4(5) 
1.530(6) 
1.472 (7) 
1.390 (7) 
1.376(9) 
1.373(7) 
1.356(7) 
1.371(7) 
1.355 (S) 
1.47S (7) 

10S.7(4) 
10S.2 (3) 
114.7(4) 
10S.4(4) 
124.S(5) 
117.0(5) 
123.7(5) 
l1S.2(6) 
122.3 (7) 
113.S(4) 
122.1(4) 
122.2(5) 
120.0(6) 
120.4 (5) 
126.6(S) 

C(1)-C(2) 
. C(2)-C(13) 
C(4)-C(5) 
C(5)-C(6) 
C(7) -C(S) 
C(S)-C(9) 
C(10)-C(11) 
C(13)-C(14) 
C (14) -C (15) 
C(16)-C(17) 
C(18)-C(19) 
C (21) -C (22) 

N(3) -C(2)-C(1) 
C(1)-C(2)-C(13) 
N(3) -C(4) -C(5) 
C(5)-C(4) -C(20) 
C(5)-C(6)-C(7) 
C(S)-C(7)-C(6) 
C(7)-C(S)-C(9) 
C(11)-C(10)-C(9) 
C(11)-C(12)-C(7) 
C(19)-C(14)-C(15) 
C(15)-C(14)-C(13) 
C(17)-C(16)-C(15) 
C(17)-C(18)-C(19) 
C(21)-C(20)-C(4) 

1.514 (6) 
1.531(6) 
1.4.9S(6) 
1.317 (6) 
1.374(7) 
1.38S (S) 
1.336(9) 
1.506(6) 
1.381(6) 
1.351(8) 
1.414 (S) 
1.201(8) 

113.7(4) 
111.9 (4) 
111.2 (4) 
110.5 (4) 
128.8(5) 
119.3 (5) 
122.7(6) 
119.8(6) 
119.9 (6) 
117.6(4) 
120.3 (4) 
119.7(6) 
120.0(6) 
113.5(4) 

Symmetry transformations used to generate equivalent atoms. 



.2 3 Table 4. Anisotropic displacement parameters [A x 10 1 for 1. 

The anisotropic displacement factor exponent takes the form. 
2 * 2 • * -2w [(ha) Ull + ••• + 2hka b U

12 
1 

U11 U22 U33 U23 U13 U12 

0(1) 105(3) 44 (2) 69(2) 0(2) 23 (2) 2 (2) 
C(l) 73 (4) 56(4) 56(3) -11(3) 20 (3) 4 (3) 
C(2) 57 (3) 43 (3) 47(3) -4 (2) 17 (2) -2 (2) 
N(3) 46(2) 46(2) 54(2) -2(2) 12 (2) 2 (2) 
C(4) SO (3) 52(3) 78 (3) 1 (3) 16(3) -2 (3) 
C(5) 44(3) 61(3) 78 (3) 6(3) 16 (3) -3 (3) 
C(6) 54(3) 55(3) 83 (4) 8 (3) 22 (3) 3 (3) 
C(7) 48(3) 65(4) 73 (3) -4 (3) 20 (3) 3 (3) 
C(8) 82(5) 96(5) 80(4) -10(4) 23 (4) -10(4) 
C(9) 79(5) 137(7) 79 (5) -25 (5) 6 (4) -18 (5) 
C(10) 104 (6) 135(7) 61(4) -3 (5) 17 (4) 6 (5) 
C(l1) 88 (6) 107 (6) 89(5) 10(4) 24 (4) 8 (4) 
C(12) 69(5) 85 (5) 91(5) 5(4) 13 (4) -7 (4) 
C(13) 53 (3) 63(4) 50 (3) 1(2) 10(2) 0(3) 
C(14) 49(3) 53 (3) 48 (3) 3 (3) 16(2) 5 (2) 
C(15) 74 (4) 89(4) 60 (3) 7 (3) 25 (3) 14(3) 
C(16) 92 (4) 124 (6) 63(3) 12 (4) 39 (3) 16(5) 
e(17) 106 (6) 109 (6) 99 (5) -22 (4) 67 (4) -6 (5) 
C(18) 140 (7) 67 (4) 170 (7) 9 (5) 108 (6) 27(4) 
C(19) 107 (5) 75 (4) 112 (5) 25(4) 68(4) 29(4) 
C(20) 58 (4) 85 (4) 82 (4) -8 (3) 30 (3) 8 (3) 
C(21) 79(4) 111 (5) 81 (4) -17(4) 34 (4) 0(4) 
C(22) 105 (6) 150 (8) 117(6) -39 (6) -7 (5) 43 (6) 



Table 5. Hydrogen coordinates x 104 ) and isotropic 

displacement parameters (12 
x 10

3
) for 1. 

x y '0' (aq) 

H(10) 9044 (30) 4520 (26) 9109(44) 147 (29) 
H(lA) 8539(2) 6958 (9) 7972(3) 73 
H(lB) 9170(2) 6460 (9) 7889 (3) 73 
H(2A) 8906(2) 10615 (8) 7698(3) 58 
H(3N) 9021(15) 10665 (68) 9636(12) 48(12) 
H(4A) 8113 (2) 9089 (9) 8913(3) 73 
H(5A) 7933 (2) 13063 (10) 7636(3) 73 
H(6A) 7375(2) 8738 (9) 7490(4) 76 
H(8A) 6562(3) 7975 (12) 6181(4) 103 
H(9A) 5947(3) 8809 (16) 4693 (5) 122 
H(10A) 6116(3) 12239 (15) 3900(4) 121 
H (llA) 6860 (3) 14717 (15) 4593(5) 114 
H (12A) 74.72(3) 13935 (12) 6067(4) 100 
H (13A) 9789(2) 12142 (9) 8804(3) 68 
H (13B) 9~17(2) 9481 (9) 9167(3) 68 
H (15A) 9699(2) 12883 (11) 7057(3) 88 
H (16A) 10155(3) 12322 (14) 5894(4) 107 
H (17A) 10695(3) 8920(14) 5895(5) 116 
H (18A) 10833(3) 6208 (12) 7113 (6) 135 
H (19A) 10402 (3) 6867 (11) 8342(4) 108 
H (20A) 8047 (2) 13957 (10) 9492(4) 87 
H(20B) 7566 (2) 12014 (10) 9466(4) 87 
H (2lA) 8268(3) 9934 (14) 10718(4) 106 
H(22A) 8r.74 (3) 14521 (17) 11066(5) 158 
H(22B) 8'122 (3) 12263 (17) 11788(5) 158 



• IHNMR 

o 
H~ 

(S)-3-Phenylhex-5-enal (52) 

B 



~ ~ Int •• ,al ppm 
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(2S.4S.5R)-3.4-Dimethyl-2-[(2R)-2-phenylpent-4-enyl]-1.3-oxazolidine 

• IH NMR of aldehyde derivative demonstrating an e.e. of 84% 

(e.e. = (peak area S 3.51- S 3.951 peak area S 3.51 + S 3.95) x 100) 

c 



~ I Integral ppm 

-j r 7 .252 
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7.236 
7.229 
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to --./ r~l //5 171 ~ 3 085 J~ .4.921 .t>. 

______ 1/4 920 "-
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:g J Integral ppm 
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rdb 209-24/02 aldehyde derlv. 
t l..'0) 

~mrumm~~~wmwmMWNm_~ID~m~_NNoomM~~~~mwm~mN~~ru_m 

e o~o~w~~~ru-omm~~~~~~~~m~;~~~~~w~~~~~~~~~~~~~ru 
g~~~rererererererere~~~~~~~~~~~~~~~~~~~~g~~;~~~~~~~~~ --------------------

I .1 lL 

I I I J , 
I 

ppm 160 
, 

I 
140 

, 
I 

120 
, 

I 
100 

, 
I 

80 
, 

I 
60 

, 
I 

40 
, 

~O 

.... 
": 

I 

-L , I 
o 

Current Data Paraaeters 
NAME rdb20ge 
EIPNO 2 
P!lOCNO I 

F2 - ACQUISihon Parameters 
Oate_ 990301 
Time 19 17 
INSTRUM dpx.400 
P!lOBID 5 II1II Mulhnu 
Ptl.PROG zgpg30 
TO 65535 
SOLVENT COCl3 
NS 204B 
OS 2 
SWH 31B47.133 Hz 

F1DRES o .485949 Hz 
AD 1 0289652 sec 
RG BI92 
ON 15.700 usec 
DE 7 50 usec 
lE 300 0 K 
dll o 03000000 sec 
dl2 o 00002000 sec 
P1I3 120 00 dB 
01 1 00000000 sec 
CPOPRG2 ~altz16 

PCP02 100 00 usec 
SFD2 400 1316005 MHl 
NUC2 IH 
Pt.2 -6 00 dB 
PLl2 12 00 dB 
PI 5 50 usec 
srOI 100 6254358 MHz 
NUCI 13C 
Pt.1 -5 00 dB 

F2 - ProcessIng paralleters 
SI 32768 
SF 100 6127290 HHz 
HDN EM 
SSB 0 
LB 100HZ 
GB 0 
PC I 40 

2D NMR plot paralleters 
CX 20.00 e. 
FIP 170 000 pp. 
FI 17104 17 HZ 
F2P -5 000 pp. 
F2 -503 06 HZ 
PPMCM B 75000 ppl/e. 
HZCM BBD 36151 Hzle. 



(2R, 4R)-2-Iodometbyl-4-phenyltetrahydropyran-2-one (1648) 

• lH NMR showing detailed coupling constants 

• 13CNMR 

• HETCOR 

" 

o 



~ I Inu;r-al ppm 

7 390 
7.372 
7 353 

7 305 
~ 7.294 

t7 308 

~ 7~ 

en 
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"'.., 
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... .., 

2 000 e 
o 993 

"'.., L 
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IIr4 •411 
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rJ'C.-4 383 
3.444 
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3.394 
3.384 
3 368 

1'~' 2.948 
2 939 

~2 909 2.903 
2 895 

~!m 2565 
2 535 
2.445 

"" 2 440 
2.411 
2.406 
1.694 

~'~ ] 1.860 
I 634 
1.631 

'" I. 432 
1.290 
1.284 
1.253 
I 222 
0.696 
o 880 

~O 072 
o 000 

"'"J 
a. 
C' 
llo. 
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"-I 
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-- ---- -- ---- - --------

rdb432-1007-ma 

... ..... mC'tOlnOl r-..OaltO ... -- N 0 
E N ... oq-aJomO'l CDm",,_ to ....... - N 
0. 0 N m ..... ,....,wU1 m .................. ........ to 0 m 0. .... ... NC\lNCUCU r-.. .......... ,.... 

'" '" '" '" - - - ----
I ~f \\f ~( I 

I1 
.. J l. .. 1 . 

ppm 160 I~O Iba a'o 60 



rdb432°100T-ma 

L-_ 

I 
ppm 

O· ... 
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._--'-_._--

I 
4 

" .... 

I 
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, . 

I 
o 

20 

40 

60 

BO 

lOO 

120 

ppm 

Fa! - Acqullttlorl ........ tar. 
Det,_ 20000720 

" .. '4 47 
INSUUI dp.«IO 

""". 5 .. ~ltlt\U .......,. In,btp 
TO 1024 
SOlVENT .... 
NS a 
os .. .... l396 1]9 HI 
flDRES 3 l17S2111tz .. o 1507828 sec 
AI 18246 .. 141 200 LISle .. 750 IISIC 

I' "'" ., t 500000OO lit 
PI 1500 UilK "., "DO 1315086 .-u: 

"." .. 
I'Ll -600 dB .. 000]40'828 HC 
I'U -0 .... 

" 30 00 IIlIt 

" 1560 USIe 
Sf" 100 6191719 Wil 
N.C2 nc 
•• o 6OOOOD01 ue 
Pl 1 80 uset 
DO o 00000300 le(: 

"12 1200 Cl8 
CPIJPRG2 .... 
PCI'02 B5 DO uHe 

It" o 00001775 .ec 

Ft - KQUI'llIon p.,...tu. 
NlO • TO ... "., 100 6198 Mill 
rUlEs ~ Ot1fi05 Hr 
50 tl9 9111 ppl 

F2 - Proc,"lno p ..... t.,.. 
" ",.a 
Sf 400 13ODOOO IIiI 

"'" OS'NE 
ssa 2 
La ...... 
GO • PC , .. 

f1 - Proc;nllfl9 .,.,.'lIetlH"l 

" "' .. 
1<2 TPl'I 
SF 100 BS<!1290 IIiI ... "NE 

"" 2 
La ...... 
GO • 

2U ~ plot .,.,. •• t,rs 
cu IS 00 c. 

'" 15 OD C' 
'2Pl. 8 015 PPII ,a, l206,, "' 
"'HI -0 47. pp. , .. , -189 75 HI 
FIPlO t19 994 PIW 
fRO 14085 15 tU' 

"PIlI o 006 PIN! 
FIHI o 64 Hz 

''''''''' o 5659-4 ~c. 
'2HlCII 22li 449ZI HI/Cl ,,""" 9 33249 ,.,.,c. 
"HlCH 938 96110 Hl/c. 



(2S, 4R)-2-Iodomethyl-4-phenyltetrahydropyran-2-one (l64b) 

• IH NMR with expansions showing coupling 

• 13CNMR 

• COSY 

E 
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rdb-432-I007 
F2 - AcquisitIon Parallellrs ! 

I .1 

Dlte_ 20000119 
1 " .. 935 

INSTRUM dpx.400 
11 PAOBIIl 5 .. tt.J)Unu 

PIl.PAOG cosy4S 
,------------- - --- --- ----- -- - ----- - --- ------- ----- TO 102.4 

SOLVENT D20 
OS 8 

f-O OS ,. 
S,," 3396 739 Hz 
FlORES 3 317128 HI 
Aa o 1507828 sec 
RG 9123 

~ • IiiJ 
Il1f 147 200 usec 
DE 7 50 usec 

diD TE 3000K 
01 3 00000000 IIC 
PI 15 00 USI!C - • SFOI 400 1315100 NIll 
tul I. t 

f-2 
PlI -& 00 dB 
00 o 00000300 lee 

0 a 0 INO o 000294..0 sec 

Ft - AcquittUon parallele", 

---!! Il [g 
..,. I 
TO .. 
SFOI 400 1315 MHZ 
Fl(HS 51 465744 Hz 

0 e Il:I 6 
SM o 489 pp. 

F2 - Processi"9 par"eter. 
SI 512 

H SF 400.1300073 HHl 

"'. SINE - B 0 0 
SSB 0 
LB 000 Hz 
GB 0 
PC I 00 

Ft - ProcesSlng paraaeterl 
SI 51' 
MC2 Of 
SF .. 00 1300075 MHl 
.OW SItE 
ssa 0 

f-6 L8 000", 
GB 0 

2D If4A plot perllRters 
eX2 1500 u 
eX! 1500 u 
F2PL0 a 000 pp. 
F2LO 3201 04 Hz 
F2PHT -0 .ag ppe 
F2IfT -195 69 Hz 
FJPlO 8 000 pp. 
FllO 3200 89 Hz 

ppm FIPHI -0 .. 89 pp. 
FtH! -195 B5 Hz 

_ _ _______ _ _________________________ ---L ________ .1. __ _ 

F2PPI4CM o 56594 pp./cl 
F2HZCW 226 <44928 Kz/ca 
flPPt«:M o 56594 pp./el 

I Ii Ii " , " " " i I i " i I I " " , " I iI ii Ii I iI i I 11 " " " • " ii i Ii I ii I • " i i " " " " .. " ii I ii i j 

ppm 6 4 2 0 
ftHlCM 226 .44928 Hl/cl 




