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ABSTRACT This paper investigates distributed algorithms for joint power allocation and user association
in heterogeneous networks. We propose auction-based algorithms for offloading macrocell users (MUs)
from the macrocell base station to privately owned small-cell access points (SCAs). We first propose a
simultaneous multiple-round ascending auction (SMRA) for allocating MUs to SCAs. Taking into account
the overheads incurred by SCAs during valuation in the SMRA, further improvements are proposed using
techniques known as sub-optimal altered SMRA, the combinatorial auctionwith item bidding (CAIB), and its
variations; the sequential CAIB and the repetitive CAIB. The proof for existence of theWalrasian equilibrium
is demonstrated through establishing that the valuation function used by the SCAs is a gross substitute.
Finally, we show that truthful bidding is individual rational for all of our proposed algorithms.

INDEX TERMS Auction, beamforming, HetNets, offloading, user admission, quality of service, Walrasian
equilibrium, HetNets.

I. INTRODUCTION
As demand for data increases, the macrocell networks are
becoming increasingly congested. Consequently, the macro-
cell base stations (MBSs) are unable tomeet the quality of ser-
vices requirement of all users, hence certain users will have to
be dropped from service. Fortunately, there is an increase in
the deployment of small cell access points (SCAs) which aim
to ease the traffic congestion problem of macrocell networks.
Since SCAs are low powered, they allow aggressive reuse
of frequencies within the MBS coverage area. The network
capacity and efficiency of the entire network can be improved
by utilizing these SCAs to offload some of the MBS traffic.

A. RELATED WORKS
In traffic offloading, mobile users can connect to under uti-
lized third party networks. Several works in the literature
have investigated various mechanisms for benefits of offload-
ing [1]–[7]. A system calledWiffler is proposed in [2] to aug-
mentmobile 3G capacity withWiFi. Thework in [5] analyzed
Erlang-like capacity in a setting with multiple macrocells
deployed with picocells and femtocells. Their results showed
that small cells can achieve higher network capacity with

good energy efficiency. In [6] a small cell activation mech-
anism is proposed for offloading traffic from a macrocell
to small cells while avoiding user QoS degradation. The
main idea is to offload traffic to small cells in energy saving
mode only when there is a significant energy saving gains.
Hence this approach reduces the total energy consumption
of the network. The work in [7] considered a centralized
energy aware offloading scheme based on cloud-radio access
network.

The SCAs are normally privately owned. There are three
kinds of access modes, namely closed access, open access,
and hybrid access. In closed access mode, only pre-registered
users can be served. The open-access mode allows both
pre-registered and unregistered users to access the network.
In hybrid-access mode, access points allow unregistered users
to gain access under some constraints. Jo et al. [8] and
Quek et al. [9] recommended the hybrid-access mode
for network capacity improvement. In order to motivate
SCA owners to switch their SCAs from closed-access mode
to hybrid-access mode, some incentives should be offered.

In order to address the issue of offloading, auction based
algorithms have been proposed in [10]–[13]. Paris et al. [10]
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and Paris et al. [13] formulated a combinatorial reverse
auction problem wherein a set of mobile network
operators (MNOs) acts as auctioneers and the wireless access
points as bidders. The commodity in the auction is the under-
utilized bandwidth of the access points. In their problem
formulation, the access points submit bids to the MNOs who
in turn select the access point of their interest. A reverse
auction framework for fair and efficient access permission
is proposed in [11]. In particular, the authors proposed a
Vickery-Clarke-Groves (VCG) mechanism to maximize the
social welfare of a network with one wireless service provider
(WSP) and several femtocell owners. In their network model,
the WSP is the buyer and the femtocells sell user access to
serve WSP users. Chen et al. [11] addressed cell overlap-
ping by partitioning the femtocell coverage area into small
granularity of identical size (referred to as locations). This
allows bids to be expressed as a function of access permis-
sion in each location. In order to tackle the complexity of
VCG mechanism, Chen et al. [11] proposed a suboptimal
algorithm with lower complexity. In [12], a network with
multiple MBSs, third party owned femtocells and mobile
users was considered. In order to allow the MBSs to offload
some of their traffic to femtocells, the femtocells are required
to submit bids to serve MBS. Considering that the sellers
(femtocells) could incur significant overheads during valu-
ation, the authors further proposed a system which allows
imprecise valuations. Therefore the femtocells are allowed to
estimate their valuations.

B. CONTRIBUTIONS
We explore a different class of auctioning algorithms that
have been used in practice especially in spectrum auctioning.
Our focus is on forward auctions. Incentives are offered to
SCAs to participate in the auction which attracts more bid-
ders hence increased level of competition among privately
owned SCAs [14].

Hence the privately owned SCAs are willing to serve
users from the MNOs so as to fully occupy their under-
utilized spectral resources. On the other hand, it is
the interest of MNOs to explore mechanisms that will
increase their network capacity without deploying extra
base stations (BSs) hence reducing the capital expendi-
ture. We couple these standings of both parties to cre-
ate a market place environment to develop auction-based
algorithms.

Our focus is on a multi-unit auction settings wherein the
bidders have budget constraints in terms of themaximumpos-
sible number of items they could bid. As we will show later,
these budget constraints are private. In particular, we study
simultaneous multiple-round ascending auction (SMRA) and
combinatorial auction (CA) with item bidding. In the former,
the items are sold simultaneously in an iterative manner.
In CA with item bidding (CAIB), items are sold separately
and independently in a one shot auction. Every bidder submits
a single bid for each item, and each item is sold independently
as in a single-item auction.

The contributions of our work are as follows:

• We propose and analyze auction based algorithms that
jointly perform downlink beamformer design and user
association. To the best of our knowledge, works that
propose auction based mechanisms do not consider
beamformer design in their mechanism design.

• Wedevelop a novel valuation function that automatically
monitors the resource budgets for bidders.

• We propose two forward SMRA based algorithms to
facilitate the user offloading process. The first algo-
rithm directly applies the classical SMRA which is
used in spectrum auctioning. In order to reduce the
valuation overheads incurred by the bidders, we pro-
pose a second algorithm, referred to here as the altered
SMRA (ASMRA). These two algorithms are able to
preserve the privacy of bidders’ valuations.

• We further propose two forward CAIB algorithms; the
sequential CAIB (SCAIB) and the repetitive CAIB
(RCAIB). These algorithms use the second-price rule
(i.e., VCG payment). In the RCAIB, standing highest
bids are advertised to competitors and this could provide
more information on the valuation and thus encourage
retaliations. The SCAIB tries to avoid this problem.

• We show that truthful bidding leads to individual ratio-
nality and it is the best response for every bidder.
We demonstrate that the truthful bidding leads to a
Walrasian equilibrium (WE) where supply meets the
demand.

• Thorough numerical analysis is conducted and valida-
tion of the proposed algorithms is carried out by com-
paring the proposed algorithmswith the optimal solution
for heterogeneous deployments.

This paper is structured as follows: Subsection I-C briefly
annotates some basic terminologies found in auction theory.
In section II, we present the systemmodel, necessary assump-
tions and the problem formulation. Section III formulates the
general combinatorial problem and analyze the existence of
the WE. In section IV, we present the proposed algorithms.
Bidding strategies are analyzed in section V. In section VI,
we provide numerical results followed by concluding remarks
in section VII.
Notations: In addition to the notations in Table 1, we use

the following notations: We use the upper-case bold face
and lower-case bold face letters for matrices and vectors,
respectively. The notation ‖ · ‖ is the Euclidean norm. The
operators =(·) and <(·) extract the imaginary part and the
real part of their arguments, respectively. The regular and
Hermitian transposes are denoted by (·)T and (·)H, respec-
tively. Finally, CN (µ, σ 2) is the circular symmetric complex
Gaussian distribution of a random variable with mean µ and
variance σ 2.

C. BASIC TERMINOLOGY USED IN AUCTION THEORY
Here we present some basic terminologies commonly used in
auction theory.
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TABLE 1. Frequently used notations.

• Commodity: A commodity/good/item1 is an object
being traded.We treat the guest users (GUs) as the items.

• Bidder: A bidder/buyer is someone who wants to buy
an item in the auction. In our problem, bidders are
the SCAs.

• Seller: A seller is the owner of the items and is inter-
ested in selling his items. In our case the seller is
the MNO.

• Auctioneer: An agent, usually appointed by the seller,
who is responsible for conducting the auction proceed-
ings. In our problem an auctioneer is the MBS.

• Valuation: It is the value of any item as perceived by the
buyers.

• Bid: It is the proposal made by the bidder to the seller.
• Price: This is the value asked by the auctioneer/seller
during an auction.

• Utility: The residual value or the benefit of participating
in an auction.

• Reverse or forward auction: In a reverse auction the
sellers compete for buyers while in a forward auction
bidders compete for items.

In order to fit our system model into an auction environ-
ment, we introduce the following definitions:

• Preference profile: A set of all GUs that an SCA is
willing to bid on, and sorted in the order of preference.

1We choose to use the term item in the rest of the paper.

• Valuation profile: A set of all bids (i.e., valuations)
corresponding to the preference profile.

• Auction coverage area: A prescribed area within which
a bidder is allowed to bid.

II. SYSTEM MODEL AND ASSUMPTIONS
Consider a single-cell multiple-input single-output (MISO)
downlink network consisting of an MBS with densely
deployed S = [1, . . . , S] set of hybrid SCAs. We assume
that the SCAs operate in a hybrid mode. We further
assume that the MBS and the SCAs are operating in
non-overlapping frequency bands. The latter assumption
avoids intercell interference so that the valuation of an
SCA will not depend on other SCAs actions. The SCAs
can admit guest (GUs) with the provision that the per-
formance of their host users (HUs) is not degraded. The
MBS is equipped with MMBS antennas and each SCA is
equipped with MSCA antennas where MMBS >> MSCA.
There is a set M0 = [1, . . . ,M0] of macrocell users (MUs),
that have to be served primarily by the MBS. It is assumed
that at any given time, the MBS has commitment to serveM0
MUs where M0 >> MMBS. The MBS and every SCA have
a limit on the maximum transmission power, pmax

0 and pmax
s

respectively. We assume that all SCAs are connected to the
MBS via wired backhaul links. All users are assumed to have
a specific quality of service (QoS) requirement that needs to
be met, otherwise they will be dropped.

A. PROBLEM FORMULATION
In conventional HetNets, MUs are served only by the MBS.
This type of setting is shown to be very inefficient in terms
of spectral usage and energy. It is likely that some of the
resources of the SCAs may be under utilized by HUs. Net-
work operators can take advantage of the availability of SCAs
to serve some of their MUs, especially those at the boundary
of the coverage area. To achieve this, SCAs should be incen-
tivized to operate in hybrid accessmodes (i.e., to serve its own
users and guest users). We achieve this using auction theory.
In particular, we study the utilization of the forward ascend-
ing and the combinatorial auctions. If the number of GUs
and SCAs is very high, it is highly probable that a
GU may be in the auction coverage area of more than
one SCA as shown in Figure 1. This stimulates a competitive
market which is analyzed using an auction setup in which the
MBS is the auctioneer, the SCAs are the bidders, and theMUs
(orGUs from the perspective of SCAs) are the items.Wemust
emphasize that the aim of theMBS is to offload as manyMUs
as possible.

B. GENERAL AUCTION ENVIRONMENT
The MBS intends to perform welfare-maximization for an
economy with G heterogeneous items (i.e., GUs) via auc-
tioning. It is assumed that all SCAs have private marginal
values (see equation (1)) on the items and private budget
constraints. In order to maximize their utilities, all bidders
wish to admit their favorite GUs subject to the transmission
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FIGURE 1. An auction market setting in a heterogeneous network. Guest
users GU1 and GU2 are over-demanded items, and all MUs labeled users
are under-demanded items.

power constraints and QoS requirements of their HUs.2 Note
that the budget constraints on bidders emanate from the
constrained transmission powers. Later, we will show that
these budgets constraints together with channel status and
performance degradation of HUs, set the upper bound on the
maximum number of GUs a bidder could accommodate.
Each bidder has private valuations vs(G′s) for every pos-

sible bundle of GUs G′s ⊆ Gs in its auction coverage area.
We immediately note that this will result in immense private
parameters since each bidder has to compute the value of
every possible bundle. A valuation function of Gs items is
a function vs(Gs) : 2Gs → R such that vs(∅) = 0. We assume
free disposal; hence, the monotonicity condition such that
vs(G′s) ≤ vs(G†

s ) whenever G′s ⊆ G†
s . Consider two disjoint

sets G′s and G††
s at the s-th SCA. The marginal value of G††

s
with respect to the set G′s can be defined as:

vs(G††
s |G′s) = vs(G′s ∪ G††

s )− vs(G††
s ). (1)

For a price profile q ∈ RG, the utility of s-th bidder for
acquiring G′s GUs is a quasi-linear function defined as:

us(G′s) = vs(G′s)−
∑
g∈G′s

q(g). (2)

We assume that there are no externalities on the valuation
functions of the bidders. Thus, the valuation of each bidder
depends only on the set of items it acquires.

C. SYSTEM METRIC DESIGN
Let the set of HUs and GUs served by the s-th SCA be Hs.
Each user is denoted by index h. In the downlink, the trans-
mitted signal for the h-th HU from the SCA s can be written
as:

xh(t) = whdh(t), (3)

2The term home user (HU) is used interchangeable to refer to preregistered
users and GUs that are already admitted by an SCA. This is because once a
GU is admitted, the SCA has the mandate to serve thatGU as its preregistered
user.

where dh(t) ∈ C represents the information symbol at time t ,
and wh ∈ CMSCA is the unnormalized transmit beamforming
vector for user h. Without loss of generality, assume that ιh(t)
is normalized such that E{|dh(t)|2} = 1 as the power can be
absorbed into wh, and that all data streams are independent
such that E{ιh(t)ιj(t)∗} = 0, if h 6= j. The received signal at
the HU is given by:

ysh = hH
shwhdh(t)+

∑
j∈Hs\h

hH
shwjdj(t)+ ηh(t), (4)

where hsh ∈ CMSCA is the random channel vector from
the SCA s to the h-th HU, and ηh(t) ∈ CN (0, σ 2

h ) is the
circular symmetric zero mean complex Gaussian noise with
variance σ 2

h . The notation Hs \ h means set Hs with element
h removed. The instantaneous downlink SINR of the h-th HU
served by the s-th SCA is given by

SINRsh =
|hH
shwsh|

2∑
j∈Hs\h

|hH
shwsj|

2 + σ 2
h

. (5)

D. BIDDERS’ VALUATION FUNCTIONS
Prior to bidding, each SCA has to determine its valuation
of their favorite GUs. The objective of each bidder is to
maximize its utility as defined in (2). Thus, given a pref-
erence set Ps ⊆ G of GUs, a price profile q, and a price
increment δ, each bidder will have to solve (6), as shown at
the bottom of the next page, at any instance of the auction.
We note that solving (6) for every possible subset of Fs
can be very costly. At this juncture, we make an essential
assumption that all GUs require the same QoS in terms
of SINR targets. This assumption ensures the monotonocity
condition of the valuation function. The solution to (6) is
attained by picking the most valuable items with the lowest
prices.Whenever the price profile q contains identical values,
e.g., at the start of an auction q = 0, then the solution
to (6) is achieved by admitting the largest possible set of
users. This set will comprise of all users with the highest
valuations.

Therefore, the cardinality of the very first favorite set gives
the maximum number of users an SCA can admit. This first
favorite set, denoted Ĝs, forms a budget constraint on the
bidder. In an iterative auction, the cardinality of the favorite
set can only decrease as the auction progresses. During the
auction, the prices are bound to be different, hence, the bidder
is obliged to determine the favorite set by exhaustively trying
all possible combinations of the GUs available using (6). For
a given favorite set G∗s , the valuation process will provide
values that are downward-sloping such that vs1 ≥ vs2 ≥
· · · ≥ vsG′s . The total valuation of the favorite set is given
by vs(G∗s ) =

∑
g∈G∗s vsg.

The user maximization (UM) problem (PUM) and user
admission (UA) problem (PUA) were discussed in [15].
The QoS targets of the HUs and GUs at the s-th SCA are
defined as4s

= [ξ s1, . . . , ξ
s
Hs , ξ

s
Hs+1

, . . . , ξ sFs ]. ThenPUM at
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the s-th SCA is formulated as

PUM
1 : maximize card(Fs)

subject to SINRsh ≥ ξ
s
h, h ∈ Fs,∑

h∈Fs

‖wsh‖
2
2 ≤ p

max
s . (7)

where card(·) is the cardinality. The problem in PUM
1 is

non-convex because the objective function and the QoS con-
straints are non-convex.

Let us define the matrixWs = [wsh]h∈Fs by concatenating
the column vectors wsh at each SCA. We further introduce
slack variables as = [as1, . . . , a

s
Hs , a

s
Hs+1

, . . . , asFs ]. By fol-
lowing the approach in [15],PUM

1 is equivalently formulated
as in (8), as shown at the bottom of this page.

Problem (8) can be solved using the convex programming
package CVX [16]. To build up a preference set of GUs
Ps ⊆ Gs, we sort the vector as in ascending order. The
corresponding indices of the sorted as with the exclusion of
the index of HUs give the preference profile fs. To build up an
optimal favorite set G∗s ⊆ Ps and to determine the marginal
values vsg for each g-th user, the GUs are sequentially admit-
ted beginning with the one corresponding to the smallest ash.
This is done by checking for feasibility at every admission by
solving

PUA
: minimize

{wsh}

∑
∀h∈Hs∪g

‖wsh‖
2
2

subject to SINRsh ≥ ξ
s
h, ∀h ∈ Hs ∪ g,∑

∀h∈Hs∪g

‖wsh‖
2
2 ≤ p

max
s , (9)

using the CVX tool. When a newly admitted user makes the
constraints in (9) infeasible, it is removed from the set G∗s .

At every admission stage, the bidders determine the
marginal value of the newly admitted GU. Let the charge per
unit of the data rate paid by every GU for connection, and the

cost per unit power, be denoted as µ and κ , respectively. The
marginal value of the admitted g-th GU is determined as

vsg = κ log2(1+ ξ
s
g)− csg, (10)

where the marginal cost csg, is given by

csg = µ

 ∑
∀k∈Hs∪g

‖ŵsk‖
2
2 −

∑
∀h∈Hs

‖wsh‖
2
2

 . (11)

In (11), ŵsk is the beamformer vector of the k-th HU
given that GU g is admitted, and wsh is the beamformer
vector of the h-th HU before GU g is admitted. The first term
within the parenthesis in (11) is the total power consumed
after the connection of the g-thGU and the last termwithin the
parenthesis is the total power consumption before g-th GU is
admitted. Summing over all users before and after admission,
the valuation in (10) is expressed as

vs(g|Hs) = vs(Hs ∪ g)− vs(g). (12)

III. SURPLUS MAXIMIZATION PROBLEM
The objective of the MBS is to maximize its surplus, which is
the number of users that are offloaded to the SCAs. We cast
the general surplus maximization problem at the MBS as the
following integer program (IP);

P IP
: maximize

xsAs

S∑
s∈S

∑
As⊆G

vsAsxsAs

subject to
∑
j∈As

∑
s

xsAs ≤ 1, ∀j ∈ G,

∑
As

xsAs ≤ 1, ∀s ∈ S,

xsAs ∈ {0, 1}, ∀s ∈ S,As ⊆ G,
(13)

where As is the possible allocation of set of GUs to the
s-th bidder and xsAs is a binary decision variable, indicating

argmax
Ps⊆G\As

{
vs(Hs ∪ Ps)−

∑
g∈As

q(g)+
∑
g∈Ps

(q(g)+ δ)

}, (6)

PUM
2 : minimize

{wh},{as}
‖as‖1

subject to


√
1+ 1

ξ sh
hH
shwsh + ash

hH
shWs
σ

 �SOC 0, h ∈ Fs,

=(hH
shwsh) = 0, ∀h,

as = 0, h = 1, . . . ,Hs,

as ≥ 0, h = Hs + 1, . . . ,Fs,∑
h∈Fs

‖wsh‖
2
2 ≤ p

max
s , ∀h. (8)
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association of SCAs. xsAs = 1 means SCA s is assigned
to a set of GUs in the set As and otherwise xsAs = 0.
The first constraint ensures that every GU is matched with
at most one SCA. The second constraint ensures that every
SCA should get at most one bundle.

A. ALLOCATION AND PAYMENT RULES
Under the SMRA setting, the bidder with the highest bid
wins and the payment is the price q minus the increment δ.
For a CAIB auction, As(b) is used to denote the allocation
for a bid profile b. Let b = (bs,b−s) denote the bid pro-
file where SCA s bids bs and all other SCAs bid b−s =
(b1, . . . ,bs−1,bs+1, . . . ,bS ). In CAIB, the allocation and
payment rules require the GU to be offered to the highest
bidder at a price equal to the second highest bid. For a given
allocation As(b) ⊆ G′s, the sum of the highest bids are
denoted by

Bhigh(As(b),b) =
∑

g∈As(b)

max
t

(bt (g)),

Bhigh−s (As(b),b−s) =
∑

g∈As(b)

max
t 6=s

(bt (g)). (14)

Using (2) and the second price rule, the utility of the s-th
SCA is given by

us(b) = vs(As(b))− B
high
−s (As(b),b−s). (15)

B. EXISTENCE OF THE WALRASIAN EQUILIBRIUM
In [17] and [18], it is argued that if theWE exists, any efficient
allocation must solve the relaxedP IP. In order to address the
existence of the WE in the SMRA and the CAIB, we require
the following definitions.
Definition 1: Given a valuation function vs(Gs)2Gs → R

and a vector of prices q ∈ R, the demand (Ds(vs,q)) of a
bidder s at the price of q is given by

Ds(vs,q) := {G′s ⊆ Gs : us(G′s) ≥ us(G†
s ),∀G†

s ⊂ Gs} (16)
Definition 2: An allocation is a partition ofG into pairwise

disjoint sets of items A1,A2, . . . ,AS .
Definition 3: Utilities of bidders are deemed to be

decreasing marginal utilities if the marginal value of an
item decreases as the number of already accumulated items
increases. This is equivalently defined via the submodular
valuation definition. A valuation function vs is submodular
if for a pair G′s ⊆ G†

s and a GU g, vs(g|G′s) ≥ vs(g|G
†
s ).

Definition 4: A valuation function vs is complementary
free if for all sets of items G′s and G†

s , the following holds:

vs(G′s)+ vs(G†
s ) ≥ vs(G′s ∪ G†

s ). (17)

C. SUBMODULARITY OF THE VALUATION FUNCTION
Theorem 1: The valuation function vs in (12) is a submod-

ular valuation function.
Proof: In [19] and [20] a valuation vs is submodular if

and only if any of the following conditions hold.
1) Decreasing marginal utilities: For any g, g† ∈ G and

G′s ⊆ G, then vs(g|G′s) ≥ vs(g|G′s ∪ {g†}).

2) Monotonicity: For any G′s,G
†
s ,G‡

s ⊆ G, such that
G′ ⊆ G†, then vs(G‡

s |G′s) ≥ v(G
‡
s |G†

s ).
3) Complementary free: For anyG′s,G

†
s ⊆ G, then vs(G′s)+

v(G†
s ) ≥ vs(G′s ∪ G

†
s )+ v(G′s ∩ G

†
s ).

It is sufficient to qualify for one of the conditions above.
We choose the first one. From (5), let us writewsh =

√
ρhw̃sh,

where ρh is the power and w̃sh is the unit-norm beamforming
direction for the h-th HU. We further denote power allocation
vector ρs = [ρ1, . . . , ρHs ]. The SINR in (5) can be expressed
as

SINRsh(ρs) =
ρh

Ih(ρs)
, (18)

where

Ih(ρs) = min
‖w̃sh‖=1

[9s(w̃sh)ρs]h +
σh

|hH
shw̃sh|

2
. (19)

The constant link gain matrix (i.e., a coupling matrix) 9s for
the s-th SCA is defined as

[9s]sh(w̃) =


|hH
shw̃sj|

2

|hH
shw̃sh|

2
, j 6= h,

0, j = h.
(20)

In [21] and [22], it was proven that Ik (ρs) is a standard func-
tion. Now consider that the preference profiles of bidder s as
Ps := {g1, g2, . . . , gu−1, gu, gu+1, . . . , gGs}. Let us assume
that during sequential admission of GUs, the set of HUs
is Hs := {g1, g2, . . . , gu−1} with the corresponding power
allocation vector of ρ

Hs
s . Let us now assume that in the next

admission, SCA s considers GU gu, with the resulting power
allocation vector ρ

gu|Hs
s . Due to the monotonicity of Ik (ρs)

on ρs and using (18), we argue that 1Tρ
gu|Hs
s ≥ 1Tρ

Hs
s . Now

suppose before admitting GU gu, bidder s admits GU gu+1
first. Note that GU gu+1 has equal or lower preference to bid-
der s as compared to GU gu. Let us denote the power alloca-
tion vector by ρ

gu+1|Hs
s when GU gu+1 is admitted first. With

the same argument given earlier, the new power allocation
vector will satisfy 1Tρ

gu+1|Hs
s ≥ 1Tρ

gu|Hs
s ≥ 1Tρ

Hs
s . If GU

gu is admitted after GU gu+1 with the corresponding power
allocation vector being ρ

gu|Hs∪{gu+1}
s , it should be the case that

1Tρ
gu|Hs∪{gu+1}
s ≥ 1Tρ

gu+1|Hs
s ≥ 1Tρ

gu|Hs
s ≥ 1Tρ

Hs
s .

Now by utilizing (12) and (11), we get

vs(gu|Hs)= κ log2(1+ ξ
s
gu )−

(
1Tρgu|Hs

s − 1TρHs
s

)
≥ κ log2(1+ ξ

s
gu )−

(
1Tρ

gu|Hs∪{gu+1}
s −1Tρ

gu+1|Hs
s

)
= vs(gu|Hs ∪ gu+1) (21)

Lemma 1: The valuation function vs is submodular for
every subsetQs, and the marginal valuation function vs(·|Qs)
is complementary free.

Proof: Using theorem 1, we need to prove that for all
G′s,G

†
s ∈ Gs, it is such that vs(G′s) + v(G†

s ) ≥ vs(G′s ∪ G†
s ) +

v(G′s∩G
†
s ). LetQs := G′s∩G

†
s , Ḡ′s := G′s \Qs, and Ḡ†

s := G†
s \

Qs. By using (1), we define the following marginal values:
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vs(G′s) = vs(Ḡ′s|Qs) + vs(Qs), vs(G†
s ) = vs(Ḡ†

s |Qs) + vs(Qs),
vs(G′s ∪ G†

s ) = vs(Ḡ′s ∪ Ḡ†
s |Qs) + vs(Qs), and vs(G′s ∩ G†

s ) =
vs(Qs). The third condition of theorem 1 can be equivalently
written as

vs(G′s)+ v(G†
s ) ≥ vs(G′s ∪ G†

s )+ v(G′s ∩ G†
s )

⇒ vs(Ḡ′s|Qs)+ vs(Qs)+ vs(Ḡ†
s |Qs)+ vs(Qs)

≥ vs(Ḡ′s ∪ Ḡ†
s |Qs)+ vs(Qs)+ vs(Qs)

⇒ vs(Ḡ′s|Qs)+ vs(Ḡ†
s |Qs) ≥ vs(Ḡ′s ∪ Ḡ†

s |Qs).

(22)

This suggests that v(·|Qs) is complement free as per (17).
With the properties of the interference function given in (19),

and the conclusion in (21), we argue that 1Tρ
Ḡ′s|Qs
s ≤

1Tρ
Ḡ′s∪Ḡ

†
s |Qs

s , 1Tρ
Ḡ†
s |Qs

s ≤ 1Tρ
Ḡ′s∪Ḡ

†
s |Qs

s , and 1Tρ
Ḡ′s|Qs
s +

1Tρ
Ḡ†
s |Qs

s ≤ 1Tρ
Ḡ′s∪Ḡ

†
s |Qs

s . This confirms (22).
To conclude the proof, we need to prove that for all Qs

and Ḡ′s, Ḡ
†
s ⊆ Qc

s , it is such that vs(Ḡ′s|Qs) + vs(Ḡ†
s |Qs) ≥

vs(Ḡ′s ∪ Ḡ†
s |Qs). Let us define G′s = Ḡ′s ∪ Qs and G†

s =

Ḡ†
s ∪ Qs. With these definitions, we get the same marginal

valuations as before: vs(G′s) = vs(Ḡ′s|Qs) + vs(Qs), vs(G†
s ) =

vs(Ḡ†
s |Qs)+vs(Qs), vs(G′s∪G

†
s ) = vs(Ḡ′s∪Ḡ

†
s |Qs)+vs(Qs), and

vs(G′s∩G
†
s ) = vs(Qs). Due to vs being a submodular function,

the condition vs(Ḡ′s|Qs) + vs(Ḡ†
s |Qs) ≥ vs(Ḡ′s ∪ Ḡ†

s |Qs) is
equivalently written as vs(Ḡ′s|Qs) + vs(Ḡ†

s |Qs) ≥ vs(Ḡ′s ∪
Ḡ†
s |Qs). Using the same arguments made above, the proof is

established.

D. GROSS-SUBSTITUTE OF THE VALUATION FUNCTION
A much stronger property of the valuation function is the
gross-substitute condition.
Definition 5: In a market with m items, S agents, and val-

uations vs, a Walrasian equilibrium (WE) is a price q? ∈ R+
and a partition of goods in disjoint setsG := ∪Ss=1As such that
As ∈ Ds(vs,q). The WE corresponds to the market-clearing
prices where every bidder receives a bundle in his demand
set [23]. At WE the following conditions must hold:
• Condition 1: Each bidder s is matched to its preferred
item g ∈ argmax{vsg − qg}g∈G∪{∅}.

• Condition 2: An item g ∈ G is unsold only if qg = 0.
Definition 6 (Gross Substitute Condition, Kelso and

Crawford [24]): A valuation vs over the items Gs satisfies
the gross substitution (GS) condition if and only if for any
price profile q ∈ R and G′s ∈ Ds(vs,q), if q′ is a price profile
such that q′ ≤ q, then there is a set G†

s ∈ Ds(vs,q′) such that
G′s ∩ {g : q(g) = q′(g)} ⊆ G†.

In brief, definition 6 suggests that, if a bidder has GS valu-
ation and demands a set G′s items at the price profile q, if the
price of some of the items subsequently increases, the bidder
still demands some of the items in G′s whose price remained
unchanged.
Proposition 1: The valuation function in (12) is a gross

valuation function.

Proof: Consider a bidder s, vs and v−s. Let the corre-
sponding marginal values for the favourite set G′s be denoted
as vs1, vs2, . . . , vsG′s . Suppose bidder s gets matched with
all the GUs in its favourite set at price vector q. We now
introduce a new bidder t who has a favourite set G′t such
that G′t ∩ G′s := {g2}. Let us assume that vsg ≥ vtg, g ∈
G′s \ g2.3 Assuming truthful bidding, bidder s will lose GU g2
to bidder t as the price of GU g2 increases. This change in
allocation will result in a new power allocation vector ρ†

s such
that ρ

†
s � ρs, with ρ

†
s (g2) = 0. We invoke the monotonicity

axiom for (19) from [21] and [22] and state that Ih(ρs) ≥
Ih(ρ†

s ). With this being true, loss of GU g2 will increase the
marginal values of all other GUs in the favorite set G′s \g2 and
thus making them more attractive to SCA s.

E. COMPUTATION OF THE WE PRICES
The linear programming relaxation (LPR) of P IP is:

PLPR
: maximize

xpg

∑
s=1

∑
As⊆G

vsAsxsAs

subject to Constraints 1 and 2 in (13),

0 ≤ xsAs ≤ 1, As ∈ G, ∀s ∈ S
(23)

Even though PLPR has G + S variables, it has an exponen-
tial number of constraints. Works in [17] and [18] propose
solving the dual of PLPR by utilizing separation based linear
programming algorithm. The dual linear programming relax-
ation (DLPR) is defined as:

PDLPR
:

minimize
xpg

S∑
s=1

us +
∑
g∈G

p(g),

subject to us ≥ vs(As)−
∑
g∈As

p(g),∀s ∈ S,As ∈ G

p(g) ≥ 0, u(s) ≥ 0, ∀s ∈ S, g ∈ G, (24)

where p and us are the Lagrange multipliers associated with
the constraints in PLPR. For completeness, we state the
following well known theorems:
Theorem 2 (First Welfare Theorem [23]): Suppose (q,

A1, . . . ,AS ) is a WE, then the allocation (A1, . . . ,AS ) cor-
responds to the allocation that maximizes the social welfare,
i.e., the allocation maximizing

∑
s∈S vs(As).

Proof: Let Q =
∑

g∈G q(g) be the sum of prices of
all GUs and let the allocation (A∗1, . . . ,A

∗
S ) be any welfare

maximizing allocation. SinceAs ∈ D(vs,q), then by utilizing
condition 1 of definition 5, it is the case that

vs(As)− q(As) ≥ vs(A∗s )− q(A∗s ). (25)

Summing for all s, we get∑
s∈S

vs(As)−
∑
s∈S

q(As) ≥
∑
s∈S

vs(A∗s )−
∑
s∈S

q(A∗s ). (26)

3We assume all tie breaks are in favor of bidders s. In this proof we chose
g2 to be the only GU that bidder s got out bidden on. This is to simplify the
proof.
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Algorithm 1 SMRA Algorithm
Data: Initialization: δ > 0, q(g) = 0, ∀g ∈ G,

(S,G) ∈ Z+, GUs’ set G := ∪Ss=1Gs,
assignment set As = ∅,∀s ∈ S , lost items set
Ls = ∅,∀s ∈ S, Gis = ∅,∀s ∈ S, auction
round: i = 0.

Result: Optimal Allocation set A∗s ,∀s ∈ S.
1 while T 6= ∅|| ∪Ss=1 G

i
s 6= ∅ do

2 i← i+ 1
3 Auctioneer asks each bidder for its conditional

bidding set Gis.
4 Bidders determine new preference profiles and

marginal values for their favorite subset Gis
(using (6)) of items not assigned to them, given
the GUs they have admitted and the current
prices qi.

5 Bidders submit their conditional bidding set.
6 Auctioneer set T = ∅, Ls = ∅
7 for g ∈ ∪Ss=1G

i
s do

8 if |Cig| > 1 then
9 pick an arbitrary bidder s: As← As ∪ g

10 ∀k 6= s,Ak ← Ak \ g, T ← T ∪ ∀k 6= s
11 Lk ← g,∀k ∈ Cig \ s
12 qi+1(g)← qi(g)+ δ
13

else if |Cig| = 1 then
14 As← As ∪ g, G ← G \ g
15 else
16 pick an arbitrary winner s from subset of

the bidders in T : As← As ∪ g

Noting that Q =
∑

s∈S q(As) =
∑

s∈S q(A∗s ) when we
sum over all GUs that have non-zero price, we conclude that∑

s∈S vs(As) ≥
∑

s∈S vs(A∗s ).
Theorem 2 is complemented by the Second Welfare Theo-

rem via the duality theorem in linear programming.
Theorem 3 (Second Welfare Theorem [23]): Suppose an

integral optimal solution for PLPR exists, then WE whose
allocation is given also exists.

Proof: Let the optimal allocation to PLPR be
(A∗1, . . . ,A

∗
S ). Suppose the optimal solution to PDLPR

is given by (p∗, u∗1, . . . , u
∗
S ). We need to show that

(p∗,A∗1, . . . ,A
∗
S ) is a WE. Since Karush-Kuhn-Tucker

(KKT) conditions are necessary and sufficient for the opti-
mality to PLPR and PDLPR, then for each SCA for which
xsA∗s > 0, we have xsA∗s = 0 in PLPR and us = vs(A∗s ) −∑

g∈A∗s p
∗(g) in PDLPR being true. Therefore, for any other

bundle As we get

us = vs(A∗s )−
∑
g∈A∗s

p∗(g) ≥ vs(As)−
∑
g∈As

p∗(g). (27)

Algorithm 2 ASMRA Algorithm
Data: See Algorithm 1.
Result: See Algorithm 1.

1 while T 6= ∅|| ∪Ss=1 G
i
s 6= ∅ do

2 Algorithm 1 steps 2-3.
3 if Ls 6= ∅||i = 1 then
4 Algorithm 1 step 4.

else
5 for g ∈ Gi−1s do
6 if vsg > q(g) then
7 Gis← g
8 else
9 Gis← Gi−1s \ g

10 Algorithm 1 Steps 5 - 16.

Theorem 3 means that, if (p,A1, . . . ,AS ) is a WE and
(A∗1, . . . ,A

∗
S ) maximizes the surplus

∑
s∈S vs(A∗s ), then

(p,A∗1, . . . ,A
∗
S ) is also aWE. Both theorems 2 and 3 suggest

that the WE exists if there is strong duality between PLPR

and PDLPR. In order to solve PDLPR, we first propose
two ascending auction algorithms (SMRA) and two CAIB
algorithms based on the Walras’ tatônnement (i.e., trial and
error) procedure [25].

IV. THE SMRA AND CAIB ALGORITHMS
First we propose the iterative SMRA and ASMRA algo-
rithms. These two algorithms preserve privacy of the valua-
tions of SCAs. We further propose two versions of the CAIB.
Initially, we propose a simultaneous CAIB (SCAIB) wherein
the auctioneer runs different CAIBs in a sequential manner.
In this setting, a bidder is allowed to submit a bid on a par-
ticular item only once. Finally, we propose a repetitive CAIB
(RCAIB) wherein bidders are allowed to correct their bids by
rebidding on items as long as they believe they constitute their
favourite item set.

A. THE SIMULTANEOUS MULTIPLE-ROUND ASCENDING
AUCTION MECHANISM
With reference to Algorithm 1, we describe how the WE is
determined using an SMRA. First let us define a conditional
bidding set4 Gis at every iteration5 i as the set that contains
all the GUs which bidder s has to bids on given that it
has admitted the provisional set As. The assumption is that
bidder s automatically bid on each GU g ∈ As. In this regard,
a bidder is not allowed to withdraw its bid on any GU that
it has been matched with. For an SCAs to relinquish a GU,
one of its competitors has to outbid it on that GU. The MBS
predefines the set on which each SCA can bid on by setting

4Conditional bidding set is the favourite set. We sometimes refer to it as
the conditional bid.

5We reserve the words iteration and round to describe the state of an
iterative auction and a sequential auction respectively.
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the auction coverage area for each bidder to αςs, where α is
a scaling factor and ςs is the SCA’s nominal coverage area.
The prices of all the GUs are initialized as q(g) = 0,∀g ∈ G.
The initial contact set T contains all SCAs with at least one
auctioned GU in their auction coverage area. The set of GUs
that are on auction G is initialized as all MUs that fall within
the auction coverage areas of all the SCAs. For all SCAs,
the provisional set As, the conditional set Gis, the loss set Ls
are initialized as empty sets.

The Algorithm 1 iterates as follows: The MBS invites
all bidders in the contact set T to indicate their conditional
bidding sets. Each SCA submits its conditional bidding set
Gis ⊆ Gs \As to the MBS, with the assumption that the price
of each GU g ∈ Gs \ As has price qi(g) = qi−1(g) + δ.
The prices for all GU g ∈ As are assumed to be unchanged,
i.e., qi(g) = qi−1(g). In step 7 to step 16, the MBS updates
the provisional sets by arbitrarily allocating a GU to any
bidder that is interested in it. In the case where there is a tie,
the winner is picked randomly. The MBS then updates the
prices of all the GUs that are over demanded and updates the
contact set.

Now suppose the current competitors set for GU g is
empty. This implies that GU g does not appear in any of
the conditional sets, g /∈ ∪Ss=1G

i
s. The price for GU g is

set to qi+1(g) = qi(g) and the provisional winner remains
unchanged, i.e., if g ∈ As during iteration i then g ∈ As in
iteration i + 1. If |Cg| = 1, supply equals demand, then GU
g is matched with the SCA s ∈ Cg. Otherwise if |Cg| > 1,
then GU g is over demanded. Under this condition the GU g
changes hands by arbitrarily being assigned to a bidder in the
set Cg with the exception of its previous provisional winner.
The same process is repeated until the contact set becomes
empty or when the conditional bidding sets of all bidders
become empty.

B. ALTERED SMRA ALGORITHM
Note that in Algorithm 1, for the SCAs to maximize their
utilities, they are forced to exhaustively check for every pos-
sible bundle in Gs in every iteration. This is computationally
costly for both the bidders and the auctioneer. In an attempt to
reduce the overheads incurred by the SCAs during valuation,
the MBS uses the activity rule as follows: once a bidder
places a bid on a GU g, it must commit to bid on that GU
g in every iteration. Otherwise if an SCA fails to submit a
bid on GU g, it is erased from the competitors set Cg and it
cannot re-enter later. Therefore a bidder is forced to commit
bidding to its current favourite set until it loses at least one
of the GUs. The SCAs are only allowed access to the prices
of the GUs they are currently bidding on. Once an SCA
registers a loss, the MBS reveals all the prices of the GUs
in its remainder set to that particular SCA. The favourite
set can now be augmented with new favourite GUs in the
remainder set Rs := Ps \ Ĝs. For as long as the bidder does
not exceed its budget, it is allowed to bid on the remainder
set Rs whenever a loss occurs. The ASMRA is summarised
in Algorithm 2.

Algorithm 3 SCAIB Algorithm
Data: Initialization: q(g) = 0, ∀g ∈ G, (S,G) ∈ Z+,

GUs’ set G := ∪Ss Gs, assignment set
As = ∅,∀s ∈ S, lost items set
Ls = ∅,∀s ∈ S, Gis = ∅,∀s ∈ S, auction
number: r = 0.

Result: Optimal Allocation set A∗s ,∀s ∈ S.
1 while T 6= ∅|| ∪Ss=1 G

r
s 6= ∅ do

2 r ← r + 1
3 MBS invites SCAs to submit bids, ∀s ∈ T .
4 if Ls 6= ∅||r = 1 then
5 Bidders determines new preference profiles

and valuations for their favourite subset Grs
(using (6)) of items in the remainder set Rs
given the GUs they have admitted.

6 MBS collects bids from SCAs ∀s ∈ T .
7 Auctioneer set T = ∅, Ls = ∅
8 for g ∈ ∪Ss=1G

r
s do

9 if |Crg | > 1 then
10 pick the current bidder s with the highest

bid: As← As ∪ g
11 ∀k 6= s, Ak ← Ak \ g, contact only

bidders who have submitted a bid
T ← T ∪ ∀k 6= s

12 Lk ← g,∀k ∈ Crg \ s
else

As← As ∪ g, G ← G \ g

C. THE CAIB ALGORITHMS
We propose two different CAIB under the second price
mechanism. Even though the second price mechanism has
dominant strategies under single-item auction, it is unlikely to
expect the same property to hold under CA [26]. Bhawalkar
and Roughgarden [26] analyzed price of anarchy (PoA)
in a non-truthful combinatorial auction when bidders have
subadditive (i.e., submodular) valuations. In our proposed
algorithms, we assume that the bidders are truthful. Firstly,
we propose a sequential CAIB (SCAIB) where the auction-
eer runs separate CAIB in a sequential manner. Secondly,
we focus on a repeated CAIB (RCAIB) wherein the MBS
runs a CAIB repetitively. Note that in SCAIB, once an SCA
s has acquired GU g, it cannot be auctioned again unless it
is a case such that g ∈ Rt , t ∈ Cg \ s. In contrast, in the
RCAIB environment, the MBS publishes the winning bid to
all potential bidders. Therefore, if any of the potential bidders
is able to outbid the provisional winner, the GU is reassigned
to the new provisional winner. This process is repeated until
no new conditional bids are received from the SCAs.

D. SEQUENTIAL COMBINATORIAL AUCTION WITH
ITEM BIDDING
Similar initialisations as in Algorithm 1 are carried forward
in Algorithm 3. Unlike in the SMRA, here the MBS does
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Algorithm 4 RCAIB Algorithm
Data: See Algorithm 1.
Result: See Algorithm 1.

1 while T 6= ∅|| ∪Ss=1 G
i
s 6= ∅ do

2 i← i+ 1
3 MBS invites SCAs to submit bids, ∀s ∈ T .
4 Algorithm 2 step 3 - 9.
5 Algorithm 3 steps 6 - 7
6 for g ∈ ∪Ss=1G

i
s do

7 Algorithm 3 steps 9 - 12
8 qi+1(g)← argmax

∑
s∈Cig

brsgx
r
sg

not post prices. Instead the MBS runs several single shot
CAIB sequentially. In every CAIB, an SCA in the contact set
submits bids on its conditional bidding set. An SCA can only
bid on aGU atmost once. In step 9, if aGU g has a competitors
set such that Cg 6= ∅, and it appears in at least one conditional
bidding set g ∈ Gs,∀s ∈ Cg, then it is provisionally assigned
to the highest bidder at price equal the second highest bid.
The provisional bidder will remain assigned to this GU if
no competitor outbids it in the successive auction rounds.
After losing some of its favourite GUs in the previous round,
an SCA may advance some of GUs from its reminder set
to form an entirely new conditional bidding set. Due to the
budget constraint, it is clear that the conditional bidding sets
will diminish as the number of CAIB are being run. Once no
new conditional bids are submitted, the SCAIB halts.

E. REPETITIVE COMBINATORIAL AUCTION WITH
ITEM BIDDING
The RCAIB is summarised in Algorithm 4. The prices of
all the GUs is initialized at zero. In the very first iteration,
the MBS collects bids on bidders favourite sets. The MBS
allocates a GU to the current highest bidder. In the successive
iterations, the MBS uses the current standing highest bid on
a GU as the reserve price for that item. If an SCA loses some
of its favourite GUs, the marginal values of the accumulated
GUs in its provisional set increases due to reduced interfer-
ence. This creates capacity for a new conditional bidding set.
In step 4, the SCAs determine their new bidding sets which
may contain the GUs that were previously lost. Therefore it
is possible for an SCA to recoup a GU after it was lost to a
competitor. This process is repeated until no new conditional
set is available.

V. BIDDING STRATEGIES
In order for an auction to accurately discover the market
prices, truthful bidding should at least be guaranteed. In all
auctions unfaithfulness can manifest if any SCA has knowl-
edge about the preference sets of its competitors. However,
as it is difficult for any SCA to acquire preference profiles

of other SCAs, we exclude this possibility in our mechanism
design and analysis.

Unfortunately, the SMRA has two setbacks that may
encourage bidders to deviate from their truthfully bidding
strategies. In [27] it is claimed that if the valuation function
of bidders satisfy gross-substitute condition, then truthful
bidding becomes compatible with SMRA for any price tra-
jectory. But due to the demand reduction and snipping issues
in the ascending auctions, truthful bidding is unlikely to
occur. Demand reduction is when a bidder requests for fewer
items in order to lower competition, hence maximizing its
utilities. Snipping is when a bidder observes the activities
in the auction, without participation and then later makes an
offer.

In the SMRA, the bidder uses the local improvement
method to add, delete or replace items. This strategy has
proven to find the optimal demand set when the valuation
functions are gross-substitutes [28]. In SMRA an SCA’s strat-
egy can be influenced by what it can infer from the auc-
tion history. In iterative auctions like the SMRA, the action
sets of bidders can be history-dependent and as a result,
these sets get quite rich. The information learned by a
bidder from its sequence of provisional sets of items, its
sequence of conditional bids, and the price trajectory will
have a great influence on its bidding strategy function. The
strategy of a bidder is defined as the function that maps
the bidder’s valuation to any of other bidders’ possible
actions.
Definition 7: Let V1, . . . ,VS be the possible private val-

uations of the bidders. A strategy profile s = [s1 · · · sS ] is
an ex-post Nash equilibrium (EPNE) if, for every SCA s and
valuation vs ∈ Vs, the action s(vs) is the best-response to every
action profile s−s(v−s) where v−s ∈ V−s [23].

Now, we intend to analyze if sincere bidding as a strat-
egy profile can lead to an equilibrium. We assume that all
bidders are ex-post individual-rational. That is, bidders play
risk-free strategies in order to avoid getting negative utili-
ties. Christodoulou et al. [29] argued that if bidders are ex-
post individually-rational, and have submodular valuation
functions, then every mixed Bayesian Nash equilibrium of
a Bayesian auction (i.e., auctions in which valuations are
private) provides a 2-approximation to the optimal social
welfare.

A. INDIVIDUALLY RATIONAL BIDDING
With the assumption of ex-post individual rationality, an SCA
will never take action that will result in negative utility. Let
us define a bidding strategy to be supportive if it is individual
rational.
Definition 8: Given the s-th SCA with provisional set Ai

s
at iteration i, a conditional bid Gis is secure if for any given
A′s ⊆ Ai

s ∪ Gis, it is a case such that vs(A′s) ≥ q(A′s).
Proposition 2: Denote Ai

s, Gis, and qi as the provisional
set, the conditional bidding set, and the price profile at iter-
ation i ∈ Z+ with i ≤ î. If an SCA makes a non-secure bid
during iteration î, then there exist secure SCAs which can bid
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consistently with the history such that SCA s gets a negative
utility in the final allocation.

Proof: Let us assume all other SCAs other than SCA s
bid sincerely. Suppose that the s-th SCA bids inconsistently
on a particular GU g and finally acquires it.6 Let us define
the maximum possible marginal value of GU g ∈ Gs \ Ai

s
as v̂sg = vs(∅ ∪ g). Suppose GU g has the highest preference
amongst all otherGUs in the set G îs, then the marginal value of
GU g during iteration î is vîsg = vs(Ai

s∪g)−vs(g). Then theGU
g will contribute maximum utility of usg = vîsg − q(g) to the
total utility us = vs(As)−

∑
g∈Gs q(g) earned by SCA s. If the

bidder s bids inconsistently during iteration îwith v̂sg < q(g),
then there exists at least one SCA t ∈ Cg \ s who values
GU g more. One of the outcomes in (28), as shown at the
bottom of this page, are feasible at the end of the auction;
where u−s means the utility is negative, u+s means the utility
is positive and uc

s is the utility attained by bidding consistently
and securely. The first case in (28a) follows immediately from
the fact that v̂sg < q(g). The second case in (28b) suggests
that if the absolute utility from winning GU g is greater than
the absolute utility of other admitted GUs Gs, then bidder
s will get a negative utility. The third case in (28c) shows
that bidder s might achieve a positive utility but the achiev-
able utility cannot exceed that under consistent bidding.
The proof shows that bidding securely is the best response
for SCA s.

Proposition 2 carries forward to the ASMRA. Note that in
ASMRA, if an SCA underbids on a particular GU so that it
has access to the prices of the GUs in the remainder set, it is
not allowed to rebid on that particular GU at a later stage.
It will be a risky move for the SCA to underbid on any of the
GUs in the current conditional bidding set as the prices of the
GUs in the remainder set could possibly be very high.
Proposition 3: Truthful bidding is individual rational in

the SCAIB and the RCAIB.
Proof: The proof below is for the SCAIB but it can

easily be extended to RCAIB. Consider an SCA s during
auction round r with conditional bidding set Grs . On one
hand, the SCA can have a truthful bidding function vc

s that
arranges the GUs in the set Grs according to its preference
order and computes the truthful marginal values. On the other
hand, the marginal values can be computed using another
function vu

s . For example, the function vu
s could map the

GUs to the values different from those they will have when

6This proof can easily be extend to the case where the SCA bids inconsis-
tently on a set of GUs. We chose one GU for simplicity.

vc
s is used, simply by changing their order of preference. Both
valuation functions will have the following cases: SCA s

1) bids truthfully and consistently according to the valua-
tion function,

2) underbids on at least one of the GUs,
3) overbids on at least one of the GUs,
4) underbids and overbids on two different sets of GUs.

We now assume a set of competitors which have the condi-
tional bidding set Grs exists as a subset of their conditional
bidding sets. Let us fix a set Yr

s ⊆ Grs which contains the
GUs that an SCA s underbids/overbids on.
Case 1: If an SCA bids truthfully, and consistently using

the valuation function vc
s , it gets a utility of uc

s (bs) =
vc
s (As(bs))− B

high
−s (As(bs),b−s).

Case 2: If an SCA underbids with bs, then there is a
possibility that another SCA will outbid it on some of the
GUs in Yr

s . Since the allocation is monotonic in b, we get
As(bs) ⊆ As(bs). Note that if an SCA loses some of the GUs
YrL
s ⊂ Yr

s , then the marginal values of the remaining GUs
in Grs \ As(bs) will increase. We denote the total increase of
the marginal values by εrs , and the utility contributed by the
set YrL

s as us(YrL
s ). If εrs > us(YrL

s ), the auction may suffer
from demand reduction. Demand reduction is more promi-
nent in iterative and sequential auctions wherein bidders use
history reliant strategies for their next move. Fortunately,
the SCAIB use one shot auctions in a sequential manner,
therefore demand reduction could be very risky. Once more,
if the SCAs use demand reduction under SCAIB to maximize
their profit during auction r , they will exhibit a reduction
on their budget, which was learned by the MBS in the first
auction round, thereby reducing the numberGUs they can bid
on in the subsequent auction rounds. The utility attained for
underbidding is uc

s (bs) = vc
s (As(bs))− B

high
−s (As(bs),b−s).

Case 3: If an SCA overbids with b̄s, then there is a possi-
bility that it outbids its competitors on some of theGUs inYr

s ,
and attains a set YrW

s ⊆ Yr
s in the allocation set As(b̄s) such

that As(bs) ⊆ As(bs) ⊆ As(b̄s). The utility contributed by
the set YrW

s as us(YrW
s ). By overbidding, the utility of SCA s

is uc
s (b̄s) = vc

s (As(b̄s))− B
high
−s (As(b̄s),b−s).

Case 4: Suppose an SCA submits a bid profile b̄s with
underbids and overbids. First let us denote the sets which an
SCA s underbids and overbids on as Yr

s ⊂ Yr
s and Ȳr

s ⊂ Yr
s ,

respectively. Further we denote the sets of GUs that an SCA s
loses and wins for underbidding and overbidding as YrL

s and
ȲrW
s , respectively in the allocation set As(b̄s). The resulting

utility is given by uc
s (b̄s) = vc

s (As(b̄s))− B
high
−s (As(b̄s),b−s).

At the end of the auction round, the pay-off received by
SCA s is given in (29), as shown at the bottom of next page.

u


−
s = usg, if A∗s := g, (28a)

u−s , if A∗s := G îs ∪ g, |usg| > |usG îs |, (28b)

u+s ≤ u
c
s , if A∗s := G îs ∪ g, |usg| ≤ |usG îs |, (28c)
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Underbidding can lead to demand reduction as shown
in (29a). We note that an SCA cannot improve its util-
ity by overbidding during a particular auction round.
In (29e) and (29h), if |us(Y rW

s )| > |us(As(b̄s)| or |us(Ȳ rW
s )| >

|us(As(b̄s)|, then the utility of an SCA will be negative.
Therefore the latter strategies are not supportive. Failure to
maximize the utility during a particular auction round by
unfaithful bidding will result in more utility loss in the forth-
coming rounds because of the increased prices on the GUs
and the decreasing valuations.When an SCA uses the bidding
function vu

s , then an SCA will have a combination of over-
bidding and underbidding. Following the same arguments
stated above, there will be no improvement on the utility by
unfaithful bidding.

Since over-bidding is not individual rational, we assume
strong no-overbidding [29], [30].

VI. NUMERICAL EXAMPLE
We consider a macrocell consisting of one MBS and
100 single antenna MUs that are uniformly distributed within
the cell. The cell is assumed to have a nominal coverage
of radius 500 m. The MBS is equipped with MMBS = 50
antennae. There are 25 privately owned SCAs within the
coverage of the macrocell operating in a hybrid mode as
shown in Figure 2. Each SCA serves oneHUwith a fixed QoS
target of 2 bits/s/Hz. Each SCA is equipped with MSCA = 8
antennae and assumed to have a nominal coverage radius
of 30 m. The transmission powers at the MBS and each SCA
are pmax

0 = 46 dBm and pmax
s = 30 dBm, respectively. The

cost per unit power, and the cost per unit of data were set to
µ = 0.0001, and κ = 0.1, respectively. In order to reduce
computational complexity and system overheads, the price
increment in the SMRA and ASMRA were adapted using
δ = 0.001 × (target data rate)/(0.5 bits/s/Hz). The SCAs
are allowed to bid for users within twice of their nominal
coverage radius. This wider admissible coverage area ensures
presence of considerable number of SCAs for competition.
The MBS knows the locations of the SCAs and the MUs.

The channels were modelled as of heterogeneous deployment
in 3GPP LTE standard [32]. The model parameters are sum-
marized in Table 2.

TABLE 2. Numerical parameters for numerical evaluation.

Figure 2 depicts the topographical overview of the network
after running the SMRA, ASMRA, SCAIB and RCAIB algo-
rithms. The target QoS of all the MUs was set to 8 bits/s/Hz.
The green squares and red dots indicate the locations of
the admitted MUs and the dropped MUs, respectively. The
locations of HUs are indicated with the blue dots. The users
served by the SCAs are indicated by connecting them using
blue lines. All admitted users without connecting lines are
served by the MBS. Figures 2(a) and 2(b) show the results of
the SMRA and the ASMRA, respectively. Since ASMRA is a
sub-optimal version of SMRA, we observe that the ASMRA
occassionally fails to associate users to the closest SCAs.
This is observed between SCA-1 and SCA-3, between
SCA-22 and SCA-23, and between SCA-21 and SCA-24. The
reason is the following. The SCA is confined to bid on a
particular set of GUs until it experiences a loss. Once a loss

u



c
s (bs) > uc

s (bs), if As(bs) ⊂ As(bs), εrs > us(YrL
s ), (29a)

uc
s (bs) < uc

s (bs), if As(bs) ⊂ As(bs), εrs < us(YrL
s ), (29b)

uc
s (bs) = uc

s (bs), if As(bs) := As(bs), or if As(bs) ⊆ As(bs), εrs = us(YrL
s ), (29c)

uc
s (b̄s) = uc

s (bs), if As(b̄s) := As(bs), (29d)

uc
s (b̄s) < uc

s (bs), if As(bs) ⊂ As(b̄s), us(YrW
s ) < 0, (29e)

uc
s (b̄s) < uc

s (bs), if As(b̄s) ⊂ As(bs), εrs < us(YrL
s ), ȲrW

s := ∅, (29f)

or if As(b̄s) ⊂ As(bs), εrs ≤ us(YrL
s ), us(ȲrW

s ) < 0, (29g)

or if As(b̄s) ⊂ As(bs), us(ȲrW
s ) < 0,YrL

s ;= ∅, (29h)

uc
s (b̄s) = uc

s (bs), if As(b̄s) := As(bs), or if εrs = us(YrL
s ), ȲrW

s := ∅, (29i)

uc
s (b̄s) > uc

s (bs), if As(b̄s) ⊂ As(bs), εrs > us(YrL
s ), ȲrW

s := ∅, (29j)

or if As(b̄s) ⊂ As(bs), εrs > us(YrL
s ), ε

r
s > |us(ȲrW

s )|. (29k)
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FIGURE 2. Comparison of user association under different auctions. (a) User allocation under SMRA. (b) User allocation under ASMRA. (c) User
allocation under SCAIB. (d) User allocation under RCAIB.

is experienced, when the SCA attempts to bid for the GUs in
the remaining set, theGUs that were cheaper and closer could
have been sold to other SCAs.

The admitted users for the SCAIB and the RCAIB are
shown in Figures 2(c) and 2(d). Even though these two
alogrithms provide a very similar user association pattern,
a difference is observed between SCA-21 and SCA-24.
For this particular channel realization, all four algorithms
admit the same users, but with a different association. These
close performances are due to the sub-modularity and gross-
substitute characteristics of the valuation functions.

A. GENERAL PERFORMANCE OF THE PROPOSED
ALGORITHMS
The performances of the SMRA, ASMRA, SCAIB and
RCAIB over 20 random channel realizations are provided
in Figure 3. Figure 3(a) shows the average of the total admit-
ted MUs/GUs jointly by the SCAs and MBS. The dotted line
shows the average admitted MUs in the absence of auction-
ing, i.e., served only by the MBS. The solid lines depicts the
performance of the four proposed algorithms.We observe that
there is a huge improvement on user admission when SCAs
are taking part in the auction. Even though the performances
of the SMRA, the ASMRA, the SCAIB and the RCAIB are

almost identical, we observe that the SCAIB provides a better
user admission performance at lower target rates, while at
higher target data rates, both versions of CAIB algorithms
outperform SMRA and ASMRA algorithms. This is because
for the CAIB algorithms, the MBS and the SCA are able to
learn the market price of a particular GU in advance, hence
the SCAs have the opportunity to explore other cheaper GUs
quickly. The average performance of SMRA and ASMRA
are identical. Figure 3(b) depicts the total number of dropped
MUs. As expected and for the same reasons stated earlier,
the CAIB algorithm maintains a lower dropped number of
users as compared to SMRA and ASMRA.

In Figure 3(c), we illustrate the revenue generated by the
MBS from the payments made by the MUs and the SCAs.
Though very minimal, the differences between the revenues
earned from MUs under the proposed algorithms suggest that
the sets of MUs left behind after auctioning are different
from one auction to the other. We notice that the SCAs
make the lowest payments to the MBS under SMRA and
highest payments under ASMRA. This is because the rule
that demands the SCAs to commit to a bidding set until there
is a loss, increases the competition and ultimately increases
payments for the bidder under ASMRA. By conducting an
auction, the MBS generates more revenue as compared to if
it aims to serve MUs on its own.
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FIGURE 3. Average performance of the proposed BBWA and FBWA for 20 random channel realizations. There are 100 MUs and 25 SCAs. (a) Average of
total MUs/GUs admitted by the SCAs and the MBS. (b) Average number of dropped MUs. (c) Average revenue generated by the MBS. (d) Average
revenue generated by the SCAs.

The revenues generated by the SCAs using the SMRA,
ASMRA, SCAIB and RCAIB algorithms are illustrated
in Figure 3(d). At lower target data rates, the revenues earned
by the SCAs under all the proposed algorithms are almost
identical. The SCAs are able to generate the highest rev-
enue when the data rate is in the range of 6 to 16 bits/s/Hz
using SMRA. This is because of the absence of local improve-
ment method in SCAIB. The effect of the local improvement
method is weaker in RCAIB and much weaker in ASMRA.
Hence the SCAs are deprived from maximizing their profit
especially at moderate target rates. Nonetheless, the revenue
generated under RCAIB and SCAIB is higher than that of
SMRA and ASMRA at lower and higher target data rates
when the competition is higher or lower, respectively. This is
because of the swift price discovery in the CAIB algorithms,
which allows SCAs to quickly discover GUs that have lower
competition and lower prices. Ultimately the payments to the
MBS are reduced. It is observed that the ASMRA always
generates lowest revenue. This is because the SCAs are not
allowed to explore other opportunities until they experience
a loss on the set of GUs that they bid on.

Figures 4(a) and 4(b) show the average transmission pow-
ers at the MBS and SCAs. In Figure 4(a), we observe that
both the SMRA and ASMRA consume identical transmission
power. This is because both these algorithms perform equally
in terms of the admitted and dropped GUs. The transmission
power of theMBS under SMRA andASMRA are comparable
to that of the RCAIB at lower target data rates. At higher tar-
get data rates, the transmission power of SMRA and ASMRA
are comparable to that of the SCAIB. When there is no auc-
tioning, the MBS will have to use more transmission power
with respect to power usage per user. In Figure 4(b), we note
that the RCAIB required the least transmission power while
SMRA required the most transmission power. This suggests
that under the RCAIB, the SCAs chose those GUs that are
closer to them while under the SMRA, the SCAs chose those
GUs that are far from them. This reveals the effect of the local
improvement method in the SMRA which allows the SCAs
to identify cheaper GUs. Usually, GUs that are further away
will be having lower bids (or prices). The performance of the
ASMRA and the SCAIB in terms of the transmission power
lies between that of the SMRA and the RCAIB.
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FIGURE 4. Comparison of SMRA, ASMRA, SCAIB, and RCAIB in terms of number of auction iterations/rounds and system overheads. (a) Average of total
tranmission power at the MBS. (b) Average of total tranmission power at the SCAs. (c) Average auction rounds. (d) Average system overheads incurred.

Figure 4(c) and 4(d) show the number of auction
rounds/iterations and the system overheads under each auc-
tion. The overheads are measured in terms of the number
of invitations for bidding, number of bids submitted and the
number of announcements made. The performance of the
SMRA and ASMRA is indicated using the left y-axes while
that of the the SCAIB and CAIB is indicated using the right
y-axes. In Figure 4(c), we observe that the number of itera-
tions/rounds reduces as the target data rate is increased. This
is because at high target data rates, the GUs (mainly those far
from the SCAs) become less attractive, which induce decou-
pled preference sets. Ultimately, the SCAs will be dropped
out of the auction quickly, thereby increasing the convergence
rate. Note that for the SMRA and ASMRA, a small increase
in δ will increase the number of iterations significantly. This
will be even worse when the values of the GUs are increased.
As mentioned before, δ is adapted using δ = 0.001 ×
(target data rate)/(0.5 bits/s/Hz). If the price increment is
fixed to δ = 0.001, the number of iterations required in
the SMRA and the ASMRA can reach 104 for target rates
between 5 bits/s/Hz and 10 bits/s/Hz. In Figure 4(c) the max-
imum number of iterations required is 52. The SCAIB and the
RCAIB registered maximum of 3.5 auction rounds/iterations.
This is due to the same reason as explained earlier for the

CAIB algorithms, i.e., the rate of price discovery is very high
andWE is quickly found in the auctions. The same behavior is
observed in figure 4(d). The SMRA and ASMRA have large
system overheads as compared to the SCAIB and the RCAIB.
This is because for the SMRA and ASMRA, the price is
increased by marginally small value at each iteration.

It is evident from the results that the auctioning mechanism
is able to offload users form the macrocell to the SCAs, which
results in enhancement of admitted users and revenue. The
CAIB algorithms outperform the SMRA and the ASMRA
in a wide range of perfomance metrics. Though the SMRA
generates relatively more profit, it results in more system
overheads and computational complexity. In terms of surplus
maximization, the SCAIB is the most desirable. Since the
SCAIB always generate the second highest revenues for the
SCAs, the MBS will prefer the SCAIB.

B. OPTIMALITY OF THE PROPOSED ALGORITHMS
We compared the proposed algorithms to a centralized solu-
tion using an approach proposed in [33], which uses the
branch-and-bound (BnB) method to solve user admission and
association. In order to reduce the computational burden for
the centralized system, we considered a network with 6 GUs
and 2 SCAs only. The system parameters of the SCAs and
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the GUs remain unaltered. Figure 5 shows the user admission
performance of the proposed auctions and the centralized
solution. All our proposed auctioning methods perform very
closer to the centralized (optimum) solution. especially at
lower target rates.

FIGURE 5. Average GUs admitted by the SCAs.

VII. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we investigated a joint user offloading and
downlink beamformer problem in heterogeneous networks.
We formulated our problem as a combinatorial auction which
readily provides a decentralized solution. The SCAs are able
to design appropriate beamformers and admit users of the
MBS using four different proposed auctioning mechanisms,
namely SMRA, ASMRA, SCAIB, and RCAIB. Our analysis
proved the existence of theWalrasian equilibrium for the pro-
posed valuation functions. The SCAIB algorithm is the most
preferred algorithm since it provides the highest admission
rate and a competitive revenue for the SCAs. The proposed
algorithms perform very closer to the centralised optimum
solution. Considering all aspects including, user admission,
power consumption and revenue, SCAIB should be preferred
by both the MBS and SCAs.

Our future work will consider the case wherein the valua-
tion function of a bidder is influenced by externalities. This
may occur if the competiting bidders are operating in the
same frequency band. Last but not least, a problem wherein
the items are compliments is also a future direction.
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