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ABSTRACT
Safe manual driving performance following takeovers in con-
ditionally automated driving systems is impeded by a lack
in situation awareness, partly due to an inappropriate trust in
the system’s capabilities. Previous work has indicated that
the communication of system uncertainties can aid the trust
calibration process. However, it has yet to be investigated
how the information is best conveyed to the human operator.
The study outlined in this publication presents an interface
layout to visualise function-specific uncertainty information
in an augmented reality display and explores the suitability
of 11 visual variables. 46 participants completed a sorting
task and indicated their preference for each of these variables.
The results demonstrate that particularly colour-based and
animation-based variables, above all hue, convey a clear order
in terms of urgency and are well-received by participants. The
presented findings have implications for all augmented reality
displays that are intended to show content varying in urgency.

Author Keywords
Augmented reality; automated driving; reliability; trust;
uncertainty; visual variables.

CCS Concepts
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INTRODUCTION
Vehicles equipped with automated driving systems (ADSs)
promise advancements in road safety and efficiency while
simultaneously invoking a significant shift in the driving expe-
rience of human operators [24]. In current passenger vehicles,
the primary task of human operators is the complete execu-
tion of the dynamic driving task (DDT). In future vehicles,
however, the significance of this task might shift and other,
now secondary or tertiary tasks, may become more prominent
and replace the driving task as foremost activity [25]. For
the foreseeable future, human operators are expected to be
fallback-ready and perform the DDT in cases of system fail-
ures or other critical situations within a reasonable amount
of time [8, 42]. Previous research has indicated that it is
beneficial to communicate the uncertainties of a system to
prepare users for such takeovers despite the engagement in
non-driving related tasks (NDRTs) [1, 16]. The existing pro-
posals, however, do not explore various display formats but
solely rely on visual information presented in the instrument
cluster. This requires users to constantly shift their attention
between road, instrument cluster, and NDRT, leading to an in-
creased probability of missed critical events. Further, optimal
ways of presenting information about the system’s uncertainty
regarding specific functions, e. g. lateral control, have yet to
be explored. Addressing these shortcomings, this publication
presents an initial evaluation of variables for an augmented
reality (AR) based visual uncertainty display.

RELATED WORK
Automating systems under the expectation that a fallback-
ready user can resume the previously automated task in case of
system failures entails several human factors challenges, fore-
mostly a lack in situation awareness at the time of a takeover
[7]. To support users with the acquisition and maintenance
of situation awareness, their attention management can be
influenced through trust calibration [17, 39]. Lee and See
[27] identified three essential aspects for achieving appropri-
ate trust: calibration, resolution, and specificity. Calibration
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refers to the agreement between the user’s trust in automa-
tion and the capabilities of the automation. Resolution is the
degree to which the user’s trust judgement differentiates dif-
ferent capability levels. Specificity refers to the degree of
differentiation between different components or aspects of the
trustee and includes functional and temporal specificity. The
former relates to the differentiation between different func-
tions while the latter describes the sensitivity to changes. A
combination of calibrated trust as well as a high resolution
and specificity can potentially alleviate both disuse and misuse
of automated systems. Systems can support the user with the
acquisition of appropriate trust by providing information along
the dimensions abstraction and detail. Abstraction refers to
information regarding the performance, process, and purpose
of the automation [26], with the former being the most crucial
[18]. Detail describes the entity that is to be trusted, rang-
ing from the overall system to its single functions and modes.
System-wide trust theory suggests that users merge their trust
across multiple aids, independent of their individual reliabil-
ity levels [23, 11]. This is problematic as the user’s distrust
of an unreliable function might affect other highly reliable
functions and might lead to the unreasonable disuse of these.
No publications are known to the authors of this publication
that investigate the impact of explicitly communicating the
reliability levels of different vehicle system components or
functions on operator behaviour and if communicating reliabil-
ity can ameliorate the contagious effects, justifying the need
for developing a function-specific display to explore this.

Benefits of Uncertainty Communication
Recent research has investigated the impact of communicating
the overall uncertainties of automated systems in the automo-
tive domain. Beller et al. [1] explored the communication of
uncertainties by displaying a schematised uncertain face in the
instrument cluster in critical situations. The results indicate
that communicating uncertainties improves both driving safety
following takeovers as well as operators’ monitoring behaviour.
As such, minimum time-to-collision figures were significantly
lower for participants that were presented with the uncertainty
information compared to those who did not have this informa-
tion available. Further, secondary task performance indicated
that participants of the experimental group directed their at-
tention more to the field relevant for driving (FRD) in critical
situations than the control group, potentially explaining the
difference in takeover performance. Supplementing this work,
Helldin et al. [16] presented uncertainty information with a
higher resolution in the form of seven bars in the instrument
cluster, with each bar representing one level. Participants to
which this information was available were able to take over
the DDT faster and were also able to perform NDRTs for a
longer time than the control group. Corresponding with these
findings, the benefits of presenting uncertainty are reaffirmed
by publications in other domains such as aviation and military
[6, 10, 33, 47].

The previous work is limited in that the presented solutions
require users to shift their focus towards the instrument cluster
in order to gain knowledge about the system’s current uncer-
tainty. While this has already benefited the practicability of
NDRTs [16], solutions that present the information without
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Figure 1: Extended set of visual variables, increasing uncer-
tainty from left to right: (a) position, (b) size, (c) shape, (d)
value, (e) orientation, (f) hue, (g) grain, (h) arrangement, (i)
saturation, (j) crispness, (k) transparency, (l) resolution [31]

requiring the user to glance towards the instrument cluster
might further improve this. Additionally, none of the existing
solutions investigate the communication of uncertainties with
a higher functional specificity.

Methods of Communicating Uncertainty
Besides showing the general benefits of communicating un-
certainty, the best suited methods for conveying uncertainties
need to be investigated. Noah et al. [36] explored the use of
human-centric and system-centric reliability displays in the
context of automated lane keeping and compared different
display types, namely qualitative, quantitative, and represen-
tational displays. Their findings indicate a similar matching
accuracy of the different display types and suggest that partic-
ipants can more readily match system-centric displays with
intended reliability levels. To facilitate the practicability of
NDRTs in automated driving, Kunze et al. [24] proposed the
unobtrusive communication of uncertainties using a combi-
nation of haptic seat feedback and peripheral lighting. In a
military context, Neyedli, Hollands and Jamieson [35] investi-
gated visual displays varying in display type (random mesh,
pie) and proximity (separated, integrated) for showing tar-
get identity and corresponding system reliability information.
Their findings indicate that integrating the reliability infor-
mation leads to more appropriate reliance. Additionally, it
was shown that the graphical display of uncertainty is equally
effective as verbal or numerical communication [10, 47].

Graphically integrating uncertainty information with the af-
fected data is one of the major challenges within Geographic
Information Science (GIScience) [30, 38]. The use of ab-
stract, manipulable signs, also referred to as visual variables,
is a frequently employed strategy within GIScience. Initially
proposed by Bertin [3], the basic set of visual variables has
subsequently been extended, as of now including the following
(see Figure 1) [12, 29, 34, 28]:

(a) Position: alteration in the x, y, z location
(b) Size: alteration in area, length, or repetition
(c) Shape: changes in form
(d) Value: alteration in the relative lightness or darkness
(e) Orientation: alteration in the alignment
(f) Hue: alteration in the spectrum colours



(g) Grain: changes in granularity
(h) Arrangement: changes in regularity
(i) Saturation: alteration in the spectral peakedness
(j) Crispness: alteration in the boundary sharpness
(k) Transparency: changes in opacity
(l) Resolution: alteration in the spatial precision

(m) Movement: animated changes in position
(n) Frequency: animated changes in animation speed

With the exception of shape and arrangement, all of the vari-
ables are at least marginally suitable for communicating a
logical order [41]. MacEachren [31] investigated the intu-
itiveness of the presented visual variables for communicating
uncertainty in a geographical context. The results indicate that
particularly position (a) and crispness (j) provide a logical or-
der for communicating uncertainty, followed by value (d), size
(b), and transparency (k). The automotive domain can build on
these findings and further investigate the use of these variables
in a driving context, whereby the different connotation must
be considered. While uncertainty visualisation in geograph-
ical maps refers to the reliability of the underlying data, the
uncertainty information of an automated system refers to its
inherent reliability and infers the likelihood of a takeover. As
such, an increasing automation uncertainty implies a higher
urgency for human operators to focus their attention on the
current driving situation, whereas uncertain areas in maps may
be visualised with the opposite intention.

Display Formats, Visual Processing and Attention
It further needs to be addressed how the methods should be
applied, namely using which display type. Depending upon
the degree of abstraction, visual displays can be categorised
as digital, analogue, representational, or contact analogue [5].
Higher levels of abstraction are thereby thought to increase the
cognitive effort required for linking the presented information
to the real world, favouring contact analogue displays to keep
the mental workload low [5, 21]. While all of the mentioned
display formats can be used in a head-up display (HUD) that
projects information directly into the FRD, contact analogue
HUDs (caHUDs) superimpose information in positional and
temporal relativity to the environment, i. e. augmented real-
ity (AR) information, while the other displays are conveying
content detached from the surroundings. As a consequence,
drivers interacting with digital, analogue, and representational
displays on a HUD are not focusing their attention on the
road, but rather at the HUD content, leading to higher distrac-
tion levels and worse task performance despite a subjectively
higher rating compared to head-down displays (HDDs) [43].
This favours the use of caHUDs in the automotive domain,
as evidenced by various applications, including traffic aug-
mentation to increase trust in automated driving systems [49],
systems to improve object detection during nighttime [40, 19],
or providing visual information about the potential braking
path of a vehicle [44].

To facilitate both the quality and quantity of displayed in-
formation in visual displays, knowledge about perception is
essential [48]. Phenomena such as postattentive blindness,
change blindness, postattentive amnesia and memory-guided
search highlight that visual processing is critically influenced

Figure 2: Basic layout options (purple) for presenting longi-
tudinal (top) and lateral uncertainties (bottom) as overlays on
AR displays

by the viewer’s state of mind and attentional focus [13]. The
term visual attention is thereby used to delineate the processes
used to select areas for analysis. Repeated cycles of station-
ary eye periods, fixations, and rapid eye movements to new
locations, saccades, enable humans to see detailed informa-
tion of larger regions despite the limitation of only seeing
detailed colour and shapes in a small part of the visual field
at any given moment [13]. A limited set of visual features,
however, can be detected with a single glance via low-level
visual processes, often referred to as preattentive properties.
Among these preattentive visual features are size, orientation,
hue, density, luminance, and motion, showing some overlap
with the previously presented visual variables [22, 45, 46, 14,
20]. Preattentive processing is thereby hindered by the joint
presence of more than one visual feature, unless this is done
in a redundant manner. Further, the preattentive properties of
visual features are not equal but rather vary in their popout
capabilities, with colour, size, orientation, contrast, and ani-
mation having the strongest effects [48].

DEVELOPMENT OF AN AR UNCERTAINTY DISPLAY
The basic functions that an ADS has to execute can be sum-
marised as the DDT, consisting of tactical functions such as
the planning of manoeuvres as well as trajectories and opera-
tional functions, e. g. pre-cognitive, natural reactions. Similar
to currently available automation systems (lane assist, adaptive
cruise control (ACC)), the DDT can be split into a lateral and
longitudinal component [42]. These discriminable functions
can be used as a starting point for investigating the communi-
cation of function-specific uncertainties.

Following the findings presented in the previous sections, this
paper explores the communication of uncertainties regard-
ing the lateral and longitudinal vehicle motion using visual
variables in an AR display. Building on research conducted
within GIScience, the uncertainty information can be overlaid
on the FRD. To enable overlays, areas relative to the vehicle
movement must be defined, leading to three possible planes:
x-y, y-z, and x-z. Based on metaphors (e. g. crash barriers
for lateral uncertainty) and learned representations (e. g. ACC
for longitudinal uncertainty), the options shown in Figure 2
were generated. As the uncertainties are intended to be dis-
played simultaneously, the different layout options must be
compatible. A combination of lateral option B and longitudi-
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Figure 3: Interface layout for sorting (a) and rating session (b)

nal option B was chosen as this leads to clear visualisations
without interference, e. g. in the form of overlaps.

STUDY OBJECTIVES AND METHOD
The primary purpose of this study is to evaluate a large set of
basic visual variables regarding their suitability for communi-
cating lateral and longitudinal uncertainties. The suitability
is thereby determined by investigating the intuitiveness of or-
dering the variables and subjective preference ratings. The
results of this study enable the informed development of a
prototype interface for subsequent behavioural studies in a
driving simulator.

Participants
A total of 46 participants (16 female) with an average age
of 30.24 years (SD = 9.40) participated in the experiment.
All participants held a valid driving license for an average
of 10.11 years (SD = 9.14) and averaged an annual mileage
of 10,338.04 (SD = 28,999.64). Five participants indicated
to have used vehicles equipped with ACC or lane keeping
assistants. Participants received no monetary compensation
for taking part in the study.

Uncertainty Visualisation Method
The visual variables were selected based on their anticipated
ordinal characteristics [41] as well as their practicability in the
chosen layout. As such, variables a to n with the exception of
arrangement, shape, and resolution were included in the ex-
periment. Following a 3-step scale employed by MacEachren
[31] and using the previously presented visual layout options,
11 visual variables were used to convey low, medium, and high
reliability for each vehicle function, resulting in a total of 66
variations. These variations were placed into a generic driving
scene to generate context (see Figures 3, 4, and 5). The layout
option selected for lateral uncertainties is characterised by a
large overlay area and therefore affords the direct transfer of
the variables without further modification. In contrast, more
subtle variables such as changes in line orientation or grain
were not visible when using the chosen layout for longitudinal
uncertainties. Instead of lines, the orientation and grain of the
bars themselves was changed (see Figure 4, Orientation and
Grain). Further, the variable position was varied on different
axes. Regarding lateral uncertainty, the position was varied to
indicate a wider or narrower lane (changes in y-axis) while the
bars for longitudinal uncertainty were varied in their height (z-



Figure 4: Implementation of visual variables in the chosen layout options, ordered according to condition 1 with increasing
urgency from left to right for all static variables; intermediate steps were omitted to improve visibility in print (see Figure 1)



Figure 5: (Continued) Implementation of visual variables in the chosen layout options, ordered according to condition 1 with
increasing urgency from left to right for all static variables; intermediate steps were omitted to improve visibility in print (see
Figure 1)



Visual variables Lateral Longitudinal
Cond. Mean Mode SD Cond. Mean Mode SD

Position 1 0.5652 1.00 0.4197 1 0.8261 1.00 0.3157
Size 2 0.7536 1.00 0.4170 2 0.9130 1.00 0.2506
Value 2 0.8841 1.00 0.3115 2 0.9420 1.00 0.2168
Orientation 1 0.8116 1.00 0.2812 1 0.8841 1.00 0.2380
Hue 1 0.9565 1.00 0.1148 1 0.9855 1.00 0.0695
Grain 1 0.7536 1.00 0.4047 1 0.5217 1.00 0.4906
Saturation 2 0.9565 1.00 0.2085 2 0.9275 1.00 0.2453
Crispness 2 0.7681 1.00 0.4197 2 0.5942 1.00 0.4259
Transparency 1 0.9130 1.00 0.2881 1 0.8696 1.00 0.3444
Movement 1 0.9130 1.00 0.2506 1 0.7101 1.00 0.3379
Frequency 1 0.8986 1.00 0.2740 1 0.8986 1.00 0.2343

Table 1: Sorting scores for each variable and driving function for the higher scoring condition; Cond.: sorting condition with
higher mean score, condition 1 refers to the order shown in Figures 4 and 5, condition 2 means that the order shown in the figures
is reversed; Mean, Mode, SD: descriptive statistics for each variable in the indicated sorting condition

axis) to create the impression of barriers. Increasing urgency
levels (condition 1) for animation-based variables, movement
and frequency, were communicated with a higher speed or
flashing rate, respectively. Movement was implemented by an-
imating the position of the overlays analogous to the position
variable. A pilot study with 10 participants was conducted
to ensure that all levels for each variable can be confidently
distinguished.

Design
A 2 (driving functions, between) × 11 (visual variables,
within) mixed design was used to investigate the suitability of
the visual variables for each driving function. The order of the
levels within both groups was randomised and balanced.

Apparatus
The participants completed all tasks in a soundproof labora-
tory with controlled lighting conditions using a purpose-built
Universal Windows Platform application on a 27" display with
a resolution of 3840 × 2160. Introductory information as well
as all required instructions were embedded in the application,
with experimenters and chaperones being present throughout
all sessions for potential questions and comfort.

Procedure and Method
The experiment was split into two consecutive sessions, each
lasting approximately 15 minutes per participant. Each session
was introduced with a video summarising the purpose of the
session and explaining the instructions for the upcoming task.
The instructions ended with a sample question and partici-
pants were able to ask questions before starting with each task
series. After each task, the participants were presented with
an info screen that showed how many tasks were remaining
and allowed a short mental break. Further, participants were
required to click a button to proceed to the next screen in order
to ensure that the mouse position was centred for each task.

The first session was intended to evaluate to what degree the
different visual variables afford a consistent order. For this pur-
pose, participants were presented with 11 consecutive forced

choice sorting tasks (one for each variable, see Figure 3a),
with each task separated by the info screen. Participants had
to sort three different levels of each variable according to the
perceived urgency. The term urgency was chosen because pilot
studies revealed that participants struggled with the concepts
of system uncertainty and reliability, prompting a change to
a more familiar term that infers a higher takeover probabil-
ity. In addition to the sorting order, the time taken (response
time) for each ordering task was recorded as an additional
measure for intuitiveness [31], starting with the click of the
proceed button on the info screen and ending with the drop
of the last image on the task screen. The key objective of the
sorting task was to investigate which variables afford a higher
sorting consistency. A sorting measure for ordinal scales was
developed to gain a single parameter that characterises the
sorting consistency. The measure is based on the following
fundamental conditions:

Condition 1: Extreme A < Intermediate < Extreme B
Condition 2: Extreme B < Intermediate < Extreme A

Exclusively visual variables with ordinal characteristics [41]
have been selected, therefore a general order between two
extremes can be assumed, with the intermediate always being
between these two extremes. Each of these conditions have
three quantifiable requirements. To achieve a score of 100 %
for condition 1, for instance, Extreme A has to be placed left
of the Intermediate and both Extreme A and the Intermediate
have to be placed left of Extreme B (see Figure 3a). The
fulfilment of zero requirements leads to a score of 0 % while
the fulfilment of one or two requirements leads to 33.3 % and
66.7 % respectively. Swapping the Extremes A and B leads to
the requirements of condition 2. Thus, the sum of the scores for
each condition equates to 1.00. For each participant and visual
variable, a score for conditions 1 and 2 was recorded, with
the higher score indicating the potentially more logical sorting
direction. The mean scores across participants of each group
then indicate the sorting consistency and sorting direction.
Thereby, condition 1 refers to the order indicated by previous
publications, as shown in Figures 1, 4, and 5.
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Figure 6: Preference scores for each visual variable relative to the driving function. The mean for each visual variable is indicated
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The main purpose of the second session was to explore the
suitability of the variables for communicating uncertainties.
The variables may communicate a clear order, but could be
unsuited for this particular application. Figure 3b shows the
screen layout for the rating task, with the three levels of each
variable in the top half of the screen, ordered as previously
by the participant. The terms lateral and longitudinal were
substituted with steering the vehicle and braking and acceler-
ating to prevent misunderstandings. Further, a representational
illustration was displayed in the upper right corner to provide
additional clarification. Participants were asked to indicate
their agreement with a statement shown above the images us-
ing a slider-scale ranging from strongly disagree (0) to strongly
agree (100). A slider-scale was used instead of a Likert-scale
to improve interactivity and allow for more granular responses.
This was preferred over a pairwise comparison as that would
have required N·(N−1)

2 = 55 questions instead of 11, meaning
a higher workload for participants.

RESULTS
The responses of participants were collected and processed by
the purpose-built application and subsequently analysed in R.

Sorting Scores
Table 1 summarises the results. The mode of all variables was
either 1.00 or 0 depending on the sorting condition, indicating
a dominant order with a clear intermediate. The variable hue
achieved the highest sorting mean score in both the lateral

and longitudinal groups, with 0.9565 and 0.9855 respectively.
Further, it was also characterised by the lowest standard devia-
tion, suggesting a high sorting consistency among participants
irrespective of the driving function. The variables saturation,
transparency, frequency, and value were also characterised
by high sorting mean scores (> 0.8). The sorting direction
was consistent between groups, as indicated by the same max-
imum conditions for each variable. Compared with previous
research, however, the direction of the variables size, value,
saturation, and crispness was reversed.

Response Times
A 2 × 11 mixed-design ANOVA was conducted to assess
the effects of visual variables and driving functions on re-
sponse time. No main effect was returned either within or
between driving functions, suggesting that participants took
similarly long to complete the sorting task for each vari-
able between and within groups. However, a significant in-
teraction between driving function and variables was found
[F(1,10) = 1.989, p = .0328]. This interaction shows that
between groups, the response times for the visual variables
differed.

Preference Scores
Bartlett’s test returned non-significant differences in the vari-
ances between and within groups for preference scores. A
Shapiro-Wilk test and q-q plot indicated a non-normal distri-
bution, prompting the use of nonparametric statistics. Thus, a



Pos. Size Value Orient. Hue Grain Saturat. Crispness Transpar. Movem. Freq.

Position • - - - < 0.001 - - - - - -
Size 0.044 • - - < 0.001 - - - - - -
Value 0.005 - • - < 0.001 - - - 0.009 - -
Orientation - 0.012 0.012 • 0.003 - - - - - -
Hue < 0.001 < 0.001 0.001 < 0.001 • < 0.001 < 0.001 < 0.001 0.002 0.020 0.020
Grain - - 0.023 - < 0.001 • - - - - -
Saturation 0.005 0.031 0.023 0.023 - 0.016 • 0.014 - - -
Crispness - - - - 0.001 - 0.034 • - - -
Transpar. 0.004 0.012 0.023 0.016 0.016 0.004 - 0.009 • - -
Movement 0.012 - - 0.031 0.003 0.004 - - 0.044 • -
Frequency 0.004 - - 0.005 0.016 0.004 - - - - •

Table 2: Significant p-values for fdr-corrected post-hoc pairwise sign tests on preference scores (above bullets: longitudinal; below:
lateral)

rank-based test [9, 37] corresponding to a 2 × 11 mixed de-
sign ANOVA was performed to investigate the impact of visual
variables and driving function on preference scores. There
was a significant difference in the preference ratings among
visual variables within group [F(1,6.65) = 20.02, p < .001].
Figure 6 summarises the results. The visual variable hue
returned the highest preference ratings for both the lateral
[Mlat = 82.96] and the longitudinal group [Mlong = 79.04],
followed by transparency [Mlat = 68.17, Mlong = 59.00],
frequency [Mlat = 65.83, Mlong = 59.17], and saturation
[Mlat = 65.21, Mlong = 58.04]. Fdr-corrected [2] post-hoc
pairwise sign tests were conducted to assess the differences
within driving function. Table 2 summarises the resulting
p-values for both driving functions. Further, a significant
interaction between driving function and visual variables
[F(1,6.65) = 2.56, p = .0139] was found, indicating that the
individual visual variables do not work equally well for lateral
and longitudinal uncertainty.

Response Time and Preference
The applied repeated measures design within groups prevents
the use of correlation coefficients due to differences in the
variance between measurements taken on the same subject
and those taken on different participants. Thus, multiple re-
gression analysis was used to investigate if the response times
significantly predict preference scores, taking out subjects as
a factor [4].

The results of the regression indicated that the predictors ex-
plained 22.9 % of the variance in the lateral group [R2 =
.229,F(23,229) = 2.857, p < 0.001] and 17.2 % in the lon-
gitudinal group [R2 = .172,F(23,229) = 2.062, p = 0.004].
It was found that response time predicted preference signifi-
cantly in the lateral group [β = −1.5452, p < 0.001] and in
the longitudinal group [β =−0.6973, p = 0.041].

DISCUSSION
The results of the study indicate a varying suitability of the
analysed visual variables in the context of uncertainty commu-
nication in automated driving.

The sorting scores suggest that particularly hue, saturation,
transparency, frequency, and value convey a clear order. Con-
sidering that the order direction is consistent between lateral
and longitudinal group, it seems that the visual variables are or-
dered independent of the implementation. The fact that some
variables, namely size, value, saturation, and crispness, were
sorted in an opposing order to that identified by MacEachren
[31] can be attributed to the previously indicated differences in
connotation, with uncertainty relating more to urgency rather
than vague information in the context of this publication. Fur-
ther, a main effect of visual variables on preference scores
suggests that participants prefer some variables over others.
As indicated by post-hoc pairwise sign tests, particularly hue
seems to significantly differ from other variables in terms of
preference, irrespective of the driving function. This can po-
tentially be attributed to a difference in salience compared to
other variables, as indicated by stronger preattentive effects
[48]. Additionally, participants might be more familiar with
the use of colour to communicate urgency, hence preferring
it due to a mere exposure effect. This is affirmed by the fact
that response times significantly predicted preference ratings,
as this indicates that participants preferred those variables that
communicated a clear order to them. The fact that hue has
not been identified as a suitable variable in GIScience can be
attributed to the fact that MacEachren [31] used a combination
of hue values (olive, green, purple) with a less familiar order.
The fact that both preference scores and response times were
not significantly different between groups suggests that the
selected layouts work equally well for communicating uncer-
tainties using visual variables. However, given that there was a
significant interaction for both response times and preference
scores, the implementation of some variables worked better
for one of the groups. This can be attributed to the fact that
especially those variables that do not rely on fill colour or
alpha values require a different implementation. For instance,
the variable position was varied along a different axis for each
group. While the lateral group was shown a variation in the
y-direction, i. e. a wider or narrower road, the longitudinal
group was presented with a change in the z-axis, i. e. moving
the bars upwards. Similar differences in implementation apply
to grain and orientation.



Limitations
The presented results are to be understood only under con-
sideration of the following limitations. First, implementing
the visual variables in a driving scene using the previously
selected layouts generates various degrees of freedom. As
such, several assumptions had to be made, including the se-
lection of a neutral base colour, the determination of specific
instances for each variable on three levels (e. g. blue, purple
and red for hue), and the transfer of these variables into a
driving scene. Further, the study did not assess the impact of
cultural influences on the results. For instance, colour hues
might have a different meaning in other cultures [15]. Ad-
ditionally, the impact of prior experience with ACC or lane
assist may be another factor influencing the results. While
this study attempted to mimic a driving environment to test
the variables in context, a further evaluation in an immersive,
dynamic scenario is essential. Additionally, drivers would not
be able to see the different variable levels next to each other
as shown in Figure 3a. Instead, it needs to be ensured that
the variable levels can be distinguished without seeing them
side by side. Importantly, different implementations of the
variables, for instance red-to-green hue variation instead of
blue-to-red, may lead to results that deviate from those de-
scribed in this paper. Finally, some visualisation methods may
be rendered unsuitable in the actual usage environment due
to lighting conditions. However, the presented results signif-
icantly cut down the amount of suitable variables for further
exploration and thus provide a valuable first step for AR-based
uncertainty displays.

CONCLUSION AND OUTLOOK
The objective of this study was to evaluate a set of abstract
visual variables regarding their suitability for communicating
uncertainties using augmented reality displays in automated
driving. With previous publications focusing on uncertainty
communication using digital, analogue or representational dis-
play formats, the outlined study presents the first implications
for communicating the same information in an AR display.
The results indicate that particularly colour-based variables,
especially hue, as well as animation-based variables commu-
nicate a clear order and receive high subjective preference
ratings by participants.

Further research efforts are needed to focus on evaluating
the impact of communicating function-specific uncertainties,
potentially under consideration of partial takeovers (e. g. op-
erators control the vehicle only laterally). Additionally, the
presented results inform the development of a prototype AR
display for assessment in a dynamic driving environment. Fu-
ture research efforts could also focus on different ways of com-
municating uncertainties, for instance using peripheral aware-
ness displays [32, 24], to enable users to perceive changes in
system uncertainty while performing NDRTs.
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