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SYNOPSIS

Digital filtering is an important signal processing technique
whose theory is now well established. At present, however, there are
no well defined and systematic methods available for realising digital
filters in hardware.

This project aims to develop such methods which are general and
technology independent, and adopts a systems and sub-systems design
philosophy. The realisation problem is approached in a new way using
econcepts from finite-automata theory and implementing complete digital
filter sections as stored-logic units. Two methods are introduced
and developed.

In the first, a complete basic second-order filter is directly
modelled as a finite-state sequential machine (F.S.M.) and implemented
with memory devices whose storage capacity is reduced by the application
of a well known method §f machine decomposition via 'closed' partitions.

To itnitzate a systematic analysis of the partition structure of
the F.5.M. digital filter, a study is made into the algebraic &écomposition
structure of the basic computational units making up the filtering
algorithm.

The insight gained is useful in a subsequent analysis which shows
that a second-order filter section, suitably simplified and modelled
as an F.S5.M., may be decomposed into a parallel connection of smaller
sub-machines, each of which, in turn, béing eomposed of a 'nested’
cascade interconnection of still gimpler components. The overall
memory requirement of the decomposed realisation is constiderably

less than that of the direct one.



The second method presents a technique of ‘digit slicing' over '
a variable number base, using which a filter section may be realised
as a regular interconnection of identical sub—filters of shor?
wordlengths, The technique leads to a flexibility in hardware count
and processing mode, and a modular expandibility in computational
accuracy and filter order. It is suited to implementations using
large-scale integrated (L.S.I.) devices.

Practical prototypes are constructed using programmable and
erasable memory modules.

The methods developed provide a general theoretical basis for
the hardware realisation of digital filters. It is hoped that its
main usefulness lies in bridging the gap between the initial analytiecal
deseription of the desired frequency characteristics and corresponding

filter transfer function, and the actual hardwired practical implementation,
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CHAPTER 1

INTRODUCTION

1.0 Introduction.

In this Chapter we describe the background of and the
motivation for the research project, state and discuss the nature
and scope of the investigation, and finally outline the organisation

of the various chapters of the Thesis.

1.1 Background.

The trend in the field of communication and signal processing
is towards the digital format for representing, transmitting and
operating on signals, the increasing use of pulse-code modulation
(P.C.M,) and delta-modulation (A - M.) being two familiar examples.
This may be attributed mainly (., the ever growing complexity and
flexibility of digital computers and the rapid advance in the
technology of medium and large-scale (M.S.I. and L.S.I.) integrated
circuits,

In a general digital signal processor, one of the main

components is the digital filter, which is basically a "black box"

which processes a digital input signal according to a computational
algorithm to produce a digital output having some specified
characteristics. Among its many applications, a digital filter

is widely used for waveform shaping and spectral analysis and
synthesis of signals. Some of the advantages of a digital filter

over its analogue counter-part are its arbitrary guaranteed accuracy,



predictable and reproducible performance, flexibility in parameter
changes, and the possibility of time-multiplexing its major
components.

From its early start in the mid-60's the theory in the analysis
and design of digital filters is now well advanced and fairly
complete, and comprehensive discussions on it may be found in many
excellent text bcao]:cs]"2 and special issues3 that are now available.

As such, in the next Chapter, we give only a brief review of the

general theory and place more attention to discussing the problem

of implementing digital filters in hardware. In contrast to its
well developed theory, the practical aspect of digital filtering

is far from satisfactory. Until a few years ago, with the exception
of the classic paper by Jackson et ala, most published papers
concentrated only on the off-line simulation of digital filters on
general-purpose computers.

The past few years, however, have seen a growing number of
papers -9 on the real-time hardware implementation of digital
filters. The design techniques seem to differ from each other, but
they invariably share a common philosophy, viz, a binary number
representation is assumed for the arithmetic operations, and the

hardware implementation is implicitly accepted as only an exercise

in switching circuit techniques and combinational logic design.

1.2 Motivation for project.

Consequently, we feel that there is a theoretical gap
between the analytical design of digital filters and their final

realisations in real-time hardware, and a need for a systematic



realisation technique. If it is to be useful, any method developed
should preferably be user-oriented and result in hardware structures
that are modular and flexible for easy construction, testing,

maintenance and reliable operation.

1.3 Design philosophy and problem formulation.

In our investigation, we decide to adopt the system and
sub-system approach in the design philosophy, in which the hardware
structures of digital filters are analysed from their input-output
behaviour. Thus a macroscoplic view is taken, rather than the
conventional microscopic one in which logic elements and parts are
put together to make up the overall filter circuit.

Furthermore, we feel that a powerful tool with which to
analyse such filter systems is the concept of finite-state
sequential machine (F.S.M.) or finite automatalo’ll’lz, (also
see Chapter 3), which is a useful model of the dynamics of discrete-
parameter systems.

As it happens, in the period 1960-65, a structural theof;.
of sequential machines which i1s generally unified and complete
was developed by Hartmanislz. Using this theory, it is possible
in general to decompose an F.S.M. into an interconnection of smaller
and simpler sub-machines. The application of Hartmanis' theory
to our filter systems is obviously attractive since a structural
decomposition implies a modular system architecture. Furthermore,
Howardl3 showed that the decomposition theory is still applicable

when an F.S5.M. is realised as a table look-up unit implemented

using a semiconductor read-only memory (R.0.M.), an L.S.I. device



that is rapidly becoming a popular alternative to random—logicla’ls.

Consequently, besides being an exploratory study in
implementing digital filcters using the systems approach in general,
our research project investigates im particular the feasibility
of realising a digital filter section as a table look-up unit and
modelling its dynamics as a finite-state sequential machine in
order to discover any structural property.

We term such a filter a stored-logic (S.L.) digital filter,

and consider its implementation using semiconductor memories.

1.4  Scope of research and organisation of Thesis.

The results of our initial investigations along the lines
proposed are described in Chapter 4, and we report some success in
simplifying the memory requirement of an S.L. digital filter. We
are not able, however, to generalise the techmnique used here to
filters having arbitrary coefficients, especially with recursive
filters, due to non-linearities introduced by arithmetic round-off,

To gain further insight into the algebraic structure of these
S.L. filters, we then apply the F.S5.M. modelling technique to the
arithmetic components which make up the filter. This is not
reverting to the traditional approach since the subsequent analytical
treatment, which is discussed in Chapter 5, is still on the systems
level. Analysing aritﬁmetic circuits based on modulo N arithmetic
(see ref. 16 for a discussion on modulo arithmetic), we derive
interesting loop-free12 decomposition structures for adders and

multipliers modulo ZN which require considerably less memory storage

in their implementation when compared with that required if a direct



table look—up is used.

We then extend the analysis to "real' arithmetic units,
where one has to account for the carry output in the case of a
general N-bit adder, and the double-length product of an N-bit
multiplier.

In Chapter 6 we outline a novel approach to the implementation
of modulo ZN multipliers based on a transform which maps a sub-set
of the multiplication table onto the Cartesian product of modulo 2
and ZN_I adders. Although the results are not directly relevant
to the synthesis of stored-logic filters, we have included the

“Chapter because we feel that it is interesting and useful in its
own right.

In Chapter 7 the theory on the algebraic F.S.M. decomposition
of general stored-logic modulo arithmetic units and digital filter
sections is developed in which the concept of a lattice of
partitions on machine states (see Chapter 3) plays a central role.
We show that for a general modulo M adder, its decomposition
structure can be completely described. Although we are unable to
do the same for the corresponding moduloc M multiplier, we have
managed to describe completely one possible sub-structure.

fhe next three chapters, 8.9 and 10, take on a more practical
tone. 1In Chapter 8, an attractive and novel modular hardware
architecture for a second-order digital filter section is

introduced. This uses the concept of digit slicing, which leads

to what we term a sub-filter module. We show that a digital

filter section may be realised as a regular interconnection of

such modules, which are all identical in structure.



Using this technique we have also constructed a practical
prototype 8-bit second-order digital filter section, in which the
sub-filter module is implemented using a seﬁiconductor programmable
and erasable read-only memory (p.R.0.M.). Details of the circuit
construction and testing are documented in Chapter 9. Useful
indications are obtained on the tradeoff between hardware complexity
and processing speed.

Following this, we propose in Chapter 10 two ways with

which the technique of digit-slicing and the concept of stored-

logic sub-filter modules can be successfully incorporated into
a general system architecture to achieve flexible and relatively
inexpensive real-time digital filtering. In this chapter we also
discuss briefly the state-of-the-art of practical digital filters
and signal processors and suggest probable trends.

Finally, we conclude the Thesis with Chapter 11, in which

the investigation that has been carried out is reviewed.

1.5 Conclusions.

The research project is an attempt to provide a theoretical
framework for the methodical implementation of real-time digitai
filters. The problem is approached in a novel way using a systems
design philosophy in general, and the concept of finite automata

in particular.



CHAPTER 2

THEORY AND IMPLEMENTATION OF
DiciTaL FILTERS

2.0 Introduction.

The theory of digital filtering is briefly reviewed in this
chapter, and we discuss the problems involved in implementing digital
filter hardware to process real-time signals. We alsc survey the
different approaches to the problem that have been proposed in the

’

literature,

2.1 Descriptions of a general digital filter.

A digital filter is basically a computational algorithm by

which an input number sequence {xn} is transformed into an output
number sequence {yn}. When used in a digital signal processing
system, as shown in Fig. 2.0, {xn} is the time and amplitude
quantised version of an analogue signal input. If so required;
{yn] may be converted back into the analogue form.

The filter algorithm is the following linear difference

equation,
N

N
Yn = k_Z_O %k -k T Zl Pk Yn-k

...(2.0)

where ak's and bk's are termed the filter coefficients,

The filter described by equation (2.0) is known as a general

recursive filter. In many cases, the output Y, is explicitly
determined only by the present and past input values, i.e. all

bk's = 0. The corresponding filter is then known as a non-recursive

one.
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Fig. 2.1 The direct form of a general digital filter.



In spectral analysis, due to the convenience of algebraic
manipulation, a digital filter is altermatively described by its

1 .
z-transform transfer function H(z), where

N -
] a2
k=0
H(z) = 2 ce(2.1)
1 + z bk z“k
k=1

-1 . .
where 2z is the unit delay operator.
A canonical circuit realisation of (2.1) is shown in Fig. 2.1,
known as the direct form. Due to accuracy requirements, the following

cascade and parallel forms are preferred, i.e.

Mool vagy 2t %24 2
H(z) = a 1 <. (2.2)
© ie1 148,z 48,22
1 1i 2i
and
-1
M v . +v,. 2z
H(z) = vy + )] =2 11_1 — .. (2.3)
° i=1 1 + B 2 + B z
1 1i 2i

where M is the integer part of (N+1)/2, and Y, = an/bn'
The corresponding circuit realisations are shown in Figs. 2.2(a)

and (b), in which the basic building block is the second-order or

biquadratic section, which is shown in Fig. 2.3 and described by the

following relationship, i.e.,

2 2
yn = E ak *n-k " Z bk yn—k e (2.8)
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Fig. 2.2 The cascade form (a) and the parallel
form (b) of a digital filter.
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2.1.0 Dynamics of digital filters.

The operational and functional behaviour of a digital filter

can be analysed either in the time or frequency domain.

In the former, we use the impulse response h{(n), which is the

filter output response to a discrete-time impulse at k = 0 (a digital

impulse at k = ko is a signal x(k) such that x(k) = 1 when k = ko
and x(k) = 0 when k # ko).

If hin) = 0 for N, < n < N2, with N, = N2’ the associated

1

filter is called a finite impulse response (FIR) filter. An infinite

1

impulse response (IIR) filter is one in which either Nl = o or

N2 = - = or both.

Given an input sequence g{n) and the filter impulse response

h(n), the output f(n) is obtained by the discrete-time convolution

operation defined by

fn) = } b8 _y ...(2.5)
k=—o
Alternatively, a filter may be described by its frequency response,
which is the value of H(z) when evaluated on the unit circle:_
i.e, |z| = 1, in the complex z-plane. When the frequency response

is expressed in polar form, its magnitude and its angle as a function

of frequency is called the amplitude and the phase response respectively.

Other aspects of digital spectral analysis such as Discrete

Fourier Transform (D.F.T.), and the algorithm for its efficient

computation called the fast Fourier Transform (F.F.T.) may be found

in the recommended references.



10

2.2 Applications and advantages.

Digital filters are extensively used in data reduction and
system simulation experiments, and as integral parts of communication
or signal processing systems. Specific applications include character
extraction in speech processing and biomedical engineering, the study
of new signal processing systems via computer simulation, e.g.
vocoders, speech codecs, bandwidth compression schemes, the removal
of interference noise and the compensation for perturbation in the
transmission channels of communication systems.‘

A digital filter has the following advantages over its analogue
counterpart;

(a) Theoretically, it can be designed to an arbitrarily high
accuracy which is reproducible due to the absence of drift and

component tolerance.

(b) It is very flexible as the overall performance can be

modified by simply altering the filter coefficients.

(c} The time-multiplexing of the main hardware units is-

possible, leading to simple filter banks.

(d) There is no problem of impedance matching and also no

restriction on critical frequencies.

(g) Many practical signals today are already in digital form
anyway.

(h) Its configuration is not highly cross-connected and is
thus suitable for integrated circuit technology, which is currently
developing at a tremendous rate.

On the other hand digital filtering has its special problems
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in design and implementation. These will be discussed in the

following sections.

2.3 Design and realisation.

To the system designer, his problem is basically to produce a
realisation which approximates as ''closely" as possible a given
specified filter response (time, frequency, group-delay etc.) in
a prescribed manner. This realisation may be an off-line software
routine or a real-time hardware implementation.

There are three distinct stages that he has to go through, viz.,
that of

(a) mathematical design assuming infinite precision arithmetic,

(b) circuit or configuration design accounting for the effects
of finite register lengths, and

(c) real-time hardware architecture and device implementation.

2.3.0 Mathematical design.

In general, the "filter design problem' is one in mathematical
approximation and consists simply of finding the values of the
coefficients ak's and bk's such that the response of the corresponding
filter approximates, in a prescribed manner, a desired characteristic.
The theory on the design techniques is well developed and excellent
documentation of established and proven methods may be found in the
literature (e.g. References 1,2,17,18). Alsc new designs are constantly
being published. As such, we will mention only briefly the main

design procedures for both FIR and IIR filters.
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2.3.0.0 Design techniques for FIR and IIR Filters.

There are three well known classes of design methods.

The first is the window method, which is based on the expansion,

in a Fourier series form, of the periodic (in frequency) frequency

response H(eJm) of any digital filter, i.e.,

Hel®) = T hn)e ¥

n S0

1

where h(n) are the Fourier coefficients. It is also easily shown
that h(n) is identical to the impulse response of a digital filter.
To obtain a realisable fIR filter, a finite weighting sequence w(n)
is used to modify h(n) to control the convergence of the Fourier
series. Some well known windows as these w(n)'s are called, are
the rectangular, "generalised' Hamming, and Kaiser windows.

The second method is that of frequency sampling in which an

FIR filter is expressed in term of its D.F.T. coefficients. The
continuous frequency response is thus approximated by sampling, in
frequency, at N equidistant points around the unit circle. The
continuous frequency response is then evaluated as an interpolation
of the sampled frequency response.

In the third method, the design problem is regarded as a

Chebyshev approximation problem and consists of minimising the

maximum absolute value of a weighted error of approximation E(er)
{see page 126 of Ref.l for its definition).
For the TIR filters, there are two main classes of design

techniques. 1In the first class, one firs: designs an appropriate

continuous time analogue filter. The design obtained is then
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digitised to determine its digital equivalent using procedures

like the mapping of differentials to finite differences, the

impulse invariant, the bilinear transform and the matched z-transform

techniques. The second class is the open form approach using modern
optimisation algorithms, like the minimum mean square and minimum
absolute error methods, equiripple techniques and time domain

optimisation.

2.3.1 Effects of finite-length registers.

In a theoretical realisation it is assumed that infinite precision
arithmetic is used. 1In bractical realisations, however, (especially
with special-purpose implementations), data words can only be stored
in registers having finite lengths. Thus the filter data, coefficients
and the results of intermediate operations have to be either truncated
or rounded-off. These quantisation effects affect the overall filter
performance in various ways, depending on the type of arithmetic
used, the type of quantisation and the exact filter structure.
(Comprehensive discussions on these effects are given in the.;;view
papers by Oppenheim and Weinstein19 and Liuzo).

The first of these effects is the error introduced as a result
of the A/D conversion of the filter input. This quantisation effect,
however, is not usually regarded by digital filter designers as an
integral part of filter design.

The second effect is when the filter coefficients are quantised,
leading to the restriction of the possible values of the poles and

zeros of the filter transfer function to a finite set. Consequently

the actual filter response will differ slightly from the theoretically
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derived one. Some common approaches to the problem consist of
computing the frequency response directly using the quantised
coefficients, performing an optimised search over the grid of
allowed pole/zero positions around the ideal positions, and to
find general structures which are less sensitive to coefficient
inaccuracies.

The quantisation of the results of the arithmetic operations
of multiplications and additions is the third effect of finite
register lengths. Its analysis depends on whether truncation or
round-off is gsed, whether we implement the operations with fixed-
point or floating point arithmetic, and on whether we represent
negative numbers in the sign-magnitude, l's or 2's complement form.
In many situations, the rounding effect at each multiplier is
statistically modelled as a discrete stationary white-noise source
uniformly distributed in amplitude between t (1/2)2_b, b being
the product register's bit length. Alsoc each source has a transfer
function te the output,.

For recursive filter structures, the quantisation of the_—
multiplicative products produce stable periodic or non-zero constant
outputs when the inputs are zero or constant. These outputs are

called small~scale limit cycles.

Another problem is when the result of some arithmetic operations
overflows and falls outside the permitted set of representable
values resulting in an incorrect in-range value. When this occurs
in the feedback loops of certain second-order sections, stable and
persistent full-scale oscillations result. They are known as

large-scale limit cycles. Methods exist with which one may determine
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the scale factors of signal levels at certain points in the
filter structure to prevent overflow and still maintain a

maximum signal/round-off noise ratio.

2.3.2 Considerations in the real-time hardware implementation.

Although conceptually one simply interconnects adder, multiplier
and storage units in order to mechanise the filter algorithm, in
practice one is confronted with a bewildering array of factors and
constraints in the choice of system or circuit structure and component
and device technology. To achieve an efficient and-economical system,
the designer must consider initial costs, hardware complexity with
respect to construction, testing and maintenance, power dissipation,
space requirements, system modularity and flexibility ete. All
these factors depend on specific needs and applications.

Assuming that the would-be designer has obtained his filter
coefficients, and an estimate of the bits required for the input,
coefficient and internal data words, he must alsc realise that in
real-time digital filtering, the filtering algorithm must berzgmputed
within the sampling period T of the input signal, with the maximum
allowable value of T depending on the bandwidth or Nyquist frequency
(see Ref. 1) of the signal. Operational speed thus has to be
balanced by system cost and complexity.

To obtain the system structure one has to decide on the number
representation and the type of arithmetic to use. Floating-point
arithmetic gives a larger dynamic range than that of fixed-point,
but it requires a more complex hardware due to the need to align

mantissas. The circuit complexity also depends on the particular
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representation of negative numbers. One must also remember that
although the use of 2's complement arithmetic makes additions and
subtractions easy, multiplication is much more convenient using
the sign-magnitude representation.

One must also define the basic functional units making up
the adders, multipliers and data stores, their interconnections,
and their processing modes, i.e. word parallel or bit serial
processing (see Lewin21 for more details on number representations
and arithmetic hardware). Basic units may also be time-multiplexed,

and one could alsc increase system throughput by the incorporation

of Eigelining%z’ZB

The basic adding unit is the full-adder (F.A.)Zl; a single
one is used in serial addition, and an N-bit parallel addition may
be achieved by connecting N F.A.'s in cascade. Fast additions
employ the familiar carry look-ahead21 technique.

Multipliers are the most important, complex and expensive units.
They range in structures from the simplest shift-and-add ones,

through the serial-parallel varieties, to the fast two-dimensional

array multipliers. An ultra-fast array combines the carry-save
technique with a '"tree'" arrangement of adder rows. (See Chapter 8
of Ref. 1 and also Refs. 24 & 25).

Data are stored in either bistable shift registers and/or M.S.I.
and L.S.I. memories. These memories are either static or dynamic
which requires refreshing26, and are further classified into read-
only memories (R.0.M's) and read-and-write memories (commonly referred
to as R.A.M's which, strictly speaking, can be also taken to mean

random access memories).
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Apart from these main units, extra circuitry is required
for overflow detection and correction, intersection scaling, data
quantisation and system control.

For a given architecture, an appropriate device technology
must be matched to it. Each particular technology is characterised
by

(a) the physical size of the basic device, e.g. a logic gate,

(b) its power dissipation, and

(¢) 1its switching speed.

(a) and (b) usually determine the scale of integration, i.e.
the number of devices per chip, while the ratio of (b) to (c) is
roughly constant for a given technology and is often used as a
figure of merit.

At present two proven technologies are the bipolar saturated
transistor-transistor logic (T.T.L.), the linear emitter-coupled
logic (E.C.L.), and the unipolar metal-oxide semiconductor (M.0.S.)
technologyze, having typical power-delay values of (10 mW - 15 nS),
(60 mW - 1 nS) and (0.2 mW - 300 nS) respectively. In general bipolar
circuits have achieved much higher speeds while M.0.S. chips have
attained a much higher degree of circuit integration.

Among the newer technologies are the use of sapphire substrates
and the bipolar integrated-injection logic (I.I.L.) which promises
a high packing density.

Lastly, the trend in digital system design is rapidly moving
from the use of discrete gates and simple logic packages to that of

medium-scale (M.S.I.) and large-scale integrated (L.S.I.) techniquesZT.
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2.3.3 Existing hardware design approaches.

In contrast to the mathematical design theory, there is no
systematic design technique for the real-time hardware implementation
of digital filters. There are as many hardware structures as there
are authors, and the continuing rapid change in integrated circuit
technology makes the problem of the device implementation of these
structures a dynamic one.

In this section we discuss the major classes of design approach.
In the author's opinion, the first three are becoming established
designs due to their efficiency, simplicity and modularity, and
have attracted the attention and enthusiasm of a host of workers
in the field.

The first design approach was proposed in the classic 1968
paper by Jackson et a14. The corresponding filter structure uses
serial arithmetic and features a sign-magnitude serial-data and
parallel coefficient multiplier as shown in Fig. 2.4(a). The problem
of excessive propagation delays and the need to quantise double-
length products to single-length registers was solved by efficient
pipelining and simple logic. A typical adder cell of the modified
multiplier is shown in Fig. 2.4(b). Jackson et al., also presented
a simple multiplexing method for multichannel or multifunction
processing, using a R.0.M. to store the coefficients. The scheme
was used in implementing an all-digital touch-tone receiver consisting
of high-pass, low-pass, band-~stop and band-pass filters of various
orders from the 1°% to the ﬁth, using multiplexed first and second-
order sections. The sampling rate is 10K samples/sec., imnput

quantisaticn 1s 7 bits, and 40 serial adders and 400 bits of shift-
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register storage were used.

Of a more recent vintage is the design proposed by Croisier
et 31.6, and further analysed and developed by Little28 and Peled
and Liu7, which promises high sﬁeed, fairly low power and low
package count. The design substitutes a table look-up R.0.M. for
the bit-wise multiplication of the filter coefficients by the data,
with the filter output obtained by the operation of adding and
shifting., A second-order section implemented in this way is shown
in Fig. 2.5 and requires a 32 x 8-bit R.0.M. This basic circuit
has a 20 MHz bit-rate, package count of 20 I.C's and dissipates 9.6.W.
For a 12-bit input this section can handle up to 800 kHz bandwidth
signals. A parallel version7 of the technique requires 60 I.C's,
consumes 24 W, and allows a signal bandwidth of 10 MHz. A general
comparison with Jackson's approach is shown in Table 2.1.

Lockhart9 took a different approach by combining delta-modulation
encoding29 (instead of P.C.M.) with digital filtering. The versions
described by Croisier30 and Liu31 use R.0.M's for their mechanisation,
The design required simple and inexpensive hardware, is partig;iarly
appropriate to applications involving analogue-digital interfacing,
and has found favour with researchers working on speech signals.

We now mention briefly the work by other authors. In 1967,
Sypherd32 used R.0.M's for multiplication and multiple-input additions.
Gabel5 described a simple architecture using a time-shared multiplier/
adder unit in which the filter coefficients are represented in a
simplified floating-point form. Trad-Thérig and Liu33 used
differential pulse-code midulation (D.P.C.M.) for the signal encoding

and evolved a design for a D.P.C.M. filter. A look-up table
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Bede and Liu Jackson et al.
Filter type (12-bit word-lengths)] No. of I.C's |Power No. of I.C'ec | Power
dissipation dissipation
W (W)
8th-order, parallel,
1 MHz word-rate (w.r.) 72 28 240 96
8th-order, cascade, 33, memory 14 60 24
250 kHz w.r. Size = 128 «x
8 bits
2n-order, multiplexed, 18, memory
. 10 60 24
128 channels, each 8 kHz w.r. Size = 512 x
8 bits
t
%
10th-order, mux.,
96 ch., 8 kHz, w.r. 54 .22 190 100
Table 2.1. Hardware and performance comparison of Bede and Liu, and

Jackson et al. methods.

0cC
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technique using R.0.M's was proposed by Nussbaumer34 in which he
modified the familiar "quarter squares" multiplication method35
to reduce the overall number of additions and squarings.

Another attractive approach is to replace multiplications by
simple shifting using multiplexers by restricting the values of
the filter coefficients to only integer powers of two or zero.

The design leads to simple and very fast filters, e.g. Tomozawa36
used the approach to process real-time colour television signals.
Van Gerwen et 31.37 published an excellent theoretical and
experimental study of this approach, and introduced a filter
consisting of a transversal part and a simple recursive network.

Other approaches are the bit-level counting technique of
Zohar'58 (which is still a conceptual entity), and the use of
logarithmic arithmetic as suggested by Hall et a1.38 and Kingsbury
and Rayner39. As far as the author knows, no hardware details of
the latter technique have been published.

Finally, custom-~design digital filter chips and packages are
now slowly making their appearances commercially, e.g. the Pyg—
TMC Ltd.'s pM.0.S. dual second-order filter c:hip‘{}0 and the 3-chip

41

M.S.I./L.S.I, digital filter set by Advanced Micro Devices Inc. ~,

which employs low-power Schottky bipolar technology.

2.3.4 Conclusion.

We have reviewed briefly the theory and design of digital
filters and the problems involved in théir real-time hardware
implementation, and also surveyed the state-of-the-art of the

existing hardware design approaches.
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CHAPTER 3

FLEMENTARY STRUCTURE THEORY
OF
FINITE-STATE SEQUENTIAL MACHINES

3.0 Introduction.

The theory of finite automata or finite-state sequential
machines (F.S.M's} is a special case of general systems theory
in which the input, state and output variables only assume disc¢rete -
values, and the functional relationship between them is described
b& abstract algebra. An F.S.M. is a useful mathematical model
for digital computers, processors, the behaviour of nerve networks,
language structures and information-transmission systems to name
a few.

The "structure theory" for f.S.M's concerns the realisation
of an F.S.M. from a set of smaller component sub-machines, the
interconnection and the "information" flow between these components. .
The theory provides a direct link between algebraic relationships
and physical realisations of machines;

In the following sections we introduce briefly the basic
ideas, concépts, terminology and results of this theory. The
books by Boothll, Kohavi71 and Hartmanis12 are excellent

introductory texts.

3.1 Descriptions of F.5.M's.

Definition 3.0. A Mealy type sequential machine M is a

quintuple (5,I,0,6,)) where S,I,0 are finite nonempty sets



23

of states, inputs and outputs respectively, and §,A are
the transition (next state) and the output functions given
by

§ : SxI+S and A : S x1I=0.

. When the éutput is a function of the present state only,
i.e. A : 8§+ 0, then the machine is known as a Moore type.
When, in many cases, we are not_interested in the output, the
corresponding machine is called a state machine defined by the
triplet (S,I,8). The block representation of the Mealy type
F.S.M. is shown in Fig. 3.0. The behaviour of an F.S.M. is
commonly represented by a flow table or a state graph. Each row
of the flow table represents a machine state, while the columms
correspond to the inputs. The table entries indicate each state
and output transition. The nodes of the corresponding state
graph represent the states, while the arrow between nodes 5 and
Sys labelled by the ordered pair (x,0), x € I, o € 0, indicates
that 6(sl,x) = s, and_l(sl,x) =0,

These two representations aré illustrated in Figs. 3.1(a)
and (b) for the Mealy machine M = [(P,Q,R), (a,b), (o,1), G,A].

In elementary machine décompogitions, an jmportant concept,
which relates the behaviour of two machines, is that of machine

homomorphism, which is an operation-preserving transformatiom. -

Definition 3.1. The sequential machine M' = (S',I}0}4i)")

is a homomorphic image of the machine M = (S,I,0,4,A) 1ff

there exist three onto mappings;

h1 : §+8', h2 : I+ 1I' and h3 : 0 > 0" such that



5 ‘-—-;.' 565 D >\ --—'-'-o_

Fig. 3.0.  Block representation of a finite-state

sequential machine.

Q IR Rilo 1

R P Qji1 ©

‘Present Next Output
~  states

(a) : )

Fig. 3.1. Flow table {a) and state graph (b)

representations of an F.S.M.
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hll:ﬁ(s,a)] 6'E11(S), h2(a):|
ha[}\(s,a):l A'I:hl(s), hz(a):l .

The triple (hl,hz',hB) of mappings is referred to as a

It

homomorphism of M onto M'.

Definition 3.2, A state machine M' = (S}I}8') is a homomorphic
image of M iff there exist two onto mappings;

hI:S->S', ‘n2:I+I'.suchthat

hll:é(s,a)] = 6'[h1(s), hz(a):l .

When h2 and h3 are identity mappings, the homomorphism is

called a state homomorphism, When two machines are identical except

for a renaming of the states, inputs and outputs, we have an

isomorphism between them.

Definition 3.3 Two machines M = (5,1,0,6,A) and M' = (S}I]0}6})")
are isomorphic iff there exist three one-to—-one mappings;

f. : S+»8", f,:L-+1I'" and f., : O+ 0" such that

1 2 3
f1 [G(S,x):l

f3 I:A(s ,x):l

3.2 Interconnections of F.S.M's.

1l

8’ [fl(s), f2(X):|

A'[fl(s), fz(x)] .

When decomposing 2 machine M into, or realising it from its
component sub-machines, it is important to know the possible ways

of interconnecting them.
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Definition 3.4(a). The serial connection of
Al) and M

Ml 1’01’61’ 2 2’I2’02’62’

01 = 12, is the machine M, denoted by Ml + M2, where

(Sl,I = (S 12) for which

M=M +M o= (S xS 8,1)

1Y 221105

such that

6[(51,52),{| ={61(SI,XJ, Gz[sz,ll(sl,x):”
1[(51,32),;:] = Az[sz.;\l(sl,X)] .

The serial connection for state machines, however, is

slightly different.

Definition 3.4(b). Given two state machines

Ml = (Sl,I 8.0, M2 = (82,12,62) with I, = §, % Il’ and

1’71 2 1
an output set O and an output function A : S1 x 52 x I‘1 -+ 0,
then the serial connection of M, and M, is the machine
M= (S1 x SZ,II,O,G,A) where

5[(31’52)”‘_} = [51(51,;:), 62[52,(51,X):”

and

A S1 x S2 X I1 = 0.

These two different serial connections are shown in the

schematic diagrams in Figs. 3.2(a) and (b).

Definition 3.4(b). The parallel connection of M, and M, is

the machine M = Ml X MZ = (S1 x 82,11 x 12,01 x OZ,G,A),

where



I1 01 = 12 02

(a)

L
M M A
1 12
S )
(b)
Fig. 3.2,

Serial connections of (a) general

F.8.M's and (b) state machines.

1 5 1
COMBINATIONAL : 5
- z "
X ~ CIRCUIT _ r
0
yn
> .
<I .
< :
LL] —
O |
Fig. 3.3.

An F.S5.M. realised with binary variables.
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6[(31,52), (xl,xz)] = I:Gl(sl,xl), 62(52,x2)]
and

_ A[(sl,sz), (xl,xz):l =__|:l1(sl,x1),, "2(52”‘2):]'

3.3 Problem areas in F.S.M. realisation.

Two major problems in the realisation and physical implementation

of F.S.M's are those of state reduction and state assignment.

. The former concerns the concept of equivalence between the

states of machines, and also between two machines.

Definition 3.5. For two machines Ml = (Sl,I,O,Gl,Al) and
Mz = (SZ,I,O,GZ,AZ) having the same input and output alphabets,

.8) €S, and s, €5, are said to be equivalent iff

where (for Mealy type) x is any finite non-null input sequence

and Ki,_?é are the extended output functions of Ml and M2 .

respectively (see pp. 22~23 of Ref. 12).

Definition 3.6. Two machines of the same type, Ml and MZ’

are equivalent iff each 8, in Sl has an equivalent state
Sq in 52 and vice versa. '

Definition 3.7. A machine M is reduced iff state sy equivalent

to state implies that s. = s,.
st s, implies tf 1 2
It is easily shown that among all the machines equivalent to

a given machine M, there exists a unique equivalent reduced machine

MR which has the minimum number of states. Basically, for any
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given finite input sequence, M and MR will give the same output
sequence. While there are standard techniques in the minimisation
of machine states, it is also possible to apply structure theory
to the state reduction problem as will be described in Section 3.6.
The second problem arises because in practice the inputs,
states and ocutputs of a machine M are invariably repreﬁented by

binary variables. Thus we may write

S =‘{(y1,...,yn)}, the set of all n-tuples on {0,1},
I= {(xl,...,xm)}
and O = {(zl,...,zr)} .

Also, each state and each output binafy variable is a function
of'{yl,...,yn, xl,...,xm}. The block diagrém of an F.S.M.
expressed in this manner is shown in Fig. 3.3.

The state assignment problem is the selection of "desirable"
binary codes to represent the internal machine states. 'Although
this usually means the use of fewest number of components, e.g;
logic gates, the relevant criteria are most often determined by
the dynamics of technology. In concept, however, it is reasonable
to assume that we can obtain economical state assignments and
simplify the logic circuits in the physical implementation if
we can reduce the number of present-~state and input variables on
which the next-state variables depend.

Since the structure theory for F.S.M's deals with the general
understanding of functional dependence and the realisations of
machines from smaller components, it may be regarded as an approach
to the state assignment problem. (Other approaches are listed in

page 36 of Ref. 12).
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3.4 Basic algebraic concepts.

Two key mathematical ideas that are important tools in
machine decompositions are the concept of partitions on a set,

and that of an algebraic lattice.

Definition 3.8. A partition mw on S is a collection of
disjoint subsets of S whose set union is S, i.e. T ='{Ba}

such that

1l

B NB, = ¢ for a« # 8, and U{Ba} S.

o B

The Ba's are called blocks of 7 and the block containing

t(n) iff s and t

s is written as B“(s). Also we write s
are contained in the same block of m.
Partitions may be combined by the "product" or "-", and

the "sum" or "+" operations as follows.

(i) LA PY is the partition on S such that s = t(n1-n3
iff s = t(wl) and s = t(wz).

(1i) Tty is the partition such that s = t(n1+n2) iff.
there exists a sequence in §, § = so’sl’SZ’°"’sn = t, for which
either s; = Si+1(ﬂ1? or 5. ¥ s

14170+

As an example, let S = {A,B,C,D,E,F,G,H,I}, and

i = {A,B; C,D; E,F; G,H,1} and n, = {A,F; B,C; D,E; G,H; I}.

2

Then we have,

T T, = {A; B; C; D; E; F; G,H; I} and

T+ '{A,B,C,D,E,F; G,H,I} .

2

Partitions may also be ordered by the "larger than or equal"
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i.e. £ relation. We say that U g iff every block of T

b

. . . e . - + - .
1s contained in a block of ﬂb, l1.e “a ﬂb wa and T wb Ty

Definition 3.9. A lattice is a partially ordered set

L = (5, £) in which every pair of elements have a least

upper bound (l.u.b.) and a greatest lower bound (g.l.b.)

(See pp. 6-7 of Ref. 12, or Herstein70 for definitions

of the underlined terms).

Alternatively, a lattice L is defined as a triplet.
L = (S, -, +) where "+" and "+" are binary operations satisfying
certain postulates (page 7 of Ref. 12).

The set of all partitions on a set, for example, is a

*m,, and l.u.b. (nl,wz) = T, +T,.

172

lattice and that g.l.b. (wl,nz) =

Definition 3.10. If L = (S,*, +) is a lattice, and TC S,
T # ¢, then L' = (T, -, +) is a sub-lattice of L iff x and y

€ T implies that x-y and x+y € T.

Definition 3.11. A lattice L1 = (Sl, *, +). is homomorphic

to L, = (82, *, +) iff there exists an onto mapping

h : S1 > 82, such that

h(x*y) = h(x)+h(y) and h(xty) = h{x) + h(y). -

Thus, L, is very simply a "coarse" version of L.. If h is

1

a one-to-one onto mapping, then we say that the two lattices L1

and L2 are isomorphic.

3.5 Structural decompositions of F.S.M's,

The basis of machine decompositions is the modification of
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the homomorphism concept to involve only one machine.

Definition 3.12. A partition 7 on the set of states of the

machine M = (S,1,0,8,1) has the substitution property (S.P.)

iff s = t(nm) implies that

8(s,a) = &6(t,a)(w)

for a2ll a in I.

In other words, for each input, blocks of w, defined as
above, will be mapped into blocks of 7. These blocks may now

be regarded as the states of a new machine defined by 7 and M.

Definition 3.13. Let m be an S.P, partition on the set of
states of M. Then the w~image of M is the state machine
M= ({B}, I, 8)

with

_ 1 - ¥
GW(B“,X) =B iff G(B“,x) S;Bﬂ .

It is easily shown that there is a one-to-one correspondence
between state homomorphisms and S.P. partitioné. Also, if "y and

™, are S.P. partitions, so are the partitions

and m, +w

L) 1772 -

b1}

1

We will use the following theorem quite often.

Theorem 3.0. The set of all §.P. partitions on the set of
states of an F.S.M. M forms a lattice LM’ under the natural

partition ordering. Also LM contains the trivial partitions

7(0) and w(I).

Proof. (See page 41 of Ref. 12).
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The lattice LM is useful because it displays visually all
the important multiple series—parallel state behaviour realisationms,
and because algebraic lattice properties are reflected in machine
properties and vice versa.

A general procedure in finding all the S.P. partitions of

a machine consists of two steps;

(i) For every pair of states s and t, compute the smallest

S.P. partition Te ¢ which identifies the pair.
»

(ii)} Find all possible sums of the ws_t's. These sums

constitute all the S.P. partitions.

Details of this procedure may be found in the recommended
texts.

To consolidate the ideas we have discussed so far, we
consider the machine M shown in Fig. 3.4. Using the above procedure

we find the following set of S.P. partitions:

o]
[H

7{0) ={ 4; 5; 6; 7; B‘},
Ty = { 1,23 3,45 5,65 7.8 },
“2 = { 1,2 3,4; 5,6,7,8
no= T 7-‘3‘1
3 > : 2 H H f:
L = { 1,2; 3,4,5,6; 7,8 }
e = { 1, ;s 43 53 73 8 },
m = : 4,5: 73 §-)
6 : : 3> ’ J’s

1,2,3,4,5,6,7,8 }



m(I)

I/P oIp
0 1

1 3 7 0

2 | 4 8 0

3] 1 6 0

STATE “ 2 > 0
5| 2 4 0

6| 1 3 1

71 4 A 1

8| 3 3 0

-Fig. 3.4, F.S.M. M. Fig. 3.5. ‘Lattice LM of M,
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The corresponding lattice LM is shown in Fig. 3.5. Also
if we consider T, 53y, the na-image of M is shown in Fig. 3.6.
.The concept of S.P. partitions is very useful in the serial
and parallel decompositions of an F.S.M. into its components,

as shown in the following theorems.

Theorem 3.1. The F.S.M. M has a non-trivial serial
decomposition of its state behaviour i1ff there exists a.

nontrivial S.P. partition T on the set of states of M,

Proof. (Pages 45-46, Ref. 12).

If the largest block of m has k states, then M is defined
by m and T, where t is a k-block partition such that

r.1 = nw(0) .+.(3.0)
For example, for the machine shown in Fig.'3.7 the partition

™= {1,2; 3,4,5 } has S.P. One possible t is then 1 = {1,3; 2,4; 3'}

{ 1,2; 3,4,5; } . { 1,3; 2,4; §}

Theorem 3.2. The F.S5.M. M has a non-trivial parallel

because

]
E- |
-~
(=]
r

decomposition of its state behaviour iff there exist two

nontrivial S.P. partitions L] and T, on M such that

O 0 .. (3.1)

Proof. (Pages 48-51, Ref. 12).

3.6 State reduction using S.P. partitions.

Another application of S.P. partitions is in finding the
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I/P 0 1 o) 1
0 1

1 5 3 1 0
A B C

A=1{1,2) STAT 21 3 b 9] 0

t ' ' A E |

STATE | B =(3,456) 3 1 5 0 1
B A B

c=(7,8) A 2 3 0 0

5 1 A 0 9
C B B

Fig. 3.6, A m, - image of M. Fig, 3.7.: An F.S8.M. to demonstrate

serial-decomposition,
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reduced machine that is equivalent to M. The technique is based

on the following.

Definition 3.14. For a machine M, we define L to be the
partition on M such that s = ¢t (nR) iff state s is equivalent

to state t.

It can be shown (page 55, Ref. 12) that nR_has S.P. and M“
R

with the cutput

A (ﬁ , X) =.A(s,x) for s in B
R “R . ﬂR

is the reduced equivalent of M.

Thus once the S.P. lattice is obtained M1T ig easily found
R .

by deciding which S.P. partition is Tpe An easy method for this

is based on the following.

Theorem 3.3. If M is an F.S.M., then Te is the maximal output -
consistent (0.C.) partition with S.P. Also S.P. partition w
is 0.C. iff w ¢ Ut (A partition 7™ on the states of M is

0.C, iff s = t (w) implies A(s,x) = A{t,x) for all.inputs x.

Proof. (Page 56, Ref. 12).

It is also easily shown that the 0.C. S.P. partition form a
sub-lattice of the S.P. lattice. Furthermore it is easy to test
a partition to see if it is 0.C. Thus once the 5.P. lattice is

given, Mw , the reduced equivalent of M may be determined in a
R

straightforward way.
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3.7 Conclusion.

We have presented a very brief introduction to the main
concepts in the structural theory of decompositions of finite-
state sequential machine. A more detailed treatment of the theory,

which includes advanced concepts like partition-pair algebra and

state-splitting may be found in any of the references given.



"CHAPTER U
FINITE-STATE MacHINE MoDELS
OF
StoreD-LocIc DiGITAL FILTERS

4.0 Introduction.

In this chapter, we investigate the feasibility of applying
the structure theory of fiﬂite-state sequential machines (F.S.M's)
to the implementation of digital filters. The results we obtain
give us a valuable insight into the problem of using this direct

modelling technique to realise general filter sections.

4.1 General approach.

We have seen in Chapter 2 that the conventional way té implement
the basic second~order section, shown in Fig. 2.3 and described by
equation (2.4), is to use adder, multiplier and dela& units. Also,
we know from Chapter 3 that by using the theory of state partitionms
with the substitution property, it is possible to decompose an
F.S.M. into an interconnection of "smaller" machines.

In coantrast to the conventional method we propose to realise

a basic biquadratic section as a table look-up or stored logic

unit. This unit is subsequently modelled as an F.S.M. which is then

analysed using the method of 5.P. partitions.

4.2 Stored-logic digital filters.

Conceptually, the method of table look-up is the most straight-

forward way to realise combinational switching functions in general
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42, 43, 44 in particular. (Maclean and

and arithmetic circults
Aspinall42 used this technique to design a practical decimal adder
in as early as 1957).

A general table look~up arithmetic unit is shown in Fig. 4.0(a),
in which the arithmetic function g is a2 function of n independent
variables qk's, k = 1,2,...,n, each 9 being an i-valued variable.
Consequently? there are m possible values of g, where'm = (i)".

Every value of g is precomputed and stored in a memory or storage
unit. A patticulérlvalue of g is accessed by the corresponding n-tuple
(ql,qz,...,qk,...,qn) which forms the memory éddress.

"In practice, data are usually represeﬁted in the binary. form,
in which case i = 2, and q =0 or 1. Also g will now be represented
by z bits. The resulting table look—ﬁp circuit 1s now as shown in

.Fig. 4.0(b), and it is usual to characterise this memory circuit by

its capacity M given by,
M = (2") x z word-bits (W-b) | .. (4.0)

At present, the table look—-up operation is normally implémenfed '
using semiconductor bipolar or M.0.S. L.S.I. read-only or read—and-
write memory chips. A typical 6rganisation of a read-only memory
(R.0.M.) is shown in Fig. 4.1,

Since the delay time is dependent only on the acéess time of the
memory store, circuits designed using the iook—up technique are
obviously fast in operation and easy to construct, test and maintain.
Furthermore, the architecture of any digital system designed this
way is independent of device technology since the introduction of

memory stores of larger capacity and faster access time will only
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" | STORED 9 : .

" | TABLE ——Vr\ qk—:—* (S.T) :

) (S.T) —1 | f
> — ] z
q q
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(a) | ® 0t

Fig. 4.0. General table look-up arithmetic units for

(a) i-valued and (b) binary variables.

LT
’ |
P > '—"—-1““T"€’55
7 = MEMORY B
Sl 8 MATRIX -
1] S |
—————— O .
S T
! l
.3

Fig. 4.1. Functional organisation of a read-only

memory (R.0.M.).
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result in a more efficiént use of the basic system architecture.

Although R.0.M's have been incorporated in the hardware
structures of digital filters (recall Section 2.3.3), they are used
only for the partial computation of the overall filter algorithm.

Our approach, however, is different, in that we propose to
implement a complete second-order digital filter sectiog as a
look-up table. Using equation (2.4) we first precompute the section
output for every combination of present input and past inputs and/or
outputs. The resulting output values are then written into a suitable
memory store. In operation, the present input and past inputs and/or
outputs act as addresses of the memory to access the relevant filter
output.

A digital filter implemented in this manner will be termed a

stored-logic (S.L.) digital filter.

4.3 Examples of S.L. digital filters.

We now illustrate the approach by deriving the S.L. forms of

a few typical digital filter structures.

4.3.0 Second-order non-recursive section.

Consider a second-order non-recursive section whose data and
coefficients are represented by 2 bits, and whose coefficient values

are

a =1, a; = 3. and a, = 2.
We now compute the maximum value of the filter output, o s DY
max '

setting each x k = 0,1,2, to its maximum value of 3. Using

n-k’

equation (2.4) with bl = b2 = 0, we find that, since
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y = (1x3)+ (3x3)+ (2x3) =18,
lTll'ﬂélx

we require 5 bits to represent the filter output.

This filter which we will label D.F.1 is shown in Fig. 4.2(a),
and its input-output relationship which is to be stored is given
in Table 4.0. The address inputs consist. of X > X 4 and xn—2’
and the data to be written into the look—up memory are given in

the last four columns. The corresponding S.L. filter is shown in

Fig. 4.2(b), and requires a 64 x 5 word-bit storage module.

4.3.1 First~order recursive section.

Consider -the first—-order recursive filter labelled D.F.2

shown in Fig. 4.3(a) whose feedback coefficient b, = 5/8 = 0.101,.

1 2
The input X is represented by 2 bits, while 3 bits are used for
b1 and the output W Also, the 6-bit product bl xw, _, is
quantised to 3 bits.

The values of LA for all possible combinations of preseunt
input x and past output W ..y are shown in Table 4.1. The S.L.

form of D.F.2 is given in Fig. 4.3(b), in which a store of 32 x 3

word-bits is used.

4.3.2 Second-order autonomous recursive section.

I . = - - - . —2
This section D.F.3 is shown in Fig. 4.4(a) in which b1 =2 %2

and b2'= 3 x é:zsimplify subsequent analyses, we let the input
be zero and the past outputs wn_l and LAY have non-trivial ianitial

. The data and coefficients are represented by 2 bits, while

values®

the sum of the double-length products, b1 W1 and b2 X W o9

* See Appendiz 4.0 for a further explanation.
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realisations of D.F.1.
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Past inputs Present input_xn
0. .1 ..2 .3
xn—l xn—z alx *n-1 _82¥ *n-2 0 ;,...2. ..3 A.aox
0 0 0 0 0o 1 2 3
0 1 0 2 2 3 4 5
0 2 0 4 4 5 6 7
0 3 0 6 6 7 8 9
1 0 3 0 3 4 5 6
1 1 3 2 5 6 7 8
1 2 3 4 7 8 9 10
1 3 3 6 9 10 11 12
2 0 6 0 6 7 8 9
2 1 6 2 8 9 10 11
2 2 6 4 10 11 12 13
2 3 6 6 12 13 16 15
3 0 9 0 : 9 10 11 12
3 1 9 2 11 12 13 14
3 2 9 4 13 14 15 16
3 3 9 6 15 16 17 18

filter output Y,

Table 4.0. Input-output relationship of D.F.1

(all data to be represented in binary).
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Fig. 4.3. Conventional (a) and stored-logic (b)
realisations of D.F.2.
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quantizer
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Fig. 4.4. Conventional (a) and stored-logic (b)

realisations of D.F.3.
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Previous -3
output, Wy || | Fresent imput x,. x 2
x 273 0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 1 2 3 4
3 2 3 4 5
4 3 -4 S 6
5 3 4 5 6
6 4 5 6 7
7 4 5 6 7

rounded cutput w;

Table 4.1. Input—output relationship of D.F.2.
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are quantised to 2 bits. The state output relationship of D.F.3
is shown in Table 4.2 and its S.L. form is given in Fig. 4.4(b),

which requires a 16 x 2 W-b store.

4.3.3 Memory storage réquirements.

The examples we have discussed demonstrate the implementation
of a few typical filter sections as stored-logic units. This
direct approach suffers from the following problems:

(a) In practical sections a tremendous. amount of storage
will be required, (a second-order 7-bit non-recursive section, forA

example, requires a memory store of over two million words).

(b) Possible redundancies in the stored-table entries are

difficult to determine.

(c) It 1is also not easy to detect any structure or pattern

that may exist between the stored data.

4.4 F.S.M. models of digital filters.

~We will now describe how the S.L. filters (D.F.l1-3) that we
discussed in the previous section may be modelled by F.S.M's, 1In
the traditional approach, the design of a table look-up circuit
is considered to be completed as soon as the input {address) -
output relationship has been determined. We hope to extend the
design problém by analysing look-up tables via F.S.M. models to
achieve a reduction in the'memory requirement and é systematic

" decomposition procedure for general S.L. filters.
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Past outputs _ ‘ Double~length | Quantised output
X 2_2 blx Vo1 bzx Vo ouciu;_Zn wn" by
LA LA L w27 (wnio (W'n)4 truncation ;round-off

0 0 0 o O Co o 0

0 1 0 3 3 03 0 . 1

0 2 0 6 6 12 1 ’ 2

o 3 0 9 9 21 2 ' 2

1 o0 2 0 2 02 o 1

11 2 3 5 11 1 1

1 2 2 6 8 20 2 2

1 3 2 9 11 ' 23 2 ' 3

2 0 4 0 4 10 1 1

2 1 4| 3 7 13 1 2

2 2 4 6 10 22 2 3

2 3 4 9 13 31 3 3

3 0 6 o 6 | 12 1 2

3 1 6 3 9 21 2 2- ,

\

3 2 6 6 12 30 3 3

3 3 6 9 15 33 3 4 4-5
ovefflow, "
maximum reglste
value is used.

Table 4.2. -State—output relatiomship of D.F.3.
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4.4.0 F.S$.M. model of a general S.L. non-recursive second-order

section,

The above model is derived very simply by redrawing the standard
configuration of the non-recursive filter to that shown in Fig. 4.5
such that it now corresponds to the familiar Mealy machine described
by the 5-tuple (5,I1,0,6,1). [%ee Definition 3.@], via the following

: mappings:-

hl xn"l x Xn—Z + 5

h2 : Xn + I

h3 : Yn- + 0

h :a + §
s

h b > X
o

where Xh—i’ (i = 0,1,2), is the set of all possible values of X i
Yn is the set of all possible values of the filter output Yo

a: ((xn_l, xn_z), xn)b+ (xn, xn-l)

and b is the filter algorithm described by equation (2.4).
Thus, the "internal state" of the F.S.M. filter is represented

by the outputs of the two delay elements.

4,4,0,0 An application.

We now apply the modelling technique to D.F.1l, and thus obtain
the flow table shown in Table 4.3, in which the states, represented
by the ordered pairs (xn*l; xn_z)'s, have been appropriateiy labelled.
For simplicity, the corresponding state diagram is drawn only fbr

the inputs O and 2, as shown in Fig. 4.6.



Fig. 4.5.

F.5.M. model of a general second-order

non-recursive filter.

T STATE ~- - k
"—MATRIX =~
e 8] T
xrl_.l; D1 .
v | 1 DELAY
| UNITS
xn_lz' DR )
V v
:-5 ’ S
OUTPUT y
MATRIX n
1 (%) >
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Present state Input Input _

ordered pair label 0 1. 3 _0.. 1. .2 3
o 0 A A E M o] 1 2 3
0 1 B A E M 2 3 4 5
0 2 c A E M 4 5 6 7
0 3 D A E M 6 7 8 9
1 0] E B F N 3 4 5 6
H 1 F B F N 5 6 7 8
1 2 G B F N 7 8 9 10
1 3 H B F N 9 10 11 12
2 o I C G @ .6 7 8 9
2 1 J c G ] 8 9 10 11
2 2 K c G @ 10 11 12 13
2 3 L C G ¢ 12 13 14 15
3 0 M D H P | 9 0 11 12
3 1 N D H P {11 12 "13 14
3 2 @ D H P 13 14 15 16
3 3 P D H P 15 16 17 18

Next-state Output .

Tablie 4.3. Flow table of F.S5.M. equivalent of D.F.i.




(A—~—(B) (C) (D)

(a)

OHEOE OO HOEE

(b)

Fig. 4.6, State diagrams for the F.S.M. model of D.F.l.

with respect to inputs (a) O and (b) 2 respectively.
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This F.S.M. equivalent of D.F.l is so "rich" in S.P. partitions
that it is impractical to generate them maﬁually. Instead, a
computer program in Fortran 1900 wﬁich was written by one of the
author's colleague545’46 was used. To obtain some idea of the
size of the S.P. partition set, it suffices to say that the program
found 120 basic partitions while from the first level sums alone,
over 300 partitions were obtained.

It can be seen however that the next étate time function

a is the simplest possible, since

di(t+1) = d,(t) and dé(t+1) = d,(t) = di(t}

where dl,d2 and di,dé are the inputs and outputs of the delay
1 = ' = = '
elements D1 and D2 respectively. Also d1 L d1 dz X 1
-
and d, = x__,-

Nevertheless, the existence of S.P. partitions is still useful
if some of them are output consistent (0.C.) as well, in which
case.it is possible to minimise the F.S.M. It may then be
necessary to code the state variables*.

From Table 4.3 the following is the largest 0.C. partition,
+=1{a, B, C, DI, W™, J, E, F, G, X, L, N, @, P}.
1, however, is not S.P. since the blocks DI and HM implies

that AC, EG, IK, M@ and BD, FH, JL, NP must be "identified" thus

leading to the partition w, where
n = {AC, BDIK, FRN§, EG, JL, NP}

and already with this initial implication, w # v. Thus T is not
preserved for inputs, and hence the F.S.M, given in Table 4.3 is

a reduced machine.

* See Appendiz 4.1.



46

4.4.0.1 State-reduction of the genéral F.S.M. non-recursive

section.
Consider a general second-order non-recursive filter in

which each X i and a, may assume any value from the set ZR’
where

ZR ={ x | x integer, 0O s x <R }.

The corresponding F.S5.M. equivalent will then have R possible
input values, and R2 internal states, which are all the possible
combinations of the ordered—bair (;n_l, xn_z). The .general form

of the flow table for this F.S5.M. is shown in Table 4.4.

Definition 4.0. We define t(i) to be the partition
on S, the set of states of the above F.$.M., such that
two ordered-pairs are in the same block of (i) only zf

. .th . .
their i° components are identical.

It is easily seen that (i) consists of R blocks, each
containing R states or ordered-pairs.

Lemma 4.0. t(l) has the substitution property.

Proof. Consider any two distinct states, Py and Pys in the

same block Bk of (1) 1i.e.

p, = (k,8) and p, = (k, B).

Using 8 as defined in Section 4.4.0, the next states of Py and Py

for any particular input x = j are

51y, a[ac,g), j:]

fl
[

(j, k) and

n

é stj G[Ek,h), i] = (j, k) respectively.
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Present Present input

state

Xo-1 Fpeg- o 0 . R ... .(R=1)
(0, 1) (0, 0) (1, O (R-1, 0)
(0, R_]-) (0’ 0) (13 0) (R-ls 0)
(1, R_]-) (0, 1) (1s 1) _(R_ls 1)
(2; 1) (01 2) (1, 2) (R_I: 2)
@2, 1) I 0,2 | @2 (-1, 2)
(R-1, 0) (0, R-1) (1, R-1) (R-1, R-1)
(R-1, 1) ©, R-1) | (1, rR~1) (R-1, R-1)
(R-1, R-1) (0, R-1) (1, R-1) (R-1, R-1)
Table 4.4 TFlow table for the F.S.M. equivalent of a

general non-recursive second-order filter.
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Thus, for a given input Py and Py have the same next state
and consequently no further implication of S.P. partition blocks
is possible. Since pl.and p, are arbitrary states in Bk’ it follows
that all the states in B, will be mapped to the saﬁe next state.

k

Also, as B, is an arbitrary block, therefore t(1) has the

k
substitution property.

As an example, see the state graphs in Fig. 4.6 for x = 0

and x = 2.
n

Lemma 4.1. Any non~trivial partition T £ T(1) cannot

be output-consistent.

" Proof. Consider t' the smallestrform of T. This will have
one block bk containing two.distinct elements, while the remaining
are just one-element blocks. Let Py and ?, defined as in Lemma 4.0
be in bk' For a particular input X =4, the cor;esponding filter

output will be given by

Vo1 = 3,9 * alk + 2,8 ' ,,,(4.1{
and

Yoo = 3.9 + alk + a2h - e (4.2)
If t' is output-consistent (0.C.) then we must have Vo1 = Yn2
which implies that, since k and q are fixed, a,g = a,h. This is

only possible if g = h. By construction however g # h. Therefore

7' is not 0.C. Since in general T must contain at least one block

with two elements, no 1 can be 0.C.

Lemma 4.2. Any non-trivial 0.C. partition on S cannot

have the substitution property.

1
i
.
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Proof. As a consequent of Lemma 4.1 we see that for any

partition on S to be 0.C. any pair of states, s. and Sy in a

1

block must have different values of their first components,'i.e.-

s; = (ks gl) and s, = (kz’ 82) ' k, # k,

For any particular input X = j, the j-successors of s, and s

1 2

- are given by

el i) = efeg e ] - Gy
and _
6[52: j] = 6[(k2; gz)y j:l = (j’ kz)
Consequently, 51 and s, are mapped to the samé block of (1),
and hence the transitions to next states of s, and s, do not lead

1 2

to the same output, i.e.
Msys 1) # Msy, D)

This means that any 0.C. partition we start with will not be
"preserved" even for the next immediate input. Therefore no 0.C.
partition can be S.P.

The previous Lemmas lead naturally to the following Theorem.

Theorem 4.0. For a general second-order non-recursive
digital filter in which each.of the data and coefficients
comes. from the set ZR’ the corresponding F.S.M. model is

already in the minimal form.

4.4.0.2 Partial state reduction.

Although it has now been shown that the F.S5.M. equivalent
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of a second-order non-recursive section is inherently minimised,
a simplification is still possible.

Suppose we represent the outputs of the F.S5.M. equivalent of
D.F.1 shown in Table 4.3hin radix—-4 arithmetic, i.e. (14)i0 sayl
is written as (0, 3, 2)4. If we consider only the least significant
digits for the moment, the modified output table shown in Table 4.5
will be obtained. From it, we find the following 0.C. partition

T4 Blven by

T, = {a,c,J,L; B,b,1,K; E,G,N,P; F,H,M,@}

which is also S.P. Thus we may regard the blocks of T, as the

d
states of the reduced equivalent of the machine whose output table
is shown in Table 4.6. Furthermore, this reduced machine has the

following useful S.P. partition

w={0Q,R; S5,T } .

To realise this reduced machine we require a partition T,
such that T, =Ty = {Q,R,$,T}. One such T, is the ndq-S.P.
partition { QS, RT }. The initial F.S.M..(which incorporate the
remaining output digits) is now easily implemented by using a
partition T, to distinguish between the states in the blocks of
T4 i.e. we require that

Td-'l'b

= w(0) = {A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P} .
The block diagram of the overall realisation is shown in
Fig. 4.7 which results in a saving of about 6ne‘third of the

nominal storage of the direct form shown in Fig. 4.5.

It is possible to achieve further savings if the component
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Table 4.5.

Output (least significant
digit) table of D.F.l.

Present Input

state 0 1 2 3
Q 9,0 Ss,1 R,2  T,3
R Q,2 S,3 R0 T,1
S R,3 T,0 Q,1 8,2

. 9, |

T R,1 T,2 Q,3 8,0 -

14 = {A,C,J,1; B,D,1,X; E,G,N,P; F,H,M,0}

= {Q,R,S,T}

Table 4.6, Flow table of reduced F.SiM.

equivalent of D.F.1l.
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Fig. 4.7. Cascade realisation of F.S.M. model of D.F.1.
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Ty of the F.S.M. in Fig. 4.7 is simplified, by applying similar

analyses to the second and third digits respectively.

4.4,1 F.5.M. model of second-order autonomous recursive section.

This is the filter D.F.3 described in Section 4.3.2 (Figs.
4.4(a) and (b)). Its F.S.M. equivalent, shown in Fig. 4.8, is

obtained by the following mappings

By s W Wy > 8

h, : |W ' + 0
2 [n:lt(or r)
;S : l:wn" wn-]] (& ~» Eﬁn-l’ W1'1~-2i| (a+1)

' ' ' ‘
where Eﬂﬂ . Eﬂg are the sets of truncated and rounded filter
t r

outputs regpectively, and A is a particular time instant.

For these two forms of quantisation, the corresponding flow
‘tables and state graphs are shown in Tables 4.7(a) and (b), and
Figs. 4.9(a) and (b) respectively.

It is interesting to note that the state graphs illustrate
quite clearly the existencé of limit cycles. For example, in
Fig. 4.9(a), if the F.S.M. is initiated at state M then, after two
state transitions, the F.S.M. will be alternating between states
J and G resulting in~theperiodicoutput{wn'} = ,..1,2,1,2,1,2,.... .
The machine could also settle to a constant amplitude limit cycle
if, for instance, it is started at state N. Then, after three
transitions, with outputs 2,3,3, the machine stays in P with the

corresponding output of 3.



0 \
input &==> W

Y

MEMORY

delays _} YYY

B

Fig. 4.8. F.S.M. model of D.F.3.

(a)

Fig. 4.9. State graphs for D.F.3 with output (a) truncation

and (b) rounding=-off.
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Tt n e TRt T oue
0.0 ~ A A 0 A A 0
0,1 B A 0 B E 1
0,2 c E 1 c I 2
0,3 p|l 1 2 D 1 2
1,0 E B 0 . E F 1
1,1 F F 1 F F 1
1,2 G J 2 ¢ J 2
1,3 H J 2 H N 3
2,0 I G 1 I _ ¢ o1
2,1 J G 1 J K 2
.2,2 K K 2 S ¢ 3
2,3 L ) 3 L @ 3
3,0 M H 1 M L 2
3,1 N L 2 N o L 2
3,2 ¢ P 3 g - P 3
3,3 > P P 3 P o 4
(a) (b)

Table 4.7. Flow tables of F.S.M. D.F.3 with output

(a) truncated and (b) rounded-off.
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Now consider the F.S.M. described by Table 4.7(a), in which

we find that the largest 0.C. partition is 11,_where

T = {ABE, CFIJM, DGHKN, L@P} .

This 0.C. partition however is not S5.P. as may be seen by considering
the pair of states C and F in the second block of Ty By applying

the transition function &, we find that

§(C, I) =E and 6(F, I) =F

where I is the zero input. We see now that E and F are in

different blocks of Ty+ Therefore T is not preserved,

T however, may be refined to Tys

{ABE, C, F, X, IJM, DGH, N, L@P}

where TZ

{ a, b’ c’ d! e’ f’ g’ h }

which can be shown to be S.P.
Consequently, the F.S.M. in Table 4.7(a) may be reduced to

that shown in Table 4.8, in which some of the possible S.P. partitions

are
m = {abcd, efgn}
r, - (aE, G
., = (abg, eF)
T, = {ab, cd, ef, ghl

One possible realisation of M.r , the reduced machine is to
' 2

use m, and T; = {aceg, bdfh}, because
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The corresponding block diagram is shown in Fig. 4.10 which
requires two 2 x 1 w-b memories and an 8 x 3 W-b memory.

MTz may be simplifigd further when we assign binary variables
to the internal states. One such assignment is shown in Table 4.9
which is the binary coded form of Table 4.8. From Table 4.9 we
observe that the Y2, Y1 columns are identical to those of.yz, ¥y
Thus we may eliminate two delay elements and use Yé and y,» as
control variables, required only to specify the initial state of
the F.S.M. model of D.F.3.

The final realisation is shown in Fig. 4.11 requiring only

an 8-word store, thus representing a considerable simplification

over the direct form shown in Fig. 4.8.

4.4.2 F.S.M. model of first-order recursive section.

The above filter is D.F.2 which we described in Section 4.3.1
(Figs. 4.3(a) and (b)), and characterised.by Table.A.l. By letting
[?n_i], the set of delayed output values, represent the state set
of the corresponding F.S5.M. model we obtain the flow table shown
in Table 4.10. The direct realisation is shown in Fig. 4.12, in
which a 32 x 6 W-b memory is required.

From the state and output table we find that the following

partition L has S5.P. as well asAbeing output—consistent, i.e,

n, = {%, ¥, D, EF, ) .

This leads to the reduced F.S.M, shown in Table 4.11, which,
since it has five states, still require three binary variables

in the state coding. Nevertheless, a modest simplification of



Present Next

96

| state state Output
stace state OUEPUE Y20 Y1 Y, 4L %
a a 0 a— 0 o 0 0 0 0 0
b a 1 ' b 0 0 1 0 o o 1
c c 1 c 4] 1 0 0 1 0 1
d d 2 d 0 1 1 0 1 1 2
e f 1 e 1 0 0 1 0 i 1
£ e 2 f 1 0 1 1 0 0 2
g h 2 g 1 1 0 1 1 1 2
h h 3 h— 1 1 1 1 1 1 3
Table 4.8. Flow table for Table 4.9. State-assipgnment of
Mo ' a Mo
2 2
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Cascade realisation of reduced
F.S.M. model of D.F.3. .

Fig. 4.11,
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Final simplified implementation

of D.F.3.



Present Input {x 2_3) _ Present Input (x 2-3)

state 0 1 2 3 | state 0 1 2 3
A A,0 B,1 c.2 D,3 P P,0 Q,1 Q,2  R,3
B B,1 C,? D,3 E,4 Q Q,1 Q,2 R,3 S,4
C B,1 c,2 D,3 E,b R Q,2 R,3 S,4 S,5
D c,2 D,3 E,4 F,5 S R,3 S,6 8,5 T,6
E D,3 E,4 F,5 G,6 T S,4 S,5 T,6 T,7
F D,3 E,4 F,5 G,6
G E,4 F,5 G,6 H,7
H E,4 F,5 G,6 H,7 ™ = {A, BC, D, EF, GH}

= {p, Q, R, S, T}.
Table 4.10. State and output table for- ' Table 4.11, Flow table of reduced D.F.2.

F.S.M. equivalent of D.F.2.
(Output scaling x 2_3)

LS
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™
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Fig. 4.13.

Cascade realisation of reduced F.S.M.

equivalent of D.F.2.
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ttis reduced machine is possible by using its sole S5.P. partition

ﬁz ='{§, QRST} in serial with Ta such that

‘m,.t_ = w(0) = (&, &, B, TF, G

Hence, one possible 7_ is {PQ, R, S, T}. The cascade realisation
of this F.S.M. filter, shown in Fig. 4.13, uses an 8 x 1 W-b memory

and a 32 x 5 W~b memory for its look-up tables.

4.4.2.0 Decomposition results for D.F.2 with different feedback

‘coefficient values.

~The same modelling and decomposition techniques that we have
discussed so far will now be applied to the basic first order recursive

filter section for various values of the feedback coefficient b1,

from b, = (0.001)2, i.e. , to b1'= (0.111)2 ='%. The F.S.M. equivalent

1

of the section having b

1
8
1= k/8 will be labelled Mk.
The flow tables for the Mk's; k=1,2,3,4,6,7 are shown in
Tables 4.12(a) to (f). .The number of possible input values is
not the same for all the Mk's because the maximum input in each
F.S.M. is so chosen as to prevent section overflow (see Chapter 2).
Alongside éach flow table, the corresponding set of basic
8.P. partitions is given, as well as a subset of those partitions
generated from higher level sums. The partitions in this subset
are chosen for their convenient and useful nﬁmber of blocks and
block sizes, and are selected by the manual inspection of a very:
much larger collection of pbssible S.P. partitions generated using

the computer program mentioned in Section 4.4.0.0.

The Mk's are first analysed for output-consistent S.P.
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Present Input
state

0 1 2 3 4 5 6
0=+ A A,0 - B,1 c,2 D,3 E,4 F,5 G,6
1 B _ A,0 B,1 C,2 D,3 E,4 F,5 G,6
2 C A,0 8,1 c,2 D,3 E,4 F,5 G,6
3 D A0 B,1 c,2 D}3 E,&4 F,5 G,6
4 E B,1 C,2 D,3 E,4 F,5 G,6 H,7
5 F | B,1 ¢,2 D,3 E,4 F,5 G,6 H,7
6 G B,1 c,2 D,3 E,4 F,5 G,6 M,7
7+H | B,1 c,2 D,3 E,4 F,5 G,6 H,7

(a) Machine My

Tables 4.12{a} to (f).

Useful S.P. partitions:

{ABCD, EFGH}

Ty =

v, = (5, 0, &F, o)
v, = (i€, ¥, 6, F)
T, = {(aD, BC, EH, GF}

Flow tables and useful S.P. partitions for Mk's, the

F.S.M. equivalents of first-order recursive filters.

6%
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partitions in order to determine the possibility of machine
minimisation. The reduced equivalent machines mk's are described
by Tables 4.13(a) to (f). These reduced F.S5.M's are in turn
analysed for useful S.P. partitions which may lead fo parallel
or cascade realisation;. These implementations are illustrated
in Figs. 4.14(a) to (£).

As a result of the analysis described above, the following

observations are made:

(1) Machine Ml. Ty is 0.C. Hence M1 1s reduced to m,

(denoted by M, -, ml), where my is a 2-state machine.

(ii) Machine M2. g is 0.C. Therefore we have M2 R, oy,
which is a 3-state machine.

(111) M3. T is 0.C. Hence M —§+ m

3 in which m_, is a

3 3

4~state machine. Although m, possesses the S.P. partition

n = {PQR, S}, (see Table 4.,13(c)), it is not useful because.its
largest block contains three states. Consequently, the successor
component alone in the corresponding cascade realisation will
require two binary variables to code its states.

(iv) My, - The S.P. partition ™ o= {A, BC, DE, FE, H} is

0.C. Therefore M4 R, m,, a S5-state machine. Also m, has the

5.P. partition.n2 = {P, QRST}, and using T such that'nz.r = 7(0) = L
i.e. = {PQ, R, S, T}, the cascade realisation shown in Fig. 4.14(d)

is obrained.
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Present Input
state
0 1 2 . 3 4 .5
A A0 | B,1 c,2 D,3 E,4 F,5
B A,0 B,1 c,2 | D,3  E,4 F,5
e B,1 c,? D,3 E,4 F,5 G,6
D B,1 c,2 D,3. E,4 F,5 G,6
E B,1 . C,2 D,3 E,4 F,5 G,6
F B,1 c,2 D,3 E,4 F,5 G,6
G C,2 D,3 E,4 = F,5 G,6 H,7
H c,2 D,3 E,4 F,5°  G,6 H,7

(b) Machine M

2

Basic S.P. partitions Useful S.P. partitions
n = (8, ¢ 5,5 F G0 _ _

e — — mg = {AB, CDEF, GH}
, = {k, B, b, E, T, G, H} ' |
ny = {K, ¥, TE, B, T, G, 1) o~ {AB, CD, EF, GH}
n, = {&, B, CF, D, E, G, H) m,,= (&8, CE, DF, GH}
"s T & B, G DR, E G B n ,= (&, OF, TE, G}
v, = {4, B, C, OF, E, G, H)
, = {&, B, €, D, EF, G, H)
n, ={A, B, C, D, E, F, GH}



§.P. partitions

Present Input
State ‘
0 1 2 3 4
A A,0 B,1 c,2 D,3 E,4
B A,0 B,1 c,2 D,3 E,4
c B,l c,2 D,3 E,b4 F,5
D B,1 c,2 D,3 E,4 F,5
E c,2 D,3 E,4 F,5 G,6
F c,2 D,3 E,4 F,5 ‘G,6
G C,2 D,3 E,4 7,5 G,6
H. D,3 E,4 F,5 G,6 H,7
(c)

= {AB, CD, EFG, H}

z9
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Present Input
state
0 1 2 3
A A,0 B,1 c,2 D,3
B | B,1 C,2 D,3 E,d4
c B,1 c,2 D,3 E,4
D c,2 D,3 E,4 F,5
E c,2 D,3 E,4 F,5
F D,3 E,4 F,5 G,6
G D,3 E,&4 F,5 G,6
H E,4 F,5 G,6 H,7
(dy * M,
Present Input , _ Present Input
state 0 1 9 state 0
A A0 B,1 c,2 A A,0
B B,1 c,2 D,3 B B,1
c c,2 D,3 E,4 c C,2
D c,2 D,3 E,4 D D,3
E D,3 E,4 F,5 E E,4
F E,4 F,5 G,6 | F E,4
6 F,5 G,6 H,7 G F,5
-H F,5 G,6 H,7 H G,6
(e) MG (£) M7
n, = (&, BePEFGH) | v, =5 C5,E
n, = (&, B, @, E, 7, G, 0 v = &, B, @, E,

n, = {A, B, CDEFGH}



Present
state

ABCD -~ P

EFGH =+ Q@

Present
state

Present
state

AB > P
cD - Q

EFG -~ R

|
+
(4]

Tables 4.13(a) to (f).
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Input

0 1 2 3 4 5 6
P,0 P.1 P.2 P.3 Q,4 Q,5 Q.6
P,1 P,2 P,3 Q,4 Q,5 Q.6  Q,7
(a) m,
Input.
0 1 2 3 4 5
P,0 P,1 Q.2 Q3 . Q)b Q,5
P,1 Q,2 Q,3 Q,4 Q,5  R,6
Qsz Q:3 Qs[" Q!S R96 R’7
(b) m,
Toput
-0 1 2 3 4
P,0 P,1 Q,2 Q,3 R,z.'
P,1 Q,2 Q,3 R,4 R,5
Q,2 Q,3 R,4 R,5 R,6
Q,3 R,4 R,5 R,6 8,7
(c) ms

mk's of Mk's.

Reduced equivalent machines




65

Present Input
state
0 1 2 3
A +7P P,0 Q,1 Q,2 R,3
BC + Q Q,1 Q,2 R,3 R,4
TE + R Q,2 R,3 R,4  S,5
FG > S R,3 R, 4 S,5 ' 8,6
H —>T’ R,4 S,5 S,6 T,7
(d) m,
Preéent Input Present Input
state state \
0 1 2 0 1
A »>P | P, Q,1 R,2 A > P P,0 Q,1
B +Q Q,1 R,2 R,3 B > Q Q,i R,2
CD » R R,2 R,3 S,4 C - R R,2 $,3
E »>8 R,3 8,4 T,5 D + S $,3 T,4
T »T S,4 T,5 u,6 EF » T T,4 T,5
GH + U T,5 U,6 u,7 G =+ U T,5 U,6
H +> V U,6 v,7
(e) mg
(£) n,
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(v) M6. g ia 0.C. Hence Mg R, me s a 6-state machine.

As We does not possess any useful S.P. partition, only a direct

realisation is possible as shown in Fig. 4.14(e).

(vi) M7. Its reduced equivalent m-, which contains seven

states, is obtained using the S.P. partition {A&, B, C, D, EF, G, H}.

This reduced machine m, possesses no useful S.P. partitions.

4.5 Discussion.

Some interesting features of the F.s.M. models of non-recursive
and recursive stored-logic digitél filters have been brought out
as a consequence of our analysis.

We see that with the second-order non-recursive filter, although
its F.S.M. equivalent is already in the minimal form further
simplifications are possible if the filter output is represented
as a multi—-digit number with each digit regarded as a separate
output for analysis.

With the autonomous 2-bit second-order recursive section, the
direct realisation in Fig. 4.8 is simplified quite considerably,
using S.P. partitions, to that shown in Fig. 4.11. Imn this example,
there are still useful S.P. partitions after the state minimisation
process. One of the problems encountered ﬁhen the complete section
is analysed directly is that for the same filter but with different

values of the coefficients b, and b2’ the corresponding flow tables

1
and state graphs are considerably different from one another.
Consider, for example, when the coefficients. are b1 =3 x 2_2 and

b2 =2 x 2-2. The state—ouput relationship is given by Table 4.14,



X

N
—_— _—__’----—--—--)w
T2 16x4 bits [———=2 D

D ke
(a) m,
Xn o
I—— | W

32x5 b

(b) m, and (c) my

Figs. 4.14(a) - (£).

‘ n — s
—— il 7 W

*n 2 J 32x6 b | n

8x1 b »
==l
' D
N Aan D|<-— 3k
(e) mg

Te A [

g tous —— Wh X,
X — ' >
(e T 1ex6 b3
D e—:] D }e
D |«
D
(d) m, . (£) m,

- Implementations of reduced machines mk's.
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Past outputs

(x 2—2) Double-length}j Quantised output
blx w1 boxw _,|output w w;, by
V-l Yp-2 (x 2_4) {x 2-4) truncation round-off
0 0 0 0 0 0 o
0 1 o 2 2 0 1
4] 2 0 4 4 1 1
0 3 0 6 6 1 2
1 0 3 0 3 0 1
1 1 3 2 5 1 1
1 2 3 4 7 1 2
1 3 3 6 g 2 2
2 0 6 0 6 1 2
2 1 6 2 8 2 2
2 2 6 4 10 _ 2 3
2 3 6 6 12 3 3
3 .0 9 0 9 2 2
3 1 9 2 11 2 3
3 2 9 | 4 13 3 3
3 3 9 6 15 3 3
Table 4.14.  State—output relationship of second-order

autonomous recursive section D.F.4 with

coefficients b1 = 3, and b2 = 2,
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and the flow table and partial state graph of the f.S.M. model
are shown in Tables 4.15(a) and (b) and Figs;'A.IS(a) and (b)
respectively. It is seeﬁ directly that they are very different
in structure to Tables 4.7(a) and (b) and Figs. 4.9(a) and (b).

The éamg dependence of state structure on filter coefficient
“values is also true for first—order recursive filters as evidenced
by the variety of different realisations shown in Fig. 4.14(a) to
(f). We also note that simplifications of the F.S.M. models of the
first-order sections are mainly due to state reductions. Among
thelmachines analysed only MA and Msihave reduced equivalents, m,
and Mg s that could be simplified further via. S.P..partitions.
Furthermore, it is also observed that state reduction becomes
increasingly difficult with increasing values of bl’ the feedback
coafficient. This is illustrated-in Fig. 4.16(a). A similar result
is also obtained when the word-length is increased to 4-bits (see
the graph in Fig. 4.16(b)).

One difficult problem with both types of recursive digital
filters is the inherent non-linearity of the system as a result of
output apd state quantisation, either by truncation or round-off.

As an example, consider the reduced F.S.M. model of the first-

order section whose flow table is given in Table 4.11, and.two

input sequences'{qll and'{qz} given by

n
fu—
o
o
o

--------

{ql}
and

{q,} = 2,0,0,0,........
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Present Next Truncated Next Rounded
state state output state output
0,0 + A A 0 A 0
0,1 B A 0 E 1
0,2 C E 1 E 1
0,3 D E 1 I 2
1,0 E B 0 F 1
i,1 F F 1 F 1
1,2 ¢ F 1 J 2
1,3 H J 2 J 2
2,0 1 G 1 K 2
2,1 J K 2 K 2.
2,2 K K 2 @ 3
2,3 L @ 3 ¢ 3
3,0 M L 2 L 2
3,1 N L 2 P 3
3,2 ¢ P 3 P 3
3,3 P P 3 P 4

(& (b)
Table 4.15. Flow table of F.S.M. equivalent of filter

shown in Table 4.14.



(a)

:

(b)

Fig. 4.15. State graphs for D.F.4 with output (a) truncation
and (b) rounding-off.
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The corresponding state transitions and output sequences for

~initjal state T, say, are

{s;} = T35 8, R, Q Quevevrnnn @y -vnn
{01}' = 05,3, 2,1, 1yeeeeennnnnn 1,...
{32} = T H Ts S, R: Qs Q: . Qs L)
{0} = 6, by 3, 2, 1, 1, veirennn 1,...

Let {q3} be the sum of the input sequences {ql} and {qz},

The corresponding state and output sequences, {53} and-{03},

are given by

|

{33} T; T, S, R, Qs Q, ...

}

{0 7, 4, 3, 2,1, 1, ...

3
Clearly {03} # {01} + {02}.

The consequence of this non-linear effect is that any result .
of the analysis of recursive digital filters with short word-lengths

cannot be easily generalised to.large word-length recursive sections.

4.6 Conclusions.

In general, the structure theory of finite-state sequential
machines is conceptually attractive in the simplification of digital
filters realised as stored-logic units. In practice the main problem

is to generalise the method such that it may be applied, without
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resorting to exhaustive manual or even computer search, to digital

filters of both the recursive and non~recursive types; having

varying word-lengths and coefficients. Even if a2 complete listing

of S.P. partitions is possible, it is still extremely difficult

to select the best subset of these partitions which will lead to

a good realisation. Furthermore, it is not desirable to have to

perform a compleﬁe analysis for every differenﬁ filter specification.
In view of this the non-recursive section appears to be the mﬁst

promising candidate for a gemeral analysis.



AppEnpIX 4.0
In the example in Section 4.3.2, the input to D.F.3 is assumed
to be zerc in order to simplfy the subsequent analysis. The non- -

trivial ipitial values of the ordered-pair (wh ;2) may be set

-1’ Ya
up by presetting the relevant delay registers. Alternatively, one

can assume that prior to our analysis, D.F.3 has received the
appropriate input sequence to ;send‘ the filter to a particular °
initial ordered-pair. As illustrated in Fig. A.4.0, a unique input
sequence can always be found to connect the trivial state ordered-

pair (0,0) to any other ordered-pair.

Consequently, in the state diagram shown. in Fig. 4.9(a), the
starting states C,M,D,F,K and N which lead to limit-cycle oscillations
may be reached from the trivial state (0,0), i.e. A, by the application
of the input sequences; {2, -1}, { 3}, {3, -1}, {1, 1}, {2, 1} and

{1, 3} respectively.

The above discussion assumes that the output is truncated, but

the treatment is similar when the output is rounded-off instead.



0 123
12 3

--‘Q

Q_ 1
2

§866 dobb  bb

Fig. A.4.0. State diagram of D,F.3 for non-trivial input sequences

2
3

O}"""
B =

of length £ 2, (with output truncation).



AppEnpIX 4.1

Consider a general state ordered-pair (sl, sz) of the F.S.M.

model of D.F.1l, and let its x-successor be (si, Sé)' From the

discussion in Section 4.4.0.0, we can easily see that s! = I and

1
sé = 8- Therefore the next-state function § simply consists of

-the two identity mappings,

s, — x , 1

1

Thus in practice the implementation of & consists of the direct
éonnection of x to_s1 and 8, to s, via the two delay registers.

Suppose noﬁ there exists an n-block 0.C. partition which has
also S.P. Then the F.S.M. equivalent of D.F.l may be reduced to an.

n—-state machine. In such a case some combinational logic may be

required for the § state transition mapping.



72

CuapTER 5

PARTITION STRUCTURES
OF
STORED-10G1C ARITHMETIC CIRCUITS.

5.0 Introduction.

In the previous chapter we have.encountered the limitation
of the direct modelling of the complete digital filter as a
finite-state sequential machine. To rgsélve some of the questions
that weré brought out there, we investigate in this chapter the
applicatioﬁ of S.P..partition techniques to the analysis of the
arithmetic units that make up the filter algorithm. It is hoped
that an insight into the algebraic structure of the overall section
will be gained as a result of knowing the partition structures of
its component units. -

A general F.S.M, model is first introduced which will then be
used és a basis for the structufal analysis of N~bit adder and .

N-bit by N-bit multiplier modules.

5.1 F.S.M. model of a general arithmetic.circuit.

Consider the case of an arithmetic function, g, of two variables

or operands A and B, where

A,B=2_, ZM = {x : x integer, O £ x £ M-1}.

For our applications, the range of g is-ZC} where

Izcl > IZMI : ZC = {x : x integer, 0 £ x 5 C-1},

C-1 being the maximum value of g(A,B).



73

This function is represented by the combinational or stored-
logic circuit enclosed in the broken lines in Fig. 5.0.

The corresponding F.S.M. model for this arithmetic circuit
is obtained by first separating g(A,B) into two components Gz aﬁd
Gu such that the elements of the former are identical to those of

one of the operands, say B. For completeness we regard Gg to be

linked to B by an imaginary feedback. The mappings below follow

naturally.
h1 :t A - I
h2 : B,Gg — S
h3‘: Gu — 0 N
h4 - —~+ A
h5 -9 — 6
where g ¢ AxB— G

g, AxB— G

and g is now written as g : A x B — (Gu’ Gz).
Thus, an arithmetic function g described by the four-tuple

* _
(A,B,Zc,g) may now be modelled by an F.S.M. (5,1,0,68,X).

* A discussion on the motivation behind and the theoretical

eonstraints of the above model is given in Appendix 5.0.
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5.2 Radix *‘ZN adders.

Conventionally, when two numbers are to be added, binary
arithmetic is invariaﬁly used, and N-bit additions are realised
using N modulo 2 adders (i.e. the familiar half and full adders)
connected in cascade. One of the disadvantages is that the final
sum is obtained only after the internally generated "carfies"
have propagated through the whole word-lengtﬁ.

The trend towards the widespread use of large-scale integrated
(L.5.1.) ﬂigital circuits is leading to the hardware design of
arithmefic circuits based on radices greater than 2. The immediate
conséquences are the reduction of packages, the simplification of
interconnections, and a relatively fast circuit operation because
"carries" are now betwéen.groups of digits, the size of the group-
dependiné of the radix used and the degrée of parallelism required.

We will sthdy here the specific case when the radix is of the
form 2N, N a non-zero integer. Using the general model in Fig. 5.0,

the F.S.M. model of a radix - 2" “half adder” is easily derived -

by letting
A=1I,B=8,C = Gz and C1 = G
where
Co is the modulo ZN sum of A and B,
Cl is the carry-out of the "half adder",
énd
A and B are the two N-bit numbers that are to be
added.

The block diagram of this radix - ZN half-adder is shown in

Fig. 5.1.
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5.2.0 ' Example.

Consider the addition of two 3-bit numbers A and B, (i.e. N = 3).
The corresponding modulo 23 sum and the carry tables are shown in
Tables 5.0(a) and (b) respectively. These tables may be now
regarded as the state and output tables, respectively, of the F.s.M.
equivalent 6f this radiﬁ - 23 half-adder, and implemented using
memory modules as look—up tables as shown in Fig. 5;2; The sum
and carry circuits require a 64 x 3 and a 64 x 1 W-b memory stores
respectivgiy._

This direct implementation, however, will not be practical for

operands having large word lengths.

5.2,0.0 S8.P. partitions of radix - 23 half-adder.

For the moment consider only the modulo 23 sum table (i.e.
Table 5.0(a)) that is realised by the state machine shown in
Fig. 5.2, with the elements of A and B being regarded as the set
of machine inputs and internal states respectively.

This F.S.M. possesses the following S.P. partitions,

n, = {0,2,4,6 ; 1,3,5,7} and w, = {0,4; 2,6; 1,5; 3,7}

A cascade realisation is thus possible using either ., or =

1

9 respectively,:

2

in conjunction with a non~S.P. partition 17, or T

1
such that

T Ty =T, 12 = 1(0), the zero partition.

Possible values of Ty and 12 are

T, = {0,1; 2,3; 4,5; 6,7} and 1, = {0,1,2,3; 4,5,6,7}.



(state)

A

(Input)
2 3 4
2 3 4
3 4 5
4 5 6
5 6 7
6 7 0
7 0 1
0 1
1 2 3

(@)

Table 5.0.

5 6 7
5 6 7
6 7 0
7 0 1
0 1 2
1 2 3
2 3 4
3 4 5
4 5 6

(a) Modulo 23

for radix - 23

B

(state)

sum and (b) carry output tables
"half-adder".

(Input)

3 4
0 0
0 o
0] 0
0 0
0 1
11
1 1
1 1
(b)

9L



A
64 x 1bit
store
LJP (b-S)
A M 1\
5
. 64 % 3
B = (b.s )
Fig. 5.2.

Direct memory realisation of

a radix - 23

'half-adder',’

i
L — p————
4 x 1 B—s] 64x2 .__,__._;.CO
> b.s — b.s >
(a)
A
\ 3 \ l
Ty : T
B
| 16 x 2 B . 64 x1 C
» b.s b.s —
r\}
(b)
Fig. 5.3. Cascade memory realisations of modulo 23

adder using (a) T Ty and (b) Tys Ty
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Also, the machine input set may be partitioned in a similar way.
The state tables for the component machines of the realisation
and T

using w are shown in Tables 5.1(a) and (b) while those of

1 1

and T, are given in Tables 5.2{(a) and (b).

the realisation using Ty

The correspohding block diagrams of these two possible cascade
realisations are shown in Figs. 5.3(a) and (b), with corresponding
memory storage of {(4 x 1) + (64 x 2)} W-b and {(16 x 2) + (64 x 1)}
W-b respectively, i.e. 132 and 96 bits. (It is useful to note -
here‘the advantages of using a successor componeﬁt having as few
blocks as possible).

A much better realisation, however, will be to use 7, and 7

2 2
to obtain w(0), with #,, in its turn, being derived from ¥, and
2 1
Ti, where
LI Ti =T, i.e. Ti = {0415; 2637}.

The state table for this 'successor' component is drawm in
Table 5.3, and the overall realisation of the modulo 23 addition
using T Ti and T, is sﬁown in Fig. 5.4. This realisation uses
three memory modules, of overall capacity of 84 bits, and compares -
favourably with the fWO'realiSations discussed previously. Each
memory circuit is a single output store and the intercommection
pattern between the memory store is highly regular.

This particular form is known as a loop-free implementafion

and will now be discussed in detail.



I J m, = {0,2,4,6;5 1,3,5,7} = {4; B} = {I; J}
A A B
srate B B A T1'= {0,1; 7,3; 4,5; 6,7} = {a; by c;d} = {i; j; k; &)
(a)

Augmented

input

state b b c d a b c d a b c d a ¢ d a b

(b)

Table 5.1, State tables for component machines of cascade

realisation shown in Fig. 5.3(a).

8L
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Input

E F G H
P P Q R S
Q Q P 5 R

state
R R S Q P
S S R P Q
Ty-= {o,4; 2,6; 1,5; 3,7}

{P; Qs R; S}

i

{E; F; G; H }.

~
1

= {0,2,1,3; 4,5,6,7}

{p;qlt="{e; £1}.

Table 5.2(a). State table of predecessor
component of cascade realisation

shown in Fig. 5.3(b).



state

state

E E F
e £ e
P q p
q p q
R R R
E E F
e £ e
p q p
q P q

Table 5.2(b)

State table of successor component of cascade

realisation in Fig. 5.3(b).

Augmented

input

Augmented

input

og
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3 Augmented

input

M.
state
N
T‘
1
T2
Hence
1
"1

Table

{ 0,4; 2,6; 1,5; 3,7 1 (see Table 5.2(a) ).

{P,Q R, 8} = {E F,q, 8}

5.3. State table for successor cbmponent

of the machine realisation of 12 from

“1 and Ti.



A
8 >
¥ \ Y
M, . T/ — T >
o Ax1 L v’ 16x1 |- B :—-6b4x1' —C
bs | "” b.s - l—’ S
Fig. 5.4.

Loop~free memory realisation of modulo 23
el L}
adder using T T and Ty

N N

, A
r .

Tl =

N-1

&l

- - -

Y

1]

JH{ Vl

Fig. 5.5. Generalised realisation

of modulo ZN adders.
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5.2.1 The general modulo ZN adder.

The decomposition technique in the example may be generalised
for any value of N by using the following result, the proof of

which may be found in pages 379-380 of Reference 71.

Theorem 5.0. If there exists a set of S.P. partitions

cen .5.M. > 2 eenn
{“1’ Tys . nn} for an F.S.M. M such that m; > 7, 3 > T,
and To= w{0), then M is realisable as a serial loop-free
connection of n components My Myyenes M in which m,

is a predecessor of mj iff LI wj. All the components

operate concurrently.

5.2.1.0 Generation of S.P. partitions.

We have seen in Chapter 3 that the generation of all possible
S.P. partitions is initiated by identifying (i.e. put in the same
block) all possible pair combinations of the states.

For the case of modulo 2N adders, however, it is sufficient

to consider only the identification of O and the integer d, where

dEN = {1,2,...., 2811} .

This is because the first row and the first column of the
modulo ZN addition table merely duplicate the inputs and ihe
present states respectively. Furthermore, each successive columm,
going from coluem 1 to column ZN?I, is identical to its predecessor
except that the top entry is shifted to the bottom, and every entry
is Shifted up by a unit st;p.

Thus, the identification of O and d automatically implies the

identification of (O + k) and (0 + k) + d for all k's where
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N : ' .
1 gk £2-1. As a consequence, all elements that are d units

apart will be identified, and hence for an arbitrary a.,

N

0 £ a, £ 2°-1, then a; and a, + kd {modulo ZN) will be in the

i

same partition block.

The following lemmas will now be proved. (A useful aid to
¥

the proofs is to regard the ai's to be placed consecutively on the

circumference of a circle, the 'distance' between a; and a;, being

1
of 'unit' length).

Lemma 5.0: If d is odd, there are no S.P. partitions -
apart from the trivial ones @n(I) and w(0), the 'identity'

and 'zero' partitions respectively.

Proof. If 4 = 1, then all state elements that are a unit
distance.from each other will be identified thus leading to a
partition block which contains all the state eléments, in other
words 7w(I),

Consider now the general case in which d = (2q + 1),
1gqg 2Vt o, |

For an arbitra?y_ai, any state of the form kd, k = 1,2,.... ,
will be identified with it. That this will eveﬁtually lead to
7(I)} is clearly seen by the following observation.

Consider the case when, starting from a, and going around the

circle, a, is picked up again after k steps of d units each, i.e.

a; +k(2q +1) = a, (mod Ny,

(2q + 1)k = 0 (mod ZN).

nt
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As the above implies that ZN divides (2q +_1)k, and also
(2q + 1), being odd, is relatively prime to ZN, then 2% must
divide k, i.e.

N
k=g 2, g =.0’1"""- .

Since k 5‘0, then g must be greater than zero, and hence the
first solution for k is when g = 1, leading to k = 2N, Therefore
N different states will be identified before any starting state

is repeated.

‘Lemma 5.1. 1£d=2P, p=1,2,3,.... N, there exists

a set of S.P. partitions {vl, Tos Tasenes ﬂN}. Any e

derived from d = 2p, contains 2F blocks of equal size,
and if the elements in any one block are arranged in

ascending magnitude, adjacent elements will diifer by
2P units.

Proof. Following similar argument as in Lemma 1, we obtain

0 (mod 2N)

N
i.e. k= g2
2P

(2P)x

1}

As 2P always divides ZN, repetition of aﬁy initial state can occur
before the full cycle of ZN steps can Be completed.

It follows that the number of elements, m(wp) in one block
of ﬂp is éiven by

N .
mr ) = L = NP
P ,P

and the number of blocks of wp,=# (np), is given by
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]

* (n 5 Total number of states
P Number of elements in a
partition block

N
2 e

NP

Lemma 5.2. Let d,D be two integers, 1 < d,(D) g ZN.

If d divides‘D, then 7, 2 m_ .

d D

Proof. Let ai and aj be two elements in a block of HD'

Then, by construction, we have

a, = a, + kD (mod ZN).
J 1 )

Since D is divisible by d, i.e. D = 2d, % an integer, then
a. £ a. + kid (mod 2N)
h 1 ’

implying that a. and a. are also contained in a block of 7w, .
1 ] d

5.2.1.1 loop-free realisation of adders modulo ZN.

The following theorem follows naturally from the three lemmas

we discussed in the previous section.

Theorem 5.1, The F.S.M. model of a general modulo ZN

adder possesses N S§.P, partitions Mis Mosecens, W ceens Ty

p!
such that

TS n{0).

In the implementation of the adder, any of these partitions

“p can be used with any non-S.P. partition Tp, so long as

T .1 = 7(0).
P P (©)
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A more economical implementation, however, will be to use
all the S.P. partitions in a systematic wéy as follows.

Consider “N—l'r A valid realisation will be to use 7, ;
given by - o

2
~
Il
E|
]

w(0) .

Hence T, , will have to be a 2-block partition in order to
distinguish.between the elements of each block of -1
Ty—1° in turn, is realised from T—2 in the same manner,

i.e. using again another 2-block partition T such that

N-2°

TN-2

By repeating this procedure for the remaining S.P. partitions,

we arrive at the following iterative relationship,

O = Tt Teet
v
"N-1 7 N2t Th-2
[ S S B 5
71'2 = Tl-'ﬂ'l- !

. N -
Consequently, one can implement an adder modulo 2° as a set
of loop—free interconnected component machines as described in

Theorem 5.0. As these sub-machines operate concurrently, there
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is no carry propagation at all.
If the 'input' A is assigned the same binary code as for
the 'present state' B, the resulting hardware implementation using

memory modules is as shown in Fig. 5.5.

5.2.1.2 Memory storage reduction.

It will now be shown that the storage requiréd for the loop-
free form:of adders modulo N is considerably less than that
required in the direct realisation.

I1f M is the memory storage* of the direct form and Mr the

overall storage of all the sub-machines, then

where N is the word-length of each of the operands A and B,

Since A and B are coded in the same &ay, then

M
o

!

2%+ 2H% s B3 ... + 2% .. (5.0)

2 3 N '
p+t+p +p + ..... D ‘ ...(5,1)

i

where p = 22. If we multiply (5.1) by p, we get

N+1

2 3 4
PM. =p +p +p +....p vea(5.2)

By subtracting (5.1) from (5.2), we obtain

N+1

Mr(p—l) = p -p or
N
m = PP_-D
T p-1
_ 4 2N
= 3 (2 1).

* For simplicity of subsequent explanation, the unit for memory
atorage is understood to be 'word-bits'.
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M
Thus, the reduction ratio R = ﬁ£ is given by
o
M ﬁu(zzw -1!
R = _]_:. = 3
»
Mo N x ZZN
. 2N
and if 2 >> 1, then we have

R = .

1
N

wl &

which is a considerable reduction. Also, as can be seen from the
graph in Fig. 5.6, this reduction improves, i.e. becomes smaller

as the word length N is increased.

5.2.2. Generation of the carry digit.

When A and B are added modulo ZN, a table can be drawn to
show when a carry digit.has to be generated. One such table for
N = 3 1s shown in Table 5.0(b), which is also the output table
for the F.S5.M. model.
For é general N, let the rows and columns of the output
table be denoted by i and j respectively, (i,j = 0,1,2,...., (ZN;I)).

It was observed that below the diagonal described by,

i,k for all i = 0,1,....,2 -1 and

k = (2N-1) - i,

the table entries are all '1's. Again this is clearly illustrated
in Table 5.0(b). This fact suggests a simple method of realising
the output table.

A carry is generated, i.e. C., = 1, only if

1
A+B> 201, i.e.

A>2N-1-38.



1 -
™
T - +
-~T [}
x \
\
7 1
i
\
1/2 1 t
o \
= \
™~ . \
L v
= R
104 | .
. ~ e _
‘‘‘‘‘‘‘‘ -+
0 2 4 8 16

wordlength N (bits)

Fig. 5.6. Effect of loop-free decomposition on

overall memory storage.

A
"1 N
: MOD-2
B.—,.
. HIA
3- bit
COMP. C,—
g . ;
A mop-2N [T .
- N -—.—_’ Co
B
Fig. 5.7. Carry-out circuit Fig. 5.8. Stored-logic realisation
. 3
of radix - 2 of a fadix - 2" 'full-adder’.

'half-adder’.



89

Since the right hand side of the inequality is simply the one's

complement of B, then if

N-1
B = ] b2,
P

we can write this one's complement B' as

where b, = 0 or 1 and gk is the logical negation of b, .
Thus the output table may be realised using an N-bit inverting
network and a standard N-bit M.S.I. binary comparator. This form
of realisation for N = 3 is shown in Fig. 5.7.
Of course, the generation of the carry output may be
incorporated‘in the general loop~free design as discussed in
Section 5.2.1.1. by regarding the addition to be médulo 2N+1 instead

N . . . . o
of 2° and assuming the last input bit and state bit to be at a

constant '0' value.

5.2.3 Addition of "carry-in'" digit.

For a full radix—ZN adder design, the "carry-in" digit from
the previous full adder must be incorporated. If SN ig the modulo 2N
sum of A and B and Ci the "carry-in" digit, then the addition of
SN and Ci is carried out in exactly the same way as described in
Section 5.2.1.

This time, however, since Ci is only a one-bit variable, the
required storage Mr is muchvless and is given by

Mr = 22 + 23 + ...+ 2N+1

=4 (1) =4 2N if N s 1.
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. M
Therefore, the corresponding ratio R = ﬁl is given by
o
pob N 2
N x 2N+1 N

The carry-out circuit for this part is relatively simple
since a carry is generated only if Sy = 2N—1 and Ci = 1. Thus
we would require only an (N+1) -input AND gate. The block diagram

of the complete full adder is shown in Fig. 5.8.

5.3 Radix-2" parallel multipliers.

We will now investigate the modelling of a parallel N x N
bit multiplier bf an F,5.M. Two models will be presented, the
first being the straightforward application of the general model
shown in Fig. 5.0, while the second is derived by regarding the
radix—ZN full multiplication as being equivalent to two
multiplications, modulo ZN and modulo 2N~1 respectively, operatiné

in parallel.

5.3.0 Example.

Conside; the multipiication of two 3-bit numbers A and B,
giving a 6-bit product P. The direct look-up table is given in
Table 5.4, and the corresponding memory module implementation,
requiring 384 storage bits, is shown in Fig. 5.9.

The F.S.M. model of this multiplier is obtained by separating
the direct table into two simpler component tables as shown in
Tables 5.5(a) and (b)., The latter is simply a modulo 23
multiplication table, while the former consists of the values for

the most significant 3 bits of the product P. These Tables (a) and
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(b) may now be regarded as the output and state tables of the

equivalent F.S.M. respectively.

5.3.1 The general N x N bit multiplier.

The F.S.M. model of the general N X N bit parallel multiplier
will now be derived.
When two N-bit numbers, A and B, are multiplied, the result

P. is a 2N-bit product, i.e. if

N-1 i ’ N-1 3
A = ) 2,2 and B = } b.2"
i=0 i=0 *t
where ai = 0 or 1 and bi = 0 or 1, then
2N-1 .
AxB=P= Z p.ZJ s P-=00or1l ... (5.3)
. j=0 J 3

This product P can be expressed as a 2-digit number in the radix

2N.as follows;

2N-1 f
P = X p.2
o ]
2N51 o
= ) p2 + ) p2
ey ™ k=0 K
= 2. 2N+ p (2N)° i (5.4)
1 (o}
where
NEI R m| Nil k‘
Py = ) (p )2 and P_= (p, +)2 ...(5.5)
1 g M © gr=p X
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0 5 10 15 20 25 30 35

Table 5.4. Direct multiplication table
for a 3 bit x 3 bit parallel

multiplier.



v

64 x 6
b.s

A 4

¥

Y

Fig. 5.9. A 3-bit parallel stored-logic multiplier.

A
| 1 11
L
| 64x3 g_;P1
b.s 0
A
o {1l
1 > >
64 x 3 1
—-P
0 b.s 1 ¢
—
1

Fig. 5.10. F.5.M. model of a 3-bit parallel multiplier.
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(a)

(b)

Table 5.5, (a) Output and (b) state tables for
the F.S5.M. model of a 3-bit parallel °

multiplier.
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The direct look-up table represented by equation (5.3) is

now separated into two simpler tables, the P, and Po tables

1
represented by equations (5.4).and {5.5), where Pl is the N
most significant bits of the real product P, and Po is the N-bit
modulo 2N product. The F.S.M. model is obtained by regarding

Pl and P0 as the Gu and G2 respectively of the general model

as shown in Fig. 5.0.

5.3.1.0 Example.

For the 3-bit multiplier we discussed before, let A = 7

and B = 5. Thus we have

AxB=7x5=35

(4 x 8) + 3

il

4 x (23)1 + 3% (23)0

Here P, = 4 and P = 3. This particular operation is illustrated

in Fig. 5.10.

5.3.2 Decomposition of the F.S5.M. multiplier,.

Considering the P table given in Table 5.5(b), the following

S.P. partitions are found,

w, = {0,2,4.6; 1,3,5,7}.

T, = {0,4; 1,5; 2,6; 3,7}

Following a similar argument to that used in deriving the

loop-free realisation of adders modulo 2N, the complete multiplier

is realised by using two non—-S.P. partitions L] and T, such that,
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Possible values for Tl and T2 are
Ty = {0,4,1,5; 2,6,3,7}
T, = {0,1,2,3; 4,5,6,7} .

The P0 table may first be rearranged according to ™ and Tos

as shown in Tables 5.6(a).and (b), and the w., and 7, images of the

1 2% T

F.S.M. multiplier, viz. M1r1 and M“z resPective}y are obtained
by considering coperations only between partition blocks. . The
corresponding 'state' tables are shown in Tables S;T(a) and (b).
Also, thg two successor components derived from the non-5.P.

partitions 7 and 1, are shown in Tables 5.8 and 5.9 respectively.

2

It is interesting to note that M and M are isomorphic
1 2
to a modulo 2 and a modulo 4 multipliers respectively. This

observation leads to the following theorem.

Theorem 5.2. A partition L that has S.P. for a modulo
ZN addition téble also has 5.P. for a modulo 2N

multiplication table, where “p is defined as in Lemma 5.1.

Proof. Let ai and aj be two elements in a block of ﬂp and

assume that aj > ai'. Then we have

Multiplying éi and aj.by an arbitrary element b, O xb g 2°-1,
we get

b x a, (modulo ZN),

ie]
1]
o
X
1]
o)
I
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o
[+
=~ .
o

_._;_

(a)

Table 5.6.

Q |
3 5 7 %81 0 4! 1 5 6 !
:7
0 0 0 0 0 0 0 0 0 0
6 2 6 41 o ol 4 4 0
L 4 4 1.0 4 1 5 6
2 6 2 51 0 41 5 1 6
- —— — "'TL -——
3 5 .7 21l 0o ol 2 2 4
1 7 5 6] o ol 6 & 4
7 1 3 31 o 4! 3 7 2
5 3 1 70 0 4! 7 3 2 1°5
1

(b)

The modulo 23 multiplication table organised -

by (a) vi and (b) Ty o

26




= {G,2,4,6; 1,3,5,7}

it

(4,8} = {E,F}

=%
|

{0,4,1,5; 2,6,3,7} = {a,b} = {e,f}

1

A
]

=
=

=3
il

{0,4; 1,5; 2,6; 3,7}

2
P P ' i
= {P, Q, R, 8}
R S
P R = {1, J, K, L}
R Q . .
T, = {0,1,2,3; 4,5,6,7} = {p,q} = {m,n}

Table 5.7. State tables for the (a)_ﬂl,énd (b) L images of
a 3-bit F.S.M. multiplier. '

L6




state

[==]
-]
td
s ]
=
I
~
-
e
==
[
[
—
=
-
L£>1
(-

1
E E F F Augmented = {P,R; Q,S} = {I,K; J,L}
. f‘ o £ input
a b a b 17 {a; b} = {e; £}

Alsg P —+ (A, a) Q -+ (B, a)

‘R — (A, b} S — (B, b)

Table 5.8. State table of successor

machine M
1
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state

state

P P P
9 49 P
R R R
J J K

P P q
q q 4
Table 5.9.

State table of successor machine MT

2

Augmented

input

Augmented

input

66
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i.e. b xa, = q.ZN + c, and
] J 3
b><a.=q.2N+c.
i i i
. ¢c. - c, = ba, - a.) + (q. ~ q.)2N
J 1 J 1 1 ]

b(kd) + (q; - qj)ZN .i.(5.6)

Since d = 2P and ZN is divisible by ZP, the R.H.S. of equation
(5.6) is divisible by 2P, Conseﬁuently 2P divides cj = Cis i.e.

we may write

k'2P s i.e.

c. — ¢, =
J
6(aj,b) = 6(ai,b)(wp).

Thus cj and c;» the "next states' of aﬁ and a, respectively,
are in the same block of m and therefore " has S.P.

It must be mentioned here that as a consequence of the above
theorem, it does not mean that the S.P. partitions for the modulo

ZN multiplication are confined only to those having the form as.

in np. The partition {0; 1,2,3,4,5,6,7} for instance, has S.P,
Eventually, however, since one has to consider the intercomnection
of both adders and multipliers, then the use of compatible S.P.
pértitions for both will eliminate the need for coding and decoding
between partitions having different structures in terms of the
number of partition blocks and their sizes.

The P1 or 'output' table is more difficult to analyse than the
P or 'state' table. This is because it contains no two rows that
are identical, thus leading to output-consistent partitions,

which may lead to a state reductien. There is also no ebvious.

internal structure or pattern that we can exploit. Consequently,
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the problem is also difficult to generalise to an arbitrary N.
Although the P1 or output function can be implemented using -
¥ .
conventional combinational logic techniques, a better method

is presented in the following section.

5.3.3 TImproved model of N-~bit parallel ﬁultiplier.

A model will now be derived for the N x N bit multiplication

which result in boeth P0 and P, tables having regular algebraic.

1

structures.
The product P is first written in two different ways, as a
.. . . N N . .
2-digit number in the radices 2" and 2 -1 respectively, i.e.

P ZN + P0 .. (5.7

P 1

it

" and

o
|

- N '
_Q1(2 -1) + Q ...(5.8)

The implementation of P0 has already been discussed and that
of Qo will be analysed in detail in Chapter 7. Our immediate
problem now is to determine Pl in equation (5.7) knowing only
Po and Qo'

Equation (5.7) may be subtracted from equation (5.8) to give

N N _ _
P.2° - Q(2-1) =Q - P, _ .. (5.9)

The L.H.S. of (5.9) may be written as

N N
P12 - Pl + P1 Q1(2 -1)

_ N _ N_ .
= 91(2 -1) + PI Q1(2 1) ...(5.10)

® Another obvious solution is to regard the N x N bit multiplication
as that of modulo 22N, Z.e. one simply extends the range of "modulo
multiplication” by letting N - 2N.
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Substituting-(5.10) into (5.9), we get

P =Q - P+ (Q - P2 -1)

R + k(2V-1) e (5.11)

where Ro = Qo - Po and K = Q1 - P1 .

The maximum value of P, P .x S8¥» is given by

ax

P = A x B
max max max

(ZN-I)(2N~1) since A,B are N-bit numbers.

i

N NN
P_= (2-D2" - (21
= (NonaV -V
= (Ny¥ 41
Hence P1 = (2N—2)
max

.+ Using equation (5.11), since P1 < Pl , then
max

R+ k(2V-1) ¢ (2-2) ...(5.12)

Since by definition 0 % P0 FS 2N-1 and "0 g Q0 < ZN-2, then, since

Ro = Qo - Po’ it i1s at its maximum value when

Q =2"2 and P_=o.
o] [a]

Substituting Ro into equation (5.12), we obtain
max

2N-2) + k2" ¢ (N-2).

K = 0.
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Similarly, Ro is minimum when
= N '
Qo =0 and Po = 2°-1, and hence

R = - (2"

Since the minimum value of P1 is 0, then, K in equation (5.11)

must be 1. Consequently, equation (5.11) may be written either as

P,=R =Q -P | ...(5.13)

[} o’ 0
or
P, =R +1x -1
=qQ -P_ + (2'-1) oo (5.18)
(] o] _

Equation (5.14) is more general and will 'céver' equation (5.13),
because adding (2N—1) to any number x, 0 £ x s_ZN—Z; will not
alter its value provided any end-round.carry is taken into account,A
since

(AM-1) +x = @81 + 1+ x-1)

1

ANy (x-1),

where ZN is now the overflow or carry bit. Adding this to the least-
gsignificant bit of (x-1), we obtain

(x-1) + 1 = x.

Therefore, the general expression for Pl’ the significant.

half of the product P is given by

Py

i

Q - P+ M-

(s
N
Q, * |:(2 -1) - Po]
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1 = f ’ ) . ‘
i.e. P1 Qo.+ P0 _ ...(5.14)

WherevP; is the additive inverse of Po with respect to (ZN—I).

We have now, in effect, modelled the N x N bit multiplication
as two simpler multiplications in parallel, viz..that of modulo 2N
and modulo (2N-1). Consequently, the original F;S.M. multiplier
can be regarded as two simpler F.S.M. multipliers operating in
parallel.

The corresponding block diagram of this parallel realisation
is shown in Fig. 5.11. As the modulo ZN product is already in the
binary form no decoding is necessary. P1 isreasily obtained from
Qo and Po by using a conventional ZN adder with an end-round carry.
Although there will be two representations for zero, this is not

a problem since we know that

P = (ZN—1)2N + Po cannct happen since P1 g (ZN—Z).

5.4 Conclusions.

Stored-logic radix - 2N full adders and multipliers are
analysed on a systems level by modelling them as finite-state
sequential machines. The algebraic structures of these F.S.M's
are then analysed using $.P. partitions. For the F.S.M. models
of both the modulo 2N sum and product, respectively, of two N-bit
numbefs, theorems have been derived showing that these F.S.M's
possess cascade loop-free decomposition structures. The corresponding
implementations require substantially less memory storage than
those of the direct form, and this advantage improves with increasing

word-length N.
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Two models have been found for the radix - ZN, i.e. N x N
bit, parallel multiplier. The second model is extremely useful
because although it requires some simple additional circuitry,
it enables the N-bit most significanf half of the multiplication -

product to be determined in a systematic way for a general N.



AppENDIX 5.0

Some observations on the F.S.M. model of stored-logic arithmetic

circuits.

Although the stored-logic arithmetic circuits that we are
-modelling as F.S.M"'s are strictly combinational switching circuits
(thus necessitating the imaginary feedback from Gg to B in Fig, 5.0),
the approach enabled the application of the useful results from the
structure tﬁéory of ﬁachine decompositions. Furthermore, some
familiar arithmetic units do have real feedbacks, e.g. digital'
accumulatérs. Thus the model is quite general.

There is however a theoretical constraint. At the pafticular
'instaﬁt‘ that the product A x B is reqﬁired it has to be assumed
that the resuit of a 'previous' multiplication is such that its
less significant half GE must be equal to B, This implies that

from a starting state s there is an input sequence x such that

'6-(si, X) = B.

This constraint is only academic since in practice, this condition

is satisfied all the time.



AppPenpix 5.1,

Reprint of an article entitled, '"Half-adders
modulo o using read-only memories', published in

Electronics Letters, 30th May 1974, Vol. 10, No.ll.



carry input. Multiplication by -1 is just the bit-by-bit
inversion of the data word, and multiplication by 2-4, to
normalise the transform, is only a cyclic shift of the word j
places to the left.

°
L.~

-
h
T

minimum distance of cod
-

1 N 1 1 )

Q

R S S S R R - M T A
number of channels inuse k

Fig. 1 dagainstk

The system shows relatively high error correction against
loading petformance. Fig. 1 shows, for a 16-channel system,
the minimum weights obtained for different values of k, the
number of channels in use. Since the system is a linear code,
these values can be taken as the minimum distance of the
code (4). The number of errors that can be corrected is then
(d/2y—1; for this code, all minimum weights are even. The
performance is independent of p, the modulo number. To
obtain this performance, the carriers must be selected pro-
perly, otherwise a much lower bound will be obtainzd;

“namely, d = 4 for halfrate, d = 8 quarter rate, and so on.

In short, a multiplexing system has been described that
compares very favourably with existing systems. Unfor-
tunately, for maximum performance, the carriers must be
properly selected. At the receiver end, the decoding pro-
cedure for correcting more than the trivial 1-error case is very
complex.

E. INSAM Ist May 1974

Electronics Department
Chelsea College
London SW6 5PR, England
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HALFADDERS MODULO 2V USING READ-
ONLY MEMORIES

Indexing terms: Adders, Digital arithmetic, Read-only storage,
Sequential machines

Halfadders modulo 2V are regarded as finite-state sequential
machines, and are implemented with read-only memories.
The application of the theery of *closed” partitions is shown {o
fead to considerable savings in the memory storage required,
which improves with increasing word lengths, and gives a
very regular interconnection pattern and parallel operation.

Introduction: With the advent of m.s.i.fls.i. techniques, the
trend in the design of logic systems is moving from the
discrete-logic-gate level towards the system and subsystem
level. Thus there is a case for investigating the hardware
realisation of arithmetic operations in number systems having
radices greater thun two. 1n this letter, half adders modulo 2%,
where N ranges through the sct of positive integers, are
considered as basic arithmetic modules, and are studied to
find whether they contain useful algebraic structures that can
lead to practical and economical hardware impiementations.

ELECTRONICS LETTERS J30th May 1974 Vol 10 No. 11

Moduli of the form 2¥ are chosen to avoid the need for
complicated circuitry for the conversion to and from the
binary (modulo-2) system. Also, the proposed design
method is compatible with the familiar ‘carry/look-ahead’
technique in high-speed addition, in which case N then
represents the number of digit pairs in a ‘carry/look-ahead’
stage. :

Table1 MODULO-2? SUM TABLE

A
+ o 1 2 3 4 5 6 17
0 6o 1 2 3 4 5 6 7
1 1 2 3 4 5 6 71 0
2 2 3 4 5 6 1 0 1
B 3 3 4 5 6.7 0 1 2
4 4.5 6 1 0 1 -2 3
5 s 6 .7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6
Table 2 CARRY TABLE
A
+ 0 1 2 3 4 5 6 1
0 0 0 0 0 0 ©0 0 -0
1 9 0 0 0 ¢ 0 0 1
2 0o 0 0 0 © 0 1 1
B 3 0o o 0. 0 © I 1 1
4 0.0 0 ©0 I 1 t -1
5 0 0 0 1 1 1 1 1
6 o 0o 1 1 1 1 1 1
7 o 1 1 1 1 1 1 1

Example: Consider adding two numbers 4 and B modulo 8,
ie. N = 3, The modulo-sum-and-carry tables are shown in
Tables 1 and 2, respectively. Two read-only memories acting -
as table-lookup units may be used as the hardware.! As the
two operands are used to address 2°4** memory locations
for each of the two r.0;m.s, and, since each location for the
modulo sum and carry tables contains a 3-bit and a 1-bit
word, respectively, the memory storage required will corres-
pondingly be 192 and 64 bits. For large word lengths, how-
ever, this direct implementation will lead to excessive storage.
Fortunately, the memory storage can be reduced consider-
ably by applying the theory of ‘closed’ partitions® ® to de-
compose the direct realisation into an interconnection of
smaller and simpler substructures. This is done by regarding
Tables I and 2 as the state transition and output tables,
respectively, of a finite-state machine {(f.s.m.), having 4 and B
as the ‘input’ and ‘internal state’. Partitioning the machine
states,® we find the following nontrivial ‘closed’ partitions:

= (0, 2; 4; 6! ly 3| 5; 7) 2 = (0! 4/ 2, 6! 19 5/31 7)

A ‘serial’ decomposition is possible using either =, or 7, in
conjunction with a nonclosed partition 4, or 1;, respectively,
pl'OVidCd that =, .j.l = ﬂ'z.lz = IT(O), where

n(0) = (Of 1/2/3/4/ 3/ 6/7)

is the ‘zero’ partition, and the . signifies a partition multi-
plication. Notice, however, that, since x, is ‘greater’ than =n;,*
72, in turn, can be derived from n, and 1’;, where 1’ is
another nonclosed parctition such that z,.4°; = z2. Thus we
obtain .

12.= (0: 2: ], 31’4: 6| 5: 7) 1’1 = (0: 4: ],5’2, 6) 3»7)

The hardware for this form of realisation is shown in Fig. 1,
where the ‘input’ has been given the same assignment as the
‘internal state’. The overall memory storage of the three
r.o.m. modules used is only 84 bits for the modulo-8 sum,
compared with the 192 bits obtained previously. Also, each
of the modules is a sing'e-output r.o.m. and the inter-
conpection pattern is vecy regular. The above imple-
meniaticn is known-as the loopfree realisation of an fs.m.4

213



he carry or ‘output’ functifm can be realised as a straight-
rward combinational matrix, and will not be discussed
rther in this letter.

] i

rom rom rom

Tar:"bits T ‘IAG bits -T 2 i j
)\ | J

P
—y

64 bils

a8 modulo-2” sum 1 1
ig. 1 Read-only-memory realisation

eneral modulp-2" halfadder: To generate all possible
losed’ partitions for an adder modulo 2%, in general, it is
fficient only to ‘identify’, i.e. put in the same partition
fock, state O with each of the other states d in turn, since
is invariably identifies any state a; with the state a;+d
nod 2¥), whered, ¢, = 1, 2, 3, ..., 2¥='. This is because the
rst row and first column of Table 1 merely duplicate the
put and present states, respectively. As a consequence, ali
ements that are a d distance apart will be identified; i.e.
r an arbitrary state, a,, ¢, and a;+ kd (mod 2¥) will be in the
me partition block, & being any integer. It is found that
dders modulo 2" possess algebraic properties, as will be
10wn by the following lemmas, whose proofs can be found
\ Reference S. .

emma 1: If d is. odd, there are no ‘closed’ partitions apart
om the trivial partitions =(f} and 7(0), the ‘identity’ and
ero’ partitions..

emma 2: If d=2°, p=1,23, ... N, there exists a set of
losed’ partitions {7y, 73, -.., Tp, ...y Aw). ADY A, CONtains
” blocks of equal size, and, if the elements in any one block
re arranged in ascending magnitude, adjacent elements will
tffer by 27 units.

It follows that the number of elemenis m(x,) in a block of
p is given by

hi
27
1d the number of blocks of m,. # (7,), is given by

m(n,} =

number of stales
#(a,) = - =27
number .of elements in a block

emma 3: Let d and D be 1ntegers l1<d, D2V Ifd
wides D, my > np.

oopfree realisation of adders madul_a 2% As a consequence
f these lemmas, adders modulo 2¥ are seen to possess N
losed’ partitions (n,, &3, ..., @y, ...,7x), such that

Ty > 2> > > >y iy = ald)

s is well known,* any finite-state machine that has the above
‘gebraic properties is realisable as a serial loopfree con-
sction of N components w1y, #13, ..., M,, ..., My, all operating
sncurrently. Although any of the partitions =, can be used
ith any nonclosed partition .-, as long as a,.4,- = #(0), a
ore economical realisation will be to use all the available
losed’ partitions in the following manner:

Using ay_,, a valid realisation will be ny_;.2v_| = 7n.
imilarly, #y_ (, in turn, is obtained using Ay 5. dv-2 = An-1.
‘e thus have the following iterative relationship:

{0 = Mu_ 1. Any

Mol = Av-z.AN-2
Rp= Mp-1-4p-14

ny = nl';'l

From lemmas 2 and 3, J,, p=1,2,3,...,p,...N—1,i5 a
2-block partition. Therefore adders modulo 2¥ can be imple-
mented as a set of loopfree interconnected-component
machines all operating concurrently. If the ‘input’ 4 is assigned
the same code as the ‘internal state’ B the hardware imple- -
mentation using single-output read-only memories is as shown -
in Fig. 2a.

L ] -
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Fig. 2a Generalised realisatian
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word length, N

Fig. 28 Effect of loopfres decomposiltion on memory starage

Reduced storage = (4 /3N) x original stornge
.

Memory-siorage reduciion: The ratio of the overall memory -
of the submachines to the memory of the direct machine R is
given by?

(4"3;,82:)“ D 4 i e

- R =
3N

Fig. 2p illustrates this considerable reduction in memory
size, which improves as N, the word length, is increased.

Conclusion: A design procedure for halfadders modulo 2%
has been proposed in which the hardware realisation requires
less memory storage than that of the direct implementation,
and it also results in a regular interconnection pattern and
parailel operation. Consequently, this simple, effective and
economical method appears to be promising, considering
that the cost of semiconductor memories is falling all the
time.

M. A. BIN NUN 25th April 1974

M. E. WOODWARD

Department of Electronic & Electrical Engineering
University of Technology
Loughborough, Leics. LEI! 3TU, England
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CHAPTER 6
NoveL MeTHop oF Mopuro 2V MULTIPLICATION
Using CONSTRAINED. OPERANDS

6.0 Introduction.

In the previous chapter, we saw that a modulo ZN multiplier;
modelled as an F.S5.M., may be realised as a cascade loop-free
interconnection of submachines. As indicated before, this is just
one possible structure, and it would be more useful if there exist
one or more parallel deﬁompositions. Begides, each sub-machine in
the loop-free decomposition does not appear to possess a structure
regular enbugﬁ to be generaliéed. The modulo N multiplication table,
as it stands however, is not as eagy to analyse as the modulo 2N
addition table,

In this chapter, a novel technique is presented in which the
multiplication table may be modified in such a way that it is then
possible to determine a definite algebraic structure that may be
generalised to arbitrary N.. Its features make it an interesting
alternative to the 1oop—frée configuration. This approach was

initiated by the following observation.

6.1 Observations.

Consider the modulo 23 multiplication table discussed in Section
5.3.0 and shown in Table 5.4, Some of the possible S.P. partitions

- » - *
for this multiplier are ,

* It may be noted that g and m s cannot be derived using the loop-free

structure described by Theorems 5.1 and 5.2.
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= { 0,4; 2,6; 1,5; 3,7 }

=2
|

=2
|

, = 1 0.4 2,65 1,3; 5,7 }

{0,4; 2,6; 1,7; 3,51

"In the above partitions, it is observed that their first two blocks
are identical, i.e. (0,4) and (2,6). Also, if we form the partition

product of any two of the above partitions we will obtain T where

T, = { 0,4; 2,6; 1; 3; 5; 71} .
If we now restrict the values of the operands A and B, and the

multiplication product to the set (1,3,5,7), then the following

partitions may be derived from Tys Tgs Tas i.e.

|
:

=
i
—~—
[
-
un
"
w
-
~J

|
|

=2
i
o,
o
v
~J
L2
W
-
(%]
[

Any two of the above S.P. partitions may be used in a parallel
realisation to obtain the modified modulo 23 multiplication table,
e.g.

T = (0) = {1,3,5,7} .

These observations suggest that parallel decompositions are
possible if the original multiplier is modified by resfricting the
operands only to odd values. The corresponding table is shown in
Table 6.0. The actual product may then be obtained using a simple

correction circuit.



Al

B’ 5 5 7 1 3

Table 6.0. Reduced modulo 23

multiplication table.

At

® 16 1 3 5 7. .9 11

Bl

13 15
1 1 3 5 7 9 11 13 15
3/ 3 9 15 5 11 1 7 13
575 15 9 3 13 7 1 11
7 7 5 3 1 "15 13 11 9
9 f 9 11 13 15 1 3 5 7
11 { 11 1 7 13 3 9 15 5
13 |13 7 1 11 5 15 9 3
15 |15 13 11 .9 7 5 3 1

Table 6.1. Reduced modulo 24

multiplication table.

801
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6.2 Modulo 2 multiplication using 'forced' operands and product

correction,
‘ * - - -

The approach proposed is based on a reduced multiplier, which
is the original modulo ZN multiplier whose operands and product are
constrained to take on only the odd values from the set

. N '
ZN = {0,1,2,...,2 -1}

Hence, if A,B and A', B' are the operands to the original and reduced

nultipliers respectively, then A', B' € ZD’ where

ZD = { x : x odd integer,. 1 g x § ZN-l }.

These modified operands may be derived from the originals by the

mappings s and gp° where

84 ¢ A—>A"=A+c
and gy i B—B' =B +d
such that
0 for A odd 0 for B odd
c = d =
1 for A even , 1 for B even .

In other words, whenever any of the original operands is even,
we 'forced' it to be odd by adding a '1’ to it. 1In practice, this
simply means that the least significant bits (L.S.B;s) of A" and B’
are assumed to be 'l' all the time. Similarly for the product P;

of the reduced modulo 2" multiplier. The remaining N-1 bits of

*  The meaning of "reduced” here is different from that defined

tn Chapter 3 in the context of state minimisation.
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A' and B' are identical.to those of A and B.

Multiplying these 'forced' operands, we obtain,

(A+c) (B+d)  modulo ZN

P' = A" x B’
o

n

AB + dA + ¢B + ¢d modulo 2N .

Hence the required product Po = A x B podule 2N is given bj

AB = (A'XB') — (dA + ¢B + cd) mod. 2 .e.(6.0)

Thiscqngruénce'relationship expresses our proposed multiplication
. scheme, in which (A' x B') describes the reduced multiplication
and C = (dA + ¢B + cd) the correction required to obtain the actual
product. The block diagram of the overall configuration is shown
in Fig. 6.0,

- The various values of C corresponding to all possible combinations

of a and b, the L.S.B's of A and B respectively, are given below.

a b c d C
o 0 1 1 A+B+1
0 1 1 0 B

1 0 0 1 A

1 1 0O 0 0

This leads to a very simple correction circuit consisting of
a modulo 2N adder which is just the conventional 2N adder with the
carry digit excluded, and two gating circuits, each consisting of
(N-1) 2-input AND gates aﬁd one inverter. The output C from this
correction unit is then subtracted from P; to obtain the actual

product Po. This correction process is shown in Fig. 6.1. Further
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simplification in its detailed realisation is possible and will

be described in the following example.

6.2.0 Example.

Consider first a modulo 24 multiplier whose operands have been
constrained to only odd values. The corresponding multiplication
table is shown in Table 6.1. The F.S.M. model of this ;educed

multiplier has the following basic $.P. partitions.

]
1]

L = I03,3.10; 5,7,13,15 )
w, = { 1,5,9,13; 3,7,11,15 }
ny = { 1,7,3,15; 3,5,11,13 }
m, = {1,7; 3]5; 9,15; 11,13 }
wg = { T,9; 3,11, 5,13; 7,15 )
T = { 1,15; 3,13; 5,11; 7,9 }

By forming the higher level partition sums, it may be shown.
that these partitions, T -.“6’ are the only possible S.P. partitions
for the F.S5.M. model of the reduced modulo 24 multiplier. The
corresponding partition lattice is shown im Fig. 6.2..

There are a variety of ways with which this reduced multiplier
may be implemented using the above partitions.* For example,.any
two of the 4-block partitions Tys T and e will lead to a parallel

realisation. The case of using m, and 7y is shown in Fig. 6.3(a),

4

.

* In our discussion, it is assumed that A' or 'input', and B! or

'state’ of the reduced multiplier are assigned the same partition.code.
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in which 64 bits of memory are required. Alternatively, any one

of these 4-block partitions, w_ say, along with a relevant non-S.P.

5
partition Tos will realise a cascade configuration, as in Fig. 6.3(b),
requiring a 96-bit memory store.

10 Ty and LETIE cascade

is used in conmjunction with a non-S.P, partition

Similarly, with the 2-block partitions 7

form is possible if w

1
T, as shown in Fig. 6.3(c). Also, any two of them, T, and Ty say,
may be operated in parallel to realise L since Myeliq = Ts. This

parallel form shown in Fig. 6.3(d), is then used with T,» as in
Fig. 6.3(a) to realise the reduced multiplier which now reqﬁire only
40 bits of memory storage.

An even better realisation has been found in which my and T,

(or nl) in parallel realise n_, and the same w, in cascade with a

5 3
non-5.P. Ty implement L {(or “6)' The resulting partitions L and
m, are then operated in parallel. Unlike the scheme shown in Fig. 6.2(a),

4

these components now share a common variable Setween them, This hybrid
or composite configuration, shown in Fig. 6.4, requires a storage
of only 24 bits, which is a considerable reduction from the 192 bits
required in the direct realisation.

It may be shown, by deriving the logical functions of the components
represenfed by Tys ¥ and 1., that the binary assignment shown in

3 3

Table 6.2 is a good one. The blocks of T and ™, are encoded by the

variables (yz, yl) and (yz, y3} while those of Ty and ™, by the

variables Yy and ¥y respectively as shown below.
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=

Operands - Binary number _ Actual binary.
A, B rebresentation assignment
3. ¥ % Y3 Y2 N
1 0 0 o) 1 o 0 0
3 0 0 1 1 0 1 1
5 0 1 0 1 0 1 o
7 0 1 1 1 o 0 1
9 1 o o 1 1 o o©
1T 1 o 1 1 1 1 1
13 1 1 0 1 1 1 o
15 1 1 11 1 10 1
permanlnt
'1's
Table 6.2. Binary codings for operands of -

reduced modulo 24 multiplier.
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2. % Y2 Y3

me 1 (1,90 — 0 0 m,: (L~ 0 .0 '
GAy — 1 1 (3,5 — 1 ©

5,13) — 1 © ' (9,15) — ©0 1

(7,15) — 0 1 (11,13) — -1 1

~and " Yy R4
myt (1,7,9,15) — 0 m, t (1,5,9,13) — 0

(3,5,11,13) — 1 . (3,7,11,15) — 1

If tﬂé original operands A and B come from an external
environment, then they are invariably coded in the binary number
représentation. Consequently, except for their L.S;B's, (which are
kept at "1') the 'forced' operands A' and B' are also in the binary
format. In this situation the~§artition variables Y10 Yy and ¥4
have to be encoded from the binary number code represented by the

1 3

variables x_, x, and x,. Similarly, the output of the reduced
multiplier has to be decoded back to the conventional binary format.

The logical ‘relationship for this encoding and decoding process
however is simple. From Tab}e 6.2 we find that |
nNTH
¥, 2% @ x
Y35 %3

Similarly, for the decoding, we obtain

N

"
|

2°Y, @ x =y, ® 5
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and

If the reduced multiplier is in an "internal" processor then
the partition variables may be used directly.

The functional structures of the w,, 7, and T, components are

2 73 3
obtained by first reorganising the multiplication table in the ways
shown by Tables 6.3(a) and (b}, and Table 6.5.

| Consider first the T, and LB images of the F.S.M. model of the
multiplier, whose state tables are shown in Tables 6.4(a) and (b)
respectively. It is ob;erved that in each of the two casés,-the
operation between the partition blocks is simply that of the Exclusive-
OR function. Hence the T, aﬁd Ty components are ;tfaightforward to

implement.

With the table organised by t,, we observe that if the operation

3
between blocks is considered, this would have resembled that of the
Ex-0R were it not for the entries shown in the dotted boxes.

Assipgning the variable Y3 to the blocks of Tys We obtain,
3
Ty (1,7,3,5) — 0
(9,15,11,13) — 1

From this Table 6.5, it is seen that if the Ex-OR function is

to be used for the operation between the blocks of T the output

3’
of this successor component has to be modified by logically inverting
it whenever both A' and B' come from the set (3,5,11,13). An Ex-OR
output is assumed if either or both A' and B' are from the.set

(1,7,9,15), This information is easily obtained since these two

blocks are also the blocks of ﬂ3.
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(:)'16 1 5 9 13 3 15 .11 7

gt 13013 1 5 917 3 15 11

15 115 11 7 3 113 1 5 g

11 |} 11 7 3 15 1 5 "9 13

(a)

@w!{1 7 9 13503 5 11 13

B'

11 11 13 3 5 1 7 9 15

13 113 11 5 3 7 1 15 9

(b)

Table 6.3. Reduced modulo 24 multiplication
table reorganised by (a) T, and (b),n3



B!

E. F
E E F
F F E

(1,5,9,13) — E

(3,15,11,7) — .F

(a)

Table 6.54%.

{a) T, and  (b) Ty images respectively
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U v
U u v
v v )

(1,7,9,15) = U
(3,5,11,13) — ¥

(b)

of reduced multiplier.

Al
® w671 7 3 s5}9e 15 11 13
1|1 7 3 51 9 15 11 13
71 7 1 5 3115 9 13 11
3{ 3 5 U9 15l 13 i1 7
505 3 1us ..25 13 11 g.?.. “1j
9l 9 15 11 13 1 7 3 s
5015 9 13 ul 7 1 5 3
| o131 i3 s i 15
13| 13 11 iz._ ";EI 5 3 E}g_ .gé
]
Table 6.5. Multiplication table

reorganised bv 71

since m,.T

T3

32 T3 % Ty

={1,7,3,5;
9,15,11,13}
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The detailed circuit structure of the component.machines of
the reduced modulo 24 multiplier has now been derived and is shown
in Fig. 6.5. Furthermore, using equation (6.0) the corresponding.

correction circuit may be obtained as shown in Fig. 6.6.

6.3 Internal algebraic‘structuré of reduced modulo'ZN multipliers.

We have already seen that in the particular cases of modulo 23
and modulo 24 multipliers, the restriétion of the multiplicative
operands to oniy odd valueé led to the discovery.of a variety of
useful S.P. partitions on the input and state sets of.their corresponding
F.S.M. models. That these partitions could not have been predicted
by Theorems 5.1 and 5.2 implies that algebraic structures other than
-the cascade 1oop-free form are possible.
In this section the algebraic structure of a general reduced
modulo 2N multiplier is investigated in depth in or&er to determine

its general nature and patterm.

6.3.0 Exampie.
Consider the modulo 24 multiplier discussed in Section 6.2.0,
and in particular the reduced multiplication table reorganised bv -
Tos i.e. Table 6.3{a). There it wés shown that‘the operation between -
the blocks of T, is analogous to the logical Exclusive-OR operation
7 which, in turn, is simply the familiar modulo-2 addition. _Consgduently, .

2

modulo—2 adder.

the n,~image of the reduced modulo 24 multiplier is identical to a.

Table 6.3(a) also possesses another interesting feature. Consider

first the multiplication operation between elements of the block
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(1,5,9,13), which is described by the upper left-hand.quadrant.
The structure of this quadrant, which is redrawn in Table 6.6,

becomes obvious if the following mapping is performed.'

modulo 24 multiplication-—a-pwdulo 22 addition

confined to elements (1,5,9,13)

T

1 ' —— 0 7 | -
'5 — 1
9 —_— 2

_13 —_ 3

By comparing Table 6.6 with the modulo 4 addition table shown
in Table 6.7, it may be dedﬁced that this particular quadrant of
the reduced multiplier table is isomorphic to a modulo 4 adder.
The upper right and lower left-~hand quadrants may be analysed in
a similar manner. The lower right~hand quadrant, although'siﬁilar
in structure, differs from Table 6.6 by two row shifts upwards.
Hence, as shown in Fig., 6.7, the reduced modu10'24'mﬁ1tiplierrcan
be regarded as a parallel comnection of a modulo 2 adder and a modulo 4
adder incorporating the row shift mentioned.
A more elegant structure may be obtained if we consider the
4-block partition T, and reorganise the multiplication table according
to its block as shown in Table 6.%. The cor%esponding ﬂa—imagg,

(see Table 6.9), is isomorphic to a modulo 4 adder via the mapping .

® — @,

P — 0
Q — 1
R ——+ 2



120

AI
(:)16 1 5 9 13 (:)4 o
1 1 5 9 13 . 0 o
5 5 9 13 1 .,
B!
9 9. 13 1 .
13 ] 13 1 5 9 . 3
]
t - - - -
Table 6.6. Part of modulo 24 Table 6.7.
multiplication table.,
Al
(:)16v 1 7 3 5 .9 15 11 13
1|1 7 3 5 9 15 11 13
7 7 1 5 3 15 9 13 11
R,
313 5 '9 151 11 13 1 7
t
J
I
51 5 3 15 91 13 11 7 1
Bl : . '
9 9 15 11 13 1 7 3 5
15115 9 13 11 7 1 5 3.
11 11 13 1 7 3 5 9 15
13 13 11 7 1 5 3 15 9
Table 6.8. Reduced multiplication table

organised by 7

4.

2 3
2 3
3 o0
0 1
1 2
A modulo 4

addition table.

P| P Q@ R S
Ql @ R s P
R R s P Qq

1,7 — P
(3,5) —Q
(9,15) — R -
(11,13) — S

Table 6,9, - ﬂ4-image.of
reduced

muitiplier.
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Fig. 6.7. Pseudo-parallel decomposition of

modulo 24 reduced multiplier.

O ® L > ?r ‘ .
2 2 |—1—s
D37} > o = I
i
I |
(a) (b)
Fig. 6.8. Implementing reduced multiplier (a) as a

parallel connection of modulo 2 and modulo 4

adders, (b) with the modulo 4 adder further
decomposed.
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Also, the entries in Table 6.8 are grouped into blocks of
four elements, a typical block being shown enclosed by the broken
lines, |

It is observed that the structure of every such block :is
-identical to that of a modulo 2 adder. Hence the resulting
implementation, shown in Fig. 6.8(a), consists of a modulo 2 and a
modulo 4 adders operating in parallel, wifh neither component
requiring any gorrection.

| In addition, this modulo 4 adder may be further decomposed
using the loop—free technique descriﬁed by Théorem 5.1. The final
realisation of the reduced modulo 2% multiplier shown in Eig; 6.8(5)-
is thus obtained whiéh‘requires a memory store of 24 bits.

-Although this approach led to an overéll circuit configuration
and memory requirement identical to those shown in Figs. 6.4 and
6.5, 1t will now be shown to be more systematic aﬁd di;eétly applicable
to the gemeral modulo ZN reduced multipliers than the approach used

in Seetion 6.2.0.

6.3.1 The group under modulo 2N reduced multiplication,

Consider the general modulo ZN multiplier whose two operands

(and hence product) are constrained to odd values, i.e. to values

\
from the set ZD’ and denote this multiplier as the tuple'(ZDJDZL).
We will now prove the following lemmas,
Lemma 6.0, . (ZD,®2N) is closed.
Proof. Consider a,b € ZD. Using the familiar division

aigorithm, the real product a X b may be expressed as

axbs= qZN + r, where 0K r < ZN.



122

Since a,b are odd and hence not divisible By 2, so is their product.
Thus the right-hand side of the above equation is not divisible by
2. Hence r, the modulo ZN broduct of 2 and b must also be odd and

in the range Q to ZN-l, i.e. T E ZD.

: N, . . . .
Lemma 6.1. (anjb )} is assoclative, commutative

and has identity.l.

Proof. This follows naturally from the properties of

the original modulo ZN multiplier,

Lenmma 6.2, Every element d &€ ZD has a multiplicative

. N . s . .
inverse w.r.t. modulo 2" multiplication, i.e. x € Z_ may

D

be found such that dx = 1 (modulo ZN).

Proof. Consider d € ZD. From Lemma 6.0, d X d is also

in Z, and similarly for @ x dX,,..,.x d = dk, k an ' integer. Since

ZD is a finite set, then for a particular k, say k', there must be

a repetition, i.e,
k' N
d =qg2 +d

k'-1

d(d - 1) =q2.

Since d is coprime to 2 and hence ZN, the above equation implies -

'——
that (dk L. 1) is divisible by ZN. Therefore we can write
‘—
&z 1 (modulo 2%
or
T
d dk 2 =1 (modulo ZN),

'—
i.e. for any d €Z_, we can find its inverse, which is dk '2.

D
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Lemma 6.3. ZD conttains 2N-1 elements.

Proof. All the even elements from the original ZN
are of the form
N- -
0, 2x1, 2x2,...,2x0,...,2x(2" * - 1), 2 = 0,1,...,2% 1 - 1,
. N-1 N-1
.- There are (2 -~ 1) +1=2 even elements. Consequently,

the number of odd elements which we denote by ]ZDI is given by,

2] = 2 - =N

The above four lemmas lead naturally to the following theorem
with which the overall structure of the general reduced modulo 2N

multiplier may be described.

Theorem 6.0.  The set of odd integers, i.e. Zj = {x : x
*

odd integer, 1 € x € 2N~1}, forms an Abelian group under

multiplication modulo ZN. This group, which we denote by

G(2N), has order |G(2N)| = ZN-I.

6.3.2 Derivation of detailed alpgebraic structure of reduced

modulo 2V multipliers.

Before we present our main results, we state below some well
known results and concepts in algebraic number theory that we will’
be using.

| Definition 6.0. Let x€ Zy» where Z,, = {x : x integer,
0< x <.m} and suppose xB(nO = 1 (modulo m), where 8(m) is the

number of elements coprime'to m. Also leﬁ < 2 1 (modulo m) for

*  References 68-70 are excellent introductions to the concepts and

terminology of elementary group theory.
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n < 0(m). Then x is called a primitive root of 1 modulo m or

simply a primitive root of m.

Theorem 6.1. Zm has a primitive root of 1 modulo m
if

a) m=p" »

b) m = ZPN or

¢) m=1, 2, 4, i.e. m= 20, 21, 22.

where p is any odd prime.
* Proof. See Theorem 2.25 of Reference 47,

We see that (c) can be ‘used directly to describe the structure

of our reduced multipliers for moduli 2°, 21.and 22, by determining

the relevant primitive root and using the following Theorem 6.2.

Theorem 6. 2. If Z N has a primitive root of 1 modulo pN,

P .
then G(pN) is a cyclic group where Z N - {x : x intuger,

P
0K x < pN}, and G(pN) is the group, consisting of the

. N '
set of elements of Z N that are coprime to p , and the

P
modulo pN multiplication,

Proof. Sﬁppose Z N has x as a primitive root of pN.
Then x must be coprime to ”:prpg and hence x € G(pN); Let H be the
subgroup of G(pN) generated by x. Then |H]| = 0(x) = B(pN), i.e.
|&] = IG(pN)], where |H| and 0(x) are the orders of H and the element

X respectively. Since H.Q,G(pN) we must have H =,G(pN), i,e.

G(pN) is cyclically generated by x.

Theorem 6.3. 1f G is an Abelian group of order pN for

some prime p and natural number q, then

G = Hl X H2 Xeun Hi Xisea X Hq



125

: k.
where each H, is cyclic of order p = and in = N.

Proof. See Theorem 5.1.11 of Ref. 48.

From Theorems 6.1 and 6.2 we now know that for each of the
moduli 20, 21 and 22, the complete multiplication table of the'
corresponding reduced multiplier can be generated by a single element
x € ZD’ if x is a primitive root of ZN, N =0,1,2.

In our following ; two: lemmas and one theorem we extend the
analysis to cases where N 3 3 and will show that the table of a
general reduced modulo oN multiplier, N 3 3, can still be described
_completely but this time two elements Zi; Zj S ZD are required to
generate it.

2" n+2,
Lerma 6.4. 3 = (2 Y(x(n)) +_1 for n 3 1 where

x(n) is an odd number fo; all n.

Proof. 3 =9 =8+1=2"+1-= (21+2) x1+ 1,
So the expression is true for n = 1, where x(1) = 1. We now assume

that it is true for n = k, i,e.

o
32 2 27 ) + 1.
k+1
Writing the expression 3 we get
k+l k k
e i & S
k

Substituting for 32 » we have
k+1 5 2
32 IEek*“ x (&) + 1]

252 xan? + 2025 x@)) + 1

22k+4 k

(x@N2 + 253 xa) + 1

2k+3

I:zk+1 x))2 + x(k)_] +1
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= 23 L) ¢ 1

where we have let [%k+1 (x(k))2 + x(ki] be equal to x(k+l), which
is odd since x(k) is odd and 2k+1 (x(£3)2 is even, Therefore the
Lemma is proved by inductiom.

(We note that x(1) = 1 and that x(n) is definea recursively
using the expression

x(n) = 2n'{x(n—1)}2 + x(n-1) ).

Corollary, The element 3 in Z y has order 2N'? in G(ZN).
2

Probf. Since 3 1s 1in G(ZN), and the order of G(ZN) is
N-1 k., N
2 (see Lemma 6.3), then 3 has order 2 in G(2 ') such that
0 < k € N-1. Thus we may write

k N
-3 = 1 modulo 2 .

k- :
Using Lemma 6.4, we can substitute for 32 thus obtaining,

%2 1) + 12 1 modulo 2V

2k+2 x(k)

m

i.e, 0 modulo ZN

implying that 2k+2 is divisible by ZN since x(k) is odd, Thus we.

obtain

k+2 N
2 =q2, q=0,1,......

The first (or least non-zero) value of k to satisfy the above

equation is when q = 1, resulting in k+2 = N, and hence k = N-2.

2

Therefore 3 has order ZN— in G(ZN).

Lemma 6.5. There are four elements, * 1 and ZN_l 1,

in G(ZN) having order 2.
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Proof. Let x € G(ZN) have order 2,
i.e.

= 1 modulo ZN

]
n

or

x2 - 1 = 0 modulo ZN .

Since x is odd, we can write
x = 2q + 1,
Therefore

(2q+1)% - 1 = 0 modulo 28

4q2 + 4g + 1 - 1 = 0 modulo 2N

22 q{q+1) = O modulo N

or

q{q+1) = O modulo 2N-2.

In this congruence, we see that if q is even then g+l is odd and

viece versa.

Case (i). Let q be even., This implies that q is divisible
by ZN-Z, i.e.

q=0, 1x2"°, 2x2

where £ is an integer,

. x can be written as

x = 2[22““2

+ 1

For & even, i.e. = 2u, say, we obtain

x = 2[26 2% 41

- 2[11 2N'1:| + 1

wu2h a1,

1l



Therefore

x 2 1 modulo 2N _ e (6.0)

If £ is odd, i.e. = 2v + 1 say, then

2[(2v+1)2N-2:| +1

x. =
= 2|:v 2Ly 2N'2:|'+ 1
= v ZN + (ZN_i + 1)
Therefore
x = 2Nﬁ1l+ 1 (modulo ZN) ‘ sl {6.1)

Case (ii) Let q be odd, thus implying that {gq+1) is divisible

by 2V°2, i.e.

w22 g =0,1,....

(q+1)

or

T
1
o8
Ny
?
By
1
L
+
=t

For % even, i.e. % = 2u, we obtain

202 120N -

o
0

.- x = -1 (modulo ZN) ' vee(6.2)

For & odd, i.e. = 2v + 1, then

(2vs1) 2V - 1

b
It

L Lt S

.. ' x = ZN-I ~ 1 (modulo ZN) ees(6.3)
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Consequently, from equations (6,0} - (6.3), we obtain the
result that if x is to have order 2 then

N-1

=1, 2N 41, -1 ana N

- 1 <{modulo ZN).

Corollary. (a) The wvalues ¥, £ 1 and x; = ZN-l + 1

{modulo ZN) may be expressed as powers of 3 (modulo ZN).

(b) The values xj = -1 and xy E 2 -1

{modulo ZN) cannot be powers of 3,

" Proof. Using Lemma 6.4 and letting n = N-2 and N-3

respectively, we obtain the expressions

W
It

N xv-2) + 1 el (6.8)

and

ML -3 + 1 ... (6.5)

5%}
Il

The values in {(a) above may be written as

]
[ &)
X

X, + 1 ' ee. (6.6}

and

x, = 2 q. + 1 . cae(6.7)

where 9y and q; are integers. We may now, by comparing the coefficients

of the terms 2N in equations (6.4) and (6.6), and the terms ZN_l

in equations (6.5) and (6.7), deduce that if we let q, = x(N-2) and

q. = x(¥N-3) then

i

2N“2
3

*h

and
N-3

x. = 3
1

thus proving (a).
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The values x, and X, may be written as

L]
1]

[ZN x(N-2) +1-l —2=xh-2' ess (6.8)

and

n

X, [ZN-I x(N-3) + ]:J -2 = x; - 2 e (6.9)

In the above equations, we know that X, and X, being powers of 3,
must be divisible by 3 However 2 is not, Therefore xj and X, are
not divisible by 3, and since this is a necessary condition for
them to be powers of 3, then we héve proved (b).

Consider now the set K given by

2

~ ' . _.N-
K."‘ {ko, kl,ool ki,.-c kzN_z-l} [ 0< 1<2 ‘

where ki = G(ZN) and ki

3' modulo ZN. For any pair ki’ kj € K,

we therefore have

ky Xk, = 3' x 37 modulo 2V
.. . N-2 N-2
(i+j) may be written as q2 + r,where q =Qor 1 and 0 £ r < 2 .
N-2
oo k, x k, = 3q2 3¥ modulo 2V

= 3 modulo 28 if q = 0.
If q = 1, we use the Corollary to Lemma 6.4. to obtain

ki x kj (QZN + 1)3° modulo ZN, Q an integer

31' modulo ZN.

Since 0 € r < 282, k_= (k, x k,) € K.
r i j
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Therefore K is closed and hence is a subgroup of G(ZN).

Consider now the set L, given by

_ N
L = (2.0, 2.1) where. R'o’ RIGG(Z )
_ i N )
and li = x modulo 20 , for i =0,1.
. . S N N-1
The value of x 1s either x = = 1 modulo 2 or x = 2 -1

(See Corollary (b} of Lem@a 6.6).

To show that L is closed and henqe L CZG(ZN), it is sufficient
to demonstrate that x X x = x2 = 1 modulo N according to Lemma 6.5.
Therefore x2 € L.

We are now in a position to present a detailed description of

the algebraic structure of our reduced modulo 2N multiplier, N 3 3,

via the following Theorem.

. Theorem g, 4, The group G(ZN), as described by Theorem 6.0,

for N> 3, is isomoxphic to the direct product group K X H,
where K and H are cyclic groups of orders ZN'-2 and 2

respectively,

Proof. G(ZN), N > 3, cannot be cyclic since if it were,
it would have a primitive 2N root and this contradicts Theorem 6.1.
So by Theorem 6.3, G(2V) = Hy X Hy x.ooX H, q %2, Let K be the -
Asubgroup generated by 3. Then |K| = ZN-Z. So K is Hl'sayg,
since K is cyclic (being generéted by a single element), and G(ZN)
ié not. By ordgr considerations then G(ZNj = Hl x-H2 where H2 _

is cyclic of order 2. This gives our result,

Since L is not a subset of K, we also have HZ = L.
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6.3.2 Application of theoretical results.

The subgroups K and L may now be used to organise G(ZN) by
*
forming the relevant cosets in the usual way.

Let the cosets w.r.t., K be Vo and V
N

1 and those w.r.t. L be

W, Wneey, Woysrnn, Wn, n= (2 -2 -1), given by

O 1 1

V = (v v v sesy V_ sjeeey 'V
( > To,1* "o0,2° ' To,i’ ’ o,n)

=K
o 0,0

,V]_ = (vl,o’ Vl’l, sa ey vl’i,co-o, Vl,n)
and
wo = (v ,0’ wo,l) =1L
Wy = Gy o0 ¥ 1)
Wpo= Gy o0 ¥i ) o
_.d i N .
where veg.i = X 37 module 2, d=0o0rl, O<1€n
s .
and W, g = 3t xd " s in which the value of x is either
L]

xj or X as described by Corollary (b) of Lemma 6.5,
For example, if N = 4, then the elements of G(24) are

2 3.
1 3%, 3% = ,3,9,11)

1,3,5,7,9,11,13,15, and hence K = (3°, 3
modulo 24, and L is either (1,7) or (1,15). Consequently, the
relevant cosets are

V0 = K, and Vl = (7.30, 7.31, 7,32, 7;33), for x = 7

= (7,5,15,13),

*  Since the multiplication operation is commutative the elements of
K (or L) can be multiplied by any particular element of G(ZN) either
from the left or from the right.
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E
I

L, W, = (341, 3ty = 3,5,

2 2 ' '
Wy = (3%.1, 3%.7) = (9,15), and W, = 321, 3.1 = a1,13).

it

In general, each element 8y m of G(ZN) can be represented by
?
the modulo 2N product of powers of x and 3 via the following
congruence, i.e.

£ .m

- N N
x 3 = module 2, l¢g gﬁ’m € 2-1,

B gﬂ,m
-where £ =0Qor 1l and 0O £ m#& n,

From the cotollary to Lemma 6.4, and the results in Lemma 6.6,

2

the component3‘3m and xg, will go through 2N- and 2 values

respectively before reﬁeating themselves. Therefore this will
generate (ZNHZ) X 2 = ZN-l different values of xl 3™ (modulo ZN).
Since there are also ZN—I different elements of G(ZN), the above

congruence describes 80 m uniquely.
?

N, . . .
Let us now express G(2') in terms of its cosets, i.e.

G(ZN) = {Vo; Vl} using subgroup K,
and

c2™

{WO; Wl;...; Wi;"’; Wh} using the

subgroup L.

If we consider any two elements of G(ZN), say gl',m' and
gl,,’m.. , then, as shown in Appendix 6.0, their product P is
given by

P = g. . modulo ZN ,

»]

where

' + 2'') =1 modulo 2
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and

j modulo 2Nw2 .

(ml + ml I)

Since the subscripts £ and m denote the cosets w.r.t. the subgroups K an¢

respectively, then we know that

) gﬂ:' ’ml e VR,‘ ’ and 3150 E Wm, >

and

. ggl‘l’mll E V£|' » and alSO G Wm|| .

Furthermore, their modulo ZN product gi,j belongs to both coséts
Vi aqd Wj, where 1 and j are the mo@ulo 2, and modulo ZNfz sums
of ', 2'" , and m', m'' respectively.

Consequently, if we denote the operation between any two -
cosets* (w.r.t., K) by Elﬁ, and ‘that:between any two (w.r.t. L} by

[]m, then it is not difficult to see that

Vor Lo Vorr = Vigrig''y  modulo 2 e (6.10)
and

Wm'rtjm Ware = W(m'+m"} modulo N2 eea(6.11)

In other words, if each coset is mapped onto its corresponding
index,.i.e.
— 2, Ve — 4
and-

1"
y Wmn_"m- ’

* {.e, the modulo bl multiplication of any member of any one coset
with any member of the same or any other coset.
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then operations between cosets may be mapped onto modulo addition

operations between indices as shown by the two commutative diagrams

below.
(a) V‘Q,r ’ VEI ' D*Q' N Vlt Dﬂ. V‘Q'i ]
: | |
% * 2 @ 2 , . | 1 e -
> i=(2"+2"") modulo 2
(b) wm'l ) Wml 1 U N wm' Un Wm' 1

= (m'+m'') modulo ZN-Z.

l = W, .-
m 2

. R
‘Finally, the complete reduced modulo ZN multiplication may be

described in a compact way as follows.

Let fg and fp be the mappings given by

fg : gﬂ,m —_— (2,m)

and

£ ¢ ®2N—" = (@, ®2N—2)

where

N-2

8y o€ G(ZN), 2 {0,1}, me {0,1,2,.00., 2 ~1}
3 .
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and O is the parallel component-wise operation between any two

ordered-pairs (&', m') and ('', m'"), i.e,
(gl, ml)D ‘(zil’ mll‘) = [[21 @2 2'”:|’ [mt @ N-2 m!l]] '
. 2
= (1,3).

' N
Thus, for any two elements of G(27), say gz.’m, and gg,,,m,,

we have the following useful commutative diagram.

(c)
N ‘ N
: gl' ,m' i g,Q,' t,m'’' ®2 N (gﬂ' ,m')?(-(gﬂ.' ' o' )} modulo 2
£ £ - e
g 8 gls.]
(2,.,111') ; (2",111!') . . fg
a ]

(2! ’m!) D (2",:11") = ([2! @2 ‘;é" 'J’[m' @ N-2 m-rl ] =(i,j)
: 2

-

It is now easily seen that the mapping~pair fg’ fp transforms
the original reduced multiplier into two adders, modulo 2 and
modulo ZN-Z résp&ctiveiy, operating in parallel,

To illustrate this isomorphism between the multiplier and the
adder-pair, consider again the case when N = 4, We have élready

seen on page 132 that two possible organisations of G(24) into sets

of cosets are,

[H

(@ c@Y = {1,3,9,1D) ; (7,5,15,13)}

and

®) 6% = {(1,7; (3,5); (9,15); (11,13)}.
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Using these cosets, the modulo 24 multiplication table may
be 'rearranged' as sﬁown in Tables 6.10 and 6.12, and the corresponding
operations between cosets are shown in Tables 6.11 and 6,13, The
tables illustrated there are easily seen to be identical to the
.addition tables modulo 2 and modulo (24_2 = 4) respectively.

Consider multiplying, module 16, the number 9 by 11. Using
the mappings shown in Tables 6.11 and 6.13, and the commutative

diagram (c), we may substitute additions modulo 2 and modulo 4 for

our original modulo 16 multiplication as shown below.

9 ; 11 ' ®16 (9 x 11) modulo 16

e
>

£ £ o= 3

(0,2) ; (0,3 £

O

(0’2) (] (0:3) = [[:0 @2 0, 2 @4 3[} = (0,1)

Instead of 3, we can also use 5 to generate the subgroup of
order 4, and 15 may be chosen for the subgroup of order 2 thus
obtaining K = (1,5,9,13) and L = (1,15) respectively.  The corresponding-‘
tables reorganised by these subgroups are shown in Tables 6.14 and
6,15 reépectively. The sets of cosets are now'{(i,5,9,13); (15,11,7,3)}
and {(1,15); (5.11); (9,7); (13,3)} and the tables for the operations
between these cosets can be derived in the way discussed previously.

Other possible pairs of K and L are {(1,3,9,11); (15,13,7,5)},
{(1,15); €3,13); (9,7); (11,5)} and {(1,5,9,13); (7,3,15,1)},

{(1,7); (5,3); (9,15); (13,11)}.
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@] 1 3 o 11 75 15 13
1 1 3 9 11§ 7 5 15 13
3] 3 9 11 14 5 15 13 7
9] 9 11 1 3]15 13 7 5
1wy 1 3 9113 7 5 15

71 7 s 15 13F 1 3 9 11
50 5 15 13 7] 3 9 11 1
15(15 13 7 sl 9 11 1 3
13 13.' 7 s 15111 1 3 9
Reduced multiplication table

Table 6.10.

organised by subgroup
(1,3,9,11).

@ 2 C 1
0 8] 1
1 1 0
C) 16 ——-—+C) 2

(1,3,9,11) —— 0

(7,5,15,13) — 1

Table 6.11., Operation between

blocks.

gel




Bl

Al

(:)16 17 3 5 9 15 111 13

1)1 7 i 3 5 9 15 ! 11 13

7] 7 1 i 5 3 115 9 113 11

B 3 3 5 | 9 15 11 13 1 7

5/ 5 3 115 9 |13 11 7 1

h 9| 9 15 | 11 13 17 35

1515 9 113 11 7 1 5 3

11 | 11 13 17 35 9 15

13 {13 11 P71 503,15 9
Table 6.12. Reduced multiplier table

organised by subgroup (1,7).

®,

(3,5) — 1

® 1

(1,7) - 0,

(9,15) —+ 2 and (11,13) — 3

Table 6.13. Operation between
blocks.

6ET



® 16

A’ K

1 s 9 1315 11 7 3 6| 115 fs o 7 )13 3
1{ 1 5 9 13 115 11 7 3 1] 1 151 5 11 g 7 13 3
50 5 9 13 1111 7 3 15 15|15 1 t11 s 7 9 3 13
9f 9 13 1 51 7 3 15 11 i 51 5 11 9 7 $-13 3 1115
13| 13 1 5 9 3 15 11 7 ' 11 (11 5 7 9 3 13 15 1
--;5 5 11 7 311 5 9 13 o 9] 9 7 113 3 1 15 5 11
nlu 7 3 15 9 13 1 707 el 313 i1 11l s
71 7 3 15 11 | 9 13 1 -5 13 13 3 1 15 5 11 | 9 1
3 3 15 11 7 ; 13 1 5 9 30313 J15 1 111 s 1 7 9
‘ ' [
Table 6.14. Modulo 24 reduced multiplication Table 6.15; Multiplication table organised
table organised by subgroup , by subgroup (1,15).

(1,5,9,13).

o%1
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If the reduced modulo 2N multiplier is modeiled as a finite—
state machine, we recall that the sets of values that the 'forced'
operands A' and B' can take are regarded as the "input' set and
the 'internal state' set respectively, and are.both equal to ZD.
In such a case, the sets of cosets w,f.t. the subgroups K and L
are equivalent to S.P. partitions on the input and state sets of
the F.S.M, model respectively. If these partitions are denoted
by Ty and T, we also observe that as a direct consequence of the

isomorphism between G(ZN) and K x L, we have =7'(0) = ZD.

ML
Furthermore, the tables in which the "inputs' and 'states' are the
cosets w.r.t.'to K and L can now be loocked upon as the homomorphic
HK-image and ﬂL—image, respectively, of the F.S5.M. model of the
reduced multiplier,

In practice, the results that we have derived are easily app;ied
to the implementation of the general modulo ZN reduced multiplier,
The subgroup K is first generated by simply forming, modulo 2N, the

successive powers, up to the (ZN—z

-1)th, of 3 of 5, e.g.

K = {39 =1, 31,32,...32N-2-1, 32N~2= 1}, either manually or by

me;ns of a straightforward computer program for large values of N.
The corresponding HK-image, being isomorphic to a modulo ZN—Z adder,
may now be structurally decomposed using the loop—free* technique for

adders as in Section 5.2.1.1. The generation of L is trivial.

* Unlike the dirvect loop~free structure of the multiplier (See
Chap. 5 ), the Loop-free configuration of a general modulo 2y addexr
18 composed of sub-machines or components whose algebraic structures

are regular, and are easily described and generalised.
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For example, if N = 5, i.e. ZN = 32, then the two possible

forms of K are,

K(3)

]
~
e
-
W
-
w
f
0
-
W
It
N
~J
v
W
]
[
~t
.
W
Il
i
O
-
(9]
1
[
w
-
[#1)
i
ot
pu—
-
w
U
[
S

and

K(5)

i)
~~
et
-
1%,
-
n
]
N
¥,
)
n
It
o
\D
-
L
It
-
-3
-
n
]
o)
iy
-
wn
1]
w
-
un
it
[
W
-
8, ]
1
ot
S

Similarly, for the subgroup L, we have

L(15) = (1,15) and L{31) = (1,31).

'We thus have the §.P, partitionms,

Te(3) {1,3,9,27,17,19,25,11§ §,15,13,7,21,31,29,23 }
sy - (1.3,25,29,17.70,9.13; 3,15,11, 3, 19,31,57,7 }
" usy= (115; 5,133 3,75 27,70; 17,313 19,29; 25,23; 11,5 }
sy~ (T35 3,795 5,775 7735, 933, 1195 13.19; 15,17 1.

6.4 General comparison with the direct implementation of modulo ZN

multipliers.

In this Chapter we havé been mainly occupied in the theqreticali.
derivation of an algebraic structure for the general modulo ZN multipiief
which is found to be an interesting alternative to the loop—free
configuration described in Chapter 5. As such we have not made a
detailed comparison of our p?oposed method ﬁf implementing a modulo ZN
multiplier with that of the direct approach in which the first N bits
of the partial products are summed using rows of full-adders. Some
general observations, however, may be made.

In both approaches, the number of full-adders (F.A's) required

can give some indication of the overall hardware complexity. With
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the direct method we can easily work out that the number of F.A's

N-1
needed is Z n. With the proposed approach, we would need
n=1

{(N-2) + 1} F.A's for the modulo 2N—2 and modulo 2 adder-pair, along
with (N-1) F.A's for each of the two (N-1)-bit adders used in the
correction circuit, giving a total of 3(N-1) F.A's.
The effect on the full-adder requirement with increasing wordlength

N is shown in the graph.in Fig. 6.9. We see that with the method
propoéed, the full-adder count increases linearly wifh N, while that
of the direct approach is proportional to Nz. For N >. 6, the proposed
i#plementation technique requires considerably fewer full-adders..

) Furthermore, with the direct approach the propagation delay
through the circuit, apart from the ripple delays through each row
of F.A's, is dependent on N. With our method, however, the system
delay is basically coﬂstant, and is the sum of the delays through
the first correction adder, a circui; for encoding into partition
blocks, the adder-pair, a circuit for decoding from the partition

blocks, and the final correction adder. - _ .

6.5 Conclusions.

A novel method of implementing a general modulo 2N multiplier
has been presented, and consists of constraining the operands to
odd values for a modified or reduced multiplier. The output of_this
reduced multiplier is then corrected to obtain the actual modulo ZN
product.

The algebraic structure of the reduced multiplier has been

analysed in detail. As a result, it was shown that a reduced modulo ZN



NO. OF FUL.L- ADDERS

100

50

WORDLENGTH N
( bits)

Fig. 6.9. Complexity in full-adder requirement for
(2) direct implementation and (b) proposed

implementation of modulo N multiplier.
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multiplier is isomorphic to two adders, modulo ZN_2 and 2
respectively, operating in parallel.

Finally, it was observed that when compared with the direct
way of implementing modulo ZN multipliers, the proposed approach
leads to a circuit which requires considerably less full-adder

~units and possesses a basically constant system propagation delay.



APPENDIX 6.0

Let and be any two elements from Z_.. Then
gil,ml gzll’mil Yy . ZD »

their product P may be expressed by

Te Ty -

' o' 2 m .
P=g£l‘,m' xgzrl’m||=(x w )} x (x w ).
£‘I+2l’l’ mlm'l‘
1.e. P =x W
N-2
[ q£2 + rl] [ qu + rm]
= ¥ w .
N-2
[%2 Ay ] [rz fm]
= [x w X w
J
where r, £ L' + £''" modulo 2, and hence r, = Oor 1,
r Em' +m'' modulo ZN-Z, Osr < ZN-Z,
m m

and q, = 0.or 1 and q, = 0 or 1 since the maximum value of (L'+ 2'') =

N-2

1+1=2, and that of (n'+ m'"') = (2“':2- 1) + (2 “-1)=1x N2,

(2N~2- 2) respectively.
Consider now the case when &', 2'' and m',m"' are such that
9 =9, = 1. Then we have

N-2y. 7 T T
EE N
J

s}
n

n
=
b
£

where

=
i

~
E
5

~

W =1, and xz 2 1 (modulo ZN)



K= (Qx 2N+ 1)(Qw p 1), Q> Q, integers,
= Qx Qw ZN ZN + (QX + Qw)2N+ 1
=F 2 +1
where
F=(q Q2 +q +Q) .
: r T
P=[F2N+1:| [xzwm]
r, T r, T
=(F.x£WHll)2N+x2wm
i.e.

P=x"w™ modulo 2N

r, r
s £ m .
Since the term x © w = may be written as

r r
X L w® = Q 2N + gr

r
R”m .

Using these results, we see that the two elements 8ot and
>
Bgr1 grv are mapped, under modulo ZN multiplication, to the element
»

gi,j € ZD such that

(2" + 2'") modulo 2 : ...(A.6.0)

e
It

and

(@ +m'') modulo 2V 2. - (A.6.1)

e 4
[13]

The cases for the remaining possible values of q, and q, may
be treated in a similar way to derive results that are identical to

equations (A.6.0) and (A.6.1).
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CHAPTER 7

DECOMPOSITION STRUCTURES OF MopuLo M ADDERS
AND MULTIPLIERS, AND OF A SIMPLIFIED MODEL
oF A SECOND-ORDER D1GITAL FILTER

7.0 Introduction.

In this chapter we extend and generalise the main ideas deveioped
in Chapters 4 énd 5.

After a brief analysis of the partition structures of both modulo-M
adders and multipliers, we will show how the non-recursive second-order
digifal filter can be simplified_sucﬁ that the resulting model is easier
to analyse.

It is then shown that this simplified filter may be decomposed into
a parallel and/or a 'nested' cascade interconnectioﬁ‘ of submachines.

A partition lattice of these submachines is developed and is shown to
be related in a simple way to the familiar lattice of integers under

the. 'factor' relation.

7.1 Partition structure of modulo M adder.

The generation of the set of 5.P. partitions for a mod-M adder
modelled as an F.S.M. is described. The lattice structure of this F.S.M.
is then developed and is shown to be related in a simple way to the

lattice of the divisors of M under the 'factor' relation.

7.1.0 Generation of the basic S.P. partitions.

The general mwod-M addition table is shown in Table 7.0. Its -

modelling into an F.S.M. and the algebraic analysis of the resulting
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model are similar to those discussed in Sections 5.1 and 5.2.

Furthermore, in order to generate all the basic S.P. partitions
of the F.S.M. mod-M adder, the basic arguments presented in Section
5.2.1.0 for the mod-2N adder are still applicable.

Thus we ﬁay say that it is sufficient to only fidentify' thé

state O and every other state C, where
C<€{x:0 5 x, integer £ M-1}.

WeAwill also show later that even with this simplification, only
certain values of C need to be considered. |
- When O and C are identified, we automatically identify every other
element x with (x + C) mod-M. The resulting pairs.will in‘tﬁrn lead
to similar-implications.
Consider first the pairing of O with C. One particular chain

of implied pairs is
"0, — C,(C+C) -— 2C, C+ € — ...(x=D)C, kC .

Using the transitive property of partitions, all the above pairs
have to be put in the same block.
We thus see that for the pair 0,C we have the linked or chain

connection of all the multiples of C, i.e.
O—C—20— ... — kC .,

When kC = O mod M, then the identification of all the elements in
the block containing O and € will be complete.
Thus, for a given C, we may apply the same argument to the implied

pair x and (x + C) mod-M, to obtain

X — X+ C—x+20— ... x+ kC
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B "input'
M
0 1 . ...C.... MY
0 0 1 ....C.... (M1
1 1 2 N (+25 5 DU o
A : : :
L}
present c| ¢ (cH1) (c+C) (M-1+C)
state' . . . '
M-1) | (M-1) 0 . . . (M-1+C) . . (M4=2)
Table 7.0. General mod-M addition table,
12 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 9 10 11
1 1 2 3 4 5 6 7 8 10 11 0 -
2 2 3 4 5 6 7 8 10 11 0 1
3 3 4 5 6 7 8 9 10 11 0 1 2
4 4 5 6 7 8 9 .10 11 0 1 2 3
5 5 6 7 8 9 10 11 0 1 2 3 4
6 6 7 8 9 10 11. 0 1 2 3 4 5
7 7 8 9 10 11 0 1 2. 3 & 5 6
8 8 9 10 11 0 1 2 3 4 5 6 7
9 9 10 11 0 1 2 3 4 5 6 7 8
10 10 11 0 1 2 3 4 5 6 7 8 9
11 11 0 2 3 A 5 6 7 8 9 10

Table 7.1. Mod 12 addition table.
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and hence for completion of the identification of the corresponding

block, we have

Xx +kC = x mod M ...{7.0)

It

or

kC =0 mod M, i.e. kC = pM ea(7.1)

where p is an integer.

As equation (7.1) tells ué that k does not depend on x, we See
that every.block generated this way will each contain k elements.

In éeneral; for a given C, a basic S;P. partition.is generated
by first forming the block corresponding to the pair O and C, and to
repeat the ﬁrocess for every pair x and (x + C) not contained in the.
preceding blocks.. The resulting set of such blocks 'is then, by
construction, a basic S.P. partition on the sets of M states of the

F.S5.M. adder. This partition, which we call w_, consists of

C,
%% knc) = M/k blocks, with each block containing m (nc) ='k élements,
k being obtained from equation (7.1). '

E.g. Let M =12 and C = 3 with the mod~12 addition table shown

in Table 7.1. The initial pair O and 3 leads to the sequence
repeats
: ¥
0+3+6+9 + 0 etc.,
giving the first block (0,3,6,9).
The initial pair (0,3) also implies the pairs (1,4) and (2,5).

Consequently, we have the chain sequences
1>4-+7>10>1%¢etc., 2a2nd 2 > 5 >+ 8 =+ 11 + 2 etc.,
thus resulting in the blocks

(1,4,7,10) and (2,5,8,11).
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e omeg = {0.3,6,9; T,4,7,10 ; 2,5,8,11} .

7.1.1 General form of "C

For a given modulus M, the number of blocks +}(vc), and the number

of elements in each block m (nc), of the basic S.P. partition 7, depend

H
on the actual values of C and M.
In general, let the greatest common divisor of C and M be d.

Hence we have

C==c'd and M = m'd ... (7.2)

where ¢' and m' are now coprime.

Substituting these values in equation (7.1) we obtain
ke'd = pm'd ...{(7.3)

- cee(7.4)

i.e. ke

. . The number of steps k is given by

k:;&. : -.-(7-5)

Since the number of steps must by definition be an integer,
then the right-hand side of equation (7.5) must also be an integer.
Therefore pm' must be divisible by ¢', and since ¢' does not divide

m', then p must.be a multiple of c¢', say p = qc'

I
=
=]

' . e (7.6)

k is least when q = 1. Consequently, in the generation of Tas

the repetition that was mentioned in the previous section occurs at

the k th. step where
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k=1 = (M/d)
" ‘We conclude that
k = m(TrC) = (M/d)

and

# (m) = (/M/d) = 4

Consider as examples, the cases below.

(i) C =

(ii) c

_ With these two cases, it is

trivial S.P. partitions w(I) and

m
=7
4

i.e, d =1

M.

“€ii) C and M are co—prime.

easily shown that the =

w{0) respectively.

1
s are the
C

Here the greatest common divisor of C and M is obviously 1.

Therefore like in case (i), =

e.g. M=12, ¢ =
0~>5=>10 +15(=3 mod 12) > 8 ~» 1
+6+11+4+9>2>7 0,
Similarly for ¢ = 7 and 11.
(11i) C divides M.

c = n(I).

5. Then we have the following chain

In this case d = C, and hence

k = (M/d) = (M/¢€) = m(nc)

and

=H=(1rc)=d=C'.

e.g. M=

12, C

4., Thus d = C =

4.
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x = m(x,) = (12/4) = 3 and
-+}(n4) =d=C-=4.

Consequently, we get

m, = {0,4,8 ; 1,5,9 ; 2,6,10 ; 3,7,11}.

In the general case, let M = 12 and C = 8 say. By the direct

method we have the chain sequence

0+>8 4 ;3 1+9-+5 3 2->10+6 ; 3127,

v
=
|

. - {0,8,4 ; 1,9,5 ; 2,10,6 ; 3,11,7} .

L
The‘main result in this section is that, in the generation of
the basic partitions Tos We need to consider, apart from the trivial
cases of C =1, C = M and C coprime to M, oniy those values of C
that have different values of d.
This greatly simplifies the generation of the lattice of S.P.

partitions of a mod-M adder.

7.1.2 The partition lattice of the general mod M adder.

A simple method is presented with which the complete partitidn
lattice of the general adder modulo M may be derived from simply knowing
the divisors of M.

We begin by analysing the nature of the partition 'sums' and

'products’ of pairs of w.'s derived as discussed in the previous section.

c

Lemma 7.0, If d,D are divisors of M, and d divides D, then

T,z

d D’
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Proof. Let d < D, and a,b be any two elements in a block: of

LA Then from the results in Section 7.1.1, we have

b=a+QD, Qan integer.

- Since d divides D, i.e. D = qd say, we obtain
b=a+Q(qd)=2a+Qd, Q =Q.

This means a and b are also in the same block of Since this

4
applies to any pair in any block of T then
LI S
When d = D, we have the trivial case Tq = Tp -

Corrollary. 1If d ,'dl, R | .;dn are divisors of M

o 30 Y4410
such that d, divides d. ., then #, 2 w. and hence
i 1+1 1 i+l
2T, 2 ses 2T, 2 T, - .
Tro - 1 'l red i - 1+1 - - - -“.n

Proof. The result is obtained by applying the Lemma to successive

d.); .;.., (d

pairs, i.e. (do’ dl); (dl’ 9

n—1’ dn)'

Since using equation (7.5), a block of L contains M/di elements, .

1

and that of =« contains M/di+ elements and is furthermore contained

di+1 1

d,

in a block of nd , then a block of ., will contain
i i

(M/di)/(M/di+1) = (di+1)/di blocks of “di+1

d, are divisors of M and they do not divide

Lemma 7.1. 1f dl, 2

each other, then

(1) w, +m, = and (ii) w, *®w, =T
dg d, d d; d, D

where d and D, also divisors of M, are the greatest common
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divisor (g.c.d.) and the least common multiple (R.c.m.)

respectively of d1 and d2.

Proof. Let d' divide both d1 and d2, this implies, from.

Lemma 7.0, that

May 2T and w,, 2z T
d _dl d dzﬁ

From case (iii) in Section 7.1.1, we know that w,, has d' blocks, each

dl
containing (M/d') elements. As d' increases, so will the number of
blocks, while the number of elements of each gets fewer. In other

words L 'decreases'. Finally, when d' attains its greatest value,

i.e. d, the corresponding LA will be the 'smallest'.

and LR and

d 1 2

Thus w, is the least upper bound (L.u.b.) of L

using the result in page 7 of Ref. 12, we can write

7, = 2.u.b. (v, , 0w, ) =7 + 7 .
d : d1 d2 1 2
To prove (ii) of the Lemma, we let D' be a common multiple of

d1 and d2' Again, from Lemma 7.0, we can say that

T £ and "w_, £ W, .
d1 D d2

In the way similar to that for the proof of (i), it can be seen

that when D' is mwinimum, i.e. D, then =«

D will be the 'largest' to

satisfy the simultaneous inequality.

. =g.8.b. (w, , m, ) =mw, W .
D ) d1 d2 dl d2

As an example, let M = 12, d. = 3 and d, = 2, from which we have

d =g.c.d. (3,2) =1, and D= %.c.m. (3,2) = 6.
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Using the results in Section 7.1.0, we obtain.

= {0,3,6,9 ; 1,4,7,10 ; 2,5,8,11}

=
|

and

E]
(¥
1

{0:2;4:6:8310 ; 1,3,5,7,9,11} .

Forming- their sum and product we have

+
=
it

m(I) = L

3
w

a2

E

It

, = 10,6 5 1,7 ; 2,8 5 3,9 5 %.10 ; 5,11} = mg -

We now need the following definition.

Definition 7.0. A M-integer lattice is the set Sy of all the
divisors of M, M an integer, which is partially ordered by the
relation 'is a factor of', and the operations between péirs of
dx’ dy E.SD of finding their greatest common divisor and least
common multiple, denoted,'respectively by O and O say, i;e.
g.c.d. (d, dy) '<‘+- d O dy y
and

2.com. (d ,d)-> d 0d
x7 y. o+ x s

This 'factor' relation can be conveniently represented by a
Hagse diagram, as shown in Figs. 7.0(a) - (c¢) for M = 8, 18 and 60.

Using Lemmas 7.0 and 7.1 we may now state the following theorem.

Theorem 7.0. The set § . of S.P. partitions of a mod M adder
partially ordered by the partition inequality s,'is isomorphic
to the M—integer lattice, the isomorphism being described by the

one-to-one mappings hi’ hj and hk given by
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" such that

h (éxl] dy) = hi (dx) + hi (dy)

[ N

and

hi (dx 0 dy) = hi (dx) . hi (dy? .

Theorem 7.0 1is mérely a formal statemenf of the principal results
discussed in Lemmas'T.O and 7.1, and presents us with a very simple |
method of constructing the lattiée of S.P. partitions of a mod M |
-adder from just knowing the divisors of M.

As an example Fig. 7.1(a) shows the partition-lattice of a mod 12
adder, and the isomorphic lattice of the divisors of 12 is shown in
Fig. 7.1(b).

lInlpractice, the partition lattice of the adder may be obtained
directly by regarding the divisors d's as subscripts for the correéponding
partition wd's, and geometrically reorientating the M—integer lattice

as shown in Fig. 7.2 for M = 6.

7.2 S.P. partitions for a mod M multiplier.

In contrast to that of the mod M adder, the parfition structure
of a mod M multiplier ig difficult to describe Eompletely due to an
apﬁarent lack of a convenient regularity. As such, we have only been
able to give a complete description. of the lattice made up of.a
subset of -the possible S.P. partitions. The knowle&ge of this sub--
lattice, however, is sufficient for our subséquent search for useful

decomposition structures of stored-logic digital filters.



—_ N — e —— 0

(a) M =

Fig. 7.0. Some M-integer lattices.

20

\ - T, £ mol

(@) T, = {0,2,4,6,8,10; 1,3,5,7,9,11}
. = {0,3,6,9; 1,4,7,10; 2,5,8,11}
T, = {0,4,8; 1,5,9; 2,6,10; 3,7,11}
m. = 0,65 1,7; 2,8; 3,9; 4.105 3,11}
Fig. 7.1. Lattices of (a) S.P. partitions of a

mod 12 adder, and (b) the,divisofs of 12.



L ={0,2,4; 1,3,5,}, L ={0,3; 1,4; 2,5}

Fig. 7.2. Diagrammatic derivation of the partitidn
lattice of a mod 6 adder from the

corresponding integer lattice.

153;7,2,4,53

® — a sub-lattice

Fig. 7.3. Complete S.P. partition lattices of
typical mod-M multipliers showing the

relevant sub-lattices (in broken lines).
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7.2.1 Sub-lattice of multiplier's S.P. partitions.

The following theorem ' is basically a generalisation of Theorem

5.2 to the general mod-M multiplier.

Theorem 7.1. The lattice of S.P. partitions of a modulo M
*
adder is a sub-lattice of the S.P. partitions of a mod M

multiplier.

Proof, Consider the S8.P. partition w, of a mod M adder, 4 a

d

divisor of M, and let x and y be any two elements of a block of LPE

Multiplying each by an element a € Zy we obtain

ax = b ' _ L. (7.D)
and _ mod M
ay = ¢ . ...(7.8)

Subtracting equation (7.8) from (7.7), we get

=2
I

o

n

, a{x — y) mod M
or

o
|

n
I

a(x - y) + gqM , q an _integer.
e -(7.9)

Since x and y comes from a block of = then if say x > y, then

d,
X =y + Rd,.ﬁ an integer. Alsc, because d divides M, we can write

M as pd, p an integer.

Equation (7.9) can now be written as

b - ¢ = a(&d) + q(pd)
= (a% + gqp)d = Q'd
where Q" = (at + gp).
b =c¢ + Q'4d,

which means that the products b and c are still in a block of LI

* Reecqll Section 3.4.
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Hence Ty is preserved under the modulo M multiplication operation.

Furthermore, since

where dl’ d2, d3, d4 are all divisors of M, the latticé is also preserved.
-Hence the result.

Some examples of these sub-lattices are shown in Fig. 7.3.

The ideas and experience gained in the preceding sections were
found to offer a helpful iasight in the analyéislinto the decomﬁosition

structures of digital filters.

7.3 Decomposition structures of digital filters.

The general second-order non-recursive digital filter, suitably
transfoimed and modelled, is shown to be systematically decomposable{'
: Also; the lattice of the compenent sub-machines is developed.- Thi;
lattice provides a simple representation of the operation of subsets

of these sub—machines.

7.3.0 Notation.

The symbols used in the subsequent.discussion are briefly
explained below.

I£f T and J are positive integérs, with I > J say, then we can

write I as

I=%kJ+p ' ... (7.10)
where k,p are integers such that

0<ks<I/J and 0gp<J ,
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i.e. k and p are the quotient and remainders resﬁectively, obtained
when I is divided by J.
We denote k by QJ(I) and p by RJ(I). Sometimes, for RJ(I) we
may also use I mod J or (I)J instead. '
‘. Equation (7.10) may be written as

I=17 QJ(I) + RJ(I) ‘ o ... (7.11)
Also, if a,b,c,d are positive integers such that
a+b=c, and axb =4d mod J,
then we denote ¢ and d as
c = RJ(a+b) and ¢ = RJ(aXb).

Finally, if G is the n~component vector {g,, £,5-...5 £_}, then
=l 2 ; n-

QJ(G) {QJ(gl), Qr(gs)sevees QJ(gn)}

and

RJ(G) {RJ(gl), RJ(gz),...., RJ(gn)} .

7.3.1 Simplified .models of non-recursive filters.

Our subsequent analyses will be greatly assisted if we first
derive a simplified version of the.original non—fecufsive second-
order section as follows.

If the actual filter has the ccefficients a; and data xn-i’

with its output Zn given by

2
Z = Z a. X .
e

then its simplified version, which we call a modulo-d filter or

(DF)d, is one with coefficients (ai)d and data (xn_i)d given by
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(a]._')c1 = Rd ]:a].:] and (xn--i)d = Rd Er.n_i]

respectively, and whose output (Zn)d ig giveh by

2
(z), = Rd[igocai)d (xn_i)dj e (7.12)

i.e. the filter output is now operating in modulo-d arithmetic.
Using the general ideas developed in Chapter 4, we may now
model (DF)d as a finite-state sequential machine (F.S.M.). Thus we

may describe (DF)d by the quintuple
(DF) ;= (S5 Ty, 045 845 AQ) e (713)

. e . . .
where, if 54 Sd R JLdEIel and odEOd, then

S = [(Xn—l)d ’ (xn-Z)d:l

1,7 4
o3 = (24
such that
5 d{s g5 i d} =8, {[(xn-l) a adq] 3 ) d}
= [(xn)d s (xn-l)d] ' .’..(7 14)
and ‘
' ld{sd : id} = (Zn)d ' e..(7.15)

(Obviously if d = W, where W.1s the maximum value of the output
of the original filter, then (DF)W is identical to this filter).
In a practical filter system, the coefficients and data are

each, in the simple case, constrained to a maximum positive integer
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value of (M-1) say. In this case, only its output need to be reduced
modulo~M in order to derive the corresponding modulofé filter, i.e.
(DF)M.

Consequently, it is not unreasonable to consider (DF)M as a
‘'good' simplified model of our original gecond—order sectiomn.

The block diagram of (DF), is shown in Fig. 7.4. 1Its state

transition table is shown in Table 7.2, while, for given values of

a , a, and a
o

1 2 the corresponding output table may be easily constructed

in a way similar to that described in Chapter 4.
If a stored-logic approach is adopted, only the output matrix
need to be realised as a look-up tablé, Since each X .; ¢an have
M possible values, a store of (M)3 words will be required. Furthermore,
the output Zyy also has M possible.values. |
Consequently, the overall stored-logic capacity is (M)3 X qlword—

* ‘
bits , where q is the integer 2 logé-M.

*  The unit 'word-bit' is more general than the commonly used 'bit' 3
to denote the storage capacity of a memory unit.. This is because (M) .
need not be a power of 2 and the generalised unit. anticipates the time
when programmable logic arrays (P.L.A's) will be used as commonly as
R.0.M's are today.



Y

o
[
'l
Y

(zn)M = OM

Fig. 7.4. F.S.M. model of a general modulo-M

second-order non-recursive digital filter.
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Present input (}(n)M

Present
state-
1 2 .. k . s M-1
SM .0 oo 02000 b
o, 0 o, : 1, 2, 0 k, M-1, O
0, 1 o, 1, 2, 0 k, M-1, O
o, k 0, 0O » O 2, © k, O M-1, O
0, M-1 0, O 1, 0 2, 0 k, O M-1, ©
1, 0 s 1 1, 1 s 1 k, 1 M-1, '1
1, 1 0, 1 » 1 s L k, 1 M-1, 1
I, k 0, 1 1, 1 2, 1 k, 1 M-1, 1
1, M-1 0o, 1 1, 1 2, 1 k, 1 M-1, 1
'k, O 0, k I, k , ko k, k M-1, k
k, 1 0, k 1, k 2, k k, k M-1, k
k, k 0, k 1, 2, k k, k M-1, k
k, M-1 0, k 1, k 2, k ky k M-1, k
M-i, O 0, M~1 1, M-1 2, M-1 k, M-1 M-1, M-1
M-1, 1 0, M-1 1, M-1 2, M-1 k, M-1 M-1, M-1
M-1, k 0, M-1 1, M-1 2, M~-1 k, M-1 M-1, M-1
M-1, M-1 0, M-1 1, M-1 2, M-1 k, M-1 M-1, M-1
Table 7.2. Flow table for the F.S.M. equivalent of

a modulo—M

digital filter.




162

7.3.2 Homomorphic.images,of.(DF)M.

: *
As will be shown, the concept of a homomorphic image of an

' F.S.M. 1s a powerful aid in the structural decomposition of the
general modulo M digital filter.

Let b and ¢ be factors of M and the corresponding F.S.M. filters
operating in the arithmetic modulo b and modulo ¢ be denoted by (DF)#
and (DF)c respectively.

Using equation (7.13), we obtain the quintuples

(OF)y, = (5> Ly» Ops B0 2D

and

fl

OF) = (5, X, 0. 6,5 )

[od C (Rl

Theorem 7.2. Iff b divides ¢, then (DF)b is a homomorphiec image

of (DF)C, with the homomorphism defined byr

h1 : Ié — Rb(Ic) Ib

h2 : Sc_—~+ Rb(Sc) = Sb

h3 : Oc — Rb(oc_) = 0b
such that ’

Rb 6c{sc ’ ic}:l - ab{Rb(sc) 3 Rb(ic)} - 6b{sb 3 ib}

' .e.(7.16)

and

Rb[}c{sc g ?c}] = Ab{Rb(sc) ; Rb(ic)} - Ab{sb 3 ib}

ve o (7.17)

*  See Definition 3.1 in Chapter 3, and also Ref. 12 for the significance
of homomorphic images in general.
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where s, = Sc’ 1, € Ic’ Sy € Sb and lb_E Ib .

Proof. Using the results in the previous section, we can write
s, and i as I:(xn—l)c’ '(xn_z);. and (xn)c respectively. Similarly for

Sb and lb.

Expanding the left-hand side of equation (7.16) we have .

Wb b 1w {forvetand s o]

EN[CR cxn_1>é]

1

ﬁb {Sb 3 1b },

which is the right-hand side of equation (7.16).

To simplify the proof of (7.17), we let, with no loss in

generality, a, = 0.
y' = e, &)+ (a) e ) e (7.18)
and
y' o= (a), () o+ (a), (xn_l)b e .(7.19)
where (a), = R[Gap ] and (x ;) = Rb[("n-{)c ,
i=0,1 .

Subtracting (7.19) from (7.18) and rearranging terms, we obtain,

L]

y = -

y' -y
{(ao)c - (ao)b}(xn)c * {(xn)c - (xn)b}(ao)b
{(al)c

+

) (al)b} Gepopde * {(xn-l)c B (xn—l)b} (apy,

.. .€7.20)



164

If a € {0,1,..., c-1}, we may express it using equation (7.11)
as,
o = be(u) + Rb(u) , l.e.
{a - Rb(a)} = be(a) . (7.21)

We observe now that in the R.H.S. of equation (7.20), every
term in the curly bracket is of the form {o - Rb(a)} which, from
equation (7.21), implies that it is divisible by b.

Therefore y itself is divisible by b and may be written as

y=y"' -y'.=qb , q an integer

or y" =gb + y' ’ .. (7.22)

If y" and y' is now written in the form shown in equation (7.11),
the above equation may be expressed as

" (1] = g | )
cQ. (y") + R _(y") = qb + bQ (y") + R (y")
or
MY o 1 _ t U
RG™ = ba + Q)] - e " * R G .
.--(7.23)

We have said, however, that b divides ¢, i.e. let c = kb say.>
hd T - T
e R =BG + R (y')

where G = [é + Qb(y') - ch(y"i].

Ry I:Rc(y"):l =R (y") .. (7.28)

One may easily work out that Rc(y") and Rb(yf) are actually

(Zn)c and (Zn)b respectively, as described by equation (7.12).
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Furthermore, we. may express them in the form given by equation

(7.15). As a result we can now express equation (7.24) as

NISORENIESREAEEN.

thus proving equation (7.17).

Consequently, the triple mappings (hl’ h h3) are preserved for

2’
both state and output transitions.
Finally, to show that it is necessary that b divides c, we first

observe that ¢ and 0 are both divisible by c, i.e.

R (c) =0 and R_(0) = 0.

i

Also, Rb(Q) 0.

If ¢ is not a multiple of b, then

c = be(c) + Rb(c)

where Rb(c) # 0.

. Although Rc(c) = RC(O) = 0,
Rb(C) # R (0) = 0.

Thus, the element o = ¢ = 0 mod ¢ has two dis;inct images under"
the mapping Rb(a), in which case the mapping is not a morphism. -

As an example, let b=3and ¢ = 6. In order to simplify the
illustration, we will consider only the staté transition or flow
table.

That for (DF)6 is shown in Table 7.3, in which the row states
are reordéred to demonstrate the homomorphism. ‘In this table we also
include the images of the states.of (DF)6'w.r.t; the mapping Hz, e.g.,

the particular subset of state-pairs [KI,Z), (1,5), (4,2), (A,SXJ



166

is mapped to the single state-pair [i,é] of (DF)3, the homomorphic

image of (DF)6.
The flow table for this homomorphic image is shown .in Table 7.4.
In general, a homomorphic image of a modulo-M filter is a

"coarse"_version of it which still retains its essential characteristics.

7.3.3 Parallel connection of (DF)b and (DF)c .

We now analyse the parallel operatibn of two homomorphic imagé
filters (DE)b and (DE)c in which b does not divide c and vice versa,
but have the greatest éommon.divisor d, i.e.

b=5b"'"d and ¢ = ¢'d say,
where b' and ¢' are coprime. E ...(7.255

With (DF)b and (DF)c described by the quintuﬁles as in Section

7'3'2f let (DF)p be their parallel connection. Then, if Definition

3.4b in Chapter 3 is applied, (DF)P is given by

]

(DF)p (DF)bH(DF)c

I:(Sb x Sc), (Ib x Ic), (0b x Oc), ap, Ap]
where
6 {<sb, s 3 (s ic)}
=-{5b(sb, ib), 5c(sc"ié)} ees(7.26)
and
Ap{(sb, s s (G, 1) = {Ab(sb, i), A (s, ic)}
- .. (7.2

We will now determine the relationship between p and the pair
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Input (xn)6

Present state
6 ~ I:(xn—-l)ﬁ ’ ("n'—z)()]

QS M ™M

Tl 1B n

C o MmO

NN

~ o~ T

s Yo T IR T

........1:4!4.

o N

|

— e T T

oo o o

1

02

10

1

o N

— -~ -

12

-———
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o -

NN NNy n N N 1N
o N N (7 Y Y ) won NN

-

.-

-

* 4 & S—se———

L]
o Nn 0 SN ~NIn n N N W
o 0O ©o o o 0O 0O O o o o ©
cC o O ™M - = T Ny N
N Ny NNy N NN N

20
21
22

Flow table for modulo-6

— - -

Table 7.3.

digital filter (DF)G;
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Present state Input R3 [(xn) 6:|

' 4

0 1

0 o 0 0 1 0
0 1 0 0
0 2 0 0 1 0
1 0 0 1 1 1
1 0 1
1 2 0 1 1 1
2 0 0 1

1 2 1
2 1

- Table 7.4. Flow table for the R3,[(DF)6:]

homomorphic image.
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First, consider the element vy € {0;1,2,..., k-1} and define the
mapping ¢ as

Yy — [%b(v), Rc(Yi] | ...(7.28)

i.e. vy is reduced modulo b and modulo ¢ concurrently.

Lemma 7.2. If k = %E-, “then ¢ is a one-to—one mapping.

Proof. For an arbitrary vy, we first form the sequence

{y; y+1; v+25 ..... 5 y#ij.... } mod k.

Since y + k = v mod k, the above sequence will first repeat at
the k th step.
As y is incremented, so will its image pairs Rb(y) and Rc(y).

Furthermore, we have

Rb(Y) +q'b =R (y) modb

and

Rc(y) + q"b RC(Y) mod c.

Consequently, the pair {Rb(y), RC(Y)} repeats when q' and q" are

such that

q'b = q"c . e (7.29)
Applying equation (7.25), we have

ql‘bld = qllc!d .
i.e. qg'p' = q"¢" ,
which says that ¢'b' is a multiple of e'.
As b' and c' are co-prime, this is only possible if q' itself
is a multiple of ¢' , i.e. q' = tc' say.

.  We can write q'b as
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(te")b = t(c/d)b.
The smallest integer value of q'b is when t =1, giving us
q'b = (be)/d.

Therefore, the pair {Rb(Y), RC(Y)} will first repeat itself at the

(bc)/d th step. Since y first repeats at the k th step, then we

have

k = (bc)/d .

.« Each of the values”{yé Y+l; oo y+(k-1)} mod k has a unique

y-image in the sequence :

{[Rbm, Rcm]; [(_Rb(v)ﬂ), (Rc(y>+;)]; ceene

cesel I:(_Rb('y)+k—1), (f{c(y)+k—l:l} mod b, moc? c...

We are now in a position to state the following theorem.

Theorem 7.3, The filter (DF)k is isomorphic to (DF)p,,the
parallel connection of (DF)b and (DF)c’ with the mapping ¢

given by
. ]
by s Ryle) s RG]
0, — [Rb(ok) , Rctok)]

¢l {s ;i }
_ kK’ Tk

w,_xk{sk; ikL - Ap{wtsk); w(ik)} - c(7.31)

such that

_ap{mcsk); wﬁk)} e (7.30)

and

Proof. Considering the state transition function first, we

expand the left-hand side of equation {(7.30), thus obtaining
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tfodne 1]
) [%Esk{sk‘ ik}] "Rc[alf{sk; ik}:” o "7"(7'32)

If we apply equation (7.16) of Theorem 7.2, we wili have

R = 6b{“’b; ib}

) o
R_ _ak{sk; ik}_ ac{sc; ic}. | | |
wEsk{sk;;k}] = [ab{sb; ib}, Gc{sc;.i ic}] O L.(7.33)

Applying equation (7.26) to the R.H.S. of (7.33) we finally

B ]
GP{(sb, sc); (ib, ic)}

sp{wsk); ‘“ik)}

Me, 1
~
—t—
w
o
[ N
=
| A |
I

and

obtain

and hénce the proof.
The proof of equation (7.31) may be obtained in a similar way.
" The resulting isomorphism described by Theorem 7.3 is shown -
diagrammatically in Fig. 7.5. |
| Of course if k = (be)/d = M, then the parallél connection of

(DF)b and (DF)c realises (DF)M.



Ik}:!l> (DF)k :> Ok_

L,

o= — == Fem

-
! I
!
I

(DF)k

1N (DF)b "

Fig. 7.5. Decomposition of (DF)k’ k = (be/d) into

a parallel connection of (DF)b and (DF)c'
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7.3.4 Cascade decomposition structure of a modulo pa digital filter.

In general, a modulo M non-recursive digital filte; may be
realised as a cascade connec;ion of its hoﬁomorphic image (DF)d,
which may be regarded as a 'predecessor' component, and a 'successor’
component.

In.particular, it is usual in prgcfice f&r M to be of the form
pa, where p is a prime and a an integer. In such a case, a detailed
analytical description of the cascade decomposition of (DF)pa can
be derived, thus characterising completely fhe structures of the
'predecessor’ and—'successor' components, and also the combinational

mapping between them.

7.3.4.0 Notation.
Let o € {0,1,..., pa—l} be an input, state-component, or output
element of (DF)pa , and d be an integer < a.

s s as d -d . . ' .
Dividing &« by p and pa d in turn we:obtain the following

d )
a=p Q, ) +R (o) , el (7.34).
p P
and
-d i
a=9""0Q 4 +Rr __ () e (7.35)
P P
where
d a—d
0gxR (@ <p ,~ 0sR __ (a) <p
P .
and
-d
05Q 4(a) < pa R
o )
. a-d
i.e. Q d(c:) € {0,1,2,..., p -1} .

P

In the subsequent discussion, we often interchange the notations
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Q (@ 2 Q@ , Q4 2Q @
P P

and Q a_d(a)-z Q"(a) , and similarly for R a(OL), R d(u)
P ’ ‘ P P

and R a).
: a

P

4

Finally, if we multiply equation (7.35) By pd, we get

It

pla = p¢ [pa"d Q"(@) + R"(eo]

p® Q"(@) + pd R"(a) .38

. . . o a . . ‘
Since we are operating in modulo p arithmetic, however, we thus

have -

2% = pd R (e) mod p- . L(7.3D)

7.3.4.1 Analysis of cascade structure of_(DF)pa

In the following’-we will éhow that a (DF)pa can bg_deqomposéd
into a cascade connection of two image filteré (DF)pd-Qnd (DF)#a_dj,
with a simple combinational mapping between them.. |
Now let (ai)*, (xn_i)* and (zn)*, i=0,1,2, be the coefficienté,

data and output of (DF)pa. Thus, the filter algorithm is given by
* 2 * *‘ .a B :
(zn) = .Z (ai) (xn_i) mod p~ ...(7.38)
1=0 .
. . . ) F 3
(From now on, we will assume that it is understood that (zn)
is ‘computed in modulo pa arithmetic).
"
If we now express (Xn—i) in the form shown in equation (7.34),

we get

* 2
(z) = 1

i
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or
2 : '
* * d) ., * o *
(zn) = ): {{ai) P } Q (xn_i) + (ai-) R (xn_i) .
1=0 _
Using equation (7.37) to replace
*# d d _, *
{(ai) P } by p R"(a,)

"we obtain

) | |
(z)" = ) Pl RMap” Qg 0 " R e
2 2 ‘ |
={deE} . {EF} e 0.39)
0 0 ' ' _
where E = R"(ai)* Q'(xn_i)* , and
Fos (ap R )

In equation (7.39) above, we express the terms
-2 2
Z E and Z F
0 0.
in the forms given by equations (7.35) and (7.34) respectively.
2 2 :
. * -
. -(zn) =pdl:padQn{zE}+Ru{EE}
0 . 0
d e 2 2
+ g { ) F} . R { 7 F} e (7.40)
o - 0

2 ‘ .
Writing Q' { ) F} in the form given in equation (7.35), we-
0

vo (b

get

I!‘I L
)
(2P ja W
= e,
— i
ol [«
— =
Or:-:m r_-"—'?"l
vt SR,
O~
rr]
(i
S
=
o1
oy
Q12
L]
=
M..\——/
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Substituting this value into equation (7.40) we obtain
2 2
*
Gt =t o { Lo} ow o {1 7}] ]
4] o

) .
R' { ¥ F} mod p* oo . (7.41)
0 _ .

|

+

If we now substitute the actual expressions for E and F, we

obtain from equation (7.41)

(z)" = 5% |r" { R"(a)" Q'(xn_i)*}

| * %
+ R" [Q' { (ai) R'(xn_i) }] ]

, | |
+ R { ] (ap” R‘(xn_i)*} .. (7.42)
o . . ‘ i ' :

H

O~

Or~1nN

~ In the above equation, since the term in the final curly brackets

is computed in modulo pd arithmetic, we may replace.
( * by R' *
;) by Ri(ay)

We finally obtain

) ,
* d 1 * ] *
(z) P {R" [(); R"(a,) Q' (x _.) ]}
d " 2 * *
p [R [Q'[(Z) (a;)" R'(x__;) :l]]

) o
{R' [E R (2" R'(xn-i)*]} mod p"
0

Ce..(7.43)

+

+

*
From equation (7.34) in Section 7.3.4.0 we know that Q'(xn-i)

comes from the set
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a-d
{0,1,2,..., P -1} s

which is the same one thaf‘R"(ai)*, by definition {(i.e. equation
{(7.35)), comes from.
In equation {7.43) above, we observe.that each of the terms
in the curly brackets is identical in form to that given by equation
(7.12) in Sectiom 7.3.1 which descriﬁed a general modulo filter. |
.Therefore, we can say that two basic sub-machines of (DF)pa
are actually the modulo filters (DF)pd and (DF)pa_d , whose respective

outputs (zn)' and.(zn)" are given by’

2 * * '
(z )" =R’ I;Z R'(a,) R'(xn_i):l voo (7.64)
. .=0 -
" and
2 . . ' ,
(z )" = R" [l{ R"(a,) Q'(x__.) :| _ ... (7.45)
=0 ,
2 N i S
Let f = R"[Q' [Z (a))" R'(x ;) 1] . ... (7.46)
0 N

. The output of (DF)ba is given by

*

(zn) Pd{:(zn)" + %] + (zn)' mod pa

pd K + (zn)' mod pa . ' W (7.47

where

~
HI

R" [}zn)" + %} mod p2

i.e. 0 K< pa-d

. - ' *
. . K-Q(zn) ).
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Also 0 < (zn)' < pd .

Equation (7.47) is the describing equation for our original
modulo pa digital filter.

The block diagram of the correspouding circuit realisation is
shown in Fig. 7.6, in which stored-logic units are used to implement
the relevant functions;

‘The storage capacity of the three components of (DF)pa are shown
belbw.

(ﬁF)pd : (pd)3 logz(pd) word-bits

a=d. 3

(DF)pa—d : (™ ) logz(pa_d) word-bits

3

f-combinational : (pd) logz(pa_d) word-bits.

matrix
*
The mapping ¢ shown in Fig. 7.6 transforms the input (xn)

of (DF)pa into the pair shown below, i.e.
* * *
= Ot '
$(x ) [Q (xn) s R (xn) ] .

. * &k * . :
. . If s, i, o are the state, input and output elements

of (DF)pa , and S.» ic’ o, those of its equivalent realised as a

cascade realisation of (DF)pd and (DF)pa*d then we have

r

* :
5 ° ;I:Q'(xn-l) ? R'(xn-l)j’[qt(xn—z)*’ R"(xn-Z)’j]_

i foreyt, v

and

[ * *
- 1 L}
o LQ (zn) » R (zn) ]
The cascade decomposition technique that we have presented here

may of course be applied to each of the components (DF)pd‘and (DF) a~-d
- P



Q’(xn.d ) Q’(xn_z )

o (p39)3 1oglpTd) o @ a-d

P
word-bits
'y
& ,
| Qlz,)
. SR,
"o E E(zn)*
6 i -1 t
> Sl ‘ dP f""‘"‘
..__C_-D;' : I
T ! .
4-?9_ ..... E""’
D D R‘(Zn]
r | L
' dy3
A (p)1oglpd)
word - bits

Fig. 7.6. Cascade realisation of (DF). 8 from {(D¥) d, .

(DF) pa-d and a comb1nat10na1 matrix. .
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to simplify them still further, until we reach the point when the
two components are each a mod-p filter.

The consequence of this chain of decomposition levels is that
it allows one to select the pair of component machines that is most
suited, in terms of stored-logic capacity, to available devices.

fo have an idea of the effect of the cascade decomposition on
the storage capacity of the overall realisation, let a = 2d and
consider only the first level decomposition.

Then we have the component filters (DF)pd anq (DF)pa;d = (DF)pZd—d
= (DF)pd. -

-+« All three components of.(DF)pa have identical stored-logic
capacity equal to

(pd)3 logz(pd) word-bits,
resulting in an overall capacity of
d .
3(p) d 1og2(p) word-bits.

will require

The direct stored-logic implementation of (DF)pa

(pa)3 1og2(pa)

24,3
P

= { Yy 24 10g2(p) word-bits.

.". The ratio of the capacity required for the cascade realisation.

to that of the direct stored-logic implementation is

3d
3(p™ ) d log, P 3 [ 1

€ ] word-bits.
(p ") 2d log, P

3d
P

As an example, let p = 3, a = 3 and d = 2. Then the modulus

a d 2 a—d

M=p =27,p =3 =9, and p 31, Also let the resulting

i
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(DF)pa have the coefficient values

*

* * 6
(ao) = 21, (a =17 and (az) = 16.

1)

Let the data values at a particular sampling instant be

* 5 ' )* _ o
(xn) = 15, (xn =11 and (xn_2 = 24.

-1
-The direct approach will yield

®

(zn)

2 X *
'i£0 (ai) (xn—i)

21 x 15 + 17 x 11 + 16 x 24  mod(3)

18 + 25 + 6  mod(3°)

3]

22 mod(33).

It

Using the decomposition technique developed, we first obtain

(Q'(15), R'(15) )

]

3(x )7 = 9(15) = (1, 6)

*

)

8 (x (1, 2) = (Q'(11), R'(11) )

I

$(11)

n—-1

*
o(x )

]
1l
i

$(24) = (2, 6) = (Q'(24), R"(24) )

I
il

R'(a) =3, R'(a) =8, R'(a) =7
o} ’ 1 ? 2 4

and

R™a) =0, R"a) =2, R™a,) =
o * 1 : 2

f
-

."« From equations (7.44), (7.45) and (7.46) we have

(z )’ R'{(3x6) + (8x2) + (7x6)}

R'{o + 7 + 6} = 4

n
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(z )" = R"{(Oxl) + (2x1) + (1&2)}
=R"{0+2+2}=1
and £f= R"iQ‘[kleﬁ) + (7x2) + (16x6i]]
=R"@'Esﬂ]==wwz& = 1.
K = R" :(zn)" + f] = R"[2] =2

and finally from equation (7.47) we obtain

x _ 2

(zn) 3° - 2+ 4 .

m

n

(b(zn) (2, &)

* .
If we apply the ¢ function to the (zn) obtained via the direct

approach, we also get

¢|:(zn)*] = P9 =¢, 8 .

7.3.5 Lattice of homomorphic images of (DF)M.

From the ideas developed in Sections 7.3.1 to 7.3.4, we see
that a generai modulo-M filter (DF)M may be decomposed into a parallel
and/or cascade connection of submachines, i.e. its homomorphic images.
The relationship between pairs of these images can be éompactly_
and visually represenged by a lattice developed below.

Let d, d dz, D be factors of M and the corresponding modulo

1’

filters be (DF)d, (DF)d ’ (DF)d and (DF)D.
1 2

Also let d = g.c.d. (dl,

be the set of all unique images of (DF)M, i.e.

dz) and D = R.c.m. (dl, dz), and FD
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fD ={h : h = (DF)d’ where d is a factor of M}.

Now let us define a relation '9' on FD to mean that if

(OF), <1 (OF) _,

then (DF)b 'is a homomorphic image of' (DF)C.

.". We have

(DF) ; <1 (DF) d1 and (DF) ; <7 (OF) -

Since d is the greatest common divisor of both d, and d,, then

2’

(DF)d is the greatest (in terms of input, state component, and output

symbols) modulo F.S.M. filter that is common to both (DF)d and (DF)d -
2

1
Similarly

R, <] @D, and O <A @Ry -

As D is the least common muitiple of dl and d,, then (DF)D is the

2,‘
smallest modulo filter that (DF)d and (DF)d are the images of.
1 2
. dl d2
(D= 2%.c.m. (dl’ dz) = 3 . R (DF)D is identical to

(DF)k in Section 7.3.3.).

Thus, the set F_ is partially ordered by‘<::j and hence

D

(F.,=<3 ) is a lattice, which has a least upper bound
)
(DF)D, and a greatest lower bound (DF)d for every pair of images

(DF), and (DF), .
d d
1 2

It is not difficult to see that this lattice of homomorphic
images is identical to the lattice of divisors of M with the 'factor'

relation discussed in Section 7.1.2.
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7.4  Conclusions.

The F.5.M. models for general modulo-M adders and multipliers
have been successfully analysed for S.f. partitions. The lattice
of these partitions for the adder is.related in a simple way to the
well known lattice of the divisors of M with the 'factor'.relation,
and was shown to be a sub-lattice of that for the mod-M multiplier.

The general non—-recursive second-order digital filter. has been
Suitably transformed and modelled to make it more amenable to algebraic
partition analysis.

This‘simplified model was shown to be structurally decomposable
into a parallel and/or a nested cascade cénnection of submachines,
whose lattice is identical to that of the divisors of M mentioned
previously.

In general, in the author's opinion, the simplified model of
the filter section is not unrealistic, éince in practiée it may be
regarded as being 'embedded' im the aétual section; Furthermore,
although the decomposed realisations of (QF)M require input and |
output combinational mappings, which, if implemented with stored-logié_

~ devices, will restrict the wordlengths of the filter's data and
coefficients, this may be overcome by developing practical filter
sections of short wordlengths.

In the next chapter we will see how this may be achieved.
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CHAPTER 8
MoDULAR PARTITIONING OF BASIC
SEconND-ORDER DiGITAL FILTER

8.0 Introduction.

In this and subsequent chapters an approach'different from that
discussed in previous chapters is developed to partition the basic
second~order digital filter.

The design philosophy is initiated by the fact that, as explained
in Chapter 2, a general digital filter of a high order is realised,
not directly, but as a parallel ar cascade connection of basic second-
order sections, each being identical in structure.

The open question then arising is whether or not it is. possible
to apply a similar idea to the basic second-order section itself and
factor or partition it into a systematic interconnection of smallér,
preferably structurally identical, modules.

In response to this question, we have successfully extracted a
- basic computational unit from the algorithﬁ of the genéral second~
order filter. This.unif, which we have termed the digit conﬁoluticn
module has many desirable features in termsg of hardwére realisation.
Furthermore, we have also derived the simplest elementary form of the
convolutién module which we have called the primitive convolution cell.

The proposed modular approach alsoc has a useful consequence in
the frequency domain analysis of digital filters.

In the following discﬁssion, the éeneral theory is presented
first, followed by a detailed study of a special case which will be
useful in practical implementations. A short discussion on the handling

of negative sample values is also given.
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8.1 General modular partition theory.

In this section we show how the digit convolution module is
extracted, and the technique logically extended to derive the primitive
convolution cell. The concept of digit templates for frequency

analysis will also be explained.

8.1.0 Sequence elements represented as sequences.

In the purely analytical design and analysis of digital filters,
and even in their off-line simulations on general-purpose computefs,
there is the tendency to regard each element of the input and impulse
~ response sequences of a digital filter, i.e. {Xn—i} and {Ai}
respectively, as a single conceptual entity.

In the conventional approach, there is also the assumption that
once the filter coefficients have been dérived, the theoretical désign
proBlem is completed. The subsequent hardware impiementation is
then regarded as essentially an exercise in switching circuit theory,
with hardware designed at the bit level,

As an attempt to bridge the gap between formal filter.design
and practical hardware realisations with a systematic theory, we propése
the following approach.

We observe, first of all, that number elements are most frequently
represented as the sum of weighted digits, i.e. to say, if N is a

natural number, then
Lil
N = W, . N ' ce+.(8.0)
oo Tk Yk | |
where the nk's and wk‘s are the digits and weights respectively.

The most common form of this weighted digit representation is
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one in which the wk's dre integer powers  of a fixed number or base,
R say.
Then we have
L-1 K
N= }J »m RO , Osgmn <R . ce..(8.1)
k=0 ' : '

In both cases, N may be represented as an L-tuple digit vector,

i.e.,
N = (nL—l’ N _g5eees nk,..., nl,no) R ""(8'2).

(In equation (8.2), it is implicitly understood that any vector
" element n, say is weighted accordingly by Rk).
Congsider now, for simplicity, just the non-recursive part of -

the second—-order section. If Zn is the corresponding output, then

2
z = 1 A X _. . ... (8.3)
i=0

The filter impulse response is given by

{A,} =A , A, A
1 [s)

1* "2 ' -
and at a particular gampling period nT, the ﬁresent and.past input

samples are given by the sequence

{Xn—i} - Xn’ Xn—l’ Xn—2

If the vector representation in equation (8.2) is applied to

the elements of the sequences {Ai} and {X .}, we mow see that each

-

‘of their elements is itself a sequence, i.e.,

A. = {a

i i,L" -1? }

a. R, a. esne d.
i,L" -2° AR AR i,0
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and

X = {X

i seees X Y.

X n~-1,0

n~i,L"-17""""* “n-i, 8!

Thus, while the overall filtering operation comsists of the
convolution between the sequences {Ai}'and {Xn_i}; the internal

computation during a sampling period T is actually composed of operations

between digit sequences. The detailed nature of these internal operations

will now- be presented.

8.1.1 Extraction of a basic convolution unit.

"The filter algorithm described by equation (8.3) is normally
carried out as shown in the bloék diagram in Fig. 8.0. If, hﬁwever,
we use the vector répresentation for the daté and coefficient words,
we arrive at the block diagram shown in Fig. 8.1. There, Qe have shown
the operation between the 2" th digits of the digit vectors of the Ai's,
and the 2'th digits of the vectors of the inputs Xﬁ_i's.

As shown in Fig. 8.1, using these digits, we then form the typical
partial convolution given by

£l

2
11 2" L] ’ .
Zo gt gm { DRCWE )(xn_i’g.)}(a FEnt .

The overall or actual convolution product is finally obtained
by summing over all such typical partial convolutions, thus obtaining,
L" -1 |

7 = Z (R')g'

, |
2" |
o b =0(R') { ROWY )(xn_i,l.)} e (8.5),

i=0

where the Ai's and Xn_i's are expressed as L" -tuple and L'-tuple digit
vectors respectively.

If we now compare the term in the curly brackets in either equations

!
\



Fig. 8.0. Direct implementation of algorithm

of non-recursive second-order filter.



""""" r===="""
' » L 5 X X e X L X }
{xn,L'-—l’ """ ) Xn,R,':I """’xn,O} {xn-l.,L'-'l"""’{ Xn—l,z'} et n-1,0 n-2,L'-1? t tn-2,8" | "“n=-2,0

______ | I— ‘ e ot ittt s !

X P X > “— )
>
| S B fa (A mofl | {a . A of
"5 e g aes e e y gr s ey IR RN ) ] g ey
| AO,L“ _1: ----- ’= 0,2" I b ] 0,0 1,L" -1 : n}':’f:l_i . 1,0 2,L" 1 L_E:Ei_: 2’0
v Y

"

L

2
" "‘ ' 2,
— zn,ﬁ',f:"r = |Ll£0 [Ai‘,gv" ][xn-i,f.'] (R") (R")

Fig. 8.1, Block diagram of 'internal' computation of filter algorithm and the
extraction-of a typical convolution unit.
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(8.4) or (8.5),.1.e.,

2 _ |
{ iZO(AiJ" )(Xn—i,z')} | ....(8.6.)

wiéh the expression for the normal convolution as given in equation
(8.3), we see that they are both identical in form and hence in
hardware structure.

The implementation of the term in (8.6), however, is much simpler
in its hardware requirements, especially in terms of register 1engtﬁs

because

It

Ai,z" = zR,, 0,1,...., R" —1:]

and

[
o
-
-
-
.
=
|
(Wil

xn-i,R,' S Zpr =
while, before partitioning, we have,

L" .
A, € Z w = I:O,l,...., (R™) —]
.1 (Rn)L _ ]

and

L!
X_. c Z y = [0919"", (R') -]
n—-1i (R')L .

Since in practice L" and L' are invariably greater than 1, it
p Yy

and Z
(R")

is easy to see that Z and ZR' are smaller than Z L
(R")

Rll' Ll

respectively.
We feel that the structure shown in (8.6) is a useful and also
practical basic computational unit in digital convolutions, and so have

termed it, not surprisingly, a digit convolution module (D.C.M.).

The process of extracting this module from the second-order section

may be visualised conceptually as shown in Fig. 8.2, and is analogous



«—— decreasing module complexity

Fig. 8.2.

Conceptual projection of second-order

filter structure onto digit convolution

modules of decreasing complexity.
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to looking at an object through the wrong end of a telescope.

As will be explained in Section 8.2; the digital designer, by
.the proper choice of R" and R', can ﬁave complete control over the
hardware complexity of his D.C. module, tailoring it according to
existing technology, component availability, processing speeds, etc.

From equation (8.5), we see that the original conmvolution is
now the sum of digit convolutions. Consequently, the basic second-
order section can be realised as a regular interconnection of D.C.
modules, each being identical in architecture. At any sampling
instant, the filter output is obﬁained by summing weighted outputs
of "these D.C.M's.. The block diagram of this modular realisation is
shown in Fig. 8.3.

The practical features and applications of our proposed approach
are.discussed in detail in Section 8.2, when we apply the partitioning

technique to the case when R is an integer power of 2.

8.1.2 The primitive convolution cell.

By carrying the modular partition techunique to its logical
conclusion, we can derive the most elementary form of the D.C. module;
The resulting unit may then be regarded as an_‘atomic' building blotck
of the filter algorithm.

The simplest form of the D.C. mo&ule described in equation (8.6)
is when the fixed bases for the digit‘vectors of the data and coefficient
words are both chosen to be 2, i.e. R' = R" = 2,

In such a case, the déta and coefficients of a typical D.C. module
are simply two-valued words, i.e., |

Ai,f,"

€ 0or'l .

Xn-i,2"



4-... .;. . .J'

Fig. 8.3. Modular realisation of second-order

digital filter.
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The structure of such a module 1s shown in Fig. 8.4, in which

the data bits; Xn gt X

n-1,8' ° Xn_z,ﬂu ; are gated by the

>

coefficient bits; A A ; and the resulting

0’2" > 1,£'| 3 Az,lll

bit products summed by the full-adder.
From this module, it is a short step to arrive at an even simpler
one which operates now in the unary base, i.e. by counting. We have

termed such a unit a primitive convolution cell (p.C.C.), whose circuit

structure we show in Fig. 8.5.
In this primitive cell, the data and coefficient bits are

recirculated internally, and the bit products (A, _, ){X W),
2’2 Il-2,9.-

(Al,l" )(Xn—l,n') and (Ao,i" )(xn,l') formed in time successioms.

These products enable or inhibit the clock input to the two-bit
counter which s;mply counts the number of these products that are
at logical 'l's.

As a further explanation to the operation of the p.C.C. we have
shown in Fig. 8.6 the contents of the data and coefficient flip-flops

at successive count cycles during the filter sampling interval T.

8.1.3 Effect of modular partitioning on frequency analysis.

The modular approach proposed is also useful when digital filters

are analysed in the frequency domain.

8.1.3.0 Frequency characterigtics.

The frequency responses (amplitude and phase or real and imaginary)

of digital filters are usually obtained by using, as inputs, sampled

49

anT, where T is the sampling period -

complex exponentials of the form e



n, L n-1,2' n-2,4'
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Fig. 8.4. Base 2 digit convolution module.
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) ¢
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Fig. 8.5. Circuit structure of primitive

convolution cell.
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Fig. 8.6. Bit patterns of primitive cell during

successive count cycles during period T.
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For the simple second-order non-recursive filter with impulse
response'{Ai}, i=20,1,2, we know that the filter oﬁtput Z(nT) is
the sum of the present and past two inputs appropriately scaled by

the Ai's, i.e.,

Z(aT) = AoeJmnT N Ale;uu(m'I‘-—T) . AzeJm(nT_zT)

2 . .
= [ Y Ae J‘”“J eJunT e (B.T)
. 1 .
1=0 .
' . . . . junT . g
Thus, the output Z{nT) is the original input e modified

by the complex number H(jw), called the frequency response of the

filter, given by
' 2 ~jwri .
H(jo) = ] a.e : ....(8.8)
i=0

8.1.3.1 Digit frequency response templates.

If each of the coefficients Ai's is an L" ~digit number in the

L" 3

radix R" , theén from equation (8.8), wé see that there.are [kR")
possible combinations of Ao, Al’ Az. Consequently, during the.
analytical design stdge, one apparently has to deal with a very largé
number of different frequency responses. Thus, in the binary
representation, i.e. R"™ =-2, if L' = 8 bits, then there is, using
the direct method, a total of (28)3 = 16 millions possible frequency
responses.

We recall, however, for radix-R" decomposition, that our typicay
digit convolution module as described in Section 8.1.1 has the impulse

} , where

response {Ai’z"

{A } =4

i’gil 0’9‘" r Al,ﬂ." > AZ,E" »

0 -\<. 2‘" < LI'I'



192

and

Ay gn €Zpn = E),l,..., R" —1] _

Using equation (8.8), the frequency response Hz" (jw) of a typical
D.C. module is given by
2 -jwTi

How (G0) = T (&) gu)de e (8.9)
1=0 :

and there are now only (R“)3 different frequency responses involved,
and the frequency response of any D.C.M. comes from this set.
A particular response from this set we have termed a digit

frequency response template (D.F.R.T).

Analogous to the realisation of the second-order section from _
D.C. modules, the general frequency response of the filter can be béilt
up simply by scaling and summing the appropriate D.F.R. templates, i.e.,
| L" -1 | on

H(jw) = ) (Hyu (Gu))(R™) ....(8.10)
gt =0

As an example, let Ao =16, Al = 23 and AZ = 5. Let R" = 3, and'

use equation (8.2) to obtain

A= (1,2,1)
A = (2,1,2),

and |
A2 =z (0,1,2)

There are thus three forms of D.C.M's having the impulse responses,

{Ai’z} = {1,2,0}
{Ai,l} = {2,1,1}

and
(A. } = {1,2,2}
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Hence the frequency response of the filter is obtained by

summing the following weighted D.F.R. templates, viz.,

[} + 2e_jw?] 32
[% + e_JmT + eFszf] 31 s and
[? + 2e-ij + 2e-jm2?] 3° .

For the simple case in which the Ai's are fepresented by B" bits
and each coefficient is then partitioned into B" blocks of 1 bit each,
the set of non-trivial D.F.R. templates is small indeed, consisting,
as shown in Fig. 8.7, of only six" differen; frequency responses.

Although at this stage our analysis is only preliminary, theré
is a good indication that the concept of digit frequency fesponée
templates may prove to be useful in the off-line designs and especially

in the interactive simulations of digital filters.
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1 Introduction

The theory in the analysis and design of digital filters
is well established, and their advantages over conven-
tional analogue filters, made up of resistors, capacitors,
inductors and crystals, have been widely discussed.!'?
Until quite recently, the implementation of digital filter-
ing has been confined mainly to simulation on general-
purpose computers. The rapid development in the
technology of medium and large-scale integrated
circuits (m.s.i. and L.s.i) however, is making possible the
construction of special-purpose hardware for real-time
digital filtering. Conventional implementations reported
in the literature invariably compute the filter algorithm
in the familiar binary arithmetic, either in the serial® or
in the parallel* mode. Furthermore, the actual hardware
synthesis is usually at.the discrete gate level, and the
structures proposed are mainly for specific configura-
tions,

In this paper, a modular approach to the hardware
implementation of digital filters is proposed. This
approach is general, flexible and is at the system and sub-
system level, and is thus very suited to m.s.i. and ls.i.
devices. In this approach, a basic second-order digital
filter section may be consiructed as a regular inter-
connection of simple identical ‘sub-filter modules’. The
structure of a typical module and the processing mode of
the overall section are flexible and may be adjusted to
suit specific requirements. As there is a very wide range
of logic families (t.t.1,, e.c.l., m.o.s., etc.) and of m.s.i. and
l.s.i. devices currently on the market, only a general
guide as to the trade-off between circuit complexity and
operating speed will be described.

The hardware implementation of the proposed
approach using semiconductor memories is also discussed.

2 Digital Filtering

In general, the term *digital filter’ refers to any device
which operates ont an input number sequence to produce
a second sequence of numbers by means of a computa-
tional algorithm If the digital filter is part of a signal
processing system, like that shown in Fig. 1, the 1np1.t
number sequence is usually the digital version of an
analogue signal. The output sequence may be converted
to the analogue form if required.

x{t) x{nT) Xy ¥
Sampl B Digitat 3
ampler quantizer igita -
Fa and filter
coder
Anclogue Digital Digital
input input output

Fig. 1. Block representation of a digital signal processing systent.

High-order digital filters are normally realized as either
a cascade or a parallel network of basic second-order
sections,' 2 which, in the former case, are ordered for
minimum round-off noise and have outputs suitably
scaled.®§

A typical second-order section is shown in Fig. 2. The
input and output sequences, (X)) and (Y,) respectively,

393
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are related by the followmg dlfference equation:

3 Bty )

where A4, and B, are the filter coefficients obtainable from
its transfer function.

The filter network in Fig, 2 consists of a non-recursive
and a recursive part. Both are essentially the same in both
structure and operation in that each may be represented
by an expression of the form -

2

V.= Z CiUn—l

=0
where, for the recursive part, C, = By = 0.

In the subsequent discussion of the proposed design
approach, it is therefore only necessary to consider the
more general non-recursive part, which has the input-
output relationship

Y—ZAX,,_

)

2
= z, Alxn—-i

i=0

1)

3 Design Approach

The proposed design approach is based on computing
the filtering algorithm given by equation (3), not only in
the conventional binary system, but in the general radix
R arithmetic, where R is an integer power of 2, i.c.

R=2% p=1,2,3, ... ¢t 4

It is assumed that fixed-point arithmetic is used, and
that, in order to process equation (3) to a specified

Since any B-bit binary number M can be represented
in the form

B-1
M=3Y m?2, m=20or} 5)
r=0 .
the binary forms of the data and coefficients will be
-t
Xp-y = k}:@ xﬂ_“f (6)
and
-1
A = Z “5,12; U]
j=0 ’
where

i =0, 1,2, x,_l-,k,a‘_]=00rl

Conventionally, equations (6) and (7) are substituted
directly into equation (3) for the subsequent computation
of the filter output Z,. A comprehensive discussion on the
possible hardware organizations and processing modes
for implementations based on binary arithmetic is given
by Freeny in his tutorial paper.”

In the proposed modular approach, a B-bit binary

number M is first partitioned into b blocks, each of p
bits, where

B = bxp, band p beingintegers (8)

{p = 3, and p = 4 result in the familiar octal and hexa-
decimal systems respectively).

Thus equation (5) may now be represented as
M= (mg_, 27" 4. .. +mg_ g4 2+ my_ 2027

accuracy, B’ and B” binary digits (bits) are required to o Mgy 1 2P L 20
represent each of the data and coefficient words respec- 20 2':, x =1 P
tively. Also, to simplify the discussion on the design +mp N2 o (2
approach, the data and coefficient words are assumed to + oo my 28+ m 20)(29)°
be non-negative integers, i.e. or .
0< X, ;<2¥-1 bt ;
M = M (2P
and . 129 {2 )
0< A4, <251 where .
In practice, the data and coefficients are represented as M, — "i' m 2h 10)
binary fractions and the two’s complement?®' %+ # notation kT L TRkt (
is most commonly used to handle negative numbers, and .
Non-recursive pact 0< M, < 27—~ ! .
X, ; Aoy i E ! Equations (9) and (10} sxmply mean that the B—b:t,
: 1 binary number in equation (4) is now represented as a
' : b-digit number in the radix 2°, where each digit i is a p-bit. ,
! “o 4 A binary number.
]
= L=
' - |
e e 1
¥,
Adder
(subtractor} Fig. 2.
ettt ! 1 Second-order digital filter
S e section with sample
: |+ r ™ W period T.
1 1 n
]
: 8, 5, ! \
t |
: t
1 T I ‘rr ‘
Ve Tt DT |

Recursive part
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3.1 Example
Let M be the 6-bit (B = 6) binary number, 101 10 1.
Expressing this in terms of equation (5}, then,
M= 1x2%40x2* 1 x 22 41 %22 +0x 2" +1x 2%
If M is partitioned into three blocks, each of two bits
(b = 3, p = 2), then M can be expressed as
M=(1x2540x2)+(1x22+1x23)+(0x2"'+1x29
or, in terms of equation_(9)
M = (1 x2'4+0x2%)(22)% +(1 x 2! + 1 x 20)(2H)"
+(0x 2" 1 x2°)(2%)°
Thus, M is now represented as a 3-digit number in the
radix 22, where the digits, M, of equation (9), are 2-bit
binary words, and, using equation (10) are given by
M0=01, Mlzll and M2=10
3.2 Computing in the Radix 2*

In general, each data word may be partitioned into &’
blocks each of p’ bits, and each coefficient word into b”
blocks of p" bits.

Using equation {9), equation (3) can be rewritten, in
which Z_, the output of the non-recursive filter section,
is expressed as a triple sum,

e £ 5 e[ rewser] 0

i=0
where
P -1 "
A = T g2 (12}
k =0
and
=1 ,
Xo-txr = A'Zo Xp—i, p'k'+h‘2h C(13)

fori=20,1,2, and
&) p") = B, () (p)=F
The order of summation in equation (11) is then
changed, resulting in
-1 b"—~1 2

Z,= Y @) ¥ @Y (A Xa-in) (14)
k=g k=0 =0

Equation (14) forms the basis of the proposed moduiar
approach to the hardware implementation of digital
filters.

3.2.1. Example

Consider a second-order non-recursive filter having the
coefficients

Ao = 610, Al. = [310 and A2 = 910

Also, suppose that at a particular sampling instant the
data consists of

X,=12y, X,.1=5, and X, 5=7

if both data and coefficients are represented by 4-bit
binary numbers, (B’ = B" = 4), then

Ag=0110, 4, =1101, A, =1001
and
X,=1100, X,.,=0101 and X,_,=0111}
Each of these words is now split into two blocks (6" =56"

August/September 1976

= 2), each of two bits (p" = p” = 2), say. The filter
output Z, at this particular sample instant may then be
computed by the substitution of the actual values of the
data and coefficients, now represented in the radix 27,
into equation {3). This computation is illustrated by
Table 1.

Table 1
Surn of partial
RPRAR'R® R* R*R'R® R? R*R' R*® products in
like rows
Coefficient A, 01104, 1101 A, 1001
x X x
Data X, 1100X,., 0101 X,.2 0111
0000 0001 0011 - 0100
0000 00351 0110 1001
0110 0001 0001 1000
0011 0011 0010 10 00

Each 4-bit partial product is the result of a 2-bit by
2-bit parallel multiplication, i.e. the data and coefficient
blocks are multiplied in radix R = 2* arithmetic. The
partial products in like rows are now added. This
corresponds to the first summation of equation (14). The
remaining stages of summation, as specified by equation
(14) for the computation of the section output Z,, are
shown in Table 2.

Table 2

Second, final summation according to

equation (14) Filter output Z,l.

R R R R R* R* R' R®

RS R! Rl RO

01 00
+ 10 18 00
10 01 )
+ ;11 00 1000
10 00 - ' .
- 10 10 00 ; R
10 00 '

As a result, the original filter, whose data and cceffi-
cients are represented by 4-bit binary words, is now
regarded as being made up of four simpler units whose
data and coefficients consist of only 2-bit binary words.

4 Possible Realizations

Two possible realizations for the computation of
equation (14) are shown in Figs. 3and 4. They differ both
in hardware complexity and operating speed.

4.1 Parallel Processing
In tbe direct realization illustrated in Fig. 3, the second-

~ order non-recursive section consists of a parallel inter-

connection of, what will be termed, sub-filter modules.

These modules, enclosed by the broken lines in Fig. 3,
are organized into b’ groups each group containing 4"
modules, where »” and &” are the number of partition

395
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blocks as described by equation (11}). For the overall
section, &’ x 5" modules would be required in all.

A typical module has the same general structure and.
computing atgorithm as that of the overall section. Each
of the data and coefficients of a module, however, are
now only p' bit and p” bit words respectively.

In operation, these sub-filter modules implement the
first summation in equation (14). The output of each
group is obtained by adding the weighted outputs of
all the modules in that particular group. Similarly, the
section output Z, is obtained by summing the weighted
outputs of ail the groups, as specified by the outer
summation of equation (14). .

In this direct realization, the output welghtmgs are
done by hard-wired shifts.

4.2 Sequential Processing

In contrast to the realization shown in Fig. 3, where
b x b" modules operate concurrently, a single module,
performing b’ x 5" module computations in time succes-
sion, may be used.

This sequential mode of processing is lllustrated in
Fig. 4, in which a basic sub-filter module is time-shared
among the data and coefficient blocks.' The accumulator

KXoz,8'

KXo, 81

396

(&' p') data
registers

Accumulator

. p') cireulating
coefficient registers

(&

Timing circuit not shown

Fig. 4. Time-sharing of a single sub-flter module.

keeps a running sum of successive module outputs ang
also incorporates the required weightings to them.

The blocks of each of the data words are accommodate
in a (&, p') register store while those of each of the co
efficients are stored in a {b”, p") circulating register store
where a typical (b, p) register is one having & stages, eacl
stage accommodating a p-bit word, as shown in Fig. 5(a)

For every clock shift of the data registers these circu
lating coefficient stores go through a complete cycle'of b
shifts. Since the data registers have to be clocked 5
times, the required section cuatput, Z,, will be obtained i
b x b" register clock periods after the arrival of thi
section input, X,, at a particular sampling instant.

The data and coefficient blocks are so arranged as te
be in increasing order of significance at the start of ever
sampling instant. _ - .

Fig. 3. Modular circuit configuration A
of a non-recursive digital filter
section.

Zn

The B"-bit input, X, is loaded in parallel into an inpu
register of the form shown in Fig. 5(b). In the subsequen
processing, the blocks of X, are accessed sequentially, th
accumulator being reset to zero prior to every samplin,
instant nT.

The control of the overall section can consist of ;
counter and simple logic circuitry to account for th
different clock rates of the data and coefficient registers

The Radio and Efectronic Enginaer, Vol. 46, No. 8f
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Paraliel.
sequential
mode

[ 8-1
8-p

|

plh+1)~1
Pk

A

8-bit paraliel input

Clock

(a)

Fig. 5. Store and input registers.

4.3 Features

In the direct realization, as shown in Fig. 3, the circuit
configuration of the overall filter section is highly modular.
All the component units have an identical structure, and
the interconnection between them is very regular. In
consequence, the hardware implementation of the section
is systematic and siraightforward. . Furthermore, testing
and fault diagnosis are greatly simplified. '

Since a typical module has the same computing

algorithm as that of the original section, the ‘feel’ for the
overall filtering operation is retained when interconnect-
ing modules. Also, the hardware requirement of a
module is determined only by the manner in which the
originat data and coefficient words have been partitioned.
The structure is therefore easily adjusted to suit particular
requirements and available hardware components. To
illustrate this, consider a non-recursive section, whose
‘data and cocfficients are represented by 6-bit and 4-bit
binary words respectively. Then Table 3 shows the
possible ways in which these words may be partitioned
into blocks, according to equation (8).

Table 3
Data Coeflicient
Number of blocks 6 3 2 1 4 21
Number of bits/block 1 2 3 6 1 2 4

The structure of the basic module depends very much
on the size of its component multipliers. For this parti-
cular filter section there are, altogether, 4x3 = 12
different multiplier sizes, which range from a 1-bit x 1-bit
to a 6-bit x 4-bit configuration, with one convenient size
being the 2-bit x 2-bit one. An interesting size is the 1-bit
(data) x 4-bit, as it is of the type used in the familiar
shift-and-add technique for multiplication.?- 78

A final feature of the proposed approach is that, after
the structure of the basic module has been decided upon,
the actual mode of processing the filter algorithm is
fiexible. The parallel and sequential realizations, dis-

August/September 1875

cussed previously and shown in Figs. 3 and 4, are just
two extremes, hybrid forms being possible. For example,
one hybrid realization might consist of a set of basic
modules, operating concurrently, this being regarded as a
basic time-shared unit for subsequent sequential proces-
sing. Another hybrid form might be one in which sets of
data blocks are processed in parallel by a number of time-
shared basic modules each operating sequentially.

In general, in between the parallel and the completelv
sequential realizations there is a spectrum of hardwars
structures and processing modes, the final choice being
left to the system designer.

4.3.1. Example

Consider a non-recursive section having 8-bit data and
coefficient words, (i.e. B = B" = 8). If each of these
words are partitioned into four blocks, each of two bits
(' = 5" =4, p’ = p" = 2), the resulting basic module
has a word length of 2 bits. The direct realization of this
section, as in Fig. 3, would require ' x 5" = 16 of these
basic modules. The completely sequential mode is shown
in Fig. 6(a), while Figs. 6(b) and (¢} illustrate two possible
hybrid realizations. 1In the former, two basic modules
make up the time-shared unit, while in the latter the
input X is split into two parallel halves, each of which
are then processed sequentially. It is seen that when both
examples of hybrid processing are compared with the
completely sequential one, two basic modules are re-
quired. Their computing time, however, is reduced by
half. The parallel mode, of course, has an even shorter

-computing time which, in this example, is sixteen times

as fast as that of the completely sequential mode.

5 Practical Considerations

The performance of the overall filter section depends
primarily on the structure of the basic module and the
manner in which the computing algorithm is processed.
The hardware requirement and implementation of a
typical sub-filter module are described below, and the
computation time for the section output is derived for the
two extreme modes of processing. The trade-off between
circuit complexity and operating speed is also discussed.

5.1 Hardware Implementation of Sub-Filter Module'

The hardware organization of a typical module is
shown in Fig. 7. The required arithmetic operations are
three p’ bit x p* bit multiplications and two {p’+p") bit
additions. These operations may be implemented by any
suitable m.s.i. multiplier and adder chips currently on the
market. An attractive alternative, however, is to imple-
ment the module using semiconductor memories, {either
read-only (r.o.m.) or random access (r.a.m.)), acting as
stored look-up arithmetic tables.}?

One way of using these memory chips is to replace
each p’ bit x p* bit multiplier, shown in Fig. 7, by a r.o.m.
or r.a.m. of suitable storage. Variable and fixed co-
efficient multiplications using r.c.m.s are illustrated in
Fig. 8(a) and (b). The former offers versatile operation
at the expense of large memory storage when the word
lengths of the data and coefficient blocks are large. The
fixed coefficient multiplication requires less memory
storage but is less versatile.
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p’bit data P bit coetfficient
“block M & block
r—— - ==- - e 1
D — = 1
—] L] . !
h— X : . ,
— i
—— L}
3
. — '
Basic module, : To [
2-bit wordiength - accumuiator g
- !
r_—w—-—-—-—-——-— L
1
; .
20 . e B -4
421 Module output
2.2 " Fig. 7. Hardware configuration of a sub-filter module.
23 .
The configuration in Fig. 8(c), however, combines

(@) _ partially-variable coefficient capability with reasonable
memory storage requirements, A total of 2* different
coefficients can be stored in the r.o.m.

23 For data and coefficient blocks of short lengths, i.e.
p’ and p” small, even the complete sub-filter modules
may be implemented as a look-up store using a r.o.m. of
sufficiently large memory storage, as shown in Fig. 9.
There is thus no necessity for the two P-bit (P = p’+p")
adders previously required.

In general, the implementation of digital filters using

3
-28)

o |] -2,
0l1] P
L
=
J

171 T . 1.5.i. semiconductor memories is simple, straightforward

X L F—‘—* and incorporates programmability. It also offers the

. J o accumulator possibility of volume production of digital filter i.c. chips

using existing manufacturing facilities. As digital filters
are still not being used extensively enough, there is

X, Madule - obviously a reluctance to custom-design and manufacture

special i.c.s apart from very simple filter configurations. '°
The market demand for semiconductor memories, how-
ever, is great enough to support its own technology.

5.2 Operating Speed of Filter Section

The minimum value of the sampling .period T for the
basic nonrecursive section depends on the time it takes
to compute the output Z, after the arrival of a particular
input X,.

If ¢, is the time to compute the output of a typical
sub-filter module, then :

-

S = t,+1, (15)
c :
e I =]
H 3 (a) (b) - tc) .
3oy LR p'bits  p"bits o ‘ s
£ x2° bit P x 2" bit T | Px2*Tbit
r.o.m, ra.m. : ro.m.
T T l - ll 11
" P bits P P
(© q bit
ftici '
Fig. 6. Processing modes using 2-bit basic modules. ' =:reog'r‘g:r?_t
(a) Compietely sequential ‘ Lo . . -
(b), {c) Two possible hybrid forms Fig. 8. R.o.m, realizations of p’ bit % p” bit multipliers.
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where #, = time to perform a p’ bitxp” bit multiplica-
tion, and
t, = time to sum three (p'+p") bit words.

For the realizations shown in Figs. 8(a) to (c), £, will
be the access time of any particular r.o.m. used. Similarly,
for the realization shown in Fig. 9, 1y, corresponds to the
access time of the r.o.m. implementing the complete
sub-filter module.

For the direct realization shown in Fig. 3, the total
time, T, required to compute Z, is given by

where #, = time to sum the outputs of all the modules in
any particular group
and t, = time to sum the outputs of all the groups.

Details on the propagation delay during the process of
addition can be found in any standard text on digital
arithmetic (¢.g. Ref. 8).

R

r.a.m. storing
moadule function

Fig. 9. R.o.m. realization of a sub-filter module.

Bx

Coelticient
program nput

If equation (14) is processed sequentially (see Section
4.2, Fig. 4), the computing time, T, is given by
T, = (ty+1) X (b)) x (b") (a7

where ¢, = time to add the module output at time k4, to
the accumulator output 4, previously, 4,
being the period of the register clock (see
Fig. 4).

In equation (17), it is assumed that the time taken to

Coliection of

clock the accumulator output is much less than the
computation time for the module cutput.

If f,, f, are the maximum possible sampling fre-
quencies for the section in the parallel and sequential
realizations respectively, then

1 1
/o -.<._-'j—,‘p and f, < 'Fq
The computation time for hybrid realizations may be

determined using the general principles discussed.

5.3 Trade-off Between Circuit Complexity and
Operating Speed

The relative advantages of the various processing
modes depend on their respective circuit complexity,
module count and operating speeds. The parallel mode
has the fastest processing speed and requires virtually no
control circuitry. The number of sub-filter modules
needed, however, is a maximum (being & x 5" modules
in total). At the other extreme, the sequential mode
requires only one module and an accumulator, but
operates b’ x b” times slower than the parailel realization.
Also, some control logic is necessary for the proper
accumulation and weighting of the module output. The
hybrid mode offers a compromise by enabling the designer
to select the most suitable combination of module count
and processing speed to match his specific requirement.

6 General Second-order Saction

- As the recursive and non-recursive parts of the general
second-order digital filter section (Fig. 2) have basically
the same structure, the modular approach already dis-
cussed can be directly applied to realize this genera]
section.

The resulting basic modu’s then consists of two
maodules, each similar to that shown in Fig. 7. The block
diagram of the direct modular realization of the general
second-order section is shown in Fig. 10.

Since Y,, the section output, is now in a feedback loop,
it has to be truncated or rounded -off to prevent the
number of bits required for its representation from
increasing indefinitely. Also ¥, has to be scaled, usually
by simple powers of two.*>'' Other general practical
considerations such as overflow detection, limit cycle

Xppiog pmem o RAE - - oscillations, and manipulation of negative number:
d . i using the two’s complement code, have been adequately
3! . 'l discussed by previous authors.®: 57
*a { %Nmr;{:gﬁ{:we ) : Section
b= ! | Round-off output
E =3 and =t
. scale
X"HO 1 E% ):’
. 53 (8" bits) Fig. 10.
. 2E Modular organization of
1 a general second-order
| filter section.
V»,A'-—t l L _'[

Delay units not shown
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7 Conclusions

A method has been presented for the hardware design
of general second-order digital filter sections. The
procedure is systematic, flexible, and is in accordance
with current hardware trends in that it makes use of
m.s.i. or lsi. technology. The resulting hardware
structures are modular, have uniform interconnection
patterns, and variable processing modes.

The versatility and flexibility of the proposed technique
should make possible the economical design of special-
purpose digital filter hardware for any applications
requiring real-time processing,
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8.3 DNegative values of filter data.

In our previous discussions, we have assumed, for simplicity,
that the data words of the second-order section are positive. In
this section we outline a simple method to aécount for the negative
values as well. This method is very convenient to use when the
complete digit convolution module is implemented as a stored-logic

unit using a read-only memory (R.0.M.) as shown in Fig. 9 on page 201.

8.3.0 Constant bias of filter input.

A particular structure of a D.C.M. is one in which the coefficients
are not partitioned at all, and each of the B'—bif data words is
partitioned into B' blocks of 1 bit each. This corresponds to tﬁe
R.0.M. digital filter pfoposed by Croisier et gl. With such a structure,
the filter input is in two's-complement representation. (The
mechanisation of this filter is fully discussed in References 6 and 50).

For our modular realisation using D.C. modules, we propose a
simple interesting alternative in which the filter inﬁut is given a
constant bilas, with a constant correction (for a particular impulse
response) at the output.

Let X:—i be the actual signal samples, and xn—i be the input
samples of the second-order section. Also, assume that B'-bit registers
are avallable to hold the data samples.

Before going into the filter, the signal is given a positive bias?

'-— [
of ZB 1 thus resulting in the filter input given by

t Most analogue to digital convertors has this bias already built in,
giving their digital outputs in the so called offset binary.
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The resulting modified data are now processed according to
equation (14) on page 197.

Consequently, if the signal has the fange given by
. *- 1 ]
- [zB 1] SX_. s+ [2B 1 -1] o (8.1D),

then the filter data is given by

1 v _
- [23 1] + 2270 o o ¢x

. Y _ 1 ’
. £ [ZB 1 —1] + ZB L. 2B -1.
n-—i )

The filter output Zn is thus given by

2 2
* t_
=L oax o+ ) a2t
i=0 n i=0
. 2 * . *
Since z A. X. ., 1is the true output, Z_ say, then we have,
. n-i n
1=0
2
* B'-1
Z =2 =2 } A, .ee.(8.12),
n n i
1=0
B'-1 2
where 2 ) Ai is the constant correction term.
=
2
Expressing I Ai as a G-bit binary number,; we have -

i=0 ‘
2 G-1 _
J A, =Cc= ] c2B
S0 g

g=0

The output correction term is given by
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6-1
Bl oy

g:

r_
c 28 9B -1
g

G+B'-~2
+

T _ T
R ZB 1] + 0x2B 2 P 0x2°.

- [“G—12 B'-1

Thus, the first B'-1 least significant bits of the filter output

Zn need not be corrected. The overall scheme is shown in Fig. 8.8.

8.3.1 Distributed correction.

The direct correction method has .the disadvantage that the sum
5 .

¥ Ai has to be computed separately and held in an extra G-bit register.
o ' ‘ -

Also, one would like to make the correction scheme compatible and -
consistent with the philosophy of modularity and the concept of digit
convolutions.

We will now show how the relevant segments of the correction
term may be distributed and absorbed into the appropriate digit modules.

B'-1

Firstly, we observe that the constant positive bias 2 is a

B'~bit number whose first (B'-1) digits are all zeros, 1.e.,

- e '
2 = lsz L + Osz 2 + ...t 0><21 + ox2° ., ve..(8.13)

This bias may be partitioned as shown in equations (9) and (10) on

page 196, thus resulting in

b'-1

1 1 | - [ ]
oB -1 - [1x2" Lox2P ™2 4 ... oxal o><2°][2p ]

[21)'“1:' [zp']b'_l vee (8.14) .

Also, using equation (9) each coefficient may be written as

-
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) _ p" k"
A, = I (Ai,k" )(2 )

Consequently, the correction term can be expressed as

2 U S Mt SR p'-1,,.p' b'-1
{Z A.}z ={Z (2" )" T AL« }(2‘ (28 ) ....(8.15),
i=o * k'=0 i=0 *
where the order of the double summation has been interchanged.
The filter output Z , as expressed by equation (14) on page 197

is now written in a slightly different form as shown below, i.e.,

T S
Z={Z (") ch o ) (X

)}(2"')""1
n k" =0 i=0

n-1,b'-1

b'—z ] k' b'
+ 7 @PHR Y N Z(A1 k..)(x L) e (8.16)
k=0 k"=0 i=0
Equation (8.12) can now be written in terms of equations (8.15)
*
~and (8.16). Thus the real filter output Zn is given by

* . b"-]‘ pn)ku 2
zZ = {kz,'m (2 izo[(Ai’k" YK s prep)

-y )@ 1:]}(21")" -

b'-2 1 + b"-1 "oy n
k
£ ] @O T @k Z(A Y E ) e (8.18)
k'=0 k" =0 Tk
Equation (8.18) above indicates that, in the modular cireuit

configuration shown in Fig. 3 on page 198, only the last group of b™

D.C. modules need to have the correction incorporated.
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When the D.C. modules are implemented as look—up tables, their
contents are stored in the two's complement form since it will then

be easy to perform the correction subtraction.

8.3.2 Example.

Let the filter coefficients have the wvalues

A =25, Al =3 and AZ = 7,

Also, at a particular sampling instant let the signal values be

*
X, = -6, X =2 and X o= =5

If 4 bits are used to represent both data and coefficient words, then

the constant positive bias will be 24_1 = 8.

Consequently, the offset data values are

X =-6+8=2, X =2+ 8=10 and X = =5 + 8§ = 3,
n n-1 n-2

Using equation (8.12), the actual filter output is given by

*

Z
n

(5)(2) + (3)(10) + (7)(3) - 8(5+3+7)

61 - 120 = -59.

If we apply the method of distributed correction as discussed
in Section 8.3.1, then the stages in the computation of Zn will be

shown in Tables 8.0 and 8.1. Here we have selected R™ =R' =R = 22.



R R R R R R R R R R R R
Coefficient Ao: 0O 1 0 1 Alz o 0 1 1 Az: 0 1 1 1
x X »
Data : Xn: 0 0 1 ¢ Xn;lz 1 0.1 0O : Xn-Z: 0O 0 1 1
O 0 1 0 o 1 1 0o 1 0 0 1
0010 0 0 0 O 0 0 1 1
0 0 0 O 01 1 0 0O 0 0 ¢
e i A | a
(0 0 1 0. 101 1 0! 'O 1 1 0
beem o o s o o o 3 e e e - - 1| oo = - 1
0 0 0 0O 0 0 0 O .. 0 0 0 O
---------- : ettt _ me e —————n
'L‘.’,.O._}_?, | 1L10.0_0 0, '9_9-_1__0_'

Table 8.0. Internal computations in filter algorithms. (Distributed correction

segments are enclosed in broken rectangles.

807



0 01 00101
1 01
* r 10001 0 1
c oo Filter output
1 01000 J N
0 Z, in 2'sg~complement

Table 8.1. Summation of outputs of D.C. modules according

to equation (8.18).

602
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8.3.3 Circuit implementation of correction scheme.

As described in Section 4.3 on page 199, there are many possible
hardware structures and processing modes in the modular. implementation
of the second-order filter. In the light of this, only a general
comment will be given on the incorporation of the distributed cor;ection
scheme into the final filter structure.

We recall that in Section 8.3.1 it was mentioned that for the
completely parallel realisation, only the b" modules belonging to
the b'th input partitionAblock néed to be corrected. With the
completely sequential mode (Section 4.2, page 198), this corresponds
to the correction being applied only during the last period of the
data register clock cycle.

If the time-shared convolution module is implemented using a
R.0.M. as in Fig. 9 on page 201, an extra control bit will be necessary
which efféctively doubles the original. memory size.

One possible alternative is to retain the same memory capacity
at the expense of some gdditional simple circuitry as shown in Fig. 8.9.
Algo, during the last or b'~th data register pe?iod an additional b"
coefficient register cycles will be required. At the appropriate
insténts, the leading bits of the data blocks are 'forced' to logical

1's and the R.O.M. output two's-complemented.

8.4 Conclusions.

A comprehensive and systematic theory;_based on the novel concept
of a digit convolution module, has been proposed as an attempt to
bridge the gap between the formal analytical design of digita; filters

and the implementation of their hardware structures, The theory,
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which has been developed in some detail in this chapter, enables a

general second-order digital filter to be realised in a modular form

and in a variety of processing modes. The proposed modular approach

is also well suited to the technology of large—scale integrated

{L.S.I.) circuits.



CHAPTER G

PRACTICAL HARDWARE IMPLEMENTATION
USING MODULAR APPROACH

9.0 Introduction,

In this chapter, the essential ideas of the modular apprpach
are consolidated, and the practical implications of the desirable
features of the proposed technique brought out by a practical example,

A detailed description is presented of the design of a non-recursive
second-order digital filter and its practical hardware realisation
for real-time operations.

After describing the processing system in general, we go on to
the functional and circuit details of tﬁé main sub-system units.
Results on simple input-output tests on the filter system are also

given.

9.1 General filter system.

As the hardware implementation was restricted by a modest budget,
the architecture that was adopted was mainly the result of a compromise
between the need to reduce component count and the desire to keep a
filter processing rate that is realistic for practical real-time
signals,

Consequently, the filter consists of only a single digit convolution
module operating in a sequential mode (see Section 4.2 on page 198).

Also the filter data and coefficients are represented by 8-bit words.

Furthermore, the complete D.C. module is implemented as a look-up
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table using the Intel 1702* 256 x 8~bit programmable read-only
memory (p.R.0.M.), it being the only large scale integrated (L.S.I1.)
chip that was readily available to the author at the time of désign.
The complete filter system is shown in Fig. 9.0 with its
functional sub-systems shown in Fig. 9.1.
The filter proper consists of the data registers, the p.R.O.M.
module, and the accumulator. ‘

The data registers enable each of the data Xn’ X and Xn-

n~-1 2

to be processed two bits at a time.. These bit-pairs form the first
six bits of the p.R.0.M's address lines. The remaining two are used
to select the different functions of the convolution modulé.

During every sampling period T secs., the filter system goes
through eight cycles of internal computation. At each cycle, the
bit-pairs access the relevant stored function of the convolution
module. The time successive outputs from the p.R.0.M. are added by
the accumulator, with each partial result being appropriately shifted
to ensure the correct relative weightings between the module cutputs.
(This accumulator is set to zero at every sampling instant nT).

After the actual filter output Zn has been computed, the buffer
logic is enabled and Zn is converted to the analogue form by a 12-bit
digital to analogue converterf (D.A.C.).

Finally, to prevent the aliasing53 of the frequency spectrum of

the filter transfer function, the output of the D.A.C. is band-limited -

See Appendiz 9.0.
Appendix 9.0.
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* - -
by an analogue low-pass reconstruction filter which has its -3 dB

point at 3.4 kHz.

9.2 Functional and circuit description of filter sub-systems,.

In the following, the sub-systems that are described in some
detail are the data registers and p.R.0.M. module, the accumulator,
and the filter system control unit. In their corresponding circuit
diagrams, only the essential wiring and pin connections are shown
and 1abelled.. Further details on the I.C. packages used may be found

. ' 51,52
in the relevant manufacturgrs' manuals™ *" .

9.2.0 | p.R.0.M. module and data registers.

In terms of processing speed, hard&are count and some flexibility
of operation, it was considered reasonable to partitién each 8-bit
data word into four blocks of 2 bits, and each coefficient word into

two blocks of 4 bits.

Thus we may write X - and Ai in the form

o 2.3 2.2
Xn-i - Xn—i,3(2 )T Xn—-i,Z(2 )
2.1 2.0
+ xn_i’l(z Yoo+ Xn-i,O(z ) vee s (9.0)
and
_ 4.1 4.0
Ai = Ai,l(z )+ Ai,o(2 ) _ veea(9.1)

Using equation (14) on page 197, we can express the output

z_ of our second-order filter as

Appendix 9.1.
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3 1 2
2.k 4 kM :
Zn = Z (2 ) [1;2 (2 ) { iEO(Ai’kn )(Xn_i’kl)}]

.e..(9.2)

where the term in the curly brackets ébove defines a digit
(R' = 22, R" = ZQ) conyolution module having data and coefficient
word-lengths of 2 bits and 4 bits respectively. Furthermore it may
be easily shown that the maximum value of this convolution module can’
be represented completely by 8 bits.

To see how this module may be implemented as a stored-logic unit,
we first expand the corresponding digit algorithm, thus obtéining,

2
zn,k',k" ={ _Z (Ai,k" )(Xn—i,k')}
1=0

[t

(Ao,k")(xn,k') + (Al,k")(xn—l,k') + (Az,k" )(Xn_z’k.)

eee.(9.3)
Thus, for a given filter impulse response'{Ai}, the partial

convolution output Zn k' K" is essentially a function of the triplet
’ »

of data blocks, i.e.,

Zn,k',k" = ¢k" [(Xn,k')’(xn—l,k')’(Xn-Z,k'):l ""(9'[’)

Since each Xn—i k' is 2 bit in length, the function ¢ for .
3

k" »
a given value of k" , has (22)3 = 64 possible combinations. Hence,
to store this function, we would require a memory of 64 words, each
8 bits long.

As there are two vaiues of k", i.e: 0 and 1, as can be seen

in equation (9.1), we need another (64 x 8)-bit memory space.

Furthermore, since the p.R.0.M. that we have comsists of
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256 8-bit words, we can make use of the 128 lﬁcationslremaining to
repeat the above procedure for a differeénmt filter impulse response,
{Bi} say.

The overall organisation of the p.R.0Q.M. memory space is shown
in Fig. 9.2, in which the contents in locationms: 0,0,§£, 3 0,1,;&, :
1,0,§£, ; and 1,1,?@, are shown, where ;k, is the value of the triplet
(Xn,k' , Xn-l,k' . xn—Z,k') at a particular computation cycle. The
first two bits of the address.locations shown are the 7E£ and 8th
address bits of the p.R.0.M.

The segmentation of the 8 address lines and the allocation of
the resulting segments to the relevant variables is shown in Fig. 9.3.

The hardwaré implementation of the D.C. moduie and the data |
registers, and the corresponding circuit diagram are shown in Figs.
9.4 and 9.5 respectively.

At the start of every sampling instant nT, with the mode control
at 'l', the 8-bit data Xn is loaded in parallel into data registers
Rl and R2. After the first memory access, the mode control is brought
to '0', and, for the remaining cycles of the internal computatiom,
these registers shift their bit-contents serially. The other registers,
R-3 - R6, are'permanently connected in the serial mode. All the data
registers Rl — R6 are clocked once for every two internal cycles.
Two bits, in turn, of each Xn—i are used as address lines to pins
3,2 ; 1,21 ; and 20, 19 of the p.R.O.M.

Pin 18 is connected to a control variable which alternates between
'0' and 'l' at every intefnal clock cycle. Thus, for a particular
impulse response {Ai} say, memory locations O to 63;.and 64 to 127

will be made available alternately.



Address

Memory bits
location Contents 8 7
0
2 .
g(Ai,O)(xn—i,k') oo
63
64
2 .
g‘*“‘i,ﬂ‘xn-i,k" 0ol1
127
128
2
g (Bi,O)(xn—i,k'), 1 0
191
192
2
g0 ) ,
0]
255
Fig. 9.2. The organisation of the 256 words of the

p-R.0.M. convolution module into four basic

sections.



Memory address bits

bit select for coefficient blocks

to————— bit select for impulse response

Fig. 9.3. Segmentation of p.R.0.M. address lines.
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*

Filter output —

Fig. 9.6. Time successive addition of p.R.0.M. outputs.
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The M.S.B. of the address, pin 17, is connected to a manual
switch, and is used to select either the impulse response-{Ai} or
'{Bi}. As such, the implementation incorporatesa simple 'in-situ'
programmability.

Successive outputs of the p.R.0.M. are appropriately weighted

(by shifting) and added together by the accumulator.

9.2.0.0 Programming the p.R.0.M.

Some general information on the Intel 1702A 256 x 8 bit p.R.O.M.
used in the implementation are given in Appendix 9.0.

Basically, it is made of enhancement field effect transistors
(F.E.T's), with a floating gate, i.e. one which is embedded in an
insulating layer of silicon dioxide.

The p.R.0.M. is programmed by injecting high energy electrons,
produced by a controlled avalanche breakdown, through the oxide layer
to form a charge on the gate.

The p.R.0.M. can be reprogrammed by first erasing its previous
contents which is done by irradiating ghe chip with ultra-violet
light for about 15 minutes.,

For our implementation the programming is straightforward. The
contents of locations O to 255, as shown in Fig.9.2, for given {Ai}
and {Bi} are precomputed and the resulting data are punched onto a
standard 8-bit paper tape. Then this tape is used as the input to a
p-R.0.M. programmer (made by Data I/O Corporation), with the p.R.0.M.
to be programmed placed iﬁ a socket provided for. After initiating
the machine, the rest of the programming is automatic.

In operation the Intel 1702A p.R.0.M. has an access time of luS.
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9.2.1 Accumulator.

The accumulator adds, in time succession, the outputs of the
p.R.0.M. convolution module. Also, it weighs each sucéessive output
by spatially shifting the previous partial result.

Its operation is best illustrated if we first expand Equapion

(9.2) as follows;

. : 2 . 2
z_ = { I, x 0)}(2“)“(22)0 . { Do e 0)}(2‘*)’"(22)-"
i=0 ’ =0 7 ’ '
2 2 ‘
+ { ] A . 1)}(2‘*)"(22)1 . { I, e, 1)}(2")1(22>1
. i=0 ] A Ly i=0 : 2 )
2 2
+ { I A, . 2)}(2")0(22)2 1 {.z a, P&, 2)}(2")1(22)2
i=0 ? ’ i=0 =’ ’
2 2 ,
+ { I, & . 3)}(2‘50(22)3 + { Iy D&, 3)}(2">1<22)3
1-:0 3 L] i=0 ¥ ,

«ee-(9.5)

In equation (9.5), we now write each term
2 4. k" 2.k
{ ECYETD ¢ S .)}(2 YC @D, k"=0,1; k'=0,1,2,3,
. i.—""o 1y n“l,k .

in the form
_ 24k" + 2k'
yn,k"' ,.kl »

2
where {yn,k"ﬂc'} = {,zo(Ai.k" X . k')} is the output of the p.R.0.M.
i= ] s

convolution module.
The module outputs are added in time succession in the order
i ) ’ . . ", ’
shown in Table 9.0, with each output being weighted by 24k 2k .

In the sequential accumulation, this weighting is equivalent to

shifting the module output, at a particular computation cycle,
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Computation| p.R.0.M. output No. of bit shifts
ste to left relative to
P yn,k",k'
w.r.t. L.S5.B. previous p.R.0.M.
(4k" + 2k") output
1 0 0
yn,O,O
2 4 4 left (2
yn,l,O . (2
3 yn,O,l 2 2 right (1)
4 _ yn,l,l 6 : 4 2
5 yn,0,2 4 2 r
6 : yn,1,2 8 . , L %
7 ¥,50,3 6 2 r
8 y»1,3 10 : 4 2

Table 9.0. Order of addition of successive outputs

of convolution module.
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(4k" + 2k') bits to tha left, relative to the L.S5.B. of the filter
output, as shown in Fig. 9.6. Alternatively, the module outputs
can be alternatively shifted 4 bits to the left and 2 bits to the
right of each other, as shown in the last column of Table 9.0.

Since, in our circuit implementation, the p.R.0.M. output is
hardwired, we have to shift, instead, the partial results of the
running sum of the module outputs. Consequentlyzghe'4—bit left
and 2~bit right shifts must now be replaced by 4-bit right and 2-bit
left shift respectively.

Furthermore, we have designed the accumulator to truncate fhe
filter output to 12 bits, by shifting out the two least significant
bits of the partial result with every 4-bit right shift.

The mechanisation we have described is illustrated by the example
shown in Fig. 9.7 in which the successive 8-bit outputs of the p.R.D.M.
are enclosed in rectangles. The last 2-bit left shift shown is not
a physical shift but only a reinterpretation of the binary decimal

point in the final filter output.

9.2.1.0 Circuit implementation of accumulator.

The accumulator hardware and its circuig diagram are shown in
Figs. 9.8 and 9.9 respectively.

In Fig. 9.9, the three 4-bit adders add the p.R.0.M. module output
to the shifted and delayed partial result.

The -necessary 4-bit r%ght and 2-bit left shifts are provided by
the six dual 4 line to 1 line data multiplexers. Furthermore, one
data input of each multiplexer is permanently connected to a logical

'0". After the 8th computation cycle, the select lines 2, 14 are



Accumulator register length

p.R.0.M. output

Time
sequence
0 0 0O 0 0 0 0 0
1 1 1 0 1
0 0 1 0 1 0 1 0
— *| 4-bit shift
0 0 0 0 0 1 (8] 0
2 1 1 1
0 0 0O 1 0 0 0 1 0
. “—— 2-bit shift
o 0 0 1 0 0 © 1 o0 0
3 0 1 0 0 0
0 .0 ] 1 1 1 0 0 0
| 0o 0 0o 0 o 1 1 1 0
4 | 1 1 1
4] W] 0 0 1 0 0
0 ) 1 0 1 0 0
5 t o o0 0 1
0 0 1 0 0 0 1 0
-0 0 0 0 1 0 0O 0 0
6 [ o 11
0 0 0 0 1 0 1 1 1 0
o o o 1 1 1 1 o0 o
7 [0 o 1 o 1
0 0 1 4] 0 0 1 1 0
0 0 0 0 0 1 0 0 1
8 [0 o 0
0 0 0 c 1 0 1 1
0 0 0 1 0 1 1 1 0 1 0
A
decimal
point.
Fig. 9.7. Successive addition and truncationm in

filter accumulator.
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Fig. 9.8. Accumulator unit.
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such that an all zeros combination is loaded into the three 4-bit

parallel accumulator registérs at the next sampling instant (n+1)T.

This effectively resets the accumulator at every system sample period.
The ocutputs of the 4-bit adders are connected to the buffer logicl

as well as to a row of light-emitting diodes (L.E.D's).

9.2.2 Buffer logic.

The buffer logic consists simply of eight 2-input And-gates
and three parallel 4~bit registers.

One input of evéry And-gate is tied to a common control line,
while the other is connected to an accumulator.output bit. These
gates 'mask' the partial results, and are enabled oniy when the actual
filter output zZ is obtained.

At every sampling instant, z is loaded into the 4-bit registers

and held there until the next output Zn has been computed.

+1

9.2.3 Clock and control unit.

This functional unit provides the clock pulses for the accumulator
énd data registers, and the necessary timing pulses to synchronise
the other sub-systems.

The basic circuit and its timing diagram are shown in Figs. 9.10
and 9.11. A simple modification to this basic unit for operating the
filter with real—time‘signals is shown in Fig. 9.12. The corresponding

timing diagram is shown in Fig. 9.13.

9.2.3.0 System clocks.

The basic clocks of the filter system consist of a manual
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'bounce—free' switch, and a simple 1 MHz square wave generator made
up of two standard monostable multivibrators.
Either of these two clocks is selected via a 2 to 1 multiplexer
" made up of one triple 3-input Nand I.C. package.
When used in .a dynamic operation the system sampling clock
comes from an external generator.
As can be seen in Fig. 9;10, the output of the 2:1 multiplexer
is divided by a 4-bit counter, whose A (pin 12) and.B (pin 9) outputs,
(see also the timing diagram in Fig. 9.11), are used to clock the

accumulator and the data registers respectively.

9.2.3.1 Timing pulses.

To ensure that the relevant timing and select signals are set
up before the corresponding clock pulses, the outputs of the counter
are delayed by 500 nS, by clocking the parallel 4-bit register with
the pulse outpﬁt of a monostable, which is triggered at every
computation cycle by fhe A output.

The mode control of data registers Rl and R2 comes from the
output of the Nand-gate N2. It is set to 'l' prior to every sampling
inséant and reverts to '0' after the first computation cycle, remaining
so until after the 8th.cycle. As a consequence, the filter .input
Xn is converted from an 8-bit parallel word to a 2-bit sequential
one by the input registers Rl and R2.

The delayed B output of the counter, and the output of the
Nand-gate N1 are used as thé select A,B inputs, pins 14, 2 respectively,
of the 4:1 data multiplexers of the accumulator.

The output of Nl is also connected to the input 2:1 multiplexer,



mode control pins 6's
of registers R1,R2
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-

N2
2 multiplexers’ '
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Fig. 9.10. Basic timing circuit.
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.as shown in Fig. 9.10, such that when the filter is operating with

the 1 MH clock, this clock is inhibited just after the 8th computation
cycle. This effectively halts the computation process once the actual
filter output Zn has been obtained.

To enable the system to operate on real—time.signals, the 2:1
input multiplexer is rewired as shown in Fig. 9.12. As can be
followed from the timing diagram given in Fig. 9.13; at every sampling
instant, the ex£ernal clock triggers the monostaﬁle, which in turn
provides an output pulse of about SﬁS wide. This acts as a 'window'
to allow at least two clock pulses from the 1MH, generatdr.to initiate
the internal computation. The remaining pqlses necessary to complete
the internal processing is provided for by connecting the output of
the Nand-gate N3 as shown.

Finally the And-gates of the buffer logic is controlled by the
output of N1, and its registers are clocked by the Q output of tﬁe

input monostable,

9.3 System performance.

Before the sub-systems were connected together, the basic clock
and control cirecuit was tested by selecting the 1 MHZ clock and
monitoring, on an oscilleoscope, the counter outputs, the delayed
counter outputs and the outputs of Nand-gates N1 and N2,

The complete filter system was then assembled, and for its
preliminary tests, eight manual switches were used as inputs, and
the system output, [:from éhe output of the 12-bit. adders of the
accumulator:J, was monitored by the row of L.E.D's.

After programming the p.R.0.M. with some simple filter coefficients, '
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Fig. 9.12.

Simple modification of control unit.
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Timing diagram of modified input 2:1 multiplexer.
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say AD = A1 = A2 = 255 x 2_8, the accumulator unit was checked for
correct operation. The manual clock was selected, and the filter
was stepped up through its computation cycles. At each step the
partial result in the accumulator was visually compared with the
calculated value,

Following this check, the overall processing of the filter was
simulated by setting up successive values of Zn via the input switches.
With every value of Xn’ the manual clock was selected and clocked
twice, thus loading Xn into the data registers Rl and R2.

The 1 MHz clock was then selected and the computation subsequently
completed automatically. ~After Z , the filter output, was obtained
(and displayed on the L.E.D's), the filter system was then prepared
for the next i@put value Xn+1'
The two basic forms of the input signal used are the digital

impulse and step sequences, given by'{XE} where

255 x 278 for £ =0

)

[}

0 for £ # 0
and

255 x 270 for all positive values of £,

-~
1]

respectively.

The system was then tested for a real-time operation by using
a 10 kHz square wave as the basic sampling clock. The control unit
was first modified as described in Section 9.2.3, and the modified
circuit was checked comparing the outputs (see Fig. 9.12) of the’

monostables, and those of the Nand-gates N Nc and Na with the

bl
pulses in the timing diagram shown in Fig. 9.13.

The filter dynamic characteristics, for given impulse responses
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{Ai}’ was then tested by observing the response of the filter to
a digital impulse. Also the frequency content of the resulting
impulse response was measured using a Fourier Analyzer*.

The digital impulse was derived by first connecting together
all the input bits of Xn to a common line, which is driven by the
output of a pulse generator. A pulse input of 90uS wide, and a
repetition rate of 30mS was used to obtain the impulse_response.
The repetition rate was so chosen such that successive impulse
responsesvof the filter do.noﬁ overlap in time. Also, fhe period
is of a much larger duration than the 'time window'~r used in the
Analyzer measurements.

The step responses of the filter.were also obtained by simply
widening the pulse width of the test input to more than six times
the period of the sampling Elock.

Some typical results are shown in Figs. 14 to 17, for the.impulse

responses

I

{Ai}' (255/256), (94/256), (35/256)

and

i

{Bi} (63/256), (127/256), (63/256).

Figs. 14 and 15 show the time domain responses of the system
to a digital impulse, while Figs. 16(a) and (b) and Figs. 17(a) and
(b) show the discrete Fourier transforms (magnitude and phase) of
the time wave forms in Figs. 14 and 15 respectively.

The filter system imp}emented has a maximum sampling frequency

of about 60 kHz.

* .+  General information on the Fourier Analyzer used for our experiments,

and the relevant parameter settings are given in Appendix 9.2.
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Fig. 15. Time impulse response of filter having

coefficients {Bi}'

{(Scale: Vertical 2V/cm; Horizontal 0.2 mS/cm).
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Fig. 16.

Amplitude (a) and phase (b) responses of
waveform in Fig. 14.

(Horizontal scale: 2.5 kHz/div.)
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9.4 Conclusion.

The modular approach proposed in Chapter 8 has Seen applied
to the practical design and hardware implementation of a second-
order digital filter system operating on rea1~time signals.

The design of the main functional sub-systems was describéd
in some detail, with emphasis on the features pérticular to the
modular approach.

The filter system was successfully constructed and tested.



(i)

(ii)

AppEnDIX 9.0

General technical data on

The Intel 1702A M.0.S. erasable and electrical

programmable read-only memory, and

the Datel DAC-HY12BC 12 bit hybrid digital to

analog converter.



' Silicon Gate MOS 1702A

2048 BIT ELECTRICALLY PROGRAMMABLE
READ ONLY MEMORY

1702A - ERASABLE & ELECTRICALLY REPROGRAMMABLE

= Fast Programming--2 minutes = Inputs and Outputs DTL and

for all 2048 bits . TTL compatible
= All 2048 bits guaranteed* = Three-state Output--
programmabie --100% factory tested OR-tie Capability
* Fully Decoded, 256x8 organization » Simple Memory Expansion--
= Static MOS -- No Clocks Required Chip select input lead

The 1702A is a 256 word by 8 bit electrically programmablte ROM ideally suited for uses where fast turn-around and pattern
experimentation are important. The 1702A has undergone complete programming and functional testing on each bit position
prior to shipment, thus insuring 100% programmability, -

The 1702A is packaged in a 24 pin dual in-line package with a transparent quartz lid.

The transparent quartz lid alows the user to expose the chip to ultraviolet fight to erase the bit pattern, A new pattern can then
be written into the device. This procedure can be repeated as many times as required.

The circuitry of the 1702A is entirely static: no clocks are required.

The 1702A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher
performance MOS circuits and provides a higher functional density ona monolithic chip than conventional MOS technologies.

”

PIN CONFIGURATION PIN NAMES BLOCK DIAGRAM
. DATA OUT ) OATA QGUT 8
E KD AL—A, Address inputs | e {
l|-1 ] b vee .
[&] Chip Selact Input _ ouTRUT
ol 7L ove b ) Dats Outputs Cine BUFFERS
.'DAIAW! T4 A N ay OUT‘ ouTs
DAfa QUT 2ol s 0L 8, ' '
oatagut 3-b e wl oA, 2043 BT
N al PROGRAM ~w] no{:s:-:f::ux
DATAQUT 34 B Wi Ay
+OATA OUT ¢-1 # " v I
*OAlA QUT 14 19 11 DECODER
*Da1i 0T 0 11 emy wh i }
Ve 17 13 | PROCRAM {
CTHESFN LS THE DATA IPUT LLAD Dukide FRAOCRAMG V 4
QRIVERS
Ag A, Ay

NOTE: In the read mode » logic 1 at the address inputs
and clata outputs is a-high and logic 0 ix a low,

PIN CONNECTIONS

The external lead connections to the 1702A differ, depending on whether the device is being programmedm or used in
read mode. (See following table)

PIN 12 13 14 15 | 16 22 23
MODE (VCC ) (Programl 'CS, (VBB } ‘VGG ' ‘Vcc ’ . (Vcc ‘
Read Vee | Vee GND | Ve | Ve Vee | Vee
Programming GND | Program Puise | GND | Vpa | Pulsed Vgg (Vj 4p } | GND | GND




DATEL

SYSTEMS, INC.

12 Bit Binary or 3 Digit BCD
Pin-Programmable Qutputs

Internal Reference & Output Amp.
Miniature Hermetic Glass Package
£15VDC Supply Only

Fast Settling Time

e DAC-HY12BC and DAC-HY12DC are
~ cost 12 bit binary and 3 digit BCD digi-
~to-analog converters manufactured in vol-
e in Datel Systems' modern in-house thin
m bybrid facility. A new level of perfor-
ance has been achieved tor 12 bit D/A con-
rters at a price far below that of previously
aifable models. These converters are com-
ete, including a pracision internal reference
d a fast output operational amplifier, A
gh degree of application flexibility has been
hieved with voltage and current outputs of
to —2mA, :1mA, 0 to +5V, 0 to +10V,
BV, 15V, and +10V, all available by ex-
'nal pin connection. These devices are avail-
te in @ miniature 1.3 X 0.8 X .15 inch her-
rtically sealed glass package.

nbingarity is +%LSB meximum for the
AC-HY12BC and t%LSB maximum for the
AC-HY12DC. Temperature coefficient of
n is +30ppm/°C maximum and tempera-
e coefficient of zero is +5ppm/°C of full
fle maximum. Output settling time is 300
a¢. to ¥ LSB for current output and 3usec.

“LSB for wvoltage output with a 10V
ange. Input coding is complementary bi-
ry, complementary BCO, and complemen:
y offset binary. Power supply requirement
t15VDC at 35mA. No 5 volt logic supply is
cessary.

e internal design of these hybrid converters
nsists of 12 weighted current sources, 2
in film resistor networks, a precision zener
ference, reference control circuit, and an
Hput operational amplifier. The current
urce switches consist of monolithic quad-
rrent sources in conjunction with a Ni-
rome thin film resistor network which is
nctionally taser trimmed to precisely set the
1.2-1 weighting. The superior tracking capa-
ity of the thin film resistors in conjunction
th the tightly matched quad-current sources
sults in a differential linearity tempo of
ly +2ppm/°C, assuring monetonic opera-
n over the full 0°C o 70°C temperature
nge. For excellent long term stability both
8 thin film resistor networks and the thin
m substrate are passivated.

cond source devices for the DAC-HY 12BC
d DAC-HY12DC are Burr-Brown series
AC80 and DACBS which are pin for pin
tivalents,

15

LOW COST, 12

BIT HYBRID

DIGITAL TO ANALOG CONVERTERS

$24. IN 100's

‘DREEL.
S oYSTEMEING |
" +DfA CONVERTER'

{DAG-HY12BC

+ 15V GND -18v
& & @
:ICTD ::? 3 —'3\:\:—&@ 0V AANGE
mee :: :, __" A 10V RANGE
o 3 (3 (15} voLr. our
w00 4 {a
BO s (5 PROGAAMMABLE
WEIGHTED THIN FilLM QUTPUT am#
40 5 (& CUAHENT AESISTOR
20 F] ¥ SWITCHES NETWAORK —
w8 {8
I - 20) CURRENT QLT
4+ 10 (10 r BN
2 (1 ANA 1T)BIPOLAR OFF,
L5B 1 172 0
:FEE;‘_::?;%T” —.@GA‘N aDs.
(13 16 24
s NC. REF. IN, AEF_OUT
* Far BCD model these resistors ata 4K §L.
** For BCD model this resistor is open cireuit.
MECHANCIAL DIMENSIONS
INCHES {MM)
800 INPUT/OUTPUT CONNECTIONS
{209 | ‘
i —— ] B0 pin | FuncTion|ein | FuncTion
| | t 1 [ BIT1IN 113 | NOCONN,
f % 020014 MAX, 2 | BIT2IN 14 | -16VDC
KOVAR 3 BIT 3 IN 15 VOLT. OUT
4 BIT4IN 16 REF. IN
PR 1200 5 | BIT5IN |17 | BIPOLAR OFF,
2/ . 6 | BIT6IN |18 | 10V RANGE
. . 1 7 BIT 7 IN 19 20V RANGE
0237 HIGH ’: BOTTOM : SPACES 1.300 8 BIT 8 IN 20 CURRENT QUT
STAND-OFFS § TS ol 132,00 9 | BITOIN |2V | GROUND
: : €ACH 10 BIT10IN | 22 +15vDC
DOT ON . . 11 BITI1IN | 23 GAIN ADJ.
ror rer._ | 0o o* 100 12 | BIT12IN |24 | REF. OUT
EAENCES E. A :
PIN 1
oo |
s = (&1

NOTE: 100 inch = 2.5 MM
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ApPEnDIX 9.2

The Hewlett-Packard 5451A Fourier analyzer system 54,55 used in our
experiment utilizes the HP2100A digital computer to calculate the

Fourier transform of a time-varying voltage x(t), i.e. the transform

given by,

(2]

S_(f) = J x(t) e I2TEE g¢

x .
In the digital implementation of this transform the input x(t)

has to be sampled at finite, usually uniform, intervals of time

At say.

Thus, we calculate instead,

- |
S»(£) = At ] x(nat)e J2TE(RAL)

nE=—-

This déscribes accurately the spectrum of x(t) up to some
maximum frequency Fmax vhich is dependent upon the sampled spacing At.
Furthermore, in practice, only a time limited record of the input
signal can be taken. Thug if the signal is 'observed' from some zefo
time reference to time T secs., then N = number of samples = T/At.
As a result we cannot now calculate the spectrum of x(t) at an

infinite number of frequencies from O Hz to F

F

max

Thus, we end up with what is called the discrete finite transform

(D.F.T) given by

: N-1 : .
S; (mAf) = At z x(nﬂt)e'JZW(mAf)(nAt)
n=0



In our experiments, the following parameters were used:

N = block size of sampled data = 256
At = sampling period of analyzer's analogue to digital converter
= 2048
max 25 kiz
Af = 50 Hz .
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CuapTer 10

A UNIFIED FILTER REALISATION APPROACH
USING PROGRAMMABLE STOreD-logIC
ConvoLuTION MobuLES*

10.0 Introduction.

We have shown in Chapter 8 how a second-order section may be
realised in a modular way by using digit—convolution modules. Further
to this, we propose and develop, in this chapter, a.novel_method of
implementing the basic digit convolution module which combiﬁes the
fast operating speed of a table -look-up form with the flexibility.of
one realised from standard arithmetic units.

The proposed method has the added attractions in that it may
be further generalised to enable the.concept of stored-logic convolution
modules to be used in a general-purpose computer, and also to digital
filters with time-varying coefficients. -

In this chapter we also describe the extension of the modular
approach to a general second-order digital filter, which now includes
the recursive part, and discuss the general mechanisation of high-order
digital filters. |

We conclude the chapter by briefly surveying other significant

approaches to the hardware implementation of digital filters that

have been proposed recently.

Sections 10.1 to 10.4 are based on a paper to be presented at a
fortheoming conference 56,
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10.1 Basic implementations of digit-convolution module.

After having decided upon the word sizes of the data and
coefficient blocks of the basic digit-convolution module, a digital
designer is faced with essentially two basic ways with which to
implement the module in hardware. These are shown in Figs. 10(a) and (b).

In the former,.the digit mndﬁle is built directly from standard
multipliers and adders using known technique521. While this form
offers maximum flexibility in terms of filtef coefficients, it is rather
expensive, fequires considerable wiring, and its operating speed is
dependent én the gate propagation delays.

The stored-logic form shown in Fig. 10(b), on the other hand, is
compact with reduced wiring and power dissipation, and is extremely
fast in operation. 1Its disadvantage is that different R.0.M's are
needed for different filter transfer functions. Even if erasable and.
programmable R.0.M's like tﬁose described in Chapter 9 are used, it
still requires a considerable amount of time to erase previously
stored contents of the p.R.0.M's and fo prepare the paper tapes for

the updated look—up table.

10.2  Novel implementapion using complementary convolution module.

The method to be described is an application of a recent proposal
by the author (See Appendix 10.0).

We resolve the dilemma in the previous section by realising fhat
instead of having to decide on one of the two forms in Fig. 10.0, we
may actually use both in a ;nified structure to produce an effective
combination.

The basic scheme shown in Fig. 10.1, in which the modular
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second-order configuration is implemented in the sequential processing
mode, comnsists of a slow non-real time simuléted filter and a fast
real-time stored-logic part.'

We have termed this combination the complementéry 1&1* convolution
module. The 'slow' filtgr part of this module is basically similar to

the circuit shown in Fig. 10(a) with two main differences, viz.,

(a) the data block vector Xer = (xn,k" Xn—l,k" Xn-2,k')

are now simulated by a 3p'-bit binary counter (p'= bit length of a data

block), and

(b) since this 'slow' filter is not Working in real-time, the
arithmetic unit needed to compute tﬁe module output for a given vector’
;k, can be constructed as-a serial configuration using slow and inexpenéive
components.

One such realisation is shown in Fig. 10.2, in which the multiplexers
allow for the multiplications (Ao,k")(xn,k')’ (Al,k")(xn—l,k') and
(AZ,k")(Xn—Z,k') to be done in time successions. Thus, for a given
vector Ek. and coefficient block, the corresponding module output is
obtained after three multiplexers' periods.

Associated with the slow simulated filter is its fast table look-up
version operating in the real-time environment. This counterpart
consists of a fast read/write memory (R.A.M.), the multiplexer for the

data registers and the data block simulator, and the relevant interfaces

An abbreviation of the term Yin-Yang, a term used in Chinese philosophy
to indicate(the active and passive principles of the universe.

.... From their interaction all things come into existence),
'Encyclopedia Americana’, Vol. 29.
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from and to the real-time environment.

Before actual real-time processing, the ¥+Y module is first
switched to its slow half. For every combination of the vector
block simulator, the coefficient block registers go through the

complete sequence of coefficient blocks, i.e. {Ai 0},......,{Ai k..},
?

codAg pay )

~ For a particular vector §£, and coefficient block {Ai kn}, the
»

module output

2ot = b LA e HE )

O 1N

is computed 'and written into the R.A.M, store at the location specified
by the vector ;k' .

Each coefficient block is associated with a particular combination
of those address bits that are allocated as the control variables..

The programming mode is completed after the vector simulator has
exhausted all possible combinations of §£. .

The Y»Y convolution module is now switched to its active real-time -
mode and now operates as a fast stored-logic digital filter.

A practical digital filter using this complementary convoluation
module idea, and based on the author's basic circuit designs, has been

successfully constructed as a Final Year's Project57.

10.3  The ¥Y module in the paraliel modular realisation.

The proposed approach can be easily applied to the direct parallel
_form of the modular realisation of the second-order section.

To illustrate this, consider the case when the B'-bit data words
are each partitioned into two blocks, each of p' = B'/2 bits, and the

B"-bit coefficient words are each partitioned into two blocks, each
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of p" = B"/2 bits.

The resulting parallel form is shown in Fig. 10.3 and consists
of two groups of digit-convolution modules, each group containing
two modules. |

The groups may be programmed simultaneously, while in a particular :
group, each convolution module is programmed in turn, each module
being selected by the control signals.

The non-real-time module used is identical to that described
previously (see also Fig. 10.2), but is used in a slightly different
way.

The particular block vector ;#, in a given group, say, is not
connected ‘in parallel to the address of the stored-logic modules.

Instead,-only one entry port is used, via the Xn data block as

k!
shown .in Fig. 10.3. Also the address vector used, i.e. Ek, , 18
obtained sequentially. Each value of Qx’ the output of the data block.
multiplexer, iIs input and shifted horizontally along the registers of
the groups.

After three such shifts, the correct coﬁbination is now addressing
the modules. By this time also, the output for the module currently

being written into would have been computed .

The remaining steps in the programming are as discussed previously.

10.4 Consequence of the concept of complementary ¥vY convolution module.

Apart from its obvious practical usefulness, the primary consequence
of the above concept is that it can be a useful tool to unify what
have previously been apparently different approaches to the realisation -

of digital filters.



Registers

NON-REAL-TIME
MODULE *

* gee Fig. 10,2, .

Fig. 10.3.

using programmable digit-convolution modules.

module output

chip select .

Paralliel realisation of second-order section

ST T .
Xn—2,1
Za,1,1
>
EEm— ]
X 14 MODULE
f1
Zn,I,O
MODULE '
> A,
] MUX 3 1,0
X
3 n, 1l
Y Registers
~p4d MUX » T T -
Xn—2,0
Z
n,0,1
X ‘ >
n-1,0 MODULE
-
o i1
4 24,0,0
—P G -
X MODULE ’
n,0 -
Q " L
x ] A:’.,‘0



232

In the 1iterature23’50’1

, there is firstly the division between
slow but flexible realisatiéns using a general-purpose computer
(G.P.C.) and real-time special-purpose realisations using hard-wired
circuits., Further to this, even with special-purpose processors,
‘there is the division between those built from standard arithmetic
units, and those using R.0.M's as look-up tables.

We have already described how the last two forms can be combined
together as one complementary unit. By generalising the conceﬁt, it
is also possible to combine the general and special-purpose organisations.

The block diagram of a G.P.C. organised as a complementary‘YmY
convolution module is shown in Fig. 10.4.

The vector simulator and the 'slow' filter in Fig. 10.1 have
now been replaced by a software routine, quite ﬁrobably in assembler
Ignguage, and the siored—logic module is now implemented using an
allocated memory space in the computer core store.

The data block vector is taken in and acts, via the direct memory
access (D.M.A.)21 input—-output interface, as the address to the reserved
memory space. In practice, this vector may have to be modified in
ordér to match it with the address format of the computer's memory.

The software routine computes basically the sum of products
algorithm for the ﬁodule. The results of the computations are'1oaded
intc the allocated store at the address specified by the vector simulator.

This method is attractive iﬁ'view of the current trend in

microprocessor technology.
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10.5 Application to time-varying digital filters.

Many practical signal processings require the use of digital
filters whose coefficients have to be varied at specified time intervals,
e.g. in the simple.digital modelling of speech production (Chapter 12,
Ref. 1), the vocal tract is simulated by a digital filter whose
coefficients vary, on average, every 10 msec.

Previous hardware filter designs based on R.0.M's cannot be used
in such cases. Our proposed_technique, however, can be used, provided
the period of coefficient up dating is greater than the time required
for the completion of the programming phase.

The general scheﬁe is shown in Fig. 10.5 which is basically the
structure shown in Fig. 10.1 with the addition of the extra R.A.M. and
the multiplexers MUX-2 and MUX-3.

Each R.A.M. operates alternately in real-time. While R.A.M.1
say, is filtering real-time signals, R.A.M.2 is being loaded with the

look—up table of the new filter characteristics.

10.6  General digital filter systems.

Up to now we have illustrated our various_proposéls for. the
realisation of digital filters using a non—récursive second-order
section, The methods may be directly generalised to include the
recursive part as well. Once the general second-order section has
been implemented, standard techniques may be employed to realise

higher order filters.
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10.6.0 General second-order section.

As explained in Chapter 2, the general second-order digital
filter consists of both a non-recursive and a recursive part

described by the difference equation

~ 2 2 Q %
Y = [ ) A, X .- 7 B, Y :] ...(10.0)

n . i n-1 i n-i

1=0 i=1

[ Q
= |2z 4-w:’
n n
2 2
.where Z = Z A, X ., and W_ = )}B, Y . .

n o 1 ni n ] i ni

(See also Fig. 2 on page 196).
For simplicity, we assume that Bi and Yn—i are represented by
the same number of bits required to represent Ai and Xn-i respectively.
Furthermore, Bi and Yn—i are partitioned in the same way as Ai and
X . are.
n-i
Applying the method in Section 8.2 and using equation (14) on

page 197, we obtain the following expression for the modular realisation

of the general second-order digital filter, i.e.

2
Yn =K { Z (Ai,k") (xn-i,k')

i=0
2 _ ‘
- iél(Bi,k")(Ynﬁi;k')} : ...(10.1)
where b'~1 ' ' b'-1 noyn
K= J @)% 7 @)k
k'=0 . k"=0

* Q .
[] means that the value in the brackets is rounded-off to
@ bits.
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The term in the curly brackets is the generalised digit—convolution
module, and consists of a pair of modules each having a hardware
structure similar ‘to that of the simple basic digit~convolution module.

The modular realisation of the general second-order section
resulting from equation (10.1) are shown in Figs. 10.6 and 10.7.

If the generalised convolution module is ‘implemented as a stored-
logic unit, two R.O.M./R.A.M. units are needed. Of course, if memory
units of sufficient storage capacity are available, the complete
generalised digit~convolution module may be implemented as a look-up’

table.

10.6.1 General high-order filters.

It is well known (Chapter 2) that it is convenient in pr%ctice
to realise a high-order filter as either a cascade or a parallel
connection of basic second-order sections. Also, to take advantage
of digital techniques, these connections are usually implemented using
‘a single time-multiplexed basic second-order section.

Typical schemes are shown in Figs. 10.8(a) and (b). In the former,
after the output for,thé first section has been computedlit is fed back
to the basic section via the input multiplexer. Outputs for successive
sections are obtained in this way. The coefficients for the second-
order sections are obtained from a circulating store.

The implementation of the parallel connection is shown in Fig. 10.8(b)
in which the outputs for sqcceséive sections are accumulated and
rounded-off.

These multiplexing techniques are well described in the
literature1’5’4’7’50. Also a recent paper67 on a filter hardware

laboratory is very instructive.
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10.7 Recent proposals for the hardware implementation of digital filters.

In recent years, most of the published proposals are either

. _58-61 . . 62,63
extensions or generalisations

of the basic structures
proposed by Croisier et a16 and developed by Peled and Liu7. Some
other approaches, however, have been suggested.

De Mori et a164 describes a special-purpose processor for both
digital filtering and fast Fourier transformation (FfT), using emifter-
coupled logic (ECL) hardware comﬁonents. Its main feafufe is a
parallel multiplier which requires about 15% less har&ware than normal
implementations. This is because the least significant weight bits
in the partial products are not processed. Instead a correcting bias
is added. This multiplier performs a multiplication and two double~-
precision additions simultaneously.

Peledﬁs, on the other hand, proposed a machine organisation of a
dedicated digital signal processor in which the filter coefficients are
rgpresented in the specialised canonical signed-digit code. The
resulting realisation requires the minimum number of add/subtract
operations to implement the required multiplications and additions.

It promises a significantly better performance than existing realisations
using standard multiplier packages.

De Mori also proposed an interesting implementation scheme66 based
on logic-in-ﬁemory cellular arrays. The resulting structures allow
very fast filters to be designed because the time required for a sinéle
multiplication, (due to a large overlapping between the execution of
the overall multiplications), gives only an additive contribution to -
the total time required to compute an output sample.

The iterative nature of De Mori's filter structure is most suitable
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for special customed-designed L.S.I. implementation of high frequency
digital filters.

As the research on finding good hardware structures for diéital
filters is actively progressing, there are certainly other interesting

ideas yet to come.

10.8 Conclusions.

An interesting realisation approach to the realisation of digital
filters using programmable sto;ed-logic digit-convolution modules
has been proposed and developed. The scheme promises to unify what
were previously apparently different realisation approaches.

The modular approach haS‘als§ been exfended to the géneral
second-order digit filter by the concept of a generalised digit-
convolution module. |

Finally, other interesting implementation proposals published

recently were briefly mentioned and commented upon.



APPLIED IDEAS

APPENDIX

10.0

Versatile digital arithmetic unit with rams

v common methad of imple-
nenting fast arithmetic circuits
5 to realise them as look-up
ables using semiconducterread-
inly memeories, but they ate still
ixpensive for the general user to
wurchase and programme. in
iddition, their contents cannot
e pltered to suit different oper-
iting  parameters. Even with
ield-programmable and erasable
‘oms, it still takes time to prepare

all

cients, A, 4, 4, and A;, and its
output ¥y is given by:
3

Yn= (1)

Xo-kAk

k=0
A table look-up realisation of
the pottion of the filter which is
enclosed by the broken lines in
Fig. 2 would require a 16-word
by eight-bitram addressed by tha
binary vector {xa, Xn_y, Xn-s

is made up of a pair of full
adders type SN74183 and an
SNT7482 two-bit adder. The filter
output Y, is computed as foi-
lows. Expressing the weighted
coefficionts in binary:

L]

ag,s2!

§=0
where k=0, 1, 2, 3 and a;,
= 0 or 1. By putting (2) in (1)

Ar= (2)

‘he data paper tapes and to x,.,). and -re-ordering the doubie
wrase previously stored contents The completa circuit is de- summation:
with an ultra-violet source. tailed in Fig. 3. The os is a s 3

A simple and efficiont alterna- simple four-bit counter type
live mokes use of random access  SN7493, while the sac is a four- ¥n =.Z Z Xn-r arg2!  (3)
sad/write memories instead. As word serial one-bit adder which j=0 k=0 ’
shown in Fig. 1, the ram, when
operating in real time, is ad-
dressed by the signal frem the I ‘ ) N
pnvironment and outputs the [on -t -eole : .
relevant word to it. AT ~ N c;teﬁ T ' -

The ram is veiatile, so thatit | & - - \‘L' swite - .
has to have its contents written Enable/ 4 - :
overy time the system is switched { . inhibit | . lirite/read i
on. But because tha contents are . : |
compultable, the ram is easily ]
programmed using an opcrand © «
simulator {os) and slow erithme- Slow . e Random | o Real-

. t arithmetic access time
tic unit (sau). The as generates unit o demory | o otput

possibls  combinations of b °

input values, and the sac, which [ -

is easily designad with conven- g
tional serial arithmetic tach- . l' vee g
niques, computes the required e . e £
arithmetic function. —0 b @ >

As an example. a binary digltal . u
filter is shown in Fig. 2. It has - |- v e}
four six-bit weighting coeffi- — ‘ * geal-

. Operand ® time
Fig. 1: Digital arithmetic unit. simslator ; "1 e tnput
Fig. 2: Binary digital filter with . .
six-bit coelficients. - W ©
Fig. 3: Implementation of binary |. . A
!{'Iter using a ram. E.ig'_l' - . K o )
1x4-bit .
muitipliers.
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Thus coefficient bits of the same
significance are zdded in one
bit 1ime, each bit ay; being
weighted by the relevant simu-
fated data bit xa_r, for every
combination of the os output.

In opetation, the weights A,
to A; are entared serially, via the
SN74157 two-tc-one muliti-
plexer, into the SN7491 sight-
bit registers. This is done by
connecting the programme clock
line to 84, which is used as a
manual clock. Each weight is
padded by two zeroes foilowing
its most significant bit. 51 is set
to cow, the counters are reset e
zero, and the ram address is now
switched 1o the os output via S2.
The progranyme c¢loci line is
reconnected 1o the clock, 54 set
to one, and the clock {s initiated.

The three-bit and four-bit
counters and the associsted nand
legic ere designed so that, after
every eight clock pulses, the
write cnable nf tha ram s
strobed to zeto, writing in the
reievant filler output which has
meanwhile bean computed. The
next clock pulsa hrings the
write enable back to one and
clocks the os to a now four-kis
address, with two nond gates
between the counters preventing
data being written into the wiong
address., After another cight
pulses the process is tepeated.

Thu system has been designed
to stop eutumatically afler the os
output has reached (3,1,1,1)

-and the necessary arithmetic
corresponding to this address

has been duly completed. S4 is
now set to zero, disenabling tha
clock and the ¢ounters reset to
zero, thus holding tho write
enabfe 10 onc. After switching
the ram address back to the
environment input, the memory
is now ready for real-tims
application. :

Digital arithmetic units built
with this technique are fast in
operation, with a 30 ns data rate
typical for the cxample given,
simple and inexpensive, since
tams are general purpose msi/lsi
devices, and extremely versatile,
since operand parameters may bo
altered quickly.

The stow arithmetic unit and
the ram may be used in their
more traditiona! roles when the
system is not operating in the
fast mode.

M. A. Bin Nun, Department of
Electronics and Electrical Engi-
neering. University of Techno-
fogy, Loughborough, Leics.
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CuapTer 11
REVIEW AND RECOMMENDATIONS

11,0 “Introduction.

We recall that the purpose of the research reported in this
Thesis is to develop a systematic hardware realisation theory of
digital filters which will logically link their formal analytical
designs and their hardwired practiqal implementations.

In contrast to existing techniques, a systeﬁs épproach was
adopted for the general investigation of possible modular ﬁrchitecfures
for the basic second-order digital filter. In particular, we proposed
and developed two novei methods. 1In the first, we modelled the
complete second~order section as a finite-state sequential‘machine
(F.5.M.), which was then analysed using the theory of machine
decomposition using S.P. partitions. In the second method, we
analysed the internal computation of the filter algorithm.by developing
the idea of digit convolutions. |

Below we review briefly the main results of our investigations
and in Section 11.2 we recoﬁmend the possible directions along which

the foundation presented in this Thesis may be extended.

11.1 Review of main results.

When a2 non-recursive second-order digital filter is modelled
directly as an F.S.M,, we showed that the state transition function
of the resulting model ié already in its simplest form. In addition,
we proved that this model is also a minimally reduced machine. A

partial state reduction is possible, however, if the filter output
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is expressed as a multi-component word. For the recursive sections,
it is possible to minimise their F.S5.M. models. Some of the reduced
machines also contain $.P. partitions. State minimisation, however,
becomes less useful with increasing wordlengths, and the non-
linearities introduced in the filter transfer function by quantisation
effects make it difficult to generalise the results_found;

By applying the same modelling and analysis technique to tﬁe
adder and multiplief units making up the filter, we first showed
that modulo.ZN_adders and multipliers may be realised as loop-free
cascade interconnections of sub-machines which require less memory
space to implement than the direct sforgd—logié impiementétion. in
addition, we further developed the stored-logic implementation of
the conventional N-bit parallel adder, and two useful F.S.M. models
of the N-bit by N-bit parallel multiplier.

We then generalised our findings to adders and multipliers
modulo an arbitrary base M, and showed that the partition lattices
of their F.S5.M, models are easily generated from the lattice of the
divisors of M under the 'factor' relation. The understanding gained
was useful in showing that a second-order section, suitably and
realistically simplified, possesses a regular algebraic decomposition
structure. We also introduced the concept of the homomorphic iﬁagés
of an F.S5.M. filter and their corresponding lattice.

As an interesting 'spin-off’', we found that, as an alternative
to the loop—free structure, a modulo ZN multiplier may be implemented
in a novel way which reqﬁires a low full-adder count and a propagation
delay that is essentially independent of wordlengths.

Using our second method, we extracted one possible basic
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computational unit for digital convolution which we terﬁed the
digit-convolution module (D.C.M.,). The second~order digital filter
may noﬁ be regarded as a regular interconnection of D.C.M's. This
modular approach favours the digital designer since it is easy.to
construct, test and maintain the filter hardware, the c?rcuit
‘structure isrdirectly expandable in terms of computational accuracy,
and is also flexible in its processing modes. |

The modular theory was consolidated and its.essential attfactive
features brought out by the construction of a practical real-time
prototype filter using semiconductor memories.

Finally, we introduced amd developed the concept of the ¥ v Y
complementary pair of 'slow; and "fast' digit-convolution modules
which unified what were previously apparéntly different approaches

to digital filter realisations.

11.2 Possible directions for development.

The basic research that we have carried out has led to .a useful
theoretical framework for the implementation of digital filters,
This may be used as a found;tion for further research along the
following possible directions.

As an attractive alternative to read-only memories (R.0.M's),
a study may be made on the use of the newer programmable logic arrays
(P.L.A's) to implement the homomorphic images of modulo-M filters
and digit-convolution modules as stored-logic structures. As with
P.L.A's selected minterms of the logiec variables may be programmed,
their use should lead to a more efficient 'packing' of stored

information.
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With the modular realisation using D.C.M's, oﬁe could investigate
the application of pipelining to increase the overall throughput
or computation rate of the filter section. This study may incorporate
the analogue—tOfdigital and digital-to-analogue converters since
they are also usually organised in groups of data digits.

In spite of the rapid progress made in the techmology of
microprocessors, they ‘are still considered slow for most real-time
work if progfammed to implement thé digital convolution algoritﬁm
directly. A more realistic processing rate should be possible,
however, if a microprocessor is used to implement only the digit-
convolution module. The overall filﬁer is now realised as an array
of microprocessors. An even supefior performance may be obtained
if the newer bit-slice bipolar'microproceésors‘are used instead.

Furthermore, each. microprocessor in the array may be configured
into a ¥ & Y complementary module pair. The resulting filter will
be extremely. flexible and fast. This approach is attractive as |
semiconductor memories for microprocessors are getting larger in
capacity and faster in access time.

We also believe that the concept of the digit-convolution
" module is useful as a unit of hardware complexity and as a means
to measure the comparative usefulness between different digital
filter implegentations. A theoretical study on this should result
in a convenient analytical tool.

Finally, as a specialist's project, the attractive implementation
of modulo ZN multipliers using adder-pairs should be developed
further, especially to discover whether simple algorithms exist

for the necessary coding and decoding.
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11.3 Conclusions.
As, at the moment, there is 2 tremendous activity in the
search for good hardware structures for practical digital filters,
it will not be long before real-time digital filters will be as
common and as easy to build as active filters are today, with the
added extra features that are only possible with digital processing.
1f the author's findings are seen to contribute in a modest
way towards that objective, it will more than recompense the effort

that has gone into the research reported in this Thesis.



10.

REFERENCES

Rabiner, L.R. and Gold, B., 'Theory and Application of Digital
Signal Processing' (Prentice~Hall, 1975).

Oppenheim, A.V. and Schafer, R.W., 'Digital Signal
Processing', (Prentice-Hall, Englewood Cliffs, N.J.,
1975).

Rabiner, L.R. and Rader, C.M. (eds.), 'Digital Signal Processing’.
(IEEE Press, New York, 1972).

Jackson, L.B., Kaiser, J.F. and McDonald, H.S., 'An approach
to the implementation of digital filters', IEEE Trans. on
Audio and Electroacoﬁstics, AU-16, No.3, pp.413-21,
September 1968.

Gabel, R.A., 'A parallel arithmetic hardware structure for
recursive digital filtering', IEEE Trans. on Acoustics,
Speech and Signal Processing, ASSP-22, No.4, pp.255-8,
August 1974,

Croisier, A., Esteban, D.J., Levillion, M.E. and Riso, V.,

U.S. Patent 3,777,130, December 1973.

Peled, A. and Liu, B., 'A new hardware realization of digital
filters', IEEE Trans. on Acoustics, Speech and Signal
Processing, ASSP-22, No.6. pp.456~62, December 1974,

- Zohar, S., 'New hardware realisations of non-recursive digital

filters', IFEE Trans. on Computers, Vol. C-22, No.4, April 1973..

Lockhart, G.B., 'Digital encoding and filtering using delta .
modulation', Conference on Digital Processing of Signals
in Communications, University of Technology, Loughborough,
11-13 April 1972.

Minsky, M.L., 'Computation: Finite and Infinite Machines'

(Prentice-Hall International, 1972).



11.

12,

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

23.

Booth, T.L., 'Sequential Machines and Automata Theory'
{(John Wiley & Sons, 1967).

Hartmanis, J. and Stearns, R.E., 'Algebraic Structure Theory
of Sequential Machines' (Prentice-Hall, 1966). .

Howard, B.V., 'Partition methods for read-only memory sequential
machines', Electronics Letters, Vol. 8, No.l13, pp.334-336,
29 June 1972. '

Lewin, D., ‘'Outstanding problems 'in logic design', The Radio
and Electronic Engineer, Vol. &4, No.l, pp.9-17, January 1974.

Kvamme, F., 'Standard read only memories simplify complex

logic design', Electronics, 43, No.l, pp.88-95, 1 January 1970.

Uspensky, J.V. and Heaslet, M.A., 'Elementary Number Theory'
(McGraw-Hill, U.S.A., 1939).

Ackroyd, M.H., 'Digital Filters', (Butterworths, 1973).

Bogner, R.E. and Constantinides, A.G., Eds., ‘'Introduction to

Digital Filtering' (Wiley, 1975).

Oppenheim, A.V. and Weinstein, C.J., 'Effects of finite register
length in digital filtering and the fast fourier transform’,
Proe, IEEE, Vol. 60, No.8, pp.957-976, August 1972.

Liu, B., 'Effect of finite word length on the accuracy of
digital filters - a review', IEEE Trans. on Circuit Theory,
CT-18, No.6, pp.670-7, November 1971. )

Lewin, D., 'Theory and Design of Digital Computers', (Wiley,
New York, 1972). '

Freeny, S.L., 'Special-purpose hardware for digital filtering',
Proc. IEEE, 63, No.4, pp.633-48, April, 1975.

Allen, J., 'Computer architecture for signal processing',
Proc. IEEE, Vol. 63, No.4, pp.624-633, April 1975.



24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

Dadda, L., 'Some schemes for parallel multipliers',' Alta
Frequenza, Vol. XXXIV, No.5, pp-349-356, Maggio 1965.

Dadda, L. and Ferrari, D., 'Digital multipliers: a unified
approach', Alta Frequenza, Vol. XXXVII, No.ll, pp.1079-1086,
Novembre 1968.

Barna, A. and Porat, D.I., ‘Integrated Circuits in Digital-

Electronics', (John Wiley & Sons, 1973).

Blakeslee, T.R., 'Digital Design with Standard MSI and LSI',
(John Wiley and Sons, USA, 1975).

Little, W.D., 'An algorithm for high-speed digital filter',
IEEE Trans. on Computers. Vol. C—23, No.5, pp.466-469,
May 1974.

Steele, R., 'Delta Modulation Systems', (Pentech Press,
London, 1975).

Croisier, A. and Riso, V., 'Digital filter for delta modulated

information', British Patent: 1 346 216.

Peled, A. and Liu, B., 'A new approach to the realisation of

nonrecursive digital filters', IEEE Trans. on Audio end

Eleetroacoustics, Vol. AU-21, No.6, pp.477-484, December 1973.

Sypherd, A.D., 'Design of digital filters using read-only
.memories', Proc. N.E.C., Vol. 25, pp.691-693, December 1969.

Trad-Thofig and Liu, B., 'A recursive digital filter using d.p.c.m.',

IEEE Trans. on Communications, Vol: COM-24, No.l1l, pp.2-11,
January 1976.

Nussbaumer, H., 'Digital filters using read-only memories',
Electronics Letters, Vol.12, No.li, pp.294-295, 27 May 1976.

Chang, T.L., ‘'Binary read-only memory multiplier', Electronics.
Letters, Vol. 9, No.25, pp.580-581, 13 December 1973.



36.

37.

38.

39.

40.

41,

42,

43,

&4

45.

Tomozawa, A., 'Nonrecursive digital filters with coefficients
of powers of two', International Conference on Communications,
. Minneapolis-Minnesota, U.S5.A., 17-19 June 1974,

Van Gerwen, P.J. et agl, 'A new. type of digital filter for
‘data transmission', IEEF Trans. on Communications, Vol. COM-23,
No.2, pp.222-234, February 1975.

Hall, E.L., Lynch, B.D., Dwyer, 5.J., 'Generation of products
and quotients using approximate binary logarithms for
digital filtering applications', IEEE Trans., C-19, pp.97-105,
1970.

Kingsbury, N.G;,and Rayner, P.J.W., 'Digital filtering using
logarithmic arithmetic', Electronics Letters, Vol.7, Nao.2,
28th. January 1671. '

Pye TMC, Ltd., London, 'Monolithic Modular Digital Filters',
IEEE International Solid-State Circuits Conference,
February 1973.

Electroﬁics Review, 'Digital filter set costs under $200',

Electronics, pp.38-40, 8 January 1976.

Maclean, M.A. and Aspinall, D., 'A decimal adder using a stored-
addition table', Proe. IEE, Paper No. 2389 M, pp.129-135,
July 1957.

Johngon, N., 'Improved binary multiplication system',

Electronics Letters, Vol. 9, No.l, pp.6-7, 11 January 1973.

McDowell, J., ‘'Large Bipolar ROMS and PROMS Revolutionize
Conventional Logic and System Design', Monolithic Memories

Inc., Applications Seminar, April 19th, 1973,

Almaini, A.E.A,, 'A digital computer program for the generation .
of closed partitions for sequential machines', Departmental
Memorandum, 98, Loughborough University of Technology, 1974.



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Almaini, A.E.A. and Woodward, M.E., 'Computer program for
S.P. partitions of sequential machines', Electronics
Letters, Vol. 10, No.21, pp.445-446, 17 October 1974,

Niven, I. and Zuckermann, H.A., 'An Introduction to the Theory
of Numbers', (Wiley, 1973).

Scott, W.R., 'Group Theory', {(Prentice Hall, 1964).

Steiglitz, K., 'An Introduction to Discrete Systems', (John
Wiley & Soms, 1974).

Peled, A. and Liu, B., 'Digital Signal Processing', (John
Wiley & Sons, 1976).

Texas Instruments, 'Digital Integrated Circuits', Data Book
Two, July 1971.

Texas Instruments, 'System 74-Designer's Manual', 1973.

Cattermole, K.W., 'Principles of Pulse Code Modulation',
(ILIFFE Books, London, 1969).

Fourier Analyzer Training Manual, Application Note 140-0,
(Hewlett-Packard Co.).

Fourier Analyzer System 5451A System Operating Manual,
~  (Hewlett-Packard Co., 1972).

Bin Nun, M.A. and Woodward, M.E., 'Realisation of programmable -
digital filters using digit-convolution modules’',
Conference on 'Digital Processing of Signals in Communications’',
(IERE, IEE, IEEE), to be held at University of Technology,
Loughborough, Leics., 6-8 September 1977.

Lee, B.B., 'A programmable real-time digital filter', Final
year (1977) project report, Dept. of Electronic and Electrical

Engineering, University of Technology, Loughborough.



58.

59.

60.

61.

62.

63.

64,

65.

66.

67.

Yiu, K., 'On sign bit assignment for a vector multiplier',
Proc. IEEE, Vol. 64, No.3, pp.372-373, March 1976.

Yuen, C.K., 'On Little's digital filtering algorithm',
IEEE Trans. on Computers, Vol. C-26, No.3, p.309, March 1977.

Peled, A., Liu, B. and Steiglitz, 'A note on implementation
of digital filters', IEEE Trans. on Acousties, Speech and
Signal Processing, Vol. ASSP-23, No.4, pp.387-389,

August 1975,

Bfittner, M. and Schiibler, H., 'On structures for the implementation
of the distributed arithmetic', Nachrichtentechn. 229 (1976)
H.6, S.472-477. '

White, S.A., 'On mechanization of vector multiplication',
Proe. IEEE, Vol. 63, No.4, pp.730-731, April 1975.

Claasen, T.A.C.M., Mecklenbriuker, W.F.G. and Peek, J.B.H.,
'Some considerations cn the implementation of digital
systems for signal processing', Philips Research Reports,
30, pp.73-84, 1975.

De Mori, R., Rivoira, S. and Serra, A., 'A special-purpose
computer for digital signal processing', IEEE Trans. on
Computers, Vol. C-24, No.12, pp.1202-1211, December 1975.

Peled, A., 'On the hardware implementation of digital signal
processors', IEEE Trans. on Acousties, Speech, and Signal
Processing, Vol. ASSP-24, No.l, pp.76-86, February 1976,

De Mori, R., 'Cellular structures for implementing recursive
and non-recursive digital filters', The Radio and Electronic
Engineer, Vol. 46, No.4, pp.173-181, April 1976.

Bass, C.S., Gibson, D.J. and Leon, B.J., 'A laboratory for
digital filter instruction', IEEE Trans. on Circuits and
Systems, Vol. CAS-23, No.4, pp.212-221, April 1976.



68.

69'

70.

71.

Mason, J., 'Group - A Concrete Introduction using Cayley

Cards', (Transworld Publishers Ltd., 1975).

Fraleigh, J.B., ‘A First Course in Abstract Algebra'
(Addison—-Wesley Publishing Co., 1967).

Herstein, I.N., ‘'Topics in Algebra' (Xerox College Publishing,
1964).

Kohavi, Z., 'Switching and Finite Automata Theory'
(McGraw-Hill, 1970).






