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Abstract 

In this thesis we study the existence of stationary solutions for stochastic partial 

differential equations. We establish a new connection between solutions of backward 

doubly stochastic differential equations (BDSDEs) on infinite horizon and the station

ary solutions of the SPDEs. For this, we prove the existence and uniqueness of the 

L~(IRd;]RI) <81 L~(]Rd; ]Rd) valued solutions of BDSDEs with Lipschitz nonlinear term on 

both finite and infinite horizons, so obtain the solutions of initial value problems and 

the stationary weak solutions (independent of any initial value) of SPDEs. Also the 

L~(]Rd;]RI) <81 L~(]Rd; ]Rd) valued BDSDE with non-Lipschitz term is considered. More

over, we verify the time and space continuity of solutions of real-valued BDSDEs, so 

obtain the stationary stochastic viscosity solutions of real-valued SPDEs. The connec

tion of the weak solutions of SPDEs and BDSDEs has independent interests in the areas 

of both SPDEs and BSDEs. 

Keywords: stationary solution, stochastic partial differential equations, backward 

doubly stochastic differential equations, weak solutions, stochastic viscosity solutions, 

random dynamical systems. 
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Chapter 1 

Introduction 

Let u : [0,(0) x U x n -> U be a measurable random dynamical system on a 

measurable space (U, B) over a metric dynamical system (n, !J', P, (Bt)t2:o), then a 

stationary solution is a !J' measurable random variable Y : n -> U such that (Arnold 

[1 ]) 

u(t, Y(w), w) = Y(Btw) for all t :::: 0 a.s .. (1.1) 

This "one-force, one-solution" setting is a natural extension of equilibria or fixed points 

in deterministic systems to stochastic counterparts. The simplest nontrivial example is 

the Ornstein-Uhlenbeck process defined by the stochastic differential equation 

du(t) = -u(t)dt + dBt. 

It defines a random dynamical system 

u(t, uo) = uoe-t + it e-(t-S)dBs 

and its stationary point is given by Y(w) = J~oo eSdBs. Moreover, for any uo, u(t, uo, B_tw) 

-> Y(w) as t -> 00, where Bt is the shift operator of the Brownian path: 

(BtB)(s) = B(t + s) - B(s) for any sE (-00, +(0) .. 

A pathwise stationary solution describes the pathwise invariance of the stationary solu

tion over time along the measurable and P-preserving transformation Bt : n -----+ nand 

the pathwise limit of the solutions of random dynamical systems. Once Y(·) is known, 

Y(Bd is known. Needless to say, it is one of the fundamental questions of basic im

portance ([1], [12], [13], [20], [38], [50], [51]). For random dynamical systems generated 
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by stochastic partial differential equations (SPDEs), such random fixed points consist 

of infinitely many random moving invariant surfaces on the configuration space due to 

the random external force pumped to the system constantly. They are more realistic 

models than many deterministic models as they demonstrate some complicated phe

nomena such as turbulence. Their existence and stability are of great interests in both 

mathematics and physics. However, in contrast to the deterministic dynamical systems, 

also due to the fact that the external random force exists at ail time, the existence of 

stationary solutions of stochastic dynamical systems generated e.g. by stochastic dif

ferential equations (SDEs) or SPDEs, is a difficult and subtle problem. We would like 

to point out that there have been extensive works on stability and invariant manifolds 

of random dynamical systems, and researchers usually assume there is an invariant set 

(or a single point: a stationary solution or a fixed point, often assumed to be 0), then 

prove invariant manifolds and stability results at a point of the invariant set (Arnold 

[1] and references therein, Ruelle [4S], Duan, Lu and Schaumulfuss [IS], [19], Li and Lu 

[31], Mohammed, Zhang and Zhao [3S] to name but a few). But the invariant mani-. 

folds theory gives neither the existence results of the invariant set and the stationary 

solution nor a way to find them. In particular, for the existence of stationary solutions 

for SPDEs, results are only known in very few cases ([13], [20], [3S], [50], [51]). In [50], 

[51], the stationary strong solution of the stochastic Burgers' equations with periodic or 

random forcing (C3 in the space variable) was established by Sinai using the Hopf-Cole 

transformation. In [3S], the stationary solution of the stochastic evolution equations 

was identified as a solution of the corresponding integral equation up to time +00 and 

the existence was established for certain SPDEs by Mohammed, Zhang and Zhao. But 

the existence of solutions of such a stochastic integral equation in general is far from 

clear. 

The main purpose of this thesis is to find the stationary solution of the following 

SPDE 

dv(t, x) [2'v(t, x) + f(x, v(t, x), a*(x)Dv(t, x))]dt 

+g(x, v(t, x), a*(x)Dv(t, x) )dBt . (1.2) 

Here B is a two-sided cylindrical Brownian motion on a separable Hilbert space Uo; 2' 

is the infinitesimal generator of a diffusion process X;,x (solution of Eq.(2.14)) given by 

1 n 82 n 8 
2' = - " aij(x) 8 8 +" bi(x)" 2~ x X· ~ uX 

i,j=l 'J i==l '" 

(1.3) 

2 
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with (aij(x)) = uu*(x). Eq.(1.2) is very general, especially when we consider the weak 

solution of Eq.(1.2), the nonlinear functions f and 9 can include V'v and the second order 

differential operator 5£ is allowed to be degenerate, while in most literature, 9 is not 

allowed to depend on V'v or 9 only depends on V'v linearly (Da Prato and Zabczyk [16J, 

Gyiingy and Rovira [23], Krylov [27], Mikulevicius and Rozovskii [37], Pardoux [41]). 

As an intermediate step, the result of existence and uniqueness of the weak solutions 

of (1.2), obtained by solving the corresponding backward doubly stochastic differential 

equations (BDSDEs) under weak Lipschitz condition, appears also new. The existence 

and uniqueness of such equations when 9 is independent of V'v or linearly dependent of 

V'v were studied by Da Prato and Zabczyk [16], Krylov [27J. But we don't claim here 

our results .on the existence and uniqueness for the types of SPDEs studied in [16J and 

[27J have superseded their previous results. 

From a pathwise stationary solution we can construct an invariant measure for 

the skew product of the metric dynamical system and the random dynamical system. In. 

recent years, substantial results on the existence and uniqueness of invariant measures 

for SPDEs and weak convergence of the law of the solutions as time tends to infinity 

have been proved for many important SPDEs ([7J, [8], [17J, [22], [24J to name but a few). 

The invariant measure describes the invariance of a certain solution in law when time 

changes, therefore it is a stationary measure of the Markov transition probability. It is 

well known that an invariant measure gives a stationary solution when it is a random 

Dirac measure. Although an invariant measure of a random dynamical system on ]RI 

gives a stationary solution, in general, this is not true unless one considers an extended 

probability space. However, considering the extended probability space, one essentially 

regards the random dynamical system as noise as well, so the dynamics is different. See 

[36J for some examples of SDEs on ]RI and a perfect cocycle on §I having an invariant 

measure, but not a stationary solution. In fact, the stationary solution we study in 

this thesis gives the support of the corresponding invariant measure, so reveals more 

detailed information than an invariant measure. 

In this thesis, BDSDEs will be used as our tool to study stationary solutions of 

SPDEs. We will prove that the solutions of the corresponding infinite horizon BDS

DEs give the desired stationary solutions of the SPDEs (1.2). Backward stochastic 

differential equations (BSDEs) have been studied extensively in the last 17 years since 

the pioneering work of Pardoux and Peng [42J. The connection between BSDEs and 

quasilinear parabolic partial differential equations (PDEs) was discovered by Pardoux 

and Peng in [43J and Peng in [45J. The study of the connection of weak solutions of 

3 
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PDEs and BSDEs began in Barles and Lesigne [4]. The BDSDEs and their connections 

with the SPDEs were studied by Pardoux and Peng in [44] for the strong solutions, by 

Bally and Matoussi in [3] for the weak solutions and by Buckdahn and Ma in [9]-[11] for 

the stochastic viscosity solutions. On the other hand, the infinite horizon BSDE was 

first studied by Peng in [45] and it was shown that the corresponding PDE is a Poisson 

equation (elliptic equation). This was studied systematically by Pardoux in [40]. Notice 

that the solutions of the Poisson equations can be regarded as the stationary solutions 

of the parabolic PDEs. Deepening this idea, it would not be unreasonaHe to conjecture 

that the solutions of infinite horizon BDSDEs (if exists) be the stationary solutions of 

the corresponding SPDEs. Of course, we cannot write them as solutions of Poisson 

equations or stochastic Poisson equations like in the deterministic cases. However, it is 

very natural to describe the stationary solutions of SPDEs by the solutions of infinite 

horizon BDSDEs. In this sense, BDSDEs (or BSDEs) can be regarded as more general 

SPDEs (or PDEs). 

As far as we know, the connection of the pathwise stationary solutions of the 

SPDEs and infinite horizon BDSDEs we study in this thesis is new. Enlightened by [1] 

and [2], we first apply a "perfection procedure" to the solution of BDSDE in Section 

2.2 and then transfer the stationary property from BDSDE to the corresponding SPDE 

in Section 2.3. We believe this new method can be used to many SPDEs such as those 

with quadratic or polynomial growth nonlinear terms. We don't intend to include all 

these results in the present thesis, but only study Lipschitz continuous nonlinear term 

in Chapter 3 and Chapter 5 to initiate this intrinsic method to the study of this basic 

problem in dynamics of SPDEs and study linear growth non-Lipschitz nonlinear term· 

in Chapter 4. We would like to point out that our BDSDE method depends on neither 

the continuity of the random dynamical system (continuity means u(t, ., w) : U --> U is 

a.s. continuous) nor on the method of the random attractors. The continuity problem 

for the SPDE (1.2) with the nonlinear noise considered in this thesis still remains open 

mainly due to the failure of Kolmogorov's continuity theorem in infinite dimensional 

setting as pointed out by some researchers (e.g. [18], [38]). 

In Chapter 3, one of the necessary intermediate steps is to study the BDSDEs 

on finite horizon and establish their connections with the weak solutions of SPDEs 

(Sections 3.1 and 3.2). Our method to study the L~(]Rd; ]RI) <8> L~(lRd; ]Rd) valued solu

tions of BDSDEs on finite horizon was inspired by Bally and Matoussi's approach on 

the existence and uniqueness of solutions of BDSDEs with finite dimensional Brownian 

motions ([3]). But our results are stronger and our conditions are weaker: We will 

4 
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solve the BOSOEs driven by the cylindrical Brownian motion and nonlinear terms 

satisfying Lipschitz conditions in the 'space L~(JRd; JRI) 0 L~(JRd; JRd), We obtain a 

unique solution (yt" Z',) E S2,O([t, T]; L~(JRd; JRI)) ® M2,O([t, T]; L~(JRd; JRd)), The re

sult yt, E S2,O([t, T]; L~(JRd; JRI )), which plays an important role in solving the nonlinear 

BOSOEs and proving the connection with the weak solutions of SPOEs (also BSOEs 

and POEs), was not obtained in [3], The generalized equivalence of norm principle 

(proved in Section 2.3), which is a simple extension of the equivalence of norm principle 

obtained by Kunita ([28]), Barles and Lesigne ([4]), Bally and Matoussi ([3]) to random 

functions, also plays an important role in the proofs of our results. We believe our 

results for finite horizon BOSOEs are new even for BSOEs. In Section 3,3, we will solve 

the BOSOEs on infinite horizon and in Section 3.4, we study continuity of the solution 

in order to ensure that it gives the perfect stationary weak solutions of the SPOEs. 

We further consider L~(JRd; JRI) 0 L~(JRd; JRd) valued BOSOE on finite and infi

nite horizon with linear growth non-Lipschitz nonlinear term (Sections 4.2 and 4.3). 

The monotone condition plays an important role to weaken the Lipschitz continuous 

condition in Chapter 4. 

In Chapter 5, we recall the Ooss-Sussmann transformation and Buckdahn and 

Ma's idea to define the so-called stochastic viscosity solutions of SPOEs (Section 5.1). 

Then in Section 5.2, we solve the corresponding real-valued BOSOEs on infinite horizon 

by a similar method as in Section 3.3. In fact, comparing the stochastic viscosity 

solution with the weak solution, we need more information for the stochastic viscosity 

solution. In particular, the space continuity of solutions of SPDEs is considered in 

Section 5.3 as well as time continuity so that we can perfect the stochastic viscosity 

solutions of real-valued SPOEs. Finally, we would like to point out that the techniques 

in Chapter 4 can be similarly applied to studying the stochastic viscosity solutions of 

SPOEs with linear growth non-Lipschitz term although we don't intend to include the 

analysis in this thesis. 

5 



Chapter 2 

The Correspondence Between 

Stationary Solutions of SPDEs and 

BDSDEs 

§2.1 General BDSDEs with General Norm 

On a probability space' (!1, §, P), let (Et)c",.o be a Q-Wiener process with values in 

U and let (Wtk~o be an independent standard Brownian motion with values in ]Rd. Here 

U is a separable Hilbert space with countable base {ei}~!; Q E L(U) is a symmetric 
00 

nonnegative trace class operator such that Qei = Aiei and L Ai < 00. It is well known 
i=l 

that 13 has the following expansion (e.g. [16]): for each t, 

where 

00 

Et = L .;>:jtj(t)ej, 
j=! 

- 1 -
(3j(t) = f\. < B t , ej >u, j = 1,2"" 

yAj 

(2.1) 

are mutually independent real-valued Brownian motions on (!1, §, P) and the series 

(2.1) is convergent in L2(!1, §, P). Let N denote the class of P-null sets of §. We 

define 

§t,T g, §t~T V §t V N, for 0 ~ t ~ T; 

§t g, §/oo V §t V N, for t :::: O. 

6 
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Here for any process (7Jt),;::0, 

§~t = u{7Jr - 7Js; 0 ~ s ~ r ~ t}, §try = §6,t, §2,oo = V §t~T' 
T20 

Definition 2.1.1. Let § be a Hilbert space with norm II . lis and Borel u-field.5". For 

K E JR+, we denote by M 2,-K([0,00);§) the set of.c1lJlR,+ ®§/.5" measurable random 

processes {4>( s)} 820 with values in § satisfying 

(i) 4>(s) : n ~ § is §8 measurable for s :::: 0; 

(ii) E[Jooo e-K8 1I4>(s) lI§ds] < 00. 

Also we denote by S2,-K ([0,00); §) the set of .c1lJlR,+ ®§ /.5" measurable random processes 

{1P( s)} 820 with values in § satisfying 

(i) 7f;(s): n ~ § is §8 measurablefors:::: 0 and7f;(·,w) is continuous P-a.s.; 

Similarly, for 0 ~ t ~ T < 00, we define M 2,0([t, T]; §) and S2,0([t, T]; §) on a 

finite time interval. 

Definition 2.1.2. Let § be a Hilbert space with norm 11 . lis and Borel u-field .5". 

We denote by M 2,0([t, TJ; §) the set of .c1lJ[t,T] ® § /.5" measurable random processes 

{ 4>( s )} t:5s:5T with values in § satisfying 

(i) 4>(s) : n ~ § is §8,T V §loo measurable for t ~ s ~ T; , 

(ii) E[Jt 114>(s)ll§ds] < 00. 

Also we denote by S2,0([t, TJ; §) the set of .c1lJ[t,T] ® § /.5" measurable random processes 

{7f;( s) h:5s:5T with values in § satisfying 

(i) 7f;(s) : n ~ § is §s,T V §I.oo measurable for t ~ s ~ T and 7f;(·,w) is continuous 

P-a.s.; 

(ii) E[SUPt:58:5T 1I7f;(s)II§] < 00. 

For a positive K, we consider the following infinite horizon BDSDE with the 

infinite dimensional Brownian motion iJ as noise and yt taking values in a separable 

7 
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Hilbert space H, Z, taking values in C:id (H) (the space of all Hilbert-Schmidt operators 

from IRd to H with the Hilbert-Schmidt norm): 

-K'v 
e " - 100 e-Kr f(r, Yr, Zr)dr + 100 Ke-KrYrdr 

-l°Oe-Krg(r,Yr,zr)dtBr-l°Oe-Krzrdwr, t :::: o. (2.2) 

Assume f : [0,00) x n x H X Cid (H)---> H, 9 : [0,00) x n x H X Cid (H)---> C~o(H) are 

&1J/R+ 0§0&1JH0&1Jc.;d(H) measurable such that for any (t, Y, Z) E [0,00) x H x Cid(H), 

f(t, Y, Z), g(t, Y, Z) are §, measurable, where Uo = Q~ (U) c U is a separable Hilbert 

space with the norm 

and the complete orthonormal base {Aei}~l' C~o(H) is the space of all Hilbert

Schmidt operators from Uo to H with the Hilbert-Schmidt norm. It is noted that the 

Q-Wiener process (B,),;::o is a cylindrical Wiener process on Uo, and both C~o(H) and 

Cid (H) are Hilbert spaces. 

Note that the integral w.r.t. B is a "backward Ito's integral" and the integral 

w.r.t. W is a standard forward Ito's integral. The forward integrals in a Hilbert space 

with respect to Q-Wiener processes were defined in Da Prato and Zabczyk [16]. To 

see the backward one, let {h( s)} s;::o be a stochastic process with values in C~o (H) such 

that h( s) is §s measurable for any s :::: 0 and locally square integrable, i.e. for any 

o :S a :S b < 00, 

[ Ilh(s)lI~l,o(H)ds < 00 a.s .. 

Since §s is a backward filtration with respect to B, so from the one-dimensional back

ward Ito's integral and relation with forward integral, for 0 :S T :S T', we have 

where (3j(s) = fjj(T' - s) - fjj(T'), j = 1,2,···, and so Bs = BT,-s - BT,. Here {fk} is 

the complete orthonormal basis in H. From approximation theorem of the stochastic 

integral in a Hilbert space ([16]), we have 

jT'-' h(T' _ s)dBs = f: jT'-' A < h(T' - s)ej,fk > d{3j(s)fk. 
T'-T i,k=l T'-T 

8 
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Similarly we also have 

jT 00 jT 
t h(s)dtB. = j~l t A < h(s)ej,fk > dt/Jj(s)fk. 

It turns out that 

j T lTI-t 
h( s )dt Bs = - h(T' - s )dB. a.s .. 

t T'-T 
(2.3) 

Later we will consider another Hilbert space C"'/;o(H) (p> 2), a subspace of Cbo(H), 

consisting of all h E Cbo(H) which satisfy 

00 

IIhll~f;o(H).!< L "JI(hej!MIP < 00. 
J,k=l 

Definition 2.1.3. Let Ho be a dense subset of H. If(Y, Z) E S2,-K n M 2,-K ([0,00); H) 

®M2,-K([0,00);C~d(H)), and for any cp E Ho, 

(e-KtY" cp) = (jOO e-Kr f(r, Y" Zr )dr, cp) + (jOO Ke-KrYrdr, cp) (2.4) 

-(jOO e-Krg(r, Y,.,Zr)dtB"cp) _ (jOO e-KrZrdW"cp), t 2: 0 P - a.s., 
t t . 

or equivalently 

{ 

(~' cp) _:;YT, cp) : (jT f(r, Y" Zr )dr, cp) - (jT g(r, Y" Zr )dt B" cp) - (jT Zrd.W" cp) 

hm (e YT , cp) - 0 a.s., 
T-oo 

then we call (Y, Z) a solution of Eq.{2.2} in H. 

Remark 2.1.4. (i) Applying ItO's formula in H {see !16}}, we have the equivalent form 

of Eq.{2.2} 

{

: = Y~K: jT f(r, Y" Zr )dr - jT g(r,Y" Zr )dt Br -iT ZrdWr 

hm e YT = 0 a.s.; (2.5) 
T-oo 

(ii) One can easily verify that the above definition doesn't depend on the choice of Ho 

due to the continuity of the inner product; 

(iii) The uniqueness of Y in S2,-K([0, 00); H) implies if (Y', Z') is another solution, 

then Y. = Y; for s 2: 0 a.s.. The uniqueness of Z implies Z. = Z~ jor a.a. 

s E [0,00) a.s .. But we can modify the Z at the measure zero exceptional set of s 

such that Z. = Z~ for s 2 0 a.s .. 

9 
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The first main purpose of this chapter is to study the stationary property of the 

solution of BDSDE (2.2) on H if the solution exists and is unique. In order to show the 

main idea, we first assume that there exists a unique solution of Eq.(2.2). The study 

of the existence and uniqueness of Eq.(2.2) will be deferred to later chapters (Chapters 

3-4). 

We now construct the measurable metric dynamical system through defining a 

measurable and measure-preserving shift. Let Ot : n ---> n, t :::: 0, be a measurable 

mapping on (n, §, P), defined by 

Ot 0 Bs = BSH - Bt, Ot 0 Ws = Ws+t - Wt. 

Then for any s, t :::: 0, 

(i) p. 0;1 = P; 

(H) 00 = I, where I is the identity transformation on n; 

Also for an arbitrary § measurable ,p: n ---> H, set 

00 ,pew) = ,p(O(w)). 

We give the following boundedness and stationarity conditions for I, 9 w.r.t. 0.: 

(A.2.1). There exist a constant MI :::: 0, and functions J(-) E M 2,-K([0, 00); R+), 

!J(-) E M 2,-K([0,00);R+) S.t. for any s:::: 0, Y E Hand Z E .q,(H), 

III(s, Y, Z)II~ :5: Pes) + MIIIYII~ + MIIIZII~;,(H)' 

Ilg(s, Y, Z)II~bo(H) :5: 92(S) + MIIIYII~ + MIIIZII~;,(H); 

(A.2.2). For any T, s :::: 0, Y E Hand Z E .c~,(H), 

Or 0 I(s, Y, Z) = I(s + T, Y, Z), Or 0 g(s, Y, Z) = g(s + T, Y, Z). 

§2.2 Stationary Solutions of BDSDEs Derived by Perfection 

Procedure 

We start from the following general result about the stationarity of the solution 

of infinite horizon BDSDE. 

10 
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Proposition 2.2.1. Assume Eq.(2.2} has a unique solution (Y, Z), then under Con

ditions (A.2.1) and (A.2.2), (yt, Ztk~o is a "crude" stationary solution, i.e. for any 

r:::: 0, 

Proof Let Bs = BT,-s - BT, for arbitrary T' > 0 and -00 < s ~ T'. Then Bs is 

a Brownian motion with Bo = O. For any r :::: 0, applying er to BSI we have 

er ° Bs - er ° (BT,-s - BT,) = BT'-s+r - BT'+r 

(BT'-s+r - BT,) - (BT'+r - B~) = Bs-r - B_r. 

So for 0 ~ t ~ T ~ T' and a locally square integrable process {h(s)}s>o, by (2.3) 

- t -i
T 

(}r o t h(s)dBs = j
T'.-t 

-er ° h(T' - s)dBs 
T'-T 

T'-t - -1 er ° h(T' - s)dBs_r 
T'-T 

I
T '-t-r 

- - er ° h(T' - s - r)dBs 
T'-T-r 

I T+r - t -
(}r 0 h(s - r)d Bs. 

t+r 

As T' can be chosen arbitrarily, so we can get for arbitrary T :::: 0, 0 ~ t ~ T, r :::: 0, 

It is easy to see that g(., Y, Z) is locally square integrable from Condition 

hence by Condition (A.2.2) and (2.6) 

(2.6) 

(A.2.1), 

(2.7) 

We consider the equivalent form Eq.(2.5) instead of Eq.(2.2). Applying the oper

ator er to both sides of Eq.(2.5) and by (2.7), we know that er ° yt satisfies the following 

equation 

(2.8) 

11 
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On the other hand, from Eq.(2.5), it follows that 

{ 
I

T+r IT+r I T+r 
Yi+r = YT+r + f(s, Y., Zs)ds - g(s, Y., Zs)dt Bs - ZsdWs 

t+r t+r t+r 

1· -K(T+r)y; 0 (2 9) lm e T+r = a.s.. . 
T~oo 

Let Y = er 0 Y-T> Z. = er 0 z._r. By the uniqueness of solution of Eq.(2.5) and Remark 

2.1.4 (iii), it follows from comparing (2.8) with (2.9) that for any r ;::: 0, 

o 

Proposition 2.2.1 gives a "crude" stationary property of Y and Z. We then give 

the following theorem which makes the "crude", even "very crude" stationary property 

of Y "perfect". The main idea of the proof is from [1] and [2] perfecting crude cocycles. 

We include a proof here as our refined proof seems easy to follow. 

Theorem 2.2.2. Let (n, ff, P) be a probability space, lHI be a separable Hausdorff topo

logical space with a-algebra YC'. Assume Y: [0,00) x n ---+ lHI is BIR+ <21 ff measurable, 

continuous w.r.t. t a.s. and satisfies for any t, r ;::: 0, 

(2.10) 

Then there exists a ft which is an indistinguishable version of Yi s. t. Y is BIR+ <21 ff 

measurable, continuous w. r. t. t for all wand satisfies 

er 0 ft = ft+r for all t, r ;::: 0 a.s .. 

Proof From the continuity of Y W.r. t. t and using a standard argument, we easily 

see that for any r ;::: 0, 

Define 

er 0 Yi(w) = Yi+r(w) for all t;::: 0 a.s .. 

M = {(r,w) : er 0 Yi(w) = Yi+r(w) for all t}; 

{j = {w: (r,w) E M for a.a. r}; 

n* = {w : erw E {j for a.a. r}; 

A(r, t, w) = er 0 Yi - Yi+r' 

12 
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Obviously, A(r, t,w) is measurable w.r.t. BIR+ ® BIR+ ® SF If we denote by Q the 

normalized Lebesgue measure on 1R+ such that Q(IR+) = 1, then by (2.11), 

(2.12) . 

where I is the indicator function in (1R+ X 1R+ X 0, BIR+ ® BIR+ ® .9'). It is easy to see 

that 

M = {(r,w): r IA-'(o)(r, t,w)dQ = 1} E BIR+ ®.9'. 
llR+ 

And since (2.12) 

Q®P(M)=Q®P({(r,w): r IA-'(o)(r,t,w)dQ=1}) =1. 
llR+ 

Similarly, we have 

and 

o={w: r IM(r,w)dQ=1}E.9' 
llR+ 

prO) = p({w: r IM(r,w)dQ = 1}) = 1. 
llR+ 

Moreover, the measurability of 0* can be seen easily as 

And since 0 has full measure, so 

P(O*) > p({w: Y,+r(Ouw) = Y,(Or oOuw) for a.a. rand u, and all t} n 0) 

p( {w : Y,+r+u(w) = Y,(Or+uw) for a.a. rand u, and all t} nO) 
- p({w: Y,+r'(w) = Y,(Or'W) for a.a. ri, and all t} no) 

- prO) 

- 1. 

One can prove OuO* C 0* for any u <': o. To see this for any w E Oun*, there exists 

W E n* s.t. w = Ouw and Orw E 0 for a.e. r <': o. But Orw = Ou+rW E 0 for a.e. r <': 0, 

so w E n*. That is to say OuO* C n*. Define 

{ 
~(w) = Y,-r(OrW), 

Y,(w) = 0, 

where r E [0, tj with Orw E 0, if w E n*, 
if w E n*c. 

13 
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An important fact is that if wEn', then for an arbitrary r E [0, t] with Orw E n, 
Yt-r (OrW) is independent of rand 

(2.13) 

To see this, as Orw E n, so there exists u 2: r s.t. (U,Orw) E M and (u- r, OrW) E M. If 

not, it means for a.e. r there doesn't exist u satisfying (u, Orw) E M and (u - r, Orw) E 

M. Then one can easily get the measure of {u : (u, Orw) 1: M} is positive. That is a 

contradiction. So such a u certainly exists and satisfies 

So 

Therefore (2.13) is true and Yi doesn't depend on the choice of r. That is to say Yi(w) 

is well defined. Moreover (2.13) implies that Yt = Yi for all t E IR+ on full measure set 

n', thus Yt and Yi are indistinguishable. Define 

{ 
B(r, t,w) = Yt-r(OrW), 

B(r,t,w) = 0, 

if r E [0, t], Orw E n, and wEn', 

otherwise. 

Then B(r, t, w) is BIR+ ® BIR+ ® § measurable. By definition of n', if wEn', then for 

a.e. 0::::; r ::::; t, Orw E n. We denote by L(r) the Lebesgue measure on [0, t]. Since 

the countable base of H generates ./t' and separates points, (H,./t') is isomorphic as a 

measurable space to a subset of [0, 1]. Consequently, 

Yi(w) = l B(r,t,w)dL(r) 

for all t, w. So by Fubini's theorem, Yi(w) is BIR+®§ measurable. Yi(w) is a.s continuous 

w.r.t. t due to the a.s continuity of Yt-r(w). But there exists null measure set NE § 

s.t. {w: Yi(w) is not continuous w.r.t. t} C N. Let Yi(w) on N equal 0. We still 

denote this new version of Yi (w) by Yi (w), then we have Yi (w) is continuous for all w. 

The remaining work is to check for wEn', all r 2: 0, Yi(w) satisfies stationary 

property. Since wEn', for all r 2: 0, Orw E n'. Pick a u s. t. Ouw E n, Ou+rW E n, then 

by (2.13) we have 

The theorem is proved. o 

14 
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Remark 2.2.3. Prom the above perfection argument for "very crude" continuous func

tion, it is easy to see that if the Y in Theorem 2.2.2 is not continuous, but instead it is 

a "crude" function, then we can also obtain its indistinguishable "perfect" version. 

With Theorem 2.2.2 and Remark 2.2.3, we can deduce directly from Proposition 

2.2.1 that 

Theorem 2.2.4. Assume Eq.(2.2} has a unique solution (Y, Z) in the Hilbert space 

H, then under Conditions (A.2.1) and (A.2.2), (Yi, Z,),::::o IS a "perfect" stationary 

solution, i. e. 

§2.3 Transferring the Stationarity from BDSDEs to the 

Corresponding SPDEs 

An important application of the BDSDEs is to connect their solutions with the 

solutions of the corresponding SPDEs. If some kind of relationship is established, we 

can transfer the stationary property from the infinite horizon BDSDEs to SPDEs. In 

this way, we are able to access stationary solutions of the SPDEs due to the stationary 

property of solutions of infinite horizon BDSDEs. In this section, we take weak solutions 

of SPDEs (L~(lRd; jRi) valued solutions of SPDEs) as an example to show this .method. 

The main aim of the rest of this chapter is to find the stationary weak solutions of the 

SPDEs through its corresponding BDSDEs. Some proofs are given in this section, but 

many detailed proofs are postponed to Chapter 3. 

§2.3.1 Definition for weak solutions of SPDEs and the corresponding L~(jRd; jRi)18I 

L~(jRd; jRd) valued BDSDEs 

From now on, we consider the general BDSDE in the case H = L~(jRd; jRi) with 

the inner product 

i.e. a p-weighted L2 space. Here p(x) = (1 + Ixl)q, q > 3, is a weight function. 

It is easy to see that p(x) : jRd ---+ jRi is a continuous positive function satisfying 

15 
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flRd IxIPp-I(X)dx < 00 for any p E (2,q -1). Note that we can consider more general p 

which satisfies the above condition and conditions in [3J and all the results of this thesis 

still hold. 

We can write down the solution spaces following Definition 2.1.1: M 2,-K ([0,00); L~ 

(]Rd;]RI )), M2,-K ([0,00); L~(]Rd; ]Rd)) and S2,-K ([0,00); L~(]Rd;]RI )). Similar to the def

inition for M 2,-K ([0, 00); L~(]Rd; ]Rd)), ~e can also define MP,-K ([0,00); LJ:(]Rd; ]Rd)) for 

p> 2. 

For k ::: 0, we denote by 0 1\ the set of Ok-functions whose partial derivatives of 

order less than or equal to k are bounded and by H~ the p-weighted Sobolev space (See 

e.g. [3]). In order to connect BDSDEs with SPDEs, the form of BDSDEs should be a 

kind of FBDSDEs (forward and backward doubly SDEs). So we first give the following 

forward SDE. 

For s ::: t, let X!,X be a diffusion process given by the solution of 

X;'X = x + l' b(X~X)du + l' a(X~X)dWu, (2.14) 

where b E 0 2 (]Rd. ]Rd) a E 0 3 (]Rd.]Rd X ]Rd) and for 0 < s < t we regulate X',x = x l,b " l,b' , -, s· 

For any r ::: 0, s ::: t, x E ]Rd, apply Or defined in Section 2.1 to SDE (2.14), then 

So by the uniqueness of the solution and a perfection procedure (c.f. [1]), we have 

0' X',x - X'+r,x c 11 t r 0 s - s+r lor a T, S, ,x a.s .. (2.15) 

Now we consider the following BDSDE with infinite dimensional noise on infinite 

horizon 

e-Ksy"x 
s 

[0 e-Kr f(X;'X, Y;'x, Z;,X)dr + [0 Ke-Kry""Xdr 

-100 e-Krg(X"X y"x Z"X)dt B -100 e-Kr(Z"X dw') (2.16) rlT1T r Tl r-

s s 

Here Br = 2::}:1 y'>:j!Jj(r)ej, {!Jj(r)}j=I,2, ... are mutually independent one-dimensional 

Brownian motions. Note that we will solve Eq.(2.16) for Y;' E L~(IRd;]RI) and Z;' E 

.c~d(L~(]Rd; ]RI)) = L~(]Rd; ]Rd). 

Set gj '" gy'>:jej : ]Rd X ]RI X ]Rd--+]Ri, then Eq.(2.16) is equivalent to 

e-Ksy"x = 100 e-Krf(X"X y',x Z"X)dr + 100 Ke-KrY"Xdr 
s r'r1T r 

s s 

16 
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Referring to Definition 2.1.3 and noting that C~(lRd;JR.I) is dense in L~(JR.d;JR.I) under 

the norm (Jl{d 1'12p-I(X)dx)~, we can define the solution in L~(JR.d;JR.I) as follows: 

Definition 2.3.1. A pair of processes (yt" Z.t,) E S2,-K n M 2,-K ([0, (0); L~(JR.d; JR.I)) ® 
M 2,-K ([0,00); L~(JR.d; ]Rd)) is called a solution of Eq. (2.16) if for an arbitrary cp E 
CO(]Rd.]RI) 

C , , 

Note that in (2.17) we leave out the weight function p in the inner product due 

to the arbitrariness of cp. 

H Eq.(2.16) has a unique solution, then for an arbitrary T, Yi'x satisfies 

yt,x y,t,x + iT f(Xt,X yt,x Zt,X)dr -iT g(xt,x yt,x Zt,X)dt B _iT(zt,x dl-V) 
8 T r'r'r r'r1T r r' r" 

8 - 8 8 

(2.18) 

In Section 3.2, we will prove that the following SPDE can be associated with BDSDE 

(2.18) 

u(t, x) - u(T, x) + iT

[5t'u(s,x) + f(x,u(s,x), (O"V'u)(s,x)))ds 

-iT g(x,u(s,x), (O'·V'u)(s,x))dtBs. (2.19) 

Here 5t' is given by (1.3) and u(T,x) = Y!'x. But we can normally study general 

u(T, x) unless we consider the stationary solution. 

Now following Definition 2.1.2 we write down the solution spaces needed in this 

chapter: M2,O([t, T); L~(lRd;]RI )), M2,O([t, T); L~(]Rd; JR.d)) and S2'0([t, T); L~(Rd; RI )). 

17 
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Definition 2.3.2. A process u is called a weak solution (solution in L~(JR.d;JR.l)) of 

Eq.{2.19} if (u,u''Vu) E M2,0([0,T];L~(JR.d;JR.l))®M2,0([0,T];L~(JR.d;JR.d)) and for an 

arbitrary Iji E C~'OO([O, T] X JR.d; JR.l), 

i T r u(s,x)8slji(s,x)dxds+ r u(t,x)lji(t,x)dx- r u(T,x)Iji(T,x)dx 
t ~ ~ ~ 

-~ iT r (u''Vu)(s, x)(u''VIji)(s, x)dxds 
2 t JRd 

-iT r u(s,x)div((b-A)Iji)(s,x)dxds 
t JJRd 

_ iT r f(x,u(s,x), (u''VU)(S,X))Iji(s,x)dxds 
t JlJ{d . 

-fiT r 9j(X,U(S,x), (u''Vu)(s,x))Iji(s,x)dxdt;3j(s) P - a.s.. (2.20) 
j=l t JRd 

This definition can be easily understood if we note the following integration by 

parts formula: for 'PI, 'P2 E C2(JR.d), 

§2.3.2 Generalized equivalence of norm principle 

We introduce the so-called "generalized equivalence of norm principle" which 

plays an important role in the analysis not only in this chapter, but also through this 

thesis. 

It is well-known that the solution of Eq.(2.14) defines a stochastic flow of diffeo

morphism X;' : JR.d ...., JR.d (See e.g. Kunita [28]). We denote by X"!, the inverse flow 

and by J(X;'X) the determinant of the Jacobi matrix of X;'x respectively. For 'P E 

H~(JR.d; JR.l), we define a process 'Pt : n x [0, T] X JR.d ...., JR.l by CPt(s, x) = cp(X!,x)J(X;'X), 

It is proved in [3] that CPt(s,·) E H~(JR.d;JR.l) and for u E H~·(JR.d;JR.l), 

r u(x)cp(x)dx t:. 
JRd 

< 

L 1 u,,(x)D"cp(x)dx 
OS:I"I S:k Rd • 

,-----------------------------
L r [u,,(x)l2p-l(x)dx r [D"'P(X)[2p(x)dx < 00 

OS:I"IS:k JRd JRd 

18 
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and 

The following lemma is an extension of equivalence of norm principle given in 

[29], [4], [3] to the cases when rp and \]i are random. 

Lemma 2.3.3. (genemlized equivalence of norm principle) Let p be the weight function 

and X be the diffusion process defined in Subsection 2.3.1. If s E [t, TJ, rp : fl x]Rd --t ]R I 

is independent of .fi't~ and cpp-I E LI(fl0 ]Rd), then there exist two constants c > 0 

and C > 0 such that 

Moreover if \]i : fl x [t, T] X ]Rd --t ]RI, \]i(s,·) is independent of §t~ and \]ip-I E 

LI(fl0 [t, T]0 ]Rd), then 

CE[lT r l\]i(s, x)lp-l(x)dxds] ::; E[lT r l\)i(s, X;,X) lp-I (x)dxds] 
t kd. t ~ 

< CE[l
T r l\]i(s, x)lp-l(x)dxds]. 

t JJRd 
W -1 (X'·.)J(X".) 

Proof Using the conditional expectation w.r.t. §t,s and noting that P / ICy) , 

is §t~ measurable and Icp(y)lp-l(y) is independent of §t~, we have 

By Lemma 5.1 in [3], for any y E ]Rd, S E [t, T], 

. p-I(Xt'Y)J(xt,y) 
c::; E[ pS l(y) s ]::; C, 

so the first claim follows. The second claim can be proved similarly. 

Remark 2.3.4. By Lemma 2.3.3 and the fact that JlRdxPp-l(x)dx < 00, it is easy to 

deduce that X t ,. E MP,-K([O,OO);~(]Rd;]Rd)) for K E ]R+. 
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§2.3.3 Conditions, examples and main results in Chapter 3 

The main purpose of this section is to find the stationary weak solution of SPDE 

(1.2) via the solution of BDSDE (2.16). In this subsection, we give the following con

ditions, examples and main results in Chapter 3 for BDSDE (2.16) in order to prove 

the stationarity of SPDE in next subsection, and the proofs of theorems will be given 

in Chapter 3. 

(A.2.1)'. Functions! : JRd x JR' X JRd--7JR' and 9 : JRd X JR' X JRd --7 L:bo(JR') are 

.@IRd0.@IRI 0.@IRd measurable, and there exist constants M2, M2j , C, Cj, O<j 2: ° with 

I:;, M2j < 00, I:;, Cj < 00 and I:;,O<j < ~ s.t. for any Y" Y2 E L~(JRd; JR'), 

X" X 2, Z" Z2 E L~(JRd; JRd), measurable U: JRd -> [0,1]' 

r U(x)!!(X,(x), Y,(x), Z,(x)) - !(X2(x), Y2(x), Z2(x)Wp-'(x)dx 
JIRd 

< r U(x) (M2!X, (x) - X 2(xW + C!y,(x) - Y2(xW 
JIRd 

+C!Z,(x) - Z2(xW)p-'(x)dx, 

id U(x)!gj(X,(x), Y,(x), Z,(x)) - gj(X2(x), Y2(x), Z2(X)Wp-l(X)dx 

< r U(x) (M2j !X,(x) - X 2(xW + Cj!Y,(x) - Y2(XW 
JIRd 

+O<j!Z,(x) - Z2(XW)p-' (x)dx; 

(A.2.2),. For p E (2, q - 1), 

r !!(x, 0, oJiPP-' (x)dx < 00 and r IIg(x, 0, o)!!~p (IRI)p-'(x)dx < 00; 
JJR.d JRd Uo 

(A.2.3)'. b E CI~b(JRd; JR'), a E qb(JRd X JRd; JR'), furthermore, for p is given in (A.2.2)" 

if L is the global Lipschitz constant for b and a, L satisfies K - pL - p(P2-')L2 > 0; 

(A.2.4)'. There exists a constant /1 > ° with 2/1- pK - pC - p(P;') I:;, Cj > ° s.t. 

for any Y,'y2 E L~(JRd; JR'), X, Z E L~(JRd; JRd), measurable U: JRd -> [0,1]' 

r U(x) (Y, (x) - Y2(x)) (J(X(x), Y, (x), Z(x)) - !(X(x), Y2(x), Z(x)) )p-' (x)dx 
JIRd 

< -/1 r U(x)!Y,(x) - Y2(xWp-'(x)dx. 
JIRd 

Remark 2.3.5. We need monotone condition (A.2.4)' in order to solve the infinite 

horizon BDSDEs. But it does not seem obvious to replace the Lipschitz condition in 
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the space L~(lRd;!RI) (we call it weak Lipschitz condition) for f in (A.2.1)' by a weaker 

condition on f such as f is continuous in y using the infinite horizon BSDE procedure 

(e.g. (40J). The difficulty is due to the fact that we consider various conditions in the 

space L~(!Rd; !RI) here rather than pointwise ones, therefore we cannot solve the BDSDEs 

pointwise in x . However, the Lipschitz condition can be relaxed if we strengthen our 

assumption by changing some conditions in L~(!Rd;!RI) to pointwise ones. Later we 

will study one non-Lipschitz case in Chapter 4. Here we only consider the Lipschitz 

continuous function f to initiate this intrinsic method to the study of this basic problem. 

Now we give some simple examples. Since the examples for only Lipschitz con

dition are very familiar, we concentrate ourself on examples for f with !RI domain. 

Without losing any generality, assume that p is just a little bit bigger than 2. 

Example 2.3.6. f(y) = -~Y + 2, Y E !RI. In this case f.l = ~, C = i and 2f.l- pC> O. 

We can construct K, Cj , Land Qj to satisfy Conditions (A.2.1),-(A.2.4),. 

From Example 2.3.6, it is easy to see that f can be any linear function like 

f(y) = -Ay + B, 0 < A < 1 and B E !RI. 

Example 2.3.7. f(y) = (-~y)I{Y<2) + (-tY - IIO)I{Y~2)' Y E !RI. In this case one can 

verify that f.l = ~ 1\ i = t, C = 116 V 215 = I~ and 2f.l- pC> 0, then K, Cj ' Land Qj 

can be constructed to satisfy Conditions (A.2.1),-(A.2.4)'. 

The Example 2.3.7 provides a method to construct more nonlinear functions. 

Example 2.3.8. If there is a family of linear functions like Ji(y) = -Ajy + Bj , 0 < 
Aj < 1 and Bj E !Ri, j = 1,2" . " and their coefficients satisfies I\j Aj > Vj A;, 

then from Example 2.3.7, we can see that any new function constructed by an arbitrary 

combination of these functions satisfies Conditions (A.2.1)'-(A.2.4)'. 

Remark 2.3.9. All the above examples are of the pointwise Lipschitz continuous con

dition. Obviously, the weak Lipschitz continuous condition (A.2.1)' is weaker. For 

instance, we can change the function f in Example 2.3.6 to f(y) = (-~y + 2)I{YEIR8)' 

where !Ro is the rational number set in !RI and!RQ is its complementary set. 

We first acknowledge the two theorems below and give their proofs in Section 3.4. 

Theorem 2.3.10. Under Conditions (A.2.1),-(A.2.4)', Eq.{2.16) has a unique solution 

w,t.x, Z;·X). Moreover E[sups~o fIR" e-pKS!Y;'XIP p-I(x)dx] < 00. 
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Theorem 2.3.11. Under Conditions (A.2.1)'-(A.2.4)', letu(t,·) A Y,''', where (Y", Z.'·) 

is the solution of Eq.{2.16}. Then for arbitrary T and t E [0, TJ, u(t,·) is a weak solu

tionfor Eq. {2. 19}. Moreover, u(t,·) is a.s. continuous w.r.t. t in £~(lRd;JRI). 

§2.3.4 Stationary weak solution 

Using the conditions and results given in last subsection, we prove the main results 

in this section. 

Theorem 2.3.12. Under Conditions (A.2.1),-(A.2.4)', letu(t,·) A Y,''', where (Y", Z") 

is the solution of Eq. {2. 16}. Then u(t,.) has an indistin9uishable version which is a 

"perfect" stationary weak solution of Eq. {2. 19}. 

Proof For Y E U(JRd.JRI) Z E £2(JRd.JRd) let • p" P J , 

j(T, Y, Z) = f(X;', Y, Z), g(T, Y, Z) = 9(X;', Y, Z). 

Here we take T = (8, t) as a dual time variable (t is fixed). By Condition (A.2.1)', we 

have 

IIj(T, Y, Z)llh(IRd;IRl) 

- (If(X;'X, Y(x), Z(x)Wp-l(x)dx 
lIRd 

< Cp { If(X;,X,O,OWp-I(X)dx+Cp { IY(XWp-I(X)dx+Cp { IZ(XWp-I(X)dx. 
~ ~ ~ 

Here and through the thesis, Cp is a generic constant. By Lemma 2.3.3 and Condition 

(A.2.2)" 

< Cp 100 { e-KSIJ(x, 0, OWp-l(x)dxd8 
o lIRd 

< Cp ( If(x,O,O)iPp-l(x)dx < 00. 
lIRd 

We take j(T) - (fIRd If(X;'X, 0, O)i2p-l(x)dx)!, then j(T, Y, Z) satisfies Condition 

(A.2.1). Similarly we can prove g(T, Y, Z) also satisfies Condition (A.2.1). On the 

other hand, applying Br to j(T, Y, Z), by (2.15), we have for any Y E £~(JRd; JRI) and 

Z E £2 (JRd. JRd) p , , 

Br 0 j(T, Y, Z) = f(Br 0 X;', Y, Z) = f(X!t;', Y, Z). 
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Verifying [](7, Y, Z) in the same way, we know that 1(7, Y, Z) and [](7, Y, Z) satisfy 

Condition (A.2.2). Since by Theorem 2.3.10, Eq.(2.16) has a unique solution (YT, ZT), 

this (YT , ZT) is a stationary solution as a consequence of Theorem 2.2.4. Note that t 

is fixed, so for any t :::: 0, 

(J' Y; (J' yt . yt+r,. 
rOT = r 0 s' = s+r, 

In particular, for any t :::: 0, 

(J' vt,. _ v t+r,. 
r0.It -I t+r for all r :::: 0 a.s .. (2.21) . 

By Theorem 2.3.11, we know that u(t,·) ~ ~t,. is the weak solution of Eq.(2.19), so we 

get from (2.21) that for any t :::: 0, 

er 0 u(t,·) = u(t + T,.) for all r :::: 0 a.s .. 

Until now, we only know the "crude" stationary property for u(t, .). But by Theorem 

2.3.11, u(t,·) is continuous w.r.t. t, thus we can obtain an indistinguishable version of 

u(t, .), still denoted by u(t, .), S.t. 

er 0 u(t,·) = u(t + T,.) for all t, T:::: 0 a.s .. 

So we proved the desired result. <> 

By Definition 2.3.2, Conditions (A.2.1)' and (A.2.2)', one can calculate that 

is locally square integrable in [0, T]. Now we consider Eq.(1.2) with cylindrical Brownian 

motion B on Uo. For arbitrary T > 0, let Y be the solution of Eq.(2.16) and u(t,.) = ~t,. 

be the stationary solution of Eq.(2.19) with B chosen as the time reversal of B from 

time T, i.e. Bs = BT-s-BT or !3j(s) = (3j(T-s)-{3j(T) for s :::: O. By (2.3) and integral 

transformation in Eq.(2.19), we can see that v(t, x) ~ u(T - t, x) satisfies Eq.(1.2) or 

its equivalent form 

v(t, x) = v(t, vo)(x) = vo(x) + l[..'£v(S, x) + j(x, v(s, x), (O""vv)(s, x))]ds 

Here vo(x) = v(O, x). 

+ f l gj(x,v(s,x),(O"*Vv)(s,x))d{3j(s), t:::: O. (2.22) 
j=l 0 
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In fact, we can prove a claim that vet, .)(w) = YI~t"·(w) does not depend on the 

choice of T. For this, we only need to show that for any T' ~ T, YI~/,(w) = YJ,~-t',(W') 

when 0::; t ::; T, where W(8) = BT- s - BT and W'(8) = BT'_s- BT,. Let B. and B' be the 

shifts of wO and w'(·) respectively. Using the stationary property (2.21) for BDSDE 

(2.16) proved in Theorem 2.3.12, we have 

YT-t.(,) B' yO.(') yO'(B' ') T-t' W = T-t 0' W = 0' T_tW , 

Y T' -t, (") _ B" yO, (w") - yO, (B" ") T'-t W - T'-t 0 - 0 T'_tW . 

So we only need to assert that BT_tw = BIr'_tw'. Indeed we have for any 8 ~ 0, 

weT - t+ 8) - weT - t) 

(BT-(T-t+s) - BT) - (BT-(T-t) - BT ) 

Note that the right hand side of the above formula does not depend on T, therefore 

BT_tW(8) = BIr'_tW'(8) = Bt- s - Bt. 

On the probability space (n, §, P), we define Bt = (Bt)-l, t ~ O. Actually B is 

a two-sided Brownian motion, so (Bt)-l = B_t is well defined (see [1]). It is easy to see 

that Bt is a shift w.r.t. B satisfying 

(ii) BD = I; 

(iv) Bt 0 Bs = Bs+! - Bt. 

Since vet, ·)(w) = u(T - t, ·)(w) = YI~/'(w) a.s., so 

B_ru(T - t, ·)(W) = B_rBru(T - t - T, .)(W) 

- u(T - t - T, ·)(W) = v(t+ T, .)(w), 

for all T ~ 0 and T ~ t + T a.s .. In particular, let yew) = vo(w) = yl'(w). Then the 

above formula implies (1.1): 

BtY(w) = Y(Btw) =v(t,w) = v(t,vo(w),w) = v(t,Y(w),w) for all t ~ 0 a.s .. 

That is to say vet, .)(w) = Y(Btw)(-) = YI~t"(w) is a stationary weak solution of 

Eq.(1.2) w.r.t. B. Therefore we proved the following theorem 
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Theorem 2.3.13. Under Conditions (A.2.1)'-(A.2.4)', for arbitrary T and t E [0, TJ, 

let v(t,·) '" y::~t., where (yt., zt.) is the solution of Eq.{2.16} with Bs = BT- s - BT 

for all s 2 o. Then v(t,·) is a "perfect" stationary weak solution of Eq.{1.2}. 
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Chapter 3 

Stationary Weak Solutions of 

SPDEs 

In this chapter, we will study the weak solutions of SPDEs and the corresponding 

L~(JRd; JRI) ® L~(JRd; JRd) valued BDSDEs. Before studying the BDSDEs on infinite 

horizon and giving the proofs of Theorems 2.3.10 and 2.3.11, we first study the BDSDEs 

on finite horizon and establish the connection with SPDEs. 

§3.1 Finite Horizon BDSDEs 

§3.1.1 Conditions, definition and main res\llt 

For finite dimensional noise and under Lipschitz condition for a.e. x E JRd, the 

problem was studied in Bally and Matoussi [3J. In this section, we consider the following 

BDSDE with infinite dimensional noise on finite horizon: 

y't,x = h(X~X) + J.T f(r, X;'x, Y':'x, Z;,X)dr 

_ iT g(r xt,x yt,x Zt,X)dt iJ - iT(zt,x dW:) 0 _< s <_ T. (3.1) 
'r1r1r T. r' r, 

s s 

Here h : !1 X JRd ---> JRI, f: [0, TJ X JRd X JRI x JRd---> JRI, 9 : [0, TJ x JRd X JRI X JRd ---> 

.c~o(JRI). Set gj '" gyAjej : [0, TJ X JRd X JRI x JRd---> JRI, then Eq.(3.1) is equivalent to 

y't,x = h(X~X) + J.T f(r, X;'x, Y':'x, Z;,X)dr 

_ fiT gj(r, X;'X, Y,:,X, Z;,X)dt j3j(r) - iT (Z;'X, dWr ), 0::::; s ::::; T. 
j=1 8 ~ 

We assume 
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(H.3.I). Function h is .ff:f!.oo 0 ~IRd measurable and E[fIRd Ih(x)l2p-I(X)dxJ < 00; 

(H.3.2). Functions f and 9 are ~[O,T] 0 ~IRd 0 ~IRl 0 ~IRd measurable and there exist 

constants C, Cj,!:Xj 2:: ° with L:j:1 Cj < 00 and L:j:I!:Xj < ~ s.t. for any t E [0, TJ, 

YJ, Y2 E L~(JRd;JRI), X, ZI, Z2 E L~(JRd;JRd), 

r If(t, X(x), YI(x), ZI (x» - f(t, X(x), Y2(x), Z2(X)Wp-1 (x)dx 
JIRd 

< C r (IYI(x) - Y2(xW + IZI(x) - Z2(XW)p-I(X)dx, 
JIRd 

r Igj(t,X(x), YI(x), ZI(X» - gj(t,X(x), Y2(x), Z2(X)Wp-I(X)dx 
JIRd 

< r (CjIYI(x) - Y2(xW + !:XjIZI(x) - Z2(XW)p-I(X)dx; lad . 

(H.3.3). f: fIRd If(s, x, 0, o)l2p-l(x)dxds < 00 and f: fIRd Ilg(s, x, 0, 0)II~bo(1R1)P-I(X)dxds 
<.00; 

Needless to say, the conditions (H.3.1)-(H.3.4) for the existence and uniqueness 

of solution of Eq. (3.1) are weaker than what are needed for the .case of infinite horizon 

in Subsection 2.3.3. We would like to point out that for the finite horizon problem, our 

conditions are weaker than those in Bally and Matoussi [3J. In (H.3.1), we allow the 

terminal function h to depend on the .ff:"T-independent a-field .ff:f!.oo' One can easily 

verify that it doesn't affect the results in [3J. Moreover, here we only need Lipschitz 

condition in the space L~(JRd; JRI) instead of the pointwise Lipschitz condition posed in 

[3J. 

Definition 3.1.1. A pair ofpmcesses (Y", Z") E 8 2,°([0, TJ; L~(JRd; JRI» ® M 2,0([0, TJ; 

L~(JRd; JRd» is called a solution of Eq. (3. 1} if for any cp E C~(JRd; JRI), 

_ r h(X~X)CP(X)dX+iT r f(r,X;,x,y;,x,Z;,X)cp(x)dxdr 
JJRd 8 JlRd 

- fiT Lgk,X;,x'y;,x,Z;,X)CP(X)dXdt/Jk) 
)=1 s JR 

-iT (r z;,Xcp(x)dx, dWr ) P - a.s.. (3.2) 
s JJRd 

The main objective of this section is to prove 
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Theorem 3.1.2. Under Conditions (H.3.1)-(H.3.4), Eq.{3.1} has a unique solution. 

This theorem is an extension of Theorem 3.1 in [3]. The idea is to start from Bally 

and Matoussi's results for finite dimensional noise and then take the limit to obtain the 

solution for the case of infinite dimensional noise. But Bally and Matoussi's results 

cannot apply immediately here as we have a weaker Lipschitz condition and some of 

the key claims in the proof of Theorem 3.1 ([3]) are not obvious under their conditions. 

Moreover, the result y'" E S2,0([0, T]; L~(JRd; JRI)) was not obtained in [3]. 

§3.1.2 Substitution theorem 

We study a sequence of BDSDEs 

Y',x,n = h(X"X) + IT f(r x',x y',x,n z"x,n)dr 
8 T 'rlr'r , 

n IT IT - L gk,X;'X, y;,x,n, z;,x,n)dt j3k) - (Z;,x,n,dWr). (3.3) 
;=1 S s 

A solution of (3.3) is a pair of processes (Y'",~, z,,.,n) E S2,0([0, T]; L~(JRd; JRI)) ® M 2,0 

([0, T]; L~(JRd; JRd)) satisfying the spatial integral form of Eq.(3.3), i.e. (3.2) with a finite 

number of one dimensional backward stochastic integrals. 

Lemma 3.1.3. Under Conditions (H.3.1)-(H.3.4), if there exists (y(.), Z.(·)) E M 2,0([t, T]; 

L~(JRd; JRI)) ® M 2,0([t, T]; L~(JRd; JRd)) satisfying the' spatial integral form of Eq. {3.3} for 

t::; s::; T, then y(.) E S2,0([t,T];L~(JRd;JRI)) and therefore (Y,(x),Z,(x)) is a solution 

of Eq. {3.3}. 

Proof Let's first see y,(.) is continuous w.r.t. s in L~(JRd; JRI). Since (Y,(x), Z,(x)) 

satisfies the form of Eq.(3.3) for t ::; s < T, a.e. x E JRd, therefore 

1 1Y,+[;,(x) - Y,(xWp-l(x)dx 
JRd 

11'+[;' 
< Cp If(r, X;'X, Y,.(x), Zr(X)Wdrp-l(x)dx 

JRd , 

~1 1'+[;' t' 2 +Cp L.. 1 gj(r, X;'X, Yr(x), Zr(x))d .Bk)1 p-l(x)dx 
;=1 IRd s 

+Cp1 11,M'(Zr(X),dWrWp-l(x)dx. 
JRd , 

For the forward stochastic integral part, it is trivial to see that for 0 ::; 6s ::; T - s, 

1,+[;, 1'+[;' 
I, (Zr(X), dWrW ::; O::;~~fT-,I, (Zr(X), dWrW a.s .. 
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And by the B-D-G inequality and z.(.) E M 2,O([t, T]; L~(JRd; JRd)), we can deduce that 

a.s .. 

So by the dominated convergence theorem, 

Similarly we can prove for t < s ::; T, 

The backward stochastic integral part tends to 0 as f':,s -> 0 can be deduced similarly. 

So Y.(.) is continuous w.r.t. s in L~(JRd; JRI). 

From Conditions (H.3.2)-(H.3.4) and (y(.), z.(.)) E M 2,O([t, T]; L~(JRd; JRI)) ® M 2,o 

([t, T]; L~(JRd; JRd)), it follows that for a.e. x E JRd, 

and 

t E[lT 

Igk,X;'X, Yr(x), Zr(x)Wdr] < 00. 

j=l t 

For a.e. x E JRd, referring to Lemma 1.4 in [44], we apply the generalized Ito's formula 

(c.f. Elworthy, Truman and Zhao [21]) to 1/!M(Yr(X)), where 

1/!M(X) = x2 I{_M~x<M} + M(2x - M)I{x~M} - M(2x + M)I{x<_M}' 

Then 
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We can use the Fubini theorem to perfect (3.4) so that (3.4) is satisfied for a.e. x E jRd, 

on a full measure set that is independent of x. Taking integration over jRd on both sides 

and applying the stochastic Fubini theorem ([16]), we have 

1 
'l/JM(Y.,(X))p-l(X)dx + iT r I{_M,oy.(x)<M}I Zr(xWp-l(x)dxdr 

]Rd s llRd 

< 1 'l/JM(h(X~X))p-l(X)dx+iT1 'I/J~(Yr(X))f(r,X;,X,O,O)p-l(x)dxdr 
IRe! s Rd 

+ iT 1 'I/J~(Yr(X)) (J(r, X;'X, Yr(x), Zr(X)) - f(r, X;'X, 0, O))p-l(x)dxdr 
s JRd 

+Cp t iT 1d 19j(r, X;'X, Y,.(x), Zr(X)) - gj(r, x;,x, 0, OWp-l(x)dxdr 

Noting that 'l/JM(h(X~X)) ::; Ih(X~XW and 1'I/J~(y"(x)W ::; 4IYr (x)l2, so by Lemma 

2.3.3, the B-D-G inequality and the Cauchy-Schwartz inequality, we have 

E[t~~fT 1d 'l/JM(Y.(X ))p-l(x)dx] 

< CpE[1Ih(xWp-l(X)dX] + CpE[i
T r (1Y,.(xW + IZr(xW)p-l(x)dxdr] 

]Rei t JJRd 

+CpE[t iT 1d (Igj{r, x, 0, oW + If(r, x, 0, OW)p-l(x)dxdr] 

+CpE[ iT r 1'I/J:W(Ys(X))I2p-l(X)dx r t Igj{r, X;,X, Yr(x), Zr(X))I2p-l(x)dxdr] 
t lJRd Jad j=l 

+CpE[ iT 1 I'I/J:W (Y.,(X))I2p-l(x)dx r IZr(x)l2p-l(x)dxdr] 
t IRd llRd 

< CpE[ r Ih(xWp-l(X)dx] + CpE[i
T r (lYr(xW + IZr(xW)p-l(x)dxdr] llRd t lIRe! 

+CpE[t iT 1}lgj(r, x, 0, oW + If(r, x, 0, OW)p-l(x)dxdr] 

+~E[ sup r 1'I/J~(Ys(X)Wp-l(X)dx]. (3.5) 
5 t,os,oT JJRd 
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Since (Y(-), z.(.)) E M2,O([t, T]j L~(JRdj]RI)) ® M2,O([t, T]j L~(IRdj ]Rd), taking the limit 

as M ---; 00 and applying the monotone convergence theorem, we have 

So y(.) E S2,O([t,TJ;L~(JRdj]RI)) follows. That is to say (Y.(x),Zs(x)) is a solution of 

Eq.(3.3). 0 

For the rest of Chapter 3, we will leave out the similar localization argument as in 

the proof of Lemma 3.1.3 when applying Ita's formula to save the space of this thesis. 

Theorem 3.1.4. (Substitution theorem) Under Conditions (H.3.1)-(H.3.4), assume 

Eq.{3.3) has a unique solution (y;,x,n, z~,x,n), then for any t :'0 s :'0 T, 

X ',X t x'·X t d Yr"' • ,n = Yr ,x,n and Z:' • ,n = Zr,x,n for r E [s, TJ, a.a. x E JR a.s .. 

Proof For t :'0 s :'0 r :'0 T, note that (Yr""n, z:"n) is ff!co ® ff,~ measurable, so 

is independent of fft~. Thus by Lemma 2.3.3, we have 

E[l
T r (IYrs,X!,X,nI2 + IZ:,x!,X,nI2)p-l(x)dxdr] 

s JlRd 

< CpE[l
T r (IYr",x,nI2 + Iz:,x,nI2)p-l(x)dxdr] < 00. 

s JfRd 

Moreover it is easy to see that xs,x!·x = Xt,x and (ys,x!·x,n Zs,x!,X,n) is g;iJ ® g;w 
1 r r r 'r r,oo t,T 

measurable, so (y.,x!',n, Z~,X!"n) E M 2,O([s, TJ; L~(JRdj JRI)) ® M 2,O([s, T]j L~(JRdj JRd)) 

and (Yr",x!·x,n, Z:,X!,X,n) satisfies the spatial integral form of Eq.(3.3) for s :'0 r :'0 T. 
xt,:J: t xt,;r; t Th (xt,x Xt,;Z;) Define ys, tJ ,n = y ,x,n ZS, tJ ,n = Z ,x,n when t < r < s en ys, tJ ,n ZS, tJ ,n 

T r'r r -' r 'T 

satisfies the spatial integral form of Eq.(3.3) for t :'0 r :'0 T and (y"x!",n, Z~,x!,·,n) E 

M 2,O([t, T]j L~(]Rdj JRI)) ® M 2,O([t, T]j L~(JRdj JRd)). Therefore, by Lemma 3.1.3, (Yr",X!,X,n, 

Z:,x!,X,n) is the solution of Eq.(3.3). 

By the uniqueness of the solution of Eq.(3.3), we have for any s E It, TJ, 

o 
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§3.1.3 The proof of main result 

Before Proving Theorem 3.1.2, the main result in this section, we need first to 

prove the following theorem which plays an key role in the proof of main result. 

Theorem 3.1.5. Under Conditions (H.3.1)-(H.3.4), Eq.{3.3} has a unique solution, i.e. 

there exists a unique (yt"n, zt"n) E S2,O([t, T]; L~(iRd; JRI)) ® M 2,O([t, T]; L~(JRd; JRd)) 

such that for an arbitrary <p E C2(JRd;JRI), 

1 y't,x,n<p(x)dx = 
JRd 1 h(X¥X)<p(x)dx + iT 1 fer, x;'x, y/,x,n, Z;,X,n)<p(x)dxdr . 

Rd s Rd 

-t iT 1 gj(r, x,;'x, y/,x,n, Z;,X,n)<p(x)dxdt(Jj(r) 
j=l s ]Rd 

'-i
T

( r z;,x,n<p(x)dx,dWr) P-a.s.. (3.6) 
s JJRd 

Proof Uniqueness. Assume there exists another Cy't,x,n, z!,x,n) E S2,O([t, T]; L~(JRd; 

JRI)) ® M 2,O([t, T]; L~(JRd; JRd)) satisfying (3.6). Define 

yt,x,n = yt,x,n _ yt,x,n and 2t ,x,n = zt,x,n _ zt,x,n t <_ s <_ T. 
S S 8 S S 5' 

From Condition (H.3.2) and (yt,.,n, zt"n), (yt"n, z:"n) E S2,O([t, T]; L~(JRd; JR I)) ® M 2,o 

([t, T]; L~(JRd; JRd)), it follows that for a.e. x E JRd, 

E[jT If(r Xt,x yt,x,n zt,x,n) _ fer xt,x yt,x,n zt,x,n)12dr] < 00 
'T'T IT 'T'T IT 

t 

and 

n T 
'" E[jlg.(r Xt,x yt,x,n zt,x,n) _ g.(r Xt,x yt,x,n zt,x,n)1 2dr] < 00 L..., J1Tlr lr l'rlr IT . 

j=1 t • 

For a.e. x E JRd, similar as in (3.4), we apply the generalized Ito's formula to eKr'lj;MCy,/,x,n), 

where K E JR 1, then take integration over n 0JRd on both sides and apply the stochastic 

. Fubini theorem. Note that the stochastic integrals are martingales, so taking the limit 

as M -> 00, we have 

(3.7) 
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All the terms on the left hand side of (3.7) are positive when K is'sufficiently large, so 

it is easy to see that for each S E [t, T], Y;'x = 0 for a.a. x E JRd a.s .. By a "standard" 

argument taking s in the rational number space and noting fit" eKs iYs',x,nI2p-l(x)dx is 

continuous W.r.t. s, we have y't,x,n = 0 for s E [t, T], a.a. x E JRd a.s .. Also by (3.7), 

for a.e. s E [t, T], z;,x,n = 0 for a.a. x E JRd a.s .. We can modify the values of Z at the 

measure zero exceptional set of s such that z;,x,n = 0 for s E [t, T], a.a. x E JRd a.s .. 

Existence. Step 1: We prove for the following equation: 

TnT T 

Yst,x,n = h(X~X) + j l(r, X;,X)dr - L j gj(r, X;,X)dtt3j(r) - j (z;,x,n, dWr), 
S j=1 s S 

(3.8) 

if (H.3.1) and (H.3.4) are satisfied, and l(-,xt,), gj(·,Xt')E M 2,O([t, T]; L~(JRd;JRI)), 

then there exists a unique solution. For this, we can first use a similar method as in the 

proof of Theorem 2.1 in [3] to prove there exists (,ft"n, Zt,.,n) E M 2,O([t, T]; L~(JRd; JRI)) ® 
M 2,O([t, T]; L~(JRd; JRd)) such that for an arbitrary r.p E C~(JRd; JRI), 

r Yst,x,nr.p(x)dx = r h(X~X)r.p(x)dx + jT r J(r, X;,X)r.p(x)dxdr 
JJRd JJRd s JRd 

-t jT r Mr, X;'X)r.p(x)dxdtt3j(r) -iT (r z;,x,nr.p(x)dx, dWr) P - a.s .. 
j=1 s jT3,.d s JJRd 

By Lemma 3.1.3, yt,.,n E S2,O([t, T]; L~(JRd; JRI)). Then Step 1 follows. 

Step 2: Given (Y"t,x,n,N-\ z;,x,n,N-I) E S2,O([t, T]; L~(JRd; JRI)) ® M 2,O([t, T]; L~(JRd; 

JRd)) define (yt,x,n,N zt,x,n,N) as follows' 
, S' 8 • 

y;,x,n,N = h(X~X) + J.T f(r, X;,x, y:,x,n,N-I, z;,x,n,N-I)dr (3.9) 

n T . T _ '" j 9 ·(r Xt,x yt,x,n,N-I zt,x,n,N-I)dt(J~ ·(r) _ j (zt,x,n,N dW) 
~ J' r 1 r 'r J r' r" 
j=1 8 S 

Let (Yrt,x,n,o, z:,x,n,o) = (0,0). By Conditions (H.3.1), (H.3.3), (H.3.4) and Lemma 

2.3.3, we know h, f(r, X;,x, 0, 0) and gj(r, X:,x, 0, 0) satisfy the conditions in Step 1, so 

Eq.(3.8) has a unique solution (yt,.,n,\ z.t,.,n,l) E M 2,O([t, T]; L~(JRd; JRI)) ® M 2,O([t, T]; 

L~(JRd;JRd)) when J(r,X:'X) = f(r,X:'x,O,O) and g(r,X:'X) = g(r,X:'x,O,O). From 

Theorem 3.1.4 and the Fubini theorem, we have 

Y,.t,x,n,1 = y;,X;'%,n,1 and z;,x,n,1 = Z;,x;'%,n,1 for a.a. r E [t, T], x E JRd a.s .. 
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Thus by Conditions (H.3.1)-(H.3.4) and Lemma 2.3.3, we have 

j(r xt,x yt,x,n,l zt,x,n,l) = j(r Xt,x yr,X:,x,n,1 zr,x:,X,n,l) 
)T'T IT 'TJT)T , 

g .(r xt,x yt,x,n,l zt,x,n,l) = g.(r Xt,x yr,X:,X,n,1 zr,x~,x,n,l) 
J'rlr IT 1'rJr 'T 

and h satisfy the conditions in Step 1. Following the same procedure, we obtain 

(yt .. ,n,2, z.t .. ,n,2) E M 2,O([t, TJ; L~(]Rd; ]RI)) ® M2,O([t, TJ; L~(lRd; ]Rd)). In general, we see 

(3.9) is an iterated mapping from S2,O([t,TJ;L~(]Rd;]RI)) ®M2,O([t,TJ;L~(]Rd;]Rd)) to 

itself and obtain a sequence {(y;,x,n,i, z;,X,n,i)}i,;,o' We will prove that (3.9) is a con

traction mapping. For this, define for t ::; 8 ::; T, 

yt,x,n,i = yt,x,n,i _ yt,x,n,i-l zt,x,n,i = zt,x,n,i _ zt,x,n,i-l 
8 S 8 '8 SS' 

j-i(8 x) = j(8 Xt,x yt,x,n,i zt,x,n,i) _ j(8 Xt,x yt,x,n,i-I zt,x,n,i-I) 
, '8'8'8 '8'8 '8 , 

g-i.(8 x) = g'(8 Xt,x yt,x,n,i zt,x,n,i) _ g'(8 Xt,x yt,x,n,i-I zt,x,n,i-I) i = 2,3, ... 
J' 1'8'8'8 )'8'8 '8 , 

Then, for a.e. x E ]Rd, cy;,x,n,N, z;,x,n,N) satisfies 

Applying the generalized Ito's formula to eKr rf;.t,x,n,Nl2 for a.e. x E ]Rd, by the Young 

inequality and Condition (H.3:2), we can deduce that 

r eK8j:Y;,x,n,NI2p-l(x)dx + K jT r eKrj:Y;,x,n,NI2p-l(x)dxdr 
JJRd s JlRd 

+ jT r eKr IZ;,x,n,NI 2p-l(x)dxdr 
s JIRd 

< J.T 1d eKr (2Cj:Y;,x,n,NI 2 + ~j:Y;,x,n'N-112 + ~lz;,x,n'N-112)p-l(x)dxdr 

jTl 00 00 + eKr(L Cj j:Y;,x,n,N-1 12 + L (tjlz;,x,n,N-112)p-l(x)dxdr 
s IRd j=l j=l 

_ t jT r eKr2y;,x,n,Ngf- l(r, x)p-l(x)dxdt /3j(r) 
j=l 8 j/Rd. 

_ jT (r eKr2y;,x,n,N Z;,x,n,N p-I(x)dx, dWr). 
s lJRd 

Then we have 

(K - 2C)E[jT r eKr j:Y;,x,n,NI2p-l(x)dxdrJ 
s JJRd 
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Letting K = 1 + 2C + 2 L~I Cj, we have 

E[l
T 1d eKr ((1 + 2 ~ Cj)W;,x,n,NI 2 + Iz;,x,n,NI 2)p-l(x)dxdrj (3.11) 

< (~+ ~ Cij)E[l
T 1d eKr ((1+ 2 ~ Cj )w;,x,n,N-1

1
2 + Iz;,x,n,N- 1

1
2)p-l(x)dxdrj. 

Note that E[ft flRd eKr ((1+2 L~I Cj)I'1 2+1'1 2)p-l(x)dxdrj is equivalent to E[ft flRd (I' 
12 + I· np-I(x)dxdrj. From the contraction principle, the mapping (3.9) has a pair of 

fixed point (yt,.,n, z.t,.,n) that is the limit ofthe Cauchy sequence {(yt"n,N, z.t"n,N)} ~=I 

in M 2,O([t, Tj; L~(IRd; 1I~.1)) ® M 2,O([t, TJ; L~(]Rd; JRd)). We then prove that yt,.,n is also 

the limit of yt,.,n,N in S2,O([t, Tj; L~(]Rd;]RI)) as N -> 00. For this, we only need to prove 

that {yt,.,n,N}~=1 is a Cauchy sequence in S2,O([t,Tj;L~(JRd;]RI)). Similar as in (3.5), 

by the B-D-G inequality and the Cauchy-Schwartz inequality, from (3.10), we have 

E[ sup r eKs iY;,x,n,NI2 p-l(x)dxj (3.12) 
t$.s$.T JRd 

< M 3E[l
T r eKr (ly,/,x,n,N- 112 + IZ;,x,n,N-112 + iY;.t,x,n,NI2 + Iz;,x,n,NI 2)p-l(x)dxdr], 

s JJRd 

where M3 > 0 is independent of nand N. Without losing any generality, assume that 

M:::: N. We can deduce from (3.11) and (3.12) that 

(E[ sup r IYst,x,n,M _ y:,t,x,n,NI 2 p-I(x)dx]) ~ 
t$.s$.T jlRd 

M 

L (E[ sup r w;,x,n,iI2 p-I(x)dx]) ~ 
i=N+l t$.s$.T JRd 

< 

M T L (M3E[j r eKr (W;,x,n,i- 1
1
2 + Iz;,x,n,i-1f 

i=N+l t JIRd 

< 

1 

+w;,x,n,iI2 + Iz;,x,n,iI2)p-l(x)dxdrJ)" 

< 
M . jTr 00 1 

i=~1 (2M3E [ t JlRd eKr ((1 + 2 ~ Cj )w;,x,n,i-1
1
2 + Iz;,x,n,i-1

1
2)p-l(x)dxdrJ)" 

f (~+ f Cij)';2(2M3E [jT 1 eKr ((1+2fCj)ly;,x,n,112 

i=N+1 2 j=1 t IRd j=1 
< 
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I 

+IZ;,x,n,11 2)p-l(x)dxdr])2 -t 0 as M, N -t 00. 

The theorem is proved. o 

Following a similar procedure as in the proof of Lemma 3.1.3, and applying Ito's 

formula to eKr lY,."x,nI2, by the B-D-G inequality, we have the following estimation for 

the solution of Eq.(3.3): 

Proposition 3.1.6. Under the conditions of Theorem 3.1.2, (y,,.,n, z,,.,n) satisfies 

Remark 3.1. 7, For sE [0, tJ, Eq.{3.3} is equivalent to the following BD8DE 

yx,n= 
s 

y:',x,n + l' f(r x yx,n ZX,n)dr t , , r , r 
s 

-t [ gj(r,x, yrx,n, Z:,n)dtfjj(r) -[ (z:,n, dWr). 
j=l 8 s 

(3.13) 

Note that y;"x,n satisfies Condition (H.3.1). By a similar method as in the proof of Theo

rem 3.1.5 and Proposition 3.1.6, we can obtain a (Y.,n, z:,n) E 82,0([0, t]; L~(JRd; JRI)) ® 
M 2,0([0, t]; L~(JRd; JRd)), is the unique solution of Eq. {3.13}. Moreover, 

sup E[ sup l lY"x,nI2 p-l(x)dx] + sup E[l' llz:,nI2p-l(x)dxdr] < 00. 
n O:::;s::;t]Rd n 0 lRd 

To unify the notation, we define (Y""x,n, z;,x,n) = (Y"x,n, z:,n) when s E [0, t). Then 

(y,,.,n, z.,,.,n) E 82,°([0, T]; L~(JRd; JRI)) ® M2,0([0, T]; L~(JRd; JRd)). Furthermore, we have 

sup E[ sup l lY""x,nI2 p-l(x)dx] + sup E[lT 

llz;,x,nI2p-l(x)dxdr] < 00. (3.14) 
n O:S;s::;T lRd n 0 lRd 

Proof of Theorem 3.1.2. The proof of the uniqueness is rather similar to the 

uniqueness proof in Theorem 3.1.5, so it is omitted. 

Existence. By Theorem 3.1.5 and Remark 3.1.7, for each n, there exists a unique 

solution (y",n, zt,.,n) E 8 2,0([0, T]; L~(JRd; JRI)) ® M2,0([0, T]; L~(JRd; JRd)) to Eq.(3.3). 

We will prove (y,,.,n, zt,.,n) is a Cauchy sequence in 8 2,°([0, T]; L~(IRd; JRI)) ® M 2,0([0, T]; 

L~(JRd; JRd)). Without losing any generality, assume that m :::: n, and define 

yt,x,m,n = yt,x,m _ yt,x,n zt,x,m,n = zt,x,m _ zt,x,n 
S Ba's 8 SI 

36 



Loughborough University Doctoral Thesis 

f-m,n(s x) = f(s xt,x yt,x,m zt,x,m) _ f(s xt,x yt,x,n zt,x,n) 
, lSlS '8 '81S '8 , 

g-,!"n(s x) = g.(S Xt,X yt,x,m zt,x,m) _ g.(S Xt,X yt,x,n zt,x,n) 
J J J'8'S 18 ]'S'S 18' 

o ::; S ::; T. 

Then for 0 ::; s ::; T and a.e. x E JRd, 
n 

dy;,x,m,n = _ Jrn,n(s, x)ds + Lgj,n(s, x)dt[3j(s) 

m 

+ L gj(s, X;'x, y,',x,m, z;,x,m)dt [3j(s) + UW,m,n, dWs ) 

j=n+l 
y,- t,x,m,n - 0 

T - a.s .. 

Applying Ito's formula to eKT W:,x,m,nI 2 for a.e. x E JRd, we have 

1 
eKSW,',x,m,nI2p~1(x)dx + (~- f>:tj) iTl eKT IZ;,x,m,nI2p-l(x)dxdr 

Rd 2 j=l s Rd 

00 1 iTl +(K - 2G - L Gj - -) eKT W,:,x,m,n 12 p-l(x)dxdr 
j=l 2 s Rd 

< Gp f {(Gj +O<j)(i
T

l (ly,:,x,mI2+lz;,x,mI2)p-l(x)dxdr 
j=n+l s lR

d 

+ iT 1 Igj(r, x;,x, 0, O)I~p-l(x)dxdr)} 
s Rd 

-t iT 1 2eKT y,:,X,m,ngj,n(r, X)p-l (x)dxdt[3j (r) 
j=1 s lRd 

- f iT 1 2eKT y,:,x,m,ngj (r, X;'X, y,:,x,m, z;,x,m)p-l (x)dxdt[3j (r) 
j=n+l s IR.d 

_iT(12eKTY,.t,x,m,nZ;,x,m,np-l(X)dX,dWT)' (3.15) 
s Rd 

All the terms on the left hand side of (3.15) are positive when K is sufficiently large. 

Take expectation on both sides of (3.15), then by Lemma 2.3.3 and (3.14), we have 

E[ r
T 1 eKT W,:,X,m,nI 2 p-l(x)dxdr) + E[ r

T 1 eKT Iz;,x,m,nI2p-l (x)dxdr) 
lo lRd 10 lRd 

< Gp f {(Gj + O<j)( sup E[ r 1 (IYTt,x,nI2 + Iz;,x,nI2)p-l(x)dxdr] 
j=n+l n 10 IRd 

+ rTllgk,x,o,OWp-l(x)dxdr)} --+ 0, as n, m --+ 00. (3.16) 
la Rd 

Also by the B-D-G inequality, from (3.15) we have 

E[ sup 1 eKS W;,x,m,nI 2 p-l(x)dx) 
O::;s::5':f IRd 
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< CpE[l
T r eKr (rr-;,x,m,nI2 + Iz;,x,m,nI2)p-l(x)dxdr] 

o JR. 
+Cp f (Cj + Qj)( sup E[l

T r (lY,.t,x,nI2 + Iz;,x,nI2)p-l(x)dxdr]) 
j=n+l n 0 JRd 

+Cp jf;.llT 1. Igj(r, x, 0, OWp-l(x)dxdr. 

So by (3.14), (3.16) and Condition (H.3.3), we have 

E[ sup r e Ks W;,x,m,nI 2 p-I(x)dx] ~ 0, 
O~s:5T iTRd 

as n, m ~oo. 

Therefore (yt"n, z.t"n) is a Cauchy sequence in 8 2,0([0, T]; L~(IRd;]RI)) ® M2,0([0, T]; L~ 

(IRd; IRd)) with its limit denoted by (Y;'x, Z;,X). We will show that (yt" Z.t,) is the 

solution of Eq.(3.1), i.e. (yt',Z.t,) satisfies (3.2) for an arbitrary <p E C~(IRd;IRI). 

For this, we will prove that Eq.(3.6) converges to Eq.(3.2) in L2(0) term by term as 

n ~ 00. Here we only show the convergence of the third term: 

E[ I ~ iT 1. gj(r, x;,x,Y;,x,n, z;,x,n)<p(x)dxdtSj(r) 

- fjT r gj(r,X;,x,Y;,X,Z;,X)<p(x)dxdtSj(r)12] 
j=1 s jR,d 

< 2E[ I t iT r (gj(r, X;'X, y;,x,n, z;,x,n) - gj(r, X;'X, y;,x, z;,x)) <p(x)dxdtS;(rW] 
j=1 s JJRd 

+2E[1 fiT r gj(r,X;,x,Y;,X,Z;,X)<p(x)dxdtSj(rW] 
j=n+l 8 JJRd 

< Cp ~(Cj + Qj)E[i
T 1. (ly;,x,n - Yrt,X12 + Iz;,x,n - Z;'XI2)p-l(x)dxdr] 

+CpE[ I f iT r (gj(r, x;,x, Y,.t,x, Z;,X) - gj(r, x;,x, 0, O))c,o(x)dxdt S;(rW] 
j=n+l 8 JJRd 

+CpE[ Ij~liT 1. gj(r,x;,x, 0, O)<p(x)dxdtSj(rW]· 

Note 

E[I f jT r (gj(r,X;,X,Y,.t,x,Z;,X)-gj(r,X;,x,O,O))<p(x)dxdtS;(rW] 
j=n+l s llRd 

- E[iTII r (g(r,X;,x,y;,x,Z;'X)-g(r,X;'X,O,O))<p(x)dx( f Ajej0ej)tIlIudr] 
s llRd j=n+l 
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00 

x L Aej(ej, eiWdr] 
j=n+l 

- E[ f= iT 11 (gj(r, X;'X, Y;'X, Z;'X) - gj(r, X;'X, 0, 0))cp(x)dxI2dr] 
j=n+l s IRd 

< GpE[ f= iT1Igj{r, X;'X, Y;'X, Z;'X) - gj(r, X;'X, 0, OWp-l(x)dxdr] 
i==;=n+l s IRd 

< Gp j~' (Gj + CXj )E[l
T 1d (!Y;'XI2 + /z;,XI 2)p-l(x)dxdr] -----> O. (3.17) 

Here we used O:;:n+I Ajej l2Iej)~ = L;:n+l Aejl2lej. This can be verified as follows: 

for an arbitrary U E U, by definition of tensor operator, 
00 00 

j=n+l i=n+l 

00 00 

j=n+l i=n+l 
00 

j=n+l 
00 

- (L Ajej 121 ej)u. 
j=n+l 

Similarly we have 

GpE[ 1 j~,lT 1d gj(r, X;'x, 0, O)cp(x)dxdt,8j(rW] 

< G iT 1 f= Igj(r,x, 0, o)JZp-l(x)dxdr -----> o. 
p 8 JRd j=n+' 

(3.18) 

That is to say (Y;,x, Z;,X)O~8~T satisfies Eq.(3.2). The proof of Theorem 3.1.2 is com

pleted. 0 

§3.2 The Corresponding SPDEs 

§3.2.1 Weak solutions of SPDEs with finite dimensional noise and intro

duction of Bally and Matoussi's idea 

In section 3.1, we proved the existence and uniqueness of solution of BDSDE 

(3.1) and obtained the solution (Y"t,x, Z;,X) by taking the limit of (y.',x,n, z;,x,n) of the 
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solutions of Eq.(3.3) in the space 8 2,°([0, Tj; L~(]Rd; ]RI)) ® M2,0([0, Tj; L~(]Rd; ]Rd)). We 

still start from Eq.(3.3) in this section. A direct application of Theorem 3.1.4 and Fubini 

theorem immediately leads to 

Proposition 3.2.1. Under Conditions (H.3.1)-(H.3.4), if we define un(t, x) = ~t,x,n, 

vn (t x) = zt,x,n then , t, 

Proof By Theorem 3.1.4, for any t :S s :S T, we have 

So 

E[ r (lun(s,X;'X) - y,t,x,nl + Ivn(s,X;'X) - z;,x,nl)p-I(x)dxj = O. 
JlI.d 

By the Fubini theorem, we have 

E[iT r (Iun(s, X;,X) _ y,t,x,nl + Ivn(s, X;,X) _ z;,x,nl)p-l(x)dxdsJ 
t JJRd 

_ iT E[ r (lun(s,X;'X) _ y,;,x,nl + Ivn(s,X;'X) - z;,x,nl)p-I(x)dxjds 
t JJRd 

0, 

then the conclusion follows. o 

We use the idea of Bally and Matoussi [3J to establish the connection between the 

weak solutions of SPDEs and BDSDEs with finite dimensional noise. Consider BDSDE 

(3.8). Define the mollifier 

{ 
Km(x) = mcexp{ (mx _ \)2 -I} 
Km(x) = 0 

where c is chosen such that r:: Km(x)dx = 1. Define 

. 2 
If 0 < x < -, 

m 
otherwise, 

hm(x) = r h(y)Km(x - y)dy, 
JlI.d 

jm(r,x) = r j(r,y)Km(x-y)dy, 
JlI.d 

gj(r, x) = r gj(r, Y)Km(x - y)dy. 
JlI.d 
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It is easy to see from standard results in analysis that hm(-) --; h(·), jm(r,.) --; j(r,.). 
and g-m(r .) --; g- ·(r .) in L2(JRd.JRI) respectively Denote by (yt,x,n zt,x,n) the solution J 1 J 1 P 1 • 8,m 1 a,m 

of the following BDSDEs: 

Let ii::' (t, x) = y,:;::,n. Then following classical results of Pardoux and Peng [44], we 

h Z-t,x,n *n-n (t) d aye t,m =(7 vUm ,x, an 

yt,x,n = un (s xt,X) = ys,X!,X,n zt,x,n = u*\lun (s xt,X) = Z8,X!'''',n, 
8 ,m m I 8 a,m' s,m m 'S a,m 

Moreover ii::'(t, x) satisfies the smootherized SPDE. In particular, for any smooth test 

function III E C1'OO([O, TJ x JRd j JRI), we still have 

i T / ii::'(s, x)oslll(s, x)dxds + r ii::'(t, x) III (t, x)dx - r hm (x) III (T, x)dx 
t k. k. k. 
-~ iT r (a*'Vii::')(s, x)(a*'VIlI)(s, x)dxds 

2 t JfiI.' 
-iT r ii::'(s,x)'V«b - A)IlI)(s,x)dxds (3.19) 

t JlRd 

iT r jm(s, x)llI(s, x)dxds - tiT r gj(s, x)llI(s, x)dxdISj(s) P - a.s .. 
t ~ j=1 t ~ 

But by standard estimates 

We define 1t to be the set of random fields {w(s,x)j sE [O,T], x E JRd} such that 

(w,a*'Vw) E M2,O([O,T];L~(JRdjJRI)) ®M2,O([O,TJ;L~(JRdjJRd)) with the norm 

(E[ rT r (Jw(s,xW + J(a*'V)w(s,xW)p-l(x)dxds)L 
Jo JfiI.' 

41 



Loughborough University Doctoral Thesis 

Following a standard argument as in the proof of the completeness of the Sobolev spaces, 

we can prove 'H is complete. Now by the generalized equivalence of norm principle and 

(3.20), we can see that U;:. is a Cauchy sequence in 'H. So there exists un E 'H such 

that (u;:', u*V'u;:') --> W, u*V'un) in M2,O([0, TJ; L~(lRd;]RI)) ® M2,O([O, T]; L~(]Rd; ]Rd)). 

Moreover 

Now it is easy to pass the limit as m --> 00 on (3.19) to conclude that un is a weak 

solution of the corresponding SPDEs. For the nonlinear case, we can take 

then f and rh satisfy the conditions in the above argument. 

If we define un(t,x) = ~t,x,n and vn(t,x) = zi,x,n, using Theorem 3.1.5 and 

Proposition 3.2.1, we have (since the proof is very similar to the existence part in The

orem 4.2.10, we don't intend to involve a proof here), under Conditions (H.3.1 )-(H.3.4), 

vn (t, x) = (u*'Vun)(t, x), moreover, (un, u*V'un) E M 2,O([0, T]; L~(JR.d;]RI)) ® W,O([O, T]; 

L~(]Rd; ]Rd)) and un(t, x) is the weak solution of the following SPDE: 

un(t, x) = h(x) + iT[.!L'un(S, x) + f(s, x, un(s, x), (u*V'un)(s, x))]ds (3.21) 

-t iT gj(s,x,un(s,x), (u*V'un)(s,x))dt,6j(s), O:S; t:s; s:S; T. 
j=1 t 

That is.to say, for any Iji E C~,OO([O, T] X JR.d; ]RI), we have 

i
T f un(s, x)8s lji(s, x)dxds + f un(t, x)lji(t, x)dx -1 h(x)Iji(T, x)dx 

t ~ kd ~ 

-~ iT f (u*V'un)(s, x) (u*V'Iji) (s, x)dxds 
2 t JRd 

-iT f un(s, x)V'((b - A)Iji) (s, x)dxds 
t JRd 

_ iT f f(s,x,un(s,x), (u*V'un)(s,x))Iji(s,x)dxds (3.22) 
t JlItd 

- tiT ld gj (s,x,un(s,x), (u*V'un)(s,x))Iji(s,x)dxdt ,6j(s) P - a.s .. 

In this section, we study Eq.(2.19) with f and 9 allowed to depend on time as discussed 

in Section 3.1 and this section. By intuition if we define u( t, x) = ~t,x, it should be a 
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"weak solution" of the Eq.(2.19) with u(T, x) = h(x). We will prove this result in next 

subsection. 

§3.2.2 Existence and uniqueness of solutions of SPDEs with infinite dimen

sional noise 

First we need some necessary preparations. 

Proposition 3.2.2. Under Conditions (H.3.1)-(H.3.4), let (Ys"x, Z;,X) be the solution 

of Eg. {3.1}. If we define u(t, x) = Y,"x, then a*'Vu(t, x) exists for a.a. t E [0, T], x E IRd 

a.s., and 

u(s, X;,X) = Y,"x, (a''Vu)(s, X;,X) = Z;'x for a.a. sE [t, TJ, x E IRd a.s .. 

Proof First we prove un is a Cauchy sequence in 1t. For this, by Lemma 2.3.3 

and Proposition 3.2.1, as rn, n -+ 00, we have 

E[ fT f (Ium(s, x) - un(s, xW + l(a*'Vum)(s, x) - (a*'Vun)(s, xW)p-l(x)dxds] Jo JRd 
< CpE[ fT f (lum(s, X~,X) _ un(s, X~,xW 

Jo JRd 
+1 (a*'Vum)(s, X~,X) - (a*'Vun)(s, X~,XW)p-l(x)dxds] 

_ CpE[ fT f (Iy'0,x,m _ y'0,x,nI2 + Iz~,x,m _ z~,x,nI2)p-l(x)dxds] ---> O. 
Jo JRd 

So there exists u E 1t as the limit of un such that 'Vu(s, x) exists for a.a. s E [0, T], 

x E IRd a.s. and 

E[ fT f (Iun(s, x) - u(s, xW + 1 (a*'Vun)(s, x) - (a*'Vu)(s, xW)p-l(x)dxds] ---> O. Jo JRd 
We define u(t, x) = Y,"\ then similar to the proof as in Proposition 3.2.1, by the 

uniqueness of solution of Eq.(3.1), we have 

Since 

u(s, X;,X) = y."x for a.a. sE [t, T], x E lRd a.s .. 

E[ t f lu(s,x) -u(s,xWp-l(x)dxds] 
Jo JRd 

< 2E[ fT f (Iu(s, x) - un(s, xW + lun(s, x) - u(s, xW)p-l(x)dxds] 
Jo JRd 
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so 

u(t, x) = u(t, x) for a.a. t E [0, TJ, x E IRd a.s .. 

Therefore u*'Vu(t, x) exists for a.a. t E [0, TJ, x E IRd a.s .. Using Lemma 2.3.3 again, 

we have 

So 

E[jT r l(u*'Vu)(s, X;,X) _ Z;,xI2p-l(X)dxds] 
t JJRd 

< 2E[jT r (l(u*'Vu)(s,X;'X) _ (u*'Vun)(s,X;'XW 
t JlRd 

+1(u*'Vun)(s, X;,X) - Z;,xI2)p-l(X)dxds] 

< CpE[jT r (l(u*'Vu)(s,x) - (u*'Vu)(s,xW + l(u*'Vu)(s,x) - (u*'Vun)(s,xW 
t jrR,d 

+Iz;,x,n - Z;,xI2)p-l(X)dxds] ---> O. 

(u*'Vu)(s, X!'X) = Z!'X for a.a. s E It, TJ, x E IRd a.s .. 

From Proposition 3.2.2 and Lemma 2.3.3, it is easy to know that 

E[l
T r lun(s,x) -u(s,xWp-l(x)dxds] 
° JRd 

+E[l
T r l(u*'Vun)(s,x) - (u*'Vu)(s,xWp-l(x)dxds] 
° JRd 

T . 

< CpE[l r lun(s, X~,X) - u(s, x~,XWp-l(x)dxds] 
° JRd 

T . 

+CpE[l r l(u*'Vun)(s, X~,X) - (u*'Vu)(s, X~'XWp-l(x)dxds] 
° JRd 

_ CpE[l
T r 1Y,,0,x,n - y.O,xI2p-l(X)dxds] 
° JRd 

o 

+CpE[l
T r Iz~,x,n - Z~,xI2p-l(X)dxds] ---> 0, as n -t 00. (3.23) 
° JRd 

This will be used in the proof of the following theorem. 
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Theorem 3.2.3. Under Conditions (H.3.1)-(H.3.4), if we define u(t,x) = ~t,x, where 

(Y,t,x, z;,X) is the solution of Eq. (3.1), then u( t, x) is the unique weak solution of Eq. (2.19) 

with u(T, x) = h(x). Moreover, 

u(s Xt,X) = yt,x (u''Vu)(s Xt,X) = zt,~ for a a s E [t T] x E lR.d a.s .. 
'8 S' 's 8 . • " 

Proof From Proposition 3.2.2, we only need to verify that this u is the unique 

weak solution of Eq.(2.19) with u(T, x) = h(x). By Lemma 2.3.3, it is easy to see that 

(u''Vu)(t, x) = zi'x for a.a. t E [0, T], x E IRd a.s .. 

Furthermore, by the generalized equivalence of norm principle again we have 

E[l
T r (lu(s, xW + I (u''Vu)(s, xW)p-l(x)dxds] 
° JliI.d 

< CpE[l
T r (lu(s, X~,xW + l(u''Vu)(s, X~,XW)p-l(x)dxds] 
° JliI.d 

_ CpE[l
T r (ly,0'XI2 + IZ~,XI2)p-l(X)dxds] < 00. 
° JliI.d 

(3.24) 

Now we verify that u(t, x) satisfies (2.20) with u(T, x) = h(x) by passing the limit on 

(3.22) in L2(11). We only show the convergence of the second and the last terms. For 

o :::; t :::; T, by Lemma 2.3.3, we have 

E[ I r un(t, x)lJ!(t, x)dx - r u(t, x)lJ!(t, x)dxI2] 
jlRd ilRd 

< E[ r lun(t, x) - u(t, xWp-l(x)dx]E[ r IIJ!(t, xWp(x)dx] 
jlRd jlRd 

< CpE[ r lun(t, x) - u(t, xWp-l(x)dx] 
JliI.d 

< CpE[ld lun(t, X?,X) - u(t, X?,xWp-l(x)dx] 

CpE[ r I~O,x,n _ ~O,XI2p-l(X)dx] 
JliI.d 

< CpE[sup r I~O,x,n - ~O'XI2p-l(X)dx] ---> 0, as n --; 00. 
t;:::o JlRd 

The last term includes infinite dimensional integral, but 

E[ I tiT 19j (s,x,un(s,x), (u·'Vun)(s,x))IJ!(s,x)dxdt,Jj(s) 
j=1 t JRd 

-f iT 1 9j(S,X,u(s,x), (u''Vu)(s,x))IJ!(s,x)dxdt,Jj(sW] 
j=l t IRd 
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< 2E[ ItiT 1 (gj(s,x,un(s,x),(u''VV)(s,x)) 
j=.l t IR· 

-gj (s, x, u(s, x), (u'V'u)(s, x))) w(s, x )dxdt ,6j(S WJ 

+2E[ I j~llT 1. gj (s, x, u(s, x), (u'V'u)(s, x)) w(s, x )dxdJ ,6j(S WJ 

< cpE[f)cj+D:j) iT 1 (lun(t,x)-u(t,xW 
, j=l t IR.

d 

+1(u'V'un)(s,x) - (U'V'u)(s,x)1 2)p-I(X)dxdsJ 

+CpE[ Ij~llT 1. (gj(S,x,u(s,x),(u'V'U)(S,x)) 

. -gj(S, x, 0, O))W(s, x)dxdt ,6j(sWJ 

+CpE[ I j~llT 1. gj(S, x, 0, O)w(s, x)dxdt,6j(sWJ· 

It is obvious that the first term tends to 0 as n --> 00. The last two terms can be treated 

by a similar method as (3.17) and (3.18) respectively. 

Therefore u(t, x) satisfies (2.20), i.e. it is a weak solution of Eq.(2.19) with 

u(T, x) = h(x). The uniqueness can be proved by a very similar argument as in the 

uniqueness part in Theorem 4.2.10, so we omit the proof here. o 

§3.3 Infinite Horizon BDSDEs 

We consider the following BDSDE with infinite dimensional noise on infinite hori-

zon 

100 e-Krf(r xt,x yt,x zt,X)dr + 100 Ke-Kryt,xdr 
, r J r , r r 

s s 

_ 100 e-Krg(r xt,x yt,x zt,X)dt B _ 100 e-Kr(zt,x dW:) (3.25) 
JrJr'r r rJ r" 

s s 

Here f: [0,00) x!Rd X !RI x!Rd---> !RI, g: [0,00) x!Rdx!R1 x!Rd --> £&o(!R1). Eq.(3.25) 

is equivalent to 

e-Ksyt,x _ 100 e-Krf(r xt,x yt,x zt,X)dr + 100 Ke-Kryt,xdr 
S - JTJTJr r 

s s 

_ ~ 100 e-Krg·(r xt,x yt,x zt'X)dt{3' .(r) -100 e-Kr(zt,x dW:) L-, J'rJr'r 1 rJ r-
j=l s S 

We assume 
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(H.3.5). Change ".@IO,T)" to ".@JR+" and "t E [0, T]" to "t 2: 0" in (H.3.2); 

(H.3.6). Change "JoT" to "Jo"'" e-Ks" in (H.3.3); 

(H.3.7). There exists a constant /-l> 0 with 2/-l- K - 2C - Z::;I Cj > 0 s.t. for any 

t 2: 0, Yb Y2 E L~(lRd; JRI), X, Z E L~(JRd; JRd), 

1 (YI(X) - Y2(x)) (J(t, X(x), YI(x), Z(x)) - f(t, X(x), Y2(x), Z(x)))p-I(x)dx 
JRd 

< -/-ll IYI (X) - Y2(x)1 2p-I(X)dx. 
JRd 

Note that the definition for the solution of Eq.(3.25) is similarly given as Definition 

2.3.1. The main objective of this section is to prove 

Theorem 3.3.1. Under Conditions (H.3.4)-(H.3.7), Eq.(3.25} has a unique solution. 

Proof Uniqueness. Let (Y';'x, Z!,X) and (y't,x, Z!,X) be two solutions of Eq.(3.25). 

Define 

yt,x = yt,x _ yt,x zt,x = zt,x _ zt,x 
S 8 5' S 8 81 

f-(8 x) = f(s Xt,x' yt,x zt,X) _ f(s Xt,x yt,x zt,X) 
, '8'81S 1818181 

g-(8 x) = g(8 Xt,x yt,x zt,X) _ g(s Xt,x yt,x zt,X) 
, '8'818 18181S' 82:0. 

Then for s 2: 0 and a.e. x E JRd, (Yst,x, Z!,X) and (y't,x, Z;'X) satisfy 

For a.e. x E JRd, applying Ito's formula for infinite dimensional noise to e-Ks rf';,t,xI2, 

and by the Young inequality and Conditions (H.3.5), (H.3.7), we obtain 

E[l e-Ks lf';,t,xI 2 p-I(x)dx] + (~ - f>j)E[jT 1 e-Kr IZ;,XI2 p-l(x)dxdr] 
JRd 2 j=1 s JRd 

+(2/-l- K - 2C - f: Cj)E[jT 1 e-Kr lY,.t,xI 2 p-I(x)dxdr] 
j=l s IRd 

< E[l e-KT iYi'XI
2 
p-I(x)dx]. (3.26) 

JRd 
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Taking K' > K S.t. 211- K' - 2C - E;':I Cj > 0 as well, we can see that (3.26) remains 

true with K replaced by K'. In particular, 

E[l e-KIsly't,xI2 p-I(x)dx] ::; E[l e- K1T iYi,xI
2 
p-I(x)dx]. 

ad ad 

Therefore, we have 

(3.27) 

Since yt,x yt,x E S2,-K n M 2,-K([0 00)' U(JRd.JRI)) so 
8 , S , 'P , , 

Therefore, taking the limit as T -+ 00 in (3.27), we have 

Then the uniqueness is proved. 

Existence. For each n E ]\:I, we define a sequence of BDSDEs by setting h = 0 

and T = n in Eq.(3.1): 

yt,x,n = jn f(r Xt,x yt,x,n zt,x,n)dr _jn g(r xt,x yt,x,n zt,x,n)dt iJ 
S 'T'T IT )TIT IT T 

S S 

- [(z;,x,n, dWr), 0::; s ::; n. (3.28) 

It is easy to verify that for each n, these BDSDEs satisfy conditions of Theorem 3.1.2. 

Therefore, for each n, there exists a (Yst,x,n, z;,x,n) E S2,0([0, n]; L~(JRd; JRI)) ® M2,0([0, n]; 

L~(JRd; JRd)) which is equivalent to the space S2,-K ([0, n]; L~(JRd; JRI)) ® M 2,-K ([0, n]; L~ 

(JRd; JRd)) and (y;,x,n, z;,x,n) is the unique solution of Eq.(3.28). That is to say, for an 

arbitrary cp E cg(JRd ; JRI), (}'st,x,n, z;,x,n) satisfies 

1 e-Ksy;,x,ncp(x)dx = jn 1 e-Kr f(r, X;'X, y;,x,n, z;,x,n)cp(x)dxdr 
IRd s IR.d 

+ in 1 Ke-Kry;,x,ncp(x)dxdr _jn (1 e-Kr z;,x,ncp(x)dx, dWr) 
s ~ s IR.d 

- fj
nl e-Krgj(r,X;,x,y;,x,n,Z;,X,n)cp(x)dxdtfik) P-a.s.. (3.29) 

j=l s IR.d 

Let (}~n, Z:'lt>n = (0,0), then (Yst,x,n, z;,x,n) E S2,-K n M 2,-K ([0, 00); L~(JRd; JRI)) ® M 2,-K 

([0, 00); L~(JRd; JRd)). We will prove (y,t,x,n, z;,x,n) is a Cauchy sequence. For this, let 
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(Yst,x,m, z;,x,m) and (Yst,x,n, z;,x,n) be the solutions of Eq.(3.28) when taking m and n as 

the terminal time respectively. Without losing any generality, assume that m :::: n, and 

define 

yt,x,m,n = yt,x,m _ yt,x,n 2t,x,m,n = zt,x,m _ zt,x,n 
s 88'8 S S1 

f-m,n(8 x) = f(8 Xt,x yt,x,m zt,x,m) _ f(8 Xt,x yt,x,n zt,x,n) 
) '8'8'8 181S 18' 

g-m,n(8 x) = g'(8 Xt,x yt,x,m zt,x,m) _ g'(8 Xt,x yt,x,n zt,x,n) 
J' l'S'S'8 l'8'S'8' 8:::: O. 

Consider two cases: 

(i) When n ~ 8 ~ m, y.t,x,m,n = y;,x,m. Since (y;,x,m, z;,x,m) is the solution of Eq.(3.28) 

with the terminal time m, we have for any mEN, 
00 

dyt,x,m = -f(8 Xt,x yt,x,m zt,x,m)d8 + '" 9 '(8 Xt,x yt,x,m zt,x,m)dt{3A. (8) 
s 18'8 18 ~J'S'8 18 J 

j=l 
+(Z;,x,m, dWs) 

y,;;x,m = 0 for 8 E [0, m], a.a. x E JRd a.s .. 

Noting that E[fom IIg(r, X;'x, y,:,x,m, z;,x,m)lI~bo(lRl)drj < 00 for a.e. x E JRd, we can 

apply Ita's formula to e-Kr lY,.t,x,mI2 for a.e. x E JRd, then taking integration over JRd, 

we have 

r e-Ks lY"t,x,mI 2 p-l(x)dx 
lIRd 

+(2tt - K - 2G - I: Gj - (1 + I: Gj)c) jm 1 e-Krly;,x,mI2p~1(x)dxdr 
j=1 j=1 s IRd 

1 00 00 jml +(2' - Laj - Lajc) e-Kr IZ;,x,mI2 p-l(x)dxdr 
j=1 j=1 s lRd. 

< Gp jm r e-Krlf(r, x;,x, 0, OWp-l(x)dxdr 
8 JlRd 

+Gpjm r e-Kr I:lgj(r,x;,x,o,oWp-l(x)dxdr 
.9 JIRd. j=1 

_ I: jm r 2e-Kr y;,x,mgj (r, X;,x, y;,x,m, z;,x,m)p-l (x)dxdt;3j (r) 
j=1 8 JRd 

_ jm ( r 2e-Kry;,x,m Z;,x,mp-l(x)dx, dWr). 
s JJRd 

(3.30) 

Note that the constant C can be chosen to be sufficiently small s.t. all the terms on the 

left hand side of (3.30) are positive. By (3.30), as n, m --+ 00 we have 

E[i
m r e-Kr lY;,x,mI2 p-1(X)dxdrj + E[i

m r e-Kr IZ;,x,mI2p-l(X)dxdrj 
n JfRd. n JIRd. 
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< CpE[l
m 

1d e-Kr(lf(r,X;'X,O,OW + ~ 19j(r,X;'X, O,OW)p-l(x)dxdr] -> O. 

(3.31) 

Note that the right hand side of (3.31) converges to 0 follows from the generalized 

equivalence of norm principle. Also using the B-D-G inequality to deal with (3.30) on 

the interval [n, m], by (3.31), as n, m -> 00 we have 

E[ sup 1 e-KS IY;,x,mI2p- 1dx] 
n~s:::;m IRd 

< CpE[l
m 

id e-Kr(lf(r,X;'X,o,oW + ~ 19j(r,X;,X,0,OW)p-l(x)dxdr] 

+CpE[ r 1 e-Kr (ly;,x,mI2 + Iz;,x,mI2)p-l(x)dxdr] -> O. (3.32) 
in IRd 

(ii) When 0 ::; s ::; n, 

Apply Ito's formula to e-Kr lY,."x,m,nI2 for a.e. x E !Rd , then 

(3.33) 

Taking expectation on both sides of (3.33), as n, m -> 00, using (3.32), we have 

E[l
n 1 e-Kr iY;,x,m,nI2 p-l(x)dxdr] + E[l

n 1 e-Kr IZ;,x,m,nI2 p-l(x)dxdr] 
s IRd 8 lRd 

< CpE[n~~rmld e-KS IY;,x,mI
2p-l(x)dx]-> O. (3.34) 

Also by the B-D-G inequality, (3.32), (3.33) and (3.34), as n, m --> 00, we have 

E[ sup 1 e-Ks iY;,x,m,nI 2p-l(x)dx]::; CpE[ sup 1 e-KS lYs"x,mI2p-l(x)dx]-> o. 
D:5s$n lRd n$s:::;m IR.d 
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Therefore taking a combination of cases (i) and (ii), as n, m -----> 00, we have 

That is to say (y;,x,n, z;,x,n) is a Cauchy sequence. Take (Y;'x, Z;,X) as the limit of 

(Y,t,x,n, z;,x,n) in the space S2,-K n M2,-K ([0,00); L~(lRd; JRI)) ® M 2,-K ([0,00); L~(JRd; JRd)) 

and we will show that (Y"t,x, Z;,X) is the solution of Eq.(3.25). We only need to verify 

that for arbitrary cp E C2(JRd ; JRI), (Y"t,x, z;,X) satisfies 

100 r e- Kr j(r, X;'X ,Y;'X, Z;,X)cp(x)dxdr 
8 JRd . 

+ 100 r Ke-KrY,.t,Xcp(x)dxdr 
s JiRd 

-fl°O r e-Krgj(;,X;,x,Y;,x,Z;'X)'P(x)dxdt~j(r) 
j=l s JlRd 

-100 (r e-Kr Z;,X'P(x)dx, dWr) P - a.s.. (3.35) 
8 lIRd 

Since (y;,x,n, z!,x,n) satisfies Eq.(3.29), so we verify that Eq.(3.29) converges to Eq.(3.35) 

in L2(0) term by term as n -----> 00. We only show the infinite dimensional stochastic 

integral term: 

E[ If In r e-Kr gj(r, x;,x,Y;,x,n, z;,x,n)cp(x)dxdt~j(r) 
j=l s JfR.d 

-f 100 1 e-Krgk,X;'X, y;,x, Z;,X)'P(x)dxdt~j(rWl 
j=l s IRd 

< 2E[ Ifln r e-Kr(gj(r,X;,x,Y;,x,n,Z;,X,n) 
j=l s ilRd 

-gj(r, X;'X, Y,.t,x, Z;,X))'P(x)dxdt~kWl 

+2E[ I ~ 100 1. e-Kr gj(r, x;,x, Y,.t,x, Z;'X)cp(x)dxdt~kWl· 

We see that each term on the right hand side of the above inequality tends to 0 as 

n -+ 00 since 
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-gj{r, x;,x, Y,.t,x, Z;'X))cp(x)dxdt,Bj{rWJ 

< CpE[l°O r e-Kr(IY;,x,n _ y;'XI2 + Iz;,x,n - Z;,xI2)p-l(x)dxdrJ -> 0, as n -; 00, 
o JRd 

and 

E[ I ~ 100 1d e-Kr gj(r, x;,x, y;,x, Z;,X)cp(x)dxdt,Bj{rWJ 

< CpE[l°O r e-Kr (IY;'XI2 + IZ;,XI2)p-l(x)dxdrJ 
n jlRd 

+Cp 100 id f e-Krlgj(r,x, 0, OWp-l(x)dxdr -> 0, as n -; 00. 
n IR ;=1 

That is to say (Y"t,x, Z;,X)s2:0 satisfies Eq.(3.35). The proof of Theorem 3.3.1 is com

pleted. 0 

By a similar method as in the proof of the existence part in case (i) in Theorem 

3.3.1, we have the following estimation: 

Proposition 3.3.2. Let (y;,x,n,z;,x,n) be the solution of Eq.(3.28j, then under the 

conditions of Theorem 3.3.1, 

supE[sup r e-Ks lY;,X,n(xWp-l(x)dxJ + SUP E[l°O r e-Kr lY;,X,n(xWp-l(x)dxdrJ 
n 8;:::0 JlRd n 0 ilRd .. 

+sUP E[l°O r e-Kr IZ;,X,n(xWp-l(x)dxdrJ < 00. 
n 0 iIRd 

§3.4 Time Continuity of Solutions of SPDEs 

Now we study BDSDE (2.16), a simpler form of Eq.(3.25). 

Proof of Theorem 2.3.10. Since the conditions here are stronger than those in 

Theorem 3.3.1, so there exists a unique solution (y;,x, Z;,X) to Eq.(2.16). We only need 

to prove E[suPs2:oJRde-pKslY;,xIPp-l(x)dxJ < 00. Let 

.' =p p-2 CPN,p(X) = x2I{o$x<N} + N 2 ('2X - -.-2-N)I{x?N}' 

We apply the generalized Ito's formula to e-pKrcpN,p(7f;M(Y,.t,X)) for a.e. x E IRd to have 

the following estimation 

e-pKscpN,p(7f;M(Y"t,X)) - pK J.T e-pkrcpN,p(7f;M(y;,X))dr 
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+~ J.T e-pKr rp:;",p( 'l/IM(Y,!'X)) 1'l/I:W(y;,xWIZ;,xI2dr 

+ J.T e-pKrrp~,p('l/IM(Y,!'X))I{_M$;Y:'.<M}IZ;,xI2dr 

< e-pKT rpN,p ('l/IM (y';:X)) + J.T e-PKrrp~,p('l/IM(y,!,X))'l/I:w(Y,!,X)f(X;'X, Y,!'x, Z;,X)dr 

i
T 00 

+ e-PKrrp~,p('l/IM(Y,!'X))I{_M$;y:,x<M} L 19j(X;'X, Y,.t,x, Z;'xWdr 
S j=1 

T . 00 

+~ i e-PKrrp:;",p ('l/IM (y,!,X)) I'l/I:W(Y,!'XW L 19j(X;'X, y,!,X, Z;'XWdr 
S j=1 

00 iT - L e-PKrrp~,p('l/IM(Y,!'X))'l/I:W(Y,!'X)9j(X;'X, y,!,X, Z;,X)dtt3k) 
j=1 s 

- J.T (e-pKr rp~,p ('l/IM(Y,.t,X) ) 'l/I:W (Y,!'X)z;,x , dWr). (3.36) 

Note that limT_oo e-pKT rpN,p ('l/IM (y~,X)) = 0, so after taking limit as T ---> 00, we take 

the integration over 00JRd. As (yt., Z.t,) E S2,-K n M 2,-K ([0, 00); L~(JRd; JRI)) ® M 2,-K 

([0, 00); L~(JRd; JRd)) and rp~,p('l/IM(Y/'X))'l/I:W(Y/'X) is bounded, we can use the stochastic 

Fubini theorem and all the stochastic integrals have zero expectation. Using Conditions 

(A.2.1)'-(A.2.4)', and taking the limit as M ---> 00 first, then the limit as N ---> 00, by 

the monotone convergence theorem, we have 

p(p - 1) ~ p(p - 1) ~ 
(p/L-pK-pC- 2 L.. Cj-(3+ 2 L..Cj)E) 

j=1 j=1 

XE[i
oo 1 e-pKrlY,!'XIP p-I(x)dxdr] 

s JRd 
00 00 

+~(2p - 3 - (2p - 2) I>j - (2p - 2) L ajE) 
j=1 j=1 

XE[i
oo 1 e-PKrlYrt,xIP-2Iz;,XI2p-l(x)dxdr] 

s JRd 

< Cp 1d If(x, 0, OWp-l(x)dx + Cp 1d ~ 19j(X, 0, OWp-l(x)dx] < 00. (3.37) 

Note that the constant E can be chosen to be sufficiently small S.t. all the terms on the 

left hand side of (3.37) are positive. Also by the B-D-G inequality, the Cauchy-Schwartz 

inequality and the Young inequality, from (3.36) we have 

E[supl e-pKSIY;'XIPp-l(x)dx] 
8;:::0 IRd 
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So by (3.37), Theorem 2.3.10 is proved. 

We need to prove two lemmas before giving a proof of Theorem 2.3.11. 

Lemma 3.4.1. Under Condition (A.2.3)" for arbitrary T > 0, t, t f E [0, T], 

E[ {OO { e-KrIX;'x _ x;,xIPp-l(x)dxdr] :S Cplt' - tl~ a.s .. 
10 JJRd. 

(3.38) 

Proof It is not difficult to deduce from Lemma 4.5.6 in [28], and also it is a 

simpler case of Lemma 5.3.1, so we don't intend to involve the proof here. o 

Lemma 3.4.2. Under Conditions (A.2.1)'-(A.2.4)', for arbitrary T > 0, t, t' E [0, T], 

let (y'",X)8~O, (y;,X)s~o be the solutions of Eq.(2.16), then 

E[sup ( e-pKslY."'x - Y."X IPp-l (x)dx] :S Cplt' - tl~. 
82:0 JlRd 

Proof Let 

y. = y"'x _ y',x Z = Z"'X _ Z"X 
8 S SI S S SI 

f-(8) = f(X"'X y",x Z",X) _ f(X"X y',x Z',X) 
8'8'S 8'8'8' 

g-'(8) = g·(X"'X y",x Z",X) _ g.(X"X y"x Z',X) 
J J8'8'8 J8'8'S' s :::: o. 

Then 

{ 

dY. = - /(s)d8 + ~ 9i(s)dtJ3j(8) + (Z., dWs) 

lim e-KTYT = 0 for a.a. x E ]Rd a.s .. 
T-oo 

First note that from Theorem 2.3.10, we know E[suPs~oJlRde-pKsiY,IPp-l(x)dx] < 00. 

Applying Ito's formula to e-pKrlY..IP for a.e. x E ]Rd (we leave out procedure of local

ization as in (3.36) for simplicity) and taking integration over ]Rd, we have 

{ e-pK'iYsIPp-l(x)dx 
JRd 

54 



Loughborough University Doctoral Thesis 

( - 1) 00 100 { -
+(PJl- pK - pC - p P 2 L Cj - 3e) J"d e-pKrlYrIPp-l(x)dxdr 

3=1 s IR 

+~ (2p - 3 - (2p - 2) ~ Cl<j) 100 1d e-pKr!YrIP-2IZrfp-l(x)dxdr 

< Cp 100 { e-pKrIXrIPp-l(x)dxdr - ploo ({ e-pKr!YrIP-2YrZrP-l(x)dx, dWr) 
s JlRd s lIRd 

-p ~ 100 1d e-pKrIYrIP-2Yrfh (r)p-l (x)dxdt,Bj(r). (3.39) 

Note that the constant e can be chosen to be sufficiently small S.t. all the terms on the 

left hand side of (3.39) are positive. Taking integration over !1 on both sides of (3.39), 

by Lemma 3.4.1 we have 

E[loo { e-pKr!YrIP p-l (x)dxdr] + E[loo { e-pKr!Yrlp-2IZrI2p-l(x)dxdr] 
8 JlRd s JlRd 

< CpE[lOO { e-pKrlXr IPp-l (x)dxdr] 
s JlRd 

< Cp!t'.·- tl!. (3.40) 

Also by the B-D-G inequality, from (3.39) and (3.40), we have 

E[sup { e-pKs!YsIP p-l(x)dx] 
s~O JlRd 

< CpE[ r { e-pKrIXrIPp-l(x)dxdr] + CpE[ {OO { e-pKrIYrIPp-l(x)dxdr] 
Ja JRd Ja JRd 

+CpE[ {OO { e-PKr!YrIP-2IZrI2p-l(x)dxdr] 
Ja JRd 

:=; Cplt' - tl!· 

Proof of Theorem 2.3.11. By Lemma 3.4.2, we have 

E([sup ( e-2Ks lY."'x _ y.',xI2p-l(X)dx])! 
s~O JlRd 

< CpE[sup { e-pKrlY."'x - y.',x IPp-l (x)dxj( ( p-l(x)dx) ~ 
8;::0 JJRd lTRd 

< Cplt'-tl!· 

o 

Noting p > 2, by the Kolrnogorov continuity theorem (see [28]), we have t --+ y"'x is 

a.s. continuous for t E [0, T] under the norm 

(sup ( e-2Ksl·12p-l(x)dx)~. 
s~O JIRd 
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Without losing any generality, assume that t' ;::: t. Then we can see 

< l,im(sup l e-2Ks lY,"'x - Y",xI 2p-l(X)dx)! 
t -t s~O IRd 

- 0 a.s .. 

Notice t' E [0, TJ, so 

(3.41) 

Since y", E S2,-K([0,00);£~(JRd;JR1)), ~;,. is continuous w.r.t. t' in £~(JRd;JR1). That 

is to say for each t, 

(3.42) 

Now by (3.41) and (3.42) 

lim(ll~;"x - y;"xI 2p-l(X)dx)! 
t'_t IRd 

< lim(l lY;;"x - ~;,XI2p-l(X)dx)! + lim(l lY;;'x - y;"xI2p-l(X)dx)! 
t' -t IRa t' _t IRa 

o a.s .. 

For arbitrary T > 0, 0::; t ::; T, define u(t,·) = Y;"', thenu(t,·) is a.s. continuous W.r.t. 

tin £2(JRd.JR1) Since Y'" E S2,-K([0 00)' £2(JRd.JR1)) y;T,x is ~iJ fV. ~ d measurable p ,.. "P , 'T T,oo '<Y IR 

and E[JlRd 1Yi",xI2p- 1(X)dx] < 00. It follows that Condition (H.3.1) is satisfied. More

over, Conditions (A.2.1),-(A.2.3)' are stronger than Conditions (H.3.2)-(H.3.4), so by 

Theorem 3.2.3, u(t, x) is a weak solution of Eq.(2.19). Theorem 2.3.11 is proved. 0 

Now all the theorems listed in Subsection 2.3.3 are proved. We can use the 

method as shown in Subsection 2.3.4 to transfer the stationarity from BDSDE to the 

corresponding SPDE and achieve the stationary weak solution of SPDE (1.2) in Theo

rem 2.3.13. 
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Chapter 4 

N on-Lipschitz Condition 

§4.1 Conditions, Examples and Main Results 

The main purpose of this chapter is to find the stationary weak solution of SPDE 

(1.2) via the solution of BDSDE (2.16) under non-Lipschitz conditions: 

(A.4.I)'. Functions f : !Rd X !RI X !Rd--t!RI and 9 : !Rd X !RI X !Rd --t .c~o(!RI) are 

@JRd 0 @JRl 0 @JRd measurable, and there exJst constants M4 , M4j , C, Cj, O:j 2: 0 

with L~l M4j < 00, L~l Cj < 00 and L~, O:j < ! s.t. for any Y E L~(!Rd; !RI), 

Xl, X2, Zl, Z2 E L~(!Rd; !Rd), measurable U : !Rd ---+ [0,1]' 

1 U(x)lf(XI(x), Y(x), ZI(X)) - f(X2(x), Y(x), Z2(X)Wp-I(X)dx 
JRd 

< 1 U(x) (M4IXI(X) - X2(xW + CIZI(X) - Z2(XW)p-I(X)dx, 
JRd 

1 U(x)lgj(XI(X), YI(x), ZI(X)) - gj(X2(x), Y2(x), Z2(X)Wp-I(X)dx 
JRd 

< 1 U(X) (M4j IXI(x) - X2(xW + CjIYI(x) - Y2(xW 
JRd 

+O:jIZI(X) - Z2(XW)p-I(X)dx; 

(AA.2)'. For pE (2, q - 1), fJRd IIg(x, 0, O)II~p (JR1)p-I(X)dx < 00; 
Uo 

(AA.3)'. There exists a constant M5 2: 0 s.t. for any t 2: 0, x, Z E !Rd, Y E !RI, 

If(x, y, z)1 :::: M5(1 + Iyl); 

(AA.4)'. There exists a constant J1, > 0 with 2J1, - pK - pC - p(P;l) L~l Cj > 0 s.t. 
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( U(x) (YI(X) - Y2(X)) (J(X(X), YI(X), Z(X)) - f(X(x), Y2(X), Z(X)))p-l(x)dx JRd 
< -JL ( U(x)IYI(x) - Y2(x)12p-I(X)dx; JRd 

(A.4.5)'. For any x,z E \Rd, Y -> f(x,y,z) is continuous; 

(A.4.6)'. b E CI~b(\Rd; \RI), a E CI~b(\Rd X \Rd; \RI), furthermore, for p is given in (A.4.2)" 

if L is the global Lipschitz constant for b and a, L satisfies.K - pL - P(P:;I) £2 > O. 

Although in this chapter, the continuity condition and linear growth condition for 

f are the pointwise condition rather than the weak condition as in Chapter 3, we can 

extend our results to SPDEs with a large number of functions which are not included 

in Chapter 3. Here we give some examples which do not satisfy the conditions in last 

chapter. 

Example 4.1.1. fry) = -Ay + B, A> 0 and BE \RI. In this case JL = A and we 

don't need to worry about the choices of p, C, K, Cj , Land Cij since all of them can 

be independent of A. We can take A as large as we like, so the relationship of all the 

coefficient~ in (A.4.1)'-(A.4.6)' is much easier to be satisfied. Then the choice of f and 

g is also much more than before. 

We then give an example of nonlinear function: 

Example 4.1.2. fry) = (-4y)I{Y<_2) + 2y2I{_2::;y<_I} + (-2y)I{y~_I)' yE \RI. In this 

case one can verify that JL = 2, then p, C, K, Cj , Land Cij can be constructed to satisfy 

Conditions (A.4.1)'-(A.4.6),. 

In fact, with the help of the linear function in Example 4.1.1, we can construct 

countless nonlinear functions satisfying our new conditions by a similar method as 

shown in Example 2.3.8: 

Example 4.1.3. If there is a family of finite linear functions like fj(Y) = -Ajy + B j , 

Aj ::::: a > 0 and B j E \RI, j = 1,2,· . " then from Example 4.1.1, we can see that any 

new function constructed by an arbitrary combination of the functions in this family 

satisfies Conditions (A.4.1),-(A.4.6)' with JL::::: I\j A j . 

In the latter sections, we will follow a similar procedure as in Chapter 3, but 

different methods, to obtain Theorem 2.3.10 and 2.3.11 under the above non-Lipschitz 
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conditions. As for Theorem 2.3.12, it is easy to prove it with the help of Theorem 2.3.10, 

2.3.11 and non-Lipschitz conditions. After that, we can use the method as shown in 

Subsection 2.3.4 to transfer the stationarity from BDSDE to the corresponding SPDE 

and achieve the stationary weak solution of SPDE: 

Theorem 4.1.4. Under Conditions (A.4.1)'-(A.4.6)" for arbitmry T and t E [0, TJ, 

let v(t,·) b. YJ:,t .. , where (yt .. , zt .. ) is the solution of Eq.{2.16} with Bs = BT-s - BT 

for all 8 ::::: o. Then v(t, .) is a "perfect" stationary weak solution of Eq. {1.2}. 

§4.2 Finite Horizon BDSDEs and the Corresponding SPDEs 

§4.2.1 Conditions and main results 

Following the procedure of Chapter 3, we first study the BDSDEs on finite horizon 

and establish the connection with SPDEs. In this section, we consider Eq.(3.1) and 

assume 

(H.4.1). Function h is §/oo 0 &6'JRd measurable and E[fJRd Ih(xJl2p-1(x)dx] < 00; 

(H.4.2). Functions f and g are &6'[O,TI 0 &6'JRd 0 &6'JRl 0 &6'JRd measurable and there exist 

constants C, Cj , Ctj ::::: 0 with 2:;:1 Cj < 00 and 2:;:1 Ctj < ! s.t. for any r E [0, T], 

Yb Y2 E L~(lRd; IR.I), X, Z1, Z2 E L~(lRd; JRd), 

r If(r, X(x), Y1(x), Z1(X» - f(r, X(x), Y2(x), Z2(X)Wp-1(X)dx 
JJRd 

< C r IZ1(X) - Z2(XWp-1(X)dx, 
JJRd 

r Igj(r, X(x), Y1(x), Z1(X) - gk, X(x), Y2(x), Z2(X)Wp-1(X)dx 
JJRd 

< r (Cj IY1(x) - Y2(xW + CtjIZ1(X) - Z2(XW)p-1(X)dx; 
JJRd 

(H.4.3). f~ fJR' Ilg(r, x, 0, 0)11~2 (JRl)p-1(x)dxdr < 00; 
Uo 

(H.4.4). There exists a constant M6 ::::: 0 s.t. for any r E [0, T], x, z E JRd, yE JRI, 

If(r,x,y, z)l::; M6 (1 + Iyll; 
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(H.4.5). There exists a constant J1 E ~l S.t. for any r E [0, TJ, Y1, Y2 E L~(~d; ~1), 

X Z E L2(~d. ~d) measurable U . ~d --t [0 IJ , P" ., 1 

r U(x) (Y1(x) - Y2(x»)(J(r,X(x),y1(x),Z(x» JRd 
- fer, X(x), Y2(x), Z(x»)p-l(x)dx 

< J1 r U(x)IY1(x) - Y2(x)12p-l(X)dx; JRd 

(H.4.6). For any r E [O,T], x,z E ~d, Y --t f(r,x,y,z) is continuous; 

The first objective of this section is to prove 

Theorem 4.2.1. Under Conditions (H.4.1)-(H.4.7), Eq.{3.1) has a unique solution. 

Then we will make the connection between the solutions of BDSDE (3.1) and 

SPDE (2.19). 

Theorem 4.2.2. Under Conditions (H.4.1)-(H.4.7), if we define u{t, x) = Y,"x, where 

(Y;'x, Z;,X) is the solution of Eq. (3.1), then u(t, x) is the unique weak solution of Eq. (2.1 9) 

with u(T,x) = hex). Moreover, u(s,X;'") = Y;'x, (a*Vu)(s,X~'X) = Z!,X for a.a. 

S E [t, TJ, x E ~d a.s .. 

§4.2.2 Existence and uniqueness of solutions of BDSDEs with finite dimen

sional noise 

In their pioneering work [42], Pardoux and Peng solved the following BSDE with 

Lipschitz conditions on the coefficient: 

( 4.1) 

After that, many researchers studied how to weaken the Lipschitz conditions so that 

the BSDE system can include more equations. To name but a few, in [45], [30], [40], 

[26], [5J and [6], researchers made their significant contributions to this subject. In this 

chapter, we use the method in [30J to tackle the non-Lipschitz condition problem. In 

[30], Lepeltier and San Martin assumed that the ~l-valued function fer, y, z) satisfies 

the measurable condition, the y, z linear growth condition and the y, z continuous 

condition, then they proved the existence of solution of Eq.(4.1). But the uniqueness 
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of solution failed to be proved since the comparison theorem cannot be used under 

non-Lipschitz condition. 

In [49], after proving the comparison theorem of BDSDE with Lipschitz condition, 

the authors followed the same procedure as in [30] and proved the corresponding result 

for the following RI-valued BDSDE: 

For the nonlinear term j(r, y, z), they assumed the same measurable condition, the 

y, z linear growth condition and the y, z continuous condition as Lepeltier and San 

Martin did. In the term g(r, y, z), besides the standard measurable condition, they 

assumed Lipschitz ,"ondition w.r.t. y and z. Then in Theorem 4.1 in [49], they proved 

the existence of solution of Eq.(4.2). 

First we study the BDSDE with finite dimensional noise, Eq.(3.3), under non

Lipschitz conditions. Note here the existing results, such as in [49] and [30] in the case 

of BSDE, only dealt with the solution of Eq.(3.3) for a fixed x. But our solution is 

in the space S2,0([0, T]; L~(Rd; RI)) ® M2,0([0, T]; L~(Rd; Rd)). The main task in this 

subsection is to prove 

Theorem 4.2.3. Under Conditions (H.4.1)-(H.4.7), Eq. {3.3} has a unique solution 

We will first acknowledge that the following Proposition 4.2.4 is true at this 

moment, then we prove Theorem 4.2.3 with the help of Proposition 4.2.4. Note that in 

the proof of Theorem 4.2.3 and Proposition 4.2.4, we can only consider the solution in 

S2,O([t, T]; L~(Rd; RI)) ® M2,0([t, T]; L~(Rd; Rd)) due to the arguments in Remark 3.1.7. 

Proposition 4.2.4. Given (U(.), V(·)) E S2,0([0, T]; L~(Rd; RI)) ® M2,0([0, T]; L~(Rd; Rd)), 

then under Conditions (H.4.1) -(H.4. 7), the equation 

yt,x,n = 
s 

has a unique solution. 

(4.3) 
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Proof of Theorem 4.2.3. Uniqueness. Assume there exists another Cl'7t,.,n, Zt,.,n) E 

S2,O([t, Tj; L~(IRd;]Rl» ® M2,O([t, Tj; L~(]Rd; ]Rd» satisfying (3.3). Define 

yt,x,n = yt,x,n _ yt,x,n and tt,x,n = zt,x,n _ zt,x,n t _< s _< T. 
s s s s S S1 

Then for a.e. x E]Rd (yt,x,n zt,x,n) satisfies 
1 S 'S 

yt,x,n = 
S i T (f(r xt,x yt,x,n zt,x,n) _ f(r xt,x yt,x,n zt,x,n»)dr 

'T'r'r IT'S '8 
S 

n iT _ " (g.(r xt,x yt,x,n zt,x,n) _ g.(r xt,x yt,x,n zt,x,n»)dt(3' '(1') 
L...,; l'r'r lr l'r's '8 J 
j=1 s . 

-1T (Z;,x,n, dWr ). 

From Conditions (H.4.4) and (ft,.,n, Z.t,.,n), (yt,.,n, zt,.,n) E S2,O([t, T]; L~(]Rd;]Rl» ® M 2,O 

([t, Tj; L~(]Rd; ]Rd», it follows that 

E[i
T r If(r, X;'x, Yr',x,n, z;,x,n) - f(r, X;'x, y;,x,n, Z!,X,nWp-l(x)dxdrj . 

t JlRd 

< 2E[i
T r (If(r, X;'x, yrt,x,n, z;,x,nW + If(r, X;'x, 'Y.t,x,n, Z;,X,nW)p-l(x)dxdrj 

t JlRd 

< Cp E[i1' r (1 + 1Yr',x,nI2 + IYr',x,nI2)p-l(x)dxdrj < 00. 

t JJRd 

So we have for a.e. x E ]Rd, 

E[i
T 

If(r Xt,x yt,x,n zt,x,n) _ f(r Xt,x yt,x,n zt,x,n)1 2drj < 00 
'r'r'r lr'r lr . 

t 

Similarly, with Condition (H.4.2), we have for a.e. x E ]Rd, 

n T 
" E[ilg.(r Xt,x yt,x,n zt,x,n) _ g.(r Xt,x yt,x,n zt,x,n)1 2drj < 00 L..., J'r'r IT J'r'r IT • 

j_l t . 

For a.e. x E ]Rd, we apply the generalized Ito's formula to eKs'l/JM (Y"t,x,n), where K E ]RI 

and 

Then 
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_ J.T eKr7/J~(Y;'X,n)(J(r, X;'X, y;,x,n, z;,x,n) _ f(r, x;'x, y.t,x,n, z;,x,n))dr 

n iT +~ eKr[ _ Ig.(r xt,x yt,x,n zt,x,n) _ g.(r xt,x jl:t,x,n zt,x,n)12dr 
~ {_M:~:;Y:,x,n<M} 3 ' r 'r 'r J' r J r 'r 
j=1 8 

n iT _ ~ eKr .,: (yt,x,n) (g. (r xt,x yt,x,n zt,x,n) _ g. (r xt,x jl:t,x,n zt,x,n)) dt?l (r) 
~ 'f/ M T J) r' r 'r J) r 'r 'r fJ) 

j=1 8 

-J.T(eKr7/J~(Y;'X,n)Z;'X,n,dWr). (4.4) 

We can use the Fubini theorem to perfect (4.4) so that (4.4) is satisfied for a.e. x E]Rd 

on a full measure set that is independent of x. If we define ,p~(x) = 2 when x = 0, 

then 0 .::; ,p:v:!:::,n) .::; 2. Taking integration over ]Rd on both sides and applying the 

stochastic Fubini theorem ([16]), we have 

r eKs7/JM cv.t,x,n)p-l (x)dx + KiT r eKr7/JM(y;,X,n)p-l(x)dxdr 
JJRd 8 JJRd 

+ J.T id eKr [{_M:s:y,'.X.n<M}lz;,x,nI2 p-l(x)dxdr 

_ iTl eKr7/J~CY;'X,n)yt,x,n(f(r xt,x yt,x,n zt,x,n) 
y.t,x,n r 'r 'r 'r 

s JRd r 

- f(r, x;'x, y.t,x,n, z;,x,n) )p-l (x)dxdr 

+ iT r eKr7/J~(Y;'X,n) (J(;, X;'X, y.t,x,n, z;,x,n) 
8 JlRd 

- f(r, x;,x, y.t,x,n, z;,x,n) )p-l(X )dxdr 

+ ~ iT 1 eKr[ Ig (r xt,x yt,x,n zt,x,n) 
~ {_M::s:y;,.:z;,1l<M} j , r 'r 'T 

;=1 s IR.d 

-gk, x;,x, y;,x,n, z;,x,nWp-l(x)dxdr 

- tiT r eKr7/J~(Y;'X,n)(gk,X;,x,y;,x,n,Z;,X,n) 
j=1 8 ilRd 

-gk, X;'x, y;,x,n, z;,x,n))p-l(x)dxdtpk) 

-iT (r eKr7/J~(Y,',X,n)Z;'X,np-l(x)dx, dWr) 
8 jlRd 

i

T 1 7/J' (yt,x,n) -< eKr M r II.lyt,x,nI2p-l (x)dxdr 
y.t,x,n t"" r 

8 lRd r 

+ iT r eKr (2CIY,.',x,nI2 + ~lz;,x,nI2)p-l(x)dxdr 
s ~d 2 

+ t J.T fad eKr(t Cj IY;,x,nI2 + t Qjlz;,x,nI2)p-l(x)dxdr 
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-t jT r eKr'if;~(Yrt,x,n) (gj(r, X;,x, y;,x,n, z;,x,n) 
j=l 8 JlRd 

-gk, X;,x, y;,x,n, z;,x,n)) p-I (x)dxdt;3k) 

_jT (r eKr'if;~(y"t,x,n)Z;,x,np-l(x)dx, dWr). (4.5) 
s jT3,d 

Note that the stochastic integrals are martingales, so taking the expectation, we have 

Taking the limit as M -> (X) and applying the monotone convergence theorem, we have 

Note that all the terms on the left hand side of (4.6) are positive when K is sufficiently 

large. So by a "standard" argument, we have y.t,x,n = 0 for 8 E [t, TJ, a.a. x E ]Rd a.s .. 

Also by (4.6), for a.e. 8 E [t, T], z;,x,n = 0 for a.a. x E ]Rd a.s.. We can modify the 

values of Z at the measure zero exceptional set of 8 such that z;,x,n = 0 for 8 E [t, T], 

a.a. x E ]Rd a.s .. 

Existence. If we regard Eq.(4.3) as a mapping, then by Proposition 4.2.4, (4.3) 

is an iterated mapping from S2,O([t, T]j L~(]Rdj ]RI)) ® M 2,O([t, T]j L~(]Rdj ]Rd)) to itself 

and we can obtain a sequence {(y;,x,n,i, z;,X,n,i) }~I from this mapping. We will prove 

that (4.3) is a contraction mapping. For this, define for t :5 8 :5 T, 

yt,x,n,i = yt,x,n,i _ yt,x,n,i-l zt,x,n,i = zt,x,n,i _ zt,x,n,i-l 
8 8 s 's ss' 

g-i(8 x) = g'(8 Xt,x yt,x,n,i zt,x,n,i) _ g'(8 Xt,x yt,x,n,i-I zt,x,n,i-I) i = 2,3, ... 
J' 1'8'818 J'8'S '8 , 
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Then for a.e. x E JRd, Cy't,x,n,N, z;,x,n,N) satisfies 

yt,x,n,N = iT (f(r xt,x yt,x,n,N zt,x,n,N-I) _ f(r xt,x yt,x,n,N-I zt,x,n,N-2))dr 
s lrlr lr lr's 18 

s 

n iT iT - L gf- l(r,x)N3j (r) - (z;,x,n,N,dWr ). 

j=1 s S 

Similar as in (4.5), applying generalized the Ito's formula to eKr1j;M(Y,.t,x,n,N) for a.e. 

x E JRd, by the Young inequality, Condition (H.4.2) and (H.4.5), we can deduce that 

(4.7) 

Then we have 

Letting K = 2J.L + 2C + 2 2:;:1 Cj , we have 

E[lT ld eKr (2 ~ Cj IY/,x,n,NI 2 + IZ;,x,n,NI 2)p-l(x)dxdrj (4.8) 

< (~+ f Q:j)E[i
T 

{ eKr (2 f Cj IY/,x,n,N- 1
1
2 + Iz;,x,n,N- 1

1
2)p-l(x)dxdrj. 

j=1 8 lad j=1 
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Note that E[ft fIRdeKr(2E;"1 Cj l'12+1'12)p-l(x)dxdr] is equivalent tOE[J,T fIRd (1.1 2+ 
1·1 2)p-l(x)dxdr]. From the contraction principle, the mapping (4.3) has a pair of fixed 

point (yt,.,n,oo, z.t,.,n,oo) that is the limit of the Cauchy sequence {(yt,.,n,N, zt,.,n,N)} "::=1 

in M2,O([t, T]; L~(JRd; JRl)) ® M2,O([t, T]; L~(JRd; JRd)). We then prove that yt,.,n,oo is also 

the limit of yt,.,n,N in S2,O([t, T]; L~(JRd; JRl)) as N --t 00. For this, we only need to prove 

that {yt,.,n,N}"::=l is a Cauchy sequence in S2,O([t,T];L~(JRd;JRl)). From (4.7), by the 

B-D-G inequality and the Cauchy-Schwartz inequality, we have 

E[ sup 1 eKs1/JMcYst,x,n,N)p-l(x)dx] 
t$.s'5,T lR.d 

< CpE[i
T 1 (w;,x,n,NI 2 + w;,x,n,N-112 + Iz;,x,n,N-112)p-l(x)dxdr] 

t IRd 

+CpE[ iT { 11/J:WcY:,x,n,N)12p-l(x)dxllz;,x,n,NI2p-l(x)dxdr] 
t JlRd 1R.d 

< CpE[i
T 

{ (If;.t,x,n,NI 2 + Iz;,x,n,NI 2 + w;,x,n,N-112 + Iz;,x,n,N-112)p-l(x)dxdr] 
t jlRd 

+~E[ sup 111/J:w(y,(x)Wp-l(x)dxJ, (4.9) 
5 t5,s5,T IRd 

where Cp depends on IILI, C, E;"l aj, E;"l Cj and the fixed B-D-G inequality constant. 

Taking the limit as M --t 00 and applying the monotone convergence theorem, we have 

E[ sup { eKs w;,x,n,NI2p-l (x)dx] (4.10) 
t:5s:S;T ),iRd 

< M7E[l
T

l eKr (W;,x,n,N-112 + I z;,x,n,N-l 12 + w;,x,n,NI2 + Iz;,x,n,NI 2)p-l(x)dxdrJ, 
s IRd 

where M7 > 0 is independent of nand N. Without losing any generality, assume that 

M::::: N. We can deduce from (4.8) and (4.lO) that 

(E[ sup l ly.t,x,n,M - y.t,x,n,NI2 p-l(x)dxJ)! 
t:::;s'5.T lRd 

M 

< L (E[ sup ( w;,x,n,iI2 p-l(x)dxJ)! 
i=N+l t$;s$;T lJRd 

< t (M7E[i
T 

( eKr (W;,X,n,i- 112 + Iz;,x,n,i- 112 
i=N+l t ifRd 

1 
+1f;.t,x,n,iI2 + Iz;,x,n,iI2)p-l(x)dxdrJ)" 
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< 
M T 00 

L ((1 + 2 ~ c)M7E[11 eKr (2 L Ciy,:,x,n,i-112 + Iz~,x,n,i-112 
i=N+l E3=1 J t IRd j=l 

00 

+2 L Cj !y,:,x,n,iI2 + Iz~,x,n,inp-l(x)dxdr]) ~ 
j=l 

< 

< 

---> 0 as M, N ---; 00. 

The theorem is proved. o 

The remaining work in this subsection is to prove Proposition 4.204. First we do 

some preparations. 

Lemma 4,2.5. Under Conditions (Ho4.l)-(Ho4.7), if there exists (y(.), z.O) E M2,O([t, T]; 

L~(JRd; JRl)) ® M 2,O([t, TJ; L~(JRd; JRd)) satisfying the spatial integral form of Eq.{3.3} for 

t ~ s ~ T, then y(.) E S2,O([t,T];L~(JRd;JR1)) and therefore (Y,(x),Zs(x)) is a solution 

of Eq.{3.3}. 

Proof. Referring to Lemma 3.1.3, we can prove Ys (-) is continuous W.r.t. s m 

L~(JRd; JRl) under the conditions in this chapter. We only mention that we can use 

Condition (H.4.4) to deal with the term f(r,X;'X, Y,.(x), Zr(x)) although there is no 

weak Lipschitz condition for Y,.(x). 

Then we prove E[SUPtSs:5T illd IYs(x)l2p-l(x)dx] < 00. For a.e. x E JRd, applying 

the generalized Ito's formula to IPM(Y,.(X)), by Lemma 2.3.3, we have 

l
IPM(Ys(x))p-l(x)dx + J.T

l I{_M:5 Yr(x)<M}I Zr(x)12p-l(x)dxdr 
IRd s IRd 

< lIPM(h(X~X))p-l(x)dx + iT llP~(Yr(X))f(r, x~,x, 0, O)p-l(x)dxdr 
IRd s lRd 

+ J.T id IP~(Yr(X))(J(r, x~,x, Y,.(x), Zr(X)) - f(r, x~,x, Yr(x), O))p-l(x)dxdr 

+ J.T L IP~;r~:~X))Yr(x)(J(r,x~'X, Yr(x), O) - f(r,X;,X,O,O))p-l(x)dxdr 
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+Gp ~ J.T id Igj(r, X;'X,Yr(X), Zr(X)) - gj(r, X;'X, 0, OWp-l(x)dxdr 

+Gp ~ J.T id Igj(r,X;,X,o,OWp-l(x)dxdr 

-iT (1 'l/!:U(y"(x))Zr(x)p-1 (x)dx, dWr) 
8 JRd 

- ~ J.T id 'l/!:U(Yr(x))gj(r,X;'X, Yr(x), Zr(X))p-l(x)dxdtSj(r) 

< Gp 1Ih(xWp-I(X)dx + Gp iT 1 (1Y,.(xW + IZr(xW)p-l(x)dxdr 
lRd 8 IRd 

+Gp ~ J.T id (1 + Igk, x, 0, OW)p-l(x)dxdr 

-iT (1 'l/!:U (y"(x))Zr(X)p-1 (x)dx, dWr) 
8 JRd 

- ~ J.T id 'l/!:U(Yr(x))gj(r,X;'X, Yr(x), Zr(X))p-l(x)dxdtSj(r). (4.11) 

Similar as in (4.9), by the B-D-G inequality and the Cauchy-Schwartz inequality, from 

(4.11), we have 

E[t~~rT id 'l/!M(Ys(X))p-I(X)dx] 

< GpE[llh(xWp-l(x)dx] + GpE[jT 1 (1Y,.(xW + IZr(x)1 2)p-l(x)dxdr] 
lRd t IR.d 

+Gp ~ iT id (1 + Igj(r, x, 0, OW)p-l(x)dxdr < 00. 

So taking the limit as M ...... 00 and applying the monotone convergence theorem, we 

have Y(·) E 8 2,0([t, T]; L~(IRd; ]RI)). Recall that a solution of Eq.(3.3) is a pair of pro

cesses in 8 2,°([0, T]; L~(IRd;]RI)) ® M 2,0([0, T]; L~(lRd; ]Rd)) satisfying the spatial integral 

form of Eq.(3.3), therefore (Y.(x), Zs(x)) is a solution of Eq.(3.3). 0 

From the proof of Lemma 4.2.5, one can similarly deduce that 

Corollary 4.2.6. Under Conditions (H.4.1)-(H.4.7), if there exists (Y(·), z.(.)) E 

M 2,0([t, T]; L~(]Rd;]RI)) ® M 2,0([t, T]; L~(lRd; ]Rd)) satisfying the spatial integral form of 

Eq.{4.3} fort:::; s:::; T, then Y(·) E 82,0([t,TJ;L~(]Rd;]RI)) and therefore (Ys(x),Zs(x)) 

is a solution of Eq.{4.3}. 
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For the rest of Chapter. 4, we will leave out the similar localization argument as 

in the proof of Theorem 4.2.3 and Lemma 4.2.5 when applying Ito's formula to save 

the space of this thesis. 

Proof of Proposition 4.2.4. The proof of the uniqueness is rather similar to the 

uniqueness proof in Theorem 4.2.3, so it is omitted. 

Existence. Define 

then for a.e. x E !Rd, (4.3) becomes 

i
T n iT iT y't,x,n = h(X~X) + s jX(r, Y,.t,x,n)dr - ~ s 9j(r)dt/3j(r) - s (z;,x,n,dWr)· 

( 4.12) 

Then it is easy to see that for a.e. x E !Rd , jx and 9j satisfy 

(H.4.I)'. jx: It, T] x !1 X !RI ------> !RI is .@[t,T) 0 ffs,T V !Ft", 0 .@1R1 measurable and 

9j : It, T] x !1------> !RI is .@[t,TJ 0 ffs,T V ff/,oo measurable; 

(H.4.2)'. For any r E It, T], y E !RI, IjX(r, y)1 ::; M6(1 + Iyl); 

(H.4.3)'. For any r E It, TJ, y -t jx(r, y) is continuous. 

By Theorem 4.1 in [49], for a.e. x E !Rd, Eq.(4.12), as well as Eq.(4.3), has a solu

tion (y;,x,n, z;,x,n) E M2,O([t, T];!RI) ® M2,O([t, T]; !Rd). Actually, we can further prove 

(y;,x,n, z;,x,n) E M2,O([t, T]; L~(!Rd; !Rd)) ® M2,O([t, T]; L~(!Rd;!RI)) under the conditions 

of Proposition 4.2.4: 

First by Condition (H.4.4) or Condition (H.4.2)', for a.e. x E !Rd, we have 

E[i
T 

If(r, X;'x, y,.',x,n, Vr(x)Wdr] < 00, 

also by Conditions (H.4.2), (H.4.3) and (H.4.7), for a.e. x E !Rd , we have 

tE[iT Igj(r,X;'X, Ur(x),vr(x)Wdrl < 00. 

j=1 t . 

Then for a.e. x E !Rd, applying the generalized Ito's formula to eKrlY;,x,nI2, we have 
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< E[eKTlh(X~XWj + E[J.T eKr(ly;,x,nI2 + If(r,X;'X, y;,x,n, Vr(x)W)drj 

+ t E[i
T 

eKrlgj{r, X;'x, Ur(X), Vr(x)Wdrj 
;=1 s 

< E[eKTlh(X~XWj + E[J.T eKr fY;,x,nI2drj + E[J.T eKr 2Mg(1 + fYrt,x,nf)drj 

n iT + f; E[ s eKrlgj{r, x;,x, Ur(x), Vr(x)Wdrj. 

It turns out that 

E[eKS Iy't,x,nI2j + (K - 2Mg - 1)E[J.
T 

eKr lY,.t,x,nI2drj + E[J.T eKr IZ;,x,nI2drj 

n iT < E[eKTlh(X~XWj + 2MgeKTT + L E[ eKrlgj(r, X;'X, Ur(x), v,.(x)Wdrj . 
. j=1 s 

Taking the integration over lRd and by Conditions (HA.2), (HA.3), (HA.7) and Lemma 

2.3.3, we have 

E[l eKs ly't,x,nI2p-l(x)dxj + (K - 2Mg - 1)E[i
T 1 eKr I Y,.t,x,n 12p-l (x)dxdrj 

~ s ~ 

+E[jT r eKrIZ;,x,nI2p-l(x)dxdrj 
s JJR.d. 

< E[l eKTlh(X~XWp-l(x)dxj + 1 2MgeKTTp-l(x)dx 
Rd. Ra 

+ ~ E[J.T ld eKrlgj(r, X;'x, Ur(x), v,.(x)Wp-l(x)dxdrj 

< GpE[llh(xWp-l(x)dxj + Gp + GpE[J.
T 1 (lUr(xW + 1v,.(xW)p-l(x)dxdrj 

IRa 8 JRa 

+Gp t iT ld Igj(r, x, 0, OWp-l(x)dxdr 
j=l s IR 

< 00. (4.13) 

Taking K sufficiently large, we have (yt,.,n, z.t,.,n) E M2,O([t, Tj; L~(lRd; Rd)) ® M2,O([t, Tj; 

L~(Rd; jRl)) and for a.e. x E jRd, (y't,x,n, z;,x,n) satisfies Eq.(4.3) on a full set !Ix depen

dent on x. But we can use the Fubini theorem to perfect Eq.( 4.3) so that (y;,x,n, z;,x,n) 

satisfies (4.3) for a.e. x E jRd on a full measure set n independent of x. In the following 

we give more details. 

From (4.13), we have for any S E It, TJ, E[flRd eKs fYst,x,nI2p-l(x)dxj < 00, so there 

exist a full measure set !I' c !I independent of x and a full set £' C jRd probably 
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dependent on w s.t. Ys',x,n < 00 on 0' 0 £'. Let 

F(s, x) = h(X~X) + J.T fer, x;,x, y/,x,n, v,.(x))dr 

-t jT giCr,X;,X,Ur(X),vr(x))dt,BiCr) _jT(Z;,X,n,dWr). 
j=1 s S 

Then by Eq.(4.3), for x E £, where £ is also a full measure set in JRd, Ys',x,n = F(s,x) 

on Ox. Then for (w, x) E OX n 0' 0 £ n [', we have Y"t,x,n = F(s, x). Since now 

Y"t,x,n < 00, so F( s, x) < 00 and we can move F( s, x) to the other side cif the equality 

to have Ys',x,n - F(s, x) = 0 on the full measure set Ox nO' 0 £ n £' in the product 

space 0 0JRd. Thus 

r lY"t,x,n - F(s, x)l(dP 0 dx) = O. 
Jn0Rd 

By the Fubini theorem, we have 

E[ r 1Ys',x,n - F(s, x)ldx] = O. 
JRd 

This means there exists a full set 0 independent of x s. t. on 0, y;,x,n - F( s, x) = 0 

for x E [W, where [W is a full set in JRd and depend on w. Take fl = fl n 0' and 

[W = [W n £', then both are still a full measure set and on fl 0 [W, Y"t,x,n < 00, 

furthermore F(s,x) < 00. We can move items in the equality y.:,x,n - F(s,x) = 0 to 

have Y"t,x,n = F( s, x) for x E [Won a full measure set fl independent of x. 

Now we have (y.:,x,n, z;,x,n) E M2,O([t, T]; L~(lRd; JRd)) ® M2,O([t, T]; L~(JRd; JRI)) 

and for t:::; s :::; T, (Yst,x,n, z;,x,n) satisfies (4.3) for a.e. x E JRd on a full measure set fl in

dependent of x. Then for any 'P E C~(JRd; JRI), multiplying by 'P on both sides of Eq.( 4.3) 

and taking the integration over JRd, we have (y.:,x,n, z;,x,n) satisfies the spatial integral 

form of Eq.(4.3) for t :::; s :::; T. By Corollary 4.2.6, yt,.,n E S2,O([t, T]; L~(JRd; JRI)) and 

(y;,x,n, z;,x,n) is a solution of Eq.(4.3). o 

§4.2.3 Existence and uniqueness of solutions of BDSDEs with infinite di

mensional noise 

Following a similar procedure as in the proof of Lemma 4.2.5, and applying Ito's 

formula to eKr IYr',x,nI 2
, by the B-D-G inequality we have the following estimation for 

the solution of Eq.(3.3): 
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Proposition 4.2.7. Under the conditions of Theorem 4.2.1, (y;,x,n, z;,x,n) satisfies 

supEr sup r IYst,x,nI2p-I(X)dx] +sUP E[lT r Iz;,x,nI2p-l(x)dxdr] < 00. 
n O::;8~T JJRd n 0 JRd 

Now we turn to the proof of the first main theorem of this section. 

Proof of Theorem 4.2.1. The proof of the uniqueness is rather similar to the 

uniqueness proof in Theorem 4.2.3, so it is omit.ted. 

Existence. By Theorem 4.2.3, for each n, there exists a unique solution (yt"n, z.t"n) 

E 8 2,°([0, TJ; L~(JRdj JRI)) 0 M 2,0([0, T]j L~(lRdj JRd)) to Eq.(3.3). We will prove (yt"n, 

z.t"n) is a Cauchy sequence in 82,0([0,T]jL~(JRdjJRI))0M2,0([0,T]jL~(JRdjJRd)). We 

use the same notation as in Theorem 3.1.2, then by Lemma 2.3.3 and Proposition 4.2.7, 

as n, m ---> 00 we have 

and 

Therefore (yt"n, z.t"n) is a Cauchy sequence in 8 2,°([0, T]j L~(JRdj JRI)) 0 M 2,0([0, T]j L~ 

(JRd j JRd)) with its limit denoted by (y't,x, Z;,X). 

We will show that (y't,x, Z;,X) satisfies (3.2) for an arbitrary cp E C~(JRdj JRI). For 

this, we prove that along a subsequence (3.6), the spatial integral form of Eq.(3.3), 

converges to Eq.(3.2) in U(I1) term by term as n ---> 00. Here we only show that 

along a subsequence 

Other items are under the same conditions as in Section 3.1, therefore the convergence 

can be dealt with similarly. Notice 

E[ liT r (J(r, X;'X, y,:,x,n, z;,x,n) - f(r, X;'X, Y,:,X, Z;,X))cp(x)dxdrI2] 
s JJRd 

< E[iT r If(r, X;'X, y,:,x,n, z;,x,n) - f(r, X;'X, Y,:,X, Z;,XWp-l(x)dxdr 
8 JTR.d 

X iT r Icp(xWp(x)dxdr] 
s JRd 
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< CpE[jT r If(r,X~'X, y;,x,n,z~,x,n) _ f(r,X;,x'y;,x,Z~'X)12p-l(x)dxdrj 
s lad 

< CpE[jT r If(r, X~,x, y;,x,n, Z;,x,n) _ f(r, X;'x, y,',x,n, Z;,XWp-l(x).dxdrj 
8 ~d . 

+CpE[jT r If(r, X;'x, Y,."x,n, Z;'X) _ f(r, X;'x, y,',x, Z;,XWp-l(x)dxdrj 
s JM,.d 

< CpE[jT r Iz;,x,n _ Z;'XI2p-l(x)dxdrj (4.15) 
s JJRd 

+CpE[jT r If(r, X;'x, y,',x,n, Z;'X) _ f(r, X;'x, y,',x, Z;,XWp-l(x)dxdrj. 
s JRd 

We only need to prove that along a subsequence 

First we will find a subsequence of {y,:,x,n}~=l still denoted by {y;,x,n}~=l s.t. y,:,x,n ---> 

Y':'x for a.e. r E [0, TJ, x E ]Rd, a.s. wand E[foT Illd sUPn 1Y,:,x,n 12p-l (x)dxdrj < 00. 

From (4.14), we know that E[IoT Illd 1Y,."x,n - y,',xI2p-l(x}dxdrj ---> 0, therefore we may 

assume without losing any generality that y,',x,n ---> Y,."x for a.e. r E [0, TJ, x E ]Rd, 

a.s. wand extract a subsequence of {y,',x,n}~=l still denoted by {y,',x,n}~=l s.t. 

For any n, 

n-l 00 

1Y;,x,nl ::; 1Y;,x,ll + L 1Y;,x,i+l - y;,x,il ::; 1Y;,x,ll + L 1Y;,x,i+1 _ y;,x,il. 
i=l i=l 

Then by the property of norm, we have 

< 

< 

< 
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< 00. 

On the other hand, for this subsequence {y;,x,n}::='=l' by Condition (H.4.4), we have 

E[l
T 1 sup IJ(r, X;'X, Y,.t,x,n, Z;'X) - J(r, X;'X, Y,.t,x, Z;,X)1 2p-l(x)dxdr] 

o lRd n 

< Cp E[l
T 1 sup(l + 1Y,:,x,nI2 + 1Y,:,xI2)p-1(x)dxdr] 

. 0 IRd n 

Cp E[l'
Tl (1 + sup lY,.t,x,nI2 + 1Y,:,xI2)p-1(x)dxdr] 

o IRd n 

< 00. 

Then, by the Lebesgue's dominated convergence theorem and Condition (H.4.6), we 

have 

lim E[l
T l IJ (r, X;'x, Y,.t,x,n, Z;'X) - J(r, X;'x, Y,.t,x, Z;,X)1 2p-l (x)dxdrJ 

n-oo 8 IRd 
T . - E[11 lim IJ(r,X;,x,y,:,x,n,z;,X)-J(r,X;,x,y,:,x,Z;,X)12p-l(x)dxdr] 

8 lRd n-oo 

- O. 

That is to say (Yst,x, Z;,X)OSsST satisfies Eq.(3.2). The proof of Theorem 4.2.1 is com

pleted. <> 

§4.2.4 The corresponding SPDEs 

In the previous subsection, we proved the existence and uniqueness of solution of 

BDSDE (3.1) and obtained the solution (Y"t,x, Z;'X) by taking the limit of (Y"t,x,n, z;,x,n) 

of the solutions of Eq. (3.3) in the space 82,0([0, T]; L~(lRd; JR 1» ® M 2,O 

([0, T]; L~(JRd; JRd» along a subsequence. We still start from Eq.(3.3) in this subsection. 

Proposition 4.2.8. Under Conditions (H.4.1)-(H.4.7), assume Eq.{3.3} has a unique 
solution (yt,x,n zt,x,n) then for any t < s < T 

T 'T , JI - - , 

X ,," t X'," t [ d ys, • ,n = y,x,n and ZS, • ,n = Z ,x,n Cor rEs T] a a x E 1Il> as r r r r l' ".. l[\. ••• 

Proof The proof is similar to the proof of Theorem 3.1.4. Here Lemma 4.2.5 

plays the same role as Lemma 3.1.3 in the proof of Theorem 3.1.4. <> 

A direct application of Proposition 4.2.8 and Fubini theorem immediately leads 

to 
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Proposition 4.2.9. Under Conditions (H.4.1)-(H.4.7), if we define un(t, x) = y,t,x,n, 

vn(t, x) = Z:,x,n, then 

Now we consider the SPDE (3.21). 

Theorem 4.2.10. Under Conditions (H.4.1)-(H.4.7), if we define un(t, x) = y,t,x,n, 

where (Y"t,x,n, z;,x,n) is the solution of Eq.{3.3}, then un(t, x) is the unique weak solution 

of Eq. {3.21}. Moreover, 

un(s Xt,X) = yt,x,n (u*Vun)(s Xt,X) = zt,x,n for a a s E [t T] x E ]Rd a.s .. 
1 8 S' , Ss" " 

Proof Uniqueness. Let u be a solution of Eq.(3.21). Define 

F"(s,x) = f(s,x,un(s,x),(u*Vun)(s,x)), 

Gj(s,x) = gj(s,x,un(s,x), (u*Vun)(s,x)). 

Since u is the solution, so EUoT flRd (Iun(s, xJl2+ l(u*Vun)(s, xJl2)p-l(x)dxds] < 00 and 

E[l
T 1d (Ipn(s, xW + ~ IGj(s, xW)p-l(x)dxds] 

- E[l
T r (If(s, x, un(s, x), (u*Vun)(s, x))12 

o JlRd 
n 

+ L Igj(s, x, un(s, x), (u*Vun)(s, x)) 12)p-l(X)dxds] 
j=l 

< E[l
T r M; (1 + lun(s,x)I)2p-l(X)dxds] 

o JlRd 

+E[l
T 1d (2~lgj(s,x,un(s,x),(u*vun)(s,x)) -g(s,x,O,oW 

+2Ig(s, x, 0, OW)p-l(x)dxds] 

< CpE[l
T 1d (1 + lun(s, xW + l(u*Vun)(s, xW + ~ Igj(s, x, 0, OW)p-l(x)dxds] 

< 00. (4.16) 
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- E[l
T

l (lun(s,x!'XW + l(a'V'un)(S,X!,XW)p-l(x)dxdsj 
t JRd 

< CpE[lTllun(s,xW + l(a'V'un)(S,XWp-l(x)dxdsj 
t JRd 

< 00. 

Using some ideas of Theorem 2.1 in [3], similar to the argument as in Subsection 3.2.1, 

we have for t ::; s ::; T, (Ys',x,n, z;,x,n) solves the following linear BDSDE: 

y;,x,n = h(X~X) + iT F"(r, X;,X)dr 

-t iT G'J(r,X;'X)dtjJj(r) -iT(Z;,X,n,dWr ). 

j=l 8 8 

(4.17) 

(4.18) 

Noting the definition of Fn(s,x), G'J(s,x), Y"t,x,n and z;,x,n, from (4.18), we have that 

(ys',x,n, z;,x,n) satisfies the spatial integration form of Eq.(3.3). By Corollary 4.2.6, 

yt,.,n E 8 2,0([t, Tj; L~(lRd; !RI)) and therefore (Y"t,x,n, z;,x,n) is a solution of Eq.(3.3). 

If there is another solution u to Eq.(3.21), then by the same procedure, we can find 

another solution (ys',x,n, z;,x,n) to Eq.(3.3), where 

yt,x,n = un(s xt,X) and zt,x,n = (a'V'un)(s xt,X) s , ss' s . 

By Theorem 4.2.3, the solution of Eq.(3.3) is unique, therefore 

Y"t,x,n = :y't,x,n for a.a. s E [t, T], x E !Rd a.s .. 

Especially for t = 0, 

YsO,x,n = :y'0,x,n for a.a. s E [0, T], x E !Rd a.s .. 

By Lemma 2.3.3 again, 
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< CpE[lT r lun(s,x~'X) - un(s, X~,XWp-l(x)dxds] 
° JRd 

_ CpE[lT r IY.O,x,n _ Y.O,x,nI2)p-l(x)dxds] 
° JRd 

O. 

So Un(S, x) = Un(S, x) for a.a. sE [0, T], x E ]Rd a.s .. The uniqueness is proved. 

Existence. For each (t, x) E [0, T]0]Rd, define un(t, x) = ~t,x,n and vn(t, x) = 
Z;,x,n, where (yt,.,n, z:"n) E 82,°([0, T]i L~(]Rdi]RI)) ® M 2,0([0, T]i L~(]Rdi ]Rd)) is the 

solution of Eq.(3,3), Then by Proposition 4,2,9, 

Set 

pn(s,x) = f(s,x,un(s,x),vn(s,x)), 

Gj(s, x) = gj(s, x, un(s, x), vn(s, x)), 

Then it is easy to see that (y;,x,n, z;,x,n) is a solution of Eq,(4,17), By Lemma 2,3,3, 

E[lT r lun(s,xW + Ivn(S,xWp-l(x)dxds] 
o JRd 

< CpE[lT r (Iun(s, X~,xW + Ivn(s, X~,XW)p-l(x)dxds] 
o JRd 

. Cp E[lT r (lYsO,x,nI2 + IZZ,x,nI2)p-l(x)dxds] 
o JRd 

< 00, 

Then from a similar computation as in (4,16) we have 

E[lT 1,d (Ipn(s, xW + t IGj(s, x)12)p-I(X)dxds] 

< CpE[lT 1,d (1 + lun(s, xW + Ivn(s, xW + t 19j(S, x, 0, OW)p-l(x)dxds] 

< 00, 

Now using some ideas of Theorem 2,1 in [3], similar to the argument as in Subsection 

3.2.1, we know that vn(s, x) = (O""Vun)(s, x) and un is the weak solution ofthe following 

linear SPDE: 

un(t, x) - h(x) + l\:LV(s, x) + pn(s, x)]ds 
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o ::; t ::; s ::; T. ( 4.19) 

Noting the definition of Fn(s, x) and G'J(s, x) and the fact that vn(s, x) = (u*'Vun)(s, x), 

from (4.19), we have that un is the weak solution of Eq.(3.21). 0 

In this subsection, we study Eq.(2.19) with f and 9 allowed to depend on time. If 

(Y."x, Z!,X) is the solution of Eq.(3.1) and we define u(t, x) = v,"x, then by Proposition 

3.2.2, we have u*'Vu(t, x) exists for a.a. t E [0, TJ, x E ]Rd a.s., and 

u(s, X;'X) = y"'x, (u*'Vu)(s, X;'x.) = Z;,x for a.a. s E [t, TJ, x E]Rd a.s .. 

Also by Proposition 4.2.9 and Lemma 2.3.3, we have (3.23). With (3.23), we prove the 

other main theorem in this section. 

Proof of Theorem 4.2.2. We only need to verify that this u defined through v,"x 

is the unique weak solution of Eq.(2.19). By Lemma 2.3.3, it is easy to see that 

(u*'Vu)(t,.x) = zi'x for a.a. t E [0, T], x E ]Rd a.s .. 

Furthermore, using the generalized equivalence norm principle again we have (3.24). 

Then we will verify that u(t, x) satisfies (2.20). Since un(t, x) is the weak solution of 

SPDE (3.21), so for any III E C;,OO([O, T] x ]Rd; ]RI), un(t, x) satisfies (3.22). By proving 

that along a subsequence (3.22) converges to (2.20) in L2(!1), we have that u(t, x) 

satisfies (2.20). We only show that along a sequence 

E[ IjT1 (J(s,x,un(s,x),(u*'Vun)(s,x)) 
, JRd 

-f(s,x,u(s,x),(u*'Vu)(s,x)))IlI(s,x)dxdsI2]---> 0 as n ---> 00. 

First note 

E[ IjT 1 (J(s, x, un(s, x), (U*'Vlln)(s, x)) 
, JRd 

- f(s, x, u(s, x), (u*'Vu)(s, x)))IlI(s, x)dxdsI2] 

< CpE[jT 1 If (8, x, Un(8, x), (u*'Vun)(s, x)) 
, JRd 

- f(s, x, u(s, x), (u*'Vu)(s, x)Wp-l(x)dxds] 

< CpE[j
T

1 If(S, x, un(s, x), (u*'Vun)(s, x)) 
, JRd 
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- f(s, X, un(s, x), (a*Vu)(s, X)Wp-l(x)dxds] 

+CpE[jT ( If(s, x, un(s, x), (a*Vu)(s, x)) 
t JJRd 

- f(s, x, u(s, x), (a*Vu)(s, X)Wp-l(x)dxds] 

< CpE[jT ( l(a*Vun)(s,x) - (a*Vu)(s,XWp-l(x)dxds] 
t JIRd 

+CpE[jT ( If(s, x, un(s, x), (a*Vu)(s, x)) 
t JJRd 

- f(s, x, u(s, x), (a*Vu)(s, X)Wp-l (x)dxds]. 

We face a similar situation as in (4.15) and only need to prove that along a subsequence 

E[jT ( If(s, x, un(s, x), (a*Vu)(s, x)) 
t JlRd 

- f(s, x, u(s, x), (a*Vu)(s, X)Wp-l(x)dxds] ---> 0 as n ---> 00. 

For this, note that we have (3.23) which plays the same role as (4.14) in the proof 

of Theorem 4.2.1. Thus we can find a subsequence of {un(S,X)}~l still denoted 

by {un(S,X)};:"=l s.t. un(s,x) ---> u(s,x) for a.e. s E [O,T], x E !Rd
, a.s. wand 

E[IoT IlII.d sUPn lun(s, xJI2p-l(x)dxds] < 00. On the other hand, for this subsequence 

{un(s, X)};:"=l' by Condition (H.4.4), we have 

T . 

E[l (sup If(s, x, un(s, x), (a*Vu)(s, x)) 
o JJRd n 

- f(s, x, u(s, x), (a*Vu)(s, x)Wp-l(x)dxds] 

< CpE[lT { sup(l + lun(s, xW + lu(s, xW)p-l(x)dxds] 
o JlR.d n 

- CpE[lT { (1 + s;p lun(s, xW + lu(s, xW)p-l(x)dxds] 
o ifR.d n 

< 00. 

Then, by the Lebesgue's dominated convergence theorem and Condition (H.4.6), we 

have 

lim E[jT ( If(s, x, un(s, x), (a*Vu)(s, x)) 
n-oo t JlRd 

- f(s, x, u(s, x), (a*Vu)(s, x)W p-l (x)dxds) 

E[jT id .E..~ If(s, x, un(s, x), (a*Vu)(s, x)) 

- f(s, x, u(s, x), (a*Vu)(s, x)Wp-l(x)dxds] 

- o. 
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Therefore u(t, x) satisfies (2.20), i.e. it is a weak solution of Eq.(2.19) with 

u(T,x) = h(x). We can prove the uniqueness following a similar argument in The

orem 4.2.10 or Theorem 3.1 in Bally and Matoussi [3J. 0 

§4.3 Infinite Horizon BDSDEs 

We consider infinite horizon BDSDE (3.25) in this section and assume 

(H.4.8). Change "&6'[O,Tj" to "&6'IR+" and "1' E [0, TJ" to "1' 2: 0" in (H.4.2); 

(H.4.9). Change "foT" to "fooo e-Kr" in (H.4.3); 

(H.4.10). Change "1' E [0, TJ" to "1' 2: 0" in (H.4.4); 

(H.4.H). Change "f.l E JRI" to "f.l > ° with 2f.l-K -2C-L~I Cj > 0", "1' E [0, TJ" to 

"1' 2: 0" and "::; f.lfIRd U(x)IYI(x) - Y2(x)1 2p-I(X)dx" to "::; -f.lfIRdU(x)IYI(x) - Y2(x)1 2 

p-I(x)dx" in (H.4.5); 

(H.4.12). Change "1' E [0, TJ" to "1' 2: 0" in (H.4.6). 

The main result of this section is 

Theorem 4.3.1. Under Conditions (H.4.7)-(H.4.12), Eq. (3.25) has a unique solution. 

Proof. We use the same notation as in the proof of Theorem 3.3.1. Here we 

only prove the existence of solution. It is easy to verify that BDSDE (3.28) satis

fies conditions of Theorem 4.2.1. Therefore, for each n, there exists (yt"n, z.t"n) E 

S2,-K ([0, nJ; L~(JRd; JR I)) ® M 2,-K ([0, nJ; L~(JRd; JRd)) and (y,;,x,n, z;,x,n) is the unique 

solution of Eq.(3.28). Let (y,n, Z~)t>n = (0,0), then (yt"n, zt"n) E S2,-K n M 2,-K ([0,00); 

L~(JRd;JRI))®M2,-K([0,00);L~(JRd;JRd)). Using a similar argument as in the proof of 

Theorem 3.3.1, we can prove that (y,;,x,n, z;,x,n) is a Cauchy sequence. Take (y't,x, Z;,X) 

as the limit of (Yst,x,n, z;,x,n) in the space S2,-K n M 2,-K ([0,00); L~(IRd; JRI)) ® M 2,-K 

([0, 00); L~(JRd; JRd)) and we will show that (Y';'x, Z;,X) is the solution of Eq.(3.25). We 

only need to prove that for an arbitrary 'P E C~(JRd;JRI), (Y"t,x, Z;,X) satisfies (3.35). 

Noting that (y;,x,n, z;,x,n) satisfies Eq.(3.29), we can prove that (Y;'x, Z;,X) satisfies 

Eq.(3.35) by verifying that along a . subsequence Eq.(3.29) converges to Eq.(3.35) in 

L2(0) term by term as n ---> 00. Here we only show that along a subsequence 

E[ li
n r e-Kr 1(1', X;,x,Y;,x,n, Z;,X,n)'P(x)dxdr 

s JlRd 
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For this, note 

E[ 11n r e-Kr J(r, X;,x, y,.',x,n, Z;,x,n)cp(x)dxdr 
8 JJRd 

-100 r e-Kr J(r, x;,x, y,.',x, Z;,X)cp(x)dxdrI2] 
8 JrR. d 

< 2E[ 11
n r e-Kr(J(r, X;,x, Y,.t,x,n, z;,x,n) - J(r, X;,x, y,.',x, Z;,X))cp(x)dxdrI2] 

s ilR.d 

+2E[ 1100 r e-KrJ(r,X;,x,y,.',x,Z;'X)cp(x)dxdrI2] 
n JJRd 

< Cp E[l°O r e-KrIJ(r, x;,x, y,.',x,n, z;,x,n) _ J(r, X;'X, y,.',x,n, Z;,XWp-l(x)dxdr] 
8 J'JRd 

+CpE[ln r e-KrIJ(r, X;,x, y,.',x,n, Z;,X) _ J(r, X;,x, y,.',x, Z;,X)12p-l(x)dxdr] 
s jlRd 

+Cp E[l°O r e-Kr IJ(r,X;,x,Y,.t,x,Z;,XWp-l(x)dxdr] 
n jlRd 

< Cp E[l°O r e-KrIZ;,x,n _ Z;,xI2p-l(x)dxdr] 
s JrRd 

+Cp E[l°O r e-Kr (1 + ly"t,xI2)p-l(x)dxdr] 
n JJRd 

+CpE[l°O r e-KrIJ(r, X;,x, y,.',x,n, Z;,X) _ J(r, X;,x, y,.',x, Z;,XWp-l(x)dxdr]. 
8 JJRd 

Similar to (4.15), we only need to prove that along a subsequence 

E[l"" r e-KrIJ(r, X;,x, y,.',x,n, Z;,X) 
s JRd . 

- J(r, X;,x, Y,.t,x, Z;,XWp-l(x)dxdr]-> 0 as n -> 00. 

Since fy't,x,n }~=1 is a Cauchy sequence in the space M2,-K ([0,00); L~(lRd; JR 1)) with the 

limit yst,x, as n --> 0, we have 

( 4.20) 

Then from (4.20) we can find a subsequence of {y,.',x,n}~=l still denoted by {y,.',x,n}~l 

s.t. y,.',x,n -> y..',x for a.e. r :::: 0, x E JRd, a.s. wand E[fooo fIRd e-Kr SUPn 1Y..',x,nI2p-1(x)dxdr] 

< 00. On the other hand, for this subsequence {y..',x,n}~=l' by Condition (H.4.lO), we 

have 
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< CpE[ {OO { e-Kr sup(1 + 1Yr',x,nI2 + 1Yr"XI2)p-1(x)dxdrj 
10 JJRd n 

_ CpE[ {OO { e-Kr (1 + sup 1Yr',x,nI2 + 1Yr',xI2)p-1(x)dxdrj 
la JT&d n 

< 00. 

Then, by the Lebesgue's dominated convergence theorem and Condition (H.4.12), we 

have 

lim E[loo ( e-Krlf(r, X;'x, Yr',x,n, Z;'X) - f(r, X;'x, Yr"x, Z;,XWp-l(x)dxdrj 
n-oo s JRd . 
E[loo ( e-Kr lim If(r, X;'x, Yr',x,n, Z;'X) - f(r, X;'x, Yr"x, Z;'X) 12p-l (x)dxdrj 

s JlRd n-oo 

- O. 

That is to say (Y;'x, Z;,X)s~o satisfies Eq.(3.35). The proof of Theorem 4.3.1 is com

pleted. <> 

By a similar method as in the proof of the existence part in case (i) in Theorem 

3.3.1, we have the following estimation: 

Proposition 4.3.2. Let (1-:t,x,n, z;,x,n) be the solution of Eq. (3.28), then under the 

conditions of Theorem 4.3.1, 

supE[sup I e-Ksly't,x,n(xWp-l(x)dxj + supEr {OO { e-KrIYr',x,n(xWp-l(x)dxdrj 
n 82:;0 JIRd n la jlRd 

+ sup E[ {OO { e-KrIZ;.x,n(xWp-l(x)dxdrj < 00. 

n la JrRd 

All the proofs until now in this chapter have shown us how to deal with the non

Lipschitz term. So as for BDSDE (2.16), we don't intend to give details. Indeed, we 

can follow the procedure in Section 3.4 to prove Theorem 2.3.10 and 2.3.11 under the 

non-Lipschitz conditions. We leave it to readers. 
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Chapter 5 

Stationary Stochastic Viscosity 

Solutions of SPDEs 

In this chapter, we discuss the stationary stochastic viscosity solutions of SPDEs. 

Comparing the stochastic viscosity solution with the weak solution, we need more in

formation for the stochastic viscosity solution. In particular, the space continuity of 

solutions of SPDEs as well as time continuity is considered in this chapter. With them, 

we can perfect the stochastic viscosity solutions of real-valued SPDEs and achieving 

the stationary solution. In this chapter, we only deal with the Lipschitz condition, but 

we would like to point out that the techniques in Chapter 4 can be similarly applied to 

studying the stochastic viscosity solutions of SPDEs with linear growth non-Lipschitz 

term although we don't intend to include the analysis in this chapter. 

§5.1 Doss-Sussmann Transformation and Definition for 

Stochastic Viscosity Solution of SPDE 

The main purpose of this chapter is to find the stationary solution of the following 

SPDE 

v(t, x) - v(O,x) + [[st'v(s,x) + f(x,v(s,x),a*(x)Dv(s,x))lds 

+ [(g(x, v(s, x)), dBs }. (5.1) 

In this chapter BB is a two-sided Brownian motion in ]RI, C is the infinitesimal generator 

of a diffusion process as in (1..3). 
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As shown in Subsection 2.3.4, under appropriate conditions, for T ::::: t, defining 

u(t, x) " v(T - t, x), we can obtain the time reverse version of Eq.(5.1): 

u(t,x) = u(T,x) + IT[.!L'U(S,X) + f(x,u(s,x), (a*Vu)(s,x»)]ds 

-IT(g(x,u(s,x)),dtSs ). (5.2) 

Here Ss = BT- s - BT is also a two-sided Brownian motion in JFl.I and the integral W.r.t. 

S is a "backward Ito's integral" . 

The BDSDE associated with SPDE (5.2) has the following form 

yt,x = yt,x + jT f(Xt,X yt,x Zt,X)dr _jT(g(xt,x yt,X) dt S ) _jT(zt,x dW) (5 3) 
s T r'rlT r'r' r r' r o

• 

B s B 

Here Ws is a two-sided Brownian motion in JFl.d and the integral w.r.t. W is a standard 

forward Ito's integral. 

We assume 

(A.5,l). Functions f : JFl.d X JFl.l X JFl.d_ JFl.l and g : JFl.d X JFl.l_ JFl.I are @lRd 0~lRl 18I~lRd 

and ~lRd 181 ~lRl measurable respectively, and there exist constants Co, Cl, C ::::: 0 

S.t. for any (Xl, Yl, zt}, (X2, Y2, Z2) E JFl.d x JFl.l X JFl.d, 

If(xl,Yt,Zl) - f(x2,Y2,Z2W S Cllxl - x212 +COIYl-Y212 + CIZl - z212, 

Ig(Xl, yt}- g(X2, Y2W S CtiXl - x212 + CIYl - Y212; 

(A.5.3). There exist K E JFI.+, P > d + 2, K < K' < 2K and a constant /L > 0 with 

2/L - ~K' - p(Pi1)c > 0 S.t. for any Yl, Y2 E JFI.\ x, Z E JFl.d, 

(A.5.4). b(·) : JFl.d _ JFl.d, a(·) : JFl.d _ JFl.dxd are globally Lipschitz continuous with 

Lipschitz constant L and for p, K in (A.5.3), K - pL - P(P;l) L2 > O. 

The stochastic viscosity solution of SPDE was studied by Lions and Souganidis in 

[32]-[35] and by Buckdahn and Ma in [9]-[ll]. In this chapter, we adopt Buckdahn and 

Ma's definition for stochastic viscosity solution of SPDE (5.1) which is done through 

the Doss-Sussmann transformation and the viscosity solution of a random PDE. Denote 
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the set of CO-functions with linear growth by Cp. Buckdahn and Ma proved that 

if u(T,·) E CP(JRd) is given, the solution y;"x of Eq.(5.3), (t, x) E [0, T] X JRd, is a 

stochastic viscosity solution of Eq.(5.2) under Conditions (A.5.1), (A.5.2) and (A.5.4). 

Therefore it gives the stochastic viscosity solution of Eq.(5.1) through the time reversal 

argument. To benefit the reader, we include briefly Buckdahn and Ma's main idea of 

definition for stochastic viscosity solution of SPDE (5.1) in [9]-[11) through the Doss

Sussmann transformation and the viscosity solution of a random PDE. Define ),(t, x, y) 

as the solution of the following SDE 

),(t, x, y) = y + ~ l' (g, Dyg)(x, ),(s, x, y»ds -1' (g(x, ),(s, x, y», dBs). 
2 0 0 

Under the Condition (A.5.2), ),(t, x, y) is a stochastic flow, i.e. for fixed x, the ran

dom field ),(., x, .) is continuously differentiable in the variable y, and the mapping 

y --> ),(t, x, y) defines a diffeomorphism for all (t, x), P-a.s.. Denote its inverse by 

((t,x,y) = (),(t,x, .»-I(y). Let v(t,x) = ((t,x,v(t,x», the so-called Doss-Sussmann 

transformation, then v(t, x) satisfies the following random PDE 

v(t,x) = v(O,x) + [[£V(S,x) +J(s,x,v(s,x),O'*(x)DV(s,x»)]ds. (5.4) 

Here 

- ·1 
f(t, x, y, z) = ),( ) (J(x, ),(t, x, y), O'*(x)Dx),(t, x, y) + Dy),(t, x, y)z) 

Dy t,x,y 

+2'x),(t, x, y) + (u*(x)Dxy),(t, x, y), z) + ~Dyy)'(t, x, y)lzn 

Then the stochastic viscosity solution of Eq.(5.1) v(t, x) was defined in [9]-[11] through 

the viscosity solution of "deterministic" PDE (5.4) v(t, x) for a.s. w via the relation 

v(t, x) = ((t, x, v(t, x». The notion of viscosity solutions of partial differential equations 

was first introduced by Crandall and Lions in [15]. Here for fixed w, we give the 

definition for the viscosity solution of "deterministic" PDE (5.4): 

Definition 5.1.1. (e.g. [43]) For fixed w, v E C([O, 00) xJRd; JRI) is called a viscosity sub

solution (resp. supersolution) of (5.4) ifv(O,x) ~ v(O,x,w) (resp. v(O,x) ~ v(O,x,w), 

x E JRd, and moreover for any cp E C I,2([0,00) X JRd;JRI) and (t,x) E (0,00) X JRd which 

is a local maximum of v - cp (resp. minimum of v - cp), 

ocp -
&t (t,x) - £cp(t,x) - f(t,x,cp(t, x), O'*(x)Dcp(t, x)) ~ 0 

(resp. 
ocp -
&t (t,x) - £cp(t,x) - f(t,x,cp(t, x), O'*(x)Dcp(t, x») ~ 0); 
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V E C([O, (0) X ]Rd; ]RI) is called a viscosity solution of (5.4) if it is both a viscosity 

subsolution and supersolution. 

Remark 5.1.2. The definition for the stochastic viscosity solution of SPDE in [9}-[11} 

was not directly defined by the Doss-Sussmann transformation and the viscosity solution 

of a random PDE, instead they used "test function language" as Crandall and Lions did 

in [15} and gave a very complicated definition: But Buckdahn and Ma proved that their 

definition is equivalent to the definition through the Doss-Sussmann transformation and 

the viscosity solution of a random PDE. Since the definition through the Doss-Sussmann 

transformation and the viscosity solution of a random PDE is easy to understand, here 

we would rather use it to introduce their definition for stochastic viscosity solution of 

SP D E than the complicated definition through "test function language". 

Then according to the Definition 2.1.1 and 2.1.2, for K, p E ]R+ and 0 ~ t ~ 

T < 00, we can write down the notation adopted in this chapter: M2,-K([0,00);]Rd), 

S2,-K([0, (0); ]RI), M 2,0([t, T]; ]Rd), S2,0([t, TJ; ]RI) and Sp,-K([O, (0); ]RI). 

Buckdahn and Ma established the connection between the solution of BDSDE 

(5.3) and the stochastic viscosity solution of SPDE (5.1). The following Buckdahn and 

Ma's result wilt" be used in this chapter. 

Theorem 5.1.3. ([9]) Assume Conditions (A.5.l), (A.5.2), (A.5.4) and that the func

tion v(O,·) E C?(]Rd) is given. Then v(t, x) = u(T - t, x) = Yi~t,x, where yt,x E 

S2,0([0, T]; ]RI) is the solution of Eq.{5.3), is a stochastic viscosity solution of Eq. {5. 1). 

Remark 5.1.4. From the argument of Buckdahn and Ma, if we assume that the given 

v(O, x) is continuous w.r.t. x and E[lv(O, X~XW] < 00, the condition v(O, .) E CP(]Rd) 

can be replaced by the above conditions in Theorem 5.1.3, but the conclusion of Theorem 

5.1.3 remains true since E[lv(O,X~XW] = E[lY.J,X~"12] = E[ly,;"xI2] < 00 guarantees 

the corresponding BDSDE has a square-integrable terminal condition. 

§5.2 Infinite Horizon BDSDEs 

§5.2.1 Introduction of Pardoux and Peng's work for finite horizon BDSDEs 

In this subsection, we will briefly introduce the pioneering work by PardoUx and 

Peng in [44] for the following finite horizon BDSDE: 

Y.=YT + lTf(r,Y,.,Zr)dr-1T(g(r,Yr,zr),dlBr)-lT(Zr,dWr). (5.5) 
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Here we only consider JR.1-valued BDSDE for our purpose. One can also refer to [44J for 

multi-dimensional BDSDE if interested. We assume 

(A.5.l)'. Functions f : 0 X [0, TJ X JR.l x JR.d--> JR.l and g : 0 X [0, TJ X JR.l x JR.d--> JR.l 

are g; 0 ~[O,T) 0 ~IRI 0 ~lRd measurable, and for any (y, z) E JR.l X JR.d, f(·, Y, z) E 

M 2,O([0, TJ; JR.l) and g(., Y, z) E M 2,O([0, TJ; JR.d), moreover there exist constants C 2: 
o and 0::; a < 1 s.t. for any r E [0, T], (Yl, zd, (Y2, Z2) E JR.l x JR.d, 

If(r, Yl, zd - f(r, Y2, Z2W ::; CIYl - Y21 2 + CIZl - z212, 

Ig(r, Yl, zd - g(r, Y2, Z2W ::; CIYl - Y21 2 + alzl - z212. 

Theorem 5.2.1. ([44]) Under Condition (A.5.l)', for any given:FT V g;l,oo measurable 

YT E U(O), Eq. {5.5} has a unique solution 

In [44], Pardoux and Peng also discussed a type of FBDSDE, a special case of Eq.(5.5), 

Y;'x = h(X~X) + IT f(X;'X, Y;'X, Z;,X)dr 

-I
T

(g(X;'X, Y;'X, Z;,X),dtBr) -IT(Z;,X,dWr), (5.6) 

where (X;,X)t::;s::;T is the solution of Eq.(2.l4). We assume 

(A.5.2),. Functions f : JR.d X JR.l x JR.d--> JR.l and g : JR.d X JR.l x JR.d--> JR.l are ~lRd 0 

~IRI 0~lRd measurable, and there exist constants C 2: 0 and 0 ::; a < 1 s.t. for any 

(Xl, Yl, zd, (X2, Y2, Z2) E JR.d x JR.l X JR.d, 

If(Xl, Yl, zd - f(X2, Y2, Z2W ::; Cl Xl - x21 2 + CIYl - Y21 2 + CIZl - z212, 

Ig(Xl, Yl, zd - g(X2, Y2, Z2W ::; CIXl - x21 2 + CIYl - Y21 2 + alZI - z212. 

Theorem 5.2.2. ([44]) Under Condition (A.5.2)" for any given:FT V g;l,oo measurable 

h of linear growth, and for each x E JR.d, Eq.{5.6} has a unique solution 

In [44], for the first time, Pardoux and Peng associated the classical solution of 

SPDE, if any, with the solution of BDSDE (5.6). They proved that under some strong 

smoothness conditions of h, b, IT, f and g (for details see [44]), u(t, x) = ~t,x, where Y 

87 



Loughborough University Doctoral Thesis 

is the unique solution of Eq.(5.6), (t, x) E [0, T] X JR.d, is independent of F,)r and is the 

unique classical solution of the following backward SPDE 

u(t, x) = h(x) + IT

[£U(S, x) + f(x, u(s, x), a*(x)Du(s, x»)]ds 

-IT

(g(x,u(s,x),a*(x)Du(S,X)),dtB,), 0:::; t:::; T. 

§5.2.2 . Existence and uniqueness of solutions of infinite horizon BDSDEs 

The main purpose of this subsection is to prove the existence and uniqueness of 

solution of the following BDSDE on infinite horizon: 

['" e-K.,', f(s, 1':" Z,)ds + ['" ~' e-K.,' 'Y,ds 
K' --Iy' e 2 t = 

-100 e-K.,' '(g(s, 1':" Z,), dt B,) -100 e-K.,' '(Z., dW,), 
I' I 

(5.7) 

or equivalently, for arbitrary T > 0 and 0 :::; t :::; T, 

dY; = -!(t, Y;, ZI)dt + (g(t, Y;, ZI), d BI) + (ZI' dWI), 

{ 

t' 

lim e-,TYT = 0 a.s .. 
T-oo 

We assume that 

(H.5.1). Functions f : n x [0, (0) X JR.l X JR.d-> JR.l and 9 : n x [0, (0) X JR.l X JR.d-> JR.l 

are § 03l[o,00) 03l1!1 03ll!d measurable, and there exist constants Co, C 2': 0 and 

0:::; a < ~ s.t. for any (w, t) E n x [0, (0), (Yl, Zl), (Y2, Z2) E JR.l x JR.d, 

If(t, Yl, Zl) - f(t, Y2, Z2W :::; COIYl - Y21 2 + CIZl - z21 2, 

Ig(t, Yl, zd - g(t, Y2, Z2W :::; CIYl - Y21 2 + alzl - z212; 

(H.5.2). There exist K E JR.+, P > d + 2, K < K' < 2K and a constant J1, > 0 with 

2J1, - K' - P(P;l)C > 0 s.t. for any (w, t) E n x [0, (0), Yl, Y2 E JR.!, Z E JR.d, 

(Yl - Y2)(f(t, Yb z) - f(t, Y2, z» :::; -J1,IYl - Y212; 

(H.5.3). For p, Kin (H.5.2), f(', 0, 0) E MP,-K ([0,00); JR. l ), g(., 0, 0) E MP,-K ([0,00); JR.l). 

Remark 5.2.3. In this chapter, we use the exponentially decay function e- K.,', in infi

nite horizon BDSDEs (e.g. Eq. (5. 7)) rather than e-K , as in the previous chapters. One 

can easily see that e- K.,', is a weaker condition, but adequate for us, although there is 

no essential change. In order to avoid heavy notation, we only use exponentially decay 

function e- K.,', in this chapter. 
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Theorem 5.2.4. Under Conditions (H.5.1)-(H.5.3), Eq. (5. 7) has a unique solution 

Remark 5.2.5. Since here we consider the BDSDE on JRI space which is simpler than 

the BDSDE on the Hilbert space L~(jRd; jRI) we considered in Chapters 3 and 4, therefore 

we only give the details of the proofs which are different from Chapter 3. We also leave 

out the localization argument when applying ftO's formula to save the space. 

Proof of Theorem 5.2.4. The uniqueness can be done by the generalized Ita's 

formula as in the corresponding part in Theorem 3.3.1, so it is omitted. 

Existence. For each n E N, we define a sequence of BDSDEs as follows 

i
n in 'i

n 
Y;n= t f(S,Ysn,Z;)ds- t (g(S'Ysn,Z;),dtBs)- t (Z;,dWs)' (5.8) 

Let (y;n, Zrk"n = (0,0), and according to [44] (or Theorem 5.2.1), Eq.(5.8) has a 

unique solution (yn, Z:') E S2,-K ([0,00); JRI )nM2,-K ([0,00); jRI) ® M2,-K ([0,00); jRn). 

Also under Conditions (H.5.1)-(H.5.3), ~e can prove yn E Sp,-K([O, 00); JRI). 

Lemma 5.2.6. Let (y;nk~a be the solution of Eq.(5.8), then under Conditions (H.5.1)

(H.5 . .3), yn E Sp,'-K([O, 00); JRI). 

Proof Applying the generalized Ita's formula to e-Krp,;.nIP and following a similar 

calculation as in (3.36)-(3.38), we have 

E[[O e-KrlYrnIP-2IZ~12dr] + E[[O e-KrlY,.nIPdr] (5.9) 

< CpE[l°O e-Krlf(r, 0, O)IPdr] + Cp E[l°O e-Krlg(r, 0, O)IPdr] < 00 

and 

E[sup e-K'Iy;nn < CpE[ fa
oo 

e-Kr(lf(r, 0, O)IP + Ig(r, 0, O)IP)dr] (5.10) 
t2:a lo 

+CpE[l°O e-KrlYrnlp-2IZ~12dr] + CpE[l°O e-KrlYrnIPdr]. 

By (H.5.3) and (5.9), yn E Sp,-K([O, 00); jRI). Lemma 5.2.6 is proved. o 

Remark 5.2.7. The proof of Lemma 5.2.6 also works with p replaced by 2. Note that 

if j(-, 0, 0) E MP,-K([O, 00); JRI), then by the HiJlder inequality 

E[l°O e-KSlf(s, 0, OWds] ::; ([0 e-KSds)T(E[l°O e-KSlf(s, 0, O)IPds])~ < 00, 
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therefore f(', 0, 0) E M 2,-K ([O,oo)j jRI). Similarly we have g(., 0, 0) E M2,-K ([O,oo)j JR/) 

as well. So it is easy to see in (5.9) with p replaced by 2 that 

We return to the proof of Theorem 5.2.4. We will show that (yn, Z:') is a Cauchy 

sequence in the space of Sp,-K ([O,oo)j jRI) n M 2,-K ([O,oo)j jRI) ® M2,-K ([O,oo)j jRd) 

with the norm 

as in Pardoux [40]. Firstly we show that, for m, nE N and m 2: n, 

lim E[sup e-K'Iy;m - y;nIP] = O. 
n,m_oo t?:D 

Define :f':m,n - y,m _ y,n Zm,n - zm _ zn 
t - t t't - t t" 

(i) When n ::; t ::; m, 

y,m,n = Y;m = i m 

f(s, ysm, Z';)ds - i m 

(g(s, v.m, Z';), dt Es) - i m 

(Z';, dWs). 

Some similar calculations as in (5.9) and (5.10) lead to 

Here 

E[ sup e-K'Iy;mIP] 
n::5t::;m 

< CpE[lm 
e-KrlYrmIP-2IZ::'12dr] + CpE[lm 

e-Kr l1';.mIPdr] 

+CpE[lm 
e-Kr(lf(r, 0, O)IP + Ig(r, 0, O)IP)dr] 

< CpE[lm 
e-Kr(lf(r, 0, O)IP + Ig(r, 0, O)IP)dr] --> 0, as n, m --> 00. (5.11) 

(ii) When 0 ::; t ::; n, 

In in in y,m,n=Ynm+ , Jrdr- , (lir,dtEr)- , (Z::"n,dWr). 

Applying Ita's formula to e-KrlY,.m,nIP and following a similar calculation as in (3.39), 

we have for s ::; n, 

e-KslY;,m,nIP + (PM - K - pC - p(p; 1) C) J.n e-KriYrm,nIPdr 
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+~(2p - 3 - (2p - 2)0:) in e-Kr IYrm,nIP-2Iz;.",nI2dr 

< e-KnlYnmlP - p in e-KrIYrm,nIP-2Yrm,n(!,ro dt Br) 

-p [e-KrIYrm,nIP-2Y,.m,n(Z;.",n,dWr). 

And some similar calculations as in (5.9) lead to 

E[i
n 

e-Kr lY,.m,nl p-2IZ;.",nI2dr] + E[l
n 

e-KrlY,.m,nIPdr] ::; CpE[e-KnlYnmn (5.12) 

From (i), the right hand side of the above inequality converges to 0, as n, m --> 00. 

By some similar calculations as in (5.10), we have 

E[ sup e-Ktl~m,nIP] ::; CpE[e-KnlYnmIP] --> 0, as n, m --> 00. 
O$t::::;n 

From (i) (ii), we have for m, nE N, 

lim E[supe-Kt l1,,;m - ytlP] = O. 
n,m_oo t:;::O 

Furthermore the above arguments also hold for p = 2 in (5.11) and (5.12). Noting from 

Remark 5.2.7, we have as n, m --> 00 

E[[O e-Kr IYrm,nI2dr] + E[['" e-Kr IZ;",nI2dr] --> O. 

Therefore, (yn, zn) is a Cauchy sequence in the Banach space 

We take (Yi, Zt)t~O as the limit of (yt, Znt~O in the above space and we will show 

that (Yi, Zt)t~O is the solution of Eq.(5.7). Since for t ::; n, 

yt = [ f(s, y'n, Z~)ds -in (g(s, y'n, Z~), dtBs) -in(Z~, dWs), 

it turns out that for t ::; n, 

K' --tvn e 2.It = 
i

n , in Kt , 
t e-~Sf(s,y'n,Z~)ds+ t 2e-~Sy'nds 

-in e-~' S(g(s, y'n, Z~), dt Bs) - in e-~' S(Z~, dWs). (5.13) 

We will show that Eq.(5.13) converges to Eq.(5.7) as n --> 00. For this, we verify the 

convergence in L2(fl) term by term. For the first term, 
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For the second term, by the Holder inequality, 

E[ 11n 

e-K,"f(s,Y,n,Z;)ds- ['" e-K,"f(s,Y.,Z,)dsI2] 

< 2E[ 11n 

e-K,' '(J(s, Ysn, Z;) - f(s, Y" Z,))dsI2] + 2E[ 1['" e-K,', f(s, Y., Z,)dsI 2] 

< 2E[l
n 

e-(K'-Klsds In e-KSlf(s, y,n, Z;) - f(s, Ys, Z,Wds] 

+2E[l
OO 

e-(K'-Kl'ds 100 e-K'lf(s, Ys, Z,Wds] 

< CpE[E'" e-K'IY,n - Ysl 2ds] + CpE[E'" e-K'IZ; - Zsl 2ds] + CpE[["" e-KS lYsI2ds] 

+CpE[[O e-K'IZ,12ds] + CpE[[O e-KSlf(s, 0, OWds] ~ O. 

For the fourth term, noting K' > K and by Ito's isometry, we have 

E[ 11
n 

e- K,' '(g(s, y,n, Z;), dt B,) - 100 e- K,' S(g(s, Y., Z,), dt B,W] 

< 2E[ll
n 

e-K,' '(g(s, Ysn, z;). g(s, Y., Z,), dt BsW] 

+2E[ 1[° e-K,' '(g(s, Ys, Z,), dt B,W] 

_ 2E[l
n 

e-K'Slg(s, Y,n, Z;) - g(s, Y., Z,Wds] + 2E[[O e-K"lg(s, Y., ZsWds] 

< CpE[l
OO 

e-K'IY,n - Ysl 2ds] + CpE[[O e-KSIZ; - Z,1 2ds] + OpE[[O e-K'IY,12ds] 

+cpE[l
OO 

e- KS IZ,1 2ds] + CpE[l
OO 

e-K'lg(s, 0, OWds] ~ O. 

We can deal with the third term and the last term using the same arguments as the 

second term and the fourth term respectively. So (1';, Z'),;o:o is the solution of Eq.(5.7). 

The proof of Theorem 5.2.4 is completed. 0 

. Now let's turn to the prooffor the existence and uniqueness of solution of FBDSDE 

on infinite horizon: 

e-K,' 'y',x _ joo e-K,' rf(X"X y',x Z"X)dr + joo'K1 

e-K,' ryt',xdr 
8 r'r'r 2 r 

s , 

-joo e-K,'r(g(Xt,X yt,x zt,X) dtB) 
r.' r , r' r , 

-100 e-K,'r(Z;,X,dWr), s:::: 0, (5.14) 
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equivalently, for arbitrary T > 0 and 0 :S: s :S: T, 

{ 

yt,x = y;t,x + jT f(Xt,X yt,x Zt,X)dr _jT(g(Xt,X yt,x zt,X) dt B ) _jT(zt,x dW) 
s T rlTlr T'T1Tl r T' r, 

S S S 

K' 
I· --Ty;t x ° Im e 2 T' = a.s .. 
T~"" 

We replace Condition (A.5.1) by 

(A.5.1)'. Functions f : ]Rd X ]RI X ]Rd~ ]RI and 9 : ]Rd x ]RI X ]Rd~ ]RI are ~lRd 0 

~lRl 0 ~lRd measurable, and there exist constants Co, Cl> C 2: ° and 0 :S: a < ~ s. t. 
for any (~I' YI, Zl), (xz, Yz, zz) E ]Rd x ]RI X ]Rd, 

If(xl> YI, zd - f(xz, Yz, zzW :S: CdxJ - xzlz + CoIYI' - Yzlz + Clzl - zzlz, 

Ig(xI' YI, Zl) - g(xz, Yz, zzW :S: Cllxl - xzl z + CIYI - Yzlz + alzl - zzlz. 

Proposition 5.2.8. Under Conditions (A.5.1)" (A.5.3), (A.5.4), Eq. (5. 14) has a unique 

solution 

Proof Let 

/(s,y,z) = f(X;'X,y,z), g(s,y,z) = g(X!'X,y,z). 

We need to verify that /, 9 satisfy Conditions (H.5.1)-(H.5.3) in Theorem 5.2.4. It is 

obvious that /, 9 satisfy (H.5.1) and (H.5.2), so we only need to show that /, 9 satisfy 

(H.5.3) as well, i.e. 

Since 

E[l"" e-Ksl/(s, 0, O)IPds] 

- E[l"" e-KSlf(X;'X, 0, O)IPds] 

< CpE[l"" e-KSlf(X;'X, 0, 0) - f(O, 0, O)IPds] + CpE[l"" e-KSlf(O, 0, O)IPds] 

< CpE[l"" e-KsCfIX;,XIPds] + CpE[l"" e-KSlf(O, 0, O)IPds], 
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we only need to prove E[Jooo e-KsIX;,XIPds] < 00. Now applying Ito's formula to 

e-KrIX;,xIP, we have 

d(e-KrIX;,XIP) 

_Ke-KrIX;,xIPdr + ~e-KrIX;'XIP-2(2(X;'X, b(X;,X))dr + Ilu(X;,X)1I2dr 

+2 (X;'X , o-(X;,X)dWr)) ~ p(p; 2) e-KrIX;'XIP~4(u(X;'X)u'(X;'X)X;'X, X;,X)dr. 

Then by the Lipschitz condition and the Young inequality, we have for 0 ::; t ::; s, 

e-KsIX;,xIP + 18 

Ke-KrIX;'XIPdr 

Therefore, 

< e-KtlxlP + [pe-Kr1x;,XIP-l(LIX;,XI + Ib(O)I)dr 

+ [p(p; 1) e-KrIX;,XIP-2(LIX;,XI + Ilu(0)11)2dr 

+ [pe-KrI X;,XIP-2(X;'X, u(X;,X)dWr) 

< e-KtlxlP + pL l s 
e-KrIX;,xIPdr + p l s 

e-KrIX;,xIP-1Ib(0)ldr 

+ [ e-KrP(p; 1) IX;,XIP-2((1 + c;WIX;,xI2 + Cp llu(O)112)dr 

+ [pe-KrIX;,XIP-2(X;,X,u(X;,X)dWr·). 

e-KsIX;,XIP + (K _ pL _ p(p; 1) L2 _ (2 + p(p; 1) L2)E:) l' e-KrIX;,xIPdr 

< e-KtlxlP + Cp l s 
e-Kr(lb(O)iP + Ilu(O)IIP)dr 

+p l' e-Kr IX;,XIP-2(X;'x, a(X;,X)dWr). 

Due to the 'arbitrariness of c; and Condition (A.5.4), we have 

Taking the limit of s and noting that (X;,X)s<t = x, we have 

E[l°O e-KrIX;,XIPdr] < 00. (5.15) 

So E[Jooo e-Kslj(s, 0, O)IPds] < 00. Similarly, E[Jooo e-KSlg(s, 0, OWds] < 00. o 
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§5.3 Space and Time Continuity of Solutions of SPDEs and 

Stationary Stochastic Viscosity Solution 

§5.3.1 Continuity of solutions of the corresponding BDSDEs 

An simple application of the stochastic flow property proved in [28J leads to 

Lemma 5.3.1. Under Condition (A.5.4), let (X;,X)S20 be the solution of Eq. (2. 14), 

then for arbitrary T and t, t' E [0, TJ, X, x' belonging to an arbitrary bounded set in lRd , 

E[l'" e-KrIX;',x' - X;,xIPdrJ :::; Cp(lx' - xlP + It' - tl~) a.s .. 

Proof First as shown in the argument in Proposition 5.2.8, we have (5.15) by 

Condition (A.5.4). Without losing any generality, assume that t' 2: t :::: O. Referring to 

Lemma 4.5.6 in [28J and noting that t, t', x, x' are bounded, we have 

E[[,c, e-KrIX;',x' _ X;,xIPdrJ 

E[ r e-Krlx' - xlPdrJ + E[lt' e-Krlx' - X;,xIPdrJ + E[l°O e-KrIX;',x' - X;,xIPdrJ 
~ t ~ 

_ r e-Krlx' _ xlPdr + It' e-Kr E[IX::'X' _ X;'XIPJdr + 100 e-Kr E[IX;',X' - X;'XIPJdr 
la t t' 

r It' < lo e-Krlx' - xlPdr + Cp t e-Kr(lx' - xlP + It' - tl~ + It' - rl~)dr 

+Cp 100 e-Kr(lx' - xlP + It' - tl ~)dr 
t' 

< Cp(lx' - xlP + It' - tl~ + It' - tl~+1) 

< Cp(lx' - xlP + It' - tl~)· 

o 

Now consider the following BDSDE on infinite horizon: 

100 e- 'f rf(xt,x yt,x zt,X)dr + 100 K' e- ~' ryt,xdr 
r'rlT 2 r 

s . s 

-100 e-~'r(g(X;'X, y/,X),dtBr) -100 e-~'r(Z;'X,dWr)' (5.16) 

It is easy to see that Eq.(5.16) is a simpler form of Eq.(5.14), and for arbitrary given 

terminal time T, Eq.(5.16) has the same form on [s, TJ as the finite horizon BDSDE 

(5.3). 
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Proposition 5.3.2. Under Conditions (A.5.1)-(A.5.4), let (y't ,X)S2:0 be the solution of 

Eg. (5.16), then for arbitrary T and t E [0, T], x E ]Rd, (t, x) ---; Y,t,x is a.s. continuous. 

Proof For t, t', l' 2: 0, let 

y. = yt' ,x' _ yt,x Z = zt' ,x' _ zt,x 
r r T' r r Tl 

f- = f(Xt',x' yt',x' zt',X') _ f(Xt,X yt,x zt,X) 
r r'r'r r'r'r' 

g- = g(Xt',X' yt',X') _ g(Xt,X yt,X) 
r r1r rlr' 

Then 

ti£. Applying Ito's formula to e- 2 rlY;.IP and following a similar calculation as in (3.39), 

we have for 0 :::; s :::; T, 

Then, for 0 :::; s :::; T, we have 

E[e-4slY.IPj + (PfL - pK' _ p(p + 1) C - e)E[i
T 

e-4riYrlPdrj 
2 2 S 

+P(2P
4
- 3) E[i

T 
e-4riYrIP-2IZrI2drj 

K' iT K' < E[e-'T-TiYTIPj + CpE[ s e-'T-r 1Xr IPdrj. 

Since (yt,X) E Sp,-K([O, 00); ]RI), for arbitrary T 2: 0, it turns out that 

E[e-4TiYTIPj :::; E[supe-KslY.IPj < 00. 
s~O 

Therefore by the Lebesgue's dominated convergence theorem, we have 
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So taking the limit of T in (5.18), by Lemma 5.3.1 and the monotone convergence 

theorem, we have 

E[e-~SIYsIPj + (PJl. - pK' _ p(p + 1) C _ c)E[ ("" e-"frly;'IPdrj 
2 2 lo 

+P(2P
4
- 3) E[l"" e-~rly;'IP-2IZrI2drj 

< CpE[l"" e-KrlXrlPdrj 

< Cp(lx' - xlP + It' - tl~)· 

Due to the arbitrariness of io, it follows that 

E[l"" e-~rlY;.IP-2IZrI2drj + E[l"" e-~riYrIPdrj :<::: Cp(lx' - xlP + It' - tl~)· (5.20) 

From (5.17), by B-D-G inequality, we have 

< E[e-~TiYTIPj + CpE[l"" e-~rIXrIPdrj + pEr ['" e-pK'rlY;.12p-2I.i!rI2drj 

+pE[ 1"" e-pK'rlY;.12p-2IZrI2drj. (5.21) 

Taking the limit of T on both sides of (5.21), by (5.19), the monotone convergence 

theorem and the Young inequality, we have 

E[supe-pKsIYsIPj :<::: Cp(lx' - xlP + It' - tl~)· (5.22) 
8~O 

Noting p > d + 2 in (5.22), by Kolmogorov Lemma (see [28]), we have that y'h ') has a 

continuous modification for t E [0, Tj and x belonging to an arbitrary bounded set in 

IRd under the norm sUPs~oe-KslY.("\ In particular, 

lim e-Kt'IY;;',x' - y;;'x I = O. 
t' __ t 

:£' __ x 
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Then we have a.s. 

lim le-Kt'y:~"x' _ e-Kty;t,xl 
tI_t t 
x'-x 

< Hm (Ie-Kt/~~/,x' _ e-Kt'~~,xl + le-Kt/~;,x _ e-Kt~t,xl) = o. 
t' __ t . 

x' ..... z 

The convergence of the second term follows from the continuity of Y,t,x in s. That is to 

say e-Kty;t,x is a.s. continuous, therefore y;t,x is a.s. continuous w.r.t. t E [0, T] and x 

belonging to an arbitrary bounded set in ]Rd. 

Denote by B(O, N) the closed ball in ]Rd of radius N centered at 0. It is obvious 

that U~=I B(O, N) = ]Rd. y;t,x is continuous W.r.t t E [0, T] and x E B(O, N) on ON. 

Take 0 = n~=1 ON, then P(O) = 1. Now for any t E [0, T] and x E Rd, there exists an 

N S.t. x E B(O, N). On the other hand, for all w E 0, it is obvious that W E ON So 

y;t,x is continuous w.r.t. t E [0, T] and x E ]Rd on O. Proposition 5.3.2 is proved. 0 

§5.3.2 Stationary stochastic viscosity solution of the corresponding SPDE 

Theorem 5.3.3. Under Conditions (A.5.1)-(A.5.4), for arbitrary T and t E [0, TJ, 

x E ]Rd, let v(t,x) ~ Yi~/'x, where (Y,t,x, Z!·X) is the solution of Eq.(5.16} with Bs = 
ET -s - ET for all s :::: 0. Then v (t, x) is continuous w. r. t. t and x and is a stochastic 

viscosity solution of Eq. (5.1). 

Proof By Proposition 5.3.2, v(t, x, w) is a.s. continuous w.r.t. t E [0, T] 
and x E ]Rd. Since Vt,x E 82,-K([0,00);]RI), yi'x is g,/oo 0 &OR' measurable and 

E[ lYi,Xl2j < 00. Moreover, Condition (A.5.1) is stronger than Condition (A.5.2)'. So 

by Theorem 5.2.2, Vt,x E 8 2,°([0, T]; ]RI) is the solution of Eq.(5.3). On the other hand, 
T xt,;c t 

E[ IYT' T 12] = E[ IYT,XI 2] < 00. By Theorem 5.1.3 and Remark 5.1.4, v(t,x) is a 

stochastic viscosity solution of Eq.(5.1). Theorem 5.3.3 is proved. o 

In the following, we will prove the v(t, x) derived through Theorem 5.3.3 is a 

stationary solution of Eq.(5.1). Similar as in Subsection 2.3.4, we do it through the 

"perfection procedure" of Y. Define {J and 0 as in Section 2.1 and Subsection 2.3.4 

respectively. By the same method as in Proposition 2.2.1, we can get a "crude" version 

of Vt,x, i.e. for any r, t :::: 0, x E ]Rd, 

0' yt,x = yt+r,x c 11 > 0 r 0 s S+r lor a s _ a.s .. 
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In particular, for any r, t::::: 0, x E ]Rd, 

Then noticing the continuity of Y,t,x w.r.t. t, by Theorem 2.2.2, we have an indistin

guishable version of Y,t,x, still denoted by Y,t,x, s.t. for any x E ]Rd, 

er 0 Y,t,x = Y,tt:,x for all r, t::::: 0 a.s .. 

In fact, following a "standard" argument, we can obtain from the continuity of Y,t,x 

w.r.t. x that 

(5.23) 

Note that we have proved v(t,x) = Y,t,x is a stochastic viscosity solution of Eq.(5.1) in 

Theorem 5.3.3, then let's see it is a stationary stochastic viscosity solution under shift 

B. By (5.23) and the relationship between Band e, we have 

for all r::::: 0 and T::::: t+r, x E]Rd a.s .. In particular, let Y(x,w) = vo(x,w) = Yj!',X(w), 

then the above formula implies (1.1): 

BtY(x,w) = Y(x,Btw) = v(t,x,w) = v(t,vo(x,w),x,w) = v(t, Y(x,w),x,w) 

for all t ::::: 0, x E ]Rd a.s .. That is to say v(t,x)(w) = Y(x,Btw) = Yi~t,X(w) is a 

stationary solution of Eq.(5.1) w.r.t. B. As the arguments in Subsection 2.3.4, we can 

prove a claim that v(t, ·)(w) = yj!'~t,.(w) does not depend on the choice ofT. Therefore 

we have the following conclusion 

Theorem 5.3.4. Under Conditions (A.5.1)-(A.5.4), for arbitrary T and t E [0, TJ, let 

v(t, x) D. yj!'~t,x, where (Y"t,x, z;,X) is the solution of Eq. {5.16} with 13, = BT- s - BT for 

all s ::::: O. Then v(t, x) is a "perfect" stationary stochastic viscosity solution of Eq.{5.1}. 
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