LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY LIBRARY AUTHOR NEALE, R M ... U22324/02 COPY NO CLASS MARK VOL NO. ARCHIVES COPY FOR REFERENCE ONLY

٠

DYNAMICS OF MULTISTAGE SYSTEMS

BY

R. M. NEALE

A Thesis

Submitted for the degree of

Dactor of Philosophy

Loughborough University of Technology

Supervisor: H. W. KROPHOLLER

DEPARTMENT OF CHEMICAL ENGINEERING

FEBRUARY 1971

Lough Of	Son I charsely
Date	Man 71
Class	
Acc N●	022324/02

- (

.

-

To Beryl.

CONTENTS

ABSTRACT

- CHAPTER 1 INTRODUCTION
- CHAPTER 2 OBJECTIVES

2.1 Origin of the project.

- 2.2 Practical and theoretical studies connected with the BP crude distillation unit.
 - 2.2.1 Assessment of the effect of the hydraulic and heat transfer transients on the column response.
 - 2.2.2 Determination of the open loop response of the column.
 - 2.2.3 Experimental work at Loughborough to assess the validity of static design correlations in a dynamic situation.
 - 2.2.4 Application of the results of the work to crude oil distillation.
- 2.3 Multicomponent mass transfer models.
 - 2.3.1 Selection of the unsimplified model to describe the distillation process.
 - 2.3.2 Conversion of a model from state variable form to conventional transfer function representation.
 - 2.3.3 Simplification of a complicated transfer function.
 - 2.3.4 Analytical and numerical solutions to complete problems.

CHAPTER 3 LITERATURE SURVEY

- 3.1 Hydraulic performance of distillation trays.
- 3.2 Mathematical models of distillation systems.
- 3.3 Studies involving crude oil distillation.
 - 3.4 Obtaining information from distillation systems.

CHAPTER 3 LITERATURE SURVEY.

- 3.5 Elucidation of transfer functions from state variable models.
- 3.6 Simplification of transfer function models using continued fraction expansions.
- 3.7 Analytical and numerical methods for solving complete problems.

CHAPTER 4 A MATHEMATICAL MODEL OF A CRUDE OIL DISTILLATION UNIT.

- 4.1 Introduction
- 4.2 Selection of the model.
 - 4.2.1 The system modelled.
 - 4.2.2 The assumptions made in formulating the model.
 - 4.2.3 The basic equations.
 - 4.2.4 The linearised equations.
- 4.3 Solution of the model.
- 4.4 Computer program for the model solution.
 - 4.4.1 The effect of the implicit parameter μ .
 - 4.4.2 The effect of the time increment.
 - 4.4.3 The effect of relinearisation of the model.
- 4.5 The predictions of the mathematical model.
 - 4.5.1 The liquid rate transient.
 - 4.5.2 The vapour rate transient.
 - 4.5.3 The tray temperature transient.
- 4.6 Conclusions.

<u>CHAPTER 5</u> <u>INFORMATION FROM THE INDUSTRIAL UNIT BY EXPERIMENT AND</u> OBSERVATION.

- 5.1 Introduction.
 - 5.2 Objectives.
- *5.3 Description of the unit.
 - 5.3.1 Overall layout.
 - 5.3.2 The main tower and its operation.

<u>CHAPTER 5</u> <u>INFORMATION FROM THE INDUSTRIAL UNIT BY EXPERIMENT</u> AND OBSERVATION.

5.3.3 The main tower instrumentation.

5.4 Experimental runs.

- 5.4.1 Step change experiments on overhead reflux A comparison of runs TR1, TR2 and TR3.
- 5.4.2 Step change experiment on overhead reflux Run TR3.
- 5.4.3 Step change experiment on a sidestream Run TR4.
- 5.4.4 Observation of crude oil changes on the unit Runs OB1, OB2 and OB4.
- 5.4.5 Observation of an activity change on the unit Run OB3.

5.4.6 Experiment using pre-planned control strategy - Run TR5.

CHAPTER 6 EXPERIMENTS ON THE SINGLE SIEVE PLATE UNIT.

- 6.1 Introduction.
- 6.2 Objectives.
- 6.3 The apparatus.
- 6.4 Experimental work.
 - 6.4.1 Liquid rate step change responses.
 - 6.4.2 Vapour rate step change responses. .
 - 6.4.3 Determination of the discharge coefficient for the intermediate tank.
 - 6.4.4 Sources of experimental inaccuracy.
- 6.5 A mathematical model of the unit.
 - 6.5.1 The equations.
 - 6.5.2 The assumptions.
 - 6.5.3 The solution.
 - 6.5.4 The computer program.
- 6.6 A comparison of the responses predicted by the mathematical model and those obtained by experiment.
 - 6.7 Conclusions.

CHAPTER 7 OPERATION OF A CRUDE OIL DISTILLATION UNIT. 7.1 Introduction. 7.2 Deductions based on the step-change experiments on the industrial unit. 7.3 Comments on the effectiveness and usefulness of the simple control strategy tried out on the industrial unit. 7.4 Deductions based on the results from the mathematical model. 7.5 Deductions based on the results of the single sieve plate experiments. 7.6 Conclusions. 7.6.1 Use of the tower top temperature controller. 7.6.2 Application of the simple valve control strategy. 7.6.3 Use of the mathematical model. CHAPTER 8 MATHEMATICAL MODELS FOR BINARY AND MULTICOMPONENT SYSTEMS. 8.1 Introduction. 8.2 The formulation of Mah et al. 8.3 The formulation of Wood. 8.4 The properties of the eigenvalues. 8.5 A distillation model used to demonstrate many ideas in this thesis. Errors introduced by linearisation. 8.6 Reduction of multicomponent systems to equivalent simple systems. 8.7 TRANSFER FUNCTION REPRESENTATION OF STATE VARIABLE MODELS. CHAPTER 9 9.1 Introduction. 9.2 Definitions. 9.3 Features of the two types of model. 9.4 Methods available for constructing a transfer function from a state variable equation. 9.4.1 Transfer function numerator via determinant evaluation. 9.4.2 Transfer function zeroes via the method of Davison. 9.4.3 Transfer function zeroes via the root locus. 9.4.4 Transfer function numerator via the method of Bosley et al.

CHAPTER 9 TRANSFER FUNCTION REPRESENTATION OF STATE VARIABLE MODELS.

- 9.5 Zero determination for distillation models.
 - 9.5.1 Application of the zero-estimation method of Davison to a distillation model.
 - 9.5.2 Application of the numerator calculation method of Bosley et al to a distillation model.
 - 9.5.3 Application of the matrix formulation of the root locus to a distillation model.

CHAPTER 10 SIMPLIFICATION OF POLYNOMIAL RATIO TRANSFER FUNCTIONS USING CONTINUED FRACTIONS.

- 10.1 Introduction.
- 10.2 General problems of model selection and parameter estimation.
- 10.3 The simplification method of Chen and Shieh.
 - 10.3.1 The basic principles.
 - 10.3.2 Matrix representation of the simplified model.
 - 10.3.3 Calculation of the H coefficients.
- 10.4 Application of the method of Chen and Shieh to a distillation model.
 - 10.4.1 Simplification of a transfer function in pole-zero form.
 - 10.4.2 Simplification of a transfer function in polynomial ratio form.
 - 10.4.3 Inverse response of low order models.

CHAPTER 11 ANALYTICAL AND NUMERICAL SOLUTIONS TO A COMPLETE PROBLEM.

- 11.1 The analytical solution to the state variable equation.
- 11.2 Numerical integration of the state variable equation by the method of Gibilaro et al.
- 11.3 A comparison of the solutions to a distillation model obtained by analytical and numerical methods.
- 11.4 A comparison of the solutions to a distillation model obtained by simplification of various transfer functions.

CHAPTER 12 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK.

- 12.1 Introduction.
- 12.2 Practical and theoretical studies connected with the BP crude distillation unit.
 - 12.2.1 The effect of the hydraulic and heat transfer transients on the column response.
 - 12.2.2 Determination of the open loop response of the industrial column.
 - 12.2.3 Experimental work at Loughborough University on the single sieve plate unit.
 - 12.2.4 Application of the results to crude oil distillation.
- 12.3 Multicomponent mass transfer models.
 - 12.3.1 Selection of the unsimplified model.
 - 12.3.2 Conversion of models from state variable to transfer function form.
 - 12.3.3 Simplification of a complicated transfer function.
 - 12.3.4 Analytical and numerical solutions to complete problems.

ACKNOWLEDGEMENTS

REFERENCES

- APPENDIX 1. A mathematical model of a crude oil distillation unit -Linearisation and manipulation of the basic equations.
- APPENDIX 2. A mathematical model of a crude oil distillation unit -The computer program.
- APPENDIX 3. A mathematical model of a crude oil distillation unit -. Values of the constants for the empirical correlations.
- APPENDIX 4. Tabulated results for the experiments at BP Refinery (Llandarcy) Ltd.
- APPENDIX 5. Tabulated results and computer program listing for the single sieve plate experiments.
- APPENDIX 6. System matrix for the model of a three component ten plate distillation unit.
- APPENDIX 7. Data and results for transfer function calculations.
- APPENDIX 8. Computer program listing for the Chen and Shieh continued fraction expansion calculations.
- APPENDIX 9. Sample convergence for the zero estimation method of Davison.
- APPENDIX 10. A distillation system used to demonstrate a point in Chapter 10.

ABSTRACT.

The project evolved from a discussion between academic staff at Loughborough University of Technology and staff from The British Petroleum Co. Ltd. A study was required of the dynamic characteristics of a particular 44-plate crude oil distillation unit at BP Refinery (Llandarcy) Ltd. A programme of experiments was conducted on the industrial unit. Step perturbations in the overhead reflux and sidestream offtakes were found to give oscillatory response curves decaying over a two hour period. A qualitative explanation for these results is given.

A theoretical model of the hydraulic and heat transfer contribution to the system dynamics is described. The applicability to the unsteady state of the published steady state correlations for the hydraulic parameters is verified using a laboratory sieve tray unit. The method and details of the computer solution are given. The results indicate that flow and heat transfer disturbances decay over 4-5 minutes in a 15-plate column. The model requires considerable computer core store and a computation time of sixty times real time on an ICL 1905 computer. Hence it is not considered suitable as a basis for controller design. The shape of the response curves obtained using the mathematical model matches the general experimental response curve indicating that the correct type of mechanism has been simulated.

Comments are made on the application of results to crude oil distillation and a simple control strategy is suggested. A test run on the industrial column using this strategy achieves the desired objective of minimisation of disturbance following a major flow change.

-1-

A comparison is given of the two main methods for modelling multicomponent distillation systems (applicable to similar multistage systems). The more widely used of these, that due to Mah et al, is shown to be inherently unsuitable and quite invalid for multicomponent systems. The other, due to Wood, is used to construct a state variable model describing the response to a feed composition disturbance of a ten plate column distilling a three component mixture.

Various methods of elucidating transfer functions from state variable models are described. The results of each are demonstrated by application to the distillation model described in the previous paragraph. The application is demonstrated of the method of continued fraction expansion (due to Chen and Shieh) to obtain equivalent simple forms from high order polynomial ratio transfer functions obtained from the state variable distillation model.

Finally the results of the analytical solution of the ten plate three component distillation model are compared with a numerical solution and the predictions of various simplified models. Very good agreement is obtained for some variables.

-2-

CHAPTER 1 INTRODUCTION.

Over the past ten years the understanding of the mechanisms of separation techniques and reaction kinetics have led to the confident design of increasingly large plants. It has been reported (65) that over this same period the over design of distillation equipment has been greatly reduced. Thus there is an increased need for the careful selection of the optimum operating point for these units.

However, although modern units are increasing in capacity they are not decreasing in complexity. Control of such systems is consequently achieving even more importance. The absolute value of fractional increases in efficiency, always important in the petroleum and heavy chemical industries, now more than ever merits detailed studies of processes at both steady and unsteady state.

Mathematical modelling, computer control and control engineering science all have a part to play in such studies, but the central discipline must be chemical engineering. Without a fundamental understanding of the mechanisms involved in the process that is to be controlled, elegant mathematics justifying elaborate computer systems are often a sophisticated way of wasting money and effort. Conversely, the use of mathematical analysis can be invaluable - for example, to simplify a complex control system whereby say 80% of the potential improvement is obtained for a fraction of the original cost.

This research project was formulated whilst the author was employed by BP Research Centre. Much of this thesis is concerned with crude oil distillation - a process which is typical of the comments in the first paragraph of this introduction. BP have carried out extensive studies of steady state operating conditions for crude units. This present

-3-

work investigates some aspects of their operation at unsteady state.

In addition, the fundamental methods of the mathematical modelling of multicomponent multistage systems are considered. The way in which mathematics, control and chemical engineering can profitably be used together to produce simple but adequate models of such systems is demonstrated.

CHAPTER 2 . OBJECTIVES.

2.1 Origin of the project.

This project was originally evolved as the study of the dynamic behaviour of a particular distillation unit. The following problem was produced from discussions between the staff in the Department of Chemical Engineering at Loughborough University of Technology and members of the staff of The British Petroleum Co. Ltd. at BP Research Centre, Sunbury-on-Thames and BP Refinery (Llandarcy), South Wales.

Crude oil distillation units were being operated in widely different ways depending on the source of the crude oil they were refining and also on current product requirements. At BP Llandarcy it was necessary to change the method of operation of Crude Distillation Unit No. 3 (CDU 3) perhaps fifty times per year. The main variables were column throughput, heat input and the relative amounts of each of the six products to be withdrawn. The method of changeover employed at the time of the above discussion was not standardised and depended on each operator's preference and experience.

A typical change was achieved by a series of small adjustments. After each one the column was allowed to settle and the product properties were checked against the required specification. This resulted in further small changes and checks until a suitable operating condition was achieved. This whole process took 8-12 hours on average.

The problem posed by BP was to study the column dynamics and reduce this changeover time. The immediate financial benefit from this was difficult to ascertain due to the complexity of downstream blending operations commonly found on a modern refinery. However, it was felt by British Petroleum that this area of operating knowledge required clarification.

-5-

2.2 Practical and theoretical studies connected with the BP crude distillation unit.

The two objectives described below, 2.2.1 and 2.2.2, were formulated at an early stage in the project.

2.2.1 Assessment of the effect of the hydraulic and heat transfer

transients on the column response.

This objective was to be achieved by the construction of a detailed mathematical model. This was to be capable of describing the dynamics of a crude unit on the basis of the assumption that mass transfer played no part and each tray behaved only as a heat transfer stage. The hydraulic effects contributed the bulk of the column response under these conditions. This is developed in detail in Chapter 4.

2.2.2 Determination of the open loop response of the column.

Experiments were to be performed to determine the transient response of the column variables to flow changes. It was also required to know which variables responded greatly to small changes in operating conditions and to know how long was required for an upset to pass through the system. Loughborough University in particular wanted information on the feasibility of carrying out experiments on an industrial sized unit with only one or two men and no special equipment beyond the normal plant instrumentation. Also, an indication of operator liaison problems, and the reproducibility and accuracy of results was required. It was hoped to use the results to evolve a simple control strategy by which to achieve a major change in operating conditions with minimum disturbances. This work is described in Chapter 5.

2.2.3 Experimental work at Loughborough to assess the validity of

static design correlations in a dynamic situation.

A paper by Bernard and Sargent (5) cast serious doubts on the validity

-6-

of the existing design correlations for distillation hydraulics. These referred to sieve plates and related liquid and vapour rates and properties to froth height and density, pressure drop and plate hold-up. This work caused the present author to re-examine the assumptions made in the construction of the mathematical model described in section 2.2.1. It was thus decided some twelve months after the start of the project to carry out a short programme of experiments on a laboratory sieve tray unit. It was not feasible to employ a hydrocarbon mixture in these experiments so air and water had to be used. The object of these in a dynamic model of some of the published static design correlations. The apparatus, method and results are described in Chapter 6. 2.2.4 Application of the results of this work to crude oil distillation.

An assessment was to be made of the use of this work in the operation of a crude oil distillation unit. This is given in Chapter 7.

2.3 Multicomponent mass transfer models.

The plan for this part of the work was formulated at the start of the last year of the project. Prior to this it had become apparent that models of the complexity of the one referred to in 2.2.1 were unsuitable for incorporation in any sort of control system. This particular model had the drawback of excessive computation time on an ICL 1905 computer and a large computer core store requirement. It will also be recalled that this model did not attempt to describe the mass transfer dynamics of the distillation process.

Hence a program of work was planned to investigate the application of some recently derived model simplification techniques to models of multicomponent multi-stage systems such as distillation. In general, the distillation of a three component mixture in a ten plate column was used as a vehicle to test ideas and demonstrate results. This distillation system is described in Chapter 8.

-7-

2.3.1 Selection of the unsimplified model to describe the distillation process.

Recent papers by Wood (25) and by Mah, Michaelson and Sargent (23) proposed fundamentally different ways of describing multicomponent distillation dynamics. These methods were to be investigated and the characteristics of each formulation compared. This comparison is given in Chapter 8.

2.3.2 Conversion of a model from state variable form to conventional transfer function representation.

The description of the distillation process normally employs the concentrations of one or more components at each stage as the state variables. The formulation of Wood (25), mentioned in 2.3.1, in particular leads to a large number of equations. In the design of the control system the response is required of a particular variable to a particular input (e.g. top product variation following a feed disturbance). This section of the work is aimed at the recommendation of a method for generating the necessary transfer function, and is described in Chapter 9. 2.3.3 Simplification of a complicated transfer function.

When the objective described in section 2.3.2 was decided it was recognised that this would generate a further problem. An nth order system will in general lead to a transfer function with an nth order denominator polynomial in the complex variables for any response to any input. The numerator of the transfer function may contain a -polynomial of order up to n-1. The final stage of the work was to be the investigation of the reduction of this to a simpler equivalent form paying particular attention to a recent paper by Chen and Shieh (47). This is described in Chapter 10.

-8-

2.3.4 Analytical and numerical solutions to compleke problems.

Features of the analytical and the various numerical solutions to a complete problem were to be described. This is done in Chapter 11.

Note.

The conclusions from the work given in the body of this thesis are given in Chapter 12. This has been structured so that each section corresponds with a section in this chapter.

CHAPTER 3 LITERATURE SURVEY.

3.1 Hydraulic performance of distillation trays.

The literature concerned with plate hydraulics has mainly dealt with the steady state behaviour of different designs. The object of much of the work reviewed in this section has been to develop the understanding of the way in which hydraulic factors influence plate efficiency and plate spacing and leads in general to improved design correlations and techniques. Little work has been done on the extension of steady state correlations to describe unsteady state systems.

Bolles (1) makes recommendations concerning bubble-cap tray design. These include the use of the Francis weir formula(2) for the flow of froth over the outlet weir:-

3/2(liquid rate) = constant x (head over weir) ...(3-1) and the expression to calculate the head of liquid in the downcomer:-

= head of foam +force to + force to liquid head in + force to + downcomer on plate drive liquid drive vapour cause vapour gradient under through to overdowncomer tray above come head weir on tray above

...(3-2)

An A.I.Ch.E. report(3) gives an indication of the form of relationship between mass transfer coefficients, gas and liquid rates, hold-up and weir height. In this report liquid hold-up appears to have been calculated from the clear liquid height - i.e. the manometric pressure at the tray floor - with no correction for capillarity or vapour momentum. These workers noted that the liquid properties of density, viscosity and surface tension had no significant effect on the hydraulic parameters. No correlations

•	GLOSSARY OF NOMENCIATURE USED IN CHAPTER 3.
• • •	
B	square matrices.
ď	the differential operator.
E	overall liquid Murphree plate efficiency.
Fs	F - factor for vapour based on superficial vapour velocity.
	$F_s = u_s \sqrt{f_v}$ (ft/sec $\sqrt{(lb/ft^3)}$).
g _c	acceleration due to gravity. (ft/sec ² .)
g	function of the liquid composition.
H	liquid hold-up on plate. (moles).
I	the unit matrix.
k	the equilibrium constant.
\mathbf{L}	liquid rate. (moles/second).
LA	liquid rate. (US.gpm/foot of weir length).
$L_{\mathbf{R}}$	liquid rate. (Imp.gpm/foot of average plate width).
М	momentum head (feet).
r	total number of components.
R	reflux ratio.
8	the Laplace variable.
t	time (seconds).
u _H	vapour hole velocity.(ft/sec).
u s	superficial vapour velocity. (ft/sec).
v	vapour rate. (moles/second).
W	weir height. (inches).
x	mole fraction in liquid.
У	mole fraction in vapour.
z _c .	clear liquid height (inches).
Z _F	froth height (inches).

-11-

Ž _D	dynamic head (the clear liquid height uncorrected for	
	manometric capillarity or vapour momentum). (inches).	
Subscri	pts -	
Е	enriching section.	
n	plate n (unless used to subscript a determinant, in	
	which case it has the meaning assigned to it in section	
	3.5.)	
i	component 1.	
Superscript		
*	refers to the vapour which would be in equilibrium with	
	the tray liquid at its bubble point.	
<u>Greek</u>		
٩v	vapour density. (lb/ft ³)	
۹.	liquid density. (lb/ft^3)	
μ	(i) liquid viscosity (in distillation equations).	
/	(ii) a variable parameter (in numerical integration).	
%	slope of equilibrium line in binary system, relative	
	volatility in multicomponent system.	
б	liquid surface tension (N/m).	
3	absorption factor.	
Δ	deviation from steady state flow, or increment of time.	
δ	deviation from steady state composition.	
9	partial differential operator.	
Note:	(i) A bar below a variable thus: \underline{u} denotes that u is a	
	column vector.	
	(ii) A bar above a variable thus: \overline{L} denotes that it is	
	the steady state value that is referred to.	
-	· · · · · · · · · · · · · · · · · · ·	

-12-

concerning liquid hold-up were presented, it being recognised that this was a function of weir height, liquid rate and (via the hydraulic gradient) the length of the liquid flow path. The single unifying factor was found to be the relative froth density $Z_{F}/(Z_{F}-Z_{c})$ which appeared to be a function only of the F-factor for the vapour.

Gerster(4) in another A.I.Ch.E. report recommends a correlation for the uncorrected clear liquid height of bubble cap trays:-

 $Z_{D} = 0.19W - 0.65F_{s} + 0.02L_{A} + 1.65$ (3-3) This same report gives a froth height correlation for bubble cap trays:-

 $Z_F = 0.73W + 3.24F_s - 0.084L_A \dots (3-4)$

Bernard and Sargent(5) studied the hydrodynamic performance of a four inch diameter sieve plate distillation column. They report the three clearly discernible zones on a normally operating sieve plate - a region that is substantially liquid near the plate floor through which vapour bubbles rise, a foaming region, and finally a spray regime. It is noteworthy that although a four inch column might seem small for this type of work, by the careful use of foam baffles to support the foam the workers sought to simulate conditions at the centre of an industrial sized plate. Gamma radiation was used to measure foam density and it was found that this remained substantially constant over a major part of the liquid depth. However, this constant density region did not correspond exactly to the foaming region mentioned above. The authors found a linear relationship between the froth height and the F-factor for the vapour (based on a superficial vapour velocity)

 $Z_F = 3.7F_s$ (3-5) and note that this predicts values of Z_F for their sieve plate

-13-

system within a few tenths of an inch of those given by equation (3-4) for bubble cap plates. Liquid hold-up was found to have significant dependence on four factors, increasing with increases in superficial vapour rate, weir height and hole diameter, but decreasing with increasing free area. The authors could not find a satisfactory way of expressing the variation in a single equation.

Bernard and Sargent(6) present a more recent paper describing work on a 16" diameter column. In this three formulas for correlating froth height were investigated:-

- (i) the simple formula applicable to their 4" column equation (3-5).
- (ii) that given by the Delaware University Report forbubble cap plates equation (3-4).

$$Z_F = 2.53 F_s^2 + 1.89W - 1.6$$
(3-6)

It was found that only (iii) gave results of the right order of magnitude for the 16" column without foam baffles and that no correlation was adequate with the foam baffles fitted. The workers also considered the following liquid hold-up correlations:-

(i) $Z_c = W + 0.092 L_A^{2/3}$ (Bolles (1)) (ii) $Z_D = 0.19W - 0.65F_s + 0.02L_A + 1.65$ (Gerster (4)) (iii) $Z_c = Z_D + M$

where $M = \int_{v} u_{s} (u_{H} - u_{s}) / (\int_{L} g_{c}) \dots (3-7)$ None of these was found to be reliable.

Rodionov(8) investigated the dependence of the volume fraction of gas in the foaming region on various parameters. This was found to be a weak function of liquid viscosity:-

$$(1 - Z_c/Z_F) \propto \mu^{-0.045} \dots (3-8)$$

37

and surface tension:-

 $(1 - Z_c/Z_F) \propto \sigma^{-0.16} \dots (3.9)$

Thomas and Campbell(9) describe hydraulic studies in a sieve plate downcomer system. A froth height correlation of the following form is proposed:-

 $Z_F = 2.45F_s + 0.053L_R + 1.24W$ (3-10) They find the dynamic head (the uncorrected clear liquid height) to be given by:-

 $Z_D = 0.19W - 0.040F_s + 0.013L_R + 1.56$ (3.11) which they found gave similar results to those of the Delaware University Report(4) when momentum head was taken into account:-

$$Z_c = Z_D + M$$

Gardner and Maclean (10) found that the conclusion of the A.I.Ch.E. Report(4), that froth characteristics were essentially independent of physical properties, was not valid for the systems they studied. These were the adiabatic evaporation of water to air, the non-adiabatic evaporation of carbon tetrachloride to air and the absorption of carbon tetrachloride from air by decalin.

Thus there seems to be considerable scope for more work in this basic field. The rather empirical approach of making measurements on an experimental unit and producing a correlation to fit the results does not seem capable of yielding reliable general predictions. Perhaps the approach of Ho, Muller and Prince(66), although more complex, will result in better design data. These workers consider the basic physical properties for the fluids to arrive at polyhedron models for cellular foam. At this level much work in the field of transport phenomena becomes relevant.

3.2 Mathematical models of distillation systems.

Wilkinson and $\operatorname{Armstrong}(11)$, (18) describe a model for a binary

-15-

system based on many simplifying assumptions. For plate n in the enriching section:-

 $(L_E x_{n+1} + V_E y_{n-1}) - (L_E x_n + V_E y_n) - H_n dx_n / dt = 0$ (3-12) From which

$$(H_n/L_E) (dx_n/dt) = x_{n+1} - x_n (1 + \varepsilon) - \varepsilon x_{n-1} \dots (3-13)$$

where

$$\xi = V_E \propto E/L_E = (1 + R) \propto P/R$$

The assumptions are (i) equimolal overflow (ii) constant tray liquid holdup (iii) a linear equilibrium line (iv) plate efficiency independent of composition (v) adiabatic operation (vi) the time to reach fluid dynamic equilibrium is small compared with that to reach mass transfer equilibrium. The authors go on to reduce their equations to partial differentials and effect a solution.

Rosenbrock(15) extends the above model to include non-linear equilibrium line and a Murphree vapour efficiency. He describes a numerical integration technique after Crank and Nicolson (16) and notes that doubling the time step every four steps is acceptable since the major non-linear part of the response curve occurs at the start an important point for computational efficiency.

Rijnsdorp(17) considers two special cases of a distillation model. The first is a model resembling those of Wilkinson and Armstrong(11) and Rosenbrock(15) already mentioned, in which it is the slow dynamic effects (due to the mass transfer) which are considered. The second case considers the fast effects produced by pressure and liquid flow changes. Rijnsdorp found that it was possible to produce a model which gave results close to experimental results. This incorporated a relation:

$$L_n = K_1 H_n + K_2 V_{n+1}$$
(3-14)

 K_1 determines the time delay for the propagation of a liquid flow disturbance through the column. K_2 measures the influence of vapour flow variations on the liquid overflow. The paper also goes on to show analytically how large values of K_2 can give rise to nonminimum phase responses.

A paper by Armstrong and Wood(19) describes the response of a 21-plate column to changes in the reflux and vapour flow-rates. It was noticed that with the initial mathematical model, which did not include a hold-up variation with reflux-rate, the composition response of trays below the top tray was slower than that obtained experimentally. Modification of the theory to include the assumption that over the small range the plate hold-up is a linear function of the reflux-rate produced a correction of the right order of magnitude. (cf. Rijnsdorp's K_1 factor(17)). The authors extended the theory with quite good success to changes in reflux and vapour rates with varying feed plate composition. It was noted that the response of the 21-plate column was so slow that the time to reach fluid equilibrium had little effect on the slope of the transient.

In a second paper Armstrong and Wood(20) demonstrate the application of frequency response analysis to the same problem. They show that there is very little interaction between the lag due to the delay in the reflux rate and that for mass transfer assuming no delay in reflux rate. Townend makes a pertinent suggestion in the reported discussion on the above paper. The basic mass balance equation assuming constant liquid hold-up is:-

$$(L_E + \Delta L_E) \delta x_n + V(\delta y_{n+2} - \delta y_{n+1}) - (L_E + \Delta L_E) \delta x_{n+1}$$

= $H \frac{\partial \delta x_{n+1}}{\partial t} - \Delta L_E (x_n - x_{n+1})$ (3-15)

-17-

On elimination of all reflux rate delays from the column the effect of a step change in reflux at the top, $\Delta L_{\rm E}^{},$ would be an equal and immediate change in the reflux flow at all plates in the column. Immediately after this change $\delta x_n, \delta y_{n+2}, \delta y_{n+1}, \delta x_{n+1}$ will be zero since there will be no time for them to have changed. Hence:

$$\frac{\partial}{\partial t} \left(\delta x_{n+1} \right) = \Delta L_E \left(\frac{x_n - x_{n+1}}{H} \right) \qquad \dots (3-16)$$

Townend suggests that to the delay obtained from this equation be added the non-interacting delays obtained from the reflux rate change.

Baber and Gerster(21) calculate the predictions of the perturbation equations of Lamb, Pigford and Rippin(22) in modelling the response of a distillation column to reflux and vapour flow They correct for variation of liquid flow with the relation:changes.

$$\frac{dLn}{d\Theta} = \left(\frac{1}{\beta_n}\right) \quad (L_{n-1}-L_n) \qquad \dots (3-17)$$

$$\beta_n = \left(\overline{L}_n/\overline{H}_n\right) / \left(d\overline{H}_n / d\overline{L}_n\right) \qquad \dots (3-18)$$

....(3-18)

where

but do not appear to include any allowance for the effects due to vapour flow changes.

Michaelson and Sargent (23) present a mathematical Mah, formulation for the dynamic response of a multicomponent multistage system but neglect hydraulic effects. This paper also contains an excellent review of numerical methods for the solution of this type The model is set out in matrix form and includes a of problem. rigorous proof purporting to show that the mass transfer responses of a multicomponent distillation system must always be nonoscillatory. The poles are shown to be real, negative and distinct for continuous systems and form a Sturm sequence, the zeroes interlacing with the poles along the real axis. It is thus implied that right half plane zeroes cannot exist. These results are not

-18-

correct and are discussed in greater detail in Chapter 8 of this , thesis. In a later paper Sargent (24) extends the classical solution to avoid the problem:-

$$\sum_{i=1}^{r} x_i \neq 1.0$$

at each time step, but retains the relationship:-

However, the new formulation does not require the assumption of constant coefficients over each time step.

Peiser and Grover(26) describe a mathematical model that is much more comprehensive. Mass and energy balances for each tray are constructed assuming unit plate efficiency and negligible heat losses. The tray hydraulics are modelled using the Francis formula for flow over a weir and a pressure balance to give the downcomer head. They report the successful application of the model to an industrial column to pinpoint flooding and aid in the redesign of certain trays. After modification the column then functioned correctly.

Robbins(28) describes work using a ternary mixture in an industrial column. A perturbation equation is used to describe the mass transfer:-

$$\overline{H}_{n} - \frac{d\overline{x}_{n}}{dt} = \Delta L_{n-1} (\overline{x}_{n-1} - \overline{x}_{n}) - \Delta V (\overline{y}_{n} - \overline{y}_{n+1}) + \overline{L}_{n-1} \delta x_{n-1} - \overline{L}_{n} \delta x_{n} + \overline{V}_{n+1} \delta y_{n+1} - \overline{V}_{n} \delta y_{n} \dots (3-19)$$

Treating n as a continuous variable this is expanded by a Taylor series:-

$$\frac{\partial}{\partial t} (H_n \delta x_n) = \frac{\partial}{\partial n} \left[(\Delta L. \delta x - \Delta V. \delta y) + \frac{1}{2} \frac{\partial}{\partial n} (\Delta L. \delta x + \Delta V. \delta y) \right] \dots (3.20)$$

Applying the Laplace transform method:-

$$\left[E^{2} - E(1 + \xi + s) - \xi\right] \delta_{x_{n}}(s) = 0 \qquad \dots (3-21)$$
where $\xi = Vk/L$

and E = overall liquid Murphree plate efficiency.

Tray hydraulics are expressed after Rijnsdorp(17) mentioned earlier in this section. Robbins solves the model using matrix complex arithmetic to get attenuation and phase shift for the variation of any tray composition relative to any perturbation. Using the ternary mixture MEK/benzol/toluene Robbins measured the response of the experimental column to step changes, sine waves and stochastic signals. Response measurements were at the fifth tray from the top and the sixth tray from the bottom. Reflux flowrate, feed pre-heat, reboiler steam, feed flowrate and feed composition were perturbed. Estimates of the Rijnsdorp K_1 and K_2 effects were made by achieving steady state under various flowrates and then bypassing the flows and allowing the column to drain into the base.

Wood(25) uses the perturbation equation of previous workers(22),(28). The formulation is demonstrated whereby the deviations in the mole fraction of a component on a tray depend on the deviation in all the other component mole fractions. Previous workers had mainly considered binary mixtures for which this point is inherent anyway. Wood used:-

$$\delta y_i = f_i(\delta x_1, \delta x_2, \dots \delta x_r) \qquad \dots (3-22)$$

so that $\delta y_{n,i} = g_{n,i} \delta x_{n,i} \qquad \dots (3-23)$

where
$$g_{n,i} = \frac{d \overline{y}_{n,i}}{d \overline{x}n,i} = \sum_{m=1}^{r} (\underline{\partial i}_{\overline{x}n,m}, \underline{\delta x}_{n,m}) \dots (3-24)$$

If the equilibrium data may be represented by constant relative volatilities:

$$\overline{y}_{i}^{*} = \alpha_{i} \overline{x}_{i} / \sum_{m=1}^{r} \alpha_{m} \overline{x}_{m} \qquad \dots (3-25)$$

then
$$\frac{\partial f_{i}}{\partial \overline{x}_{i}} = \mathcal{A}_{i} \sum_{\substack{m \neq i \\ m \neq i}}^{r} \mathcal{A}_{m} \frac{\overline{x}_{m}}{m} / (\sum_{\substack{m=1 \\ m=1}}^{r} \mathcal{A}_{m} \frac{\overline{x}_{m}}{m})^{2} \dots (3-26)$$

...(3-26)
...(3-26)
...(3-26)
...(3-27)

Wood uses equations (3-22) to (3-27) to eliminate δ y terms from equation (3-19) and solves the resulting equation in the frequency domain in the same way as Robbins(28). It is demonstrated that this form allows plate compositions to give inverse response in multicomponent systems. (See Fig. 3-1).

3.3 Studies involving crude oil systems.

The main feature of the distillation of petroleum fractions is that in most cases consideration of individual components is not practicable because of the large number of these present and because of the difficulty of analysing the fraction on a component basis. For this reason dynamic models of distillation systems have not yet been extended to crude oil distillation. The papers reviewed here are concerned with steady state representation. The standard design procedure to avoid this problem is to break the fraction down into pseudo-components or narrow boiling range fractions. See for

-21-

example Cecchetti et al(29) and Gilbert et al(30). Even with this simplification the number of components is still large - of the order of thirty for a crude oil. To reduce the number of pseudo components for a crude below this number would result in inadequate characterisation of each sidestream since a sidestream will typically contain only a few pseudo components in appreciable quantity.

Edmister(31) suggests a way of arriving at component distributions between offtake points in a distillation tower using absorption and stripping factors. The effective absorption factor concept is demonstrated whereby it is possible to define a single absorption factor for each component such that use of this factor for each plate produces the same separation for a particular component as use of the set of correct factors. An approximate method is given for obtaining the effective absorption factor from the absorption factor for the top and bottom plates of the column section under consideration.

Cechetti et al(29) demonstrate the application of a design method to a crude pipestill. The computer program based on the Thiele-Geddes method of calculation speeded by the Holland theta method of convergence is used. (The basis for this program is given by Holland(32) and a program listing is given by Clark(34)). This program assumes unit plate efficiency. The initial run uses the number of actual plates in the unit. Successive runs with the program then employ fewer plates in each section until a product match for a set of test data is obtained. The program is then used to predict product characterisation for other yield structures. Good agreement between predicted and observed results is demonstrated.

Hoffman(35) tackles the problem of a large number of

'-22→

components in a petroleum fraction from a different standpoint. This paper does not concern distillation as such but indicates a possible basis for petroleum distillation calculations. The petroleum fraction is represented by a continuous function - the true boiling point distribution curve. Use is made of the fact that TBP curves for petroleum fractions often follow a Gaussian distribution. Hoffman develops expressions for flash calculations via the bubble and dew points calculations, the liquid and vapour products again being characterised by their TBP distribution

Gilbert et al(36) present an application of Edmister's(31) effective absorption factor method to yield a simple short-cut method for fractionator rating and preliminary design. They note the success of nominating as 'reference component' the TBP cut point. The results of the example they give are not particularly impressive from a steady state design viewpoint - even preliminary design would require better estimates than those quoted. However, this type of simplification might have potential control applications and for this reason is listed here.

3.4 Obtaining information from distillation systems.

Endtz, Janssen and Vermeulen(14) describe original equipment used to produce a sinusoidal perturbing signal. This was used to obtain the frequency characteristics of a refinery pipestill furnace. They found that the outlet temperature response to fuelrate perturbations could be correlated with a time constant of 15 minutes, a time constant of 25 seconds and a dead time of 20 seconds. They also considered a pilot distillation column. Perturbations were injected into the steam flow to the reboiler, the water flow to the condenser, and the reflux flow. Response

-23-

.curves for the column conditions (including pressure) were plotted for each type of perturbation. It was noted that the temperature responses to changes in cooling water appeared somewhat unusual for some trays, especially those in the middle of the column. These temperature responses could not be represented by a number of exponential time lags in cascade. It was possible, however, to represent them by two transfer functions of a normal type in parallel. This indicated that the temperature response was brought about in two different ways - pressure and composition. Thus at some frequencies temperature effects may counteract each other whereas at others the effects may be additive.

Voetter(12) perturbs the feed stream to a distillation column to obtain concentration responses. He is keen to obtain simple correlations. The most striking feature of this paper is the care taken to investigate the magnitude of the simplifying assumptions. e.g. constant pressure, no vapour hold-up, unit tray efficiency, complete mixing and linearity. The main conclusions are:- (i) Concentration responses of distillation columns can be approximated by relatively simple formulae containing residence times and number of trays as main parameters (ii) The top concentration response to feed concentration disturbances is not very dependent on the properties of the bottom half of the column and vice versa. Only for low frequencies does a large second half give some correction to the responses. (iii) Within the precision desired flow rates and reflux ratios are only important insofar as they influence residence times.

Westcott(13) gives the groundwork on the practical approach to random disturbances. The idea is postulated of applying spectral analysis to the normal plant noise, defining and explaining

-24-

auto- and cross-correlation functions. It is noted that more accurate measurements would be required than are found from the average plant recording equipment. Also the time scale is vital and must be precise.

Kuehn and Davidson (37) give the application of Lagrange multipliers to the problem of constraining on-line enthalpy and flow data to balance. These authors consider the inclusion of redundant information to improve estimates but do not include the weighting of instruments according to their reliability, a scheme now used in practice (38).

Clementson (39) tackles the same problem in a similar manner but uses regression analysis. This has the added attraction of giving error-bound estimates within defined confidence limits.

Robbins (28) describes the pseudo-random chain code method. Results for a random telegraph signal perturbation on various flows are given in the form of Bode plots, the composition response being measured on plage 5 from the top of the column and on plate 6 from the bottom. The ability to gain information over a wide range of frequencies with a single test is demonstrated.

Shelton and Hutchinson (40) discuss the use of two pseudo-random chain codes. The theoretical superiority of the pseudo random binary chain code as compared with the random telegraph signal is described. This is demonstrated with industrial experiments on a refinery depropaniser. It is shown that adequate information can be obtained

-25-
by this method for the construction of a mathematical model based on a transfer function representation.

Rees (41) also describes the successful application of pseudo random binary chain code techniques to a pilot scale distillation column.

Stainthorp and Warren (42) describe another means of overcoming the long experimental effort required to obtain frequency response data over the wide range of frequencies normally of interest. It is proposed that pulse testing techniques could be of value in some circumstances. However, in quoted examples it was reported that averaging over five or six runs was necessary to eliminate the effects of noise.

3.5 Elucidation of transfer functions from state variable models

Consider the state variable equation for the general system :-

$$\frac{d}{dt} \xrightarrow{x} = \frac{Ax}{x} + Bu \qquad \dots (3-28)$$

The transfer function relating the response of any one variable in the state vector to a particular perturbation is given by :-

$$G_n(s) = |Is-A|_n / |Is-A|$$
(3-29)

where $|Is-A|_n$ refers to the matrix [Is-A] but with column n replaced by Bu. The theory behind this is given in Chapter 9.

The problem of determining the transfer function is thus reduced to the one of evaluating the numerator and the denominator on the right hand side of equation (3-29).

-26-

The denominator presents no problem since it is well known that the roots of

$$\left| \mathbf{I} \mathbf{s} - \mathbf{A} \right| = \mathbf{o} \qquad \dots (3-30)$$

are the eigenvalues of the matrix A. Hence Is-A may be obtained directly in factored form. Alternatively the method of Danislevsky as given for example in Pipes and Hovanessian (43) may be applied to reduce matrix A to Bush's form:-

from which $|I_{s-A}| = S^{n} + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \cdots + a_{1}s + a_{0} \cdots (3-32)$ as demonstrated for example by Chen and Haas P.298 (44).

The numerator presents more problems. Hennion (45) presents an algorithm for expanding a determinant, each element of which is a polynomial in s, to its factored form. The matrix is triangularised so that elements below the main diagonal are nulled and the required polynomial is the product of the diagonal elements.

Davison (46), (47), (48) presents a method for the evaluation of the numerator based upon the construction of the approximately equivalent eigenvalue problem. The eigenvalues obtained contain

-27-

the roots of the numerator (the zeroes of the transfer function) together with some extraneous roots. This method is described and discussed in detail in Chapter 9.

Bosley et al (49) describe a method for determining the numerator polynomial coefficients by a simple recursion formula based on the Cayley-Hamilton theory. This is also described and discussed in detail in Chapter 9.

3.6 <u>Simplification of transfer function models using</u> continued fractions.

The algebraic manipulation of a ratio of two polynomials to give a continued fraction is given in classical mathematics (e.g. Hall and Knight (50) p.273). It is recognised that good approximations to C(s)/R(s) where

$$\frac{C(s)}{R(s)} = \frac{1}{H_1 + \frac{1}{H_2 + \frac{1}{H_3 + \frac{1}{H_4 + \dots}}}} \dots (3-33)$$

are given by simple truncation of the fraction to say :-

$$\frac{C(s)}{R(s)} \stackrel{:}{:} \frac{1}{H_1} \stackrel{1}{+} \frac{1}{\frac{H_2}{s}} \qquad \dots (3-34)$$

Chen and Shieh (51), (52) use this method to obtain simplified . transfer functions from complicated high-order polynomial ratios.

-28-

It is demonstrated (51) that an excellent fit can be obtained to transfer functions with seventh order polynomial denominators using second order models. The method is described fully and discussed in Chapter 10.

Maehly (53) gives a method for obtaining the best fit approximation to running fractions using Chebyshev polynomials, rather than simple truncation.

3.7 <u>Analytical and numerical methods for solving complete problems.</u>

Consider the equation :-

$$\frac{\mathrm{d}}{\mathrm{d}t} \stackrel{\mathrm{x}}{=} \frac{\mathrm{A}\mathrm{x}}{\mathrm{H}} + \mathrm{B}\mathrm{u} \qquad \dots (3-28)$$

The analytical solution to this has been given by Ogata (54) with additions by Lees (55) and Kropholler (56). It is developed in terms of the eigenvalues and eigenvectors of the A matrix and is described in detail in Chapter 11. It is of use to note that equation (3-28) may be converted to the equivalent initial value problem by writing :-

$$\underline{\mathbf{y}} = \underline{\mathbf{x}} + \mathbf{A}^{-1}\mathbf{B}\underline{\mathbf{u}} \qquad \dots (3-35)$$

whence
$$\frac{d}{dt} y = Ay$$
 (3-36)

the solution to which is :

$$y(t) = e^{At} y(0) \dots (3-37)$$

Of the numerical methods available for solving equation (3-28) the simplest is probably that of Euler :

$$\frac{d}{dt} \underline{x} = f(\underline{x})$$

$$\underline{x}_{n+1} = (t_{n+1} - t_n) f(\underline{x}_n) \qquad \dots (3-38)$$

Since equation (3-37) may be expanded by series summation to give :-

$$y(t) = (I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + ...) y(o)(3-39)$$

it is evident that Euler's method is equivalent to the truncation of the series solution after the second term. This leads to large truncation errors with the method unless small time steps are employed.

Runge, Heun and Kutta make use of a weighted sum of results of several applications of Euler's method to give a better fit to the series in equation (3-39). This gives rise to the widely used Runge-Kutta method and auxiliary methods.

Predictor corrector methods are generally more efficient then either Euler or Runge-Kutta methods. They consist of finite difference formulae giving a rough approximation for the interval (the predictor) followed by an improvement according to some consistency criterion (the corrector). This generally permits the use of larger time steps without the equivalent loss of accuracy.

Of more recent interest are the implicit methods, so called because the end-point appears on both sides of the finite difference approximation. A typical implicit form is :

$$\underline{\mathbf{x}}_{t} + \Delta t = \left[(1-\mu)f(\underline{\mathbf{x}}_{t}) + \mu f(\underline{\mathbf{x}}_{t+\Delta t}) \right] \Delta t \qquad \dots (3-40)$$

For $\mu = \frac{1}{2}$ this reduces to the method of Crank and Nicolson (16). Holland (33) demonstrates the use of the method for solving unsteady state distillation problems, and notes that a minimum value of $\mu = 0.6$ is essential for stability with larger time steps. A graphical interpretation of the meaning of a particular choice of μ is given in section 4.4.1 of this thesis.

Gibilaro, Kropholler and Spikins (57), (58) present a numerical integration procedure based on a probabilistic mechanism. This method was originally written to solve flow mixing problems for systems of interconnected vessels but can equally be applied to any equation of the form of equation (3-36). The solution to equation (3-36) is given by equation (3-37) and is approximated by :

$$y(t) = P^n y(o)$$

where the matrix P is termed the transition matrix. The computational efficiency of the method lies in the fact that it allows the benefits of a small integration step length to be obtained, the matrix P being powered the requisite number of times to match the time intervals at which the response is required.

-31--

<u>CHAPTER 4</u> <u>A MATHEMATICAL MODEL OF A CRUDE OIL DISTILLATION UNIT.</u> 4.1 Introduction.

This chapter describes the construction and solution of a mathematical model of a crude distillation unit. This model describes the unsteady state hydraulics and heat transfer but takes no account of the mass transfer processes.

4.2 Selection of the model.

The prime variables in a distillation column are the flow rates of liquid and vapour, the temperature and the composition. To completely specify the state of a unit at any point in time it is necessary to know the values of these variables at many points in the column.

A model is required which takes account of the liquid and vapour rates and the tray temperatures. For a crude oil fractionator a convenient simplification is possible. The enthalpy of an internal liquid or vapour stream is a simple function of the tray temperature alone. This is because crude oil fractions of similar bubble point have similar specific gravities. Hence since the tray temperature is assumed to be near the bubble point of the liquid on the tray specific gravity does not enter the correlation. Hence for a crude oil system it is possible to estimate stream enthalpies without knowing stream composition.

As mentioned in the literature survey, chapter 3, there proved to be a paucity of information on the hydraulic relations in a distillation column. Such correlations as did exist had several shortcomings :-

a) they had been formulated as an aid to the design or rating of equipment.

-32-

	<u>G</u>]	lossary	of	nomenclature	used	in	Chapter	4
--	------------	---------	----	--------------	------	----	---------	---

Algeb varia	raic Compute ble variabl	er le <u>Units</u>	Meaning
A	A		Matrix in the final formulation of the model.
A D	AD	${\tt ft}^2$	Cross-sectional area of downcomer.
AT	АТ	${\tt ft}^2$	Area of tray covered by bubbling liquid.
A U	D AUD	${\tt ft}^2$	Area for liquid flow under downcomer (measured in vertical plane).
в	В	-	Matrix in the final formulation of the model.
$\mathbf{c}^{\mathbf{r}}$	CL	-	Discharge coefficient for flow of liquid under downcomer weir.
c _v	CV.	-	Discharge coefficient for flow of vapour through holes in plate.
С	F	-	Matrix in the final formulation of the model.
đ	-	-	Differential operator.
^e 1	, e ₂ etc. E1,I	52 etc -	Constants used in the empirical correlations.
E	D	-	Matrix used in the solution of the model by the implicit method.
f	-	. ,	e.g. f(x) denotes the function of x.
F	Е	-	Matrix used in the solution of the model by the implicit method.
g	G	$ft.sec^{-2}$	Acceleration due to gravity.
h	_ HL	BTU.15 ⁻¹ .deg.F	-1 Tray liquid enthalpy.
հ D	HLD	11	Downcomer liquid enthalpy.
н	HV	11	Vapour enthalpy.
1	AVL	ft	Average width of plate for liquid flow.
L	L	lb.sec ⁻¹	Liquid flow rate from plate.
΄ L _D	LD	11	Liquid flow rate from downcomer.

-33-

۰.

	Algebraic •variable	<u>Computer</u> variable	Units	Meaning
	m	HTC	BTU.sec.lb ⁻¹ deg.F ⁻¹ ¹	Heat transfer coefficient for the plate.
	p) q) r) s)	C(3) C(4) C(11) C(12)	BTU.1b ⁻¹ deg.F ⁻¹ BTU.1b ⁻¹ BTU.1b ⁻¹ deg.F ⁻¹ BTU.1b ⁻¹	Coefficients in the linear relationships by which liquid and vapour enthalpies are calculated from tray temperature.
	S L	SL	lb.sec ⁻¹	Rate of liquid withdrawal from plate.
	$^{\rm S}{}_{ m R}$	SR	11	Rate of liquid return to plate.
	s_v	SV	n	Rate of vapour return to plate.
	t	CUMTIM	sec	Elapsed time.
	v	v	lb.sec ⁻¹	Vapour rate from plate.
	WD	WD	16.	Hold-up of liquid in downcomer.
-	WL	МГ	16.	Hold-up of liquid on plate.
	x	DELTA1	lb.sec ⁻¹ and deg.F	State vector used in the matrix formulation of the model.

.

	Greek	Computer	Units	Meaning
	3	EPS	-	Liquid fraction in froth on plate.
	f-	RHOL	$lb.ft^{-3}$	Density of liquid on plate
	LD	RHOLD	11	Density of liquid in downcomer.
	Ψw	PSIW	ft	Weir height.
~	Ý	PSI	ft	Head of froth over the weir.
	Ý₽	PSID	ft	Head of liquid in the downcomer.
	θ	T	deg.F	Liquid temperature on plate.
•	Θ _p	TD	11	Liquid temperature in downcomer.
	Δ ,	-	-	e.g. Δ L is the change in variable L in small time
				Δt measured from a reference state.
	μ	XMU	-	Parameter used in the implicit method of numerical solution

.

۴ ډ.,

Subscripts

	Refers to :-
D	Downcomer.
L	Liquid from the plate.
ΓD	Liquid from the downcomer.
n	Plate number.
\mathbf{SL}	Liquid withdrawn from the plate.
SR	Liquid returned to plate.
sv	Vapour returned to plate.
T	Tray.
UD	Gap under the downcomer weir.
W	Weir.

Superscripts

2

* **

Refers to :-

Reference state.

p Previous plate value.

b) they were not strictly applicable in the dynamic situation.

c) according to the work of Bernard and Sargent (6), the assumption that they were generally valid was incorrect.

In the absence of better correlations it was decided to proceed although such equations as it was essential to use would be viewed with circumspection. (These proved to be the Francis weir formula (2) and the correlations of froth height versus liquid and vapour rates given by Gerster (4) and Thomas and Campbell (9)). Facilities were not available for detailed checking although the limited experimental facility at Loughborough was used to its fullest extent. These experimental results gave an insight into the validity of some of the correlations and are described in chapter 6.

4.2.1 The system modelled.

The system modelled is a series of general distillation column bubble or sieve plates. The general plate (also valid as the feed plate) is shown in Fig. 4-1. The top plate differs from the general plate in that there is no downcomer before it, no liquid may be withdrawn from it and no vapour may be returned above it.

<u>Note</u>: The symbols used in the Fig. 4-1 and subsequently in this chapter have the meaning assigned to them in the Glossary of nomenclature at the beginning of the chapter.

-36-

THE SYSTEM MODELLED.

FIG. 4-1.

r 🛴

-37-

4.2.2 The assumptions made in formulating the model.

a) There is negligible vapour hold-up on a plate.

A typical ratio of liquid density to vapour density in a crude unit operating at one atmosphere pressure (gauge) is 100:1. The result of this assumption is to remove terms in dW_V/dt where W_V is the vapour hold-up: Vapour rate changes are thus instantaneous.

b) The liquid in the downcomer and the froth on the tray are each perfectly mixed.

This assumption is felt to be fully justified as regards the downcomer. This followed observation of the operation of the laboratory sieve tray unit in the Department of Chemical Engineering at Loughborough University. Considerable turbulence throughout the downcomer was visible in all cases except those of very low liquid rates. Inspection of the interior of the industrial unit during shutdown led the author to expect similar conditions to prevail in the full scale column.

However, the assumption of perfect mixing for the tray itself could be a source of error. This mean residence time for a tray as indicated by the model itself is of the order of fifteen seconds. The true situation may in fact be plug flow. Now other research workers have demonstrated cases of plug flow and also cases with considerable back mixing on a distillation tray (60). However, as will be seen at a later stage the model developed is sufficiently complex not to merit additional complication for what may well be only a limited improvement.

c) The liquid fraction in the froth is everywhere uniform for each particular tray.

This assumption is known to be untrue. Other workers (6) have described the foam on a distillation tray as being composed of three

-38-

distinct layers: clear liquid, bubbles but mostly liquid, froth but mostly vapour.

It is difficult to say what errors this will introduce. Because the upper region of the froth is in fact of lower density than the mean then to achieve a given liquid flow the real situation will demand a greater froth height than predicted by the model. This could mean that the model will tend to err on the wrong side in the prediction of flooding.

d) The Francis weir formula is a valid description of the

flow of froth over the outlet weir.

This correlation has the form :

$$L = ch^{3/2}$$

where L = liquid flow rate

h = head of liquid over the weir

c = a constant, the value of which depends on the units of L and h.

Bolles (1) recommends that this equation be used in tray design as if pure liquid not froth is flowing over the outlet weir. Inspection of the laboratory sieve tray in operation revealed as might be expected and as reported by other workers (6) that it is in fact froth flowing over the weir. Also this froth may persist into the downcomer depending on the characteristics of the liquid. Hence in this model the 'liquid' is assumed to have a density f where f is the clear liquid density and £ is the liquid fraction of the froth.

e) <u>The froth height is an instantaneous function of</u> the liquid and vapour rates.

• Qualitative considerations and also observation of the laboratory sieve plate support the validity of this assumption for the vapour rate

-39-

dependence. However, it it not really true for a liquid rate variation. In the absence of a better model for the froth height correlation in a dynamic situation it was decided that this assumption would be the most adequate. Any imbalance in the mass balance thereby produced will be taken up by the froth density.

f) The enthalpies of the liquid and vapour streams leaving each plate are linear functions of the tray liquid temperature.

This is based on data supplied by BP. The relation for the liquid enthalpy is a true straight line. That for the vapour enthalpy curves slightly but is well approximated by a straight line.

g) <u>Representation of each plate as an effective heat transfer</u> <u>device with a heat transfer coefficient is an adequate</u> <u>description.</u>

In a distillation column tray design calculation liquid temperatures are generally obtained by a bubble-point calculation. i.e. the basis of the calculation is the liquid composition. This model proposes to neglect mass transfer considerations. Hence a different means of arriving at variations in the tray temperature is required. It is suggested that transfer of heat from the vapour entering the plate to the tray liquid is given by :-

Rate of heat transferred = (Constant) x (Vapour Rate) x (Temperature difference)

The initial data for the unit is used to provide a value for the constant. The vapour rate is included on the right hand side to replace the area term in the normal heat transfer equation. It is equivalent to the assumption that the interfacial area of the froth is a function only of the vapour rate, to which it is directly proportional.

-40-

h) <u>Vapour leaving a tray is at the same temperature</u> as the liquid on the tray.

This is a common design assumption. In this case it is the best estimate available.

i) <u>The presence of the steam in the unit as an inert</u> may be ignored.

With no inert gas present in a system the neglect of mass transfer effects is quite reasonable. Consideration of the process of distillation as being simply a heat transfer operation may be adequate. However, in the presence of inerts mass transfer might play a more dominant role. This is because condensation of vapour occurs by diffusion through the inert. In the present case this will occur in the bubbles in the liquid on the distillation trays. This effect is also a major one in a cooler-condenser and correct design of this apparatus must take account of the diffusion of the condensing vapour through the non-condensebles.

The justification in the present case lies in the small amount of steam present-only a few pounds of steam per hundred pounds of crude feed.

4.2.3 The basic equations.

The dynamic mass balance for the tray gives :-

 $d/dt(W_{Ln}) = L_{Dn} + V_{n+1} + SV_{n+1} + SR_n - L_n - V_n$ (4-1) The dynamic mass balance for the downcomer gives :-

$$d/dt(W_{Dn}) = L_{n-1} - L_{Dn} - SL_{n-1} \qquad \dots (4-2)$$

The tray hold-up is (area) x (height) x (average density) :-

$$W_{Ln} = \mathcal{E}_n f_{Ln} A_{Tn} (\psi_{Wn} + \psi_n) \qquad \dots \qquad (4-3)$$

And similarly for the downcomer :-

$$W_{Dn} = \int LDn^{A} Dn \Psi Dn \qquad (4-4)$$

Head in Head on Head to drive Head to drive Head to be overdowncomer. the tray. liquid under vapour through come by vapour downcomer weir. holes in tray on tray above. above.

where

r ..

$$C_{Ln} = 1.5 \quad (0.36 \times 2.0 \times 32.2 \times [f_{Ln-1} \times A_{UDn}]^2) \dots (4-5a)$$

$$C_{Vn-1} = 2.0 \quad (32.2 \times \xi_{n-1} \times f_{Ln-1} \times f_{Vn} \times (0.6 \times AP_{n-1})^2) \dots (4-5b)$$

The Francis weir formula gives the liquid flow over the outlet weir :-

$$L_{n} = e_{9} l_{n} \varepsilon_{n} \int_{L_{n}} \int_{M} \int_{M} (4-6)$$

The empirical correlation between the froth height and the liquid and vapour rates gives :-

$$\oint_{n} = e_{1}(v_{n+1} + Sv_{n+1}) + e_{2}(L_{Dn} + SR_{n}) + e_{3}\oint_{Wn} + e_{10}(v_{n+1} + Sv_{n+1})^{2}$$

$$+ e_{11} \qquad \dots (4-7)$$

(From Gerster (4) for bubble cap plates and Thomas and Campbell (9) for sieve plates).

The enthalpy balance for the tray gives :

$$d/dt (h_{n}W_{Ln}) = h_{Dn}L_{Dn} + H_{n+1}V_{n+1} + H_{SVn+1}SV_{n+1} + h_{SRn}SR_{n} - h_{n}L_{n} - H_{n}V_{n}$$
....(4-8)

The enthalpy balance for the downcomer gives :-

$$d/dt(h_{Dn}W_{Dn}) = h_{n-1}L_{n-1} - h_{Dn}L_{Dn} - h_{n-1}SL_{n-1} \dots (4-9)$$

The assumption that the heat transferred from the vapour entering a tray to the liquid on the tray = (constant) x (vapour rate) x (temperature difference) gives :-

$$H_{n+1}V_{n+1} + H_{SV_{n+1}}SV_{n+1} - H_{n}V_{n} = m_{n}V_{n+1}(\Theta_{n+1} - \Theta_{n}) + m_{n}SV_{n+1}(\Theta_{SV_{n+1}} - \Theta_{n})$$
....(4-10)

4.2.4 The linearised equations.

The equations set out in the previous section may be linearised about some suitable state. This need not be a steady state. The linearised equations are obtained by expressing each variable as the sum of two components - the value of the variable at the reference state plus the current deviation from that state, e.g. variable x is expressed as $\overline{x} + \Delta x$. The expressions are then multiplied out and terms of order Δ^2 and higher are neglected. Hence the linearisation is only true for small deviations from the reference state.

For example consider equation (4-6) :-

 $(\overline{\psi}_n + \Delta \psi_n)^{3/2} = \overline{\psi}_n^{3/2} (1 + \Delta \psi_n / \overline{\psi}_n)^{3/2}$

$$L_n = e_{9} l_n \xi_n f_{Ln} \psi_n^{3/2}$$

The variables are $L_n, \mathcal{E}_n, \mathcal{Y}_n$ the rest being assumed constant for the plate n. Expanding (4-6) by considering some state near to the reference state we obtain :-

$$\overline{L}_{n} + \Delta L_{n} = e_{g} l_{n} (\overline{\varepsilon}_{n} + \Delta \varepsilon_{n}) \int_{LN} (\overline{\psi}_{n} + \Delta \psi_{n})^{3/2} \qquad \dots (4-11)$$

Now

And by Taylor expansion =
$$\overline{\psi}_n^{3/2} (1 + \frac{3}{2} \frac{\Delta \psi_n}{\overline{\psi}_n} + 0 (\Delta^2) + ...)$$

$$\approx \overline{\psi}_n^{3/2} + \frac{3}{2} \overline{\psi}_n^{1/2} \Delta \psi_n$$

-43-

Substituting this in the expanded equation (4-11) gives :-

$$(L_n + \Delta L_n) = e_{9} l_n (\tilde{\epsilon}_n + \Delta \tilde{\epsilon}_n) \int_{L_n} (\tilde{\psi}_n^{3/2} + \frac{3}{2} \tilde{\psi}_n^{1/2} \Delta \psi_n)$$

Multiplying out : -

$$(\widetilde{L}_{n} + \Delta L_{n}) = e_{9}l_{n} \widetilde{\varepsilon}_{n} f_{Ln} \overline{\psi}_{n}^{3/2} + e_{9}l_{n} \Delta \varepsilon_{n} f_{Ln} \overline{\psi}_{n}^{3/2}$$
$$+ \frac{3}{2} e_{9}l_{n} \varepsilon_{n} f_{Ln} \psi_{n}^{1/2} \Delta \psi_{n} + \frac{3}{2} e_{9}l_{n} f_{Ln} \overline{\psi}_{n}^{1/2} \Delta \varepsilon_{n} \Delta \psi_{n}$$

But applying (4-6) to the reference state gives :- $\overline{L}_n = e_9 l_n \overline{\epsilon}_n \int_{Ln} \overline{\psi}_n^{3/2}$

Substracting this from the previous equation and neglecting the last term which is of order Δ^2 we finally obtain :-

$$\Delta L_{n} = e_{9} l_{n} \int_{L_{n}} \overline{\psi}_{n} \frac{3/2}{\Delta \varepsilon}_{n} + \frac{3}{2} e_{9} l_{n} \overline{\varepsilon}_{n} \int_{L_{n}} \overline{\psi}_{n} \frac{1/2}{\Delta \psi}_{n} \dots (4-17)$$

A similar procedure is applied to each equation to give :-(The bars above the reference state values are omitted for clarity.)

$$d/dt \ (\Delta W_{Ln}) = \Delta L_{Dn} + \Delta V_{n+1} + \Delta S V_{n+1} + \Delta S R_n - \Delta L_n - \Delta V_n + g_1 \dots (4-12)$$

where $g_1 = \left[L_{Dn} + V_{n+1} + S V_{n+1} + S R_n - L_n - V_n \right]$ reference state.
 $\dots (4-12a)$

$$d/dt (\Delta W_{Dn}) = \Delta L_{n-1} - \Delta L_{Dn} - \Delta SL_{n-1} + g_2 \qquad \dots (4-13)$$

where $g_2 = \begin{bmatrix} L_{n-1} - L_{Dn} - SL_{n-1} \end{bmatrix}$ reference state.(4-13a)

$$\Delta W_{Ln} = \varepsilon_n \int_{Ln} A_{Tn} \Delta \psi_n + \int_{Ln} A_{Tn} (\psi_{Wn} + \psi_n) \Delta \varepsilon_n \qquad \dots (4-14)$$

$$\Delta W_{Dn} = \int_{LDn} A_{Dn} \Delta \psi_{Dn} \qquad \dots (4-15)$$

$$\Delta \psi_{Dn} = \varepsilon_n \Delta \psi_n + (\psi_{Wn} + \psi_n) \Delta \varepsilon_n + 2C_{Ln} L_{Dn} \Delta L_{Dn}$$

+ 2C_{Vn-1} (V_n + SV_n) ($\Delta V_n + \Delta SV_n$) + $\varepsilon_{n-1} \Delta \psi_{n-1} + (\psi_{Wn-1} + \psi_{n-1})$.
(4-16)

$$\begin{split} \dot{\Delta} L_{n} &= e_{9} l_{n} \int_{L_{n}} \psi_{n}^{3/2} \Delta \varepsilon_{n} + 3/2 e_{9} l_{n} \varepsilon_{n} \int_{L_{n}} \psi_{n}^{1/2} \Delta \psi_{n} \qquad \dots (4-17) \\ \Delta \psi_{n} &= e_{1} (\Delta V_{n+1} + \Delta S V_{n+1}) + e_{2} (\Delta L_{Dn} + \Delta S R_{n}) + 2e_{10} (\Delta V_{n+1} + \Delta S V_{n+1}) \\ & \cdot (V_{n+1} + S V_{n+1}) \qquad \dots (4-18) \end{split}$$

In the manipulation of the heat balance equations the enthalpies are expressed as linear functions of the tray liquid temperature Θ or the downcomer liquid temperature $\Theta_{\rm D}$:-

> Liquid enthalpy $h = r \Theta + s$ Vapour enthalpy $H = p \Theta + q$

The detailed manipulation of the heat balance equations is given in Appendix 1, section A1.2.

The resulting equations are :-

$$\mathbb{W}_{Ln} \mathbf{r} \, d/dt \, (\Delta \Theta_n) = \mathbf{r} \, (\Theta_{Dn} - \Theta_n) \, \Delta \mathbf{L}_{Dn} + \mathbf{r} \, \mathbf{L}_{Dn} \Delta \Theta_{Dn} + (\mathbf{H}_{n+1} - \mathbf{h}_n) \, \Delta \mathbf{V}_{n+1}$$

$$+ \mathbf{P} \, \mathbf{V}_{n+1} \Delta \Theta_{n+1} + (\mathbf{H}_{svn+1} - \mathbf{h}_n) \, \Delta \, SV_{n+1}$$

$$+ (\mathbf{h}_{SRn} - \mathbf{h}_n) \, \Delta \, SR_n - [\mathbf{r} \, (\mathbf{L}_n + \mathbf{g}_1) + \mathbf{p} \mathbf{V}_n] \Delta \Theta_n$$

$$- (\mathbf{H}_n - \mathbf{h}_n) \, \Delta \, \mathbf{V}_n + (\mathbf{g}_3 - \mathbf{h}_n \mathbf{g}_1) \qquad \dots (4-19)$$

$$\mathbb{W}_{Dn} \mathbf{r} \, d/dt \, (\Delta \Theta_{Dn}) = (\mathbf{h}_{n-1} - \mathbf{h}_{Dn}) \Delta \mathbf{L}_{n-1} + (\mathbf{r}_{n-1} - \mathbf{r}_{n-1}) \Delta \Theta_{n-1}$$

$$- \mathbf{r}_{Dn} \Delta \Theta_{Dn} + (\mathbf{h}_{Dn} - \mathbf{h}_{n-1}) \Delta \mathbf{SL}_{n-1}$$

$$- (\mathbf{h}_{Dn} + \mathbf{r} \Delta \Theta_{Dn}) \mathbf{g}_{2} \qquad \dots (4-20)$$

$$\begin{array}{c} H_{n+1} - m_n \left(\Theta_{n+1} - \Theta_n \right) \Delta V_{n+1} - H_n \Delta V_n \\ = \left[p V_n - m_n V_{n+1} - m_n S V_{n+1} \right] \Delta \Theta_n + \left[m_n V_{n+1} - p V_{n+1} \right] \Delta \Theta_{n+1} \\ + \left[m_n \left(\Theta_{SVn+1} - \Theta_n \right) \Delta S V_{n+1} - H_{SVn+1} \Delta S V_{n+1} \right] \dots \quad (4-21) \\ \end{array}$$

.4.3 Solution of the model.

We have obtained a set of ten equations per tray (4-12) to (4-21) in ten unknowns per tray :- ΔL , ΔV , ΔW_L , ΔW_D , ΔL_D , ΔE , $\Delta \psi$, $\Delta \psi_D$, $\Delta \Theta$, $\Delta \Theta_D$. Four equations are linear differential. The remainder are linear algebraic. The two variables $\Delta \Theta$, $\Delta \Theta_D$ occur only in equations (4-19), (4-20) and (4-21). i.e. the temperature effects on the liquid and vapour densities are not taken into account.

The initial manipulation of the equations into a form suitable for solution consists of the elimination of the three variables $\Delta \varepsilon$, $\Delta \psi$ and $\Delta \psi_{,D}$ from equations (4-14) and (4-15) using (4-16), (4-17) and (4-18). Equations (4-14) and (4-15) then have the form :-

$$\Delta W_{I_{1}} = f_{1} (\Delta L, \Delta V, \Delta L_{D})$$

$$\Delta \mathbb{W}_{\mathrm{D}} = \mathbf{f}_{2} \left(\Delta \mathbf{L}, \Delta \mathbf{V}, \Delta \mathbf{L}_{\mathrm{D}} \right)$$

Differentiation of these yields expressions for $d/dt(\Delta W_L)$ and $d/dt(\Delta W_D)$ which may be substituted into equations (4-12) and (4-13). Equations (4-12) and (4-13) thus remain linear differential equations, but are now in the unknowns ΔL , ΔL_D , and ΔV . The method of solution employed is then to assume a value for the vector ΔV and on this basis to solve the four linear differential equations (4-12) (4-13) (4-19) and (4-20) for the four unknowns ΔL , ΔL_D , $\Delta \Theta, \Delta \Theta_D$. Equation (4-21) is then used to yield an improved estimate of ΔV . At some predetermined point in the computation of the transient the calculation is stopped and a new linear model is generated about the point reached. That is the elements of the system matrix are updated so that the non-linear problem is solved by a quasi-linear

technique.

That then is the overall approach. Now consider the details of the method of solution. The manipulation by which equations (4-12) to (4-18) are reduced to two differential equations in three unknowns is given in Appendix 1. The two equations so obtained have the form :- $(\Delta \hat{L} \text{ denotes } d/dt(\Delta L)).$

$$b_1 \Delta L_{Dn} + b_2 \Delta L_n = \Delta L_{Dn} + \Delta V_{n+1} \Delta S V_{n+1} + \Delta S R_n - \Delta L_n - \Delta V_n + g_1$$
....(4-22)

 $b_{3}\Delta L_{Dn-1} + b_{4}\Delta L_{n-1} + b_{5}\Delta L_{Dn} + b_{6}\Delta L_{n} = \Delta L_{n-1} - \Delta L_{Dn} - \Delta SL_{n-1} + g_{2}$(4-23)

where b_1 to b_6 are as follows :-

$$b_{1} = \xi_{n} \int_{Ln} A_{Tn} e_{2} \left\{ 1 - 3 \langle \psi_{Wn} + \psi_{n} \rangle / (2 \psi_{n}) \right\}$$

$$b_{2} = \int_{Ln} A_{Tn} \left(\langle \psi_{Wn} + \psi_{n} \rangle / (e_{9} l_{n} \int_{Ln} \psi_{n}^{3/2}) \right)$$

$$b_{3} = \int_{LDn} A_{Dn} \xi_{n-1} e_{2}^{p} \left\{ 1 - 3 \langle \psi_{Wn-1} + \psi_{n-1} \rangle / (2 \psi_{n-1}) \right\}$$

$$b_{3} = 0, \quad n = 2.$$

$$b_{4} = \int_{LDn} A_{Dn} \left(\langle \psi_{Wn-1} + \psi_{n-1} \rangle / (e_{9}^{p} l_{n-1} \int_{Ln-1} \psi_{n-1}^{3/2}) \right)$$

$$b_{5} = \int_{LDn} A_{Dn} \left\{ \xi_{n} e_{2} \left[1 - 3 \langle \psi_{Wn} + \psi_{n} \rangle / (2 \psi_{n}) \right] + 2 \zeta_{Ln} L_{Dn} \right\}$$

If we now select as our state vector \underline{X} where :- $\underline{X}^{T} = [\Delta L_{1}, \Delta \Theta_{1}, \Delta L_{D2}, \Delta \Theta_{D2}, \Delta L_{2}, \Delta \Theta_{2}, \Delta L_{D3}, \Delta \Theta_{D3}, \dots \Delta L_{DnT}, \Delta \Theta_{DnT}, \Delta L_{nT}, \Delta \Theta_{nT}]$

then we can write down the two equations for the top tray (equations

(4-12) and (4-19)) and the four equations for each remaining tray '(equations (4-12), (4-13), (4-19) and (4-20) in matrix form :-

$$AX = BX + C$$
(4-24)

where C, the vector of forcing functions, also contains the terms in V. The matrices A and B have the following form if the equations are written down in the order (4-13), (4-20), (4-12), (4-19) :-

(x denotes a non-zero element).

A:-	X	0	0	0	0										
	0	x	0	0	0	0									
	x	0	x	0	x	0	0								
	0	0	0	x	0	0	0	0							
	0	0	x	0	x	0	0	0	0						
		0,	0	0	0	x	0	0	0	0					
			x	0	x	0	x	0	x	0	0	,			
				o	o	0	0	x	0	0	0	0			
					0	0	x	0	x	0	0	0	0		
						0	0	0	0	x	0	0	0	0	
	•												et	с.	
B:-	Гх	0	0	0	0										
	0	x	0	0	0	x									
	x	0	x	0	0	0	0								
	x	x	0	x	0	0	0	0							
	0	0	x	0	x	0	0	0	0						
•		0	x	x	o	x	0	0	0	x					,
			0	0	x	0	x	0	0	0	0				
*				0	x	x	0	x	0	0	0	0			
					0	0	x	0	x	0	0	0	0		
						0	x	d	0	x	0	0	0	x	etc.
								-	48	•					

+ --

Equation (4-24) is solved numerically by the implicit method described by Holland (33), P.27. This is a generalisation of the $t+\Delta t$ approximation to f(x) dt by the trapezoidal rule:-

$$t \stackrel{t+\Delta t}{t} f(x)dt \stackrel{:}{:} \left[\mu f(x) \right]_{t+\Delta t} + (1-\mu)f(x) \Big]_{t} \Delta t \quad \dots (4-25)$$

For $\mu = \frac{1}{2}$ the above approximation reduces to the trapezoidal rule. Application of equation (4-25) to equation (4-24) yields:-

 $(A/\Delta t)(\underline{X}_{n+1} - \underline{X}_n) = \mu(\underline{BX}_{n+1} + C) + (1-\mu)(\underline{BX}_n + C) \quad 0 \le \mu \le 1.$ which on rearrangement gives:-

$$\underline{X}_{n+1} = \left[\underline{A}_{t} - \mu B\right]^{-1} \left[\left\{ (1-\mu)B + \underline{A}_{t} \right\} \underline{X}_{n} + C \right] \qquad \dots (4-26)$$

Equation (4-26) may conveniently be written:-

$$\underline{X} = E^{-1}F$$

where E is a band matrix with nine elements in each row and F is a column vector. The shape of E is the same as A and B given above. The band elements of E are in general zero only if the corresponding elements of both A and B are zero.

This method of solution has been assembled as a computer program. This is described in the next section.

4.4. Computer program for the model solution.

The program is written in Fortran 4 for the ICL 1905 computer at Loughborough University. This third generation machine has 32,000 words of core store, a factor which affected the program considerably.

The program is described in detail in Appendix 2 and sample data and results are given. When the program was written no routine was available for the economical inversion of a large band matrix and a special routine (subroutine BMM3) was written. This

-49-

employs Jordan's method (59) and incorporates partial (row) pivoting. ICL have since introduced a similar routine based on Gaussian elimination.

The method of solution requires the specification of a time increment for the numerical integration, the frequency with which the model is to be relinearised and a value for the implicit parameter μ . The author has found some interaction between these parameters. Indeed since the calculation iterates on the ΔV vector at each step it is possible for large integration steps to give such slow convergence of this iteration that small integration steps make more efficient use of computer time.

4.4.1 The effect of the implicit parameter μ .

The basic approximation made in the integration of the differential equation is:-

$$t + \Delta t$$

$$t \int f(x) dt \doteq \left[\mu f(x) \right]_{t+\Delta t} + (1-\mu)f(x) \Big|_{t} \Delta t.$$

This is considered in geometric terms in Fig. 4-2.

f(x)dt = shaded area

-50-

•The approximation is equivalent to writing:-

$$\begin{aligned} t + \Delta t \\ \int f(x) dt &= ABDC + CEFG \\ t \end{aligned}$$

Clearly this approximation will become exact if a choice of μ is made which makes the stippled areas equal. If the curve between t and t+ Δ t is a straight line then clearly the best value is $\mu = \frac{1}{2}$. If the curve is concave then $0.0 < \mu < 0.5$, if convex $0.5 < \mu < 1.0$.

Inspection of early results and intuition indicate that in the present problem transient response curves may follow either concave or convex paths depending on the variable and the elapsed time. At no one time is it reasonable to suppose that there will be a single choice of μ that will give the correct integral for all variables.

Experiments with different values of μ revealed that there is a minimum value of μ for which the response of the system is stable. The results of using different values of μ are demonstrated by plotting the transient for the liquid rate from downcomer 5 see Fig. 4-3.

Because of the small time increment employed it is not felt that errors from a poor value of μ will accumulate rapidly. The variation in the transient for the liquid rate from plate 1 is given in Fig. 4-4. The response curves obtained using $\mu = 0.5, 0.6$ and 0.7 are almost coincident and that for $\mu = 0.8$ is very close. 4.4.2 Effect of the time increment.

In selecting a time increment for a numerical integration three factors must be borne in mind. The first is that the time increment must clearly be less than or equal to the time over which the linearity of the mathematical model may be assumed valid. The second is that the approximation error for the calculation of

-51-

FIG. 4-3.

TIME (seconds).

TRANSIENT RESPONSE OF LIQUID RATE FROM DOWNCOMER TO PLATE 5 FOR VARIOUS VALUES OF IMPLICIT PARAMETER.

t+ Δt $\int_{t}^{t} f(x)dt$ will be zero if the correct value of μ is chosen for each variable. However, in general the correct value of μ cannot be chosen and so the error is proportional to the time increment. The third concerns accumulation of numerical error. Considerable computation is involved in calculating the response of all variables over one time step. If round-off errors result in an error say λ in one variable then after n steps the error may have accumulated to $n\lambda$. This could lead to serious error as well as being a waste of computer time. (The classic example of round-off error accumulation is given by Holland (32):-

'Using the formula $A_n = 10A_{n-1} - 10$ and given that $A_1 = 10/9$ calculate A_{10} using 7 figure arithmetic.

 $A_{1} = 1.111111$ $A_{2} = 1.111110$ $A_{3} = 1.111100$ \vdots $A_{10} = -110.0 \text{ as compared with the obvious correct answer}$

• of 1.1111111!)

The results for a particular problem obtained using several values of the time increment are given in Fig. 4-5. It will be seen that the results using $\Delta t = 2.0$ seconds and $\Delta t = 1.0$ seconds are close. A time increment of 1.0 seconds was selected as giving a suitable compromise between accuracy and computation time in many of the computer runs.

4.4.3 Effect of relinearisation of the model.

Two long runs have been performed using a 15-plate column, a time increment of 1.0 second and a value of $\lambda = 0.8$. The first

-54-

run incorporated re-evaluation of the system matrix at every time step. The second assumed linearity throughout. The results are given in Figs. 4-6 and 4-7.

It will be seen that the linear model did not give a stable response under the integration conditions used. Also it will be noticed that the linear and re-linearised runs were about coincident for the first few seconds. This suggests that a re-linearisation interval of greater than one second would be acceptable. However, the assumption of linearity throughout would not be valid. 4.5 The predictions of the mathematical model.

The computer program for the model solution was used to obtain the response for a reflux step increase on a hypothetical fifteen plate column, the details of which are contained in the sample data for the program in Appendix 2. For this size of problem the program required about one minute of computation time for each second of response time. Typical results from this run are given in Figs. 4-8 to 4-11. The first general point to note is that the major part of all the responses was completed within three to four minutes.

4.5.1 The liquid rate transient.

At the top of the column the liquid rate changes smoothly and is non-oscillatory. Fig. 4-8 shows that the liquid rate from tray 1 follows a smooth exponential decay lasting 30 seconds. Peaks on the response curves became evident lower in the column as a distinct surge passes down through the system. Fig. 4-9 shows that this surge reaches a peak after about 50 seconds for the liquid rate leaving the downcomer to the fifth tray and after about 110 seconds for the liquid rate leaving tray 12. It is

• 、.

-58-

-59-

5

.

ì
interesting to note the negligible effect on the liquid rate from the top tray of the varying vapour rate at the top of the column. (It should, however, be borne in mind that the scales on the liquid and vapour rate axes are in the ratio 5:1 in Figs. 4-8 to 4-10.)

4.5.2 The vapour rate transient.

The first point of note is the oscillatory response obtained at the top of the column, as shown for example by the vapour rate leaving tray 1 in Fig. 4-8. By tray 5 this is little more than a small irregularity - a plateau on an otherwise smooth response (Fig. 4-9). The vapour rate leaving tray 12 exhibits a smooth response that matches the liquid rate transient for tray 12 for the main part. The next point, not unexpected, is the wide discrepancy at the top of the column between the settling time for the liquid and vapour rates. Whereas the liquid rate equilibrates after 30 seconds, the vapour rate is barely steady after 200 seconds. At the bottom of the column the reverse is true, as Fig. 4-10 demonstrates, although the discrepancy is not so large. This is surprising since it would be expected that the changing liquid rate would cause the vapour rate to vary. -However, the strong influence of the feed vapour just below this point is probably the reason for this steadiness. Support for this is given by the fact that liquid rate variations of similar magnitude have a decreasing effect on the vapour going down the column.

4.5.3 The tray temperature transient.

The main point of note with the transient response of the tray liquid temperatures is that at no point in the column has equilibrium been established in under 200 seconds. The temperatures

-62-

at the top display the steepest rates of change but also appear to take the longest time to achieve final equilibrium. This indicates the strong feed-back effect due to the vapour. A pronounced oscillation is visible on the temperatures in the lower part of the column (see Fig. 4-11). This is probably due to the overcooling by bulk liquid dumping being reversed by the strong effect of the feed vapour only two trays below.

4.6 Conclusions.

2

The mathematical model of the hydraulics and heat transfer processes in a distillation column indicates settling periods of three to four minutes for flows and temperatures in a 15 plate industrial sized crude column following a step change in the flowrate of the overhead reflux return. The response curves appear consistent with each other and are not illogical from a practical point of view. The computer program required to solve the model is large and extremely time consuming. The mathematical method selected for numerical integration did not prove to be particularly robust or rapid, although this may have been partly due to the need for an iterative loop at each integration step. Thus, whereas this exercise is of use in assessing the contribution of two of the secondary effects in distillation dynamics, the model as such is not suitable for incorporation into any sort of control system.

-63-

<u>CHAPTER 5</u> INFORMATION FROM THE INDUSTRIAL UNIT BY EXPERIMENT AND OBSERVATION.

5.1 Introduction.

The unit made available for experimental work was Crude Oil Distillation Unit No. 3 at BP Refinery (Llandarcy) Ltd. in South Wales. The operators on this unit were accustomed to assisting with BP test runs. These previous tests had been primarily concerned with achieving and maintaining steady state at specified operating conditions. Little dynamic investigation had been carried out on the main distillation column.

5.2 Objectives.

The objectives of the experiments were:-

(i) to obtain a 'feel' for the dynamics of the unit.

(ii) to establish a working method for performing dynamic experiments on this type of unit.

(iii) to familiarise the various operating crews with this type of test - in particular the importance of time as a variable and the danger of misguided 'trimming' of variables.

(iv) to provide a check on the predictions from a mathematical model of a crude distillation unit (described in Chapter 4.)
(v) to provide data from which to evolve a simple control strategy by which to achieve a major change in operating conditions with minimum disturbance.

5.3 Description of the unit.

5.3.1 Overall layout.

A simplified flowsheet for the unit is given (Fig. 5-1). The crude enters the furnace in three passes, and is raised to a temperature of about 650^oF. The three lines are then run together and the mixture of liquid and vapour is fed to the main column.

-64-

The overhead product from this is passed forward to the re-run tower. The sidestream products, which may include heavy naphtha, kerosine, light gas oil and heavy gas oil, are steam stripped before being passed to storage. The stripper vapours are returned to the main column. Reduced crude is pumped from the base of the main tower going forward to storage. The re-run tower makes a bottom product for straight-run gasoline blending and a top product for debutaniser feed. The debutaniser makes a fuel-gas overhead product and a bottoms for straight-run gasoline blending.

This project is solely concerned with the dynamics of the main tower, but it may be seen that any improvement in the main tower control during major changes in operating conditions should give a smoothly changing overhead product. The consequent improvement in the re-run and debutaniser tower feeds may be expected to improve the quality of control of these tower's also. 5.3.2 The main tower and its operation.

The main tower has a straight length of 122 ft. and an internal diameter of 14 ft. 6 ins. It contains 44 plates, 40 in the rectification section and 4 in the bottoms' stripping section. Trays 1-4, and 37-40 are split flow bubble cap trays; trays 5-36 are split flow sieve plates; trays 41-44 are single pass bubble trays.

The feed enters the space below tray 40 - the flash zone where some vaporisation occurs as the feed equilibrates at the column pressure. Vapour passes up through the rectification section and out of the column to the overhead condensers. Total condensation occurs and the liquid 1s passed to the overhead reflux drum. This has a capacity of 3560 gallons. A single pump is used to return part of this liquid to the main tower as overhead

-66-

reflux and to pass part forward as re-run tower feed.

The sidestream products may be withdrawn as follows:heavy naphtha from tray 10 kerosine from tray 16 light gas oil from tray 30 heavy gas oil from tray 36

These products are steam stripped before being passed to storage. The heavy naphtha and kerosine are stripped with 50 psig saturated steam. The gas oils are stripped with superheated steam at a temperature of about 800° F. The strippers are mounted oneabove the other to form a single side tower.

It may be appreciated that if the system so far described were operated then very high liquid rates would occur in the top part of the tower, reducing at each offtake to low rates in the base of the rectification section. In order to produce a relatively uniform reflux ratio throughout heat is removed at two intermediate points. These 'pumparounds' remove liquid from one tray, pass it through a heat exchanger and return the cooled liquid a few trays higher up the column. In this way the reflux ratio above the pumparound is reduced, that below being unchanged. The unit used for this project had intermediate refluxes removing liquid from trays 13 and 29 and returning it to trays 10 and 27 respectively.

The liquid leaving the flash zone is joined by the liquid leaving the bottom of the rectification section (termed the 'true over-flash',) and passes across the four bubble plates in the base of the column. Light ends are stripped out with superheated steam, there being no reboiler on this type of unit.

The superheated steam serves two useful purposes. It strips

-67-

out the light ends as mentioned above and also serves to reduce the partial pressure in and below the flash zone. This enables greater vaporisation to be achieved at a lower temperature, increasing the overflash. This permits lower pipestill outlet temperatures (PSO's) and increases the reflux ratio on the rectification section below the heavy gas oil take-off.

5.3.3 Main tower instrumentation.

The instrumentation on the experimental unit is more comprehensive than that normally associated with this type of unit insofar as temperature measurement is concerned. This was originally installed to facilitate experimental work. The main column was fitted with temperature indicators on the liquid and vapour streams listed in Fig.5-2. These were thermocouples wired into the main control room. The appropriate toggle switch is held to display the required temperature on the drum scale. It is possible to read this scale to 1°F. Damping is rapid and reproducibility is better than $\frac{1}{2}^{\circ}F$. The absolute error on any reading was not known but was thought by BP instrument personnel to be small. These temperatures were regarded as adequate by BP for heat and mass balance purposes. These were carried out daily for this unit.

All main external flows and the tower top pressure are recorded in the control room on Swartout chart recorders. The PSO's are also recorded but the readings differed considerably from the thermocouple indications mentioned above. The latter were reputedly the more reliable and the plant operators only used the chart recorders for noting trends or keeping watch for sudden upsets.

-68-

There are no major feedback control loops on the unit. The side-stream product offtake rates from the strippers are controlled from the control room by set point adjustment of the two-term controllers. Some offset is hormally evident. The products run from the main tower to the strippers under stripper base level control. The tower top temperature is used to control the tower top reflux The overhead product flow is then adjusted by the operator rate. to maintain a constant level in the overhead reflux drum. The intermediate reflux rates are controlled by manual setpoint The PSO's provide furnace fuel rate control. adjustment. The reduced crude runs from the base of the tower under tower-base level control. Tower top pressure is controlled by a bleed from the overhead vapour line to the reflux drum, bypassing the overhead condensers. On-line analysers are fitted but serve no servo-control function. These give naphtha and kerosine 10% and 90% ASTM distillation points and the residue viscosity.

Ref. No.

Variable

	Raw data
T18	Temperature of liquid in crude tower bottom
T19	Heavy gas oil draw-off temperature ex-tower
T20	Light gas oil draw-off temperature ex-tower
T21	Kerosine draw-off temperature ex-tower
T23	Upper intermediate reflux draw-off temperature
T24	Lower intermediate reflux draw-o ff temperature
T25	Lower intermediate reflux return temperature
T26	Upper intermediate reflux return temperature
T27	Overhead reflux return temperature
T46	Crude oil feed to tower - stream A temperature
T47	Crude oil feed to tower - stream B temperature
T48 _	Crude oil feed to tower - stream C temperature
T49	Temperature of vapour below tray 40
T50	Temperature of overhead vapour to condensers
T71	Superheated steam exit temperature - stream A
T7 2	Superheated steam exit temperature - stream B
TA1	Tray 2 liquid temperature
TA2	Tray 9 liquid temperature
TA3	Tray 11 vapour temperature
TA4	Tray 11 liquid temperature
TA5	Tray 13 liquid temperature
TA6	Tray 17 liquid temperature

Ref. No.	Variable
TA7	Tray 19 liquid temperature
TA8	Tray 28 vapour temperature
TA9	Tray 28 liquid temperature
TA10	Tray 30 liquid temperature
TA11	Tray 31 liquid temperature
TA12	Tray 37 liquid temperature
TA13	Tray 41 liquid temperature
TA14	Tray 42 liquid temperature
TA17	Temperature vapour ex-kerosine stripper
TA18	Temperature liquid ex-kerosine stripper
TA19	Temperature vapour ex-light gas oil stripper
TA20	Temperature vapour ex-heavy gas oil stripper

Fig. 5-2

Temperature Indicators on CDU3

5.4 Experimental runs.

Five experimental runs were carried out on CDU3 involving one or more planned changes in liquid flowrates. In addition data was recorded for four 'observation runs'. These results gave data describing the common operations of crude oil feedstock changes and activity changes. The runs are listed in Figs.5-3 and 5-4.

EXPERIMENTAL RUNS

Run No.	<u>Date</u>	Crude	% Change	Type of change
TR1	18-6-68	Crude cil A	+8%	Reflux - step
TR2	17-9-68	Crude oil B	+12%	Reflux - step
TR3	21-5-69	Crude cil C	-14%	Reflux - step
' TR4	2-7-69	Crude oil D	-10%	Light gas oil withdrawal - step
TR5	5-9-69	Crude oil B	-11%	Pre-planned change - reflux step followed by ramp.

Fig. 5-3

OBSERVATION RUNS

<u>Run No.</u>	Date	Crude	<u>Operation</u>
0 B1	21-5-69	Crude oil C	Crude change to Crude oil A
0 B2	3-9-69	Crude oil C	Crude change to Crude cil B .
0 B3	3-9-69	Crude oil B	Activity change.
0 B 4	4-9-69	Crude oil D	Crude change to Crude oil B

Fig. 5-4

5.4.1 <u>Step change experiments on the overhead reflux - A</u> comparison of runs TR1, TR2 and TR3.

Three experiments were performed to determine the response of the unit to a step change in the flowrate of the overhead reflux return. The first two runs permitted the development of experimental expertise. It was hoped that these would also provide a replication that would increase confidence in the reliability of the results.

The general pattern evolved for performing this type of experiment was first to set the unit on steady state operation for a period of four hours to note random variations and to check that the unit was truly steady. Then the step change would be injected and the column variables logged by hand for four to six hours. The step change in the overhead reflux rate was achieved by first disconnecting the tower top temperature controller so that the top reflux was on flow control only. The reflux controller set point was then stepped down. Frequent adjustment of this setpoint to maintain the indicated flow constant was essential.

• All the temperature indicators for the distillation trays and the relevant external streams were monitored. All the external

-71-

liquid flowrates were monitored. It was found that one person could read and note all the necessary temperatures and flows in three minutes. A higher frequency on the rapidly changing variables immediately following a change was achieved by recording only a representative selection of the available temperatures for short periods. Once the initial thirty minutes after a step change had elapsed, it proved adequate to monitor all variables every ten minutes.

Samples of the overhead and sidestream products were withdrawn during all three tests. Initially these were taken every ten minutes, the interval widening to twenty or thirty minutes as the test progressed.

Sample results from each test are presented in Figs. 5-5, 5-6 and 5-7. Fig. 5-5 gives the response of the temperature of the overhead vapour to the condensers for each test run. The vertical axes have been adjusted so that the initial 'steady state' values prior to each test coincide. The time scale has as zero the point at which the step change was injected.

The results from experimental runs TR1 and TR2 do not yield much useful information. As has been mentioned, these runs were primarily for the purpose of acquiring a suitable experimental technique rather than obtaining accurate results. The results from TR2 in particular are difficult to separate from normal process noise. However, the early runs do supply some support for the validity of the results of the third run, TR3.

The first point to emerge from TR1 and TR2 was that as large a change as possible was essential if the adequate separation of the response from process noise was to be achieved. The second feature of the results is the general pattern for most of the

-72-

PEVIATION OF TEMPERATURE FROM INITIAL VALUE (°F).

RESPONSE OF KEROSINE OFFTAKE TEMPERATURE FOR EXPERIMENTS

TRI, TR2 AND TR3.

FIG. 5-6.

-35

ť

-74-

. .

response curves. Seven of the nine responses shown exhibit a rapid rise to a maximum. This is held for varying lengths of time before the variables settle out around steady state values intermediate between the initial steady state and the maximum. The two curves that are different are the response of the overhead vapour temperature in TR2 and the light gas oil gravity in TR1.

Examination of the 'peaks' on these response curves reveals no real correlation between those for the overhead vapour temperature. The kerosine offtake temperature responses exhibit peaks held for the following periods :-

TR1	0.25		1.05	hrs.
TR2	0.10	-	0.60	hrs.
TR3	0.10	-	1.00	hrs.

The light gas oil gravity curves, perhaps because of the lower sampling frequency, exhibit sharper peaks. Peaks occur at the following times :-

TR1	1.0 hrs.
TR2	0.7 hrs.
TR3	1.15 hrs.

Thus it may be concluded that broad agreement exists between the three experimental results for these last two responses. Together with the general characteristic shape of most of the curves mentioned earlier it was felt that the two initial runs provided general support for the validity of the interesting curves obtained in TR3. These are described in more detail in the next section. <u>5.4.2 Step change experiment on the overhead reflux - Run TR3.</u>

a) <u>Method</u> The unit was operated in accordance with the

-75-

The unit was running a feed procedure L. normal of Crude making overheads, kerosine, light and heavy gas oil and oil C, The column was under observation from 0900 hrs 21-5-69. residue. Careful steady state operation was being maintained to comply with a BP test run. The metered feed and product flows, the thermocouple and pressure gauge readings were recorded at approximately forty minute intervals. Samples of the stripped sidestream products and the overheads and residue were also taken at forty minute intervals. The step decrease was made at 1400 hrs so that steady state had been observed for five hours. The decrease in reflux was -14% of the overhead reflux flow. Immediately after the step all charts and thermocouples were read and samples taken. Sampling was continued at ten minute intervals. The main thermocouples were read every three minutes and the chart readings and the auxiliary thermocouples were monitored every ten minutes. Readings were continued until 2015 hrs.

b) Constancy of the primary and secondary forcing functions.

The <u>crude oil feedrate</u> meters indicated mean value $\pm \cdot 2$ %. The mean crude feed temperature was 649 $\pm 2^{\circ}$ F, from the thermocouples in each feed pass. (Figs. 5-8 and 5-9).

The <u>overhead reflux flow</u> prior to 1400 hrs was maintained at a constant flowrate. At 1400 hrs the flow was dropped steeply to 86% of its original value. Oscillations between 86% and 90% occurred over the next hour after which the step decrease of -14% was held steadily. . Pressure fluctuations at the top of the column during the early part of the response together with the extreme sensitivity of the flow to small set point adjustments made this vital flow one of the most difficult to control. (Fig. 5-10).

-76-

-77-

The <u>overhead reflux return temperature</u> was maintained steady at 106 $\pm 1^{\circ}$ F prior to the test. Over the first half hour after the step change the temperature rose to 109° F. This value was held for a half hour before falling again to 106° F over the next hour. (Fig. 5-11).

The <u>upper intermediate reflux flow</u> was maintained at 34250 gph prior to the step change but eased up to 34500 gph one hour after the step decrease. The return temperature rose rapidly by $3^{\circ}F$ approximately six minutes after the step. This new value was held for $1\frac{1}{4}$ hours after which the temperature slowly moved down to $1^{\circ}F$ above its initial value. (Figs. 5-12 and 5-13).

The <u>lower intermediate reflux</u> was maintained steady at 28150 gph throughout. The return temperature, initially $306^{\circ}F$ rose to $316^{\circ}F$ over the fifty minutes following the step. This value was held for 10 minutes and was followed by a fall over thirty minutes to $310^{\circ}F$. (Figs. 5-14 and 5-15).

The <u>crude tower top pressure</u> was better controlled in this test than in previous runs. It was mostly held at 26 psig but a drop to 25 psig immediately after the step was experienced, followed by an over correction to 26.5 psig. (Fig. 5-16).

The kerosine product withdrawal rate was generally held steady with the minor exception of short drops of 3% occurring one hour and three hours after the step. (Fig. 5-17).

The light gas oil product withdrawal rate was maintained within $\pm 1\%$ throughout. (Fig. 5-18).

The heavy gas oil product withdrawal rate was maintained within + 1% throughout. (Fig. 5-19).

The returning vapour from the kerosine stripper rose to a peak fifteen minutes after the step and maintained this for about

-78-

-79-

2

-80-

thirty minutes before dropping 15[°]F back to a final equilibrium value. (Fig. 5-20).

The <u>returning vapour from the light gas oil stripper</u> achieved a peak forty minutes after the step but fell back 12⁰F over the next forty minutes to a final equilibrium value. (Fig. 5-21).

The <u>returning vapour from the heavy gas oil stripper</u> behaved in a similar manner to that from the light gas oil stripper. (Fig. 5-22).

c) The responses of the tray temperatures and the product properties.

These are shown in Figs. 5-23 to 5-40. The results are smoothed to bring out the major response, the unsmoothed set of points X being related to the smoothed set of points Y by :-

$$Y_{N+1} = \frac{1}{4}X_N + \frac{1}{2}X_{N+1} + \frac{1}{4}X_{N+2}$$

The solid lines shown on the graphs are drawn through the points Y and the points X, the raw data, are shown thus **o**.

Examination of the tray temperature responses and product gravity curves reveals a similar shape as far as the rectification section is concerned as shown in Fig. 5-41.

Fig. 5-41

An analysis of the temperature responses may be carried out. In the table, Fig. 5-42, T1 is the temperature difference between

-82-

ţ

-83-

-86-

.

-88-

÷.

Ç,

-90-

the initial steady state and the peak on the oscillatory response. T2 is the temperature drop from the peak to the final steady state. The times are expressed in hours from the time at which the change was injected.

<u>Tray No.</u>	<u>T1</u> ('	^o F) ^{<u>T2</u>}	<u>Time of peak</u>
0	17	5	0.40
12	12	1.5	1.10
16 '	26	1 6	0.50
30	23	15	0.75
36	22	14	0.90

Fig. 5-42

It is surprising that Fig. 5-42 shows no clearly discernible trends. The times at which the trays begin to swing to their final steady states might be expected to follow some sequential pattern down the column. That they do not might be attributable to the differing effects of the intermediate pumparounds. Further discussion of these results is included in Chapter 7. 5.4.3 Step_change experiment on a sidestream - Run TR4.

This experiment was performed whilst the unit was running Crude oil D at maximum throughput _______ and making overheads, kerosine, light and heavy gas oils and residue. The unit was observed for ten hours. Normal operational adjustments were being made during the first four hours. The unit was allowed three hours in which to settle. The light gas oil rate was then reduced using the controller setpoint to give a decrease of 10%. The tray temperature and the automatic distillation analyser results for the kerosine product were then logged for $3\frac{1}{2}$ hours. The results are presented in Figs.5-43 to 5-50. Discussion of the results is included in Chapter 7.

-91-

FIG. 5-44.

. .

.

-92-

-93-

5.4.4 Observation of a crude oil change on the unit.

a) Observation run OB1.

The unit was initially operating under steady state conditions refining Crude oil Clat maximum flow. Experimental test run TR3 had just been concluded and all flows had been held constant for five hours.

In view of trouble that was anticipated due to water slugs in the feed throughput was dropped by about 4%. The change to Crude oil A was made by first cracking in 50% Crude oil A with Crude oil C. The change to 100%Crude oil A was made thirty minutes. later. The main flow and temperatures were logged by the author for two hours and then by the plant operators for a further 24 hours. The results are presented in Figs. 5-51 to 5-61.

b) Observation run OB2.

The unit was running Crude oil C at maximum feed rate. The column variables were logged from 0900 hrs. Crude oil B was blended together with Crude oil C at 0915 hrs in a small unspecified percentage. The switch to 100% Crude oil B was made at 1015 hrs. The sidestream withdrawal rates were maintained constant. The main temperature responses are presented in Figs. 5-62 to 5-65.

c) Observation run OB4.

The unit had been running Crude oil D 1 at near: maximum feedrate for about 12 hours. The change to Crude oil B was called for with production of identical products. This necessitated a change in the relative amounts of each sidestream offtake. Also it was required to raise throughput by about 3%.

The change was made at about 1000 hours. At 1015 hrs a rapid fall in the residue flowrate from the unit was noted. This

-95-

-96-

Ť

1

-97-

4

,

.

J

1

-99-

ş

,

1. 3

1

-102-

J

was believed to be due to a slug of light material, possibly water, entering the column. Throughput was cut back then slowly brought back up to 95% maximum over the next $1\frac{1}{2}$ hours, then taken on up to the maximum over the next three hours. The main response curves are shown in Figs. 5-66 to 5-69.

5.4.5 Observation of an activity change on the unit - Run OB3.

This run followed immediately after the crude change, run OB2. The unit was operating steadily and refining Crude oil B. The request was received to change the unit to a yield structure suitable for making a different kerosine. This change is summarised in Fig. 5-70.

		<pre>/</pre>	
Stream	، فـ	<u>% change</u>	
Top product	-	0	1
Kerosine	;	-35	
Light gas oil		+57	
Heavy gas oil		+12	ı

Fig. 5-70

The changes were made simultaneously, each being a single step. The flows were then held constant. The responses of the main column temperatures are presented in Figs. 5-71 to 5-74. It will be seen that the response dies away rapidly over a period of $1\frac{1}{2}$ hours.

5.4.6 Experiment using a pre-planned control strategy - Run TR5

The characteristic response of many column variables to a step change in the reflux flowrate (with no tower top temperature controller) is as shown in Fig. 5-75.

-103-

-104-

-105-

-106-

Suppose it is desired to make a change in the overhead reflux during normal operation with no tower top temperature controller. This will result in tray temperatures and product properties moving from level A to level B in Fig. 5-75. A means is required of eliminating the large oscillation (the peak height of which is between 1.5 and 3 times the steady state difference depending on position in the column or product property selected). One approach would be to measure a and b for the overhead reflux temperature response. At time zero fraction a/b of the desired This is held for a time c hours at which change is stepped in. time the peak is reached. The remainder of the change is then ramped in (a ramp being approximated to by a period of small steps over a period (2-c) hours. This should then give a response of the type shown in Fig. 5-76. Steady state would then be achieved

in less than half the time taken by the step change method, since c is in general less than one hour and the response normally

-107-

occupies two hours.

The above experiment was carried out on the unit whilst refining Crude oil B at maximum throughput. The results were almost up to expectations and are presented in Figs. 5-77 to 5-81. Because of the small size of the permitted step some difficulty was experienced with the final ramp. This was reduced to two small steps but even so the overall change was greater than planned. Had this difficulty not arisen it may be appreciated that the final steady state would have been achieved even earlier than it actually The postulated open loop response is also shown superimposed was. on the results and is based on the experimental reflux step change responses obtained on run TR3. The times of the peaks, the shapes and the (peak height) : (steady state change) ratio are the key parameters copied from the reflux step change response curves to reconstruct these open loop response curves. If a criterion of performance is taken as the time taken for the draw-off temperature to approach and remain within 3°F of the final steady state result then the table shown in Fig. 5-82 can be drawn up.

Variable Temperature	Time to a <u>3°F and</u> Open loop (n	approach within remain there With control minutes)	Improveme <u>cont</u> (minutes)	nt due to rol % on open loop
Tower top temp.	66	49	17	$\frac{\text{time}}{26}$
Kerosine offtake temp	. 75	37	38	51
Light gas oil offtake temp	. 90	49	41	46
Heavy gas oil offtake temp	. 80	31	49	61

Fig. 5-82

Further discussion on all the experimental results is presented in Chapter 7.

-108-

FIG. <u>5-79</u>. <u>KEROSINE WITHDRAWAL</u> <u>TEMPERATURE - RUNTR5</u>.

-110-

ð

CHAPTER 6. EXPERIMENTS ON THE SINGLE SIEVE PLATE UNIT.

6.1 Introduction.

The mathematical model of a crude oil distillation unit described in Chapter 4 relies heavily on the validity of the correlations for estimating froth height and for predicting the flow of froth over the outlet weir. If these correlations are not true at least qualitatively then any enhancement of a model of this type of multistage system by the use of such a detailed mathematical description is nullified. A paper by Bernard and Sargent (6) is so condemnatory of many of the standard design correlations as to cast serious doubts on their validity under any general conditions. It was therefore thought essential that an attempt be made to assess the validity of two of the correlations in a dynamic situation using a laboratory rig.

6.2 Objectives.

The mathematical model of the crude unit described in Chapter 4 uses the froth height correlation of Thomas and Campbell (9) and the Francis weir formula (2). The correlation published by Thomas and Campbell relates the height of the froth on a sieve plate to the liquid and vapour rates. The modified Francis weir formula relates the flow over the outlet weir to the mean density of the froth and the head of froth over the weir. The modification to the basic Francis weir formula was to assume that the froth flowing over the weir behaved as a liquid of density FDxDL where

FD = liquid fraction in froth
DL = clear liquid density.

The objectives of the experiments described in this section were to compare the observed response for a single sieve plate with

-111-

that predicted by a mathematical model which used the above . . correlations.

6.3 The apparatus.

The single sieve plate rig is shown in Fig. 6-1. Water from a supply tank was pumped via a rotameter to the rectangular sieve plate. It passed over a small inlet weir (which assisted equal distribution over the width of the plate) and across the plate. The froth from the plate passed over an outlet weir into an intermediate tank. The drain from this ran back into the supply tank. Water which wept through the holes in the sieve plate itself also ran back into the supply tank. This line had a U-bend in it to form a liquid seal to prevent air leakage. The liquid flow was regulated by a valve in the line between the pump and the rotameter. Hence the liquid circuit was a closed system.

The supply tank stood on a weighing machine so that the holdup of water might be continuously monitored. The intermediate tank was fitted with a sight glass for the same reason.

Air was blown through the sieve plate by a centrifugal blower. The air left the system via a wire mesh de-entrainment screen. An orifice plate was fitted at the air inlet. The downstream pressure was led to a water manometer, the other side of which was open to atmosphere. This enabled an estimate of the air flowrate to be made. The air flow was regulated by a gate valve situated between the blower and the sieve plate.

6.4 Experimental work.

The supply tank was filled with water until the weighing maching registered its maximum reading, about 740 lbs. The centrifugal blower was started followed by the water pump. Water weeping through the tray rapidly produced the required seal in the

-112-

ð

-113-

U-bend in the weepage drain line and the apparatus was ready . for use.

6.4.1 Liquid rate step change response.

Several runs were performed. For each one the air and water rates were set at noted values and the unit was allowed to come to steady state. This took less than ten minutes. The liquid rate was then changed manually by rapid movement of the valve in the liquid line. The reading on the intermediate tank sight glass and on the weighing machine were then monitored until no further change was detectable. The final values of the air and water flows were noted. A tabulated set of results for these experiments is given in Appendix 5. A typical response curve for the liquid holdup is given in Fig. 6-2.

6.4.2 The vapour rate step change response.

The same procedure as for the liquid step change response was followed. Full tabulated results are also given in Appendix 5. A typical response curve for the liquid holdup is given in Fig. 6-3. 6.4.3 Determination of the discharge coefficient for the

intermediate tank.

The exit pipe was blocked using a rubber bung. The intermediate tank was filled to nearly the full depth. The rubber bung was removed. A stop watch was started when the water in the sight glass passed a reference mark h₁ and was stopped when the level fell to the reference mark h₂. The experiment was repeated several times and a mean value of the time was taken.

If the head of liquid in the end tank is denoted by h, then $dh/dt = -C_7 x (2Gxh) xAE/AX$

-114-

Integrating both sides gives :-

$$\int_{h_{1}}^{h_{2}} \int_{h_{1}}^{h^{-\frac{1}{2}}} dh = -C_{7}x^{2}G^{\frac{1}{2}} \int_{t_{1}}^{t_{2}} dt AE/AX$$

$$\int_{h_{1}}^{h_{2}} \int_{h_{1}}^{h_{2}} = C_{7}^{2}G^{\frac{1}{2}}t AE/AX$$

The experimental results gave

 $h_2 = 17/12 \text{ ft}; h_1 = 29/12 \text{ ft}; t = 7.8 \text{ seconds.}$ From which $C_7 = 0.80$

6.4.4 Sources of experimental inaccuracy.

a) The weighing machine was probably accurate in absolute terms to about 5%. However, in these experiments the main concern was with deviation from a steady state of 15-50 lbs. The major error is therefore likely to have been that of reading the scale. This can be read to the nearest 1 lb division so that a maximum error of $\frac{1}{2}$ lb in 15 lbs or about 3% is possible.

b) The liquid and vapour step changes were injected manually by valve adjustment. This took about one second in the case of the liquid and about two seconds in the case of the vapour. This could well have introduced appreciable error since it would tend to lower any oscillatory peak on a response curve and will also displace slightly the time axis. (This could be a two second displacement in the case of the vapour change.)

c) The rotameter was calibrated at the start of the experiments by recording the time taken to collect a measured amount of liquid under steady state conditions. This calibration was estimated to have an accuracy within 1/10th lb/sec. or say 35 gph in 1200 gph - i.e. about 3%. The rotameter also oscill**g**ted about a mean position by $\pm 5\%$. However, observation of the float for a short

-115-

period of time did enable a confident mean to be estimated so that it was not felt that any significant error was involved.

d) The water control value leaked about 1 lbin a two hour period. This was emptied back into the supply tank at regular intervals so that no cumulative error was produced.

e) During the experiments in which the water rate was varied the resultant change in pressure drop across the plate produced a variation in the air rate of up to 5%.

f) At high liquid and low vapour rates up to 5% of the entering liquid wept through the holes in the plate instead of flowing over the outlet weir.

GLOSSARY OF NOMENCLATURE USED IN CHAPTER 6.

<u> Name</u>	Meaning	Units.
AE	Cross-sectional area of the exit pipe from the intermediate tank.	ft ²
АР	Total area of perforations (i.e. free area for vapour passage.)	ft ²
AT	Total bubbling area.	ft ²
AV	Average liquid flowpath width.	ft
AX	Cross-sectional area of intermediate tank.	ft ²
°1-°7	Constants.	
DELV	Change in vapour rate.	lb/sec.
DL	Liquid density.	1b/ft ³ .
dv	Vapour density.	1b/ft.
E1,E2	Groups of variables defined by equations $(6-8)$ and $(6-11)$	-
FA	F-factor for vapour on perforated area of plate.	$(ft/sec)(1b/ft.)^{3})^{1/2}$
FD	Liquid fraction of the froth.	-
G	Acceleration due to gravity.	ft.sec.
HF	Depth of froth on the plate.	ft.
HL	Head of liquid in the intermediate tank.	ft
HW	Exit weir height.	ft
L	Liquid flow rate.	lb/sec.
v	Vapour flow rate.	lb/sec.
W	Weir height.	ft .
MT	Hold up on tray.	1b
WT	Hold up in intermediate tank.	1b -

Fig. 6-4

-117-

•

6.5 A mathematical model of the unit.

A simplified diagram of the unit showing some of the variables used in the model is given in Fig. 6-5.

6.5.1 The equations.

A glossary of nomenclature is given in Fig. 6-4. The equations are :-

a) The mass balance for the tray:

$$d/dt(WL) = L_1 - L_2 \dots (6-1)$$

b) The hold up on the tray :

$$WL = FD \times DL \times AT \times HF$$
(6-2)

c) The modified Francis formula for the flow of

froth over a weir :

$$L_2 = C_1 \times AV \times FD \times DL \times (HF - HW)^{3/2} \dots (6-3)$$

d) The froth height correlation of Thomas and Campbell (9):

$$HF = C_2 V + C_3 L_1 + C_4 HW + C_5 V^2 + C_6 \qquad \dots (6-4)$$

e) The mass balance for the intermediate tank:

$$d/dt(WT) = L_2 - L_3 \qquad \dots (6-5)$$

f) The flow from the end tank:

$$L_3 = C_7 + DL \times AE \sqrt{(2G \times HL)}$$
(6-6)

g) The hold up in the end tank:

$$WT = AX \times DL \times HL \qquad \dots (6-7)$$

Hence there are seven equations in seven unknowns - L_3 , HF, FD, WL, WT, HL, L_2 .

6.5.2 The assumptions.

a) There is negligible mass transfer by which water is carried from the plate in the vapour stream. (This was found to be a valid assumption by running the unit for a two-hour period. The reading on the weighing machine before start-up was noted and found to differ from that after shutdown by only $1\frac{1}{2}$ lbs.)

.

b) Equations (6-3) and (6-4) are valid. It was to check this assumption that this experimental work was performed.

6.5.3 The solution.

Define a new variable E1 such that

E1 =
$$1/(C_1 \times AV \times DL \times (HF - HW)^{3/2})$$
(6-8)

Then equation (6-3) becomes :

$$L_2 = FD/E1 \qquad \dots (6-9)$$

Substitute for FD from equation (6-9) into equation (6-2) to obtain : $WL = E1 \times L_2 \times DL \times AT \times HF$ (6-10)

Define

E2 = E1 x DL x AT x HF
=
$$(AT x HF)/(C_1 x AV x (HF - HW)^{3/2})$$
(6-11)

So that equation (6-10) becomes :

$$WL = E2 \times L_2 \qquad \dots (6-12)$$

Differentiate both sides of equation (6-12) with respect to time to obtain :

$$d/dt(WL) = E2 d/dt(L_2) \qquad \dots (6-13)$$

(since d/dt(HF) = 0 then d/dt(E2)=0 also.)

Now substitute d/dt(WL) from equation (6-13) into equation (6-1) to obtain :

E2
$$d/dt(L_2) = L_1 - L_2$$
(6-14)

Separating the variables and integrating both sides gives :

$$t = \tau \qquad t = \tau$$

E2
$$\int \frac{dL_2}{(L_1 - L_2)} = \int dt$$

t = 0
$$t=0$$

 L_1 is fixed constant throughout for a step change. Hence :

E2
$$\left[-\log_{e}(L_{1} - L_{2})\right] \begin{array}{c} t = \tau \\ t = 0 \end{array} = \tau$$

therefore

 $\log_{e} \left\{ \frac{L_{1} - L_{2} (\mathcal{X})}{L_{1} - L_{2} (\mathfrak{o})} \right\} = -\mathcal{X}/E2 \qquad \dots (6-15)$

where $L_2(o)$ and $L_2(\gamma)$ denote the values of L_2 at time zero and time γ respectively. Hence

$$L_2(\tau) = L_1 - (L_1 - L_2(o))exp(-\tau/E2)$$
(6-16)

Now consider the equations for the intermediate tank. The hold up is given by :

$$WT = AX \times DL \times HL \qquad \dots (6-7)$$

Differentiating both sides with respect to time yields :

$$d/dt(WT) = AX \times DL \times d/dt(HL)$$
(6-17)

Substituting d/dt(WT) from equation (6-17) into equation (6-5) gives :

AX x DL x d/dt(HL) =
$$L_2 - L_3$$
(6-18)

Substituting L_2 from equation (6-16) and L_3 from equation (6-6) into equation (6-18) gives :

AX x DL x d/dt(HL) =
$$L_1 - (L_1 - L_2(0))exp(-\tilde{1}/E2) - E3 x HL(6-19)$$

where E3 is defined by :

E3 =
$$C_7 \times DL \times AE \times \sqrt{(2G)}$$
(6-20)

Integrating equation (6-19) by Euler's method gives :

$$HL(\Upsilon) = HL(\Upsilon-\Delta t) + \left(\frac{L_2 (\Upsilon-\Delta t) - E3 \times HL(\Upsilon-\Delta t)^{\frac{1}{2}} \Delta t}{(AX \times DL)} \dots (6-21)\right)$$

Now
$$L_3(\mathcal{X}) = E3 \times HL(\mathcal{X})^{\frac{1}{2}}$$
 (6-22)
Hence $WT(\mathcal{X}) = WT(\mathcal{X} - \Delta t) + \frac{1}{2} \left[L_2(\mathcal{X}) - L_3(\mathcal{X}) \right] + \frac{1}{2} \left[L_2(\mathcal{X} - \Delta t) + L_3(\mathcal{X} - \Delta t) \right]$
....(6-23)

The step change in the vapour rate produces an instantaneous change in the froth height, matched by a compatible change in the froth density. This produces an instantaneous change in the liquid rate leaving the plate (but not in the liquid rate leaving the end tank.) Hence the solution to the vapour rate step change is achieved by first calculating this new value of L_2 , then using the analysis

-121-

for the liquid rate step change.

From equation (6-4):

$$HF(0+) = C_2 V + C_3 L_1 + C_4 HW + C_5 V^2 + C_6 \qquad \dots (6-24)$$

Since the hold up on the tray is unchanged over the instant the step change is put in, equation (6-2) may be used to yield :

$$FD(0-) \times DL \times AT \times HF(0-) = FD(0+) \times DL \times AT \times HF(0+)$$

Hence
$$FD(0+) = FD(0-) \times HF(0-)/HF(0+) \qquad \dots (6-25)$$

And so equation (6-3) gives the required initial value of L:

$$\underline{L}_{2}(0) = C \times AV \times FD(0+) \times DL \times (HF(0+) - HW)^{3/2} \dots (6-26)$$

6.5.4 The computer program.

The method of solution described in section 6.5.3 has been programmed in Fortran for the Argus 108 computer. This program has been used to calculate the responses predicted by the model for the experiments performed on the single sieve plate unit. The program listing and sample data and results are given in Appendix 5. 6.6 A comparison of the responses predicted by the model and

those obtained by experiment.

Typical experimental and predicted response curves for the tray liquid hold up following step changes in the liquid and vapour rates are given in Figs. 6-2 and 6-3 respectively.

The predicted response curves produced by a liquid change is a poor match of the peak obtained on the experimental curve, the maximum deviation being 38% of the experimental value. In particular the peak on the experimental response curve indicates the presence of a hold-up or dead time at some point for which the mathematical model does not allow. This could arise for two reasons. No allowance was made in the model for the small distribution channel immediately prior to the tray. It is possible that the

-122-

-123-

hold-up in this increased appreciably with increasing liquid rate. Also no allowance was made for the time taken for the liquid surge to cross the plate immediately after the step was injected. It is felt likely that the peak on the experimental curve is mainly attributable to these causes. The overall time to achieve the steady state and the final steady state value for the tray hold up are predicted to within 20% and 12% respectively of the experimental values.

The response curves for the vapour change bear little resemblance to each other. The predicted time to achieve steady state differs by 50% of the experimental result. The model predicts a fall in the tray hold up of 0.75 lbs. The experimental result indicates a rise in tray hold up of 7.8 lbs.

6.7 Conclusions.

The correlations used produce a model which is moderately good as far as liquid flow changes are concerned but which is inadequate for vapour rate changes. Hence in the mathematical model of the crude unit described in Chapter 4 some confidence may be felt for its predictions with regard to holdup changes brought about by liquid flow changes, but little confidence can be placed upon results that include appreciable vapour rate changes. However, the experimental work at Llandarcy was not concerned with vapour flowrate changes as primary forcing functions, so that this discrepancy is not regarded as being particularly serious.

- - - - -

-124-

CHAPTER 7. OPERATION OF A CRUDE OIL DISTILLATION UNIT.

7.1 Introduction.

Although the majority of the work described in this thesis has been carried out at Loughborough University of Technology the project has a strong industrial bias. In view of this an attempt has been made in this chapter to draw together features from the results which have a direct bearing on the operation of a crude oil distillation unit.

7.2 Deductions based on the step-change experiments

on the industrial unit.

The experimental work on the industrial unit is described in Chapter 5. The responses of the tray temperatures and product properties to step changes in the overhead reflux return and in the product offtake rates are described. One of the most interesting features to emerge from these results is the characteristic shape of many of the response curves, as shown in Fig. 5-41. This section considers the underlying reasons for this shape of curve.

The following effects may be expected to play a part :-(i) The reduction in cold reflux entering the column will cause tray temperatures to rise by a simple heat transfer effect. (ii) The hydrodynamic effect will result in heavy liquid being held higher in the column. This will boil at a higher temperature than the liquid it replaces.

(iii) Less cooling reflux will result in higher vaporisation at the top of the column giving a heavier vapour.

(iv) Higher vapour rates and hotter vapour will strip out more light ends from the top few trays causing these to become heavier. This in turn gives rise to higher vapour temperatures lower in the unit.

-125-

(v) As the heavier vapour condenses and mixes in the reflux drum the gravity of the reflux will rise. Thus at the top of the column less vaporisation will occur and more cooling reflux will pass onto the trays below.

(vi) As less vaporisation occurs the gravity of the vapour will fall off a little.

(vii) The mass transfer (fractionation) driving forces finally drive the system to equilibrium.

It may be appreciated that all of the above effects fit into the overall picture. A probable explanation is as follows :

During the first few minutes after the step change the tray temperatures rise by (i) the heat transfer effect and (ii) the hydraulic disturbance. The fall in reflux will also cause (iii) higher vaporisation to occur in these first few minutes. The rather slower fractionation effect of (iv), the hotter vapour at higher flowrate stripping out more light ends probably accounts for the next 20 minutes of the effect. The peak on the overhead vapour temperature curve occurs after only about 12 minutes and is then flat for about 30 minutes. The other peaks lower down the column occur at later intervals of time.

As the heavier vapour condenses in the reflux drum a slightly heavier reflux then passes into the column. The vapour coming up the column will now strip out rather less of this liquid allowing more cooling reflux to go onto the trays below. Thus the overhead vapour will probably become a little lighter and the greater cooling effect of the reflux in the rectification section will probably result in a lower overhead vapour temperature.

The flat peaks which occur on several of the response curves (e.g. overhead vapour temperature) are probably due to a balancing

-126-

of the two effects at the top of the column: hotter vapour at à higher rate is coming up the column as a result of the (i), (ii), (iii) and (iv) effects occurring lower in the column; this is counteracted by the heavier reflux effect.

A similar explanation for the responses to a step change in the light gas oil offtake rate is envisaged:

As soon as the disturbance is first made the hydraulic response must be a general dumping of additional cold liquid down the lower half of the column. This will drive the tray temperatures rapidly downwards. In addition the heat transfer effect will be to reduce the vapour rate going up the column. Indeed the vapour leaving the light gas oil take-off tray should be lighter and at a lower flowrate. This should then allow the increase in the liquid flows leaving the trays above the light gas oil take off, without noticeably affecting tray temperatures in this area. Hence the first part of the response curve is a combined hydraulic and heat and mass transfer effect. The reverse swing occurs as the constant conditions in the flash zone gradually cause the increase in tray temperatures by the normal mass and heat transfer process.

7.3 Comments on the effectiveness and usefulness of the

simple control strategy tried out on the industrial unit.

This experiment is described in section 5.4.6. In essence it consists of achieving a desired flowrate change by an initial step which is held for a certain period, followed by a ramp. A simple method is suggested for estimating optimum step size and starting time and slope of the ramp. These estimates are based on the response curves for a step change in the flowrates under consideration.

-127-

The first point of note is that the experiment achieved its objective - a smooth change in the response curves of the major column variables. This does not justify any sweeping conclusions of course, but the results do suggest a potential general method. Although the oscillation in the response curves has a different peak time and shape for each variable the method seems to produce a universal smoothing effect.

The parameters for the strategy were estimated from step response curves obtained when a different crude was being run. Some degree of generality is therefore indicated. However, the changes achieved in eachcase were each a similar percentage decrease in the reflux.

The method is probably sufficiently simple for operator usage, although the difficulty of manually inserting a ramp is significant. The method used in the experiment of approximating a ramp by a series of steps seems quite suitable. It may be that for many changes a standard set of parameters (size of the initial step, length of time for which this is held and the slope of the final ramp) may produce adequate results.

The method has only limited use for the initial problem posed by BP and described in section 2.1. This sets the objective of minimisation of period of upset following a major change in operating condition. The new steady state is approached very closely in perhaps half an hour as opposed to two hours. However, the main variables must still be adjusted for two hours and the 'steady state'will probably vary slightly during these adjustments. Some improvement will be gained from the smoothness 'of the change and the products can be expected to be within specification for the final one and a half hours.

-128-

The obvious major use for this type of programmed valve control will arise in a system employing direct digital control. In such a case the relevant parameter for the strategy would be stored in the computer memory and the step and the ramp would be input accurately.

The experiment described in Chapter 5 was carried out for a change in a single flowrate. Many changes on a crude unit involve simultaneous changes in process streams. To obtain the open loop response curves for all possible combinations is not practical. However, some simplification is possible. Suppose that the prime variables in the rectifying section are taken to be the temperature of the overhead vapour and the temperatures of each of the four sidestream withdrawals. Let these be denoted by the vector \underline{w} . The side control variables may be taken to be the five flowrates – the top reflux return and each of the sidestream withdrawal rates. Let these be denoted by the vector \underline{x} . Then for small deviations in \underline{x} , we may write :

	Δ <u>w</u>	÷	JΥĀ						(7-1)
i.e.	<u>∆ w</u>	÷.	a ₁₁	^a 12	^a 13	^a 14	^a 15	Δ <u>×</u>	
			^a 21	^a 22	^a 23	^a 24	^a 25		
			^a 31	^a 32	^a 33	^a 34	^a 35		(7-2)
			^a 41	^a 42	^a 43	^a 44	^a 45		
			a ₅₁	^a 52	^a 53	^a 54	^a 55		
a	Ίj	=	/۳ ^۳ و	ð x,			_		

where

i.e. J isthe Jacobian matrix.

Now it is well known that changing a sidestream withdrawal rate has a significant effect on the withdrawals below it but negligible effect on those above. Hence many elements in the Jacobian

-129-

approximate to zero and equation (7-2) becomes:-

Now normally an equation such as (7-3) would be constructed to calculate the overall change in the steady state variables \underline{w} . However, there is no reason why it should not be constructed to estimate the heights of the peaks on the oscillatory step response curves. This assumes the principle of superposition and also that the peak times are approximately coincident. The justification for these quite coarse assumptions lies in the encouraging results obtained for the single experiment performed.

7.4 Deductions based on the results from the mathematical model.

The response curves predicted by the mathematical model for a step change in top reflux rate on a 15-plate column are given in Chapter 4. For this unit 3-4 minutes appears adequate for the flow rate responses to decay and very little longer is required for the temperature responses to die out. The results suggest that the flow oscillations would be smoothed by merely ramping in small flow changes rather than inputting a step. A ramp spread over perhaps 5-10 minutes would have a beneficial effect. This may well have a cumulative improvement on the mass transfer transient. An improvement of this type for minor flow changes would complement the simple control strategy for major changes discussed elsewhere.

7.5 Deductions based on the results of the single sieve

plate experiments.

The results from these experiments described in Chapter 6 indicate that time constants of up to thirty seconds can be obtained with a laboratory sieve plate. Hence it is reasonable to expect time constants of this size and larger to be present in the industrial unit. This gives support to the discussion in section 7.2 which relied partly on the large times required for changes to move both up and down the industrial column.

7.6 Conclusions.

7.6.1 Use of the tower top temperature controller.

The crude unit at Llandarcy is normally operated with the overhead reflux on tower top temperature control. The overhead product rate is then set manually to keep the level in the reflux drum constant. The reflux drum then provides a buffer tank to allow the reflux rate to vary adequately for control purposes. The reflux step change experiments at Llandarcy were performed with the tower top controller disconnected to avoid interaction. It is suggested that, whilst this controller is desirable when the column is running under steady conditions, during major changes temperature stability should be achieved using planned flow control rather than by varying the reflux continually. The effects on product properties of varying amounts of light material can be large and are almost certainly non-linear.

7.6.2 Application of the simple valve control strategy.

The simple control strategy described in section 5.4.6. is probably best suited to DDC systems. Considerable work is required before this is a practical scheme for major complex changes but the results described indicate a potentially useful method.

-131-

7.6.3 Use of the mathematical model.

This indicates that liquid flow changes on a crude unit can produce appreciable oscillation and should be input gradually or in some pre-planned way. Although the flow and heat transfer transients decay in a few minutes liquid surges moving through the column could lead to composition imbalance requiring appreciable time for equilibration by the mass transfer driving forces.

CHAPTER 8. MATHEMATICAL MODELS FOR BINARY AND MULTICOMPONENT SYSTEMS.

8.1 Introduction.

The two basic methods for constructing a multicomponent distillation model are described in sections 8.2 and 8.3. The fundamental differences in the results obtained using each formulation are discussed in section 8.4. Section 8.5 contains a description of a distillation system used to demonstrate many of the methods in subsequent chapters. The basic requirements for equivalent simple systems to replace multicomponent systems are discussed in section 8.6.

8.2 The formulation of Mah et al.

Mah, Michaelson and Sargent (23) describe a matrix formulation for a multicomponent distillation system. They use the basic equation that for each component i on plate n (where x and y are absolute values and not deviation variables):-

$$\frac{d}{dt} \left\{ {}^{H}_{n} {}^{x}_{ni} + {}^{h}_{n} {}^{y}_{ni} \right\} = {}^{L}_{n-1} {}^{x}_{n-1,i} - {}^{L}_{n} {}^{x}_{ni} + {}^{V}_{n+1} {}^{y}_{n+1,i}$$
$$- {}^{V}_{n} {}^{y}_{ni} - {}^{1}_{n} {}^{x}_{ni} - {}^{v}_{n} {}^{y}_{ni} + {}^{F}_{n} {}^{x}_{Fni} \qquad \dots (8-1)$$

A stepwise solution procedure is proposed such that over each small time interval the approximation

$y_{ni} = K_{ni} x_{ni}$

is adequate. The differential term on the left hand side of equation (8-1) is based on the average composition over the time step.

In general the mole fractions calculated at the end of a time step do not sum to unity. Mah et al (23) avoid this difficulty

-133-
by normalisation - that is each mole fraction is divided by the sum of all the mole fractions for the plate.

Neglecting vapour hold-up equation (8-1) may be written in matrix form :

$$\frac{d}{dt} \stackrel{x}{=} = A \underbrace{x} + C$$

where \underline{x} is a vector of liquid concentrations and C is a vector of forcing functions of the form

$$(F_n x_{Fni})/H_n$$

t

ę

-136-

<u>_</u>-

ŧ

•

A	system matrix.
в	bottoms rate (moles/hour).
Ъ,	flowrate of component i in the bottoms (moles/hour).
C	forcing vector.
d	differential operator.
D	distillate rate (moles/hour).
d _i	flowrate of component i in the overheads (moles/hour).
f	function operator.
F	feed rate (moles/hour).
g	a function equivalent to the equilibrium constant.
H	tray liquid holdup (moles).
h	vapour holdup per tray (moles).
J	Jacobian matrix.
K	equilibrium constant.
L	Liquid rate (moles/hour).
1	deviation liquid rate (moles/hour).
N	total number of plates.
r	total number of components.
R	diagonal matrix of tray holdups.
S	square matrix.
t	time (hours).
Т	forcing vector.
v	deviation vapour rate (moles/hour).
v	vapour rate (moles/hour)
x	liquid mole fraction.
y	vapour mole fraction.

Subscripts

i component i.
n plate n.
F feed.
B. N+1 reboiler
C condenser
<u>Notes</u>:
(i) A bar above the sum of two variables denotes that

- it is the average value over the time increment that is referred to. e.g. $\overline{V + v}$.
- (ii) A bar above a single variable denotes that it is the steady state value that is referred to.

For one component in a system this leads to a tri-diagonal form for matrix A :

$$= \begin{bmatrix} \frac{1}{H_{1}} (L_{1}+L_{1}+V_{1}+V_{1}+V_{1}) & V_{2}K_{2}/H_{1} \\ L_{1/H_{2}} & -\frac{1}{H_{2}} (L_{2}+L_{2}+K_{2}V_{2}+V_{2}) & V_{3}K_{3}/H_{2} \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ & \frac{L_{n-1}}{H_{n}} & -\frac{1}{H_{n}} (L_{n}+L_{n}+K_{n}V_{n}+V_{n}) & V_{n+1}K_{n+1}/H_{n} \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & \frac{L_{N-1}}{H_{N}} & -\frac{1}{H_{N}} (L_{N}+K_{N}V_{N}+V_{N}) \end{bmatrix}$$

For all three components in a ternary system the form of the above equation becomes :

A =

A

1

i.e. A is a matrix composed of a tridiagonal band of submatrices, each sub-matrix being diagonal. The significance of this will be seen when it is compared with the formulation of Wood (25) described in the next section.

8.3 The formulation of Wood.

Wood (25) describes a formulation of the unsteady state distillation mass balance which differs somewhat from equation (8-1). (A bar above the upper case variables denotes steady state values. x, y, l, v denote deviations from the steady state values of the liquid and vapour compositions and liquid and vapour molar flowrates respectively.) :-

$$\overline{L}_{n-1}x_{n-1,i} - (\overline{L}_{n}+g_{ni}\overline{V}_{n}) x_{n,i} + g_{n-1,i}\overline{V}_{n-1}x_{n-1,i} + F_{n}x_{Fni}$$

$$= \overline{H}_{n} \frac{dx_{n,i}}{dt} + h_{n} \frac{dy_{n,i}}{dt} - h_{n+1}(\overline{x}_{n+1,i} - \overline{x}_{n,i})$$

$$+ v_{n-1} (\overline{y}_{n,i} - \overline{y}_{n-1,i}) \dots (8-6)$$

The essential difference between equations (8-6) and (8-1)lies in the function g. Mah et al use the approximation of equation (8-2) to relate vapour composition to liquid composition over a small time interval. The function g in equation (8-6) is a function of the amounts of each component on the plate. It is given by equations (3-24) to (3-27) in Chapter 3, section 3.2.

Thus as Wood points out whereas in binary distillation the g_{ni} are constant for a particular mole fraction of component i on plate n, in multicomponent distillation g_{ni} is the slope of a line in vector space. Hence all compositions play a part.

By writing down the terms for g_{ni} for an r component mixture it may be demonstrated that the formulation of Wood gives :

$$\sum_{i=1}^{r} y_{n,i} = \sum_{i=1}^{r} g_{n,i} x_{n,i} = 0$$
 (8-7)

-140-

This is a significant advantage of Wood's method over that of Mah et al which relied on normalisation of the mole fractions at the end of each time step.

Consider now a three component mixture and use equations (3-24) to (3-27) to replace the g_{ni} in equation (8-6). Neglecting vapour hold-up and considering composition changes only yields for the general plate :

$$\overline{H}_{n} \frac{dx_{ni}}{dt} = \overline{L}_{n-1} x_{n-1,i} - \left[\overline{L}_{n} x_{ni} + \overline{V}_{n} \left(\frac{\partial f_{ni}}{\partial \overline{x}_{n1}} x_{n1} + \frac{\partial f_{ni}}{\partial \overline{x}_{n2}} x_{n2} + \frac{\partial f_{ni}}{\partial \overline{x}_{n3}} x_{n3} \right) \right]$$

$$+ V_{n+1,i} \left(\frac{\partial f_{n+1,i}}{\partial \overline{x}_{n+1,1}} x_{n+1,i} + \frac{\partial f_{n+1,i}}{\partial \overline{x}_{n+1,2}} x_{n+1,2} + \frac{\partial f_{n+1,i}}{\partial \overline{x}_{n+1,3}} x_{n+1,3} \right)$$

$$+ F_{n} x_{Fni} \qquad \dots (8-8)$$

By the assumption of equimolal overflow :

$\overline{\mathbf{L}}_{\mathbf{n}}$	=	L n-1	=	(Note: The simplifying assumptions made L say. are for the sake of simplicity only and are not essential to the basic formul-
\overline{v}_n	=	\overline{v}_{n+1}	=	ation.) V say.

and

so that dividing equation (8-8) by \overline{L}_n yields :

$$\frac{\overline{H}}{\overline{L}} \quad \frac{d}{dt} \quad \underline{x}_{n} = \underline{x}_{n-1} - \left[\underline{x}_{n} + \left(\frac{V}{L}\right) J_{n}\underline{x}_{n}\right] + \left(\frac{V}{L}\right) J_{n+1}\underline{x}_{n+1} + F_{n}\underline{x}_{Fn}$$

$$\dots (8-9)$$

where
$$\underline{\dot{x}}_{n} = \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix}$$
, and the elements of the 3 x 3
Jacobian matrix J may be seen
 $\begin{bmatrix} x_{3n} \\ x_{3n} \end{bmatrix}$ from equation (8-8).

Clearly the value of V/L at and below the feed plate will differ from that above since L will vary at this point. Let (V/L) for

-141-

the upper section be denoted $(V/L)^u$ and for the lower section $(V/L)^L$.

The condenser equation is obtained by application of the mass balance around the condenser - see Fig. 8-3.

$$\overline{V}_{1}g_{1i}x_{1i} - (\overline{L}_{0}+\overline{D})x_{0i} = \overline{H}_{0} \frac{dx_{0i}}{dt} \qquad \dots (8-10)$$

but $\overline{V}_{1} = \overline{L}_{0} + D$
so that $(V/L)^{u}g_{1i}x_{1i} - (\overline{V}_{L})^{u}x_{0i} = \frac{\overline{H}_{0}}{L} \frac{dx_{0i}}{dt} \qquad \dots (8-11)$

And similarly for the reboiler :

80

$$\overline{L}_{N}x_{N,i} - (\overline{V}_{Bi}g_{Bi}x_{Bi} + \overline{B}x_{Bi}) = \overline{H}_{B} \frac{dx_{Bi}}{dt} \qquad \dots (8-12)$$

giving $x_{N,i} - \left[\left(\frac{V}{L} \right) g_{Bi} + \left(\frac{B}{L} \right) \right] x_{Bi} = \frac{\overline{H}_B}{L} \frac{dx_{Bi}}{-dt}$(8-13)

Application of equation (8-9) to the three component distillation model mentioned earlier yields a state variable model of the following form :

 \mathbf{or}

+ C = $\frac{dx}{dt}$

....(8-15)

8.4 The properties of the eigenvalues.

The characteristic shape of the response of a system to a step perturbation may be deduced from the type and magnitude of the eigenvalues. The main cases are given in Fig. 8-4. In the cases for which an oscillatory response is possible the type and magnitude of the dominant eigenvalues is important. It is quite feasible for the oscillatory contribution to be dwarfed by the contribution of the real negative eigenvalues near to the origin.

Mah et al (23) demonstrate that the eigenvalues of their system matrix for continuous systems are all real negative and distinct. These eigenvalues, the system poles, are shown to form a Sturm sequence, the zeroes interlacing with the poles. This eliminates any possibility of right half plane zeroes. From this it follows that the transient response to perturbation of the system described by equation (8-3)will always be minimum phase and nonoscillatory.

-143-

FIG. 8-4. <u>CHARACTERISTIC SHAPES OF STEP RESPONSE CURVES</u> FOR VARIOUS DOMINANT SYSTEM EIGENVALUES.

The system matrix obtained using Wood's formulation has no such inherent restriction and may well exhibit complex eigenvalues and right half plane zeroes. Indeed it is this very property of Wood's method that leads the author to believe that this is basically a much more sound mathematical description of a system than that proposed by Mah et al. For this reason the distillation model described in the next section has been based on Wood's formulation.

8.5 A distillation model used to demonstrate many ideas

in this thesis.

A ten plate column distilling a three component mixture was selected as being a realistically sized vehicle for demonstration purposes. The response of the system to a feed composition perturbation will be considered. The column is shown diagrammatically in Fig. 8-1. The feed used is a liquid at its boiling point of 148°F and is given in Fig. 8-5.

	BASIC FEED	OVERHEAD PRODUCT	BOTTOMS	NEW FEED	OVERHEAD PRODUCT	BOTTOMS
propane	0.300	0.7337	0.01084	0.350	0.8505	0.01632
n-butane	0.400	0.2657	0.4895	0.350	0.1493	0.4838
n-pentane	0.300	0.0005214	0.4997	0.300	0.0001693	0.4999

Fig. 8-5

Mole fraction composition at steady state of feed and products before and after step-change.

The column is assumed to have a reboiler and a total condenser and operates with a reflux ratio of 1.2. The assumptions of equimolal overflow and unit plate efficiency are also made. The equilibrium data for the three components are assumed to satisfy the following

-145-

relation for component i at the temperature on plate j, T; :

$$K_{ji} = \exp \left[A_i - B_1 / T_j + C_i T_j \right] \dots (8-16)$$

The coefficients A, B and C are obtained from Clark (34).

The steady state solution for a distillate rate of 0.4 moles/ mole feed has been obtained using a computer program written by Clark (34) for the ICL 1905. This is based on the calculation method recommended by Holland (32) incorporating the Thiele Geddes method of solution speeded by the Theta method of convergence. Clark's program was also used to find the steady state solution to a step change in the feed composition. The steady state results for the products are given in Fig. 8-5, those for all trays being contained in Appendix 6.

Reflux drum, tray and reboiler design is assumed to be such that :

 $(H/L)_{0} = 0.5 \text{ hours}$ $(H/L)_{n} = 0.03 \text{ hours}$ n = 1,2...N $(H/L)_{N+1} = 0.2 \text{ hours}$

The basic equations for the system are taken from Wood's formulation - equations (8-9), (8-11) and (8-13).

The elements of the submatrices $(V/L).J_n$ were calculated using a computer program written for the Argus 108 computer in the Department of Chemical Engineering at Loughborough University of Technology.

The matrix equation for the complete system may be written :

$$R \frac{d}{dt} \underline{x} = S \underline{x} + T \qquad \dots (8-17)$$

where R is a diagonal matrix whose diagonal elements are :

 $\left[H_{c}/L_{u}, H_{c}/L_{u}, H_{c}/L_{u}, H_{1}/L_{u}, \dots, H_{B}/L_{L}, H_{B}/L_{L}, H_{B}/L_{L}\right]$ Comparison of equations (8-17) and (8-15) indicate that the basic system matrix A is given by :

$$A = R^{-1}S$$
 ,(8-18)

and the forcing function C by :

$$C = R^{-1}T$$
(8-19)

This is given in full in Appendix 6.

The non-zero elements in the forcing vector C have magnitude ${\rm Fx}_{\rm F}/{\rm H}_{\rm F}$ where ${\rm x}_{\rm F}$ is the change in the feed composition from the steady state value.

$$x_{F} = 0.05$$
 F = 1.0.

Hence

$$H_{\rm F}/L_{\rm F} = 0.03$$
 $L_{\rm F} = 1.48$
 $Fx_{\rm F}/H_{\rm F} = 1.28$

Hence the forcing vector is :

 $H_{\rm F}/L_{\rm F} =$

Ľ	0,	0,	ο,	0,	0,	0,	ο,	ο,	ο,
	ο,	0,	ο,	ο,	ο,	ο,	0,	0,	0,
1.	128,	- 1.	128,	ο,	0,	ο,	ο,	ο,	ο,
	°, ,]	o, T	0,	0,	0,	٥,	0,	ο,	٥,
	0	T							

Various analyses and solutions for this model are contained in Chapters 9, 10 and 11.

8.6 Error introduced by linearisation.

.

The steady state solution to equation (8-17) is given by :

$$x = - (R^{-1} S)^{-1} R^{-1} T$$

If the system were truly linear this should match the final steady state predicted by the distillation design program. The comparison is given in Fig. 8-6. From this it may be seen that the assumption of linearity may produce errors in the change in tray compositions of up to 25%. However, when the discrepancy is expressed as a percentage of the final tray composition the error is much less.

	Ц	<u>IGHT</u>	MI	DDLE	HF	AVY
TRAY	(1)	(2)	(1)	(2)	(1)	(2)
Condenser	-0.1168	-0.1155	0.1164	0.1151	0.0003521	0.0003506
1	-0.1655	-0.1478	0.1635	0.1460	0.001995	0.001793
2	-0.1476	-0.1249	0.1423	0.1206	0.005231	0.004340
3	-0.1155	-0.09759	0.1051	0.08943	0.01047	0.008152
4	-0.0916	-0.07946	0.0748	0.06698	0.01685	0.01248
5	-0.0750	-0.06730	0.0562	0.05375	0.0189	0.01355
6	-0.0597	-0.05588	0.0532	0.05125	0.0065	0.004632
7	-0.0509	-0.04644	0.0451	0.04238	0.0058	0.004068
8	-0.03694	4 -0.03274	0.0323	0.02961	0.0046	0.003129
9	-0.02320	-0.01998	0.0198	0.01783	0.0033	0.002148
10	-0.01258	3 -0.01040	0.0108	0.009402	0.0018	0.0009947
Reboiler	-0.00548	3 -0.006296	0.0057	0.006452	-0.0002	-0.0001562

Change in Tray compositions (mole fractions)

- (1) distillation obtained by design program of Clark.
- (2) steady state solution to linear model.

Fig. 8-6.

-148-

8.7

Reduction of multicomponent systems to

equivalent simple systems.

Many workers have constructed and solved models of binary distillation systems. They have demonstrated that consideration of one component only is quite adequate. In section 8.4 the different characteristics of two types of multicomponent models are discussed. On this basis it appears that reduction of a multicomponent system to anything other than an equivalent ternary system will never produce a model with characteristics similar to those of the complete model.

On this basis the work of Gilbert (36) described in section 3.3 offers one approach to the reduction of systems containing many components such as crude oil. The problem is that the effective absorption factor concept would have to be modified to permit application to more than one component. The best approach would seem to be the use of the cut point component as suggested by Gilbert and in addition the use of a light and a heavy key.

- - - - - - - - - -

CHAPTER 9. TRANSFER FUNCTION REPRESENTATION OF STATE VARIABLE MODELS.

9.1 Introduction.

This section describes the basic differences between the representation of a system by a transfer function and by a state variable model. Different ways of deducing a transfer function from a state variable model are outlined and discussed. Examples are based on the distillation of a ternary mixture in a ten plate distillation column.

9.2 Definitions.

A dynamic system can generally be completely specified by a certain minimum number of variables within the system. These are called the <u>state variables</u> for that system. The vector having these variables for its elements is called the <u>state vector</u>.

9.3 Features of the two types of models.

There may be several sets of variables in a system that together satisfy the definition of state variables. The simplest example is that of a ternary liquid with mole fractions x_1 , x_2 and x_3 .

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} \text{ or } \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} \text{ together with } \sum_{i=1}^3 x_i = 1 \text{ satisfy}$$

the above requirement and can be termed state vectors.

A transfer function is rather different. This relates the response of a particular variable to a particular disturbance. The transfer function is the Laplace transform of the response of one variable to one input. Only the location of the input is important (e.g. a particular feed composition disturbance in a distillation column.) The amplitude and frequency do not affect the transfer function.

-150-

GLOSSARY OF NOMENCLATURE FOR CHAPTER 9.

.

А	system matrix.
a _{ij}	element of matrix A.
a _m	coefficient of s ^m
Bu	forcing vector.
b _i	element of B <u>u</u> vector.
C _m	square matrix of coefficients of s ^m occurring in the adjoint matrix.
d	differential operator.
е	extraneous root.
G	transfer function.
н	Bush matrix.
h _{Ni}	bottom row element of Bush matrix.
I	unit matrix.
К	scalar multiplying factor.
p	pole of the transfer function.
R	see equations (9-10) and (9-11).
8	Laplace variable.
T	square matrix of transfer function numerator polynomial coefficients.
t	time
x	liquid mole fraction.
Z	zero of transfer function.
Subscrip	t t
n	variable n
Superscr	<u>ipt</u>
*	defined in section 9.4.2

۲ ۱ A transfer function model is often an incomplete representation of a system. It is also important to note that a state variable model can readily be constructed to take account of interaction. This is not usually a simple task with a transfer function model.

9.4 Methods available for constructing a transfer function from a state variable equation.

Consider the basic equation of the general system :-

$$\frac{d}{dt} \underline{x} = A\underline{x} + B\underline{u} \qquad \dots (9-1)$$

where $\underline{\mathbf{x}}$ = state vector

A = system matrix

 $B\underline{u}$ = vector representing the forcing function Taking the Laplace transform of equation (9-1) gives :-

$$(Is - A) \underline{x} (s) = B\underline{u} (s) \qquad \dots (9-2)$$

By Cramer's rule (59) the solution for the nth element in the . state vector is given by :-

$$x_{n}(s) = \frac{|Is - A|_{n}}{|Is - A|}$$
(9-3)

where |Is - A| is the determinant of (Is - A)

and $Is - A_h$ is the determinant of the matrix formed by replacing the nth column of (Is - A) by Bu(s).

For an impulse perturbation \underline{Bu} (s) = \underline{Bu} and for a step perturbation \underline{Bu} (s) = $(1/s).\underline{Bu}$

Now the transfer function representation of equation (9-3)is :-

> $\frac{x_n(s)}{r(s)} = G_n(s) \text{ where } r \text{ is the input perturbation.}$ that for a unit disturbance :-

Hence we see that for a unit disturbance :-

$$G_n(s) = \frac{|Is - A|}{|Is - A|}$$

The poles of the transfer function are those values of s for which d_{s} . the function G(s) tends to infinity. Clearly these will be given by the solution to the characteristic equation

$$|\mathbf{I}\mathbf{s} - \mathbf{A}| = \mathbf{0}$$

It is well known that the solutions to this equation are the eigenvalues of the matrix A. The problem in deriving the transfer function lies in evaluating the numerator. Four methods are available and are described in succeeding sections.

9.4.1 Transfer function numerator via determinant evaluation.

Consider a third order system. Suppose the elements of Bu are denoted by $\begin{bmatrix} b \\ 1 \\ b \\ 2 \\ b \\ 3 \end{bmatrix}$ then the transfer function for the response

 x_2 is given by $G_2(s) = \begin{vmatrix} s-a_{11} & b_1 & -a_{13} \\ -a_{21} & b_2 & -a_{23} \\ -a_{21} & b_3 & s-a_{33} \end{vmatrix}$ $|Is - A| \dots (9-4)$

The determinant may be readily multiplied out by hand for systems of up to fifth order. Above this computer logic could be employed. However, the evaluation of medium sized (say 90) determinants is extremely costly in computation time. At about size 100, years of time on a third generation machine are necessary (ref. Acrivos and Amundsen (67)). Hence this is not suitable as a general method. Hennion (45) gives an algorithm which might prove suitable but results using this for medium sized systems are not given. <u>9.4.2</u> Transfer function zeroes via the method of Davison.

The transfer function being considered is :-

$$G_n(s) = \frac{|Is - A|}{|Is - A|}n$$

-153-

Davison (46) showed that the roots of $|Is-A|_n$ are included in the eigenvalues of $[A]_n^*$. $[A]_n^*$ denotes the system matrix with the nth column replaced by KBu where K is a scalar multiplying factor. It is recommended by Davison that K be chosen to be of an order 10^{10} higher than the elements of A. Extraneous roots are produced but these are said to be readily recognisable as they are appreciably larger than the true zeroes. The method is also valid if the nth column of the system is replaced by Bu but the nth <u>row</u> is multiplied by the factor K. Davison outlines a proof of the method based on the evaluation of the determinants and formation of the characteristic equation :

$$Is - A \begin{vmatrix} \mathbf{x} \\ \mathbf{n} \end{vmatrix} = 0 \qquad \dots (9-5)$$

A simpler proof may be constructed by considering the properties of a determinant. The eigenvalues of $[A]_n^*$ are given by the roots of the characteristic equation (9-5). For a 3 x 3 matrix for n=2 this gives :-

$$\begin{vmatrix} s-a_{11} & -Kb_{1} & -a_{13} \\ -a_{21} & s-Kb_{2} & -a_{23} \\ -a_{31} & -Kb_{3} & s-a_{33} \end{vmatrix} = 0 \qquad \dots (9-6)$$

This determinant may be expressed as the sum of two determinants (ref. Kreyszig (59)).

i.

$$\begin{bmatrix} s-a_{11} & -Kb_{1} & -a_{13} \\ -a_{21} & -Kb_{2} & -a_{23} \\ -a_{31} & -Kb_{3} & s-a_{33} \end{bmatrix} + \begin{bmatrix} s-a_{11} & 0 & -a_{13} \\ -a_{21} & s & -a_{23} \\ -a_{31} & 0 & s-a_{33} \end{bmatrix} = 0 \dots (9-7)$$

e.
$$\begin{bmatrix} s-a_{11} & b_{1} & -a_{13} \\ -a_{21} & b_{2} & -a_{23} \\ -a_{31} & b_{3} & s-a_{33} \end{bmatrix} + \begin{bmatrix} s-a_{11} & 0 & -a_{13} \\ -a_{21} & s & -a_{23} \\ -a_{31} & 0 & s-a_{33} \end{bmatrix} = 0 \dots (9-8)$$

Clearly for high values of K equation (9-8) will approximate to equation (9-5). For K equal to infinity this approximation becomes exact.

The validity of the Davison row method, in which row n rather than column n is multiplied by K may be seen from equation (9-7). The row method would yield the alternative equation :-

$$\begin{vmatrix} s-a_{11} & -b_{1} & -a_{13} \\ -Ka_{21} & -Kb_{2} & -Ka_{23} \\ -a_{31} & -b_{3} & -a_{33} \end{vmatrix} + \begin{vmatrix} s-a_{11} & 0 & -a_{13} \\ -a_{21} & s & -a_{23} \\ -a_{31} & 0 & s-a_{33} \end{vmatrix} = 0$$

i.e. K *
$$\begin{vmatrix} s-a_{11} & -b_{1} & -a_{13} \\ -a_{21} & -b_{2} & -a_{23} \\ -a_{31} & -b_{3} & s-a_{33} \end{vmatrix} + \begin{vmatrix} s-a_{11} & 0 & -a_{13} \\ -a_{21} & s & -a_{23} \\ -a_{31} & 0 & -a_{33} \end{vmatrix} = 0$$

i.e.
$$\begin{vmatrix} s-a_{11} & -b_{1} & -a_{13} \\ -a_{21} & -b_{2} & -a_{23} \\ -a_{31} & 0 & -a_{33} \end{vmatrix} + \begin{vmatrix} s-a_{11} & 0 & -a_{13} \\ -a_{21} & s & -a_{23} \\ -a_{31} & 0 & -a_{33} \end{vmatrix} = 0$$

which is identical to equation (9-7).

Davison recommends that the value of K be selected to be of order 10^9 to 10^{15} greater than the elements of the matrix. A discussion of the numerical problems associated with this is given later in this chapter.

The importance of the row method, as pointed out by Davison (46), is that it reduces inaccuracy in the first part of the eigenvalue QR routines. This involves transformation of the matrix to upper Hessenberg form. The row or column method is selected so that the large elements fall into the upper Hessenberg part of the matrix. This results in less manipulation of very large and very small numbers which is a major source of numerical error.

-155-

It is of importance to note that the structure of equation (9-8) leads to a useful check on the numerical accuracy of the results using Davison's method. The second determinant contains a term s on the diagonal. Hence it is not possible for this determinant to contribute to the constant term in the expansion of the left hand side of equation (9-8). Hence this constant term must always be proportional to K. It may be readily obtained in practice as the product of all the eigenvalues obtained by the application of Davison's method.

It is possible to use a further check and also obtain the gain of the transfer function. From the expansion of equation (9-8) and neglecting the second determinant it follows that :

$$- K a_{m} \mathcal{T} (s-z_{i}) = 0$$

from which it may be seen that the constant term is :

-
$$\operatorname{Ka}_{\mathfrak{m}} \pi^{\mathfrak{m}} z_{\mathfrak{i}}$$

which should approximate to the product of all the eigenvalues obtained by Davison's method.

i.e.
$$-K \underset{i=1}{\overset{m}{\underset{i=1}{}}} (z_i) = \underset{i=m+1}{\overset{n}{\underset{i=m}{}}} (e_i) \cdot \underset{i=1}{\overset{m}{\underset{i=1}{}}} (z_i)$$

where e_i are the extraneous roots. Hence since $\prod_{i=1}^{m} z_i = constant$ for large K then

$$u_m = - \prod_{i=m+1}^{n} (e_i)/K.$$

Constancy of this factor provides a second check on the numerical convergence as K is increased. Also it provides a slightly simpler way of obtaining the gain than that proposed by Davison.

-156-

If the product of all the eigenvalues and the extraneous root product are each plotted against K then a graph similar to that shown in Fig. 9-9 should be obtained. Correct values of the zeroes will be calculated at values of K for which both curves are horizontal. Experience with the eigenvalue routines on the ICL 1905 showed that both curves normally exhibited a second plateau at high values of K. This should be ignored.

9.4.3 Transfer function zeroes via the root locus.

If the poles of $G_n(s)$ are denoted by p_i and the zeroes by z_i then the transfer function may be written:-

$$k G_{n}(s) = \frac{k \prod_{j=1}^{m} (s-z_{j})}{\prod_{i=1}^{\ell} (s-p_{i})} \dots (9-9)$$

for a 3 x 3 problem in which n=2 this is equivalent to:-

$$\mathbf{k} \, \mathbf{G}_{n}(\mathbf{s}) = \underbrace{\begin{array}{cccc} & & \\$$

where:

 $K = k / (coefficient of s^m)$ (9-11)

Note of course that m need not necessarily be n-1.

For a closed loop system with negative feedback the characteristic equation for the root locus may be written:-

or
$$K$$
 $\begin{vmatrix} s-a_{11} & b_1 & -a_{13} \\ -a_{21} & b_2 & -a_{23} \\ -a_{31} & b_3 & s-a_{33} \end{vmatrix}$ + $\begin{vmatrix} s-a_{11} & -a_{12} & -a_{13} \\ -a_{21} & s-a_{22} & -a_{23} \\ -a_{31} & -a_{32} & s-a_{33} \end{vmatrix}$ = 0
....(9-12)

Equation (9-12) gives the path of the roots of the system as K is varied from zero to infinity. It is evident that K equals zero will yield the poles of the system and K equals infinity will yield the zeroes. This is of course in accordance with the properties of the root locus (ref. Chen and Haas (44)). Equation (9-12) may be manipulated using the properties of determinants (ref. Kreyzig (59)). to yield:-

$$\begin{vmatrix} s-a_{11} & -(a_{12} - Kb_1) & -a_{13} \\ -a_{21} & s-(a_{22} - Kb_2) & -a_{23} \\ -a_{31} & -(a_{32} - Kb_3) & s-a_{33} \end{vmatrix} = 0 \qquad \dots (9-13)$$

The roots of (9-13) are clearly the eigenvalues of :-

$$\begin{bmatrix} a_{11} & (a_{12} - Kb_1) & a_{13} \\ a_{21} & (a_{22} - Kb_2) & a_{23} \\ a_{31} & (a_{31} - Kb_3) & a_{33} \end{bmatrix}$$

Hence determination of the eigenvalues of this matrix for high values of K should yield approximations to the zeroes of the original system, together with some extraneous roots. These extraneous roots are points on the locii of the roots that tend to infinity as K tends to infinity and should be recognisable on two criteria. The first is that they should be appreciably larger than the true zeroes. The second is that as K is increased so these should continue to increase, the true zeroes remaining unchanged.

The reader will note the close similarity of this method of zero determination to the method of Davison. In fact if equations (9-13) and (9-6) are compared then there is a value of K above which for computational purposes the methods are identical. If the computer word length permits the storage of a number to 12 decimal digits, then a value of say $-Kb_1$ that is of order 10^{12} greater than a_{12} will be indistinguishable from the value $(a_{12} - Kb_1)$ stored in the same machine.

Further discussion on the numerical problems associated with the choice of K is given later in the chapter.

9.4.4 Transfer function numerator via the method of Bosley et al.

Consider the basic state variable model described by equation (9-1) and the Laplace transform of this, equation (9-2). The solution of equation (9-2) may be written

$$\underline{\mathbf{x}}(\mathbf{s}) = [\mathbf{I}\mathbf{s} - \mathbf{A}]^{-1} \underline{B}\underline{\mathbf{u}}(\mathbf{s}) \qquad \dots (9-14)$$

$$\underline{\mathbf{x}}(\mathbf{s}) = \underline{Adj} [\underline{\mathbf{I}}\mathbf{s} - \mathbf{A}] \underline{B}\underline{\mathbf{u}}(\mathbf{s}) \qquad \dots (9-15)$$

or

-159-

Clearly $\operatorname{Adj}[\operatorname{Is} - A]\operatorname{Bu}(s)$ is a column vector, each element of which is a polynomial in s of maximum order N-1 where N is the order of the system. Hence, the transfer function $\operatorname{G}_{j}(s)$ relating the response of the jth element in <u>x</u> to the perturbation <u>u</u>(s) will be the jth element of $\operatorname{Adj}[\operatorname{Is} - A]\operatorname{Bu}(s)$ divided by $|\operatorname{Is} - A|$. A method is described in a paper by Bosley et al (49) for obtaining a transfer function numerator via the adjoint matrix. The method will be stated then proved.

Write Adj (Is - A) Bu in polynomial form

 $\begin{bmatrix} (t_{10} + t_{11} + t_{12} + t_{12} + t_{12} + t_{12} + t_{12} + t_{12} + t_{22} + t_{21} + t_{22} + t_{22} + t_{21} + t_{22} + t_{22} + t_{21} + t_{22} + t_{21} + t_{22} + t_{21} + t_{21} + t_{21} + t_{21} + t_{22} + t_{21} + t_{21} + t_{21} + t_{22} + t_{21} + t_{21} + t_{21} + t_{21} + t_{22} + t_{21} + t_{21} + t_{21} + t_{22} + t_{21} + t_{21}$

and rearrange the coefficients into a matrix:-

 $\mathbf{T} = \begin{bmatrix} \mathbf{t}_{10} & \mathbf{t}_{11} & \mathbf{t}_{12} & \cdots & \mathbf{t}_{1 \ N-1} \\ \mathbf{t}_{20} & \mathbf{t}_{21} & \mathbf{t}_{22} & \cdots & \mathbf{t}_{2 \ N-1} \\ \vdots \\ \vdots \\ \mathbf{t}_{No} & \mathbf{t}_{N1} & \mathbf{t}_{N2} & \cdots & \mathbf{t}_{N \ N-1} \end{bmatrix} \dots (9-17)$

Clearly if this T matrix can be found, then, as the elements represent the coefficients of the N numerator polynomials, the problem is solved, for it is a simple matter to find the M zeroes of each polynomial by some root searching technique.

Matrix T can in fact be found from the equation

TH = AT (9-18)

-160-

. Equation (9-18) is a similarity transformation for producing the Bush matrix form. As shown below T can be evaluated very simply if the characteristic equation is known.

H is the Bush form of the A matrix:-

$$H = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ h_{N1} h_{N2} & \dots & h_{NN-1} h_{NN} \end{bmatrix} \dots (9-19)$$

where the elements $h_{N1} \dots h_{NN}$ are simply related to the coefficients of the characteristic equation of A by

$$|sI - A| = a_0 + a_1 s \dots + a_N s^N \dots (9-20)$$

by $h_{Ni} = \frac{-a_{i-1}}{a_N} = -a_{i-1} as a_N = 1$

Because of the special form of the Bush matrix, solution of equation (9-18) is easy and may be given by a recursion formula. If \dot{T} is partitioned into column vectors:-

$$\mathbf{T} = \begin{bmatrix} \underline{\mathbf{T}}_1 & \underline{\mathbf{T}}_2 & \dots & \underline{\mathbf{T}}_N \end{bmatrix}$$

then

$$\underline{\underline{T}}_{N} = \underline{B}\underline{\underline{u}}$$

$$\underline{\underline{T}}_{N-1} = \underline{A}\underline{\underline{T}}_{N} - \underline{B}\underline{\underline{u}}\underline{\underline{h}}_{NN} \dots (9-21)$$

$$\underline{\underline{T}}_{N-2} = \underline{A}\underline{\underline{T}}_{N-1} - \underline{B}\underline{\underline{u}}\underline{\underline{h}}_{N,N-1}$$

or

$$\underline{\mathbf{T}}_{i} = \underline{\mathbf{AT}}_{i+1} - \underline{\mathbf{Buh}}_{N,i+1} \qquad i+N-1,1$$

$$i \neq 1$$

The proof of the above method is that usually given for the Cayley Hamilton Theory (59).

-161-

.
$$[SI - A]Adj(SI - A) = |SI - A|$$
. I(9-22)

The characteristic equation of A is equation (9-20)

$$|sI - A| = a_0 + a_1 s \neq a_2 s^2 \dots a_N s^N =$$

- $(h_{N1} + h_{N2} s \dots + h_{NN} s^{N-1} - s^N) \dots (9-23)$

Let

Adj (sI - A) =
$$C_0 + C_1 s + C_2 s^2 \dots C_{N-1} s^{N-1} \dots (9-24)$$

where C_i is an NxN matrix.

Substituting equation (9-23) and (9-24) into equation (9-22) gives $[sI - A] (C_0 + C_1 s + C_2 s^2 \dots C_{N-1} s^{N-1}) = -(h_{N1} + h_{N2} s \dots h_{NN} s^{N-1} - s^{N).1}$(9-25)

Equating coefficients of s in equation (9-25) gives

$$C_{N-1} = I$$

$$C_{N-2} = AC_{N-1} - h_{NN} \cdot I$$

$$C_{1} = AC_{2} - h_{N3} \cdot I$$

$$C_{0} = AC_{1} - h_{N2} \cdot X$$

But from the definitions of the matrix C and the vector T

$$C_{i} B \underline{u} = \underline{T}_{i+1} \qquad \dots (9-27)$$

therefore

$$\underline{\underline{T}}_{N} = \underline{\underline{Bu}}$$

$$\underline{\underline{T}}_{N-1} = \underline{\underline{AT}}_{N} - \underline{\underline{Bu}} \underline{\underline{h}}_{NN} \cdot \underline{\underline{x}} \qquad \dots (9-28)$$

$$\vdots$$

$$\underline{\underline{T}}_{1} = \underline{\underline{AT}}_{2} - \underline{\underline{Bu}} \underline{\underline{h}}_{N2} \cdot \underline{\underline{x}} \qquad \dots$$

which agree exactly with equations (9-21)

9.5.1 Application of the zero estimation method of Davison to a distillation model.

International Computers Ltd. supply a standard program package for eigenvalue determination based on the QR algorithm(63). A short program was written for the ICL 1905 at Loughborough University of Technology utilising the above package. This greatly facilitated zero estimation using Davison's method.

The distillation model described in section 8.5 was analysed using the above program. The poles of the system were first determined and are given in Fig. 9-1. The transfer function zeroes for the responses to a feed composition perturbation for the light and middle components in the overheads and for the middle and heavy components in the bottoms were estimated. These values are given in Figs. 9-2 to 9-5.

The results obtained for values of K, the scalar multiplying factor, from 10^4 to 10^{10} for the zeroes of the transfer function for variable 2 (the middle component in the overheads) are given in Appendix 9.

The results of applying the numerical check described in section 9.4.2 to the zeroes for the middle component in the overheads are given below:

EIGENVALUE PRODUCT	PRODUCT OF EXTRANEOUS ROOTS
0.12088 21209 x 10 ⁵²	-
$0.12088 21197 \ge 10^{55}$	6.38×10^8
$0.12088 21745 \ge 10^{56}$	1.039×10^{10}
$0.12088 \ 21293 \ x \ 10^{57}$	1.176×10^{10}
$0.12087 00235 \times 10^{58}$	1.181×10^{10}
$0.12100 \ 90752 \ x \ 10^{59}$	-
$0.12189 \ 41707 \ x \ 10^{60}$, - .
0.12117 80290 x 10 ⁶¹	-
	EIGENVALUE PRODUCT $0.12088 \ 21209 \ x \ 10^{52}$ $0.12088 \ 21197 \ x \ 10^{55}$ $0.12088 \ 21745 \ x \ 10^{56}$ $0.12088 \ 21293 \ x \ 10^{57}$ $0.12087 \ 00235 \ x \ 10^{58}$ $0.12100 \ 90752 \ x \ 10^{59}$ $0.12189 \ 41707 \ x \ 10^{60}$ $0.12117 \ 80290 \ x \ 10^{61}$

-163-

Real part	Imaginary part
-1.52460	•
-1.85879	
-2.02705	
-2.83715	
-2.94350	
-3.66059	
-6.82537	
-25.0033	
-27.6544	
-39.9679	
-50.1617	
-54.0308	
-60.7625	
-70.7888	
-75.0031	
-75-7139	
-87 .2083	
-104.425	
-118.867	
-149.354	
-159.399	
-202.595	
-10.3525	0.900363
-10.3525	-0.900363
-19.2155	0.540479
-19.2155	-0.540479
-26.7046	4.70554
-26.7346	-4.70554
-30.3429	7.31836
-30.3429	-7.31836
-34.6086	7.72150
-34.6086	-7.72156
-30.4875	5.95289
-30.4075	-5.95289
-40.9100	2.33033
-40.9108	-2.33033
	بے

Product of eigenvalues = $0.10501054873 \times 10^{52}$

The system poles.

Fig. 9-1.

-

$\frac{\text{Davison's Column}}{\frac{\text{method}}{(K = -10^7)}}$	$\frac{\text{Davison's Row}}{(K = 10^7)}$	Matrix root locus <u>method</u> (K = 10 ⁰)
-1.85772	-1.85772	-1.85609
-2.02705	-2.02704	-2.02690
-2.90159	-2.90151	-2.90325
-3.66660	-3.66659	-3.66661
-3.77424	-3.77427	-3.77419
-7.49138	-7.49145	-7.49080
-11.4283	-11.4291	-11.4289
-16.9951	-16.9874	-16.9921
-20.0418	-20.0585	-20.0417
-26.7905	-26.8837	-27.7601
-28.3744	-39.5716	-32.1306
-49.5002	-49.4995	-49.4994
-55.9909	-56.9899	-56.9904
-60.0403	-60.0425	-60.0406
-70.7446	-70.7456	-70.7463
-75.5386	-75.5373	-75.5354
-87.2046	-87.2051	-87.2065
-148.567	-148.588	-148.589
-28.4978 ± 3.08J291	-27.8401 ± 2.402401	-29.6048 ± 1.333841
-31.0947 ± 5.015941	-30.1647 ± 4.945461	-31.1646 ± 3.583771
-35.1737 ± 5.420051	-33.5978 ± 5.761271	-33.9570 ± 4.279261
-37.9038 ± 3.45005i -39.6325 ± 0.557516i Extraneous roots	-36.8453 <u>+</u> 4.50157i -38.8041 <u>+</u> 1.422511	-36.5788 <u>+</u> 3.268761 -39.2304 <u>+</u> 0.2139761
-369.904	197.250	-488.179
170.817 <u>+</u> 115.522i	91.8927 <u>+</u> 209.1331	274.890 <u>+</u> 158.2941
-21.1305 <u>+</u> 258.821i	-147.060 <u>+</u> 259.1621	4.75572 <u>+</u> 354.2971
-262.032 <u>+</u> 206.704i	-340.755 <u>+</u> 114.6911	-334.686 <u>+</u> 282.0941
Eigenvalue product 0.12124995043 x 10 ⁵⁸	-0.12123317411 x 10 ⁵⁸	0.12120181046 x 10 ⁵⁹
Transfer function	zeroes for the respons	e of the light

perturbation.

,

Fig. 9-2.

Davison's Column	Davison's Row	Matrix root locus
method. 8	methody	method.g
$(\overline{K} = -10^{\circ})$	$(\overline{K} = 1\overline{\vartheta}')$	$\overline{(K = 10^7)}$
-1.85749	-1.85772	-1.85902
-2.02670	-2.02706	-2.02577
-2.90746	-2.90741	-2.90741
-3.66532	-3.66646	-3.66637
-3.77465	-3.77336	-3.77323
-7.47605	-7.47592	-7.47003
-11.4242	-11.4244	-11,4218
-16.9961 ,	-16.9948	-17.0001
-20.0359	-20.0377	-20.0515
-27 •5877	-27 .2816	-27.8876
-27.6201	-39.6824	-40.1803
-49.4897	-49.4907	-49.4920
-56.9901	-56.9916	-56.9621
-60.0392	-60.0362	-60.0833
-70.7330	-70.7411	-70.6379
-75.5505	-75.5424	-75.6407
-87 • 2025	-87.2042	-87.1869
-105.859	-105.859	-105.858
-148.588	-148.587	-148.591
-28.7194 <u>+</u> 3.44096i	-27.7074 ± 2.216981	-26.4396 <u>+</u> 1.88188i
-31.5325 ± 5.34509i	-30.1258 + 4.945331	-28.4874 + 5.709981
-34.8094 + 5.51862i	-33.5740 + 5.75141i	$-32.5929 \pm 7.73910i$
-37.9096 ± 3.86035i	-30.0139 + 4.51503i	-37.6237 🛨 7.025651
-39.9037 + 0.9159391	-38.7744 + 1.52901i	-41.2916 ± 3.002641
	· · · · · · ·	
Extraneous roots		
302.915	-369.779	444.170
157.207 ± 293.6711	170.788 <u>+</u> 115.426i	246.174 <u>+</u> 416.004i
-170.960 · 365.4761	-21.2575 ± 258.781i	-201.871 + 514.3151
-435.025 + 162.401i	-261.901 + 206.7361	-565.542 <u>+</u> 229.171i
—		
Eigenvalue product		
59	59	60
-0.12085080725 x 10	$0.12087002351 \times 10^{-0}$	-0.12088890058 x 10

Transfer function zeroes for the response of the middle component in the overheads to a feed composition perturbation.

- Fig. 9-3.

- 2

ł

-166-

$\frac{\text{Davison's Column}}{(K = -10^6)}$	$\frac{\text{Davison's Row}}{(K = 10^{\circ})}$	$\frac{\text{Matrix root locus}}{(K = -10^7)}$
-1,20711	-1,20660	+1,20699
-1.60595	-1.60636	-1-60601
-2.02707	-2.02708	-2.02707
+2,95131	-2.95131	-2.95131
-3.66659	-3-60658	-3-66656
-5,52722	-5.52707	-5-52701
-13,3031	-13,3030	-13,3031
-24.5227	-24.4176	
-27-8723	-24.0043	-27.9354
-20.4919	-20.4592	-21 • / 3/4
	-42 2502	-37.0132
_KK 1700		
-60.0255	-22 + 172	-60.0255
-76 5684	-76 5682	-07+7233
	-87 0477	-87 0472
-102 515		-0[+0+[]
	-165 160	-103+71
	-177+104	
		-200-100
		-10.0940 + 2.933271
-25.7705 + 0.390651	$-25 \cdot 7151 + 0 \cdot 424411$	-25.7813 ± 6.362861
-31.2970 ± 10.81971		-31.2872 ± 10.79271
-38.8319 ± 10.84461	-38.8554 ± 10.87561	-38.8167 + 10.81041
-42.9469 + 6.390791	-42.9762 ± 6.390081	-42.8689 ± 6.359361
-58.4098 <u>+</u> 19.3403i	-58.5044 <u>+</u> 19.39811	-58.4855 <u>+</u> 19.36631
Extraneous roots		
80.9521	67.5058 <u>+</u> 64.0707i	147.638
-216.761	$-60.7313 \pm 125.314i$	-275.376
13.9157 <u>+</u> 109.994i	$-193.072 \pm 60.9298i$	43.0836 <u>+</u> 168.815i
-130.972 + 107.172i		-168.254 ± 167.4741
Eigenvalue product		
-0.67756251035 x 10 ⁵⁵	0.67748444116 x 10 ⁵⁵	-0.67753609346 x 10 ⁵⁶

5

Transfer function zeroes for the response of the middle component in the bottoms to a feed composition perturbation.

Fig. 9-4.

-167-

Davison's Column	Davison's Row	Matrix root locus		
(K =-10 [.])	$(K = 10^{-})$	(K = -10)		
-0.0733656 -1.59551	-0.0733593 -1.59536	-0.0734020 -1.59077		
-2.02693 -3.00239	-2.02700 -3.00260	-2.03110 -3.00239		
-3.66679 -4.51241	-3.66663	-3.66563 -4.51290		
-14.0104	-14.0104	-14.0084		
-40.2896	-40.3051	-41.0143		
	-55.2368 -69.2915 -88.6842	-55.2356 -69.2956 -88 7055		
-103.310	-103.329	-103.310		
-199.494 -18 651 + 2 48046	-202.288	-200.412		
-25.2371 ± 3.368431	$-25.2752 \pm 3.39974i$	$-25.6825 \pm 4.18008i$		
-35.5344 ± 10.37231	-35.5340 ± 10.36511	-35.6254 ± 10.44521		
-42.9137 ± 3.494071	-42.9102 ± 3.499291	-41.9513 ± 8.062261 -42.8397 ± 3.611211		
-79.4000 ± 3.901901	-79.4503 <u>+</u> 3.956921	-79.4639 <u>+</u> 3.961031		
Extraneous roots				
-216.824 80.1005 + 59.6618i	57.0012 15.3692 + 73.73691	-268.124 128.080 + 84.15451		
-22.3082 ± 132.6471 -153.457 ± 103.4491	-80.4904 ± 87.86421 -165.949 ± 34.75701	-11.2848 + 190.5781 -187.853 + 150.6961		
Eigenvalue product				
0.16400168165 x 10 ⁵⁵	-0.16394453285 x 10 ⁵⁴	0.10352270283 x 10 ⁵⁶		

۲

Transfer function zeroes for the response of the heavy component in the bottoms to a feed composition perturbation.

Fig. 9-5.

ŧ

• Even with the various aids and checks it was still difficult to select the best set of zeroes from runs with various values of K. The criterion adopted was to use the largest value of K consistent with the product of all the eigenvalues agreeing to four significant figures with the product obtained with $K=10^4$. On this basis the zeroes obtained using $K=10^7$ were chosen as the best estimates and are presented in Fig. 9-3. The overall system gain is then 1.181 x 10^{10} .

9.5.2 Application of the numerator calculation method of Bosley et al to a distillation model.

The distillation model described in section 8.5 was analysed using the method of Bosley et al(49). The calculations were performed using a computer program written by M.J. Bosley in the Department of Chemical Engineering at Loughborough University of Technology. The coefficients for the numerator polynomials of the transfer functions for the responses of each of the elements in the state vector to a perturbation in the feed composition were obtained. The coefficients relating to the light and middle components in the overheads and to the middle and heavy components in the bottoms are given in Fig. 9-6. The program also calculates the denominator polynomial coefficients, these being identical for all the transfer functions of course.

Inspection of the coefficients obtained by the method of Bosley et al revealed several changes of sign per row and high numerical values. Numerical inaccuracy was suspected and since the method depends on a recursion formula this inaccuracy was expected to be greatest in the last values calculated, namely the first elements in each row. (These are the constant terms in the numerator polynomial.) Calculation of the steady state gain confirmed this suspicion since it failed to tally with the results of the steady state calculation presented in Chapter 8.

-169-
Denominator.				
-0.1050105487E52	-0.3809739408E52	-0.6209356714E52	-0.6045981131E52	
-0.3949589632E52	-0.1845304702E52	-0.6428319004E51	-0.1720558031E51	
-0.3622329799E50	-0.6114268769E49	-0.8406781408E48	-0.9541540600E47	
-0.9U39736096E46	-0.7215944002E45	-0.4890980047E44	-0.2832881983E43	
-0.1409365723542	-0.6046959099E40	-J.2244337649E39	-0.7220894045E37	
-0.2016377275E36	-0.4888518717E34	-0.1028419201E33	-U.1874615832E31	
-0.2953465631E29	-0.4007483321E27	-0.4060257225E25	-0.4614704471E23	
-0.385849p820E21	-0.2094410287E19	-0.1548789463E17	-0.7186753627E14	
-0.2619827523E12	-0.7208593988E09	-0.1404607824E07	-0.1723878717E04	
01202/02()25222	01(200)/3/0020/			
Numerstor - row]				
-0.1143859583Ep5	0.5646170939862	-0.2787008444E60	0-1375708401858	
-0.6790 b 39402 E 55	J. 3356474525253	-0.1547608073E51	0.2820638227E49	
0 2890554185E48	0.3420824194E47	0.3230697076846	0-2504914075545	
0.1.00004100240	0.8-2552541574241	0.2802022080541	0.1479260840540	
0.4752546282828	0.1202205-80527	0.2072032007541	0 5756517714222	
0.47/2020202020	0.1071471970000037	0.1405010701312008	0 1204016074826	
0.0547940090727631	0.12/14/10/3030	0.2224025440210	0.1304010074520	
0.9547842289623	0.5452204362621	0.2334732440519	0.1040192301810	
0.1329936816E14	0.1181516442511	0.0 0.0 0.0 0.	0 0.0 0.0	
N	-			
Numerator - row 2		0.0000001 \CIE.0	.ລ. <u>ສຳຫະ∧</u> ດ0 ສຫຼາມຫຼະຍ	
0.1142510347465	-0.5039511027802	0.2703721051500		
0.0782629889455	-U-3352506519E53	0.1545995314851	-0.2013501778E49	
-0.2881954045E48	-0.3410967196E47	-0.3221718343E46	-0.2498208278E45	
-0.1005252125E44	-0.8614091534E42	-0.3882728680641	-0.1475954141E40	
-0.4743010497238	-0.1289540286E37	-0.2903967698E35	-0.5745049128E33	
-0.9349629357E31	-0.1269108592E30	-0.1423350615E28	-0.1301749629E26	
-0.9531779736E23	-0.5443319612E21	-0.2331246823E19	-0.7029400843E16	
-0.1327950727E14	-0.1179805827E11	0.0 0.0 0.0 0.	.0 0.0 0.0	
Numerator - row 3	5.			
-0.9641642550Eo1	0.4757417363E59	-0.2347189695E57	0.1157866525555	
-0. 5726009152E52	0.2262300812E50	-0.1619748617E49	-0.2951143668E48	
-0.4542812884E47	-0.5489922591E46	-0.5321754634E45	-0.4201172271E44	
-0.2733825970E43	-0.1480359495E42	-0.6718867987240	-0.2509493347E39	
-0.8309108377E37	-0.2270400718E36	-0.5285477535E34	-0.1038788836E33	
-0.1723098589E31	-0.2400705043E29	-0.2789575292E27	-0.2676721130E25	
-0.2092187464E23	-0.1307097418E21	-J.6354117265E18	-0.2309471348E16	
-0.5886868727E13	-0.9355860144E10	-0.6951419753E07	0.0 0.0 0.0	
0.0 0.0				
Numerator - row 3	b.			
-0.1087361300E01	0.5364890561E58	-0.2046638568E56	0.1305515039E54	
-0.6390370551E51	0.4861607J73E49	0.4p27591764E48	0.9880803884E47	
U-1530680200E47	0.18547 04025E46	0.1774382688E45	0.1368733468E44	
Q_8b273b2129E42	0.4488812569E41	0.1942428862E40	0.7027602431E38	
0.2132737910837	0.543.8888279825	0.1163790706E34	0.2087038830832	
0.31221442-3230	0.3873374620202	0.2928028202820	0.3245134519204	
0.2125728102822	0.1077824897800	0.4065797621817	0.1070528110215	
0.1749778204812	0.1331634899830			
011147[10274812	0.1))10]4042507			
Denominaton solv	momial coefficient	a and galacted	nonoton nolumental	
Denomination Doly	floutar coefficient	thad of Dealer at	al al a	
COLLICIONES ON THE METHON OF DOSTON OF ST.				

(Note: 3.7Ell denotes 3.7 x 10¹¹)

Fig. 9-6.

4

1

-

A remedy suggested by Kropholler(56) was employed. This was to operate the recursion formula of equation (9-21) in reverse. Equating the constant term on both sides of equation (9-25) gives:

$$-AC_{o} = -h_{N1}$$
. I

From the definition of matrix C and vector T:

Hence

and

 $C_{0} \underline{Bu} = T_{1}$ $T_{1} = A^{-1}h_{n1} \cdot I$ $T_{2} = A^{-1} T_{1} + \underline{Bu} h_{N2} \cdot \Sigma$ \vdots $T_{i} = A^{-1} T_{i-1} + \underline{Bu} h_{Ni} \cdot \Sigma$

Application of this formula yielded a second set of coefficients. Comparison of the two sets revealed a match for several coefficients for the middle powers of s - see Figs. 9-6 and 9-7. The coefficients for the high and low powers did not correlate at all. It was thus concluded that accumulation of rounding error was occurring with both processes. Use was made of the fortuitous match for the middle powers of s to obtain a 'best set'. Hence the numerator coefficients for response 2, the middle component in the overheads, are as given in Fig. 9-8. Note also that the coefficient of the highest power of s is 1.180×10^{10} in good agreement with the prediction of the method of Davison. Also there are 30 coefficients in the polynomial indicating the presence of 29 zeroes, again in agreement with the results of Davison's method.

9.5.3 Application of the matrix formulation of the root locus to a distillation model.

The computer program used to calculate the zeroes by the ... method of Davison was modified slightly to perform the root locus

-171-

Row 1.			
-0.1212503075E51	-0.3290971509E51	-0.3956629628E51	-0.2803028430E51
-0.1315504639E51	-U.4367207279E50	-0.1071115898E50	-0.2003791291E49
-0.2930978587E48	-0.3418834352E47	-J.323J789395E46	-0.2504948630245
- J.1 6J9141611E44	-U.8052507944E42	-0.3780158729E41	-0.2213396228E40
0.4339781080E39	-0.3171225361E39	0.2071171704239	-0.1358019329E39
0.8910718016E38	-0.5844287803E38	0.3833130010E38	-0.2514078382E38
0.1048948888E38	-0.1081529441E38	0.7093684707E37	-0.4652725633E37
0.3051720044E37	-0.2001627870E37	J.1312874303E37	-0.8011204087E30
0.564814014JE36	-0.3704654075E36	0.2429911133E36	-0.1593799022E36
Row 2.			
U. 1208821213E51	0.3280-20469251	0.2042888624861	() 2792884080FF1
0.1311210547251	0.4353104102250	0.1.)67725730850	0.1007618201840
0.2922231485E48	0.3408979699547	0.322181.564.746	0.2498242750245
0.1604093472544	0.3400717077841	0.2771042855741	0.2470242190049
-1 1222057802220	0 2166054608720	-0.2047804051520	0.1256414685020
	0 5827812027528	-0.2806006791637	0.051.00.0551.4002037
-0.0070201210030	0.2034012734830	-0+30207100/0230	
-0+10402/0322430 -0 2046994150527	0.1008282856227	-U+7002100040537	
-0.5040[[413703]	0.17703030302023(-0.2405072001W2(
-0.7030700247430	0.3070047710830	-0.24259[2991236	0.1991219960536
Row 35.			
0.6775095898E49	0.2286258110E50	0.3328003196E50	0.2777818142E50
0.1494471071E50	0.5539477693E49	0.1480912480E49	0.2957985523E48
0.4542475990E47	0.5489938496E46	0.5321757858E45	0.4201149461E44
0.2733953122E43	0.1479050477E42	0.0757741889E40	0.2353656781E39
0.2037375298E38	-0.6574229644E37	0.3878203796E37	-0.2229053536E37
0.1297718247E37	-0.7642933907E36	0.4553613094E36	-0.2743631855E36
0.1070813871E36	-0.1027050056E36	0.6378335548E35	-0.3991313762E35
0.2515735313E35	-0.1595727382E35	0.1017709432E35	-0.6521052277E34
0.4195008880E34	-0.2707080552E34	0.1752583771E34	-0.1137030284E34
Row 36.			
-0.1640242382E48	-0.2055275396E49	-0.6185683707E49	-0.0019928549E49
-0.414U51U19UE49	-0.1687686234E49	-0.478401po57E48	-0.9873097995E47
-0.1530718180E47	-0.1854761857E46	-U.1774384789E45	-0.1368720741E44
-0.8628146200E42	-0.4484052325E41	-0.1971145353E40	-0.5298192257E28
-0.1256128800E38	0.0254742114237	-0.3835024787827	0.2343142637837
-0.1440385736E37	0.8908959369836	-U.5544283824E3h	0.3471021742836
-0.2185394940E3h	U.1383221493E36	-0.8797257220825	0.561929217825
-0.3603392327835	0.2318518994825	-0.1496226410835	0.968007500824
-0.0276979n1n£34	0.407773289383	-0.2553244105E24	0.1728695478824
	~~~~!!!!!!!!!!!!!!	~~~~///	~**1~007/**0434

.1

#### Selected numerator polynomial coefficients obtained by Kropholler's modification to the method of Bosley et al.

## Fig. 9-7.

(Note: 3.7Ell denotes 3.7 x 10¹¹ etc. )

-172-

.

-0.1208821213E51	-0.3280630469E51	-0.3943888634E51	-0.2793884989E51
-0.1311210647E51	-0.4353104103E50	-0.1067725739E50	-0.1997618321E49
-0.2922231485E48	-0.3408979699E47	-0.3221810564E46	-0.2498208278E45
-0.1605252125E44	-0.8614091534E42	-0.3882728680E41	-0.1475954141E40
-0.4743016497E38	-0.1289540286E37	-0.2963967698E35	-0.5745049128E33
-0.9349629357E31	-0.1269108592E30	-0.1423350615E28	-0.1301749629E26
-0.9531779736E23	-0.5443319612E21	-0.2331246823E19	-0.7029400843E16
-0.1327956727E14	-0.1179805827E11		

## Numerator polynomial coefficients for response 2.

## Fig. 9-8.

۶

calculation described in section 9.4.3. The results of these runs for light and middle components in the overheads and for the middle and heavy components in the bottoms are given in Figs. 9-2 to 9-5. In the absence of any of the checks associated with Davison's method it was difficult to predict the value of K for which numerical instability became critical. In the absence of a better method the following was used, bearing in mind the close similarity between the matrix root locus method and Davison's method for high values of K. The value of the eigenvalue product for successive values of K was examined and the value closest to the product obtained using Davison's method with K=10⁴ determined the set of zeroes selected.

The method of the matrix root locus was originally tried in an attempt to overcome the numerical problems which bedevilled the application of Davison's methods. It was hoped that the inherent stability of the root locus calculation would overcome the tendency of the zeroes to deviate from their correct values at high values of K. This did not prove to be the case and the checks for numerical accuracy which have been devised for Davison's method must render this method superior.

-174-

### CHAPTER 10. SIMPLIFICATION OF POLYNOMIAL RATIO TRANSFER FUNCTIONS USING CONTINUED FRACTIONS.

#### 10.1 Introduction.

A wide range of systems give rise to transfer functions of the type discussed and derived in Chapter 9. In general an nth order system will give rise to a denominator polynomial in s of order n and a numerator polynomial in s of order up to n-1. Clearly for systems larger than third or fourth order some simplification may often be desirable.

#### 10.2 General problems of model selection and parameter estimation.

Most of the simplification methods described in recent papers rely on the selection of a suitable form of model and the subsequent estimation of parameters to give the best fit for the model to the data generated either by experiment or using the exact form of the transfer function. Such models are described by Gibilaro and Lees(68) and Kropholler et al(69).

A novel approach has been adopted by Chen and Shieh(51) and it is this method which is examined in more detail in this chapter. The interesting feature about the method is that it gives several simplified models of successively higher order together with their parameters in a single calculation.

#### 10.3 The simplification method of Chen and Shieh.

#### 10.3.1 The basic principles.

· or

Consider a simple feedback system as shown in Fig. 10.1. The output c is related to the input r by the relation:-

$$\frac{c}{r} = \frac{1}{1 + GH}$$

$$\frac{c}{r} = \frac{1}{H + \frac{1}{G}}$$
(10-1)

-175-





FIG. 10-2.

Equation (10-1) is the simplest continued fraction form of the transfer function equation. If we add a single feedforward loop to the system as in Fig. 10-2 then we obtain:-

$$\frac{c}{r} = \frac{F+G}{1+-(F+G)H}$$
or
$$\frac{c}{r} = \frac{1}{H+\frac{1}{F+G}} \dots (10-2)$$

Note from equation (10-2) that G could itself be a more complicated system which could be represented by an expression of the form of the right hand side of equation (10-2). It may thus be seen how the continued fraction expansion idea emerges.

Consider the example given below:-

$$G(s) = \frac{3+s}{1+2s+s^2} \dots (10-3)$$

Dividing numerator and denominator by 3+s gives

$$G(s) = \frac{1}{\frac{1}{3} + \frac{s(5/3 + s)}{s+3}}$$

and applying the same procedure to the fraction in the denominator finally gives:-

$$G(s) = \frac{1}{\frac{1}{3} + \frac{s}{9/5 + \frac{(-4/5)s}{(5/3 + s)}}}$$
  
i.e. 
$$G(s) = \frac{1}{\frac{1}{3} + \frac{s}{9/5 + \frac{s}{-25/12 - \frac{s}{4/5}}}} \dots (10-4)$$

A more useful form of (10-4) is obtained by removing the s term from the numerator of the subsidiary fractions to give:-

$$G(s) = \frac{1}{\frac{1}{3} + \frac{1}{\frac{9/5}{s} + \frac{1}{-25/12} - \frac{1}{\frac{4/5}{s}}}} \dots (10-5)$$

Now the block diagram representing equation (10-5) may be constructed using the diagram for equation (10-2) as a guide. This is shown in Fig. 10-3. The general pattern obtained by this transformation now becomes clear. If the ratio

$$G(s) = f(s) / g(s)$$

is first reduced to

$$G(s) = \frac{1}{H_1 + \frac{1}{H_2 + 1}} + \frac{1}{H_3 + \frac{1}{H_4 + 1}} + \frac{1}{H_5 + 1} + \frac{1}{H_6 + \cdots} + \frac{1}{H_6 + \cdots}$$
....(10-6).

then this may be represented as in Fig. 10-4. In general there will be 2n H coefficients where n is the order of the denominator polynomial.

The Chen and Shieh method of simplification is basically to truncate the running fraction, equation (10-6), after a term  $H_j/s$  where j is even. This is equivalent to removing the inner part of the block diagram, Fig. 10-4. For example truncation of equation (10-6) after  $H_A/s$  would reduce the system to that shown in Fig. 10-5.

It is also apparent that truncation of the continued fraction after  $H_j/s$  will reduce equation (10-6) to a polynomial ratio with the denominator of order j/2.

#### 10.3.2 Matrix representation of the simplified model.

Equation (10-6) becomes interesting when a suitable state space representation is used. If the input to each integrator in Fig. 10-4 is denoted as an element of the vector Z, which has n elements, then the state equations and the output equation can be written:-

-178-



<u>FIG. 10-3</u>.



FIG. 10-4:







<u>FIG. 10-5a</u>.

•

$$\begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ \vdots \\ \vdots \\ z_{n} \end{bmatrix} = \begin{bmatrix} H_{2}H_{1} & H_{4}H_{1} & H_{6}H_{1} & \cdots & H_{2n}H_{1} \\ H_{2}H_{1} & H_{4}(H_{1}+H_{3}) & H_{6}(H_{1}+H_{3}) & \cdots & H_{2n}(H_{1}+H_{3}) \\ H_{2}H_{1} & H_{4}(H_{1}+H_{3}) & H_{6}(H_{1}+H_{3}+H_{5}) & \cdots & H_{2n}(H_{1}+H_{3}+H_{5}) \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ H_{2}H_{1} & H_{4}(H_{1}+H_{3}) & H_{6}(H_{1}+H_{3}+H_{5}) & \cdots & H_{2n}(H_{1}+H_{3}+H_{5}) \\ H_{2}H_{1} & H_{4}(H_{1}+H_{3}) & H_{6}(H_{1}+H_{3}+H_{5}) & \cdots & H_{2n}(H_{1}+H_{3}+\cdots & H_{2n}-1)z_{n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ H_{2}H_{1} & H_{4}(H_{1}+H_{3}) & H_{6}(H_{1}+H_{3}+H_{5}) & \cdots & H_{2n}(H_{1}+H_{3}+\cdots & H_{2n}-1)z_{n} \\ c &= H_{2}z_{1} + H_{4}z_{2} + H_{6}z_{3} + \cdots + H_{2n}z_{n} & \cdots & (10-8) \\ \end{bmatrix}$$

Now suppose a second order approximation is required. The corresponding form of equation (10-7) is:-

$$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} H_2 H_1 & H_4 H_1 \\ H_2 H_1 & H_4 (H_1 + H_3) \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}^+ + \begin{bmatrix} 1 \\ 1 \end{bmatrix} r \qquad \dots (10-9)$$

Equation (10-9) is obtainable directly from equation (10-7) by simply partitioning the matrix. In general the nth order model may be obtained by simply using the nxn matrix that forms the top left hand corner of the full matrix. Hence if several models are required for comparison to see which is the lowest order model commensurate with adequate representation, only a single matrix need be calculated. The simpler models can be written down directly from this.

#### 10.3.3 Calculation of the H coefficients.

In section 10.3.1 the calculation of the H coefficients was demonstrated using repeated long division. The method may appear to break down during this process if at any time the remainder term in s goes to zero. For example, consider

$$G(s) = \frac{3+s}{3+s+3s^2} \dots (10-10)$$
  
=  $\frac{1}{1+\frac{s^2}{3+s}}$   
=  $\frac{1}{1+\frac{s(0+s)}{3+s}}$ 

-182-

and the process can apparently go no further since division by 0+sis not possible. Although not mentioned by Chen and Shieh the solution is fairly straightforward. Division is continued leaving a term s² rather than s in the numerator. Hence the form of equation (10-10) analogous to equation (10-4) is:-

$$G(s) = \frac{1}{\frac{1+s^2}{3+s}}$$

Removal of s and  $s^2$  from the numerator of the subsidiary fractions then gives:-

$$G(s) = \frac{1}{1 + \frac{1}{3} + \frac{1}{s}}$$

The equivalent block diagram form is then given by Fig. 10-5a, and the state variable equation is:

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 0 & H_2 H_1 & H_4 H_1 \\ 1 & 0 & 0 \\ 0 & H_2 H_1 & H_4 H_1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

In a later paper Chen and Shieh(52) describe a method of deriving the H coefficients by a method more suitable for automatic computation. Consider the general polynomial ratio form of the transfer function:-

$$G(s) = \frac{A_{21} + A_{22}s + A_{23}s^{2} + \dots A_{2,n}s^{n-1}}{A_{11} + A_{12}s + A_{13}s^{2} + \dots A_{1,n+1}s^{n}} \dots (10-11)$$

Performing the division once gives:-

$$G(s) = \frac{A_{11}}{A_{21}} + \frac{A_{21}A_{12} - A_{11}A_{22}}{A_{21}} + \frac{A_{21}A_{13} - A_{11}A_{23}}{A_{21}} + \frac{A_{21}A_{21}} + \frac{A_{21}A_{21}}{A_{21}} + \frac{A_{$$

Define

$$\frac{A_{21}A_{12} - A_{11}A_{22}}{A_{21}} = A_{31}$$

$$\dots, (10-13)$$

$$\frac{A_{21}A_{13} - A_{11}A_{23}}{A_{21}} = A_{32}$$

Then equation (10-12) becomes:-

$$G(s) = \frac{1}{\frac{A_{11}}{A_{21}} + \frac{A_{31}s + A_{32}s^2 + A_{33}s^3 + \cdots}{A_{21} + A_{22}s + A_{23}s^2 + \cdots}} \dots \dots (10-14)$$

which yields:-

$$G(s) = \frac{1}{\frac{A_{11}}{A_{21}} + \frac{s}{\frac{A_{21}}{A_{31}} + \frac{A_{22}A_{31} - A_{32}A_{21}}{\frac{A_{21}}{A_{31}} + \frac{A_{31}}{A_{31} + A_{32}s + \cdots}} \dots (10-15)$$

Define again:-

$$\frac{A_{22}A_{31} - A_{32}A_{21}}{A_{31}} = A_{41} \qquad \dots (10-16)$$

So that equation (10-15) becomes:-

$$G(s) = \frac{1}{\frac{A_{11}}{A_{21}} + \frac{1}{\frac{A_{21}}{A_{31}} + \frac{1}{A_{31}} + \frac{1}{A_{31} + \frac{1}{A_{41}}}} \dots (10-17)$$

The basic coefficients from equation (10-11) and the subsequently derived ones from equations (10-13) and (10-16) may be rearranged into the Routh array:-

where

$$A_{j,k} = A_{j+2,k+1} \frac{-A_{j-1,1}A_{j-1,k+1}}{A_{j-1,1} + 1}, \frac{j=3,4,\dots,n+1}{k=1,2\dots}$$

# 10.4 Application of the method of Chen and Shieh to a distillation model.

In Chapter 9 methods are described for the determination of transfer functions relating product compositions to feed composition perturbations. The methods of Davison(46) and the root locus produce the system zeroes, enabling the numerator polynomial of the transfer function to be written down in factored form. The method of Bosley et al(49) yields the coefficients of the numerator polynomial directly. Simplification of either form is desirable for economic control system design. The method of Chen and Shieh affords a convenient way of achieving this simplification.

A computer program has been prepared for the ICL 1905 at Loughborough University of Technology. This program accepts as data either the poles and zeroes of the transfer function or the numerator and denominator polynomial coefficients. The Chen and Shieh H coefficients and the Chen and Shieh matrix are calculated (see sections 10.3.1 and 10.3.2). The final part of the program utilises a numerical integration routine prepared two years ago by

-185-

other workers in the Department of Chemical Engineering and described in a paper by Gibilaro et al(58). This section of the program calculates the step response predicted by successively higher order ChentShieh models. These models are obtained by partitioning the system matrix of equation (10-7) as described in section 10.3.2.

#### 10.4.1 Simplification of a transfer function in pole-zero form.

The zeroes for response 2 (the middle component in the overheads) calculated by the method of Davison and by the matrix root locus method given in Chapter 9 were presented to the Chent-Shieh computer program mentioned earlier. (In the case of the Davison method the Davison-row method results were employed as recommended by Davison for reasons mentioned in section 9.4.2.)

The step response for 2nd to 5th order Chen+Shieh models is given in Fig. 10-6. Note that the curves are almost identical going to a 5th order model is no improvement over a 2nd.

## <u>10.4.2</u> Simplification of a transfer function in polynomial ratio form.

The set of numerator polynomial coefficients for response 2 (the middle boiling component in the overheads) calculated by the method of Bosley et al(49) with the modification of Kropholler(56) were presented to the Chen+Shieh program. The results are given in Fig. 10.7. Note again that the 2nd order model is almost coincident with the 5th. Response 35 (the middle boiling component in the bottoms) was treated similarly, the results being given in Fig. 10.8. Here there is some difference between 2nd and 3rd order models but the 4th and 5th are close to the 3rd.

-186-



-187-



1

5

,



•--``

-189-



-190-

:

1

#### 10.4.3 Inverse response of low-order models.

Although this is not clearly demonstrated by the examples used in this chapter, low order Chen+Shieh models can exhibit undesirable qualities. The predicted response to a feed composition disturbance for the middle component in the bottoms of a ten plate unit distilling a three component mixture is given in Fig. 10-9. The system modelled is similar but not identical to that described in Chapter 8, and is outlined in Appendix 10.

An appreciable lag occurs at the start of this response and the low-order models exhibit appreciable oscillation over this part of the curve. This could lead to poor control action if for instance the second order model were used in a control system.

### <u>CHAPTER 11.</u> <u>ANALYTICAL AND NUMERICAL SOLUTIONS TO COMPLETE</u> PROBLEMS.

11.1 The analytical solution to the state variable equation.

Lees(55) gives a good treatment of this and this section draws heavily on this reference.

Consider the basic equation:-

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \qquad \dots (11-1)$$

where <u>x</u> is the state vector, A the system matrix and B<u>u</u> is the forcing function. The time domain solution of equation (11-1) is:-

$$\underline{\mathbf{x}} = \exp \left\{ At \right\} \underline{\mathbf{x}}(\mathbf{0}) + \exp \left\{ At \right\} \int_{0}^{\mathbf{U}} e^{-A\boldsymbol{\mathcal{T}}} \underline{B}\underline{\mathbf{u}}(\boldsymbol{\mathcal{T}}) d\boldsymbol{\mathcal{T}} \qquad \dots (11-2)$$
If  $\underline{\mathbf{x}}(\mathbf{0}) = \underline{\mathbf{0}}$  then
$$\underline{\mathbf{x}} = \exp \left\{ At \right\} \int_{0}^{\mathbf{U}} e^{-A\boldsymbol{\mathcal{T}}} \underline{B}\underline{\mathbf{u}}(\boldsymbol{\mathcal{T}}) d\boldsymbol{\mathcal{T}} \qquad \dots (11-3)$$

 $\underline{x} = \exp \left\{ At \right\} \int_{0}^{0} e^{-x} B\underline{u}(\mathcal{X}) d\mathcal{X} \qquad \dots (11-3)$ The time solution may be obtained via the eigenvalue and eigenvectors using the relation

$$\exp{At} = U \exp{Jt} U^{-1}$$
 ....(11-4)

where J is the diagonal or tridiagonal matrix having the system eigenvalues for its non-zero elements. (This is given in more detail later.) U is the model matrix or matrix of eigenvectors.

The impulse response follows from equation (11-3), since for  $\tau > 0$ , and Bu ( $\tau$ ) = o:-

$$\underline{\mathbf{x}}(\mathbf{t}) = \exp \left\{ \mathbf{A}\mathbf{t} \right\} \quad \underline{\mathbf{B}}\underline{\mathbf{u}}(\mathbf{o}) \qquad \dots (\mathbf{11}-5)$$

Integrating this to give the step response yields:-

$$\underline{x}(t) = \int_{0}^{t} \exp \{At\} \quad \underline{Bu}(o) \ dt \qquad \dots (11-6)$$

For the case of distinct real roots or distinct complex roots in conjugate pairs - the case which includes distillation and similar systems - the matrix J is of the form:-

J  $egin{array}{ccc} \lambda_2 & -W_2 \ W_2 & \lambda_2 \end{array}$ ....(11-7) where  $\lambda$  = real part of root w = imaginary part of root. The column of U corresponding to equation (11-7) would then be :-[Real Real Imaginary . . . . . . . . Real] The impulse response obtained by substituting  $exp \{At\}$  from equation (11-4) into equation (11-5) is:- $\underline{x}(t) = U \exp \{Jt\} U^{-1} B\underline{u}(o)$ ....(11-8) Let U  $B\underline{u}(0) = \underline{z}$ ....(11-9) Then equation (11-8) may be written:-<u>x</u> ≕ U .(11-10)

By Kropholler's extension to Ogata (54) equation (11-10) may be written:-

$$\underline{\mathbf{x}} = \mathbf{U} \begin{bmatrix} \mathbf{Z}_{1} \\ \mathbf{Z}_{2} \\ \vdots \\ \vdots \\ \mathbf{Z}_{n} \end{bmatrix} \begin{bmatrix} \exp \lambda_{1} \mathbf{t} \\ \exp \lambda_{2} \mathbf{t} \cos \mathbf{w}_{2} \mathbf{t} \\ \exp \lambda_{2} \mathbf{t} \sin \mathbf{w}_{2} \mathbf{t} \\ \vdots \\ \exp \lambda_{n} \mathbf{t} \end{bmatrix} \cdot \dots (11-11)$$

The step response may then be obtained by integration of the right hand vector, where

$$\int_{0}^{t} \exp \lambda t \operatorname{coswt} dt = \frac{1}{\lambda^{2} + w^{2}} \left\{ (\operatorname{wsinwt} + \lambda \operatorname{coswt}) \exp \lambda t - \lambda \right\} \dots (11-12)$$

$$\int_{0}^{t} \exp \lambda t \sin wt \, dt = \frac{1}{\lambda^{2} + w^{2}} \left\{ (\lambda \sinh wt - w\cosh wt) \exp \lambda t + w \right\} \dots (11-13)$$

The author utilised a tested computer program written by Hak(64) which calculated the matrix:-



and

This was extended to perform the full step response calculation using the relations in equations (11-12) and (11-13). In order to handle the 36th order distillation problem described in section 8.5 it was necessary to split this program into a suite of three programs, the card output of the first and second acting as data to the third.

# <u>11.2</u> Numerical integration of the state variable equation by the <u>method of Gibilaro et al.</u>

This method is described in a paper by Gibilaro et al(53)but a brief outline is relevant here. The equation considered is the

-194-

initial value form of equation (3-28):-

$$d/dt(\underline{x}) = A \underline{x}$$
 subject to  $\underline{x} = \underline{x}(0)$  at  $t = 0$   
....(11-14)

The analytical solution to this is:-

$$\underline{\mathbf{x}}(t) = e^{At} \underline{\mathbf{x}}(0) \qquad \dots (11-15)$$

For a small time increment the approximation is made :-

$$\underline{\mathbf{x}}(\mathbf{t}+\mathbf{\mathcal{T}}) = e^{\mathbf{D}\mathbf{\mathcal{T}}} \underline{\mathbf{x}}(\mathbf{t}) \qquad \dots (11-16)$$

where D is a diagonal matrix formed by neglecting all but the diagonal elements of matrix A. That is for small intervals of time the system may be assumed to behave as a set of independent first order systems.

Now for a small time interval  $\Delta$  t the analytical solution may be written:-

$$x(t+\Delta t)-x(t) = \int_{0}^{\Delta t} Ax(t+\tau) d\tau \qquad \dots (11-17)$$

Substituting from equation (11-16) into equation (11-17) for  $\underline{x}(t+\tau):$ -

 $x(t+\Delta t)-x(t) = \int_{0}^{\Delta t} Ae^{D\tau}x(t)d\tau$ 

whence:

$$x(t + \Delta t) = \{I + AD^{-1} [e^{D \Delta t} - I]\} x(t) \qquad \dots (11-18)$$
  
i.e.  $x(t + \Delta t) = P x (t) \qquad \dots (11-19)$ 

where the matrix P may be obtained at the start of the calculation. The value of x after any time step is then obtained by pre-multiplying the value of  $\underline{x}$  at the end of the previous time step by P.

This alone is of limited value since the approximation of equation (11-6) requires small time steps to be adequate. However, note from the form of equation (11-9) that further acceleration of the solution is possible. Suppose that values of  $\underline{x}$  at intervals of  $\Delta$  t are required, but that the largest time step commensurate with

-195-

acceptable truncation error is  $\mathbf{S}$ t where

$$\Delta t = n S t \qquad \dots (11-20)$$

Then it may be seen that equation (11-19) may be written:

$$x(t + \Delta t) = P^n x(t)$$

In practice  $\delta$ t is reduced to make n an integral power of 2 so that Pⁿ is produced by repeated matrix squaring. This produces a very efficient but still accurate method of numerical solution.

## <u>11.3 A comparison of the solutions to a distillation model obtained</u> by analytical and numerical methods.

Computer programs exist for the two methods described in section 11.1 and 11.2. These were tested using small (normally third order) systems for which the solution may be calculated by hand. The first additional check to be applied in running the 36-order distillation model was to verify that the steady state gains were correctly predicted. These are given in Fig. 8-6. Sample results for the two methods are given in Fig. 11-1. From this it may be seen that whereas both solutions give good match to the steady state gain at the top of the column, neither is correct at the bottom.

Program runs were repeated using the same data decks as for runs on the Davison and Bosley transfer function elucidation programs, (for which the correct steady state gains for all variables were obtained). The incorrect results again emerged, leading the author to suspect inherent weaknesses in the methods. Isol ation and elimination of these weaknesses

VARIABLE THEORETICAL STEADY		PREDICTION OF THE	PREDICTION OF THE
<u></u> <u>S</u> ?	TATE GAIN	ANALYTICAL SOLUTION	NUMERICAL SOLUTION
Overheads:			
Light component	0.1155	0.1174	0.1055
Heavy component	-0.1151	-0.1172	-0.1052
Bottoms:			
Middle component	-0.006452	0.002673	0.001636
Heavy component	0.0001562	0.001060	0.001962
<u>Change in mole</u>	fraction comp	osition of products b	efore and after
	feed	perturbation.	
		FTG. 11-1	

-196-

is not really within the scope of this project but the results are reported here for information.

Fig.11-2 gives a comparison of the response of variable 2 (the middle component in the overheads) and it may be seen that fairly good agreement is obtained throughout the transient. It is noteworthy that the analytical solution yields a better approximation to the final steady state than the numerical solution.

## <u>11-4 A comparison of the solutions to a distillation model obtained</u> by simplification of various transfer functions.

The Chen and Shieh simplified forms of transfer functions obtained by the methods of Davison, Bosley and the matrix root locus are given in Fig. 11-3. The curves are so close as to be coincident. The analytical solution is plotted for comparison. It will be noted that the agreement between the second order simplified models and the analytical solution is very close throughout the entire transient. In addition the simplified models' transient approximates more closely to the final steady state.

Comparable response curves for the middle component in the bottoms are given in Fig. 11-4. The points of interest here are the inverses at the start of each curve and the oscillatory nature of the response. A slight overshoot is obtained demonstrating the ability of distillation system to give response other than an exponential decay to a feed composition perturbation.

-197-





;



-200-

1

CHAPTER 12 CONCLUSIONS AND RECOLMENDATIONS FOR FURTHER WORK.

#### 12.1 Introduction

This chapter has been structured to correspond to Chapter 2 for ease of cross-reference.

During the period of the project some broadening has occurred from the original centre-line - the distillation of crude oil. This is because the initial work revealed that hydraulic disturbance alone did not account for an appreciable part of the response to perturbation of the particular distillation column studied. When attention was focussed on the modelling of the mass transfer characteristics of the unit it became apparent that much basic work was necessary before this could be tackled. The second half of this thesis is devoted to a study of these basic problems and their solution.

## 12.2 Practical and theoretical studies connected with the BP crude distillation unit.

## 12.2.1 The effect of the hydraulic and heat transfer transients on the column response.

A mathematical model was constructed and is described in Chapter 4. This considers the equations relating the hydraulics and heat transfer. In spite of simplifying assumptions the model yields a complex mathematical problem. A computer program for the ICL 1905 computer was written for the solution to the problem. This took appreciable computer time - of the order of sixty times real time for a 15-plate column example. The model yielded quite . reasonable qualitative results but it was not possible to do a

-201-

detailed check against experimental data.

It is noteworthy that the single oscillation on the model response curves is similar to the general experimental response curve. This suggests that the right sort of mechanism has been simulated. The time scale is out by a considerable factor, the model response being 20-30 times faster than the experimental response. Indeed the hydraulics and heat transfer response seems to act as an analogue for the full response which is then presumably due mainly to mass transfer.

Consideration of computer core store requirements led to the adoption of an iterative solution method for the model. The set of differential equations was solved by an implicit method described by Holland (33) on the basis of an assumed set of values for the vapour rates leaving each plate. On average about six iterations were needed to yield assumed and calculated values for the 15-element vapour rate vector agreeing to within 0.0001 lb/sec. This model might well prove to be more useful if tackled by Gear's method(70). This would need less core store and would obviate the need for iteration. This is suggested as a suitable basis for further work. The object of such a project would be to produce a model which could be used in conjunction with the mass transfer dynamics as a basis for a control system.

# 12.2.2 Determination of the open-loop response of the industrial column.

This is described in Chapter 5. The large effect on all the tray temperatures and product properties of changes in the reflux flow are well demonstrated by the experimental work. In particular the oscillatory nature of the response curves gives considerable insight into the origins of the long settling times required for

-202-

the unit to settle after major flow changes are made. Three significant points emerge. The length of time required for the reflux drum hold-up to reach its new composition is about  $l\frac{1}{2}$  hours. The length of time required for fractionation driving forces to reverse the effect of liquid dumping down the column is of the same order of magnitude. Perhaps of most interest is the oscillatory nature of the open loop response curves with a large overshoot and then swift damping for many variables.

## <u>12.2.3 Experimental work at Loughborough on the single sieve plate</u> <u>unit.</u>

This is described in Chapter 6.

The experiments demonstrate that the equations used to describe the hydraulics in the large model described earlier are of the right form and give the correct type of response. Thus the set of equations used should be capable of simulating the responses of the hold up and liquid froth density to liquid flow changes. The results for vapour changes are not correct. This is not important in the present work but would be an interesting area to explore further. The control study of an absorber with fluctuating vapour feed would need a model that was valid in this area.

It is relevant at this point to re-iterate the need for a mechanistic model of the hydraulics of distillation plates to replace the rather crude and apparently not generally valid correlations currently available.

#### 12.2.4 Application of the results to crude oil distillation.

This is discussed in Chapter 7. Two main points emerge. The first concerns control of the unit by using the tower top

-203-

temperature to control the reflux flow. This appears to work well for 'steady state' operation. However, during major flow changes the beneficial effects of maintaining constant temperature near the top of the tower may be offset by the effects of varying liquid rates and compositions reaching trays lower in the tower. This would be particularly important in the case of the kerosine flash point which is extremely sensitive to small amounts of liquid material. The second point follows from the first and concerns the suggested way of achieving a major flow change by an initial step followed by a ramp. The improvements to be gained by this sort of approach to flow control during major changes seem to justify further work.

#### 12.3 Multicomponent mass transfer models.

#### 12.3.1 Selection of the unsimplified model.

This is described in Chapter 8. The formulation of Wood seems to justify the slight additional work involved in its construction. It is shown to be an intrinsically more sound model than that of Mah et al. It permits the description of right half plane zeroes and oscillatory response, displaying both real and complex eigenvalues. Moreover there is no necessity for the rather crude normalisation to constrain mole fractions to sum to unity. It has the disadvantage that component responses cannot be solved in isolation and even the quite small ten plate three component demonstration model used appreciable core store on an ICL 1905. With size also comes numerical difficulties. Chapter 9 demonstrates how these can be solved.

-204-

## 12.3.2 Conversion of models from state variable to transfer function form.

This is discussed in detail in Chapter 9. It is shown that the problem may be reduced to one of finding the numerator roots or the coefficients of the numerator polynomial. The method of Davison(46) by which the zeroes are located by solving an approximately equivalent eigenvalue problem is discussed. Certain modifications are suggested to aid in the solution of large order (say greater than 15th) problems on an ICL 1905 computer.

It is shown that the root locus may be obtained from a matrix formulation again by the construction of the approximately equivalent eigenvalue problem. Moreover under certain conditions Davison's method and the matrix formulation of the root locus become identical.

The claim is made in the paper by Davison that selection of the system zeroes from amongst the extraneous roots also obtained is straightforward. This has been found to be valid for the case of real zeroes. However, it is not easy to obtain the complex zeroes reliably. The same criticism is true of the matrix root locus method. Even when multiplying parameter is taken to the limits permited by numerical accuracy in the eigenvalue routine, the values of the complex zeroes are not constant. This The first is the decision as to whether a poses two problems. root is extraneous or a true zero. This is rarely serious, although the author found that practice was essential. Secondly, if the root is a true zero, what is the best value to choose for it? On the basis of the theory underlying Davisons method the results for the highest value of the multiplying factor were chosen.

-205-
However, it is at this point that numerical inaccuracy is increasing and it does not necessarily follow that the best estimate of a complex zero will be obtained. The complex roots in particular seem to be quite sensitive as the multiplying factor changes about this point. However, the responses obtained using simplified models based on zeroes obtained by these methods closely match those obtained using other methods, so this difficulty is not very serious.

As an interesting and useful off-shoot from the main theme a very simple way of obtaining the root locus for medium sized systems has been outlined. The value of this is not reduced by the numerical problems mentioned earlier since the root locus at very high gains is rarely required.

The method of Bosley et al also described in Chapter 9 is basically straightforward in its application and theoretically needs no user intervention for coefficient estimation. However, the application to 36 variable problem using an ICL 1905 computer reveals potential numerical problems, even though extensive use was made of double length (22 decimal digit) working. The modification of Kropholler(56) overcomes these although additional programming and computer time are required. Of the three methods that of Bosley et al with Kropholler's modification appears to be slightly superior.

The final stage of the work in this field will be the incorporation of the checks and ancillary calculations into robust computer programs for each method.

#### 12.3.3 Simplification of a complicated transfer function.

This work is described in Chapter 10. The method of Chen and Shieh has been used to simplify pole/zero transfer

-206-

functions generated by Davison's method and by the matrix root locus method and polynomial transfer functions generated by the method of Bosley et al.

The method appears to work quite satisfactorily for the 36 variable system studied. Second order models are quite good approximations - third and fourth order models give results very close to the actual system response curves. It is important to note one point on numerical accuracy and accumulation of round off error.  $H_1$  to  $H_4$  only are needed in second order models. If errors do accumulate they will only be apparent in the less important higher order coefficients.

One disadvantage of the method could be the oscillation near the origin obtained with some low order models. However as a general conclusion the Chen and Shieh method appears to offer an excellent simple and automatic approach to the final problem that of extracting information for controller design from large state variable formulations which give rise to complicated transfer functions.

#### 12.3.4 Analytical and numerical solutions to complete problems.

This work is described in Chapter 11. The comparison of simplified model responses based on the three methods indicates that close approximations to the true response are obtained using the predictions of Chen+Shieh models based on the pole/zero estimates of Davison and the Matrix root locus and the polynomial coefficient estimates of the method of Bosley.

The comparison of the prediction of the Chen and Shieh models with the complete analytical and numerical solutions is

ŝ,

-207-

interesting. Results are given for the analytical solution described by Ogata(54) and for the numerical solution based on the work of Gibilaro et al (57). Good agreement is obtained for the middle component in the overheads. However, there is no real match for the middle component in the bottoms. Since it is responses of the simplified models which give the correct steady state gain it is assumed that these are nearer to being correct. The errors with the complete solutions are attributed to numerical problems in the programs. Solution of these does not fall within the scope of this thesis but improvements to the methods are certainly required.

#### 12.4 Closing Remarks.

This project has considered the problem of the modelling of multistage systems. Experimental work on a crude oil distillation unit revealed interesting oscillatory response curves for column temperatures and product properties. Theoretical work with similar systems indicated that an analogous response could be obtained using only the hydraulic and heat transfer dynamics. This gives the right form of response but over a shorter time scale. The extension of the study into mass transfer dynamics revealed problems of formulation, simplification and solution. Methods of overcoming several numerical problems and producing simple transfer functions from complex state variable models are described and demonstrated. The author hopes that future workers will continue the study into the field of the modelling of larger and more complex systems such as crude oil distillation mass transfer dynamics.

-208-

However, it is fair to say that with little further work many of the principles described may be put into practice straight away. Chapter 11 indicates that simple 2nd and 3rd order models that can be readily derived are good approximations to 3oth order systems. The problems that might arise with the application of these techniques to other systems are:

(i) an ill-conditioned system matrix could give rise to severe numerical problems, as could a matrix in which the elements were different by several powers of ten. In the example quoted the ratio of the largest to the smallest element is about 100.

(ii) as the size of the system is increased so the numerical problems associated with the simplification also become greater. Here the importance of the accuracy-checks described in detail in Chapter 9 is seen. With these it is possible to reject erroneous results instantly without the necessity for tedious back calculation.

Note, however, that the basic assumption of linearity may itself in many cases be a major source of error. Although the ability to describe a problem more fully may lead to significantly better models this is unlikely to remove problems associated with non-linearity.

The effectiveness of this rational reduction approach justifies the use of more complete formulations. The complexity associated with such models can be rapidly skirted using the techniques described, leading to simple models that have all the characteristics of the full mathematical description. These models are readily soluble and are also suitable for incorporation into a control system.

-209-

• * .

#### REFERENCES.

- (1) BOLLES W.L. Petroleum Processing. Feb. 1956. p.65.
- (2) PERRY J.H. Chemical Engineers Handbook 4th Edition. McGraw Hill.
- (3) A.F.Ch.E. Research Committee "Final Report, University of Michigan" 1960 (New York: American Institute of Chemical Engineers).
- (4) A.I.Ch.E. Research Committee "Final Report, University of Delaware" 1958 (New York: American Institute of Chemical Engineers).
- (5) BERNARD J.D.T. and R.W.H. SARGENT. "Proceedings of the Symposium on Distillation". 1964 (London: Association of British Chemical Manufacturers/British Chemical Plant Manufacturers Association.)
- (6) BERNARD J.D.T. and R.W.H. SARGENT. Transactions Instn. Chem. Engrs. (London) <u>44</u> (1966) p.314.
- (7) Bubble Tray Design Manual 1958 (New York: American Institute of Chemical Engineers.)
- (8) RODIONOV A.J. International Chemical Engineering 6 (1966) p.639.
- (9) THOMAS W.J. and M. CAMPBELL. Transactions Instn. Chem. Engrs. (London) <u>45</u> (1967) p.53.
- (10) GARDNER R.G. and A.Y. McLEAN. "Proceedings of the International Symposium on Distillation" 1969 (London: Institution of Chemical Engineers.
- (11) WILKINSON W.L. and W.D. ARMSTRONG Proceedings of S.I.T. Conference 1956 in "Plant and Process Dynamic Characteristics" (Butterworths).
- (12) VOETTER H. ibid.

1

- (13) WESTCOTT J.H. ibid.
- (14) ENDTZ J, J.M.L. JANSSEN and J.C. VERMEULEN ibid.
- (15) ROSENBROCK H.H. Trans. Instn. of Chem. Engrs. (London) <u>35</u> (1957) p.347.
- (16) CRANDALL S.H. Engineering Analysis. A survey of Numerical Procedures. Engineering Society Monographs McGraw Hill, New York, 1956.
- (17) RIJNSDORP J.E. The Birmingham University Chemical Engineer <u>12</u> Supplement S14 (1961).
- (18) WILKINSON W.L. and W.D. ARMSTRONG. Chem. Eng. Sci. 7 (1957) p.1.

- (19) ARMSTRONG W.D. and R.M. WOOD. Trans. Instn. Chem. Engrs. <u>39</u> (1961) p.65.
- (20) ibid, idem. p.80.
- (21) BABER M.F. and J.A. GERSTER. Proceedings of Symposium on Process Dynamics and Control. A.I.Ch.E. New York (1961).
- (22) LAMB D.E., R.L. PIGFORD and D.W.T. RIPPIN. Chem. Eng. Prog. Symposium Series 1961, <u>57</u>, p.132.
- (23) MAFE R.S.H., S. MICHAELSON and R.W.H. SARGENT. Chem. Eng. Sci. <u>17</u> (1962) p.619.
- (24) SARGENT R.W.H. Trans. Instn. Chem. Engrs. <u>41</u> (1963) p.51.
- (25) WOOD R.M. Trans. Instn. Chem. Engrs. 45 (1967) p.190.
- (26) PEISER A.M. and S.S. GROVER. Chem. Eng. Prog. <u>58</u> (1962) 9, p.65.
- (27) WEEKLEY G.H. Hydr. Proc. and Pet. Ref. 43, (1964), 3, p. 115.
- (28) ROBBINS T. Ph.D. Thesis. Swansea University 1966.
- (29) CECCHETTI R., R.H. HOHNSTON, J.L. NIEDZWIECKI and C.D. HOLLAND. Hyd.Proc. and Pet.Ref. 42 (1963)9,p.159.
- (30) GILBERT R.J.H., J.LEATHER and J.F.G. ELLIS. A.I.Ch.E.Jl. <u>12</u> (1966)3,p.432.
- (31) EDMISTER W.C. A.I.Ch.E.Jl. <u>3</u> (1957)2, p.165.
- (32) HOLLAND C.D. Multicomponent Distillation. Prentice Hall (1963).
- (33) HOLLAND C.D. Unsteady State Processes with Applications in Multicomponent Distillation. Prentice-Hall (1966).
- (34) CLARK C.R. M.Sc. Thesis, Loughborough University of Technology 1969.
- (35) HOFFMAN E.J. Chem.Eng.Sci. <u>23</u> (1968) p.957.
- (36) GILBERT R.J.H, G.J. WANLESS and R.D. WILSDON. Proceedings of International Symposium on Distillation 1969. London: Instn.Chem.Engrs.
- (37) KUEHN D.R. and H. DAVIDSON. Chem. Eng. Prog. <u>57</u> (1961)6, p.44.
- (38) ROBBINS T. Private communication.

- (39) CLEMENTSON A.T. Br.Chem.Eng. 8 (1963) 8, p.564.
- (40) SHELTON R.J. and A.W. HUTCHINSON. Trans. Instn. Chem. Engrs. <u>45</u> (1967) p.334.
- (41) REES N.W. Proceedings I.F.A.C. Congress (1966).
- (42) STAINTHORP F.P. and M.J. WARREN. Paper presented at Colloquium "Making Plant Models" 1966. (London: Instn. Elec. Engrs.)
- (43) PIPES L.A. and S.A. HOVANESSIAN. Matrix Computer Methods in Engineering. Wiley (1969).
- (44) CHEN C.F. and I.J. HAAS. Elements of Control Systems Analysis: Classical and Modern Approaches. 1968 (Prentice Hall).
- (45) HENNION P.E. Communications of the A.C.M. <u>6</u> (1963)4, p.165.
- (46) DAVISON E.J. Paper presented at 3rd I.F.A.C. Conference, London 1966.
- (47) idem. A.I.Ch.E.Jl. <u>14</u> (1968)1, p.46.
- (48) idem. Automatica <u>6</u> (1970) p.481.
- (49) BOSLEY M.J., H.W. KROPHOLLER, F.P. LEES and R.M. NEALE. Paper submitted to Automatica for publication.
- (50) HALL H.S. and S.R. KNIGHT. Higher Algebra. 4th Edn. (1950). (Macmillan.)
- (51) CHEN C.F. and L.S. SHIEH. Int.J.Control 8 (1968),6,p.561.
- (52) idem, ibid. <u>11</u> (1970), 5, p. 717.

,

- (53) MAEHLY H.J. Journal of A.C.M. 7 (1960) p.150.
- (54) OGATA K. State-space Analysis of Control Systems. Prentice-Hall (1967).
- (55) LEES F.P. Ph.D.Thesis. Loughborough University of Technology. 1968.
- (56) KROPHOLLER H.W. Private Communication.
- (57) GIBILARO L., H.W. KROPHOLLER and D.J. SPIKINS. Chem.Eng.Sci. <u>22</u> (1967) p.517.
- (58) idem. Inst.Chem.Engrs. Symposium Series No. 23. (1967). Inst.Chem.Engrs., London.
- (59) KREYSZIG E., Advanced Engineering Mathematics, Ch.7. 2nd Ed¹. Wiley (1967).

- (60) SHORE D. and G.G. HASELDEN. Paper presented at International Symposium on Distillation 1969. (London: Instn. Chem. Engrs.)
- (62) ACRIVOS A. and N.R. AMUNDSEN. Ind.Eng.Chem. <u>47</u>. (1955) p.1533.
- (63) Fortran Scientific Subroutine Manual for 1900 Series Computers. International Computers Ltd., London.
- (64) HAK S.K. Ph.D.Thesis to be submitted to Loughborough University of Technology.
- (65) Closing remarks by Chairman, International Symposium on Distillation, 1969. (Instn. of Chem. Engrs., London).
- (66) H0 G.E., R.L. MULLER and R.G.H. PRINCE. Paper presented at International Symposium on Distillation, 1969 (Instn. of Chem. Engrs., London).
- (67) ACRIVOS A. and N.R. AMUNDSEN. Matrix methods in Chemical Engineering. Prentice Hall 1964.
- (68) GIBILARO L.G. and F.P. LEES, Ch.Eng.Sci. 24 (1969) p.85.
- (69) KROPHOLLER H.W. et al. Ind. Eng. Chem. To be published.
- (70) GEAR C.W. Proceedings of 1968 I.F.I.P.S. Congress, Edinburgh P.A81 (1967).

#### ACKNOWLEDGEMENTS.

This research project has been directed by Mr. H.W.Kropholler, to whom I am indebted for enthusiastic support and practical assistance as well as academic guidance. The work has been carried out mainly in the Department of Chemical Engineering at Loughborough University of Technology and I would like to thank the Head of Department, Professor D.C.Freshwater, for his continual encouragement.

Considerable support, detailed suggestions and advice have been received from the Industrial Supervisor of the project, Mr.J.N.Turnbull of BP Research Centre, to whom I am extremely grateful.

My thanks are due to The British Petroleum Company Ltd. For the generous provision of experimental facilities on a large production unit, technical literature and practical assistance from many members of staff. The refinery experimental work has been made possible chiefly through the energetic organisational efforts of Dr.T.Robbins at BP Refinery (Llandarcy) Ltd; considerable technical advice on all aspects of the project has also been received from the latter. H.C.Moore of Loughborough University of Technology provided considerable experimental assistance during kun TR3 at Llandarcy Refinery.

This thesis forms a part of a much larger programme of work which is still being pursued by the Process Dynamics and Control Section in the Department of Chemical Engineering. I am indepted to members of staff in the section, particularly Dr.F.P.Lees, and to fellow research students, particularly M.J.Bosley, for many helpful discussions and suggestions and the

-214-

use of their computer programs.

Many of the ideas in the second half of this thesis rely extensively on computer calculations. The success of these is partly attributable to the fast and reliable service offered by Loughborough University Computer Centre.

This project has been financed by the Science Research Council with a supplementary grant by The British Petroleum Co. Ltd., both of which I acknowledge with thanks.

۰.

# APPENDIX 1. A MATHEMATICAL MODEL OF A CRUDE OIL DISTILLATION UNIT -LINEARISATION AND MANIPULATION OF THE BASIC EQUATIONS.

The nomenclature used in this Appendix is given in

Chapter 4.

Al.1 The hydraulic equations.

Al.1.1 The special case of the top tray.

The non-linearised equations are:-

$$U_{lat}(W_{ln}) = V_{2} + SV_{2} + SR_{1} - L_{1} - V_{1} \qquad \dots (A1-1)$$

$$W_{L1} = E_{1}f_{L1}A_{T1}(\Psi_{W1} + \Psi_{1}) \qquad \dots (A1-2)$$

$$I_{L1} = A_{1}E_{1}E_{1}F_{1}(\Psi_{W1} + \Psi_{1}) \qquad \dots (A1-3)$$

$$f_{1} = e_{1}(V_{2} + SV_{2}) + e_{2}SR_{1} + e_{3}\Psi_{1} + e_{10}(V_{2} + SV_{2})^{2} + e_{11} \dots (AI-4)$$

Linearising:-

 $\Delta W_{L1} = \Delta V_{2} + \Delta S V_{2} + \Delta S R_{1} - \Delta L_{1} - \Delta V_{1} + g_{1} \dots (AI-5)$ where  $g_{1} = |V_{2} + S V_{2} + S R_{1} - L_{1} - V_{1}|_{\text{reference state}}$   $\Delta W_{L1} = \mathcal{E}_{1} \int_{L1} A_{T1} \Delta \psi_{1} + \int_{L1} A_{T1} (\psi_{W1} + \psi_{1}) \Delta \mathcal{E}_{1} \dots (AI-6)$   $\Delta L_{1} = 3/2 \ e_{9} \ \ell_{1} \ \mathcal{E}_{1} \int_{L^{1}} \psi_{1}^{1/2} \Delta \psi_{1} + e_{9} \ \ell_{1} \int_{L^{1}} \psi_{1}^{3/2} \Delta \mathcal{E}_{1} \dots (AI-7)$   $\Delta \psi_{1} = e_{1} (\Delta V_{2} + \Delta S V_{2}) + e_{2} \Delta S R_{1} + 2 e_{10} (V_{2} + S V_{2}) (\Delta V_{2} + \Delta S V_{2}) \dots (AI-8)$ Write  $\Delta \psi_{1} = a_{1} \ \Delta V_{2} + a_{2}$ where  $a_{1} = e_{1} + 2 e_{10} (V_{2} + S V_{2}) |\Delta S V_{2} + e_{2} \Delta S R_{1}$ 

Hence substituting for  $\Delta \psi_i$  from equation (A1-8) into equations (A1-5) to (41-7) we obtain:-

$$\Delta W_{L1} = \mathcal{E}_{1} \mathcal{E}_{L1} A_{T1} [a_{1} \Delta V_{2} + a_{2}] + \mathcal{E}_{L1} A_{T1} (\mathcal{Y}_{W1} + \mathcal{Y}_{1}) \Delta \mathcal{E}_{1} \qquad \dots (A1-9)$$
  
$$\Delta L_{1} = \frac{3}{2} e_{9} \mathcal{E}_{1} \mathcal{E}_{1} \mathcal{E}_{1} \mathcal{Y}_{1}^{\frac{1}{2}} [a_{1} \Delta V_{2} + a_{2}] + e_{9} \mathcal{E}_{1} \mathcal{E}_{L1} \mathcal{Y}_{1}^{\frac{3}{2}} \Delta \mathcal{E}_{1} \qquad \dots (A1-10)$$
  
From equation (A1-10):-

$$\Delta \mathcal{E}_{1} = \frac{\Delta L_{1}}{e_{9}\mathcal{E}_{1} \int_{L_{1}} \psi_{1}^{3/2}} - \frac{3\mathcal{E}_{1}}{2\psi_{1}} \left(\alpha_{1}\Delta V_{2} + \alpha_{2}\right) \dots (AI-II)$$

Hence substituting for  $\Delta \varepsilon_i$  from equation (A1-11) into equation (A1-9)

yields:-

$$\Delta W_{L1} = \int_{L1} A_{T1} \left( \Psi_{W_1} + \Psi_1 \right) \left[ \Delta L_1 / (e_9 \ell_1 \rho_{L1} \psi_1^{3/2}) - (3 \ell_1 / 2 \Psi_1) (a_1 \Delta V_2 + a_2) \right] + \ell_1 \rho_{L1} A_{T1} \left[ a_1 \Delta V_2 + a_2 \right] \qquad \dots (A1-12)$$

Differentiation of equation (A1-12) with respect to time gives:-

$$\Delta W_{L_1} = \frac{A_{T_1}(\psi_{W_1} + \psi_1)}{e_g \ell_1 \psi_1^{3/2}} \Delta L_1 \qquad \dots (AI-I3)$$

since the assumption of zero vapour hold-up implies  $d/dt(\Delta V_{\eta}) = 0$ . Hence the equation for the top tray is:-

$$\frac{A_{T1}\left(\mathcal{Y}_{W1}+\mathcal{Y}_{1}\right)}{e_{g} \ell_{1} \mathcal{Y}_{1}^{3/2}} \Delta L_{1} = -\Delta L_{1} + \left\{\Delta V_{2} + \Delta S V_{2} + \Delta S R_{1} - \Delta V_{1} + g_{1}\right\} \dots (AI-14)$$

Al.1.2 The equations for the general tray

Start with the linearised equations (4-12) to (4-18). First write equation (4-18) in the form:-

 $\Delta \Psi_n = \alpha_1 \Delta V_{n+1} + e_2 \Delta L_{Dn} + \alpha_2$ 

$$a_{1} = e_{1} + 2e_{10} (V_{n+1} + SV_{n+1}) \qquad 1 \le n \le n_{T}$$

$$a_{1} = e_{1} + 2e_{10} SV_{n+1} \qquad n = n_{T}$$

$$a_{2} = [e_{1} + 2e_{10}(V_{n+1} + SV_{n+1})]\Delta SV_{n+1} + e_{2}\Delta SR_{n} \qquad 1 \le n \le n_{T}$$

$$a_{2} = [e_{1} + 2e_{10} SV_{n+1}]\Delta SV_{n+1} + e_{2}\Delta SR_{n} \qquad n = n_{T}$$

Substituting for  $\Delta y_n$  in equations (4-14), (4-16) and (4-17) we obtain:-

$$\begin{split} \Delta W_{Ln} &= \epsilon_{n} f_{Ln} A_{Tn} [a_{1} \Delta V_{n+1} + e_{2} \Delta L_{Dn} + a_{2}] + f_{Ln} A_{Tn} (\Psi_{Wn} + \Psi_{n}) \Delta \epsilon_{n} \dots (AI-15) \\ \Delta \Psi_{Dn} &= \epsilon_{n} [a_{1} \Delta V_{n+1} + e_{2} \Delta L_{Dn} + a_{2}] + (\Psi_{Wn} + \Psi_{n}) \Delta \epsilon_{n} + 2 C_{Ln} L_{Dn} \Delta L_{Dn} \\ &+ 2 C_{Vn-1} (V_{n} + SV_{n}) (\Delta V_{n} + \Delta SV_{n}) + \epsilon_{n-1} [a_{1}^{p} \Delta V_{n} + e_{2}^{p} \Delta L_{Dn-1} + a_{2}^{p}] \\ &+ (\Psi_{Wn-1} + \Psi_{n-1}) \Delta \epsilon_{n-1} \dots (AI-16) \end{split}$$

where superscript p denotes the value of the coefficient for the previous plate.

 $\Delta L_n = \frac{3}{2} e_g \ell_n \epsilon_n \int_{L_n} \int_{a}^{1/2} (a_1 \Delta V_{n+1} + e_2 \Delta L_{D_n} + a_2) + e_g \ell_n \int_{L_n} \int_{a}^{3/2} \Delta \epsilon_n \dots (AI-17)$ Simplification of equation (AI-17) gives:-

$$\Delta L_n = a_3 a_1 \Delta V_{n+1} + a_3 e_2 \Delta L_{Dn} + a_3 a_2 + \frac{2 a_3 \varphi_n}{3 \varepsilon_n} \Delta \varepsilon_n \dots (AI-18)$$

where 
$$a_3 = 3/2 e_9 l_n l_n f_{Ln} y_n^{1/2}$$

From equation (Al-18) it follows that:-

$$\Delta \mathcal{E}_{n} = \frac{3\mathcal{E}_{n}}{2a_{3}\mathscr{Y}_{n}} \left[ \Delta L_{n} - a_{3}a_{1}\Delta V_{n+1} - a_{3}e_{2}\Delta L_{Dn} - a_{3}a_{2} \right]$$

i.e. 
$$\Delta \mathcal{E}_n = \frac{3\mathcal{E}_n}{2\psi_n} \left[ \frac{\Delta L_n}{\alpha_3} - \alpha_1 \Delta V_{n+1} - e_2 \Delta L_{D_n} - \alpha_2 \right] \dots (AI-19)$$

Equation (al-19) may be used to remove  $\Delta E_n$  from equations (Al-15) and (Al-16) to yield:- $\Delta W_{Ln} = E_n f_{Ln} A_{Tn} [a_1 \Delta V_{n+1} + e_2 \Delta L_{Dn} + a_2] + f_{Ln} A_{Tn} (V_{Mn} + V_n) \frac{3E_n}{2V_n} [\Delta L_n - a_1 \Delta V_{n+1} - e_2 \Delta L_{Dn} - a_2]$ 

Using equation (A1-21) to eliminate  $\Delta \psi_{pn}$  from equation (4-15) and differentiating equations (A1-23) and (4-15) we obtain:-

$$d/dt (\Delta W_{Ln}) = \left\{ \mathcal{E}_{n} f_{Ln} A_{Tn} e_{2} - f_{Ln} A_{Tn} (\mathcal{Y}_{Wn} + \mathcal{Y}_{n}) \frac{3\mathcal{E}_{n} e_{2}}{2\mathcal{Y}_{n}} \right\} \Delta \dot{L}_{Dn} + f_{Ln} A_{Tn} (\mathcal{Y}_{Wn} + \mathcal{Y}_{n}) \frac{3\mathcal{E}_{n}}{2\mathcal{Y}_{n} a_{3}} \Delta \dot{L}_{n} \qquad \dots (Al-22)$$
$$d/dt (\Delta W_{Dn}) = f_{LDn} A_{Dn} \left\{ \mathcal{E}_{n-1} e_{2}^{P} - (\mathcal{Y}_{Wn-1} + \mathcal{Y}_{n-1}) \frac{3\mathcal{E}_{n-1}}{2\mathcal{Y}_{n-1}} e_{2}^{P} \right\} \Delta \dot{L}_{Dn-1} + \left[ (\mathcal{Y}_{Wn-1} + \mathcal{Y}_{n-1}) \frac{3\mathcal{E}_{n-1}}{2\mathcal{Y}_{n-1}} e_{2}^{P} \right] \Delta \dot{L}_{Dn-1} + \left[ (\mathcal{Y}_{Wn-1} + \mathcal{Y}_{n-1}) \frac{3\mathcal{E}_{n-1}}{2\mathcal{Y}_{n-1}} e_{2}^{P} \right] \Delta \dot{L}_{Dn} + \left[ \mathcal{E}_{n} e_{2} - (\mathcal{Y}_{Wn} + \mathcal{Y}_{n}) \frac{3\mathcal{E}_{n}}{2\mathcal{Y}_{n}} e_{2} + 2C_{Ln} L_{Dn} \right] \Delta \dot{L}_{Dn} + \left[ (\mathcal{Y}_{Wn} + \mathcal{Y}_{n}) \frac{3\mathcal{E}_{n}}{2\mathcal{Y}_{n}} a_{3}^{P} \right] \Delta \dot{L}_{n} \qquad \dots (Al-23)$$

Equations (A1-22) and (A1-23) may thus be written:-

$$d | dt (\Delta W_{Ln}) = b_1 \Delta \dot{L}_{Dn} + b_2 \Delta \dot{L}_n \qquad \dots (AI-24)$$

$$d | dt (\Delta W_{Dn}) = b_3 \Delta \dot{L}_{Dn-1} + b_4 \Delta \dot{L}_{n-1} + b_5 \Delta \dot{L}_{Dn} + b_6 \Delta \dot{L}_n \qquad \dots (AI-25)$$
Substituting for  $d/dt (\Delta W_{Ln})$  and  $d/dt (\Delta W_{Dn})$  from equations (AI-24)  
and (AI-25) into equations (4-12) and (4-13) we finally obtain:-

 $b_1 \Delta \dot{L}_{Dn} + b_2 \Delta \dot{L}_n = \Delta L_{Dn} + \Delta V_{n+1} + \Delta S V_{n+1} + \Delta S R_n - \Delta L_n - \Delta V_n + g_1 \dots (AI-26)$  $b_3 \Delta \dot{L}_{Dn-1} + b_4 \Delta \dot{L}_{n-1} + b_5 \Delta \dot{L}_{Dn} + b_6 \Delta \dot{L}_n = \Delta L_{n-1} - \Delta L_{Dn} - \Delta S L_{n-1} + g_2 \dots (AI-27)$  where b₁ - b₆ are defined by:-

$$b_{1} = \epsilon_{n} f_{Ln} A_{Tn} e_{2} \left\{ 1 - 3 \left( \mathcal{Y}_{Nn} + \mathcal{Y}_{n} \right) / (2\mathcal{Y}_{n}) \right\}$$

$$b_{2} = f_{Ln} A_{Tn} \left( \mathcal{Y}_{Nn} + \mathcal{Y}_{n} \right) (3\epsilon_{n}) / (2\mathcal{Y}_{n} a_{3})$$

$$b_{3} = f_{LDn} A_{Dn} \epsilon_{n-1} e_{2}^{p} \left\{ 1 - 3 \left( \mathcal{Y}_{Nn-1} + \mathcal{Y}_{n-1} \right) / (2\mathcal{Y}_{n-1}) \right\} \times$$

$$b_{4} = f_{LDn} A_{Dn} \left( \mathcal{Y}_{Nn-1} + \mathcal{Y}_{n-1} \right) (3\epsilon_{n-1}) / (2\mathcal{Y}_{n-1} a_{3}^{p})$$

$$b_{5} = f_{LDn} A_{Dn} \left\{ \epsilon_{n} e_{2} \left[ 1 - 3 \left( \mathcal{Y}_{Nn} + \mathcal{Y}_{n} \right) \right] (2\mathcal{Y}_{n}) \right\} + 2c_{Ln} L_{Dn} \right\}$$

$$b_{6} = f_{LDn} A_{Dn} \left[ \left( \mathcal{Y}_{Nn} + \mathcal{Y}_{n} \right) (3\epsilon_{n}) / (2\mathcal{Y}_{n} a_{3}) \right]$$

★ This term is zero for tray 2. Otherwise the equations are valid for tray 2.

All coefficients are valid for the bottom tray.

## Al.2 The heat balance equations.

## Al.2.1 The heat balance equations for the top tray.

Equation (4-8) for the general tray may be manipulated as in section Al.2.2 with the omission of the terms in  $\Delta L_{pn}$ :-

$$W_{Ln} \star d[dt (\Delta \Theta_n) = H_{n+1} \Delta V_{n+1} + PV_{n+1} \Delta \Theta_{n+1} + H_{SV_{n+1}} \Delta SV_{n+1} + h_{SR_n} \Delta SR_n$$
  
-  $h_n \Delta L_n - \star L_n \Delta \Theta_n - H_n \Delta V_n - PV_n \Delta \Theta_n + g_3$   
-  $[\star \Theta_n + \star \Delta \Theta_n + s][\Delta V_{n+1} + \Delta SV_{n+1} + \Delta SR_n - \Delta L_n - \Delta V_n + g_1]$   
where  $A = [H, V_n - H_n - SV_n + h_n - SR_n - h_n - h_n - h_n + g_1]$ 

where  $g_3 = |H_{n+1}V_{n+1} - H_{syn+1}SV_{n+1} + h_{SRn}SR_n - h_nL_n - H_nV_n|$  reference state Hence

$$W_{Ln} \neq d \left[ dt \left( \Delta \Theta_n \right) = \left( H_{n+1} - h_n \right) \Delta V_{n+1} + p V_{n+1} \Delta \Theta_{n+1} + \left( H_{sv_{n+1}} - h_n \right) \Delta S V_{n+1} \right. \\ \left. + \left( h_{se_n} - h_n \right) \Delta S R_n - \left[ r \left( L_n + g_1 \right) + p V_n \right] \Delta \Theta_n \right. \\ \left. + \left( h_n - H_n \right) \Delta V_n + \left( g_3 - h_n g_1 \right) \qquad \dots (4-19) \right]$$

A1.2.2 The heat balance equations for the general tray

For the general plate we have the basic equation:-

 $d[dt(h_nW_{Ln}) = h_{LDn}L_{Dn} + H_{n+1}V_{n+1} + H_{SVn+1}SV_{n+1} + h_{SRn}SR_n - h_nL_n - H_nV_n \dots (4-8)$ Using the superscript ' to denote reference state and linearising in

the normal way (making use of  $h = r \partial + s$ ;  $H = p \partial + q$ ):-

$$d | dt (h_n W_{Ln}) = d | dt \{ (\tau \Theta'_n + \tau \Delta \Theta_n + s) (W'_{Ln} + \Delta W_{Ln}) \}$$
  
=  $W'_{Ln} \tau d | dt (\Delta \Theta_n) + (\tau \Theta'_n + \tau \Delta \Theta_n + s) d | dt (\Delta W_{Ln})$ 

and substituting for  $d/dt(\Delta W_{Ln})$  from equation (4-12) we obtain:-

$$d[dt(h_nW_{Ln}) = W_{Ln}' \neq d[dt(\Delta \Theta_n) + (\forall \Theta_n' + \gamma \Delta \Theta_n + s)(\Delta L_{Dn} + \Delta V_{n+1} + \Delta S V_{n+1} + \Delta S R_n - \Delta L_n - \Delta V_n + g_1)$$

Hence the complete linearised form of equation (4-8) becomes :-

$$W_{L_{n}} \star d[dt (\Delta \Theta_{n}) = h_{L_{n}} \Delta L_{n} + \star L_{n} \Delta \Theta_{n} + H_{n+1} \Delta V_{n+1} + PV_{n+1} \Delta \Theta_{n+1} + H_{SYn+1} \Delta SV_{n+1} + h_{SRn} \Delta SR_{n} - h_{n} \Delta L_{n} - \star L_{n} \Delta \Theta_{n} - H_{n} \Delta V_{n} - PV_{n} \Delta \Theta_{n} + g_{3} - (\star \Theta_{n}' + \star \Delta \Theta_{n} + s)(\Delta L_{nn} + \Delta V_{n+1} + \Delta SR_{n} - \Delta L_{n} - \Delta V_{n} + g_{1})$$

where

$$g_3 = \left| H_{LDn}L_{Dn} + H_{nH}V_{nH} + H_{SYnH}SV_{nH} + h_{SRn}SR_n - h_nL_n - H_nV_n \right| \text{ reference state}$$

Hence we obtain:-

$$W_{L_{n}} \star d[dt (\Delta \Theta_{n}) = \{(\tau \Theta_{p_{n}} + s) - (\tau \Theta_{n} + s)\}\Delta L_{p_{n}} + \{\tau L_{p_{n}}\}\Delta \Theta_{p_{n}} + \{H_{n+1} - h_{n}\}\Delta V_{n+1}$$
  
+  $PV_{n+1}\Delta \Theta_{n+1} + \{H_{SYn+1} - h_{n}\}\Delta SV_{n+1} + \{h_{SR_{n}} - h_{n}\}\Delta SR_{n}$   
-  $\{\tau L_{n} + \tau g_{1} + PV_{n}\}\Delta \Theta_{n} - \{H_{n} - h_{n}\}\Delta V_{n} + \{g_{3} - h_{n}g_{1}\}$ 

Simplifying

$$W_{L_n} \star d[dt(\Delta \Theta_n) = \star (\Theta_{D_n} - \Theta_n) \Delta L_{D_n} + \star L_{D_n} \Delta \Theta_{D_n} + (H_{n+1} - h_n) \Delta V_{n+1} + PV_{n+1} \Delta \Theta_{n+1} + (H_{syn+1} - h_n) \Delta SV_{n+1} + (h_{SR_n} - h_n) \Delta SR_n - [\star (L_n + g_1) + pV_n] \Delta \Theta_n - (H_n - h_n) \Delta V_n + (g_3 - h_n g_1) \dots (4-19)$$
For the downcomer the basic equation is:

For the downcomer the basic equation is:-

 $d[dt (h_{Dn} W_{Dn}) = h_{n-1} L_{n-1} - h_{Dn} L_{Dn} - h_{n-1} SL_{n-1} \dots (4-9)$ 

Proceeding as before :-

$$d\left[dt\left(h_{Dn}W_{Dn}\right) = d\left[dt\left([\gamma\Theta_{Dn}' + \gamma\Delta\Theta_{Dn} + s\right][W_{Dn}' + \Delta W_{Dn}]\right)\right]$$
$$= (\gamma\Theta_{Dn}' + \gamma\Delta\Theta_{Dn} + s) d\left[dt\left(\Delta W_{Dn}\right) + W_{Dn}' \gamma d\left[dt\left(\Delta\Theta_{Dn}\right)\right]\right]$$

Hence :-

$$\begin{split} W_{pn}^{\prime} \star d \left[ dt \left( \Delta \Theta_{pn} \right) \right] &= h_{n-1} \Delta L_{n-1} + \tau L_{n-1} \Delta \Theta_{n-1} - h_{pn} \Delta L_{pn} - \tau L_{pn} \Delta \Theta_{pn} \\ &- h_{n-1} \Delta S L_{n-1} - \tau S L_{n-1} \Delta \Theta_{n-1} \\ &- \left( \tau \Theta_{pn}^{\prime} + \tau \Delta \Theta_{pn} + s \right) \left( \Delta L_{n-1} - \Delta L_{pn} - \Delta S L_{n-1} + g_2 \right) \end{split}$$

Simplifying this gives :-

$$W_{Dn} r d[dt(\Delta \Theta_{Dn}) = (h_{n-1} - h_{Dn}) \Delta L_{n-1} + (rL_{n-1} - rSL_{n-1}) \Delta \Theta_{n-1} - rL_{Dn} \Delta \Theta_{Dn} + (h_{Dn} - h_{n-1}) \Delta SL_{n-1} - (h_{Dn} + r \Delta \Theta_{Dn}) g_2 \qquad \dots (4-20)$$

The heat transfer equation is:-

 $H_{n+1}V_{n+1} + H_{SYn+1}SV_{n+1} - H_nV_n = m_nV_{n+1}(\Theta_{n+1}-\Theta_n) + m_nSV_{n+1}(\Theta_{SYn+1}-\Theta_n) \dots (4-10)$ From which we obtain:-

$$H_{n+1} \Delta V_{n+1} + P V_{n+1} \Delta \Theta_{n+1} + H_{SYn+1} \Delta S V_{n+1} - H_n \Delta V_n - P V_n \Delta \Theta_n$$
  
=  $m_n V_{n+1} (\Delta \Theta_{n+1} - \Delta \Theta_n) + m_n (\Theta_{n+1} - \Theta_n) \Delta V_{n+1}$   
+  $m_n (\Theta_{SYn+1} - \Theta_n) \Delta S Y_{n+1} - m_n S Y_{n+1} \Delta \Theta_n$ 

Simplifying this gives:-

. .

$$\{ H_{n+1} - m_n (\Theta_{n+1} - \Theta_n) \} \Delta V_{n+1} - H_n \Delta V_n$$

$$= \{ PV_n - m_n V_{n+1} - m_n SV_{n+1} \} \Delta \Theta_n + \{ m_n V_{n+1} - PV_{n+1} \} \Delta \Theta_{n+1}$$

$$+ \{ m_n (\Theta_{SV_{n+1}} - \Theta_n) \Delta SV_{n+1} - H_{SV_{n+1}} \Delta SV_{n+1} \} \dots (4-21)$$

. . . . . . .

# APPENDIX 2. A MATHEMATICAL MODEL OF A CRUDE OIL DISTILLATION UNIT -THE COMPUTER PROGRAM.

#### A2.1 Function of the program.

The program predicts the response of the internal flowrates and temperatures of a crude oil distillation unit to certain forcing functions. The forcing functions are changes in the flow and enthalpy of feeds to the unit and changes of withdrawal rates from the unit.

### A2.2 Language and machine.

The program is written in Fortran IV for a standard ICL 1905 computer with 32 000 words of central core. Disc and tape files are not used.

#### A2.3 Limitations.

The maximum size of distillation unit which can be simulated contains 44 plates. No limit is placed on the number and location of feeds or withdrawals. Computation time is a serious limiting factor and current calculations require approximately sixty times real time. Convergence of the  $\Delta V$  vector is not assured, and after 30 iterations the program proceeds regardless using the most recently calculated value of the  $\Delta V$  vector. Hence for a given problem the user must experiment a little with the value of  $\mu$ , the implicit parameter, and with the time increment and relinearisation frequency to find the combination of these that will produce the correct response most rapidly.

#### A2.4 Lethod.

#### A2.4.1 Data input.

The operations in this section are carried out in subroutine INFORM, the subroutines being arranged in alphabetical

-222-

order after the kaster segment of the program (see listing given later in this appendix.) The arrays used to store perturbations and feed and withdrawal data are first set to zero. Then a title and geometric details of the column itself are entered. Then follow the operational data and the constants for use in the correlations and mathematical method. No further data is required during execution. Precise information on data presentation is given in section A2.5.

#### A2.4.2 Initial auxiliary calculations.

Subroutine STEADY is used to calculate the values of the tray heat transfer coefficients and the values of the liquid and vapour enthalpies using the correlation coefficients and the tray temperatures, both of which are presented in the data. Subroutine STEADY then calls subroutine PARAM. This calculates the initial values of the hydraulic parameters such as the downcomer head and the froth density using the steady state versions of the model equations presented in the main body of the thesis (section 4.2.3). The initial steady state values of all the column variables are then printed out using subroutine PRINT2. Subroutine INFORM is then called again to input the particular perturbation to which the column response is required. Control is transferred back to the Master segment of the program where counters are set up and accumulators cleared prior to the calculation of the transient. A2.4.3 Formulation of the dynamic problem.

As a first estimate  $\Delta \underline{V}$  is set to zero.  $\Delta \underline{X}(0)$  is also set to zero. The current values of  $\underline{\Delta \underline{X}}$  and  $\underline{\Delta \underline{V}}$  are transferred to subroutine matrix via the argument list in the CALL statement. Subroutine matrix is then used to calculate the values of the non-

-223-

zero elements in the band matrix E and the vector  $\underline{F}$ . This routine repeatedly calls another routine, subroutine COEFFS, to calculate the coefficients of the A and B matrices on a tray by tray basis. (For details of A,B,E and F see the main part of this thesis, section 4.3)

#### A2.4.4 Solution of the problem - the inner iterative loop.

The problem set up by subroutine MATRIX is to solve:-

# $\Delta X_{n+1} = E^{-1}F$

This is solved for  $\Delta \underline{X}_{n+1}$  using subroutine BAND. This routine inverts the band matrix  $\underline{E}$  by a series of matrix operations. These operations correspond to Jordan's method of matrix inversion because each operation converts one column of the band matrix to the corresponding column of the unit matrix. The same operations are carried out on the  $\underline{F}$  vector so that on leaving the routine  $\underline{F}$  contains  $\Delta \underline{X}_{n+1}$ .

The operation of the routine will be demonstrated using a band matrix of five element width:-

		a,	an	^a 13	٥	°	0	ο.	•
		a ₂₁	822	a ₂₃	824	0 [	0	۰.	•
	_	8. ₃₁	a 32	a.33	a34	a 35	0	۰.	•
£	1	0	8.41	8 42	a 13	a 44	8 45	۰.	•
		0	0	a 51	a 52	a 53	8.54	ä.,	4
		•	•	•	•		•	. , , , , , , , , , , , , , , , , , , ,	
		• •			•	•	•		

Consider only the partitioned region. This is of size  $5 \times 3$ . Pivoting is achieved by row swapping in this region. The pivotal element is selected from the first column as the largest value of  $a_{i1}/E_i$  where  $E_i$  is the Euclidean norm (the root mean square) of row i.

-224-

The matrix R, is then formed:-

$$R_{1} = \begin{bmatrix} 1/a_{11} & 0 & 0 & ... \\ -a_{21}/a_{11} & 1 & 0 & ... \\ -a_{31}/a_{11} & 0 & 1 & ... \\ . & . & ... & ... \end{bmatrix}$$

and the product R E is calculated :-

The operation is repeated on the whole of the partitioned region, the pivot being selected from the bottom three rows in this region. Hence

$$R_{2} = \begin{bmatrix} 1 & -b_{11} / b_{21} & 0 \\ 0 & 1 / b_{21} & 0 \\ 0 & -b_{31} / b_{21} & 1 \\ 0 & -b_{41} / b_{21} & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and

-225-

and so on.

The solution is obtained by operating concurrently on the <u>F</u> vector to form  $R_1 F$ ,  $R_2 R_1 F$  etc.

With the nine element band width used in the computer program being considered it may be seen that pivoting over five rows is possible. It will also be seen that at no time does the size of the transformed matrix exceed that of the original band matrix.

A2.4.5 Solution of the problem - convergence of the V vector.

Subroutine BAND has been used to produce an estimate of the new value for the state vector  $\Delta X_{0+1}$ . This estimate has been based on an assumed value of  $\Delta \underline{V}$ .  $\Delta \underline{X}_{n+1}$  is now substituted back into the linearised equations to obtain a new value for  $\Delta \underline{V}$ . Experience with the program showed that direct iteration produced the most consistently rapid convergent solution. Hence the newly calculated value of  $\Delta \underline{V}$  is used directly in the new formulation of the problem using subroutine MATRIX as before. The problem is deemed to have converged when all elements of  $\Delta \underline{V}$  are within 0.0001 lb/sec of their values at the previous iteration. Current experience with the program using a fifteen plate unit indicates that convergence is achieved in 3-10 iterations with no relinearisation of the system matrix and in 3-b iterations with frequent relinearisation. A2.4.6 Printout and relinearisation.

When convergence of the  $\Delta \underline{V}$  vector has been achieved the printout and relinearisation counters are incremented. A check is made with the parameters in the data. If it is time to reset the problem the hydraulic parameters and then the system matrix are recalculated. The subroutine PRINT2 is then used to print out

-226-

the current state of the unit. It may be that only a printout is required. In this case the hydraulic variables except for  $\underline{\Lambda V}$ and those in the state vector, remain at their previous values.

The program finally halts when a check shows that the maximum transient time requested in the data has been reached. A2.5 Data for the program.

The program requires considerable detailed data as is apparent from the generality built into it. The information on the data cards is output at the beginning of the results in a readily comprehendable form to facilitate data checking. In addition the first 24 columns of many of the data cards are reserved for data labels. These labels are output with the data check. A2.5.1 Title.

The first two data cards are stored as a title and output at the head of the results.

#### A2.5.2 Column geometry and operational details.

Each of the items numbered below must start on a new card. Apart from this numbers may be presented in any convenient form provided they are terminated by two or more spaces or the end of a card. Very large or very small numbers may be abbreviated. e.g. 37,000.0 may be written 3.7E4 (meaning  $3.7 \times 10^4$ ) and 0.00037may be written 3.7E-4 (meaning  $3.7 \times 10^{-4}$ ). Integer numbers are marked with an asterisk in the list below and must not contain a decimal point. Other numbers may, but need not, have a decimal point.

x 1) Number of trays - NT.

x 2) Types of trays. NT integer numbers. Number 10 represents
 a bubble cap plate. Number 20 represents a sieve plate.

-227-

3) Liquid densities. NT values representing the estimated liquid density at the column conditions for each plate.  $(1b/ft^3)$ .

4) Vapour densities. As for the liquid densities.  $(1b/ft^3)$ .

5) Tray areas. NT numbers representing the bubbling area of each tray. This is effectively the cross-sectional area of the tower less the area of the downcomers.  $(ft^2)$ .

o) Areas under the downcomer weirs. NT numbers representing the areas available for liquid flow under each of the downcomer weirs. (These areas are measured in the vertical plane.) (ft²).

7) Hole area. NT numbers representing the total area available for vapour flow through each tray. (ft²).

8) Downcomer area. NT numbers representing the mean crosssectional area of each downcomer.  $(ft^2)$ .

9) Weir heights. NT numbers representing the height of the outlet weir for each plate.  $(ft^2)$ .

10) The average liquid flowpath width. NT numbers representing the average width of the liquid flowpath across each plate. (ft).

11) The initial tray liquid temperatures. NT numbers representing the measured or estimated temperatures of the liquid on each tray. (°F).

x 12) The number of plates having vapour or liquid feeds or withdrawals (including pumparound offtake or return). A single integer. Note that the vapour from the top plate and the liquid from the bottom plate need not be specified at this stage.

13) This item consists of K cards where K is the number of plates having a feed or withdrawal as specified in the last item. Each card contains the following data in order:-

-228-

a) a 24 character label.

x b) the number of the plate, an integer.

c) the withdrawal rate of liquid from the plate. (1b/sec.)

- d) the feed rate of liquid to the plate. (lb/sec.)
- e) the enthalpy of the liquid feed. (BTU/lb.)
- f) the feed rate of vapour to the plate. (lb/sec.)
- g) the enthalpy of the vapour feed. (BTU/1b.)
- h) the temperature of the vapour return.  $(^{\circ}F)$ .

14) Data on the bottoms stripping steam. This consists of one card containing the following information:-

a) a 24 character label.

- b) the steam rate. (lb/sec.)
- c) the steam enthalpy. (BTU/1b.)
- d) the steam temperature. (°F).

* 15) The number of constants to be supplied. This card contains
a 24 character label followed by an integer.

1b) The constants. This item contains K cards where K is specified in the previous item. Each card contains a 24-character title followed by an integer then the value of the constant. The integer specifies the location in the constant vector  $\underline{c}$  in the program store into which the value is to be loaded.

x 17) The number of step changes to be made at time zero.
This is to facilitate the calculation of the transient response
to complex forcing functions made up of changes in several variables.

18) The step changes. This item consists of K cards where K is given in the previous item. Each card contains the following information in order:-

-229-

- a) a 24-character title.
- b) the number of the tray at which the change is made.
- c) the change in the liquid withdrawal rate (lb/sec.)
- d) the change in the liquid feed rate (lb/sec.)
- e) the new enthalpy of the liquid feed (BTU/1b.)
- f) the change in the vapour feed rate (lb/sec.)
- g) the new enthalpy of the vapour feed (BTU/1b).

19) The initial liquid and vapour rate profile for the unit. (lb/sec.) This consists of a series of numbers representing  $L_1$ , V₁, L₂, V₂, etc. in that order upt  $L_{MT}$ , V_{NT}, where NT is the total number of plates in the column. No provision for a label is made with this data item. C

Ĉ

Ĉ

C

Ĉ

```
LIST
    SEND TO (ED.TCLA-DEFAULT.AXXX)
    PROGRAM(G472)
    INPUT 1=CR7
    OUTPUT 2=LP7
    COMPRESS INTEGER AND LOGICAL
    TRACE 0
    FND
    MASTER CDUJ
    REAL LID
    DIMENSION D(174,0), E(174), A(174), B(174), DELTA1(174), DV(44)
    DIMENSION DV1(44), DV2(44), RESULT(44)
    COMMION 1(44), V(44), LD(44), T(44), TD(44), WL(44), WD(44), PSI(44),
   1PSID(44), PSTU(44), EPS(44), RHOL(44), RHOLD(44), RHOV(44), AVL(44),
   2AD(44),AT(64),AP(44),AUD(44),HL(44),HV(44),HLD(44),HSR(44),
   3HSV(45), SL(44), SV(45), SR(44), DELV(44), DELSL(44), DELSV(45),
   4DELSR(44),ITVPE(44),INDEX(44);C(50),NT,TCV(45),HTC(44)
    C(50) = +1, 0
    C(49) = -1.0
    C(48) = -1.0
    CALL INFORMAN
    CALL STRADY
    CALL PRINT2(0,0.0)
    CALL INFORM(2)
100 A1 = c(38) + 0.1
    J3=1FIX(A1)
    A2=C(39)+0.1
    J4=IFIX(A2)
    J2±0
    J=4*NT-2
    J1=0
    CUMTIN=0.0
    cum=0.0
    CUM1=0.n
 30 DU 10 I=1.J
 10 DELTA1(1)=0.0
 36 CONTINUE
    DO 91 1=1,HT
    DV(I) = 0.0
91 \text{ bV1(I)} = 0.0
    IFLAG = 1
  GO TO 70
 35 CONTINUE
    IF(C(43),GT 0.0) G7 TO 36
70 00 90 12=1,13
```

```
DU 96 I=1,4T
   96 \text{ nV2(I)} = 0F(V(I))
      CALL TEST(58, DELTA1, 1)
      CALL MATRIX(D, E, DELTA1, J, 174)
      CALL TEST(58, E, 2)
CALL BAND(D, E, A, B, J, 9, 174)
      CALL TEST(58, F,3)
      CALL CORECT(E)
      CALL TEST(15, DFLV, 4)
      00 92 1=1,NT
   92 IF(ABS(DV2(1)-DELV(I)).GT.0.0001) GO TO 95
      WRITE(2.93) 12
   93 FORHAT(28HODFLV VECTOR CONVERGED AFTER, 13, 12H ITERATIONS_)
      GO TO 94
Ĉ
   95 DO 102 I=1.NT
  102 RESULT(1) = DELV(1)
Ĉ
      IF(IFLAG) 97,97,09
   97 DO 98 1=1,NT
      DELV(I) = (DELV(I)*HV1(I)=DV(I)*DV2(I))/
     1
              (DV1(I)+DV2(I)+DV(I)+DELV(I))
      GO TO 1
    2 \text{ DELV(I)} = \text{DELV(I)}/10.0
    1 CONTINUE
      TE(ABS(DELV(T)).GT.1.0) GO TO 2
   98 CONTINUE
Ċ
   99 IFLAG = -1
C
      DO 101 1=1.NT
      pV1(I) = bV2(I)
  101 \text{ DV(I)} = \text{RESULT(I)}
Ĉ
   90 CONTINUE
C
   94 CONTINUE
       00 20 1=1,J
   20 DELTA1(1)=F(1)
C
       CUNTIN=CUNTIN+C(5)
       CUM=CUM+C(5)
       CUH1 = CUH1 + C(5)
C
       IF((CUM1+0.001).IT.C(37)) GO TO 110
       WRITE(2,120) CUNTIN
  120 FORMAT(26005VSTEM "ATRIX RESET AFTER, G8.5.9H SECONDS.)
       CALE UPDATE (1, DELTA1)
       CALL PARAN(2)
       CALL UPDATE(0, DELTA1)
```

in the state

-232-

```
CUM1=0.0
C
  110 TE((CUM+0.001).LT.C(7)) GO TO 50
      CALL UPDATE(1, DFITA1)
      CALL PRINT2(J1, CUNTIN)
      J1 = J1 + 1
      CALL UPDATE(-1,DFLTA1)
      cull=0.0
Ĉ
   50 IF((CUNTIN+0 001).GT.C(8)) GO TO 60
      J5=J5+1
      1F(CUMTIN.LT.61.0) GO TO 35
      IF(C(49),GT(0,0) GO TO 35
      READ(1,3) G(5), c(6), C(7), C(37), C(48), C(49)
    3 FORMAT(100F0.0)
      GO TO 35
   60 STOP
      END
      SUBROUTINE RAND (EFF.R, STORE, ND, NB, NROUS)
       DINENSION F(HRONS, HB), F(HH), R(NH), STORE(NH)
   THIS ROUTINE SOLVES THE EQUATION EX = F WHERE E IS SQUARE BAND
C
C
   HATRIX WITH BAND WIDT' NB AND HATRIX SIZE NM, AND F IS A COLUMN
   VECTOR OF LENGTH NM
C
                           ONLY THE BAND ELEMENTS OF THE MATRIX F ARE
C
   PRESENTED TO REDUCE STOPE SPACE CONSIDERABLY. R AND STORE ARE
ç
   COLUNN VECTORS OF LENGTH NIL USED AS WORKING SPACE.
C
C
      N6 = 0
      N1 = (NR+1)/2
      N2 = N1 - 1
      N5 = N2
      N4 = 1
Ĉ
C
   THE FIRST H2 ROUS OF THE MATRIX ARE SHIFTED TO FORM A RECTANGULAR
Ċ
   STORAGE UNIT
Ĉ
    1 N3 = 1
    3 E(N4,N3) = F(N4,N3+H2)
      1F((H3+H2), F9, NB) G0 T0 2
      N3 = N3+1
      60 70 3
    2 N3 = 113+1
      E(N4,N3) = 0 0
      IF(N3.E0.48) GO TO 5
      GO TO 2
    5 IF (N4. E0. 45) GO TO 6
      N4 = N4 + 1
      N2 = N2 - 1
      GO TO 1
C
```

in A

-233-

```
C
   SET UP THE VALUES OF IRLEN, THE LENGTH OF THE R-VECTOR, AND IWIDTH
C
   THE LENGTH OF THE ROUS TO BE DANIPULATED.
Ĉ
    6 116 = 116 + 1
      IRLEN = (NB+1)/2 + H6-1 +
       TECIRLEN GT NH) TRLEN = NH
      IF(86.GT. (NM-N1-2)) GO TO 7
      IVIDTH = NR
      GU TO 8
    7 IUIDTH = NH-N6+1
C
Č
   LOCATION OF THE PIVOTAL ELEMENT.
C
    8 N7 = N6-1
      IF(N6, FQ, 111) GO TO 10
      RNORH1 = 0.0
    Q
      N7 = N7+1
      N8 = 0
      RNORM = 0.0
   11 N8 = N3+1
      RNORH = E(17,48) +* * * RNORH
      JF(N8.LT, IUTDTH) GO TO 11
      RNORM = RHORH + F(H7) * * 2
      RNORM = SORT(RHORH/FLUAT(IUIDTH+1))
      IF (ABS(RHOR D) GT 1.0F-30) GO TO 12
      WRITE(2,509) gNOPH
  500 FORMAT (ARMOTHE MATRIX F PROVED TO BE SINGULAR, PROGRAM HALTED IN S
     1UBROUTINE BANS, VALUE OF RUORN =, G13, 4)
      STOP
   12 RNORH = F(17.1)/pNORH
      IF((ABS(RUORH)).gt.(ABS(RNORH1))) NAXIN = N7
      IF((ABS(R'IOR'I))_GT.(ABS(RNORH1))) RNORM1 = RNORH
      IF(N7.LT.IRIFH) GO TO 9
C
Ċ
   INTERCHANGE ROJS IF NECESSARY SO THAT PIVOTAL ELEMENT IS
C
   ON THE DIAGONAL OF F.
Ĉ
      IE(MAXIN_E9_N6) GO TO 10
      STORE(1) = F(N6)
       F(NG) = F(NAXIN)
       F(MAXIM) = STORE(1)
      DO 13 I = 1, 1'HOTH
      STORF(1) = =(N6,T)
      F(N_{6},I) = E(NAXIN,I)
   13 E(PAXIM.T) = STORE(I)
C
Ċ
   FORM THE R-VECTOR
   10 DU 14 N7 # 1, IRLEN
      R(N7) = -E(N7, 1)/E(N6, 1)
```

```
JF(H7,E0,46) R(H7) = 1,0/E(N6,1)
   14 CONTINUE
C
C
   CALCULATE RE AND RE AND SHIFT STORAGE.
C
      DO 19 I = 1.18LFN
      TECI, EQ NO) GU TO 19
      F(I) = F(I) + F(NG) * R(I)
   19 CONTINUE
      F(N6) = F(N6)/E(N6) 
C
      IF(N6 FO. HT) RETURN
C
      DO 22 J = 1.TRLEN
      1F(J.EQ N6) GO TO 22
      DO 20 I = 1.TWIDTH
   20 STORF(1) = r(J,I)
C
      DO 21 I = 1.IUIDTH=1
   21 = E(J, I) = STORE(I+1) + R(J) + E(NG, I+1)
      E(J, IVI OTE) = 0.0
   22 CONTINUE
Ċ
      PO 29 I = 1, UIDTH
   29 STORF(1) = #(16.1)
   23 DO 24 T = 1, TUIDTH-1
   24 \in (N6, I) = STORF(1+1)/STORE(1)
      E(N6, IUTDTH) = 0.0
C
   17 IF(H6.E0. HH) RETURN
      GO TO 6
      END
      SUBROUTINE COFFES(1,A,B,D)
C
C
      THIS ROUTINE SUPPLIES THE COEFFICIENTS FOR THE COMBINED HYDROW
¢
      DYNAMIC AND HEAT BALANCE MATRIX EQUATION AX.=8X+D WHERE THE VECTOR
Ç
      D IS BASED ON THE CURRENT DEST ESTIMATE OF THE VAPOUR RATES. THE
C
      POUTINE MUST BE CALLED UNCE FOR FACH TRAY, I=TRAY NUMBER.
C
      REAL L.ID
      DIMENSION A(4,9),B(4,9),D(4),G1F(44),G3F(44),G2F(44);G4F(44)
      COMMON = (44), V(44), LO(44), T(44), TD(44), WL(44), WD(44), PS1(44),
     1PSID(44),PS1U(44),FPS(44),RHAL(44),RHALD(44),RHAV(44),AVL(44),
     2AD(44),AT(44),AP(44),AUD(44),HL(44),HV(44),HLD(44),HSR(44),
     3HSV(45).SL(44).SV(45).SR(44).DELV(44).DFLSL(44).DELSV(45).
     4DELSR(44), ITYPE(A4), INDEX(44), C(50), NT, TSV(45), HTC(44)
C
      DO 17 J=1,4
      D(J) = 0.0
      DU 17 K=1,9
```

T.

```
A(J,K) = 0.0
   17 B(J,K) = 0.0
C
C
   CALCULATION OF CURRENT VALUES OF ENTHALPIES.
C
      00 30 J=2,NT
      HL(J) = 0.532**(J) + 27.2
      HLD(J) = 0.582 \times Tn(J) + 27.2
      HV(J) = C(10) * T(J) * 2 + C(11) * T(J) + C(12)
   30 CONTINUE
      HE(1) = 0.582 \times T(1) + 27.2
      HV(1) = C(10)*T(1)**2 + C(11)*T(1) + C(12)
C
      IF(ITYPF(I) F0.20) GO TO 15
      E2#C(14)/(RHOL(I)*AVL(I)*0.5)
      E9 = C(16)
      GO TO 20
   15 E2 = C(26)/(RHOL(I) * AVL(I))
      E9 = C(28)
Ĉ
   20 IF(I GT 1) do To 10
C
C
   TOP TRAY COEFFICIENTS.
Ĉ
      G1=V(2)+SV(2)+SR(1)-L(1)-V(1)
      IF(C(50), GT_0,0)G1F(1)=G1
      G1=G1-G1F(1)
      A(1,5) = AT(1)*(pSIW(1)+PSI(1))/(E<sup>o</sup>*AVL(1)*PSI(1)**1.5)
      B(1,5) = -1^{\circ}
      D(1) = DELV(2)+DELSV(2)+DELSR(1)-DELV(1)+G1
      A3P = 1 5*F9*AVL(1)*FPS(1)*RHOL(1)*SORT(PSI(1))
      E2P = E2
      G3=HV(2)+V(2)+Hsv(2)+SV(2)+Hsr(1)+Sr(1)+HL(1)+L(1)+HV(1)+V(1)
      1F(C(50).GT_0_0)63F(1)=G3
      G3=G3-G3F(1)
      A(2,5) = C(3) + UL(1)
      B(2,9) = C(1) * V(2)
      B(2,5) = -(c(3)*i(1)+c(1)*V(1)+c(3)*i(1)
      D(2) = (HV(2)-HL(1))+DELV(2)+(HL(1)-HV(1))+DELV(1)
              +(HSV(2)-HL(1))*DFLSV(2)+(HSR(1)-HL(1))*DELSR(1)
     1
     2
              +63-41(1)+61
      RETURN
   10 CONTINUE
¢
Ç
   THE GENERAL TRAY COFFFICIENTS
C
      G2^{=}L(1-1)-Ln(1)-SL(1-1)
      IF(C(50) GT 0,0)62F(I)=G2
      G2 = G2 - G2F(I)
      G4=HL(I-1)+((I-1)-(LD(I)+SL(I-1))+HLD(I)
```

```
1F(C(50),GT_0,0)G4F(1)⊐G4
      G4=G4-G4F(1)
      IF(I.EQ'HT) GO TO 11
      G1=LD(I)+V(I+1)+SV(I+1)+SR(I)-L(I)=V(I)
      IF(C(50),GT'0,9) G1F(I)=G1
      G1 = G1 - G1 F(1)
      G3=HLD(1)*Ln(1)+HV(1+1)*V(1+1)+HSV(1+1)*SV(1+1)
      +HSR(1)*<R(1)=HL(1)*L(1)~HV(1)*V(1)
IF(C(50).GT_0.0)G3#(1)=G3
      G3=G3=G3F(I)
      GO TO 12
   11 CONTINUE
      G1 = LD(I) + SV(I+1) + SR(I) = L(I) - V(I)
      IF(C(50),GT[0,0)G1F(1)=G1
      G1=G1=G1F(I)
      G3=HLD(1)*LO(1)+HSV(1+1)*SV(1+1)+HSR(1)*SR(1)
         -HL(1)+L(1)-HV(1)+V(I)
      IF(C(50),GT 0.0)63F(I)=G3
      G3¤G3-G3F(I)
   12 CONTINUE
C
      A3 = 1.5 + F^{\circ} + AVL(1) + EPS(1) + RHOL(1) + SQRT(PSI(1))
      A(3,3) = EPS(1) * RHOL(1) * AT(1) * E2 * (1.0 - 1.5 * (PSIW(1) + PSI(1)) / PSI(1)
      A(3,5) = CPS(1)*PHOL(I)*AT(I)*(PSIU(I)+PSI(I))*1.5/(PSI(I)*A3)
      IF(I.EQ'2) GO TO 13
      A(1,1) = RHOLD(I)*AD(I)*EPS(I=1)*F2P*(1.0=1.5*(PSIW(I=1)*PSI(I=1)
     1
         /PSI(1-1))
   13 CONTINUE
C
      A(1,3) = FPS((1-1)*RHOLD(1)*AD(1)*(PSIW(1-1)*PSI(1-1))*1.5/
     1
              (PSI(1-1)+A3P)
      CL = 1.5/(0.36*2.0*32.2*(RHOL(I-1)*AUD(I))**2)
      A(1,5) = R4 HLD(T)*AD(I)*(EPS(I)*F2*(1.0-1.5*(PSIW(I)*PSI(I))/
              PSI(1))+2_0*0L*LD(1))
     1
      A(1,7) = EPS(1) +RHOLD(1)+AD(1)+(PSIW(1)+PSI(1))+1.5/(PSI(1)+A3P)
      R(3,3) = +1
                   ٦ñ.
      B(3,5) = -1^{\circ}0
      B(1,3) = +1^{\circ}0
      B(1,5) = -1^{\circ}0
      D(1) = -DELSL(1-4) + G2
      D(3) = DELSV(I+1)+PELSR(I)+G1-DELV(I)
      1F(1.EQ NT) GO TO 14
      D(3) = n(3)+DELV(1+1)
   14 CONTINUE
C
      A(4,5) = C(3) + U(1)
      B(4,2) = C(3) * (TD(1) - T(1))
      B(4_3) = C(3) + (D(1))
      B(4,5) = +C(3)+(|(I)+G1)+C(1)+V(1)
      A(2,5) = C(3)*UD(1)
```

-237-

```
B(2,2) = C(3) + (T(I=1) + TD(I))
      B(2,3) = C(3) + (L(1-1) - SL(1-1))
      B(2,5) = -C(3) * (|D(1)+92)
      D(2) = G4+(HLD(I)-HL(I-1))+DELSL(I+1)-HLD(I)+G2
      IF(I.EQ'NT) GO TO 10
      B(4,9) = C(1) + V(1+1)
C
   16 D(4) = -(HV(I)-H+(I))*DELV(I)+HSV(I+1)*DELSV(I+1)
              +HSR(I) + DFLSR(I) + G3-HL(I) + (DFLSV(I+1) + DFLSR(I) + G1)
     1
      IF(I.LT'NT) D(4)=D(4)+(HV(I+1)+HL(1))+DELV(I+1)
      A3P=A3
      E2P = E2
Ĉ
      RETURN
      FND
      SUBROUTINE CORECT(DELTA2)
      REAL L.ID
      DIMENSION DELTA2(174)
      COMMON 1 (44), V(44), LD(44), T(44), TD(44), WL(44), WD(44), PSI(44),
     1PSID(44),PSTU(44),EPS(44),RHOL(44),RHOLD(44),RHOV(44),AVL(44),
     2AD(44),AT(44),AP(44),AUD(44),HL(44),HV(44),HLD(44),HSR(44),
     3HSV(45).SL(44).SV(45),SR(44).DELV(44).DELSL(44).DELSV(45).
     4DELSR(44),ITYPE(44),INDEX(44),C(50),NT,TSV(45),HTC(44)
C
C
   THIS ROUTINE IMPROVES THE CURRENT ESTIMATE OF THE CHANGE IN INTERNAL
C
   VAPOUR FLOURATES OVER THE TIME INCREMENT.
C
      1=4+NT-2
      I=0
      DELV(NT)==(c(1)*v("T)-HTC(HT)*SV(NT+1))*DELTA2(J)
             -(HTC(NT)*(TSV(NT+1)-T(NT))=HSV(NT+1))+DEUSV(NT+1)
      DELV(NT)=DELV(NT)/HV(NT)
    1 CONTINUE
      1=I+1
      J = J - 4
      K=NT+I
      K1=K+1
      DELV(K)=(44(K1)-HTC(K)*(T(K1)-T(K)))*DELV(K1)
             -(HTC(K)+V(K1)+C(1)+V(K1))+DELTA2(J+4)
     1
     2
             -(C(1)*V(K)-HTC(K)*"(K1)-HTC(K)*SV(K1))*DELTA2(J)
     3
             -(HTC(K)*(TSV(K1)-T(K))+HSV(K1))+DELSV(K1)
      DETA(K) =DETA(K)/HA(K)
      IF(I.LT'NT-1) GO TO 1
      RETURN
      END
      SUBROUTTNE INFORM (PODE)
C
   THIS IS THE DATA INPUT ROUTINE. HODE 1 SETS UP THE INITIAL COLUMN
¢
   CONDITIONS TODE 2 INPUTS A STEP CHANGE, HODE 3 RESETS THE PARAMETERS
C
```

bour in

C OR CAUSES TERMINATION.

C

C

REAL LIED DIMENSION TITLE(20),A(3) COMMON ((44), V(44), LD(44), T(44), TD(44), VL(44), VD(44), PSI(44), 1PSID(44),PSTU(44),EPS(44),RHOL(44),RHOLD(44),RHOV(44),AVL(44), 2AD(44),AT(44),AP(44),AUD(44),HL(44),HV(44),HLD(44),HSR(44), 3HSV(45), SL(44), SV(45), SR(44), DELV(44), DELSL(44), DELSV(45), 4DELSR(44), ITYPE(44), INDEX(44), G(50), NT, TSV(45), HTC(44) IF(110DE EQ.2) GO TO 2 1 CONTINUE 00 35 I=1,44 35 INDEX(I) =  $\tau$ DO 40 1=1.45 SV(I) = 0.0TSV(I) = 0.0HSV(I) = 0.0IF(I.EQ 45) GO TO 40 DELV(I) = 0[0]DELSL(I) = 0.0 DELSV(T) = 0.0DELSR(T) = 0.0HSR(I) = 0.0SR(I) = 0.0SL(I) = 0.040 CONTINUE READ(1,13)TITLE WRITE(2/14) TITLE READ(1.19) A.NT URITE(2.12) A.NT WRITE(2,47) (INDEX(I),I=4,NT) READ(1,11) 4, (ITVPE(1), I=1, NT) WRITE(2,12)A, (ITYPE(I), I=1, HT) READ(1,16) A. (RHOL(1),1=1,5T) WRITE(2,13)A, (RHOL(1), I=1, NT) READ(1,16) 4. (PHOV(1), (=1, PT) WRITE(2,16)4, (RHOV(I), I=1,NT) READ(1.16) 4, (AT(1), (=1,NT) URITE(2,13)A.(AT(I),1=1,NT) READ(1,16) 4, (AUD(1),1=1,NT) URITE(2.18)A, (AUD(I),I=1.NT) READ(1,16) 4.(AP(1),1=1,NT) WRITE(2,13)A, (AP(1),1=1,8T) READ(1,16) 4, (AD(1),1=1,NT) URITE(2,13)4, (AD(1),1=1,NT) READ(1,16) A. (PSTU(1), 1=1,NT) URITE(2.18)4. (PSTU(1), I=1, NT) READ(1,16) 4. (AVI(I), I=1,NT) URITE(2.13) A. (AVI(1), I=1, NT) READ(1,16) A.(T(T),I=1,NT)

```
WRITE(2.13) A, (T(1), I=1,NT)
C
      DO 30 I=2,UT
      RHOLD(I)=RHOL(I)
   30 \text{ TD}(I) = T(I-1)
      WRITE(2,15)
C
C
   KENO. OF PLATES HAVING SIDESTREAMS.
C
      READ(1,19) A.K
      DO 5 1=1,K
      READ(1,19) A,N,SI(H),SR(N),HSR(H),SV(N),HSV(N),TSV(N)
      WRITE(2.20)4, N, SI(N), SR(N), SV(N), TSV(N)
      puff = 0.0
      IF(SL(N), GT(0, 1)) DUH = 0.582+T(N) + 27.2
      URITE(2.21) DUH, HSR(N), HSV(N)
    5 CONTINUE
      READ(1,16) A, SV(HT+1), HSV(UT+1), TSV(NT+1)
      WRITE(2,13) A, SV(HT+1), HSV(HT+1), TSV(NT+1)
C
Ç
   KENO. OF CONSTANTS TO BE ENTERED.
Ċ
      READ(1,19) 4,4
      WRITE(2,22)
      DO 6 1=1,K
      READ(1,19) A,N,C(H)
      URITE(2.20) A.N.C(1)
    6 CONTINUE
      RETURN
C
    2 CONTINUE
C
   KENO, OF STEPS TO BE INPUT.
      READ(1,19) 4.K
      00 7 I=1.K
      READ(1,19) 4.N.DELSE(N), DELSR(N), HSR(N), DELSV(N), HSV(N)
    7 WRITE(2.20)A.N.DELSL(N), DELSP(N), HSR(N), DELSV(N), HSV(N)
      RETURN
C
   11 FORMAT(SAR, SOLO)
   12 FORHAT(14 ,3A3,17,6113/(19X,7113))
   13 FORMAT(10AB)
   14 FORMAT(141,29X,10A3/21X,40(2H- )/21X,10A8/21X,40(2H- ))
   15 FORMAT(1H0,25X,5HPLATE,4X,16HLIQUID WITHDRAWN,4X,15HLIQUID RETURN
     10,4X,15HVAPOUR RETURNED,4X,17HRETURN VAP. TEMP./26X,5(1H+),4X,16(
     2H-),4X,15((H-),4X,15((H-),4X,17((H-)))
   16 FORMAT(3A3,100F0.0)
   17 FORMAT(140,52%,128PLATE NUMBER/18 ,52%,12(18-)/98 VARIABLE,10%,71
     13/1H ,3/14-),10x,7113/(22X,7113))
   18 FORHAT(14 , $A8,7613.5/(25X,7613.5))
   19 FORMAT(3A3,10,15=0.0)
```
20 FORMAT(1H , 3A8, 15, F16.4, F20.3, F19.3, 2F18.3) 21 FORMAT(18 ,5x,12H(ENTHALPIES),12x,F16.3,F20.3,F19.3) 22 FORMAT (1H0,14HCONSTANTS ETC./1X,14(1H-)) 51 RETURN FND SUBROUTINE MATPIX(D, F, DELTA1, NIL, NROWS) C C THIS ROUTINE SETS UP THE MATRIX FORMULATION OF THE DYNAMIC PROBLEM č FOR SOLUTION BY THE IMPLICIT METHOD. Ĉ REAL LID DIMENSION D(NROUS, P), E(NM), A(4, P), B(4, P), F(4), DELTA((NM) COM(10N + (44), V(44), LD(44), T(44), TO(44), WL(44), WD(44), PSI(44),1PSID(44), PSTW(44), EPS(44), PHOL(44), RHOLD(44), RHOV(44), AVL(44), 2AD(44),AT(44),AP(44),AUD(44),HL(44),HV(44),HLD(44),HSR(44), 3HSV(45).SL(44).SV(45).SR(44).DELV(44).DELSL(44).DELSV(45). 4DELSR(44),ITYPE(44),INDEX(44),C(50),NT,TSV(45),HTC(44) Ĉ XMU = C(6)XMU1 = 1.0-c(6)DU 10 I=1,NT N1=4+1=5 IE(I,EQ 1)N1=1 N2=N1+3 IF(1.EQ 1)N2=2 CALL COFFES(J.A.B.F) **J1=**0 DO 5 J=111,N2 J1=J1+1 ST0=0.0 HOD = J - 5NZ1=6-J NZ2=4+NT-J+3 1F(J.GT'4)171=1 K=4+NT-6 IF(J,LT K)172=0 C DU 3 K=NZ1+N72 3 A(J1,K) = A(J1,K)/c(5)DO 4 K=H71+H72 ST0=ST0+(A(11.K)+X1101*B(J1,K))*DELTA1(K+HOD) 4 D(J,K) = A(J1,K) = XHU + B(J1,K)Ĉ E(J) = STO + F(J1)5 CONTINUE 10 CONTINUE C(50) = -1.0RETURN END SUBROUTINE DARAM(HODE)

THIS USES THE PRESENT VALUES OF L.LD.V TO OBTAIN THE HYDRAULIC PARAMETERS AT STEADY OR UNSTEADY STATE. REAL LID DIMENSION 61(44),62(44) COMMION | (44), V(44), LD(44), T(44), TD(44), NL(44), ND(44), PSI(44), 1PSID(44),PSTU(44),EPS(44),RHOL(44),RHOLD(44),RHOV(44),AVL(44), 2AD(44),AT(44),AP(44),AUD(44),HL(44),HV(44),HLD(44),HSR(44), 3HSV(45).SL(44).SV(45).SR(44).DELV(44).DELSL(44).DELSV(45). 4DELSR(44), ITYPE(44), INDEX(44), C(50), NT, TSV(45), HTC(44) 7=C(6) 21=1.0-2 DO 10 I=1,0T 1 RHOVAP=RHOV(T) IF(I, LT NT)RHOVAP=RHOV(I+1) IF(ITYPE(I) "F0.20)GU TO 2 E1=C(13) E2=C(14) E3≈C(15) E9 = C(16)E10=C(17)/(RHOVAp**3*AT(I)**2) E11=C(1s)GO TO 3 2 E1=C(25)/(RHOVAP**1.5*AT(1)) E2 = C(26)/(RHOL(I) + AVL(T))E3 = C(27)E9 = C(28)F10=C(20) E11 = C(30)3 IF(HODE EQ.2) GO TO 11 1F(I.EQ 1) GO TO 4 IF(I.EQ NT)GO TO 5 G1(I)=Ln(I)+V(I+1)+SV(I+1)+SR(I)-L(I)-V(I) G2(I) = L(I-1) - SL(I-1) - LD(I)PSI(1)=F1+(V(1+1)+SV(1+1))+E2+(LD(1)+SR(1))+E3+PSIW(1) 1 +E10+(V(I+1)+SV(I+1))++2+E11 IF(PS1(1).Lt.0.01)PST(1)=0.1 7 EPS(1)=1(1)/(EC*AVL(1)*RHOL(1)*PSI(1)**1.5) CL=1,5/(0.34+2.0+32.2+(RHOL(1=1)+AUD(1))++2) CV=2.0/(322.0*FPS(I=1)*RHOL(I=1)*RHOV(I)*(0.6*AP(I=1))**2) PSID(I)=FPS(I)+(PSIU(I)+PSI(I))+CL*LD(I)++2 +CV*(V(I)+SV(I))**2+EPS(I=1)*(PSIW(I=1)+PSI(I=1)) WD(I) = RHOLD(I) + AD(I) + PSID(I)GO TO 6 4 PSI(1)=F1*(V(2)+CV(2))+E2*CR(1)+E3*PSIW(1) +E10+(V(2)+SV(2))**2 + E11 1

C C C C

C

EPS(1) = L(1)/(E0*AVL(1)*RHOL(1)*PSt(1)**1.5)
G1(1)=V(2)+sY(2)+sP(1)*L(1)*V(1)

2

```
GO TO 6
    5 PSI(NT)=F1*sV(HT+1)+F2*(LD(NT)+SR(NT))
              +F3+pSIV(NT)+F10*SV(NT+1)**2+F11
     1
      IF(PSI(HT), IT, 0, 01) PSI(NT)=0.4
      G1(NT) = (D(VT) + SV(NT+1) + SR(VT) - U(VT) - V(VT)
      G2(HT)=( (HT-1)=SE( (HT-1)=ED(NT)
      GO TO 7
    6 UL(I)=EPS(I)+RHOI(I)+AT(1)+(PSIW(I)+PSI(I))
      GO TO 10
Ĉ
   11 IF(I.GT 1) do TO 12
      WL(1) = WI(1) + (71 + 61(1) + 7 + (V(2) - L(1) + V(1) + SV(2) + SR(1))
     1
              +DELSV(2)+DELSR(1))*C(37)
      G1(1)=V(2)+SV(2)+DELSV(2)+SR(1)+DELSR(1)+L(1)=V(1)
      60 10 18
   12 IF(I, FQ'NT) GO TO 13
      UL(I)=U((I)+(71+G1(I)+7*(LD(I)+V(I+1)+SV(I+1)+SR(I)
     1
              -L(I)-V(I))+DELSV(I+1)+DELSR(I))+C(37)
      UD(I) = UD(I) + (71 + 62(I) + 7 + (L(I-1) - SL(I-1) - LD(I)) = DFLSL(I=1)) +
              c(37)
     1
      G1(I) = Ln(I) + V(I+1) + SV(I+1) + SR(I) - L(I) - V(I)
              +DFLev(I+1)+DFLSR(I)
     1
      G2(I) = L(I-1) - SL(I-1) - DELSL(I-1) - LD(I)
      GO TO 10
  13
      NL(NT) = 0L(NT) + (Z1 + G1(NT) + Z + (LD(NT) + SV(NT + 1) + SR(NT) - L(NT) - V(NT))
              +DELSV(NT+1)+DELSR(UT))+C(37)
     1
      VD(NT) = UD(NT) + (71 + G2(NT) + 2 + (E(NT-1) - SE(NT-1) - LD(NT))
              +DELCL(NT+1))+C(37)
     1
      G1(NT) = ID(NT) + SV(NT+1) + SR(NT) - L(NT) - V(NT) + DELSV(NT+1) + DELSR(NT)
      G2(NT)=1(UT-1)-S1(UT-1)-DELSL(NT-1)-LD(NT)
   19 PSID(I) = UD(I)/(AD(I) + RHOLD(I))
   18 pSIG=0 T
      A1=UL(I)*F9*AVL(1)/(L(I)*AT(1))
      DO 14 J=1,12
       TE(PSIG LT.0.0) pSIG=0.01
      PSI(1)=PSIG=(PSIU(1)+PSIG=A1+PSIG+#1.5)/(1.0=1.5+A1+SQRT(PSIG))
   16 IF (ABS(DSI(T)-PSTG), LT.0.001) GO TO 17
   14 PSIG=PSr(I)
      WRITE(2,100) [, pSI(I)
  100 FURHAT(44H00SI CALCULATION FAILED TO CONVERGE FOR TRAY:13:F20.7)
17 IF(PSI(1).LT 0.005.UR.PSI(1).GT.1.2) PSI(1) = 0.1
      EPS(I)=UL(I)/(RHOL(I)*AT(I)*(PSIW(I)+PSI(I)))
   10 CONTINUE
      RETURN
      END
       SUBROUTINE DRINT2(1,CUMTIN)
      REAL LID
      COMMON 1 (44), V(44), LD(44), T(44), TD(44), WL(44), WD(44), PSI(44),
     105ID(44),PSTU(44),EPS(44),RHAL(44),RHALD(44),RHAV(44),AVL(44),
     2AD(44).AT(44).AP(44).AUD(44).HL(44).HV(44).HLD(44).HSR(44).
```

```
3HSV(45), SE(44), SV(45), SR(44), DELV(44), DELSL(44), DEESV(45),
     4DELSR(44), ITYPE(44), INDEX(44), C(50), NT, TSV(45), HTC(44)
    1 URITE(2,11) f, CUNYIN
      DO 2 J=1,UT
      WRITF(2,17) +, LD(J), L(J), V(J), SL(J), SV(J), SR(J), WL(J), WD(J), PSI(J)
     1EPS(J), pSID(J), T(J), TD(J)
    2 CONTINUE
      WRITE(2.13) SV(NT+1), HSV(NT+1), TSV(NT+1)
C
   11 FORMAT(13HODRINTOUT NO., 13,60X,17HCUMULATIVE TIME =, F7.2,9H SECON
     1s,/4H0No.,5x,2HLD,7X,1HL,8X,1HV,8X,2HSL,7X,2HSV,7X,2HSR,7X,2HWL,
     27X,28WD.5X,38051,5X,38505,5X,480510,6X,187,8X,2870)
   12 FURMAT(1H ,13,8F0,3,3F8,4,2F9,3)
   13 FORMAT(10H SV(NT+1)=,F9,3,11H HSV(NT+1)=,F9,3,11H TSV(NT+1)=,F9,3
      RETURN
      END
      SUBROUTINE STEADY
C
Ĉ
      REAL LID
      DIMENSION A(83,7), B(88), D(38), E(88)
      COMMON + (44), V(44), LD(44), T(44), TD(44), UL(44), UD(44), PSI(44),
     1PSID(44), PSTU(44), EPS(44), PHOL(44), RHOLD(44), RHOV(44), AVL(44),
     2AD(44),AT(44),AP(44).AUD(44),HL(44).HV(44).HLD(44).HSR(44).
     3HSV(45).SL(44),SV(45),SR(44),DELV(44),DELSL(44),DELSV(45),
     4DELSR(44), ITYPF(44), INDEX(44), C(50), NT, TSV(45), HTC(44)
C
Ċ
   11 DO 10 1=1,HT
      HL(I) = 0.532 \star T(I) + 27.2
   10 HV(I) = C(10) *T(I) **2 + C(11) *T(I) + C(12)
C
      READ(1,01)(1(1),v(1),1=1,NT)
   91 FORMAT(1000F0.0)
   41 DO 45 I=2, NT
      HLD(I) = HL(I=1)
   45 \text{ LD}(I) = \text{L}(I-1) - \text{SL}(I-1)
      LD(1) = 0.0
      DO 80 1=1,"1-1
      HTC(I)=HV(I+1)+V(I+1)+HSV(I+1)*SV(I+1)=HV(I)*V(I)
   80 HTC(I)=HTC(I)/(V(I+1)+(T(I+1)-T(I))+SV(I+1)+(TSV(I+1)-T(I)))
      HTC(NT) = HSV(HT+1) * SV(HT+1) = HV(NT) * V(NT)
      HTC(HT) = HTC(HT)/(SV(NT+1) * (TSV(NT+1) = T(NT)))
      DO 555 .10=1.1T
  555 IF(HTC(19)_IT_0.1) HTC(J9)=1.0
      WRITE(2,90)(HTC(1),I=1,NT)
   90 FORMAT(1180TRAY HTG-S/(1H ,7G15,5))
      CALL PARAH(1)
C
      RETURN
```

-244-

```
END
      SUBROUTTHE TEST(N,X,LEVEL)
      DIMENSION X(1)
Ċ
C
   ROUTINE TO MONITUR VARIOUS VECTORS FOR OVER AND UNDERFLOW, PROVIDE
C
C
   HONTTOR PRINTOHTS AND REDUCE RISK OF FAILURE BY ZEROING SUSPECT
   VALUES.
C
      DO 1 I=1,8.
      IFLAG = 0
      IF(ABS(\chi(J)), LT_10, 0) IFLAG = IFLAG+1
      IF(ABS(x(U))_GT_1.0E=50) IFLAG=IFLAG+1
      IF(ABS(X(1)), EO.0.9) IFLAG = IFLAG+1
      IF(IFLAG, EQ 2) GO TO 1
      GO TO 2
    1 CONTINUE
      RETURN
    2 CONTINUE
      URITE(2.3) LEVEL.(X(I),I=1,N)
      DO 4 I=1.11
      IFLAG =0
      1F(ABS(X(4)), GT 1, 9E50) 1FLAG = 1
      IF(ABS(\chi(4)).LT.1.9E=50) IFLAG = 1
    4 LE(IELAG. CQ 1) X(N) = 0.0
    3 FORMAT(25H9FRROR TEST MONITOR LEVEL/12/(1H ,7E15.6))
      RETURN
      END
      SUBROUTINE MPDATE(IZERO, DELTA?)
      REAL LID
      DINENSION DELTAZ(174)
      CONMON ((44),V(44),LD(44),T(44),TD(44),UL(44),UD(44),PSI(44),
     1PSID(44),PSTU(44),EPS(44),RHAL(44),RHAUD(44),RHAV(44),AVL(44),
     2AD(44),AT(44),AP(44),AUU(44),HL(44),HV(44),HLD(44),HSR(44),
     3HSV(45).SL(44).SV(45).SR(44).DELV(44).DFLSL(44).DELSV(45).
     4DELSR(44),ITYPE(44),INDEX(44),C(50),NT,TSV(45),HTC(44)
      1F(17ER0.EQ.-1) GO TO 5
TF(17ER0.EQ.0) GO TO 2
      L(1) = L(1) + 0 = 1 TA2(1)
      T(1) = T(1) + D = FTA2(2)
      V(1) = V(1) + D = 1 V(1)
      DO 1 I=2,NT
      J = 4 + I - 5
      lb(1)=ln(1)+bertA2(1)
      TD(1)=To(1)+DFLTA2(J+1)
      L(I) =L(I) +DFLTA2(J+2)
      T(I) =T(1) +DFLTA2(J+3)
V(I) =V(1) +DELV(I)
    1 CONTINUE
      RETURN
```

C

C

C

2...

```
2 CONTINUE
   DO 3 1=4,4*4T-2
 3 DELTA2(1)=0.0
   D() 4 I=1,8T+1
   SV(I) = SV(I) + DE(SV(I))
   DELSV(I)=0.0
   IF(1,GT'HT) GO TO 4
   SL(I) = SL(I) + hFLSL(I)
   DELSI(I) = 0.0
   SR(I) = SR(I) + DE(SR(I))
   DELSR(I) = 0.0
 4 DELV(1)=0.0
   RETURN
5 CONTINUE
   L(1)=L(1)-DFLTA2(1)
   T(1)=T(1)-DFLTA2(2)
   V(1)=V(1)-D#EV(1)
   DO 19 1=2,NT
   J=4+1-5
   LD(I)=Ln(I)=DELTA2(J)
   TD(I) = TD(I) - DE(I)A2(J+1)
   L(1) = I(1) - DELTA2(J+2)
   T(I)=T(1)=D=LTA2(J+3)
   V(I) = V(I) - D = EV(I)
10 CONTINUE
```

```
RETURN
END
```

FINISH

G472 DYNAMIC HEAT AND NASS BALANCE CRUDE OIL DISTILLATION SINULATION 12/8/70. RELINEARISATION INCLUSED 15-PLATE TR2 DATA NO OF TRAYS 15 20 20 20 TRAY TYPES 10 10 20 20 10 10 20 20 20 20 20 10 49.1 49.6 51.4 45.1 43.8 44.7 48_5 LIQUID DENSITY 56.8 51.6 52.0 53.8 54.2 57.5 59.7 51,7 515 . 525 .548 VAPOUR DENSITY _ 408 .546 .767 .778 .649 .641 . 699 .708 .744 .569 603 .662 110 119 128 128 128 TRAY AREAS 119 128 128 128 123 128 110 119 128 128 7,58 8.52 8.52 7.58 8.52 7.58 8.52 AREA UD 0 7.53 7.53 8:52 8,52 7,58 8.52 8.52 18.3 18.3 9 9 HOLE AREA 0 9 9 12 12 12 12 18.3 18.3 12 18.3 DOUNCOHER AREA 12.2 17.8 10.8 17.8 0 10.3 17.3 10.8 17.8 10.8 12.2 11.2 10.8 17.8 19.2 WEIR HEIGHT 0.148 0,148 0.164 0.164 0.131 0,131 0,148 0,131 9,151 0 164 0,164 0,131 0 131 0.148 0.148 11.4 11.4 11.8 11.8 11.4 AV FLOW WIDTH 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.8 11.8 11.8 290 311 370 393 425 TRAY TEMPS 258 349 667 461 503 526 580 594 627 640 SIDESTREAM PLATES 9 32.0 REFLUX RETURN 1 136.0 0 0 UIR RETURN 76.5 198.0 0 3 0 0 0 UIR W/D 76.5 0 4 0 0 0 0 24.4 0 381 KERO W/D + SV RETHRN 6 0 5.6 376 8 0 60.7 271 5.26 352 LIR RET + LGO SV RFT 314 60.7 LIR U/D 9 0 0 0 0 0 26.3 LGO W/D 10 0 0 0 0 0 2.2 578 HGO W/D + SV DETURN 12 11.0 0 0 483

1

A2.7 Sample data for the program

-247-

FEEDPLATE	14 0 70.9 40.8	90.3	526	654	-
BUTTOMS STEAM	1.2 1150 815				
NO. F CONSTANTS	28				
VAP LIN ENTH COEFF	1 0.26				
VAP LIN ENTH COFFE	2 241.5				
LIQ LIN ENTH COFFE	3 0,582				
LIQ LIN ENTH COEPE	4 27.2				
TIME INCREMENT	5 1.0				
XHU INPLICIT PARAA	6 0.85				
PRINTOUT TIME	7 1.0				
MAXINUM PRINTOUT	8 7200.0				-
VAPOUR ENTH	10 0.00025				
VAPOUR ENTH	11 0.26				
VAPOUR ENTH	12 741.5				
E1 BUBBLE TRAV	13 0.0				
E2 BUBBLE TRAV	14 0.0				
E3 BUBBLE TRAV	15 0,89				
	16 3.38				
E10 BUBBLE TRAY	17 0.211				
E11 BUBBLE TRAV	18 0.0				
E1 SIEVE TRAY	25 0,204				
E2 SIEVE TRAY	26 1.65				
E3 SIEVE TRAV	27 0.24				
-	28 3.38				
E10 SIEVE TRAV	29 0.0				
E11 SIFVE TRAV	30 0.0			•	
RELINEARISATION CON	37 1.0				
NO OF CORRNS TO DELV	38 30				
DOUBLING RATE	39 100000				
DELV DAMPING COEFF	40 1.0				
NO INITIAL HB CALCH.	41 -1.0				
32.0 69.5 73.1	60.5 120.6 66.6 1	26.6	72.6		
56.1 78.6 56. <b>1</b>	79.0 31.7 79.0 10	2.4 7	3.7		
112.4 83.7 51.7	93.7 25.4 93.7 2	5.4 9	1.7		
14.4 91.5 35.3	1.2 85.3 1.2				
NO. OF STEPS	1				
REFLUX STEP INCREASE	1 0 3,96 136	0	0 0		

~

.

.

~

.

٠

-

, i

-248-

٠

.

1

The initial steady state for the 15-plate column example was based on the initial state measured during the refinery experiment TR2 for the full size 44-plate column. The fact that the initial state as indicated by the instruments on the unit is not truly steady (that is it is not in heat and mass balance) is not important. The computer program calculates only the deviation from the initial state due to the input disturbance. A diagram showing the internal flows and temperatures follows - Fig. A2-1.

۷.,



FIG. A2-1.

× ...

APPENDIX 3. A MATHEMATICAL MODEL OF A CRUDE OIL DISTILLATION UNIT -VALUES OF THE CONSTANTS FOR THE EMPIRICAL CORRELATIONS.

A3.1 The Francis weir formula.

The same equation was used for both bubble and sieve plates :-

$$\mathbf{L}_{n} = e_{g} \ell_{n} \ell_{n} \int_{\mathbf{L}_{n}} \mathcal{Y}_{n}^{3/2}$$

(The symbols have the meaning assigned to them in Chapter 4.) From Perry (2):-

$$L_n / (\epsilon_n f_{L_n})^{i} = 0.42 \ \epsilon_n \ \varphi_n^{1.5} \sqrt{2g}$$

From which :-

$$e_{g} = 0.42 / 2g = 3.38$$

### A3.2 Froth height correlation.

A3.2.1 Bubble cap plates.

Bubble Tray Design Manual (7) gives:-

$$Z_{f} = 2.53 F^{2} + 1.89W - 1.6$$
  
froth height ft/sec /1b/ft³ weir height (inches) (inches)

In the units and nomenclature of Chapter 4 this becomess-

1

rates and a simpler form that retained sensible values for the vapour rate dependence was used:-

$$\Psi_{n} = (0.211 V_{n+1}^{2}) / (A_{T_{n}}^{2} P_{V_{n+1}}) + 1.0 \Psi_{W}$$

#### A3.2.2 Sieve plates.

٠.

Thomas and Campbell (9) give:-

In the units and nomenclature of Chapter 4 this becomes:-

 $\oint_{n} = (0.204 V_{nH}) / (A_{T_{n}} \sqrt{P_{V_{nH}}}) + 1.65 L / (P_{L_{n}} P_{n}) + 0.24$ 

# APPENDIX 4. TABULATED RESULTS FOR THE EXPERIMENTS AT BP REFINERY (LLANDARCY) LTD.

A4.1 Reference numbers.

In the following tables of raw data temperature indicator readings are referred to by a number prefixed by T, the key to which is given in the main body of the thesis, Fig. 5-2. Chart readings are referred to by a number prefixed by C, the key to which is given below. The flowrates are obtained from the data readings by the relation:-

True flow = (Reading/1000)  $\times M$ 

where M is the maximum attainable value for each particular flow for this crude distillation unit.

Reference	Variable
C13	```
C14	Crude oil feedrate, A.B and C passes.
C15	
C16 、	
C17	Crude oil feed temperature. A.b and C passes.
<b>C18</b>	
C19	Tower top temperature.
C21	Tower top pressure.
C2 <b>2</b>	Overhead reflux flowrate.
C23	Re-run tower feedrate.
C36	Upper intermediate reflux flowrate.
037	Lower intermediate reflux flowrate.
C38	Level in crude tower base.
039	Reduced crude product flowrate.
C41	Heavy naphtha flowrate.
C42	Kerosine flowrate.
C43	Light gas oil flowrate.
C44	Heavy gas oil flowrate.

# A4.2 Results for run TR3.

1

# A4.2.1 Run TR3 temperature indicator readings.

(Step change input at 1400 hrs.)

Time	1400	1406	1409	1412	1415	1418	1421	1424	1427	1432	1435	1438
T18	638	v38	638	638	638	638	638	638	638	639	640	639
T19	60a	615	619	022	623	628	029	030	630	629	629	630
T20	530	543	546	547	549	549	550	551	551	548	551	552
T21	380	401	404	406	406	406	406	406	404	401	403	403
T22	103	103	104	104	104	104	104	105	105	104	105	105
T23	327	328	331	331	331	333	334	335	335	335	335	337
T24	493	500	502	503	504	506	506	507	506	506	506	508
T25	309	310	310	310	-310	312	313	311	311	312	313	314
T2o	234	237	237	237	236	236	237	237	237	237	237	237
T27	107	107	107	107	108	108	108	109	109	109	109	109
T28	193	197	197	197	199	199	200	199	199	201	203	203
т46	646	640	646	647	647	647	647	648	647	647	647	647
T47	648	650	650	652	650	651	650	651	651	650	651	651
T48	o47	ინი	650	651	650	050	650	650	650	646	650	650
T49	644	644	646	647	647	647	646	046	646	646	o46	646
T50	204	209	209	271	269	270	271	270	269	270	271	270
T71	790	788	787	787	787	785	782	783	784	782	782	782
T72	797	795	794	794	793	793	793	790	789	787	787	787
TAL	284				293		•		289			
Th2	301				301			•	303			
TA3	297				299				299			
TA4	297				299			•	299			
TA5	332				326				339			
TA6	302				378				377			
TA7	416				430				429			
Tað	<b>4</b> 48				451				452			
TA9	437				442		_		441			
TA10	539				551				552			
Tall	560				572				571			
Ta12	622				638				639			
Tn13	638				644				643			
Tal4	638				642				641			
TA15	262				263				264			
Talb	72				72				71			
TA17	382				390				387			
TAIS	347				364				363			
Ta19	520				536				535			
ได้20	000				606				617			

Time	1441	1445	1445	1451	1454	1459	1509	1517	1530	1540	1550	1600
T18	639	o39	639	639	639	640	640	640	640	639	640	640
T19	631	631	632	o32	o32	o32	o2o	622	618	618	ь18	618
T20	552	<i>5</i> 53	553	552	551	551	540	545	542	540	540	539
T21	404	400	406	404	403	401	396	391	392	392	391	390
T22	104	401	104	104	104	104	105	105	105	105	105	106
T23	337	338	339	339	339	339	340	339	339	338	338	338
T24	507	508	509	508	508	508	505	504	502	501	501	500
T25	<u>3</u> 14	315	310	316	316	316	315	312	310	310	310	310
T26	237	237	237	237	237	237	237	237	237	236	236	236
T27	109	109	109	109	109	108	108	108	107	106	106	106
<b>T</b> 28	203	204	205	205	205	205	202	201	200	199	201	201
<b>T46</b>	646	646	o47	ь45	640	ь47	647	647	046	640	o4o	040
T47	ი50	o50	o51	651	651	650	651	650	650	650	650	650
<b>T48</b>	649	649	651	651	651	650	650	650	650	649	649	o49
T49	644	644	646	646	646	647	646	647	646	646	646	644
T50	270	270	270	270	269	270	266	266	266	266	264	264
T71 770	119	119	780	778	780	781	784	785	786	786	786	785
172	100	100	188	101	789	789	790	790	792	792	793	792
TAL TAL	293				292		289	286	288	200	286	286
142					305		307	305	306	306	304	305
183 734	300				301		302	302	301	.301	301	300
ገብት ጥልፍ	200				201		302	302	301	301	301	300
ገብ <u>ን</u> ምልክ	277				242		347	342	545	342	342	342
1A0 Ta7	427				210		371	370	370	369	369	368
<b>T</b> 48	457				420		420	417	410	410	417	417
TA9	440				440			423	420	447	420	447
Talo	553				551		547	407 545	542	541	400 541	431 540
TA11	573				571		566	563	562	561	561	550
TA12	638				639		200	- 201	- 20Z	626	625	625
Tal3	642				643		045	644	643	642	641	64]
TA14	641				642		645	642	641	641	641	643
TA15	205				265		266	265	265	264	264	265
TA16	70				69		69	69		68	67	68
TA17	390				385		378	376	376	375	374	375
<b>TA18</b>	304				360		353	350	350	349	349	349
Ta19	538				535		529	527	526	524	524	524
Ta20	618				618		614	611	608	606	606	606

٠.

-255-

Time	1016	1627	1637	1647	1744	1803	1813	1828	1843	1902	1915	1927
T18	640	640	o40	640	<del>0</del> 40	640	640	638	640	638	640	640
T19	618	617	616	616	617	618	619	617	610	615	618	618
T20	539	538	538	538	540	540	541	538	539	539	541	541
T21	390	390	390	391	393	393	394	387	392	390	393	394
T22	105	107	107	107	106	107	108	107	107	107	107	108
T23	337	338	338	337	337	338	339	337	337	336	337	338
T24	500	500	500	500	501	501	502	499	499	499	500	501
T25	309	309	309	309	310	311	311	309	309	308	308	310
Т2ь	236	236	236	235	234	234	234	232	233	234	233	234
T27	106	107	108	108	106	106	106	106	106	106	105	106
T28	199	199	199	199	199	200	199	198	197	197	196	198
T4o	o47	v48	o48	647	o47	ó48	647	647	647	647	648	647
T47	653	654	652	652	652	<b>651</b>	650	653	652	650	653	648
T48	650	649	648	649	649	650	649	647	646	645	652	641
<b>T49</b>	647	648	647	647	646	647	646	647	646	645	648	641
<b>T</b> 50	204	205	265	206	200	267	267	264	264	204	267	266
<b>T71</b>	786	786	780	785	783	789	790	793	795	794	796	796
T72	792	794	794	791	793	790	790	795	796	795	798	798
TAL	287	288	288	287	289	291	289	286	290	288	290	290
TA2	305	300	306	306	306	306	307	305	306	300	307	307
TA <u>3</u>	300	301	301	301	300	300	301	300	300	299	300	299
TA4	300	301	301	301	300	300	301	. 300	300	299	300	299
TAS	342	342	342	342	342	342	343	342	342	342	342	342
TAG	309	309	369	370	370	370	371	368	370	369	372	371
TAT	418	417	419	420	422	421	422	410	421	419	423	421
Tað	450	449	449	447	449	450	449	449	449	448	451	449
TAY	440	438	440	439	439	440	441	439	440	439	441	439
TAIO	542	540	540	540	543	543	543	540	541	540	545	543
TALL	201	500	560	560	562	561	502	559	561	560	565	562
TAL2	626	625	624	624	627	626	626	624	024	624	629	623
TALS	043	043	642	642	642	042	042	642	042	641	646	638
TAL4	043	043	642	642	642	642	042	641	641	641	644	634
TAL2	205	202	265	200	205	266	200	264	264	266	268	269
1410	07	00	07	207	00	57	67	66	67	67	67	69
1010	211	240	212	310	311	577	317	513	311	575	378	376
1970 1970	547	540 504	347	350	352	<u>ا کرک</u>	لرز ۲۵۷	546	350	349	351	351
1417	524 607	224	224	524	525	525	526	523	525	525	520	525
142U	00(	000	004	004	606	606	607	604	605	605	608	606

-256-

2

¥ ...

Time	1937	1948	2000	
<b>T1</b> 8	030	636	640	
T19	615	615	619	•
T20	537	536	540	
T21	389	388	391	
T22	108	108	108	
T23	337	336	336	
T24	498	498	501	
T25	309	307	307	
T26	234	232	232	
T27	106	104	104	
T28	198	196	195	
T46	647	647	648	
T47	649	651	653	
T48	641	646	653	
T49	641	644	649	
T50	263	263	205	
T71	786	794	798	
<b>T72</b>	796	795	801	
TAl	286	285	288	
TA2	304	304	305	
TA3	297	297	299	
Ta4	297	297	299	
TA5	341	342	342	
TA6	307	307	<u>37</u> 0	
TA7	417	417	421	
Ta8	447	447	449	
TA9	437	437	440	
TAlo	539	539	543	
TAIL	558	558	503	
TA12	623	623	628	
TA13	638	o39	645	
Tal4	636	041	644	
TA15	209	269	270	
<b>TA16</b>	69	70	72	
TA17	371	373	378	
Ta18	347	346	351	
<b>TA19</b>	521	522	526	
TA2O	603	605	608	

4

.

F ...

ī

# A4.2.2 Results for Run TR3 - Chart readings.

Time	1416	1429	1441	1500	1520	1544	1601	1027	1044	1758	1820	1845
	~~~	<b>.</b>	<u>.</u>	<u>.</u>		•		~~~	0-0	0~0	<b>0</b> 0	0 40
CT3	855	860	800	860	860	860	855	858	858	858	858	858
C14	865	865	868	865	865	869	865	868	863	800	δυ4	8º4
C15	855	855	000	855	855	858	856	856	858	855	850	856
C1 6	655	655	655	657	656	655	655	655	655	656	656	656
C17	650	650	o50	650	650	648	647	647	647	649	648	648
C1 8	644	643	642	643	643	643	641	642	642	643	641	640
C1 9	262	260	261	260	255	256	255	255	255	256	257	256
C21	25	25	25	26	26	26	26	26	26	26	26	26
C22	342	360	340	330	350	350	350	350	345	341	343	340
C23	600	680	680	090	710	710	690	685	670	650	650	650
C36	550	545	550	550	555	555	555	550	555	555	555	550
C37	64J	640	640	640	64U	64U	640	640	640	640	640	640
C <u>3</u> 8	790	790	790	790	790	790	790	190	790	790	790	790
C <u>3</u> 9	750	760	755	755	785	785	785	795	790	785	783	785
C42	515	510	510	510	510	510	510	505	510	510	508	504
C43	710	710	705	710	710	710	710	705	700	705	705	700
C44	370	365	365	365	365	365	305	365	365	370	365	362

Time 1905 1938 2011

C13	856	858	858
C14	864	868	862
C15	857	857	855
Clo	655	655	656
C17	648	647	050
C18	ь 4 0	636	645
C19	255	255	256
C21	26	26	26
C22	342	342	342
C23	650	605	050
C30	552	555	555
C37	640	64J	640
C 38	790	790	790
039	790	790	780
C42	510	512	515
C43	705	705	705
CA A	26.0	343	2-2

<u>Time</u>	<u>10% pt</u> .	<u>90% pt</u> .	•	Time	<u>10% pt</u> .	<u>90% pt</u> .
0915 0915	100°F	217°F		1451	185	242
0943	167	218		1519	177	234
1011	169	223		1547	175	229
1039	160	218		1615	174	227
1107	166	218		1643	173	225
1135	167	220		1711	174	227
1203	167	220		1739	175	229
1231	167	220		1807	175	229
1259	166	218		1835	175	229
1327	167	218		1803	175	228
1355	167	218		1931	175	230
1423	181	236		1959	173	227

Kerosine distillation points.

Cloud points.

× .__

<u>Time</u>	<u>Kerosine</u>	<u>Light</u> gas oil	<u>Heavy</u> gas oil
1010	-3*F	13°F	52°F
1100	+2	11	50
1145	-1	14	54
1230	-2	12	55
1355	-2	13	54
1408	-2	12	53
1420	+1	15	53
1435	+4	21	55
1450	-4	24	55
1510	+ <u>2</u>	20	58
1530	+1	19	58
1550	+2	18	56
1610	0	16	57
1635	0	16	59
1655	-2	16	58
1750	-2	18	57
1810	0	20	53
1835	+4.	18	56
1855	-6	17	.51
1930	+2	19	60
1955	+1	15	60
2015	+2	16	58

Product specific gravities. (60°F/60°F.)

٠

* ...

è

Re-run	Kerosine	Light	Heavy	Residue
feed		<u>gas oil</u>	gas oil	
0.6866	0.7877	0.8387	0.8769	0.9629
0.6870	0.7841	0.8373	0.8764	0.9646
0.6874	0.7857	0.8392	0.8776	0.9631
0.6876	0.7850	0.8387	0.8779	0.9663
0.0878	0.7854	0.8 <u>3</u> 80	0.8780	J. 9669
0.6588	0.7908	0. 8378	0.8779	0.9661
0.6910	0.7967	J.8393	0.8786	0.9651
0.6926	0.7957	0.8457	0.8697	0.9663
0.0938	0.7982	0.8478	0.9039	0.9673
0.0945	0.7922	0.8494	0.9135	U.9642
0.6926	0.7898	0.8453	0.9029	0.9664
0.6922	0.7894	0.8435	0.8886	0.9652
0.6918	0.7894	0.8429	0.8857	0.9643
0.6910	0.7887	0.8424	J.8844	0.9643
0.0907	0.7897	0.8418	0.8826	0.9642
0.6918	0.7908	0.8433	0.8848	0.9640
0.6920	0.7904	0.8437	0.8849	0.9042
0.6916	0.7882	0.8427	0.8854	0.9642
0.0920	0.7900	0.8423	0.8833	0.9662
0.6928	0.7914	0.8427	0 . 8834	0.9674
0.0908	0.7888	0.8423	0.8850	0.9608
0.6915	0.7906	0.8426	0.8840	0.9678
	Re-run feed 0.6866 0.6870 0.6874 0.6876 0.6878 0.6588 0.6910 0.6926 0.6926 0.6918 0.6910 0.6916 0.6920 0.6916 0.6920 0.6915	Re-run feedKerosine feed0.68660.78770.68700.78410.68740.78570.68760.78560.68780.78540.68780.78540.66880.79080.69100.79670.69260.79570.69380.79820.69450.79220.69260.78980.69100.78970.69180.78940.69180.78970.69180.79080.69200.79040.69160.78820.69200.79040.69160.78880.69150.7906	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

ŗ,

•

A4.3 Results for run TR4.

A4.3.1 Run TR4 temperature indicator readings.

(Step change input at 1602 hrs.)

Time	1310	1327	1350	1428	1439	1450	1510	1525	1540	1554	1603	1604
T18	650	648	650	650	648	648	651	649	650	649	649	649
T19	610	610	608	612	606	614	612	610	611	612	612	612
T20	528	528	528	529	526	532	530	528	528	530	529	528
T21	395	394	394	395	394	397	395	394	395	394	395	395
T22	320	326	326	327	326	325	328	327	328	326	327	328
T23	350	350	350	350	350	350	350	350	350	350	350	350
T24	503	502	502	504	501	505	504	502	502	503	504	503
T25	321	318	320	321	320	320	319	318	319	319	319	319
T26	236	235	235	236	237	235	236	236	230	236	236	236
T27	109	110	110	110	110	110	110	110	110	110	110	110
T 28	206	204	205	206	2ეი	206	206	206	206	207	206	206
T46	o59	οόΟ	659	660	660	659	660	659	659	660	660	660
T47	600	6ól	59ء	661	663	662	6 6 1	662	661	660	662	662
T4 8	658	660	658	661	649	670	659	óól	660	660	661	661
T49	654	656	°55	657	653	Gda	657	658	650	655	658	658
T50	269	208	268	269	208	269	268	268	268	268	208	269
T71	855	853	856	845	840	842	844	844	845	842		845
T72	857	858	858	849	849	850	849	848	850	848		849
TAL	294	292	291	294	294	296	293	294	294	292		295
TA2	317	317	316	317	317	318	316	316	317	316		317
TA3	316	315	315	317	315	315	316	316	310	315		316
TA4	315	314	314	315	313	314	314	314	314	314		315
TA5	352	352	352	353	351	353	353	352	353	352		353
TA6	370	376	370	378	376	379	376	376	377	370		378
TA7	410	410	409	412	410	414	411	410	410			412
Ta8	459	458	457	460	457	460	459	459	458			459
TA9	461	400	460	462	458	463	4 61	460	462			462
Tal 0	527	527	520	528	526	530	528	528	520			526
TA11	545	540	544	547	545	550	546	546	546			494
TA12	616	616	614	oló	615	621	61 0	616	610			615
Ta13	647	648	646	649	647	652	648	649	647			648
TA14	649	650	648	o49	648	52ه	648	650	648			650
TA15	291	291	291	291	291	291	292	292	292			293
Talo	102	99	102	112	114	118	126	130	133			135
Tal7	364	364	363	305	364	308	364	363	364			364
Ta18	319	319	317	320	319	322	321	319	321			321
TA19	514	514	513	515	514	517	514	514	514			513
TA20	590	590	588	591	588	591	592	591	591			590

Time	1011	1619	1628	1038	1050	1058	1708	1719	1732	1747	1827	1839
T18	650	o49	649	649	647	647	648	647	649	648	648	650
T19	008	605	605	601	600	600	600	603	603	603	602	604
T20	526	526	526	525	524	524	525	526	526	527	526	528
T21	396	395	396	395	393	394	395	396	395	396	395	398
T22	328	328	327	327	326	320	326	326	327	326	327	329
T23	350	350	350	351	350	350	350	350	351	350	351	352
T24	502	502	502	501	500	500	500	502	502	502	502	503
T25	318	318	320	321	318	318	318	318	318	318	321	320
T26	237	237	238	. 238	238	238	238	237	238	237	237	238
T27	110	110	110	110	110	110	110	111	111	111	111	111
T28	206	206	209	208	206	206	206	206	200	206	207	206
T46	660	659	601	659	659	660	658	659	658	658	660	660
T47	661	659	664	660	660	660	659	<u>ό</u> 64	661	661	662	ób4
T48	661	659	6ó2	660	659	660	658	663	600	661	665	664
T49	656	656	660	656	655	656	654	658	655	656	658	659
T50	268	268	270	268	268	268	268	269	268	268	269	269
T71	844	843	843	842	840	840	840	840	840	840	845	846
T72	848	848	850	846	847	846	845	846	846	846	850	851
TAL	290	295	293	291	294	294	294	294	294	295	292	, 296
TA2	318	317	318	318	318	317	317	317	317	318	317	318
TA3	310	316	318	317	316	316	316	316	316	317	317	317
TA4	315	315	316	316	315	314	314	314	315	316	315	316
Ть5	354	353	354	353	352	353	353	353	354	353	355	354
T46	378	378	379	378	370	377	377	378	378	378	378	378
TA7	413	412	414	412	410	411	411	412	413	412	414	413
TAS	459	459	460	459	457	457	458	459	459	459	461	460
TA9	401	461	463	461	400	460	460	460	460	460	462	461
TAIO	520	524	520	524	523	524	523	525	524	524	520	525
TALL	542	540	542	539	530	538	538	540	539	540	542	540
TALZ	612	010	σΠ	601	600	006	606	609	608	608	610	610
TALS	646	645	646	644	643	643	642	044	642	644	647	646
TAL4	650	650	651	650	650	650	648	651	648	651	652	652
TAIS	293	293	292	292	292	288	292	292				
12410	בייר בייר	1)0 1/1	130	122	110	TTT		3/1	A . 1		. / #	-
TAL	202	204	300	101	362	4ەر	לסב	100	100	505	307	366
TATO	522	322	522	320	717	319	520	322	322	322	322	323
TALY	512	512	<u>ک در</u>	210	209	510	510	211	510	511	512	512
THEO	270	200	200	505	791	500	701	- 50I	502	582	581	- 584-

-262-

÷ ...

Time 1900 1910 1920 1930

•

+ ...

т18	650	649	650	649
T19	604	60 <u>3</u>	603	602
T20	527	520	520	526
T21	396	395	395	395
T22	328	328	328	328
T23	351	351	351	351
T24	504	502	502	502
T25	319	318	318	318
T26	238	237	237	237
T27	110	110	110	110
T28	207	207	207	206
T46	660	660	659	659
T47	662	002	002	602
T48	061	662	o59	o5ô
T49	o57	658	650	656
T50	268	208	208	2¤8
T71	848	848	844	844
T72	852	852	851	851
Tal	293	293	290	293
TA2	317	318	318	317
TA3	310	317	310	314
Ta4	315	310	310	314
тя5	354	354	354	354
TAo	378	378	377	377
TA7	412	412	411	411
TA8	40J	400	459	459
та9	4oJ	402	460	46U
Tál0	524	525	524	524
TAll	539	540	538	538
Ta12	δUa	6 09	60 7	606
TA13	o44	645	°43	643
TA14	o50	50 م	v5u	650
TA15				
TAlo				
TA17	365	360	304	364
TA18	323	322	321	322
TA19	511	512	510	510
TA2O	584	584	584	584

-263-

•

A4.3.2 Run TR4 chart readings.

....

Time	1315	1333	1357	1434	1446	1452	1520	1532	1546	1558	1609	1616
C1 3	843	843	843	840	840	839	840	840	840	840	840	840
C14	840	839	842	838	835	834	834	835	836	835	835	834
C15	842	840	842	840	839	839	839	639	839	039	639	839
016	669	609	658	b n 9	609	609	boð	669	609	669	669	668
C17		660	59	6007	- 560	660	660	560	660	660	660	660
C18	- 000 	648	646	- 40	640	655	645	6 47	600	648	648	640
010	040	040	040	040	047	099	042	041	040	040	040	040
017	202	202	203	202	201	202	202	201	202	202	202	202
021	20.0	42.49	22.9	22.9	29.0	22.0	29+1	22.47	22.9	22.9	22.0	25.1
022	500	500	500	212	500	510	205	505	500	500	502	510
023	695	693	660	000	660	705	665	620	630	660	050	650
630	540	540	540	540	540	540	540	540	540	540	540	540
037	515	515	515	515	515	515	515	515	515	515	515	515
C38	790	790	788	795	789	791	790	790	790	790	792	792
039	812	804	8ວວ	817	785	795	805	806	805	800	820	820
C42	402	402	402	402	402	402	402	402	402	402	402	402
C43	755	754	755	755	755	755	755	755	755	755	678	678
C44	530	530	530	530	530	530	530	530	530	530	530	520
						12	24-	/2-	/2-	/3-	200	/3-
Time	1025	1638	1645	1700	1715	1725	1740	1750	1807	1833	1845	1855
C1 3	840	840	84u	840	840	840	840	840	840	840	840	840
C14	835	835	835	835	835	825	825	876	826	825	824	825
015	840	840	84.0	840	820	828	820	828	820	820	- 630 - 630	920
016	60.9	658	5040	- 0+0 0	6.8	650	059	050	037	037	037	037
017		660	5000	650	650	007						
019	- 1 Q	- 49	± 49	- 47	027	640						
010	040	040	040	047	04/	047	0(0	~ ~	0/3	0/0	~ ~	
017	202	202	204	202	202	202	202	202	201	262	202	201
021	22.0	20.0	20.0	20.0	22.9	25.9	25.9	22.9	25.9	25.8	25.8	25.8
622	502	500	211	505	500	505	500	505	508	510	515	510
623	660	694	690	697	695	095	700	100	095	705	700	700
636	540	540	540	540	540	540	540	540	540	540	543	543
C37	515	515	515	515	515	515	515	515	515	515	515	515
C38	790	790	790	795	790	790	790	792	792	7 90	792	792
C39	82 	820	82J	830	810	815	812	820	822	815	821	82U
C42	402	402	4 02	402	403	403	403	403	403	403	403	403
C43	075	670	676	676	676	676	676	670	676	676	676	676
C44	530	<u>53</u> 0	530	530	530	530	530	530	530	530	530	530
Time	1907	1917	192 7			1	lime 1	1907]	1917 1	L927		
C1 3	840	840	840			C	36	542	542	542		
C14	835	835	835			ŕ	27	515	515	515		
G15	828	810	820				38	792	ノーノ クロハ	707		
619	202	262	202				20	820	820	17± 82±		
621	25 8	25.8	25 0			~	-27 - 12	402	4.32	407		
633	210	27.0	6/17 Elo				***	403	405	405		
022	/ 713	- 211 - 933	210				145	010	010	0/0		
V23	100	100	100			C	44	53U	530	530		

-264-

١

A4.4 Run TR5 results.

A4.4.1 Run TR5 temperature indicator readings.

-265-

T THIO	1051	TTTT	1120	CCTT	1143	1200	1229	124J
T18	644	644	644	ó43	o44	ь44	644	o44
T19	592	594	594	594	590	• 596	597	597
T20	522	522	523	523	524	526	525	524
T21	389	390	392	392	392	393	392	392
T23	350	350	350	350	349	349	348	348
T24	499	499	499	500	500	501	500	500
T25	312	313	313	313	313	314	315	314
T26	252	252	252	252	252	253	251	252
T27	108	108	108	109	109	109	109	109
T4o	50ء	55ه	655 _.	054	656	655	656	050
T47	¤55	o53	655	54ء	050	055	057	656
T48	54ء	53ء	655	054	650	050	654	656
T49	652	იეი	652	o50	o52	o52	o52	651
T50	202	205	204	264	204	205	203	264
T71	770			770	770	770	770	770
T72	830			8 <u>3</u> 0	830	830	830	830
Tal	290	288	288	292	288	292	291	288
Ta2	317	317	317	317	317	317	316	316
TA3	317	317	317	317	317	317	316	316
TA4	317	317	317	310	310	310	316	310
TA5	350	350	350	350	349	350	349	349
TAÓ	309	370	369	370	370	370	308	369
TA7	403	405	403	407	406	408	406	406
TAS	455	455	454	455	450	456	456	456
TA9	449	450	449	450	450	450	450	451
Talo	518	518	517	518	519	520	<u>5</u> 20	520
Tall	528	528	527	530	531	532	531	531
In12	000	ບບັບ	000	002	003	003	603	603
TAL	041	040	641	642	643	642	642	643
TAL4	045	044	045	644	646	644	645	645
TAL(369	373	373	374	374	375	372	374
TAIO	555	335	334	330	330	337	330	336
TALY	509	509	508	510	511	512	511	511
TA20	582	583	584	585	500	587	587	586

2

-266-

A4.4.2 Run TR5 chart readings.

.

...

Time	0858	0920	J923	0929	0936	0943	0954	1004	1012	1021	1034	1047
C13 C14 C15	885 880 875	885 881 875		885 881 875	885 880 874	885 880 873	885 880 875	885 883 875	885 882 875	885 880 875	885 880 873	885 882 873
C1 9	207	268		261	262	262	262	202	260	258	258	259
C21	23.3	23.2		23.1	23.2	23.1	23.0	23.0	23.1	23.1	23.1	23.1
C22	465	478	510	510	510	508	510	510	512	523	522	540
023	752	750	750	750	750	750	750	750	750	750	740	700
036	505		505	505	505	585	585	585	585	585	585	585
037	シン		515	215	575	575	575	578	575	575	575	575
070	820		730	920	240	730	135	730	730	735	135	730
042	462		462	462	042	045	044	045	045	045	440	850
C42	693		403	692	- 403	40J	40 <u>)</u> 605	40 <u>)</u>	40J 602	40 <u>5</u> 602	40U	402
C44	657		655	655	655	655	657	657	658	658	657	657
•••	•21		•//	0//		<i><i><i>Ч</i></i></i>	071	071	0,0	0,0	0)1	071
			_				_					
Time	1055	1103	1115	1126	1138	1148	1211	1221	1233			
C1 3	885	885	885	885	885	885	885	885	885			
C14	880	885	880	880	883	882	880	885	882			
C15	873	874	872	875	874	874	872	874	875			
C19	250	250	258	258	257	257	258	256	250			
C2i	23.2	23.2	23.2	23.2	23.3	23.3	23.1	23.1	23.1			
022	537	530	535	535	535	535	535	530	540			
023	705	705	080	680	690	080	085	085	085			
030	585	585	585	585	585	585	585	585	585			
037	575	575	575	515	575	575	575	575	575			
C38	735	730	730	730	730	730	730	730	730			
039	855	85 o	857	858	852	852	852	851	800			
C42	402	475	470	460	470	468	468	470	470			
C43	093	o93	Þ93	693	693	093	693	693	¢93			
/ A .	657	57	655	650	~55	んだだ	651		655			

-267-

. <u>APPENDIX 5</u>. <u>TABULATED RESULTS AND COMPUTER PROGRAM LISTING</u> FOR THE SINGLE SIEVE PLATE EXPERIMENTS.

A5.1 The dimensions of the unit.

1 ...

Hole diameter	0.125 ins.
Perforated area	0.5625 ft .
Length of plate	5.0 ft.
Width of plate	1.5 ft.
Bubbling area	7.5 ft .
Downcomer area	1.125 ft .
Weir height	0.135 ft.
Area of exit pipe	0.0218 ft .

A5.2.1 Conversion of air rate (inches water gauge) to air rate

(1b/sec.)		
Inches water gauge	Volumetric flowrate (ft /sec.)	Mass flowrate (1b/sec.)
0.75	19.5	1.412
1.4	27.5	2.194
3.5	41.7	3.38
4.5	48.0	3.88
6.0	55.5	4.43
7.0	59.8	4.78
8.0	64.0	5.17

;

A5.2.2 Experimental values for tray hold up at various air and

water rates.

Liquid	Air rate (ft /sec.)							
rate	27•2	42.0	48.0	55.0	60.0	64.0		
400	49.66	56.16	71.66	57.66	101.6	141.2		
800	61.40	69.90	84.90	71.40	118.9	157.9		
1200	69.85	77.85	94.35	72.85	130.4	165.9		
1600	70.20	85.20	101.7	92.20	141.2	172.7		
2000	81.38	91.38	110.4	103.9	150.9	183.4		
2400	86.40	95.90	114.9	108.9	155.9	184.4		

A5.3 Liquid step-change results obtained by experiment.

A5.3.1 Liquid step-change from 1.11 to 5.55 lb/sec.

(air ra				
Т (вес)	H (ft.)	₩M (1b)	WT (16)	WL (16)
0	0.412	0.0	0.0	0.0
5	0.388	20.0	2.34	17.7
10	0.296	37.0	10.9	26.1
15	0.204	43.0	19.6	24.4
20	0.140	47.0	25.0	22.0
25	0.112	50.0	29.2	20.8
30	0.0875	51.0	30.5	20.5
35	0.0782	52.0	31.6	20.4
40	0.0710	52.0	32.0	20.0

(These figures correspond to Fig. 6-1.)

٠...

A5.3.2 Liquid step-change from 1.11 to 4.44 lb/sec. (Air rate 3.38 lb/sec.)

Т (вес)	H (Ft.)	WM (1b)	WT (16)	WL (16)
ð	0.0375	J.O	0.0	0.0
5 '	0.0780	17.0	3.12	13.9
10	J.154	28.0	10.9	17.1
15	0.188	31.0	14.1	16.9
20	0.215	33.0	20.2	12.8
25	0.229	34.5	21.5	13.0
30	0.235	34.9	22.1	12.8
35	0.239	35.0	22.4	12.6
40	0.240	·35.0	22.5	12.5

- A5.3.3 Liquid step-change from 5.55 to 1.00 lb/sec.

τ η	t	TREA	1077	1177
(sec)	(ft.)	(1b)	(1b)	(1b)
ა	0.412	0.0	0.0	0.0
5	0.404	15.5	7.98	7.52
10	0.290	33.5	10.95	22.55
15	0.196	42.5	20.15	22.35
25	J.140	44.0	24.8	18.15
25	0.112	45.5	28.2	17.3
30	0.0875	47.0	30.5	16.5
35	0.0792	48.5	31.3	17.2
40	0.0792	48.5	31.3	17.2

(Air rate 4.78 lb/sec.)

A5.3.4 Liquid step-change from 2.22 to 6.00 lb/sec.

•	•			
T (sec)	H (ft.)	WM (16)	WT (16)	WL (1b)
0	0.0375	0	0	0
5	0.0541	25.5	1.50	23.9
10	0.0958	35.5	5.46	30.0
15	J.154	39.5	10.9	28.6
20	0.212	40.5	16.4	24.1
25	0.24 0	43.5	19.6	23.9
30	∂ _352	45.5	30.4	15.1
35	0.379	4o₊0	31.0	15.0
40	J.396	ن. 47	33.6	13.4
45	0.412	47.5	35.2	12.3
50	0.412	48.0	35.9	12.1

(Air rate 4.78 lb/sec.)

A5.4 Vapour rate step-change results obtained by experiment.

#5.4.1 Vapour rate step-change from 2.40 to 0.52 lb/sec.

(Liquid rate 4.44 lb/sec.)

1.

T (sec)	H (ft.)	WM (lb)	WT (lb)	WL (16)
0	0.129	υ	0	0
5	J.138	3	0.797	2.203
10	0.142	6	1.18	4.82
15	0.142	8	1.18	6.82
20	0.1416	9	1.18	7.82
	(These r	esults con	respond to F	ig. 0-2.)

A5.4.2 Vap	our rate st	ep-change	from 5.24 to	2.04 lb/se	<u>∋c</u> .
(Liqui	d rate 4.44.	lb/sec.)			
T	Н	WM	WT	WL	
(sec)	(ft.)	(lb) ·	(1b)	(16)	
o	0.138	0	0	0	
5	0.129	0.50	0.078	0.42	
10	0.129	4.50	0.078	4.42	
15	0.129	5.50	0.078	5.42	
20	J.129	0.0	0.078	5.92	

A5.5 Predictions of the mathematical model.

A5.5.1 The computer program.

÷

/ --- PROSRAM SIVMOD TO SIMULATE THE DYNAMIC BEHAVIOUR OF /---THE DEPARTMENTAL SIEVE TRAY UNIT. R.M. NEALE JAN 1970 REAL L1, L2, L20, L2Z, L3, L3Z PAUSE / --- WRITE OUT TITLE AND USER LABEL. 1 2 WRITE(7,1) READ(1,3) Z1, Z2, Z3* WRITE(7,3) Z1, Z2, Z3* /--- READ DATA AND DUTPUT DATA CHECK. READ(1,4) ZI,L1, Z2,L20, Z3,V, Z4, DELV WRITE(7,4) Z1,L1, Z2,L20, Z3,V, Z4,)ELV READ(1,4) Z1, AT, Z2, AP, Z3, AV, Z4, HA WRITE(7,4) Z1, AT, Z2, AP, Z3, AV, Z4, HA 1 READ(1,4) Z1, AX, Z2, AE, Z3, OL, Z4, OV WRITE(7,4) Z1, AX, Z2, AE, Z3, OL, Z4, OV READ(1,4) Z1, C1, Z2, C2, Z3, C3, Z4, C4 WRIFE(7,4) Z1, C1, Z2, C2, Z3, C3, Z4, C4 1 READ(1,4) Z1, C5, Z2, C6, Z3, C7, Z4, DELT WRITE(7,4) Z1, C5, Z2, C6, Z3, C7, Z4, DELT READ(1,4) Z1, TMAX, Z2, TITST * WRITE(7,4) Z1, TMAX, Z2, TITSF TITST = TITST/DELT ITST = IFIX(TITST)

```
L3 = L20
1
/---COMPUTE EQUIVALENT L20 FOR DELV
1
HF = C2*(V+DELV) + C3*L1 + C4*HW + C5*(V+DELV)**2 + C5
IF (HF.LT.HW) HF = HW +0.01
FO = L20/(C1*AV*OL*(HF-HW)**1.5)
IF((ABS(DELV) -0.0001).LT.0.0)G) TO 5
HFI = C2*V + C3*L1 + C4*Hd + C5*V**2 + C6
FD1 = L20/(C1*AV*DL*(HF1-HW)****1.5)
FD = FD1 * HF1 / HF
L20 = C1*AV *** D *DL *(HF -HA) **1.5
/--- COMPUTE THE LIQUID TRANSIENT
5 XJ = TMAX**/DELT + 0.5
J = IFIX(XJ)
TSUM = 0.0
1
E2 = AT * HF / (C1 * AV * (HF - HW) * * 1.5)
HL = ((L3/(C7 *OL*AE))**2)/(2.0*32.2)
\Gamma 5 = \Gamma 50
WT = AX * 2L * HL
WL = HF * AT * OL *F 0
WM1 = WT + WL
E3 = C7 * 9L * AE * SQRT(54.4)
1
WRITE(7,9)
WRITE(7,10)
10 FORMAT(51H T
                        L2
                                L3
                                                               HF
                                        WL.
                                                1 1
                                                       FD.
                                                                       HL/)
* ** **
WRITE(7,7) TSUM, L2, L3, NL, WT, FD, HF, HL
ITS = 0
1
00 6 I=1, J
/---CALCULATION OF THE TRANSIENT FOR THE PLATE
′
```

× ...

.

```
TSUM = TSUM + DELT
L2Z = L2
L3Z = L3
HLZ = HL
WTZ = WT
1
L2 = L1-(L1-L20) +EXP(-TSUM/E2)
FD = L2/(C1*AV*DL*(HF-HW)**1.5)
WL = FO +OL +AT +HF
1
/ --- AND FOR THE END TANK
1
HL = HLZ + (L2Z-E3*SQRT(HL))*DELT/(AX*DL)
L3 = E3 + SORT(HL)
WT = WTZ + (0.5*(L2Z+L2) - 0.5*(L3Z+L3))*DELT
1
/ -- - OUT PUT RESULT
ITS = ITS + 1
IF(ITS.LT.ITST)G0 T0 6
ITS = 0
WM = MM1 + MT + ML
WRITE(7,7) TSUM, L2, L3, WL, WT, FD, HF, HL, WM
6 CONTINUE
1
READ(1,8) ITRIG
IF(ITRI3.LT.O) STOP
GO TO 2
1 FORMAT(54HMATHEMATICAL MODEL OF HYDRODYNAMICS OF SIEVE TRAY UNITY)
3 FORMAT(3A8)
4 FORMAT(A8, F12.6, 5X, A8, F12.6/A8, F12.6, 5X, A8, F12.6)
7 FORMAT(#5.1, 2#7.3, 2#7.3, 3#7.4, #9.3)
9 FORMAT(18HTRANSIENT RESPONSE/)
8 FORMAT(I3)
END
```

* m

2

A5.5.2 Sample data.

SIVMOD	TEST RUN 1	(Titl	e)
Ll	1.11	L20	1.11
V	2.40	• DELY	4.12
AT	7.50	AP	0.5625
AV	1.50	HW	0.135
AX	1.50	AР	0.02182
DL	62.4	DV	0.0808
Cl	3.38	C2	0.0122
C3	0.098	C4	0.999
C5	0.00	Co	0,200
C7	0,80	DELT	0.500
TMAX	40.0	TSTEP	2.00

A5.5.3 Sample results for this data.

T (sec)	WL (16)	T (sec)	WL (16)	T (sec)	WL (1b)	T (sec)	WL (16)
0	4.404	10	23.61	20	21.91	30	22.01
2	11.38	12	21.17	22	21.95	40	22.02
4	15.60	14	21.51	24	21.98		
6	18.14	16	21.71	26	22.00		
8	19.68	18	21.83	28	22.01		

A5.5.4 Predicted results for a vapour rate step-change from 2.40 to 6.52 lb/sec.

Т (зес)	WL (16)
0	5.242
2	4.94
4	4.76
6	4.64
8	4.58
10	4.53
30	4.47

2 .-

(Liquid rate 1.11 lb/sec.)

A5.5.5 Predicted results for a liquid rate step-change from 1.11 to 4.44 lb/sec.

(Vapour rate 3.38 lb/sec.)

T	WL	Т	WL
(sec)	(lb)	(sec)	(1b)
0	4.54	12	17.4
2	9.81	14	17.7
4	13.0	16	17.9
6	15.0	18	18.0
8	16.2	20	18.1
10	17.0	22	18.1

-274-

					-				-		·
Feed	composition	vector =	(0.30, 0.40,	0.30)						A6	APJ
Plate	x	x	x	У	У	У	K	K	K	ب	E
U	0.7337E0	0.2657E0	0.5214E-3							လု	Ð
1	U•4824E0	U.5142E0	0.3426E-2	0.7337E0	0.2657E0	0.5214E-3	0.1521E1	0.5168EO	0.1522EO	te	X
2	0.3416E0	0.6474E0	0.1092E-1	0.5906EU	0.4013E0	0.2106E-2	0 . 1746E1	0.6198E0	0.1928EO	d	o.
3	0.2708EJ	0.6949EU	0.2836E-1	0.5199E0	0.4739EU	0.6194E-2	0.1878E1	0.6821E0	0.2184E0	M	•
4	0.2459E0	0.6879E0	0.6623E+1	0.4845e0	0.4998E0	0.1571E-1	0.1971E1	0.7266E0	0.2371E0	8	12-10
5	0.2247E0	0.6356EU	0.1397EJ	0.4676E0	0.4960E0	0.3636E-1	0.2081E1	0.7804E0	0.2603E0	at	
6	0.2027EU	0.5404E0	0.2569E0	0.4501E0	0.4675EU	0.7644E-1	0.2250E1	0.8650E0	0.2976E0	10	E
7	0.1360EO	0.5907EU	0.2607EU	0.3335E0	0.5751EJ	0 .91 36E-1	0.2443E1	0.9638E0	0.3425E0	10	
8	0.849oE-1	0.6349E0	0.2801E0	0.2223EV	0.6698EU	0.1079e0	0.2616E1	0.1055E1	0.3853E0	182	oß
9	0.4687E-1	0.0447E0	0.3064E0	0.135 <i>5</i> E0	0.7341E0	0.1304E0	0.2773E1	0.1139E1	0.4256EO	11	S A
10	0.2532E-1	0.6004E0.	0.3683EU	0 . 7479E-1	0.7505EV	0 . 1747e0	0.2954E1	0.1238E1	0.4743E0	100	C
в	0.1084E-1	U.4895EU	U.4997EU	0.3519E-1	0.6861E0	0.2787E0	0.3247E1	0.1402E1	0.5578EO		BB
											NPS I
Feed	l compositio	on vector =	· (v.35, v.35	, 0.30)						•	1 15
Plate	x	x	x	У	У	У	K	K	K		Els
0	0.8505ed	U.1493EO	0.1693E-3			-				*	PA
1	0.647 9EU	0.3507E0	0.14 <u>31E-</u> 2	0.8505e0	0.1493E0	0.1693E-3	0.1313E1	0.4257E0	0.1183E0		E D
2	0.4892E0	0.5051E0	0.5689E-2	0.7400EU	0.2592E0	0.8576E-3	0.1513E1	0.5130E0	0.1508E0		H SY
3	0.3923EU	U.5898EU	0.1789E-1	0.0534E0	0.3434E0	0.3180E-2	0.1665E1	0.5823E0	0.1778EJ	•	D SI
4	0.3375EU	0.6131EU	0.4938E-1	0.60JoE0	0.3896EU	0.9835E-2	0.1780E1	0.6354E0	0.1991E0		IS
5	0.2597EJ	U.5794EU	J.1208EU	0.5707E0	U.4023E0	0.2701E-1	0.1904E1	0.6943E0	0.2235E0	L	
6	0.2624E0	0.487 2EU	U.2504E0	0.5501E0	0.3839EU	0.0599E-1	0.2096E1	0.7880E0	U.2636E0		EA
7	0.1875e0	0.5516EU	0.2609E0	0.4303E0	0.4895E0	0.8027E-1	0.2294E1	0.8875E0	0.3077EO		AR
8	0.1219EJ	0.0026E0	0.2755EU	0.3043E0	0.5978EU	0.9796E-1	0.2497E1	0.991920	0.3556E0		151×
9	0.7207E-1	0.0249EU	0.3031E0	0.1939EU	0.6837EU	0.1225E0	0.2690E1	0.1094E1	0.4040E0		Z FO
10	0.3790E-1	0.5956EO	0.3605EU	0.1101E0	0.7210E0	0.1689E0	0.2905E1	0.1211E1	0.4609E0		5 2
В	0.1632E-1	J.4838EU	J.4999EU	0.5201E-1	0.6719E0	0.2755E0	0.3224E1	0.1389E1	0.5511E0	,	티크
				-	• •						
											5
		(N	ote: J.36E-	2 denotes C	1.30×10^{-2}	stc.)					E
		•									Ľ
	•										R
											_

1

-275-

ŗ

÷

1

		•			-		an a				
								**			ĥó
		~					- ~ {			•	Ň
				-			,				H
R00 #	٦	-0 366660000000 01	0,000000000006 0	0	0.0000000000	00	0.1484940000E	01	-0.13903	60000E	01 0
		-0.4094800000E 00	0.0000000000000000000000000000000000000	0	0,00000000000	00	0.0000000000	0.0	0,00000	100000E	00 8
		0 0000000000000000000000000000000000000	0.0000000000 O	00	0_0000000000	00	0_0000000000	00	0.00000	100000E	00 8
		0 0000000000E 00	0.00000000000	0.0	0.0000000000E	00	0_00000000000	00	0.00000	160000E	00 5
		· 0 00000000000 00	0.0000000000000000000000000000000000000	0	0.0000000000	00	0.0000000000	0.0	0.00000	100000E	- 0 이 등
	1	0.0000000000000000000000000000000000000	0.00000000000	0	0.0000000000	00	0.000.0000000	0.0	- 0,00000	10000E	00 g
		00 3000000000 00	0.0000000000000000000000000000000000000	0	0.0000000000	00	0.0000000000	00	0.00000	100000E	00 15
		0 00000000000 00									•
5 OLL -	2	0.000.000.000.000	-0 7/2/200000		a aaaaaaaaaaaaa	0.0	0 4/920200005	0.4	0 13017	560000c	0.1
KU1, ≢	4			21 Na	0.00000000000	00		0.1	0,12914	100000ge	0.0
			0_0000000000E 0	313	0.000000000	00	0_00000000000	00	0.0000	100000	0.7
L		0 00000000000000000	0,0000000000 0	10	0.0000000000	00	0,00000000000	0.0		100009E	0.5
27		0 00037386008 00	0.000000000000000F 0)()	0,00000000000	00	0,00000000000	0.0	0,00000	10000E	0.0
o i		0 000000000000000000000000000000000000	0.0000000000F 0	00	0.000000000F	00	0,00000000000	90	0,00000	100000E	0.0
•		0 0000000000000000000000000000000000000	0.000000000F 0	10	0.0000000000	00	0,00000000000	0.0	0,00000	1000005	00
		0 00730706008 00	0.0000000000 00E 0	10	0,000000000	00	0_0000000000	00	0.00060	1000AAF	93
		0 09090909008 00									
80W =	3	0 01345486008 00	0.0000000000000000000000000000000000000	0	-0.3666600000E	01	-0.2908000000E	-02	+0,98808	30000E-	-03
		0 5577600000E 00	0 000000000000	10	0.00000000000	00	0,0000000000	00 .	0.00000	30000U	0).
		0 00000000000 00	0,00000000000 0	10	0,0000000000	00	0,00000000000	00	0,00000	100000E	90
		<u>a oudajanunde ou</u>	0.0000000.000 0	าก	0,0000000000	00	0,0000000000	00	0.00000)01010E	0.)
		0 0000000000E 00	0_00000000000 0	0	0,0000000000	0.0	0.000000000	0.0	. 0.00000	100000E	0.0
		0 04000000000 00	0.0000000.00E 0	0	0.0006000000E	00	- 0,0000000000	0.0	0.00000	300006	00
		00 300,060,066 6	0.0000000000000000000000000000000000000	10	0,0000000000E	00	0,00000000000	00	0.00000	300000E	0.0
		00 30000000000 00	• • • • •								
D () • 1 ·	,	л. 19 19 19 19 19 19 19 19 19 19 19 19 17 11 11	0 0 000000000 A		A 0000000000	00	A EARCA777975	0.2	A 3717	>***	0.2
KUW 4	4		0.1%0##X4.7%# 0	111		A2		04		1000018	04
		0 00740000674 01	0 000000000000000000000000000000000000	16		06		01	- 0.0000 - 3.0000	10000C	0.0
				10 N-N	0.000000000000000000000000000000000000	0.0	0,000000000000	00		1001008	0.0
		0.0999009000000000	0.000000000000000000000000000000000000	10	0,000000000000000000000000000000000000	00	0.000.000000	00	0.0000	10109VE 1088086	00
		0 0000000000000000000000000000000000000		10 Na	0,000000000000	00		00	0.0000	1000000	0.3
			0 0.00 0.00 00 00 00 00 00 00 00 00 00 0	19	0.03000000000	0.0		00 00	3 0407)	00
		0,0000000000000000000000000000000000000	0,00000100700E 0	70	0'00000000E	νv	0,000,000,000,005	90	0.0000	MUNAAR	UV.
		a aacodoba006 00									

ŝ

1
		•							
ROW =	5	0 0000000000	00.	0.3333333333F	02	0.0000000000	00	- 0 2470033333E 02	+0.5652266667E 02
		0 24716666678	01	-0.42830666678	02	0.2267933333E	02	-0.4729666667E (01	0.000000000000000
		30000000000	00	0,0000000.008	00	0.0000000000	00	0.0000000000 00	0,0000000000 0J
		0 000000000000	00	0,00000000000	00.	0,000000000	00	0,000000000E 00.	0.0000000000 00
		0 0000000000	0.0	C.0000000000F	00	0.00000000000	00	0.0000000000E 00	0,0000000000 04
		0.0000000000	06	0.00000600000	00	0.0000000000	0.0	0,000,00000F 00	0.0000000000E 00
		0,000,000,000	00	0.00000000000	0.0	0.00000000000	00	0.00000000000 00	0,0400000000E 00
		0 00000606008	90						
ROW =	6	0.00000000000	00	0.000000000000	00	0 3333333333	٥ ٢	0.48466666676-01	0-16468000006-01
		-0 4262933333E	02	-0.2247300000E	00	-0.79776666678-	-01	0,117596666678 02	0.0000000000000000000000000000000000000
		30006000000	20	0.0000000000	00	0.0000000000	0.0	0.000060000000 00	0.0C000000000 00
		30000000000	06	0.0000000000	6.6	0,0000000000F	00	0,0000000000000000000000000000000000000	0,1000000000E 10 -
N		3000000000	00	0.0000000000	00	0,00000000000	00	0.00000000000 00	0.0000000000 00
17.		0 00000000000	00	0,0000000000	00	0,00000000000	0.0	0.000-0000000 00	0,0000000000000000000000000000000000000
•		300066660006	0.0	0.0000000000	00	0.0000000000	00	0.0000000000 00	0.0000000000 00
•		0 0000000000	00		-				· .
ROV =	7	0,0000000000	0.0	0_0000000000	00	0.0000000000	00	- 0.33333333333- 02 -	0,000000000E 00
		0 0006060606	00	-0.76389000000E	02	0.2255966667E	02	0.70300900008 01	0.5510633333E 02
		- +0 2166733333E	02	-0,6937666667E	01	0,0000000000	00	0.0000000000000000000000000000000000000	0,0000030000E_00
		0 04000001 008	0.0	9,94000000000	0.0	0.00040000000	00	0_00000000F 00	_ 0.00000000E 00 _
		0 0000000000	00	0.0404000400F	00	0.0000000000	00	0.0000000000000000000000000000000000000	0.000000000E 00
		9 0000000 ja0E	00	0.0000000000B	0.0	0.0000000000E	00	0.0000000000000000000000000000000000000	0,000000000E 00
		0 0000000000	0.0	0.00000000000	00	0.000000000	00	0,0000000000E 00	0,000000000E 00
	•	0.00000000000	0.0		$\overline{\}$				
R()₩ ≠	8	0.00000000000	0.0	0.00000000000	0.0	0.0000000000	00	0.000000000F 00-	0.333333333E 02 -
		0.0000000000	00	0,4283066667F	02	=0.5601266667E	02	0_472966666678 01	=Q.5439566667E 02
		9 2102566667E	95	-0.6326000000E	01	0.000000000	00	0_0000000000E 00	- 0,000000000E 00
		ე ეყეფიკიკიც	ΘW	0,0080000.06F	0.0	0.0000000000	00	0.000000000000 00	0,0000000000E 00
		0_0000000000000	90	A_99000400.00F	0.0	0.0000000000	00	0,000000000E 00	0,000000005 00 .
		0 000000000	0.0	0,000000000	0.0	0,0000000000E	,00	0_0000000000E 00	0.00000000000 00
		0.000010000000	99	0,0000000000	99	0.000u000000F	00	0,00000000000 00	- 0,0000000000 Ou
		0.00000000000	00						

•

÷

.

.

_ ~

-

.

- /

1

;

•

Υ.

R04 = 4	,),00000000000E	00 -	0.00000000000	0.0	A.000000000E	00	- 0_000un000n0E	00	- 0.000000000E	00
	Ę) 33333333333B	02	0,2247309600F	00-	- 0,7977666667F-	-01	-0.4509300000E	02	-0.7108000000E	00
	(25817000008	0.0	0.1326366667E	02	0.00000000000	00	- 0,00000000F	0.0	- 0.0000000000	00
	() 000066006	0.0	9.0000000.00E	00	0.000000000	00	- 0.0000000000	00	- 0,0000000000	00
	() (00000000000	0.0	0.00000000000E	00	0,0000000000	00	- 0.000000000	00	- 0,0000000000E	00 -
	(360000000000	00	0.00000000000	0.0	0,0000000000	00	0,00000000000	00	0.00000000000	00
	(),0001000000E	00 -	9.00000000000e	0.0	- 0.000000000	00	0_0000000000	00	0.00000000006	00
	Ċ	000000000000	00		-	-		-			
ROW = 1) (3000000000	n0 -	0.00000000000	00	0.0000000000	00	0.0000000000	0.0	0.00000000E	00
	(00000000000	/00 -	0.33333333333333	02	0.0000000000	00	0.0006000000	00	≠0_8843966667E	02
-	0	21647333338	202	0.69376666678	01	0.6206966667E	20	-0.2151200000E	02	0,7019666667E	01
N	- (30096006006	00	0.000000 00F	00	0,0000000000	0.0	0,000u000000	00	- 0.000000000E	00 -
78	C	3006666600	0.0	0.0000000000F	00	- 0.0000000000	00	- 0.0000000000E	0.0	0,000000000E	00
1	C	300-06660660	no .	0.0000000.00F	0.0	0.000000000E	00	- 0,000000000E	00	0.000000000	00
	- 0	. 000000000008	00	0.0000000000	0.0	0.0000000000	0.0	- 0.0000100000E	00	0.000000000	00
	C	30000000000	00		-			-	-		
ROW = 1		30000000000	60	0.0000000000	00	- 0.000000000	00	- 0.000000000E	00	- 0.000000000	00
	(30000606060	0.0	0_00000000000	00-	- 0.33333 5 3338	02,	- 0,00000000E	00	- 0,5439566667 <u>E</u>	02
	- 0	55259000008	02	0_6326000000F	01	≓0_6017900000F	02	3000006052209000005	02		01
	- (9999666699966	00	0_000000000F	00.	a_000000000000	00	30000000000000E	0.0	0,00000000000	99
	i,	300000000000	0.0	0,00000000000E	0.0	U_00000000000	00	3000000000000	00	0,0000000000	<u> 00</u>
	0	00000000000	0.0	0_00000000000E	0.0	0,000000000000	00	300000000000	0.0	- 0,000400000E	90
	ĩ	300060000000	00	0.00000000000	00	0.00000000000	0.0	0_0000000000	00	- 0,00000000000E	00 -
	r	009096666008	0.0							~	
ROW = 1	2 () <u>00000000000</u> E	00	0.00000000000	00	0.000000000E	00	- 0,0000000000	00	0,0000000000	00
	(30000000000	00	0.0000000000	00	0,0000000000	00	0_3333333333E	02	0.7108000000E	00
	:	1,25817000008	00 -	-0.46597000008	02	-0_1890666667E	01	0.6969666667E	00	<u>- 0.1425866667E</u>	n?
	C	00000000000	0.0	6.0000000000	0.0	0.000u000u00E	00	0_0000000300E	00	- 9°UUUUUUUUUU	- 00
	Ċ	30000000000	ია	0.00000000000	00	0_00000000000	00	0_0000000000	00	0,00000000000 <u>e</u>	69 -
	ť	30000000000	00	C_0000000.00F	0.0	0,0000000000	00	0_000-0000000	00	0,0000000000	0 ល
	Ć,	.00000000400E	0.0	0,0000000000	0.0	0,0000000000	00	0_00000000000	00	0.00000000000	.00
	Ċ	00000000000	0.0								

;

2 · · ·

•

1

~

,

R011 = 13	0.0000000000	E 00	0.0000000000	00	0 0000000000 00	0 0 00000000000	F 00	0.0000000000	00
	9.0000000000	F 00	9,000000008	00	0.0000000000000000000000000000000000000		E 00	0 33333333333	02
	0,00000000000	E 00	0 0000000000	30	-0 9540300000F 02		E 02	0 7019666667E	01
	0 6770533533	02	-0 2230066067E	62	-0 74383333335 01	1 0 00000000	E 00	0 000000000000	0.0
	0 000,00,00,00	F' 00	0 0000000000	00	0.000000000000000000000000000000000000	0 0 000	E 00	0 0000000000000	0.0
	0 000 1760000	8 00	0 00000000000	20	A 000000000000000000000000000000000000		E 00	0 000000000000	00 -
	0.00000000000	E 00	0 000000000000	20		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E 00	0 0000000000000	0u
	0 000000000000	E 00	C. 00000000000	υu	0.04000000E 0	a 0-11000000000	Υ <u>ς</u> υν	0.0000000000	
	N	-						_	
RO₩ = 14	0 000000000000	00	0_0000000000	0.0	0 00000000000	0 0 00000000	0.0 9		00
	0 0000000000	0.0	0.0000000000	0.0	0 0000000000 0	0 . 0 0000000000	E 00	- 0.0000000000E	00
	0 333333333333	50 5	0.0000000000F	00	0 6017900000F 02	2 -0 5554233323	F 02	0.7239333333	01
• ·								•	
27	0 63080666678	02	0.2403466667E	02 -	+0,7890333333F 01	0.0000000000	= 0.0	0.000000000	00
19-	30000060000	9.0	0.0000000.00F	0.0	0.000000000 00	0.000000000	00	0,0000000000	00
•	a 0000000000	00	9,0000000,00P	0.0	0,0000000000 00	- 0.000,000,000	: 00	- 0.0000000000	00
	0 000000000	<u>4</u> 0	0.00000000000	00	0.000000000E 00	0 00000000000	= 00	0.0000000000	00
	0.00000000000	00		-	_				
RON = 15	9 0000000000	06	6.000000000E	00 -	- 0.000000000F 00	- 0,000000000	00	0,0000000000	00 .
	0 00000000000	0.7	0_00000000000E	00 -	0_000000000E 00	0_0000000000	: 00	0.000000000F	00
	<u>ე ეიევიცეფიც</u>	0.0	0,3333 333 333E	02	0 1890666667F 01	0 6969666667	00	-0.4759200000E	02 _
	-0 4624666667E	01	-0.1734233333E	01	0.1532866667F 02	0.0000000000	: 0ù	0.0000000000	00
	0 0000000000	6.0	0_0000000000	00	0.000000000 00	0 0000000000	: 00	0_0000000000F	00
	30000000000	00	0,000000 00E	0.0	0 00000000000 00	0 0000000000	00	0.0000000000	00
	0.0000000000	ΟÔ	0_0000000000000000000000000000000000000	00	00 36006605600 0	0 0000000000	00	0. 00000000000	0.0
	3000000000	00			- • - · · · · · · · · · · · · · · · · ·		•		
8			-	~					
ROV = 16	მ, მმშ სმამორმ₿	0.0	0.0000000.008 ·	00	0,000000000E 00	0,0000000000	00	0.0000000000	0()
	0_0001000008	06	0,60000000000	00	0,000000000E 00	0.0000000000	00.	- 0.0000000000	00
	0 00000000000	00	0,000000000	0.0	0.3333333338 02	0.000000000	00	0.0000000000	00
	-9 1010386667E	03	0_22300666676	02	0.7438333333E 01	0.74779000000	50	-0.2407066667E	02
	- m0 82817555338	01	404006060u9_0	00	0.0000000000000000000000000000000000000	0 000.000000	: 0.0	0,0000000000E	00
	0 00000000000	0.0	0_000000000000	00	0,000000000 00	0.0000000000	00	0.00000000E	00
	0.0000000000	00	ი წებარებებაცბო -	0.0	a.00000000000 00	0,0000000000	00	0.0600000000	00
	6 000000000000	0ú –	•					• • • • • • • •	*

:

~

• ,

•

 ROW = 17	0.0000000000000000000000000000000000000	0.0-000000000E	00	0.001000000E	00	0.000000000E	0.0	. 0.000000000 00
	0 0000000000E 00	0.0000000000	00	0.0000000000	00	0.0000000000E	00	- 0.000000000E 00
	ο οφηρομομούΕ ού	0.0000000000F	00	0.0000000000F	00	0.3333333533E	02	_ 0.0000060000E 00
	0 6308066667E 02	-3.5736800000F	02	0.7890333333F	01	=0 6417266667E	02	0.2814800000E 02
	-0 848800000E 01	C.0000000.00F	00	0.0000000000F	00	0 00000000000	0.0	
	0 0000000000000000000000000000000000000	0 00000000000	00	0 00000000000F	00	0 00000000000	0.0	0.000000000F 00
	0 000000000000000000000000000000000000	0 0000000000000000000000000000000000000	00	a 000000000000	00	0 00000000000	00	0.0000000000 00
	0 0000000000000000000000000000000000000	5 - uu. uuuuuu		0.0000000000	V V	01000000000000		
	9 99000000000 00							
ROW = 18	0.000000000000000000000000000000000000	0,000000000000	00	0,00000000000E	0.0	0,000000000	00	0.0000000000 00 _
	0 0000000000 00	0.0000000000	00	0,00000000000	00	0_0001000000	00	0,0000000000 00
	0 03003000000 00	0,0000000,00E	00	0,000000000e	00	0_0000000000	00	0,3333333333E 02
r	0 46246666678 01	0 1734233333E	01	-0 4866200000E	02	-0 1060600000E	20	-0.4077353533F 01
286	0 10749333358 02	0.00000024.00F	00	0.0000000000	00	0.0004000000E	0.0	- 00 30000 n000 00 -
F	0 0000000000000000000000000000000000000	0.0000000.00F	00	0.000000000	00	0.0000000000	00	. 0.0000010000E 00
	0 06040404040	0 0000000000	იი	0 00000000000	00	30000000000 0	00	0.000000000 00
	0 0000000000000000000000000000000000000		,,,,					
						_		_
ROW = 19	0 04000000000 04	0_0000000:00g	00-	0.0000000000E	00	0 0000000000	0.0	0,0000000000 00 ···
	00 300000000 00	0,0000000000 ·	00	0,0004000000E	00	0.0000000000	0.0	0,0000000000 00 -
	0 00000000000 00	0_000000000	00	0_0000000000E	00	0.0000000000	00	. 0,000000000E 00
•	0 1081066667E 02	0,0000000000E	00	0.0000000000E	00	-0.57589333338	02	0.7819333338 01
	0 2690200008 01	0.32258666676	02	-0.6372666667E	01	-0_22646000000	01	0,000000000E_00
	0 000000008 00	0,0000000000	0.0	0,0000000000E	00	0_000000000E	00	0,000000000E 00
	0 03006006008 00	0_0000000000E	0.0	0,0000000000	0.0	0_0000000000	0.0	0,0000000000E 00
	0 0000000000000000000000000000000000000	•		-				-
								-
ROW = 20	0 000000000000000	0,000000000000	00	0.000000000E	00	30000000000000	00	0.0000000000 00
	00 360666660 6	0,0000000000	00	0,00000000000	00	0_000000000	00	0.0000000000 00
	0.0000000000000000000000000000000000000	0,00000000000	0ŭ	0,0001000000E	<u> 00</u>	0_0000000000	00	0.0000000000 00
	0 00000000000 00	0,10810666678	02	0,0000000000	00	0_2084633333E	02	-0.4246333333E 02
	9 27573000000 01	~0.2783733333F	02	0.8117000000E	01	-0.3902666667F	01	0.0000000000 00
	9 0004000000E 00	0.0000000000	0.0	0.000000000E	0.0	0.000000000	0.0	0.0000000000 00
	0 00000000000 00	0.0000000000	00	0.0000000000E	00	300000000000	00	0.000000000 00
	9 9394949468 90							-
	· · · · · · · · · · · · · · · · · · ·							

š

•

1

ROW = 21	0 0000000000	00	0.000000000000	0.0	0.0000000000	00	0_0000000000	0.0	0,0000000000	00
	A A00	0.0	0.00000000000	0.0	A 0000000000	00	0.00000000000	00	0.000000000	00
	0 033030000000	00	0 0.0000000.000	00	A 000000000000	តំភ័	0 0000000000000	0.3	0 0000000000	00
	0 0000000000000 0 00000000000000	36	0.000000000000	00	3 10810666675	02 02	0 34094464675	01	0 1310810000F	61 -
		Δ <u>2</u> .	-0.9000000000000 -0.1/012332220	01		01	0 44472333225	01	0 06000000000	0.0
		NG '	-0_04461000000 -00_040000	01		20	0.000.000.00	0.0	0.000000000000	<u>ถ</u> ัง ถัง
		1111	-0.00990000000000 -0.0.0000	00	0.00000000000	00	0,00000000000000	00	0.0000000000	0.0
	0,00000000000	1111	N_000000000688	40	0.000000000	() ()	0 000000000	44	- 0,000000000	V 0
	0 00000000000	00					,			
ROW = 22	300000000000	0.0	0.00000000000	იი	0.0000000000	0.0	0.00000000000E	00	0.0000000000	00
	0 00000,0000	00	0.00000000000	00	0.00000000000	00	0_00000000006	00	0.09000000000	05 -
	0 00000000000E	0 U	0.0000000000	00	0,00000000000	6.0	0.00000000000	0.0	0:0000000000E	6.0
†	0 0000000000E	00	0.00000000000E	00	0.000000000	00		02	- 0.0000000000	00
8	0.0000000000	00 .	-0.6559209300F	02	0.6372666667E	01	0.2264600000E	01	0.4032466667E	- 20
1	-0 40473533338	01 .	-0.1697266467F	01	0.000000000	00	0.0000000000	00	0,00000000000	0.6
	0.00000000000	40	0.0040000 .00F	00	0.0000000000	00	0.000400000000	00	0.0000000000E	0.0
	0,000000000E	00								-
ອມບ ສ 23	0.0000000000	00	5 0000000000	٥۵	A 0000000000	00	0 00000000000	0.0	0.0000000000	0.0
	0 000000000000	3	0.000000000000	00	0.000000000000	00	0 0000000000	00	0.0000000000	0.0
	0.000000000	00	0.0000000000000	0.0 0.0	A 00000000000	00	0 000000000000	0.0	0.00000000000	0.0
	0 000000000000	00	- a _ a _ a _ a _ a _ a _ a _ a _ a _ a	00	0 0000000000000	ñő	0 000,00000000	00	0.3333333333	02
	0 0000000000	00	0 0787733337	02	-A 4145033333E	02	0 3002666667E	01	-0.3472900000F	02
	A 490700030000	Δ1 ·	-0.5415000.000	04		00	0 000/0000000	00	0 00000000000	07
	0 0504 M00000C	- 9 I - 1 - A A	- A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	- V F - A A	5 A3ALAAAAAE	00	0 040 000000	00	0.0000000000	00
	0.000000000000	0.0	0.000000000	00	0.000000000	17.9	0.0000000000		0100000000000	•••
	0 0000000000	00			•					
ROU = 24	0 0000000000	0.0	0_000000000	00	0,00000000000	00	0_00000000000E	0.0	0_000000000	0.0
	0 0000000000	0.0	0.000000000GE	00	0.000000000F	00	0.000000000	00	0.00000000000	00
	0 00000000000	0ŭ	0_00000000000	0.0	0,0000000000	00	0,0000000000	0.0	0,0000000000	00
) 000000000E	0.0	0_00000000000F	0.0	0,0000000000	90	0_000000000E	0.0	0.0000000000	0 Û
	0 3334733438	02	0.4421333333E	01	0.1744333333F	01	-0.39500666678	02	-0.5595666667E	01
	-0 2256633333B	01	0.6812333333E	01	0,000000000E	0.0	300000000000	0.0	0.0000000000	0.0
	0 0004700400E	30	0.6000060:00E	00	0.000000000E	0.0	C. 60000000000	0.0	0.00000000000	0.0
	30000000000	0.0	-		•					

-

;

4

4

•

,

,

ROM = 25	0 0600000000 00	0_000000000 00 00 00	0-0000000000	00	0,000000000	00	0.0000000000	00	
	0 000 JU0000E 00	6.0000000000 00 00	0,0000000000	00	0,0000000000	00	0.00000000000E	0.0	
I	0 0000000000000000000000000000000000000	0,0000000,00F 00	0,0000000000	00	0_000000000E	00.	0.0000000000	001	
	0 0000000000 00	0. 0000000.008 00	0,0000000000	00	0_00000000000	00	3090000000000	θU	 .
	00 3000000000 0	0.3333333338 02	0.000000000	0.0	0.0000000000	00 -	0,7365800000E	02	
	0 4647333333E 01	0.1697206667F 01	0.4750266667E	50	-0.3057800000E	01	0.1142566667E	01	
	0.0000600008 00	0_000000000F 00	0.0000000000F	00	0,0000000008	00	0.0000000000E	0.0	
	0 0000000000 00								
					•				
RON # 26	0,0000000000000000000000000000000000000	0_0000000000000000000000000000000000000	0,0900000000E	00	0,0000000000	60	0.00000000E	0.0	
	0 0000000000000000000000000000000000000	0_000000000E 00	0_0000000000	00	0.0000000000	0 U	0,00000000000E	00	
	0 0004040000000000	0_0000000000E_00	— υ΄υσοροφοριος Ε	00	0,0000000000	00 - 0	0.0000000000	00	•
	0,00000000000 00	OOOOOOOO	0.00000000000	00 ((0,000000000E	00	0,00000000000	0.0	
28	0 0000000000000000000000000000000000000	0_0000000000000000000000000000000000000	0.3333333333E	02	0_0000000000E	00	0,3472900000E	02	-
	-0 402373333E 02	0.511500000000 01	-0.4033900000E	02	0_6000333333E	01 -	0.6191333333E	<u>61</u>	
	6 000000000E 00	6_6009000000E 00	0.00040000000	00	0.00040000006	00	0.00000000000E	0.0	
	0 00000000000 00								
		9	A AAA. AAAAAAA	20	0 00000000000	•	0 00000000000	00	
ROW # 27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0,00000000000	00		00		<u>00</u>	
Į	0 0000000000000000000000000000000000000	0,000000000E 00	0,0000000000	00	0.00000000000	40 Au	0,00000000000 0.0606000000	0.0	Ξ.
	0 0000000000000000000000000000000000000	0_00000000F 00	3,0000000000	00	0.0000000000	49 1 AA	0.00004000000	0.7	-
	0 0000000000000000		0,0000000000	00	0.000000000000	40	0.55056646670	00	
+	0,0000000000E 00	0.000000000000000000000000000000000000		00	V.533355333532 A. 00/3/777777	0.6	V. 77774646670	01	
	0 2256633338 01		#0,7103000007F	91	-0 2942433355E	በር 1 ሰላ	0.0000000000 0.00000000000000000000000	6.0	
	9 9090007000E CO	6-nunnanana∈ un	0,000000000605	00	0_unonunanum	40 -	u, unpud moove	eu	
	0 000000000 00								
0.01 - 38	A 0 00 000 00E 00	0 600000000 00	- 0.000000000	00	0 0000000000000000000000000000000000000	0 O	00000000	0.0	
KOM # CO			0 000000000000	้ถือ "	0 000000000000000000000000000000000000		0000000000	00	
	0 0000000000000000000000000000000000000		A 00000000000	00		10 0	10000000000	55	-
	0 0170100000000000000000000000000000000	0 333330000000000000000000000000000000	A 0.00000000000000000000000000000000000	ñ0	0 000000000000	.ม ปี	1 0000060000F	0.0	
l.	0 00000000000000000 0 0000000000000000		0.000000000 0.0000000	00	0 0000000000000000000000000000000000000)0 0	1. 33333333 5	62	
	0 000000000000000000000000000000000000	0.00000000000000000	-0.8083600000F	ňž	0 %0578000000) j 0	1142566667F	01	
	0 010000000000000000000000000000000000		-A 7029777777	00	0 00000000000	0 0	00000000000	0.0	
	0 3615000008 96	-1. (95450V)005 01	-9.10403333337		U. WYWWWWWWWE	γų 1.	*************	00	
1	0 000000000000000000000000000000000000								

1

.

- -

۱

•

ŗ

.

ROU = 29	0 0000000000	0.0	0 05000000000	0.0	0 0000000000	00	300000000 O	00	0_0000000000E	00	
	0 0000000000	0.0	0 00000000000	00	0.000000000	00	0 000000000000	00	0.0000000000	00	_
	0 00000000000	0.0	0 00000000	00	0 00000000000	0.0	0 00000000000	00	0.0000000000E	0.0	
	0 00000000000	55	9 00000000000	00	0.00000000000	0.0	0 00000000000	00	0,00000000000	60	
	0 0000300004	0.0	0 0000000000	00	0 00000000000	0.0	0 00000000000	0.0	0.0000000000	0).	
	0 333333333	02	0 0000000000	00	0 4033900000	02	-0 3933366667F	02	0.6191333333E	01	
	-0 4393500u00E	02	0 6119000000	01	-0 70543333338	01	0 00000000000	00	0.00000000000	δŭ	
	0_0000000008	00		., ,			·			• •	-
ROW. # 30	0 0000000000	00	0.0000000000	0.0	0.0000000000	00	0.0000000000	00	0.0000000000	00	· ·
	0 010160000B	30	0.000000.00E	00	0.0000000000	0.0	0.0000000000	0.0	- 0.0000000000	00 .	
	0 0000000000	0.0	0.0000000000E	0.0	0.0000000000	00	0.0000000000	00	0.0000000000	0.0	
1	. 0 000000000E	00	0,0000000.005	00	0.0000000000	00	0,0000000000	00	0.000000000E	00 .	
28	0 0000000000	00	0.000000000	0.0	- 0.0000000000F	00	0.0000000000	0.0	0.0000000000	00	
μ	0 000000000	0.0	0.33333333336	02	0.71636666675	01	0.29424333338	01	-0.4066700000E	02	
	-0 102230000E	02	-0.42843333355F	01	0.7757000000E	01	0.0000000000	00	0,0000000000	0.0	
	0,0000000000E	00			•						
R()W = 31	3 0004000000E	0.0	0.000000000P	0.0	n,000000000	00	0.00000000000E	00	0.0000000000	0.0	
	0,000000000	0()	0.000000000	00	- 0.000000000F	00	0.00000000000	0.0	0,00000(0000E	0.0	
	0 0000000000	00	0.00000000000	00	0.000000000	00	0.0000000000	00	30000000000000	00	
	0 0000000000CE	Ωu	0.0400000.00E	00	0.0000000000E	00	0.00000000000	0.0	0.00000000000	00	
	20060060060 0	00	0.000000000000	0.0	0.000000000F	0.0	- 0.000000000	0.0	0.0000000000	00	
	8 000000000	00	0,000000 008	0.0	0.3333333333E	02	0_0000000000	00	0.0000000000	00	
	+6 8749133333E	02	0_1834500000E	01	0.7028333333E	00	0_35805333338	02	→0,5639000000E	01	
	-0 22435000008	01									
ROJ = 32	0,0000000008	0.0	0.00000000000	0.0	0.000000000	0.0	0.0000000000E	00	0.0000030000E	00	
	0 0000000000	0.0	9°0999900000	0.0	- 0.000000000	00	0_0000000000	0.0	-0.00000000000	00.	~
	86005666690_0	60	0.00000000000	0.0	0_000000000	00	. 0_0000000000E	00	0.00000000000	00	
	0 0000000000	00	0_00000000E	0.0	0_000600000F	00	0_00000000000	Οù	0_0000000000	00	
	0 00000000000	0.0	9,0000000.00F	0.0	0.0000000000	00	0_0000000008	0.0	0.0000000000E	00	
, I	30000000000	0.0	0_000000000F	0.0	0.00000000E	00	0.3333333333E	02	0.00000000000	00	-
	3 43935000008	02	-0.3945233333P	02	0.7034333333E	01	-0.25463333338	02	0.1010433333E	ΰŻ	
	-0 4374353338	01									

• ,

*

Ψ.

+

	~											
ROU = 33	0 0000000000000	0 0.0000000000F	0.0		0.0000000000	00 .	0	0000000000	0.0	- 0.000000000	00 -	
	0,0000000000000000000000000000000000000	0 0,00000000 00	0.0		0.0000000000	0.0	0	000000000000	00	0.0000000000	00	
	0,0000000000E 0	0 0_0000000000F	00		0.0000000000	00	0	0000000000	0 û	0,00000000000E	00 .	
	0 000100000000000	0 0,000000000 g	0.0		0.000000000E	0.0	0	300000000000	0.0	0.0000000000	00	
	0 00090000000E 0	0.0000000000F	0.0	•	0.0000000000E	0.0	Ō	0000000000	0.0	0.0000000000	00 .	•
	0.000430040000.00	0 0.0000000000F	0.0		0.0000000000E	00	Ö	000.0000000	0.0	0.33333333333	50	
	0 10223000008 0	2 0.4284333333E	01	-	0.4102033333E	02	= 0	1034200000E	02	=0.4465353333E	01	
	0.66176666678 0	1								•••••		-
ROW # 34	0 000 0000000E 0	0 0.000000000	0.0		0.0000000000	0.0	0	000000000000	0.0	0.0000000000	00	
	0 000000000 0.	0 0,0000000000E	00		0.000000000F	00	້	00000000065	00	0.0000000000	00	-
	0 0600000000	0 0.0000000000	0.0		0.000000000	0.0	Ö,	000000000000000000000000000000000000000	00	0.00000000000	00	
	0 000000000 00	0 0.0000000000	50		0 00060000000	00	ň.	000000000000	0.0	0_0000000000	00	-
l,	0 0000000000 00	0_0000000000F	00		0 0000000000	00	ň	36666666666	0.0	0 00000000000	Ōυ	
28	0 009000000E 00	0 0.000000000	00		0 000000000	00	<u> </u>	000000000000	00	0 00000000000	0.0	
h -		• • • • • • • • • • • • •				., .	v -	1) () () () () () () () () () () () () ()				
	0 5030300 00E 01	1 0.0000000000E	0.0		0,000000000E	00	-0.	7397859000F	01	- 0.8458500000E	00	•
	9 3363250000E 01	()										-
ROM # 35	0 0000000000000000000000000000000000000	0 0.000000000	00		0.0000000000	00	0	000500000008	0.0	0.030000000F	0.0	
	0 0000000000000000000000000000000000000	0 0.0000000.005	0.0		0.000000000E	00	ŏ	00000000000	ñő	- 0.000000000E	00 -	
	0 000000000 00 00	0 0 000000000 GE	0.0		0.0000000000E	0.0	Ő	3000000000E	00	300000000000	00	
	0 0)94000400	0 0 00000000000	0.0		0 000000000	00	- 0	0000000000	0.0	0.00000000000	00	
	0 0.20000000000	0 0.00000000000	0.0	-	0.0000000000F	0.0	0	000000000000	0.0	0.0000000000	0.0	+ _
	0 000000000000000000000000000000000000	0 0 000000000000	30		0 000000000	00	ò	000-0000000	0.0	0.0000000000	00	-
	0 000000000000000000000000000000000000	0 0.5000000000	01		0.0000000000E	õõ	Ő	38195000002	01		01.	
•	0 6561500000E 00	0	·· ,			~ -			* ,			
1	A PERCENT ALL CONTRACTOR	0										
RÓW = 36	0 00000000000000000	0 0,0000000000	0.0		0.000000000E	00	0_	00000000000	00	0.0000000000	0.0	
	<u> </u>	0 0°0000000000	00		0.000000000E	0.0	0.	300000000008	00	- 0,0000000000	60	
	- <u>000000000000000000000000000000000000</u>	0 0,000000000	0.0		0_0000000000	0.0	0.	0000000000	00	0.0000000000	00 -	-
	00 300, CLCCCCC 6	0 0.0000000.005	0.0		0.0000000000E	00	0	30000000000	00	0.0000000000	0.)	
	0_0000000000000000000000000000000000000	0,000000000	0.0		0.00000000000	0.0	0	30000000000F	00	0.0000000000	00	
	0 0000000000000000000000000000000000000	0 0,0000000000F	0.0		0.0000000000	00	0.	0000000000E	0.0	0.0000000000	00	
	0.3060000000000000000000000000000000000	00_0000000000E	00		0,5000000000	01	٥.	1551300000E	01	0.6678000000E	00	
	-0 3012700000E 01	1						*		-		

٠

.

4

•

1

ŗ

APPENDIX 7. DATA AND RESULTS FOR TRANSFER FUNCTION CALCULATIONS. A7.1 Data.

The system analysed was that described by the system matrix given in appendix 6. The initial state vector, x(o), was that given in Chapter 8, section 8.5. No other data is necessary for the computer program of Bosley. Kropholler's program required the denominator polynomial coefficients which were obtained from the intermediate printout of the Bosley program.

n7.2 <u>Numerator polynomial coefficients using the method of Bosley</u>. These are given overleaf in row order.

BOTTOM ROW OF BUSH MATRIX

.

.

ŗ

••

3

-0.1050105487F 52	-0.3809739408E 52	-0.6209356714E	52	-0.6045981131E	52
-0,3949587632E 52	-0.1845364702E 52	-0.6428319004E	51	=0.1720558031E	51
-0.3622329799E 50	-0.6114268769E 49	-0.8406781408E	48	-0.9541540600E	47
-0,9039736n968 46	-9.7215944002E 45	-0.4890980047E	44	-0.2832881983E	43
-0,14993657238 42	-0_6046957099E 40	-0,2244337649E	39	-0.7220894045E	37
-0,2016377275F 36	-0.4838513717E 34	-0,1028419201E	33	#0.1874615832E	31
-0,2953465631E 29		-0.4660257225E	25	-0.4614704471E	23
-0,38584938200 21		-0.1548789463E	17	=0.7186753627E	14
-0.26198275239 12	-0,7208593988E 09	-0.1404607824E	07	-0.1723878717E	04

•

*** **

· ...

.

-28ó-

S HATREX

ROU = 1	-0,11438595838 65	0_5646170939E	62	-0.2787008444E	60	0.1375708401E 58
	0.3356474525F 53 0.3420324193E 47	-0.1547608073F	51	0.2820638227E	49	0.2890654185E 48
	0.3240697076E 46	0.2504914075E	45	0.1609400761E	44	0.8635525415E 42
•	0.1479360840F 40 0.57565177146 33	0.4753566383E	38	0.1292305680E	37	0.2970098731E 35
	0.93476509298 31 0.95478422898 23	0.1271471873E	30	0.1425912713E	28	0.1304016074E 26
	0.5452204362# 21 0.1181516442F 11	0.2334935440E	10	0.7040192381E	16	0.1329930816E 14
	0,000000000000000000000000000000000000	- U.0000000000F	00	0.0000000000	00	0.00000000000E 00

ROW = Z	0.1142510347E 65	=0,5639511027F	62	0.2783721051E	60	-0.1374085700E 58	
	0.67826298828 53		. .				
`	-0,37525065170 53	0.1545995314E	51	=0.2813501778E	49	#0.2881954645E 48	
	-0.3410967196E 47						
	-0, 372171834 18 46	-0.2498208278F	45	=0.1605252125E	44	=0.8614091534E 44	
	-0.3382728689E 41						
	-0.14750541418 40	-0_4743016497F	38	-0.1289540286E	37	=0.2963967698E 3>	
	-0.57450491288 33		_				
	-0,934962935 E 31	-0.1269108592E	30	-0.1423350615E	28	⇒0.1301749624E 26	
	-0.95317797368 23						
	-0.34433196128 21	-0.2331246823E	19	+0.7029400843E	16	#0.1327956727E 14	
	-0 112980582°E 11						
	9,0000000006.00	0-00000000000	00	0.0000000000	00	0-0000000000000000000000000000000000000	
	0,0000000000000000000000000000000000000						
	0.0000000006.00						
ROW = 3	0 1549170931E 62	-0.6659589215E	59	0.3287234107E	57	+0.1622622674E 55	
,	0,8009125013C 52						-
	-0 395781413°C 50	0.1612682927E	48	-0.7136070327 E	46	=0.8699072947E 45	
•	-4,93564685948 44						
	-0 8°782536076 45	-0,6705439513E	47	=0.4148415310E	41	#0.2143274567E 40	
	-0.03029160478 38			_	_		
	-n,34n63192878 37	-0_105493 <u>32</u> 54E	36	=0.2765249462E	34	=0.6130713193E 32	
	-0,1146709040E 31	-					
	-0.1002063000E 22	=0.2363158740E	27	=0.2561966262E	25	■0.2266328497E 23	
	-0.1606173381F 21					_	
	-H. 8584298229E 18	-0,3688430491E	16	+0.1079099427E	14	-0.1979989939E 11	
	-0.1710528864E 08						
	u,0900000₽ 00	0.00000000000	00	0.0000000000E	00	0.0000000000000000	
	0'900090000E 00						
	0.0000000000 00					r	
ROW = 4	0.79207973618 66	-0.3909739647E	64	0.1929874596E	62	=0.9526059253E 59	
	0.47922038478 57					`	
	-0.2720908200E 55	0.1148654684F	53	+0,5025099600E	50	0.1354330338E 49	
	0.1447394566E 48						
	0,16073598638 47	0_1448324370E	46	0.1080177454E	45	0_6720821467E 43	
-	0.35107325448 42					,	`

•

.

1

-287-

	0.1546894803E 41	0.5767670320E	39	0.1822968924E	38	0.4885806379E 3	6
	9,1199002030E 35 9 2126436400E 33	0.3427639642E	31	0,4613494322E	29	0.5135616321F 2	7
	0.4665733562F 25			•••••••••••••••••••••••••••••••••••••••			•
	0 3396204003# 23	0.1929248012E	21	0.8223591573E	18	0.2469212297E 1	6
	0.4647144467E 13						
	0 4114325263E 10	0.0000000000F	00	0.0000000000	00	0.0000000000E 0	0
	0-00000000E 00						
	9'8009900095E 00						
R∩W = 5	-0,7890048494E 66	0.3899448445E	64	-0.1924794810E	62	0.9500985047E 5	9
	-0,4689826004E 57				-	_	
	0,20143901208 55	=0.1145691379E	53	0.5018170452E	50	=0.1340490650E 4	9
	-0,14303147108 48 453037/m458 /7				/ m		
		-U.1432010229E	40	=0,1007134251E	40	#0.6055533949E 4	5
	-1 15xxx19/825 44	=0 5719542054F	70	-0 1808520/715	22	-0 18/003/0/20 7	6
	-0 1101158240# 35	-0.15 (5 2 4 () 4 C		40,10002604715	20	PU.4049030042E 30	•
•	-0.2112017685E 33	-0.3405586249E	31	-0.4585334758F	29	₩0 5105884146F 2	7 .
	-0,4640116147E 25						
	-0.3378521559E 23	-0.1919721559E	21	-0.8185074432E	18	-0.2458238559E 1	5
' *	-0.462753617°E 13						
	-3,4098326893E 10	0,0000000000F	0.0	0.0000000000	00	0_000000000e 0	0
	0 030000000E 00						
	0.0000000000000000000000000000000000000			•		,	
ROU = 6	-0,2081630172E 64	0.1027498n16E	62	₩0.5071778935E	59	0.2503468021E 5	7
	-0 1235742891E 55						
	0 6098456297E 52	-0_3048518171E	50	0.6912797515E	47		7
		A					
		-0.124921110.SE	44	◆0.1101145895 E	43	m0.6>21574652E 4	1
		-0 /2074107048	77	-0 4//30050740	74	-0 7470/000000	,
	-0 79138378166 37	-0.400/114//12	27	=0.14430737718	20	#0.3072492201E 3	' Þ
	-0 1640028067F 31	-0 2202476165E	20	=0 2812247925F	27	-0 20K0240205E 2	5
	-0 2558279057E 23						-
	-9 17659156658 21	-0.9513273578E	18	-0.3846326655E	16	-0.1095822500E 1	4
	-0 1958078097E 11						
	-0 1647450184F 08	0.0000000000	00	0.0000000000	00	0.00000000000 0	0 +
-	n,000000000000000000000000000000000000						
	N.2009090006E 00						

٠

1

-288-

:

~ -

.

-

ROI	, ⇒	7	-0.1460462847E 67	0.7208856505E	64	=0.3558309627E	62	0.1756398138E	60
			0.4779571877E 55 0.1031932896E 48	-0.2109195215F	53	0.1115376140E	51	0.7690123447E	48
			0,2055033730E 47 0.5120135022r 42	0.1918046763E	46	0.1481584253E	45	0.9561065436E	43
			u 2782585143E 41 u 20962226228 35	0.9285065475E	39	0.3079360789E	38	0.8700999198E	36.
-285			0.42867090248 33	0,7438861049E	31	0.1089017954E	30	0.1335508352E	28
7	-		0.12500206776 20 0.11513020936 24	0,7568903617E	21	0.3963011650E	19	0.1561441464E	17
			0.7605727050E 11 0.7605727050E 11 0.000000000E 00	0.6282063792E	08	0.000000000E	00	0_0000000000	00
		•	0 0000000000000000000000000000000000000						
ROL	/ =	8	0.1452399206F 67 0.36213417338 57	-0.7169054497E	64	0.3538663374E	62	#0.1746700780E	60
			-0.4255940981E 55 -0.1730100483E 48	0_2097638096F	53	-0.1107332065E	51	+0.7332642455E	48
			-0.10001716748 47 -0.50750703176 42	-0.1868599255E	46	=0.1445237781E	45	-0_9338171172E	43
			-0.2732312709E 41	-0_9098447906F	39	=0.3020359607E	38	-0.8541956589E	36
			-0,4215276918F 33 -0,1339260498F 26	-0.7320437729E	31	-0.1072452466E	30	=0.1316096879E	28
	•		-0.11162996898 24	-0.7473087032E	21	+0.3915155894E	19	-0.1543470600E	17
			-0 7526450737E 11 0.0000000000E 00	-0.6219850821E	08	0.000000000E	00	0_0000000000	90
			o'sadagag00ak 00						

- --

-

.

•

I

w-----

2

		•					
ROW = 9	0.8062562774E 6	4 =0.3979668685F	62	0.1964362604E	60	-0.9696111223E	57
	0.47360160078 5	5					
	-0.23627737878 5	3 0.1155553207 _E	51	-0.8043940027E	48	-0.3575999567E	47
	-0.51848978128 40	, , , , , , , , , , , , , , , , , , ,					
	-0.5593130160E 4	5 =0.4955573535E	44	-0.3636070800E	43	-0.2229867305E	42
	-0 1151138857E 4						
	- 0 502°545064E 3	-0.1867064884E	38	-0.5903027446E	36	-0.1591232688E	35
	-0.3655954623E 3	3					
	0.71469725378 3	-0.1184863277E	30	=0.1657432183E	28	₹0,1942178727E	26
	-0 138760984°E 2	4		× ·		_	
	-0 1201105817E 2	2 =0.9586439481E	19	-0.4787910408E	17	-0.1797927403E	15
	-0.4764938620E 1	?					
	-4 7030940976E 0	-0.6223704928E	06	0_0000000000	00	0.00000000000	J 0
	4 000000000 00)					•
	0.00000000000 00)					
S ROW = 10	0,1632139867E 6	-0.8056192104E	64	0.3976516764E	62	₩0.196280 2194E	60
	0.9688382354F 5	7		·			
	-0.4 82001290F 5	0,2363547836E	53	=0.1094216415F	51	0.1866463775E	49
	0 10453988306 42						
	0,2203682140E 4	0.2124526789E	46	0.1701016391E	45	0.1140431020E	44
	0.6449039023E 42	2					
	0 3093400066E 44	0,1263935011E	40	0.4411851680E	38	0.1317775028E	37
	0.3349521283E 3	5				`	
	0.73695152256 33	0.1375650303E	32	0.2183722212E	30	0.2931992178E	28
	0.3304910292E 20		-				
	U. 3095822687E 2	6 0.2377036544E	22	0.1468047015E	20	0.7100894710E	17
	0,2585822001E 1	5					-
	0.66536861588 12	2 0.1076408976E	10	0.8218103668E	06	0,00000000000	00
	0.0000000000 00)					
	0.0000000000000000000000000000000000000	<u>)</u>					
	=0,1013700040F 67	0.7965174158E	64	=0.3931590809E	62	0.1940626993E	60
	0 9978926604E 57						
	0,4"2807216"6 5	=0.2336661002F	53	0.1085921375E	51	=0.1775830258E	49
	-0.207461227 E 47	-0.2006356148E	46	=0.1611098363E	45	₩0.1083048495E	44
	9 01396718666 47)					

,

-290-

.

e I

•

-

	-0 20517021438 41 0.32395530138 35	-0,1208570337 <u>e</u>	40	-0.4226811572E	38	=0.1264796266E 37	 g
	-0.70966031028 33 -0.32005841828 26	=0.1326723152E	32	-0.2109079325E	30	-0.2835679455E 28	
	-0.3901929443E 24 -0.2519319144E 15	-0,2307795115F	22	-0.1426995584F	20	#0.6910397131E 17	
	-0.6439779422E 12 0.0900000000E 00 0.0900000000E 00	-0.1051035234E	10	⇔0.8032927449E (06	0.00000000000 00	
ROW = 12	-0.18442638020 65 -0.10947246498 56	0.9103184506E	62	-0.4493281550E 6	50	0.2217853799E 58	
	0.5402737105E 53 -0.1154608326E 47	-0.2689090576F	51	0.8297044782E 4	48	#0.9063460278E 47	
	-0.1290603196E 46 -0.3093645729E 41	-0.1181703870E	45	-0.8991760333E 4	43	-0.5738206552E 42	
1	-0.1416965172E 40 -0.1799638435E 34	-0.5536351742E	38	-0.1850353792E 3	37	#0.5297717035E 35	•
, 291-	-0.27290188056 32 -0.10432181696 25	-0.4893418934E	30	-0,7463977963E 2	28	=0.9630867464E 26	
	-0 9383957680e 22 -0 6650167274E 13	-0.6923896395E	20	-0.4105016364E 1	8	-0.1904928348E 16	
	-9.1639051489E 11 0.09000000000 00 0.00900000000000000000	+0.2537372338E	08.	⇔0.1851778834E 0)5	0.0000000000E 90	
ROW = 13	-0 1231428761E 67 -0.7309451051E 57	0.6078251539F	64	-0.3000183224E 6	2	0_1480868690E 60	
	0.3607977114E 55 0.1939455113E 48	-0.1777942338F	53	0.9476954243E 5	0	0.8507973077E 48	
	0.2322797706E 47 0.7051035709E 42	0.2315763524E	46	0.1919177076E 4	5	0.1334943028E 44	
•	0.3926874792F 41 . 0.522072152°E 35	0,1677806656F	40	0.6143537147E 3	8	0.1931753460E 37	
	0.1212421703F 34 0.7377745722F 26	0.2416083238E	32	0.4120476196E 3	0	0.5989424343E 28	
	0.7641343074E 24 0.1132225096E 16	0.6585401094E	??	0.4656614393E 2	0	0.2650527551E 18	
	0.3071306086E 13 0.0000000000E 00 0.000000000E 00	0.9427939518E	10	0.1407169764E 0	8	0_9909971527E 04	

÷

.

,

ROW = 14	0.1205030773E 67 0.71527635568 57	-0.5947953373E	64	0.2935869300E	62	₩0.1449124026E	60
	-0.353062588°E 55 -0.1731622047# 48	0.1740134931E	53	-0.9205707901E	50	#0.7134373459E	48
	-0 2054573624E 47	-0,2090216249E	46	-0.1741188096E	45	=0.1216773094E	44
	-0,3607924308E 41	=0,1546879354E	40	-0.5682012594E	38	-0.1791815033E	37
	-0.1130414234F 34	-0.2257906814E	32	-0,3859152227E	30	=0.5621199552E	28
	-0.71992878516 24	+0.6215715967F	22	-0.4402942708E	20	+0.2510430598E	18
	-0.1273889246E 13 0.0000000000 00	-0_8973788695E	10	=0.1341532357E	08	=0.9462741974E	04
	0.0000000000 00						
_ROW = 15	0.2639796081E 65 0.1566873365E 56	-0.1302980341E	63	0_6431385884E	60	=0.3174463165E	58
22- -	-0.77351146336 53 -0.70782351756 47	0.3780738251E	51	+0.2712428551E	49	=0.1373536945E	48
	-0,27820728136 46 -0 66487496068 41	=0.2255353025E	45	=0.1779789103E	44	⇔0.1181628563E	43
	-0 3188706070E 40 -0 3651933470E 34	-0.1309184588F	39	=0.4614926734E	37	₩0.1399286247E	36
	-0.8700169185E 32 -0.4398342583E 25	-0.1581653540E	31	-0.2613058883E	29	=0.3681997006E	27
	-0 4420221343E 23	-0.3696613981F	21	-0.2536557589E	19	₩0.1400883539E	17
	-0.19740527178 12 0.00000000008 00	-0.4541248491F	09	-0.6563374680E	06	₩0.4472052952E	03
DOU - 46				-			
KIIW = 10	0.57520343798 66	-0.2839151736E	64	0.1401376595E	62	₩0_6917035435E	59
	-0.16350922798 55 0.19382743308 48	0.8344949618F	52	=0.3441243381E	50	0.1 4745 14893E	49
	0.2426984246E 47 0.9340626914E 42	0.2490470475E	46	0.2130197712E	45 ,	0.1532388057E	44
	0 4853387317F 41 0 77203736326 35	0.2159683201E	40	0.82587792518	38	0.2720475975E	37

ř

	0.1894676739E 34 0.1513330950E 27	0.4003924935E 32	0.7280960613E	0 0.1135829761E 29
~	0,17116590898 25 0,4426573550F 16	0.1630245549E 23	0.1293588614E 2	1 0.8430684756E 18
	0,1322498073E 14 0,1113175751E 03	0.5653936505E 11	0.1240060302E 0	9 0.1710336303E 06
	0.000000000000000000000000000000000000			
ROU = 17	-0,5540998069E 66 -0 3300718216E 57	0.2744813347E 64	#0.1354812344F	62 0.6687201049E 59
	0.1629115276E 55 40.1687329366E 43	-0.8064393909E 52	0.3401135480E	50 #0.1294140987E 49
	-0 213180322CE 47 -0 3403082462F 42	-0.2203298821E 46	-0.1396564116E	45 #0.1371956537E 44
	-0 4385505849E 41 -0 3973746965E 35	-0.1958906345E 40	-0.7516126545E	38 =0.2483187201E 37
	-0.1738020375F 34 -0.1738148195F 27	-0.3680535487E 32	-0.6705400642E	30 #0.1047801242E 29
	-0 1583501820E 25	-0.1510183065E 23	-0.1199726327E	21 #0.7827539151E 18
	-0,16955600608 14 -0,10396507248 03 0,00000000000 00	-0.5265241443E 11	-0.1155916160E	09 #0.1595813113E 06
KNW = 18	-0.1911187225E 65	0.9433410196E 62	-0.4656213488E	50 0.2298239902E 58
	0,35976458678 53 0,35976458678 53 0,25077438536 47	-0.2805429470E 51	0,4010655255E	48 #0.1803644659E 48
	-0,2051642380E 46 -0,2051642380E 46 -0,9347319076E 41	-0.2871548089F 45	+0,2336195560E	44 ∎0.1604217174E 43
	-0 4678525803C 40	-0.2007645142E 39	-0.7426074993E	37 =0.2372745276E 36
	-0.15464"272"E 33 -0.1151564931E 26	-0.3233710128F 31	+0.5755277193E	29 #0.8802366448E 27
	-0.12806038378 24 -0.31230340978 15	-0.1200561062F 22	-0,9385734567C	19 -0.6031140°38E 17
	-0 12593146098 13 -0,23521223938 01	-0.3886750669E 10	.8413982792E	07
	0,30000000008 00			

٠

-293-

,

,

ŕ

)

¥)

	ROW = 19	-0.4916405622E 65	0.2426678506E	63	-0.1197774865E	61	0.5912023511E	58
		0.1441048293E 54	-0.6362442235E	51	0_9642881096E	49	0.1182659650E	49
		0.2402574683E 47 0.1041222472E 43	0.2533245893E	46	0.2229974940E	45	0.1654108756E	44
		0 5604337133E 41 0 1052378737E 36	0.2588058426F	40	0.1029687071E	39	0.3538869566E	37
		0.27097942765 34	0.6040266138F	32	0.1164146718E	31	0.1935602694E	29
		0 3384213770E 25 0 1359179017E 17	0.3520620739E	23	0.3088072872E	21	0.2259403781E	19
		0.6592992059F 14 0.1847652877E 04 0.112417652877E 04	0.2509624788E	12	0.7202691222E	09	0.1462251747E	07
-294	ROW = 20	0.4698860637E 65 0.27889295245 54	-0.2319301587F	63	0.1144775523F	61 [`]	#0.5650429915E	58
T		-0.1777284492E 54 -0.1043280581E 48	0.6557879893E	51	-0.9283379014E	49	#0.1151433918E	49
		-0 2365703823F 47 -0 1041367456E 43	-0.2506138020F	46.	⇔0.2215062976E	45	-0.1648726550E	44
		-0.5616067435E 41 -0.1050377602E 36	-0.2598690941F	40	-0.1035614028F	39	•0.3563874717E	37
		-0.2753684343F 34 -0.27936407237E 27	-0.6096518252F	32	-0.1175308997E	31	=0.1954305207E	29
		-0.34160993158 25 -0.13683200338 17	-0.3551737005E	23	-0.3113585197E	21	₩0.2276473062E	19
		-0 6631222375# 14 -0.1379016624# 04 -0.1126130009# 01	-0.2521604393E	12	-0.7229104237E	09	#0.1465897212E	07
	ROW = 21	0,2175355531F 64 0,1294093895F 55	-0.1073722637F	65	0.5299704487E	59	₩0.2615822540 E	57
		-0.6776134460E 52 -0.3391550182E 46	0.3045483818E	50	-0.3595035465E	48	*0.3122740234E	47
		-0. 36374258208 45 -0. 3612545136F 39	-0.2711151100F	44	-0.1491520916E	43 ,	=0.5384636130E	41
		0 1172202784E 30 0 34974408736 33	0.1063772626E	38	0.5925473725E	36	0.2500017890E	35

2

t

1

,

	0.2388654572E 37	0.5624467250E	30	0.1116093248E	29	0.1870043290E	27
·	0,31382506698 23 0,91463090478 14	0.3111343077E	21	0.2551012804E	19	0.1706788593E	17
~	0.3022747588E 12 0.2363596719E 01 0.9900000009E 00	0.1197875266E ·	10	0,2641120965E	07	0.3645224331E	04
ROW = 22	0.1309963078E 65	-0.6909941794E	62	0.3410581030E	60	₩0.1683362965E	53
	-0.1163036090278 53 -0.40951823708 53 -0.1163025867# 48	0.2196440854F	51	0.3131695744E	49	0.7800698814E	48
	0,1419357754E 47 0,5033686579E 42	0.1427085170E	46	0.1195805996E	45	0.8427966481E	43
	0.2542973153E 41 0.354628254E 35	0.1117656684F	40	0.4183580910E	38	0.1352144936E	37
,	0,00418807956 33	0.1871858901F	32	0.3333692262E	30	0.5091567911E	28.
295	0 7544518363E 24 0,1725978776E 16	0.6837905882F	22	0.5300019652F	20	0.3371273343E	18
	0 6021546257E 13 0.3753766667E 02 0.000000000E 00	0.2088950768E	11	0.4451149697E	08	0.5955371025E	05
ROM = 23	-0 132118494 ⁰ 8 65 -0,73410090258 55	0.6521108937E	62	≈0.3218665425E	60	0.1588640898E	58
	0.3364667454E 53 -0.1162820050E 48	-0.2077659075E	51	-0.3112802477E	49	#0.7730447447E	48
	-0.1420518165E 47 -0.5166033046E 42	-0.1446302261E	46	-0.12182121056	45	=0.8622191018E	43
	-0.26375460667 41 -0.33890036348 33	-0.1152301513E	40	-0.4323648746E	38	=0.1396640916E	37
	-0 93374968188 33 -0 63210174038 26	-0.1931600184E	32	-0.3436242450E	30	=0.5240541035E	28
	-0.7530350010E 24 -0.1751904544F 16	-0.6995548732E	22	-0.5408858243E	20	■0.3431439777E	18
	-0 7105233287E 13 -0 3753764667E 02 -0 010000000000	-0.2107938921F	11	⇔0.4478086543E	08	₩0.5973299014E	05

,

•

-295-

.

•

;

,

ROV = 24	-0.7877729354E 63	0.3888242904E	61	-0.1919113768E	59	0.9471998023E 56	
	0,2305098198E 52	-0.1187796511E	50	-0.1890381063E	47	-0.7026904350E 46	
	0.1015700052E 45	0.1921373146F	44	0.2240328712E	43	0.1942046963E 42	
	0.74567024828 39	0.3464232799F	38	0.1350587924E	37	0.4449319354E 35	
	0 10 4 7 56 56 50 50 F 32 0 18 22 25 5 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.5974714882E	30	0.1025451007E	29	0.1489670809E 27	
	0.1043238119E 23 0.2500/38424F 14	0,1576365656E	21	0.1088344780E	19	0.6016427736E 16	
	0.8348432637E 11 0.09000000002E 00	0.1898757014F	09	0.2693605761E	06	0.1792748910E 03	
v∩⊎ = 25		A 2120014325E	40	-0 10547107775	40	• ##••• * {/375- 57 .	
	-0,2541555380 E 55	0.210710222	02	RU.1051710372F	00	0.51905047328 57	
6-	0 1/5/03430 E 33 0 0378327503E 47	40,5185150536E	50	0.2745548896E	49	0_4398662015E 48	
•	0.7475547865F 46 0.2209317729F 42	0.7205805219E	45	0.5775889643E	44	0.3885209372E 43	
`	0 1058227457E 41 0.1236125013E 35	0.4411051626E	39	0.1560469536E	38	0.4738615342E 36	
X	0.2769551783E 33 0.14480313218 26	0.5320769659E	31	0.8741158810E	29	0.1222811199E 28	
	0.1439977753F 24 0.1861443831F 15	0.1189779232E	2 <i>2</i> .	0.8052344517E	19	0.4378379627E 17	
	0.5945039415E 12 0.0000000000E 00 0.000000000E 00	0.1338021997E	10	0.18871436928	07	0.1251255556E 04	
RNW = 26	0 40188900488 64 - 0 23844399648 55	-0.1983561166F	62	0.9789357618E	59	#0.4831657213E 57	
	-0.1180166991E 53 -0.6634659406F 47	0.4756035915E	50	- 0_2757657986E	49	-0.4522912086E 48	
	-0.78526623738 46 -0.23702683148 42	=0.7028698971F	45	+0.6151646275E	44	₩0.4156078397E 43	
	-0.1147043793E 41 -0.13240004228 35	-0.4742749004F	30	-0.1677048943E	38	~0.508587 9389E 36	

•

î

	-11,2°58(775525F 33	-0.5663823707E	31	≈0.9263566948E	29	-0.1290965081E	28
•	-0.15054234628 24	-0.1237261416E	22	-0,3327702920E	19	=0.4502638809E	17
	-0.00000000000000000000000000000000000	-0.13526°5512E	10	-0.1897297630E	07	=0.1251255556E	04
	0,0000000008 00						
ROV = 27	0,2935616483E 63	-0.1473541154E	61	0.7272414481E	58	-0.3589052224E	56
		0.4290375056F	49	0.1209381481E	47	0.12423080525	47
	0.77550580228 48	0.4228623394E	44`	0.3757319240E	43	0.2708528630E	42
	0,70712265228 39	0.3316815318E	38	0.1165741961E	37	0.3472495340E	35
। ऽ	0.0781198429E 35 0.1885168089E 32	0.3430424917E	30	0.5273917031E	28	0.6315192354E	26
	0.0148356190E 24 0.054441240°E 22	0.4748113290E	20	0.2753528451E	18	0.12425690108	16
·	0.41932542576 13	0.1467331483E	08	0.1015381371E	05	0.00000000000	ეთ
	0,0000000000 00						
ROW = 28	0.1406629866E 64 0.8341814643E 54	-0.6941926539E	61	0.3425786034E	59	-0.1690497059E	57
	-0.4096386644E 52 0.3081066094E 47	0,2590888372E	50	0.1158419300E	49	0.2211102139E	48
	0.3435623347p 46 0.3756930873p 46	0.3236677159E	45	0.2494319183E	44	0_1609473031E	43
•	0,4039545021E 40 0 3731129815E 34	0.1586226585E	39	0.5316528164E	37	0.15231382398	36
	0.7006239763E 32 0.2027662826E 25	0.1391651496F	31	0,2105869894E	29	0.2689780977E	27
	0.25519945698 23	0,1849857701E	21	0.1075169598E	19	0.4877050873E	16
	0 3030323068 11 0.000000000F 00	0.5940570361E	08	0.4170851852E	05	, 0.000000v000E	00
	n'60099000004 00			,			

•

.

I

-297-

ŝ

,

.

~

Ť				
	,			
ROW = 29	-0,1287989315E 64	0 63564635776 64	-0 31768705978 50	A
	-0,7638456003E 54		-0.5130010343E 34	0.13474381198 57
	0 374836444°E 52	-0.2451602048F 50	-0.1270921486F 49	#0 2442455770F 48 ·
	-0 54610754548 47			
	-0.3964336689E 46	-0.3713427977E 45	#0.2877357334F 44	-0.1861497996E 43
•	HU 1015029876E 42			• •
		=0.1825141475E 39	-0.6086924421E 37	-0.1733184421E 36
		-0 55/478/0/28 74		
	-0.5107396283# 25	-011340300000F 31	#0.2518720044E 29	₩0.2933613366E 27
	-0 2728784663F 23	+0.1958194488E 21	-0 1126757081= 10	-0.50/0/570070.44
	-0.1704621412E 14		40.1120105001E 17	FU.5V60437843E 10
	-0 4040300525E 11	-0.5992022545F 08	-0.4170851852F 05	0 00000000 00
	0.0000000000 00			
	0.0000000008 00			
ROU = 30	-0 11864000115 43			
		0.2034020732E 60	#U.2089107799E 58	0.1425596004E 56
	0.34752367658 51	=0 1392908446E 40	0 412/0377705 /9	A 9744304.594 .3 .
Ļ	1) 3799838699E 46		V.1124737330E 46	0.23133874878 47 .
, 0	0.4786357735E 43	0.4767306419E 44	0.3830233464F 43	0 2520150732= 42
ĩ	0 1777272413E 41			0.0-2012/12CL 40
	0 6749210091E 39	0.2389081070F 38	0.7703761579E 36	0.2099911885E 35
	0.40412875198 33			
		0.1547319596E 30	0.2128770249E 28	0.2438293252E 26
	0.1767385739E 22	0 1083360/175 20	A 54597949794 47	
	0.45688795648 12	0.1000300417E 20	0.31303212388 17	0.1834063345E 15
	1 7094813017E 00	0,51452184568 06	0 0000000000 00	0.00000000000000
	0 000000000 00 00			0.000000000E 00
	0,0000000000 00			
ROU = 31				
		0.2009002454E 61	=0.1015987188E 59	0.5012605296E 56
	0 12283081351 52	-0 35422362915 /0	0 5651144410+ 49	
	0.1219450813E 47	AT A A A A A A A A A A A A A A A A A A	V. /V/1144417E 48	0.90588999046 4/
	0.1329963717E 46	0.11904028398 45	0.8837637677F 43	0 5488510388F 42
	0.28702586986 41			なる スキロロストリンシックト うち
	0.17702108198 40	0.4773498160E 38	0.1526487662E 37	0.4156830376E 35
	0.96332168128 33			

•

ť

.

-298-

\$

	n.1895967305F 32 n.5016682720# 26	0.3157711832F	30	0.4426347761E	28	0.5182668336E	26
	0.395806515°E 22	0.2497104827E	20	0_1225930640E	18	0.4499189155E	15
*	0.1355078676-13 0.1356001843F-10 0.000000000000000	0,1390283951E	07	0.0000000000	00	0.0000000000	<u>ე</u> 0
	n'0000000006 00						
J = 32 _.	0.37589075718 63 0.22273742508 54	-0.1854884229E	61	0,9152480839E	58	+0.451563 0987E	56
*	-0.1108814094E 52 -0.15095725475 47	0.2432403810F	49	-0,6959731064E	48	=0.1161906886E	48
	-0.1749313651F 46	-0.1596350979E	45	=0.1188190231E	44	-0.7363394307E	42
	-0.1677654024F 40 -0.1196346822E 34	-0.6227519831E	38	-0.1962610209E	37	#0.5257420364E	35
	-0 2311540711E 32 -0.5648055543E 24	-0.3775190915E	30	-0.5187243589E	28	-0.5952750804E	26
	-0.4770013152E 22	-0.2705183156F	20	-0.1304151742E	18	•0.4704516284E	15
	-0.1881408777E 10 0.600000009E 00	-0.1390283951E	07	0.0000000000	00	0.00000000000	00
	0 990990009F 04						

1

*259 *259 ř

~

.

				-		··	
ROV = 33	0.4137944591E 6 0.2451405120E 5	2 -0.2041803787E	60	0.1007401669E	58	-0.4969795482E	55
	-0.1194944847E 5	0,1109818637E	49	0.1308542667E	48	0.2580106634E	47
	0.4393453261E 4	5 0.4059401740E	44	0.3044210793E	43	0.1874854104E	42
	0.4074321570E 3	9 0.1454006328E	38	0.4361187727E	36	0.1100588588E	35
.	0 27572401-762 3 0.41557218836 3 0.435752504435 2	0.6174873787E	29	0.7608962338E	27	0.7700840695E	25
ŕ	0.41195494908 2	1 0.2080795505E	19	0,7822163812E	16	0.20532871548	14
	0,2740716114E 0 0,2740716114E 0 0,00000000000	3 0.000000000 0	00	0.0000000000	00	0.000000J000E	90
ROU = 34	0.1072809317E 6	2 =0.5293901121E	59	0.2611850938E	57	-0.1288416740E	55
	0.03556396728 5	0 0.1156975052E	49	0.1963037972E	48	0.3006098100E	47
	0.3033124431E 4 0.3547340038E 4 0.4734442430E 4	5 0.2832416586F	44	0.1871077156E	43	0.1031472396E	42
	0.1346720306F 3 0.1346720306F 3	0 0.6176353624E	37	0,17327085828	36	0.4121681851E	34
	0.14108830028 3	1 0.2013667864F	29	0.2395772312E	27	0.2352208812E	25
	0.1199315543F 2 0.2222703820F 1	1 0.5947547195E	18	0.2202418331E	16	0.5711892317E	13
	0,6251419753E 0 0 00000000000 0 000000000 0	7 0.0000000000 0 0	00	0.0000000000	00	0.00000000000	0 ()

,

~

ŗ

•

Ŧ

$ROV = 35^{\circ}$	+0.9641642550E 61	0.4757417363E	59	-0.2347189695E	57	0.1157866525E	55
	0.22623008126 50	-0.1619748617E	49	-0.2951143668E	48	=0. 454281 2884E	47
	-0.5321754634E 45	-0.4201172271F	44	-0.2733825970E	43	₩0.1480359495E	42
	-0.25494033478 39	-0.8309108377E	37	-0.2276400718E	36	≈0.5285477535 E	34
	-0.1723008589E 31	-0.2400705043E	20	-0.2789575292E	27	-0.2676721130E	25
	-0.1307097419E 21	=0.6354117265F	18	-0.2309471348E	16	-0.5886868727E	13
	-0,4951419753E 07 -0,4951419753E 07 0,0000000000 00 0,0000000000 00	0.0000000000	00	0.0000000000	00	0.0000000000F	09
ROW = 36	-0.1087361360E 61	0.5364890561E	58	-0.2646638568E	56	0.1305515039E	54
`	0.4851607077E 49	0.4627591764F	48	0_9880803884E	47	0.1536680200E	47
	0.1774382688E 45	0.1368733478E	44	0.8627362129E	42	0.4488812569E	41
	0.70276024318 38	0.2132737910E	37	0.5436888279E	35	0.1163790706E	34
	0,51221442658 30 0,21252284028 22	0_3870374629E	28	0.3938038392E	26	0.3245134519E	24
	0.10778248976 20	0.4065727631E	17	0.1070538110E	15	0.1749778294E	12
	0.000000000000000000000000000000000000	0.0000000000F	00	0.0000000000E	00	0-0000000000E	00

.

.

,

ŗ

~

١,

.

1

.

-301-

-0.1212505075F	51	-0.3290971509E	51	-0.3956629628E	51	-0.2803028430E 51	
-0.4367207279E	50	-0.1071115898E	50	-0.2003791291E	49	→0.2930978587E 48	
-0.3230789305F	47	-0.2504948630E	45	-0.1609141611E	44	=0.8652567944E 42	
-0.2213396/205	41 40 70	0_4339781080E	39	-0.3171225361E	39	0.2071171704E 39	
0.89107180105	33	-0.5844287803E	38	0.3833130010E	38	-0.2514078382E 38	
-0.1081529441F	58 38 77	0.7093684767E	37	-0.4652725633E	37	0.30517200448 37	
0.1312874:03F	37 37 34	-0.8611204687E	36	0.56481401408	36	-0.3704654075E 36	
-0.1593792022E	36					Row I.	
0_1208821217E 0_1311210647F	51 51	0.3280630469E	51	0.3943888634E	51	0,2793884989E 51	
0.4353104103E 0.3408979409#	50	0.1067725739E	50	0.1997618321E	49	0.2922231485E 48	
0.32218105648	46	0,2498242750E	45	0.1604993472E	44	0.86311041198 42	
0.2208776935#	40	-0.43329578928	39	0.3166054608E	39	#0.2067806951E 39	
-0_8896267276F	38 38 38	0.5834812934E	38	-0.3826916676E	38	0.2510003514E 38	
0.10797765909	38	-0.7082188048E	37	0.4645185006E	37	-0.3046774159E 37	
-0.1310744543E -0.2425972091F	37	0.8597248596E	36	-0.5638936249E	36	0.3698649970E 36	
· · · · · · · · · · · · · · · · · · ·							

A7-3 Numerator polynomial coefficients using the modification of

Kropholler.

٠

. ---

-302-

;

٠

~

1

0.1591215460F 36 .

Row 2.

	0.3681664576	43	0.1034048317E	49	0_1274030712E	49	0.9142947451E	48
	0.4293760029F	48 48	0 33899764445	47	0 61706376685	1.6	0 87/66770805	/ 5
	0.98541224225	44	010000000414E		0.01/203/4405	40	0,01408330842	4 7
	0.89783585155	43	0.6705503149E	42	0_4147973518E	41	0.2146120259E	40
	0.46080302758	38 37	-0 6792784474F	76	A 544000004/AC	76	-0 77697/69705	- 4
	0.22039224798	36			V= /1022/2040E	20	~U.330234003Uz	50
	=0.1444834;70F	36	0.9473934533E	35	-0.6212895066E	35	0.407462668zE	35
	-9.2672383374F 0.1752753084F	35	-0 1149612816F	75	0 75/02/3885	71	-0 /9/5/770075	
	0.3243848708F	54	4.1140010010U	а. Г	V_//240242000E	94	MAT42420222882E	54
	-0.21276522488	34	0_1395538302E	34	-0.9153426089E	33	0,6003800084E	33
		33 77					Row 3.	
					·			
	-0,1552620213E	51	-0.4638344133E	51	-0.6217660566E	51	-0.4972956235E	51
	-0.2664488093E	51	-0 30075947775	E 0.	0 / 70 7/7////			
	-0.1401177619E	48	m7,707(00)(00#	20	=0_03070340012	49	=0.1075150647E	29
••	-0.16071739776	47	-0.1448360921E	46	-0.1080156387E	45	⇒0.6722095712E	43
	-0.16016830098	42	-0.2174230249E	39	~0,2539079584E	39	0,1540825893E	39
	-0.1013883682E	30	0 (7/0007/775	~ ~		-		
	0.12304350095	58 38	HU.4300405457E	58	0.28602271318	38	#0.1875979551E	38
	-0.8070337 (135	57	0.52933003585	37	-0.3471874555E	37	0.2277206812E	37
	-0.1493626887F	37	0 //DEDEE/.00	m /		.		
	0.1813226.07E	იი 3.5 -	TV.04/2/2/0088	50	U.4214076594E	50	₩U.2704451502E	36
	-0.11803113307	56					Kow 2	4.

+

٠

-303-

ĩ

~

0,15537898676	51	0.4579791525E	51	0,6136851597E	51	0.4907192771E	51
0,26490761825	51	0.00/0000000					
0,10057083718	51 79	A*5000505056	50	0.62280605316	49	0,1062025815E	49
0.1589155622F	47	9.1432852673E	46	0.10691332745	45	0.6656801627E	43
0.1587826405E	42	0.2143805456E	39	0.2526059561E	39	-0.1533282819E	39
-0.6616412146F	39 38	0_4339543673E	38	-0_2846222482E	38	0.18667946115	38
-0.1224410862E 0.8030827309F	38 37	-0.5267391017E	37	0.3454876721E	37	+0.2266057902E	37
0.1486314271F =0.9748832661E	77 36	0.6394295787E	36	-0.4194061853E	36	0.2750917002E	36
-0.18043492075 0.11834885635	36 36					Row 5	

•

.

9.1882470946F	49	0.5850710997E	49	0.8074590625E	49	0.65711382228	49
0.35384123616	49						
0,13437376776	49	0_3752844305E	48	0.7950297093E	47	0.1309266438E	47
0.17099629568	46						
0,18005349589	45	0.15492214958	44	0.1101135534E	43	0.65222134878	41
0.3235843036E	40						
0.13839075328	39	0.3042432937E	37	0.1299408925E	37	-0.7530788577E	36
0_49610434775	36						
-0.32521354218	36	0.2132655393E	36	-0.1398634095E	36	0.9172986606E	35
-0.60163213728	35						
0.39460217215	35	-0.2538170988E	35	0.1697577775E	35	-0.1113444396E	35
0.73031271308	34						
-0.4790162459F	34	9.3141900345E	34	-0.2060796763E	34	0.1351693990E	34
-0,8865882425F	53					Dert	
0.58152150195	33					KOW O	

2

ς.

=0 13120437848	51	-0 411311371AF	54	-0 572551/7285	54	-0 /850/907/70	F 4
-0.27190884468	51	.41191131100		-0.0100014720E	1	WU.4020480743E	1
-0.1085333610F	51	-9.3213092527E	50	=0.7264742249F	49	•0 1283732333F	1.0
-0.1806524456F	43	• • • • • • • • • • •	-				
-0,2056337771R	47	-0.19179864368	46	-0,1481576899E	45	#0,9561745698E	43
-0.5185665023F	42					• • • • • • •	
-0.24118775336	41	-0.7364315733E	39	-0.1567536884E	39	0.8173770540E	38
-0.5419924067F	38						
0.35233254338	38	-0.2330570478E	38	0.1528582984E	33	⇔0.1002581478E	-38
0.6575869383F	37						
-9.43130937913 0.7080770-070	57	0.2828957286E	37	-0.1855518518E	37	0.1217041365E	37
	36	0 7/7/2704955			- /		_
)() 9 m	HU.3434230072E	50	0.22525438618	36	₽0.1477462708E	36
- 0,70700115448	רו זיב					Row 7.	
0.12664786936	51	0.3967743775E	51	0.5579666183E	51	0.4678691010E	51
0.2624283614F	51						
0.10485122498	51	0.3107643710E	50	0.7036011920E	49	0.1245142602E	49
0,1754832310E	48						
0.2000418796	47	0.1868447244E	46	0.1445230562E	45	0.9338842013E	43
0.33643454778	42	0 30074445555	-		-		_
0,70012101400	41	··. /203111335E	59	0.1545022915E	39	₽0,8066581292E	38
- 0.007000000010	うひ て2	0 22000275405	72		70	0.000/00/0707	
=0 6489426736F	77	9.7277761JAVE	30	40.15084072118	20	0.9094010951E	37
0.42563971978	37	-0 2791773277F	37	0 18211275585	77	-0 12010/22505	- 7
0.7877763 3766	36	™ ∰ F E ° 3 F F M Hα F μ2 ha	., ,	41031167320g	21	~~V.ICVIV42230C	57
-0.51670344035	36	0.3389094666E	36	=0.2222933920E	36	0.1458041281F	76
-0.9503424470F	35				-		20
0 6272740-025	75					KOW 8.	

- - -

,

1

٠

-305**-**

ř

•

•

,

.

0.45573956248	40	0_145398°568E	50	0,2058910828E	50	0.1718268266E	50
0.36885279598	49	0.10547607975	49	0.2287938044E	48	0.3860124704E	47
0.55938220928	45	0.4955541679E	44	0.3636058006E	43	0.2229959686E	42
0,50684216968	30 34	0.1613220954E	38	0.22511102318	37	⇒0.1071902189E	37
-0.86466419735	36	0_3065081102E	36	-0.2010116883E	36	0.1318338463E	36
0.56712230858	35	-9.371972 ³ 0846	35	0.2439769852E	35	-0.1400252720E	۲5
-0.6884489282F	34	0.4515580517E	34	-0.2961812485E	34	0.1942679443E	34
0.8357745747	33					Row 9.	
-0.1024766002E	51	-0.3330262833E	51	-0.4848463481E	51	=0.4200357271E	51
-0.9994046094E -0.1873787290E	50	-0.3046882861E	50	-0.70937451468	49	-0.1291335467E	49
-0.22022807055	47	-0,2124596699E	46	-0.1701008184E	45	=0.1140462470E	44
-0.3106897560F	41 39	-0.11700623115	40	+0.1017327558E	39	0.3646382265E	38
0.16450398288	38	-0.1065882270E	38	0.69910221436	37	-0.4585396310E	77
-0.19726773468 -0.36511210275	37 37	0.1293890731E	37	-0.8486721302E	36	0.5566508331E	36
0.2394803802P	36 36 36	-9.1570774784E	36	0.1030286763E	36	-0.6757755820E	35
-0.2907312n34F	,,, 35					Row 10.	,

•

.

.

.

-306-

1 1

. .

.

,

0.9391592435F 5	0 0.3052766897E	51	0.4449211159E	51	0.3861697660E	51
0.92411200728 5	0,28272932916	50	0.6606968909E	49	0.1207199033E	49
0.20732266735 4	0.2006425246E	46	0.1611090375E	45	0.1083078831E	44
0.29646530038 4	1 0.1123662000E	40	0.9794637538E	38	-0.3524984821E	38
-0.1570637612E 3	0.1030210477E	38	=0.6757096054E	37	0.4431980417E	37
0.1906682032F 3	7 -0.1250605626E	37	0.8202815685E	36	+0.5380294402E	36
-0.2314692663E 3	6 6 0,1518220317E	36	-0,9958217924E	35	0.6531697202E	35
-0,4284208465E 3 0,2810057317E 3	5				Row 11.	
0.85606436638 4	9 0.2774947450E	50	0.3992509791E	50	0.3386588024E	50
0_75292563858 4	0 9 0.2195846533E	49	0.4867766971E	48	0.8413652759E	47
0.12905398310 4	.7 6 0.1181711968E	45	0_8991739174E	43	0,5738315845E	42
0.30929452178 4	0 0.5240343751E	38	0.3785125569E	37	=0.1213629687E	37
-0.5439860384F 3	6 0.3567032864E	36	-0.2339189495E	36	0.1534118840E	36
-0.1006172170E 3 0.6599285986E 3	5 -0.4328409884E	35	0.28389905735	35		75
0.1221355516F 3 +0.8010935254F 3	5 6 0 5254425815E	34	-0 34444177995	34	0.22605364695	ער קר
-0.1482704519E 3 0.9725197061F 3	4	J 7	· · · · · · · · · · · · · · · · · · ·	· 7	Row 12.	74

.

٠

-307-

;

~

٠

-0.9203573697E	50	-0.2876724018E	50	-0,6870119296E	49	*0.1284658834E	49
-0.23238546505	48 47	-9.2315711675E	46	-0.1919177577E	45	-0.1334956349E	44
-0,7850153037F -0,3952553403F	42 41	-0.1640258365E	40	-0.8604401007E	38	0.14202886558	78
-0.1063306592F 0.6938293.365	ገጸ 37	-0 4551573071E	77	0 20957942575	77		- 7
0.12843975048	37			0,27633712338		ev.12201014608	57
-0.15593494485	76 36	0.5525826782E	36	=0.3624486629E	36	0.2377361364E	36
0,1042800776E 0,18931190555	30 35	-0.6703693999E	35	0.44003295496	35	-0.2886235703E	35
-0.1241721674R	35					Row 13.	
0.70331514365	50	0.235505°327E	51	0.3532363475E	51	0,3153132259E	51
0.18799206772	50	0,2510902561E	50	0,6041813231E	49	0.1137999103E	49
0.20856129238	48 47	0.20201654868	46	0.17411887306	45	0.1216785280E	44
0,7185313720P 0,36131935535	42 41	0.1512310596E	40	0.7948588853E	38	■0.1307245293E	38
0,97975820022 -0,63932874997	37 37	0:41942394078	37	-0.2751039577E	37	0.1804511857E	37
-0.1183625401 0.77636853075	37 36	-0.5092375333E	36	0 33401946615	36	-0 21908979008	76
0.1437049160F	36	0 61325618065	75	0 /0550757455	75	0.34500074747	, , , , , , , , , , , , , ,
-0.1744656324F	35	A . 0 1 4 2 10 10 40 2	52	mv,40376373138	22	U.2029887174E	55
0,11445457928	55					KOW 14.	

-0.4157756456E 51 (

-308-

3

•

ţ

~

-0.8343619744F 50

-0.21358414428 51 -0.9203573497E 50

1

-0.2784635040E 51

Row 14.

+0.36904399578 51

٠

.

0.13104304498	50	0.4295630517E	50	0.6253740119E	50	0.5372907731E	50
0,1231349534F	50	0,3658070622E	49	0.8282730904E	48	0.1466534543E	48
0.2382299310F 0.6648049443F	47 46 41	0.2255342146E	45	0.1779787860E	44	0,11816396788	43
0.3173371935E 0.83533779205	40	0.1279438906E	39	0.6556382746E	37	-0.1130012783E	37
-0.54494750275 -0.1007669537E	56 56	0.3573063857E	36	⊳0.2342859629 €	36	0.1536400585E	36
0.66084250315 0.12229230495	35 35	-0.4334250014E	35	0.2842752529E	35	-0.1864525030E	35
-0,80211416845 -0,1484544155E	34 34	0.5261062179E	34	-0.3450739751E	34	0.2263352471E	34
0.9737216616F	33					Row 15.	
					•		
-0,7006874581E -0,1987835737E	50 51	-9.2401401961E	51	=0.3649007618E	51	-0.3296188619E	51
-0.8534793977E	50	-0 272007375/6	~ ~				_
-0,1943275301E	48	-0,7779430334E	50	-0,6642195234E	49	=0.1271879527E	49
-0.19482753018 -0.2426499587# -0.93403128198	48 47 42	-0.2490494980E	50 46	-0.6642195234E -0.2130195630E	49 45	-0.1271879527E -0.1532393739E	49 44
-0.19482753018 -0.24264995878 -0.93403128198 -0.48557593438 -0.44406377738	48 47 42 41 37	-0.2490494980E -0.2144177313E	50 46 40	-0.6642195234E -0.2130195630E -0.9274134383E	49 45 38	-0.1271879527E -0.1532393739E 0.3934119493E	49 44 37
-0.1948275301 -0.2426499587 -0.9340312319 -0.4855759343E -0.4440637773F 0.28597369755 0.52972822735	48 47 42 41 37 36	-0.2490494980E -0.2144177313E -0.1876996223E	50 46 40 37	-0.6642195234E -0.2130195630E -0.9274134383E 0.1231160623E	49 45 38 37	-0.1271879527E -0.1532393739E 0.3934119493E -0.8075759617E	49 44 37 36

0_1815218785E 35

-0.3474732426E 36 -0.64323183918 35 0.4219131364F 35 0.7809619463F 34 -0.51224644198 34 -0.2767430754E 35

+0.1190638556E 35 Row 16.

-309-

5

0.56440095948	50	0,1932102893E	51	0.2961186895E	51	0.2700731079E	51
0,1645766060F	51	0.07004707044	e ^	0 c/7030a/7fc	10	0.40000780047	
0.71431070878	50 70	0.23021577862	20	0.20195050135	49	0.10982382016	49
0,107/4745440	413	0 00033004875	1.6	0 18045600715	15	0 13740410985	
0 8403530746P	42	2.02000464010	H 17	0.10202482315		V. 197 19012000 1	64 M
0.4387510.925	41	0,1945773222E	40	0.8377134431E	38	•0.3163657262E	37
0.37748291749	37	-					
-0.2428155365E	37	0.159408°861E	37	-0.1045721823E	37	0.68599916118	36
-0,4500104031E	36						
0_2951981615F	56	-0.1936409837E	36	0.1270206863E	36	#0.8331939661E	35
0.54652391145	35						
-0.3584893360E	35	0.2351452774E	35	-0.1542387791E	35	0.1011692941E '	35
-0.66359341965	34					ROW 17	
0.43526520578	34						
0.14228079538	50	0.4692799159E	50	0_6877919883E	50	0.5954319381E	50
0,3440535605E	50						
0,1391622543F	50	0,4187783761E	49	0.96294405628	48	0.1736321928E	48
0.25076351248	47						
0.29514783478	46	0,2871556438E	45	0.2336193682E	44	0,1604226227E	43
0,93667505178	41						
0.4682179567F	40	0.1983972839E	39	0.8967980851E	37	-0.7700116261E	36
0.6656657729月	36						-
=0,431524141°F	36	0.2828809767E	36	-0.1854246718E	36	0.1215683827E	36
-0.79/1244419F	35						
0.52471074358	35	-9.3427920779E	35	0.2243083746E	35	#0.1474372164E	35
U,9009070215F -0 6764042000	54	0 /*5054400/5					
= 0,05+1+00551*1	54	0.41995119948	54	-U.2728134310E	54	U.1789340949E	34

+0.1173609700F 34 0.7697623060F 33 .

ROW 18.

.

-310-

;

÷

.

-0.5867855787E 50	-0.2018702553E	51	-0.3106727926E	51	-0.2844407953E	51
-0,7594073005E 50	-0.2464276797E	50	-0.6134181063E	49	-0.1199977149E	49
-0.2402616855E 47	-0.2533243873E	46	-0.2229974672E	45	-0.1654111066E	44
-0.5605295773F 41	-0.2531812075E	40	-0.1070525033E	39	=0.8642733816E	36
-0.1858455661F 37 0.1147038295F 37	-0.7542114719E	36	0.4947100484E	36	-0.3245320145F	36
0.2128940700E 36 -0.1396576699E 36	0.9161334895E	35	~0.6009603043E	35	0.3942086789E	35
-0.2585834454F 35 0.1696173318F 35	-0.1112590873E	35	0.72978883365E	34	+0.4786918114F	24
0 31 308740500 34	• • • • • • • • • •				Row 19.	, -
a fa se za se za se			•		•	
0 5784/379438 FA	0 6947564894F	54	0.000/4/0425	54	0. 344/0//*****	
0.1643775197E 51	0,10000100/0E	21	V.2888496817E	21	0,20048067475	51
0.7229602394= 50	0.2364543342E	50	0.5929919158E	49	0.11679852428	49
V . IV 6 7 V IG 11 40						

e

٠

- ----

٠

0.1643773497F	51		<i>a</i> , 1	0.20004400112	- 1	0. Eachdoor Hit	
0.7229602304=	50	0.23645433428	50	0.59299191586	49	0.11679852428	49
0.1842463691E 0.22657777576	48	0 05044740865			15		
0.1941355080F	43	0,22001300000	40	0.22150927718	40	0.10487284658	44
0.56168723578	41	0.2593440544E	40	0.1070061450E	39	0.1305012486E	37
0.1588119722F	37	0 / 7070500 / 75	-		-		
0.18036145772	00 36	0.03037202438	30	-9.41886357378	50	0.2748670533E	36
0,1183420071F	36 -	0.7764425567E	35	0.5093995750E	35 ,	-0.3341872157E	35
0.2192330:06P	35	0.0/7/./00.00	-		- /		
0_142810/356P 0_2662788434P	55	0.94341498286	34	-0.6188528267E	34	0.40594287635	34
0.1746640011F	34					Row 20.	

-311-

.

~

,

.

•

0.48042433126	49	0.155187°369E	50	0.2182647160E	50	0.1795446188E	50
0,9602864380F	49		_				
0,3644847701F	40	0.9973667240E	48	0.2042701005E	48	0.3199354485E	47
U.5807769102P	46					, ,	•
U. 5697612272E	45	0.2711143027E	44	0.1491514949E	43	0.53850218608	41
0.3508496009F	70	• • • • • • • • • • • •		.			
-0.11269937098	39	-9,1162269681E	38	0.45958081098	35	+0.4405789993E	36
0.27929923678	- 16						
=0.177193479 F	36	9.1158800794E	36	-0.7584415333E	35	0.4966361747E	35
#V.32-31014/98	יי דר	0 470 40774 - 77					
0.21919102608	<u>ነጉ</u> መረ	₩9,13968 <i>C</i> /135€	35	0.9155863472E	34	#0.6002009344E	34
-0,34944917844 -0,35700051605	54	0 0 . 3 3 . 3 . 3					
-0 17707510718	54	1091720327E	54	=0.1109334793E	34	0.7274727536E	33
-V.4//U/202/04 0.74/0750.770	<u>זי</u>					Row 21	
0,5148722172R	55						

-0.19683937325	34					Row 22	
0 30009375708	7.L	-V.10023272728	22	0.09/49351995	34	=0.4275091719E	34
-9.24713790050 0.162113790050	35 75	-0 40477500000	75	A (AR ATRAAAR	- /		
-0.13347347833	76	0.8755705667E	35	-0.5743549933E	35	0.3767583768E	35
0.20346642945	36	······································	,0	ATHICOLOONAAE	50	-0.2101012/228	סר
0 10980744660	37	-0 72081055325	76	0 47281080005	36	-0 31046137528	74
-0.25038953535	41	-0.1111671745E	40	-0_4579379684E	38	0.1205636343E	37
-0.50335437358	47						,
=0 1410345737E	47	-0.1427085824E	46	-0.1195805602E	45	-0.8427989009E	43
-0.11633101340	48			·····		-0.0014040070	40
-0.55153320968	50	-0.1725617925E	50	-0.4130543406F	49	=0 7751404307F	1.8
-0.1307218309E	51			-0.24/0/230/02	21	W.22017122102	21
#9.4077204711i	50		51		54	-0 22040467748	C A

4

-312-

-

ł

1 3

.

1

N
0,4450134939F	50	0,1513239860E	51	0.2296715239E	51	0.20685770078	51
0.5299072;72F	50	0.1676515463E	50	0.4055453947E	49	0.7683926113E	48
0 14205063288	47	0.1446302866E	46	0.1218211800E	45	0.8622208517E	43
0,2638277614	44	0.1147513864E	40	0.4637867163E	38	-0.6680802004E	36
-0.8912099176E	36 76 74	0_5863370732E	36	#0,3852321788E	36	0.2530476781E	36
0.1091100751F 0.2024755099E	56 35	-0.7162761345E	35	0.4701411757E	35	-0.3085478707F	35
-0.1328574282# -0.24614271215 0.16147105107	35 34 34	0.8717040259E	34	-0.5719097385E	34	0.3752023822E Row 23.	34
0.4271390006F	49	0.1306284669E	50	0.1740132953E	50	0.1333429064E	50
0,0042086623)	40	P.4910627737E	48	0.7509876434E	<u>4</u> 7	0.6749593255E	46
-0.10157763619	45	-0.1921368319E	44	=0.2240337215E	43	-0.1941997752E	42
-0.7437863378 0.31756064238	30	-0.3583739477E	38	-0.58539756156	36	=0.5373815018E	36
-0.2063430445F -0.3728523146F	36 35	0.13446770938	36	-0.8757623935E	35	0.57112481358	35
0.24362067665	75	-0.15º2916422E	35	0.1042120063E	35	-0.6820931358E	34
0_44061615656	34						

-313-

ŗ

L.

,

=0 3437923726F	50.	-0 1139352724E	51	-0.1679143271E	51	-0.1463056843E	51
-0.84667289595	50						21
-0.3472174192F	50	-0.1053124694E	50	-0.2437732237E	49	=0.4413849314E	48
-0.6377575291F	47						
+0.7475534725P	46	-0,7205803911E	45	-0.5775886767E	44	-0.3885227446E	43
-0.2209203313F	42						
-0,10689535235	41	-0.4363649429E	39	-0.1869510507E	38	0.1546819522E	37
-0.13356265448	37						
0.8669751431P	36	-0.5686298771E	36	0.3729055281E	36	=0.2445788 <u>32</u> 5E	36
0.16042101099	36						
-0,1652237;61F	36	0.6901920205E	35	-0.4527170677E	35	0.2969498615E	35
-0.1947772182F	35						
0.12775909465	35	-0.8330005127E	34	0.5496615505E	34	=0.3605334100E	34
0.2364802131F	34					Paul DE	
-0.1551112773E	34					NOW 27	

J 1

•

-

-

. • •

0.3109306691E	50	0.1045205828E	51	0.1564501531E	51	0.1386067920E	51
0.81620253693	50						_
0 34065034948	50	0_1050905173E	5()	0.2471119029E	49	0_4537049720E	48
0.6653061057	47						
0.7852696727F	46	0_7628697549E	45	0.61516446878	44	0_4156089099E	43
0.23701930308	42.						
0.1148410389E	41	0_4711654948E	39	0.1884311408E	38	=0.8711056208E	36
0.9299366922E	36						
-0. 6075927783E	36	0_4023921773E	36	-0,2659388483E	36	0.1755261993E	36
-0.1157226297E	36						
0.76224400808	35	-0,5016948972E	35	0.3300002433E	35	#0_2169534486E	35
0.1425728266E	35						
-0.93660724739	34	0.6151157003E	34	-0.4038832060E	34	0.26513855688	34
-0.1740295122E	34					Pour 26	
0 11421362778	37					NUN 20.	

•

-314-

 \sim

ş

~

•

× /

0.32862653608	49 70	0,94150321836	49	0.1146472003E	50	0,7699403812E	49
0.6568440116E	49 48	0,2223870866E	47	-0.3337637969E	47	-0.1231811459E	47
=0.2563555673E	46						
-0,3770790503E	45	=0,42286224∂9E	44	-0.3757331679E	43	=0_2708456114E	42
-9,180983028-5	41	A			~ /		
-0,7944670304F	39	=0,3479644552E	38	-0.1486603894E	36	₩0_6755106367E	36
-0.35974453005	50 77	0 4/4)20/7//5	71	0 40/0/37550#	7/	0 (0000)0000	
-0.71607100400	<u>つ</u> の プロ	V_1002294300E	20	#0.1067647550E	20	0.07050485748	35
0 28902574/45	うう 7 E	-0 197/0409345	75	A 4007475000	75	-0.7000/0557/0	- /
0 60790231416	יבר יד	HV. 100491.0216	25	0.1227135029E	30	#U.(999420054E	34
-0.32402700405	74	0 00087860778	71	-0 4/577//0085	71	0.05700000000	- 7
-0.424/02250/5	-)4- 	9.22207002442	54	=U.1437744270E	24	0.93392292365	35
	22					Row 27.	
0.40046547498	33						
-0.20983764268	50	-0.68427517716	50	-0.9896749101E	50	+0.8439000927E	50
-0,4706345341F	50						
-0.1902954032E	5ù	-0,560700°036E	49	-0.1258554430E	49	=0.2206164223E	48
-0.30813025428	47						
-0.3485616279E	46	-0,3236678119E	45	-0.2494317056E	44	-0.1609485684E	43

-0.7437216661E 37

0.2543131578E 36

-0.3081326166E 35

0.3738465688E 34

-315-

.

ì

.

-0,20983760268	50	-0.6842751771E	50
-0.4706345341F	50		
-0.1902954032F	5 ú	-0.560700°036E	49
-0.30813095428	47		
-0.3485616279E	46	-0,3236673119E	45
-0_8756189948E	41		
-0.40445941448	40	-0.1553611143E	39
-0.90865494888	36		
0.59232184856	36	-0.3830675475E	36
0.10928934348	36		
-0.7165854151F	35	0_46°8835244E	35
-0.13452130768	35		
0.86911961868	34	-9.5700101997E	34
0.160817 <u>1</u> 71F	34		
-0.1054772561E	34		

1

Row 28.

0.1231584165E 37

-0.1667014314E 36

0.2020711647E 35

+0.2451943300E 34

0.18727975000	50	0.62719235958	50	0.9328414376E	50	0.8188461888E	50
0.47029403735	ናሳ						
0.1927293u12E	50	0,5925575737E	49	0_1362616982E	49	0.2437933930E	48
0.34612083825	47						
0.3964325714E	46	0.3713428456E	45	0.2877357591E	44	0.1861497102E	43
0.10130295508	42						
0.46648775775	40	0.1820414847E	39	0.6517623116E	37	+0.1759882609E	36
0.269944452508	76						
-0_1941452317E	36	0.1382119850E	36	-0.9649974519E	35	0.6645082886E	35
-0.4528716421F	35						
0.3062093741E	35	-0,2057816932E	35	0.1376313600E	35	+0.9170384702E	34
0.60919038610	34						
-0,4)37150554E	34	0.2670288700E	34	-0.1763457541E	34	0,1163119788E	34
-0.7663724205E	33					0	
0,50453872028	53					KOW 29	

٠

.

0.5502191521P	33					Row 30.	
-0.46239213255 -0.8417772470F	34 33	0.3029732396E	34	-0.1974955414E	34	0.1288789104E	34
0.71600445775	34						
0.4103643353E	35	-9.2640947127E	35	0.1704966856E	35	+0.1103643655E	۲5
-0.6400087470F	35	u ∎te e une a centre de la ma	•• ••		<u> </u>	0.10024/01166	707
-0.3981505284F	აბ 36	0 24934468536	36	#0 1578030495F	36	0 10024761125	76
=0,6202765637F	30	-0.2667683505E	38	0.9188096104E	36	-0.1055360792E	37
-0.1374056359E	<u>41</u>	• • • • • • • • • • • • • • • •					
-0.4786863585E	45	-0.4767301789E	44	-0.3830256806E	43	-0.25200256138	42
-0.3799683512F	46					······································	
-0 54325773535	48	-0.3185294018E	48	-0.1040540597E	48	#0.2317548255F	47
0.345401304°E	47	* > 1 0 0 0 0 1 / Q1 h		V. 20030782706		A*E5A30001118	47
0.22558840285	49	0 57086319675	49	0 56838925966	60	0 25058864748	10

-316-

*

~

.

,

-0.1071/43651F -0.2246639663P	50 50	-0.3490873623E	50	-0.4934225818E	50	+0.4097700047E	50
=0.8683234141F	49	-0,2471937332E	49	=0.5354659923E	48	-0.9053500452E	47
-0.1329967215F	46	-0.1190402901E	45	-0.8837624494E	43	#0.5438589434 E	42
-0.1273313716F	41 40	-0,4574733775E	38	-0,2812373572E	37	0,7942319513E	36
0.3557166275E	36 36 76	-0,23255371278	36	0.1521451040E	36	≠0.9959439767E	5 ۲
-0.4272491712E	55 35 77	9.2799484480E	35	-0.1834673238E	35	0.1202559561E	35
0.51683876896	54 34	-9.3388735077E	34	0.2222025471E	34	-0.1457084556E	34
-0.6266308040F	55 33					Row 31.	
0,98729295318	40	0,333386°833E	50	0.4966147600E	50	- 0.4336919103E	50
0,98729295318 0,24941110928	40 50	0,333386°833E	50	0.4966147600E	50	- 0.4336919103E	50
0,98729295318 0,24941110928 0,10077696555	40 50 50	0.333386°833E 0.298576°053E	50 49	0.4966147600E 0.6692620544E	50 48	- 0.4336919103E 0.1163223240E	50 48
0.98729295318 0.24941110928 0.10077696555 0.15995076898	49 50 50 47	0.333386°833E 0.298576°053E	50 40	0.4966147600E 0.6692620544E	50 48	0.4336919103E 0.1163223240E	50 48
0.98729295318 0.24941110928 0.10077693555 0.15995076898 0.17693219497	40 50 50 47 46	0.3333860833E 0.2985760053E 0.1506350215E	50 40 45	0.4966147600E 0.6692620544E 0.1188193682E	50 48 44	- 0.4336919103E 0.1163223240E 0.7363201070E	50 48 42

0.67738538958 35

0.1166534395E 36

-0.8991819420E 34

0.8582998438E 33

-317-

ŗ

1

0.15995076898	47		
0.1769321949F	46	0.1596350215E	45
0.38282187498	41		
0.16716215348	40	0.6565010865E	38
-0.60608734450	36		
0.34746594405	36	-0,2004258760E	36
0,40057505598	35	•	
-0,2435504054E	35	0,1473006329E	35
-0.3438154201E	34	-	

0,21507950608 34 -0.1354600673E 34

0.3498603277E 33 -0.2247754228F 33

-0.5467221647E 33 Row 32.

0.1121896153E 37

₩0.6853617022E 35

0.5537434807E 34

0.10442024201	-44	V_15/02/00/48	47	■0.31 80973307€	40	#{).23719000842	49
0.24745430206	49						
0.13943934308	49	-0.5138115968E	48	-0.1337916952E	48	-0.2578659604E	47
0.38011943428	46						
0.43934511915	45	-7,4059393674E	44	=0.3044257930E	43	≈0.1874583339E	42
0.95845141678	40						
0.3983143581F	39	-0_1939940429E	38	0.27437322078	37	-0.1915861918E	37
0.11517580776	37						
0.70315204125	36	0_4329665085E	36	-0.2687919431E	36	0.1681268264E	36
0.10537644798	36		_				
0.67078535615	35	-0.42724000098	35	0.2733796817E	35	₩0.1756265301E	35
0.1152122255E	35						
0.7319023637F	34	0.4743230162E	34	=0.30802>7781E	34	0.20037626508	34
0,1305352000F	34					ROW 33.	
0.85138741196	53						
0.66115369268	49	-0.2020690424E	50	-0.2709383251E	50	≈0.2115787243 E	50
0.10804010068	50					-	
0.38517316508	49	-9.1002496577E	49	-0_1970650422E	48	-0.3005723124E	47
0.36351490575	46						
0.3547333220E	45	-0.2832421487E	44	₽0.1871050649E	43	=0.1031620378E	42
0,4767972383F	40			-			
0.1915885510E	30	-9.32634327838	37	−0.1926826055E	37	0.1066199079E	37
0.66125945458	36	,	- •				
0,4126597214F	36	-0.2598182843E	36	0.1647954754E	36	=0.1051696108E	36
0.67459930708	35						_
0.43453080038	35	0.28085659225	35	-0.1820382477E	35	0.1182571070E	35
0.7676471319E	34						
9,5016527001F	34	-9.3273694996E	34	0.21384334708	34	+0.1397959388E	34
9.9144633973E	35						

-0.5985023700F 33

Row 34.

×

-318-

ŝ

4

0.67756958938	49	0.2236253110E	50	0.3328003196E	50	0.2777818142E	50
0.1494471071E	50				_	_	
0.5539477693F	49	9.14309124808	49	0.2957985523E	48	0.4542475990E	47
0.5489938496F	46	. .		_			
0,53417578588	45	0.4201145461E	44	0.2733953122E	43	0.1479656477E	42
0.67577418898	40					•	
0.23236567815	39	0.2037375298E	38	-0.6574229644E	37	0.3878203796E	37
=0.2249053536F	37					_	
0,12777132475	37	=0.7642933907E	36	0.4553613694E	36	= 0.2743631855E	36
0.16708138718	36						
=0,1047020050E	56	9.63783355488	35	+0.3991313762E	35	0.2515735313E	35
-0.1595727382F	35		_ •				
0.1017709432E	35	H0_6521052277E	34	0.4195008880E	34	#0.2707686552E	34
0.17925837719	34					Row 35	
#V.11970392846	54						
-0.1640242382F	48	-0.2655275396E	49	-0.6185683767E	49	=0.6619928549F	19
-0.4140510100F	40	•					
-0.16876842345	49	-0.4784016657E	48	-0.9873097995E	47	n0.1536718180E	47
-0.1854761857E	46				•		
■0.1774384789月	45	-0.1368729741E	44	-0.8628146200E	42	m0.4484052325E	41
-0.1971145353P	40						
-0.5298192357E	38	-0.1256123800E	38	0.6254742114E	37	m0.3835624787E	37
0.23431426378	37	-				••	
-0.1440385736F	37	0_890895°369E	36	-0,55442838248	36	0.34710217428	36
-0,2185394940F	36			-		••••	
0.1383221403月	36	-0.8797257330E	35	0.5619399317E	35	#0,3603392327E	35
0.2318518994E	35					• • • • • • • • •	
-0.14962264108	35	0.9680475229E	34	=0.6276979616E	34	0.4077732893E	34
-0.2653244105F	34					D	
0.1728695418E	34					KON 20.	
				1			

-319-

?

ч.

.

.

,

APPENDIX 8. COMPUTER PROGRAM FOR THE CHEN-SHIEH CALCULATION.

.

A8.1	The	Fortra	n source	program.

_									
×									
+-		1191			-			n	•
	1	SEND TO	o (cb'icf	A-DEFAUL	T.AXXX)			
		LIBRAR	A (ED*2116	RABOLANSI	BD		-		
	**************************************	LIBRAR	V (ED.SUP	3GpOUPFSC	E)				-
	••••• • • • • • • • •	Duffp O	N (CD. PR	GRAN OVL	Y)		* * * * *	-	-
		NIIG	-		-				
	Langence and more and a	ODUCRA	4 (CTAA)				- •		
		PREGRA	9 (G)V9) 90 (F				• ·		- +
		PRIORI	TY 45						
		COMPRE	SS INTEGE	ER AND LO	GICAL				
	,	TNPUT	1=CR0						
	her	OUTPUT	S≈€50	+	~				
		TRACE	2						
	(END -				-			
					-		· · · -		
Ċ,	• •					-	-		
ž			A				antinum an an an an and a start and a		**** *** *** * *
N.		TRACE	4) 						_ _
ŝ	-	MASTER	CROUCH						
Ð	C	•							
Ξ	C TH	IS ROUT	THE READS	S TN THE	ZEROES	AND POLES	OF A TR	ANSFER FI	JNCTION.
1	C NUI	LTIPLIE	S OUT TO	GTVE A R	ATTO O	F TWO POLY	NOMTALS	(INTERME)	DTATE
	C 00	רסט ד י.	CORVERTO	S TO DUNE	THE FP	ACTION COD	M / THTE	AEDIATE (
	C = FOI	аме тне	CHER.CU	1 10 115 TO 1	'Y 7 TH	TEOMEDYATE	2 AUTOUTS		JALIV
	C C			168 198181		1580591818		AND FI	1 A L L Y
	· · · · · · · · · · · · · · · · · · ·	LUCAIL	2 TUC KE	NOTKED IT	THE SUL	01104+	.		
	Ç		• • •				.		
		DIMENS	10N A(50)),R(50),C	:(50)+2	P(50)/H(1()0),BA(36	,36)	
	Ç		-						
	· · · · · · · · · · · · · · · · · · ·	READ(1	(4) INUM					• • • • • • • • •	
		DO 4 I	T = 1. TNI	нм — — —					
	}	<u>ז ד 1</u>							
	·	PEAD (1	1) 10			,			
		75 (10	ro 21 c/	0 -0 11		•			-
		• r () r							
	·	000021							
		READC1	16) ALP:			~			-1 -2-1
	3	READC1 READC1	,16) ALP:	,(7P(J),J	=1,47)				
	3	READC1 READC1 WRITEC	,16) AFP: ,1)KC,KT, 2,9) IT,1	,(7P(J),J KC,KT,(ZP	=1+KT) >(J)+ J	=1,KT)			
	3	READ(1 READ(1 URITE(IF(I E	10) ATP 1)KC.KT 2.9) IT.I Q 2) GO 1	,(7P(J),J KC,KT,(ZP TO 2	=1,KT) (J), J	=1, KT)			
	3	READ(1 READ(1 URITE(IF(I E CALL F	10) ATP 1)KC.KT 2,9) IT. 4 2) 60 1 100LF(8,1	,(7P(J),J KC,KT,(ZP TO 2 KC,KT,ZP)	=1,KT) P(J), J	=1,KT)			
	3	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1	,16) AFP ,1)KC.KT, 2,9) IT, Q 2) GO 1 ,10DLE(8,1	,(7P(J),J KC,KT,(ZF TO 2 KC,KT,7P)	=1,KT) (J), J	=1,KT)		· · · · · · · · · · · · · · · · · · ·	
	3	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1	10) ALP 1)KC.KT 2.9) IT. Q 2) GO UNDLE(8,1 1	, (7P(J), J KC, KT, (2P TO 2 KC, KT, 7P)	=1,KT) >(J), J	=1,KT)		· · · · · · · · · · · · · · · · · · ·	
	3	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+	10) ATP 1)KC.KT 2.9) IT. Q 2) GO 10DLF(8,1) 1	, (7P(J), J KC, KT, (2P TO 2 KC, KT, 7P)	=1,KT) >(J), J	=1,KT)			
	3	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO	10) ATP 1)KC.KT 2.9) IT. 0 2) GO 10DLF(8,1) 1 3	, (7P(J), J KC, KT, (2F TO 2 KC, KT, 7P)	=1, KT) (J), J	=1, KT)			
	2	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F	10) ALP 1) KC.KT 2.9) IT. Q 2) GO UNDLE(8,1 1 3 UNDLE(A,1)	(7P(J),J KC,KT,(ZP TO 2 KC,KT,7P)	=1, KT) (J), J	=1, KT)			
	2	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1	10) ALP 1) KC. KT 2.9) IT. Q 2) GO 100LF(8,1) 1 3 UDDLE(A,1)	(7P(J),J KC,KT,(ZF TO 2 KC,KT,7P)	=1, KT) (J), J	=1, KT)			
	2	READ(1 READ(1 URITE(IF(IE CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO	10) ALP 1) KC. KT 2.9) IT. 0 2) GO 100LF(8,1) 1 UDDLE(A,1) 12	(7P(J),J KC,KT,(ZF TO 2 KC,KT,7P)	= 1 , KT) (=1, KT)			
	2	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTH	10) A(P) 1) KC, KT, 2, 9) TT, 4 2) GO 100LF(8, 1 1 100LE(A, 1) 12 12 12	(7P(J),J KC,KT,(ZF TO 2 KC,KT,7P)	= 1 , KT) (=1, KT)			
	2 2 11	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTH	10) A(P) 1) KC, KT, 2, 9) IT, 4 2) GO 10DLF(8, 1 1 UDDLF(A, 1 12 UF	, (7P(J), J KC, KT, (2P KC, KT, 7P) KC, KT, 7P)	= 1 , KT) (=1,KT) 			
	3 	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTN	10) ALPS 1) KC, KT, 2, 9) IT, 4 2) GO 100LF(8, 1 1 100LF(A, 1) 12 10 10 10 10 10 10 10 10 10 10	, (7Р(J), J КС, КТ, (2Р КС, КТ, 7Р) КС, КТ, 7Р)		=1,KT)		THE COE	
	2 2 11 C C TH	READ(1 READ(1 URITE(IF(IE CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTN IS SECT	10) ALPS 1) KC, KT, 2,9) IT, 4 2) GO 100LF(8,1) 1 100LE(A,1) 12 10N READS 10N READS	, (7Р(J), J КС, КТ, (2Р КС, КТ, 7Р) КС, КТ, 7Р) КС, КТ, 7Р)	0F P0	=1,KT) 	ROES AND	THE COE	FFICIENT
	2 2 2 11 C C TH C OF	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTN IS SECT	10) ALPS 1)KC.KT 2.9) IT. 0 2) GO 10DLE(8,1) 1 1 10DLE(A,1) 12 UDDLE(, (7Р (J), J КС, КТ, (2Р КС, КТ, 7Р) КС, КТ, 7Р) КС, КТ, 7Р)	OF PO THE DF	=1,KT) 	ROES AND POLYNOMI	THE COE	FFICIENT
	3 	$\begin{array}{c} READ(1) \\ READ(1) \\ WRITE() \\ IF(I) E \\ CALL F \\ N=KT+1 \\ I = I+ \\ GO TO \\ CALL F \\ M=KT+1 \\ GO TO \\ CONTTN \\ IS SECT \\ THE NUE \\ EFICIE \end{array}$	116) AFP 11)KC,KT 2.9) IT. 100LE(8,1) 1 100LE(4,1) 12 UDDLE(4,1) 12 12 UDDLE(4,1) 1	, (7Р (J), J КС, КТ, (2Р КС, КТ, 7Р) КС, КТ, 7Р)	OF PO THE DF DING PO	=1,KT) LES AND 7 NOMINATOR WERS OF S.	ROES AND POLYNOMI	THE COE	FFICIENT
	3 	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTN IS SECT THE NU E=FICIE	116) AFP 11)KC,KT 2.9) IT. 100LE(8,1) 1 100LE(4,1) 12 UDDLE(4,1) 12 12 UDDLE(4,1) 1	(7P(J),J KC,KT,(2P KC,KT,7P) KC,KT,7P) KC,KT,7P) KC,KT,7P) KC,KT,7P) KC,KT,7P)	OF PO THE DF DING PO	=1,KT) LES AND 78 NOMINATOR WERS OF S.	ROES AND POLYNOMI	THE COE	
	3 2 2 11 C C C C C C C	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTN IS SECT THE NU E=FICIE READ(1	116) A(P) 11)KC,KT 2.9) IT. 12.9) IT. 100LE(8,1) 1 100LE(4,1) 12 UDDLE	, (7Р (J), J КС, КТ, (2Р КС, КТ, 7Р) КС, КТ, 7Р)	OF PO THE DF ING PO	=1,KT) LES AND 7 NOMINATOR WERS OF S.	ROES AND POLYNOMI	THE COE	
	3 2 2 11 2 2 11 2 2 11 2 0 5 0 5 0 5 0 1 1 1 1 2 0 5 0 5 0 5 0 1 1 1 0 5 0 1 1 1 0 5 0 1 1 1 0 1 1 1 1	READ(1 READ(1 URITE(IF(I E CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTN IS SECT THE NU E=FICIE READ(1	116) A(P) 11) KC, KT, 2.9) IT, Q Z) GO 100 F(B,) 1 ION 12 JF 100 FAD 12 JF 13 HERATOR NTS APF 14) N, H. (B(I), I)	, (7P(J), J KC, KT, (2P KC, KT, 7P) KC, KT, 7P)	OF PO THE DF DING PO (A(I),	=1,KT) =1,KT) 	ROES AND POLYNOMI	THE COE	
	3 2 2 11 C C TH C C C C C	READ(1 READ(1 URITE(IF(IE CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CALL F M=KT+1 GO TO CONTTN IS SECT THE NUE FICIE READ(1 1 DO 13	,16) A(P) ,1)KC,KT, 2,9) IT,1 Q 2) GO 1 UNDLE(8,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, (7P(J), J KC, KT, (2P KC, KT, 7P) KC, KT, 7P)	OF PO THE DF DING PO (A(I),	=1,KT) 	ROES AND POLYNONI	THE COE	FFICIENT
_	3 2 2 11 C TH C OF C CO C	READ(1) READ(1) URITE(IF(IE) CALL F N=KT+1 GO TO CALL F GO TO CALL F GO TO CALL F GO TO CALL F GO TO CONTTN IS SECT THE NUE READ(1 NO 13 I1 = N	,16) A(P) ,1)KC,KT, 2,9) IT,1 Q 2) GO 1 UNDLE(A,1 1 1 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1)	, (7P(J), J KC, KT, (2P KC, KT, 7P) KC, KT, 7P)	OF PO THE DF DING PO (A(I),	=1,KT) 	ROES AND POLYNONI	THE COE	FFICIENT
-	3 2 2 11 2 2 11 2 2 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 1 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	READ(1 READ(1 URITE(IF(IE CALL F N=KT+1 I TO CALL F M=KT+1 GO TO CALL F M=KT+1 GO TO CONTTN IS SECT THE NUE FICIE READ(1 100 13 N R(I) = =	,16) A(P) ,1)KC,KT, 2,9) IT,1 Q 2) GO 1 UNDLE(A,1 1 1 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1 12 UNDLE(A,1) 12 UNDLE(A,1 12 UNDLE(A,1) 12 U	, (7P(J), J KC, KT, (2P KC, KT, 7P) KC, KT, 7P)	OF PO THE DF DING PO (A(I),	=1,KT) 	ROES AND POLYNONI	THE COE	FFICIENT
	3 2 2 11 2 2 11 2 2 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 0 7 11 2 11 2	READ(1 READ(1 URITE(IF(IE CALL F N=KT+1 I = I+ GO TO CALL F M=KT+1 GO TO CONTTN IS SECT THE NU E=FICIE READ(1 1 0 13 T1 = N R(I) =	116) A(P) 116) A(P) 2.9) IT.1 Q 2) GO 100 F(8,1) 1 - 1	, (7 P (J), J КС, КТ, (2 F КС, КТ, 7 P) КС, 7 P)	OF PO THE DF DING PO (A(I),	=1,KT) 	ROES AND POLYNONI	THE COE	FFICIENT
-	3 2 2 11 C TH C OF C CO C CO C CO C CO C C CO	READ(1 READ(1 URITE(IF(IE CALL F N=KT+1 GO TO CALL F M=KT+1 GO TO CALL F M=KT+1 GO TO CONTTN IS SECT THE NU E=FICIE READ(1 DO 13 T1 = N R(I) =	16) A(P) 1) KC,KT, 2.9) IT.1 Q Z) GO 10DLE(A,1) 1 3 UDDLE(A,1) 1 <	, (7 P (J), J КС, КТ, (2 F КС, КТ, 7 P) КС, КТ, 7 P)	OF PO THE DF DING PO (A(I),	=1,KT) 	ROES AND POLYNONI	THE COE	FFICIENT
	3 2 2 11 C TH C OF C CO C CO C CO C CO C CO C CO C CO	READ(1 READ(1) URITE($F(I) \in CALL = F(I) \in CALL = F(I) \in CALL = F(I) =$,16) A(P) ,1)KC,KT, 2.9) IT, 400LF(8,1 100LF(8,1 1 100DLE(A,1 12 100DLE(A,1 12 12 100 RFADS 9FRATOR 12 12 12 12 12 11 11 11, 11 12 12 12 12 12 12 12 12 12 12 12 12 1	, (7 P (J), J КС, КТ, (2 F КС, КТ, 7 P) КС,	OF PO THE DF DING PO (A(1),	=1,KT) 	ROES AND POLYNONI	THE COE ALS.	FFICIENT
	3 2 2 11 C TH C OF C COI C COI C 13 C 13 C	READ(1 READ(1 URITE(IF(IE CALL F N=KT+1 GO TO CALL+1 GO TO CALL+1 GO TO CALL+1 GO TO CALL+1 GO TO CALL+1 GO TO CONTTN IS SECTUE READ(1 NO 13 N R(I) = 1 N R(I) = 1 R(I) = 1 N R(I) = 1 R(I) = 1 N R(I) = 1 N R(I	<pre>,16) A(P) ,1)KC,KT, 2.9) IT, Q 2) GO T UDDLE(A,) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	, (7 P (J), J КС, КТ, (2 F КС, КТ, 7 P) КС, КТ, 7 P)	0F PO THE DF DING PO (A(1),	=1,KT) 	ROES AND POLYNONI	THE COE ALS.	FFICIENT
-	3 2 11 C TH C OF C COI C COI C COI C COI C COI C COI C C C COI C C C C C C C C C C C C C C C C C C C	READ(1) READ(1) URITE(IF(I) CALL F I	<pre>,16) A(P) ,1)KC,KT, 2.9) IT, 4 2) GO T 40DEF(8,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	, (7 P (J), J KC, KT, (2 F TO 2 KC, KT, 7 P) KC, KT, 7 P	0F PO THE DF DING PO (A(I),	=1,KT) 	ROES AND POLYNOMI	THE COE	FFICIENT
	3 2 11 C TH C C C C C C C C C C C C C	READ(1) READ(1) URITE(IF(I)	<pre>,16) A(P) ,1)KC,KT, 2.9) IT, 0 2) GO 1 0 DLE(A, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	, (7 P (J), J KC, KT, (2 F TO 2 KC, KT, 7 P) KC, KT, 7	0F PO THE DF DING PO (A(I),	=1,KT) 	ROES AND POLYNOMI	THE COE	

		•
-	~	
·		
		URITE(2,5) IT, (B(I),I#1,N)
		WRITE(2.10) (A(I), I=1, R)
·		CALL CUNCHARA D. C. H. N. H. TH. TTN
,		D0 15 I=1.KT
	15	H(2*1) = H(2*1)*ALPHA
,	C	
·		
1		WRITE(2.8)
		DQ 7 I=1,KT
r	7	URITE(2.6) $T.(BA(I,J), J=1, KT)$
L		CALL DECDONAL DAY
	,	
¥		
		STOP
1 1	1	FORMA1(210,150F0_0)
h	5	FORMAT (2440 INTERMEDIATE OUTPUT RUN, 13.
	-	
2		······································
8		we we
, <u>,</u> ,		
H		1 DX. (20NUGERATUR LUEFFICIENTS//(6F15,6))
Sr.	6	FORMAT(4HORAN,13,6E15.6/(7X,6E15.6))
	8	FORMAT(19HOCHEN-SHIEH MATRIX./)
	9	FORMAT/15800ATA CHECK PHN.13/ SHOKE - 13.54 4847 - 13/
		$\sim c_{0}$ c_{1} c_{1} c_{2} c_{3} c_{1} c_{2} c_{3} c_{1} c_{1} c_{2} c_{3} c_{1} c_{2} c_{3} $c_$
-		
	10	FORMAT(1H0,31X,24HDENOMINATOR COEFFICIENTS//(6F15.6))
		FORMAT(1000F0_0)
		FND
a		
сРА		
.сРА <i>Ч</i> .		SUBROUTTHE CHACHA(A, B,C,M,N,H,IH,J)
יכאש <i>ע</i> י אשר	C	SUBROUTINE CHACHA(A, B,C,M,N,H,IH,J)
.сРА Н. «ГЕЛ	Стн	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J)
رد ۲۹ ۲۰٬ ۱۱	С С ТН С БО	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION
1	C TH C TH C FOI	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) IS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TUD POLYNOMIALS, GIVING THE CHEN SHIEH H
	C TH C TH C FOI C COI	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT.
	C TH C FOI C COI C COI	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF THO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT.
دومه م ^ر دوروت العاماً الم	C C C F O C C C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF THO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100)
	C TH C FOI C COI C COI	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100)
	C TH C FOI C COI C COI	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1.C+N
CPA A' SCEP 112141	C TH C FOI C COI C COI C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+N
۲۵۲۸ <i>۲۰ «۲۵۵</i> » ۱۱×۱۹	C TH C FOI C COI C COI C 12	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+N H(I) = 0.0
	C TH C FOI C COI C COI C 12	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS A RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+N H(I) = 0.0 TH = 0
	C TH C FOI C COI C COI C 12	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+N H(I) = 0.0 TH = 0 ICOEFF = 0
	C TH C FOI C COI C COI C 12	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M
	C TH C FOI C COI C COI C 12	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(SO), R(SO), C(SO), H(100) DO 12 I=1, C+N H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N GT M) $F = M$
	C TH C FOI C COI C COI C 12 2	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIRH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT M) K=N
	C TH C FOI C COI C COI C 12 2 C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, 2*M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT M) K=N
	C TH C FOI C COI C COI C 12 2 C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(SO), R(SO), C(SO), H(100) DO 12 I=1, 2*M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT M) K=N ICOEFF = IGOEFF+1
	C TH C FOI C COI C COI C 12 C 22 C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIFH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N,GT M) K=N ICOEFF = ICOEFF+1 N1 = N
	C TH C FOI C COI C COI C 12 C 22 C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+N H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N,GT'M) K=N ICOEFF = IGOEFF+1 N1 = N
	C TH C FOI C COI C COI C 12 C 22 C	SUBROUTINE CHACHA(Å, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS A RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, $2 \times M$ H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT H) K=N ICOEFF = ICOEFF+1 N1 = N M1 = M CALL SHIEH(Å, R, C, M1, M4, K)
	C TH C FO C CO C CO C 12 C 22 C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+N H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT H) K=N ICOEFF = 1COEFF+1 N1 = N M1 = M CALL SHIISH(A, B, C, N1, M1, K) HEITE(2 3), COEFF (10)
	C TH C FO C CO C CO C 12 C 22 C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TUO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. PIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT'H) K=N ICOEFF = 10 EFF+1 N1 = N M1 = M CALL SHISH(A, B, C, N1, M1, K) WRITE(2,3) ICOEFF, G(1)
	C C C C C C C C C C C C C C C C C C C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYROMIALS, GIVING THE CHEN SHIRH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(SO), R(SO), C(SO), H(100) DO 12 I=1, C*N H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT H) K=N ICOEFF = ICOEFF+1 N1 = M CALL SHISH(A, B, C, N1, M1, K) WRITE(2.3) ICOEFF, G(1)
	C C C C C C C C C C C C C C C C C C C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYROMIALS, GIVING THE CHEN SHIEH H EFFICIEATS AS INTERMEDIATE OUTPUT. DIMENSION A(SO), R(SO), C(SO), H(100) DO 12 I=1, C+M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT'H) K=N ICOEFF = ICOEFF+1 N1 = N M1 = M CALL SHISH(A, B, C, N1, M1, K) WRITE(2,3) ICOEFF, C(1) IH = IH+1
	C TH C FO C CO C CO C 12 C 22 C 22 C 22 C 22 C 22 C 22 C 22	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TUO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(S0), R(S0), C(S0), H(100) DO 12 I=1, 2*M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N,GT'H) K=N ICOEFF = 100EFF+1 N1 = N M1 = M CALL SHIISH(A, B, C, N1, M1, K) URITE(2.3) ICOEFF, C(1) IH = IH+1 H(IH) = C(1)
		SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, C+M H(I) = 0.0 ICOEFF = 0. K = M IF(N,GT M) K=N ICOEFF = 1COEFF+1 N1 = N M1 = M CALL SHISH(A,B,C,N1,M1,K) WRITE(2,3) TCOEFF,C(1) IH = 1H+1 H(IH) = C(1)
	C TH C FO C CO C CO C CO C C C C C C C C C C C C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AG INTERMEDIATE OUTPUT. DIMENSION A(SO), R(SO), C(SO), H(100) DO 12 I=1, C+N H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT H) K=N ICOEFF = 100EFF+1 N1 = N M1 = M CALL SHIISH(A, B, C, N1, M1, K) URITE(2,3) ICOEFF, C(1) IH = IH+1 H(IH) = C(1)
	C TH C FO C CO C CO C CO C C C C C C C C C C C C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. PIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, 2+M H(1) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT H) K=N ICOEFF = ICOEFF+1 M1 = M CALL SHISH(A, B, C, N1, M1, K) WRITE(2.3) ICOEFF, C(1) IH = IH+1 H(1H) = C(1) IF(ABS(C(22), LT.1.0E=30) GO TO 10
	C TH C FO C CO C CO C C C C C C C C C C C C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIFH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, 2*M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N,GT'M) K=N ICOEFF = ICOEFF+1 N1 = N M1 = M CALL SHOEFF, C(1) IH = IH+1 H(IH) = C(1) IF(ABS(C(22), LT.1.0E=30) GO TO 10 IF(K,EQ 2) GO TO 5
	C TH C FO C CO C CO C C C C C C C C C C C C C C	SUBROUTINE CHACHA(A, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AS INTERMEDIATE OUTPUT. PIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, 2*M H(1) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N,GT H) K=N ICOEFF = ICOEFF+1 N1 = N M1 = M CALL SHISH(A, B, C, N1, M1, K) WRITE(2,3) TCOEFF, C(1) IH = IH+1 H(1H) = C(1) IF(ABS(C(2)), IT.1.0E=30) GO TO 10 IF(K,EQ 2) GO TO 5
	C TH C FO C CO C CO C C C C C C C C C C C C C C	SUBROUTINE CHACHA(Å, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNONIALS, GIVING THE CHEN SHIFH H EFFICIENTS AS INTERMEDIATE OUTPUT. DIMENSION A(SO), R(SO), C(SO), H(100) DO 12 I=1, C+M H(I) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N, GT M) K=N ICOEFF = ICOEFF+1 M1 = N M1 = M CALL SHISH(Å, R, C, M1, M1, K) WRITE(2,3) ICOEFF, C(1) IH = IH+1 H(IH) = C(1) IF(ABS(C(2)), IT.1, 0E=30) GO TO 10 IF(K, EQ 2) GO TO 5 DO 6 I=1, M
		SUBROUTINE CHACHA(Å, B, C, M, N, H, IH, J) AS ROUTINE ORGANISES THE REPEATED DIVISION OF A TRANSFER FUNCTION RHED AS 4 RATIO OF TWO POLYNOMIALS, GIVING THE CHEN SHIEH H EFFICIENTS AG INTERMEDIATE OUTPUT. DIMENSION A(50), R(50), C(50), H(100) DO 12 I=1, 2*N H(1) = 0.0 TH = 0 ICOEFF = 0 K = M IF(N,GT'H) K=N ICOEFF = 10 EFF+1 N1 = N M1 = M CALL SHISH(Å, B, C, M1, M1, K) WRITE(2,3) ICOEFF, C(1) IH = IH+1 H(1H) = C(1) IF(ARS(C(2)), IT.1.0E=30) GO TO 10 IF(K,EQ 2) GO TO 5 DO 6 I=1, N

· · ·	M = N	
· · · · · · · · · · · · · · · · · · ·		
	• ••••••••••••••••••••••••••••••••••••	
3 •		
	7 B(1) = c(1+1)	
г		-
		
	GO TO 2	
C		
· · · · · · · · · · · · · · · ·		
	> ICYEFF = ICOFFFF1	
ĺ	C(1) = B(1)/C(2)	
	WRITE(2.8) TCOREF.C(1)	-
		-
	ĨIN ≈ IN+1	
······		
· _ ·	•	
*	ICOEFE # ICOFFF+1	
	r(3) = r(2)/r(2)	
	WRATE(COD) IGOEFFFG(S)	
С		
·	TH = 1941	-
	H(TH) = C(2)	
, Ç		-
Q		
A A		
10	- WK+1CVC,111 J	
3	3 FORMAT(27HOCHEN-SHIFH COEFFICIENT NO., 13.3H # .E15.6/)	~
· · · · 4	FORMAT (440, CAY, 24 BEMAINDED DENOMINATON TEAE 6//724 TEAE (1)	
·		-
	FURHALCZANCHEN-SHIER COFFFICIENT NO., 13, 38 = , E15.6)	
11	I FORMAT(23HOFND OF GALCULATION NO.,13/////)	
······································	RETURN	
· ····· ·· ··· ··		
3	SUBROUTINE CHMAT(H,B,M)	-
š C	SUBROUTINE CHMAT(H,B,M)	-
č – č – šl	SUBROUTINE CHHAT (H, B, M)	
C SU	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE	
C SU C SU C SU	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H).	
C SU C SU C SU C SU C SU	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H).	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), B(100)	
C SU C SU C SU C SU	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100)	-
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100)	-
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) DO 2 I=1,H	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), $B(36,36)$, $H(100)$ DO 2 I=1, H CA(I) = $H(2*t)$	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), $B(36,36)$, $H(100)$ DO 2 I=1, H 2 A(I) = $H(2*1)$	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), $B(36,36)$, $H(100)$ DO 2 I=1, H 2 A(I) = $H(2*t)$	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), $B(36,36)$, $H(100)$ DO 2 I=1, H A(I) = $H(2*t)$ DO 3 I=1, M	-
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), $B(36,36)$, $H(100)$ DO 2 I=1, H A(I) = $H(2*t)$ DO 3 I=1, M B(I,I) = 0.0	-
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), $B(36,36)$, $H(100)$ DO 2 I=1, H A(I) = $H(2*t)$ DO 3 I=1, H B(I,I) = 0.0 DO 4 d=1, I	-
	SUBROUTINE CHMAT(H,B,M) JBPOUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), $B(36,36)$, $H(100)$ DO 2 I=1, H A(I) = $H(2*t)$ DO 3 I=1, H B(I,I) = G_{0} DO 4 J=1, I	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORH THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H A(I) = H(2*I) DO 3 I=1,H B(I,I) = 0.0 DO 4 J=1,I B(I,I) = B(I,I) + H(2*J-1)	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE 4 CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M 2 B(I,I) = 0.0 2 DO 4 J=1,I 3 B(I,I) = B(I,I) + H(2*J-1) CONTINUE	•
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE $^{-1}$ CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H $^{-1}$ A(I) = H(2*I) DO 3 I=1,M $^{-1}$ B(I,I) = 0.0 $^{-1}$ DO 4 J=1,I $^{-1}$ B(I,I) = B(I,I) + H(2*J-1) CONTINUE	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H, B, M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE $^{\circ}$ CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1, H 2 A(I) = H(2*I) DO 3 I=1, H B(I,I) = 0.0 DO 4 J=1, I B(I,I) = B(I,I) + H(2*J-1) CONTINUE	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,H B(I,I) = 0.0 DO 4 J=1,I B(I,I) = B(I,I) + H(2*J-1) CONTINUE DO 5 K=1,H	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE $^{+}$ CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) DO 2 I=1.H 2 A(I) = H(2*t) DO 3 I=1.M $^{-}$ B(I,I) = 0.0 DO 4 J=1.I B(I,I) = B(t.I) + H(2*J-1) CONTINUE DO 5 K=1.II DO 6 L=1.II	-
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE $^{\circ}$ CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) DO 2 I=1,H $^{\circ}$ A(I) = H(2*I) DO 3 I=1,H $^{\circ}$ B(I,I) = G.O $^{\circ}$ DO 4 J=1,I $^{\circ}$ B(I,I) = B(I,I) + H(2*J-1) $^{\circ}$ CONTINUE DO 5 K=1,II $^{\circ}$ DO 5 K=1,II DO 5 K=1,II $^{\circ}$ DO 5 K=1,II $^{\circ}$ DO	-
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE $^{+}$ CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M $^{+}$ B(I,I) = 0.9 DO 4 J=1,I $^{+}$ B(I,I) = B(I,I) + H(2*J-1) 5 CONTINUE DO 5 K=1,H $^{+}$ DO 5 K=1,H	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H, B, M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1, H 2 A(I) = H(2*t) DO 3 I=1, M B(I,I) = 0.9 DO 4 J=1, I B(I,I) = B(t,I) + H(2*J-1) S CONTINUE DO 5 K=1, H TF(K, EQ L) GO TO 6 IF(K, GT L) $B(K,L) = B(L,I)$	-
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,H P(I,I) = G.0 DO 4 J=1,I P(I,I) = B(I,I) + H(2*J-1) S CONTINUE DO 5 K=1,H P(K,EQ L) = B(T,I) = B(L,I) P(K,ET L) = B(K,L) = B(K,K)	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1.H 2 A(I) = H(2*I) DO 3 I=1.M B(I,I) = 0.0 DO 4 J=1.I 4 B(I,I) = B(I,I) + H(2*J-1) 5 CONTINUE DO 5 K=1.H TF(K.Eq L) GO TO 6 IF(K.GT L) B(K,L) = B(L,I) IF(K.LT L) B(K,L) = B(K,K) 5 CONTINUE	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(SO), $B(36,36)$, $H(100)$ DO 2 I=1.H 2 A(I) = $H(2*1)$ DO 3 I=1.M E(I,I) = 0.0 DO 4 J=1.I B(I,I) = $B(1,I) + H(2*J-1)$ CONTINUE DO 5 K=1.H DO 5 K=1.H TF(K.Eq L) GO TO 6 IF(K.GT L) $R(K,L) = B(K,K)$ CONTINUE	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H, B, M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M B(I,I) = G.9 DO 4 J=1,I B(I,I) = B(I,I) + H(2*J=1) CONTINUE DO 5 K=1,H DO 6 L=1,H TF(K.EQ L) GO TO 6 IF(K.GT L) $R(K,L) = B(L,I)$ IF(K.LT L) $R(K,L) = B(K,K)$ CONTINUE	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H, B, M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*t) DO 3 I=1,M B(I,I) = 0.0 DO 4 J=1,I B(I,I) = B(t,I) + H(2*J-1) S CONTINUE DO 5 K=1,H F(K,Eq L) GO TO 6 IF(K,GT L) R(K,L) = B(L,I) IF(K,LT L) R(K,L) = B(K,K) CONTINUE	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE 4 CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,M 2 A(I) = H(2*t) DO 3 I=1,M 2 A(I) = H(2*t) DO 3 I=1,M 2 B(I,I) = 0.0 0 DO 4 J=1,I 3 B(I,I) = B(t,I) + H(2*J-1) S CONTINUE DO 5 K=1,M 1 F(K,EQ L) GO TO 6 IF(K,GT L) R(K,L) = B(L,I) IF(K,LT L) R(K,L) = B(K,K) CONTINUE DO 7 K=1,M	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE 4 CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M 2 C(I) = H(2*I) DO 3 I=1,H 2 C(I) = H(2*I) 2 CONTINUE DO 5 K=1,H 3 CONTINUE DO 5 K=1,H 3 C(I) = B(I,I) + H(2*J-1) 3 CONTINUE 3 CONTINE 3 CONTINE 3 CONTINE 3 CONTINE 3 CON	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE A CHEN-SHFTH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) B D0 2 I=1,M A A(I) = H(2*I) D D0 3 I=1,M B C(I,I) = G.9 D D0 4 J=1,I B C(I,I) = B(I,I) + H(2*J-1) C CONTINUE D D0 5 K=1,II D D0 5 K=1,II D CONTINUE D D0 5 K=1,II D CONTINUE D CONTINE D CONTE D CONTINE D CONTE D C	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M B(I,I) = 0.0 DO 4 J=1,I B(I,I) = B(I,I) + H(2*J-1) 5 CONTINUE DO 5 K=1,H DO 6 L=1,H IF(K,EQ L) GO TO 6 IF(K,EQ L) B(K,L) = B(L,I) IF(K,LT L) $R(K,L) = B(K,K)$ CONTINUE DO 7 K=1,H DO 7 K=1,H B(K,L) ==E(K,L)*A(L)	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M B(I,I) = 0.0 DO 4 J=1,I B(I,I) = B(I,I) + H(2*J-1) 5 CONTINUE DO 5 K=1,H IF(K,EQ L) GO TO 6 IF(K,GT L) $R(K,L) = B(L,I)$ IF(K,LT L) $R(K,L) = B(K,K)$ CONTINUE DO 7 K=1,H B(K,L) ==3(K,L)*A(L) CONTINUE	· · · · · · · · · · · · · · · · · · ·
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M P(I,I) = G,O D0 4 J=1,I P(I,I) = B(I,I) + H(2*J-1) S CONTINUE DO 5 K=1,(I) DO 6 L=1,H IF(K,Eq L) GO TO 6 IF(K,Eq L) GO TO 6 IF(K,Eq L) R(K,L) = B(L,I) IF(K,LT L) R(K,L) = B(K,K) CONTINUE DO 7 K=1,H DO 6 L=1,H P(K,L) ==3(K,L) + A(L)	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORH THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M P(I,I) = 0.0 P(I,I) = 0.0 P(I,I) = B(I,I) + H(2*J-1) S CONTINUE DO 5 K=1,H P(K,Eq L) = R(K,L) = B(L,I) IF(K,Eq L) $R(K,L) = B(K,K)$ CONTINUE DO 7 K=1,H P(K,L) == F(K,L) + A(L) CONTINUE	
	SUBROUTINE CHMAT(H,B,M) JBPOUTINE TO FORH THE CHEN-SHIFH MATRIX (BA) GIVEN THE CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50), B(36,36), H(100) DO 2 I=1,H 2 A(I) = H(2*I) DO 3 I=1,M P(I,I) = 0.0 DO 4 J=1,I P(I,I) = B(I,I) + H(2*J-1) S CONTINUE DO 5 K=1,II DO 6 L=1,II IF(K,Eq L) GO TO 6 IF(K,Eq L) B(K,L) = B(L,I) IF(K,LT L) B(K,L) = B(L,K) CONTINUE DO 7 K=1,II DO 8 L=1,M B(K,L) == $F(K,L) + A(L)$ RETURN	
	SUBROUTINE CHMAT(H,B,M) JBROUTINE TO FORM THE CHEN-SHIFH MATRIX (BA) GIVEN THE A CHEN-SHETH COEFFICIENTS (H). DIMENSION A(50),B(36,36),H(100) DO 2 I=1,H 2 A(I) = H(2*t) DO 3 I=1,H 8 (I,I) = 0,0 DO 4 J=1,I B(I,I) = B(t,I) + H(2*J-1) 5 CONTINUE DO 5 K=1,H 16 (L,I) = B(t,I) + H(2*J-1) 5 CONTINUE DO 6 L=1,H 17 F(K,Eq L) GO TO 6 IF(K,GT L) $R(K,L) = B(L,I)$ IF(K,LT L) $R(K,L) = B(L,I)$ IF(K,LT L) $R(K,L) = B(K,K)$ 6 CONTINUE DO 7 K=1,H 3 B(K,L) ==5(K,L)*A(L) CONTINUE B(L,L) = 0,0 CONTINUE DO 7 K=1,H 3 B(K,L) ==5(K,L)*A(L) CONTINUE RETURN FND	

•

SUBROUTINE FIDDLY(A, B, C, M, H, IPT) C Č SUBROUTINE TO MULTIPLY TWO POLYNOMIALS A, B OF LENGTH M, N C C RESPECTIVELY TO FORM & THIRD POLYNOMIAL C OF LENGTH IPT, WHERE IPT IS SET TO BE H+H-1 BY THE USER. DIMENSION A(M), B(N), C(IPT) DO 1 1=1, IPT $1 \quad c(I) = 0, 0$ JC = 0 2 JC = JC+1IP = JC+1IF (JC. GT. IPT) RETURN IA = 03 (A = IA+1 IF (IA. GT 11) GO TO 2 IB = 0 $-4^{-10} = 18+1$ EF(IB.GT.H) GO TO 3 IF((1A+1B).NF. 1P) GO TO 4 C(JC) = A(IA) * B(JB) + C(JC)GO TO 3 - - --END SUBROUTINE FUDDLE(C,KC,KT,ZP) Ċ - č THIS ROUTINE ORGANISES THE MULTIPLYING OUT OF A TRANSFER FUNCTION Ĉ IN POLE ZERO FORM TO A RATIO OF TWO POLYNOMIALS. C "DIMENSION A(50), n(3), C(50), ZP(50) $\kappa = 0$ IF(KC.E0.0) GO TO 1 2 K = K+2 IF (K.NE 2) 90 TO 3 A(1),C(1) = 7P(K+1)*+2 + ZP(K)++2 A(2),C(2) = -2.0+ZP(K+1) $A(3),C(3) = 1_0$ $M_{1}IPT = 3$ ---- C 4 IF (K.EQ KC) GO TO 1 CO TO 2 C 3 B(1) = 7P(K-1)**2 + 7P(K)**2 B(2) = -2.0*7P(K-1)B(3) = 4,0N=3 1PT = M+N+1 C CALL FIDDLY(A,8,C,H,N,IPT) M = IPT 00 5 I=1.11 5 A(I) = c(I)GO TO 4

1 K = K+1IF (K.GT KT) RETURN IF(K.EQ 1) GO TO 7 Ĉ -B(1) = -7p(k)B(2) = 1.0N=2 IPT = M+N+1CALL FIDDLY(A, D, C, H, N, IPT) M = IPT DO 8 1=1,4 ~ 8 A(I) = c(I)60 70 1 7 A(1),C(1) = -ZP(K) A(2),C(2) = 1.0 $M_{J}IPT = 2$ 60 TO 1 FND SUBROUTTHE MARGOT(II, BA, V, H, THAX, NR, IV, VX, CHEN) ŝ 037 DIMENSION AC(400), CHEN(100), VX(40), BA(36, 36) DIMENSION 0(40,40),R(40,40), F(40,40,2) DIMENSION D(40), TV(40), V(40), REINT(20) EQUIVALENCE (a(1), F(1601)).(R(1), F(1)) C LOAD QC WITH THE REQUIRED PARTITION OF THE SYSTEM MATRIX. TTTDO 300 TA=1.H TC = N*(IA-1) DO 300 TB=1,N 300 QC(IB+IC) = BA(IB,IA) --- C C FORM THE INITIAL STATE VECTOR AS VX/QC. Ċ $NA = N \star H$ N1 = N CALL F4SOLVF(CC,VX/N,NA,N1,1,DUN,IDUM,IT,RFINT) C LOAD Q WITH THE REQUIRED PARTITION OF THE SYSTEM MATRIX. - - - C - -DO 301 TA=1.N DO 301 18=1.N $\frac{301}{C} = \frac{301}{C} + \frac{30$ NT = N -NLFNT-N-1 - - ----QTHRO = 1.0VT07 = 1.6 STAYP = 0.04 203 rc=1,0F+76 00 1 I=1,N D(1) = -Q(1, 1)--- č CC IS MINIMUM STAGE TIME CONSTANT Ċ POSITIVE STAGE THROUGH FLOWS IN D. DIAGONALS OF Q MADE ZERO Ĉ IF(ABS(V(I)).GE_1.0F-10) CC=AHIN1(CC,ABS(V(I)/D(I)))

```
1 Q(I,I)=0.
с -
                     CALCULATION OF TIME INCREMENT
L - - - Č.
                     CONSTRACT DT TO FIT IN VITA NORMALISED TIME PRINT OUT INTERVAL
                     URITE(2,399) H, VTOT, STAYP, CC, OTHRO

      IRITE(2,399) H, VTUT, STAYP, GU, WINKU

      399 FORMAT(21HOPRINTOUT INCREMENT =, G15.5/

      1
      17" V-SCALE FACTOR =, G15.5/

      2
      18" ACCURACY FACTOR =, G15.5/

      3
      27" MININUM DIAGONAL FLEMENT =, G15.5/

      4
      17H O-SCALE FACTOP =, G15.5)

      IX=(1.+DIM (ALOG(H*VTOT/(-ALOG(STAYP)*CC*QTHRO))/ALOG(2.), 0.))

      DT=H/(2.**IX)*VTOT/QTHRO

                STAYP=EVP(-ot/CC)
  C IF V IS ZERO MAKE EXP(=D/V+DT) ZERO, (1=EXP(=D/V+DT/2))/D IS
DO 3 I=1,4
IF(ABS(V(I))_GE_1_0E=10) V(I)=EXP(=D(I)+DT/(2,+V(I)))
       IF(ABS(V(I))_GE_1_0E=10) V(I)=EXP(-D(I)+DT/(2,+V(I))

3 D(I)=(1 +V(I))/D(I)

C MAKE TRANSITION MATRIX, CC IS (1.0=EXP(-D/V+DT/2.))/D

DO 4 I=1-NT
   DO 4 1=1,NT
        IF(I-N-1)0,8.10
CC=(1.0-V(I))+D(I)
                                                          - - - ---
       GO TO O
8 CC=DT

10 q(I,I),v(I)=1.0

9 DO 5 J=1,N

CD=0.
                                                      -----
        DO 6 K=1,1

      D0 6 K=1,H

      6 CD=CD+D(K)+Q(I,K)+Q(K,J)

      5 R(I,J)=CC+(CD+V(J)+Q(I,J))

      4 P(I,I)=R(I,T)+V(J)+V(I)

      6 C FINDING THE 2**H TH POWER OF THE TRANSITION MATRIX R IN F

      1 D0 37 M=1,IX

      1 L=3-L

      1 D0 37 I=1,NT

      ATR=ELOAT((T+NIL)/NT)

  ATR=FLOAT((1+NL)/NT)
DO 37 J=1,N
          CA=0.
DJ 38 K=1.N
                                               -- -- -
        38 CA=CA+F(1,K,Lt)*F(K,J,LI)
 38 CA=CA+F(I)K, U(J+F(G), J, U)

37 F(I, J, L)=CA+ATR+F(I, J, LI)

NS=N-NR+1

C NRITE OUT COLUMN HEADINGS

WRITE(2,103) QTHRO, VTOT, STAYP, IX
         103 FORMAT (17HOTH ROUGHPUT RATE , G12,4/
    2 3H M=, T3//3X, 4HTINE, 6X, 8URFSPONSE/)
        - C - -
        - C LOAD ISV FROM VX INTO V.
    -- C
                 ° DO 303 T=1+NT
    -303 V(1) = vX(1)
                                                       - - - - - -
    ---- C
      . .......
                    `TIHE=0.
    -----
                     DO 32 I=1,NT
00 52 1=1,41

32 D(1)=V(T)

DUM = 0 0

97 WRIJF(2,102) TIMF,DUM

00 45 J=1,4T
```

	······································	FORMAT(58 2 48.10612 4)
		TE(TIME GE.TMAX) RETURN
	L C	CALCULATE RESPONSES
		DO 42 I=1, NT
		CB=0,
	,	DO 43 J=1,1
	43	CB=CB+V(J)*F(I,J,L)
	-42	D(I)=CR+FLOAT((I+NL)/NT)+V(I)
	• • • • • • • • • • • • • • • • • • •	TIME=TIME+#
		DO 304 1=118.NT
	304	OC(I) = D(IV(I)) - VX(I)
	L	9011 = 0.0
		DU 542 [#NS,NT
	302	2=1=N2+3
	·	
	L	FND
¥	arter de la company e prove a se a se	
A K	1	SUBROUTINE RESPON(11, BA)
SPA	C	
5	C	
11		DIMENSION H(100), BA(36,36), V(40), IV(40), VX(40)
1	C	
	·	REAU(1,1) AMIN, NHAX, ISTEP, THAX
	· · · · · · · · · · · · · · · · · · ·	
	с	
		WRITE(2.4) T
	Landerson and an an an an an an	DO 3 J=1,1
	······································	VX(J) = 1.0
		Y(J) = 1,0
	<u> </u>	IV(J) = J
	<u> </u>	
	·	NK = 1 Toth Mascott Da V. Noved Thay to tv uv uv
	C	CAPE HARGOLITIBATALLELELUCATINKITALAVALUT
	, <u> </u>	CONTINUE
		STOP
	1	FORMAT(210,2F0.0)
	4	FORMAT(49H1DREDICTED RESPONSE FOR CHEN-SHIEH MODEL OF ORDER,13
		END ///)
÷		SUBDOUT THE CHICKLARD C.N.M.KN
ۍ ب		
1.10	Č TH:	IS ROUTINE PERFORMS THE DIVISION OF ONE POLYNOMIAL BY ANOTHER.
Ę.	C TH	E POLYNOMIALS ARE IN ASCENDING POWERS OF S. RESULT IS HELD IN (
Ξ	C	
		DIMENSION A(M), B(N), C(K)
	C	
		JI = N JC(0. Cm (N) (1440
	••••••••••••••••••••••••••••••••••••••	C(1) = A(1)/B(1)
•		⁻ D = C(1)
	**************************************	DO 1 I=2, J1
	1	$C(I) = A(I) - D \star B(I)$
	C	
	· · · · · · · · · · · · · · · · · · ·	IF(II.EQ N) RETURN
_		IF(M.GT N) GO TO Z

٠

~

•

•

-326-

C.				
DO 3 I = J1+1.N			.	
3 c(1) = -D * B(T)	-			-
RETURN			- + •	
· ····· · · · · · · · · · · · · · · ·	-			-
2 p0 4 I=11+1 M	-	· · ·	-	
4 C(I) = A(I)			-	
C				
RETURN	÷ -		*	
END				

í...

A8.2 Data.

The program accepts as data the following information:-

1)	The number	r of calculations to be performed.
2)	A paramet	er IP. If the polynomials are to be entered
-	in factor	ed (pole-zero) form then IP is set to 1. If
	the start:	ing point is to be the polynomial coefficients
	then IP is	s set to 2.
3)	For IP =	l :
.,	ALPHA	a scaling factor normally set to 1.
	KC	the number of complex poles.
	КT	the total number of poles.
	ZP	the poles themselves. This item consists of
		KT numbers. For a complex pair a+ ib only a
		and b need be given.
	For IP = 2	2 3-
	N	the order of the numerator polynomial.
	М	the order of the denominator polynomial.
	ALPHA	a scaling factor normally set to 1.
4)	NHIN	the lowest order Chen-Shieh model response
		required.
	NMAX	the highest order model required.
	TSTEP	the print out interval.
	TEAX	maximum response time.
	-	

If more than one calculation is to be performed the above data is repeated from item 2).

A8.3 Results.

* 6-

These are self-explanatory and include a data check. An abbreviated example is given overleaf.

, <u>,</u>

NUMERATOR COEFFICIENTS INTERMEDIATE OUTPUT RUN 1 -0.149447F 50 -0.5539488 49 -0.332800E 50 -0.277782E 50 -0.677570F 40 -0.228626E 50 -0.420117E 44 -0.532176E 45 -0.148091E 49 -0 295799E 48 -0.454248E 47 -0,548994E 46 -0.227640F 36 -0.671887E 40 -0.256949E 39 -0.830911E 37 -0.273383E 43 -0.148036F 42 -0.240071E 29 -0.278958E 27 -0.267672E 25 -9.172310E 31 -0.528543E 34 -0.100872E 33 -0.588687E 13 -0.935587E 10 -0.230947E 16 -0.635412E 18 -0 130710E 21 -0.209219E 23 -0.695142E 07 DENOMINATOR COEFFICIENTS -0.394959F 52 -0.184536E 52 -0.620936E 52 -0.604598E 52 -0.105011F 52 -0 380974F 52 -0.954154E 47 -0.362233E 50 -0.611427E 49 -0.840678E 48 -0.642832E 51 -0.172056E 51 -0.604696E 40 -0.489098E 44 -0.283288E 43 -0.140937E 42 -0.903974E 46 -0.721594E 45 -0.102842E 33 -0.187462E 31 -0,201638E 36 -0,488852E 34 -0.2244348 39 -0.7220898 37 -0,466026E 25 -0,461470E 23 -0.385850F 21 -0 269441E 19 -0.2953478 29 -0 400748E 27 -0.140461E 07 -0 172383E 04 -0.261983E 12 -0.720859E 09 -0.7186758 14 -0.154879E 17 -0.100000E 01 0.154981E 03 CHENMSHIEN COFFFICIENT NO. 1 = 0.254277E-01 CHEN-SHIEH COFFFICIENT NO. 2 = -0.687377E 02 CHEN-SHIEH COFFFICIENT NO. 3 = CHEN-SHIEH COFFFICIENT NO. 4 = -0.1307998-01 etc.

-329-

Ť

C	HE	N =	SH	I	E	Н	MATRIX	•
	•							

~

•

2

					· · · · · ·	
OW 1	-0.594081F 01	0.202714E 01	0.342586E 01	0.659798E-02	-0.118098F 01	-0 5643058 00
	0.358187 F=01	-0.1457878-01	-0.150987E 00	0.183509E 00	0.138603F 00	0 5042745-01
	0.6760255-02	-0.1005908-01	-0.491859E-02	0.103633F-02	0 3073655-01	-0 350394E-04
	-0,856683r-02	0.793650E-02	-0.252776E-02	0.1043175-02	#0 860/23c_03	
	0.3965436-04	-0.1141406-05	0.173187E-04	-0.8532285-05	-0.1502/0E_07	
	-0.4643625-07	0.927386E-08	-0.291847E-09	0.753511F-10	=0 Q05740E_42	
	_				0./0/////6416	V.3626028-0
0W 2	-0.394081F 01	0.112806E 01	0.190641E 01	0.367162E-02	-0 657187= 00	-0 3151865 00
	0.1003206-01	-0.8112699-02	-0.840208E-01	0.102119E 00	0 7712045-01	0 2806175-04
	0.3761925-02	-0.559763E-02	-0.273708E-02	0.5766916-03	0 1710/16-01	-0 10/095-01
	-0.476727F-02	0.4444305-02	-0.140664E-02	0.580500F-03	-0 483814c-03	0 9/4/605-0/
	0.2206675-04	-0.6351635-06	0.963745E-05	-0.474802F-05	=0 836104r_08	0 2274508-04
	-0,254407e+07	9.510069E-08	-0.167406E-09	0.419312F-10	=0.504040F-12	0 213021=44
NOW 35	-0.394081¢ 01	0.112806F 01	-0.930720F 01	0.362051= 00	+0 112204= 02	-0 158641E 02
	-0.469462F 01	0.641195F 01	0.508454F 02	-0.546644F 02	=0 474661= 02	-0.1000-12 02 -0.2428975 02
	-0.122441# 02	-0.330098E 00	-0.125858E 02	-0.128963F 02	0 528910= 03	-0.6001695 03
	=0.325341= 03	0.268650E 03	-0.104235E 03	-0.282841F 03	0 216733# 03	-0 648396E 02
	-0.134850F 03	-0.8656798 01	-0.182841E 03	0.509986F 02	=0 127969E 02	-0 122337F 03
-	TU.839824F 02	-0.124286E 03	-0.820398E 02	-0.143188F 03	0 1735788 03	-0 733587F 03
-						
20W 36	-0.204081F 01	0.112806F 01	-0.930720E 01	0.362051F 00	-0 112204F 02	-0 158641F 02
	-0.469462F 01	0.641195E 01	0.508454E 02	-0.546644F 02	-0.474661F 02	-0.242897F 02
- ·	-0.122441# 02	-0.3390982 00	-0.125858E 02	-0.128963= 02	0.528910F 03	-0.600169E 03
	-0.325341# 03	0.263650= 03	-0.104235E 03	-0.282841F 03	0 216735 03	-0.648396F 02
	HA 17 95AH AM	-0 020, 200 04	-0 4000/44 03	0 0000/- 00		
	- V. LO402VE (9)		ニット・シスクタルモ ひろう	0.307700E UZ	=0.127969E 02	-0.1223375 03

.

.

• ,

,

-330--0

PREDICTED	RESPONSE FOR CHEN-SHIEH MODEL OF ORDER	
		-
PRINTOUT	INCREMENT = 0,50000E=01	
V-SCALE F	ACTOR = 1.0000	
ACCURACY	FACTOR = 0.94000	
MINIMUM D	$\frac{1}{4000} = 0.25375$	
MHOUNDE F	Actor = 1.0900	
THROUGHPU	Y RATE= 1.000	
TOTAL VOL	UME= 1.000	
STAYP= 0	.9510	
M= 2		
TIME	RESPONSE	
0.00	0.0000F 00	
0.05	- 0.0 ⁰ 24E=03	
0.15	0.1///4E=02	
0.20	0.22235-02	
0.25	0,27008-02	
0.30	0.3145=02	
0.35	0,3559E=02	
U.49 -~~~ 0 /5 -	0,5443E+02 7 A /2578+05	
0.50	0.46778=02	
0.55	0.49205-02	-
0.60	0.5191E-02	
0.65	0.5438F=02	
0.70	0.5640F-02 A 52505-02	
0.80	0,5039F=02	
0.85	0.61965-02	
0,90	0,63368-02	
0,95	○○○0,6458兵=02	
1.00	0,0065F=02 0,2654=00	
1 .10	0.6734F=02	
1,15	0.67998-02	
1.20	0,68536=02	
1.25	0,48268-02	
1,50	0,6930F=02	
- 1.35	0,0750E=02	
1.45	0.6985F=02	
1,50	0, 6991 E-02	
1,55	0.6991 -02	
1,61	0,6987F=02	
- 1,05 - 1,70	4.0°745+02	
1.75	0.6954F=02	
1.80	0,6937F+02	
1.85	0.0919E-02	٠
1.90	0.62995-02	
1.95	1,0078F#97	

	4 100923			-1.85772	
				-2 02705	
	-7.02703	Δ.		-2 0.07/5	
	-2.50740	$K = -10^{-1}$		-7 64906	5
					$K = -10^{-10}$
	-3.80107			73.77634	
	-7.47379			4/.4/5/1	ETGENVALUE DROBUCT #
	-11.4153	EIGENVALNE PRODUCT =		-11.4254	EINENNALDE PRODUCT -
	-16_3374			H16.9(14-2	A 40A992497500 07
	-20.2181	0.12088211971E 55		-20.0810	0.140006174228 30
	-27.7684			+27,763	
	-40.0644			-49.0462	
	-49.5135			40,4932	
	-57.0219			-56.9947	
	-60.0242			-60.0341	
	-70 7442			-70.7450	
	-75 5202			-75.5391	•
	-87 2043			-87.2047	
	-448 673			-105.856	
				-148-585	
				-268 254	
20 40/5	HK10.624	476 7070 -	58 6403		+55.0467 ;
20 1000		T 32. (139 L 75 7070 -	59 6403		-55 0467 :
48.1363			-27 0/00		13 64056 -
-41.4356		+3.25407 2	-27 0100		-3 64057 :
=41,4856		#3,75407 J	-20 2027		17 05115 1
- 27.5378		+10.0654 元	-20 2007		-7 05045 -
-27.3838		-10.0654 i	-28.3987 In 7050		
-34.0044		+11.1350 -			47.7(120 Ju 2.07470 J
-34,0044		-11.1750 i .	-33.7305		T .0105 L
-39.9422		+8.83434 2	-38,6661	•	47.09105 0
-39.9422		-3.83434 L	-38,6661		7.09185 2
-43.9726		+3.54508 J	-41. 8099		+2.78/91 i
-43.9776		-3.54508 L	-41-8000		=2.78791 ±
-53.7956		+77.0118 i	-47.6747	-	+121.050 j
-33.7556		-77.0118 i	-47.6747		=121.350 L
-162.402		+56.3943 2	-184.160		+94.8261 L
-162.402		-56,3943 2	-184.160		-94.3261 J

ø

APPENDIX 9.

SAMPLE CONVERGENCE FOR THE ZERO ESTIMATION METHOD OF DAVISON.

-332-

٠

ř

-20.0421 -26.7905 -16.9983	PRODUCT
-27.7125 -28.7905 -20.0300	1515e 59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

•

٠

.

٠

,

.

ì

Ŧ

	-1725893		******	
•	-2 0/231		1937.74	
	-2 2:04707		110.676	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Vint	#1.7621J	<i>ci</i> 19
	7,00220	X4-10	-2.01720	K=-10
	- M3.02639 	RIGENVALUE PRODUCT -	-2.83727	MTCHINELUM ANADIME A
	44 1073	Excentrate Paulout H	-3.65231	EIGEDAVCHE BRUDDCL #
	411.4870	0.12189417069F 60	-4.00087	0.121178028095 61
			<b>#7.6110.5</b>	
	-71.5479		-11.0750	
	-21.8040		-16,9745	
	441.9879		-20,1459	
	49 2970		-23.14801	
	-56,3750		-36.2509	
	-60.4364		-30,7146	
	-70-2946		-40.8036	
	=75.9(14)		-43.7701	_
	-87.1790		+56:5481	•
	-105.850		-61.1431	
	-148.604		-72,2301	
	-619.499		-73.8584	
397.228		+228,026 2	-87.1261	
397.228		=228,026 £	-105.852	
34.0357		+512.244 2	-148.662	
34.0357		=512.244 1	-2348127	
-26.3250		+ 5. 14668 2	42.6790	+1999.49 2
-26.3270		#5.14068 J	42.6790	#1999.49 ±
-30,2529		+7.00125 2	-26.7701	+3.96045 j
-30.2529		⊷7.00125 ش	-26.7701 -	=3.96045 <u>1</u>
-34.2573		+6.87711 2	-29,7266	+8.74161 2
-34,2513		-6.87711 £	-29.7266	#3.74161 J
-37.0161		+5.85909 i	-34.9100	+6.97182-0
-37.0141		ىد 5،85109-	-34.9100	-6.97182 i
-40.1213		+3.64776 2	-39,2475	+4.406151
-40.1213		-3.64976 £	-39.2435	-4.40615 1
-418.833		+413,308 i	-190.060	+151.274 1
-418.833		-413,308 E	-190.060	-151.274 ÷

٠

.

-334-

;

~

٠

1

¢

Feed composition vector = (0.60, 0.01, 0.39).

1

.

Plate	x	x	x	У	У	У	K	K	K	
0	0.9999E0	0.1454E-3	0.1797E-5	-	•	·				
1	0.9995E0	J.4865E-3	0.2420E-4	0.9999E0	0.1454E-3	0.1797E-5	0.1000E1	0.2977EO	0.7424E-1	
2	0.9987E0	J.1110E-2	0.1886E-3	0.9997E0	0.3325E-3	0.1402E-4	0.1001E1	0.2980E0	0.7432E-1	
3	0.9903EU	0.2259E-2	0.1391E-2	0.9992EU	0.6749E-3	0.1037E-3	0.1003E1	0.2987E0	0.7456E-1	
4	0.9857E0	U.4293E-2	0.1002E-1	U.9979EU	0.1298E-2	0.7594E-3	0.1012E1 -	0.3025E0	0.7578E-1	
5	J.927UEJ	0.7400E-2	0.0560E-1	0.9921E0	0.2408E-2	0.5467E-2	0.1070E1	0.3254E0	0.8334E-1	
6	0.7000EU	J.9199E-2	U.2846EU	0.9601EJ	0.4102E-2	0.3578E-1	0.1360E1	0.4460E0	0.1256E0	
7	U.7056EU	0.9352E-2	0.285JEU	0.960020	0.4173E-2	0.3583E-1	0.1361E1	0.4462E0	0.1257E0	
8	0.7034E0	<b>い。9898王-2</b>	0.2807EU	0.9594E0	0.4431E-2	0.3620E+1	0.1364E1	0.4477E0	0.1263E0	
9	0.685E0	0.1168E-1	0.2998E0	0.9556EU	0.5349E-2	0.3901E-1	0.1388E1	0.4581E0	0.1301E0	
10	0.5982EU	0.1567E-1	0.3861E0	0.9306E0	0.8340E-2	0.6106E-1	0.1556E1	0.5323E0	0.1582E0	
B	0.3334EU	0.1057±-1	0.6500E0	U <b>.</b> 7787E0	0.1505E-1	0.2062EJ	0.2336E1	0.9086E0	0.3172E0	•

The molar flowrates are the same as for the system given in Chapter 8.

,

;

A DISTILLATION SYSTEM USED TO DEMONSTRATE A POINT IN CHAPTER 10.

.

APPENDIX 10.

• . . • • , . • ,