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SUMMARY

The object of the research described in this thesis is to examine
the possibilities of developing analytical and computational procedures
for a class of structural optimization probiems in the presence of
behaviour and side constraints, Thése are essentially optimal control
problems based on the maximum principle of Pontryagin and dynamic
programming formalism of Bellman. They are characteriseq by inequality
constraints on the state and control variables gi&ing rise to systems
of highly complex differential equations which present formidable
difficulties both in the construction of the appropriéte boundary
conditions and subsequent development of solution procedures for these
boundary value probelms. Therefore an alternative approach is used
whereby the problem is discretiséd leading to a non-linear programming
approximation. The associated non-linear programs are characterised
by non—analytic "black box'" type representations for the behaviour
constraints. The solutions are based on a "steepest descent -
alternate step' mode of travel in design space.

The - thesis 1s in fwo parts: ?art I considers structural optimization
from a nonlinear programming standpoint and begins by reviewing some
constrained problems based on plastic and elastic redesign coﬁcepts.
This is followed by the development and discussion of procedures
applicable to problems with '"black box" type behavioﬁr constraints.
They are illustrated with reference to the Optimal-design of a steam
turbine disc idealisation subject to stress and vibration constrainﬁs.

Part II describes the continuous formulation of the disc problem



based on the formalism of bptimal control theory. These probleus'
are characterised by {nequality constraints on the state and control
variables. Considerable progress has been made in studying these
problems using purely analytical techniques embodied in the maximum
principle of Pontryagin. This has led to the scope of optimal
control theory being extended to include a more general class of
structural optimization problem than considered hitherto. Part II
includes a derivation of the Principles of Pontryagin and Bellman
using a first variation technique in conjunction ﬁith generaiised
Lagrange multipliefs.

The thesis concludes with a brief statement of some structural

optimization problems under investigation by the author,
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Part I - Nonlinear Programming Formulation

CHAPTER 1

SOME STRUCTURAL OPTIMIZATION PROBLEMS BASED ON ELASTIC AND

PLASTIC DESIGN CONCEPTS




1.1 INTRODUCTION

The object of the research described in this thesis is to
examine the possibility of developing computational and analytical
procedures based on the methods of mathematical programming for a
class of structural optimization problems in the presence of design
constraints. These problems are essentially of a variational nature
and are based on the formalism of optimal contrel theory. Exact
solutions in general are impossible and recourse must be made to
numerical procedures based on-:a discretised nonlinear programming
.approximation. The behaviour constraints are represented by
functional constraints which correspond to nonanalytic constraints
in the nonlinear programming formulation. For purposes of simplicity
this initial investigation is restricted to a nonlinear programming
representation.

The design requirements and specifications are represented by
constraints on the behaviour and design variables. The behaviour
variables describe the Sehaviour or response of the structure to
the applied design loads and consist of structural variables such
as stresses, vibrational frequencies, deformations, creep strains
and so on, which are constrained to satisfy specified behaviour
conditions in order to prevent failure of the structure. For
example, the behaviour constraints may include statical constraints
which constrain the stresses to lie below given yield stress levels,
instability constraints which prevent failure under given buckling

modes, dynamical conmstraints which constrain the vibrational



frequencies to lie outside specified resonance bands and so on.
Similarly, the design variables specify the design configuration
of the structure and are constrained to satisfy prescribed side
conditions in order to ensure physically reasonable design con-
figurations. For example, the side constraints may impose restrictions
on the dimensions of the structure which constrain the design variables
to vary within prescribed bounds. The behaviour and side constraints
are represented mathematically by a combination of equality and
inequality constraints. The merit function to be optimised is
usually the weight or cost of manufacture of the structure but other
criteria such as some optimal combination of frequencies or structural
efficiency may also be used. The problem can be formulated as a
problem in nonlinear programmiﬂg ~ optimizing a merit function in
the presence of equality and inequality constraints. When these
functions and conditions are obtainable as analytic functions of
the design variables, the solutions can be based on standard non-
linear programming procedures.

Because of the variational nature of some problems, it is not
always possible to use closed form analytical functions for
describing the behaviour characteristics of the system. The

. . . . "
behaviour variables are functions only in the sense that they are
computer—oriented rules for determining the behaviour associated
with a given design configuration. The behaviour variables may be
regarded as a '"black box" into which are put the design variables

characterising a given design configuration and out of which comes

the behaviour variables for that design. The box may contain such



items as differential equations, matrices, numerical procedures, a
digital computer and so on.

The synthesis is based on the concept of a design space which is
the multi-dimensional Euclidean space spanned by the design variables.
The behaviour and side constraints are represented by constraint
hypersurfaceswhiphseparate the regions of feasible designs from
regions of non—feasible designs. Since the behaviour variables are '
of a "black box" nature, the corresponding surfaces are unknown.

The contours of constant merit are also surfaces in this space and
the problem consists of determining the path to the optimum merit
contour in the feasible regions. The synthesis commences from an
initial (feasible) trial design which is systematically improved

by an alternating iterative process of analysis and design
modification. This automated synthesis capability generates motion
in design space along paths on which the merit improves and consists
essentially in the proper selection of the directions and distances
of travel in design space.

The .synthesis procedures specifically applicable to structural
optimization problems in the presence of non-analytic constraints
on the behaviour variables are those developéd by Schmit and his
co—workers for the minimuﬁ weight design of aerospace structures.
Although the behaviour characteristics are described by analytical
functions, the synthesis is independent of this analytical
representation. Since these procedures are central to this
investigation, they are briefly reviewed in this chapter and their

applications considered in the following chapters. An attempt is
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also made to generalisé and modify them to imp}ove their computational
efficiency énd convergence rates and to develop further methods
applicable to a wider range of problems. Other methods which have
recently been ugsed in the structural optimization area are based on
the penalty function ideas of nonlinear programming [30,236,23i]
whereby a constrained problem is reduced to a series of unconstrained
optimization problems which are solved using the techniques of
Rosenbrock (hill-climbing), Powell (conjugate direction), Nelder-Mead
(Simplex) and Davidon-Fletcher-Powell (variable metric).

The problems considered by way.of illustration are: (Figure 2.1)

(1) weight minimistation of a steam turbine disc idealisation
subject to specified behaviour and side constraints. For purposes
of simplicity, the behaviour constraints are restricted to a
consideration that the stresses everywhere should be below
the yield stress for the material and the frequencies of
vibration should lie outside specified frequency bands. The
side constraints on the other hand impose restrictions on the
dimensions and tolerances of the disc. The optimization is in
two parts, based on a separate consideration of the stress and

vibration constraints.

(2) calculation of the optimal vibrational modes of the disc,
whereby some linear combination of the frequencies is optimized

in the presence of a constraint on the total weight,

The problem consists essentially in determining an optimal

thickness h(r) where r is the radial distance from the axis of



rotation, the thickness being measured parallel to the axis of
rotation. The stresses are obtainable from a set of ordinary
differential equations which contain h(r) and its derivatives. These
equations are solvable only when h(r) is a specified function of r.
Therefore the stresses are functionals of h(r) and correspond to
"black box" type variables. The frequencies have essentially an
eigenvalue structure corresponding to a functional differential
operator, while the computations are baged on a discretised transfer
matrix method. The frequencies have again a "black box" type
representation. The function h(r) which defines the design
configuration is approximated by a discrete set of wvariables which
define the design variables for the disc. Tﬁese variables are
read into standard programs for the stress and frequency calculations.
The output from these programs determine the corresponding stresses
and vibrational frequencies which must be subsequently checked
against the behaviourlconstraints. The side constraints on the
other hand ensure the non-negativity of h{r}.

These problems are considered in detail in the following
chapters. As a preliminary, this introductory chapter reviews
some miniﬁum weight structural optimization problems appearing
in the technical literature with emphasis on nonlinear programming
procedures of relevance to problems with non-analytic constraints.
These problems are based on plastic and elastic design concepts

and are briefly described below.



1.2 METHODS OF ANALYSIS

In the past engineers have judged the suitability of materials
mainly in relation to their elastic range because a structure must
be designed so as not to collapse under the design load sysfem and
it has been the custem to consider collapse te have occurred when
the first yielding or permanent deformation has taken place. Lately,
attention has been extended to the plastic regions in which permanent
distortion occurs under stress. This is to enzble a moré efficient
use of materials by obtaining a better understanding of the
behaviour of the structure throughout the compiete loading range
leading up to final collapse; and also in order to understand the
processes involved in the mechanics of formation sﬁch as the
shaping and machining proceéses.

The theory of elasticity is based on the following assumptions:

(1) there is complete recovery of the initial unstrained
configuration when the distorting forces or the
externally derived strains are removed.

{(2) the deformation of the body depends only on the final
stresses not on the previous loading history or strain
path. ' —

(3) the stress-strain relations are given by a generalised
Hooke's Law.

On the other hand none of these assumptions can be applied to a
plastic body. There is no unique correspondence between stress and

strain, and the corresponding equations have to be integrated by
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following the history of the deformation. Plasticity may be
defined as that property which enables a material to be continuously
and permanently deformed without rupture during the application of
stresses exceeding those necessary to cause yielding of the material.
Thus permanent distortion occurs under stress, and this distortion
can build up t§ large amounts if the yield value is exceeded. The
final deformation therefore depends not only on the final state of
stress but also on the serieé of intermediate stress states from
the initial state. The laws of plastic flow which relate the
stress components and the corresponding deform;tions satisfy four
main conditions:
(1) the volume of material remains constant under plastic
deformation;
(2) hydrostatic pressure does not cause yielding;
(3)  hyrdostatic component of a complex state of stress does
not influence the point at which yielding occurs;

- (4) a yield criterion must be formulated which will determine
when yielding will start under a complex state of stress,
given only the yield stress under a simple state of stress
{e.g, uniaxial tensionm).

The yield criteria most freqﬁently used are the Tresca maximum

shear stress criterion and the Von Mises criterion. Further require-
ments must be satiéfied in the case of work hardening materials.

For problems in which the plastic strains are constrained to be of
the same order as the elastic strains, the solutions in the elastic

and plastic domains have to be solved side by side. In addition,



various continuity conditions have to be satisfied along the
elastic-plastic interface which is itself unknown. For a perfectly
plastic material the stresses everywhere are less than, or equal to,
the yield limit. Plastic collapse occurs when the design load
system reaches a limiting value. As the loads approach their
limiting value the deformations increase indefinitely and the body
cannot sustain any additional loads. This critical load system can
be determined using the theorems of limit analysis. Limit analysis
is usually simpler to apply than an elastic analysis and may be
used to obtain efficient designs resulting in considerable savings
on weight and cost. An analysis based on the elastic-plastic
regions is extremely complicated as it involves tracing the entire
load history of the structure and a step-by-step integration of

the equations of plastic flow. However, for designs based on a.
limit analysis the critical load system is independent of the
previous loading program and may easily be determined using the
theorems of limit analysis.

The general theory of minimum weight design may be based on
either an elastic analysis or on a plastic analysis. The criterion
of minimum weight design based on the theory of perfect plasticity
is that the structure is on the verge of unrestricted flow under
the applied loads and contains a minimum of material. The solutions
are based on the theorems of plastic collapse formulated by Drucker,
Prager and Greenberg [i] and applied to the minimum weight design
of membranes, shells, plates and discs. These theorems provide

bounds on the minimum weight solutions.



However, when it is undesirable to have any permanent plastic
deformation and the structure is required to be reusable, the problem
of minimum weight design must be formulated withiam the elastic range.
The classical theory of optimal elastic design of structures was
formulated by Michell [36] and extended by Cox |:45] , Hemp [38]
and Chan [;0,4i], who showed that for statically determinate
structures subject to a single load condition, the fully-stressed
design criterion in which the stresses in the structural members
were at their limiting values was equivalent to the minimum weight
design. Later generaliéatiops by Schmit and his associates [55—74]
to structures under multiple load conditions in the presence of side
constraints have shown that the fully-stressed design criterion in

general is not always equivalent to weight minimisation.

1.3 PLASTIC DESIGN

The problem considered is that of determining the minimum
weight of a structure capable of sustaining given design loads in
the form of concentrated or continuously distributed force fields.
The material is assumed to be perfectly plastic and of uniform
density so that the condition of minimum weight is equivalent to
minimum volume. The essential characteristics of plastic design
are that it provides a first approximation to the behaviour of
structural materials beyond their elastic range and provides a

more realistic model for the behaviour of ductile materials. The

'
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minimum weight solutions are based on the plastic collapse theorems
[1-?] where the geometrical changes of the body prior to and during

the initial stages of collapse are neglected. They are valid for the
initial motion of rigid perfectly plastic materials. The basic

assumptions are:
{a) collapse occurs at constant load and at constant stress;

(b) plastic strains only tdke place.

These are equivalent to the following collapse theorems.

(1) * Upper bound theorem

If an equilibrium distribution of stress exists which is everywhere

below yield, then the structure will be safe against collapse at

the given loads.

(2) Lower bound theorem

Collapse occurs when the rate at which the design loads do work

exceeds the rate of internal plastic energy dissipation.

The yield condition for the structure is assumed to be of the

form

= 12
f(oij) =k (1.1)

The material behaves elastically for £ < k? and plastic flow occurs
when f = k2. Stress fields for which f > k2 are inadmissible.

The yield condition defines a yield surface in stress space where. the
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components of stress Uij are used as rectangular cartesian coordinates.
The plastic strain rate tensor is then given by the external normal

to the yield surface

(1.2)

where A is a small positive constant, At singular points there is
no unique normal and the strain rates lie within the cone bounded
by the normals to the yield surface at adjacent points. The

dissipation rate per unit volume 1s given by

®

where the strain rates treated as purely plastic are defined by

du, du.
1

e = l——.-
i 2 | ox. 9x.
j i

ij-

where the u, are velocities defining a compatible deformation field.

The dissipation function can also be written in the equivalent form

"D. = Q. q;

it
where Qi are the generalised stresses corresponding to the generalised

strains q; - For admissible structures, the lower bound theorem gives

f T, u, dS + J F, u, dV < J ple,. P))av
i i i1 1]j

S v v

where rate of internal energy dissipation arises purely from the

plastic strain rates.

D R T T L T T T T LT PR T T P eanvanss

* gsummation convention is used, where a repeated suffix denotes
summation with respect to that suffix.
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So that,
[ A(ui)dV 2 f Ti u, ds (1.3)
v )
where
- (p),
A(ui) = D(eij ) Fi u, .

The surface S can be written in the form

T u
where
ST = part of the surface on which the non-vanishing
surface tractions Ti are prescribed
SU = part of the surface on which the velocity ug
vanishes,
Hence,
J T1 u. ds = J 'I'1 u1 ds
S ST

For a structure on the verge of collapse

I Ao, av = J T, u, (®) as
1 1 1

Vc ST

For any other admissible structure VS

f A, av > I T, u, () gs
1 1 1

vs ST
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This implies

JA(ui(c)]dV : JA[u.(C))dV

1
v v
s c

Let ﬁ(ui(c)J = constant throughout the bounding volume. This means

and

v =V (1.4)

where Vm is the absolute minimum volume, Therefore a structure
designed for such a continuous collapse mode will be of minimum
welpht. Some applications of the condition A = constant, are
considerea below. Consider first the minimum weight solutions for a

circular disc Dﬂ for which the inner radius a, is assumed stress-free

1

while the outer radius ap is subjected to a tensile load T per unit
circumferential length. The material is assumed to obey the Tresca

-

maximum shear condition (Figure 1.1a)

max(|o_[, logl, Jo_ - o) = o, (1.5)
where o, = yield stress.
The equation of dynamic equilibrium is given by [13@]
d h - 2 _
dr[hcr) + r(0r ce) + pwrh = 0 (1.6)

where w is the angular velocity. This equation has been derived
on the assumption of radially symmetric plane stress. This simplifying

assumption in which the influence of the shear stresses have been
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disregarded is sufficiently accurate if the thickness does not vary
too abruptly and does not become too large in comparison with the

diameter., The plastic minimum weight condition becomes

A E ce.  + Oge, - pw?ru = constant (L.7)

where the strain rates e, ey are given in terms of the radial

8

velocity u by the relationships

e = Q)
T’ dr
r (1.8)
= U
ee r

7

The stress state cannot lie on the sides AF or CD because the

[

normality condition (1.2) requires e = o, ee = A and condition

(1.7) cannot be satisfied in view of (1.8). Sides BC, FE are also

prohibited because ey = 0 and this implies u = 0. The normality

condition for sides AB, ED gives

e.. = ~eg
{1.9)
|Ur - 08 = Go
From (1.7)
ker - pw?ru = constant (k = ico) (1.10)
From (1.8, 1.9)
_ A
u = - (1.11)

where A is a constant of integration. From equations (1.10, 1.11)
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e = B (constant).

Therefore from (1.8)
u = Br + C (1.12)

where C isla constant of integration. Equations (1.11, 1.12) lead to
a contradiction. Therefore the solutions must lie at the vertices

of the hexagon. The corners A, D are not permissible becausé o= 0
and equation (1.6) gives h = 0. The stresses everywhere are tensile
so that the vertices B, C are prohibited. The vertex E is also
ipadmissible as it gives a negative radial velocity at the inner

radius aj;. Therefore the remaining vertex F must define the solution

Substituting this in (1.6) and using the loading condition at

r=a ives
m B

_ T pw?, 2 5
h. = 5 exp EE—{am r<)
o 0

The condition 0. = O at r = a; can be satisfied by defining the

optimal thickness as follows (Figure 1.1b)

T 2
n(r) = = exp %‘(a; -r?) ay<rsa
(8]

(1.13)

.= by ay £ rsap

where by is some specified upper bound on the thickness and the
radius ap; is to be determined. The stresses within the region
a; £ T £ ap are represented by points on the side AF of the hexagon

for which Tg = Oy 0 g Gr < 00, so0 that equation (1.6) becomes on
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simplification
= 1 - -1 2.3 _ .3
g, = [E;(r ajp) 3 Pw (r a{E} (1.14)
The radial load at a; is continuous, therefore
bl(or) = h(ap + 0)00
r=a,-0
and
by 2
_ 1 2.2 _ 3 _ pwe., 2 2
a; oo(az ay) 3 pw (a2 al) T exp 5 (am az) (1.15)
. . . . *
This equation can be used to determine the hub radius a;. The thick~

ness is discontinuous at ap. The analysis can be extended to include

a thickness distribution of the form

h(r) = bl a) £r & as 5
_pwz
= h_ exp o r2 ag <r<a_, r (1.16)
= b a £Tr&§a /
m m—] m

where by, by, aj, ap, ay-; hy are constants, by, by, being the
thickness at the inner and outer radii respectively assumed constant,

The stresses at these edges are given by

(or) = 5 <0
r=a)
(1.17)
= >
(Ur) S>>0
r=a
m
where s, S are constants.,
% A more general analysis based on limit theorems in the presence

of side constraints is given by Kowlowski and Mroz [226
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The calculation of a; proceeds along lines similar to that considered

earlier, A point r is first considered where a; < r, < a,, such

o
that Ur's 0 in a; £ r & r. and g = 0 in r, £r g a,.
Let r, be the radius at which o = 0, The stress states within .

the region r §7T & ap are represented by points on the side FA of

the hexagon where

0 o]
(1.18)
0o _xgo
. be 0
Solving the differential equation (1.6) gives
o pwlr? rg
Ur_ = Uo[l - ;ﬂ] - -—?;*— [1 - ;:4 when Io £ ¥ £ ap (1.19)
Again, Oy = 0. = 0 where aj € 1 ¢ T

This corresponds to stress states on the branch BA of the hexagon.
Solving (1.6) using the condition o =satr=a gives

ai me

_ - 2 _ 2
§ = co in ?; > (a1 ro) (1.20)

This equation enables r  to be calculated. The radial load at aj

is continuous, which implies

bl(or) = h(ap + 0)0o
-0

From (1.16 , 1.19),

i r 2 2
_ .ol _ pwt 3 _ 3 - __puws 2
S I ) I B



18

For a1 £r s a the stress states are represented by points on

the side AF.

r o
(1.22)
O =0,
Using (1.6) in conjunction with o= Sat r = a. gives
a4 ®n pw?r 3 3
op = o, (-7 v s e G - Y,
when a | €T €a : (1.23)
The radial load at r = a is continuous, therefore
b (o) "= h{a__, - Q)o
mor'a 4.0 m-1 o
Hence,
a .4 2 _—ml 2
b_|co (1 - = ) + 2.5 + L [a3 - a3 ] = ¢ h exp ZPY
nl o a a 3a m m-1 oo 20 m-1
m-1 m—1 m—1 o
- {1.24)
From (1.21, 1.24)
a a 2 )
o (1 - .m) + mS+-—-—%’-—(a3.—aa)
b o a a_ 3a__ m m—1 2
_m m—1 m-1 m—1 = ex [—pm )( 2 _ 2
b T, I P 2 g1 T 22
o [1 - —] - 2——'(83 - r3)
o as 382 2 o (1.25)

Equations (1.20, 1.25) enable a; to be determined. Some
numerical computations based on this analysis are considered. The

computations were performed for a standard turbine disc of the type



considered in this investigation. The results are summarised below:

" DATA  a) = 14+0", a_=32:3", a . =30:3", b;=9-0"

19

=2 m-1
b =30", m=7, p = 0-283 1b/in3, o, =6 x 10% 1b/in2
TABLE 1
RADIUS (ins) OPTIMAL THICKNESS (ins)
. -2
ay, = 15+58 . 7+053 x 10

21+313 6-618 x 10 ~

22813 64487 x 10 2

29+5 5:838 x 10 7

30+3 5+755 x 10 2

MINIMUM WEIGHT = 07463 x 103 1bs

The corresponding results based on an elastic analysis are
also included in this chapter for purposes of comparative study.
These optimal designs have been derived in the absence of side
constraints. The modifications in the presence of side constraints
are considered in Chapters 2 and 3. Further applications of the
optimality condition A = constant are considered below. In the
absence of body forces (Fi = 0) the minimum weight condition

reduces to

D(e..) = constant

A(ui) i
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This means that the designs must be based on a conmstant dissipation
rate per unit volume over the entire structure.

For thin plates [@,5], the dissipation rate is linear over
_ the thickness, thus precluding the possibility of D = comnstant

everywhere, The strain rates are given by

. . o .
where z i1s measured from the undeformed middle surface and eaB 1s the

maximum value of the strain rate. The rate of internal energy

dissipation is given by

)y = llil-n° (1.26)

Suppose the plate is on the verge of collapse under a transverse

load p per unit area. Therefore,

o +h/2 o
JPW(C) - JD(eaB)dv _ I 2_112 dAJ |z]dz . = JADC h_ da
A v A, n/2 A
This corresponds to the critical thickness h = hc.
For a plate not on the verge of collapse
Jpw(c)dA g J } D° h_ da
s s
A A
s
Hence,
: o o
f $ D) h_ dA < [ } D) h_ da (1.27)
A A
c : 5

.Consider a small perturbation in the critical configuration



h =h + &h

s c

(1.

A = A

] c

From (1.26)

D ng
—— - P snd (1.
Do hc

c

From (1.27, 1.28), neglecting second order terms in &h

: o ., ‘o
Suppose DC is a positive constant over A.

'From (1.27),

21

28)

29)

Therefore plates which are compatible with a deflection rate for which

o . ' . . . -
Dc is a constant on the middle surface provide a relative minimum,

An alternate formulation can be based on the bending moments Ma and

8

curvatures ka of the middle surface. The rate of dissipation per

B

unit area is given by

’ h/2

= J Ddz = 4} 0%
-h/2

M.k
aB ToB
Therefore the condition for a relative minimum becomes

Mg Xag
B

= constant (1.30)
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This result was derived independently by Freiberger and Tekinalp
&ﬂ using the calculus of variations. The latter approach required
far greater effort and there was no real indication that the solutions
corresponded éo an actual minimum.

They considered the case of a simply supported thin circular
plate under a transverse load p(r). The generalised stresses were

the principal bending moments Mr’ M, while the generalised strain

0
rates were the curvatures kr' ke, in the radial and circumferential
directions respectively., On account of radial symmetry these

variables are functions of radial distance only. The equations of

equilibrium were given by

r

d
Fes (r Mr) - MB + J r p{r)dr = O (1.31)
o
The yield condition for the plate was given by
N
FQM_, MB) = M (1.32)

where Mo is the fully plastic moment of theplate defined by
h/2
- = 1 2
M [zlco dz 7 % h
-h/2

where S, is the yield stress in simple tension or compression. The
function F was assumed to be continuously differentiable and homo-

geneous of order % in Mr’ MB‘ The weight of the plate is prOpbrtional

to R

W o= I T Mi dr . (1.33)
o



where R is the radius of the plate. The minimum weight solutions
are obtained by minimising (1.33), subject to the constraint conditions
(1.31, 1.32). These are provided by the Euler-Lagrange equations

which give on simplification

. %— = constant (1.34)

where D is the rate of energy dissipation per unit area defined by

D = Mk + Mk
where
__ d%w 3F
kr B dr2 A oM
Y
1 dw 9F
ke = "TE&E "
;]
Therefore,
_ oF aF y _ 1 o1
D = afM o, + My aMe) = Az F = s (1.35)

Equation (1.34) was derived on the assumption of a smooth yield
surface. Therefore the analysis is applicable to the Von Mises
yield condition but not to the Tresca yield condition., Equations
(1.33, 1.35) indicate that for .each plate element at collapse, the
weight is proportional to the dissipation rate. This is a general-
isation of a result obtainéd by Foulkes [?] for structural frames.
The minimum weight solutions for the Tresca yield condition have
been derived by Hopkins and Prager [B,i] using the concept of a

hinge circle [10] to show that the radial and circumferential bending
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moments at each point are equal to the fully plastic bending moment

at that point.

Mr = Me_ = Mo(r)

it

%co h2 (1) (1.36)

This corresponds to the stress state represented by the point F
of the Tresca hexagon (Figure 1l.la).

The concept of a hinge circle is a generalisation of the concept
of a plastic hiﬁge used in the theory of thé plastic analysis of
beams and frames. Substituting (1.36) in (1.31) gives:

T
%; (rMO) - Mo + J T p(r)‘dr = 0 (1.37)

)
where MO(R) = 0 theplate being assumed to be simply supported at
the outer edge. Therefore for a uniform pressure p this gives on

integration

R2 2
M (r) = B (1- %)

Therefore the optimal thickness is given by

h(r) = R(§)£(1 - -Iré)* (1.38)
)
This plate design theory has seen significant improvements and
modifications in recent years, details of which are given in
references [il, 12, 196]. Megarefs [106-1051 gives a comprehensive
analysis of minimum weight plate theory based on the Tresca condition.
For shells [13,14] condition (L.34), becomes D/h = constant
where h is now the thickness sf the face sheets gives an absolute

minimum weight solution. This result can also be derived using the
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calculus of variations [}5,16]. This section on optimal plastic
design i§ concluded by a brief discussion of the design of beams

and frames. They are based on the limit theorems given at the
beginning of this section._ The minimum weight design of continuocus
beams and frames which derive their strength from a bending action

is based on the concept of a plastic hinge and is characterised by a
finite numberiof desigﬁ variables. A linear relationship between
bending moment and curvaturé is assumed for small values of the
curvature. As the curvature is increased the bending moment tends to
a maximum limiting value called the fully plastic moment and a plastic
hinge is formed at the cross section where the bending moment attains
this critical value. A plastic hinge allows a finite change of slope
to occur at the place where it forms. The structure collapses when a
sufficient number of hinges have formed to transform the structure,

or any part of it, into a mechanism. This represents a deformation
field corrésponding to rotation at the hinges. The design is based

on the assumption of a linear relationship bétween the weight per unit

length (m) and the fully plastic moment M
m = a+ bM

where a, b are constants over the entire frame. Therefore the total

weight of the frame is given by

ajt., + b jL. M,
il ill

. .th ..
where Ei 1s the length of the 1 structural member and Mi is 1its

fully plastic moment, Theproblem is that of minimising the weight
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function G defined by
¢ = ) M. L. (1.39)
i

where the constraint conditions are provided by the second collapse
theorem

W < _X Mi 0. '(Gi = hingerotation)

where W is the work done by the applied loads, the right hand side
representing the rate of internal energy dissipation at the plastic

hinges. Hence,

Z a, M. > 1
g i
i
where
0.
a = —l“-
i W

Therefore the behaviour characteristics of the frame are described

by linear inequalities of the form

Y a.. M 21 jed . (1.40)

where J is the set of all possible collapse mechanisms. Therefore
the problem of minimising (1.39) when the non-negative variables
Mi satisfy the constraint conditions (1.40) constitutes a linear
programming problem.

Foulkes [7,17,18], Chan [195] have derived necessary and sufficient
conditions for a minimum weight solution by representing the collapse

mechanisms in a hyperspace whose coordinate axes are the fully plastic
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moments. The inequalities (1.40) define a polyhedron dividing the
hyperspace into a feasible and a nonfeasible region. The minimum
weight solutions lie at the vertices where the constant weight hyper-
planes (1.39) touch the fgasible region.

Methods of solution to the linear programming problem include:
the method of inequalities developed by Neal and Symonds [13] for
determining the load-carrying capacity of a frame. The method consists
in the successive elimination of redundant variables and was applied
by Heyman [20,2£], Livesley [?i] to the design of frames subject to
single and multiple load conditions. Livesley [?i] and Toakley [?4]
have proposed a modified simplex method of soluéion which is suitable
for programming on a digital computer. Livesley starts from an
initial trial deéign and uses a steepest descent technique to reach
a vertex of the constraint set, The method then moves from vertex to
vertex until a minimum is attained. Toakley, on the other hand, uses
the dual simplex algoritﬁm to obtain his solutions. Prager [?5]
uses network theory [?6], and has also considered a weight function
given by ]:2 7:|

G = ) 8. M; (1.41)
i

where o is a positive exponent less than unity. -This means that the
function G is convex in the variables M. and the problem of minimising
(1.41) subject to the linear constraints (1.40) constitutes a convex
programming problem. The weight contours are convex surfaces in the
plastic moment space and the optimal design lies at a vertex of the

constraint set where the tangent hyperplane to the weight contour
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contains the collapse mechanism associated with the vertex. Similar
problems have been investigated by Chires [28] , and Chan [1993 ,
amongst others. Brotchie [?Q] and Cohn [}5] have discussed the
practical design considerations involved in these minimum weight
design problems. '

The minimum weight design of béams of variable cross-section is
based on a deflection shape which gives a constant rate of curvature
[30,3i]. Gross and Prager [}2,33} have used this result to design
beams under a single moving load assuming piecewise linear variation
of the plastic moment along the length of the beam, thereby reducing
the problem to a linear programming problem. Save and Prager [34] have
extended the analysis to beams under the combined action of fixed and
moving loads. More powerful procedures applicable to a wider class
of préblems have been developed by Megarefs and Sidhu [jOQ]3
Gjelsrik [?BQJ, based on a different minimality criterion. The
volume was expressed as a functional of the bending moment, giving

rise to a variational problem.

1.4 ELASTIC DESIGN

Elastic minimum weight design is based on the assumptioﬁ that
the optimum lies at the intersection of the behaviour constraints
in the absence of side constraints. Such problems include the design
of aerospace structures with buckling constraints, and the design
of discs, plates, pressure vessels and so on where the selutions
have been based on. the assumption that the material is‘everywhere at

the yield stress. The presence of side constraints restricts the
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design vériables to vary within specified bounds, the minimum weight‘
solutions being based on the methods of nonlinear programming. A
fully automated synthesis technolegy has been developed by Schmit and
his associates [@5-74] for such problems where they use a combination
of steepest descent and random search.procedures for the exploration
of the feasible regions of design space. Modifications of these
procedﬁres have been applied by Gellatly and Gallagher [?2,83,9?],
Best [84], and de Silva [175] amongst others to structural optimization
problems. Taylor [9@], Turner [?5,8@], Zarghamee [?7,83] and de Silva
[?BE] have used variational techniques to study the design vibratiomal
characteristics of such problems. Recently the penalty function
concept of nonlinear programmiqg has been introduced into the structural
optimization area to transform a constrained problem into a series of
unconstrained 6ptimization problems, which are solved using the
minimisation techniques of Rosenbrock, Powell, Nelder-Mead and
Davidon-Fletcher-Powell [?Q].

The introductory stages of this section sketch the histerical
.development of optimal elastic design, followed by the modern nonlinear
programming treatment of the subject.

The classical theory of elastic design was formulated by Michell
[36], in 1904 for the minimum weight design of statically determinate
.structures under a single locad conditien. According to him, the
weight of a structure is a minimum when the space which it occupies
can be subjected to a virtual deformation such that the strain in the
direction of each member is te (e > 0) where the sign agrees with that

of the end load carried by the member. No other member is to have an
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extension or compression numerically greater than e.

The deformation field which extends over the whole region of
space occupied by the structure is characterised by an orthogonal
system of curves along which the members of the optimal design lie.
These curves remain orthogonal after the deformation and are lines
of constant principal strain equal to *e. For two-dimensional
problems this condition is identical to that govefning the slip
lines for two—dimensional perfectly plastic flow [37,4@]. Using this
analogy*, Hemp [38, 20@] and Chan [39,4£] have made a comprehensive
study of the Michell theory using the methods of linear programming
to determine the optimal design., Schmidt [&g] has extended the theory
to problems with multiple load conditicons, where optimal design is
based on the assumption that each member of the structure reaches its
maximum allowable stress in at least one load condition. Cox [43-46]
has applied the fully stressed design criterion of the theory to the
design of beams and frames. For statically indeterminate problems
[%7-45] a solution is obtained only after a sufficient number of
redundant members have been removed to give a statically determinate
structure. Further applications to problems with creep and vibration
conditions are given by Hegemier and Prager [SQ]. The minimum weight
of structurés subject to buckling constraints is attained when all the
possible buckling modes occur simultaneously [51,52]. The condition
that all the possible failure modes are equally likely to occur under
a single load condition is satisfied in the absence of side constraints
and enables the determination of as many optimal design variables as

............................................................................................................................................

* See also recent work of Johnson et al [?35]
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there are failure modes. Gerard [153,21i], Lakshmikantham and
Gerard [152] have made an extensive study of these design concepts

as applied to aerospace vehicles based on cylindrical shell concepts.
Reference [153) includes an extensive literature survey of minimal
weight based on stability considerations.

Hilton and Feigen [ﬁj], Moses and Kinser [54] have considered
Optimal design from a probabilistic standpoint. The strength properties
of the material and the strﬁcture and also the magnitude of the loads
obey statistical laws. Knowing the distribution of these quantities,
the form of structural members can be determined from conditions
connected with the minimum volume for the prescribed safety of the
entire structure. 'The solutions are based on the assumption of
Gaussian distribution and concern problems. with multiple load
conditions.* Kalaba [55] has solved a similar problem using the
dynamic_programming formalism of Bellman [§6,5i]. Further applications
of the Bellman principle in the structural optimization area are given
in [58,59].

The optimal design of circular discs is now considered. The
radial and tangential stresses are assumed to be everywhere equal

to the critical stress [@Q],

This corresponds to a state represented by the point F of the
Tresca hexagon, Figure l.la.

--------------------------------------------------------------------------------------------------------------------------------------

* Further extensions of probability concepts to more complex structural
systems are given by Heer and Yang [2225
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Froﬁ (1.6)

2.2
= - pur”
h hoexp{ 5e ] (1.42)

when hO is a constant of integration. This result is of the same
form as that derived for the plastic case (1.13). But the displacement

for the elastic case is given by

g = ——E——z (e + ve,)
T l1-v ]
r (1.43)
% = Tz (Ve tey)
where
e = du
T dry
(1.43a)
= 4
ee T

where E 1s Young's modulus and v is the Poisson ratio for the

material. These equations give

a = Sl_%_ﬁlﬂn r (1.44)

at the optimum. (Compare:

_ C pw? , o _ 2 _ 2pw? 2. . .
u o= [%xp 20, (r az)(1 \ 200 a,) 1 for plastic analysis

based on a A = constant. This result is given in Bﬂ.)
As in the plastic case, the optimal thickness is assumed to be

of the form

h(r) = b, ‘ a) £ < ap
. 2.2 ’
- _ pw‘r
= h, exp[ 70, ] ag <r<a . (1.45)
= by _ a £rga
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where b,, by, are constants, the boundary conditions being given by
(Ur)al =g <0, (Ur)am = § > 0. The problem is to determine the hub
radius a;, given aj, ap-1s @ The thickness is discontinuous at

E = a2, 8p-1- |

For a; £ r £ ap, equations (1.6) give, in conjunction with

(1.43)
2 -yl
u = clr+92—%ﬂ———"—)r3 (1.46)
E
where C;, C; are constants of integration. Substituting‘(1.46) in
(1.43, 1.43a) gives on simplification
. . EC}_‘_ EC2 }. _ 3+ v 21-2 \
T 1 - 1+ v) r g PY
. M (1.47)
EC) EC,
S — -1 1+ 3v 2,2
R e e e

Elastic continuity conditions on radial load and displacement at agj

give
bl(cr)az_o = h(a; + 0)00 3
c ©2 w20 - v 3 - L-w , 1.48
and o_ =8 at r = a; /
r

The constants C;, Cp are eliminated using (1.47,1.48). This

gives on simplification,
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2%—(a2 - al)[ﬁ[ag - al) - (a% + 331)] + 0 (1-v)[a2 - al] + 2sa) )
(1-v)a2 + (1+v)a’
% w? 2
E hO exp(- %;c: az] ’ | (1.49)

Similarly continuity conditions at a are given by

m1

: 2 . .
E%—(a; - am_?][&(ai - am_f) + [am_f + 3a§I}— co[l—v][a; - am_%) + 2Sa$

(lwv]am_f + (1+v)a;

g : 2
2 - buw 2
ho exp( oo am—1] {1.50)

b
m
Eliminating ho from equations (1.49, 1.50) gives an equation for

determining a;. Some numerical computations for a; are given below,

the data being the same as in Table 1 for the plastic case.

TABLE é
RADIUS (ins) OPTIMAL THICKNESS (ins)

a, = 16+46 : 1-962 x 10 !
-1

21313 1857 x 10
22-813 1820 x 10}
29.5 1-638 x 10~}
=1

30+3 14615 x 10

MINIMUM WEIGHT = 1-036 x 103 1bsg
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A comparison of Tables (1,2) shows that the plastic optimal
design 1s lighter than the corresponding elastic design. The optimal
thickness (1.42)—was calculated on the a priori assumption that the
stress state was characterised by o, = Og = do. As before, the
stresses must satisfy (1.6) which was derived on the assumption of
radially symmetric plane stress, whereby fhe axial and shear stresses
were neglected. Ranta [@3] has dgrived optiﬁal designs on the
assumption of rotationally symmetric stress in conjunction with the
condition Grloe = constant at the optimum.

Tadjbakhsh [Ei] has designed thin circular plates using the
Tresca condition and assuming that at the optimum‘the plate begins to
yield simulfaneously along its .top and bottom surfaces under the
applied 1atéra1 pressure. The theory assumes rotational symmetry
for which the equilibrium equation is given by

T
%; (r Mr) - My o+ [ rp(r)dr + V(a) = O (1.51)
a
where a 1s the inner radius of the plate and V(a) is the shear force
(compare with equation 1,31 for theplastic case).

The bending moments Mr’ M. are given by

9

_ End(r) (d%w v aw
T 12(1-v4) (dr® r

(1.52)

. En @) (4% 14w
I 12(1-v¢) { dr®  r dr

and the bending stresses are given by
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s = _Ez (4% vduw
r 1 - v72 Ldr2 r dr
(1.53)
s = —Ez [ d%W 1dw .
] 1-ve{ dr? 1 dr
Optimal design is based on the condition
lcr - 06|z=ih/2 = o, (1.54)
and on substituting (1.53) in (1.54)
dldey _ 20 +v)
hr (= T 5 k (1.55)
where
k = *g
o
Substituting (1.52) in (1.51) and simplifying
- 2 3 | 2 t
d { .3 d“W dh”__3(dw _ -12(1 - v9)r
r dr[rh E;?] + [vr I h ]dr T rp{r)dr + V(a)
a
(1.56)

Equations (1.553, 1.56) constitute a sef of nonlinear differential
equations for the optimal thickness. Solutions of these equations for
pafticular boundary conditions are given in [ﬁi].

An alternative derivation has been given by Huang [bi] based on

the elastic analogue of equation (1.34):

U
= = constant
h

where U is the strain energy per unit area of the plate given by

c
|

Eh3 d2w . 1dw]? _ 2(1 - v) d%W dw
12(1 - v2) ||dr® 1t dr T dr< dr
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From the optimality condition

2 2 2 - 2
Eh [[dw 13‘1] 20 -vydtwaw] | (1.57)

12(1 - vy ||dr2 T T aF T ar? dr

For simplicity, take V(a) = O and the pressure p to be uniform.

Hence, from the principle of virtual work

Work done = %-n(R2 - a2) pW
R
= J U. (2rr dr)
a
'R
= 21C J h ¢ dr
a
= v (1.58)
where
R = outer radius
V = volume of plate
_ R
W o= ﬁz-%~32 J Wr dr - mean deflection
a

Eliminating C from (1.57, 1.58) gives the central equation for this
formulation. Full details of the approach are given in [ﬁé].
For pressure vessels, the equilibrium equations are given by

Lakshmikantham and Gerard [@4]

Ulh 0'2h
———— + — = p
Ry . Rj. - - -
1.59
bRy ( )
02 . = —

2h
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when o), 0 = principal circumferential and meridianal stresses

R1, Ry radii of curvature in the circumferential and mer-
idianal planes

p. = internal pressure

h

thickness of the shell

These have been derived on the assumption that the shell thickness
is small compared to the radii of curvature and neglecting the
effects of gravity.

From (1.59)

PRy R)
1 = %‘[z‘iz

The minimum weight analysis is based on the Tresca condition and
for purposes of simplicity it is assumed o3 = 0, 0; 2 0, 07 2 o 2 O,
Therefore the optimal design lies on the branch EF of the hexagon

(Figure 1l.1la).

and the optimal thickness is given by

PR) Ry

h = 33; [2 - EZ] (1.60)

Further results on the optimal design of pressure vessels are given
in [222]. Schmit et al [éS—?E] have formulated an automated synthesis
capability for the weight minimisation of structures based on the
methods of nonlinear programming. The weight is assumed to be a
single valued differentiable function W(x,, ..., %,) in the m design
variables which define a point in an wm-dimensional design space where

each dimension represents a design variable. The weight contours
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WXy, ooy x,) = C generate a family of hypersurfaces in design space
for different values of the parameter C.

The side constraints usually arise from considerations of analysis
limitations, compatibility constraints and fabrication limitations

and are expressible in the form

Lj < xj < Uj for i =1, 2, ..., m

where the bounds Lj’ Uj are either constants or functions of the

other variables. In vector notation these inequalities become

LsxsU (1.61)
where

x = (X3, +o0y Xy)

L =

(Lys vevs L)

| [as]
It

(Ul, ey Um)

A design-satisfying condition (1.61) is said to be feasible with
respect to the side constraints. The response characteristics of the
system are determined by the behaviour variables which relate the
design variables and the design requirements to the response of the
system. The behaviour variables for a framed structure are typically
of the form

EF(X) = (Gls veny op; 61’ veey Gq)

where g1, ..., Up are the stresses and &j, 653, ..., & the deflections
at nodal points of the structure, The behaviour wvariables for
structures subject to multiple load conditions are represented by

matrices. For example, the behaviour variables for k load conditions

-

T e o
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are given by

[~ —
01(1), cenes cp(l), 61(1), Cenes Gq(l)
BF(x) = ; E
I L N N CO S 5;(‘"

The behaviour constraints can be expressed in the form

* *
L < BF(x) £ U (1.63)

and a design satisfying condition (1.63) is said to be feasible
with respect to the behaviour  constraints,
The weight minimisation problem can therefore be formulated
as follows:
[ + * * » 3 - + -
Given matrices L, U, L ,.U , determine a design which satisfies

the conditions

(a)

o

£x5U

* *
(b) L < BF(x) ¢ U

and minimises the‘weight W{x).

This constitutes a nonlinear programming problem ~ the minimisation
of a general function subject to nonlinear inequality constraints.
The behaviour and gside constraints are represented by hypersurfaces
in design space and the complete set of these individual constraint
surfaces considered collectively forms a composite constraint surface

dividing the design space into a feasible region and a nonfeasible
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region. Designs above the composite surface are feasible designs
and correspond to designs feasible with respect to both behaviour and
side constraints. Designs below this surface are nonfeasible designs
and correspond to regions of constraint violation., Designs on the
composite surface are said to be boundary designs and correspond to
critical designs on the verge of failure. The minimum weight solutions
ugsually, but not necessarily, lie on the composite surface at the
intersection of individual contributiﬁg constraint surfaces. But it is
equally possible for the solutions to lie on the composite surface
where the lowest weight contour touches a single contributing surface.
The synthesis starts from an initial feasible design and generates

steepest descent motion defined by

§(q+l) = 3(q) + t(q) w(q) q = 0,1’..‘ (1-64)
where
i E(q) = (xl(q), criay xm(q)) design point at
qth iteration

(q) -y ')

Y = oM normalised steepest
|2 W(x 1 )l descent vector
(¢)

t

th , ;
step length at g iteration

The step length is defined by

N CH L e >0 (1.65)

where € is a predetermined increment. At each iteration the designs

are checked against the behaviour and side constraints and if they
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are fouﬂd to be feasible, the step length is doubled and steepest
descent motion continues until a conmstraint is encountered. The
distance of travel back to the constraint is calculated by successively
halving the step length until the design converges to a point on the
constraint (to within a specified tolerance). Steepest descent motion
is no longer possible without piercing the constraint surface and an
alternative procedure was devised by Schrit whereby the structure
is redesigned at constant weight,

This was the method of alternéte base planes [?Q] ;nd was used
to generate the directions of search along the constant weight comtour
through the current boundary point.

The basic steps of the algorithm are:

(a) Seti=1

(b) Generate normalised directions of search

1

(1)
GO - x /

m 2 .
{R.] ; i=1, v, my j#i
J # .

where Rj are random numbers

(c) Calculate distances to the side constraints

G) _ Q) . s .
tj (Lj xj)///tpj : j 1, «..,m; j #1

i) _ (i) - L
tm+j = (Uj xj)/lpj * 1, ooy, my j#1

where xj are coordinates of the bbhndary point and Lj’ Uj are

.o
[EP
fl

assumed constant.
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Define
W - mines ev0, §e1, e, 2m, §#4)
MLCOR tminfef5 £, <0, § =1, ooy 20, § i)
(d) Proposed distance of travel in design space is given by

(e)

(£)

(g)

CW(X]s eees x ) = wix + téi) ¢§i) xp + téi) wéi)

(1)

_ (1)
t R A

f

-
=
]

1,2,3

fl
"

Rku(l);; X = 4,5,6

where Rk is a random number such that 0 < Rk <1l; k=1, ..., 6

Proposed new designs are

i,k (i) , (G i) @ i,k
}_((’) (xl +tk lpl ),; x2+té)¢§ ), e ey Xi(,)_, s sy
i i
X + té ) wé )J; k=1, ..., 6
where xi(l’k) is calculated from the constant weight condition

] | AR k]

xgi.k)
P tél) wél)]; k=1, ...

Check these six designs against the side and behaviour  constraints

(i,k)

in that order. If any one of x is feasible steepest descent

motion continues as before. Otherwise go to step (g)

Set i + 1 +1; go to step (b) and repeat iterations.
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Step (g) is equivalent to changing the base plane. If still no
feasible designs are forthcoming, the boundary point may be taken as
the optimum. This "steepest descent - alternate step' search
technique was applied by Schmit et al to the design of trusses and
waffle plates, under multiple load conditions., For waffle plates,
the behaviour constraints were provided by stability failure modes of
gross and local buckling. The side constraints imposed lower and
upper bounds on the design variables. This nonlinear programming
problem being characterised by (a) multi-dimensional design space,
(b) presence of relative minima, (c¢) nonlinear weight function,

(d) nonlinear behaviour constraints, {(e) linear side constraints.
The design variables for the truss problems were the cross-sectional
areas, the weight being linear in the areas. The side constraints
ensured non-negative areas. The behaviour constraints imposed
limitations on the stresses and deflections and precluded the
occurrence of certain buckling modes.

They also consider the problem of a simple shock isolator. A
shock isoclater being essentially a one-dimensional spring-mass—damper
system. The supporting base was subjected to a series of shocks,
which were transmitted to the attached mass through the spring-damper
combination.

These induced accelerations in the mass which provided a measure
of the response to the impulses., The function tc be minimised was
the maximum value of the accelerations induced by the shocks. The
accelerations were functions of the spring stiffness and the damping

coefficient which corresponded to the design variables for the problem.



45

The accelerations had, to some extent, a "black box'" representation
function, the synthesis being again based on a combination of

steepest descent travel in the feasible regions followed by an

alternate step which is a move more or less along the constant merit
contour. The gradient directions were computed using finite differences.
The problem was further complicated by the poor behaviour of the merit
contours which gave rise to considerable zig-zagging. This occurs

when a ridge is present causing the gradient directions to change
sharply from point to point on the merit contour, so that the optimum
direction of travel should be along the general direction of the axis

of the ridge. Schmit and Fox [?3] use a simple procedure for estimating

this direction. They consider three consecutive designs E(q-Z)’

g(q_l), E(q) using steepest descent motion (1.64).

Define

) I_n(q-l) _ 1{(q-l) - E(q-Z)

) R C) R §(q-l)

for zigzag
(@) 1}}(q-l)

s 0

and the new direction of travel should be (E(q) - z(q—Z))'

Motion continues along this directieon with a step length given by
(1.65) until either a constraint 1s encountered or the merit fails to
improve. In the latter case a new steepest descent direction is

uséd to search the feasible regions. Steepest descent procedures

break down completely when there are cusps where the gradient is

undefined. The cusp ''groove' can be estimated using procedures
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similar to those employed above. When a cusp is encountered, a
feasible design was sought in a more Or less random manner. Steepest
descent motion is initiated from this point until no further propgress
is possible. This situation corresponds to the vicinity of a second
cusp and the line joining the two cusps would define the direction
of search in the feasible region. The sense of the vactor is from
the point of lower merit to that of higher merit. For boundary
points, the gradient to theAmerit contour is estimated using finite
differences. This enables the tangent plane to be calculated.
Motion along this plane in one direction leads into nonfeasible
regions, while in the opposite direction, leads into feasible regions.
For concave contours a move in the latter direction would usually
lead to designs of improved merit, while for very flat contours,
a tangent move usually leads to designs of worse merit. For this case
a feasible design is sought which lies inside the merit contour.
This is achieved by searching the feasible regions along small steps
éerpendicular to the tangent plane. Troitskii [12@] considers a
similar problem using a variational approach. An experimental
discussion of the response characteristics of a shock isolator in
the absence of side constraints is given in [?é].

An alternate approach to the nonlinear programming problem is
to use penalty functions to simulate the constraints by unfavourably
weighting the merit function in their vicinity., The successive
iterations of the problem are forced to lie in the feasible region
since the violation of a constraint results in a sudden and rapid

deterioration of the objective function. This technique enables the
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constrained problem to be transformed into a sequence of unconstrained
optimization problems, and has recently come into prominence in the
structural optimization area [éS,?é] where penalty functions are

introduced through the Heaviside unit function defined by

H(t) = 1 for t <0
} (1.66)
= 0 for t = 0
Consider the function
m.
x) = Y {&.-L)D%H(x, - L.)+ (U, - x.)2H(U, - %.)}
¢ (x) 521{(3 PPEGG = L+ (U - x )P - x))
. * * * *
+ {(BF. - L )2H(BF _ - L + (U - BF )2H(U - BF )}
z ( Pq Pq) ( P4 Pq) ( Pq Pq) ( Pq Pq)
Py
(1.67)
For feasible designs
L, g x. 2gU
J i) ]
(1.68)
% %
L < BF (x)gU
'Pq Pq - Pq

Therefore from (.66, 1.67)

$(x) = O
In general

$(x) > 0.

Define

b (x) = ¢(x) + (W - wS)ZH(wS -W; s=0,1, ... (1.69)
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where Wo is an initial estimate for the weight satisfying the
condition

W, > min W(x)
xeR

and R is the feasible region defined by (1.68). The parameters WS

are sometimes called the "draw-down' weights.

Hence
ws =0 for ¢ = 0} W g WS
>0 for ¢ = 0; W > WS

Therefore solutions for which ws + 0 are feasible designs of weight
less than or equal to WS. The procedure is made to generate a sequence

of feasible designs of decreasing wieght

wl, w2, .....

with corresponding draw-down weights

where

AW = specified weight reduction

This procedure continues until it is not possiblé to make ¥
tend to zero. One of the main advantagés of this integrated approach
is that only feasible designs which offer a specified weight reduction
are examined, thereby eliminating nonfeasible designs. Schmit et al
[éS,?i] have used this formulatién to obtain minimum weight solutions

to trusses and cylindrical shells [?8] in the presence of stress and
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buckling constraints, Marcal and Gellatly [?é] and Felton and

. * *
Nelson [?Bi] solved truss problems using a different penalty function
transformation based on Carroll's created response surface technique

[127] where the modified merit function is given by

v (x) = W)+ rsg F% (1.70)

i
where the design constraints are represented by ci(x) z 0 and T
is a positive constant which is monotonically decreased to zero.
The function (1.70), isrmigimised fbr a given r. > 0, and this
minima is used as the starting point for the next minimization with
a reduced value of T This procedure, is repeafed with r = 0.
Noﬁfeasible designs are excluded from the iterations. An efficient
strategy for selecting the sequence'{rs} is given in [2351.
The minima of ws(g) as rS + O+ converge to the constrained minima.
The constraints correspond to stress and deflection constraints.+
Klein [?i] has obtained optimal designs using slack variables to
tr;nsform inequality constraints into equality constraints. These
were incorporated into the weight function using Lagrange
multiplier techniques. A detailed discussion of the various penalty
function techniques is given in reference [86].

Gellatly and.Gailagher [52,851 consider the weight minimisation of

a truss system under multiple load conditions with constraints on the

............................................................................................................................................

# The problem was characterised by thin walled cross-sectional
- eléments with moment$ of inertia as the design variables.

t Templeman [?25] has developed Rosenbrock-type methods for structural
optimization problems based on a combination of steepest descent and
Fibonacci search procedures.
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stress and deflection fields. The design variables were the cross-
sectional areas, giving a linear weight function subject to non-
linear behaviour constraints. Constant weight'redesign was based on
a calculation of the normals to thé behaviour  constraints using

the finite element methods of structural analysis. This normal was
projected onto thé constant weight hyperplane to generate a direction
of travel away from the boundary point.

The behaviour variables are given by

BE(x) = (g;8)

where the stress and nodal deflections are given by

P = K -6
z 2570
(1.71)
g. = §.8
and
K, .= stiffness matrix
S = stress matrix
P = load matrix
. . .th
For a small perturbation in the i~ element
K' = K + da. K.
= =o L=
8t =8+ 6(8) (1.72)
g =g+ &¢

where Ei is the stiffness and dai the fractiomal increase in the area
.th
of the 1 element.

From (1.71, 1.72)
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&, * o, KD (8 + 6()) = B
S(8 + 83) = g+ &g
Neglecting second order terms
Sa, K. § + K &§(§) = 0
i~i-= =0
8 6(8) = dg
This reduces to
28 ]
_— = - K 1 8
Ja, ~o -1 -
i
! (1.73)
dg 3g
. - SEan
i

Equations (1.73) determine the components of the normal to the behaviour
constraint surfaces., The direction of travel is obtained by projecting

the normals onto the constant weight hyperplane

’ ¥
’ ¥ ~ (9_,$T) ™
N ¢ W
where
QC = normal to the behaviour constraints as defined by
(1.73)
y; = mormal to the weight hyperplanes

A search is made along this direction until the nearest behaviour
constraint is encountered. The poiﬁt midway between the current non-
feasible point and theprevious ﬁpundary point is taken as the feasible
point from whiéh to continué steepest descent motion according to

{1.64, 1.65). When 4 boundary design lies on a side constraint the
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the directioﬁ of travel was along the direction of constrained steepest
descent obtained by projecting the steepest descent vector onto the
side constraints, the side constraints being assumed linear.

In most structural problems the constraints of primary importance
are the behaviour constraints. A major part of the synthesis has been
devoted to developing efficient aigorithms for redesign from boundary
peints on the behaviour constraints. The above problems have been
based on an equal weight redesign philosophy.

Best [Bé] uses a different philosophy by moving along the
behaviour constraints instead of moving away from them. As before,
the mode of travel in the feasible regions is along the gradient
direction but with a step length estimated to the nearest behaviour
constraint. The method then moves along the surface in a direction
in which the weight decreases most rapidly.

The behaviour variables are given by
BF(x) = (bj, ba, «.u, bt) . (1.74)

The behaviour constraints are given by

2O o p®, b, L )

The gap vector is defined by

- Sp®
b, = ey(b; b.)
where
i . b .
e) = * 1 if bi is an upper bound }
= -1 if b? is a lower bound

Therefore a negative gap implies the vicolation of a constraint.
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Equation (1.74) may be written in the form

BF(x) = (g; §) (1.75)

where g,8 are the element stress and displacement vectors. As before

the nodal displacements satisfy the equilibrium equation.

Therefore, for a small change 6K in K, comparison with equation (1.72)

shows &K = ZGG.K.
= 1 1.

Id
n

(K + 8K)§'

and

=]
n

F(R - 8KS'")

where F is the flexibility matrix defined by

F = K!

and

§' was determined from the iterative relations

s o pep - g 59

. (1.76)
5(®)

]
Q

The term -GEQ(q) was treated as an additional load removing the
necessity for recomputing the stiffness matrix at each iteration.

This enabled the determination of the matrix R defined by

-~
I
-t

txm

where



r,, = =—— i=

1,2,...,t3

Comparison with (1.72) shows that the design variables xj

correspond to Sa. = &x./x..
J J ]

The direction of travel was as follows:

design lying at the intersection of r behaviour constraints,

matrix C formed from those rows of R associated with the closed gaps

satisfies the condition

where the direction of travel u satisfies the normalisation condition

u ET =1

Consider the function defined by
a_
di

m
¢ = = W(x+r) = ]

where

s g = YW

54
j=1,2,...,m;
consider a boundary
The r*m
(1.77)
(1.78)
= gu (1.79)

The function ¢ measures the rate of change of the weight in the

direction u. The direction u is obtained by maximising (1.79)

subject to the constraint conditions
Therefore there exist Lagrange

such that

fl
e}
[

-g. +

A, C.. + 2% u.
j i ij o i

It~

i=1

In matrix notation this becomes

=g+ AC+ 22w = 0

multipliers AO, Ais veny X

(1.77, 1.79).
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where

A = (Al’ veey AI‘)
On simplification

u o= vy v (1.80)
where

T, 1,71
v = g+gl(¢c) cC.

Motion contipues along this constrained gradient until the next
smallest gap is closed and this is continued until the design lies on
as many behaviour constraints as possible. Schmit.[§2§] has pointed
out a possible inconsistency in the closed gap assumption, where
condiéion (1.77) is replaced by C ET 2 0, giving an inequality
constrained problem. The distance of travel was estimated from the
condition

byx + ) = b;b) i =1,2,...,t

Taylor series expansion gives

9b.
I . ()
bj (x) + A 3u bj
where

9b.

]
u. —
1 1 Bxi

ar

| ¥
]

I ~18

i

Hence

el

g’ Ab,
J

ab./3u
J/ =

The step length is calculated from the condition

t = min(kj, A. > 0) (1.81)

i J
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where

These procedures were used to obtain minimum weight solutions to
a cantilevered box. A possible disadvantage of the method is that once
a constraint is encountered, it is never to be left. In general, there
is no guarantee that the optimum will lie on the behaviour constraints
when there are side constraints present. This is confirmed by Schmit
who has found numerical evidence showing that the fully-stressed design
is not always the minimum weight design. The technique used by Best for
finding the permissible direction along which the rate of weight‘decrease
is most rapid is essentially a quadratic programming procedure. An
earlier version of a synthesis capability proposed by Gellatly et al
[pi] was based on the derivation of a set of optimum feasible directions.
However, there were indications that it was not always possible to
obtain such directions. Pope [Pg] uses an alternate procedure based
on Zoutendijk s method of feasible directions [égj for reducing the
problem to a series of linear programming problems, Considerable
progress has been made by Turner [55,86], Zarghamee [?7,85],,Rubin [194],
McCart et al [195] in applying the finite element methods of structural
analysis to optimization problems, in thepresence of dynamic constraints.
For example, Zarghamee [Bz] maximises the lowest natural frequency
of vibration of a composite structure subject to a constraint on the
total weight. The frequency was calculated from the eigenvalue

" equation
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& - 2\ PP - o (1.82)

where K, M are the stiffness and mass matrices respectively and g(l)

the eigenvector of displacements corresponding to the eigenfrequency
23 From (1.72)

K = K + x. K, x, = 6a.

K = K, JE (x; i)

(1.83)

=
1]
=
+

1
»
=

where xj correspond to the design variables. Differentiating (1.82)

partially with respect to xj and using (1.83) gives

. (i)
. . (1) . . 6]
(& - 2@ )s® - By s v k- aPwo— - 0 asy
3 j
(i)

Assume the eigenvectors § to be normalised with respect to the mass

matrix M and to form a complete set so that

28Dy () )
9x. k -
J k .
& (1.85)
- \T o
L g(l) h’_ig(']) - ij -l- J
From (.84, 1.85)
(i) .\T . .
m— = o0 gy -2 ®g)e® (1.86)

]

Equation (1.86) measures the rate of change of the eigenfrequency
in terms of the corresponding eigenvector. The weight is assumed to

be a linear function of the form

............................................................................................................................................

+ This is the kronecker delta defined as §.. = 0, if

i
-

1

P

-

Fe e
h

- P
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m(x) = m_+ ) x, m, (1.87)
o < 3 1]
]
where
m<m, m constants for all j.
Hence
¥, m. £0 1.88
§ 3" (1.88)

The problem consists in maximising the lowest frequency A(o) = A(o)(g)
subject to condition (1.88) which is linear in x. This was solved
using Rosen's gradient pfojection method [?é] for linear constraints.
The gradient direction being given by (1.86). Similar techniques
were applied to the minimum weight design of radio-telescope antennae
[?@]. The optimal frequency problem was studied by Taylor [?é] for
the special case of a bar using a variational approach based on
energy considerations.

The vibration characteristics of a general system are described

by the eigenvalue equation (1.82),
K-ms = 0
Substituting (1.83) in the above equation gives

JZ (®; = AMIx, = = (K~ )8

Turner [@5] considers weight minimization subject to the condition

’

that the natural frequencies of vibration must assume prescribed
(o)

values. For purposes of simplicity he assumes 50 =0 and A = A"

Aco:re3ponding to the lowest frequency. This gives

Z:EJ.Q"J: I‘_@o_

:



where

This equation can be written in the form

L=
(£
[

where

1]
It
~
(L=
—

15
f
~
%
R
%
%3
-~

o (1.89)

The weight is a special case of function (1.87) with m = o,

£

and mj = 1 for all j.

This implies

mo= Ix = 2%a, 1, ...,0o0y s (1.90)

This result follows from (1.89). The weight minimisation condition

is given by

ap”}

am__ (o) - (o) “1iy()
3;; = A (1?1.---.1){ 33;— }ga § + A7(1,1,...,1)D {Eo }

= 0 for all j (1.91)

where {yéj)} is the jth colum of M . But from matrix theory
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Substituting this in (1.91) gives

A(°)(1,1,...,1)9“1{15§5) -— D 1M 8§} = 0, for all j

Turner uses this result to show that the minimisation problem 1is

equivalent to optimising the function

= - 12
¢$(x,8) = [ %+ ADx - A2 AM ¢

This stationary condition is expressed by the system of equations

3 =0
X .

r
¢ _
28 - ©

This gives a system of nonlinear equations which were solved
using a modified Newton—Raphson procedure. Applications to more
complex aerospace structures* are given by Turner [}6], MeCart et al
[195], and Rudisill and Bhatia [?33]. A similar class of problems
is discussed by McIntosh and Eastep [93] using the methods of the
variational calculus. Other problems of interest include minimum
welght problems [?é] based on an extension of the fully-stressed
design concept to include resonance conditions. Fried [?i] has
studied the eigenvalue problem (1.82) using Powell's conjugate gradient
method of minimisation [?é]. Some optimal vibrational problems as
applied to beams are given in [54, 95, lli]. Newton and Scholes [}26]

introduce exponential-type penalty functions to investigate the optimal

design of diesel engine pistons. The behaviour characteristics are

..........................................................................................................................................

* Recently Fox and Kapoor [225] have introduced further generalisations
based on inequality constraints on the vibrational frequencies. The
resulting nonlinear program being solved using Zoutendijk's feasible
direction method [9Qﬁ.
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represented by the linear equations

Ky = B
where
K = K(x) is a matrix function of the design
variables.

The problem is to minimise the susceptibility to fatigue
failure subject to constraints on the piston deflection, weight and
design configuration. The fatigue susceptibility criterion is defined

by the relation

£ = Ky = K2K'B (1.92)
The deflection vector is given by
-1
§ = Ky = K K B
where : {(1.93)
5 < 6(max)
The side constraints are defined by
W(x) s W
and - (1.94)
LsxsU

where L, U, are constant row vectors, and Wo is an upper bound on

the total weight. From conditions (1.92 - 1.94) the nonlinear

programming problem is defined by
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min max fi' (x) N
1,1

subject to the design conditions

-1 < 6(max)

=" = il ) (1.95)

1=
—
1=
~
[
e

=
4

e
n

134
A

1c

The corresponding unconstrained representation was defined by the
modified merit fimction

-1
Min{al max fij(x) + ap 331(51 K B-38 ) + a3 eBz(W Wo)} (1.96)
i,]

where o), oz, a3, B}, By are suitable scale factors. Function (1.96)
is essentially a "black box" function, with the penalty terms having
an exponential character. This was solved using the methods of
Rosenbrock [jQQ] and Nelder and Mead [}3@]. Available computational
experience indicates the simplex method of Nelder and Mead as yielding
better results. Kavlie et al [13?] studied a class of minimal weight
i design problems arising in the shipbuilding industry. They used a
penalty functions concept based on the sequential unconstrained
minimisation technique (SUMT) developed by Fiacce and McCormick [i34,
135]. This transformation is similar to Carroll's equation (1.70).
The uncomnstrained problem was solved using the variable metric method
of Davidon-Fletcher~Powell [132,135].
This review is concluded by a discuesion of some miscellaneous

structural optimization problems. Moses [10@] obtained minimum weight
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solutions to a truss using Kelly's cutting plane method [ioi] to reduce
the problem to a series of linear programming problems. Applications
to purely linear programming situations are given in [11@]. Reinschmidt
et al [1_91:], Chem and Prager |:232t]f consider some nonlinear programming
situations arising from such problems. Some Russian work [102] is
~available in this area of minimal design using integer and geometric
programming procedures [ESS]. Similar problems have also been
investigated by Toakley El_OS:] and Corcoran I__i90:| Brown gnd Ang [1032]
study truss optimal design using Rosen's gradient projection method

for nonlinear constraints [}04]. Further examples of minimal weight
design includé cooling towers lilé], sandwich panels [19@], and shields
for nuclear reactors [115]. Other design criteria include optimal
strength Iilg] and deflection ]Elj] problems which were studied using
variational techniques. Similar problems are also discussed by Prager
and Taylor [ilg], Prager EQZ]. Optimal design of torsion springs

are studied by Pascual and Ben-Israel [i8£] using geometric programming
techniques whereby the potential energy is minimised subject to

stress and side constraints. Razani [ilé] studied the relationship
between the fully-stressed and minimum weight design honcepts, and
showed that the fully-stressed design does not always converge to the
minimum weight design. Criteria are given for the rate of convergence
‘of the iterations in the fully-stressed design procedure and a method
based on the Kuhn-Tucker optimality condition of nonlinear programming
[120, 12@] is presented for deterﬁining whether a fully-stressed

design is the minimum weight design. If this does not correspond to

R T R Py Y T P YT YRR TN )

* With associated convex programs based on stress and deflection
constraints



64

minimum weight, a procedure is given for detemining the minimum
weight design. Kicher l:llﬂ studies this relationship using the
Lagrange multiplier matrix. The feasibility aspects of the fully
stressed design are discussed by Dayaratnam and Patnaik l:11.8]

For a further literature review of some optimal design problems the

reader is referred to reference I___I?JZ'

1.5 SOME LATE ADDITIONS

Since going to press some further additions to the technical
literature have appeared. Pappas and Amba-Rao [2163 have used penalty
function techniques in conjunction with an improved version of the
Hooke-Jeeves direct search algorithm I:lﬁl:l for the synthesis of
cylindrical shells. A review of some feasible direction. methods
as applied to structural optimization problems is given by de Silva
[217]. A more general class of beam problems is described by Chern
]:22(_)—_| using variational techniques. Linear programming type algorithms
for the plastic design of frames are given by Charrett and Watson |:218]
Reiss and Megarefs r_221:| consider further extensions of the limit
theorems of plastic theory to the design of sandwich plates using
variational techniques. Optimal design‘in rheoiogy is discussed by

Zyczlowski [219] .

1.6 OPTIMIZATION PROGRAMMING PACKAGES

A comprehensive list of linear and quadratic programs and a

class of convex programé written in Algol-Fortran programming
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languages is given in the book by Kiinzi et al [i6§]. Programming
packages based on the algorithms of Rosenbrock, Powell, Nelder—Mead,
Davidon-Fletcher—-Powell are available from the Director, Numerical
Optimization Centre, The Hagfield Polytechnic, Hatfield, Herts.
These are scheduled to be published shortly by the Centre in book

form,

TR -
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CHAPTER 2

MINIMUM WEIGHT DESIGN OF DISCS BASED ON A STRESS CONSTRAINT
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2.1 DESIGN CONCEPTS

The object of the research described in this chapter is to
examine the possibilities of developing an automated synthesis
capability for a class of minimum weight design problemsin the presence
of non-analytic constraints. The design configuration is completely
specified by the design variables which are constrained to vary
within a prescribed range, thus making it possible to optimize the
system for minimum weight. The side constraints ensure physically

Teascnable designs and may be expressed in the form

Si(xl, seeees X)) 2 03 i=1, ..., I, (2.1)

"~

where the n real variables x,, ..., X, correspond to the design
variables., For gxample the condition (2.1} would include as a special
caée

Ei < X € UL, i=1, ..., n (2.1a)
where the bounds Ei, u, are usually assumed constant, The behaviour
or response characteristics of the system are described by the

behaviour variables. The behaviour constraints ensure the structural

*
integrity of the system and may be expressed in the form
bj(x s oeees %) 205 J =1, ..., 7 (2.2)

A special case of this would include constraints of the form

* A single load condition has been assumed for simplicity. The
extension to multiple load conditions is straightforward.
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Lj g Yj(xl' ey xn) £ Uj; j =1, ooy m (2.2a)

The weight is assumed to be a single-valued differentiable function
W= W(xl, ey xn)

The minimum weight solutions are obtained by minimising W(xl, .
xn) subject to the constraint conditions (2.1, 2.2, or 2.1la, 2.2a).
The functions W, bj’ Yj are nonlinear in general and the solutions
are based on a nonlinear programming formulation. The problems
considered are restricted to those for which the behaviour variables
cénnot be expressed as analytically defined functions of the design
variables. The behaviour variables are functions only in the sense
that they are computer—-oriented rules for determining the behaviour
associated with a given design and are not given in a closed analytical
form in terms of the design variables. The behaviour variables may
be regarded as a "black box" into which are put the design variables
representing a given design and out of which comes the corresponding
behaviour variables for that design. The. box contains such devices as
differential equations, matrices, finite differgnce procedures, a
digital computer and so on. This means that the functions bj, Yj
are essentially numerically defined functions.

These synthesis concepts are illustrated by considering the
. problem of minimising the weight of a steam turbine disc subject to
specified behaviour and side constraints. For purposes of simplicity
in this initial investigation the behaviour constraints have been |
restricted to a consideration that the stresses everywhere whould be

below the yield stress, The side constraints en the other hand,
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impose restrictions on the dimensions and tolerances of the disc.
The problem is essentially that of determining the optimal thickness
h(r). The stresses are governed by a system of ordinary differential
equations containing h{r) and its derivatives. These can be solved
only when h(r) is prescribed. The stresses are functionals of h(r)
and the problem has essentially a continuous or variational structure.
For purposes of numerical computation the problem is discretised and
in this representation the stresses correspond to "black box" type
variables. The side constraints ensure designs for which h(r) is
non-negative, Before a detailed discussion of the problem, some
preliminary synthesis concepts are introduced which constitute a
framework, within which the problem is formulated.

The design variables define a point in an n—dimensional real

Euclidean space E' called design space

X = Gy, ey %) 2.3)

Consider functions gk(g): k=1, ..., 2(n+m) defined by

g & = & -x 3 k=1, ...,n 3
= x0T uk_n; k = n+l, ..., 2n
r (2.4

= Lk_zn - Yk_zn(?_(); k = 2n+1, cs ey 2n+m

Yk_zn_m(ﬁ) - Uk-2n-m; k = 2n4m+l, ...,2(n+m) |

From (2.la, 2.2a)

gk(g) £ 0; k=1, ..., 2(n+m) (2.42)
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The feasible region R is a subspace of E" and consists of
points x which satisfy the constraint conditions (2.la, 2.2a, or 2,4a).

Therefore

R E'{§|§ e B ; gk(g) £0, ¥ k=1, ..., 2(n+m)} (2.5)

Design points which belong to R are called feasible points. There is
associated with each censtraint function gk(g) a hypersurface defined
by

G, = {J_clgk(}_{) = 0} ; k=1, ..., 2(n+m) (2.5a)

The composite constraint surface is defined by

*
G=RNG
where

* .
G = GUG Ut UG,

This defines the boundary of R and points which belong to G are called
boundary points. The hypersurfaces (2.5a) for the beﬂaviour constraints
are nonanalytic and correspond to unknown surfaces in E®. The weight
contours |

Wwix) = C
define a family of hypersurfaces in E" for different values of the
parameter C. A point x € R is a feasible point while x ¢ R is a non-
feasible point. The synthesis generates a sequence of feasible
designs of decreasing weight which converge to the least weight
contour in R. An initial design is established and is systematically
improved by an alternating iterative process of analysis and design

modifications. These redesign cycles correspond to motion in design
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space along trajectories on which the weight decreases. Therefore
the problem consists essentially in the proper selection of the

directions and distances of travel,.

2.2 STEAM TURBINE DISCS

The steam turbine disc to be optimized is shown in Figure 2.1,
The width of the hub and the rim shape have been specified to allow
for the attachment of the discs and the spacing of the blades in the
turbine, while the depth of the hub is variable to permit adjoining
discs to be shrunk on to a common shaft. The thickness distribution
Afor the remainder of the disc is variable but symmetrically distributed
about a plane perpendicular to the axis of rotation through the mid-
point of the width at the bore.

The overall diameter of steam turbine discs is fixed from
considerations of blade strength and steam fléw, while the shape of
the rim is determined by the aerodynamic and centrifugal loading on
the blade. The hub width on discs integral with the shaft are fixed
by a combination of the expansion allowances, diaphragm thickness
and blade width. However, on shrunk-on discs, the hub widcth is
~determined by the stresses at the bore using the Tresca yield condition
that the principal shearing stresses at thébore should be below the
maximum allowable shear stress. A three~dimensional stress analysis
indicates that quite high axial stresses are present at the bore even

when the disc is stationary and that these stresses tend to increase
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with the hub width. Therefore in future work there may be an incentive
to reduce the hub width.
The hub depth for shrunk-on discs is determined by the following -

considerations:
1. It must be the same as that of adiacent discs.

2, It must not be too small as it locates against the face of the

shaft during assembly.

3. It must mot lie outside the critical radius. The critical radius
is defined as the radius such that if further mass is added at a
greater radius, the bore stresses will increase, while if further

masses are added at a lesser radius, the bore stresses will decrease.

The thickness distribution function describing the disc profile should
be a continuous function of the radial distance, with a continuous
derivative, and should be blended evenly to the hub and rim to

avoid stress concentration effects. This implies that the radius of
curvature at any point on the profile would be large compared to the
thickness and that there should be no discontinuities in the radius of
curvature. If the thickness has a singularity at which there is a
discontinuity in derivative then the values of the derivatives on
either side are blended te remove the discontinuity. In certain types
of steam turbine discs there are balance holes distributed in the
circumferential direction to balance the axial steam pressures by
reducing the pressure differences on either side of the disc. However,
in modern turbines tﬁe tendency is for most of the cylinders to be

"double flow'". The steam enters halfway down the cylinders and splits
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into two streams which then circulate in.opposite directions. The
steam pressures are thus self-balancing and no balance holes are
needed. The advantages to be gained from balance holes are relatively
few, while the increased stresses in their neighbourhood could impose
restrictions on the design especially as the allowable stresses are
limited by creep; the only cylinders on which balance holes are found
in modern turbines are on the single flow intermediate pressure shafts
on machines of 350 MW and below.

Creep effects do not usually occur on shrunk-on discs as the
temperatures are very low (< 400°F). However on discs integral with
the shaft where temperatures of up to 1050°F are encountered, the
allowable stresses are limited by creep behaviour of the material.

This means that the strains are calculéted in the elastic
range. For shrunk-on discs it is necessary to get the maximum
possible rim radius and hence high strength steels are used. These
do not have a pronounced yield point. For discs designed on a plastic
analysis the hoop strains at the bore may be such as to remove the
interference between disc and shaft. Therefore the desigﬁ problem is
formulated in the elastic range.

The allowable stresses are governed by the stresses at the Bore
based on the Tresca yield candition and by the average tangential
stresses evaluated at all disc sections from the bore to the rim which
should not exceed the ratio of the ultimate tensile strength at the
operating temperatures to the bursting factor of safety (= 3.0).
However, for practical design purposes the Tresca condition gives a

good approximation to the stress limitations throughout the disc.
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The stress calculations are based on a two-dimensional analysis on

the assumption of radially symmetric plane stress, which means that

the axial and shear stresses are neglected compared to the radial and
hoop stresses. This implies that the disc should not be too thick.

The temperature variations are us;ally neglected, but the computer
program includes the thermal stress calculations as well. The frequency
constraint usually adopted in design work is that the ratio of the lowest
natural frequency of vibration to the number of nedal diameters

should exceed the speed of rotation of the disc. It is generally

found that when a curve of frequency against the number of nedal
diameters is plotted the minimum occurs at about eight nodal diameters
and for this reason in most prac&ical work the constraints are based

on eight nodal diameters. However this is not true in general, and
sometimes the designs are based on nine nodal diameters. The amplitudes
and stresses at resonance decrease as the number of nodal diameters

increase rendering resonance less dangerous.

2.3 VARIATIONAL FORMULATION

The weight is given by the functional expression

a
m .
W = J 2wpr h(r) dr (2.6)

4]

where a_, a_. are the inner and outer radii respectively, p is the

1’ “m

density and h(r) is the thickness at a radial distance r from the



axis of rotation. The thickness distribution is defined by Figure 2.1.

h(r) = b, for ay £ r g a»
= h{(r) for as £ r g a 1 ] (2.7)
= b for a f£rga
m m—1] m

where b;, bp, a;, ap, ap-] are constants, while h(r), as are variables

satisfying the side conditions

L g a, U
} (2.8

e < h(r) <mVreE32, am_ﬂ

where the bounds L, U, € are constants determined from design
considerations and correspond to constraints on the design configuration

of the disc.

From (2.6, 2.7)

agz

m-1 m
W o= f 2mprbydr + J 2mpr h{r)dr + I 2mprb  dr
a3 as 2n-1
2 am—l
= mpibylay - a%) + bm(aé - a;_l) + 27mp [ r h{r) dr (2.9)
)

fhe stress distribution is determined on the assumption of
radially symmetrical plane stress which means that the axial and
shear stresses are neglected compared to the radial and tangential
stresses. The physical implications of this assumption is that the
disc is not too thick and not too asymmetric about the midplane.

Otherwise the assumption that the axial and shear stresses are the

-
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same as on the surface (that is, they vanish) is not valid. If the
disc were asymmetric shear stresses would be set up. However a small
deviation from asymmetry is tolerable.

The equation of dynamic equilibrium is given by [}36].

d h _ 2 _
E?(hcr) + ?{Ur oe) + pw“th = 0 (2.10)

where O.s Oy are the radial and tangential stresses and w is the

8
angular velocity of rotation of the disc, (NOTE: This equation is
the same as equation (1.6) for the plastic case.)

The material is assumed to cbey a yield condition of the form

F(o., 04) 5 0 (2.11)
where g, is the yield stress. -
The yield condition used in this investigation is the Tresca
maximum shear condition
F(cr, Ue) = max{]crl, ]ce|, lcr - 06[} (2.12)

The stresses are expressed in terms of the radial displacement u(r)

by the following compatibility relations

: _ E )

Op = Tz (&g * veg)
. o (ve_ + &)
Og = T =92 Wer ™ &g
’ ) {2.13)

e = du

r dr
e, = 2

3] r
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where e s €4 are the radial and tangential strains, E is Young's

e

Modulus and v is Poisson's ratio.

) From (2.10, 2.13)

do
r . 1|, d -~ o) 2
drr - h Er ar * (9 T og)T *ew I}ZI
(2.14)
do, _ (0. = 0g) _v_ dh
r T k% ar VP

The stresses are obtained by solving these differential
equations for a given h = h(r), for all r ¢ Eil, an]. The boundary

conditions on the stresses are given by

l:csr] ) = 35 * [UJ = 5m - (2.15)
r=a) r=ap

For purposes of simplicity thermal stresses have been neglected.
The effect of these is considered later on. The minimisation problem

may now be formulated mathematically as follows:
Determine an optimal thickness h(r) and a radius a, such
that the functional

a
m
W = I 2aph{(r)dr ' {2.6)

a)

is minimised subject to the constraint conditions:
do 3
r _ -1}, dh -o 2
dr hEr dr * (Ur Ue)r T opw rl;_l

[
do
_5 -1 dh _ - gy 2
dr hl}or dr (or Ue)r + Vpw IEI

|

(2.14)
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F(cr, oe) -0, <0 (2.11)
e~-~hzg0O
a, <L U } (2.8)

and the boundary conditions

i3
]

h(al) bl’ cr(al) Sl

(2.7,2.15)

I
w

h(a ) =b_, o (a)

This is a very general problem in optimal control theory [13@].
The formal solutions are baéed on the maximum principle of Pontryagin
[i3i] and the optimality principle of Bellman [56,57,140,14?]. The
former provides the first order necessary conditions for an optimum:
Euler-Lagrange equatibns, transversality conditions and the Weierstrass
condition. Gelfand and Fomin [}3@] give a qualitative illustration
of these principles by considering the propagation of a disturbance
which can be described in two ways - either in terms of the trajectories
along which the disturbance propagates (the 'ray' approach in optics)
or in terms of the motion of the wavefront. The wave.approach leads
to the Hamilton-Jacobi partial differential equation and corresponds
to the optimality principle of dynamic programming while the 'ray’
approach leads to the classical canonical Euler Lagrange equations
which form a system of ordinary differential equations and corresponds
to the Pontryagin Principle,

For complex systems, closed analytical solutions are generally

impossible to obtain and recourse must be made tec numerical procedures.
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Computafionally, the Bellman formulation is more complex and requifes
substantial amounts of computer programming and storage facilities,
whereas the Pontryagin formulation suffers from all the inherent
difficulties of a two-point boundary value problem. Some of the
available numerical schemes for solving these boundary value problems
include: (a) steepest ascent on the variational Hamiltonian [142-1461.
The methods being first order, are relatively simple to implement

even for complex problems. Initially when far from the optimum,

these methods work well, but as the optimum is approached they tend

to exhibit poor convergence properties. Convergence can be accelerated
using second order methods such as approximating the Hamiltonian

by a quadratic in the neighbourhood of the optimum; (b) quasi-
linearisation [}45] on the state and.adjoint equations in conjunction
with a generalised ﬁewton—Raphson method to generﬁte a sequence of
approximating functions. for further details on these methods, the
reader is referred to [}46-148, 13§]. More powerful techniqges

have recently been developed based on a conjugate gradieant technique
[149-15i]. They are based on the condition that at the optimum the
Hamiltonian must be maximised with respect to the controls. The

basic steps are outlined below:

(o)

(a) Set 1 = 0; compute g = Vu H set (o) . g(o)

E=E(0) g = 2

(i) _ ), () (@)

(b) Set u where t(l) minimises W(u

1), @ G)

)
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(c) Compute g(1+1) = Vu H
- (i+1)
u=u

set (D) - E(:'L+1) . S(i)g(i)
where
(i+1) <i+1)>
NCO I & E
<§(i) ]§<i)>.
and

T

gD | g0 - rm RO INCIE
aj _

(d) Set i > i+l go to (b).

The Hamiltonianused in this algorithm is defined by

A A
_ 1 dh h 9 _ 2 dh h 5
H = % % @ + (or ue);-+ pw %E} 7Y% a7 (cr 06)§'+ vpw“rh
(2.186)
where Aj(r), As(r), are the adjoint variables satisfying the
equations
]
4 A o .
i Ay = - (2.17)
3H
aoe ]

In the presence of the inequality constraints (2.8, 2.11} the merit

functional W used in step (b) must be replaced by
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am
dr dr
k Wy J do = Flog, 0y) M
aj

X
]

(2.18)

where n 0as k » =,

The modified functional (2.18) is essentially an axtension of
the SUMT procedure of Fiacco and McCormick [134-135}. This can be
solved using a penalty function formulation in conjunction with the
optimization procedures of Rosenbrock, Powell, Nelder—Mead [129, 130,
92]. An alternate formulation is available when it is possible to
parametrise the cﬁntrols, thereby reducing the problem to a constrained
optimization problem. This requires a suitable parametric representation
for the controls and could lead to increased computation, especially
when the number of parameters involved is large. Due to the formidable
computational difficulties associated with the Qariational formulation,
a different mode of solution procedure is proposed.* The problem is
discretised using finite difference techniques. The weight integral
is replaced by a summation over a discrete set of variables and the
stresses correspond to "black box" type functionals, the problem being
transformed into a nonlinear programming problem characterised by non-
analytic behaviour constraints. This is essentially a form of

parametrisation of the control by piecewise linear function.

..........................................................................................................................................

. * The optimal control aspects of the problem from an analytical stand-
point are discussed in Chapter 5.
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2.4 FINITE DIFFERENCE FORMULATION
The disc profile is approximated by a sequence of straight
lines (Figures 2.2, 2.3). The interval [a,, a ] is divided into
a finite number of subintervals by points 3,5 Ay eees Ap where
82 < a3 C s aens < am_]_
The thickness h(r) is approximated by a sequence of piecewise linear
functions hj(r) defined as follows:
Let
h(a. = b, \
( J) J .
by~ b,
hj(r) = bJ_1 + PO (r - aj_l) aj-l £r g aj » (2.19
3 i-1 '
and
h(r) = hj (r) aj_l £ rga ’ 3= 3, “ny (m-l)
From (2.9, 2.19)
5 2 ” ) 21
W= npbl(a2 - al) + -rrpbm(am - am_l) + J 2mprh(r)dr
az
2 2 2 2
= ﬂpbl(a2 - al) + npbm(am - am_l) +
m=1 aj
) I 2mprh, (r)dr (2.20)
i=3 ’
j-1

The problem has been transformed into a finite
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difference formulation by approximating h(r) by a series of linear
functions hj(r); j =3, ..., (m1). This gives a linearised model
for the disc. The thickness at radii a), 8,, «.., & are bys by, .

.., bp respectively, and are measured parallel to the axis of rotation.

. 2.5 SIDE CONSTRAINTS

The constraints on the design configuration are defined by

[see equations (2.7, 2.8))

i a4, €4 < +.e.+ < A < a
(1) 1 2 m—1 m

(iv) 81y 845 cvey @7 gy B constants

{v) a, variable

n

(vi) bj variable j 3, ., w2

(vii) bj 2 € j =3, viv, m2

(viii) L £ a3 & U

The widths of the hub and rim and rim depth are fixed while the hub
depth is variable. Constraints (vii, viii) ensure physically
reasonable designs by ensuring that the variable thicknesses b, are
non-negative. The hub radius a, is constrained to vary between

-~

fixed limits, L, U.
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The design variables are given by

[}
”~~
o
-
o
-
a4}
S

(2.21)

X
This defines a (m—3)dimensional design space. The side constraints
are given by
Lsxsu : (2.22)
where the constant row vectors £, u, are defined by

3

H

(¢, vv., £, L)

(ml LR | CD’ U)

u.

They are linear and correspond to hyperplanes in design space.

2.6 BEHAVIOUR CONSTRAINTS

The disc ig symmetrical with respect to both its axis of
rotation and its midplane and is in dynamic equilibrium under the
action of the centrifugal and thermal loading. The stress
distribution is determined on the assumption of radi;lly symmetric
plane stress. The stress calculations are based on Donaths method
[154, 155], which consists essentially in replacing the disec by
a series of annular rings of constant width. The stresses at the
outer edge of a ring are determined in terms of the stresses at the
inner edge. Continuity is ensured by equating the radial displacement
and the radial load at the interface of adjacent rings.

The pfimary goal of this investigation is the study of methods

for optimising a class of structural systems in the presence of
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non—~analytic {behaviour) constraints. The analysis phases of the
redesign cycle are regarded as a series of "black boxes". The

actual mechanisms within the boxes are disregarded. The optimisation
procedures are independent of the analysis routines employed and can
be used in conjunction with structural analysis programs that are
already available. The need for more sophisticated analysis routines
for performing more effective redesign cycles may be better assessed
after an initial evaluation of the results using existing programs.
This is the justification for using the Donath method, It is a
relatively simple method and was already available at the commence-—
ment of this investigation. The basic equations used are summarised
for easy reference. During the stress analysis each of the intervals
[éj—l’ a;] for 3 =3, ..., (m-1) is further subdivided and the
calculations are performed on this subdivided disc. This is to
ensure a greater degree of accuracy for the stress computations.

Substituting (2.13) in (2.10) gives

2 2 2
d"u 1,1dhdu 1 _vdhju | pw(l - vr
wz * [r " h dr]dr [r h dr]r * E =0 (223

Within each annular ring h(r) is constant and therefore (2.23)

reduces to

d2u + ldu _ u . pw? (1 - vHr - 0
dr? r dr T2 E

g_wz(l - v2y,
E

r3

co

vhere C,, C, are constants of integration.
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From (2.13)

ECy EC2 1 3 4+ v 2| 9 )
% T 1) T |[Twler T [ -
' (2:24)
N e B i+ o),
09 1=y 1+v|T? 8 pwmir )

These are the equations describing the rotational stresses within
each ring. Similar equations can be formulated for the thermal

stresses which are determined from the equation,

g;(hor) . %{cr -6y = O (2.25)

where the thermal stresses U s Oy are given by

5]
E - - b
o = I:;Q'ffr - ad) + v(ee - a?l_
o, = -—-—zE :(e = ap) + (e, - a¢)—
6 l-ve " *7r 8 7
r {(2.26)
- du
€r dr
e = -‘:l-
0 T )

where a is the coefficient of linear expansion and ¢ is the temper-
ature. Substituting {(2.26) in .(2.25) gives [with h{(r) = constant

within each ring)

o7 Ot Tar T oy (1 + v)a -% = 0 (2.27)
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Solving .

C» a
u = Cjr + T + (1 + v);— [ r$ dr

where C;, C, are constants of integration.
From (2.26)

r

~oF E C2(1-v)
o = ?f’-‘“r * WEI(““)‘—?—

oF : E C2(1-v)
Gy = 77 J ré dr ~ aE¢ + T:;z[§1(1 + v) + —r

These determine the thermal stresses within each ring for a
prescribed temperature function ¢{r). The resultant stress

distribution is given by

a

- (rotational) + o {(thermal)
- r r r
(2.28)
(rotational) (thermal)
= g + 0

8 8 )

Although theprogram used includes thermal computations for
purposes of simplicity, these are neglected and the results are
based entirely on the rotational stresses.

At each stress calculation the computer program subdivides the

intervals [éj-l’ ag] for 3 = 3, ..., (m1) into further subintervals

by points Tys eves Ty where
a, = I, <rz<.....<r o o0= a
In addition
} (2.29)
1‘1 = a)]
T = a
n m
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The condition for subdividing the interval [;j-l’ a;] is

8
|bj bj_1| > 5, + b ) (2.30)

j-1

where 8§ 1s a small positive tolerance. If this condition is
satisfied,[éj_l, a}] is subdivided into u equal subintervals by

points Ags g5 «es G where
< g, € eienn <q = a. (2.31)

The corresponding thicknesses at these points are given by

P; = h(qi) i=0,1,...,u;
and
bJ - bj..]_l = I,PO - Pu_l
= [(p, =Py + (py = py) + ..l 4
(Pyp = Pycy) * Py = P
£ Lpo-p1]+|p1—p2|+...+
[Py = Pyoyl *+ ipyey ~ 2l
<£'(p +p.)+ (p, +p,) +... +
v 2 o 1 1 2 '
@r2+pwﬂ)+(mrl+pé]
5 .
where K. = max(b., b )



8%

Hence, ‘ . ‘
1
v 23K, [bj b_]-ll
J
or
b, = b,
vo= b7 <<: e ;:> (2.32)
3

where <x> denotes the largest integer not exceeding x. The total
number of points of subdivision for all the intervals Eéj—l’ a}]

is n, the points being labelled r r ++., Y. with corresponding

1 T2? n

thicknesses hl’ h .+« h, respectively. The reason for this sub-

?
division is to obtain a better estimate for the stress distribution.
The number n varies fromdsign to design.

For each design the stresses at these n points are calculated.

The principal shearing stresses are then given by [15@].

3

] = [Ur - O'B_I
T, = ]cél' ! (2.33)
T3 = ioe.l )

The stress constraints are defined by the Tresca maximum

shear condition

\ o £ o (2.34)
where
o = max{Ty, T2, T3)
o, = yvield stress for the material.

Therefore the behaviour variables are given-by

BE(x) = (0, , 0, «oey 0 )
1 2 n
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while the behaviour constraints are defined by

L s BF(x) s U (2.35)
where

L = (0, 0, ...,'0)

u = (00, Ty eeres oo)
and

n = n(x)

One of the essential features of this investigation is the
absence of closed analytical expressions for the stresses in terms
of the design variables. The stresses are functions only in the
sense that they are computer or}ented rules for determining the
behaviour associated with a given desipgn. Therefore the stresses
wmay be regarded as a "black box". The contents of the box are
ignored. What is essential is the output from the box which enables
the stresses to be checked against the yield criterion (2.34).

Due to the "black box" nature of the stresses the behaviour constraints
correspond to unknown surfaces in design space.

From (2.20) and conditions (i1, 1ii) of section 2.5, the weight

is given by

m-2
= TP - uls —242 2
W = 3 j£3 (aJ+1 aJ“l)(aj+1 aJ + aj—1]bj 3 bl( 3al + a2 +
2 mp 2_2_2_
23 * azaa) * 3 bm(Bam 4m-1 *m~2 amflam—z) (2.36)

Therefore W = w(bs, ceesy bm_z, a2) is linear in bj and quadratic in aj.
It is a non-convex function and could give rise to points of relative

{(local) minima.



2.7 THE NON-LINEAR PROGRAMMING PROBLEM

The problem can be formulated mathematically as a nonlinear
programming problem as follows.

Given &, u, L, U, determine a design x which satisfies the

conditions
(a) Lsxsu (2.22)
(b) L s BF(x) U : (2.35)
and minimises
(e) W(x) (2.36)

The variational structure has been discretised by a nonlinear
programming approximation characterised by non-énalytic constraints
on the behaviour variables. The objective is the development of
optimisation procedures applicable to such problems by extending
existing methods and formulating new ones. Methods available at
the time of this investigation were the 'steepest descent - alternate
step' mode of travel in design space, develéped by Schmit and his
associates [Eé—?%] for the automated weight minimisation of trusses
and waffle plates with instability constraints. Modifications are
introduced to improve their computational efficiency and convergence
rates, and generalisations lead to new methods. These are applied
to obtain numerical solutions to the disc problem on an English
Electric KDF 9 computer. As a preliminary, some of the more commonly
used non-linear programming procedures in structural problems are

briefly reviewed below.

3
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2.8 NON-LINEAR PROGRAMMING METHODS

Some computational algorithms for minimising a non—linear function
subject to a set of inequality constraints are considered. For an
unconstrained function with continuous partial derivatives, a
minimum occurs at that point where the partial derivatives of the
function with respect to its independent variables are zero and its
matrix of second partial derivatives is positive definite. These
necessary conditiong for a minimum correspond to a set of simultaneous
equations for which an exact solution is in general impossible, and
recourse must be made to approximate or numerical methods. Some
commonly used methods for minimisation are based on the method of
steepest descent [257-159, 175]. This is an iterative method for
determining a good step direction and then minimising the function in
this direction. Another group of methods is based on approximating
the merit function by the first and second order terms of its Taylor
series expansion about a given point [160, 16?]. The minimum of the
resulting quadratic may be determined exactly and an expansion of
the function about this new point obtained. If the third and
higher order terms of the series are small the new point will be
a better approximation to the solution than the old one, and the
closer the point is to the solution, the more negligible will be
the effect of the higher order terms. Direcé search methods applicable
to unconstrained functions include Fibonacci search [EG?] (this is
best suited to one-dimensional unimodal functions); pattern methods

[161] based on a combination of local univariate moves followed by



pattern moves along the besg direction given by the local search;
random search methods [E63,165] where the independent variables are
selected in either a purely random manner or according to some
probability distribution function. A detailed discussion of the
above methods can be found in the book by Wilde [165]. Recently the
techniques of Rosenbrock D29:|, Powell [92], Nelder-Mead |:13CH and
Davidon—Fletcher~Powell [132,135] have come into prominence in the
structural optimization area. These provide very powerfpl tools for
solving unconstrained optimization problems. Future developments
in the structural optimization area seem to be centred on these
. methods, used in conjunction with penalty functions to introduce
inequality constraints. A comprehensive description and evaluation
of suchmethods is given in the book by Kowalik and Osborne [?é].

&he Kuhn-Tucker optimality condition IEZO-IZ?] establishes
conditions for transforming a constrained minimisation problem into

an unconstrained problem using Lagrange multipliers and slack

93

variables to convert inequality constraints into equality constraints.

The solution to the constrained problem is then given by the saddle

point of the Lagrangian formulation. Alternatively, penalty functions

may be used to simulate the comstraints by unfavourably weighting
the merit function in their vicinity [26,80,127,134,135,161]. The
successive iterations of the problem are forced to lie in tﬂe
feasible region, since the violation of the constraint results in a
sudden and rapid deterioration of the merit function; Methods for
handling the constraints implicitly include: Kelly's cutting plane

nmethod [101] for transforming the problem to a series of linear

¥
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programming problems. The resulting linear programs can be solved
using the well-known simplex algorithms of linear programming [I66—16§].
The:book by Kunzi et al [iGé] contains the actual Algol and Fortran
programs for executing these aigorithms. Zoutendijk's method of
~feasible direction [95], gives methods for determining the optimal
search vector.

Rosen's gradient projection methods [@9,104] can be used for
moving on the boundary of a'constraint set by projecting the directions
of steepest descent onto the tangent planes to the boundary.
Alternatively, it is possible to leave the boundary of the feasible
region along the constant merit contour [16?]. The optimalldirection
for the "bounce™ being given by a quadratic programming problem.

A comprehensive list of linear and non-linear programming methods

is given in [170—173]. '

2.9 COMPARISON WITH SCHMIT'S METHOD

Equations (2.13, 2.23, 2.26, 2,27, 2.28) applied to condition

(2.34) give a behaviour constraint of the form

a

_ " dh
ofh] = ¢(x, b(), FPdr < o (2.37)

0
a

The stresses are functionals of the thickness and have a "black
box" representation in the discretised non—linear programming

formulation. The non-linear programming procedures reviewed in
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section 2.8 do not apply to constraints of the type (2.37). Methods
specifically applicable are those developed by Schmit and his
assoclates [@4-75]. Their methods were discussed in Chapter 1,
The central theme of this research is to examine the possibilities
of improving and extending Schmit's work to problems with constraints
of the type (2.37). Their work is discussed in this article in the
light of the synthesis procedures developed for the disc optimization.
They start from an initial feasible design and move in the
direction of steepest descent to a better design some finite distance
away. This procedure is repeated until a constraint is encountered
which prevents further moves in the gradient direction. Then an
alternate step is taken which is a move along the constant weight
contour. After an alternate step, a feasible design should be forth-
coming from which a steep descent can be made as before. This process
is repeated until no move can be made by either mode at which time
an optimum is said to be achieved. The reasoning behind this
technique is that since the gradient points in the direction of
greatest change it is the best direction to move to move to improve
the design. If a move cannot be made in the best direction, then
a feasible design is sought which at least does not increase the
weight of the design. They use a fixed incremental step length
scale in conjunction with steepest descent motion in the feasible
region. If the new design is feasible the step length is doubled
and this doubling process is continued until a design is reached
which violates on a4 main constraint (side constraints are ignored

at this stage). The total distance of travel back to an already
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feasible design is halved and the direction reversed. In all
subsequent iterations, the distance is always halved and the
direction reversed after each transition between a feasible and
non-feasible design. This doubling and halving technigque is thus
directed to and converges upon the constraint surface. The method
employed here moves in the gradient direction with an accelerated
step length directed to the nearest behaviour constraint. This is
similar to the step length éalculations used by Best [B{] (see
Chapter 1 for his derivation). The step length decreases as a
"constraint is approached thus enabling a behaviour constraint to be
encountered in a very small number of iterations. Therefore the
method is more selective and enables a constraint to be more

rapidly encountered than that used by Schmit and his associates.
When a design violates a constraint a linear interpolation procedure
is used to converge to the composite constraint. The interpolations
are -always made between a feasible and non-feasible condition.
Therefore convergence is more stable and more rapid than a simple
halving and doubling process. When a design lies on a constraint

it is generally impossible to steep descent without piercing the
congtraint. An alternate step is then taken such that the weight
does not increase (i.e. the point lies on the weight contour

through the boundary point). Schmit et al use the method of alternate
base planes to generate the directions of search along the weight
contour., They obtain a sequence of proposed new designs which are
tested in turn against the side and behaviour constraints. If any

oné of these designs is found to be feasible steepest descent motion
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is continued as before. The method of alternate base plane; was
applied to the disc problem and thereafter more selective methods
were sought for moving away from the boundary. Initially a direction
‘of search was generated whereby the sections not at yield stress

were thinned down in proportion to their relative stress levels

while the section at yield was thickened up by a predetermined

amount. The distance of bounce was calculated using the constant
weight condition. This gave a quadratic equation for the step

length. A major disadvantage was the possibility of obtaining
complex roots. When real roots were bbtained the side (and behaviour)
constraints were found to be violated. Thereafter a method was sought
which, at least, guaranteed non-violatiog of the side constraints.

The proposed designs then need only be tested against the yield
criterion. When yield is violated a simple modification can be
introduced to generate a new design, either by reducing the step
length which is equivalent to propagating a new direction of search,
or by changing the base plane of reference and repeating the process.
The satisfaction of the gide constraints is ensured by'the proper
selection of the step length using the linearity condition (2.22)

from which the direction of bounce is calculated. The direction is
determined by thickening the section of the disc at yield while
thinning down the section furthest from yield in such a manner as

to leave the weight unchanged. The remaining thickness variables

are unaltered. Mathematically this always gives real directions and
is more selective than the method of alternate base planes. The physies

of the problem being utilised to indicate a direction for bouncing
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back into the feasible regions. When a design violates the side
constraints the boundary nearest to the last feasible point can be
easily calculatea since the side constraints are linear. Subsequent
motion is confined to projected gradient motion.

One of the inherent difficulties of any synthesis is the
possibility‘of obtaining points of relative minima due to non-convexity
of W and R. For such cases there is no known method of establishing
whether a proposed optimum is, in fact, a global minimum or not.
However, it is possible to establish a reasonable degree of confidence
in the results obtained by searching a fairly wide region of the
feasible domain. It is also possible to select two distinct initial
points and run the synthesis along distinct paths. If the final
optimum attained is the same (to within a specified tolerance) in
the two cases, then it is reasonable to assume that the proposed
optimum‘design is, in fact, an absolute minimum weight design.

Complete details of the analysis and computational procedures are
given in de Silva [179, 180, 18i]. For purposes of ready reference
some of the moée important aspects of this investigation are

summarised below.

The optimization problem is characterised by

(a) multi-dimensional design space

{b) non-linear weight function

(¢) possible relative minima due to non-convex weight function
and feasible region

(d) 1linear side constraints

(e) stresses "black box" type functiens.
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while the optimization procedure is characterised by Figure 2.4)

(2) -Acceler;ted steepest descent motion in the feasible region
until a constraint is encountered.

(b) constrained steepest descent motion from a side constraint.
Since a move in the direction of steepest descent cannot
geﬂerally be made without piercing the constraint surface,
this method moves in the next best direcfion, the projection
of the di?ection of steepest descent on the constraint

~surface.

(c) equal weight redesign from a stress constraint surface.
Constrained steepest descent motion cannot take place as the
surface 1s unknown. A move is therefore made which, at
least, does not increase éhe weight of the design causing
the iterations to diverge away from the minimum weight

solutions.

2.10 STEEPEST DESCENT MOTION

The computer program starts from a feasible initial design and
generates steepest descent motion defined by the following iterative

equation

L) _ (@) (@) ()

X + t ¥ (2.38)

where



2E(q) - (bgq), e, brﬁgi’ aéq)]
Q(Q) - Vw(x(q)] IVW(X(q))l !
v - [2 I
- - |8y T > 3b__, ’ 3a, ]
t(q) = distance of travel in steepest descent.

From (2.36)

W _ T - + for j = 3
3, 3 (8501 = 2= (o + 25 w25 for i =3,
oW T
— = — b —b
32, _ 3 (2a; + a3) (b1 - D3]
Therefore using (2.39), equation (2.38) reduces to
(g+1) _ .{(q) _ 1o _ (@) / (q)
bj bj 3 (aj+1 aj-l)(aj+1 + a + aj_l)t N
for j =3, ...,
(q+1) @ _ 70, (
azq a2q - 3&-[2a2 + a3](b1 - b3]t ) N(q)
where the normalisation factor N(q) is given by
@ [T et @)
= — + |=
j=3 Bbj 332
m2 2 2
= Jo -
-3 [323 ‘(aj+1 J'l) [J+1 %3 J‘l)
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(2.39)
ey (m-2)
(m-2);
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The distance of travel to a stress constraint surface cannot
be determined exactly as the surfaces are unknown. Therefore the

distance 1s estimated as follows:

Let
hgq) = thickness at r.
i i
aiq) = maximum shearing stress at r.
i
o, = vyield stress.

For. purposes of this estimation, it is assumed that each héq)

can be varied independently without affecting the stress distribution

‘elsewhere. Therefore to bring hﬁq) to yield, it must be changed to
qu) given by
(2wr. qu))c 2 [2wr. hgq)]c
ii 0 i1 r,
so that

@ . @
1 [#] 1

This relation is derived on the assumption that the load remains

(q)

unchanged, so that the distance t;"" to the behaviour constraint

surface at T, is given by

=(q) _ .(q) _ (@)  (q) (4)
R = n; e o (0 = 0% < 1)

Hence
n{® - 5@
1 1

(q)
t5 ¢i(q)



. . : 102

0o - Uri hgq)
- 1
g (a)
o ¢i
or
g = Op.
MCY 5 0 Ti hfq)
1 g 1
o
and
(a) (q)

minimum t.
3gig(n-2)

t (2.40)

Thus t(q) decreases as the point approaches a behaviour surface.
At each iteration the design is checked against the si&e and stress
constraints and, if satisfactory, the corresponding stress distribution
is calculated and checked against the yield criterion. If the stresses
are below yield stress, a feasible design is obtained, and steepest
descent motion continues until a non—feasible design is encountered.
A non—feasible design corresponds to a reglon of constraint violation,

i.e. violation of either the side or the behaviour constraints.

2.11 .GEOMETRICAL CONSTRAINT VIOLATION

When the design violates the side constraints (2.22), the
distances from the last feasible point to the side constraints are
calculated and the smallest positive distance is taken, giving a

point lying on the nearest side constraint,



2.12 STRESS CONSTRAINT VIOLATICN

When a behaviour constraint is violated, a series of linear
interpolations are used to converge to a boundary point on a stress
constraint surface (to within a given tolerance). Due to their

linearity, the side constraints are never violated during the
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interpolations. The interpolations are always between a feasible and

non-feasible design (i.e. a design violating the yield condition).

2.13 BOUNDARY POINT ON A STRESS CONSTRAINT

Suppose the design lies on a behaviour constraint. An alternate

step design is sought which preserves the weight constant. Since
the synthesis either reduces the weight or holds it constant, it is
not possible for the iterations to diverge away from the desired
minimum. The direction cosines of the direction of bounce can be
determined using either raﬁdom methods or more selective methods.
The random methods are based on the method of alternate base planes
described in Chapter 1 and in reference [?Q]. A random number
generator is used to select the directions. The intersection of the
directions with the constant weight contour are found and tested as
trial designs. If any one of these designs is feasible, steepest
descent motion continues as before until a constraint is encountered
again. The selective methods utilise the physics of the problem

to indicate more systematic directions of search.



Let the current boundary point be given by
x = (b3’ “eay bm_z, 32)
and the corresponding behaviour functions by

BF(x) = (cr s O 3 savas s, 0 )

vhere the stresses are evaluated at radii (rl, ceey T)

The proposed alternate step design is defined by

X = x + M

where
A= O s A A
A = ‘step length

The constant weight condition gives
W(x) = W(x + A\)

From (2.36) condition (2.45) gives, on simplification

: : m—=2
2 A3 - b - - 2 . -
AMAZ 5 A Am_s[gbl b A, (aa+2a2)A;]A [:jZB CTI

x (a. + a. + a. ))\j_z + (bl-bB) (a3+2az)}\m_gﬁ = 0

jtl ] -1

There is a common factor of A, indicating a zero root.
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(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

aj_l)

This 1is

reasonable because 4 = 0 corresponds to x which is on the constant

weight contour. Therefore
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: m-2
2 2 . - - - -
MAmg A )\m_sEbl LEVRNN (a3+za2))€|A 3_23 (a5, = a5-)

x (aj+1 + aj + aj_l))\j_2 + (bl-ba)(a3+2a2)hm;;] = 0 (2.46)

2.14 RANDOM SEARCH

This is the method of alternate base planes described in

Chapter 1 and [?Q]. The directions of search are defined by

Ay = 0
R (2.47)
A= -Nl j =2, vae,y (@3)

where Rj are random numbers and the normalisation factor N is defined

by

bj - € :
t., = — 31 =3, v, (@2) .
] -A.

1-2

(az = L)
t; =

_Am;3

(U - ayp)
tp =

A
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Let ~ A} = minimum {(t.; t. > 0)
1gjsm=2 J
4o = maximum (t.; t. < 0)
lgjsm2 ]
Define A = R_A r=1,2,3
r rl
(2.48)
.= RrAZ r = 4,5,6
where O <.Rr < 1; r=1, ... 6
The constant weight equation (2.46) is used to recalculate )\
wherer(lz, ey km?q, Am_s) are given by (2.47)
Consider g(r) = x+ 42 (2.49)
* where
= bo+ad, b+ b +AA a +A A )
= 3 1 Ty r2 7" "me2 Tr'mey T2 Trimes

The points (2.49) are tested against the design constraints and
if any Qne of these is feasible steepest descent motion proceeds as
before until a constraint is encountered. If none of these six
designs is feasible the base plane is changed (i.e. X5 =0, A, = ﬁi
for j # 2), and a new set of proposed designs is generated. This
process is continued until a feasible design is obtained or the

current boundary point is accepted as the proposed optimum.
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2.15 SELECTOR METHOD I

This was the first attempt at using the physics of the problem
for bouncing back into the feasible regions. For a prescribed set
of direction cosines lj equation (2.46) is a quadratic for the step

length A. The direction of bounce, A, is as follows.

Let
6. = 0o, q=2, ..., n—-1
q
where
a. £r < a for some j ¢ 13, m1
-1 ¥ Tq Y ie [3 wl]
Define
a = max(o Sy T )
a, aj_1 aj

The direction ratios are defined by

lj = (Ga. - UO) j#e
]
oW .
-~ ¢ ) //|VW(X)[ j=42
ab
) _ .
where
A 205 Ay <0 j#e J

Therefore the direction cosines are given by

>
—
]
~
Q
-
|
=]
o
o
=

(2.50)

b
by
I
m'g
P
L3
S’
\
—_—
<]
=
Pl
"
'

where the normalisation factor is given by
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SRR 00)2/(1 - 22)

R

Therefore 4 can now be calculated using equation (2.46). The
method of alternate base planes consumed considerable computer time
in searching through the random directions to find a feasible point
on the weight contour. Selec?or I reduces the degree of randommess
by examining only those directions which on physical considerations
tend to move awéy from a behaviour constraint. The disadvantages of
the method are possibilities of (a) complex roots for the quadratic
in 4, (b) negative A, (c) violation of side (and behaviour)

constraints.

2.16 SELECTOR METHOD II

This is a more selective version designed to overcome the

above difficulties. Consider a step length A defined by
A = m;n(xi - Qi’ ug - xi) (2.501)
From (2.22) this corresponds to an alternate step within the

design variable bounds

1% 1

% <

£u (2.52)

For a given-step length (2.51) the constant weight equation (2.46)

can be viewed as a condition on the direction of bounce A. This
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must also satisfy the normalisation conditicon
m-3 o
} A =1 (2.53)
. i
1=1

This gives two equations for (m-3) unknowns giving an infinity of
solutions for Aj. To obtain determinate solutions the number of
variables is reduiced to two by éssigning prescribed values to (m—5)
components of A, these being made zero to obtain real solutions
enabling an altemate step to be taken.

The side constraints are linear and it is therefore possible
to determine easily a step length A which will ensure that the side
constraints are never violated. However it is not possible to ensure
‘beforehand that the yield criterion is not violated, as the behaviour
surfaces are unknown. Hence an alternate step design can be found
which lies on the same weight contour and lying within the design
variable bounds. The design is tested against the yield criterion
and, if satisfactory, steepest descent motiop continues as before.
If the design is not satisfactory the step length is progressively
reduced by specified amounts, and if no feasible point is forth-
coming, a different combination of the direction cosines is set to
zero, and hence a different direction of search is propagated. If
the yield criterion is still violated, the above method is dis-
continued and a random search i1s made to locate possible alternate
step designs. In practice, Selector’il-always wotked and therefore
there was no necessity to use a random search. Random methods consume
'computer time in searching through the random directions to find a

line which would yield a feasible point on the same weight contour.
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However, the method suggested above reducee the degree of randommess
and searches only for designs lying within the design wvariable
bounds. Therefore the method is more selective in its directions

and was found to be very efficient,.

2,17 CONSTRAINED STEEPEST DESCENT MOTION

This corresponds to motion along a side constraint. The
boundary iterations are given by a simplified version of Rosen's

gradient projection method for linear constraints [?Q].

-

2.18 RESULTS AND DISCUSSION

The following problems are considered by way of illustration.

Case (1): A standard turbine disc idealisation characterised by a

four—dimensional design space. (m= 7)

Case (2): An arbitrary design configuration to study the possibilities
of relative minima due to the absence of convexity conditions. The
problem again being characterised by a four-dimensional design space.

(m = 7)

Case (3): A standard disc characterised by an eleven—dimensional
design space (m = 14). This corresponds to case (1) with a finer

grid syétem to study the stability aspects of the synthesis. This
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provides a scientific aid for assessing the practical utilisation of

the various synthesis capabilities developed here.

Case (4): Synthesis based on the proposed optimal for case (1) with
a larger number of grid points. This again corresponds to an eleven-—

.dimensional design space (m = 14).

Cases (1,2,3) are exploited in two sets of subcases labelled
{a,b) corresponding to random and Selector II search procedures
respectively from a behaviour constraint. Case (4) was run using
Selector II only due to time constraints.

fhe synthesis programs are capable of handling thermal stress
computations and multiple load conditions due to centrifugal load
factors on the turbine blades. The computations were performed on an
English Electric KDF9 computer using Algol. The initial and final
designs are shown in Figures (2.5-2.17). Some of the essential
features of the synthesis are summarised below, Selector I proved
unsuccessful because the quadratic equation for calculating the step
length in constant weight bounce gave complex roots. When real roots
were forthcoming the synthesis generated designs violating the side
constraints. Selector II, however, proved extremely successful.

The synthesis starts from afeasible trial design. Initially, the
boundary points are not highly constrained: In the initial phases,
an alternate step mode of redesign encounters relatively few design
constraints in attempting to move from a boundary design. As the
.synthesis proceeds, the designs become more highly constrained with

a correspondingly reduced wedge of acceptability. The average number
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of redesign attempts associated with each successful redesign tends

to increase as the synthesis progresses. However, in the initial
stages, Selector I located a feasible design at the first attempt

and even in the later stages a successful design was obtained after

1 or 2 attempts. 1In contrast, the raﬁdom procedures deteriorated
sharply as the synthesis pfogressed. Both procedures, after a certain
stage, gave weight reductions which were negligible in comparison to the
time invested. This means that the evaluation of a synthesis capability
for large scale systems must be based on effective convergence rather
than on total or complete convergence. The results presented here
represent a compromise with total convergence.

Selector Il exhibited very rapid initial convergence rates and
stable characteristics. In contradistinction, random search was less
rapid and consumed considerable computer time in searching through
thé random directions for a feasible point. 1In addition, the
effectiveness of random techniques decrease for high order design
spaces.

As regards relative minima, in the absence of convexity conditions
there are no known mathematical procedures to provide guidelines.

What is possible is to establish a satisfactory degree of confidence
in the results using, in part, engineering judgement, experience and
intuition. This confidence can be established by subjecting the
constant weight contour corresponding to the proposed optimal to
close scrutiny. If no feasible designs are forthcoming then, in most
cases, the design will be optimal. In practice, such an exhaustive

search procedure would be impossible in terms of computer time. An
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alternate procedure is to run the synthesis from distinct points.
If the synthesis converges to designs of similar configuration
and weight, confidence is established in the results.

The final designs for case (2) are similar to the designs for

cases (1,3,4).



DIMENSION )
INITIAL FINAL WEIGHT (1bs) | NUMBER OF ITERATIONS RUN TIME {(mins)
. OF
Case (i) WEIGHT
DESIGN SPACE . . . . . .
Case (ia)| Case (ib)| Case (ia)| Case (ib)| Case (ia) Case (ib)
(m - 3) (1lbs) :
3.58934 | 1.66187 2.25877
1 4 62 80 5 7.8
x 103 x 103 x 103
3.60248 | 1.64547 2.32714
2 4 74 40 5 4.9
x 103 x 103 x 103 ’
3.58973 | 1.61401 | 2.14537
3 11 186 408 30 60
v} x 103 x 103 x 103 '
1.65165 1.03400
4 11 - 188 - 30 -
x 103 x 103 '

1T
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CHAPTER 3

" MINIMUM WEIGHT DESIGN OF DISCS BASED ON A VIBRATION CONSTRAINT
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3.1 INTRODUCTION

In Chapter 2, computational procedures based on the methods of
non~linear programming were successfully developed for minimising the
weight of an axi-symmetric disc of variable thickness subject to
specified behaviour and side constraints. For purposes of simplicity
in this initial investigation, the behaviour constraints were
restricted to a consideratioﬁ that the stresses should be below the
yield stress while the side constraints imposed restrictions on the
dimensions and tolerances of the disc. The problem was formulated
analytically as a very general optimal control problem. Solutions were
obtained by transforming the variational formulation into a non-linear
programming formulation by approximating the disc by a discrete model
using a piecewise linear representation for fhe thickness varisble.
Stability of the solutions was established by subjecting the thick-
ness profile to different representations.

The stresses for the non-linear program were functionals which
associated with every point in design space a stress matrix, the columms
correSponding to specified loading conditions, The stresses were
defined by a set of computer oriented rules which were represented
by a "black box" into which were put the design parameters specifying
a given design configuration and out of which comes the corresponding
stress distributions which were checked against the stress constraints.

The associated synthesis procedures were characterised by:

(a) accelerated steepest descent motion in the feasible regions,

(b) constrained steepest descent motion along a known constraint,
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(ci constant weight bounce from an unknown constraint.

In the present investigation, these procedures are further
generalised and used to synthesise the disg using a dynamics technology
in the absence of any statical constraints, whereby the lowest
natural frequency of vibration should exceed a specified resonance
frequency.

The frequency is again a functional which associates with every
point in design space a set of fundamental vibrational frequencies and
has a '"black box'" type representation. The frequency calculations
are performed inside the box and the redesign procedures are based
entirely on the output - a set of numbers giving the fundamental
frequencies at each design iteration. These procedures are independent
of the analysis employed and are applicable to problems in conjunction
with analysis programs already available. Alternatively, the méchanisms
inside the box may be utilised [§5,87,93,9§] to generate the directions
of search in design space. However, the need for refined analysis
routines for performing more effective redesign cycles can be more
readily asgessed after the initial results have been evaluated using
existing programs.

The numérical computatipns were performed on a KDF9 computer
giving weight reductions of 567 and 287 for resonance frequencies of
440 and 2000 cycles per second respectively using a turbine disc
idealisation. A discussion of these results is included together
with a description of some instabilities in the synthesis procedures

used arising from the absence of any stress constraints on the problem.
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3.2 CONTINUOUS VARTATIONAL FORMULATION
As before the weight is given by
m .
WEh] = J 2wprh(r)dr (3.1)
aj
The small deflection motion of a thin disc in polar co-ordinates is
given by El?f}:l
oQ 3
3%u 13 1 Y
ph BtZ r ar(rQr) T 86 0
’ M M
1 3 8 1 r6 -
T ot (er) T FEY) Q = 0 [ (3.2)
M M
1 %o o 13 _
T % T T ot (Mpg) % = © |
where
Mr’ Me, Mre = bending moments
Qr’ QB shear forces

u(r,o,t) = axial displacement at time t of section

whose initial

Eliminating Qr’ Q6 from (3.2)

1 32

1 32 1%
Y 9r2 M)+ T2 38 r Br]MG

where

coordinates are r, 6.

32
oh -é?‘é (3.3)

19
* ?'EEJMrB
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__ Eh3(x) [3%u 1 3u 1 32y )
M = "avn (302 Y Ve Y o2
o ‘Ehs(r) 32u 1 3u 1 32u
My 29 |V%wZ T o |lrer T T2 592 (3.4)
M oo Endl13% 1 bu
rd 12(1+v) | r 2rae6 r? 38 ’
E is Young's modulus and v Poisson's ratioc for the material.
Consider solutions harmonically dependent on both & and t
u = W(r) sin(nd + pt) (3.5)
where
n = number of nodal diameters round the disc
P = frequencylof vibration
Substituting (3.4, 3.5) in (3.3) gives on simplification
d'w . ,f3dn | L1d%w  [3d%m | 6+3y dh | g[_c_‘._ll]2 _ 2n2+1|d%W
dr® h dr r|dr3 h dr? hr dr h2\dr rZ_|dr?
3v d?h _ 6n2+3 dh 6y (93)2+ 2n2+1]dw _  _,[3v d%h _
hr drZ: hrZ dr hZr\dr ¥r3_|dr U hr? dr2
9 dh _ 6y [51112+ 4m?]_ 12(1-v¥)pp®W
hrd dr hZrZ\dr r? Eh? (3.6)
Introducing the transformations
v = 40 Du i =1,2,3,4 |
. = T I oAy e T oyt dy
i dr(l 1)
(i-1)
d h .
x. o mm——r—— i=1,2 4 (3-7)
i+4 dr(l 1)
4

_ d%n
vo= dr?



Equation (3.6) reduces to

dxi
-a—]':—- = xi+l, l=1,2,3
_dx 2 2 2
4 [12(1-v9)pp 3n4v
dr Ex< Y X2 YT
5 5
_ 3w, . 6n?#3
x5r xsrz 6
7;1 6+3v 6x2
S 1" Xe 2,12
Xg - XgTr X5
dx5 _
dr 6
) dx6 _
dr - u

The inner edge of the disec
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is clamped while the outer edge is free,

so that the associated boundary conditions are given by

du
3r

at the clamped edge r = a; and (with h = constant, see Figure 2.1)

_ a2y 1 Bu
M P owz ¢t "[?E
2
I e LI W = R
Qr r 36 T oor

+

1 3%u] _

T2 38

. L 3%u
r2 362

From (3.2, 3.5, 3.7) these reduce to

0

(1-v) 32
r2 882

at the

f
e

Jou _u -
[E r] Olr

ree
dge

8m
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x1(a;) = x2(a;) = 0
x,(a ) x,(a )
xg(am) + : a n ~17-E— = 0
m qn
xs(am) xz(am) 02 2n2x1(am) [ (3.9}
xya ) +-— - S - Tpxpa) ¢ —— 4
m an 2 apy
" n2(1- x,(a)
+ E—ég*ﬁl xz(am) - 3 0 = 0
m m

This problem has been formulated as a problem in optimal comtrol
theory where xi(r), i=1,2,...,6 are the state variables, u(r) is
the control variable and p is a control parameter. The optimal
control aspects of this problem are discussed further in Chapters 4
and 6.

Therefore the merit functional becomes

a
m
W = J 2mprxg(r)dr (3.10)
aj
Since from (3.7) h(r) = x5(r). Conditions (3.9) correspond to the

transversality conditions.

3.3 'HON-LINEAR PROGRAMMING FORMULATION

For purposes of numerical computations, this continuous

formulation is transformed into a discretised non-linear programming
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approximation using finite differences and is characterised by a
"black box" type representation for the frequency.
The weight functional (3.1) is transformed as before (see equation

{2.20) of Chapter 2) into a function of the design variables.

W[h] — Wby oovy b,y a))
where

bj z e j=3 «.., {m2)

Lsaysl L (3.11)
In addition the frequency satisfies the condition

P2 P,
where P, is the resonance frequency /

The equations of state and transversality (3.8, 3.9) are
contained inside the '"black box'", together with the associated
numerical procedures for solving these equations for a prescribed
thickness h(r) to determine the vibrational frequencies.

The design parameters representing a given design configuration
*are put into the "black box",. out of which come the corresponding
vibrational frequencies whicﬁ are checked against the vibration
constraints {3.11). The mechanisms inside the box include analysis
routines for the frequency calculations which are based on an
iterative solution of the differential equations of vibrations (3.6)
using the Myklestad - Holzer matrix technique [i?G—l?EJ. This
consists essentially in approximating the disc by a series of massless

circumferential strips of constant thickness.
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Equation (3.6) thus reduces to

d'w . 2d% _ 20241 d% 2n%+1 W | 2% - &) o _
dr® r dr3 r¢ dr* r3 dr Tt

This is a fourth order homogeneous differential equation for

which the solution is given by

— 2
W(r) = Alrn + Aor Ty Ajr oy Ayr b n

W
%]

where Ay, Ay, A3, A, are constants of integration. These are then
eliminated using matrix recurrence relations which enable the
consideration of all possible combinations of boundary conditions.
The method is relatively simple and was alreadyprogrammed at the
start of this investigation. The contents of the box are disregarded
since the purpose of this investigation is to develop computatiaonal
procedures for describing problems with non-analytic constraints.
Complete details of the analysis are given in de Silva [182,1851.

A summarised version of this work is given below.

3.4 SYNTHESIS PROCEDURES

The synthesis procedures in the absence of any stress constraints

are characterised by:

(a) steepest descent motion until a vibration constraint is

encountered;



133

(b) constaint weight redesign at the resonance frequency
(¢) design parameter bounds never violated.

The computer program (Figure 3.1) consists of moving from an
initial feasible design in the direction of the gradient to a better
design some finite distance away. This process i1s repeatzd until a
vibration constraint is encountered which prevents further moves in
the gradient direction. Then an alternate step is taken which is a
move along the constant weight surface.

The step length in steepest descent mode of travel is determined
using a simplified form of Rogen's gradient projection method in
conjunction with the linear side constraints. This enables fairly
large step lengths to be taken, thereby economising on computer time.

As the designs approach a vibration comstraint surface, it is
possible that the step lengths used in the steepest descent procedure
are too large with the result that the design pierces the constraint
surface and moves into a region of constraint violation where the
vibrational frequencies of the designs aré belo# the resonance
frequency. If this is the case, a quadratic interpolation procedure
is used to converge to a design at the resonance frequency by
thickening up the variable sections of the disc. This gives a design
point on the boundary of the vibration constraint which is a non-
analytic surface due to the "black box" nature of the frequency,
thereby precluding the use of standard methods bf non-linear
programming, such as moving along the constraint in a direction in

which the weight decreases. Instead, an alternate step is taken along
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the constant weight surface, where the directions of search are based

on either selective methods vtilising the physics of the problem

cr random methods, and are summarised below:

(1)

(2)

(3)

(4)

Selector I - Two design parameters are changed leaving the rest
unchanged. All possible combinations are considered. (This is

identical to Selector II of Chapter 2.)

Selector II - A pefturbation method using the Lagrangian energy
density vector to estimate the normal to the vibration constraint.
The analysis is based on the concept of efficiency coefficients
[184, 185] in conjunction with Rayleigh's principle for relating

small changes in frequency to small changes in design.

Selector III - Three successive designs are used to estimate a
new direction of search, This is used in case there are sharp
ridges on the vibration constraint surface. This is essentially

an extension of the "zigzag" procedure developed by Schmit and
Fox [?é].

Random Methods - This is based on the method of alternate base

planes described in Chapters 1 and 2.

Since the above search procedures with the exception of Selectors

IT and III were discussed in Chapter 2, the latter methods only are

summarised below.
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3.5 SELECTOR 11

Rayleigh's principle [184,185] is used to alter the design to
achieve changes in frequency. Consider small perturbations about a
configuration of stable equilibrium. The kinetic and potential

energies are given by [iBé].

_1 s
T =3 TlJ Ny nJ
(3.12)
Vo= 2V
2 i3 i nJ
where
n; = deviations of the generalised coordinates from
equilibrium
T.., V,. = symmetric constants
1] 1]

The Lagrangian is defined by
L = l{T.. n. n. - V.. n. n.] ' (3.13)
2V j ij 1Y

Therefore the equations of motion are given by Lagrange's equations

T..n. + V.. n. = 0 3.14
i n; ij nJ ( )

Consider the harmonic solutions

n, = a; sin(pt + €) (3.15)

Substituting (3.15) in (3.14)

- 2 =
p Tij a; aj + Vij a; aj 0 (3.16)

Consider small changes in Ti" Vij



- p2 §T.. a. a. - 2p 6p T.. a. a. + &V.. a. a.
P J P oP 1] 1 ] 1] 1t ]

i 1

Therefore from (3.12, 3.15, 3.16) this reduces to

where
max
max

Equation (3.17) may be

AT - AV
max max

yAY
max

written in the alternative form

p = n dm

where

It

Sm

]
It

change in mass

efficiency coefficient.

The efficiency coefficient in turn is defined by

T!'—"'poz
2pvmax
where
T = tdVv
max
Vv = vydV
max
L = t-v
t = kinetic energy density
v = potential energy density
% = Lagrangian energy density
In general
§ = n. &m,.
P Z J 3

3
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(3.17)

(3.18)

(3.19)

(3.20)
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where 6my, émp, ..., are changes in mass at the variable sections of

the disc

_ fow - _
5111. = [Bb ]Abj+2’ J - 1,2,-.-, m 4

m—3

(=]
=)
I
———
. ax
E
S —
=
[\
N

substituting (3.21) in (3.20)

w4
oW oW
Sp = n. w— Ab. + n___w—= Ahap
. 521 3J abj+2 j4+o m—-3 dazp
m—4
oW aw
= t z A, M, =——— + tA N oo
=1 1 ] abj_'_2 m—3 m3 2dap

In order to ensure &p > O the direction is defined by

A =, i = 1l,0.., m4
3 i J ’ ’
~ .. oW Bt
Am—s "m-3 1 dayp >0
- - g 3W
= nm-3 if 33, < 0 J

The step length is given by

t = Min{ Min (b. - ¢)|, (a» = L), (U - az)}
3cjsm-2

" to ensure designs within the design parameter bounds.

The efficiency coefficients are calculated by considering the

bending of the massless elastic circumferential plates of constant

thickness used in the frequency calculation.

The strain energy is given by [iBz].

{3.21)

(3.22)

(3.23)

(3.24)
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S S A 1 O U IO U 1 N L T L
1 28@v% {37 T rar T x2 38 ar2(r or ~ r? 286
5 1 9u)’] '
- [g-fﬁ] }r de dr + ” pR2hr2u 2—‘; dr de (3.25)
where
2 = speed of rotation of the disc.

Substituting (3.5) in (3.25) and averaging over time gives for the

strain energy density

2
_ __En? a%w 1 dw n2 d?w(1 dw n2

v. - 24(1-v2){[drz T r2 W 2(1-v) drZ\r dr 2 ¥

_onfaw W)L ey, W (3.26)

r2|dr T P dr '
. dw . .
The deflection and slope W, i respectively are given by the
2

nodal shape matrix from which %;g is calculated using finite
differences.

The kinetic energy is given by

1 duy 2
T = Hiph(s? rdrde (3.27)

Substituting (3.5) in (3.27) and averaging over time gives

1
t = 5 ppd W (3.28)

Equations (3.26, 3.28) determine the strain and kinetic energey
densities from which the direction ratios (3.23) may be computed.
The direction of bounce is then obtained by projecting this direction

onto the hyperplane defined by the intersection of
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W(ba, ceey bm—z’ az) = constant
(3.29)
as = constant
3.6 SELECTOR ITI
Consider three successive designs §(q—2), §(q-1), g(q)
generated by the constrained steepest descent equation (2.38).
The corresponding frequencies are given by
-1 . (q-2
b, = P(q) <p(q ) ¢ pla2) (3. 30)

a

(q)

Let g be the foot of the perpendicular from x onto the direction

w(q-Z) defined by E(q—Z)’ §(q-l): The associated frequency p is
estimated by linearly interpolating on g(q-2)
(q-1) (g-1) -‘
- t (e-1) _ ¢t (q-2)
P = [1 + t(q_z) . cos G]p t(q_z) cos & . p (3.31)
where
cos 6 = (@D | @)
The direction ratios are given by
g = ¥V -i  if pspy
} (3.32)
= x - x(q) otherwise

The direction of bounce back into the feasible regions is
obtained by projecting this direction onto the hyperplane (3.29).
The step- length is given by (3.24). 1If the proposed alternate step

designs are non-feasible the step length is progressively reduced.



140

3.7 RESULTS AND DISCUSSION

The numerical work was carried out on an English Electric KDF9
computer using Segmented Algol. The following cases characterised by

a four-dimensional design space were considered.

Cases (1,2): a standard turbine disc idealisation using resonance

frequencies 440, 2000 cycles per second respectively, (figures 2.5,
3.2, 3.3). The frequency of the initial design, figure 2,5 was

275365 cycles per second.

Case (3): an arbitrary design configuration in conjunction with a
resonance frequency of 2000 c.p.s. to examine the possibilities of
relative minima in the absence of convexity conditions on the weight
and feasible regions, (figures 2.8, 3.4-3.6). The frequency of the
design of figure 2.8 was 2182:98 c.p.s.

Case (1) using a resonance frequency of 440 c.p.s. gave designs
which never encountered a vibration constraint during convergence
to the optimum. Therefore an artificial resonance frequency of 2000
cycles per second was introduced to study the interactions of the
synthesis with the constraints giving rise to cases (2,3); the
initial designs for cases (1,2) being identical.

The programs were run using Selectors I and II in turn for each
of the ca;es (2,3). The results presented here are based on
Selector I. Selector II failed to generate a satisfactory direction
each time due to the fact that the kinetic energy density at one of

the variable sections became very large (of the order of 10° in suitable
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units) in relation to the potential energy densities which were every-—
where of the same order of magnitude (= 103). This part of the
investigation consumed comsiderable computer time and it was there-
fore decided to try Selector III only on the final designs in cases
(2,3) to see whether further improvements were possible. Some improve-
ment was obtained but not commensurate with the time consumed. In the
initial stages the boundary designs were not highly constrained and a
feasible design was obtained at the first attempt using Selector I.
Thereafter the designs became more highly constrained with a corresp-
ondingly reduced wedge ofAfeasibility requiring a greatly increased
number of redesign attempts before a successful design was obtained.
This accounts for the shape of the plots of weight versus total redesign
attempts (figure 3.6) where its arbitrary nature and the decreasing
convergence rate make it impossible to determine when the synthesis

is complete. Attempts to consider higher order design spaces proved
msuccessful as the program became too big fo; the machine,

The final design in case (1) was bounded by all four design
parameter constraints, while the final designs in cases (2,3) were
bounded to within a reasonable tolerance by the vibration constraint
and the design parameter constraint a, = L. However, this does not
necessarily mean that the optimum lies at the intersection of one or
more constraint surfaces. The final designs (figures 3,4, 3.5) in
cases (2,3), although differing in weight by less than 1%, are
radically different in configuration. This may be due to local
instabilities or to the presence of bockets of relative minima in
the composite constraint surface. Further research is needed to

establish this point more conclusively.
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3.8 CONCLUSIONS

An automated synthesis capability was developed for discs using
a "black box" type representation for the frequency, weight reductions
of 56.37Z, 28.67 and 29.47 being recorded for the three cases presented
here. The frequency calculations used here, though relatively simple
from a mathematical standpoint, involve the programming of extremely
long and complex routines. This could mean run times of about one
hour for comparatively few design cycles, over 987 of the time being
consumed in the frequency calcuiations. The time and the design
iterations required to achieve a specified weight reduction increases
at an increasing rate with the dimension of the design space, thus
precluding any systematic evaluation of such cases. In addition,
severe limitations would already be present from storage considerations.

Alternative analysis routines which could be used include an
eigenvalue formulation [§5,87,93,9§] based on the methods of finite
elements or finite differences [19?]. This approach seems to offer
better possibilities for expleiting Selector II, where the Lagrangian
energy density vector which determines the normal to the vibration
constraint surface could be readily calculated using the member stiff-
ness and mass matrices. A derivation of this normal is given in
references [§7,19:]. The same difficulties regarding storage and time
could still be present. In any case, these programs were not available
to the author at the start of this investigation. Another possibility
is‘an equivalent reformulation of the problem in which, instead of the

weight being minimised, the frequency is maximised with a constraint on the
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weight W[E] < wo, along with the other constraints. These constraints
are much easier to handle and enable the more conventional methods of
non-linear programming [1711 to be better utilised.

The synthesis procedures used here displayed the samelgeneral
characteristics as those developed in the earlier investigation
using a stress constraint. That is to say, rapid initial convergence
followed by slow convergence as the designs became more highly con-
strained with a correspondingly reduced wedge of feasibility. The
number of iterations and the time consumed increase very considerably
with the dimension of the design space. For instance, caées (1,2),
using a stress constraint required 62 iterationsg with a run time
of 5 minutes to achieve a weight reduction of 547%, while the
corresponding figures for an eleven—-dimensional design space were
186 iterations with a run time of 30 minutes. It is estimated that on
the average, the time for a frequency calculation exceeds that for a
stress calculation by a factor of over 10:1. It should also be
noted that the designs presented here would be substantially
modified in the presence of a yield constraiﬁt on the stress with a
correspondingly reduced weight change.

From a design standpoint, the problem of interest is optimization
based on a combined stress and vibration constraint. The program for
this investigation is a combination of the separate synthesis programs
for stress and vibration constraints. This is primarily an exercise
in computer programming and a really effective utilisation requires
the development of more automatic software packages for handling such

large scale systems.
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Part II - Optimal Control Formulation

CHAPTER &

PRINCIPLES OF PONTRYAGIN AND BELLMAN
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4.1 INTRODUCTION

In Chapters 2 and 3 the problem of minimising the weight of a
staam turbine disc subject te specified behaviour and side constraints
was considered, The disc was modelled by a piecewise linear function
and its design configuration was represented by a discrete set of
independent variables which defined a multi-dimensional vector space,
called design space. Every design configuration was represented by
a unique vector in the space. The side constraints imposed bounds
on the design variables to assure physicaily reasonable designs and
corresponded to hyperplanes in design space. The behaviour variables
on the other hand were functiounals which associated to every vector
in the space a uniquely defined vector function - the behaviour
constraints corresponding to unknown surfaces in the space. The
weight which was a function of the design variables was represented
by a family of contours of constant weight. The problem consisted
in determining those points on the least weight contour which lie in
the feasible region enveloped by the constraint surfaces and was
based on a non-linear programming formulatiom.

This chapter, however, recognises the continuous formulation
of the problem [201,202] which is equivalent to a very general optimal
control problem with inequality constraints on the behaviour and
design variables. The solutions are given by the maximum principle
of Pontryagin [i3f] and the optimality principle of Bellman [140,14i].
These represent the first order necessary conditions for an optimal

solution: first order conditions meaning those derivable by the use
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of first variations, namely the Euler—-Lagrange equations, the trans-
versality conditions and the Weierstrass condition or their equivalents.
Pontryagin's principle is characterised by a system of ordinary
differential equations of the Hamiltonian kind, while the dynamic
progranming formalism of Bellman yields a partial differential

equation which is a generalisation of the Hamilton-Jacobi theory

of the classical calculus of variationms.

These principles have been derived in their full generélity
using a modified first variation method developed by Breakwell and
others [203—2651 for introducing inequality constraints into a
Lagrange multiplier formulation. The mathematics is comparatively
simple and should be more readily acceptable to design engineers
than the more sophisticated approach based on set—theoretic
considerations [éoj]. This chapter contains all the main results

derived in [207].

4.2 STRUCTURAL OPTIMIZATION PROBLEMS

The systems considered are restricted to structures whose state

is governed by a set of ordinary differential equations of the form
Z - G w0 4.1)

where t is the independent variable, t, st st and x, u, ¥ are

the state, control and control parameter vectors respectively.
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x = x(t) = (x(t), ..., x (1))
u = u(®) = (ur(e), ..., uy(e))
w = (wl) ...,Wg)

The control parameters correspond to global variables such as
the natural frequencies of vibration and total energy, while the
state and control vectors correspond roughly to the generalised
coordinates and their derivatives. These include behavioﬁr variables
such as stresses, deformations and creep strain fields and design
variables which specify the design configuration of the structure.

The vectors (x, u, w) are permitted to vary in some prescribed
manner so as te optimize a merit criterion.of the form

I = G(w) + [ fO[:j(t), E(t),'v_g, t]dt {4.2)
' t
o

This would include as special cases:
(1) ‘the.minimum weight or minimum cost deéign of structures,
(2) selection of some optimal combination of vibrational modes,
(3) efficiency of some engineering component such as minimising the

power loss during the transmission of electricity in cables,
(4) maximising the range of a thrust limited rocket.

The constraints on the state and control vectors and parameters

are given by inequalities of the form
gk(g, u, w, t) g 0; k=1, ..., P {4.3)

These correspond to the behaviour and side constraints.
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The boundary or end conditions are given by,

]
(]
-
©
]

1, ..., £ € ntm+l

eé")[z(to), ule ) t,)
(4.4)

n
o]
O

1]

6;1)[§(t1), ult)), t,) l, «vo, § € ntmtl

and correspond to the external load conditions on the structure.

4.3 OPTIMAL CONTROL PROBLEM

Therefore a very general class of structural optimization
problems has been formulated as problems in optimal control theory
with the addition of inequality constraints on the state and control
vectors and parameters. )

Summarising, minimise the functional

t1
I = G(w) + £ (x, u, w, t)dt
. t '
[o]

in a class of functions and parameters
xi(t)’ u_"I (t), Wk

(t st < ty; i=1, ..., n; i=1, ..., m; k=1, ..., L)



and the end conditions

e§°)(:_<(to), att ), t ) = 0;
oS (e, wey, 1)) = o5

Assumptions

(a)

Limits of integration t» ty are

(b) u(t) is continuous and piecewise
{c). fi’ 8, i=1, ..., n} k=1,
{d) Béo), Bgl) possess first partial

The Pontryagin representation of
below.
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l, ..., r £ n+m+l

1, ..., 5§ £ n+mtl

variable
differentiable in [Eo’ t;]
..., p are of class CZ2,

derivatives.

the problem is considered

The central result of this formulation is the maximisation

of the Hamiltonian with respect to the control functions lying in

a control set §.

In the absence of such a constraint set the problem

reduces to a general calculus of variations problem.

4,4 METHOD OF SOLUTION
Consider
t
S
t
0
where

(4.5)
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The summation convention is implied where a repeated suffix denotes
summation with respect to that suffix unless otherwise stated or
implied. Ai(t), uk(t) have the status of generai&sed Lagrange
multiplier functions.
Define
] * k%
pk(t) = 0 if gk(§ » U ,W , t) <0 (4.7)
*x kO . . . .
where (x , u, w ) are the optimal combination of vectors which
minimise the functional I.
Consider small perturbations about the optimal combination of
vectors, consistent with the constraint conditions (4.1, 4.3, 4.4).
x(t). = x (t) + 6x
u(t) = u (t) + du
*
v o= w o+ v
®
I = 1I + I
From (4.2, 4.5-4.7)
ty
§T = &G - &3 - 6 J uk(t)gkdt
) t
o
t t1
= §G - & - [;kngE] - [ ukégkdt
t
o t
o
ty
= §¢ - &I - J ukﬁgkdt (4.8?
t
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The only non-zero contribution to the above integral comes from those
intervals in which My # 0.
This implies

* * *
gk(E:E,E:t)=0

* * *
gk(E:H,E,t)*‘ng(O

i.e.
w () # 0
(4.9)
ng < 0
The minimising condition
6T = O : _ (4.10)
for all perturbations consistent with the constraint conditions
giveé, using (4.7 - 4.9)
uk(t) 2 0; k=1, ..., p; for all t ¢ [Eo’tl
(4.11)
66 - &1 = 0
From (4.5, 4.6)
. 0 £y .
8y = [%6%] + I 8F(x, x, u, w, t)dt
to t .
o
t

I
Mg 1
O
L™
rT rt

L
+
Sm——
————
o)lw
5 | e
O
’_l
Q2
[
On
=
azr
ro
On
a

+ ——-éwk]dt (4.12)



But
1 - Tt fr
8 x,8t = [; GE] + I §x.dt
i 1
Hence, t - to
o] o
t t
! . 1. . t]
§x.dt = § J x.dt - EE.Gt
i i 1 N
t t o]
o o
. 6
= [E?i - xiGE]
t

o}

Therefore integrating by parts using (4.6, 4.13)

tl £ ty
3F B e oF _ d [8F
J 3%, 0%dt = E’sxi x;8t)sx J ox; dt['e'-:':'.']dt
1 1~ t 1
t o t
(] R [+]
. ty Lo
= - Eaxi - xiét))\i(tﬂt + J Gxi)\i(t)dt
[a]
0

Substituting (4.14) in (4.12)

ty
. t) . aF
6J = [E% + A.x.)8C - A.G#Z] + j {(A. + = )6x.
11 11 1 9x. 1
. t 1
[o] t
0
+ %E ka}dt
Vi
Define the variational Hamiltonian
H(x, u, w, t; A, p} = F+ ARy

= = fo(l‘:: u, w, t) + lifi()_{s u, w, t) - ngk
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{4.13)
(4.14)
oF
— 8u.
Buj ]
{(4.15)

(x, u, w, t)

(4.16)
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where

>
n

(}\1, crey ln)
BT Gy e )

Substituting (4.16) in (4.15)

t 17,
§J. = |HSt - A.6x. + o sw dr + S PRPLI P
i1 & Bwk k 1 9x 1
o t t
o o]
+ iaﬂaSu:Idt S (4.17)
su. J
J.
From (4.11, 4.17)
. . . s dH .
Adjoint Equations: Ai = =5k 3 i=1, ..., n (4.18)
1
oH .
‘5-11'. = 0 ; J = 1’ »auy m (4-19)
]
Transversality conditions
t1 tlaH '
-G + Hét - A.6x. + — fw,dt = 0 , (4.20)
171 ow k
: t k
o
o

This must be satisfied for all perturbations consistent with (4.4)

From (4.1, 4.16)

x, = f. = —/—; i=1, ..., n (4.21)

Therefore the solutons are characterised by a set of ordinary

differential equations of the Hamiltonian kind.



By _ _ o
dt ax. °
&y om
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| (4.22)

The transversality conditions (4.20) in conjunction with the end

conditions (4.4) provide a sufficient set of boundary conditions

for solving (4.22).

The following consistency condition can be obtained as a by~

produét of the analysis

4o _ M. Ho o M. 9H , 3H 4 )
dt axi i auj h| awk k ot axi 1 Buk k
_ oH 3H 3H .
= x5 A T: i ox. KMk
aH
= = {(4.23)
Consider
131
® * *
I IE(?_(:U:W’ t; A, 9) - H(?_{:E:"_V: ts A, Oﬂdt
! .
o
t
* % *
= I [E;(g s U s W, t) - £ (x,u, w, é}}dt
to,
t

- fi(g*, E*’ g*, %E]dt (4.24)

(4.25)
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provided

* *
g (X, U, v, t) <0 (4.,26)

Equation (4.25) must be satisfied by all controlsu(t) within
%
a sufficiently small neighbourhood of u (t) and satisfying (4.26).
This implies

* * * * *
B , u, w, t; A, 0) < Hx,u,w, t; 1,0} (4.27)

provided equation (4.26) is satisfied. This is the Weierstrass
condition that the Hamiltonian must be maximised with respect to
the controls within the interior of the constraint region bounded
by the g (This implies B = 0.) The equations derived in this

section are summarised below. .

4.5 PONTRYAGIN'S PRINCIPLE

Consider the.Hamiltonian
H(x(t), ult), w, t; A(t), p(t))
= - fo[g(t), u(t), w, €] + A (O, (x(r), u(t), w, t)
- w0 (2(6), u(®), w, t) (4.16)
where
o

* * *
For optimal solutions (§ (t), u (t), w ) to the problem formulated in

section 4.3, the multipliers &(t), p(e) must satisfy the following
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conditions
. x k%
(a) l-lk(t) = 0 if gk()_{ » U, W, t) <0
. £ Kk %k
> 0 if gk(a'( y U, W, t) = 0 (4.11)
(b) Adjoint equations
. oH .
Ai' i~ i=1, ..., n (4.18)
i
. oH .
xi = . H 1 =1, ..., n . - (4.22)
i
2H .
_a_u.= 0 ; J=1’ .'.,m (4-19)
This is the equivalent statement of the Weierstrass condition
that H must be maximised with respect to the controls within the
interior of the constraint region.
(c) Consistency condition
di _ 3H
It - 3t (4.23)
(d) Transversality condition
t
1 ' an
- 866 + |HSt =~ Xx.dx:, + -— ow, dt = 0, (4.20)
173, awk k
o t

This must be satisfied for perturbations consistent wipp the

end condition (4.4).



162

(e) Weierstrass condition

* * * * *
H(x , u, w, t; A, 0) & Hx,u,w, t; 1A, 0

(4.27)

. S
provided gk(§ s U, W, t) < 0 k=1, «v0y P

4.6 'RESTRICTED MAXIMUM PRINCIPLE

This corresponds to an arc of the optimal trajectory lying on

the boundary of the constraint domain. So that without loss of

generality, assume

® * * '
gk(x y U s W, t) = 0; k=1, ..., p'sp
. ' (4.28)
* * * ' ’
gk(§ s U, W, t|) < 0; k=p'+l, ..., p

where

Therefore from the implicit funetion theorem there exists a neighbour-

*

* *
hood of (x , u , w ) such that

8k(7_(s u, W, t) = 0; k=1, ... P' . (4.29)

This may be solved uniquely for p' components of u as functions of
the remaining {m - p') components of u and x, w, t. Without loss of

generality let these p' components be Upy Uy eeey Uy,

2° P
Let

u, = (ul, ;.., up.) (4.30)



vwhere
u, = —c(up'+1’ sres Uos X, W, t]
' and '
u = (l_lc: P'_‘"l’ yeay Um)
From (4.16)
i - )
H = H - Vug
k=1 © K
where
H = -Ff

This corresponds to

constraints.

From (4.7, 4.18, 4.19, 4.28)

dx. - p' g -
i _ _3H _k . -
dt = 3Xi + k£1 uk(t) ax s 1 1: » I
~ p' . ag
8H _ 9H  _ K _ o
Bu,  au, z uk(t) du. 03 1 =1, o5 p
h| j k=1 h]

These may

di n g
—_— = —VH + E__
dt x 9x

N ~ 98
VuH - p— = 0
du
-C
where
ﬁ = (1-11, v ey upl)
3 9
Vx— "'8;1, LEL IR ax
n

be written more compactly using matrix algebra as

(4.31)

the Hamiltonian in the absence of inequality

(4.32)

(4.33)

(4.34)
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_ 3 9
vu B [Bu ' * du ,)
1 P
[ -1
981 981
'aTl * v e s s . ‘ﬁ;{
Bg =
ox
] i, X
9x) 39X,
| _Jp' xn
9g1 881
-éTIT N AR - . 'a_u'_"
g . .
S . .
a8 _1 98
3;% ............. 3;21
P
L ___pi % pl
Eliminating ﬁ from (4.33, 4.34) gives
di . (% Y 1r3g
7 = " VH ¢+ VuH[§§ ] &54 (4.35)
Define
Pk(?_{’ U, w, t) = ¥ gk . E ’ k=1, ’ P'
dx
= ¥ — (4.36)
xPk "

Suppose the constraints g, are functions of the state variables only

g, = g X k=1, ..., p T (4.37)
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From (4.29, 4,36)

k
= . = ] t ﬁ
"'—""'] - O, k - [y ey p ( '38)

Py

Equations (4.35 - 4.38) represent the equations of the restricted
maximum principle. The Weierstrass condition corresponds to

maximising 1 subject to the constraint (4.38).

4,7 JUMP CONDITION

The condition on the adjoint vector A at the entry and leaving

defined in (4.28) 1is considered below.

points t,s tR’
From (4.33) . 3%

At + h) - _&(t) = - hvxﬁ + hﬁ[ﬁi] - ho(h) (4.39)
where )

dA At + h) - A(e)

— = + 0(h)

dt h

to £t £t < t+h £ tz £ t1

0(th) —+ 0 as h — 0
Let

t—*tz

} (4.40)

h — 0+

From (4.39)
9g
A(ey +0) = Aey) = +l’(t£)[53?}
- t—tg‘
i.e.
ag .
Ae, +0) = A(tg) + E(tg)[a—l{]t_t (4.41)



where
ﬁ(t) —> o

such that

hp(t) — a finite limit =

From (4.11)

v(t,) >0
Suppose
t <t
e
and
g, < 0, k=1, .
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(4.43)

(4.44)

This corresponds to approaching the entry point t, from within the

constraint domain.

From (4.11, 4.16, 4.33)

AR) - A(t-h) =

Let
t— t
[}
h — 0O+
then
ale) - AMe, - 0)
At ) = At - 0)

Equatiomns (4.41, 4.43, 4.46) define

continuous at an entry point but is

- W7 B - ho(h)

(4.45)

i
[}

(4.46)

the jump conditioms. A(t) is

discontinuous on leaving.
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4.8 BELLMAN'S PRINCIPLE

The results of the preceding sections were obtained by minimising
G-J from (4.11) with respect to the controls u(t) belonging to a
control set U defined by (4.3, 4.4). The following miunimum cost

function is defined corresponding to {(4.11)

ty
v(t, x(¢), x(t), w) = Min J -F(x(0), x(0), u(o), w, o)do
u(o)el
tgosty
+ G(w) (4.47)
t+h
= Min Min f -F(x(a), é(c), u(o), w, o]do
u(c)el  u(o)el
tgogt+h t+hgegt, t) _
+ J -F(x(0), x(0), ulo), W, o)do + G{w)} (4.48)
t+h

This is obtained by splitting the integral and minimisation operation
in (4.47) into two parts: (t, t+h), (t+h, t;) and in the limit

h — 0. The first integral in (4.48) depends only on values of

g e EE, t{E] and is independent of minimisation for ¢ > t+h. There-

fore, using mean value theorem for small h

t+h
Min Min I -F[E(o), é(o), u(o), w, c)dc
u(o)el  u(o)eU t
tgogt+h  t+hgogt
t+h

= Min J -F(x(0), x(0), ulo), w, o}do

u(o)el t

t<ost+h
= Min {_hF(}_‘i(t): _}_.{(t)’ E(t)s W, t] } - (4.49)

u(t)el
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For the remaining term 1in (4.8) for which o varies from (t+h)
to t;, the only effect on control applied from (t, t+h) is to determine

(x, é) at t+h, So that, from the definition (4.47) this term reduces

to
tl
Min Min f -F (x(0), %(0), ulo), w, o)do + G(w)
u(c)el  u(o)el t+h .
tgogt+h  t+hgogty
=  Min {V(t+h, x(t+h), x(t+h), »_q]} (4.50)

u(t)el
Combining (4.47 - 4.50), the following iterative functional equation
is obtained.

V[t. x(t), x(t), g) = Min Bf(g,é,g:y,t) + V(t+h,§(t+h),§(t+h),yﬂ
uel

(4.51)
This is the mathematical statement of the optimality principle

of dynamic programming [140, 14i]. But from Taylor's theorem

' . . av . aV - a
V{e+h, x(eth), x(e+h), w) = V(E&,x%,w) + h oo + by T, 5w, 0(h2)

Therefore substituting in (4.51) and taking h — O

df, ’

v . v i a3V _

E Mm]F*fiT&.*E’t’_E] -0
uel 1 1

On further simplification this becomes

of af £
v av i ie ilav] _ -
ar +Mn Eo gt o, Y [Bx I Ol B T: ]aJ = 0 (4.52)
uel 1 [ h| I

This equation contains the inequality constraints &) and

corresponds to the generalised Hamilton-Jacobi partial differential
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equation of dynamic programming. Equations (4.52) can be solved using
the method of characteristics to yield the Pontryagin equations of the
previous sections. The dynamic programming approach presents considerable

storage difficulties for high order systems.

4.9 DISCUSSION

The principles of Pontryagin and Bellman have been derived for
a class of structural optimization préblems which have been formulated
as general optimal control problems. A first variation method was
used for introducing the inequality comstraints into a generalised
Lagrange multiplier formulation. Variations in the functional J
defined by (4.5) gave the desired results. One of the difficulties
in the simplified approach presented here lies in formulating

(o) (1)

necessa and sufficient conditions on f., g , 0 s O
y 1 k o)

existence of (4.17) and the derivation of the jump conditions.

for the

These difficulties could be resolved using the methods of functional

analysis which. lie outside the scope of this thesis.

4.10 STRUCTURAL PROBLEMS IN CONTROL FORMULATION

The application of optimal control theory to the structural
optimization area is of more recent origin. The formalism is based

on the maximum principle of Pontryagin and the optimality principle



170

of Bellman in the theory of dynamic programming. They provide the
first order conditicns for an optimal: Euler-Lagrange equations,
transversality conditions and the Weierstrass condition. These are
essentially a systematisation of the variational calculus where

an entire function,or functions, is determined to optimise some per-
formance criterion subject to specified constraints. The applications
are based on a continuous model aﬁd one-dimensional structures [gp,
93—95,113,119,126,208—21§ﬂ have been formulated as optimal control
problems with, for example, skin thickness or a beam dimension’
playing the role of a control function. These are studied in conjunction
with static and dynamic technologies. In this connection the work

of Haug and Kirmser [206] is of special interest as they consider .
beam problems in the presence of inequélity constraints on the stress
and deflection fields .using Lagrange multiplier functions.

In Chapters 5 and 6 the scope of optimal control theory is further

extended to include more complex structural optimization problems.



CHAPTER 5

OPTIMAL CONTROL FORMULATION OF DISC BASED ON A STRESS CONSTRAINT
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5.1 TURBINE DISC PROBLEM

The principles of Pontryagin and Bellman developed in Chapter 4
are applied to the structural optimization problem studied in Chapter
2 where the weight of the turbine disc was minimised in the presence
of a stress constraint. The variational formulation was already
developed in Chapter 2 and is summarised below for purpoées of ready
reference.

The weight functional to be minimised is

a
113
W = [ 2rprh{r)dr (5.1)

'al

a

where the thickness distribution is defined by

h(r) = b, aj £ r < ap
= h{r) az £ 1< ap, (5.2)
= b a £r<a
m m—1 m

The behaviour characteristics are described by the ordinary differential

equations
da ; )
r . -1 dh heo o 2
dr h [:%r dr * r(cr Qe) oo ré:]
dg g -0
0 r 0 U dh
el = I el Vw2 T + (5.3)
and
o, = 8, at r = a;
g = 8 at r = a
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These equations were derived on the assumption of radially symmetric
plane stress.

The behaviour and side constraints were defined by

-

F(cr, 09) 3 9,

where
F(cr, ce) = max(|0r|, [cel, [cr_- ce[) r (5.4)
h(r) 2 ¢ for all r e [gz, am_:]

a) <L g ap £ U < ap;

5.2 OPTIMAL CONTRQL FORMULATION

-

The behaviour differential equations (5.3} are transformed into

the optimal control formulation by the transformation equations.

X1 = 01_ 3
X9 = O

° f . (5.5)
X3 = h(r) '
u = Ei_]:l T 4

dr

From (5.3, 5.5)
dxl A
X

F = = ; Elu + -£_-3(X1 - Xz) + pwzr}cg:]
32 - X] T X9 _ VXhHiu oo vazr r (5.6)
dr r X3
d.X3




Equations (5.6) correspond to the state equations where

state vector: x = (gr, Ty h)1x3
control vector: u Gﬂl
- dr

1x1

Therefore the state variables xi(r) i =1,2,3 correspend to the
stresses and disc thickness and the control u(r) is given by the
rate of change of thickness.

The constraint conditions (5.4) are given by

F(xp, x2) £ 0 )
where

F(x, Xp) = max([x1], [x2, % = %2}

X3 2 € ’

LgaysU ’
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(5.7)

(5.8)

The projection of the three-dimensional state space {(xj, X3, X3)

onto the (xj, x,) subspace is given by the Tresca hexagon of figure

(1.1a). All admissible states must lie within or on the hexagon.
The hub radius a; in (5.8) has the status of a control parameter.

The control u{(r) is unbounded so that
[u(r)| ¢ =

The transversality conditions associated with the differential

system (5.3) are given by

8(1): X] = 81, X3 =Db at r = 4a
(m) -5 - -
0 PoX) T8, X3*= bm at  r =a

The control u{r) is said to be admissible if it is continuous in

(5.9)

(5.10)
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(a,, am_l) and satisfies constraint condition (5.9). Therefore for

a given admissible control u(r), a, < 1

£ r < a _ the state equations
{(5.6) in conjunction with the transversality .conditions (5.10) possess
a unique continuous solution which defines a trajectory in three-
dimensional state space (Ox1x;x3) along which the states of the system

1) 4

are transferred between the end manifolds © . These trajectories
are constrained to lie within the region of state space defined by
(5.8). The problem is to determine an optimal control which affects
such a transfer while minimising the weight integral.

a

m
W = I 2mprxgdr (5.11)
a]

The problem has been reduced to a constrained optimal control

problem to which the Pontryagin formulation is applicable.

5.3 UNCONSTRAINED PROBLEM

The constraint set (5.8) 1s a necessary condition for the
existence of solutions to the problem. This is proved by considering

the one-dimensional unconstrained problem

. Ty
Minimise W[};} = 2mprxgdr; X3 E E!l (5.12)

where
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*
Let x3(r) = x3 (r), r ¢ [Eo,rz] be the minimising function in

class C2. Then it certainly minimises in the subclass

x3(r) = x5 (r) + e n(r); n(r) e ¢? (5.13)
Therefore
F(e) = W[xg]
. r1
= wxs] + eOJ 2mprn(r)dr (5.14)
ro

But, by definition, F(Eo) is a minimum at e, = 0.
Therefore
F'{0) = 0
So that
131 -
2nprn(r)dr = 0 for arbitrary n(r) ¢ C2 {5.15)
L i
o

But this is impossible and the problem has no finite solutions for

unbounded x3{r).

5.4 CONSTRAINTS ON THICKNESS x3(x)

Let

x3(r) 2 ¢ for all r ¢ r r{] (5.16)

where

l:-i-o’ SR [;2’ am,I]



From (5.12)
Wl:x:::] > 'np(r% - rg)s
Hence

X3*(r)

Wl}a*]

]

£ for all r ¢ [}0, r;]

]

2 2
mp (ry — ro) €

Therefore the optimal trajectory lies on the boundary of the state

constraint region X3 = €.

5.5 CONSTRAINED PROBLEM

Finally, the problem is considered in the presence of the

constraint set (5.8).

From (5.1, 5.2, 5.5)

5 9 aurl
= - 2 L a2
W o= npbl(a2 al) + npbm(am am_l) + [ 2mprRadr
az
where
W = W(az, x3)
W is a minimum when given a, € [;, @]
%
x3 (r) =¢ for all r ¢ [%2, am_E]
- Hence
a
m1 * 2 2
Mlq f 2mprxy d? = ﬂp(am_l - az)e

az

176

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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and

_ .2 2 _ 2 2 _ .2
W= w(az)l mpb(a% ~ aj) + meb _(a = a ) + ﬂp(am_1 a’)e

It

np[EPl - a)ag + bm(a; - a;_l) + ea;_l - bla{:] (5.22)

This function of a; is to be minimised. Solutions exist only
for bounded a, and are given by
*

a, = L if by > €
} (5.23)

4

= U if by < ¢

The optimal control formulation of the problem is now considered.

5.6 MAXIMUM PRINCIPLE

The control characteristics of the structural system are
described by the maximum principle of Pontryagin which defines the
interaction between optimal control and optimal trajectory in state
space.

The unconstrained Hamiltonian H is defined by

. M@ x5
H(Ay,A2,X3;5 X],X9,X3,r; u) = -—2mprxg - Xju + ;g(xl-xz) + pmer3
Xy — Xo XU .
+ () |———=- v T vow?r|] + Az(r) . u (5.24)

Therefore the adjoint equations are
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di, o A1 T A
—— = — a_H = E
dr 3%y Gy # VAR, Y T
dlz * ll = ;\2

L
> = 5%p - L (5.25)
dlg aﬂ Xju
rrai 5;3 = 2mpr - ﬂll + vio) —;E

3
F,

These are derived on the assumption that the optimal trajectory lies

within the interior of the state constraint domain (5.8)

F[xl(r), xz(r)) < o,
} (5.26)
X3 2> €
The control u(r) is unbounded,hence
ot *1 )
el —.(11 +\)R2)'x—3+?\3 = 0 (5.27)

~

this being the condition for maximising the Hamiltonian H. The
Hamiltonian (5.24) corresponds to a singular unbounded control.

The Hamiltonian is linear in the control so that the optimal control
must either lie at a boundor be such that (5.27) is satisfied.

There are three possible boundary configurations for the optimal

trajectory and are described below.

5.7 RESTRICTED MAXIMUM PRINCIPLE I

Suppose the optimal trajectory belongs to the boundary

configuration



F(xl(r), xz(r)] < 9 for all r e Ece, r&_J

X3 = € for all r ¢ E:e, rﬂ

where

From (4.38)

. d
Define p(x, r; u) = VE(Xg - €) . E%
dX3
T dr
= u
From (4.38)
u. = 0

=

This is expected because h = X3 = ¢ in [fe, r;] impiies u = g%-: 0

Substituting (5.32) in (5.25) using (4.33)

»

dAl _ A] - AZ
N ’ dr r

¢ T

diq .

T - 2mpr + U )

Integrating
A1 = A + Br?
Az = A - Br2

Tpr? + [ pu(r)dr + C

b
w
]

179

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

‘where A, B, C are constants of integration. The projection of the

adjoint vector ) on (X, Ap) subspace is a two-parameter family of
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parabolas whose foci lie on the axis of rotation.

Substituting (5.32) in state equations (5.6) and simplifying

dX1 X1 T Xo 5 3
ad C T T eerE
dxo X1 — X»p R
T - T vpwer r (5.35)
dX3
T -0 J
Integrating
C» 3
3+ v
X = Cl - 1_-2 - przrz
Ca
1 +
X = € + = - ——3—93 pwlr? } (5.36)
X3 = €

where C;, C; are constants of integration. Eliminating r from (5.36)

(1 + 3v)xf - (3 + v)xg -2(1 - v)xlx2 = 8Cyvx; + 8Cx,

2
- 4cf(1 = V) = 2(1 + V) Cypw? = O (5.37)

This defines a family of hyperbolas in (x;, x;) subspace whose centres

lie on the line

X = xl
2 } (5.38)
X3 = ¢

This analysis is applicable to those parts of the optimal trajectory

which lie on the boundary x3 = €.



5.8 RESTRICTED MAXIMUM PRINCIPLE II
The second possibility is
F(xl(r), xz(r)] = 0 for all r e [E
X3 > € for all r e |r

where

a, £r < rR ca
Let

_ e aF
L [Bxl’ 3xp’ 0]

From (4.36)

X3~

1
p(x,r; u) = ~ %3 Xju + — (x7 = %) + pw?rxy

vX.u

oF

Bxl

2

[Xl - x2
+ -
T X3

Since the optimal trajectory lies

- vouw2r|2E
p BXZ

on the boundary (5.39)

p(x,r; u) = 0
Hence
w11 X| Xy o, 2.
X3 X1 r F_+ vF e
X] X2

where F. , F
X1°- X2

X1, Xp respectively.

From (5.6, 5.43)

denote partial derivatives of F with

o 1| (¥
x3(x) . = X, exp{— J X [ =

for all r ¢ Ee, r,

1]

respect to
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(5.40)

(5.41)

(5.42)

(5.43)

(5.44)



182

o . . .
where x is a constant of integration.

Substituting (5.44) in (5.6) and simplifying

d - F 3
_il . 1wy (x37x%3) X,
dr r F  +vF
X1 X2
dx {(x1-%x-)F
= = w1 (5.45)
dr r F_ +vF (
X1 X2
dxs x3| rx1—xyF, -Fx
— = - — [ ] 2 + pmzr
dr X1 T +vF ]
X1 X2

This two—parameter family of optimal trajectories is based on
the assumption that F has continuous first partial deriyatives
on the boundary. This is true for most engineering yield conditioms,
in particular the Tresca yield condition, except at the vertices
of the hexagon.

In matrix form the Hamiltonian (5.24) reduces to

H = - 2mprxy + ) £ {5.46)

where
A = (A1, A2, A3)
! *3 » )
X3 XU+ o (x1-X3) + pwrxjy
X17¥o VXjqu
f = - - vazr

= T X3
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From (5.41)

VFE = 0 (5.47)

From the Weierstrass condition the Hamiltonian (5.46) must be
maximised with respect to the control u, subject to the constraint
condition (5.47).

Using the method of Lagrange multipliers

Bfi 3F afi
: li du o ¥x. Ju =0
L
Therefore
- - SF
a4 = Ai/Bx. (5.48)
1
and
Ay Y A3 .
— = F- = —0
xl xl
Hence
A3 = O (5.49)

From {5.46, 5.41)

r X Apu Yy

1 3 1 k

leed) 1 2

3 r r %2

3

XU
~ 1 vu 1 1

vH = A T X3 ’ T v -;g + (0,0,-2mpr) (5.50)

t 0 , o, 0
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and
T
[l e G-y s L
X3 r’ x) r x3' %X, dr "x
¥ - F
vp = X1 ¥ ,4 4 (5.51)
X [ — dr X, y
r
X,u
'—-Z—[F +\)Fx]
1 2
“ X3 J
From (4.35)
ax
2 _od . (3 ep-l
= = vH + [au)[au) v.p _ (5.52)

Substituting (5.24, 5.41, 5.49 - 5.51) in (3:52) and simplifying

By Md Mty (R mFg g
dr r F + VF r dr x
X X 1
1 2
dkz - Al - 12 . ll + Vlz Fx1 - sz + d F (5.53)
dr Y F + F r dr "x, [ '
x X
1 2
_'dla
3. - ot
ppe 2mpr 0

The analysis is applicable to a general yield criterion F = F(xj,x5).

These results are now interpreted for the Tresca yield criterion (5.8).

+ This means that the axis of rotation r = 0 of the disc lies on
(A1, A2) plane.
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5.9 TRESCA YIELD CRITERION

On each branch of the Tresca hexagon (figure 1.1la), Fx . Fx
1 2
are constant, therefore

___'F = _....._F = 0 (5-54)

Substituting (5.54) in (5.53) and simplifying

S (aF, +AF ) = (s ot Ty T, * 127y,
dr( 1 X, 2 X, C v’F + va r
) X 2
L (5.55)
d £
-E()l] + ;\2] = 0 _ J
Integrating
Rl + ;\2 = D
o .50
-\F, 4 AF_ = Cr
2 1
where
Fx1 + Fy
a = (1 + v) F—__I_Gfi
X 2
- C,D = constants of integration (C > 0).
Solving
[Xe4 )
. DFy, - Cf
1 = ¥ &F
X Xy
; {5.57)
pF, + Cr®
Az = —_
F + F
x x
1 2 J




Substituting (5.43 ,5.57) in (5.24) and simplifying

3 = —-2mprxy + C(1 + v)

X, = X

1

F +vF
4 X
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(5.58)

On FA, CD (figure l.la)} the second term on the right of (5.58)

is negative, while it is positive on EF, BC, DE, AB.

Therefore

optimal control must operate along the latter branches of the Tresca

hexagon.

Consider states on DE

Therefore from (5.57, 5.59) for finite Ay, Ay

Substituting (5.59) in (5.45)

dx
1

Q

_1 _ 1l+v o
dr l-vr
Integrating
X, = ¢© fn ar
X = g {in arB
2 o
where
B = 1 +v 5

(5.59)

(5.60)

(5.61)

(5.62)
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Substituting (5.59, 5.62) in (5.44) and simplifying

r

' : o 1 1 20o 2

X3. = X3 exp -3 R + pwcr |dr (5.63)

o in ar )
0 — — T
R I 2 v owlr exp_lj__l__x
8 [(1 - vr o B
00 n ar | __J o in ar

- 200 —_
W + pmidr . (5-64)

Equations (5.62 - 5.64)} determine the state and control vectors on

branch DE. From (5.59, 5.62)

1 B e '

This inequality cannot be satisfied for arbitrary values of the
constant of integration a, hence optimal control cénnot operate along
DE. Similarly it cannot operate along AB either.

Therefore optimal control must operate along BC or EF. Consider

states on EF.

X = 0'0
0 g Xs & 00
> .
e (5.66)
1
F = 0
XZ )

Substituting (5.66) in (5.45) and simplifying
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2 1 + v} -
dr r (co xz)
dx X, (0~ X

3 _ _ _3 [e] 2 2
el - [ - + puw r] {5.67)

o
Integrating,

C - (1+v)

X, = 9 br » b >0
' - ~ (5.68)

x. = x° ex 1| br (1) - pw?r?

3 3 ¥ o 1T+ 2

where b 1is a constant of integration.

From (5.43, 5.68)

o -
X = (1+v) 2.2
=-_3| ~(2+) 2| l‘hz______._owr
u 5 br + pw’r| exp o |17 5 (5.69)

Equations (5.68, 5.69) determine the optimal trajectory and control

on the branch EF defined by x; = o Equation (5.68) defines a

monotonic decreasing function of x3(r) so tha; from (5.8)

r“(]."‘\)) 2

b pmzr
o _1 2 _ 3
X3 % € exp { o T+ ) } (5.70)

5.10 RESTRICTED MAXIMUM PRINCIPLE III

The final possibility is

|
Q

F(x)(r), x2(r))

{5.71)
x3(xr)

]
m



for all ; e [Ee, r;] g;-[%z, am_i].

From (5.32, 5.43)

Substituting (5.66) in (5.72)

b (28) owlr =

0

This clearly is inadmissible for all r e [Ee, rg] and hence (5.71)

is not a valid proposition.

5.13 OPTIMAL CONTROL RESULTS

The results derived thus far may

(i) F(x1(r), xy(1)) < s, for
(ii)  Fx(r), x,(x)) < o, for
(1ii) F(x(r), x2(0)) = o for
(iv)  F(x(r), x3(r)) < o, for
(v) F{x)(x), x(r)) = o for

Conditions {(iii, v) correspond to l0r|

o

be summarised as follows:

alil

all

all

all

all

* _ 1 b
h (1‘) = hO exp ‘o-_ -(_1.+_\)) Ir

r

E aj, aa-

=1 =1
zoumh
o]

=g with
o

-(1+v) _  puw?r? }

2
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(5.72)

(5.73)
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where the constant ho satisfies the condition

2.2
RS S J S ¢ S50 Bl 1
0 P o, (L + v) 2

Condition (iv) corresponds to h*(r) = e, The analysis given
here is essentially a modification of an earlier version proposed by
de Silva [?lz]. This chapter is concluded with a brief description
of the jump conditions (see section 4.7) on the adjoint vector.
These are the conditions at the entry and leaving points for arcs of

the optimal trajectory on the boundary of the state constraint region.

5.12 JUMP CONDITIONS

The adjoint vector is continuous at the entry point ¥ = T,

AMr, - 0) = AGr) _ (5.74)

Therefore from (5.34, 5.57, 5.66)

A+Br2 = p-critV
e e
(5.75)
A-B2 = ¢tV
e e
But the adjoint vector is discontinuous on leaving (4.41)
A(rﬁ +0) = &(rl) - u(rg)EF (5.76)

where (see Leiltmann [ZOj], Chapter 4) from (5.41)
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]

of | {ap| !
u(r) Ms3isg
11 +_vA2

= W for all r ¢ E‘e, rgl {5.77)

X 2

Substituting. (5.66) in (5.57, 5.77)

ur) = D - (1 ~ v)Cr(1+v),

A
[a
[/
a1
~~
wn
~t
o]
~—

Substituting (5.78) in (5.76), using (5.34, 5.66)

At +B'r2 = ' - c' e Cpr oy @ovye e ) )
\ ) ) 2
(1+v) ‘
= —yp!
veixg L (5.79)
LI 2 = v (14v)
A Brl C rg J

Equations (5.75, 5.79) determine the adjoint vectors on leaving
in terms of the hyperbolas on entry. One of the major difficulties

lies in determining these entry and leaving points.



CHAPTER 6

OPTIMAL VIBRATION MODES OF DISCS
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6.1 INTRODUCTION

*
This chapter is essentially a continuation of the research

programme described in earlier chapters into analytical and computational
procedures based on the methods of mathematical programming for optimising
structural systems in the presence of design constraints. As a first
step in this direction, the weight of a turbine disc was minimised
subject to specified behaviour and side constraints. The behaviour
constraints were restricted to a consideration that the stresses should
be below the yield stress for the material of the disc while the
vibrational frequencies were constrained to be outside given critical
resonance bands. The side constraints, on the other hand, imposed
restrictions on the dimensions and tolerances-of the disc. The problem
was formulated as a general problem in optimal control theory with the
addition of inequality comstraints on the state variables. The state

and control variables were given by functions describing the variations
in the thickness, stress and deformation fields, with the frequencies
corresponding to control parameters.

The continuous formulation was described by the maximum principle
of Pontryagin, while for purposes of simplicity, the numerical
computations were based on a discretised non-linear programming approx-
imation cobtained by using a piecewise linear representation for the
thickness variables. The non-linear programming formulation was
characterised by non—analytic '"black box" type constraints for the
behaviour constraints corresponding to functional inequality constraints.
These, together with the side constraints, were represented in design

T R LR L T e T R L TR L Y] T L L P R T PR TP T CEE R TR Y YRR T

* An improved version of this chapter is given in de Silva {?35].
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space by constraint hypersurfaces which formed a composite constraint
surface. The weiéht was represented by a family of quadratic contours
of constant weight and the problem consisted of determining the least
weight contour within the feasible region enveloped by the composite
constraint surface. The solutions were based on a modified "steepést
descent-alternate step" mode of travel in design séace developed by
Schmit et al 7@]: this being one of the most powerful methods avail-
able at the time for handling structural optimization problems with
non—analytic constraints. This chapter describes further developments
in this direction by considering the dual problem of maximising a
specified linear combination of the frequencies of vibration of the
turbine disc with a constraint on the total weight. The problem is
again formulated as a general optimal control problem in the presence
of inequality constraints on the state variables. Significant
progress has been made in solving the problem using analytical
procedures based on the maximum principle of Pontryagin. The adjoint
systems of the Pontryagin formulation are solved using perturbation
techniques which give rise to fourth order differential equationms.
These afe solved using WKB expansions [?13]. These analytical
procedures transform the problem into a non-linear ﬁrogramming
problem which can then be solved using the Heaviside penalty function
transformations [26,86] of non-linear programming in conjunction
with Rosenbrock's hill-climbing techniques [j2§].

This chapter includes a description of the synthesis procedures
used to implement the optimized design cycles on an English Electric

KDF9 computer together with a preliminary discussion of results.
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6.2 OPTIMAL CONTROL FORMULATION

The behaviour analysis for the disc was described in section
(3.2). The basic.equations are summarised below for purposes of ready
reference.

The state equations for the system are given by

dxi : |
T T M 1T D23
dxq 12(1~-v2)pp2 3n2vu 9n2x6 6n2vx5 n2(n2-4)
——— = + - - + - X]
?r Ex% _ x5r2 x5r3 x%r2 r
3vu 6n2+3 6vx% 2n2+1
- - 2 XG + 2 + 3 X2 -
X5r X5Y Xer T
r (6.1)
3u 643v 6x§ 2n2+1 3xg 1
—_ + xg + - X3 — 22— + —|xy
Xg XgT x‘; r2 g r
de
Fra
o |
dr = v
where
d(i-l)w ] )
xi = W 1= 1,2,3,4
(i-1)
_d h .
Xiet, = dr(i_l) i=1,2 . (6.2)
_ d%n
u — ——

drz y,
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The state and control variables and parameters are defined by

dw d%w d3w dh
state vector: X = (X1, «evy Xg) = ( y qr? ard? Eg—; h, -(:1—]:-‘)
2
control vector: u = E—%
dr
control parameter vector: p = (pl, cevs Py 3 az)

The P i=1,2,...,2 are the first 2 vibrational frequencies of

the disc. The transversality conditions at r = a,, a are given by

x1(ay) = x3(a;) = 0 X
%, (ay)  n?
%3(am) + v|—— - = x;(ag)| = O
4m am :
xs(am) X, n2 2n2x1(am) [ (6.3)

(o) + 5T = 27 (o) o7 v ¢
m m

n2(1-v) xl(am)
ag am

These correspond to the initial and terminal transversality

conditions. The state and control inequality constraints are given

by
X5 2 € for all r e |a,, amri] ]
Lga,sU ] (6.4)
a
m
J 2mprxsdr £ Wo
P

a)

where Wo is a given upper bound on the weight.

il
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The merit criterion is defined by a function of the form
L
G(p) = X t c.p. (6.5)

where the coefficients c, are welighting factors based on the

Gaussian distribution function

P: = P
c. = of2-—1 i=1,...,2
i P:
w2 .
o(t) = 1 o t</f2 » (6.6)
V2
so that -
Icll > |c2l > eenen > Icg‘l J

The frequencies p; are assumed to be arranged in ascending order,

so that

p <p <‘.'I'<p
1 2 2

From engineering considerations, the designs must avoid specified

. . o o
frequency bands centred on given resonance frequencies Pis +e+s Py -

Then

n

a

n

. o .
i + |ci] if P; >P; 5 1 1,...,%

(6.7)

it

- ]cil if p; < pz ; L=1,...,%

wvhere
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So that (6.5) gives

-
I

Il =72
o
o

G(p) (6.8)
The initial values for p; are obtained from experimental data for
standard turbine design configurations. When one of these 19 is to
the right of the resonance band centred on pz, the frequency must be
maximisedlto move p. away from p?. Similarly when p; < Pg for some
ie [1,@] the corresponding p; must be minimised to move the optimizéd
designs away from pg. For most design calculations, the lowest
frequency p, is the most significant, with the others of rapidly
decreasing importance. This is ensured by the selection of the s
according to (6.6). For purposes of simplicity, the c; are calculated
at the standard configurations and are assumed constant du}ing the

synthesis.

6.3 THE PONTRYAGIN FORMULATION

The unconstrained Hamiltonian is given by

3 2 2 9n2x
~ .- - 6
H{A;x;T;u) = X ALX. + Ay [12(1 ve) op2 + 3n“vu _ .
- LA 1 1+] 2 2 3
242
O VXE _ nZ(n2-4) 3vu _ 6n2+3
- Xy T |- Xg +
2 2 y 1 5
XgT r Xgr  XgK
z 2
6\))(6 2n2+1 3u 643v 6){6
+ x2 - —_ 4+ xe + —— -—
2 3 P
X5r r Xg  X5T Xt
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2
g.tl..ﬂ]]{3 - 2[2 Xg + l]xl} + Asxs + ABU (6.9)
(3 rz XS 19

where Ai(r); i=1, ..., 6 are the components of the adjoint vector.
Control u(r) is unbounded and continuous in ’22, a“ﬁg]’ so that from

the maximum principle

~ 3n?vx Jux 3x, |
3H 1 2 3 -
= ¢ Ay > + A 0 (6.10)
XgT XcT Xg)

The scolutions are based on the following representations for the

optimal trajectory:

(i) optimal trajectory lies within the interior of the state constraint

region Xg > €.

{(ii) optimal trajectory lies on the boundary x5 = € for which the

restricted maximum principle is applicable.

A detailed cconsideration of these cases 1s presented below,

6.4 INTERIOR OF CONSTRAINT REGION

For x5 > €, the adjoint equations are given by

21 = . EI_-I. = - LA

dr Bxl h

dA

S2 9H

—— = - — = =\ + B
dr 3%, - My
d\

U3 _ 3H - _

'('1-_:_' = ax3 : :\2 +_ AL}C



dhy

aH
_ = - = = - +
dr axy A3 AyD
P o
dr ax5 Y
Be Lo,
dr - 9Xg t 5
where
12 (1-v2)pp? 3n2vu 9n2x6 6n2vx% n?(n2-4)
A = + - + -
Ex5 x5r2 x5r3 x%r2 rl+
3vu 6n2+3 6vx2 2n2+1
B = —— - xg + 5 +
2 3
XX X T Xcr¥ T
3u 6+3v 6xg 2n2+1
c=- Xt T
Xg Xg¥ Xg r?
3x
6
P R
X T
24(1-v2)pp?  3n?vu 9n2x6 12n2vx§ 3vu
E = |- - + - Xy - |- — +
Exi x2r2 x2r3 22r? x°r
5 5 5 5 5
6n2+3 12vx2 3u  6+3v 12xZ
22 6 T3 |*2T |7 3T g X T T3 (%3t
XgT XY X,  X5r . Xg
6x6 .
x2 N
5

199

(6.11)
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6
F = - + X1 - I~ + Xa =
x .13 x2r2 Xer? x2r 2
. %5 5 S s
( .
6+3v 12x6 th
— > X3 = —
‘xsr XS XS

1,2,-..,6 (6.12)

-
1l
Il t~1 8
o
3
[
=
]

where n is a small parameter,

Assume X; small. Substituting (6.12) in (6.10, 6.11) gives

.Ay0 = Asp = Ago = O
Mg = A%
r (6.13)
JA20 = -ATr o+ A%
) 0 ].'2 Q o]
JAzp. = A1y - Aar + A3 ’
Therefore the adjoint vector is given by
Ap = A + o) ]
Ap = =ATr + A% + o(m)
o] 1’2 [} o
Aa = ll -2-' - )\21‘ + ;\3 + 0(!’})
b - (6.14)
Ay = 0(n)
Ag. = 0(n)

g = 0(n) ' )



For consistency

IDl—-—)oo

Therefore,

3 dh 1 .
har T 7 %Ok

where ]kl is a large constant, therefore

c ekr/3;

h(r) = 173 cC>0
r
and
h'(r) = %-h r
2
hll (r) ~ % h

n
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(6.15)

(6.16)

(6.17)

These determine the optimal thickness for subintervals of [%2, am{z]

for which h(r) > €. The proof of condition |k| large is given in

section 6.6.

Therefore (6.14, 6.17) determine a compatible set of solutions

for the adjoint equations (6.11).

Substituting (6.16, 6.17) in (6.1) and simplifying using (6.2)

d4w d3u 5 42w vk2 dw 12(1-v2)pp? | n2vk?
dr? * Zk ard ¥ k arz T Tt ar Eh2 * 2 w

The solutions to this equation are given below.

Case (la): %k < 0O

Put x = ~k(r - a,), |k| — =

- ahw a3y d2w

- AW =
-d—-:?; 23;-3- + -a-}-(-z Af(x)w 0

(6.18)

(6.19)
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where
Al e—2ka2/3 (large) )
' %
o 9 4 (6.20)
fay = 120 vl)p}g xay + x| &3>0
EC2|k]| e
Put
Vo= 2 yx) (6.21)
This gives
L 1 d2

Therefore the WKB solutions are given by [213]

g,.(x)  g,(x)
u(x) = g (x) eA¢(x){1 + ! + 2 + 7" } (6.23)
° A A2
Substituting (6.23) in (6.22) and equating to zero coefficients of
A, A3, ..., gives
0 = (£} o15T/2 s =0,1,2,3
(6.24)
8, = {f(X)}'%
Hence
3 % .
W(x) = I o exlz[;(xi] exp[[zelsw/2 J {f(x)}/ﬁ é{l X
) s=0 °
1 .
1+ 0[5)1 ‘_ (6.25)

where a, s = 0,1,2,3 are constants of integration.



Case (1b): k > O

Put x = ki(r — a5); k — o
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a*y d3y d2w
axt Y a3 Yt o ¢ 0
Hence
-kr
W(x) = ay + apr + (ag + asr)e (6.26)

where oy, 05, 0g, ¢y are constants of integration. Equations (6.25,
6.26) determine the solutions to (6.18). The state and éontrol
variables are given by (6.2,.6.17, 6.25, 6.26). These equations in
conjunction with (6.14) determine the complete representation for
the system when the optimal trajectory belongs to the interior of
the state constraint region.

The corresponding equations when the optimal trajectory belongs

to the boundary are now considered.

6.5 BOUNDARY OF CONSTRAINT REGION

The restricted maximum principle is applied to arcs of the

optimal trajectory lying on the state constraint boundary.

x5(r) = € for all r e [ie, rg] (6.27)

where

Therefore

VE(XS -g) = (0, 0, 0, 0, 1, 0)
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p - scalar product of Vx(x5 - £) with the right hand side of

state equations (6.1)

..=XB

Therefore

X = 0] }
u = 0 (6.28)

Substituting in state equations (6.1) and simplifying

d'w  2d% _ 202+14d%w |, 22 +1dW , |n%(n? - 4)
dr? r dr3 - r drl r3 dr r
120 - v2)pp?| . _

Y w =0 (6.29)
and

W(r) = oagly(ar) + agYy(Qr) + aloln(ﬂr) + allKn(ﬂr)

{(6.30)

where

12(1 - vz)pE?

y
i Eel

State and control variables are given by (6.2, 6.27, 6.28, 6.30).
Jn{fir), Yn(ﬂr) are Bessel functions and In(ﬂr), Kn(ﬁr) are the
modified Bessel functions. &g, &g, 0j1g, @)] are constants of

integration.



6.6 OPTIMAL THICKNESS PATTERNS

The optimal thickness is given

*
h (r)

But from physical

h"(az),

h'(x,)

Therefore from (6.

So thét
=
Therefore
&
Again,
b
m
[

-

h—(r) a

= zsrsre

= € r. £r g rz 3
+

= h (r) r, § r s ap-, )

continuity conditions

= by h(r) = ¢
+
= £ 3 h (am_l) = bm
17)
C k ay/3
by = ——= e
RYE
e = -C ek ro/3
L1/3
. e
%
3 b, [az] 3
= — R'n —_— —_
-':l2 re £ re

| > = as e — o+

+ +

1

©
o~

i

¢ k're/3

r

“]

by figures (6.1, 6.2, 6.3)
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(6.31)

(6.32)

(6.33)

(6.34)
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Therefore i
. A
+ 3 bm 4n-1
k = PN in o e {6.35)
4n-1 A
— © a8 e — 0+ (6.36)

Conditions (6.34, 6.35) establish the validity of the result
that |k| must be large. Equations (6.32 - 6.36, 6.17) also establish
the continuity of x5 = h, xg = %% at r = Tos Ly which is a necessary

condition for the analysis to be valid. This is demonstrated below:

From (6.33, 6.34, 6.17),

n

C ek r/3

h (r)
A

n

e

E(r ]5é K (rgmr) /3

T
~+e¢ as r—r, - 0. (6.37)

Therefore from (6.31, 6.32, 6.37)

- . . _y + . .
h (r) is continuous at r = r,. Similarly h (r) is continuous

atr = rz.

Again, h'(r) = % h, implies the continuity of h'(r) at r=r , r

e L’

- 6.7 "SIDE CONSTRAINTS

These represent constraints on the geometrical configuration of

of the disc. From figures (6.2, 6.3)
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- 1
s = i S Ln EE Cur 1 4
Lkt 3 € T :
R. N
am—l
r, z T — 0 as & — 0O+
a l/3+1
34n EE T_
L
‘8o that
0 sr, < a 1 (6.38)
Again
a, < r, < r, (6.39)
The weight is given by
m a2 - e _ e
J 2mprh(x)dr = 2mprbydr + I 2aprh (r)dr + 2npredr
a

a3 aj 2

.a a
m-1 +
+ I " 2mprh (r)dr +

r£ . am—l

= wpbl(ag - a%) + wpbm(a; - aﬁr

r’ a

: 2 - .
1) +,_“98(r2 re)

2

e _ m-1 .
+ ZHpJ rh (r)dr + ZﬂpJ rh (r)dr
a

2 ' Lo

Therefore the constraint on the weight is given by

fl(az, L rg) £ 0

(6.40)



where

n

fl(az, I,» rE)

e _ m-1
+ 2ﬂpf rh (r)dr + ZHpI rh (r)dr - WO

as 1'1

These integrals are evaluated using standard numerical integration

procedures E’Zl] .

npbl(a% - a%) + wpbm(ai - aé_l) + ﬂpe(rf - ré)

208

The side constraints are given by (6.38 - 6.40) and. their two-

dimensional representation in the (re, rg) plane is shown in

- figure (6.4).

6.8 BEHAVIOUR CONSTRAINTS

The radial deformations within the subintervals [%1’ a;],

[%mrl’ a;J are given by

J .
W(r) alan(Qr) + alen(Qr) + ulhIn(Qr) + aISKn(Qr),

a, £ r £ a

1 2

%

N

alan(Qr) + a17Yn(ﬂr) + aleln(ﬂr) + angn(Qr);

a £ ¥ £ a
m-1 ° * “m

F,

where oj2, ..., 0jg are constants of integration (see equations

6.25, 6.26, 6.30]. The behaviour requirements are given by

eliminating the constants of integration {(og, aj, ..., @jg) from

equations (6.25, 6.26, 6.30, 6.41). The boundary conditions are

(6.41)
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: . aw d?w a3
obtained from (6.2, 6.3) and the continuity of W, I’ ar? a7 at

T =a,, ¥, T . These arise from continuity requirements

2’ %m-1
for the state vector. They are alsoc necessary physical conditions
for the continuity of deflection, slope, bending and shear forces.

The elimination process gives a (20 x 20) determinantal equation

of the form

( Aj; 9 0 Ay O ‘
A21 O A3 O 0
9 A3z A33 O 0
f2(32{ Ty Ty, p) = det o hep 0 0 he = 0 (6.42)
6. 0 © 0 B
c o0 © B, O

where éij are 4 x 4 submatrices, while B;, B, are of order 2 x 4,
The function £ is a polynomial in the frequency so that it can

be written in the form
f = Z p. (a r T )pi = 0 (6.43)
2 - i i 2: E., 2' .
Therefore the frequencies correspond to the roots of this polynomial

.B = play, 1, 1)) (6.44)

From (6.5)

G(E) - fo(aZ’ re’ rg) (6.45)

The wibrational frequencies are introduced into the synthesis
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procedures through equation (6.42) which is computed numerically

using standard triangularisation procedures.

- 6.9 NONLINEAR PROGRAMMING FORMULATION

The nonlinear programming transformation is given by

Maximise G(p)

subject to:

fl(az, LI rz) £ 0

fo(ay, 5 15 P)

. (6.46)

This is solved by transforming the problem into a series of

unconstrained optimization problems using the Heaviside penalty

function transformation [?6, 3@]. These unconstrained problems are

solved using Rosenbrock’s method [EO, 129].

6.10 RESULTS AND DISCUSSION

The numerical computations were performed on an English Electric KDF9

computer using Algol. The computational effort was characterised by

extremely large and complex programming procedures which imposed severe
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limitations on storage and tegt facilities. A substantial amount of
the time was consumed in the Bessel function calculations [?15].

In ad&ition, considerable numerical difficulties arose in the
calculation of the determinantal function fz(az, Ios Tps p) due to
the presence of very large numbers, giving rise to local regions

of instability in the synthesis.

The programme was initiated by a set of values for dyy Ty Ty P
which sati;fied the side constraints. However, it was not possible
to ensure the vanishing of f,. This was notAa serious disadvantage
since the Heaviside penalty function transformation always generates
a feasible point as the solution to the equivalent unconstrained .
problem. ~

For these reasons, the available computational experience is’
limited through an examination of the preliminary results indicates
that the synthesis is progressing in the right direction. The really
effective utilisation of the numerical procedures requires a more
powerful range of computers than was available at the time of this

investigation,

6.11 CONCLUSION

Powerful synthesis procedures based on the methods of mathematical
programming have been developed for solving a highly complex structural
optimization problem. Considerable progress has been made in solving

the problem using purely analytical techniques based on the maximws
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principle of Pontryagin which transfcrms the problem into a nonlinear
programming problem.

Available computational experience indicates the possibilities
of developing a highly systematic synthesis capability when used in
conjunction with very large, high speed digital computers. The
available evidence appears to warrent further investigation and
development in this direction, with particular emphasis on more

automatic software packages for handling very large problems.
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CHAPTER 7

SOME RESEARCH PROBLEMS
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NOTES ON SOME RECENT DEVELOPMENTS

This chapter briefly outlines some of the research problems in
the structural optimization area which are currently under investigation.

The first problem is essentially a continuation of the research
programme degcribed in Chapters 5 and 6 inte analytical and
computational procedures based on the methods of mathematical
programming for optimizing structural systems in the presence of
degsign constraints. The problem considered in Chapters 5 and 6
was that of minimising the wéight of a steam turbine disc subject to
specified behaviour and side constraints. The behaviour constraints
are restricted to a consideration that the stresses everywhere should
be below the yield stress and the vibrational frequencies should be
outside specified resonance bands. The side constraints, on the other
hand, imposed restrictions on the dimensions and tolerances of the
disc. The problem was formulated as an optimal control problem in
the presence of inequality constraints on the state and control variables,
These were described by ﬁunctions representing the variations in thick-
ness, stress and deformation fields with the frequéncies as control
parameters. The numerical investigations were based on a discretised
noniinear approximation, while the analytical investigation was based
on the Pontryagin principle. In Chapter 6, the (seemingly) dual
problem of maximising the vibrational frequencies of the disc subject
to a constraint on the total weight was considered. The problem was
formulated as an optimal control problém and the analytical procedures
included solutions of systems of differential equations using perturb-
ation techniques in conjunction with asymptotic expansions based on

WKB procedures.
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A heuristig demonstration of the possible relation between problems
described in Chapters 3 and 6 is given below. From (3.8, 6.9) it is
seen that the Hamiltonian for the problem in Chapter 3 differs from
the f in (6.9) by the term -2mprxs. Consequently the equations (6.11)
remain unchanged with the exception of the equation for Ag which

becones
- = = 2mpr = A4E (7.1)

But it can be readily shown that |D| — =, implies E — w,
Therefore the analysis developed in Chapter 6 remains virtually

unchanged with an associated nonlinear program of the form

Min fl(az, L rg)

subject to constraints of the form

y (7.2)

ag <r <ry<a .

fz(az’ Tos Lo p) = 0 |

The nonlinear programs (6.46, 7.2) exhibit many of the dual
characteristics of nonlinear programming. Work is presently under
way to re-examine the problems in Chapters 3 and 6, by making a critical
study of the necessary and sufficient conditions for the equivalence
of minimum weight - maximum frequency design of discs. The problem Q§\\\
is again described within the framework of optimal cbntrol theory.

The equivalence conditions are given by the interactions of the
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of the optimal control — nonlinear programs for the system. Some
powerful techniques for handling such dual systems are described
in the book by Canon, Cullum and Polak [224]. This investigation

is of considerable industrial interest because:

(a) the application of optimal control theory to complex
structural systems such as discs is still in its early

stages.

(b) necessary and sufficient conditions have been established
on only one-dimensional beam structures. The present
investigation would accordingly advance the state of

knowledge in this area.

(¢} dynamic response constraints are included, thereby

increasing the degree of difficulty.

A further development in this direction would be retaining the
structural equations of behaviour in the original partial differential
form, This would introduce the methods of optimal control for
distributed parameter systews.[225,22§] into the structural optimization
*
area.
A further problem under investigation is a comparative study of
some numerical optimization procedures as applied to structural

optimization problems. The problem considered is that proposed by

Schmit and Fox [55] where a multi-bar truss system is synthesised

* One of the first applications in this area is due to Armand [?35]
who has considered the minimal weight design of plates subject to
a frequency constraint governed by a partial differential equation.
Solutions were obtained using a generalised first variation
technique.
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subject to stress, deflection and buckling constraints. The nonlinear
program is transformed into an unconstrained form using the SUMT

and Heaviside penalty function teéhnique§ [36, 8@]. These unconstrained
problems are solved using the methods of Rosenbrock, Nelder-Mead, Powell

and Davidon=Fletcher-Powell,

.........................................................................................................................................

FOOTNOTE: Since this thesis was written the problem outlined at the
beginning of this chapter is being simultaneously studied
uging finite element techniques. The method employed is
a hybrid method developed by Tong and Pian [?40 based on
the minimisation of the complementary energy for the
system'. -The elements employed are trapezoidal. The
synthesis aspects would be based on the techniques of
Gellatly and Gallagher [?Z] and Fox and Kapoor [222]. The
associated computer programs are presently under develop-

ment.
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9. Tke Application of Nonlinear Programming
to the Automated Minimum Weight Design of Rotating Discs

B. M. E. DE SiLva

Mechanical Engineering Laboratory, English Electric Company, Leicester,
England

1, Introduction

. The object of the research described in this paper is to investigate the

feasibility of using nonlincar programming procedures to solve a class of
minimum weight structural optimization problems with nonanalytic con-
straints.” The structural configuration of the system is completely specified
by the design parameters of which some are fixed and others are permitted
to vary within a prescribed range, thus makirg it possible to optimize the
system for minimum weight. The constraints on the design variables ensure
physically reasonable designs and may be expressed in the form
L€y, fori=1,..,n H

where the » real veriables x,, ..., x,, are the design variables for the svstem.
The bounds /,, u; ate constants or functions of the other design variables.

The behaviour or response of the system is governed by the behaviour
variables (that is stresses, deflection, vibratiornal frequencies, and so on),
which are also constrained to vary within 2 prescribed range to prevent
failure of the system under the design loads. For instance, the behaviourai
constraints may include statical constraints which prevent the stresses
exceeding the yield stress, instability constraints which prevent failure of the
structure by buckling, dynamical constraints which restrict the natural
frequencies of vibration to lie within prescribed frequency bands, and so on.
The behavioural constraints may therefore be expressed in the form

Ligy;(xps s x)LU; forj=1,..,m (2)
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The weight of the structure is assumed to be a single valued differentiable
function of the design variables

W= WX, .o X0, (3)

The minimum weight solutions are obtained by minimizing Egqn (3) subject
to the constraint conditions (1), (2). The functions W, y; in general are
nonlincar and the solutions are given by a nonlincar programming
formulation.

The minimum weight problems considered in this paper are restricted to
problems for which the behaviour variables cannot be expressed analytically
as functions of the design variables. Therefore it is not possible to use closed
form analytical procedures for determining the minimum weight solutions
and recourse must be made to-approximate or numerical procedures. The
behaviour variables are functions only in the sense that they are computer
oricnted rules for determining the behaviour associated with a given design
and are not given in a closed analytical form in terms of the design variables.
Thus the behaviour variables may be regarded as a “black box™ into which
are put the desien variables representing a given design and out of which
comes the behaviour variables for that design. The box contains such
devices as difTerential equations, finite difference procedures, a digital
computer, and so on.

Consider for instance the problem of minimizing the weight of a steam
turbine disc subject to specified geometrical and behavioural constraints.
For purposes of simplicity, the turbine disc is idealized as a rotating circular
disc (Fig. 1) of variable thickness. Tie behavioural constraints have been
restricted to a consideration that the stresses in the disc should be below the
yield stress, while the geometrical constraints :mposc restrictions on the
dimensions and tolerances of the disc.

The weight is given by the functional expression

Wih] = J- 2rpri(r)dr : C)

where a,, g, are the inner and outer radii respectively, p is the density and
I(r) is the thickness at a radial distance r from the axis of rotation, i{r) being
measured paralle] to the axis of rotation, The equilibrium equation for the
disc is given by [1]

~—:— (I:cr,)-i-{:-_ (o, ~a)+pwrh=0 )]
r

i o rm——

where o, 6, are the radial and tangential stresses respectively and o is the
angular velocity of rotation of the disc. This equation has been derived on
the assumption of radially symmetric plane stress. The stresses may be
expressed in terms of the radial displacement u(r) by the following compat i-
bility relations

. E . -
0, =z (etve), 0y = teo) ©2)
du u '
=2 == 5b
ef dr ] ea r » ( )

where e,, ¢q are the radial and tangential strains, £ is Young’s modulus and v
is Poisson’s ratio.

Therefore substituting Eqns (5a), (5b) in (5) gives the following differential ©

equation for u(r)

du +(1 . d}z) dut (1 v d}z) w , p2(1=Y)
_— —r——— = —— — —_——r = (.
dr? r hdr] dr r h dr] r E

Therefore in order to determine u(r) explicitly it is necessary to specify

(6)

h=h(r) (g, €r<a,) (62)
as a function of r. Then for prescribed boundary conditions on o,, o, given
by

[o-r]rl=m =5, ‘ [ar]r=a,,, = Sm (6b)

Eqn (6) uniquely determines «(r) as a tunction of r. Therefore from Eqns
(5a), (5b) the stresses o,, 6, may be determined as functions of r. The stresses
are functionals of A4(r) and correspond to black box type behaviour variables.

The material of the disc is assumed to obey a yield condition of the form

F(O’,, 0‘9)$ Jp (7)

where ¢, is the yield stress. The yicld condition used in this investigation is
the yield condition of Tresca defined by [2]

F(e,, ¢,) = max {i]o’,—a,!. o d, ila,}}. (72)



The variation of k(r) is deiined by
ryze (8

where £ is a specified tolerance which ensures that /£(r) is never negative.
The problem then consists of determining an optimal /A(r) which minimizes
Eqn (4) subject to the constraint conditions (6)-(8) and is essentially a Bolza
type problem in the calculus of variations [3] for which the discretized
nonlinear programming approximation is characterized by nonanalytic
constrzints on the behaviour variables.

This paper includes: (1) reformulating the disc problem as a problem in
nonlinear programming, and (2) developing minimization procedures for
solving problems with nonanalytic constraints by extending existing methods
and formulating new ones. Methods currently applicable are the “steepest
descent-alternate step” mode of travel in design space proposed by Schmit
et al. [4]-{12] for the automated weight minimization of trusses and waffle
plates with instability constraints. Modifications are introduced to improve
their computational efficiency and convergence rates. Generalizations lead
to new methods; (3) applving these methods to obtain numerical solutions
to the disc problem on an English Electric KDF9 computer for purposes of
- comparative evaluation.

Before discussing these topics, some preliminary design concepts are
introduced which contain the framework for formulating the minimization

problem.

2. Design Concepts

The design variables define a point
x = (-7!51: vees Xp) 9

in an n-dimensional real euclidean space E,, called the design space. Consxder
the functions g,(x) for k = 1, ..., 2(n+m) defined by

g(x) = h—x, fork=1,..,n
= Xp—pg—Up~p fork=n+1,...,2n
=Ly 2n=Yk-2. (%) fork=2n+1,..,2n+m
= Viernem ) =Upogpom fOr k = 2n+m+1, ..., 2(n+m). (10)

Therefore the constraint conditions (1), (2) become

g (<0 for k = 1, ..., 2(n+m). (11)

The feasible region R is a subspace of E, and consists of points x € E, which
satisfy the constraint conditions (1}, (2) or (11), so that

R= {x; gi(x)<0 fork = 1,...,2(n+r{1)}. (11a)

Design points which belong to R are called feasible points.
There is associated with each constraint function g.{x) a hyper-surfa(,e

defined by
G, = [x; g(x)=0 fork =1, ...,2(n+m)}. (11b)

The hypersurfaces for nonanalytic functions correspond to unknown surfaces
in E_.
The composite constraint surface is given by

G =Rn (GI | Gz ey WJ Gz(n+m)) ) R (llc)

and defines the boundary of R and voints which belong to G are called -

boundary points. The weight contours
W(x)=c (11d)

define a family of hypersurfaces in E,. The minimization procedures generate
a sequence of feasible designs of decreasing weight which converge to the
least weight contour in R. A feasible initial design is established and is
systematically improved by ar alternating iterative process of analysis and
design modifications. These automated design cycles correspend to motion-
in the design space along paths which the weight decreases. Therefore the
minimization process consists in the proper selection of the directions and

distances of travel in design space.

3. Hlustrative Problem

The sieam turbine disc to be optimized is shown in Fig. 1. The width of the
hub and the rim skape have been specified to allow for the attachment of
the discs and the spacing of the blades in the turbine while the depth of the
hub is variable to permit adjoining discs to be shrunk onto a common shaft,
The thickness distribution for the remainder of the disc is variable but sym-
raetrically distributed about the midplane. The thickness A(r} is defined by

h(r)=»5b; fora,<r<a;
= h{r) foray<r<a,_,

= b, fora,.,<r<a,
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where b, = width of hub (fixed), b, = width of rim (fixed), and a,,'a,,,, S
are fixed radii while a, is variable. Therefore Eqn (4) becomes

W = npb, (a2 —a,?) + npb, (G,°—a,?,) +j 2nprh(r)dr
L]
m-1 a;
= npb, (@, —a,%) + npb, (a,’—a,.,) + 2np Z rh(r)dr (12)
J=d a5

where g, <a, <a3<...<lp-3<8y_1 <a,. The function /(r) is approximated
by a sequence of linear functions i, (r) for j=3,..,(m—1) defined by

(Fig. 2).
h(ry=n;(r) fora;_<r<a;j=3,...,(m=1) {12a)

where

bi—b,_ C
h,(r)=b,_t+(’—“-) (r-——ﬂj_l) foraj_lérs,aj; j=3, ...,(m—-—])
aj"'aj-l
(12b)

ha)=1b;, forj=1,...,m.

(12¢)-

S —— -
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Therefore Eqa {(12) gives
m—-1 a;
W e mpb, (07 =a,7) + npba (0 —an2) + 2mp > [ ok (e
d!
J=3 ay=y

m—2
=inp 123 @je1—a;_ ) @4y +a;+a;. )b

+1inpb,(—3a,2 +at + a3t +aj a,)

+47P b (30,2 ~ a2 =823~ G). (12d)

The integral formulation (4) has been transformed into a finite difference
form (12d) by linearizing the disc. by, ..., b,, are the thicknesses parallel to

— e

e < | o
by

Ay of rorction_ | 5

FiG. 2, Discretized nonlinear programming model,

the axis of rotation at specified radii 4, ..., @, respectively. The disc profile
is then obtained by joining adjacent thicknesses {b;_,, &, for j=2,...,m}

by straight lines.
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4, Geometrical Constraints

The following geometrical constraints are imposed on the disc dimensiaps

(1) gy<a;<ay<... <y <y <d,
(2) &, = b, (fixed)

(3) b, =b,_, (fixed)

4 a,as,..,4a,.,,a, are all fixed

(5) a, is variable i

(6) b;is varnable for j=3,...,(m-2)
(7) -bjfas, forj=3,..,(m=2)

() a;+e3€a,<a3-¢,

where &, £,, &3 = tolerances on the design variables. Conditions (2), (3)
mean that the width of the hub and rim are fixed while (4), (5) mean that the
depth of the rim is fixed but the depth of the hub is variable. The tolerance
g; ensures non-negative b;, while ¢,,¢; restrict a, tolie within specified
tolerances of a,, ;.

Therefore the design variables for the problem are given by

X = (ba,-.-,bm_z,a:). (13)

This corresponds to an (m—3) dimensional design space. The geometrical
constrainis are given by

I<x<u (13a)
where

r

I=(ey,....e,ay+e), u=(0,..,00,a;—¢) ’ (13b)

These are linear constraints and correspond to hyperplanes paraliel to the
coordinate planes.

5. Behavioural Constraints

The disc is symmetrical with respect to both its axis of rotation and its
midplane and is in dynamic equilibrium under the action of the centrifugal
and thermal loadings. The stress calculations are based on Donath’s method
[13, 14} which consists essentially in replacing the disc by a series of annular

o
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rings of constant width. The stresses at the outer edge of a ring are detecrmined
in terms of the stresses at the inner edge. Continuity is ensured by equating
the radial displacement and the radial load at the .oterface of adjacent rings.
The stress equations are summarized below for ready reference.

Within each ring the thickness h(r) is constant so that Eqn (6) reduces to

d 1 d 2(1—1?
u u_ Mo ped=v) (14)

dr? + rodr rt E

C, pa)z(l—vz)

that i = = . 14a
tlS. u=0Cr+ p 3E , (14a)

where C,, C, are constants of integration. Therefore from Egns (5a), (5b)
the rotational stresses are given by

B pwi(3+v) .2

r 8
) _ (14b)
B po’(1+3¥)
et r- g "
where ¢, § are constants within each ring.
Similarly the thermal stresses are given by
d - h
—{he )+ —(0,—0ay) =0, (14c)
dr r
where
E .
¢, =7 Lle,—29)+ (e —24)]
(14d)
E
Oo = 1,2 [v(e, —2¢) + (ep— )]
/
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x is the coeflicient of Hnear expunsion and ¢ is the temperzture. Substituting
(5b), (14d) in (1) gives

W TNy Thar ) ar T\ T A

Faty ( 1 1 d/:) du ( ! v (ﬂz) It
r h dr

—(1+v) (lﬂ 3 4 ) =0. (14e)

d*u 1 du u [0
a7t T T ey =
A y r
that is u =A‘r+Tz+“+")%J. rédr

where 4,, A4, are constants of integration. Thus the thermal stresses are given
by (14d), (5b).

E . . I
g, == (rq:dr+y———2
-

| (14f)
aE b

gy = P [rgbdr—-aEd)-‘.-?-i-—rT

v

where 7, & are constants. The temperature ¢(r) is a prescribed function of r.
The resultant stresses are then given by

g, = o, (rot)-+ g, (thermat)

i

r

(14g)
Gy = Gy (rot)+ g, (thermal)

In general, the analysis phase of the redesign cycles consists of a series
of black boxes into which are fed the design variables and out of which comes
the behaviour variables. The contents of the boxes which include structural
modcls and mathematical procedures for determining the behaviour variableg
do not play a significant role in the subseauent design modification iterations

[ ——
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and may be ignored. So that what is essential is the output from the black
boxes which enables the behaviour variables to be checked aguinst the
behavioural constraints to ensure designs that ¢o not violate the behavioural
requirements for the problem. A more sophisticated analysis procedure
merely means more accurate values for the behaviour variables associated
with a given design and does not necessarily provide any new information
on the minimization procedures. Therefore from this standpoint, Donath’s
method is a very acceptable form of analysis. It is relatively simple and was
already available at the time this investigation was started.

At each stress calculation the computer program subdivides the intervals
(a;-y,a;] for j =3, ..., (m—1) into further subintervals by points ra, r3, ...,
r,., where

Qy =r,<Fy<..<F_,—4, -

(15)
In addition ry=d,; r,=4a,
The criterion for subdividing the interval {a;_ . a;] is
lbj-1—bjl>de (by-, +5)) (153)

where ¢ is a positive tolerance. If this criterion is satisfied [a;., a;] is sub-
divided into u equal parts by points g4, 44, ..., 4., '

a;_; =go<qg, < ... <q, = a;. (15b)

The corresponding thicknesses at these points are given by'
pi=h{g) fori=0,..,u _ (15¢)
so that -
bj=b;- 11 = |pu—pol
= [{pu=Pu- )+ (Puc s —Pu-2}+ -+ (02— ) +(21— Po)
<$el(py=Pu- D+ (Pumy P2+ 4+ (P2 +2) + (P14 P0)]

-<..£qu

where K; =max (b;, b;_,)

so that L= 1+<&“—f’i‘—i> (15d)
\ A.f
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wfhcrc {x is the largest integer not cxeeeding x. The total number of points
of subdivision tor cach of the intervals [a._,.a.] is * points being
labelicd 1y, 1o o 7 with shichness £ o rei e 10 points biing

. 1Pty vekness By, by respectively. The reason Yor
this subdivision is to obtain a better estimate for the stress distribution,
The number n varics from design to design,

For each design the stresses ,, 6, at r,, ..., r, are calculated. Therefore
the principal shearing stresses at these radii are given by [2]

f=Ho,—ol, -Ty=3Ho,|, t3=3dop) (16)
The stress constraints are defined by the Tresca yield condition

1€ 1, {16a)
where 14 is the critical stress and 1 is the maximum principal shearing stress.
T = max (T4, Ty, Ty) (16b)

Therefore the behaviour variables are given by
_}'(X) = (Tr;: Tr;: Tery Tr,,) (] 7)

while the behavioural constraints are given by

Lgy(x)su (17a)

where
L =1(0,0,...,0), U = (16, Tg) «+05 Tg)- (17b)

Due to the black box nature of the stresses the behavicural constraints
correspond to unknown surfaces in design space.

6. Weight Function

The wei.ght H'/ = W(by, ..., b-2, a2} given by Eqn (12d) is a quadratic in
a, but linear in ;. The function W and the feasible region R are in general
ronconvex and the problem may possess relative minima.

7. Nonlinear Programming Formulation

The disc problem may be formulated mathematically as a nonlinear pro- |

gramming nrobiem as follows.
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Given !, u, L, U determine a design x which satisfies the conditions

(1) I<€sx<u

(2) L<y(x)<U

and minimizes the weight W{x).

- 8. Nonlinear Programming Procedures

Nonlinear programming procedures applicable to structural problems with

analytic constraints include: '

(1) Cutting plane method {185, 16] for transforming a nonlinear problem to a

serics of linear programming problems.

(2) Rosen’s gradient projection method [17-19].

{3) Penalty function methods for transforming a constrained problem to a
series of unconstrained minimization problems [20-22] each of which
can be solved using any of several well-known methods on unconstrained
minimization [23-25].

_(4) Lagrangian methods [26, 27] using the properties of the saddle point of

the Lagrangian function.

(5) Methods for leaving the boundary of the feasible region along the
constant weight surface [28], the direction for the “bounce™ being
given by a quadratic programming problem.

{6) Steepest descent procedures [29-31] for automated weight minimization
using matrix methods of structural analysis.

Equations (6), (14e), (14g) applied to (16a) may be written in the form

#] sfqb(r, e h0) <, s

The above methods do not apply to constraints of the type (18). A “steepest
descent —alternate step™ procedure developed by Schmit et al. [4-12] may
however be readily adapted to describe these problems; they started from an
initial feasible point and moved in the direction of steepest descent to a better
design some finite distance away. This procedure is repeated until a con-
straint is encountered which prevents further moves in the gradient
direction. Then an alternate siep is taken which is 2 move along the constant
weight surface. After the alternate step a feasible point should have been
obtained from which a steeo sescent can be made. The process is continued
until no move can be made by either mode—at which time an optimum is
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said to be achiesed. The reasoning behind this techaique i that since the
gradient direction points in the direction of greatest change it is the best
dircction to mave in to improve the design. 1'a move cannot be made in the
best direction, then a move is made which at least does not increase the weight
of the design.

A fixed incremental step length is used in conjunction with steepest descent
motion, the step length being doubled at each feasible iteration. This doubling
process is repeated until a design is reached which violates on a main con-
straint {geometrical coustraints are ignored at this stage); the total distance
of travel back to an already feasible point is then halved, and the direction
reversed. In all subsequent iterations, the distance is always halved and the
direction reversed after each transition between a violated and non-violated
condition. Thus, this halving and doubling process is directed to and con-
verges upon the constraint surface. A random number generator was then
used to propagate the directions of search along the constant weight surface.
A sequence of proposed new designs was generated which was tested in turn
against the geometrical and behavioural constraints. If any one of these
designs was found to be feasible steepest-descent motion was continued as
before. This method for leaving the boundary of R is called the method of
alternate base plancs [8] and will be described in the following section. The
methods described in this paper use an accelerated steepest-descent mode of
travel in the feasible region, the step length being estimated to the nearest
constraint. The step length decreases as a constraint is approached and this
enables a constraint to be encountered more rapidly than a straightforward
doubling process. When a design violates a constraint, a linear interpolation
technique is used to converge to the constraint surface, the interpolations
being always between a violated and non-violated design. In general, this
ensures a better convergence rate than a doubling and halving process.

- The method of alternate base planes was applied to the disc problem and
thereafter more selective methods were sought for leaving the boundary of R.
A direction of search was generated whereby the sections of the disc not at
yield stress were thinned in proportion to their stress levels relative to the
yield stress, while the section at yield was thickened by a predetermined
factor. The step length was then calculated using the equal weight condition,
which gave a quadratic equation for the step length. A major difficulty was
the possibility of obtaining complex roots and even if real roots were forth-
coming there was no guarantee that the geometrical and behavioural con-
straints were not violated. Therefore a method was devised which always
guaranteed non-violation of the geometrical constraints.

In this method the proposed design need only be tested against the vield |

criterion. The lincarity of the geometrical constraints enables a step length

g Y M

—
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1o be easily calculated which ensures an alternate step within the design
variable bounds. The direction is then determined from the conditions of |
equal weight and normalization. To obtain real determinate sciutions the
number of unknowns is reduced to two by assigning zero values to the remain-
ing variables. This corresponds to changing two design variables and leaving
the rest unaliered. The section at yield stress is thickened, while the section
furthest from yield is thinned so as to leave the weight unchanged. If the |
design violates the yield criterion the step length is progressively halved a |
specified number of times, and if no feasible design is torthcoming a different
combination of direction cosines is set to zero, generating a different direction -
of search. If the yield condition is still violated this method is scrapped and -
the random method is used to determine an alternate step design. l
The nonconvexity of W and R in general gives rise to pockets of relative |
minima. There is no known method yet of establishing whether a proposed -
solution is in fact 2 global solution or not, However, it is possible to establish
a reasonable degree of confidence by searching a fairly wide region of design ;5
space. It is also possible to select two different initial points and run the mini-

_ mization procedures along distinct paths. If the solution is the same (to !

v

within a reasonable tolerance) in the two cases, it is reasonable to assume that ;
the proposed solution is a global one, -

!

9. Minimization Procedures
The disc optimization problem [32, 33] is characterized by: o i

(1) Multi-dimensional design space
(2) Nonlinear weight function

(3) Relative minima |
(4) Linear geometrical constraints k

(3) Stresses ““black box™ type functions

while the optimization procedure is characterized by (Fig. 3):

(1) Accelerated steepest descent motion in the feasible region until a con-
straint is encountered.

(2) Constrained steepest descent motion from a geometrical constralnt.,
Since a move in the direction of steepest descent cannot generally bei
made without piercing through the constraint, the method moves in the,
next best direction, the projection of the direction of steepest descent on
the constraint surface.

(3) Equal weight redesign {rom a behavioural constraint surface. Constramt:di
steepest descent motion cannot take place as the surfaces are unknown.!
A move is therefor¢ raade which at least does not increase the welght
of the design. U
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10. Steepest Descent Motion

The compuler program starts from an initizl feasible design and enters
steepest motion defined by the following iterative equation

XD o @ 4 oy ' . 9

Initiatize
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Read feosible
Initic! design
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Fii. 3. Flow diagram for structurst synthesis based on a stress constant.,
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where

xW = (ba(q), s bm(-ﬂz_a a;_m), l,b”’) — —VW(x“")/IVW(x(“)I, \ !}

V_( 9 o 0 ) |
=\ B, ) (19a) .

19 = step length,
« ¢ = design cycle counter.

Therefore from.Eqn (i2d)

oW i .
e —3p—(aj+l-aj_l) (a,-+1+a,-+a_,-._.1) for;_ =3,..,(m=2) !
: (9b) !
aw P
F T(?az‘*'aa) (by=b3). . ;

- Equation (19) therefore reduces to T

, o |
bj(a+1) = bj“‘)—- "_'jp—(aj+1-'aj-1) (aj-n +aj+aj_1)t“)/N(")
for j=3,....(m=2) (19¢) |

a, ¢t V=q, (q).,_,_’éﬂ (2a,+a;) (b, —&;) tN@

where the normalization factor N'? is given by

np m=—2 .
N@ = - [ _23(014»1 —d- ) (a4, +4a; +aj—l)2 :
3 s |
(194 !
i
i
The distance to a behavioural constraint cannot be determined exactly as i
the surfaces are unknown, Therefore the step length is estimated as follows. |

Let

ot (2a;+a3) (B, —b;)° ]i-

B @ = thickness at radius r;;

7,.¥ = maximum principal shearing stress at r,.
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For purposes of this calculation, it is assumed that cach , can be changed
independently without affecting the stress distribution cliewhere, Therefore
to bring 4, to yicld stress it must be changed to A, @ given by

Qnr, Ei (q))fo ~ (2rrihy m)"fr.

F@~ I p @ " (20)

To

This relation is derived on the assumption that the load remains unchanged.
Therefore the distance +,‘? to the constraint surface at r, is given by

B @ = b, @y @ @ 0o, <)

o—1, \ 1@
so that 3, @ = (—2——5'—) 4
To ;@
where
6@ = ':!’j(q)(rl_aj—l)+'s£’j(i!)l (a;~r)
t aj_aj— 1‘ (203)
and a;-1<r<a; forj=3,..,(n-2)
then 9= min @, (20b)
3Sisn-2

Thus 19 decreases as a behavioural constraint surface is approached. At
each iteration the design is checked against the geometrical and behavioural
constraints. The design is first checked against the geometrical constraints
and if the geometrical constraints are not violated, the corre;ponding stress
distribution is calculated and then checked against the yield criterion. If
the stresses are below the yield stress, the design is feasibie and steepest
descent motion centinues until a non-feasible design is encountered. A non-
feasible design corresponds to a region of constraint violation, that is viola-
tion of either the geometrical or the stress constraints.

11. Geometrical Constraint Vielation

The design lies outside the geometrical bounds, The distances from the last
feasible dzsign to the geometrical constraints are calculated and the least
positive distance is taken, giving a point lying on the nearcst constraint.
Let x4 1), (@ be the non-feasible and feasible designs respectively. Therefore
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from Egns (19c), {13a), (13b), the distances to the geometrical constraints
are given by
3(bj(q)_E])N(q)

t = — for j=3,...,(m=-2)
! ﬂ.ﬂ(ajﬂ-aj—;)(aj+1+aj+aj—1) )

, = 3(az(q)_al_£3)N(q) (21)
! npQay+ay) (b, —b3) ' '

3(03 —g,—a, (q))N(q)
—npRa,+as) (b, —b3)

12=

Therefore the required design is given by

x* = x4 @ (21a)

H
where *= min (1;;1,>0). (21b)
1€j<m=2

The point x* is checked against the behavioural constraints and, if satisfactory,
the program enters constrained steepest descent motion.

12. Behavioural Constraini Vielation

A linear interpolation procedure is used to converge to a boundary point on
a behaviour constraint (to within a specified tolerance). Due to their linearity
the geometrical constraints are never violated during the subsequent inter-
polations, which are always between a feasible and non-feasible design
(violating the vizld criterion). Let x4+, x@ be the non-feasible and feasible
designs respectively. The corresponding behaviour functions are given by

(g+1n {q+1) (g+1)
X )= (7,9, ., 0
¥ , )

@ = (D @)
¥y = (T, -rr Ty

where the stresses are evaluated at radii {r,, ..., r,) (R, ..., Ry) respectively.
Suppose the yield stress is *x ;eeded at a section of the disc at a radial distance
ry-
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Let 1, =100, (Igk<n)
Tf = (T(ﬂ)r=ru

[€)] R R _
=tR:+1(rk D+l (.r+1 ) <1, (222)

(Rt+ [ I)

where R, €r, <R, ,, (1<tgsN-1).

7, is the corresponding mean stress at r, in the feasible design x@. Therefore
the linear interpolations are defined by

21 — 4@ A = i@
7O = 8O 4 50@  forr=1,2,..

50 = J0TH A
Tr -_— Tf

ACTD == A5 F 207 is feasible

= §" otherwise

where 6 = step length at rth interpolation; A’ = distance between current
feasible and non-feasible designs; £¢) = current feasible design, when
yield criterion is violated at several radial peints r,

5 = 1nin 85,

5

These interpolations continue until x*? converge to a constraint surface
(that is when the design lies on the constraint surface to within 99-2 per cent
yield stress or when the incremental distance A < 0-01).

13. Equal Weight Redesign

Let x = boundary point on a behavioural constraint surface, X = proposed
alternate step design, that is

X=x+14

where VN C YT W L= step length.
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The proposed new design lies on the constant weight surface, so that

W{x) = W(x+1). T (23)
Substituting Eqn (23) in Eqn (12d) and simplifying
AAL P =2, [(173.1 — b))y — (a3 +2a)4, 112

m=2 .
- [ _Zs(ﬂjn —a;_ 1) (@ar+a;+a;_ )+ (6 —b3) (03+2az)1m-3] r=0.
S

There is a common factor of ¢, indicating a zero root, Whlch is to be expected
_since 1 = 0 satisfies Eqn (23). Therefore

m=-2
DByt s [y =53 =5 + 200010 5 (@y01=05)

X(ageytaj+a; Ao+ (b —b3) (03+202)] =0. (23a)

4

14, Method of Alternate Base Planes
The direction of search [8] is defined by

AN=0 fori=1,..,(m=3) (24)
{) Rj . . a
AN = forj=1,..,(m=3); j#i (242)

where R are random numbers and N is the normalization factor defined by

- Cz;:jR ,.)*.

Therefore the distances to the geometrical constraints are given by

b;—e ,
(O = __;L__}__ forj=3,..,(m—2)
1,0 = g s Sl 3 1,0 = I ":,2 —% .
Ang lm—}
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Let AN = min (1;;1,>0)
16 j6m=2

W .
AW = max (1314 <0).

1€j€m~2
Define
AP =R A®  forr=1223
o } (24b)
=R AP  forr=4,56"
where 0<R, <1 forr=1,...,6.
Therefore the step length for equal weight redesign is given by
r= A0 (25)

and Eqn (23a) becomes

Ardnes A =2 4 [(5, ~bady—3—(a3+22), ] A
m—2
*[Blermam0 @ tata Dot 609 @ 422)] =0

This equation is used to redetermine A7 where 1" for j s ¢ ar2 given by
Eqn (24a) and A by Eqn (24b). ‘ :

Consider the designs

O =xt AL forr=1,..,6 (252)

where Wbz, .. by ooy By g, a3)
= W(bs'{'Ar(‘)).l, cany El-(r), seay bm__2+Ar(i)Am...4, az+Arﬁ)Am_3)-

The designs are tested against the design requirements and if any one of
these is feasible, steepest descent motion proceeds until a constraint is
encountercd. If none of these designs is feasible, the base plane is changed
(i—i+1) and a new set of proposed designs is generated. This process is
continued until a feasible design is obtained or the current boundary design
is accepted as the proposed optimum. ‘
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15, Selecthie

Tris was the first attempt at using the physics of the problem to meve away
from a behavioural constraint. For a given direction 4, Eqr (23a) is a quad-
ratic in the step length. Let the behaviour variables for the boundary point
be given by

yx¥) = (T T,)

where T, =T fOra_<r,<a; I<gsn; 2<I<m.
Define T,, = max (1,,_,, Ta)
where k=(-1)orl, (26)

Therefore the direction of search is given by

Ay = (1,,—1,) [N<O forj#k

_ ‘;TW ENVW(xD)|>0 forj=k (263)
k

where the normalization factor N is given by

N= (;k(r‘”"f")z) / 1=22.

The method of alternate base planes consumed computer time in searching
through the random directions to find a line which would give a feasible
point on the same weight contour. Selective 1 reduces the degree of random-
ness by examining only those directions which on physical considerations
move away from a behavioural constraint. The disadvantages are, (1)
possibility of complex roots, (2) even if real roots are forthcoming, the step
length may be negative, and (3) geometrical constraints may be violated.

16. Selective I1

This is a more intelligent version designed to overcome the above difficulties.
From Eqns (13a), (13b) a step length defined by

f = min (x,-—-l;, u,-—x;) (27)
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gives an alternate step within the design variable bounds. Therefore
I€Zgu (27a)

The direction is then determined from the equal weight condition (23a)
and the normalization condition

YA =1, ' ‘ @7t)

Equations (23a), (27b) are indeterminate. To obtain determinate solutions
" the number of unknowns is reduced to two by assigning predetermined
values to (m-5) cosines. These are made zero 10 obtain real solutions.
The following designs are considered:

0 = x4+ (422 forr=0,..,3 (28)

The designs are tested against the behavioural constraints and if any one
of these is feasible, steepest descent motion continues as before. If no feasible
design is forthcoming, a different direction of search is generated corres-
ponding to a different combination of direction cosines being assigned the
value zero.

Define - T,= min 1,
2€j%(m—2)

The following cases are considered

Case 1. s #2.
b, = b,+1i,, A<0
B, =by+td,,  A,>0
b, =b; for j=3,..,(m=2); j#k,s
I:_Jz:az ’=bs_£1

Therefore from Eqns (23a), (27b)

" . 1
1.1 = = IR Ay =g 29
TUEE T (29
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~ @y —ar-1) (@i Fag+ag_y) >0, . ii

where
@y —a- Y @s 1 +a-y) : :

Case 2. s = 2,k #3.
Bk _ bk'+t;'l.‘ )hk>0 A . ll
by =b, ‘ forj=3,..,(m=2); j#k i

&-2 =a2+tlm_3, lm-3<0

t = a; —(al +53).
Therefore from Eqns (23a), (27b) l" )

o243+ 2a(ay + 22,0005 - + [ +ala; +24,)° 005 -, —1 =0 (29a) .

_ (b, —b3)
(@1 == D) (pey HOxt+ay)’

where a :
Equation (29a) has a real root in [1,0] and is determined using linear !

interpolations being always between function values of opposite sign.?
Therefore from (27b), 1, is given by, 4, = +/ (1 —42_3).

Case3. 5s=2, k=3,

53 =b3+f}~1 }-1>0 iw
Bj = b; J=4,..,(m=2); f
52 = az+t;'>m..3 J’m-3<0

t = ay-—{a, +&).
Equations (23a), (27b) reduce to 4

A8 s+ 29003 s+ (R —2ft ot =t sk 2P = Bty ;
+ (Bt + Py =y R+ 2872+ 280 0h, s — B = 0. (29b)
when

a= (bl—b3)! ﬂz = (ad;_az) (a4+as‘!‘az), Y= (a3+202).

As before Eqn (29b) has a real root in [—1, 0].
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17. Constrained Steepest Descent Motion

Constrained steepest descent molion is defined by
Xt = x(q)+,(q)¢,(q) : 30
where 1) is given by Eqn (20b) and ¢9 is determined as follows.

Case 1. x®lieson b, =¢,, 3<k<(m-2).

Then
1 oW
0 _ for j = Y\ T
'1!’1 N (6b1+2 ) orj 1! rery (m 4)’ .] # k
=( for j=k
1 oW .
= - T (—a;;) fOIj = (m—3)
where

V-2 () + (@) T

Fak

Case 2. x¥liesona, = a,+¢, ora, = a4y —¢,.

Then .
1 ow
@ - _ j = —
¥, N (abjn) forj=1,..,(n-4)
=0 for j = (m—3)
where _ m-4 174
“ 0bjia

This is a simplified form of Rosen’s gradient projection method for linear
constraints.

18, Numerical Results

The following cases were considered.
Case 1. A standard steam turbine disc with seven points of division.
Case 2. An arbitrary shaped disc with the same number of divisions.

9.
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TADLE 1

Run time {mins}

Number of iter:tions

Final Weight {ib)

Initial

weight

Dimension of

design space

Case (b)

{Ibs) Case (a) Case (b) Case (a) Case (b) Case (a)

(m-13)

Case

7.833

80
40
408

62
74
186

3-58934x10°  1-66187x 10°  2:25877x 103

4
4
11
11

&
-

1-64547 < 10°  2-32714 x 102

360248 % 10%

e

30

2-4537x 103

1-61401 x 103

3-58973 % 10°

30

188

1-03400 % 102

165165 x 10°

141
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Case 3. A standard disc with fourteen points of division,
Case 4. Final design for case (1) but with a finer division.

These cases were run using the Sclective 1 and the method of alternate
base planes in turn and are labelied cases (2), (b), respectively. They are

shown in Figs 4-14, and are also summarized in Table I above for ready
~ reference.

34 T T

4 of

x4 () i
S @ O
3 T T

ksl
B
T

Radlys frem gris of rotation fin}
[
h
T

20

-] od .
(1] o -
(L

- g 3 % J-s

Thickness {in)

FiG, 4, Cases 1a, 1b. Initial design. Weight = 3-58934 x 10° tb.

Rodius from oxis of rotgbion (in)

. ! L 1 1 ! 1 1 | !
-3 = -3 -2 =] 0 1 2 3 4% a5

Thickness (in}

F1a. 5. Casc la; 62 cycles. Final desiga. Weight = 1-66187 % 10° Ib,

——— —

e

Rodnes from axis of rototion fin)

Rodius from axis of rototicn {ia)
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34

-

26~

26~

20l

2

20}~

i

=5

Fig. 6. Case Ib; 80 cycles. Final design. Weight = 225877 % 103 1k,

-4

) -2 -1 4] 1 2
‘ Thickness fin)

34

321

30p-

28~

264~

24

221

20

i 1 1 ! |

FiG. 7.

-3 -2 -1 [} 1 2 3
Thickness (in)

Cases 2a, 2b. Initial design, Weight = 3-60248 % 10° b,

45

:
1
!
i,
I
1
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Radius from axis of cotolion (in)

Rodws from axis of rotation {in)

an

30

28F

26

24+

221

20

N, Mo B I MILYA

] 1 | I | L I L I

-5 ' ) -z -4 o 1 Fl 3 4

Thickness (inl

Fig. 8. Case 2a; 74 cycles. Finat design, Weight = 1-64547 x 10? ib,

%5

34
32
30
23|
26
24

22

l
-5 —a -3 -2 -1 0 1 2 3 4
Thickness (in}

Fia. 9. Case 2b; 40 cycles. Final design. Weight = 2-32714 % 10? Ib,

Radius from axis of rotation {in}

Radiys from gxis of rotation {in}
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34 T T T T 1 T T I r

azi-
ok
28]
26]-
2a]-
220~

20

L ! i | ! 1

ni—
(2]
B

=5 -4 -3 -2 -1 [+] 1
. Thickness [in)

Fig. 10. Cases 3a, 3b. Initial design. Weight = 3-58973 x 10° 1b.

45

34 1 T T T T T T T T

30
2B
261

24

1 | 1 1 H

-5 -4 -3 -2 -1 4] t 2 3 4
Thickness {in}

Fi1c. 11. Case 3a; 186 cycles. Final design. Weight = 1-61401 x 10* Ib*
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Rodius from exis of reteticn (in)

Radius frem axis of rtotion (in)

a4

a.

M,

1 SILVA

32}-
10~

28}~

26|~

24}

22—

201

I

=

2}

Thitkness (in}

FiG,. 12, Case 3b. Final design. Weight = 2-14537x10° 1b.

34

32

301

281

26

24fe

22~

-5 =3 -2 -1 4} 1 2 3
Thichness (in}

FiG. 13. Case 4. Initial design. Weight = 165165 x 10* 1b.

Q. THE APPLICATION OF NONLINUAR PROGRAMMING 147

¥4 e ™ [ T

a3

-
E 20f-
§
i 26)-
©
o 24[-
£ 1
£ 22
2
~, 20
2
h-]
& 18}

6

B -

L__ 1 | i ! 1 1 : H !
-5 -4 -3 -2 -1 0 1 2 3 4 a5

Thickness (in)

FiG. 14. Case 4; 188 cycles. Final desipn. Weight = 1-03400 x 103 1b.

The discs were made of mild steel for which the density and elastic pro-
perties were assumed constant. The numerical work was carried out on an
English Electric KDF9 computer using Algol compiler language.

19, Discussion

Although the initial designs for cases (1), (2) differ in weight by less than
0-005 per cent they are radically different in configuration; but the resulting
designs tend to have approximately the same weight and configuration.
Case (2) was run primarily to test for relative minima to establish whether the
starting design influenced the final outcome. Cases (3), (4) were run to in-
vestigate the stability of the minimization paths, Initially the weight reduc-
tions were relatively rapid (Figs 15-16) but tended to slow down as the opti-
mum was reached. As the iteration progressed equal weight redesign tended
to give design points lying close to the behavioural constraints thereby slowing
down the weight reductions. The random method consumed considerable
computer time in searching through the random directions to locate a feasible
design. However, Selective 11 was always able to locate a feasible design after
one or two trials. Selective I never worked since aimost always compliex roots
were generated for the quadratic equation for determining the step length;
in the few occasions when real roots were forthcoming, the geometrical
constraints were violated giving negative thicknesses. The number of itera-
tions to obtain a specified weight reduction depends primarily on the dimension
of the design space.
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3G

e

3.2}

30}

28} Case {3

Case (2)

Weight lin ibs) 2 10%

1 1 ] | ! W L | k I 1
0 10 20 30 40 S0 60 70 80 90 00 1O 20 30 140 150 164 170 18O 190

Cyctes

1 1 I i 1 1 |

Fic. 15. Weight versus total redesign attempts. Based on selective search techniques for

moving away from a bound point.

26 ~
Cose {3)

24

Weight (in bs) 1 10}

22

2.0}~ -

! ! ! ! ! ! l ] 1 1 1 1 ! ! il ]
Q0 25 50 75 100 125 150 75 200 225 250 275 3CC 325 150 375 400 425

Cycies

Fra. 16. Weight versus total redesign atiempts. Based on random search.

The estimated step length used in the steepest descent mode of travel
enabled a behavioural constraint to be encountered after about two or three
iterations and thereafter the linear interpolation technique gave rapid coa-
vergence onto the constraint.
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1 inlroduction

I:\' A previews inwestigation [1-3]' computational
procedures based on the methods of nonlinear programmiong were
suceessiully developad for minimizing the weight of an axisym-
metric disk of varisble thickness subject to specified hehavior and
side constraints.  For purposes of simplicity in this injtial investi-
gation, the behavioral constraints were vestricled o a considera-
tion that the stresses should be below the yield stress while the
side constraints imposed restrictions on the dimensions and
tolerances of the disk.  The prolem was formulated analytieally
{4-3) as a very geacral problem in the ealeubins of varviations with
the addition of state and eontrol inequality constraints, the con-
tral and state variables being given by the thickness and =tress
distribution Juuelions, respectively.  Solutions were obtained by
transforming the vuriational formulation into a nonlinear pro-
gramming formulation hy approximating the disk by a discrete
maodel using a piecewise linear represendution for the control
enriable,  Stability of the solutions was established by subjecting
the control to differest representations.

The nonlinear programming formulation wag characterized by:
_(a)  multidimensional desigy space
{b) design parameter bounds (o ensure physieally veasonable
designs
{¢) quadraticweight lurstion
()  pocketsof relative minima

1 Numbers in brackets designate References at end of paper.

Contributed by the Vitrations Research Committee ancd presented
at the Vibrations Coufernce, Philadelphia, Pa., Mareh 30-April 2,
969, of Tue Asetican SocieTy ofF MEcHaN1CaL LNGINEERS.
Aanuseript received at, ASME Headquarters Novenber, 22, 1908,
IPaper No. 69-Vibr-1.

Minimuim Weight Design of Disks
Using a Frequency Constraint

L) The problem considered s that of miinimizing the weight of a circular disk subjeet to
A specified behavioral and side eonstrainis. ;
1 siricted to a cousideration that the lowest natural frequency of vibration should exceed
a specified resonance frequency while the side constraints impose restriclions on the di-
mensions and folerances of the disk.
programming problem charactericed by a ““black box™ type representation for the fre-
guency culenlalions.
used together with a discussion of resulls.

The behavioral constraints have been re-

The problem hes been formudated as a nontinear

Tiis paper includes w description of the synthesis procedures

(e} the stressex were funetionals which associnted o every
puint in desigh space o stress matrix, the columns corvesponding
to =pecificd loading conditions.  The stresses were defined by a
set of computer oriented rules which were reprezented by a
“Black box" into which were put the design parameters speciiving
n given design configaration and ovut of which comes the corres
sponding =tress distributions which were checked against the
slress eonstraints, The nssociated synthesis procedures were
characterized n:

(a} necelerated steepest descent motion in the feasible regivns,

(b} constrained steepest descent motion along o known eon-
straint,

() constant weight beunee from an urknown constraint.

Tn the present investiration, these procedures are Tarther
peneralized and used to svothesize the dik using a dyuamies
technology in the abscoce of any statieal coustraings, wherehy
the lowest natural frequency of vibration showld exceed a sporified
resonanee frequencey. The frequeney i= again a funetional which
assoctates to every point in design zpace a set of fundamental
vibrational frequensios und bas o “black ox™ type representation,
The frequeney calenlations are performed inside the box nnd the
redesign procedures are based entirely on the outpnt—za set of
mymbers giving the Tundamentul freqoencies at each dexign
eration.  MThese procedures are independent of the analysis
ciaployed and are applicable 1o problems in eonjunetion with
analysis programs alveady availuble. - Alternatively, the mecha-
nisms inside the box may he utilized [6-H)] 1o generate the diree-
tigrs of search in design space.  However, the need for refined
analysis rontines for perfurming more efleetive redesign eveles
can be more readily assessed aiter the inital resalts have heen
evaluated nsing existing programs.

The numerical computations were performed on a KDY eom-
puler giving weight reductions of 56 pereent and 28 percent. fur

Nomenclature
ay = inner radius of disk € = positive tolerance on the thick- n; = ellicieney coeflicient at vadius a;
t, = outer radius of disk ness E = kinchie energy density
r = radial disiance p = vibrational frequeney ¢ = potential energy density
h{r) = thickuessat a radial distance r o = resonance f"(‘-"lll‘”}“." Vo= maxinnm polential energy
p = density of material x = (b . = bm-2, 1) is the vector of £ = Young's woduius
k] = weight funetional d‘m-‘,lgn parameters v = Poisson’s ralio
by = width of hub (fixed) f:’ = design eyele counter - 1 = axial Jdizplacement
N . . O o= (A .oy A, Apas), direction ; ! ) .
b, = f‘““h of {”“ (h-\}“l) of senrch W = radial component of axial dis-
mer = Tner vadius of vim t = step length in design =pace placement
ar = hub radius (variable) "I = weight function Q = angular veloeity of rotation
b; = thickness at radius o; 8); = change in mass al variable see- n = number of nodat dinmeters
I = lower bound on tiuns a; ¢ = angle between consgeutive ~ieep-
{7/ = upper bound on g &p = Mrequency change est deseent vectors
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Fig. 1 Cross section of typical turbine disk

resunanee frequencies of 440 and 2000 cycles per second, respec-
tively, using a turbine disk idealization. A diseussion of these
results is ineluded together with a description of some instabililies
in the synthesis procedures used arising from the absence of any
stress constraints on the problem.

2 Wonlinear Programming Formufation

1t iz possible to formulate the problem analytically as a very
general problem in the ealeutus of variations [11] in which the
weight functional to be minimized is given by

Wkl = fﬂm 2wprh(r)dr ()

where ay, a,, are the inner and outer radii, respectively, k(r) is the
Lhickness at a radial distance r and p is the density of materinl.
For purposes of numerical eomputations, the variational formu-
lation s transformed into n discrete nonlinear programming
formulation using finite differences and is characterized by o
“bluck box™ type representation for the frequency.

Consider a thickness distribution of the form (Fig. 1).

hir) = by M S r < ds
= h(r) a1 £ tm (2}
=b, Omol S 1 5ty

wheve by, b, ai, @,, @m. are conslants while a; is a variable
satisfying the condition

LLa<<lU . (3)

where L, I/ are constants,
In addition
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hr) 2 ¢ ¢ €1 < G 3u)

where € = posilive tolerance to ensure nonnegative thickness.
The disk is essentially an idealizalion of a turbine disk for which
the width of the hub and the rim shape is fixed Lo allow for the
attachment of the disks und the spacing of the blades in the tur-
bine while the depth of the hub is variable to permit adjoining
disks to be shrunk onio a common shaft.  The thickness dis-
tribution for the remainder of the disk iz variable but sym-
metrically distributed about the midplane.
Consider any partition of the interval fas, ¢m_1] defined by

A < a3 <Ay Q3 < ey K Tt

In cach subintetval {a;_y, ¢;], the thickness A(r) is approximated
by a linear function #;(r} detined by (Fig. 2).

h; — bj
hi(ry = bja + ( 4 ! 1) (r — aj) (4>
a,- — &
where
h(a;) = by, Se=0L2...,m

substituting (2),_ {4Yin (1)

Wikl = mpbilas? — @i} -+ wob, (e, — a,ﬁ_}")

m -1
+ f 2rprh(ridr = mphi(at — ait) + wpb,(a,t — Am?)
a

T

m—2 [ *p m—2
+ Z 2rprhy(ridr = ry z: (@i ~ i)
ia '

-1 ji»3

b
X+ a; + a0} + %l (—3a? + as® - @’ -} )

- 7-%8 b (30, — Gu! — A2 — T 1 B2} (D) ’

Therefore the weight funetional has been reduced to a function of

the design paramcters
Wih] — W(bs, . . .., bu-z, tr2} defined by (5)

where

In addition, the frequency satisfies the condition

P2 Po

where pe = rescuance frequency.

The design parameters representing a given design configura-
tion are pui into the “black box,” out of which come the corre-
spotvling vibrational frequencies which are checked against the
vibration constraints (6). The mechanisms inside the box in-
clude analysis routines for the frequency calculations which are
based on an iterative solution of the differential equations of
vibrations using the Myklesford-TTolzer matrix technique [12-14].
The method is relatively simple and was already programmed at
the start of 1his investigation. ‘The conlents of the box are dis-
regarded since the purpose of this investigation is to develop
computational procedwres for describing problems with non-
analytic constraints.

The nonlinear programming formulation (6) is characterized
by:

(a) muitidimensional design space

(b) quadratic weight function

(¢) relalive minima in the absence of convexily conditions

() linear constraints on the design parumeters giving hy-
per/planes in design space

Transactions of the ASME
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Fig. 2 Cross section of equivalent discretized disk

(¢) frequency is a functional with a “black boex" representa-
tion giving an unkanown constraing hyper /surface.

3 Synthesis Procedures

The synthesis procedures in the absence of any stress con-
straints are characlerized by:

(a) steepest descent motion until a vibration constraint is
encountered,

(b) constant weight redesign at the resonance frequency,

(c) design parnmeter bounds never violated.

The eompnter program {Fig. 3) consists of moving from an
initial feasible design in the direction of the gradient to & better
design some finite distance away, This process is repeated until
a vibration constraint s encountered which prevents further
moves it the gradient direction.  Then an alternate step is taken
which is 2 move along the coustant weight surface.  After the
alternate step a feasible design should have been oblained from
which a steepest descent ean be made.  The process is continued
until no move can be made by either mode, at which time an
optimum is said to be achieved. The reasoning behind this
procedure is that since the gradient points in {he direction of
greatest change, i is the best direction iv move 1o improve the
design.  If a move cannot be made in the best direction then a
move is made which at least does not inerense the weight of the
design,  The steepest descent mode of travel is defined by the

iterative equation
plath = yiq .+. !f"‘ﬂg‘ﬂ) g = (], ]’ '_]‘ .. (7)

where ¢ is the normalized divection of steepest descent and (@
is the step length which is determined using a simplified forn of
Rosen’s gradient projeetion method [15} in conjunction with the
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Fig. 3 Structural synthesis flow diagram

side consiraints. This enables fairly large step lengilis to bLe
taken, thereby economizing on compuier time,

As the designy approach a vibration constraint surface, it is
possible that the step lengths used in the steepest deseent proce-
dure are too large, with the result that the design pierees through
the constraint surface and moves into a region of coustraint
violalion where the vibrational frequencies of 1he designs are he-
low the resonance frequency. 1f this s the case, a quadratic
interpolation procedwre is used 1o converge 1o o design at the
resonance frequency by thickening up the variable sections of the
disk. This gives a design point on the boundary of the vibwation
eonstraint which is a nonanalvtic surface due 1o the “black hox”
natwre of the frequency, thereby precluding the use of standard
methods of nonlinear programming such as moving along the
constraint in a direction in which the weight deerenses.  Instead,
an allernate step is taken along the constant weight curlnee,
where the directions of search are based on either sclective
methods wlilizing the physics of the problem or random methods,
amd are summarized below.

1 Selector I—Two design parameters are changed leaviug the
rest wnchanged. Al possible combinations are considered.

2 Selector 1T—A perturbation method using the Lagrangian
energy dewsity veclor 1o estimate the normal to the vibration
constraint.

3 Selector I1I—Three suceessive designg arve used o estimate
n new direction of gearch.  This is used in vase there arve sharp
ridges on the vibration constraint surface.
~ 4 Random methods where a random number generator is
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wsed 10 generate the directions.  The intersection of these ran-
dom directions with the constant weight contour are found and
tested as trial designs. A modified version propused by Schmit
et al [16], s used, called the method of alteruate base planes, A
smnmary of these programs is given below,

4 Selector |

The constant wetght redesign condition at the resonance fre-
queney i= given by

Wix) = W(x + 1) )
where
x = current design al critienl frequency
I = step lengih
¥ = direction of search
Bubstituting (8) in (3)
MALal? — Asal(be — Ba)hmus = (n3 -F 2a2)|t
m—2
-~ [ Z (i — @ diips + a; + djn0A
=3
+ (0~ b + 2&:)4\.n_a] =0 W

where N for j = 1, ... ., m — 3 are the components of & This
gives a cpundratic equalion for determining the step length when
the direction is specified. Abternatively, this is a condition on
the direction when the step length is specified.  "The lntter view-
paint is alopted here, the step length being selected to ensure
designs within the design parameter bounds so that the propused
allernate step designs need be checked ngninst the vibration
eonstraint only,  The random methods are less selective and con-
sume considerable computer time in searching through the ran-
dom directions for designs that are acceptable with respect to
hoth the design parameter bounds and the vibration constraints,

The direction cosines of the divection for bouncing back inte
{the feasible regions must satisfy condition (1) and the novmaliza-
tion condition

m—3 .
Sar=1 (i)

=1

In general, these define an indeterminate system of equations

which are reduced to a determinate form by speeifving (r-5) of B

the components i some way and then ealenlating the remaining
two compments nsing equations (9, (10), Tt was found con-
venient to make these (m-3} direction cosines zero to ensure real
sol ntwons.

The sections of greatest aud least thickness are altered leaving
the rest unchanged. I no feasible design is fortheoming, the
step length is progressively reduced or a new direction is gen-
erated corresponding to a different combination of design param-
eters that are allererl.  Full details of the analysis are given in
references [2, 3] to whieh the reader is referred to for more ex-
tensive detatls,

3 Selector II

Raxleigh’s principle [17] biged on the properties of the ef-
ficieney coefficients {18] was used to relate small changes in fre-
gnency to small changes in design

where £, v are the kinetic and potentisl encrgy densities respec-
tively and 1 is the maximum potential energy.  From (5), (8)

I

o B
‘5.-1“- (SE;) Abjge, 7=1,..,m—4

(13} ;
JIF :
=( )Aa;, j=m-3 4
Oty |
Substitating (13) in (L1} E
"t |
olr ol ]
6[} = Jé:l I ab,+ Ab; F2 -+ W3 a( Alle ;
m 3 W 21 i
A Aty — (14 :

=1 JZ:I T Ol |'- m-3 o (14}
The bounee back condiiton is characterized by §p > 0, which is i
satisfied by . J
A=y =l am—d :

34
Mocd = Qs M —= > 0 . _
$ T A 2z - (15)
f ol < 0
= —fm3z If —-
Nm o

The step length is given by

Min f Min by — €), {ns = L), (U = a)l  (16)
3Li<m=2 3

to ensure designs within the design parameter bounds, The

strain energy s given by [19]
!:.h-‘(r) % I O\t
-/ (7 5+ 55
| Q%
;¢ of®

"l(l — v?)
i Qe f 1 Ou
caoax[B (e
2
(a_?%_g_;) :” relBdr 4+ ffpﬂ’hr’u g!f drd@  {17)

speed of rotation of the disk

1 brt
r br

-
.

where

-
<
I

g

1]

E Young's mudulus

x
1

Poisson’s ratio

ulr, 8, 0)

axial displacement at time ¢ of section whose

initial epordinates arer, @,
Consider solutions harmunically dependent on both & and ¢
= I7(r) sin (n + pr) (18)

where n iz the number of nodal diameters.  Substituting (18)

(17) gives

~ 'h tl W
ve i1 - v’) dr2
2(1 ) 'F” _l'_l.i n’ I
v dr \r dr re

2w W
-—n—(‘———-—‘)]—l—pﬂzilr—] (1)
2\ dr r

b dW nt

dp = Ty bM; (11)
e el slome W, 1 Adr rosnecti - are piv .
where 8143, §31,, . . . nre changes in the mass at the variable see- The deflection and slope IV, d1F /dr respectively are given by the
fions and R . i, .
model shape matrix {from which is calenlated using finite
n; = _.]’°_(k_._'" v) {12 B
! 20V differences,  The kinetic encrgy is given by 3
= j
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1 ony?
7= ﬂ;ph(a) rdrdf {20)
Substituting (18) in (20) gives
1 -
L= 3 pratll? {21)

Equations (19) and (21) determine the strain and kinetic energy
densities from which the direction ratios (15) may be computed.
The direction of bounce is then ohtained by projecting this direc-
tion onto the hyperplane defined by the intersection of

Wby .o . oy byes, @2) = constunt}
constant

[

az

6 Selector 1)
Consider three successive designs xfte—D, x(e=0, @ generated

by the steepest deseent cquation (7). The corresponding fre-
quencies are giver. by

po = PO < pla=h < ple-d (23)
Let x be the foot of the perpendicular from %@ onto the direction
e~ defined by x9=2, xta-), The associated frequency p s
estimated by linearly interpolating on e =2

a1 - {la=n (1t
p={1- fias 08 f)plad + el fpta=h 2y
where
cos @ = "{-(!‘l) .15{(0“!)
The direction ratioz are given by
= xle? — if
¢ = xle x if p<my o=
) (25)
= x — x@ otherwise
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The direction of bounce back into the feusible Tegions is obtaine
by projecting this direction onto the hyperplanc (22), The ste
length is given by (16).
are nonfensible the step length is pregressively reduced.

T Results anil Discussion

The numertcal work wnas carried out on an English Electrt
KDF9 computer using Segmented Algol. The following casel
characierized by a four dimensional design space were considered

Case {1, 2)—a standard turbine disk idealization using resc
nange frequencies 440, 2000 cycles per second, respectively, (Figs
4-6).

Case (3)—an arbitrary . design configuraiion in conjunction
with a resonance frequeney of 2000 cps to examine the possibili-
ties of relative minim= in the absence of convexity conditions ot
the weight and feasibli regions Figs. (7-10). .

Case (1) using a resonance frequénéy of #40 ops gave designs
which never enconntered a vibration constraint during con-
vergence to the optimum. Therefore an artificial resonance
frequency of 2000 eps was introduced to study the interaclions
of the synthesis with the constraints giving rise to Cases (2, 3),
the initial designs for Cases (1, 2) being identical,

The programs were run using Selector I and 1T in turn for ench
of the cases (2, 3). The resulis presented here are based on
Belector I, Selector [I failed to generate a satisfactory direction
cach time, due to the fact that the kinetie energy density at one
of the variable seetions beecame very large (of the order of 104 in
suitable units) in relation to the potentinl energy densities which
were everywhere of the same order of magnitude (= 10%)., This

If the proposed alternate step desigr

part of the investigution was very heavy on computer time and it
was therefore decided to try Selector ITT only on the final designs

in Cases (2, 3) to see whether further improvements were possible.

Some improvement was obtained but was not commensurate with
the time consumed,
were not highly constrained and a feasible design was obtained at
the first at temptusing Selector I.  Thereafter, the designs became
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mure Lighly constrained with a correspondingly reduced wedge of
feasibility requiring o greatly increased number of redesign at-
tempts before a snccessiul design was obtained.  This accounts
for the shape of the plots of weight versus total redesign attempls
(Fig. 10) where its arbitrary nature and the decreasing con-

1098 / novemaer 1969

vergenee rate make it impossible to determine when the syn -
thesis is complete. Attempts to consider higher order design
spaces proved unsuccessful ns the program became too big for the
machine.

The final design in Case (1) was bounded by all four design
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parameler consiraints while the final designs in Cuses (2, 3) were
hounded to within a reasonable tolerance by the vibration eon-
strainl and the design parameler constraint a2 = L. Haowever,
thig does not necessarily mean that the optimum lies at the inter-
geclinn of one or more constraint surfaces. The final designs
(Figs. 7, %) in Cases {2, 3), although differing in weight hy less
than b percent, are radically different in configuration.  This
may be due to the local instabilities ot to the presence of pockets
of relative ininima in the compusite constraint surface.  Further
'rc-.-sum'ch i needed to esiablish this point more conclusivety.

8 Conclusions

An nutomated synthesis capability was developed for disks
using n “black box™ type representation for the frequency, weight
reductions of 36.3 percent, 28.0 percent, 20.4 percent being re-
corded for the three sases presenied here.  The frequency caleu-
lations used here, though relatively simple from a mathematical
standpoint, involve the programming of extremely long and
complex routines.  Thiz could mean run times of aboul 1 hour
for comparatively few design cycles, over 98 percent of the tine
being consumed in the frequeney caleulations. The time and the
design iterations required to achieve a specified weight reduction
increases at an increasing rate with the dimension of the design
space, thus precluding any systematic evaluation of such cases.
In addition,. severe limitations would shready be present from
slorage considerations.

Alternative analysis routines which could be used include an
eigenvalue formulation [6-10] based on the method of finite
elements.  This approach seems {o offer better possibilities for
exploiting Selector 11, where the Lagrangian energy density vee-
tor, which determines the normal to the vibration constraint
surfaee, could be readily ealewlated using the member stiffness and
muss iatrices. A derivation of this normal is given in reference
[9]. The same difficudtics regarding storage and time could riill
be present,  In any ease, these programs were not available Lo
ithe nuthor at the start of 1his invesiigntion.  Another possibilily
iz an equivalent reformulation of the problem in which instead of
the weight being minimized, the frequency is maximized with a
constraint on the weight W[h] < Wy, along with the other con-
straints. These constraints are much easier to handle and enable
1he more conventional methods of nonlinear programming [20]
to be better utilized.

The synthesis procedures used here displayed the same general
characleristics as those developed in the earlier investigations
[1-3] using a stress constraint. That is to say, rapid initial
convergenue followed by slow convergence us the desighs beeans
more highly constrained with a correspondingly reduced wedge of
feasibility. The number of iterations and the time cobsumed
inerease very considerably with the dimensions of the desim
space. For instance, Cases (1, 2) using n stress coustraint re-
quired 62 iterations with a ran time of 5 minutes 1o achieve a
weight reduction of 34 percent while the corresponding figures
for an eleven-dimensional design space were 186 iterations with a
run time of 30 minutes, 1 is estimated that on the average, the

- time for a frequeney ealealation exceeds that for a stress enleula-
tion Ly a faetor of aver 10:1. It should also be noted 1hat the
desipns presented here would be substantially modified in the
presenee of o yield constraint on the stress with a correspondingly
rediced weight change.
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Introduction

Tms investigation is part of a research program into
computational procedures based on the methods of mathematical
programming for optimizing structural systems in the presence of
constraints,  As a first step in this direction, the weight of o disk
was minimized [1-5]! subject to specified behavioral and side
constraints.  The behavioral constraints were restricied to a con-
sideration that the stresses should be everywhere below the yield
stress and the natural frequencies of vibration should lie within
specified resonance bands. The side constraints ot the other
hand imposed restrictions on the dimensions and tolerances of the
disk. The problem was formulated analvticaliy [6-7] vs a Bolza
problem of the caleulus of variations with the frequencies as con-
trol parameters. The design requirements were represented by
stale and control inequality econstraints, the control and state
variables being given by functions deseribing the variations in
thickness, stress, and deflection fields.

For purposes of numerieal computations, the variational
formulation was traunsforined into a discrete nonlinear program-
ming formulation which was characterized by a “black-box-type"
representation for the behaviornl variables, giving rise to fune-
tional inequality constraints, These, together with the side
constraints, were represented in design space by hypersurfaces
which formed a composite ¢onstraint surface. The weight was
represented by a family of conlours of constant weight and the
problem consisted of determining the lensy weight contour within
the feasible region enveloped by the composite constraint surface.
The solutions were based on a modified “steepest-descent—alter-
nate step’’ mode of travel in design space.

This investigation eonziders the continuous formulation of the
problem in the absence of a dynamic constraint.  Analytical

! Numbers in brackets designate References at end of paper.

Contributed by the Automatic Coutrol Division and presented at
the Winter Annual Meeting, Los Angeles, Calif., November 16-20,
1968, of Tue Asmericax SocteTy oF MECHANICAL LEXGINEERS,
Alanuscript received at ASME Headquarters, July 29, 1969, Paper
No. 69-WA/Aut-1.
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Application of Pontryagin’s Principle to a
winimum Weight Design Problem

A miniminn weight design problem has been formulated as o general problem in oplimal-
conirol theory with the addition of stete and conkrol inequality constraints.
analytical solutions have been derived using the maximum pringiple of Ponlryagin.

Complete

solutions based on the maximum principle of Pontryagin are given
for the resulting variational formulation. These represeny the
e firsi-order necessary conditions for an optimal selution thus
enabling the nnalytic characteristies of the problem to be com-
pared with the numerical results obtained previously.

Statement of Problem

The variational formulation is obiained by idealizing the tur-
bine disk as a rotating circular disk of variable thickness. "The
weight is given by the functional expression, Fig. 1,

Wik} = fum

inner radius

2priv(rydr (1)

where

a; =

am = outer raclius

hir) =
p =

thickness at a radial distance r
density of material assumed constant

The radial distance 's measiurad trom the axis of rotation along the
normal direction, while A(r) is measured parallel to the axis of
rotation. The behavior of the disk is goverued by the differential
equations {2, 3)

dar, 10 dr ok
~— = —=la,— + -(0, — o) + pwirh
dr h dr r
. (2)
dop o, — oy v dh .
—= ———— — ~ F_— — Ppw?r
dr r h o Tdr o

where o,, 0 are the radial and tangential siresses, respectively, »
is Poisson's ratio, and w the angular velocity of rotation.  These
have heen derived on the assumption of radially symmetrie plane
stress. The case of plane stress involving an additional com-
poneni ¢, ean be handled using an analysis similar to that pre-
sented here.  The stale variables ave the stresses which satisfy
the tiansversality conditions
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gy g, =5 atr = q
(3)
fimr: g, =3, atr = a,

where 81, 8, are constants,

The material of the disk is assumed to obey the Trescn yield
condition

Flo, 08 < a9 (1)
where
F(o,, a9) = max ({a,], |oa), Jo, — o3
This state constraint region is illustrated in Fig. 2.
Counsider a thickness distribution of the form
A =k e <r<a
= h(r) g L r £ apo (3)
=b, twa <r <a,

where b, b,,, i, @, an are constants while A(r), a: are variables
satislying the constraint conditions
<l €a<lU<ay,
(6)
h(r) Z e> 0 % r € [as an_]

where L, U, € are positive constraints.
The controls h(r), h(r)? are said to be admissible if

i
(= O
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1 They are continuousina;, a,,. .

2 The function A(r) belongs to the constant control set U de-
fined by (5) and (6).

For given admissible controls h(r), (), & < r < @, the state
equations (2) in conjunction with the transversality eonditions
(3} possexs a unique continuous solution which defines a trajec-
tory in state space along which the states of the system are trans-
ferred between the end manifolds 80, ¢ These trajectories
are constrained to lie within the intertor of the region of state
space defined by (4). It s required to determine the optimal
control A*(r}, k*(r), @ < r < a, which effects such o transfer
while minimizing the weight (1),

As shown next, the constraints (6) provide necessary eenditions
for the existence of olutions,

Unconstrained Problem

Consider the optimal contrel problem in the absence ol con-
straints on the control variables.  Minimize

re
Mih = f 2rprhir)dr, h &R (M)

n

where
@ Srn<n <

Let b = h*(r) % r € [ry, 1] be the mibimizing function in clags €2
(i.e., h*(r) exists and is continuous),  Then it is minimizing in the

subclass
Riry = B*(r) + en(r):  nir) € C* (8)
where € 15 a small parameter. .
. Let
Fle)) = M{h}
n
- f 2mprlh*(r) + en(r)idr
o
I3 . 5y
= 2mwprh*(r)dr + eoj Lrpra(r)dr
™ mn
= M[h*] + fpf 2wpry(r)dr (9

But F{e) is aminimum ate = 0
F'{0)=0
tha! iz,

r 21rprq(r)dr; = 0
Ty

for arbitrary n{r}. i

But this is impoessible and therefare the problem has no finite
solutions over the entire function space and solutions exist only
for hounded h(r).

Constrainis on h{r)

Cousider t'ie problem in the presence of the control constraint

hir) > e % r € {1y, 1] (1)
From (7)
M} 2 wp(n? — ri)e an
SRAE) = ek r & [y 1]
(123

M* = MY = mp(n? — ret)e
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Therefore optimal control is baug-baug in [, 1]

Presence of Control Set U

Therefore, the solutions in the presence of the control set I/ are
obtained in the following way.  From (1) and (5)

Wik, as]l = wpbi{a:2 — a;?) + wpbo(a,?t — anat)

am -1
+ f 2mrprh(ridr
13

2

{13)

The minimum of the integral in cquation (13) is given by
[ PR S
or from (12}
h*{(r) = € % r € [az, ap_]

But the first possibility is excluded by the constraini condition
(6). Therefore the optimal solution is given by

k*(r) = € % r € [ag, Gl

o (14a)

minf 2rpri(ridr = Tp(@m-1? — as)e
a

2
S W R*; as}
= wphi(m? — ) + wob (6,2 — Gn-i®) + wpldn? — Ga%)e
= wpllh — €)ar® + bn(a,? — am?) + €ama® — b’ (15)

This may be regarded ax n function of the control parameter a:
and ix to be minimized. Solutions exist only for bounded a3 and
are given by :

a* = L if by > ¢
{16)
=U ifh < e
SWE = WA ax¥)
= g min .[(b, - e )2 (b — UY
+ ba(amt — apa?) + €ap? — bt (161}
Optimal control is continuous and bang-bang in [az, ¢n].  Solu-
tions exist only for bounded k(r), a..
AN - Him)
i I |
| |
|
| |
C | ,
1 )
! !
! |
|
| /
T |
| |
1 l =
B 5, . T * Tr
c D

Fig- 2 Trosca Yield condition—iwo dimension stote consiraint region
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(14)

Maximum Pringiple

The maximum principle of Pontryagin and the associated
Hamiltenian formulation is used to iniroduce the state variables
into the problem.

H(No, My Mo @, a9, 75 1y )

A . h
l,fr) [ o.h 4 - (e, — o8} + pw’rh]

= 2xpridr) —

o, — Og v

+ Ae{r) [ 3

o,fn - va’r] (17)

It is known from the maximum principle that e Is a nonpositive
constant

A(r) = const, <0 (18)
The ussociated adjoint equations are given by
d\ BH M — N h
— o s ) =
dr da, Y
(m
dhs ol ANo— A
dr d0g B r

In addition to the state and adjoint equations (2} and {(19), it is
assumed that the yield condition satisfies

Fa,(r), aa(r}} < o0 (20)
The coutrol A(r} is unconstrained and econtinnous
aH
o= A vhe =0 (21)
o T
Therefore {17) reduces to
AMo— A
H = 2wprhhs — ( : " ’) (g, — aq) (22)
Maximizing Ff with respect to R(r)el gives
Ao = const < 0
(23)
Mr) = €
The state cquations reduce to
do, o, — T .
e T 20 et
dr r
(24}
dag o, — 09 .
— = D — ypwlr
dr r
C: 34 .
..G_.=C|—r—2 - puwrr
(24}
N X
as = C -i—:_";— Tpﬁﬂ’-”

where €, € are constants of integration.  Eliminating r from

(23),
{1 + 3)e,? — (3 + v)og® — 2(1 — vlo,00 — sclg_, + 8Cwe
— 401 = p) — 201 + ¥)Cpw?t = 0 {26}

This defines a family of hyperbolas in state space whose centers
licon theline ' .

(N

ag = VO,

Frotr (23) and (21)

RS
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D M= h
dr r
(28)
(la\-: . )\1 —_ f\=
de r
Therefore the adjuint equativng are givei by
M) = A + Br
(29)

N(r) = A — Bt

where A, B are constants of integration and correspond to a two
parameter family of parabolus whose foei Lie on the axis of rota-
tion. The problem corresponds to a nonuutanomous system with
fixed end points e, a,,. The optimal control (23) is obtained by
maximizing the Hamilignian (17)-with respect to the controls,
The maximum principle used is applicable to points within the in-
terior of the constraint region (20). A mudified analysis ap-
plicable to points belonging to the honndary of this region is
given nest,

Restricted Maximum Principle

Consider an optimal trajectory such that

Flo(r), oo(r)) = a0 % r &E [r,r] (30)
where ‘
M Sr. <K dy (30) ‘
Let
oF OF
Vi = [ —; 3
(30’, 005) G
p(arr ag, ¥y h: i’)
| . h oF
= - ~[a,h+~(a, - 00)+P¢d’rh:|“‘“
h r o7,
— , 10
+ l:f’_r_ao__ Zo',.h — vpwtr | —  (32)
r h L)

Sinez the optimal trajectory defined by equation (2} belongs to
the bonndary of the cunstraint region (30)

p(an og Iy h’ h) =1 (33)
T Oh{r) = hoexp . v
| o, — op\ Fo, — Fay s dr
{f a[( - )Fcr, T rias TP r} r}
o rerd (34)

where Fa,, Fog denotes partial derivatives with respect to o,, o,
respeetively.
Substituting (34) into (2)

(_f"g_, _ 14+ wv(o, — ap)Foy
ar r  Fo, + v¥ag
(35)
deg 1 + v (g, — og)fe,
dr Fo, 4 vlog

This defines a two parameter family of trajectories in state space.
These equations have been derived on the assumption that F
possesses continuons seeond partial derivatives along the bound-
ary. ‘This condition is satisfied for the Tresen vield surface (4)
everywhere except at the vertices.  However, the stress states
are uniguely determined i the vertices and the corresponding
eptimal control ix obtained by direct substitution in the first of
equations (2),
Let
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A = = ) (:36)
SR ENCAWNCN
aa, \ dr 100’9 dr r_yh'_:
2 (ﬂr)“ o
5 o= oh \ dr _ h 37)
J (dus) g, .
A il -
Ok \ dr _!
Therefore the adjoint equations are given by
da apy\T :
— = — AA 5 3 . O
o A 4 AB (bh) V.'p (38)

where
A= () AdR))
These equations have been derived using Chapter 4 of reference

{8] in which

ot of aR
. = A- = Ny — =V
ox r X (Un G 1)1 ox 2P

Substituting {36} and (37) into (38)

@J _‘AI—R: ToM A v Fa, — Fay
dr r -

F‘cr,)

Vo, + vFog r
(49)
fl_)_\_z_ M— A Ao+ vha FO‘,—FO’a+I-,
dr r Fo, 4+ vFoy r 7o

Tresca Yield Condition

The results obtained thus far are spplicable to o general yield
surface K. Consider the form of these equations when applied
to the Tresea condition (4) except at the vertices, where the solu-
tions are uniguely determined by the state variables,

Therefore Fa,, Foy, are constants

1:'0,. = Fog =0

A (10)
From (3%), (40}

-(-i" (—MFog 4 AeFo,)
dr

_ (4t »)Fo, + Faﬂ)[ _ MFoy + J\,Fa,] 1)
Fo, + viay r
Thercfore integrating
~MFes + MFa, = Cre 42)
where

Fﬂ', + Fﬂ’g
1 4- _—r 7
(14 ») Fo, + vFas

R
1

C

i

positive constant.

Substituting (34) and (42) inte (17) gives

g, — dy
H = 2wprh\ L 4 ) =
Tpride -+ C(L A ») Fo, + vFay

re-t

(43)

1t is reqquired to determine an optimal eontrol A*(r) G U which
maximizes (43). It cun easily be verified tha fur parts along AF
or CD, Fig. 2, the second term on the right-hand side of (43) iz
negative while parts ulong FE, BC, D, and BA give positive
values. Therefore the optimal svlutions lie on the latter branches
of the yield surface.

Consider points along ET)
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ogg = O, —
Fo, = 1 (44)
Fag = —1

Substituting (44) into (35) gives

do, [ 1Fvon

dr 1 —=vr (45)
o, = Inarf {a >0) (46)
where
i
B=: Y0

bl 4

Under the influence of this trajectory the state of the system
would eventually leave the branch 2D and move into the non-
feasible regign of state space. Thercfore uptimal control must
operate atong FE or CB.  Consider points along FE

T, = o} 0 <og £00
47)
Fo,=1; Fog =10
Substituting (47) in (35) gives
do g — & -
=T (48)
r r -
SO = g — b1t (49)

where b is a positive constant of integration.
is obtained by substitwting (47) into (34):

£3%
- PW]
(l + V)U"o Za0

-(50)

h(r) = ho exp [

This is a monotonic decreasing function of #. Therefore the
second of the eonstraint conditions (8) are satisfied by selecting
the constant he such that :

22
b PO E‘"_'l]

ho > €cxp — [(1 ¥ ) 200

'l‘hejadjoim cquations are ubtained in the following way, From
(30} and (40)

fd_x’.,;.d_'\’

=0
dr ° dr

AN+ M) = D (52)
From (42), (52}

D¥g. — Cr®

A =
() Fo, + Fag
. DFe+C 6%
og + Cr*
Myfr) o= o8 20
(1) Fo, + Fos

Substituting (47) into (53) éix’es '
MP)y=D—-Cro™M xr &lir,r]

(54)
Mir) = Cria) st r & [r, 1l

i

The major results esiablished in this section are that the optimal
control (50) must operate along th: optimal trajectory |or,| = 0
with adjoint equations (54). This result is confirmed by nu-
merical rezults obtained previou=ly [2, 3].

Jump Condition

The adjoint veetor is continuour at the entry poinv r =
A L

fournal of Basic Engineering

The optimal control

. iy

T T T T

Mr, — 0) = A 55)
This implies from (24) and (34)
A+ Brg=D—Crp+
A = Brp=Crp o)
This adjoint veetor is discontinuous on leaving
Ay 4 0) = Ary) - p(r)VF (57)
where
p(r) = 2B (g-;.’-)-l
= F;\—i—i—m e, 1l (A8}
Substituting {47) into (38} gives
piry =8 — (0 — y)ars, r,<r<r (HY)
Substituting (58) inte (37} using (29} and (47) gives
Al Bir2 = D = Crat — B 4 (1 = p}Arp+
: (60)

Al — Birg = Crp

From (56) and (60), the adjoint vectors on leaving may be de-
termined in terms of the hyperbolas on entry.

Conclusions

Complete analytical soluiions have been obtaiued using the
Pontryagin formulation and are charactervized by

1 Flodr), ae(r)} < oo % r € {as, a1

[ 2]

F(a,(r), oolr)) < g0 % r & [an_y, Gl
3 Flor), oa(r)) < oo for r € {ay, ap.] implies A*(r) = €
4 Flodr), aelr)) = oo % r € [r, 1] E [ay anal implies

%

(4 _

(1 + »)ow 20,

jectory corresponding to |a,} = g

h*(r}) = ho exp > € the optimal tra-

5 Optimal state and control vectors uniquely determined at
the veriices of the Tresea hexagon by the state equations.

¢ The control parmmeter 4 attains its limiting values,

Conditions (1) and {2) have been derived using the trans-
versality conditions (3) and the state equations (253). A detailed
analysis pt the vertices of the Tresca hexagon is given in reference

[2].
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OPTIMAL VIBRATIONAL MODES OF A DISC
B. M. E. pE SiLva

Department of Matheniatics,
University of Technology, Loughborough LE11 3TU, England

(Reczived 13 September 1971 and in revised forin 20 December 1971)

The problem considered is that of maximizing a linear combination of the natural
frequencies of vibration of a turbine disc idealization of variable thickness. The problem
is formulated as a general problem in optimal contrel theory with the addition of inequality
constraints on the state variables. Significant progress has been made in solving the problem
by using purely analytical techniques based on the maximum principle of Pontryagin,
These transform the problem into a nonlinear programming problem which is solved
numcrically by using the Heaviside penalty function transformation in conjunction with
Rosenbrock’s hill-climbing techniques.

Available computational experience indicates that these procedures provide powerful
tuols for handling complex structural optimization problems.

1. INTRODUCTION

This investigation is a continuvation of a research programme into analytical and computa-
tional procedures based on the methods of mathematical programming for optimizing
structural systems in the presence of design constraints. Initially mathematical programming
procedures were successfully developed for obtaining minimum weight solutions to a turbine
disc of variable thickness in the presence of constraints on the stresses and the frequencies of
vibration [1-5}]. The stresses were required to be below the vield stress for the material of the
disc while the vibrational frequencies were constrained to be outside given critical frequency
bands. The problem was formulated as a general problem in optimal control theory with the
addition of inequality constraints on the state and control variables. These variables were
given by functions describing the variations in the thickness stress and deformation ficlds,
with the frequencies corresponding to control parameters.

The continuous formulation [6-8] was described by the maximum principle of Pontryagin,
while the numerical computations were based on a discretized non-linear programming
formulation obtained by using a piecewise linear representation for the contro} variables.
The non-linear programming formulation was characterized by non-analytic “black box”
type constraints for the behavioural constraints, and the solutions were based on a gencralized
““steepest descent-alternate step’”’ mode ol travel in configuration space developed by Schmit
et al. [9]: this being one of the most powerful methods available at the time for solvmg
structural optimization preblems with non-analytic constraints.

The work described here is an investigation of the dual problem of maximizing some linear
combination of the {requencies of vibration of the turbine dise with a consiraint on the total
weight. The problem is again formulated as a general optimal control problem in the presence
of inequality constraints on the state and control variables. Significant progress has been made
in solving the problem by using analytical procedurcs based on the (restricted) maximum
principle of Pontryagin [10]. The adjoint systems of the Pontryagin formulation are solved
by using perturbation techniques which give rise to fourth-order differential equations.
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These are solved by using WKE expansions [11]. These analylical procedur=s transform the
problem into a nonlinear programming problem, which is then solved by usiz.2 the Heaviside
penalty function transformations [12, 13] of non-lincar programming in conjunction with
Rosenbrock’s hill-climbing techniques [14].

This paper includes a description of the synthesis procedures used to implement the

optimized design cycles on an English Electric KDF9 computer together with a discussion of
results,

2. DISC CONFIGURATION
The thickness distribution of the disc is assumed to be of the form (Figure 1)

h(r) =8, o <r<ay,
=J(r) Ay S F < Ay,
= brm Ay KT <y, (l)

where b,, by, a,, @, and a,,_, are constants while /i(r) ard «, are variables satisfying the
conditions

a<Llga<sl<a,, ;
hry=e>0, Vrela,an.l, (2
where L and U are bounds on the hub radius while ¢ is a small positive tolerance to cnsure
non-negative thicknesses. A{r) is the thickness at a radial distance 7, J(r) being measured
parallel to the axis of the disc. &, a,, are the inner and outer radii, respectively, while b, &,

are the widths cf the hub and rim respectively.
The constraint on the total weight is

J.n27rprh(.") dr< Wo 3

ay

where p is the density of material, assumed to be constant and W, is a positive constant.

Fixed

B Sy —
(-] Rim 1Fixed

Variabte thickness
Tm—i
-
a2 Hub Variable
T a— —
Fixed
g
¢ of disc

Figure 1. Cross section of typical turbine disc.
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For purposes of simplicity, the disc, which is essentially an idealization of a turbine disc,
is studied in the absence of the blades. The width of the hub and the rim shape are fixed to
allow for the attachment of the discs and the spacing of the blades in the turbine while the
depth of the hub is variable to permit adjoining discs to be shrunk onto a common shaft. The
thickness distribution for the remainder of the disc is variable but symmetrically distributed
about the midplane.

Conditions (2} and (3) determinc the side constraints for the problem. The vibration aspects
are discussed below,

3. BEHAVIOURAL EQUATIONS

The small deflection motion of a thin disc in polar coordinates is given by [15]

2u 18 180,
Phaz =350 750 =%

14a My 10My

—a—( M) —— —W‘—Qr—O,
“18Mg M,y 10 _

;-——as ———-—r —;E(rﬂ/ﬂg)— QH_O’ (4)

where M,, My, M,p are the bending and twisting moments, Q,, Qg are the shear forces and
u(r,8,r) is the axial displacement at time ¢ of the section whose initial coordinates are (r, §).

A cylindrical coordinate system O(r,8,z) is used, where Oz is along the axis of the disc,
r is the radial distance from Oz, and # is the angular coordinate about Oz. Eliminating G,,
Qg from equations (4) gives

I 19 18 2{ 3 12 9 u
?F(’M')Jr(Fi'an_?a"r)M"—?(—araa“L?ﬁ)M"’:P”az_Z’ )
where
oo B [Pu (o 10
TR -yl T \ror riege))’
ER’ Py (lou 13%u
Mﬂ_—l2(l—-v2)[v8r_2 \?EJ’?«?EJ'BT)]’
ER [13u 13u
M"’=12(1+v)[Farae"rzae]' ' ©

Eis Young's modulus and v is Poisson’s ratio for the material, both assumed to be constant.
Consider solutions harmonically dependent on both 8 and ¢:

u(r,0,1) = W(r)sin(nf + pt), /(7,)"‘

where 5 is the number of nodal diameters round the disc and p is the natural frequency of
vibration, W(r) is the radial form of the function which describes the axial displacement.
Substituting equations (6) and (7) into equation (3) gives
e w 3:%*_1 aw gﬂ+6+3vd_li+_6_d_h 2 2+ 142 W
dr* hdr  r) dr® | hdr? he dr B\dr r? dr?
3@ 6+ 3dh, 6 (ah\? 204 114w
hrdr? hrr dr RPridr r3 dr

- d2} h o 6v (dh\* 4—n? 1— 2
—n1[3—'~d—5-——9—5‘—’+32—:—5(d—') 4 "]W:lz( V)ppzle. (8)

hr2dr®  hridr dr r# En?
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This is the basic equation describing the behaviour of the disc, in flexural motion only. In

order that Pontryagin’s Principle be applied, this is reduced to a system of four equations of
the first order.

The transversality conditions are provided by the boundary conditions at the edges of the
disc. For example, suppose the inner edge is clamped while the outer edge is free. Then [16]

ou

u=a_r=0, atr=a,,
M. =0, atr=a,,
190,
Q, - ?‘70’—8 = 0, atr =y ‘ (9)

This latter condition reduces to

0 (FPu 1o 122\ (1-—v)d* fOu u
a_r(a_ﬁ FE> rza—ef) Tﬁeﬁ(ﬁ?‘?)*o’ atr=dp (2)
Substituting equation (7) into eciﬁations (9) and (9a) then gives
atr=a,: W=d—I:I-/=O,
dr
aw . (1dWw n?
atr=a,: "&F+V(;F-ﬁl‘y)=0,

rl

iy BV (10)

dr2  rdr 2

d(d’-W 1dW 12 ) nz(lﬁv)(dW W)
" SET

The natural frequencies of vibration correspond to the e¢igenvalues of the differential system
of equations (8) and (I10). Since the boundary conditions (10)- are homogeneous there will
be a set of eigenvaiues for the natural frequency p.

There are design advantages which result when the natural frequencies are as large as
possible; in this investigation, therefore, it was attempted to maximize a linear combination
of the natural frequencies by choosing a suitable representation for the shape function in an
optimal way subject to the satisfying of the behaviour equations (8) and {10) and the design
constraints (2) and (3). The mathematical formulation of this problem as an optimal control
problem is given below. ’

4. OPTIM£L CONTROL PROBLEM

Iniroduce the transformation relations

d(l—l) W
xiz_d;.'(T—"T)_’ ! 1,233!4:
di-bvj
X144 = 32Ty s i=1,2,
2 ) .
H=EE, (11)

so that the control function is represented by d2//dr? and is a measure of the curvature of the
thickness profile of the disc. The state variables are ihe thickness /i{r), the radial deformation
W({r) and their derivatives. Substituting equations (11) into equations (8) gives

’ A
%sz,], i='1: 2, 35 \.
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d.\‘., 12(1 —v?) pp? + Invu Ytxe  bnPvxp m(n?—4) .
dr Ex3 xsrt oxgrd 0 xir2 ré !
3vu  6n? + 3x 6v 2 2n? + 1
Xgr  Xsri r”-T-Jcir ¢ PR
3u+6+3vx +6x§ 20?41 e ix +1 .
X5 Xsr ° x2 rt 3 xs ¢ r)®
dxi x :
dl’ Rad 3
dxg
5o (12)

These correspond to the state equations for which the state and contro) variables are defined
by equations (11). The appropriate state and control vectors are as foliows:

dw d?W. &3 w| dh
state vector: X =X, ..., xg} = (W’_d;q’Fr_Z“’ T I dr)
- dzh
control vector: u = F;
control parameter vector: p=(py, ..., p1)- (13)

These are the first / natural frequencies of the disc, arranged in ascending order0 < p, < p, <

<Py
Substituting equations (11) into equations (10) gives the following:

B x1(a;) = xa(a)) = 0;

0™ x4(a) + v[YZ‘SHM) nzx,(a,,,)]=0

xia,) + xa(ﬂm) X z a,) — . xz(ﬂm) 4 Eg;(_a_"')
nl —v ’
"(T,,,"“)[ () — x*(ﬂ 0. (14)

These correspond to the initial and termizal transversality conditions. The state incquality
constraints are given by [see equations (2), (3) and {11)]

Xs= €, Vreladay,l,

fm2ﬂprx5 dr = Wo. (IS)/

The merit criterion is defined by a function of the form
G@p)= ‘Zl €:Pis (16)
where the coefiicients ¢, are weighting factors based on the Gaussian distribution [unction

c,=q5(p'plpl), i=1,..,1

$(1) = 71-2—; e 2, an

I
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Hence, .
>y, .>0>0
and

O<py<py...<pp

The Gaussian distribution function was selected to give principal priority to the fundamental
frequency p; and decreasing priorities to the higher frequencies p,, ..., p;. The initial values
for the p, used in equations (17) are obtained from experimental data for standard turbine
disc configurations. These determine the coefficients ¢; which are subsequently held constant
during the synthesis. The merit criterion (16) gives a syiithesis problem which appears to be
closcly allicd in a dual sense, to a problem considered earlier [2, 5], whereby the weight of
the turhine disc idealization was minimized subject to a constant on the natural frequencies of
vibration, the frequencies being constrained to lie outside specified resonance bands. The
establishment of this type of dual relationship could lead as a next step to a consideration of
the more difficult but industrially important problem of designing a turbine disc to avoid
certain critical frequency bands, while exhibiting optimal weight-frequency characteristics.

5. PONTRYAGIN FORMULATION

The optimal conirol problem consists in maximiziug the merit criterion (17) subject to the
state differential equations (12) in conjunction with the transversality conditions (14} and the
stateconstraints(15). The state and control vectors are defined byequations (13). The solutions
are based on the maximum principle of Pontryagin, the main results of which are summarized
below for purposes of ready reference. For further details the reader is referred to reference
[10].

Suppose that a dynamical system with state variables x = (x,,...,x,) has equations of
motion described by

dx
_&;Hf(x!u! P r)s (123)

where u(r) € U, defined over some interval ry < r < ry, is a vector of controls and pjs a vector
of control parameters. The state variables are assumed to satisfy initial and terminai conditions
of the form '

x(ro) € 89; x(ry) s 0, (14a)

where 89 and 9 are specified end manifolds in state space. Thus, for a givenue U, and a
givenp, the stateequanicns (12a)in conjunction with the transversality conditions (14a) possess
a unique continuous solution x(r) which defines a trajectory in statc space along which the
states of the system are transferred between the end manifolds 89 and 69,

In addition, suppose that the system states are constrained to lie in a given region B of
state space defined by

B={x|g(x) <0}; Bc E" (15a)

This means tha: only those paths from the initial manifold 8@ to the terminal manifold 8¢
which lie entirely in B are admissible, The object of the analysis is to determine an optimal
control u(r)} e U for rg < r<r; and an optimal control parameter p which effects such a
transfer while extremizing a merit criterion of the form

G =G(p). ‘  (17a)

o — ———— %
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The necessary conditions for an extremal solution are contained in Pontryagin’s maximum
principle which calls for the maximization with respect to u € U of the Hamiltonian function
defined by the scalar product

He=2 f, (18a)
where A = (4;...A,) are the adjoint variables satisfying the differential equations
dA
5= =4, (20a)

where V, denotes the gradient operator with respect to the state variables. This form of the
maximum principle is applicable to arcs of the optimal trajectory which lies within the interior
of the state constraint domain (15a), g(x) < 0. For arcs of the optimal trajectory which lies on
the boundary of B,

g(x)=0, forr,<r<r,

where rq < r, < r, < ry. The points x{r.), x(r;) are called the entry and leaving points respect-
ively. The extremal conditions are now described by the restricted maximum principle (see
chapter 4 of reference [10]), whereby

plx,u,py=V,g.f=0, for Vrelr.,r]

provided V,g.f does not contain r. Controls u e U which satisfy the above condltlons are said
to belong to the restricted control set.

These results are now applied to the disc problem for which the Hamiltonian is defined by
[see equations (12) and (18a)]

2 2 2 242 Upt 4
HOux:rsn) = S Axy +},4[(I_2(L._V_)sz+3n v 9nxg | Gntexd it ))x,
t=1

Ex? xsrt xgrd 0 xir? r

—_— x6+ 3

Jvu 6r243 6vx: 2n2 +1 .
Xsr Xgr? xir r? 2

2 2
— (i—t: -+ szvxﬁ + % - 2nr:- 1)x3 - 2(—%:(6 + -1;) x4] +Asxg+ Agu, (18)
where A(r); i==1, ..., 6 are the components of the adjoint_vector, the state and control
vectors and parameters being given by equations (i 3). The solutions are based on the following
configurations for the optimal trajectory: (i) arcs of the optimal trajectory which lics within
the interior of the state constraint regiou x5 > ¢; (ji) arcs of the optimal trajectory which lies
ot: the boundary x¢ = ¢ for which the restricted maximum principle [10] is applicable.

The composite representation for the optimal trajectory between the end manifolds
6" and 0™ defined by equations (14) is obtained hy matching these separate arcs at the entry
and leaving points. From equations (13), the optimal trajectory determines the optimal
shape and deformation functions for the disc.

A detailed consideration of the above cascs is presented in sections 6 and 7.

6. INTERIOR OF CONSTRAINT REGION

The configuration of interest here corresponds to arcs of the optimal trajectory lying in the
interior of the state constraint region (15), x5 > . Thie control u{r) is unbounded and continu-
ous in [ay,a,,_,], so that, from the maximization condition,

oH [3»2 vx; 3ex, 3x5]

du Xsrt  xsr X

+A=0. (19)
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With the Hamiltonian as defined in equation (18), the adjoint equations (20a) reduce to

d, oH
T " Taw T M
===} B
dr 2x; 1+ A B,
dA, olf
F_—E——AZ-FA‘C’
dA, oH
O ok htAD,
dA, oH
s %
dr  ax, +£5
of
dd—):“=—§;=—A4F—As, (20)
: 6
where
4 1200 —v?)pp*  3ntvu 9ntxe  n¥(n?—4)
B Ex? xsr? xsrd ré
3vu  6n*+3 6vx; 2+ 1
B T et 7
5 sT Xsr r
2 2241
C=3—Lf+6+3vx6 Gi;’— j .
x5 Xsr x? r
E— 2400 —vHpp? Intru Ixg _ 2n?uxg .
BN Ex} xirr  oxir? xir2 |7t
_ (_24_: 6n? + 3x _ 12ux .
A I T
x% x§r2 6 x;s; 3 E 43
2 2 2 .
pf_2 +_1_2"EH"‘E - (__6” +13 12’;"6 X,
xsry  xir? xsrt xir
(6 + 31’ 12'1.6) 6.\‘4
—_ +—1 3 ——
X5l x3 X5

Complete analyiical soiutions to the differential system (20) are very difficult to obtain and
recourse is made to the following approximate technique. The validity of this method is
justified a posteriori.

Consider series solutions of the form

Afr) = Ji} Au(") 7/,

where 7 is a small parameter which has essentially a mathematical rather than physical
significance. Suppose A4 is small. This means A4, = 0, so that A, = O(x). Substitute equations
(21) into equation (19) and equate to zero the lowest power of 7, giving Ay = 0. Similarly

i=1,2,...,6, 21)




ey
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substitute equations (21) into equations (20) and equate the corresponding coeflicients of »°.
This gives, on solving the resulting differential equations, the zero-order solutions for A:

)‘10 = A?,
Mo =—Nr+ X,
Azo = AJ(r3/2) — Ar + A,
Ago = A5 = Ago = 0. - (22)
. Therefore the adjoint vector is given by
Ay = A7+ O(n),

. Ay =—Ar + A8 4 O(x),
Ay = 2%(r3f2) — A3 r + A3 + O(w),

Ay =0(7),
As = O(n),
Ag = O(7). (23)

Equations (22) are obtained by excluding the equation d),/dr = --A, + A, D in equations (20).
Therefore from equations (22) |.D| must be large for consistency. From equations (13), and

the definition of D, .
3,\5 1 idh 1
D= 2( —)_2(H7+?)~k (24)

k| > 0. ' (25)

where

Therefore,

h(r) ~ ,%e"’”, C>0,
. k
h (r) ~ 3"7,

h(r)~ %2/1. ' (26)

These determine the optimal thickness for sub-intervals of [a,,a,,_,] for which /(r) # . The
proof of condition (25) that || is large is given in section 8. This is the justification for the
earlier assumption that A, is small. Therefore equations (23) and (26) determine a compatible
set of solutions for the adjoint cquations (20).
The optimal deformaticn W{(r) is obtained by substituting equations (26)into equation (8},
and simplifying by using the condition (25), 1o give the differential equation
di W d*w LA vkidW [12(1 —v) pp? nzuk

dr? +2k dr? Tk dr? LT L En?

W=0. 27N

The solutions to this equation are given below for the cases when & is large and negative,
and k is targe and positive. These, together with condition (25) determinc the interior arcs of
the optimal trajectory, which are subsequently matched with the boundary arcs (at the entry
and leaving points) to give the composite shape function for the disc.

Casela: k<0
This corresponds té k large and negative.

ey e e = v e e e mwe = - [ - - Coe e . -
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Put x = ~k(r — a;), in equation (27) and let |k} — co. This gives, after simplification, the
following differential equation:
d¢ W_ 2d3 W 4w
dxt dx? = dx?

— () W =0, (28)

where
A% =e 243 (large),

1201 ~ %) p*

Put W= e*?u(x) in equation (28). This gives the following differential equation for n(x):

d*u  Idiu 1
5 +[E" A“f(x)]u=0. (29)

Jx)=

(~kay + x)¥3e¥3* > 0.

Since the parameter A is large, this equation can be solved by using WKB expansions of the
form

u(x) = go(x) g1 {1 + &-/(]{Q + g:z_/f:_) +.. } . (30)

Substituting equation (30) into equation (29) and equating to zero coefficients of A%, A2, ...
gives

be={f(x)} e, 5=0,1,2,3,
go = {f ()}~

Therefore

W(x)= éo a €2 f(x)] ™2 exp [A ™2 x f {f ()4 dx] x (1 +0 (}—1)) , (31)

where «,, s =0, 1,2, 3 are constants of integration. Finally, the form of equation (27) for laige
positive values of k is considered below.

Czse 1b: k>0
Put x = k(r — a,); kK — « in equation (27). This gives, 6n simplification,
d_4i;f+ d_i.!f_i_ dz_PV ~0
dxt dx? T de T
Solving this results in

W(r) =, 3+ asr+ (g +aqr)e™, (32)

where oy, o« ag, 24 ave constants of integration. Equations (32) and (31) determine the
solutions to equation (27). The state and contro! variables are given by equations (13), (26),
(32) and (31). These equations determine the compléte representation for the system when the
optimal trajectory belongs to the interior of the state constraint region.

The corresponding equations when the optimal trajectory belongs to the boundary are
given below, in section 7.

7. BOUNDARY OF CONSTRAINT REGION

The restricted maximum principle is applied to arcs of the optima!l trajectory lying on the
state constraint boundary [10]. Let the boundary arc be defined by

xs(ry=e,Vrer,n) . (33)
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where a; < r, <r, < a,.;, and x(r.), x(r,) are the entry and leaving ;r.ints, respectively. The
restricted control set described in section 5 is now formed:

V. (x5 — €) =(0,0,0,0,1,0).

Therefore p = scalar product of V,(xs — ¢} with the right-hand sides of the state equations.
(12) is equal to x¢. Hence
Xg= O,
u=0. (33a)
This is to be expected since i(r) = xs = € implies xg = dh/dr =0 and ¢ = d2Afdr? =0.
Substituting into the state equations (12) or (8) and simplifying then gives

d*w 2d3W 2414w 2n2—{-1dW+[n2(n2—4)_]2(1..I,I)sz

dr® ' r dr? rt  dr? r?  dr ré fie?

]W=0.

The solutions to this fourth-order equation are
W(r) = () + o YQr) + o IQr) + iy K (Sr) (33b)

where J,(r) and Y,(r) are Bessel functions, I,(£2r) and K, (£r) are modificd Bessel functions,
ey, oty 001 and «;; are constants of integration and

24 =12(1 — v¥) pp?/Ec?.

State and control variables are given by equations (13), (33a) and (33b). This concludes the
analysis for an oplimal thickness #*(r) = e.

8. OPTIMAL THICKNESS PATTERN

Equations (26), (31) and (32) corresponding to interior arcs of the optimal trajectory
determine the optimal shape and deformation functions for |k| large. These are merged at
r. and r; with the corresponding solutions (33a), (33b) for the boundary arcs to yield the
optimal design configuration.

The optimal thickness is given by (see Figures 2-4)

: ) =h(r), a;<r<r,
= g, r.<r<n,

_ =h*r), n<r<ag., (34)
where #7(r), A*(r) correspond to the function (26) for values of k < 0 awd k > 0, respectively.
Figures 2 and 3 show the functions £#7(r) and h™(r), respectively, cortvsponding to interior
arcs of the optimal trajectory. For k <0, #7(r) is a monotonic decreasing function of r, so
that in the interval a, < r < r., 17(r) decreases monotonically from &, =ud reaches its Jower
limit € at r=-r.. At {his point, the optimal trajectory enters the boundzry of the state con-
straint domain, leaving it finally at r = ry, so that /*(r) = ¢ for r, < r < . From Figure 3 it
is seen that in the interval r, < r < a,,—1, the optimal thickness is given Sy 2*(r). i*(r) bas a
minimum at

re1fk*,

so that r; = 1/k*. This result is used in equation (38) in obtaining the siviz constrainis, In ihe
interval [ry,@,_,), #*(r) = h*(r) increases monotonically from its limitizig value € to b,,.
But from physical continuity conditions

h~{a)) =5, h(r)=e,
Itr) =, R (an)) = b (35)



- . - - e s e ety

30 B. M. E. DE SILVA

Iavs!
3

=

Figure 2. Thickness for k < 0. [k, | < ks < [k;].

A

r
17k

Figure 3. Thickness for & > 0. k, > &y > ky; k*(r) = (C*{r'P)explkt rf3); dirtfdr = (C*3r1P)k* — 1/r)
explktri3).

Thezefore, substituting equation (35) into cquation (26) yields
< (C[alf) e,
€= (" frHet e,

R e

k7] ~ wase - 0+ - (36a)

Eliminating €~ gives

and therefore

Again
b= (C*falf2 ¥ s,
e=(C*jr}i¥ex'rii3,
Eliminating C* gives

K =— i .’12(“_;')} €0
(J,,,_l —n € [
and so
[k*f > wase — O+, (37a)

Conditions (36a) and (37a) establish the validity of condition (25), which is the Justlﬁcatxon
for the assumption of A4 small in section 5.
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¢ of disc

Figure 4. Optimal thickness, At (r) 2 h(r), k>0, (N 2 M) k< 0.
Equations (35-37) and (26) also cstablish the continuity of xs=#h and x¢=dh/dr at

r =r., r,, which is a necessary condition for the analysis 1o be valid.

9. SIDE CONSTRAINTS

These represent constraints on the geometrical configuration of the disc. From Figures
3 and 4, with equation (37) being used since #1*(r) has & minimum at r = fk*

1 ___‘am—l""rl' bm Gy 11371
r|3k+‘“ 3 [IHT(’_—‘) y

L
> .
"2 ST (G Gy Ty 71 T 088 OF
Therefore this inequality reduces to )
0 L <, (38)
But, for compatibility,
(39

dy<Fe <1

The weight is given by equations (3) and (34):
am a3 Te ry
J’ Yrrprb*(r) dr = j 2morb, dr + j 2eorh™(r)dr + j 2mpredr
ay ay a; fe

Om—1 A
+ [ 2mpriv(rydr+ [ 2mprbadr

M Am—t . .
= mpb(e3 — a}) + mpby(ah, — i) + mpelri —rd)

Tm—1

+2mp [ Hir(r)dr +2mp [ rli*(r)dr.
az r

Therefore the constraint on the weight is given by

.fl(alv re! rl) < 0’ (40)
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where

filag, re,r)) = mpb(a3 — ai) + mwpb,(as — ai_) + wpe(ri - r})
Ay

+2mp j rh=(r)dr + 2mp f i (r) dr — W,

These integrals are evaluated by using standard nurnencal integration procedures [i7].
The side constraints are given by equations (38)-(40) and their two-dimensional rep-
resentation in the (r,r,) plane is shown in Figure 5.

i
4

— =T o

' Feasibla 7
k region 7/
4
& L
E /’// fl =0
R
| 4
pd
/|
7
7
/ 1
S

> Iy

a2

Figure 5. Optimal control problem — non-linear programming problem. (v, — r;) design parameter
subspace, ——--, Portions of the boundary on which solutions cannot lie; —, pomons of the boundary on
which soluuons can lie.

10. BEHAVIOURAL CONSTRAINTS
The radial deformations within the subintervals [a,,a;), [a,,—y, @] are

W(r) = ;3 J,(82r) + oty Y (828) + o L(S2r) 4 oy 5 K (2r), ) <r<ay,
W(r) = a6 J(Qr) + ay7 Yo (Qr) + o) LLQ2r) + a9 K (82r), Anoy S r<d, (41)

where «), ..., a9 are constants of integration [see equation (33)]. The behavioural require-
ments are given by eliminating the constants of integration (e, &1,...,%¢) from equations
(32), (33), (36) and (4!). The boundary conditions are obtained from equation (i0) and the
continuity of W, dW/dr, d2 W/dr? and d* W/dr? at r = a,, r, 1, @ny. These arise from con-
tinuity requiremenis for the state vector (12). They are also necessary physical conditions for
the continuity of deflection, slope, bending and shear forces. The elimination process gives
a 20 x 20 determinantal cquation of the form

A, 0 0 A, O
Ay 0 Ayuy 0 O
0 Ayp Ay O 0
fZ(azsruth)— 0 Agr 0 0 A45| '_0’ (42)
¢ o 0 o B,
o 0 0 o0 B

where the A, are 4 x 4 submatrices, while B, and B, are of order 2 x 4,

A — oyt - p—— o — — O— e e e- = — PR —

- b —

Gy s
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The non-zero elements of (42) correspond to the different types of Bessel functions used in
section 7. The arguments of these functions are proportional to p» so that on evaluation the
determinant (42) gives for f5 2 polynomial in ihe frequency so that

f2 = E‘:M(“z,"ea rl)pl =0

tEm

The frequencics are given by the roots of this palynomial, so that
p"‘_"p(a.!rurl)) (43)

' where p is the vector of the first / roots of the polynomial f, and corresponds to the control
parameter vector (13).
From equation (43) the merit criterion (17) must also be a function of a,, r. and r,:

. Glp) — folaz, 1., 1) (44)

The vibrational frequencies are introduced into the synthesis procedures through equation
(42) which is computed numerically by using standard triangularization procedures.

11, NON-LINEAR PROGRAMMING FORMULATION
The non-linear programming formulation is, furmally, as follows:

Maximize G(p) subject to fi(aq, re, ) <0, Lca, s U, 01y < @y,
. az <re<rb.f2(02: ill'm'rbp):O- (45)

This is solved by transforming the problem into a series of unconstrained optimization prob-
lems by using the Heaviside penalty function transformation [12, 13]. Thesc unconstrained
problems are solved by using Rosenbrock’s method [14].

12. RESU]_I.T'S AND DJSCUSSION

The numerical computations were performed on an English Electric KDF 9 computer

using ALGOL. The computational eflort was characterized by extremely large and complex

' programming procedures which imposed severe limitations on storage and test facilities.

: A substantial amount of the time was consumed in the Bessel function calculations [18]. In

addition, considerable numerical difficulties arose in the calculation of the determinantal

function f5(a,r., r;, p) due to the presence of very large numbers, glvm g rise to local regions of
instability in the synthesis.

The program was initiated by a set of values for a,, r,, r, and p which satisfied the side
constraints. However it was not possible to ensure the vanishing of /5. This was not a scrious
disadvantage since the Heaviside penaity function transformation [12] always generates a
feasible point as the solution to the equivalent vnconstrained problem.

For these reasons the available computational experience is limited, although an examina-
tion of the preliminary resulits indicates that the synthesis is progressing in the right direction.
The really effect ve utilization of the numerical procedures requires a more powerful range
of computers than was available at the time of this investigation.

13. CONCLUSION

Powerful synthesis procedures bascd on the methods of mathematical programming have
been developed for solving 4 highly complex structural optimization problem. Considerable
progress has been made in solving the problem by using purely analytical technignes based
on the masimum principle of Pontryagin which transforms the problem into a non- lmcar
programming problem.
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Avajlable computational experience indicates the possibilities of developing a highly
systematic synthesis capability when used in conjunction with very large, high-speed digital
computers. The available evidence appears to warrant further investigation and development
in this direction, with particular emphasis on more automatic software packages for
handling very large problems.
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An Eigenvalue Analysis for Calculating the
Vibrational Modes of Stecam Turbine Discs

B. M. E. DE SiLva

Department of Mathematics, University of Technology, Loughborough, Leicestershire, England

Suinmary

This paper describes the application of numerical procedures to an engineering design
problem of considerable practical importance. The problem is that of calculating the natural
frequencies of vibration of steam turbine discs. The analysis is based on a variational formu-
lation in conjunction with finit¢ difference procedures to transform the problen: to an eigen-
valuc problem. This is characterized by a symmetric band matrix, and the vibrational
frequencies which correspond to the eigenvalues are computed using standard eigenvalue
programming packages. The analysis includes a description of both natural and forced
boundary conditions for the problem.

An essential feature of this investigation is the relative simplicity in elasticity thﬂory used
and the associated computational procedures. As such it should be of interest to teachers of
final year engineering mathematics courses and to mechanical engincering students embarking
on an M.Sc. programme.

From a research standpoint, the paper ofiers the p0551bll:ly of extending the analysis to
include shear correction effects and thick discs. These again are of considerable practical
interest.

Introduction

The formulation of efficient analytical and computational procedures for determining
the natural modes of vibration of steam turbine discs is of considerable importance in
the development of an automated turbine design capability.»2 These vibrational pro-
bleins, by their very nature, preclude the use of purely analytical methods of solution
which, on the whole, are applicable only to discs of constant thickness® or of parabolic
shape.® Thercfore recourse must be made to approximaie numerical procedures. Such
procedures used in conjunction with digital computers have led to the development of
highly systematic programs for studying the vibrational characteristics of turbine discs,

Prominent amongst these are the transfer matrix methods®® in which the frequencies
are given by the roots of a certain polynomial, The roots are determined using inter-
polation or spline function techniques.” The spline function techniques consist essentially
in calculating successive values of the polynomial for different values of the frequency
{w) and a plot of the polynomial against w is made. Those values of w for which the
polynomial is zero are the required natural frequencies. Alternatively, an interpolation
procedure, based on an initial w and an increment Aw, can be used. These must operate
near the actual frequency in order to obtain rapid convergence.

The transfer matrix methods, though relatively simple from a mathematical standpoint,
involve the programming of extremely long and complex routines and impose consider-
able limitations on storage facilities. However, they are cfficient for most calculations in

Received 13 November 1970
© 1971 by John Wiley & Sons, Ltd.
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which the designer uses his intuition, judgement and experience to reduce the number of
polynomial calculations thereby obtaining rapid convergence,

They become significantly less efficient when coupled with synthesis programs®* for
optimizing the design process by gencrating a sequence of trial designs of improving
merit. Most of these correspond to designs significantly different from standard disc
configurations. So that it is extremely difficult, if not impossible, to obtain realistic
starting procedures for use in conjunction with interpolation or spline function tech-
niques. Consequently convergence is siow and unstable and often converges to a root of
different order.

These difficultics can be overcome by using a variational formulation in conjunction
with finite difference techniques to transform the problem to an eigenvalue problem.
This is characterized by a symmetric band matrix, the eigenvalues of which correspond
to the vibrational frequencies. These computations can be carried out efficiently and
rapidly using standard matrix usercode programs.!® Mathematically, the problem is re-
presented by the eigenvalue equation

Aw = w®Bw (1
where
w = natural frequency of vibration

w = deformation vector at the nodal points
A = symmetric band matrix of width 5
B = positive diagonal matrix

Therefore w? are the eigenvalues of the symmetric band matrix B—*r AB~t The analysis
is capable of describing all possible combinations of boundary conditions.

From a teaching standpoint, the analysis is both concise and clegant, and should be
of interest to teachers of final year enginecring mathematics courses and to mechanical
engineers embarking on an M.Sc. programme.

Variational Formulation
The turbine disc is idealized as a rotating circular disc of variable thickness (IFigure 1).
The thickness distribution is given by .

hr)y=1b,, a<r<a,
=variable, a,<r<ay_, ¢3]
=by, GuaSr<ay

where by, b;y, ay, a,, ay;., 83y are constants, The radial distance is measured from the axis
of rotation alone the normal direction, while /i(r}) is measured parallel to the axis of
rotation. .

The strain and kinetic energies due to the bending deformation are given by
Timoshenko. )

GFu 10u 182u\2 Puflou 18 3 1 du
J‘f {(3r2 r-3—r+ﬁW) —20-» ["3?(7'}3‘,‘."‘;3“3@) (d 39)”rdrd0

€))

= Jf %ph(%)zr drdé 4

!
|
1
1
i
;
}
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Figure 1. Cross sectior of typical turbine disc

where u(r, 8, r) = axial displacement at time ¢ of section whose initial co-ordinates are r, 6.
ERh¥(r) . .
D=~ bending stiffness
T ( g )
E = Young’'s modulus
v = Poiston’s ratio I 4
g = acceleration due to gravity

The work done by the centrifupal forces is calculated as follows (Figure 2):
Let ¢ = stope in radial plane on disc, therefore

_
or
Centrifugal force on element p dV is given by
F=pdVQ¥r—ud)
= pQ¥r—ud) hrdrdf
Work done on this element = Fsin gu = Fug
Bu) ou

e o0 p g EEy 2
—-pQ(r u hi)r

ER urdrdf

e = St e . e e —— e+ 4 oA e i o st mmder
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Therefore

where
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B
F
\\
____ibl;.....:\ pdV
- r
r-uve
r
¢
0 - -

Z
Figure 2. Centrifugal effects on disc deformation

A= J'przh(r—ug—f) % urdrd?®

zjij%r%urdrdB

)} = rotational speed of disc

&)

This is derived on the assumption of small bending deformations. Therefore from
Hamilton’s principle

final
8 (T-V+A)dt =0

initial

Finite Difference Formulation

Consider deflections harmonically dspendent on both @ and ;.

where

u = W(r)sin(n@+po)

n = number of nodal diameters.

Substituting equations (3), (4), (5) and (7) in equation (6) gives

where

SJi(r) dr=0

: Vo on? Nt 2 W
-3 (GrrTmr) -2 |G (55

rde r? dr? \r dr r?

dr 2

W)

2 2 2
- (ﬂ——) ]}+p§22hr 14 d-il-—--"u-—pl'lW2

(6)

7

(8

©)
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This is discretized using the central difference approximations

dﬁ MWW,y
dr )T 2A

(d2 W) - Wiﬂ“'2Wi+ Wt-—l

(10)

dr® A2

obtained by dividing the interval [a), @,) into finite increments by points (ry, 1y, ..., 7,)
selected at equally spaced intervals of length A. Therefore

=R < <r<..<rp_ <rp,=a, }

rp=r+iA, i=0,1,...m (11

The function L{r) defined by cquation (9) is calculated at the points (rg, ry, ..., rp,) using
equatlon (10). Therefore

= 1)

=@y Wi +b Wite,, Wiat+d, W, W+e, W, Wen+iWia W, — 2 P" h e

(12)
where
car B (-2 o200 (22
et | () a0 ()
=3¢ |(143) 200 (555
AU [ R
e = —ff;[" [(1 +2i) (2+E?E) +(1—v) (—%—%§+%—3)] +515 pQErEhy

i [0

1

Discretizing vhe integrai (8) using a trapezoidal type approximation in conjunction with
equation (12) gives

n me]
"Ldr = A([ﬂ+ S L4Ln
ro 2 =1 2

nm+l Y m-—1
= (2“W+ZBIV‘: .1_1+21),;I'Vm+2 Tprohﬁuz

fum—] f=—1

w2 m—1

"'—2--‘>_;. rh,;W ——a—pfmllm £4] ) (13)
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where
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(Ii—-‘a—z_—l, f=_1
b,
=—jg+a0, i=0

=ai+bi+Cf, 2£ism_2

bmﬁl ;
+bm—1 tCmeyy T=m—1

2

[

m

2

il

+e,, i=m

=2+e, ., i=m—1

=fiir 0<i€<m=2

Eigenvalue Formulation

The stationary condition (8) transforms to

d (rtn ,
EFW;J; Lrdr=0, i=-1,0,...,n+1

- o — -
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Therefore from equation (13)

20 W +B  Wo+y_ W =0, i=—1

bl
2

YaWoi+BoWot 20 Wi+ By Wotyy Wy = w?pry Iy Wy, i=1]

Vi Wina+Bia Wiy 20 Wit By Wosy +yy Wip = P pryy Wy, 0= 2,.,m =2

Y-z Wn—s+ Baa W+ 200, 3 W g+ Bia a Wi+ ¥ s Win

= pry My Wy i=m—1

2
w -
Ym—-2tm-2 +Bm—1 M/m—:l + 20, W, 'A*TBm Wm+l = 5 Pruh,W,, i=m

Yot W1 B Wo o+ 200514 Wann=0, i=m+ 1 /
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a4

Eliminating the redundant variables W_,, W, ., these equations can be written in the

matrix form

Aw = o?Bw
where
Wy
Wy
W= .
Wi

[ drohy . ]
rhy

O Tm—1 hm—l
. o

(15)

(16)

an

Therefore B is a positive diagonal matrix while A is a symmetric matrix which bas the

special form given by

’. B2, - _¥a .
2“’0 2(!_1 A BO ﬁ—l 2(!._1 Yo

—B_, -1 _Ya
Bo B 2o, 2oy 20, i n

Yo By 20t B: 72

20, ﬁm—ﬁ ¥Ym—2

_ Vo1 B, 1~ B Ym—
m—1

m-+1 20‘m+1
- ﬁm Ym-1 | Bm |
O ﬁm—l 2am+1 2“?}1 T




an

178 - B. M. E. De SiLva

All the elements are zero except those in the principal diagonal and four adjacent
diagonals. This is called a band matrix of width five. From equation (15)
detfA—-w?B) =0
Therefore
det(B-iAB1— 02D} =0 (19)
Therefore w? are the eigenvalues of the symmetric band matrix B~ AB~%. They are
calculated using standard matrix usercode programs (English Electric Marconi KDF9),

Boundary Conditions

This analysis is based on the natural boundary condition and corresponds to the inner
and outer radii of the disc being free. The other physical boundary conditions correspond
to the forced boundary conditions for the problem, so that the minimization must be
carried out subject to thesc constraint conditions. The modified matrices are readily
obtained from the original A, B matrices by deleting cither the first row and column,
the last row and column, or both, and changing the first or last or both elements of
the resulting matrices.

For example, suppose the inner radius is clamped and the outer radius free. Thercfore

-—d—W—O at r=a
T dr A

From equations (10) and (11)

Wo=0
W_i=W
Using these results in equations (13) and (14) gives
_ ALD iD= L2 RILD 1) (20)
where
Wy
W)
W,

AL B are matrices of order m obtained by deleting the first row and column of the
original matrices A, B defined by equations (17) and (18), and such that
AP = Axa+oy+y.y)

For different boundary conditions different submatrices of A, B are chosen for the
eigenvalue calculations. Table I gives these submatrices for the various boundary
conditions.

Conclusions
This eigenvalue analysis is admirably suitable for programming on a digital computer
and enables the rapid calculation of the natural frequencies of vibration and the modal
shape matrix. : :

The eigenvalue calculations are based on reducing the matrix to tridiagonal form by
Houscholder’s method.’2 The eigenvalues of this matrix are found by a modified Sturm
sequence method.!® The corresponding eigenvectors are found by the Wielandt inverse
iteration method.3

The program was written in usercode for use on an English Electric KDF9 computer.
The flow chart for the program is given in Figure 3.
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Table }. Modified matrizes A?%, B® and associated elements for various boundary conditions : ] :
i
\_ Outer ! ;
\ radius i ;
Inner \ Free Ctamped Simply supported !
radius . '
- L
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: =
el m L m 2r, — vyt 27, —vA r '
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READ DATA
Ev,, p,n8m

1_

CALCULATE
A = (@ay—alm
re=a+iAG=0,..m
he=h(rd{i=0,...,m)
__Ehe
Dy = 12(1 =)

I
* CALCULATE
Qi1 by €y, s
e, fili=0,..,m
1
CALCULATE
Oy, B-‘. Yi
(i=0,..m
1

FORM MATRICES
A, B

Yhat are
BOUNDARY
CONDITIONS?

A~ Av?
B -+ B

I

FORM
B;B-t AB-}

1

ENTER EIGENVALUE
ROUTINE

L

PRINT EIGENVALUES
AND EIGENYECTORS

Figure 3. Flow chart for disc eipenvalue calculations
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From a rescarch standpoint, the analysis includes the possibilities of generalizations
to include shear correction terms and the effects of large thickness theory, giving rise to
non-linear eigenvalue problems.
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Chapter 8

Feasible Direction Methods in Structural Optimization

B.M.E. de Silva

8.1 Introduction.

This chapter describes procedures in the class of feasible

- direction methods which have been applied to structural optimi-

zation problenms. A.féégible direction method was perhaps the
first of the nonlinear programming procedures to be employed in
" structural optimization by Schmit inj1960(1), and methods in
this class enjoyed intensive developmeﬁt during the subsequent
'Z_Six years., 'They.coﬁtinue to be under development, but at a
less rapid pace, and to be applied effectively to significant
f  engineering‘problems, some of which are described in thié chap-
fer. _ . | |

The basis of feasible direction methods was outlined by
-.Fletcher in Section 5.4. _They,ére in the class of direct
search algorithms and therefore address themselves to the de-
termination of the distance oX and direction gk of travel from

the k™ to the (k+1)™™ point in design space, i.e.
XU x4 e ' (8.1)

The direction dk is feasible if a move in that direction does

not cause constraint violation, i.e.

;)

gj(§k +akd®y <o, 5=1,2,...m  (8.2)

for a system with m constraints. This requires.a negative'dot

produdt of the move direction and the gradient to each active




‘constraint. Denote ng as the gradient of one of the p active
. constraints l1,.¢.4%,...,p. Collecting these in an nxp matrix
',designatgd as [Vg], where n is the number of design variables,

we have as the condition of feasibility
[gg]Tgk < 0. | C(8.3)

A desirable condition upon the direction of move is that

it also results in a reduction of the merit function, i.e. be

useable. In this case, the mathematical condition is stated as.

(v Td < o | (8.4)

Furthermore, note should be taken of the side constraints,

'-which define upper (Uj) and iower (Lj) bounds on each design

variable X i.e.

(4]

L, < x,

< U.
J J —

J

L:f

Neérly all the applications to be described here employ an
accelerated steepest descent-mode.(see'Section 5.2), tb travel
from an initial feasible design point (or stéepest'ascent if
the initial point 1is infeasiblej to a constraint.. When the
constraint is reached it is impossible to move in ‘the steep de-
scent direction without piercing the constraint. An alternate
‘redesign procedure is therefore required which insures continu-
ation of the optimum design process. The development of effi-
cient directions and distances of search from the boundary of
the constraint set constitutes a central phase of the feasible
direction procedure; it is studied in this chapter under the

' following categories:

, J=1,...,n , (8.5)




1. Constant merit redesign (Section 8.2).

2, Travel 6n the constraint surfaée, with the direction
6f travel %q béing a projection_of the merit function gradient
on the constrainf,boundary (Section 8.35.

3. Travel in a dire;tion between fhe limits defined in
(1) and (2), with the direction chosen_"optimally" via utiliza-
tion of a linear pfograhming algorithm (Section 8.4).

These alternative procedures will now be discussed in

turn.

8.2 Constant Merit Redesign

£.2.1 Method of Alternate Base Planes

Amongst the first successful attempts at the boundary re-

design problem was the method of alternate base planes used by

Schmit, et 31(1-3) for the minimum weight design of trusses and

" . waffle plates., This medwod is a quasi-random method which

seeks a feasible design on the const ant weight contour

through a main constraint. The problems were characterized by

linear side constraints which were handled separately to eansure

- designs, most of which lie within the lower (Lj) and upper (Uj)
bounds on the design variables. The basic steps of the algo-
rithm are as follows (Figure 8.1):

(i) The program begins by generating random search direc-
tions gi in planes normal to the coordinate lines oxl, oxz,...,
OXn in turn. This scanring is controlled by a counter i which
"is initially set to unity.

(ii)} Generate the direction cosines of the straight line

of travel,




" Where Rj are random numbers. -

(1ii) Calculate the distance to the side constraints

L. ki o
aj = (Lj - xj)/d;. J = 1,2,-.-,1'1, J # 1

i o kygai . - o,
an+j = (UJ - xJ)/d] J = 1;’2!"')1?! J fi

This ensures that the proposed designs satisfy most of the side
constraints. From this set of values g? the smallest positive
value is selected and designated Ai and the negative value hav-
" 1ng the smallest absolute value . is designated ut,

| (iv) Six random numbers R (q = 1 Z2,000,6) between 0 and
1 are generated in two sets of three and are multlplled by A

and u, to glve the dlstance of travel in the base plane, des1g-

nated by q% , 1.€,
ﬂﬁ

q=1,2,3

=Ry q = 4,5,6

(v) The proposed new deeigns are given by

i _k i.i
x;“x + o’ d

" where x; is calculated from the constant weight condition

i
.k kK, i k i
W(x') = w;xl + u;d;, ey X3y toa d SR
o ‘ k 1 . k i,i
X d [N xn + aqdn]

iv1 ¥ q i+r




(vi} Check the six proposed designs against the behavior-
al constraints in the order q = 1,2,..‘,6. If any one of fé is
feasible, steepest descent motion continues as before. Other-
wise go to step (vii). |

(vii) Replace i =+ i+l, go to steé (ii) and repeat itera-

tions. | . |

Step (vii) is eqﬁivalént.to changing thg base ﬁlane. If
still no feasib}e design is'fbrthcoming, the Boundary point is

 taken as the optimal

" 8.2.2 A Hill-Climbing Procedure

b

The above method was app11ed by de811va(4’5) to the mini-
mum welght design of discs sub;ect to stress and vibration con-
| 'straints. The ﬁethod consumed consiaerable computer time .in
searching through the random dlrectlons to determine a feasible
.point on the constant welght contour and deteriorated rapidly

6) used a -

for high dimensional design spaces. Schmit and pr(
simple hill;climbing fechnidue‘based on a zig-zag concept to
:  determine the optimal response of a spring-mass-damper system
" characterized by'merit contours with a sharp ridge. This is a
.-ﬁdre rational method, based on aﬁ understanding of the problem,
‘and a modification of this brocedure by deSilva(S) s as fol-
lows: | |
x4, xtE, §k are three successive designs generated by
gradient mode of travel with §# a boupdafy point on a behavior-

al constraint

k-2, (8.6)

/A

W(§k) < W(Ek'l) < W(x

where




' k - - .

g5(x7), sj(xk oF gj(xk_z) 20 j=1l,...m
: . (8.7)

and g£(§k) = 0 for at least one 2 in 1l < £ < m

For the disc problem to be discussed in further detail
‘subsequently, the gy corresponds to the vibration constraints
in which the fundamental frequencies are required to exceed

specified lower bounds. Let x be the foot of the perpendicular
k-2

from 55 onto the gradienf mode vector gkhz from x (Figure
8.2).
Cexom (14 ﬁ;;; cos 65§k'1 - 5;;; c;s(e)§k'2 (8.8)
_ a .
| ﬁhere
. cos o - g2 gk-1

This is the scalar product of the (normalized) steepest descent

vectors gk-z, a1 with associated step lengths ak'z, ak';.

~

The angle 6 measures the amount of zig-zag._'ln the absence of

a sharp ridge on the merit contours, @ is small, cos 6 > 0 and

- the point x will be close to, but seldom on, the behavioral

. constraint g, which is essentially a numerical or non-analytic
{ 'constraint.

Consider a direction with direction ratios defined by

dt =X - Ek if go(x) <0
(8.9)

k _ x otherwise

e

ty

Under suitable conditions, dk approximates a tangent move

towards the interior of the feasible set. In the disc problem



the weight is a quadratic in xn but linear in the remaining
variables X1 xé, cee xﬁ_l. The proposed direction of search
is obtained by projecting the normalized direction (8.9) onto

the constant weight hyperplane.‘ - : S :

kK k

k,

-k
W(xl, sees Xo_q0Xp X, ) (8.10)
The distance of travel yields an alternate step within the de-
'sign variable bounds (8.5);

mk min {(x.k

A k

o - L.), (U, - x.7) (8.11)

1<j<n 9 ) R 303 <

- For a design violatiné a main constraint the step length (8.11)

is progressively reduced. For multiple constraints, p in num-

ber, the direction (8.9) is replaced by the weighted sum
P c,ds (8.12)
- =1 77 / .

. 4
[

where C, afe non-negative weighting factors determined using
Zoutendijk-type procedures(7)r'

A different alternate step mode uses the distaﬂce of trav-
el (8;11) to generate the direction of bounce into the feasible
_-regions. The direction cosines dg, i=1,2,...,n, are con-
strained by the condition. that the objective function remain

constant .
W(xK) = wxK +la#§k)‘ - ~ (8.13a)
and tﬁe condition that'gk be normalized
@9 Tak = 1 _' (8.13b)

where ak is the step length defined by (8.11). The system




(8.13) is indeterminate for n > 2. Complete solutions are ob-
tained by using the physics of the problem to specify (n-2)

components of qk

and calculating the rest from Equations
(8.13). .

The method was applied to the minimal weight design of
discs(4) in which the stresses were constrained to lie below
the yield stress for the material. One such turbine disc to
" be optimized is shown in Figure 8.3. The problgm is discre-
tized using a piecewise linear representation fér the disc'pro-
file (Figure 8.4). The shape function h(r) (where r is the ra-
dial distance from the axi§ of rotation) is therefore approxi-
mated by a sequence of discrete thickness variables {bj, j g J}
at sppcified radial distance {ai, j e J}. From engineering de-~
sign considerations the width of the hub and the rim shape are
specified while the hub radius a, is variable. Thus, the de-
sign variables are {bj; JjE Jﬁ az}. 'The'weight is linear in bj
but quadratic in as.

The stress computations-wére based on Donath's method (see
Ref. 4), and cannot ﬁe-expressed.as analytiéally defined func-
tions of the design variables. The behavior variables are
functions only in the sense that they are computer oriented
- rules for determining the behavior associated with a given de-
sign and are not given in a closed analytical form in terms of
the design variables. The behavior variables may be regarded
as a "black box" into which are put the design variables repre-
senting a given design and out of which comes‘the corresponding

bchavior variables for that design. These are then checked




against the behavioral constraints. The side constraints are
essentially linear and are of the form bj <€y jed; Lga, < i
U where ¢, L and U are specified positive'tolerances.-

The computer prngam starts from an initial feasible de-
sign and enters an accelerafed steepest descent mode of travel,
continuing in this mode until a consfraint_is'encountered. It

.~ is then no.longer possible to move in this mode without pier-

cing the constraint. 1In this problem, this situation occurs

- when a section bl? £ € J of the disc is at the yield stress. A
feasible design is sought by thickening this section and thin-
ning the section bg, s ¢ J furthest from the yield stress in ', .
such a manner as to leave the wéight unchanged. 7A11 other

thicknesses remain unchanged. Thus,

-
o . . 'dif= 0; i#as,s |
- > 0; i=28 _ (8.14) i
P
< 0; i=5s ' !

' dz, d; were calculated from the simultaneous equations (8.13)
and gave polynomial equations consistent with (8.14). The step
size was determined by (8.11) to ensure designs within the de-
sign variable bounds. Initially, a feasible point was obtained
at the first redesign attempt and thereafter as the designé be-
came mofe highly constrained, a feésible design was stiil
forthcoming after the first few attempts. The synthesis was

programmed to successively reduce the step length (8.11) of no

feasible design was forthcoming after a specified number of re-

design attempts. If still no feasible design was forthcoming,

the next section furthest from yield was thinned and the above

P
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procegs repeated.  As a last resort, the program enters the al-
ternate base plane redesign pfocedure.

Optimum designs for the turbine disc of Figufe 8.3 were
accomplished for design spaces which ranged from four to eleven
design variables, The initial design for an eleven-dimensional
representation.is illustrated in Figure 8.4. Resiults are shown

for the random and selective search procedures, respectively,

in Figures 8.5 and 8.6. Figure 8.7 shows the variation of the

design weight as a function of the number of redesign attempts.

Other results for this problem.ahd complete details of the
method are presented in Reference 4.

8.2.3 Structural Analysis-Influenced Travel

The alternate step modes stgdied hitherto do not utilize
‘the mechanisms inside the structural analysis packages to in-
fluence the design optimizations from a main constraint. Gel-
latly and Gallagher( ) use constraint merit redesign technlques
for the minimum welght design of trusses subject to stress and
deflection constraints. The design variables are the cross-
sectional areas, giving rise to a linear merit functions. The
behavior variables are the element stresses and nodal deflec-
tidns. They direct the boﬁndary search by calcplating -the .nor-
mals to the behavioral constraints in static and dynamic re-
sponse.regimes. To describe the associated formulations, we
designate the relevant equations of matrix displacement analy-

sis as

[~}
(]

X

tp>

(8.15)

Q
n

'

>

et izazi
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wvhere K, S, and P are, respectively, the stiffness, stress, and
design load matrices. The stiffness matrix at a given point in
the design sequence (501 will Be altefed due to the change in
the element stiffness matrix-(gi) associated with the ith de-

sign variable. Thus, the new stiffness (X) is represented by

K=K + §Gx15§ - (8.16)

where Gxi is the change in the associated design variable,
Reference 8 demonstrates that a local approximation to the nor-
mals to the behavioral constraints is then given by

2A

oy -1
| Xy K Kl |
ad C BZ& _ ’ (8.17)
: .= 'k -1
ax = - S 1% ]_<1A

In the method of'reference 8", the direction of bodnce is
“.obtained by projecting the nbrmal onto the constant weight'hy-

‘perplane, For points.on multiple constraints, Gellatly(g) sug-
- gests a conét:aint direction based on the weighted sum of con-

.: straint normals, of the same form as Equation (8.12)., The di-

rection on the weight hyperplane is a linear combination of the

form .
p | . ‘
k k" K
dg = cdy + zglc‘§£ _ (8.18)

where ¢ is a constant and g%kis the normal to the constant

welght hyperplane, i.e.

k, k. : |
&edp = 0 (8.19)

For bounce back into the feasible regions, the direction

.
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dtdmuét,make acute angles with all constraint normals, This
condition 1is expressible in the form
k, .k

d%ed =€, > 0 N (8.20)

~%
where €, are specified tolerances, usually selected to be uni-

ty. From (8,i%) e

. p
k Lk k .k
cdy'dp * L cpdpidp= O
gk aK =
c§w gm-+ gzlczgz gm €0 for all nm

These equations form a determinate system for ¢,» The matrix
of coefficients tends to be ill-conditioned in the neighborhood

of an optimal, |
8.3 Constrained Boundary Motion
8.3.1 Best's Method(lo’ll)

One of the earliest applications of travel along the con-
straints in the context of the structural design problem is due

(10’11). His method starts from a trial design in the

- to Best
feasible region and steeply descends to the nearest (main) con-
straint, From a boundary point the method moves on the con-
straint'surfacé in a direction in which the merit decreases

most rapidly.

'Supposc the point lies at the intersection of p constraint

hypersurfaces. The normals are determined using techniqués
similar to Equation (8.17) and are colleéted in the matrix

[gg]. The direction of travel (dk) is orthogonal to [Vg].

[vg)Tak = 0 o (8.22)
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and is assumed normalized, i.e. Equation (8.13b) applies. The

rate of decrease of the weight in the direction d* is deter-

mined by : o .
d k . K.k, oW Lk K\ T g
- E;E w;§ f a'd] = -iglgf; dj = f(§ ) W (8.23)

The problem consists in maximizing (8.23) subject to the
constraint conditions (8.13b, 8,22) so as to give the optimal
direction of travel, gk. We can accomplish this by the La-
grange multiplier technique, Introduce the Lagrange multipli-

Al’ LI I ] » Apo Then

-oW ¢+ [Tg)A A =0 © (8.24)

where A = {ll. ves Ap}-

From (8.13Db, 8,22,'and 8.24), the direction of travel is

given by
©  Huw |
d* = 35— (8.25)
o |

where Ho= I-- [9gl{ivel (ve]) t(vel”

. . (8.26)
R = gLy Tmn) /2

The operator H plays a central role in the gradient projection
method as will be shown subsequently‘ih Section 8.3.2.
The distance of travel is estimated. to the nearest con-

straint, so that, to firéf order
gy fxN) @ Tve; ) =0 (8.27)

The required step length is then’
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Koo ning g5 (x)
Qa = min Y
. K
i@ g (N

The method was applied by Best(lo’ll) to the minimum

(8.28)

weight design of cantilever box structures in the preéence of

stress and deflection constraints. The method is primarily ap-
':1 plicable to problems:with very flat constraints in whiéh move-
ment- in the direction gk does not give rise to significant con-

“straint violation. This condition is usually not satisfied by

behavioral constraints in structural mechanics. A modification

was proposed by Schmit(lz) where condition (8.22) is replaced

by (8.3). This reduces the problem to one with inequaiity con- -

straints with a corresponding increase in complexity.
Constrained boundary motion in conjunction with a dynamic

constraint was used by Zarghamee(ls) to maximize the frequency

subject to a linear weight constraint. _Thg frequency is calcu-

lated from the eigenvalue equation
[k - wiyjad =0 _ (8.29)

where K, M are the siiffness and mass matrices respectively and

K p‘éJ is here the modal shape corresponding tc the eigenfrequency

" w), The modified stiffness matrix is given by (8.16) and for

- . the modified mass matrix

-~ ~0

M=M_ + Za;i@i _ | (8.30)

i
Differentiating (8.29) partially with respect to X, and using
(8.16) and (8.30)

aad

_ L . i .
[k - wuga) - Fowed e k- g0 (s
: : 1 S 1
-~




Assume the eigenvectors a? to form a complete set so that we

can express their gradients as

w ok
[ | (8.52
. i,j
where'Bk - are constants.
i,j
Also: we take note of the orthogonality property of the

eigenvalues with respect to M as a weighting matrix:

i\Tyd o o
(47)7MA" = 85 | (8.33)

where 61j }s the Kronecker delta (Gij = 0 if ifj and Gij = 1 if

~iej).

From (8.31-8.33)

j . . s '
N COR CA AT (8.34)

i
' This measures the rate of change of the ffequency in terms of
~the corresponding eigenvectof. The constraint on the total

weight is of the form
‘ .

[ =]

W(x) = W, o+ L Wixg (8.35)
o a=l -
where W(§) < Wo. Hence we have the linear constraint
, . .
I Wix; <0 . (8.36)

i=1
Thé problém therefore consists in maximizing the frequency
mj(§) subject to the linear constraint. The solution was based
oh the gradient projection method for linear constraints, in
which the gradient direction (8.34) is projected on the linear

éonStraint using the projection 0peratqr7H. This gradient pro-
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jection method is again taken up below. Generalizations of the

analysis to more complex structures are given by Turner(14’15).
8.3.2 Gradient Projection Method '
The gradient projection method, due to Rosen(m’J , has

proved to be of value in the structural optimization area and
épplications to various struétural.systems are given by Brown
and Ang(17). |

For nonlinear constrainté, the method offers considerable
flexibility and scope and consists in orthogonal projection of
the gradient into the linear manifold of the supporting hyper-
planes to the active congtraints. The basic steps of the algo-
rithm are summé;ized as follows: g

Suppose §k lies.on p cdnstraintlsurfaées. Using prior
.symbolism,lthe nxp matfix of normals is designated as [ég},
where each column is assumed linearly independent of the rest,
The projection 6perator, g; for the linear manifold spanned by °
the supporting hyperplanes-is given by Equation (8.26). The
normalized direction of travel (dk) is therefore defined by

| K EWO
4" = THT?WTT— (8.37)
The gradient vector EW(§R) ﬁan be written as a linear combina-
‘tion of the projected gradient and the normals Egj(§k) to the
active constraints .
K, _. k > k
-VW(x") = -HVW(x") + iglriggi(f ) (8.38)

where the r, are constants. "It can be shown that if -HVW = 0

and r < 0 then x¥ is a local optimum. Whenever) |[HVW| > 0 a

\

|
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]

small step length ak is taken in the projected direction (8.37)
to a point of improved merit. Because of the curvature of the
boundary, this will be a non-feasible point and an interpola-
tion procedure, as detailed in Reference 17.

When -HVW = 0 and r, > 0 for some i (i = l1,...,p} the con-

_ -~ ate Temovedk '

straints for which r, > Oﬁend the analysis is performed on the
intersection of the remaining constraints. This is represented

by sets of recursion relations on H, r, and are given in Refer-

ence 16.

8.4 ‘Linear Programming-type Methods

Another method of boundary redesign 'is Zoutendijk's method

of feasible directions [7] which has been applied by Pope(IBJ

(19,20)

to static problems and by Fox and Kapoor to minimum

weight design problems which include inequality constraints on ;
/ - |
the natural frequencies. The method consists in reducing the

problem to a series of linear programs. We describe the method
with reference to the problem treated by Fox and Kapoor.
The method first requires calculation of gradients to the

~active constraints. Equation (8.34) can be adapted to the cal-

- culation at the normal to the frequency constraint. The nor-
' mals to the deflection constraints are given by the derivatives

- to the eigenvectors, as follows:

By differentiation of Equation (8.30) with respect to x.

i
and using Eq. (8.33), we have
_— 2k . aM j .
.k ~ i~ dw b
[k - wM]}B, A% + [z=— - w - S8 M)Al 20 (8.39)
~ ~ E ki’.j. Bxi xi Xy ~'~ ~

Premultiplying by (Ak)T and using the orthogonality condi-

- ' |
: |

o et e = A= & R AR wrr— . —mea e = = s = .

e e _..._’_r;,,_
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tion (Equation 8.33), 'we have for k#j

. o .3k . aM .
9Tk - Wiz K e (@8T = - W )4l =0 (8.40)
) -~ -~ -~ k - -\: -~ i xi -~ .
2
from which
: ok . M . . :
k.T,“°2 3 ~ j j k
8 2 (A7) [ - w! =AY (w? - w) (8.41)

“Also, for k=j, we have by differentiation of (8.33) with re-

 spect to xi'and other operations

- i M |
1 3I\T "~ J
R = - = (A = & (8.42)
ki,j 2 ‘s axi - ‘

Equations (8;34, 8.41 and 8.42) determine the normals to the
behavioral constraints. The linear program for the problem is
now formulated as the determination of a direction dk which

minimizes the linear function (dk)TVW subject to the con-

. straints represented by Equations.(B.S) and (8.4), except that -

_ ak is determined by (8.11) for linear side constraints.

8.5 Closure

This chapter has described some of the more commonly used
boundary redesign techniqueé for structural problems. Many of
these have structural analysis packages which, although rela-
tively simple from a mathematical standpoint, involve extremely
long and complex programming routines which consume consider-
able computer space an& time. fhis limits a fuller utilization
. of classical nonlinear programming algorithms. The objective
of structural optimization is not the determination of the nu-
merical optimum to the constrained problem but rather improving

the efficiency of existing structural systems. As a result of
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- these considerations there is a'growing tendency to utilize the
structural analysis procedures to solve the boundary redesign
problem, Analysis procedureé based on finite element proce-
dures enable a more automatic coupling of -the analysis and syn-

thesis phases of the .design process.

-
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Figures. Chapter 8
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Figure Mcthod of Alternate Base Planes.

Figure 8.2 Estimate for Direction of Bounce Given
Three Successive Steepest Descent More
Designs., '

Figure 8.3 Cross-Section of Typical Turbinc Disc.
Figure 8.4 Numerical Cxample. Initial Design.

Figure 8.5 Numerical Example. Final Design via
Selective Search Procedure.

Figurc 8.6 HNumerical Example. Final Design via
Random Search Procedure,
Figurc 8.7 Numerical Example. UYeight vs. Number of
- Redesign Cycles. Selective vs. Random
Search Procedures.
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PART 1:

H(t)

e

NOMENCLATURE

Chapter 1

radius of plate; also weight parameter in beam analysis

inner and outer radii respectively of disc

outer radius of hub

inner radius of rim

behaviour matrix
elements of the behaviour matrix

bounds on the bi

width of the disc hub and rim respectively

weight parameter ‘ :
submatrix of normals to active constraints '
general form for inequality constraints

dissipation rate per.unit volume

Young's modulus

components of strain.tensor

radial and tangential components of strain

strain components in generaliéed coordinates

maximum value of ©.
flexibility_matrix

body forces per unit volume

yield function

fatigue susceptibility coefficient
gradient vector .

Heaviside unit step function




h thickness of disc at a radial distance r
R; . stiffness of the i~member of structure
K stiffness matrix
k yield constant
kaB curvature in generalised coordinates
L lower bound on design variable vector
L* lower bound on behaviour matrix
L - length of beam
M mass matrix
Mo’ M fully plastic bending moment
Mr, Me radial and tangential components of bending moment
MuB bending moments in generalised coordinates
m beam weight per unit length
g(q) steepest desﬁent vector for studying ridge effects in
merit contours
mj coefficients of the linearised weight function
P : load matrix
P transverse load per unit area
Qi’ q; generalised stress and strain components respectively
q design cycle counter
R matrix of.the normals.to constraints
Ry, Ry radii of curvature in the circumferential and meridianal
plane

r radial distance measured from axis of disc
r,. elements of R

. - ~1] = '
r, . intermediate radial point in hub

¥ S ' closéd surface in the material under consideration

St part of S on which the surface forces T, are specified

s part of S on which the velocity components ug vanish



e
e
[ L]

S stress matrix
s,S radial stresses at inner and outer radii respectively
T tensile load per unit circumferential length
T —surface tractions per umit area
t distance of travel in design parameter space
u ‘'strain energy per unit area
U - . mpper bound on design variable vector
U* upper bound on behaviour matrix
u ) deflection
uy : compatible velocity field components
ui(c) “velocity field for a structure on the point of collapse
u —optimal bOundéry search vector
v . ) -yvolume enclosed by S
a
Ve volume of structure on the point of collapse
v | absolute minimum weight volume
VS " volume of structure which is safe
W transverse velocity field in plastic case; radial

component of displacement in elastic case; also used in

certain instances to denote weight

Wo . initial optimal weigﬁt es;imatiop

WS __draw down weight

X ‘ design variable vector

z plate-thiékness measured from undeformed middle surface

a1, @2, B1, B2 coefficients used in 2 penalty function formulation based

on exponential functions

Ebi gap vector,
AW . weight reduction
G(max) upper bound on deflection vector



matrix with element 6j.

deflections in structure

i-eigenvector for standard vibration equation
control parameter on step length

A |

‘hinge rotation, also angular coordinate
constant of proportionality

i-eigenvalues for standard vibration equation
Poisson's ratio

penalty function component of ws(g) in the Heaviside

transformation
direction of travel

modified objective function incorporating constraints

using penalty function techniques
density of.material

matrix with element o5

stresses in structure

component of stress tensor

yield stress

radial component of stress
tangential componene of stress

b

principal circumferential and meridianal stress



Chapter 2

radial ccordinate at standard sections of disc
thickness coordinates at standard sections of disc
behaviour constraint functions

union of Gk
constraint hypersurfaces in design space
equivaleﬂt representation for design constraints
sysfem Hamiltonian

index set for %

index set for j

upper bound on element thickness

boun&s on the-behaviour variables

normalisation factor

total number of points of division of disc

radial coordinates at intermediate sections of disc

thickness coordinates at intermediate sections of disc
feasible region

side constraint functions

bounaé on the behaviour variables

control function

modified wéight functional

coefficient of thermal expansion

variable metric type step length

lower bound on step length

step length along A




X1, A2

-

Ty T2, T3

Chapter 3

=

V..
1]

W(r)

I

control parameter for meodified weight functional
adjoint variables

search direction from boundary point

temperature difference

principal shearing stresses

amplitude for the displacements
Lagrangian function

Lagrangian energy densi£y

number of nodal .diameters round disc
natural frequency of vibration
critical’fréquency

shear forces

kinetic energy

elements of quadratic form for T

kinetic energy density

axial displacement as a function of polar coordinates

r, 8 and time t

control véctor

potential ;nergy

elements of quadratic form for V

potential energy density

<

vi

radial form of function which describes axial displacement

state vector

s



phase factor for the displacements

additional mass elements

efficiency coefficient

(small) displacements from equilibrium configuration

speed of rotation of disc

vii



PART II:

I

(o) (1)

Ae)

u(t)

Chapter 4

integrand of J

vectof of state differential equations

integral component of 1

non-integral component of I

iﬁequality constraints

Hamiltonian incorporating inequality constraints
Hamiltonian in the absence of inequality constraints
merit criterion

modified functional for first variation analysis
order of vector w

order’ of vector wu

order’ of vector’ X

scalar product of the state differential equatiomSwith

the normals to the -active constraints

suffix denoting.active constraints

independent variable

inigial aﬁd final values of t
control parameter veétdr
partitioneh control vector

Bellman optimality function

- control vector

state vector

initial and final manifolds

generalised Lagrange Multiplier associated with the state

differential equations

generalised Lagrange multiplier associated with

inequality constraints
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arbitrary constants of integration
yield condition for material
intermediate radial points

initial and final manifolds
function of class G2

adjoint vector

F]

coefficients of G

coefficients of the édjoint equations
transformed objective function
constraint funection on weighf

locator polynomial for frequency
merit functional

large parameter

k-natural frequency of vibration
upper bound on weight

arbitrary constants of integration
small parameter for power serieé expansion of A
large parameter

coefficients of f;

Gaussian distribution function

arguments of the Bessel functions






