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SYNOPSIS

The :non-linear differential equations describing the
transient behaviour of a group of inducéion motors are developed
from the equations for a single machine. These equations enable
the behaviour of each machine in the group to be investigated, -
either when the complete group is connected to a étiff supply
or when the supply is Wéa#land the machine behaviour is inter-
actiye. A numerical solution of the.equations using a digital
éomputer is used to ppedict the transient currents and torques
of a 0.75 kW/1.5 kW motor group and of a 0.75 kW/1.5 kW/2.25 kW
motor group, and the results obtained are compared with experi-

mentally obtained results.

" The initial sfage—of'thé'investigation is concerned with
the direct-on-line starting performance of the motors, and this
is followed by a study 6f the transient behaviour of the situation
-when the machines are disaonnected'from the supply but their
stators remain interconnected. The components of the transient
currents and the common terminal voltage during disconnection
are computed, and determined also by analytical methods, and are
" compared with experimental results for the two groups of motors

investigated.

The investigation deals also with reconnection of a group
of machines following a short interruption of the supply, and
considers how the subsequent transients are affected by any

currents which are still flowing in both the stator and the rotor
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circuits. Plugging and star-delta starting switching conditions,
and the transients which then result are investigated as examples
‘

of this kind of switching operation,

The coﬁputer program used throughout the investigation was
written in Fortran IV. It was run on an ICL 1904A digital com-
puter using a fourth-order Runge~Kutta method for humerical,
integration of the equations involved. A separate program was 3

developed to determine the value of the step—length required to

ensure a stable numerical solution throughout the duration ‘of

‘the program.

m———————— e - ——— e — ———— o ———— - B _——_—— - e e —

The original work described in this thesis may be

summarized by the following points:- ~

i) The development of the non-linear differential equations
describing the transient behaviour of a group of induction

motors, ' '

ii) The development of the digital computer ‘solution of the p
non-1linear equations simulating a group of induction
motors.

iii) The experimental work performed on groups of induction

motors to demonstrate “their mutual interaction.

. iv) The theoretical and experimental considerations of the

phenomena which follow a variety of switching operations.




LIST OF PRINCIPAL SYMBOLS

i i instantaneous current, A

v instantaneous voltage, V

R resistance per phase, Q

L leakage inductance per phase, H

M mutual inductance, H

L self inductance per phase, H

p number of pole—pairs |

T - instantaneous torque, Nm

J moment of inertia, kg-m?

D operator d/dt

5 Laplace transform operator

Re ) real part of a complex quantity

Im imaginary part of a complex quantity -
6 .angular position, elec. rad. '

R rbtational speed, elec. rad/sec.

w synchronous angular velocity,.elec. rad/sec.
8 _ instant of switching to a balanced s;pply ;
'] flux linkage, Wb-T -

n normalised speed

suffices 1, 2, .... and m denote the 1st, 2nd, .... and mth motor
suffices s and r dencte stator and rotor
suffices d and q denote direct and quadrature axes

suffices p, n and 2z denote positive, negative and zero sequence

instantaneous symmetrical compoments

Other symbols are defined as they occur.
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CHAPTER 1

INTROBUCTION

Almost all previous investigations of induction motor
transients:have been devoted to the behaviour of a single
machine, when connected or reconnected to a stiff supply.

Both theoreticélly and experimentally, attention has been paid to
the current and torque transients following connection to the
supply either of an electrically inert machine or of a machine
with rotor current flowing.

The differential equations modelling a siugle 3-phase induc-

2
1,2,3 If the

tion motor may be derived in several different ways.
speed of the motor changes, the basic equations are normally both
‘non-linear and simultanecus, but they can be solved numerically
with the aid of a digital computer or by analogue means. An ana-
lytical solution becomes possible only when the speed of the motor
'is assumed’ to remain unchanged during the transieng périod, thus
making the differential equations linear. Lyon2 has applied the
ﬁethod of instantaneous symmetrical component analysis to these
linearised equations, to derive expressions for the tramsient
currents and torque in terms of the roots of the associated chara;-
teristic equation, while Chidambara and Ganapathya have used Lyon's
basic equations to develop equations for the torque following
different switching operations. They have also obtained an exper-
imental curve for the transient torque developed following connec—
tion to the supply of an electrically and mechanically inert motor,

using a capacitance strain gauge to provide an oscillegraphic trace

of the transient torque. However, this curve serves only to compare



the shapes of the theoretical and measured curves, and gives

no idea of the order of accuracy with which the transients are
predicted., Differential analyser solutions of the differential
equations ;f Stanleyl have been obtained by Gilfillan and Kaplan5
and also by Maginniss and Schultz6. However, the solutions of the
latter pair of.authors are rather more general, in that they do
ﬂot regard the speed as coﬁstant but assume a linear change in
either the acceleration or the deceleration following sudden

changes of terminal voltage and plugging.

An analogue simulation of the d,q equations for a small
2-phase servomotor and a large 223 kW/96.9 kW (300/130 hp), 3~
phase 2-speed induction motor was given by Hughes and Aldred7.
However, the only assessment of the accuracy of their simulation
was by a comparison with experimental steady-state torque-speed
characteristies measured over the entire speed range of the motor,
These authors also investigated the starting tfansients of the

large induction motor and the unbalanced starting performance of

the servomotor.

A further solution for the transient stator and rotor
currents for various switching eircuit conditions was obtained by
JRundenbUréB, from the basic loop equations of the induction motor.
Enslin, Kaplan and Davies9 applied Rudenbirg's method to analyse
the transient currents and flux in a machine and they discussed in
detail the components of the torque produced on starting a 0.75 kW
(1 hp) motor. They also compared theoretical results when the

machine was switched to the supply at various speeds with oscill-
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ogramic recordings, obtained by measurement of the staﬁor reaction
on a microwave cavity. Wood, Flynn and Shanmuga5underan10
presented the results of a systematic experimental investigation
of a 3-pha;e 0.75 kW (1 hp) motor, and they included in their
'study the effect of non-simultaneous closure of the contacts of

the supply switch. Experimental recordings of the transient torque
were obtained by means of é d.c. excited 2~phase induction
generator, directly coupled to the test motor and run as an
accelerometer. In a continuation of this work, Slater, Wood,

Flynn and Simpson11 solved numerically the d,q equaticns of

the induction motor, by means of a digital computer, for starting
and following connection at 90Z of synchronous speed, and they
investigared these conditions for both simultaneous and non-simul-
taneous switching of the supply to a 3.75 kW (5 hp) motor and a
2.25 kW (3 hp) motor. In a parallel study, Smith and Sriharan12’13
presented a comparison between computed and experimen£al results
for the transient currents and torque of an induction motor
following different switching operations. They took into account
the effect of a'coupled load and the flexibility.of the connecting
shaft,'and they used a resistance strain—gauge for the measurement
of the torque transmitted to the load. In continuing their work,
Smith and Sriharan14 investigated the influence of terminal capa-
citors on the transient currents and torque of an induction machine,
They took into account the non-linear effect of magnetic saturation,
by introducing a non-linear relationship between the peaks of the

m.m. f. and the air gap flux-density distributions, and they expressed




this relationship mathematically by a set of polynomial
expressions, They obtained theoretical results from a digital-
computer solution of the equations modelling the machine, and
compared these with experimental results from a 5.6 kW (7.5 hp)
motor, following disconnection and reconnection to the supply.
The value of the capacitance considered was that required to
correct the full-load power factor of 0.74 lag to unity, and
reconnection transients Qith different values of capacitance

were also obtained. Smith and Sriharan also obtained the trans-
ients when the machine operated as a capacitor-excited induction
generator during disconnection, and when the capacitor used was
of the value appropriate for capacitor braking. They compared
their theoretical results for the transients obtained during the
same switching and reswitching 0pe?ations considered previously
with experimental results, As a result of their work, they con~
cluded that the p.f. correcting capacitors connected to the
terminals of an induction motor increase the chance of subjecting
the machine to severe reconnection transients, and that with
unfavourable conditions of reconnection the transients are far
more severe than those without capacitors. The severity of the
-transients showed that 1t is inadvisable to reconnect a c§pacitor—
excited induction generator éo the busbars, unless the interrup-
tion is of short duration, and even when the generator is not re—
connected the build-up of voltage and the vise in magnetizing
current following disconnection may be dangerous. Ramsden, Zorbas

and Booth15 applied the 3~phase/2phase transformation of Park16 to




the basic induction motor equations, in a consideration of
the behaviour of an induction motor during fault conditions
in the poéer system from which it was fed. They developed

a computer program for their model of the induction motor,
and used as inﬁut data the fluctuating supply voltage
resulting from various fault conditions. With the induction
motor modelled in this way, the equagions are compatible with
those élready in existence in the analysis of synchronous
machines, and make use of c;ncepts developed in this context.
The computer program they developed was used to predict the
performance of induction motors supplied individuwally from a
power—-system on which a synchronous machine was running syn-
chronously, and their predicted results were compared with
laboratory experiments using several small induction motors.
They were concerned with current, acceleration and speed during
the fault condition and they adopted the technique used by

previous authors of measuring the acceleration by means of a

d.c. excited 2-phase induction generator.

.In all of the previous investigations mse:ntionedl_15 there

_ was no systematic study of the effects of parameter variations

on the transient charac;eristics. The only consideration of this
effect was a brief study by Slater, Wood, Flynn and Simpsonll,
vho investigated how the computed value of the greatest transient
torque peak developed by an induction motor during starting was

affected by separate *10% changes in the machine resistances and
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leakage inductances. However, in a subsequent investigation
. . . . . ... 17
using an experimental-design technique, Smith and Hamill

investigated fully the effect of variations in all the different

~
1

winding parameters from their base values. They considered the
transient torque and currents developed following a variety of
switching operations, and derived equations establishing the

significance of the various parameters in each operation.

Another featurenot considered in the earlier publications
was the effect of resistance and leakage induction variations
with speed, consequent upon the use of deep-bar rotor conductors.
This effect was investigated by Kalsilg, who established theoret-
ical formulae for calculating the transient torques and currents
of a large motor folldwing several switching operations. However,
to obtain his formulae it was necessary to assume that the speed
of the.motor remained constant dufing the transient period, and

they are therefore of somewhat limited applications,

The investigations mentioned so far]’_18 assumed that the
supply to the motor remained stiff under all loading conditions,

angd that the terminal voltage was constant throughout the transient

19

period. However, this restriction was lifted by Snider and Smith™~,

who described a digital simulation of an induction-motor/synchronous
generator combination, for which it is necessary to express the
equations of both machines in phase quantities. They developed the
overall system equations in this form, and described a digital-
computer program for their numerical solution. The program was

used to predict the current and torque transients following a



iy -

variety of sﬁitching operationg of a 5.6 kW motor te a 15 kVA
generator, and also to investigate the associated change in
the voltage of the connecting lines., This feature was also
consideréd in a qualitative consideration by Stephenzo, who
discussed the effect of system voltage depression caused by
starting either a large induction motor or a large synchronous
motor, and gave recommendations for choosing suitable machines
and protective equipment for particular types of applications

and system disturbances.

All the investigations mentioned above showed good agree-
ment between experimental and computed results, Some authors
predicted and measured the electromagnetic torque, and some the
torque transmitted to the coupled load, but despite the simpli-
fying assumptions made in the analysis, all the measuring tech-

niques employed gave good agreement with the predicted results.

So far, only the performance of a single 3~phase induction’

" machine has been considered, and the transient performance and

the interactive effects involved in a group of motors connected

to a common supply has not been given the same full attention.
Nevertheless, this problem is of increasing practical importance,

as groups of large motors are increasingly being switched together
during operations such as busbar transfer of power station auxiliary
equipment. During the transient conditions which arise as a con-
sequence of such a switching operation, the effect of the impedance
of the common transformer and line supplying the group of motors is

of considerable significance, and Lewis and Marsh21 have presented



a simple study and an approximate analysis of this problem,
They divided the time of supply intérruption intc two parts;
the residual stator voltage being appreciab}e during the first
of these ;nd negligible during the second, when each motor in
the group may be treated separately. In a much more detailed
analysis, Humpage, Durrani and Carvalhozz,lhave represented the
equations-of inte;cunnected synchronous—asynchronous—machine

23,24,25

roups using Kron's concept of a synchronously rotatin
g P 8 y Yy g

reference frame, int¢ which the equations of 21l the machines in
the group are transformed. In’particular, they studied the
transient stability of each machine following short—circuit
faults on the system. By neglecting in their analysis the terms
in the stator-voltage equations corresponding to the transients
associated with changing stator flux linkages, they succeeded in
reducing the equations modelling each machine to two differential

equations and two algebraic equations, from the four basic

differential equations. This naturally introduced some error \\\\

into their computed results, although this was only appreciable

in the case of the induction motors. In a study restricted to

. : ) ) . .26 Lo
consideration of only twe machines, Kalsi and Adkins have inves-

tigated a system consisting of an induction motor and a synchro-
nous machine connected to a stiff supply thro?gh an impedance.
They compared the transients measured on a model power system with
the results of computations made on a very simplified mathematical
model, for a variety of fault conditions. Their analysis, did,

however, include a representation of the deep-bar rotor winding



of the induction motor by two coils in each axis of the

. . . . . 27
machine, as suggested in a previous publication ',

In a very recent study restricted to induction machines
only, Abdel-Hakim and Berg28 have described a method of rep-
resenting a group of such motors by a single-unit equivalent,
Their representation is developed from the steady-state equiv-
alent circuits of the individual machines, and includes also a
single—unit equivalent for the overall inertialaﬁd mechanical
load characteristics. The authors produced a computer program
based on their equivalent machine, and vsed this to examine the
dynamic performance of a group of motors following both sudden
and gradual disturbances of the supply. However, it is clearly
impossible to use the approach to investigate the response of
the inqividual machines, and only the overall effect on the system
can be obtained. This restriction does not appear to apply in the
more recent work of Sriharanzg, who describes a computer program
.for the calculation of the transient currents, voltages, torgues
and speeds of each motor of a group supplied from a common trans-
former, However, the paper is only a computer program description
and contains no details of the experimental approach followed nor

" of any comparison with experimental results.

1.1 The Scope of the Thesis

The work described in this thesis begins with the derivation
of the d-q differential equations of a group of any number of

induction motors connected to a commen stiff or weak supply.
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The impedance of the supply may be introduced either inten-
tionally by the use of reduced voltage starters30 or acci-
dentallyfwhen the impedance is that of the transformer and
connecting lines feeding the group of motors. In this case
two apprcaches to the derivation of the equations are adopted.
The first of these is by including the impedance of the supply
in the matrix impedance of the group and the second is by
considering thé d-q equations of the group separately from

the electric equations of the supply. In the latter approach,
the supply equations are considered in phase rather than in
d,q form,since this will reduce the 3-phase supply equations
from six to only three equations. The system mechanical
equations are also derived, on the assumption that each motor
of the group is coupled to a mechanical load through a coupling

shaft,

A digital computer program is developed for the numerical
integration of the electrical and mechanical differential
equations of the group of machines, and this is used to predict
the behaviour of the group during transient conditions. The
computer program is used for the computation of the behaviour of
each machine of the group, when the supply is both stiff and non-
stiff, and for several switching and reswitching operations.
Although a numerical solution gives an overall measure of the
transient performance, it does not provide any insight into the
details of the components present in the transient. As an illus-
tration of the way this detailed information may be obtained, an

analytical solution is made for the currents, voltages and torques
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during disconnection of a two-machine group. The frequencies
and time constants of the group are evaluated from the para-

meters of the two given machines,

Three special cases of reswitching the group to a
stiff supply are investigated in depth; namely reswitching
‘and plugging to the same supply and star-delta starting. To
assess the theoretical work of the thesis, experimental
measurements of the transients were made for various switching
operations on a group of two motors and onm a second gréup of .
three motors, aﬁd the experimental results are compared with

corresponding predictions.
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CHAPTER 2

MODEL, OF A GROUP OF INDUCTION MOTORS

,

Eveé when the operating conditions.of an induction motor
change abruptly, the currents in the stator and rotor windings
must still conform to the differential form of Kirchhoff's
equations. In the application of these equations, certain
idealizing assumptions are normally made concerning the
mechanical and electrical characteristics of the é;chine.
These assumptions may be summarized as follows:
i) the stator and rotor laminations are sufficilently thin
for eddy current loss to be neglected, and the quality
of the steel is such that hysteresis losses are also

negligible,

ii) the inductances of the stator and rotor windings are
independent of the current flowing, i.e. saturation is

negligible,

jii) the squirrel-cage rotor can be represented by a 3-phase
winding, and the windings of both the stator and the

rotor are symmetrical,

iv) the mutual inductance between a stator winding and a
rotor winding varies as the cosine of the angle between
their magnetic axes, i.e. the m.m.f. and flux density

produced by both windings is sinusoidal.
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2.1 Induction Motor Equations in 3-Phase Quantities

The differential equations of an induction motor can be
derived in many forms, but since these equations are normally
both non-linear and simultaneous, they can only be solved
numerically, with the aid of either a digital or an analogue
computer., Howeveb, if the speed can be assumed to remain
constant the differential equations are obtained in a linear

form, so that an analytical solution becomes possible.

One way in which the differential equations of the motor
can be derived is by using the method of instantaneous
symmetrical component analysis, advocated in 2~phase form by
Lyonz, and thereby deriving expressions for the transient
currents in terms of the roots of the characteristic equation
associated with these equations, However an alternative approach,
which has been used far more widely than the method cf instant-
aneous symmetrical components, is to form the differential
‘equations of a 2;phase (d,q) stationary axis model by deriving
these from the original 3-phase model of the machine using the
transformations of Stanleyl. Many recent investigations have
adopted this method of appreoach, although it must be realised
that since the two sets of equations describe the same physical
situation they are not independent, and that the d,q equations
can be simply converted into instantaneous symmetrical components
by an appropriate transformation. In this chapter the machine's

equations in d,q form are developed.
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On the basis of the assumptions of the previous section,
the idealised model of the induction motor shown in Figure
2.1(a) may be formed. With upper-case letters referring to
stator qéantities, and lower-case letters to rotor quantities,

the electrical equations of this model are:

’-VA- '_ RA+LA D DMAB DMAC DMAa DMAb DMAC 1 _ :'I.AW
B | PMpa Rg*tlp D DMy DMya DMy, DMpe iy
vC DMCA DMCB RC+LC D DMCa DMCb DMCC_ iC
Va — DMaA DgaB | DMaC Ra+La D DMaB DMac ia |
vb | DMﬁA DMbB lDMbC DMba- Rb+Lb D_ DMbc ib
. {Vcd | DMcA DMcB DMcC DMca DMcb Rc+Lc ? L icJ

in which the rotor quantities are assumed to be referred to the

same number of turns as the stator quantities.

Equation 2.1 can be rewritten as:

(vl = [2][i]

where [z] is the impedance matrix of the machine, and [v] and {i]

are column matrices of the machine voltages and currents respectively.
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From assumption (iv) above, it follows that for the constant

stator and rotor mutual inductances

-

_ ~ - _ _ - D o 2T
Map = Mpa = Mpe = Mcp = Mep T Mac = M Cos 3
M, = - =M, =M =M =M Cos 2"

ab Mba - Mbc cb ca ac 3

and for the cosinusoidally variable stator to rotor mutual

inductances
Maa = Mpp = Moo " Mgy = Myp = Mo =M Cos ©
M = - - - - = % _Zm
Mab = Mpe " Mea = Mpa T Mep = Mag M Cos (6 -3
M =M =M_ =Mc. =M _ =M _=MCos (0 - an
Ac Ba Cb A aB bC _ 3

e
where M 1is the mutual inductance between a stator winding
and a rotor winding when their magnetic axes coincide. The self
inductance of a winding is the sum of the mutual inductance and

- the leakage inductance, i.e. for a stator phase

and for a rotor phase

L =L, =L =M+ 2
a b c r
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where Rs and Er are the leakage inductances of the stator
and rotor phase windings respectively. Equations 2,1 are
differential equations with some coefficients which depend
on the anéle 6. That 1is they are non-linear differentiatl
equations, so that a direct analytical solution is therefore
impossible even when the speed is considered constant. To
facilitate an analytical solution, it is necessary initially
to reduce the six equations of 2.1 to four equations, whose
coefficients are independent of 8. This is achieved firstly
by obtaining the equations of an equivalent 2-phase machine,
and then by reducing these to the equations of an equivalent

stationary-axis model.

2,2 Transformation frem 3-phase to 2-phase Equations

The transformation which relates the currents of the 2-
phase machine shown in Figure 2.1(b) to those of the 3-phase

.currents of the original machine is

[ig,n) = (€] [ipy]

where
r T ro. 1
1A . 1us
1 i
B Vs . Cs. 0
iC 0
[i ] = R ] = , [€] =
3ph i 2ph 5 0 o
a ur
1b 1vr
i 0
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and
1 0 0
-~ Lo 2 -/3 /3
ERERS I T 0
-3 -3
5 7 0

to maintain invariance of power during the transformation.
Zero—-sequence components of current cannot appear in the matrix
for [i2ph]’ and it therefore follows that the Z-phase model
cannot represent a 3~phase machine in which a neutral current
is flowing. The condition of power invariance requires also

that

(apnd = 1€) Dvgpy]

so that the original impedance matrix of Equation 2,1 is trans-

formed to a new impedance matrix [22ph]’ by

[Zyp] = e dIZI0C]

where [Ct] is the transpose of [C]. Applying the above

transformation teo Equation 2.1, we obtain
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v R 4L D 0] " MD CosB MD Sinb i
us s s us
v 0 R+ D -MD Sinf MD CosB i
Vs s s vs
v | 7| MD Cos6 -MD SinB R 4L D O i ees 2.2
ur r T ur
v MD Sin® MD CosB 0 R+L D i
L vr, . ror | | v
where
M= é ﬁ R = R = = R
2 s A RB C
Ls =M gs Rr = Ra = Rb - Rc

2.3 Transformation from 2-phase Rotating to Stationary Axes

It is clear that in Equation 2.2 some of the elements of the
.impedance matrix are still functions of the displacdment angle 8,
and an analytical solution of these equations still remains
difficult. To overcome this, these equations now are transformed
to those of the equivalent statienary axis or d,q model of the
- machine shown in Figure 2,1(c). If the transformation matrix

from 2-phase rotating axes to d-q stationary axes is [C™"], then

liyy) = 1€ [ig]

where, again to maintain power iuvariance during the transfor-

mation,
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lggd = (6571 [v,,]

The currents and voltages of the d-q model are given by

lsd vsd .
i v
[i. 1= | %9 and [v.] =] 54
dq i dg v
rd rd
i ' v '
rq r%

and the impedance matrix of the d~q model is

(2] = LC10z, ] (€]

qu

The transformation matrix between the currents of the 2-phase

and the d-q machine models is, from Figures 2.1(b) and 2.1(c),

[c*]

which enables the electrical equations of the d-q model to be

developed as

.- -

vsd
v
59 -

vrd

v
rq‘J

r

0

Rs+LS D
o

MD

0
0
CosB

Sing

0
0

~8inf

CosB
J

o} MD
R +L D 0
s s
M R+L D
r r
MD -L 8
X

MD
L 8
r

R +L_ D
T r

sd
59
rd

i
rq

.2

.3
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which is the basis on which many studies of induction motor

10-14,17 The most notable

transients have been conducted.
feature of Equation 2,3 is that the elements of the impedance

matrix are now all independent of O, which enables an analytical

solution to be obtained when the speed is considerzsd constant,

2.4 General Electrical Equations of a Group of Induction Motors

Figure 2.2 shows a group of n induction motors connected
in parallel to a supply of zero impedance through a common
switch S which is assumed ideal, that is its contacts open and

close simultancously and they are capable of interrupting instan-—

taneously whatever current is being carried.

The mathematical model which represents the group of motors,
from which the transient behaviour of the individual'machines
can be investigated, is derived in this section from the d-q
axis equations for a single machine developed in the previous
section, |

When the equations for all the motors of the group are
- referred to the same set of stationary axes, application of

Equation 2,3 to the first motor of the group gives the cquations

for this motor as:

r . - ar
Vo4 R 4L D O M, D 0
1 51 %1
v 0 R 4L D 0 M,D
Sql - Sl S]. .
0 M.D M. 8 R +4L D L
1 11 r1 rl r1 1

0 M. 8 M.D - @ R +L D
i ] I 1.1 1 rl 1 rl r1 J i

sd
sq1
rd

rql

e 2.4
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.where the additional subscript 1 is used to indicate the
parameters and conditions of this motor. We may notice

that in squirrel-cage rotor v and v are necessarily
_ rd1_ rq,

zero, since the rotor is short-circuited, and in a wound-
rotor machine they will also normally be zero., TFor the
second motor, the differential equations referred to the

same reference frame as the first motor are:

_ 4 . “r -
v R +L D 0 M,D ) 1
sd2 Sy S, 2 sd2
sq 0 Rs +LS D 0 M2D lsq
2 = 2 2 2l .25
0 M,D i, B R+ D L_ 6 i
2 2 72 T, r, Ty rd2
0 -M, 6 M.D -L_ & R +L_ D|!| i
] | 3 2 72 2 ry, o T, T, 11 rq2J
where the additional subseript 2 indicates the parameters and
_conditions of this motor. The equations of any motor of the group
can thus clearly be written in the same general form, so that for
the mth motor
v R +L D 0 M D 0 i W
sd s s m sd
™ m m m
v 0 R +L D O MD i
sq s, s m sq
m m m m
= ] . 2.6
0 M D M 6 R_ +L L_© i
m m T r r rd
m m m m m
0 -M 6 M D -L_ ® R_+L_ D|} i
m m m T T r rq
i 1L m m mom | m |
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Since the motors are comnnected to the saﬁe power
supply, the first and second terms in the voltage matrix
of Equations 2.4, 2.5 and 2.6 are the d-q components of
the supply voltage i.e.

v =y =y S tiee. =V = iiies =V
sd sd sd

and

v = = F o seres =V = s eeas

v
sq1 5q, sq3 5q 5q

m n

On collecting the equations of the group into one matrix
the general electrical differential equations for the n-motor
system become as given in Equation 2.7, in which there is a

total of 4n separate equations.

Equation 2.7 can be rewritten in an alternative form
by considering the loops formed by the stator circuits of
adjacent machines of the group. Thus, in Equation 2.8, the
first four roﬁs are the first four rows of Equétion 2.7, but
the first two rows of the second group of four are obtained
by subtracting the fifth and sixth rows from the first and

second rows of Equation 2.7. In each succeeding group of

four rows, the first two are formed by subtracting the first

pair of rows in the corresponding group of Equation 2.7 from
the first pair in the group immediately above. The resulting

matrix equation, (2.8), still contain 4n independent equations,
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but it has only one pair of voltage terms on the left-hand
side. However, it will be noticed that various additional

submatrices are introduced into the impedance matrix.

Equations 2.7 and 2.8 both provide a full electrical
description for the group of motors. Since the guantities
in the impedance matrix are all real, a solution on a
digital computer is possible for either set of equations, -
For this purpose beth Equation 2.7 and Equation 2.8 may be

rewritten,
n -
[vl = [R][i] + [L][Di] + kzl 8, [6,1[i] ceee. 2.9

where the matrices [R], [L] and [Gk] are formed respectively

from the resistance terms, the coefficients of D, and the

coefficients of ek in the overall impedance matrix,

2.5 Electromagnetic Torque

When the eléctrical differential equations of a motor
have been obtained, as in Equation 2.3, the electromagnetic

torque developed by the motor is given by17

)
1

p [i 1[6][i]

H]

P M(11‘d 1sq - qu lsd)
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where p 1s the number of pairs of poles, [i] is the
current matrix of Equation 2.3, [i ] is the tradspose of
[1] and IG] is the matrix forméd from the coefficients of
& in the?impedance matrix. Thus, the eiectromagnetic
torque developed by the mth motor of the n motor group
is

T = b [i ]G, 1[i]

where tGm] is formed only from the coefficients of ém?
Since many of the currents in [i] and [it] do not flow
in the mth motor they obviously do not contribute to the
torque developed by this motor, which can thercfore be

written in the much simﬁler form

Tem_= Po M clrdm lsqm " lsdm qum) reeen 20

2,6  General Mechanical Equations

Underlying Equation 2.10 is the assumption that the
rotor core may be represented as a rigid body with no
flexibiliity. In such a casec all pointe on a given radius
always retain the same relative angular position, and there

is no twist between the two ends of the core.

Each motor of the group will normally be coupled to

a mechanical load inertia through a shaft, which may be




flexible. The electromagnetic torque developed by the mth
motor of the group is equal to the sum of the opposing
torques due to acceleration of the motor inertia and

¢
to windaée and friction losses, together with any tor-
sional torque arising from the distortioun of the flexible

shaft. Tor the m th motor the torque balance can be stated

mathematically as,

T =J D*6 +T
m m

om + km (em - eﬂm) cesee 2,11

fm

where Jm is the rotor inertia of this motor, Tfm is the
combined windage and friction torque as a function of speed,

and Bm and elm are, respectively, the angular position of the

rotor and the load.

The torsional torque transmitted through the shaft is

equal to the sum of the accelerating torque of the load,

2 A .
JRm D Gm, the frlctl?n and windage torques, Tflm’ and the
torque applied at the load Toye That is
2
- = .. 2,12
km (em elm) Tme * Jﬂm D elm * TEm Tt 2.1

where sz is the moment of inertia of the coupled load.

On combining Equations 2.11 and 2.12 we obtain

D26 -5, ) = B _fm_Im g )--lir—“(e - 9,)
m £m Jm Jm Jm m £m Jlm m £m
T T
-—:f—”’—%# crv.. 2.13
Lm fm
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Since the torque transmitted through the shaft is given

by

: Ttm = km ((%)m - emg) P I

it follows that

2 _ = n2 tm .
D (em eim) D k veess 2,15
m
and therefore that
1 D2 T = &M _ Tfm + Teom + Tﬁm _ Ttm _ Tem
k tm J J J J J J
m m m 2m Lm m 2m

If there is no load torque applied at the coupled inertia,

Tlm is zero, and we obtain

—5 Tth .. 2,16

If there is no coupled inertia, the corresponding reduced form .

of Equation 2.16 is obtained by putting (Gm - egm) in Equation

2.11 to zero, so that

T =J D*6 + T
m m

em fm

To obtain the variation in the motor speed during traunsient
condition, it is necessary to express the acceleration in the

form
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2 _ T tm )
D* 06 = T ceaen 2,17

and then to integrate this equation. Equation 2.17 is
¢

obtained from Equations 2,11 and 2.14, and in the case of

no coupled inertia the acceleration becomes

2 _ Tem - I‘fm
D B = ———— vesss 2,18
m Jm

2,7 Equations During Disconnection

When a group of induction motors working in the steady
state condition is disconnected from the supply, the currents
and fluxes in the machines do not fall instantaneously to zero,
but rather decay at a rate depending on the parameters of all
the connected machines. The interaction between the machines
during the time of disconnection is an extremely important
factor in determining the behaviour of the machines when they

are subsequently reconnected to either the same or a different
supply.
During disconnection there is no voltage applied to the

machine terminals. The summation of the stator currents of

the group is therefore zero, or using Figure 2.2,

i + i + i F oL.... + 1 = 0 vaess 2.19
sd
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and

ce-e. 2,20

On replacing the first two rows of Equation 2.8 by Equations
2.19 and 2.20, we obtain Equation 2.21 from which the
behaviour of the group during disconnection can be determined.
Although Equation 2.21 has 4n equations in 4n unknowns, the
constraints of Equations 2,19 and 2.20 enable it to be

reduced to (4n — 2) equations in (4n - 2) unknowns, This is,
however, a very tedious proces; to perform in the general case,

although it will be carried out later when groups of two and

three machines are investigated.

Equaﬁion 2.21 provides a full electrical description
for the group of motors during disconnection. Since.the
quantities in the impedance matrix afe all real, a solution
on a digital computer i1s possible. For this purpose Fquation

2.21 may be rewritten,
n
[0 = (Rlyge 8]+ (g, 5]+ 16, (6]0] ... 2.22

where the matrices [R]dis’ L] are formed

and [Gk]dis

respectively from the resistance terms, the coefficients of

dis

D, and the coefficients of &, in the overall impedance matrix.

k
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2.7.1 Electromagnetic torques

During the time in which the currents of the machines
are decaying, each stator and rotor will produce an mwmf
and there will be a resultant flux in the air-gap of each
machine. The interaction between the currents of each
machine will result in the production of an electromagnetic

torque, which for the m th motor of the group is

1l

om = Py i JIG 1] cenes 2,23

where [it] is the transpose of the current matrix [i] of

the machines during disconnection.

2.7.2 Analytical solution of the current equations

The cémponents of the motor currents expressed in d-q
form in Equation 2.21 can be transformed into their corres-—
ponding positive and negative sequence instantaneous
symmetrical components. By following this approach, the
number of equations required to define the conditions of the
group during disconnection is therefore reduced to one half
the number required when the equations are in d-q form, i.e.
to (2n - 1} equations. When the d,q equations are so trans-
formed, there is no change in the number of equations_which

are produced. However, since the two sequence components are

merely complex conjugates, the negative-cequence components
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add no extra information to that provided by the positive-
sequence component, and only the positive-sequence set of
equations need be considered. However, an analytical
solution:of these equations still remains possible only if
we assume that the speeds of the motors during disconnection
remain constant, when the non-linear differential equations

of the system become linear.

The relationships between the instantaneous positive-
sequence component of a voltage or a current, and the

corresponding d—q components; are52

v, t+tiv

vy = 84 " sq eerl 2.24
SP v 2

i6 v .+t ]iv

e = _rd - rq Cuu.. 2.95
TP v 2

i+ 3 i

i = -S4 7 'sq ceer. 2.26
SP v 2

. i+ 31 5
: eJG . _xd rq ceves 2,27
P v 2

Since the actual values of the voltage and current are given
by 2/v¥3 times the real part of their positive-sequence com-
ponents, it follows from the above equations that the method
of instantaneous symmetrical components combines into one

operation the transformation from 3-phase instantaneous values
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to 2-phase rotating axis values, with the transformation

from 2-phase rotating axis values to 2Z-phase stationary

axis wvalues.

Substitution of Equations 2,23 to 2.26 into Equation

2,21, which represents the

general equations of the group

of motors during disconnection, provides the positive-

sequence component of the system equations. It is obvious

that since all the stator windings are conmnected in parallel,

that

and that

Lyon2 has shown that

the stator of an induction

= + 7
v (RS Ls D) 1Sp

sp

and for the rotor

0=M (D - 3 8) isp+[Rr+Lr (D—jé)](irpej)

sreasarese V

ceereeee.. i =0 ... 2.28

the positive-sequence equation for

motor 1is

. i0
+ MD (1rp e’ ")

16
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It therefore follows that the differential equations for
the loops formed by the first and second stators, the
second and third stators, down to the {(n-1)th and n th

stators are given by

jb
. . 1. .
[(R_+L D)i + M. D(4 e Y] - [(R_+L D)i + M.D(i 1
5y Sy sp1 1 Py S, 8y sP, 2 rp,
00 6
[(R+L D)i + M_D(i e 3] - [(R. 4L D)3 + M.D(i )
S, S, sp, 2 rp, S4 53 5P, 3 rp3
J.en-l
[(R + L D) i + M -1 D (i e yi -
n-1 Sn-1 SPh-1 n TPp-1
. . jen
[(RS + LS D) 1Sp + Mn D (1rp e J1=0
n n n n

Similarly, the differential equations for the rotor ecirecuits

of the machines of the group are given by:

: ' i@
. . iy . 1
M. (D - 36.) i + [R. +L (D -36.)] (i e Yy =0
1 1 Py ry ry 1 Py
, _ 8,
M (D - jO,) i +[R+L_(D=-jo,)] e 7)) =0
2 2 5P, r, 2 2 rp,
- 4 . jen
M (D - j6 ) i, * [R. +L_ (D-_]Bn)] (1rp e ) =0



-35-

After taking Laplace transforms of the stator
differential equations, together with Laplace
of Equation 2.27, and performing a great deal

manipulation, we obtain the Laplace transform

current of the m th motor of the group during

and rotor
transform

of algebraic
of the stator

disconnection

in the form

2n-2 2n-3 2n-4
. k S + k S + k S +...+ kK(2n-2m
L) = Om L 2 .. 2.29
2n-1 2n=2 2n-3
bOm S + b1m S + b2 S +...+ b(2n-1)m
where kOm’ klm’ .+.. and bOm’ blm etc., are constants determined

by the speeds and the inductance and resistance parameters of
the machines. The total set of equations defining the group

of motors contains 2n~1 independent currents, and the denom-—
inator of Equation 2.29 is therefore a polynomial in § of order
2n-1, In the solution of a set of linear equations of this form,

the order of the numerator is one less that of the denominator,

“that is 2n-2 in this case.

When all the machines' parameters and speeds, and there-
fore all the coefficients of the denominator of Equation 2.28
are known, this can be broken into (2n-1) factors, using a
subroutine normally available in a computer library. The com—

puter available at Loughborough 1s an ICL (1904 A), with a

subroutine able to solve a polynomial of the fortieth order.
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If the roots of the denominatoer are Al’ A.s A

2’ 3’
Equation 2.29 can be rewritten as
.
2n~2 2n-3 2n-4
a ] +a S + a s +

«e. *t 2 m
L(i ) = Om 1lm 2m (2n-2)

R

2n-1°

sSpm _ _ _
(s - A)(s - A (s - A,

e

k

where a = — a = _1_:5 etc.
Om ’ 1m b ?

1m

g

) ISR (s - A

2n-1)

LR Y

Using the inverse-integral method, the inverse Laplace trans-

form of a set of equations similar to Equation 2.30 will give

the corresponding time domain expressions for

i

i
spy’ 8Py

etc.

Since the negative-sequence component is the conjugate of .

the positive-sequence component, the actual stator phase

2,30

currents then follow from 2/v3 the real part of these expressions

as
At ALt A t
. 2 1 2 - 2n-1", .
1 ="""'Re[A e +A e +o-coo+A - e ]
8y /3 11 12 1(2n~1) ;
At At A t
. 1 2 2n-1
i = Re [A . e + A e * ieeee T A _1y © ]
s, /3 21 22 2(2n-1)
At ALt A t
is=-—2-Re[A1e1+A2e2' +.....+An(2_1)e2n1)]
n V3 n n : n
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and for the rotors

.2 (A,-6))e (=0 (gp-179p0t
i = = Re [B11 e * B, e + .. * By 20-1)
T3 (2n
2 A.-8.)t A —-0.)t A -0,
i o= Re [B e( 179 ' B (A,=8,y) . - Pon-17920¢
2 V3 21 22 - T ot 2(2n-1)
2 A -8 pR: -
tr T Re [B e( 1 n)t + B e( 2 e + B e(AZ -1 n)t
n Y3 nl n2 -~ 0t n{2n-1)

where A _, . and B B., etc. are functions of the

11’ A2 11° B2

machine speeds and parameters.,

2.7.3 Analytical derivation of electromagnetic torque

In instantaneous symmetrical component form, the electro-—

magnetic torque developed by the m th motor is
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where the asterisk denotes the conjugate of the terms
within the brackets. The torque developed is a motoring
or a genérating torque, depending on whether the sign of

NI
. m . . _ .
(i e ) ] 1is respectively positive or negative.

I [1
spm " rpm

m

With the results of the stator and rotor currents known in
analytical form from the previous section, Equation 2.3l
enables an analytical result for the electromagnetic torque

to be developed.

2.7 4 Derivation of the terminal voltage

The positive-sequence component of the common voltage

across the terminals of the stators during disconnection is
= + D) i + i cews 2.32
v (RS L ) 1Sp M, D (1 e ) 2.3

and the first phase of the stator voltage is obtained from

2
= __R
) v, " e (vsp)

s§¢ that with the expressions of the stator and rotor currents

known:, an expression for VA can be developed.

The analysis outlined in the previous sections is

obviously not amenable to a general solution,iand more
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detailed considerations are derived later, when the two

machine situation is investigated.

P

2.8 Reswitching Condition

The general electrical and mechaniecal equations for
the group of motors on reswitching are precisely the same
as those given for switching conditions (Sections 2.4 and
2.6), except that the left-hand side of the electrical
equations (i.e, the voltage matrix) is determined according
to the type of the supply to which the machines are re-

swltched,
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CHAPTER 3

MODELLING QF A GROUP OF INDUCTION MOTGRS
WITH WEAK SUPPLY

In %hapter 2, a model of a group of induction motors
was developed when tﬁe source was considered as infinite, so
that the voltage applied to the motor terminals remained
constant under all cenditiens. If, however, the source has
a significant internal impedance, or if the machines are
started by a reduced voltage technique in which additional
impedance is added to the source, the previous analysis of the

performance of the motors is clearly no longer directly valid.

The starting current of an induction motor is typically,
from 5 to 8 times its full-load current, and the starting of
a group of large or even medium-size motors may draw from the
source a.current which is not only excessive but is also at
a very low power factor. This current will reduce the supply
voltage by aﬁ amount which depends on the short-circuit
capacity of the network feeding the motors, while this capacity
depends, in turn, on the impedance of the circuit elements
forming the network. Normally, induction motors are operated
from power supplieé with a rated voltage which is less than the
distribution volt;ge, and which is often referred to as the
consumer veltage, To reduce the distribution veltage to the
rated voltage of the motors step-down transformers are required.
The impedance of these and the connecting cables, together with
the starting currents drawn by the motors, will determine the

magnitude of the depression in the consumer voltage. The reducticn
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in the supply voltage will not only affect the motors to
be started, but will also affect other motors running on

the same supply. Since the torque of a motor is proportional

*
H

to the sduafe cf the terminal voltage, the torque developed
by a running motor will be reduced during the period when
other motors are started, and the running motor will slow
down and demand more current from the supply. In an extreme
case, the motor torque may be reduced by such an amount that
it is no longer capable of driving the lcad, when both the

motor and its load will be brought rapidly to rest.

Te overcome the undesifable reduction in the source
voltage which may occur when a group of induction motors isg
started, the starting current is reduced by means of a
reduced-voltage starting arrangement, e.g. series resistors
or reactors, a star—-delta switch or an auto transformer. In
this situatiQn, the supply to the machines will stili be the
previous non-stiff supply, with the starting arrangement
introducing an additional series impedance. Thus, although the
terminal voltage of the motors will still be very substantially
reducéd at starting, that fed to other consumers from the same

supply will not be so much affected.

There is, however, a limitation on the use of reduced
voltage starters, since the torque developed by the motor will
correspondingly be decreased. If the load torque exceeds the
motor torque at any point below full-load speed, the motors will
fail to accelerate beyond this speed, and under this condition

the motor will rapidly overheat,
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3.1 General Electrical Equaticns

The mathematical model which represents a group of
inductiog motors connected to a common weak supply can be

formulated by two different approaches. The first of these
is through the use of the d,q machine equations coupled with
the electrical eduations of the supply in phase quantities
rather than in d,q values. By regarding the equations of
the machines and the supply as separate but linked through

the voltage at the motor terminals, the total number of

equations required is reduced by three.

The second approach is to consider the machines and
the supply as a complete system, and from a study of the
system to obtain a single set of d,q equations. These two
approaches are explained and compared in the.following ‘
sections, although a selection of the mést appropriate method
cannot be made until after their computer solution has been
discussed.

x

- 3.1.1 General electrical equation with supply equations

in phase values

In Equations 2.7 and 2.8 of Chapter 2, the general
electrical equations were presented for a group of induction
motors fed from a stiff supply. When the supply impedancg
is taken into consideration then, in addition to Equation 2.7,

we require the electrical differential equations of the

supply.
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The instantaneous values of the 3-phase voltages of

the supply can be represented by:

va=w?sin (wt + &) 3.1
v. =¥ sin (ut - 2= + §) 3.2
b 3 :
v = G Sin (wt - am + &) 3.3
c 3 '

where V is the peak voltage and § is the instant on the
voltage wave at which the supply is switched to the machines.
Further, if the supply resistance and inductance are R' and

L' respectively, we obtain for the instantaneous values of the

voltages fed to the motors:

v =v - (R" +L'D)1i , " 3.4
ga a a
= - ' 1 .
vgb vb (R' + L' D) 1b 3.5
v =v = (R" +L'D) i 3.6 ?*
ge c c

where v. , v .. v are the instantaneous values of the voltages
ga gb ge

applied on the machines, and

i =1 + i L PP S |
a al a2 an

o

i, =1 + 1 + tiieae. +
bn

et

i =1 + 1 + oiiiaa.. +
c cl c2 cn



b=

where i ., i,,, 1 . are the instantaneous currents of the
al’ "bl® "¢l .
irst motor, i i i those of the second motor, and so
firs tor, a2’ b27 o2 - s d
on. The d-q components of the voltages at the terminals of
¢

the motors are,

2
vsdg = /<; (vga 0.5 vgb - 0.5 vgc) 3.7
_ /I . A 3
vsqg = /(; ( 5 vgb 5 Vgc) 3.8
and on replacing vsd and vSq in Equation 2.7 by Vsdg and

vsqg from these equations, the result obtained is Equation 3.9,
which together with Equations 3.1 to 3.6 then fully models

the group with the supply impedance taken into account,

3.1.2 General electrical equations of the machines

and supply in d-q values

Since the machines are all referred to a stationary frame
of axes (d~q), and the supply impedance is clearly stationary
with respect to that frame, the d,q components of the supply :

voltages are

<
[

1 1 : .
sd .(R + L' D) i +(Rs +LSD)1S

+ MD ({1 ) 3.10
1 1 1 rd

sd 1 1

d

<
]

LIS L L4 - + . .
(R L' D) 1Sq + (RS + LS D) lsq MlD (1r ) 3.11

sq 1 1 1 31



sdg

v
sqB

&dg

&dg

sdg

v
3Cg

4]
Rs ., D
1 1
¥ e,
MXD =L
~

R 4L D 0 MDD )
5 5
2 2
0 R,+L, D O ¥.D
2 2
) M 0 R +L_ D L 8
z r r r
2 2 2
Y D -L & R +L D
2 2 r r =
2 2 2
4
R+ D O D 0
0 R 4L D O MDD
3 sSn h
¥_D v & R +L DL B8
. oo X In TInon
, _xn en Mnu -L:n ¢ R~ fLrnéJ

isdn-;
isqn-:
lrdn—;
irqn—;

i
sdn

_g’.y_

«oa 3
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where

=
H]
’-I
+
He
+
ol
+

+ i 3.12

i = i + i + i + oieeee. + 1 3.13

On using Equations 3.10 to 3.13 in Equation 2.8 we obtain
Equation 3,14, which are the general electrical equations
for the machines together with the supply in a compatible

d—q form.

3.2 Comparison Between the Two Approaches

As can be seen from a comparison of Equations 3.9 and

3.14, the two approaches by whicﬁ the general electrical

equations were derived have different advantages and dis-

advantages from an analytical point of view. We find that

although they have the same general form, irrespective of the

elements contained in the two impedance matricés, only Equation

3.14 is sufficient to provide a full solution. Equation 3.9 is
- mnot sufficient by itself, and when it is used Equations 3.4,

3.5 and 3.6 are alsc needed. Despite this apparent advantage

of Equation 3.14, the choice of which of the approaches to

adopt will depend on the relative time required for the computer

solution of the equations. This point will be discussed when

the cases of two and three motor groups are dealt with in Chapters

7 and 8.
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CHAPTER 4

COMPUTER PROGRAM ORGANIZATION

Figu;é 4.1 shows a flow chart of the computer program
developed for the numerical solution of the electrical and
mechanical equations of a group of induction motors, connected
either to a stiff or to a weak supply. The program can, in
principle, be generalized for any number of induction motors,
although the computing time required will naturally increase
as more motors are connected, and may eventually become

excessive.

'The numerical integration of the electrical and mechanical
aifferential equations of the system is based on a 4th-order
Runge-Kutta method (this and-other methods of numerical inte-
gration are discussed in Appendix A). Runge—-Kutta methods have
been extensively used in previous investigations of tﬂe dynanic
behavicur of both induction and synchronous machines, and their
Qalidiﬁ& and accuracy have been established in several different
studies; provided that the step length is properiy chosen, The
main adfantages of using the Runge-Kutta method are that it is
ﬁnherently self—stayging, which aids considerably the handling
of any discontinuities, (sucﬁ as disconnection and reswitching),
and that any adjustment of the step-length which may be required

is readily achieved.

The computer program commences by reading in the input data

which are
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i) matrices [R], [L], and [G], as defined in Equation 2.9
and obtained from the impedance matrix of Equation 2.7

for the case of a stiff-supply, or from either Equation
{

)

3.9 or Equation 3.14, when the supply is weak. 1In
addition, matrices [R]dis’ [L]dis and [G]dis , defined
by Equation 2.22, and obtained from the impedance matrix

of Equation 2.21, are also required.

(=N
=
-t

the initial values of the currents and speeds.

the mechanical parameters.

e
[
e

r

Generally speaking, the program structure.has three
main parts - starting, disconnection and reswitching. Each

part is dealt with in detail as follows.

4,1 'Starting Condition

If the motors are started while electrically inert the

~initial supply and rotor currents are all zero, whether the

motors are started from a stiff or from a weak supply.

.1f the motors are connected to a stiff supply, or if the
supply impedance is included in the impedance matrix, then the
initial values of the motor voltage is equal to the supply
voltage. If, however, the motors are connected to a weak supply,
then it is necessary to determine the initial vaiue of the motor

voltages.
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4,1.1 Initial values of motor voltages

Figure 4.2 shows the single~phase equivalent circuit of
the group{of motors at rest, with the stator and rotor resis-
tances ana leakage-reactances of each machine of the group are
assumed equal and the magnetizing currents are neglected.

From this figure we obtain
v = vg + (R'" + L' D)i C aeeas 4.1

where v and vg are the instantaneous values of the supply

and motor voltages respectively. Also,

_ + . _ .
vg (RS Rr )11 + (LS + Lr 2 Ml)Dl1 4.2
1 1 1 1
= (R + Rr )12 + (LS + Lr - 2 Mz)Dl2 4.3
2 2 2 2
= (RS + Rr )13 + (LS + Lr - 2 Ma)Dl3 4.4
3 3 3 3
= (Rs + Rr )1n + (Ls + Lr -2 hn)Dln 4.5
n n n n
Since at t =0, i =1 =1 = .,... =1_ =0, it follows that
- 2 3 n
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L + L -2M
5 r, 1
(bi ) = (Di ) cenn 4.6
) 1 0 LS +LI' ZMI -1 0
| 1
f + -2M
Lsl.. _Lr1 1
(pi ) = — (Di ) ceens 4.7
P LS +Lr ZMZ 1o
2 2
LSI+LI'1-2M1
(pi) = (pi ) veuns 4.8
30 LS +Lr 2M3 10
3 3
L + L -2 M
s . T
(i) =-—1 — (pi ) 4.9
noe L ¢ Lr 2 Mn 170
n n
On adding Equations 4.5 to 4.9 we obtain,
L +L -2M L +L -2M
. 5. r. I R s, T, 1. ..
(Dl)o=[L oy -ZMI +L T -2M2+ +
s r s T
1 1 2 2
L +L_ ~-2M,
5. T
Yoo, —zm | @)
s T n
n n
,‘... 4'10

where Di 1is the rate-of-change of the supply current, and

the suffix (o) indicates values at the instant of switching.
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From Equation 4.1C we obtain,

1

g'(Dll)b = if'(Di)o ceeae 4.11
G
where
L + L -2 M L + L -2 M

s r, e A P 1
Ke=l*y——=1t —2n 't +1_ -2w * -

s r 1 s r 2

1 1 2 2

On substituting Equation 4.11 in Equation 4.2, we obtain the

voltage across the motors as:

v = (i) 4.12

and from Equation 4.1 we obtain the supply voltage as,

L +L _2M1

,,Si.. _rl .

v =L (Di) + (Di),
L K.

so that

L‘- + L +L —2M K *an e
@, T DK

(Di) = 4,13



Thus if the value of the supply voltage at the instant of
switching is known, the voltage across the motors at this

instant is

v =vl 1- ' ' — 4.14

4.1.2 'Program description of starting condition

After obtaining the initial conditions, the procedure

followed by the program is as follows:

i) a subroutine is used to invert the inductance matrix
L.

ii) the applied voltages are transformed to their d-q

components.

iii) a subroutine is used to compute the multiplication of

[R][i], [6][i] and [i ][G}[i].

iv) the rates—of-change of the currents are computed from

.
1 = [L]7 {[v] - [RI[i] - ) & 6000
k=

v) the rates-of-change of the currents are numerically

integrated to obtain the currents.

vi) the electromagnetic torque for the mth motor is computed

from,



vii)

viii)

ix)
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T =p M (i i - i i ) beane 4.15
m m rdm sq sdm rqm

the; variation of the speed of any motor is taken into
account using the mechanical equation of the machine,

and the values of the speeds are obtained by numerically

integrating the acceleration, given by

p2 8 = Tem Tfm Ttm e 4.16
m

where Ttm is put to zero if the motor is unloaded.

if the 3-phase rotor currents are required, the d,q
currents have to be transformed to rotating axes, For
this transformation the angular position of the rotor,
8, is required. To obtain this, the speed is numerically

integrated from

]
D

DB 4.17

LI B ]
m m

the computed values of the d-gq currents, speeds and the
angular position of the rotors at the end of the first
step are taken as the initial values for the next
intégration step. This process is repeated until the

next switching operation (i.e. disconnection) occurs.
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ii)

iii)

iv)

“vi)

vii)

viii)
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" ‘Disconnection Condition

The initial values of the speeds and the angular-position
of the rotors are taken as those immediately before

disconnection.

The initial values of the currents are obtained by
applying the constant-flux-linkage theorem to each

machine individually (see next section).

Matrices [R]dis’ [L]dis and [G]dis are then called.

The inductance matrix [L]dis is inverted and the rates-

of-change of the currents are obtained from,

Il ~18

1
Di] = [L]™ 0 - [R],. i] -
pil = 0l {o- R, [i] )

b, 61
k k di

[i1 }
1 s )

The rates-of-change of the currents are numerically

integrated to obtain the currents,

The torque during disconnection is computed for each

motor from Equation 4.15.

‘The speeds of the motors are obtained by numerically

integrating Equation 4.16 for each motor.

The angular position of the rotors are obtalned by inte-

. grating Equation 4,17 for each motor.
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5.2,1 ‘Application of ¢onstant=flux—linkage theorem

On considering that the flux linkages of all the stator

and rotor:circuits remains the same, immediately before and

after disconnection, we obtain for the

the n machines

r (lrd )o * M1 (lsd ), = Lr
1 1 , 1
L i + M ] = I
p G ), * M G =1,
1 1
1
Lr (1rd )o * Mz (1sd )o - Lr
2 2 2
L i +M (i Y = L
r (1rq )0 2 (lsq /0 ;
2 2 2
L (i ) + M_ (i )
rn rdn 0 n sdn °
L. (i) +M_ (i_ )
- rn rqn 0 n Sqn o

n rotor circuits of
(lrd )1 + M1 (lsd )1
i 1 1
.o 4.18
i + M i
(1rq )1 1 (lSq )1
1 1 1
(1rd )1 + M2 (lsd )1
2 2 2
. 4.19
T (1rq )1 * Mz (1sq )1
2 2 ’ 2
= Lr (lrd )1 .M (lsd )1
n n n
4,20
= L (1 ) + M (1 )
L rqg, 1 54, 1

Equations 4.18, 4.19 and 4.20 apply to the first, the second and

the nth motor respectively, and the suffices o and 1 denote the

values immediately before and after disconnection, giving a total

of 2n equations,

Because of the relationships-
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imposed on the stator curreats, the 4n unknowns of Equations
4.18 to 4.20 are reduced to 4n-2 unknowns overall. Since we
have 2n equations for the rotor circuits, a further (2n-2)
equations are required for the stator circuits for a solution
to be possible. These equations are obtained by applying the
constant—-flux-linkage theorem to the stator circuits of the

first (n-1) machine. In d-q form this gives

Ls (lsd )o * Ml (lrd )o - Ls (1sd )+ Ml (1rd )
1 1 1 1 1 ]
eee  4.21
L, (1Sq )0+M1 (qu )0=§S (i )+M1 (1r)
1 1 1 1 1 1
Ls (1sd )o * M2 (lrd ), = Ls (1sd )t Mz (lrd )
2 2 2 2 2 2
eee 4,22
-Ls (1sq )0 + M (1rq )0 = LS (i )y + M2 (1r )
2 2 2 2 2
L. G +M (i, ) =L (., ) +M__( )
s, sd 1o o 1 rdn_1 0 5.1 Sdn~l 1 n-1 rdn 1!
LG ) G ) =L @ MG )
Sp-1 S9,3°0 n 1 rq 10 -1 59,91 n-1 “‘rq -1
. eee 4.23
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where the suffices o and 1 again denote the values immediately
before and after disconnection. Equations 4.21, 4.22 and 4.23
are derived for the stators of the first, the second and the
{(n-1)th motor respectively, and by this means we obtain the
additional 2(n-1) equations required for a complete definition
of the machines. The left-hand side of Equations 4.18 to 4.23
are all known from the values of the currenté computed at the
end of the starting period and the unkno%ns all contained in

the right-hand side.

*

The equations for the rotors can be rewritten in the

alternative form,

wrd' =L (1rd )1 + M1 (iSd )1 Cevee .4.24
1 1 1 1

qu = Lr (qu )1 + Ml (lsq )1 csees 4.25
1 1 1 1

wrd = Lr (1rd )l + M2 (1Sd )1 veera 4.26
2 2 2 2

v =L (i) +M ) an.. 4,27

rqz rz rqz 1 2 qu 1

Yy +M (i) Ceaea 4,28
sd

Yrqg =L (GG ) +M (G ) eueen 4.29
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!
and for the stators in the form

lpsd;,= Ls (lsd )1.+ Ml (1—rd )1 LI N . 4-30
; i 1 1
"’sq =L - (1sq )1 * M (11rq ), _ 4,31
1 1 1
Vg =Ly G ), v+ G 4.32
2 2 2 2
7 =L (i ) +M (i, ) ceves 4.33
qu 52 qu 1 2 fqz 1
P =1 (i ) +M_ (i T 434
sdn__1 sn__1 Sdn-l 1 n-1 rdn_l 1 ‘
Y =L (i Y+ M @ ) B 4.35
sqn-l *n-1 Sh n-1 rqn-—l !

where Pis the flux linkage for the specified winding immediately
before disconnection. Equations.4.24 to 4.35 can be combined

and expressed in matrix form as

(W] = [Lge] [i] e 4.36



where

(vl =

Y

sqn—{J

and

=59~

sd

5q
rd
i
rq
sd
i
5qQ
rd

rq

and the matrix [LCF] is formed from the coefficients of

i i
rdl’ rq

1

s ete,

i

sd

1

Equation 4.36 can be rewritten in the form

i
5q

1

H
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[i] = [L gl [v] , 4.37
so that on!computing the inverse of the matrix [LCF] and pre-—

1
multiplying [Y] by [LCF] we obtain the values of the initial

currents at the beginning of the disconnection interval,

4.5 Reswitching Condition

After reswitching, the matrices used at starting are
recalled, and the initial values of the currents, speeds and
angular positions of the rotors are those immediately before
the instant of reswitching. The voltage matrix is determined
by transforming the supply voltage to which the group is re-
connected into d,q components. If the group is restored to the
same supply the 3-phase voltage of the supply is transformed
into d-q components. If the machines are plugged the 3-phase
voltage_with reversed phase sequence is transformed to d,q system,
In star-connected machines this merely requires a reversal of the.
lagging phase of the Z-phaselvoltage so that this becomes the
leading phase; but in delta connected machines a phase shift in

I

T . . . -
= 1s required in addition to the reversal of

3

their phase-sequence (Figure 4,3). For star -delta starting a

‘both voltages of

phase shift of 7m/6 is required in addition to a reduction in the
magnitude of the applied voltage of 1//3 when the machines are
star-connected. The numerical solution then continues as described

in Section 4.1.2,
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CHAPTER 5

EXPERTMENTAL PROCEDURE

Experimental investigations to validate the theoretical
study and computer program of the previous chapters were per—
formed using the motors detailed in Table 1. The electrical
parameters of the machines were obtained from the results of
open-circuit and short-circuit tests, with the_uSual assumption
being made for each machine that the short-circuit impedances
of the rotor and stator are equal. he moments of inertia of
‘the rotors of the machines were estimated by measuring their
dimensions, and assuming a specific gravity of 7.8 in the well-

31 Standard deceleration

known formula for a cylindrical mass.
tests were used to determine the windage and friction torques
of the machines, the experimental results being recorded in

Figure 5.1. The curve obtained for each motor was then used:
to determine the friction and windage torques, by calculating

the deceleration at two points from the tangents of the curve

at these points and then using the torque balance equation
-JD6 = K +K (8/314.2)°

in which K1 and I(2 are the coefficients of the friction and
windage torques respectively and 0 is the speed. Since J is
already known, this procedure provides two equations in the two

unknowns Kl and Kz.
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To record the transient currents, a calibrzated current
shunt was included in series with one line of each motor.
The start}ng transients were obtéined by switching the motors
at rest t; the supply. When the supply is to be assumed weak
an 11,0 ohm resistance was connected in series with each line

of the supply.

The electrical and mechanical parameters of the machines

referred to, are shown in detail in Table I.

5.1 'Measurement of the Torque

The measurement of the torque of an induction motor can
be directly accomplished either by measuring the acceleration
of the rotor, or the reaction of this torque on the stator.
With losses assumed negligible, the acceleration is proportional
to the electromagnetic torque of the motor and several methods

-are available by which this can be accomplished.

If the motor is loaded and its acceleration is measured
then it is necessary to know the equation of motion of the rotating
system in order to determine the torque transmitted to the coupled
load and the acce;ération of this load. Alternatively, the torque
transmitted to the coupled load can be measured, although infor-
mation of the mechanical system dynamics is again needed. 1In
either the unloaded or loaded situation these measurements are
sufficient to assess the validity of the model proposed for the

motor and its load.
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5.1.1 Measuring the acceleration by a drag-=cup

generator

32,33,34 is a brushless

A drag-cup induction generator
device, wﬁich gives an output voltage directly dependent on
either the velocity or the acceleration of the motor. No
electfical noise due to slip rings and brushgear arises, and
the output signal is sufficiently large to be fed directly to
a recording device. The only problem which arises is that of
calibrating the output in terms of torque, aﬁd this is often

obtained by measuring the acceleration of the shaft caused by

a known weight falling freely under the action of gravity.

The drag-cup generator is normally used to measure
angular velocity. However, when an alternating excitation at
a fixed frequency is applied to one of the windings, the second
winding giveé an output of the same frequency, but with an |

amplitude proportional to the speed of its rotor. When it is

required to measure acceleration, excitation is produced by a

constant magnitude direct voltage. Rotation of the rotor then
ﬁroduces induced rotor emfs proportional to the speed, and because
. [
of the negligible rotor inductance the resultant flux is perpen-
dicular to the excitation mmf and links only the output winding.

Since_this flux varies directly with the speed, the emf induced

in the output winding is directly proportional to the acceleration,

Other methods of measuring torque are discussed in Appendix
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TABLE I

DATA FOR MACHINES INVESTIGATED

Machine Number I IT 111 v

Rated power, 0.75 1.5 2.25 5.6
kW

Full-load speed, 960 2760 1380 955

- rpm

Full-load 1line 3.1 3.9 9.0 11.9
current, A .

Stator connec— Delta Star Delta Delta
tion

Number of poles 6 2 4 6

Frequency, Hz 50 50 50 50

Line voltage, V 230 230 230 400

Full-load torque, 7.4 5 15.5 56
Nm

Rs"Rr’ Q 6.25 4.0 3.24 2.45

Ls’ Lr’ H 0.6 0.7216 0.36 0.437

M, H 0.57 0.7 0.33 0.42

J, kg-m® 0.055 0.0027 0.0195 0.102

Tf, Nm 1+0.8 0.08+0.509 0.5+0.4 0.06+1.2

n2 nz n2 nz
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CHAPTER 6

TRANSIENT BEHAVIOUR OF A SINGLE MACHINE

6.1  Starting Condition

As was shown in Equation 2.3 of Section 2.3, the electrical
differential equations of an induction motor, referred to

stationary d,g axes, are

Vg R+ 1D 0 MD 0 ig
v 0 R +LD 0 MD i
sq s s sq
0 MD M6 R+ LD L& 1l i
T r r rd
0 -Mb MD -L & R +LD}|i
X r rq
L L JL 7
..... 6.1

or, briefly

(v} = [RI[i] + [L](bi] + 0 [6][i] e 6.2

where
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_ 7 ~
R 0 Q 0 L 0 M 0
s S
0 R 0 0 0 L 0 M
S : s
[R] = ;. ’ [L] =
0 0 R 0 M 4] L 0
T r
0 0 0 R 0 M 0 L
T I'.I
0 0 0 0 vsd
0 0 0 0 v
. sq
[G] = s [v] = and
0] M 0 L 4]
- r
-M 0] ~L 4] 0
r

sd

sq_

[i]
rd

i
rq |

Equation 6.1 can be rewritten in 2-phase instantaneous
symmetrical component form, by using the relationships between
the d,q components and the corresponding posifive—sequence com-
ponents given in Equations 2.24 - 2,27, The results thereby

obtained are



[ ] i ] F q
v R +LD MD i
5p s s sp
ol ° : . L
- + -
rp © M(D - j©) R Lr(D j6) ip €
R ! ol ]
L B I ) 6-3
i L . -
) and (vr e” ') are respectively the positive-

where (i e
Ip P

sequence components of the roror current and voltage referred
to the stator,

Since the supply voltage is defined and vrp eje is equal
to zero, Equation 6.3 contains only two unknowns, compared with
the four unknowns of Equation 6.1. An analytical solution for
the machine currents therefore becomes more readily available,
although it can still only be obtained if the speed & is
considered to remain constant. Expressions for isp and irp eje
can be obtained, as shown in Appendix C, and expressions for
isd’ isq’ ird and irq subsequently derived by using Equations 2,24-
'2,27. Either directly or by using these expressions, the current
in the stator windings 1s obtained in the form

O, t

i=Asin (wt+¢)+B eI gin (Bt + $,) +C e 2 sin (Bt + ¢3)

S ee e 6-4

vhere A, B, C, ¢ , ¢2 and ¢ are all functions of the machine para-
1 3

meters and the switching conditions of the supply, while B , B, a
: 10 27

and a2 are functions of the machine parameters and the starting speed.
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The transient stator current is thus composed of a single
sinusoidal component, which is the steady-state current,

together with two exponentially decaying and oscillatory

, -
r

components of different frequencies. It can be seen from

Appendix C that

i.e., B <8 and B < 8
1 2

so that the rotor speed is always greater than the synchronous
speeds corresponding to B and 82. The stationary axis rotor
1

currents will have the same form as the currents in the stator.

An expression for the electromagnetic torque of the
machine may conveniently be obtained by substituting for the

d,q current,in

T=pM (i lsd) creas

rd iéq - irq 6.5
from which various torque compomnents will arise as a result of
interaction between the different components of the stator and
rotor cutrents. E#amination of the current expressions of
Appendix C, shows that the corresponding components of the currents
in the direct and quadrature axis windings of the stator and the
rotor, are /2 out of phase. This results in three rotating

magnetic mmf's being produced by the stator and three similar
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rotating mmf's by the rotor currents. One of each of these
sets of mmf's is the steady-state cﬁmponent, rotating with an
angular ve}ocity of w rad/s with respect to the stator. The
other two ﬁmf's of each set rotate with angular velocities of
Bl and Bz rad/s respectively, with respect to the stator, and
they also decay exponentially. The torque components produced
from the interaction of the stator and rotor currents may be

written as, (see the torque expression of Appendix C)

-2q; t
i) E e :
-2 aé t
ii) F e
-(oa1 + 0L2)t
iii) G e sin [(B. - B )t + ¢ ]
1 2 Y
- o, t
iv) He ~  sin [(w- B,)t + ¢5]
-a, t
v) Ne- sin [(w - 32)t + ¢s]

- vi) The steady-state component

where E, F, G, H, N, ¢u’ ¢s and ¢6 are all functions of the
machine parameters, the speed at connection and the magnitude of
" the supply voltage, although not of the instant at which the
supply is connected. Three of the forque components {1), (ii) and
(vi), are unidirectional, resulting from the intefaction of
stator and rotor mmf's of the same angular velocity. OCne of the
components, {(vi), is the steady-state torque resulting from the

interaction between stator and rotor mmf's rotating with w rad/s.
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The other two unidirectional components decay exponentially,

and result from the interaction of the stator and rotor mmf's
with synchtonous speeds corresponding to 81 and 82 respec-—
tively. Tﬁe other three components of the torque (iii), (iv)

and (v) are alternating and exponentially decaying. These
result from interaction between stator and rotor mmf's of
different angular frequencies, and their frequencies are
determined by the differences in the angular velocities of the
two fields involved. However, although there is a difference

in the number of components in the transient currents and torque,
the longest time constants are the same and the resultant trans—

ient current will decay after the same length of time as the

transient torque.

We may notice that, unlike the expressions for the trans-
ient currents, the components of the expression for the tranmsient
torque developed are independent of the switching angie §. This
is clearly to be expected, since the rotor and stator windings
are balanced and the torque developed depends on the amplitude
of the resultant flux produced by the combined stator and rotor

mmf's with the net rotor current.

6.2 ~ Disconnection Condition

When an induction motor operates in a steady-state condition,
the mmf produced by the three phases of the rotor rotates at
synchronous speed in space, and it lags the synchronously rotating

stator mmf by a fixed angle. If the motor is disconnected from
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the supply, and the stator currents are then assumed to fall
‘instantaneously to zero, the rotor mmf will now rotate with
the rotor and decay with the time constant of the rotor
circuit. fThe machine will thus act as a synchronous generator,
running below the synchronous speed corresponding to the supply
frquency, and with the decaying flux of the rotor taking the
place of the excitation. A 3-phase voltage of varying fre-
quency and amplitude will thus be generated in . thes stator, with

a magnitude decaying with the time constant of the rotor and a

frequency corresponding to the speed.

Since the stator currents are zero, Equation 6.1 reduces

during disconnection to

T vd 6.6

‘or, briefly

0] = Rl (i) + [L],;  [Di] + 0[6).. [i] ... 6.7

dis

where
Rr 0 Lr 8]
{R]dis = ? [L]dis =
o R 0 L
T T
0 Lr 1rd
[6],.. = » [1] =
dis L 0 i
T rq
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and the stator voltages are

= 6.8

If the speed O remains constant, Equations 6.6 Lecome linear
differential equations and they may be solved analytically for
ird and irq' It is shown in Appendix C how this may be used

to provide equations for the rotor currents and for the stator

voltage.

6.3 Reswitching Condition

During disconnection from the supply, the decaying rotor
mnf of the mptor will lag at an increasing rate behind the normal
‘steady-state position of the stator mmf. If the motor is re-
switched to the original supply, or to a different supply, a
transient torque will be developed. Since this torque will be
dependent on the magnitude of the rotor currents and the position
of the rotor at the time of reswitching, it clearly also depends
on the magnitude and phase of the stator voltage at this time.
For a given magnitude, the transient torque will be a maximum
when the supply voltage is about 180% out of phase with the

stator voltage.



~J2-

6.3.1 Electrical and mechanical equations

Equations 6.1 for the starting condition apply alsc to
the reswitching condition, although the initial values of the
rotor currents are, of course, no longer zero, but are as
provided by the conditions at the end of the disconnection
period. For the evaluation of the torque, Equation 6.5 is

again used.

The mechanical system equations of the machine given in

Section 2.4 obviously apply also in the present condition.

6.4 ‘Numerical Solution and Computer Program

The procedure followed in Chapter & for the numerical
solution of the electrical and mechanical equations of the group,
may also be followed in the solution of the electrical and
mechanical differential equations of a single machine. The
‘definition of matrices [R], [L] and [G] during starting and re-
switching are given in Section 6,1, The definition of matrices
[R]disg [L]dis and [G]dis during disconnection are given in
Section 6.2. For computation of the electromagnetic torque
Equation 6.5 1is used. If the motor is loaded, computation of the
speed is performed using Equation 2.17, together with the equation
for the transmitted torque (Equation 2.16), and if the motor is

unloaded Equation 2.18 1s used.

If the actual rotor currents are required the angular

position of the rotor is determined using Equation 4.17, and
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the currents subsequently cbtained from

i cos 8 sin 6 0 i

ra rd
3

i | = /%— cos (6 - 1311) sin(0 - 331‘-) 0 i

i cos (6 -.%g) sin(0 - %?) 0 0

ch

at a rotor position defined by the angle 8,

The computer program again consists of three parts - starting,
disconnection and reswitching, and the same procedure discussed in
detail in Chapter 4 is applied. The flow chart of the computer
program for a group of motors shown in Figure 4.1 applies also
for a single machine, and the listings of the computer program

for the single machine are given in Appendix D.

6.5 Transient Conditions in a Single Induction Motor

6.5.1 Connection condition

Using the data for each of the machines given in Table 1,
- the transient starting currents were computed, and comparisons
with the recorded values of the same Eurrents are shown in
Figures 6.1(a) - (d), with the instant of switching to the red-
to-yellow line voltage being indicated. From Figures 6.1 we see
that the degree of agreement is generally good for all the machines
investigated. The most notable feature of these curves is that

for the first few cycles the experimental result is somewhat greater
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than the predicted result. The major reason for this is that
the high currents drawn from the supply following connection
of the machines are sufficient to cause gsaturation in the

¢

leakage flux paths, particularly in the teeth, and so to reduce

the leakage reactances of both the stator and the rotor.

Experimental results for the tramsient torque of
machine IV, as recorded by a calibrated drag~cup tachogenerator,

following connection at standstill and at 0.95 p.u. speed are

shown in Figure 6.2, together with computed results for the

same conditions. Comparisons between the two sets of results
in these figures show that the agreement between theoretical

and experimental values is again as good as that achieved by

other authors. We may notice that the experimental result is
ﬁow less than the computed result, although this is again due
to the differences of the machine inductances érising‘from

saturation.

6.5.1.1 Transient current

Computed values of transient currents were obtained to

“investigate how the magnitude of the peak current depends on the

instant in the applied voltage cycle at which connection is made.
Figures 6.3(a) - (d) were obtained for machines I, II, III and IV
respecti&ely. These show how the values of the first to the fourth
peaks are dependent on_the instant of switching, when the machine

is connected at standstill. Corresponding results for connecting
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the same machines at 0.45 p.u. and 0.9 p.u. speed and with no
initial rotor currents flowing are shown in Figures 6.3, TFrom
these figqres the first current ﬁeak is seen to be little
affected gy the initial speed but greatly affected by the
switching angle, whereas the subsequent peaks are all greatly
affected by both the speed and the angle of switching. If the
switching occurs in the early part of a cycle the first peak
current is more dependent upon speed than when the switching

occurs later in the cycle.

A physical interpretation of the effect of the speed on
the current peaks can be based on the fact that sudden application
of the stator voltage creates both the normal and the transient
rotating mmf's, together with a transient decaying mmf. This
.1ater mmf is stationary in space, and since the resultant flux
in the machine is zero at the imstant of switching, it has a
spatial direction opposed to that of the initial value of the
rotating mmf. At the same time, the transient currenté depend on
the rotor speed, because of the associated roctational emf's, and
these emf's also depend on the presence of the transient mmf.
The rotational emf's will have an appreciable effect only after
the first half cycle, by which time the transient magnetizing
current has had sufficient time to become established. We may
notice in Figure 6.3 that the first peak of the current when the
switching angle is zero is equal but opposite to the second peak
when the switching angle is m. Similarly, the second peak when

the switching angle is zero is equal but opposite to the third peak
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when the switching angle is m, and this is repeated again for the
third and fourth peaks. This result arises since, as the
switchingfangle approaches m, the first current peak will
inevitably be very small, and the switching conditions will
result in a current transieﬁt almost the negative of that which

follows switching at an angle of zero.

6.5.1.2 Transient torque

Figures 6.4(a) - 6.7(a) show computed torque patterns for
machines I, II, III and IV respectively, following connection at
an initial speed of 0.4 p.u., and each ﬁf the first three maxima
and minima of these patterns are used to establish one point on
Figures 6.4(b) - 6.7(b). These latter diagrams show the variarions
of the maximum and minimum values of the initial torque peaks
with the speed on connection, and indicate that the most severe
“torque in thé normal operating speed range is in the forward
directioﬁ and occurs on starting from rest. As the speed on
connection increases the first peak of the torque decreases, until
at speeds in excess of 0.5 p.u. it becomes negative and opposed to
" the direction of rotation. After becoming negative, the value of
the torque peak increases steadily as the speed on connection
increases, and the maximum negative torque occurs following

connection at synchronous speed.
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6.5.2 Disconnection condition

Figures 6.8(a) - (¢} show comparisons between the recorded
and computed voltages across the motor terminals, following dis-—
connection from the supply of machines I, II and III, and good
agreement between the expérimental and theoretical curves is

again evident.

The voltages shown are of varying and decreasing amplitude
and frequency, with the voltage decay governed by the time
constant of the open-circuited motor and the frequency decay by

the time constant of the mechaniecal system.

6.5.3 Reswitching condition

Figures 6.9(a) - (d) show comparisons between the computed
and experimental results of the transient currents, following re—
connection to the same supply of &achines I, II, III and IV
‘respectively, after a disconnection_beginning at the instants
shown. A comparison between predicted and experimental results
for thé transient torque following disconnection and reconnectio&
of machine IV is shown in Figure 6.10. Similar ccmparisons for
plugging and for s;ar—delta starting of the same machine are given
in Figure 6.11. Both in these figures and in Figure 6.9 the
agreement between the two sets of results is generally good, with
any differences being explainable on the same basis as for the

starting condition.
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6.5.3.1 Reswitching to the same supply

When a motor is disconnected from the supply a changing
phase shift arises between the generated emf across the statox
terminals and the supply voltage. The degree of this change is

obviously dependent upon the loading on the motor.

To investigate the effect of the duration of interruption
of the supply on the first peaks of the transient torque when
the motor is subsequently reconnected, this torque was computed
for the unloaded machine, following reconnection after increasing
periods of interruption. Figures 6.12(a) to 6.15{(a) show the
patterns of thé tofque curves following reconmnection after an
interruption of 10 ms, for machines I, II, III and IV respec-
tively. From a series of such curves Figures 6.12(b) to 6.15(b)
were developed to illustrate the variations of the first two
peaks of torque with increasing interruption. Comparing Figures
6.12(b) to 6.15(b) with Figures 6.4(b) to 6.7(b), we see that
rwhereas while the first peak following connection of an elesc=-
trically inert machine is negative at a speed greater than 0.5 p.u,
that when the machine is reconnected at the same speed but with
currents in the rotor is positive and less severe. This is mainly
due to the motoriné action of the current carrying rotor in the
net transient mmf produced on connection being superimposed on
and exceeding the braking action of the electrically inert machine

in the net transient mmf.

Figures 6.12(b) to 6.15(b) show that the magnitude of the
peak torque initially increases with the time of the supply inter-

ruption. Following a maximum value of about 1.9 p.u. for machine
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2.4 p,u, for machine II, 0.9 p.u. for machipne III, and 2.1 p.u.
for machine IV, the value of the first peak torque thereafter

decreases. Alihough the peak emf generated in the stator by
¢

I

the rotor currents decreases as the time of interruption increases,
the phase ghift increases such that the resultant of the generated
stator emf and the supply voltage increases. The maximum value

of the peak torque occurs when the phase shift is about 180%, and
after this the phase shift and the peak torque both begin. to

decrease,

To investigate the effect of changing the instant at which
the motor is disconnected from the supply, Figures 6.16(b) to
6.19(b) were developed. These are drawn for constant length of
interruption and show that under this condition the instant at
which the motor is disconnected is of no importance and the trans-
ient_torque pattern remaiﬁs unchanged. The resultsfqrthe current

peaks are shown in Figures 6.20(b) to 6.23(b) and show that the

peak current is changing between positive and negative values

with a rapid transition happening at intervals of 10 ms.

6.5.3.2. Plugging

When the phase-sequence of the supply to a motor is quickly
reversed, while currents are still f}owing in the rotor circuit,
a very rapid braking effect is produced. The torque and the
currents dﬁring the brief braking period while the motor slows

to standstill are extremely large.
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To investigate how the peak currents and torques depend
upon the time taken in changing the phase-sequence, computed
results f?r each of the machines.were obtained. Figures 6.24(a)
to 6.27(a5 show the torque patterns produced by each machine
when a delqy of 70 ms occurs before the application of the
reversed phase-sequence voltage. The largest of the torque
peaks of many such patterns are plotted against the delay time,
to provide Figures 6.24(b) to 6.27(b). The torque peak
variations are seen to vary between maximum and minimum values,
with a greatest torque_peak occurring when the supply and the
stator voltages are in antiphase and the smallest peak when they

are cophasal.

Figures 6.28(a) to 6.31(a) show patterns for the stator
currents following plugging of each machine, after supply
interruptious of 10 ms. TFrom a series of such curves Figures
6.28(b) to 6.31(b) were produced, showing the variations of the
maximum current peak with the delay. From these figures we see
that for each motor the peak current is alternately positive and
negatiye, with ; rapid transition occurring at ihtervals of about

lb ms.

6.5.3.3 ‘Star-delta starting

When the phase voltage of an induction motor is reduced,
the line current and the developed torque are each also reduced.

Although reduced voltage starting may cause the current to be less,
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the presence of the decaying rotor current at the instant when
full voltage ié applied in star-delta starting may lead to
transient;currents, which though of brief duration, may be
more severe than those during direct connection at the same

speed but without-any currents flowing in the rotor.

A series of star-delta starting transients for the un-
loaded machines were computed, for increasing periods of delay
between star coqpected operation and the application of full
voltage when reconnected in delta. Figures 6.32(b) to 6.35(b)
show that the peak torque is never very severe for the four
machines (I, II, III and IV). The corresponding current vari-
ations are shown in Figures 6.36(b) to 6.39(b). Although, the
transient condition is affected by the angular position of the
decaying rotor mmf axis at the instant of applying full voitage,
and because the motors are unloaded, no high currents and torques

are produced.

The current results, similar to the results following re-
switching to the same supply and plugging, are again alternating.
between positive and negative limits, with a rapid transition
occurring at intervals of about 10 ms. This transition arises as

a result of the maximum peak in the current transient not always

being the first peak.
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6.6 Concliisions

This chapter has been devoted mainly to establishing the
validity 6f the digital-computer program simuliating the
single 3-phase induction motor. The idealized model of the
motor was used in preparing a digital-computer program, and
subsequently used for the evaluation of the overall performance
of several machines. The comparisons of the measured and com-
puted results generally showed very good agreement, for the
transient currents following connectiog and reconnection to the
same supply of each of four machines used. The stator voltages-
induced by the decaying rotor currents following disconmection

were also accurately predicted.

The predicted results for the transient torques developed
following connection, reconnection to the same supply, star-
delta starting and plugging all showed reasonsably good agreement
with the expgfimental results, except in the case of plugging.
"The quite considerable deviations there may be attributed partly
to the very considerable effects of local saturation on leakage
inductances of the machine, and partly to the assumption that the
rotor of the machine is a rigid body. Although this latter
assumption appears-reasonable, it may not be valid under the very

high torques developed following plugging.

However, it is considered that the validity of the induction
motor model and the digital-computer program developed for the
solution of the machine equations have been fully established for

the majority of situations likely to be encountered in practice.
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CHAPTER 7

TRANSIENT BEHAVIOUR .0OF TWO MOTORS
¢
In Chapter 2, the general theory modelling a group of u
induction motor was presented. However, to clarify the theory
and to illustrate its application, a group of a definite number

of machines needs to be investigated. 1In this Chapter the theory

of a group of two motors is considered in detail.

7.1 Conmection Condition

If the two machines are electrically inert and connected
directly to the supply, the transient behaviour of one of the
machines will affect the transient behaviour of the other, since
any voltage drop in the supply impedance will cause a corres-
ponding dip in the common terminal voltage applied to the two
machines. Thé amount of this reduction will depend both on the
'size of the machines and on the short-circuit capacity of the
network, Thus.thé behaviour of the two motors is interactive,
and the performance of each machine may be much different from
what it would be if used alone. However, if the supply is stiff,
and no voltage dip-is caused by the current drawn, the behaviour
of the two motors in parallel is exactly the same as their
behaviour when each machine is connected alone. This condition
will be considered first, to show clearly the approach which is

adopted.
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7.1.1 Stiff-supply

The electrical differential equations of any group of
n-motors as given in Equation 2.8, are reduced in the case

of two motors to Equation 7.1, or briefly,

[vl = [R][i] + [L]{[Di] + él[GI][i] + éz [GZ] {i] 7.2
where
- _
v R O 0 0 0 0 0
sd S
1
v 0 R 0 0 0 0 0
sq s ;
1
0 0 0 Rr 0 4] 0 0
1
0 0 0 0 Rr 0 0 o
[v] = ,[R] = 1
0 R 0 0] 0 -R 0 0
8 s
1 2
4] 0 R 0 0 0 -R 0
s 5
1 2
0 0 0 0] 0 0 0 R_
0 0 0 0 0 4] 0 0
L 4] M 0 0 0 0 0
s 1
|
0 L 0 M O 0 4] 0
s 1
1
M o L 0 0 0 0 0
1 r
1
O M 0 L 0 0 0 0
[ = 1 £
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8 1 S 2
1 2
0 0 0 0 M 0 L 0
2 o
2
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If Equation 7.1 is compared with the equivalent equation
obtained by simply writing down the equations for the separate
machines Esee Equation 2.7), sevéral noticeable differences
appear. fhus, in the impedance matrix which results, terms
only arise in the upper left and lower right quadrants, and
the column matrix of the system voltages contains two further
entries in the fifth and sixth rows. Although these differences
are not significant at this stage, they become important and
offer advantages in favour of Equation 7.1 in the considerations

given to the non-stiff supply situation in the next section.

7.1.2 Non=stiff Supply

As was shown in Chapter 3, there are two apprcaches to
the inclusion of the supply impedance in the system model.
In the first of these, the electrical equations of the supply

in 3-phase form are required together with the equations of

_the machines in d,q form given in Equation 7.1. The equations

of the supply are

v =v_ ~(R"+1L'D) i ceeas 1.3
ga a a -
N\
= - ' t : '
ng vy (R' + L'D) i e 7.4
v =v = (R"+L'D) i ceaes 7.5
ge c c
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where Vga’ vgb and vgc are the instantaneous voltages applied

to the two machines, and

a a a
1 2
.
i, =1 + 1
b b b
1 2
i =i +1i
c ¢ c
1 2

where ia , 1, and ic are the instantaneous phase currents of

1 bl 1

the first motor and ia , ib and ic are those of the second
2 2 2

motor. We may notice that when this approach is followed, trans-

formations from instantaneous phase quantities to d,q quantities

and vice versa are required throughout the numerical solution of

the overall system equations. For example, the d,q components

-of the common terminal voltage are found at every stage of the

solution, from

=vZ -1 -1 L
_,2 /3 _ /3
Vsqg —/—3‘ (—é— ng —2 Vgc) s e 7.7

which replace v_, and v__ in Equation 7.1.
sd s5q
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In the second approach, the impedance.of the supply is
included in an overall set of d,q equations, leading to
Equation 7.8 in which R' and L' afe the resistance and induc-
tance of the supply, and V.d and vsq are the direct and quad-
rature components of the stiff supply voltage behind the éupply
impedance, obtained by transforming the phase voltages of the

supply into their corresponding d,q components.

In either approach, the electromagnetic torque developed

by the first machine is given by

T = M 1 i -1 1 . s oaa -
e p1 1 (lsq rd 1sd qu ) 7.9
-1 1 1 1 1

and that preoduced by the second machine by

T =p M (i i -i i) 7.10
2 2 2 qu rd2 5, rq2

7.2 'Disconnection Condition

When the two machines working in a steady-state condition
are disconnected f;om the common supply, both their stator and
rotor currents and their fluxes decay at a rate determined by
the loads and the parameters of the two machines, from initial
values determined by the load conditions and the time of disc-
connection. During disconnection there will be a transfer of

power between the two machines, and although at first one machine
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will act alternately as a motor and as a generator, this will

eventually settle down to a situation where the machine with

the greater moment of inertia feeds power to the other until

the fluxes in both machines have decayed to zero. While flux

" still exists, the speeds of the two machines will consequently

decay at a closely similar rate, although in both machines

this may be at a considerably different rate from that when

used alone,

This interaction between the two motors during

supply interruption is an important factor, affecting consid-

erably the transient behaviour when the two machines are sub-

sequently reswitched tc the same or to a different supply.

The electrical equations during disconnection of any number of

machines (as given in Equation 2.21) reduce for two motors

to
T
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Equation 7.11 can be rewritten briefly as

(01 = [Rl;; [i] + [Llg; [Di] + 8 [6 1. [i] +

in which
R + R 0 0 0 0
S s
1 2
0 R + R (8] 0 0
s s
1 2
0 0 R 0 0]
[R]dis =
0 0 0 R 0]
T
1
0 0 0 0 R
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- -
0 0 0 0] 0 0
0 0 0 0] 0 0
4
0 4] 0 0 o 0
[Gz]di5=
0 0 0 4] o 0
0 -M 0 o 0 L
2 r
2
M2 o 0 0 -Lr 0
L. 2 J

7.2.1 Eléctromagnetic Torques

Although the machines are disconmnected from the supply,
-the alternating currents which coﬁtinue to flow in the stator
circuits of the two machines produce a rotating mmf in the air-
~gap of each machine. The interaction between decaying currents
in the stator and the rotor circuits will result in the production

of an electromagnetic torque, which for the two machines is

=3
I

[1][ ] [i] 7.13

dis

and

3
n

RCRTCR P ¢ ' e 7.14

dis

respectively.
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7.3 ‘Analytical Solution During Disconnection

When the two motors are disconnected from the common
supply, three electrical circuits are cbtained from the two
separate rotor circuits and the circuit formed by the stators
of the two machines. Since the currents flowing in the stator
circuits are the same in magnitude, but opposite in sign, the
instantaneéus symmetrical component form of the electrical

equations are

. . 10
. . _ s . 1y -
Ml.(D j 91) 1o + [Rr + L (D b Gl)] (1rp e )=0
1 1 1
L] - jaz
~-Mz (D - j 91) 1Sp + {Rr + Lr (D - 3'62)] (1rp e ‘) =0
2 2 2
6 i8
[(RSl + Rsz) + (LSI+ Lsz)D] 1sp + MlD (1rp1e ) - MZD (lrpze ) =

Taking Laplace transform we ottzin

M (6~-38 I +fR + L S-3i6 I =M 1 + L i
1 ( ] 1) 1 [ 1'1 rl( ] 1)] 2 1 spo 1’1 rplo

.8 8 7.15

M ($-38)I +[R.+L_ (5~ I =-M i + i
, ( b 2) . (R, c & - 92)] . , 1 L i
2 2 0 2 20
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R + M I - I = i
[(Rs + < ) + (LS LS Jg) I1 + . S , M2 g , (LS + Ls )1S

1 Z 1 2 1 2

+ M i -M
10 20

where I , I and 13 are respectively, the Laplace transform of
1 2 :

i® i®
i ,i e Yandi_ e % andi__ , i and 1 are the
sp® “rp rp Sp rp r
1 2 0 10 20

initial values of these currents. As shown in Appendix E,
Equations 7.15, 7.16 and 7.17 may be solved for I , I and I .

. : 1 2 3

Inverse Laplace transform may then be taken to give the positive-

sequence component of the stator current as

At A )
. - e ) s . . .
‘sp (A] - AZ)(AI - Aa) [ A Agp * A (a-jb)+ (c~-3jd)]

Ayt
e Yo [A? g+ A G- jb)+ (c-jd)]
2 1 2 3 0
At
7 3
¢\ 'vek Y(XA = A ) [ Aaz iSP ¥ Aa (@ - 3b)+ (c-3d)]
3 1 3 2 0 z

LR A Y 7.18

P

0

+
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the positive-sequence component of the rotor current of the
first machine as

Iz

JG1 o eA,t.

rp 1 rp

| ] . . . .
i e = [A° 1+ (al J bl) Al * (cl J dl)](A =A@ =)
1 10 ! : ' ?

At

2

2 . _ = by _ s "e ’
+ [Az 1rp0+ (a1 ] bl) , + (c1 i dl)] (lz - 11)(A2 - Aa)

At
3

A N oo
3 1 3 2

"+ [A241i 4+ -3ibYAr + (c
3 rpm 1 1 3

and the positive-sequence .component of the rotor current of the

second machine as

. At
. Jez e 1 ) A 2 s . .
1rp e N N W YU [ , 1rp + (a2 - j bz))\l + (c2 -3 dz)]
2 1 2" 3 20
A,t
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+ O =30 = )[Az IIP + (a2 3 bz) Az + (c2 3 dz)]
2 1 2 3 20
At

3
] e T [)\2]-_ + (a _jb)}\ + (¢ -jd)]
* (Aa - 1)(A3 - Az) 3 rp20 2 2 ? 2 ’
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The positive~sequence component of the common stator voltage
is given in Appendix E as
;-

={x* @ L
M { 1 (lsp

+M i +X?%i R +(a-jbyL +
sp 5 1 120) 1 [15p s ( i® ]

1] 1 0 1 1
M -3jb + A .a -3JbB)R +1L -34d +
| (al k] 1)] 1[( j b) s s (c ? )

Alt

. | . N N
Ml (cl e dl)j * Rs (c =5 )} (Al - Az)(A1 B A3)

3 - . . 2 . o =
+ {lz (%p Ly +M i )+ Az [R, i, +L, (a-] b) +
M] (al -j Pl)]+ 12 [(a = jb) Rs + LS (¢ -7 4) +

1 1

Aat

R
-A)X(ZA - X))
2 12 3

M! (c.1 -3 dl)]+ RS: (c - jad)} o

+M (2 -] bl + lal(a -3b) RSl + le (c -] Q)

e

+ M1 (c1 -3 dl)] + Rs (c -3 d)} 6

e
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On -applying the previocus analytical solution to the group
consisting of the 0,75 kW and 1.5 kW motors the roots of the

characteristic equation (see Appendix E) which have the form
A= a+ 3B
and when the machine parameters are substituted in this

equation the time constants and frequencies of the components

are obtained as

A= - 8.0857 + j 313.4569
A, = - 122.58 + § 273.2098
A = - 98.343 + j 40.11

from which we notice that the component with the greatest time
constant of 123.6 ms has the greatest frequency of 49.98 Hz
while the seconﬁ component has a time constant 6f 8.16 ms and

a frequency of 43.43 Hz. The third component has a time constant

. of 10.17 ms and a frequency of 6.383 Hz.

From these results, the currents and the voltages following
disconnection ;re seen to be composed of a lightly damped alter-
nating component at a frequency nearly equal the frequency of
the supply, a highly damped alternating component with a frequency

of 43.5 Hz and a low frequency component at 6.383 Hz.
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s

7.4 'Reswitching Condition

When, after a certain time, the two motors are reconnected
to a common supply, they may be treated in precisely the same
way as following the original connection. The only difference
is that the initial currents are now not zero, but have values
given from the considerations of the disconnection period given

in Section 7.2.

Equations 7.1 and 7.2 are used again to represent the
two machines when reconnected. However, the voltage matrix
on the left hand side of both of these equations needs to be

determined according to the reconnected supply voltage.

7.5 'Mechanical System

The mechanical system equations for the two machines can
be derived directly from the general mechanical equations given
" in Section 2.4 of Chapter 2, by replacing m by 1 and 2

respectively,

7.6 ‘Numerical Solution and Computer Program

The procedure discussed previously in Chapter 4 for the
n-machine group 1is also followed in the numerical solution of
the electrical and mechanical equations of the 2-machine group.
The program is divided into three sections; connection, dis-

connection and reconnection,



7.6.1 Connection Condition

To perform the numerical integration of the electrical

differential equation, Equation 7.2 may be rewritten as

i) = [L17(fv] - [RI[i] - 8 [ J[i) - & (6 )il ..  7.19

'where the matrices [R], [L], [Gl] and [Gz] are given in Section
7.1.1 for the case of a stiff supply, and when the supply is non-
stiff they can be obtained from Equation 7.8. The initial
conditions for the currents are zero for electrically inert
machines; and the initial values of the speeds are also zcro

if the machines are started from rest. The voltage matrix [v]
contains only zeros and terms representing the supply voltage.
However, if the second approach for the case of the non-stiff
supply is used, the initial values of the currents and speeds
remain the same, but the initial values of the commoﬁ voltages
across the machines need to be knowui It was shown in Equation
4.14 of Section 4,1.1 that the common voltage applied to a

group of n-motors is

e
.
’
+
P
=
S+
e
i
]
=
-
N’ |

where in the case of two motors KG is given by
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K. =1+ —1 - veee.  7.20

Computatfﬁn of the electromagnetic torque deﬁeloped by the
motors can be performed using Equations 7.9 and 7.10. The
variation of the speed of each motor is taken into account by
numerically integrating the mechanical equations of both
machines; thus for the first machine

T - T -T

2 — 1 1 1
D? 0 < ' ceeee 7021

if it is loaded and

p2g=—1__ 1~ ceeen T7.22

if it is unloaded: Correspondingly, for the second machine

.Te = tf _-.Tt
p? g =--2 3 2 2 ceeans 7.23
.2 2
and - -
T, - T
p2 o = ——33————3 ceeee 7.24
2

If the 3-phase rotor currents are required, the d,q currents
need to be transformed to rotating axes, and for this trans-

formation the angular position of the rotor 8 is required.
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To obtain this, the speed is numerically integrated using

the differential equations

DO =06 7.25

LI S Y 7.26

(anl]

D& =

for the second machine.

The values of the currents, speeds and angular positions
obtained at the end of each step-length are taken as initial
values for the next step—length, and the process is repeated
until the next switching operation, i.e. disconnection of the

group from the supply.

7.6.2 Disconnection Condition

Following interruption of the supply the matrices [R]dis’
[L]dis’ [G1]dis and [Gz]dis are as given in Section 7.2, and

the initial conditions of the speeds are taken as those immed-
iately before the interruption. To perform the numerical

integration of the electrical equations during disconnection,

Equation 7,12 is rewritten as

[Di] = [L]g;, {(0] ~ (R)y; (4] - & [6 1y [41.- 8 [6 1y, [i])

chane 7.27
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which may be numerically integrated. The electroﬁagnetic
torque during disconnection is computed from Equations 7.13
and 7.14.f The speeds of the two machines are obtained by
numericaliy integrating their accelerations given by Equations
7.22 and 7.24 if the motors are loaded or Equations 7.23 and
7.25 1f they are unloaded. The angular—positions of the
fotors are obtained by integrating Equations 7.25 and 7.26.
However, befqre the numerical integration can begin, it is
necessary to determine the initial values of the currents on
disconnection, and these are determined using the constant-

flux~linkage theorem applied to the rotor and stator circuits

of the two machines as described in the following section.

7.6.2.1 ‘Application of.constant—fIUXélinkage
Applying constant flux linkage considerations to the d-

and g-axes of the stator and rotor circuits of the two machines

leads to

L
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where the suffices 4,1

before and immediately after disconnection.

these equations are
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1
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qu 1
1
wrd --M2 0)
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Lr (1
2

Ls (i
1

LS (i

) +M (1)
rqz 2 qu
d )t M] (lrd )
1 1
+ M i
Sql) . (1rq1)

denote the conditions immediately

In matrix form,

0 0 0 (1
Lr 0 0 {1
1
0 Lr 0 (1
2
0 0 Lr (i
2
0 0 ] (i
M1 (v} 0 (i




where
[y ] [ L 0
lprt:l M1 0 T
1 1
0
Veq 0 M L,
1 1
~M 0
I‘Dm:l 2 0 0
2
-M 0
Veq 0 , 0
2
|
vsd LS 0 M! 0
1 1
Veq 1 0 L 1 0 M

and once the initial values have been determined, the variation

calculated using Equation 7.27.

7.6.3 'Reswitching Condition

of the stator and rotor currents during disconnection can be

Following reswitching, the original [R], [L], [Gl] and [G2]

matrices used during connection condition are recalled, and the

initial values of the currents, speeds and angular positions of

the rotors are those immediately before the instant of the re-

switching. The numerical solution then continues, using a voltage
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matrix determined for the supply to which the machines have

been reconnected,

Thegflowchart of the computer program for the two motors
situation is virtually that of the n—-motor situation shown
in Figure 4.1, The listings of the computer program simulacing -

the two machines are given in Appendix F.

The selection of which of the two approaches described
provides the most useful method of solution with a non-stiff
supply depends on the time taken on the computer. The minimum
length of the step which may be used in the numerical inte-
gration process is an important factor in determining the time

which will be consumed.

Granborg35 has shown, by forming an explicit relationship
between the computational time inerement and the coefficients
of-the differential equation system, that the limit of numericzal
stability in a Runge-Kutta method is reached with a step-length
"of 2.8 times the system smallest time constant. However, during
the present integration, it was found that using a step-length
equal to the smallest time constant of the system gave'good

stability of the numerical solution,

In Appendix A the method is given by which the time constants
of a group of motors are obtained. For a 2-machine system formed
from the 0.75 kW and 1.5 kW motors described in Table I, it was
found that when using the first approach described for a weak
supply, a step length of 1 ms is sufficiently_small to enable a

stable solution to be obtained, while the second approach was
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followed it was necessary to decrease this to 0.5 ms, due to
the drastic change in the impedancé matrix brought about by
the inclu?ion of the supply impedance., Although additional
computatién needs to be performed in the first approach, less
time is consumed than in the second approach with its much

reduced step-length. TFor this reason the first approach is

preferred.

7.7 ‘Transient Conditions in 2-Motor Group

A group of two motors was formed from the 0.75 kW and the
1.5 kW motors detailed in Table I. The computer program
described in Section 7.6 was used to predict the transient
currents, torques and speeds following connection of the
group to a s£iff—supp1y and to a non-stiff supply simulated

by inclusion of an 11.09 resistor in eachISupply line,.

The computer program was used also to predict the transient
conditions following disconnection of the group of motors from
the supply, as well as following reconnection, plugging and

star-delta starting.

7.7.1 Connection Condition

Figures 7.1(a) and 7.1(b) show comparisons between the
predicted and measured currents in the b-line of the 0.75 kW
motors and the r-line of the 1.5 kW motor, when connected to a

stiff supply at the instant indicated by the voltage waveform.
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From these results it is clear that the 1.5 kW motor takes a
much shorter time to reachits steady-state condition than
does the Q.75 kW, due mainly to the relatively high moment
of inertia of the smaller machine. The differences iﬁ the
behavioﬁr of the two motors are clearly sufficient to ensure
that an adequately searching investigation may be made of the

effect of switching to a mon-stiff supply.

From the correlations in Figure 7.1, it can be seen that

the predicted and measured currents are in uwniformly good
~agreement. As would be expected, the computed currents given

here coincide with those computed when each of the motors is
connected separately, but at the same instant on the supply

eycle, since there is no interaction between the two machines.

The transient torques and speeds of the two machines are shbwn

in Figures 7.2(a) and 7.2(b). Again, the electromagnetic torque
patterns obtained are precisely the same as those when each
‘machine is cﬁnnécted separately to a stiff supply. Also from thesé
figures, it is now clear that the 1.5 kW motor achieves its steady-
state condition after about 8.5 cycles of the supply while the ;
0.75 kW motor takes about 13.5 cycles to reach this co;&ition.

" As further confirmation of the accuracj with which the computer
program predicts the experimental behaviour, Figure 7.3 shows the
close correlation which exists between the theorefical and measured
results for the torque developed in a group formed by the 5.6 kW

and the 2.25 kW motors detailed in Table I.
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With the 11,08 resistors included in the circuit, the
starting currents of the two motors were obtained experimentally
and theoretically, as shown in Figure 7.4. The common terminal
voltage of the two machines was also measured and predicted,
with the results shown in Figure 7.5. Because of the long time
involved, drawing the instantaneous values of the currents and
voltages will not provide more information than 1is given by
simply recording the positive peak values as in the figures.

The negative peak values are simply the mirror image in the time

axis of the positive peak values.

From Figures 7.4 and 7.5 it is clear that the predicted
and measured results are again in reasonably good agreement,
In view of the now lengthy run up time of the motor, the
differences which are evident in the time at which the volfage
across the second machine rises to its final wvalue may be
accounted.for by the difficulties in obtaining a precise measure
.of the friction and windage torques of the twé machines, When
the machines are loaded, the shape of both the current and the
common voltage will depend significantly on the characteristics .
of the loads on the machines, which will then control ﬁhe value of
the accelerating torques for more than will the motor parameters.
The computed torque patterns and the speeds of the 0.75 kW motor
and the 1.5 kW motor are shown in Figures 7.6(a).and 7.6(b)

respectively,

Consideration of Figures 7.4 and 7.5 shows that the current
of the 0.75 kW motor (Figure 7.4(a) ) begins with a constant

amplitude of 1.093 p.u., and that of the 1.5 kW motor (Figure 7.4(b)
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with an amplitude of 1.278 p.u. The currents of both machines
remain constant until about 50 cycles of the supply frequency
have pass?d, when the 1.5 kW motor begins to accelerate, and

the Currént falls to a constant amplitude of 0.2778 p.u. As

a consequence of the reduced voltage drop in the supply
impedance, the common voltage rises from its previous value

of 0.294 p,u, to a new vaiue of 0.496 p.u. This quite
considerable increase causes the current drawn by the 0.75 kW
motor to rise to 1.79 p.u., and it remains at about this level
until the motor begins to accelerate after about 150 cycles of
the supply frequency., The current then falls to 0.39 p.u.,

which i; the final steady-state no-load value, and the common
voltage rises to a corresponding value of 0.9 p.u., causing an
increase in the current drawn by the 1.5 kW motor to a final
steady-state of 0,3056 p.u. It is clear therefore that the
acceleration times of the two machines are not mutuaily inde~
pendent, and that the moment of inertia and the load characteristic
of each will affect the acceleration time of the other. From
Figures 7.6(a) and 7.6(b), we see that the torque developed by
each ﬁotor is initially oscillatory, in the same way as when

the machines were considered in isolation. The torque developed
by the 0,75 kW motor soon attains a censtant value, although the
speed has not changed significantly from zero. After the initial
oscillations have ceased, the torque developed by the 1.5 kW
motor continues to increase, and the speed of this motor rises
almost uniformly. When the 1.5 kW motor reaches the speed corres-

ponding to the common voltage, its current and torque fall rapidly
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and the resultant increase in the common voltage causes an
increase in both the torque and the speed of the other machine.
This situation continues until full speed is reached, when the
current and torque of the 0.75 kW motor fall rapidly and a
voltage almost equal to the supply voltage is applied to the
motors. However this does not-change very much either the

torque developed by the machines or their speeds.

7.7.2 Disconnection Condition

The common voltage across the two motors after disconnection
from the supply was measured, together with the current flowing
in the common stator circuit. A prediction was made of both the
stator voltage and the current using the computer program des—
cribed in Section 7.6, and Figures 7.7(a) and 7.7(b) .show the

close correlation obtained between the experimental and computed

results, Computed results for all the 3-phase rotor currents of

both the 0.75 kW and the 1.5 kW motor are shown in Figure 7.8.
From these figures it is clear that the rotor currents are no ;
longer simply unidirectional and exponentially decaying, as in
the case of a single machine disconnected from the supply, but
that there are some oscillations preceeding a unidirectional
decay, i.e. the rotor currents now contain a highly damped alter-
nating component and a much less damped direct component, with
the initial values of the rotor currents being dependent on the

instant of disconnecting the machines from the supply. If the
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period of disconnection is short, the oscil}atory component
will clearly have a major effect on the characteristics
following any reconnection.
F

The resulis shown in Figure 7.9 reveal that the stator
currents during disconnection are mainly oscillatory and
lightly damped, with an additional but much more heavily damped
unidirectional component. As with the rotor currents, the
initial values of both stator and rotor currents depend on the
instant at which the machines are disconnected. The heavily
damped d.c. component in the statorrresults in the heavily
damped é.c. component in the-rotor, and the less damped d.c.
component in the rotor vresults in the less damped a.c. com-—

ponent in the stator.,

The air-gap powers of the two machines are shown in
Figure 7,10. From this figure it is evident that there is a

transfer of power between the two machines, and although at

first one machine acts alternately as a motor and as a generator, -

the situation rapidly settles down to one where the machine having
the greater moment of inertia feeds power to tﬁe other machine,
until the fluxes of botﬁ machines have decayed to zero. As shown
in Figure 7.11 the speeds of the two machines decay at a closely
similar rate, although during the first part of the curve there

is an oscillation due to the changing mode of opération of the
machines. The speeds of the machines, when compared with their
speeds‘when disconnected separately from the supply, show that the
only significance difference is during the initial part of the
curve, and that after the speed oscillation have ceased they

become very close to cne another.

L
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Figure 7,12 shows a comparison between the common
terminal voltage of the group and éach motor in isolation.
From thisrfigure it is clear that, as would be expected,
the rate at which the voltage across the group decays lies
between the rates at which the voltages of the two motors
decay when each is in isolation. Also, since the $.75 kW
motor has the smaller rotor time constant, its voltage decays
more rapidly than both that of the 1.5 kW motor alone and that
of the group, whether the machines are connected in star or in

delta.

7.7.3 Recomnection Condition

The stator currents following reconnection of the 0.75
kW/1.5 kW motor group to the original stiff supply, after dis-
connectioﬁ beginning at the instants shoﬁn, are recorded in
. Figure 7,13, The computed and measured values of the currents
show about the same measure of agreement as ﬁas evident in the
previous switching and disconnection conditions. This justifie%
again both the accuracy of the model developed for thevsystem
and its digital simulation, and enables full investigations to

be made on a computational basis alone.

7.7.3.1 Reswitching to the same supply

To investigate the effect of the duration of the supply
interruption on the transient torque, these torques were com-

puted following reconnection after several different lengths of



interruption., Figures 7.14(5) and 7.14(b) show the torque
patterns following reconnection of the two machines after an
interruption of 100 ms, and from a series of such curves
Figures 7.14(a) and 7.14(b) were developed to show the
variation of torque peaks with an increasing length of
interruption. These figures show that the magnitude of the
fositive torque peak of the 0.75 kW motor increases initially
to a maximum of 1.253 p.u. after a 10 ms decay, decreases to a
minimum of 1.1824 p.ﬁ. after a 20 ms deiay, increases again to
a maximum of 1.689 p.u. befo?e finally decreasing continuously
for greéter lengths. The positive torque peak of the 1.5 kW
motor decreases initiallyrto a minimum of 0.54 p.u., after a

10 ms delay, before increasing to a maximum of 1.49 p.u. and

afterwards decreasing.

As Figure 7.10 makes clear, for any supply interruption

of up to 10 ms duration the 0.75 kW machine is acting as a

- generator and the 1.5 kW. as a motor immediately before reconn-

ection, and as a consequence of this the power.drawn by the
former machine tends to increase and that drawn by the latter
machine tends to decreage. The torque developed by tﬂé machines
natura11§ follows a similar pattern. After an interruption
lasting between 10 and 20 ms the modes of operation on reconnec-

tion have reversed, and the patterns and the variations of the

torque of the two machires become in a reversed sense.

Figure 7.15(a) shows a comparison between the torque peaks

following reswitching of the 0.75 kW motor alone and in parallel
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with the 1.5 kW motor, and Figure 7.15(b) shows a similar
comparison for the 1.5 kW motor. From these figures it is

clear that the positive torque peak of the 0.75 kW motor in
isolatiog is greater than when in parallel with the 1.5 kW

motor, and that after a delay disconnection of 75 ms the
positive peak of the machine in isolation is less than when
.connected in parallel with the 1.5 kW motor. However, the
negative torque peaks in isolation are always greater than

when the machine is reswitched in parallel with the 1.5 kW

motor, Referring to the comparison in Figure 7.12 between the
terminél voltage of the macﬁine when disconnection from the
supply alone and in the gfoup, we see that the decaying voltage
of the 0.75 kW motor in isolation is less than when it is in

the group. Further, the reswitching torque depends mainly cn

the differences in magnitudes and the phase shift between the
supply voltage and the terminal voltage of the machine at the
instant of reswitching; consequently, since during disconnection
the voltage of the machine in isolation is less than when in the
group, the torque peak of the machine in isolation-should be
grea&er than when in the group. This is true, as is evident

from Figure 7.15(a), for both the second torque peak and the
first part of the first peak. The difference between the peaks
after a disconnection delay cf 75 ms is attributed to the
difference in the speed transients of the machine following re-
;witching, which will affect the values of the transient currents
and consequently make the torque peak of the machine in the group
greater than when in isolation, although the terminal voltage of

the group is less than the terminal voltage of the machine in

-
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isolation before the reswitching operation.

Figure 7.15(b) shows a similar comparison for the 1.5 kW
motor. Since the terminal voltage of the machine in isolation
is greatef'tﬁan the terminal voltage of the group, the argu-
ments for the 0.75 kW motor are the reverse of those for the
1.5 kW motor. The positive torque peak of the machine in fhe
group is greatér than when in isolation, until the discennection
delaf is about 40 ms, when the situation becomes reversed.
Whatever the disconnection delay, the negative torque peak of
the machine in the group is always greater than the negative

torque peaks of the machine in isolation.

Figures 7.16(a) and 7.16(b) show the variation of the
torque peaks following reconnection of the group after a con-
stant length of interruption but a variable instant of dis-
connection, and as is expecﬁed these peaks are all the same.
This is clearly due to the amplitude and the phase shift of
the voltages_generated within the machines remaining constant
‘with respect to the supply, so that the transient speeds are

always the same, and identical torque patterns are produced.

7.7.3.2 ‘Plugging

When the phase-sequence of the stiff supply to the group
of motors is reversed, a braking effect is produced. 1If currents
are still flowing in the stator and rotor circuits, the torques
and the currents immediately following this ogeration will
obviously be different from those when the machines are elec-

trically inert.
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To investigate how the currents and torques of the two
motors depend upon the time taken in changing the phase-
sequence:of the supply, computed results for both machines
were obtained. Figures 7.17(a) and 7.18(a) show the torque
patterns produced by the two machines, when a delay of 10 ms
occurs before the application of the reversed phase-sequence
voltage. The greatest of the torque peaks of such patterns
are plotted against the delay time to provide Figures 7.17(b)
and 7.18(b). The resulting torque peak variations are seen
here to oscillate between a maximum and a minimum value with'

a greatest torque peak corresponding to the condition when the
supply and the stator voitagcs are in antiphase and a minimum
torque peak to the condition when they are cophased, depending
upon the orientation of the rotor and the instant of applicaticn
of the reversed phase sequence véltage. Figure 7.19(3) shows

a comparison between the torque peaks of the 0.75 kW motor

when plugged in isclation and when plugged in parallel with the
1.5 kW motor, and Figure 7.19(b) shows a similar comparison for
tﬁe 1.5 kW motor alone and in parallel with thé 0.75 kW machine,
both the greatest and the smallest torque peaks are less when the
machine is plugged in isolation than when it is in the group,
whereas for the 1.5 kW machine, both the greatest and the smallest
torque peaks are greater than when the machine is in the group.
This would be expected from the comparisons between the deéaying
voltages of the machines in isolation and in the gfoup, shown in
Figure 7.12, from which it can be seen that the 0.75 kW motor has

a greater terminal voltage., Since the plugging voltage has a
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reverse phase-sequence, the torque produced by the 0.75 kW
motor in isolation is less than whén in the group while that

of the 1.5 kW mocor is greater tﬁan when in the group. This
conclusion is the opposite of that reached when the machines
are simply reconnected to the same supply. However, the torque

peaks decrease as the delay of interruption increases whether

the machine is in isolation or in a group.

Figures 7.20(a) and 7.21(a) show patterns of the stator.
currents following plugging of the two machines after supply
interruption of 10 ms. From a series of such curves Figures
7.20(b) and 7.21(b) were produced, showing the variations of
the maximum current peak with delay. From these curves we see
that the peak current changes alternately between positive and

negative with a rapid change every 10 ms.

f.7.3.3 ‘Star~delta starting

A series of star-delta starting transients were computed
for the 0.75 kW/1.5 kW motor group, for increasing delays ;
between star—connected operation and application of the full
voltage, with the machines connected in delta. Figures 7.22(a)
and 7.23(a) show the patterns followed by the torques of the
0,75 kW and 1,5 kW motors respectively, following a delay of
5 ms. From a series of such curves Figures 7.22(b) and 7.23(b)
were developed to show the variations in the torque peaks of
the two motors following increasing periods of interruption,

It is clear from these figures that the torque peaks are not
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very high when compared with the direct on-~line starting
torque peaks recorded in Figure§ 6.32(b) and 6.33(b). During
the initial stages of these torque variations the torque
peaks of the 0.75 kW motor and the 1.5 kW motor exhibit a
slight increase and decrease, this behaviour again depending

on the mode of the machine at the instant of reconnection.

The computed reconnection currents corresponding to
Figures 7.22 and 7.23 are shown in Figures 7.24 and 7.25, for
the 0.75 kW and 1.5 kW motor respectively. Again, the maximum
current peaks change alternately between positive and negative
with a rapid change about every 10 ms. This is similar to the
plugging condition and it is mainly because the maximum peak

is not always the first peak.

Figures 7.26(a) and 7.26(b) show comparisons between the
torque peaks of the 0.75 kW and the 1.5 kW motors respectively,
when started alone and in the group. By referring to Figure
7.12(b), we see that the voltage of the 0.75 kW motor in
isolation is less than in the group, while that of the 1.5 kW
motor is greater than when in the group. The torque developed
following connection of the 0.75 kW machine in delta is con-
sequently greater.when the machine is in isolation than when
in the group, except for the initial part of the negative torque
peak curve which is affected by the speed transients. On the
other hand the torque of the 1.5 kW motor in the group is greater

than the torque in isolation.
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7.8 Conclusions

An idealized model of a group of two motors was used
in develdping a digital-computer program for the evaluation
of the overall performance of the group. Comparisons of
measured and computed results yielded very good agreement,
and confirmed the reliability of the results obtained on a com-
putational basis only, whether the group is connected to a
stiff or to a weak supply, or disconnected and reconnected to

the same or a different stiff supply.

When the two motors are connected simultaneously to a
stiff-supply, their transient behaviour is the same as if each
motor was connected separately. Hoﬁever, when the group of
motors is connected to a weak supply, the tramsient behavipur
is interactive, and the performance of one motor will affect
that of the other., The electrical as well as the mechanical
parameters of one motor affect the behaviour of che other motor
and vice versa, The time taken by a motor to achieve its steady-
state situation will depend on the parameters of the machines,
as well as the weakness of the supply, i.e. its short-circuit

capacity,

When the motors are disconnected from the supply, currents
continue to flow in the common stator circuit and also in the
rotor circuits. The rotor currents are not unidirectional, as
in the case of a sihgle machine, but have heavily damped alter-
nating components and a lightly damped unidirectional component.

The characteristics of the stator currents are opposite to those



of the rotor currents, i,e, the stator current has heavily
damped direct componentsand lightly damped alternating com-
ponents,: Both the stator and the rotor currents are composed
of three exponentially decaying components, all with different
time constants and frequencies. There are also relatively
small alternating electromagnetic torques developed, which
result in the machine with the greatest moment of inertia
acting as a generator and the other machine as a motor, until
the air-gap power and the speeds of both machines have decayed
to zero. The speeds of the two machines oscillate initially,
before settling down to decrease at closely similar rates.

The joint terminal voltage is less in magnitude than that of
the machine with the largest time comnstant in isolaticn, and
greater than that of the machine with the smallest time constant
i.e. the time constant of the group lies between the valuesof

the time constants of the two machines individually.

Following reswitching to the same stiff supply, the negative
torque peaks of the machine having the smallest time constant .are
greater than if the machine is reswitched in the group. The
negative torque peak of the machine with the largest time constant

is less than if the machine is reswitched in the group.

Following plugging, the machine with the smallest time
constant has peak torques smaller in isolation than when in the
group, whereas the machine with the largest time constant has
peak torques larger in isolation than if it is plugged in the

group.

~
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For star-delta starting, the machine with the smallest

time constant has torque greater in isolation than when in
¢ . . .

the group, and the machine with the greatest time constant

has torque peaks smaller in isolation than when in the group.
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CHAPTER 8

TRANSTENT BEHAVIOUR OF A GROUP OF THREE MOTORS
.

An investigation of the transient performance of a 3-
motor group is a logical extension of the investigation of the
2-motor group recorded in Chapter 7. Again, if a group of
three motors is simultaneously connected, then disconnected
and finally reconnected to a weak supply, the transient per-
formance of each motor is affected by the transient performance
of the other motors of the group. On the othef‘hand, if the
group of motors is connected to a stiff-supply the performance
of each motor of the group will be precisely the same as when
the motor is connected alone, although this will not be the

case for a reconnection situation.

8.1 ~ Connéction Condition

8.1.1 ‘Stiff-supply

‘The electrical differential equations of a group of three
motors are obtained by reducing Equation 2.7, which models a
group of n—motor, to thé equation for three motors only. This
leads directly to Equation 8.1. If the alternative formulation
of the equations is used, Equation 2.8 is reduced to Equation 8.2.

Both Equations 8.1 and 8.2 can be rewritten briefly as

[v] = [RI[i] + [L][Di] + & [c [} + &, [6,][i) + 6 [61[i] 8.3
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The electromagnetic torques developed by the three motors

are, respectively:

Tel = pl Ml(lsq iy iy 1rq 3 e 8.4
1 1 1 1
= M i 1 -1 1 L NN .
Tez P, 2(lsq *rd *sd_ 'rq ) ' 8.5
2 2 2 2
Tea = p3 Ma(lsqa 1rd3 - 1Sda 1rq3) T reawe 8.6

8.1.2 ‘Non-stiff supply

_When the group is connected to a weak supply two approaches
can be used to model the system, just as when the cases of the
two-motor and the n~-motor groups were investigated. In the

first appfoach, the supply voltages are related to the common

~ voltages at the machine terminals by the equations:

v =v - (R* +1'D) i ceees 8.7
ga a a

ng = vb - (R + L D) lb ’ clc e 8 . 8

Vgc = vc - (R + L D) lc RN . 8-9
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where
i =1 + 1 + 1
a a a a
¢ 1 2 3
1. =1 + i + i
b b b b
1 2 3
i =1 + 1 + i
c c c c
1 2 3

in which i i i and i i i and i i i
hic a’® b’ ¢ d a’® b’ ¢ a’ ' e

1 1 1 2 2 2 3 3 3
are the instantaneous currents of the three motors. In addition
to Equations 8.4 to 8.6, which represent the interlinking between
the stiff supply voltage and the common machine voltage, Equation

8.1 is also used in calculating the performance of the motors.

However, v _, and vsq are no longer the d and ¢q axis components

sd-
of the st%ff—Supply, but need to be replaéed by deg'and Vsqg
where
-2 -1 -1
vsdq —-/3 (vga 5 vgb 5 vgc) . ceran 8.IQ
=y2 3 -3
sqg‘—/B ( zvga ZVgC) L I 8.11

If the second approach is followed, the supply impedance
is included in the impedance matrix of the group and this leads

to Equation 8.12.
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8.2 Disconnection Condition

When the motors are disconnecged from the supply their
statorsremain interconnected, so that the subsequent performance
is again not independent. Equation 2.21, which represents a
group of n-moteor during disconnection, can be reduced to
represent a group of.three motors by the following equation,
Equation 8.13, which can be rewritten briefly as
[0] = [R]y, [4] + [L] g5 [Di] + (B [C]y; + 6 (6]

dis * 93 [G]dis} [i]

. e % o4 8114
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[6,14s =
3 dis 0 0 0 0 0 0 0 0 0 0

Since the three motors are interconnected, the stator currents
of the third wmotor of the group is given in terms of the currents

of the other motors by

1sd = - (1Sd + 1sd )
3 1 2

i =~ (i + i )
Sq3 Sql qu

8.2.1 Electromagnetic Torques

Following disconnection, the stator and rotor currents of
the three machines do not fall instantaneously to zero but decay
with a duration determined by the time constants of the system.

The interaction between the decaying currents in the stators and
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the rotors will result in the production of electromagnetic
torques, which for the three machines are given by Equations

8.4 to B.ﬁ respectively.

*

8.3 'Reswitching Condition

When the three machines are reconnected to the same or to
a different supﬁly before the complete decay of the currents,.
Equation 8.1 is used if the supply is stiff. TIf the group
reconnegtion is to a weak supply, Equations 8.7 to 8.9 are
needed in addition to Equation 8.1 if the first approach is
followed, or Equation 8.12 if the second approach is used. We
may notice that the only difference between the representation of
the group -when connected and when reconnected lies in the initial

conditions of the currents, speeds and voltages.

The voltage matrix is, again, determined by the type of the

- supply to which the group 1s recomnected.

8.4 'Mechanical System

The mechanical system equations of the three machines are
derived directly from the general mechanical equations of the
n-motor group, by replacing m by 1,2 and 3 in the equations of

Section 2.4 for the first, second and third motor respectively.
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8.5 'Numérical Solution and Computer Program

The same procedure followed in Chapter 4, for a group of
n-motors, is applied here for a group of three motors, As
before, the computer program is divided into three parts; -

connection, disconnection and reconnection,

8.5.1 Connection condition

When the supply is stiff, either Equation 8.1 or Equation

8.2 may be rewritten as
[Di] = [L]7 ' {[v] - [RI[i] - [6 1{i] - 6 [G 1{i] - és[Gal[i]}
teane 8.15

to enable it to be numerically integrated. Matrices [R], [L],
[Gl], [Gz]-and [G3] of Equation 8.15 are formed by the
‘Tesistance terms, the coefficients of D, the coefficients of é],
the coefficients of éz and the coefficients of 63 respectively,
The initial conditions of the currents and speeds are taken as

zero, since the group is initially both electrically and mechan-

" ically inert.

If the supply is weak, and the second approach is used,
the initial value of the common voltage across the group is
required, in addition to the initial conditions of the currents

and speeds, TFollowing Chapter 4, the required voltage is given

by
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vg = {1

where, for a group of three motors,

L +L =-2M L +L =-2M
... r | S r ...

G L +L ~-2M L +L -2M
T 2 5

The elecﬁromagnetic torque developed by each machine of the
group is computed by using Equations 8.4 to 8.6. The variation
of the speed of each motor is computed by numerically inte-

grating the acceleration, which for the three motors is

e, f -t -
D2 = - 5 1 L cenes 8.16
! 1
.Fe..f.?f..f.Tt
D%, = —2—52 2 _ ceeen 8.17
e, T T ~
D’-e3 = —3 3 3 3 ceens 8.18

when the machines are loaded. If the machines are unloaded

Tt , Tt and Tt are all zero, and the above equations reduce
1 2 3
to
T -T :
e,
DZe = 1 1 AERER 8-19
1 I, :
_ ..?e " Tf
Dze =——-2-3—_g..— L L LI ) 8.20
2 R
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D29 = —3dm 3 ' ceeas 8.21

If the 3-%hase rotor currents of each motor are required, the
d,q currents have to be transformed to their rotating axes
equivalents. For this transformation the angular position of
the rotor is required, and this can be obtained by numerically

integrating the speed of each motor, thus

DO = 9

e 8.22
1 1

D8 = B cenes 8.23
2 2

pp = B teeea 8,24
3 2

The computed values of the d,q currents, speeds and angular
~positions at the end of the first step—length are taken as the
initial values for the next integration step. The process is
repeéted until the next switching operation (i.é. disconnection}

occurs.

8.5.2 'Disconnection condition

Following disconnection Equation 8.13 is used, which can be

rewritten as

[pi] = [L];; 0] = [R)y;o (4] = 8 [6 1y; (3] = 8,6 1,; [§] = 6 [6 14; [i]

LI BB A 8.25
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where the matrices [R]dis’ [L]dis’ [Gl]dis, [Gz]dis and [Ga]dis

are as given in Section 8.2,

The initial values of the speeds and angular positions of
the rotors, required when Equation 8.25 is numerically integrated,
are taken as those immediately before disconnection. The initial
values of the motor currents are obtained by applying constant-
flux-linkage considerations to the stator and rotor circuits of

each motor of the group.

The electromagnetic torque developed by each machine is
computed using Equations 8.4 to 8.6. The variations in the
speeds are obtained by numerically integrating Equations 8.16
to 8.18 if the machines are loaded, or Equations 8.19 to 8.21
when they are unloaded. The angular positions of the rotors are

obtained by numerically integrating Equations 8.22 to 8.24.

8.5.2.1 'Initial values of currenté

On considering the flux linkages in each of the stator and
rotor circuits to remain constant immediately before and after

disconnection we obtain

L . (1rd1)o ¥ Ml(lsdl)o Lrl(lrdl)g + M1(15d )1
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A
+
=
W
~
=
i
=
-~
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where the suffices o, 1 denote conditions immediately before and
after disconnection. If the left-hand sides of the above
"equations are replaced by 1, then in matrix form these equations

become



r. y 3 1( 1
wfd M1 Q Lr 0 0 | 0 0 0 ¢} 0 (1Sd )1
1 . 1 1

M 0 0 0 0 i
qul 0 . 0 Lrl 0 0 (1sq1)1
o
wrd 0 4] 0 0 M2 0 Lr 0 0 0 (i d )R
2 2
q;rq 0 0 0 0 0 Mz 0 Lr 0 4] (1rq )1
2 2 1
wrd3 —M3 Q 0 4] -M3 0 0 0 Lr3 0 (1Sd2)1
- - : Y
qua 0 3 M3 0 4] 0 M3 0 0 0O Lr3 (lsqz’;
wsd LS 0 M1 0. 0 0] 0 0 0 0 (ird )1
1 1 2
U 0 L 0 M 0 0 0 0 0 0 (1 )
Sql sl 1 rq2 !
wsd 0O © 0 0 Ls 0 M2 o 0 0] (1rd )1
2 . 2 3
wsq _0 0 0 0 0 LS ‘0 M2 0] 0 (1rq )1 J
2 2 3
- 8.26

- 8ince the left-hand side of Equation 8.26 is known from the values
of the currents immediately before disconnection, the values of

the currents immediately after disconnection aré obtained.

8.5.3  Reswitching Condition

The equations used for the connection condition are used
also qu the reconnection condition, but the initial values of
the.cdfrents and speeds are no longer zero and are taken as those
immediately before reconnection. The initial conditions of the
voltage applied are determined by the type of Fhe supply to which

the group is reconnected.
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The choice of the step-length is, again, &ependent on
the smallest time constant of the system. As is shown in
Appendix A, this is determined by the reciprocal of the
largest eigenvalue, obtained after writing the system equation
in state-variable form. By this method, a step-length of
0.5 ms was found to give numerical stability of the Runge-
Kutté integration method used when the first approach for the
weak supply is followed and a step~length of 0.25 ms when the

second approach 1s used.

The flow—chart of the computer program is shown in
Figure 4.1 and the listings of the program are given in

Appendix G.

8.7 Transient Condition in 3-motor Group

A group of three motors was formed from the 0.75 kW,

1.5 kW and 2.25 kW motor detailed in Table I, The computer
’program described in the previous section was used to predict
the currents, torques and speeds following connection, dis=-
conneétion end reconnection of each group to a stiff supply,
~and also following connection to a supply with an 11.0 ohm

resistance in each supply line.

The program was .used also to predict the currents and
torgues following plugging and star-delta starting to the

stiff supply.



~145-

8.7.1 Connection condition

Figures 8.1(a) - 8.1(c) show a ccmparison between the
predictedfénd measured stator currents in the r-line of the
0.75 kW and 1.5 kW motors and the b-line of the 2,25 kW
motor, when this group was connected to a stiff supply.
From these results it is clear that the 1.5 kW motor has
the shortest acceleration time, the 0.75 kW motor the
longest acceleration time and the 2.25 kW motor a time in
between those of the other two motors. The differences in
the behaviour of the three machines are sufficiently large

to ensure that an accurate investigation may be made of the

effect of‘switching to a non-stiff supply.’

Figure 8.2 shows a correlation between the experimental
and computed results of the current and torque developed by the
5.6 kW motor when the 0.75 kW/2.25 kW/5.6 kW group was

connected to the supply.

From Figures 8.1 and 8.2 it is clear that the predicted
and mgasured currents and torques are in good agreement.
The computed results in these figures are, of course, precisely
the same as the computed results when each of the machines is
connected separately at the same instant on the voltage wave.
This confirms the accuracy of the more complicated program of
the group, since its results agree with the results obtained

from the program of one machine.
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Figures 8,3(a) - 8.3(c) show the torques and the speeds
of the 0,75 kW, 1.5 kW and 2.25 kW motors, following connection
of the group to the stiif supply; The electromagnetic torque
patterns ;btained are again precisely the same as those when
each machine is connected separately to a stiff supply, since
there will be no interaction between the different machines.
It can be seen from the figures that the 1.5 kW motor
achieves its steady-state after about 8.5 cycles of the
supply, the 2,25 kW motor after 9.5 cycles and the 0.75 kW

motor after about 13.5 eycles, confirming observations that

can be made from the current results of Figure 8.1.

With the 11.0 ohm resistances included in the circuit,
the starting currents of the three motors wvere obtained
experimentally and theoretically, and a comparison between
these is shown in Figures 8.4(a) - 8.4(c¢c). The common terminal
voltage was also measured and predicted, with the results
. shown in Figure 8.5. Again, due to the long time involved,
peak rather than instantancous values are indicated in , the
curves, From figures 8.4 and 8.5 it is clear that the all
predicted and measQred comparisons show reasonably good agree-
ment, but not as good as that for results obtained on a shorter
time period. Because of the lengthy run-up time of the machines,
the differences which do arise may be accounted for mainly by
inaccuracies in the values obtained for the friction and windage
torques of the machines, which have a much greater influence
than when the supply is stiff. When the machines are loaded,

the shape of both the current and the common voltage curves will
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depend significantly on the characteristics of the loads on
the machines, which will then control the value of the
accelerat%ng torque fgr more than will the motor parameters.
Figures 8.6(a) - 8.6(c) show the computed torque and speeds
of the 0.75 kW, 1.5 kW and 2.25 kW motors respectively,

corresponding to Figures 8.4 and 8.5.

In investigating Figures 8.4 and 8.5 we see that the
current of the 0.75 kW motor begins with a constant amplitude
of 0.76 p.u,, that of the 2,25 kW motor with an amplitude of
0.67 p.u, and that of the 1.5 kW mofor with an amplitude of
1 p.u. The currents of the three machines remain practically
constant.until after about 200 cycles of the supply frequency,
when the 1.5 kW motor begins to accelerate, and its current
falls rapidly to an almost constant amplitude of 0.11 p.u.
At the same time, the common veltage rises from its previous
value of 0,1 p.u. to 0.12 p.u. This increase in the common
,volﬁage causés an increase in the currents of the 0.75 kW and
the 2.25 kW machines, and this condition persists until the
2,25 kW motor begins to accelerate after about 350 cycles of
the supply. After acceleration, the motor draws a reduced
current of 0,16 p.u., and the common voltage will corresﬁondingly
rise to a value of 0.24 p.u., causing the currents drawn by the
0.75 kW and the 1.5 kW motors to rise to 1.4 p.u. and 0.3 p.u.
respectively, This new condition continues until the 0.75 kW
motor, which has the greatest moment of inertia, accelerates
after about 475 cycles of the supply, when its current is reduced

to a value of 0,6 p.u., which is its fingl steady-state no load
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value. The common voltage then rises to the final and steady-
state value. The increase in the motor voltage causes the
current drfawn by the 1.5 kW and 2.25 kW motors also to increase
to their steady-state no-load values of 0,33 p.u. and 0.31 p.u.
respectively. It is clear from this discussion that the
acceleration times of the three machines are not mutually
independent, and that the moment of inertia and the load
characteristics of each machine will affect the acceleration

times of the other machines of the group.

The electromagnetic torque developed by the 0.75 kW,
1.5 kW and the 2.25 kW is shown in Figures 8.6(a) - 8.6(c).
From these figures we see that the torque developed by each
motor is initially oscillatory. That developed by the 0.75 kW
motor soon attains an almost constant value, although the séeed
has not changed significantly from zero. After the initial

oscillations the torque of the 1.5 kW motor continues to increase,

"and the speed of this motor rises almost uniformly. After about

200 cycles of the supply have elapsed this motor, which has the
smallest moment of inertia, achieves the speed corresponding to
fhe common voltage, and as its current and torque fall rapidly
the resultant increase in the common voltage causes an increase
in both the torques and the currents of the other machines,

This continues until full speed of the 2.25 kW motor is reached,
when the current and torque of this motor fall rapidly and the
further increase of the common voltage causes an increase in both
the torque and the speed of the 0.75 kW motor; This continues
until full speed of this motor is reached, when its current and

torque fal} rapidly and a voltage almost equal to the supply
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voltage is applied to the three machines. However this final
change does not aiter very much either the torque developed

by the machines or their speeds.

!

8.7.2 Disconnection condition

The common voltage across the three motors during dis-~
connection was measured, together with the currents flowing
in the stator circuits of the individual machines. The common
voltage and the stator currents were also predicted, using the
computer program described in Section 8.6. Tigure 8.7 shows
the close correlatioh obtained. Computed results for the
rotor phase currents of the three machines are also shown in
Figure 8.8, from which it is clear that, as in Section 7.7.2,
the rotor currents are at all times osecillatory and remain.
so for a considerable time, although their amplitude mnaturally
decays as the time of disconnection increases, The alternating

" nature of the rotor currents has an effect on the characteristics

following any subsequent reconnection, depending on the instant

the machines are reconnected.

The air-gap powers of the three machines are shown in
Figure 8.9, from which it can be seen that there is an inter-
change of power between the three machines. Although each
machine initially acts alternately as a motor and as a
generator, the situation eventually settles down to one where
the machine of the greatest moment of inertia is feeding power

to the other two.
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As Figure 8.10 shows, the speeds of the three machines
decay at a closely similar rate, and during the first part
of the spfcd curve, there are sﬁall oscillations due to the
changing ﬁode of operation of the machines. After the

oscillations have ceased the speeds become close to the

speeds when the machines are considered in isolation.

Figure 8.11 shows a comparison between the terminal
voltage follewing disconnection of the group from the
supply and each machine discomnected in isolation. From
this figure it is seen that the time constant of the decaying
voltage is greater than the time constants of both the 0.75 kW
and 2.25 kW machines in isolation but less than that of the

1.5 kW machine.

8.7.3 Reconnection condition

The curfents following reconnection of the 3-motor

" group to the original stiff supply, after a disconnection
beginning at the instant indicated are shown in Figure 8.12.
The computed and measured values of the currents show good
agreement. This further justifies the accuracy of the model
adopted for the sfstem and its digital simulation, and

enables a full investigation to be made on a computational

basis alone.
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§.7.3.1 'Reswitching to the same supply

To investigate the effect of the duration of the
supply iﬁgerruption on the transient torque, these torques
were computed following reconnection after severaldifferent
lengths of interruption from the same instant of disconnection.
In Figures 8.13(a) - 8.15(a), torque patterns following re-
connection after an interruption of 80 ms of the supply to
the 0.75 kW, 1.5 kW and 2.25 kW motors are shown, and from
a series of such curves Figures 8.13(b) - 8.15(b) were
produced to show the variation of the torque peaks with
increasing length of supply interruption, From these figures
it .can be seen that the positive torque peak of the 0;75 kW
mo tor increages initially to a maximum of 1.49 p.u. after a
10 ms delay, decreases to a minimum of 1.42 p.u., after a
delay of 20 ﬁs and increases again to a maximum of 3{19 P.U.,
before deéreasing continually as the length of interruption
inereases. Meanwhile, the positive tofque peak of the 1.5 kW
motor decreases initially to a minimum of 0.21 p.ﬁ. after a
delay of 10 ms, increases to a maximum of 1.28 ﬁ.u. after
a delay of 20 ms and decreases to a minimum of 1.54 p.u,
. after the delay reaching 30 ms, before increasing to a
maximum of 1.18 p.u. and afterwards decreasing. The positive
‘torque peak of the 2.25 kW motor initially increases to a
maximum of 0.71 p.u. after a delay of 10 ms and decreases to a
minimum of 0.56 p.u. after a delay of 20 ms, before increasing
to a maximum of 0.87 p.u., and finally decreasing as the delay

of interruption increases.
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Reference to Figure 8.9, which shows the variation.of
the air-gap power of the three machines following dis-
connection from the supply, shows that after a 5 ms delay
the 0.75 kW and the 2.25 kW machines are generating and the
1.5 kW machine is motoring. When the delay is increased to
8 ms, the machines are still in the same mode of operationm,
and when reconnected to the supply the machines which are
generating draw more power to enable them to transfer to a
motoring mode, while the machine which is motoring draws less
power since it continues in thersame mode. It is for that
reason that the torque peak of the 0.75 kW and 2.25 kW machines
tend to increase following.reconnection, whereas that of the

1.5 kW machine tends to decrease.

, Figures 8.16(b) - 8.18(b) show the variation of the
torque peak following reconnection of the group, after an
interruption of constant length but at a Qariable starting
.instant in tﬁe supply cycle. As was the case in Figure 7.16,
these variations are again all the same, i.e. independent of
the instant of interruption, as long as the period of this

interruption i3 constant,

Figure 8.19(&) shows a comparison between the torque
peaks following reswitching of the 0.75 kW motor alone and
in the 3-motor group. Figures 8.19 (b) and 8.19(c) show
similar .comparisons for the 1.5 kW and 2.25 kW motors respec-
tively. From these figures the positive torque peak of the
0.75 kW motor in isolation is.seen to be initﬁily greater than

when in the group, but after a delay disconnection of 60 ms
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the positive peak in isolation is less than when in the group.
On the other hand, the negative torque peak of the machine

in isolation is always greater than when in the group.

r
H

Referriné to the comparison in Figure 8.11ta) between the
terminal voltage of the machine when disconnected from the
supply alone and in the group, we see that the decaying
voltage of the 0.75 kW motor in isolation is less than when
in the group. Since the reswitching torque depends on the
differences in magnitudes and the phase-ghift between the
suppl& voltage and the terminal voltage of the machine at
the instant of reswitching, the torque peak of the machine
in isolation should be greater than when in the group. The
difference between the positive peaks is attributable to the

difference in the speed transients of the machine.

The comparison of the 1.5 kW motor in Figure 8.19(b)
shows that the positive torque peak of thé machine when in
the group is greater than when in isolation. After a delay
of 65 ms the positive torque peak of the machine is isolation
is greater thaﬁ when in the group, while the neéative torque
peak is always greater when the machine in the group than when
. in isolation. This can be explained by referring to Figure
8.11(b), which shows that during disconnection the terminal
voltage of the machine in isolation is greater than when in the
group; hence the torque developed following reconnection of
the machine in the group is greater than when in isolation,

except for that part of the positive torqgue peak which is due



to the differences in the transient speeds.

Figure 8.19(c) shows that thé torque peaks of the
2.25 kW mo tor when reswitched to the supply in isolation
is greate; than when in the group, which is, again, due to
the decaying voltage of the machine in isolation during

disconnection being less than when in the group.

8.7.3.2 'Plugging

An investigation was made to establish how the

currents and torques of the three machines change with the
time taken for plugging to the stiff supply. TFigures 8.20(a) -
8.22(a) show computed torque patterns for a period of 10 ms
between disconnection and application of the reversed phase—
sequence supply to the group of the 0.75 kW, 1.5 kW and

2,25 kW motors respectively. From a series of such curves
Figures 8.20(b) - 8.22(b) were developed to show the variation
‘of the largest torque peak with the period of supply interrup-
tion. Depending upon the orientation of the rotor and the
iﬁstant of application of the reversed phase sequence voltage,
the torque peak variations are seen to oscillate between a
" maximum and a minimum value, with a greatest torque peak
corresponding to a condition when the supply and.the stator
voltages are in antiphase and a minimum torque peak to the

condition when they are cophasal,

Figure 8.23(a) shows a comparison between the torque
peaks of the 0.75 kW motor when plugged in isolation and when

plugged in the group; Figure 8.23(b) shows a similar comparison
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for the 1.5 kW motor, and Figure 8.23(c) for the 2.25 kW
motor, From these figures we see that, in the case of the
0.75 kW machine, both the greatést and the smallest torque
peaks aré less when the machine is plugged in isolation

than when it is in the group. For the 1.5 kW machine, both
the greatest and the smallest torque peaks are greater when
the machine is in the group, and for the 2.25 kW machine

both the greatest and the smallest torque peaks are less than
when the machine is in isolation. This is expected from the
comparisons between the decaying voltage of the machines in
isolation and in the group, shown in Figure 8.11, from which
it can be seen that both the 0.75 kW and the 2.25 kW motors
have smaller terminal voltages in isolation than when in the
group, whereas that of the 1.5 kW machine is greater. Since
the plugging voltage has a reverse phase sequence, the torque
produced by the 0.75 kW and 2.25 kW machines in isolation is
less than whén in the group, while the torque developed by the
1.5 kW machine is-greater in isolation. This conclusion is
the opposite of that reached when the machines are recomnected
to the same supply. The torque peaks decrease as the delay
of interruption inéreases vhether the machine is in isolation

or in a group.

Figure 8,24(a) - 8.26(a) show stator current patterns
following plugging of the three machines after a supply
interruption of 80 ms, and from a series of such patterns
Figures 8.24(b) - 8.26(b) were produced, showing the variations

of the maximum current peak with delay. The maximum current
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peaks are seen to be alternately positive and negative,
with a rapid change from positive to negative about every

10 ms.

B.7.3.3 'Star-delta starting

Starting transients were computed for the 0.75 kW/
1.5 kW/2.25 kW motor group, for an increasing period of
interruption between the star—connected starting condition
and the delta connected running condition. Tigures 8,27(a)
-~ 8,29(a) show the torque patterns of the 3-machines following
a supply interruption of 10 ms, and from aseries of such curves
Figures 8.27(b) - 8.29(b) were produced to show the wvariation
of the torque peak as the length of the supply interruption
is increased. From these figures it can be seen that the

torque peaks are never high for any of the three machines.

The computed current results for a deléy of 10 ms are
shown in Figures 8.30(a)} - 8.32(a). From these patterns
Figures 8.30(b) - 8.32(b) are developed. From these figures

the maximum current peaks are seen to alternate between positive

and negative wvalues,

Figures 8.33(a) - 8.33(c) show comparisons between the
torque peaks of the 0.75 kW, 1.5 kW and 2.25 kﬁ motors respec—
tively, when started alone and in thé group. By referring te
Figure 8.11(b}, the voltages of the 0.75 kW motor and the 2.25 kW
motor in isolation are less than when in the group, while that

of the 1.5 kW motor is greater. The torque developed following
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connection of the 0.75 kW motor or the 2.25 kW
delta is consequently greater when the machine
than when, in the group. On the other hand the

1.5 kW motor in the group 1s greater than when

motor in
is in isolation
torque of the

in isolation.
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8.8 ‘Conclusions

The idealized model of a group of three motors was
used in d?veloping a digital-computer program, for the
evaluation of the overall performance of the group.
Results obtained from this program showed good agreement
with experimental results, when the group was connected
to either a stiff or to a non-stiff supply, disconnected

and reconnected to the same or to a different supply.

When the 3-motor group 1is comnected to a stiff-supply
the transient currents and torqﬁes developed are precisely
the same as when each motor 1is connected Seperately, since
there can be no interaction between the machines. When the
group is connected to a weak supply, the impedance of the
supply causes interaction between the machines, and the
transient performance of each motor is affected by the trans-
ient performance of the others. As currents are drawn from the
“supply therelis a reduction in the voltage common to the three
motors, and both the electromagnetic and the accelerating torques
are therefore reduced. As a consequence of this, the run-up
time of the machines may be very long, depending on the short-
" ecircuit capacity of the supply and the characteristics of the
loads coupled to the motors. Even at no load, a quite small
source impedance will produce an appreciable increase in the
run-up time, and the less the moment of inértia and the opposing
friction and windage, the quicker will be the motor run-up. The

electromagnetic torque produced by each motor was found to be



initially oscillatory. Although the motor which ran-up to

its steady~state speed most rapidl& was only slightly affected
by the run-up of the other two machines, the run-up time of
each of fhese was significantly affected by the presence of
the other two. The motor which ran-up in the second shortest
time was affected principally by the run-up of the motor

with the shortest run-up time but only slightly affected by
the other motor, whereas the motor with the longest run~-up

time was affected by the acceleration of both the other two

machines.

Following disconnection of the three machines from the
supply, both the stator and the rotor circuits of each carry
decaying unidirectional and alternating currents, and one of
the machines acts as a motor and the other two as generator,
or vice versa, depending on the parameters of the motors and

the stored mechanical energy at the instant of disconnection.

The torque developed during disconnection is oscillatory,
and the mode of operation of the motors changes before a uni-
directional operation is achieved which continues until the air-

gap fluxes have decayed to zero.

When the gr&up of motors is disconnected and reconnected
to the same stiff supply, the behaviour ﬁf the machines is
affected by their interactive nature during disconﬁection.
During reswitching the machine with the smallest open-circuit

time constant has torque peaks greater in isolation when when

in the group, while the machines of the greater time constant
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has smallest torque peaks. Furthermore, as long as the
period of the supply interruption is constant, variation
of the inftant on the cycle at which the machines are dis-

connected will not affect the torque pattern developed.

When the machines are plugged, the machine with the
smallest open-circulit time constant will have a greater
torque peak in the group than when in isclation, whereas
those of the machines with the greatest open-circuit time

constant will be smallest in the group than when in isolation,

When the group is star—delta started, the torque peaks
developed by the machine with the smaller time constant in
isolation is greater than when the machine is in the group and

vice versa.
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APPENDIX A

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS
.

Numerical methods for the solution of ordinary differ-
ential equations may be put in two categories - numerical
integration methods (mainly predictor-corrector) and solution
by successive substitutions (mainly Runge-Kutta methods).

The advantages of Runge-Kutta methods are that they are self-
starting and easy to program for digital computers. Although
predictor-corrector methods are of greater accuracy and error-
estimating ability, Runge-Kutta methods still find application

in starting the numerical solution and in changing the inter-—

val of integration.

A.l Runge~Kutta methods

36,37 are used for solving differential

Runge-Kutta methods
equations by means of successive substitutions, without requ{ring
the explicit definition or evaluation of any derivatives beyond
the first. For the solution of the equation y' = f(x,y) with

given initial condition Y, = y(xo), the general Runge-Kutta

method of order m at a sequence of points X 5 Koy oeenen is
m
-y =k= ) w, k, A.l

where v, = Y(xr), the wi's are constants and



=167~

i-1
ki =hf (xn +a h, y, -Z Bi j kj)
J=1
where h = x - % and ¢ = 0. By choosing the o.'s and
n+1 n 1 i

Bij's properly, the expansion of the right~hand side of
Equation A.1 can be made identicalwith Taylor series expan-

. . m
sion of k about X through the term in h' .

To determine the suitable values for the ai's and
Bij‘s, the ki's are expanded by the use of Taylor series.
For fourth order Runge-Kutta methods i.e. when m=4, this
will result in three equations for kz’ ka and kq in terms
of the function and its high derivatives. By inserting these
three equations into Equation A.l an explicit expression for
k will result, containing eight terms of orders up to and
including h"*. If each term is compared with the corresponding
term of the Taylor series expansion for k, a two—parameter
system of equatioms (with a2 and aa as parameters) will result,
and two further consistent relations between the parameters
may be arbitrarily imposed in order to determfne the solution.
It i1is the relationship between the parameters which determines

the relative properties of the various types of Runge-Kutta

solution. With the fourth order Runge~Kutta solution a2 and

o are both equal to 1 , and consequently B = B = l.
3 2 21 32 2
1 1 1
=0 =1 11 oth ., =0 = = = = =

Bha . » all other Bi; P W S5 w T W =, and

m“ = %. The resulting solution is then
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1
]
1]
o
]

Ltk +2%x +2Kk +%)
6 " 2 3 y

k =ht (xn’ Yn)

- 1 b1
k2 = h{ (xn + 3 h, Y, + 5 kl)

h, y +lk)

k =hf (xn + n 5 Kk,

roj =

k =hf (xn + h, Y, + k3)

A.2 Predictor—corrector methods

While the Runge-Kutta method starts each integration
‘step independent of the other steps, and uses only rates-
of-change of the variables integrated within each step, the

38,39,40 make use of values of

predictor—-corrector methods
the variables and of their first derivatives obtained in
previous steps. From these, a prediction is made at the
beginning of each step of the values of the integrated
variables at the end of it, and many formulae may be derived

that approximate to these values from a knowledge of the

previous ones.

The accuracy of prediction is then dependent upon the
number of previous values of the variables and their deri-
vatives to which recourse is made, and on the relative signi-

ficance attached to each by their weighting in the formula for
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prediction. Errors may be checked by comparing the
prediction formula with the exact infinite-series expansion
of the integral over a small step, from X, to X o+h" By
appropriate choice of the coefficients of the previous values
used, an exact correspondence is sought between the predic-
tion formula and the first few terms of the expansion.,

When correspondence is achieved in the more important early
terms, the remaining terms in the infinite series represent
the error incurred in prediction. This error is referred

to as being of order p when the predictor formula is
accurate up to, and including, the (p-1)th power of the step
interval h. The shorter the step interval the smaller is
this ertor of truncation, and to this must be added the
round-off errors and also those inherited from previous steps,
in order to give the total error incurred at the end of any

one step of integration.

Having in this way derived an estimate of moderate
accuracy, it 1s now necegsary to reduce the erro? by the
application of a corrector formula. The latter, using the
first prediction, and other previous values as in the pre-
dictor formula, yields a final value for the integral, which
is of higher accuracy, at the end of the step. In many cases,
a single application of the corrector is sufficient, but it may
be applied several times iteratively, until no change in the
values of the variables takes place on its successive application.

To promote an efficient computation, the corrector formula should
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have as low a truncation error as that of the predictor.

The general form of the commonly used group of

r -
predictor-corrector formulae may be written as

yn+1 -a yn + an_1 yn_1 + ...t an-p yn—p +
h(bn+1 Yo + bn Y, tereot bn_.p yn-p) + Cn A.2

in which C_is the error incurred during the (n+l)th step,
and where the coefficients in the predictor formulae are,
as a rule, different from those in the corrector formulae.

In particular, the coefficient bn+1 will be zero in all
predictor formulae.

Predictor-corrector methods may be summarized as

follows.

A.2.1 Midordinate—trapezoidal method

Using formula A.2, with the midordinate rule used to

predict the value §£+1 of the integral at the (n+l)th step,

a solution is obtained in terms of one previocus value and one

derivative

wd
1}
g
+
to
j=n
]
=y

n+i n-=1
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with the error being of the order h®. The prediction is
corrected by the trapezoidal rule, and the final value of

the integral at the step considered is

which is also of third-order accuracy.

A,2.2 Adams=Bashforth method

By increasing the number of previous values used in
prediction and subsequent correction, the accuracy of inte-
gration may be improved at the expense of more complicated
formulae, and therefore of an increased amount of computation

and storage space,

The fifth order Adams-Bashforth method uses three

previéus derivative values in the predicteor formula, the latter

being

- l a _ - .~ _ a
Yot:1 " n T 22 (55 v, 9 Yoy * 37 ¥y, — 0 Yn-3)

and two previous derivative values in the corrector formula

which is
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A.2,.3 Methods of Milne, Hamming and Ralston

These methods are shown in Table A.1l.
.

A.3 = Step-length choice in Runge-Kutta methods

To choose the appropriate length of the step of inte-
gration required in a Runge-Kutta solution, so as to ensute
both accuracy and numerical stability, the system equations

are arranged in the standard state-variable form as,

[x] = [AY[x] + [B][u]

The time constants of the system are found by obtaining the
reciprocal.of the eigenvalues of A . Granborg35 has shown

that, for a 4th-order Runge-Kutta procedure, the 1iﬁit of
numerical stability is reached with a step-length 2.8 times

the system smallest time constant, However, Williams and Smith41
adopted a figure of 1.0 times the smallest time constant of the;

: :
.8ystem.



Method

Predictor

Intermediate Step

Milne

Hamuing

_yn+1 121(y y )

Ralston
1

Corrector .

Yo+ In-1" _{yn+1 RAACAN

=1 - T =
Vor = 88y -yt Yo+,

~ 9
| 3n(y 2y -y ) o7
Yoe, (2 y +2
-y )+ v -y

n-s 27 n—-3 “n

Ralston
2

- 1 \_ -~
= 5(49 y3-98 y5_

+70y"
1 n=,

n-u- 14 yn-s

Toay™ 52 Ty * 2,
- yn-— 1 % (yn_a-yn)
AU S
y;_l)

TABLE A.1

Final step
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APPENDIX B

METHODS OF MEASURING TOROQUE

Iz

B.1 Unloaded motor

B.1.1 ‘Tacliometér using diffraction grating

The application of diffraction gratings made by the
Metron-N.P.L42 proéess have proved very suitable for linear
measurement. They consist of astrip of plate glass, bearing
a thin layer of synthetic resin, the surface being moulded
with a large number of transverse grooves, usually 1000-5000

per inch, of very even 'saw-tooth' cross section,

Cifcular diffraction gratings are readily used for
the continuous measurement of angular displacement in a
corresponding way to linear diffraction grating. TFor the
purpeoses of measuring angular velocity and accelerafion43’44,
the tachometer consists of two diffraction gratings, the main
and the index gratings. The main grating is a ecircular glass

surface covered with radial lines and attached to the shaft

of the motor. The index grating is a much smaller glass disc
covered with lines of the same spacing as the main grating.

The index grating is mounted within a sensing head, inside
which there is also a photodiode andban optical system, con-
sisting of an exciter lamp at the focal length of a collimating
lens. The sensing head is attached to an aluminium plate,
rigidly supported on the motor bed-plate. By adjusting the

optical system, parallel light is made to fall on the two
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gratings, and the index grating is turned about its axis

until the optimum pattern of Moire fringee is obtained.

Rotation of the main grating relative to the fixed
index grating results in a changing pattern of Moire fringes
and these are detected by the photo-diode in the form of
a sinusoidal signal, each cycle of which corresponds to
the traverse by the main grating of one grating space. The
sinusoidal output from the photo-diode is fed fo a high-
gain amplifier with a high cut-off frequency, so that a
square wave output with a very short rise time is obtained
at all motor speeds, the pulse width being inversely prop-—
ortional to the speed. During a transient the amplifier
output pulses may not be of uniform width. A monostable
multivibrator is used to reduce them to a uniform width and
the spacing between consecutive pulses may be used as a

measure of the rotational speed.

.If the number of pulses occurringin successive equal
time intervals are counted, it is a simple matter to deter—
mine both the velocity and the acceleration of the motor.
The necessary data storage and processing can be performed
either by electraﬁic circuitry specially developed for the

purpose('3 or by the use of an available digital computer.
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B.1.2 The use of perforated disc

If a series of holes are drilled near the circumference
of a disé fixed to the shaft of the motor, and one side of the
disc is irradiated by a light source, a series of light pulses
areproduced on the other side when the disc rotates. The light
pulses are arranged to fall on a photodiode, where they are
converted to electrical form. Electronic counting of the number
of pulses arriving in fixed time intervals, and subsequent data
processing circuitry, then enables the acceleragion and velocity
to be determined in a way substantially the same as when the

pulses are produced by a diffraction grating.

B.2 ' 'Loaded motor

When the motor is loaded, measurement of the transmitted
torque can bé performed by one of several methods, which differ
only in how the strain in the rotating shaft affects some elec-
trical or magnetic quantity. The methods gegerally adopted can
be classified as follows.

B.2.1 Electromagnetic methods

The principle of these methods is that when a shaft of
magnetic material is strained, its permeability will change.
If the shaft completes a magnetic¢ circuit in which a flux is

established, the reluctance of the magnetic circuit will change
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with the strain in the shaft, and this will cause a change
in the flux which can be used to provide an output signal
proportignal to the torque causing the initial change in
reluctanée. An example of a torque measuring device

' based on this principle is the torductor.

B.2.1.1 ‘Torductor

The form of torductor particularly useful for detecting
changes in the permeability of a rotating shaft is the ring
torductor, which consists of three sets of pale rings
arranged side by side around the shaft as shown in Figure
B.l. These rings constitute a central excitation ring, and
two pick-up rings, with mutual spacings of one pole pitch.
The excitation ring is execited from a 100 Hz, 220V supply
and the outer rings are connected in series and phase
opposition fo each other. In this way the torductor measures

the torsion in the shaft as two mutually orthogonal components,

one is tension and the other is compression and there is ne

output signal from the rings when no torque is transmitted by
- the shaft. The output which results when the shaft 1s strained

is rectified and fed to a recording device.

B.2.2 Strain gauge methods

The principlie of these methods is that the strain in the

shaft will cause a change in a capacitance in a capacitance
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strain gauge, or a resistance in a resistance strain gauge.
The change in this electrical quantity provides an output

which is proportional to the transmitted torque.
k

B.2.2.1 ‘Capacitarice strain gauge

A capacitance strain gauge45’46

consists of four parallel
plate condensers connected in parallel. One plate of each
capacitor is fitted to each of two circular ebonite discs,

as in Figure B.2(a). The discs are mounted on the motor

shaft, with the two sets of plates parallel and separated

by a small air gap; and the four capacitances so formed are
connected in parallel, with one side earthed to the motor

shaft and the other brought out through a slip ring., The

two discs are mounted so that the length of shaft by which

they are separated is strained, and the capacitance is changed,
_ Figure B.2(b). The change in capacitance is a measure of the
torque and means for its accurate determination must be
provided. To accomplish this, the capacitance strain gauge

is made part of the tuned circuit of a coupled r.f. oscillator.
The gauge is energised from an alternating source at about

5 kHz.

Due to the variations in the contact resistance at the
slip ring, amplitude-modulated components will occur at the
output of the oscillator, and due to the strain in the rotating

shaft frequency-modulated component will appeér. The undesirable
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amplitude-modulated components are eliminated by use of a
limiter stage, and the required frequency-modulated signal
is converted to an amplitude modulated signal in a
discriminator stage. The output of the discriminator is
rectified to obtain a unidirectional signal which is then

amplified and fed to a recording device.

B.2.2.2 'Resistance strain gauge

47,48,49 measures the surface

A resistance strain gauge
elongation or compression of the shaft. The principal axes
of strain in a eircular shaft subjected to torsion occur
at 45° to the axis of the shaft, the strains being at right
angles and equal, but opposite in sign, i.e. one is tensile

and the other is compressive. Thus, if a resistance strain

gauge is mounted on the surface of a shaft, along a 45" helix,

it will be subjected to the maximum strain arriving from the

torque. A single gauge could be used in this way, but it
would be respoﬁsive not only to the torsional sﬁrain, but

also to bending strgin. Furthermore, any change in the
brush-contact resistance at the sliprings would swamp the

small changes at the gauge. In practice therefore four gauges,
on helices at right angles and on opposite sides of the shaft,
are connected in a Wheatstone bridge arrangement and the out-
put signal from the bridge is amplified before the slip rings.

It is, therefore, necessary to have slip rings associated with
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the strain gauge bridge, two to connect the input to the
bridge and two for the output signal. The most important
feature in the choice of the slip-ring and the brushes is
to keep ;he contact resistance small and constant, Smail
diameter slip rings should be used to reduce the running
velocity to a minimum while to minimise the noise the
brushes are made from silver-carbon with a fairly high
pressure on stainless steel or silver slip rings. The

output signal of the bridge is amplified and fed to a

recording device (Figure B.3).

B.3 ~ 'Measuremernt of the reaction on the stator

Measurement of the torque developed by the rotor of
an induction motor can be obtained from measurement of its
reaction on the stator, This can be accomplished by using,

. .. 50
for example, a microwave cavity™ or a load cell as the

necessary transducer.

B.3.1 Use of a microwave cavity

A microwave cavity51 is an enclosed chamber in which
a dielectric medium, often air, is surrounded by a conducting
material. The cavity may be a rectangular box, a cylinder, a
sphere, etc. The cavity can obtain an electromagnetic field,

which varies periodically when and only when the frequency of
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. the field has certain definite values., Inside the cavity
oscillations of energy occur between the electric and the
magnetic fields, as energy is transferred through the

cavity at a definite frequency which depends on the size

and shape of the conducting surface.

In making connections to external circuits for
exciting clectromagnetic waves in the cavity, and for
absorbing energy from them, small coupling probes are
inserted through holes cut in the metal enclosure, and
since energy will be radiated through these holes it is

desirable to keep them as small as possible,

To use the microwave cavity as a torque~meter an
oscillator is used to feed the cavity with a signal at a
fixed frequency through the input coupling probe. The out-
put from the output coupling probe is fed directly to a
recording device if the torque is pulsating. If the torque
"is constant, the output is connected to a detector which
converts the variations in transmitted power to variations in
direct current, which are then amplified and fed to a recording

device.

For the case of an induction motor, the stator core
with its winding is suspended by rigid cantilevers. The
resonance of the mechanical system excited by the slotting of
the motor and bearing vibrations is suppressed by an attenuating
network. A rigid link transforms the rotational movement of

the stator, due to the reacticn of the torque developed by the

—
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rotor, to a2 linear displacement of the diaphragm of a
microwave cavity. The cavity is calibrated by an attach-
ment enabling a fixed torque produced (say) by a lever arm

and weight to be applied to the stator.

B.4 'The use of a load cell

The reaction of the torque developed by the induction
motor on the stator can be detected by means other than the
microwave cavity. One simple way in which this may be
accomplished is by mounting the feed of the motor or short
pillars, and recording the deformation of the pillars by
resistance or semiconductor strain gauges. The pillars must
be sufficiently sturdy for any stator movement to be extremely
small. The strain gauges are connected in a bridge formationm,

and the 6utput is amplified and fed to a recording device.
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APPENDIX C

C.1 Analytical solution for stator and rotor currents for
connection of a single machine

Equations 6.1 are non-linear differential equations,
By assuming that the speed may be considered as constant for
the first few cycles following connection to the supply the

equations become linear.

The solution of Equation 6.1 is facilitated by the
introduction of 2-phase instantaneous symmetrical components,
thereby reducing the number of the equations involved to two.
These equations are
o - - (' o
A . R +LD MD 1-
sp s 5

0 M(D - j8) Rr + Lr(D - 39 i Jee

S JL?

The positive-sequence component of a balanced set of voltages

is obtained from

v 1 a a? v ]
s$p a
v = 1 1 a? a v
sn 3 b
tVsz L 1 1 1 v,
a J L J

c.2
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where a = j 3

so that the positive-sequence component vsp is

Y3 Vm j{wt+§)
v _ = e

s5p Ji

Applying Laplace transform and solving Equations C.1 for

I and 1 , Wwe obtain
s T

k + (8 -3] é)
I = : L . : +
s oL (S-3w(S+0 -jBIS+a ~-3B8)

8 1 1 2 z

,%sﬁd.Q.Lr Ls S * (gr R Q.Lr)(Ls_lspu * M.lrpo)

oL L (s+a1~jBI)(S+a2-j82)

C.3

and

I - UM (i6 -8
r oL L . . . *
p s T(-jwE+ae -jBIE=0-j8)

Frp _q.Ls_Lr $.+ Rs.(m 1sp_ * Lr lrp ) 1 ® M,(}sp ALs_+ M e )

1] 4] ' 1} 0 p 0

g S - 3 B)Y(S + - j
Ls.Lr (s + @ =] 81)( . @ 3 Bz)

C.4



~184-

. 36
where I and I__ are the Laplace transform of i and i eJ
sp rp s r

P p

respectively, and i and 1 are their initial values. In
( SP, P,
the above equations the following simplifcation substitutionms

are introduced

Q
]
j—
|

@« = =5 4+Re /Z

,.kr.+.ks
= . - Re VZ

- Im /Z

w
]
N D -

+ Im V2

™
n .
N D

wheré -
;- (k + k )2 _ (9)2 _ kr ks . é-(ks.- kr)
2aq 2 o 172 o
Rs
s =1
8
.Rr
ke =1



=185~

Taking inverse transforms of Equations C.3 and C.4

we obtain

.{kr.+,.[- o + 3 (8l - 81} .[cos Bl.t.+.j .§in th] e-alt

s [Fe+i @ -wlo -a+j B -8)]

. . . . -0 t
. {kr + [- a2+ j (B2 - 8]} [ cos th'+ j sin th] o 2
o Lg [Fo+i B -] [(a ~a)+j B ~8)]
2 2 1 2 2 1
v Ikt (w- 8)] [cos wt +.j sin wt]
o1

s fo+j (w=B80][o +3j(w=-B)]
1 1 2 2

- - N . - - + -' - . + . . - ‘O .
.. alt [¢ a1+ j Bl)(erLs lspo (Rr_Je Lr)(}spoLs M 1rp3]‘(cos‘81t Hj blﬁﬁlt

o L L, [a2 o+ (81 - 82)]

e

-0
- . M . - - - - - 3 2
[( a2+ 3 BZ)CILILS 1sp +(Rr j eIE)(lsp_Ls,+ ﬁ 1rp)}[cosszt+q s;qszt]e
+ 0 0 0
oL L [ao -0 + 3 -
P L | . , F3 (62 Bl)]

c.5
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and
i eje . VM = 'j'(é = 'w)(cos wt + j sin wt) .
r, N oL L oo +j =-8)]Tx +J(w=-8)]
* _alt
. RGN + .0, .t .+ si t .
VM i (¢ 81) al][cos B1 t o+ smB1 ] e

+

+

oL L [i'a1 3 (B1 -w] [ a -a + j (B1 - Bz)]

-0 t
82) + az] [cos_Bz.t + j sin th] e 2

- - +
3 (B1 - w)] [(OL1 - Otz) + ] (82 - 61)_]
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1 L]
e (cosB t+jsinB t -+ i ; i s .t . .
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] 0 ]
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-a t
2

e {cosB t+isinf t)[(-o +3 i : : . s .
.2 .J L2 )[( 2 JB.Z).(J.'ITP,qLSI_Jr)i.-RS(I\,llrp-l-Lrlrp)fJe}_IQ_'SPI.JS-[.-M]TIP)]

+ 0 0 0 1]
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C.6
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Since the relationships between the instantaneous symmetrical

components and the d,q components are

‘ .

i, + 3
i = 8" sg c.7
Sp Jz_

. i, +. 31
i e = _xd - rq Cc.8
I'p ‘/2'

applying Equations C.5 and C.6 in Equations C.7 and C.8 we

obtain

. - . - . V . P _ . ! _ _ R ' - -

i4°% LS /bl cl [(w = 8) cos (wt + v ¢1 ¢2) + kr51n (wt + v ¢1 ¢3)]
-alt Vo ' )

+ e cT /2 b - 82 cos (B1 t +Y -~ ¢1 - ¢a)+-(kr - al) sin

1 1

V2 B _ (a.-—a)-A (B -8))
22 " 3 1 22 1 2

Byt +ry-0¢0-¢) +
v oL L (( ~a)>+ (B- -8B )*)
r s 2 1 1 2

| S —— |

oL, 7 < [B1 cos (82 t+y - ¢2 - ¢3) - (kr - aa)sin

V2 @B (o -d)-A (B -B8B))
6 1 2 TN 1

- B t+y-¢ -¢)]+
2 2 3 oL L ((x -a)?+{( -B)?)
Tr s 1 2 2 1

c.9
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= 2 _ 2
oL L ( (o:2 al) + (B1 82) )

e 2 |— Y [k -a)cos(BU+Y~¢ ~¢ ) +B sin(B t +y-d - &)
oL /i T 2 2 2 2 ? =
5
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2 4 & 2 1

4 Y 1

_ 2 - 2
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C.10
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CVk (w-8)
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b =a? + (w-B)2
1 1
c =a? + (w-B)?
1 2

1..0.)'.'81
¢l = tan o
1
1'62 -8
¢2 = tan d < a
1 2

If the expressions for the currents given by Equations
C.9 to C.12 are substituted in Equation 6.9 for the torque,

the components of the resulting expression are found as

, -2 &
i) A e
1
-2 azt
“i1) A e
2
-(cnt1 - <.x2)t
iii) A e sin {[(B - B )t + ¢ ]
3 1 2 1
_alt
iv) Ali e sin [(w - Bl)t + wz]

- t

v) A e ? sin [(w-B)t + ¢ ]
5 2 3

vi) Steady-state component
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C.2 " Analytical ‘solution for current and voltage following
" disconnectlon

The differential equations of the currents during dis-

connection are

10 17 7
[0 R +LD _ L b i
r r T rd
= C.13
C -L 8 R_+ LD} |i
] | T r r | | rq)
The Laplace transform of Equation C.13 yields,
0= (Rr + S5 Lr) Ir + 0 Lr Ir - 1r (0) Lr C.14
d q d
O0=-L 061 + (R +SL)TI -1 (0) L C.15
r Ty b T rq rq r

Equations C.14 and C.15 can be rewritten as,

- - _ . ar
1rd(0) Lr R + 5L 6L I

i (0) L, -L_8 R .+ SL[I

and consequently
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IS R R SRS T
d [(R_+ s Lr)2 + (B Lr)Z]
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b 2 . .
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I = d q
r 2 . 2
q [(Rr + S Lr) + (6 Lr) ]
Thercfore,
' . _ 2 . 2 .
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1 o d q d
rd . Rr , cy ‘
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Lr [(f_ + 8)° + 6 Lr]
T
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_Rr 1r (0) f.e.Lr.lrd(O) + S Lr.lr ()
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L B S

r

By taking the inverse transforms of Equations C.16 and C.17

we obtain
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~ -.t/T
i = 1sin (@t + 1Y) e 0 C.18
T
d
and ;-
~ “t/TD
ir = 1cos (Bt+ ) e .19
q
where
= Y1 2(0) + i_%(0)
r
d q
i (0)
-1 .rq.
Y = tan )
Ta

Substituting for ir and ir from Equations C.18 and C.19 into
d q

the equations of vs and v we obtain
d Sq

.~ . MZ ; -t/TO
MO 1cos (B¢t +y) - - sin (0 € + U¥)]je
0

and

: : M3 : -t/
=[-—Meisin(8t+\b)-——_r-—c08(9t+lb)]e o
. 0
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or in alternative form as

A~ N -'t/T
v, =vsin (Bt+¢)e
S.’
d
~ . "t/TQ
v, =V cos (0t +¢)e
q

where

>
=~

and ¢ = tan~?! ( L)



904

10

908
o0z

067

4R

-196-

APPENDIX D

COMPUTER PROGRAM LISTINGS FOR A
SINGLE MACHINE

MASTER TOTYAL TaaNSIiENT 1IN StNGLE MOTOR
PIMEMSLON AL (h,aY e Gitiedd it0s,4), TRMNEL, 4)
PDIMENSION TECi, &Y GiCa,1Y 21 Chs 1) el Chait)
DIMERSION D (a, 1) Vias 1), VERCGIL) s DIF (4,03
DIMEZNSION N4 4o TRV LCG)Y  AK2 (L) 1 AKS (L, AL (4D
PDIMTNSION i1 (2,10

DIMENSION DiF1¢2,9),R22(2,2),G6L11(2,4%)
DIMENSLION AL4262,4), 4T(2.,13,CT12(2+4),VERIL(?,2)
DIiHENSION G200, 20,4022¢2, 2,011 (2,1).,D4¢(2.2)
DIMERSION ART T 2Y AST202Y 0 Av 130200 AK14(2)
#*x READS T PARANEIERS 4w e

READC(O AL, 0) r 110 4), 0, 64)

READ(OD  TYCLRLUY,0) =1 ,4) 002, 4)

READC(O ) CCGCL,d)Y T ehdyed=t o)

FORDATCLTO o) ’

READCS A 10) C ALIZCI i) 12t,2),d51,2)

READ(S 10X ((RE2C1edy,121,2y,921,2)

PLADCO 100 C(622¢1,0),1=1,2y,4=1,2)

PLEADCS A0 L ALZD (! vuy b =1,2300%1 0 8)
FORNATALZ2FO, )

READCO/GODY, U1, PPrAT1:A22, 4733

READ(O /OGS T BFEL, H, BUR,VH, VN

FORNATLGSED, )

READ(OQ0Z2)1€C,10CC1,NCCD

FURIIAT(ITOD
READ(D, Q07 :pS1,EPSL,EPSD
FURNAT(3FU ., Y

PI=d U*ATAN (1.0}
TUp=Z.Uxpl
TOPi=2.0%xP1,3.0

FOPI=Z. 0%TN) ]

TRI=ZATTHA2E«(DTHETAL 314 . 2) % w

NC=0

DG a1 =14

cl¢,,12=0,0

x4+ JNVERSTUN NF MATRIX L #ww

CALL MBA2ACAL +VERIDPETER,4,3,4)

CUNTIKUE

L=0

VA=YM*SIN(TuD.DxP Ll 3gR+DELY
VE=YM*SINCT 0. 0P i+ yR~-TOFP}+DELY
VE=VM*SIN TG0, NeplxsyR-FOPTLDEL)

pUR=DUR+H )

wxx TRKANSEFOATIONK ROM THR:E PHASE TO D=R AXES w++
VO=LQRT(2.0/ 3.0« (V=) {»¥R~0,5+VL)

VR=SQRI(2. 0/, 3.0 % ClEaRT (3.0 /2. 0)*Vy=(SqQRrT(3_0)/2,0)+V()
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wx+ THNITIAL CUNMDITIUNS OF YulTAGES «xw
v{1,1)=vD
viz,1)svo
yi{3,1)=0,v
vi4,13=0,0
«x» GENERATE MATRICES FOR oals0al AND T ¥+
13 Cati. MZOIBIRI R, Cledibrdateyint)
CALLY MANIBUGTI 6, Cl 0, briioth,itob)
f,'t‘\LL "1202[,*('].‘”’!-{.1161,10“!5111-l”li)
TEPP*TRECY, )
DU 6 K=%,.4
T4 PIFCK )=V iR, i) =RiCn, 1) =DTHETAXGI (K1)
wrx EVALUATE THE KATES OF CoaNGpE OF CURRENTS #*+% %
CALL MZNABIST rYER-DIFab, bt b h, b))
kxe COMPENTCE A aURG, -KUTTA r¥YCLE UFRP NUMERICAL INTEGRATIOM #i+
L=1+1
15 DU 1(} l=1:/o
16 AKT{12=0TCT 1) wii
*#*x TRANSFORMATON “ROM Do TO THREF PHASE v URRENTS sws
CIRASSURT(Z2 , 0/3. 0%l 3,1 32C0SCTHETAY+CY (4, 1)*SINCTHFTAY)
CIRE=SQRT(Z O/3, 03+ (CI(3, 1+ COS(THETA+TOPIY 401 (4, 1) *SIN(THETA+
1TOPIYY
CIRC=SURT(2,0/3,0)».Cl(3,%)+«COSCTHETA+Fpul)+Cl {4, 1) *xSINCTHETA
1EOD)) :
CISA=SART(2,0/3,. 0. c1(1.:1))
CiSL=SURT(2 0/ 0y wi=0 . 5%C1¢1,1)45q0T(3 ) =C1(2,1)/2,0)
CISC=SURT(Z2,0/3, 00 %x{~0.8+Ci(1,1)=8arT(3,.0)401(2,12/2,0)
PIZVAXUISA+IYBC §leun*C18C - g
: WRKTITEC(O,B88)vA,v8,vL,CI8A, 0 188,150
868 FURIATUIXY SA  SHYAS, F7.2,3X, tHVB=,F7 2,3%.3HyC=,F7.2,3X,3K1A=,F7.
PIRLSRIB=, F?,2, 34, 3HIC=E7.2) '
WEITECO, 777 0w, Y DYHETA.TU-TA
777 FUORBATOIX SE,OUTIME:, FB, 6.3, 2HT= v F7.213X ¢ 2iiN=sF7.2,:3X,6HANGLE=,
16.3) -
DTHETT=(T=0)y«0p*il/ 01
THETI=DTHET A *n
DO 48 1=1,4
T8 €I 12 =CIC],1y+0.5~AK1(])
- DTHETASDTUHE 7A+G.5+D "HET
THETASTHETA+0.S«THE T
60 10 13
25 pU 9 1=1,4 .
16 ARZ2(1)=DIC] 1) =H
DTHETZ=(T=RI1Y«npeH/ 401
THET2=DTHET g *ii
pO0 20 1=1,4
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EN (I 1 =0, 1)=0.5 (AR I (1Y-AK2(1))
BIHETASDTHE A= 5+ (2 THET A -nTHET?)
THETASTHEFA=O .S ( H. . TH-THET )

GV T 13 ’

35 p0 29 I=1,4

24 AKZI{1)I=DICT 1wy
PIHETS= (TR )y woupwli/ 51
THET3=0THET 4+ H
Dﬂ ?2 I=1.4

2? (‘i(I;1)=[‘l(1;1)*AP~3\1)'I).DE*K2(!)
DITULTASDTHE vA=OQ , S+D HET2+0THETS
THETASTHEYA=Q. O THE TP+ THETY
GU 't 13

45 pu 23 1=1.4

235 ARLG{TI)I=DICT, 1 wH
PIHETGS TR yxppeh/ )0
THUETA=SDTHET A
pL 24 l=1,4%

24 CULLi2=Cl01, a3 ~AKRB 10+ (AK1 (T *2, Un (AR (1) +aK3CI))+AKL (1Y) /6.0
DVHETASDYHI VA CDTHF 11 +2 A% (L THEY 2N THETA+ Dy HET L)/ 0, 0=DTHETS
RIZATT+A2L%(DTHI TASS14 .2 %D
THETASTHET A (THET T+ O« (THET2+TUET3)+THEYSL)Y /6, 0=THETS
HE=fC 1
TFEYHETAL LT, TOP)Y GO 10O 26
THETA=THETA~TUD

26 CONTINUF
w*x HAVE ENQUOH ITERATION BEEN PERFORMEDT *wx
TFCHE.LT, RELHYGN TU 1D
FTFANG.LT. CREE+eedYy Go TO 400
TFCNC.LT (RGe+ueC+tecl2y) 60 10 49

100 yki17TECH,27) : _

27 FURDATC(//524 D 1 S o 0 N. N E ¢ T 1 0 N/
Ci2¢t ey =CTi 3,90 +A33«01 (144 :

CIl2¢2e)=CT Ayl el1(2,1)
etk TNVERSION OF HAZRIX LZ2 xx*
CALL MUQ2ACALE?2 , VERT,DETERY , 2, 5,2)

2R CUNTINUE
L=0 . -

Tk ko GENERATE MHATRICHS FUR Ral AND Gxl *uw
29 CALL MLIMBURIT 52200124242, 8421242)

CALL MIOIBCGIN (G2, u1842080" 0212, 4)

pv 30 K=1,2 o

30: pIF1(K+ 1)Y=, 0=t 1K, 1)~DTHFTA*GT1 (K, 1)

**% EVALUATL THE RASES OF CHANCGE OF CURRENTS #kw
CaLl MZOT0CL1t  VERT.DIFY1,2,2,102.4,2) .
**+COMMEHUE A nUMULE-RUTTA CvCLE OF LUMERICAL INTEGRATION ®*awx
t:l'.'.‘i - ‘ R
60 T0 (31.:497,51.61) .1,
31 p0 32 V=1,7
32 ARNTACI)=plT(T 1w



33

36

1523

-199-

CRAZSURT (L, o/ 3. 02+ (1201 1Y« COSCTHETAI #CT2C2, 1) %S IN(THETA)Y)
CRB=SURT(Z.C/3.6)= (L1201, 1) COSCTHETA+TORI) «C12(2, 1) *SIN(THET A+
TTGP1Y)

CRC=SURT(2.0/3.0¥*x(12C%, 1)*CUS(THE7A+FOPI)+C12(2 1)*§IN(THETA*

1r0OPIY)

UETTE(O, 12430 rA, LR, CRE,DTHETA, THETA
FORPBATASFZO 39

DIHETIS (- h1}*PPwHIAJ1

THETI=DTHET \wH

nG 33 I1=1,7

CI2¢L1 e y=CipCl 2y +0,5%AK (1)
DTHETA=DTHETA+0  5+DHETA
THETASTHETA+Q. 5+ THE 79

il T0 £9

DU 34 1=1,?

ART2C(I) 2Dl i T 1)l
NTHETES(-RY 3PP aH/ALY

THETZ2EDTHET o*H ’

pU 36 1=1,72
Ci2¢1e1)=CTa (Tl 1) =0.S*CAKIT¢T)=AKLI2¢T))
DTHETASDTHETA=D .S (THETA-NDYHET?)
THETASTHETA=O . 5% (THLTT=1HET2)

GU 70O £9

hO 37 1=1,2

ARIZC1)=pli(141)*H

DTHETS={~KT; xPPrii/ Aun

THET3=0THET A+

pU 38 1=21,2

Cle ¢l 1y =CIo (i, 1)+AEI3(I)=0_ 5+AKI2 (1)
BTHETASDTHE vA=0 . S*DTHET2+DTHETS
THETASTHETA-D.S5*THF r2+THIFTS

GU TO <0

DU 39 l=1r2

AKT a1 d=D1 V(1,13 %H
CDYHETAS(~RY % PP=H/ A1

TﬁETAQUTHETAwH

b0 40 1=1.,2 _

cl2¢1, 1)-CT:(1.1)- I3+ (K1Y 1042, 0*(AK12(I)+AKI7(1))+

1Ahlu(l))/o

DTHETA= Dan,A+(p THEVI+2 ﬁt(n?Ht|2+D:HET3)+D1HET4)/6 0 DYHETZ
Ri=AYTTHA2* PTHLTAI ST L, 2) wp
T“ETA=THETﬁ+(THtTW+£,0*(THFT2+THET3)+THET4)/6,0-1HET3
x¥* DETERNTLATIGH OF STATOR VOLTAGES wxa

CALL MZOTBCVI A e n11.202,1,21244)

VSASSURT(C . a/3. )% (r1(1,4)) :
YSB=SURT(L.0/3. 03 %(=-0.5xV1¢1,12+80g7¢3,01%Vi(2:1)72,0)
VSCaSORT(Z. /3. ()% (~0,5+x¥T¢1,1)~SART(35,0)+v1(2,1)72,0)
WHRITELO,1523¥VS A, VS5, VSE .

FSUNAT (3N, 29

R120,2U6+0. 582« (DVHLTAZZ1G D) wk)
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TFCYHRETA LY 70D, GO TO 2626
THETASTHETA~TUD

CONTIKUE

DUR=DUK+H

NC=[C+1 ' -
*3x HAVE CHOUGH TTERATION BEEN PERFORHEDI* % . w
TECNC, LT, (O CNECIY Y GO TO 28

URITECOH ,47)

FORNAY (/242 R E S W 1 T C H
cI¢1,1)2=0.9

cle2,1)=0,0

cl(3,1)=C12::1:1)

CL{a 1) =CLl2 2+

CONTINUE

L=0 ,

VAZVHI*STINCA0U. O* T2 pURKFPS )
YE=VMI*SINCTO0 . Gaxr ]+ nUR+EPCH)
VEsYMI*SINCG00 . 0xir TanUR+EPS )

DUR=DUH4H .

FFCLC, LT (NGCC+NCCH+RCC2Y) 60 TU 48

sTOp

eND

FINISH

* A koW

G)
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APPENDIX E

ANALYTICAL SOLUTION FOLLOWING DISCONNECTION
OF A GROUP OF TWO MOTORS

The electrical equations of the two machines following

disconnection from the common supply are,

i9

1

0

M(D—jél) isp+[Rr+Lr (D—jel)] (irpe )

1

1

1

16,

—MZ(D -] 82) lsp + [Rr + Lr (b -3 62)] (1rp e )=0

2

[(Rs *+R) + @, +1_)D] i

1 2 1 2

P

2

+ M
1

Taking.Laplace transform we obtain

M (S -~36)
1 1

- § - 36

M2 ( h 92)

(Rs +RS )+(Ls +LS )8
L 1 2 1 2

1

1

MS

D (i

R+ L. (5-] 91)

2

R_4L. (5 - 92)




-202~

M i + L. i
1 Sp r r
0 1 19
= -M i + L 1 E.1
2! " sp r x
0 2 20
(L +L )i +M 1 -M 1
s s Sp 1T 2 T
L 1 2 0 10 20
. jé
1
where I:’ 12 and 13 are the Laplace transforms of is s irp e
36 !
and irp e 2‘feSpectiv'ely, and is , ir and ir are the initial
2 0 1o 20
values of the stator current, first rotor current and the
second rotor current.
The inverse Laplace transform of Equation E.1 yields,
I Z yA Z M i + L 1
1 11 12 13 1 TP r r
10 1 10
1 . .
11 = z Z VA -M 1 + L 1
2 Z 21 22 21 2 Ip r ‘r
10 2 20
I A z pA (L +L )1 + M1
3 31 32 33 SI S2 10 1 rw
L L J1

E.2
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where
=82 (- M - S M -j :
z ( L ) - S M (R, it 6 )
2 2 2
:
Z =8 (M L +SM (R -3jL 6
12 ( 2 I ) 2 ( r ] I 1)
1 1 1
—3 2 — 3 A — 1
213 S (Lr Lr Yy + 5 Lr (Rr 3 Lr B‘) + Lr (Rr j Lr
1 2 2 1 1 1 2 2
* Ro- ] L. 6 (Rr - JL 62)
1 1 2 2
- a2 _ 27 . o .
Z“ ‘S [Lr (LS + LS ) M2 ] + S{(LS + LS )(Rr j Lr 92)

2 1 2 1 2 2 2

. 2 2 _ .
+ Lr (RS + RS Y+ ] M2 82] + (Rr i Lr 92)(RS + RS )
2 1 2 . 2 2 i 2

™
il

ST (-M M)+S(GM M 8)
22 1 2 1 2 1

™~
1

=82 (- M L +S[-M (R -3L 6)Y+iM & 1L
( , r2) [ . ( r b r 2) M 91 r2]

23

‘+3M & (R -3L &
M 6 ( r, h] r 62)

. - 2 _ . _ s
2,=8 @, L )+s[L (R -jL 8)+L (R =-jL
1 2 2 1 1 1 2 2

+ R -] L. 81)(Rr - 3L 82)
1 1 2 2
Z =82 (M L )+S[jL M 6 -M (R -31L ©
32 ( 1 T ) [ T 1 1 1 ( r ] r 2)]
2 2 2 2
+3iM B R -3 3
iM 6 | e T er )]
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7 =82 (M L )+ SM (R -3 L ) - i M ¢
33 ( 2 rl) [ 2 ( r1 J rl 01) 3 2 62 Lrll

+ [R

. 1 M 9
R, =51, 61 [-3M 6]

1 1

and |Z] = (8- X )(5 - A XS - 1A).
1 .2 3

In the equation for |Z], A , A and A are the roots of the
1 2 3

characteristic equation
A= FR A +(y-Fim)x o+ (E1 -] Ez) =0

in which

r r , r ‘s s
o = 32 1 2 12 ] 2 12 1 2
Lr Lr (o LS + 02 Ls')
1 2 1 2
B=6 +0
1 2
Rr Br. (L .f LS_) f (RS +.RS )(Lr Rr M Lr Rr ) .
Y = 1 2 3 2 1 2 1 2 2 1 - 9 e
1 2
L L @ L +90 L )
r r 1 8 2 ]
)| 2 1 2
L. R B( L +L )*R_ L 6 (L +0 L )+ +H)L_ L (R +] )
r r 1 1 s S I r 2 S 2 8 1 ) T r S S
.1 2 . . 2. ...1 ..2.. A 1 .. 2 N R B 2
n=

Lr Lr (0l Ls + 02 LS )
1 2 1 2
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..... . 2 T r
£ = 1 2 1 2 2 1
2
L L (o6 L +0 L )
r T s 2
1 2 1 2
o =1-M2%/L. 1L
1 1 r
1 1
c =1-M2/L L
2 2 i
2 2

From equation E.2

I ={z o™ i +L i )Y+2 (-M i + L i )

r T T

1 11 1 sp, ) ‘o 12 2 8P , r20
+2 [(L +L )i +M i - M i S - A )(S =2 )(S - A

'3 {( s s ) 1Sp LY , Iy ] }/[( 1)( 2)( 3')]

1 2 - 0 10 20
E.3
I = 2Z M 2 + L i Y + 2 (-M 1 + L i ) +
2 21 1 Sp r v 22 2 sp r r
0 1 10 0 2 20

+ 2 L +L i +M i -M i S -2 S - -

23 ¢ 5 Sz) 1SPD . 11_10 . 1r2°] } /¢ 1)( ?\2)(5 ?\3)

‘E.4
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0 110 0 2 20
;-
L+ i M i - i ) S - - -
+ 233 [( s, LSZ) 1SpD + : 1rlo M2 1r20];/ ¢ Al)(S 12)(5 Aa)]

E.5

The inverse Laplace transforms of E.3, E.4 and E.5 give

Aot
et . o
sp Q- 2)(A2-Aa) [)2 i *A (a-jb)+(c-id)]
Aot

. e )
o ooy Tay i A (@-ib) v (e -jd)]

2 1 2 3 )
...... elzt_ N
ooy i vA @ ib) 4 (e - ja)]

3 1 3 2

and
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X% i o+ (a ~ib)A+(c -3a) (Alnel)t
i L 30 1 S M 1 e
TP . . O -2 -2
) 2 1 2
.
Q(, - él)t
e 2 . . .
A GO N Y ¢ I [kz Yo T (a1 J bl) Az+ (al J dl)]
2 1 2 3
()\3-91)1:
¥ - [;\32 izo * (31 -3 bl) A3+ (cl - dl)]
A=A A= X
(3 1)( 5 2)
and
At
1
. _ e ’ ' . 2 _ s oz
Yrtp T N S A0 -2 [i, )\1 * (az ] bz) )\1+ (c2 ] dz)]
1 2 1 3 30
At
2
e . 2 o .
+ R BICNERS) [11_ )\2 + (a2 i bz))\2 + (c:2 3 dz)]_'
2 1 2 3 30 :
At
3

e - 2 _: o
* (A -2)(x =-2X) [11‘ As * (az ] bz) Aa * (Cz 1 dz)]
3 1 3 2 30
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where

[Lr Rr (OILS L )f L. R, (LS + GzLS )] it MlLr R_1 o—Mer R_1i

a= 12 1 2 2 1 1 2 2 12 1230
L L (¢ L +0 L )
r 3 S 2 s
3 2 1 2
6 L +0 L )+6 (L +0 L )i +MB i -M9 i
1. & .2 8 .. 2. 8 1. .5 10 1 1 209 2 2 30
b = 1 2 2 1
c L +0 L
] 8 2 s
1 2
(R_ R -L_ L 6 6)[(L +L )i +M i -M i ]
r.r T e Ty YMs L Ts T e 1 20 230
c = 1 2 1 2 1 2
L. L (o L +0L_ )
r r 1 S 2 S
1 2 1 2
R. L 6 +R 1L 8 L +L )i +M - M
( r T b r 2) [< 5.. . s_) %10 1zo 2 130]
d = 2 1 12 1 2
Lr L (0l LS + 02 LS )
1T 2 1 2
and -
a =[M L_ R +M L R )i +(L L R +L R L +L_L_R
1 1 r s 1 r s 10 T s T s r'r r'r s
2 1 2 2 1 1 2 2 2 1 1 2 1

+M M R 1i° L +
MR 130] /[ rler (o1 le chsz)]
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o - 5 R i
{[Lr , M (R, +R_) M 61 . @y +L)] i
2 - 1 2 2 1 2

0
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and

+ [L. (R, L_ + L. R ) + M2 M1 R Ji

20
1 1 2 1 2 1

= L 8 8 M M L é 8 M L ' 8 L i
b, = {M) e b, 00 FM ML OO w00 1 )]

2 L] - M L] - . M 2 _ 2 L] - . 1
+ [Lr1 er (61+82) + M1 2Lrl (61+62)] i+ [ ) Lrl er M9(81+62) 130,/

1 2 1 2
c. ={M (R R -L L 6 68)-M M L 68 6-M L 86 (L +1L }i
2 1 T T 1 2 1 2 Y 31 2 2 ¥ 12 8§ 5 10
1 2 1 2 2 1 1 2
+ R R - 6 - 8 i
L, (R R L. L ® 2) MM L 61 2] i
1 1 2 1 2 1

+'ML’-éé+M2Léé L L c L +
. [1 1'2 1 2 2 1‘l 1 z]}/[r1 1”2(1 S1 chsz)]
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d ={[M L R (@ +0)+«M MR 6 +M R 8 :
2 {[1 1‘1 r2(1 2) 1 2 1‘2 i 2 1:‘:l 62 (L51+LSZ)] 110

!

+ [L2R (® +6)+M M R 6711
. 1 2 1 2 T 2 20

The positive-sequence component of the common stator

voltage is obtained from

jE’1
d i _4.(1_1:13..8 )
v =R i +1. —3B,y 1
p 51 sp S: at 1 dt
or
At
1
v = e { AP E L +1i M)+
p (A =A)AK -x) 1 10 8 20 1 '
1 2 1 3 1

‘e

A 3 i L . M 2 . _:
(A =A)A =1 {A2 G L + 1 M) MR E 4L (amjb) +
2 172 3 1 1 1

+ Ml (a - jbl )]
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fxl[(a,-jb) Rsl +le (c - jd) +§41 (cl-jdl)] + (c-jd) Rsl}

e 3 . . 2 . . .
M pa— —
+ 03 — )‘l)(A3 — Az) {J\a 110le+ , i)+ AS[RSI1ID+LSI(a Jb)-a-Ml(a1 Jbl)]

+ )\3[(& - jb)RSl + (¢ - jd) LSI + Ml(cl- jdl)] + [(c - jd) RSI]}
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APPENDIX F

COMPUTER PROGRAM LISTINGS FOR A GROUP
OF TWO MACHINES

MASTER TOTAL TRANLTILNT JHN TWO MOTORS
PIOLRSION AL(R,6) RiB8BY,G1(R,3), TR (B,8),G2(878)
DIMLKHSIOY Tei oY G611 (8,10 . 81(8,4),.C01¢8,1),a12(8,1)
DINERSLON DICB )Y VLB eT1 ) VERCB/RIIDIFIR,1)
DINTHSLON DB 2, /K (BY,AK? (BY r AKS(5) P AKL (Y, TRM2 (S, 8)
DININSION D126,
DIGCHSION PiCo, Y eDis(o,6),aM00,1) , VERD(L,6)
DIMGHSLON GI1a e, M) 612¢646)BIEYTCAL YT cAKTT (6 P AKTIZ(6) ,AKIZ(6) s AKT G (,
14 0h;
PINEHSION GI22¢6.1),6G22¢6A),TRMIT(4,6),TRM22(6,6)
DIMENSION AL24 ¢, 0 ,VERTLG, 6 R113(6, 1Y, R22¢6:6)Y,012¢6.:1)
DIHEHGLION R4, 17,8511 ba1y
DIMEHSLON V(& 1y G104, 4,011 0a, 0 AL A Ay, CTY CA Y e DTI1CA, )Y
DIMENSLION ALDT (47 1)
#*% READS T|f PALALLGERS ®4x ;
RL.\”(:‘"")((R(Ef\;)fI:‘lrR}tJ=108) .
READ(O MY UCALCT Y i=1,8),00=21.8)
READCO I CCGIXT J0 e i=T1,8)Y,021,.8)
RL"{'(b"q)\(hz(l,J)11=1'(ﬁ)rJ:1'b)
READ(L.CBY(RE2 T i, 0121.6),0=1,86)
RLAD(D e BBICIALZ2(1, 00 121,60 0d51,0)
READ(Y 8 ((GI2¢T d,I=21,6y,0=1,6)
READ(DAOBI((GE2 Ty, 11,6y ,4=1,8)
REALCOOR) C(DIRLTdy, 129,00 ,d=1,6)
RLADCD/SS5YCCRIICL, ) 1=t e4) 0=, 4)
READCS 580 (AL (T v u) e It 04y, 051, 4&)
READ(O 5552 ¢ (01 (b, ud oIzt gy, 950 ,6)
READ(Or610Ya1 Y 028,811,622, =8Pl 1, 5170117
REAU(O GIOIVM VI« PP, PP ALY A2, DTHETA, DTHETAZ
RLADCO 616 CC, 0T, NCCz e DELARY,ARZ,ABY, AB)
READ(L: 610401, :CE, 071,402, AET 2EL, AFT  AF2
RUAD(S . 6206 PUR.LPST,EPS,EPL3

626 FURIIAT CLTO, ()

616 FURLATUREU, D)

555 FORNATU(LEV. ()

98 FORIIAYTLGOFU (1)

1 FOPLATLRFO )

pl=d U*ATAN(1.0)
TUP=Z,Vep|
FUpRiz=Z.0xT0p1
RIZATI+A2S*(DTHETA/ 394 2 %2
RE=BIVYR22* (DTHLTA2, 314 2)ww?
=0
bO 1 1=4,8

1Y CiCi,12=0.0
x*% JHVERSION OF MHATRIX L wew
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CALL MBO2ACALVEK/DETEK,8,3,8)
COMTINLUER |

L=e
VASVM=STHNCTO0.0wPl* syR+DELY
VO=VYM*STH(IG0.0*Pix UR=TOPY+DEL)
VEEVH*SINUINO . 0«PI= o R-FOPT+DEL)Y
VAM=VA-RSP*ATT
VIMeVL=RSP*iIT
VO VO=RSPE*CIT
DUR=PURH :
#*% THANSFOUMATION FROM THRefE PHASE TO p=0Q AXES w=x¥
L MDH SURT(Z,Q/73.0) 2 (YAl =0 . 5%« vBM=0 . 9% CH) ‘
VUE=5URT (2. 0/3. 00« O SART(3. ) /20 xYBH=(SQART(3.0)/2.0)*VCM)
Ckxd TRLUTYAL COUNBITIGONS OF VOLTAGES sww
v{1,1,=ypH
viP,1)=vqQhl
vi3,150,0
viL,12=0.0
vis,1)=vuph
vi6,1)=val!
vi7,10=0,u
vis,1I1=0,v
wx% GUEMERATE MATRICES FUR Ral sOxT AKD T wxs
CALL.HZO1“(&IrP:Cin:8!1JS.S:S}
Cate T2 BCGET 6165, 805.1,8,8¢R)
CALL ”£01B(G]2:h216i|“13f1r8|808)
CALL HZI2BCTRMY, CL,GI1,1,8,1,148,8)
AL HAQZBCTRMZ2,CI,GT241 8419 I1f81b)
T=EPP*TKIT (4 ,1) : :
TE=ppL*rTRHNZ2(1 1)
O 44 K=1,8
DIFCK: )=V (K, 1) =RUCK, TY=DTHETAYGEN (K, 1) =0THETAZ4G12(K, 1)
w#x% EVALUATE THE RATES OF CHANGE UF CURRENTS *wx
CALL HLOMB(DTI/VERDIF/R,841,8¢8,8) .
*%x CUOMNENCE A RUNGE=-KOTTA CYCLE UF HUMERICAL INTEGRATIUN %ww
L=L=1 - '
GO TO (15125135145):L
PG 46 1=1,8
ARYCIDI=DTIAT, 1) aH
txx TRANSEORMATION FQOM D=0 TO THREg PHASE (CURRENTS *x+
CISA=d>URT(2 0/3. 00+ 1 (1,1))
CISEB=SURTAL2,0/3,0)+(~0,5«C1¢1,1Y+5QrT(3,0)*c1(2,10/2,)
CISC=SURT(2,0/3,00x(~0 . 5*CT(1+1)=5auT(3.0)%1¢(2,1)/2,0)
CISAZ=50RT (2, 073, 0)+¢C1¢5,1)) :
CISR2=SQRT(2,0/3, 0y« (=0, 5*C1(55s1)*5uRT(I . 0)«C1(6,1)/2.0)
ClSC2=5QRT(2,0/3,u) (=3, S*CT1(5:1)~SQRT(3. 0Vl (6.,1)/2.0)
CIRCYI=50RT(2,0/3, Ud*(CI(7+1)*COSCIRETA2+FORP1)+CI (8,1 )*
1SIH{THEYAZ+FOP 1Y) ‘
CIPEY=SQRT(2,0/3,0Y~(CI1(7+1y*COSCTHETAZHTUP)+CE(841)*SINCTHETA?
14+T0OPT))
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CIKAT=5GRY(2.0/3,0) «(C1(7+1)*COG(THETA2)+C1¢(8, TI*SINCTHETAZ2))
CIRA=ZSURTL 2, 0/3 Q)* I3, 1)*COS(THF3A>+rr(d 1Y*STNCTHETAY)

CIRE=SURT(2.,0/3. 0.+ ¢c1(3,

1+T01))

1Y+ COS(THETA+TOPIY~C1 (4, 1) «SIN(THETA

CIRC=SURT(2,0/3.0)»¢c1(3,11y+COS(THE" A*FQDI)+C!(4 1Y+*SIN(THETA

1+F0pP1))

PLeYA*LISA2+VB*CISR2Z+VCx0IGE2
Pl=VA*LISA+YR*CI8B+ Y C*0SC

CHURITE G ,977)P1 , 92

FORMATAE0X, F15.3,20,,F15.3)
BRITELA,A7IDUIR.T,T2, ﬁTH;TA hTHE}Ad
17 FGRIMATCI0A, SHTIHE=, F6.5,3X,3HT11=,F6,2.3%, %“12~,Fo 273X,3HN1=,Fb, 2,

43R 3HUCE 6, 2)

URTTELCO,BUNGY THETA,THETAZ

FURTTATLRFI15.5%)

BRITEAO 30253 VA, VR VL oA VEM, VM

FURDTAT (10X, 5HVA=,

l‘?e 5}\;3‘1\/3“':!‘:? 2 3:‘l3HVr=rF?-2'3Xl

1[;'\‘."1\\”:‘ F?-2,3)\.|4“\-IH” ’ Ffl i .'5)\:"0'{\/([1-—3'["?-2)

WHITECe, 8880160,
883 FURMATOIDR ruHIATZ,F7,

1.8:C168C,018A2, C1582,C15807

172/ 3XAHIBR= F7.2.3%alilC2=,F7 2}
WETTE O 4004 C 1A CirB,CIRE,CIRATfCIRBT IR

FORDAT G QA SHIRAYS 472,34, 5RIRUIS,E7.2,5X 3RIRB2=,F7.7

1,F7.27
CORTINVUE

DTHETT=(T=N1)Y*Ph*i/ 401
DTHEYS(T2=R2Y*DPp2x i Ad2

THFT1~D,HF Axt
TREAZDVHETAZ +H
no ?8 I=1,8&

I, )=C1 01 ,1)+0.5«AK1 (1)

DTHETA=DTHETA+O, 5D 7HETT - e e e e
DIHETAL=DTRETAZ+0.5-pTHED

THETA= FHETA+0.5=THETY

THETAZTTHETA2+0.5*Tiig1

60 7T0 13
DO “9 1=1.,8
ARZ(I)=DICT 1%

DIHETE=(T=Ry)Yxbp=xti/  J1
PTHEZS(T2=R2y*Fip2*H/AJ2

THET?2= DYTHETA«H
THEZ2=DTHETAZ#H
po 20 1=1,8

CICT,10=CIC1,1)-0.5=(AK1 (1Y -AK2(1))
DTHETASDTHETA=G S« (LTHET1=BTHET2)
DTHETAC=DTHETAZ=0.52(DFIHET1-nTHE?)
THETAZSTHETAZ~0, S* ("HET=THE?)
THETA=THETA=Q.Sx(THETI-THET?)

6V Y0 13
pno .21 1=1,8

2;3X:¢HIB1=nF7.2:3x,4HfC1i.F?.ZISX,AHIA2=,F

f3XsSHIRCZ2=
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AK3(1J=DICY,1)+h

DTHET3s(T-RY9yxppxh/ Ad1

DTHEZ=(T2~RZ)*Py2wH/AJ2

THET3=DTHETA®H

THEZ=DIHETAR #h

DU 22 12118

CHOY 0 =Cll, 1 =AK3 (T Y=.5+2K2(1)
DTHETASDTHE TA~O  S*DTHET 24 DTHETS
DTHETALEDTHETAZ=N . 5.pTHEZ+PTHES
THETA=THETA=-Q .5+ THE TP+ THETR

THEETVAZTTHETAR N S*TLHER+THE S

G T0 13

ho 23 1=1,8

ARGCII=DTIAT 10 4k

DTHETOS (TR Y xpp %t/ )1

DTHEAS(T2-~R2)*Dp2+H  Ad2

THETL=DTHETA%H

THLL=DTHETAZ2H

nl 24 1=1.8

ClCL 120 I, 1= ART O+ (ARACIDI*2 Ve CARZ (I +AKSCIIIHFAKGCIN Y/ 6.0
DTHETASDTHEYAT(DTHE YA +2 0% (LTHE T2+ DTHEYIY+DTHETAY/ 6, 0-DTRETS
DTHLTAL=DIHETAZ+ (DTHET«2 . Ok (DTHE2¥D HEZY+DTHEAL) /6, 0=-DTHED
RI=ATTHFAR* (DTHETAIZ1A  2) %y
RE=LATHR2L+(DFHETAZ, 3146 ,2) %52

THETARTHET A (TH{ T+ G (THET2+THETI)+THETGY /6, 0-THET S
THETAZETHETAZA (v HET -2 Ux (THE2+THESY+THELY/ 6 0-THES
ClD=Cl1eq,104C1¢5,1) ' '

clo=Cl(2,1)+01¢0,1)

NC=1C+ .

#*xw- HAVE ENQUGY T1EATION REEN PERFORMED? #*+x

1FCHC LT NCGYUn TOU 42

TROLHC. LT ANCC+NeCT Yy GO TO 100

TFQHC.LT (NCE+NLCY+1EC2YY GO TO &Y : )
UKITE(G,27) . i
FURIIATC(S0H D 1 5 C 4] N N ( C T 1 0 N
AAZAATXCT (3,10 +aR0%01 (1, 1)

AD=ABI*C1(L, 1) +ABE*1(2,1)

AL=ACT*CI(7,1)+4aCd+%,1(5,1)

AD=,D1*CI(8,1)+aDcv 1 (6,1)

AC=AET*CICT 1 i4aE8%C1(3,1)

AV=AFT*CI(2,11+4AFCxC1 (4,1

At ) =AA

A2, 7 =78

A3 ,T)=AC

AliCL 1) =AD

A(L 1) =AE

AN(G 1) =AF .

CALL NBO2A(DIS, VERD,DETERT, 6,31 6)

CALL “ZO1B(C12:‘;’ERP|AMJ():(';";6'6:")

w¥xe JNVERSTOHN QF MATRIX ALZ2? +%s
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CALL HBOZA ALZ2,VERY,DETERD,6.:3,6)
28 CUHTINUE
=4)
**w GENERATE MATRICES FOR pxl aAND Gwi * oy
29 CALL H4J1BIRTIIZRA2,CI?2,A16,1+¢6,616)
CALY BADIBC(GOTI2,612,C12,006,1¢6.6164)
LALL HZDIB{GIZ22,622,C12,6,6,1:,6,616)
CALL MZOZ2BC(TRMIA,CTL,06012,1,6.,1,116,6)
CALL. MZn2BLyrM2:,C12,06122,1,6+1,116,68)
=peelKIM1401,1)
TE=iPe*TREZ22¢1.%)
ne S0 K=1.6
30 pIFt(K,1)=0.0-R115(K, 1)-DTHFTA*GI12\K T -DTHETA24GI22(K,1)
CALL “ZO‘II‘(D]? VERT,DIF1:0,4:116.0,08)
wx*x CUMIIENCE A RUMGI=-KUTTA CYCLE VYUF NUMERICAL INTEGRATION #xw
L=L+1
GU TO (31+41,51.61),L
31 DU 1? 1“116
32 AKIVY(TI)=Dl2¢T /1) *H
CIlrAt=SqrT(2.0/3, u)‘(crpca iI*COSCTHETAY+CT2¢a 1) *SINCTHETA))

CikA2aduRT (2,073, 03+ (015, 1) %CaSUTHETAPY+CI2(6,1)%SIN(THEI 420

CIEG1=SapT (2 0/3, 00« (01203, 1)y «CnSCrYyETARTUPIY+CED (4 12
1*ulu<1Hr1A+TOPI;)

CIRBEZ=SarT (2. 0/3,0)+ (L) 2(5,1)*Cus{THETA2+TOpI)*

1CI2CO ) *STRCTHETARFTOPLY)

CIRCI=SART(2,0/3,U)»(CI2(¢(3,9)Y*COSCTHETA+FOPIY+CI2(L71) xSINCTHETA

1F0P L))
cIRC2=5qRT(2,.0U/3, 0)\(CI£(5,1)*LHS(THFTA?*POP[)+C12(6 1)+
1SINCTHETAZ+FOPT))
CISAI=3qQRT(2, G/, W)« (CI2(1,1))
CISBAI=SQRY(2.0/3 , ()% (=0 _5%012¢1,1)+50KT (3.0 «C12¢2.,13/2,0)
CISCI=8SQRT(2, 03, 0) (=0, 5«C12¢€1,1)=8aRT(3,0:«C12¢(2,1)72,0)
THEY1=DTHETY AN '
THLI=LTHETAZ*H
pO. 33 11,6
33 CI201+470=C12(1,1)+40.5~AK]19¢])
THETASTHETA+0.5«THETY
THETAZ=THETAZ2+0,5+«ThE?
. 60 TO ¢
41 p0 .34 I=1,6 -
346 AKI2C12=D12(¢T 1) %H
THLT2=OTHETA+H
THEZ2=DTHETA2#h
DU 36 l=1.6
36 CI2¢1+1y=C12(¢1,1)=0.5*(AKI1¢1)=nKI2 (1))
THETA=STHETA=-0.S«((HETT-THET2)
THETALSTHETAR2=D, S*( HE1-THEZ)
60 T0O «¢
5% o0 57 l=1+6 )
37 ARISCII=DI2(¢] 11 )%t . e e - Ce e e .
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THCET3=OTHETA=H
THES=DTHETA2»H

DU 38 L=1'6
CI2¢T+41y=sC12¢1,1)+AKI3¢C1)~0. S*AKIL(})
THETASTHETA=O . 5«ThET2+TRETS
THETALSTHETA2-0 . 5xTHFE2+THE®
60 10 20

pO 39 I=9,6

ARTL (1) =Di2(8 +4)%H
THETL=DTHE TA*il
YHEH4=DITHETAR2*H

DU 40 l=106

A L1207 a1 =CT2C1 1) =ARTIICI)I+(AKIT (142 O (AKT2 (1) +AKIZ(1))+

666

‘Skﬁﬁ

47

TARTLCI2) /0.0

THETASTHETA+(THET  +2 0+ (THET2+THEI Y < THETA)Y /6., 0-THET3
THETAZETHETAZ+ (THE T +2, 0« (THE2+THESY4THELY/ G _Q-THES
TFOTHETA LT, TURY GO TO 2121

THETYASTHETA=-TOPR -

IFCTHETAZ.OLT.TORY 61 TO 313

THETAZ=THETAZ-TUP

CONTINUE

CITTy Yy =C12¢1, 1)

CIT¢2:1)=C12¢2,1)
CIV{3:73=0T12(3,%)
Citr¢h,1)=C12¢471)
pI1¢4 1 )=D12¢1,1)
pl1{2413=D12¢2.1)
DIV1(2,1)=p12¢3,1)

DIT{6eTI=DIZ(4,1)

CALL HZO1B(RI1-R11-ﬁl1n4;4;1.4!&i4)

Catr MLOIBLALDT, ALY, DIT,4:4,114,404)

CALL HZ018(GI11,G611,C11 404,144, 444)

DO 666 K=1-L

VIR, 1) =RIT (K 1)+ALDICK, 1) +DTHETA*GI11¢K, 1)
V3AT=8QRT(2,0/3,0) % wi(1,1)) ’
VORT=SART(2,.0/3.00+(=0.5*Vi¢1,1)Y+SQrT(3.02+v1(2,1)/2,0)

CYSCTESURT(2,0/3,0)%¢=0.5«V1(1,1)=SqrT{(3,.0)+y1(2,12/2,0)

UWRITECO,8484)YVSA1.V5B81,vSCH

FORNATU3F10.5)

DUR=DUR+H

MC=HC+T

RIZAIT1+A2Ex(DTHETAS 314, 2) *xa2
RE=BIT¥B2L+(DTHETAZ2,/314,2) %42

YEOIC. LY, (HCC+NCCT)Y) )y GO TO 28

URITE\Oiﬁr)

FORIIATC44H R F s W 1 T C H 1 N 6 )
cl{i,12=¢c12¢1.,1) oo
C1(211)=C12(2a1)

cl(3,1)=012(¢(3,1)

Cilbd,1r=C12¢h,%)
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C1(5,12=-C52(71.1)
cl¢o,12==C12(2,1)

CI(?I" )::CIZQSI‘I)
C1(8,42=CI2(61)

CUNTIRUE

L=0 '

YA=VHTI*SINC 00, Ot 1+-pURLEPSY)
VEsVHI*SINCI00 ., 0+PT-pUR+EPSZ)

CCEVMIRSINCIOU , axP T spURKEPS3)

VAR=VA~RSP*ATLT
vhM=VE-RSP51T
vOM=VL-RSP*CIT
PUR=DUKR+H

IFCRC LY, CHOCTHCCT+LC02)) GO TU 40

sTop
FHD
FINTSH

o K% W
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APPENDIX G

COMPUTER PROGRAMLISTINGS FOR A GROUP
OF THREE MACHINES

MASTER TOTAL TRANSIENT THREr MUTOHRS
DINENSION AL(12,92),R(12,12),61(14,12) . TRHM1(12,12),G62(12,12)
PIMENSION TE(1,12):611012:1),RIC1<¢,1).01¢12,1),612012:,1),012¢10,13
DIMENSION DICI2.1 ¢ (12,10, VERC12442)4DIFC12,1),TRM3(12,12)
DIMENSLION D{1¢,1270AKT1(12),AK20127,4K3(42) ,AK46C12)
DIMEHSLON TKM2(32:12)01¢70,10),018¢10,10),AMC10,1)763¢12,12)
TAL22CT0,50) , VERY(10510) ,R113¢1071),pR22C10,10),6G22C10510),
ATRETGCI010), TRI22CH0, 1) o TRBIICI0,50) 0 AKIL(50),6122¢10,1)
pIAENSION 633016,105,0133010,1)
PDIMERSION VERDCI0,103,G6112¢10.7)
BIMENSION 612¢16,10),DIF1¢10,1)7AKTII¢10) ,AK12(10),AKI3(10)
DIMELSION Cr12C4a, 1) RITEO Y 01914, (h, 1) 010 0474),R11(4.46)
DINENSION ALAC4,4),CT1C4, 1Y, DI C4r1 3 ALDI (G, 1):G!3<12:1)
$%% KEADS -1k PARAMETERS $%¢
READC(H 1) CCRCT i) e 1214120 00=21012)
READ(O 1) CCALCT I vi21,12),0=1412)
READ (543 Cle1{(,d) 11,120 ,0s1412)
READ (S 4206201, d0.1=21,12),4=1712)
PEADCS () CL63CT,0),121012) ,0=1i12)
READ(S,550) ((MIscl, ), I=1,10),d=1,1D)
EEAD (OSB89 ((R22¢ L, ) sl 410 d=1210)
FEADC(O555) ((AL22CT174) ,121,10)0=1,10)
] READ(H 855 ((G42C sddelzt 1) ad=11))
CREADCS4855)((G22CI+d) e I2T1,10)¢ev=1040)
READ(D/559) (033 (L, J) s T121,10)4d=1210)
READ(5+08) ((R11¢1:d),I=1,4),d=1,4)
READ(S08) ((AL1¢T+J),151,4),051.4)
READ(S 08X C(611(,J),1=1,4),3=1,4) :
READ(S 6103411, A2¢.n11.n2c.RSP:AIT;BII:CIT t
READ(5+636)¢11, 022 DTHETAS, PP3iAYS
pEAD(5:61o)VM.VH1JPP,PPZ,AJ1,AJZ,DTHETA.DTHETAZ
READ(S 616 HCC,CC1,nCC2,0F L, AAY,AR2,ABT,AB?
READ(S:610)ACT (ACE ADY ,AD2 AETFAEC,AFY  AFL
READCS +6G26)DUR,EPST,/EPS2,EPSS
READ(OS r4n)AGT S AG2 P AHT L AHZ ATV TRLE,A0T4402
446 FURMATLARFU.,O)
636 FOGREATCSED ,0)
1 FORIIATAUG2FG.0)
626 FORGATCLFU, ()
616 FURNATCAFU.G)
§58 FORCATCA0FD.0)
98 FORDATUALAFD, )
pl=4, U*ATANCT.0)
R1I=AVT+A22+ (DTHETA/ 316 D)+
RE=LV1+L22% (DTHETAZ/ 3714 2)xup
R3I=CI1TFC2Z2*(DTHLETAZ/314.2) w42
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TOP=2,Uxpl
TUPI=.0xP1/3.0
FOPI=Z. O*TOP]
KC=0
00 11 1=1.8
11 ¢c1(1,12=0.0
w*%x JLVERSION OF MATRIX | wk%
CALL HEOPACAL/YER/DETER,12,3,12)
12 cOuTIRUE
L=0 _
VAZVR*STH(10N.0%PI*hyR+DEL)Y
VE=VH*STR(100.0%PI*hUR-TOPT4+pEL)
VC=YEYSTHOI 0. 0%PI*pUR=FOPT+DFEL)
BUR=pUK+H
33 CONTINUE
VAalisVA=RSPwY AT
YEN=VE=REP*E LT
thuV(”{SP*(IT
*¥%  TRANSFURMATIUON FROM THREE PHASE TO p=Q AXES *4«
&8 cGlTINUF
VEN=SURT (2, 5/3.0)Y*(VAM=0.5+vBM=0 5%V (M)
VGHESURT (2. 0/3. 0% CLSGRT(3, 30X/ 2, Q)+ YRM-(SQRT(3. 1)/ 2.Q)*yCm)
wxse  INITIAL CORDITIOQNS OF "OLTAGts _—
V(1,1)Y=VDH
vi{2,1)=vqh
vi3,13=0_0
V(‘r*f"):":);‘l)
vi{5,1)=vDH
viGa,1)=val
v{7,1)=0,0
v(&,1)=0,0
S y(e,1)=vpil
w0107 ) mvan
vi11,12=0.0
vii2:12=0.0
%% GENCRATE MATRICES FuR R+1+6+1 AND T LAR
13 CALL MZOABIRT R, CTI4124142,1,12:492:72) ) :
CALL MZ£018€G11,G64,C1,12,12,1,%2,14,42) :
CALL NMZa1B(G12,62:.C),12,12,4,12,1¢,12)
CALL hZd1B(G13,63,€1,12,12,4,14,1¢,12)
- CALL MZ026(TRMY,C1,011,1.,12,1¢1,14,142)
CALL MZ2u(TRM2,C01,612,4,12,1+¢1,14,12)
CALL HZp28 (TRM3,CY,G13,9:12,1+%41¢,12)
T=EPp*TR11T(1,1)
TE=pp2*TRI2(1,1)
T3=pP3*TRN3(1.1)
n0 44 K=4,12
14 DIF(K,1y=v(K,1T)-RI(K,1)= DTHETAtGI1(K M- DTH[TAz*rIZ(K 1) =
1PTHETASIYGIZ (K1)
x*%  EVALUATE THE RATES OF CHANGE OF CURRENTS **#
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CALL HZOIB(DY/VER/DIF12,12,4612712,42)

w*%  CUIMENCE Of RUNGE KUTTa CYCQLE OF NUMERICAL INTEGRATION ww»
LEL+1 : :

60 TO (15.25,35,45),1L

pO 16 1=1,12

AKY(12=DICT, 1) +H

¥ x TKAuSFORHAT]Oh FROM p=n TD THR EE PHASE CURRENTS #xw
CISA=SURT(Z2.0/3,0)*(cl(1,1))

CISL=5SURY(2,0/3.0)% (=0, 5*C1(1.1)+8QRT(3 DixC1¢€2,1)/2.0) .
CISC=5URT(2,n/3.0)%(=0.5*C1(1:1)=3QRT(3,0)*C1(2,13/2,.0)
CISAZ‘oQRT(? 0/73,0)%x¢C1(5:,1))

elSp2ESarT(2, 0/, )% (=0, 5%01(5:1)¥SQRT(3. 0)«xc1(6,1)/2.0)
clacz SQRTL2,0/3, )% (=0, 5+CT(5+1)~SqrT(3,0)4c1(4,12/2.0)
CISA3=50RT(2,0/3,0)%¢(C1(9,1))

IS 3=SQRT (2,073, 0% (=0, 5% (Pr1)*SaRT(3. W +c1{10:,1)/2.0)
CISCE=SQRT(2,G/3,0)%(~0,5%C1(F¢4)=SaRT(Z MI+xCcI1C10,1)/2.0)
MRITFCO, B8YBC)Y0UR, o Y2, T3+ DTHETAYDIHETAZ ,DTHETAS

8939 FORDATUI0A/SHTINES 1 FRe 52K 2HES, F0,3,2X,3HT22+F6.3+2Xs13HT3=,F6+3:12
Txe3MEVE, 6.0, 2%, 3HNZ2=0F6,1,2X s 3HNS=7F6,1)
MRITECC,30910) VAL, VB, VLR
URITEC(O,3Q10IVA,VE VC
3010 FORDATOIOXN SHVA=F7.3¢3Xs3HYB=F?:3,3X+35V=z,F7.3)
HPITE(6,9)CISA,CISE,CTSC,C1582/CI5p2,C18C2,C15A3,C1SB3,CISCS
O FORINATOIOX 4RI A 2 FL,T,2X b8BT 2 F4 142X, 6HICTS, k4 Y éX, 4HTAZ,
TRH . EX GHTBR2=, FhA1 24, 401022, F46,1,2X, 6H1A3=,F4,2,2X,6H1B3=,F4,2,2)
1 e bNICS:FE )
URITECO,30619))A1T,bIT,C1T
In11 FORIATIIF30.5)
909n cUNTINUE
RTHETI=(Y=R1)*ppxil/pyt
DTHET=(T2~R2)*Pp2aH/ad2
DTHI=(T3=R3)«Pp3I«H/AY3
THET1=DTHETA%H
THE1=DTHETAR*H
THI=PTHETAI*H
[‘)0 18 124,12

18 c1C1,92=CHC171)+0.5%aAK1 ¢ 1)
DTHETA=DTHETA+O.5*DTHET
DTHETAZ=DTHETA240.5+nTHE1
DTHETAS=DTHETAZ+0.5+nTH1
TﬂETA:THETA+0.S*THET1
THETAZ=THETAR2+0.5*THEY
THETASSTHETA3+0.5+TH

. 60 1O 13 :

25 pb 19 1=1,1;

16 AK2(1)=DI1CT,1)%H
DTHETZ=(T-R1)*pPpsH/ A1
DTHEZ2=(T2=R2)*Pp2«H/AJ2
DTH2=(T3=R3)*#PPI*H/AY3
THET2=2THETA*H

D el =3
[e MW ]
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45
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THEP=DTHETAZ=H

THZ=DITHETAZ*H

poU.20 1=1,12
Cl(1,12=C1{1+1)=0.5=CAK1(])= AKZ(li)
LYHLTASDTHETA=D, 5+ (DTHETI~DTHET2)
DTHETAL=DTHETA2=0.5«(DTHET=NTHE?)
DYTHETAS=DTHETA3Z-0,5«(0OTH1=DTH2)
THETA=THETA-Q. S+ (THET1=THFT?)
THETAZ=THETAZ2-0,5*(THE]~THEZ)
THETAS= |HtTA3 0.5*«(TH1=-THZ)

.6G TO 13:

DO 21 1=1,12 -
AK3\I)"DI(I.1)*H
DTHET3=(T=RY1)*pPpsH/Aagl
DTHL3I=AT2=R2)y*Pp2xH/AJ2
PTH3=(T3=KRI)=PPI*xH/AJD
THET3=DTHET AwH

THES=DPTHETAZ b

THI=zDTHETAI®H

pO 22 1=1.12
ClCr,12=CIC17 1) +AR3(I)~0.5+aK2(T)
DTHETASDTHETA=N , S*DTHET2+DTHETS
DTH I TAZ=DTHETAZ~0.5«NTHE2+OTHES
DYHCYAS=0THETAZ=-0.5+DTH2+#DTHS
THETASTHETA-Q . S+ THEV2+THET3
THETAZSTHETA2=0,5%THE2+ THES

THETAS=THETAZ~0, 5*Tw2+TH3

60 Y0 13

p0 23 1z1.12
ARGCTII=DRT (T, 1) wi
DYHETGS(T-RYI*PP*H/ 441 -

O DTHEL=UY2=Rg)Y*Pp2*Y/Ad2

24

DTHG={T3«RI)xPPS*i/A)3
THETA=DTHET A%
THEL=DTHETAZ*H
THAH=DTHETA3ZH

p0 24 1=1,12

cI{1,97=CcI(1,1)~ AK3(1>+(Ak1(1)*2 u*(AK2<1)+Ak3(1)>+AKL([))15.0

DYHETASDTHETA+(DTHET1+2. . 0*(nTHET2¥DTHETI)*DTHETL) /6. 0-DTHET3
DTHLTAL=DTHETAZ+(OTHF1+2. O« (DTHEZ*OTHESY4+DTHEL)/6,0=-DTHES
DYHi TAS=DTHLTAZ+(DTAd1+2, u*(DTHZ+DlH$)+DTH4)/6 0-DTHJ
RI=A1T1+A22% (DTHETA/Z94,2)*+2

REZRITIFP22%x(DTHETA2/ 314,22 %%Q
R3=C11+C2£*(DTHETA3I314.2)**2
THETASTHETA«(THETI+2 0w (THETR2+THET3)+THET4L) /A, 0=-THET3
THETAZ=THETAR+ (THEY1+2 N ( THE2+THES) - THELY /6 _0=-THED
THETASSTHETATIH(THI+2 , Cx (TH2+THI Y4 THL) /6, 0-THS

clo=cl 1, M=l D)+el (e, 1)

CIu=CI2,1)+C1 26,12+l (101)

AIT=SQRT(2,0/35,0)*CiD
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RIT=SGRY (2, 0/3.0)*(~n.5%CID+SQRT (3, 5)*C1n/2.0}
CIT=SURTE2.0/3.0)*(=0.5+CID-SQRT(3 0)*C1qn/2,0)
HC=HC+1

TF(TYHETA, LT, TOPY GO TO 26

THETA=THETA=TOP

FFCTHETA2.LT,TOP) GO TO 1111

THETAZ=THETA2=TOP

TFCTHETAZ.LY,TOPY GO TO 1447

T THETAS=ETHETA3-TOP

coONTINUE

w*wx HAVE FLOUGH ITLERATIOMN BEEN PERFORMED *xwx
1FGIC. LT, (HeE))Y GO TO 17
TRCHC LY, CNEC+HHGCT) ) 60 TO 100

IFNC. LY, (HNCC+ROCT1+KEC2)) GO TO 4Y
WEITE(O,27) :

PORIMAT(SOH 1 S C O A M E C
ARSAAT*CI(3,1)Y+AA2%01C1, 1)

AU=ABI*CI (4, 1)+AR2+CTI (2,1

AC=ACT*CTI(7 ,1)+ACE*CT(5,1)
AL=ADI*CI(B,1)Y+AaD2*Ci(b,1)

ALSAET*CI (11 ,1)Y4AE2+01(6 1)
Af=AF1*CI(12.1)+AF2*CI(1O-1)

G2 AGH*CT{Y,1)+AG2*C1(3,1)
AH=AWI*CTI(2,1)+AKZ*C1 (4 ,1)
AT=AYI*CI(S,4)+A12%C1(7,1) -
AJ:AJ]*CI(O;1)¢AJ?*FI(8 1)

AN Y ERA L e

Al (2.9)= Ab
AR(3,1)=

AH(4,1)=AD

Ali{h, 12 =AL
A (G, TI=AF
A“(?r1J=AG
AR (3T 1) =AH
ACO 1) =71
ARCIO, YV )=Ay

CALL MBOZ2A(DIS,VERD,DETERY,10,3,10)
‘CALL MZnaB(CI2,VERD,AMN,10,10, 1:10r1@.10)

#*% JNVERSION NF MATRIX ALQ2z *#x+
CALL MBO2ACAL22,VERY, DETER2,1073410)

CONT]HUF

0 .
k*** GEHERATE MATRICES FOR pul 61 ,AND T wxwx
CALLMIVAR(RII3,KR22,€12.,10,1541410+4%0,70)
CALL MHZ01B(G122,G242,012,40,10:%,10,10:.170)
CALL MZOIB(GI33,G633,012,40,10,1,10,10.:70)
CALL MNZN2BCTRMI1,012,60112,1,10%157,10.10)
CALL MLO2BC(TRE227CTIL,6122/44,10¢127,40.10)
CALL HZN2B{TRMIZ,C12,61353,1,107147,40:10))

~

N)
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T5Pp*TKII11(1, 1)
TE=PPE*TRIZ2¢T 1)
TI=ePL*TRU3IZI(Y, 1)
b0 30 K=z1:10 ' '
30 DIF1(Ke1)=0,0"- R115(K - DTHFTA*GI12(K»1) DTUETAZ2xG122(K, 1)-7THETA3
1«0G133¢(K,1)
CALL MenqB(bIZ,VERY, NIFY, 10,9074, 10 10,10
wxxx CURMENCE A RUNGE=KUTTA CYCLE OF NUMERIrAL INTEGRATION %ww
-1+1
GU TG0 J1.41,S1.61).L
31 Dl 32 1=1,1¢
32 ARV4(Lld=pI2(1,1) «k
SaT=ESuRT2. 073,00 »x(51201,1))
SET=SURT(E, 073,00 %(=1.5+C12(1,1)+SaQrT(3 ) *x012(2513/2.0)
SUISSURT(Z.0/3.62*(=n.5+C12¢1,¢1)=5QRT(3,.0)x012¢2,12/2.0)
SAZ=SURT(Z.0/3. 1) *(C12(5.1)) -
SE=SURT (2, 0/3.00%(=0.5+xCI12(5,1)+SQrTY(3 M) *C12¢(6,1)/2.0)
SC2=SUKRT(2,0/3.0)%(~0.5+CI2(5,1)=5QRT(3.,0)*C12(6,1)/2.0)
Rai=SGRT(2,0/3.0)%(C12¢3,1)+COSCTHETA)+C12¢4.,1)Y*SIN(THETA))
RAZESURT(Z2.0/3.0)*(CT12¢7 s ) *COS(THETAZ)+CI2¢(8+1)+SIN(THETAZ))
RAZ=SURT (2,073, 0)%(C12(0,T7)+COSCYHETAI)+CI2¢10+1)«SINCTHEYAZY)
RET=SURT(2.0/3,0)*(C12(3,1)+COUS(THETA+TOPII+C12(C4:1)*SINCTHETA*TOPI])

1&{; SURT(2,0/3.0)+CC12(7,1)+COS(THETA2+TOPI)+C12(8, 1) *SIN(THETA2+T0P
12;;);0RT(2.0/3.0)*(C12(9a1)*COS(TFETA3+T0PI)+Cl2(10?1)*SIN(THETA3+TQ
1;3:i;gRT(2.OI3.O)*(C12(3-1)*COS(THETA+FOPI)+C12(Lr1)*SIN(THETA+FOPI}
1;zé-SURT(2.0/3.0>*(c:2<7.1)*costTHETA2+ropl)+c12<8,1)*srmcruErA2+Fcp
1g2§)§?ur(4 0/3. 0)*(CI2(9:1)*COS(THETA3+F0PI)+L12(10 1)*SIN(THETA3+F O
1TRUP1))

uhITE(b.9393)SA1 SR1.SC1,5A2,58B2%S¢C2

Q303 FORNATUSR , 4HTAT=, V7.2 3% 4R1B1S,F0, 2,38, 4H101=,FS5.27 3%,
TAHTAZ= e FS.2, 3K, 4N1B2=2sFS.2,3Xs4H102=,F5,2)
URITE(L,9505)RA1 KRBT, RCY,RAD,RB2,RC2,RAT,RBY,RC3

G5¢s FGRHAT£1OA.4HIA1=.ra.1.:x-an151=}F4.1-2x.4H1c1=.F4.1?2X.4H1A2=
TFe . e, GHIE2=,Fh 12X aHIN 22 v F&, 12X 4HTAZ=,FL, 242X 4HIB3=,Fb4. 22X,
X hH1C3=, kb, 2) - '
URITEC6,Q006)DURY T e T2+ T3+ DTHETA,DTHETAZ2,DTHETAS

O6F¢ FURDATCAOXK SRTINE=, F7.6 3R, 2HTE FT,2,3X,3HT2=+F7.2:+3X:
13HT 3=/ F7. 23X ¢3UNT=/F6.2+3HH221F62,3X13HN3=,F6.2)

© pTHTI={I3=R3)«PPI«H/ALS

BYHETT=(T~R1)*pprH/AYT
-ODTHET=(T2~R2)wpPp2~H/AJ2
DTHI=(T3~R3y+PP3xH/AU3
THET1=DTHETA%H
THEA=LTHETAZ«H
THY=PTHETAZ*H
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DU 33 1=1;10
Cl12:100y=C12¢l.1y+0.5%AKI1(1)
DTHETA=SDYHETA*O.5*DTHET
DTHETAL=DTHETAZ+0.5*DTHEY
DTHETAS=DTHUETAZ+0.5+nTHA

6«0 YO <0,

O 34 Iz9¢10
ART20T)=pl2(T+1)%H
DTHETZS(T~R4)Y*PpPeH/ ALY
DTHEZ=(T2=R2)*PP2*H/AJ2

CpTHR=(T2=R3)&PP3eH/ALS

36

51
37

38

64

39 -

THETZ=DTHETAxh

 THE2=DTHETAZwH

Th2=DIHFTAZ*H
bl 36 I1=1.10

CL2 T eM¥=CI2¢Y,1)-0), 5*(AK11({)-AK12(I))
DTHETA=DTHETA=0.5*(DYHET1=DTHET2)
DTHLTAL=DTHETAZ=0.5+(DTHET=-nTHED)
DTHEYAS=DTHETAZI~0.S%x¢(DTHI=-NTHZ)
THETASTHETA=D S+ (THET1=~THET?2)
THETAL=THETAZ=0G.S*(THE1~THE2)
THETASETHETA3Z=0.5*(THT=THZ)

6C YO 46

DO 3? 1=1l10

ARIZ(1)=DI2(Ys1)*H
DTHET3=(T=R1Y*ppxH/ G
DTHEI=(T2=R2)*Pp2a*xH/AJ2

DTHI=(T3=RE)%PPIxt/AY3

THET3=DTHETAxH
THE3=DTHETAZ®H
THI=DTHETAZ*H
pG 33 1=1.,1¢

CI201.13=012(¢1, 1) +AKI3CI)-n . S*AKI2(])

DIHETASDYHETA=QO.S*DTHET2+DTHETS
DITHETAL=DTHETAZ~0.5~DTHE2+DThES

PTHETAS=DTHLTAZ=.5+nTH2+LTHT

THFTASTHETA=Q.S5«THET2+THETS
THETAZ=THETAZ=CG.5*THFZ+THE]
THETAS=THETAZ-0.5*Tii2+TH3
60 YO &%

pG 39 Iz1.5p
ANT4C1)=pI2(141)%H
DTHET4Z(T=R4)*Pp*H/ AT
DTHEL=(T2-R2)Y*Pp2*H/AJZ

DTRLE (T3aRIY & PPRHAALS o oo o o e

TYHETL=OTHETA*H

40

THEL=DTHETAZ%H
THL=DTHETAZ*H
pC 40 1=1,10 ' ~
clz2(181)=CI2¢!,1)- AK]3(1)+(AKI1(I)+2 0*(AKIZ(I)+AK13(I))
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1+AKIAt1))/6 0
DTHETA=DTHLTA+(DTHET1+2, ﬁr(DTHFT2+D*HET3)+DTHFTL)lé O~DTHETS
DTHETAL=DTHETA2+ (ULTHET1+2. 0% (DTHE2+DTHE3)+UTHEL) /6. 0=DTHEZ
DTHETAS=DTHETAZ+ (DTH4+2, 0% (DTHZ2+DTH3)+DTHA) /6.0=DTH3
RI=ATITA2ZE(DTHETA 314, 2% w2
EE=B11+R22+« (DTHETA2/314_.2) %%
RI=C1T+C28x(DYHETAS/314 _2) 242
THETA=THETA+(THETT+2 , Ow (THET?+THET3)+THET4) /6. 0-THET3
THETAZSTHETA2+(THET+2. 0% (THF2+THES)+THELY /6 0-THE3
THETASSTHETAZH(THT+2 0w (TH24THS)+THL) /6, N=TH3
eIt (1,13 =C12¢1,1)
el ¢2.,1y)=C12¢2,1)
cli¢3,1)=CI12¢3.1)
CIV(4,1)=C12(4,1)
pl1¢1,)=b12¢1,1)
PI1(2r1)=012(2:4)
p11¢3¢13=2D12(3,4)
0I1¢40)=D12(401)
CALL BZOTB(RITRIT+CIT 404 e10b7444)
Call NZo1us(ALDT, ALY1, D1, 404,008,410 4)
CALL HZaiB(6I11,671%,019,b604,10%,444)
nG H66¢ ¥=144
606 ViR 12=RIT(K 1) +ALLT(K, 1) +PTHETA*GLI1T (K, 1)
VOATESURT(2,0/3.0) %yl (1,1
VSEI=S0uT(2.07/3.0)*(~0.5%Vi¢1,1)+5QrT(3,02*v1(2,9)/2.0;
vSCTI=50nT (2 0/3 0% (=0, 5+v1(1,1)~5quT(3, 0)*y1(2,12/2,0)
DUR=DUK+ I
NC=(iC+T
IFChe. LY, (Nee+NCe1)) GO TO 28
whITELO, 4() :
47 FURHAT(//AzH R E 5 W 1 - 7T C H 1 N G)
' et 1)=c12¢101)
cl(2,17=c12¢2:1)
e1(3,1)5C12(341)
CI(ayt)=Cl2¢4,1)
Cl1(5¢12=Cl2(5:¢1)
Cl{6e1)=CI2¢411)
Ci(?,910=Ci2¢7:1)
CI(2e17=Cl2(8+:1)
Cl(f':‘l)-'-CIZ(’l-1)"5]2(5:1)
el (1041)=-C12(2,1)~CE2(6,1)
el (1101 =C12¢9.1)
el i2.1)=C12¢10,1)
49 CUNTIKUE
L=0 .
vASYHTI*STHNC10G, 0xPI+pUR+EPST)
YESVHTI*S 1 (100, 04P1+DURSEPS?)
VC=VHI*SIN(100. 0P I+pUR+EPSI)
VAM=VA=RSP*ALT
Vel =VE=RSPApLT
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T YGh=EVEmRSPHACLT

nlJR:DlJR+H
1FCNG. LT, (HCCHNCCT+NCL2)) 6N 70

. §TOP

b
FIISH

whkhw

L8
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. APPENDIX H

SUBROUTINES USED THROUGHOUT THE PROGRAMS

wrw MBUZA INVERTS A MATRIX *ww
M=DIMENSTUN OF MATRIX

TA=FIRST DIMENSION OF (A) AND (R)
DET=VALUE OF DETEKMINANT

1P=1 DET=DETERMINANT ,ADJOINT NOT FOUND
1P=2 DET=DETERMINANT, (A) ADJOINY OF (&)
1P=3 DLT=DETERMINANT, (A) 1S INVERSE OF (a)
SUBROUTINE 1iBU2A(B A, DET M, IP, 18)
DIMENSION B(IA.IAY (ACTATIAY, C(Zn 20),2L20), INDC20) ,JND(20)
AMAX=0.0

PO 2 1=9,M

IRDCI)=]

JUD(1)=]

DO 2 J=1TH

ACL, D)=BcCl, )

TFCABSCAC)  ud)=AMAXY2,2.,0

AMAX=ABS (ACL,J))

14=1

Jé=y

CORTINUE

p(1)=1.0

MH =i~ 1

DO 11 J=z1914H

IF(l4-dY6.6,0

DC1Y==D(1)

1STO=IND (V)

THDCJ)=INDCL 4)

IND(I4)=1STO

D0 5 K=1,M

STO=A(14,K)

ACLG  K)=A00,K)

A, KD =570

CONTINUE
1IF(J4~d)8,8,0
DC1)==D(1)
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ISTOSJIND (J)
JHD(JI=INDCJ4)
JND(J6I=T5T0
DO 12 K=1,H

8TN=ALK, J4)

16
19

ACK, $42=A(K,J)
ACK,J)=S8T0
CONTINUVE

AMAX=0.0

J1=d+1

DO 11 1=451.4
STO=mrACIVIY ALY L)
pt 10 Kz1,M
A(I,K)zA(I,K)-}-STD*A(J,K)
TFCEK-Jd210,10,15
TFCABSCA(L  K))=-AMAXI10,10,17
AMAX=ABS (A(] ,K))
1421 .

J4=K

CONTINUE
ACI,d)=5T0
CONTIHVE

p0 18 I=1,MH
DCE+1)=DCIY+A(L, 1)
CONYINUE

DET=0CM) xA(H, M)
PRODTI=T 0
FFCIP-E)9%9,49.,0
PROD1=1 ,0/DET

bo 20 J=1.,M

B0 21 Kzi,J

C(K,d2=0,0

CONTIKUE -
p0 22 K=y .M
CIK,JI=ACK, 3D

CONTINUL

C(JJJ)=1‘.'U

pROp=PROD1

b0 30 I=1.Mi

12=1~1

j1=12+1

STO1=CC11+4d)
cC(I1,97=2D(I1)*STOT*PROD

IFCARSULSTOT)=ABS(ACET,11)))25,25724

STO=STUT/ACLEY, I1)

DO 27 K=1,12 N
CCK,JI=CCK, J)=STOXA(K, 1)
CONTINUE
PROD=PRND*A(I1.,]1)

60 TO 30

e e S e orm emam s e wm o om = e et meias
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STo=ACI1,11)/5T01

b0 28 K=1,1?2 ,
C(KJJ)zﬂ(Kr11)-STO*C(K,J)
CONTINVUE :
PROD==PROD*STO1
CUNTINUE
CC1,0)=p(1)*C(1, J)Y£PROD
CONTINUE

bO 40 1=1,M

K=IND(I1)

DO 40 J=1.1

L=JHD(J)

ACL,KIZC(I 1)

CONTINUE

RETURHN

END

MZ01B MULYIPLIFS TWO MATRICES*#® 4%
SUBROUTINE MZ0TBC(C,AeBrIsdskK,1C, TA,B)
DIMENSION CCIC,K) ACTASJYB(IBIK)

b0 1 1T=1,1

PO 1 KK=4,K

C(I1I,KKy=uU.0

ol 1 Jd=1,4

COIX KKY=COII, KKY+ACTIT ,JJY*B(JJ KK
CONTINUE .
RETURN : o :
END

wx+1204B MULTIPLIES A TRANSPOSE OF GNE MATRIX By A MATRIX
SUBROUT INE MZ02K(C,A/B,T,4/K,1C/T1A,18)

DIMEHSION ACTA1YBCIR,KYCCICIK)

pboO 1 Hl=1,1

DO 1 KK=1,K

cC(11,KKY=0,Q

PO 1 Jd=1.J.

CCIT,KR)=ClIT, KKY+A(JI, 11D B (JITKK)

CONTINUE

RETURN )

JEND -

o e e s e

e e




__,iw (b)

Figure 21 (a)Balanced 3-phase induction motor

(b)Bdanced 2-phase indution motor

(c)Stationary axis equivalent
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Read in initial values

of currents and speeds

!

Call the inversion

subroutine

]

Invert matrix 1

(Ll

" Is there
any supply impedance

yes

Compute the|
voltage drop

Compute the_applied voltage
in
3-phase guantities

\

Transform the applied

in 3~ Phase
quantities |

1

Compute theapplied
voltage in 3-phase

quantities

voltage to d- q -

coordinates

b

Figure 41 Flow chart (Sheet 1)




Generate matrices for
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Compute rate-of-

change of currents

Perform a cycle of Runge-

Kutta numerical integration

Print results,if required,
at the given instant of

time

" Has the

been covered

no

Figure 41 Flow chart (Sheet ?2)
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disconnected ?
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Use the relevant _ matrices
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flux - linkage
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Figure 41 Flow chart (Sheet 3 )
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Figure 4-3 Induction motor phase voltages-

(@) Phase sequence ABC.

(b)Phase sequence ACB.
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motor I 1-5 kW, 2-pole
motor II 225 kW, 4-pole

motor I 56 XW,6-pole

50

100

150
time,s



voltage p.u.

current p.u.

Yo~
| I W
~, 7
.'l E e
10 A
FAS \ “x .
5 A 2 \ R A X oo~
. , \ ;‘ \ N /\\ VAN - -
/] h\ 2 ‘1 . N ;’ ‘\\ ’/
i \ \ i \ 7 [ s
\ A ’ ~
__5 ‘\\ \\\ N7 \\ I’I N/ \ 4 \\ 4 3 t, mS
50 100 150
_‘lo 9

Figure 6.1(a) Transient current in r-line following direct-to-line

starting of Q.75 kW motor.

Computed results , Experimental resulls

r-y line voltage --—~-—.- |

1 p.u.voltage =345 V , I p.u.current = 44 A



voltage pu.

current p.u.

Figure 6-1{b) Transient current in r-line following direct-to-line
starting of 1.5 kW motor -

Computed results ---- - ,Experimental resuits

1p.u.voltage =345 V , 1p.u.current=55 A

,r-y line voltage P,
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voltage p.u.

Figure 61(c) Transient current in r-line following direct-to-line

starting of 2-25 kW .motor.
Computed results---~--

1. p.u. voltage = 345 vV

,Experimental results

1 p.u.current =12.7 A

,r-y line vollage-—-— -



voltage p.u.

current p.u.

Figure 6.1(d)

Transient

Ao/ ™\ 7 t,ms
o

current in r-phase following"

starting of 5.6 kW motor.

Computed

results -—--— , Experimental

direct-to-line

,r-y line voltage —-—-— —

1 p.u. voltage = 5657 V , 1 p.u current = 16.8 A



Torque p.u.

Figure 6-2(a)

Transient torque following connection of
56 kW motor at rest
Computed resulis --——-—-

Experimental results

1 p.u. torque = 56 ' Nm
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80 {, ms

Figure 6-2(b) Transient torque following connection
of 56 kW motor at 0-95 p.u. speed.

Experimental resulis

Computed results
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instant of switching

figure 6-3(a) variation of peak current with instant of switching of 075 kW . motor.

standstill —.—.—. — , 045 p.u. speed

1 p.u.current=4.4" A

,09 p.u. speed
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Figure 6.3(b) Variation of peak current wiih instant of switching of 1.5 kW motor.

standstill

,045pu.speed -——-—. - ,09p.u.speed

1 p.u.current =55 A
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Figure 6-3(c) Variation of peak current with instant of switching of 2.25 kW motor.
standstill ————, 045 p.u.speed ~—-—--, 09 p.u.speed —~—=-—-

1 p.u.current =127 A
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Figure 6-3(d) Variation of peak current with instant of switching of 5.6 kW motor.

standstill , 0.4%5 p.u. speed ---:—— ,09p.u.speed -—-—-—-—

1 p.u. current = 16-g A
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Figure 6.4 Effect of speed onconnection on maximum and minimum values of transient

torque of 0.75 kW motor.

(a)Computed torque pattern following connection at 0.4 pu speed.

{b)Variation of maximum and minimum torque values with speed.
L3 7 Ao | ard 11 u toraue = 7.4 NmMmo
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Figure 6.5 Effect of speed on connection on maximum and minimum values of
transient torque of 1.5 kW motor.

{(a)Computed torque pattern following connection at 0.4 p.u. speed.

(b)VQEiation of maximum and minimum torque values with speed .

]t — — , 2nd ——  3rd - ,1 p.u. torque = 4.7 Nm .

speed pu
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Figure 66 Effect of speed on connection on maximum and minimum valyes of transient

torque of 2.25 kW motor .
(a) Computed torque pattern following connection at 0.4 pu speed.
jst ———— ,2nd —— ,3rd —————— , 1 p.u. torque =15.5 Nm.

S

(b) Variation of maximum and minimum torque values with speed.



‘P U,

Torque

Torque p.u.

30 t,ms 60

{(a) -2 (b)

Figure 6.7 Effect of speed on connection on maximum and minimum values of

torque of 5.6 kW motor.

" {a)Computed torque pattern following connection at 0.4 'p.u. speed.

(BYvariation of maximum and minimum torque values with speed.

1st-—— — ,2nd ——— ,3rd -w-——-— ,1p.u. torque =56 Nm.
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L

speed p.u. 1.0
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Figure 6.8 (a)T erminal voltage following disconnection of 0.75 kW motor.

results

results----————, Experimental

Computed

345 V-

1 p.u. voltage



voltage p.u.

Figureg -8 (D) Transient voltage
Computed results

1 p.u. voltage= 345

following ™ disconnection of 1.5 kW motor.
,Experimental results

V.



voltage p.u.

Figure&8(c) Terminal voltage following disconnection of 2.25 kW motor.

computed resultg ~--~---~~, Experimental results

1 p.u. voltage= 345 V.
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Figure 8.9(a) Transient  current
Computed results

1 p.u.current = 4.4 A

100 150 t,ms

following reconnection of 0.75 kW motor .
—————— , Experimental results

, 1 p.u.voltage = 345 V
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Figure 6-9(b) Transient current following reconnection of 1.5 kW motor.
Computed results-----—-—- , Experimental results

1p.u. current =5.5A ,1p.u. voltage =345 V
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Experimental results

1p.u. voltage= 345 V.



Aniiw

|

L
—
i
=
=
=
>
>
>
B
>
>
>

|
—
[ -

VIV

reconnection

2..
5 [~ disconnection
d- A
- . , FaNl ./
o 100 200 ! 4 : vt,ms
5 \n 1 ‘\ ;’
(5] -
_‘2_
. J‘

Figure 8.9(d) Transient current following reconnection of 5.6 kw motor.
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Figure 06-10 Transient torque following
of 5.6 kw motor.

Computed results —~———---

Experimental results 5
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1p.u.voltage =565.7 V
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Figure 6.11(a) Transient torque following plugging of
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Experimental results
1 p.u. torque =56 Nm, 1 p.u.volitage = 5657V
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Torque p:u. .

Figure 6.12 Torque foliowing reconnection of 0.75 kw motor.

(a) Computed transient torque pattern.
(b)variation of peak torque with delay .

1 p.u. torque = 7.5 Nm.
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figure 613 Torque following reconnection of 1.5 kW motor.
(a) Computed transient torque pattern.
(b)variation of peak torque with delay.

1 p.u.torque= 4.7 Nm .
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Figure 6.14 Torque following reconnection of 2.25 kW motor.
(a)Computed transient torque pattern.:

(b)variation of peak torque with delay.

1 p.u. torque = 15.5 Nm .
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(@) Computed transient
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torque pattern.

(b)variation of peak- torque with delay.
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100




~J
1

|

~J
i

T'orq'ue PuU—

—
L

~
1

(a)

Co ist pfaak
> 11
. [a
. 5 - angle of disconnection
¥ t E‘ T T
,ms
50 o ] 2R
1 !
2nd peak

(b)

Figure 6.16 Torque following reconnection at constant supply interruption and different

instant of connection of 0.75 kW motor.

(a) Pattern curve .
(b)variation of peak torque with instant of disconnection

(constant supply interruption of 10 ms).

1p.u. torque = 7.5 Nm .
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Figure 6.17 Torque following reconnection at constant supply interruption and

e

different instant of conhection of 1.5 kW wmotor.

(a)Pattern curve.

(b)variation of peak torque with instant of disconnection

(constant supply interruption of 10 ms )

1 p.u. torque =4&.7 Nm.
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Figure 618 Torque following reconnection .at constant supply interruption and
different instant of connection of 2.25 kW motor.

(ayPattern curve.

1

'(b)Variotion of peak torque with instant of disconnection

(constant supply interruption of 10 ms)-

1p.u. torque =15.5 Nm,
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Figure ©6.19 Torque following reconnection at constant supply interruption and

different instant of connection of 5.6 kW motor .

1

(a)Pattern curve .

(b)Variation of peak torque with instant of disconnection
(constant supply interruption of 10 ms)

1p.u. torque =56 Nm.
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Figure 6.20 Current foliowing reconnection of 0.75 kW motor,

(a) Computed transient current pattern.

(b)Variation of peak current with delay .

1p.u. current = 4-4 A
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F'igur‘e 6.21 Current following reconnection of 1.5 kW motor.
(a) Computed transient current pattern.

(b)Variation of peak current with delay.
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Figure 822 Current following reconnection of 2-25 kW motor.

(a) Computed transient

current

pattern.

(b)Vvariation of peak current with delay.

1 p.u. current = 127 A

B
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Figure ©6-23 Current following reconnection of 5.6 kW motor.

(ayComputed transient current pattern.

_ {b)variation of peck% current

1p.u. current=16.8 A X

with delay .
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Figure 6-25 Torque
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Figure 6.32 Torque following star-delta starting of 0.75kW motor.
(Q)Computed transient torque pattern.
(b)variation of peak torque with delay.

1 p.u. torque =7-4 Nm.
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~Figure 6.33 Torque following star-delta starting of

() Compuied transient torque pattern.
(b) Variation of peak torque with delay.

1 p.u. torque = 4.7 Nm.
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1.5 kW motor.
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figure 6.34 Torque following star-delta starting of 2.25 kW, motor.

(a)Computed transient torque pattern.
(b)variation of peak torque with delay-

{ | 1p.u. torque=15.5 Nm.



Torgque p.u.

'3 T T T T T ST e s TR/ — ——
I .
|
21 241
|
___,' |
14 . ‘]_I
e |
@ I
:J 1
g '
40 t,ms o | 100 t, ms
. - i__- I
_] -1-|
_1 |
(a) ' (b)
-2 241
|
I
- |
>34 _3';/
‘ | |

Figure 6-35 Torque following star- delta starting of 5.6 kW motor .
(ayComputed transient torque pattern.

(b)variation of peak torgque with delay.

1p.u. torque =56 Nm.
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Figure 6-36 Current following star-delta starting of 0.75kw motor.

(@)Computed transient current pattern.
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(b)variation of peak current with delay.
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following star-deita starting of 1.5 kW motor.
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(b) Variation of peak current with delay.

1 p.u. current=5.5 A.
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Current following star-delta starting of 2-25 kW motor.

{a)Computed transient current puttern.'
(b)Variation of peak current with delay.

1 p.u. current =12.7 A.
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Computed results ---—--, Experimental results — , r-y line voltage —— - -
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b-line ‘of 0.75 kW motor following direct-to-line starting

,1p.u. current= 4.4 A
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Figure 71(b) Transient current in r-line of 1.5 kW motor following direct-to-line starting of
075 kW/1.5 kW motor group. '

Computed results----- ,Experimental results —— ,r-y line voltage ~-——-—
1 p.u. voliage=345 V ,1p.u. current =5.5 A
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Figure 7.2 (a) Computed torque and speed of 0.75 kW motor following direct-to-line
starting of 0.75kW/1.5 kW motor group.

1 p.u. torque=7-4 Nm , 1 p.u. speed= 314.2 elec.rad./sec.
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Figure 7.2(b) Computed torque and speed of 1.5 kW motor following direct-to-line

starting of 0.75kW/ 1.5 kW motor ‘group.

I o.4. torque = 4.7 Nm , 1 p.u. speed =314.2 elec.rad/sec.
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Figure 7-3 Transient torque of 5.6 kW motor following direct-to-line

starting of 56 kW/2-25kW motor group.

Computed resulls ----- , Experimental results

1p.u. torque = 56 Nm..
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Figure 7.4 Transient current following

3000 4000 { . ms

connection of 0.75 kW/1.5 kW motor group

to a non-stift supply. {(supply resistance =11.0 ohm)

(@Q)Transient current

Computed resutts

of 1.5 kw motor. (b)Transient current of 0.75 kW motor.

,' Experimental results
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Figure 7.5 Terminal voltage following connection of 0.75 kW/1.5 kW "‘motor group

to a non-stiff supply. (supply resistance=11.0 ohm)

Computed resulis---—--- ,Experimental results

1 p.u. voltage = 345 V.
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Figure 7.6 (a) Transient iorque and speed of 0.-75 kW motor following connection
- of 0-75kW/1.5 kW motor group to non-stiff supply.

(supply resistance =11.0 ohm). 1p.u. toque=7-4 Nm,ip.u. speed =314-2 elec.rad/sec.
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Figure 7.6 (b) Transient torque and speed of 1.5 kW motor following connection of 0.75kW/1.5 kW
motor group to non-stiff supply.(supply resistance =11.0 ohm)

1p.u. torque =4.7 Nm. ,1p.u. speed=314-2 elec.rad/sec.
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Figure 7.7 Terminal voltage and stator current following disconnection of 0.75kW/1.5kW motor group
(@) Terminal voltage (1 p.u. =345 V). (b)Stator current (1p.u.=55 A ).

Computed resulis - ~—- ,Experimental results
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Figure 7.8 Computed rotor currents .following disconnection of 0.75kW/1.5 kW motor group.

(iy0.75 kW motor (1 p.u. current=4.4 A).
(ii)1-5 &w motor (1p.u. current=5.5A).

a -phase , b-phase ----- |, ¢-phase ——~— -
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Figure 7.9 Stator current following disconnection of 075 kW /1.5 kW motor group.

1 p.u. current=4.4 A-
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Figure 7.10 Computed air-gap power
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motor group.

0-7,_5 kW motor.
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Figure 7.11 Computed speeds following disconnection of 0.75kW/1.5kW motor group.

(a) 075 kW motor. (bY1.%5 kW motor.
results in 0.75kW/1.5 kW motor ‘grdup
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Figure 7.12 Comparison between ferminal voltages of 075 kW/1.5kW motor group

and 0.75 kw and 1.5 kW motors in isolation following disconnection.

0-75 kW/1.5 kW motor group.

________ - 0.75 kW motor.
1.5 kW motor.

1 p.u. voltage =345 V.
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current following reconnection of 0.75kW/1.5kW motor group.

current of 1-5 kW motor (1 p u. current=5.5 A )

current of 0.-75 kW motor( 1 p.u. current= 4.4 A)

results , Experimental ‘results
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Figure 7-14(a)

Torque p.u.

Torque of 0.75 kW motor following reconnection of
075 kW/1-5 kW motor group.

(i) Computed transient torque pattern.

(ii) Variation of peak torque with delay.

1 p.u. torque =74 Nm.
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Figure 714 (b) Torque.of 1.5 kW motor following reconnection of

~

0.75 kW/1.5 kW motor group.

(1) Computed transient torque pattern.

(ii)variation of peak torque with delay.

1 p.u. torque = 4.7 Nm.
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Comparison between torque peaks following reconnection of 075 kW and

1.-.5kW motors in isolation and in 0.75 kW/1.5 kW motor group .
(aYVariation of peak torque with delay of 0.75 kW motor {1p.u.torque=7-4 Nm).
(b)Variation of peak torque with delay of 1.5 kW motor(i1p.u torque=4.7 Nm).

motor in isolation -——— —— ,motor in group
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Figure 7.16(a) Torque of 0.75 kW motor following reconne_cfion of 0-75kW/1.5 kW motor group

at constant supply interruption and different

(a) Transient

‘(b)Vcriction of peak torque with

pattern.

of connection.

angle of disconnection.
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Figure 7.16(b) Torque of 1.5 kW motor following reconnection of 0.-75 kW/1.5 kW motor group
at constant supply interruption and different instant of connection.

t

{(a) Transient forque pattern.

(b)variation of peak torque with angle of disconnection.
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-Fiqure 7.17 Torque of 0.75 kW motor following plugging of 0.75 kW/1-5kW motor group‘.
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Figure 7.18 Torque of 1.5kW motor following plugging of 0.75kW/1.5kW motor group.
(a) Computed transient torgque paitern.
(byvariation of peak torque with delay.

1 p.u. torque = 4.7 Nm.
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Figure 7.19 Comparison between iorque peaks following plugging of 0.75 kW/1.5kW motor

group and 0.75 kW and 1.5 kW motors in isol.cmon.

(a)Variation of peak torque with delay of 0.75kWmotor(1p.u. torque =7-4 Nm ).
(b)variation of peak torque with delay of | 1.5 kW motor (1p.u. torque =4-7 Nm) .

moior in isolation--—-—=-~~- motor in group
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Figure 7.20 Current of 0-75 kW motor following plugqQing of 0.75kW/1-5 kW motor group.

(a)Computed transient current pattern.

(b)Variation of peak current with delay.

1 p.u. current = 4-4 A -
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Figure 7.21 Current of 1.5kW motor following plugging of 0.75kW/1.5kW motor group.
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(@)Computed {ransient current pattern .

(byvariation of peak current with delay.

1 p.u. current = 5.5 A-.
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Figure 7.22 Torque of 0.75 kW motor following star- delta starting of 0.75kW/1.5kW |

motor group.

(@)Computed transient torque pattern;

(b)Variation of peak torque with delay. -

1 p.u. torque =7.-4 Nm.
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Figure 7-23 Torque of 1.5kW motor following: star- delta starting of
- 0-75 kW /1-5 kW motor group.

(a) Computed transient torque pattern.

(b)Variation ot peak torque with delay.

1 p.u. torque = 4.7 Nm.
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Figure 7.24 Current of 0.75kW motor following -star- delta starting of 0-75kW/1.5kW

motor group.

(a) Computed transient current pattern.

(b)vdriution of peak current with -delay.

1 p.u. current = 4.4 A.
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Figure 7.25 Current of 1.5 kW motor following star-delta starting of 0.75kW/1.5kW

motor group.

(a) Computed transient current pattern..
(b) Variation of peak current with delay.

1p.u. current=55 A.
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‘Figure 7.26 Comparison between torque peaks following star- delta starting of 0.75 kW and 1.5 kW
motors in isolation and in 0.75 kW /1.5 kW motor group.

(a)Variation of peak torque "with delay of 0.75 kW mo{or(1 p.u. torque=7-4 Nm).
(b)variation of peak torque with delay of 1.5 kW motor(l p.u. torque=4.7 Nm )

motor in isolation ———- —— - ,motor in group
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Figure8-1(a) Transient current in r-line of 0.75 kW motor following direct-to-line starting of

0-75kW/1.5kW/2.25 kW motor group.
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Figure 8.1(b) Transient current in r-line of 1.5 kW motor following direct-to-line
starting of 0.75 kW/1.5kW/2.25 kW motor group.

Computed resulis ———-~,Experimental results — ,F-y line voltage --——-

1 p.u. voltage =345 v , 1Tp.u.current= 5.5 A.
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Figure 8-1(¢) Transient current in b-line of 2.25 kW motor following direct-to-line starting

of 0.-75kW/1.5kW/?2.25 kW motor group.

-

Computed results---~- ~ ,Experimental results , -y line voltage --— —-—

' p.u. voltage =345 V , 1 p.u. current=12.7 A .
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Figure8.2 Transient torque of 5.6 kW motor following direct-to-line starting

of 0. 75 kW/2.25kW/5.-6 kW motor group.
Computed results---- - -  Experimental results

1 p.u. torque= 56 Nm.



g
]

Speed pu.

Torque P u.

—
4

\] 50 100 150 200 t, ms
/ T T T T
50 . 100 150 200 t,ms

Figure8.3(a)Computed torque and speed of 0.75kW motor following direct-to-line

starting of O75kW/1.5kW/2-25kW motor group.

1 p.u. torque = 7.4 Nm 1 p.u. speed = 314-2 elec. rad./sec.
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EigureB-B(b) Computed torque and speed of 1.5kW motor following

direct-to-line starting of 0.75kW/ 1.5kW/2-25 kW motor group.

1p.u. torque =4.7 _Nm , 1 p.u.lspeed =314-2 elec.rad./sec.
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Figure 8.3 (c) Computed torque and speed of 2:25kW motor following direct-to-line starting

of 0-75kW/1.5kW/2.25kW motor group.

i p.u. torque =155 Nm  , 1p.u. speed =314.2 elec.rad. /sec.
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Figure 8.4 Transient current following connection of 0.75 kW/1.5kW/2-25 kW motor group
to a non-stiff supply (supply resistance = 11.0 ohm).

(@) Transient current of 0.75kW motor. (b) Transient current of 1.5 kW motor- (¢) Transient current of

2.25 kW motor. Computed results---—-- ,Experimental results
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Figure85 Terminal voltage following connection of Q0.-75kW/1.5kW/2.25kW motor group

.

to a non-stiff supply (supply resistance=11.0 ohm).

Computed results ---—-- ,Experimental results

1 p.u. voltage =345 V.
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F”igureB-'E:(Q) Transient torque and speed of 0.75 kW motor tollowing connection of 075kW/1-5kW/2.25kW
motor group to a non-stiff supply (supply resistance=1-1-0 ohm}.

1p.u. torque =7-£; Nm , 1 p.u. speed= 314.-2 elec. rad./sec.



orque  p.u.

S>peed p.u.

0.2~

11

ﬂ —/\_——-_-—
!
5000 | 10000 t,ms
5000 _ 10000 t, ms

F‘tgurﬁé&b(b) Transient torque and speed of 1.5kW motor following connection of

0-75 kW/1-5kW/ 2-25 kW motor group to a non-stiff supply(supply resistance=11.0 ohm)

1p.u. torque=4.7 Nm , 1p.u speedz 314-2 elec.rrud.lsec.
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Figure 8.6 (¢) Transient torque.and speed of 2.25 kW motor following connection ot 0-75kW/1.5kW/2.25 kW

motor group to a non-stift supply(supply resis/tonce=‘l1-0 ohm}).

1 p.u. torque=15.-5 Nm. , 1 p.u. speed = 314.2 elec.rad./sec.
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Figure 8.8 Computed rotor currents following disconnection of 0.75 kW/1-5kW/2-25kW motor group-

(a) r-phase current of 0.75 kW motor. (b)r-phase current of 1.5 kW motor.

{cyr-phase current of 2.25 kW motor.
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Figure 8- Computed air-gap power following

disconnection of 0-75kW/1.5kW/2-25K
Vg | ' motor group.

'\i. —_— (.75 kW motor.

1007 . . -

—————— 1’5 kW motor.

------ 2.25 kW motor.



Speed p.u.

(a)

Speed p.u.

100 t,ms

Speed p.u.

(b)

50

(¢)

100 t, ms

100

t,ms

Figure 8.10 Computed speeds following disconnection of 0-75kW/1.5kW/2.25kW motor group.

(@)0-75 kW motor . (b)1-5 kW motor. (c¢) 2-25 kW motor.
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speed=314.-2 elec.rad./sec.
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Figure 811 Comparison between terminal voltages of 0.75kW/1.5kW/2.25kW motor group and Q75kW,1.5kW,2.25 kW

motors in isolation following disconnection. (1 p.u. voltage=345 V)

(a)0.-75kW motor.
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,motor in group

(b)1.5 kW motor. (¢) 2-25 kW motor.
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Figure 8.12(a) Transient current of 0.75kW motor following reconnection of 0.75kW/1.5kW/?2.25kW
motor group.

Tp.u. r-line current=4.4 A, 1p.u. -y line voltage =345 V.

Computed resulis ———- - —— , Experimental results
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Figure 812(¢c) Transient current in b-tine of 2.25kW motof following reconnection of
075 kW/1.5kW/2.25 kW motor group.

1 p.u current=12.7 A ,- 1pu. r-y line voltage=345 V-
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Figure 813 Torque of 0-75kW motor foltowing reconnection of 0.75kW/1.5kW/2.25kW
motor group.
(@) Computed transient torque pattern.

(b)variation of peak torque with delay.

1 p.u. torque =7.4 Nm.
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Jfigure8.14 Torque of 1.5 kW motor following reconnection of 0.75kW/1-5kW/2.25 kW motor
group.

(¢) Transient torque pattern. -

(b)Vvariation of peak torque with delay.

1 p.u. torque=4.7 Nm.
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(a) Transient torque pattern .

(b)Variation of peak torque with delay.

1 p.u. torque =155 Nm.
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Figure 816 Torque of 0-75kW motor following reconnection of 0.75kW/1.5kW/2.25kW motor

group at constant supply interruption and different instant of disconnection.
(a) Computed transient torque pattern.

(byvariation of peak torque -with angle of disconnection.

1 pu. torque =7-4 Nm,
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Figure 8-17 Torgue of 1.5kW motor following reconnection of 0-75kW/1-5kW/2-25kW motor group

at constant supply interruption and different instant of disconnection .
(a)Computed transient torgque pattern.

(b)variation of peak torque with angle of disconnection.

1 p.u. torque =47 Nm.
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Figure 818 Torque of 2-25 kW motor following reconnection of 0.75kW/1.-5kW/2-25kW motor group
at constant supply interruption and different instant of disconnection.
(Q) Computed transient torque pattern.

(b}Variation of peak torque with angle of disconnection.

1 p.u. torque = 15.5 Nm.
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Figure 819 Comparison between torque peaks

following reconnection of 0.75kW,1-5kxW and 2.25 kW
motors in isoclation and in 0.75 kW/1.5kW/ 2.25k W
motor group.

(a)VG.rioiion of peak torque with delay of 0.75kW motor.

Torque p.u.

(b)variation of peak torque with delay of 1.5 kW motor.

(c variation of peak torque with delay of 2.25 kW motor.

motor in isolation ,motor in group

1 p.u. forque of:

0.75 kW motor=7-4 Nm. , 15KkW motor=4-7 kW , 2-25 kW motor=15.5 Nm.
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Figdi-'e 820 Torque of 0.75kW motor following' plugging of 0.-75kW/1.5kW/2.25 kW motor group.
() Computed transient torque pattern. |

(b)yvariation of peak torque with delay.

1 p.u. tecrque = 7.4 Nm.
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Figure 821 Torque of 1.5 kW motor following plugging of 0.75kW/1.5kW/2.25kW motor group.
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(@) Computed 1{ransient torque peak.

(b)variation of peak torque with delay.

..]

p.u.

torque = 4.7 Nm.

(b)
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Figure 8‘.-22 Torque of 2-25 kW motor following pluggingj of 0-75 kW/1.5kW/2.25 kW motor group.

(a) Computed transient torque pattern.
(b)Vvariation of peak torque with delay.

1 p.u. torque = 15.5Nm.
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Figure 8-23 Comparison between torque peaks following

Plugging - of 075kW/1.5kW/2-25kW. motor
group and 0.75 kKW,1-5kW and 2.26kW

3

a

motors in isolaiion. g

' d

{a) 075 kW motor. (b) 1.5 kW motor. 2
() 225 kW motor.

motor in isolation------ ,motor in group

(b)

{c)
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Figure 824 Current of 0.-75 kW motor following plugging of 0-75kW/1.-5kW/2:25 kW motor group.

(@) Computed transient

(b)variation of peak current with delay.

I pu. curreni=4.4 A.

current p.u,

\

current pattern.
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(b)



p.u.

current

/

-57

p.u.

current

(@)

44

Figure 8.25 Current of 1.5 kW motor following plugging of 0-75kW/1.5kW/2.25kW motor group.

(Q) Computed {ransient current pattern.

(b)variation of peak current with delay

1 p.u. current=55 A.
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Figure 8.26 Current of 2.25kW motor following plugging of 0.75kW/1:5kW/225kW motor group.

(Q)Computed transient current pattern.

(b)variation of peak current with delay.

1p.u. current= 12.7 A .
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Figure827 Torque of 0-75kW motor following s

tar-delta starting of O0.75kW/1.5kW/2.25 kW motor group.

(o) Computed transient torque pattern.

(b)variation of peak torque with delay.

1 p.u. torque = 7.4 Nm.
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Figure B-28 Torque of 1.5kW motor following star-delta starting of 0.75kW/1.5kW/ 2.25 kW motor group.

(@) Computed transient torque pattern. | -

(b) Vdriotion of peak torgue witn delay.

1 p.u. torque=4.7 Nm.
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Figure 829 Torque of 2.25kwW motor following

.

star- delta starting of 0.75kW/1.5kW/2.25kW motor grou

(a) Computed transient torque pattern.

(bYvariation of peak torque with delay.

1p.u torque =155 Nm.
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Figure830 Current of 0.75kW motor following star-delta starting of O.-75°kW /1.5 kW/2-25 kW motor group.

-(a)YComputed transient current pattern.
(b)variation of peak current with delay.

1p.u. current =44 A.
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Figure 8-31 Current of 1.5 kW motor following star-delia starting of 0-75kW/1.5kW/2.25 kW motor group.

(@) Computed transient current pattern.

(b)variation of peak current with delay.

1 p.u. current=5.5 A.
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Figure 832 Current of 2.25kW motor

(@) Computed transient

(b)variation of peak current with delay.

1

p.u.

current =12.7 A .

following star-delta starting of 075 kW/1.5kW /2.25 kW motor group.
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Figure 8-33 Comparison between torque peaks

I
100 t,ms
Tp.u. torque =4.7 Nm

— - ———

following star-delia starting of O.75kW,1-5 kW, 2-25 kW

Torque p.U.-.

motors in isolation and in G.75kW /1.5 kW/2-25 kW

1
—
1

motor group.
()variation of peak torque with delay of 0-75 kW motor.

(b)Y 1-2kW motor. {(c) 2-25kW motor

motor in isolation —-- - - —  motor in group

—

100 t{,ms
ip.u.torque=15.5 Nm '
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Figure B.1 The torductor.
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Figure B-2 Capacitance strain-gauge
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Figure B.3 Resistance strain-gauge.








