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SUMMARY

This thesis will be concerned with the study of the new concept of
final-gtability which is a direct generalisation of the theory of

stability over a finite time interval.

The introduction deals with an intuitive historical development which

leads to the concept under consideration.

The main part, chapters I and II, is devoted to the study of differential
systems. Precise definitions of the concept are stated, and a corres-
ponding theory is established. Use has been extensively made of

Liapunov-like functions. The possible relationship with the -theory of

controllability is indicated.

Dynamical and discrete systems are then studied in some detail.  For

dynamical systems, a somewhat different approach is considered.

Finally, possible future topics of research are suggested and discussed.
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INTRODUCTION

This thesis will be concerned with the theory of a new concept, i.e.,
the concept of final-stébility (over a finite interval of time). But
before introducing the reader to this notion, one needs to give a short
history of its development. We do not claim to be exhaustive, but our
purpose is merely to give an intuitiyg reasoﬁing which leads us to the
concept of final-stability, which is the main object of the thesis.

We also add that although the theory of final-stability, established
hereafter, has many applications, the most obvious potential is perhaps
that it offers a unified approach to both stability and controllability

by the use of Liapunmov-like functioms.

Although the theory of final-stability can be extended (and is extended)
to more general gystems, we shall limit our discussion in this

introduction to differential systems of the form

e
Il

£(x,t) | | W

and

[t

X g(x,u,t), u control . (EC)

where x is m-vector, u an m-vecter, f and g are n~-vector functions of

their arguments.

We know that, under certain conditions [5,11,13,25], given an ¢ > 0,
and an interval of time I = [io’ t0+T) there exists a § = ﬁ(e,T,to) >0
such that

| |x(t; x b ) = x(t; xl,to)ll <eg, tel
provided

[lxg = %, 11 <6



ii

where x(tjx ,to) is the solution through.(xo,to) and x(t; xl,to) the
o
solutica through (xl, to). (||.]] is the euclidean norm or any other

appropriate norm.)

This general proposition has a physical sense. Indeed, practically,

the initial conditions are determined by means of measurements and

any measurement can be only approximate. Thus, the continuity with
respect to initial conditions expresses the fact that these errors of
measurement do not affect the solution too seriously. In other words,
if the admissible error ¢ is given for a solution, for a given interval
I, there exists a 6 = §(e,I) such that if, when establishing the initial
conditions, the error is smaller than &, then the error in the solution

does not exceed the given e,

We emphgsise here the fact that & depends not only on e but also on the
size of the interval and actually decreases when T increases, It
follows that a solution will have a physical meaning in reality only if
for a sufficiently large interval § remains sufficiently large. This
can be achieved by requiring ﬁhaﬁ § does not depénd upon the siée 6f
the inLerval. We thus reach the netion of stability in the sense of
Liapunov which was and still is extensively investigated [1,9,10,26,

27,38,50].

Aithough the concept of Liapunov stability concerns itself with the stability
of a fixed solution %(t), say, of (1), we can assume that the solution
under consideration is the equilibrium state x = 0, The trivial soluticn

of (1) is, then, said to be stable in the sense of Liapunov if for any

€ >0, and any t_ € R+, there exists a 6=6(e,t0) > 0 such that ||x0|[ < &,
implies that l]x(t; xo,t0)|| < g, for all t > to' If 6 depends only on

g, the stability is said to be uniform. If, in addition, there exists



1ii

a 6§ =6 {t ) such that for each ¢ > o, there exists a T = T(e,x ,t )
o o' o o’ o
such that |ixo|] < 60, implies that ||x(t; xo,to)]| < g, for all

t2t + T, then the trivial solution is said to be asymptotically

stable.

In applicétions, it is obvious that asymptotic stability is more

desirable than mere stability. If one wishes to maintain, say, a certain
temperature K in a system, it is, clearly, desirable that small deviations
actually cancel out, and not desirable to maintain merely some temperature

not too far from K.

Another practical consideration: suppose that an electrical system has
been designed to operate at N volts. The system is sc¢ arranged that
small deviations are cancelled out. But, how large are the deviations
that cancel out? The system may be asymptotically stable and yet not
operate properly if deviations in excess of some millivolts occur.

Thus, the system, while asymptotically stable in theory, is actually
unstable in practice. To have true asymptotic stability one should allow
far déviations of SeVéI;l volts, férAexample. The main tréuble.ﬁigh.%ogﬂ
stability and symptotic stability is that 6 depends on €. So, the 1oéicél

step is to require that § does not depend on €.

These and other considerations have led LaSalle and Lefschetz [1§] to

irntroduce the concept of practical stability which is defined in the

following manner:

Consider system (1), with £(0,t) = O, and the perturbed system
x = f(x,t) + p(x,t), t >0 (EP)

We are given a bositive number § and two sets Q and Qo' Q is a closed

*
bounded set containing the origin and Qo a subset of Q. Let x (t; xo,to)
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be the solution of (EP) satisfying x*(to;xo,to) = X . Let P be the set

of all perturbations p(x,t) satisfying ||p(x,t)|| < §, for all

£t>0, xe R". 1If for each p £ P, each X, € Qo’ and each t0 > 0,

x*(t; xo,to) e Q, for all t ;=to’ then the origin is said to be practically

stable.

The concept of practical stability is relative to the number & and the
sets Q and Qo. Q is the set of acceptable responses, Q0 is the set of

acceptable initial states.

The common factor in both Liapunov's stability and practical stability
is that the time interval is infinite. Consequently, the stability
property can never be verified in pra;tice, since a physical system can
be observed only during a finite time interval. Therefore, several
attempts have been made to modify the different types of stability such

that the motion has to be considered only during finite time intervals.

The idea of stability over a finite interval if time is not new [5,7,14,
15,20,21,22,24,25,33].but the first to introduce it in the following form
were Weiss and Infante [}6]. Further work was carried out by them and

many others [8,16,17,18,35,37]: Let
ot [|x|| <a, 8 [[x|]] <b, v [fx]] <e

c<a<hb, I-= [to’ t +T)

(where l]x]| is the euclidean norm).

Then, system (1) is stable with respect to the sets {(a,B8,I) if, for any
trajectory x(t), the condition x(to) £ o implies that x(t) e B, all
t e I, If, in addition, any trajectory x(t), x(to) £ @, ig such that

x(t) e v, all t ¢ [ﬁl’ to+T), for some t) € I (which méy depend on the

particular trajectory), then the system is said to be contractively




stable with respect to the sets (a,B8,Y,I).

Notice that the condition £(0,t) = 0 is no longer required and no

uniqueness condition need be imposed.

One also notes the similarity between asymptotic stability and contractive
stability. In fact, we shall see that it would be possible to connect

the stability in the sense of Liapunov to the theory of final-stability

by means of transformations such as t

Now, some important questions arise: 1s it possible to generalise the
idea of finite-time stability? That is, take o and B to be any sets in
R" and find out what happens to any trajectory x(t) emanating from o at

t = to. Does it enter B and remain there? Dpes it enter B but leave it
before the end of the interval? Or deoes it possibly nevar enter R within
the given interval? On the other hand, what happens to a trajectory

starting outside a?

The theory of final-stability which we establish in this thesis answers

most of these guestions.

The first chapter is devoted to the study of differential systeﬁs of Lhe
form (1. However, to make the concept more acceptable and connect it
more directly to the concept of controllability, we consider also.system
(EC); this will be done in chapter II. System (1) is, of course,

a special case of the above system.

Although most of the thesis will be devoted to the study of system (EC),
extensions to discrete and dynamical systems are considered in some
detail. Finally, the concluding chapter is devoted to the discussion of

some 1deas worthwhile for future research.



CHAPTER 1

Ordinary Differential Equations without the
influence of Perturbing Forces "Unforced Systems”



1.1

1.2

§1. INTRODUCTION AND DEFINITIONS

Introduction

We shall consider systems of the form

X = f(x,t) (1.1.1)

where x 1s a real n—vector which represents the state of the system at
times t ¢ I, I being the interval [bb’ to+T). It will be assumed that
the n-~vector function f£{x,t) possesses the necessary properties, so

that there is no difficulty with‘questions of existence, uniqueness

and continuity of solutions with respect to initial conditions. More-
over, it is not required that £(0,t) =0, for all t e I, so that stability
with respect to a set rather than a point can be discussed without

having to resort Lo complicated transformatioms.

Since the theory established in this chapter will be a special case of
a more general theory which we will establish in Chapter II, we shall
omit most of the proofs. We also note that a more.detailed discussion

of this theory will be found in [ki].

Notation
n . ‘ . ,
R the real euclidean space ¢f n—dimensions
+ .
R : the set of non-negative real numbers

R : the set of all real numbers

+ +
1: E;o,to+T),toeR,TeR,T>0.

In the sequel, when not otherwise stated, small greek letters will

. n .
denote connected sets in R°. 1If a,B are two such sets, we define

a/B =a - alB (1.2.1)



1.3

The closure, boundary, complement and interior of any

are denoted respectively by @, Fr.oa, a¢ and ().
Let V[ﬁ,é] denote a mapping

V:R" x 1Rl
Accordingly, we definel the following functions of t:

Vﬁ(t) = sup.V[x,t], V:;(t) = -inf.VEc,fa
XeQ XeQ

*
Finally, we use the notation V[:x,t] e Clfa x T], where a ¢ R" and

* . . . .
I < I, to indicate that the function V[x,é] and its first partial

derivatives v v oV
v at ? Bxl’ T o8x

n
set o < R

i *
—— are continuous in both (x,t) ¢ a x T .

n ‘
*
We shall also use the notation $(t) e R[i_] to indicate that the

*
function ¢(t} is Riemann—-integrable over I .

Definitions of semi-final stability:

- Definition 1.3.1:

System (1.1.1) is semi-finally stable with respect to the sets

if, for any trajectory x(t), the condition
x(to) € a

implies the existence of a t. ¢ I, such that

1

X(tl) £ B

where t, may depend on the particular trajectory.

1

(1.2.2)

(1.2.3)

(a,8,T)

(1.3.1)

(1.3.2>



Definition 1.3.2:

System (1.1.1) is semi-finally stable with respect to the sets

(o, B, tleI) if, for any trajectory x(t), the condition

x(to) £ a (1.3.1)
implies that

x(t)) e B (1.3.2)

Definition 1.3.3:

System (1.1.1) is uniformly semi-finally stable with respect to the sets
(@, B, I), if there exists a t; € I, such that the system is semi-

finally stable with respect to the sets (o, B, t,el).

Definition 1.3.4:

System (1.1.1) is strongly semi-finally stable with respect to the sets
(o, B, I), if
(i) it is semi-finally stable with respect to the sets (q,'ﬁ;'I);':
and |
(i1) for any trajectory x(t), the condition
x(t) e a /B o (1.3.3)
implies that
x(t) e g%, for all t ¢ 1 (1.3.4)
In this definition, the restriction to the set aC/B is essential; for
any trajectory x{(t), with x(to) e B, is such that x(t*) e B, for some
t* € I (certainly for t* = to)' However, in the following definition,

we do not need this restriction.



Definition 1.3.5:

System (1.1.1) is strongly semi-finally stable with respect to the sets
(o, B, tlsl), if
(1) it is semi-finally stable with respect to the sets (a, g, I},
and
(11) for any trajectory x{(t), the condition x(to) £ ac, implies
that

x(t)) ¢ 8° (1.3.5)

Definition 1.3.6:

System (1.1.1) 1is not semi-finally stable with respect to the sets
(a, B, I) if there exists a trajectory x(t), with initial condition

x(to) ¢ a, and satisfying x(t) ¢ Bc, all t ¢ I.

It is not semi-finally stable with respect to the sets (o, B, tleI),

if there exists a trajectory x(t), x(to) € a, satisfying x(tl) £ Bc.

1.4 Definitions of final-stability:

Definition 1.4.1:

System (1.1.1) is finally-stable with respect to the sets (a, 8, I)
if, for any trajectory x(t), the condition

X(tol.e a (1.4.1)

implies the existence of t. € I, such that

1

x(t) e 8, for all t e [t,, t +T) | (1.4.2)

where t, may depend on the particular trajectory.



Definition 1.4.2:
System (1.1.1) is finally-stable with respect to the sets («, B, tlsI)
if, for any trajectory x(t), the condition
x(to) £ o (1.4.1)
implies that

x(t) ¢ B, for all t e |t , t +T) (1.4.3)
1 0

Definition 1.4.3:

System (1.1.1) is uniformly finally-stable with respect to the sets

(x, B, I), if there exists a t, € I such that the system is finally-

1

stable with respect to the sets (a, B, t. € I).

1

Definition 1.4.4:

System (1.1.1) is strongly finally-stable with respect to the sets
(a, B, I}, if
(1) it is finally-stable with respect to the sets (a,-B; I), and

(ii) for any trajectory x(t), the condition
. .
x(to) e o (1.4.4)
. - - *
implies the existence of t e I, such that
c *
x(t) e B, for all t e [ﬁ s to+T) (1_4,5)_

*
where t may depend on the particular trajectory.

Definition 1.4.5:

System (1.1.1) is strongly finally-stable with respect to the sets

(@, B, t eI}, if



(i) it is finally-stable with respect to the sets (a, B, I), and

(i1) for any trajectory x(t), the condition x(to) e o implies

that x(t) e B, for all t ¢ [, £ +T)-

Definition 1.4.6:

System (1.1.1) is not finally-stable with respect to the sets (a, R, I),

if there exists a trajectory x{t), with x(td) £ a, and satisfying
c *
x(t) e 87, forall t e [t, t +T) (1.4.6)
*
for some t = I,

It is not finally-stable with respect to the sets (o, B, t, ¢ I), if

1

there exists a trajectory x(t), with x(to) ¢ a, and satisfying
c
x(tz) e B {1.4.7)

for t t £ +T).
or some 22[1, o )

1.5 Discussion

(1) 1In the case where o < B, any system (1.1.1) is necessarily

uniformly semi-finally stable with respect to the sets (a, B, I).

(2) Ve note that, in general, a system (1.1.1) being (semi~)finally

stable with respect to the sets (o, B8, t. & I) is necessarily

1
uniformly (semi-)finally stable with respect to the sets (¢, 8, I);
but the converse is not necessarily true, i.e. it is possible that
a system {(1.1.1) is uniformly (semi-)finally stable with respect

to the sets (@, B, I), but not (semi-)finally-stable with réspect

to the sets {(a, B, t, € I), for some given t, € I.

1



(3) It is to be noted that definition 1.3.4 implies definition
1.3.5 provided the extra condition

{(iii) for any trajectory x(t), the condition
x(t ) € B/a
implies that
x(t)) e g

But the converse is not necessarily true, i.e. a system may be
strongly semi-finally stable with respect to the sets (a, B, tl e 1),
without being strongly semi-finally stable with respect to the

sets (o, B, I).

(4) 1In definition 1.3.6, the first part implies the second part, i.e.,
if a system is not semi-finally stable with respect to the sets
(a, B, I}, then it is necessarily not semi-finally stable with
respect to the sets (a, B, t1 e I}, for any t e I. On the other
hand, it may happen that a system is semi—finally.stable with
respect to the séts'(a, B, 1), and not semi—finaily stable with

e I), for some t

respect to the sets (a, B, t e 1.

1 1

(5) One can define final—étability with respect to the sets (a, B, t, ¢ I)

1

in terms of semi-final stability, i.e., definition 1.4.2 is

equivalent to the following definition:

System (1.1.1) is finally-stable with .respect to the sets

(o, B, t, € 1), if it is semi-finally stable with respect to the

1

sets (a, B, t, € I), for all t2 € [él’ to+T).

2

(6) It is evident that a system (1.1.1) may be strongly finally-stable

with respect to the sets (¢, B, I) without being strongly-finally



stable with respect to the sets (a, B, t. ¢ I), for some tl e I.

1
This 1s an essential difference between definition 1.4.4 and

definition 1.4.5.

{7) Now, we redefine the concept of finite—time stability introduced

by Weiss and Infante [35,36,37] in the following manner:

Definition 1.5.1: [36,18]

System (1.1.1) is stable with respect to the sets (a, B, I), a < B,

if it is finally-stable with respect to the sets (a, B, t e I).

Definition 1.5.2: [36]

System (1.1.1) is quasi-contractively stable with respect to the sets
(¢, v, I), a >v, if it is finally-stable with respect to the sets

(C(, v, ID.

Definition 1.5.3: [36]

System (1.1.1) is contractiveiy-stable with respect to the sets (a, B, Y,

.

Yo ¢ < B, if

(1) the system is finally-stable with respect to the sets

(o, B, t, € 1), and

(ii) it is finally-stable with respect to the sets (a, y, I).

Definition 1.5.4: ﬂﬂ

System (1.1.1) is quasi-expansively stable with respect to the sets
(a, v, I), aC v, if it is finally-stable with respect to the sets

(a, v, I),

n,



Definition 1.5.5: ‘[}8]

System (1.1.1) is expansively-stable with respect to the sets (a, 8, vy, I),
e Yy < B, if
(i) the system (1.1.1) is finally-stable with respect to the sets
.(a, B, t,e1I), and

{ii) it is finally-stable with respect to the sets {a, v, I).

These definitions show that the concept of finite-time stability intreoduced
by Weiss and Infante [bé] and developed by them and several other authors
[B,l6,17,18,35,36,3i] is included in this new concept of final-stability.
L
B. We terminate this discussion by mehtioning that a treatment of the case of

a scalar differential equation can be found in [R{].
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§2, GENERAL THEQREMS ON THE DIFFERENT TYPES OF SEMI-FINAL STABILITY

Semi-final stability

The case 0t < B is trivial, i.e., any system (1.1.1) is semi-finally
N

stable with respect to the sets (a, 8, I), a < 8. Hence, the following

theorem is concerned only with the case o <t B.

Theorem 2.1,1:

System (1.1.1) is semi-finally stable with respect to the sets (a, B, I)
o<k B, with B an open set, if there exist two functions
V[x,t] £ Cl[Bc X I:l, and ¢(t) ¢ RI:IJ such that

alB

BC
(i) Vm (tO+T) and VM

(to) are finite.

{i1) V[x(t),t] = ¢{t), t £ I, aleng any trajectory x(t), with
initial condition x(to) e ofB, as long as x(t) e B°.
t +T c

o B8 _ wo/B

(iiz) J $(t)dt < Vm (t0+T) VM (to)

o

We note that the theorem is valid for any connected set o (not necessarily

open). This has the advantage that the theorem can be applied to the

. . c
case where a is a point X, € B~

Semi-final stability with respect to the sets (o, 8, t, € I):

1. The case o  I(8).

Theorem 2.82.1:

System (1.1.1) is semi-finally stable with respect to the sets

(v, B, t1 e 1), ac:I(B), if there exist a set vy, YD a, Y o I{(R),

two functions V[x,t] £ Cl[Ic(y) x I*_], and ¢(t) ¢ R[I*J , where



11

I - [t .t,], such that

c
. R Fr.y . .
(1) Vm (tl) and VM (tz), all t_ ¢ [fo,tl), are finite.

2
. *
(i1i) V[x(t),ﬁ] < ¢(t), t e I , along any trajectory x(t),

with x(to) e «, as long as x(t) ¢ IC(Y).

o1 g® Fr.y
(iii) J $(tyde SV (€)) - V" T (r)) for all t e [to,tl)
t2
The conditions of the theorem imply that t, > t . The case
£y =t is trivial, since any system (1.1.1) is semi~finally

stable with respect to the sets (a, B, to e I), o< B.. [For the

proof of the above theorem refer to 2.3.1 (1) Chapter II ).

The general case:

Theorem 2.2.2:

System (1.1,1) is semi-finally stable with respect to the sets

{a, B, £, ¢ 1), t, > to’ if there exist an open set vy, ; < I{g),

1
S1X fun.ctions Vi[x,t] g ¢l [Yc x‘IJ, ¢i(t) £ R]:I] , 1= l,.2.,.';;

such that

41

c
) Y /v . .
(i) Vlm(to+T) and VlM (to) are finite.

(ii) Vlfx(t),g] < ¢1(t), t ¢ I, along any trajectory x(t),
x(to) e afy, as long as x(t) € YC.
t +T
. ° ¥© aly
(iii) J ¢1(t)dt < \_!lm(toﬂ‘) - VlM (to)

t
o

¢
. R Fr.y
{(iv) VzM(tl) and Vzm (tz) for all t2 £ (tl, to+T), are
finite.

(v) Vztk(t),il < (L) toe [Fl’ t0+T), along any trajectory
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. , c
x(t), with x(to) £ a, as long as x(t) e v .

“2 Fr.y B¢
(vi) J ¢2(t)dt LY (t2) - VZM(tl)’ all t

om € (tl, t0+T)

2

&

c
i B Fr.y ; .
(vii) V3m(t1) and V3M (t3), all t3 £ [}o,tl), are finite.

(viii) V3[x(t),t:| < ¢3(t), t e [to’tl)’ along any trajectory
x(t), x(to) € o, as long as x(;) E YC.
t

1
{ix) J ¢3(t)dt <V

t
3

c
® ey - viEY

NN v (Eg)s all t, € [to,tl).

Proof of theorem 2.2.2:

Conditions{i) - {(iii) ensure that the system is semi-finally

staﬁle with respect to the sets (o, vy, I), by Theorem 2.1.1

Let x(t) be an arbitrarily chosen trajectory with x(to) £ a,

and suppose, contrary to the expected conclusion that
3 c . i R . - <. R
x(tl) e B o : (2.2.1)

Since the system is semi-finally stable with respect to the sets

(a, v, I), one of the following situations has to occur:
{(a) There exists a t, € (tl’ t0+T) such that

x(tz) e Fr.y, x(t) ¢ Yc, t e [}l,tz) (2.2.2)
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In this case,

t
2.
vk, ] = ylxte )t ]+ J ylx(ey,t]de
t
1
By (v) = (vi), we get
v, [x(e,),6,] < Vo Ve, (2.2.3)

which contradicts the assumption (2.2.2}). Thus, there is

no t2 3 (tl’ to+T) satisfying (2.2.2).

(L) there exists, then, a t_ & [ﬁo,tl), such that

3

x(t,) € Fr.y, x(t) ¢ ¥, all ¢ ¢ (ta,tlj (2.2.4) .

Fig. 2.2.2

In this case, conditions (2.2.4) and (viii) - (ix) yield
8¢
v [xGep,e ] < vy (e)) (2.2.5)

which constitutes an obvious contradiction . to the original

assumption (2.2.1).

. c .
Hence, the assumption that x(tl) e B~ is false, and we must

conclude that

x(tl) £ B {2.2.6)



Since the above argument is independent of the choice of the
trajectory x(t), x(to) £ o, it holds for all trajectories

emanating from a at t = t This completes the proof of

Theorem 2.2.2.

The assumption £, >ty in the above theorem does not constitute a
restriction, since either: {(a) a< B, and hence any system (1.1.1)
is semi-finally stable with respect to (o, B,.to e I), er (b) «<t 8,
and then any system (1.1.1) is not semi-finally stable with respect

to the sets (o, B, t0 e I).

The assumption that y is an open Qet, is eggsential to the application
of theorem 2,1.1. Thié restriction may be avoided by replacing the
conditions (i) — (iii) by the more general statement that system (1.1.1)
is semi—fipally stable with respect to the sets (a, vy, 1}, provided of
course, the possibility of proving this fact by a theorem other than
Theorem 2.1.1, if v is not open. The requirement that y exists

" .constitutes; however, a-restriction in the sense that Theorem 2.2.2 is

n

not applicable in the case where B is a point x; € R7,

Corollary 2.5.1:

If there exists a t1 £ (to, t0+T) such that all the conditions of
Theorem 2.2.2 hold, then system (1.1.1) is uniformly semi—finally

stable with respect to the sets (a, B, I).

Strong semi-final stability:

Theorem 2.3.1:

System (1.1.1) is strongly semi-finally stable with respect to the sets

(@, B, 1), a“/B # @, if there exist two functions V[x,é] £ Clﬁfl X il,
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(L) e R[ﬁ], such that

(i). system (1.1.1) is semi—finally stable with respect to the

sets (o, B, I),

c
.. B, . o /8
(11)_ Vm(t), t e (to, t0+T), and V /

M (to) are finite,

(iii) V[;(t),t] < ¢(t), t e I, aleng any trajectory x(t),

x(to) e «5/8,

. /8
(iv) J p(erar < vy - v PPe ), all ¢
t

(o]

. (to’ t0+T)

This theorem will be proved in Chapter II. We note that condition (i)
is automatically satisfied in the case a < B, and a/8 = 8%, In the
case where act B, one may apply Theorem 2.1.1. Moreover, the condition
a®/B # ¢ is not restrictive, since the case a*/B = ¢ is trivial, i.e.,
any system (1.1.1) is strongly semi-finally stable with respect to the
sets (o, B, I), provided it is semi-finally stable with respect to the

same sets.

In the above. theorem V[ﬁ,ﬁ] is required to be defined for éll-x £ RF,
and Vﬁ(t) must be finite for all t ¢ (to’ to+T). The following theorem

is less restrictive in some respects; nevertheless, we require that

= . . . n
B = 8, i.e. B is a closed set in R .

Theorem 2.3.2:

System (1.1.1) is strongly semi-finally stable with respect to the sets
(e, B, 1), o/B # @, if there exist two functions V[k,é] 3 Cl[ic(s) x i],

p(t) € R[i], such that

(1) system (1.1.1) is semi-finally stable with respect to the sets

((!., g, 1),



[
(ii) v& /8

Fr.8
M Vm

(to) and (t), t € (to, t0+T), are finite

(iii) V[ﬁ(t),i] < ¢(t), t ¢ I, along any trajectory x(t),
x(to) € aCIB, as long as x(t) ¢ IC(B),

t
1
(iv) J p(ae < v Py -

t
o]

vac/B

M (to), all t

) € (to, tO+T)

Proof of Theorem 2.3.2:

Let x{(t) be an arbitrarily chosen trajectory of system (1.1.1) with

. a o c
initial condition x(to) £ a /B.
Suppose, contrary to the expected conclusion, that

x(tz) e B, for some t, ¢ (to, t0+T) (2.3.1)

2

Since B is closed, then there exists a t. & (to,té] such that

1

x(t)) € Fr.8, x(e) ¢ 85, te [t ,t) | (2.3.2)
- .but then.
. : t R
VEdH)JJ =VBGBLtJ +J Vx(t),t]dt
t
0
t
oS/ 1.
SV e+ J v[x(t),t]at
t
(o]
Using (iii) - (iv), we get

B

vlxcepe] < v TR (2.3.3)

. . . A c
which constitutes the reguired contradiction. Hence, x(t) € 8,

for all t € I.

Using the fact that the above argument holds for any trajectory x(t)

16
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. c - .
emanating from o /f at t = t, and condition (i), we conclude that the

system 1s strongly semi-finally stable with respect to the sets (a, B8, I).

This completes the proof of Theorem 2.3.2.

Remark 2.3.1:

A similar theory may be established concerning strong semi-final stable

systems with respect to the sets (a, 8, t. € I)}). The negation of these

1
results is also possible. This is done, in more detail, in the next

chapter.

Instability theorems:

(The following theorems are special cases of more general theorems

established in Chapter II, so we omit the proofs here,)

1. We know that any system (1.1.1) is semi~finally stable with respect
to the sets (o, B, I), provided acs B. So the following theorem is

restricted to the case o cé B.

Theorem-2.4.1:

System (1.1.1) is not semi-finally stable with respect to the sets:
(o, B, I), af/B # @, if there exist a point X € a/E, two functions

V[x,t:l £ Cl[IC(B) x I:l, and ¢{t) ¢ R[I:], such that

(i) vﬁr'ﬂct), all t ¢ (¢, £ +T), is finite,

(ii) Vv[x(t),t] > ¢(t), t ¢ I, along the trajectory x(t), x(e ) =%,
as long as x(t) € I1°(B),

.
1
(iii) J 6 (t)de ;vf{r'ﬁ(tl) = V[x, ot ], all e (t, £ +T).

t
o



The condition a/E # @, guarantees the existence of at least one point

x &£ afBf. We note that B is not required to be open as in the stability
theorem 2.1.1 However, the restriction, a/B # @ can be avoided by
assuming that V[g,é] € CIERn X i], and condition (iii) replaced by

. t
Git) © | e(ae 2 vB( ) - V[x ,t ], all t. e (¢, t +T)
= "M'"3 o’ o'? 1 o’ o )
t
Q

This implies, of course, that Vﬁ(t) must be finite [instead of the

condition on VFr'B

" (t)). It is to be noted, moreover, that X, € a/B.

2. If ac B, then any system (1.1.1) is certainly semi-finally stable with
respect to the sets (a, B, t, € I). On the other hand, if ad: B8, thern

any system (1.1.1) is certainly not semi-finally stable with respect to

the sets (a, B, t0 € I). Bearing this in mind, we can prove the following

theorem for the case t1 > to.

Theorem 2.4.2:

System (1.1.1) is not semi-finally stable with respect to the sets

» %
{e, B, £t € I), t >ty if there exist two functions V[},f] £ Cl[kn x I ],

1
$(t) ¢ R[If], where I* = [to,tlj, such that

. B . . .
(i) VM(tl) is finite
{ii) there exists a point X €, such that

\'l[x(t),t] > o), teT

along the trajectory x(t), x(to) = X3 and

t
1
' J ¢ (t)dt ;VS(H) - v[xo,coj. )

t
o
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§3. GENERAL THEQREMS ON THE DIFFERENT TYPES OF FINAL-STABILITY

Final-stability

Theorem 3.1.1:

System (1.1.1) is finally-stable with respect to the sets (a, B, I), if
there exist two functions V[x,t] e cl[R" x ﬁ], ¢(r) e R[I], such that
B® o
(i) Vm (to+T) and VM(to) are finite.

(ii) v[x(t),t] < ¢(t), t ¢ I, along any trajectory x(t) with x(t ) € e

t0+T Bc ' a
(iii) J ¢ (t)dt < Vm (t0+T) - VM(to)

t
o

Here, we allow o to be any connected set. B, however, must be an open
. A - n
connected set. As before, this means that o may be a point X € R .

We note finally that,.if the conditions of Theorem 3.1.1 hold, then the

“conditions of Theorem 2.1.1 are also satisfied and system (1.1.1) is semi—

finally stable with respect to the sets (a, B, I), which fact is in our

favour, since final-stability implies semi-final-stability with respect

to the same sets.

This theorem will be proved in Chapter II where we give more detailed

results concerning this type of final-stability.

Final-stability with respect to the sets (a, B, t, ¢ I)

Theorem 3.2.1:

System (L.1.1) is finally-stable with respect to the sets (a, B, L e I)
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if there exists a connected set v, ;c: 8 such that

(a) system (1.1.1) is semi-finally stable with respect to the sets
(o, ¥, t1 € I),.
and if
(b) there exist two functions V[},ﬁ] £ Cl[é - I(Yj], d{t) = R[i],

such that

. Fr.B Fr.y ) . .
(1) Vm (ta) and VM (t2) are finite for all t3 £ (tl’ to+T),

"and all t2 £ [il’ to+T).

{(ii) V[%(t),i] < ¢{t), t ¢ [}1, t0+T), along any trajectory

x(t), x(to) ¢ o, as long as x(t) ¢ B - I(y)

t

3 .
Gii) | o(de < v2Pey < v (), for all

rr Sm——rm

4

t, e E:l, £ +T), and t3 e (t,, £, +T)

Here all the sets under consideration are connected; moreover, B is an

Sopén’ set.

Corollary 3.2.1:

If there exists a t; € I such that the conditions of Theorem 3.2.1 hold,
then system (1.1.1) is uniformly finally-stable with respect to the sets

(e, B, I). ’

Remark 38.2.1:

If o I(B), o a connected set, then system (1.1.1) is certainly semi-
finally stable with respect to the sets (a, B, t0 e I). This means that,

in Theorem 3.2.1, the condition (a) is satisfied for y = a, t, =t

1 o’

in this case, Theorem 3.2.1 reduces to a theorem on stability with respect
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to the sets (a, B, I) given by Weiss and Infante [36]. We note, however,
that in Weiss and Infante the sets o and B are less general. In fact,

they are of the form
o ||x|| < a, B ||x|| < b, a<hb

wihere ||x1| is the euclidean norm.

Strong final-stability:

The following theorem can be proved in the usual manner. Note that
condition (i) ensures that the system is finally stable with respect to

the sets {(u, B, I).

Theovem 3.3.1:

System (1.1.1) is strongly finally-stable with rcspect to the sets

(o, B, £, € I), if there exist four functions Vi[x,t] e cl [Rn X I],

1
¢; () € R[I], i = 1,2, such that

(i) Vl[x,ﬁ] satisfies all the conditioné of theofém 3.1.1.
B ac
(ii) V2m(t), t e [}l’ to+T), V2M(to) are finite.

(iii) v, Tx(t),t] < ¢.(t), t ¢ I, along any trajectory x(t),
2= 2
with x(to) e at.

t
c

2
. R )
(iv) J ¢2(t)dt < VZm(tz) - VZM(to)’ for all t2 £ [}1, to+T).

t
o]

{f must be open by Theorem 3.1.1.)

Corollary 3.3.1:

+System (1.1.1) is strongly finally-stable with respect to the sets

(a, B, I), if, in Theorem 3.3.1, conditions (ii) and (iv) are replaced

by

21
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C
(ii)* Vsm(t), te (£, £ +T), and Vo (t ) are finite.

o c . *
(1ii)* for each xo € ¢ , these exists a t ¢ (to, to+T) such that

t
2 .
R *
J ¢2(t)dt ;Vzm(tz) - V[xo,tO], all £ € [t £,*T) -

t
o

Instability Thecrems:

One can state and prove many theorems on non-final-stability. We, however,
limit ourselves to some of them (which can be proved in the usual way).
A more detailed account concerning this aspect of the theory 1s given

in Chapter II.

Theorem 3.4.1:

System (1.1.1) is not finally-stable with respect to the sets (a, B, I},

af] B # @, if there exist two functions V[x,ﬁ] € Cl[B x i], o(t) € R[i]g
*

a point x, €@ B, and*a t e I such that

. ‘ ' ok
(1) Vﬁ(t) and VS(t) are finite for all t ¢ I, t > t .

(ii) V[?(t),ﬁ] > $(e), t ¢ I, along the trajectory x(t), x(to) =X,
as long as x(t) ¢ 8,

t
2 *

(iii) I $(t)dt ;Vﬁ(tz) - Vfl(tl), all t,,t, eI, t, > toxzt.
tl
We note that, if B is an open set, then it is possible that system
(1.1.1) is finally-stable with respect to the sets (¢, B, I) and, at
the same time, there exists a trajectory x(t), x(to) € a, such that

x(t0+T) e Fr.8., On the other hand, if x(tO+T) ¢ B, for each trajectory

x{t) emanating from o at t = to’ then the system is certainly finally-
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stable with respect to the sets (a, B, I}, provided R is open.

Theorem 3.4.2:

System (1.1.1) is not finally-stable with respect to the sets (a, 8, I),
a/B # @, if there exist two functions V[x,t] sCl[é x i],_¢(t) e R[I],

and a point x € af/B, such that

(i) V;r's(t) and Vﬁ(t) are finite for all t ¢ I.

3

(ii) %Ex(t),ﬁ] > ¢(t), t ¢ I, along the trajectory x(t), x(to) = x

as long as x{(t) ¢ é.

t
2
(iii) f $(t)de 2 VE(e,) - VTP
t
1

(tl), all tl,tz e I, tz >t

Theorem 3.4.3:

System (1.1.1) is not finally-stable with respect to the sets (a,,B’ t1 e 1),
- . * k) 1 *
1f there exisgt a t ¢ (tl’ t0+T), two functions V[g,ﬁl £ C‘[ﬁ_x I“],

) - % : * %
and ¢(t) ¢ RLI_J, where 1 = [ﬁl,t J, such that
i) vB(t") and vP(t.) are finite
M m 1 :

. * .
(11) -v[x(t),t] > ¢(t), t ¢ [tl,tJ along the trajectory x(t),
x(to) = X for some X, € @, as long as x(t} & B.

*
t

‘s B, *, _ B
(iii) J p(t)de > VM(t ) Vm(tl).
t:1
We note that since conditien (ii) in the above theorems is difficult
to verify for the given trajectory only, it has to be verified for

the whole system in general. This remark indicates that the conditions

of the above theorems are too restrictive (in the sense that they are

independent of the set o, as far as practical applications are concerned)}.
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§4. CONCLUSION

As expected, the theory of final-stability established in this
chapter is more general than the theory of finite-time stability [36],

in the sense that, in most cases, strouger results have bean proved.

The advantage of o being, in general, only a connected set and not
necessarily open is obvious, since this aliows us to consider cases
where @ is a point in thé state space R". This becomes more obvious
if we consider one of the simplest definitions of controllability,
i{e., there exists a control u(*) such that the trajectory x(t) of the
system x = g{x,u,t), emana;ing from X, € R® at t = ts reaches the
neighbourhood of another point Xy € R" at time te. Of course, whether
this belongs to the domain of semi-final stability or final-stability
depends on what we want to happen to the trajectory x(t) after time

Ee This will be considered in more detail in the following chapter.



CHAPTER II

Ordinary Differential Equations Under the Influence
of Perturbing Forces "Forced Systems'
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51, INTRODUCTION, LEMMAS AND DEFINITIONS

Introduction

In Chapter I the theory of final stability of systems of the form
x = f(x,t) (1.1.1)

where x is an n-vector (the state vector) was discussed. This chapter

is concerned with the final-stability of systems under the influence

of perturbing forces.
Let R” be the n-dimensional euclidean space and let

€ {u(x,t)jus R" x =R"} . (1.1.2)

[¥5]
]

[t,t+1), t eR, Ter, T>0)
o’ o '’ o ? ? -

fl

(z

be a given set of functions which we call the set of admissible controls.

This is done in order to indicate the poscible connections between

final-stability and the known concept of controllability.

Let g : I x R® x §" + R® be smooth enough so that there is no difficulty
with the existence of solutions of the differential system

x = g(x,t,u) : (EC)
i.e., for each u(') ¢ Sm, and each X, 2 RF, there exists at least omne

function x(t; xo,to,u(-)) with the Properties

;[t; X ,to,u(')] = g(t,x(t; xo,to,u(-)],u(-)}, t el

o
and
x[to; xo,to,u(')] = x

Q

We call u{+) a control, and x(t; xo,to,u(-)] a response from X,
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We note that for a given control u(*) ¢ s® and X, € Rn, there may exist
many responses from Xy i.e., many functions of the form mentioned
above. To each one of these functions we associate a trajectory f{or
motion)

x(t) = x(t; xo,to,U(°))

where the time t plays the role of a parameter.

Definitions

We are mow in a position to define the different types of final-

stability. Let U be a subset of Sm, then

Definition 1.2.1:

System (EC) is semi-finally stable with respect to the sets (a, B, U, I),
if, for any trajectory x(t) = x(t; xo,to,u(-)), uf+*) ¢ U, the condition

x, €@ implies the existence of a t; & I such that
x(e) = x{t)5 x e ,u()) €8

where t1 may depend on the particular trajectory.

Definition 1.2.2:

System (EC) is not semi-finally stable with respect to the sets (a, 8, U, I},
) ) . * * * '
if there exists a trajectory x (t) = x [t; xo,to,u (-)), for some

& %
X, € af/B, and u (*) e U, such that x (t) ¢ Bc, all £t £ I.

From these definitions, we conclude that if o < B, then system (EC)

is certainly semi-finally stable with respect to the sets (o, B, U, I).
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Definition 1.2.3:

System (EC) is semi-finally stable with respect to the sets

(e, B, U, t. € I) if, for any trajectory x(t) = x(t; xo,to,u(-)),

1

u(*) € U, the condition x €@ implies that X(tl) € B.

Definttion 1.2.4:

System (EC) is not semi—finally stable with respect to the sets
. . . * * *
(e, B, U, t, ¢ I), if there exists a trajectory x (t) = x [t; xo,to,u (-)],

% *
for some u (*) € U, and some X, € 0, such that x (tl) € Bc.

It is to be noted immediately that system (EC) may be semi-finally
stable with respect to the sets (o, B, U, I) without being semi-finally

stable with respect to the sets (a, B, U, t, € I), for some t1 e I.

1

Definition 1.2.6:

System (EC) is uniformly semi-finally stable with respect to the sets

(a0, B, U,.I), if there exists a t, e I such that the system is semi-

finally stable with respect to the sets (a, 8, U, t1 £ I);

Definttion 1.2.6:

System (EC) is strongly semi-finally stable with respect to the

sets (a, B, U, t, € I}, if

1
(1) it is semi-finally stable with respect to the sets

(a, B, U, 1), and

.. . i C
(ii) Iany trajectory x(t) =_§[t; xo,td,u(°)}, X € o, u(-) e U,

is such that x(tl) € Bc.
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If condition (ii) holds for all tl e I, and X, € ac/B, then system (EC)
is said to be strongly semi-finally stable with respect to the sets

(a, B, U, I).

Definttion 1.2.7:

System (EC) is finally-stable with respect to the sets (o, 8, U, I)
if, for any trajectory x(t) = k(t; xo,to,u(-)), u{+) € U, the condition

X, €« implies the existence of a t. e I, such that x(t) & B8, for all

1

telI, t>t where t, may depend on the particular trajectory.

1}

We note that this does not imply that x(to+T) e B, 1f B is an open set.

Definition 1.2.8:

System (EC) is not finally-stable with respect to the sets (a, 8, U, I),
. ) . * * *
if there exists a trajectory x (t) = x (t; X oty (-)),_for some

%

X, €@, and some u (+) e U, such that
s *'- - i :
x (£) e 8

% *
for all t e I, t >t , for some t € I,

Definition 1.2.9:

System (EC) is finally-stable with respect to the sets (a, B, U, t1 e 1),
if, for any trajectory x(t) = x(t; xo,to,u(-)], u(+) e U, the condition

X, € impiies that x(t) ¢ B, for all t e I, t ;=t1.
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Definition 1.2.10:

System (EC) is not finally-stable with respect to the sets {(a, B, U, t, e I),

1
. . . * * *
if there exists a trajectory x (t) = x (t; X st U (-)), for some
* * c
X, € a, and some u (+) ¢ U, such that x (tz) e B, for some t, € I,

t, >t

2 1°

Here again, we note that system (EC) may be finally-stable with respect
to the sets (a, B, U, 1) without being finally-stable with respect to

the sets (o, B, U, t, ¢ I), for some t, € I.

|

Definition 1.2.11:

System (EC) is uniformly finally-stable with respect to the sets

(e, B, U, I) if there exists a t e I such that the system is finally-

1

stable with respect to the sets (o, B, U, t, € Ij.

Definition 1.2.12:

. System (EC) is'strongly finally-stable with respect to the sets

(a, B’ U’ I)’ if

(1) it is finally-stable with respect to the sets (s, 8, U, I},
and
(ii) for any trajectory x(t) = k(t; xo,to,u(-)), u(+) ¢ U, the

o c . . . *
condition x €a implies the existence of a t ¢ I, such that

*
x(t) e Bc, for all t e I, £ > ¢t

.
where t may depend on the particular trajectory.



Definition 1.2,13:

System (EC) is strongly finally-stable with respect to the sets

(a, B’ U’ t £ I), i.f

1

(i) _ it is finally-stable with respect to the sets (a, B, U, I),
and
(ii) for any trajectory x(t) = x(t; xo,to,u(')], u(+*) ¢ U, the
condition X, € o implies that x(t) ¢ Bc, for all t e I,

| S
1

t

v

Remark 1.2.1:

A theory concerning system (1.1.1) can be established by setting

n

U = {u(*) = 0} in the system

;; = f(x,t) + G(x,t)u : (EG)

Comparison Principles

In order to establish the intended theory for éystem (EC), we need to
state some essential definitions and lemmas [4,13,18,18.‘1,18.2].

Let V[x,t] denote a mapping

v: R%.x I + Rr! (1.3.1)

Definition 1.3.1:

% *
V[x,t] is said to be of class Lljy,I], Yo Rn, I <1, if it is
*
continuous in both (x,t) € y x I and satisfies a local lipschitzian

*
condition in x, for each t ¢ I . We write

30
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V*[?,E] = lim sup, V[x # bg(x.tu),e * h] - V[x,t] (1.3.2)
h-+0 h

o .

VM(t) = sup.V[x,t], V:l(t) = 1nf.V[x,t:] (1.3.3)

Xed XeQ

. . n
where o is a connected set in R .

Definition 1.3.2:

A function w(t,r) : I x Rl » R! is said to be of class @ if it is smooth

enough to ensure the existence of the maximal solutions of
r = w(t,r) (C)

%
over I. A function w £  is said to be of class & if, in addition,

w(t,r) is monotonic increasing in r for each t ¢ I.

Lemma 1.3.1: [4,13,18+1,18:2]
Let VEg;ﬁ] £ L[Y;il], 7}5 Rn, Ilég‘l, and m(t,r) € Q. Suppose that "
V*[x,tj < w(e,V[x,t]) ‘ ' (1-.'3.4)

for all (x,t) ¢ y x I,, and all u(+) ¢ U, where U is a given subset of

Sm. Let r{t) be the maximal solution of {C)} with initial condition

r{t,) = r;, t; € I,. Then, for any trajectory x(t) = k[t; xo,to,u(-)],

u(*) e U, X, € Ys the condition . -

v[x(t,),t,] =1, | (1.3.5)
implies that

v[x(t),c] < r(t) (1.3.6)

for all t ¢ Il’ t2t,,as long as x(t) e v.
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Lemma 1.3.2:  [18]
. . *
If, in the previous lemma, w e & , and
%
v [x,t] < wlt,v[x,t]) (1.3.7)
for all t ¢ I,,xev, u{«) € U, then (1.3.5) implies that

v[x(t),t] < ;r(t) (1.3.8)

for all t ¢ Il’ t > tl’ as long as x{t) ¢ Y.

Remark 1.3.1

Let v be a closed set in Rn, and I, = [ﬁ,ﬂ], then: (a) inequality
(1.3.4) need only hold for all x £ I(y), t ¢ [g,b). The conclusion
(1.3.5) stiil holds at t = b even if x(b) & Fr.v, provided of course
that x(b) = lim x(t) exists. (this condition is usually implied by
t+b :

the conditions of the theorem under considerationm.); but (b) for

conc1u51on (1 3. 8) to hold for all x e vy, t € I , £ > tl’ we need to

'assume that condition (1.3. 7) holds for all x ¢ S(y), t e EE. where

5(y) is some open set containing vy and I [},b+e), e > 0 being arbitrarily

lg

small.

(This remark enables us to avoid mentioning these facts throughout the

remainder of the thesis.)

Discussion

In order to be able to extend our results to contrel theory, i.e., to

controllability, we extend the previous definition of the different types

of semi~final and final-stability stated in 1.2 to the closed interval

= [po,t0+f1. In the seguel, when not stated otherwise, J will indicate-
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either I or I. We note, immediately, that the main difference lies in

the fact that tl may coincide with t0+T, in the case where J = 1.

Now, bearing in mind that the control subset U may be considered as a

single function u(+) ¢ Sm, i.e., U= {u(+}}, and assuming that the sets

¢ and B are not necessarily open but only connected sets, we give below

the definitions of different types of controllability.

Definition 1.4.1:

System (EC) is (a, B, i) semi-controllable if there exists a subset
U s™ such that the system is semi-finally stable with respect to the

sets (a, B, U, I).

Definition 1.4.2:

System (EC) is (a, R, t, € 1) semi-controllable if there exists a subset

1

m . . . .
Ue §, such that the system is semi-finally stable with respect to

the sets (a;-B, U, t; e I).

1

Definition 1.4.3:

System (EC) is said to be uniformly (a, B, I) semi-controllable if there

exists a t, € i, such that the system is (a, B, tl ¢ I) semi-controllable.

~ Definition 1.4.4:

Y

System (EC) is (a, B, i)—controllable if there exists a subset Uc:_:_Sm
such that system (EC) is finally-stable with respect to the sets

(a, B, U, i).
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Definition 1.4.5:

System (EC) is (a, B, tI £ f)-controllable if there exists a subset

U Sm, such that the system is finally-stable with respect to the

sets {(a, B, U, t, € I).

It is said to be uniformly (a, B, I)-controllable if there exists a

t, € I such that the system is {(a, R, t1 £ f)- controllable.

Remark 1.4.1:

Bearing Remark 1.3.1 in mind, the lemmas of section 1.3 can be extended
to cover the case J = I. However, whenever the case limit t = to+T

is considered, we shall avoid using Lemma 1.3.2
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§2. GENERAL THEOREMS ON THE DIFFERENT TYPES OF SEMI-FINAL STABILITY.

2.1 Semi-final stability

(1) Any system (EC) is semi—final stable with respect to the sets
(a, B, U, J), U< S", a < B. So, we assume that a<t g. IFf

J I, we assume, furthermore, that g is an open set. Let

=
It

W(a, B, J, U) = {x|x = x(t; xo,to,ut')], all t € J, X € é/B,

and all u(:) € U} (2,1.1)

Theorem 2.1.1:

System (EC) is semi-finally stable with respect to the sets (o, g, U, J),

o B, if there exist two functions VEg,ﬁ] € L[ﬁ/s,q], and w(t,r) e Q

such that

(i) VG/B(to) and VE/B(tO+T) are finite.

M

(ii) »V*[x,t] ;w(t,v[x,t]),.for all t e I, x ¢ ﬁ/B, u(+) e U.

(11i) the maximal solution rM(t), rM(to) = VOl/B

M (to), of equatioﬁ‘

r = w(t,r) (C)

1is such that

/

(e +m) < VB 4y (2.1.2)
M o m o

To show that Theorem 2.1.1-1 is a special case of Theorem 2.1.1 it will

be sufficient to take w(t,r) = ¢(t) and note that the solution r(t),

r(t ) = V;/B(to), is given by
t
r(t) = Vﬁle(to) + J ¢(s)ds (2,1.3)
t

o
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Remark 2.1.1:

In practical applications, it is usually difficult to determine the set
W defined by (2.1.1). This does not constitute a restriction to the
application of the theorem, because the conclusion will still be valid
if we replace W by a larger set V., containing W, bearing in mind that
in this case

VT-:+/ B

W8
n (to+T) 'ivm (tO+T)

and hence condition (2.1.2) will be satisfied. We note, moreover,
that the set W; may either be (a) the space Rn, or (b) a given set

determined by some aspects of the problem under consideration.

This remark applies to all the results established in the thesis,
providing the appropriate modifications are made. Hence, we need not

repeat it again.

Proof of Theorem 2.1.1:

W/R = shaded area

Figure 2.1.1




(a)

(b)
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Any trajectory x(t) = x[t; xo,to,u(°)), u(+*) ¢ U, with
® *
X, eafl8, is such that x(t ) € B, for some t & J (certainly

*
fort =1t ).
0

Let x(t) = x[t; xo,to,u(°)), u(+*) e U, be any trajectory of (EC),
with x € a/8, and suppose contrary to the expected conclusion,

that

x[t; xo,to,u(')) e gS : (2.1.4)
for all t ¢ J. Since x(t) ¢ W, by (2.1.1), then

x(t; xo,to,u(-)] e W/B, all t ¢ J (2.1.5)

and

x(to+T; xo,co,u(-)) e W/ (2.1.6)

(for if J = I, then we must assume f to be open; in this case
{2.1.4) ensures that x(t0+T) £ BC. On the other hand, if J = I

then (2.1.4) implies (2.1.6) immediately.)

. . af : L . ..
But since V[?o’t;] <V B(to), the application.of (i),(ii)

M

and Lemma 1.3.1 gives
v[x(r),t] <, (), all t e J (2.1.7)

where rM(t) is the maximal solution, rM(to) = VG/B

M (to)’ of

equation (C). Using (2.1.7) and (2.1.2) we get the inequality

Vl:x(t0+T),to+T:] < yY/8

m

(tO+T) (2.1.8)

which constitutes an obvious contradiction to (2.1.6) in view of
W/B

m

the definition of V (t0+T). Thus, the original assumption

{2.1.4) is false, and there must exist a t, € J, such that
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x(tl) £ B.

Since the above argument is independent of the exact value of X
and the particular trajectory chosen, provided X, € o/B, and
u(*) e U, it holds for all trajectories emanating from «/Rf at

t = k. This completes the proof of Theorem 2.1.1.

(2) the following theorem was suggested to us by a similar theorem
on controllability [ié]. But, in addition to the fact that we
apply this theorem to sets rather thén points, the conditions are
much milder. It is to be noted, also, that, in the case of
controllability our theorem will yield another type of comtrollability
(Definition 1.4.1 ~ ITI) different from the type of controllability
of [12] which, in fact, corresponds to definition 1.4.2 — II with
t, = t0+T. This is tb say, that the:following theorem will not

reduce completely to the corresponding theorem in [1@], as far as

controllability is concerned.

Theorem 2.1.2:

System (EC) is semi-finally stable with respect to the sets (a, B, U, J),
agi B, (B open if J = I}, if there exist two functions

V[x,ﬁ] £ L[F/B,i], and w(t,r) € 2 such that

alB

(L) Yy

(to) is finite
% . -
i1y v [x,t] < w,V[x,t]), all t e I, x e W/E, u(*) ¢ U.
(iii) for any continuous n-vector function c¢(t), the conditions:

(a) C(to) e a/B,

() et +7) = lim c(t) ¢ W/g
t+t0+T
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imply that
lim V[c(t),t] =+ o (2.1.9)
tot _+T :

o
(iv) the maximal solution rM(t), rM(to) = Vﬁls(tn), of equation
{C) is such that rM(to+T) = lim rM(t) exists and is bounded
t>t +T
above. o

Proof of Theorem 2.1.2: (refer to Figure 2.1.1)

e o/Bs u(+) e U, be any trajectory

Let x(t) = x(t; xo,to,u(-)], X

of (EC), then

x(t) e W, all t ¢ J (2.1.10)
Suppose, contrary to the expected conclusicn, that

x(t) e W/B, all t ¢ J (2.1.11)
Since B is open in the case J = I, (2.1.10) and (2.1.11) give

x(t_+T) ¢ W/8, ' S T (2.1.12) .
But then, by (iii) we get’

lim V[x(t),t] = + = (2.1.13)

t>t +T

)

On the other hand, using (i), (ii), (2.1.11) and Lemma 1.3.1, we get

Vx(e +1), e +T] < (t +T) (2.1.14)

where rM(t) is given by (iv). Since rM(t0+T) is bounded above, by (iv),
then (2.1.14) constitutes a contradiction to (2.1.13). Hence, the original

assumption (2.1.11) is false; the theorem follows.
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Remark 2.1.2:

To avoid the question of the existence of x(t +T) = lim x(t), one can
£ t0+T

modify the conditions of the above theorems in an appropriate way.

For example, conditions (i) and (ii1i) of Theorem 2.1.1 may be replaced

by

W/B

o {t), all t £ J, are finite

{(i)y* VExo,t;], all x € /R, V

{(1ii)* fer each L B, there corresponds a t(ro) £ J such that the
maximal solution rM(t;ro), rM(to;ro) =T of equation (C) is

such that

/B .
(t)) t = t(ro)

' W
rM(t,rO) < Vm

where B € R is such that
Von,tA] € B, all x_ ¢ afB.

For, in this case, assumption (2.1.4) will lead to the conclusion

VEg(t)i] é:rM(t;V[ko,tO]), all t_s J‘anq, by (iii)x,. -,

the above inequality gives
. W/
v_[x(t),t] <V B(t), for t = t(v[xo,toj)

which is the required contradiction.

Non semi-final stability

(1) Let, for any X, € RY and uo(-) € Sm,

Wo = Wﬁ(xo,uo,J)gg {x|x = x[t; xo,to,uo(-)), all t ¢ J}

(2.2.1)

then



Theorem 2.2.1:

System (EC) is not semi~finally stable with respect to the sets

(¢, B, U, J), a/B # B, U< gn, if there exist a control uo(-) e U,

a point x_ € a/B, and two functions VEx ﬁ] £ L[W [1(R),J] (t,r) Q*
P 0 s s o sJ | wlt,T) €

such that

(i) VI Pe) is finite, for all t e 3, £ > c_.
* - .
(i) Vv [xt] <oe,v[x,t]) all £ e I, x € W /1(B), and u(+) = u ().

(iii) the maximal solution rM(t), rM(to) = V[%O,t;], of equation (C) is

such that

VW&\Fr.B

rM(t) = m

{t), all t ¢ (to,to+T) (2.2.2)

and

woﬂFr. B
m

n,(t +T) <V (c *T), if J = I (2.2.3)

Remark 2.2.1:

Conditidn (2.2.3)-is dictated by the fact thaf'ine4uality‘(l.3{8 - II)

need not be strict at t = t0+T. (see Remark 1l.4.1 - Chaptér 1)

Remark 2.2.2:

An interesting special case of the above theorem can be deduced by

sctting wlc,r) = ¢(t) € R[ﬁ], and assuming that ﬁ'[élpqg trajectories
X .

of (EC)] exists (V = V). 1In this case, the solution r{t), r(to) =

VEko,té], of (C) is given by
t
r(t) = VE{o,to] + J 9(s)ds (2.2.4)

t
0

41



Furthermore, setting uo(') = 0 in system (EG) one obtains Theorem
2.4.1 - 1, provided the function V of Theorem 2.2.1 - II is replaced

- V.

by a functien V1

o

Proof of Theorem 2.2.1:

WO/I(B) = shaded area

Figure 2.2.1

(a) Suppose, contrary to the expected conclusion, that system (EC)
ppose, y )

is semi-finally stable with respect to the sets (o, B, U, J).

" (b) Consider any trajectory x(t) = i[t; xo,to,uo(-?}; where X, € a/é ,

and uo(°) e U are given by the conditions of the theorem, then

by (2.2.1)

42

x(t) e Wo, all t e J (2.2.5)

% *
By (a), there exists a t ¢ J, t > o such that

x(t*) e B (2.2.6)

Using the continuity of the trajectory, (2.2.5) and (2.2.6), we get

x(tl) e W fl Fr.B, for some £, € (to,tf] (2.2.7)

and
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x(t) € W /B, all t ¢ [t ,t)) (2.2.8)

(Refer to Figure 2.2.1).

But then, by (2.2.7), (2.2.8), (i), (ii), and Lemma 1.3.2 we get
Vx(e),t] < (0), all £ e (c_,t ] (2.2.9)

where rM(t) is given by (iii). If J = I, it may happen that t, = £ ¥T;

in this case, wa get
v[x(e),t] < n,(t), all t e (c_,t _+T), Vl:x(to+T), t0+T:] < 1, (t +T) (2.2.10)

(for Lemma 1.3.2 need not be true at t = to+T')

In both cases, (2.2.2) and (2.2.3) yield the required contradiction

to (2.2.7), i.e.
V[?(tl),ﬁ] < ViJ\Fr'B(tl)

Thus the assumption (a) is false. This completes the proof of Theorem

2.2.1.

(2) 1f R is open, then o/R # a/é, and it may happeﬁ that o and B8
are such that a/8 = @, but o/B # . In such cases, the above
theorem is not valid. The following theorem considers such a situation,

and is stated without proof.

Theorem 2.82.2:

System (EC) is not semi-finally stable with respect to the sets
(¢, B, U, J), a/B # @, if there exist a point X € a/ 8, a control

. %
uo(-) e U, and two functions V[x,tj gL,[Wo,J], wlt,r) ¢ @ , such that

. W_Ng
(i) Vmo

(), all t e J, t > t,s is finite
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(ii) V*Eg,ﬁ] < w(t,V[g,ﬁ]) for all x ¢ Wa, t e I, and u(+) = uo(-).

(iii) the maximal solution rM(t), rM(to) = V{}o,to], of equation (C)

is such that

W08
rM(F) §=Vm (t), all t ¢ (to,to+T) (2.2.11)
and
7, (£ +T) < Vzg\s(to+T)’ ifJ =1 (2.2.12)

(3) Using the following corollary, and the theorems stated above,
one may deduce some interesting results concerning the non-

controllability of system (EC).

Corollary 2.2.1:

System (EC) is not (a, B, J) semi-controllable if it is not semi-
finally stable with respect to the sets (a, B8,{u(+)}, J), for all

u(*) ¢ s,

Finally, we notethat the above theorems are meaningful in the case

et B only; so the assumption of/f # @ is not a restriction.

Semi-final stability with respect to the sets (a, B, U, t, € J):

* . : * n
(1) Let J = [ﬁo,tl), and define the set Z = Z(a, J , U), a <R,

U= s", as follows

* . . .
Z =2, J,U) = {x|x = x(e; x ,t_yul)],

*
for all x, ea teld, u(+) e U} (2.3.1)
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Theorem 2.3.1:

System (EC) is semi-finally stable with respect to the sets (¢, 8, U, t € J),
t, < t0+T, if there exist a set vy, Y < I(B), two functions

VEk,ﬁ] £ L[E/I(Y), 3%], and w(t,r) € Q*, such that

(1) the system 1s semi-finally stable with respect to the sets

*
(¢, ¥, U, J)).

(ii) VZﬂFr.Y

z .
" (t), t e ]:to,tl), and Vm/B(tl) are finite.

(iii) V*[x,éj < w(;,V{},ﬁ]), for all t ¢ 3;; X € E/I(Y), u(+) ¢ U.

(iv) for each t, € [to’tl)’ the maximal solution

£ (6), £y () = Vo' T Y (), of equation

i w(e,r) ©
is such that

r e £ V2 ) (2.3.2)

Obviously Theorem 2.2.1 - I is a special case of this theorem. To

see this, it will be sufficient to take w(t,r) = ¢(t) and y> a.

Remark 2.3.1:

To include the case where tl = t0+T, one can modify the assumptions

of the theorem in the following manner: we assume that w e 2 and

(i) V6] <o, v,E]D, all € e 35, x € Z/1(v), u(+) ¢ U.

(0" e < v P

1)

We note, however, that if t1 = t0+T, then the conclusion of the above



theorem is, in fact, final-stability with respect to the sets

(¢, B, U, I).

Proof of theorem 2.3.1:

46

.E/I(y) = shaded area

Figure 2.3.1

Let x(tj = x(t; xé,to,u(°)}, X, e.a, u{+) e U, be ény ﬁrajecpory of

* * )
(EC). Then, by (i), there exists a t e J such that
% —

x(t)evyne
' fwhere Z is given by (2.3.1)}.
Suppose, contrary to the expected conclusion that

6. = -
x(t)) e 8} Z =2/

Since y <= I(B), and using (2.3.3), (2.3.4) and (2.3.1) we conclude

] %
that there exists a t, € [p ,tl) such that

(2.3.3)

(2.3.4)
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x(t,) € Z A Fr.y, x(t) ¢ Z/Y, all t e (g,,t)] (2.3.5)
{(refer to Figure 2.3.1).
This relatiom, together with (ii), (iii) and Lemma 1.3.2, gives

VEx(t),é] < rM(t), all t ¢ (tz,tl} (2.3.6)
where rM(t) is given by (iv). Using (iv) again, we conclude that

z .
Vlx(e)e] < V2B Ge)) (2.3.7)

which is an obvious contradiction to (2.3.4). Thus, x(t,;) € B, the

theorem follows.

(2) The assumption, in the above theorem, that there exists a set
Y, y< I(B), makes it impossible to apply this theorem to the
case where B is a point in R, Hence, it is not possible to

}, t

conclude anything about the ({xo}, {x ¢ J) semi-controllability.

1 1

Note also that we have to verify condition (i) by means of the
.theory. established in Section 2.1 - II or any other. appropriate. .
method. . (This applies in the case aw= I(B) only.) The following

theorems aveid these difficulties.

Theorem 2.3.2:

System (EC) is semi—finally stable with respect to the sets
(a¢, B, U, tl £ J), if there exist two functions V[g,i] € L[i, J%],
and w(t,r) € 2 such that

(i) V;(to) and VZ/B

0 (tl) are finite.

(ii) V*Ek,ﬁj < m(t,V[x,ﬁ]), all t e J*, x e Z, u(*) & U,
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(i11) the maximal solution rM(t), rM(to) = V;(to), of equation (C)

is such that

r(t)) < V2B (e ) (2.3.8)

m 1

Remark 2.3.2:

The conditions of the above theorem may be modified, provided tl# tO+T,
to relax the inequality (2.3.8). This can be done as follows:

*
we £, and

* % - —
(11) Vv [x,t] < w(t,V[x,t:]), xe 2, te J*, u{+) e U.

(iii) rM(tl) §=Vm )

Remark 2,3.3:

Using Lemma 1.3.1, and the conditions of the theorem, one can show that
ry(t) 2 Vl:x(tl),tlj (2.3.._9)
for any trajectory emanating from o at t = t_. (2.3.9) then gives

r () 2 VBeCe,e] 2 viCe ) ~ (2.3.10)

This inequality and (2.3.8) yield

Z Z/8
Vm(tl) 5 Vm

(tl) (2.3.11)

. . . . n
which makes it impossible to reduce B to a point X € R,

The following theorem avoids the restriction (2.3.11) implied by the

conditions of Theorem 2.3.2.
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Theorem 2.3.3:

System (EC) is semi-finally stable with respect to the sets (a«, 8, U, t. ¢ J),

1
3 . 3 oy *
if there exist two functionc V[;,€] E L[Z, J J, and w(t,r) ¢ §, such that

. o . eas
(i) VM(FO) is finite,

{ii) for any continuous n—-vector function c(t), the conditions:
(a) c(to) £ a,
(b) c(ty) € Z/8
imply that

lim v[c(t),t] = + =
et

(ii) V*[x,t:l < ¢(t,V[:x,t:|), all t ¢ J*, x e Z, u(=) e U.

(iv) the maximal solution rM(t), rM(to) = V;(to)’ of equation (C) is such

that rM(tl) is bounded ° above.

Corolilary 2.3.1:

1}, ti € i) semi-controllable; if there exist:

* — - .
a control u (+) € Sm, two functions V[?,é] € LEWO*, J J, and w(t,r) ¢ @,

System (EC) is ({ko}, {x

where

*

W= W (x,u, J). [Refer to (2.2.1)] (2.3.12)

such that

(i) V[xo,to] is finite,

(ii) for any continuous n~vector function c(t), the conditions

(@ ot =x,

() c(t)) # Xy
imply that

lim v[c(t),t] = + =
£t
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(111) V*[},i] é@(t,V[ﬁ,f]), all t € J*, X € Wo*, u(*) = u*(-).

{iv) the maximal solution rM(t), rM(to) = V[%o,téj, of equation (C)

is such that rM(tl) is bounded above.

This result is similar in many respects to & controllability theorem

established in [12]. We note, however, that the assumptions are much

milder.

(3) We note, finally, that a theorem generalising theorem 2.2.2 - I

can be stated and established in a similar manner.

2.4 Non semi-final stability with respect to the sets (a, B, U, €. & J)

3
X

* *
Let J = [no,t,), and W~ be given by (2.3.12), i.e.

x ‘ * *
Wo = {xlx =,x(t; xo,to,u'(°)),_a11 t eJ}, for any (2.3.12)

*
X, € Rn, u {*) ¢ s™,

Theorem 2.4.1: (£g < t0+T) :

System (ZC) is not semi-finally stable with respect to the sets
*
(o, B, U, t1 e J), if there exist a point X, €0, u (*) € U, and two

— — *
functions V[x,t:l € L[wo*, J*J, w(t,r) € 2 , such that

Tk
(i) v;‘l'o r‘B(tl) is finite.

(1) V[ < o, V[x,E) all € ¢ 3, x ¢ W*, and u(+) = u' ().

{1i1ii1) the maximal solution rM(t), rM(to) = V[ko,tal, of equation

£ = w(t,r) (©)

is such that
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rM(tl)_ 2V 0 () ) (2.4.1)

Remark 2.4.1:

The case £, = t°+T is treated, in a similar way, by assuming that

: — *
w e @, and (replacing Jo by Jo )

Lk ko * * *
(1i) v l_x,t] < wlt, V[x,t]), all t ¢ Jo , X € Wo , and u(+*) = u (),
and

Wong *
r, (e,) < voBce ), (2.4.1)

Theorem 2.4.2:

System (EC) is not semi-finally stable with respect to the sets
*
(o, B, U, t; € J), if there exist a point X, €@, a control u (*} e U,

. % *- _
two functions V[x,t] £ PLWO ’ JJ, wl(t,r) e @, such that

(i) for any continuous n-vector function c¢(t), the conditions:
-(a) -c(to) =X
(b) clt)) e W n 8,

imply that

lim V[c(t),t] = + = (2.4.2)

-5
ttl

(ii) V*[x,t] ;m(t,‘.’[x,t]), for all t ¢ J*, X € WO*, u(e) = u*(').

(i11) the maximal solution rM(t), rM(to) = V[xo’tc;l’ of equation (C)

is such that rM(tl) is bounded above.

Proof of Theorem 2.4.2:

(Theorem 2.4.1 can be proved in a similar manner)

) * * :
Let x(t) = x(t;xo,to,u ("')], X, and u {+) given by the conditions of the



52

theorem, be any trajectory of (EC). Assume, contrary to the expected

conclusion, that
oE
x(tl) 3 Wo N e (2.4.3)
then (2.4.2), (2.4.3) and (iii) give

lim v[x(t),t] = + =
£ty

On the other hand, (ii), (iii} and Lemma 1.3.] yield the required

contradiction, i.e., V[}(tl),tlj is bounded above. The theorem follows.

Comments:

(a) A theorem, similar to theorem 2.4.2 - I, can be deduced by
introducing the function 4(t) and bearing in mind that the

®
solution r(t), r(t } = , is given by

T

t
*

r(t) =1 '+ ¢ (s)ds

*
. t‘ o
(b) Using Theorems 2.4.1 and 2.4.2, and the following corollary, one can

deduce some results concerning the non (o, 8, t1 € J) semi-controllability.

Corollary 2.4.1:

System (EC) is not (a, B, tl g J)} semi-controllable, if it is not
semi-finally stable with respect to the sets.(q, g, {u()1}, £, € J), all

u(*) € s™,

Thus, using Theorem 2.4.2, we get
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Corollary 2.4.23:

System (EC) is not ({xo}_, -{Xl}’ t1 € J) semi-controllable, if there exist

— %
two functions V[x,t] € LLWO*, J_], wlt,r) € R, such that

(i) for .any continuous n-vector function c(t), the conditions:

(a) (e = x,
(b) C(tl) = X,
imply that

1im V[c(t),t] = 4
t‘*tl

.. * * *
(i1) v Ec,t:l éw(t,VE(,t:]), all t £€J , x ¢ WO , and all u(-) ¢ §".

(i11) the maximal soluticn rM(t), rM(to) = VE{o,to‘_’, of equation (C) 1is

such that rM(tl) is bounded above,

2.5 Strong semi-final stability:

(1) The following theorem is a direct generalisation of Theorem 2.3.1.- T.
- A similar theorem to Theorem 2.3.2 - I can be.stated and proved in

a similar manner.

Theorem 2.5.1:

System (EC) is strongly semi—finally stable with respect to the sets

(o, B, U, J), a"/B # @, if

(a) it is semi-finally stable with respect to the sets {(a, B, U, J)}, and

*
(b) there exist two functions V[:x,t_] £ LE\I,JJ, and wit,r) ¢ 0§ , where .

N = N(a, B, U, J) = {x|x = x[t; xo,to,u(-)), for all

X € e/, t € I, u(+) e U} (2.5.1)
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such that
c
. : n . .
(1) V; /B(to) and VE B(t), allteJ, t > to, are finite.

Y * -
(11) V Ex,tJ < m(t,VEx,ﬁ]), for all t ¢ I, x ¢ N, u{*) e U.

(to)’ of equation

c
... . . _ Lo /B
(iii) the maximal solution rM(t), rM(to) = VM

r = w(t,r) (c)

is such that

rM(t) ;gvgns(t), all t ¢ (to,to+T) . (2.5.2)
and

NOR . -
rM(t°+T) < Vm (to+T), if =1 (2.5.3)

Remark 2.5.1:

The additiomal condition (2.5.3) is due to the fact that inequality 1.3.8 - IL

need ne longer be strict at t = t0+T. (Ref. Remark 1.4.1 - II).

The condition (2.5.3) is not necessary in the case where B is-.an open
set; ‘for it will be sufficient to show that any trajectory
x(t) = k(t; xo,gfu(-)], X € a/8, u(+) € U, is such that x(t) e g®, all

c
t e (to’ t0+T), and hence x(to + T) e 8.

We can, however, avoid this restriction by changing the conditions of the

theorem as follows: w e £, and

G0 VxE] g o, ke), amd n ) <V

o (t), all te J, t > to.

Proof of Theorem 2.5.1:

Let x(t) = k(t; xo,to,u(-)),_xo £ ac/B, u(-) € U, be any trajectory of (EC).

Suppose, ceontrary to the expected conclusion, that
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x(tz) ¢ B, for some t, € J, t2 >t (2.5.4)
By (2.5.1), (2.5.4) gives
x(t,) € N nesa (2.5.5)

On the other hand, application of (i), (ii) and Lemma 1.3.2 gives

vix(t),t] < r (), all t € (t_,t +T) (2.5.6)
M o’ o
(VIx(e ), £ +T] < 7 (e +T)).
which, either by (2.5.2) or (2.5.3), vields

Ve, e VPG ) (2.5.7)

' (Qhe application of (2.5.3) is needed if t, = to+T]. This is the

required contradiction. The theorem follows.

(2) One can show that a system (EC) is not strongly semi-finally stable
by the negation of either parts (i) or (ii) of Definition 1.2.6
_ (adaptedlto the case undgr'consideration). The Qega;ion of part (i)
has been investigated in section 2.2 ~ II. We concentrate then on the
negation of part (ii), i.e., we have to show that there exists a
. . ' * c &
trajectory x{t) = x(t; xo,to,uv(')), some X € @ /B, u (*) € U, such
that x(tz) € B, for some t, ¢ J. This will be done via the

2

following theorems.

Theorem 2.5.2:

System (EC) is not strongly semi-finally stable with respect to the sets

*
(o, B, U, J), acls # @, 1f there exist X, € aC/B,_u (<Y el, £, ¢ J(t1 > to)’

1

two functions V[},ﬁ] € L[Wo*, 3;], and w(t,r) ¢ Q, where J* = [ko,tl), and
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* *
W o xlx o= x{es x e u (), all e e ) (2.3.12)
such that
*
SORAC /Bt yis finite.
K. * * *
(ii) v [x,€]=; w(t,V[},ﬁ]), all t e J, x ¢ Wo y and u(:) = v (+).

(iii) the maximal solution rM(to)’ rM(to) = V[%o,tAJ, of equation (C) is

such that

p—
r,(t) < v;'n"o /B(ti) . (2.5.8)

Theorem 2.5. 3:

System (EC) is not strongly semi-finally stable with respect to the sets
. " *
(ay B, U, J), aC/B # ¢, if there exist X € a“/B, u () ¢ U, tl e J, two

— %
functions V[k,ﬂ] E'D[FG*’ J_J, and w{t,r) ¢ R, such that

(1) for any continuous n-vector function c¢(t), the condition

(a) C(to) =X

, .
(b) C(tl) e W /B,

imply that

lim V[e(t),t] = + = (2.5.9)

t‘*tl

* - * * . *
(i1) Vv [x,t] < w(t,V[x,6]), all t e I, x ¢ W, and u(e) = u ().

{iii) the maximal solution rM(t), rM(to) = V[}O,toj,_of equation (C) is

such that rM(tl) 1.5 bounded above.

(3) A similar theory, concerning the strong semi-final stability of
system (EC) with respect to the sets (a, B, U, t1 e J), can be

established in the same way.
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§3. GENERAL THEQREMS ON THE DIFFERENT TYPES OF FINAL-STABILITY

3.1 TFinal-Stability:

(1) As in Section 3.1 - I, we shall assume that 8 is an open set in the

case J = I. Of course, 1f J = E, then B need not necessarily be

open.
Let K = K(a, U, J) be the set
K = K(a, U, I} ='{x|x = x(t; xo,to,u(')), all

X €0, LE J, u(*) e U} (3.1.1)

Theorem 3.1.1:

System (EC) is finally-stable with respect to the sets (a, B, U, J), if
there exist two functions VEx,ﬁ] £ LfR,J], and w(t,r) e @, such that:
. o K/ ..
(i) VM(to) and v (t0+T) are finite.
* -~ T
(ii) vV [x,t] 2 w(t,V[x,t]), all t € I, x e K, u(+) e U.

‘e . . . R .
(1i1ii) the maximal solution rM(t), rM(to) VM(to)’-Of equation (C) is

such that

rM(t0+T) < VE/B(tO+T) {3.1.2)

Theorem 3.1.2:

Systeﬁ (EC) 1is finally-stable with respect to the sets (a, B, U, J), if

there exist two functions V[k,ﬁ] E L[E,;], and w(t,r) £ Q, such that
(i) V3(t) is finite.
M o

(ii) for any continuous n-vector function c¢(t) the conditions:
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(a) C(to)
(b) c(t +1) = lim c(c) e K/8
t>+t +T
0
imply that
lim V[c(t),t] =+ = (3.1.3)
t%t0+T

i) V' [x,t] 2w, V[x,t]), all € ¢ I, x € K, u(*) € U.

(iv) the maximal solution rM(t), rM(to) = V;(to)’ of equation (C) is

such that rM(to+T) 1s bounded above.

Proof of Theorem 3.1.1:

(Theorem 3.1.2 can be proved in a similar manner.)

Assuming that any trajectory x(t) = k(t; xo,to,u(-)), X € a, u(+) € U,

satisfies the relation
* *
x(t) e K/B all t ¢ J, t >t (for some t ¢ J) (3.1.4)
will lead to the conclusion that
x(t _+T) € K/B ' (3.1.5)

But using (ii), (iii) and Lemma 1.3.1 leads to the required contradiction,

i.e.

/

K/8
Vx(e +m) e +T] < V(e 4T).

This completes the proof of Theorem 3.1.1.

(2) 1In all the above theorems, the assumption has been made that

lim x(t) exists. This need not be true in the case where J = I.
t+t0+T



The following theorem avoids such an assumption.

Theorem 3.1.3:

System (EC) is finally stable with respect to the sets (a, B, U, J), if

there

(1)

(i1)

(iii1) for each r e B, there corresponds a t(ro) e J, such that the

(3)

Vﬁls(t) is finite, for all t € J, t > to'

V*[x,t:] ;w(t,V[x,t]), all £t ¢ I, x ¢ K, u(+) € U.

maximal solution rM[t; ro,to) of equation
r = w(t,r)

is such that

K/B
rM(t; ro,to) < Vm (t), all £t ¢ J, ¢t ;t(ro),
where B is a subset of R! with the following property

V[xo,to] e B, all x € a

exist two functions V{},t] £ L[K,J], w(t,r) ¢ &, such that

(C)
(3.1.6)

(3.1.7)

Now, let o = {xo}, B E_{xl}, J = i, then Theorem 3.1.2 gives the

following interesting corollary:

Corollary 3.1.1:

System (EC) is ({xo},‘{xl}, J)-controllable, if there exist a control

*
u () e Sm, two functions VEk,i] £ L[Rn,i], wlt,r) € I, such that

(i)

for any continuous n-vector functionm c(t), the condition

(a) C(to) = X

(b) c(t +T) = 1lim e(t) # x
0 1
t"’to"'T

59
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imply that

lin v[e(t),t] =+ =
trt +T

Gi) V[xt] <wle,v[x,c], all t € I, x € B, u(s) = u (+).

{1ii) the maximal solution rM(t), rM(to) = V[xo,to], of equation (C) is

. such that rM(t°+T) is bounded above.

This corollary includes the controllability theorem established in [12] .

Non final-stability

(1) Theorem 3,.2.1:

System (EC) is not finally-stable with respect to the sets

(a0, B, U, J), if there exist X, € a, uo(-) e U, t. ¢ J, and two

1
%
functions V[x,t] € L[WO,J:], wl(t,r) e # , where

W= W (x_,u,3). [Ref. to (2.2.1) - II] (3.2.1)
-'sﬁcﬁ'ti.l.at l'
(i) V:ﬁons(t), ted, t2rt,, is finite
(ii) V*[x,t] < m(t,Vl:x,t:I), all t £ I, x ¢ Wo, and u(-) = uo(o).
(iii)the maximal solution rM(t), rM(to) = V[xo,to__' , of equation (C)
r = w(t,r) _ )
is such that

£, (t) ;vﬁo“s(t), all t & (t,,t +T) (3.2.2)

and

w_ g . -
rM(t0+T) < Vmo (t0+T), if J =1 (3.2.3)
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The last inequality (3.2.3) is needed, for the conclusion of Lemma 1.3.2
need not be true at t = t0+T. As before, one can avoid this distinection

by replacing (3.2.2) and (3.2.3) by

r,(6) < Vzps(t), all t e Jd, t > ¢ (3.2.2)%

1

In this case (ii) 1s no longer required to be a strict inequality, and it

will be sufficient to assume that w ¢ {2 only.

The following theorem avoids the above situation. However, we must

assume either:

(a) J=1
or
by B is‘closed, and any trajectory x(t) = x(t; xo,to,u(-)),
X, €0, is such that 1im x{t) exists.

t+t +T
o

Theorem 3.8.8:

System (EC) is not finally-stable with respect to the sets (a, B, U, J), -
if there exist X, € 0, uo(°) e U, two functions V[},ﬁ] s_L[ﬂQ,i], aqd

w(t,r) € £, such that

(i) for any continuous n-vector function c(t), the conditions:

.

(a) c(to) =X

(b) c(t +T) = lim c(t) ¢ W N B
© tt_+T °

imply that

lim V[e(t),t] = + » (3.2.4)
t'*to+T

(ii) V*[x,t:l s, V[xe]), all t e I, x e W, u(*) = u ().



(111) the maximal solution rM(t), rM(to) = V{}o,tA], of equation (C) is
such that rM(tO+T) = lim r_(t) is bounded above.
t>t +T
o
The above theorems are proved in the usual manner. Note that if, in the
proof of Theorem 3.2.2, we assume that for any trajectory x(t) = k(t; Xo’

to,u0(°)], X, € a, we have the relation

% *
x(t) e B, all t e J, t 2t , for some £t € J

then, by the assumption that either B is closed, or J = f, we conclude

that x(tO+T) £ B.

(2) The theorem which follows is different, in many aspects, from the

above results. We shall assume, however, that B is closed.

Theorem 3.2.3:

System (EC) is not finally-stable with respect to the sets (a, B, U, J),
* *
“if there .exist sets a = a, B ?E'WOIB’ for some X €O, uo(-)_e U, and

two functions V[x,t] € L[WO/I(B), J:], wl(t,r) e ﬁ, such that

(1) system (EC) is semi-finally stable with respect to the sets

* * * % *
(e , B, U, J), for some U < U, such that uo(-) el .

. . *
(11) v [X:t] ;w(t,V[x,t]), all t ¢ I, X E WOII(B)’ u(-) = uo(.).
(iii) for each t, ¢ J, the maximal solution r,(t), r, {(t ) = ngﬁs?t )
1 ’ MO M M 172
of equation
r = w(t,r) (C)
is such that
WOFr.g
rM(t) < Vmo (t), all.t > £, t e J (3.2.5)
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provided, of course, VWO (t), all t £ J, and VmO' (£), all

M

teldJ, t > to, are finite.

* -
To avoid the restriction that B is closed, we require that 8 / 8 = @.

- * . % -
Moreover, if of/BR # @, then we may take o = B = {xo}, X, € a/B, so that

condition (i) of the above theorem is automatically satisfied. Thus,

we arrive at the following corollary:

Corollary 3.2.1:

System (EC) is not finally~stable with respect to the sets (a, B, U, J),
ofB # @, if there exist a point X € a/B, a control uo(-) e U, and two
functions V[x,t] € L[WO/I(B), J], w(t,r} € 2, such that

. W.NFr.B
(1) Vmo

(), ted, t> t,» 15 finite.

(ii) V*[x,éj < w(e,V[x,t]), all t € I, x ¢ W /TI(B), u(*) = u ().

£~

(iii) the maximal sclution rM(t), rM(to) = V[}O,t;], of equation (C)

“-is. such that-

r (6) < VI FT By sl eed, b o (3.2.8)

m

Proof of Theorem 3.2.3:

e > .
- //
L WO/I(B) = shaded area

Figure 3.2.1

63
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(a) Suppose, contrary to the expected conclusion, that system (EC) is

finally stable with respect to the sets (a, B, U, J).

* % )
(b) For the given X e o, and uo(-) el < U, let x(t} = x(t; xo,to,uo(-)]

*
be any trajectory of (EC). By (a), there exist a t ¢ J, such that

*
x(t) ¢ g N wg , allt e J, t >t (3.2.7)
*
By (i), there exists a b, € J, t1 < t , such that
*
x(tl) e B - (3.2.8)

%
Using (3.2.7) and (3.2.8), we conclude that there exists a £, € (tl’ t‘J

such that

x(tz) € Woﬂ Fr.8, x(t) ¢ WOIB, all t ¢ (tl’tz) (3.2.9)
But, then, applying (ii), {iii) and Lemma 1.3.1, we conclude that

vix(e),t] £, all e ¢ [tl, t2] (3.2.10)
owhich, by (3.2.5), gives the contradictory inequality

W Fr. ' ' L :
V[x(e,),t,] <vo B(tz) , (3.2.11)

Hence, the original assumption (a) is false. This completes the procf

of Theorem 3.2.3.

(3) Now, we apply the above results to give some corollaries concerning
non-controllability. This will be done by means of the following

corollary. .
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Corollary 3.5.2:

System (EC) is not (a, B, I) controllable, if it is not finally-stable.

with respect to the sets {(a, B, {u(*)}, 1) for all u(:) ¢ g™,

Thus, Theorem 3.2.1 gives, by setting tl = to+T,

Corollary 3.2.3:

System (EC) is not ({xo},v{x }, I) controllable, if there exist two

1
functions VEx,ﬁ] £ L[Rn, ij, and w(t,r) ¢ &, such that

*
(i) V [x,t] < o(t,v[x,t]), all £ € I, x ¢ R°, and all u(+) ¢ S".
(ii) the maximal solution rM(t), rM(to) = V[?o’t;]’ of equation

r = w(t,r) ) (C)

is such that

™ <Vl e
It is to be noted that applicaﬁion of Lemma 1.3.1 gives

r, () 2 vix(t),t] (3.2.13)
for any trajectory x(t) = x(t; xo,to,u(-)], which means, by (3.2.12),
that

n
R
v, (e 4T) < V[xl, to+T:| (3.2.14)

That is to say, the function V has to be chosen so that V[},to+T]

does not reach its infidum at x = X,
L1328



Corollary 3.2.4:

[Refer to Thecrem 3.2.2. - II]

System (EC) is not ({xo}, {x]}, I)-controllable, if there exist two

functions V[%,E] € L[ﬁn,f], and w(t,r) € @, such that
() V6] ol V,t]), all £ € I, x & RS, u(+) e %,

(1i) the maximal solution rM(t), rM(to) = VE?o’to]’ of equation (C) is

such that rM(t0+T) is bounded above.

(iii) for any continuous function c¢(t) (n-vector), the conditions:

66

c(t ) = x_, c(t +T) = lim ¢(t) = x
© ° © tt +T !
o]
imply that
lim V[c(t),t] = + = (3.2.15)
ot +T

Remark 3.2.1:

Rn, in the above resﬁlts, may be replaced by the set K, given by (3.1.1),

provided o E'{xo}, U = s".

Remark 3.3.2:

We note that, setting t1 = t0+T in Corollary 2.4.2 - II, we can deduce
Corollary 3.2.4 - II. The difference between the two corollaries lies
in the fact that Corollary 2.4.2 does not tell us what happens to the
system (EC) after t, while tpe other corollary ensures that any

*

trajectory, emanating from X, does not arrive at x; at some time t and

*
remain there for all t 2t , t e J.
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3.3 Final-stability with respect to the seéts {a, b, U, t, ¢ J):

(1) 1In the following theorem, we shall assume that B is an open set.
This is due to the fact that the conditions of the theorem will
imply, as seen from the proof, that any trajectory x(t), emanating from
o can never reach Fr.B; so, there is no advantage in considering the
case where B is closed. On the other hand, B can not reduce to a

point, by the assumed existence of a set‘y, ;c: I(B).

Theorem 3.3.1:

System (EC). is finally-stable with respect to the sets (a, B, U, t, eJ),
" B open, if there exist a set v, ;c: B, two functions

V[},tj € L[Kf](é - I(Y)), Jl], w(t,r) € Q*, where J1 s teld, t >t

and K given by (3.1.1) - II; such that

(i) system (EC) is semi-finally stable with respect to the sets
(a0, v, U, tl e J)

(ii) VKﬂFr.Y

KnFr.
M \Y

(t), t ¢ [t.l, to+T), A B(t),' ted, t>t, are finite.
.- . * N —
(iii) v [x,t] < w(t,V[x,t]), all t ¢ |:t1, £ +T), x e K (8 - 1(v),

and u(+) ¢ U.

-

(iv) for each t, ¢ [}1, to+T), the maximgl solution rM(t), rM(tz) =
VﬁﬂFr'Y(tg), of.equation
t = wlt,r) (©)
is such that
r () < VEVEBey Al e (e, £ 4T (3.3.1)

and



K(\Fr.B8
m

ry (e +1) < V (£ +T), if J = 1 (3.3.2)

Proof of Theorem 3.3.1:

Let x(t) = x(t; xo,to,u(-)], X, € a, u(+) ¢ U, be any trajectory of

(EC), then

x(t) e K, £t € J, by (3.1.1) - I1 T {(3.3.3)
K
o
K ﬂ'(éi— I(Y)) = shaded area.. - .
Figure 3.3.1
By (i), we get
x(tl) e KNy (3.3.4)

Now, suppose, contrary to the expected conclusion, that there exists

* *
at J, t > tl’ such that

x(t™) & K/8 - (3.3.5)

*
then, by (3.3.4), there exist ty € (tl’ t_], and t, € [ﬁl’ t3), such that
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x(tz) e KN Fr.y, x(t3) € KM Fr.B8, and

- (3.3.6)
x(t) e B—- v, all t ¢ (tz, t3).

But, then, application of (3.3.6), (iii), (iv) and Lemma 1.3.2 gives
V[x(t),t] < r,(c), all £ e (c,,t,] (3.3.7)

where rM(t) is given by {iv). By (3.3.1)(and (3.3.2), if J = i), we

conclude that

vhx(e),e ] < vit Py - (3.3.8)

m

which means that x(ts) é K (|} Fr.B. Hence, the last inequality (3.3.8)

constitutes a contradiction to (3.3.6), in view of the definition of

VKﬂFr.B

o {(t). Thus, the original assumption (3.3.5) is false and there

* *
exists not e J, t > tys such that (3.3.5) holds.

Since the above argument 1is independent of the choice of the trajectory

x{t) = x[t; xo,to,u(-)), X, € o, u(*) € U, it holds for all trajectories

emanating from o at t = L This completes the proof of the theorem.

(2)- In order to show that the theory of final-stability inciudes, as
a special case, the gheory of stakility over a finiée—time interval
[iB,Sf], we shall give here the different definitions of stability
in terms of the definitions of final-stability; then give the
appropriate conclusions. Some of these conclusions include the

known results established in [18,3i]. The others are new results.

Definition 3.3.1:

System (EC) is stable with respect to the sets (a, B, U, J), a = B,

if it is finally-stable with respect to the sets (o, B, U, t, € J).
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Definition 3.3.2:

System (EC) is unstable with respect to the sets (a, B, U, J), a < 8,

if it is not finally-stable with respect to the sets (a, B, U, t, € J).

Definition 3.3.3:

System (EC) is quasi-contractively stable with respect to the sets
{¢y, v, U, J), ye= a, 1f it 1s finally stable with respect to the sets

(e, v, U, J).

Definition 3.3.3 is a generalisation of the corresponding definition
given in [}8,36], but does not correspond to the definition of quasi-
contractive stability given in [32]. The same remark is valid for the

following definition.

Definition 3.3.4:

_System (EC) is contractively-stable with respect to the sets

((1, B, Yo Us J), YC;U-E.B, if
(1) it is finally-stable with respect to the sets {(a, B, U, t0 g J), and

(ii) it is finally-stable with respect to the sets {(a, B, U, J).

Definition 3.3.5:

System (EC) is quasi-expansively stable with respect to the sets
(o, B, U, J), oy, if it is finally-stable with respect to the sets

(ay v, U, 1),
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Definition 3.3.86:

System (EC) is expansively stable with respect te the sets (v, B, v, U, J),

ey < B, if
(1) it is finally-stable with respect to the sets (a, B, U, t0 e J), and
(ii) it is finally-stable with respect to the sets (a, B, U, J).

We note, furthermore, that these definitions are more general than the
ones given in [18,36,3f], in the sense that the sets o, B, and ¥y are

more general.

We are now in a position to state some results in connection with the

definitions stated above.

Theorem 3.3.2:

System (EC) is stable with respect to the sets (a, 8, U, J), o = B,
B open, if there exist two functions V[?,ﬁ] £ L[K fﬁ(é - I(a)),.i],
SRR : S e _ e
w(t,r) €  , such that

(i) vKnFr'“(t), tel, and yRNFr. 8

M o (), t elJ, t > t,» are finite.

* -
(i1) V [x,i] < m(t,V[ﬁ,ﬂ]), all t ¢ I, x € K (B - I(a)),_u(-) e U,
... . . _ JKNFr.a

{1ii) for each t, € I, the maximal solution rM(t), rM(tz) = VM (tz),

of equation (C) is such that

KNFr.R ' )
rM(t) §=Vm (t), all t ¢ (tz, t0+T)
and
KNFr.B ; _ =
FM(t0+T) < vm (tO+T), if J =1

This theorem is an immediate consequence cf Theorem 3,3.1. It shows



clearly that the corresponding theorems established in [}8,36,3?] are

special cases of the theory of final-stability.

Theorem 3.3.3:

System (EC) is contractivelv stable with respect to the sets

(a, 8, v, U, J) y< «a, oo 8, B open, if there exist three functions
- ®

V[?,ﬁ] € L[B,ﬁ], ml(t,r) e §i, and mz(t,r) e  , stich that

. a E—Y Fr.a
@ Ve ), v (e +T), V

M (), ted, &< to+T, and

VFr.B

0 (t), teJ, t > t » are finite.

(i) V' [x,t]

il~

wl(t,VEx,ﬁ]), all t ¢ I, x ¢ E, u(+) ¢ U,
(iii) V*[x,t:] < mz(t,V[X,t:l), all t e I, x ¢ B - I(d), u(*) e U.

. . . o, .
(iv) the maximal scolution rM(t), rM(to) = VM(LO) of equation
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T = wl(t,r) (Cl)
is such that
r. (t +T) < VE_Y(t +T) ' ($.3l§)
M* o m (o]
{(v) for each t, € [}o’ t0+T), the maximal solution sM(t),
s . (t,) = VFr'a(t ), of equation
M2 M 27?2
§ = mz(t,s) ~ _ (Cz)
1s such that
s (t) < VB, all t e (b, £ +T) (3.3.10)
M " = 'm ? 2’ Yo Tt

and

Fr.8 .. _ =
SM(tO+T) < Vm (t0+T), ifJ=1 (3.3.11)



Proof of Theorem 3.3.3:

(a) Bearing in mind that
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KB~ T8 (3.3.12)

we see that conditions (i), (iii), (v) of Theorem 3.3.3 correspond
to conditions (ii) - (iii) - (iv) of Theorem 3.3.1, with t, = to’
Y = a¢. Hence, system (EC) is finally-stable with respect to the sets

(e, B, U, L 1), i.e., the conditions X, € 9, u(*) € U, imply that

x(t) = x(t; xo,to,u(-))s=8, all t £ J, (3.3.13)

{(b) Using (3.3.13), one can see that

Kivye B/y =8 - ¥ (3.3.13)

and hence

K/y B-y
v (t0+T) v (t0+T) (3.3.14)

Thus the: functions VI%,ﬁ] and‘wi(t,r) satisfy .the -assumptions.of

Theorem 3.1.1 - II, which means that the system (EC) is finally-stable

with respect to the sets {(a, v, U, J). This completes the proof of

the theorem.

We nete that the above theorem is still valid in the case where

e y< B, a < B, B open. Thus, a similar result can be stated concerning

the expansive-stability of system (EC) with respect to the sets

(a, B, v, J).

Remark 3.3.1:

Since Theorem 3.1.1 is used in the proof of the above theorem, we
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have to assume that the set y is open, if J = I. The assumption that

B is open is due to the discussion given in the beginning of the section.

(3) We note that we have avoided until now the discussion of the case
where a = B. This is because the theorem established in (1)

cannot be applied to this case. Thus, the following theorems are

justified.

Theorem 3.3.4:

System (EC) is finally-stable with respect to the sets {(a, B, U, t1 e J),
if there exist two functions V{},ﬁ] £ L[K,i], wl(t,r} € £, such that
. o K/B ..
(1) VM(to) and Vm / (t), all t € J, ¢t ;=t1, are finite.
*
(11) Vv Ek,ﬁ] é}w(t,VEk,ﬁ]), all t ¢ I, x ¢ K, u(+} € U.
ceen . . o .
{(1i1) the maximal solution rM(t), rM(tO) = VM(tO), of equation
is such that
r () < VK/B(t) allteJ, £t >t . {3.3.15)
M m ] » = 1 o
Theorem 3.3.5: {8 open)

System (EC) is stable with respect to the sets (a, B8, U, J), a < 8B,
- . - - oy *
1f there exist two functions VEg,ﬁ] € L[B,Q], and w(t,r) ¢ £ , such

that

. a Fr.R
(1) VM(to) and Vm

(¢), teJ, t> t,» are finite.

* -
(ii) W [%,ﬁ] < w(t,VEx,é}), all t ¢ I, x e B, u(*) ¢ U.
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‘as . . o .
(iii) the maximal solution rM(t), rM(to) = VM(to)’ of equation (C)

15 such that

Fr.8

er(t) ;vm {t), all t ¢ (to,to+T) (3.3.18)

and

Fr

+T) < V
rM(to ) m

Pleqsmy, i3 -1 (3.3.17)
(4) Finally, we note that in both theorems 3.3.1 and 3.3.4, B cannot

. . n sk : : .
be considered as a point x; € R, This is because we require, in

1
Theorem 3.3.1, the existence of a set vy, ;‘CLB, besides the

assumption that B is open; and because, in Theorem 3.3.4, one can

show that

K K
UNOR Vm/B(t), all ted, t2t,.

This means that one cannot apply the theory established in this
section to conclude any results concerning controllability as defined
in 1.4.II. One can, however, apply this theory by modifying the
definition of (o, B8, tl.e.J)—controllability .in an. appropriate
manner, i.e., given X € Rn, X, € R", then system (EC) is -
({xo},'{xl}, t, € J)-controllable, if there exists an open neighbour-
hood B of x, such that the system is ({xo}, B, t1 e J}—-controllable

(in the sense of Definition 1.4.5-11).

On the other hand, one can apply the theory established in
Section 2.3-11, bearing in mind that system (EC) is finally-stable

with respect to the sets (o, 8, U, t, € J), if and only if it is

1

semi-finally stable with respect to the sets (a, B, U, t_ € J)}, for

2

t..

all tz e J, t )

v

2



3.4

(5)
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Finally, one notes that a system (EC) is not finally-stable with

respect to the sets (a, 8, U, t; € J), if and only if there exists

at,eJ, t

2 5 Z tl, such that the system is not semi—finally stable

with respect to the sets (a, B, U, t2 € J). Hence, a theory concerning
this. aspect of final-stability can be deduced by an appropriate

application of the theory established in Section 2.4-1I.

Strong final-stability

One can establish a theory similar to the one presented in 2.5-II. We

shall, however, consider a different approach. Moreover, we shall

limit the discussion to the case of strong final-stability with respect to

the sets (e, B, U, J).

1.

Theorem 3.4.1:

System (EC) is strongly finally-stable with respect to the sets
(a,lé, U, J), if .

(a) it is finally-stable with respect to the sets (a, B, ﬁ, J);-
and

{(b) there exist twofamiliesqf functions V[ﬁ,t; xa] £ L[k(xoL i],

wlt,r; x ) £ 0, all x_ ¢ uc, where
o 0
K(x ) = K({x }, U, 1. [Ref.(3.1.1)] (3.4.1)

such that

(i) for each fixed X € ac, Vz(xo)ns(t; xo) is finite for

all t e J, t ;=t(x0), for some t(xo) e J; where



Vi(xo)ﬂﬁ(t; xo) = sup V[x,t; X;] (3.4.2)

XEK(XO)ﬂB

{(ii) for each fixed x ¢ ac,
)

V*[x,t; xo] ;m(t,V[x,t; Xo])’ all t ¢

[
-

X € K(xo), u(+*) € U; where

V*f_x,t; x0] = lim sup V[x + hg, t + h; Xo] - V[x,t; ’i:l
h->0* h
(3.4.3)

(i11) for each fixed X, € ac, the maximal solution rM(t; xo)
of

T = wlt,r; xo), r(to; xo) = V[}o,to; x;]

is such that

ry(ts x ) < vg("oms(t; x ), all t e J, t 2t ). (3.4.4)

2. On the other hand, the following theorem does not consider any
special functions. 1In fact, it is-a new formulation of the

definition of strong final-stability [Ref. Definition 1.2.12—If].

Theorem 3.4.2:

System (EC) is strongly finally-stable with respect to the sets

(«, B, U, J), if

(i) it is finally-stable with respect to the sets (o, B, U, J), and .

e * c * *, 0k c
(ii) to each set a .o , there corresponds a set 8 =B (¢ )z B,

such that the system is finally-stable with respect to the sets

.
(¢« , B, U, I,
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§4,  APPLICATIONS ,

The aim of this section is to show the application of some of the
theory established in the previous sections. For reasons of space,
we limit our discussion to the cases of (non)semi-final stability
with respect to the sets («, B8, U, t_ ¢ J).

1

Stability results:

Consider the differential system
% = F(x,t)x + G(x,t)u (FG)

. . n " oo .
where F(x,t) is an n x n matrix, x € R", G{x,t) an m x f matrix and
u an m~vecter. All the functions involved are assumed to be smooth

enough to ensure that the system satisfies the required properties.

Let o and B be any two connected sets in R". We shall seek to establish

the sufficient conditions for system (¥G) to be semi-finally stable

with respect to the sets (a, B8, U, t, € J), for some control subset

U which will be determined later,
Let V[x,t] be defined by

v, ] = x* s(t)x (4.1.1)
whgre S(t) is an n x n time-varying matrix with the following properties:

% * )
(1) Sty e ¢l ), J = [}o,tl), i.e., the elements of S(t) are

continuously differentiable over J

(i1) sup.x’ S(t)x and inf, x' S(t,)x are finite.
XEQ xef



A matrix S(t) satisfying the above properties will be said to be of

class A(tl’ a, B).
Along trajectories of (FG),
V=x(5+ FS + SF)x + uG'Sx + x'5Gu (4.1.2)

Suppose, furthermore, that there exists a function u(t,r) e 2 such

that the maximal solution rM(t) of

£ = ule,r) () = sup.x. 5 (t )x 4.1.3)
XeQ

satisfies the inequality

. T
rM(tl) < 1nfé x S(tl)x (4.1.4)
xefh

and let U = U(F,G,S,u) be the set of all (real) functions u(-)

satisfying

Tox + xTSGu < u(t, x°Sx) - x-(§ + F'S + SF)x (4.1.5)

UTG

. L ¥ o R
for all t € J , x ¢ R, Then,

v

fl~

NCRIERID R (4.1.6)

and one can see that the conditions of Theorem 2.3.2-II are satisfied,

provided U is not empty. If we put
U(F,G) = {U(F,G,S,n) : S ¢ A(ty, o, B), 1w e M(S e A)} (4.1.6)

where M(S € A) is the set of all functions p(t,r) with the above

properties; then we conclude that
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Result 4.1.1:

System (FG) is semi-finally stable with respect to the sets {(a, 8, U, t e J)

if U< U(F,G,S,u), for some U(F,G,S,n) e U(F,G).

Result 4.1.2:

System (FG) is (o, B, t1 £ J) semi-controllable if U(F,G) # ¢. 1In
particular, system (FG) is (a, B, t, € J) semi-controllable in the

twe following cases:
Case 1: 1If there exists a matrix S{t) e A(tl, @, B) such that:
(1) (GTSx + xTSG)i # 0, for some 1 £1i <m
(D) M(S € A) # 0.

For, in this case, (4.1.5) becomes

+

m
. . T
: E (GTSx + xTSG)iui ;Au(t,xTSx) - XT(S + F'S + SF)x (4.1.7)
S i=l

for some-p &€ M(S £ .A), by (ii). By (i), the .inequality
(4.1.7) admits at least one solution u(*). Hence

U(F,G,S,u) is not empty.

Case 2: If there exists a matrix S(t) € A(tl, o, RB), such that
.20 %
(iii) x°{SG + G'S)x A4, all x e R®, t € I, = #O.
(iv) M(S € A) # 9.
It will be sufficient, in this case, to take U = {u(+)]u = ex,
X € Rn}, where ¢ is a scalar satisfying

plt, xTSx) - XT(é + FTS + SF)x (4.1.

¢z T T
x (S8G + G 8)x

for some u & M(S € A).
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Result 4.1.3:

System

x = F(x,t)x (F)

is semi-finally stable with respect to the sets (o, B, t, € J), if

for some S ¢ A(tl, o, BR) and some p & M(S & A), we have

T

p(t, X°Sx) 2 x.(S + F'S + SF)x (4.1.9)

* n
for all t e J , x e R

For, in this case, we can set u(*) £ 0 in system (FG), since

U = {u(+) = 0} U(F,G,S,n).

We note that, according to remark 2.3.3-II, we cannot consider the
. . n . . .
case where B 1s a point X, € R°. It is however possible to modify

the definition of the (o, B, t, € J) semi-controllability in an

1
appropriate manner: for example, such modification is to say that
system (EC) is ({xo}, {xl], t, € J) semi-controllable if there exists

" a neiéhbéurﬁood‘s of'xlsﬁch fﬁéﬁ the éystem (EC) ié'k{;;}; B;_#l“e i)t'
semi—controilable in the sense of Definition 1.4.2-1I, 'Moreover, .

a theory can be established using Theorem 2.3.3-1I where the above

difficulty is removed.
Examples:

Example 4.1.1:

Consider system

x = F(x,t)x (F)

with
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(i) xT(FT + F)x ;=A(t)xTx, all x ¢ Rn, t e [}o,tl),

t
1
(i1) J Aa(t)dt < 2 log
t

o
Then, system (F) is semi-finally stable with respect to the sets

%, a>0,b>0

e

(a! B’ tl

£ J), where
a: J|x|] <a, B8: |lx}| < (4.1.10)

If, moreover, (ii) is valid for all t e J, t 2 t then system (F)

1’
is finally-stable with respect to the sets (a, B, ty € J). Note,
however, that the relation (ii) need not hold for all t ¢ J, t > tl.
If, furthermore, a £ b, then (ii) may hold for all t ¢ J, t > t,s

in this case, the system (F) is stable with resepct to the sets

(a, B, J).

Proof of Example 4.1.1:

Let, in result 4.1.3, S(t) = In (the n-dimensional identity matrix),
and u(f,r) = x(t)r. OBviously,lIa £ A(tl, o, B) and_ﬁ t'ﬁ(l; é‘Aj,

by (i1).

Moreover,

xT(é + FTS + SF)x = xT(FT + Fix ;yl(t)xTx = u(t,xTSx)

"Thus, inequality (4.1.9) is satisfied.

Remark 4.1.1:

If J = I, and £, ; to+T; then, the conclusion is that the system is
finally-stable with respect to the sets (a, B, J). But, in this case,

: *
relation (ii) implies the existence of a t € (to,to+T) such that
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£
J A(s)ds < 2 loge

t
(¢

% , all t ¢ [t*, to+T]

which means that the system (F) is uniformly finally-stable with

respect to the sets {(u. B, J).

Example 4.1.2:
If there exists a matrix B(t) such that

() «FE + Bx AOxx = x (B + Bx, all x € R, te [r,t)

t

1
(ii) J A(t)dt < 2 log, % , b>0,a>0
t

o}

then system (FG) is semi-finally stable with respect to the sets

(o, B, U, t., € J) where a and B are as in Example 4.1.1, and

1

U= () juG,t) = 6 G,tBMx, te [t ,t), x e B

Ezample 4.1.3:

Consider thé system (VPC)

. _ < _ 2_
xl = x2 + ul, x, = X, + c(xl 1)x2 (VPC)

and let

o |!x|| < a, B: lell <b,a>0,b>0

then, system (VPC) is (a, B, t, € J) semi-controllable provided

1

log %- (4.1.11)

Moreover, if a < b, and
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1 a
¢ log, y <020 (4.1.12)
1 0

then, system (VP)

. . 2

Xy = Ky X, = o7xy 4 c(xl - 1)x2 (VP)
is semi-finally stable with respect to the sets (o, B, t, € J).
Proof:
Let S(t) = In’ then I e A(tl, a, B). Let plt,r) = -2 ¢ 1, then
uE M[In 3 A]; for the (maximal) solution rM(t) of

. : T 5

r=-2o0r ., r(to) = sup X S(to)x = a

XeEO

is given by

rM(t) _ az e'—20(t-t0)

and therefore, satisfies the condition

r, (£t ) = azenao(tlﬂto) < b? = inf.. xTS(t Yx by“(l&'.l.l]_‘)-'
M 1 - ¢ 1 :
. xef
Now;
0 1 1 0
F = 2 » G = 3 50 that
-1 o(x) = 1) 0 0
U((F,G, - 2 0 r,I) = {u(:) | 2x u. < -20(x? + x%) ~ 20(x2 —1)x2,
T >“n ’ 11 = 1 2 ] 2

n
t e E:o’tl)’ x e R'}.

For example, we can take

2
;-0x1(1+x2) . x. >0

2
- + <
u, > xl(l xz) , X 0
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We note that if ¢ < 0, then we can take u., = 0, all x ¢ Rn, which

1

means that (VPC) reduces to system (VP). This completes the proof.

Instability theory:

We shall use Theorem 2.4.1-I1. For this purpose let

<
n

~xTR(t)x (4.2.1)
where R(t) 1is an n * n matrix such that
. *
(i) R(t) e c}),
. T, c e
(ii) sup x R(tl)x is finite.
xeB

Let B(t,, B) be the set of such matrices.

Along trajectories of (FG), we get
V=-xI(R+FR+RI)X - uGRx - x RGu (4.2.2)

If, now, there exists a function u(t,r) with the property that the

maximal solution rM(t) of
T = -u(t,r) (t)=-—xTS(t Ix - - k423)
HAES % o o’ o e

(for some X, € a) 1s such that

ry(c) < - sup xS (t))x (4.2.4)
xeP
then
V< - e, v[x,c]) (4.2.5)

*
for allt e J , x ¢ Rn, and all u(-) satisfying

uTGTRx + x'RGu 2 u(t,~x'Rx) - x° (R + F'R + RF)x (4.2.6)

-



*
for all t e J , X ¢ R". Let m{a, R ¢ B) denote the set of all functions
n(t,r) with the above properties, and UC(F,G,R,u) be the set of all
functions u(+) satisfying the inequality (4.2.6). 1If U° is not empty,

then we conclude the following results:

Result 4.2.1:

System (FG) is not semi-finally stable with. respect to the sets (o, R, U,
. c c .c

t, € J) if UN U # @, for some U™ = U (F,G,R,u).

Furthermore, let

U°(F,G) = (US(F,G,R,u):R ¢ B(t ,B), and y emla, Re B)} (4.2.7)

then

Result 4.2.2:

System (FG) is not (a, B, t, € J) semi-controllable if

s"c uS(F,0)
Examples:

Example 4.2.1:

Let

%X = F(x,t)x ' (F)

be such that

(1) xT(FT + F)x ;_p(t)xTx, all t ¢ [}o,tl), x e RO
tl .

{(ii) J pit)dt » 2 loge TT;;TT , for some X such that |lx0|| < a
t

o N



then, system (F) is not semi-finally stable with respect to the sets

(a0, B, t. € I),

1

where

at |x]| < a, B: ||x|] < b (4.2.8)

Proo
Apply result 4.2.1 to system
x = F(x,t)x + G(x,t)u T (FG)

Let R(t) = I, then I_ ¢ B(t,,8), for sup XTR(tl)x = b2,
xef

Let

ult,r) = = u(t)r

then p € m(a,IneB), for the (maximal) solution rM(t) of

Beeulor ore) = - xox = -|]x |12

[ﬁhere"xé'e a is given by'(iiil is given by -
. N ‘
‘ [ u(s)ds

£ = -l |12 eFo
and therefore satisfies

/!

u(s)ds b
2log

(e = -||xo||2 ebo < -||x0||2 e ¢ 1%, = —p2

il

-sup xTR(t)x
xeB

Hence,
C
U (E,6,E , —u(e)r)

=-{u(-)[uTGTx + xTGu ;:u(t)xTx - xT(FT + F)x}



which implies, by (i), that {u(*)

1

We conclude that system (FG) is not

the sets (o, B,-{O}, t, € J). This

(F) is not semi-finally stable with
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0} is contained in UC(F,G,In,-p(t)r).

semi-finally stable with respect to

is equivalent to saying that system

respect to the sets (a, B, t. € J).

1

Comparing this result with the result of Example 4.1.1, we see that

condition (ii) of Example 4.2,1 implies that

t

t
O

1 .
b b
| w2 20, gy > 2 208§

which means that any A(t) satisfying condition (i) of Example 4.1.1

cannot satisfy condition (ii) of the same example for the same t:1 e J.

Example 4.2.2:

Consider the system

. éﬁd'Iet

as x| <a,

= =X

1

+ q(x% - l)x2 (VPC)

B : [[x]] <b

then, system (VPC) is not semi-finally stable with respect to the sets

oy B, {u(9)}, €, € J), for all u(+) e U, where

U:u ;-cxl(l+x;)

<
!
uI:O
provided
g < 1
£t -t
1 o

Z-ox L+ x;)

[ 1]

b}

X, > 0
x, < 0 (4.2.9)
x =0

for some xo such that

lix 1] < a (4.2.10)



88

Proof:

Let R(t) = In’ then R{t) € B(tl,B), for sup xTR(to)x = b2, Let
xR

w{t,r) =2 g r, then u ¢ m(a,In £ B), for the (wmaximal) sclution

rM(t), rM(to) = —||x0||2, X given by (4.2.10), of
r=-u{t,r) = -2 ar (4.2.11)

is given by

{ ~2g(t-t )
rM(t) = - ||x0|[2 e ¢ 0 (4.2.12)
and hence satisfies I]X [|
o
"2 log, = T
rM(tl) < —||x0|| e = - b? ="~ sup x R(tl)x.
XeB

Now,

0 1 1 0

F = ’ G =

-1 q (2 -1) 0 0

so that

c .
U"(F,6,I_,2¢q 1) = {u(-)_|x1u1

v
I

0 xfcl + %))

Thus we see clearly that U g;UC(F,G,In, 2 g r).

This completes the proof,

Example 4.2.3:

If ||xo|| > b, and

then system
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. = - . = — 2 _
% LI X, X, + U(x1 l)x2 (vp)

is not semi-finally stable with respect to the sets (¢, B, t, € J).

1

This ¢xample is an immediate consequence of Example 4.2.2,

Remark 4.2.1:

In the above examples, use has been made of‘kilagonmﬂ.forms only,
i.e., R(t) = In' This is not however necessary as the following

(trivial) example will show

Example 4.2.4:

Consider system
X, = Ax iz = ux, (4.2.13)

where A and y are any real constants. Let

v
o

a~:-(x10, xzo),.- X3 9%50 _'KA.Z.}A)

and

| A
O

Bt (%3 %5105 XpXpy £ (4.2.15)
then system (4.2.13) is not semi-finally stable with respect to the sets

(a’ B, tl e J).

+
In fact, the result holds for all t, ¢ R, t. > to’ as we shall see from

1 1

the proof. This conclusion is in line with the fact that any
trajectory of (4.2.13) starting in any quadrant of the (x),%,)-plane will

. +
remaln in the same gquadrant for all subsequent values of t & R .

Proof:

= B o . .
Let V = XX, then Vm(tl) = = Xy;%,; 20 and along trajectories of



ae

(4.2.13),
V= -+ w) xyx, = 0+ )V (4.2.16)

Thus, taking w(t,r) = (A + u)r, we can see that the (maximal) solution

r(t), r(to) = VEko’téj = =X, 0¥50s Of equation

¥ = w(t,r) <)
is given by

r (t) . “x, g, e T ’ (4.2.17)
and hence satisfies

r(c,) < Vh(e)) (4.2.18)

Thus, the conditions of Theorem 2.4.1-I1 are satisfied.

Note that we can apply result 4.2.1 by setting
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§1. JINTRODUCTION AND DEFINITIONS

Introduction

We consider systems of the form
x(j +4) = £[x(),]] ' (DS)

defined over the interval J = [jo’ j0 +1, ..., jo + jﬁ}, where jo, jN
are a non-negative number and a positive integer respectively, and

where x(j) = Rn, j € J, is a real vector which represents the state of

the system at times jo’ jo+1, P jo+jN' It will be assumed that the
n-vector function f[%(j),j] possesses all the necessary properties, so that

there is no difficulty with the questions of existence, uniqueness and

continuity of solutions with respect to initial conditions.

We intend to extend te discrete systems of the form (DS) the theory of
final-stability established in the preceding chapters, 'We note that the
concept of final-stability will include the concept of finite-time
stability“introduced in [30].

Let V[?(j), i] denote a mapping

v : R® x J » R} (1.1.1)

Accordingly, we define the following functions

Vo) = af V[x(3),5), Vg = suwp.V[x().il, § e (1.1.2)
Xeo XEeo

Define the total difference of V[}(j),j] along the trajectory x(3)

of (DS) as

Av[x(),i] = v[xG + 1), 3+ 1] - v[x(G), 3] (1.1.3)
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and

ax(j) = x(3 + 1) - x(3) (1.1.4)

Definitions of semi-final stability

Definition 1.2.1:

System (DS) is semi-finally stable with respect to the sets (a, 8, J),

if, for any trajectory x{(j) the condition

x(jo) £ a (1.2.1)
implies the existence of jp e J, such that

x(jp) € B (1.2.2)

where jp may depend on the particular trajectory x(j).

Definition 1,2.2:

System fDS) is not éemi-finally'stable-with résPect to the séts

(¢, B, J), if there exists a trajectory x(j) with initial condifion

x(jo) € a and satisfying

x(3) € 85, for all j e J (1.2.3)

Definition 1.2.3:

System (DS) is semi~finally stable with respect to the sets (a, B, jk e J),
if, for any trajectory x(j), the condition x(jo) ¢ o implies that

x(G,) € B.
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Definition 1.2.4:

System (DS) is not semi—finally stable with respect to the sets
{a, B, jk e J), if there exists a trajectory x(j) satisfying the

condition

x(j_) € a, and x(j,) € 8° (1.2.4)

Definition 1.2.65:

System (DS) is uniformly semi-finally stable with respect to the sets
(¢, B, J), if there exists a jk € J, such that the system is semi-

finally stable with respect to the sets (o, 8, jk e J).

Definition 1.2.8:

System (DS) is strongly semi—finally stable with respect to the sets

(a, B, J), if

_(i) it is semi-finally stable with respect to the sets (a, B, J), and.
(ii) for anmy trajectory x(j), the condition x(jo) € aQ/B,.implieé that

x(j) e 8%, all jed | (1.2.5)

Definition 1.2.7:

System (DS) is strongly semi-finally stable with respect to the sets

(0, B, 3y € 1), if

(1) the system is semi-finally stable with respect to the sets

{a, B, J), and

(ii) for any trajectory x(j), the condition x(jo) e a° implies that

X(jk) e g°.
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1.3 Definitions of final-stability:

Definition 1.3.1:

System (DS) is finally-stable with respect to the sets (a, B, J), 1if,

for any trajectory x(j), the condition
x(j,)) e a
implies the existence of a jp ¢ J, such that
x(j) € B, all j € J, ] ;:jp (1.3.1)

where jp may depend on the particular trajectory.

Definition 1.3.2:

System (DS) is not finally-stable with respect to the sets (a, B, J),

if there exists a trajectory x(j), x(jo) ¢ «, such that

X(j)”E.Bc; all 3.3, 3 ;=jk’ for. some jk edJ . - - .(1.3.2)

Definition 1.3.3:

System (DS) is finally-stablc with vespect to the sets (&, B, jk e J},

for any trajectory x(j), x(jo) ¢ &, we have

x(3) € B, all jeJ,j2i, _ (1.3.5)

Definition 1.3.4:

System (DS} is not finally-stable with respect to the sets (o, B, jk e J),

if there exists a trajectory x(j), x(jo) e o, such that
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x(jp) E.B (1.3.4)

£ . D s i
or some Jp e J, Jp z 1y

The system is said to be uniformly finally-stable if there exists a
t, € J, -such that the system is finally-stable with respect to the sets

(o, B, J €D

Definition 1.3.5:

System (DS) is strongly finally-stable with respect to the sets

(e, B, J), if
(1) it is finally-stable with respect to the sets {(a, B, J), and

(i1) for any trajectory x(j), the condition x(jo) e o implies the

%
existence of a J € J such that

. *®
x(j) € 85, for all j ¢ J, j 2 j (1.3.5)

*
where j may depend on the particular trajectory.

Definition 1.3.6:

System (DS) is strongly finally-stable with respect to the sets

(G, B’ jk € J)’ if
(i) it is finally-stable with respect to the sets (a, B, J), and

(ii) for any trajectory x(3j), the condition x(joj e af implies that

x(§) e o, all j e J, § 23,
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§2. GENERAL THEQREMS ON THE DIFFERENT TYPES OF SEMI-FINAL STABILITY

2.1 Semi-final stability:

Theorem 2.1.1:

System (DS} is semi~finally stable with respect to the sets (a, 8, J),
a ¢ B, if there exist two reai-valued functions Vl}(j),j], $(3),
defined for all x(j) e 89, and j ¢ J, such that

c

. afB . B ,. .. .
(1) VM (Jo) and Vm (JO+JN)lare finite.

(ii) AV[x(j),j] < ¢(j), j € J, along any trajectory x(j), x(jo)
e a /8, as long as x(j) € 8.

k=i +5.-1 c

r o °N B .. . afB

(iii) kzj ¢lk) < V(3 _*iy) - Yy
0

Gy)

Proof of Theorem 2.1.1:

(a) Any trajectory x(j) emanating from o (1 8, if a(} B # @, has a
point in B. | . - ' .
'(b) Suppose, contrary to the expected conclusion, that there exists

a trajectory x(j), x(jo) e afB, satisfying

x(j) e 8%, all jeJ (2.1.1)
But then,
‘. . . . . . k=j0+jN-1
VIxGrig) s Jory) = vIxG).5,] + k'z'j BV [x (k) , k]
o]

Using (i}, (i1), and (1ii) we get

c
VG *igds i iyl < vli G+ (2.1.2)



2.2

97

But x(jo+jN) e 8%, by (2.1.1). Hence, the last inequality

constitutes a contradiction in view of the definition of
c

Vﬁ (3). Thus, the original assumption is false and there exists

a j e J, such that x(j £ B.
Jp ’ (Jp) B

From (a) and (b), we conclude that system (DS) is semi-finally stable

wi;h respect to the sets (a, B, J). This completes the proof of Theorem

2.1.1.

Non semi-final stability:

Since the question of non semi-final stable systems (DS) with respect
to the sets (a, B, J), a< B, does not arise, we limit our discussion

to the case o<t B.
We shall use the following additional notation:

ae,y) = ||x - yl| (2.2.1)

“where X,y € R, and -||.|| is the-euclidean norm. _ as

d(x,B) = inf. (x,y) I : .‘(2.2.2)
yeB .

where B is any connected set in Rn, unless otherwise stated. It is
clear that d(x,B) = 0, for all x ¢ 8. We define the set y(B,e),

e > 0, as follows
v(B,e) = {x]d(x,B) < e} (2.2.3)

. . n .
that is, the set of all points x ¢ R whose distance from the set B

is less than the positive number e. It is clear that

y(B,e) =B (2.2.4)



Theorem 2.2.1:

System (DS) is not semi-finally stable with respect to the sets
(¢, B, J),agt B, if there exist a positive constant e, and two functioens

V[}(j),i], $(3), defined for all x(3) ¢ BC, and j ¢ J, such that
(a) ofy(B,e) # 0.
(b) there exists a point X, € a/y(B,e) such that

(i) |]Ax(j)|l < e, for all j ¢ J, along the trajectory x(3j),

x(jo) =X, as long as x{(j) ¢ Bc.

(ii) AV[k(j),i] > ¢(3), j € J, along the trajectory x(j},

x(j_) = x_, as long as x(j) ¢ BS.

(iii) v;(s’e)/s(j), 5 €3, 5> i, is finite.

Gv o T e 2SO G -V T,

for all j e Jd, 5, >, 3, i *iyl.

" Proof of Theorem 2.2.1:

Suppose, contrary to the expected conclusion, that system (DS) is

semi-finally stable with respect to the sets (a, B, J). Then, for

the trajectory x(j), x(jo) =%,

af/v(8,e)} = shaded area.

Figure 2.2.1
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there exists a jp e J, j0 < j ;=jo+jN, such that
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P
x(].) e 8B (2.2.5)
P
Let jp be a first such point, and let jl = jp—l, then a moment of
reflexion will yield
i, <3, < ip. X(jl) e y(B,e)/B, and
x(3) € 85, all je [s vovs 3] (2.2.6)
But, then
.1-1 y(8,e)}/B
VG5 = vxG ). ] ) AV[x(e),e] > v G ) (2.2.7)
k=]
o

by (ii), (iii) and (iv). Inequality (2.2.7) constitutes a contradiction
to (2.2.6) in view of the definition of V;(B’e)/s(j). Thus, the
original assumption is false and system (DS) is not semi-finally

stable with respect to the sets (o, B, J). This completes the proof

of Theorem 2.2.1.

Semi—final‘stabiligg with respect to the sets (o, B, ji e ).

1. The case a = B:

Theorem 2.3.1:

System (DS) is semi-finally stable with respect to the sets (o, B,
j1 e J), a < B, j1 > jo, if there exist a positive constant e, no
matter how large, and two functions V[}(j),j], $(3), defined for

all js[jo, ey ji], and all x(j) e v(B,e), such that

(1) ||Ax(j)]| <e, all j e [30, veas j1], along any trajectory.

x(j), x(3 ) € @, as long as x(j) € v(B,e).
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5 ViGy) ana VI OBGy 5 e, 31], are finite.

(iii) AV[x(j),j] < $(3)y j € [jo, sy jl], along any trajectory
x(3), x(jo) € a, as long as x{j) ¢ v(B,e).

k=j_-1
Gv) J 7 el <

k=jo

y(B,e)/8,. \ _ ,o,. . . .
v (3,0 = V(G 2s all gy, e (Gs oo 31]

Remark 2.3.1:

If the number e is difficult to determine, then obviously Theorem
2.3.1 is not applicable. The following theorem overcomes this

difficulty to the detriment of the other conditiomns.

Theorem £.3.2:

System (DS) is semi-finally stable with respect to the sets

(@, B, J, € J), e B, j1 > j0+l, if there exist four functions

1
Vl[g(j),j], ¢1(j), defined for all x(j) € 8, j ¢ ljo""’ iy

and-ViEg(j),j],'¢2(j),vdefined for all.x(j) ¢ BC, and. j € (jd,,..jij, -
such that ' '

C

. o L. B .. . . . B . . .
(i) VIM(JO), Vlm(J), j e (JO, vees 39D Vou (£, i ¢ (JO, cens 34D
BC
and Vzm (31) are finite.

{i1) Avl[g(j),j] < ¢1(j), je [jo’ caey jl)’ along any trajectory

x(3), x(jo) e a, as long as x{j) e B.

(iii) sz[g(j),j] < ¢2(j), along any trajectory x(j), x(jo) £ O,

as long as x(j) ¢ BC, je (jo’ ceey jl]'

: k=j,71 B . a . : : .
(iv) E=. ¢, 0 VG = VG 3, e G vees 3y)

o
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k=jl—1 Bc Bc
W) LT 4 2V, G - Vo Gy Gy e Gy eees §))
k=]
3

Proof of Theorem 2.3.2:

Figure 2.3.1(a): x(j) € R, Figure 2.3.1(b): x(j) ¢ Bc,
all j ¢ [jya’jzl all j [ja’..,j 1]

Suppose contrary to the expected conclusion, that there exists a

trajectory x(j), x(jo) € o, and such that

x(i) e 8¢ (2.3.1)
Siﬁce ji-;jo;l;xﬁheﬂ two ééésiblélsi;uafiépéuﬁéy-o&cﬁf:
(a) there exists a j2 = (jo, ...,‘jl), such that

x(3) e By all e [J_, «vvy 3] (2.3.2)
Or (and)
(b) there exists a j3 £ (jo, N jl), such that

x(3) e 8%, alil j ¢ G «oes 3]
(Fig. 2.3.1 illustrates the two possibilities in R2?)

We note that, as long as (2.3.1) holds, the two situations may occur
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at the same time,

In the case (a), we have

N k=j_ -1
VG T = G+ T v e,
k-]o
Using (i), (ii) and (iv), we get
v G,y 3,0 < VG | (2.3.3)

But x(jz) e B, by (2.3.2). Hence, the last inequality (2.3.3)
constitutes a contradiction. Thus, if the original assumption (2.3.1)
is still considered valid, the possibility (a) cannot occur. This
means that the situation (b) must occur. But then
. .
. . B~ ,.
v,xG L3l v G (2.3.4)
by (i), (i1i) and (v). But this last inequality constitutes a
contradiction to (2.3.1). Hence, the original assumption (2.3.1)

igs false. This completes the proof of Theorem 2.3.2, bearing in

.miﬁd tﬁé-fact‘tﬁét k('), xfj.).t @, is chosen arbitrarily.
R/ o

Remark 2.3.2:

Conditions (i), (ii) and (iv) of the above theorem imply that any

trajectory x(j), x(jo) € a, cannot satisfy
x(j0+1) e B (2.3.5)

which narrows its range of application.
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2. The general case:

Theorem 2.3.3:

System (DS) is semi-finally stable with respect to the sets

(o, B, j; e J), j1 > jo, if there exist four functions

Vlﬁx(j),j], ¢1(j), defined for all x(3j) ¢ Bc, ie ljo’ ey jlj,

and Vz[x(j),j], ¢,(3) defined for all x(j) £ v(B,e), j & [i_s «-v, 31],

where e is a positive number given by (i), such that

1)  ||axG)]| < e, for all trajectories x(j), x(j,) e o, and

all j ¢ [jo, cees 3y

[o4
.. o L. B . B . . . .
(ii) Vg Vi (G2 Vou@s de oy oeos i) and VZHEB’e)/S(j),

j e (jo,jlj are finite.

(iii) Avlfk(j),j] < ¢1(j), j e [jo’ cees jlj along any trajectory

x(3), x(jo) e o, as long as x(j) ¢ Bc.

(dv) sz[k(j),j]_ﬂ.¢2(j), je ljb’ ceay ji] along any trajectory x(j), -

x(jo) € a, as long as x(j) ¢ v(B,e).

.k=j1—1 et . a
(v) 1§=j ) 2V TG - VG
8]
k=j3-1
g B’ . .
{(vi) E:j ¢2(k) ;zvzé e)/8(33) - VEM(JZ) for all j2 £ Ejo, vees jl)
2

and all j, € (3,5 «»ey 3,1
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Proof of Theorem 2.3.3: P
x(j)
Y S

(a) (b)

Fig. 2.3.2

Suppose, contrary to the expected conclusion, that there exists a

trajectory x(j), x(jo) £ a, such that

x(j,) e 8° (2.3.6)
then, two possibilitigs may arise, either
(a) the trajectory is such that

x(3) € 8%, all joe [ig, -oes 3

] . R
- (rig. 2.3.2(a)}

or

(b) there exists a j2 € [jo, ceey jl) such that

x(i,) € B (2.3.8)

(Fig. 2.3.2(b))

Suppose, for a moment, that the second situation occurs, then by (i)

and (2.3.6), there exists a j3 3 (jz’ cery jlj such that

x(j;) € ¥(8,e)/8, x(§) € v(Be), all j e [§,, +.0y 3] (2.3.9)
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But then,

-

k=31.-1
V,[x(G)),5,] = v, [xG,),3,] +1§ o av[x(e,K]
K=]

2

Using (ii), (iv) and (vi), we get
v, [xG0,3,] < v;;s,e)/s(h) | (2.3.10)

But x(j,) € v(B,e)/R, by (2.3.9)., Hence, the last inequality

(2.3.10) constitutes a contradiction in view of the definition of

Y(B,e)/B(j)_

Vv
2m

Thus, the situation (b) is not possible. The only
other possibility is (a), but in this case
- BC
VG5 v G (2.3.11)
by (ii), (iii) and (v). Inequality (2.3.11) gives the required

contradiction. The theorem follows.

Remark 2,3.5:

Other theorems may be established avoiding most of the prbbable
complications of the above theorems. This can be done in a manner
similar to that adopted for differential systems with the appropriate

modifications.

Non semi-final stability with respect to the sets (o, 8, j € J):

The proofs of the theorems of this section, and the following section,
will be omitted for their similarity to the ones given in the preceding

sections.
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1. The case o< {3:

Obviously, any system (DS) is semi-finally stable with respect to the

sets (a, B, jo € J), as long as o ¢ B. So, we assume that jl > jo'

Theorem 2.4.1:

System (DS) is not semi-finally stable with respect to the sets
(s By §; €Iy ez B, §y jo’ if there exist a positive number e,
two functions V[x(j),i], ¢(j) defined for all x(j) e y[on,(jl - jo)e] ,

je [jo’ “res jﬂ, and a point X, € a, such that

(i) Hax(]] < e, j ¢ [jo’ cany jlj, along the trajectory x(j),

x(jo) =X
Gi) vl Gie) /8¢9
(iii) v;i[“’(jfjo)e]"s(jl) is finite.

(iv) av[x(§),3] > ¢(3), j e [, -.-» 3], along the trajectory x(j),

x(jo) =X .

‘ k=j. -1 ..
1 - . -,
@ 1Y s v Giielneg 5y 5.
k=] 1 o' "0
)
* *
(vi) there exists no positive number e , such that ||ax(j)|] < e, for

all j ¢ [jo, cees jl:], and
vlo, Gymi e 1/8 = @ (2.4.1)

Note that (vi) implies condition (ii}. From (i), the trajectory
x{(j) emanating from X, € aat j= jo’ remains in Y[a,(jl-jo)ej for

all j e [jo, ey jlj' This can be explained as follows:
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k=j~1
x(3) - xG) =) x(3)
k=J0
and for any j € (jo’j£J’ we get
k=j-1
2@ - =Gl 2T @] < en G- £ Gmie

k=j0

* - . *
Thus, if (vi) does not hold, i1.e., there exists a e , such that

|]Ax(j)|l < e*, and (2.4.1) holds, then we get

x(3) ¢ 8, all je [§., +ovs 3]

which means that the system is, in fact, finally-stable with respect

to the sets (a, B, jo £ J). Hence, condition {(vi) is essential.

The existence of positive number e, no matter how large, may be a
restriction. That is, it is possible that there exists a syétem
(DS) not semi-finally stable with respect to the sets (a, B, j1 e J),
ﬁithout satisfying condition (i). The following version of the
theorem avoids this restriction., We shall use the additional
ﬁofétién

5(xo,J*) = {x|x = x(}), x(j)) = x , for all j e J*},lJ*q; 1 2.6.2)

i.e., the set of all points X contained in the trajectory x(j),

x(jo) =X -

Theorem 2.4.2:

System (DS)‘is not semi-finally stable with respect to the sets
(¢, B, j, e 1), aZ B, jl > jo’ if there exist two functions

- . - . - - * - * *
VEX(J),J]: ${(j), defined for all x(j) € o(xo,J Y, jed ,J =

Bo’ cens jlj, such that
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K
(i) vﬁ(xoﬂ YB3,y is finite.

(ii) AV[}(j),j] > ¢(3), J € J*, along the trajectory‘X(j)s x(jo) =X .
k=j. -1 * |
Gid) § et 2 v &ord )”B(jl) ENS

. M
k=JO

*
(iv) there exists no positive number e > O such that
. * . . .
I|Ax(])|l < e, all j ¢ [jo’ cees 31], and
* l . *
vla, GG, -3 )e /e =0 (2.4.1)

Let us note, immediately, that conditions (ii)}, (vi), and condition

(iv) of Theorem 2.4.1 and Theorem 2.4.2 respectively, do not present

any difficulty in the application of the above theorems. It will be
sufficient to show that the other conditions hold, so that the

trajectory x(j), x(jo) = X €0, will be such that x(jl) £ Bc.

This will imply that the conditions under consideration hold. The
advantage of mentioning these conditions can be explained as follows:

If one can show the existence of such a number.e*, then we know immediately
.that the s&stem is seﬁi—finaliy.é£abie”with respec£ t; fhe éétg o
(o, é, j1 e J), or, at least, the trajectory x(i}, x(jo) € o, 1Is sdch.

that x(j,) € B.

2. The case a<- B

Taking into account the discussion which follows Theorem 2.4.2, one
can show that it is valid in the general case. So we have the

following:
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Theorem 2.4.3:

System (DS) is not semi—-finally stable with respect to the sets
(¢, B, j1 € J), a<k B, if there exist a point X, € o, and two

. oy - . . . * . *
functions VE?(J),J], $(j) defined for all x(j) ¢ 6(XD,J Y, e,

* I. ’
J = [JO, v ae g 31], such that
5 (x, )0
(1) VM XosJ ) B(jl) is finite.

(i1) AV[x(i),i] > ¢(3), i ¢ [jo, jl], along the trajectory

x(3), x(G,) = x,_.

o]
k=j;-1 *
(iii) | ¢ ;vﬁ(xo’J MNEG oy - Vlx.i,]-
k=j :

Remark 2,4.1:

The theory established in this section suggests the idea of replacing
whenever possible, the whole space R" with the sets 6(x0,J) or

§(a,J) where

6(0,3) = {8(x_,): all x_ e'al ' L (2.4.3)

Strong semi-final stability:

Theorem 2.5.1:

System (DS) is strongly semi-finally stable with respect to the sets

(o, B, j1 e J), j1 > jo’ if

(a) it is semi—-finally stable with respect to the sets (a, 8, J),
and

(b) there exist two functions V[}(j),j], $(j), defined for all
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. n . .. .
x(j) e R, ] ¢ [Jo’ ey J£], such that
ac 2]
(1) VM (30) and Vm(Ji) are finite.
(ii) AVE?(j),fJ < ¢(3), j ¢ [jo’ cens j£], along any trajectory

- x(3), x(jo) e at.

k=j1-l g oS
(iii) } ¢ <V (G = Yy G)).
k=]
0
If the conditions of the above theorem hold for all X € aC/B instead

of uc, and all j1 e J, jl > jo’ then system (DS) is strongly semi-

finally stable with respect to the sets (o, B, J).
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§3. GENERAL THEOREMS ON THE DIFFERENT TYPES OF FINAL-STABILITY

Final-stability:

1. Theorem 3.1.1:

System (DS) is finally-stable with respect to the sets (o, B, J),
1f there exist a positive constant e, two functions V[%(j),j], and

$(3) defined for all x(j) e Y(a,jNe), j £ J, such that
1) [la xG))] < e, j eI, along any trajectory x(j), x(jo) € .
(i1) Vi) and vL‘“ﬂNe)/B(joﬁN) are Finite.

(iit) AVEg(j),j] < ¢$(j), j ¢ J, along any trajectory x(j), x(jo) £ a.

k=j0+jN—1 .
(iv) ] p) < v @INDBG L5y -2 ).
k=j -
0

We note.that condition (ii) implies. that the set vy (a, jNe)/g is not

empty. If it is empty, then y(a, jNe)q; R, and hence systém (DS)
is necessarily finally-stable with respect to the sets (u,.ﬁ, J);
In fact, since y(o, jNe) contains o in its interior, then o< 8;
in this case, the system is stable (in the sense given in [}Q])

with respect to the sets (a, 8, J).

Proof of Theorem 8.1.1:

Let x(j) be any trajectory of svstem (DS) with x(jo) € a, and assume,

contrary to the expected conclusion, that

111

*
x(j) € BS, forall j e [§ 5 --vs jrigl (3.1.1)
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*
for some j € J. Since x{(j) e v{(a, jNe), by (i), (3.1.1) gives
. - . ‘.* - .

x(i) e v(a, JNe)/B. all j e [, ..., J0+JN] (3.1.2)

But then
. k=j +j -1
VGt s Gt = VG i) ¢ 1 8V [x (k) , k]
k=3
c

Using (iii) and (iv), we get

Vx( 430, 3 o+i] < v ONSBG (3.1.3)

o “N’? Yo N m Io"In et

which is the required centradiction. The theorem follows.

2. Theorem 3.1.2:

System (DS} is not finally-stable with respect to the sets {(a, B, J),
if there exist a point X, € o, two functions VEk(j),j], and ¢{j)

defined for all x(j) ¢ G(KO,J), j € J, such that

ti) é(xo,J)ﬂB(J +JN) is flnlte
(ii) AV[?(j),j] > ¢(j), j € J, along the trajectory x(j), X(jo) = .
=] +j -1
i) J 0N e00 2 vt %o PG vy - vk L5 ]
k=j,

Condition (i) implies that G(XO,J)n B # @¢. In fact, if B f)é(xo,J) =0,
then system (DS) is certainly not finally-stable with respect to the

sets (o, B, J).



3.2 Final-stability with respect to the sets (a, B, j. € J):

A few additional notations are needed in this case: let B be any

. n
connected set in R, then

Y (Fr.B,e)
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{x]x ¢ B, d(x,Fr.B) < e} (3.2.1)

Y+(Fr.8,e) = {x‘x E BC, d(x,Fr.p) < e} (3.2.2)

where e is a positive number.

1. Theorem 3.2.1:

System (DS) is finally-stable with respect to the sets (a, B, j1 e I),

<

o * jN’ if there exist a positive constant e, a set vy < 8, and

two functions VEx(j),j], ¢(j) defined for all x(j) € B/y and all

3 E.[j¥’ ey jo+jﬁ], such that

(i)

(ii)

(iii)

(iv)

(v)

(vi)

|rAx(j)|] <e, je [31’ cees j0+jﬁ], along any trajectory x(3),

x(jo) £ a.
d(Fr.B, Fr.y) > 2e,

+
yY (Fr.y,e)

. N Fr.g,e),. . . . .
M (j) and V; (Fr.6, )(J), ] € (Jl, cevs JO+JN), are

finite.

av[x(i),3] < 6G)s i € [iy» ---» i_*iyl, along any trajectory

x(3), x(jo) € a, as long as x(j) € B/y.

k=j3“l - +
y (Fr.B,e),. _ oY (Fr.y,e),.
ch=j $(k) < v (G,) - vy 16,
2

all j2 E (j}., Lee j0+jN), j3 £ (jz’ bR § jo+jN)'

the system (DS) is semi-finally stable with respect to the sets

(o, v, ipe .
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The case j1 = j0+jN is included in the case of final-stability with
respect to the sets (a, 8, J). Condition (v) implies that
(j1+1, cuny jo+jN) is not empty. On the other hand, if iy = j0+jN-2,

then conditions (i), (ii) and (vi) imply that x(j0+jN) £ B.

Proof of Theorem 3.2.1:
Let x(3), x(jo) £ o, be any trajectory of (DS), then
x(j;) e v, by (vi), (3.2.3)

Suppose, contrary to the expected conclusion, that there exists a

first jq € (jl’ . j°+j&], such that

x(3 ) e 8, (3.2.4)
then, by (i), there exists a Ig = Jq -1, Jy e (Jl’ ceey JO+JN),
such that

x(3,) € Y (Fr.g,e) (3.2.5)

Also, there exists a last jp £ [jl, .y jq)’ such that
x(jp) € Y (3.2.6)

then, by (i), there exist a j2 =3 +1, j2 € (jl’ cees jq),

P
st:ch that

x(i,) € v (Fr.y,e) (3.2.7)

By taking (i) and (ii) into account, it follows that

23 <3, <3, <3 23

o
1o = p S, 13 % g

o +iy (3.2.8)

1 o

~and that
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x(3) e B/y, all joe [i, «o- 3] (3.2.9)

But then,

k=j -1
VIxG,i,) = vxG,),5,] +1§ R EYORY
=1

which gives, using (iv) and (v),
) . Y_(Fr.B,e) .
V[x(i,),3,] < v Gy) . (3.2.10)
which is in obvious contradiction to (3.2.5).

Thus, the original assumption (3.2.4) is false, and there is no jq

such that x(jq)_a BC.

Since the above argument is independent of the exact value of
x(jo) € o and the particular trajectory chosen, it holds for all

trajectories emanating from o at j = jo’ and the theorem is proved.

Remark 3.2.1:

Assuming that the system {(DS) is finally-stablé withorespéct to the.
sets (o, B, jl e J), and suppose that there exists a first

i € (Jl, cens JO+JN), such that
x(j) £ v (Fr.g,e)

) +
then there exists ju . such that X(Jq) e v (Fr.y,e).

So let j5 € (jl’ vy jk) be such that

x(jg) € v Frovse), x(3) egly, e [js’ veey jlz,l-

But then, the conditions of Theorem 3.2.1 give the contradiction

VG450 < v G,
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So, theFe is no jk g (jl’ ceey j0+jN) such that x(jk) € y_(Fr.B,e).
We can conclude then that the sfstem (DS) is finally-stable with
respect to the sets {a, B/Y_(Fr.B,e), j1 3 [jo’ veey j0+jN-1]).

To avoid this restriction, we can replace (iii) and {(v) by

: +
@in® vy FEne gy,

R

+
¥ (Fr.B,e),. ;
vm (J), ]

[}

G

. » M .-
1? - J0+JNJ, Ore “V“""*¢.

j.-1 + +
N 3 ¥y (Fr.B,e),. _ oy (Fr.y,e),.
(iv) §=j $(k) £V (30 = Vy (,)
2

Iy € Gy ovees j0+jN)'
3,8 Gys ovves JO+JN]

provided VEk(J),J} is defined over vy (Fr.B,e)/y. Moreover, according
*
to this remark, condition (ii) may be relaxed to (ii) d{(Fr.3, Fr.y)
* * ‘
> e, provided (iii) and (iv) . These modifications make it possible

to apply the theorem in the case where diam.p < 2e, where

diam.B = sup. d(x,y¥).
xeB
yep

for, in this case, (ii) of Theorem 3.2.1 cannot be satisfied for any

set vy« B.

2. Let ac:I(B), and let
Q = d(Fr.B, Fr.oa) (3.2.11)

be positive. In this case, we have the following theorem, which

follows from Theorem 3.2.1, by putting y = o, e = Q/2, and jl = jo

[Condition (vi) is automatically satisfied]. We note, finally, that



this theorem is a direct generalisation of the stability theorem

established in [30].

Theorem 3.2.2:

System (DS) is stable with respect to the sets (a, 8, J), o < I(8),
i.e., finally-stable with respect to the sets (a, B, j0 e J); if
there exist two functions VEg(j),j], ¢ (j) defined for all x(j) € R/a,

and j € J, such that

Q

(i) I|ax(3)|] < Q/2, j ¢ J, along any trajectory x(j), x(jo) €

+
(ii) V; (Fr.a,e)

are finite.

m

(ii1) av[x(i),i} < ¢(@3), j ¢ J, along any trajectory x(j), x(3) € a,
as long as x(j) e B/a.
k=j -1 - + o
Gvy § Y e o v FEBe)g ) L )y e 2 g2
k=
.o io .

all iy € (30, cae, JO+JN), and i, ¢ (32, ce ey 30+JN).

(One can deduce a different result by means of Remark 3.2.1.)

3. We note that Theorem 3.2.1 does not permit us to conclude anything
about the final-stability with respect to the sets (o, 8, j0 e J),
o B, i.e., stability [;dj with respect to the sets (a, B, J). Thus,
the following theorem is important. We note that there is no

corresponding theorem in [?Q].

. - Fr. . . . . .
(i) and V; ( B’e)(J). Je Gy -ees JO+JN): e = /2.

117
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Theorem 3.82.3:

System (DS) is stable [3@] with respect to the sets (a, R, J),
ocz B, i.e., finally-stable with respect to the sets (a, B, j0 e J);
if there exist a positive number e, two functions V[k(j),j], $(3)

defined fér all x(j) € vy(B,e), jJ £ J, such that

(1) ||Ax(j)|| < e, ] ¢J, along any trajectory x(j), x(jo) £ .
a v' (Fr.8,e)

(ii) V() and v} TG e Gy oeees j0+jN], are finite.

(iii) Av[x(j),j] < ¢(j), j e J, along any trajectoxy x{(j), x(jo) £ o,

as long as x(3) £ y(B,e).

k=j,-1 * e . . L
(iv) E o) v FEB®d 5y - vl G), all gy e G eees ot

4. Theorem 3.2.4:

System (DS) is not finally-stable with respect to the sets (a, B, j1 e J},
3, € (jd’ "“"jo+jm)’ if there exist a point X, €a,a pqint o
t, e [, --+s 3 *iy), two functions V[x(i),i], and ¢(i) defined

for all x(j) = S(XO,JZ), jed,-= [jo’ RN jé], such that

(i) Vﬁ(XO’Jz)nB(jz) is finire.

(ii) AV[g(j),j] > ¢(3), J € [}0, cees j2], along the trajectory

x(), x( ) = %,

o]
k=j,-1
Gi) §F w0 2 vg®eTMBG ) - v i)
K=j

0

This theorem can be proved in the usual manner.
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3.3 Strong final-stability

A theory concerning this aspect of final-stability can be established
in a similar way. But, we limit our discussion to the statement of
two theorems which may constitute a new formulation of the definitions

of strong final-stability:

Theorem 3.3.1:

System (DS) is strongly finally-stable with respect to the sets

(¢, B, J), if

(i) it is finally-stable with respect to the sets {a, B, J), and

.. * c * k% c
(11i) to every set & <. a , there corresponds a set B = B (a ) 87,
such that the system is finally-stable with respect to the sets

* *
(0'18"])-

Theorem 3,3.2:
System (DS} is strongly finally-stable with reépect to thé sets-

((1, B: jl E J), if

(1) it is finally-stable with respect to the sets (a, B, J), and

. % * c
(ii) to each o < ac, there corresponds a set B < B, such that
the system (DS) is finally-stable with respect to the sets

x x
(a’S)JIEJ)v
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§4. CONCLUSION

One notes the similarity between the theory established in the
preceding sections and that developed in Chapter I concerning
differential systems without the influence of perturbing forces.

The extension of this theory to discrete systems under the influence
of perturbing forces is possible and follows the same lines as the

theory established in Chapter II,

However, some essential modifications were obviously necessitated by

the nature of the discrete system (DS). For example,

N (1) the total derivative of V had to be replaced by its total
difference, and
(ii) the use of the continuity of the trajectories with respect
to the independent variable t had to be abandoned for the

simple reason that this property is no lenger true.

Finally, an obvious reason for the importance of the theory of final-
stability for discrete systems is that, in many practical applicationms,
one has to make use of the difference system related to the

differential system under consideration.



CHAPTER 1V

Dynamical Systems



1.1

§1. INTRODUCTION AND DEFINITIONS

Introduction

Let E be a metric space with the metric distance p(p,q}, p € E, q ¢ E.

Then,

Definition 1.1.1: [3, 4, 50:]

A dynamical system {(or continuous flow) on E, is the triplet (E,R,f),
where f: E x R > E is a mapping from the product space E x R into E

satisfying the following axioms:
(i) f(p,0) = p, for all p ¢ E

t, £ R.

(i1) f(f(p,tl)ﬁz] = f(p,t1+t2), for every p ¢ E, and t)st,

(i1i) £ is continuous.

The above axioms are usually referred to as the identity, homgomorphism,
and continuity axiomé, respectivel&.
In the sequel, we shall generally drop the symbol £. Thus the image

f(p,t) of a point (p,t) € E x R will be written simply as pt.

The identity and homgomorphism axioms then read

*
(L) pec = p, all p e E

*k
(ii) ptl(tz) = p(t1+t2), all p € E, and all ¢ ,t, ¢ R.

2

In the line with the above notation, if a C E, and J < R, then we set

121

o = {q|lq =pt: pea, t eI} (1.1.1)
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If o is a singleton {p} then the segment trajectory over J<R is
defined as follows:
pd = {qlq = pt, t ¢ J) (1.1.2)

and the trajectory throuéh p is then denoted by pR. We shall, moreover,

use the notation a(J), J = [to, tO+T], to denote the set

a(d) = {q|q = pt, pe B, t £ J, s.t. Pt € al (1.1.3)
It is to be noted that o(J) = aJ, if to = 0.
We shall limit our discussion to the closed interval

J = [to, t0+T], t,eR, T >0 (1.1.4)
We also define the set

J(t ,t,) = [Ll,tz , t, e Ry £, &R (1.1.5)
(if t, =+, then J(t ,t ) = [t,.e,).)
Though it is possiblé to extend the theory established in Chap-ter.‘-I to
dynamical systems by replacing, in the corresponding theorems of °

Chapter II, V*Ec,t:] by

D+V|:pt,t:| = 1im sup V[p(t+h),t;h] - VI__pt,';] (1.1.6)
h~0t

We shall, however, establish a different approach to the theory
considering only closed connected sets a, B, etc. in E and the

closed interval J.
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Also, it would be possible to extend this theory to dynamical systems
defined by the mapping
m: E xS xR ->E
where $§ is the control space.

The theory established, in this chapter, will be limited to the basic
types of final-stability, i.e., we shall not consider the cases of

strong (semi-)final-stability which can be done in a similar way.

Definitions of final-stability:

Definition 1.2.1:

System (E,R,f) is semi-finally stable with respect to the sets (a, B8, J),

if, for any trajectory pR the condition

p(pt_sa) = O (1.2,1)
iﬁpiiéé.ﬁhé gxisgéﬁcé éf a.fi.?l.i;‘sﬁcﬁ.théF S

o(pt,,8) = 0 o | (1.2.2)

where t1 may depend on the trajectory pR.

. [p(q,Y) = min. {q,x),Y C:E]

Xey

Definition 1.2.2:

System (E,R,f) is not semi-finally stable with respect to the sets

* *
(a, B, J), if there exists a trajectory p R, p ¢ E, such that

p(p*to,a) =0 - (1.2.3)
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‘dnde g

p(p*t,s) >0 all ted (1.2.4)

Definition 1.2.3:

System (E,R,f) is semi-finally stable with respect to the sets

(a, B, t, € J), 1f for any trajectory pR, p € E, the condition

p(pto,a) =0 . (1.2.1)
implies that

p(pt,,B) =0 | (1.2.2)

Definition 1.2.4:

System (E,R,f) is not semi-finally stable with respect to the sets
* *
(¢, B, t1 € J), if there exists a trajectory p R, p ¢ E, such that

* *
plp t_,0) =0, plpt ,B) >0 (1.2.5)

Definition 1.2.5:

System (E,R,f) 1is uniformly semi-finaliy stable with respect to the sets

(¢, B, J), if there exists a t. £ J, such that the system is semi-

1

finally stable with respect to rhe sets (a, B, t1 e J).

Definition 1.2.6:

System (E,R,f) is finally-stable with respect to the sets (o, B, J),

if for any trajectory, pR, the condition

p(pt_,a) =0 (1.2.1)
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implies the existence of a t, € J, such that

1

p(pt,B) = 0, all t e J(tl, to+T) (1.2.6)

where J(tl’ t0+T) = [;1, to+ﬁ], and t, may depend ¢n the particular

trajectory.

Definition 1.2.7:

System (E,R,f) is not finally-stable with respect to the sets (a, B, J)
% * * \
if there exists a trajectory p R, p € E, and a point t € J, such

that

' x *
p(pto, a) =0, p{p t,By » 0, all t e J(t ,t0+T) (1.2.7)

Definition 1.2.8:

System (E,R,f) is finally-stable with respect to the sets (a, B, t1 e J)

if, for any trajectory pR, the condition
ppt ,a) =0 ‘ ‘ (1.2.1)
implies that

p(pt,B) =0, all t ¢ J(tl, to+T) (1.2.8)

Definition 1.2.8:

System (E,R,f) is not finally-stable with respect to the sets

*
(o, B, t, € J), if there exists a trajectory p R, such that
* % :
pp t50) =0, p(pt,,B) >0 (1.2.8)

for some t_ ¢ J(t_, t +T).
2 1 0
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Definition 1.2,10:

System (E,R,f) is unifecrmly finally-stable with respect to the sets
(o, B, J), if there exists a t1 g J, such that the system is finally-
stable with respect to the sets (o, B, t; £ J).

Lemmas

In order to establish the intended theory, we need to state some

essential definitions and lemmas. Let V[g,ﬁ] denote a mapping

V: R x J » Rl (1.3.1)

Definition 1.3.1:

Vo(e38) = inf.V[p(a,B),t], Vy(e;8) = sup.V[p(a,8),c] (1.3.2)
qea geq

Definition 1.3.2:

. . .o - L - e .. o T .
-V[é,é] e C(8,D), B<x R , D& J, indicates that the function V[s,é].ls

continuous over B x D.

Definition 1.3.3:

For any continuous function c¢(t), we define

D+V{E(t),€] = lim sug. V£§(t+h)’t;ﬁj - V[b(t)’éj (1.3.3)
' h-o
D v[e(t),t] = lim inf. V[‘:(“h)’t;}ﬂ = ve(o),¢] (1.3.4)

- hrot



127

Definition 1.3.4:

A function w: J x R! - R! is said to be of class Q(,R), D J, if it
is smooth enough to ensure the existence of the maximal and the

minimal sclutions of
r = w(t,r) ' (€)

over D.

Lemna 1.3.1: [4,13,18.2]

Let w(t,r) € Q(D,R), D J, and let u(t) be a continuous function

such that.[t;u(t)),g D xR, for t ¢ D, and

p*uce) = Lim sup, HELZ W) < (e uiey) (1.3.5)
h0*

* * %
for all t € D. Then, if u(t ) <r , t ¢ D, we have n(t) é°rM(t)’
*
alt t eD, t >t , where rM(t) is the maximal solution of (C), with

*
T .

%
initial.condition rM(t )

Lemma 1.3.2: [4,13,18,2]

Let w(t,r) ¢ Q(D,R), D< J, and let p{t) be continuous and such that

' (t,u(t)) €D xR, for t € D, and

D u(t) = lim inf. ”(t+hi ~ 1) Wleu)) (1.3.6)
h~»0

* % %
for all t € D, then if u(t ) > r , t ¢ D, we have n(t) g:rm(t), all
*
t eD, t >t , where rm(t) is the minimal solution of (C), with initial

L * *
condition rm(t )y =71.



128

Remark 131 _

If D is an interval ]:tl’t?_] , £ty € J, t2 e J, then we may assume that the

conditions (1.3.5) and (1.3.6) hold for all t ¢ [tl’tz)'
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2.1 Semi-
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SEMI-FINAL STABILITY THEORY

final stability:

(1) The case ac. B 1s trivial; so we assume that aﬁé B. Let

K, = sup. 0(a,8), a = ofB (2.1.1)
qea” (J)

Theorem 2.1.1:

System (E,R,f) is semi-finally stable with respect to the sets (o, B, J),

aq£ B, 1f there exist two functions V[g,i] £ C(J(O,kl),J},_w(t,r) e R(J,R),

such that
. Y
(1) VM (tO,B, is finite.
(ii) V[s,to__l is positive definite for all s ¢ [:O,sup(q,B)], and V[s,t:]

(ii1)

(iv)

qea/B
is such that

o .V[s,;]‘ =0>s=0, all teld

+ o '
D V[p(pt,B),t] ;w(t,V[p(pt_,B),t___l],_ all t € J, p e E, s.t.
Pt € a/B.
the maximal solution r (t), r. (t ) = VG/B(t iB), of equation
) CTMTT? Mo M o’’’

r = w(t,r) ()

is such that

rM(tl) <0, somet €lJ, t1 > t0 (2.1.2)
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Proof of Theorem 2.1.1:

Let pR, p € E, be any trajectory such that
Q(Pto,a) =0 (2.1.3)

If pt_ € o 1 8, the conclusion of the theorem is readily proved. Assume

then that Pt € a/B, then

0 < p(pto,B) £ sup.p(q,R) . (2.1.4)
qea/B
and
0 < V[p(pto,B),tO] ;Vgls(tosﬁ) ” (2.1.5)

by (ii), (2.1.4), and (i). Using (iii), (2.1.5) and Lemma 1.3.1 - IV,

with p(c) = V[b(pt,B),i], and bearing in mind that

0 é_p(PtsB) ;klst e J (2-106)
we get

Vlp(pt,8),t] <1y (t), all ted - o L 2a.n
where rM(t) is given by (iv). By (2.1.2),

Vet ,8),e,] <0 (2.1.8)
- ' *
By (2.1.5) and (2.1.8), we conclude there exists a t ¢ (to,ti] such that

V[p(pt*,_s),t*] = 0 (2.1.9)

% *
which gives, by (ii), e(pt ,8) = 0, i.e., pt € B.

Since the above argument is independent of the choice of p, pt, € ol/8,

it holds for all trajectories pR, Pt € a/B. This completes the proof
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of Theorem 2.1.1.

Remark 2.1.1:

We note, from the proof of Theorem 2.1.1, that any trajectory pR, pto £
will enter £ before or at t = £ This is a stronger result than
required, and may be avoided by setting t1 = tc+T. On the other hand,

condition (iv) can be modified in the following manner.

%
(iv) to each LI B, there corresponds a t(ro) such that the maximal

solution rM(t;ro), rM(to;ro) =T, of equation {(C) is such that
. <
rM[t(ro),ro] 2 0.

where B is the set such that V{}(pto,ﬁ),t;] € B, all p ¢ E, such

that pt e a/R. ’

In this case (i) may be relaxed to the following statement:
V[p(pto,s),to] is finite for each fixed p £ E, such that pt0 e afB.

(Zj Any system (E,R,f) is semi-finally stable with respecf to the sets

(e, B, J), dcz B. So the following theorem is concerned with the-

case a < B.

Theorem 2.1.2:

System (E,R,f) is not finally-stable with the sets (a, B, J),a<t B, if
. . * * . .
there exists a point p ¢ E, p t, € af/B, two functions V[g,ﬁ] e_C(J(O,kl),J),

w(t,r) £ A(J,R), such that -

. * - . 3 .
1) V{b(p to’B)’ té] is non-negative and finite.
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(ii) V[s,t] #0, Ds#0, all t e J
(1ii) D_V[b(p*t,s),gj ;:w(t,V[}(p*t,B),fj), all t e J.

*
(iv) the minimal seolution rm(t),rm(to) = V[b(p tO,B),t;], of equation

(C) 1s such that

rm(t) >0, allteJ, £t > to (2.1.10)

Proof of Theorem 2.1.2:

*
Consider the trajectory p R. Applying (i), (iii), and Lemma 1.3.2 - IV,

we get
*
Vpp ,t,8),t] 2r (6), t e J (2.1.11)
By (2.1.10), we get
*
Vp(p t,8),t] >0, allteld, t> t, (2.1.12)
which gives, using (ii),
, | | . e
p(p t,B) > 0, all t e J, t > t . ’ g S(2.1.13)

This completes the proof of the thecrem.

Remark 2.1.2:

(1) ﬁl may be replaced by

* %
K = sup.p(p t,B). (2.1.4)
ted
(2) Condition (i) of Theorem 2.1.2 is implied by condition (iv}; for, by

(2.1.10), we conclude that

r () = V[b(p*to,s),t;] > 0,
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2,2 Semi-final stability with respect to the sets (a, B, t,_€ J):

(1) Let J

1

J(to’tl) and

~
N
]

sup p(q,B) (2.2.1)
qea(Jl)

Theorem 2.2.1:

System (E,R,f) is semi-finally stable with respect to the sets
(e, B, t1 g J), if there exist two functions Vlg,g] € C(J(O,kz),JlJ,
wlt,r) € Q(JI,R) such that
. o .
(v . . .
(i) VM‘to’B) is finite.

(ii) V[s,t,] is positive definite for all s ¢ J(0,k,) .

(1ii) D+V[E’(Pt58)s€] ;.w[t,VED(Ptaﬁ)saJ, all t e J(to’tl)’ P €E,

such that Pt € a.

. . . L e . .
@v) | the maximal solution n(c), 1 (t) = V(e 38), of equation (C)

“1s such that rM(tl) = O,

Proof of Theorem 2.2.1:

Let pR, p ¢ E, be any trajectory of (E,R,f), with PL, € ¢, then
o
V&(pto,s)_,to] < V(e 58) (2.2.2)
Application of (2.2.2), (iii) and Lemma 1.3.1-1IV gives

vlp(pe,B),t] £ (8), all t e (e at) (2.2.3)

then by (iv),
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vlp(pt ,8),t ] =0
But V[p(pt ,B8),t ] 20, by (ii), then

V[p(ptl,s),tlj = 0

which gives, using (ii) again, p(ptl,B) = 0. The theorem follows

(2) The following theorem avoids the restriction that V[},ti} must

be positive-definite.

Theovrem 2.2.2:

System (E,R,f) is semi-finally stable with respect te the sets

(¢, B, t., € J), if there exist three functions V[é,é] £ C{J(O,kz),Jl),

1
ml(t,r) 3 Q(JI,R), and wz(t,r) € ﬂ(Jl,R), such that

1 v[s,t]=0 = s=o0.

.. o a .
El})- Yuth,B) ??d Vm(FO,B) are fln}te.

(iii) D'V (pt,8), 8] < w, (6,V[p(pe,8),2]),

D V[epe,8),t] 2w, (t,v[e(or,8).t]),

all t € J , p ¢ E such that pt0 £ 0.

(iv) the minimal solution rm(t), rm(to) V;(to;B), of equation

T = mz(t,r) (Cz)

is such that rm(tl) = (.

V3 .
VM(tO,B), of equation

U

{v) the maximal solution rM(t), rM(to)
T = wl(t,r) (C.)

is such that pMFtl) = 0.



Proof of Theorem 2.2.2:

It is easy to show that

r (t) < V[p(pt,8)t] < my(e) (2.2.4)

all t ¢ Jl’ p € E with Pt, E . Condition {(iv), (v) and

(2.2.4) give

Vip(pt,,B)t,] =0 | (2.2.5)

Which gives, by (i), p(ptI,B) = 0, The theorem follows.

(3) We give below a result concerning the non semi-final stability
with respect to the sets (o, £, t, € J). It can be proved

in the same way as above.

Theorem 2.2.3: (t1 > to)

System (E,R,f) is not semi-finally stable with respect to the sets

((1, B, tl

functions V[%,E] € C(J(O,kz), wl(t,r) e Q(JI,R), such that
(1) v[s,t] #0 > s#0

(i) - D V[ t,8),¢]

fiv

w[t,v[_g(p*t,s),ﬂ), all t e J, .

* . J
(iii) v[e(p t,+8)s to__l is finite, and the minimal solution

rm(t) of
r = w(t,r) r(to) = V[@(P*to,ﬂ)té]

is such that rm(t]) > 0.

. L S ke K T
e J), if there exist a point p ¢.E, with p t0 € o, two
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FINAL-STABILITY THEORY

3.1 Final-Stability:

(1)

Theorem 3.1.1:

System (E,R,f) is finally stable with respect to the sets
(s Bs J), if there exist two functions

v[s,t] e ¢(3(0,K,),3), w(t,r) e Q(J,R), where

Ky = sup. 0(q,6). " (3.1.1)
qea(J)

such that

(1) V[%,g] is positive-definite with respect to s, for all

s € J(O,K3), and t & J.
(1i) V[b(pto,B), t;] is finite,'for ali p e E, pto £ a.

(iii) D' v (pe,B)E] < wlt,v[o(pt,8),6]), all t € J, p € E, with

“pt £ w.
P

{iv) for each r € B, there corresponds a t(ro) g J such that

the maximal solution rM(t;ro), rM(to;ro) =T, of equatinn’
r = w(t,r) (C)
is such that
r(tir ) =0, all t e J(e(r ).t +T) (3.1.2)
B <R is the set such that

V[é(pto,ﬁ),té] e B, all p e E s.t.pt € a (3.1.3)
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Proof of Theorem 3.1.1:

Let pR, p ¢ E, pt0 £ o, be any trajeétory of (E,R,f), and let

t, = :(vﬁa(pto,s),to]] as given by (iv). Using (ii), (iii) and

Lemma 1.3.1 = IV, we get

r,(ts vloGr ,8),c 1) > v[p (pt,8) L] (3.1.4)
for all t ¢ J. By (3.1.2),

v[p(pt,B),t] <O . (3.1.5)
for all t ¢ J(tp,tO+T). By (i) and (3.1.5), we conclude that

p(pt,B) = 0, all t e J(tp,to+T) (3.1.6)

4

The theorem follows.

(2) The following theorem avoids the restriction that V[é,g] is

positive—definite.

Theorem 3.1.2:

System (E,R,f) is finally-stable with respect to the sets (a, B, J),

if there exist three functions, V[%,E] £ C(J(O,Kg),J), w, £ N(J,R),

1

and w, € 2(J,R), such that

(1) V[@(pto,s),t;] is finite, for all p € E, such that pt0 £ o, and
v[s,t] =0 2 s =0, all t ¢ J. (3.1.7)

(i1) D+VEJ(Pt,B),€l ;wl(t:VE)(Pt’B),a): D_VE)(Pt,B),E[ ;wz(t,V[Q(Pt,B),t-_]},

all t ¢ J, p ¢ E, such that pt0 £ O,
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(111) to each r e B there corresponds a t(ro) € J, such that:
(a) the maximal sclution rM(t;rO), rM(to;ro) =T s of equation
r = ml(t,r) (C.)
is such that

r,(tsr ) =0, all t e J(t(r ),c +T) (3.1.8)

(b) the minimal solution rm(t;rc), rm(to;ro) =T of equation
£ o= w,(t,r) (c,)
is such that
r (e5t) = 0, all t e J(e(r ), +T) (3.1.9)

where B is given by (3.1.3).

Remark 3.1.1:

‘ : ' ok
Condition (3.1.7) can be assumed to hold only for all t e J(t ,tO+T), for

%
some t £ J.

(3) Theorem 3.1.3:

System (E,R,f) is not finally-stable with respect to the sets
* *
(a, By, J), 1f there exist a point p ¢ E, p t, € a, two functions
- *
V[s,t] € ¢{3(0,K),T), wlt,r) e @(J,R), such that

] %
(1) V{},q] 0 = s # 0, for a1l t ¢ J(t ,t0+T), for some

%
t e J.

i) o vl t,8),t] 2 w(t, V[P t,8),E]), all t & J.



(iii)

- . * .
the minimal solution rm(t), rm(to) = V[b(p to,ﬁ),t;], of equation
r = @(t,r) (C)
is such that
rm(t) >0 (3.1.10)

Kok %% % .
all t ¢ J(t , to+T), for some t e J, where X 1is given by

(2.1,14).

3.2 Final-stability with respect to the sets (a, 8, t, € J):

Theorem 3.2.1:

System,(E,R{f) is finally-stable with respect to the sets {(a, B, t

1 e J),

if there exist two functions V[ﬁ,ﬁl € C[J(O,Ka),J), w(t!r) e 5(J,R),

such that

(i) V[S,ﬁ] is positive-definite with respect to s, for all t ¢ J(tl’to+T)’

5 g J(C,K3).

(ii)

(iii)

(iv)

o . . .
VM(tO,B) is finite.

D+V[b(Pt,B),€] gzw(t,V[b(pt,S),éj}, allteJ, pecE, Pt € a.

. , o . .
the maximal solution rM(t), rM(to) = VM(tO,B), of equation

r = w(t,r) (C)

is such that rM(t) =0, all t ¢ J(tl, t°+T); where K, is

given by (3.1.1).

The following theorem avoids the question of positive-definite

functions.
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Theorem 3.2.8:

System (E,R,f) is finally-stable with respect to the sets {a, B, t, € J),
if there exist three functions V[ﬁ,é} £ C(J(O,K3),J], wl(t,r) e Q(J,R),

and wz(t,r) ¢ 9(J,R), such that
. a o ..
(i) VM(tO,B) and Vm(to,B) are finite.

(ii) v[s,e] =0 = s =0, all t & J(t £4T).

1,

(ii1) ' v[p(pt,8),e] 2 w,(t, Vo (pt,8),E]), D Vo (pt,8),E] >

~wZ{t,V[f_)(pt,B),t;]), alltedJ, peE, Pt_ € a.
(iv) the maximal solution rM(t), rM(tO) = V;(tO;B), of equation
= w, (t,1) (Cl)

is such that rM(t) =0, all t ¢ J(t t0+T).

l,
(v) the minimal rm(t), rm(to) = Vi(to;B), of equation

is such that rm(t) = 0, all t' e J(ty, t0+T). -

Theorem 3.2.3:

System (E,R,f) is not finally-stable with respect to the sets

. . . * * .
{xy B, t. e J) if there exist a point p ¢ E, p t, € &, two functions

1
& 3
v[s,t] € c{3(0,K),I), w(t,r) € 0(J,R}, where K 1is given by (2.1.14)

such that
(i) V[;,té] #0 = s # 0, for some t, € J(tl, to+T).

r = * - . -
{ii) V[E(p to,ﬁ),t;] is finite.



(iii) DV G 6,8),6] > w(e,VE K t,e),t]), all t e J.

(iv)

L . *
the minimal solution rm(t), rm(to) = V[é(p to,B),t;], of

equation

r = w(t,r) (©)

is such that rm(tz) > 0, for some t, satisfying (i).



(1)

(2)

(3)

(4)

(5}
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§4. CONCLUSION

As mentioned in the introduction, the theory established in this
chapter is limited to the basic definitions of final-stability. One
can establish a theory related to the different types of strong

(semi-}final stability of system (E,R,f).

Obvicusly, an important class of ordinary and partial differential
systems can be studied by means of the above theory. We note,
however, that many ordinary (and partial) differential systems do not

define dynamical systems. Hence, the theory of final-stability

established in the first two chapters is relevant.

One notices that we have not used the full strength of the definition
of dynamical systems. So, it would be possible to extend the theory
to more general systems provided, of course, the adequate

modifications are made.

The extension of the above to dynamical systems with control is probﬁkﬂx

possible and ™ay be done in a way similar to that used in Chapter II.

The extension of the theory to discrete dynamical systems is also
possible. One has however to consider the essential modifications

dictated by the nature of the system.



CHAPTER V

Conclusions, References,

and Notation
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CONCLUSIONS

In the thesis we have tried to establish as many results as possible,
Our purpose has been to give the interested reader as large a field
of research as possible; so he may investigate the possible openings
and the probéble applications of the different results. As a
contribution from our part to possible future studies, we discuss

below seme ideas which we believe may be useful:

A possible field of research would be the amelioration of the above
results: minimising the conditions whenever possible, or using other

techniques to prove the existing results.
The idea is not void of sense, since it was possible to establish

different theorems yielding similar conclusions.

Generalising the concept of final-stability furthermore by restricting
the controls in.a different manner, we give below an example of such .|

a possibility:

Definition 1:

System (EC) is practically finally-stable with respect to the sets
(e, B, U, t € J), lIfE-Sm, if for any X, € 0 there exists a control
uo(-) ¢ U, such that a corresponding trajectory {(at least)

x(t) = x[t;xo,to.uo(')] satisfies the relation
x(t; xo,to,uo(-)) € B, t eJ, t 2t. (1)

The difference between this type of final-stability and the usual

" concept of final-stability is that the latter implies the former, i.e.,
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a system (EC) which is finally-stable with respect to the sets
{c, B, U, t, € J) is certainly practically finally-stable with
respect to the sets {(a, B, U, t1 ¢ J), but the converse need not be
true. Of course, the methods used above are no lomger applicable.

It is however possible to modify them to apply here. For example:

Theorem 1:

System (EC) is practically flnally stable if there exist two families

of functions V[x t; x] £ LrR J:[, wlt,r; X, ) £ 2, all X, € O such that

(i) V[x St ,x? and V (t x ), teld, t2t,, are finite, for each

-

X, € a, where ' ‘

c
VB (t;x ) = l‘ﬂf V[x t; x] (2)
m o

st

(ii) to each X, € 0, there corresponds a uo(-) ¢ U, such that

ertx1<ththxO“|
allteJ xeR,u()=uo('),where

VE<+hg £t + h; x —Vl:xt'xr
VE{txq-llmsup_l_ ’ , O——l ”c:j (3)
h>0 h

{ii1) for each X, € 0, the maximal solution rM(t;xo) of
. 13

r = w(t,r;xo) r(to;xo) = V[xo,to;xoj {(4)
is such that

c
B
rM(t;XO__) < Vm (t;xo), all t e Jd, t ;tl.



An important field of research, in theory at least, is the problem
of establishing converse theorems. The following is an attempt to

generalise some known results [16,17,35].

L. Weiss [35] introduced the concept of uniform finite-time stability

as follows:

Definition 2:

System

x = f(x,t)

is uniformly stable with respect to the sets (a, B, J), a—g, if

. % ok * % .
any trajectory x(t) = x(t3;x ,t ), t e J, X ¢ a, is such that

x %
x(t;t ,x ) e B
*
ali t e J, tzt; where
a3 |lx||<a, B ||x||] <b, a<b.

This definition is obviously different from the definition of
uniform final-stability given in the previous chapters. There is,
however, no possibility of confusion, since stability with respect

to the sets (a, B, J) is, in fact, uniform final-stability of a

particular type; that is, stability with respect to the sets (a, B, J)
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(5)

(6)

(7)

is equivalent to final-stability with respect to the sets (o, B8, t0 e J).

This leads us to propose the following generalisation of Definition 2.
It is, however, more convenient to use the term "monotonic" instead

of "uniform". Thus, no possible confusion will arise.
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Definition 3:

System (5) is monotonically finally-stable with respect to the sets

(e, B, £, e J), if

1

() it is semi-finally stable with respect to the sets (o, B, t. € J),

1
and

.. . * % % % * Lo
(ii) any trajectory x(t3x ,t ), t ¢ J, t 2 t), x e B, satisfies
* %
x(t;x ,t ) e B
*
allt € J, t >t ,
But in order to be able to generalise the result given by Weiss [35],

we need to restrict the above definition in the following manner.

Definition 4:

System (5) is strictly monotonically finally-stable with respect to

the sets (a, B, t, & J), if . .

1

(1) it is semi-finally stable with respect to the sets (a,’y,xtlié I,

for some set vy, ;c:.I(B), and
.. . x % ® * % o
(ii) any trajectory x(t;x ,t ), £t e J, t ;‘tl’ x e vy, satisfies
* %
x(t;x ,t ) £ B

*
allt e J, t >t .

We are now in a position to propose the following theorem:
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Theorem 2: (J = 1)

Let f£(x,t) satisfy a local Lipschitz condition with respect to x,
for all £ ¢ J, ¢ ;zgl, in addition to the other usual requirements.
Then system (5) is strictly monotonically finally-stable with respect

to the sets (a, B, t, € J), if and only if

1

(a) it is semi-finally stable with respect to the sets (a, vy, t, € J),

1
for some set y, y— I(R), and

(b) there exist two functions V[%,ﬁ] £ L[E - I(y), J(tl)l, wl(t,r)
e 1, where J(tl) tteld, t ;=t1, such that

Fr.B

m

iy VEE () and v

M (t) are finite, all t ¢ J(tl),

% -
G vxtl e vixeD, te [rL.e 4T, xe 8 - 1.
(iii) for each t, ¢ (tl,to+T), the maximal solution rM(t) of
. _ T.Y
r = w(t,r) r(tz) Vﬁ (tz)

is such that

Fr.B

rM(t) < Vm (), te J(tl), t >t

=
That the conditions are sufficient is obvious from the theory established
in this thesis. On the other hand, it is possible to show that the

conditions are necessary in the case where Yy and B are given by
vyillxll ¢ s B flxl] < b, c<b

bearing in mind that strict meonotonic final-stability will imply

that the system is uniformly stable {in the sense of Weiss) with

respect tc the sets [Y; B, J(tl)]. We note that the case J = T is
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considered separately by Weiss [35].

On the other hand, some results established in [lﬁ,li] lead us to

propose the following definition and theorem.

Definition &:

System (5) is strictly finally-stable with respect to the sets

(a, B, t, € J), if

(i) it is semi-finally stable with respect to the sets {a, v, t, e I,

‘for some ¥, ;C: I(B), and

(i1) it is stable with respect to the sets [Y, B, J(tl)];_(where
J(tl) tted, t ;;tlj, i.e., for any trajectory x(t}, the

condition x(tl) e v implies that x(t) e B, all t ¢ J(tl)"
It is to be noted that condition (ii) is stronger than:

. ‘
(i1) it is finally-stable with respect to the sets («, B, t, e J).

Theorem 3: |:16:| J = 1)

System {(5) is strictly-finally stable with respect to the sets

(e, By t, e I), if and only if

1

(a) it is semi-finally stable with respect to the sets (a, vy, t1 e 1),

for some set v, ;C:ZI(B), and

(b) there exist two functions V x,ﬁ] £ L[E,J(tljj, wlt,r) ¢ @,

such that

1) Vxt] < w(e,VEtD, all t ¢ (), x ¢ B
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(11) for each set 8 vy, the maximal solution rM(t) of

- _ oFr.é
r = w(t,r) r(tl) = VM (tl)
is such that
Fr.pB
rM(t) < Vm (t), alt t ¢ J(tl), t > tl.

[&he function £(x,t) is assumed to be locally Lipschitzian

in x.]

Finally, it would be worthwhile to consider the problem of establishing

converse theorems for most of the types of final-stability.

Following Weiss and Infante [37], we say that one of the‘desirable
goals in the development of any theory of stability is to be able to
determine the stahility properties of a complicated system by knowing
the stability properties of lower order subsystems which, when coﬁpled

together in an appropriate fashion, form the original system.

- In general, this is rather difficult to achieve, but certain résults

along this line are immediately available in the case of finite-time
stability [30,3?]. As a further contribution to such a field of
possible investigations, we propose below some definitions and a

result.
The system which we consider here is of the following form

.= n{x,t) (8)

Ma

with decomposition
ﬁ(i) - q(i)[w(l), e, w(k),t) _ (9)

1=1, ..., k)
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where
[ - [~ -
xl ey
. : i n.
x = . =y = . , X E Rn, w(l) e R 1
. . n, =mn (10)
: : i=1
' QY
n
The usual assumptions which ensure existence, continuous dependence .
on initial conditions are assumed to hold over the usual interval J.
As before, small greek letters will denote connected sets. Moreover,
let
={xfe D , if and only if w(l) € O, ,
(]1)( s s KO ) alx o0 X0O 1
k k
i=1,...,k.} (11)
¢ . =,{x[w(i? E-B?, for séme 1 <1« k} (12)
a]_X e xak - T == s " . . T T AT

Definition 6:

System (8) with decomposition (9) is semi~finally stable with respect

to the sets (Da » J), if, for any trajectory

D
1% eoe xuk’ B1xX ... ka

x(t), the condition

x(to) £ Dalx

.Xok

implies that

X(tl) € Dﬁlx e xﬁ(
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where t, ¢ J may depend on the particular trajectory.

A weaker form of semi-final stability can be defined as follows:

Definition 7:

System (8) with decomposition (9) is said to be partially semi~finally

stable with respect to the sets (Dalx L Xak’ DSlx o XBk’ J)f if,
for any trajectory x(t) = [}(1)(t), i=1, ..., il, the condition
x(to) € DOtlx e e XO.
k
(1)

implies the existence of t edJ, i=1, ..., k, such that

1

w(i)[t(i))

£ Bi, i=1, ..., k

where t s, 1=1, ..., k, may depend on the particular trajectory.

(1)
1

We note immediately that semi-final stability, in Definition 6, implies

partial semi-final stability, but the converse in not necessarily true.

- Definition 8:

System (8) with decomposition (9) is not semi~finally stable with

respect to the sets (D J), if there exists

A1X ... X0 Dﬁlx ce xEk’

) k
a trajectory g(t), x(to) £ DOle . xakf and such that
x(t) e D all t e J
B1X +.. ka’ ’

It is to be noted that this definition does not exclude the possibility
of the system being partially semi~finally stable with respect to
the same sets; for the above trajectory x(t) = [%(1)(t), i=1, ..., %ﬂ

may satisfy the relations



i .
W( )(ti) £ Bi’ i=1, ..., k
provided £y # tj for some i # j.

Such distinctions do not arise in the following definitions.

Definition 9:

System (8) with decomposition (9) is semi-final stable with respect

to the sets (D t1 e J}, 1f, for any

D
G1X v xak’ Bi1X .. ka’

trajectoery x(t), the condition

X(to) € Dalx eee Xop

implies that

x(tl) £ Dle o ka.

Definition 9 suggests a new definition of semi~final stability which

might be useful and is less restrictive.

Definition 10:

System (8) with decomposition (9) is semi-finally stable with respect

to the sets (D

01X «.. XO P - tk,EJ)’ if,

D
3
K B1x ... xBK 1

. B (i} . .
for any trajectory x{(t} = [E (t), 1 =1, ..., E], the condition

implies that

W(i)(ti) £ Bi, alli=1, ..., k.
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One can define the other types of final-stability in a similar way.
But we terminate these definitions by the following one which is

given by Weiss and Infante [ﬁi]. Let a, < Bi’ for all i =1, ..., k.

Definition 11:

System (8) with decomposition (9) is stable with respect to the sets

(DOllx . xak’ Dle . XBk’ J), if, for any trajectory x(t), the

condition

X(tO) & Dalx e X0

implies that

x(t) € Dle L gﬁk

, all £ £ J.

Weiss and Infante [3?] proved some results in the case k = 2, but it

is probable that the extension to some complicated systems is possible.

Motivated by a result concerning stability of discrete systems [3@],

we propose the following theorem

Theorem 4:

We consider system (8) with the following decomposition
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JU L WD Wy (13.1)
B AL (13.2)
MU LML Wk £) (13.%)



Let (il) subsystem (13.1)

1),

(GI:.BI, Ul’

(i,) subsystem (13.2)

2, J)’

((.!.:2’ 82’ U
(iK) subsystem (13.%)

(ak, Bk! Uk} ‘]) ]

be stable with respect to the sets

be stable with respect to

?295 52’ 2

be stable with respect to

o Bk, Uy

Then, system (8) is stable with respect to the sets

DBIX .o ka’ J).
Proof
Let x(¢) = vy, i =
that-
X(FO)

Suppose that there exist a L, € (to,tO+T), the first such time at

1, ..., k.

(We limit the case to open sets Bi, 1=1,

EDCL Xo
.. o

Y
which w(k‘(tl) € Fr.Bk, then

W(k)(t) £ Bk’ t e [io,tl)

But, by (i,), it follows that

O £» te [t ,t]

Furthermeore, by (iz), it follows that

B e 8, te bt

Repeating this (k- 1) times, observe by the (ﬁ(_l) hypothesis of

the sets

the sets

(Dalx X0,
vy k, and J

U, = El’ P N

be an arbitrary trajectory such
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(14)

(15)

(16)

(17)
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the theorem that subsystem (13.(k - 1)) is stable with respect to

the sets (O'-k_lj Bk_l! Uk-l’__J)’ Uk_]. = Bk"z-

Now, if t2 is the first value of t € J for which

W(k—l)(tz) . B§_1 (18)
then, it follows that t, > t,. Now, consider subsvystem (13.%k); by
(ik), it is stable with respect to the sets_(ak, Bio Upr 9D
Uk = Ek—l’ then

W) e p, 19)

which is in obvious contradiction to (15). Thus, w(k)(t) € Bk,

all t £ J.

Next, by repeating the above argument for each of the yg-subsystems,

one can show that

w(i)(t) £ Bi all t € J.

. This completes the proof of Theorem 4.

A further field of research would be to establish connections with
the theory of boundedness of the sclutions of systems such as system
(5). Also, one can investigate the possible relationships between

the theory of final-stability and the theory of Liapunov's stability.

We propose below some theorems concerning some types of boundedness
and stability. For the required definitions and the definitions of
the other types of boundedness and stability we refer the reader

to the following references: [?,9,10,19,26,27,32,38,39—49,5@]. The

theory was suggested to us by a transformation
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t = + t (20)

given in Bh:] where the idea was to apply Liapunov's direct method to
the theory of finite—time stability. It is, however, possible to use
the methods of final-stability to establish some 1l'esu1ts on bounded-
ness and Liapunov's stability by means of t'ransfomations similar

to (20). The following are illustrative examples: Let, for any T > O,
J(T) = |_—9,T). Assume furthermore that the uniqueness property is

satisfied, then

Theorem 5:

_— ) ) +
System (5) has a bounded solution if there exist to e R, X, € Rn,

. - * .
T > 0, and two functions VE(,S] £ L[@,J(T):l, w(t,r) € f , where B is

a bounded set containing X, in its interior, such that

(i) V[—x OJ and V B(s), s ¢ (0,T), are finite.

(i1) lim sup l{V|-:n: ———h-']-:—-—z flx, m—— + t. ),‘ s-+ {I - V[x,s] }
h—>0 h (T s) T - s .

< {.U(S,V[:X,E‘;:]), all s € J(T), % ¢ E
(iii) .the maximal solution rM(s) of
dr :
. = u(s,r) r(0) = v[x_,0] (21)

is such that

ry(s) < Vir'B(S), s £ (0,T) (22)
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PToof:

Consider the transformation (20), then system (5) becomes

y' = £ (y,s) (23)

v o4y A - T s
ds °’ £ (Y:S) _ W f(ys T - 3 + tO), and

where ¥y

y{(s) = x(t(s)], where x(t) is a trajectory of (5), with x(to) = X
and y(s) is a trajectory of (23), with y{(0) = x . It is easy to see

that the functions V[},é] and @(s,r) satisfy the following conditions:
W F o Fr.B .. ’

(1) VM(O) and Vm (s), s ¢ (0,T), are finite. (a = {xo}).
. * * -~

(ii)" Vv [y,8] < w(s,v[y,$]), all'y ¢ B, s e J(T)

*
(iii) the maximal solution rM(s), rM(O) = V;(O), of equation

dr _
'(E'. = N(Ssr)

satisfies (22).
Thus, system (23) is stable with respect to the sets (¢ 8, J(D)).

The theorem follows. (Ref. Theorem 3.3.5 - II)

The possibility of showing the existence of at least one bounded
solution of a given system (5) is important as far as two-dimensional
systems are concerned. An important application is the existence of
a periodic solution of system (5); for, following Masseré [28,2@],
the existence of a periodic sclution is implied by the exisLence of
all solutions in the future, and the existence of a bounded solution,

provided n = 2,

The following theorem would be useful, in theory at least, if one

wanted to show the existence of an unbounded solution of system (5).
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Theorem 6:

System (5) has an unbounded solution if there exist a strictly
increasing sequence {bj}, bj > 0, bj -+ ®, g5 j » «, a point X, € By,
- . -— — - *
Bj ;x| < bj’ and two functions V[x,f] ¢ L[Rn,J(to,mZJ, w(t,r) ¢ Q,
- +
for some t0 £ R, J(to,w) = [io,w), such that

(i)  vix,,c ] is finite.
(ii) V*E{,t] < w(t,V[x,t]), all t ¢ J(O,»), x ¢ R".

(iii) there exists a strictly increasing sequence {t.,}, t. > 0, t, » =,
] 3 J

as j » o, such that
J .
(a) Vm (to+tj) is finite,
{b) the maximal solution rM(t) of

to= w(e,n)  or(e) = V[x .t ]

is such that

B‘.. |
rM(t0+tj) ;szJ(t0+tj), all j f O, vea, =,

It is possible to prove the above theorem by means of Theorem 2.4.1 - II,
by setting o é{xo}, Jj = [b,Tj), Tj =t + tj + e, e > 0. So,

using the above mentioned theorem one can show that system (5) is

not semi-finally stable with respect to the sets (a, Bj, t0 + tj £ Jj),
for all j =0, ..., @». The theorem follows from the uniqueness of

the solution through (xo,to).

We note however that the unigueness requirement is not necessary,
bearing in mind that Theorem 2.4.1 - II shows, in fact, that any

. . . c
trajectory emanating from (xo,to) is such that x(tl) e B .



Finally, we state a theorem concerning the Liapunov stability of the
equilibrium x = 0 of system (5), i.e., we require that f£(0,t) = O,

all t ¢ R+. Let R(a) be the set
R@a) : ||x]|] < a
Theorem 7:

The equilibrium of (5) is stable if there exist a peighbourhood
R(h) of the origin, two functions VE{,SJ £ -Ltﬁm, R+j , and
w(s,r) € 9*, such that to each 0 <-£ < h, and each £0 £ R+, there
correspoﬁd two positive numbers § = G(to,e) <g, T= T(to,e), with
the following properties:

(8

G) V& (0) ang vFE-R(E)

M n (s), s ¢ (0,T), are finite.

‘e . 1 hT s _ '
(ii) 1lim izg+ H{V[% M Exy g +t), s+ %} v[x,s]}

< w(s,V[x,s])
for all s éf[@,f], x”e}R(é);'whe#e T = T(t;;a?.'”
{(1i1) the maximal solution rM(s; to,e) of

dr
ds -

= w(s,m), (05 £ ,0) = Vo (0)
is such that
ry(s; t_,€) ;Vir'R(E)(S), s € (0,T)

where T = T(to,;j, and 6 = S(to,e).

. . +
To prove this theorem, one may use, for each t0 e R and 0 < ¢ < h,

the transformation t = + to’ with T = T(to,e); and then show

T_
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by Theorem 3.3.5 - II that the system obtained is stable with respect

to the sets (R(&), R(e), [0,T)).

6. Another approach to the theory of final stability is the use of an
m-vecto;‘function vV = (Vl, cees Vm) instead of a scalar function.
The idea was suggested to us by the work of Lakshmikantham and
Leela [}8.2] concerning Liapunov's stability. Two obvious advantages

of this approach are the following:

(a) the elegant presentation of the theory whenever several Liapuncy-

like functions are used.

(b) it would be more probable to find m Liapunov-like functions

Vi’ i=1, ..., m, satisfying each Ki’ i=1, ..., m,

hypotheses than to find a single scalar function W satisfying
m ‘

all the Z Ki hypotheses.
i=1

7. Finally, we note that the above discussion and suggestions can be

" éﬁtehded'to'bdth discrete and dynamical systéms.
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NOTATION
Chapter T
R" . : the n-dimensional real euclidean spaces.
R : the set of all real numbers.
r! : one-dimensional real euclidean spaces.
R’ : the set of all non-negative real numbers.
S .£
L= [ 2
i=1

+ +

1 =E:0,to+T), t, eR,TeR, T>0.

) . . n
,B, ..., etc. are connected sets in R .
afl B : intersection of o and B, i.e., X e a B = x e o,

and x £ B.

o U B : union of a and B, i.e.,'x cealUB = x€ea, or x e B.

X E O :- x 1s an element of «.

x_t o “x_is not an element of «.

at Kk complément of o iﬁ-ﬁn. -

I(e) : interior of «.

o : c165ure of a.

Fr.a : boundary of «.

al/B = a~-alB

Ic(a) : complement of the interior of I(a) in R".

cec B : xeo= xc¢e f, but there exist some x € B, such that
x ¢ a.

acz B : xea> xefb

a}# ] : either a = B, or af/B # ¢, where

@ : the empty set inm R".
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et B : mneither ae<= B nor o = B,

v{x,t] : R" x I+ R!
*
VE%,@] £ Cl[é X I_] : V[%,E] and its partial derivatives %% , %% seee
1
*
vy %% are continucus over o x I .
n

V;(t) = sup.VE{,lﬂ

XEQ

o .

Vm(t) = 1nf.VE:,t:l.

Xeo
. = 4

dt

* . . . *

${(t) e R[}_J :¢(t) is Riemann-integrable over I .
Chapter II:
(EC) : % = g(x,t,u), (EG) : x = f£(x,t) + G(x,t)u.
J : either I = [@0, t0+T), or I = [@0, t0+f]
g™ : {u(x,t)]u : R x I = Rm}, the set of admissible controls

u(+).
u. :. a glven subset prS?.

: * * '
VE%,E] € L{y,1 ) : V[%,g] is continuous over y X I  and satisfies a

local Lipschitz condition in x, for each t € I

Ve = 1in Su_p_@ + hg(x,t,tﬁ),t + 7] - v[x, £

h+o*
w(t,r) : J xRl » gl
we : if it is smooth enocugh so that the maximal soluticns of
{C) : ¢ = w(t,r) exist over J.
* - 3 . . ‘ . - . . .
we ¢+ 1f in addition w(t,r) is monotonic increasing in r,

for each fixed t e J.
Wla, B, J, ) = {x|x = k[t; xo,to,u(-)}, X, € a/B, u(*) e U, t € J}.

x(t; x

Wo(xo,uo,J);2{x|x ,to,uo(-)}, t e J%

¢}

* . *
Z(a, J , U) = {x|x x(t; xo,to,u(-)}, all X € Oy teJ, u(+) e U},

1" = E;O,t:1 ).



N(a, B, u,

K(a, U, D)
K(xo)

V[é,t; x;]

*
v [%,t; xé]
a .
VM(t, xo)

o
Vm(t, xo)

A(tl, a, B)

M(S5 € A)

(FG)

(F)

U(¥,G)

J

]

)

It

* *
Wo(xo, u, J).

= {xlx = x(t; X s Lo, u(-)), all X, €a

u(*) £ U}.

/8, t e J,

{x|x = x(t; X0t u()}, x ea, ted,u(") e Ul

K(a, U, J), o {Xo}.

L[&, i] : for each X» V[%,t; x;] is continuous over

v % J, and satisfies a local Lipschitz condition in x,

for each fixed t ¢ J.

1im sup..
ho* h

sup. V[%,t; x;]
XEQ

inf. V[%,t; xé]
Xea

V[x + hg, t + h; x;| - v[x,t; xO]

the set of all continuous differentiable matrices

* T
S(t), over J = [?o,tl), such that sup. x S(to)x,

XEQ
inf. x b(tl)x are finite.
XEBC'

the set of all functions u{t,r) € € such that (for the

given 5) the maximal solution rM(t) of

t = ue,r) , r(e) = sup. xS (t )%
Xea
1s such that

(t) < inf. x'S (e )x.
xeR€

Ty

F(x,t)x + G(x,t)u.

%

x = F(x,t)x.

{U@F, G, S, Wis ¢ A(tl, a, B), and u e M(S € A)}, where

ol
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U(r, G, S, p) = {u(')luTGTSx + xTSGx < uft, xTSx) - xT(é + FTS + SF)x,

n
xe R, te [}0, tl)}'

In : the identity matrix in R".
(VPC) : il = X, * uy, iz = x, + Q(X12 - 1)x,
(VP) DXy = Xy, X, = -x; + 0(x;? - Dx,.

B(tl’ B) : the set of all continuously differentiable matrices R

such that sup. xTR(tl)x is finite.
xeB

m{o, R £ B): the set of all u(t,r) such that the maximal solution
_ . _ T .
rM(t) of r u(t,r)) r(to)A X R(to)x0 , is such
that
T :
r, (t,) < - sup. x R(t )x
MY1 1
xeB

for some X £ Q.

T

uS(r, G, R, u) = '{u(-)luTGTRx + X RGu > u(t, ~xTRx) - xL(R + ETR +

RF)x, all x ¢ R™, t ¢ [&0, tl)}.

0@, 6 = (UG, G, R, W|ReB(t, B, uemle, ReB).

Chapter TIT

J = 3, 34ty 35%2, SEEETIE iy
(0S) D oxG e D = £, 1)
avx(),i] = vxG + D, i+ 1 - v[xG), 1]
1x(3) = x(G + 1) - x@).

d(x,y) = |lx-yll, xeR® yeR"
d(x,B) = inf. (x,yj, d(x, B) = 0 if x e B

yeB



diam. B

v(B, e)

*
6(x0,J }

§(a, J*

)

Y (Fr.g,e)

Chapter IV

p(p,q)

o, B,

J(tl,t2

o (p,8)
aJ

pJ

a(J)
V[s,t]
Vo (£38)

o
VM(t;B)

)

*s

]

sup. d(x,y)

XeR
yeB

{x]|d(x,8) < e}, v(B,e) > B.

‘{xlx

* *
x(3)s x(3 ) =x,jed ), I <.

Q

'{ﬁ(xo,J*) 1 X € a}.

{x!x e B, d{(x,Fr.B) < e}.

={x|x ¢ 8BS, d(x,Fr.p) < e}.

a metric space

p € E, q € E, metric distance.

etc.

r_tl,tz__l, t,»t, € R.

: . n
closed connected sets in R

Cdnd if €, = 4w, then j(t ,e) = [t ,t.)"

]

[}

2

metric distance from p e E to 8 ¢ E.

{q]q

{q]q

{q]q

R+ X

inf.
qea
sup.
qea

v[s,t] e C(B,D)

w

J

v

v

Pt : pea, t g€ J}.

pt : t g J}.

pt : pe E, t e J, s.t. pto £ o).

-+ R},

[p(a,8),t]
[e(a,8),t]

function V[é,ﬁ] continuous over B x D,

J x Rl » RL.

1f t] = =, then J(.tl!tz) = (tl’t2],
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@ € Q(D,R) : if it is smooth enough to ensure the existence of maximal

and minimal solutions of the differential equation (C)

over D,
D+V[;(t),£] = 1lim sup. V[é(F th), t ; &1 - V[b(t),&]
' h+ot ’
pV[e(e),6] = liming, VSR, E ;E[ = Vle®), ¢
e
: h+o
%
k, = sup. p(q,B), & = afB.
qeoa (J)
% *
k = sup. p(p t,B).
' ted
k, = sup. p(q,B).
qea(J,)
k, = sup. p(q,B)
qea(J)
ChaEtgr Vv
D = {xlx e D —_ if and only if
G, X xak- : ‘Q‘le.-es-_,ak . . AR
w(l) € a;, i=1, ..., k}, where
(i) wq @) n S
X = (Xl’ ceey X ) = [9 s eens W], W eRL, Y n =n.
n . i
1i=1
p° = {x|w(1) € B?, for some 1 < 1 < k}.
O.X «.. X0 i =" =
1 k
J(T) = [o, 1).
R@ Il <a

J. =]'9,to+tj+a),e>0.






