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Highlights: 

 Scapular asymmetries exist during wheelchair propulsion 

 Propulsion speed does not alter scapula orientation in trained wheelchair users  

 Limited associations between propulsion kinematics and pain in wheelchair athletes  
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 Less upwardly rotated scapula was demonstrated in asymptomatic shoulders 

 Acromion marker cluster reliably tracks scapula during wheelchair propulsion 

 

Abstract 

Background: Shoulder pain is the most common complaint for wheelchair athletes. Scapular 

orientation and dyskinesia are thought to be associated with shoulder pathology, yet no 

previous studies have examined the bilateral scapula kinematics of wheelchair athletes during 

propulsion. Research question: To examine bilateral scapular kinematics of highly trained 

wheelchair rugby (WR) players and any associations with self-reported shoulder pain during 

everyday wheelchair propulsion. Methods: Ten WR players (5 with shoulder pain, 5 without) 

performed 2 x 3-minute bouts of exercise in their everyday wheelchair on a wheelchair 

ergometer at two sub-maximal speeds (3 and 6 km∙h-1). During the final minute, 3D kinematic 

data were collected at 100 Hz to describe scapulothoracic motion relative to each propulsion 

cycle. Instantaneous asymmetries in scapular orientation between dominant and non-dominant 

sides were also reported. Differences in scapular kinematics and propulsion asymmetries were 

compared across shoulders symptomatic and asymptomatic of pain. Results: An internally 

rotated, upwardly rotated and anteriorly tilted scapula was common during wheelchair 

propulsion and asymmetries ≤ 14° did exist, yet minimal changes were observed across speeds. 

Participants with bilateral shoulder pain displayed a less upwardly rotated scapula during 

propulsion, however large inter-individual variability in scapular kinematics was noted. 

Significance: Scapular asymmetries are exhibited by wheelchair athletes during wheelchair 

propulsion, yet these were not exacerbated by increased speed and had limited associations to 

shoulder pain. This suggests that propulsion kinematics of highly trained athletes may not be 

the primary cause of pain experienced by this population. 
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Keywords: Wheelchair rugby, injury risk, wheelchair propulsion, biomechanics. 

 

Introduction 

The shoulder has been identified as the most common site of injury in wheelchair 

athletes [1] with epidemiological studies reporting that up to 72% of wheelchair athletes 

experience shoulder pain at some point in their life [2-4]. The most common pathologies 

associated with shoulder pain in wheelchair athletes are shoulder impingement syndrome, 

biceps tendinopathy, rotator cuff tears and gleno-humeral instability [3,5]. Muscular 

imbalances, trunk stabilisation, overuse, and gender are all thought to contribute to shoulder 

pain [5,6]. However, the underlying biomechanical causes and consequences of shoulder pain 

are not well understood in this population.     

In able-bodied (AB) populations, scapular orientation and dyskinesia have been 

associated with the presence of shoulder pain. Decreased upward rotation and posterior tilting, 

alongside increased internal rotation of the scapula [7-9] and greater asymmetries between 

sides [10] have been reported in symptomatic individuals during static and/or planar 

movements. Although no direct relationships to pain have been made, these scapular 

orientations are all common to manual wheelchair propulsion [11,12] and are exacerbated as 

workload increases [13]. The interaction of scapular kinematics, asymmetry and pain therefore 

requires further investigation to better understand and treat the presentation of wheelchair 

athletes with shoulder pain.   

Previous explorations of scapular kinematics during wheelchair propulsion have largely 

been unilateral investigations [11-13], yet wheelchair propulsion is predominantly a bilateral 

activity requiring the coordination of both upper limbs and hence symmetry cannot be assumed 
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[14]. Subsequently, bilateral investigations of wheelchair propulsion remain scarce, with the 

majority having compared kinetic differences [14-16], whilst kinematic comparisons have 

often been limited to an assessment of propulsion patterns between sides [15,17]. Only 

Schnorenberg et al. [18] and Soltau et al. [19] have provided detailed analyses of bilateral upper 

body kinematics during wheelchair propulsion, although these were limited to single-subject 

case studies [18], paraplegic participants or independent analyses of dominant and non-

dominant limbs [19]. Despite this, preliminary data suggest that asymmetries exist during 

wheelchair propulsion [14,15,17-19], hence the need for bilateral investigations where possible. 

Yet no previous investigations have explored the bilateral scapular kinematics of wheelchair 

athletes or made any associations to shoulder pain. 

In wheelchair sports such as wheelchair rugby (WR), athletes typically cover up to 4.6 

km during competition and perform repeated bouts of high-speed activities, with similar 

external work performed during training [20]. This work, mainly performed using the relatively 

small muscle mass of the upper limbs, places large loads and repetitive stress on the shoulder 

[21]. Although it remains unclear whether this puts athletes at greater risk of experiencing 

shoulder pain or whether there is a protective effect of being active on the musculoskeletal 

system [3,4,22]. Secondly, WR players spend the majority of their time in a wheelchair 

designed for activities of daily living (ADL). Therefore, it cannot be assumed that the sporting 

activities they perform in their sports wheelchair are solely responsible for any inflated injury 

risk that may exist since the propulsion and transfers they perform during ADL could be the 

main source of risk.  

The aims of the current study were to: i) quantify bilateral scapulothoracic kinematics 

and propulsion asymmetries of WR players at two speeds reflective of ADL wheelchair 

propulsion, ii) investigate whether kinematics and the magnitude of asymmetries change with 

speed, and iii) to explore any differences in scapular orientations and propulsion asymmetries 
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between individuals with and without shoulder pain. Success in this work may impact both our 

understanding of athletic shoulder pain and inform our attempts to prevent and treat these 

highly debilitating conditions, which impact so profoundly on performance and everyday life 

while also likely having serious long-term consequences.       

 

Methods 

Participants 

Ten international WR players (age = 34 ± 5 years; body mass = 69.5 ± 5.1 kg) who use 

a manual wheelchair for activities of everyday life provided their written informed consent to 

participate in the current study. Ethical approval for the procedures was obtained via the local 

ethical advisory committee. Inclusion criteria required participants to use a manual wheelchair 

for everyday activities and to have ≥ 3 years’ experience of wheelchair propulsion. All 

participants were right-hand dominant. Further information about participants characteristics 

are detailed in Table 1. 

INSERT TABLE 1 HERE 

Shoulder pain 

All participants were required to complete an upper extremity pain symptom 

questionnaire (PSQ), which rates severity on a five-point likert scale (1 = ‘very mild’ to 5 = 

‘very severe’) and frequency on a three point scale (1 = ‘once a week or less’ to 3 = ‘more than 

3 times a week’) of bilateral musculoskeletal upper limb pain in the last 3 months [23]. An 

overall score for each shoulder was calculated by multiplying the severity and frequency of 

pain with a score of 15 representing the highest degree of pain possible.   
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Protocol 

All experimental trials were performed on a dual-roller wheelchair ergometer (VP 

Handisport-25, Medical Development HEF Groupe, France). Participants performed all trials 

in their own ADL, rather than sports, wheelchair. After a 5-minute warm-up participants 

performed three ‘coast-down’ trials [24] whereby they accelerated their wheels with three 

pushes and then sat in a stationary position whilst the wheels decelerated to determine the 

rolling resistance of the wheelchair-user combination. Two submaximal trials at speeds 

reflective of everyday wheelchair propulsion were then performed (3 and 6 km∙h-1). Each trial 

lasted 3 minutes and was separated by 2 minutes rest. Individual push phases were defined as 

the period during which a positive torque was exerted around the wheel, as determined by the 

ergometer. A positive torque of at least 1 Nm was used to determine the start of the push phase 

and the time to the start of the next push phase signified a propulsion cycle [16]. 

 

Kinematic data 

Kinematic data were collected at 100 Hz using four Coda CX1 units and Odin software 

(Codamotion, Charnwood Dynamics Ltd, Leicestershire, UK). Active joint markers were 

placed on C7, T8, incisura jugularis and processus xiphoideus to represent the thorax. 

Technical cluster markers, consisting of three markers in a rigid formation, were attached to 

the flat superior surface of the acromion on both sides. Prior to experimental trials, a static trial 

was captured to determine the locations of the angulus acromialis, trigonum scapulae and 

angulus inferior in relation to the technical clusters using a stylus to represent both scapulae. 

All landmarks captured during the static trial were then reconstructed during the experimental 
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trials to determine the body segment coordinate systems of the thorax and scapula in 

accordance with the International Society of Biomechanics (ISB) guidelines [25].  

Euler angles were used to describe the orientation of the scapula relative to the thorax 

(YXZ) and subsequent scapulothoracic motion as internal (+) / external (-) rotation (Y), upward 

(-) / downward (+) rotation (X) and posterior (+) / anterior (-) tilting (Z). Propulsion cycles 

within the final minute of each trial were used for analysis and normalised for time at 1% 

increments. The mean, minimum, and maximum angles and range of motion (RoM) were 

calculated for the scapula in each plane across speeds. Asymmetries were defined as the 

absolute, instantaneous differences in scapular orientation between dominant and non-

dominant sides.  

 Following a 20-minute rest period, the protocol was repeated with 7/10 participants. 

During the rest period all markers were removed, reattached and recalibrated by the same 

investigator to determine the reliability of the measurements, in particular that of the acromion 

marker cluster for representing the scapula during wheelchair propulsion. 

 

Statistical Analysis  

All statistical analyses were performed using the Statistical Package for Social Sciences 

(SPSS Version 23, IBM, New York, USA). Data was checked for normality using Shapiro-

Wilk tests. Scapular kinematic data (mean, minimum, maximum, RoM and asymmetries) were 

analysed across speeds (3 & 6 km∙h-1) for both sides (dominant & non-dominant) using a two-

way repeated measures analysis of variance (ANOVA). Effect sizes (ES) defined as the ratio 

of the mean difference to the pooled standard deviation of the difference were calculated to 

determine the magnitude of any effects and were classed as trivial (<0.2), small (0.2-0.6), 
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moderate (0.6-1.2), large (1.2-2.0) and very large (>2.0) according to previous guidelines [26]. 

95% confidence intervals (95% CI) were also calculated to determine the range within which 

the true ES existed. Reliability of the acromion marker cluster was assessed for both speeds 

through typical error of the measurement (TE) and intra-class correlation coefficients (ICC3,1). 

 

Results 

As demonstrated in Table 1, five participants experienced shoulder pain of which three 

presented with unilateral and two presented with bilateral pain. The acromion marker cluster 

demonstrated acceptable reliability for each scapulothoracic motion during both speeds of 

propulsion, with typical error never exceeding 3.1° and ICC ranging between 0.87 – 0.97 

(Table 2). 

INSERT TABLE 2 HERE 

Common to both propulsion speeds was an internally rotated, upwardly rotated and 

anteriorly tilted scapula (Fig. 1).  Scapulae moved towards a more internally rotated and less 

anteriorly tilted position towards the end of the push and early part of the recovery phase. The 

scapula also upwardly rotates during the push phase and gradually downwardly rotates 

throughout the recovery phase with a relatively small total excursion in this plane (Fig. 1).  

INSERT FIGURE 1 HERE 

Minimal changes in scapular kinematics were observed across speeds, with only a 

significant increase in maximum internal rotation observed at the highest speed (Table 3). 

Although the magnitude of this difference was moderate (ES = 0.98), 95% CI comfortably 

spanned zero. No significant differences in scapular kinematics were revealed between 

dominant and non-dominant sides (P ≥ 0.178). However, absolute instantaneous asymmetries 
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in mean scapular orientations did exist throughout propulsion but were not significantly 

affected by speed (Table 3).   

INSERT TABLE 3 HERE 

Given the limited effect of speed on scapular kinematics, relationships with shoulder 

pain were only explored at the fastest speed (6 km∙h-1) as higher loads are likely to be more 

symptom provoking. The scapular kinematics of asymptomatic individuals (n = 5) were 

compared to those with unilateral (n = 3) and bilateral shoulder pain (Table 4). The only notable 

difference between these groups was for the mean, minimum and maximum degree of 

upwards/downwards rotation during propulsion. A less upwardly rotated scapula position was 

adopted by participants with bilateral shoulder pain (Table 4). This is further emphasised in 

Fig. 2, where the two individuals with bilateral shoulder pain (participant 1 & 2), who also 

reported the highest magnitude of pain overall (Table 1), clearly demonstrated the least 

upwardly rotated scapular orientation. It was also noticeable from Table 4 and Fig.2 that large 

inter-individual variability in scapulothoracic motions existed and that propulsion asymmetries 

were not influenced by the presence or type (unilateral or bilateral) of pain.  

INSERT TABLE 4 & FIGURE 2 HERE 

 

Discussion 

This study was the first to explore bilateral scapular kinematics and asymmetries in an 

athletic wheelchair user population during ADL wheelchair propulsion. It was also the first 

study that attempted to relate these parameters to shoulder pain. It was revealed that propulsion 

asymmetries do exist, but scapular orientations and asymmetries were not affected by an 

increase in speed. Symptomatic individuals with bilateral shoulder pain demonstrated less 
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upwards rotation, yet large inter-individual variability in scapular kinematics meant limited 

and inconsistent relationships to shoulder pain were observed. 

During the push phase of the propulsion cycle the scapula move towards a more 

internally, upwardly rotated and less anteriorly tilted position. Throughout the recovery phase, 

the scapula maintained an upwardly rotated position, whilst reaching maximal internal rotation 

and minimal anterior tilt relatively early on. The scapulothoracic motions observed were 

consistent with previous unilateral observations in everyday wheelchair users [11-13] and also 

resembled orientations previously associated with shoulder pain in AB populations [7-9,27]. 

However, previous studies that identified relationships between scapular kinematics and pain 

in AB populations did so during tasks around or in excess of 90° shoulder elevation during 

static or controlled planar motions [7-9,27]. Given the low shoulder elevation exhibited during 

wheelchair propulsion it could be suggested that the biomechanics of ADL wheelchair 

propulsion is a relatively ‘low risk’ activity for the development of shoulder pain, especially in 

wheelchair athletes. Risk may simply become elevated due to the high volume of repetitions 

with which this activity is performed, however further research is required to challenge this 

assumption.  

Perhaps the most notable finding from the current study was that scapular kinematics 

were almost unaffected by an increase in propulsion speed in these highly trained wheelchair 

athletes. Only maximum internal rotation increased with speed and the effects of these changes 

were only moderate and unclear. This contrasts previous observations in everyday wheelchair 

users, whereby a shift towards increased downward rotation, anterior tilt and protraction were 

revealed with an increased resistive load [13]. Altered kinematics resulting from increased 

speed could be potentially dangerous, therefore the fact that minimal changes in scapular 

kinematics existed could be interpreted as a positive observation and attributed to superior 

physical conditioning as has previously been proposed [3,4,22], better propulsion skills or 
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stability of movement patterns of wheelchair athletes, compared to the everyday users 

previously investigated [13].  

Individuals symptomatic of bilateral shoulder pain did however, demonstrate a less 

upwardly (more downwardly) rotated scapula than individuals with unilateral shoulder pain 

and those asymptomatic of shoulder pain by a magnitude greater than the typical error of the 

measurement. However, establishing whether this decreased upward rotation is a cause of 

shoulder pain or a compensatory strategy to alleviate shoulder pain remains problematic. At a 

group level the current results would suggest that the decreased upward rotation demonstrated 

by individuals with bilateral shoulder pain, who also displayed the greatest magnitude of pain 

overall, could be a cause of the pain they are experiencing since this motion typically serves to 

depress the acromion and dynamically reduce subacromial space, which is associated with 

impingement syndrome [28]. Alternatively at an individual level, not all symptomatic 

individuals demonstrated this pattern. In particular, participant 8, who reported unilateral 

shoulder pain, actually displayed the largest degree of upward rotation throughout propulsion 

(Fig. 3). Subsequently this individual may be adopting this propulsion strategy in an attempt to 

minimise the pain already experienced. This highlights the potential dangers of utilising 

grouped data to make associations between kinematics and pain largely owing to the inter-

individual variability in scapulothoracic motions observed during the current and previous 

studies [13].  

Asymmetries in scapular orientation were also evident throughout propulsion. Since 

this was the first study to quantify asymmetries in scapular kinematics during propulsion, it is 

difficult to interpret the magnitude of the bilateral differences observed. Although previous 

studies have focused on other upper extremity joints, absolute differences of < 5° have been 

observed between sides [19,29]. The current study revealed mean asymmetries of around 5° 

(Table 3), yet large inter-individual variability means individual values are as large as 10-14°. 
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Given that scapular RoM is limited in comparison to other upper extremity joints during 

wheelchair propulsion, these asymmetries could be interpreted as being relatively large. It was 

also clear that the magnitude of these asymmetries was not significantly affected by increased 

propulsion speed and relationships to shoulder pain were again limited, even in individuals 

with unilateral shoulder pain, where greater asymmetries may have been anticipated. Although 

non-wheelchair specific studies have previously identified relationships between 

scapulothoracic asymmetry and shoulder impingement syndrome using moiré topography [10] 

and 3D kinematics [27], the ambiguity between individual asymmetries and shoulder pain 

currently observed could again suggest that this is not a definite risk factor for the development 

of pain for wheelchair athletes during ADL wheelchair propulsion and warrants further 

investigation.  

 

Study Limitations 

A limitation of the current study was that only 5 players experienced shoulder pain and 

that these were comprised of unilateral and bilateral pain sufferers, which may have skewed 

the data. Subsequently further research with larger, more homogenous sample sizes would be 

favourable. Future research examining the bilateral scapular kinematics of wheelchair athletes 

during maximal effort propulsion in their sports wheelchair would also be warranted. Under 

these conditions, where load is higher and the wheelchair is configured more for performance 

rather than comfort like with ADL, the shoulder girdle would be put under greater strain and 

differences in scapular kinematics may become more evident between symptomatic and 

asymptomatic populations, although glenohumeral elevation would still remain low. 

Regardless of this, in order to establish stronger associations as to whether altered scapular 

kinematics are a cause or consequence of shoulder pain or whether there is no relationship at 
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all, longitudinal observations are needed to monitor within-subject adaptations to the 

development or elimination of shoulder pain. However, kinematics and asymmetries during 

other ADL tasks, including wheelchair transfers and weight relief, which incur larger shoulder 

loads and ranges of shoulder movement than propulsion [30] should also be explored.  

 

Conclusions 

  The findings of this study demonstrate that scapular asymmetries exist during 

wheelchair propulsion, yet the orientation of the scapula was relatively unaffected by increased 

speed in wheelchair athletes and associations to shoulder pain are limited. Only decreased 

upwards rotation of the scapula appeared related to shoulder pain in bilateral pain sufferers 

with the greatest magnitude of pain. However, large inter-individual differences in scapular 

kinematics make associations between kinematics and pain difficult and whether the 

kinematics are a cause or consequence of the pain during wheelchair propulsion remains 

unclear.  
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Tables and Figures 

Fig. 1. Grouped scapular kinematics normalised (0-100%) to a whole propulsion cycle at 6 

km·h-1. n.b. Black line represents mean and error bars represent SD; Dashed line denotes end 

of push phase and transition to recovery phase, estimated from group cycle time data.  

Fig. 2. Mean bilateral scapular kinematics of individual participants at 6 km∙h-1. n.b. Dashed 

line denotes self-reported shoulder pain.  
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Table 1 Participant characteristics 

Particip

ant 

Age 

(yrs) 

IWRF 

classifica

tion 

Body 

mass 

(kg) 

Wheelchair 

mass (kg) 

Time as 

MWU 

(yrs) 

PSQ 

Shoulder 

(Dom/Non-

Dom) 

PSQ 

Shoulder 

(Combine

d) 

Pain 

1 34 3.0 73.6 11.8 3 15/15 30 BL 

2 28 0.5 66.0 15.3 9 6/9 15 BL 

3 34 2.5 72.2 13.6 6 0/0 0 - 

4 36 2.5 72.5 12.6 13 0/0 0 - 

5 39 1.0 80.0 12.5 22 0/0 0 - 

6 31 3.0 64.1 12.5 31 0/0 0 - 

7 31 1.5 67.1 11.9 9 0/2 2 UL 

8 28 0.5 69.2 11.8 4 0/2 2 UL 

9 36 2.0 64.9 12.5 20 0/0 0 - 

10 43 2.0 65.0 10.1 26 9/0 9 UL 

Mean 

(SD) 

34 

(5) 

 69.5 

(5.1) 
12.5 (1.3) 14 (10) - -  

n.b. IWRF = International Wheelchair Rugby Federation; MWU = manual wheelchair user; 

PSQ = upper-extremity pain symptom questionnaire; Dom = dominant side; Non-Dom = non-

dominant side; BL = bilateral; UL = unilateral; SD = standard deviation. 
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Table 2 Reliability of the acromion marker cluster when determining scapular kinematics at 

two speeds of wheelchair propulsion.  

 3 km∙h-1 6 km∙h-1 

 TE (°) ICC TE (°) ICC 

External/internal rotation 3.1 0.87 2.4 0.93 

Upward/downward rotation 2.6 0.90 1.6 0.97 

Anterior/posterior tilt 2.5 0.90 1.9 0.92 

n.b. TE = Typical Error; ICC = Intraclass Correlation Coefficient 
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Table 3 Mean (± SD) bilateral scapular kinematics at different propulsion speeds.   

  3 km∙h-1 6 km∙h-1 Speed ES (± 95%CI) 

Internal rotation (+) Mean 29.7 (5.5) 32.6 (4.8) 0.243 0.56 (-0.70, 1.83) 

 Min 20.8 (5.5) 21.3 (6.3) 0.698 0.09 (-1.16, 1.33) 

 Max 40.7 (6.1) 46.5 (6.1) 0.008 0.95 (-0.36, 2.26) 

 RoM 19.9 (5.4) 25.2 (5.4) 0.096 0.98 (-0.33, 2.29) 

External rotation (-) Asym 5.9 (4.7) 6.4 (4.4) 0.372 0.11 (-1.13, 1.35) 

Downward rotation (+) Mean -10.3 (7.3) -10.3 (7.9) 0.993 0.00 (-1.24, 1.24) 

 Min -15.1 (7.1) -16.4 (8.2) 0.081 0.17 (-1.07, 1.41) 

 Max -6.0 (7.2) -5.3 (8.4) 0.429 0.09 (-1.33, 1.15) 

 RoM 9.0 (2.5) 11.0 (3.5) 0.056 0.60 (-0.62, 1.93) 

Upward rotation (-) Asym 2.9 (2.7) 4.3 (3.1) 0.139 0.48 (-0.79, 1.72) 

Posterior tilt (+) Mean -6.2 (6.7) -6.3 (7.9) 0.898 0.01 (-1.23, 1.25) 

 Min -11.8 (7.0) -13.2 (8.1) 0.190 0.19 (-1.06, 1.43) 

 Max -0.1 (7.8) 0.6 (8.6) 0.373 0.09 (-1.16, 1.33) 

 RoM 11.7 (2.2) 13.8 (4.4) 0.114 0.60 (-0.66, 1.87) 

Anterior tilt (-) Asym 4.6 (2.4) 4.6 (2.8) 1.000 0.00 (-1.24, 1.24) 

n.b. Min = minimum; Max = maximum; RoM = range of motion; Asym = asymmetry 
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Table 4. Mean (SD) bilateral scapular kinematics of wheelchair athletes with different 

shoulder pain symptoms during propulsion at 6 km∙h-1 

  Asymptomatic 

(n=5) 

Symptomatic – 

Unilateral (n=3) 

Symptomatic – 

Bilateral (n=2) 

  Dom Non-

Dom 

Pain No Pain Dom Non-

Dom 

Internal 

rotation (+) 

Mean 33.3 

(5.8) 

34.1 

(5.3) 

27.5 

(10.0) 

33.8 

(5.1) 

35.8 

(8.1) 

30.3 

(1.1) 

 Min 22.4 

(6.2) 

24.3 

(7.7) 

13.8 

(11.0) 

21.7 

(6.0) 

22.5 

(2.2) 

20.8 

(2.4) 

 Max 46.1 

(8.0) 

46.7 

(5.4) 

44.3 

(11.0) 

48.8 

(4.7) 

51.3 

(10.5) 

41.7 

(8.6) 

 RoM 23.7 

(5.8) 

22.5 

(8.3) 

30.5 

(4.6) 

27.2 

(3.5) 

28.9 

(8.3) 

20.9 

(11.0) 

External 

rotation (-) 

Asym 6.3 (5.0) 6.7 (4.3) 6.1 (4.3) 

Upward 

rotation (-) 

Mean -10.7 

(1.9) 

-13.2 

(3.1) 

-13.0 

(10.3) 

-15.7 

(10.3) 

2.6 (2.6) -2.6 

(0.1) 

 Min -17.0 

(3.4) 

-20.7 

(3.2) 

-17.0 

(11.3) 

-20.4 

(14.1) 

-6.5 

(4.9) 

-6.9 

(1.1) 

 Max -6.0 (2.1) -7.4 (3.4) -8.8 

(10.5) 

-12.6 

(12.2) 

9.0 (1.6) 3.4 

(1.4) 

 RoM 10.9 

(4.4) 

13.3 

(4.4) 

8.2 (2.1) 7.8 (2.1) 15.5 

(3.3) 

10.3 

(0.3) 
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Downward 

rotation (+) 

Asym 4.0 (4.2) 4.3 (1.6) 5.1 (1.6) 

Anterior tilt 

(-) 

Mean -5.1 

(10.1) 

-3.8 (9.1) -7.3 

(11.7) 

-7.6 

(2.7) 

-10.7 

(6.9) 

-7.8 

(9.5) 

 Min -12.7 

(12.2) 

-10.7 

(10.3) 

-14.8 

(8.6) 

-15.2 

(3.1) 

-16.2 

(2.5) 

-12.0 

(9.0) 

 Max 3.5 

(10.3) 

3.2 (8.7) -0.5 

(12.0) 

-0.3 

(3.1) 

-5.4 

(11.0) 

-4.2 

(11.0) 

 RoM 16.2 

(6.8) 

13.9 

(4.7) 

14.3 

(3.5) 

14.9 

(1.4) 

10.8 

(8.5) 

7.8 

(2.1) 

Posterior tilt 

(+) 

Asym 4.0 (2.0) 6.8 (3.5) 3.0 (3.5) 

n.b. Min = minimum; Max = maximum; RoM = range of motion; Asym = asymmetry; Dom 

= dominant side; Non-Dom = non-dominant side; Pain = side experiencing pain; No pain = 

side not experiencing pain 
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