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We present a theoretical framework based on an extension of dynamical density functional theory
(DDFT) for describing the structure and dynamics of cells in living tissues and tumours. DDFT
is a microscopic statistical mechanical theory for the time evolution of the density distribution
of interacting many-particle systems. The theory accounts for cell pair-interactions, different cell
types, phenotypes and cell birth and death processes (including cell division), in order to provide
a biophysically consistent description of processes bridging across the scales, including describing
the tissue structure down to the level of the individual cells. Analysis of the model is presented
for a single species and a two-species cases, the latter aimed at describing competition between
tumour and healthy cells. In suitable parameter regimes, model results are consistent with biological
observations. Of particular note, divergent tumour growth behaviour, mirroring metastatic and
benign growth characteristics, are shown to be dependent on the cell pair-interaction parameters.

I. INTRODUCTION

One of the characteristics of biological systems is their
ability to produce and sustain spatiotemporal patterns –
i.e. structure formation. Cancer is a disease that may be
viewed as a complex system whose dynamics and growth
results from nonlinear processes coupled across a wide
range of spatiotemporal scales. Cancer is recognised as
one of the major causes of premature death, soon to over-
take heart disease as the leading cause in the developed
nations [1]. At current rates, in the USA a third of women
and half of men will develop a cancer at some point in
their life [2]. Though significant progress has been made
in cancer treatment in recent decades, much research is
still required in order to control all forms of the disease.

The human body is made up of order 1013 cells. Ge-
netic mutations are frequent, but most affected cells die
by apoptosis and are removed by the immune system.
However, a few may escape the regulatory process to pro-
duce an abnormally growing colony that in time recruits
its own vascular system (via angiogenesis) and form a
cancer. Tumour growth varies and solid tumours can be
classified as either benign or malignant [3]. The former
are localised, but their continued growth can cause dam-
age to neighbouring healthy tissues from the mechanical
forces applied. Whilst most tumours are initially be-
nign, malignancy can develop, whereby individual cells
are able to escape the main tumour mass (metastasis)
and colonise elsewhere in the body; it is these cells that
give rise to the greatest clinical concern.

Much work has gone into developing mathematical
models of cancers. Of particular interest here is the spa-
tiotemporal dynamics, which can be described e.g. using
continuum, discrete and hybrid models. Continuum ap-
proaches usually result in a system of coupled partial dif-
ferential equations and have been used to describe avas-
cular growth [4–10], vascular growth [4, 11–14], angiogen-
esis [15–17] and treatment [18–20]. Most of these consider

the overall growth as being dependent on nutrient(s) that
diffuses in from the outside, whilst more sophisticated
extensions of these models treat the tumour as a poro-
viscous [21–23] or poro-elastic [11, 15, 24, 25] structure.
In such models the cell-cell interactions enter via coeffi-
cients in the mass conservation terms and (usually) linear
constitutive relations describing the macroscale material
properties of the tissue, rather than via any genuine mi-
croscale description of the interaction between cells. Of
course, the advantage of such models is that they are
amenable to analytical techniques and relatively small-
scale computation. However, the microscopic cell-cell
interactions play a crucial role in the development and
function of multicellular organisms [26], so it is desirable
to incorporate cell-cell interaction effects in the mod-
elling. These interactions determine the structural in-
tegrity of tissue and allow cells to communicate with each
other in response to changes in their micro-environment,
which is essential for the survival of the cells and the host.
Such communication includes that from physical contact
and chemical signals, transported directly through gap
junctions between cells or by passive diffusion. Some of
these aspects can differ between healthy and cancer cells,
so modelling these differences can be important.

Greater detail of the cell-cell interactions are rou-
tinely incorporated in discrete models for tumour growth,
such as cellular-automata [27–29], agent-based models
[30–32] and Potts models [33–35]. In these, cells are
described at a microscopic level as entities that move
and respond to neighbours via a set of biologically mo-
tivated rules. Simulating the action of a group of many
of these cells then gives the evolution of a tumour on
the macroscale. Cellular automata models consists of a
regular grid of cells, each in one of a finite number of
states, such as ‘on’ or ‘off’. In agent based models their
actions typically follow discrete event cues or a sequen-
tial schedule of interactions, rather than simultaneously
performing actions at constant time-steps, as in cellular
automata models. Potts type models are able to incor-
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porate how internal elements of the cells respond to one
another based on certain characteristics that each posess
[28, 32, 34]. Though discrete models are good for incor-
porating the biology and physics of cell-cell interactions,
they are designed for computation and are generally dif-
ficult to study analytically.

A continuum theory that also incorporates the cell-
cell interactions at a microscopic level was proposed (but
not analysed) in Ref. [36]. The central idea is to base the
model on dynamical density functional theory (DDFT)
[37–39], which is a theory for the dynamics of interact-
ing Brownian (colloidal) particles, able to describe the
time evolution of variations of the density distribution
of the particles over length scales comparable with the
size of the individual particles. This is the approach we
extend and implement here. DDFT provides a system-
atic means of obtaining a continuum description of the
density distribution of the cells that also incorporates a
description of the microscale interactions between cells.
One can solve the DDFT numerically for large enough
systems to enable a macroscopic description at the popu-
lation level, but perhaps more importantly is amenable to
mathematical analysis (e.g. determination of linear sta-
bility thresholds) that gives good insight to the popula-
tion collective behavior. DDFT is itself based on equilib-
rium density functional theory (DFT), an approach that
has long been used to describe the structure of matter,
be it (crystalline) solid, liquid or gas [40–42]. We analyse
in detail a version of the DDFT proposed in [36] (here
we specify a particular model for the interaction poten-
tial between cells) and also extend the model to describe
the dynamics of systems representing multiple cell types,
incorporating the various different pair interactions be-
tween pairs of healthy cells, between pairs of cancer cells
and the cancer-healthy pair interaction. The DDFT we
use is based on a DFT able to describe both the fluid and
(crystalline) solid phases of soft particles. In the latter,
the density distribution corresponds to a regular array
of peaks, defining where the particles are located. It is
in this regime, where the peaks represent the loci of cell
centres, that the theory is relevant to describing the mi-
croscopic density distribution of both cancer and healthy
cells, which are treated as soft particles.

This paper is laid out as follows: In section II we
present the DDFT for a single species of cells, perform a
linear stability analysis and present some typical simula-
tion results. In section III we extend this model to de-
scribe the competition between cancer and healthy cells,
and again elucidate the behaviour of the model using a
linear stability analysis and simulations. Finally, in sec-
tion IV, we present our conclusions.

II. MODEL FOR A SINGLE SPECIES OF CELLS

A. Dynamical Density Functional Theory

DDFT [37–39] is a theory for the spatiotemporal evo-
lution of the ensemble average number density distribu-
tion ρ(r, t) of a system of interacting Brownian particles,
where t is the time and r is the position in space. The
theory shows that the dynamics is given by

∂ρ(r, t)

∂t
= Γ∇ ·

[
ρ(r, t)∇

(
δF [ρ(r, t]

δρ(r, t)

)]
, (1)

where Γ is a mobility coefficient and

F [ρ(r)] = kBT

∫
drρ(r)(ln[Λdρ(r)]− 1) + Fex[ρ(r)]

+

∫
drVext(r)ρ(r) (2)

is the Helmholtz free energy functional from equilibrium
DFT [40–42]. The first term in (2) is the ideal gas contri-
bution to the free energy, d is the dimensionality of space,
kB is Boltzmann’s constant, T is the temperature, Λ is
the thermal de Broglie wavelength, Vext(r) is the external
potential and Fex[ρ(r)] is the excess contribution due to
the interactions between particles. In general, Fex[ρ(r)]
is not known exactly. However, there are many different
approximations which may be used [41, 42], with some
being more appropriate than others, depending on the
nature of the interactions between the fluid particles.

The equilibrium properties of the system are obtained
by minimising the grand potential functional

Ω[ρ(r)] = F [ρ(r)]− µ
∫
drρ(r), (3)

where µ is the chemical potential, which is effectively
the Lagrange multiplier that enforces the constraint that
the average number of particles in the system is N =∫
drρ(r). Note that Eq. (1) also enforces this constraint

due to having the form of a continuity equation.
The equation of motion for each of the N interacting

particles (cells) that is assumed in deriving Eq. (1) is the
following over-damped Langevin equation

dri
dt

= Γ

Fexti +

N∑
j=1

Fintij

+
√

2Dηi(t), (4)

where ri is the position of the centre of mass of the i-
th particle and D = ΓkBT is the diffusion coefficient.
This assumes no cell-cell friction; incorporating such fric-
tion would involve the inclusion of an additional vis-
cous drag force in the Langevin equation. The force
Fexti = −∇Vext(ri, t) is the force due to the external
potential, e.g. due to any confining structures present,
and the force Fintij = −∇Vint(ri − rj) is cell-cell interac-
tion force between particles i and j, that is assumed to
be governed by the pair potential Vint that depends on
the distance between the two cells. The vector ηi(t) is a
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Gaussian random noise with components ηαi (t) satisfying

〈ηαi (t)〉 = 0 and 〈ηαi (t)ηβj (t
′
)〉 = δijδαβ(t − t′), where 〈·〉

denotes a statistical average over different noise realisa-
tions, and α, β are coordinate indices.

B. Extension to describe living cells

As discussed in Ref. [36], if living cells (density ρ(r, t))
are treated as interacting Brownian particles, then an
equation for the time evolution of the density of the form
of Eq. (1) is appropriate. However, since the cells can

reproduce and die, there is an additional term D
(1)
BD[ρ(r)]

added to the right hand side of Eq. (1) to describe the
non-conserved component of the dynamics due to birth
and death (BD) processes.

As a simple model of BD, we assume that a single
cell can undergo mitosis with a nutrient-dependent rate
am = am(n), where n(r, t) is the local concentration of
nutrient (e.g. dissolved O2). We model cell death (apop-
tosis) as occurring with a rate constant λd. This can be
implemented as a Markov process and affects the number
of cells in the population N = N(t) [36]. The nutrient
is provided by the vascular system, diffuses through the
system and is taken-up by the cells, and thus satisfies the
reaction-diffusion equation

∂n(r, t)

∂t
= Dn∇2n(r, t) + Snf(r)− λnρ(r, t)n(r, t), (5)

where Dn is the nutrient diffusion coefficient, Sn repre-
sent the amplitude of the nutrient source, f(r) is a func-
tion that defines where in space the nutrient source is lo-
cated. Here, we consider both a uniform source f(r) = 1
and a localised source in the form of Gaussian, namely

f(r) = e−(x−L/2)
2

, (6)

which corresponds to a source of nutrient along the line
x = L

2 where L is the domain width, e.g. due to a cap-
illary being there. Here, λn is a nutrient uptake rate
constant. The term in Eq. (5) describing this process is
assumed to be proportional to n. From the fact that the
first moment of the BD process is the result of two mass

action laws gives D
(1)
BD[ρ] = am(n)ρ − λdρ, where am(n)

is a nutrient-dependent growth rate and λd is a death
rate constant. We assume that am(n) = λmn, where λm
is constant.

As a simple model for the cell-cell forces, we assume
the cells interact via a soft, purely repulsive and radially
symmetric pair potential

Vint(r) = ε exp[−(r/R)N ], (7)

where r is the distance between the centres of the cells
and the parameters ε and R are the cell-cell interaction
energy and cell radius, respectively, defining the strength
and range of the potential. This is the so called gener-
alized exponential model with exponent N , or ‘GEM-N ’

potential [43]. Here, we set the exponent N = 4. Such
soft potentials arise as the coarse-grained effective po-
tential between soft polymeric macromolecules in solu-
tion [43–51]. In this study, the parameter R typically
represents the radius of a cell, so cells repulse each other
when the distance between their centres are less than 2R.
Whilst this property of Vint is necessary for biological rel-
evance, longer range effects (for distances ≥ 2R), such as
cell-cell adhesion [30, 32, 35], can be straightforwardly
built in to the interaction function [40–42]. Note also
that whilst adhesion is important for maintaining cohe-
sion, the structure of condensed systems is dominated by
the inter-particle repulsions [42].

We consider this model because the bulk structure
and phase behaviour of the GEM-N systems are well
understood in both two-dimensions (2D) and three-
dimensions and also the following simple approximation
for the excess free energy functional is fairly accurate and
widely used [43, 52–60],

Fex[ρ(r)] =
1

2

∫
dr

∫
dr′ρ(r)ρ(r′)Vint(|r− r′|). (8)

Taking the functional derivative and then substituting
the result into the extension of Eq. (2) including the BD
term described above, we obtain

∂ρ(r, t)

∂t
= ∇ ·

[
Γρ(r, t)∇[kBT ln(Λdρ(r, t))

+

∫
dr′ρ(r′, t)Vint(|r− r′|)]

]
+[λmn(r, t)− λd]ρ(r, t). (9)

The coupled pair, Eqs. (9) and (5), define our model for a
single type of cells coupled to a source of nutrients. The
parameters and their estimated values are listed in Table
I. See also the Appendix, where we justify the particular
values we use here. For simplicity, we henceforth assume
the system is 2D within a square domain of area L2 with
periodic boundary conditions. Thus, r = (x, y). Two key
quantities for understanding the behaviour of the system
are the average cell and nutrient densities in the domain
defined as

ρ̄(t) =
1

L2

∫ ∫
ρ(x, y, t)dxdy, (10)

n̄(t) =
1

L2

∫ ∫
n(x, y, t)dxdy, (11)

respectively.

C. Nondimensionalization

We now nondimensionlise the model, before perform-
ing a linear stability analysis and then presenting some
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typical numerical results. Writing

t =
R2t∗

Dc
, x =

x∗

R
, y =

y∗

R
, ρ =

ρ∗

R2
, n =

λdn
∗

λm
,

Vint(r/R) = εṼint(r
∗), (12)

where the asterisked quantities are dimensionless vari-
ables, Dc = ΓkBT is the dimensional coefficient of diffu-
sion of cells and Ṽint(r) = exp(−rN ) is the dimensionless
pair potential. We also define the dimensionless param-
eters

c1 =
R2λd
Dc

, D̃ =
Dn

Dc
, S̃n =

R2Snλm
λdDc

, λ̃n =
λn
Dc

. (13)

With these, we obtain the following nondimensional pair
of coupled equations
∂ρ(r, t)

∂t
= ∇2ρ(r, t)

+∇ ·
(
ρ(r, t)∇

∫
dr′ρ(r′, t)βεṼint(|r− r′|)

)
+c1 [n(r, t)− 1] ρ(r, t), (14)

∂n(r, t)

∂t
= D̃∇2n(r, t) + S̃nf(r)− λ̃nρ(r, t)n(r, t), (15)

where we have dropped the asterisks for clarity. Note
that β = 1/kBT so that the dimensionless quantity βε
in the integral term is the dimensionless pair interaction
energy.

Our estimated values for the various dimensionless
parameters in the model are listed in Table II. We note
that the ratio of diffusion coefficients D̃ in Eq. (13) is
large, which means that quantities in Eqs. (14) and (15)
take dimensionless values covering several order of mag-
nitudes O(10−2) - O(106). This is because the nutrient
density distribution evolves on much faster time scales
than the cells, which creates challenges for the numeri-
cal methods that we use below. Since the algorithm must
run over a long time, the (nutrient) terms associated with
the O(106) parameters equilibrate very rapidly by a time
t ∼ O(10−6), compared to the slower (cells evolution)
processes which take times t ∼ O(102). Consequently,
tempering the large valued parameters, say by setting
(106) 7→ 1 for the large parameters, has little effect on
the long term results, but greatly helps in the running
of the numerical code. We therefore select the parame-
ter set given in Table II and henceforth use these as our
standard parameter set. We also present results below,
illustrating how the long time results for ρ(r, t) depend

only very weakly on the value of D̃, as it is varied in the
range 1 ≤ D̃ ≤ 102.

D. Linear stability analysis

For S̃n > 0 and f(r)=1 there is a unique uniform
density steady state that is a stationary solution of Eqs.
(14) and (15), that is

n = n0 = 1, ρ = ρ0 = S̃n/λ̃n. (16)

TABLE I. Model parameters and their units. Values marked
with an asterisk (*) are estimates from the Appendix.

Symbol typical value Unit Source

ρ(r, t) 3× 105∗ cm−2 estimated
n(r, t) 3 * mg/L estimated
Vint(r) ε Joule estimated
N(t) ρ0L

2 dimensionless §II E
R 0.001 cm [61]
λm 0.00015 * Lmin−1mg−1 estimated
λd 0.00005 * min−1 estimated
λn 3 * min−1 estimated
Dc 1.3× 10−9∗ cm2min−1 estimated
Dn 0.0012 cm2min−1 [9]
Γ 3× 1010 * min g−1 estimated
T 310 K [61]
kB 1.3810−23 Joule/K [62]
ε ≈ kBT Joule estimated
ρ0 3× 105 * cm−2 §II E
L2 6× 10−4 cm2 §II E
Sn 433 * mgL−1min−1cm−2 estimated

TABLE II. Dimensionless parameter values of the model.

Dim.-less param. Dim. form Value Used value

c1 R2λd/Dc 0.038 1

D̃ Dn/Dc 106 1, 10, 102

S̃n R2Snλm/λdDc 106 10,35

λ̃n λn/Dc 106 1
βε βε O(1) 1

We now investigate the linear stability of the uni-
form density state (ρ0, n0) to non-uniform perturba-
tions (δρ(r, t), δn(r, t)), with ‖δρ‖∞= ξ and ‖δn‖∞= χξ,
where ξ � 1. The analysis also applies more generally to
determine the growth or decay of a perturbation about
a uniform density state (ρ0, n0), with values different to
those in Eq. (16), i.e. the timescale for cell repositioning
in response to the perturbation is much faster than cell
growth; we note c1 � 1 from data, see Table II. Note
that it is the parameter values where the uniform sys-
tem is unstable (and forms peaks) that are of relevance
biologically.

To determine the linear stability of the flat state, we
assume that the cell density profile take the form

ρ = ρ0 + δρ(r, t)

= ρ0 + ξei(k.r)+ωt, (17)

and the nutrient density profile

n = n0 + δn(r, t)

= n0 + χξei(k.r)+ωt, (18)

where 0 < ξ � 1 is the initial amplitude of the sinusoidal
perturbation that has wavenumber k = |k|, χ is the ra-
tio between the amplitude of the modulation in the two
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components, and the growth or decay rate of the pertur-
bations is given by the dispersion relation ω = ω(k). Sub-
stitution of Eqs. (17) and (18) into the dynamic equation
(14), and then linearising in δρ we obtain (c.f. [38, 60])

ω(k) = −k2
[
1 + ρ0βεV̂ (k)

]
+ c1 (n0 + ρ0χ− 1) , (19)

where V̂ (k) is the Fourier transform of the pair potential.
Since we have assumed the system is in 2D, the Fourier
transform is

V̂ (k) =

∫
dreik.rṼint(r) = 2π

∫ ∞
0

rṼint(r)J0(kr)dr

(20)
where J0(x) is the Bessel function of order 0.

The limit of linear stability is defined as the locus
of points in parameter space where the maximum in the
dispersion relation (19) is at zero, i.e. ω(k = kc) = 0,
where kc is the wave vector where ω(k) is maximum,
where dω

dk |k=kc = 0. In the case of c1 � 1 we have

1 + ρ0βεV̂ (k = kc) ≈ 0, (21)

where kc ≈ 5.1 and V̂ (kc) ≈ −0.16 (recall that in
the nondimensionalisation we effectively set the unit of
length R = 1), which implies that the locus of where the
system becomes linearly unstable is

ρ0 ≈
1

βε|V̂ (kc)|
(22)

which in the density ρ0 versus “dimensionless temper-
ature” kBT/ε = 1/βε plane is a straight line passing
through the origin [60]. For densities greater than this
value, the system is linearly unstable. Note that even
though we have assumed c1 � 1 in the derivation, it
turns out that even for c1 = O(1), Eq. (22) gives a
good estimate for where the system is linearly unstable.
Given the data in Table II, the analysis suggests that
dominant terms governing instability is the cell density
and the cell-cell interaction parameters; cell growth and
nutrient consumption rates are secondary to this process.

E. Numerical results for the cell evolution

The coupled equations (14) and (15) are solved
numerically using the method of lines. The density
profiles are discretised on a spatially uniform grid, with
the convolution integral evaluated in Fourier space using
fast Fourier transforms, whilst for the time stepping
the Adam-Bashforth method is implemented, via the
freeware ODEPACK routine LDSODE [63, 64]. We
note that this time stepping method is significantly
faster than the Euler time stepping routines used for
the similar problem in [60]. We note that all quantities
shown in the figures, including those of Section III D,
are dimensionless.

1. Results with homogeneous nutrient source

We assume initial conditions

ρ(r, 0) = 1 + γ(r)

n(r, 0) = 1 (23)

where γ(r) is a small amplitude random variable and
γ(r) ∼ U(0, 1), where U is a uniform distribution. We
set the dimensionless model parameters to be c1 = 1,
βε = 1, λ̃n = 1 and D̃ = 1. We set the area of the do-
main in which the model is solved to be 25.6×25.6, with
grid spacing ∆x = 0.1 (smaller values were also tested,
but this value is normally sufficiently small) and periodic
boundary conditions on all sides. We set the nutrient
source to be uniform f(r) = 1, with amplitude S̃n = 10.

In Fig. 1, the plots in the left hand column are the
density profile of the cells at a series of different times
(t=2.6, 2.7, 2.8 and 5), while the right hand column dis-
plays plots of the local nutrient concentration. From the
left column, it is clear that the total density of cells in-
creases with time, as can also be seen in Fig. 2 where we
plot the average cell density and nutrient density over the
whole system as a function of time, which are defined in
Eqs. (10) and (11). We see the peaks (i.e. locations of
the centres of the cells) grow and split to fill the entire
domain, due the fact that there is a source of nutrient ev-
erywhere, in contrast to the behaviour seen for example
in Fig. 3 where the source of nutrient is localised along
the mid-line of the system. In Fig. 2 we see that initially
the nutrient density increases, due to the low initial aver-
age cell density. Then, at t ≈ 0.5, whilst the cell density
increases, the nutrient density starts to decrease, due to
the increased consumption. Over the time 2 . t . 3
the peaks in the cells density distribution form. Conse-
quently, the nutrient concentration then increases again
at t ≈ 3. After this, n̄(t) is roughly a constant ≈ 1.2,
as shown in Fig. 2. The cell density continues to slowly
increase to plateau at a constant value ≈ 10 at the time
t ≈ 6.

2. Results with inhomogeneous nutrient source

Fig. 3 compares results for the cell density profile time
evolution for three different values of D̃ = 1, 10 and 100
(from left to right). For example, the results in the left
hand column of Fig. 3 shows the evolution of cell density,
displaying snapshots for the times t=1.2, 2, 2.1 and 10.
In these cases the nutrient source is located along the
vertical mid line of the system [c.f. Eq. (6)]. From an
initial randomised distribution, the cell density grows in
the vicinity of central nutrient source. When the density
is sufficiently large, an instability (c.f. Sec. II D) leads first
to a striped pattern and then peaks. The density peaks
(i.e. cells) are arranged in a roughly hexagonal pattern,
which also impacts the nutrient distribution. The right
hand column of Fig. 3 show the time evolution of the
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Cells Density, ρ(r) Nutrient

FIG. 1. Density of the cells (left) and local nutrition con-
centration (right) over time. We assume that the population
growth constant c1 = 1 and the energy scale in the interaction
potential between cells βε = 1. The diffusion coefficient ratio
D̃ = 1. The nutrient source is homogeneous with f(r) = 1

and S̃n = 10, and the nutrient uptake rate λ̃n = 1. The area
of the domain is 25.62 and ∆x = 0.1.

nutrient density for the case D̃ = 1, corresponding to the
left hand column cell density profiles.

In Fig. 4 we display plots of the total cell density
and nutrient density calculated using Eqs. (10) and (11),
corresponding to Fig. 3. These results are for three very
different values of D̃ = 1, 10 and 100. Nonetheless, we
see that in all three cases the results are all qualitatively
rather similar, which demonstrates that for D̃ & 1 the
results do not qualitatively depend on the precise value
of D̃. Recall that in Sec. II D we note that the true
value is D̃ ≈ 106 [see also the Appendix and Eq. (A5)],
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FIG. 2. The average cell density, [see Eq.(10)] and the
average nutrient density [see Eq.(11)], corresponding to the
results in Fig. 1.

but also argue that we do not need to have such a large
value. Owing to the qualitative similarity of the results
shown in Fig. 3, we see that smaller values of D̃ ≈ 10
are acceptable.

The similarities for different values of the diffusion
coefficient ratio D̃ can also be seen from the results in
Fig. 4, whereby the steady value of ρ̄ ≈ 5 and n̄ ≈ 0.5 is
reached by t ≈ 4. Note that for the smaller D̃ = 1 case
there are small amplitude oscillations in both the cell and
nutrient average densities for t > 2. These are due to new
cells being formed and then dying in a periodic fashion.

By t ≈ 10 the cell density profiles in Fig. 3 no longer
change qualitatively, however they are not stationary.
We see that around the nutrient source along the line
x = L/2, we have a region where the peaks grow and then
split – modelling cell division – and then move away from
the nutrient source, where they subsequently die due to
the lack of nutrient away from the centre line. In Fig. 5
we display a magnification of the cell density profile to
highlight these mitotic events. The sequence of snapshots
in Fig. 5 illustrates the cell splitting events that occurs
between the times t =2.05 and t =2.10 with time incre-
ments of 0.01. We observe that a peak first elongates and
then splits to form new peaks which remarkably mirrors
a mitotic event. In the fourth row in Fig. 5, a peak spon-
taneously emerges between two existing ones, describing
the average location of a new cell resulting from mitosis
of one of the cells either side of it.

III. COMPETITION BETWEEN CANCER AND
HEALTHY CELLS

In this section we extend the model presented in the
previous section to include a second species of cells. Our
aim is to study the competition between cancer cells and
healthy cells. We denote the density of the cancerous
and the healthy cells as ρ1 and ρ2, respectively. The
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Cells Density when D̃=1 Cells Density when D̃=10 Cells Density when D̃=100 Nutrient when D̃=1

FIG. 3. The local density of the cells (left three columns, for D̃=1, 10 and 100, from left to right) and the nutrient density for

D̃ = 1 (right hand column). The population growth constant c1 = 1 and the energy scale in the interaction potential between

cells βε = 1. The nutrient source term has S̃n = 35 with f(r) given in Eq.(6) and nutrient uptake rate λ̃n = 1. The area of the
system is 25.62, with grid spacing ∆x = 0.05.

generalisation of Eqs. (5) and (9) is

∂ρ1(r, t)

∂t
= Γ1∇ ·

[
ρ1(r, t)∇

(
δF [ρ1, ρ2]

δρ1(r, t)

)]
+[λm1n(r, t)− λd1]ρ1(r, t), (24)

∂ρ2(r, t)

∂t
= Γ2∇ ·

[
ρ2(r, t)∇

(
δF [ρ1, ρ2]

δρ2(r, t)

)]
+[λm2n(r, t)− λd2]ρ2(r, t), (25)

∂n(r, t)

∂t
= Dn∇2n(r, t) + Snf(r)− λn1ρ1(r, t)n(r, t))

−λn2ρ2(r, t)n(r, t), (26)

where λmi, λdi, λni and Γi have the same as their counter-
parts in Section II B for species i. The generalisation of
DDFT to describe a two component colloidal suspension
was discussed in [65]. The above reduces to this DDFT
if the BD terms are set to zero.

For such a binary system we may approximate the
intrinsic Helmholtz free energy of the system as in [43,

65], namely

F [{ρi(r, t)}] = kBT

2∑
i=1

∫
drρi(r, t)

(
ln[Λdi ρi(r, t)]− 1

)
+

1

2

2∑
i,j=1

∫
dr

∫
dr′ρi(r, t)ρj(r

′, t)Vij(|r− r′|), (27)

where Vij are the pair interactions potentials, discussed
further below. The indices i, j = 1, 2 label the two differ-
ent species of particles (healthy and cancer); we assign 1
for cancer cells and 2 for healthy cells. Substituting Eq.
(27) into Eqs. (24) and (25), we obtain

∂ρ1(r, t)

∂t
= ∇ ·

[
Γ1ρ1(r, t)∇

(
kBT ln(Λd1ρ1(r, t)

+

∫
dr′ρ1(r′, t)V11(|r− r′|)

+

∫
dr′ρ2(r′, t)V12(|r− r′|)

)]
+
[
λm1n(r, t)− λd1

]
ρ1(r, t) (28)
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FIG. 4. The average cell density, [see Eq. (10)] and the
average nutrient density [see Eq. (11)], corresponding to the

results in Fig. 3 when the diffusion coefficient D̃=1, 10 and
100 respectively.

and
∂ρ2(r, t)

∂t
= ∇ ·

[
Γ2ρ2(r, t)∇

(
kBT ln(Λd2ρ2(r, t))

+

∫
dr′ρ1(r′, t)V21(|r− r′|)

+

∫
dr′ρ2(r′, t)V22(|r− r′|)

)]
+
[
λm2n(r, t)− λd2

]
ρ2(r, t), (29)

where Λi are the thermal de Broglie wavelengths for
species i. As in Sec. II we model the cell-cell interac-
tions via soft, purely repulsive and radially symmetric
pair potentials given by

Vij(r) = εije
−(r/Rij)

4

, (30)

where the parameters εij specify the strength of the re-
pulsion between pairs of cells of species i and j and Rij
define the range of the interactions. Thus, we choose
R11 ≥ R22, since cancer cells are generally slightly larger
than healthy cells and we choose ε12 > ε11 = ε22,
so that peaks of the different species do not occur at
the same point in space. In some cases we choose
R12 = 1

2 (R11 + R22), but we also consider cases where

R12 > 1
2 (R11 + R22) since this promotes demixing of

the two cell species and also R12 <
1
2 (R11 + R22) which

promotes penetration of the cancer cells in between the
healthy cells [43, 52, 65].

A. Nondimensionalisation

We nondimensionlise the system of integro-partial dif-
ferential equations given in Eqs. (28), (29) and (26)

in a manner similar to previously, using t =
R2

11t
∗

Dc
,

x = x∗

R11
, y = y∗

R11
, ρ1 =

ρ∗1
R2

11
, ρ2 =

ρ∗2
R2

11
, n = λd1n

∗

λm1
and

FIG. 5. Snapshots of several peak splitting events that occur
between the times t = 2.05 and t = 2.10. The figures above
are in time increments of 0.01 going from top left to bottom
right, corresponding to the profiles plotted in the left hand
column of Fig. 3, which are for D̃ = 1.

Vij(r/R11) = εij Ṽij(r
∗), where the asterisked quantities

are dimensionless and Dc = Γ1kBT . Here, the scaling on
space is based on the range of the interaction between two
cancer cells, R11. Defining the dimensionless parameters
[c.f. Eq. (13)]

c1 =
R2

11λd1
Dc

, c2 =
R2

11λm2λd1
Dcλm1

, α =
λd2λm1

λd1λm2
,

D̃2 =
Γ2

Γ1
, D̃n =

Dn

Dc
, S̃n =

R2
11Snλm1

λd1Dc
,

λ̃n1 =
λn1
Dc

, λ̃n2 =
λn2
Dc

,

noting that D̃2 is the ratio of the diffusion coefficients of
healthy cells to cancer cells. We get

∂ρ1(r, t)

∂t
= ∇2ρ1(r, t)

+∇ ·
(
ρ1(r, t)∇

∫
dr′ρ1(r′, t)βε11Ṽ11(|r− r′|)

)
+∇ ·

(
ρ1(r, t)∇

∫
dr′ρ2(r′, t)βε12Ṽ12(|r− r′|)

)
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+c1
[
n(r, t)− 1

]
ρ1(r, t), (31)

∂ρ2(r, t)

∂t
= D̃2∇2ρ2(r, t)

+∇ ·
(
ρ2(r, t)∇

∫
dr′ρ1(r′, t)βε21Ṽ21(|r− r′|)

)
+∇ ·

(
ρ2(r, t)∇

∫
dr′ρ2(r′, t)βε22Ṽ22(|r− r′|)

)
+c2

[
n(r, t)− α

]
ρ2(r, t), (32)

∂n(r, t)

∂t
= D̃n∇2n(r, t) + S̃nf(r)

−λ̃n1ρ1(r, t)n(r, t)− λ̃n2ρ2(r, t)n(r, t). (33)

Where the asterisks have been dropped for clarity.

B. Parameters values

For both the healthy and the cancer cell growth rate
parameters, diffusion coefficients and the parameters re-
lating to the nutrient dynamics we use the same values
that are argued for in the Appendix. The main change is
to make the growth rate parameters for the cancer cells
larger than those of the healthy cells in order for them
to reproduce and grow faster (or die slower) than the
healthy cells. The parameter values are summarised in
Table III and the corresponding dimensionless parameter
values are given in Table IV. The other main addition to
the model for both healthy and cancer cells that must
be considered are the parameter values in the interaction
potential between the different types of cells, given in Eq.
(30). The parameter values we choose are given in Table
III. These values are chosen in order to (i) make the can-
cer cells either the same size or slightly larger than the
healthy cells [66] and (ii) to make sure the cancer cells
do not overlap with the healthy cells.

C. Linear stability analysis for two species model

The governing equations for the time evolution of the
density profile of the cancer cells, the healthy cells and
the nutrient are given by Eqs. (31)–(33). We note for
α 6=1 there is no spatially uniform positive steady-state
to this system. We consider here the linear stability of
uniform state ρ1 = ρb1 > 0 and ρ2 = ρb2 > 0 for the
case c1, c2 � ξ � 1, where ξ is the amplitude of the
density perturbation; the small magnitude of c1 and c2
in comparison to the other parameters is evident from
Table IV. In setting c1 = c2 = 0 for the purposes of
the linear stability analysis, we are assuming the growth
of cells occurs on a much longer time scale than that of
the cell motion. This assumption means that the nu-
trient equation (33) decouples from Eqs. (31) and (32),
so that in what follows, stability of a uniform state is
predominantly governed by cell density and the cell-cell
interaction process.

TABLE III. Model parameters and their units. Values marked
with asterisk (*) are estimates from Secs. A and III B.

Symbol typical value Unit Source

ρ1(r, t) 3× 105∗ cm−2 estimated
ρ2(r, t) 3× 105∗ cm−2 estimated
n(r, t) 3 * mg/L estimated
V11(r) ε11 Joule estimated
V12(r) ε12 Joule estimated
V22(r) ε22 Joule estimated

R11 0.001 cm [61]
R22 0.0009 cm [61]
λm1 0.00015 * Lmin−1mg−1 estimated
λm2 0.000015 * Lmin−1mg−1 estimated
λd1 0.00005 * min−1 estimated
λd2 0.000005 * min−1 estimated
λn1 3 * min−1 estimated
λn2 3 * min−1 estimated
Dc 1.3× 10−9 * cm2 min−1 estimated
Dh 1.1× 10−9 * cm2 min−1 estimated
Dn 0.0012 cm2min−1 [9]
Γ1 3× 1010 min g−1 §III A
Γ2 2.5× 1010 min g−1 §III A
T 310 K [61]
kB 1.3810−23 Joule/K [62]
ε11 1kBT Joule estimated
ε12 1.5kBT Joule estimated
ε22 1kBT Joule estimated
ρ0 3× 105 cm−2 Table I
L2 6× 10−4 cm2 Table I
Sn 433 * mgL−1min−1cm−2 estimated

TABLE IV. Dimensionless parameter values of the model.
γ(r) is given in Eq. (23).

Nondim.p Dim. form value Used value

ρ∗1 ρ1/ρ̂1 1 6 + γ(r)∗

ρ∗2 ρ2/ρ̂2 1 6 + γ(r)∗

n∗ n/n̂ 3 3
c1 R2

11λd1/Dc 0.038 0.5, 0.6
c2 R2

11λm2λd1/Dcλm1 0.0038 0.5, 0.6
α λd2λm1/λd1λm2 1 2

D̃2 Dh/Dc 1.1 1

D̃n Dn/Dc 106 1

S̃n R2
11Snλm1/λd1Dc 106 8, 9

λ̃n1 λn1/Dc 106 1

λ̃n2 λn2/Dc 106 1

ε11Ṽ11(r∗) V11(r/R11) See Eq. (30) -

ε12Ṽ12(r∗) V12(r/R11) See Eq. (30) -

ε22Ṽ22(r∗) V22(r/R11) See Eq. (30) -

We assume the cell density perturbations are of the
form

ρ1(r, t) = ρb1 + δρ(r, t)

= ρb1 + ξei(k.r)+ωt, (34)
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and

ρ2(r, t) = ρb2 + χδρ(r, t)

= ρb2 + χξei(k.r)+ωt, (35)

where 0 < ξ � 1, k is the wavenumber, χ is the ratio
between the amplitude of the modulation in the two com-
ponents and the growth or decay rate is determined by
the dispersion relation ω = ω(k), where k = |k|. Sub-
stituting Eqs. (34) and (35) into Eqs. (31) and (32), on
linearising in ξ we obtain [60]

ω(k)

(
1
χ

)
= M

(
1
χ

)
, (36)

where the matrix

M = −k2
(

1 + ρb1βε11V̂11(k) ρb2βε12V̂12(k)

ρb1βε21V̂21(k) 1 + ρb2βε22V̂22(k)

)
. (37)

We can rewrite the matrix M as a product of two matri-
ces M = N ·E, where

N =

(
−ρb1k2 0

0 −ρb2k2
)
, (38)

and

E =

([
1
ρb1

+ βε11V̂11(k)
]

βε12V̂12(k)

βε21V̂21(k)
[

1
ρb2

+ βε22V̂22(k)
]) . (39)

We can now determine the dispersion relation ω(k) by
calculating the eigenvalues of N ·E,

ω(k) =
Tr(N ·E)

2
±
√

Tr(N ·E)2

4
− |N ·E|, (40)

where |N ·E| denotes the determinant of the matrix
N ·E [60]. When ω(k) < 0 for all wave numbers k, the
system is linearly stable. If, however, ω(k) > 0 for any
wave number k, then the uniform density state is linearly
unstable. Since N is a (negative definite) diagonal ma-
trix its inverse N−1 exists for all nonzero densities and
temperatures, enabling us to write Eq. (36) as the gen-
eralised eigenvalue problem

(E−N−1ω)χ̂ = 0, (41)

where χ̂ = (1, χ). As E is a symmetric matrix, all eigen-
values are real. It follows that the linear stability thresh-
old is determined by |E| = 0, i.e. by the condition

D(k) ≡ [1 + ρb1βε11V̂11(k)][1 + ρb2βε22V̂22(k)]

−ρb1ρb2β2ε212V̂
2
12(k) = 0. (42)

In Fig. 6 we display the linear stability threshold for
different values of the concentration φ ≡ ρb1/ρ, where
ρ ≡ ρb1 + ρb2 is the total density and ρb1, ρb2 are the den-
sities of cancer and healthy cells, respectively. For state
points above the linear stability threshold lines in Fig.
6 the system forms peaks, modelling the distribution of
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FIG. 6. The linear stability threshold for the two species cells
[see Eqs. (31) and (32)] plotted in the total density ρ ≡ ρb1+ρb2
versus concentration φ ≡ ρb1/ρ plane. The uniform density
state is linearly unstable above this line. The top plot shows
the curves for R11 = 1, R22 = 1.2, R12 = 1.1, βε11 = βε22 = 1
and for varying βε12, as given in the key. The curves in the
lower plot are for varying R22 = 1, 1.5, 1.7, 1.73, 1.8 and 2.
We set the cross-interaction radius R12 = 1

2
(R11 + R22) and

βε11 = βε12 = βε22 = 1.

the cells. The instability line is obtained by tracing the
locus defined by D(kc) = 0 and D′(kc) = 0, where D(k)
is given in Eq. (42) and kc 6= 0 is the wave number
at the minimum of D(k) [i.e. D(k = kc) = 0]. Note
that as the cell radii ratio R22/R11 is increased, the two
wavenumbers at which the system can become linearly
unstable, kc ≈ 2π/R11 or kc ≈ 2π/R22, move apart lead-
ing to the linear stability threshold developing a cusp,
as shown by the “corners” in some of the curves in the
lower figure of Fig. 6. The cusp appears when the two
minima in D(k) both satisfy D(kc) = 0, and can be deter-
mined by simultaneously solving the system of algebraic
equationsD(kc) = D′(kc) = D′′(kc) = D′′′(kc) = 0. We
find that the cusp appears at R22/R11=1.73, ρ=8.26 and
φ=0.74, (red curve in the bottom plot) and is present for
R22/R11 > 1.73.
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D. Numerical results

In this section we discuss some representative re-
sults showing the competition between healthy and can-
cer cells, obtained by solving numerically the system of
integro-partial differential Eqs. (31)–(33) using the nu-
merical methods discussed in Sec. II E. We investigate
the evolution of the cells starting from various different
initial arrangements and the effect of the cross-species
interaction range R12.

1. Spread from a few cancer cells within healthy tissue

In order to model the growth and spread of a tumour
within healthy tissue we consider a case where we first ini-
tiate the system with one half containing predominantly
health tissue, the other half containing cancerous tissue
(with uniform densities in each half) and a uniform nu-
trient density. As the system evolves, peaks form in the
two cell density profiles and over time the cancer cells
displace the healthy cells till the total average density of
healthy cells is small. We then stop the simulation and
swap the labels on the two density profiles, so that the
(more realistic) initial condition for the following simula-
tion consists of an array of peaks (cells) in the healthy cell
density profile and a low density of cancer cells; i.e. for the

initial conditions we define ρ1(r, t = 0) = ρ‡2(r, t = 20)

and ρ2(r, t = 0) = ρ‡1(r, t = 20), where ρ‡1(r, t = 20) and

ρ‡2(r, t = 20) are the final profiles at time t = 20 from the
preliminary simulation.

Snapshots from the subsequent evolution are dis-
played in Fig. 7. These results are for the population
growth constants c1 = c2 = 0.5 and the threshold nutri-
ent concentration for healthy cells α = 2. We fix the var-
ious cell-cell interaction parameters to be βε11 = βε22 =
1, βε12 = 1.5 (so that density peaks of the two different
cell types do not overlap), R11 = R22 = 1 and R12 = 0.9.

The nutrient uptake rate for cancer cells λ̃n1 = 1 and for
healthy cells λ̃n2 = 1. The area of the domain in which
the model is solved is 25.6× 25.6 and the nutrient source
is uniform, with f(r) = 1 and S̃n = 9. The diffusion

coefficients for both cell species are equal, D̃c = D̃h = 1.
In Fig. 7 we plot the difference between the density

profiles, (ρ1 − ρ2). Positive values in this quantity corre-
spond to regions where the cancer cells are present (where
the peaks are purple-red, with yellow maxima) and neg-
ative values where the healthy cells are present (where
the peaks are green). In regions that are grey, both den-
sities are low. The Fig. 7 profiles are snapshots at the
times t=12.2, 16, 26 and 34.2. At t=12.2 the first can-
cer cell becomes visible. As time increases, the cancer
cells proliferate to form a vertical strip of cancerous tis-
sue, shown in the top right pannel. The fact that it is a
vertical strip is due to the original initial conditions. By
the time t = 26 the cancer cells have invaded two thirds
of the healthy area and by t = 34.2 they cover the entire
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FIG. 7. Top four panels: plots of (ρ1−ρ2), the density profile
of the cancer cells minus the density of the healthy cells, at
times t = 0.1, 16, 26 and 34.2. The nutrient uptake rates
λ̃n1=1 and λ̃n2=1, the population growth constants c1 = c2 =
0.5 and the threshold nutrient concentration for healthy cells
α = 2. The nutrient source is homogeneous, with f(r) = 1

and S̃n = 9. The area of the domain is 25.6× 25.6 and ∆x =
∆y = 0.1. The cell-cell pair interaction potential parameters
are βε11=1, βε12=1.5, βε11=1, R11 = R22 = 1 and R12 = 0.9.
Bottom: the corresponding average cell density, [see Eq. (10)]
and the average nutrient density [see Eq. (11)].

domain, having displaced all the healthy cells.

In the bottom panel of Fig. 7, we plot the average
densities of the two species of cells and also of the nutri-
ents, calculated using the two component generalisation
of Eq. (10) and Eq. (11), respectively. We see that over
time the average nutrient density is roughly constant, but
the density of the healthy cells decreases over time, whilst
the average density of the cancer cells increases. Inter-
estingly, the average density of the healthy cells does not
decrease monotonically; there are instances where there
are brief increases, where healthy cells momentarily find
gaps around the evolving cancer into which they try and
grow. However, the overall trend is for the healthy cells
to be displaced and die out.
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FIG. 8. Snapshots of (ρ1 − ρ2), the density profile of the
cancer cells minus that of the healthy cells, at the times t =
0.1, 6.5, 10 and 20 evolving from the initial conditions defined
in Eqs. (43) and (44). The system parameters are λ̃n1 =

λ̃n2 = 1, D̃c = D̃2 = 1, c1 = c2 = 0.5 and α = 2. The
nutrient source is homogeneous with f(r) = 1 and S̃n = 9.
The area of the domain is 25.6 × 25.6 and ∆x = ∆y = 0.1.
The parameters in the pair interaction potentials between the
cells are βε11 = 1, βε12 = 1.5, βε11 = 1, R11 = R22 = 1
and R12 = 0.9. In the bottom left panel are plotted the
corresponding average cell densities [see Eq. (10)] and the
average nutrient density [see Eq. (11)]. In the bottom right
panel we plot the trajectory of the time evolution in the (ρ, φ)
plane. Note that the points on this trajectory correspond
to the integer times t = 0, 1, 2, . . . . We also plot the linear
stability threshold for this system. When the trajectory dips
below this line, the system temporarily “melts”.

2. Growth of a cancer that is initially small and circular

Figures 8-12 display results for the evolution over
time starting from the initial condition

ρ1(r, 0) =

{
6 + γ(r) (x− 12.8)2 + (y − 12.8)2 ≤ 62

0 (x− 12.8)2 + (y − 12.8)2 > 62,

(43)

ρ2(r, 0) =

{
0 (x− 12.8)2 + (y − 12.8)2 ≤ 62

6 + γ(r) (x− 12.8)2 + (y − 12.8)2 > 62

(44)

and n(r, 0) = 0.5, where γ(r) is a random variable drawn
from a uniform distribution on the interval (0, 1). This
initial condition corresponds to a small circular cancer
of radius 6 in the middle of the healthy cells. Figs 8-
10 shows simulations with R12 = 0.9, 1, 1.1, respectively,
with all other parameters fixed as in Fig 7, noting that
R11 = R22 = 1. In the case of R12 = 0.9, the two
cell types can tolerate being closer to each other thereby
promoting mixing behaviour; this despite the repulsive
strength across types, βε12 = 1.5, being stronger than
that between them βε11 = βε22 = 1. For R12 = 1.1 we
expect more demixing type behaviour.

We see in Fig. 8 that although within the domains
where the different cell species are initiated – see Eqs.
(43) and (44) – the densities are uniform, i.e. liquid–like,
rather than a “crystalline” state with density peaks, the
peaks corresponding to the locations of the cells rapidly
form and are already present by the time t = 0.1. How-
ever, this sudden initial growth leads to a drop in the nu-
trient level, as can be seen at t ≈ 5 in Fig. 8. The drop in
nutrient level then leads to a drop in the overall number
of healthy cells, which leads to the “crystal” melting tem-
porarily, which corresponds to the cells being distributed
in disordered liquid-like configurations; biologically, this
melting phenomena can be viewed as a temporary state of
flux, whereby cells are moving around relatively rapidly
and the densities shown are the average density distribu-
tion of the cell centres. The nutrient level then recovers
and the system “refreezes” and over time the cancer cells
penetrate the healthy tissue and eventually the healthy
cells all die out. This melting phenomenon can be viewed
as a state of flux in the system with cells moving around
relatively rapidly, thereby the densities shown are more
of an average location of the cell centres. The temporary
“melting” can be understood if one plots the trajectory
of the system in the total density versus concentration
(ρ, φ) plane, in addition to plotting the threshold for the
system to be linearly unstable, given by Eq. (42). This is
displayed in the bottom right panel of Fig. 8. Recall that
above the stability line the system is linearly unstable
and forms peaks. We see that when the trajectory dips
below this line is when the system temporarily “melts”.

In the Fig. 9 we plot results for the case when all the
model parameters are the same as those in the previous
case (that displayed in Fig. 8), except now the radius
in the cross interaction pair potential R12 = 1, which is
slightly larger (for the results in Fig. 8 we have R12 =
0.9). In Fig. 9 we plot (ρ1 − ρ2) at the times t=0.1, 5.5,
9 and 20. As before, we see that the total density of
the cancer cells increase with the time and the healthy
cells retreat from the centre and finally all the healthy
cells die by the time t = 20. The consequence of the
increased value of R12 is that there is now a tendency for
the cancer cells to penetrate into layers beyond the initial
interfacial layer of healthy cells, and so form alternating
layers of healthy and cancerous cells – see e.g. the plot
for the time t = 7.5. The averages densities over time
are shown in the bottom left panel of the Fig. 9 and in
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FIG. 9. Snapshots of (ρ1 − ρ2) at the times t = 1.1, 6.5,
8.5 and 20. All the parameters here are the same as those in
Fig. 8, except here the cross interaction pair potential radius
is R12 = 1, which is slightly larger.

the bottom right is the trajectory in the (ρ, φ) plane and
also the corresponding linear stability threshold line.

In Fig. 10 we present results for an even larger value
of the cross interaction radius, R12 = 1.1. Comparing
with Figs. 8 and 9, we see that the effect of this increase
is to further increase the tendency of the cancer cells
to penetrate into the healthy tissue (metastasis) and in
this case forming roughly circular clumps of cancer cells
ahead of the main tumour, rather than layers.

The dynamics shown in each of Figs. 8-10 reflects
metastasis. Smaller cross species interaction range, R12,
lead to a disordered infiltration of healthy tissue by indi-
vidual tumour cells, which is more ordered for R12 = 1.
For the larger R12, tumour cells appears to infiltrate
healthy tissue as small clusters. In each case, much of
the initial mixing of cell types occurs during the tran-
sient melting phase, the timescale for which decreases
on increasing R12 (as can be seen from linear stability
threshold diagrams for each of the plots); we note, how-
ever, the central core structure of tumour cells is main-
tained during the melting phase. The different manner of
infiltration is an interesting consequence of the modelling
assumptions, but it would be experimentally challenging
to discern which of these patterns, if any, are relevant
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FIG. 10. Snapshots of (ρ1 − ρ2) at the times t = 1.1, 5.5,
8.5 and 20. All the parameters here are the same as those in
Figs. 8 and 9, except here the cross interaction pair potential
radius is even larger, R12 = 1.1.

biologically.

3. The effect of varying βε12

Guided by the results in Fig. 6, we now investigate the
effect on the cancer development of varying the cross-
species repulsion strength, βε12. In Fig. 11 we display
results for three different values, βε12 = 1, 1.75 and 2.
We see that the speed of the cancer cells to penetrate the
healthy tissue increases as we increase the value βε12.
For the results in the left hand column, which are for
βε12 = 1, there is no penetration of cancer cells into
the healthy tissue. For βε12 = 1.75 (middle column) the
penetration starts at t ≈ 5.5 whereas it begins at t ≈ 4.5
for βε12 = 2 (right hand column).

In Fig. 12 we plot the average densities of the cells
and the nutrient as a function of time and also the tra-
jectory of the system in the (ρ, φ) plane, corresponding
to the results displayed in Fig. 11. This allows to see that
the increased degree of “melting” at times t ∼ O(1) for
smaller βε12 (particularly in the case with βε12 = 1), is
due to the fact that the linear stability threshold line is
at higher total densities and is closer to the initial state.
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FIG. 11. Snapshots of (ρ1 − ρ2), for various βε12 = 1 (left), βε12 = 1.75 (middle) and βε12 = 2 (right) and various different
times, with time increasing from top to bottom, as indicated above. The other pair potential parameters are βε11 = βε22 = 1,
R11 = R22 = 1 and R12 = 0.9. The other model parameters are λ̃n1 = λ̃n2 = 1, c1 = c2 = 0.5, α = 2, and S̃n = 9 with
f(r) = 1. The area of the domain is 25.6× 25.6 and ∆x = ∆y = 0.1.

This means that the system spends a greater amount of
time below the linear stability threshold line as it evolves
along its trajectory in the (ρ, φ) plane. We also see from
the plots of the average cell densities over time that the
fluctuations over time in the density of the healthy cells
increases with increasing βε12. In the (ρ, φ) plane, these
fluctuations manifest as a meandering trajectory with

zig-zag-like portions.

Repeating the simulations corresponding to the re-
sults in Figs. 11 and 12, but using R12 = 1.1, such
that R12 >

1
2 (R11 + R22), and also R12 = 1, such that

R12 = 1
2 (R11 +R22), (results not displayed), we find that

the results are qualitatively similar, but the melting phe-
nomenon for βε12 = 1 is prolonged for the smaller value
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FIG. 12. On the left are plots of the average cell densities [see
Eq. (10)] and the average nutrient density [see Eq. (11)] and
on the right plots of the trajectory in the (ρ, φ) plane with the
corresponding linear stability threshold line, corresponding to
the results in Fig. 11. These are for varying βε12 = 1 (top),
βε12 = 1.75 (middle) and βε12 = 2 (bottom).

of R12 and shortened for the larger value of R12. Also,
the time at which the cancer cells penetrating into the
healthy tissue first appear is earlier for larger R12.

IV. CONCLUSIONS

In this paper we have incorporated DDFT to de-
scribe microscopic cell-cell interactions within a simple
model of nutrient driven tissue growth. The theory was
applied for a single cells type (section II) and for two
cell types (section III), the latter representing, for exam-
ple, the interaction between healthy and tumour cells;
this approach can easily be generalised to describe more
cells. The resulting models consist of coupled integro-
partial differential equations with nonlinear source terms
describing nutrient driven growth. This level of descrip-
tion is common in discrete models, but their analysis is
limited mainly to numerical simulation; one of the main
advantages of the DDFT approach is that the model is
amenable to mathematical analysis, providing greater in-
sights into the nature of the numerical results. For in-
stance, the linear stability analysis of Secs. II D and III C
identify parameter regimes for which stable peaks arise,
representing the locations of cell centres, as demonstrated
in the simulations in Secs. II E and III D. Whilst some pa-
rameters can be estimated readily from the experimental

literature, this analysis also goes some way to estimate
the DDFT associated parameters that are difficult to de-
termine from direct measurements (e.g. the effective cell-
cell cross interaction radius R12). A further outcome of
our linear stability analysis in competition case, is the ob-
servation that as the cell radii ratio R22/R11 is increased,
the two wavenumbers at which the system can become
linearly unstable move apart leading to the linear stabil-
ity threshold to develop a cusp. If the radii ratio is suffi-
ciently large (a regime not explored in detail here) then
the system can be linearly unstable at two quite different
wavenumbers and the interaction between these can pro-
duce a wide range of different structures [59, 60, 67] which
are interesting from the pattern-formation perspective,
and may also have some biological relevance.

There is still much required in the development of the
basic theory before it can be applied directly to exper-
imental results. However, the numerical results reflect
qualitatively the expected results based on observation,
despite the use of simple growth kinetics and interaction
potentials. For example, the mean densities (a proxy for
total number of cells) in Figs. 2 and 4 qualitatively re-
semble Gompertzian or logistic type growth curves often
reported in tumour growth models [68]. A further note-
worthy aspect of the model is the splitting events shown
in Fig. 5, reflecting mitosis. We note also that for a uni-
form nutrient distribution, such events are not observed
at very large times as the arrangement of the cells settles
to fixed configuration; such results are reflective of the
cellular rest states observed in mature liver and muscle
tissues.

In the simulations of Sec. III, the parameter values
for the kinetics guarantee that the tumour cells will over-
run the healthy cells. However, it is interesting that the
manner by which this is done depends on the value of the
interaction parameters Rij and εij and in particular the
cross-interaction radius R12 and energy ε12. Although
the critical values for R12 suggested here are not strictly
defined, it was found that (i) if R12 < 1

2 (R11 + R22),
i.e. the cross-species interaction range is less then mean
of the two same-species interaction ranges, then tumour
cells tended to penetrate the healthy regions, whilst (ii)
if R12 >

1
2 (R11 + R22) the tumour cells tend to displace

the the healthy cells at the tumour edge, in accordance
with the insight gained from studies of mixtures of soft
particles [52–54, 69, 70]. Situation (i) is reminiscent of
metastasis, whilst (ii) reflects a benign tumour state. Of
course, some caution should be applied to such inter-
pretations on the basis of the current analysis, but it
is noteworthy that the DDFT approach does identify a
potential behavioural property of the cells that can gov-
ern benign and virulent tumours. The present work also
shows that the overall collective behaviour is sensitive to
the details of the pair interactions between cells.

The complex dynamics that the system can exhibit
is rather striking. For instance, the drop in the nutrient
level observed e.g. in Figs. 8–10 that then leads to a drop
in the overall number of healthy cells, which results in the
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“crystal” melting temporarily, which corresponds to the
cells being distributed in disordered liquid-like configu-
rations. The nutrient level then recovers and the system
“refreezes” and subsequently over time the cancer cells
penetrate the healthy tissue and eventually the healthy
cells all die out.

The current work is the first to analyse a model using
DDFT to describe the growth of tissues and tumours.
There is considerable scope to extend the model in order
to create a more realistic description of tissue growth.
For example, a simple model of EPS was proposed in
Ref. [36], whereby EPS gradients generates a haptotac-
tic response of cells, providing a further mechanism for
cell movement and arrangement. Another aspect where
the present model could be extended relates to the de-
scription of the cell-cell interactions. In the models here,
these are treated via soft purely repulsive potentials. It
would be interesting to compare results with those from
alternative soft potential models such as that proposed
in Ref. [71]. However, in reality there is also attractions
(adhesion) between cells, which points to the possibil-
ity of the analogue of the gas-liquid or gas-solid phase
transitions in collections of cells. Incorporation of both
attraction and repulsion between particles in a DFT is
straightforward [40–42], but the theory becomes much
more elaborate, which is why we avoided such theories
for this initial study. Despite the current model being
very simplistic in comparison to many models of tumour
growth, these initial results demonstrate that DDFT has
considerable potential as an effective modelling approach
to describe microscale cell-cell interactions that can pro-
vide new insights into the dynamics of tissue and tumour
growth.
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Appendix A: Estimates for parameters values

Here we discuss in further detail what are suitable
values to use for the parameters in our model. For the
homogeneous system with uniform density, from Eq. (9)
we obtain

ρ(t) = ρ0e
(λmn

∗−λd)t, (A1)

where ρ0 is the initial density. For a given nutrient con-
centration n∗ and assuming a 12 hours doubling time [72]

then from this we can deduce

(λmn
∗ − λd) =

ln 2

12
hrs−1. (A2)

According to [73], a typical value for the concentration
of oxygen in fresh water [O2] = n∗ = 6.383 mg/L, so
we estimate that the critical level nd for [O2] is approxi-

mately n∗

20 = 6.383
20 = 0.32 mg/L (equivalent to about 1%

of atmospheric levels). Hence, λmnd − λd = 0 leads to

λm =
λd

0.32mg/L
, (A3)

and on substitution into Eq.(A2) gives

λd = 0.00005min−1,

hence

λm = 0.00015Lmin−1mg−1. (A4)

The length scale R is the mean radius of the cells, so
from Table I we have R ≈ 10µm= 0.001cm and in 2
dimensions the typical diffusion distance in time t, is es-
timated from the 2-dimensional average distance diffused
squared over time formulae, 〈r2〉 = 4Dct. Assuming the
time taken to travel a distance of order the diameter of
the cell R is about 12 hours, then

(2R)2 = 4Dc × 12hrs.⇒ R2 = 12Dc

hence,

Dc =
R2

12hrs.
=

0.0012

12× 60min.
= 1.3× 10−9cm2/min

The dimensionless population growth constant is c1 =
R2λd

Dc
, so we get c1 = 0.038. From the definition of

D̃c = Dn

Dc
, and Dn = 2 × 10−5cm2/sec (Dn = 1.2 ×

10−3cm2/min) [74, 75], this leads to

D̃ =
12× 10−4

13× 10−10
≈ 1× 106. (A5)

The nutrient source term S̃n = R2Snλm

λdDc
is estimated to

be O(106) so that in Eq. (15) n̄ is in balance with the
diffusion term. Hence 3

13 × 104Sn ≈ (106) ⇒ Sn = 433.

From Eq. (15) we also see that the term involving λ̃n
also must balance with diffusion, hence from Eq. (13) we

see λn must be O(10−4) to ensure that λ̃n is of O(106).
Recall that the number density is the number of cells
per unit area ρ = N

A . Since R ≈ 10µm = 0.001 cm,
this implies that the area covered by one circular cell
= πR2 ≈ 3× 10−6cm2. This then implies that a typical
cell density is ρ ≈ 1

3 × 106cm−2 i.e. 3× 105cm−2.
We summarise the values of dimensional parameters

in Table I and dimensionless parameter values in Table
II.
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