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Abstract 

The loss of efficiency and performance of bioprocesses on scale-up is well known, but 

not fully understood. This work addresses this problem, by studying the effect of some 

fermentation gradients (pH, glucose and oxygen) at a larger scale in a bench-scale two 

compartment reactor (PFR + STR) using the cadaverine-producing recombinant 

bacterium, Corynebacterium glutamicum DM1945 Δact3 Ptuf-ldcC_OPT. 

The initial scale down strategy increased the magnitude of these gradients by only 

increasing the mean cell residence time in the plug flow reactor (𝜏𝑃𝐹𝑅). The cell growth 

and product related rate constants were compared as the 𝜏𝑃𝐹𝑅 was increased; 

differences were significant in some cases, but only up to 2 min residence time. For 

example, losses in cadaverine productivity when compared to the control fed-batch 

fermentation on average for the 𝜏𝑃𝐹𝑅 of 1 min, 2 min and 5 min were 25 %, 42 % and 46 

% respectively. This indicated that the increasing the 𝜏𝑃𝐹𝑅 alone does not necessarily 

increase the magnitude of fermentation gradients. 

The new scale-down strategy developed here, increased the magnitude of fermentation 

gradients by not only increasing the 𝜏𝑃𝐹𝑅, but also considering the mean frequency at 

which the bacterial cells entered the PFR section (𝑓𝑚). The 𝑓𝑚 was kept constant by 

reducing the broth volume in the STR. Hence, the bacterial cells also spent shorter times 

in the well mixed STR, as the 𝜏𝑃𝐹𝑅 was increased (hypothesised as giving the bacterial 

cells less time to recover the non-ideal PFR section of the SDR). On adoption of this 

strategy cadaverine productivity decreases for the 𝜏𝑃𝐹𝑅 of 1 min, 2 min and 5 min were 

25 %, 32 % and 53 % respectively. Thus, highlighting that loss in performance is most 

likely to occur as the magnitude of heterogeneity within the fermentation environment 

increases. However, Corynebacterium glutamicum DM1945 Δact3 Ptuf-ldcC_OPT did 

show some resilience in its biomass productivity. It was only marginally affected in the 

harshest of conditions simulated here.        
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Nomenclature 

𝑎 - interfacial area 

𝐶∗ - concentration of oxygen at the gas-liquid interface 

𝐶𝐿 - concentration of oxygen in the liquid phase 

𝐹0-  feeding flow rate 

𝑃𝑓 - impeller pumping number 

𝑃0 - unaerated power input 

𝑄 – volumetric air flow rates  

𝑄𝑟 - volumetric recirculation liquid flow rate 

𝑌𝑝/𝑥 - product yield per dry cell weight 

𝑌𝑥/𝑠 - yield of dry cell weight on glucose 

𝑐𝑝 - specific heat 
𝑑𝐶𝐿

𝑑𝑡
 - rate of change in oxygen accumulated in the liquid phase 

𝑑𝜃

𝑑𝑡
 - rate of change in temperature 

𝑓𝑚  – mean frequency at which the cells entered the PFR 

𝑘𝐿𝑎 - Volumetric mass transfer coefficient 

𝑘𝐿 - mass transfer coefficient 

𝑞𝐶𝐴𝐷 - metabolic quotient for cadaverine  

𝑞𝐶𝐹𝑈 – colony forming unit productivity  

𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  - specific metabolic quotients for glucose  

𝑞𝑝 - specific metabolic quotients for product  

𝑡𝑑 - doubling time  

𝑡𝑚 - mixing time 

𝜇𝑚𝑎𝑥  - maximum cell growth rate 

𝜏𝑃𝐹𝑅 – mean cell residence time in the plug flow reactor 

𝜏𝑆𝑇𝑅 - mean cell residence time in the plug flow reactor 

ADC - analogue to digital converter  

ATP - adenosine triphosphate  

CFD – computational fluid dynamics 

CFU - colony forming unit  

CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats  

CT - Circulation Time 

CTD - Circulation Time Distribution  

DCW - dry cell weight  

DO – dissolved  oxygen 

DOT – dissolved oxygen tension 

FSC - forward scatter  

GMO - genetically modified organisms 

HPLC – high performance liquid chromatography 

IPTG - Isopropyl β-D-1-thiogalactopyranoside  

mRNA -  messenger ribonucleic acid 
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OTR  - oxygen transfer rate 

oxonol - DiBAC4(3) (Bis-(1,3-Dibutylbarbituric Acid) Trimethine Oxonol 

P - aerated power input 

PFR – plug flow reactor 

PI - propidium iodide  

PMT - photomultiplier tubes  

QBD - Quality by Design 

QBT - Quality by Testing 

rhGH – recombinant human growth hormone 

RQ  - respiratory quotient  

RTD - residence time distribution 

SDR – scaled-down reactor 

SSC - side scatter  

STR – stirred tank reactor 

TCA – Tricarboxylic acid 

TSA - tryptone soya agar  

TSB - tryptone soya broth  

𝐷𝑎 - Damköhler number 

𝑁 - stirrer speed 

𝑂𝑈𝑅 - oxygen uptake rate 

𝑆 - feed glucose concentration 

𝑇 - impeller diameter 

𝑉 - the medium volume 

𝑡 – time 

𝜇 - cell growth rate 
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The dust is unsettled, 

From distant cries of bang! Bang!! 

Our bodies attest to the lung-filled cordite air, 

Our mothers, wives, sisters adorn raffia palm-belts, 

Tight across their bellies to stave off the fangs of hunger, 

As they flee miles away from the lung-filled cordite air, 

In tow with three or four children, 

Teary eyes and swollen bellies, 

Balanced precariously on legs thin and brittle as dry sticks, 

Ravaged from the loss of nutrients, 

Their fathers, husbands, brothers vaporised to a higher state of entropy, 

Whose molecules we inhale. 
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CHAPTER 1 

1 Introduction 

The need for scaling up of processes arises from the economics of scale, and 

for the most part, as the size increases the cost of production per unit declines. This 

makes the cost of products to the consumer cheaper. However, scaling up brings 

challenges that come with handling large volumes (overpressure, high-temperature 

risk and health hazards). In developing biological systems from the laboratory to the 

marketplace, a certain amount of process knowledge is required if such a venture is 

to be successful. This process knowledge is usually gained by experimenting at a 

small-scale. In these experiments, process variables are screened, and the critical 

ones are identified. The proceeding step is then to optimise and design an 

operational space suitable for the biological system/organism. The data collated from 

these small vessels are then used to predict what might happen when the scale of 

the bioreactor is increased.  

In the scale-up of most microbial processes, the predictions made from data 

collected from small-scale experimentations typically fall short, even when cultivation 

variables are similar (Noorman, 2011). This would indicate that simply increasing the 

reactor size and medium volume changes the hydrodynamics, which consequently 

affects a microbe’s productivity as the magnitude of environmental heterogeneities 

increase. Thus, the assumption that the reactor size is irrelevant if the process 

variables are kept constant across scale cannot be upheld. The lack of consideration 

of the differences (performance losses in most cases) that might occur on scaling up 

a bioprocess can amount to failure.  
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1.1 Project overview 

The current understanding of how a bioreactor scale affects a microbe is 

limited, hence the gap in knowledge that this work will try to fill. Since it is known that 

bioprocess performance tends to depreciate with increasing scale, then it is safe to 

assume that large-scale bioreactors (> 10 m3) environment are fundamentally 

different from the small-scale. The most straightforward method to obtain information 

on how an organism responds to varying scales is to carry out experiments in the 

different bioreactor sizes available. However, the cost of doing so is prohibitive, and 

for investors looking to develop a new bioprocess, it would be foolhardy to fabricate 

a commercial size bioreactor first and collate experimental data from it afterwards. 

Thus, cheaper/reliable ways of how to mimic the final commercial bioreactor must be 

sought and used to generate process knowledge. This work proposes the use of a 

small-scale two-compartment reactor to simulate a large-scale aerobic fed-batch 

bioprocess. This is done by identifying the likely zones of gradients (areas around 

the feed, acid/base addition pipes and the air sparger) within the large-scale vessel. 

Once identified, these zones are simulated in one section of the small-scale two-

compartment reactor while the other typically larger section models the bulk region. 

Thus, the fermenting cells circulating within these two distinct sections may 

experience a similar environment as in the large-scale reactor which, would result in 

an approximately similar cell physiological response by the organism. Past studies 

have indicated that the mixing inefficiencies seen at the large-scale, due to energy 

and mass transfer limitations, result in the performance differences seen on scale-up 

(Lara et al., 2006a; Takors, 2012). Hence, the large-scale environment is an 

inhomogeneous one, where temporal and spatial dead zones (chemical/physical 

gradients) may occur (Enfors et al., 2001; Vrabel et al., 2000).  
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The two-compartment reactor design approach used here tries to identify and 

compartmentalise these regions of interest. The ability to regulate and simulate the 

large-scale environment on the small-scale grants an economical means to 

understanding how a commercially important organism (such as Corynebacterium 

glutamicum) will respond to some fermentation gradients (pH, glucose and dissolved 

oxygen) on scale-up.  

The genetically modified cadaverine-producing strain of Corynebacterium 

glutamicum was selected because it is not a human pathogen, has a long history as 

an industrial microorganism and its relatively well-understood metabolic pathways. 

The biorefinery concept has driven the search for biologically produced compounds 

that can be easily used as precursors to make important commercial product(s) as 

an alternative to the petrochemical refinery. The primary product of interest here is 

cadaverine (1,5 – diaminopentane), a platform chemical of the future which can be 

used in the production of various materials and polyamides, such as polyamide 5.4 

which has a high fatigue resistance, high melting point and low density (Thielen, 

2010). The ability to develop inexpensive and environmentally benign bioprocesses 

is key for achieving a sustainable future. Thus, understanding how the large-scale 

inhomogenous environment and genetic modifications affect bacterial cells is 

important to creating viable bioprocesses.       

1.2 Objectives 

Some of the questions which this work will try to address are, how does 

genetic modification affect a bacterial cell? Do fermentation gradients lead to losses 

of productivity? If they do, how do changes in the cell result in these losses? Is the 

magnitude of the cells physiological response related to the type of fermentation 
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gradient(s) simulated? How does poor mixing affect cell population homogeneity and 

viability?        

The objectives of this work are as follows. 

• Evaluate the growth kinetics of the Corynebacterium glutamicum strains and 

the effect of gene modification on productivity. 

• Scale-down simulator bioreactor studies for small-scale analysis of the large-

scale bioreactor inhomogeneities to improve the prediction of large-scale 

fermentation performance on scale-up of microbial systems. 

• Develop a suitable multi-parameter flow cytometry assay for 

Corynebacterium glutamicum to study the different physiological states that 

may exist during fermentation in relation to large-scale inhomogeneities in the 

environment.    

• Develop a method for quantifying lysine and cadaverine production as an 

output for monitoring fermentation performance.  

The bulk and single cell assays used here give insight not only into the 

physiological changes in the cell that occur but on the magnitude of changes that 

might happen on scale-up. The understanding of how the inhomogeneites in large-

scale bioreactors interact with a dynamic microbial population will help create better 

predictive tools.  

This work was part of a larger European Research Area Industrial Biotechnology 

project (EIB.12.057), which consisted of the following partners.  

• Institute of Bio- and Geosciences, IBG-1: Biotechnology, Julich, Germany 

• Technische Universität Berlin, Germany; Sequip S & E GmbH, Düsseldorf, 

Germany 
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•  Asociación de Investigación (INBIOTEC) Instituto de Biotecnología de León, 

Spain 

•  Vitalys I/S, Esbjerg N, Denmark 

• SINTEF Materials and Chemistry, Department of Biotechnology, Trondheim, 

Norway. 

The overall aim of this collaboration was to highlight the effects of increasing 

inhomogeneities, which occur in large-scale bioreactors, with respect to microbial 

physiology and production performance of a cadaverine-producing C. glutamicum 

strain. The cellular and process understanding was achieved by integrating the 

scale-down simulator bioreactor technology, innovative process analytical 

technology, multi-omics analysis and genetic engineering.   

This objectives here are to develop a relevant scaled-down model and strategy 

that mimics the large-scale fermentation environment and to study how the strain of 

C. glutamicum used responds to such inhomogeneous surroundings. 

1.3 Thesis outline   

This report consists of seven chapters; the next chapter of this work highlights a 

brief history of fermentation and its development. The challenges of scale-up will be 

introduced, and some of the most important criteria for scaling up of aerobic 

bioprocesses discussed. The latter part reviews the different approaches to studying 

the large-scale fermentation environment using various scale-down models. The 

importance of Corynebacterium glutamicum as an industrial microorganism is also 

discussed in the last section of Chapter 2. 

Chapter 3 highlights the composition of the media used for the cultivation of 

Corynebacterium glutamicum parent and modified strains, bioreactor designs and 
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growth conditions. The assay development of both bulk and single cell analyses 

were also reviewed.  

In Chapter 4, the growth kinetics of the Corynebacterium glutamicum parent 

strain and modified strain are compared. The collated parameters were used to 

characterise the cells and evaluate the feeding profile for the fed-batch process. 

In Chapter 5 and 6, the results of various large-scale scenarios simulated in 

the two-compartment reactor are discussed. A comparison was then made to a well-

mixed situation and the magnitude of the fermenting cells physiological differences 

were highlighted. 

Chapter 7 presents overall conclusions and suggests further work that should 

be undertaken to answer some of the questions raised by this study.     
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CHAPTER 2 

2 Literature review 

The origin of fermentation cannot be ascertained with accuracy, but it is most 

likely that its discovery was a fortuitous accident. Archaeological evidence shows 

that over 6000 years ago ancient Egyptians were actively producing bread, beer and 

wine (Reisman, 1993). However, it was not until the early 1700s that real large-scale 

fermenters for beer and wine production were established (Corran, 1975). Since the 

inception of industrial biological processes, it has been plagued by associated scale-

up issues. These problems arise from the need to maintain product quality, 

productivity, stability, purity, safety, process reproducibility and cost reduction as the 

scale of production is increased. One of the first solutions to process optimisation in 

some of these early commercial breweries was the implementation of temperature 

control. This development led to the fabrication of the first rudimentary heat 

exchangers of the 1800s (Stanbury et al., 1999). Since then, process control has 

become more advanced and refined, from temperature control to sophisticated 

biosensors which can control a bioprocess to a narrow operational space. The aim of 

controlling the bioreactor environment is to ensure that every part within is suitable 

for the microbe and the synthesis of wasteful by-products is minimised. Thus, by 

manipulating certain process conditions, the production of certain compounds can be 

optimised. This is best seen in the penicillin and inclusion body processes, where 

step changes in pH, temperature and dissolved oxygen (DO) lead to changes in the 

cell physiology. Hence, if a fermentation environment is homogeneous, the cell 

physiological response in any part of the bioreactor is expected to be approximately 

identical. This is probably true for small vessels, but for the large-scale bioreactor, it 

can not be said to be homogeneous, because of mixing inefficiencies. This is 
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because as the bioreactor volume increases both the energy and cost required to 

create a well-mixed environment becomes prohibitive. Ultimately, compromises 

(suboptimal  are made in the engineering of large bioreactors, which leads to both 

spatial and temporal physical and chemical heterogeneity. A good example is the 

control of DO concentration in a stirred vessel ≥ 100 m3, where mixing times can 

reach 4 to 5 min. The DO concentration is typically maintained by either the stirrer 

speed, sparging of air or gas blending. However, the DO probes are fixed within the 

bioreactor and only give an indication of the condition around where they are 

positioned (which may not be an accurate reflection of the whole). This consequently 

results in the DO controller compensating for misrepresented DO concentrations, 

which may lead to dead zones and changing DO conditions within a large vessel. 

The now-defunct company SmartINST in France tried to quantify the DO profile in 

large-scale bioreactors by designing spherical sensors which could float freely within 

the vessel and transmit data wirelessly. Thereby, giving the DO controller a better 

picture of the whole system. However, SmartINST’s idea was met with problems of 

the transmission range (due to the thick walls and thermal insulation of large-scale 

vessels), damage to sensors on impact with impellers, trapped sensors in crevices 

within the reactor and defining the optimal amount of sensors needed without 

changing the natural flow pattern of the system to mention but a few. Thus, the 

difficulties in gaining information on the inhomogeneity of the large-scale vessel still 

exist regardless of the current state-of-the-art sensors and control strategies.  

 

 

 



23 
 

2.1 Challenges of bioprocess scale-up 

There is no doubt that the technological strides made in the field of 

biotechnology have improved the quality of life and health; the impact of penicillin 

and recombinant proteins cannot be overemphasised. However, there remain 

fundamental scale-up problems, which are still not well understood to date. Some of 

the challenges associated with scaling up are, sterilisation, handling large volumes of 

material, microbial lag phases, holding time, cleaning, effluent inactivation, 

inhomogeneities, mass & energy transfer and the material of construction (Reisman, 

1993). This list is not comprehensive by any means, but it gives an insight into the 

vast number of variables that must be factored in for the successful scale-up of a 

biological process. The history of biotechnology indicates that technology, as 

opposed to scientific understanding, has been the primary force behind the 

development of commercial bioprocesses. This scenario remains valid today; most 

industrial bioprocesses are not well understood, and the bioreactor has been rightly 

described in some quarters as a ‘‘black box’’ (Takors, 2012). In the short to medium 

term, companies may manufacture useful novel products via biological means, albeit 

in a suboptimal and wasteful manner (Palomares & Ramirez, 2009). However, with 

the salient issues of today such as climate change, sustainability and population 

growth, a better understanding of biological systems will become a prerequisite for 

any thriving biotech industry of the future. This is why the regulatory bodies such as 

the Food and Drug Administration, European Medicines and Drug Agency and the 

Medicines and Healthcare Products Regulatory Agency are encouraging the shift 

from mainstream Quality by Testing (QBT) to Quality by Design (QBD) approach in 

manufacture (Yu, 2008). Also, as consumers become more knowledgeable and 

regulations stricter, only manufacturers with the scientific understanding of their 
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process and embedded quality in the design of their system will be granted access to 

the marketplace.  

The scaling up of bioprocesses as it is practised today is a synergy of art and 

science (Noorman, 2011). There is no universal template for scaling up, thus every 

bioprocess to be commercialised starts uniquely (Schmidt, 2005). A complete 

characterisation and resolution of the primary input variables or operating conditions 

that affect quality, yield and stability must first be carried out. This makes bioprocess 

development time consuming and expensive, with no guarantee of success. In the 

past decade, advancement in high throughput technology, such as parallel 

bioreactors (ambr® 250, BioLector®) and robotics have been developed to reduce 

both time and cost of process development (Marques et al., 2010). However, there is 

the need to adapt this technology to generate data for understanding how cells 

respond to large-scale inhomogeneous surroundings. 

More recent is the advent of disposable bioreactors. This invention is 

particularly advantageous for small start-up companies, granting them an 

economical route to developing innovative products (Palomares & Ramirez, 2009). 

Its other advantages are it requires no sterilisation protocol or cleaning (as it comes 

sterile and ready to use), turnover time from batch to batch is quick, it is flexible and 

modular, but its application is limited to small and medium scale bioprocesses. 

These disposable bioreactors are especially prevalent in mammalian cell 

cultivations. However, for bulk bio-products manufacture and most microbial 

fermentations the traditional stainless steel large-scale stirred bioreactor still 

predominates (Palomares & Ramirez, 2009). Thus, there is the need to study the 

cells’ physiological response in the large-scale stirred tank bioreactor. 
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Although for every biological process, the path to commercialisation is unique 

in many ways, there are still some common fundamental principles. The variables 

which affect biochemical dynamics and transport phenomena relate to bulk mixing, 

mass and energy transfer, foaming, gas-liquid interfacial area, and shear amongst 

others are universal (Marques et al., 2010; Noorman, 2011). On scale-up, they are 

ranked and selected based on how they affect the yield, quality, cost and purity of 

the intended process. Thus moving up in scale, the most important of these variables 

are kept close to optimum to ensure productivity, reproducibility and predictability.  

In most commercial bioprocesses, the following factor(s) is/are the most likely 

parameters to be constant on scaling up  -  volumetric mass transfer coefficient (kLa), 

volumetric power input and mixing time (Garcia & Gomez, 2009; Oldshue, 1966). 

This list highlights bioprocesses scale-up overdependence on the physical 

environment of the bioreactor, which has been implicated as one of the reasons why 

there is no universal model. Takors, (2012) suggested that a shift to using 

parameters strongly linked to biological properties might bring about a scale-up 

template. Such models should include the cell generation number, morphology and 

population heterogeneity.  

The interdependence of these standard bioprocess variables makes it 

impossible to replicate a small-scale bioprocess at the large-scale fully. For example, 

in the scale-up from an 80 L to 10,000 L bioreactor, Lara et al., (2006a) showed that 

if the volumetric power input were held constant, the energy input requirement would 

be 125-fold more and the circulation time will triple. In practice, this might not be 

sustainable, so engineering adjustments are typical. These make commercial 

bioprocesses an amalgamation of compromises, which may result in a suboptimal 

large-scale production environment. Thus, to future-proof success on scale-up, 
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scaled-down models are necessary for studying how the conditions of the industrial 

fermenters affect an organism. 

This work is limited to an aerobic fed-batch process. Hence, the capacity to 

transport oxygen to the growing cells will be emphasised in the following sub-

sections, while the two other conventional scale-up variables will be briefly 

highlighted.   

2.1.1 Volumetric mass transfer coefficient (𝒌𝑳𝒂) based scale-up  
 

Oxygen is an essential element in aerobic bioprocesses; it is typically 

introduced to the bioreactor by sparging air at the bottom of the bioreactor. All 

aerobic microorganisms need oxygen for growth, metabolism and maintenance, but 

the magnitude of demand is organism-specific (Büchs, 2001). The quicker a microbe 

utilises oxygen, the more difficult it is to replenish at an optimal rate, in a large 

aqueous environment. This is mainly because of oxygen’s poor solubility in water, 

which is approximately 7 mgL-1 at 35 °C and 1 bar. Thus, if an organism’s oxygen 

uptake rate (𝑂𝑈𝑅) is not properly considered on scale-up, a substantial part of the 

bioreactor may become oxygen limited as metabolic activity increases. Sandoval et 

al., (2005) work showed that the introduction of an oxygen-limited section in the 

fermentation using a recombinant strain of E. coli resulted in a specific growth rate 

reduction by 30 %, this example confirms the importance of oxygen in aerobic 

processes. Since the cultivation of aerobic microorganisms continually requires 

oxygen, information on the optimal oxygen transfer rate (OTR) is crucial for 

engineering design. The OTR is affected by a wide range of factors, some of which 

change in the course of any fermentation. These factors include – the physical 

properties of the fermenting medium, Oxygen mole fraction, power input, total 
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pressure and biomass concentration (Garcia & Gomez, 2009). In order to avoid a 

limiting oxygen environment, the OTR should be equivalent to or greater than OUR. A 

modified Damköhler number (𝐷𝑎) can be used to determine if oxygen availability is 

the limiting step in a bioprocess (Calik et al., 2004); this relationship is highlighted in 

Equation 2.1.  

 
𝐷𝑎 =

𝑂𝑈𝑅𝑚𝑎𝑥

𝑂𝑇𝑅𝑚𝑎𝑥
 

2.1 

If 𝐷𝑎 > 1, such a system can be said to oxygen limited, in a dynamic system. The 

ideal bioreactor condition would have a 𝐷𝑎 ≤ 1 for aerobic processes, before it can 

be assumed that the cells are able to utilise oxygen at their maximum potential. 

Regardless of the scale-up criterion selected it is still necessary to know the value of 

𝑘𝐿𝑎, as this gives an indication of the system’s efficiency in transferring oxygen from 

the gas to the liquid phase. Equation 2.2 shows both the relationship between the 

OTR  and OUR and the dissolved oxygen mass balance of a well-mixed batch 

bioprocess (Garcia et al., 2010a). 

 𝑑𝐶𝐿

𝑑𝑡
= 𝑂𝑇𝑅 − 𝑂𝑈𝑅 

2.2 

 where, 
𝑑𝐶𝐿

𝑑𝑡
 is the rate of change in oxygen accumulated in the liquid phase, all terms 

in Equation 2.2 have the same unit – (mol m -3 s-1). 

However, 

 𝑂𝑇𝑅 =  𝑘L𝑎(𝐶∗ − 𝐶𝐿) 2.3 

𝐶∗ is the saturated oxygen concentration at the gas-liquid interface and 𝐶𝐿 the 

concentration of oxygen in the liquid phase. The Equation 2.4 is derived by 

substituting Equation 2.3 into 2.2, 
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 𝑑𝐶𝐿

𝑑𝑡
= 𝑘𝐿𝑎(𝐶∗ − 𝐶𝐿) − 𝑂𝑈𝑅 

2.4 

For bioprocesses, the magnitude of the 𝑂𝑈𝑅 depends on the organism and its 

growth phase, for example, Pseudomonas putida has a high 𝑂𝑈𝑅, while 

Xanthomonas campestris has a low 𝑂𝑈𝑅 (García et al., 2000). The other well-known 

organisms, such as E. coli and C. glutamicum fall between these two extremes in 

their 𝑂𝑈𝑅 values (Stanbury et al., 1999) 

From Equations 2.3 and 2.4 the 𝑘𝐿𝑎 is linked to the 𝑂𝑇𝑅, which is closely 

related to the bioreactor’s physical properties. The magnitude of the 𝑘𝐿𝑎 is 

dependent on the total pressure in the bioreactor, the bubble size and the viscosity 

of the broth. To a lesser extent, temperature also plays a secondary but important 

role. When 𝑘𝐿𝑎 is used as a scaling-up criterion, there is an implicit assumption that 

it can be held constant. In practice, this is not possible due to the dynamic conditions 

which predominate in the bioreactor environment, as steady state is rarely achieved. 

The 𝑘𝐿𝑎 is a combination of two variables, 𝑘𝐿 (mass transfer coefficient) and 𝑎 

(specific interfacial area). The 𝑘𝐿𝑎 signifies the degree of resistance to transporting 

oxygen from the gas to the liquid phase, which is arguably constant in the course of 

a fermentation process (Garcia et al., 2010b). However, for 𝑎, it cannot be said to be 

constant, because it is a function of the gas hold-up time and bubble size, which 

varies all the time in the bioreactor. This is due to the changes in the medium 

(increasing viscosity) from the metabolic activities of growing cells. Hence, given this 

situation, the assumption that the bubble size distribution is uniform even in a small-

scale well mixed bioreactor is unrealistic. Therefore, at the large-scale, a non-

uniform bubble size distribution should be expected, due to the sometimes inefficient 

mixing situation in industrial fermenters (Lara et al., 2006a). It is also important to 
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note the even if all the physical conditions within a bioreactor are tuned to achieve a 

certain 𝑘𝐿𝑎, considerable system deviation may occur because of the biochemical 

reactions during fermentation. This is especially true in high cell density 

fermentations where a broth’s viscosity could substantially differ from its start-up 

value. These issues pose challenges to scaling up based on the maintenance of a 

fixed  𝑘𝐿𝑎.   

So far, models and empirical correlations from the literature for evaluating 𝑘𝐿𝑎 

have not been universally successful because of the complexity of different 

fermentation systems. These inadequacies have been attributed to differences in 

growth medium composition, changing biological properties, different process 

conditions, dissimilar vessel geometry and measurement errors (Garcia & Gomez,  

2009). Hence, the need to experimentally confirm the 𝑘𝐿𝑎 for every individual 

fermenter.     

The gassing-out method for deriving 𝑘𝐿𝑎 was used in this work. It was chosen 

over methods such as the Gas Phase Analysis Technique (Van’t Riet, 1979), 

Hydrazine Reaction Technique (Lara Márquez et al., 1994) and Isotope Krypton-85 

Technique (Pedersen et al., 1994) because of its simplicity, rapidity and reliability.    

The typical DO profile for the gassing-out method is illustrated in Figure 2.1. 

This procedure can be broadly divided into three stages. This first step is to aerate 

the medium until the DO reaches saturation with the air bubbles at C*. 



30 
 

T im e  (h )

D
O

C L

C
*

A ir  o n

N2 o n

1 2 3

 

Figure 2.1 A typical plot of the dissolved oxygen concentration vs. time of the gassing-out method in the 
experimental determination of 𝑘𝐿𝑎. 

In the next stage, the air is turned off, and N2 is turned on along with the agitation 

speed reduced to hasten the stripping out of the DO in the bioreactor, after that the 

air is turned back on until equilibrium is achieved. The last stage where the DO rises 

again is the region of interest and the slope of the red line in Figure 2.1 is estimated 

as the 𝑘𝐿𝑎. If there are no cells in the medium used for the gassing-out experiment, 

the Equation 2.5 satisfies the mass balance around oxygen transfer in the bioreactor 

at stage 3.   

 𝑑𝐶𝐿

𝑑𝑡
= 𝑘𝐿𝑎(𝐶∗ − 𝐶𝐿) 

2.5 

Equation 2.5 can be rewritten in such a way that only measured 𝐶𝐿 is needed to 

calculate 𝑘𝐿𝑎 as shown in Equation 2.6. 

 
𝐶𝐿 = −

1

𝑘𝐿𝑎
(

𝑑𝐶𝐿

𝑑𝑡
) + 𝐶∗ 

2.6 

From a linear regression analysis of the straight-line Equation 2.6, 𝑘𝐿𝑎 can be easily 

evaluated.  

In situations where one DO probe is deemed sufficient to describe the DO 

concentration within the bioreactor, measurements are internally consistent. 
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However, in large vessels, more than one DO probe is typically used to track the DO 

profile. These probe locations are fixed within a bioreactor so in a sense the 𝑘𝐿𝑎 

estimate is truly based on a localised DO value. For smaller vessels, it is reasonable 

to assume a homogeneous environment, thus the 𝑘𝐿𝑎 should be similar at any point 

within the bioreactor. However, for the large-scale bioreactor where more than one is 

used and mixing may not be efficient; it is important to bear in mind that the 𝑘𝐿𝑎 

estimate becomes more of a range or an average value, which may not reflect the 

true condition within the vessel. The success of the gassing-out method also 

depends on the oxygen probe response time, for if it is greater than 1/𝑘𝐿𝑎, this 

method becomes unreliable (Van’t Riet, 1979).   

2.1.2 Other scale-up factors 
 

 The following factors are sometimes considered in the scale-up of biological 

processes. 

Aerated power input (P) 

This an important factor to consider in the design of any bioreactor and as a 

scale-up variable. The energy as a result of the P causes the circulation of the fluid 

held within a vessel, usually by mechanical agitation (Ascanio et al. 2004). Michel & 

Miller, (1962) indicated that empirical correlation of Equation 2.7 was suitable of 

Newtonian fluids. 

 
𝑃 = 𝛼 ∗ (

𝑃0
2 ∗ 𝑁 ∗ 𝑇3

𝑄0.56
)

𝛽

  
2.7 

Where 𝑃0 = unaerated power input, 𝑁 = stirrer speed,  𝑇 = reactor diameter and 𝑄 = 

volumetric gas flow rate. The constants 𝛼 and 𝛽 depend on the stirrer type and 

configuration; for a single Ruston impeller 𝛼 and 𝛽 equals 0.783 and 0.459 
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respectively (Gogate et al., 2000). However, Equation 2.7 is not valid as 𝑄 

approaches zero or at extremely high values (Michel & Miller, 1962) 

Since the P causes turbulence and movement of the medium, it also 

influences the heat and mass transfer, mixing and circulation times.  In large 

bioreactors, the cost of mixing can be considerable; it is, therefore, imperative to 

design a reactor that incorporates mixing efficiency with as small a power input as 

possible. Scaling up with a constant P has been mostly favourable for processes 

which require little energy input, such as in commercial yeast fermentations 

(Marques et al., 2010). 

Mixing time (𝑡𝑚) 

Ideally, in the mixing of different components held within a bioreactor, one of 

the main aims is to ensure that uniformity is achieved quickly. It can be defined by 

Equation 2.8. 

 
𝑡𝑚 =

𝑉

𝑃𝑓𝑁𝑇3
 

2.8 

where 𝑉 = the medium volume, 𝑃𝑓 = the impeller pumping number, 𝑁 = stirrer speed 

and 𝑇 = impeller diameter.  

Therefore, if a bioreactor is well mixed, a sample drawn from any part of the reactor 

at any time, should be an accurate representation of the whole system. This makes 

the information about the time taken to homogenise the contents in a bioreactor a 

very useful design variable; longer mixing times may result in physical and chemical 

gradients (Chavan et al., 1975).  

One of the biggest challenges facing bioprocesses at the large-scale is in 

understanding how the industrial environment influences viable cells. The scale-
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down models can be useful in proffering answers at a reduced cost. Also, since the 

scaling up of every bioprocess is unique, the quest for a universal template can only 

be achieved if biological factors are actively included in future predictive models.    

 

2.2 Scaled-down studies of the large-scale environment 

 The scale-up of a bioprocess usually happens towards the latter part of product 

development; it indicates an intention to commercialise. However, further upstream 

process development, small-scale bioreactors are predominantly used for 

characterisation. The data accumulated from this exercise is then used to predict 

performance on scale-up. The accuracy of this prediction depends on how close the 

small-scale experimental environment is to that of the large-scale.  

 In most cases these estimates fall short; hence the decrease in performance on 

the scale-up of fed-batch fermentation processes remains a major issue facing the 

bioprocess industry. This problem emanates from the inherent weakness of 

conventional scale-up methods, which do not take into account the often 

inhomogeneous chemical and physical environment that cells are likely to 

experience in a large scale industrial process (George et al., 1993; Takors, 2012). In 

contrast, process optimisation, strain screening, and predictions on productivity are 

often based on data collected from small-scale well-mixed fermentations, where 

such inhomogeneities do not exist. It is, therefore, no surprise that initial productivity 

based on small-scale experiments fall short when applied to larger scales. The 

interaction of inefficient mixing, large hydrostatic pressure changes, and low gas 

solubility result in a situation, where temporal and spatial gradients predominate 

(Lara et al., 2006a). The bacterial cell's response to the presence of dissolved gas 

(oxygen and carbon dioxide), nutrients, metabolites and pH concentration gradients 
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are some of the primary reasons for losses in productivity seen at the large-scale 

(Amanullah et al., 2001; Gray et al., 1996; Xu et al., 1999).  

 Toma et al., (1991) implicated shear stress damage, related to the introduction of 

turbines for mixing, as a detrimental factor in fermentation productivity. These 

studies could have been misinterpreted because counter studies have shown that as 

long as cell dimensions are less than the Kolmogorov microscale of turbulence, 

(typically for industrial fermentations > 20 μm) shear damage is unlikely (Boswell et 

al., 2003; Chamsartra et al., 2005; Hewitt et al., 1998; Oh et al., 1989). 

 Over the years, the quest to understand the large-scale fed-batch environment 

and how a bacterium responds within has fuelled the development of powerful 

experimental and analytical tools. One such tool is the scale-down reactor (SDR), 

which stems from the compartmentalisation of the large-scale environment into 

sections of interest (George et al., 1993). Logically, any feed of a substrate should 

be added in the relatively well-mixed region of the impeller (area of highest energy 

dissipation rate), to reduce the magnitude of chemical gradients in large stirred tank 

reactors (George et al., 1993; Hewitt & Nienow, 2007). However, this is not so in 

most industrial practice; the surface fed-batch process still predominates because of 

its ease of operation, ability to prove cleaning, the high cost of retrofitting longer dip 

pipes and the industry’s aversion to change. For a large-scale aerobic process, with 

a gas sparger located at the base of the vessel and a surface feed of a highly 

concentrated growth medium, the region around the impeller and sparger is 

considered to be well mixed and aerated but with low levels of nutrients (such as 

glucose). This results in an area where the cell metabolic rate is also low. Whereas, 

the zone where the growth medium is fed, is poorly mixed with a limited DO and a 

high carbon concentration. If there is rapid cell growth here (the formation of organic 
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acids and stabilising proteins is increased), the DO concentration is even reduced 

further. In processes where the medium pH is controlled, the addition of a pH 

controlling agent (as the cell's response to a high nutrient/low oxygen concentration) 

leads to a localised region of high/low pH. Further away from these areas, towards 

the walls of the vessel, mixing is less efficient, creating a zone where both oxygen 

and nutrients are limited (Enfors et al., 2001). The bulk region where cells spend 

most of their time has an environment somewhere in between the feed addition zone 

and the well-mixed area of the impeller, so growth rates adjust accordingly. For a 

circulating cell to adapt to this constantly changing environment at the large-scale, it 

typically responds by redirecting its carbon flux to maintain homoeostasis and/or 

switch to alternative metabolic pathways expending resource that could have been 

directed towards the desired end product(s) (Enfors et al., 2001). 

 As already highlighted, one of the most economical ways of studying the large-

scale environment is by experimenting with scaled-down reactors. These models are 

believed to be, to an extent, an approximation of the large-scale environment. Thus, 

a cell’s response during cultivation in these experimental models may mimic its 

response in an industrial fermenter. Here, the different types of models will be 

discussed and categorised based on the number of compartments. Previous studies 

from these SDRs will also be reviewed. 

 

2.2.1 One-compartment SDR   
 

 Some of the earliest studies on mimicking large-scale reactors were done in a 

single small-scale reactor, usually the STR. If no thought is given to the final 

commercial scale environment, it is implicitly assumed that the small-scale well-

mixed reactor is a good model of the large-scale reactor. As this is not true, 
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researchers over the years have looked at ways of making SDRs a better 

approximation of the large-scale, e.g. by forcing time-varying operating or feed 

conditions in a single compartment STR. 

 Lin & Neubauer, (2000) studied the effect of glucose oscillations during a fed-

batch fermentation of a recombinant strain of Escherichia coli K-12 in a single STR. 

They simulated short-term glucose starvation by equally turning off/on the glucose 

pump intermittently at periods of 30 s and 2 min - no explanation was given for the 

selection of these time scales, although they may have been chosen because the 

majority of E. coli proteins are influenced within 1 – 3 min of a change in cultivation 

condition (Neubauer et al., 1995a). The product stability, cell death rate and the 

growth rate of plasmid-free cells of these simulations were then compared to a 

continuous glucose fed-batch control experiment. The 𝛼 – glucosidase yield declined 

by 80 % as the pump on/off period was increased from 30 s to 2 min, at termination 

(20 h after induction with Isopropyl β-D-1-thiogalactopyranoside (IPTG)). Although 

both simulations had the same concentration of 𝛼 – glucosidase (≈ 300 mgL-1) 3 h 

after induction, only the 2 min glucose on/off cycle showed a substantial decline untill 

(≈ 80 mgL-1) termination. They suggested that this large decrease in total 𝛼 – 

glucosidase concentration was due to the elevation of the alarmone ppGpp (a stress 

response), which may have links to known proteolytic enzymes such as C1pP. 

However, the lowest number of plasmid-free cells (cells poorly adapted to 

fermentation conditions) was seen at the shorter 30 s glucose on/off cycle. They 

suggested that the higher transient levels of ppGpp resulted in the better adapted 

cells from the fermentation of the 30 s glucose on/off simulation.  Furthermore, the 

dry cell weight (DCW) of the SDR with a glucose on/off period of 30 s experiments 
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was 50 % less than that of 2 min which confirmed that the cell stress response was 

higher at the 30 s feeding interval.  

 Neubauer et al., (1995a) used a similar SDR to investigate the profile of 

guanosine tetraphosphate ppGpp as a response to glucose oscillations in the fed-

batch cultivations of E. coli K-12 W3110. The results showed that glucose starvation 

for ≥ 30 s led to an elevated ppGpp concentration reaching 10-fold the level recorded 

in their control fermentation, but no DCW loss was observed (maximum DCW 

attained was ≈ 9.2 gL-1). However, Hewitt et al., (2007) later highlighted that the 

effect of glucose starvation in this strain did not occur until after a DCW of 18 gL-1 

had been achieved. 

 Schilling et al., (1999) investigated the mixing time effect on a lysine fermentation 

fed-batch process using a leucine-auxotrophic strain of Corynebacterium 

glutamicum. Their scaled-down model (mimicking a 10,000 L STR) was a 42 L STR 

with six Rushton stirrers and five cylindrical disks retrofitted to increase the mixing 

time (a 13-fold increase compared to a standard 42 L STR). The fermentation results 

from this scaled-down model indicated a 7 % and 12 % decrease in dry cell weight 

and lysine concentration respectively when compared to the control 42 L STR. A 

productivity decline, which was attributed to the reduced citrate synthase, aspartate 

kinase and phosphoenolpyruvate carboxylase enzymes activities, from the cells 

response to the presence of DO, substrate and pH gradients. 

 Suarez-Mendez et al., (2014) studied the short-term response of Saccharomyces 

cerevisiae CEN PK 113-7D to a glucose on/off cycle in a chemostat fermentation. 

Their experiment was based on a 20 s glucose on and 380-s glucose off block-wise 

strategy in an STR of 3.9 L working volume. The report indicated a 5 % decrease in 

DCW and a 2-fold increase in specific acetate production (which indicates an 
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elevated stress response), compared to the control chemostat fermentation. The 

pentose phosphate pathway, TCA cycle and the storage carbohydrate intermediates 

were also different, suggesting that the bacterial cells adapted to the glucose feed 

oscillations by modifying their metabolic pathway. 

 Thus, fluctuations in glucose concentration may result in changes in metabolic 

profile, improved robustness, reduced product quality and decreased DCW 

depending on the organism and type of fermentation.  

 The S. cerevisiae NCYC 1018 strain response to DO gradients was evaluated by 

Namdev et al. (1991). The following three different air supply strategies – 

continuous, fixed periodic and the Monte Carlo cycles were compared. They argued 

that the Monte Carlo-based cycle better represented the large-scale Circulation Time 

Distribution CTD compared to the fixed periodic oscillations. For the Monte Carlo 

simulation, the Circulation Time (CT) distribution curve was divided into 25 elements 

of equal probability, with each element representing a CT between 8 s and 44 s. This 

range of CT was chosen because they suggested that it was similar to that in a 100 

m3 STR. The total cycle time was selected at random from these 25 CTs, while the 

air was turned on for 5 s during each cycle. Their results showed that the continuous 

air supply fermentation achieved the highest DCW of all (14.8 gL-1 on average), 

while the Monte Carlo cycle saw a 16 % decrease in DCW and a slightly higher 

ethanol formation compared to the fixed periodic cycle. The increase in higher 

ethanol formation was attributed to DO limitation and fluctuation. They also 

highlighted that the difference seen between the Monte Carlo and fixed periodic 

cycle even with the same average CT indicated that the fermenting cells were also 

affected by the CTD. The response to oxygen fluctuations during the batch 

cultivations of a modified E. coli DH5𝛼 strain was investigated by Namdev et al. 
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(1993) using the Monte Carlo method as above. The Monte Carlo simulations 

showed a 50 % loss in plasmid copy number compared to the control batch 

fermentation (indicating an increased stress response), but neither loss in DCW nor 

yield of 𝛽-galactosidase was observed.  

 Cortés et al. (2005) compared the effect of DO oscillations of fixed on/off periods 

of 300 s, 600 s and 1200 s cycles in the batch fermentations of Kluyveromyces 

marxianus NRRL-Y1109 (no reason was given for the selection of these 

timeframes). These experiments were carried out in an STR of 1 L working volume. 

In comparing the 1200 s period of oscillating DO to the control (no DO oscillation), 

they reported no loss in DCW, but a 2.6-fold increase in ethanol and a 20 % 

decrease in the final 𝛽-galactosidase specific activity. This difference, they 

suggested was due to DO limitation which encouraged the cells’ fermentative 

pathway. The report also showed that for the 300 s DO oscillating cycle the 𝛽-

galactosidase specific activity increased by 12 % when compared to the control. 

They claimed that if the magnitude of DO fluctuation was low (< 300 s) it promoted 

better cell adaptation, which resulted in an increased 𝛽-galactosidase productivity. 

 The one compartment model is easy, quick and economical to set up. However, 

critics highlight that in these experiments all the cells are exposed to the same 

fluctuating values of DO and substrate concentrations, whereas in the large-scale 

fermenter different zones and CTD within the bulk flow are known to exist (Sweere et 

al., 1988). Also, one of the limitations highlighted by the above investigators was the 

difficulty in simulating a cyclic environment at shorter periods. Namdev et al., (1993) 

attributed the lack of oscillation in the DO within the 20 s cycle to the slow response 

of the probe. In studies conducted by Neubauer, Åhman, et al., (1995); Lin & 
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Neubauer, (2000) and Suarez-Mendez et al., (2014) where nutrients were 

periodically dosed, no cyclic trend was observed, but a linear profile was recorded.  

 

2.2.2 Two-compartment SDR 
 

This is currently the most widely-used setup for studying the inhomogeneous 

conditions at the large-scale. The two forms of this model will be discussed below. 

STR/PFR configuration 

This setup consists of an STR in series with a PFR and the cell growth 

medium circulated through both reactors; Figure 2.2 shows a simplified schematic of 

this setup. The STR environment is usually well mixed and uniform, while the PFR is 

the poorly mixed section where potential chemical and physical gradients may exist. 

 

 

 

 

 

 

Figure 2.2 A simplified diagram of an STR/PFR two compartment SDR. Residence Time Distribution (RTD)  

The cultivation conditions in the STR was different from that of the PFR (Figure 2.2). 

The STR working volume is usually the larger of the two reactors; it is where the cell 

spends the most time, hence the larger range in RTD. The ability to tightly control the 

cell mean residence time in the PFR, the relative ease of observing a cell 
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physiological change with respect to the distance travelled along the PFR and its 

flexibility, are some of the STR/PFR advantages. 

A two-compartment SDR was used to impose carbon (substrate - molasses) 

concentration oscillations during fed-batch fermentations of S. cerevisiae, which 

enabled George et al., (1993) to investigate the cells’ metabolic response to the 

oscillations. They combined an aerated STR with an oxygen-enriched PFR, to 

remove any effect of DO limitation from the study. The concentrated feed (molasses 

of 29.5 % w/w) was added either to the PFR or the STR in separate experiments. 

The PFR had a volume of 850 mL, while the STR volume was 15 L (no reason was 

given for the selection of these particular scales). Their simulation when the feed 

was added to the PFR showed a 6 % loss in the final DCW compared to a control 

fed-batch fermentation in just the STR. However, the claim of a higher ethanol yield 

(due to a higher rate of glycolysis) during their SDR simulation is debatable, 

because, in all experiments, its final concentration returned to zero. This 

disappearance of ethanol at the end of the process was attributed to evaporation, 

which is not possible as ethanol cannot only evaporate leaving behind an aqueous 

broth. George et al., (1998) went on to use the same SDR to further study the effect 

of molasses gradients on a Baker’s yeast fermentation and compared its 

performance to that in a 215 m3 bubble column reactor. The 𝜏𝑃𝐹𝑅 set at 60 s for their 

scaled-down reactor was claimed to match the mean circulation time of the large-

scale bubble column reactor. The investigators reported a 6 to 7 % loss in DCW 

when the SDR and the large-scale fermentations were compared to the well-mixed 

bench scale cultivation. They showed that ethanol production was higher in the SDR, 

especially during the exponential growth phase when it was ≈ 1.7 times that of the 

control. The study also highlighted that the gassing power of this yeast cell improved 
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when it was cultivated in a heterogeneous environment. This increased gassing 

power was recorded in both the SDR and the large-scale bubble column 

fermentation but not in the homogeneous small-scale STR.   

 Lorantfy et al., (2013) investigated the effect of limited oxygen conditions on a 

Pichia pastoris Mut+ SMD 1168 strain in batch fermentations. The PFR section was 

10 % of the 1 L STR compartment, and they tested the 𝜏𝑃𝐹𝑅 range from 1 min to 7 

min. In this configuration, the STR was aerated, but the air entrained in the broth 

before entering the PFR was eliminated. They showed that the cells’ maximum 

specific growth rate was much more affected (≈ 12 % loss in DCW at 𝜏𝑃𝐹𝑅 of 7 min) 

compared to the control batch process. They also linked the increase in acetate 

concentration to the increase in 𝜏𝑃𝐹𝑅 in the oxygen limited PFR.  

 Neubauer, et al., (1995) studied the response of an E. coli W3110 strain to 

oscillations of glucose and DO concentrations during fed-batch fermentations. The 

setup had a 10 L STR in series with a PFR of 860 mL, which had a constant 𝜏𝑃𝐹𝑅 of 

113 s (no justification was given for the selection of these values). Their paper 

indicated that when the concentrated glucose feed was added to the oxygen 

restricted PFR, a 24 % decrease in DCW and a 10-fold increase in acetate 

concentration were observed. This response was attributed to the localised high 

glucose concentration and DO limitation. The feeding profile used was constant, 

resulting in an ever-decreasing specific growth rate as the cell mass increased. This 

makes it difficult to compare performance across experiments, because the growth 

rate changes as the amount of glucose available decreases. Schweder et al. (1999) 

argued that the expression of stress genes can be used to monitor performance in 

large-scale bioprocesses. They showed this by comparing a SDR to a 30 m3 

industrial scale fermenter. The SDR consisted of an aerated 15 L STR (𝜏STR of ≈ 9 
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min) connected to an unaerated 0.695 L PFR (𝜏𝑃𝐹𝑅 of 54 s). The SDR was used to 

simulate both glucose gradients and glucose/DO gradients. A key finding from this 

work highlighted how quickly the E. coli W3110 strain responded to process stress 

such as localised high/low glucose concentrations and concomitant DO limitation. 

For example, they showed that these cells responded to a 7 °C increase in 

temperature from 35 °C to 42 °C within 13 s to 15 s. In their SDR experiments, they 

induced the synthesis of some of these stress mRNAs by circulating the broth 

through the PFR zone, which was high in glucose and low in oxygen. They then 

linked the ackA mRNA to the cell’s overflow metabolism (induced by high rates 

glycolysis), proU mRNA to the osmotic condition of the medium and frd mRNA to 

oxygen availability. Interestingly in all variations of their SDRs, the stress mRNA 

profiles were different to the 30 m3 fermenter. Although the difference in mRNA 

profiles indicated that their SDR was not a complete representation of the 30 m3 

STR, their work however showed that these mRNA profiles could be used to monitor 

and evaluate the physiological state of the bacterial cells. Hewitt et al. (2000) 

investigated E. coli W3110 response to glucose and dissolved oxygen gradients 

during fed-batch fermentations. The STR working volume started at 2.5 L rising to 4 

L upon termination, while the PFR volume was held at 0.54 L. Four scenarios were 

simulated by varying the entry points of both air and glucose. These simulations led 

to different degrees of cell physiological response. In one of the simulations where 

the glucose and base were introduced into the unaerated PFR with a 𝜏𝑃𝐹𝑅 of 50 s. 

They reported a 35 % decrease in DCW yield and a 15 % increase in viability, results 

which were similar to that in a 20 m3 fermentation. Based on this, the investigators 

concluded that this configuration best mimicked the large-scale. Nevertheless, this 

conclusion might be over simplistic, as there was neither data on the profile of other 
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metabolites or transcriptional enzymes to support such a conclusion, which would 

give better evidence on the similarity of the cells response in both systems. From the 

additional flow cytometry results, they were able to show the E. coli cell membrane 

integrity and potential was related to its growth phase and the cultivation 

environment. For example, they observed that in the 20 m3 fermentation, the 

population of healthy cells continually improved untill the end of the process, which 

was contrary to the well mixed small-scale situation. The authors inferred that 

process gradients somehow lead to better adapted cells, which improved viability as 

seen in the large-scale. They also showed that throughout the course of 

fermentation, healthy, depolarised and dead cells coexisted regardless of scale. This 

highlighted that the prevailing idea of a homogenous cell population even in a well-

mixed system is questionable. Bylund et al., (2000) studied the effect of glucose and 

DO gradients on protein quality during the fed-batch fermentations of a modified 

strain of E. coli W3110 in a two-compartment SDR. The SDR had a 7 L STR working 

volume, which increased to 9 L at the end, connected to a PFR of 0.44 mL with a 

constant 𝜏𝑃𝐹𝑅 of 24 s. Their results showed that after induction, formate rapidly 

accumulated in all reactors regardless of scale, but in the SDR it was twice that of 

either the 300 L pilot-scale reactor or the 7 L control. The DCW decreases in the 

SDR simulations ranged from 6 % to 10 %, which were attributed to the added stress 

of glucose and oxygen fluctuations. Oddly, the quality of the product (recombinant 

human growth hormone, rhGH) was highest in the SDRs, increasing on average by 

10 %. In their own words, they explained this by stating that the SDR conditions 

made the bacteria cell ‘imagined’ that it was constantly in a glucose rich environment 

due to the oscillations. However, if it is supposed that the SDR was correctly 

modelling those conditions in the 300 L STR as proposed by the authors, then the 
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quality of the product from these reactors should have been similar, which was not 

the case. Finally, they concluded that oxygen limitation triggered by glucose overflow 

was the critical parameter to rhGH productivity and quality. Junne et al., (2011) 

reported on the effect of glucose and oxygen oscillations on a non-sporulating 

Bacillus subtilis AS3 strain. The setup consisted of a 10 L STR connected to an 

unaerated 1.2 L PFR with a constant 𝜏𝑃𝐹𝑅 of 60 s. They observed a 6-fold and a 2-

fold increase in ethanol and arginine concentration respectively during the SDR 

fermentations. This effect was attributed to some unknown re-assimilation 

mechanism. In all experiments, the final DCWs were similar (≈14 𝑔/𝐿) and no 

decreases were recorded.  

 Amanullah et al., (2001) argued that if the addition of base/acid was 

introduced at the liquid surface of the large-scale reactor (controlled by pH probe(s) 

at different fixed locations) pH gradients could occur if the mixing time was long and 

metabolic activity high. They then went on to simulate pH gradients during the batch 

fermentations of B. subtilis AJ1992 strain by adding the base at the 50 mL PFR 

section of the SDR (𝜏𝑃𝐹𝑅 ranged from 30 – 240 s), while the 2 L STR had a working 

volume of 1 L. The bacterial cell response to the pH variations resulted in a 27 % 

decrease of the final product concentration (Acetoin and 2,3 – Butanediol) and a 

0.75 gL-1 accumulation of acetic acid from zero compared to the control. This 

response was attributed to the bacterial cells’ exposure to the PFR’s limited DO and 

fluctuating pH values. They reported no loss in DCW productivity, this may be 

because the final values attained were low ≤ 4.61 gL-1 and any effect too small to be 

observed via the drying out method as suggested by Hewitt et al., (2000)  

 Onyeaka et al., (2003) simulated three chemical gradients (pH, glucose & 

dissolved oxygen) during fed-batch fermentations using the same E. coli W3110 
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strain and the experimental setup of Hewitt et al., (2000). In one of the simulations 

where the glucose and base were added to the unaerated PFR section (𝜏𝑃𝐹𝑅 = 110 s) 

a 71 % decrease in the final DCW was observed, but the cell viability remained high 

(≥ 94 %). The substantial DCW loss was attributed to the high glucose, low DO 

concentrations and pH fluctuations of the PFR, which led to a predominant non-

proliferating dormant cell population. The effect of these same gradients were later 

investigated on a recombinant E. coli BL21 MSD3735 protein (AP50)-producing 

strain during fed-batch cultivations (Hewitt et al., 2007). The SDR was the same as 

used by Hewitt et al., (2000). The result indicated that the formation of the AP50 

protein exerted considerable stress on the cells, which led to a 70 % DCW decrease 

compared to the control where the formation of this protein was not induced. They 

also showed that when the cells were induced later on in the process, the growth 

rate was twice as high (a 9 h IPTG induction was compared to a 14 h), which meant 

the effect of AP50 expression was attenuated in the 14 h induction. This attenuation 

was claimed to be due to a reduction of IPTG concentration per cell. However, they 

did not quantify the actual AP50 protein levels, so could not show if the SDR 

simulations had any effect on productivity.  

 

STR/STR configuration 

The argument for this setup suggests that since chaotic mixing predominates in the 

large-scale vessel, it might best be mimicked by a system which has a similar CTD. 

Thus, proponents see the STR/STR configuration as a better choice, because in 

both compartments a broad range of RTD (residence time distribution) can be 

simulated under different uniform conditions (see Figure 2.3) (Limberg et al., 2016a). 
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The current influx of commercial parallel STR modules (such as the DasGip©) is set 

to make this configuration popular in future.  

 

Figure 2.3 A simplified diagram of an STR/STR two compartment SDR 

Oosterhuis et al., (1984) studied the impact of DO fluctuation on the 

fermentation of Gluconobacter oxydans to produce gluconic acid; the two connecting 

STRs used had working volumes which varied from 0.25 L to 1.6 L. Their results 

indicated that decreasing the 𝜏𝑆𝑇𝑅 in the aerated STR from 17 s to 6 s reduced the 

gluconic acid productivity by 60 %. They also noted irreversible cell damage when 

DO values exceeded 0.6 mmol L-1 in the simulations where pure oxygen was used to 

achieve high DOT values (> 80 %).       

The metabolic profile of a cadaverine-producing C. glutamicum DM1945 strain 

was investigated by Limberg et al., (2016b) under fluctuating conditions of oxygen 

and glucose gradients during fed-batch fermentations. Their setup consisted of an 

aerated STR of working volume 0.78 L connected to an unaerated STR of 0.2 L 

which had a 𝜏𝑆𝑇𝑅 of 3 min. There were two slightly different conditions simulated in 

the smaller STR. In one scenario, the DO was actively stripped with a N2/CO2 mix 

(anaerobic conditions), while in the other case (no gas stripping was done) the 

smaller STR was oxygen limited as its DO supply was from the trapped air bubbles 

STR 1 
• Well mixed 
• Uniform 

environment 
• Broad range cell 

RTD 
• Larger volume 

STR 2 
• Well mixed 
• Uniform 

environment 
• Broad range cell 

RTD 
• Smaller volume 
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coming from the larger STR. They reported no decrease in DCW and cadaverine 

productivity in all simulations investigated (for all cases, the final DCW reached was 

≈ 12 gL-1 and cadaverine productivity was ≈ 0.22 mmol g-1 h-1). Their work 

highlighted a significant alteration in the expression of 38 genes and 28 protein 

levels during the SDR experiments. They reported that the mRNA levels of L-lactate 

dehydrogenase (ldh) and malate dehydrogenase (mdh) increased on average 3.5-

fold and 2.8-fold respectively compared to the control. This suggests the cells were 

responding to the oxygen limited conditions in the smaller STR. However, this 

increase in ldh and mdh were only significant only when the trapped O2 in the 

smaller STR was actively stripped out with a N2/CO2 mix. There was no justification 

for actively stripping DO except for the need to elicit a stronger cell physiological 

response but doing so changes the dissolution rates of gas in the medium, which 

moves the SDR further away from the large-scale environment. They also argued 

that lactate produced in the smaller non-aerated STR was re-assimilated in the 

larger aerated STR. This argument is questionable because there was no mention of 

the glucose consumption rate. However, if the glucose feeding profile was 

exponential as they claimed, then at no point during the process was the glucose 

concentration too low in the larger STR, hence negating the bacterial cells need to 

re-assimilate lactate.  

Lara et al., (2006) reported on the transcriptional and metabolic levels of a 

modified E. coli W3110 (ATCC 27325) strain response to spatial dissolved oxygen 

gradients using an STR-STR configuration. The larger STR (0.8 L, 𝜏𝑆𝑇𝑅 = 33 s) was 

maintained under anaerobic conditions while the smaller STR (0.4 L, 𝜏𝑆𝑇𝑅 = 17 s) 

was maintained at a DOT of 10 %. In their batch cultivations, they observed a 30 % 

decrease in the specific growth rate but, a 2.4-fold increase in specific glucose 
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uptake, which indicates an increased cell maintenance requirement. The maximum 

concentration of lactate and succinate increased by 53-fold and 21-fold respectively 

in the SDR experiments. Their analysis of the various gene transcription profiles 

suggested that under oscillating DOT conditions the TCA cycle splits into two 

biosynthetic pathways. These consisted of a reductive branch producing succinyl-

CoA and an oxidative branch producing 2-ketoglutarate. This indicated that E. coli 

adapted to DOT gradients by repressing the cytochrome O oxidase gene, thereby 

leaving the cells to utilise the less energy efficient, but high oxygen affinity, 

cytochrome D oxidase for respiration.  

Sandoval et al., (2005) studied the effect of increasing the CT on a 

recombinant E. coli W3110 strain encoded for human proinsulin. Its response was 

quantified in term of DCW, productivity and by-products. Their experimental setup 

was made up of two STRs, an aerobic and an anaerobic compartment of 0.35 L and 

0.7 L respectively. The CTs were varied from 7 – 180 s, to mimic a worsening mixing 

scenario. They noted a 30 % and 94 % decrease in specific growth rate and 

maximum proinsulin concentration as the CT was increased to 180 s.  

The two-compartment model is currently the most popular setup amongst 

researchers for studying fermentation gradients at the large scale. This is due to its 

low cost, flexibility, ease of use and simplicity to mention a few. For example, top 

surface additions may be better represented in an STR/PFR setup, while for 

subsurface additions near the impeller, the STR/STR configuration. 
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2.2.3 Three-compartment SDR 
 

Recently, researchers have started using three compartment SDR models to 

represent different gradients within a large-scale fermenter.  A variant of this setup 

was used by Buchholz et al., (2014), see Figure 2.4.  

 

Figure 2.4 A simplified diagram of an STR/STR/STR three-compartment SDR. 

In carrying out batch fermentations, Buchholz et al., (2014) went on to simulate 

CO2/HCO3- gradients of the large-scale in this SDR which comprised of three STRs 

as shown in Figure 2.4. The transcriptional response of these oscillations on a C. 

glutamicum ATCC13032 strain was then studied. The setup was made up of a 25 L 

working volume STR and two 1 L STRs connected in series. These 1 L vessels were 

slightly pressurised to increase the dissolved CO2/HCO3- in the medium. This was 

done to mimic the increased dissolution rate of CO2/HCO3- due to the high 

hydrostatic pressure observed in some large-scale fermenters of high aspect ratio. 

They recorded no decrease in the specific growth rate and DCW yield, but 29 gene 

transcripts were altered. The most affected were cg0992 (a putative sulfate 

permease), cg0993 (a putative transcriptional regulator) and cg2810 (a symporter), 

which saw a 3.58-fold, 3.34-fold and 3.53-fold increase respectively. 
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Lemoine et al., (2015) compared the effect of dissolved oxygen and glucose 

oscillations on a different C. glutamicum (DM 1800) strain in a two and three-

compartment SDR, which consisted of an STR/PFR and an STR/PFR/PFR 

configuration respectively, see Figure 2.5 for this variant of the three-compartment 

reactor.  

Figure 2.5 A simplified diagram of an STR/PFR/PFR three-compartment SDR. 

In the three-compartment reactor, glucose was added to only one of the PFR, and 

both PFRs were unaerated. For the two-compartment reactor, the PFR (1.2 L) was 

unaerated, while the glucose was added to the aerated STR (10 L) section. All 

volumes remain the same as above, and the air was introduced at the STR. The 

feeding profile was constant at 0.0017 h-1 in all simulations. Their results showed no 

difference in both DCW and lysine productivity when both SDRs were compared. 

Some of the metabolites, such as fumarate, aspartate, acetate, and malate, showed 

no difference in their concentrations. Others such as glutamine, glycine, succinate 

and pyruvate showed slight differences, although experimental errors cannot be 

ruled out in this case, due to the low values involved (0 – 0.9 mmol). Also, the 

magnitude of experimental error was not indicated in their results to resolve this 

matter. 
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From the SDRs discussed thus far, it can be inferred that SDR/PFR setup is 

most popular amongst researchers. Not necessarily because it is the best, but it 

offers sampling flexibility which can be correlated to different residence times along 

the PFR and a tighter control on the cells’ residence time. This allows the nature of 

the fermenting cell physiology to be studied quickly. Making SDRs more complicated 

(such as the three-compartment models) does not add much value to the 

understanding of how growing cells respond to bioprocess heterogeneity, and 

increases the cost of experimentation. This is because similar information can be 

easily obtained from two-compartment models, which was inadvertently illustrated by 

Lemoine et al., (2015). However, what is important to note is that none of the SDRs 

highlighted here are representative of the environment at the large-scale, but at best 

are crude approximations. Our understanding of the large-scale STR is limited, 

especially in large vessels > 50 m3, where the relationship between growing cells 

and their environment is probably far from what is perceived currently. The 

interaction of factors such as gas dissolution rates (due to large hydrostatic 

pressures, where the solubility of gases could change by a factor of 2), gas stripping 

rates, metabolites production, changing viscosity (due to cell growth and product 

increase) are just a few issues which make the large-scale environment complicated. 

Also, the relationship between compartment volumes and mean residence times 

remains unresolved, as estimating the area of interest in relation to the vessel is 

difficult to measure directly. Thus, most researchers rely on CFD models (as done 

here) to infer this relationship. Even if these dead zones and gradient regions were 

measured directly, the dynamic environment of the large-scale STR makes it 

arduous to accurately monitor this relationship because it changes all the time during 

a process. Hence, simulating accurate models to mimic the hydrodynamics of the 
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large-scale is hard. However, this does not mean that the present range of SDRs 

configurations available cannot be used, but expectations should be realistic. Also, 

current SDRs can be used to select robust strains, design operational space, 

highlight stress indicators and document cell stress response to the bioprocess 

gradients discussed thus far.  

2.3 Enhancing Corynebacterium glutamicum productivity and achieving 

sustainability 

 

With the two biggest issues of the 21st century, global warming and rising 

human population, developing innovative manufacturing strategies is crucial. The 

switch from high to low carbon footprint processes can be both economical and 

benign to the environment. The rapid development of metabolic engineering, 

systems and synthetic biology is set to bring novel products to the market. This will 

be aided by creating genetically modified organisms (GMO) which will increase 

bioprocesses yields and reduce cost. Thus, making the biotech route a much more 

compelling alternative to current conventional means of energy, drug and material 

manufacture.  

Since the isolation of C. glutamicum in the 1950s, it has become an important 

industrial microorganism finding traditional use in the production of amino acids 

(Kinoshita et al., 1957). C. glutamicum is a Gram-positive, rod-shaped vegetative 

bacterium. Each year an increasing amount of research to manufacture essential 

novel products from exotic microorganisms is conducted. However, only a few of 

these products make it to market, and an even smaller number of microbes are used 

in commercial production. This makes industrial microorganisms a unique subset: 

they must be robust, malleable to modification and have a sustainable level of 

productivity. In order to increase the competitiveness of bioprocesses, it is necessary 
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to engineer microbes which can utilise cheap feedstocks to produce useful products. 

One of the many advantages of C. glutamicum is its ability to use a broad range of 

carbon sources. Naturally, it can use glucose, fructose and sucrose, but with gene 

modifications, this ability can be broadened. The recycling of agricultural, industrial 

and human waste as feedstock for bioprocesses would allay the public fears on the 

diversion of human food for producing products. Figure 2.6 indicates the current 

carbon sources utilised by C. glutamicum and its many metabolic pathways.  
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Figure 2.6 A simplified C. glutamicum metabolic pathway adapted from Dominguez et al. (1998) and Kind & 
Wittmann (2011) 

   

Figure 2.6 shows the range of carbon sources that can be metabolised into useful 

compounds. Some of the studies highlighted below will illustrate the potential of 

modifying C. glutamicum to convert low-value feedstocks to high-value products. As 
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the genome-editing technology improves (especially in the wake of the Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR) technique), current 

unmetabolisable carbon sources are set to be made usable, thereby increasing 

bioproduct portfolio.  

 Adachi et al., (2013) constructed a beta-glucosidase (BGL), which gave C. 

glutamicum the ability to degrade cellobiose to produce L-lysine. After four days of 

fermentation, the final titre value of L-lysine reached was 1.08 gL-1 from 20 g of 

cellobiose. Kawaguchi et al., (2006) showed that under oxygen-limiting conditions 

the modified C. glutamicum CRX2 produced predominantly lactic and succinic acid 

from xylose. This strain carrying both the xylose isomerase and xylulo-kinase gene 

from E. coli could also utilise any combination of glucose and xylose without 

exhibiting a diauxic effect. Rittmann et al., (2008) engineered a C. glutamicum strain 

that grew on glycerol to produce lysine. This was done by inserting glycerol kinase, 

glycerol 3-phosphate dehydrogenase and aquaglyceroporin genes from E. coli. 

These studies show C. glutamicum has the potential to metabolise a broad 

range of carbon sources. Presently, product yields from these alternative sources of 

carbon are low, but future work should be able to address this issue. The 

compounds in bold in Figure 2.6 will be discussed here in some detail, because of 

their significant current/future roles in the bioprocess industry.  

2.3.1 L-glutamate 
 

The salt form (monosodium glutamate) of this amino acid is a flavour 

enhancer used extensively in the food processing industry. The world annual market 

size was estimated to be over 2.9 million tonnes in 2014, and it is expected to grow 

annually at 7.5 % up till 2023 (Laura, 2014a). The pioneering work of Kinoshita et al., 
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(1957) showed that the C. glutamicum wild-type strain was a natural overproducer of 

L-glutamate. Their study isolated various bacteria, fungi and yeast to compare L-

glutamate production ability. C. glutamicum (formerly Micrococcus glutamicus) 

indicated the highest yield of 0.25 mole of L-glutamate per mole of glucose.  

Since Kinoshita and his co-workers study, different methods have been 

developed to modify and improve the productivity of C. glutamicum fermentations. 

The following discussion illustrates the long history of processes involving C. 

glutamicum, its malleability to process and genetic manipulations. These are the 

factors which have contributed to it being used here as a model organism. 

 Nunheimer et al., (1970) showed that the addition of penicillin to fermenting 

C. glutamicum MB-1645 led to a 2-fold increase in L-glutamate productivity within the 

first hour of its introduction. However, by the 6th-hour productivity was down by 45 

%, rapidly decreasing after that. They also showed that the accumulation of L-

glutamate concentration from 10 gL-1 was sufficient to result in a 25 % decline in final 

titre. Marquet et al., (1986) studied the effect of the surfactant (lauryl amine) on an 

industrial strain of C. glutamicum during fed-batch fermentations. They noted that the 

addition of lauryl amine during the cells’ exponential growth phase led to a 13-fold 

increase in L-glutamate (final titre 100 gL-1 after 30 h) compared to fermentations of 

either biotin limitation or penicillin addition. They then suggested that the addition of 

lauryl amine resulted in a leaky cell membrane, hence the increase in productivity. 

Delaunay et al., (1999) argued that although the addition of surfactants led to higher 

L-glutamate titre, problems of sterilisation, foaming and purification were major 

drawbacks. Thus, a temperature-sensitive C. glutamicum 2262 strain was then 

constructed which when induced by a temperature increase from 33 °C to 39 °C in 

the stationary phase of its growth cycle, a final L-glutamate concentration of 85 gL-1 
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after 24 h was achieved. This straightforward and cheap method compared 

favourably to other studies which utilise surfactant to increase productivity without 

the associated disadvantages. Hoischen & Kramer, (1990) suggested all methods 

used in improving L-glutamate productivity altered C. glutamicum’s surface structure, 

which resulted in a leaky cell membrane. However, Nakamura et al., (2007) later 

showed that the reason behind these improved yields was due to the alteration of the 

NCgl1221 gene which encodes an L-glutamic acid transporter and not due to a leaky 

cell membrane  

2.3.2 L-lysine 
 

This essential amino acid is mainly used in the agricultural industry, as a feed 

additive in swine and poultry farming. Lysine is a cheaper/better alternative to 

soybean, blood and bone meal for animal nutrition. The global market for lysine was 

projected to be over 1.9 million tonnes in 2014, and at an estimated annual growth of 

6 %, it is expected to reach 3 million tonnes in 2023 (Laura, 2014b). Most of the 

world’s production of L-lysine is via the L-aspartate branch of the C. glutamicum 

metabolic pathway, as shown in Figure 2.6. 

 Georgi et al., (2005) demonstrated that the overexpression of the fructose-1,6 

bisphosphatase gene in a C. glutamicum DM1730 mutant doubled lysine yield on 

sucrose. During the batch fermentation of the C. glutamicum JVO1 strain, Van 

Ooyen et al., (2013) showed that the addition of proline improved glucose uptake 

rate and lysine productivity by 14 and 29 % respectively. Eggeling et al., (1998) 

highlighted that upregulating the dihydrodipicolinate synthase enzymes helped 

redirect the carbon flux. This improved lysine formation by 23 %, but the specific 

growth rate of C. glutamicum ATCC13032 was concurrently reduced by half. 
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Blombach et al., (2009) suggested that the deletion of the ilvB gene, which is 

responsible for the activation of acetohydroxy acid synthase (AHAS), leads to 

increased lysine production. On introducing the modified AHAS to two lysine 

producing strains C. glutamicum DM1729 and DM1933, final concentration rose by 

43 % and 36 % respectively. Becker et al., (2011) completely re-engineered a C. 

glutamicum ATCC 13032 strain to achieve one of the highest lysine titres ever 

published (120 gL-1) during fed-batch fermentations. This was done by adopting 12 

genome-based changes to the genes encoding important enzymes, which optimised 

the redirection of the carbon flux to lysine formation. 

2.3.3 Succinic acid 
 

Succinic acid is an important compound that has a broad range of 

applications in the chemical, food, pharma and the cosmetics sectors, to mention just 

a few. Currently, it is predominantly produced via a petrochemical synthesis route. In 

2013, the global demand for bio-succinic acid was 51,000 tonnes; this is projected to 

rise to 593,400 tonnes in 2020 (SpecialChem, 2014). Okino et al., (2008) 

constructed a C. glutamicum strain which upregulated the gene encoding pyruvate 

dehydrogenase and downregulated the production of L-lactate dehydrogenase. This 

modified strain achieved high succinic acid titres (83 – 146 gL-1) comparable to high 

performers such as A. succiniciproducens (50 – 84 gL-1). They also showed that the 

succinate yield was dependent on the concentration of bicarbonate in the medium, 

rather than the available glucose. Litsanov et al., (2012a) highlighted that side 

product formation (acetate and lactate) during the anaerobic batch fermentation of C. 

glutamicum could be reduced if genes responsible for acetate and lactate synthetase 

were knocked out. This led to a final modified strain C. glutamicum BOL-3, which 

improved succinate yield by 20 %, but kept side product yields ≤ 0.1 mol per mol of 
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glucose. Litsanov et al., (2012b) argued that if succinate was produced in all stages 

of the cell’s growth cycle aerobically, productivity was sure to improve. The final 

constructed C. glutamicum recombinant had deleted succinate dehydrogenase, 

acetate and lactate synthase genes. It also overexpressed the pyruvate carboxylase 

and phosphoenolpyruvate carboxylase enzymes which resulted in an 80 % increase 

in succinate final titre and an 82 % decrease in final acetate concentration compared 

to C. glutamicum Δsdh. Zhu et al., (2013) improved succinate aerobic productivity by 

engineering a strain which had the acetyl-CoA synthetase from Bacillus subtilis and 

an upregulated citrate synthase enzyme. This modified C. glutamicum ZX1 

(pEacsAgltA) showed a 2.6-fold specific succinate productivity increase and no 

acetate production compared to C. glutamicum ΔsdhCAB. 

2.3.4 1,2-Propanediol  
 

This compound otherwise known as propylene glycol has applications in the 

pharmaceutical, plastic, food, chemical, and the cosmetics industry. Its annual 

demand surpasses 1.2 million tonnes, with most of it used in the chemical industry 

for the production of unsaturated polyester resins (Saxena et al., 2010). Niimi et al., 

(2011)  showed that 1,2-propanediol could be produced from C. glutamicum RP3 by 

expressing the methylglyoxal synthase and glycerol dehydrogenase genes taken 

from E. coli. It also overexpressed some of the aldo-keto reductase activating genes, 

which resulted in 25 mM of 1,2-propanediol. Siebert & Wendisch, (2015) further 

engineered this C. glutamicum RP3 strain by including the alcohol dehydrogenase 

gene from E. coli and deleting the endogenous genes dihydroxyacetone phosphate 

phosphatase and lactate dehydrogenase. This improved strain showed a further 1.5-

fold increase in final 1,2-propanediol titre. 



61 
 

2.3.5 Cadaverine  
 

This short-chained aliphatic amine, also known as diaminopentane, is used in 

both the chemical and polymer industry. Its annual production exceeds 1.6 million 

tonnes (Lee et al., 2011). One use of cadaverine is in the bio-based polyamide PA 

5.10, which is both less dense and hygroscopic compared to the petrochemical-

based PA 6. This makes it superior in applications where low weight and structural 

stability are of importance (Thielen, 2010). 

Mimitsuka et al., (2007) first reported the production of cadaverine from C. 

glutamicum. They engineered a recombinant strain by substituting the L-homoserine 

dehydrogenase gene for the L-lysine decarboxylase gene from E. coli to achieve a 

yield from glucose of 0.09 mol/mol. Kind et al., (2010) amplified the pyruvate 

carboxylase encoding gene, and deleted the phosphoenol pyruvate carboxykinase 

gene; by also overexpressing most of the genes that converted L-aspartate to 

cadaverine, a yield of 0.2 mol/mol on glucose was achieved. However, when they 

cultivated this microorganism in the presence of pyridoxal (a lysine decarboxylase 

cofactor), this yield increased by 50 %. The concurrent accumulation of N-

acetyldiaminopentane was rectified by deleting the diaminopentane 

acetyltransferase gene in their final recombinant, C. glutamicum DAP-4 strain. This 

strain then showed a further 11 % increase in cadaverine yield on glucose. Li et al., 

(2014) highlighted one other obstacle to improving cadaverine productivity in C. 

glutamicum as the transport from the cytoplasm to its exterior. They constructed a 

strain, C. glutamicum CDV-2, which had the lysine-cadaverine antiporter encoding 

gene - CadB from E. coli. After that the cadaverine secretion rate improved 

significantly, resulting in a 30 % yield increase. These compounds mentioned so far 

are just of few examples of C. glutamicum’s potential and importance to the biotech 
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industry. In time, more novel compounds will be discovered, and C. glutamicum will 

share in the role of bringing these products from laboratories to the marketplace.  

2.4 Conclusion 

In the preceeding sections, the most important challenges of scaling up 

bioprocesses have been discussed. For aerobic processes the efficient transport of 

oxygen from the medium to the cell is crucial, hence the importance of knowing a 

bioreactor’s 𝑘𝐿𝑎 (other scale-up factors were also highlighted above). The 

compromises made in the engineering of large-scale fermenters (due to cost 

implications) creates a non-uniform environment where dead zones and 

physical/chemical gradients could exist. The understanding of how a bacterial cell 

will respond to the environment of typical industrial bioreactors is necessary if scale-

up is to be successful. Thus, there is need to replicate the large-scale environment 

economically; the SDRs highlighted here grants the ability to do this. Albeit a crude 

approximation, it is still useful for prying information on how a cell responds to some 

known fermentation gradients, which may occur in large bioreactors. C. glutamicum 

was chosen as a model organism for this work because of its long history as a 

successful industrial microorganism and its safety upon genetic modification. A few 

commercial products derived from the fermentation of C. glutamicum were discussed 

to illustrate this organism’s potential. It also shows that the fate of the future 

biotechnological industry is intertwined with the success of  deciphering the 

physiology of these important industrial microorganisms.  

The following Chapters will try to characterise and illustrate how a bacterial 

cell (C. glutamicum) reacts to some of these large-scale gradients using the 

STR/PFR compartment reactor. Hopefully, this approach can be used as a template 

for developing new bioprocesses.   
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CHAPTER 3 

3 Materials and methods 

On receipt of the cell lines to be studied from the Institute of Bio- and 

Geosciences, IBG-1: Biotechnology, Julich, Germany (Prof. Marco Oldiges 

Laboratory), preliminary shake flask experiments were carried out to confirm growth 

and product titres. Once this proved positive for our product of interest (lysine & 

cadaverine), a set of controlled batch experiments were scheduled to understand the 

bacterial cell growth and product kinetics. The relevant growth parameters were then 

used to evaluate an exponential feeding profile. This feeding profile was then 

employed in fed-batch processes to cultivate the cells to high densities; this was 

done to increase productivity, reduce energy footprint and to find a reference from 

which a two-compartment reactor system could be compared to. After this control 

fermentation was established, fermentation gradients were then simulated in the two-

compartment reactor system, and the magnitude of the cell's response quantified. In 

quantifying the physiological response of both strains, a toolbox of conventional 

microbiological assays was employed. In some cases, new ones had to be 

developed, such as the HPLC assay.  

3.1  Organism strain 

The two bacteria used for this study were Corynebacterium glutamicum 

DM1945 and Corynebacterium glutamicum DM1945 Δact3 Ptuf-ldcC_OPT 

(abbreviated, C. glutamicum DM1945x3). The latter strain (based on the lysine 

producing parent strain C. glutamicum DM1945) was genetically modified by 

insertion of the lysine decarboxylase ldcC gene from Escherichia coli. This is a gene 

responsible for the decarboxylation of intracellular lysine to extracellular cadaverine. 
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These strains of C. glutamicum were received from the Institute of Bio- and 

Geosciences, IBG-1: Biotechnology, Julich, Germany (Prof. Marco Oldiges 

Laboratory). 

3.2 Medium composition 

The inoculum medium (for shake flask cultivations) contained 30 g/L of Oxoid 

Tryptone Soya Broth (TSB) (Oxoid, UK) in deionised water. The TSB complex 

medium is well known to support the growth of many fastidious microbes. Table 3.1 

highlights the composition of the TSB medium.   

Table 3.1 TSB medium composition 

 

The TSB medium was used for cultivating the seed, which inoculated the STR in all 

investigations. However, the medium used for the small-scale bioreactor batch 

fermentations was the CGXII synthetic medium (Table 3.2).  

 

 

 

 

Compound Concentration Diluent 

Casein peptone 17 gL-1 Deionised water 

Soya peptone 3 gL-1 Deionised water 

Sodium chloride 5 gL-1 Deionised water 

Dipotassium hydrogen phosphate 2.5 gL-1 Deionised water 

Glucose  2.5 gL-1 Deionised water 
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Compound Concentration Diluent 

Glucose 10 gL-1 Deionised water 

(NH4)2SO4 20 gL-1 Deionised water 

Urea 5 gL-1 Deionised water 

MgSO4 • 7 H2O 0.125 gL-1 Deionised water 

KH2PO4 1 gL-1 Deionised water 

K2HPO4 1 gL-1 Deionised water 

*Protocatechuic acid 1 mL L-1 CGXII medium 

*CaCl2 • 2H2O 1 mL L-1 CGXII medium 

*Biotin 1 mL L-1 CGXII medium 

*Trace elements (see 
composition in Table 3.3) 

1 mL L-1 CGXII medium 

Table 3.2 CGXII medium composition, * indicates that stock solutions of these components were made before 
addition to the medium. 

 

Both the TSB and some of the CGXII medium components were sterilised by 

autoclaving at 121 °C for 15 min; however, the glucose was heat sterilised 

separately to avoid the Maillard reaction. * Highlights additional components that 

complemented the CGXII medium (Table 3.2), these supplements were made up in 

separate stock solutions (Table 3.3). They were filter sterilised via a 0.22 µm syringe 

filter before being aseptically added to the CGXII medium matrix done in the BioMAT 

II biological safety cabinet (C.A.S, UK).     
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Compound Concentration Diluent 

Protocatechuic acid 30 gL-1 1 M NaOH 

CaCl2 • 2H2O 13.25 gL-1 Deionised water 

Biotin 0.2 gL-1 1 M NaOH 

Trace elements 
 

FeSO4 •7H2O 
MnSO4 • H2O 
ZnSO4 • 7H2O 
CuSO4 • 5H2O 
NiCl2 • 6H2O 

 

 
 

10 gL-1 
10 gL-1 
1 gL-1 

0.313 gL-1 
0.02 gL-1 

 
 

1M HCl 
1M HCl 
1M HCl 
1M HCl 
1M HCl 

Table 3.3 Stock solutions of supplements added to the CGXII medium 

 

The diluent of either 1 M NaOH or 1 M HCl was used when deionised water could 

not sufficiently dissolve the component. For the fed-batch fermentations, the medium 

components as stipulated in Table 3.2 & 3.3 were used on start-up of the process. 

However, the feed addition medium utilised in the latter part of these fermentations 

was different (Table 3.4).   
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Compound Concentration Diluent 

Glucose 620 gL-1 Deionised water 

(NH4)2SO4 40 gL-1 Deionised water 

Urea 10 gL-1 Deionised water 

MgSO4 • 7 H2O 0.25 gL-1 Deionised water 

KH2PO4 2 gL-1 Deionised water 

K2HPO4 2 gL-1 Deionised water 

*Protocatechuic acid 2 mL L-1 Addition medium 

*CaCl2 • 2H2O 2 mL L-1 Addition medium 

*Biotin 2 mL L-1 Addition medium 

*Trace elements 2 mL L-1 Addition medium 

Table 3.4 Feed addition medium composition, * indicates that stock solutions of these components were made 
before being added to the medium. 

 

The same aseptic technique was also used when the supplement was being added 

to the feed addition medium. All the chemicals used here for all medium preparations 

were of reagent grade.   

 

3.3  Inoculation preparation 

On receipt, the cells were stored at – 80 °C in the MicrobanksTM preservation 

phials (Pro-Lab Diagnostics, UK). The inoculum was prepared by streaking a bead 

from a cell bank onto a Tryptone Soya Agar (TSA) filled plate (Oxoid, UK), and 

incubated for 48 h at 30 °C. After that, a viable colony was picked and transferred to 

an unbaffled Erlenmeyer flask containing 150 ml of sterile TSB medium. The TSB 
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containing flask was then cultivated for 13 h in an Innova® incubator shaker 

(Eppendorf, USA) at 170 rpm, and 30 °C. On termination and transfer to the small-

scale bioreactor, the DCW was approximately 1 gL-1. This indicated that the 

microbial culture in the shake flask was somewhere between late exponential to 

early stationary growth phase before transfer. 

3.4  Stirred tank reactor setup 

The stirred tank reactors (STR) used for the batch and fed-batch 

fermentations were both the 1 L and 5 L double jacketed Biostat B plus vessels 

(Sartorius, Germany), see Appendix 1 for a detailed overview. These reactors were 

made of glass, equipped with pH EasyFerm Bio (Hamilton, Switzerland), VisiFerm 

DO (Hamilton, Switzerland) and antifoam (Sartorius, Germany) probes. The double 

jacketed 1 L STR was fitted with two Rushton turbines and three baffles. It had a 

height of 20 cm, internal diameter 11 cm, the distance from the vessel base to the 

lower impeller 2.6 cm, the diameter of the impeller 4.5 cm, and height of impeller 1.0 

cm (Figure 3.1). While the double jacketed 5 L STR also had two Rushton turbines 

and baffles, its height was 34.5 cm, internal diameter 16 cm, clearance distance 

between the reactor’s bottom and the lower impeller 7.6 cm; the diameter of the 

impeller 6.4 cm with a height of 1.4 cm (Figure 3.2).  

 

 

 

 

 

Figure 3.1 A simple overview of the external dimensions of the 1 L STR 
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Figure 3.2 A simple overview of the outer aspects of the 5 L STR 

 

The fermentation working volumes for both the 1 L and 5 L vessels were 0.6 

and 3 litres respectively. The 𝑘𝐿𝑎 in both STRs was calculated as the slope of the 

linear Equation 3.1 (a modified version of Equation 2.5), using the gassing-out 

method (Enfors 2011).  

 ln(𝐷𝑂𝑇′ − 𝐷𝑂𝑇) = −𝐾𝐿𝑎(𝑡 − 𝑡0) + ln(𝐷𝑂𝑇′ − 𝐷𝑂𝑇0) 3.1 

In Equation 3.1, 𝐷𝑂𝑇 represents the dissolved oxygen tension at any time - 𝑡, 𝐷𝑂𝑇′ 

the equilibrium value at maximum rate of air aeration and 𝐷𝑂𝑇0 the value after 

stripping the vessel’s dissolved oxygen with nitrogen at the start of experiment time - 

𝑡0. The 𝑘𝐿𝑎 for the 5 L and 1 L STRs were 170 /h and 100 /h respectively. 
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3.5  Two-compartment reactor setup 

This study used a two Compartment Scaled-Down Reactor (SDR) set up, 

comprising a plug flow reactor (PFR) connected in series to a STR. Figures 3.3 & 3.4 

show the schematic and pictorial representations of the SDR setup used in all scale-

down experiments done here. The PFR was fabricated in-house (see Appendix 2 for 

detailed engineering design); it was made of stainless steel and had a length and an 

internal diameter of 165 cm and 1.5 cm, respectively. At the PFR inlet, mid-point and 

outlet, pH and DO probes were positioned to monitor the fermenting conditions along 

the length of the PFR (Figure 3.3). There were 96 mixing elements along its length to 

aid radial mixing and to enhance plug flow (Figure 3.4). 

 

 

 

 

 

 

 

 

Figure 3.3 A schematic representation of the SDR experimental rig 

 

 

 

STR  

Medium return 

tubing 

Medium exit 

tubing  

Pump    PFR pH/feed      

injection points 

  Sampling 

point 

  Sampling 

point 

DO/pH 

probes 

PFR 

Gas 

inlet  



71 
 

 

Figure 3.4 A pictorial representation of the SDR experimental rig 
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The PFR had a total volume of 300 mL; this ranged from 10 % - 50 % the total 

working volume of the STR depending on the simulation investigated. The medium 

was recirculated at volumetric flow rates (𝑄𝑟) of 5.33 mL/s, 2.67 mL/s and 1.07 mL/s 

by a 100-series peristaltic pump (Watson-Marlow, UK) to achieve a cell mean 

residence time in the PFR (𝜏𝑃𝐹𝑅) of 1, 2, and 5 min respectively. The controller in all 

experiments was located in the STR section. The pH and DOT were controlled and 

monitored in the STR, but only monitored in the PFR. The active aeration of the SDR 

occured only at the STR in all experiments.Tthe PFR was insulated in polystyrene to 

minimise heat losses to the surroundings (Figure 3.5), while the STR temperature 

was regulated by heating coils and a cooling water system. 

 

Figure 3.5 A pictorial representation of the PFR  
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pH probes were located along the length of the PFR and in the STR. 

However, the broth’s pH value was controlled from the STR by the addition of 4 M 

NH4OH (base) via its inlet point. In investigations where high pH gradients were to 

be induced, this base was instead added at the PFR inlet point. There was only one 

air inlet port, which was located at the STR. The DO was controlled by sparging the 

medium with compressed air and air blended with pure oxygen when the growing 

cells’ demand for oxygen increased.  

 The sterilisation of the STR was straightforward; it was autoclaved at 121 °C 

for 20 min. On cooling, all loose tubing and valves were coupled aseptically. 

However, for the PFR because the length was longer than the autoclave, it had to be 

taken apart before sterilisation. It was split into four sections (Figure 3.5), this was 

demarcated by the sampling ports (Figure 3.4).  The exposed ends of these sections 

were pached with cotton wool, and aluminium foil, which was secured with autoclave 

tape to avoid any cross contamination when recoupling the sections. It was 

autoclaved at 121 °C and held for 15 min due to its smaller volume. On completion of 

every fermentation, the discard cycle was 122 °C for 25 min before the spent broth 

was poured down the drain with a copious amount of water.     

3.6  Bioreactor cultivation conditions 

The two fermentation processes carried out in the bioreactors were batch and 

fed-batch. For the comparative/growth kinetics study of C. glutamicum DM1945 and 

the modified C. glutamicum DM1945x3, the batch process was used. These batch 

fermentations took place in the 5 L STR, and lasted for 24 hours. The pH was 

controlled at 7 by the addition of 4M NH4OH. The DOT was maintained ≥ 40 %; this 

was achieved by varying the agitation rate (100 rpm – 800 rpm) since the air 
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sparging rate was held constant at 1.5 vvm. The temperature of 30 °C was kept 

constant by cooling water held within the double-walled STR. 

However, for the STR only and SDR experiments, the cultivation conditions 

were slightly different. The fed-batch process occurred in both the one-compartment 

STR and the two-compartment reactor. These fermentations all began as batch 

processes in the STR. The feeding (for both the STR only and SDR experiments) 

and recirculation (for the SDR experiments) between the STR and PFR commenced 

at 8 h, when the DCW concentration had reached ~ 1 g/L. The fermentations were 

carried out at a temperature of 30 °C, and the impeller speed was set at 800 rpm. 

The air was constantly sparged at a rate of 1.5 vvm to maintain a DOT of ≥ 40 %. 

However, during the latter part of the process, gas blending with pure oxygen was 

initiated when the cells reached high densities (DCW > 25 g/L). The pH of 7 was held 

by the controlled addition of 4 M NH4OH. To quantify the amount of feed needed to 

sustain a cell growth rate of 0.1 /h during a fed-batch process, Equation 3.2 was 

used. 

 𝐹0 =
𝜇

𝑆 ∗ 𝑌𝑥/𝑠
∗ (𝑋0𝑉0) ∗ 𝑒𝜇𝑡 3.2 

Where 𝐹0 = feeding flow rate at t, (L h-1), 𝜇 = intended cell growth rate (/h), 𝑆 = feed 

glucose concentration (gL-1), 𝑋0 = DCW at t (g L-1), 𝑉0 = volume at t (L), 𝑡 = time (h), 

𝑌𝑥/𝑠 = yield of biomass on glucose (gg-1), data derived from past batch studies. 

This exponential feeding flow rate profile was adhered to, until the termination of all 

fed-batch fermentations, thereby inducing a 𝜇 of 0.1 h-1. This low µ was adopted to 

minimise side products attributed to a high rate of glycolysis. George et al., (1993) 

had highlighted that a high 𝜇 (due to high glucose concentration) would reduce the 
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yield of yeast cells to achieve high cell density in a fed-batch fermentation and 

Onyeaka, Nienow, and Hewitt, (2003) also showed this to be the case for E. coli.  

3.7 Bulk cell measurements methods 

The following analytical methods below, categorised as bulk cell 

measurement techniques were used in quantifying C. glutamicum DM1945  and C. 

glutamicum DM1945x3 physiological response to the various simulations 

investigated. The response derived from these measurements are average values, 

which gives an overview of the cell performance. Hence, if there are deviating cell 

responses from a sub-population, this can be easily lost by averaging out. This is 

why it is best practice to complement the bulk cell measurements with single-cell 

measurements (as employed here). The combination of these techniques improves 

the chance of identifying a deviating cell sub-population. The majority of the bulk cell 

measurement techniques are relatively accurate, easy and economical, hence their 

popularity. The techniques used here to quantify fermentation performance are 

discussed as follows. 

Dry cell weight 

The growth of cells was monitored by quantifying the concentration of the dry 

cell weight per litre. These values were derived by centrifuging a 5 mL sample at 

4000 G and 4 °C for 10 min; the resulting precipitate was then washed and re-

centrifuged under similar conditions, after that it was allowed to dry at 80 °C for 48 h 

before weighing.  
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Glucose and lactate concentrations 

A 1:10 dilution of the cell sample in a filtered (via a 0.22 µm syringe filter) 

phosphate buffered saline solution was injected into the 2300 STAT PlusTM (YSI, 

USA) to analyse glucose consumption and lactate production. This analyser was 

fitted with a glucose and a lactate membrane housed in an injection chamber. When 

the analytes from the fermentation sample pass through these membranes, they 

come in contact with an immobilised oxidase enzyme. The oxidation reaction from 

this contact results in the production of hydrogen peroxide (H2O2). Equation 3.3 

illustrates an example in which glucose is the analyte and GOx the oxidase enzyme. 

 

This hydrogen peroxide is then oxidised at the platinum anode (which is stacked next 

to the membrane) to produce electrons (see Equation 3.4). There is a steady-state 

response when a dynamic equilibrium is reached; at this point the rate of H2O2 

production and the rate at which it leaves the immobilised glucose enzyme is 

constant. The electron flow (current) is linearly proportional to the steady-state 

concentration of H2O2, and, therefore is correlated to the analyte concentration. 

 

The calibration of 2300 STAT PlusTM was carried out by using a known dual 

standard, 2.5 g/L of glucose and 0.5 g/L of lactate supplied by the manufacturer 

(YSI, USA). The procedure for measurement was to run the manufacturers supplied 

standard calibration solutions before the samples.    
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Cadaverine and lysine quantification 

A high-performance liquid chromatography (HPLC) series 200 (Perkin Elmer, 

USA) fitted with a 265, 4.8 nm UV/Vis detector was used to determine both 

cadaverine and lysine concentrations. A pre-column Raptor™ARC-18 (Restek 

Corporation, USA) derivatisation reaction was needed for cadaverine and lysine 

quantification. 150 µL of 30 mM 9-fluorenylmethoxycarbonyl chloride (FMOC) in 150 

µL acetonitrile and 150 µL of 0.2 M borate buffer were reacted with a 150 µL filtered 

(0.22 µm filter) fermentation sample. A reaction time of 5 min (stipulated by the 

column manufacturer – Restek Corporation, USA) was deemed sufficient to allow the 

complete conversion of lysine and cadaverine into their respective 9-fluorenylmethyl-

chloroformate derivatives, which are detectable by the HPLC. Two mobile phases 

were used, the first was a mixture of 0.1 % formic acid and 20 mM ammonium 

formate in water (A) and the second was 0.1 % formic acid and 10 mM ammonium 

formate in 90:10 acetonitrile:water (B). Table 3.5 shows the gradient flow of these 

mobile phases which was adapted from Restek, (2016).  

Time (min) Flow (mL/min) % A % B 

0.00 0.8 80 20 

6.00 0.8 60 40 

9.00 0.8 40 60 

Table 3.5 The two mobile phases A & B flow gradient, adapted from (Restek, 2016)   
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The column and sample chamber temperatures were maintained at 30 °C and 40 °C 

respectively. The peak elution times for cadaverine and lysine were approximately 

7.3 min and 4.4 min respectively (Figure 3.6)  

 

Figure 3.6 The HPLC chromatogram printout of a 100 ppm lysine and cadaverine standard 

The peaks eluted between 1 and 2 min could not be identified; the 9-fluorene 

methanol (FMOC-OH) was produced alongside the FMOC reaction with either lysine 

or cadaverine. The FMOC-OH is a product of the reaction between FMOC and 

hydroxide ions present in the solution. A 10, 50, 100, 150 & 200 ppm standards of 

lysine and cadaverine were made up and ran along with the samples. Once the 

areas of the peaks were calculated, the standard curve was then used to evaluate 

the concentrations of these compounds in the samples.  
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Inlet and outlet air composition 

A Tandem gas analyser (Magellan BioTech, UK) was used to measure the 

oxygen and carbon dioxide composition of the air going in and out of the fermenting 

vessel. A sample of air was filtered via a 0.22 µm filter and diverted to the analyser, 

which was fitted with oxygen and carbon dioxide sensors. The oxygen was 

measured by the rate of its diffusion through the enclosing Teflon membrane barrier, 

which was correlated with the amount of electrical current produced. The carbon 

dioxide was quantified by a solid state sensor equipped with an infrared source, 

which had a narrow bandpass filter unique to carbon dioxide. This device was 

calibrated using a cylinder of known oxygen/carbon dioxide composition, from which 

subsequent readouts were compared. Profiling the change in the inlet/outlet air 

composition was done to give information on the cells oxygen consumption and 

carbon dioxide production rates. These rates were necessary to track metabolic 

changes in the growing cell or the cell's response to the fermentation gradients 

simulated.    

3.8 Single cell measurement method 

The single cell measurement techniques have certain advantages over the 

bulk cell measurement technique. Such as, the ability to probe the individual cell to 

see how it performs in relation to other cells. Therefore, single cell techniques give 

more indepth information on how the individual bacterial cells respond to their 

environment. The examples of such techniques used here are as follows.   
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Flow cytometry protocol  

A BD FACSJazzTM cell sorter (BD Biosciences, USA) flow cytometer was 

used to evaluate the cell membrane potential and integrity of C.glutamicum DM1945 

and C. glutamicum DM1945x3. All flow cytometers are made up of three elements, 

namely – optics, fluidics, and electronics. Figure 3.7 depicts the typical components 

of a flow cytometer. The optics consist of the laser light, filters, mirrors and the 

photomultiplier tubes (PMT).  

 

Figure 3.7 A schematic of the inner workings of a typical flow cytometer adapted from Alex, (2017) 

 

The flow cytometer starts from the fluidics; the sheath fluid focuses the cell 

sample, and as they pass through the nozzle there is a slight vibration which breaks 

up the stream into droplets containing single cells. Each droplet that is formed 

encapsulates the cell to be exposed to the laser light source. As the laser light hits 

the encapsulated cell, there is a scatter of light which is collected by mirrors stacked 

within the cytometer which separates and magnify the signal according to its 
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wavelength and intensity (Figure 3.7). The forward scatter (FSC) signal is related 

‘loosely’ to the cell size while the side scatter (SSC) indicates the internal cell 

complexity. If the cell is tagged with a fluorochrome, then the dye is excited by the 

selected laser of suitable wavelength, and the subsequently emitted ray is filtered to 

allow in only the light with the stipulated wavelength to strike the PMT. Initially, this 

emitted light ray/signal is relatively weak, but the PMT magnifies this signal which is 

then digitised by the Analogue to Digital Converter (ADC).  

The BD FACSJazzTM Cell Sorter flow cytometer used here had three laser 

light sources, blue (488 nm at 80 mW), red (640 nm at 50 mW) and violet (405 nm at 

50 mW). However, only the blue laser was used for this work, as it was sufficient to 

excite the fluorochromes utilised here. These fluorochromes were Propidium Iodide 

(PI) and DiBAC4(3) (Bis-(1,3-Dibutylbarbituric Acid) Trimethine Oxonol) (oxonol). 

Light signals were collected after the 670 Longpass, and 530/40 bandpass filters for 

PI and oxonol respectively. These fluorochromes are typically excluded from healthy 

cells with intact fully polarised cytoplasmic membranes (Hewitt et al., 1998;1999). 

The PI will bind to the DNA of any cell with a breached membrane barrier. The 

oxonol is a lipophilic, anionic dye, which will accumulate intracellularly if the cell is 

unable to transport oxonol out of its cytoplasm efficiently, hence making it 

depolarised (due to gain in charge (Nebe-Von-Caron et al., 2000)). The combination 

of these dyes (PI & oxonol) indicates the state of the cell’s membrane and its charge. 

Stock solutions of 3 µM oxonol in dimethyl sulfoxide and 20 mM of PI in deionised 

water were made up for this analysis. From this, 0.2 µL oxonol and 0.1 µL PI were 

added to a diluted 1 mL solution (≈106 cells per mL) of cell suspension in filtered 

PBS. This solution was then mixed and incubated at room temperature in the dark 

for 10 minutes, before injection into the flow cytometer. The cells were discriminated 
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and gated by their light scattering footprint on an SSC versus FSC dot plot (Figure 

3.8). The laser alignments were optimised to allow for PI detection from a 670 long 

pass filter and oxonol from a 530/40 bandpass filter. During this assay development, 

the dead and live cell population were artificially made up. The dead cell population 

was made by heating a 10 mL sample of thriving cells in a water bath at 80 °C for 1 

h. After which it was left to cool to room temperature before it was added to a 10 mL 

live cell sample. This mixture was then stained with PI and oxonol using the staining 

protocol as described above. The flow cytometry assay developed was successful as 

it discriminated between the dead and live cells in the sample (Figure 3.8). 

 

Figure 3.8 Flow cytometer analysis of an artificially simulated live/dead population of C. glutamicum DM1945   

Figure 3.8 a shows the cluster of the cell population of C. glutamicum; this 

discrimination of cells from noise or debris is based on size and internal complexity. 

A gate is drawn around this population cluster and then plotted on the receiving 

channel, PI 670 LP against oxonol 530/40 BP. Here, the cells are separated based 

on the condition of their cytoplasmic membrane. Figure 3.8 b was demarcated into 

four quadrants, Q4 shows the cells with intact membrane (62 % of the total 

population deemed live), as they took up neither PI or oxonol. The Q2 quadrant 
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indicates cells with a breached cytoplasmic membrane (37.8 % of the total 

population deemed live dead) because they took up both PI and oxonol. There were 

hardly any depolarised cells (noted in Q1), and Q3 represented debris/noise. The 

higher ratio of live to dead cells even when an equal proportion was made up, may 

suggest the heat treatment was not 100 % effective. 

Viability determination by plating 

The ability of a cell to form a culturable colony on an agar plate indicates that 

it is healthy and viable. However, this technique rules out some cells which are 

metabolically active but are not culturable on an agar plate (Davey & Kell, 1996; 

Oliver, 1993). With the aid of a flow cytometer Serpaggi et al., (2012) observed that 

the non-culturable cells of Brettanomyces bruxellensis LO2E2 population increased 

when they were exposed to SO2. They suggested that the increase in non-culturable 

cells may be a typical stress response in non-spore forming bacteria/yeast cells. 

Hence, the colony forming ability on an agar plate should be seen as one of the 

properties of viability. 

Here, the CFU was measured by pouring a sterile tryptone soya agar (Oxoid, 

UK) solution into Petri dishes, which held 100 µl aliquots of diluted cell suspensions 

ranging from 10-5 to 10-7. This mixture was then gently stirred and incubated at 30 °C 

for 48 h before counting the visible colonies under a magnifying glass. 

Not one measurement method discussed above is without limitation, but their 

combined results give a better understanding of how much a cell responds to its 

surroundings.  
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CHAPTER 4 

4 Quantifying the effect of genetic modifications on the 

cadaverine-producing C. glutamicum DM1945x3 
 

In the development of commercial bioprocesses, the interacting biological, 

physical and chemical systems are typically engineered to attain an optimal 

operating space. Biological engineering may lead to GMOs which are designed in 

the laboratory or by evolutionary pressures and as such selected based on their 

productivity. Other examples of altering the physical system in bioprocesses are in 

the selection of the bioreactor type; while the growth medium matrix choice may be 

chosen for specificity, to improve productivity. In this chapter, the emphasis will be 

based on studying the physiological response to a batch fermentation environment of 

the modified cadaverine-producing C. glutamicum DM1945x3 strain compared to its 

parent strain (C. glutamicum DM1945).   

4.1 C. glutamicum physiological response in batch fermentations 

To compare and quantify the physiological response of a batch fermentation 

environment of these strains, both bulk and single cell measurement techniques 

were used (highlighted in Chapter 3, Subsection 3.7 and 3.8). The parent strain (C. 

glutamicum DM1945) had two point mutations coding for pyruvate carboxylase 

(pycP458S) and aspartate kinase (lysCT311I) (Georgi et al., 2005). These mutations 

release the feedback control of LysC and result in the overproduction of lysine. While 

the daughter strain, C. glutamicum DM1945x3 differed from its parent due to the 

added lysine decarboxylase gene ldcC integrated into its genome. The 

addition/modification of gene(s) to a bacterial cell in most cases affect internal 

chemical pressures, which tend to change the physiological properties from its 
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parent  (Ikeda, 2006). The batch fermentation experiments conducted here were 

used to create a reproducible environment where the growth performance and 

productivity of both strains could be measured. The information on how the growth 

and product kinetics of any organism is useful when characterising and scaling-up a 

process. Understanding the growth kinetics of C.glutamicum DM1945x3 batch 

fermentations was needed to evaluate relevant parameters for calculating the 

feeding profile for subsequent fed-batch studies. 

Details on fermentation conditions and equipment specifications are given in 

Chapter 3 (Subsection 3.6). In these sets of experiments both the parent and the 

modified strains were grown under the same conditions and their physiological 

response compared.  

4.1.1 Cell growth 
 

The specific growth rates (µ) of C. glutamicum (parent and daughter strain) 

were quantified by observing the rate of change of the dry cell weight (DCW). The 

trend in the DCW concentration profiles of both strains (Figure 4.1) indicated a 

typical bacterial cell life cycle: the lag, exponential, deceleration and the stationary 

growth phase. In all cases, the fermentation process was terminated at 24 h, when 

all the glucose in the broth was depleted.  

The DCW production rates during the lag phase did not show any difference 

when the daughter and parent strains were compared (from 0 to 2 h). The length of 

the lag phase is dependent on the organism, growth medium, state of the inoculum, 

growth inhibitors, spore germination and bioreactor condition (Pirt, 1975; Stanbury et 

al., 1999). During the lag phase, the bacterial cells are adapting to their new 

environment, and metabolic rates are typically low. However, the amino acids uptake 
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rates are usually highest in this phase (Pirt, 1975; Stanbury et al., 1999). Here, the 

main contributing factor to the lag phase of Figure 4.1 may be due to the state of the 

inoculum. This is because at the time the inoculum was harvested it was somewhere 

around the deceleration and stationary growth phase. Also, the medium used in 

cultivating the inoculum was complex TSB, which was different from the synthetic 

medium (CGXII) of the STR (see Chapter 3, Section 3.2). Thus, when the inoculum 

was introduced to the STR, the time required for the bacterial cells to synthesise 

RNAs relevant to adapt to the new bioreactor environment correspond to the lag time 

(Stanbury et al., 1999).  

 

Figure 4.1 DCW production rates for the batch fermentation of  C. glutamicum DM1945 and DM1945 x3, the data 
points represent the mean values from biological triplicates and the error bars equivalent to the standard 
deviations at these points. 

 

After the lag phase, both bacterial cell strains had completely adapted to their 

new environment, and since no nutrient was lacking or inhibiting further growth, they 

replicated rapidly. This exponential growth phase started from 2 h and ended at 11 h 

for both strains (Figure 4.1); their specific growth rates were calculated by the growth 

model of Equation 4.1.  

Lag Exponential  Deceleration Stationary 
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  𝑑𝑋

𝑑𝑡
= 𝜇𝑋 

4.1 

Where 𝜇 = cell specific growth rate (h-1), 𝑋 = cell concentration (gL-1) and 𝑡 = time (h) 

Integrating equation 4.1 from start (𝑋0) of exponential growth to completion (X(t)) 

with respect to time results in the straight-line Equation 4.2. 

 ln𝑋(𝑡) = 𝜇𝑡 + ln𝑋0 4.2 

                                 

Thus, 𝜇 is the slope in a plot of InX(t) against time t. Conventionally, 𝜇 is assumed to 

be constant for simplicity (especially in the exponential growth phase), which make it 

easier to compare growth rates amongst microorganisms. Also, during this period a 

microorganism’s maximum specific growth rate (𝜇𝑚𝑎𝑥) is achieved (Pirt, 1975; 

Stanbury et al., 1999). The 𝜇 for both C. glutamicum strains were calculated from 

Figure 4.2 a – b.  

 

Figure 4. 2  a – b Plots of lnX(t) against fermentation times used in deriving the 𝜇 for C. glutamicum DM1945 and 
DM1945x3. The three data points at each sample time represent separate biological run. 
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Figure 4.1 indicated that the averaged DCW at the end of the exponential 

growth phase for C. glutamicum DM1945 and DM1945x3 was 4.3 gL-1 and 3.6 gL-1 

respectively, a 16 % decrease when compared. However, Figure 4.2 a – b suggests 

that this difference was not significant, as the 𝜇 for C. glutamicum DM1945 and 

DM1945x3 was 0.38 h-1 and 0.37 h-1 respectively. Table 4.1 shows a summary of the 

𝜇 statistical data analyses for both bacterial strains. 

C. glutamicum strain DM1945 
𝜇 

DM1945x3 
𝜇 

Mean 0.38 0.37 

Standard Error 0.026 0.033 

Standard Deviation 0.045 0.058 

Sample Variance 0.0020 0.0033 

Replicates 3 3 

Confidence Interval 
(95.0%) 

0.27 – 0.49  0.23 – 0.51 

P value (two-tailed test) 0.94 
Table 4.1 DCW statistical analyses of μ values in the batch fermentation of C. glutamicum DM1945 and 
DM1945x3 

The analyses in Table 4.1 also show that any difference seen in Figure 4.1 

was not significant and within the system’s measurement variability. This was 

confirmed by the overlapping 95 % confidence interval and a P value > 0.05 Thus, 

both parent and daughter strain showed no difference with respect to DCW 

productivity in the exponential growth phase.  

Another index used to measure bacterial cell growth is the doubling time (𝑡𝑑), which 

was evaluated from Equation 4.3. 

 
𝑡𝑑 =

ln(2)

𝜇
 

4.3 

This estimated the 𝑡𝑑 to be similar, 1.8 h for C. glutamicum DM1945 and 1.9 h for C. 

glutamicum DM1945x3. 
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 Although the 𝜇 value depends on the microorganism and the bioreactor 

environment. The 𝜇 here still agreed with the work of Limberg et al., (2016), where 

they estimated the value of the closely related C. glutamicum DM1800 to be 0.41 h-1.  

This agreement may be because the same CGXII medium and similar cultivation 

conditions were used. To confirm the best growth profile from 2 h to 11 h, the DCW 

trend was fitted to the models in Figure 4.3 (a – d) for both strains.  

 

Figure 4.3 a – d A comparison between an exponential and linear best fit lines of the DCW profiles for  C. 
glutamicum DM1945 and DM1945 x3 from 2 h – 11 h of batch fermentations. The three data points at each 
sample time represent separate biological run. 

 Figure 4.3 a and b fitted the data points to an exponential equation while 

Figure 4.3 c and d was to a linear equation. For the exponential model, the R-

squared values for C. glutamicum DM1945 and C. glutamicum DM1945x3 were 0.92 

and 0.94 respectively. However, for the linear models of Figure 4.3 c and d, the R-

squared values for C. glutamicum DM1945 and C. glutamicum DM1945x3 were 0.73 

and 0.74 respectively. This comparison shows that the cell growth (based on the 

DCW) between 2 h and 11 h was exponential. This is because the R-squared 
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correlation coefficient values from the exponential models were higher than the linear 

models for both strains. Thus, indicating that the exponential equations of Figure 4.3 

a and b reasonably represent the DCW profiles for C. glutamicum DM1945 and C. 

glutamicum DM1945x3 during this period. After 11 h, the cell growth decelerated as 

the glucose in the broth became limiting (Figure 4.4). The availability of a carbon 

source (glucose) in a broth is linked to the amount of Adenosine Triphosphate (ATP) 

generated (Bothun et al., 2004; Suarez-Mendez et al., 2014). Thus, when glucose 

becomes low, the amount of ATP reduces, and the energy generated by cells 

decreases. A condition which forces the bacterial cell to prioritise its energy 

utilisation, such as, reducing replication (DCW productivity declines) and diverting 

more energy to maintenance (Pirt, 1975; Stanbury et al., 1999). This response led to 

the decline in DCW productivity during the deceleration phase between 11 h and 14 

h (Figure 4.1). Also, as bacterial cells entered their stationery growth phase (14 h to 

24 h), this trend in energy utilisation becomes the norm. During this period the 

bacterial cells use energy for ‘‘housekeeping duties’’ such as, consolidating their cell 

membrane and production of stress response enzymes rather than replicating 

(Follmann et al., 2009b; Schweder et al., 1999). Hence, the lack of increase in DCW 

observed between 14 h and 24 h in both C. glutamicum cell strains. 

4.1.2 Glucose consumption 
 

The CGXII medium was used in all fermentations carried out in the bioreactor; 

its composition is as highlighted in Chapter 3 (Section 3.2). The makeup of this 

medium indicates that glucose is the sole source of carbon. Thus, the consumption 

rate of glucose can be accurately evaluated, which is an advantage of using a 

synthetic medium, where mass balances are simpler and the controlling factors are 

more easily known to the experimenter. The glucose consumption rates of both 
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strains are depicted in Figure 4.4. The general trend in the glucose profiles for C. 

glutamicum DM1945 and C. glutamicum DM1945x3 was similar. It starts off from the 

lag phase when the bacterial cells were adapting to the new environment and the 

DCW low, hence, the low glucose consumption from 0 to 2 h. The exponential 

growth phase saw the highest glucose consumption rate, which coincided with the 

rapid increase in DCW, as seen in Figure 4.1. Then the deceleration phase which 

saw the continual decrease in glucose concentration until it became scarce and 

finally, the stationary phase in which the low glucose concentration reduced cell 

growth.   

 

 Figure 4.4 Glucose concentration during batch fermentations of C. glutamicum DM1945 and DM1945 x3; the 
data points represent the mean values from biological triplicates, and the error bars are equivalent to the 
standard deviations at these points. 

Figure 4.4 indicates that all the batch fermentations started with a glucose 

concentration of 10 gL-1, and by the end of the deceleration phase (14 h) it had been 

depleted in all cases. Figure 4.4 shows an apparent higher glucose consumption rate 

for C. glutamicum DM1945 compared to C. glutamicum DM1945x3. However, the 

information from the DCW yield on glucose (𝑌𝑥/𝑠) and the specific metabolic 

quotients for glucose (𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒) give a better index for comparing glucose utilisation 

rates and performance. Since most of the glucose consumed was during the 

Exponential  Lag Deceleration  Stationary 
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exponential growth phase, the estimation of 𝑌𝑥/𝑠 and 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  were limited to the data 

points in this period. The 𝑌𝑥/𝑠 was calculated by Equation 4.4. 

 𝑌𝑥/𝑠 =
𝑥𝑚 − 𝑥0

𝑆0 − 𝑆
 4.4 

where 𝑥𝑚 = DCW (gL-1) at end of exponential phase, 𝑥0 = DCW (gL-1) at start of 

exponential phase, 𝑆0 = initial glucose concentration at 𝑥0 and 𝑆 = glucose 

concentration at 𝑥𝑚.  

The 𝑌𝑥/𝑠 for both strains were similar, on average 0.45 g of DCW/g of glucose 

for C. glutamicum DM1945 and 0.47 g of DCW/g of glucose for C. glutamicum 

DM1945x3. Table 4.2 shows the data analyses of the 𝑌𝑥/𝑠 values of C. glutamicum 

DM1945 and DM1945x3. 

C. glutamicum strain DM1945 
𝑌𝑥/𝑠 

DM1945x3 
𝑌𝑥/𝑠 

Mean 0.45 0.47 

Standard Error 0.016 0.020 

Standard Deviation 0.028 0.035 

Sample Variance 0.00077 0.0012 

Replicates 3 3 

Confidence Interval (95 
%) 

0.38 – 0.52  0.38 – 0.56 

P value (two-tailed test) 0.56 
Table 4. 2 Statistical analyses of Yx/s values in the batch fermentation of C. glutamicum DM1945 and DM1945x3 

   

Table 4.2 also indicates that the 𝑌𝑥/𝑠 values of both strains were similar, as 

confirmed by the overlapping 95 % confidence intervals and a P value > 0.05. To 

obtain further information on the strains efficiency at producing DCW from consumed 

glucose per hour, the 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  was evaluated using Equation 4.5.  

 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒 =
 𝜇

𝑌𝑥/𝑠
 4.5 
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The average 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒 for both strains were similar, the values for C. glutamicum 

DM1945 and DM1945 were 0.83 and 0.80 g of glucose consumed / g of DCW 

produced / h respectively. The data analyses of these 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  values are shown in 

Table 4.3.  

  

 

 

 

Table 4. 3 Statistical analyses of 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒values in the batch fermentations of C. glutamicum DM1945 and 

DM1945x3 

 Table 4.3 shows that the 95 % 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  confidence intervals for both C. 

glutamicum strains overlap and a P value > 0.62. Hence, confirming that the 

apparent difference of Figure 4.4 was insignificant. The high 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  values also 

suggest an inefficiency in converting glucose to DCW. Thus, for growth-related 

products such as lysine or cadaverine, productivity is expected to be low. Another 

contributing factor to these high 𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  values may be a high resting maintenance 

requirement. This is the case when a cell uses up a substantial amount of energy for 

consolidation (protein sythesis, cell membrane/wall development) at the expense of 

replication.   

All analyses carried out thus far indicate that there was no significant 

difference in the growth dynamics and substrate consumption when both strains 

were compared during the exponential growth phase. This lack of effect may be 

because the lysine decarboxylase gene ldcC was integrated to the chromosome of 

C. glutamicum DM1945, which made the resulting C. glutamicum DM1945x3 

C. glutamicum strain DM1945 
𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  

DM1945x3 
𝑞𝑔𝑙𝑢𝑐𝑜𝑠𝑒  

Mean 0.83 0.80 

Standard Error 0.042 0.052 

Standard Deviation 0.073 0.091 

Sample Variance 0.0053 0.0083 

Replicates 3 3 

Confidence Interval (95 %) 0.65 – 1.01  0.57 – 1.03 

P value (two-tailed test) 0.62 
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structurally stable, a major advantage of the chromosomal gene integration method 

over gene modification via a plasmid-based overexpression. Also, the plasmid-based 

method is plagued with issues of plasmid instabilities, the need for selecting 

antibiotics and inducing agents such as Isopropyl β-D-1-thiogalactopyranoside 

(Friehs, 2004). These added complexities typically increase fermentation and 

environmental cost (Gu et al., 2015).    

4.1.3 Lysine/Cadaverine productivity 
 

As already highlighted, C. glutamicum DM1945 is a lysine producer, while C. 

glutamicum DM1945x3 was modified to produce cadaverine. Figure 4.5 shows the 

product profiles for C. glutamicum DM1945 and DM1945x3. The blue data points 

represented the lysine concentrations for C. glutamicum DM1945, while the red data 

points represented the cadaverine values for C. glutamicum DM1945x3 at different 

sampling times.  

 

Figure 4.5 Lysine production profiles for C. glutamicum DM1945 in blue, and cadaverine production profile for C. 
glutamicum DM1945x3 in red. The data points represent the mean values from biological triplicates, and the error 
bars are equivalent to the standard deviations at these points. 

C. glutamicum DM1945 is a lysine producer without the lysine decarboxylase 

gene ldcC. Hence, it cannot decarboxylate lysine, which was why no cadaverine was 

Exponential  
Decelera

tion 
Stationary  



95 
 

detected in all cases. For C. glutamicum DM1945x3 only cadaverine was 

quantifiable, if there was lysine produced, it was too low to be detected by the 

quantification method used here (see Chapter 3, section 3.7).  

Figure 4.5 indicates that cadaverine and lysine were mainly formed during the 

exponential growth phase for C. glutamicum DM1945x3 and DM1945 (2 h – 11 h), 

However, more product formation was seen in the latter stages of the exponential 

growth phase (8 h – 11 h) and for C. glutamicum DM1945x3 cadaverine production 

continued into its deceleration phase (11 h – 14 h).  

On average, the lysine and cadaverine concentrations produced between 2 h 

and 11 h were 0.80 g/L and 0.27 g/L respectively. These values represent 89 % and 

57 % of the total lysine and cadaverine produced throughout these fermentations. 

Hence, both compounds are considered to be primary metabolites, because their 

production was growth-related. In confirmation, when the concentration of glucose 

declined from 14 h, productivity decreased rapidly. Also, in the stationary phase (14 

h to 24 h) product formation stopped in both strains. So far, the growth and glucose 

uptake kinetics for both strains have shown to be similar (subsection 4.1.1 and 

4.1.2). However, the results of Figure 4.5 highlight a difference between both strains 

concerning product formation. On average, in the deceleration phase, C. glutamicum 

DM1945 produced only 0.05 g/L of lysine (6 % of total lysine produced), while C. 

glutamicum DM1945x3 produced 0.14 gL-1 (30 % of total cadaverine produced). This 

shows that C. glutamicum DM1945x3 was still productive well into its deceleration 

phase. This disparity in product kinetics may be due to the different diffusion rates of 

lysine and cadaverine across the cytoplasmic membrane and/or the added 

decarboxylation step of converting intracellular lysine to cadaverine increasing the 

reaction time (Green & Mecsas, 2016; Kind & Wittmann, 2011). All quantification of 
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metabolites made here relate to their extracellular concentrations, which are most 

likely different to their intracellular concentrations. This is because a cell semi-

permeable barrier restricts the indiscriminate flow of material from a cell to the 

environment and vice-versa. Thus, material concentrations across a cell barrier tend 

to be different.  

Products such as cadaverine and lysine which are produced within the 

cytoplasm have to pass through two main barriers to reach the extracellular 

environment. For C. glutamicum, the first hurdle in product transport is its cell 

membrane and to surmount this barrier the cells commonly recruit either the general 

secretion (Sec) or the twin-arginine translocation (tat) pathway to transport materials 

into the periplasmic space. From here, the product is then transported across the 

peptidoglycan layer either by passive diffusion or by means of the Type VII secretion 

system (Green & Mecsas, 2016). This rate-limiting step could explain the low 

production rates of cadaverine and lysine seen between 2 h and 4 h (Figure 4.5). 

Hence, an early exponential phase low in lysine and cadaverine productivity, with a 

weak correlation to the DCW profile (compare Figure 4.1 to 4.5 between 2 h and 4 

h).  

Figure 4.5 indicates that by the end of the deceleration phase 14 h, the lysine 

concentration measured was twice that of the cadaverine concentration. To confirm if 

this difference was significant, the product (lysine or cadaverine) yield per DCW 

(𝑌𝑝/𝑥) and the specific metabolic quotients for these product (𝑞𝑝) were compared 

during the exponential growth phase. This is because, it is assumed that during this 

period the bacterial cells were growing close to their maximum potential without 

limitations or inhibitions (Pirt, 1975; Stanbury et al., 1999). Thus, a puesdo-steady 



97 
 

state is assumed. The 𝑌𝑝/𝑥 for C. glutamicum DM1945 and DM1945x3 was 

estimated using Equation 4.6.     

 𝑌𝑝/𝑥 =
𝑝𝑚 − 𝑝0

𝑥𝑚 − 𝑥0
 4.6 

Where 𝑝𝑚 = concentration of product (g/L) at end of exponential phase, 𝑝0 = 

concentration of product (g/L) at the start of the exponential phase, 𝑥𝑚 = DCW (g/L) 

at the end of the exponential phase, 𝑥0 = DCW (g/L) at the start of the exponential 

phase.  

 The average 𝑌𝑝/𝑥  in C. glutamicum DM1945 was 0.19 g of lysine / g of DCW, 

while the cadaverine yield in C. glutamicum DM1945x3 was 0.077 g of cadaverine / 

g of DCW. Table 4.4 shows the data analyses of 𝑌𝑝/𝑥 for both strains.  

 

 

 

 

 

Table 4.4 Statistical analyses of 𝑌𝑝/𝑠values in the batch fermentations of C. glutamicum DM1945 and DM1945x3 

Table 4.4 indicates that this difference seen in yields for lysine and cadaverine for C. 

glutamicum DM1945 and DM1945x3 respectively was significant. The 95 % 

confidence intervals show no overlap, and the P value ≪ 0.05; hence the calculated 

yields are different. Since the products of interest are growth linked (primary 

products) in both strains, Equation 4.7 was used to evaluate 𝑞𝑝. 

C. glutamicum strain DM1945 
𝑌𝑝/𝑥 (Lysine) 

DM1945x3 
𝑌𝑝/𝑥 (cadaverine) 

Mean 0.19 0.077 

Standard Error 0.0033 0.0076 

Standard Deviation 0.0058 0.013 

Sample Variance 3.36E-05 1.74E-04 

Replicates 3 3 

Confidence Interval (95 %) 0.18 – 0.20  0.044 – 0.11 

P value (two-tail test) 0.00079 
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 𝑞𝑝 = 𝑌𝑝/𝑥  𝜇 4.7 

 The average 𝑞𝑝 for C. glutamicum DM1945 fermentations was 0.074 g of 

lysine produced / g of DCW produced / h, while for C. glutamicum DM1945x3 was 

0.029 g of lysine produced / g of DCW produced / h. Table 4.5 shows the data 

analyses for both strains. 

 

 

   

 

Table 4.5 Statistical analyses of 𝑞𝑝values in the batch fermentations of C. glutamicum DM1945 and DM1945x3 

Table 4.5 confirms that the difference observed in the 𝑞𝑝values was significant; there 

was no overlap in the 95 % confidence intervals of both strains and the P value was 

≪ 0.05. On average, a 61 % loss in 𝑞𝑝 was highlighted in Table 4.5 when C. 

glutamicum DM1945x3 was compared to the parent strain. This suggests that the 

integration of the ldcC gene to C. glutamicum DM1945 genome affected 𝑞𝑝. Since 

the concentration of extracellular cadaverine is linked to the decarboxylation of 

intracellular lysine in C. glutamicum DM1945x3 (Becker & Wittmann, 2012; Kind & 

Wittmann, 2011). The low 𝑞𝑝 in C. glutamicum DM1945x3 may be either due to a 

rate limiting decarboxylation step or/and the sub-optimal transport of intracellular 

cadaverine out of the cell. A rate limiting decarboxylation step would encourage 

competitive pathways, resulting in more carbon flux from aspartate (a cadaverine 

precursor) to asparagine and threonine to the detriment of cadaverine formation 

(Kind et al., 2011). Likewise, a poor transport system would result in the 

C. glutamicum strain DM1945 
𝑞𝑝 (Lysine) 

DM1945x3 
𝑞𝑝 (cadaverine) 

Mean 0.074 0.029 

Standard Error 0.0013 0.0028 

Standard Deviation 0.0022 0.0049 

Sample Variance 4.86E-06 2.39E-05 

Replicates 3 3 

Confidence Interval (95 %) 0.069 – 0.080  0.017 – 0.041 

P value (two-tail test) 0.00070 



99 
 

considerable accumulation of cadaverine in the periplasmic region of the cells. 

These results indicate that more work is needed in developing a strain that will 

improve the cadaverine productivity of C. glutamicum DM1945x3. 

4.1.4 Cell viability determination by plating 
 

The CFU was used as a measure of the cells reproductive viability in all 

fermentations (refer to Subsection 3.8, where this method was discussed). However, 

as already highlighted, viability measurements via this technique excludes a certain 

class of metabolically active cells that do not form visible colonies on an agar plate 

(Nebe-Von-Caron et al., 2000; Trevors, 2011). The ability of a cell to form a colony 

on an agar plate is a measure of both a cell’s health and its robustness. Hence, 

when bacterial cells are rapidly dividing (exponential growth phase), the potential to 

form colonies is at a maximum (Nebe-Von-Caron et al., 2000). Figure 4.6 shows the 

CFU profiles for both strains; it indicated that the maximum rate increase in CFU/mL 

occurred during the exponential growth phase.  

 

Figure 4.6 Colony forming cell counts during the batch fermentation of C. glutamicum DM1945 and DM1945 x3. 
Each data point represents the mean values from biological triplicates, and the error bars are equivalent to the 
standard deviations at these points 

The lag phase saw little cell proliferation until the exponential growth phase where 

the bacterial cells had the most ability to proliferate. After this, the deceleration 

Exponential  Lag  Deceleration  Stationary  
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phase saw a decrease in the cells colony forming rates, which led to a stationary 

phase where these rates plateaued. From studying Figures 4.5 and 4.6 closer, it may 

be inferred that only healthy cells with high metabolic activities contribute to product 

formation. This is because as C. glutamicum DM1945 entered its decelerating phase 

(from 11 h), product formation decreased rapidly. However, for C. glutamicum 

DM1945x3 the increase in CFU rate did not decrease until after 14 h, which also 

coincided with the decrease in cadaverine production (see figures 4.5 and 4.6). 

Figure 4.6 indicated a difference in the C. glutamicum strains CFU rates. In 

order to assess the significance of this difference, the CFU/mL yields of both strains 

in the exponential phase were calculated and compared using Equation 4.8. 

 
𝑌𝑐/𝑥 =

𝐶𝑚 − 𝐶0

𝑥𝑚 − 𝑥0
 

4.8 

Where 𝐶𝑚 = CFU/mL at the end of the exponential phase, 𝐶0 = CFU/mL at the 

start of the exponential phase, 𝑥𝑚 = DCW (gL-1) at the end of the exponential phase, 

𝑥0 = DCW (gL-1) at the start of the exponential phase.  

The average Yc/x values for C. glutamicum DM1945 and DM1945x3 were 

1.02E+09 CFU/mL and 7.16E+08 CFU/mL respectively (Table 4.6).  

 

 

 

 

Table 4.6 Statistical analyses of 𝑌𝑐/𝑥values in the batch fermentations of C. glutamicum DM1945 and DM1945x3 

C. glutamicum strain DM1945 
Yc/x 

DM1945x3 
Yc/x 

Mean 1.02E+09 7.16E+08 

Standard Error 6.39E+07 8.17E+07 

Standard Deviation 1.11E+08 1.42E+08 

Sample Variance 1.23E+16 2.00E+16 

Replicate 3 3 

Confidence Interval (95 %) 7.43E+08 – 1.29E+09  3.64E+08 – 1.07E+09 

P value (two-tail test) 0.044 
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Although, Table 4.6 showed that the 95 % confidence intervals of both strains had 

some overlap. The P value of < 0.05, however, suggests that the 30 % loss in the 

average Yc/x  when the parent strain was compared to its modified strain was 

significant. The CFU productivities (𝑞𝐶𝐹𝑈) for both strains were also evaluated from 

Equation 4.9 and compared.    

 𝑞𝐶𝐹𝑈 = 𝑌𝑐/𝑥  𝜇 4.9 

The 𝑞𝐶𝐹𝑈 for C. glutamicum DM1945x3 was 32 % less than of C. glutamicum 

DM1945. The data analyses that evaluated the significance of this loss is shown in 

Table 4.7. 

 

 

 

 

Table 4.7 Statistical analyses of 𝑞𝐶𝐹𝑈  values in the batch fermentations of C. glutamicum DM1945 and DM1945x3 

Table 4.7 shows an overlapping 95 % confidence interval, but a P value < 0.05, 

which indicates that the difference seen in Figure 4.13 was significant. These 

statistical indicators above confirm that the parent strain had a higher capacity to 

form colonies on an agar plate. Thus, highlighting a subtle difference between both 

strains, even when they had identical 𝜇. The higher CFU capability may suggest that 

C. glutamicum DM1945 was slighly more adaptable and robust of the two strains to 

the fermentation conditions and the semi-solid TSA medium used for the CFU count.  

The process data logs for Subsection 4.1.1 to 4.1.4 for both C. glutamicum 

DM1945 and DM1945x3 batch fermentations can be seen in Appendix 3 and 4.   

C. glutamicum strain DM1945 
𝑞𝐶𝐹𝑈 

DM1945x3 
𝑞𝐶𝐹𝑈 

Mean 3.87E+08 2.65E+08 

Standard Error 2.43E+07 3.02E+07 

Standard Deviation 4.21E+07 5.24E+07 

Sample Variance 1.77E+15 2.74E+15 

Replicate 3 3 

Confidence Interval (95 %) 2.82E+08 – 4.92E+08  1.35E+08 – 3.95E+08 

P value (two-tail test) 0.035 
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4.1.5 Oxygen utilisation 
 

The oxygen utilisation profile was monitored online by evaluating the rate of 

change of Dissolved Oxygen Tension (DOT) in the bioreactor. In these batch 

fermentations, oxygen was supplied by sparging air at a constant rate of 1.5 vvm as 

described in Chapter 3, Subsection 3.1.6. The DOT in the bioreactor was set not to 

fall below 40 % irrespective of the bacterial cell growth phase; this control was 

achieved by increasing the impeller rate to improve the oxygen transfer rate as the 

bacterial cells metabolic activities increased. This ensured that at all times the 

bioreactor was well oxygenated (Figure 4.7 a). For both strains, the DOT gradually 

declined during the lag phase, due to low oxygen uptake rates of the slow-growing 

bacterial cells at this stage. However, as the cell metabolic activity and DCW 

increased, by the late exponential growth phase, the air supplied at 1.5 vvm and 100 

rpm was no longer sufficient to hold the DOT ≥ 40 %. Hence, the resulting increase 

in the agitator speed seen in Figure 4.7 b to ensure that the DOT was maintained 

above the 40 % threshold.   
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Figure 4.7 a – b Dissolved oxygen tension and a typical impeller speed profile during the batch fermentation of C. 
glutamicum DM1945 and DM1945 x3  

The stirrer speed increased until the deceleration phase where bacterial cells 

metabolic rates slow down (due to glucose limitation (Figure 4.4)) saw the decrease 

in the impeller speed, as the demand for oxygen decreased. This period (11 h to 14 

h) also saw a rise in DOT (Figure 4.14 a). In the stationary phase, the bacterial cells 

metabolic rates and DCW productivity remained low and unchanging. Hence, the 

constant impeller speed and DOT value throughout this phase.  

The DOT profiles for C. glutamicum DM1945 and DM1945x3 showed a similar 

trend (Figure 4.14 a). The oxygen utilisation rates for both organisms could not be 

measured or compared, because of the imposition of DOT control. The changing 

Exponential  Lag  Deceleration  Stationary  

a 
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impeller speeds to control DOT, particularly during the exponential growth phase 

meant that the OTR varied significantly. This can be seen between 4 h and 11 h 

where the DOT value was relatively constant but, the stirrer speed increases. The 

d(DOT)/dt equals zero at this point and the relationship to calculate the oxygen 

utilisation rate breaks down. In general, as the bacterial cells’ metabolic activities 

increase the demand for oxygen also increases. Thus, the highest DOT utilisation 

rate occurred in the exponential growth phase for both strains.  

 

4.1.6 Live/dead flow cytometry analyses  
 

As already highlighted in subsection 4.2.4, estimating viability via a cells’ 

ability to form colonies on an agar plate (CFU) only quantifies a subset of the healthy 

cell population. Hence, the need for the flow cytometer, which can better resolve a 

cell population of different metabolic states. Here, the flow cytometry was used to 

study the C. glutamicum strains viability in relation to their cytoplasmic membranes 

condition. Thus, significant changes in the cell population for both strains in the 

course of their fermentations were captured using the multiparameter flow cytometer 

technique discussed in Chapter 3, Section 3.8. Propidium iodide and Bis-(1,3-

Dibutylbarbituric Acid) Trimethine Oxonol were the two fluorochromes used to 

assess the membrane integrity of C. glutamicum DM1945 and DM1945x3. 

Propidium iodide is a typical dead/live fluorochrome; it will bind to a cell’s 

DNA/RNA if its membrane integrity is breeched. Thus, a cell with a breached 

membrane cannot carry out normal metabolic functions and possesses no barrier to 

the external environment, so it is assumed to be not viable. Bis-(1,3-Dibutylbarbituric 

Acid)Trimethine Oxonol, on the other hand, enters a cell through its ionic channel. 
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This means that even healthy Gram-negative bacteria and some Gram-positive 

bacteria (C. glutamicum included) would take up this anionic dye. However, the 

healthy cell is differentiated from an unhealthy one by its ability to reisist the influx of 

this negative ion to maintain an optimal membrane potential (the resting membrane 

potential for C. glutamicum is ≈ – 170 mV at a pH of 7 (Follmann et al., 2009a)). 

Unhealthy cells cannot resist the inflow of this fluorochrome as efficiently, resulting in 

a build-up of these negative ions intracellularly, and thus categorised as depolarised 

cells (Hewitt et al., 1999). The spectral shift as a consequence of these ion 

accumulation/loss is used by flow cytometer to discriminate the different cell 

physiological states. The resulting flow cytometry dot plots during the batch 

fermentations of the C. glutamicum DM1945 and 1945x3 strains are shown in Figure 

4.8 a – c and 4.9 a – c respectively. 
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Figure 4.8 a – c Flow cytometry dot plots of C. glutamicum DM1945 physiological states based on membrane 
integrity during batch fermentations 

 

Figure 4.9 a – c Flow cytometry dot plots of C. glutamicum DM1945x3 physiological states based on membrane 
integrity during batch fermentations 

a (0 h)  b (11 h)  

c (24 h)  

Peak of a distinct cell population   

Peak of a distinct cell population   

a (0 h)  b (11 h)  

c (24 h)  
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The dots on each plot in Figure 4.8 and 4.9 represent data received from 

single cells, and their membrane conditions are categorised into Q1, Q2, Q3 and Q4 

quadrants. The actual area of each quadrant occupied varied from graph to graph. 

This was due to the slight changing of laser alignment settings (done for calibration) 

and channel compensation from day to day operation, which resulted in a cell 

population projected on slightly variable axes points on the graph. However, the 

rationale behind the gating into quadrants for all experiments was based upon 

drawing lines intersecting at the trough of distinct population distribution curves 

(Figure 4.9 c). This meant that cells with the same light emission intensity shared 

similar properties and were grouped into a population subset. Each graph in Figure 

4.8 and 4.9 has 10,000 dots with information on the membrane condition of 10,000 

cells; the numbers seen on each of the quadrants represent the percentage of cells 

in relation to 10,000 cells interrogated. The cells gated in Q1 had a lower membrane 

potential than healthy cells (Q4) because they had accumulated oxonol ions and 

were considered unhealthy/depolarised. The cells in Q2 took up both propidium 

iodide and oxonol ions, confirming them as being non-viable. Quadrant Q3 most 

likely represents cell clusters of live and dead cells, as it is improbable that a cell will 

accumulate propidium iodide without oxonol ions since the accumulation of 

propidium iodide ions signifies a breached membrane. The cells in Q4 had neither 

taken up propidium iodide nor oxonol and consequently were deemed to be healthy 

due to their intact membrane. 

There was no considerable difference in cell membrane state when both 

strains were compared. In the lag phase, the cells state was a function of the 

inoculum cell membrane integrity, details on the conditions of cultivation and harvest 

of the inoculum are given in Section 3.3. Figure 4.8 a and 4.9 a show that more than 
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95 % of the cells in the inoculum cells were healthy at the start of the fermentation 

for both C. glutamicum strains. By the end of the exponential phase (11 h), the 

percentage of healthy cells remained relatively constant i.e. > 95 % (Figure 4.8 b and 

4.9 b). A trend, which did not change throughout the stationary phase (24 h), in both 

strains as the population was dominated by cells with intact membranes in all 

fermentations. If the CFU profiles at the stationary phase of Figure 4.6 are compared 

to the observation here, it can be inferred that from the deceleration phase onwards, 

there was a substantial decrease in the ability of many healthy cells to form colonies 

on an agar plate. Hence, the plateau in CFU counts seen in both strains, but no 

significant decrease in the healthy cell population from the flow cytometry analyse 

was revealed. This effect may be due to the rise in non-culturable metabolic active 

cells, a likely stress response to the low glucose concentration during this period 

(Nebe-Von-Caron et al., 2000). The flow cytometer showed that majority of the cells 

were healthy and constituted over 95 % of the total number cells, but for the other 

subpopulations, none exceeded 3 % of the total number cells at any stage of the 

fermentation. There was not a significant difference between the strains as to how 

the state of their membranes varied in the course of the fermentation.   

4.2 Conclusion 

If the whole range of results presented in this chapter is considered, the gene 

modifications resulting in C. glutamicum DM1945x3 brought about a phenotype 

change. However, both strains still had similarities in their specific growth rates, 

glucose utilisation rates and cell membrane characteristics. C. glutamicum 

DM1945x3 showed a reduced ability to form colonies on an agar plate compared to 

C. glutamicum DM1945, but the main difference was seen in their product profile. C. 
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glutamicum DM1945x3 produced cadaverine and C. glutamicum 1945 lysine with 

different specific productivities.  

Cadaverine productivity was low, which suggests that more work is needed to 

create a better producing strain if this process is to be commercialised. Finally, the 

growth parameters derived here will act as a baseline and used to calculate an 

exponential feed profile in the subsequent fed-batch process to be studied in the 

following chapters. 
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CHAPTER 5 

5 Scale-down studies of C. glutamicum DM1945 Δact3 Ptuf-

ldcC_OPT fed-batch fermentations in a constant STR volume.  

These experiments were conducted to simulate some of the chemical 

gradients which are known to occur in an aerobic fed-batch large-scale environment, 

especially where a highly concentrated carbon source and pH controlling agents are 

introduced during such fermentations. The volumetric ratio between the STR and 

PFR used here was based on a large-scale study of a 30,000 L vessel (Enfors et al. 

2001). This large-scale vessel, with a culture volume of 21,000 L to 22,000 L, was 

fitted with either four Ruston or four Scaba impellers. The feeding pipe was located 

at the top of the reactor, and the feed introduced just below the liquid surface. In this 

simulation of a surface feed fermentation, the computational fluid dynamics model 

indicated that the addition zone (the area around the point of substrate introduction) 

in the fed-batch process was ≈ 10 % of the total working volume in the vessel. This 

addition zone was typically high in substrate concentration, low in pH and low in DO. 

Thus, to mimic this large-scale environment on a small-scale, the PFR volume was 

set at 10 % of the STR volume.  

5.1 Fermentation conditions across the two-compartment model 

In this study, the PFR represented either the addition zone or the area close 

to the walls of a large-scale vessel during a fed-batch process, while the STR section 

represents the bulk and the well-mixed part of a large-scale reactor. In simulating 

these regions of interest using a two-compartment model, the magnitude of chemical 

gradients and the amount of time the cells spent in the two different vessels were 

controlled. This regulated setup enabled a better understanding of how the cells 

respond physiologically to the various simulations investigated. There were twelve 
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different simulations studied (SDR 1 – 12), and the control was represented here as 

STR only, see Table 5.1 for an experimental overview. 

Table 5.1 An experimental overview of the SDRs investigated 

Table 5.1 shows that the volumetric ratio of the STR to the PFR was constant in 

SDR 1 – 12 and highlighted the various locations of the glucose, pH and air inlets 

with regards to the simulation studied. In all experiments, the air was sparged at the 

STR section of the SDR.  

 

 

 Glucose inlet pH inlet Air inlet STR volume PFR volume 𝜏𝑃𝐹𝑅  𝜏𝑆𝑇𝑅 

STR only STR STR STR 3 L N/A N/A N/A 

SDR 1 STR STR STR 3 L 0.32 L 1 min 10 min 

SDR 2 STR STR STR 3 L 0.32 L 2 min 20 min 

SDR 3 STR STR STR 3 L 0.32 L 5 min 50 min 

SDR 4 PFR STR STR 3 L 0.32 L 1 min 10 min 

SDR 5 PFR STR STR 3 L 0.32 L 2 min 20 min 

SDR 6 PFR STR STR 3 L 0.32 L 5 min 50 min 

SDR 7 STR PFR STR 3 L 0.32 L 1 min 10 min 

SDR 8 STR PFR STR 3 L 0.32 L 2 min 20 min 

SDR 9 STR PFR STR 3 L 0.32 L 5 min 50 min 

SDR 10 PFR PFR STR 3 L 0.32 L 1 min 10 min 

SDR 11 PFR PFR STR 3 L 0.32 L 2 min 20 min 

SDR 12 PFR PFR STR 3 L 0.32 L 5 min 50 min 
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5.1.1 Effect of the PFR dissolved oxygen limitation in the PFR on fermentation 
conditions 
 

In the SDR 1 – 3 simulations the cell broth mixtures were recirculated 

between the STR and PFR. The addition of feed (mainly containing glucose and 

trace elements), air and the pH controlling agent (NH4OH) were introduced in the 

STR. This meant that the PFR section was lacking in both oxygen and glucose, while 

its pH value depended on the metabolic state of the cells. Figure 5.1 show two 

possible large-scale scenarios that can be mimicked by SDR 1 – 3. In one case, the 

PFR environment can be best described as the area in a large-scale STR furthest 

from the impeller, air sparger and feeding zone as depicted in Figure 5.1, i.e. the 

PFR matches the area closest to the walls of a large-scale vessel for surface 

feeding. 

 

Figure 5.1 A simplified representation of the large-scale fermenter regions of interest mimicked by SDRs 1 – 3. 

Alternatively, if the feed point is located at the bottom of the vessel close to the 

impeller; the PFR environment most likely represents the region around the 
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medium’s surface. This zone in large-scale bioreactors, lacking both nutrient and 

oxygen is characterised by low cell metabolic rates, glucose and dissolved oxygen 

concentrations (Bylund et al., 1998; George et al., 1993; Hewitt et al., 2000). The 

experimental setups of SDR 1, 2 and 3 were the same in all aspects but different in 

their 𝜏𝑃𝐹𝑅, see Table 5.1. 

All SDR experiments started out in the STR and circulation with the PFR 

commenced when feeding started, at 8 h, see Figure 5.2. The pH was also 

maintained at 7 in the STR throughout the process, by the addition, on demand of 

NH4OH. 

 

Figure 5.2 pH profiles at the PFR inlet/outlet and the STR for SDR 1 

Figure 5.2 shows that there was an initial decrease in pH between 10 h and 12 h. 

This reduction in pH corresponded to the exponential growth in the batch phase 

when the cell metabolic rate was at its highest. For a cell to maintain a high growth 

rate, it must balance its redox potential, and in so doing, the production of organic 

acids is amplified, resulting in the pH decline seen here (Oktyabrskii & Smirnova, 

2012). The increase in pH observed just after 12 h occurred because of the decline 

in the cell population’s metabolic rate (due to glucose depletion), as the cells were no 



114 
 

longer producing significant amounts of organic acids to keep the pH value low. The 

second pH decrease after that was as a result of the cell growth rate and DCW 

increase due to exponential feeding. Interestingly, the pH value at the inlet up to 28 h 

was slightly higher than the outlet value. This might be simply due to the time lag 

between the PFR inlet and outlet because every reading taken at its outlet is 

approximately 1 min behind that at the inlet (due to the 1 min 𝜏𝑃𝐹𝑅). The continual 

influx of fresh culture from the STR exacerbated this situation, especially at low 

DCW. However, as the culture reached high biomass densities (DCW > 20 gL-1 after 

28 h), the cells’ high metabolic rate led to the production of sufficient amounts of 

organic acids needed to reverse this scenario, as the cells travelled from the bottom 

to the top of the PFR.  

The DOT profile in Figure 5.3 indicated that for most times during 

fermentation the PFR was limited in oxygen except during the batch to fed-batch 

transition period (12 to 18 h) when glucose had become severely depleted. During 

this transition period, the quantity of glucose added to the culture was insufficient to 

support any other metabolic activity apart from cell maintenance. Thus, the decline in 

the dissolved oxygen consumption and the rise seen in DOT between 12 and 18 h. 

Note that even after circulation between the STR and PFR commenced at 8 h, there 

was still enough glucose in the system. It was not until 12 h when most of the 

glucose in the culture was used up and the initial cell exponential growth phase was 

completed.     
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Figure 5.3 Dissolved oxygen tension profiles across SDR 1 

However, well into the fed-batch stage (from 18 h), when the feeding rate had 

increased sufficiently to maintain a specific growth rate of 0.1 h-1 and other metabolic 

activities, the oxygen consumption rate rose again, and the DOT fell from then on 

towards 0 % saturation in the PFR. The DOT profile was different in the STR as gas 

blending with oxygen controlled the DOT, so it did not fall below 40 %. The DOT 

profile in the PFR also showed gradients across the reactor up until 28 h, when the 

number of cells was large enough to rapidly use up most of the dissolved oxygen 

from the STR before the PFR inlet.  

Figure 5.4 shows the glucose profile across SDR 1, for the most of the 

fermentation, glucose was in short supply (14 h – 36 h). The start-up glucose 

concentration was 10 gL-1, which was consumed in about 14 h. The addition of feed 

from 8 h to 14 h was insufficient to result in any accumulation of glucose and the 

rapidly growing cells easily utilised all the available glucose.    
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Figure 5.4 Glucose profiles across SDR 1, data points represent the mean values from two biological replicates, 
and the error bars depict standard deviations. The error bars between 14 h and 36 h are too small to be seen on 
this graph due to the high glucose concentrations at the start and end of fermentation. 

From 14 h to 18 h, the glucose supplied was just enough for the maintenance of the 

cells as also confirmed as the transition phase in Figure 5.3. Low glucose 

concentrations persisted until 36 h. The feeding profile was set to achieve a specific 

growth rate of 0.1 h-1. However, if at any point the cell growth rate is slightly reduced 

the accumulation of glucose will occur as seen from 36 h. Also, the chemical 

gradient effects at high cell densities (DCW ≈25 gL-1) from 36 h could have 

contributed to a reduced glucose uptake which could result in the glucose 

accumulation observed (Lemoine et al., 2015b). However, it is more likely that not 

one but the interaction of these factors led to the buildup of glucose at the end of the 

fermentation. 

The data presented in Figures 5.2, 5.3 and 5.4 for the SDR 1 experiments 

were similar to that obtained for SDR 2 & 3, so the latter are not shown here. The 

results in Appendix 5 & 6 signify that the pH, DO, and glucose profiles for SDR 2 & 3 

were similar in profile to SDR 1, but of a larger magnitude. 
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5.1.2 Effect of glucose addition in the limited oxygen PFR on fermentation 
conditions 
 

In SDR 4 – 6 simulations, the pH-controlling agent and air were introduced to 

the well-mixed STR region, while the glucose feed was added at the inlet of the 

poorly-mixed unaerated PFR. This setup was carried out to study the effect of a 

localised high glucose concentration and its concomitant low dissolved oxygen 

region in a large-scale fermenter. Figure 5.5 signifies that the area of interest is 

around the feed inlet point, which was mimicked by the PFR, while the STR 

represented the relatively well aerated/low glucose region that comprises the bult of 

the medium in the large-scale vessel.  

 

Figure 5. 5 A simplified representation of the large-scale fermenter regions of interest mimicked by SDRs 4 – 6. 

SDR 4 – 6 creates a localised area of high glucose concentration at the glucose 

addition point in the unaerated PFR during the fed-batch stage of the process and a 

relatively optimal STR environment. The experimental setups for SDR 4, 5 and 6 

were similar but different in their 𝜏𝑃𝐹𝑅, see Table 5.1 above. 

Figure 5.6 shows the pH profile across SDR 4. A larger pH gradient was noticed 

between the inlet and outlet of the PFR compared to SDR 1 (as seen in Figure 5.2), 
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especially from the 28 h, when the culture was tending towards high cell densities 

(DCW > 15 gL-1). This confirmed that the cells at the inlet exposed to the high 

glucose and low oxygen environment were metabolising glucose predominately via 

the fermentative pathway.  

 

Figure 5.6 pH profiles across SDR 4 experiment 

 

The increased production of organic acids seen in Figure 5.6 was essential to 

balance the cells’ redox potential as they travelled towards the outlet of the PFR 

(Oktyabrskii & Smirnova, 2012). In the STR, the pH was relatively constant as the 

addition of the pH controlling agent was introduced there. 

The DOT results of Figure 5.7 were like that of SDR 1, highlighted in Figure 

5.3. On commencing circulation of broth from the STR to the PFR, the DOT 

gradients between 8 h – 14 h clearly indicate that as the cells flowed towards the 

PFR exit, dissolved oxygen become scarcer. 
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Figure 5.7 DOT profile for SDR 4 experiment 

The transition phase of 14 h to 18 h saw an increase in DOT, which corresponded to 

the depletion of glucose and low metabolic activity. After 18 h, the inflow of feed 

became sufficient to promote growth, and from the 28 h, all parts of the PFR were 

limited in DO due to the high DCW > 15 gL-1. The DOT in the STR was kept above 

40 % by gas blending throughout the fermentation.   

The glucose feed point and the sample points were at a different location 

within the PFR, see Chapter 3, Section 3.5 for details of the PFR design. This means 

that the glucose inlet sample value of the PFR, as noted in Figure 5.8, does not 

reflect the localised high glucose concentration at its point of entrance. Thus, by the 

time the cell broth mixture gets to the sampling point, its glucose concentration would 

have been diluted by the incoming fresh broth from the STR, with a proportion also 

having been metabolised by the cells. Figure 5.8 indicated a glucose concentration 

at the PFR inlet, which fails to capture the very high glucose concentration around 

the feed entrance. Hence, the effect of this localised high glucose concentration can 

only be inferred by the difference in the pH profile of SDR 4 compared to SDR 1.     
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Figure 5.8 Glucose profiles across SDR 4 simulations, data points represent the mean values from two biological 
replicates, and the error bars are equivalent to their standard deviations. The error bars between 14 h and 36 h 
are too small to be seen on this graph due to the high glucose concentrations at the start and end of 
fermentation. 

Schweder et al., (1999) showed that bacteria cells could respond to fermentation 

stress within seconds, for example, E. coli cells responded to high glucose gradients 

in less than 13 s. C. glutamicum typical response in a carbon-rich environment is to 

increase metabolic rates and growth rate. However, in a limited dissolved oxygen 

environment, the increased metabolic rate is sustained via the fermentative pathway. 

The consequence of this leads to an increase in by-product formation such as 

organic acids and amino acids to mention but a few, and possibly accumulating 

some of these substances to a critical level, which can become detrimental to the 

cells. The effect of this was seen here in the reduced glucose uptake rate at the PFR 

starting much earlier (from 24 h) in Figure 5.8 compared to Figure 5.4 of the SDR. 

Thus, the accumulation of glucose in the PFR from 24 h, while for the aerated STR 

the build-up of glucose did not occur until 33 h.   

Figures 5.6, 5,7 and 5.8 for SDR 4 were similar to those for SDR 5 & 6. The results 

in Appendix 7 and 8 show that the pH, DO and glucose profiles for SDR 5 & 6 were 

similar to SDR 4, but of a larger magnitude. 
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5.1.3 Effect of the pH controlling agent addition in the limited oxygen PFR on 
fermentation conditions 
 

In SDR 7, 8 and 9 simulations, the glucose feed and air were introduced to 

the STR, while the pH controlling agent was introduced to the PFR. This simulation 

induces low glucose; low dissolved oxygen concentration and a zone of high pH 

periodically at the inlet of the PFR. The PFR environment in these simulations was 

designed to represent the area around the pH addition port of a large-scale reactor. 

Figure 5.9 shows that this area of interest is at the surface of the medium if the pH 

injection point is located at the top of the vessel. 

 

Figure 5.9 A simplified representation of the large-scale fermenter regions of interest mimicked by SDRs 7 – 9. 

 

SDR 7 – 9 simulations were carried out to study what effect a periodically high pH 

has on the physiology of the cells.  

Figure 5.10 shows the pH profile across SDR 7 setup; the pH in the STR was 

not as tightly controlled as that of SDR 4 (Figure 5.6). This was because the base 

needed to control the pH in the STR was injected into the PFR, and introduced a lag 

of approximately 1 min corresponding to the 𝜏𝑃𝐹𝑅 for SDR 7. Thus, the pH in the STR 
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slightly mirrored that of the PFR, as noted in Figure 5.10. Since its change was partly 

related to the incoming pH value of the broth at the PFR outlet.  

 

Figure 5.10 pH profiles across SDR 7 experiment 

 

From 20 h, Figure 5.10 pH oscillations are observed; this corresponded to the 

increased cell metabolic activity, as the feeding was ramped in line with an 

exponential profile. The frequency and amplitude of these pH oscillations are closely 

related to the 𝜏𝑃𝐹𝑅, cell growth rate and DCW concentration (see Appendix 9 & 10 for 

SDR 8 and 9 pH trends). The shorter the  𝜏𝑃𝐹𝑅 the higher the frequency of the pH 

oscillations, as it takes less time for a pulse of NH4OH to travel from the PFR inlet to 

its outlet. Also, If the cell growth rate increases (as noted from 20 h, after the 

transition period, 12 h to 20 h), the rate of addition and quantity of base needed to 

neutralise the organic acids produced increases. This increased cell growth rate 

leads to a higher DCW concentration, which further raises the amount of the base 

needed and amplifies the pH oscillations as observed here from 20 h to 39 h.   

The DOT profile as seen in Figure 5.11 is similar to the others illustrated in 

Figure 5.3 and 5.6. The characteristic uncontrolled exponential growth phase occurs 
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between 8 h to 12 h, transition phase 12 h to 20 h and from then on, the controlled 

exponential growth, limited by glucose feeding.  

 

Figure 5.11 DOT profiles for SDR 7 experiment 

The DOT in the STR was set not to fall below 40 % by gas blending. From 32 h, 

when the culture reached a high cell density (≅ 18 gL-1), the set point was 

maintained by blending the air with oxygen. The DOT in the PFR was only 

monitored, so its concentration profile was a function of the cell growth cycle.  

Figure 5.12 shows the glucose consumption profile, which was similar to 

Figure 5.4, a simulation where the feed was injected at the STR.  
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Figure 5.12 Glucose profiles across SDR 7 simulation, data points represent the mean values from two biological 
replicates, and the error bars are equivalent to their standard deviations. The error bars between 14 h and 36 h 
are too small to be seen on this graph due to the high glucose concentrations at the start and end of 
fermentation. 

 

The different consumption rates also depended on cell metabolic activity. These 

results signify that for the most part, the concentration of glucose was relatively low, 

apart from the beginning 0 h to 14 h and the end, after 36 h. 

Figures 5.10, 5.11 and 5.12 for SDR 7 experiments were similar to SDR 8 & 

9. The results of which Appendix 9 & 10 signify that the pH, DO and glucose profiles 

for SDR 8 & 9 were similar to SDR 7, but of a larger magnitude. 

5.1.4 Effect of glucose and pH controlling agent addition in the limited oxygen 
PFR on fermentation conditions 
 

In SDR 10 – 12, both glucose feed and base were injected into PFR section, 

while air was sparged at the STR, see Figure 5.13. This most likely induced a high 

glucose concentration, especially around the injection area of the PFR.   
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Figure 5.13 A simplified representation of the large-scale fermenter regions of interest, mimicked by SDRs 10 – 
12. 

 

Figure 5.13 shows that simulations SDR 10, 11 and 12 had a PFR environment set 

up to closely model the area around the addition zone of a large-scale reactor where 

the addition ports for the base and feed are in proximity and located at the top of the 

vessel. The STR section represented the rest of the bulk. 

The pH change in time as illustrated in Figure 5.14 matches that of Figure 

5.10, where the base was also introduced at the PFR section of the SDR. At low 

DCW (between 0 h – 20 h), the setpoint pH of 7 was easily controlled. During this 

period, the metabolic rate was relatively low, and the amount of organic acid 

produced was not significant, except for the initial exponential growth phase 

(between 13 h – 16 h), which saw the first decline in pH.  
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Figure 5.14 pH profiles across SDR 10 simulation 

However, after 20 h, the DCW was rapidly on the rise and the metabolic activity was 

high. This resulted in the fluctuating pH values seen from then in the PFR; the 

reasons for the amplitude and frequency have already been highlighted in the 

discussion for SDR 7. 

The DOT change in time is illustrated in Figure 5.15, a profile which remains 

similar to all the others discussed so far. 

 

Figure 5. 15 DOT profiles across SDR 10 simulation 
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Figure 5.15 shows the complete cell cycle for this process, the batch phase, the 

transition phase and the fed-batch phase. 

The graph of glucose versus time as shown in Figure 5.16 was observed to be 

similar to the SDR 4 glucose profile. Both had the feed injected in the PFR which led 

to an earlier accumulation of glucose from 20 h. 

 

Figure 5.16 Glucose profiles across SDR 10 simulation, data points represent the mean values from two 
biological replicates, and the error bars are equivalent to their standard deviations. The error bars between 14 h 
and 36 h are too small to be seen in this graph due to the high glucose concentrations at the start and end of 
fermentation. 

One observable trend in simulations where the glucose was introduced at the 

PFR, showed that glucose accumulation was greater in SDR 4 - 6 & 10 – 12 

compared to SDR 1 – 3 & 7 – 9. This increase in accumulation may have been 

attributed to a reduced glucose uptake in SDR 4 - 6 & 10 – 12, as these simulations 

may have induced a stronger cell physiological response due to their high glucose 

and low dissolved oxygen PFR environment. 

Figures 5.14, 5.15 and 5.16 for SDR 10 experiments were similar to those 

from SDR 11 & 12. The results of Appendix 11 & 12 show that the pH, DO and 

glucose profiles for SDR 11 & 12 were similar to SDR 10, but of a larger magnitude. 
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In all the above cases, the STR section of the two-compartment reactor 

represented the bulk region of the large-scale fermenter, assumed to be aerated and 

well-mixed.           

5.2 Cell growth 

 

For all fed-batch fermentations, the cell growth rate was controlled by limiting 

the glucose added to the medium via a Watson Marlow peristaltic pump. The pump 

feeding flow rate was automatically regulated by the Biostat B-Plus station such that 

it adhered to the feeding profile calculated using Equation (3.2) (see Chapter 3, 

Section 3.6). This feed pump flowrate was set to achieve a low 𝜇 of 0.1 h-1, which 

was done to reduce the side product formation (Onyeaka et al. 2003).  

The DCW concentration change quantified the cell growth. Figures 5.17 a – d 

indicated that, regardless of the SDR simulated, the DCW profile was similar in all 

cases investigated. The final DCW concentration ranged from 29.33 to 32.12 gL-1, 

while 𝜇 was relatively constant at 0.09 h-1 to 0.10 h-1 (shown in Table 5.2). 
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Figure 5.17 a – d Dry cell weight (DCW) profiles for simulations SDR 1 –12 compared to STR only. Legend STR 
only, signifies the control fed-batch fermentation in a well-mixed stirred tank reactor, data points represent the 
mean values from a set of biological replicates and the error bars equivalent to their standard deviations.  
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Table 5.2 A summary of the final dry cell weight (DCW) attained at the end of fermentation 39 h 

All fermentations started out as batch processes between 0 – 8 h; from 8 h, 

medium addition was introduced, albeit in very small quantities at the start. Also, at 

this same time, the recirculation of the broth from the STR to PFR commenced in the 

scaled-down models. The transition phase from the batch to a fed-batch process 

was observed between 13 and 22 h: (Figure 5.17 a – d). The cell growth rate here 

was very low due to the low concentration of glucose. The cell most probably 

survived by reducing replication to a minimum and any scavenged carbon available 

at this time was used for maintenance. This phase predominated until the cells 

became properly adapted to the nutrient-restricted environment from 21 h of the 

fermentation and the inflow of glucose increased sufficiently to maintain and support 

a specific growth rate of 0.1 h-1. This resulted in 80 % of the biomass being produced 

in the last fifteen hours of fermentation. 

That the DCW profile was unaffected tallied with the findings of Käß et al., 

(2014) who had concluded that C. glutamicum was relatively robust when subjected 

to glucose and dissolved oxygen restriction in their scaled-down experimental 

studies. They reported no drop in the DCW profile when the C. glutamicum 

 Final DCW (g/L) 𝜇 (/h) 

STR only 29.68 0.09 

SDR 1 
SDR 2  
SDR 3 

32.12 
31.85 
29.95 

0.09 
0.10 
0.10 

SDR 4 
SDR 5 
SDR 6 

29.33 
30.84 
30.28 

0.09 
0.10 
0.10 

SDR 7 
SDR 8 
SDR 9 

31.90 
31.85 
30.68 

0.09 
0.10 
0.10 

SDR 10 
SDR 11 
SDR 12 

30.37 
31.97 
31.30 

0.10 
0.09 
0.10 
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ATCC13032 strain was exposed to a non-aerated PFR section of their SDR for 45 to 

87 s during their scaled-down experiments. They highlighted the increased 

production of lactate within the PFR, which they suggested was re-assimilated by the 

cells in the aerated STR. However, the relatively unchanged intracellular metabolites 

measured and compared in both the PFR and STR points more to a dilution effect, 

not the re-assimilation of lactate by the cells. Since the STR was approximately 4.6 

times larger than the PFR volume, the relatively high lactate concentration in the 

PFR when recirculated back into the larger volume STR environment resulted in an 

observable decline in lactate concentration in the STR after mixing. This 

phenomenon can be easily misunderstood and described as lactate re-assimilation 

(Käß et al., 2014). Käß et al., (2014) did not give details of the glucose profile across 

the SDR, from which it would have been easy to see if the cells had indeed made the 

switch to an alternative carbon source while in the STR. A similar work (Lemoine et 

al., 2015b) using a three-compartment model (PFR+STR+PFR) was claimed to be 

superior at mimicking such the large-scale environment as described here. Both 

PFRs were unaerated, but only one had a feed addition point, while the STR was 

aerated and was subject to pH control. On comparing their results to those of Käß et 

al., (2014) (two-compartment model), they found that the DCW and lysine production 

profiles were similar. They also showed that the kanamycin-resistant C. glutamicum 

DM1800 pekeX2cadA cells when exposed to the two non-aerated PFRs for up to 4 

min, recorded no loss in biomass productivity. These examples confirm what was 

observed here, that cultures of C. glutamicum exposed to a non-ideal PFR 

environment of  𝜏𝑃𝐹𝑅 ranging from 1 – 5 min showed no decrease in DCW 

productivity (see Figure 5.17 a – d).     
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5.3 CO2 productivity 

 

CO2 is both a product of anabolic and catabolic metabolism within a cell; its 

production rate gives an indication of the physiological state of a cell. A change in a 

cell’s metabolism could be indirectly observed by a change in its CO2 production 

profile. Thus, a cell’s response to changes in its environment can be partially 

quantified by measuring the evolved CO2.  

The respiratory quotient (RQ) was not computed because the small reactor 

volumes and the low sensitivity of the Tandem gas analyser made it difficult to record 

any difference between the inlet and exit O2 values when the enrichment of air with 

oxygen was initiated to maintain a DOT ≥ 40 %.  

The measurement of CO2 produced was acquired in real time, which gave 

instant results as to how the cells responded to the changing fermentation conditions 

of the SDRs. The rate of change of in CO2 production can be seen in Figures 5.18 a 

– d. The first CO2 productivity peak is shown in Figure 5.18 a – d (reached ≈ 0.013 

g.L-1.min-1 in all cases) between 10 – 14 h indicated the completion of the initial 

uncontrolled exponential cell growth phase. This then led on to the transition phase 

which saw the decline in the cell metabolic activities due to the limited glucose 

environment (seen in Figure 5.4, 5.8, 5.12 and 5.16). 
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Figure 5.18 a – d CO2 productivity for SDR 1 – 12, data points represent the mean values from a set biological 
replicate 
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This decrease is seen by the flat-lining CO2 production (between 13 – 22 h), 

indicating that the cells adapted to this harsh regime by shutting down most cellular 

functions, apart from those necessary for survival. After the transition phase, the rate 

of glucose addition increased until it became sufficient for both maintenance and 

other cellular functions. Only then did the CO2 evolution rate increase as the cells 

grew exponentially at a controlled rate of 0.1 h-1. The growing cells ensured that the 

CO2 productivity increased right until the end of the fermentation. However, in some 

cases the CO2 production plateaued off as seen in SDR 1, 4, 7, 10 and the STR only 

fermentations, suggesting some other nutrient limitation apart from carbon or that 

product inhibition was occuring.  

The 1 min simulations (SDR 1, 4, 7 & 10) were similar in their CO2 production 

rate profiles to the STR only control; the final average value reached was ≈ 0.042 

g/Lmin. Whereas the CO2 production rate for 2 min (SDR 2, 5, 8, & 11) and 5 min 

(SDR 3, 6, 9 & 12) simulations was on average 0.058 and 0.063 g.L-1.min-1 

respectively, representing a 38 % and 50 % increase. The biggest increases in CO2 

production rates were observed in simulations where the glucose was added at the 

PFR section of the SDR, particularly when the 𝜏𝑃𝐹𝑅 was highest (5 min). Thus, it can 

be inferred that inducing a region of high glucose concentration in a limited oxygen 

environment would result in more changes in the cells metabolic pathway. Also, 

differences seen in the CO2 production rate profiles suggest a different product 

distribution. This may be the case for SDR 6 & 12 (showing the largest CO2 profile 

deviation), when the cells spent the longest time in the PFR in a localised high 

glucose environment. 
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5.4 Cadaverine production 

 

The cadaverine productivity of C.glutamicum DM1945 Δact3 Ptuf-ldcC_OPT 

was measured in a well-mixed STR only control and compared to simulations SDR 1 

– 12. Figure 5.19 a – d showing the production of cadaverine from C. glutamicum 

DM1945 Δact3 Ptuf-ldcC_OPT was observed to be growth linked. The highest final 

cadaverine titre of 19.57 g/L was observed in the well-mixed STR only fermentation, 

see Table 5.3.  
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Figure 5. 19 a – d Cadaverine formation profiles for SDR 1 – 12, data points represent the mean values from 
biological replicates and the error bars equivalent to their standard deviations. 

 

 

 

 

 

 

 

 

 

 

Table 5.3 A summary of C. glutamicum DM1945x3 cadaverine formation for STR only and SDR 1 – 12 
simulations 

For example, the SDR 1, 2 & 3 simulations showed a decrease in cadaverine 

concentration of 19, 48 and 56 % respectively compared to the STR only. This trend 

clearly highlighted a substantial decline in cadaverine production as the amount of 

time the cells spent in the unaerated PFR section increased up till after the 𝜏𝑃𝐹𝑅 of 2 

min. This was true for the other simulations which all recorded similar decreases. 

The lack of resolution between the 𝜏𝑃𝐹𝑅 of 2 and 5 min was rather puzzling. This is 

further highlighted by the average 𝑞𝐶𝐴𝐷 for the 𝜏𝑃𝐹𝑅 of 1, 2 and 5 min simulations 

 Final cadaverine titre 
(gL-1) 

Specific metabolic quotient 

for cadaverine (𝑞𝐶𝐴𝐷)  
(g.L-1.h-1.g-1) 

STR only 19.57 0.057 

SDR 1 
SDR 2 
SDR 3 

15.81 
10.23 
8.60 

0.045 
0.030 
0.030 

SDR 4 
SDR 5 
SDR 6 

14.53 
11.20 
10.66 

0.043 
0.035 
0.032 

SDR 7 
SDR 8 
SDR 9 

13.60 
10.23 
10.39 

0.042 
0.032 
0.033 

SDR 10 
SDR 11 
SDR 12 

14.08 
11.72 
9.73 

0.041 
0.036 
0.028 
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evaluated as 0.043, 0.033 and 0.031 g.L-1.h-1.g-1 respectively. Thus, hinting that, 

increasing the 𝜏𝑃𝐹𝑅 alone does not necessarily increase the magnitude of 

inhomogeneity across the system. This is because if the volume in the STR is kept 

constant while increasing the 𝜏𝑃𝐹𝑅, the cell mean residence time in the STR (𝜏𝑆𝑇𝑅) 

also increases, which may attenuate the extent of the cell population response to the 

simulated pH, DOT and glucose gradients across the SDR. In other words, there is a 

better chance for recovery if the cells spend longer times in the well-mixed aerated 

STR even after their 𝜏𝑃𝐹𝑅 in the non-ideal PFR environment was increased. To 

quantify this phenomenon, the mean frequency at which the cells entered the PFR 

(𝑓𝑚) was evaluated for each increase in 𝜏𝑃𝐹𝑅, see Equation 5.1. 

 
𝑓𝑚 =

𝑄𝑟

𝑉𝑆𝑇𝑅
 

5.1 

Where, 𝑄𝑟 = volumetric recirculation flow rate and 𝑉𝑆𝑇𝑅 = working volume of the STR 

and 𝑄𝑟 is related to 𝜏𝑃𝐹𝑅 by Equation 5.2. 

 
𝑄𝑟 =

𝑉𝑃𝐹𝑅

𝜏𝑃𝐹𝑅
 

5.2 

Where, 𝑉𝑃𝐹𝑅 = the PFR volume, combining Equation 5.1 and 5.2 result in Equation 

5.3. 

 
𝑓𝑚 =

𝑉𝑃𝐹𝑅

𝜏𝑃𝐹𝑅
∗

1

𝑉𝑆𝑇𝑅
 

5.3 

The 𝑓𝑚  for the 𝜏𝑃𝐹𝑅 of 1, 2 and 5 min simulations derived from Equation 5.3 were 

calculated as 0.0018, 0.0009 and 0.0004 /s respectively. These values showed that 

at a constant 𝑉𝑆𝑇𝑅, the 𝑓𝑚  decreased considerably when the 𝜏𝑃𝐹𝑅 was increased. This 

confirmed that the cells were indeed spending more time in the STR every time the 

𝜏𝑃𝐹𝑅 was increased.  
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The production of cadaverine from C. glutamicum is strongly linked to the 

operation of the TCA cycle. This is because one of its main precursor (oxaloacetate) 

is formed within this cycle (Becker et al. 2011). Thus, if there is a reduction of carbon 

flux into the TCA cycle, the amount of carbon available to produce oxaloacetate 

declines. When chemical and physical pressures are exerted on cells, they redirect 

the carbon flux to adapt to their environment (Larsson & Törnkvist, 1996). This 

encourages the production of metabolic products that help maintain intracellular 

homoeostasis at the expense of other non-essential products (such as cadaverine). 

A carbon balance analysis was used to quantify the difference in the carbon product 

profile to characterise how the cells responded to various SDRs. A typical 

unbalanced fermentation reaction as shown in Equation 5.4, which highlights the 

major components.  

𝐶6𝐻12𝑂6 + (𝑁𝐻4)2𝑆𝑂4 + 𝑁𝐻4𝑂𝐻 + 𝑂2 → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐶3𝐻6𝑂3 + 𝐶5𝐻14𝑁2 + 𝐶𝑂2 + 𝐻2𝑂 +  𝑍               5.4 

𝑍 represents the unidentified carbon containing products, which were not measured. 

If the carbon containing substances are only considered, Equation (5.4) can be 

simplified further to Equation 5.5. 

 𝐶6𝐻12𝑂6 → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐶3𝐻6𝑂3 + 𝐶5𝐻14𝑁2 + 𝐶𝑂2 +  𝑍 5.5 

C. glutamicum elemental biomass composition was analysed as 𝐶3.97𝐻6.46𝑂1.94𝑁0.845 

and 3.02 % ash (Vallino & Stephanopoulos, 1992). Hence, Equation 5.5 can be 

rewritten as seen in Equation 5.6. 

 𝐶6𝐻12𝑂6 → 𝐶3.97𝐻6.46𝑂1.94𝑁0.845 + 𝐶3𝐻6𝑂3 + 𝐶5𝐻14𝑁2 + 𝐶𝑂2 +  𝑍 5.6 
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Re-writing the above on basis of carbon, 1 mole of glucose yields Equation 5.7 

 𝐶𝐻2𝑂 → 𝑌𝑥/𝑠 𝐶𝐻1.63𝑂0.49𝑁0.21 + 𝑌𝐿𝐴𝐶/𝑠 𝐶𝐻2𝑂 +  𝑌𝐶𝐴𝐷/𝑠 𝐶𝐻2.8𝑁0.4 + 𝑌𝐶/𝑠𝐶𝑂2 + 𝑌𝑧/𝑠𝑍 5.7 

𝑌𝑥/𝑠 = yield of C-mole biomass on glucose, 𝑌𝐿𝐴𝐶/𝑠 = yield of C-mole lactate on 

glucose, 𝑌𝐶𝐴𝐷/𝑠 = yield of C-mole cadaverine on glucose, 𝑌𝑐/𝑠 = yield of C-mole CO2 

on glucose, 𝑌𝑧/𝑠 = yield of C-mole unknown carbon containing compounds on 

glucose.  

Thus, a carbon mole balance is represented in Equation 5.8. 

 1 = 𝑌𝑥/𝑠 + 𝑌𝐿𝐴𝐶/𝑠 + 𝑌𝐶𝐴𝐷/𝑠 + 𝑌𝑐/𝑠 + 𝑌𝑧/𝑠 5.8 

All yield terms in Equation 5.8 apart from 𝑌𝑧/𝑠 were empirically derived. For illustrative 

purposes, 𝑌𝑧/𝑠 for the STR only experiment was used as an example and evaluated 

as follows. 

Molar mass on a carbon mole basis of 𝐶𝐻2𝑂 (glucose) = 30 gmol-1, 

𝐶𝐻1.63𝑂0.49𝑁0.21 (biomass) = 24.41 gmol-1,  𝐶𝐻2𝑂 (lactate) = 30 gmol-1,  𝐶𝐻2.8𝑁0.4 

(cadaverine) = 20.4 gmol-1, 𝐶𝑂2 (carbon (IV) oxide) = 44 gmol-1.  

𝑌𝑥/𝑠 =
29.68/24.41

94/30
= 0.3881  

𝑌𝐿𝐴𝐶/𝑠 =
0.25/30

94/30
= 0.0027  

𝑌𝐶𝐴𝐷/𝑠 =
19.57/20.4

94/30
= 0.3062  

𝑌𝑐/𝑠 =
27.24/44

94/30
= 0.1976  

Substituting these yield values in Equation 5.8        

1 = 0.3881 + 0.0027 + 0.3062 + 0.1976 + 𝑌𝑧/𝑠 
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Thus, 𝑌𝑧/𝑠 = 0.1054 which indicated that ≈ 10 % of the fermentation products were 

not quantified. To have an estimate on how many of these unmeasured products 

were present in the cultivation broth, a redox balance was carried out. The degrees 

of reduction for the elements C = +4, O = -2, H = +1 and N = -3. 

Substituting these and the yield values in Equation (5.7) resulted in a redox balance 

as follows, 

4 + (1 ∗ 2) − 2 = 0.3881(4 + (1 ∗ 1.63) + (−2 ∗ 0.49) + (−3 ∗ 0.21)) + 0.0027(4 +

(1 ∗ 2) − 2) + 0.3062(4 + (1 ∗ 2.8) + (−3 ∗ 0.4)) + 0.1976(4 + (−2 ∗ 2)) + 0.1054𝑍              

Hence,  

4 = 1.5602 + 0.0108 + 1.7147 + 0 + 0.1054𝑍       

𝑍 = 6.8     

From the value of Z, it can be inferred that the number of unquantified carbon 

containing product(s) (C – products) in the cultivation broth was most likely ≥ 2. 

Table 5.4 gives an overview of the percentage of unquantified products and 

equivalent degree of reduction for the various simulations investigated.  
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Simulation % of unquantified 
C – products  

Deficit degree of 
reduction 

STR only 10.54 6.8 

SDR 1 
SDR 2 
SDR 3 

12.86 
18.19 
19.11 

7.3 
7.7 
8.3 

SDR 4 
SDR 5 
SDR 6 

15.76 
16.32 
22.74 

6.7 
8.7 
7.4 

SDR 7 
SDR 8 
SDR 9 

16.02 
26.35 
20.54 

6.9 
6.5 
7.3 

SDR 10 
SDR 11 
SDR 12 

11.24 
18.86 
24.36 

8.2 
7.8 
7.2 

 

Table 5.4 A summary of the percentage composition of unmeasured carbon-based products derived from C. 
glutamicum DM1945x3 consumption of 1 mole of glucose 

  The general trend highlighted in Table 5.4 showed an increase in the 

percentage of unquantified C – products as the 𝜏𝑃𝐹𝑅  increased. However, the 

degree of reduction remained relatively unchanged. This suggests that the number 

of C – products with low degrees of reduction were predominant when the 𝜏𝑃𝐹𝑅  was 

increased from 1 min to 5 min. Hence, it is expected that more product diversity, with 

substantial short chained carbon containing compounds, will be present in 

simulations where the cells spent more time in the PFR. 

5.5 Lactate formation 

 

In C. glutamicum cultivation, lactate is mainly produced from the fermentative 

and the overflow metabolic pathway (Dominguez et al. 1998). Thus, it is a 

reasonable index for characterising the degree of C. glutamicum response to 

fermentation heterogeneity. However, since lactate can also be utilised by C. 

glutamicum as an alternative carbon source (Pirt 1975), its interpretation of results 

could be challenging in a limited glucose environment (such as a fed-batch process). 

Figures 5.20 a – d illustrate how the lactate concentration changes in the course of 
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STR only and SDR 1 – 12 fermentations. Figure 5.20 e also gives an overview of the 

lactate gradient across the reactor at the end of the process. 
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Figure 5.20 a – d Lactate accumulation profiles for SDR 1 – 12, data points represent the mean values from 
biological replicates and the error bars equivalent to their standard deviations. 

 

 

Figure 5.20 e Lactate gradient across the whole system for SDR 1 – 12 simulations, sampled at the end of 
fermentation (39 h), data points represent the mean of biological replicates and the error bars equivalent to their 
standard deviations. 

The initial rise in lactate accumulation seen in Figure 5.20 a – d corresponded 

to the exponential growth period (6 – 11 h) of the batch phase. During this period the 

rate of glycolysis is at the highest as the cells have become well adapted to the 

bioreactor environment. The availability of nutrient brings about rapid growth; the 

increased carbon flux upstream activates an overflow metabolic pathway which 

results in an increased production of organic acids to balance its redox potential. 

Lactate being one of the major products of this pathway is excreted extracellularly 
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and accumulates in the broth. This excretion of potential carbon sources, such as 

lactate, tends to find a secondary use when glucose becomes scarce. Thus, the cells 

will reuse some of the secreted organic acids as an alternative source of carbon, if 

glucose is unavailable. During the transition phase, when glucose became limited, 

the cells reverted to the organic acids present in the medium for energy, thus, the 

decline in lactate concentration between 13 – 22 h. After 24 h, the cells grew at a 

controlled specific growth rate of 0.1 h-1, and as the DCW increased (> 15 gL-1), the 

dissolved oxygen in the PFR plummeted (see Figures 5.3, 5.7, 5.11 & 5.15). This 

situation encouraged energy generation via the fermentative pathway within the 

PFR, observed by the increasing lactate concentration as the cells move through the 

PFR. This lactate gradient was especially predominant as 𝜏𝑃𝐹𝑅 increased. At the end 

of fermentation (39 h), the lactate concentration was typically highest at the exit point 

of the PFR (see Figure 5.20 e). Although, the broth recirculated back to the STR (exit 

broth from the PFR) typically had the highest lactate concentration, the average 

concentration in the STR did not rise significantly. This effect was more likely due to 

dilution within the STR (because of difference in volumes, STR ≈ 10 x PFR) rather 

than the re-assimilation of lactate by the cells.  

5.6 Glucose accumulation  

 

Glucose was the main carbon source in all the experiments, on start-up of the 

batch phase it was at 10 gL-1, as shown in Figure 5.21 a – d. However, in the feed, 

glucose was more concentrated (600 gL-1). Regardless of this high concentration, 

the inlet flow rate was low enough to ensure that for most of the fed-batch phase (14 

h – 36 h), glucose was the limiting nutrient.  
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 Figure 5.21 a – d Glucose utilisation profiles for SDR 1 – 12, data points represent the mean values from 
biological replicates and the error bars equivalent to their standard deviations. The error bars between 14 h and 
36 h are too small to be seen in this graph due to the high glucose concentrations at the start and end of 
fermentation. 
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The glucose utilisation profile was similar in all the experiments carried out. 

The initial start-up glucose concentration during the batch phase was completely 

consumed between 14 and 16 h. The variations seen in the time taken to use up the 

initial glucose (10 gL-1) can be attributed to the inoculum quality. The seed cultures 

were fermented in unbaffled shake flasks, with only a temperature and a shaking 

speed controller (see Chapter 3 for details of shake flask cultivation conditions). The 

other important factors such as pH, glucose and DO were neither monitored nor 

controlled, making it difficult to optimise the seed fermentation. This fermentation 

was carried out overnight for 13 hours and at the point of transfer could be anywhere 

between its early exponential and deceleration phase. The seed culture at this period 

was acidic, whilst limited in glucose and DO. The interaction of these factors 

probably contributed to the variability in growth rates seen in the batch phase. For 

example, if the seed culture were transferred after the exponential growth phase, a 

longer batch phase would be expected (as might have occurred in SDR 4 & 10). In 

general, the glucose profile shows that between 16 – 36 h, the fermenting 

environment was glucose limited, regardless of feeding. However, during the last 3 

hours of fermentation, glucose started to accumulate, suggesting the effect of a 

reduced cell growth rate and a diminished glucose uptake, as already highlighted at 

the start of this chapter. 

5.7 Flow cytometric analyses 

 

The metabolic measurements using flow cytometry clearly distinguished three 

physiological states depicted in the quadrants of Figures 5.22 to 5.25. Q4, Q1 and 

Q2 quadrants represent healthy, depolarised and permeabilised (dead) cells 

respectively. Q3 most likely indicates cell clusters (doublets) or equipment noise. C. 

glutamicum’s unique outer membrane structure made it challenging to develop a 
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suitable multi-stain assay for characterising the aforementioned physiological states. 

Its outer layer is composed of mycolates with similar functions to that of a Gram -ve 

organism (Puech et al., 2001). Hence, its uncharacteristic high resting membrane 

potential of ≈ 170 mV in a neutral medium (Follmann et al., 2009b). The complexity 

of this outer layer also makes it incompatible with carbocyanine based 

fluorochromes, contrary to use with a typical Gram-positive bacterium, such as B. 

subtilis. Thus, the fluorochromes which were found suitable here are commonly used 

for the analysis of Gram-negative organisms.  

 

 

  

 

0 h 

24 h 39 h 

13 h 

(STR only)  a  
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Figure 5.22 a - d Flow cytometer dot plots for STR only, SDR 1,2 & 3 indicating the condition of the cell 
membrane at different time points during fermentation using the above fluorochromes. Each dot on the plot 
represents a cell of the 10000 cells interrogated. 
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STR, 𝜏𝑃𝐹𝑅 = 5 min 
0 h

39 h

(SDR 3) d  

24 h

13 h

Glucose to PFR; acid/base to 

STR, 𝜏𝑃𝐹𝑅 = 1 min 

39 h

(SDR 4) a  

12 h 

24 h

0 h 



150 
 

 

 

 

Figure 5.23 a – c Flow cytometer dot plots for SDR 4, 5 & 6 indicating the condition of the cell membrane at 
different time points during fermentation using the above fluorochromes. Each dot on the plot represents a cell of 
the 10000 cells interrogated. 
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Figure 5.24 a – c Flow cytometer dot plots for SDR 7, 8 & 9 indicating the condition of the cell membrane at 
different time points during fermentation using the above fluorochromes. Each dot on the plot represents a cell of 
the 10000 cells interrogated.  
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Figure 5.25 a – c Flow cytometer dot plots for SDR 10, 11 & 12 indicating the condition of the cell membrane at 
different time points during fermentation using the above fluorochromes. Each dot on the plot represents a cell of 
the 10000 cells interrogated. 
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The graphs in Figures 5.22 a & b, Figures 5.24 a & b and Figure 5.25 b (SDR 

1, 4, 7, 8 & 11) all highlighted the carryover of depolarised (Q1) and permeabilised 

cells (Q2) as well as healthy cells (Q4) from the seed culture of the shake flask. The 

common trend of this subset is illustrated in Figure 5.22 a. The result shows that on 

start-up, 3 % and 9 % of the cells had depolarised and permeabilised membranes 

respectively. 12 hours later the number of cells with depolarised and permeabilised 

membranes was down at 1 % and 3 % respectively. Finally, at the time of 

termination (39 h), almost all the cells (≈ 99 %) were indicated to be healthy.    

Although the graphs on Figures 5.22 c & d, Figures 5.23 b & c, Figure 5.24 c, 

Figures 5.25 a & c (SDR 2, 3, 5, 6, 9, 10 & 12) started out differently from those 

above, the general trend was similar. Here the results showed no significant amount 

of depolarised and dead cell population on start-up. This indicated that there were no 

carry-over of these cell subpopulations from the seed shake flask culture, which 

would have been reflected on the 0 h plots. For illustration purposes, Figure 5.22 c is 

used to explain this trend; the healthy cell population was at 97 % on start-up while 

the depolarised and permeabilised cell population was estimated at 0.68 % and 

1.4 % respectively. After 13 hours, the healthy cell population decreased to 94.4 % 

with the depolarised and permeabilised cells increasing to 1.41 % and 3.72 % 

respectively. On completion, the healthy cell population had increased to 99.7 %. 

The slight decline in the healthy cell numbers coincided with the transition phase of 

growth, 13 – 22 h. This indicated that the severe glucose limitation during this phase 

was the major contributing factor, but as feeding increased exponentially with time, 

the cells adapted, and healthy cell numbers rebounded. 

In summary, the cell viability trend remained the same regardless of the SDR 

simulated. The variability in the viability of the start-up cell population was more a 
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manifestation of the quality of seed taken from its shake flask culture, especially if 

these cells were transferred after the exponential growth phase. The cells seem to 

adapt to the bioreactors conditions as the fermentation progressed and the time 

spent in the non-ideal PFR environment was not sufficient to result in a significant 

loss of membrane integrity. 

5.8 Cell viability determination by plating 

 

The ability of a cell to form a colony on an agar plate indicates that it is 

healthy and cultivable on a solid agar medium. Although this method is known to 

underestimate the viable cell count, due to issues of agar selectivity and the cell’s 

physiology, it still gives some useful information on the condition/growth of the cells. 

Figures 5.26 a – d show the trends in the viable cell count, grown on TSA using the 

plating technique (see the Material & Methods section for conditions of cultivation).  
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Figure 5.26 a – d Viable counts on a TSA medium for SDR 1 – 12, data points represent the mean values of 
biological replicates, and the error bars equivalent to their standard deviations. 
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The rate of viable colony increase can be broadly divided into two. From the 

start of the process, the CFU/ml was ≈ 3.5*106 cells.mL-1, but by the start of the 

transition phase (14 h), the average viable cell count was at about 4.7*109 cells.mL-1. 

This indicated just over a 1300-fold increase from the start cell concentration.  

However, for the next 25 hours (14 h – 39 h), the viable cell count only increased by 

3-fold, ≈ 1.5*1010 cells.mL-1 at 39 h. This shows that the main viable cell count 

increase occurred between 0 – 14 h, indicating that in the course of fermentation the 

ability of the cells to form colonies on an agar plate decreased. (Enfors et al., 2001) 

had suggested that there might be a cell mechanism behind this decline in the CFU 

ability, especially as 𝜇 tends to 0.05 h-1. However, it is more likely that this seemingly 

decline in the cell’s colony count might be due to misinterpretation from increasing 

cell clustering as the DCW increased. Since cell clusters are known to predominate 

in nutrient limited fermentations (Käß et al., 2014), it is likely that more clusters are 

being counted as one colony as the fermentation progresses. In high cell density 

fermentations in a nutrient limited environment, the frequency of cell clustering 

increases, resulting in a grossly understated viable cell count. Also, the practice of 

serial dilution before plating adds to counting error from inconsistent pipetting. If 

there are viable but non-culturable cells as reported by Nebe-Von-Caron et al., 

(2000), the plating method will underestimate cell viable numbers. 

The process data logs for sections 5.2 to 5.8 for C. glutamicum DM1945x3 

fed-batch fermentations can be seen in Appendix 13 to 25.   
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5.9 Conclusion 

The SDR simulations induced a different response compared to the well-

mixed STR only control fermentation. Even though no loss in the cell’s biomass 

productivity was recorded, differences were seen in cadaverine and CO2 

productivity. These differences also varied depending on the SDR simulation 

implemented. The simulations which saw a 𝜏𝑃𝐹𝑅 increase from 2 min to 5 min did not 

result in any significant change. As earlier highlighted, increasing the 𝜏𝑃𝐹𝑅 also 

changed the 𝑓𝑚 , which was hypothesised to attenuate the cells response. Hence, the 

experiments presented in the next chapter were setup to investigate this issue. 
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CHAPTER 6 

6 Scale-down studies of C. glutamicum DM1945 Δact3 Ptuf-

ldcC_OPT fed-batch fermentations in varying STR volumes.  

 

In Chapter 5, when the plug flow residence time 𝜏𝑃𝐹𝑅 was increased from 2 

min to 5 min (by decreasing the exchange flow rate between the STR and PFR) 

whilst maintaining the STR volume fixed at 3 L, no significant difference in C. 

glutamicum DM1945x3 physiological response was observed. Although this lack of 

physiological difference did not happen when the 𝜏𝑃𝐹𝑅 was increased from 1 min to 2 

min. The results presented in Chapter 5 strategy did show that after 2 min, the longer 

time spent in the STR most likely attenuated the effect of the cells spending more 

time in non-ideal PFR environment. Hence, for experiments with 𝜏𝑃𝐹𝑅 > 2 min, the 

cells that had experienced oxygen or glucose limiting conditions in the upper parts of 

the PFR might have had more time to recover in the near optimal growth conditions 

of the STR, as their residence time there also increased. For example, experiment 

SDR 1 had a 𝜏𝑆𝑇𝑅 of 10 min, while SDR 3 had a 𝜏𝑆𝑇𝑅 of 50 min (Table 5.1), which 

shows that the cells were spending on average 5 times longer in the STR when the 

𝜏𝑃𝐹𝑅 was raised to 5 min. As highlighted in Chapter 5 Subsection 5.1.3, the mean 

frequency at which the cells entered the PFR, 𝑓𝑚  of all experiments with a 𝜏𝑃𝐹𝑅  of 5 

min was 80 % less than that when the 𝜏𝑃𝐹𝑅  was 1 min. 

The idea of decreasing the STR volume, for fixed values of 𝜏𝑃𝐹𝑅 (i.e. changing 

the ratio of volumes of the PFR and STR) was done to mimic situations where a 

bioreactor’s mean mixing time and dead zone is increased due to an increasing cell 

metabolic activity and reduced power input. Also, in certain high cell density 

fermentations, mixing performance can start out suitably sufficient, but towards the 
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latter part of a fed-batch process may become insufficient due to increases in cell 

population, product formation (both can increase broth viscosity) and metabolic rate. 

Noorman, (2011) highlighted that in large-scale vessels, high cell density cultures, 

filamentous and polymer-type bioprocesses can easily reach dynamic broth viscosity 

>50 mPa.s within the period of fermentation. Hence, as the dynamic broth viscosity 

exceeds 50 mPa.s, the flow becomes transitional, the volumetric mass transfer and 

heat transfer coefficients declines and dead zones may appear (Noorman, 2011). 

This means that given a constant power input of a bioreactor, its mixing time could 

still vary due to the changing cell metabolic rate and broth viscosity. Thus, if mixing 

efficiency declines during a fermentation (depicted in STR + PFR models by 

increasing the 𝜏𝑃𝐹𝑅) the dead zones within the bioreactor may become more 

prominent and their proportion in relation to the bioreactor volume increases. Figure 

6.1 shows a simplified representation on the effect of mixing deterioration during a 

top-feed high cell density fermentation of a large-scale STR and how these situations 

can be simulated using the two-compartment model.  
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Figure 6.1 The two-compartment scale down models adapted to mimic changes in the dead zone proportions of a 
high cell density large-scale process due to declining mixing efficiency. T1, T2 and T3 represent increasing 
timeframes during the fermentation process. 

Figure 6.1 indicates that the proportion of the poorly mixed zone to the well-

mixed zone increases as the mixing time decreases (note that time T1 < T2 < T3). The 

strategy to mimic the effect of increasing the mixing time using the two-compartment 

model is also illustrated in Figure 6.1. The progression from T1 to T3 for the scale 

down study was mimicked by reducing the volume in the STR while the PFR volume 

stayed constant (Table 6.1). This changing ratio of the poorly mixed zone to the well-

mixed zone is thought to be a closer reflection to increasing the magnitude of 

fermentation gradients when the 𝜏𝑃𝐹𝑅 is increased.  

As in Chapter 5, the experiments presented here also compared C. 

glutamicum’s physiological response to the 𝜏𝑃𝐹𝑅 (1 min, 2 min and 5 min), glucose 
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and pH gradients. However, the volume in the STR was reduced as the 𝜏𝑃𝐹𝑅 was 

increased to keep the 𝑓𝑚  constant at 0.0018 s-1 regardless of the simulation 

investigated (Table 6.1). Hence, for the 𝜏𝑃𝐹𝑅 of 1 min, 2 min and 5 min, the STR 

volume was kept at 3 L, 1.5 L and 0.6 L respectively. This was done to reflect an 

increase in mixing time in a fermenter and the constant  𝑓𝑚𝑎𝑥  ensured that proper 

comparison could be made across the three values of 𝜏𝑃𝐹𝑅.   

6.1 Fermentation conditions across the two-compartment model 

In the simulations investigated, the cultivation conditions in the SDR were 

different as shown in Table 6.1. The following results below were grouped based on 

the similarity of where the pH controlling agent and glucose feed were introduced to 

the SDR (Table 6.1). Hence, the simulations SDR 1, 13 & 14, SDR 4, 15, & 16, SDR 

7, 17 & 18 and SDR 10, 19 & 20 are segregated and discussed below. Table 6.1 

also introduces the experimental overview of this Chapter and highlights the 

decreasing STR volume as the 𝜏𝑃𝐹𝑅 increases.  

Simulation Glucose 

inlet 

pH inlet Air inlet STR 

volume (L) 

PFR 

volume (L) 

𝜏𝑃𝐹𝑅  

(min) 

𝜏𝑆𝑇𝑅 

(min) 

𝑓𝑚  

(s) 

SDR 1 STR STR STR 3  0.3  1  10  0.0018 

SDR 13 STR STR STR 1.5  0.3  2  10  0.0018 

SDR 14 STR STR STR 0.6  0.3  5  10  0.0018 

SDR 4 PFR STR STR 3  0.3  1  10  0.0018 

SDR 15 PFR STR STR 1.5  0.3  2  10  0.0018 

SDR 16 PFR STR STR 0.6  0.3  5  10  0.0018 

SDR 7 STR PFR STR 3  0.3  1  10  0.0018 

SDR 17 STR PFR STR 1.5 0.3  2  10  0.0018 

SDR 18 STR PFR STR 0.6  0.3  5  10  0.0018 

SDR 10 PFR PFR STR 3  0.3  1  10  0.0018 

SDR 19 PFR PFR STR 1.5  0.3  2  10  0.0018 

SDR 20 PFR PFR STR 0.6 0.3  5  10  0.0018 

Table 6.1 An experimental overview of the SDRs investigated 
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6.1.1 Effect of the PFR dissolved oxygen limitation in the PFR on fermentation 
conditions 
 

SDR 1, 13 and 14 had both the glucose and pH controlling agent addition 

points located in the STR but differed slightly because their 𝜏𝑃𝐹𝑅 were 1 min, 2 min 

and 5 min respectively; the STR volumes were also varied, as stated in Table 6.1. 

The pH profiles across the two-compartment model for SDR 1, 13 and 14 are 

illustrated in Figure 6.2. 

 

Figure 6.2 pH profiles across SDR 1, SDR 13 and SDR 14 simulations 

The pH in the STR was tightly controlled (pH setpoint was 7) in SDR 1 & 13. 

However, for SDR 14 the pH was more challenging to control as its profile was 

oscillatory from 16 h onwards. This pH oscillation was as a result of the acidic broth 

exiting the PFR to the STR, due to the increased production of organic acids from a 

predominant fermentative pathway as the cells spent more time in the oxygen-limited 
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PFR environment (Hewitt et al., 2000; Junne et al., 2011; Neubauer et al., 1995b; 

Pirt, 1975). The small amount of broth (0.6 L) in the STR for SDR 14 was not 

sufficient to act as a buffer for the incoming pH variations from the PFR. This was in 

contrast to SDR 1 and 13, which had higher STR volumes of 1.5 L and 3 L and lower 

rates of organic acid production hence the reduced pH oscillations recorded.  Thus, 

for SDR 14, the acidic broth from the PFR (due to DOT limitations and the presence 

of mixed acid fermentation products) was able to reduce the pH in the STR. The pH 

controller compensated continuously for this by the addition of 4 M aqueous NH4OH 

(in the STR), which resulted in the oscillations observed in SDR 14. For most of 

these fermentations, the pH in the PFR was lower than in the STR, indicating a 

higher formation rate of organic acids (for example, lactic and acetic acid) in the PFR 

section. The limited oxygen environment of the PFR encouraged C. glutamicum 

DM1945x3 growth via the fermentative pathway, which increased lactic acid 

production rates (Junne et al., 2011). As shown in Figure 6.2, the pH gradient 

(difference between inlet and outlet pH) in the PFR was more pronounced towards 

the end of the fermentation process. This was due to the high density of 

metabolically active cells generating ATP in the PFR oxygen-limited environment 

(increasing organic acid side products). The top section of the PFR recorded the 

lowest pH; confirming that an increasing 𝜏𝑃𝐹𝑅 in a low DOT environment favoured the 

production of organic acids (formic, lactic and acetic acids). The pH gradient in SDR 

14 was the most pronounced of the graphs in Figure 6.2, which suggests its 

condition was probably the most non-uniform of the three SDRs and thus it should 

elicit the strongest response.   

Figure 6.3 indicates that an increased cell metabolic rate results in an 

increased rate of dissolved oxygen concentration. In all cases, the DOT was set not 
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to fall below 40 %. Hence when values were above 40 %, there was no control. The 

DOT trends in SDR 1, 13 & 14 were similar; the first decline in the DOT happened 

during the uncontrolled exponential growth (0 to 14 h) of the batch phase. After that 

was the pseudo-stationary growth (14 h to 21 h) of the batch to a fed-batch phase 

transition, which produced an increase in the DOT. Lastly, was the controlled 

exponential growth (21 h to end) of the fed-batch phase, which recorded another 

decrease in DOT, but as the STR was set not to fall below 40 %, the inlet air 

enrichment with pure oxygen to keep the DOT above the set point. Since the 𝑘𝐿𝑎 

was relatively constant throughout the process, enriching the air raised the 

composition of oxygen in the inlet air. This increased the oxygen concentration at the 

gas-liquid interface of the medium and consequently the oxygen transfer rate 

(Equation 2.3). The DOT in the PFR was not controlled; its profile depended on C. 

glutamicum DM1945x3 metabolic activity. For example, the burst in increased 

metabolic activity at the end of the pseudo-stationary growth phase led to the rapid 

DOT decline in the PFR.  
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Figure 6.3 DOT profiles across SDR 1, SDR 13 and SDR 14 simulations 

 

As a bacterial cell population increases, the rate of nutrient utilisation also 

increases. Thus, if an essential nutrient is limited, the cell growth rate will slow down. 

Here, glucose restriction was used to control C. glutamicum DM1945X3 growth rate 

during the fed-batch part of these fermentations. In all simulations, on attaining a 

DCW of 1 gL-1 after eight hours of a strict batch process, glucose was slowly 

introduced into the reactor. Thus, by limiting the amount of glucose available in the 

broth from then onwards, the cell growth rate was brought to a minimum after 

another six hours (from 14 h) and then controlled at 0.1 h-1, corresponding to the 

exponential feed rate. The glucose concentration measurements for SDR 1, 13 and 
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14 are illustrated in Figure 6.4. These profiles were similar regardless of the sample 

location in the two-compartment model. 

 

 

Figure 6.4 Glucose profiles across SDR 1, SDR 13 and SDR 14 simulations. The data points represent the mean 
values from biological duplicates, and the error bars are equivalent to their standard deviations.  

 The error bars between 14 h and 36 h are too small to be seen in Figure 6.4 

due to the high glucose concentrations at the start and end of fermentation. Although 

feeding commenced at 8 h, between 8 h and 14 h the amount of glucose added 

(average glucose addition rate was  ≈ 0.3 g.L-1.h-1) was not sufficient to sustain a 

𝜇𝑚𝑎𝑥  which ranged from 0.7 h-1 to 1.0 h-1 (average glucose consumption rate ≈ 1.8 

gh-1) during this uncontrolled growth phase. This deficit eventually led to the situation 

where glucose became limiting after 14 h. From then onwards the feeding profile 

was such that it forced the bacterial cells to grow at a 𝜇 of 0.1 h-1 to adapt to this 
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glucose limited environment (see Chapter 3, Subsection 3.6). The latter increase in 

glucose concentration from 36 h may be due to the feed pumping error at high 

speed, especially in SDR 1 simulation. The feed pump speed increased as the cell 

density increased to maintain a 𝜇 of 0.1 h-1 (Figure 6.5). Thus, if the feed pump was 

unstable at high RPMs, it could deviate from the calculated flowrate, thereby adding 

slightly more glucose than required, hence the accumulation observed in SDR 1.  

 

Figure 6.5 Feeding flow profiles for the  𝜏𝑃𝐹𝑅  of 1 min, 2 min and 5 min  

Figure 6.5 indicates that as the STR volume was decreased to keep 𝑓𝑚  equal, 

the feed pump flowrate was reduced. For example, the feed mass flowrate at the end 

of SDR 1 was five-fold higher than that of SDR 14. Hence, a smaller pump was used 

in SDR 14 to accommodate a lower feed flowrate range, which may have changed 

the flow characteristics.  
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6.1.2 Effect of glucose addition in the limited oxygen PFR on fermentation 
conditions 
 

 In SDR 4, 15 & 16 the glucose was added to the lower part of the PFR, while 

the pH controlling agent and air were introduced in the STR. The SDR 4, 15 & 16 

differed in their 𝜏𝑃𝐹𝑅 and STR volumes (Table 6.1). Figure 6.6 shows the pH profile 

across both reactors in these simulations. The pH trends in Figure 6.6 were similar to 

Figure 6.2. However, the pH gradient across the PFR was more pronounced as the 

𝜏𝑃𝐹𝑅 increased. This was because the localised glucose rich and low DO PFR 

environment encouraged more diversion of the carbon flux from the TCA cycle to the 

fermentative pathway. 

 

Figure 6.6 pH profiles across SDR 4, SDR 15 and SDR 16 simulations 
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The physiological response of C. glutamicum, which led to an increase in the 

production of organic acids (for example, lactic acid) made the broth more acidic as 

the cells spent more time in the PFR (Käß et al., 2014). The largest pH difference 

between the top and bottom of the PFR was recorded in SDR 16, suggesting that its 

condition induced the strongest cell response of the three simulations, i.e. the cells 

producing more organic acids, because of the extended time in a DO limited 

environment. The pH oscillations became prominent as the 𝜏𝑃𝐹𝑅 increased, 

especially towards the end of fermentation (when the process reached high cell 

densities). This reason for this oscillation is as highlighted in Subsection 6.1.2, 

Figure 6.2 above.  

 The DOT profile in Figure 6.7 highlights the three main phases of growth, the 

batch, transition to fed-batch and fed-batch phase, as described earlier in Subsection 

6.1.1.  
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Figure 6.7 DOT profiles across SDR 4, SDR 15 and SDR 16 simulations 

 For the most part in the PFR, the DOT was limiting in all simulations. The 

SDR 16 showed the most prolonged period (27 h) of low DOT in the PFR, while SDR 

4 recorded the least (17 h). This signified a 59 % increase in time the cells spent in 

an oxygen limited environment. Hence, confirming that SDR 16 should elicit the 

strongest cell response compared to STR only, SDR 4 & 15.  The DOT profile in 

SDR 15 was different, although its 𝜏𝑃𝐹𝑅 was longer than SDR 4, it showed the 

longest duration at which the PFR was oxygenated. This is most likely due to the 

lower STR medium volume (SDR 15 - 1.5 L working volume in a 5 L STR; SDR 4 – 3 

L working volume in a 5 L STR) of SDR 15, which held a higher concentration of 

dissolved oxygen due to the constant sparging rate of 1.5 vvm. Thus, allowing the 
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PFR to be oxygenated for longer, this made for the biomass concentration of higher 

metabolic activity from about 24 h before the PFR became oxygen limited in SDR 15.  

 The glucose profiles varied for SDR 4, 15 and 16 (Figure 6.8). The glucose 

accumulation in the PFR started after 24 h for SDR 4, but only a slight difference 

between the top and bottom of the PFR was recorded. The STR typically showed the 

lowest glucose concentration after 24 h.    

 

Figure 6.8 Glucose profiles across SDR 4, SDR 15 and SDR 16 simulations 

SDR 4 had a shorter 𝜏𝑃𝐹𝑅 than SDR 15 and 16, due to the bacterial cells 

lower residence time from the bottom to the top of the PFR. Hence, the cells did not 

have sufficient time to completely utilise the incoming glucose before leaving the 

PFR section, which led to the build-up observed. This accumulation became 

noticeable from 24 h because at this point the feeding rate was relatively high and 

this increased rapidly throughout the process (feed mass flowrate at 8 h = 0.7 gh-1, 
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24 h = 3.2 gh-1 and 39 h = 14 gh-1). However, in the STR, glucose accumulation 

started at 32 h in all simulations, and the reasons for this have already been 

highlighted in the discussion of Subsection 6.1.1, Figure 6.4. 

6.1.3 Effect of the pH controlling agent addition in the limited oxygen PFR on 
fermentation conditions 
 

In SDR 7, 17 & 18 only the pH controlling agent was added to the PFR, while 

the controlling sensor was in the STR. The air and glucose were introduced in the 

STR section (Table 6.1). The pH profiles across these SDRs are illustrated in Figure 

6.9. Across the PFR, for SDR 7 and 17 the majority (8 h to 32 h) of the fermentation 

was slightly alkaline. This was because during this period the number of cells 

producing organic acids was not sufficient to completely neutralise the NH4OH that 

was added at the PFR as a response to the cell metabolic activity in the STR and pH 

value of the effluent broth from the PFR. However, after 32 h as the cell mass 

increased, the amount of organic acid produced in the PFR was in excess of the 

base added automatically as a function of the pH value in the STR. This resulted in 

the pH decrease seen towards the end of these fermentations. 
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Figure 6.9 pH profiles across SDR 7, SDR 17 and SDR 18 simulations 

 Also, it should be noted that regardless of the pH values in the PFR for SDR 

7and 17, the pH in the STR was relatively constant: the larger STR broth volumes of 

SDR 7 and 17 indirectly acted as a pH buffer; therefore, their STR pH values were 

much less affected by the fluctuating pH values of the PFR (Figure 6.9). The SDR 18 

pH profile was different: after 20 h (as the cells metabolic activity increased) it 

recorded longer periods of pH oscillations due to its longer 𝜏𝑃𝐹𝑅 (more organic acid 

was produced in the limited DOT environment of the PFR). Hence, the pH at its PFR 

outlet became slightly acidic much earlier (from 20 h) when compared to SDR 7 and 

17. Thus, the bacterial cells spent a longer time in the unaerated PFR, which led to a 

switching to its fermentative pathway and resulting in an increased production of 

organic acids (evaluated here by the pH profile). For all simulations, the period of the 

pH oscillations is related to the metabolic state of the growing C. glutamicum cells 



175 
 

and the tuning of the controller. The controller increases the flowrate of the base 

addition, hence the oscillations observed in the poorly-mixed PFR section. This was 

made worse by the increased dead time between the base addition and the pH 

sensor done to accommodate an increased 𝜏𝑃𝐹𝑅.    

 The DOT profiles for SDR 7, 17 and 18 (Figure 6.10) show no significant 

difference from SDR 4, 15 and 16 (Figure 6.7). The three main phases in these 

fermentations were also highlighted in Figure 6.10.  

 

 

Figure 6.10 DOT profiles across SDR 7, SDR 17 and SDR 18 simulations 
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 The exponential growth period of the batch phase which saw the first DOT 

decrease in the STR differed from run to run due to well-known variability which 

occurs in biological processes.  

In the SDR 7, 17 and 18 simulations both the pH controlling agent and 

glucose were added to the PFR section of the SDR. The glucose concentration 

trends of Figure 6.11 show that these fermentations were predominantly glucose 

limited after the completion of the batch phase, up till 36 h. 

 

Figure 6.11 glucose profiles across SDR 7, SDR 17 and SDR 18 simulations 

 The rapid accumulation of glucose after 36 h was significant in SDR 7 when 

compared to SDR 17 and 18. This suggests that the feed pumping error at higher 

RPMs was the primary factor rather than a reduced glucose utilisation rate.  
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6.1.4 Effect of glucose and pH controlling agent addition in the limited oxygen 
PFR on fermentation conditions 
   

In SDR 10, 19 and 20, the glucose and pH controlling agent was added to the 

PFR, while the controlling pH sensor was in the STR. The pH profiles for SDR 10, 19 

and 20 (Figure 6.12) simulations were similar to SDR 7, 17 & 18 (Figure 6.9). The pH 

oscillations recorded in the graphs of Figure 6.12 show the same trend as in Figure 

6.9. The reasons for these pH oscillations have already been discussed above.  

 

Figure 6.12 pH profiles across SDR 7, SDR 17 and SDR 18 simulations 

However, metabolic activities via the fermentative pathway in the PFR was 

slightly higher (due to more organic acid produced, inferred from a lower pH value) in 

Figure 6.12 than those of Figure 6.9. For example, SDR 18 and 20 both show similar 

pH oscillations, but that of SDR 20 had a larger magnitude, and the pH value 

between the inlet and outlet was also greater. In SDR 20, the pH difference between 
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the top and bottom of the PFR was more pronounced after 28 h. The addition of feed 

at the PFR inlet resulted in a high localised glucose concentration in the limited 

oxygen environment. Thus, encouraging the bacterial cells to generate ATP via the 

fermentative pathway and the consequence was increased organic acid production 

as shown in Figure 6.12.  

The DOT profiles for SDR 10, 19 and 20 (Figure 6.13) were similar to the 

other simulations discussed thus far.  

      

Figure 6.13 DOT profiles across SDR 10, SDR 19 and SDR 20 simulations 

 All the graphs in Figure 6.13 show the same initial uncontrolled growth of cells 

during the batch phase (0 – 14 h), which saw the first DOT decline. The transition 

phase (14 h – 20 h) and the fed-batch phase (20 h to 39 h).  

The glucose concentration changes with time (Figure 6.14) for SDR 10, 19 

and 20 simulations also follow the same trend as SDR 7, 17 and 18 (Figure 6.11). 
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The initial 10 gL-1 of glucose was depleted within the first fourteen hours, after which 

the SDRs were limited in glucose from 14 h to about 32 h except for the PFR section 

of SDR 10.     

  

Figure 6.14 DOT profiles across SDR 10, SDR 19 and SDR 20 simulations 

 The reasons for the subsequent glucose accumulation seen in SDR 10 have 

been highlighted when SDR 4 of Figure 6.8 was discussed: the short PFR residence 

time does not the cells to deplete the glucose in the broth before they pass into the 

STR, during which the remaining glucose is consumed. Thus, in the STR, for most of 

the fermentation, the cell growth rate was controlled by the limited glucose 

environment. 

 The results from all four major simulations discussed thus far indicate that 

increasing the 𝜏𝑃𝐹𝑅 while decreasing the STR volume (to maintain a constant 𝜏𝑆𝑇𝑅) 

led to a harsher fermentation environment. The magnitude of the bacterial cells 

response increased, deviating more from the control fermentation, which was 
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confirmed by the increased pH gradients and the overall longer time at which the 

PFR section remained oxygen limited. This is especially true for SDR 14, 16, 18 and 

20, which had the longest 𝜏𝑃𝐹𝑅 investigated (5 min), a reasonable circulation time 

estimate in some large scale fermenters (Lara et al., 2006a). The results so far 

suggest that the bacterial cells in these SDRs probably gave the strongest 

physiological response to the fermentation gradients simulated. The following 

sections look to quantify these physiological responses and compare variability 

across all simulations.  

6.2 Cell growth 

The cell growth was monitored by quantifying the DCW change in time; the 

feed rate controlled the cell growth during the fed-batch phase. The DCW gives the 

total cell mass concentration (viable and non-viable cells) in the bioreactor. Table 6.2 

and Figures 6.15 a – d indicate the DCW profiles of all the simulations investigated in 

this chapter including the control fermentation (STR only).  

 

 

 

 

 

 

 

 

 

Table 6.2 A summary of C.glutamicum DM1945x3 growth kinetics indicating specific growth rates (µ) and the 
final dry cell weights (DCW) attained at the end of fermentation (39 h) 

The 𝜇 values above were estimated by fitting the DCW profile from 14 h to the 

exponential model described in Chapter 4, Subsection 4.1.1.  

Simulations Final DCW (g/L) 𝜇 (h-1) 

STR only 30 0.09 

SDR 1 
SDR 13  
SDR 14 

32 
31 
28 

0.09 
0.08 
0.08 

SDR 4 
SDR 15 
SDR 16 

29 
31 
29 

0.09 
0.08 
0.08 

SDR 7 
SDR 17 
SDR 18 

32 
31 
28 

0.09 
0.08 
0.08 

SDR 10 
SDR 19 
SDR 20 

30 
32 
29 

0.10 
0.09 
0.08 
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Figure 6.15 a – d Dry cell weight (DCW) profiles of various simulations compared to STR only. Legend STR only 
signifies the control fed-batch fermentation in a well-mixed stirred tank reactor; each data points represent the 
mean values from a set of biological duplicates, and the error bars represent their standard deviations.  

  

Glucose and acid/base to STR 

 

Glucose to PFR; acid/base to STR 
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Glucose and acid/base to PFR 
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Most of the cell growth occurred in the last fifteen hours of fermentation (from 

24 h to 39 h); within this period, an 80 % increase of the total DCW occurred (Figure 

6.15 a – d). The final DCW ranged from 28 gL-1 to 32 gL-1 (Table 6.2), with an 

average value of 30 gL-1. The DCW profiles also illustrate the different cell growth 

rates at the various stages of these fermentations. The initial six-hour lag phase from 

the start was followed by the uncontrolled exponential growth phase (8 h – 12 h). 

This then led to the pseudo-stationary period (14 h – 24 h), due to the extremely 

limited glucose availability at this time. Finally, the controlled exponential growth 

period occurred between 24 h and 39 h.  

The calculated values of 𝜇 from the simulations in Table 6.2 ranged from 0.1 

to 0.08 h-1, which indicates a 20 % difference. All the experiments which had the 

least STR volume of 0.6 L and the highest 𝜏𝑃𝐹𝑅 of 5 min (SDR 14, 16, 18 and 20) 

consistently had the lowest 𝜇 (0.08 h-1). Additionally, these SDRs final DCW values 

were generally lower than the other simulations. This suggests that the DCW was 

negatively affected in these SDRs with the harshest environment.  

The broad consensus from the findings of other works indicate that C. 

glutamicum is a resilient organism, which adapts easily to fermentation gradients 

without losses to DCW productivity (Käß et al., 2014; Lemoine et al., 2015a; Limberg 

et al., 2016b). These observations correspond to that in the preceding Chapter 5 

here. However, all these studies were based on experiments which had a decreasing 

mean frequency at which the cells entered the PFR as the 𝜏𝑃𝐹𝑅 increased. A setup 

which most likely attenuated the cell response to the fermentation gradients was 

simulated. To understand C. glutamicum’s DCW resilience in the face of non-ideal 

growth conditions; the different metabolic pathways which provide the building blocks 

for biomass synthesis are illustrated in Figure 6.16 
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Figure 6.16 A simplified overview of a bacterial cell metabolic pathway resulting in the formation of biomass, 
adapted from (Li et al., 2014b)  

This robust biomass productivity of C. glutamicum may be attributed to its 

inherent ability to quickly switch pathways depending on the external pressures from 

the environment. For example, in a limited oxygen situation, C. glutamicum will 

favour the synthesis of biomass via lower glycolysis or/and oxidative phosphorylation 

to thrive, while energy generation from the TCA cycle is suppressed. Figure 6.16 

thus shows that biomass formation and the energy required to drive the reaction can 

be derived from diverse pathways. The ability of C. glutamicum to easily tap into any 

one of this biomass forming pathways sets it apart from other organisms such as E. 

coli and gives it some level of resilience to fermentation gradients. The results here 

show that increasing the magnitude of fermentation gradients only slightly affected 

the C. glutamicum DM1945x3 DCW productivity.   
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6.3 CO2 productivity 

The production of CO2 is dependent on the growth rate and metabolic pathway(s) 

of a bacterial cell. Hence, if two microorganisms with the same growth rate have 

different metabolic pathways to ATP production, their CO2 production rate will vary. 

This is because the numbers of intermediate oxido-redox reactions are pathway-

specific (Siebert & Wendisch, 2015). The graphs of Figure 6.17 a – d show the CO2 

production rate per working volume as it was related to the SDR investigated. 

The peaks in CO2 productivity which occurred between 10 h – 14 h in all 

fermentations indicate the uncontrolled exponential growth phase of the initial batch 

stage. The second increase in CO2 production occurred during the fed-batch period 

from approximately 19 h. The graphs in Figure 6.17 a – d suggest that CO2 profiles 

across all simulations can be divided into two categories:  

1. Glucose feed to the STR:  SDR 1, 7, 13, 14, 17 and 18 of Figure 6.17 a and c  

2. Glucose feed to the PFR:  SDR 4, 10, 15, 16, 19 and 20 of Figure 6.17 b and 

d) 
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Figure 6.17 a – d CO2 productivity profiles of various simulations compared to STR only. Legend STR only 
signifies the control fed-batch fermentation in a well-mixed stirred tank reactor.  
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 In all cases, the maximum CO2 productivity occurred at the end of the 

fermentation at 39 h. However, the simulations with the 𝜏𝑃𝐹𝑅 of 5 min exhibited the 

highest CO2 productivity in comparison to the shorter 𝜏𝑃𝐹𝑅. For example, in Figure 

6.17 a, the CO2 productivity at 39 h for SDR 14 (𝜏𝑃𝐹𝑅  = 5 min) was 2.8-fold and 1.6-

fold that of SDR 1 (𝜏𝑃𝐹𝑅 = 1 min) and SDR 13 (𝜏𝑃𝐹𝑅 = 2 min) respectively. This same 

trend was seen in other graphs of Figure 6.17, from which it can be inferred that the 

CO2 productivity increased as the  𝜏𝑃𝐹𝑅 increased. SDR 16 and 20 produced the 

most CO2 because they both had the longest 𝜏𝑃𝐹𝑅 in the oxygen limited PFR. The 

addition of the concentrated glucose feed into the poorly mixed PFR led to a 

localised high glucose concentration at its injection port. This resulted in a high 

metabolic rate within the limited oxygen environment of the PFR; the fermentative 

pathway was most likely used to produce ATP and CO2 being the main side product 

also increased. The CO2 productivity of SDR 16 and 20 and SDR 15 and 19 were 

relatively similar, suggesting that the localised high pH value at the point of addition 

in SDR 15 and 20 had a negligible effect on the production of CO2.  

6.4 Cadaverine production 

The production of cadaverine depends on its central precursor L-aspartate, 

which is derived from one TCA cycle intermediate - oxaloacetate (Kind et al. 2011). 

The greatest concentration of cadaverine produced was in the latter stages (24 h – 

39 h) of the fermentation in all cases (Figure 6.18 a – b). SDR 16 and 20 (𝜏𝑃𝐹𝑅 = 5 

min and glucose feed to PFR) showed the least specific metabolic quotient for 

cadaverine (𝑞𝐶𝐴𝐷) (Table 6.3); this amounted to a 70 % loss in (𝑞𝐶𝐴𝐷) when 

compared to the control fermentation, STR only. The estimation of 𝑞𝐶𝐴𝐷 was based 

on the slope of the hourly change in cadaverine concentration per DCW 

concentration after 14 h in all simulations. There was a progressive decrease in 
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cadaverine productivity as the 𝜏𝑃𝐹𝑅 increased and the 𝑓𝑚  was kept constant. This 

trend was contrary to the results of Chapter 5, where after a 𝜏𝑃𝐹𝑅 > 2 min no further 

loss in cadaverine productivity was observed. The exception here was SDR 14, 

which showed a similar production profile to SDR 13 (Figure 6.18 a).  

 

 

 

 

 

 

 

 

 

 

Table 6.3 A summary of the final cadaverine concentrations and their specific metabolic quotients 

 

 Final cadaverine titre 
(gL-1) 

Specific metabolic quotient 
for cadaverine (𝑞𝐶𝐴𝐷)  

(gh-1 g-1) 

STR only 20 0.057 

SDR 1 
SDR 13 
SDR 14 

16 
9.6 
11 

0.045 
0.039 
0.045 

SDR 4 
SDR 15 
SDR 16 

15 
9.8 
5.6 

0.043 
0.040 
0.017 

SDR 7 
SDR 17 
SDR 18 

14 
11 
8.0 

0.042 
0.038 
0.029 

SDR 10 
SDR 19 
SDR 20 

14 
9.9 
5.3 

0.041 
0.037 
0.017 
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Figure 6.18 a – d Cadaverine production profiles of various simulations compared to STR only. Legend STR only 
signifies the control fed-batch fermentation in a well-mixed stirred tank reactor, each data point represents the 
mean of biological replicates and the error bars equivalent to their standard deviations. 
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  The above results show that the rate of cadaverine production was dependent 

on the magnitude of the fermentation gradients. The bacterial cells which use 

alternative metabolic pathways in response to the harsh environment of the SDRs 

are most likely to lead to a decrease in cadaverine productivity (Figure 6.18 a – b). 

The biggest loss (≈ 72 %) in the final cadaverine concentration was recorded for 

SDR 16 and 20 (Figure 6.18 b & d). However, for the 𝜏𝑃𝐹𝑅 of 1 and 2 min, the SDR 

setup (such as where base or glucose was introduced in the SDR) did not matter. 

For example, the 𝑞𝐶𝐴𝐷 for SDR 13, 15 17 and 19 were similar, approximately 0.04 g 

.L-1.h-1.g-1 for the 𝜏𝑃𝐹𝑅 of 2 min. The final cadaverine decrease in concentration when 

the 𝜏𝑃𝐹𝑅 was 1 min and 2 min compared to the control fermentation were on average 

24 % and 50 % respectively (Table 6.3). The glucose addition point only became an 

important factor for cadaverine productivity when the 𝜏𝑃𝐹𝑅 was increased to 5 min. 

This was observed in SDR 16 and 20, where the glucose feed was introduced to the 

oxygen limited PFR environment, causing the bacterial cells to mainly generate ATP 

via the fermentative pathway (Pirt, 1975; Stanbury et al., 1999). However, doing so 

diverts the carbon flux typically available to the TCA cycle under aerobic conditions, 

where oxaloacetate is produced. The formation of oxaloacetate is regulated by the 

activities of the malate: quinone oxidoreductase, malate dehydrogenase, 

phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, pyruvate 

carboxylase and oxaloacetate decarboxylase enzymes (Wieschalka et al., 2013). 

Thus, fermentation conditions that alter these enzymes and consequently reduce 

oxaloacetate production will result in the decline of L-aspartate available for 

generating cadaverine. Thus, the losses observed suggest that the harsh conditions 
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imposed by the SDRs may have resulted in the adverse interaction of these relevant 

enzymes. 

C. glutamicum being a facultative anaerobe adapts to a limited oxygen 

environment by upregulating its malate dehydrogenase enzyme activity within the 

TCA cycle (Inui et al., 2007), an enzyme known to reduce oxaloacetate to succinic 

acid. This competitive reaction reduces the pool of oxaloacetate available for 

cadaverine formation. A second significant energy sink for C. glutamicum growing 

under a limited oxygen environment is its metabolic shift to the fermentative 

pathway. This shift increases the conversion of pyruvate to lactic and acetic acid by 

the action of the lactate dehydrogenase, pyruvate: quinone oxidoreductase and the 

CoA transferase A enzymes (Wieschalka et al., 2013). This consequently reduces 

the carbon flux to the TCA cycle. Lastly, a localised high glucose environment as 

induced in SDR 16 and 20 may have activated the overflow metabolic pathway. If the 

increased carbon flux from glycolysis had led to the saturation of the glyceraldehyde-

3-phosphate dehydrogenase and the pyruvate dehydrogenase enzymes, it would 

increase the production of dihydroxyacetone and lactate (Dominguez et al., 1998), 

thus, also divert the carbon flux from the TCA cycle.  

A carbon balance analysis was performed to quantify how much the SDRs 

conditions affected the growing C. glutamicum cells. The same calculation as 

highlighted in Chapter 5 has been used here. The theoretical proportion of the 

unmeasured carbon-containing compounds helped quantify the magnitude of the 

bacterial cell's response to the SDRs investigated (Table 6.4). 
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Simulation % of unquantified 
C – products  

Deficit-degree of 
reduction 

STR only 10.54 6.8 

SDR 1 
SDR 13 
SDR 14 

13 
21 
15 

7.3 
7.2 
14 

SDR 4 
SDR 15 
SDR 16 

16 
21 
15 

6.7 
7.3 
15 

SDR 7 
SDR 17 
SDR 18 

16 
19 
22 

6.9 
7.4 
9.8 

SDR 10 
SDR 19 
SDR 20 

11 
20 
12 

8.2 
7.5 
20 

 

Table 6.4 A summary of the percentage composition of unmeasured carbon-based products derived from C. 
glutamicum DM1945x3 consumption of 1 mole of glucose  

Table 6.4 identified three broad categories loosely based on the 𝜏𝑃𝐹𝑅. The first 

set of simulations, SDR 1, 4, 7 & 10 (𝜏𝑃𝐹𝑅 = 1 min) show 10 – 13 % unquantified 

carbon containing compounds and a low degree of reduction (6 – 8). These indicate 

the abundance of short-chained carbon containing compounds. In the second set, 

SDR 13, 15, 17 and 19 (𝜏𝑃𝐹𝑅 = 2 min) had a higher percentage of carbon containing 

compounds with a low degree of reduction. These calculations highlight the 

presence of even more short-chained carbon containing compounds in these 

simulations. The last set, SDR 14, 16, 18 and 20 (𝜏𝑃𝐹𝑅 = 5 min), showed a low 

percent of unquantified carbon containing compounds, but a high degree of 

reduction, indicating that in these simulations, the unquantified carbon containing 

compounds were long-chained. Overall, comparing the control STR only 

fermentation to any SDR show that the percentage of unquantified C – products and 

the deficit degree of reduction increases. Thus, indicating that the loss in cadaverine 

seen in Figure 6.18 was due to the diversion of more carbon flux to competing 

products as the magnitude of fermentation gradients increased.   
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In summary, the activation of the TCA cycle reductive path, overflow 

metabolic pathway and the metabolic shift to the fermentative pathway, as the cells 

responded to the oxygen limitation and/or high PFR environment, are some of the 

factors which contributed to the cadaverine loss in the SDRs experiments. Also, the 

carbon balance analyses indicate that the bacterial cell metabolic response was 

dependent on the time spent in the PFR and type of fermentation gradient (pH, DO 

and glucose) simulated. For example, when SDR 10 and 20 are compared, the 

varied cell response was easily seen (the difference between both simulations was 

the 𝜏𝑃𝐹𝑅), as although both simulations had a similar percentage of unmeasured 

carbon containing compounds, SDR 20 deficit-degree of reduction suggests the 

abundance of unquantified long-chained carbon-containing compounds.  

6.5 Lactate formation 

 Lactate is one of the primary metabolites in C. glutamicum fermentation 

(Dominguez et al., 1998; Käß et al., 2014). The final lactate concentrations (at 39 h) 

in all cases investigated indicate that gradients were formed when values were 

compared across the SDR (Figure 6.19).  

 

Figure 6.19 Lactate gradient across SDRs sampled at the end of fermentation (39 h), each data point represents 
the mean of biological replicates and the error bars equivalent to their standard deviations. 
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The highest concentration of lactate was consistently recorded at the PFR 

outlet, with SDR 16 and 20 (𝜏𝑃𝐹𝑅 = 5 min) showing the most prominent gradient 

(Figure 6.19). This result is consistent with trends already seen in other assays 

above. Since the PFR was oxygen limited, the simulations where the concentrated 

glucose feed was added in this section encouraged energy production via the 

fermentative pathway. The fermentative pathway diverts the carbon flux from the 

TCA cycle, but also supports the conversion of pyruvate to lactate, acetate and 

formate downstream from glycolysis. Hence, the longer the cells spent in this 

environment, the more lactate is produced. However, the proportions produced of 

these metabolites depend on the bacterial cell strain, for example, in C. glutamicum 

fermentation lactate is one of the predominant metabolites (Figure 6.20), while in E. 

coli it is acetate (Dominguez et al., 1998; Xu et al., 1999).  

This effect of the metabolic shift from the fermentative pathway was confirmed 

by the low values of lactate concentration recorded in the well oxygenated STR. 

However, in the STR some increase in lactate accumulation was seen during the 

cells exponential growth phase (8 h – 12 h) (Figure 6.21 a - d). This rise in lactate 

can be attributed to an increased rate of glycolysis (the breakdown of glucose into 

pyruvate). If the rate of the carbon flux from pyruvate into the TCA cycle is slower 

than that of glycolysis, the excess carbon is diverted into dihydroxyacetone and 

lactate upstream of glycolysis (a phenomenon known as the overflow metabolism) 

(Dominguez et al., 1998). 
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Figure 6.20 A simplified overview of C. glutamicum carbon metabolism highlighting its glycolysis, overflow and 
TCA cycle pathways adapted from Dominguez et al., (1998).  
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Figure 6.21 a – d Lactate accumulation profiles, each data points represent the mean values from biological 
duplicates and the error bars equivalent to their standard deviations. 
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Figure 6.21 a – d show that as soon as the cells entered the pseudo-

stationary phase between 12 h and 24 h, the lactate concentration was reduced as 

the cells growth rate plummeted. In most of the simulations, the lactate production 

rate was later seen to increase at around 32 h during the exponential phase of the 

feeding profile. This ensuing increased metabolic rate would have instigated an 

unbalanced glycolysis reaction rate (the rate of pyruvate to acetyl CoA being slower 

than the rate of glucose to pyruvate). However, for simulations such as SDR 16 and 

20 where the glucose was added at the PFR, the amount of lactate produced in the 

STR was lower. This was attributed to the lower amount of glucose available in the 

STR, as in these simulations, the glucose supplied was from that of the incoming 

PFR broth. Hence, since there were no localised high glucose concentrations within 

the STR for these simulations, the rate of glycolysis was slower, resulting in the low 

rates of lactate production seen. This also meant that bacterial cells in these 

simulations produced most of their lactate in the PFR section of the SDR, due to the 

high localised glucose concentration there.    

The lactate profiles of Figures 6.19 and 6.21 a – d confirm that the point at 

which the concentrated glucose feed is added and DO of the localised environment 

is important. These factors determined the bacterial cell response and ultimately 

affected the fermentation productivity. 

6.6 Glucose consumption 

 After the batch phase (0 – 14 h), glucose was the main growth-limiting 

substrate up until about 36 h (Figure 6.22 a - d). The glucose profiles showed a 

similar trend irrespective of the simulation. However, the rates of glucose 

consumption were slightly different, especially in the batch phase. The variations in 
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the number of viable cells on start-up and those that survived the lag phase may 

have contributed to these differences.  

 

 

Figure 6.22 a – d Glucose consumption profiles, each data point represents the mean value from biological 
duplicates and the error bars equivalent to their standard deviations. The dashed line represents the start of 
feeding. 
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It is axiomatic that during the batch process, a steady state is never achieved 

and these variations seen in glucose consumption rates might be within the normal 

fluctuation of this biological system. The glucose substrate became limited from 16 h 

up till 36 h for all cases investigated. However, the subsequent accumulation after 36 

h was most likely due to the feed pumping mismatch with the glucose consumption 

rate during this period.  

6.7 Flow cytometric analyses 

The metabolic measurement from the flow cytometer identified three different 

cell states, as illustrated in Section 5.7 of Chapter 5; the quadrants of Figure 6.23 

also have the same meaning. Each of the quadrants grouped cells that had similar 

membrane integrity/potential. The following analysis will be divided into similar 

categories as highlighted Section 6.2.  

 

0 h 13 h

24 h 39 h

(SDR 1)  a  

Glucose and acid/base to 

STR, 𝜏𝑃𝐹𝑅 = 1 min 
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Figure 6.23 a – c Flow cytometer dot plots for SDR 1, 13 and 14 indicating the condition of the cell membrane at 
different time points during fermentation using the above fluorochromes. Each dot on the plot represents a cell of 
the 10000 cells interrogated. 
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SDR 1 (Figure 6.23 a) indicate a considerable subpopulation of dead and 

depolarised cells (Q2 and Q1 quadrants) from the start of the fermentation. This 

highlighted that the quality of inoculum on start-up was responsible. However, by 13 

h the population from both Q1 and Q2 quadrants had reduced by 50 %, indicating 

the healthy cells of Q4 had outgrown the others. This trend continued until 

termination (39 h), where the predominant cell population was in the Q4 quadrant 

(healthy cells). At 39 h, there was also a significant population in the Q3 quadrant (≈

2 %), which had remained relatively unchanged throughout the fermentation. It most 

likely indicated the presence of cell clusters (healthy and dead cells) (Nebe-Von-

Caron et al., 2000; Want et al., 2011). This indicates a situation were one of two 

attached cells is stained by the PI and oxonol fluorochromes (a dead cell) and the 

other unstained (because it is healthy), which resulted in a false negative for oxonol. 

SDR 13 (Figure 6.23 b) on start-up was different from SDR 1 (inoculum variability), 

most of the cell population were in the Q4 quadrant (healthy cells), which remained 

relatively unchanged during the course of the fermentation. SDR 14 (Figure 6.23 c) 

showed a similar profile to SDR 13 at 0 h, the predominant cell population had intact 

membranes, and were hence deemed healthy. The population remained in the Q3 

quadrant from start to finish. Hence, increasing the magnitude of fermentation 

gradients from Figure 6.23 a - c had an insignificant effect on C. glutamicum 

DM1945x3 membrane integrity.     
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Figure 6.24 a – c Flow cytometer dot plots for SDR 4, 15 and 16 indicating the condition of the cell membrane at 
different time points during fermentation using the above fluorochromes. Each dot on the plot represents a cell of 
the 10000 cells interrogated. 

 SDR 4 (Figure 6.24 a) highlighted the quality of the inoculum, which resulted 

in the significant population of dead and depolarised cells along with the healthy cells 

at the start of the fermentation. This profile remained unchanged in the transition 

from batch to the fed-batch stage (13 h). However, by the 24 h, the healthy cell 

population had outgrown the others, increasing from 76 % to 91 % from 0 h to 24 h. 

By completion (39 h), the healthy cells population was at 96 %. The Q3 quadrant 

also saw an increase from 1 % on start to 3 % at the end, hence indicating an 

increase in a cluster of live and dead cells. SDR 15 (Figure 6.24 b) started up with a 

subpopulation of the depolarised cell cluster and healthy cells. However, between 0 

h and 24 h most of the cells were in the Q4 quadrant (healthy cells) and on 

completion almost 100 % of the cells were healthy. For SDR 16 (Figure 6.24 c) from 

start to finish, almost 100 % of the cells were healthy. Figure 6.24 a – c findings 

Glucose to PFR; acid/base to 

STR, 𝜏𝑃𝐹𝑅 = 5 min 

 

0 h 13 h 

24 h 39 h 

(SDR 16) c 
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indicated that the percentage of the cells in each subpopulation on start was a 

function of the inoculum quality, which subsequently affected the the final proportion.   

 

 

Glucose to STR; acid/base to 
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Figure 6.25 a – c Flow cytometer dot plots for SDR 7, 17 and 18 indicating the condition of the cell membrane at 
different time points during fermentation using the above fluorochromes. Each dot on the plot represents a cell of 
the 10000 cells interrogated. 

 SDR 7 (Figure 6.25 a) starts up with a relatively significant depolarised, dead 

and cell clusters (doublets of the live and dead cell) subpopulation, while the majority 

of the cells were healthy (93 %). These other subpopulations apart from the Q4 

quadrant (healthy cells) persisted up till 24 h. At 39 h, the healthy cell population had 

increased to 99 %. SDR 17 (Figure 6.25 b) indicated a healthy inoculum; most of the 

cells were in the Q4 quadrant (98 %). However, by 13 h there was an increase in 

cells clustering (1 % to 4 %), which decreased from 24 h onwards, and at 39 h the 

population of healthy cells was almost at 100 %. SDR 18 (Figure 6.25 c) showed a 

consistently healthy cell population throughout, above 99 % in all timeframes.   
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Figure 6.26 a – c Flow cytometer dot plots for SDR 10, 19 and 20 indicating the condition of the cell membrane at 
different time points during fermentation using the above fluorochromes. Each dot on the plot represents a cell of 
the 10000 cells interrogated. 

 SDR 10 (Figure 6.26 a) significant subpopulations at 0 h were in the Q2 (17 

%) and Q4 (79 %) quadrants. By 13 h, the number of cells in Q3 quadrants had 

increased significantly (8 %) as cell clustering increased. However, at 39 h, these 

subpopulations had resolved into the Q4 (99 %) as the healthy cells outgrew the 

others. SDR 19 (Figure 6.26 b) started with most of the cells being healthy (97 %), 

although at 24 h cell clusters were highlighted at 4 %, but by 39 h 99 % of the cell 

population was healthy. SDR 20 (Figure 6.26 c) inoculum was diverse, reflected in 

the substantial varied subpopulation seen at 0 h (Q1 = 7 %, Q2 = 16 % and Q4 = 75 

%). However, the profile by 39 h also showed an increase to 96 % in the Q4 

quadrant (healthy cells) in tandem with other SDRs discussed above.  

13 h 

13 h 39 h 

Glucose and acid/base to PFR 

𝜏𝑃𝐹𝑅 = 5 min 
0 h 

24 h 
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The general trend from Figure 6.23 to 6.26 showed an increase in healthy 

cells from start to end of these fermentations regardless of the simulation. The 

healthy cells at 39 h in all situations reached at least 95 % of the total. In all cases, 

the cell population heterogeneity was most at the start of the process when the 

healthy cells ranged from 70 % to 97 %. The inoculum quality has already been 

highlighted as a significant factor to this variability on start-up. This is especially seen 

in the flow cytometric analyses of SDR 1, 4, 7, 10, 15 and 20, where there was a 

substantial dead cell population (Q2 quadrant) at the beginning of these 

fermentations. The occupation of Q3 signified the presence of cell clusters, which 

was most likely due to the tendency of C. glutamicum’s cells to form a V-shaped 

morphology on attaching to a sister cell (Neumeyer et al., 2013). Thus, a healthy cell 

attached to a dead sister cell would most likely be segregated to the subpopulation in 

Q3. However, from these results here, there was no correlation between the 

prominence of Q3 and the fermentation gradients simulated.      
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6.8 Cell viability determination by plating 

 The limitations of this assay have already been highlighted in Chapter 5 and 

its tendency to underestimate the actual number of viable cells is well documented 

(Nebe-Von-Caron et al., 2000). Here, this assay was used to evaluate if the cells 

ability to form colonies on an agar plate were affected by the different SDR 

environments investigated. An increasing fermentation gradient (for example, 

localised high glucose concentration) will elicit an increased cell response. Such a 

cell survives non-ideal conditions by synthesising stabilising compounds to maintain 

homeostasis, but at a high energy cost. A process which may affect the physiology 

of the cell. The CFU profiles indicate that the bacterial cells ability to form colonies 

on solid agar plates declined especially when 𝜏𝑃𝐹𝑅 = 5 min (Figure 6.27 a – d). This 

suggests that highest level of fermentation gradients, which occurred at the 𝜏𝑃𝐹𝑅 of 5 

min affected the cells most. SDR 14, 16, 18 and 20 all showed the lowest cell count 

in their group and compared to the control STR only, the losses were 43 %, 51 %, 47 

% and 30 % respectively. These differences confirm the decline in CFU as a 

response to the increased process heterogeneity. Figure 6.27 a – d, captures this 

trend of decrease in the CFU as the 𝜏𝑃𝐹𝑅 increased.  
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Figure 6.27 a – d CFU profiles, each data point represents the mean values from biological duplicates and the 
error bars equivalent to their standard deviations. 

Glucose and acid/base to STR 

 

Glucose to PFR; acid/base to STR 

 

Glucose to STR; acid/base to PFR 

 

Glucose and acid/base to PFR 
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If the results here are considered with that of the flow cytometric analyses, it 

can be inferred that the number of viable but non-culturable cells increased as the 

magnitude of fermentation gradients increased. This is because the flow cytometer 

indicated that in all cases the broth was predominated by healthy cells at the end, 

but this did not result in more cells with the ability to form colonies on an agar plate 

(when 𝜏𝑃𝐹𝑅 > 5 min).  

The process data logs for sections 6.2 to 6.8 for C. glutamicum DM1945x3 

fed-batch fermentations can be seen in Appendix 26 to 33.   

6.9 Conclusion 

In summary, the strategy of keeping  𝑓𝑚  constant was achieved by reducing 

the volume in the STR as the 𝜏𝑃𝐹𝑅 was increased. This made the fermentation 

gradients (DO, pH and glucose concentrations) in the PFR more pronounced and it 

also reduced the amount of time the cells spent in the well-mixed STR, in contrast to 

the strategy of Chapter 5. The resulting bacterial cell physiological response saw a 

12.5 % decrease in µ when the  𝜏𝑃𝐹𝑅 was increased to 5 min. The increase in CO2 

productivity was closely linked to a localised high glucose, 𝜏𝑃𝐹𝑅 and limited oxygen 

environment. The combinations of these factors were highlighted as the major 

contributors to the decrease in cadaverine productivity observed, as the 𝜏𝑃𝐹𝑅 was 

increased. These results here suggest an inverse relationship between CO2 

productivity and cadaverine production. The carbon balance analyses confirmed this, 

as it implied that the bacterial cells responded to increasing fermentation gradients 

by producing more stabilising compounds to maintain internal homoeostasis (with 

CO2 as the major side product from these stabilising reactions). The increased 

production of lactate was also linked to a limited oxygen and high glucose 

environment, while the flow cytometer and CFU analyses suggested the 
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predominance of viable but non-culturable bacterial cells as the fermentation 

gradients increased. All these measurements confirm that C. glutamicum DM1945x3 

did respond to changes in its surroundings and the level of response was a function 

of the simulated gradient investigated.          

  



212 
 

CHAPTER 7 

7 Conclusion  

Understanding how the large-scale environment differs from the bench-scale 

process development reactor is crucial for a successful bioprocess scale-up. Thus, 

creating an SDR (to be used within a laboratory) with an environment that 

successfully mimics the large-scale reactor negates the need for an expensive pilot 

scale platform. Although the large-scale fed-batch environment is difficult to 

replicate, with the correct SDR in place, the cost and risk of scaling up would be 

significantly reduced. Of the current SDR strategies for mimicking the large-scale 

environment such as the one-compartment, two-compartment and three-

compartment reactors have been discussed; the two-compartment SDR achieves 

the right balance of functionality and relevance hence, its widespread use as a scale-

down tool in bioprocess development.  

In many commercial bioprocesses, genetic engineering is used to create high 

performing recombinants to increase productivity, which reduce cost. During the 

batch fermentation studies reported here, the effect of modifying the lysine producing 

C. glutamicum DM1945 to a cadaverine-producing strain (C. glutamicum DM1945x3) 

highlighted some physiological differences. This was mainly seen by the fact that C. 

glutamicum DM1945x3 had a reduced ability to form colonies on an agar plate, 

which suggests it is less resilient compared to its parent strain. Also, its level of 

cadaverine productivity was not commercially viable, indicating a suboptimal product 

transport system and metabolic pathway.  

The feeding profile of all fed-batch process here was set for C. glutamicum 

DM1945x3, such that the specific growth rate was maintained at µ  ≈ 0.1 h-1. This 
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low µ was selected to ensure that the switch to overflow metabolic pathway, and 

resulting side product(s) were minimised (Dominguez et al., 1998; Xu et al., 1999). 

There were two main scale-down strategies employed here in the systematic study 

of large-scale bioprocess inhomogeneities. The first only increased the 𝜏𝑃𝐹𝑅 to 

increase the magnitude of pH, glucose and dissolved gradients, while the other 

strategy increased both the 𝜏𝑃𝐹𝑅 and reduced the STR volume, to keep 𝑓𝑚  constant.  

Both strategies used the two-compartment reactor described in Chapter 3 

subsection 3.5. Fermentation gradients such as (pH, glucose and dissolved oxygen) 

were introduced to the two-compartment reactor by varying the feed, pH controlling 

agent point of entry and the 𝜏𝑃𝐹𝑅 .  Thus, the resulting SDR 1 – 12 simulations were 

used to study the C. glutamicum DM1945x3 physiological response to 

inhomogeneities that are known to occur in large-scale bioreactors. The initial scale-

down strategy followed a similar fashion as George, Larsson, and Enfors, (1993); 

Onyeaka, Nienow, and Hewitt, (2003), where the magnitude of fermentation 

gradients was increased by only increasing the 𝜏𝑃𝐹𝑅, which also increases the 𝜏𝑆𝑇𝑅. It 

was assumed that by increasing the 𝜏𝑃𝐹𝑅 , (the PFR being the poorly mixed zone) the 

bacterial cells spending more time in this zone would elicit a stronger physiological 

response to the simulated fermentation gradients. However, results here were 

mixed. There was no loss in the DCW productivity for SDR 1 – 12 simulations, which 

was in agreement with Käß et al., (2014) and Lemoine et al., (2015) where C. 

glutamicum’s DCW resilience to fermentation gradients was also highlighted. The 

cadaverine productivity differed in this regard, as it was dependent on the simulation 

conditions, and losses in production were recorded as the 𝜏𝑃𝐹𝑅 was increased up to 

2 min, after which no further loss was observed, even when the 𝜏𝑃𝐹𝑅 was increased 

to 5 min. The bacterial cells most likely responded to the non-ideal SDR 
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environment, by diverting some energy for cadaverine production to other 

competitive metabolic pathways to produce stabilising compounds for homeostasis, 

hence the losses observed (Bylund et al., 1998). The CO2 productivity increased as 

the 𝜏𝑃𝐹𝑅  increased, confirming the possible switch in metabolic pathways, but for the 

SDRs with the 𝜏𝑃𝐹𝑅 of 2 min and 5 min, the CO2 productivity remained fairly constant. 

The carbon balance analyses also implied that the simulations which had a 𝜏𝑃𝐹𝑅 of 2 

min and 5 min had similar product(s) profile. However, the lactate production profiles 

were relatively unchanged, regardless of the simulation conditions. The increased in 

lactate production correlated with the increase in the cell metabolic activity. Thus, the 

initial rise in lactate accumulation was seen during the exponential growth phase of 

the batch stage before feeding started and the final accumulation increased when 

the system reached high cell densities (> 20 gL-1 DCW after 33 h). The single-cell 

analyses (flow cytometry and CFU count) were used to assess how the bacterial cell 

viability changed throughout a process. One of the key finds highlighted by the flow 

cytometer was that the subpopulations (depolarised and dead cells) seen at the start 

of most of the fermentations was due to the inoculum condition at time of harvest. 

The quality of inoculum could be improved by cultivating the cells in a more 

controlled environment to ensure that there are no nutrient limitations at time of 

harvest. Alternatively, the inoculum could be harvested at an earlier time, before 

nutrient limitations set in the shake flasks. The flow cytometer did not indicate any 

significant difference when SDRs were compared, but it showed that in all cases 

investigated the bacterial cells progressively got healthier during fermentation, 

despite the different fermentation gradients simulated. This indicated that after C. 

glutamicum DM1945x3 adapted to the bioreactor’s environment, the population of 

healthy cells outgrew that of other subpopulations. The CFU count, which measures 
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a cell’s ability to form a colony on an agar plate did not vary significantly when the 

different simulated fermentation gradients were compared. It however showed two 

different rates of increase in all SDRs:  

(1) The start of fermentation to the end of the transition phase (batch to fed-batch 

phase 0 to 14 h), there was an approximately 1300-fold increase in the CFU count. 

(2)  The end of the transition phase (14 h) to the end of fermentation only a 3-fold 

increase was recorded.  

These observations indicate that as the fermentation reached high cell densities and 

the system became limited in glucose, the bacterial cells ability to form colonies 

declined considerably. If C. glutamicum responds to the fed-batch environment by 

forming clusters as suggested by Käß et al., (2014), then the CFU count towards the 

end of the process will most likely be underestimated. However, when the analyses 

of the flow cytometer and CFU are combined, it suggests that the number of healthy 

but nonculturable cells increased during fermentation. Thus, the decrease in C. 

glutamicum DM1945x3 CFU counts may be due to the interaction of the 

predominance of cell clusters and nonculturable, but metabolically active cells.  

As already highlighted, changing the magnitude of the fermentation gradients 

by varying only the 𝜏𝑃𝐹𝑅 also affects the 𝜏𝑆𝑇𝑅. Hence, an increase in 𝜏𝑃𝐹𝑅 will lead to 

an increase in 𝜏𝑆𝑇𝑅, which meant that when the 𝜏𝑃𝐹𝑅 was increased from 2 min to 5 

min the 𝜏𝑆𝑇𝑅 also rose 2.5-fold. At the 𝜏𝑃𝐹𝑅 of 5 min, the cells were spending 50 min 

in the well-mixed relative ideal environment of the STR, which might have balanced 

out the effect of the other ≈ 10 % of cells spending more time in the non-ideal 

conditions of the PFR section. Thus, increasing the 𝜏𝑃𝐹𝑅 alone to increase the 

magnitude of fermentation gradients in a two-compartment reactor only works up to 
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a point. The new SDR strategy developed here considered the increase in 𝜏𝑃𝐹𝑅 

concurrently with a decrease in the STR volume to increase the magnitude of 

gradient experienced by the cells. This ensured that the mean frequency at the 

which the cells entered the PFR was kept constant, as the 𝜏𝑃𝐹𝑅 was varied. The 

results from this strategy (SDR 1, 4, 7, 10, SDR 13 – 20) indicated a slight reduction 

in DCW productivity as the 𝜏𝑃𝐹𝑅 increased; the µ only showed a decrease from 0.1 h-

1 to 0.08 h-1.  The ease with which C. glutamicum switches between the metabolic 

pathways for biomass formation may be key to its DCW productivity robustness in 

the face of non-ideal fermentation conditions.  The CO2 production rate increased as 

the 𝜏𝑃𝐹𝑅 was increased. However, the highest amount of CO2 produced occurred in 

SDR 16 and 20, i.e. the simulations where the concentrated glucose feed was 

introduced to the limited oxygen PFR environment. This hinted that to adapt, C. 

glutamicum DM1945x3 may have changed its metabolic pathway to generate ATP 

as the 𝜏𝑃𝐹𝑅 was varied. The calculations from the carbon mole balance estimated 

that the C. glutamicum DM1945x3 product profile changed with the different 𝜏𝑃𝐹𝑅 and 

SDR investigated. It showed that as the 𝜏𝑃𝐹𝑅 increased the unidentified carbon 

containing compounds became longer-chained. This suggests the increase of 

complex proteins formed to maintain homeostasis, as a response to the non-ideal 

conditions of the SDRs with the 𝜏𝑃𝐹𝑅 of 5 min. Cadaverine productivity was much 

more affected using this SDR strategy; its value generally decreased as the 𝜏𝑃𝐹𝑅 was 

increased and the greatest loss was seen in simulations where the glucose feed was 

added in the oxygen limited PFR section. These physiological responses suggest 

that the longer  the 𝜏𝑃𝐹𝑅 in a high glucose, limited oxygen environment encourages 

C. glutamicum DM1945x3 to mainly produce ATP via the fermentative pathway, 

hence reducing the pool of oxaloacetate and consequently decreasing cadaverine 
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production (Kind et al., 2011). The trend of the lactate concentration profile was 

similar in the STR for all cases. However, in the PFR, lactate gradients were 

observed, its concentration increased from inlet to exit and the greater the 𝜏𝑃𝐹𝑅, the 

larger the difference recorded between the inlet and exit concentrations. This 

confirms that C. glutamicum activates its fermentative pathway when exposed to an 

oxygen limited environment or an oxygen limitation induced by increased metabolic 

activity due to localised high glucose concentration. Hence, there was an increased 

production of lactate as the cells travelled along the PFR (Käß et al., 2014). The cell 

viability showed the same trend in all cases and the flow cytometer analyses 

indicated that the cell population became healthier as fermentation progressed. 

However, the CFU count recorded a decline of the cells ability to form colonies on an 

agar plate; especially in the 5 min 𝜏𝑃𝐹𝑅 SDRs where the feed was introduced to the 

limited oxygen PFR section (SDR 14, 16, 18 and 20). This is a situation, which points 

to an increase in healthy but nonculturable cells. Also, the formation of cell clusters 

(which may be one of C. glutamicum’s stress response to the glucose limited fed-

batch environment) could have contributed to this decrease in the CFU count.  

Finally, the answers to some of the questions raised in the first chapter are as 

follows.  

• How does genetic modification affect a bacterial cell? The effect of genetic 

modification on C. glutamicum DM1945 was subtle, most likely due to the 

direct gene integration modification method used to develop C. glutamicum 

DM1945x3. However, the resulting daughter strain was less resilient 

compared to its parent. This was observed in its reduced ability to form 

colonies on an agar plate.  
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• Do fermentation gradients lead to losses of productivity? If they do, how do 

changes in the cell result in these losses? The predominance of fermentation 

gradients due to poor mixing (mimicked by the two-compartment SDR)  

reduced the bioprocess performance here. A decrease in cadaverine 

formation by C. glutamicum DM1945x3 was observed as environment 

heterogeneity was increased by the SDR. C. glutamicum DM1945x3 adapted 

to the non-ideal SDR environment by changing its metabolic pathway to 

produce stabilising compounds. Hence, diverting some of the carbon flux from 

cadaverine production, resulting in the decline in observed yields.   

• Is the magnitude of the cells physiological response related to the type of 

fermentation gradient(s) simulated? The type of fermentation gradients 

simulated, and the magnitude had an impact on C. glutamicum DM1945x3 

growth and product profile. This was seen when the SDRs were compared, 

for example, glucose gradients had more effect than pH gradients. Also, the 

longer the cells spent in the oxygen-limited poorly mixed PFR, the larger the 

loss in cadaverine production.  

• How does poor mixing affect the cell population homogeneity and viability? 

Long mixing times (mimicked by increasing the 𝜏𝑃𝐹𝑅) resulting in the formation 

of fermentation gradients increased C. glutamicum DM1945x3 population of 

non-culturable, but metabolically active cells.           
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7.1 Further work 

As already highlighted the C. glutamicum DM1945x3 strain used in most part 

of this study was a low cadaverine producer. Other investigators who have 

transferred the cadaverine-lysine antiporter (CadB) from E. coli to a lysine 

decarboxylase carrying C. glutamicum strain showed that it improved extracellular 

cadaverine yields by 73 % (Li et al., 2014a). These studies suggest there may be 

other undiscovered cadaverine antiporters and competitive pathways, if found and 

modified, would result in a high cadaverine-producing bacteria strain. This would 

make cadaverine production from C. glutamicum industrially, viable. The new 

CRISPR technique should be explored to develop a commercially viable C. 

glutamicum cadaverine strain. The intracellular cadaverine concentrations were not 

measured here, but it is worth exploring to find out if the difference between the 

internal and external cadaverine concentration is substantial. If it is, it would confirm 

that more work should be done to improve the cadaverine transport system across 

the C. glutamicum cell membrane or perhaps improve yields by lysing the cells on 

harvest.      

The magnitude of fermentation gradients simulated is a function of the SDR 

strategy adopted. This was highlighted here as the two different strategies led to a 

varied C. glutamicum physiological response. The ideal SDR would take the strategy 

of Chapter 6 further by randomly varying the broth recirculation cycle between the 

PFR and STR, hence varying the 𝜏𝑃𝐹𝑅 throughout the course of fermentation. This 

could be done by using a Monte Carlo function to change the 𝜏𝑃𝐹𝑅 in time. Such a 

strategy would create an SDR closer to the inherently stochastic environment of the 

large-scale fermenter.  
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The tracking of a cell lifeline around a reactor is now possible using the cell 

cycle model, single-cell analytical techniques (flow cytometry, Raman microscopy) 

and CFD (Fernandes et al., 2011). Kuschel et al., (2017) simulated 120,000 cells of 

Pseudomonas putida KT2440 travel paths, tracked for ≈260 s  in a 54,000 L STR. 

Their results indicated that the presence of cell population heterogeneity was a 

function of the cell path travelled. These types of studies are set to improve, as 

computational power increases the ability to track more cells for longer times. Thus, 

more studies need to be undertaken to integrate scale-down fermentation studies to 

computational modelling work in other to improve the understanding of how the cell 

population distribution and productivity is affected by the inhomogeneous 

environment of the large-scale vessel.   

The top feed addition fed-batch process was only considered, future work 

could develop SDR strategies to study large-scale subsurface fed-batch 

fermentations and the effect on bacterial cells. Also, the investigations here were 

restricted to studying the effect of chemical gradients on C. glutamicum cells; this 

could be extended to include physical variables, such as temperature and pressure 

gradients that occur during large-scale high cell density fermentations.  

Recently, continuous fermentation has started gaining more prominence in 

the industry. Although, reduced cost and increased quality are some of the 

advantages mentioned by some big pharm representatives as reason for its 

increasing popularity. The tightening rules from regulatory bodies such the US Food 

and Drug administration agency is more likely the biggest contributor to this change. 

The current trend indicates that more emphasis is being placed on the QBD 

approach to bioprocess manufacture. Thus, developing SDR models to mimic the 
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large-scale chemostat is worth pursing and could be an essential tool for studying 

the continuous fermentation environment. 

One powerful analytical tool used here was the flow cytometer, which helped 

segregate the bacterial cells to three distinct sub-populations (live, depolarised and 

dead cells). This can be further exploited by using different fluorochromes to 

differentiate these C. glutamicum cells based on the energy levels of their 

mitochondria during fermentation. Other fluorochromes may also measure the cells 

ion pumping efficiency to differentiate otherwise unidentified sub-populations. These 

cell sub-populations could subsequently be sorted based on their distinct properties 

for microscopic analyses to increase understanding.  
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Appendices 
 

Appendix 1 

An overview of the Sartorius Biostat B plus design and dimensions  

Figure 1, Biostat B plus double jacketed vessel and head plate dimensions 
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Appendix 2 

An overview of the plug flow reactor design and dimensions  

 

 

Figure 2, PFR tubular section dimensions 
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Figure 3, PFR interconnector dimensions  

Appendix 2 describes the dimensions of the plug flow reactor, which was designed inhouse. 
Figure 2 shows the design of the tubular section; they were two in total connected by three 
interconnectors. Figure 3 shows the internal dimensions of the interconnectors, which 
connected the tubular sections and housed the pH and DOT sensors. 
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Appendix 3  

Process log for C. glutamicum DM1945 batch fermentation  

 

 

 

 

 

 

 

Table 1 C. glutamicum DM1945 offline measurements in run 1  

 

 

 

 

 

 

 

 

Table 2 C. glutamicum DM1945 Offline measurements in run 2  

 

 

 

 

 

 

 

Table 3 C. glutamicum DM1945 offline measurements in run 3 

Appendix 3 highlights the offline data measurements of samples taken during triplicate 
batch fermentations of the lysine producing C. glutamicum DM1945 strain (Table 1 – 3). 

  

Time (h) Lysine (g/L) Glucose (g/L) CFU/ml DCW (g/L) Lactate (g/L) 

0 0.00 10 6.0E+08 0.02 0.00 

2 0.012 9.4 1.2E+08 0.08 0.0060 

4 0.0016 8.5 3.0E+08 0.56 0.0050 

6 0.062 7.2 8.8E+08 0.82 0.0080 

8 0.11 3.8 2.0E+09 2.0 0.0012 

11 0.87 0.040 4.0E+09 4.4 0.011 

14 0.88 0.070 4.5E+09 4.6 0.0090 

16 0.90 0.040 5.0E+09 4.6 0.0070 

24 0.90 0.020 4.9E+09 4.4 0.0066 

Time (h) Lysine (g/L) Glucose (g/L) CFU/ml DCW (g/L) Lactate (g/L) 

0 0.00 10 2.0E+07 0.02 0.00 

2 0.011 9.2 7.8E+07 0.15 0.011 

4 0.017 7.9 1.2E+08 0.38 0.017 

6 0.077 6.5 8.7E+08 0.84 0.077 

8 0.15 3.6 2.3E+09 2.4 0.15 

11 0.80 0.59 4.7E+09 4.3 0.80 

14 0.90 0.050 4.9E+09 4.9 0.90 

16 0.90 0.060 5.2E+09 4.6 0.90 

24 0.95 0.060 5.3E+09 4.8 0.95 

Time (h) Lysine (g/L) Glucose (g/L) CFU/ml DCW (g/L) Lactate (g/L) 

0 0.00 10 5.6E+07 0.05 0.00 

2 0.011 9.3 1.1E+08 0.29 0.029 

4 0.013 8.0 3.4E+08 0.34 0.027 

6 0.057 6.9 9.2E+08 0.50 0.038 

8 0.094 3.8 2.2E+09 2.6 0.080 

11 0.75 0.020 4.1E+09 4.2 0.079 

14 0.80 0.010 4.6E+09 4.6 0.078 

16 0.83 0.020 4.4E+09 4.7 0.077 

24 0.85 0.020 4.7E+09 4.6 0.055 
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Appendix 4 

Process log for C. glutamicum DM1945x3 batch fermentation  

 

 

 

 

 

 

 

Table 4 C. glutamicum DM1945x3 Offline measurements in run 1  

 

 

 

 

 

 

 

Table 5 C. glutamicum DM1945x3 Offline measurements in run 2  

 

 

 

 

 

 

 

Table 6 C. glutamicum DM1945x3 Offline measurements in run 3  

Appendix 4 highlights the offline data measurements of samples taken during triplicate 
batch fermentations of the cadaverine producing C. glutamicum DM1945x3 strain (Table 4 – 
6). 

  

 
Time (h) Cadaverine (g/L) Glucose (g/L) CFU/ml DCW (g/L) 

 
Lactate (g/L)  

0 0.00 10 3.9E+06 0.04 0.00 

2 0.024 9.4 7.8E+07 0.13 0.026 

4 0.028 9.0 1.8E+08 0.46 0.027 

6 0.037 8.5 3.8E+08 0.79 0.036 

8 0.061 6.9 1.0E+09 1.3 0.035 

11 0.31 2.2 1.9E+09 3.2 0.061 

14 0.42 0.040 3.5E+09 4.5 0.020 
16 0.44 0.020 3.6E+09 4.3 0.020 

24 0.48 0.020 3.9E+09 4.1 0.023 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/ml DCW (g/L) Lactate (g/L) 

0 0.00 10 1.0E+07 0.03 0.00 

2 0.00050 9.8 6.1E+07 0.16 0.027 

4 0.013 9.3 1.8E+08 0.52 0.024 

6 0.027 8.5 2.4E+08 0.90 0.021 

8 0.059 6.8 4.2E+08 1.9 0.029 

11 0.24 2.4 2.5E+09 3.7 0.051 

14 0.44 0.080 4.1E+09 4.1 0.023 

16 0.41 0.050 4.5E+09 4.3 0.026 

24 0.50 0.040 4.5E+09 4.3 0.027 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/ml DCW (g/L) Lactate (g/L) 

0 0.0088 10 1.5E+07 0.02 0.00 

2 0.021 9.5 6.8E+07 0.08 0.016 

4 0.032 8.7 2.2E+08 0.21 0.024 

6 0.051 7.5 5.3E+08 0.77 0.021 

8 0.059 6.2 9.3E+08 1.9 0.034 

11 0.29 2.0 3.3E+09 3.8 0.043 

14 0.39 0.080 4.5E+09 4.2 0.019 
16 0.36 0.090 4.8E+09 4.4 0.016 

24 0.43 0.070 4.3E+09 4.4 0.015 
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Appendix 5 

Process concentration profiles for SDR 2 during C. glutamicum DM1945x3 fed-batch 

fermentation  

 

In SDR 2, the cell broth mixtures were recirculated between the STR and PFR. The addition 

of feed (mainly containing glucose and trace elements), air and the pH controlling agent 

(NH4OH) were introduced in the STR, while the 𝜏𝑃𝐹𝑅 was 2 min. 

Figure 4 pH profiles at the PFR inlet/outlet and the STR for SDR 2 

Figure 5 Dissolved oxygen tension profiles across SDR 2 

Figure 6 Glucose profiles across SDR 2, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations. The error bars between 14 h and 36 h are too small to 
be seen on this graph due to the high glucose concentrations at the start and end of fermentation. 



246 
 

Appendix 6 

Process concentration profiles for SDR 3 during C. glutamicum DM1945x3 fed-batch 

fermentation  

 

In SDR 3, the cell broth mixtures were recirculated between the STR and PFR. The addition 

of feed (mainly containing glucose and trace elements), air and the pH controlling agent 

(NH4OH) were introduced in the STR, while the 𝜏𝑃𝐹𝑅 was 5 min. 

Figure 7 pH profiles at the PFR inlet/outlet and the STR for SDR 3 

Figure 8 Dissolved oxygen tension profiles across SDR 3 

Figure 9 Glucose profiles across SDR 3, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations. The error bars between 14 h and 36 h are too small to 
be seen on this graph due to the high glucose concentrations at the start and end of fermentation 
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Appendix 7 

Process concentration profiles for SDR 5 during C. glutamicum DM1945x3 fed-batch 

fermentation  

 

In SDR 5, the pH controlling agent and air were introduced to the well-mixed STR section, 

while the substrate feed was added at the inlet of the poorly-mixed unaerated PFR with a 

𝜏𝑃𝐹𝑅 of 2 min.  

 

Figure 10 pH profiles at the PFR inlet/outlet and the STR for SDR 5

 

Figure 11 Dissolved oxygen tension profiles across SDR 5

 

Figure 12 Glucose profiles across SDR 5, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations. The error bars between 14 h and 36 h are too small to 
be seen on this graph due to the high glucose concentrations at the start and end of fermentation 
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Appendix 8 

Process concentration profiles for SDR 6 during C. glutamicum DM1945x3 fed-batch 

fermentation  

 

In SDR 6, the pH controlling agent and air were introduced to the well-mixed STR section, 
while the substrate feed was added at the inlet of the poorly-mixed unaerated PFR with a 
𝜏𝑃𝐹𝑅 of 5 min. 

 

Figure 13 pH profiles at the PFR inlet/outlet and the STR for SDR 6 

Figure 14 Dissolved oxygen tension profiles across SDR 6 

Figure 15 Glucose profiles across SDR 6, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations. The error bars between 14 h and 36 h are too small to 
be seen on this graph due to the high glucose concentrations at the start and end of fermentation 
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Appendix 9 

Process concentration profiles for SDR 8 during C. glutamicum DM1945x3 fed-batch 

fermentation 

 

 In SDR 8, the glucose feed and air were introduced to the STR, while the pH controlling 
agent was introduced to the PFR with a 𝜏𝑃𝐹𝑅 of 2 min. 

 

Figure 16 pH profiles at the PFR inlet/outlet and the STR for SDR 8 

Figure 17 Dissolved oxygen tension profiles across SDR 8 

Figure 18 Glucose profiles across SDR 8, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations. The error bars between 14 h and 39 h are too small to 
be seen on this graph due to the high glucose concentrations at the start of fermentation 
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Appendix 10 

Process concentration profiles for SDR 9 during C. glutamicum DM1945x3 fed-batch 

fermentation  

 

In SDR 9, the glucose feed and air were introduced to the STR, while the pH controlling 
agent was introduced to the PFR with a 𝜏𝑃𝐹𝑅 of 5 min. 

Figure 19 pH profiles at the PFR inlet/outlet and the STR for SDR 9 

Figure 20 Dissolved oxygen tension profiles across SDR 9 

Figure 21 Glucose profiles across SDR 9, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations. The error bars between 14 h and 36 h are too small to 
be seen on this graph due to the high glucose concentrations at the start and end of fermentation 
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Appendix 11 

Process concentration profiles for SDR 11 during C. glutamicum DM1945x3 fed-

batch fermentation  

 

In SDR 11, both glucose feed and base were injected into PFR section with a 𝜏𝑃𝐹𝑅 of 2 min, 

while air was sparged at the STR. 

 

Figure 22 pH profiles at the PFR inlet/outlet and the STR for SDR 11

 

Figure 23 Dissolved oxygen tension profiles across SDR 11

 

Figure 24 Glucose profiles across SDR 11, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations. The error bars between 14 h and 33 h are too small to 
be seen on this graph due to the high glucose concentrations at the start and end of fermentation 
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Appendix 12 

Process concentration profiles for SDR 12 during C. glutamicum DM1945x3 fed-

batch fermentation  

 

In SDR 12, both glucose feed and base were injected into PFR section with a 𝜏𝑃𝐹𝑅 of 5 min, 

while air was sparged at the STR. 

 

Figure 25 pH profiles at the PFR inlet/outlet and the STR for SDR 12

 

Figure 26 Dissolved oxygen tension profiles across SDR 12

 

Figure 27 Glucose profiles across SDR 12, data points represent the mean values from biological replicates, and 
the error bars are equivalent to their standard deviations.  
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Appendix 13 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (STR only) 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.0E+06 0.04 0.00 

2 0.0080 9.4 2.4E+07 0.13 0.0050 

4 0.020 9.0 1.6E+08 0.43 0.0039 

6 0.035 8.5 4.5E+08 0.86 0.0079 

8 0.049 7.4 8.8E+08 1.3 0.036 

11 0.084 2.7 2.7E+09 2.9 0.061 

14 0.098 0.05 4.7E+09 3.6 0.020 

16 0.13 0.11 5.3E+09 4.1 0.020 

24 0.51 0.00 8.2E+09 6.3 0.023 

27 3.5 0.12 8.8E+09 8.4 0.023 

30 5.7 0.00 8.9E+09 12 0.013 

33 7.0 0.00 9.6E+09 17 0.016 

36 13 0.00 1.1E+10 25 0.28 

39 20 8.2 1.3E+10 29 0.23 
Table 7 C. glutamicum DM1945x3 offline measurements in run 1 (SDR only) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 2.0E+06 0.03 0.00 

2 0.0040 9.9 1.5E+07 0.12 0.0034 

4 0.013 9.4 1.1E+08 0.42 0.0024 

6 0.025 8.5 3.7E+08 0.88 0.0052 

8 0.041 7.8 7.3E+08 1.2 0.029 

11 0.063 4.9 2.0E+09 3.7 0.051 

14 0.11 0.10 4.6E+09 4.1 0.023 

16 0.12 0.10 5.0E+09 4.3 0.026 

24 0.60 0.03 7.3E+09 6.8 0.027 

27 4.2 0.07 6.4E+09 11 0.033 

30 5.1 0.10 8.5E+09 14 0.028 

33 7.3 0.00 1.0E+10 21 0.026 

36 15 0.07 1.1E+10 26 0.26 

39 19 9.5 1.6E+10 30 0.27 
Table 8 C. glutamicum DM1945x3 offline measurements in run 2 (SDR only) 

Appendix 13 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the STR only control simulation 
(Table 7 & 8). 
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Appendix 14 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 1) 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 2.0E+07 0.06 0.00 

2 0.018 9.4 8.7E+07 0.07 0.0013 

4 0.034 8.8 3.8E+08 0.31 0.0040 

6 0.049 8.0 8.9E+08 0.73 0.0037 

8 0.060 7.6 1.2E+09 1.0 0.034 

11 0.095 2.3 3.3E+09 4.1 0.043 

14 0.11 0.08 5.5E+09 4.7 0.019 

16 0.11 0.10 4.7E+09 4.3 0.016 

24 0.58 0.07 8.3E+09 6.5 0.024 

27 2.9 0.04 8.6E+09 8.5 0.024 

30 4.2 0.03 1.0E+10 13 0.025 

33 5.4 0.03 1.0E+10 19 0.037 

36 10 0.07 1.3E+10 27 0.11 

39 15 7.9 2.0E+10 33 0.33 
Table 9 C. glutamicum DM1945x3 offline measurements in run 1(SDR 1) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 1.8E+07 0.05 0.00 

2 0.012 9.7 9.2E+07 0.09 0.0029 

4 0.016 9.0 3.0E+08 0.22 0.0023 

6 0.032 8.3 8.2E+08 0.64 0.0043 

8 0.047 8.0 1.0E+09 1.3 0.026 

11 0.077 5.2 2.1E+09 2.7 0.044 

14 0.12 0.09 5.2E+09 5.4 0.032 

16 0.16 0.07 5.0E+09 4.7 0.020 

24 0.62 0.03 9.6E+09 6.7 0.021 

27 2.8 0.01 9.3E+09 9.3 0.021 

30 3.9 0.01 9.6E+09 14 0.026 

33 6.9 0.07 1.0E+10 18 0.036 

36 8.8 0.06 1.3E+10 27 0.21 

39 16 4.6 1.7E+10 32 0.30 
Table 10 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 1) 

Appendix 14 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 1 simulation (Table 9 & 10). 
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Appendix 15 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 2) 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.1E+06 0.040 0.00 

2 0.0060 9.8 4.9E+07 0.070 0.0032 

4 0.019 8.4 1.6E+08 0.59 0.0059 

6 0.023 7.8 6.6E+08 0.72 0.0092 

8 0.011 6.5 9.9E+08 0.90 0.014 

11 0.0042 2.8 1.9E+09 2.4 0.016 

14 0.0088 0.060 3.4E+09 3.9 0.0083 

16 0.020 0.060 3.9E+09 3.3 0.0088 

24 0.14 0.070 6.0E+09 4.7 0.0080 

27 1.3 0.060 7.1E+09 7.3 0.013 

30 1.9 0.060 7.4E+09 11 0.0098 

33 3.2 0.060 7.2E+09 17 0.013 

36 5.8 0.060 1.1E+10 25 0.028 

39 9.9 6.8 1.3E+10 32 0.21 
Table 11 C. glutamicum DM1945x3 offline measurements in run 1(SDR 2) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.0E+06 0.060 0.00 

2 0.0072 9.2 3.9E+07 0.12 0.0060 

4 0.0085 8.2 1.9E+08 0.23 0.0045 

6 0.010 8.1 5.9E+08 0.90 0.0080 

8 0.0028 7.3 8.5E+08 1.6 0.016 

11 0.015 4.6 2.1E+09 3.0 0.021 

14 0.030 0.070 3.7E+09 5.2 0.013 

16 0.026 0.070 3.6E+09 4.5 0.012 

24 0.16 0.070 5.8E+09 5.6 0.013 

27 0.87 0.070 5.0E+09 7.8 0.018 

30 1.9 0.060 6.1E+09 11 0.016 

33 3.0 0.050 7.2E+09 18 0.014 

36 6.5 0.68 8.5E+09 25 0.038 

39 8.7 8.5 1.2E+10 32 0.12 
Table 12 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 2) 

Appendix 15 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 2 simulation (Table 11 & 
12). 
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Appendix 16 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 3) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 11 4.1E+06 0.060 0.00 

2 0.0046 9.8 3.9E+07 0.19 0.0032 

4 0.0071 8.6 2.0E+08 0.49 0.0059 

6 0.0093 7.7 7.6E+08 0.86 0.0092 

8 0.014 7.3 1.0E+09 1.4 0.0064 

11 0.019 3.2 1.9E+09 2.1 0.017 

14 0.033 0.060 3.2E+09 4.0 0.013 

16 0.023 0.090 4.1E+09 3.8 0.015 

24 0.21 0.070 6.9E+09 5.5 0.024 

27 0.82 0.24 5.5E+09 6.7 0.018 

30 2.0 0.16 6.8E+09 11 0.0033 

33 3.0 0.06 7.5E+09 15 0.052 

36 3.6 0.58 8.1E+09 24 0.15 

39 8.0 7.6 9.1E+09 29 0.22 
Table 13 C. glutamicum DM1945x3 offline measurements in run 1(SDR 3) 

 

 

 

 

 

 

 

 

 

 

 

            
Table 14 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 3) 

Appendix 16 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 3 simulation (Table 13 & 
14). 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.9E+06 0.04 0.00 

2 0.0083 9.5 4.9E+07 0.12 0.0064 

4 0.0095 8.8 2.9E+08 0.34 0.0045 

6 0.018 8.0 8.9E+08 0.76 0.0083 

8 0.025 7.0 1.2E+09 1.1 0.043 

11 0.052 1.9 2.0E+09 2.7 0.042 

14 0.047 0.090 4.1E+09 3.9 0.026 

16 0.046 0.090 3.0E+09 3.5 0.030 

24 0.24 0.080 6.2E+09 4.2 0.035 

27 1.5 0.050 5.2E+09 5.9 0.039 

30 2.4 0.060 6.0E+09 9.8 0.048 

33 2.6 0.080 6.5E+09 14 0.054 

36 3.9 0.060 7.8E+09 22 0.10 

39 9.2 6.1 1.0E+10 31 0.22 
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Appendix 17 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 4) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.6E+06 0.060 0.00 

2 0.0036 9.9 5.8E+07 0.16 0.0032 

4 0.0081 9.0 3.0E+08 0.32 0.0059 

6 0.013 8.6 6.6E+08 0.35 0.0092 

8 0.044 8.5 7.0E+08 0.64 0.021 

11 0.068 6.7 1.5E+09 1.0 0.026 

14 0.093 1.6 3.2E+09 3.7 0.059 

16 0.12 0.060 5.2E+09 4.6 0.016 

24 0.47 0.060 1.0E+10 6.3 0.077 

27 3.0 0.070 7.8E+09 9.2 0.050 

30 4.1 0.080 1.1E+10 13 0.16 

33 5.5 0.060 1.1E+10 18 0.15 

36 9.5 1.3 1.3E+10 25 0.21 

39 14 11 1.6E+10 29 0.29 
Table 15 C. glutamicum DM1945x3 offline measurements in run 1(SDR 4) 

 

 

 

 

 

 

 

 

 

 

 

Table 16 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 4) 

Appendix 17 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 4 simulation (Table 15 & 
16). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 5.0E+06 0.05 0.00 

2 0.0083 9.5 4.1E+07 0.09 0.0064 

4 0.020 9.0 1.9E+08 0.28 0.0045 

6 0.22 9.1 9.0E+08 0.39 0.0083 

8 0.057 8.7 4.6E+08 0.90 0.025 

11 0.084 7.1 1.6E+09 1.4 0.038 

14 0.16 1.6 3.2E+09 3.9 0.058 

16 0.17 0.10 4.9E+09 4.0 0.020 

24 0.52 0.00 1.2E+10 5.3 0.051 

27 1.8 0.00 9.7E+09 7.2 0.083 

30 3.2 0.00 9.8E+09 12 0.096 

33 5.2 0.54 1.1E+10 17 0.12 

36 11 2.0 1.2E+10 25 0.27 

39 15 15 1.6E+10 30 0.24 
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Appendix 18 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 5) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.7E+06 0.050 0.00 

2 0.0072 8.8 4.3E+07 0.10 0.0053 

4 0.010 8.0 3.0E+08 0.21 0.0098 

6 0.019 7.4 9.4E+08 0.49 0.019 

8 0.038 6.2 9.5E+08 1.1 0.026 

11 0.061 1.1 2.4E+09 5.0 0.092 

14 0.070 0.040 3.3E+09 4.3 0.015 

16 0.063 0.070 3.8E+09 4.4 0.015 

24 0.18 0.57 5.2E+09 5.2 0.024 

27 1.1 0.080 4.6E+09 8.6 0.018 

30 2.0 0.17 5.3E+09 12 0.025 

33 2.3 0.11 8.5E+09 17 0.051 

36 6.5 0.27 9.8E+09 25 0.036 

39 12 4.0 1.2E+10 31 0.033 
Table 17 C. glutamicum DM1945x3 offline measurements in run 1(SDR 5) 

 

 

 

 

 

 

 

 

 

 

 

Table 18 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 5) 

Appendix 18 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 5 simulation (Table 17 & 
18). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.9E+06 0.060 0.00 

2 0.0062 9.2 5.7E+07 0.090 0.0064 

4 0.020 8.4 2.9E+08 0.16 0.0037 

6 0.029 6.4 8.7E+08 0.20 0.024 

8 0.034 5.6 1.4E+09 0.64 0.030 

11 0.048 0.24 2.9E+09 2.6 0.029 

14 0.050 0.060 3.4E+09 3.0 0.017 

16 0.050 0.060 3.6E+09 3.4 0.016 

24 0.16 0.060 5.1E+09 4.0 0.018 

27 1.1 0.060 6.9E+09 6.6 0.018 

30 1.4 0.060 7.1E+09 9.2 0.020 

33 2.0 0.060 8.0E+09 14 0.024 

36 4.7 0.060 1.1E+10 20 0.028 

39 11 3.3 1.3E+10 31 0.069 
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Appendix 19 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 6) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 11 3.9E+06 0.050 0.00 

2 0.0098 8.9 4.9E+07 0.10 0.0053 

4 0.020 8.2 2.7E+08 0.21 0.0098 

6 0.024 7.6 8.4E+08 0.49 0.019 

8 0.044 6.8 1.2E+09 1.5 0.027 

11 0.078 2.5 2.0E+09 2.5 0.047 

14 0.10 0.12 4.1E+09 3.5 0.035 

16 0.094 0.040 3.4E+09 4.1 0.018 

24 0.36 0.080 5.7E+09 5.1 0.041 

27 0.66 0.010 5.5E+09 7.0 0.038 

30 2.8 0.020 6.2E+09 11 0.032 

33 3.2 0.060 7.8E+09 16 0.023 

36 8.0 0.010 8.7E+09 24 0.021 

39 9.4 0.38 1.1E+10 28 0.081 
Table 19 C. glutamicum DM1945x3 offline measurements in run 1 (SDR 6) 

 

 

 

 

 

 

 

 

 

 

 

Table 20 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 6) 

Appendix 19 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 6 simulation (Table 19 & 
20). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 5.1E+06 0.060 0.00 

2 0.0040 9.0 4.7E+07 0.090 0.0064 

4 0.0063 8.7 3.3E+08 0.16 0.0037 

6 0.014 7.2 9.7E+08 0.20 0.024 

8 0.018 6.3 1.9E+09 1.4 0.039 

11 0.046 2.0 2.4E+09 1.9 0.050 

14 0.065 0.070 3.9E+09 3.2 0.025 

16 0.060 0.060 4.4E+09 3.1 0.030 

24 0.27 0.070 5.8E+09 4.2 0.040 

27 2.4 0.070 5.6E+09 5.8 0.032 

30 3.5 0.060 6.8E+09 9.5 0.030 

33 3.9 0.070 8.3E+09 15 0.033 

36 7.8 0.15 9.8E+09 22 0.024 

39 12 0.15 1.5E+10 33 0.095 
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Appendix 20 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 7) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 2.8E+06 0.050 0.00 

2 0.0078 8.9 5.1E+07 0.19 0.0043 

4 0.018 8.2 3.9E+08 0.31 0.0085 

6 0.033 7.6 7.8E+08 0.82 0.019 

8 0.078 7.0 2.5E+09 1.8 0.068 

11 0.16 1.1 3.3E+09 4.5 0.031 

14 0.20 0.040 4.9E+09 4.2 0.0054 

16 0.22 0.00 5.2E+09 4.1 0.011 

24 0.49 0.030 8.1E+09 5.5 0.0077 

27 1.8 0.040 7.0E+09 7.3 0.014 

30 2.7 0.060 8.0E+09 13 0.030 

33 5.1 0.040 7.5E+09 17 0.041 

36 7.7 0.00 8.3E+09 25 0.19 

39 15 9.0 1.3E+10 31 0.27 
Table 21 C. glutamicum DM1945x3 offline measurements in run 1(SDR 7) 

 

 

 

 

 

 

 

 

 

 

 

Table 22 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 7) 

Appendix 20 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 7 simulation (Table 21 & 
22). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.6E+06 0.050 0.00 

2 0.0023 9.0 3.9E+07 0.010 0.0031 

4 0.0093 8.7 4.3E+08 0.27 0.0069 

6 0.012 7.2 8.4E+08 0.44 0.014 

8 0.030 7.2 2.4E+09 0.98 0.025 

11 0.058 2.2 3.3E+09 4.4 0.033 

14 0.062 0.030 5.1E+09 4.9 0.00 

16 0.065 0.00 5.1E+09 5.1 0.00 

24 0.35 0.020 7.0E+09 7.1 0.0052 

27 1.3 0.00 7.8E+09 9.6 0.0056 

30 2.2 0.010 7.5E+09 15 0.037 

33 2.2 0.040 8.2E+09 19 0.040 

36 7.6 0.13 8.8E+09 28 0.26 

39 13 10 1.2E+10 33 0.18 
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Appendix 21 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 8) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.2E+06 0.050 0.00 

2 0.0068 9.1 4.6E+07 0.090 0.0090 

4 0.019 8.1 3.2E+08 0.22 0.020 

6 0.020 7.7 6.2E+08 0.32 0.013 

8 0.042 6.5 9.9E+08 0.90 0.014 

11 0.064 2.8 1.9E+09 2.4 0.016 

14 0.060 0.060 3.4E+09 3.9 0.0083 

16 0.069 0.060 3.9E+09 3.3 0.0088 

24 0.23 0.070 6.0E+09 4.7 0.0080 

27 0.95 0.060 7.1E+09 7.3 0.013 

30 1.6 0.060 7.4E+09 11 0.0098 

33 2.9 0.060 7.2E+09 17 0.013 

36 5.8 0.060 1.1E+10 25 0.028 

39 11 0.68 1.3E+10 32 0.21 
Table 23 C. glutamicum DM1945x3 offline measurements in run 1(SDR 8) 

 

 

 

 

 

 

 

 

 

 

 

Table 24 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 8) 

Appendix 21 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 8 simulation (Table 23 & 
24). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 2.9E+06 0.060 0.00 

2 0.00 9.6 4.0E+07 0.10 0.014 

4 0.0052 8.1 4.7E+08 0.21 0.020 

6 0.0076 7.0 9.4E+08 0.42 0.013 

8 0.016 7.3 8.5E+08 1.6 0.016 

11 0.023 4.6 2.1E+09 3.0 0.021 

14 0.044 0.070 3.7E+09 5.2 0.013 

16 0.037 0.070 3.6E+09 4.5 0.012 

24 0.16 0.070 5.8E+09 5.6 0.013 

27 0.76 0.070 5.0E+09 7.9 0.018 

30 1.3 0.060 6.1E+09 11 0.016 

33 2.9 0.050 7.2E+09 18 0.014 

36 6.0 0.68 8.5E+09 25 0.038 

39 9.0 0.85 1.2E+10 32 0.12 
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Appendix 22 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 9) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.4E+06 0.040 0.00 

2 0.0040 9.1 3.6E+07 0.12 0.0034 

4 0.0029 8.6 5.2E+08 0.42 0.020 

6 0.091 7.9 7.8E+08 0.66 0.018 

8 0.017 6.6 1.2E+09 1.9 0.025 

11 0.028 1.9 2.3E+09 2.9 0.024 

14 0.038 0.070 4.5E+09 3.5 0.012 

16 0.036 0.080 4.8E+09 4.2 0.015 

24 0.19 0.060 6.4E+09 4.7 0.012 

27 1.2 0.060 5.9E+09 7.0 0.015 

30 2.1 0.080 6.5E+09 11 0.020 

33 3.4 0.050 6.9E+09 19 0.020 

36 5.0 1.8 9.1E+09 26 0.072 

39 11 11 1.2E+10 30 0.14 
Table 25 C. glutamicum DM1945x3 offline measurements in run 1(SDR 9) 

 

 

 

 

 

 

 

 

 

 

 

Table 26 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 9) 

Appendix 22 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 9 simulation (Table 25 & 
26). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.0E+06 0.030 0.00 

2 0.0056 9.5 4.1E+07 0.15 0.0066 

4 0.0052 8.1 4.5E+08 0.34 0.017 

6 0.0036 7.5 6.2E+08 0.53 0.023 

8 0.0083 6.3 1.2E+09 0.98 0.044 

11 0.019 1.3 2.7E+09 3.3 0.067 

14 0.027 0.14 4.9E+09 3.3 0.025 

16 0.037 0.070 5.1E+09 3.6 0.023 

24 0.28 0.11 6.7E+09 4.5 0.036 

27 1.9 0.10 6.3E+09 6.0 0.030 

30 2.9 0.090 6.9E+09 10 0.041 

33 3.6 0.090 8.5E+09 16 0.042 

36 4.9 0.70 1.0E+10 24 0.094 

39 9.4 13 1.3E+10 31 0.13 
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Appendix 23 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 10) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.0E+06 0.040 0.00 

2 0.0095 9.9 4.9E+07 0.23 0.0034 

4 0.015 9.6 4.9E+08 0.35 0.020 

6 0.021 9.1 8.0E+08 0.85 0.018 

8 0.036 8.9 3.3E+08 1.0 0.029 

11 0.071 8.0 8.8E+08 3.3 0.037 

14 0.12 3.9 2.4E+09 3.6 0.045 

16 0.16 0.17 4.1E+09 4.3 0.046 

24 0.53 0.080 9.1E+09 6.5 0.10 

27 2.1 0.070 7.5E+09 7.7 0.11 

30 3.2 0.090 7.5E+09 13 0.090 

33 6.0 0.070 7.7E+09 18 0.14 

36 10 0.050 8.8E+09 25 0.28 

39 14 15 1.3E+10 31 0.32 
Table 27 C. glutamicum DM1945x3 offline measurements in run 1(SDR 10) 

 

 

 

 

 

 

 

 

 

 

 

Table 28 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 10) 

Appendix 23 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 10 simulation (Table 27 & 
28). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.6E+06 0.050 0.00 

2 0.0085 9.7 3.2E+07 0.19 0.0066 

4 0.013 9.4 5.2E+08 0.49 0.017 

6 0.030 9.2 6.8E+08 0.74 0.023 

8 0.040 9.0 4.2E+08 1.1 0.032 

11 0.072 8.3 9.9E+08 3.4 0.039 

14 0.13 4.5 1.9E+09 3.9 0.053 

16 0.19 0.12 4.7E+09 3.9 0.030 

24 0.52 0.09 9.9E+09 5.9 0.087 

27 1.8 0.13 7.3E+09 8.6 0.13 

30 2.9 0.11 8.6E+09 13 0.12 

33 5.7 0.10 7.9E+09 20 0.15 

36 9.5 1.8 1.0E+10 27 0.31 

39 14 18 1.2E+10 30 0.35 
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Appendix 24 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 11) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.6E+06 0.040 0.00 

2 0.0083 9.1 4.1E+07 0.20 0.0073 

4 0.014 8.8 4.3E+08 0.39 0.0075 

6 0.024 8.3 6.2E+08 0.88 0.012 

8 0.058 7.2 1.6E+09 1.8 0.025 

11 0.10 4.1 2.6E+09 3.2 0.028 

14 0.13 0.070 3.0E+09 4.9 0.025 

16 0.077 0.090 3.4E+09 4.4 0.013 

24 0.24 0.62 6.6E+09 5.5 0.023 

27 1.1 0.58 6.4E+09 8.6 0.024 

30 2.0 0.54 5.6E+09 11 0.026 

33 3.6 0.070 7.6E+09 18 0.021 

36 7.7 2.1 8.6E+09 25 0.078 

39 12 6.9 1.1E+10 32 0.096 
Table 29 C. glutamicum DM1945x3 offline measurements in run 1(SDR 11) 

 

 

 

 

 

 

 

 

 

 

 

Table 30 C. glutamicum DM1945x3 offline measurements in run 2 (SDR 11) 

Appendix 24 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 11 simulation (Table 29 & 
30). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.3E+06 0.030 0.00 

2 0.0013 9.3 4.8E+07 0.15 0.0046 

4 0.084 8.6 3.9E+08 0.43 0.0092 

6 0.015 7.9 7.7E+08 0.96 0.011 

8 0.028 6.9 1.1E+09 1.1 0.013 

11 0.035 5.0 1.8E+09 2.7 0.013 

14 0.068 1.7 3.1E+09 3.3 0.019 

16 0.079 0.056 3.9E+09 4.0 0.0069 

24 0.31 0.054 5.5E+09 6.2 0.0074 

27 2.2 0.056 7.9E+09 6.9 0.0080 

30 2.6 0.054 7.0E+09 11 0.0074 

33 2.6 0.053 6.9E+09 15 0.0084 

36 6.5 0.95 8.1E+09 26 0.067 

39 11 4.0 1.2E+10 32 0.082 
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Appendix 25 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 12) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.2E+06 0.030 0.00 

2 0.00 9.3 3.2E+07 0.34 0.0073 

4 0.0097 8.5 4.8E+08 0.54 0.0075 

6 0.010 7.8 8.2E+08 0.92 0.012 

8 0.011 6.5 1.2E+09 1.9 0.018 

11 0.040 0.68 2.5E+09 3.4 0.028 

14 0.052 0.070 3.8E+09 3.6 0.013 

16 0.045 0.070 3.8E+09 4.0 0.012 

24 0.21 0.030 6.6E+09 6.9 0.029 

27 2.1 0.080 5.8E+09 7.5 0.030 

30 2.7 0.060 6.6E+09 12 0.032 

33 4.5 0.030 7.2E+09 19 0.026 

36 6.8 0.050 8.1E+09 25 0.091 

39 8.6 0.15 9.6E+09 33 0.063 
Table 31 C. glutamicum DM1945x3 offline measurements in run 1(SDR 12) 

 

 

 

 

 

 

 

 

 

 

 

Table 32  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 12) 

Appendix 25 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 12 simulation (Table 31 & 
32). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10.02 4.3E+06 0.030 0.00 

2 0.00 9.7 3.6E+07 0.200 0.0046 

4 0.0075 8.7 3.6E+08 0.36 0.0092 

6 0.021 7.4 7.9E+08 0.84 0.011 

8 0.036 6.7 1.1E+09 1.4 0.045 

11 0.048 2.5 2.3E+09 3.0 0.053 

14 0.052 0.090 3.5E+09 3.2 0.042 

16 0.056 0.090 4.5E+09 3.1 0.033 

24 0.21 0.070 6.8E+09 4.7 0.029 

27 1.5 0.060 6.0E+09 7.1 0.038 

30 1.9 0.060 7.4E+09 11 0.038 

33 3.7 0.070 7.8E+09 16 0.065 

36 5.4 0.080 9.3E+09 25 0.11 

39 11 0.12 1.2E+10 30 0.13 
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Appendix 26 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 13) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.7E+06 0.050 0.00 
2 0.0070 9.1 3.4E+07 0.090 0.0042 
4 0.029 8.8 1.7E+08 0.39 0.0030 
6 0.031 8.3 4.6E+08 0.76 0.0082 
8 0.041 7.0 1.8E+09 1.4 0.016 

11 0.13 3.4 2.6E+09 3.8 0.039 
14 0.17 0.055 3.7E+09 4.5 0.013 
16 0.19 0.085 4.3E+09 4.7 0.0073 
24 0.28 0.042 6.6E+09 5.3 0.016 
27 0.89 0.12 7E+09 6.2 0.028 
30 1.9 0.074 7.1E+09 12 0.042 
33 2.4 0.10 7.7E+09 17 0.058 
36 4.9 0.075 9.9E+09 28 0.12 
39 11 0.31 1.6E+10 32 0.34 

Table 33 C. glutamicum DM1945x3 offline measurements in run 1(SDR 13) 

 

 

 

 

 

 

 

 

 

 

 

Table 34  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 13) 

Appendix 26 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 13 simulation (Table 33 & 
34). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.0E+06 0.060 0.00 
2 0.0060 9.7 1.5E+07 0.12 0.0054 
4 0.019 9.2 1.3E+08 0.56 0.0030 
6 0.029 8.8 3.9E+08 0.98 0.0032 
8 0.033 6.1 1.3E+09 1.4 0.036 

11 0.056 1.32 2.9E+09 3.7 0.027 
14 0.056 0.064 4.4E+09 4.4 0.015 
16 0.057 0.061 3.3E+09 4.5 0.016 
24 0.18 0.064 4.4E+09 5.0 0.025 
27 0.70 0.060 6.7E+09 6.0 0.019 
30 0.93 0.058 6.9E+09 10 0.019 
33 2.6 0.062 7.8E+09 16 0.091 
36 3.2 0.054 1.2E+10 22 0.042 
39 8.1 0.26 1.6E+10 30 0.10 
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Appendix 27 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 14) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.2E+06 0.052 0.00 
2 0.0040 9.0 3.9E+07 0.077 0.0022 
4 0.0099 8.8 2.0E+08 0.49 0.0043 
6 0.014 8.1 5.6E+08 0.96 0.012 
8 0.028 4.7 1.4E+09 1.9 0.053 

11 0.051 0.080 2.8E+09 3.6 0.017 
14 0.062 0.077 3.4E+09 4.4 0.014 
16 0.058 0.071 2.8E+09 4.2 0.014 
24 0.38 0.077 5.6E+09 7.1 0.015 
27 0.71 0.076 5.1E+09 8.7 0.015 
30 1.17 0.075 6.9E+09 12 0.023 
33 2.9 0.074 7.1E+09 16 0.019 
36 4.8 0.072 7.9E+09 20 0.065 
39 9.9 1.6 1.0E+10 27 0.048 

Table 35  C. glutamicum DM1945x3 offline measurements in run 1(SDR 14) 

 

 

 

 

 

 

 

 

 

 

 

Table 36  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 14) 

Appendix 27 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 14 simulation (Table 35 & 
36). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.0E+06 0.060 0.00 
2 0.0082 9.5 2.9E+07 0.092 0.0094 
4 0.019 9.0 1.8E+08 0.33 0.0035 
6 0.030 8.4 6.9E+08 0.86 0.013 
8 0.035 3.6 1.7E+09 1.7 0.059 

11 0.066 0.0092 3.3E+09 4.8 0.016 
14 0.059 0.011 3.5E+09 3.4 0.015 
16 0.080 0.014 4.3E+09 4.4 0.014 
24 0.27 0.013 5.1E+09 5.6 0.015 
27 2.0 0.013 5.8E+09 8.1 0.020 
30 2.9 0.015 6.8E+09 12 0.022 
33 2.9 0.017 8.0E+09 15 0.029 
36 5.0 0.018 8.9E+09 20 0.047 
39 12 0.20 1.0E+10 30 0.20 
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Appendix 28 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 15) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.6E+06 0.059 0.00 
2 0.0026 9.7 4.8E+07 0.070 0.0042 
4 0.036 8.6 1.7E+08 0.28 0.0089 
6 0.061 7.6 7.7E+08 0.89 0.019 
8 0.11 6.9 1.9E+09 1.5 0.028 

11 0.16 2.2 2.8E+09 3.5 0.048 
14 0.20 0.063 3.7E+09 4.6 0.0071 
16 0.22 0.055 3.8E+09 3.8 0.013 
24 0.29 0.055 5.3E+09 3.9 0.025 
27 0.81 0.045 5.8E+09 5.0 0.034 
30 1.8 0.054 5.3E+09 8.9 0.038 
33 2.9 0.033 8.5E+09 15 0.039 
36 5.4 0.75 1.1E+10 24 0.27 
39 10 12 1.5E+10 31 0.23 

Table 37  C. glutamicum DM1945x3 offline measurements in run 1(SDR 15) 

 

 

 

 

 

 

 

 

 

 

 

Table 38  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 15) 

Appendix 28 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 15 simulation (Table 37 & 
38). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.2E+06 0.051 0.00 
2 0.0020 9.2 4.6E+07 0.083 0.0094 
4 0.0045 8.3 2.1E+08 0.19 0.015 
6 0.012 7.9 8.2E+08 0.46 0.028 
8 0.024 6.0 1.4E+09 0.92 0.038 

11 0.046 1.3 2.7E+09 3.0 0.028 
14 0.040 0.063 3.9E+09 3.5 0.018 
16 0.044 0.061 4.5E+09 4.6 0.017 
24 0.12 0.059 4.9E+09 4.7 0.028 
27 0.62 0.054 6.6E+09 4.8 0.016 
30 0.79 0.062 7.4E+09 7.3 0.021 
33 2.0 0.058 8.1E+09 14 0.022 
36 6.3 0.058 9.8E+09 22 0.28 
39 9.3 7.1 1.5E+10 31 0.29 
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Appendix 29 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 16) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 9.9 4.3E+06 0.066 0.00 
2 0.0032 9.0 5.8E+07 0.19 0.0082 
4 0.0069 7.2 3.0E+08 0.45 0.019 
6 0.11 5.5 6.7E+08 0.79 0.029 
8 0.021 2.8 1.5E+09 1.3 0.058 

11 0.11 0.035 2.6E+09 3.7 0.013 
14 0.11 0.037 3.3E+09 4.5 0.012 
16 0.10 0.032 2.6E+09 4.5 0.015 
24 0.52 0.029 3.6E+09 6.2 0.013 
27 1.6 0.030 4.8E+09 7.4 0.014 
30 2.2 0.034 6.1E+09 13 0.018 
33 3.1 0.037 7.4E+09 15 0.024 
36 3.2 0.038 8.2E+09 23 0.025 
39 5.3 0.034 1.0E+10 29 0.026 

Table 39  C. glutamicum DM1945x3 offline measurements in run 1(SDR 16) 

 

 

 

 

 

 

 

 

 

 

 

Table 40  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 16) 

Appendix 29 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 16 simulation (Table 39 & 
40). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.0E+06 0.059 0.00 
2 0.0020 9.5 6.4E+07 0.33 0.0094 
4 0.0045 8.0 2.6E+08 0.52 0.022 
6 0.012 6.3 9.0E+08 0.96 0.039 
8 0.024 5.1 1.3E+09 1.6 0.035 

11 0.046 0.70 2.5E+09 3.7 0.025 
14 0.040 0.090 3.7E+09 3.8 0.014 
16 0.044 0.074 3.3E+09 3.9 0.013 
24 0.12 0.084 4.6E+09 4.4 0.014 
27 0.62 0.073 6.1E+09 7.4 0.014 
30 0.79 0.078 7.6E+09 11 0.016 
33 2.0 0.075 7.6E+09 17 0.017 
36 6.3 0.074 8.0E+09 23 0.019 
39 9.3 0.074 9.2E+09 30 0.019 
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Appendix 30 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 17) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 2.2E+06 0.046 0.00 
2 0.0088 9.8 4.3E+07 0.098 0.0093 
4 0.020 8.0 5.6E+08 0.21 0.019 
6 0.043 7.7 9.8E+08 0.68 0.010 
8 0.060 7.3 2.2E+09 1.4 0.014 

11 0.087 2.9 4.3E+09 3.9 0.030 
14 0.13 0.043 4.5E+09 5.6 0.00 
16 0.14 0.080 3.8E+09 3.7 0.00050 
24 0.32 0.053 6.1E+09 3.8 0.012 
27 1.0 0.049 5.2E+09 5.6 0.018 
30 1.7 0.083 6.0E+09 10 0.032 
33 4.3 0.056 8.1E+09 15 0.010 
36 7.9 0.042 1.0E+10 25 0.025 
39 12 1.07 1.3E+10 32 0.20 

Table 41 C. glutamicum DM1945x3 offline measurements in run 1(SDR 17) 

 

 

 

 

 

 

 

 

 

 

 

Table 42  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 17) 

Appendix 30 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 17 simulation (Table 41 & 
42). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10.0 3.9E+06 0.067 0.00 
2 0.0020 9.6 3.3E+07 0.019 0.0053 
4 0.0045 8.3 4.0E+08 0.36 0.0097 
6 0.012 7.9 7.9E+08 0.86 0.016 
8 0.024 6.2 1.7E+09 1.8 0.019 

11 0.046 1.6 4.1E+09 3.1 0.018 
14 0.040 0.063 3.9E+09 4.8 0.017 
16 0.044 0.070 4.6E+09 4.1 0.018 
24 0.12 0.071 5.3E+09 5.2 0.014 
27 0.62 0.065 6.5E+09 6.2 0.022 
30 0.79 0.074 7.5E+09 9.5 0.014 
33 2.0 0.075 8.2E+09 16 0.019 
36 6.3 0.069 1.2E+10 23 0.030 
39 9.3 0.42 1.4E+10 31 0.13 
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Appendix 31 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 18) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.5E+06 0.049 0.00 
2 0.0028 9.5 3.9E+07 0.28 0.010 
4 0.0023 8.1 4.9E+08 0.62 0.029 
6 0.0093 7.0 7.9E+08 0.98 0.011 
8 0.015 5.1 9.9E+08 1.9 0.049 

11 0.050 0.88 2.1E+09 3.7 0.031 
14 0.048 0.072 2.6E+09 4.4 0.014 
16 0.048 0.069 2.6E+09 4.3 0.015 
24 0.28 0.072 3.9E+09 7.9 0.016 
27 2.2 0.066 5.2E+09 7.9 0.016 
30 2.6 0.071 5.6E+09 13 0.017 
33 2.7 0.070 6.3E+09 17 0.033 
36 5.4 0.073 8.6E+09 21 0.059 
39 8.1 0.068 1.0E+10 29 0.15 

Table 43 C. glutamicum DM1945x3 offline measurements in run 1(SDR 18) 

 

 

 

 

 

 

 

 

 

 

 

Table 44  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 18) 

Appendix 31 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 18 simulation (Table 43 & 
44). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.0E+06 0.043 0.00 
2 0.012 9.8 4.8E+07 0.19 0.0033 
4 0.010 8.1 3.4E+08 0.56 0.020 
6 0.020 6.2 8.8E+08 0.77 0.023 
8 0.038 5.6 1.4E+09 1.0 0.043 

11 0.058 1.3 2.8E+09 3.0 0.029 
14 0.060 0.082 2.9E+09 3.3 0.014 
16 0.052 0.074 3.1E+09 3.4 0.014 
24 0.28 0.080 4.3E+09 5.6 0.013 
27 1.2 0.076 5.2E+09 7.5 0.020 
30 2.0 0.069 6.1E+09 12 0.014 
33 2.7 0.082 5.7E+09 15 0.037 
36 6.2 0.068 7.8E+09 21 0.060 
39 8.0 0.069 9.9E+09 28 0.20 
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Appendix 32 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 19) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.9E+06 0.042 0.00 
2 0.0088 9.9 3.6E+07 0.11 0.0029 
4 0.010 9.0 5.1E+08 0.29 0.0070 
6 0.023 7.8 7.1E+08 0.66 0.0084 
8 0.058 6.7 2.0E+09 1.3 0.012 

11 0.10 2.6 2.8E+09 3.3 0.011 
14 0.13 0.084 3.3E+09 4.2 0.0056 
16 0.077 0.10 3.5E+09 3.5 0.0056 
24 0.24 0.059 5.5E+09 3.9 0.017 
27 1.1 0.055 4.3E+09 5.6 0.0064 
30 2.0 0.054 6.7E+09 10 0.0084 
33 3.6 0.050 8.6E+09 16 0.020 
36 7.7 0.88 1.0E+10 26 0.014 
39 12 2.3 1.4E+10 32 0.059 

Table 45 C. glutamicum DM1945x3 offline measurements in run 1(SDR 19) 

 

 

 

 

 

 

 

 

 

 

 

Table 46  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 19) 

Appendix 32 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 19 simulation (Table 45 & 
46). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 4.4E+06 0.036 0.00 
2 0.0063 9.7 4.0E+07 0.21 0.0036 
4 0.020 8.6 4.6E+08 0.33 0.0068 
6 0.044 7.5 8.8E+08 0.84 0.013 
8 0.082 5.1 2.4E+09 1.3 0.018 

11 0.12 1.1 4.4E+09 4.2 0.0076 
14 0.13 0.066 4.9E+09 4.4 0.0066 
16 0.097 0.063 4.7E+09 3.7 0.0088 
24 0.22 0.063 5.9E+09 4.2 0.011 
27 0.93 0.062 6.4E+09 5.7 0.0086 
30 1.5 0.065 8.1E+09 10 0.0094 
33 1.7 0.068 9.6E+09 17 0.018 
36 4.4 0.065 1.1E+10 26 0.018 
39 7.5 2.2 1.7E+10 31 0.058 
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Appendix 33 

Process log for C. glutamicum DM1945x3 fed-batch fermentation (SDR 20) 

 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.6E+06 0.039 0.00 
2 0.00 9.7 4.1E+07 0.13 0.0073 
4 0.0045 8.7 4.3E+08 0.32 0.0075 
6 0.0075 8.0 6.2E+08 0.78 0.012 
8 0.014 6.5 1.0E+09 1.3 0.036 

11 0.019 2.8 1.6E+09 2.0 0.016 
14 0.035 0.059 2.9E+09 4.1 0.012 
16 0.031 0.059 2.8E+09 4.8 0.013 
24 0.24 0.055 4.6E+09 7.8 0.014 
27 1.2 0.054 6.9E+09 9.9 0.014 
30 2.5 0.059 7.4E+09 13 0.015 
33 3.0 0.062 8.7E+09 16 0.016 
36 3.1 0.061 9.2E+09 23 0.016 
39 4.8 1.1 1.1E+10 29 0.057 

Table 47 C. glutamicum DM1945x3 offline measurements in run 1(SDR 20) 

 

 

 

 

 

 

 

 

 

 

 

Table 48  C. glutamicum DM1945x3 offline measurements in run 2 (SDR 20) 

Appendix 33 highlights the offline data measurements of samples taken during replicate 
fed-batch fermentations of C. glutamicum DM1945x3 in the SDR 20 simulation (Table 47 & 
48). 

 

Time (h) Cadaverine (g/L) Glucose (g/L) CFU/mL DCW (g/L) Lactate(g/L) 

0 0.00 10 3.3E+06 0.044 0.00 
2 0.00 9.8 4.8E+07 0.52 0.0046 
4 0.0034 8.2 3.9E+08 0.86 0.0092 
6 0.0094 7.9 7.7E+08 1.1 0.011 
8 0.013 5.5 1.4E+09 2.4 0.018 

11 0.016 0.78 2.5E+09 3.9 0.026 
14 0.020 0.085 3.7E+09 4.4 0.014 
16 0.033 0.074 4.0E+09 5.8 0.014 
24 0.29 0.051 4.4E+09 7.0 0.014 
27 1.7 0.048 6.1E+09 7.8 0.014 
30 1.2 0.053 6.0E+09 14 0.015 
33 2.0 0.055 8.8E+09 17 0.017 
36 3.7 0.053 9.6E+09 22 0.017 
39 5.8 0.25 1.1E+10 30 0.047 


