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Summary 

This thesis considers the application of neural networks to automotive suspension 

systems. In particular their ability to learn non-linear feedback control 

relationships. The speed of processing, once trained, means that neural networks 

open up new opportunities and allow increased complexity in the control 

strategies employed. 

The suitability of neural networks for this task is demonstrated here using multi­

layer perceptron, (MLP) feed forward neural networks applied to a quarter vehicle 

simulation model. Initially neural networks are trained from a training data set 

created using a non-linear optimal control strategy, the complexity of which 

prohibits its direct use. They are shown to be successful in learning the 

relationship between the current system states and the optimal control. 

Integrated control strategies based around Hamiltonian minimisation and costate 

maps have significant benefits to offer. Their use simplifies the development 

process and gives increased flexibility during redevelopment, and a performance 

level comparable with global control approaches. However, for non-linear optimal 

control it is difficult to calculate the costate values. In the second part of this thesis 

neural networks are trained directly and indirectly to learn the state - costate 

relationship. 

It is shown that a network of sufficient size is capable of learning the state -

costate relationship indirectly from a data set. Creation of the training data set 

requires the use of a complex and time consuming numerical solution of a two­

point boundary problem. For this reason the remainder of the thesis seeks to train 

the neural network directly. This is found to be a faster approach when successful 

but is less robust and can find incorrect solutions or local minima. A number of 

approaches are applied that seek to increase the reliability of the training 

technique. While the likelihood of success is much improved by these techniques, 

further work is still required. The work so far, proves that the principle of the 

training process is viable. With further investigation, it maybe possible to create a 

robust, viable alternative to the indirect learning approach. 
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Chapter 1 1 

Chapter 1 Introduction 

This thesis covers the application of Artificial Neural Networks, ANNs, in vehicle 

suspension control. The constrained workspace, non-linear components, 

kinematics and system interactions, make vehicle suspension an ideal application 

for non-linear control and a suitable environment to investigate neural networks 

for non-linear control when calculation speed is important. 

In this chapter, the status of modem vehicle suspensions is considered, including 

evolving practical techniques, which allow significant improvements in vehicle 

ride and handling. A number of non-linear control techniques are discussed in the 

context of active suspension. Neural networks are highlighted as having a key role 

that warrants further investigation. The objectives and structure of the remainder 

of the thesis are defined at the end of the chapter. 

1.1 Vehicle Suspension 

The basic role of vehicle suspension is well understood - to isolate the vehicle 

body and passengers from road disturbances and to control the contact force at the 

road tyre interface, thereby stabilising and transmitting cornering, braking and 

traction forces through the links / strut. Both attributes are affected by the 

suspension kinematics, however the main focus of this thesis will be on the 

vertical (ride) dynamics. 

The field of vehicle suspension design can be broken down into a number of 

distinct areas. Work has been both practical [1-3] and theoretical [4-6] in all 

fields. The practical implementation falls into three categories; Passive, Active 

and Semi-Active. 

1.1.1 Passive Suspension 

The majority of current production vehicles have passive suspension, as illustrated 

in Figure l.l (a). This normally takes the form of a metal leaf or coil spring 

(torsion bars, rubber and pressurised gas have also been used) and a fluid damper 

(friction dampers have been used in the past). The spring elements isolate the 

vehicle body and maintain the tyre contact force. The dampers dissipate energy 
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from the system. the viscous action of the oil passing through the small orifices 

changing mechanical energy to heat that is dissipated to the surrounding 

atmosphere. 

1.1.2 Active Suspension 

Active suspension as it is known today was pioneered practically by Group Lotus 

[7). in both passenger vehicles and motorsport. in which it was used to great effect 

in their Formula 1 cars. Other companies had worked in the field previously as 

early as the 1950s. These systems had been relatively simple and it was Lotus that 

for the first time successfully implemented the more advanced electronically 

controlled technology that is now considered to be Active suspension. They 

achieved a significant improvement over equivalent passively suspended vehicles. 

so much so. that the technology was subsequently banned in Formula 1. Active 

suspension is normally considered to refer to a vehicle suspension system that 

incorporates some form of Electro-hydraulic actuation. This is normally 

supplemented by a passive system either in parallel. to maintain vehicle elevation 

when stopped Figure l.l(c) (Mercedes-Benz CL500 [8)) or in series. when the 

active system has only limited bandwidth Figure l.1(d). A number of examples 

also exist where hydraulic rotary actuators [9) are used to augment passively 

suspended vehicle roll control (Land Rover Discovery. Series 2 [10)). 

1.1.3 Semi-Active Suspension 

Because of the expense of the components involved. and the high levels of power 

consumption concerned. active suspension is considered by most manufacturers to 

be unsui table for mass production vehicles. A more practical approach is the use 

of semi-active suspension Figure 1.1 (b). Semi-active suspension involves the 

control of energy dissipation from the suspension through the modulation of the 

damping rates. This requires only minimal external power. It can be implemented 

in two forms; an adjustable valve or valves in the damper controlled electronically 

to vary pressure levels in the damper fluid. or through the use of electro or 

magneto rheological fluids for which the viscosity can be changed by varying the 

applied electric or magnetic field passing through it respectively. 
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Vehicle Body Vehicle Body 

a) Passive Suspension b) Semi Active Suspension 

Vehicle Body Vehicle Body 

c) Active Suspension d) Low Bandwidth Active Suspension 

Figure 1.1- Suspension Types 

1.2 Suspension Control 

Both semi-active and active suspension requires some form of control, and it is to 

this control strategy that this thesis seeks to apply neural networks. Control 

algorithms for active suspension have been the subject of theoretical analysis 

since before its practical implementation was truly feasible. Bender [11] and 

Karnopp began investigations in this field in the mid-sixties. Karnopp later 
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developed the now classical sky-hook-damping concept [12], where the vehicle 

body is controlled relative to a hypothetical inertial reference frame. Since then 

there have been many hundreds of papers on investigations in this field, most 

based only on theoretical analysis, with vehicle models of varying degrees of 

freedom and complexity [13]. The majority of work has been carried out using the 

quarter vehicle model [14]. This is normally a two degree of freedom model, 

representative of one corner of the vehicle and described in more detail in Chapter 

2. More complex models exist in the form of the half car model [15], allowing 

pitch analysis, and the full vehicle model [16], allowing full dynamic analysis. 

The complexity of these models incorporate varying degrees of accuracy, 

depending on the features of the algorithm being developed. Active suspension 

has become a showcase for developing control techniques and hence there is a 

vast array of choices to be considered, and to which comparison can be made. 

Early work centred around linear control techniques; Kamopp's sky-hook damper, 

Linear Quadratic Regulation (LQR), PID and other classical control techniques 

have been analysed and compared [17]. LQR in particular seems suited to the task 

of active suspension control when optimality is a key concern. However several 

papers have highlighted a number a weaknesses in its application [6, 18], in 

particular its inability to account for the constrained suspension deflection 

workspace and the limited range of tyre deflection. It is also incapable of 

accounting for non-linearities in the suspension kinematics and actuation. More 

recently this has been the motivation for investigation into the application of a 

number of non-linear control techniques: Sliding mode, Fuzzy logic, adaptive 

control, feedback linearization and neural networks. These are now reviewed in 

turn. 

1.2.1 Sliding Mode 

Sliding mode control is a technique used to drive the behaviour of one system to 

track that of another, normally a model. Therefore, its success is not just 

dependent on how well System A follows B. but also whether B is an appropriate 

system to follow. Given the right dynamics for the sliding surface it can be a 

valuable asset to the control of non-linear systems. The influence of un-modelled 

non-linearities on system performance can be significantly reduced. 
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Sliding mode control has been introduced successfully in both active [19, 20] and 

semi-active [21] suspension problems. Its introduction in active suspension is 

relatively easy although care must be taken to avoid control chatter. Several 

examples exist of its use in the control of a non-linear model to track a model with 

Linear Quadratic Regulation, (LQR). Semi-active application of sliding mode 

control is more difficult due to the lack of power to execute control. In order for 

the technique to be successful the reference model must be carefully formulated, 

so as to make it feasible to track using control of energy dissipation only. 

1.2.2 Fuzzy logic 

Fuzzy techniques have been applied successfully to both active and semi-active 

suspension control. Several methods exist for the development and optimisation of 

the fuzzy rule sets. Originally, fuzzy logic was developed as a tool to represent 

human system knowledge mathematically. This approach has been applied 

successfully by Cherry et al [22] to control semi-active suspension on a full 

vehicle model, using rules provided by vehicle dynamics engineers. However the 

resulting control system cannot be considered to be optimal and there is no 

guarantee of robustness when applied to active systems. 

New techniques have evolved to automate, optimise and adapt the selection of the 

fuzzy rules set. These have also been applied to active suspension problems 

successfully [23]. In active applications, the fuzzy system has been used to blend 

between different control strategies rather than directly selecting the control 

action. Because the original control strategies are robust, this is not altered though 

the use of fuzzy logic in their selection. Fuzzy logic however, can still not be 

described as "optimal", particularly when triangular membership functions are 

used as these are only capable of giving piecewise adaptation between control 

strategies. 

1.2.3 Adaptive Control 

Idealistically, adaptive control has a number of advantages over other non-linear 

control strategies. The control of active suspension is carried out in the knowledge 

that the plant, and the environment surrounding it, is in a constant state of flux. 
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Therefore, the idea of a control strategy capable of adapting to those changes 

seems well founded. However, the creation of a robust technique, that reacts fast 

enough to the changing environment to be of benefit, is more challenging. The 

majority of published techniques are based around linear control strategies that are 

adapted to deal with the changing environment [18, 24]. This helps ensure that 

robustness is imposed, but also means that fixed non-linear strategies often give 

comparable results [6]. Adaptive control is not always able to cope with sudden 
I 

changes in the operational environment, such as a series of step inputs. The 

adaptation time to deal with such events must be fast and this can affect the 

resulting stability of the system in other areas. Adaptation clearly has a part to 

play in the controi of active suspension, but it is feasible that it will be on a much 

more simplistic level within the context of a more complex non-linear control 

strategy than has so far been published. 

1.2.4 Feedback Linearization 

Although feedback linearization is not unusual in the field of non-linear control 

[25], there are relatively few examples of its application to active suspension. This 

is perhaps because the nature of the non-linearities found in vehicle suspensions 

do not suit feedback linearization. It is also difficult to quantify the robustness of 

the control, and some implementations of feedback Iinearization result in 

unreasonably large control input requests. It is hard to assess how close the 

reSUlting control is to optimal for the original non-linear system. 

Buckner [26] recently applied what was termed intelligent feedback Iinearization 

to a real vehicle application using a radial basis network to identify vehicle 

parameters across the operating space of the suspension. A linear model was used, 

but selected parameters were varied depending on the current state of the system. 

The linear model was then updated every calculation cycle and the controller 

updated simultaneously according to linear control theory. Thus linear control 

techniques can be applied within the context of the current system state. Buckner 

has so far achieved a significant improvement in the control of suspension 

deflection for a quarter vehicle test rig. However, the control law used is limited to 

suspension deflection. It is not clear how ~he approach will cope as both the 

complexity of the system and the cost function are increased. It is, however 
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known that radial basis function networks are limited to low dimensional 

problems and this will prevent extreme complexity being included. One might 

also surmise from the work of Gordon [6) and others, that adapting a linear system 

model to allow linear control of a non-linear system to take place is not always 

preferable. 

1.2.5 Neural Networks 

Neural networks are now commonly used for black box identification of non­

linear systems [27). It has been proved by' a number of authors that a neural 

network of sufficient complexity is capable of replicating any non-linear 

relationship. As such, neural networks have been used for a wide variety of tasks, 

from the modelling of an automotive damper [28), to hand writing recognition 

[29) and predicting the outcome of litigation cases [30). There have also been 

attempts to apply neural networks to problems that are inherently chaotic, such as 

horse racing and other gambling problems, for which they offer an alternative to 

classical probability analysis. However, it is important as with any other 

technique, that a systematic relationship does indeed exist in order for the neural 

network to find one. 

There are a growing number of published examples on the successful application 

of neural networks to non-linear control problems [31-33). Some of these include 

the application to active suspension [14, 34-36). Early work in neuro-controlled 

active suspension was performed by Hampo and Marko [37, 38) at the Ford motor 

company research centre in Dearborn. They successfully trained neural networks 

using three different methods to control a quarter vehicle model. 

The flexibility and speed of neural networks makes .them an ideal tool for the 

control of non-linear systems. Often the relationship between the control action 

and the current system state cannot be defined using simplistic approaches, and 

more complex routines are too time consuming. One particular example is their 

application within the integrated control strategy outlined by Gordon [39). So far, 

research into the strategy has been limited to linear systems due to the complexity 

of applying the scheme with non-linear control strategies. The approach is based 

around the costate vector, for which the vector differential equation is 
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. dH 
p=-­

dX 
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(1.1) 

For Linear Quadratic Regulation (LQR) problems, this is easily resolved as a 

function of the matrix solution S to the Riccati equation (1.2). 

(1.2) 

p=SX (1.3) 

However for non-linear control problems the relationship is no longer a linear 

function of the states; the flexibility of neural networks should allow them to learn 

this relationship, thus making the approach viable for non-linear systems and 

control strategies. 

The training of neural networks and their application within control schemes will 

be outlined in more detail in Chapter 3. 

1.3 Thesis Objective 

In light of the above the objective of this thesis is to investigate the utilisation of 

neural networks in the context of non-linear control for active suspension. 

Particular reference is given to the optimal solution for the minimisation of a non­

quadratic cost function and the calculation of the related costates, with the aim of 

creating a training technique for the direct learning of the non-linear costate 

equations through gradient based learning without the need for system simulation. 

This will ultimately allow for the creation of the sub-elements required for use in 

the integrated control strategy outlined by Gordon [39] for advanced non-linear 

full vehicle control. 

1.4 Outline of Thesis 

Chapter 2 details the suspension system model used throughout the thesis and 

highlights the need for non-linear control in automotive suspension. A 

non-linear control strategy using a non-quadratic cost function with 
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proven success is then described. This approach and its utilisation with 

neural networks fonns the basis for the remainder of the thesis. 

Chapter 3 describes the principles behind neural networks, and their structure in 

respect to a particular type know as Multi-Layer Perceptron Networks, 

(MLP). Back-propagation, the means by which MLP networks are 

optimised, is described in full. A number of methods for the use of 

neural networks in control are described in fuither detail to support the 

infonnation already covered in Chapter I. 

Chapter 4 covers the learning algorithms used for the training of MLP networks to 
, 

learn the force/state and costate/state relationships for the non-quadratic 

cost function described in Chapter 2 using a supervised learning 

approach. 

Chapter 5 describes various adaptation to the techniques introduced in Chapter 4 

that were required to achieve a successful control strategy. 

Chapter 6 compares the perfonnance of the neural controllers with the original 

control strategies descri bed in Chapter 2. The control of suspension 

deflection with respect to low frequency disturbances, a problem which 

effects all 3 techniques, is highlighted. 

Chapter 7 further investigates the problem of low frequency suspension drift. An 

approach using Kalman filter estimation of the underlying road profile 

is developed which successfully reduces drift, maintaining maximum 

workspace utilisation. The approach is investigated using linear 

analysis, but is also proven viable for use with neural networks. 

Chapter 8 describes a means for direct learning of the costatelstate relationship by 

a neural network. The method, Hnorrn, is different to other previously 

tried approaches as the costates, instead of the force/state relationship, 

are learnt and no simulation is required. The basic theory is proven to 

be valid for a linear example for which the solution is known using the 

Riccati equation. 
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Chapter 9 covers further developments of the Hnorrn approach for successful 

application to the non-linear quarter vehicle case. Initial development 

work is carried out using a single degree of freedom model on which 

the technique is proven to be successful. Further work is required and 

applied to achieve a working solution for the quarter vehicle case. 

Chapter 10 concludes the thesis with a discussion of the work presented and 

opportunities for further research in the field. 
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Chapter 2 Non-Linear Optimal Control 

In this chapter. the motivation for the use of non-linear control strategies is 

examined. A quarter vehicle model employing force feedback from a Linear 

Quadratic Regulator (LQR) [40]. is used to highlight the weaknesses of linear 

control for this problem. In later chapters. a similar. model will be used in the 

development of the non-linear neural network controllers. The performance of the 

LQR based control strategy will be used as a reference to compare the 

performance of the non-linear controllers developed. 

The simplicity of the quarter vehicle model provides opportunity for clear. 

generalised results to be obtained. allowing meaningful comparison and 

evaluation between the different suspension control strategies to be employed. 

Through the addition of non-linear elements to the quarter vehicle model. 

assessment of the ride quality and handling of a vehicle working in a constrained 

environment can be made. The non-active components of the model and the 

passive suspension model to which it is compared are based on values typical of 

mid range family saloons. 

2.1 Quarter Vehicle Model with Active Suspension Actuator 

r.-=ator 
rn. 

(Sprung Mass) 

--r-- rn. r w 
L..:.(u_n.:.sp.:.ru",n,.:g_M_as_S_)--l 

z, v, 

Figure 2.1 - Active Quarter Vehicle Model 

x, 
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The Quarter Vehicle Model is depicted in Figure 2.1. There are two masses, 

sprung and un sprung, representing the approximate body mass of one corner of 

the vehicle, m/h and the wheel assembly, mw. respectively. The un sprung mass is 

isolated from road inputs by the tyre, which is modelled initially as a simple linear 

spring with constant kt• The body is isolated from' the wheel by an active 

suspension actuator, which applies a force between the two. The passive spring 

shown in Figure 1.1.(c) is removed to simplify the mathematics, this does not 

compromise the results in anyway. The actuator is used instead of the spring and 

damper unit that typifies the passive suspension systems used on the majority of 

motor vehicles available currently. 

The vehicle masses and tyre stiffness are. 

mb= 240kg 

mw= 38kg 

kt = 160000N/m 

The system has two degrees of freedom whose dynamics are described by four 

state variables and defined as a function of the actual vertical displacements: 

x = Z - Z : Relative tyre deflection I , w 

x = Z - Z : Relative suspension deflection 
2 w • 

x = z : Velocity of unsprung mass 
3 w 

x. = z. : Velocity of sprung mass 

(z, : Actual vertical road displacement, Zw : Actual vertical wheel displacement, 

Zb: Actual vertical body displacement) 

The tyre force is given by 

(2.1) 
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The suspension force is given by 

F, = -KUJRX for the active suspension and (2.2) 

F, = KpX2 + Cp(X3 - x.) for the passive suspension used for comparison 
. (2.3) 

Kp = 18000N/m Cp = 1200N/m/s 

The optimal gain matrix KLQR is given by the minimisation of a quadratic 

perfonnance criterion in the following fonn 

J(X,u) = f{XTQX + uTRu}dt (2.4) 
o 

The weighting matrices Q and R are selected to trade off the regulation of the 

states x arid the suspension actuation force u. For the quarter vehicle problem, the 

values of Q and R are chosen to limit tyre and suspension deflection without the 

use of large actuator forces that would result in high body accelerations. a and f3 
are adjusted to meet reference criteria based on the passive system's response to 

the following initial conditions: (a) x =[0 0 0 l.25f(b) x = [0 0 2.5 O]T. The 

passive suspension model following these two initial condition events gives peak 

deflection values of (a) suspension deflection = 0.0995m, (b) tyre deflection = 

0.0278m 

Q=diag([a f3 0 0]) R=I/m:, 
a = 112800 f3 = 1492.5 

(2.5) 

The minimising gain matrix KLQR is found by solving the algebraic Riccati 

equation [41]. 

ATS +SA-SBR-1BTS +Q = 0 

KUJR=R-1BTS 
(2.6) 

All four states and the control forcl; act purely in the vertical plane. The sole 

disturbance input to the model is from the road, which for simplicity is described 

as the velocity of a point tyre contact patch Yr. Thus the following state differential 

equations for the model can be obtained: 
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State Matrices 

.:i: = Ax+ Bu+Gv, 

0 0 -1 0 0 1 

0 0 1 -1 0 0 (2.7) 
A= B= -Ymw G= 

k, /mw 0 0 0 0 

0 0 0 0 Ym. 0 

2.2 Dynamic Analysis of Quarter Vehicle Model. 

The quarter vehicle model can be analysed in a number of different ways to 

provide insight into the ride and handling performance of a vehicle. In the time 

domain. information can be obtained from initial condition responses and 

simulated responses to road inputs. In the frequency domain. information can be 

obtained using either modal analysis or frequency response analysis. 

The time domain responses can be used to study the conflict between ride comfort 

and use of the suspension workspace. A suitable measure of ride comfort [42] is 

the r.m.s. value for vertical body acceleration and this can be contrasted against 

r.m.s. and peak suspension workspace usage. 

Similarly. assessment of the handling capability of the vehicle can be made from 

the time history of tyre deformation. This. combined with knowledge about how 

tyres perform under vertical load. Figure 2.2 [43. 44]. can be used to assess the 

potential effects of different suspension set-ups on vehicle handling. clearly 

fluctuations in tyre deflection will result in a reduced ability to generate lateral 

force. 
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Figure 2.2- Lateral Tyre Force versus Vertical Load 

In addition to the basic model, a number of non-linear properties of the real· 

system can be simulated. A model that simulates the tyre lift off point can replace 

the linear tyre spring. The point at which the tyre will leave the road when using a 

simple linear spring model ca~ be calculated using the following equation. 

(2.8) 

thus Equation 2.7 can be redefined. 

X3 = (k,/mwh -(1jmw)·u 
X3 = (h +mw)g/mw)-(1jmw).u 

(2.9) 

Most real vehicles use stiff rubber elements called 'bump-stops', which prevent 

sudden impact between the vehicle body and the suspension hardware. When 

contacted, they result in high suspension forces that lead to large body 

accelerations and/or changes in tyre load. Such events will negatively affect the 

overall ride comfort and road holding of the vehicle. The suspension workspace 

available to a vehicle of this type is typically of the order ±lOOmm. These limits 
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can be considered when assessing the time history of the suspension deflection, or 

implemented more rigidly in the model with stiffer linear springs representing the 

bump-stops. These become active when the range of the suspension workspace is 

exceeded. 

X2 <-o.095m 

-o.095m:5 x2 :5 0.095m F, =F, '''"' . 

x2 > 0.095m F",,", = F, + - Ksump_"op (x2 - 0.095) 

Ksump_""" = 200000N/m 

2.2.1 Initial Condition Analysis 

(2.10) 

The two initial conditions to be considered having either an initial body or wheel 

velocity, promote responses that correspond to the body and wheel resonances 

respectively. These conditions are known as body bounce and wheel hop. Body, 

bounce is the resonance at which the body oscillates. The frequency at which this 

takes place is typically in the range 1.2 - 2.5Hz depending on the body mass / 

suspension stiffness ratio. Wheel Hop is the resonance during which the wheel 

oscillates at its maximum, the body remaining nearly static. That is, the 

suspension deflection and tyre deflection act in equal and opposite directions to 

maintain a near constant body position while the wheel oscillates beneath. This 

.happens typically at a frequency of around 10 - 13Hz [13]. Figures 2.3 and 2.4 

show state settling responses following an initial body velocity of 1.25m1s and an 

initial hub velocity of 2.5m1s respectively. In both cases, all other states are 

initially zero. Therefore the initial state vectors can be expressed in the following 

format; [ 0 0 0 l.25]T and [002.5 O]T respectively. 

The results (Figures 2.3 & 2.4) clearly show the benefit of active over passive 

suspension, as while the initial hub velocity response remains similar, significant 

improvements are made in body control during the initial body velocity response. 

A significant reduction is made in R.M.S. body acceleration with only a minor 

increase in R.M.S suspension deflection. 
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Tables 2.1 ~ 2.2 and Figures 2.3 & 2.4 also show the significance of the non­

linearities to the resulting response. When developing the LQR controller, the 

constraints put on the operating range of the tyre and suspension works pace 

cannot really be considered and therefore the system response, does not act to 

prevent tyre lift off or bump-stop contact. In the wheel hop mode this results in 

higher levels of tyre deflection. In reality, the tyre leaves the road, which would 

significantly affect handling. This also results in slightly higher suspension 

deflection but would have no significant effect on ride comfort. The effect of the 

non-linearities in the model is more significant to the body bounce mode; due to 

the harshness of the bump-stop contacts, the ride comfort is seriously affected. 

This can be seen in figure 2.4 as two additional spikes in the body acceleration 

plot at approximately O.2seconds which do not correspond with the actuator force. 

Higher loads are also put on both the occupants and the vehicle's tyres. The 

introduction of bump-stops to the model shows the significant effect this has on 

the suspension performance, when a linear system is assumed during controller 

development. If the controller was developed with awareness of the constraints 

put on the suspension workspace and of tyre lift [45), then it should be possible to 

significantly improve the overall suspension performance. 
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Table 2.1 - Initial Hub Velocity Response 

R.M.S Values for First Second 

Tyre Suspension Body Peak Tyre 

Initial Hub Deformation Deflection Acceleration Deflection 

Velocity (mm) (mm) (m/s2 
) (mm) 

Passive 4.9 5.4 1.5926 27.8 

LQR Controlled 

with Linear 4.9 5.9 1.6152 27.8 

Model 

LQR Control 

with Non-linear 5.4 6.9 1.5793 28.9 

Model 

Table 2,.2 - Initial Body Velocity Response 

R.M.S Values for First 1.5 Seconds Peak 

Initial Body Tyre Suspension Body Suspension 

Velocity Deformation Deflection Acceleration Deflection 

Response (mm) (mm) (m/s2 
) (mm) 

Passive 5.2 39.4 3.3619 99.5 

LQR Controlled 

with Linear 4.2 42.9 2.47 99.5 

Model 

LQR Control 

with Non-linear 4.7 43.1 2.471 lOLl 
Model 
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2.2.2 Frequency Response Analysis 

Frequency response analysis has the advantage that the full dynamic range of the 

suspension is visible, the resonances showing up clearly. The body bounce and 

wheel hop frequencies (- 1.2 Hz & - 10.1 Hz respectively) can clearly be seen on 

the Power Spectral Density, PSD plots of suspension deflection and body 

acceleration for the quarter vehicle models. Again the benefit of active suspension 

over passive at the body resonance point is clear with significant reductions in the 

PSD of both suspension deflection and body acceleration. When working with 

linear models the gain does not change, irrespective of the magnitude of the input 

used. However, as can be seen from Figure 2.5, the addition of non-linear 

elements to the model changes the frequency response while the model has 

remained the same in the linear operational region. Different responses will be 

obtained depending on the relative magnitude of the road input used, and the x­

axis position of the relevant peaks will move. For this reason, frequency analysis 

of the performance of non-linear systems in the context of the PSD is not 

considered a particularly appropriate analysis tool. 

However, it is possible to use spectral density plots to compare the frequency 

components of different roads. Figure 2.6 shows the displacement and the PSD 

(frequency components) of two roads in the local area to Loughborough. Both 

roads have been sampled at O.lm intervals using laser-measuring equipment. The 

displacement is then compared to a 1000 sample moving average, so very low 

frequency displacement information is lost. The first road used is a B-c1ass road 

known as Breakback Road [LandRanger Map reference, Start: SK5017 Finish: 

SK5214]. The second is part of the A6, running between Loughborough and 

Leicester [LandRanger Map reference, Start: SK5517 Finish: SK591Oj. As can be 

seen from the displacement plot, the Breakback Road is a lot rough.er than the A6 

with, proportionally, a much larger low frequency content in its PSD. Despite the 

speed difference at which the two roads are simulated in order to evaluate the 

PSD, the amplitude of Breakback Road is clearly much larger than the A6. It also 

has a very large low frequency component close to the body bounce frequency, 

which would cause serious disturbance to the ride and handling if the vehicle were 
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to travel faster. The A6 has very little low frequency content and will principally 

excite the wheel resonance in the vehicle model. 
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2.2.3 Simulated Road Responses 

The quarter vehicle model was simulated for 60 seconds over the tw<,l road 

profiles, the results of which are summarised in Table 2.2. Breakback Road, as 

expected from the frequency analysis, excites the body bounce mode to a much 

higher degree than the A6. This causes large suspension deflections, which result 

in bump-stop contact and higher levels of body acceleration in the non-linear 

model. This also causes greater variation in the levels of tyre deflection and 

therefore would negatively affect the handling of the vehicle. The A6 by 

comparison causes very little ,suspension deflection even at the higher speed, and 

the degree of comfort on this road would be much greater for the vehicle 

passengers. Proportionally however, because of the greater high frequency content 

of the A6, the levels of tyre deflection are much larger. The differences between 
, 

the behaviour of the suspension on these two roads highlights the need for non-, 
linear control of active suspension. This is not only because of the constrained 
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suspension workspace, but also the wide variety of working conditions 

experienced by the suspension. These two roads are less than 3 miles apart and the 

vehicle should be able to deal with both, with equal levels of satisfaction. 

Table 2.3 - Breakback Road at 20 mJs 

R.M.S 

<= Tyre 
0 .;;; Deflection 
<= -
8.~ (mm) 
"' 0 
~::E 
Passive 6.7 

Linear 6.4 

Non-linear 6.5 

Table 2.4 - A6 at 30 mJs 

<= o .;;; 
<= -
8.~ 
"' 0 
~::E 
Passive 

Linear 

Non-linear 

R.M.S 

Tyre 
Deflection 

(mm) 

2.5 

2.6 

2.6 

Suspension 

Deflection 
(mm) 

26.1 

42.2 

38.5 

Suspension 

Deflection 
(mm) 

6 

6.8 

6.8 

2.3 Non-linear Control 

Body 
Accele-
ration 
(mJs2

) 

2.954 

2.248 

2.444 

Body 
Acceleratio 

n (mJs2
) 

0.85 

0.76 

0.85 

Peak Values 

Tyre 
Deflection 

(mm) 

32.2 

33.6 

40.1 

Peak Values 

Tyre 
Deflection 

(mm) 

14.1 

13.3 

14.1 

. Suspension 
Deflection 

(mm) 

106.8 

167.1 

116.5 

Suspension 
Deflection 

(mm) 

32.8 

30.8 

32.8 

There are a number of approaches to achieving non-linear control, as described in 

the introduction. However, the principles of LQR control do seem to be the 

natural solution to the basic problem of controlling the quarter vehicle model [46, 

47]. An approach that builds on these principles, to give a control strategy that 

takes account of the non-linearities of the system, would seem to be a sensible 

solution to the problem. Such an approach is proposed by Marsh [48]. Marsh puts 

forwards a method that builds on a secondary approach to calculating the LQR 

gains, based on the Hamiltonian equations. Having proved the method for the 

linear case, it is then applied to a non-quadratic cost function incorporating 

additional higher power terms to account for the workspace constraints, as well as 

for the non-linear elements of the system. 
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2.3.1 General Optimal Regulator Design 

Marsh's approach to non-linear control uses the Pontryagin formulation [49] for 

the development of a general optimal controller. The resulting method calculates 

an open-loop series of controls that stabilise the system from a given initial 

condition. Assuming no further disturbances to the system occur, the state 

equations for any system can be described as a function of the system states and 

the control inputs. 

x = f(x,u) (2.11) 

In the case of the quarter vehicle, and for simplicity, only one control input is 

considered. The dynamic cost is, itself a function of the system states and control 

'force. This is combined with a cost on the final state, CP(X'f) to form a scalar value 

as a performance index. 

'f 

l=CP(x,J+ J L(x,u)dt (2.12) 
o 

A control signal u(t) must be found that minimises the performance index 1. The 

performance index is combined with Lagrange multipliers p and the system 

differential equations. 

'f 

1= CP(X'f)+ J L(x,u)+ pT {f(x,u)-x}dt (2.13) 

'. 

The Hamiltonian is formed from a subset of this equation 

(2.14) 

The last component of Equation 2.13 can be integrated by parts to give 

~ ~ 

J _pT idt = -P'>'f + p~ + J pT xdt (2.15) 

'. '. 

and combined with the Hamiltonian, I is now defined 
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'/ 

J=f/J(X,tr)-P,>,/ +p~ + j{H(x,u)+/h}dt (2.16) 
I, 

u must then be adapted to minimise the cost function and hence the derivative of 

the cost function with respect to u must be calculated. A standard variational 

calculus approach gives [48] 

It would be computationally tedious to calculate the variation of 8.1 caused by &: 

due to a particular Du, so the Lagrange multipliers are set to nullify the 

coefficients of &:. 

.T aH aL T aj P =--=---P -ax ax ax 

and they have the following boundary condition at tf 

Equation 2.17 now becomes 

'/ a 
8.1 = p~&:o + J H Dudt 

I au , 

(2.18) 

(2.19) 

(2.20) 

Assuming u is held constant and the equations of motion maintained, P is hence 

8.1/&:0 and, as such, often referred to as the costates or influence functions. For 

time independent systems, a given P will correspond with the current state 

irrespective of time. 

The impulse response function aHlau is so called because it gives the change in J 

due to a unit impulse from a given control input at time t. To find the 

unconstrained minimum value for the performance index, 8.1 must be 0 for all Du. 

This can only occur if 
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oH =0 
ou 

28 

(2.21) 

Confirmation of minima can be established by calculating the second order 

derivatives of 1. There are a number of methods for finding the minima, not all of 

which can be successfully applied to the quarter vehicle problem; Marsh 

successfully applied a discrete control method. 

2.3.2 Non-Linear Cost Function and Costate Calculations 

Marsh considered a non-quadratic cost function of the form 

(2.22) 

where N contains the non-quadratic terms. The following form was chosen. 

L = os( a,x~ + f3,xi +a2x~' + f3 2x;' +( ~JJ 
a, = 16000 f3, = 500 (2.23) 

a2=2x1~2 f32=5x1~' 

n, = 6 n2 = 10 

nl & n2 must be integer valued, and a multiple of two, their magnitude dictates 

how quickly the additional constraint in the penalty function rises and hence the X2 

is more strongly constrained than Xl. 

The Hamiltonian Function H can be derived from the cost function L and the state 

equations that describe system dynamics . 

. 
H(t) = L(x(t),u(t) + p(t)J{x(t),u(t))) 

H(t) = os( a,x,2 + f3,x~' + a 2x; + f3,f~' +(fmJ) 
+ h X, + P2X2 + PJxJ + P4X4 

(2.24) 

The Lagrange multiplier, costate elements of equations 2.24 can then be redefined 

to include the system dynamics. 
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p,X, = -p,X3 

P2X2 = P2(X3 -x.) 

P3X3 = P3 (F; -u) 
mw 

(2.25) 

The derivative of the Hamiltonian function can then be written down with respect 

to both the systems states and control force u. 

(2.26) 

This allows the optimal control force to be defined as a function of the costate 

values p. 

(2.27) 

Since u is a scalar function in the present case 

(2.28) 
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2.3.3 Parameter Optimisation for Discrete Optimal Controls 

Marsh's implementation was based on discrete controls with zero order held 

(ZOH) intervals T seconds; as T tends to zero, so the resulting controls tend to that 

of a continuous time solution. As the optimal controls form a finite set of 

parameters, Uo,UI,U2 .... Un-\. these can be optimised to minimise the cost, J, using 

standard parameter'optimisation techniques such as gradient descent. 

The Cost Gradient for each control parameter can be caJculated from the 

derivative of the Hamiltonian equation with respect to that parameter. Because the 

control parameter is held constant for the control period, the cost gradient 

calculation is relatively simple. 

aJ r/.,+l aH 
-= J, =-lit au, I. au, ' (i = 0,l,2, ... ,n-l) 

The optimisation of the parameters is achieved using the following routine: 

(2.29) 

1. Make an initial guess at the control parameter set, UO,U\.U2, ... Un_l. This may be 

based on either a passive or LQR based simulation of the problem from the 

initial condition XO, sampling the controls at intervals T. 

2. Integrate the state equations forward in time, from initial condition Xo for 

simulation period tmax, recording the dynamic cost and final state values for 

each control period T. tmax should be large enough to allow the states to settle 

to near zero values. Linear costate values can be used to estimate the costates 

and the remaining cost of settling over an infinite time period in order to 

reduce the value of t max• 

3. Perform backwards integration from tmax to t = 0 of the system costates, 

performing the calculation of aJlauj simultaneously. The Final states at tmax, 

and calculated costates from step 2, are used as the initial starting position for 

the backwards optimisation. 

4. Adapt the discrete control parameters, Uj, via a line search based on gradient 

information to minimise the overall dynamic cost calculated though 
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simulation, until the minimal cost in the current set of gradient directions is 

found. 

5. Return to step 2, unless the convergence criteria are met. 

2.3.4 Initial Condition Response Comparison. 

Figures 2.7 and 2.8 show the response of the linear controller in comparison with 

Marsh's non-linear control strategy for the two initial conditions used in section 

2.2.1. The benefits of using a non-quadratic cost function are clearly apparent in 

both figures. For both conditions, the non-linear controller exhibits comparable or 

lower levels of body acceleration while operating within the limits of suspension 

and tyre deflection. For example during the initial hub velocity condition, the non­

linear controller uses more suspension deflection but remains well within the 

acceptable limit. By doing this, tyre - road contact is maintained and body 

acceleration is significantly reduced. 

During the initial body velocity response, the non-linear controller ensures that the 

bump stops would not be contacted without significantly increasing body 

acceleration. Peak tyre deflection is also significantly reduced. 
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2.3.5 Implementation ofthe Non-linear Control Strategy. 

Available computing hardware has improved significantly since Marsh did his 

work, but the time taken to perform the optimisation process outlined in section 

2.3.3 still negates its use in real-time. It is not possible to complete the calculation 

of the optimal control input within the discrete control period, T. Therefore the 

process cannot be used directly on-line. The success of LQR as a control strategy 

is in some part due to the existence of a linear relationship between the current 

states of the system and the optimal control to be applied at that point. However, 

for the non-linear control strategy, the relationship is much more complex and 

hence cannot be replicated with simple linear equations. Because of this, Marsh 

chose to create a polynomial feedback function to relate the optimal control forces 

to the corresponding states. 

Although Marsh found the performance of the polynomial feedback function 

satisfactory, the level of fitting was not sufficient to offer truly optimal non-linear 

feedback control. The time to achieve a suitable level of fit was also found to be 

unsatisfactory. The number of parameters to be set, order of polynomial and the 

distribution of the basis functions all add to the complexity of the problems Marsh 

experienced in the development of the polynomial feedback controller. 

At the time of Marsh's work, neural networks were still in their infancy. 

Computational power and optimisation algorithms had yet to evolve sufficiently to 

warrant investigation by Marsh as a suitable solution to the problem. Since then, 

the desktop PC has evolved considerably; the power and memory capacity 

available, plus an increased knowledge and acceptance of neural networks as 

powerful data mapping tools, make it a prudent time to investigate how applicable 

they are to this problem. 
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Chapter 3 Principles of Neural Networks 

In this chapter the principles of feed forward neural networks [29, 50, 51] are 

explained, including: the forward processing of data through the network to the 

output layer, the standard transfer functions used in each neuron, and back­

propagation, the algorithm used to optimise the neural network coefficients to 

improve data mapping. A number of control applications of neural networks are 

reviewed and the viability of the methods employed in the rest of the thesis is 

discussed. 

Neural networks are principally used to map an input data set to an output set. 

Where a relationship exists, neural networks have proven successful in finding it. 

A number of different training methods exist to adapt the network coefficients 

(weights), to improve the level of fit achieved by the network. The method used 

depending on the problem and type of network. The input data is passed through 

the network layer by layer, in a highly parallel fashion. In feed forward networks, 

the data only advances through the layers from the input to the output layer. In 

recurrent networks, the data is passed both forwards and backwards between 

layers. The feed forward network is most commonly trained to map data using 

back -propagation. The error gradient between the network output and the true 

values is propagated backwards through the layers to allow gradient descent type 

optimisation of the weights. 

3.1 Forward Calculation of Neural Network 

Figure 3.1 shows the basic format of a feed forward network, generally consisting 

of three or more layers; the input layer through which all data enters the network, 

the hidden layer(s) which processes the data internally and are not in direct 

contact with the external world and the output layer, through which all data is 

passed to the outside world. The input layer performs no calculations on the data 

and in many publications is not considered an actual layer. It is simply a set of 

nodes to which the hidden layer(s) are connected, through which data enters the 

network. The hidden layer(s) performs the majority of the calculation processes 

that take place in the network. The output layer scales the outputs and brings 

together the outputs of the preceeding hidden layer neurons. 
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The hidden layer(s) and output layer are formed from neurons. Each neuron 

consists of: a set of weights that are applied to the output of the preceeding layer, 

a bias (theshold) which is applied to the sum of the weighted inputs (the bias is 

commonly represented as a weighted unit input) and a transfer function, through 

which the result is passed to give a scalar output. Each neuron in the layer 

performs the same process simultaneously on the output of the preceeding layer to 

create a vector output. 

fiN) y 

Figure 3.2 - Neuron Structure 

The feed forward calculation process is easily represented algebraically, but can 

become prohibitively large due to repetitive nature of the network calculations. 

The output of the layer can be represented as a function of the layer inputs 
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ft)( N)')) is the transfer function of the /h neuron in the kth layer. 

The output of any given layer becomes the input for the next layer in the 

sequence. 

U!k+l) = y~k): output of the /h neuron of kth layer, (3.2) 

max(k) = L : number of layers. 

Because of the simple repetitive nature of the network calculations, the output of 

the network can be expressed as a number of repeated and subsumed calculations 

for each layer. Equation 3.3 shows the equation for the output of a two-layer 

network as a function of the input, where the biases have been ignored. 

(3.3) 

3.2 Back-propagation Calculation for a Neural Network 

Back-propagation, also known as the generalised delta rule, is the most commonly 

used method for modifying the network weights. It is a simple gradient descent 

method to minimise the sum-squared error of the network output. It is most 

commonly used to minimise the error between a set of target data and the network 

output, but the error can be any differentiable function of the network's output. 

The back-propagation algorithm is a three part process; 

I. The forward calculation of the input data through the network layers and 

storing of the transfer function derivatives and layer inputs. It is because of the 

storage of the transfer function derivatives that the training of neural networks 

requires a large memory capacity. The programming of this is simple as the 

same actions are repeated for each layer. 

2. The back-propagation of the error gradient through the network to the adapted 

weights. 

3. The adjustment of the weights along the gradient to minimise the cost. 
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The back-propagation process starts from the error calculation. Taking the 

example of a least squared error optimisation to match a set of reference data rj. 

the derivative of the error is taken with respect to the network output Yj: 

E =.!. ~(i.(L) _ y(L))2 
2 L.J m} m) 

m 

(3.4) 

(3.5) 

The error gradient must then be processed backwards through the network using 

the chainrule. 

3.2.1 Output Layers 

The gradient calculation for the output layer is relatively simple; the error gradient 

is firstly calculated as a function of the transfer function input N, where E is the 

error function of the network output. 

(3.6) 

(3.7) 

The error gradient must then be made a function of the layer weights. 

CJE CJE CJNj 
--=----

(3.8) 
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3.2.2 Hidden Layers 

The back-propagation of the error to the hidden layer weights is more complex, 

but still builds on the simplicity of the chain rule process. In order to propagate the 

error gradient through a layer, it is necessary to calculate the derivative of the 

layer output with respect to the layer input. 

(3.9) 

The derivative of the transfer function input with respect to the layer input is; 

(3.10) 
n 

and therefore the derivative of the error function with respect to the layer inputs is; 

(3.11) 

Therefore, the hidden layer derivative becomes a function of the above for the k+ 1 

layer and the differential of it's own output ylk) with respect to the transfer 

function input !lk
) 

aE aE ay)') 
f/!, = aN, = au\k+I) aN)') 

(3.12) 

:.f/! j = 1'( Nj)I f/!~+I)W~+I) 
m 

Therefore, by applying the chain rule the error gradient can be calculated with 

respect to the weights for any layer. 
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(3.13) 

Having completed the back-propagation, the weights can be adapted to minimise 

the error, the simplest method for which is a fixed step gradient descent [52], 

equation 3.14, where TJ is the learning rate. 

LlW(') = TJ",(k)y('-i) 
}.l 'f'} I 

(3.14) 

More complex methods will be explored in later chapters. 

·3.2.3 Transfer Functions 

Transfer functions, also known as activation functions, are perhaps the most 

important part of the neural network architecture. Each neuron contains one 

transfer function and typically, all neurons in a layer have the same type of 

transfer function. This is done mainly ~o simplify the calculation process. Table 

3.1 and Figure 3.2 show the three transfer functions that are generally used with 

the back-propagation algorithm and are applicable to the work in later chapters. 

However, any function that is singular in its solution and continuously 

differentiable can be used. As a general "rule of thumb" the function output 

should also be positively proportional to the function input. 
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Table 3.1 - Standard Transfer Function Equations and Derivatives 

Tansig Logsig Purelin 

Transfer Function 2 1 y=N 

Y = (I +e-2N ) 
I y= 

I+e N 

Transfer Function 
aY·=I_l ay ay = 1 

Deri vati ve. -=y(l-y) 
aN aN aN 
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Figure 3.3 - Basic Transfer Function Forms 
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3.3 Applications of Neural Networks in Control 

There are a number of methods for the utilisation of neural networks in control, 

some of which have already been covered in less detail in Chapter 1. Five of the 

basic methods for the training and use of neural networks in control are outlined in 

the remainder of this chapter. Although the techniques have been defined in five 

separate sections, there are a number of approaches that combine features of 

several of the procedures. 

3.3.1 Direct Inverse Control 

Based on the principles of dead beat controllers, and generally used in discrete 

time, the neural network learns the reverse system, relating the output y(t+I) to the 

causal input u(t). If the exact inverse is learnt the network can then be fed a 

required reference trajectory, r(t+I), and the network will generate the control u(t) 

that will drive the system output y(t+l) to equal the reference signal. Figure 3.4 

If the inverse is correct, the system should follow the reference exactly, except for 

a delay of one discrete sample period. Any time delay in the system makes the 

implementation of direct inverse based control more complex. The network must 

be able to predict, or have access to a prediction of, the interim response of the 

system between input u(t) and y(t + d) where d is the delay [53]. 

Practical applications [54, 55] for direct inverse based control are limited due to 

problems of robustness, particularly when system feedback is used. In such cases, 

system noise and other high frequency disturbances destabi lise the system. Other 

problems occur when the system has multiple input solutions to a given desired 

response. Direct Inverse controllers can also generate large control requests that 

may not feasibly be matched by the system actuation. 

Intended System Resulting 
Trajectory Input Trajectory 
r(1+ 1) 

·1 Neural 
u(t) 

·1 I 
y(t) 

Network 
System • 

Figure 3.4-Direct inverse based control 
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3.3.2 Neural Adaptive Control 

Where direct inverse control ends and adaptive control begins is not always 

apparent; there are many similarities 'between the two, adaptive control in many 

cases advancing the principles of direct inverse based control. However, the use of 

neural networks in adaptive control can be two fold; neural networks can be used 

both to fonn a reference model, and as the control or regulator system. 

There are many papers to advocate the use of neural networks in the field of 

system identification [27, 28, 56], and because of this, they make an ideal 

technique for the creation of a reference model. In particular, they are able to 

capture the non-linearities of the plant. When used for model reference based 

control, this has the result that only disturbances and time variant changes in the 

plant are corrected. The controller does not try to force the non-linear plant to 

adopt the trajectory of a linear or more simplistic model. The network can also be 

continually updated on-line to improve the accuracy of the system model allowing 

adaptation to time based variations in the real plant. The control of the plant is 

then adjusted to ensure the plant follows the trajectory set by the model, this is 

know as Model-Reference Adaptive Control. This is one of the most common 

uses for neural networks in control. 

• Neural Network 
Reference Model 

~ • 
Neural Network + 

• Controller Plant 
u, up -

'" e 

Figure 3.5 - Implementation of Neural Adaptive Control 

Neural networks have been advocated for use as the regulator or controller, and a 

number of algorithms exist for tuning neural networks to give viable control. This 

allows the regulator to also take account of non-Iinearities in the plant. It is 
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important, if neural networks are to be applied as a controller, that they are 

sufficiently trained in advance of their implementation. Insufficient pre-training 

can lead to a lack of robustness, resulting in poor and sometimes catastrophic 

control actions. The application of adaptive neural network controllers to time 

varying systems is considered by some to lack robustness in practice, the risk of 

instability is certainly heightened [57]. This is partially true when using multi­

layer perceptron networks. They are best applied to simple repetitive tasks where 

the network's performance can be honed for a particular control scenario such as 

the control of robot manipulators on a production line . 

. The resulting control is not necessarily optimal, the strategy being based around 

obtaining similar behaviour from the plant as the reference model. The reference 

model may be controlled by a strategy that is optimal for the reference model, but 

not necessarily optimal for the plant. 

3.3.3 Back-propagation of Utility 

This approach compares well with the work described by Bryson and Ho, and the 

discrete time method applied by Marsh. The back-propagation of the utility 

function finds the optimal set of neural network control weights. However, it can 

also be applied to find the optimal schedule of control actions. Either method can 

be implemented using neural networks. Back-propagation through time [58] is one 

of the most publicised methods for the utilisation of neural networks within a non­

linear control strategy. The most commonly cited application of this technique is 

Nguyen and Widrow's Truck Backer-up [59] in which a 26 neuron / 2 layer feed 

forward adaline is used to dock a computer simulated articulated vehicle. The 

inputs to the network in this example were the x, y position of the dock, trailer and 

cab, and the angle of the tractor and trailer unit. The network output is the steering 

angle of the front wheels. 

The training process, performed using back-propagation through time, takes the 

following format: Firstly, a neural network is trained to emulate the non-linear 

dynamics of the plant and thus the plant derivatives can now be calculated from 

the neural network. The control process is considered as a sequence of steps. For 

the above truck example, a step constituted the selection of a steering angle and 
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the reversing of the tractor unit a fixed distance equivalent to lm, to a new state 

position. The steps are continued until either the goal is reached, or the plant 

exceeds some restriction (e.g. the truck jack-knifes), or a predetermined maximum 

number of steps is exceeded. Each step is considered as a separate network 

consisting of the controller and t.he emulator. Each network forms part of a much 

larger network that provides control for the whole sequence. Signals are passed 

from layer set to layer set. By back-propagating the error through 'the composite 

network (back-propagation tlirough time), changes to the controller weights at 

each step can be calculated. These are averaged and the net change applied to the 

controller weights. 

Over a number of initial con~ition runs, the controller will become sufficiently 

generalised as to provide satisfactory control even for initial conditions that have 

not yet been experienced. Many examples of the truck backer-up can be found in 

simulation on the web, for example;- hup://www.handshake.de/userlhlickle/Truck 

Although very successful in' many applications, particularly theoretical, back­

propagation of utility cannot efficiently account for noise, as it cannot be included 

in the system emulator. With larger problems, it. also becomes difficult to 

implement in real time. However, real time learning is not always appropriate or 

. worthwhile. Hampo and Marko [37] also identify further problems in relation to 

active suspension: the method relies on un-measurable states in the development 

of a realistic system emulator. They also found the development and validation of 

the system emulator time consuming. 

3.3.4 Adaptive Critic 

Adaptive Critics combine the theories of dynamic programming, reinforcement 

learning, and back-propagation (sectiori 3.2, not 3.3.3) to create action networks 

that control the plant. Dynamic Programming is based on the statement that for 

any given optimal trajectory passing through an intermediate point, the optimal 

trajectory from that point onwards will be the same should the system be restarted 

at the intermediate point. This is combined with the theories behind reinforcement 

learning, where the probability of repetition of an action is governed by a 

successful result having occurred previously when that action was applied. The 
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critic function adapts the action network weights, using back-propagation, to 

minimise the system performance cost. Therefore, over a number of successive 

simulations it improves the controls applied by the action network. Although 

adaptive critics have proven successful in a number of fields [60-62], they are still 

in their infancy and little work has been done in relation to the field of this PhD. It 

has also proven difficult to establish a stable controller from which to evolve the 

optimal control strategy when working on plant dynamics similar to those of the 

quarter vehicle. 
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Figure 3.6 - Adaptive Critic Implementation 

3.3.5 Supervised Control 

Here the neural network is used to map the systems' sensor output to the control 

actions of a more complex controller [63, 64], or those of a human operator [65, 

66]. This process can be used to apply control techniques that are too complex to 

be implemented in real time but where the resulting control is on a one to one 

basis, and therefore easily learnt by the neural network .. Equally, this technique 

can be used to reproduce the actions of a human operator, where the network is 

used to find a relationship between the sensor measurements and the operators' 

actions. Therefore, the operator is taken out of the control process. 
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This is one of the simplest routes to using neural networks in control. For this 

reason it will be used to validate their use with active suspension. In Chapter 4, 

supervised learning is used to replicate the actions of the control strategies 

developed by Marsh. 

.. Training ------.... 
Algorithm 

Neural 

Error r-:-~ Network 

~. 
~~ Complex 

Control System 

Control I Human 
Force 

System 

or 

Disturbance System 

Model 

Figure 3.7 - Supervised Learning Process 
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Chapter 4 Neural Network Training 

In Chapter 2 a method for the calculation of the optimal non-linear control force 

was introduced. However, the complexity of the method means it cannot feasibly 

be used on-line. In this chapter, the golden line search and l..evenberg Marquardt 

optimisation methodologies will be assessed for the training of neural networks 

through supervised learning to learn non-linear input - output relationships, 

including the state - force relationship generated using the optimal non-linear 

control method introduced in Chapter 2. In Chapter 5 a number of enhancements 

to the training process will be made and the performance of neural networks in the 

control of a quarter vehicle model will be compared with the non-linear optimal 

open loop control and LQR control introduced in Chapter 2. 

4.1 Supervised Learning Process 

In order to train a neural network using a combination of supervised learning and 

least squared error criterion, a training data set must first be created. This consists 

of a set of inputs (the system states for the non-linear control problem) and the 

corresponding outputs (the control forces) to cover the complete input range under 

which the neural network will be expected to operate. To create the control force 

data set the Fortran code developed by Marsh, is used to optimise the control force 

for the quarter vehicle, applying the following non-quadratic dynamic cost 

furiction. 

L = 05[ a,x~ + /3,xi +a,x~' + /3,x';' +( ~)'J 
(4.1) 

a, = 16000 /3, = 500 a, = 2 x 1012 /3, = 5x 10" n, = 6 n, = 10 

The training data set was created by finding the optimal control force for 114 = 

14641 initial condition points evenly distributed within a rectangular region of the 

four dimensioned state space. This equates to i 1 points on each state axis. 

Having created the training data set, the neural network is optimised using least 

squared errors to minimise the error between the neural network output and the 

optimal force, calculated using the discrete control method, Figure 4.1. The neural 
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network can then be implemented in place of the LQR gain matrix in the linearly 

controlled quarter vehicle model, Figure 4.2. 
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Figure 4.1 - Training the Neural Network using Least Squared Error Methods. 
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Figure 4.2 - Implementation of the Neural Network Controller in the Control of 

the Quarter Vehicle Model. 
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4.2 Training Routines 

The tenns "training" or "learning", when used in relation to neural networks, refer 

to the optimisation of the network weights to minimise the error criterion. In the 

case of feed forward MLPs, this can be carried out using gradient descent through 

the employment of the back-propagation algorithm. However, pure gradient 

descent is known to be poor [67], being both slow and potentially inaccurate 

depending on the step size chosen. Because of this, a number of enhancements to 

the basic gradient descent algorithm have evolved. The Golden Section line search 

method is a simple evolution of the gradient descent algorithm, ensuring that an 

optimal step size is taken within the line search. The Levenberg Marquardt 

method is more advanced employing both first and second derivative cost surface 

infonnation to improve the optimisation process. The Golden Section line search 

method is described in detail in Numerical Recipes with example coding for both 

Fortranl!) and Cl!) [67]. The Levenberg Marquardt method is described below and a 

comparison of their perfonnance for the optimisation of the neural network 

weights is made. 

4.3 Levenberg Marquardt 

The Levenberg Marquardt optimisation method is designed for the optimisation of 

non-linear functions and based around the principles of steepest descent and the 

Inverse Hessian method, varying smoothly between the two. 

4.3.1 Inverse Hessian 

The Inverse Hessian method fonns a quadratic approximation to the error surface 

around the current function parameters, based on the current cost value and the 

first and second derivatives of the error surface. The surface of a smooth 

continuous function .f{x) can be expressed around the point x using the standard 

Taylor series approximation:-

f(x+a) '" f(x) + J'(x).a +~ r(x).a2+ ... +~ f(n)(x).a~ 
2! n! 

. (4.2) 
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where f(x) is the gradient vector at x and f'(x) the matrix of second derivatives 

(Hessian matrix) 

f"(x)=HLM= a
2
f 

aX,ax} (4.3) 

Although the Taylor' series can be calculated to the nth derivative, it is unusual for 

the purposes of optimisation to go beyond the second derivative due to the 

computational expense involved. With the Taylor series calculated to the second 

derivative, the derivative of the series can easily be solved to locate the 

approximate minimum. 

Assuming the function to be minimised is of a least squares form, the square of a 

single function Y, the aim being to minimise /. 

. 1 m 

f(x) = - LYi(X)T Yi(X) 
2 i=' 

(4.4) 

for which the Hessian matrix is composed of two parts, the square of the lacobian 

matrices 

(4.5) 

and 

S(X) = y(x).y"(x) (4.6) 

the Taylor Series becomes 

f(x + a) = f(x) + f'(x).a +.!.a T f"(x).a 
.' 2 

= ~ LYAx)Yi(X) + YAx)y;(x)ai + ~a j(Y;(x)y;(x) + Sij(x))ai 
'} 

(4.7) 

The second order form of the Taylor series can be differentiated in terms of a to 

find the local minimum. 
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oj{x + a) ~ , (" ) 0= oa = .L.YAx)y,{x)+ Yj {x)y, (x) + S,Ax) a, 
'1 (4.8) 

a = L -(y;{x)y;{x) + S,j{x)( Yj{x)y;{x) 
ij 

Certain assumptions about the form of the Hessian matrix are commonly made in 

order to make its calculation less computationally challenging when applied to a 

least squares problem. The use of both parts of the Hessian matrix is known as the 

Full Newton Approach. However, y"(x) is usually either incalculable or 

inconvenient to obtain, and can be expensive to obtain using finite difference 

methods. 

It can be shown that when the optimal solution has zero or minimal residual error, 

Sex) will be small and can therefore be ignored, where as optimal solutions with 

large residual errors will result in large values of Sex), and therefore the 

calculation of Sex) cannot be ignored. This is best-done using the secant method 

[68]. 

4.3.2 Steepest Descent 

The Levenberg Marquardt method avoids errors in the second order 

approximation by varying between the Inverse Hessian method and gradient 

descent depending on the accuracy of the Hessian matrix to the true surface. The 

selection between the two is made by varying a scalar parameter A, depending on 

whether a cost reduction has occurred or not, due to the preceding step 

calculation. When A is large, the Levenberg Marquardt search direction tends to 

that of steepest descent, whilst for small values tends to that of the Inverse 

Hessian matrix method I Gauss-Newton [69]. 
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The Inverse Hessian Step takes the form 

dy 
A05H LM .a = y­

dX 

Whi le the Steepest Descent step is 

a = Ay dy 
dx 

and therefore the Marquardt formula for varying between the two is, 

H'u,jj '" H LMjj (I+A) 

H'u,jk '" H LMjk (j * k) 

H'u,a = y dy 
dX 

55 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

There have been a number of methods put forwards for adaptation of }", the 

simplest of which takes the following format: 

• Select an initial set of parameters x for your function! 

• Compute the current cost at x 

• Pick a modest value for A, say A = 0.00 I 

• Solve the Marquardt step equation for a and calculate the cost of the new 

parameter values x + a 

• If the cost at x + a is greater than, or equal to, the cost at x, then increase A by 

a factor of 10 and repeat the above step again. 

• If the cost at x + a is less than at x. then A can be reduced by a factor of 10, 

and the parameter values updated, x = x + a. and a new Marquardt step 

calculated. 
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4.4 Training Results 

Four supervised learning cases, of varying complexity, were used to test the 

performance of the optimisation routines. 

1. Y = cosO, -2TC < 0 < 2n. Trained for 15 minutes on 1000 data points, Neural 

network structure: input layer - 10 tansig functions, output layer - 1 purelin. 

2. Y = cosO cosf/!. -TC< 0 < TC, -TC < f/! < n. Trained for 15 minutes on 1000 data 

points, Neural network structure: input layer - 10 tansig functions, output layer 

- 1 purelin. 

3. Y = 1000.~osO cosf/! -TC < 0 < TC, -TC < f/! < n. Trained for 15 minutes on 1000 

data points. Neural network structure: input layer - 10 tansig functions, output 

layer - 1 purelin. 

4. The non-linear optimal state - force relationship for a quarter vehicle model 

(Section 4.1) for 1 hour. , Neural network structure: input layer - 20 tansig 

functions, output layer - 1 purelin. 

The results in Table 4.1 and Figure 4.3 are not definitive, but can be considered 

typical of the optimisation performance for each case considered. The success of 

the optimisation process is to a degree dependant on the initial network weights, 

(see Figure 4.4), even when chosen 'at random. Some optimisation runs can stop 

prematurely in comparison to the results shown in Table 4.1. The Levenberg 

Marquardt technique performs significantly better than the golden section line 

search routine in all four cases; the utilisation of second derivative cost surface 

information gives it a distinct advantage. The Levenberg Marquardt technique is 

also more tolerant of initial conditions as it is able to achieve reasonable results 

from almost purely random initial weighting values. The line search technique 

needs more careful selection of the weights, particularly in the input and output 

layer when the training data has not been normalised to fall in the range -1 to +1, 

such as cases 3 and 4. The initial weights need to be selected carefully to ensure 

that the Tansig functions will operate in their active range. Saturation limits the 

opportunity for cost reduction; once saturated, the gradient values become small. 



Chapter 4 57 

With any form of line search, this results in the change in the related weights 

being very limited as the step size is dependant on more significant directions, for 

which if a large step were taken, the cost would almost certainly be negatively 

affected. 

Now that current computing technology is able to accommodate the memory and 

performance requirements needed to use the l..evenberg Marquardt technique with 

neural networks, there is clear evidence that it is appropriate to do so. Line search 

techniques have only limited value when dealing with off-line learning problems, 

however their use is still advocated for on-line learning [70]. The benefits in speed 

and flexibility far outweigh any limitations the l..evenberg Marquardt technique 

may have for the quarter vehicle problem. From this point on, the Levenberg 

Marquardt technique will be the predominant optimisation technique used. 
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Table 4.1 - Golden Section versus Levenberg Marquardt Optimisation 

Weights # of Saturated 
~ Optimisation Initial Optimisation Percentage Neurons / # of 
Cl) 

<: Routine Condition Cost Es Error Tansig Neurons U 
Golden Uniform, 

8.60xlO·3 13.19 % 0 
Section Random 

1 
Levenberg Uniform, 

1.67xlO-7 0.057 % 0 
Marquardt Random 

Golden Uniform, 
8.30xlO-3 26.14 % 0 

2 
Section Random 

Levenberg Uniform, 
1. 29x 10-5 1.03 % 0 

Marquardt Random 

Golden Uniform, 

Section Random 
86985 86.52 % 0 

Golden Weighted, 
3724 16.91% 0 

Section Random 
3 

Levenberg Uniform, 

Marquardt Random 
8194 26.05 % 4/10 

Levenberg Weighted, 

Marquardt Random 
1.383 0.34% 0 

Golden Uniform, 

Section Random 
0.6905 73.50 % 15/20 

Golden Weighted, 
0.4798 61.27 % 0 

Section Random 
4 

Levenberg Uniform, 
.. 

0.1043 28.56 % 19/20 
Marquardt Random 

Levenberg Weighted, 

Marquardt Random 
4.73xlO-3 6.09% 0 

Uniform, Random: The initial network weights were uniformly distributed in the range -I to + I. 

Weighted, Random: The initial input layer weights mapped the maximum inputs to the active 

range of the input layer transfer function, the output layer weights reflected the output range 

Saturated: When the typical input range does not result in the majority of neuron outputs falling 

in the range -0.999 to 0.999. 
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Chapter 5 Analysis of Neural Network Controlled Active 
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Following the results of Chapter 4, two neural networks were trained successfully 

with respect to the cost function, using the Levenberg Marquardt optimisation 

technique and supervised learning. The first network, NNF (Neural Network 

Force), learned the relationship between the quarter vehicle states and the control 

force. The second network, NNC (N~ural Network Costate), learnt the 

relationship between the quarter vehicle states and the costate values, from which 

the control force can be calculated, Equation 2.24. 

In Chapter 5, the performance of these networks will be analysed in the dynamic 

control environment of a quarter vehicle model. Their performance will be 

analysed for a number of scenarios, including initial condition settling problems 

and dynamic simulation over a selection of road models. The initial condition 

evaluations highlight three problems: The influence of network bias values on the 

network output when the system states are zero, over-fitting causing poor 

generalisation between training data points, and large amplitude values 

dominating the optimisation and preventing small value accuracy. The bias effect 

. can be resolved using bias cancelling, a technique successfully implemented by 

Hiroki Nakanishi. [71] The corrected networks give zero output for zero states, 

without degrading the overall performance. Weight decay is used to prevent 

neuron transfer function saturation and over-fitting of the training data. Cost 

weighting on the basis of state magnitude is used to reduce the influence of large 

values, and minimise small value error. The neural network controllers' 

performance is compared with the Linear Quadratic Regulator introduced in 

Chapter 2. The state cost matrix is redefined so as to make the performance of the 

Li near Controller more comparable. 

5.1 Equivalent LQR Controller 

The non-quadratic cost function has a quadratic component, Equation 2.22, this 

could be used as the cost function to develop the linear controller for comparison. 

However, this controller would be inherently less constrained in suspension and 

tyre deflection control, in order to make it a suitable basis for the addition of non-
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linear control and the non-quadratic cost elements involved. Having established 

the non-linear control process, and in an awareness of its likely operating range, it 

is possible to define an equivalent LQR control. The non-linear control approach, 

if correct, should still be superior but the LQR control has been redefined to give 

the closest possible equivalent linear system. The Q matrix tuned in LQR design is 

now redefined using the following generalised process. 

• Using the training range of the neural networks, calculate the non-quadratic 

cost function values along the state axis for tyre and suspension deflection. 

Figure 5.1. 

• Using linear regression, establish the LQR Q matrix terms that give the best 

approximation to the non-quadratic cost for each axis. Table 5.1. 

Applying the above process the following values were established for the 

redefinition of the Q matrix, Qe resulting in the quadratic state, cost relationship, 

Figure 5.1. 

Table 5.1 - Equivalent Q matrix 

The Quadratic 

Assumed values used in Equivalent Q 

State Operating Range Equation 2.22 Matrix 

Tyre Deflection (XI) +/- 0.0282m Q(I.I) = 16000 Qe(I.I) = 7.09x105 

Suspension 
+/- 0.1095m Q(z.Z) = 500 Qe(Z.2) = 4472 

Deflection (xz) 
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The performance of the neural network non-linear controllers will be analysed on 

two initial condition problems, the first designed to promote the wheel hop mode, 

x = [0 0 2.5 O)T, (Figure 5.2), and the second, the body bounce mode, x = [0 0 0 

1.25)T, (Figure 5.3). Firstly, a linear controller based on the quadratic components 

of Equation 2.22 which will be refer to as the original controller, the new 

equivalent linear controller and the open loop non-linear control trajectories are 

compared to assess the changes made by redefining the Q matrix as shown in . . 
Figures 5.2 & 5.3 

, 
The equivalent linear system results are, by comparison, much closer to those of 

the non-linear open loop controller used for training and validation than the 

original linear system, (Tables 5.2 & 5.3). Body acceleration has been sacrificed 

to achieve a significant improvement in the control of tyre and suspension 

deflection. The resulting initi~1 condition state trajectories fall in a crucial region 

for the non-linear controller. Therefore the benefits of non-linear control are less 

clearly defined by Table 5.2. alone. Careful examination of Figures 5.2 & 5.3 

reveal better utilisation of the suspension workspace in order to better control 

body acceleration. For example the second peak in body acceleration following 

the initial hub velocity is significantly lower than that of the equivalent linear 
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controller. Following the initial body velocity case, tyre and suspensIOn 

deflections are better controlled without any increase in the peak levels of body 

acceleration experienced. 
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Table 5.2 . Equivalent Linear System, Initial Hub Velocity Response 

R.M.S Values for First Second 

Tyre Suspension Body Peak Tyre 

Hub Velocity Deformation Deflection Acceleration Deflection 

Response (mm) (mm) (m/s2 
) (mm) 

Original Linear 
9.92 

Controller 
10.02 1.30 34.92 

Equivalent 

Linear 2.72 7.63 2.46 18.70 

Controller 

Non-linear Open 
3.75 

Loop Control 
13.65 2.45 19.58 

Table 5.3 - Equivalent Linear System, Initial Body Velocity Response 

R.M.S Values for First 1.5 Seconds Peak 

Tyre Suspension Body Suspension 

Body Velocity Deformation Deflection Acceleration Deflection 

Response (mm) (mm) (m/s2
) (mm) 

Original Linear 
4.33 

Controller 
59.20 2.27 123.61 

Equivalent 

Linear 4.18 38.52 2.67 92.40 

Controller 

Non-linear Open 

Loop Control 
4.24 37.5 2.95 89.24 
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5.2 Initial Condition Performance 

The performance of the neural network non-linear controllers will be analysed on 

two initial condition problems, the first designed to promote wheel hop, Figure 

5.4, and the second, body bounce, Figure 5.5. 
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Initial condition runs, performed with the original networks trained following 

Chapter 4 highlight a number of problems with both the network architecture, and 

the optimisation process. The major failing of the original neural network 

controllers is very apparent for both networks; neither network stabilises the 

suspension to the intended equilibrium position. This is caused by two main 

factors. Firstly, both networks generate a non-zero output when at the equilibrium 

position. Secondly, the training data is evenly distributed across the operational 

range, which results in the high value points dominating the optimisation so that 

relatively large errors occur around the origin, where the training values are small. 

A second failing, which is less noticeable, is that the force surfaces are not as 

smooth as they should be. This is indicated by the body acceleration response 

shown in Figure 5.5, in particular the response produced by the NNC controller. 

This disrupts the settling process and causes unexpected body accelerations. This 

can be observed for the NNC controller, 0.25seconds after the initial condition 

settling process starts. 

5.3 Bias Cancelling 

In many control problems, the force feedback or costate values for zero states are 

also zero. Because of the bias terms, zero out for zero in, cannot be guaranteed for 

feed forward neural networks of the standard form. Nakanishi et at [71] propose 

the following solution, which ensures the network output is zero for a zero input, 

whilst maintaining the functionality of the bias values to add additional non-linear 

flexibility to the network. The layer calculation equation 3.1, is redefined as 

follows 

redefine ) 

f }k)(N}') )- f}k) (m}k) ) 

N}') = L w}~)UY) +~(k ) 
i 

(5.1) 

This does not affect the ability to differentiate the layer with respect to either the 

weights, or the bias terms and therefore allows the continued use of back 

propagation based optimisation techniques. Figure 5.6 shows the effect of bias 

cancelling on a Tansig neuron with original weighting and bias values of one. The 
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influence of the bias term is different. Originally the bias term applied a lateral 

shift to the output, but now the shift is two-dimensional in order to maintain the "0 

~ 0" condition. While the technique for some problems may affect the number of 

neurons required to accurately learn a relationship, the premise that with sufficient 

neurons the behaviour of any non-linear system having a zero input, zero output 

relationship can be replicated remains true. With bias cancelling now applied, 

Table 5.4 shows the network output is now correctly zero for both the NNF and 

theNNC. 
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Table 5.4 - The Effect of Bias Cancelling at Zero 

Network Output 

Network NNF with Bias NNC with Bias 

Input NNF NNC Cancelling Cancelling 

[OOOOJ -37.591 
[-14.67 -0.31 

[OJ [OOOOJ 
-0.07 -O.70J 
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5.4 Generalisation / Regularisation 

One of the most common problems with neural networks is that of over-fitting, or 

generalisation. Because neural networks are normally trained on a fixed data set, 

the ideal result is for the network to interpolate smoothly between the data points 

provided for training. However, without careful control, over-fitting will occur 

and the network will give inaccurate results for points it hasn't been trained for. 

This is illustrated in Figure 5.7 below. 

{(x) , , , 

• 
• • · , , , -, 

-- Original Function 
Neural Network tined LO training data 

- ---- Training data point 
• 

Figure 5.7 - Neural Network Over-Fitting 

x 

There are a number of methods for the prevention or control of this. The first is to 

use a validation data set against which the neural network output is checked. 

Initially both the training data error and the validation data set error should reduce 

simultaneously. However, as the network begins to over-fit the training data, the 

validation error will increase. This can work well but does nothing to actively 

encourage the smoothing of the network during training. It can result in the 

network training stopping prematurely unless sufficient leeway is given to allow 

variations in the validation training set error as the optimisation proceeds. 

5.4.1 Regularisation 

Regularisation is an alternative, or additional, method to encourage smoothing, 

which incorporates in the cost function a term that penalises weight complexity. It 
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is commonly used in multi-layer perceptron networks to reduce the possibility of 

over-fitting [72]. Typically, it is used to make an appropriate trade off between the 

reliability of the training data and that of the model created. This can be done by 

creating a trade-off function between data fit and network output smoothness. 

E(x, w) = E, (x, w) + 'I' .Ec( w) (5.2) 

The first term, Er. is the standard performance function (e.g Equ.3.4), typically in 

the form of a least squared error function. The second term is a measure of the 

complexity of the network, which is dependent on the network model only. Its 

inclusion will attempt to impose prior knowledge of the problem and its solution, 

whether that is about the symmetry of the solution, or simply some measure of 

smoothness. The form of the above equation follows that of Tikhonov ' s 

regularisation theory [72, 73); where the regularisation parameter 'I' controls the 

relative importance of the complexity function with respect to the standard 

performance function. When 'I' is small the training is almost entirely limited by 

the standard performance function and the choice of weights is unconstrained. 

When 'I' is large, the form of the network will be almost totally defined by the 

complexity function. In effect, little value is put on the standard training function. 

In the case of a data-fitting problem, this would imply that the original data was 

considered unreliable. In practice, a value that is the region of near equality for the 

two cost measures is more typical. 

5.4.2 Example Complexity Functions 

(a) kth Order smoothing Integral 

~
' 1 

Ec(w,k) = OSJ , F(x,w) Jl(x).u 
dX 

(5.3) 

!!(x) is a weighting function that applies particular importance to certain regions 

of the input space, for which the smoothness of the data is more important. The 

result of the application of this function is to make the kth derivative of F(x,w) 

with respect to the input x small, thus smoothing the output of the network [73) . 

However, it can be difficult to apply this technique when using gradient based 
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optimisation, as the evaluation of the derivative of the complexity function with. 

respect to the network weights is often hard to obtain. 

Weight Elimination and Weight Decay 

While Weight Elimination (b) and Weight Decay (c) both cost the weights 

directly, their influence is restricted because of their relative importance to the 

standard performance function, Es. defined by the regularisation parameter, '1'. 

(b) Weight Elimination. 

(5.4) 

Here Wo is a pre-assigned parameter defining the bounds of contributing network 

weights. Weights that fall below Wo result in a low complexity term thus resulting 

in a reduction in their contribution to the network output. Weights that are greater 

than Wo will result in a complexity term of one. The selection of Wo is important to 

the form of the network. output. The benefit of this procedure is that it allows 

larger weight values than the weight decay method [74], while still pruning from 

the network weights that do not make a useful contribution. This in turn reduces 

the likelihood of over fitting through excess weights. 

(c) Weight Decay 

Weight decay makes use of the sum of squares of the free network parameters. 

(5.5) 

This procedure is effective because it forces the weights of non-active neurons to 

zero, while the important weights retain their relatively large values. Weights that 

would normally be defined as excess, and result in poor generalisation by virtue of 

their likelihood to take on arbitrary values or be used to obtain a slight reduction 

in the cost function, will now tend to zero, which in turn leads to improved 

. generalisation. 
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Weight decay does not work in all cases [75] and is not considered a strictly 

suitable form of regularisation for multi-layer perceptron networks as it tends to 

promote networks with many smaller weights rather than an equivalent larger 

single weight. However, it has proved successful in many cases [76] and is simple 

to implement. 

5.4.3 Implementation of Weight Decay Control for Levenberg Marquardt 

Optimisation 

Possible problems resulting from Tansig functions becoming saturated can be 

much reduced through the use of weight decay. Furthermore, weight decay is 

easily implemented within the Levenberg Marquardt algorithm and because of its . 
simple squared format, it works well as an addition to least square based 

optimisation problems and easily fits the format of Equation 4.4. 

(5.6) 

Its simplicity also means it has little effect on the computational expense for a 

training epoch. Although it can affect the cost reduction during a fixed period of 

time, (because it helps ensure none of the Tansig functions become redundant), 

with careful management of its contribution to the overall cost in the long term it 

is likely to give a much improved level of fit. 

Although Weight Elimination is more advanced [75] in light of the fact that the 

main problems stem from excessively large Tansig neuron weights, resulting in 

continuous saturation of the neuron and switching effects, the allowance of larger 

weights for these neurons does not seem appropriate. The weights of the final 

layer are limited by the desired output, therefore it was felt intuitive to apply 

weight decay only to neurons having either a Tansig or Logsig transfer function, 

for which saturation is likely. 
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Figures 5.8 and 5.9 show the effect weight decay can have on the trained network. 

These figures were created by fixing all other states as zero and calculating the 

force for X2, (suspension deflection) values at intervals of 0.001. It is worth noting 

at this point that the forces calculated from the costate training data set do not 

correspond exactly with the force values calculated by the parameter optimisation 

technique. Therefore, forces calculated by the two networks do not correspond 

directly. (The error between them is a function of the calculation tolerances and 

slight differences between the discrete and continuous time processes used. The 

error can be reduced, but this will be at the expense of calculation time. Given the 

number of data points needed to train the network, this must be kept low.) 
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Figure 5.8 shows that weight decay is not always essential to obtain a smooth 

output surface; the NNF network output is naturally smooth. However the NNC 

output is clearly not satisfactory. Its output cannot be strictly defined as having 

over-fitted the training data, as clearly the network does not pick up every point as 

in Figure 5.7. This example of the NNC network output remains smooth along 

other state axes, but the X2 axis is of particular importance. Also, in simulation, the 

NNC trained without weight decay does not settle to zero from initial conditions, 

but settles instead to approximately ± 0.02. 

The addition of weight decay with a well-chosen regularisation parameter 'P, has 

no significant effect on the degree of accuracy that can be achieved. The force 

error is in fact reduced though the application of weight decay in the example 

shown. The likelihood of a successful optimisation is also improved, as the Tansig 

neurons do not remain saturated. Thus switching is less likely and gradients 

remain significant. With weight decay, Tansig functions are active across a much 

larger range of the input space. 
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5.4.4 Point Weighting 

Because some extreme points in the force I costate map have very high values, 

they can dominate the optimisation process. As the error function is not 

normalised with respect to the absolute value of the fitted point, large percentage 

errors can occur for points of low relative amplitude. This may result in poor 

control around the origin, which can in turn result in poor final settling for initial 

condition problems. This can be expressed in a number of forms; non-zero 

settling, even when bias cancelling is used, due to an inflection in the control 

surface, slow settling or an oscillatory final settling period. To decrease the 

influence of these points, the error is weighted using one of the following cost 

functions. 

• X, x=--
!X'!MAX 

2 
(5.7) 

g2 = e - y(x) (5.8) 

Equation 5.7 based on the Logsig function (Table 3.1) and Equation 5.8 are both 

adapted by one variable, A. (the coslscale), to vary the importance of initial 

conditions Xi to the optimisation. The two functions allow different shaped bands 

of importance to be defined and compared. 
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By changing the cost scaling value. y. the importance of peripheral values in the 

state space can be adjusted. This helps to enforce the importance of the low value 

points around the origin. 

S.S Network Training Results 

Fifteen neural networks were trained to detennine the state - force relationship 

using various combinations of weight decay, point weighting and bias cancelling. 

During the 5 hour training period, approximately 310 epochs were completed per 

optimisation using an 866MHz Athlon processor with 256mb of 100MHz RAM. 

Work previous to this had shown that a fixed level of weight decay throughout the 

optimisation was not viable. If the weight decay variable 'f' (Equation 5.5) is small 

enough to allow complete optimisation. its significance is reduced early in the 

optimisation and the Tansig functions become saturated. This restricts the ability 

of the network to optimise further. If it is too large, as the relative value of the 

least squares cost becomes smaller. it then dominates the optimisation, preventing 

further reductions in the least squares cost. 
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To counter this effect, the weight decay variable, '1', was adapted at the beginning 

of each epoch to maintain a constant ratio between the least squares cost and the 

weight decay cost of 1, 2 or 5 respectively. The maximum value of 'I' was capped 

allowing greater freedom to the minimisation of the least squares cost in the early 

stages of the optimisation. A capping value of 50 was chosen on the basis of 

earlier experimentation with fixed values of '1'. 
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Table 5.5 - Least Squares Optimisations for the State - costate Relationship 

Number of 
00 % Error on Force Saturated Tansig 
~ .E ;.. 
Ql 00 values functions 
u .- '" c '" - Valid-os ~ ~ U - '" Final Cost '" c - Original ation Dual Single 
.!: ;£ '" 

EslEc 
0 

jl:l U E data data Sided Sided 

1 no NoWD 0 3.8xI0-< 17.78 '17.61 17 0 

2 no 5 0 4.84xlO-4 1.99 2.19 0 0 

3 yes NoWD 0 7.01xlO-4 2.43 2.56 4 0 

4 yes 5 0 4.56xlO-4 .2.02 5.23 0 0 

5 yes NoWD 9 1. 80x 10-< 14.01 10.81 13 0 

6 yes 5 9 2.48xlO·' 6.581 6.01 0 0 

7 yes 2 9 5.15xlO-' 8.52 8.31 0 0 

8 yes NoWD 12 8.81xlO-< 35.58 29.49 14 0 

9 yes 5 12 1.66xW- j 7.59 10.04 0 0 

10 yes 2 12 1.08xlO-j 4.90 4.96 0 0 

11 yes NoWD 15 1.59xlO-J 8.28 6.54 1 2 

12 yes 5 IS 5.94xI0-4 6.27 4.43 0 0 

13 yes 2 IS 3.03xlO-J 11.63 16.45 0 0 

14 yes 1 15 3.32xlO·' 10.01 8.07 0 0 

IS yes 5 7t 1.38x10·j 4.116 3.09 0 0 

t Gam EquatIOn (5.7) 

The importance of weight decay is indicated by the results given in Table 5.5. 

Saturating tansig functions, caused a significant problem for the networks trained 

without weight decay. The relationship between poor perfonnance and saturated 

transfer functions is indicated by networks I, 5, 8, 11 in Table 5.5. Weight decay 

has a clear part to play in the prevention of neuron saturation and, despite being in 

conflict with the main least squares cost function, often results in improved fitting 

perfonnance. 

The correct degree of weight decay to use is less clear from the results in Table 

5.5, without further infonnation about the level of fit achieved. As well as the 

original training data set, a second validation data set, created using a unifonn 

random distribution, is used to test the degree of generalisation achieved by the 

network. In addition, the force output was plotted along the state axes and against 

state pairs to give a visual indication of the degree of generalisation. e.g. Figure 
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5.11. From the visual analysis, the use of an evenly distributed training data set 

appears to increase the likelihood of over-fitting. The error ridges run in strips 

across the force surface between the data points. This can be seen in the surface 

plots offorce against X3 in Figure 5.11. 
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5.11. From the visual analysis, the use of an evenly distributed training data set 

appears to increase the likelihood of over-fitting. The error ridges run in strips 

across the force surface between the data points. This can be seen in the surface 

plots of force against X3 in Figure 5.11. 

Figure 5.11 . Error Ridges in the Force Surfaces 
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From the percentage error results in Table 5.2 it is possible to conclude that point 

weighting is beneficial. The networks without point weighting have achieved 

higher levels of overall fit. However, the degree of fit at low state values is more 

important than at the extremes of the state range. Low value errors can prevent the 

system settling. Figure 5.12 shows that the level of fit achieved at low magnitudes 

is improved though the use of point weighting and this will ensure better dynamic 

performance of the neural network. 
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Figure 5.12 - The Effect of Point Weighting on Network Error. 

Because there are a number of sources of randomness in the training of neural 

networks - initial conditions, training data selection and small computational 

differences - no given optimisation is fully repeatable. In particular, initial 

conditions contribute significantly to the end result. Although the result may be 

very similar, no network is going to be exactly the same without restricting the 

optimisation to repeat the same changes from the same initial conditions. The time 

constraints involved prohibit training large numbers of networks to achieve a truly 

generalised result for each combination of weight decay, bias cancelling and point 
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weighting. Therefore, the best result from the 15 networks was chosen to analyse 

the performance of the network as a feedback controller. The network was chosen 

on the basis of percentage error, final cost E, a visual inspection of the force 

surfaces as plotted in Figure 5.11, and simulation runs of both initial condition 

cases. The dynamic performance of this network and the non-linear control 

strategy employed is now further analysed in Chapter 6. 
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Chapter 6 Performance Comparison and Analysis 

In Chapter 5, a training strategy for the supervised learning of the state - force 

relationship was developed and a number of neural networks trained. In this 

chapter, the performance of one of those networks will be assessed as a controller 

in dynamic simulation. A second network trained using supervised learning to 

learn the state - costate relationship was also established and its performance will 

be assessed in parallel. The dynamic correlation between the open-loop discrete 

control technique that generated the training data set and the neural networks in 

control will first be assessed using two initial condition examples. 

Having established the validity of using the neural networks in dynamic 

simulation, they will then be used to assess the performance of the non-linear 

control strategy for a number of test cases; sinusoidal responses, simulated and 

real road responses. 

6.1 Initial condition Performance of Retrained Networks 

Network 12 was chosen from Table 5.2 to investigate the use of a neural network 

feedback controller. Although other networks achieved lower LSQ cost and better 

overall levels of fit, in simulation low magnitude inaccuracies prevent them 

settling correctly. Networks 13 and 14 were restricted in training by the higher 

level of weight decay used and as such do not achieve comparable levels of 

control to network 12. 

A second set of neural networks were trained using weight decay, bias cancelling, 

and point weighting to learn the state - costate relationship. The best of these was 

selected using the same methods. The chosen network had the following format, 

Table 6.1. 
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Table 6.1 . State· Costate Neural Network Details. 

Network Architecture Details 

Input Layer 30 Tansig Function 

Output Layer 4 Purelin Functions 

Bias Cancelling Yes 

Training Process 

Duration 19 Hours (The significant increase in optimisation 
time is due to the limited memory available.) 

Number of Epochs 253 

Weight Decay Ratio 5 
Point Weighting, y 15 

Performance 

Least Squares cost E 2.36xIO~ 

Percentage Error on 
Force values 

Original data 9.27% 

Validation data 6.45% 

The performance of the neural networks as controllers in their own right is more 

than satisfactory (Figures 6.1 & 6.2). However, they do not replicate the exact 

state trajectories of the open loop controller, for either initial condition (Table 6.2 

& 6.3). This can be explained by a number of factors; The original open loop 

control uses zero order held control inputs. The neural network control is 

continu,ous, while the hold period is small and the error caused not significant, the 

accumulative error is of a measurable size. Secondly because the network training 

data is evenly distributed across the working range, the actual range of training 

points covering the final settling period of the simulation is very limited. It is at 

this point that most of the variation between the original open loop control and 

that of the neural networks occurs. If the suspension deflection axis is considered 

during the initial hub velocity response (Figure 6.1), only one non-zero X2 training 

point is passed through during the simulation. The degree of accuracy is a measure 

of the generalisation achieved by the network through the use of weight decay. 

Despite the additional weighting applied to the limited points available, their 

significance is still not enough to ensure the exact settling trajectory is followed. 

This could be further improved by an increased point's density in critical regions. 

The resulting performance is significant enough to clarify that neural networks are 
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a viable means of implementing and verifying the performance of the non-linear 

control strategy. 

The variations between the NNF and the NNC are caused by a number of factors: 

The level of accuracy achieved by the NNC is lower due to the limitations on the 

network size. No neural network would have given exactly the same responses, as 

each will generate a different error distribution across the cost surface depending 

on the initial conditions used. Marsh's approach for the non-linear force 

calculation does not employ any means of ensuring the direct relationship, 

between the costates and the control force, Equation (2.27), is enforced. They are; 

in effect, optimised independently of each other. 

Table 6.2 - Initial Hub Velocity Responses of Retrained Networks 

R.M.S Values for First Second 

Tyre Suspension Body Peak Tyre 
Hub Velocity Deformation Deflection Acceleration Deflection 

Response (mm) (mm) (m/s2 
) (mm) 

Open Loop 
Non-linear 3.75 13.65 2.45 19.58 
Control 

NNFControl 3.98 [6%] 16.35 [20%] 2.06 [16%] 20.02 [2%] 

NNC Control 
3.66 [3.4%] 11.92 [13%] 

2.07 
20.04 [2%] 

[15.5%] 

Table 6.3 - Initial Body Velocity Response of Retrained Networks 

R.M.S Values for First 1.5 Seconds Peak 

Tyre Suspension Body Suspension 

Body Velocity Deformation Deflection Acceleration Deflection 

Response (mm) (mm) (m/s2 
) (mm) 

Open Loop 
89.24 

Non-linear 4.15 37.52 2.95 

Control 

NNFControl 36.50 
2.77 [6%] 

89.21 
4.28 [3%] 

[0.05%] [0.04%] 

NNC Control 36.65 
2.75 [7%] 89.79 [0.6%] 4.24 [2%] 

[0.35%] 

[percentage deviation from open loop non-linear control case is shown in square 

brackets] 
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6.2 Sinusoidal Responses 

As discussed in Chapter 2, it is inappropriate to use standard frequency analysis 

techniques for non-linear systems. It is however still possible to assess the 

frequency response of a non-linear system through analysis of the system for fixed 

frequency sine wave disturbances. The suspension control strategies were 

simulated for a range of fixed frequency disturbances (O.25Hz - 16Hz), amplitude 

O.5m1s, the peak and RMS values calculated to create Figure 6.3 and Table 6.3. 

The neural networks give improved control at the body bounce frequency, 

reducing the level of body acceleration through increased utilisation of the 

suspension workspace. They significantly improve the levels of body acceleration 

at frequencies between body bounce and wheel hop. The high levels of damping 

used in the equivalent linear control cause a broadening of the two resonances, 

which allows a significant improvement using non-linear control. At the wheel 

hop frequency the disturbance amplitude is relatively large and this causes the tyre 

deflections to become very large in respect to the non-linear cost-function. This 

results in slightly worse control of body acceleration at the wheel hop frequency. 

However beyond the wheel hop frequency, body acceleration is again 

significantly reduced. The tyre deflection always remains within the allowable 

range, with respect to the non-linear cost function, but is significantly worse than 

the Equivalent Linear Controlled system (ELC) above 5Hz. Below 5Hz tyre 

deflection is lower. This is significant as load transfer due to handling related 

disturbance inputs are normally below this frequency. This should mean that 

during a dynamic manoeuvre, when control of the tyre contact patch vertical load 

is most important, the non-linear controller is also beneficial to handling 

performance. 

The frequency response of the original linear system is similar to that of the non­

linear system, however high levels of suspension and tyre deflection are exhibited 

at the body bounce and wheel hop frequencies respectively. These would seriously 

compromise both ride and handling at their respective frequencies. The non-linear 

system combines the best of both the original and the equivalent linear control 
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Table 6.4 - Selected Peak and RMS Values for a Range of Frequencies. 

Equi valent Linear , 
System NNFcontrol NNC control ::l 

I 
>. 
u 
<= Peak RMS Peak RMS Peak RMS ., 

Tyre Deflection (mm) 

1 5.70 4.04 4.34 3.29 4.44 3.48 

4 6.32 4.47 4.23 2.83 4.07 2.83 

11 9.64 6.81 19.56 13.81 19.03 13.44 

Suspension Deflection (mm) 

1 67.29 47.56 90.7 63.79 90.37 63.49 

4 23.26 16.46 23.61 16.57 23.58 16.54 

11 10.48 7.39 20.38 13.88 20.38 13.53 

Body Acceleration (m/s2
) 

1 3.43 2.42 3.00 2.05 2.87 2.16 

4 3.88 2.74 1.38 0.94 1.78 1.25 

II 5.57 3.93 5.66 4.24 5.60 4.23 

6.3 Road Responses 

6.3.1 Real Road Response 

The Equivalent Linear Controller, NNF and NNC were simulated using real road 

data: Breakback Road and the A6 at 20m/s and 30m/s respectively (see Section 

2.2.3). The real roads cover a wide range of frequencies and highlight the true 

benefits of the non-linear controller. Although not adaptive, the control force is in 

many respects dependent on the magnitude of the disturbance. The non-linear 

control allows greater utilisation of the suspension workspace for small amplitude 

disturbances, which reduces their influence on body acceleration relative to the 

equivalent linear control. For larger amplitude disturbances, the non-linear control 

prevents excursions outside the suspension works pace that would result in large 

body accelerations in the original linear system. This results in a significant 

reduction in RMS body acceleration for both roads over the equivalent linear 

controller, though better utilisation of the suspension workspace. 
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Table 6.5 - RMS and Peak values for Breakback Road Response 

Tyre Deformation Suspension Body Acceleration 

(mm) Deflection (mm) (mJs2 
) 

RMS Values 

Equivalent 

Linear 2.42 15.32 1.40 

Controller 

NNFControl 4.17 31.20 0.85 

NNC Control 3.76 24.17 0.91 

Peak Values 

Equivalent 

Linear 11.41 65.47 7.14 

Controller 

NNFControl 19.53 98.00 7.71 

NNC Control 18.41 88.79 6.03 

Table 6.6 - RMS and Peak values for A6 Road Response 

Tyre Deformation Suspension Body Acceleration 

(mm) Deflection (mm) (mJs2 
) 

RMS Values 

Equivalent 

Linear 1.16 3.93 0.65 

Controller 

NNFControl 2.23 8.2 0.27 

NNC Control 1.81 5.69 0.32 

Peak Values 

Equivalent 

Linear 7.19 18.46 4.98 

Controller 

NNF Control 9.70 39.96 2.14 

NNC Control 9.28 29.11 2.34 

One feature that is observable in both the linear and non-linear system is the 

influence of low frequency disturbances on suspension deflection. This is 

accountable for the higher peak acceleration of the NNF on the Breakback Road. 

Low frequency disturbances appear to cause a suspension drift that reduces the 
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available suspension workspace to absorb additional disturbances. To investigate 

suspension drift further, a number of simulated roads were established that seek to 

highlight the effect. 

6.3.2 Simulated Roads· 

It is important here to define road inputs with sufficient amplitude at long 

wavelengths to influence the suspension drift response. The simplest case is a step 

in the vertical velocity 

. ( ) () {O (t ::; 0) Zt =Vt = 
0.5 (t > 0) 

(6.1) 

At a vehicle horizontal speed U = 20 mls, t(t) corresponds to a sudden change 

from flat road to a uniform 2.5% slope downhill. This input will be referred to as 

Road A. In Chapter 7, for simplicity, a unit step will be used. This would cause 

the neural networks to exceed their original training range so cannot be applied 

here. 

Road B, Figure 6.6, provides a very low frequency excitation, but without the 

initial transient disturbance. It takes the form of a very long wavelength downhill 

slope, dropping 30 metres in height over a distance of 1.2 km. Again assuming a 

vehicle horizontal speed of 20 mls, we have 

(0"; t ,,; 60) 

otherwise 
(6.2) 
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Figure 6.5 . Road B, Displacement, Velocity Profile 

Road C combines both short and long wavelengths, in the form of a stochastic 

road model. Consider first a reference stochastic model ("Reference Road") [77], . 

based on the differential equation 

(6.3) 

where w is a unit amplitude white noise process. This results in the following PSD 

for 2 

s (1)- GU. 1 
. ' - 4n2 12 + 102 

(6.4) 

Comparing this PSD of 2(1) with that of a real road (the Copt Oak Road, a minor 

road South of Loughborough, England) which was sampled at O.lm intervals and 

traversed in simulation with U = 20 rn/s, the theoretical PSD is very much reduced 

at low frequencies - Fig. 6.7. To overcome this limitation, Road C is a modified 

form of stochastic road, based on a combination of two independent unit 

amplitude white noise processes WI and W2:-

z=v, +A,w, 

~ + AV, = A,W2 

(6.5) 
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where A is a very small low-frequency cut-off. The interpretation is that WI is 

integrated once to provide a road roughness component for Z(t), while W2 is 

integrated twice to provide a low frequency undulation, for which VI is the 

associated vertical velocity. 

Here Al and A2 were adjusted to provide a best-fit to the measured PSD. The 

corresponding theoretical PSD, is (for A Z 0) 

S (f)= AI2 r2+ Ai r 4 
, 4n2 16n4 

(6.6) 

A I and A2 were chosen to minimise the squared logarithmic deviations from the 

sampled PSD S,(J) obtained from the road data: 

E( Ai'~) = L(loglO(S,(f) -loglO(S,(J))f (6.7) 
./ 

This results in a PSD that matches well to the measured spectrum Figure 6.7. 

Although the very low frequencies are slightly over-estimated, the accuracy of the 

data is not entirely clear at these very long wavelengths (A. '" 2km), and the 

resulting Road C is ideally suited to the present investigation. 
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Figure 6.6 - Comparison of Road Model C with the Reference Stochastic Model, 

Equation (6.5) and a Real Road 

6.3.3 Road A Response 

The step in road velocity clearly highlights the problem in both the unear and non­

linear controller, Figure 6.7. Because the non-linear control is effectively softer 

than the linear system at the final state condition to which the suspension settles, 

the suspension drift is larger. This makes it more susceptible to further disturbance 

as occurred in the Breakback Road simulation, thus resulting in higher body 

acceleration. Therefore, in all cases it is clearly important to develop a technique 

that is capable of recovering the lost suspension workspace. 

Table 6.7 - Steady State Suspension Deflection Values on Ramp Road 

Suspension Equivalent Linear 

Deflection System 
NNF NNC 

(mm) 33.38 75.00 66.14 
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6.3.4 Road B Response 

The Response to a low frequency single event is now considered in Figure 6.8 
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The sine wave road response reinforces the results shown in response to the step 

in road velocity. However, the non-linear control clearly limits the possible 

suspension drift when X2 reaches the defined limits of the suspension workspace 

described by the non-linear cost function. Passive suspension on this road profile 

exhibits very little disturbance and highlights the magnitude of the problem. 

Table 6.8 - Peak Suspension Deflection Values on Sine Wave Road 

Peak Equivalent Linear 

Suspension Passive System NNF NNC 

Deflection 
(mm) 

0.7 52.44 76.53 74.2 

6.3.5 Road C Response 

Road C is the most realistic of the three simulated road profiles and highlights 

clearly the benefits of the non-linear control strategy employed by the neural 

network controllers. The neural networks indicate a significant improvement can 

be achieved through the implementation of the non-linear control strategy, both 

peak and RMS body acceleration values are reduced through greater utilisation of 

the suspension workspace, Table 6.9. This is key to the success of the non-linear 

strategy in real road simulation, greater utilisation of the suspension workspace is 

allowed in order to reduce body acceleration under normal operating condition. 

However, unlike the linear system on which the strategy is based, careful control 

of suspension deflection is still maintained in extreme condition in order to 

prevent bump stop contacts. Better control could still be achieved as the 

suspension deflection diverges from the equilibrium position for the NNF 

controller due to a low frequency disturbance of around 0.05Hz, Figure 6.9. The 

road disturbances that occur during this period are not significant enough to 

generate a suspension deflection that results in higher body acceleration, but the 

likelihood of this is increased by the suspension drifting close to the workspace 

limits. 

Road C also highlights variations between the two neural network controllers, 

further training with extra data points and possibly larger network structures 

would be necessary to reduce the difference between them. The NNC network 
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exhibits less drift simply as a function of these learning errors and not as a feature 

of the method by which control is implemented. 

Table 6.9 - RMS and Peak values for Simulated Road Response 

Tyre Deformation Suspension Body Acceleration 

RMS Values 

Equivalent 

Linear 

Controller 

NNFControl 

NNCControl 

Peak Values 

Equivalent 

Linear 

Controller 

NNFControl 

NNC Control 

I 
8 0.Q1 

~ 
.~ -0.Q1 
~ 
o 

~-0.02 
Jl 

-003 

(mm) 

1.26 

2.6 

2.11 

5.22 

11.06 

9.29 

Deflection (mm) (m/s2 
) 

4.20 0.71 

12.17 0.33 

6.90 0.38 

15.05 2.83 

39.38 1.53 

25.14 1.48 

'/ 

-004 oL----':S----1.'::.0---''-"1S=-----20:'::-----=2LS----!30-

Time (s) 

- Equivalent Linear Control, - . NNF Control, NNC Control 

Figure 6.9 - Road C, Suspension Deflection Response 
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6.3.6 Summary and Conclusions 

It has now been shown that neural networks can be used to implement complex 

non-linear control strategies through the application of supervised learning. Neural 

networks having successfully leamed both the non-linear state, force and state, 

costate relationships. In order to be sure of a successful training run a number of 

key factors have been highlighted; It is important to ensure good generalisation 

between training data points, this can be achieved using weight decay. The 

distribution of the training data points through careful positioning to reflect the 

most likely operating regions, or weighting of an already defined training data set, 

will increase the likelihood of a neural network that not only gives good 

optimisation results but also performs well dynamically. Weighting of the training 

data is also important where the relative magnitude of certain data points is small. 

To ensure no errors occur at zero and the controlled system settles fully, bias 

cancelling can be used to enforce the zero for zero relationship of the non-linear 

feedback controller. 

The successfully trained neural network controllers have allowed further 

investigation of the benefits of the non-linear control strategy. The sinusoidal and 

real road simulations both reveal the same benefit. Body acceleration is better 

controlled through more effective utilisation of the suspension workspace. Tyre 

deflection is increased, but the non-quadratic form of the cost function ensures it 

does not become excessi ve. 

The dynamic simulations have however highlighted the problem of suspension 

drift due to low frequency disturbances. An approach to resolve this is described 

in Chapter 7. 
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In Chapter 6 the performance of the neural network controllers was compared 

over three simulated road profiles. A significant factor arising from the analysis 

of this performance is that, like their linear control based counterparts, the neural 

network controllers do not resolve the problem of steady state deflection arising 

from the low frequency component of the road profile. This problem is not a 

function of the controller's implementation through the use of neural networks, 

but is inherent in the active control technique from which they were trained. 

In this chapter, a new approach will be presented that resolves this problem and 

can be implemented in parallel with the neural network controllers. This approach 

was previously presented by Fairgrieve and Gordon [78]. The majority of the 

work in this chapter is carried out using linear modelling and control so as to 

benefit from the inherent reduction in development time through doing so. When 

the development is complete, the resulting method is implemented with the neural 

network controllers, and is shown to result in a significant improvement in all 

round suspension performance. 

7.1 Suspension Drift. 

The problem of steady-state offset and low-frequency drift in vehicle suspension 

deflections arises whenever an active suspension controller employing feedback 

of absolute vertical body velocity is used. The most common example of this is 

the so-called 'sky-hook damping' principle introduced by Karnopp [79]. Sky-hook 

damping is an idealised concept of connecting a 'damper' between the vehicle 

body and an inertial reference frame, which in practice may be implemented via 

inertial sensors and an electronic suspension controller. Therefore, for an ideal 

vehicle travelling at a fixed speed on a constant road gradient, the sky-hook 

damper exerts a constant force. In steady-state, this must be offset by a constant 

spring force - either a physical spring, or a corresponding term in the control law 

- and this implies an offset in suspension travel from the static equilibrium. For 

long wavelength undulations, the effect leads to poor control (drift) in the 

suspension motion, and hence unnecessarily large suspension deflections. 
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If this offset, or drift, is not compensated for, there are obvious implications for 

the active suspension performance. In the worst case, the suspension will ride 

close to its bump or rebound stops, with potential impacts resulting from the input 

of any additional road roughness. Even where this is not a problem, there is a 

well-known trade-off between available workspace and achievable ride comfort 

[42] (at the relevant primary ride frequencies, an additional trade-off with 

dynamic tyre load variation is less of an issue). Therefore, performance 

degradation occurs whenever offset and drift reduce the available dynamic 

workspace. 

The significance of these effects is often masked by a number of factors. Most 

simply, there may be a low-frequency cut-off in the input road excitation -

imposed either implicitly or explicitly (see Section 6.3.2, Chapter 6). Thus far, it 

has been assumed that the vertical velocities of the vehicle can be measured 

directly. However, current sensor technology does not allow this, and estimating 

absolute vertical body velocity may, and generally will, involve a low-frequency 

cut-off. In some cases the suspension actuator is incapable of delivering such 

offsets - as in semi-active control. In all of these cases the most obvious effects 

of suspension drift are absent, but it is far from clear that the dynamic suspension 

performance is not compromised. 
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Thus far this thesis has been concerned with purely active suspension. For the 

purpose of reference, a passive system is now introduced. This has a simple spring 

and damper instead of the actuator of the quarter vehicle model introduced in 

Chapter 2. The spring and damper forces are represented as linear functions of the 

suspension deflection and the rate of suspension deflection respectively. 

(7.1) 

It is this method of suspension deflection control that is used on most current 

production vehicles. Because the velocity related control element, the damper's 

force, is a function of the relative difference in the vertical velocity of the sprung 

and un sprung mass and not the individual velocities, passive suspension does not 

experience suspension drift. This can be seen by comparing the relative 

suspension deflection of the passive system with the LQR based controller on 

Road B, Chapter 6, shown below in Table 7.1 
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Table 7.1 - Suspension Deflection on Road B . 

Control Method Peak Suspension Deflection (mm) 

Passive Suspension 0.7 

Original Linear Active Suspension 167.14 

NNF 76.53 

7.1.2 Reference LQG Controller 

A reference linear state feedback controller is defined, the gains for which are to 

be optimised using LQR control, Section 2. 1 ,Chapter 2. Weighting parameters a 

and f3, control the balance between tyre and suspension deflections and body 

acceleration. a and f3 are adjusted to meet reference criteria based on the passive 

system's response to the following initial conditions: (a) unit body velocity (b) 

unit hub velocity. The passive suspension model following these two initial 

condition events gives peak deflection values of (a) suspension deflection = 

0.0949m, (b) tyre deflection = 0.0103m. 

Table 7.2 Shows the resulting gain matrix values K, and cost function coefficients 

required to match these criteria. The resultin? Perfect State, Feedback (PSF) 

system forms a simple reference active suspension system. 

Table 7.2 - PSF and Passive Model Feedback Gains 

Cost Matrix values Gain Matrix Values 

Model a ~ K, K2 K3 ~ 

Passive - - 0 18000 1200 -1200 

PSF 70000 658 -16956 8208 1149 -2387 
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7.2 Kalman Filter 

System Noise 

, VI 

Road Input Vr 
. Quarter Vehicle 
• Model 

Sens or Noise 
+ V2 -+ 

K Kalman -Control Filter 
Input u y, 

Figure 7.2 - Kalman Filter Implementation 

Although assumed in previous chapters, it is unrealistic to assume perfect state 

feedback, so a Kalman filter [77] is introduced. To construct the filter, white 

noise, VI. is included in the system model and sensor noise, V2. is added to the 

outputs, y, 

x = Ax+ Bu+vl y, = Cx+ DU+V2 (7.2) 

In standard fashion the Kalman filter design assumes the following statistics for 

these stationary random processes:-

From this the Kalman filter is designed to estimate unmeasured states and 

minimise the effect of the added noise in an optimal way. The estimated states, X, 

are calculated using the following continuous-time equation 

i = AX+ Bu+ L{yv - Cx- DU) (7.4) 

where 
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L=R-'(CTS +N T) , " (7.5) 

and S, is the solution to the Riccati equation, 

(7.6) 

It is assumed that sensors are fitted to directly measure sprung and unsprung mass 

accelerations *4' X3 and suspension deflection, X2. These measurements are used 

as the input to the Kalman filter with the sensor errors forming the diagonal 

elements in the covariance matrix, Re. and the system disturbances forming those 

of the Q, matrix. N, has been set to zero here because of the simple nature of the 

system noise, arising purely from the road disturbance. In general, where 

accelerometers are used, Ne will be non-zero [80] 

A2 0 0 0 
[10~ 

~l 
, 

0 

Q, = 
0 0 0 0 

R = 0 1 (7.7) 
0 0 0 0 

, 
0 0 

0 0 0 0 

The estimated states are now used in the feedback force, F = Ki, combining the 

state' feedback model with a Kalman filter; the resulting controller provides a 

second reference active suspension system with Kalman State Feedback (KSF). 
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Figure 7.3 - Suspension Deflection of the Reference Models on Road A 

Figure 7.3 clearly illustrates the problem of suspension drift on Road A, where the 

Passive suspension has no problem negotiating the unit incline. However, for the 

PSF model, there is a steady state suspension deflection offset as expected. The 

KSF model does not exhibit the same steady state offset, due to the inherent 

stability of the Kalman filter dynamics. However, the settling time is unacceptably 

long. A possible solution to this is to increase the assumed noise covariances in 

Equation (7,6). This will increase the speed of the Kalman Filter dynamics and 

therefore give a shorter settling time. Unfortunately, this will also result in a 

degradation of the accuracy of the state estimation. Figure 7.4 was obtained by 

varying the assumed sensor covariance matrix, to R, where, 

(7.7) 

and simulating the modified KSF system on Road C (Note that the actual Sensor 

noise levels in the model are not varied). For positive values of A- the suspension 

deflection is reduced, as predicted; however, body acceleration is negatively 



Chapter 7 113 

affected by the resulting poor level of feedback control. If ~is further increased, 

then poor state feedback eventually degrades the suspension deflection control, 

and the trend is reversed. 

2.2 
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Figure 7.4 - The Effect of Sensor Error on the RMS Body Acceleration and 

Suspension Deflection on Road C 

7.3 Extended Control Scheme 

The suspension offset seen in Figure 7.3 for the PSF system is easily understood 

in terms of the equations of motion (2.2). Using the force feedback, F,(t) = Kx, 

gIves 

(7.8) 

In the steady state, where the vertical road velocity tends to a constant, VI. the state 

suspension deflection X2 tends to a constant value, 

X2 = -(K) + K4 )v, I(K2) (7.9) 
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as any transients settle and X3 and X4 tend to V, [81]. Once again there is clearly no 

drift in the passive systems as K3 = -K4. 

The steady state offset can be simply removed by redefining the system velocity 

states, in Equation (7.10) 

(7.10) 

where V, is the steady-state vertical road velocity. Although this is not feasible in 

general, it motivates an extended form of the feedback controllaw:-

, 
F, = 2, Kixi (7.11) 

i=1 

where X5 = V, is to be an estimate of the "low frequency" or underlying road 

velocity, and the zero steady state condition becomes 

(7.12) 

assuming that X3 and X4 tend to VI in the steady-state. Note that for a fixed forward 

speed, X5 is equivalent to estimating the underlying road gradient. The concept is 

made more precise in the following section, where a Kalman filter estimator for 

the extended state vector is based on the underlying model of the vehicle driving 

at a fjxed speed on Road C. 

The system equations are as follows:-

x, = -XJ +X, + A,w, 

x2 = X3 -X4 

xJ =(F, -F,)/mw 

x. = F, I m" 

x, = -M, + A, w2 

(7.13) 

As is standard, the disturbance inputs w\ and W2 are set to zero in the LQR 

controller synthesis. Using the same cost Function (2.5) as for the PSF system, the 

following gain matrix values result. 
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Table 7.3 - Model Feedback Gains 

Cost Matrix 

values 
Gain Matrix Values 

Model /.. a p K) K2 K3 K4 Ks 

KSF - 70000 658 -16956 -4792 1049 -2287 -
LGF -7xlO-4 70000 658 -16956 -4792 1049 -2287 1238 

Note that requirement (7.12),.though not explicitly imposed, is actually satisfied 

(to 6 significant figures) via the controller design method, and so we can expect 

the steady-state offset to be removed automatically. Although Xs = VI cannot be 

directly measured, it can now be estimated by a Kalman Filter. Road C is assumed 

as in Equations (7.13) and the feedback force becomes 

5 

F= LKiXi (7.14) 
i::1 

and the resulting "Local Gradient Feedback" (LGF) system provides a third active 

suspension system. 
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Figure 7.5 - Kalman Filter Estimate of Xs on Road A (LGF system), 
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Figure 7.6 shows the LGF estimate of VI on Road A. The estimated road velocity 

does not follow the step input precisely, due to the disturbing influence of the 

initial high frequency event. The important fact is that the estimated velocity Xs 

tends towards that of the estimated body velocity x4 , immediately after the 

transient (and a similar result applies to the estimated hub velocity x3 ). As noted 

above, this results in the velocity components of the suspension force F tending to 

zero, removing the suspension drift. The peak suspension deflection of the LGF is 

also 5% less than the KSF, with a negligible change in body acceleration. 

7.4 Integral Control Scheme 

A second proposed solution to the drift problem is based on a concept from 

classical control theory: steady-state errors can be removed by the introduction of 

an additional integrator. Integral control is adopted [82, 83], with the introduction 

of an additional state, defined as the integral of suspension deflection: 

is = -Ms +X, (7.15) 

This again creates a Sill order system and a fifth feedback gain Ks. As with 

classical PID control, the use of an additional integrator may be expected to result 

in increased peak suspension deflection, greater oscillation and longer settling 

times. 

The optimisation of the gain matrixK is made more complex for the integral 

feedback controller (IFC), since an additional cost function parameter, r, is needed 

in the cost function:-

(7.16) 

This additional parameter y is necessary because feedback of Xs also has a strong 

influence on the ability of the system to meet the passive system requirements of 

Section 7.1.1 A third condition is needed to determine the three parameters, and 

this is based on the low-frequency dynamic response. The maximum suspension 

deflection on Road B is limited to 19% of the suspension deflection range. This 

then allows the integral feedback controller (IFC) to match the peak deflection of 
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the LGF system on Road B when both are combined with a Kalman filter. The 

resulting gain matrix values are shown in Table 7.4, together with values for the 

other models. 

Table 7.4 - Model Feedback Gains 

Cost Matrix values Gain Matrix Values 

Model a f3 y Kt K2 K3 K4 Ks 

Passive - - - 0 18000 1200 -1200 -
KSF 70000 658 - -16956 8208 1149 -2387 -
LGF 70000 658 - -16956 8208 1149 -2387 1238 

lFC 70000 484 106 -17013 8074 1149 -2371 3295 

A Kalman filter is again used for estimation of the four physical states, and the 

active control force is now determined by 

F = IG+ KsJ x2dt 

7.5 Performance Comparisons 

2.2 
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Figure 7.6 - RMS Suspension Deflections and Body Accelerations on Road C­

KSF and LGF Systems. 
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The process of obtaining Figure 7.S is repeated with the LGF model. The resulting 

plot reflects the expectations outlined in Section 7.2 - see Figure 7.7. When 

compared with the KSF model, LGF always benefits from low sensor noise, and 

accurate estimation . of the systems states. The marginally increased body 

acceleration, compared to KSF, for negative values of p, is neither surprising nor 

significant. 

The influence of sensor noise is further investigated by analysing its effect across 

the frequency range for both the KSF and LGF models - Fig. 7.8. Here we define 

a logarithmic suspension response. 

C1(J, p) = 2010g,o S" (f) (7.18) 

where S,,(J) is the PSD of the suspension response on Road C. The plots show 

just how influential low-frequency suspension deflection is on the RMS values of 

Figure 7.7, where only frequencies below SHz are seriously affected by the 

changing sensor error. For KSF, suspension deflection power below l.SHz rises as 

assumed sensor error is reduced to a point where the body bounce mode can no 

longer be identified. The power of the suspension deflection of the LGF model is 

virtually unaffected by changing assumed sensor error. Only at very high sensor 

noise levels does the suspension performance deteriorate significantly. The 

suspension response of the LGF model is more adversely affected by extremely 

high sensor noise values, and it appears that the KSF system is less dependent on 

accurate state estimation. However, both systems suffer badly in tenns of body 

acceleration response for high sensor noise, and this is a more significant limiting 

factor than suspension deflections. 
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--."'" --. .. 
KSF LGF 

Figure 7.7· Frequency Dependence of Suspension Responses on Road C - crlf.p) 

We now include the IFC system in the perfonnance comparison, and revert to the 

standard (p=O) estimate for sensor noise. The frequency responses of the three 

system models (KSF, LGF, IFC) are shown in Figure 7.9. The body accelerations 

are very similar in all three cases. In terms of suspension deflection, KSF gives 

poor control at low frequencies, as would be expected. Also, around the body 

bounce frequency the IFC system gives an amplitude gain approximately 10% 

higher than LGF. 
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Figure 7.8 - Theoretical System Frequency Responses 

A more significant problem with the !FC system can be identified in the results 

from Road A not shown; because the integration feedback gain is relatively small, 

the system takes a long time to settle, and although considerably better than the 

KSF model, the settling is much slower than the LGF Model. The !FC model can 

be re-tuned to improve this settling time, but it then no longer satisfies the design 

criteria of Sections 7,2 and 7,5, 

The performance of KSF on Road B, Table 7.5, gives a clear indication of the 

need for suspension drift control; the KSF model uses 75% of the available 

±100mm suspension workspace even though the road contains no significant ride 

disturbance. This reduces the space available to absorb further road disturbances, 

and increases the probability of bump stop contacts. The performance of the !FC 

and LGF systems are very similar on Road B, with negligible body acceleration 

and suspension deflections. 
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Road C, the most realistic of the three road profiles, ascends ISm during the 60-

second simulation sample used. The mean suspension deflection is a simple 

measure of suspension drift, as the road is effectively a continuous ascent. On 

average the KSF model operates 14mm away from the eqUilibrium point while the 

others operate within 3mm. In fact, the IFC system has a mean closer to Imm, but 

this is to be expected, due to the integral feedback, and the reduction is relatively 

insignificant. A summary of perfonnance on the three roads is given in Table 7.5. 

Table 7.5 - A Comparison of System Perfonnance on the Three Road Models 

Road Profile Measurement Passive KSF LGF IFC 

A Peakx2 (mm) - 180.3 171.9 175.8 

Peak X, (m/s') - 5.2023 5.1581 5.1996 

X2 after 10 seconds 
77.2 -5.6 -13.8 -

(m) 

B Peak X2 (mm) - 75.8 1.94 18.5 

Peak x, (m/s") - 0.2101 0.1930 0.2093 

C RMSx2(mm) 22.9 26.8 22.6 22.9 

RMS x, (m/s') 2.3698 1.9827 1.9869 1.9806 
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7.6 The Extended Control Scheme with the NNF Controller 

Having established a viable means of reducing the influence of low frequency 

disturbances on suspension deflection the strategy can be combined with the 

neural network controllers using one of two methods. 

Method 1. 

The neural network is retrained using training data, which includes the additional 

state representing the underlying road velocity. The way the neural network 

utilises the additional road information is dependent on the non-linear control 

strategy used to create the training data. The neural network and Kalman'filter are 

then incorporated in the control system in the standard format, Figure 7.9. 

Road Input Vr 
~ Quarter Vehicle 

~ Model 

Kalman 
Neural 

Filter .-
Control Network 

Input u 

Figure 7.9· Retrained NNF, Implementation 

Method 2. 

The inputs to the neural network are redefined 

x2 = x, 

X3 =;3 -Vrl 

X4 = X4 -V~l 

Sensor Output y 

+ _Sensor Noise V2 
~ 

+ 

(7.19) 

thus Equations 7.14 & 7.16 are applied externally to the controller and LFC is 

indirectly implemented, Figure 7.10. The network remains standard, the changes 

applied outside the original controller. This avoids retraining of the neural 
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network and therefore is a much faster approach to the incorporation of the 

underlying road gradient information. 

Road Input Vr 

ontrol C 

In put u 

Neural 
Network , 

Quarter Vehicle 
~ Model 

Kalman 
State 

4- Filter 
Redefinition 

Sensor Output y 
~ 

, 
+ 

le Sensor 
-+ 

Noise V2 

Figure 7.10· LFC Implementation with State Redefinition 

Both approaches successfully control suspension deflection drift (Figure 7.11) 

minimising the error, Method 2 eventually doing so more successfully, due to the 

direct enforcement of Equation 7.14 during the state redefinition process (Table 

7.6). Method 1 exhibits less control as the relationship is not directly enforced, but 

responds more quickly despite the Kalman filter being the same in both cases. 

This leads to higher RMS body acceleration in both example cases, but may not 

always be the case depending on the severity of the road profile considered. 

Because of the simplicity of the approach and the speed of implementation, 

Method 2 appears to be the better of the two approaches. The results produced 

from the simulation of Road C indicate that the effect of the implementation of 

LFC are less significant using Method 2. Only a minor increase in RMS body 

acceleration (Table 7.7) occurs while suspension deflection drift is clearly 

reduced, Figure 7.12. 

Table 7.6 • Suspension Deflection after 5 Seconds on Road A 

Suspension Equivalent Retrained NNF NNF with LFC using 

Deflection Linear NNF with LFC Redefined States 

(mm) System (Method 1) (Method 2) 

33.38 75.00 6.53 1.60 
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Table 7.7· Road C Performancel 

Equivalent 
Retrained NNF NNFwith LFC 

NNF with LFC using Redefined 
Linear System 

(Method 1) States (Method 2) 

RMS 

Suspension 

Deflection 
4.17 12.16 4.80 6.75 

(mm) 

RMS Body 

Acceleration 0.679 0.306 0.412 0.307 

(m/52
) 

0.02,----,-----,,-----,,-----,-----,--------, 

I 
a 
~ 

0.01 

:!l-0.01 

~ 
c 

~ 
rJl -0.02 

-0.03 

_O.04L-___ '---___ '---___ L-!'--__ '---__ --,'---__ ---:'. 
8 10 12 14 16 18 20 

T1me (s) 

- Equivalent Linear System. - NNF. - Retrained NNF with LFC. 

NNF with LFC using Redefined States 

Figure 7.12· Simulated Road C Response 

1 Not the same section of Road C as used to create the data in Table 7.S 



Chapter 8 

CHAPTER 8 DIRECT LEARNING 

8.1 Hnorm Based Optimisation of Neural Networks for Costate 

Estimation. 

8.1.1 Hamiltonian Derivatives and their Optimal Conditions 

8.2 Implementation of Hnorm Optimisation using the Levenberg 

126 

127 

129 

Marquardt Method 133 

8.3 LQR Optimisation and Confirmation 

8.3.1 Linear Least Squares Cost Function 

134 

136 



Chapter 8 127 

Chapter 8 Direct Learning 

In Chapters 4 & 5, the principles of training through the use of supervised learning 

techriiques were investigated and proven to be successful for the quarter vehicle 

control problem. In Chapter 8, a new approach termed Hnorm, will be proposed for 

a neural network to learn the state - costate relationship directly, using learning" 

techniques based around what has been termed "grad" based learning [84]. In 

Section 8.1 the principles of the algorithm for the optimisation of the network 

weights will be proposed. Section 8.3 will present an initial application of the 

approach to solve for linear quadratic regulation, for which there is a known 

solution given by the Riccati technique. 

8.1 H norm Based Optimisation of Neural Networks for Costate 

Estimation. 

In order to develop the Hnorm based optimisation, the following assumptions are 

made about the system to be controlled. The system is considered as a regulator, 

settling from an initial condition with no disturbances, described in the following 

format as a function of its current states and the current control input. 

x = f(x,u) (8.1) 

For the remainder of this thesis, the system is considered to be linear in form 

though the cost function is not necessarily quadratic. However, it is considered by 

the author to be feasible, with more time, to develop the technique for non-linear 

system models. The continuous time model incurs cost via the following cost 

function. 

If 

l=fLdt (8.2) 
o 

However, no neural network technique exists for the optimisation of the network 

weights through continuous time simulation for this type of problem. Therefore, 

the following technique put forward, involves no simulation, but assumes both a 

continuously varying system and controls. 
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This is advantageous in a number of factors, as it 

• Allows for optimisation of continuous control problems. 

• Reduces the optimisation time as simulation IS often computationally 

expensive. 

• Allows for the theoretical complete settling of the model as time tends to 

infinity. 

In the standard form, if Lagrange multipliers are applied [85], a cost function can 

be developed for the optimisation of costate estimators through the minimisation 

of the cost given below. 

" 
J p = J[L+p·(-.i:+f)]dt (8.3) 

o 

It will be assumed that p = P(x, w) is the output of a neural network costate model. 

Using integration by parts2
, part of the cost function (8.3) can be redefined as the 

Hamiltonian equation, H. 

" 
Jp = f[H + tIX]dt -[px]~ 

o 
(8.4) 

H=L+p·f 

Assuming that the model does not change with time, it IS now possible to 

minimise Jp using the following gradient calculation. 

(8.5) 

J dv JdU 
2 udxdx=uv- dx vdx 
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Step I Minimisation of if}. 

The following assumptions are made 

1. Xo the initial condition, is held fixed. 

2. xf = 0, the final state will, if the control strategy is stable after sufficient time, 

tend to zero. 

3. tr is sufficiently large, as to allow xf to tend to zero and is of a fixed length. 

4. x(t) and u(t) are, at this stage, subject to free choice. 

8.1.1 Hamiltonian Derivatives and their Optimal Conditions 

Assuming the minimisation problem to be unique in its solution, and the cost 

function to be convex in form then the minimum is defined by the zero gradient 

condition 8.Jp = O. Therefore the derivatives of the Hamiltonian give the following 

two conditions for optimality. 

aH . 0 -+p= 
ax 

(8.6) and 
aH =0 
au 

(8.7) 

The derivative of the Hamiltonian The derivative of the Hamiltonian can 

equation with respect to the changes in be solved simply for u, as both the cost 

system states is given by; -

aH = aL + LP at, (8.8) 
ax ax I 'ax 

The costate deri vati ves can be 

calculated in the following manner. 

P=~(P(x,w))= ap x, (8.10) 
dt ax, 

ap ( ) S .. =-' =S x W 
I.} a ' 

Xj 

(8.11) 

function L and the system modelfare a 

function of the control force u. 

aH aL ar 
-=O~-+ Lp_J =0 (8.9) 
au au j ) au 

Solving this, the control force is 

assumed to be an explicit function of 

the current system states and the related 

costate function output, which is itself a 

function of the states, and the 

coefficients of the neural network used 
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to calculate them. 

u = U(x, p) = U(x, P(x, w» (S.12) 

However at this stage it is not possible to apply the implied relationship x = 1 

between the change in states and the system model. 

Assuming all of the above, then dH + p = 0 implies the "Jp-optimal" trajectory 
dX 

and will satisfy the equations 

Assuming S is invertible 

dH +SX=O 
dX 

x= -S-I dH 
dX 

(S.13) 

(S.14) 

Step 2: The costate estimator P(x,w) is improved through the adaptation of the 

network weights. 

The Lagrange multiplier approach [S5] suggests that Equations S.l2 and S.14 

should be imposed to get a Jp - optimal solution set of "all possible" solutions 

P(x,w), before finally choosing the one that also coincides with the constraint 

x = I. This, in reality is clearly not feasible. A more realistic approach is to 

choose an initial model P(x,w), and then attempt to improve the fit of Equation 

S.13 to the desired state equations x = 1 . This motivates a subsidiary optimisation 

of the form. 

If 

F = JI-x+ 112 dt or more generally 
o 

If 

F= J(-x+I(Q(-i+/)dt (S.15) 
o 

where the derivatives of x are given by (S.l), and Q is some positive definite or 

positive semi-definite matrix. 
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The fitting criterion can be summed over a large number of trajectories, or more 

simply over a large number of points in the state space, in order to ensure a 

generalised solution. Therefore, the cost function for the optimisation of the 

costate estimator takes the following form 

F= L(-i+ IWS(-x+ I) 
x 

= Lls(-i+ It (8.16) 
x 

= LliJH +S.f1
2 

x iJx 

Making the following definition 

h,(X'W)=(~:' +s,Jj) (8.17) 

Equation 8.16 can be simplified 

(8.18) 
x 

Whilst other approximation techniques exist, this thesis deals solely with the use 

of neural networks for identification of the relationship between system state and 

costate. Although techniques do exist for the optimisation of neural networks 

without knowledge of the cost gradient, whenever it is feasible to calculate the 

cost function gradient with respect to the network weights, it has proven prudent 

to do so, for example using gradient descent methods for the optimisation. For 

convenience let 8w represent a small change in any quantity induced by a variation 

in the network weights e.g. DwPm = iJPm Own. Then 
iJwn 

(8.19) 

Therefore, we must calculate the derivative Equation 8.17 with respect to the 

neural network weights, the first part of which is given as follows .. 
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8 aH =~(aH)8 p+~(aH)aUj 8 p 
w ax api ax w, au j ax api w, 

(8.20) 

The second element of Equation 8.20 is identically zero as 

a (aH)_ a2H _ a (aH)_o (8.21) . aUj ax - aujax - ax aUj -

and therefore, given the derivative of the Hamiltonian equation with respect to the 

costate values, we obtain 

(8.22) 

The derivative of the second component of Equation 8.17 is 

(8.23) 

Therefore .sw hi is 

(8.24) 

If the dummy variable m is substituted for j in the first term of Equation 8.24 the 

following rearrangement can be made 

(8.25) 

To simplify, we make the following definition from first part of Equation 8.25 

(8.26) 

This allows the derivative of the cost Function 8.16 with respect the network 

weights to be written as follows 
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(8.27) 

Having made the required substitutions of the dummy variables, the derivative of 

the cost function with respect to the networks weights can now be defined as 

follows. 

(8.28) 

Gn could now be used in a simple gradient descent algorithm such as back­

propagation or the direct delta method. 

8.2 Implementation of H norm Optimisation using the Levenberg 

~arquardt~ethod 

The Levenberg Marquardt method is based around the least squares cost function 

8.18 but does not require the derivative of the cost function as a whole with 

respect to the network weights, Equation 8.28. In order to calculate the 

approximate Hessian term, Equation 4.10, only the derivative of the squared 

element, h is required. This is defined in Equation 8.25 and having applied the 

simplification, Equation 8.26, is resolved through the following steps to the 

simplified term 8.31 

Owh = ~[U'im(8wPm)+ I,Oim a:, (OJn] 

= ~[U'im + I, a:, ]OwPm 

(8.29) 
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Having made the required substitutions of the dummy variables, the derivative of 

h with respect to the networks weights can now be defined as follows with the 

assumption DwPm = aaPm 8wn • 
Wn 

(8.30) 

(8.31) 

8.3 LQR Optimisation and Confirmation 

During the remainder of this chapter and in the subsequent chapter, the technique 

will be evolved for application to the quarter vehicle model with non-quadratic 

cost function. The technique is applied initially to the problem of linear quadratic 

regulation for which a known solution can be obtained using the Riccati equation 

(a one step linear optimisation technique). This will serve to verify the approach 

and highlight a number of key factors to be resolved in the final implementation of 

the technique. In Chapter 9 the technique will be further developed, before being 

applied to the final problem of the non-quadratic cost function, quarter vehicle 

problem. 

Starting then with a quadratic cost function, Equation 2.4, applied to a quarter 

vehicle model in Chapter 2, the optimisation is performed on the most basic of 

networks - a single layer network of four purelin neurons having 16 weights. The 

16 weights form a 4 by 4 matrix that if correct will map directly to the matrix 

solution given by the Riccati Equation 2.6. 

The system is modelled using standard linear state space modelling techniques, 

with 

J=Ax+Bu (8.32) 

The quadratic cost function is defined via matrices Q and R 
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1 " 
J = - J(XT Qx+uT Ru)dt 

20 

This gives the following Hamiltonian function. 

H = p(A.x+ B.U)+~[XTQX+UTRU] 

135 

(8.33) 

(8.34) 

The derivative of the Hamiltonian with respect to the control force u, Equation 

2.26, can be rearranged to gi ve u the actuator force as a function of p, the neural 

network output. 

aH 
-a = piB" + R"ui = 0 

U, 

B~Pi + R~Ui = 0 RT = R 

BTp+Ru=O 

:.u=-R-'BTp 

(8.35) 

The costate model is a linear function of the system states for the quadratic cost 

function and is therefore of the following form: 

p=Sx=Wx (8.36) 

This can be represented as a single layer network as described above, with weights 

W. Given the linear form of the state model and cost function, the derivative of the 

Hamiltonian equation with respect to the system states is derived as follows. 

aH T 
-=A p+Qx ax (8.37) 
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8.3.1 Linear Least Squares Cost Function 

Equation 8.30 gives the following form for h in the least squares cost function. 

aH 
h'=-a +SJj 

x, 

= (ATS + Q)ijxj + S,i Ax + BU)j 

= (ATS+Q)xj +Sij(Ax-BR-'BTSx) 
'J J 

(8.38) 

This closely resembles the algebraic Riccati equation. In order to perform 

l..evenberg Marquardt least squares optimisation the derivative of h with respect to 

the network weights, W must be calculated. 

a2 p 
m 1 ax.awn 

aah, = Am -S"Bk/(R-'BT) xn +(Ax+Bu). 
wn lm 

S=w 

(8.39) 

Figure 8.1 shows the results of two optimisation runs. Both were started using 

random initial network weights, and trained for 3 minutes using the l..evenberg 

Marquardt optimisation for 1000 initial condition points, using batch optimisation. 

The computer used for the training was an 800Mhz AMD Athlon®, with 256Mb of 

RAM, and the optimisations were run using Matlab® 6. 

Only one run found the correct solution, the other an incorrect one. There are 

many possible solutions to the problem as posed by the cost function h, only one 

is correct. The probability of any of these solutions occurring would appear to be 

approximately equal and therefore finding an incorrect solution is more likely. 
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However the correct solution to the LQR problem can easily be identified as the 

derivative of the trained neural network, S is positive definite [86f 

Given that each optimisation run can be completed in 3 minutes or less for the 

LQR problem, it is possible to complete sufficient runs to identify the correct 

solution. During the experimental period 10 runs was always sufficient to find at 

least one correct solution. 

The Riccati approach to this problem always finds the correct solution and is a one 

step process. The approach posed here is not put forward as an alternative, but is 

used to verify the principles of the optimisation process before progressing to the 

more complex non-linear problem. 

While the results of the LQR optimisation runs indicate that the approach can be 

successful, when the problem progresses to the non-quadratic cost function the 

probability of identifying an incorrect solution is likely to be much harder, and the 

chance of finding the correct solution much reduced. 

It should also be noted that aside from the network derivative being positive 

definite, there is nothing to differentiate between the two runs, successful or 

unsuccessful. The Hnorm values for both optimisations being very similar, Figure 

8.l.a), there is also no significant difference between the rate of optimisation, Fig. 

8.l.c) or the selection of A during the optimisation process, Fig. 8.2.b). The 

Symmetry [87] of the neural network derivative, costate calculation api = aaPj 
,is 

aXj Xi 

an indication that the optimisation process has completed correctly, and is also a 

secondary measure as to how the optimisation process is progressing. However, 

there is nothing to differentiate between the symmetry of the two solutions 

highlighted in Fig. 8.l.e) when optimisation is complete. The only true indication 

of how well the network is doing is given by the percentage error between the 

force calculated by the neural network and that calculated via the LQR method, 

Fig. 8.l.d). However, correct force information will not be available for 

comparison when the approach is applied to a non-quadratic cost functions. 

3 For a symmetric, positive definite matrix A, A=A T and x TAx> 0 'for a\l x * 0 
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Chapter 9 ~evelopment of the Hnorm Optimisation Routine for 
the Control of the Quarter Vehicle Model 

In Chapter 8 a "grad" based training technique for neural network costate 

estimation was proposed and applied to the Linear Quadratic Regulation problem. 

This highlighted a number of difficulties and a need for further development 

before the technique could be applied to the more complex task of costate 

estimation for a quarter vehicle model with a non-quadratic cost function leading 

'to a non-linear feedback controller. In Chapter 9, the technique is developed 

further using a single degree of freedom mass and actuator model. The principles 

of neural network shaping, LQR adaptation, point weighting, and weight decay 

will be applied to increase the probability of successful training of the network as 

a costate estimator. Finally, the technique is applied to the quarter vehicle 

problem. 

9.1 The Single Degree of Freedom, Mass Actuator Model. 

In order to further develop the Hnorrn technique without the relative complexity of 

the 2-degree of freedom, 4 state, quarter vehicle model, the introduction of a 

single degree of freedom (SDOF), Figure 9.1, 2 state model is made for this 

chapter. The SDOF model has the added advantage that data can be plotted as a 

surface against both the states simultaneously, which allows for greater 

visualisation of the problem. The model represents a mass supported by a 

continuously variable force actuator, which may be considered to be either 
, 

traversing an irregular surface or for example supported on a laboratory shaker. 

Mass 

x, 
Actuator 

v, 

Figure 9.1- Single Degree of Freedom Model 
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The model can be represented mathematically using state variables, for which the 

matrices are shown below including a system disturbance v,. However as in 

Chapter 8, for the purposes of the optimisation process the model will be 

considered as a settling problem from initial conditions over time, involving only 

matrices A and B. 

x=Ax+Bu+Gv, 

(9.1) 

The cost function for the SDOF model is formulated in a similar way to the cost 

Function (4.1) in Chapter 4: A quadratic cost is applied to the actuator 

displacement and supplemented by a higher order cost with the aim of limiting the 

range of operation for the actuator. This may be considered in a similar context to 

the bumpstops of the quarter vehicle model introduced in Chapter 2, or simply 

representative of the limited range of the actuator. These displacement restrictions 

must then be offset against a cost on the acceleration of the mass and hence the 

degree of force, u applied by the actuator to form the following cost function. 

L(x,u) = o~ lA~ + J3x~ +(%J) (9.2) 

a = 500 t3 = 5 X 10" n = 10 

9.2 SDOF Reference data. 

In order to verify the success of the neural network in the learning of the state -

costate relationship for the SDOF model, a set of reference data was created using 

Marsh's method outlined in Chapter 2. The details for the derivation of the 

appropriate equations are presented below. 

The Hamiltonian equation is derived from the cost function (9.2) and state 

Equations (9.1). 

(9.3) 
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The derivative of the Hamiltonian equation is taken with respect to the states 

inorder to obtain the derivative equations for the costates. 

p,X, = -p,x2 

· P2U 
P2 X2 =­

m 

· oH· 5f3x9 p, = --= -In:, - , ox, 
· oH 
P2=--=P, 

oX2 

(9.4) 

The derivative of the Hamiltonian with respect to the control force u is taken in 

order to establish the force as a function of the costates. 

oH U P2 
-=-+-=0 ou m2 m 

U = -mP2 

All other elements of the calculation process are as defined in Chapter 2. 

(9.5) 
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9.3 Unorm Formulation for a Non-Quadratic Cost Function 

Problem 

143 

The non-quadratic cost function is assumed for the SDOF model and leads to the 

following Hamiltonian equation. 

(9.6) 

The derivative oHliJu is rearranged to give u the actuator force as a function of p, 

the. output of the neural network costate estimator, p = P(W,x) . 

oH 
-:;-- = P'B;, + R;,u; = 0 
uu, 

B~p; + R~u; = 0 RT = R 

BT p+Ru =0 

:. u = -R-'BT P 

(9.7) 

The derivative of the Hamiltonian equation with respect to the system states is 

oH • T • - = pA + nx + 5Q,o x = A P + Qx + 5Q,ox ox J J' ><-;J J '1 J 
(9.8) 

from which can be derived the following equation for the calculation of the 

network performance cost. 

= AT p+Qx+ 5QlOx' + oP (Ax+ BU) 
OX;j J 

(9.9) 

= AT p+Qx+5QlOx ' + (Jp (Ax-BR-'BT p). ox ij 1 

In order to perform Levenberg Marquardt least squares optimisation of the 

network performance cost, the derivative of h with respect to the network weights, 

w, must be defined. From Equation 8.31 the following equations can be 

established for the SDOF model. 
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(9.10) 

Because 02 Pm/OX, OWn = 1 the calculation of the derivatives of h with respect to 

the network weights is simplified for the LQR problem in Chapter 8. However, for 

the non~quadratic problem this is not the case: Its analytical derivation and 

computation are complex. This is avoided using the following numerical 

approximation. 

Because the overall change in x can be considered proportional to the direction of 

change in the system states for the current control action u calculated by the 

costate estimator, the following numerical approximation can be applied: If a 

small change is made to the current states, which is proportional to the system 

derivatives at that state. 

/=Ax-BR-'BTp 

x2 =x, +£f 
(9.11) 

and the derivative of the costate estimator is again calculated with respect to the 

network weights, then /,0 2 Pm/ox,OWn can be approximated using the following 

numerical estimation. 

OPm{xJ oPm{x,) 
oWn aWn (9.12) 

e: 
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9.4 Training of a standard form Neural Network for the Non­

linear SDOF Problem. 

145 

Figure 9.2 shows the results of ten training runs, each performed using the 

standard form of neural network; 20 Tansig neurons in the hidden layer and 2 

purelin functions in the output layer, on a fixed data set of 1000 points. Each 

training run lasted 1 hour using an AMD Athlon® 800Mhz computer with 256 MB 

of RAM. None of the ten optimisations successfully learned the state - costate 

relationship for the SDOF model even though the network size had proved 

sufficient during the supervised learning performed in Chapter 4. As predicted, the 

likelihood of identifying the incorrect solution for at least part of the operating 

range of the network is too high. The inability to use symmetry as an indicator of 

success is also highlighted; while some of the networks with higher levels of fit 

exhibited low symmetry values, the same is true of less successful training runs. 

Although the clarity of Figure 9.2 is not good, it is clear that the likelihood of a 

successful training run is very low indeed. 

Figure 9.3, shows one of the more successful training runs in more detail. The 

error between the force calculated using Marsh's method and that calculated by 

the neural network costate estimator is about 70%. However, the resulting control 

actions do not stabilise the mass actuator system. 

The upper plots in Figure 9.3 show the costate values; the solid surface, the output 

of the neural network estimator; the lines, the calculated values using Marsh's 

method. The centre pair of plots display the error between the two. The lower pair 

show the distribution of the optimisation cost, hi, within the operational range of 

the network. The fact that there is no direct relationship between the costates and 

the Hnorrn cost is reflected in the lower four plots. 
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9.S Further Generalisation 

In Chapter 5 the principles of validation were discussed. Validation is a stopping 

criterion, designed to ensure good network generalisation. In Chapter 5 it was 

ignored in favour of weight decay. However, in the context of the Hnom, 

optimisation, validation can be implemented in a more flexible form. 

Validation assumes only a limited data set is available. However, an infinite 

number of points are available for training or validation during the Hnorm 

optimisation process. Because the Hnorm optimisation process does not require a 

pre-calculated training data set, in theory an infinjte trruning set can be used. 

Avrulable time and memory obviously preclude this for every epoch. However 

from this stems the idea of point replacement: At the end of every epoch a 

selection of the initial condition points are replaced with new points; so the 

training data set is continuously changing. In effect, the training data set tends to 

infinity over sufficient time. 

9.S.1 Point Replacement 

The procedure for point replacement is outlined below. 

1. For the first epoch, a data set is chosen and the change in weights calculated 

and applied. 

2. At the end of the epoch a selection of data points are replaced. For simplicity 

these were chosen to be the first n points, and 10% of the total number of 

points was deemed to be sufficient. 

3. The new points are added to the end of the data set, the old removed from the 

beginning. Therefore, if 10% of the points are replaced every epoch, the points 

will spend 10 epochs in the data set before being replaced. 

4. The h values for the new points, are calculated for the current set of network 

weights, the h values for the other points can be carried over from the previous 

epoch. 
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s. The Hnorm cost must then be calculated before beginning the next epoch to 

account for the change in cost resulting from the changing data set. 

Point replacement allows a reduction in the number of initial condition points 

processed in a given epoch without compromising generalisation in the long tenn. 

This will benefit the speed of the optimisation process particularly in the early 

stages. 

9.6 Network Shaping 

In [88) Werbos makes the following comment: ''There are many complex 

problems where it is difficult to find a good controller by adaptation alone, 

starting from random weights. In such problems, it is crucial to use a strategy 

called "shaping." In shaping, one first adapts a simpler neuro-control approach or 

even by talking to an expert; then one uses the weights of the resulting controller 

as the initial values of the weights of the controller to solve the more complex 

problem. This approach can, of course, be repeated many times if necessary. One 

can also build systems that phase in gradually from simpler approach to a more 

complex approach." 

The results established so far suggest this is the case for the Hnorm problem. Whilst 

it is very difficult to obtain the correct result using only basic neural network 

techniques, the comments of Werbos indicate an area for exploration. 

Although additional knowledge of the mapping surface is provided by Marsh's 

work, assumptions made in the remainder of this section could still have been 

made based on intuition. The shaping process for the costate estimator problem 

takes three fonns: Firstly, the provision of neurons that reflect the basic profile of 

the mapping surface. Secondly, the adaptation of. a network or system of a more 

basic fonn. Finally, pre-training of the network to match a simpler system. 

9.6.1 Odd Power Transfer Functions 

Examination of the state - costate relationship for linear state equation based 

control problems with cost functions of even powers reveals that the relationship 

is odd. This can be observed not only in the LQR solution, where .the function 
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involved is linear, but also with the benefit of the optimal regulator solutions 

calculated from Marsh's work in the non-linear solutions. Based on this, an 

additional neuron has been created in the form of a cubic function. The cubic 

neurons implemented in parallel or series with the Tansig layer should allow the 

network to capture more easily the basic form of the costate estimator surface. The 

Tansig neurons can then .be used to adapt this simplistic cubic-based 

approximation to give greater accuracy. The new cubic function takes the 

following form to ensure dy/dN is one and not zero, where N is the input to the 

transfer function. 

y= N+N3 

ay = 1+3N2 

aN 
(9.13) 

This ensures that errors passed through the cubic neurons carry the same 

importance as those of the Purelin and Tansig neurons when operating near zero. 

For some problems it maybe worth while experimenting with higher order odd 

powers of N, depending on the form of the original cost functions. 
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9.6.2 LQR Adaptation 

The second approach used to shape the network is the adaptation of the Riccati 

matrix solution. As the cost function 9.2 is itself an adaptation of the LQR cost 

function, the concept of making the costate estimator a combination of the Riccati 

matrix and a neural network seemed an appropriate step to take. The non­

quadratic cost function tends to the LQR cost function in the region of the origin .. 

In order to incorporate the Riccati matrix within the network, a number of 

alterations need to be made to the basic feed forward network architecture. 

These additions outlined below include the radial propagation neuron (presented 

for the first time to best of the author's knowledge), direct feed through weighting, 

and layer bypassing. 

9.6.3 Radial Propagation 

The Radial Propagation (RP) neuron defines a region where the neural network 

(Sub-Neural Network, Figure 9.5) that lies beyond it in the network architecture is 

deactivated. If biases are used, the deactivated region can be positioned anywhere 

in the networks operational space, x, but' typically the RP neuron will operate 

around the origin. 

r------------------------------------------------------------
Main Network 

Riccati 
Matrix S 

p 
x RP Sub-Neural Network --. ~ 

Neuron 
~ ~ r 

r 

Figure 9.5 - Radial Propagation Transfer Function Utilisation 

For LQR adaptation, the non-quadratic cost function tends to the LQR cost 

function as the states tend to zero. Therefore, the deactivating region of the RP 
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neuron is positioned at the origin. As the states increase, the RP neuron activates 

the sub-neural network, which adapts the Riccati matrix calculation outputs for the 

non-linear costate problem. 

The RP neuron output is linearly proportional to the input in the majority of its 

operating range. However, in a definable region around its origin, the output tends 

to zero. The following equation defines the RP neuron and is continuously 

differentiable. 

(9.14) 

Where N for the RP neuron only is a vector of the scaled input x 

Figure 9.6 shows the input I output relationship of the radial propagation function 

for a two state case and the related derivatives. 

9.6.4 Direct Feed through Weighting 

The inputs are scaled to define the operational range of the deactivated zone of the 

RP neuron output. Acting directly on the input, the RP network will pass 

approximately 50% of the operational range [±l]. The input range is therefore 

scaled by the direct feed through layer to account for differences in the operational 

range.of the states. The input to the RP neuron Ni. Equation 9.14 is then a scaled 

version of the input Xi. The selection of the scaling weights was carried out 

manually with the direct feed through layer weights held fixed during the 

optimisation. Potentially iIi the future, with certain constraints, the scaling weights 

could be optimised using an appropriate routine. 

9.6.5 Layer Bypassing 

In order to perform the Riccati matrix calculation requires only one network layer, 

whilst the sub-net and RP neuron will require a minimum of 3 layers in which to 

perform the relevant calculations. For this reason some modifications are required 

to the basic network structure, allowing some data to bypass certain layers. 

Although the exact structure of this will depend on the form of the original 
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network calculation, consideration should be taken to ensure its implementation 

remains computationally efficient. 
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9.6.6 Theorem of Extended Symmetry. 

By enforcing Linear Quadratic Regulation In the region of the origin RI, 

symmetry and "positive definite-ness" are enforced by default in that region. In 

Figure 9.7,assume hi -> 0 in the region R2, and that in the region RI (containing 

the origin) the symmetry condition applies: 

ap . 
1 =0 

ax, 
(9.15) 

It can be shown that the symmetry condition automatically extends to those points 

in Rz from which the state trajectory (- . - ) remains within Rz and eventually 

enters RI. The proof is shown below. 
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Proof 

Assuming optimal conditions in the region Rz, h j is zero. 

(9.16) 

and therefore 

(9.17) 

where pj = Pj(x) is the feedback form of the costate functions. 

Since hj is zero in R2, the following derivative equation holds. 

(9.18) 

This is expanded to form the following equation 

(9.19) 

Rearranging and performing the obvious cancellations then. gives the following 

result 

o (9.20) 

With Zij as defined above, Equation 9.20 can be rewritten as follows 

(9.21) 
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Taken along any state trajectory x = f(x,u) for any function q(x(t» the derivative 

of q with respect to time during the trajectory can be formed as follows. 

dq . aq 
-=x-
dt ' ax, 
-f~ - k ax, 

(9.22) 

hence 

(9.23) 

is the time derivative along the state trajectory. 

Therefore, Equation 9.19 forms a set of ODEs for the function Zij 

t + af, z, - af, z" = 0 
'J ax. ' ax. 

, J 

(9.24) 

Then given that Zjj -> 0 in RI, and Equation 9.14 holds throughout R2, the 

uniqueness theorem for ODE solutions [89] ensures 

(9.25) 

for all points such as A connected to RI by a state trajectory , though not 

necessarily by points such as B. 

If the principles of uniqueness are applied, given that any stable state trajectory 

ends in the region RI where Zij is known to be zero when LQR is applied and 

stability is assured, all points along the trajectory are also symmetrical because of 

the following principles. 

• They satisfy the ODE uniquely and are therefore the only solution at that 

point. 

• Their connection to the region RI ensures that they have the same symmetry 

qualities as points within the region RI. 
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• The principles of dynamic programming state that: Within an' optimal 

regulatory system, the path taken from an initial condition point, A, passing 

through a point, C to the origin will be the same from point C as the path taken 

to the origin if C was the initial condition. Therefore, all points along the 

trajectory are also optimal, and in this case satisfy the ODE uniquely and are 

therefore symmetrical. Points within RI will converge to zero as it is know to 

be stable if h j -> O. 

Hence, the symmetry condition maybe expected to anse naturally out of a 

satisfactory Hnorm optimisation, providing a convenient diagnostic test. 

9.7 Pre-Training 

By pre-training the network to the equivalent linear quadratic system introduced 

in section 5.1, a set of initial weights are established that already capture the basic 

form of the state - costate relationship. This is done using supervised learning. The 

reference points are established using the Riccati matrix solution, Equation 1.2, 

and therefore need not be fixed. There is no requirement for a high level of fit so 

the pre-training process does not significantly increase the overall training time. 

While pre-training definitely has a beneficial influence on the optimisation 

process, observation indicates that it is important to be aware of the possibility of 

linearization of the solution. If the network is pre-trained too harshly, it is possible 

that the end solution found by the neural network will be either partially, or 

wholly, a linear approximation to the non-linear problem. Typically, the neural 

network solution will capture the non-linear form of the solution in some 

dimensions but not in all. Careful manipulation of the weight decay coefficients 

and the weights to which they are applied can help to increase the number of 

dimensions in which a non-linear approximation is achieved. 

9.8 Point weighting 

As in Chapter 5, point weighting remains an important factor in the optimisation 

process: Points in the operational surface away from the origin have very high 

Hnorm values associated with them. These can dominate the optimisation process, 
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particularly in the early stages when the errors relating to these points are large. 

Combined with the odd power neurons this can lead to the network taking on an 

unresolvable set towards one of the predominantly non-positive definite solutions. 

To decrease the influence of these points, the Hnorm values are weighted based on 

relative state position as in Chapter 5. 

9.8.1 Uniform Distribution 

The original data used in the supervised training was evenly distributed across the 

predicted operational spac~ of the neural network. With the Hnorm process, the data 

points are not restricted to fixed points for the whole of the optimisation process 

and change continuously as outlined above. There are two methods for the 

generation of the training points both based on a uniform random number 

generator. The first forms a distribution of points that is rectangular in the 

dimensional pairs, for example in a 3 state system this would form a rectoid. 

(9.26) 

where u is a uniformly distributed random number 0:5 u :5 l. 

However, the magnitudes of the state points do not form a uniform distribution 

using this method. This can result in poor performance around the origin, which is 

under populated. 

9.8.2 Uniform Radial Distribution 

An alternative method, which ensures that the points have uniformly distributed 

magnitudes, is to calculate the points to form a uniform radial distribution in the 

dimensional pairs. This results in a spherical distribution when points are 

generated for a three dimensional system. Equations 9.27 & 9.28 define the 

generation of points for the SDOF and quarter vehicle problem respectively. 

SDOFmodel 

X, =x, rcosO 
= (9.27) 

x2 = x2 rsinO -
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Quarter Vehicle Model 

X, =x, rcos8 
~ 

X2 = x2~rsin8cosq, 

x, = x, rsin8sinq,cosA 
~ . 

(9.28) 

x. = x. rsin8sinq,sinA 
~ 

where r, 8, q, & A are uniformly distributed random numbers, 

9.9 SDOF H norm Optimisation 

Figure 9.8 shows a successful Hnorm optimisation run for the SDOF system. The 

upper pair of plots show the neural network output as a solid surface and the target 

costate values calculated from Marsh's work, as lines that define a surface. The 

error between the two is shown in the centre pair of plots, with the hi values 

shown on the bottom pair of plots. As can be seen there is no direct correlation 

between the hi values and the costate error even when a stable solution has been 

obtained. 

The hj values around the origin are clearly very small and therefore based on 

Section 9.8.2, the symmetry error should be reasonably small in the majority of 

the operational range. 
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9.10 SDOF Simulation 

Figure 9.9 shows the unit body velocity response of the single degree of freedom 

system, controlled by the Hnorrn trained neural network shown in Figure 9.S. The 

resulting state trajectory is stable and the performance comparable with the linear 

quadratic regulator control shown for comparison. The credibility of the control 

strategy is not important, but the result indicates that, under the right 

circumstances, it is possible to train a neural network to learn the costates for a 

non-quadratic cost function. Although the costate surfaces are not perfect, the 

principle of the Hnorrn training process is successfully established. The approach 

can now be applied to the more complex task of the quarter vehicle model. The 

additional degrees of freedom introduced by the quarter vehicle model will 

increase the possibility for failure in the optimisation process. 
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9.11 The Quarter Vehicle Model. 

At this stage a number of limiting factors become apparent. The increased 

dimensionality of the problem is significant in its effect on calculation time and 

memory requirements. The computing power of the desktop PC available to the 

author (an 800Mhz AMD Athlon with a limiting memory capacity of 768Mb) is 

no longer truly able to cope with processing requirements of the Hnorm 

optimisation approach. Increasing the number of degrees of freedom not only 

increases the size of the network, but also the number of training points that are 

required to capture the general shape of the costate surfaces. 

For the quarter vehicle problem the network structure is increased to give the 

network additional opportunity to utilise the cubic functions, allowing it to cope 

with the increased dimensionality of the two-degree of freedom problem. 

r-----------------------------------------------------------
Main Network 

LQR 
Matrix 

,-----------------------------, 
Sub-Net , , , , 
L2 , 

--j 
p , 

L3 lA I x , 
L .. 

.1 Ll H L5 I 
~I , , , , , 

~-----------------------------

Layer Type Number of Neurons 

Ll = Radial Propagation Functions + LQR Function 4 . 

L2 = Combination Layer (Purelin and Tansig) 4 purelin, 20 Tansig 

L3 = Cubic Layer 8 

L4 = Purelin Layer 4 

L5 = LQR function 4 Purelin 

Figure 9.10 - Quarter Vehicle Network Structure 

Most of the terms for the HnDrm optimisation remam unchanged from those 

presented for the SDOF problem in section 9.2. All changes stem from the 
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additional power term In the non-quadratic cost function. 

(9.29) 

which in turn changes the Hamiltonian equation 

(9.30) 

affecting the state derivatives of the Hamiltonian equation as follows 

aH ,. T ,. 
-= pA +Qx +3n x +5QIO x = A p+Qx+3n x +5Qlox (9.31) ax lJ' 'll ~ijJ ijJ ~ 

The cost element hi becomes 

aH 
hi = -a + Sijfj 

Xi 

ap 
= AT p+Qx+3{4x' +5QlOx' +- (Ax+ BU) aX ij ) 

= AT p+ Qx+3{4x' +5QlOx' + ap (Ax- BR-IBT p) aX ij ) 

(9.32) 

All other elements of the optimisation remain the same as that presented in 

Section 9.2, the increased number of states aside. 

9.12 Quarter Vehicle Results 

The supervised learning approach has shown that higher levels of fit can be 

achieved with smaller networks for the reference data set. The Hnorrn optimisation 

costs attributes of the network that are not measured during the supervised 

learning process, in particular, the Hnorrn cost is a function of the network 

derivatives. This may limit the levels of fit achievable even though the network is 

larger. The network derivative has an important part to play in the optimisation 

process; high derivative values can upset the optimisation process even when the 

reference data error is low. If over-fitting type behaviour were to occur, this would 

clearly degrade the optimisation process due to the derivative element in the Hnorrn 

cost function. 
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The Hnorm cost is not directly related to either the costates or the force. However, 

the error between the values calculated using Marsh's method and the neural 

network suggest there maybe an underlying relationship between the Hnorm and the 

force, Table 9.1. The errors in the calculated force are much lower than the errors 

in the costates from which it is calculated, Equation 8.4. 

Table 9.1 - Percentage errors between ELC, Neural Network and FORTRAN® 

Calculated Values 

Costates 

Force PI P2 P3 P4 

Original training 
26.86 40.86 75.29 47.87 77.94 

..>< data set 
"il 6 Validation data ... at 24.15 33.03 70.20 70.97 ::I ~ 37.58 
ZZ set 

ELC approximation 68.10 86.58 92.22 78.33 82.28 

This may be attributable in part to the pre-training process as the force error 

between the ELC approximation and the reference force data set is smaller in 

comparison to the costate errors. However, this does not account for the 

breakdown of improvement in the costate estimation: the form of the Hnorm cost 

function may be accountable for this phenomenon. The costate elements that 

contribute to the calculation of the control force form pairs within the Hnorm cost, 

Equations 9.31-5. 

(9.33) 

(9.34) 
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(9.35) 

(9.36) 

(9.37) 

The error in the individual costates can potentially cancel within these costate 

pairs and thus not contribute to the overall cost. However, an error in the costate 

pair, which has an indirect association with the force, makes a stronger 

contribution to the Hoonn cost .function. The costate P3. is individually referenced 

within the Hoonn cost. It is therefore possible to conceive that this might account 

for the greater accuracy achieved in its calculation. However, PI does not occur in 

the Hoonn cost in any other respect than its derivative. Therefore, it maybe 

considered a credit to the Hoonn process that an improvement occurs in PI. These 

features are observable in the sample points shown on Figure 9.11. 

Figure 9.11 shows the correlation between the FORTRAN@ calculated data on the 

x-axis and the neural network output on the y-axis. A perfect correlation between 

the two would generate lines of points at y = x (-). Several points show the 

relationship between the costates and the calculated force. The first point, * ,is the 

maximum correct force. Although the force indirectly has been calculated 

correctly by the neural network, the costates that contribute to its calculation, 

Equation (S.2S),.are incorrect,.the errors cancelling in the calculation process. The 

second point, 6, is the highest neural network calculated force, it exhibits the 

largest error, e, across all five plots. The neural network output under estimates all 

four costates, however the net result is an overestimated force value. The final 
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point selected at random, 0; shows that when all four states are estimated with 

minimal error the calculated force will in turn be correct. 

4000 

.. - .. N 

'" 0 0 
.! '" '. ~ i z z 

-2000 

-4000 
0 0.5 1.5 -1 -0.5 0 

Fortran P, x 10" Fortran P2 

300 

200 

Il.. ... 100 

'" ~ 0 

~ -100 

-200 

0 50 100 '150 
-300 

-500 0 
Fortran P3 Fortran P 4 

X 10· 

".::1'.:: .. 

-2 -1.5 -1 -0.5 o 0.5 1.5 
Fortran Force 

. Points, - Elxact Correlation, *,0,6 Sample Points 

Figure 9.11 - Neural Network Output Versus FORTRA~ Force 

0.5 

E 

.500 

2 

'. 

x 10
4 

2.5 

X 10
4 



Chapter 9 168 

Figures 9.12-16 show that the optimisation process has made significant changes 

to the pre-trained network. For certain state pairs the network has captured the 

force or individual costates very well, whilst other state pairs with more complex 

surfaces are more difficult for the network to learn. 

It is possible that a more complex network will be able to learn the surface in 

more detail and thus reduce the error levels achieved. However, the network used 

is at the limit of the computer's processing power. The need to calculate the 

network derivative for every cost calculation made means the Hnorm process is 

computationally expensive to perform. This restricts the size of network used in 

comparison with the supervised learning technique. Advances in computing 

technology will change this. If a more successful version of the Hnorm process is 

ever established it will not be beyond the scope of future computing systems to 

perform individual optimisation runs; current computing technology makes the 

development process very tedious. 
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9.12.1 Costates 
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Chapter 10 Summary and Conclusions 

This thesis set out to consider the application of neural networks to the non-linear 

control of the quarter vehicle model. This has been successfully achieved using 

supervised learning, with the neural network directly calculating the optimal force 

and with the neural network estimating the costates from which the control force 

can be calculated. This has a number of beneficial implications for the study of 

suspension control algorithms that have thus far only been studied off-line due to 

the computational effort involved. 

The second part of the thesis covered attempts to establish a method that will 

allow the neural network to learn the costates directly using what has been tenned 

the Hnorrn method. Although successful at a menial level, it has proved difficult to 

obtain successful results for the quarter car problem. In addition to the work with 

neural networks, Chapter 7 of the thesis covers methods for the reduction of 

suspension drift in active suspension vehicles, which are applicable to a wide 

range of controllers. A discussion of the conclusions drawn from work in relation 

to the three subject areas is now given, along with suggestions for further 

research. 

10.1 Non-linear Control 

The value of non-linear control has been proven many times, but the work 

presented in Chapter 2 and the investigation that was enabled using neural 

network controllers in Chapter 6 reiterates this in respect to vehicle suspension 

control. The constrained environment makes vehicle suspension an ideal system 

with which to demonstrate the use of non-linear control. Non-linear control results 

in reduced levels of body acceleration through more effective use of the 

suspension workspace. A greater awareness in the controller of the presence of the 

bump-stops can be established through the use of non-linear control and this 

ensures that the appropriate control force is used depending on the state of the 

system. Greater utilisation of both the tyre and suspension deflection ranges 

available to the controller results in reduced body acceleration and therefore, a 

better ride. 
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10.2 Supervised Learning and Neural Networks 

Chapters 4-7 demonstrate the power of supervised learning and neural networks to 

learn multi variable non-linear relationships. They also demonstrate some of the 

fundamental failings of the basic supervised learning, neural network architecture 

approach for control problems. In order to avoid these a number of additions to 

the basic approach had to be made to ensure the learning process resulted in a 

successful working controller. 

Bias Cancelling 

The standard multi-layer perceptron network architecture does not guarantee a 

zero output for a zero input. In the majority of control problems, this is expected 

and is vital if the system is to stabilise to a zero position. The network architecture 

can be adapted so that a zero output is guaranteed using the principles of bias 

cancelling. This does not restrict the network's ability to learn suitable non-linear 

problems given a network of sufficient size, and introduces only a small increase 

in the calculation time. However, bias cancelling does not guarantee a zero 

settling point. It is important that around the origin, the network accurately reflects 

the control strategy that is to be mapped otherwise the use of bias cancelling can 

introduce multiple non-zero settling points. This can be achieved using point 

weighting. 

Point weighting 

It is important that the training points are distributed and / or weighted in such a 

way as to give appropriate importance to the accuracy of the network in a given 

area of its operational space, such as the origin. High value points can often 

incorrectly dominate the optimisation process. This leads to a network that may 

perform. well in terms of the network training cost, but when utilised as a 

controller does not settle the system correctly. This can also lead to unnecessarily 

large networks, as the degree of accuracy at low value points is sought but not met 

because of the higher value points. Point weighting gives the low value points the 

necessary importance they deserve, ensuring high value points do not dominate 

the process. 
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Weight decay 

The control of neural network weights is also vital to successful completion of the 

training process. Neuron saturation can lead to failure of the optimisation or poor 

network performance. Neurons such as the Tansig and Logsig neurons can 

saturate in two ways, both of which introduce their own unique problems. If the 

weights are small and the bias large, the transfer function output becomes constant 

across the complete network operating range. This can lead to one of two 

problems; an offset at the output or a reduction in the level of fit achieved, the 

saturated neuron effectively reducing the size of the network, as the neuron is 

made redundant. Secondly, the neuron weights can become large and in this case, 

the neuron becomes a switch. This may be useful in some scenarios, but for 

costate and force estimation leads to fluctuations in the output surface which 

negatively affect performance. These effects can be prevented though the use of 

weight decay, this ensures the weights are kept small and prevents either case 

occurring. 

These three methods have all been used in Chapter 5 in order to ensure not only a 

successful reduction in the training cost but also networks that work successfully 

as non-linear controllers for the quarter vehicle problem. 

10.3 H norm Optimisation 

The Hnorrn optimisation routine is not, as it stands, a viable training routine for the 

development of costate estimators for non-linear control problems. Although 

successful implementation has been achieved for both a four state linear and a 

single degree of freedom non-linear problem, as the complexity is increased it 

becomes more difficult to obtain the correct answer. This is due to two factors; the 

form of the cost function - there is no direct relationship between the costates and 

the Hnorrn cost function - and the flexibility of neural networks, allowing solutions 

that minimise the Hnorrn cost but do not correctly estimate the costates. Compared 

to the supervised learning cost function, if the generation of the original training 

data is ignored, the Hnorrn cost is extremely computationally expensive. The 

network derivative in particular adds considerably to the time taken to perform 

each epoch. For the supervised learning approach, the derivative is calculated only 
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when the cost gradient with respect to the weights is required. With the Hnarm 

approach, the network derivative must be calculated at every cost calculation and 

this is very expensive. 

10.4 Neural Network Training for the HnOl"ID Problem 

The influence of the multiple solutions on the Hnarm optimisation process at every 

calculation point can be reduced using two approaches, network shaping and pre­

training. Combined with techniques already introduced for supervised learning, 

these significantly increase the probability of a satisfactory training run. 

Shaping 

Shaping is a powerful technique used to ensure that prior knowledge of the control 

surface's form is taken into consideration during the training process. For the 

Hnarm problem two techniques have been established to utilise prior knowledge; 

Firstly, the creation of the cubic neuron, its shape closely resembles the basic form 

of the state, costate surface. Secondly, the Riccati matrix solution to the quadratic 

component of the cost function is enforced at the origin, to give the network the 

correct basic shape. This is done using the radial propagation neuron developed in 

this thesis to deactivate parts of a network in respect to the input space. Weight 

decay can then be used to ensure no sudden changes, steps occur in the mapping 

surface, hopefully ensuring the influence of the Riccati matrix beyond the region 

defined by the radial propagation neuron. 

Pre-Training 

In order to create the correct initial shape, from which to begin training it has been 

found useful to carry out some pre-training. This pre-training uses, supervised 

learning to costate data created using the Riccati matrix solution to a quadratic 

cost function. The coefficients of the quadratic cost function should be selected to 

achieve the best approximation to the non-quadratic cost function over the 

expected operational range. However, it is import when pre-training not to over 

_ train the network to the point where the input, output relationship becomes linear. 

This limits the networks ability to adapt to the non-linear relationship and reduces 

the influence of the shaping process. 
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10.5 Further Opportunities for improving Hourm Optimisation 

There are a number of features about the Hoorm optimisation cost function that 

distinguish it from other neural network optimisation problems. In particular the 

use of the network derivative in the cost function, but also the multi-element form 

of the cost, hi. For these reasons, it maybe possible to develop an optimisation 

routine that uses these differences to its advantage. Some work was done to 

investigate a mini-max approach to the problem, but no significant improvement 

was established over the Levenberg Marquardt approach. 

When neurons saturate large network derivative values can be generated, as a 

result of which the optimisation process maybe jeopardised. Steps have already 

been taken to avoid this using weight decay, however this may still not be 

sufficient. It may be possible using alternative methods either; for the calculation 

of the network derivative (e.g. via numerical differentiation, or via a comparative 

approach), or the correction of saturating neurons, to reduce the influence of 

irregular derivative calculations on the Hoorm cost. 

Even though the Hoorm is a totally off-line training procedure, it has been possible -

with no simulations to establish a relationship between the states and the costates 

that allows stable control of the quarter vehicle model. It would appear that 

without further manual intervention it is unlikely that a neural network will 

capture more accurately the solution. Whilst it is important that in the long term 

any solution can be generalised to cover other problems, at this point any further 

attempts to improve performance is likely to be particular to the quarter vehicle 

. problem. 

10.6 Low Frequency Disturbance Induced Suspension Drift 

Three simple road inputs have been defined to highlight the problems of offset 

and drift in active suspension systems. Two control schemes have been presented 

which successfully overcome these problems. LGF was based on the estimation of 

VI, the low-frequency component of the road input equivalent to estimating the 

local road gradient. IFC is more simply based on the feedback of an integrated 

suspension deflection signal. 
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While both approaches work well, LGF gives faster dynamic response and a 

reduced resonance peak at the body bounce frequency. On the other hand, lFC 

gives somewhat tighter control of mean suspension deflection. 

The development process was performed using linear feedback control, however 

non-linear and adaptive schemes can also suffer from suspension drift at low 

frequencies. In this case, the LGF approach can be implemented quite simply via 

the revised velocity estimates of Equation (7.13), as was achieved in Section 7.6 

where lFC may require a subs~antial revision of the base algorithm. 

Attention has been restricted to the quarter vehicle model. There may be practical 

advantages in using a pitch-plane Kalman filter model, where a combination of 

longitudinal and vertical accelerometers and gyroscope measurements could 

provide additional information about the local road gradient. 

One related issue not considered in Chapter 7 is the influence of static load 

changes on the active suspension. lFC removes the resulting offset completely, 

while LGF reduces the effect by estimating a spurious offset in the steady state 

value of VI. Ideally, one might extend the Kalman filtering further to estimate such 

load changes. Alternatively the two methods could be combined; LGF can be 

implemented together with feedback of integrated suspension deflections, but now 

with a very small gain: and hence a very slow time constant, this is however an ad 

hoc approach. 

10.7 Summary of Conclusions 

• Non-linear control is beneficial to the control of vehicle suspension. 

• Neural networks can be used to map the relationship between system states 

and the optimal control force or the costates of non-linear control strategies 

using supervised leaming. 

• To obtain a successful result using supervised leaming, careful consideration 

of the distribution or weighting of points in the state operational range must be 

taken. 
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• Weight decay and bias cancelling are important if a neural network controlled 

system is to settle correctly. 

• The Levenberg Marquardt optimisation approach has considerable advantages 

over basic line search and gradient descent routines, but systems with large 

numbers of coefficients can· lead to memory problems .. 

• The H norm approach can, under the right circumstances, generate a stable 

neural network costate estimator, Obtaining an accurate costate estimator is 

difficult and research in this field is hampered by the c0l!lputational expense 

of the Hnorm algorithm. 

10.8 Further Research 

This thesis has been based on neural networks and costate estimation. Once a 

successful method has been established for the generation of neural network 

costate estimators, work to investigate their successful integration with both state 

estimators and real systems can be performed. Supervised learning already 

provides a means of generating working neural network costate estimators. This 

will enable the field to be analysed without further development of the Hnorm 

optimisation process. It also provides opportunities for work to be done that will 

further investigate the principles of an integrated control scheme for a full vehicle 

using costate estimators as defined by Gordon [39]. 

Neural networks could be perceived to be too flexible for the Hnorrn problem. 

When a cost function has multiple' solutions, it is possible for the network to 

capture the correct solution in one part of the operational space but not in another. 

A less flexible approximation technique, where its flexibility can be controlled 

may prevent this. One such technique that has been proposed is Chebychef 

polynomials. 

In order to make improvements in neural networks, the research and development 

of computer technology must continue. The work presented here has pushed the 

limits of current PC power, despite the expectation that the modem PC was 

capable of such intensive work. The most significant improvements in neural 

networks will only be made as computing power becomes sufficient to do so. 
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Some of the networks trained during this PhD have training times that can be 

measured in days. Only when this is reduced can meaningful research be done. 

Parallel processing technology already offers significant increases in perfonnance 

for neural networks, however currently it doesn't have the same accessibility that 

pes have achieved and requires special knowledge and equipment. 

The systematic use of weighting functions is another area requiring future 

development. Although weighting on the basis of state magnitude has been 

reasonably successful, not all points with a high state magnitude have a high 

associated cost (supervised or Hnorm). For example, a point at the limit of the 

suspension workspace but with hub and body velocities that are in a beneficial 

direction does not incur a large cost. These points suffer under the simple 

magnitude-weighting scheme, a more advanced approach capable of making an 

allowance based on predicted cost would be advantageous. 

During this thesis, the networks have been trained to learn the control force for a 

unifonn distribution of input states, hyper-spheres and quadroids, based on the 

premise that before the controller is implemented its operating range cannot be 

defined. However, if the likely operating range could be defined then the number 

of points for which the network had to learn the control force mapping would be 

significantly reduced. This would mean smaller networks could be used and 

therefore the training time and effort could be reduced. It is also likely that very 

high cost conditions would not occur and so the influence of high value points in 

the training cost function would be reduced. 
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