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Abstract

This paper considers a ridesharing problem on how to match riders to drivers and how to choose
the best routes for vehicles. Unlike the others in the literature, we are concerned with the maxi-
mization of the average loading ratio of the entire system. Moreover, we develop a flow-dependent
version of the model to characterize the impact of pick-up and drop-off congestion. In another
extended model we take into account the riders’ individual evaluation on different transportation
modes. Due to the large size of the resulting models, we develop a large neighbourhood search
algorithm and demonstrate its efficiency.

Keywords ride-matching and routing, ridesharing systems, large neighbourhood search

1 Introduction

Ridesharing refers to a transportation mode in which individual travellers share a vehicle for similar
itineraries and time schedules. In essence, ridesharing entails the participation of one or more riders
(peer customers) to share a vehicle (typically a car) together with the driver (peer provider) when
travelling from start points to destinations. The benefits of the ridesharing mode include the split
of travelling costs such as gas, toll, and parking fees among individual travellers, and the reduction
of congestion and pollution to the public. Despite these benefits, the ridesharing mode is still not a
regular transportation alternative, due to the lack of efficient methods to coordinate itineraries and
schedules. In the recent decades, technological advances including the global positioning systems,
the mobile internet, and social networking create the “critical mass” for the potential prevalence
of ridesharing. With the advance of these technologies, a number of matching agencies emerged to
provide diverse ridesharing services to travellers. This is mainly stimulated from the development of
various ridesharing platforms that create a “pool” for connecting peer riders’ travelling demands and
peer drivers’ services. For instance in China, which has some of the most congested cities in the world,
a leading internet firm Tencent uses its ridesharing app, Didi Dache (Honk Honk Taxi), as a strategic
tool for the ridesharing market penetration.

Along with this trend multiple decision making problems have emerged, most of which are con-
cerned with the development and optimisation of driver-rider matching. One of the most extensive
surveys on the state of the ridesharing systems and the future directions was provided by Furuhata et
al. [22], who pointed out that the rider matching is one of the main challenges. In [22], the authors
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investigated and classified a set of representative matching agencies, and identified two main taxo-
nomic criteria for ridesharing systems: primary search criteria and target market. With the aid of the
information technologies, trip planning becomes one of the common and main functions of matching
agencies to support matching between drivers and riders. Each of the drivers and riders lists their
offers and requests for ridesharing. while the active matching tries to find potential partners. One of
the key issues in a ridesharing platform is how to optimise the success rate of ride-matching with a
reasonable notice period. The core in the solution of this issue is to devise a matching algorithm that
can recommend a driver with the most appropriate riders in align with his or her itinerary and time
schedule. Its aim is to enhance the ridesharing efficiency and keep the willingness of drivers to par-
ticipating in ridesharing, so as to maximize the seat utilization in the vehicles with tolerable impacts
on drivers’ travelling routes and time schedules.Instead of peer-to-peer communication, ridesharing
platforms have their scale advantages and computational advances in providing tremendous matching
options between the drivers and riders. A “smarter” solution from the whole ridesharing system’s
perspective is usually superior to the matching activities conducted by a driver and several riders
themselves in both economic and time efficiencies.

The most recent review on the ride-matching optimisation problems was undertaken by Agatz et al.
[2]. These problems consider how to determine the routes and schedules of the vehicles (including how
to assign riders to drivers) in the presence of conflicting objectives, such as maximizing the number
of serviced riders, minimizing the operating cost or minimizing the rider inconvenience. Given these
objectives, most of the ridesharing systems prefer to give drivers sufficient time flexibility so that they
may be willing to provide rides to several riders along their itineraries either one after another or
simultaneously for a portion of time. By doing so, the system makes the effort to achieve ridesharing
as many as possible. The value of a ridesharing plan is measured by the combination of the gain to
riders due to cost savings and the loss to drivers due to additional travelling time.The above facts show
that the decision process in ridesharing systems is similar to dial-a-ride problems/models (DARP).
One of the important differences is that in a dial-a-ride system all vehicles typically operate out of
one or more depot locations, whereas in a ridesharing system each driver may have a unique origin-
destination (OD) pair (see [2]). Since the riders are usually independent or partially independent
in these systems, they are not obligated to accept ridesharing arrangements that they do not like.
Therefore, drivers’ route preferences or at least the locations of their origins and destinations need
to be accounted for when matching drivers and riders in a ridesharing system. This motivates the
research of adapting the existing DARP models for solving the ride-matching optimisation problems.
To the best of our knowledge, the first variant of dial-a-ride models for the ride-matching optimisation
problems was exploited by Baldacci et al. [5], who considered a matching problem in a car pooling
service organized by a large company to encourage its employees to pick up colleagues while driving
to/from work to minimize the number of private cars travelling to/from the company site. In this first
attempt, some assumptions in the dial-a-ride problems are reserved, such as identical vehicles, the
same terminal for all drivers, and the exclusion of the seat utilization in the objective. The proposed
model and exact algorithms in [5] are adequate to deal with some of the complexities in this real world
problem.

In this paper we consider a ride-matching problem and the associated routing of vehicles. We make
our contributions from three perspectives. Firstly, unlike the others in the literature, we consider
a different objective, which is to maximise the average loading ratio of the vehicles in the whole
system. This target reflects the social expectation on the use of ridesharing systems, as a higher ratio
means better utilization of the vehicles. Intuitively a higher ratio implies that more riders should be
allocated to each driver, which however might result in a situation where the drivers need to travel
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longer distances to pick-up and drop-off the matching riders, leading instead to a low loading ratio
for their itinerary. We propose a non-linear programming model to formulate this problem, which is
then transformed to an equivalent integer program.

Secondly, we extend the model to capture the flow-dependent features in real ridesharing systems.
Specifically, we take into account the impact of pick-up and drop-off congestions and delays to the
system performance. We also make an attempt to include the riders’ individual evaluation into the ride-
matching process. Indeed, in practice how the drivers and the riders match each other highly depends
on their evaluations of ride-matching recommendations. As far as we know, both are the first attempts
in the literature and contribute to the mathematical framework of ridesharing by incorporating real
behaviours of riders into the optimisation of the system performance.

Finally, to address the complexity introduced to the proposed models, we establish a variant large
neighbourhood search (LNS) framework to improve the solution efficiency. A new demand removing
method and a randomization method for demand reassignment are proposed and integrated into this
framework.

The rest of the paper is structured as follow. In section 2, we review the related works to the
models and the heuristic solution methods to ridesharing problems in the literature. In section 3, we
propose a variant DARP model to the ride-matching and routing problem concerned and investigate
a linear reformulation of this model. We extend this model to capture flow-dependent features and
include riders’ individual evaluation into the ride-matching function in section 4. In section 5, we
develop a solution algorithm within the LNS framework, which is tested in section 6 to a number of
randomly generated problem instances and its performance is compared against the standard solvers.
Finally, a conclusive discussion is presented in section 7.

2 Literature Review

In this section, we review the related literature to our work, with the studies on ridesharing,
dial-a-ride problems and heuristics being the three main areas.

2.1 Ridesharing

As a rather new transportation mode, one of most important issues that has been well studied
in ridesharing is to identify the key properties in ridesharing systems. A comprehensive review on
the conditions for a successful ridesharing system can be found in Agatz et al. [2]. In the literature,
technological advances in both hardware and software have been recognized as the key enablers for
an efficient ridesharing system. In particular, the ubiquity of Internet-enabled mobile devices plays a
critical role in practical dynamic ridesharing [24] and [9]. Moreover, a sustainable ride sharing system,
as argued by Raney [50], must be able to attract riders and drivers, and to reach a critical mass of
participants. A few approaches were discussed in an article by Gaynor [19]. Apart from improving the
technology, the system provider could aim at increasing marketing efforts and engaging people with
societal/behavioural approaches.

Though the prevalence of ridesharing systems is recently emerged and accepted by the public, the
first regulation policy to organize ridesharing was in place by the U.S. government during WWII for
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fuel conservation, and the second surge of ridesharing methods dates back to the 1970s as a result of
the oil crisis. However, the traditional ridesharing mechanism is not sufficient to accommodate the
unconventional schedules of today’s ridesharing demand, where many commuters will only respond to
flexible commuting options [30] and the optimisation approaches are not necessarily involved. With
the growth of the number of drivers and riders involved in ridesharing systems, how to efficiently
match the ridesharing supplies and demands becomes a bottleneck in the acceptance of these systems.
The theoretical researches are urgently demanded to cope with the complexity in the realization of the
core ride-matching functions both in modelling and computation. A substantial volume of researches
have been conducted to propose schemes to improve the efficiencies, or more precisely, the likelihood of
ride-matching. For example, to increase the ride-matching rate, Masoud et al. [36] recently proposed a
peer-to-peer ride exchange mechanism. With such a mechanism the riders who could not be matched
can buy a previously matched rider’s trip, if an alternative itinerary is available for the seller.

Optimisation algorithms have been playing an important role in the ride-matching problems. The
simplest variant of such problems only allocates to each driver a single rider, which can be formulated
as a maximum-weight bipartite matching problem (Agatz et al. [2]). In practice each driver might be
willing to serve more than one riders, and the resulting problems are much more complicated. Baldacci
et al. [5] proposed two integer programming formulations to the car pooling problem, which are then
solved by both an exact and a heuristic methods. Another important variant is the dynamic ride
sharing problems where the drivers and the riders enter and leave the system continuously over time.
Agatz et al. [1] considered such a problem in a simulation study of Metro Atlanta. The uncertainty
is dealt with by a rolling horizon approach. For other similar works see Winter and Nittel [64] and
Xing et al. [65]. Note that we restrict our attention to the static ride sharing problems in this work.

Agatz et al. [2] pointed out two limitations of the current works on the optimisation approaches.
Firstly, the existing approaches may not be capable of solving instances with realistic sizes and thus
a clear need for faster and practically implementable approaches. Secondly, along with the increased
urban traffic network, the scale of a ridesharing problem could be extremely large, which prevents
the applicability of most of the existing ride-matching approaches that address the problem from a
centralized perspective. In this paper, we also explore a decentralized approximate framework by
splitting the entire traffic network into several subsets in the numerical test section 6.

2.2 Dial-a-Ride Problems

From the methodological perspective, the relationship between ridesharing systems and dial-a-ride
problems has been recognized by many researchers (see [41] and [5]). As mentioned in section 1,
several variants of DARP models have been adopted to solve the ridesharing problems.

The dial-a-ride problems are also close to the well-known pick-up and delivery problems with time
windows (PDPTW). As a generalization of vehicle routing problems (VRP), the classical PDPTW is
characterized by paired pick-up and delivery locations, i.e., each pick-up location is associated with
a particular delivery location and vice versa [39]. The study on PDPTW and dial-a-ride problems
date back, to our best knowledge, to Psaraftis [48] for a problem with a single vehicle. A dynamic
programming method was employed to solve PDPTW with a small number of delivery demands (less
than ten) in the traffic network. Later on, Psaraftis [49] extended the algorithm to solve the problem
with hard time windows. One of the early applications of DARP is the door-to-door transportation
services for sick or disabled people (see [34] and [60]).
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After that, the PDPTW and DARP have been further generalized and received more attention
in Solomon and Desrosiers [59] and Savelsbergh and Sol [56]. The demand for the exact solution
methods grew along with these researches. The dynamic programming by Desrosiers et al. [16] is
the first approach used for solving larger problem instances. Shortly after that, Dumas et al. [18]
successfully solved PDPTW with the number of delivery demands up to 55 by a branch-and-pricing
approach. A branch-and-cut algorithm was developed by Lu and Dessouky [32] to optimally solve
the integer-programming formulation of the problem. Cordeau [12] and Ropke et al. [51] explored an
alternative formulation and a branch-and-cut algorithm to optimally solve the problem. A new branch-
and-cut-and-price algorithm was later on proposed by Ropke and Cordeau [52], where, according to
the computational experiments, outperformed the branch-and-cut algorithm of Ropke et al. [51]. In
the most recent development of the exact algorithm, Cherkesly et al. [10] explored a PDPTW with
last-in-first-out loading constraints and designed a branch-pricing-cut algorithm to solve it.

The dynamics in PDPTW nowadays has gained more and more attention, in which transportation
requests are generated over time in contrast to the static cases where the entire problem is known
beforehand (see Savelsbergh and Sol [57]). The modeling framework and the algorithms for dynamic
vehicle routing were studied by Fabri and Recht [21] and Gendreau et al. [20], where a dynamic pick-up
and delivery vehicle routing with several time windows and waiting times was proposed in [21] and a
neighbourhood search heuristic was exploited in solving a dynamic vehicle dispatching problem in [20].
Along with the increase of complexity in dynamical systems, methods addressing these dynamics are
further studied in more recent works, such as, Mitrović-Minić and Laporte [37] in evaluating waiting
strategies to deal with these dynamics, Sáez et al. [54] in designing hybrid adaptive predictive control
strategies for a dynamic problem.

Two features of ridesharing make our study significantly different from the existing literature.
Firstly, for ridesharing in urban cities, the flow-dependent model is critical. For instance, in the peak
time period drivers might be much sensitive to the cost of congestion caused by too many ridesharing
activities of pick-up and drop-off at some locations. Secondly, how drivers and riders match each other
through the system is highly dependent upon their evaluation of the routes, schedules, etc. Therefore,
the choice behaviour pattern needs to be captured to measure the impact from the individual evaluation
onto the performance of the ride-matching plans recommended by the ridesharing system. More
importantly, the inter-relationship between ridesharing, modal-split (auto, public transit, ridesharing
etc.) and congestion is very important, and should be treated in the ridesharing problems. In our
study, we make effort to include these two features into consideration.

2.3 Heuristics

The ridesharing and the closely related DARP or PDPTW problems that can be solved by exact
methods are proven to be limited. Particularly, the trip planning problem in the ridesharing is NP-
hard in the strong sense as it includes a special case of the VRP with unit customer demand (see [4]
and [29]).

Therefore a large body of literature turns to heuristic methods, which are more efficient in solving
large scale problems. The idea of using heuristic methods to solve PDPTW is not new. An early
study on the heuristics for PDPTW was performed by Jaw et al. [25], where they required that
users can only specify either the pick-up time or the delivery time. Along this direction, Potvin
and Rousseau [46] improved the insertion operations in the heuristic proposed in [25] and added two
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new phases. Tabu search framework is another important heuristic that has been well-implemented
for solving PDPTW and dial-a-ride problems. The first work using this approach is due to Nanry
and Barnes [38] for a subclass of PDPTWs, in which problems with up to 50 demands have been
designed and used as benchmarks for the test of the efficiency of the algorithms. Li and Lim [31]
implemented a simulated annealing procedure to this tabu search framework to increase the size of
solvable PDPTW up to 100 demands. Lau and Liang [28] also used a tabu search framework to
solve PDPTW and investigate several different approaches in routing. The most recent research on
tabu search for dial-a-ride problems was from Cordeau and Laporte [13]. They described a tabu
search heuristic and proposed a procedure for neighbourhood evaluation that adjusts the number of
visit times of the vertices on the routes so as to minimize route duration and ride times. This is
also the first work connecting tabu search heuristics and the concept of neighbourhood search, where
the latter is proved to be very efficient in the solution procedure. Since then, the research on how
to create effective neighbourhood search heuristics started to obtain wider attention. Bent and van
Hentenryck [7] studied a two-stage mixed algorithm with a simulated annealing method at the first
stage to reduce the number of vehicles for delivery and a large neighbourhood search to minimize the
total distance for cargo delivery. Based on the above methods, Ropke and Pisinger [53] proposed an
adaptive large neighbourhood search (ALNS) algorithm and investigated several demand remove and
route reconstruction operations to improve the efficiency. Particularly for static multi-vehicle dial-
a-ride problems, a competitive variable neighbourhood search (VNS)-based heuristic was analysed
by Parragh et al. [40], which allows intermediate deteriorating moves. The other heuristics applied
to PDPTW and dial-a-ride problems include the population algorithm by Cherkesly et al. [11], the
parallel regret insertion heuristic by Diana and Dessouky [17], and the ant colony optimisation by
Catay [8].

The heuristic methods for DARP and PDPTW have been systematically reviewed in the literature
(Laporte [29], Vidal et al [55] and Pillac et al [39]). According to the surveys, these heuristic methods,
which focus on theoretical frameworks on DARP and PDPTW models, cannot be directly applied
to ridesharing problems. As a consequence, there exist an increasing number of studies on heuristic
approaches of solving dynamic multi-vehicle dial-a-ride problems (see Madsen et al.[35]), though the
number of studies are still small and the size of the problems solved are up to several hundreds. It
is worth mentioning that the extension in [35] covered the dial-a-ride problems with time windows,
multiple capacities, and diversified objectives.

3 Model

This section proposes a variant DARP model for trip planning in a ridesharing problem. Unlike
most DARP models, to provide a ridesharing solution, two issues have to be solved simultaneously:
ride-matching to automatically assign appropriate riders to drivers and vehicle routing for drivers to
pick-up and deliver the riders and complete his or her own itinerary. In our model, an optimal solution
is attained by jointly solving these two issues.

A ridesharing demand can be described by a specific pair of pick-up and delivery locations and
measured by the number of riders to be picked up. We have assumed that all the riders at a pick-up
location have the same drop-off location and thus are belong to a single demand. This assumption can
be readily relaxed by splitting the riders from the same pick-up locations with different destinations
into multiple demands, and adding “virtual” links between the locations of these demands. In the
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model, every driver’s itinerary can be viewed as a ridesharing demand as well where the pick-up and
delivery locations are the start and end points of their itineraries.

Regarding the time-constrained feature of riders and drivers, we define a hard time window for
each ridesharing demand, that is, the time when a rider or a driver must be picked-up or start and
when they are expected to be delivered to or arrive at the destination. This assumption can be easily
relaxed by setting the corresponding time windows as [0,+∞). Moreover, in our model the vehicles
are allowed to arrive at a location before the start of the time window, and wait until the time window
opens to commence the pick-up service. We further assume that the service time at each location is
zero, each pair of locations have symmetrical distance and driving time, and the vehicle capacity is
limited.

The model is designed to recommend feasible ridesharing demands en route for a specific driver, as
long as the capacity constraint and time window constraint are satisfied. Note that due to the limited
number and geographical conditions of the drivers, it is possible that the model cannot attain suitable
drivers for every rider. Therefore, satisfying all ridesharing demands is not compulsory in our model.

3.1 The Formulation

Consider a ridesharing system with the task of matching each of the drivers to a set of riders. We
denote by G = (N ,A) the traffic network based on which the ridesharing system is operated. Here N
is the node set of all possible locations that the ridesharing demand might occur, i.e., the locations
of potential drivers or riders. We index the nodes (locations) in N by i = 1, 2, · · · , 2m + 2n, where
m and n are the number of nodes where the drivers and riders might be located, respectively. It
comprises four subsets. Denote by O := {1, 2, · · · ,m} ⊂ N the subset of nodes where the drivers start
their itineraries. After that, a driver will pick up the assigned riders by visiting the corresponding
nodes in subset O′ := {m + 1, · · · ,m + n}. If a driver serves a demand at node m + i, they are
forced to visit the node where the destination of this demand is along their itinerary. Denote by
D′ = {m + n + 1, · · · ,m + n + n} a subset of the destination nodes of riders, and therefore node
m + n + i is the destination location of the riders who are picked up at node m + i ∈ O′. After
finishing the services for all the assigned demands, the driver from node i ∈ O will finally arrive at
their own destination node that is denoted by m+ 2n+ i. We use D = {m+ 2n+ 1, · · · ,m+ 2n+m}
to denote the set of these nodes. Finally, we denote by node n̂ the end depot of all the vehicles.
Each vehicle is virtually returned to depot n̂ after leaving the corresponding destination node of their
drivers. We define the set of all precedent nodes as N+ = N ∪ {0} and the set of all successive nodes
as N− = N ∪ {n̂}. For the connections in the ridesharing system, we denote the set of all arcs by A
that is a subset of N+ ×N−. An arc (i, j) ∈ A is defined as a link connecting node i ∈ N+ and node
j ∈ N−.

We call by ride-matching function the decision process to recommend the riders to the right
drivers. The core functionality of the real ride-matching system is to recommend a number of rid-
ers to each driver so as to achieve the predefined targets. The set of decision variables {xkij , k =
1, 2, · · · ,m; (i, j) ∈ A} are used to represent the ridesharing system’s recommendations on the se-
quence of riders to be picked up by a specific vehicle, where xkij = 1 implies that after leaving node i,

vehicle k should go to node j to pick up or deliver the corresponding riders, and xkij = 0 otherwise.
Note that we have x0j = 1 for all j ∈ O, which means that every vehicle is enforced to visit the
node of the corresponding driver after virtually leaving node 0. A route can be constructed from
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the values of xkij . For instance, if we have in the decision xk0k = 1, xkk(m+i) = 1, · · · , xkj(m+n+i) =

1, · · · , xk(m+n+i′)(m+2n+k) = 1, xk(m+2n+k)n̂ = 1, the ridesharing system recommends the driver of vehi-

cle k to visit the nodes m+ i, · · · , j,m+ n+ i, · · · ,m+ n+ i′,m+ 2n+ k in sequence.

The other key parameters including travelling times and distances between any two connected
nodes, the capacity of each vehicle, and etc., are listed in Table 1.

In addition, we use the time window to represent the riders’ and the drivers’ tolerance in time.
Note that we define the time window at depot 0 being [0,∞) and the distances between depot 0 and
the starting node of every driver’s itinerary being 0. Following the itineraries, we define the time
window for the driver at node k as [ak, bk] with bk > ak > 0 to represent the driver’s tolerance on
times for starting their itinerary. It is not difficult to see that we can let bk = ak if driver k is inflexible
with respect to the start time.

To model the riders’ tolerance in their start times, we define the earliest and the latest times for
each rider to be picked up from node i ∈ O by [ai, bi]. Again we can split the riders at the same node
with different starting time tolerances into multiple virtual nodes. The practical interpretation is as
follows. The earliest time the riders at node i show up is ai and these riders cannot wait later than
bi. Symmetrically, we extend the definition of time windows to the nodes in D and D′ as the riders’
and drivers’ tolerances on the arrival times of their destinations. Denote by ski the vehicle k’s arrival
time at node i, and s := {ski , k ∈ O, i ∈ O′}. Without loss of generality, we set skk := 0 for k ∈ O.
Any feasible solution needs to have ski ∈ [ai, bi].

Besides the arrival times, we need another set of variables on the number of people in every vehicle
for the capacity constraints. We denote the capacity of vehicle k by ck, and an integer variable Qki to
denote the number of people (including the driver and all the riders) in vehicle k when it leaves node
i. If i ∈ O′, then we have Qki −Qkj = qi where j is the proceeding node visited by vehicle k, and qi is
the number of riders to be picked up at node i that is known prior to ride-matching. If i ∈ D′, then
we have Qki −Qkj = −qi and qi is the number of the riders to be delivered by vehicle k at node i. In

the model, we need to guarantee that Qki ≤ ck at all node i ∈ N with xkji = 1. It is worth extending
these constraints to the nodes where the drivers start their itineraries. That is, the model requires
Qki −Qkj = qi := 1 for i ∈ O and Qki −Qkj = qi := −1 for i ∈ D, where a driver starts and terminates
their itineraries. In addition, we define q0 = qn̂ = 0 for the virtual depots.

We summarize all notation used in the model in Table 1.
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Table 1: Notation
notation meaning

parameters m the number of nodes where each driver locates, i.e., the number of the vehicles;
n the number of nodes where ridesharing demands might locate;
i, k we use i to index the node in set O and m+ 2n+ i the corresponding

node in set D; and we use k and n+ k to index the node in set O′ and D′;
qi qi > 0 indicates the number of riders to be picked up at node i, and qi < 0 indicates

the number of riders to be dropped off the vehicle at node i;
ai, bi the start and end times of the time window at node i;
dij the distance of the arc (i, j) ∈ A;
tij the travelling time along the arc (i, j) ∈ A;
ck the capacity (the number of seats) of vehicle k;
σ the target loading ratio of the system;
M a large positive number;
N the set of nodes, i.e., N := {1, 2, · · · , 2m+ 2n};
V the set of vehicles, i.e., V := {1, 2, · · · ,m};

variables
xkij binary variables, xkij = 1 if arc (i, j) is included in the route of vehicle k,

xkij = 0, otherwise;

ski the time when vehicle k arrives at node i;
Qki the total number of people on-board when vehicle k leaves node i.

The optimisation problem faced by the ridesharing system operator can be formulated as follows.

(M1) max
∑
i∈N

∑
j∈N

∑
k∈V

xkijdijQ
k
i − σ

∑
k∈V

ck

∑
i∈N

∑
j∈N

xkijdij

 (3.1)

s.t. xk0k = 1, ∀k ∈ O, (3.2)∑
j∈O′∪D

xkkj = 1, ∀k ∈ V, (3.3)

∑
k∈V

∑
j∈N+

xkji ≤ 1, ∀i ∈ O′, (3.4)

∑
i∈N

xkil −
∑
j∈N

xklj = 0, ∀l ∈ O′ ∪ D′,∀k ∈ V, (3.5)

∑
j∈N−

xklj −
∑
i∈N+

xki,n+l = 0, ∀l ∈ O′,∀k ∈ V, (3.6)

skn+i − ski ≥ 0, ∀i ∈ O′,∀k ∈ V, (3.7)∑
j∈O∪D′

xkj(m+2n+k) = 1, ∀k ∈ V, (3.8)

xk(m+2n+k)n̂ = 1, ∀k ∈ O, (3.9)

ski + tij −M
(

1− xkij
)
≤ skj , ∀i, j ∈ N ,∀k ∈ V, (3.10)

ai ≤ ski ≤ bi, ∀i ∈ N ,∀k ∈ V, (3.11)

Qkj ≤ ck
∑
i∈N−

xkij , ∀j ∈ N ,∀k ∈ V, (3.12)

Qki + qj −M
(

1− xkij
)
≤ Qkj , ∀i, j ∈ N ,∀k ∈ V, (3.13)

Qki + qj +M
(

1− xkij
)
≥ Qkj , ∀i, j ∈ N ,∀k ∈ V, (3.14)

Q0
k = 0, ∀k ∈ V, (3.15)

Qn̂k = 0, ∀k ∈ V, (3.16)

xkij ∈ {0, 1} , ski ≥ 0, Qki ≥ 0, ∀i, j ∈ N ,∀k ∈ V. (3.17)
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We first explain in detail each of the constraints. Constraints (3.2) require that virtually every
vehicle must visit the node where the corresponding driver locates immediately after leaving the
depot i = 0. Constraints (3.3) enforce that when a driver leaves the start node of his or her itinerary,
they could be recommended to pick-up one or more riders from a node in O′ or directly go to their
destination node in D. Constraints (3.4) show that the ridesharing system assigns at most one driver
to serve a demand, where the inequalities imply that the ride-matching solutions are not compulsory
to meet all ridesharing demands. Constraints (3.5) are called balance constraints that ensure every
vehicle leaves a node after picking up or delivering riders if this node is not the driver’s start or
destination location. Constraints (3.6) require that a vehicle which serves the demand at node l ∈ O′
must drop-off these riders at node n+ l ∈ D′, and constraints (3.7) ensure that the arrival time at node
l ∈ O′ must be earlier than the arrival time at the destination node n + l. Constraints (3.8) require
that the proceeding node before a driver’s destination in the recommended route must be either a
node to drop-off riders or a node where their itinerary starts from. Constraints (3.9) enforce that
every vehicle must return virtually to the depot n̂ immediately after it leaves the driver’s destination.
By constraints (3.10) the precedence order for each itinerary is maintained. Constraints (3.11) ensure
that the arrival time of a vehicle at a specific node must be within the time window of the passengers
waiting at this node.

Constraints (3.12) to (3.16) are introduced to enforce the vehicle capacity and the flow balance of
all passengers. Constraints (3.12) mean that if node j is visited by vehicle k (e.g.,

∑
i∈N− x

k
ij = 1), the

number of people in the vehicle Qkj must be less than its capacity ck. The value of Qkj is set to zero if
vehicle k is not assigned to serve the demand at node j, which is achieved also by constraints (3.12).
The constraints (3.13) and (3.14) together imply that for a pair of nodes successively visited by the
same vehicle, the number of people travelling on the outbound arc from node j must be equal to the
number of people on the arc from node i to j plus (or take away, if qj < 0) the number of riders picked
up (or dropped off, if qj < 0) at node j. Note that constraints (3.13) or (3.14) are inactive when the
nodes are not visited successively by a vehicle. Constraints (3.15) and (3.16) define that the number
of people in each vehicle to be zero when it starts and arrives at the depots 0 and n̂. Constraints
(3.17) define the feasible sets of all decision variables.

We now explain the objective function (3.1). Define by

Lki :=
∑
j∈N

xkijdijQ
k
i

the total travelling distance of all the people (including both the riders and the driver) transported by
vehicle k after leaving node i and before arriving at the next node. Note that if node i is not visited
by vehicle k we have Lki = 0 (since Qki = 0). Summing up Lki for all i ∈ N and k ∈ V , we have

L :=
∑
k∈V

∑
i∈N

∑
j∈N

xkijdijQ
k
i .

Here we use L as a measure to the loading level of the whole ridesharing system.

In the same manner, we define the system’s loading capability as follows.

D :=
∑
k∈V

ck

∑
i∈N

∑
j∈N

xkijdij

 .
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Essentially this gives the total distance travelled if all vehicles were always fully loaded.

Our objective is to maximise the loading ratio of the whole system. The direct formulation L/D
leads to a nasty non-linear equation with quadratic terms in the numerator and variables in the
denominator. Instead, we define by σ ∈ (0, 1) the target loading ratio and define the following
objective function.

max: L − σD.

Substitute the definition of L and D and the objective function (3.1) is obtained. Despite still being
a non-linear function, as we shall see in the next section, it can be reformulated into a linear form.

3.2 Reformulation

It is not difficult to see that L in the objective function (3.1) is a quadratic function. In this section
we make a series of reformulations to simplify the problem to an integer programming problem. The
first step aims at transforming the quadratic term in (3.1) into a linear form. We can reformulate the
objective function as

max
x,Q

∑
i∈N

∑
j∈N

ck

(∑
k∈V

dij min
{
xkij , c

−1
k Qki

})
− σ

∑
k∈V

ck

∑
i∈N

∑
j∈N

xkijdij


The equivalence between ckdij min{xkij , c

−1
k Qki } and dijx

k
ijQ

k
i is not difficult to be verified. If xkij = 0

we have that
ckdij min

{
xkij , c

−1
k Qki

}
= xkijdijQ

k
i = 0;

otherwise if xkij = 1 we have that

ckdij min
{
xkij , c

−1
k Qki

}
= ckdijc

−1
k Qki = xkijdijQ

k
i .

The first equation is from the fact that Qki ≤ ck for all i ∈ N and k ∈ V. By doing so, we can show
that the objective function above is equivalent to (3.1).

Now we step further to reformulate problem (M1) into an integer program. To this end, we
introduce an auxiliary variable τkij for all k ∈ V, i, j ∈ N . We have the following reformulation,

max
x,Q

∑
i∈N

∑
j∈N

ck
∑
k∈V

dijτ
k
ij − σ

∑
k∈V

ck

∑
i∈N

∑
j∈N

xkijdij

 (3.18)

(3.19)

s.t. (3.2) ∼ (3.17),

τkij ≤ xkij ∀i, j ∈ N , ∀k ∈ V, (3.20)

τkij ≤ c−1k Qki ∀i, j ∈ N , ∀k ∈ V, (3.21)

The number of additional constraints introduced into this mixed integer program is 2×|N |×|N |×|V|.
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4 Extensions

In this section, we extend our work in two directions. Firstly, we propose a flow-dependent model
to include the congestions caused by pick-up and drop-off from the ridesharing activities. Secondly,
we include the riders’ individual evaluation on different transportation modes into a ridesharing model
with choice behaviours.

4.1 Flow Dependency

Instead of the flow-independent model as (M1), we consider a flow-dependent scenario in this
section and relax the assumption that the pick-up and drop-off events due to the ridesharing activities
do not introduce additional costs (e.g. congestion, traffic delay, etc.) to the traffic system concerned.
This allows us to extend our ridesharing model to include more realistic situations, such as the peak
time period when drivers might be less willing to enter the locations with intensive ridesharing demand
which may lead to pick-up and drop-off congestion and delays.

To our best knowledge, we make the first attempt to include the congestion into the ridesharing
decisions, where the amount of delays depends on the flows on the arcs linking to the same node.

The underlying reason of the ridesharing congestion is caused by the limited parking/loading spaces
in a certain area, which translates to a capacity constraint for ridesharing activities within this area.
Different nodes in set N might locate geographically close and share the parking slots in the same area.
The ignorance of the geographic relationship between nodes might lead to long queues for parking,
and thus significantly impact the ridesharing solutions.

To include the geographic information into the model, we divide the entire road network into R
areas indexed by r = 1, 2, · · · , R, each of which contains a subset of nodes in N with geographical
locations close to each other. Define a set of indicators

∆ := {δr,i, r = 1, 2, · · · , R, i ∈ N}

to denote the relationship between nodes and the areas with δr,i = 1 if node i geographically belongs
to area r and otherwise = 0. According to the definition, the nodes with δr,i = 1 for the same r are
geographically close. The ridesharing activities occurring in these nodes might share the same parking
or other limited traffic resources and thus cause delays in area r.

Define a ridesharing delay function$r(·) to measure the impedance of area r for different congestion
levels of ridesharing activities. The value of the function varies with the total number of ridesharing
activities occurring at area r. We use zr to measure the total number of ridesharing activities occurring
in area r. We have

zr(x) :=
∑

i∈N\(O′∪D′)

δr,i

∑
i′∈N

xki′i +
∑
j∈N

xkij

 ,

which is the linear combination of the elements in x. We require $r(·) to be non-decreasing and
differentiable and $r(x) to be convex with respect to xkij for i, j ∈ N .

In our model, we use the function proposed by the U.S. Bureau of Public Roads to characterize the
queuing phenomena with limited service resources. There are various approaches to model the delays
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at a ridesharing node that can be seen as transfer nodes in logistics networks. Simulation and queueing
models are two of them. Compared with simulation, queueing analysis is more prevalently used to
derive analytical expressions and it is easy to be incorporated in tactical decision models. Quoting
from Crainic [14], “... most time-related functions are built to reflect the increasingly larger delays
that result when facilities of limited capacity must serve a growing volume of traffic. Such congestion
functions are typically derived from engineering procedures and queueing models...”. Petersen [42, 43]
proposes several models for various components of the classification process and study models which
are based on the physical characteristics of the terminals. Crainic et al. [15] identify that the precise
data may be difficult to obtain and even if obtained, may not be necessary for planning at a tactical
level. Thus they propose two analytical formulae to calculate classification delays based on M/M/1
queueing model. By the definition, we formulate

$r(x) :=$0
r

(
1 + α

(
zr(x)

Cr

)γ)
where $0

r is the service time when area r is not congested, Cr is the practical capacity, and α > 0 and
γ > 0 are tuning parameters.

We can view $r(x) as the virtual ‘service time’ at a node within area r for pick-up or drop-off
passengers. The constraints (3.10) on the arrival times can be reformulated as

ski + $̂j(x) + tij −M
(

1− xkij
)
≤ skj , ∀i, j ∈ N ,∀k ∈ V,

where node j is in area r. Thus the virtual service time at node j is the same as $r(x) and can be
formulated as

$̂j(x) :=
R∑
r=1

δr,i$r

 ∑
i∈N\(O′∪D′)

δr,i

∑
i′∈N

xki′i +
∑
j∈N

xkij

 .

Then the flow-dependent model can be formulated as

(M2) max
x,s,Q

∑
i∈N

∑
j∈N

∑
k∈V

xkijdijQ
k
i − σ

∑
k∈V

ck

∑
i∈N

∑
j∈N

xkijdij

 (4.1)

s.t. (3.2) ∼ (3.9),

ski + $̂j(x) + tij −M
(

1− xkij
)
≤ skj , ∀i, j ∈ N ,∀k ∈ V, (4.2)

(3.11) ∼ (3.17).

Note that the difference between the flow-independent and flow-dependent models is the extra
time used in completing ridesharing activities within the congested area. Compared to the former,
the latter includes additional N ×N × V constraints.

4.2 Individual Evaluation

Traditionally, travel behaviour modelling has been based on the axioms of expected utility ([62]
and [33]). Random utility based discrete-choice models (RUM) provide an econometric interpretation
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of expected utility theory. RUM has been developed considerably in the past three decades and
specifically for route-choice modelling.

We now extend the model (M1) to the situation where the system may take into account the riders’
individual evaluation when making the ride-matching recommendations. That is, the probability that
the recommendation will be finally accepted by the corresponding rider depends on their preference
over some other alternative transportation modes.

Assume that for each rider there exist V transportation modes indexed by v = 0, 1, 2, · · · , V with
mode 0 being the ridesharing. In addition, we assume that the arrival time at the destination is the only
factor influencing a rider’s choice on these modes. Denote by θvi the transit time between node i ∈ O′
and n+ i ∈ D′ if for transportation mode v, and by τvi := ai + θvi the arrival time at the destination
node n + i. For the ridesharing mode, we denote τ0i (s) := minn+i∈D′

{
skn+i, k = 1, 2, · · · ,K

}
as the

arrival time at the destination node n+ i following the system recommendation for i ∈ O′, where τ0i (•)
is a function of decision variables s := {skn+i : n+ i ∈ D′}.

The transit time saved for a rider at node i to use a particular transportation mode v compared
to the slowest one can be calculated by τ̂i(s)− τvi , where τ̂i(s) = maxv{τ0i (s), τvi , v = 1, · · · , V }. The
logit choice probability for the rider at node i to choose mode v can be written as

P vi (s) =
exp(τ̂i(s)− τvi )

exp
(
τ̂i(s)− τ0i (s)

)
+
∑V

v=1 (exp(τ̂i(s)− τvi )
,

and thus P 0
i (s) is the probability of choosing the ridesharing mode. Note that P 0

i (s) can be rewritten
as

P 0
i (s) =

(
1 +

V∑
v=1

exp
(
τ0i (s)− τvi

))−1
.

We now consider an optimisation model with the aim of maximizing the average probability that
a rider in the system chooses the ridesharing mode, which is

max
x,s,Q

1

n

n∑
i=1

(
1 +

V∑
v=1

exp
(
τ0i (s)− τvi

))−1
s.t. (3.2)∼(3.17)

However, it is more rational for the ridesharing system to maximise the overall efficiency with
respect to a new constraint that requires that the probability of individual riders’ acceptance of the
ridesharing recommendations must not below a value β ∈ (0, 1). We can write this constraint as

inf
i=1,2,··· ,n

(
1 +

V∑
v=1

exp
(
τ0i (s)− τvi

))−1
≥ β,

which can be transformed into the following set of constraints(
1 +

V∑
v=1

exp
(
τ0i (s)− τvi

))−1
≥ β, ∀ i = 1, 2, · · · , n.
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They are equivalent to the following convex constraints

V∑
v=1

exp
(
τ0i (s)− τvi

)
≤ β−1 − 1, ∀ i = 1, 2, · · · , n.

Thus we can write our optimisation model as

(M3) max
x,s,Q

∑
i∈N

∑
j∈N

∑
k∈V

xkijdijQ
k
i − σ

∑
k∈V

ck

∑
i∈N

∑
j∈N

xkijdij

 (4.3)

s.t. (3.2) ∼ (3.17)

V∑
v=1

exp
(
τ0i (s)− τvi

)
≤ β−1 − 1, ∀ i = 1, 2, · · · , n. (4.4)

5 Algorithm

In this section, we investigate the solution algorithm under the framework of large neighbourhood
search proposed by Shaw [58]. The main idea in the LNS is to gradually improve an existing solution
by alternatively destroying and repairing them.

In our algorithm, we propose some new updating methods. For problem (M1), we define by
feasible set all the solutions satisfying constraints (3.2∼3.17) and current solution the best solution
so far yielded by the algorithm. Therefore, the current solution prescribes a sequence of nodes to be
visited by each vehicle that achieves the maximum value of objective function among all the solutions
so far. To find a new candidate, the algorithm performs two operations. Firstly, it destroys the current
solution by removing some demands from the routes of selected drivers; and then repairs the solution
by finding appropriate drivers and insert the unserved demands back into their routes. We will explain
the details on how to perform the destroy and repair operations in the subsequent sections.

The motivation to use the LNS in our problem is its capability in searching a large scale of
neighbourhood in each iteration. This implies that the LNS has the potential in returning a better
local optimal solution and hence is more efficient than the other neighbourhood search methods. The
LNS heuristic belongs to a class of heuristics known as Very Large Scale Neighbourhood Search (VLSN)
algorithms [3]. In the LNS the neighbourhood is implicitly defined by the operations which are used
to destroy and repair an incumbent solution [45]. When dealing with problems with a large number of
constraints as in our model, the LNS can generate feasible neighbourhood of a solution easily, based
on which the insert operation can also be easily performed with respect to the origin-destination pairs.
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Algorithm 1: Framework for the LNS heuristic

Define by Nmove the maximum number of remove operations in an iteration and define
by {solutions} the set of feasible solutions

1 Function LNS
2 generate initial solution x from {solutions}, set xoptimal = x and randomly generate

N from {1, 2, · · · , Nmove}
3 let t = 0 to index the iteration
4 repeat
5 remove N ridesharing demands from current solution
6 assign unserved ridesharing demands to vehicles according to a matching level
7 sort the ridesharing demands assigned to and hence the nodes visited by each vehicle
8 insert sorted ridesharing demands to each route
9 generate x′

10 if neighbourhood acceptance-criterion met then
11 x = x′

12 if f(x′) > f(x) where f is the objective function of the problem, then
13 xoptimal = x′

14 update the index of iteration t = t+ 1
15 until stop-criterion met
16 return xoptimal

5.1 Initial Solution

The initial solution is generated by parallel insertion. We denote by rtk the route for vehicle k
where t is the index of iteration in the LNS algorithm, which is set to 0 in the initialization step. In
the algorithm we take rtk as an ordered sequence of arcs. If the nodes i and j are successively visited
by vehicle k in route rtk, we have xkij = 1, and = 0 otherwise. More specifically, we write a route rtk as
a set of directed arcs and the order of them is fixed, for instance,

rtk := {(0, k), · · · , (mj ,mj+1), · · · , (ml,ml+1), · · · , (m+ 2n+ k, n̂)}.

We denote the position of arc (mj ,mj+1) in route rtk being p if there exist p− 1 arcs before it in this
route.

Definition 5.1 (Feasibility) The following principles define a feasible route in the algorithm:

a. for any t, arc (0, k) and arc (m+ 2n+ k, n̂) must be at the first and the last position in rtk;

b. for any t, if arcs (i, j) and (j′, k) are at successive positions in route rtk, i.e.,

rtk = {(0, k), · · · , (i, j), (j′, k), · · · , (m+ 2n+ k, n̂)},

we have j = j′;

c. for any t, if arc (i, j) is at a position p in route rtk for j ∈ O′ and some i ∈ N , then we have
that there exists some i′ ∈ N such that (i′,m + n + j) at position p′ in route rtk with p′ > p where
m+ n+ j ∈ D′.
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In the algorithm, we first construct m routes that only contain each driver’s origin and destination,
where we denote them by r0k := {(0, k), (k,m + 2n + k), (m + 2n + k, n̂)} for k ∈ {1, 2, · · · ,m} with
the superscript t = 0 being the index of the initial iteration. In addition, we define the length of route
rtk by the position of its last arc, i.e., (m+ 2n+ k, n̂), and denote it by N t

k.

Definition 5.2 (Insertion) Given a route rtk := {(0,m1), (m1,m2), (m2,m3), · · · , (mNt
k
, n̂)} with

m1 = k and mNt
k

= m + 2n + k, the insertion of ridesharing demand at node i to rtk at positions
j and l for l > j is as follows

rtk := {(0,m1), · · · , (mj−1, i), (i,mj), · · · , (ml−1,m+ 2n+ i), (m+ 2n+ i,ml), · · · , (mNt+k, n̂)}

for k ∈ V, i ∈ O′, mj ,mj+1,ml,ml+1,∈ N , m+ 2n+ i ∈ D′ and m+ 2n+ k ∈ D. We call j and l the
positions of the insertion.

It is worth mentioning that in the remaining of the paper when the insertion positions are not
specified, the ridesharing demand at node i is inserted into an appropriate position of route rtk that
achieves the highest increment in the value of objective function (3.1).

It is not difficult to see that so far route r0k for k = 1, 2, · · · ,m is a feasible solution to problem
(M1). In our algorithm, we find some high quality initial solutions for a good start of the search
procedure in the LNS. Since the quality of initial solutions is determined by how ridesharing demands
are sequentially inserted into each route, we need to determine m sequences of ridesharing demands
that are to be inserted into route r0k for k = 1, 2, · · · ,m.

More specifically, we introduce a new measure called regret to evaluate the potential ridesharing
demands to be inserted into a route. Let ∆firk denote the increment of the objective function value
(i.e., regret) after inserting ridesharing demand i into route rk. Set ∆firk = 0 if the route is infeasible
or the objective function value decreases after the insertion. Here we have removed the superscript t
from the notation of rtk for convenience. The context will make it clear when the route is constructed
in iteration t of the algorithm. Ridesharing demand at node i ∈ {m+ 1, · · · ,m+ n} is inserted to all
the m routes tentatively and the regret in the value of the objective function (3.18) is recorded for each
insertion, i.e., ∆firk for k = 1, 2, · · · ,m. These values are then sorted in descending order that results
in a new sequence of ∆firi,l , where ri,l denotes the route into which the insertion of the ridesharing
demand at node i achieves the lth largest regret for l ≤ m. The inserted ridesharing demand that has
the largest regret is selected by solving the following problem:

max
i∈{m+1,··· ,m+n}

m∑
l=2

(
∆fi,ri,1 −∆fi,ri,l

)
.

5.2 Remove

Given route rtk, we denote by Rtk the set of nodes visited by vehicle k in route rtk. For example, for
route rtk := {(0,m1), (m1,m2), (m2,m3), · · · , (mNt

k
, n̂)}, we have Rtk := {0,m1,m2,m3, · · · ,mNt

k
, n̂}.

In iteration t = 1, 2, · · · , the algorithm selects a number of ridesharing demands at the nodes from
the set Pt :=

(⋃m
k=1Rtk

)⋂
O′. Here we denote by Nt the number of ridesharing demands. After that,

the algorithm removes them from corresponding route rtk for k ∈ V. The ridesharing demands to be
removed are selected from Pt with equal probabilities, and the origin and the destination nodes are
removed from the route by the following definition of remove operation.
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Definition 5.3 (Remove) For route rtk := {(0, k), · · · , (mj , i), (i,mj+1), · · · , (ml,m+ 2n+ i), (m+
2n + i,ml+1), · · · , (m + 2n + k, n̂)}, if i ∈ Rtk, then the remove operation of ridesharing demand at
node i from rtk results in a new route {(0, k), · · · , (mj ,mj+1), · · · , (ml,ml+1), · · · , (m+ 2n+ k, n̂)} for
vehicle k.

5.3 Matching Level

In this section, we propose a concept of matching level to measure how close a rider’ itinerary is
to the existing routes. This concept is used to insert an unsatisfied demand into an existing route of
a particular vehicle.

In each iteration, we call the process of choosing a subset of unserved demands and inserting
them into the corresponding routes rtk for k ∈ V as repair operation to the solution in iteration t.
The unsatisfied demands include those removed from the other routes in the current solution, that
is Rtk′ for k′ ∈ V and k′ 6= k, and those not visited in the current solution, i.e., the nodes in the set
P̄t := O′ −O′ ∩ Pt. To make the repair operation efficient, we design an evaluating scheme based on
the matching level rather than the assignment with equal probabilities. In the rest of this section, we
show how this approach can significantly enhance the efficiency of the algorithm, and how easy the
matching level can be computed.

Example 1. Here we give an example on how to determine the matching level between two
unserved ridesharing demands. Assume that the first demand’s pick-up and destination nodes are i
and n + i, and the second demand’s pick-up and destination nodes are j and n + j. We define rij
as the shortest feasible route connecting nodes i, n+ i, j and n+ j with its length denoted by d(rij).
This means that rij is one of the following six routes and yields the shortest distance,

{(i, j), (j, n+ i), (n+ i, n+ j)}, {(i, j), (j, n+ j), (n+ j, n+ i)},
{(i, n+ i), (n+ i, j), (j, n+ j)}, {(j, i), (i, n+ j), (n+ j, n+ i)},
{(j, i), (i, n+ i), (n+ i, n+ j)}, {(j, n+ j), (n+ j, i), (i, n+ i)}.

Let di,n+i represent the distance between pick-up node i and destination node n+i. Then the matching
level between demands at nodes i and j is calculated by

φuij :=
max

{
dii′ , djj′

}
d(rij)

and

φlij :=
min

{
dii′ , djj′

}
d(rij)

where i′ = n + i and j′ = n + j, and φuij , φ
l
ij ∈ (0, 1). In our algorithm, we define the matching level

between ridesharing demands at node i and j as

φij = wlφlij + wuφuij (5.1)

where wl and wu are the weights of φlij and φuij with wl + wu = 1.

In any iteration of the heuristic, before inserting a new pair of origin and destination nodes into
the route, we need to measure the impact when the same vehicle serves demands at nodes i and j. For
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a route in which nodes i and n+i are already connected, the value of φlij is closer to 1, implying that it
is likely to result in little change when inserting node j (and the corresponding destination node) into
this route. This is also true when inserting node i into a route in which node j and the corresponding
destination node are already connected. Figure 1 illustrates the above scenarios, where Figure 1(a)
shows a case where φlij is close to 1 and Figure 1(b) shows a case where φlij is much less than 1.

Therefore φlij is a reasonable measure to the matching level of the demands at nodes i and j. We

Figure 1: inserting nodes into a route with different matching level

extend the definition of matching level by taking φuij into account. When φuij is closer to 1, it is more
likely to result in little change when removing node i or j and the corresponding destination nodes
from a route with a direct link between them. Similarly, we can define the matching level between the
nodes in O for the drivers and in O′ for the riders, and the start and end node of vehicle k’s itinerary
is fixed at k and m+ 2n+ k. The matching level between the demand at node i and vehicle k can be
defined in the same way as in (5.1) by substituting j and j′ by k and k′ = m+ 2n+ k respectively. In
addition, if there exist no feasible routes, the corresponding matching ratio is set to be −∞.

We further extend the concept of matching level to characterize the efficiency of assigning a
ridesharing demand to an existing route, which is defined as the average over the matching levels
between this demand and all the other demands as well as the driver in this route. For example, for
route rtk := {(0, k), · · · , (mj , i), (i,mj+1), · · · , (ml,m+2n+ i), (m+2n+ i,ml+1), · · · , (m+2n+k, n̂)},
the matching level between ridesharing demand at node i and route r is

φir =
max

{∑
l∈O′∩Rt

k
φil + φik, 0

}
n+ 1

,

where Rtk is the set of nodes visited by vehicle k. It is worth mentioning that if the matching level
between the demand at node i and any node j ∈ O′ served by route r or between the demand at node
i and vehicle k is −∞, it means that there is no feasible route and we define this matching level by 0.

The algorithm attains the priorities to the existing routes for inserting an unsatisfied demand as
follows. Given the existing routes for m vehicles being r1, r2, · · · , and rm, the demand at node i is
inserted to route rl with probability:

Pi,rl =
φi,rl∑m
j=1 φi,rj

, (5.2)
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which is essentially a variation of the roulette method proposed in [47].

Denote by lk for all k ∈ V the matching threshold for each route. The set of the demands to be
added into vehicle k’s route can be represented by Atk := {i |Pi,rtk ≥ ιk}. The demand at node i is
added into vehicle k’s route when k = arg mink∈V Pi,rtk

. Note that if there exist more than one routes
with the same Pi,rtk

, the algorithm adds the demand at node i into a randomly selected route.

5.4 Optimal Insertion Positions

After determining how to insert a demand into each route, we now explain how to determine the
position in each route to insert this demand.

Firstly, we define a feasible position P in route rtk := {(0,m1), (m1,m2), (m2,m3), · · · , (mNt
k
, n̂)}

for the demand at node i if the arrival time of vehicle k at node i

ski := sk0 +

P∑
p=0

tmp,mp+1 ,

is within the time window [ai, bi], and the number of people in vehicle k at node i

Qki =
P∑
p=0

qmp ,

is within the capacity ck of vehicle k.

We adapt the insertion heuristic based on the time difference method and search all the potential
positions explicitly. The following parameters (as shown in the following table) are included in finding
the insertion positions.

Table 2: Additional parameters

notation

Ei the earliest start time of pick-up at node i ∈ O′;
Li the latest start time of pick-up at node i ∈ O′;
Qi the number of people in a vehicle after operation at node i.

The values of Ei, Li and Qi are computed by a forward or backward recursion framework. For
example, if nodes i and j are successively visited by the same vehicle, we can update these parameters
by the following recursive framework

Ej = max {Ei + tij , aj} , (5.3)

Li = min {Lj − tij , bi} , (5.4)

Qj = Qi + qj . (5.5)

Equation (5.3) implies that the earliest start time of pick-up at node j is the maximum between the
earliest start time aj and the earliest start time of the proceeding node i, i.e., Ei, plus the travelling
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time between these two nodes tij . In the same manner equation (5.4) determines the latest time of
pick-up at node i, and (5.5) determines the number of people in the vehicle at successive nodes.

For origin node k and destination node k′ = m+ 2n+ k, the following boundary conditions must
be satisfied:

Ek = ak,

Lk′ = bk′ ,

Qk = qk.

When node i′ is inserted in between node i and j in a vehicle’s route, the resulting new route is
feasible if the following conditions hold

min
{
Lj − ti′j , bi′

}
≥ max {Ei + tii′ , ai′} ,

Lj − Ei ≥ tii′ + ti′j ,

Qi′ ≤ ck,

where the first two inequalities are used to guarantee the relationship between the latest and earliest
start times at these three nodes, while the third one is used to guarantee the number of people not
more than the capacity of the vehicle. The details of the insertion operation is given in Algorithm 2.

Algorithm 2: Pseudocode for the insertion operation

1 compute Ei, Li, Qi for each node i in current route
2 for all positions in the route
3 if constraints (5.6), (5.6), (5.6) satisfied then
4 insert p into current position, go to step 7
5 end if
6 repeat
7 update Ei, Li, Qi for each node i
8 set the next position after p as Istart
9 if Qi < ck for all positions after Istart then
10 set the last position as Iend
11 else set the first position that Qi > ck as Iend
12 end if
13 for all positions between Istart and Iend
14 if constraints (5.6), (5.6) satisfied then
15 compute the increase of objective function
16 if the increase is better than the best solution then
17 insert p′ to current position, set it as the best solution
18 end if
19 end if
20 repeat

5.5 Neighbourhood Acceptance Criterion

The solution of the insertion operation in Algorithm 2 is checked by a neighbourhood acceptance
criterion. The main idea in the establishment of the neighbourhood acceptance criterion is to accept
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the candidate solution that can improve the objective function. We use this type of criteria to guarantee
that the local optimality can be achieved in the LNS algorithm.

We propose a simulated annealing framework for the acceptance criterion. Let x and x̂ be the
current solution and a solution in its neighbourhood respectively. The solution x̂ is accepted with
probability

p(x̂,x) = min
{
ef(x̂)−f(x)/Tk , 1

}
,

where f(x) is the value of objective function in (3.1) for solution x and Tk is the temperature in the
simulated annealing that decreases in each iteration by Tk = T0c

k. We set the initial temperature T0
as:

T0 = −α% · |f(x)| / ln 0.5. (5.6)

Therefore a neighbourhood solution that is α% worse than the current solution can still be accepted
with a probability 50%. We reset the temperature to T0 whenever a new solution is found.

We refer the readers to [66] for the details in simulated annealing. We also adapt a simulated
annealing acceptance criterion in the insertion operation. By doing so, the situation where a feasible
insertion is rejected because the objective function after several insertions can be improved. Consider-
ing that the change of objective function caused by insertion is relatively small, we set the temperature
used in the insertion operation as T ′ = T/m.

5.6 Stopping Criteria

Three stopping criteria in the LNS algorithm are applied. First of all, we define a maximum
number of iterations in the algorithm. Secondly, we consider a stopping criterion when the total
execution time elapsed exceeds a given limit. The third stopping criterion is when the solution does
not improve in a number of successive iterations.

6 Numerical Tests

In this section we test our proposed algorithm to a number of randomly generated instances,
which are classified into two subsets, the small scale instances and a large scale instance. For the
small instances, we use the computational time and the results of CPLEX as benchmarks to study the
efficiency of our LNS algorithm. We show that our LNS algorithm can solve most of the small scale
instances optimally. For the large scale instance, we decompose the problem into a number of smaller
ones by clustering together the drivers and the ridesharing demands which are geographically close.
CPLEX is then used to solve the problem for each sub-network, the optimal solutions to which are
aggregated as an approximation to the solution of the original problem. To illustrate the efficiency of
the LNS algorithm, we compare the approximation against the LNS solution by varying the number of
subclasses. At the end of this section we study the impact of the congestion to the optimal solutions
in a ridesharing system.
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6.1 An Illustrative Example

We present an instance with 40 nodes and 20 people in total (both drivers and riders). The
structure of the network is characterized by the following node-to-node matrix.

node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40



0 3 1 6 3 3 3 3 5 3 3 3 1 1 1 3 6 4 1 3 1 3 3 3 8 3 6 4 3 3 4 3 1 3 3 1 3 3 3 4
3 0 3 4 1 1 2 1 3 1 3 5 3 3 3 1 4 3 3 2 3 2 1 2 6 2 3 2 1 1 5 1 3 2 1 3 1 1 1 5
1 3 0 6 3 3 3 3 5 3 3 3 1 1 1 3 6 4 1 3 1 3 3 3 8 3 6 4 3 3 4 3 1 3 3 1 3 3 3 4
6 4 6 0 4 4 6 4 2 4 7 8 6 6 6 4 1 2 6 4 6 4 4 6 2 4 2 4 3 4 9 4 6 4 4 6 4 4 4 8
3 1 3 4 0 1 3 1 3 1 4 5 3 3 3 0 4 2 3 1 3 1 1 3 5 1 4 2 1 1 6 1 3 1 1 3 1 1 1 5
3 1 3 4 1 0 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 1 3 5 1 3 2 1 1 6 1 3 1 1 3 1 1 1 5
3 2 3 6 3 3 0 3 4 3 2 5 2 2 2 3 6 5 3 3 3 3 2 1 7 3 5 2 3 3 4 2 3 3 3 2 3 3 3 3
3 1 3 4 1 1 3 0 3 1 4 5 3 3 3 1 4 2 3 1 3 1 1 3 5 1 4 2 1 1 6 1 3 1 1 3 1 1 1 5
5 3 5 2 3 3 4 3 0 3 6 7 5 5 5 3 2 2 5 3 5 3 3 5 3 3 1 3 3 3 7 3 5 3 3 5 3 3 3 7
3 1 3 4 1 1 3 1 3 0 4 5 3 3 3 1 4 2 3 1 3 1 1 3 6 1 4 2 1 1 6 1 3 1 1 3 1 1 1 5
3 3 3 7 4 4 2 4 6 4 0 4 2 2 2 4 7 6 2 4 2 4 4 2 9 4 6 3 4 4 2 3 2 4 4 2 4 4 4 2
3 5 3 8 5 5 5 5 7 5 4 0 3 3 3 5 8 6 3 5 3 5 5 4 10 5 8 6 5 5 5 5 3 5 5 3 5 5 5 4
1 3 1 6 3 3 2 3 5 3 2 3 0 1 1 3 6 5 1 3 1 3 3 2 8 3 6 4 3 3 4 3 1 3 3 1 3 3 3 3
1 3 1 6 3 3 2 3 5 3 2 3 1 0 1 3 6 4 1 3 1 3 3 2 8 3 6 4 3 3 4 3 1 3 3 1 3 3 3 4
1 3 1 6 3 3 2 3 5 3 2 3 1 1 0 3 6 5 1 3 1 3 3 2 8 3 6 4 3 3 4 3 1 3 3 1 3 3 3 3
3 1 3 4 0 1 3 1 3 1 4 5 3 3 3 0 4 2 3 1 3 1 1 3 5 1 4 2 1 1 6 1 3 1 1 3 1 1 1 5
6 4 6 1 4 4 6 4 2 4 7 8 6 6 6 4 0 2 6 4 6 4 4 6 2 4 2 4 4 4 9 4 6 4 4 6 4 4 4 8
4 3 4 2 2 2 5 2 2 2 6 6 5 4 5 2 2 0 5 2 5 2 3 5 4 2 3 4 2 2 8 3 5 2 2 5 2 2 2 7
1 3 1 6 3 3 3 3 5 3 2 3 1 1 1 3 6 5 0 3 1 3 3 3 8 3 6 4 3 3 4 3 1 3 3 1 3 3 3 4
3 2 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 0 3 1 2 3 6 1 4 3 2 1 6 2 3 1 1 3 1 1 1 6
1 3 1 6 3 3 3 3 5 3 2 3 1 1 1 3 6 5 1 3 0 3 3 2 8 3 6 4 3 3 4 3 1 3 3 1 3 3 3 3
3 2 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 0 2 3 6 1 4 3 2 1 6 2 3 1 1 3 1 1 1 5
3 1 3 4 1 1 2 1 3 1 4 5 3 3 3 1 4 3 3 2 3 2 0 3 5 2 3 2 1 1 5 1 3 2 1 3 1 1 2 5
3 2 3 6 3 3 1 3 5 3 2 4 2 2 2 3 6 5 3 3 2 3 3 0 7 3 5 2 3 3 3 2 3 3 3 2 3 3 3 3
8 6 8 2 5 5 7 5 3 6 9 10 8 8 8 5 2 4 8 6 8 6 5 7 0 6 3 6 5 6 10 6 8 6 6 8 5 6 6 10
3 2 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 2 3 6 0 4 3 2 1 6 2 3 1 1 3 1 1 1 5
6 3 6 2 4 3 5 4 1 4 6 8 6 6 6 4 2 3 6 4 6 4 3 5 3 4 0 3 3 4 8 3 6 4 4 6 4 4 4 8
4 2 4 4 2 2 2 2 3 2 3 6 4 4 4 2 4 4 4 3 4 3 2 2 6 3 3 0 2 3 5 2 4 3 2 4 2 2 3 5
3 1 3 3 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 2 3 2 1 3 5 2 3 2 0 1 6 1 3 2 1 3 1 1 1 5
3 1 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 1 3 6 1 4 3 1 0 6 1 3 1 1 3 1 1 1 5
4 5 4 9 6 6 4 6 7 6 2 5 4 4 4 6 9 8 4 6 4 6 5 3 10 6 8 5 6 6 0 5 4 6 6 4 6 6 6 2
3 1 3 4 1 1 2 1 3 1 3 5 3 3 3 1 4 3 3 2 3 2 1 2 6 2 3 2 1 1 5 0 3 2 1 3 1 1 1 5
1 3 1 6 3 3 3 3 5 3 2 3 1 1 1 3 6 5 1 3 1 3 3 3 8 3 6 4 3 3 4 3 0 3 3 1 3 3 3 3
3 2 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 2 3 6 1 4 3 2 1 6 2 3 0 1 3 1 1 1 6
3 1 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 1 3 6 1 4 2 1 1 6 1 3 1 0 3 1 1 1 5
1 3 1 6 3 3 2 3 5 3 2 3 1 1 1 3 6 5 1 3 1 3 3 2 8 3 6 4 3 3 4 3 1 3 3 0 3 3 3 3
3 1 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 1 3 5 1 4 2 1 1 6 1 3 1 1 3 0 1 1 5
3 1 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 1 3 6 1 4 2 1 1 6 1 3 1 1 3 1 0 1 5
3 1 3 4 1 1 3 1 3 1 4 5 3 3 3 1 4 2 3 1 3 1 2 3 6 1 4 3 1 1 6 1 3 1 1 3 1 1 0 5
4 5 4 8 5 5 3 5 7 5 2 4 3 4 3 5 8 7 4 6 3 5 5 3 10 5 8 5 5 5 2 5 3 6 5 3 5 5 5 0


In addition, the time windows [ai, bi] and the number of riders to be picked up (qi) at node i is specified
in the matrix below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

ai
bi
qi

0 1 0 0 0 0 0 0 6 2 6 3 7 0 2 7 9 5 6 7 0 0 0 0 0 0 0 2 7 0 3 8 3 6 8 5 7 2 3 5
1 7 4 14 7 5 8 8 10 9 9 11 13 6 6 14 11 9 10 13 8 16 15 16 17 14 10 7 9 3 6 9 11 8 12 10 16 8 10 12
2 1 7 6 2 4 7 6 2 4 1 3 1 6 7 1 5 5 2 3 · · · · · · · · · · · · · · · · · · · ·

Without loss of generality, we also consider the time windows for the destinations of drivers and riders,
and thus characterize their preferences on the terminal times for their itineraries. Note that i = 21
to 40 are the nodes of the destinations of the drivers and the riders. Besides we have σ = 0.2 and the
number of vehicles being 7. The solution from the LNS algorithm is shown in Table 3. It is shown that
in the optimal solution five vehicles are used for picking up the ridesharing demands in the network.
Note that the demand at node 20 with the destination node of 33 cannot be satisfied in the optimal
solution. In Figure 2, we plot the objective function value obtained in each iteration of the algorithm.
It shows that these values converge within 16 iterations.

6.2 Small Scale Instances

For convenience, we name the instances by “Number-of-Nodes σ” where ‘A’∼‘G’ are used to denote
σ that takes a value between 10% and 70% by an interval of 10%. For instance, the instance 40A
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Table 3: The routes of vehicles for the illustrative example.

vehicle no. route

1 1→34;
2 2→8→15→21→28→35;
3 3→12→19→25→32→36;
4 4→18→31→37;
5 5→17→30→38;
6 6→14→27→39;
7 7→40.

Figure 2: Objective values of the LNS algorithm for the illustrative example.

means that there are 40 nodes in the traffic network and the loading ratio σ is 10%. The nodes in these
small instances are fully connected and the geographical information of the nodes in these instances
are randomly generated.

The results on these small scale instances are presented in Table 4. It was run on a Core i3 PC
with 4G memory. For the LNS algorithm, we set the iteration limit by Num = 3000. In addition, we
set α in (5.6) and Tk = 0.9987 of simulated annealing mechanism in the neighbourhood acceptance
criterion. The results in Table 6 show that the LNS heuristic can solve all the small scale instances
in reasonable times. For a subset of these problems with comparatively large scales, we cannot get
an exact solution by CPLEX, such as, 60A, 60C, 70A ∼ C. For instances 50A and 50B, CPLEX
consumes extraordinarily computational time, while the LNS algorithm can return acceptable results
(less than 2% to the optimal values) in significantly shorter time.

6.3 The Large Scale Instance

We divide the large scale instance into several smaller ones and solve them independently by
CPLEX. Firstly, we use k-means method to cluster the vehicles into S groups according attributes
such as origins, destinations and time windows. We perform the clustering several times, choosing
S vehicles randomly as the initial clustering centres each time, and select the one with the minimal
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Table 4: Results of small scale instances.

Instance σ
CPLEX LNS Difference

Obj. CPU(s) Obj. CPU(s) Obj. gap Route

40A 0.1 35521 23 35521 13 0 -
40B 0.2 19185 11 19185 17 0 -
40C 0.3 -5399 3 -5399 15 0 -
40D 0.4 -13430 3 -13430 12 0 -
40E 0.5 -37141 6 -37141 12 0 -
40F 0.6 -35253 2 -35253 11 0 -
40G 0.7 -56556 2 -56556 13 0 -
50A 0.1 37176 2498 36471 19 1.90% 20/30
50B 0.2 22903 1590 22833 18 0.31% 4/36
50C 0.3 -2201 4 -2201 11 0 -
50D 0.4 -24563 12 -24563 12 0 -
50E 0.5 -37854 3 -37854 10 0 -
50F 0.6 -49649 3 -49649 11 0 -
50G 0.7 -44764 2 -44764 10 0 -
60A 0.1 - - 51043 26 - -
60B 0.2 1707 100 1707 20 0 -
60C 0.3 - - 1856 18 0 -
60D 0.4 -13077 17 -13077 17 0 -
60E 0.5 -35704 10 -35704 34 0 -
60F 0.6 -27744 5 -27744 19 0 -
60G 0.7 -64607 5 -64607 18 0 -
70A 0.1 - - 35569 26 - -
70B 0.2 - - 17598 24 - -
70C 0.3 - - -9264 20 - -
70D 0.4 -22882 9 -22882 21 0 -
70E 0.5 -43789 4 -43789 24 0 -
70F 0.6 -57067 6 -57067 23 0 -
70G 0.7 -72580 6 -72580 37 0 -

average distance as the result of clustering.

Then ridesharing demands are assigned to each vehicle according to the increased route length
caused by such assignment. If the demand at node i is served by vehicle k, the increased route length
φ′ik can be calculated as:

φ′ik = dki + dii′ + dik′ − dkk′

where i′ is the drop-off node for the rider and the k′ is the destination of the driver. The ridesharing
demand at node i is assigned to vehicle k with the minimal value of φ′ik.

If we cluster the vehicles into less subclasses, each subclass will have more ridesharing demands.
It is more likely that CPLEX will fail to find feasible solutions. So we start with a large number of
subclasses and reduce the number of them gradually until CPLEX fails. We restrict the maximum
number of ridesharing demands in each subclass to be less than 1.3 times of the average demands
of all subclasses. We further restrict that the nodes contained in the subclass with just one vehicle
should be less than half of the average nodes across all subclasses.

The instance concerned contains 50 vehicles, 250 ridesharing demands, and 600 nodes. We set
Num = 1000, Nmove = 5, α = 0.05, and c = 0.9987. The test was run on a Core i7 PC with 8G
memory. The results are reported in Table 5 and Figure 3. Clearly, LNS heuristic outperforms CPLEX
in the quality of solution and computing time. Note that the dotted line in Figure 3 is a polynomial
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approximation of objective function value with respect to the number of clusters.

Table 5: Results of the large scale instance.

No. of clusters Obj. CPU(s)

CPLEX

19 46738 112
18 48152 135
17 42988 283
16 51485 681
15 52718 1776
14 64803 3218

LNS - 86183 1503

Figure 3: Comparison of LNS and CPLEX for the large instance.

6.4 Extensions

6.4.1 Instances with Congestions

In this section we present some numerical tests to show how the congestion generated by pick-up
and drop-off activities affect the optimal value of the objective function. The LNS algorithm was
applied to solve both model M1 and M2 for each of the instances.

We reconsider a set of instances investigated in Section 6.2 (from 40A to 50G). In these instances,
we assume that there are two geographically clustered areas for the start nodes and the destination
nodes, respectively. Therefore we have R = 4 in model (M2). In addition, we randomly group the
start/destination nodes into two subsets. In other words the values of δr,i are randomly generated in
{0, 1} for r = 1, · · · , 4 and all i ∈ N . In our tests, for every r we use a simple form of function $r(x)
where we let $0

r = 1, α = 0.3, γ = 1 and Cr being 10×Nr with Nr being the number of nodes in area
r. It is worth mentioning that we have let γ = 1 to simplify model (M2) so that all its constraints
are linear. This may not be the case for many real world problems, but such a treatment allows us to
focus the analysis on the impacts from ridesharing congestions.

In Table 6, we compare the results between M2 and M1 for every instance to illustrate how the
congestion affects the optimal values of the objective function. We observe that the optimal values
have been significantly reduced when the congestion caused by ridesharing activities is taken into
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consideration. In addition, since we assume there are two sets for the start and destinations nodes
respectively, the instances with 50 nodes are affected more significantly than those with 40 nodes. From
the computational aspect, model M2 takes longer CPU times than its counterpart M1 for problems
with more nodes.

Table 6: Results of model M1 and M2.

Instance σ
M2 M1

Obj. CPU(s) Obj. CPU(s)

40A 0.1 31960 13 35521 13
40B 0.2 13046 20 19185 17
40C 0.3 -12606 19 -5399 15
40D 0.4 -25706 14 -13430 12
40E 0.5 -52487 16 -37141 12
40F 0.6 -53668 13 -35253 11
40G 0.7 -78041 12 -56556 13
50C 0.3 -4329 24 -2201 11
50D 0.4 -28819 22 -24563 12
50E 0.5 -44238 23 -37854 10
50F 0.6 -58161 26 -49649 11
50G 0.7 -54508 22 -44764 10

6.4.2 Instances with Individual Evaluations

In this section we present some numerical tests to illustrate the influence of riders’ individual
evaluations on the routing results of vehicles and the optimal value of the objective functions. The
LNS algorithm was applied to solve both model M1 and M3 for each of the instance.

We investigate again a set of instances in Section 6.2 (from 40A to 50G). In these instances, we
define the value of β = 0.9 uniformly for all the riders. We assume that there are two geographically
clustered areas for the start nodes and the destination nodes, respectively. Therefore we have R = 4 in
model M3. In addition, we randomly group the start/destination nodes into two subsets. We simply
assume that there are other two transportation modes, i.e., v = 1, 2. In the example, we consider
the case where τvi := αvdi + εi,v where di is the time used to travel between the OD pair of rider
i. The values of coefficients α1 and α2 are 1.50 and 0.75 respectively. Moreover, εi,v is the random
variables characterizing the uncertainties in traveling times between the OD pair of rider i when using
the transportation mode v. In the example, we let εv following a normal distribution with mean at 0
and standard deviation at 5%× αvdi.

We perform model M3 for cases 40A to 50G. In Table 7, we compare the results between M3 and
M1 for every instance to illustrate how the riders’ individual evaluations affect the optimal values of
the objective function. We observe that the optimal values have been significantly reduced when the
riders’ individual evaluations are taken into account. The results in Table 7 show that model M3 takes
much longer CPU times than the counterparts M1, which is particularly true due to the nonlinear
constraints in M3.
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Table 7: Results of model M1 and M3.

Instance σ
M2 M1

Obj. CPU(s) Obj. CPU(s)

40A 0.1 30437 329 35521 13
40B 0.2 11869 331 19185 17
40C 0.3 -14612 383 -5399 15
40D 0.4 -30006 423 -13430 12
40E 0.5 -64112 412 -37141 12
40F 0.6 -74881 439 -35253 11
40G 0.7 -90331 494 -56556 13
50C 0.3 -12812 477 -2201 11
50D 0.4 -39114 531 -24563 12
50E 0.5 -68327 523 -37854 10
50F 0.6 -87323 588 -49649 11
50G 0.7 -80811 602 -44764 10

7 Conclusions

In this paper, we have considered a ride-matching and routing problem with an objective to
maximise the loading ratio of the whole ridesharing system, which takes a non-linear form. We have
transformed the objective function into a linear equation and formulated the problem as an integer
program. We then made two extensions to the model. In the first one the congestion caused by
pick-up and drop-off activities in ridesharing systems is considered, while in the other one the riders’
individual evaluation on alternative transportation modes is taken into account. To solve the resulting
models, which are of large sizes for practical problems, we have developed a large neighbourhood
search algorithm. The search procedure is significantly accelerated by evaluating the matching level
between unsatisfied ridesharing demands and existing routes. Numerical tests on a number of randomly
generated instances show that the LNS heuristic can solve small scale instances optimally and return
satisfactory solutions for large scale instances quickly.
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