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SUMMARY

Particle systems may be characterised by a knowledge

of the dimensionrs of the individual pariicles.By using

the Fere;’s diameter distribution and the random

filament distribution of an iron powder,the characterisation

of a system of the powder particles,constrained in a

cylindrical die,has been achieved.The Monte Carlo method

has been used to simulate the transmission of force

through the model created by this characterisation.

The results of 500 Monte Carlo simulations have been used

to produce a description -of the force due'toipne surface

particle at various points in the system.Usirig”this diagram

together with a knowledge of the spatial distribution of the

surface particles and the dimensions of the aie it was

possible to produce

1) Curves of side wall pressure vs. depth in the die for
various loads

2) Curves of applied to transmitted pressure for various
‘height:diameter ratiocs a

3) Curves of friction loss at the walls vs. depth for different
height:diameter rétios

The differencegbetween the experimentally determined values

and the values predicted on the basis of the model have been

explained in terms.of the assumptions made, and, suggestions made

as to how these may be eliminated,
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SECTION 1

INTRODUCTION



TFor many years,the compaction of powders has been used in industry,
in the manufacture of a wide range of products,such as,tzblets

in the pharmeceutical industry,bricks in the ceramic industry and
sintered metal parts in the metallurgical industry.Although it has
such a wide use,the mechanics of the compaction process are inadew
quately understood,and consgquently a large number of experimental
determinations have had to be made in order to- gauge.the importance
of the various parameters influencing the process.

Compaction is generally the first step of a two siep operation,

in the production of a compact.With the exception of the pharme-
ceutical industry,compacts are normally finished off by a process
called sintering,where further cohesion between the powder part-
icles is obtained by raising the temperature of the compect and

thus promoting the formation of metallic and other bonds.

The final strength of the compact obtained,however,depends on the
density achieved in the first(compaction) stage of its menufacture,
and it is with this process that this research is cohcerned.Although
there is such an abundance of experimental results,there is as yet,
‘no general’ theory which can be used in an attempt to optimise the
process.The presently available theory views the process macro-
scopically and all the predictions deal with the macro-properties

of the system,such as average density,average volume etc,

Unfortunately,there is no direct relationship between the macro-
scopic properties and such important parameters as the sirength
‘of'compacts,which still have to be determined experimenta;ly.It is
unlikely that any macroscopic approach could,in fact,predict such
parameters}which are to a large extent dependaﬁi on logal variations

and local properties.

The theory presented in this thesis is,therefore,an attempt to
extend the presently available theory,using it as a stafting

point to analyse the system,and using a particulate approach with
a view to obtaining those parameters which cannot be obtained now '

without experimentation. -



4 theory such as the one proposed would be invaluable to industry
in thesaving of much time and money,and would also be widely used
in research,not merely in the field of compaction but in a number

. of other fields,where similar problems are encountered.

Since the complexity of particulate systems makes the use of
ordinary mathematical analysis impractical,it was decided to use

a statistical approach and bring to bear on the problem,the latest
advances in particle characterisation.In order to do this,it was
necessary’tO'build a stochastic model of the system on which a

a simulation of the force transmission could be performed.

A search of the literature indicated that the Monte Carlo method
(formerly called the method of random walks),ﬁhich had been used
with varying degrees of success by Scheidegger(89) and Eastham(71)
could probably be used with success in the simulation of the force
transmission,and that the method of sizing particles by regarding
an assembly of particles as a series of filaments(}B),(TO) could
be used,together with the more conventional Feret's statistical

diameter,in the building of the type of model required.

The systems which were considered,were of cylindrical shape(which
possess axial rotational symmetry) and were enclosed by a rigid
die.One of the plane surfaces was then subject to an applied
pressure,The transmission of the force,from the surface through
thé system was then .simulated,using the Monte Carlo method and
"&. stochastic model of the system.Using the fesults from these

runs it was possible to build up a force diagram for every point

in the system,which could then be compared with experimental data.

9]
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2.1 Literature survey.....Introduction

This thesis is concerned with developing a theory which would enable
the prediction of pressures ét various points within a confined

system of particles which is subjected to an external force.It is
agreed by 21l workers in the field,that friction between the powder
and the walls of the retaining vessel is the most important factor

in the non uniforﬁ transmission of stress through such a system.This
friction,which is considerable in magnitude,causes a variation in the.
axial stress throughout the system (or compact):as a result of this
variation in stress there arise variations in the consolidation of

the powder at different points within the system.These variations have

been widely investigated experimentally,

The literature survey presented in the following pages thus highlights
the various factors influencing the value of the coefficient of friction
end then goes on to describe how friction can be minimised by the

use of lubricants.In the building of the model,it was necessary to use
some of the information given here,relating to friction and lubrication
but the importance of some of the facts presénted has not always been
understood and suggestions in the past by such eminent workers
as Unckel (30) have been found to be incorrect.Thus the inclusion
of the information here is not merely "a justification of the
assumptions used in the building of the present model,but also an
-introduction to that part of the 1iteratu;e dealing with density .

variations in powder compacta,

The information required to simulate the system under analysis,is
found in parts 2.4 and 2.5,where the most recent advances in particle
characterisation and the information available on particle packing are

recounted.The inclusion of the information available on the effects
of die filling and segregation was considered valid and necessary
as a lack of attention to these details leads very often to non-
reproducibility of rgsults.It is particularly important to control
such ‘procedures carefully,especially:since models,such as this one,

asgume random packing arrangements.To conclude this section,a
description is given of.Monte Carlo methods,which have been used in
the simulation technigues,and of the future possibilities of incorporating

the deformation of particles into the model,



2.2 Friction and lubrication in powder-compaction-

In the introduction to this section the importance of friction in the
analysis of density variations occuring in powder compacts was stressed,
Recounted below are some of the suggested relationships between applied.and
transmitted pressure and the coefficient of friction between the powder
and the wall of the die,Unckel (30) and Duffield (10,24) use the

relationship,
P + 4300 L/D
- t=e F"F /

Where, I = Compact height
D = Compact diameter
|/= Coefficient of friction between powder and wall
ﬁ= Ratio of axial rto radial stress
to evaluate the pressure on the bottom platten during a uni-directional

pressiﬁg operation.

Train (7) modified this to

__l.D.I'. = .‘_’3;".3"_ e+4 ‘\L(b L/D —————nnnn 3 o R I
Pb vrb

Where Vr is the relative volume and + and b refer to top and bottom

of the die.

'Fshas been obtained by Unckel (See Appendix 2.1) as,

2.3

”'ﬂ 1 + -hJ P ‘1)2}{2
i ! “V‘i -/ f"i - (1 MR

Wherefi-i is the coefficient of internal friction.

The importance of the variation of both{ﬂ-andﬁﬁ has not been
sufficiently well investigated,but it is proposed to deal with some papers

that have been published in recent years.

k)



Bowden and Tabor and their co-workers have performed a large number
of experiments to clarify the laws relating to friction.Amonton's
laws state a) friction is independant of the area of contact
between the solids, b) it is proportional to the load between the
surfaces and c¢) it is independant of the speed of sliding.The theory
developed by Bowden and Tabor is based upon the hypothesis that
there is the formation of junctions at all points of contact between
the two surfaces,and that the frictional force observed is due to the
resistance of these junctions to shear.It is well established now that
solids have only a small proportion of their surface actually in
contact with one another.In fact (Table 2.1) the actual areas of

contact may be as low as 1/%00000th the apparent contact area,

TABLE 2.1

Areas of contact between two metal plates (39)

Load, Kg True area of contact Fraction of macro. ares
W AT
500 - . .05 ) 1/400
100 - .01 1/2000
5 . 005 1/40,000
2 : .002 1/100,000

The theory states that as the load on the points of contact is
high,there is cold welding at these points and consequently there is
a resistance to movemént.Experiments have showrn hot spots can
actually be measured on the surfaces of sliding metals,and that
their temperatures often exceeded the melting point of the metal,
The temperatures generated depend on the conductivity of the metals
and the solids of low conductivity show greater increeses of
temperature at contact points {40).Johnson and Adams (41) have
investigated the effects of melting point,density,surface condition
and temperature on friction.Green (42) has investigated the variation
of friction with surface conditions.Three types of friction were
found.
(a) Seizure or very high friction.At slow sﬁeeds this occurs only

with out-gassed surfaces of extreme cleanliness and is achieved by




héating in vacuo.The coefficient of friction varies between? and

10.

(b) Strong adhesion between clean metals in air.Moderate friction

coefficient ( Approximately 1)

(¢) Weak adhesion between clean metals in air

Under static loading,the mean pressure is about six times the yield

stress in shear,vhereas in steady sliding it is only of the same
crder as the yield stress,since the area of contact increases as

soon as sliding commences.The yield stress in shear varies with

thé type of sliding'obtained,and the nature of the Jjunctions formed

also affects the coefficient of friction.Thus ductile metals have

higher coefficients of friction than brittle ones.Greenwood and Tabor

(43) demonstrate this,Table 2.2 shows the values offkunder different

conditions.

TABLE 2.2
Frictional behaviour of junctions (42)
Type of junction_ | - Material | SEEEEEE-EQE@EEEE&.-_--+w.ﬁi;.,\
One piece ! Any Perfect adhesion 3
Two piece Indium Strong adhesion 2.5
Two piece - Aluminium Weak adhesion 1
Two piece Aluminium Lubricated 0.15

0.05

Table 2.3 shows the effect of lubricating films on friction

TABLE 2.3
Values of A for different junctions with different lubricants
Ideal single iTwo piece junctions with films of
ij piece Jjunction | Oxide Lea Tin {Indium $Soap -PTKFE
14 - 2 1 0.6 0.4 1} 0.26 | 0.2210.23 1
7 3 1 0.24 | - 0.15 | 0.09 1} 0.19
3.5 5-6 l 1 0.17 - 0.10 0.051]0.10

where o( 3 ig the angle of the leading edge of the junction.

Surface roughness had a small effect gn'the coefficient,amounting to

about 10% for a variation in the angle between 30 and 60 degrees.
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Dokos (47) investigated the effect of sliding and load on the

coefficient of friction and found that it was dependant on both.
Table 2.4 shows the results he obiained.

The effect of normal load and velocity on the coefficient of friction

TABLE 2.4

Velocify of disc i.p.s Normal load Kg. Coaff. of friction
1.6 x 1074 50 0.56
100 0.55
150 0.49
200 0.515
1.44 X 1072 50 0.43
100 0.47,0.43
150 0.49 )
200 0.465
250 0.62
1.18 X 1072 50 0.34
100 0.30
150 0.43
f 200 0.45
250 0.66 {
-2
9.6 X 10 50 0.26
100 0.32
150 0.28,0.31 ,
| 200 0.375 |
5.76 X 10'1 50 0.24
' 150 0.27
2,31 50 0.22
150 0.20
20.4 50 0.20
100 0.185
L

Contd,

)



TABLE 2.4 (Contd.)

20.4 ‘ ' 150 0.175
200 0.17
i
54.0 i 50 0.20
] 200 0.15
i

-

His conclusions,which are interesting,afe )
‘a) For clean contact surfaces,the coefficient of friction greatly
increases with decreasing velocity.(See Figure 2.1)
b) There is a critical velocity above which stick~slip friction
is not observed.
¢) There are three velocity ranges.
In the upper and lower ranges the coefficient decreases with

load and in the middle range the opposite occurs.

The papers vaiewed above contain most of the material relating

to friction and the coefficient of friction.From the conclusions

of the many authors,it is quite clear that the frictional behaviour
of metals is not described by Amonton's Laws,that it is very
complex and that to say with any degree of certainty that one can
completely allow for it in any theory would be too optimistic.

The effect of friction can however be greatly minimised by
lubrication and the following paragraphs describe some of the more

common methods employed in lubricating powders before compaction.

2.2.2 Lubrication of powder compacts.

Lubricants,binders and additives are used in almost all applications
of the compaction process.Lubrication has a two fold effect on

the powder compact,first by its effect on the frictional forces

i.e the sliding forces between surfaces,it allows more uniform
transmission of stress within the compact and thereby reduces the
variations in density.Since,however,the lubricants form an adsorbed
layer on the surfaces of the individual particles,they decrease

the coherance of the compact.
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In the ceramic industry,in the manufacture of refractories,water
is largely used,as also are water soluble organic materials or
additives,which react with the material of the compact giving rise
to chemical bonds.The compounds in the first group are the
lignin-sulphonic acids and the sodium,ammonium and the calcium
ligno-sulphates,Sulphuric and phosphoric acids and aluminium
phosphates belong to the second group.Other compounds used include
polyvinyl alcohols,urea,stearine and cellulose derivatives.

-

Those lubricants used with metals,which are incidentally, more

)
relevant to the model presented in this thesis,are generally

the metal salts of stearic acid or stearic acid itself.Leopold

=]

and Nelson (49,50) investigated the effects of lubrication on the
di

of the powder mass does not produce any change in the nature of

wall (51,52).Many workers have indicated that the lubrication

the compact as opposed to lubrication of the wall aleone.Leopold

and Nelson carried out a series of experiments to determine the
effects of both admixed and wall lubrication.At higher pressuriswall
lubrication proved superior to admixed lubrication whereas at

lower pressures the reverse was true,although the difference in

the latier case was minimal.Specific applicationsfor the commogly

used lubricants are given in Table 2.5

TABLE 2.5
Lubricants for various metal powders,
b Netal : Lubricant / s
Iron Zinc Stearate
Copper - Lithium=-Zine or Cadmium-~Zinc
Aluminium Zinc or Cadmium Stearate
Brass Lithium Stearate
Stainless
Steel Lithium or Nickel Stearate

The results obtained by Leopold and Nelson are shown in Figures
2.2 and 2.3.Further observations are that for small compacts,the

effects of lubrication are smaller than for large ones.
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Hausner (90) and Burr (72) have also investigated the effects

of lubricants in powder compaction,Although there are some diff-
erences in their conclusions as cdmpared with those of Leopold
.and Nelson there is substantial agreement on the fundamental
question as to whether the lubrication of the powder mass has
any advantage over the lubrication of the wall alone.There is
unanimous agreement that lubrication of the wall provides all

the lubrication necessary and that in lubricating the powder mass
the disadvantages introduced by the reduction in coherence of

the compact are encountered. o T -

An important conclusion that may be drawn from these observations
is that the transmission of force through the system is only
| minimelly affected by inter particle friction whereas the wall
friction is an important factor that must be considered in any
calculations undertaken.It would thus appear that since inter
particle friction plays an insignificant role in the compaction
process that there is little inter particle movement within the
die during compaction.This assumption is 'further borne out by
the fact that there is a noticeable difference in the effect
of admixed lubrication'at the lower pressures when it would be
expected thaziighld be inter particle movement and consequent

particle friction effects.

2.2.3 Conclusions
To conclude the review of literature on friction and lubrication

it is useful to summarise the important facts to emerge from the

literature.

a) The coefficient of friction varies with surface and other
conditions .

b) Friction can be drastically reduced by the addition of lubricants.

¢) Elimination of wall friction.is desirable.and,to a large extent,
possible,by lubrication at the wall,but elimination of the
interparticle friction is irrelevant and probably undesirable.

d) Itlis possible to evaluate the coefficient of friction at the

wall if the angle of internal friction were known.
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2.3 Theoretical and experimental evaluation of density variations

in powder compaction

2.3.1 Unckel's evaluation of stress in dies

Unckel (30) was the first to attempt to evaluate,mathematically,
the experimental observations of pressing powders in dies.His
experimental method consisted of making compacts of various diameters
and heights,and taking specific gravity and hardness measurements
along the length of the compacts ,as well &s in the centre,by
cutting the compacts into discs.As others after him have done,
Unckel ,using unidirectional pressing teéhniques,foun@ a e
density zone near the bottom outer edge of the die.He also noticed
that in compacts with high length to diameter ratios that the
bottom centre pressure is less than at the top centre,but that
with low ratios the reverse was the case.Subject to the effects of
work hardening,the hardness values gave the same results.Figures
2.4 and 2.5 show some of his results.Unckel also made the obser-
vation that the density at a particular depth was greater in
shorter than in longer compacts.He did not,however notice the

high density region near the centre,which has been noted later

by Train (7) and others.

Hig experiments on the friction at the wall yigldeg the conclusion
that three quarters of the applied force is lost at the wall

in unlubricated dies,but that this could be reduced by iwo-thirds
by lubrication.Table 2.6 shows the results he goutes to justify
his views,Another interesting observation made by Unckel relates
to his attempt to press a hollow compact with a flange at the
bottom.He noted that the powder in the flange part remained
uncompacted at the end of the pressing operation with the excep-
tion of & slight bulge at the sides.This seems to indicate that
there is little force transmitted outside the area covered by

the punch surface.

TABLE 2.6

The effect. of lubrication on die wall. pressure.

t Powder Total punching force,Kg. Ejection force,Kg.
2000 4000 8000 72000

100gCopper
(Mixed size) 1600 2700 4300 C 5800
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TABLE 2.6 (Contd.)

I ] i =
120gCopper . |
(Fine size) 1500 3170 5600 7600 7350
As above i
(Lubricated) 900 1550 2150 2250 2300
- 100gIron 1400 2480 ’ 6920 7760
50gIron : 2310 2700
100gIron
%With 3% Graphite) i 2610 6140 4675

Unckel tried to interpret his observations,mathematically.This
treatment is recounted in Appendix 2.1.His work was performed in
1945 and was the first of a seriea of attempts to obtain information
relating to the process of compaction.His experimental techniques
have been improved upon but there has been no comparable mathematical
treatment in the papers reviewed for this thesis.Most of the

current work has been concerned with relationships between macro
properties of the system such as pressure~volume curves,and

information concerning a particulate approach has been sparse,.

2.3,2 Early investigations

Much of the early work on density distributions was performed
by a group at the Massachusets Institute of Technology.This group
included Seelig,Wulff,Kamm and Steinberg (1)(2)(3).Some work
had also been done by Balshin (31) and Rokowski (29).Keamm et al
used an embedded lead grid to study the transmission of the force
within the die,This was done by radicgraphing the die assembly
after compaction and calculating back from the deformations observed
on the grid.The axial strain measurements so obtained were used to
calculate the density distributions.They reached more specific but
similar conclusions to those of Unckel.These ware
a) For varying height to diameter ratios,lower pressures gave
more uniform density distributions.
b) For the same diameter,an increase in pressure or height
increases the:dens%% variations.
¢) Upto a height to diameter ratio of 2:1 the density at the
centre of the base exceeds that at the centre of the top,

but if this ratio is exceeded the reaverse becomes the case,
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d) For the same height to diameter ratios,larger diameters

reduced the variations in density.
e) Increased diameters lessened wall friction.
f) The lubrication of the wall had a significant effect on the

density variations whereas the lubrication of the particles

did not.
- These experiments were performed with carbonyl iron powder and later
repeated with coarse electrolytic,coarse reduced and fine iron
powder.The above conclusions remained unaffected.Some of the results
are shown in graphical form in Figures 2.6'- 2.8.,Unfortunately,
the lines represent points at identical depths on the undistorted
- grid and cannot be given an exact physical location in the system
on the basis of the information obtainéble from their papers,They
also studied the effect of varying the rate of application of
pressure and of de-gassing on the density distributions but these

results have little relevance to this research.

2.3.3 Recent investigations-

Train working in the field of pharmeceutics;has also performed
extensive investigations into density variations in die compaction.
Bis use of a split die (Figure 2.9) enabled him to make direct
determinations of density.He used colloidal graphite as a wall
lubricant and -also investigated unlubricated dies.His conclusions
are glso similer to those of Kamm,Unckel et al,but because of his
use of layers of alternately coloured and white powder,he noted
that there was a greater displacement at the top and that this
displacement was reduced by lubriecation.He also noted,and gave
explanations for cracks which appear on the ejection of the compacts

from the die

In lubricated dies the crmcks appear to be concave upwards whereas
in the unlubricated case there were also some which were concave
downwards.The explanation he gave for the formation of these
cracks is based on the phenomenon known as elastic relaxation.

As the compact is extruded from the die there is a peripheral
relaxation of the elastic strain which induces a longitudonal
strain in the top centre region,where the materisal is less dense
and therefore probably weaker.Thus any additional strain such as
that introduced by handling etc. causeicracks to appear.In the

case of harder metals particularly,Bowden and Rowe (38) have shown
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that these elastic stresses cause the snapping of brittle junctions
formed when the metgls are pressed together.The cracks often appear
only after complete extrusion,this being due to the partial bonding
of the surfaces with brittle bonds which are easily ruptured by
‘such phenomena as the expansion of entrapped air.The absence of
*the second type of crack in the lubricated die is probably.due to
the greater uniformity of density,and hence strength, in these

compacts.The cracks appearing in the lubricated compacts tend to

\\)

confirm that the additional stress which caused the crack was
sufficient to brealt all the bonds in the plane whereas in the
unlubricated case local failure may occur.Some of Train's results

are shown in Figures 2,10 and 2.11.

2.3.4 Side wall pressures

The only work in metal powder compaction which concerned itself
with side wall pressures is that due to Duwez and Zwell (6).They
used the apparatus shown in Figure 2.12,%t0 measure the side wall
preasure at different points on the die wall for a given applied
prassure.{Pressure of course being applied axially).Some of their
results are shown in Figures 2.13 and 2.14.These results confirm
what has been said by Train and others but provide more qualitative
information which can be used in evzluating the performance of a
model.The results also show that,regardless of applied pressure,
the pressure on the bottom is only a function of compact thickness,
and also that,regardless of thickness,this pressure is a function
of the height to diameter ratio.These conclusions are contrary to
the results of Unckel and the others.

Reviewed above are all the papers of significance to this work.

There are,of course,many,many others but it has been neither possible
nor desirable {o refer to all these.However,those that might be of
interest are due to Huffine and Bonilla(9),Duffield(10),Train

and Hersey(11,12),Bockstiegel(13) and Long(14).To summarise,therefore,
the papers reviwed above,it is possible to say that density
distributions are caused by the non uniform stress distribution

in the die which in turn is caused by wall friction.iccording to

Unckel there is a zone at which the pressure is independant of the
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distance of the zcne from the centre axis of the die.The formation
of these zones can be explained by the lack of shearing forces

and a conseguent lack of cold welding.Thus if both the theories

of elastic relaxation and no cold welding are taken together,the
cause of the appegarance of cracks becomes clear.Unckels observation
that the angles made by these zones is the same is noteworthy
although his assumption of a2 constani coefficient of friction

and of a constant stress ratio are fallacious.Both Train and Zwell
have remarked on the varistion of the stress ratic along the
length of the compact and Kamm et al found a variation of the
coefficient of friction from .07 at the bottom to .625 near the

top of the die,whereas Unckel assumed a constant coefficient of .15.
For the purposes of this work however it is proposed to use a
ﬁL:a:_ardAx-se}e%teﬁeh&?—bs¢ween~%he coefficient of friction and
dopth,since there is an absence of any usable information in the

literature.

2.4 The packing of particles

In any theory,which considers individual particles,the packing
arrangements c¢ccurring in particle systems must be considered.
Duffield(24) has shown that,in die compaction,the initial density
of the die fill has an effect on the pressure-volume relationship.
Hausner(27) has demonstrated the effects of size on the properties
of compacts.Although there is no conclusive evidence to show that
the effects on compact properties of size is through its effects
on the packing arrangements possible,it seems likely that this is so.
Any development of this model must,therefore,consider packing and
size aspects,especially at higher pressures when deformation of .
particles is likely to depend on both particle size and particle

packing.

A number of papers have bheen written on the packing of spherical

particles (53-59) and on the packing of irregular particles (60-66)

O

The essential information available about spheres and mixtures of
spheres is summarised in Table 2.7.0bviously,the packing of spheres
is of greater academic than industrial interest but it is believed
that with the approach used here,it may be possible to use infor-
mation obtained on models bagsed on spheress 1o solve problems

associated with fhe more difficult irregular shapes.
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TABLE 2.7 (Reference 55)
Humber of components g Max. density % vol. of Ratio Relative
i ecach compont. { of dias. ! Part. size
] 1 | 62-64 100 - -
2 ! 86 75 10 1.00
25 1 0.10
-3 , 90 66 Y i 1.00
: F 25 7 ; 0.091
; 9 1 0.012
4 95 60.7 316 1.00
23.0 38 b 0,12
E . 10.2 7 : c.022
. ‘ 6.1 1 0.003
: - !
TABLE 2.8 (Reference 61)

Adwick and.Warmerémresults.with irregular pafticles ;
g Material Individual fraction density | % Vol. of each Max.
§ 26 244 <44 300 <300 comp. for max.densy.i density
E Coral 63 63 60 28 25 47 82 [
E Alumino )

silicate 25 27 31 39 21 M 41

Uranium ! )

dioxide 57 54 49 42 20 38 71

Dense .
i spheres 3 62 to 64 66 25 9 G0 |

From the above results it seems reasonable to conclude that proportions

of smaller sizes must be used to obtain decreases in porosity.It is of

interest that the 66:25:9 ratio for spheres

is replaced by a

40:20:40 ratio for irregular pariicles by Adwick and Warmer and by a

45:10:45 ratio by Hugiil and Rees (60}.With greater irregularity of

shape or with particles with surfaces of an open nature,the quantity

of fines required increases due to the lodging of the fines in the surf-

ace pores,
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Although the results described above are interesting,it is diffi-
cult to relate them to die compaction.They wouid ;howevar be imp=-
ortant when it becomes necessary to consider the deformation of
particles,which is the next step in the logical developmentAof this
model.A factor influencing the packing of material in dies is
undoubtably the method of deposition.icCrae (63) investigated the
effects of density,height of discharge tube from top of packing,
surface condition etc¢. on packing densities.He found that with
higher velocities of impact the porosity increased,especially for
particies with large coefficients of restitution.Duffield (24,10)
had found that the method of pouring was vital as far as correlation
between the results of seperate runs was concerned.Table 2.9 shows

the effect on the packing density,of the method of filling the die.

TABLE 2.9
Filling volumes (10)

%Pouring through Pouring 1 Pouring from ?'Inverting

i funnel from nozzle } stationary nozzle | test-tibe
1.661 i 1.695 ‘ 1.699 P 4.680
1,673 T 1.6e7 ] 1.694 I 1,690
1.675 1.691 ' 1.705 1.689

J 1.674 1.696 I 1.682

b ean | 1682 1.702 ] 1.656

5 1.675 1.651; 1.707 i 1.681

! Std. 1.662 ] 1.719 ? 1.679
Deviation 1.651 4 1.685 ' 1.687
0.011 : 1.68§ : 1,692 } 1.680 ‘

5 1.695 1.694 1.653
i 1.677 ‘ 1.699 1.651
; Mean | Mean 4 Mean

1.677 i 1.699 1,675

! Std, ; Std. Std,

F Deviation Deviation Deviation :

| 0.016 § 0.009 0.014

L g St ——7 - - - s T -rm e o e e =



31

Atmospheric conditions were found to affect the results,but
the degree of oxidation and the depth of fill did not.The error

of about 2.5 % could not be improved upon by simple means.

Another important aspect of die filling,is segregation of sizes

on pouring into the die.This is the main reason why bkigh densities,

such as those oblained by Hugill and Rees and Adwick and Warmer,

are not obtained in practice.Vhen compaction is used on an industri-

al SCale{;t is not economical to have sophisticated and time consum-
ing filling equipment.The effects of segregation have been described
by Lawrence (69).He reaches the following conclusions,after having
examined segregation in iron-lead mixtures.

a) During the filling of the die with a two-component mixture,
segregation occurs by the fines,d,filtering down through the
moving powder mass.This effect builds up an inner mound of fines
rich material at the bottom of the die.(See Figure 2.15)

b) As a result of filtering out of the fines,an excess of coarse
particles,D,is flowed to the outer layers of powder in the die.
This is termed normal segregation.(See Figure 2.16)

c) In a powder system in which D is kept constant,increasing the
D:d ratio increases segregation upto a relative size difference
of (D-4)/d of approximately 0.6 to 0.8.As the fines are reduced
further in size,the filtering becomes more difficult and hence
segregation decreases or even stops. (See Figure 2.17)

d) In coarse particle sytems (D large),inverse segregation occurs,
This occurs in high percentage fines mixitures where there are
less coarse particles in the outer layers than in the original
mixture.This effect is ascribed to there being limited coarse
particles in the system,with resultant burial of the incoming
coarse particles in the fill thus hindering their travel t¢ the
die wall.In similar mixtures but containing less than 60/ fines
nermal segregation occurs once more.

e) Particle shape and density have little effect on segregation,

f) In general,increasing the height of drop caused a drop in segre=-
gation,presumably due to increased mixing caused by bouncing.In

fine particle mixtures,the coefficient of restitution is low
and hence little bouncing occurs thus segregation in these

systems is independant of the height of arop._

D
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g) If the filling time is decreased,segregation decreases.This
may be done by increasing the nozzle diameter or decreasing
the die diameter.Table 2,10 shows the effecis of both these

variables on segregation.

TABLE 2.10 {Reference 69)

The effect of funnel orifice diameter and die diameter on segregation

Funnel orifice diameter (cm) 2 1 1
Die diamater (cm) 5 5 2.7
Fines % A % A% %
20 6 14 9
40 _ 6 16 7
60 -2 2 6
80 -2 =9 6

Where /A = 9 fines in sample - % fines in layer

2.5 Particle Statistics

In the preceding pages the literature dealt with has mainly been
concerned with macro properties of particle systems.At the outset
it was stated that this was to be a;microscopic' or particulate
theory.It is therefore necessary to consider the particles indivi-
dually.The essence of the object of this work is to link indivi-

dual particle characteristics to system behaviour.

In recent years much attention has been pasid to the mathematical

(statistical) evaluation and definition of particle systems.This

sub~section attemps to review these efforts and to choose those para- -

meters which are likely to be useful for the purposes of this

research.

There have been many methods in the past,of characterising particles
and a number of these are based on the microscopic examination of
the particles.The older,more.established methods,use gtatistical

diameters such as the Feret and the Martin's diameters (Figure 2.18)

O
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The Feret diameter is the distance between two parallel tangents
to the extremities of the particle.When measuring these diameters
for an assembly of particles it is necessary to have all these
tangents perallel to a fixed direction.A distributon of these
diameters,characterises the system.The Martin diameter hisects the
projected area of the particle.For convex particles,there is a
relation between the average Feret diameter and the particle

perimeter.(See Figure 2.19)

P

; 2 dF = dP cos & .
— 7{‘/2 ’{\ .
F .= [7°dP cos 6 46 /) 4o
0 0

'_/ F {(Feret diam, )}
s =7 Thus F = P/y
i —
ar i.e P=RT

A",»’" "/ .
P I Where P is the perimeter

\__“ __w—-_-____________.--" 1 —
and I the average Feret diam.

FIGGRE 2.19
In calculating most other parameters,however,both the Feret and
ifartins diameters give rise to inaccuracies,if they are used in
place of eguivalent sphere diameters (i.e the diameter of a sphere

of equivalent volume,projected area afc.).The Feret however has
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& definite statistical significance and it will be shown later
how it can be used with success in the building of a model.

In recent years the best known attempt at applying statistics to
particle systems came from Rumpf and Debbas {32).Their theory
was applicable mainly to spheres and relate to the distribution .
functions of the diameters appearing in a section of a bed of
spheres which had been previocusly set in resin.They obtained the
following relations.

TFor céui-sized spheres the distribution function of the diameters

appearing in a section is (See Figure 2.20)

, 2 _2\k
a(y) =y / (x*-y°)*
‘where z(y) represents the number of diameters of size y

For mixed sizes the relation was,

y x
2(y) =pm-om- ™ wGoax / (ByPR
“max y
J T xh(x)ax
X 0 X .
pmax pméx
If M. =:¢ yz(y)dy and M__ = | x n(x)dx
ny 0' nx /O

where h{x)dx is the number in the size class between x an x+dx

Then a2 number of relations obtainable from the projected size
distributions may also be obtained from the sectioned distributions.
These equations,it must be noted,have been derived for random
packing of particles,but it has been found that with the use of

the correct experimental techniques,it is possible to use them

even with regular packings.iIn the experimenis performed by the
authors, packing whnich had been subjected 4o vibration for 30 secs
at an amplitude of .5mm still produced results agreeing with the

theory.

The newest attempt at characterising particle systems has been
due to Scarlett (35,36).The particles (and the voids around them)
are viewed as a collection of filaments of measurable length and
finite,but imheasurable,crosssectiohal area,These random filaments
can be regarded as the intercepts made by an arbitrary straight

iine drawn through a random section of the packing of the particles,
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Section(See Pigure 2.20(b

FIGURE 2.20 (a)

The probability of a circle of diameter 2y appearing in a section

of a packing of spheres of size 2x

bl

2

FIGURE 2.20 (b)
. The probability of a chord of length 2z appearing in a circle of

diameter 2y.



38(a)

The packing of the particles used in such a determination must
be random and isotropic with regard to their location.Then tha

following relationships apply to the measursments mada,

X

max
. Total number of filaments = u[ f(x) dx
S /
X
. max
Total length of filaments = f x.£(x) dx
- 0

Where f(x) dx is the number of filaments with size between x and

X+4dX«

If the number of void filaments between the liengths z and dz were

g(z) dz then,

J x.f(x) dx

0
Zmax - :
j . zag(s) dz .. .
0 Lo -
Where e is the porosity of the sysiem.

x z , '
since J ™% gf(x)dx = [ "F  g(z) dz
0 0 .

—
1
1]
Ny 4|

Wpere'z énd'E are mean lengths,

If any one of these filaments were to be divided randomly at all
points along their length the distribution obtained would be the

same as the distribution of the éectioned chords shown in Figure 3.3.
Mathematically,if y is the length of the chord produced by such

a section,then the probability of ¥ is,

]

ply) = 1 if Ocy<x

and ply) =0 if y>=x

If the distribution of such chords is represented by h(y) dy
. X=X
" n(y) dy = j\ max £(x) dx.dy
X=Y
Which is the cumulative oversize distribution of the random filaments.

R [
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With spheres it is possible to derive a large number of relationships
but these are of very limited application .(13,32).This is due to

the definite,symmetrical shape of the sphere,which makes the
application of statistical theory very easy.As an illustration of
this two examples of how the filament. size distribution can be
obtained from particle size and vice versa can be found in

references 35 and 13 respectively.

A more interesting feature of the filament size distribution is
however’the fact that the sectioned filament distribution (defined
.earlier),is identical to the distribution of sectioned chords
when the chords are all drawn through a point in a section plane
of a particle and this same point is regarded as the point of
section{this is illustrated in Figure 3.3(c)).It has been
demonstrated -by -Scarlett (15) that this is so,but it is quite
easy to visualise,If in Figure 3.3 (b),we take any point on a
random filament,it sections the filament.If that point corresponds
to the point sectioning the chord in Figure 3.3 (c),then it is
possible to see that if the whole assembly-were considered,every
possible orientation of the chord would be encountered in the
measurement of the filaments and each filament would be sectioned

in exactly the same way that the chord would have been sectioned.

It is customary to represent size distributions or filament dis-
tributions in graphical form.As explained,the number of sizes
between size class:x and the size class x+dx is f(x)dx or a similar
function.Agraphicai‘distribution can be either a frequency vs size
type or a cumulative frequency vs size type.The firat type consists
of plotting f(x) aa the,ordinate against x as the abcissa,while the

max
second uses a plot of as the ordinate vs.
jo\ fx)dx /{ £{x)dx

1 as the abcissa,An illustration of a curve of the first type is
gseen in FMigure 2,22 and of the second in Figure 2.21.Since areas
and volumes are proportional to diameters,it is also possible to
plot volume-size and area-size curves,from this information if

certain other parameters were known.

As far as this research is concerned,interest is centred on the

—
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cunulative frequency curves.These curves contain valuable stat-
istical information.For instance,if one wished to determine the
most probable size one would encounter if a random selection wera
made from a packing of particles,then it is obvious that the
gradient of this curve would show a maximum at the point reguired.
Thus if the axis containing the ordinate were divided into a |
number of equal parts and any number,between O and the number of
parts the axis were divided into,were chosen at random,then,if the
size corresponding to that number weredetermined from the curve,
then this selection would have been at random with the character-
igtics of the system-taken into account.The significance of this
sealection is made clearer in sub-section 2.6 where Monte Carlo
methods are descridbed,and also in sub-section 3.3.More information
on particle statistics is given in a book by Herdan (76) as well

as in the number of papers referred to here,

The most important development recently has been the progress
in the sizing techniques.For our purposes two of the parameters
have been selected,the Feret diameter and the random filament
distribution.Their use in building a model of a particle system

is decribed in Section 3.

2.6 Monte Carlo methods

Monte Carlo methods is the term applied to what were formerly
described as random pr_drunkardg walks.An excellent introduction

to the basic techniques is given in a book by Hammersley and
Handscomb (77).Monte Cérlo methods deal with that branch of
mathematics which is concerned with experiments with random numbers.
The probabilistic type of Monte Carlo method' invoives the obser-
vation of random numbers chosen in such a manner that they simu~
late the physical random processes of the original problem and the
inference of the desired solution from the behaviour of the chosen
‘numbers.An example of the drunkards walk and many other applications
of the Monte Carlo technique is given in a book by Chorafas (37),
Consider Figure 2.22,the curves represent the lives of three
components in an electronic system.The meéﬁ of such a system is

given b& - é;

e S o
-~ N .
where n, is the frequency in the 1 th class and N the total number

L

A



3B (L).

On the -other hand, if we wished to obtain the probability of
obtaining a section 0B of the Feret diameter starting from

O perpendicular to the horizontal (Figure 3.3 (d)), and OB
was of length y, then the probability of y is gived by

P (y) dy = -9¥ ify ¢ x
x

where x is the length of the Feret diameter. If f (x) dx re-
presents the density of the Feret diameters Then the distribution
of y, g (y) dy is given by

which can again be obtained from the density distribution of
the Feret diameters. '
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in all classes.If the frequency distribution is represented by

f(x)dx then, x

f xf(x)ax
x - 0

0Fmax f(x)gx

The standard deviation of this distribution is the root mean

square deviation and is given by

: V{ _Efi - X )ni
. - . ‘

For the three curves in Figure 2,22 these values are

f1=40 s1=8
f2=65 82!:12
x5=80 53=12

Agsume that parts belonging to these three populations are selected
at random on the assembly line.By the use of the Monte Carlo metheod
wecan simulate this random selection and compute the anticipated life
of the system.Fundamentally,there are two approaches to the problem.
If cumulative curves are plotted of the distributions (Figure 2.23)
and the vertical axis divided into n equal intervals and then & table
of random numbers is used,it would be possible to locate a random
ordinate and using the curve to find the corresponding abcissa or
the hours of life of the component.This can be repeated until
sufficient values have been taken for the three systems to get the
distribution function for the life of the system.The second approach
is not relevant to tﬁis regsearch but is to be found in reference 37,
Although the example quoted has little relevance to the problem
being dealt with here,the technique is exactly the same.

‘2.7 Deformation and crushing of particles

It was decided to include this section in the literature survey
because the many references made in the text to the possibility of
extending the application of the proposed model,need justification
in fact.A number of statistical parsmeters used here will change if
the particles in the system are deformed and some of the assumptions
made here will be invalidated.It must be stressed that there is
insufficionﬁ current information on a number of poeints to make the

further development of the model a possibility,but there is every
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possibility that this information is likely to be aveilable in the

near future,

One particular shoftcoming of the model is its inability to predict
the strength of compacts.Since this is dependant on the nature of

the contact surfaces and the extent of contact,it would be impossible
to make any predictions about strength until more was known about these
quantities,The theories of Heriz (78) fegarding the slastic deform-
ation of bodies is of academic. interest oniy,dus to the fact that

in real systems most of the deformations obtained are plastic,sven
at very low loads.Ishlinsky has developed a theory dealing with
plastic deformation (79).Deresiewicz (80),Mindlin (81) and others
have glso written & large number of papers on the subject.So far

it has been difficult to apply their results to particulate systeme
which have Btress”distribution"within“}hem.lt is hoped that this

model might,in time,overcome this problem.

& recent analysis of the plastic deformation of spheres and cylin-
ders has been done by Johnson (83).He measured the surface strains
and deduced the contact stresses using the flow rules of plastic
theory.He points ogt‘that a layer in the contact surface is left

in a state of residual tension when the surface is unloaded.The
stresses in this layer are said to be between 0.56 and 1.0 times the
yield stress.The material at the contact point,flows outwards

during the compression,even in the presence of friction.

The sclution of dbulk deformatién problems which occur in particle
systems has yet to be attempted,but there seems to be an interest
being currently shown in the problem.The application of tensor
calculus and numerical analysis could conceivably give acceptable
results in the near futpre.Expérimontal analyses of the crushing
of single particles,whiéh are likely to be of greater use than
information obtained on a macroscopic ecale,have been going on
for some time in Germany.A report by Leschonski (84) describes.-
these investigations.Schénert (85) has already published a model
which takes into account the variable intensities of stress.As
Rumpf (86) has pointed out,it is possible to calculats the output
of a controlled'grinéing process,if enough data relating to materials
under differing conditions of stress can be determined.It is these
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determinations that can be made with controlled crushing experiments
It seems therefore that if the model proposed here can in fact
predict the stress in the various parts of the system,then from the
information obtainable from the controlled crushing experiments

it would be possible to predict the behaviour of a particle at any’
point within the system. |

The variables listed by Leschonski as being important in the
experiments on controlled crushing might be recounted here as it
seens iikely that they will be just as important in compaction.
&) Kind of material.

b) The size of the particles,

" Since the strength of individual particles increases with
decreasing size due to ‘the~elimination of flaws,this is an
important variable,

¢) The shape of particles
The state of tension developed by & particle depends on its
shape in relation to the geometry of the compaction system.
d) The history of the particles ‘
¢) The stress intensity v
f) The velocity with which the stress is applied
g) The rate of shear
h) The system geometry
i) The properties of the particle surfaces.
j) The temperature
k) The surrounding medium
Thus to be useful ,any results obtained by these experiments must be
performed with these variables carefully controlled.

2.8 Conclusion )

In the preceding pages an attempt has been made to recall and corr-
elate all the work done in recent years which have any relevance

to the building of a model of a particle system,with a view to
predicting the stress distributions obtained when the system,confined
in & restricted space,is subject to an applied pressure.Since there
is a vast quantity of information available on powder compaction

it was necessary only to include here the most representative of these,

k%))
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3.7 Introduction to the theory

In the preceding section much of the work of other investigators
relevant to the building of a model,which may be used in the
evalvation of particulate systems,has been recounted.It has been
generally récognised that gtress transmission in particulate systems
takes place through those points at which the particles contact
one another.Unlike liquid systems particles have the property of
being able to support shear.Consequently any force applied to one
- surface of such an assembly is not transmitted uniformly through
the systeE.The degree'of non-uniformity depends on the restrictions
imposed on the system and other parameters connected with the part-
icles themselves.

It is relatively easy to derive,mathematically,parameters to
describe or simulate Systevnsz o} Spherct This has been undertaken here
to illustrate the principles on which the model is based,With
irregularly shaped particles,however,statistical parametms are not
easy to determine and approximations have to be used.The statistics
of particle systems has been-the -subject.of much recent researchy:...
and the papers by Rumpf and Debbas(32),Bockstiegel(13),Scarlett(35,
36,75),Todd (70) ,Fasthamn(71) and others illustrate how particle
statistics may be applied in the evaluation of particulate assemblies,

- In considering the application of force to particle systems,the
force is transmitted,initially,while the particles move and rearrange
themselves.This aspect of the process is not dealt with in the model
presented here.At any stage of the pressure application,however,it

is possible to hold the pressure constant and to let the system
develop an eguilibrium state and it is w1 this.condition that the

model has been constructed tc evaluate.

The factors affecting the stress picture within the system are
a) The particle characteristics
b) The physical properties of the material of the particles
¢) The friction characteristics of the particles and the system
d) The nature of the system
The modei developed here takes these parameters into account in
the.prediction of the stress pattern set up within the system.

“
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There are three distinct types of particles which must be dealt
with.The simplest is the spherical shape which can be handled
mathematically with relative ease,the second the irregular, but
convex particle which,although possible to handle needed special
methods of characterisation(which have been developed here) and
thirdly the completely.irregular.particle whose statistical defin-
iton has not been possible,

3.2 The general conditions of equilibrium

Any force,P,acting at any point 0' in space can be replaced by three
forces P ,P ,P » at another point 0,such that P ,P ,P are mutually
perpendlcular and ‘such that (P + P + P )2 ,and by three couples

(sz-xPz) (sz-zPy) and(xPy-ny) about the axes along which Px?P'y,Pz

act.Similarly all forces in Cartesian Bpace (See Figure 3.1) can
be replaced by similar forces and couples about the same axes at O..
Then for equilibrium the following conditions must be satisfied.

1.£P_=0 | " o f
<P =

2 ‘_Py 0

3. E‘PZ = 0 .
4. =M f_(sz-zPy) =0
5e E,My S (sz-xPz) = 0

) o~ -

6.21&1z : z_-_‘(xPy-ny) 0

Applying these conditions it is possible to calculate six

unknown quantities appearing in a force balaﬁce performed on any

body at rest and it will be explainéd in the following sections how these
conditions are used in simulating the transmission of a force through

a system of particles, '

3.3 e use gtatistics and the application of the Monte Carl
the solyt t lé
3.3.1 The sphere model
Consider'first,the.model repregenting a system of mono-size spheres
(Pigure 3.2).The probability of one particle being contacted by
another at any point on its surface,located by the angles dand 5,and
by the chord,length l,with respect to any other point on its aurface

is expreesed by
Pu 4r%xainah3/%xr2



FIGURE 3.1
Representation of a force by three componentis

and three moments at a different point in space
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The probability distribution function (cumulative) for any contact

ig,therefore given by /9 5
‘ 2xXr sinade
F(p) dp = ORI 2SDilr
‘ 2FRrTsinede
. o cos ¢ = 1
-1
= 1- cos @

If we assume six contacts per sphere and thfee of these lie in-
positions where they can transmit force and two do not (the sixth
being the point at which the force was applied );then we can procéed
to build a model to which mathematical criteria for equilibrium

can be applied.Although it is obvious that any system of mono-size
epheres will have in it particles with many more than six contacts
on average,the limitations of the mathematics used here pre-empt
any consideration of such a case,This is due to the fact that in
the case without friction the reactions at the points of contact
are normal to the surface of the sphere,an&'arejconsequently con-

current,thus réducing the equations describing equilibrium to three.

To simﬁlify the proﬁlem,the areas excluded by each successive
contact to further contacts will not be considered.Since only three
contacts have to be located by statistical means,it is proposed that
it is reasonable to assume that the random location procedures used
are highly unlikely to generate two points with identical coordi-
nates in three attempts,The location of the contacts is found by
using the probability distribution function,described earlier,and
having found their coordinates it is then possible to apply the
conditions of equilibrium to the particle and hence to determine

the forces of reaction at the three pointa of contact,

That it is too complicated to trace every reaction force(hence-
forth called transmitted force) through the rest of the system is
obvious,thus,at this point,use is made of the statistical advantages
offersd by the Monte Carlo technique.Since the three points of
contact were chosen at random,if it was decided to follow the
further transmission of any one of these forces,this decision would
also be a randém one,Provided therefore that %he third (or first
or second) point of contact were always chosen as the point from - -
which further transmission of the force was to be followed then
a statistically valid sampling technique would be used. |
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The tracing of the cutput forces so ohtained is carried out until

a system boundary -is reached,.If this process is repeated a large

number of times,then every possible path by which a force,applied

to the surface of the system,could reach the system boundary,would

have been evaluated {See Figure 3,6).At the boundary,the force is
assumed to have been absorbed and no further transmission is considered,
Now,if the total number of Monte Carlo runs is summed and normalised,

by the balancing of the input and output forces (the forces said

to have been 'absorbed' at the boundary),then the stress pattern

within the system can be evaluated.

By the application of the Monte Carlo technique the effect of choosing
only six contacts per sphere may be reduCed'due to the fact that in
making a fresh walk through the system,a different set of contacts

is used for the first sphere.Thus in the final analysis,it can be
assumed that a reasonable representation of allthe force paths

to the boundary has been obtained,and consequently,that although a
physical representation of the system geometry has not been used,

the simulation has been performed on a stochastic model of the system

instead.How this is done is described in the following pages.

It is worth noting here,that if frictional effects between the
particles themselves were considered,then it would be possible to
consider upto twelve.contacts for a sphere,(Six of which would be
able to transmit force and five unable to do so with the sixth being
the point at which the force is input).Unfortunately the variation
of the coefficient of friction under these conditions is,as yet,
inadequately understood and the resulting uncertainties caused by

the consideration of friction between particles may far outweigh

any advantage gained.In any case since the sphere model, alone,

(which had been included for illustrative purposes only) is affected,

it was decided not to pursue the mattier further.

3.3.2 - BExtension to irregular particles

When irregular,frictionless particles are considered,because the
" resultant forces (evdn though they are still normal to the particle
surface) are no longer concurrent,it is possible to use all six

equations of eqﬁilibrium.This'in turn enables the consideration of
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upto six transmitting contacts.lf we again assume this to mean a
total of >twelve contacts,then it is possible to say that we now

have a reasonably representative system.

To illustrate what is meant by transmitting and non-transmitting
contacts consider a sbhere with six contacts (Figure 3.7).If the
force is input at the contact with sphere A,then it is obvious that,
unless there is deformation,the transmission of the force is only
possible’through the contacts with spheres E,D and C.Thus these

are referred to as transmitting contacts while the contacts with
spheres F and B are referred to as non-transmitting contacts,If
however the input force came in through F ,then A and E become

the non-tranamitting contacts.

3+.35.3 The generation of the coordinates of the points of contact

How the points of contact are located on a sphere,using a random
generation procedure has already been outlined,Unfortunately it
is not possible to find the same exact mathematical definitons of
the shapes and surfaces of irregular particleé.lnste&d,howcver,,'
a method by which the location of the contacts could again be
picked with a similar basis in probability had to be devised.
Since the systems encountered in everyday life are never mono-
sized the model proposed here deals with a mixture of sizes.The
simulation of the force transmission is then performed on ﬁbés.

a stochastic representation of the real system,

In Section 2.5 the significance of Feret.diameter has been discussed.
Consider Figure 3.3 (a).The Feret diameter is seen to be the largest
dimension in the diréction of measurement.If it is assumed that a
contact may occur at any point on the surface of a particle with
equal probability,then it should be possible to randomly intersect
the Feret diameter with a plane perpendicular to it and say that
a contact occurs at a point on the surface of the particle which
. is cut by this plane.(See Figure 3.3 (d)).If now, the sectioned

view of the particle is examined it is possible to say that the
Feret diametérﬂgﬁts this plane at a point B.,It has been proved by
Scarlett(75) that the lengths of lines BA,BD,BC etc.,have the same
‘distribution function as the '‘séctioned random filaments (Figure 3.3
(b) and (c)).How this may be obtained from & distribution of random
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filaments has also been outlined in Section 2.5.Using the Monte
Carlo technique,it is now possible to find two probable values

for both OB and for one of the lengths such as BA,thus enabling

us to determinex and OA.If now it is assumed that @ is a uniformly
distributed function,it is possible find the polar coordinates of A,
which is a point of contact.By similar means the other five points

of contact may also be determined,

Now,it is necessary to find the angle that the normal at the surface
at A makes with the direction in which the force was input.Since
unlike in the case of spheres there is no rigorous mathematical

law governing its value it was decided to assume afﬁgg;gznaistri-
bution for these angles.Two angles are necessary to determine the
direction of the normal and these are called 8and ¢ .Their exact

physical significance will be defined later,

As in the case of the sphere model these generations are performed
for each particle that the simulated path of the force passes through.
The information obtained from the force balances and the positions

of each particle involved in the transmission is then used in the
determination of the stress diagram.How this is done ig described in
Section 3.6,together with the description of the computer programs

prepared to perform the calculation.

3.4 System description

Polar,Cartesian and cylindrical coordinates have all been used at
one stage or another of the calculation.Thus a brief explanation
of their use geems desirable.The model uses a cylindrical systeny
as such systems are easier to analyse due to their being possessed
of axial rotational symmetry.The use of such systems does not
however detract from the generality of the approach as—ie-demen-
B-ti&t,élﬁd .i sam 9*!--;- i L

Consider Figure 3.4.The axes ¢of the system are X'0X,Y'0Y and 0Z.
If A is a point of contact ‘
1. Its polar coordinates are OA,O(,p
2, Its Cartesian coordinates are OA sindcosf3 =~ OE,
' OA sin&sin (>='0D,
and OA cos X = 0B,
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3. Its cylindrical coordinates are 0C and 0B ovrd R
Thus in any one of three ways it is possible to locate the point
A with respect to axes 0X,0Y,0Z.

The force paths to the system boundaries are followed by using these
coordinates as follows:

As the. transmission proceeds through the systiem,the coordinates

of the points of contact are generated with respect to three
mutually gerpendicular axes which are normal and tangential to the
surface at which the force is input.These axes may or may not be
parallel to the axes of the system.Therefore to follow the transmis-
sion of the force it is constantly necessary to refer back to the
system axes and to transform coordinates obtained with respect to
axes on the individual particles into coordinates which relate to
them.This is essentially a problem involving the use of tenséra.
Consider Eigure 3.5,the reference axes of the system are 0X,07,02
and the axes of the particle are 0X1,0Y1,OZ1.The coordinates of A
with respect to OX1 etc are x1,y1,z1.In order to obtain the coordi-

nates of A with respect to OX etc. we use the following relations.
X = Agg X D qp Ty + D45 2
Vo= Ngr X% Agp ¥4 * Aaz %

2= Az Xt d32 V1 Q33 %
wheres

7\11 = cos X0X,

?121 = cos YOX,

M = o8 XOY1 etc.
In order to simplify the problem,it was decided to always keep one
axis in the system XY plane,thus there are only two rotations to
consider when transforming coordinates from one set of axes to
another.Thus to transform the particle axes into the system axes
(Figure 3.8) it is necessary to rotate 0X,0Y in the XY plane
through an anglel¢labout 0Z,and then to rotate the OX1.OZ axes
th;ough an angle Y about 0Y1.This ensures that the OYi axis always
remains in the same plane,regardless of the position of the particle.
. Now if the 0X2,0Y2,022
themselvesa by the coordinates Xy 1Y 512

axes had a point A located with respect to

2 then the coordinates of A
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with respect to 0X,0Y,0Z can be determined as follows.First-the
rotation of the OX2,022 axes about 0Y2.The coordinates of A with
respect to OX1 ,OZ,] are

. . e
X, = X, ccas"6+z2 sin’¥
- % si x
2, = -X, sin ¥ + 2, c087

An illustration of the rotation is given in Figure 3.9 (a).

Consider next the Figure 3.9 (b).The coordinates of A with respect
to 0X,0Y,02 are now given by

X =X, cosll - ¥ sin_.fﬁ

y =x, sintf -y, cos Y

(z z.l)

it

It

from which

X, cos Yeos i -1, sinly +.2, sin .Y cos i/
= f . N ~ . 3
X, cos Ysin Wy, cos/f + 2, sin ¥ sin 1

]

y

2= X 2

If the axes with respect to the particle were taken at a point O1

sin7 + z, cosy
whose coordinates with respect to 0X,0Y,02 were X,Y,Z2 then the
coordinates of A would simply be (X + x),(Y + ¥),{(Z + z).

To conclude this part of Section 3 it is proposed to give a brief
account of how 7 and (,0 can be determined.In order to locate a contact
it hasg been mentioned_ that two angles are necessary these were X and-}?:
Similarly in order to find the direction of the output forces
two angles & and?)l were used as a description of the surface at the
point of contact.It is then possible at any point to find B’and(/) by
simply taking & point on the normal at any point of contact and
calculating its coordinates with respect to a set of axes parallel
to the system axes at the point of contact.If the coordinates are |

XY 42 then,

Y- tan~ (2 4 y2 )E / 2)
and

(= tan" (5 /%)

In order to describe completely the whole of three dimensional
'-space “6 is allowed to vary between O and"2 X and ¢to véry between

+7/2 and - %&/2.The decision to choose these intervals is related
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to the use of the model on a computer.

3.5 Triction

As has been stressed in the literature survey section,there are thres
types of friction in powder compaction

1. Particle-%Wall friction

2, Particle-Particle friction

3. Wall-Punch friction
of theselgnly the first is considered to be relevant in any calcu-
lation.The others have been ignored because the evidence provided
by the many experimenters in the field indicate that these other
forms have a negligible effect on the system properties.Ainother
but less valid reason for ignoring the effects of the other two
types of'friction,is the lack of knowledge of the coefficient of
friction under these conditions.As far as this model is concerned
the effect of the wall friction can be allowed for in the process
of normalising the results from the Monte Carlo runs,and is therefore
described in the next part of this section.In passing,it may be of
interest to point out that,there is evidence -to believe that it
may be possible to determine the angle of internal friction from
the particle characteristics,and thus it would be possible to
determine the .exact values of the coefficient of friction at the

wall in a powder compact.

3.6 Computer models

In any form of mathematical model building,it is necessary to
determine those parameters which are absolutely necessary to the
solution of the problem and to eliminate those that are not,otherwise
all the advantages gained from the representation of the system by
a model would be lost in the determination of a welter of irrelavant
properties.On the other hand it is necessafy to retain and use all
the relevant parameters.In systems as complex as those encountered
in particle technology such decisions are even more difficult to
meke and even having made them,thederivation of relationships
between the measurable quantities and the parameters relating tol

_the model may prove impossible,as has been the case with the
completely irregular particles.Thére is however,a need 0 make
some reasonable assumptions and to make aPstart,atﬂthia=stage,
in order that in the reasonably near future a usable model might

emerge. The final forms of the models used are given in Appendix 3.2,
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3.,6.1 The WMonte Carlo Model

The model was developed along the lines of the theory presented
earlier.The assumption ,made for spheres,that only six contacts
actually transmit force,although upto twelve may exist was

also extended to the model ,which was however constructed for all
convex particles.The model uses statistical mathods to predict

the points of contact,and several random walks of a 'quantum!'

of forcé.is traced through the system.When the 'quantum' reaches
an arbitrary,prs-designated,boundary,it is assumed to be absorbed.
Since the process of simulating these 'walks' requires considerghble
computer time,and since at least 500 such walks are required to

to obtain even a reasonably representative picture,it was not
thought desirable to repeat the process for each and every systam
that needed investigation.Thus the Monte Carlc walks were performed
on one large system and all smaller systems’ could be evaluated
using these results,The method of labelling the tquanta' as they
travel thrbugh the system is detailed in Appendix 3.2.The program
which develops the model is shown in Appendix 3.1 together with
briaf comments and a flow diagram.The program that labels the

férce 'quanta' as they are propogated through fhe system is shown

and discussed in Appendix 3.2 alsoa

In order to keep the number of simulations low,while still obtaining
a representative result,it is of advantage to deal only with
cylindrical (axi-symmetric)systems.In such systems all the forces
can be represented by two components in the r and z directions.
(Figure 3.10 (&) and (b) and 3.11).Further all the walks may be
regarded as cccuring in the r-z plane,thus increasing the walk

" density and the represantability.
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3.6.2 Normalisation of the Force Diagram

The forces as itraced and labelled aﬁove give effectively a
picture of the distribution of the forces within the selected
system.Due ,however,to the fact that not all possible force
paths have been simulated,the force diagram so-obtained must be
normalised.The program shown in Appendix 3.2 does this also,the
~method being as follows.The only force applied to the system is
that acting upon the original particle at‘the surface.No matter
which sub-system we consider all forces leaving the boundaries
of the sub-system must be equal to that input force.For example,
consider the six force paths in Figure 3.12:if one considers the
system AEMO,the input force at 0 must be equal to the total
recorded forces at the boundaries AE and ME minus those (for
example the force 4) which have been recorded twice.Thus using the

notation of Appendix 3.2,the total force at the boundarias of system

QOAEM are
1) F(i,1,1,1) i=1,2
2) P(i,1,1,1) i=1,2
3) P(i,1,1,1) i=1,2

4) F(i,1,2,1),F(i,1,1,1),F(i,1,1,2) i=1,2

5} P(i,1,1,1) i=1,2

6) F(1,1,2,1) i=1,2
or the total z-component is

SF(2,1,1,1) + 2F(2,1,2,1) = F(2,1,1,2)
which may then be compared with the total z-component of the input
force at 0.If the simulation was an absolute representation of the
force paths,the two quantities would be egqual,but since it is not
their ratio can be used to normalise sll the other forces within

this system.This procedure is repeated for all possible sub-systems,



FIGURE 3.12
Sub-division of a large system

by grid lines
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This procedure leads to the 'force diagram',which is a pictorial
réprcsentation of the force distribution in the system.The forces
crossing the grid lines AE,EG,BI etc. and the lines ME,EI,PG etc.
are thus evaluated.The r-components of the forces crossing the
vertical lines and the z-components of the forces crossing the
horizontal grid lines are pressure forces while the r-components

- crossing the horizontal and the z-components crossing the verticél
lines are shear forces.Thus by making the squares on the grid
small enough it is possible to obtain a representation of the
distribution of pressure in the system,as well as the order of

magnitude of the shear on the various planes.

3.6.3 Total Particles on the Surface

What has been dealt with so far has been the force transmitted

in the bed due to one surface particle.ObviBusly it is not
pdasible,for reasons of economy,to repeat the simulation for each
and every particle on.the surface;fortunately it is not necessary
either.All one needs is a distance distribution of the particles

on the surface from all points at which the pressure and/or shear
is to be determined.Appendix 3.3 shows how the position of the
surface particles are computed and how the position distribution is
calculated.In order to do this an assumption is made that the
spatial distribution of particles onathe surface is uniform

and use is made of the value of voidage calculated from experimental
work.Once the distance distribution of the surface particles

is known,s reference to the force diagram shows the force. due

té.a surface particle at any desired point.Multiplying this force _
by the number of particles lying at similar distances away gives

the force diagram for the system.
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Due,however to the fact that the force diagram s0 derived takes
account only of a small portion of the surface particles,another
normalisation of the force is necessary before the pressure at
various bed depths can be calculated.This is done relatively
gasily by egquating all the z-components at any particular level
to the input force and multiplying all the forces on the force

diagram by the appropriate factor.

3.6.4 The Effect of Friction and Non-symmetrical Systems

The friction between particles has been ignored in the construc-
tion of the model and cannot therefore be accounted for in the
normalisation process.The wall friction,however,can be taken into
account when the second normalisation is carried out.In fact if
the absurd physical condition that the coefficient of friction
exceeds 1,is to'be avoided it is necessary éo assume & value for
the frictional coeffic;ent along the die wall.

The problem of asymmetry is more complex and has not been dealt
with here.A further more analytical approach to the particle
gystem must be made before such systemswill lend themselves to

statisticsl evaluations of the type used here,
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SECTION 4.

—

APPARATUS AND EXPERIMENTAL  METHOD .

4.1 Particle sizing
4.2 The die assembly
4.3 The press

4.4 The experimental method
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4.1 Particle sizing

It was necessary to use a powder in the experiments,that would
conform with the assumptions made in the theory.Accordingly
an iron powder,supplied by B.S.A Metal Powders was used,This
powder had the charactezé;&igﬁggcaging irregular in shape,while
also being more or less,eenwex.Since the model was not very
sophisticated,it was also decided to use a narrow size range.
The size range chosen for the experiments described here was the
200-300 micron range.
A distribution of Feret diameters was obtained using the standard
microscope counting methods.In order to obtain filament size
distributions,however,a more sophisticated,quicker method was
required as it has been found by the Author that to be represen-
tative of a sample,at least 2000 filaments must be counted.An
assembly of particles was allowed to settle in a resin,which was
then allowed to set.The hardened mass was then sectioned at random,
and polished on successive grades of emery paper and then on
a cloth impregnated with diamond pasie.The polished surface was
then photographed and the photographs pladﬁd between two persbex
sheets,one of which had equi-spaced lines drawn acrosslits length.
This allowed the measurement of the intercepts made by the lines

with the outlines of the particles on the photographs.

These measurements were made with a pair of callipers,which were
attached to the rider on a c¢oil of wvariable resistance.The move-
ment of the callipers changed the resistance of the c¢cil which
aeffected in turn the reading on & digital voltmeter.The signal
from the volt meter was fed into a data logger,which recorded it
on paper tape.The paper tape was then fed in as information into
a computer program which calculated not only the filament size

‘distribution but also the sectioned filament size distribution.

4.2 The die assembly

The experiments were performed,using a die similar to that

devised by Duwez and Zwell (6).This is illustrated in Figure 4.2
The die assembly was mounted on an Apex PMPPT7 floating die table
but the sbrings were replaced with nuts in order to obtain uni-

directional pressing,i.e pressing from the top only,with the
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THE PRESS
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bottom punch held stationary,relative to the die.A 1/8 " dia.

piston was inseried into the side of the die,a distance of 1"

from the top of the die.(One end of the piston was filed to be flush

with the walls of the die and the other rested on the head of

strain gauge load cell supplied by Southern Instruments {type LC/1%)

The load cell forms the measuring element in a four arm,bridge
compensated circuit and has a repeatability of 0.1%.Thus any

pressure exerted on the piston is transmitted to the load cell.

Since the whole assembly was supported on four nuts it was possible

to adjust the position of the bottom punch in relation to the position
of the piston.Thus if the same die fill is used,assuming that the cond-
itions of the experiments remain the same,by varying the position of the
botton punch in relation to the position of the piﬁton,it is possible

to obtain the pressure at all points on the side wall of the die.Thus it
was possible to obtain for the different sets of experiments,graphs of
the variation of side wall pressure at all points on the die wall with

~applied pressure.

4.3 The press

An Apex 175/134/D,35 ton power operated press was used in the exper-
iments.The pressure exerted was indicated on a gauge calibrated to

read between 1 and 5 tons.For higher pressures,which were not used

in this work,a gauge calibrated between 1 and 35 tons was available,

The speed of approach of the compacting ram could be contrdled

between 0 and 30 ins.per second.The whole die assembly was placed
between the platens of the press and a dial gauge was used to calculate
volume changes during compaction.(Figure 4.}).The dial gauge was set

to zero when the top and bottom punches were just in contact.The expansion
of the die was tested with a solid plug of iron,machined to fit exactly

into the die.

4.4 Experimental Method

Tuigr series of runs were made with the iron powder.The first series
was with a 25 g. powder fill and no lubrication.The second with a
25 gram fill lubricated with O. Sp stearic acid. The por031ty at the.

surface was thus determined. = - +.. il



A known weight of powder was poured into the die cavity through
a funnel and the powder was then compacted to 5 tons gauge
pressure,in steps of 1 ton.The piston, which was in contact with
the load cell,was initially adjusted to be 0.1" from the bottom
punch.This process was repeated with the piston being moved up
in steps of 0.1" until the position of the piston was 0.1"

from the final position of the °~ "top punch.To determine repro-

ducibility of these experiments,they were repeated a number of

times and in all cases the load cell readings were within 5%

of one another for the same conditions.In this way it was possible

to obtain curves of the side-wall pressure vs. .the compact height.

It was hoped that these tests would provide a check on the

predictions made with the model.
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5.1 Calibfation of the Press and Load Cell

The 0-5 ton pressure gauge mounted on the press was calibrated
using a standard load ring. The calibration curve is shown in
Figure 5 1. The load cell was calibrated by dead loading and
the calibration curve is shown in Figure 5.2 .

5.2 The Fergt's Diameter Distribution Function

The curves representing the normalised distribution function

are seen in Figure 5.3 as cumulative undersize and cumulative
overgize curves.From the cumulative oversize curve cam be derived
the function g (y) dy (P :38) which represents the distribution

of the probability of obtaining a section of .a Feret diameter _
of length y, which is less than the length of the Feret diameter
itself. The theory applicable has been discussed in Section 2.5.

5.3 The Random Filament Distribution Function

The curve representxng the random filament distribution function
are shown in Pigure 5.4. The comments made with respect to the
Feret distribution function also apply to these functions. The
curves representing the distribution of a sectioned filament

h (v) dy (P 38) can be cbtained from these curves.

5.4 The Pressing Experiments | o

The results of compacting 25 g. of iron powder in a 1"diameter
die of cylindrical -shape, are shown in Figures 5.5 and 5.6. The .
side wall pressure is plotted against the height of the compaczt.
In Figure 5.5 the curves represent the behavior of the powder
when 0.5% steardc acid has been added 'as lubricant, while the
curves in 5.6 show the behaviocur of untreated iron powder. The
voidage of the compacts as a function of applied load and compact
height is shown in Table 5.1. - '



TABLE 5.1
Voidage of the compact as a function of the applied

pressure and compact height.

Voidage | Applied Load (tons) Height (ins.)
0.49 2 0.1
0.48 . 4 a1
0.43 ’ 6.5 | 0.1
0.51 | 2 0.2
0.455 6.5 0.2
0.53 2 0.4
0.50 ' ‘ 4 0.4
0.472 6.5 | 0.4

These voidages are used in the determination of the number of

surface particles transmitting the load.

5.5 The Regults of the Computer Model

5.5.7 The HMonte Carlo Simulation

The print out from the computer as it traces path and magnitudé
of a force as it is transmitted through the system are shown in
Table 5.2.The order of the guantities as they appear in the
print out are as follows.
Column Variable Explanation
1 E Indicates the end of a walk.
| During a walk E=1,at the end
E=2.
2 r The r-coordinate of the point
of contact,through which the

force is transmitted.
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Column Variable Explanation
3 G If G=2 the Z boundary was
crossed,if G=1 the force

reaches the surface.

4 - ITs The number of the walk
5 Z The z~coordinate
6 NUMBER The number of particles

encountered upto that point
in that walk
7 F The r-component of the

transmitted force

z The z-component of the

transmitted force

55,2 The Force Diagrams

The force diagram shown in Figure 5.7 was obtained by the analysis

of 500 random walks such as the one shown in Table 5.2.The diagram
shows the quantity of force reaching grid lines seperated by 0.02
ing. in the r-direction and by 0.1 ins. in the z-direction.The forces
shown are those due to a single particle at O,Wﬁich transmits a load
of 10000 1b. normal to'the surface.As may be seen the force decays
rapidly as the distance of the grid lines become farther and farther

away from O.

5.5.% Conclusions from the Force Diagram

Force diggrams similar to the one in Figure 5.7 are obtained for.

different die geometries and different compaction pressures.

D
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These diagrams may then be used in predicting,

a) The side wall pressure as a function of die depth.The curves
obtained from the model are compared with the curves shown in
Figure 5.6,in Figure 5.10 for 2,4 and 6.5 tons applied load,
and compacted in a 0.4 x 1.0 in. Dia. die.

b) The pressure transmitted to various depths in the system,and
determine the effect of the height:diameter ratic on these
curves.This is shown in Figure 5.8

c) The loss of force by friction at the wall,as a percentage
of the applied force.The relevant curves are shown in Figure
5.9.

A complete discussion of all these results and their implications

is found in Section 6.
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FIGURE 5.10
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SECTION 6

DISCUSSION OF RESULTS AND COMPARISON WITH THEORY
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The experimental work,which involved the measuring of side wall
pressures,was carried’out to provide a quantitative check on

the predictions of the model.The side wall pressures obtained
are a function of the type of powder,as well as of the geometry
of the die and the method of pressing,thus it was not possible
to deduce’vélues from other research and use it to compare with
the predictions of this model.Since the model propogsed here was
the first of its kind to be developed a great deal of effort

has gone into developing the mechanics of the model and its
programming for a computerj;it was therefore necessary to make
certain simplifications‘in its construction with the result that
its predictions were not expected to extend to such complex
features of compaction as the density variations or the ejection
pressures.lIt was therefore decided to curtail the experimental
program in favour of solving the mathematical difficulties
pertaining to force simulation and model building.The results
produced by the modZiEtherefore somewhat less than pgrfec@,but
encouraging,when the difficulties of simulating such complex

entities as particle systems are considered.

The experimental side wall pressures vs. compact height curves
are shown in Figures 5.5 and 5.6 for the powder which was .
charactgrised by the size distributions shown ip'Eigures.5.3:
and 5.4.These side yall pressures were obtained using the
apparatus described in Section 4.At each stage of the préssing
operation,it was possible to monitor the volume of the compact

and thus its average porosity could be determined.This value was

used in activating the calculation of the force‘diagraﬁ.
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This value was an average and its use was probably unjustified,

but the error introduced as a result was expected to be acceptable.
What was less justifiable was the assumption of an even
distribu%ion of pressure over the punch surface,which was made

for the sake of éimplicity alone.The experimental results are
re-plott?d in Pigure 5.10,where they are compared with the
predictions of the model for 2,4 and 6.5 tonslaﬁplied load.At the
lower pressures (2 tons) the model predicts.higher values than those
obtained experimentdlly,while at higher pressures the prg-‘
dictions are too low.At 4 tons,applied load,there is faiily

good agreement_betwéen prediction and experiment.The type of -
force diagram used in the calculation of the side wall pressure

is shown in Figure 5.7.This shows the distribution of trans-
‘mitted force in the séys:tem when a force of 10000.1b, is applied

to a particle at Q.The diagram was constructed on the basis

of 500 random walks and seems to indicate that this number was
inadeguate to give a represenﬁative diagramtSipce)bowever)even

500 walks took up 20 hours of computer timé,it was considered,
unjustifiable to increase this number until further improvements
.were made to the .model.In spite.of these comments,the force
diagram does demonstrate that the force is not transmitted to
any great extent in the lateral direction,a fact which becomes

only toco clear when tfying to make non:symmetrical compacts. It

also dindicates that the force is transmitted in a cone from O.

The predictions of higher side wall pressures at low values of

applied pressure

}and vice versa, can be explained to some extent
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by the invalidity of the assumptions.At lower values of applied
load,the assumption of 12 contacts (6 of which were expected

to transmit force) is probably untrue and the number is probably:
less.It has further been dembﬁstrated)that}at low pressures ‘
interparticle friction has a greater effect than at high values,i
the mode} ignores both these‘éffects since no usable values were
available at the time it was constructed.At higher pressures

there not only are more than twelve contacts,but,more signi-
ficantly,deformation also.Until such timg as deformation can

also be represented_statistically the model cannot be used at
higher pressures.It appears therefore that at about 4 tons,applied

load,the deformation is not serious and that the assumption of

8ix transmitting contacts is reasonably true.

The curves of Figure 5.8 represent the % of applied pressure
transmitted to various depths in the die for different height:
diameter ratiocs.The decay indicated by these results is far ig
excess of observed values.This.phenomenon is partly bound up ;
with the number of significant digits that the computer can
store,and as shown in Table 5.2 an applied force of 1050

decreases to 10‘70 in about 350 transmissicns.Since unfortunately
Qply about Q.5 " #s penetrated during the travel through 350
particles,there is a false indication that all the applied.

force is loét after this distance,whereaé)the truth is that
height:diameter ratios of about 15 are required-before the applied
force is totally lost.The model does however predict the expected,

trend and shows that the increase of the height:diameter ratio ;

lowers the transmitted pressure.It needs a change in the application
1
1
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of the Monte Carlo method to solve this problem but this
should not prove too difficult.

e
The final prediction concerns the friction loss at the wall and
again the model overestimates rather badly.The results are shown
in Figure 5.9.The reason for this is partly the same reasons given
above and partly the assumption of a constant coefficient of friction
along the die wall.It is now known that it is the product of }L%ib
i.e the ceoefficient of friction x ratio of axial to radial stress,
that remains constant and a variation in the coefficient of friction
between .6 and .1 has been demonstrated by some workers in the field.
It is.however.difficult t§ take this into consideration until some
method of finding Byis proposed,preferably as a function of garticle

characteristics. _ C

Thus the discussion of the:resulis obtained demonstrate that the
model,although producing'encouraging predictions,has to be

further developed before it may be used as .a useful research togl.

The fact that thé-model cannot be yet used in the ﬁrediction of

density distributions in the die, stem from the assumption that the
transmitted force stops on reaching a boundary.Although this makes
handling of the results easierjit is possible to take into conside=~: L. u
ration the force that is not absorbed at the wall,and which coptinues
being transmitted.It is this type of force that causes deﬁgity vari--:
ations and more attention must be paid to them in the further

development of the model.Suggestions concerning the improvement

of the model are given in detail in the next section.
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1.1 Conclusions

From what has been said in the foregoing sections,it is

apparent that powder systems are impossible to define analytically
and difficult to define statistically.The attempt made here has
been the first of its kind,and had as a consequence,to define
parametgrs,determine mathematical_tgphniques to handle the '
statistical methods proposed,build a credible model 'and make

the assumptions necessary to get i% off the ground.It is therefore
not particularly surprising that the results obtained to date

can only be described ;3 eﬁcouraging.?he work done here is a
necessary prerequiaite.£o any further improvement of the-model

and goes a long way'towards providing tﬁe guidelines for future .

developments.

The model predicts,directly or indirectly,the following known

features of die compaction.

a) Increased diameters lessen die wall friction

b) For the same height:diameter ratio larger diameters increase
the the transmission of force,lessen wall friction and hence
decrease the variations in density.

¢) Increasing the height:diameter ratios lessens the force transmi-
seion,increaseswall friction and causes the deﬁsity
Yariations to increase.

The model is unable to make.quantitative predictions pf density

e

variations or of ejection pressures.

Thus it may be concluded that,subject to improvement along the

lines suggested hereéfter y the model promiseé to be a possible




104

means of evaluating the compaction process without arduous exper-
imentation.It seems likely however that it will prove an expensive
process.

7.2 Sugggsfions for Further Work and Discussion of the Future

Performance of ?he-Model -
In the immediately preceding sec#ions the failings and the inadeq--
uacies of the model have been.discussed as well as its-achievements
and advantages.;n or&er to improve the model, the assﬁmptions that

have proved questionable must be examined ,and,where possible,

improved.

The first majér assumption was that there are twelve contacts per
papticle,and‘that gix of these transmit forcé.The reasoning behind
this assumption,was that dense packings of spheres exhibit twelve
contacts,six of which,lying on the ‘opposite’side to the contact
to which a load was gpﬁlied,coul@ transmit force.A force balgnce
on guch a sphere could thus solve,by analyt;cal.peans,the values
of the output forces.Since the system examined here was restricted
to convex particles of a not very diverse size distribution,it was
decided to extend the assumption to these particles as well,As
also indioatgd by the degree of compaction obtained at the lower
applied loads (SQ% vs, & theoretical maximum of.64% for close
packed spheres) it is apparent that twelve contacts do not occur.
Inter-particle friction,which was neglected,may also play a part
at these pressures.Thus stepg shoﬁld be taken to determine what
effect presure has on packing of spheres and other partiéle shapes.

r

Further information should be sought on inter-particle friction,
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and the information incorporated into the model.The general

type of model used here does not seem feasible,and calculations
will have to be done for each type of load seperately.As this
would mean an unacceptable increase in computing time,methods

must be investigated that quicken the random walk.With compupers
becoming faster it is likely that this problem is capable of,being

‘overcome.

The problem of mere than six transmitiing contacts can be solved
by the use of relaxation methods and the like,but it is unlikely
to occur in the range of interest and even if it did,the problem
of deformation would become predomonant.As regards deformation,
information currently becpming available on single particle
crushing and stfesses at the pointg 6f cbntact can be used in
determining what effect deformation has on the statistical
parameters definigg the system,This information could again be
built into the model.It is,however,difficult to say just how

far these proposals will go toﬁards eliminating the divergence
of the predicted and experimental results,but there is a good
chance that the side wall pressures,at least,could bevimproved
in this way. |

In order to determine the variations in density,again, more than

one set of random walks seem likely to be required.These would
take account of force ‘quanta’being :‘reflected”off the wall
from particles iq their vicinity.Further there needs to be

. superpositioning of, force diagramsbefore building up the final

stress distribution pattern for the die.It is possible to
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from walks

obtain these diagramsf{performed for the surface particles,the

only difference being in the normalisation procedure.

The method of determining the number of surface particles could
also be improved.The present method depends on an average size,
an assumption that can no longer be made if size distributions
- durner, e e of an avedage, voldoage oold be
with a greater variety of sizes were being used(lnvestigation .
~eplaced By the actual 8ortaw vordage deredmined adter compachon
of the angle of internal friction,the coefficient of friction
at the die wall under different conditions and their use with the
model would also increase the accuracy of its predictions.The
inaccuracy with regard to the transmitted pressure which results
mainly from the limits imposed on the storage of numbers by the
computer Eould-be overcome by changing the application of the
. Monte Carlo method.Some means of bringiné decaying numbers upto
the significance limits of the computer,without destroying the
validity of the normalisation process has to be discovered.This
together with the knowledge of both the coefficients of internal

and wall friction,should solve the :emqining inadequacies of the

model.

To conclude this thesis,therefore,it is claimed that the. :
statistical characterisation of a system of particles restrained ;
in a rigid die has been achieved,and the practicability of ;
applying statistical teéhniques such as the Monte Carlo methed

to such ;ystems has been demonstrated.Where fhe'model falls short
of expectations has been made clear and suggestions which should
improve it have beénima&e.Although the successful development of

such a model might eliminate the need for a great deal of tedious
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experimentation,the cost of operating it seems likely to be high

unless faster computers and new techniques are able to quicken

=y

the simulation procedure appreciably,
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Appendix 2.1 (Reference 30)
If it is assumed that the pressure applied to the punch surface is

uniformly distributed over its surface,then the average pressure,p ,
is given by

| p, =3/ (°R /4) eeeemmmmee- 1
where Dis the diameter of the punch and p is the force applied to
punch, |
Since particle systems do not behave as liquids,the fraction of this
pressure reaching the wall is ?;3 and the friction at the wall is: = '
ﬁim‘p where TAris the coefficient of friction at the wall.If we

congider two cross sections a distance dh apart,

Tah DR = =dp (P / 4) -=me-mmm2
where T Fy‘!x; ------ PR
'." -ff_ B(dh-4o’3-fb)/4 """"""" 4

P
integrating between h=0 and h=H (top and bottom,respectively) and

using h=0 to evaluate the constant,

= /2 -4 fM h/D
p=(4p/0%) o 4P B/ v 5
= @ /DPR) e APMBD
For plastic flow to occur the following condition must be satisfied

k = J (0] -6 )22 +T?  wmeeeee -7

where Cra and c‘r are axial and radial stresses respectively.

The minimum resistance to displacement is given by

k“[*"id'e """""" 8

where rbvi is the coefficient of internal friction.

G, or 0, =0 _+&)/2) 1,/—((0-3- 0 )/22+ T? wmen9

if L - ()2 - -10 .
(replace outer shear stress by mean shear stress x coefficient of

friction at the outer edge),then ﬁsing eqtns., 8 and 10 and 9 in 7
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=0,

&

1 + rl l’ - (1 4+ '")2 2
i,e. r = a

This givea\g=.72 if /M=.15 and M., =.25
and . P=.66 if pM=0  and rLi =e25

If 2™ is the angle formed by'the directiom of principal stress wifh
the radial direction then,

tan 2¢ =2 /(O - O ) =mvme- "*?

r

‘at the wall [ =0y M snd O = ﬁa'a,thus

tan 2 = 2@/!4. /(1-{3) R p— 13

The assumption that the pressure is uniformly distributed is,however,
incorrect.It is lowest at the cenire of the 'plinch and increases to
& maximum at the outer edgé.It is alad-legplat the botiom outer edge,

" following a relation of the form

]

-ch

Paail © % _— 4

- where h is the depth.

It is assumed that the pressure under the punch is proportiomal to
* the radial distance from the centre,Then,

dp8

— ' % [ 15
. = C, TOrp =C,T + ¢, =w-c=u-=
dr 2 8 2 3

where c, and ¢, are constants.This is the equation of a parabola.

3

A Bimilar equation describes the pressure on the bottom punch.
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punch = = (e, r° + Cg V/1a
bottom = b= (74T H eg)/pe
from eqtn.15'
R%c, + ¢z = c1/" ........... 17
and from eqtn.16
-c4R2 +0g =C, e -ci /é --------- 18
The sum of the punch force,bottom presure and total friction must
be zero.
R 2 4 2 -
foleyr® +ey)er®dr =R (6 R7/2 + ¢,R%) = —---19
P |
and hence

P~ 2R (c R4/4 + ¢cR /2) - FARD K c, e "Chdh =0

If we now assume that wall frictlon is the sage regardless of whether

the pressure is unlform over the punch faca or not,then,

—_ d,. h/D H .
J; P M dh = £ ¢, e ~ch & e
0 DE;‘«,’/z; d

- A DL g/ -
ST (e HEPED Ly Lol (B

If the cross section at which the pressure is independant of the radius

is known ¢, can be calculated,since

1

3/ 2mn/s). oL EFR/D)E B o,

whefe H' is the depth of such a cross section

H = 7/12 H
Thus
— — - = b
P 72;{(-c4r4/4 +csr2/2) -p ( e 4 7 H/D 1) = 0 —mem-- 23
now from eqtns.21 and 22 cy and c‘,are founéd hence
_CH/L'-:\'| .
-c4r +c5 =c, e I~ can be evaluated.Hence 04

and ¢_ can be determined.

5
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Appendix 3.1

The Computer HModel

The program generating the points of contact and tracing the

fﬁrce transmission through the system is attached as series

of print outs.Print out 1 shows the master program,which is also
shown in Flow Diagram 1.Frint out 2 shows the program that
generatcg the points of contact,bascd on the theory described in
the text.Print out 3 shows the program tﬁét calculates the |
coordinates of each point of contact that the force passes through
with reference to tﬁe system axes.The theory used is that given
in sccfion 3.44Print out 4 shows the program that sets up the
.force balance on each particle as set out in section 3.2.Finally
print out 5 shows the program that solves the six equationg to
output.the transmitted force at the point of contact through which
the propogation is followed.The method ﬁsed'is the standard Gauss

elimination with partial pivotting.



Appendix 3.2

Labelling of the Forces

See Figure 3.12.For the purpose of using the resulis of random
walks performe@Aon a large system to analyse smaller systems it is nece-
ssary to first subdivide the system as shown in the figure.lf the
runs were performed on the system 0CTQ,an aznalysis of all the
éystems fepresented by a combination'of the sevaral smaller squares
(or rectangles) such as QAEM,0AGP,or OBIM is possible provided

the forces crossing the boundaries of such systems could be laballed.
A systenm by which each force is labelled with four indices was
devised for this purpose.Thus a force is always remembered as
7(1,X,Z,J) where the indices are evaluated as follows.

a) The index I |

Any force ,as mentioned in the text,can be represented by two
components in the r- and z- directions.Thus.I=1 represents the
r-component and I=2 represgnts the z-component.

b) The index X

As a force progresses on its way to the boundary,it crosses tﬁe
grid lines represented by lines such as AR,BB, CT etc.The index

X indicates which v;rtical boundary is crossed at the moment the
force is labelled.Within the grid 1ines themseives the force ig

not labelled.Thus an r-component of a force crossing AE will he
remembered as F(1,1,2,J)

c) The index Z

This signifies either which horizontal grid line has been crossed
by the force or,if it has crossed a vertical line,its horizontal
position.If it crosses AR between A and E,Z=1,if it crosses between
E and G,Z=3 and so on.The even numbers are used similarly for the

horizontal grid lines,starting with Z=2 for MF through to Z=6 for .
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QT.
d). The index-J
 In order to calculate the force due to a surface particle at any
point in the system,one nceds to consider the system bounded by
the particle and the point.In order to obtain the information from
the results of the random walks performed on a larger system,therefore
it is necessary to devise some way in which we can meet our
postulate that force transmission stops at the boundary of a system.
Consider system OCTQ for vhich the walks were performed.Then
consider system OAEM for which the analysis is required.If a force
crosses ME then as far as the subsystem QAEM is concerned,that force
has left its boundaries.Since however the walks were performed on
the larger system OCTQ this force may reenter the system and be
recorded crossing AE.If however we were considering AOPG we would wish
to record this force,since ME is not one of its boundaries.Thus the
index J was introduced to indicate which vertical or horizontal line
waé the furthest crossed before it was recorded c¢rossing a horizon-
tal or vertical line respectively.0dd numbers from 3 onwards are ‘
used to describe the vertical lines AR(J=3),BS(J=5) and C?(J=7) and
even numbers from 2 onwards for the horizontal lines MF(J=2),PH(J=4)
and QT(J=6).F0rces leaving any system at the surface are labelled
with J=20.The following examples should make the process clear.
a) A force crosses AE having not crossed any grid lines previously
It is remembered as F(I,1,1,1) 1=1,2
b) 4 force crosses EI,having previously crossed AE
It is remembered as F(I1,2,2,1) 1=1,é
c) A force crosses EI having previously crossed AE and BI.It is
remembered as F(I,2,2,5),F(1,2,2,1) I=1,2

i.8. it wil be considered in system OCFM but not in system OBIM. .
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d) A force crosses AR having crossed ME.It is remembered as
P{1,1,1,2) and F(I,1,1,1) I=1,2
i.e. it will be considergd in QAGP but not in QAEM.
e) A force 6&053&3 AE having previously crossed it.
It is noet remembered.
f) Aforce having previously crossed PH and BS-leaves the systenm
along 0C.It is remembercd as F(X,3,5,20) I=1,2
Note: In all cases the forces are also recorded at the previous
boundaries crossed.
Print out 6 shows the program written to label forces as described
here.Using these labels the program proceeds to ﬁormalise the

force diagrams.
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Appendix 3.3

The Particles on the Suface

Before normalisation can take place it is necessary to know
how many paticles lie on the suxrface so that the applied force

per particle may be calculatqd.Consider Figure 3.14,If the voidage
_after the application of a load is known,and one makes the
assumption that the voidage is uniform over the surface,then using
an average particle size it is possible to calculate the number of
particles on the surface.The distance between neigbouring particles
will be  -z-=- 3 where r is the radius of the average particle and
e the voidage.Having calculated the number on the surface it is
also necessary for the construction of the force diagram,to

know the distance distribution of these particles from any point,
mithin the system,at which the force is required.It is found that
the force transmission in a lateral directior is very small,of the
order of about ten diameters.Thus,there is unlikely to be transverse
particle movement in a die.In ordexr to determine this,however,not
only the distance distribut{pn of particles surrounding a point
is required,but also,vhexre the particles are non uniformly
distributed,the numbers lying to one side which are in excess of

the numbers lying to the other.

Print out 7 shows the program designed to calculate the necessary
information.Print out 8 shows the results produced by this program

for the system shown in figure 3.14.



COMPUTER MODEL OF A SYSTEM OF PARTICLES

' FLOW DIAGRAM 1

IT=1
[
" NUM = 1
! input force
XCAMMA=0 | XPSI = 0 | £ = 10°0 P
- REV=0 N7’- 5 7o N7 |7 Of confacts
el \ (Al | Ao of
GENARATOR JIFETA | XR2  on—5ints of ¢
. ' contact J =1
length - Osition of
o’z;cogtcrt FY(J) = XL{J)]= THETA(J) = éocfzrfacet az‘f)omf
cho. ] of contac
’ 3 store values
J I C¥ =X¥| Cv=Xy} :
CALL coordinagtes of
#. . .
COORDINATES sixth point of
; contact
J=J+1 |
| REV: 1 XX=_|YY= [zz_ ]
k o1l): | @10)-
o R
< setting up the
o force balance
= output
X‘ force x-1
RR = r-coordinate
B1E)=F +7A
o1(6): 3-8 -REVSO B .
X8 -C¥ | jf oufpuz’ | X1 =
X&& CcY¥ |force is ne affve : X2 =
REV =1 lcalculate he coordinates of twolJ
X ==X the point where such a force com onents

could have a positive value

[

(_ write ITNUMRR,ZZ XX

{ NUM=NUM +1

are system

>
IT=17+1

|




PRINT QUT 1

HASTER G3I7R
£ FORCF DISYRIAUTION ImM BED DUE TO ONE pAmrTICLE
CTHE rASE WITHQUT FRICTION
UIMENSTON GAMMALE) ,PSTI(6),XR1(A) )XR2(H)
COMMON THETACAY JALPHALAY yBETACA) rFYCE) 1 XX 22,YY X0 XL(S),F,
1KGJMMA.XDSI;XMU1(6):XHUZ(6);THETA1(6);FY1(6)-P1(11),RZ(11)vDAT
CALL TTTME(CIY)
PVES 14159265388Y79323%8646626433832795
Linlyi=10 ;
LIMIT2=4 E
REFAD(T,40 MM
40 FARMAT(I1)Y
TE(Ma, FY 2y GO TO 207
206 CoNTINUE -
READ (Y ,39)K1,K2,K3,K4,K5,K6, ITERATIONS
59 FORMAT(IH ,&010.14)
A0 TH 204
207 CNANTIHUE
o 210 ITFRATIONS=1/10
208 CONTINUFE
NUMBERZY
XKGAMMA=D
ApSi=sd,
Fa (11, %*50)
X2 CUNNTINUE , : L
RFV=(,
Nt sH
J=a1 ‘
CatlL GENERATOR(J K1 1K2,K3,PY,NY1,XR1,XR2)
on 2 J=1,N9
FY1{J)=2UTRY (1,9, Ka)we, #PY
KL (J)SSORT(CXRA(JI**2Y+(XR2(JIuw2))
FTHETAT(J)SUTRI(Z2,1.,K3)epYy
Ip¢d LT, 1Y GO YO 20
300 COAMMARXGAMMA
CrPS1=XxpS§y
29 CaLL COUHNINATESC(NUMBER/PYJREV,I,XCrxXDsXE)
IF(REV. FQ.1.,) GO 10 73
20 CONTINUE
THETACY)=THETAS (J)
FY(J)YSFYt ()
2 CnyTiNyE
XKTHEYA=O,
xyyzﬂ'
6 CALL FORCHMA(XTHETA,XFY,N1,NUMBER)
t=6
FomX
RRSSART((¥Xww2) e (Yy*n2))
1FtX)73,7.,74
T4 FYV (Il )sFY(JdY+PyY
THETAY (J)Y=pY=THETA1(J)
ACAMMAZCGAMMA
XpSi=CpsS]
Rrv=1,
J=zl
FaX
Go TO 300
r3 Hey=Q,
A1aFsSIN(YGAMMAY *COS(XPST)
509 X2z2F+COS(XGAMMA)
FPELZZ.6Y.0,) 60 TO 72
RpeRR+ 1




re

35

202
56
401

200
212

210

213

2119

1000
1001

xi

hizd .

Gn Tu 202

IF(ZZ.6T, ¢LIMITZ2/90.3Y GO TGO 7

Lr{RR,GT, (LIMITY/90.)) GO TO 8

£z1,
WRITE(Z2138)E )RR G, ITERATIONS 22, NUMBER X1, X2
ForMAT(1H ,F3,0,E158,7,F3,0,13,E45,7,13,2E15,7)
6n 70 2014

G=?,

Gn TO 202

Gzt .,

£=2, ’
WeIYE(2,38)E,RR,G, JTERATIONS, 22, NUMBER,» X1, X2
FORMAT(IH L F3,00E18,.7/F3,0013,E15.7+13,2E95.7)
Go T 2400

HUMBER=MUMBER+1

G0 TO 32

CONTIMUE

TF(ITERATIONS, LT, 10)G0D TO 210

50 TO 273

CANTINYE

CONTINUE

k=3,
WRITE(2.37)YE,RR,G,ITERATIONS 22, NUMBER,X1,X2
FORMAT(IN ,F3,0,E15.7,F3,0,13,E15,.7,13,2E815,7)
60 YO 1901

IFCITERATIONS,EQ,S500)60 TO 213

NUMARER=EO ,
ARITE(2:1000)E,RR, G/ ITERATIONS ,Z2Z,NUMBER , X1 X2
FORMAT¢1H ,F3,0,E45,7,F3,0,13,E45,7,13%,2E145.7)
Srop

END
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26

&0
30

28

5%
33

32
34

10
20
9
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PRINT QUT 2

SHBROUTINE GEMERATORC(J,K1,K2,K3,Py,NY,XR1,XR2)
DIMENSTON AH(LY,XR1(6),XR2(4)

CAMMON THETA(AY ,ALPHACK) ,BETACAY s FYCR) 1 XX, 22Z,YY e X, XL(AY,F,
AGAMMAL,XPST , XHUT (6) s KMUZ(6E), THETA1(6).FY1<5),R1(11).R2(11).DAT
Ir(nnr ERN,1,) GO TO 60

F&D(1.?H)(R1(L);L 1.11)

FORMAT(F&,5)

READ(Y,2A8)Y (R2C¢NY N=T,11)

FORMAT(F&,5)

DaT=1,

Un 29 J=1, M1

KMzUTRYC1,0,K1)

AnaTR4(2,0,K2)

LelXMe1, +4

Hedin*1(0, +4

Fe¢L,61,1) GO to 34

XR1C4IsRI (1Y (XM/ 1)

G TO 33

ARV (Y= ((RY(LY=RI(L=1)I¥ (XM= (L=1)/10, JIY*RILL"T)
IF¢N,GT.1)Y GO TO Z2

AR2CII=R2(1Y (N 1)

GnT034

Ar2CIY=((R2(N)=R2(N*T1)) % (XN=C(N=T)/10,)))+R2(N=1)

IF(XRI(IY EQ,0.XG60 TU 30
ALPHA(YYSATANC(XRZ2CJY/XRT1(U))
IF(ALPHA(I) 6T, (PY/4,))Y GO TO 30
CONTINUE

TAN(1)=2,%pY*(UTR1 (41 0.K3))

L=1

IF(ARS(SINCAN(L)Y)), GT,,0872) GO TO &
TE(COS(AMILY)YS, 6,6

Ad(Ly=pPpYs 1

LD TN 7

AN(LY=D,+ 1

un T 7

FrdABS(COSCANCLY))Y GT,,0872Y GO To 7
IF(STNCANCIIIIR,Y,O
ANLLYS(S  wpY /2 )+ 4

on TO 7

AM{LY=(pY/2 )+ 1

HETAL{JY=AM(1)

IfF{J,EQ.1Y GO TO 10

LF{J,GE.3960 TO 10 o )
PeCARS(BETACIIBETACI=1)) LT, (PY/2,)) GO TO 14 :
an T 10

CONTINUE

CONTIMUE

RETURN

EuD
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AR
W= 1D g

VA e

RN
[

300
23
Sa4

PRINT QUT 3

xiii

SURHBUTINE COORDIMNATES (NUMBERVPYREV, T, XCiXD,XE)

COMMON THETALAY L ALOHACAY ,BFYA(AY+FY (A},

KXo ZZ,YY, X XLC&) 1 E s

TYGAMMA, ARST XM (A A XMU2 (A, THETAT(AY ,FYT1(6)

TFINUAAER G 1Y GO TO 4
VY EX LIRS THCALPRACEIYSSINCBETA(CLD) )
¥X= T3 wSTA(ALPHACIY))=LOSC(BETACID)
FEZmALCIwWEOSCALPHAC]T Y)Y
YEAMMARD .
¥psI=g,
an YN P _
ANT=A{PHACT)
AMPZSRETALT)
FOTH=%,
GO oTO0 %
ASN1=THETAT (DD
ANMZ2zEVY (I
FQTu=Z,
P8 NCANTY#COS CANZ)Y =X ()
NS INCART S TRIANZYRXL(L)
PECOSCAMTYRY L)
CAsLO8LGAMMAD
Ce=CiStAPST)

SSINCXGaMMA)
C2=3TNI{XPRI)
L=peN2w0l=0%82+8e84%072
Del+S 2ol Qe erasSi*82
Fz=pwS1+R&(1
TRLAAGCY . GT, ¢, /010, **53)) GO TO SO
n=0,
TF(ABS(D)Y _GT,. 3. /7C¢10,»%533) GO TO 51
D=0,
TECABSCE) BT . /(Y9 ,»%533) G0 TO 52
r=iy,
TEVEOTHNLORQ Y. GO YO 5
TF(SQRT{C**2+D**?).EQ.O.) GC YO 53
TFE(E, L0102 eK) Y)Y 60 T 7
VrAnHa ATﬁﬁ((QQHT-r**?+D**?))IE)
TFLEIRN, 32,32
TE(EY30,39.,31
KOARMMAS=XGAMMA
TFJARS{STIN(XGAMMADY) (6T, 0872) GO TO 13
¥XGAMMAS,
TFeEd21.13,43
YGAMMAZPY
wGOTD 13
FF¢CCY15.16.16
XGAMMATR~=(pPY/i2. )
e 2 I T TS
YGEANMMARDY 2,
rF(n.E@.n.) Gn T0 54
TFCARS((CY AL/ 0 . %%6))) GO TO 10
WPSITAT N(D!(A grr)})
TFIDT300, 23,24
PSS i=¥DST4+DY
FRCARS(SINCXPSIY. GT. _O0872) GO TO &
ypsi=
GnoTN g4
YOS (=S [GN(PYL2. , D)
aDoT0 8
TFIRFV.EOQ.1.)Y GO TQ ©
YE=L
XC=[



4

ui=D

rENNE N

YY=Y Ll

VVzVYV+D

TE(REV,EQ,0,) 60 YO B
¥XENY -V

YY=¥Vv=XD

TE=72=4%

FONTIRUE
TF{NUMARER _EN .1 GO T0 6
G T 2 ’

RETURN

END

xiv



CANGAMBA KPS NMUA CAY  XMHZ A, THETAT(G) L FYT1(6) !

L BV AN

PRINT OUT A

SURRDUTIME EDRUMACKYHET AL XFY,NY, NUMBER) | E
D\‘?,l”':'h]slﬂu A(ﬁ-’)
C(}ME".':’” 1.HETA(6,'ALPHA<6)-BETA(é)!FY(S)uXXIZanVJX!xL(é)IFJ '

DS T17=1 . W9 ;
ACT, T4 =COSETHETACT)) ;
AC2,VAYSSIN(THETACTAI ) #LOSCFY (1)) '
A, TA)aSTNCTHETACTIIISSINCEV(T1))

ACh, TAT=S(COS(THETYACITII I ASEMNCALPHA(TI)) #COS(BETA(CIN))
~COSCALPNACEAY Y wSINCTHETALT I IRCOSCFY (L)) )X {11} ;
ACS.TAIYS(STNOTHEYACTIY ) ) »SENCFYCIi))I*COSCALPHACTY)) ‘ T
“COS THETACTIII O *SINCALPRACTID) I «SINC(BETACIN) MY wX (1) i
ACA, TAY=XL (T4 WS THCTHETACTI) IS INCALPHACTII) ) «SINCBETACII)=FY(19))
A(Y,7)=-F

At2,7y=9, ' ;
A¢3,7)=0,
AL, 7y=s0, T o o T - T
A(‘;,?)‘-‘.‘U' ' :
A&, Py, ' ' ‘ ' . ) T
rate EQSOLVCA,X,N1T)

RETURRN ’ .
END



B

200

)

PRINT QUT 5

SUBROUTINE EQSOLVIA,X,N1)
DIMENSTON XM(A,7,4L),8(8,7)
CONY THUF '

Mz=2

Ji=nd+

|22N1—1

LY=mi=2

nO 2] =%, 2

NOB9 Tah, Ny

DO AV =N, J4

TELLLGT U0 a0 T0
TECH.GT.2)Y G0 (0 5

ne 2 T4=1.80
TEOABSCACTIT LAY _£Q4.0,) GO TO 2
MA =19 '

TEEMY FOUL,1Y 6O TO 8§

G T %

FONTINUE .

LTS L IR

G=A{Y1,¥1)

Al1.X1)Y=4(M7,%1)

AlrAT .Y = e

NE LT i) =AY, 1 IwACT, J)=ACE, 1) %ACT,d))

RO 7D RY

TE(RT.RT.3Y GO TO 26

a0 TN 14

TE(L.GT,.2Y 50 To 6

IE(S .67 .3y 0 1O 7

NGOG 12=2.N4 '
IFOSRSOXMOI2,2,1)) .EQ,.0) GO T0 8
M2z 2 .

TELHZ2 EQ,.2) 60 TO 7

Gn0ooTY 9

CONTINUE

3 onD 0 x2=2,01

-l
~N

q:Y;'d(R-K2'1)
yM{Z,K?,?):KH(M2aK2r1)
XM (M2, K2, ) SR

XM(!-J—2)=(2Mf2-211)*XM(!:J;1)'XM(I:2p1)*XM(2.J:1))

6y YO By

TFCNT.GY LY G0 YD 27

60 70 %A
TFCOLLGT . 3y G0 TH 914

CTE(S L GTLEY GO TO 15

P 12 13=3,.11 :
TFOARSCUMATZ,3,2)).EQ,.0) GO TO 12
MZ=217

TFHI EQ,%) G0 TO 15

G0 tD 43 '

CONTTINIE

RO Th X3I=3,41

R=YI(3,3.2)
thﬁ-K1-2)=KM(M3JK3!2)
YM(ME, 3, 2)1=n

TECARSIAMIZ,7.2))Y .67, ¢10.%+10))G0 T 501

g“(:rJ!5)=<XM(30312)*XM(IrJ:?)'XM(Ir3f2)*XM(3oJ12))*(10.*‘20)

60 vn Ay

YH(I»J-3)=(XHf3.3.2)*XM(!:Jr?J-XM(I-3:2)*XM(3rJ-2))

GO T RY

TFIHT.GT,8) G0 TO 28
GO T g
TECIL.GY . &G0 Ty 01
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TFCH. 67,5 6D T 17

N OTE YAR4, MY

TRLAASINMOTIL 4,32 £Q. .0 GG TO 18

A =T

TREMHA, S0, LY G0 TO 17

a0 TH TR
tR POMNTINYE
1% N0 20 KA=4,.01

RaEXMlL, Kb, 3

Y (LKA, 3 2XM(MG; K&, 3)
20 ¥N(HMG, XA, =R
T AMOT ) m (EME L 3%, 8= XMl 4,32 %5M(4,0,3))
59 AONTIMNUE '
O M= a2
%1 COMTINIUE .

TFCAQSCAMONT 31,4 LT, ¢ 10,%»40)) GO TO 16

nt 59 125,84 ' ' '

nGOAD d=ah,d

¥MOT,J,.6)=XMET 0,87 010, *#%2()
Y rONMTIRUE
A CTF(RMOLZ L2, L1, 800,060 TO 21
YRlaMONT o1 11 e (L2, 02, L) =XHMOL2 T LY wXMIRY , L2010/
CHMINT VAT LY wRMOE2, L2 L Y KM L2, N, LI AXMONY, L2000
nOTH )7 M
21 N=XMOL2,J1 e 13/ XMOLZNT LYY '
27 RETURN

END

-



PRINT OUT 6 xviii

TORMIN EedR 0200 V76 y 27y X1 X2 WUMITRyLINTTIPLINTITI20
Fefz L)
LI=iTi=13:
IS D B
NMTT=3
VRITE(R 20T
QU OCQRMYTALLH L OHSUMTATTION N5 FORCES BASED DN THEIR POSITTON WITH RES
ITECT OIN A ARTE WITH LO2X  Uh SOLIN. SERPEFRAVION/ZLIH 23 THRE-ENTRENT F
ZORCLES2EY 929V AND 7 NOM KE-ENTRANT FURCFS v UX 2 3HITSy Ua»6 HNUNEER)
TEARTNG YECHLIS NF 2anbavn wapyg
b PEACHIS w1 YE Ry Dy TISy 72 »NUNPER 9 X 50 2
LS8 T E 2000 e 3eF2.00 e Y ,3412,2F2,20)
TE Mag 1" F VLS FAMTEED START USIMNG THE MEXT MEs TAFRE
TEAMIMTERYILD T L1002 41¢31
LO0n MITaRiTe] -

fao1TY A
1571 roMY IhIIE
L=

TF ORAHDGT MELKS SAVE SFEN COMPLETED 60 TC 1y
TECITIY(Y)LENLIIR0 T0 1w

TE A RANDUM WALK HES FMDFL GO 10 8
TE{S,LT.2.0G6M 10 &

HZ%,

SAS EOPCI LEST SYSTEM A7 THE I3P.1IF SO CALL FPLOT WITH Bz2
OIF(Z711501516
15 =2,
no 16 2

NAS ALK EMCER AT 1HE CADTUES] 7 ROUNTARY
TF SO CATL FPLGT WITH RzP .
LA TF((772%100.)/ G5 LT FLOAT(_TMTT2))160 10 5
Rz2.
R N

FAS OMALE O ESCEE AY ThE X POUNLCEFYSIFE SO GO TO 2
S TFU(?R*I0C.)/2..GE.LTRITIIG0 10 7 7
ALK STIHL WITHIM™ THE CORNFTINFS OF THE SYSIEM CALL FPLOYT WITH Eci

fz¢,
Fzl.
CALL FPLDI
S0 T7T A
HHEN WALK FNDS &7 X BCUNTARY (o1 PHNC to2
. ? i, :
MHFM gSL4 HES ERPER AT THE 7 IJUNMPARYZEZ2 AND =2
2 Fz-D.

CaLL ¥FPLOT
TFEITS.1T.5)150 10 17
GO 10 1
17 THFATSINUIEILEN . LIGO 10 A '
PN VS TER EOR MHTICH THE WAl k WES PERFORMED IS LARGER THEM THE SYSTEM
AP HTCA CHP FORCES ARE SUMMIDGREAD 1dE REMAINING CATA CiERES FROM THE MALN
PROGSSM ERTIL THF VLK IS COMPLETE 1EEN RETURN AND REALC THE FIRST [ATA CARD
TRAM O THE NFEYT RAMCOM ALV
1335 PEACIS ) 3 EeRL v 52 ITS +ZZ v MIVIER X 19X 2
3 RO I F 2 0r a3 4F2eT s ThoF b 3eT1242F2.0)
TF(NMIMOER)IGTB ID09 1026
1700 NMIT=M]TY )
20 I 1525
1SCR COMTINUE
TELITIVF).EN.2)50 1IN 4
TFAITIY(E) JEAL3IBG 10 1y
SOOTY 1832
1ty =3,
ralL FPLGY
S1np
Fhn



ad
y

r

r

xix

SHPROCDTIME FRLO]
TIHENSTON SS9 133 A2 0045 (501 302)sSuM{241T91i0e2)
COMEOR e R e ANy TTS s 77 00 T o X2 o NUMBER L INEV i LIMNIT2086
5820, :
Oy -3 L iIU1BG 2603
FRALYTEDR T{NCF
FORCFz-He R, *5, .
YUMEBFR 07 7 SUPRCTYTSINYS CACH SPACED L25C APARTON THE SIMHMATION 6RID
ACLINTT2e g
PHRMBRN 0F X SUPDRDTIYTISTOMNS EAMCH SPACFD JC#0 APART ON THE SUMMATION wRID
Mz I*"IVT1/& . :
PAMDON [ ALYS COMNPEETE
TEOELL T35 10 1
PRAGIAM Y ITLLING THE PoSTITOY 2ISTPIRUTION DTSTRIRUTION DF SURFACE PARTICL
CAHLL SMULT N «MeS oKS) ' ‘

#5510 0w
I OTE(NJ®NED GT.1Y560 1O 3

TE(TIS.57.1)60 T0 13

n02 KTile2

RO 2 KYXTieLTHMTT1

TO 2 ¥72T1 M

PO 2 LTie23

2 SS (K sKYXyKZZ o L)ZC,
SFTITME ¥e7 COORPINATES T0 2730 VALUES AT THTZ STELZRT OF EA&CH RAMLUOM WALK
13 ¥xy=} | . -

KZ7=t _ T

TEST FNOR FNARCLS ILEAVING SYSTES &7 THE TOP :
3 OTF(Z7.6GT.0.)00 10 4

Y CONRCIMATE AT POINT OF £¥I7

VXTITIY((RR*I0Y .1 /240 ¢] .
Y,? CUMPONENTS OFf THE FORCE RLTNG ACULCED TO OTHERS HAVING LEFTY 21 THE SAME
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Nomenclature

Constants and coefficients
‘Constants and coefficients
Particle diameters,die diameters
Small particle diameters

Feret's diameter

Martin's diameter

Feret's diameter

Dep}h,height of & compact

Yield stress in shear

Length

Length of contact chords
Pressure,prdbability
Pressure,perimeter

Radius

Radius

¥ean yield stress

Volume

Axis in Cartesian systems
Radii,filament lengths,diameters,coordinate in Cartesian systenms
Axis in Cartesian.systems
Radii,filament lengths,diameters,coordinate in Cartesian systems
Axis in Cartesian systems

Filament lengths,ccoordinate in Cartesian systems

Greek symbols

Constant

+ Angle made by leading edge of a metallic junction in the Bowden
and Tabor friction theory

Angle made by the chord of contact with the positive direction

of the Z-axis

Axial fto radial stress retio

The angle made by the projection on the particle's XY plane of the
chord of contact;with the X-axis .

Angle made by the normal to the surface at the point of contact

with the positive direction of the Z-axis of the particle
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Nomenclature (continued)

Angle mzde by the projection of the normal to the suface

at the point of contaci,on the particle's XY plane,with the
with the positive direction of the particle's X-axis

The angle made by the normal to the surface at za point of contact
with the positive direction of the system's Z-zaxis

The angle made by the projection of the normal at the point of
contact,on the system XY plane,with the positive directien of
the system {-axis '
Porosity,voidage

Cosines of angles in tensor analysis

Segregation coefficient

Static coefficient of friction

Coefficient of friction

Internal coefficient of friction

Density

Summation sign

Integration sign
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