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Abstract 

This paper presents a method to achieve a low order system model of 

the urea-based SCR catalyst coated filter (SCR-in-DPF or SCRF or 

SDPF), while preserving a high degree of fidelity. Proper orthogonal 

decomposition (POD), also known as principal component analysis 

(PCA), or Karhunen-Loéve decomposition (KLD), is a statistical 

method which achieves model order reduction by extracting the 

dominant characteristic modes of the system and devises a low-

dimensional approximation on that basis. The motivation for using 

the POD approach is that the low-order model directly derives from 

the high-fidelity model (or experimental data) thereby retains the 

physics of the system. POD, with Galerkin projection, is applied to 

the 1D+1D SCR-in-DPF model using ammonia surface coverage and 

wall temperature as the dominant system states to achieve model 

order reduction. The performance of the low-order POD model (with 

only a few basis modes) shows good agreement with the high fidelity 

model in steady and transient states analyses. This shows the promise 

of the application of POD in exhaust after-treatment system (EATS) 

modelling to achieve high fidelity low order models. In addition 

system control design is easier for the reduced order model using a 

modern approach. We demonstrate the performance of a model-based 

controller applied to the low-order POD model to minimize ammonia 

slip for a transient test cycle. 

Introduction 

Diesel engines offer superior performance in fuel economy compared 

to gasoline engines [1], but the simultaneous control of soot / 

particulates (PM) and nitrogen oxides (NOx) is challenging. In 

modern diesel engines, exhaust after-treatment systems (EATS) are 

required to meet the emission standards for PM and NOx. A typical 

diesel EATS comprise diesel oxidation catalyst (DOC), diesel 

particulate filter (DPF), urea-based selective catalytic reduction 

(SCR) and ammonia oxidation (AMOX) units. Integration of the DPF 

and the urea-SCR catalyst in a single block (SCR-in-DPF or SCRF or 

SDPF) is an emerging technology to meet more stringent future 

emission standards [2][3]. This is expected to save cost (as total 

package weight and volume is reduced), and offer improved cold 

start performance (as thermal mass is lower). 

Modelling of the SCR-in-DPF system is complicated. The main 

challenge is how to best capture the complexity of the physical and 

chemical phenomena—e.g., the competition of soot oxidation and 

SCR reaction for available NO2, or the interaction of washcoat 

loading on deNOx performance, PM filtration efficiency and system 

pressure drop—in a simplified but adequate representation [4]. 

Therefore research is ongoing on the development of an SCR-in-DPF 

model which achieves the right balance between adequacy and 

complexity, and which can form the basis of a control algorithm that 

can be implemented within an engine control unit (ECU). 

Proper orthogonal decomposition (POD) can be used for model order 

reduction in EATS modelling. The POD method is a multi-variate 

statistical method that aims at obtaining a compact representation of 

data. In the POD method, large scale system data is decomposed into 

its characteristic modes (or eigenvectors). A Galerkin projection of 

the large scale data on the subspace spanned by the largest (or 

dominant) eigenvectors can be used to derive a lower dimensional 

surrogate of the original large scale system.  

In the POD method, system data obtained from numerical simulation 

or experiments is decomposed into a linear combination of basis 

functions (POD modes or eigenvectors) and associated coefficients. 

The POD modes are obtained from a singular value decomposition of 

the system data. The full order model is then approximated by the 

largest POD modes with Galerkin projection. The motivation for 

using the POD approach is that the low-order model directly derives 

from the high-fidelity model (or experimental data) thereby retains 

the physics of the system. 

POD has been applied to engine research to study turbulence and 

cyclic variation of flow and combustion properties in internal 

combustion engines [5][6]. The method is used extensively in model 

reduction in fluid dynamics problems [7].The Galerkin technique has 

been applied in EATS modelling in the context of mean weighted 

residuals method of solution of differential equations [8][9]. In [8] 

and [9], continuous piecewise trial functions are used to approximate 

the time-dependent PDEs. The POD-Galerkin technique extends this 

method with the POD modes used as the trial functions for model 

approximation. Since the POD modes are obtained from system data, 

this approach leads to a better approximation of the underlying 

model. The authors are unaware of previous application of the POD 

method to EATS model order reduction. 

In this paper POD is applied to the development of a low order 

1D+1D SCR-in-DPF model. We demonstrate the application of the 

POD method for SCR-in-DPF model order reduction. We apply POD 

to our 1D+1D SCR-in-DPF model using ammonia surface coverage 

and wall temperature as system states. The “full order” SCR-in-DPF 

model contains equations for continuity, momentum and energy 

conservation. Soot accumulation dynamics is not included in the 

model at this stage, and the full order model is to be validated. 

However the reduced order POD model with only a few POD modes 
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performed well in approximating the full order model in the 

simulated steady state, transient state and control system applications. 

This demonstrates the conceptual validity of the approach. 

At this stage, soot dynamics is not considered in our model. As such 

the conclusions we present here are tentative. Overall system 

dynamics will change with soot accumulation and it will be 

interesting to see how the POD approach performs in that context. 

Our ongoing work will address this. This paper is prepared to 

introduce the POD approach in EATS modelling following initial 

results which look promising.  

The rest for the paper is organised as follows. An outline of the 

1D+1D SCR-in-DPF model is first presented. Thereafter the POD 

method is introduced. Some background on the mathematical 

formulation of the POD method is presented. This is followed by its 

application to SCR-in-DPF modelling. The performance of the 

reduced order (POD) model is then presented for steady state, 

transient state and control applications, followed by some concluding 

remarks. 

1D+1D SCR-in-DPF Model 

Model Formulation 

The catalysed DPF model is adapted for SCR in DPF modelling [10]. 

The model comprises continuity, momentum and energy conservation 

equations for the representative inlet and outlet channels in the axial 

direction and the transverse flow through the filter wall (Figure 1). 

Ammonia surface coverage on the filter wall is considered, but soot 

deposition and oxidation dynamics is not included in this work. The 

assumptions taken for the 1D+1D catalysed DPF model development 

can be found in ref [11]. 

 

Figure 1. Schematic of a filter channel 

An outline of the 1D+1D SCR-in-DPF model [12]–[14] is presented 

with additional comments on the particular considerations taken in 

this work. As per Figure 1, z is the axial dimension along the catalyst 

length, and x is the dimension perpendicular to the wall surface. 

The continuity and momentum balance of the channel gas is given by 

equations 1 and 2
*
. 

                                                                 

*
 Equation terms are defined in the Definitions / Abbreviations at the 

end of document. 

𝜕

𝜕𝑧
(𝜌𝑖𝑣𝑖𝑑𝑖

2) = (−1)𝑖4𝑑𝜌𝑤𝑣𝑤 1 

𝜕𝑝𝑖

𝜕𝑧
+

𝜕

𝜕𝑧
(𝜌𝑖𝑣𝑖

2) =
−𝛾1𝜇𝑣𝑖

𝑑𝑖
2  2 

The total pressure drop is given in Eq. 3.  

𝑝1 − 𝑝2 = ∆𝑝channel + ∆𝑝wall 3 

∆𝑝wall =
𝜇𝑣𝑤

𝑘𝑠
𝑤𝑠 4 

The channel pressure drop is covered in Eq. 2, and the wall pressure 

drop is covered by Darcy’s law (Eq. 4). Channel entrance and exit 

pressure losses and the Forchheimer term associated with the wall 

pressure drop are ignored. 

Conservation of energy is given by Eq. 5 (inlet channel) and Eq. 6 

(outlet channel) and Eq. 7 (wall layer). The source terms in wall 

energy balance are defined in Eqs. 8-10. 

𝐶𝑝,𝑔𝜌1𝑣1|𝑧

𝜕𝑇1

𝜕𝑧
= ℎ1

4

𝑑
(𝑇𝑠 − 𝑇1) 5 

𝐶𝑝,𝑔𝜌2𝑣2|𝑧

𝜕𝑇1

𝜕𝑧
= (ℎ2 + 𝐶𝑝,𝑔𝜌𝑤𝑣𝑤)

4

𝑑
(𝑇𝑠 − 𝑇2) 6 

𝜌𝑠𝐶𝑝,𝑠

𝜕𝑇𝑠

𝜕𝑡
= 𝜆𝑠,𝑧

𝜕2𝑇𝑠

𝜕𝑥2 + 𝐻𝑐𝑜𝑛𝑣 + 𝐻𝑤𝑎𝑙𝑙 + 𝐻𝑟𝑒𝑎𝑐𝑡 7 

𝐻𝑐𝑜𝑛𝑣 = ℎ1𝑆𝐹(𝑇1 − 𝑇𝑠) + ℎ2𝑆𝐹(𝑇2 − 𝑇𝑠) 8 

𝐻𝑤𝑎𝑙𝑙 = 𝐶𝑝,𝑔𝜌𝑤𝑣𝑤𝑆𝐹(𝑇1 − 𝑇𝑠) 9 

𝐻𝑟𝑒𝑎𝑐𝑡 = 𝑆𝐹 ∑ (∫ 𝑓𝑤𝑅𝑘d𝑤
𝑤𝑤

−𝑤𝑝

) ∙ ∆𝐻𝑘

𝑘

 10 

The specie conservation in the wall layer is given by equation 11. 

𝑣𝑤

𝜕𝑦𝑗

𝜕𝑥
− 𝐷𝑗

𝜕

𝜕𝑥
(𝑓𝑥

𝜕𝑦𝑗

𝜕𝑥
) =

𝑓𝑥

𝑐𝑚
∑ 𝑠𝑘𝑗𝑅𝑗

𝑗

 11 

The boundary conditions are Eq. 12 at the inlet channel-wall 

interface, and Eq. 13 at the outlet channel-wall interface. 

𝑣𝑤𝑦1𝑠,𝑗 − 𝐷𝑗𝑓−𝑤

𝜕𝑦𝑗

𝜕𝑥
|
1𝑠

= 𝑣𝑤𝑦1,𝑗 − 𝑘1𝑚,𝑗𝑓−𝑤(𝑦1𝑠,𝑗 − 𝑦1,𝑗) 12 

−𝐷𝑗
𝜕𝑦𝑗

𝜕𝑥
|

2𝑠
= 𝑘2𝑚,𝑗(𝑦2𝑠,𝑗 − 𝑦2,𝑗)  13 

where 

𝑓𝑥 =
𝑏(𝑥)

𝑑
 14 
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𝑏(𝑥) = {
𝑑 + 2𝑤   if   𝑥 < 0
  𝑑             if   𝑥 ≥ 0

 15 

The specie conservation in the inlet and outlet channels are given by 

Eqs 16 and 17, respectively. 

𝜕

𝜕𝑧
(𝑣1𝑦1,𝑗) = −

4

𝑑𝑓𝑤
2

𝑣𝑤𝑦1,𝑗 +
4

𝑑𝑓𝑤
𝑘1𝑚.𝑗(𝑦1𝑠,𝑗 − 𝑦1,𝑗) 16 

𝜕

𝜕𝑧
(𝑣2𝑦2,𝑗) =

4

𝑑𝑓𝑤
2

𝑣𝑤𝑦2,𝑗 +
4

𝑑𝑓𝑤
𝑘2𝑚.𝑗(𝑦2𝑠,𝑗 − 𝑦2,𝑗) 17 

The boundary conditions associated with the channel species balance 

equations are Eqs. 18 and 19  

𝑦1(𝑧 = 0) =  𝑦1−in  18 

𝑦2(𝑧 = 0) =  𝑦2𝑠(𝑧 = 0)  19 

The rate of reaction term in the specie wall equation (Eq. 11) is given 

by the Eiley-Rideal rate law [15]: 

𝑅𝑗 = 𝑘𝑗 ∏ 𝐶𝑔𝑗

𝛼𝑗

𝑗

(𝜃Ω𝑘) 20 

where the reaction rate constant 𝑘𝑗  is of the Arrhenius form 

𝐴𝑗𝑒−𝐸𝑎,𝑗 𝑅𝑇⁄ . The kinetic parameters (𝐴𝑗 and 𝐸𝑎,𝑗) are obtained from 

ref [16] for this work. These parameters will be calibrated following 

future validation of our model. The rate of reaction is defined in the 

units mole of component reacted per volume of reactor per time. 

The SCR reaction scheme implemented in this system is presented in 

Table 1.  

Table 1. SCR reactions scheme implemented in the model [17] 

S/N Chemical Reaction 
Reaction Rate 

Expression 
Description 

1 𝑆 + 𝑁𝐻3 → (𝑁𝐻3)𝑆  𝑅1 = 𝑘1𝐶𝑁𝐻3
(1 − 𝜃)  NH3 adsorption 

2 (𝑁𝐻3)𝑆 → 𝑆 + 𝑁𝐻3  𝑅2 = 𝑘2𝜃  NH3 desorption 

3 
2(𝑁𝐻3)𝑆 + 𝑁𝑂 +
𝑁𝑂2 → 2𝑁2 +
3𝐻2𝑂 + 2𝑆  

𝑅3 = 𝑘3𝜃𝐶𝑁𝑂𝐶𝑁𝑂2
  Fast SCR 

4 
4(𝑁𝐻3)𝑆 + 4𝑁𝑂 +
𝑂2 → 4𝑁2 +
6𝐻2𝑂 + 4𝑆  

𝑅4 = 𝑘4𝜃𝐶𝑁𝑂  Standard SCR 

5 
4(𝑁𝐻3)𝑆 +
3𝑁𝑂2 → 3.5𝑁2 +
6𝐻2𝑂 + 4𝑆  

𝑅5 = 𝑘5𝜃𝐶𝑁𝑂2
  Slow SCR 

6 
2(𝑁𝐻3)𝑆 +
1.5𝑂2 → 𝑁2 +
3𝐻2𝑂 + 2𝑆  

𝑅6 = 𝑘6𝜃𝐶𝑂2
  NH3 oxidation 

7 
2(𝑁𝐻3)𝑆 +
2𝑁𝑂2 → 𝑁2 +
𝑁2𝑂 + 3𝐻2𝑂 + 2𝑆  

𝑅7 = 𝑘7𝜃𝐶𝑁𝑂2
  

Formation of 

N2O  

8 
𝑁𝑂 + 0.5𝑂2 ↔
𝑁𝑂2  

𝑅8 = 𝑘8 [(𝐶𝑁𝑂√𝐶𝑂2
) −

𝐶𝑁𝑂2

𝐾𝑐
]  

NO-NO2 redox 
equilibrium 

Two active sites (S1 & S2) with different activation energy levels are 

considered available on the catalyst surface for NH3 storage. The 

dynamics of ammonia coverage on each catalyst site is given by 

equation 21. 

Ω𝑘

𝑑𝜃𝑘

𝑑𝑡
= ∑ 𝑠𝑘𝑗𝑟𝑗(𝑇𝑠, 𝐶𝑠, 𝜃𝑘)

𝑛𝑟

𝑗=1

 21 

Model Solution 

The model solution approach is presented in Figure 2. The solution 

domain is discretised in the axial and transverse direction. A method 

of lines approach is applied in each dimension to convert the partial 

differential equations to ordinary differential equations. The gas 

velocity field is solved in the approach of Premchand et al [11]. 

Finite difference is applied for the solution of the channel species 

concentration and energy balances. A time-efficient algorithm which 

rigorously evaluates the reaction and diffusion contributions 

throughout the wall sub-layer is applied to solve the wall transport 

equation. A fourth order Runge-Kutta method is applied to solve the 

first-order surface coverage and wall temperature equations in time. 

MATLAB is used as the solution environment. 

1. Evaluate exhaust gas 

properties at inlet conditions

2. Solve the gas velocity field

(continuity and momentum equations)

3. Solve the specie concentration balance in 

the inlet channel, wall and outlet channel.

At t=0, the surface is assumed empty of NH3

5. Update the surface coverage for 

next time step based on the wall 

specie concentrations in step (3)

6. Update the wall temperature 

for next time step based on wall 

reactions in step (3)

4. Solve the inlet and outlet channel 

temperature distribution.

At t=0, the wall temperature is 

assumed to be at an initial value

Is time = Finish?

Stop

Start

Yes

No

 

Figure 2. Flow diagram of the SCR-in-DPF model solution algorithm 

Proper Orthogonal Decomposition 

Proper orthogonal decomposition (POD), also known as principal 

component analysis (PCA), or Karhunen-Loéve decomposition 

(KLD), is a statistical method which achieves model order reduction 

(MOR) by extracting the dominant modes of the system and using 

those modes to devise a lower dimensional approximation. The main 

idea of the POD method is to decompose system data obtained in the 

course of experiment or numerical simulation into linear combination 
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of basis functions (POD modes) and associated coefficients. Model 

order reduction is then achieved by Galerkin projection of the full 

order model on the subspace spanned by the lower-dimensioned POD 

modes
†
. 

In this section a brief outline of the mathematical formulation of the 

POD method is presented with comments on the computation of the 

POD modes and the POD-Galerkin projection. Thereafter the POD 

method is applied to the 1D+1D SCR-in-DPF model. 

Mathematical Formulation 

The presentation here is limited to provide sufficient background for 

the discussion that follows. The interested reader is referred to 

[18][19][20] for further details. The mathematical formulation below 

follows the presentation in reference [19].  

Let 𝑔(𝑥, 𝑡) be a function over some domain of interest 𝒬. At time 𝑡𝑘, 

the system displays a snapshot 𝑔𝑘(𝑥) = 𝑔(𝑥, 𝑡𝑘). The POD aims at 

obtaining the most characteristic structure 𝜙(𝑥) of an ensemble of 

snapshots of the field 𝑔(𝑥, 𝑡). This is equivalent to finding the 

orthonormal basis function 𝜙(𝑥) that maximises the ensemble 

average of the inner products between 𝑔𝑘(𝑥) and 𝜙(𝑥): 

max
𝜙𝑖

〈|𝑔𝑘 , 𝜙|
2

〉 , s. t.  ‖𝜙‖2 = 1 22 

where 〈𝑓, ℎ〉 = ∫ 𝑓(𝑥)ℎ(𝑥) 𝑑𝒬
𝒬

 denotes the inner product in 𝒬; 〈⋅〉 

denotes the averaging operation; ‖⋅‖ = 〈⋅,⋅〉
1

2 denotes the norm; and 
|⋅| denotes the modulus. 

The constrained optimisation of Equation 22 leads to the following 

integral eigenvalue problem [19]. 

∫ 〈𝑔𝑘(𝑥), 𝑔𝑘(𝑥′)〉𝜙(𝑥′) 𝑑𝑥′ = 𝜆𝜙(𝑥)
𝒬

 23 

where 〈𝑔𝑘(𝑥), 𝑔𝑘(𝑥′)〉 is the average auto-correlation function. 

The POD modes of the function 𝑔(𝑥, 𝑡) given by 𝜙(𝑥) are the 

orthogonal eigenvectors of the integral equation 23. The POD modes 

may then be used as basis for the decomposition of 𝑔(𝑥, 𝑡): 

𝑔(𝑥, 𝑡) = ∑ 𝑎𝑖(𝑡)𝜙𝑖(𝑥)

𝑘

𝑖=1

 24 

where the coefficients are uncorrelated, i.e. 〈𝑎𝑖(𝑡), 𝑎𝑗(𝑡)〉 = 𝛿𝑖𝑗𝜆𝑖, 

and are determined by 𝑎𝑖(𝑡) = 〈𝑔(𝑥, 𝑡), 𝜙𝑖(𝑥)〉. 

                                                                 

†
 The POD method is closely related to the theory of Hilbert spaces 

[26]. If the data or functions to be approximated lie in the Hilbert 

space, then expansion in terms of orthonormal basis functions are 

possible according to the following theorem: If (𝒳(. , . ) ) is a 

separable Hilbert space with orthonormal basis {𝜙𝑖}𝑖∈𝕀, any element 

𝑓 ∈ 𝒳 can be written as 𝑓 = ∑ (𝑓, 𝜙𝑖)𝜙𝑖𝑖∈𝕀  [22].  

The eigenvalues (𝜆𝑗) of equation 23 determine the magnitude of the 

POD modes. The POD mode associated with the largest eigenvalue is 

the optimal vector to characterise the ensemble of snapshots. The 

POD mode associated with the second largest eigenvalue is the 

optimal vector to characterise the ensemble of snapshot restricted to 

the space orthogonal to the first POD mode, and so forth [20]. 

The POD approach aims to use few POD modes associated with the 

M-largest eigenvalues to approximate the field 𝑔(𝑥, 𝑡) as per Eq. 25. 

�̂�(𝑥, 𝑡) ≈ ∑ 𝑎𝑖(𝑡)𝜙𝑖(𝑥)

𝑀

𝑖=1

  where 𝑀 ≪ 𝑘 25 

Computation of the POD 

Consider a system of 𝑛 observations of a 𝑚 dimensional vector, 

𝑋 ∈ ℝ𝑚×𝑛. The POD modes can be computed by performing the 

singular value decomposition (SVD) of the matrix 𝑋. 

𝑋 = 𝑈Σ𝑉𝑇 26 

where U is the 𝑚 × 𝑚 orthogonal left-matrix, V is an orthogonal 

𝑛 × 𝑛 right-matrix, and Σ is a diagonal matrix of the singular values 

of 𝑋, 𝜎𝑖. The elements of Σ𝑖𝑖 are arranged in decreasing order, i.e. 

𝜎1 ≥ 𝜎2 ≥ 𝜎3 ⋯ ≥ 𝜎𝑟 > 0. 

If 𝑟 =  min(𝑚, 𝑛) is the order of the full system, for any 𝑝 < 𝑟, the 

matrix Σ𝑝 obtained by setting 𝜎𝑝+1 = 𝜎𝑝+2 = 𝜎𝑝+3 ⋯ = 𝜎𝑟 = 0 in Σ 

can be used to calculate a low-order and optimal rank approximation 

of 𝑋. 

𝑋𝑝 = 𝑈Σ𝑝𝑉𝑇 27 

The optimality of the approximation is due to the fact that the rank 

matrix Σ𝑝 minimises the distance between 𝑋 and 𝑋𝑝, a discrete form 

corollary of the maximisation definition of equation 22. It is low-

order because 𝑝 ≪ 𝑟. 

The full order system POD modes are the columns of 𝑈, while the 

low-order system POD modes are the first 𝑝 columns of 𝑈. The 

choice of 𝑝 is given by the extent of variation energy that one intends 

to capture from the full order system as follows: 

If the total system energy is the sum of the singular values ∑ 𝜎𝑗
𝑟
𝑗  of 

matrix Σ, then the energy associated with the first p-POD modes is 

defined in equation 28.  

ε =
∑ 𝜎𝑗

𝑝
𝑗=1

∑ 𝜎𝑗
𝑟
𝑗=1

 28 

The low-order system POD modes can be written as an 𝑚 × 𝑝 

orthonormal matrix Φ =  [𝜙1, 𝜙2, … , 𝜙𝑝]. 

POD-Galerkin Projection 

The Galerkin projection is a one of the mean weighted residuals 

method for the solution of differential equations [21]. In the weighted 

residuals method, the mean of the residual (defined as the difference 

in the solution and its approximation) weighted by an appropriate 
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‘trial function’ is forced to zero. The traditional Galerkin method uses 

simple continuous piecewise function as the trial functions. In the 

POD-Galerkin method, the POD modes are used as the trial 

functions. The low-order & optimality properties of the first p-POD 

modes carry into the POD-Galerkin projection to achieve a low-order 

and optimal model description of the system. 

Consider a full order system for the evolution of 𝑿 ∈ ℝ𝑚×𝑛 in time:  

𝑑

𝑑𝑡
𝑿(𝑡) = ℒ(𝑿(𝑡)) + 𝒩(𝑿(𝑡)) 29 

If it is possible to obtain 𝑛-snapshots of the evolution of 𝑿 and 

extract the first 𝑝 POD modes in a POD matrix, Φ ∈ ℝ𝑚×𝑝  as 

described in previous section, the reduced order model can be 

obtained by POD-Galerkin projection as follows. 

Let �̂� be an approximation of 𝑿, described by equation  

𝑑

𝑑𝑡
�̂�(𝑡) = ℒ (�̂�(𝑡)) + 𝒩 (�̂�(𝑡)) + 𝑅(𝑿) 30 

Let 𝑅(𝑿) be the residual (difference between equation 29 and 30). 

The basic idea of the Galerkin projection is that given an orthonormal 

basis {𝜙𝑖}𝑖=1
∞ , of a Hilbert space, the projection of the residual to the 

span of the first 𝑝 basis functions varnishes. i.e. 〈𝜙𝑖 , 𝑅〉 = 0;  𝑖 =
1, … , 𝑝 or Φ𝑇𝑅 = 0 (for discrete systems) [22]. 

With the POD modes as basis functions and an approximation of 𝑿 

defined as �̂� = Φ𝐚 where 𝐚 ∈ ℝ𝑛×𝑝 is the matrix of coefficients as 

per equation 24, the POD-Galerkin projection is equivalent to  

Φ𝑇
𝑑

𝑑𝑡
�̂�(𝑡) = Φ𝑇ℒ (�̂�(𝑡)) + Φ𝑇𝒩 (�̂�(𝑡)) 31 

or  

Φ𝑇Φ
𝑑

𝑑𝑡
𝐚(𝑡) = Φ𝑇ℒ(Φ𝐚(𝑡)) + Φ𝑇𝒩(Φ𝐚(𝑡)) 32 

Since Φ is orthonormal Φ𝑇Φ = I ∈ ℝ𝑝×𝑝, the identity matrix. 

Therefore equation 32 reduces to  

𝑑

𝑑𝑡
𝐚(𝑡) = Φ𝑇ℒ(Φ𝐚(𝑡)) + Φ𝑇𝒩(Φ𝐚(𝑡)) 33 

for the evolution of 𝐚 coefficients, with initial condition 𝐚(0) =
Φ𝑇𝑿(0).  

Equation 33 is the Galerkin-projected reduced order form of equation 

29 based on the first 𝑝 POD modes Φ. The approximated values of 𝑿 

is obtained from the POD matrix Φ and the 𝐚 coefficients as per 

�̂� = Φ𝐚.  

The error between the actual and approximated values of 𝑋 by the 

first 𝑝 POD modes is of the order of ∑ 𝜎𝑖
2𝑟

𝑖=𝑝+1  which is minimum by 

definition of the POD method. 

POD Application to SCR-in-DPF Model 

The first step in the application of the POD method is to obtain an 

ensemble data describing the system. The data can be obtained from 

experiments or from numerical simulation of the full order model. In 

this work, our system data was obtained from a numerical simulation 

of the SCR-in-DPF model described in the previous section. For each 

of the cases considered, the numerical model is solved at the 

specified inlet conditions, to generate the system ensemble data for 

the POD basis. To aid our discussion, the SCR-in-DPF model 

described is considered to be our high fidelity model or HFM, and the 

low-order POD-derived model is named the POD-model. 

The wall temperature and the ammonia surface coverage (ASC) are 

selected as state variables on which to apply the POD method 

because they are the explicit time-dependent variables in our system. 

The remaining (quasi-steady state) equations are solved at each time 

step with the values of the state variables obtained from the POD 

model evolution. In the future the mass of soot in the system will be 

included as a state variable when soot dynamics is included in our 

HFM. 

Let 𝜃, 𝑇𝑠 ∈ ℝ𝑁×𝑇 be the solution obtained from the solution of the 

SCR-in-DPF model for ASC and wall temperature respectively at 𝑁 

discrete units of the wall layer along the length of the catalyst, over 

the time period [0, 𝑇]. The POD modes associated with the ASC and 

wall temperature data ensemble can be extracted as discussed in 

previous section. Let Φ𝜃 , Φ𝑇𝑠
∈ ℝ𝑁×𝑝 be the matrix of the first 𝑝 

POD modes, where 𝑝 is the number of modes need to capture a given 

level of energy from the data ensemble (equation 28). The POD-

Galerkin projection of the subspace spanned by the POD modes on 

the HFM is then as follows: 

Let 𝜃 ∈ ℝ𝑁×𝑝 be the approximate 𝜃 obtained from the low-order 

POD matrix as: 

𝜃 = Φ𝜃𝐚𝜽 34 

and, 𝑇�̂� be the approximate 𝑇𝑠 obtained from the low-order POD 

matrix as 

𝑇�̂� = Φ𝑇𝑠
𝐚𝑇𝑠

 35 

where 𝐚𝜽, 𝐚𝑇𝑠
∈ ℝ𝑝×𝑇 are the a-coefficient matrices 

For compactness, let  𝑿 represent 𝜃 and  𝑇𝑠 as follows: 

𝑿 = [
𝑋1

𝑋2
] = [

𝜃

𝑇𝑠
] 36 

and 

�̂� = [
𝑋1̂

𝑋2̂
] = [

𝜃

𝑇�̂�
] = [

Φ𝜃𝐚𝜽

Φ𝑇𝑠
𝐚𝑇𝑠

] = Φ𝑿𝐚𝑿 37 

Then equation 21 and 7 can be written compactly as 

𝜕

𝜕𝑡
[𝑿] = [

𝑓1(𝑿, 𝝁)

𝑓2(𝑿, 𝝁)
] = [𝒇(𝑿, 𝝁)] 38 
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where 𝝁 = [𝒚𝒊, 𝑻𝒊, … ] is the parametric vector containing other 

system variables. 

Using the POD modes as basis functions and an approximation of 𝑿 

defined in equation 37, the POD-Galerkin projection is equivalent to  

𝑑

𝑑𝑡
𝐚(𝑡) = Φ𝑿

𝑇[𝒇(Φ𝑿𝐚𝑿, 𝝁)] 39 

with the initial condition of 𝐚𝑿(𝟎) = Φ𝑿
𝑇𝑿(𝟎).  

Equation 39 for 𝐚𝑿 ∈ ℝ2𝑝×𝑇 is lower order compared to equation 38 

for 𝑿 ∈ ℝ2𝑁×2𝑝 because 𝑝 ≪ 𝑁. The low-order approximated 

variable can be reconstructed from 𝐚𝑿 over time by equation 37. The 

other system variables are then obtained based on approximate �̂� 

over time. 

Application 

System Description 

A silicon carbide (SiC) filter with copper zeolite SCR catalyst 

extruded within the filter walls is used for this analysis. The 

specification of the SCR-filter is presented in Table 2. 

Table 2. SCR Filter Specification 

Parameter Value 

Length [m] 0.152 

Diameter [mm] 19.18 

Cell Density [cpsi] 300 

Wall thickness [mil] 12 

Channel width [mm] 1.162 

Active site S1 storage capacity [mole/m3]  50 

Active site S2 storage capacity [mole/m3] 30 

Material Porosity [%] 58 

Mean pore size [µm] 22 

Catalytic coating [-] Cu-Zeolite 

Steady State NOx conversion 

The performance of the POD method on the system at steady state is 

presented in this section. The inlet condition for this scenario is 

presented in Table 3. The system temperature is taken to be fixed at 

the inlet gas condition. The feed gas NH3 and NOx concentration over 

time is presented in Figure 3. 

Table 3. Inlet gas condition for the steady state NOx conversion 

simulation 

Parameter Value 

Exhaust gas flow rate [g/s] 0.3 

Outlet pressure [Pa] 101,325 

Inlet gas temperature [oC] 200 

Space velocity [1/h] 34,000 

Initial NH3 coverage on catalyst surface 0 (i.e. empty) 

Parameter Value 

Feed gas composition 
2600 ppm NH3, 2500 

ppm NOx (Figure 3), 8% 

O2, 5% H2O, balance N2 

 

Figure 3. Feed gas NH3 and NOx concentrations. 

POD Modes 

The spectrum of the singular values obtained from the decomposition 

of the ASC data ensemble is presented in Figure 4. It is obvious from 

the plot that only a few POD modes corresponding to the largest 

singular values are dominant (compare the number of modes with 

singular values greater than 1 to the rest). The relative energy plot 

also shows that the first few modes combine to capture over 99% of 

energy of the data. These therefore indicate that the ASC dataset can 

be represented by the few largest POD modes without loss of data 

fidelity. 

 

Figure 4 Singular values (a) and relative significance of POD-modes (b) of 

the ASC (θ) data, steady state NOx conversion case 

The first few POD modes of the ammonia surface coverage ensemble 

data is presented in Figure 5. 

Significant # of 

modes (𝜎𝑖 > 1) ≪ 

Total # of modes 
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Figure 5. Plot of first few POD basis functions of the 𝜽 data, steady state 

NOx conversion case 

The POD modes do not necessarily have physical meanings [20]. 

Comparative Results 

The NOx and NH3 conversion predicted by the HFM and POD 

models are shown in Figure 6 for the first four POD modes. The 

relative errors in the prediction and summary of additional results are 

presented in Table 4. 

 

Figure 6. Approximate outlet NOx and NH3 concentration from POD-

Galerkin analysis for the first four POD modes, steady state NOx 

conversion case 

It can be seen that the prediction of our POD model agrees very 

closely with the HFM. This attests in general to the application of 

POD-Galerkin technique for the solution of the model SCR-in-DPF 

equation. Furthermore it is obvious that the POD model based on the 

first four POD modes satisfactorily captures the system dynamics in 

this scenario as the relative error in prediction is in the order of 1-3% 

in comparison with the HFM. 

Table 4. Summary of POD model performance for steady state NOx 

conversion scenario 

 CPU time [s] 
Relative RMS Error [%] 

ASC NOx NH3 

HFM 34.69    

1-POD model 15.98 15 7 6 

2-PODs model 16.93 6 6 3 

3-PODs model 17.26 2 5 2 

4-PODs model 18.06 2 3 1 

In general the relative error reduces with the incorporation of 

additional POD modes. By definition of the POD approach, more 

POD modes will achieve a better approximation of the original 

dataset (Eq. 25). The POD method is attractive because it can achieve 

a good approximation with only a few POD modes, and thereby 

achieve model order reduction.  

The evidence of the model order reduction achieved by the POD 

Galerkin technique is in the reduction in computational time to 

process the POD model in comparison with the HFM. (The 

specification of the operating PC is Intel i5 4460 processor, 3.2 GHz 

CPU, 32GB RAM, running MATLAB 2016a; same time step of 1s is 

specified for HFM and POD models.). In this example, nearly 50% of 

the computational time is saved in the POD model with 4-POD 

modes compared to the high fidelity model (Table 4). 

The prediction of ASC for the POD model is presented in Figure 7 

for the first four POD modes. It also shows that the predictive ability 

of the POD model closely matches the HFM with only a few POD 

modes. 

 

Figure 7. Approximate ammonia surface coverage �̂� from POD-Galerkin 

analysis for the first four POD modes, steady state NOx conversion case 

Robustness of the POD Modes 

The POD modes are generated based on the simulation results for a 

set of inlet conditions. For the steady state case, the inlet conditions 
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are presented in Table 3 and Figure 3. The generated POD basis 

vectors are robust to deviation in the inlet conditions.  

In this section, the feed gas composition in Figure 3.is excited with 

uniform random noise (mean = 1). The noisy inlet condition is set as 

input to the POD model. The POD basis vectors were generated 

based on the HFM results for the steady state case previously 

presented. The objective was to assess the performance of the POD 

model for inlet conditions different from that for which the POD 

basis vectors were generated. 

The performance of the POD model (with 4 POD modes) is 

compared with the steady state HFM in Figure 8 and Table 5. In the 

results shown, the HFM result is for the steady state example 

previously presented. 

 

Figure 8. Outlet concentration and ammonia surface coverage for steady 

state POD simulation with uniform random deviation in feed gas 

concentration 

Table 5. Summary of POD model performance for steady state NOx 

conversion when uniform random deviation is applied to feed gas 

concentration 

 CPU time [s] 
Relative RMS Error [%] 

ASC NOx NH3 

HFM 35.43    

POD model 18.88 5 
0.6 a 

63 b 

0.28 a 

70 b 

a denotes error in cumulative outlet concentration 
b denotes error in instantaneous outlet concentration 

It can be seen that POD model predicts the average ammonia surface 

coverage even with random deviation in the inlet gas conditions 

relatively well when compared to the HFM. The predicted output 

NOx and NH3 concentrations vary randomly according to the input 

deviation. However, the prediction of cumulative outlet 

concentrations over the simulation period agrees well with the HFM 

with less than 1% relative error. The results show that the POD basis 

mode is robust to deviation in inlet conditions.  

In this example the relative prediction errors of 1-3% and up to 50% 

savings in computation time for the POD model vs the HFM show 

that  the POD technique with only a few modes can deliver a low 

order model that preserve a high degree of fidelity. The generated 

POD modes are also robust to uniform random deviation in inlet 

conditions thus preventing the need to regenerate the POD basis 

vector with slight change in inlet conditions. 

Transient State NOx Conversion 

The performance of the POD method on the system during a transient 

state operation is presented in this section. 

Transient input conditions are obtained from a sample world 

harmonized test cycle (WHTC) conditions reported in ref [23]. The 

engine-out NOx emission concentrations and the exhaust gas 

temperatures are obtained from the reference
‡
. Details of the test 

engine conditions can be found in ref [23]. The exhaust gas flow rate 

was constant for the simulation. In the experiment, liquid urea 

solution was injected, thus the input NH3 gas concentration was not 

measured. For our analysis, in the first 30 seconds gaseous NH3 at 

1500 ppm is injected, thereafter NH3 rate at ANR = 1.1 is used. The 

inlet NOx and NH3 concentrations and exhaust gas temperatures are 

presented in Figure 9. Other input conditions are as per Table 3. 

 

Figure 9. Engine-out specie concentrations and exhaust gas temperature 

from ref [23] used as input in transient analysis  

POD Modes 

The ammonia surface coverage and wall temperature are used as the 

system states in the transient NOx conversion analysis. The POD 

modes for the ammonia surface coverage and wall temperature 

dataset are presented in Figure 10 and Figure 11 , respectively. 

                                                                 

‡
 The NO2 concentration was increased by a factor of 10 in this 

analysis. 
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Figure 10. Singular values (a) and relative significance of POD-modes (b) 

of the ASC (θ) data, Transient state NOx conversion case. 

 

Figure 11. Singular values (a) and relative significance of POD-modes (b) 

of the wall temperature (Ts) data, transient state NOx conversion case. 

The main observation is similar to the steady state case. A relatively 

few POD modes dominate the dataset, thus the POD-Galerkin 

technique can be applied to achieve model order reduction using the 

first few POD modes of the datasets. The first four POD basis 

functions are presented for the ASC and wall temperature dataset in 

Figure 12. No physical meaning can necessarily be derived from the 

form of the POD basis functions [20]. 

 

Figure 12 Plot of first few POD basis functions of the 𝜽and Ts data, 

transient state NOx conversion case 

Comparative Results 

The NOx and NH3 conversion for the HFM and POD models are 

compared in Figure 13. The relative errors and CPU simulation times 

are presented in Table 6. 

 

Figure 13. Approximate outlet NOx and NH3 concentration from POD-

Galerkin analysis for the first few POD modes, transient state NOx 

conversion case 

The performance of the POD model agrees well with the HFM for 

NOx and NH3 conversion. In this scenario, about 15 POD modes are 

required in the POD model to closely match the HFM NOx 

conversion prediction. The relative error in NOx conversion 

prediction between the HFM and the POD model with 15 POD 

modes is ca 7% (Table 6). More POD modes are required to more 

closely match the HFM prediction of outlet NOx concentration in this 

scenario because of the transient nature of the problem. However, 15 

POD modes still represent a significantly small proportion of the 

available POD modes (see Figure 10 and Figure 11). Therefore 

model order reduction is achieved even with 15 POD modes as 

Significant # of 

modes (𝜎𝑖 > 1) ≪ 

Total # of modes 

Significant # of 

modes (𝜎𝑖 > 1) ≪ 

Total # of modes 
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evident in the 40% reduction in CPU time to complete the POD 

model simulation compared with the HFM. 

Table 6. Summary of POD model performance for transient state NOx 

conversion scenario 

 
CPU 

time [s] 

Relative RMS Error [%] 

ASC Ts NOx NH3 

HFM 265.82     

1-POD model 98.51 41 0.4 39 6 

2-PODs model 102.24 36 0.1 39 6 

3-PODs model 106.29 22 0.02 25 5 

15-PODs model 156.70 3 0.01 7 2 

The ASC and wall temperature prediction for this scenario is 

presented in Figure 14. 

 

Figure 14. Approximate ammonia surface coverage �̂� and wall 

temperature 𝑻�̂� from POD-Galerkin analysis for the first few POD 

modes, transient state NOx conversion case 

Our system is idealized in that gaseous ammonia is used and 

ammonia rate is directly inferred from the inlet NOx concentration. 

Therefore for the majority of the simulation no excess ammonia is 

retained on the surface of the catalyst. In reality to preempt 

disturbance in the inlet NOx concentration it is prudent to have a 

buffer of ammonia coverage on the catalyst surface to prevent outlet 

NOx excursion. This will factor in the control objective in the next 

section on system control.  

The dynamics of the wall temperature prediction is very well 

captured with 1 POD mode (relative error < 1%, Table 6). As our 

system was initially warm and no soot is modelled in this analysis, 

the dynamics of the wall temperature is expected to follow the inlet 

exhaust gas temperature input as with relatively minimal energy 

contribution from the SCR reactions. In our follow up study, it will 

be interesting to see how the dynamics of wall temperature changes 

when soot deposition and oxidation is included in our HFM and mass 

of soot is added as one of our system states for the POD model. 

Robustness of the POD Modes 

The POD modes are generated based on the simulation results for a 

set of inlet conditions. For the transient case, the inlet conditions are 

presented in Figure 9. However, the generated POD modes are robust 

to uniform random deviation in the inlet conditions. This section 

presents the performance of the POD basis vectors generated for the 

transient case inlet conditions applied to different inlet conditions. 

A uniform random distribution (with mean of 1) is applied to the feed 

gas concentration to simulate different inlet conditions. The 

performance of the POD model (with 15 POD modes) is compared 

with the HFM in Figure 8 and Table 5. 

 

Figure 15. Outlet concentration and ammonia surface coverage for steady 

state POD simulation with uniform random deviation in feed gas 

concentration 

Table 7. Summary of POD model performance for steady state NOx 

conversion when uniform random deviation is applied to feed gas 

concentration 

 
CPU 
time [s] 

Relative RMS Error [%] 

ASC Ts NOx NH3 

HFM 257.31     

POD model 154.58 5 0.06 
5 a 

66 b 

3 a 

63 b 

a denotes error in cumulative outlet concentration 
b denotes error in instantaneous outlet concentration 

It can be seen that the POD model agrees with the HFM when the 

inlet feed gas concentration varies in a uniform random distribution. 

The outlet NOx and NH3 concentrations vary randomly according to 

the input deviation. The prediction of cumulative outlet 

concentrations agrees well with the HFM with less than 5% relative 

error (Table 7). The results show that the POD basis mode is robust 

to uniform random deviation in inlet conditions. 

For the transient analysis presented here, the POD model with 15 

modes (although with a few more POD modes than in the steady state 

case, but still considerable less than the available total) satisfactorily 

matches the HFM with relative error ca 7% and less. It also achieves 

over 40% reduction in computational time compared to the HFM. 

Thus the POD model also delivers model order reduction while 
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preserving a high degree of fidelity in this application. The POD 

model is also robust to uniform random deviation in inlet conditions. 

System Control 

POD has been applied for the model order reduction for model-based 

control design [22][24][25]. We demonstrate the application of POD 

in a simple control application for the SCR-in-DPF model. A simple 

P&ID controller is designed for our system operating in transient 

condition. The controller objective is to maintain the ammonia 

surface coverage
§
 at a low level which minimizes NH3 slip but is 

sufficient to maximize NOx conversion. 

The system state for control is taken to be the average value of ASC 

across the wall surface. We surmised that the ‘average’ is a crude 

approach to reduce the distribution of ASC on the surface to a scalar 

quantity, and applied the POD method with only the first POD mode 

as a comparative alternative to achieve the system state for the 

controller. The first POD mode is generally considered to be mean of 

the data ensemble [22].  Thus two controller designs were evaluated: 

(a) based on HFM with average ASC as system state, and (b) based 

on the POD model with 1 POD mode used to derive an average ASC 

for the system state. An open loop (OL) scenario is also simulated as 

a baseline for control performance evaluation. The data from the 

open loop run is used to generate the POD basis vectors. Controller 

tuning is maintained across the HFM and POD model runs to 

minimise system variability. The controller set point is specified at 

the open loop average ammonia surface coverage. 

A schematic of our control system is shown in Figure 16. The inlet 

NOx and exhaust gas temperatures (disturbance) are the same as 

Figure 9. The input is configured as liquid urea flowrate. The 

injection valve is assumed to be able to supply up to 0.1 l/h urea 

solution, with instantaneous conversion of the component urea to 

ammonia gas. For the open loop run urea injection is fixed at half the 

maximum injection rate. 

 

Figure 16. Schematic of the simple control system 

The controller performance based on the HFM and POD model in 

comparison with the open loop (OL) system response are presented in 

Figure 17. 

                                                                 

§
 ASC is not measurable in practice, so an observer is typically 

designed to estimate ASC from the available output (outlet 

concentration) and system model [27]. To keep this analysis simple, 

ASC is obtained directly from our simulation. 

 

Figure 17. Performance of the controller based on the HFM and the PO 

model with only one POD mode 

The outlet NOx and NH3 concentrations trends from the HFM and 

POD model based controllers agree very closely. This indicates that 

the performance of the POD model based controller is comparable to 

that based on the HFM. This demonstrates the application of the POD 

method in this control application as an alternative to the full order 

model. See Table 8 for summary of other key results from the 

simulation. 

Table 8. Summary of HFM and POD model based controller 

performance results 

 OL HFM POD 

CPU simulation time [s] 284.6 303.1 137.8 

Cumulative NOx conversion at end [%] 94 92 91 

Cumulative NH3 slip at end [%] 7.2 6.9 6.9 

Total urea injected [ml] 2.33 1.57 1.78 

% of total urea in OL case  67 76 

The simulation time savings gained by applying the POD method is 

reflected in the performance of the control system. About 55% 

reduction in simulation time is obtained when the POD-model based 

controller is simulated compared to the controller based on the HFM. 

The maximum difference in the predicted cumulative conversion at 

the end of simulation is ca 1%. This demonstrates that the POD 

approach can be applied to model order reduction for control design 

while preserving a high degree of fidelity. 

In this example it is noted that the controller only marginally changes 

the system performance in terms of NOx conversion and NH3 slip 

compared to the open loop (OL) simulation. The real difference is in 

the actual volume of urea used in the open loop vs. controlled 

scenarios. The open loop scenario consumes up to 33% more urea 

than the controlled scenarios. As the simulation represents an ideal 

system, the inlet urea rates convert directly to outlet NH3 

concentration, thereby maintaining similar conversion rates with the 

controlled system. It is expected that this relationship is weakened 

under actual operating conditions, and that diffrence in inlet urea rate 

translate to variation in outlet specie conversion. 
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The simple control example reported here demonstrates the 

application of the POD method as a model order reduction technique 

for model-based system control design. The POD method achieves 

significant savings in computational time and preserves a high degree 

of model fidelity. 

Conclusions 

The POD method, with Galerkin projection, is able to deliver a low 

(reduced) order model which retains a high degree of fidelity. The 

POD method uses the dominant characteristic modes of the system as 

the basis for model approximation. Most dynamical systems have a 

few dominant modes; therefore a few POD modes can achieve 

satisfactory model approximation. The reduced order model relies on 

the same underlying physics as the full order model thereby preserves 

a high degree of fidelity. 

The POD method was applied in this paper to a 1D+1D SCR-in-DPF 

model, with ammonia surface coverage and wall temperature as the 

system states. The results demonstrate the application of the POD-

Galerkin technique to achieve model order reduction for the SCR-in-

DPF model. Significant computational time savings (40-50%) was 

obtained with the POD model compared with the full order model in 

all our simulations. Thus model order reduction was achieved. The 

predictions of the POD model with only a few POD modes agree 

closely with the full order model indicating the preservation of model 

fidelity. The relative errors were in the order of 1-3% for the steady 

state simulation, less than 7% in the transient state simulation and 

about 1% in the control application. Therefore the POD technique 

offers the promise of delivering lower order high fidelity model of 

the EATS which is ECU-ready. 

The implementation of the POD method relies on the availability of 

reliable system data. This data can be obtained from simulation of the 

full order model for a short period to obtain an ensemble of 

snapshots. The POD basis vectors will depend on the inlet conditions 

used to generate the simulation data. In our examples, we used the 

ensemble data generated from the HFM runs over the entire 

simulation period. (It was convenient to do this as the goal was to 

compare the POD and HFM, and the HFM results were already 

available). We demonstrated that the POD basis vectors thus obtained 

are robust to uniform random deviation in inlet conditions. The 

optimal decision on how much of the simulation to run to generate 

robust POD basis vectors will be context specific. Factors to consider 

include the intent for model application, the HFM simulation speed, 

the nature of variations expected in the inlet conditions among others. 

Experimental data is a suitable alternative source for the POD 

method. Spatially resolved techniques will provide better quality data 

for obtaining the POD basis vectors.  

Soot dynamics is not included in our SCR filter model, so 

conclusions are tentative. Our future work will apply the POD 

method to the SCR-in-DPF model with soot accumulation dynamics. 

We will compare the performance of the POD method when the POD 

modes are obtained from experimental data and model simulation. 

Furthermore system control based on the POD mode coefficients in 

an optimal LQR framework will be applied.  
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Definitions / Abbreviations 

Ai pre-exponential factor in rate equations 

Cgj gas phase concentration of jth specie, mol/m3  

cm  
molar concentration of exhaust gas stream inside the filter 

wall mol/m3 

Cpg specific heat capacity of gas phase at constant pressure 

J/kg/K 

CPSI Cell density cell/in2 

d channel width m 

Dj effective diffusivity  of specie j m2/s 

Ea,j activation energy in rate equations J/mol 

Hconv convection of heat due to flow in channel W/m3 

hi heat transfer coefficient  W/m2/K 

Hi heat of formation of species i (negative for exothermic 

reaction) J/mol 

Hreact reaction exotherm, W/m3 

Hwall convection of heat due to flow through wall W/m3 

ki reaction rate constant 

kim,j mass transfer coefficient for species j in i channel m/s 

ks wall permeability m2 

L catalyst length m 

�̇�  mass flow rate g/s 

MW molecular weight kg/kmol 

P System pressure, Pa 

R universal gas constant J/kgmolK 

rj Rj reaction rate for reaction j mol/m3.s 

SF specific surface area of catalyst m-1 

ski stoichiometric coefficient of surface specie k in reaction i 

SV space velocity 1/h 

t time s 

T Temperature K 

U gas flow velocity in the inlet channel m/s 

vw wall velocity m/s 

w washcoat layer thickness m 

x dimension perpendicular to wall surface m 

Yj mole fraction of specie j 

z dimension perpendicular to the wall surface m 

  

Greek Symbols 

𝜹𝒛   thickness of element of wall layer m 

𝜺  POD energy contained in data  

𝝐𝒊  energy captured by i-th POD  mode 

𝝀  eigenvalues 

𝝆𝒈  density of gas kg/m3 

𝝆𝒔  solid density of monolith kg/m3 

𝝆𝒘  wall density kg/m3 

𝜽  ammonia surface coverage 

𝝈𝒊  POD modes singular value 

𝚫𝒛  unit of control volume in axial direction 

𝛀  ammonia adsorption capacity, moles of NH3/m
3 

μ exhaust gas viscosity kg/ms 

𝚽  POD orthonormal matrix 

  

Subscript and Superscript  

g exhaust gas 

i channel index, 1 = inlet, 2 = outlet 

in inlet channel, inlet conditions 

j specie index, reaction index 

k species index 

out outlet channel 

s solid 

w substrate wall 

1s, 2s channel-solid interface 

  

Abbreviations  

1D one dimensional 

AMOX ammonia oxidation catalyst 

ANR ammonia-NOx ratio 

ASC ammonia surface coverage 

deNOx NOx conversion 

DPF diesel particulate filter 
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EATS exhaust after-treatment systems 

ECU engine control unit 

LQR linear quadratic regulator 

MOR model order reduction 

NOx nitrogen oxides 

ODE ordinary differential equation 

OL open loop 

PDE partial differential equation 

PM particulate matter / soot 

POD proper orthogonal decomposition 

ROM reduced order model 

SCR selective catalytic reduction 

SCR-

in-DPF 

selective catalytic reduction catalyst integrated on diesel 

particulate filter 

WHTC world harmonised test cycle 

 

 

 

 

 

 

 


