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ABSTRACT 

A process control computer has been used to detect malfunction in 

the instrumentation of control loops. A flol; control loop is examined and 

a malfunction detection algorithm is developed which is based upon a 

comparison of the control valve position and flow. The technique 

assumes a relatively constant flow-pressure drop characteristic. It 

is postulated that a flow control loop has inherent measurement redun

dancy and a simple "static" or "tracking" state estimator is used to 

obtain an estimate of the flow from the valve position (or control 

demand) and flowmeter measurements. The check is based upon monitor

ing changes in the residuals generated by the estimator. The check 

technique doeS not require additional process instrumentation, uses 

little computer time or storage and can be performed while the control 

loop is operating under direct digital control. The method has been 

tested by extensive laboratory trials and some limited industrial 

application. 

This malfunction detection method based Upon state estimation is 

generalised to encompass all control loops uSing a Kalman filter state· 

estimator. The control loops are modelled by linear time invariant 

transfer functions and it is assumed that the load disturbance is 

relatively constant or measured. The Kalman filter is deSigned to 

yield optimal state estimates by uSing Hehra IS innovation correlation 

method to account for uncertainty in the system model and statistical 

properties. The malfunction detection methods·are based upon examin-

ing changes· in the estimator innovation sequence and/or directly 

estimating loop security parameters associated with control loop mal-

function. The loop security parameter estimator is de coupled from 

the primary Kalman· filter using Friedlandls method and its implementa-
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-tion becomes trivial when it is comb~led with the results genel~ted 

from Mehra's adaptive estimator. 

lhe checks can be perfOl~ed on line to monitor conventional 

analogue and direct digital control loops. 

The proposed algorithms have been tested on an experimental 

laboratory level control apparatus. The results show that the methods 

,detect malfunction and provide some diagnostic information. 

Experiments also show that Mehra's adaptive estimator fails if the 

process measurement noise covariance matrix is small. 

The merits of malfunction detection and equipment condition moni

toring are considered in termS of reliability theory. Reliability is 

considered in terms of the state of knowledge of the system and is 

treated from the view point of the plant designer and operator. The 

reliability is categorised into four regimes depending upon whether or 

not monitoring is performed and upon the information received from the 

monitor. Expressions are derived for these four reliability functions 

for a single equillllent. The information needed to calculate these 

estimates is the conventional reliability function together with the 

probability density functions for the time to failure and for the 

monitor signal from the time of initial malfunction. 
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The progress of the chemical process mduStry over the last 

decade or so has generally been towards larger, more efficient auto

ma ted plants emp10ymg smg1e streams instead of several parallel 

ones. 1hi.B trend has resulted from the commercial pressure for 

lower unit costs and for better products. 

Associated with this phenomenon has been the growth of process 

computer control systems (1). 

As plants have become larger and more complex, some processes have 

been required to operate at higher temperatures and pressures with much 

higher concentrations of reactive chemicals than previously. This 

obviously results m the possibility of greater plant damage under 

fault conditions. This damage not only cauSes economic loss, but 

also human life is endangered. As well as these catastrophic plant 

failures, it has become evident m recent years that many of the 

expected economies of large plants can disappear if a plant cannot be 

operated contmuous1y with unmterrupted production (2). 

The realisation of these problems has resulted m an mcreasmg 

mterest in reliability engineering (3). . Reliability engineering is 

essential for safety, and is concerned with predicting, estimating or 

optimising the probability of Survival, mean life, or more generally 

life probability distributions of components or systemS. Other proI>-'

lems considered are those involving the probability of the proper 

functioning of the system at either a specified or· an arbitrary time, 

or the proportion of the time that the system is functioning properly. 

Often mamtenance such as repair, replaCelllent, or mspection, may be 

perfonned so that the solution of . the reliability problem may influence 

deciSions concerning mamtenance policies to. be followed. 
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The interest in reliability engineering has required probabilis

tic infoI1llation on equipnent failure rates and modes and has led to 

the establishment of a central data bank at the U.K. A.E.A. More 

recently several papers have appeared in the open literature summaris

ing equipment malfunction surveyS (4), (5), (6), (7), (8) •. 

The development of process reliability has relied upon the 

diagnosis of equipnent faults. However, there is a growing recogni

tion that future progress cannot rely upon diagnosis alone (1), (9), 

(10). It is becoming increasingly important to monitor the· state of 

process equipments on either an intermittent or continuous basis. 

At the present time a high plant operating efficiency is achieved 

by introducing maintenance schedules which impose shut-downs at inter-

vals of time. However, despite this preventive maintenance, malfunc-

tion can occur in both process equipment and instrumentation. The 

consequences of such faults depend upon the importance of the ma~ 

functioning equipment to the overall process security and upon the 

degree of warning. The most baSic form of maintenance may be termed 

"emergency maintenance", where the equipment is allowed to operate 

until it fails before it is repaired or replaced. This results in 

maintenance work being done on an emergency basis, which is inefficient 

in the utilisation of manpower and may lead to excessive process down-

time. Thus, it is desirable to be able to detect process anomalies 

at an early stage, thereby preventing catastroIidc failures, improving 

the operational efficiency of equipnent and facilities, reducing 

maintenance cost and allOwing the process to run closer to its intended 

conditions. The introduction of suitable malfunction detection 

policies would help to rationalise the approach to plant maintenance 
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and at the same time provide valuable infonnation on the development 

of failures in different equipment and instrumentation. 

Most of the malfunction detection on chemical plant is currently 

performed by the process operator. '!he problems raised and some 

methods of detection have been reviewed by Edwards and Lees (1), 

Anyakora (9), IJoWSon (11) and Trotter (12). However, as proceSs 

computer control systems have developed it has become apparent that 

the computer has the capacity to contribute to the improvement of the 

overall process reliability (13), (14), (15), (16), (17). There are 

several areas of process reliability to which the proceSs computer may 

be applied; however, in this thesis the application to malfunction 

detection is conSidered. 

The success and role of the process operator in detecting process 

malfunctions has· been examined by Edwards and Lees (1) • However, even 

recognising the competence and dedication of process operators and 

maintenance personnel, human perfonnance is dependent on outside and 

often indeterminable pressures. Frequently conducted procedures become 

routine and· human frailty of increased indifference to routine proce

dures :LS well known. Routine operations· and repetitive ··functions 

requiring little imagination and offering little· satisfaction .are best 

left to a machine, thereby releasing the operator for more rewarding 

tasks. However, the decision of manual, automatic, or man-machine 

malfunction detection is not particularly well defined (1). The 

choice of system should be based upon the comparative strengths and 

weaknesses of each. 

If a process computer is used for automatic malfUnction detection, 

then the experience, judgement, insight and instinct of the human 

opera tor are lost. However, balanced against this are the 
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characteristics of the process computer. These include the ability 

of the machine to perfonn more frequent tests without a higher 

probability of error. Other important features are: the collection 

of large amounts of process data, the detennination of accurate 

process time transients, the facility of conditioning process data to 

a more amenable fonn, the long tenn memory for immediate comparison 

and the ability of operational self interrogation (18). 

The application of a process computer to malfunction detection, 

either as an autonomous device, or as an aid to the process operator, 

is relatively undeveloped (1). The computer's contribution is mainly 

restricted-to monitoring process alarms, to checks made during sequen

tial operations and to some limited instrument tests. 

Damon (17), Hoyte (19); Fraade (20) and Thompson (21) have 

deScribed methodS where the computer performs, with the aid of isolation 

valves, the type of testS normally performed manually by a process 

operator or maintenance engineer. 

More extensive checks on process equipment and instrumentation, 

which utilise the computation capacity of the computer, have been 

suggested by Edwards and Lees (1), Lees (4) and Damon (17), and prac

tical applications of these ideas are beginning to appear _(22), (23), 

(24). 

A method of detecting instrumentation malfunction by analySing 

the statiStical properties of an instrument signal time series was 

proposed by Anyakora (9). A similar technique has been developed to 

monitor the state of an on-line nuclear reactor (25). _In this scheme 

many of the computer characteristics are-exploited. -For example, the 

computer calculates a power spectral density of the instrument signal 
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and displays the resulting characteristic, as well as a standard 

characteristic recalled froni memory, on a colour visual display unit 

(V.D.U.). 

An important part of any modern chemical plant is the control 

system, which can of course malfunction. The ordinary process control 

loop is liable to malfunction and faults can develop in any of its 

constituent parts such as the measurement, controlling or regulating 

elements. 

1he seriOUSness of a control loop failure or malfunction depends 

upon the application, but types of failure which may have particularly 

serious consequences include misleading measurement, incorrect control 

action or valve seizure resulting in wrong control action. The mal

function of instrumentation appears to contribute Significantly to 

serious procesS incidents. For example, Whitman (14) has reported 

that failures of instrumentation in ammonia chemical plants account 

for 10% of major incidents. Some consequences of instrument failure 

in chemical plant han been given by Lees (4). 

However, even if the individual instrument malfunctions do not 

seriously affect the process, their sum total can result in a degrada

tion of the control system performance as well as a decrease in process 

efficiency. 

The failure rates of instruments in chemical plant are quite high 

(4), (8) and since modern plants contain large numbers of them the 

probability of failed instruments at any particular time is high. 

Skala (8) has suggested that there may be as many as 1% of the process 

instruments in a failed state at any time. 
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The detectior. of instrument and/or control loop malfunction is 

usually perfonned by the process operator using an instincti;ve. 

approach based upon his mental model of the expected process response 

and measurement time histories (26). This thesis examines the feaSi

bility of using a process computer to detect malfunction in both 

conventional analogue setpoint and direct digital control loops. 

Chapter 2 develops a particular method for the detection of 

malfunction in a flow control loop based upor: a "simple" state estima

tor. This check exploits many of the computer1s capabilities, such 

as the memory, the display and the calculation capacity. The technique 

is illustrated by extensive laboratory experiments and some industrial 

trials •. 

The application of state estimation to control loop malfunction 

is generalised in Chapter 3 where a method is presented which is based 

upor: Kalman filtering. 

In addition to deriving computer aided methods of malfunction 

detection, the impact of the knowledge that an instrument or equipment 

is malfunctioning on the process management1s assessment of reliability 

is considered. Chapter 4 examines this problem and derives a mathe

matical model whereby a process operator can predict equiIinent reli

ability using his current state of knowledge of the equipment condition 

indicated by a malfunction detection monitor. 

Many of the ideas presented in this thesis involve the concepts 

of linear algebra and probability theory, and the notation and 

mathematical quantities used are given in Appendix I (27), (28). 
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CHAPl'ER 2. 

THE DETECTION OF MALFUNCTION IN A 

FLOW CONTROL LOOP 
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2.1 List of symbols 

aij 

Cv 

D 

E{ ) 

eQ 

es 

ex 

F 

f ij 

f{lf ) 

G(s) 

gi 

H 

Ho 

Hji 

h <!) 

h. 
-~ 

J 

k 

cross-sectional area of control 

valve. 

coefficient in constraint equation. 

control valve sizing factor 

pipe diameter. 

expectation • 

error in flow 

error in flowmeter signal. 

. error in control valve stem position. 

Jacobian matrix (mxn). F distribution 

i,jth element of F 

non-linear vector function of ~ 

transfer function 

weighting coefficient 

measurement matrix (mxn) 

null hypothesis 

enthalpy coefficient 

non-linear measurement vector function 

of x. 

non-linear measurement vector function 

with i th equation eliminated. 

i th row measurement vector. 

cost function. 

process gain/discrete time counter. 

constants in flowmeter and control valve 

equations. 
9 

various 

U.S.gall 
. ( . )! m.lll p.s.J.. 

m 

various 

various 

chu/ 
lb.mole 

various 

various 



k
ml

,km2 

kv1 ,kv2 ) 

k
v3

,k
v4 

) 
) 

I 

m 

m 

mi 

N 

n 

Q 

q 

R 

r 

r 

constants in flOllllDeter equations. 

constants in control 

valve equations. 

number of constraint equations. 

vector of process measurementS. 

number of measurements. 

i th element of vector .!!! 

normalised test function. 

number of samples; number of system states; 

iteration number. 

pressure drop. 

pressure drop across flowmeter 

orifice plate 

pressure drop across control valve 

flow 

flow through flowmeter 

maximum flow 

flow through control valve 

number of process disturbances 

measurement noise covariAnce matrix; 

weighting matrix. 

ijth element of R 

vector of residuals 

number of' control variables 

residual of measureDllnt i 
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various 

various 

various 

k.N/m
2 

(p.s.i.g.) 

kN/m2 

(p.s .i.g.) 

kN/m2 

(P.s.i.g. ) 

m3/s 

m3/s 

m3/s 

m3/s 

various 

various 



r .. 
l.,J 

s 

s 

-2 s 

t 

f,t 

.!! 

v 

w 

x 

x 

~ (k) 

z 

sample mean of i tit residual fran j th 

ensemble. 

weight:ing matrix 

flowmeter signal; l.aplace operator 

pooled sample variance 

sample variance of j th ensemble 

sample .variance ofi th residual from 

j th ensemble 

student's t distribution; time 

sampl:ing interval 

control vector 

measurement noise vector 

vector of process disturbances 

valve position; controller signal 

max:iJnum valve position; max:iJnum. 

controller signal 

state vector 

linearised state vector 

initial iterative value of ;!; 

state vector at iteration n. 

state vector at time' k 

th . . 
i element of ;!; 

vector of measurements 

linearised measurement vector 

i th element of l 

statistical test function 
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various 

various 

various 

various 

various 

-; s 

s 

an; V 

cm; V 

-
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Greek letters 

alpha a. 

beta 13 

zeta ~ 

lambda b, 

mu Il 

rho Pij 

sigma 0 

tau td 

phi (/) 

psi ~ 

omega W n 

Subscripts 

i 

m 

n 

o 

s 

v 

x 

z 

confidence limit 

probability 

damping factor 

vector of lagrange multipliers 

population mean 

corre1a tion coefficient between 

measurement i and j 

population standard deviation; 

measurement noise standard deviation. 

time delay 

sum of squares cost function 

vector of constraint 

natural frequency 

variable i 

flowmeter 

iteration n 

equations 

initial value; malfunction free value 

flowmeter signal 

control valve 

valve position 

statistical test function 

12 

-

various 

various: 

various 
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SUperscripts 

i 

T 

-1 

i th row vector 

transpose 

inverse 

mean 

estimate 
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2.2 Introduction 

Modern processes rely extensiveJ.y upon the correct distribution 

. and control of flowing liquids or gases. 

The usual proceSS flow control loop is illustrated scitematically 

in Figure 2.1. The object of this system is to regulate a fluid flow 

according to some desired requirement. The operation of the control 

loop depends upon the controller receiving from the measuring instru

ment a measurement of the controlled variable. The controller com

pares this with a desired value or setpoint to obtain an error, 

performs a mathematical operation on the error and sends an output 

signal to the control valve, Which then adjusts the' manipulated .vari

able. 

The control valve operates as a variable orifice and the: rate of 

flow through the valve depends upon the UPStream and downstream fluid 

pressures and the opening of the valve. the heart of the control 

valve is the valve trim; its main parts are the Seat and the valve 

plug. The plug usually consists of a seating surface and a charac-

terised portion. 

The characterised portion of the valve plug is of special impor

tance, since it is used to vary the flow area between the plug and the 

valve seat at a controlled rate. This rate of flow change with valve 

lift or controller signal is called the inherenti.Low characteristic 

of the·valve. 

Control valve manufacturers produce a diverse range of inherent 

valve flow. characteristics. However, the COllllDOllest types are the 

linear and equal percentage characteristics. 

A linear inherent characteristic produces a change iD. flow, under 
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constant pressure drop, that is linear with valve position or control

ler signal. For example, at 50% signal, 50% of the flow capacity 

will pass through the valve. 

The equal percentage valve characteristic produces a change of 

flow, for a given increment of valve poSition, that is a percentage of 

the quantity of flow just before the change was made. 

The flow control loop can be based upon a conventional analogue 

controller or a process computer using direct digital control (d.d.c.). 

The signals around the loop can be pneumatic, electrical or a mixture 

of the two. 

Typical control loops are shown in Figure 2.2. F~ure 2.2.a is 

a conventional analogue loop in which the flowmeter is an orifice 

plate and differential pressure transmitter,· and in which all the 

instruments are pneumatic. Figure 2.2.b shows a loop under d.d.c. 

in which the flowmeter is similar to Figure 2.2.a, but the pneumatic 

output from the differential pressure transmitter is converted into an 

electrical signal by a pressure/current (pi!) transducer before enter

ing the process computer. The output from the computer is converted 

from an electrical to a pneumatic signal in .a current/pressure (I/p) 

transducer and then passed to the control valve. ~e 2.2.c is' 

similar to Figure 2.2.b except the flolGeter is an instrument giving 

an electrical output, such as a magnetic flowmeter. 

The reliability of a flow control loop depends upon the state of 

its components. The precise definition of control loop failure or 

reliability is not straightforward, but for practical purposes some 

workers (4) have suggested that failure is defined when an instrument 

is not operating to the satisfaction of the process operator. 
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FIGURE 2.2c D:i.rect digital flow control loop with magnetic flowmeter. 
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The failures detected in this way vary considerably in type and 

degree. Most failures are determined by inadequate performance of 

some kind but the acceptability of a given performance depends upon 

the application. For example, the reliability of a flow control 

loop may be considered from two points of view: 

i) The reproducibility of the system. 

11) The absolute accuracy of the system. 

Both of these aspects are interrelated. For normal plant con-

trol purposes employing feedback control loops, the pr:ima.ry interest 

is i) since usually a setpoint is established at which the given 

system is controlled and the absolute level of this setpoint is only 

of secondary importance. However, for process performance evaluation 

such as material and energy balances, optimisation, model building, 

etc., when a flow has to be compared directly with another, then all 

the measurements must refer to the same datUm level. Absolute 

accuracy is then required as well as a good standard of reproducibility. 

The important point is that what constitutes a failure for one 

application may be acceptable in another. 

LeeS (4) and Skala (8) have presented data on process .instrumenta

tion reliability. In particular, Table 2.1 details the overall 

failure rates of the process instrumentation associated with flow 

control loops. 

The overall instrument failure rate gives only lUnited information 

and often knowledge of the instnunent failure modes are required. 

Lees has classified failure modes as: 

Condition, 

Performance, 
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Safety, 

Detection. 

Some data on failure modes for various instruments have been 

analysed by Lees (29), while the results of three independent surveys 

of data describing malfunctions of valves used in nuclear power plants 

are given in reference (30). Stiles (31) has investigated the effect 

of cavitation in control valves and presented several photographs of 

damaged valve trims caused by operating the ,system in this way. 

Environmental effects of temperature and pressure on the failure 

characteristics of pressure transducers have been examined by 

DlvidSon (32). 

The problem of detecting malfunction in now control loops has 

been examined by several researchers. 

A major area of work has been concerned with the problem of data 

Instrument 

Control'Valve (p) 

Controller (p) 

Flow measurement (fluidS) 

Differential pressure transducer (now) 

(neglecting impulse lines) 

Magnetic flowmeter 

Current/pressure transducer 

Impulse lines 

Observed failure 
rate-faults/year 

0.25 - 0.60 

0.29,- 0.38 

1.14 

,1.73 

2.18 

0.49 

0.77 

TABLE 2.1. Flow control loop instrumentation failure rate, data (4). 

p denotes pneumatic. 
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consistency reflecting the definition of flow control loop failure as 

having occUlTed when the material and energy balance acceptance 

criterion is not satisfied. 

A set of material and energy balance data from a chemical plant 

does not usually satisfy the steady state material and energy balance 

equations. 'Drl.s inconsistency may be accolDlted for in several ways 

such as random errors on the measurements, lDlSteady state process 

operation, gross measurement errors, and procesS disturbances. 

Kuehn and Davidson (33) and C1ementson (34) have proposed methods 

of obtaining consistent data sets from process measurements containing 

only small random errors obtained at steady state plant operation. 

They introduced the least squares criterion to predict a consis

tent set of data:l. from a set of measured data m: 

m 

Ih = L 
'I' i=1 (2.1.1) 

where 0. 2 is the . . th .th t' gl.ven error varance on e l. measuremen, m. l.S 
l. l. 

the ith observed measurement, . th .th wh d y i J.5 e l. measurement. en correcte 

and m is the nUlllber of measurements. 

In the analysis the elements of y: are assUllled to be linearly 

related to one another by equations such as material and heat balances, 

i.e. 

4J.= 
J 

m 

2:: 
i=1 j = 1,2.. . . , 1 (2.1.2) 

where a
ji 

is the coefficient of the ith measurement in the jth 

. balance equation, and 1 is the total nUlllber of constraints. 

The problem in mathematical fOI1ll. is to minimise $, ~ubject to the 

constraints ':!! 
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Notice that with this fonnulation the m.IS are not the primary 
~ 

measurements such as the fj, P across an orifice plate, bUt are mass 

flows computed from the pr:imary measurements. 

Ripps (35) considered the problem of the process measurements 

containing small errors as well as very large errors introduced by 

complete malfunctioning of an instrument, or very strong instrument 

bias. He expanded Kuehn and Davidson's procedure by discarding 

measurements, which were suspected of containing a gross error, in 

the basic least squares criterion of equation (2.1.1). The method 

takes advantage of the redundancy present in the material and energy 

balance equations to est:imate the discarded data. By examining the 

.resultant minimum least squares function <!l when measurements are 

discarded, Ripps demonstrates that this indicates which measurement 

has the gross error. He states that the minimum <!l often coincides 

with the most correct data adjustment, but this need not be the case. 

Although Ripps' technique is attractive it requires some knowledge 

about the procesS in selecting suspect measurements. Also there is 

no criterion proposed to detennine the number of measurements contain-

ing gross errors. This makeS the result uncertain and alternative 

results occasionally may be assumed. 

Nogita (36) and Nogita and Uchiyama (37) have solved some of 

these problems by assuming there might be a few systematic errors in 

the experimental data, and that each of the other measurements is a 

random sample from a Normal population with unknown correct value 

(mean). \l i' known variance 0 i 
2 

and known correlation coefficient P ij • 

The least squares fonnulation of the previous workers was USed to 

detennine a set of consistent data Z. Nogita then defined a test 
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function for the measured data m as 

The scalar variable z is shown to be a Normal random variable 

with a mean I I and variance 0 2 of : ..... z . RI 

m 
.2:=1 p.. g. g. 
J- 1J 1 J O· O· 1 J 

where the elements ~ are derived as a function of the problem 

formulation matrices. 

z is normalised according to: 

z N =-
Oz 

so that N has a Normal distribution with zero mean and unit variance. 

Now by referring to a cumulative Normal distribution table the proba-

bilitY,13, of N being in an interval :t a can be determined. The 

test for data consistency is performed by calculating and testing if 

1Nl > a • If this criterion is satisfied, then it is possible 

to ·say that there exists a grosS measurement error, or an unsteady 

state in the system with 13 probability of being incorrect in making 

such a statement. 

Nogita useS the serial eUmination algorithm of Ripps' technique 

and the test criterion defined above to determine the suspect measure-

mentS. 
, ' 

These techniques of malfunction detection are appealing but suffer 

fran two major disadvantages • Primarily the method aSsumes the 

. measurements under investi&ation may be related by linear equations as 
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shown in equation (2.1.2). Secondly, the fonnulation assumes the 

coefficients of the constraint equations, a .. , are detenninis tic. 
J~ 

While this is true in the case of material balances, for energy 

balances this will not be valid. For example, a process heat 

balance yields constraint equations of the fonn: 

m 
L H .. y. = 0 

.",. J~ ~ 
~~ .. j = 1,2 ••• 1 

where H .• (c: a .. ) is the enthalpy associated with the flowrate y<. 
J~ Jl. • 

Now the entbalpy H .. is calculated from temperature and pressure 
J~ 

which are themselves process measurements subject to both small random 

errors and gross errors. However, to USe the techniques described 

it is necessary to assume H.. is known perfectly, which is clearly 
J~ 

untrue. 

It is therefore concluded that the implementation of these data 

adjustment techniques requires a detenninistic knowledge of the 

constraint equation coefficients aij • If there is an element of 

uncertainty in these coefficients it is suggested that a sensitivity 

analysis should be perfonned to detennine the feasibility of using 

these techniques as a malfunction detection algorithm in the partiCular 

application considered. 

To demonstrate the potential shortccm:i.ngs of these techniques 

the method was investigated on an industrial distillation column 

situated at Works A. Works A was a·large tonnage process producing 

an intennedia te organic chemical. Aprocesil cOntrol computer was 

used to monitor process performance and perfonn d.d.c. on sane control 

loops. The problem fonnulation andsensiti'vity analysis is given. in 

Appendix n. 
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The above techniques are concerned with detecting malfunction in 

particular now control loops by examining the consistency of groups 

of measurements. Fraade (20), Flum and Fraade (39) and Garden (40) 

considered the problem of detecting and correcting malfunctions in 

individual flow control loops. Fraade has suggested that a procesS 

computer may be used to perfonn an on-line calibration of the flow 

control loop. He represents the control loop by a characteristic 

which relates the process nowrate to the control voltage from a 

procesS computer. This characteristic changes as the instrumentation 

in the control loop malfunctions, and so Fraade detennines the charac

teristic on-line by using a calibration tank. At the time of calibra

tion the process computer isolates the main process flow, opens, the 

outlet of the calibration tank and measures the true flow in the line 

by detennining the time for the tank height to change by a specified 

amount. Now knowing this true flow, which is independent' of the 

system, and the computer control voltage, a neW loop characteristic is 

obtained. This may then be compared with the old characteristic and 

inferences on loop security drawn. This method was, used by Barton et 

al. (41) to check the feed flow to a cement kiln. However, the 

applicability of this idea is limited by the need for additional 

process equipment. 

Garden developed similar ideas for updating a flow control loop 

characteristic, but his method does not USe additional process equip

ment. Instead, Garden uses a learning technique based upon a fee&

back signal of the control valve position. '!he technique is applic

able to control valve actuators that are operated by discontinuous 

Signals such as an electric drive unit ,or a solenoid operated'pneumatic 

actuator. Garden suggests that the method provides continuous on-
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line adaptation to the chang:ing characteristics of the valve actllators 

which results in better control than conventional analogue control or 

its digital equivalent. He also states that his technique may detect 

deteriorating parts of the loop, although he does not present experi

mental or theoretical confirmation of this. 

A method of detect:ing malf\mction from the "noisiness" of an 

instrument signal has been developed by Anyakora and Lees (9), (42). 

They applied their technique to incipient failures of several instru

ments such as thermocouples and differential pressure transmitters as 

well as to the incipient stickiness in control valves. 

In this thesis a method is developed of detecting malfunction in 

a complete control loop. It is postulated that a flow control loop 

has inherent measurement redundancy and the process flowrate can be 

calculated from the flowmeter or the control nlTe position measurement 

(or the control valve demand signal).· It will be demonstrated that a 

state estimator may be used to estimate the flowrate uSing the flow

meter measurement and the "pseudo" measurement of control valve stem 

pOSition, and that this provides a data base from which control loop 

security may be determined. The check is based upon monitoring 

changes in the residuals generated. by the estimator. 

The proposed technique doeS not require additional process 

instrumentation, uses little computer time and storage· and may be 

perfonned while the control loop is operating underd.d.c. 

The malfunction detection technique is tested by extenSive 

laboratory experimentation and some industrial tests performed on 

operating d.d.c. loops at Works A. 
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2.3 A valve Position-flow check 

Q 

In flow control loops in which the preSsure drop acroSs the valve 

is either constant or varies reproducibly with flow, there is a 

constant relation between the valve position and the flow, as given 

by the valve characteristic. Thus the valve position or controller 

signal can be used to provide an indication of flow which is addi-

tional to the measurement given by the flowmeter. As a result of 

this it is possible to consider a flow control loop as a redundant 

system since there exist two measurements of the same variable flow. 

During normal process operation the control valve stem position 

(or controller demand signal) may be. calibrated against the flowmeter 

measurement, under the assumption of no malfunction. A divergence 

between the measured flow and that calculated from this characteristic 

curve may then be taken to indicate that a loop malfunction has 

occurred. 

This principle is shown schema tically in Figure 2.3. 

Q / 

x 

, , 
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, 
/ ,-

, , , , 
I 
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/ 
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a. Healthy loop. b. Unhealthy loop. 

Fiplre 2.3. 

- - - - - - - - flow measured by flowmeter 
_____ flow measured by valve position. 

Re.lat.ion between .. valve.1X'sition and, ,flow. 
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'the flow Q is pl.otted against the valve position x. Figure 

2.3a shows the graph for a healthy loop. Figure 2.3b shows an 

unhealthy loop. There is now a divergence betwen the curves of flow 

as measured by the flowmeter and as est.i.mated from the valve position • 

. This idea is presented as the first technique for malfimction 

detection in flow control loops. It is env:i.saged that a check on 

loop security could be developed based on this divergence, either by 

calculating an error or by displaying the plot on a process computer 

V .D.U. 

2.4 Valve poSition - flow characteristics (43). (44) 

In the majority of flow control loops the flowmeter may be classi

fied by two main types; the linear flowmeter and the· square root 

flowmeter. 

The equation of a linear flowmeter, such as a magnetic flow

meter or turbine meter may be written as: 

~= km! s 

Alternatively, a square root flowmeter, Such as an orifice plate 

and differential pressure transmitter may be .used. 'the equation of 

flow of an incompressible fluid through a constant cross sectional 

area orifice is: 

The relation for the transmitter is: 

6. Pm CC s 

Then the equation describing a square root flowmeter is: 
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The equa tion govenUng incompressible fluid flow through a 

restriction such as a control valve may be derived from the laws of 

fluid mechanics and is of the form: 

The cross sectional area for flow A.V depends upon the valve stem 

position x 

Ay = f (x) 

When this relation is linear equation (2.4.5) may be written as: 

Combining equations (2.4.4) and (2.4.6)resuJ.ts in: 

This relation shows the flowrate through the control valve is 

directly proportional to the valve stem position provided the control 

valve pressure drop t,. Pv is constant, and all the other parameters 

are constant. 

Under this condition equation (2.4.7) may be written as: 

o = k x 
-V VI 

Equation (2.4.8) represents the model for a linear control valve 

characteristic, although in practice some valves are better modelled 

as: 

o = k + k x -v VI v2 

Another commonly used control valve characteristic is the equal 

percentage valve whose equation may be derived in an analogous manner 

to be (43), (44) 

C1y = '1.y max e.xp(-:- kV4 (xmax - x) ) 
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Alterna tively, a more convenient form is often: 

If a control loop is' characterised by these models and there are 

no elTors in the system or in the models themselves, then a material 

balance must constrain the measured flow ~ and the flow obtained 

from the valve position '\r to be equal to the true flow Q 

~ = ~ = Q (2.4.11) 

However, if such an error or malfunction is present in the system 

then the above equations are no longer valid and in particular 

let es and ex be the errors in the flowmeter signal s and 

valve pOSition x, then if a control loop is Characterised by a linear 

flowmeter and a linear control valve, the models of equations (2.4.1) 
p. 

and (2.4.8) may be modified as: 

~ = km1 (s + es ) 

o =k (x+e) 
-V v1 x 

The effect of these errors on the relation between Q and x may 

be investigated by Simulation. 

In this section two types of flowmeter and two control valve 

characteristics have been described and so there are four types of 

loop: 

i) Type 1: Linear flowmeter, linear control valve. 

ii) Type 2: Square root flowmeter, linear control valve. 

ill) Type 3: Linear flowmeter," equal percentage control valve. 

iv) Type 4: Square root flowmeter, equal percentage control 

valve. 
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1he errors investigated are: 

i) Flowmeter zero error, 

il) Flowmeter range error, 

ill) Valve position zero error, 

iv) Valve position range error. 

The control valve errors are best Imderstood by regarding the valve 

as an alternative measuring device in which the signal x is equivalent 

to the signal s in the flowmeter. 

The equations, parameters and errors used :in the smulation are 

given :in Table 2.2. The results are shown in Figures 2.4 - 2.7. 

Figures 2.4 - 2.7 show the type of valve characteristic deviation 

Imder conditions of control loop malflmction. It can be seen from 

. these Figures for each particular type of loop that there are SaBe 

errors which are :indistinguishable; this is particularly true of 

flowmeter and valve pOSition range errors. HOWever, some errors 

give rather distinctive deviations of valve characteristic. For 

example, the curve for a flowmeter zero error :in a Type 4 flow control 

loop, as shown in Figure 2.7a, is particularly recognisable. 
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w o 

.. 

Llstrument 

Flowmeter 

control 

valve 

Characteristic 

Linear 

Square root 

Linear 

Equal 

Percentage 

Equation Parameters 

k 
~ ml . 

.. 

0.281 m3 2.81 m3 

~=k (s+es ) 
~ . x 10-3 S'!l x 10-3"'s 

0.8886 m3 2.81 m3 
~ = km/S + es -1. -

x 10-3 s.V:1. x. 10-3 s 

k . ~.' V1 

'Iv = k (x + e ) 
VI x 

73.86 m3 m3 2.81 
x 10-3 s.m x 10-3 s 

'" = ~ max 52.2 2.81 m3 

x 10-3 s 
exp( -kv4 (~- (r+ex))) 

. S:iJD.ple models. of flow control.:looRB. 

E1TQrS 

Zero Raru!:e 

s es es max I max s Smax max 

i 
10 V 0.1 0.1 I 

i 
I 
i 
I 

10 V 0.1 0.1 I 
I 

Xmax 
e e:Emax 
-L 
x ~ max 

0.0381 m 0.1 0.1 

0.0381 m 0.1 0.1 
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FIGURE 2.4 Type 1 control loop (linear flowmeter, linear control valve). 
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FIGURE 2.5 Type 2 control loop (square root flowmeter, linear control valve). 
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FIGURE 2.6 TYPe 3 control loop (linear flowmeter, equal percentage 
control valve). 
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2.5 Inadequacies of the valve position - flow check 

The initial postulation for detennining flow control loop security 

has been based upon the generation of .the types of curves shown in 

Figures 2.4 - 2.7. It is envisaged that these curves could be obtained 

during nomal control loop operation or by "stroking" the valve. between 

the fully open and fully closed position. 

However, in practical applications there are several difficulties: 

i) Limited valve travel. 

Althougn the stroking of the valve is acceptable in many cases, 

in others it is not. In these problems the amotmt of valve 

travel may also be constrained. 

ii) Lags between valve poSition and flow measurement. 

ill) The measurements of valve poSition and flowmeter signal are not 

perfect, but depend upon the accuracy of the instrumentation 

provided. This creates a "noiSy" .signal. Other sources of 

noise in the loop may be due to fluctuations in pressure. 

These comments are illustrated in Figure 2.8 which shows the valve 

position and flowmeter measurements logged on a d.d.c •. process computer 

at Works A. The actual control loop was the inner loop of a cascade 

control system as shown. in Figure 2.9. 

---- .. , 
I 

Fi8ure 2.9~ A,n industrial cascade level control· .. system. 
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The master or outer loop controls level and tended to oscillate 

so that the setpoint of the flow loop was oscillating. The extent 

of the lag between. valve position and flowmeter signal is derived 

from Figure 2.8 and may be seen to be of the order of 1 minute. 

The philosophy of the valve position-flow check for flow control 

loop security monitoring is based upon the creation of a model for 

the system, deviations from which indicate possible system errors. 

The problems encountered above arise, in part, because of the simpli-

city of the assumed model. These may be overcome by defining a more 

flexible model; and to this end the concepts of state estimation are 

intro·duced, although the baSic philosophy of detecting malfunctions 

as a result of monitoring system deviations from the assumed mathema-

tical model is the same. 

2.6 Least squares estimation theory 

A state estimator is a data processing algorithm which computes 

the state of the system uSing the follOwing information: 

i) Measurements of the system variables. 

ii) A mathematical model of the system and its associated· 

instrumentation. 

ill) Prior knowle~e of some system variables - often called 

pseudomeasurements. 

The output of the state estimator is an assessment of the true 

system state. nilIcrepancies between the true system state and 

estimator output can arise from: 

i) Noise in instruments and telemetry cbamiels. 
.. . .' . 

11) Incomplete instrumentation, in the sense that many variables 

are unmea.sured. 
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iii) Incorrect mathematical and/or incorrect model parameters. 

iT) Delayed measurements reflecting some prior state. 

There are many approaches to state estimator fonnulation (45). 

It is usual to define a scalar "cost" function which increases with 

estimation error. An estimator which mjnimises this cost function 

is optimal in tIie Sense that it generates the best estimate of the 

state based on the measurements and pseudomeasurements received. 

The optimal estimator not only generates a state estimate but 

also a covariance or error associated with it. The covariance 

matrix predicts the magnitude of the estimation error, and hence 

proTides a measure of the confidence for the estimated state. The 

predicted and the actual estimation errors should be of the same 

order of magnitude. 

the basis for modern estimation theory is the method presented 

~ Kalman (46). His solution to the recursiTe estimation problem 

has become known as the Kalman filter, which will be discussed in 

Chapter 3. Estima tion theory is heayiJ.y dependent upon the concept 

of state variables and the Widely used dynamic state variable model 

(46) 

x = f~,~,~) 

Z = !! (~) +! 

(2.6.1) 

(2.6.2) 

In this Chapter no attempt is made to model the time behaviour 

of the flow control loop and steady state operation is assumed, i.e. 

x = 0 (2.6.3) 

(2.6.4) 

Equation (2.6.4) describes how the quantities which can be 

measured are related to the state ..-ariables. Each measured Tariable 
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is contaminated with noise. This set of measurement noise is denoted 

1:, the statistics of which are assumed known. 

Specifically 

E~) = 0 

E <!: l) = R 

If the measurements are assumed to be :independent, then R is a 

diagonal matrix with diagonal terms:· 

and 0 i is the standard deviation on the i th measurement. These 

values characterise the accuracy of the :individual measurements and 

may be calculated from a knowledge of the· :instrumentation and teleme-

try systems. 

In least squares estimation theory the optimal state estimate ~ 

is def:ined as the estimate which m:inimises theperformance.criterion: 

(2.6.5) 

The cost function J is a quadratic function of the difference between· 

the actual and estimated measurements, which is weighted according to 

the expected accuracy of the correspond:ing measurements. 1hus the 

estimate fits the measurement made ~ an accurate :instrument better 

than the measurement by an·inaccurate :instrument. 

If the state variables are 1:inear functions of the measured vari-

abIes then equations (2.6.4) and (2.6.5) become 

1: = H!+:! 

J = (;r -H!l R-
1 (;r - H!) 

(2.6.6) 

(z.6.7) 

The minimisation of equation (Z.6.7) may be performed analytically ~ 

differentiating with resPect to! and equating to zero. The resulting 
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minimisation yieldS the well known Best Linear unbiased Estimator 

(BLUE) (47), (48), (49), 

! = (HT R-1 H)-l HT R-1 1. (2.6.8) 

Equation (2.6.8) is attractive since it solves for the state estimate 

directly. 

If the measured variables are non-linear functions of the state 

then equation (2.6.5) cannot be minimised analytically. However, a 

standard approach is to linearise ~~) about Some initial value x 
-0 

using a Taylor expansion which yields: 

(2.6.9) 

when higher order termS are neglected. F~) is a Jacobian matrix 

whose elements are: 

f(i, j) = 

and 6x = x-x 
-0 

x =x 
-0 

(2.6.10) 

(2.6.11) 

Equation (2.6.4) may now be rewritten, using equation (2.6.9) as: 

1. = ~ ~) + F~) 6 x +.! 

or tu. = 1. - ~ ~o) = F~) 6 x + .! (2.6.11) 

Equation (2.6.11) represents a linear estimation problem with a cost 

function: 

(2.6.12) 

Thus in a similar manner to the derivation of equation (2.6.8) the 

least squares estimate may be written as: 
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(2.6.13) 

where: 

(2.6.14) 

If the .initial guess 2fo is sufficiently close to the true 

state ~ and if the linearisation perfonned in equation (2.6.9) is a 

sufficiently accurate representation of equation (2.6.4) then equation 

(2.6.13) gives the desired state estimate ~. In practice it is 

necessary to define an iteration sequence !n' n = 1, 2 •• which 

is given by: 

(2.6.15) 

This iteration procedure starts with !n = ~ and proceeds until 

J (:n) approaches a minimum. Stopping rules are to iterate IDltil 

I J(:n+1) - J ~) I or until the magnitude of all compcnents of 

I !n+1 - !n I are less than some predetemined value. 

It is of course possible for J~) to have local minima and thus 

!n may converge but not to x. It ·is also possible for!n never to 

converge. 

This completes this brief introduction to least squares estimation 

theory. The least squares performance criterion has a long history 

of providing good state estimates in a wide variety of problems 

(economics, biology, aerospace trajectories) and in particular. is 

finding current applications in the modelling of electrical networks. 
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2.6.1 Tracking state estimation 

The previous review of least squares estimation theory applies 

only to systems that can be described by steady state measurement 

relationships modelled by equation (2.6.4). Such estimators may be 

denoted "static" state estimators in the sense that the information 

received at any time is processed without regard to past information. 

For example, consider two measurement vectors I(k) and I (k + 1) 

at time k and k + 1 where k + 1 = k +!!, t. I(k) contains informa

tion about !:(k) and !:(k + 1), however the static estimator ignores 

this information when calculating j(k + 1) and only uses measurements - , 

Z(k + 1). 

This problem is overcome by dynamic state estimation. The model 

formulation for dynamic state estimation was given in equations (2.6.1) 

and (2.6.2) and the solution due to Kalman Was mentioned. One of the 

main disadvantages of dynamic state estimation is that modelling of 

the time behaviour of the system state is necessary. This usually is 

tedioUS, time conSuming, costly and at ,best full of uncertainties. 

The objective of introducing state estimation to aid malfunction 

detection was to create a flexible mathematical model to overcane the 

constraints discussed in section 2.5. The purpose of the estimator, 

is not necessarily to calculate extremely accurate' state ~stimates 
A ' 
!: but solely to process the measurements to a more amenable' form, 

fran which system security may be determ.ined. With these aims in 

mind, it is suggested that dynamic state modelling' is unnecessary and 

the philosophy adopted here is that the "best" malfunction detection 

te,chnique is the simplest one that works. 

In a flow control loop operating at a particular setpoint, the 
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valve will operate over a limited range of positions and there will 

be sane dynamic lag between the valve stem position and fiowmeter 

signal measurements. 

Under these conditions it is suggested that a "tracking" state 

estimator yields an adequate assessment of the state. The tracking 

state estimator (SO) is derived from the static state estimator of 

equation (2.6.15), i.e. 

(2.6.1.1) 

Suppose a series of measurements have been taken at the discrete time 

k, Le • .r(k) yielding '!(k). Equation (2.6.1.1) revealB that the 

iteration sequence can be started from any arbitrary value x. 
-0 

However, if the iteration is to be done at time k + 1 the logical 

initial guess is the estimate '!(k) made from .r(k). 

Now if the state has not moved exceSSively (Le. ! (leH) is 

close to x(k» and if the observation noise is not "too large", it - . , 

may be expected that only one iteration will be needed and a reasonable 

estimator would be the recursion: 

%(leH) =%(k) + S~(k» FT ~(k»R-l (.r(ktl) - !!~(k») (2.6.1.2) 

with S~(k» =.; ~(k» R-
1 F~(k» (2.6.1.3) 

Equation (2.6.1.2) defines the "tracking" state est:i.mlitor. used in this 

study. 

Notice that in equation (2.6.1.1) n refers to an iteration 

sequence number whil.e in equation (2.6.1.2) k refers to 'the discrete 

time interval. 
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2.6.2 Use of estimator to detect malfunction 

, 
'lhis section discusses some of the teclmiques avawble for 

monitoring system security when a state estimator is used. 

1he state estimation algorithm fonnulated is based on the 

assumption that the model !!~) and R is correct. However, 

assumed models are often inaccurate or may change due to system mal

fmotion and it is necessary to be able to detect such errors. 

The notation '1 denotes the value of the optimal cost fmction 

evaluated at i, i.e. 

'1 = (z - !! ~»T R-1 (z - !!(!» (2.6.2.1 ) 

One approach to detection is that if the model is correct, then 

J is a random variable whose probability density fmction can.be 

calculated. If the measurement errors ~ are assumed Ge.ussian 

'" then reference (49) shows J is a Chi-squared randan variable with 

(m - n) degrees of freedom. Thus, if a valUe of J is obtained 

which lies on the tai.1s of thiS probability distribution, then it 

can be assumed that the model is incorrect and ail error in !!~) or 

R has been detected. 

Another technique which does not require probability distributions 

requires more calculation. To illustrate this idea suppOse there are 

m measurement equations, and one in particular is known to be inaccu

ra te • ut h (0
) ~) be the model containing all m equations, and - . .' 

let !!(i)~) denote the model with one of the measurement equations 

removed, i = 1, •••• ,. m. Thus there are m + 1 possible models 

for the measurements given by: 

Z = !!(i)~) + ~ i = 0, • • • ,'m 
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Corresponding to these modelB there· are m+l possible state 

estimates ii) and optimal cost functions ]<i). 1(i) can be 

regarded as a measure of how good a fit the model stru.cture b(i)(~) 

provides to the measurement l:. If it happened that for some j 

that 'j<j) < 1(i) for all i t j, it would be reasonable to assume 

that the measurement l: was made on a model with the measurement 

equation j in error. 

A different approach to the problem is to examine the residual 

process (47), (48), (49), (51). The residual is defined as: 

r. = y. - h. ~» (2.6.2.2) 
1 1 -1 -

which represents the observed error of the i th measurement if the 

model is assumed correct. Under normal conditions (i.e. no modelJ.ing 

errors or system malfunction), the properties of r should resemble 

those of the assumed measurement noise!. There are several methods 

of inspecting the residual proceSS. 

i) Overall residual plot. 

This should confiIm the assumed probability distribution 

function of !. 

ii) T:ime sequence plot. 

Again thiS should confirm the initial assumptions concerning !. 

Ih"aper and Smith (51) suggest that t:ime trendS can often be used to 

locate model deficiences. 

iii) Residual against independent variable plot. 

iV) Residual against dependent variable plot. 
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2.6.3 Residual analySis via hypothesis testing 

The problem of malflDlction detection may be fonnulated as a 

problem in hypothesis testing (52), (53). The normal operation of 

the system and hence the "nornal" residual time Sequence is regarded 

as the null hypothesis. '!he actual residual process from the current 

system operation is tested against this hypothesis at a certain level 

of significance. Different types of malfunction can develop in the 

system. Some of these are: 

i) BiaS errors in instruments, 

ii) Excessively "noisy" instruments, 

iii) Change in model parameters.' 

All. of these faults cause the residual r i to depart from its 

"normal", malflmction free characteristics. . It is therefore proposed 

to use the following statistical tests to observe the residual process. 

A comparison is made between an ensemble of residual values taken 

IDlder the initialisation conditions which are assumed to be free of 

malfunction (ensemble 0) and an ensemble taken during a later check 

(ensemble 1). 

i) Test of mean (52): 

The null bypothesis to be tested is whether the means of two 

different ensembles could have CClllle franthe same probability distri~ 

bution or from distributions with the same means, i.e. 

A Student's t test enables the difference between two means to be 

tested as: 

t= 
1

- . - I r. - r. 
1,0 1,1 

(2.6.3.1 ) 
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where the sample variances are assumed unknown but equal and I 

(no - 1) si~O+ (n1 - 1) si~l S 2(r.) .. . -
. 1 (no + n1 - 2) 

nj 
1 =- r r .. (k) 

k=l 1,J 
i = 1:, " . • mi j = 0, 1 

2 
si . ,J 

i :::::; 1, • . . m 

j .. 0, 1 
(2.6.3.2) 

The value of t is calculated and compared with values tabulated 

for the number of degrees of freedom (no + n1 - 2). If the calculated 

value of t is larger than the tabulated t at the preselected signi

ficance level and then the hypothesis is rejected and the ensemble mean 

estimated by ri 0 is significantly different from that estimated by , . 

r. l' with a. chance of being incorrect in rejecting the hypothesis. 
1, 

At the Sf. s~ificance level the tabulated value of t for 

infinite degrees of freedom is 1.96. 

ii) Test of variance (52) 

The null hypothesis, like that for c\1llparing means is: 

H 0
2 

"0
2 

o : 0 1 

The F test defined as: 

s 2 
i,o 
2 

si,1 

F = 

measures the difference, in the fOI1ll of a ratio, of the two estimates 

of the same var:iAnce that can be expected to occur, depending upon 

the number of degrees of freedcm available for each estimate. 
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Tabulated values of the F probability distribution with 

(no- 1) and (ne 1) degrees of freedcm indicate whether one estimated 

variance is larger than another. At the SI> significance level, with 

100 degrees of freedom for each calculation of s~ "' the tabulated 
~,J 

value of F is 1.39. Thus, if the calculated value of F is 

greater than 1.39, the hypothesis of equal ensemble variance is 

rejected. 

2.7 Experimental apparatus and objectives 

Section 2.3 presented·a technique for detecting malfunction in a 

flow control loop. This idea was discussed and criticised and the 

concepts of state estimation were introduced to solve the inherent 

difficulties. 

In order to test these ideas an experimental test apparatus was 

designed and constructed. 

The objective of the experimental apparatus was to provide a 

flow contro11oop using industrial control equipment. 

The laboratory flow control rig is shown in Figure 2.10.. The 

rig was 9.4 m high and extended through three levels of the buildjng. 

The fluid used vas water. 

'Ble main components of the test equipment are summarised as 

follows : 

i) Pipework. 

The pipevork vas a m:ixture of 5.08 cm (2 inch) I.D. mild steel 

and rigid P.V.C. All the pipework near the P1.m1P, control valve and 

orifice was mild steel. 



Tank 1 

~~------ --- ----- -- - - - - - --- -- - - - - - --

8 

Tank 2 

7 

~-I-------~~~------~~ 

r-1----@ 
1---7-1---r---I L\ p 21-----{ 

~--- --------------@ 
1 2 5 

FIGURE 2.10 Experimental flow control rig. 
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ii) Control val'Ye. 

'lhe flow control valve was a characterised pneumatic valve and 

was manufactured by the Glocon Company Limited. 

are given in Table 2.3. 

Details of the valve 

Type 

Body size 

Trim size 

C (imperial Wlits) v . 
Body material 

Trim form 

Trim material 

Actuator type 

Positioner 

Signal pressure 

. 

Globe 

3.81 cm (I! inch) 

1.905 cm (i inch) 

20 

carbon steel 

i) Linear 

ii) Equal percentage 

316 Stainless steel 

. Numotor B 40 

Standard 
2 . 

20.68 - 103.42 kN/m (3-15 p.s.i.g.) 

TABLE 2.3. Details of th~ control valve. us~d in .the eXll.erimental flow 

control rig. 

ill) ·Pwnp. 

A single stage centrifugal pump, supplied by Ingersoll-Rand (Type 

N - I! - 120) was used. 

iv) Pwnp d-ive. 

An electric motor drive was installed which incorporated a starter 

with overload protection to prevent motor damage if the pump had to 

deal with impurities or the monanetric head was lower than expected. 

v) Flow measurement. 

'lhe flowmeter was a sharp edged D - D/2 orifice plate designed 

according to B.5.-1042 (54). 

so 



vi) Isolation valves. 

1he details of the isolation valves are slDDDl&rised in 'lBble 2.4. 

Valve nwnber Valve type 

1 Gate 
2 Gate 
3 Gate 
4 Globe 
5 Gate 
6 Globe 
7 Gate 
8 Gate 

TABLE 2.4. Experimental flow: ."ontrol r;i& 

~~ola~ion val~es. 

vii) Instrwnentation. 

The location of the measurement instl'Ulllents are shown :in 

Figure 2.10, and Table 2.5 details their functions. 

InstI'Ullient Instrwnent Maker Input OUtput 
code tYJ)e 

. b. P1 
b. pip trans- Taylor o - 4.98 kN/m

2 2 20.7-103 .4 kN/m 
mitter Instrwnents (0 - 20 in. W.G.) (3 - 15 p.s.i.g.) 

b. P2 b. pip tranS- 4.98-62.3 kN/m2 2 20.7-103.4 kN/m 
mitter (20-250 in.W.G.) (3 - 15 p.s .i.g.) 

P transmitter 69-689.5 kN/m
2 2 

P1 
20.7-103.4 kN/m 

(10-100 p.s.i.g.) (3 - 15 p.s.i.g.) 

Cl p/! transmitter 3 - 15 p.s .i.g. 5 - 10 V 

C2 
p/! transmitter 3 - 15 p.s.i.g. . 0 - 10 V 

C
3 

pi! transmitter 3 - 15 p.s.i.g. 0- 10 V 
2 

C
4 

!/p transmitter 0- 10 V 20.7-103.4 kN/m 
(3 - 15 p.s.i.g.) 

~ Linear Penny and 0- 3.81 cm. 3 - 9 V 
potentiometer Giles 

TABLE 2. 5. Instr")Jlllentation t)f~~ra.tory. flow contr~ .r~. 
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The pressure drop across the· orifice and that aCJ:l)Ss the cmtrol 

valve were measured by differential pressure transmitters and the 

pressure between the pump and the control valve by an absolute 

presSure transmitter. These three transmitters were all pneumatic 

and pressure/cUITent converters were used to convert their output into 

electrical signals suitable for process ccmputer inputs. The valve 

stem position was measured by a linear potentiaueter whose output 

varied linearly with position. 

The experimental rig was controlled by a PDP 11-20 process control 

computer, which was used for logging, s:i&n&l generation and direct 

digital control. 

A system with pressure drop across the valve approximately constant 

was obtained with valves 1, 3, 5,6 and. 8 open and valves 2,4 and 7 

closed. Under these conditions the water flowed from tank 2 to tank 1 

due to the head difference. A constant head system was achieved by 

pumping Water from tank 1 to tank 2 where an overflow device maintained 

a constant level. 'Dle rig was designed so that under these conditions 

approximately 7fY!, of the pressure drop occurred at the control valve. 

1he variation of pressure drop across the control valve with flow 

for an equal percentage valve trim is shown in Figure 2.11. 

With valves' 2, 4, 6 and ,7 open and valves 1, 3, 5 arid 8 closed, a 

system with variable presSure drop acrOSs the valve was obtained. The 

water flowed from tank 2 through the pump and control 'valve and back to 
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FIGURE 2.11 Variation of pressure drop with flow across equal percentage 

control valve. 
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tank 2. Addit:l ona] changes in system pressure drop could be obtained 

by throttling valve 4. 

2.7.2. System dynamic characteristics 

The dynamic characteristics of the control valve and flowmeter 

were iilvestigated by imposing a step input on to the valve demand 

si8nal fran the computer. The dynamic responses of the valve and 

nowmeter are shown in FigureS 2.12, 2.13. 

Both the control valve and flowmeter can be approJdmated as 

second order systemS with a transfer function. 

-1 d 
k e 

G(s) = 
s2 

+
W 2 

n 

The transfer function parameters were calculated to be (55): 

i) Control valve k= 0.356 cm/v 

s= 0.8 

w = n . 0.25 Hz 

1: d = 0.2 s 

ii) Flowmeter k = 3.22 x 10- 3 
m3/s. V 

S = 0.4 

w = n 0.13 Kz 

1: = 
d 2.6 s 

54 

" 



::;"J 

3::0 - ...... 
>-: .-

c._ 

LLi .-
-.J 
er ,:,::. 
"..> L-' 

~~ 

,_~·-i-I -----,r----'I-----,----,-

If) 
CJ 

n:. t.!J 

I':::) r:" 

>< 

O.OOG 0.333 0.657 1.GOa 1.333 
... I io1f:: "~:f:('IIIIr,c 1. X J. ~']-1 I ".. . .... ~ .~L..·'l _ 

FIGURE 2.12 Ex:perimental rig control valve step response. 

FIGURE 2.13 Ex:perimental rig flowmeter step reSponse. 
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2.7.3 Estimator design and determination of model parameters 

The model describing steady state flow control loop operation 

was derived in section 2.4. For a Type 1 control loop equations 

(2.4.1) and (2.4.8) yield: 

~ = kml s 

o = k x 
-V v1 

The general equation for static state estimation is: 

l = !! ~) +:! (2.7.3.3) 

and so equations (2.7.3.1) and (2.7.3.2) may be rewritten in this 
form by defining the state vector ~ "" Q, then (2.7.3.3) becomes: 

x 
Q + 

= 

s 

This measurement vector applies for the Type 1 and 3 control loop 

while the Type 2 and 4 loops are characterised by: 

y =[fi-J 
The Jacobian matrix F is defined by: 

F = 

with fll = ~ 3Q 

f21 = .Q.! 
3Q Type 1 and 3 control loop 

-= M Type 2 and 4 control loop 3 Q 

The final parameter needed to completely define equation (2.7.3.3) 

is the matrix· R. If the system model is perfect R is the measurement 



noise covariance matrix of the fonn: 

R = 
[r:1 

with rU = 2 

° x 

r 22 - 2 
a s TYPe 1 and 3 control loop 

= 2 
0ji Type 2 and 4 control loop 

The equations of the control loop and the parameters defining 

the measurement equation (2.7.3.3) are summarised in Table 2.6. 

Having defined the structure of the System measurement and 

estimator equations it is necessary to detennine the actual parameter 

values. In an industrial application it is envisaged that these 

parameters may be detennined from plant design manuals or may be 

obtained experimentally. It is usually less satisfactory to obtain 

valve parameters from design data. This point will be diScussed 

more fully in section 2.10 when the industrial applications of this 

technique are presented. 

In the laboratory experiments the appropriate parameters were 

detennined by direct calibration on the experimental rig. 
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Control Flowmeter Control Measurement equations Measurement noise Jacobian matrix F 
loop equations valve (neglecting noise) covariance matrix R 
type equation 1= h<.!) . rU r 22 fU f21 

x= Q/k vl 2 0
2 l/k' l/kml 1 ~ '" kml s ~ '" k x o x vl s = Q/kml 
s vl 

x'" Q/k 
0

2 2 l/k l/k vl 
2 ~ '" k~/S ~=-k x Q/km2 

o ,fa vl .jS= x vl m2 

_InQ Ink 
x - /kv4-. v3/k 

0
2 2 1/k Q l/k 3 ~ '" km! s ~ '" kv3exp(kv,c) . v4 

s =- Q/~ x Os· v4 ml 

x = JnQ/k - In k / 
v4 v3 k. 

0
2 2 1/k Q l/k 4 ~ '" km2/S ~ '" kv3exp(kv4x) v4 

IS=- ~k x Oji v4 m2 
m2 

TABLE. 2.6. Equations and parameters. defining the flow control loop,estimator. 



The control valve characteristic and orifice plate constant were 

dete:nnined by "stroking" the valve; noting the valve pOSition and 

fiowmeter signal and manually measuring the system fiowrate. Figure 

2.14 shows the resultant characteristic for a control valve with a 

linear trim. In fact three curves are shown. Curve 1 repreSents 

the experimental results obtained from valve stroking. Curve2is 

the model curve obtained by estimating the valve parameters (in this 

case a model of the form ~ = kvl + kV2 x was used) fran the experi-

mental curve. The curve is actually fitted by two straight lines to 

be conSistent with the formulation of a linear control valve. There 

are different parameters for each line. CUrve 3 is the result of 

using the state estimator of equation (2.6.15). The state estimator 

of equation (2.6.15) used the experimentally dete:nnined parameters 

kv1 ' kV2 and km2 and the matrix R. 

In this formulation the matrix· R plays the role of a we~ting 

matrix which caUSes the state estimate :! to· fit the "good" measure

ments closer than the "bad" measurements. If the system model is 

accurate it has been pointed out that R is the covariance matrix of 

the measurement noise. However, if the system model is imperfect, 

then· R is more properly regarded 'as a we~ting matrix which takes 

into account not only measurement noise but inaccuracies in the 

system model. The larger the noise and model inaccuracies, the 

larger the elements of R. • .C 

In the present work R was dete:nnined by optimising directly on 
" 

the process. It was assumed that R was a dia,goDa1 matrix. An 

initial guess of R was made an,d using the model parameters described 

above the static state estimator of equation (2.6.15) was USed to 

'" est:iJDate !. 
. A· 

Now section 2.6.2 has discussed how J may be regarded 
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FIGURE 2.14 Linear control valve characteristic,1 experimental, model and 

estimator curves. 
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as a measurement of estimator performance. The matrix R was thus 

" .chosen to minimiSe J. 

The system model <!!~) and R) are now fully defined and the 

relevant parameters are summarised in Table 2.7 for all four types 

of control loop. 

Figure 2.15 presents the corresponding curves for an equal 

percentage control valve trim. 

2.8 Malfunction· detection experiments 

The main experiments consisted of three series of runs: open-

loop checks with fUll valve travel and open and closed-loop checks 

with limited valve travel. All the experiments were performed with 

the experimental rig in the "constant ll system pressure drop charac

teristic mode, i.e. with isolation valves 1, 3, 5. 6, 8 open and 2, 

4, 7 closed. this resulted in an approximately constant control 

valve pressure drop characteristic as shown in Figure 2.11. 

All four types of control loop were investigated. The control 

valve characteristics were obtained by using linear and equal percen

tage valve trims. The flowmeter characteristics were obtained by 

using an orifice plate and differential pressure transmitter through

out the experiments but linearising the signal in the canputer to 

simulate· the linear flowmeter case. 

The valve position. was obtained in two different ways. In sane 

experiments the Valve stem poSition was measured by a linear poten-

tiometer. In other experiments the valve position was taken as the 

valve demand signal from the canputer. In the case where the valve 
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a
N 

Control Fl 
loop .~ 
type km! iiV 

. 

1 Simulated 

2 -

3 Simulated 

.. 

4 -
. -

TABLE 2.7. 

Control valve constants 
.. ·m.)· 

Valve stem position . Valve demand signal km2 -. 1. . 
SV2 measured measured 

k m
J 

k m
J mJ · mJ 

k - kV2 s V vl .s v2 s cm vl s 

- 0.515 x 10-3 1.092 x 10-3 0.663 x 10-3 0.39 x 10-3 

1.705 x 10-3 0.465 x 10-3 1.8 x 10-3 0.158 x 10-3 

1.393 x 10-3 " " " " 
.' 

m3 -1 
. 3 

kV3 S k 4 cm k !!!... k V-1 ·v v3 s v4 

- 6 -3 0.4 3 x 10 0.522 0.463 x 10-3 0·522 

1.393 x 10-3 It n n " 

NUmerical values of parameters in flow control loop estimator. 

R .matrix 

Valve stem Valve demand 
position 
measured 

signal 
measured 

rU r 22 rU r 22 

0.0645 0.01 0.25 0.01 

" It " " 

rU r 22 rU r 22 

0.0645 0.01 0.25 0.01 

" " " " I , 
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Equal percentage control valve characteristic: 

model and estimator curves. 
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stem position measurement was taken, errors in this measurement were 

investigated. ]he method for the detection of malfunction in the 

Nst of the loop does not depend, however, on a valve stem position 

measurement. 

The form of the estimator, the algebraic parameters and their 

numerical values have been given in Tables 2.6 and 2.7. 

The malflmctions introduced into. the system are summarised in 

Table 2.8 where they are designated by a code letter A-G. The 

malflmctionS were mostly obtained by making appropriate adjustments 

of the instrument although sane experiments involved the introduction 

of simulated errors by the computer, marked with an asterisk. 

One of the malfunctions investigated was that of a damaged valve 

trim (malfunction G). Figure 2.16 shows the standard equal percen

tage valve trim while Figure 2.17 shows the damaged trim used in the 

experiments. 

The actual experimental procedure for each particular series of 

runS is now presented. 

2.8.1 Open loop experiments with full valve travel 

'!he first series of runs consisted of open-loop experiments with 

full valve travel and are designated by the code letter FT. In 

these experiments the· valve was moved by a canputer based randan num

ber generator to 100 openings over its whole range of travel. At 

each particular opening the valve was held steady for 25 seconds, the 

Dleasurement vector '1 recorded and the state estimate 'St obtained 

from the static state estimator of equation ( 2.6.15). 

Experiments were perfonued on all four tJPeS of control loop. 
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Loop malflmction Source Code 
, 
, 

Flowmeter Flowmeter differential A 

zero error pressure transducer 

Flowmeter Flowmeter pressure/current B 

range error converter 

Control valve CUrrent/pressure converter C 

zero error 

Control valve Current/pressure converter D 

range error 

Control valve Valve stem linear . E 

zero error potentiometer 

Control valve Valve stem linear F* 

range error potentiometer 

Damaged control Valve trim plug G 

valve 
. 

TABLE 2.8. Malflmctions introduced into laboratory flow control rig. 

* denotes computer s:imulated error. 
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FmuRE 2.16 Equal percentage valve trim. 
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FIGURE 2.17 Dlmaged equal percentage valve trim. 
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2.8.~ Open loop experiments with limited valve travel 

In this series of experiments the strOking of the valve was not 

allowed. 

The experimental runs were per:fi'ormed on Type 2 and 4 corttrol 

loops and are coded OL. During the experiments the valve was held 

at a particular opening. In order to make the system rather more 

noiSy and more realistic, a small pseudo-randan binary sequence 

(PRBS) as shown in Fi8ure 2.l8a was imposed m the valve demand in 

the computer. ~s 2.18 band c show some typical recorded time 

series of the valve stem pOSition and flowmeter signal. 

The state estimate x was obtained frail the tracking state 

estimator of equation (2.6.1.2). 

2.8.3 Closed loop experiments with direct djgi.tal contr6l 

The third series of experiments consisted of closed-loop checks 

with limited valve travel on a: Type 4 control loop, denoted CL. In 

these experiments the control loop was closed under direct d.i&ital 

control from the computer, as shown in Figure 2.2b. The flow was 

controlled at a particular setpoint and the valve moved over a 

limited range. The control loop si,gnals obtained are shown in 

Figures 2.19& 'and b, which in fact shows a low amplitude oscillation. 

Th:iB arises because of the slight oscillation in the orifice differ

ential'pressure transducer output. 

The d.d.c. flow control loop employed a proportional plus integral 

controller with a 3 Second sampJ.e time. At selected setpoints the 

state estimate & ws obtained from the tracking state estimator of 

equation (2.6.1.2). 

The canplete experimental prograDlllO is summarised in Table 2.9. 
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Dema.nd6. 
Signal 
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- -
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20 30 kfl t 
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FIGURE 2.18a. Pseudo random binary sequence used in open loop limited travel 
experiments. 

2.5 
Valve 
position 
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2.2 

2.1 

2. ~ __________________ ~ ________ L-________ ~ ____ L-____________ ~ __ ~ __ 
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FIGURE 2.18b Typical valve stem position measurement in open loop limited travel 
1.2 experiments. 

owmeter 
igna.l 

s 
1 1.1 

V2 

1.0 

O'~ ______ ~ ________ J-________________ ~ ________________ ~ ____ __ 

o 10 

oSamplinginterval Ll t = 0.5 s 

20 

FIGURE 2.18c Typical flowmeter signal measurement in open loop limited travel 
exp~riments • 
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Typical valve demand signal in closed loop direct digital control 
experiments. 
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FIGURE 2.l9b 

Sampling interval 11 t = 3 s . 

Typical flowmeter signal measurement in closed loop direct digital 
control experiments. 
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Control Valve stem Experiment 
Run number 'Malfunction loop position type 

type measured 

I Yes FT FT/lA * A + 10% 

" n FT/IB * B - 10% 

2 Yes FT FT/2A a A + 10% 
n " FT/2A b A - 10% 

No " FT/2B B - 20% 
n " FT/2C a C + 10% 
n n FT/2C b C - 10% 
" n FT/2D D+20% 

Yes " FT/2E E+5% 
n " FT/2F * F + 15% 
n OL Ol/2A A + 10% 

No n 0l/2B ,B - 15% 

" " 01/2C C + 10% 

, 3 Yes FT FT/3A: A+IO% 

" n FT/3A b "A - 10% 
" " FT/3B a -

B + 10% 
" " FT/3B b B - 10% 

4 Yes FT FT/4A a A + 5% 

" n FT/4A b A - 5% 
No " FT/4B B - 10% 
" n FT/4C a C + 15% 
n " FT/4C b C -15% 

" " FT/4D a* D + 10% 

" " FT/4n b D - 10% 
Yes " FT/4E E + 8% 

" " FT/4F * 'F + 10% 
" " FT/4G . -n OL 0L/4A a A +10% 

" " 0L/4A b A - 10% 
" " 01/4B B - 10% 

No n 0L/4C a C + 10% 
n n OL/4C b c- 6% 

" n 01/4D D + 10% 
Yes n 01/4E E+ 10% 

n n 0L/4F * F'" 5% 
n n 0L/4G -

No CL CI/4A A + 17% 

" n CI/4C a C + 20% 
n n cI/4C b C+ 13% 
n n CL/4G -

* Experiments involving computer simulation. 

,TABLE 2.9. Experiments performed on laboratory flow control ri&. 
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2.9 Malfunction detection eXperimental results 

2.9.1· Open loop eXperiments with full valve travel 

In these experiments two types of check which indicate loop mal-

function are possible. Since the valve was 'stroked'· over its entire 

range of travel the estimator valve characteristic could be obtained. 

This may be then compared with the original malfunction free 

characteristic. 

An example of this check for a Type 1 control loop without mal

function and with a + 10% flowmeter zero error (run FT/1A~ is shown in 

Figure 2.20. With this type of check a visual display of the mal

function is possible as originally postulated in section 2.4. 

An alternative method for security monitoring is based upon the 

information obtained from the estimator. 

The estimator reSidual process was defined in equation (2.6.2.2). 

As the valve was ~troked', the residual time series could be generated, 

which also corresponded to different valve openings. This may then 

be compared to' an original malfunction-free residual time series and 

the changes in the individual residuals monitored. 

Various techniques for examining the residual process were discussed 

in sections 2.6.2 and 2.6.3. In these experiments it was found that it 

is necessary only to monitor the reSidual mean. Since a'malflDlction 

causes both the valve pOSition and flowmeter signal to deviate from 

their nominal malfunction free characteristics it is sufficient to 

monitor only one of the reSidual sequences and this was 'arbitrarily 

chosen as the valve pOSition residual.' 

In each experjment the means of the valve position reSidual without 
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FIGURE 2.20 FUll travel check on Type 1 control loop - NIl FT/lA!" 
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and with ma1function were determined. The modul.us of the change in 

the means of the residua1s were cal.cu1ated and compared with the 

significant change at the 95% confidence 1imit according to Student's 

t test. 

Figures 2.21 a and b illustrate the va1ve position and -f1ollmeter 

signa1 residual time series for a Type 1 control loop without ma1func-

tion. In fact, these Figures show normalised residua1s defined as: 

A + 10% flowmeter zero error in a Type 1 contro1 loop yie1ds residua1 

sequences as shown in Figures 2.22 a and b. 

The statistical characteristics of the norma1ised va1ve position 

residual sequence for these runs are given in Tab1e 2.10. 

Run 
Norma1ised position Modul.us of change in mean 
residual statistics of normalised va1ve Figure number position residua1 

Mean Variance Actual. Significant change 
change at -95% 1imit 

- - 0.46 0.093 - - 2.21 a 

FT/1A* - 1.37 0.076 0.91 0.18 2.22 a 

TABlE 2.10. Behaviour of valve position residua1 for + 10% fiowmeter 

zero error in Type 1 c(llltro1 loop. 

The resul.ts of the experimenta1 programme for the open loop tests 

with ful.1 valve trave1, detailed in- Tab1e 2.8, are given in Figures 2.20 

to 2.45. The modul.us of the change in va1ve position residua1 means are 

sUmmarised in Tab1e 2.11. 
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Control Run Modulus of change in mean of Figure 
loop number normalised valve DOsition reSidual 
type Actual S~ificant 

chan"e e 

* 1 FT/lA * 0.91 0.18 2.20 
FT/1B 0.88 0.14 2.23 

2 FT/2A a 1.64 0.11 2.24 
FT/2A b· 0.98 0.08 2.25 
FT/2B 1.45 0.15 2.26 
FT/2C a 0.65 0.16 2.27 
FT/2C b 0.83 0.17 2.28 
FT/2D 0.36 0.20 2.29 
FT/2E * 0.43 0.06 2.30 
FT/2F 1.05 0.40 2.31 

FT/3A a * 0.86 0.14 3 2.32 
FT/3A b 0.84 0.16 2.33 
FT/3B a 0.42 0.16 2.34 
FT/3B b 0.59 . 0.15 2.35 

4 FT/4A a 1.39 0.17 2.36 
FT/4A b 0.94 0.23 2.37 
FT/4B . 0.74 0.19 2.38 
FT/4C a 1.36 0.23 2.39 
FT/4C b 1.28 0.21 2.40 
FT/4D a* 0.72 0.21 2.41 
FT/4D b 0.58 0.19 2.42 
FT/4E 0.42 0.15 2.43 
FT/4F* 0.79 0.15 2.44 
FT/4G 0.11 0.22 2.45 

TABLE 2.11. Behaviour of valve pOSition residual for open loop 
full travel experiments. 

The exper:imental results of Figures 2.20 - 2.45 confirm the :initial 

method' of control loop malfunction detection by the valve position -, 

flow check, proposed in section 2.3. The deviations in estimator valve 

characteristics from the nominal malfunction free characteristics agree 

with the simulated results of F;i&ures 2.4 - 2.7. 

The valve characteristics for a Type 1 and T,ype 2 control loop 

. shown in Figures 2.20 - 2.31 all show a discontinuity in the'deviation 

due to the system malfunction for x> 1.9 cm or x> 5 volt (depending 

upon the process measurement of valve.·position used in the experiment). 
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This arises because of the two straight l.ine approximations used 

to represent the linear control valve characteristic as diScussed in 

section 2.7.3. Equation (2.4.14) may be written in the notation of 

section 2.7.3, as: 

then 

and so it can be Seen that the apparent error in the flowrate calculated 

frem the valve characteristic is a function of the slope of this 

characteristic. Since in the experimental work kvl had two values, 

depending upon the. degree of valve opening, the apparent error e~ 

changes as kvl changes, thus giving rise to the observed discontinuity 

in. control valve characteristic deviation. 

It can also be seen frem Table 2.11 that the method of monitoring 

changes in the residual mean is able to detect the malfunction. 

The case of valve trim damage (run FT/4G) is an exception. In 

contrllst to the other malfunctions, which result in a systematic pOSitive 

or negative deviations in the valve characteristic, this malfunction 

produces a deviation which is both positive and negative, depending upon 

the degree of valve opening, as shown in Figure 2.45. In terms of cal-

cula ting the residual mean this has a cancell.ing effect. 

This type of malfunction can be detected but it requires that the 

change in the residual be calculated at each valve opening before being 

averaged; this method was in fact used in the closed loop ..;. limited 

travel experiments described below. 
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2.9.2 Open loop experiments with limited valve travel 

the malfunction detection method for these experiments cannot be 

based upon comparison of the control valve characteristic since valve 

stroking waS not possible. the check method is therefore based, as 

before, on the determination of the valve position residual. The 

time series of the reSidual was obtained at the same valve opening. In 

each experiment the means of the residual sequence without and with 

malfunction were determined and the modulus of the change in the means 

waS calculated and compared with the Significant change at the 9510 

confidence limit • 

. FigUres 2.46 a and 2.46 b show typical residual time series for a 

Type 4 control loop without malfunction when the valve demand signal 

waS used as the valve stem measurement. The residuals obtained when a 

+ 10% current/pressure zero error was present (run OL/40 a) are shown 

in Figures 2.47 a and 2.47 b. 

Table 2.12 summarises the results for this series of experiments 

and it can be seen that the method is able to detect the malfunctions 

shown in Table 2.9. This includes the valve trim damage malfunction. 
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TABLE 2.12. 

Run Modulus of change in mean of 
number normallied valve position residual 

Actual ,..hAn"e S:i,e:nificant "hAn"e 

0L/2A 1.28 0.20 
OL/ZB 1.16 0.53 
0L/2C 0.49 0.21 

0L/4AB. 1.60 0.12 
OL/4Ab 2.56 0.21 
0L/4B 2.68 0.28 
OL/4Ca 1.87 O.lJ . 
0L/4Cb 1.48 0.10 
0L/4D 0.48 0.17 
0L/4E 0.46 0.20 
0L/4F* 0.69 0.20 
0L/4G 1.09 0.06 

Behaviour of valve position residual for open loop 

limited travel experiments. 

2.9.3. Closed loop experiments with direct digital control 

The check method is again based on the determination of the valve 

position residual. At selected setpoints of the control loop the time 

series of the residual without malfunction was obtained. In each 

experiment the means of the residual series without and with.malfunc

tion were determined at each particular· setpoint, and the modulus of 

the change in the means of the residuals was calculated and compared 

with the significant change at each selected setpoint. 

The method therefore requires that the mean of the residual with-

out malfunction be stored at the selected setpoints. 

The experimental results are summa.riSed in Table 2.lJ. 

Figures 2.48 a and b show the normalised residual time series for 

a control loop without malfunction controlling at a setpoint 1.82 x 10-3 

m3/s.. Figures 2.49& and b show the corresponding residual sequences 

obtained with the loop controlling at the same setpoint when the valve 

trim is damaged (run Cl/4G) as shown in Figure 2.17. 
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Again, it can be seen from Table 2.13 that the method is able to 

detect the malflUlctions shown in Table 2.9, including the valve trim 

damage malflUlction. 

Control Run Set point Modulus of change in mean 
loop number 

m3/s 
of nonnalised valve position residua' 

type Actual. Significant 
chan~e change 

4 C1/4A 8 -3 0.776 0.05 1. 2 x 10_
3 C1/4C a 1.82 x 10_
3 2·77 0.07 

CI/4C b 2.65 x 10_3 2.08 0.08 
CL/4G 1.82 x 10 1.44 0.05 

TABLE 2.13. BehaViour of valve position residual for closed loop with 

direct digital control experiments. 

2.10 Industrial experiments 

Some limited industrial trials of the proposed method have been con-

ducted at Works A. 

The process IUlder investigation operated with the aid of a Ferranti 

Argus 500 process computer which performed d.d.c. on several control 

loops. 

Two d. d.c. flow loops were selected for analYSis, and are denoted 

FC/1 and FC/2. The loop FC/1 controlled the reflux rate to a stripping 

column while Fe/2" controlled the column feed flow. The physical arrange-

ment of the column with the control loops is shown in Figure 2.50. 

In these control loops the computer measured the flowmeter signal 

(for baSic d.d.c.) and also a feedback Electrostep valve positioner 

signal thus yielding the control valve stem position (although no direct 

stem position measurement was made). 
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Figure 2. 50 • Arrangement of industrial control loops Fell and Fe/2. 

For these experimentS the process computer at Works A was programmed 

to store the flowmeter and valve position measurements for each loop at 

1 minute intervalB on process operator demand. This stored data was 

then retrieved on to computer punched paper tape and analysed off-line 

on a PDP 11-20 computer at Loughborough using the malfunction 

detection algorithm. 

2.10.1 Determination of model parameters at Works A. 

In order to implement the malfunction detection method via the 

"tracking" state estimator of equation (2.6.1.2) the measurement 

equation (2.6.2) must initially be defined, Le.: 
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The flowmeter equation was obtained from process design manuals for 

both control loops Fc/l and Fc/2 to be: . 

~ = kmi s i = 1,2 

The quantity s is the measurement used by the computer in its d.d.c. 

a4orithm. the constantS k for the loops FC/l and Fc/2 are given 
mi 

in Table 2.14. 

Control Flowmeter k 
loop measurement mi 

equation K Ib 
ii V 

Fc/l ~ - k - ml s 107.5 

Fc/2 ~ = k s m2 300.8 

TABLE 2.14. Equations and parameters defining the 

industrial flowmeters. 

The information concerning the control valve characteristics was avail-

able in the proceSs design manuals and typically is shown in Table 2.15. 

Flow Nominal Valve Cv Des' 
l1~ 

Cv Normal Specific Valve lift 
control valve type Factor Normal flow gravity at normal 
loop body size p.s.i. flow Klb/h flow - % 

(in) open 

Fc/l 3 
Equal 

l.4O 10 65 79.5 0;59 80 percentage 

Fc/2 4 " 193 17 125 219 0.7 63 

TABLE 2.15. ProceSS design specification of the industrial control valves. 

To fonnulate a measurement equation relating the valve pOSition 

measurement to the fluid flowrate an equal percentage valve characteristic 

was assumed of the fonn: 

(2.10.1) 
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Now the information presented in Table 2.15 enables the constants 

kVi to be detennined as follows. 

Consider Fe/l, then the flowrate when the valve is fully open, 

i.e. x = 1.0 is: 

140 
~ = Ts x 79.5 Klb/h 

= 171.23 Klb/h 

This results in two "points" on the equal percentage valve characteristic 

corresponding to x = 1 and x = 0.80. Thus the constants of equation 

(2.10.1) may be solved simultaneously. 

This procedure results in the control valve characteristics 

defined in Table 2.16. 

Flow Type of characteristic kVl kV2 x 
max 

Control Klb/h 10(}% %/100 loop 

FC/l ~ = kv1exp (kv2 x) 3.7 3.84 1 

FC/2 ~ = kv1exp (kV2 x) 104.5 1.17 1 

TABLE 2.16. Equations and parameters defining the industrial control 

valves. 

The final parameter necessary to define the measurement model is the 

matrix R • Initially nothing was known about the process measurement 

. noise or the accuracy and validity of the assumed control valve equations. 

Thus an a priori estimate of R was made by assuming r .. = 0, i'i' j, and 
. 1J 

setting r.. to be 5% of the maximum values of x and s respectively, 
11 . 

giving: 

R= 
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2.10.2 Industrial experiments and objectives 

"nle experiments were designed to investigate several features of 

the malfunction detection method. These were: 

i)' To ~mine the robustness of the estimator,; 

11) To examine the validity of the a priori flow control loop models 

derived in section 2.10.1,; 

11i) To determine the feasibility of estimating the state via the 

"tracking" state estimator in industrial d.d.c. flow loops,; 

iv) To determine the e,stimator residual characteristics over a period 

of't:ime,; 

v) To verify that a control loop malfunction may be' detected by 

examining the estimator residual mean. 

To facilitate these exper:iments the flowmeter and valve poSition 

measurements for loops FC/1 and FC/2 were logged at 1 minute intervals 

over a period of 1 week. Typical measurement time histories are shown 

in Figures 2.51 a, band 2.52 a, b for loops Fe/I and FC/2 respectively. 

There was no indication from the process operators that the loops had 

malfunctioned during this period. 

The logged data was processed off-line on a PDP 11-20 computer. 

"nle data for each loop was decomposed into batches of 250 samples and 

analysed using the "tracking" state estimator of equation (2.6.1.2) to 

yield the state estimate 2, the nonnalised residual t:ime sequences, 

r./ ! (i = 1, 2), and the means of the normalised residual time 
1r11 

Sequence. The data batches are coded IT/1 a~ and IT/2 a~ for 

loops FC/1 and FC/2 respectively. 

, To investigate the change in reSidual mean when loop malfunction 

occurs a -10% zero error in the floWleter signal was s:imulated and is 
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2.10.3 

denoted by run IT/kA, (k = 1, 2). The modulus of the change in 

residual mean was calculated and compared with the changes in the loop 

reSidual observed over the experimental test period. 

Industrial experimental results 

Since these flow control loops operated under d.d.c. from the 

process computer with limited valve travel, and valve stroldng was not 

feaSible, then the malfunction detection technique must be based upon 

examining the characteristics of the residual sequences. 

Table 2.17 shows the normalised reSidual mean for control loops 

FC/l and FC/2 over the logging period when the a priori models of 

section 2.10.2 were used in the estimator. 

Table 2.17 shows that the residual means for both flow control 

loops, assumed without malfunction, are relatively consistent within 

groups. 

* Run IT/2A a which has a -10% zero error in the flowmeter signal s 

results in a shift of valve position residual mean by approximately 1.0 

which clearly demonstrates the presence of a loop malfunction. 

There is, however, one diSturbing feature of the results in Table 

2.17. This is that the loops without malfunction do not yield residual 

meanS close to zero. Although this is not a pre-requisite of mal-

_ function detection since the criterion for a loop malfunction is that 

the modUlus of the residual mean shifts from the malfunction free charac-

teriBtic, it is considered that a nominal zero reSidual mean for the 

loop without malfunction is a desirable feature. This is postulated as 

an aid to result interpretation for the process operator or control 

-engineer, since the information -load from monitoring several loops is 

reduced to the common feature of zero residual mean (1). This deSirable 

123 



Flow Sample number Run number NomaliBed residual mean 
cOntrol Valve Flowmeter 10<!p "position si.lmal 

Fe/l 1 - 250 IT/I a -0.87 0.42 

251 - 492 IT/lb -0.90 0.46 

743 - 1242 IT/I c -0.89 0·44 
2022 - 3211 IT/l d -0.84 0.42 

5132 - 5631 IT/I e -0.89 0.42 

7136 - 7635 IT/I f -0.91 0.46 

8972 - 9221 IT/l g -0.83 0.44 . 

10225 -10421 IT/l h -0.88 0.47 

Fe/2 1 - 250 IT/2 a -0.41 0.65 

251 - 492 IT/2 b -0.53 0.88 

743 - 993 IT/2 c -0.57 0.92 

1494 - 1743 IT/2 d -0.58 0.94 

2272 - 2521 IT/2 e -0.55 0.87 

2772 - 3021 IT/2 f -0.60 0.94 

Sl81 - 5680 IT/2 g -0.38 0.67 

9071 - 9320 IT/2 h -0.40 0.69 

1 - 250 IT/2A*a -+<l.48 -0.81 

TABLE 2.17. Behaviour of residuals in industrial d.d.c. flow loops 

uSing a priori measurement equations. 
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feature may be obtained simply by updating the a priori measurement 

models. This may be done as follows. 

Table 2.18 details typical information generated by the state 

estimator using the a priori models of section 2.10.2. An examination 

of these results shows that there is a large difference in ~ and ~ 

which indicates that the control valve characteristic is in error thus 

producing large residuals in the estimator. 

Now the philosophy adopted in this Chapter has not been the 

achievement of accurate state estimates but simply the creation of a 

mathematical model relating the measured variables in the control loop, 

from which loop malfunction could be detected. 

With these comments in mind and the fact that the control valve 

characteristics derived from the process deSign manual are suspect, it 

was considered justifiable to mOdify the a priori model in order to 

achieve approximately zero residual mean when the loop is malftmction 

free. 

The control loop meaSurement equations were intuitively modified 

and the a posteriori parameters are given in Table 2.19. 

Flow 
control 
loop 

Fcll 

Fc/2 

TABLE 2.19. 

Flowmeter constant Control valve constants R matrix 

kmi 
Klb 

kVl 
Klb k 100 

1iV iiV v2T rU r 22 

90 3.7 3.84 0.05 0.1 

300.8 104.5 1.45 0.05 0.05 

Parameters defining a posteriori measurement 'models for 

industrial control loops. 
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Flow Valve 
control opening 
loop 

Foil 0.6532 
0.6615 
0.6649 
0.6649 
0.6688 

FC/2 0.3381 
0.34 
0.3312 
0.3205 
0.3351 

TABlE 2.18. 

Flowmeter ~= 'lu.= Optimal Nonnalised Normalised 
signal kv1exp(kv2 x) k . S 

A A cost valve position flowmeter signal 
IDJ.. 

Q=X 
A residual residual 
J 

0.5608 45252.6 60288.2 57055.1 1.847 - 1.14 0.74 
0.5559 46717.5 59763.1 57020 1.34001 - 1.04 0.50 
0.5584 47334.3 60025.3 57375.6 1.254 - 0.970 0.56 
0.5545 47334.3 59605.5 57049.9 1.178 - 1.0 0.42 
0.5662 48049.3 60865.9 58220 1.30 - 0.895. 0.71 

0.5696 155453 17134 159874 0.81 - 0.56 0.71 
0.5564 15581 167372 159012 0.44 - 0.44 0.50 
0.5628 154210 169283 158348 0.74 - 0.52 0.7 
0.57 152276 171487 157499 1.21 - 0.67 0.87 
0.5623 154919 169136 158802 0.67 . - 0.28 0·77 

Tracking state estimator information using a priori measurement models for industrial 
control loops. 
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Table 2.20 illustrates the information generated by the estimator 

uSing the a posteriori measurement models and Table 2.21 details a 

reSidual mean analysis, which confirms that a loop malfunction is charac-

terisedby a large shift of reSidual mean 

Flow Sample number Run number Normalised residual mean 
control Valve FloWleter loop position S;...., .. 1 

Fe/1 o - 400 IT/1 i - 0.067 0.071 
493 - 1492 IT/1 j - 0.074 0.078 

2022 - 3021 IT/1 k - 0.05 0.0,56 
7136 - 8135 IT/l 1 - 0.096 ,0.11 
8972 - 9971 IT/l i - 0.092 0.10 
9723 - 9822 IT/lA b - 0.63 0.584 

FC/2 0-400 IT/2 i - 0.012 0.018 
593 - 1342 IT/2 j - 0.11 0.145 

1772 - 2521 IT/2 k - 0.13 0.17 
5181 - 5930 IT/2l - 0.067 0.09 
8972 - 9971 IT/2 m* - 0.11 0.16 
5732 - 6731 IT/2A b - 1.05 1.32 

TABLE 2.21. Behaviour of residuals in industrial d.d.c flow loops 

using a posteriori measurement equations. 

2.11 Concluding remarks 

This. Chapter has described a control valve poSition - flow check 

which is intended to be implemented on a d.d.c. computer. The tech-

nique appears promising as a means of detecting ,the existence of 

various types of malfunction in flow control loops, though not of 

'identifying the particular malfunction except in certain specific cases. 

The method does not require additional: process instrumentation, 

but ,exploits the capability of the process computer to condition, store, 

and display information. The computer storage and time requirements 
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Flow Valve Flowmeter 
A 

Optimal Normalised Normalised ~ ~ Q 
control opening signal cost valve flowmeter 
loop A pOSition signal 

J reSidual residual 

Fc/l 0.6414 0.5476 43262.5 49286.8 46230. 0.41 - 0.64 0.04 
0.6092 0.4978 38229.4 . 44802.1 41081.1 0.48 - 0.68 0.13 
0.6580 0.5501 46108.7 49506.60 47834.8 0.08 - 0.27 0.1 
0.6849 0.5921 51114.6 53287.7 52316.7 0.11 - 0.32 - 0.12 
0.7123 0.5921 :iJ770.2 53287.7 54736.5 0.07 0.13 - 0.23 

Fc/2 0.3449 0.5852 1723:iJ. 176042. 173875. 0.036 - 0.14 0.12 
0.3869 0.5823 183182. 175161. 179664. 0.29 - 0.012 - 0.5 
0.3483 0.5818 173213 • 175014. 1739:iJ . 0.0099 - 0.089 0.0452 
0.3402 0.5745 168732 • 172809. 170374. 0.085 - 0.29 0.032 
0.3376 0.5887 170534· 177071. 173196 • 0.123 - 0.13 0.32 

TABLE 2.20. Tracking state estimator. information using a posteriori measurement models for industrial 

control loops. 



are relatively modest and since most nialfunctions appear not to 

develop very sUddenly the check algorithm can be executed at quite 

infrequent intervals and at low priority. 

The technique does not assume a constant pressure drop across the 

valve but it doeS assume a constant system now - pressure drop charac

teristic. If this condition is not completely met, the level of 

detectable malfunction will be increased. 

It is envisaged that the technique would be used for the detection 

of relatively gross malfunction Which may affect immediate operation 

of the proceSs rather than the adjustment of fine errors in data sets 

for subsequent management analysis. The level of error Which might 

be detected in practice is probably about 10%. 

Two basic types of check have been described. In the first, a 

valve characteristic is obtained of nowrate vs valve position. This 

requires that the valve be moved over its whole range of travel. It 

is expected that usually this will not be acceptable. However, if 

this is permitted, it is possible to obtain a full comparison of the 

original arid current characteristic, and if desired to give a visual 

display. This full valve characteristic comParison enables the 

source of the malfunction to be determined in scme cases. 

A second check is based upon the comparison of the original and 

current residuals generated from a state estimator. '!hiB is applic

able to all cases inc1u djng closed loop d.d.c. with limited valve 

travel and it is anticipated that this check would be more useful. 

The method has been tested using a laboratory rig Which demons

trated the points discussed above. 

129 



Some limited induStrial trials have also been conducted. These 

revealed that models based upon process design manuals were adequate 

and no serious difficulty was experienced in tracking the operation 

of control loops and calculating values of residuals. 

It is suggested that future work should continue the industrial 

trials of the method in an attempt to correlate actual flow control 

loop malfunction to the change in residual, while theoretical develop

ment Should invest:i&ate how the method may be adapted to handle 

control loops which do not satisfy the asswnption of constant system 

flow-pressure drop characteristic. 
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CHAPl'ER 3. 

THE DETECTION OF MALFUNCTION IN A GENERAL 

CONTROL LOOP 
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3.1 List of symbols 

" 

A 

A(k + 1, 

Ab(k + 1, 

!. 

a . 
-~ 

B (k) 

B 

B.r 
b 

b 

~(/) 

C(t) 

~ 

(~):ij 

C 

c 

E ( ) 

E (/) 

F(k+1, k) 

F 

G 

H (k) 

1\,- (k) 

H 

k) 

k) 

crosS sectional area 

state transition matrix 

state transition matrix 

vector of unknown parameters 

i th vector of unknown parameters 

control driving matrix. 

measured variable devia tion 

true measured variable deviation 

vector of unknown parameters 

unknown scalar parameter 

conditional expectation of b 

measurement matrix 

innovation autocorrelation matrix 

ij th element of ~ 

controlled variable deviation/instrument 

transmitter 

vector of unknown parameters 

expectation / error 

conditional expectation 

error 

laplace transfonn of error 

error vector / Gaussian white 

noise sequence 

augmented state transition matrix 

continuous time transition matrix 

transfer function 

measurement matrix 

measurement matrix 

tank height deviation 
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2 
m 

various 

various 

v 

various 

cm 



i\n(s) 

h. (k) 
-1 

h 

I 

J 

j 

K(k) 

~(k) 

laplAce transfonn of H 

laplAce transfonn of tank 

height setpoint deviation 

laplAce transfonn of tank height 

deviation measurement 

i th row of measurement matrix H(k) 

tank height 

unit matrix 

cost function 

smoothing interval 

Kalman gain matrix 

Bias filter gain matrix 

controller gain 

K1,KZ,K3,K31,K3Z ~ 

K4, Kf,Km,KL, ) 
) constants in level control 

Kv' Ko1 , ) 
) loop transfer functions 

KoZ,h' Koz,x ) 

/'::, K incremental change in Kalman gain matrix 

k discrete time courtter 

L covariance matrix/augmented measurement matrix 

1 discrete time counter 

M covariance matrix/control valve demand signal 

weighted swn of residuals 

m nwnber of measurements 

N memory length/counter 

n discrete time counter/nwnber of state variables 
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cm 

various 

various 

various 



p 

p (s) 

p ( ) 

p ( / ) 

!:::. p 

Q (k) 

Q 

Q (s) 

q 

R(k) 

R 

r .. (k) 
l.J 

r (k) 

S (k) 

S 

s .. (k) 
l.J 

s 

t 

!:::'t 

u 

u (k) 

v 

v 

11 (k) 

x 

pressure. 

Laplace transform of controller output 

pressure 

probability 

conditional error covariance ma trix 

presSure drop 

process noise covariance matrix 

flowrate deviation 

Laplace transform of flowrate deviation 

flowrate/number of process disturbances/scalar 

process noise covariance 

measurement noise covariance matrix 

control loop setpoint deviation 

computer generated measurement noise 

covariance matrix 

ijth element of R(k) 

residual 

innovation covariance matrix 

scaling parameter/matrix 

ijth element of S(k) 

scaling parameter/Laplace operator 

time/student's t 

sampling interval 

matrix/load disturbance deviation 

control vector 

matrix 

measurement noise vector 

vector of process disturbances 

control valve stem position deviation 
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x' (s) 

x 

x (k) 

~ (/) 

x. (k) 
~ 

Y (k) 

I(k) 

z .. (k) 
~J 

z (k) 

~ ( / ) 

z 

11·11 

Greek letters 

a 

r 
5 

51' 

Laplace transform of valve stem position 

deviation 

control valve stem position 

state vector at time interval k 

conditional expectation of state vector ~ (k) 

i th element of ~(k) 

sequence of measurement vectors Z(I) to Z(k) 

vector of process measurements at time 

interval k 

ith element of I(k) 

estimated innovation covariance matrix at 

time interval k 

ijth element of Z (k) 

augmented state vector 

conditional expectation of ~(k) 

z transform operator 

matrix norm 

scaling factor 

process noise driving matrix 

Kronecker delta 

difference in error covariance matrices 

vector of WlknOwn parameters 

mean 

innovation sequence 

normalised innovation 

autocorrelation matrix 
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ij th eiement of P k 

process time constant min 

controller integral time min 

control loop malfunction gain 

various 

Subscripts 

b parameter vector b 

c parameter vector c 

i inlet flowrate 

opt optimal 

min minimum 

max maximum 

ss steady sta te 

x state vector x 

01 outlet flowrate 1 

02 outlet flowrate 2 

Superscripts 

optimum state estimate 

-1 inverse 

# pseudo inverse 

T transpose 

estimate 
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3 . 2 In troduc tioll 

Chapter 2 has suggested a malfunction detection algorithm which 

may be implemented on a procesS computer to determine faults in a 

flow control loop. 

The method was based upon the knowledge of the steady state 

control valve characteristic relating the process flowrate to the valve 

demand signal, as well as the primary flowmeter measurement relation

ship. Thus it was postulated that the flow control loop had inherent 

measurement redundancy, which was used to detect malfunction. Two 

techniques were presented which could be applied to open and closed flow 

loop operation respectively. 

The closed loop technique was based upon a simple tracking state 

estimator derived under the assumptions of steady state operation (or 

fast process time constants). .The technique yielded no diagnostic 

information and the calculated state estimates were not constrained to 

be accurate. 

In this Chapter it is assumed that a relationship between the 

process variable and the control valve demand signal exists but is 

initially unknown. A malfunction detection technique based upon a 

dynamic closed loop model is proposed which yields "optimal" state 

estimates when the loop is malfunction free and which also provides 

some diagnostic infonnation on the location of loop malfilnctions when 

they occur. 

The method is based upon Kalman filtering and. may be applied to 

both conventional analogue setpoint and direct digital (d.d.c.)control 

loops. 

To illustrate the proposed algorithm, malfunctions are detected in 

a laboratory level control loop. 
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3.3 The control loop malfWlction check 

3·3·1 

In this Section two types of control loop are distinguished and 

the effects of malfWlction on their performance are examined. 

Conventional analogue set point control 

Although d.d.c. process computers are finding increasing application 

on chemical plant, there are still many control loops which are baSed 

upon conventional analogue controllers. The role of the computer in 

such Situations is dependent upon the system design. However. it is 

not Wlcommon for the computer to access the measured variable in a 

control loop as a primary input to plant performance, optimisation or 

management calculation computer programs.· 

A convenient representation of control loops is the block diagram 

and Figure 3.1 shows a negative feedback loop whOSe task is to maintain 

the process variable C at some deSired setpoint R·in spite of the load 

disturbances U. The computer accesses the measured variable B at 

diScrete time intervals via a p/I transmitter and is denoted Y1 (k). 

Now for a control loop operating at a particular setpoint R, with 

load disturbances about some nominal value U, there exists a Wlique 

relationship between the measured variable B (= R) and the control 

valve demand signal M (controller output signal or the valve stem posi

tion). If this relationship changes, in the absence of setpoint or 

load changes, then loop malfunction has occurred. 

In the control loop of Figure 3.1 there are two types of malfunc

tion which can occur. 

The first type of error is a fault in the p/I transmitter. This 
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Block diagram representation of an analogue setpoint 

control loop. 

G 

instrument is external to the control loop and so such a malfunction 

p 

does not affect control loop operation, i.e. B ~R and for the given 

Rand U, M is the expected value. However the computer observation 

Yl will be biased and so the relationship between Yl and M will 

be altered. Subsequent process calculations involving Y1 will be 

in error. This fonn of error will be referred to as a pure measure-

ment error. 

The second type of malfunction is an error occurring within the 

individual blocks of the control loop. This kind of fault does affect 

loop operation - the end result of which is to cause a change in the 

relationship between B and M. As an example, consider a malfunction 

in the meaSurement block G which causes the output B to have a 
m 

positive error. Denoting the true process measurement as BT,. and 

the error E(B), then because of the feedback nature of the loop it is 
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easy to see: 

R = B = BT + E (B) (3.3.1.1 ) 

Now an observer, or the process computer, will still register the proceSS 

measurement as B although the true value is BT. Since the control valve 

is essentially being aSked to handle different process conditions the 

valve demand signal will change to some new nominal value M + E (M). 

This apparent divergence between the expected values of B and M, in the 

absence of setpoint or load changes, is indicative of loop malfunction. 

The precise change in the control valve demand signal E(M) is 

dependent upon the characteristics of the control loop, and may be 

derived using conventional block diagram techniques. 

For example, the measurement error E(B) may be considered as a load 

disturbance entering the· block diagram after the measurement block Gm. 

The transfer function relating the valve demand signal.to this load 

change is (56): 

M (s) = 

E(B)(s) 

- G G c v 
I+GGGG c v p m 

Now by applying the final value theorem to this transfer function (56) 

the steady state deviation E(M) of the valve demand signal from the 

nominal value M is: 

E(M) = ~ E(B) 

where ~ depends upon the control loop system gains. 

The parameter ~ characterises the magnitude of the malfunction 

which is detectable in any particular loop. 
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3.3.2 Direct digital control 

nle difference between this type of loop and that detailed in 

Figure 3.1 is that the pi! transmitter becomes part of the feedback 

control loop and the controller becomes the process computer. Hence 

there are no pure measurement errors in this loop and consequently all 

malfunctions affect control loop operation, thereby causing deviations 

in the expected valve demand signal for a given process measurement in 

the abSence of setpoint or load changes. 

The ideas developed in this section have as their basis that, for 

a' given setpoint and load, there is an expected relationship between 

the process measurement and the valve demand signal. The remainder of 

this Chapter is devoted to developing an algorithm which will detect 

malfunction during normal control loop operation. The control. loop is 

represented by a mathematical model which provides a data base from 

which inferences concerning loop malfunction are made'. 

3.4 Review of Kalman filtering 

The baSis for modern estimation theory is the method presented by 

Kalman (46). His solution to the recursive linear estimation problem 

has become known as the Kalman filter. Kalman 's method has been 

described extenSively in the literature and in addition to Kalman's 

original paper derivations may also be found' in (27), (45) and (57). 

A statement of the linear estimation problem and the.resulting filter-

ing equations which form the solution to the problem are presented in 

this section. 

Consider a linear system whose dynamics are modelled by a linear 

vector difference equation: 

x(k+l) = A(k+l,k) x(k) + B(k) u(k) + I {k}w (k) - - - -
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where :!£(k) = n x 1 vector of state variables 

A(k+1,k) = n x n state transition matrix 

!! (k) = r x 1 vector of control inputs 

B(k) = n x r control driving matrix 

! (k) '" q x 1 vector of dynamic system noise variables 

I (k) = n x q noise driving matrix. 

The noise sequence {! (k) I , is assumed to be white noise with 

statistics given by: 

E <! (k) ) = 0 

E <! (k) ! (jl) = Q (k) 5 (k,j) 

where Q (k) is the covariance matrix of {!(k)} and 6 (k,j) is the 

Kronecker.delta, ie. 

6 (k,j) = k f j 

k = j 

The initial state ~(o), is considered to be a vector of random 

variables with statistics known to be: 

E ~ (0» = ~ (0) 

E <! (k) :!£ (ol) = 0 for all k 

and E( ~(o) - £ (0) ) ~ (0) _ ~ (0) )T) . = P (0/0) 

where p(O/O) is the covariance matrix of :!!: (0). 

At each time instant, k, the available measurements are modelled 

by 

where: 

r(k) = H (k) :!!: (k) + :y (k) 

.l(k) = m x 1 vector of measurement variables 

H(k) = m x n measurement weighting matrix 

:y(k) = m x 1 vector of measurement noise variables. 
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The additive noise sequence, 1 !:(k)} ,is assumed to have the following 

statistics: 

E( !: (k) ) = 0 

E( !: (k) :y (jl) = R(k) 6 (k,j) 

where R(k) is the covariance matrix of I :y(k) } 

The noise covariance matrices, Q(k) and R(k), are assumed to be 

positive semidefinite and positive definite respectively. In addition, 

are assumed to be uncorrelated, i.e., 

E(.!!(k) :y(j )T) = 0 for .all k,j 

and E( ! (0) ! (k)T) = 0 for all k 

The mathematical model has now been defined and so the estimation 

problem will be stated. 

Recursive Linear Estimation Problem 

Given the model described by equations (3.4.1) and (3.4.2), deter-

mine an estimate of the state at time 1<+1 which is a linear combination 

of an estimate at time k and the measurement data ~ (1<+1) such that 

the following criterion is minimised: 

J = E ( ~ (k+1) -! (k+l»T ~ (k+1) -! (k+1) » 

Kalman (46) showed that the optimal estimate is given by: 

! (k/k) = E <! (k) / Y (k) ) 

where Y (k) = ~ (i), .... , ~ (k) ) 

Furthermore, it was shown that the optimal estimate can be generated by 

the folloWing set of recursive equations, which combine to give the 

Kalman filter .. 

~(k/k-1) = A(k,k-1) ~(k-1/k-1) + B(k-1)~(k-1) (3.4.3) 

P(k/k-l) = A(k,k-1) P(k-1/k-l) AT(k,k-l) + r(k-1) Q(k-1) r T(k-1) 

(3.4.4) 
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K{k) = P{k/k-l) HT{k) (H{k) P{k/k-l) HT{k) + R{k) )-1 

(3 .4.6) 

P{k/k) = (I - K{k)H{k) ) p{k/k-l){1 - K{k) H{k»T + K{k) R{k) KT{k) 
, 

(3.4.7) 

or P{k/k) = P{k/k-l) - K{k) H{k) P{k/k-l) 

where 

~ (k/k-l) = E~{k» / Y{k-l» 

K{k) = Kalman gain matrix 

P{k/k-l) = covariance matrix of ~(k) - ~(k/k-l» 

P{k/k) = covariance matrix of ~(k) - !(k/k» 

The feedback structure of the filter is shown in Figure 3.2, and it 

is this structure which makes the Kalman filter a very useful tool since 

it can be realised using a digital computer. 

The quantity: 

I{k) - H ~ (k/k-l) 

which appears in equation (3 .4.6) is used extensively in Kalman filte~ 

ing. Kailath (58) defined this Sequence as the innovation sequence and 

this will be denoted here as ~(k). 

Inspection reveals that ~(k) is the difference between the actual 

process measurements and the predicted measurement, and as such repre-

sents the new infonnation available to the filter at each iteration. 

Kailath has shown that the innovation sequence for a filter using 

correct infonnation (Le. correct system models and noise statistics) 

with Gaussian white noise inputs is a GaUSsian white noise sequence with 

statistics: 

E {y (k» = .Q 

E ( ~(k) ~T(j) )= 0 j f k 

E ( ~(k) ~ T{j) ) = H (k) P (k/k-l) HT{k) + R{k) j = k 
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+ 
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B (k-l) 

!! (k-l) 

FIGURE 3.2 Feedback implementation of the Kalman filter. 



The system model given in equations (3.4.1) and (3.4.2) asswneS 

linearity. Since many problems of practical interest involve non

linear process dynamics, then a linear model must be derived using 

perturba tion techniques. '!his approach leads to a filter for hand

ling non-linear problems called the "extended Kalman filter". An 

analysis of this "extended" filter as well as other non-linear appro

ximation techniques may be fOlUld in Jazwinski (57). 

The results of Kalman are also constrained by the modelling 

asswnption that the noise driving the system and the measurement noise 

are white. The extension of Kalman' s work to problems containing 

correlated or "coloured" noise was treated by Bryson and Johansen (59) 

In their paper, the correlated noise was asswned to be generated by a 

"shaping filter" whOSe input was white noise. The original state 

vector was then augmented· by the correlated noise sequence and was used 

to reformulate the problem so that Kalman filtering could be USed to 

obtain a recursive estimate of the new state vector. However the 

augmentation approach, apart from making the filter more computationally 

burdensome, leads to matrices which are ill-conditioned. 

These problems Were eliminated by Bryson and Henrikson (60) for the 

caSe of correlated measurement noise. The approach USed was to intro-

duce a differencing transformation which yielded a neW measurement 

variable containing IUlcorrelated noise. This method has the advantages 

of not increasing the dimension of the state vector and of eliminating 

the ill-conditioned matrix of the augmented approach. 

Theoretically, the Kalman filter gives the IUlbiased, minimum 

variance estimate of the system state vector of a linear dynamic system 

disturbed by additive white noise when meaSurements of the state vector 

are linear, but corrupted with white noise. In practice such perfonn-

ance is hardly ever realised. A moment's conSideration of equations 
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(3.4.3) to (3.4.7) reveals that in order to implement the Kalman filter 

it is necessary to initially specify P(O/O), ~(O), Q and It (assuming 

sta tionary noise statistics), as well as defining the ata te transition 

and measurement matrices. If a Kalman filter processes data which 

are generated by a data generation mechanism, characterised by a 

structure and/or set of parameter values different fran those used in 

the filter, then suboptimal estimation of the System state vector 

occurs. In fact several authors have reported that filter divergence 

can occur due to incorrect a priori information (61), (62), (63). To 

overcome these problems the Kalman filter should be made adaptive in 

some sense. 

Adaptive Kalman filtering has been the subject of considerable 

research in recent years and the various adaptive estimation techniques 

will be discussed in section 3.6. 

3.5 Applica tions of Kalman filtering in chemical engineering 

Since Kalman published his solution to the recursive linear esti

ma tion problem (46), there has been an extensive research effort devoted 

to extending his ideas. Although the aerospace industry was not slow 

to recognise the potential of Kalman filtering, it is only recently that 

these techniques have been applied to chemical processes. 

To use the Kalman filter a state variable representation of the 

physical process is required. Rarely in the chemical processing 

industrieS are accurate process models available, and those that are 

are usually characterised by complex, non-linear differential equations, 

involving uncertain parameters subject to drift. Some process models 

may involve pure dead times or be distributed. parameter systems. 
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Another problem arises in describing the statistical nature of the 

random inputs and measurement errors in industrial processes. 

Coggan and Noton1s work (64), was concerned with the feasibility of 

using a non-linear Kalman filter in chemical engineering problems. 

Their work was baSed upon computer s:iJnulation so that a comparison 

between the actual and estimated state variables was possible. They 

reported results for the extended Kalman filter applied to a blending 

process and a thermal system -which were characterised by strong non

linearities, unmeasured disturbances, inaccurate measurements and 

variable time delay. 1heir results showed that despite these undesir

able features the state estimator was quite stable and converged 

quickly to within 1 to 2% of the actual state values. This accuracy 

was considerably better than the accuracy with which any state was 

actually measured. However, the results obtained from the thermal 

system indicated that the estimated unknown heat transfer coefficient 

parameter was conSiderably biased. The authors attempted to improve 

this Situation by "experimental" runs with: , 
i) Artificially low or high values of Rand P(O/O), 

ii) Modifications of the filter Kalman gain, 

ill) Various intuitively chosen alterations to the estimation procedure. 

None of these proved successful and the results were not reported. 

In both of Coggan and Noton I s examples, they constrained the values 

of Q and R to be the same for their simulation and estimation, but they 

did consider the effect of incorrect a priori information for !(O) and 

P(O/O) • 

Goldmann and Sargent (65) have perfonned a detailed study of the 

factors affecting Kalman filter behaviour for two Simulated chemical 
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proceSses. 

ment noise. 

In both of their examp1es they considered on1y measure-

Their first process consisted of a steady state mass and heat 

ba1ance around a disti11ation c011.D1U1, and they showed that the filter 

was re1atively insensitive to incorrect a priori information R, :!;{o) 

and p{ojO). 

Their second example concerned a fixed bed cata1ytic reactor. 

The "physical" simulation of the reactor was based upon a detai1ed 

mathematical mode1 consisting of mass and energy ba1ances, kinetic 

equations, mass transfer re1ations and phase equilibrium re1ationships 

applied to a sequence of adiabatic stirred tanks. By assuming parti

cuhr ca ta1yst decay 1aws and using the described model the authors 

cou1d compute the temperature profile along the reactor and its outlet 

composition, which were subsequent1y contaminated with Normal random 

noise to 'provide process measurements. The filter was used to esti

mate the cata1yst activity and its rate of decay from these measure-

mentS. The Kalman filter used a Simplified mode1 which ignored all 

maSs transfer effects and assumed a series of, firSt order'reactions 

occurring in an adiabatic p1ug flow reactor. ,The cata1yst dynamics 

for the filter were represented by simp1e fUnctions corresponding to 

three simu1ated decay 1aws, and in particuhr they approximated a dis

tributed parameter system by a 10w order polynomial., The noise 

statistics used for the filter were those used in the simu1ation. 

The authors found that it was possible to predict model parameters 

and inaccessible variahles such as catalyst activity provided that a 

reasonahly accurate steady state mode1 was used. However they did 

observe that the filter was senSitive, and sometimes divergent, to 

errors in their assumed models. To overcome this problem the authors 
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exam.ined more sophisticated filtering schemes in the form of the 

exponential and limited memory filters (66), (57). 

Joffe and Sargent (67) extended the abOve work on the reactor and 

developed an optimal control strategy which was a function of the 

catalyst activity estimated by the Kalman filter. In their formulation 

they included the effect of input process noise !(k) and its co

variance matrix Q(k), and by means of simulation demonstrated that the 

filter was insensitive to the statistical assumptions necessary for 

its use. 

The problem of specifying the a priori statistical information 

necessary to implement the Kalman filter has been the subject of several 

studies. This feature was first discussed by Seinfeld et al. (68) and 

Seinfeld (69). They considered the general problem of the control of 

a non-linear lumped parameter dynamical system subject to random inputs 

and measurement errors. A scheme was developed whereby a non-linear 

Kalman filter was included in the control loop and they illustrated 

their ideas by a simulation for the proportional control on the tempera

ture of a continuous stirred tank reactor. In implementing the filter 

the authors remarked that the performance of the estimator depended 

significantly upon the choices of ~(o), P(ojO), Q(k) and R(k), and 

they selected their values by a trial and error approach involving com-

puter simulation. In passing they also clllllDlented that if Q was 

selected too small filter convergence was not obtained. 

Wells (70) pursued this point further when he examined the feasi

bility of extended Kalman filtering applied to an adiabatic continuous 

stirred tank reactor. He suggested that modelling errorS can be 

accounted for by considering the process noise ! (k) as a fictitious, 

zero mean, Gaussian white noise vector whose covariance matrix Q(k) 
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reflects the confidence in the assUllled model. '!he importance of the 

a priori filter parameters .!(O), P(O/O), Q(k) and R(k) was discussed 

and WellB pointed out that .! (0) and P(O/O) determine the basic 

speed of response of the filter. He also mentioned the effect of the 

noise covariances Q(k) and R(k) on the Kalman ga3n and suggested that a 

large value of Q(k) should be used if there is uncertainty about the 

process dynamic model. '!his causes a large gain and so the filter 

relies upon current observations to estimate the state vector. '!his 

"loosening" effect of the filter causes the steady state estimation 

error to increase. Increasing the observation noise covariance R(k) 

has the opPosite effect, and consequently the filter tends to disregard 

measurements containing large errors. Although WellB illustrated the 

effectiveness of the extended Kalman filter by selecting values of .!(O), 

P(O/O), Q(k) and R(k) such that the state estimates were comparable 

with the simulated system state responses he did not include a sensiti-

vity analysis to illustrate the performance of the filter to poor a 

priori information. 

Hamilton et al. (71) and Seborg et al. (72) examined the linear 

time invariant form of the Kalman filter by s:imulation studies and 

exper:imenta1 tests on a pilot plant evaporator. They confirmed WellB' , 

work concerning the sensitivity of the Kalman filter to a priori. i."l.for

mation and advocate that Q(k) and R(k) should be considered as design 

parameters which are selected to :improve filter performance. Although 

they provided intuitive guides to these matrix selections, they do not 

present any systematic method for determining them other than by 

simulation. 

Coggan and Wilson (73) realised the problem of information uncertain

ty in fUtering and suggested that one result of it is to cause bias in 
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the state est:iJDates. They subsequently developed a technique which 

enables the Kalman filter to detect and inhibit this bias on-line. 

Their ideas were demonstrated by computer s:imulations of a concentric 

tubular counterCUITent heat eXchanger and an isothennal gas absorption 

cohmm. 

Other references to Kalman filtering which confiIm the above 

remarks may be found:in (74) and (75). 

The application of Kalman filter:ing to :industrial chemical pro-

cesses appears to be relatively novel although Gustavsson (76) has 

reviewed some papers. 

Choquette et al. (77) have used extended Kalman filter:ing to 

est:iJDate unknown parameters in a reactor system while Wells and Wismer 

(78) and Thl (79) have reported results from a steelmaking proceSS. 

In Sastry and Vetter'S (80) work, they modelled the wet-end 

dynamics of a paper making procesS and used the Kalman filter to 

estimate parameterS :in the result:ing non-linear model. King (81) 

used the Kalman filter for a similar purpose in his mineral notation 

pilot plant. A discrete-cont:inuous Kalman filter (57) was used to 

est:iJDa te IDlknOwn model parameters, and :in particular K:ing imposed two 

restrictions on the algorithm for practical application. These 

restrictions were: 

i) A lower limit was set on the variance of the state est:iJDate. 

ii) In order to enable effective tracking of the parameters after a 

lengthy period when the parameters were stable, the conditional 

density P<!jYn; t n ) was never allowed to be less 'than 10-3 • 

K:ing gives no guidance of the effect of these restrictions or the 

filter sensitivity to them. 
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Applications of Kalman filtering in the nuclear industry may be 

found in the papers of Godbole (82), Venerus and Bullock (83) and 

Shinohara and Oguma (84). 

3 .6 Kalman filtering in uncertain systems 

3.6.1 The effect of uncertainty on Kalman filtering 

The utilization of Kalman filtering presupposes a known linear 

dynamic system disturbed by white state and measurement noises of 

known covarianceS. However, in actual practice, thiB knowledge is 

seldom completely available. The System parameters and noise co

variances may only be known approximately and although more accurate 

modelling is an obvious solution, it is often impractical and time 

consuming. 

The result of using an incorrect system model or incorrect a 

priori statistics Q(k), R(k) p(ojO) and ~ (0), is to cause large 

estimation errors, biased state estimates or even divergence of the 

filter. 

Probably the first observed evidence of the sensitivity of the 

Kalman filter to uncertainties waS in the application of the Kalman 

filter to orbit determination (61). In this work it was observed that 

modelling errors caused the state estimate to diverge from the true 

system state, leading to eStimation errors much greater than those 

predicted in theory. The application of the Kalman filter to chemical 

engineering problems also highlighted this fundamental deficiency of 

the technique and several suggestions have been presented to overcome 

this problem (69), (70), (71). 

Divergence of the Kalman filter may be explained as follows. For 

systems which contain no plant noise, Le. Q = 0, the Kalman gain and 
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computed error covariance matrix both approach zero as time increases 

(85). This means that after a large number of noise measurements 

of a deterministic process, the estimator has· effectively matched the 

data with the assumed model and therefore computes each new state 

estimate using only the preceding state estimate and the assumed state 

transition matrix, i.e., independent of any new measurements. Since 

the system model may contain inaccurate parameters or correspond to 

the true system only over a limited time period, then divergence of 

the state estimate will occur. 

3.6.2 Analysis of suboptimal filter performance 

The problem of uncertain a priori information in Kalman filtering 

has been highlighted. Before analySing methods of overcoming this 

limitation it is worth considering techniques by which a deSigner may 

determine whether his filter is operating optimally. Such tests may 

be examined before contemplating more complicated estimation schemes, 

which may be time consuming or even degrade estimation performance. 

Berkovec (86), Mehra (87) and Tompretini (88) have proposed tests 

of the complete system mechanisation using actual system data. 

These tests are based upon examining the innovation sequence. 

The innovation sequence was defined in section 3.4 to be: 

V (k) = 1. (k) - H (k)! (k/k-1) (3.6.2.1) 

If the filter useS the correct model and noise statistics, then the 

innovation Sequence is a Gaussian white noise sequence with statistics: 

E (y (k» = 2 (3.6.2.2) 

E ~ (k)l(j» = 0 j l' k (3.6.2.3) 

= H(k) P(k/k-1) HT(k) + R (k) j = k (3.6.2.4) 
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The authors of (86), (87) and (88) process the actual data to determine 

the statistical properties of the actual innovation sequence. Statis

tical tests may be performed on the actual innovations and if the 

results differ significantly from those given in equations (3.6.2.2) 

to (3.6.2.4), the system model is invalid and the Kalman filter is 

operating suboptimally. 

3.7 'Ihe design of Kalman filters for uncertain syStems 

If the tests of the previous section reveal suboptimal (or even 

divergent) Kalman filter performance, then the deSigner may seek 

methods to overcome the problem of uncertain a priori information. 

Mehra (89), Pearson (90) and Weiss (91) have reviewed the litera

ture on Kalman filtering in uncertain systems. Techniques for imprcv

ing filter performance may be broadly classed as bounding techniques 

and adaptive estimation. 

Bounding techniques 

'Ihe bounding techniques of improving filter perfonnance tend to be 

based upon intuition and are usually characterised by a trial and error 

approach involving considerable computer Simulation. 

Schlee et al. (61) have discussed several simple methodS of elimi-

nating filter divergence. The techniques are based upon trying to 

limit the decrease in the Kalman gain in order to avoid the filter 

becoming decoupled from the measurements. 

One approach is to artificially increase the plant noise covariance 

matrix Q. This causes an increase in the error covariancematrices 

P (k/k-l) and P (k/k), and hence causes the gain matrix to increase. 
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However in adopting this procedure the amount of noise to be added has 

to be determined, and this usually becomes a trial and error solution. 

The filter performance is examined for various values of Q until an 

acceptable solution is obtained. This technique has been successfully 

implemented by fitzgerald (62), Seinfeld (68), Wells (70) and Hamilton 

et al. (71). 

Another commonly used technique is to directly increase the gain 

matrix K(k) by adding a fixed quantity to it, which again is determined 

by simulation studies (92). 

Tarn and Zaborsky's (66) method of bounding .the Kalman gain matrix 

is based upon increasing the prediction error covariance matrix 

P(k/k-1) indirectly by exponentially increasing the measurement noise 

covariance matrix of old observations. If k is the current iteration 

and n is the iteration at which the measurement noise occurred, then the 

authors set the noise covariance matrix to be: 

where s (:: 1) is an a priori parameter chosen by the designer. This 

technique has the effect of escalating exponentially with time the co

variance matrix of each past observation, thus making past observations 

have less effect upon current state estimates and the prediction error 

covariance matrix becomes: 

P(lt!k-1) = s A (k,k-1) P(k-1/k-1) AT(k,k_l) + I(k-l) Q(k-1)IT(k_1) 

This filter has become known as the exponential Kalman filter. Although 

this idea is computationally simple and attractive, examples have shown 

that the performance of the modified filter may be quite senSitive to 

the choice of s, and may even be unstable (65). 

using the same philosophy as Tarn and zaborsky, Jazwinski (57) 
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developed limited memory filtering which is based upon the fact that 

if the assumed system model correSponds to the true system only over a 

limited period of time, the processing of observations older than the 

recent past by the Kalman filter will lead to unacceptable state esti

mation errors. Thus limited memory filtering means discarding the 

conditioning of the estimate on the distant past. Jazwinski approached 

the problem from a probabilistic viewpoint and derived a limited memory 

filter which requires two Kalman filters and a predictor for its imple-

mentation. However the resulting estimator is not necessarily stable 

and requireS excessive computer storage, and so Jazwinski proposed that 

the conditioning of the state estimate on old data should be discarded 

in batches of N. The resulting limited memory filter produces esti-

mates with memory varying between Nand 2N. Simula tions (57) have 

shown that this filter is stable and produces less estimation error 

than the extended Kalman filter when the latter diverges. However 

there appears to be no general rule for selecting the memory length N, 

and there is no reported work on the sensitivity of·the limited memory 

filter to the choice of N. 

Crump (93) has also developed a limited memory filter which he 

terms an augmented memory estimator. However, the same problem of memory 

length selection is exhibited. 

Several researchers have attempted to limit Kalman filter divergence 

by analySing the innovation sequence. . In general the basic idea behind 

the developed techniques is to make the innovations generated from the 

actual filter consistent with their theoretical covariances. The 

innovation sequence was defined in section 3.4 and has a theoretical co

variance matrix of: 

E(Y. (k) y'T(k» = S(k) = H(k) P(k/k-1) HT(k) + R(k) 
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Using actual data Coggan and Wilson (73) estimated this matrix On-

line by uSing a first order exponential filter: 

Z(k+1) = aZ(k) + (1 -a) l! (k+1) Y. T(k+1) 

They compared this estimated covariance matrix Z(k+1) with the theore-

tieal matrix S (k41) genera ted from the Kalman filter and replaced s .. 
~~ 

(k+1) by z .. (k+1) if z.fk+1) > s .. (k+1). Having made this substi-
II il II 

tution they modified P(k+1/k) to achieve consistency. This has the 

effect of increasing the Kalman gain K(k+l) and bringing the actual 

covariance of y'(k) closer to the theoretical. Although Coggan and 

Wilson illustrated their technique by a series of simulations there are 

no results regarding the sensitivity of the method to the choice of a 

Quigley (94) suggested that the quality of the Kalman filter may 

be assessed by examining a scalar figure of merit given by: 

J(k) ='l(k) (H(k) P(k/k-1) HT (k»-l y'(k) 

If this performance criterion does not lie within a predetermined inter-

val J min< J < Jmax' the filter is deemed unsatisfactory and the plant 

noise matrix Q is increased by a fixed amount Q*, thereby increasing 

the Kalman gain. To use this technique the designer must specify 

* Jmin , J max and Q, which are determined by simulation studies, 

although Quigley suggested that J min = 1 and Jmax = 5 are adequate. 

Another technique which attempts to prevent filter divergence by 

examining the innovation sequence has been proposed by Sriyananda (95). 

He suggested calculating the scalar quantity y'T(k) ~ (k) and determin

ing if this is less than three times the trace of the matrix 

(H(k) P(k/k-1) HT(k) + R (k». If this test is not satisfied, then 

filter divergence is suspected and the Kalman gain is frozen at its 

/ current value, while the updating of P(k/k-1) is limited to incrementing 
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, it by Q after each new measurement. This procedure causes P{k/k-1} 

to increase and continues until the performance criterion is satisfied. 

At this stage P(k/k-1) is large and so the Kalman gain would increase, 

thus exhibiting some features of limited memory filtering. 

In concluSion, it may be said that these boWlding techniques for 

improving Kalman filter performance rely upon extenSive canputer simu-

lations. Each of the proposed techniques incorporates one or more 

"tuning" parameters which are chosen by the designer, and thus in prac-

tice, the improvement of filter performance becomes a compromise 

between the time available for filter "optimisation" and the acceptable 

accuracy of the state estimate ~(k/k). However, to date, it is these 

bounding techniques which have found application in the chemical 

engineering state estimation problems reviewed (65), (68), (70), (71), 

(81). 

3.7.2 'Adaptive estimation 

Adaptive estimation schemes attempt to improve Kalman filter per-

formance (or prevent divergence) by obtaining recurSive state estimates 

in the preSence of unknown or inexactly known system information in 

real time, thereby eliminating the need for an after the fact assessment 

of filter performance as in the bounding techniques. &lch estimation 

schemes invariably produce a non-linear filter which requireS extensive 

computations, and so in order to implement the schemes in real time 

suboptimal estimators have been developed. 

Magill (96) investigated the optimal estimation problem when 

certain of the system parameters are unknown. He represented the 

unknown parameters as a vector ~ and assumed that possible values of 

a form a finite set of possible stochastic processes fa., i=l. •••• N}, 
- \!!.~ 
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with a known a priori probability of each process occurring p<!.). 

By using a Bayesian approach to condition the probability of a. 
-1 

occurring on the measurements Y(k) , Magill obtained the optimal state 

estimate !(k/k) as the weighted sum of N Kalman filters, one for 

each process a .• 
--:L 

Sims et a1. (97) have presented computational algorithms for 

solving Magill's problem, while Smith (98) has obtained a suboptimal 

estimator for the method. However in practice it seems doubtful that 

this Bayesian approach would be useful, due to the inordinate computa

tional burden as well as the difficulty of specifying a suitable a 

priori probability density function for the vector ~. 

If the probability density functions for the system uncertainties 

are unknown, then adaptive estimation can be accOOlplished using a 

maximum likelihood teChnique, which is based upon the philosophy that 

the most likely valum of the unknown paraJ1!eters are those which make 

the probability of their occurrence the greatest, given the measure-

ments Y(k). 

Abramson (99) obtained an optimal state estimator when the statis-

tics of the measurement and plant noise are diagonal and time invariant. 

When no a priori infonnation is available for the noise covariance 

values, a reaximum likelihood approach was used, but when an a priori 

density function is available a maximum a posteriori teChnique was used. 

the resulting likelihood equations are non-linear and there is no 

general closed form of solution. To overcome this problem. a sub-

optimal estimation procedure was introduced by Abramson. However, 

numericalsimulations have shown that if the a priori values of Q and 

R are Significantly in error, biased state estimates will result. 
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Abramson alBo suggested methods by which hiB work may be extended to 

cover non-diagonal, time varying covariance matrices. 

Shellenbarger (1.00) also used a marimum likelihood approach to 

ottain a suboptimal filter for the case of unknown measurement noiBe 

statiBtics. However, for the case of unknown Q his technique is 

limited by the fact that H(k) iB constrained to have more rows than. 

columns. 

Another approach using the maximum likelihood method has been 

given by Sage and Wakefield (101). They simultaneously estimated the 

system state (including augmented unknown system parameters) and the 

Kalman gain for a system characterised by a scalar measurement y(k) and 

random time varying plant noise covariance matrix Q(k). To overcome 

the problem of specifying a probability density function for the 

unknown parameter vector ~ (k) the authors assumed that !i(k) was 

the vector ~ (k) to be estimated and that !i(k) evolved from a Markov 

process according to: 

!i (K+1) = U(k) !i(k) + ~(k) 

where U(k) is an nxn transition matrix and \l(k) iB a Gau.Ssian white 

noise sequence with a known nxn covariance matrix V . e This formulation 

with the maximum likelihood approach leads to a non-linear two point 

boundary value problem which is solved to yield an algorithm for estima-

ting the Kalman gain and the system state. The resulting adaptive 

estimator requires only one Kalman filter and iB sequential and therefore 

may be used in real time applications. However the method assumes 

that the matrices U(k) and Ve are known or, more likely, are chosen by . 

simulation. The authors do comment that the perfonnance of the method 

iB not critically dependent upon the preciBe values of these matrices 

although no indication of the solution sensitivity is given. 
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The properties of the innovation sequence have been uSed to derive 

ar. adaptive Kalman filter. jazwinski (102) has derived an algorithm 

which may be used for simultan.eous state ar.d plant noise covariance 

matrix estimation of a linear system. His approach is to approximate 

modelling errors by a Gaussian white noise input, whose covariance Q, 

a diagonal matrix, is determined to satisfy a requirement that the 

filter residuals be consistent with their statistics. Short sequences 

of residuals are used in t.lte estimation of Q, thus the estimator never 

learns Q. 

Assuming a scalar measurement system and Q = qI, the predicted 

residual is defined as: 

r(k+l) = y(k+l) - E (y(k+l)/Y(k» 

Using the constraint: 

r 2(k+l) = E (r2(k+l» 

1> 0 

1=1,2 ••. n 

which makes the residual value most probable, jazwinski derived the 

single reSidual, i.e. 1 = 1, or innovation estimate of Q(k). 

To overcome the problem of the estimate of Q(k) having little 

statistical significance, jazwinski proposed replacing the one pre-

dicted residual by N predicted residuals 

N 1 

M = -NI L r(k+l)/R2(k+l) 
r 1=1 

The estimate of Q(k) becomes: 

" M2 _ E(M2 /Q(k) = 0) 
QN(k) = r r 

S 
if positive 

= 0 ; otherwise 

where S is a nonnalising parameter derived in the algorithm. 

To improve the convergence of QN(k) jazwinski used a smoothed 

estimate of the form: 
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k 

L ; if positive ! 
j i=k-j+1 

= 0 ; otherwise 

The more general problem when Q is a q x q diagonal matrix has 

also been examined by Jazwi.nski while Tompretini (88) extended the method 

to include the situation when the System is characterised by a vector 

of observations. In his paper Jazwi.nski presented several simulations 

to illustrate his technique however the procedure for selecting the 

averaging interval N and the smoothing interval j has not been developed 

for the general case. 

Another approach to adaptive est:iJDation which relies upon an analy-

sis of the innovation sequence has been formulated by Mehra (87). This 

author considered a completely controllable and observable system 

described by linear time invariant models to which steady state Kalman 

filtering was applied. The time domain properties of a white noise 

sequence are used to generate a test of opt:iJDality of the filter, and 

this test also serves as a baSis for obtaining a solution to the adap-

tive filtering problem. Although the primary objective of Mehra's 

work was to identify Q and R, he Showed that it was possible to achieve 

filter adaptation without formally evaluating these matrices by directly 

est:iJDating the optimal steady state Kalman gain. 

Mehra's technique was based upon the correlation properties of the 

innovation sequence and his method is discussed in detail in Appendix lll. 

Since Mehra published his work on the innovation correlation tech-

nique of filter adaptation several authors have extended his ideas. 

Car ew and Belanger (103) and Neethling and Young (104) used Mehra' s 
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basic technique but have proposed alternative algorithms for the direct 

estimation of the op:timal Kalman gain. 

Belanger (105) has also presented an innovation correlation method 

which extends Mehra's work to the general t:ime varying stochastic 

process. 

Godbole (106), (107) addressed the problem where the noise sequences 

are correlated and have unknown non-zero mean, i.e. 

E~(k» = t!w 

E~(k» = I:!:.v 

E<.!!(k) !.T (j» = S 5 (k,j) 

Godbole showed that Mehra's method can be used to handle this situation 

if the innovation sequence is defined as: 

~(k) 

and h!: 
-V 

= V(k) - I,! 
- --V 
1 N 

= N [ y... (i) 
i=1 

This idea was demonstrated by Godbole (82) with the appllcation of the 

Kalman filter for estimating the non-measurable variables of a nuclear 

pool-type reactor uSing noisy measurements of a few variables. He 

aSSumed that the noise sequences had zero mean but were correlated. 

using Mehra' s modified technique Godbole estimated Q, R, and Sand 

found that these were conSistent for different initial a priori guesses. 

The innovation sequence white noise test of optimality corresponding to 

"A I'. 
Q, Rand;) revealed 28% violations of the 9S% confidence limits indica-

ting the resulting filter was not optimal. Godbole suggested that 

this non-optimality may be due to process model errors or to w(k) and 

v(k) being non-stationary or non-white as assumed. - . 
However, other 

sources of error may be due to the fact that Godbole does not refine 

his estimates of Q, ft and S by further data processing as originally 

recommended by Mehra and also the sample interval for the example is 
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0.2 second, which is rather large compared to the process time constants 

of 0.354 and 0.686 second. 

3.8 An overview of Kalman filtering in uncertain systems 

A nwnber of methods have been presented leading to adaptive correc

tion of Kalman filters, which because of inexact knowledge <if the system 

characteristics, are not ope·ra ting in an optimal manner. 

The bOWlding techniques of filter adaptation provide intuitively 

appealing methods of improving filter perfonnance. In general these 

techniques are easy to Wlderstand, are applicable to both linear and non-

linear problems, are simple to implement and do not involve the designer 

in extensive computer programming. 

Balanced against these features are the facts that in general each 

bOWlding technique incorporates a "tWling" parameter which adapts the 

filter and which must be selected by the deSigner. This parameter is 

usually chosen by a trial and error search procedure which terminates 

when acceptable Kalman filter perfonnance is achieved. Nonnally this 

search technique will involve the deSigner in extensive time conSuming 

computer simula tions • 

Despite these apparent disadvantageS of the bOWlding techniques, 

to date, es~ecially in chemical engineering applications of Kalman , 
filtering, the methods have been USed with considerable success in many 

cases to achieve improved filter performance. However the reported 

applications of the techniques give no indication of the time taken to 

determine the "optimal" tWling parameters or the criterion USed to 

aSSeSS the quality of the Kalman filter. Most probably slich decisions 

tend to be subjective. 
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--- -------------------------------------------------------------------------

To overcome the disadvantages of the bounding techniques the con

cept of adaptive estimation was introduced. The objectives of the 

adaptive estimators are to estimate the system state _in real time, 

rather than rely on an after the fact analysis of filter performance. 

In general the adaptive estimators are characterised by non-linear 

filtering solutions which require extensive computer storage and compu

ta tion time. 

Both the Bayes:ian and maximwn likelihood adaptive estimators 

suffer because of the inordinate effort needed to implement them on a 

computer, and it is doubtful whether they are practical propositions for 

solving the uncertainty problem. 

Two adaptive estimators have been reviewed which rely upon infonna

tion contained in the sequence of residuals. In each method the resi

duals are first tested to detennine if the Kalman filter operation is 

satisfactory. If it is found that the filter performance is inadequate, 

the filter is adapted uSing estimates of the statistics of the residuals. 

In Jazwfnski's approach, N-step predicted residuals (N> 1) -are used 

whereas one step predicted residuals (i.e. the innovation sequence) are 

used in Mehra's method. 

The modelling asswned in each method dictates the problem class for 

which each method is applicable. Mehra's technique is restricted to 

problems where the system is completely controllable and observable and 

is described by linear time-invar:ian t models. In addition, -the testing 

scheme and subsequent parameter identification are intended for steady 

state Kalman filtering. This may limit the application of the method 

to a great many on-line control problems where a time varying filter is 

required. The formulation considered by Jazwinski allows for time vary-

ing dynamics and measurementS. The differences in the two methodS are 
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reflected in the residual testing schemes. Only Jazwinski's tech-

nique can be used for testing based on one residual. The more resi

duals that are tested, the longer the time delay in the filter and to 

a certain extent the application will dictate the number of residuals 

tested. In Mehra' s method, a large sample size is required to 

estimate the statistics of the residuals. The large sample size is 

necessitated by the confidence limit nature of the test criterion. 

In conclUSion, the literature to date provides numerous techniques 

for handling the Kalman filtering with uncertainty problem. However, 

at this point there is little reported work of practical application 

of these techniques and the relative advantages and disadvantages of 

the various methods are not well known. It would appear that the time 

is right for a comparative study to be perfonned so that some light may 

be shed on this matter. 

3.9 The detection of malfunction using a Kalman filter 

Mehra and Peschon (108) have presented a general approach to mal-

function detection. They represent the system by linear time invariant 

models with zero mean GaUSsian white noise plant and measurement 

sequences, as given in section 3.4. The matrices A, B, r, H, Q and R 

are assumed to be known or are identified (87) and a Kalman filter is 

used to process the system measurements to yield the innovation sequence 

~ (k). Now as discussed in section 3.6.2, a Kallllan filter which uses 

the correct system model and noise statistics generates a zero mean 

Gaussian white noise innovation sequence with a covariance matrix given 

by equation (3.6.2.4). Mehra and Peschon suggest that different mal-

functions in the system cause the innovation sequence to depart from 

its zero mean, known theoretical covariance and whiteness properties, 
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and so the problem of malftmction detection is fonnulated as a problem 

in hypothesis testing. The normal operation of the system (Le. the 

"optjmal" innovation sequence) is regarded as the null hypothesis and 

the actual innovation generated bY, the Kalman filter is tested against 

this hypothesis (Le. zero mean, known theoretical covariAnce, white-

. ness) at a certain level of significance. 

If a particular hypothesis is rejected, then malftmction is sus

pected. However, there appears to be no systematic method of diagnos

ing the fault although Mehra and Peschon suggest that special system 

characteristics can often be used to aid diagnostic procedures. 

A technique which has been widely USed to estimate unknown or 

uncertain parameters may be adapted as a malfunction detection method 

(57). 

A system containing uncertain parameters may be modelled as: 

2!:(k+1) = A(k+1,k) 2!:(k) + '\ (k+1,k) .!:! + B (k) ~(k) + r<k) .!!(k) 

(3.9.1) 

;r(k) = H(k) 2!: (k) + ~(k) £ + v(k) 

The statistics of the noise sequences {.!!(k)} and {y(k)} are assumed 

to be known and have been defined in section 3.4, while the a priori 

statistics of the unknown parameters b and £ are specified as: 

E <.!:!) = 2 E (£) = 2 

E (.!:! ~ T) = L E <£ £ T) = M 

It is assumed that .!:!, £ 2!:(O), {.!!(k)} and {y (k)} are uncorrelated. 

Now by regarding the constant parameters as the outputs of the 

dynamic systems: 

.!:!(k+1) = .!:!(k) 

£(k+1) = £(k) 
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then an augmented state variAble model may be defined as: 

and 

;r(k) = [ H(k) o 

l
~ (k)] 
~ (k) 

.£ (k) 

+ v(k) 

!!.(k) 

The linear Kalman filter of section· 3.4 may be applied directly to 

this "new" system and generates state estimates: 

1 (k/k) = [~(k/k)] 
. ~ (k/k) 

e (kjk) 

Although straightforward in theory this method has several dis-

advantages. . Primarily if the system model of equations (3.9.1) and 

(3.9.2) is assumed t:ime invariant and ccmpletely controllable and 

observable then the Kalman filter is guaranteed to be stable and con

vergent (46). However, by inspection, the augmented system (t:ime 

invariant) of equations (3.9.3) and (3.9.4) is no longer controllable 

and observable, thereby invalidating these filter convergence properties, 

although the controllability constraint may be satisfied by assuming: 

~(kH) = ~(k) + ~b(k) 

.£(k+1) = .£(k) + .!!c (k) 

The vectors ~b(k) and .!!c(k) are assumed to be uncorrelAted zero mean 

Gaussian noise sequences as usual with statistics: 
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E (~b(k) ~bT (j» = Qb(k) 5 (k,j) 

E ~ (k» = Q 

E (w (k) w T (k» = Q (k) 5 (k,j) 
'.::.c -c c 

A paramount drawback of this method arises in the increase in a priori 

information necessary from the designer. In addition to the usual 

information the user has to additionally specify: 

£ (0) 

£(0) 

Pb(ojo) 

Pc(OjO) 

Qb(O) 

Qc(O) 

In view of the camnents made in the previous sections concerning Kalman 

filtering in Wlcertain systems it would seem likely that this method of 

parameter estimation would involve extensive computer s:imulation. 

Another disadvantage of this state augmentation technique" is that 

the addition of unknown parameters to the state vector increases the 

computational load and this is not always desirable. 

To overcome this latter problem Friedland (109)" has furnished a 

ccmputationally attractive algorithm. This technique involved parti-

tioning the computational effort into two essentially diSjoint tasks, 

one part is the standard Kalman filter which oalculates the state 

estimate ~(k/k) while the other part is an algorithm to generate the 

estimate of the unknown parameter vector <!(k/k) '£(k/k»T. This idea 

is presented in scme detail in Appendix IV. 

However, in spite of these apparent difficulties, Goldmann and" 

Sargent (65) successfully used the state augmentation technique to 

detect bias and drift in particular process instruments by considering 
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a steady state mass and heat balance around a binary distillation 

column. 

Their formulation asswned that the plant matrix A(k+l,k) was the 

identity matrix and there were no process disturbances, Le. Q = O. 

using a simulation study they demonstrated that the filter perfonnance 

was relatively insensitive to the a priori information p(ojO) and R. 

However, the results presented to illustrate the detectiOn of instrwnent 

errors are based upon the "optimum" values of P(ojO) and R, i.e. those 

values chosen to give the best filter perfonnance. 

More recently lBvis (112) considered the problem of state estima

tion in the presence of a fault which occurs randomly. The result of 

the fault is to cause a plant parameter to change from ao to al' By 

applying non-linear filtering he derives a filter which optima11y 

estimates the state and the time of fault occurrence, however the 

resulting equations have no closed fonn. This problem is overcome by 

basing a suboptimal estimation scheme on the Kalman filter. 

3.10 Statement of malfunction detection technique and objectives 

'!he review of Kalman filtering has revealed that the problem of 

uncertain a priori system models and/or statistical infonnation is of 

paramount importance and several studies were examined which attempted 

to solve this problem in a variety of ways. 

The question of malfunction detection has been solved in two ways. 

The first technique of inn ova tion hypothesis testing is limited by the 

fact that little or no diagnostic infonnation is obtained, while the 

state augmentation technique only seems to compound the uncertainty 

problem due to the additional a priori infonnation needed for its 

implementation. 
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--- - ------------------------------------------------------------

However, under the assumption of a linear, time invariant, can-

pletely controllable and observable system, many of these problems may 

be eliminated by combining Mehra I S and Friedland' s algorithms. 

Recall that Friedland decomposed the state augmentation method of 

malfunction detection into two tasks. The first was the solution of 

the basic Kalman filter algoritbm - the innovations from which were 

used in a "bias" estimator to detennine the sys~ unknown parameters 

or malfunction. ThiS secondary or ''bias'' filter needs ,the folloWing 

a priori information: 

R 

Now an examination of Mehra IS algoritbm, which may be used to 

handle the uncertainty in implementing the primary Kalman filter, 

Il AT 
reveals that estimates of I{ and PH are calcuJa ted as a natural 

feature of the technique. 

Thus the only uncertainty remaining in implementing Friedlandls 

algoritbm, is Pb(o/O) which has to be chosen by the designer. 

The canbina tion of algoritbms is shown schema tically in Figure 3.3 

which outlines the malfunction detection algoritbm proposed in this 

study. 

In stage 1 an arbitrary a priori data set is chosen for x(O), 

P(O/O), Q and R and the usual Kalman filter, defined in equations 

(3.4.3) to (3.4.7), is used to analyse the process measurements Z(k). 

When the Kalman gain reaches its steady state value K/B' as guaranteed 

by the constraints that the system model is linear and controllable and 

observable, then a large sample of innovations is stored. 
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~(o), p(%), Q, R 

Stage 1 

Stage 2 

;r(k) 

1\ 
Kopt Kalman filter 

Kalman filter 

Y (k) 

Mehra's innovation 

correlation algorithm 

V (k) -

A 

R 

~T Friedland's bias 

Pb(o/ ) estimator 

g(k/k) ~(k/k) 

State adjustment 

K(k/k) 

Stage 3 .. 

FIGURE 3.3 Implementation of malfunction detection algorithm. 
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Stage 2 of the algorithm uses the stored innovation sequence and 

Kss in Mehrals adaptive estimator. Mehra Is method tests the innova-

tion sequence for whiteness. If this criterion is not met, the 

algorithm iterates on Kss 

gain Kopt' as well as ft 

to yield an estimate of the opt1ma1 Kalman 
AT 

and PH (p = P(k/k-l)ss)' At the end of 

stage 2 the Kalman filter has been adapted to· cope with the initial 

uncertainty and thus can be used to generate "opt1maI" state estimates 

i(k/k). 

The adapted Kalman filter is combined with Friedlandls bias esti-

mator in stage 3. The Kalman filter produces state estimates as usual, 

and the innovation sequence is used as an input to FriedJandls filter 

which estimates the bias caused by malfunction or chaD.ging system model 

parameters. Finally, the Kalman state est:imate S;(k/k) and the bias 

estimate. ~(k/k) may be combined to yield a true optimal state est:imate 

~'(k/k). 

This Figure underlines the robustness of the proposed malfunction 

detection algorithm to the selection of a priori infonnation.· 

Section 3.3 discussed how control loop security may be monitored 

by e:xamining the relationShip between the measured process variable and 

the control valve demand signal at a particular setpoint a.nd load, while 

the above development has shown how biaseS in a mathemat~l ·model may 

be est:imated in real time. It only remains therefore to translate the 

suggestions in section 3.3 into an appropriate mathematical formulation 

for use in ,the algorithm developed above. 

llie first stage is to represent the control loop by a. linear time 

invariant state space mOdel, which may be derived using standard tech-

niques to be of the form: . 

x (kl-1) = A x (k) + r.!! (k) 

l (k) = H x (k) + Y (k) 
. (3.10.1) 
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3.10.1 Malfunction detection model formulation for a conventional 

analogue setpoint control loop 

To implement the ideas discussed in section 3.3 it is assumed that 

the proceSs measurement vector Z(k) is canposed of the control loop 

measured variable B = Yl and the valve stem position measurement Y2• 

Thus 

[
Yl (k)] = 

Y2 (k) 

H x (k) + :! (k) 

Now as mentioned in section 3.3 there are two types of error to 

consider, pure measurement errors and "internal" loop faults. 

The pure measurement errors may be represented by bias teImS b
1 

(k) 

and b2(k), since each observation is subject to such errors, and so the 

observa tion model becomes 

[Y, (k)] " [H 1 :] .: (k) + v (k) (3.10.1.1) 
-------

Y2 (k) 0 b
1

(k) 

b2(k) 

The second type of error is the loop error which caused a dev:iation, 

denoted by b
3

(k), fran the noodnal valve stan position measurement Y2(k) 

for the same apparent process measurement Y1 (k) and this may be repre

sented as: 

[ 
Yl (k)] = [ H 

Y2 (k) 

+ :! (k) . (3.10.1.2) 

Since the b:iJlses b2(k) and b
3

(k) are indistinguishable, the 

equationS (3.10.1.1) and (3.10.1.2) may be combined to yield; 

1 Z (k) = r o 

x 

b1(k) 

b2(k) 

+ :! (k) 

where b1 (k) represents the dev:ia tion of Y1 (k) from its nominal value 
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due to a p/I transmitter error and b2(k) represents a pure valve stem 

position measurement error as well as loop errors. 

Now ~(k) is considered to be constant and is treated as an 

additional state vector to be estimated. The original state space 

mOdel of equation (3.10.1) is therefore allgJllented by ~(k) to give: 

[t~:~;] -[:---i-~--H~;{~j + f-~r (k) 

(3.10.1.3) b2(~1) 0 I I b2(k) 

;r(k) = 
[H 

1 :] x (k) v (k) 
+ 

0 b1 (k) 

b2(k) 

This equation (3.10.1.3) is now in the required fonn for use in the 

proposed malfunction detection algorithm. The vector ~(k), in the 

context of malfunction detection, is termed a loop security vector can

prising two loop security parameters (1.s.p l s.). 

3.10.2 Malfunction detection model formulation for a 

direct digital control loop 

In this control loop there are no pure measurement errors and all 

of the system malfunctions cause a deviation in the valve demand signal 

from the expected value at the given setpoint and load. 

To implement the malfunction check suggested in section 3'.3, the 

process computer requires measurements of the process variable and the 

valve demand signal, but these measurements are basic to the d.d.c. 

algorithm and so nO additional process instrumentation is necessary. 

The deviation in control valve demand signal is represented by 

b(k), which is termed a loop security parameter (l.s.p.). using a 

176 



similar approach to that adopted above, the state variable representa-

tion of the augmented system is: 

w (k) 
(3.10.2.1) 

;r(k) 0] ~~~~D 
1 tb(k~ 

+ .!(k) 

The proposed malfunction detection algorithm may now be applied directly 

" to this set of equations to estimate b(k) fran the process measurement 

vector ;r(k). 

The ideas developed up to this point have not mentioned any parti

cular dynamic system or control loop other than the constraint that the 

system be linear, time invariant and completely COritrollable and obser--

vable. To demonstrate that the ideas suggested above may be used to 

detect malfunction in a control loop during normal proceSS operation, • 

laboratory level control rig was built as a vehicle for experimentation. 

The objectives of the experimental work described below were: 

i) TO investigate Kalman filtering on a practical apparatus when the 

a priori information is subject to uncertainty; 

ii) Tb investigate the feasibility and robustness of Mehra's innovation 

correlation method of filter adaptation; 

iii) . To investigate the feasibility of detecting and diagnosing mal-

function in analogue and direct digital control loops using the 

algorithm presented above. 
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3.11 Experimental apparatus 

The laboratory level control rig is shown schematically in 

Figure 3.4. The circulatfug fluid was water and the ma:in components 

are sUJllJllarised below. 

i) Pipework. 

'Dle pipework was fabricated from 1.905 cm (~ inch) I.D. rigid 

P.v.c. 

ii) Control Valves. 

Both control valves were manufactured by the Taylor Instruments 

Company. The valves were direct acting needle types with 0.635 cm 

(i inch) trimS in 1.27 cm (! inch) bodies and had a valve stem 

travel of 1.905 cm (~ inch). 

iii) Level Measurement. 

'Dle primary measurement of level in the hold-up tank was made using 

a pressure difference/pressure transmitter by measuring the differ

ence in pressure between atmospheric and the tank height plus 

atmospheric. 

iv) Instrumentation. 

The locations of the measurement instruments ·are shown in Figure 

3.4, and Table 3.1 details. their functionS. 

The rig operated by water flOwing frcm the mains supply via an 

orifice plate, control valve and rotameter into a hold-up tank.· The 

outlet flow from this tank split into two streams: one flow passed 

through a fixed restriction to a drain, while the second flow passed 

through a control valve to drain. Although two control loops are 

shown in Figure 3.4, the primary task of the experimental rig was level 

control. The object of this control system was to maintain a constant 

flow through the fixed restriction to drain despite inlet water flowrate 
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Process 
canputer -,--------------- ----

Setpoint: 
L 

-------~-------- -,-

• • • 

~10) : · . 
~-- C2 -. 

:2 , 

FIGURE 3.4 Exper:imental level control rig. 
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---------------------------------------------------------------------------------

Instrument Instnunent Maker 
; 

Input Output 

fl PI fl pip transmitter Taylor 2 
Zo7-103.4 kN/m

2 0-7.47 kN/m 
Instruments (0-30 in. W.G.) (3-15 p.s .i.g.) 

fl P2 fl pip transmitter 0-4.98 kN/m2 ~O. 7-103.4 kN/m
2 

(0-20 in.W.G.) (3-15 p.s.i.g.) 

Cl p/l transmitter ZO.7-103.4 kN/m 
(3-15 p.s.i.g.) 

~ 
5 - 10 V 

C2 lip transmitter o - 10 V ~0.7-103.4 kN/m
2 

(3- 15 p.s.i.g. 

C3 lip transmitter 0-10 V 2 . 20.7-103.4 kN/m 
(3-15 p.s.i.g.) 

~} proportional + 2f.z( 2 20.7-103.4 kN/m 0.7-103.4 kN/m 
integral control- (3 - 15 p.s.i.g.) (3-15 p.s.i.g. 

ler 

Xl Linear Penny and 0- 1.905 cm 4-7V 
potentianeter Giles 

TABLE 3.1 Instrumentation of laboratory level control rig. 

disturbances. This was achieved by adjusting the second flowra te through. 

the control valve so that a conStant height was kept in the tank, thereby 

ensuring a constant flow through the fixed restriction. 

The experimental rig was designed to employ two modes of control. 

With isolation valve 1 open and 2 closed, conventional analogue control 

, using pneumatic hardware was used to control the rig. However~ with 

isolation valve 1 cloSed and 2 open, a PDP 11-20 proces~ canputer could 

be used to control the system. 

In all the experiments perfonned disturbances were introduced into 

the inlet water flowrate by using the process canputer to alter the set-

point of the secondary flow control loop. 
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3 .11.1 Ma thema tical model of experimental level control rig 

The first step inKalman filtering is the determination of a state 

variable system model. Initially a dynamic model representing the 

level control loop will· be derived (56). The nomenclature describing 

the process flowrates is shown in Figure 3.4. An IDlsteady material 

balance for the tank yields. 

A: = <l:i - 'lol- 'lo2 (3.11.1.1 ) 

where h = the he~t of fluid in the tank •. 

A = cross-sectional area of the tank. 

Deviation variables are introduced into the analysis at this point so 

that a linear transfer function may be derived. Initially, the process 

is operating at steady state, and so : = 0, thus equation (3.11.1.1) 

may be written as: 
dhss . 

A-=O=q a a dt. :iBs - -ol,ss - -o2,ss (3.11.1.2) 

~ere the subscript ss has been used to indicate the steady state 

value of the variable. 

Subtracting equation (3.11.1.2) from (3.11.1.1) gives 

A d(h-hss ) = (<l:i - <l:i ss) - ('lol - 'lol ss) ~ (q02·- q02,SS) (3.11.1.3) 
·dt ' , 

The deviation variables are defined as: 

.. H = h":' hss 

~ = ~ - ~,ss 

~l = 'lol - 'lol,ss . 

Then equation (3.11.1.3) becomes: 
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Now the outlet flow variables 'lo1 and 'lo2 may be expressed in tems 

of the tank height as follows. 

Assume the system is at steady state and the tank height is hss ; 

if there is now a change in level, 'lo1 may be expressed by a Taylor 

series.as 

'lo1= 0 1 + ( d 'lol.SS) (h - hs ) + ••. 
~ ,ss d h . 

ss 

In tems of the deviation variables defined above this becomes: 

Q = ( d 'lol.SS) H = K H 
01 d hss · 01 (3.11.1.5) 

The flowrate 'lo2 is a f\mction of both the tank height h and control 

valve stem position x, and so by similar reasoning a Taylor series may 

be written for 'lo2 as: 

a = a +( ~'lo2.SS) . -02 -o2,ss . h x 
ss ss 

or 
Q . = ( i1 'lo2.SS) H +( i1'lo2.SS\ X 

02 a hss x a xss . /h 
. ss ss 

= (3.11.1.6) 

Equations (3.11.1.5) and (3.11.1.6) may be substituted into (3.11.1.4) . 

to yield: 

Now by taking Laplace transfoms and noting H(O) = 0 . equation (3.11.1.7) 

becomes 

A - \(s) 
(K + K s + 1) H(s) = ~-----

01 02,h (Ka1 + K02,h) 

The following replacements are made: 

A 
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--- -------------------------------------------------------------------------

KL = 1 (3.11.1.9) 
(K01 + K~2,h) 

K 

Kv = o2 zx (3.11.1.10) 
(Ko1 + K02,h) 

This results :in a process transfer function of the fonn: 

ii(s) = _=-1 __ 

(1 +1p s) 

3.11.2 Process control block diagram and experimental parameter 

determination for level control loop 

A block diagram for the negative feedback level control loop is 

shown :in Figure 3.5. In fonnulating this diagram the control valve 

and measurement transmitter dynamics have been ignored 

\(s) KL 

E(S) lI(s) -(S' 
+ 1 

I~ ~ Controller K2 "-- -K 1 +1 s v p 

ii (s) 
m 

Measurement 
transmitter 

Kl 

FIGURE 3.5. Block diagram for level control loop. 
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All of the experiments and system calibrations were perfonned with 

the proceSs operating at the steady state process conditions given in 

Table 3.2 

. Variable Steady state value 

.~ 4.95 l/min 

qo1 1.83 l/min 

~2 3.12 l/min 

h 23.25 an 

TABLE 3.2 Steady state proceSS variables for laboratory level 

control rig. 

i) Controller algorithm and constant detennination 

A proportional plus integral controller was chosen to perform the 

control task. The continuous t:ime relati9nship between the controller 

output and the error input is given by the JAplace transform (56): 

p(s) = K (1 + _1_ ) 
~(s) c lIS 

p(s) = JAplace tranSform of the controller output signal. 

E(S) = JAplace tranSform of the controller input signal 

KC = controller gain 

't I = integral t:ime 

(3.11.2.1) 

At the steady state process conditions given in Table 3.2 the 

controller constants were chosen using the method detailed in the 

Taylor !nstruments i ' pneumatic controller operation manual (113). 
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ii) Ko1 ; K02 •h 

The tank hei&ht was controlled automatjcally at the given steady 

state and it was noted that the controller output s~l was 51 kN/m2 

(7.4 p.s.i.g.). The controller was switched to manual control but 

the same output signal was maintained, thereby ensuring the control 

valve position Was \Dlllltered. Now by altering the tank inlet flowrate 

~ , the steady state tank hei&ht hss varied and the corresponding 

steady state flowrates <101 and <102 were measured. 

Graphs of <101 and <102 versus the tank hei&ht are shown in 

Figures 3.6 and 3.7. The constants Ko1 and K02,h are detennined by 

measuring the slopes of these graphs respectively • 

... ) K 
l.J.1 02.x 

"nle flow <101 was set to zero by closing the manual hand valve in 

the outlet pipe. The level was then controlled at the steady state 

hei&ht given in Table 3.2. The inlet flowrate q. was adjusted, and 
, 1 

the process allowed to achieve steady state so that ~ = <102. Now 

by recording the control valve stem position a calibration of <102 

versus stem position was achieved at the specified steady state. 

This control valve characteristic is shown in Figure 3.8 and K 2 
, 0 ,x 

is detennined from the slope when <102 = 3.12 l/min corresponding to 

the selected steady state process conditions. 

iv) ! . 

The hold-up 'tank cross-sectional area was measured directly. 

185 



'lo1 
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l/udn 

1.9 

• 

1.85 

• 

1.8 • 

15 20 

FIGURE 3.6 Exper:iJnental deteI'llli.n&tion of Ko1 

3.4 
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FIGURE 3.7 
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Experimental determination of K 
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'lo2 
l/min 

5.0 

3.0 

2.0 

1.0 

.0 

, 

• 

5.0 6.0 
valve stem position 

x,V 
FIGURE 3.8 Level control valve characteristic. 
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lhe constants derived above may be substituted into equations 

(3.11.1.8) - (3.11.1.10) to yield the process transfer coefficients. 

The constant ~ describes the gain of the tank height measur&

ment transmitter Il Pl in Figure 3.4, and is detennined by direct 

calibration on the process. 

To ensure consistency of the process variables aroWld the loop in 

Figure 3.5, a gain tenn, KZ' relating the controller output in kN/mZ 

(p. s.i.g.) to the control valve stem positiOn in volts is required. 

This characteristic is shown in Figure 3.9. 

The coefficient K
J 

describes the gain of pll transmitter, Cl, in 

Figure. 3 .4. Actually in the experimental rig an amplifier was used to 

magnify the pll transmitter output signal and so K3 is composed of 

two terms K31 and K3Z (K3 = K31 x K3Z)' which were found by direct 

calibration on the experimental rig .. 

K4 characterises the gain of the lip transmitter. Cz in Figure 

3.4, which was determined by direct calibration. 

The numerical values of these parameters are summarised in Table 

3.3. 
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Valve 

stem 

position 

x 

V 

7 

6 

5 

4 

ZO.7 
3 

controller output 

FIGURE 3.9 Experimental determination of KZ' 
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Variable 

K o2,x 

A 

Kv 

KL 

Lp 

K1 

K2 

K31 

K32 

K3 

K4 

TABLE 3.3. 

Numerical value 

2 p.s.i.g./p.s.i.g. analogue setpoint control 

1 V/V 

0.2917 min 

7.2 cm3/min.cm. 

34.78 cm3/min.cm. 

1lS6.0 cm3/min. V 

280 cm2 

27.46 cm/V 

0.024 min.cm/cm3 

6.65 min. 

0.1730 p.s.i.gJcm. 

- 0.3 V/p.s .i.g. 

0.388 V/p.s.i.g. 

9.4 V/V 

3.65 V/P.s.i.g. 

1.36 p.s.i.g./V 

n " " 
d.d.c. 

" 

Numerical values of parameters in level control loop. 
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3.12 State variable model formulation 

The fundamental block diagram of the level control system was 

. given in Figure 3.5. The diagram may be redrawn into a more amenable 

form from which a state variable model may be written directly. 

3.12;1 Analogue setpoint control 

The pnewnatic level controller uSed in these experiments was of a 

proportional plus integral type. The transfer function of such a 

controller, when there is no deviation in loop SlltpOint is (56): 

~ = _ K (1 + _1_ ) 
iI (s) c "[IS 

m 

where P(s) is the lJlplace transform of the· controller output. 

This transfer function may be combined with Figure 3.5 to give 

Figure 3.1Oa which represents the loop in the time domain. Figure 

3.10b is a rearrangement of Figure 3 • lOa . 

Now the state variables are defined as the output of the integra-

tors and so by inspection the state variable continuous time dynamic 

model is: 

with x1(t) = f H{t) 

x
2
(t) = H (t) 

The process measurements are: 

Yl = tank height (V) 

Y2 = control valve stem position (V) 

191 

~(t) 



-K v. 

-K v 

Y2 .••••••.• -. 

a. 

b. 

H{t) . 

>--r--X....:l;---J.= x ---1 J 

-K c 

FIGURE 3.10 State space representation of level analogue setIioint 

control loop. 
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and the observation model is 

By substituting the experimental parameters from Table 3.3, the state 

model becomes: 

! (t) = 

z(t) = [ 0 

0:26 

-o.~J 
0.631296J 

0.103806 

!.(t) ~(t) 

(3.12.1.1 ) 

(3.12.1.2) 

The above continuous time equations may be .written in the general 

fonn 

!(t) = F ~(t) + B u (t) (3.12.1.3 ) 

z(t) = ex (t) 

Now since this work is concerned with a digital computer sampling 

process measurements at diScrete intervals of time /:, t, the correSpond-

ing discrete time dynamic model is needed. It is well known that the 

discrete forms of equations (3.12.1.3) and (3.12.1.4) are given by (114) 

~ (k+1) = A~(k) + r.!! (k) (3.12.1.5) 

Z (k) = H !. (k) (3.12.1.6) 

where A = 
F /:, t 

(3.12.1. 7) e 

/:,t 
eFt B dt = [ (3.12.1.8) 

Equations (3.12.1.1) and (3.12.1.2) were discretised with /:'t '" 1 sec 
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according to equations (3.12.1.5) to (3.12.1.8) to yield 

[

Xl (k+1)] =[ 0.999852 

x2 (K+l) - 0.0177715 

0.0165858 ] [~(k)] 
0.990265 x 2(k) 

+r 0 ] Q. (k) 

LO.59228 X IO~4 1 

=TO 
LO.26 

3.12.2 Direct digital control 

0.631295 

0.103806 

(3.12.1.9 ) 

(3.12.1.10) 

If a process control computer is substituted for the analogue con-

troller in the block diagram shown in Figure 3.5, then since the computer 

only executes control at discrete time intervals, the closed loop system 

may be considered to be composed of discrete and continuous time elements. 

Such a closed loop system is illustrated in .Figure 3.11 

E(k 
computer 

~(t) 

Zero Order 

Hold 

Measurement 

Load 

FIGURE 3.11. Block diagram for computer control system. 

Process 

'!he sampler or ar.alogue-to-digital converter transfo:nns a continu-

ous time signal E(t) into a sampled signal E(k}, and the zero order 

hold or digital-to-analogue converter is required to maintain control 

over the system during intervals between data transfers. 
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---- ---- - -------------------

Discrete t:ime systems may be analysed using z transfonns (114) or 

by considering the t:ime domain solutions. '!he latter approach is 

adopted in this study. 

The t:ime ~omajn block diagram for'the computer control loop is 

shown in Figure 3.12. 

Zero Order 

Hold 
Computer 

f 
x,.= H(t) 

FIGURE 3.12 State Space representation of level direct digital 

control loop. 

Now defining xl as the output of the integrator, a state model for: 

the open loop process may be written as: 

. () -1 ~ t = -
, 1p 

~(t) + 

1; ] 
[ 

M(t) 1 
, ~(t~ 

(3.12.2.1) 

'Equation (3.12.2.1) is of the same fom as equation (3.12.1.3) 

and so discretising according to equations (3.12.1.7) and (3.12.1.8) with 

195 



------ -- - -- ~ -------------------

a discrete san'ple time of b. t gives: 

(3.12.2.2) 

The computer control algorithm was choser. to be the discrete equiva-

ler.t of the- propc·rtional~plus-integral ar.al.ogue controller. This may 

be wr'itten as (43): 

(3.12.2.3) 

Now this is a standard recursion fonnula of the general fonn: 

Cadzow and Martens (114) have derived a Jordon canonical state space 

representation of this equation which is: 

x(k+l) = - a l x(k) + El (k) 

E2(k) = b
3 

x(k) + bo El (k) 

Substituting from equation (3.12.2.3) and, defining x = X z yields: 

x 2(k+l) = xz(k) + El (k) (3·.12.2.4) 

E2(k) = tc~: ) x2(k) + Kc( 1 + ~ :) El (k) (3.12.2.S) 

The state space flow diagram illustrating the diScrete time controller 

algorithm is shown in Figure 3.13. 
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+ 

b.t -

Uni 
f-___ ~de1ay 

+ 

FIGURE 3.13. State space representation of diScrete t:ime proportional 

plus integral controller. 

Now remembering 

El (k) = - K1K3 Xl (k) 

M(k) = - KZK4Kv EZ(k) 

equations (3.12.2.2) to (3.12.2.5) may be combined to give Figure 3.14 

- K m 

The process observations are 

Y 1 = tank height (V) 

'Y2 = valve demand signal (V) 
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x2(k) 
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FIGURE 3.14 State space representation of level direct digital control loop. 
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Notice that the observation Y2 is not a true procesS measurElllent, but 

is in fact the control action detennined by the control a~oritbm. The 

"pseudo" measurement was chosen because it is calculated in the computer 

and so avoids the need for a control valve stem position measurement 

instrument. The observation model is: 

Using the process parameters of Table 3.3 and a diScrete time 

sampling interval of 2 seconds the state model becomes: 

.:!:(k+1) = [0.955594 

- 0.631295 

Z (k) = [ 0.631295 

-0.703443 

0.006402] 

1. 

.:!:(k) + 

x (k) 

[ O.O~18"] 

(3.12.2.6) 

(3.12.2.7) 

~ (k) 

The models given by equations (3.12.1.9), (3.12.1.10) and (3.12.2.6), 

(3.12.2.7) which describe the analogue setpoint and d.d.c. loops respec

tively are now in the standard fonn to implement the linear time invari-

ant Kalman filter, and are swmnarised in Table 3.4. 

The process disturbance ~ (k) is an unmeasured variable and is 

modelled as a zero mean white noise sequence {! (k)} 

For linear time invariant models, tests for controllable and observ-

able systems are. given by Wiberg (115). 

A system is said to be controllable if the following test is true: 

rank [r, Ar, A2r, An
-
1r ] = n 

The corresponding test of observability is 
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! 

Control Sample t:ime , 

A r H !H 
; 

loop (sec) : 

, 

Analogue [ 0.999852 0.0165858] 

[0.592:8 x 10-4] [0~26 0,631295] i 
1. 

, 
setpoint ! 

-0.0177715 0.990265 0.103806 , , , 
i 
, 

Direct [0.955594 0.0~402 ] [0.118:6 x 10-
3

] [ 0.631295 

0.1:4288] . digital 2. 
-0.631295 -0.703443 

setpoint 

TABLE 3.4 State variable modelB for analogue setpoint and direct digital control loops. 



rank H = n 

HA 
HA2 

• • 
HAn- 1 

Now applying these tests to the models of Table 3.4 reveals that both 

the analogue setpoint and d.d.c. loops are complete:q controllable and 

observable. 

3.13 §YStem dynamic characteristics 

The open loop dynamic response of the level control system was 

detennined by setting the system at the steady state specified in Table 

3.2, and then imposing a step change of 140 cm3/min on the tank input 

flowrate IlJ. by using the computer to alter the setpoint of the Secon

dary flow control loop. 

The eXperimentally measured tank hef&b,t response is shown as curve 

1 in Figure 3.15 where it is compared with the theoretical response 

detennined from the first order transfer function of equation (3.11.1.11) 

using the parameters given in Table 3.3. 

The first order system .time constant is determined when the experi

mental response is 63.2% complete (56) and is calculated as 7.07 min 

which compares favourably with the value given in Table 3.3 •. ' 

The closed loop responses for both the analogue setpoint and d.d.c. 

loops were experimentally obtained in a similar manner by initially 

controlling the hef&b,t at the desired setpoint and then :Introducing a 

step load disturbance of 750 cm3/min. 

Figures 3.16a and b show the experimental and theoretical hef&b,t 

responses for the analogue and d.d.c. loops respectively. 'Ibe theore

ticalresponses were calculated from closed loop models defined in Table 3.4. 
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The state space model for the analogue setpoint control loop 

provides a reasonable representation for the experimental response as 

shown in Figure 3.l.6a. The discrepancies between the responses may be 

accounted for in the inaccuracy of actually detennining the controller 

settings from the dials on the pneumatic instrument. 

HOWever, Figure 3.16b shows that the d.d.c. model of the control 

loop is a poor representation of the exper:imental response. The 

reason for these differing responses was eventually traced to be in the 

process canputer digital/analogue converter. It was found that the 

least six bits of the digital/analogue converter were permanently dis

connected. This means that the 0-10 V clDPllter output signal was dia

cretised into 16 steps instead of the usual 1024 increments, thereby 

giv:ing a discontinuous control signal characterised by steps of approxi

mately 0.6 V. The effect of this computer output signal is to produce 

rather "slack" control. 

Unfortunately this process ccuputer fault was not discovered until 

after the malfunction detection experimental programme was completed. 

However, as far as the implementation of the Kalman filter is concerned, 

the effect of this fault is to produce a diacrepancy between the system 

model and the experiJllental response thereby canpounding the uncertainty 

problem. 

When the malfunction detection experimental programme was complete 

the computer digital/analogue converter was repa:ired and an. exper:imental 

step response for the d.d.c. loop was detennined as above (using the 

same controller constants). This experimental response together with 

the theoretical response derived from the d.d.c. state variable model 

is shown in Figure 3.16c. As expected, these responses show better 

agreement than those shown in Figure 3.16b. 
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3.14 Experimental procedure 

3.14.1 Analogue setpoint control 

All of the experiments were performed with the procesS operating 

at the steady state characteristics detailed in Table 3.2. The tank 

height was controlled at the desired value using the pneumatic con-

troller by opening the isolation valve 1 and closing 2 as shown in 

Figure 3.4. The PDP 11-20 process computer introduced an unmeasured 

disturbance into the flowrate %. by :imposing a pseudo-random binary 

sequence (PRBS) on to the flow controller setpoint. The PRBS had an 

amplitude of 1 l/min and a basic switching time of 15 secondS, as well 

as a programmed facility to start the sequence at randomly selected 

points in the chain. In addition to creating this disturbance, the 

computer logged 1000 process measurements of tank height and control 

valve stem pOSition at 1 second intervals. 'IhiB logged data was sub-

sequently analysed off-line on an ICL 1904 A computer using the Kalman 

filter and malfunction detection method discussed earlier. 

sane typical time histories of the process var:iAbles are shown in 

Fi&ures 3.17 a-c. 

3.14.2 nirect digital control 

These exper:iments followed the same fo:noat as those above except 

that computer control was achieved using a PDP 11-20 computer by closing . . 

isolation valve 1 and opening 2, as shown in Figure 3.4. The unmeasured 

PRBS flow control setpoint disturbance had an amplitude of 0.6 l/min 

with a switching time of 5 secondS. At 2 second t:ime intervals the 

process computer perfomed the control task and logged measureinents of 

tank height and the control valve demand s~ls. 

Typical t:ime histories of the process var:iables are shown in F~S 

3-18 a-c. 
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3.15 Kalman filter design using Mehra's adaptive estimator 

Sections 3.11 to 3.12 have been concerned nth the creation of a 

mathemati~l model to represent the level control system. !he function 

of the Kalman filter is now to relate the process measunments via the 

mathematical model to yield a data base from which loop security may be 

assessed. 

However section 3.5 has detailed that the mechanisation of the 

Kalman filter is no trivial matter because of the \Dlcertainty of the 

mathematical model and difficulty of choosing suitable a priori statis-

tical parameterS. To overcome these problems Mehra' s adaptive estima-

tor (87), as described in Appendix Ill, was used in this work. 

The level control system was assumed to be operating in a malfuno-

tion free condition and a batch of 1000 process measurements was 

recorded. 

Mehra's technique was implemented on an I.C.L. 1904A computer and 

his direct method of· estima ting the optimal Kalman gain by measurement 

refiltering was used. A maximum of 8 iterations was used on the data 

\Dlless the gain converged according to the criterion: 

tr (b. K b. KT) < 0.0001 

" ",' @T Successive estimates of Kopt' R, were not obtained by analys-

ing further batches of measurement data as suggested by Mehra. 

3.15.1 Analogue setpoint control 

The state variable model for this control loop was given in Table 

3.4. The Kalman filter was used to process the measunments and two 

arbitrary data sets of a priori infonnation were chosen to effect this. 
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The a priori data sets are given in Table 3.5 and are denoted AM! 

and AM2. Table 3.5 alBo shows the steady state Kalman gain and error 

prediction covariance matrices resulting from the usual Kalman filter 

algorithm. 

Although the Kss and P{k/k)ss matrices in Table 3.5 do not explic

itly describe how well the Kalman filter is working, the fact that they 

are numerically small does indicate that perllaps filter measurement 

decoupling has occurred. 

In each run, for the sample of 1000 points the resultant innovation 

sequence ~ (k) was generated and the estimates of the autocorrehtion 

A ~ A ) matriceS CO' U1 •••. Ck {k = 60 were· calculated from equation (A.IIl. 

7. ). The white noise test revealed that the innovation sequence was non

white and so Mehra fS algorithm was used to esdmate the optimal Kalman 

gain by iterating on the measurements. The iteration sequence is shown 

in Table 3.6 from which it can be seen that the algorithm doeB not 

converge. This non<onvergence results, at the final iteration, in a 

large in'cremental Kalman gain correction term, IJ. K, and an esdmated R 

matrix with a negative diagonal element. 

Now one possible source of error in the results presented above 

lies in the assumptions concerning the noise sequences ,I Qi (k) I and 

1 i{k) I· Mehra fS method assumes that these sequences are uncorrelated 

with zero mean. The validity of the zero mean assumption in the experi-

ments performed was not necessarily true. However a method due to 

Godbole (106), (107) generalised Mehra I s technique to handle the non-

zero mean correlated noise case and was reviewed in section 3.7.2. 

Godbole1s modification was included in the analysiS, although it was 

still assumed that the sequences 1 ~ (k) I and h:{k) I were uncorrelated. 
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Run Q R :(o) P{%) KSS P{k/k)SS 

AM! 1000 
[0;' 

0:'] [:] [0;0' 0.:,] 
[0.3 • ",-5 0.42 x ",-3] ~.16 x ",-3 0.5 x '0'" 

-2 -3 0.5 x 10-0 .0.17 x to-· 0.1 x 10 0.18 x 10 . 

AM2 10000 [o~o, o~o, ] [: ] [0.0' 0] [°. 31 
x '°-2 

0.13 X lO-'J [0." x '0-' 0.5 x '0-4 
o 0.01 0.43 x 10-1 0.84 x 10-2 0.5 x 10-4 0.69 x to-: 

TABlE 3.5 .. A priori information for Kalman filter design in analogue setpoint control loop. 



Run AMl / M , Run AM2 / M 

Iteration Percentage of points lying Percentage of points lying 
number outside the 95% outside the 95% 

confidence limits. confidence limits. 

First Second First Second 
measurement measurement measurement measurement 

0 100 100 100 100 
1 100 30 100 .. 30 
2 63.33 25. 66.67 31.67 
3 100. 53 .33 100. 51.67 
4 93.33 63.33 93.33 63.33 
5 100. 58.33 100. 58.33 
6 96.67 80. 96.67 83.33 
7 100. 63.33 100. 63.33 
8 96.67 53.33 96.67 86.67 

A 

2.18915 J [-1.09825 Kopt [-1.10219 2.17994 J 
1.93259 1.15811 1.92808 1.16669 

l:l K [ 0.355117 -o.0383561J [ 0.365263 -o.0262073J 
-0.306376 0.204687 -0.311216 0.204639 

1\ 

[-0.346 x 10-3 -0.508 x 10-:] [-0.340 x 10-3 . -0.513 x 10-: R 

0.142 x 10-3 0.183 x 10-3 0.137 x 10-3 0.182 x 10-3 

TABLE 3.6 Kalman gain estimation using Mehra IS direct method on 

analogue setpoint control measUrements -

runs AMl/M; AM2/M. 
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The a priori statistics corresp<:nding to nm AMl al1.d the process 

measurements were reanalysed mdng Mehra's modified algorithm and the 

resultant iteration sequence, denoted as nm AMl/G is shown in Table 3.7. 

-
Run AMl/G 

Itera- Innovation sequence mean Percentage of points lying out-
side the -95% ccnfidence limits 

tior. First Second First Secor.d 
number measurement measurement . measurement measurement 

0. -0.0.0.38870.2 0..541456 10.0.. 100. 

1 0..0.236335 0..0.042750.9 SQ. 23.33 
2 0. .0.145027 0.0.0.1.06255 33.33 :11.67 

3 0.0.198971 0..0.0.564762 38.33 28.33 

4 0..0.151437 0..00.588248 2.5. 28.33 

5 0..0.1790.15 0..0.0663521 33.33 31.67 
6 0. .0.151878 0..0.0.7284 25. 31.67 

7 0. .0.165251 0..0.0.750.063 31.67 25. 
8 0..0149736 0..0.0.80.9775 20. 25. 

" [- 1.117068 2.3327 l K opt 1.9410.8 0..921385 

b.K [ 0..0.990.945 - 0..10.1863 ] 
- 0..1220.53 0.0.70.9527 

~ [- 0..343 x 10.-3 
- 0..337 x 1O-

3J 
0..189 x 10.-3 0..175 x 10.-3 

TABLE 3.7 Kalman gain estimation usillg Mehra's modified method on 

analogue setpoint control measurements ~ run AMl/G. 

These results show that convergence was still not achieved after 

8 iterations and the estimated matrices were similar to those obtained 

without Godbole's modification in nm AMl/K. 

Now visual inspection of the process measurement time histories 
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shown in I"igure 3 .17 reveals that the process measurement noise is 

small and possibly unrepresentative of a true control loop. Jazwinski 

(57) has commented on dynamic systems with perfect measurements (Le. 

R = 0) and points out that although the Kalman filter is valid, the 

matrix P(k/k-1) can become ill-conditioned leading to difficulties in 

the computation of P(k/k). Although this phenomenon is not directly 

related to Mehra's algorithm it was sunnised that a similar effect was 

being exhibited. 

To investigate this idea the process measurements were artifici-

ally made more "noisy" by adding a computer generated zero mean 

Gaussian random variable to each measurement. The covariance matrix 

of the computer based measurement noise was : 

[

0.0064 

0. 

0. ] 

0.0004 

(3.15.1.1) 

The "noisy" measurements corresponding to Figures 3.17 band care 

shown in Figures 3.19 a and b. 

Using the initial conditions corresponding to AMl, Mehra's direct 

method was used to estimate the optimal gain by analySing the "noisy" 

measurements, and the resulting iteration sequence is given in Table 

3.8. 

The results of optimising the Kalman gain using these "nOiSy" 

measurements in Mehra's algorithm modified by Godbole to account for 

non-zero noise means are given in Tahle 3.9 for the a priori informa-

tion sets corresponding to runs AMl and AM2. 

Tables 3.8 and 3.9 illustrate that Mehra's direct adaptive 

estimator and the modified method of Godbole Show convergence to an 

" optimal Kalman gain Kopt ' which is numerically quite similar. The 
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RUN AM1/~N 

Iteration Percentage of points lying oUtside the 9sJ, 
confidence limits 

number First measurement Second measurement 

0 100. 100 •. 
1 36.67 15. 
2 76.67 21.67 
3 41.67 51.67 
4 43.33 58.33 
5 51.67 56.67 
6 SO. 56.67 
7 51.67 56.67 
8 Convergence 

~oPt [-0.427082 . 1.17257] 
0.803763 1.94171 

~K [ 0.619 x 10-3 0.265 x 10-3] 
-0.459 x 10-3 0.706 x 10-3 

• ,.. 
[ 0.490 x 10-2 . -0.103 x 10-2] R 

0.637 x 10-3 0.~2 x 10-3 

P1iT [-0.4164 x 10-
2 

0.1018 x 10-2] 
0.1052 x 10-1 0.2662.x 10-2 

TABLE 3 .8 'Kalman gain estimation using Mehra' s direct method on 

analogue setpoint control ''noisy'' measurements -

run AMl/MIN. 
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N 

S. 

Run AMl/G/N Run AM2/G/N 

Iteration Innovation sequence Percentage of po:ints lying Innovation sequence Percentage of points lying 

number mean outside the 95% confidence mean outside the 95% confidence 
limits limits 

First Second First Second First Second First Second 
measurement measurement measurement measurement measurement measurement measurement measurement 

0 ...{).0045 0.5418 100. lOO. 0.20641 0.367272 100. 100. 
1 0.024 0.00426 15. 15. 0.02381 0.004286 18.33 15. 
2 0.0350 0.00654 16.67 8.33 0.03487 0.007554 16.67 8.33 
3 0.02773 0.0089 13.33 20. 0.02723 0.008927 1l.67 20. 
4 0.0281 0.01 13.33 20. 0.0284 0.0101 13.33 20. 
5 0.0285 0.00972 13.33 20. 0.0285 0.00968 13.33 20. 
6 0.0287 0.00878 13.33 20 0.0287 0.00979 13.33 20. 
7 0.0286 0.00976 13.33 20 0.0286 0.00975 13.33 20. 
8 Conver.e:ence 0.0286 0.00977 13.33 20. 

" K opt [...{) • 413443 1.3154 ] [ ...{) .41343 5 1.31525 ] 
0.75243 1.64501 0.752738 1.64706 

6K [ -3 ...{).208 x 10-3 ] [-0.102 x 10-4 -0.174 x 10-~] 0.272 x 10_
3 ,..() • 700 x 10 ...{).287 x 10-2 0.465_ x 10-3 0.304 x lO-

A 

[ -2 ...{).788 x 10:3] [ -2 -S:~~i ~ ±8:~] R 0.522 x 10_
3 

0.521 x 10_
3 0.570 x 10 0.510 x 10. 0.570 x 10 

~ [...{).385 x 1O:~ 0.113 x 10:~] [-0.386 x 10:~ -2] 0.113 x 122 
0.910 x 10 0.205 x 10 . 0.910 x 10 0.207 x 10 

- - - - - - - - - - - - - - - --- -- --

TABLE 3.9 Kalman gain estimation us:ing Mehrats modified method on analogue setpoint control. "noisy" measurements

runs AMl/G/Nj AM2/G/N 
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estimated matrices " A AT T Rand P (k/k-1) (found by solving PH = P(k/k-l)H ) 

are consistent and in particular R ill a good estimate of the Cl.lllll'uter 

generated llleallUrement noise covariance matrix given in equation (3.15.1.1). 

The results of Table 3.9 show the robustness and consistency of the 

general innovation correlation adaptive estimator since the algorithm 

" converges to the same Kopt for different a priori statistics. 

However, even though the gain optimiBation algorithms converge, 

inspection of Tables 3.8 and 3.9 reveals that the resulting "optimal" 

innovation sequence fails the white noise test, although the method 

which includes Godbole's modifications shows less violations of the 95% 

confidence limits than Mehra's direct method. This means tha t the 

resulting Kalman filter is not optimal. There are several reaSons 

which may account for this feature. 

Primarily Mehra's innovation.correlation adaptive estimator does 

not explicitly cope with the problem of uncertainty in the system 

dynamic and measurement models A, r and H. The method actually 

assumes that these models are correct'and equal to the true system model. 

In this work the A, rand H matrices used as. the' process model were 

certainly subject to parameter uncertainties, and therefore it is 

reasonable to expect Mehra's adaptive estimator performance to be 

degraded, as exemplified by the non-whiteness of the resultant innova-

tion sequence. 

A second feature is that Mehra's problem formulation is for a 

linear time invariant dynamic system. However,the level control loop 

model was in fact non-linear and although a linearised model about.a 

particular steady state was derived, the validity of such a model may 

have been violated due to the relatively large process disturbances. 

Another source of non-linearity lies in the control loop pneumatic 
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hardware. For example, the pneumatic controller was represented by 

an ideal proportional plus integral transfer function given in equation 

(3.11.2.1), while in practice such a realisation would. ~ unlikely. 

Again it is suggested that the consequence of these non-linearities is 

to cause a degradation in the perfonnance of the adaptive estimator. 

A further assumption of Mehra's estimator is that the record 

length of process observations is long enough to justify the approxi

mation that the estimated innovation correlation matrices Ok are 

equal to the true correlation functions. This is only valid if there 

are an infinite number of .process observations, and lIO in practice there 
A· 

is an estimation error associated with the calculation of Ok' Again 

this error may degrade the. innovation correlation algorithm. In this 

work a sample of 1000 process observations ·was used to calculate Ck' 

However, in spite of these apparent sources of error,Mehra's 

unmodified and modified innovation correlation estimator does still 

converge to an estimate " . of· the optimal Kalman gain Kopt ' as illustrated 
A 

in Tables 3.8 and 3.9. The resultant Kopt when used in the Kalman 

filter generates state estimates &(k/k) which are more accurate· than 

those obtained from ordinary Kalman filtering with the a priori 

statistics given earlier. 

and b for run AMl/G/N. 

This feature is shoWn in Figures 3.20 a 

The "noisy" measurements . .r(k) are shown 

as well as the estimates i(k) = H g(k/k) resultiIig from the usual 

Kalman filter, with the a priori formation AMl, and the opt:i.m&l 

filter gain from run AMl/G/N. These Figures illustrate that the 

estimates resulting from ordinary Kalman filtering using the a priori 

information AMl are extremely poor. The adaptive estimator is able 

to detect this inadequate filter performance, and in spite of all the 

limitations discussed above manageS to estimate a Kalman gain which 

results in greatly improved estimates i(k). 
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3.15.2 Direct digital control 

The experience of estimating the optimalKalman gain in the 

analogue setpoint control loop revealed that Mehra1s algorithm was 

unsatisfactory when the process measurement noise was small. In these 

experiments the tank height process measurement was made "noiSier" by 

physically altering the damping adjustment on the height measurement 

/j, P / P transmitter. The second "pseudo measurement" in the d.d.c. 

loop was the calculated valve demand signal, which of courSe was 

deterministic and hence uncontaminated with random measurement noise. 

The state variable model describing the d.d.c. loop was given in 

Table 3.4. 

Now 1000 process measurements, sampled at 2 second intervals, 

were analysed by the ordinary Kalman filter to estimate the system 

state using the following set of a priori information. 

Q = 1000 

R = ° .] 
0.1 

!(O) = 0 

P(O/O) = [~ ~] 

Ordinary Kalman filtering resulted in the steady state matrices: 

= [0.108 x 10-
2 

- 0.117 x 1O-
2

J 
~s 3 1 0.177 x 10- 0.181 x 10-

P(k/k) =°.171 x 10 
[ 

-3 

ss 0.280 x 10-4 
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The 1000 process measurementS were analysed using Mehra' s direct 

gain estimator as before and the resulting iteration sequence is shown 

in Table 3.10. 

Run OO/M 

Iteration Percentage of points lying outside the 9% 
number confidenc'e limits 

First measurement Second measurement 

° 91.67 91.67 
1 10. 23.33 
2 8.33 10. 
3 8.33 16.67 
4 5. 16.67 
5 5. 13.33 
6 5. 16.67 
7 5. 13.33 
8 5. 16.67 
9 5. 13.33 

-" [°.980574 x 10-
1 

- L86566 ] Kopt 
0.904654 - 0.503898 

~K [ -2 0.785 x 10-2 ] 0.105 x 10 

0.106 x 10-1 0.519 x 10-1 

A 

[0.480 x 10-4 0.702 x 10-3 ] R 

0.480 x 10-4 - 0.367 x 10-3 

TABLE 3.10 Kalman gain estimation uSing Mehra's direct method on 

direct digital control measurements - run OO/M 

These results do not show convergence to an optimal gain, although 

the incremental change ~ K at the last iteration is small compa·;~~ to 

Ropt ' The resulting innovation sequence of the second measurement 

fails the white noise test indicating the subopt:imality of the"opti

mised" filter. However, the-most disturbing feature of the algorithm 
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is that ~22 is negative. 

This problem was encoWltered in the previous work on the analogue 

setpoint control loop where it was suggested that the algorithm failed 

because of the low process measurement noise. In this d.d.c. loop 

it is known that the pseudo measurement Y2(k) is noise-free and again 

it is suggested that this feature cauSes algorithm breakdown. 

To overcome this problem the valve demand signal pselldo-measure-' 

ment was contaminated with noise generated by the process computer. 

However, in this experiment,rather than generating a zero mean Gaussian 

random variable, a pseudo random binary sequence was formed. This 

PRBS represents an approximation to a zero mean white noise sequence, 

and waS chosen because the computer generation of such sequences is 

trivial. The PRBS had a baSic period of'1023 and an amplitude of 

0.15. At each time interval the measurements were sampled and the 

computer generated PRBS was added to y 2 (k) to yield a, "noisy" signal. 

Now using the "noisy" measurement vector and the model with the 

a priori statistics given earlier, both Mehra's direct method and the 

algorithm which includes Godbole's modification'Were used to adapt the 

Kalman filter to accoWlt for Wlcertainty. These runs are denoted 

1lMl/M/N . and OO/G/N respectively, and the resulting algorithm itera-

tion Sequences are given in Table 3.11. 

The results show that both algorithms fail to converge to an 

optimal Kalman according to the criterion given earlier . After 8 

'iterations the resultant 
.-
Kopt yields an innovation sequence which 

fails the white noise test in each case, although Godbole's modifica

tion reSults in fewer violations of the 95% confidence limit. Some 

reaSons for the failure of the white noise test were discussed in the 

previous 'section. A further ,contribution to the performance 
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Itera- Run OO/-'.fLN Run OO/G/N 
tion Percentage of points lying outside Innovation sequence mean Percentage ot" points -J ~~, outs1de 

the 95% confidence limits. the 95% confidence limits .number 1st measurement 2nd measurement 1st measurement 2nd measurement 1st measurement 2nd measurement 

0 91.67 91.67 0.003313 0.18076 91.67 93.33 
1 .. 10. 18.33 -0.006757 0.007093 8.33 18.33 
2 10. 36. -0.01044 0.013617 6.67 30. 
3 6.67 28.33 -0.009773 0.0135706 6.67 31.67 
4 15. 28.33 -0.01018 0.0136ll 10. 31.67 
5 20. 20. -0.01013 0.01365 10. 31.67 
6 20. 20. -0.009684 0.01482 10. 28.33 
7 20. 20. -0.009576 O.OlSll 10. 31.67 
8 20. 20 . -0.00983 0.01449 10. 28.33 

N 

~ 

.-
[ 0.68647 [ 0.703524 -0.206078 J Kopt -0.225944 J 
-O.1l488 0.417491 -0.391664 x 10-1 0.338993 

. , 
L1K ~0.228 x 10-

2 -2

J 
56 -2 0.375 x 10-~ 0.100 x 10 [0. 7 xl0 

0.223 x 10-1 0.560 x 10-2 -1 0.298 x 10-1 0.850 x 10 I 

i 

[0.523 x 10-
2 

0.154 x 10-
2J [ -2 0.153 x 10-~ I 

" 0.531 x 10 , 

R 
0.984 x 10-3, 0.229 x 10-1 . -2 0.227 x 10-1 i 

0.178 x 10 

"T [0.851 x 10-
2 

-O.llO x 10-1] b 0.842 x 10-
2 

-0.918 x 10-~ PH 
-0.326 x 10-2 0.141 x 10-1 -0.109 x 10-2 0.110 x 10-1 

TABLE 3.11. Kalman gain estimation on direct digital control "noisy" measurementS •. 

Runs OO/WNj OO/G/N. 



---------------------------~- ---------

degradation of the adaptive estimator in this work arises because of 

the measurement noise on the observation Y2(k). Recall that 

Mehra's problem formulation defines the measurement noise to be a zero 

mean Gaussian random variable. In this work the contaminating noise 

added to the measurement Y2(k) was an approximation to white noise 

in the form of a PRBS. Since this is not a true zero mean 

Gaussian random variable, then adaptive estimator performance may be 

expected to be degraded. 

To illustrate this point a Simulation, denoted !M2/G/N was per

formed corresponding to rim IMl/G/N by contaminating the measurement 

Y2(k) with a computer generated zero mean, Gaussian random variable 

of variance equal to the PRBS. The results of using Mehra's algorithm 

with Godbole's modification are shown in Table 3.12. 

Comparing runs IMl/G/N and IlM2/G/N in Tables 3.11 and 3.12 does 

in fact confirm the above postulation concerning the degradation of 

filter performance due to the PRBS measurement noise.' Table 3.12 

for rim IlM2/G/N reveals that the Kalman gain does converge to an 

optimal value and the resulting innovation sequence white noise test 

has fewer violations of the 95% confidence limit than run IMl/G/N. 

Despite the suboptimality of rim IlM1/G/N the resultant estimated 

, A " 
matrices Rand P (k/k-1) are consistent and the Kalman filter using 

Kopt provides improved state estimates g(k/k) over those obtained 

from ordinary filtering uSing the assumed a priori information. This 

is illustrated in Figure 3.21 a-b, which compareS the "noisy" measure

ment vector I(k) with the estimated measurements i(k) resulting 

from ordinary and "optimal" Kalman filtering. 

The results presented in section 3.15.1 and 3.15.2 have high-

lighted several features of Mehra' s innovation correlation adaptive 

estimator. 
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Run IH2/G/N 

Iteration Innovation sequence Percentage of points lying outSide 

number mean the 9~' confidence limit. 
First Second First Second 

measurement measurement measurement measurement 

0 0.0039763 0.17037 91.67 93.33 
1 -0.006359 0.006803 10. 8.33 
2 -0.010546 0.010409 8.33 6.67 
3 -0.009686 0.012148 8.33 5. 
4 -0.009819 0.011894 6.67 5. 
5 -0.009928 0.011622 10. 3.33 
6 -0.009951 0.001lS68 10. 3.33 
7 -0.0099565 0.001l55 10. 3.33 
8 Convergence 

K opt [0. 737577 -0.178306 ] 
0.544531 1.08129 

I::,K [-0.129 x 10-3 -0.961 x 10-4] . 
0.362 x 10-2 0.278 x 10-2 

A LO•523 x 10-
2 

x 10-3] R 0.592 
-2 0.185 x 10-1 0.1401 x 10 

"'T 
[0.878 

1 -2 -0.836 x 10-
2

] PH x 0 

0.773 x 10-3 0 .. 277 x 10-1 

TABLE 3.12 Kalman gain estimation on direct digital setpoint control 

"noisy" measurements -·nm IM2/G/N. 
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Fundamentally it has been found that for systems in which the 

measurement noise is small (Le. the covariance matrix R is small), 

the' adaptive estimator fails to converge and the resultant parameter 

estimates are not consistent. In this study this problem was 

solved by artificially increasing the measurement noise. using a 

computer based random variable generator. 

In all of the experiments performed the resultant innovation 

sequence did not satisfy the white noise test of Kalman filter 

optimality, although in each case Godbole1s modification to Mehra1s 

basic method yielded fewer violations of the 95% confidence limit. 

Some reasonS for this unsatisfactory feature were discussed. However, 

in spite of the uncertainty in .the system models, the inherent non

linearity of the process, and the non-whiteness of a·measurement noise 

sequence, the resultant estimated matrices 
... 

consistent and in particular, R was close 

" Kopt ' 

to the 

it and ~T were 

true value R. 

The innovation correlation algorithms were shown to be robust and 

consistent and converged to the same estimated matrices for different 

a priori information. 

In spite of the approximations used in implementing the adaptive 

estimator, the resultant "optimised" Kalman filter yielded accurate 

state estimates ~(k/k) as illustrated by canparing ;r(k) and 

" ;r(k) 

227 



3.16 Malfunction detection experiments and determination 

of>the loop malfunction gain p 

Experiments were performed on both the analogue setpoint and 

direct digital control loops, and are denoted AS and IS reSpec

tively. 

The experimental procedure was detailed in section 3.14 and the 

estimator of Figure 3.3 was> used to calculate the loop secur~ty para

meters ~(k) from the process measurementS. The numerical values of 

the parameters used in the bias estimator were derived from the Kalman 

filter optimisation procedure of the previous section (runs AMI/G/N and 

IlM1/G/N) and are summarised in Table 3.13. 

The malfunctions introduced into the system were similar to those 

investigated in the flow control loop experiments, and are given in 

Ta ble 3.14, while the complete experimental programme is summarised in 

Table 3.15. 

Table 3.15 also includes the values of the control loop malfunction 

gain III which was defined in section 3.2. 

To illustrate the derivation of this function an example for the 

analogue setpoint control loop is considered. 

The control loop block diagram of Figure 3.5 is redrawn as Figure 

3.22 for convenience. 
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r A " i%'r Pb(O/O) Loop A H KOpt R 

AS [O._~ 0."'_] ~ o. [0. 0 .• 31>95] fO·4J3443 1.J1~ ] 0.522xJ.O-2 
o. ~ r·"5rlO-' o.=o-'ro. o. 

0.59228xlO-4 0.26 0.103806 0.75243 1.64501 o. 0.Slxl-O-3 -2 -2 10, 
0.990265 

0.910xl0 o.20SxlO o. 
~.Ol7771 ; 

L L ! , 

~o.m ... 0._] ro· llB76xl.O-3 
~ •• 3U95. 0.· [,.7035'4 -o.""78~ -, ~ [0 ;""""'-, -0. 9l1lili>-~ i IS 

0.53lxlO o. 

-0.631295 1. o. .703443 o.ll428 ~.0391664 0.33899 -1 -0.""""'-' 0.llihlO-1 JI [10.] O. O. 22z.x1.O 
L.. L 

TABLE 3.13. Numerical values of parameters :in loop security parameter estimator. 



Loop malfunction Source 

Level measurement Level differential pressure 

zero error transducer 

Level measurement Level pressure / current 

zero error converter 

Control valve Current / pressure converter 

zero error 

Control valve Valve stem linear 

zero error potentiometer 

TABlE 3.14. Malfunctions introduced into laboratory level 

control rig. 

* denotes computer simulated error. 
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Loop Valve stem Run Malfunction p 
position number 
measured 

AS Yes AS/I - -
11 AS/2 - -
11 AS/A a A + 10% 0.2105 V/p.s.i.g. 
11 AS/A b A+IO% 0.2105 V/p.s.i.g. 
11 AS/A c A -10% 0.2105 V/p.s.i.g. 
11 AS/B B - 10% 1.0 V/V 
11 AS/n* D + 10% 1.0 V/V 

ffi No 00/1 - -
11 ffi/2 - -
11 ffi/3 - -
11 ffi/4 - -
11 ffi/A a A + 10% ..Q.516 V/p.s.i.g. 
11 OO/A b A + 10% 11 

11 ffi/ A c A + 10% 11 

11 ffi/ A d A + 10% 11 

11 ffi/ A e A - 10% 11 

11 ffi/ A f A - 10% 11 

11 ffi/ A g A - 10% 11 

11 ffi/B a B + 12.5% -1.32 V/V 
11 ffi/B b B + 12 • .)% 11 

11 ffi/C a C + 10% ..Q.7353 V/p.s.i.g. 
11 ffi/C b C + 10% 11 

11 ffi/C c C + 10% 11 

11 ffi/C d C - 10% 11 

11 ffi/C e C - 10% 11 

11 ffi/C f C - 10% 11 

. 

TABlE 3.15. Ex:periments perfonned on laboratory level control rig. 

*.denotes computer simulated error. 
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FIGURE 3.22 Block diagram for analogue setpoint control loop. 

1 

A malfunction in the ~ pip transmitter is rep~esented by a load 

disturbance I (s). Now the transfer function for the response of the 

control valve stem position to L (s) is: 

i(s) 
-= 
I (8) 

Defining Kc(-Kv ) KIK2 = KF and rearranging gives: 

i(8) = - (K2Kc1: I 1: p ;. + s(K2Kc L p + K2Kc 1: I) + KZKc ) 

[(B) 

For a step change of magnitude L in I(s) then: 

i(s) = 

2 
- L (K2KcL I1: P s + S(K2Kc1: p + K2Kc1: I) + K2Kc) 

s( 1:1 Lp s2 + s( 1:1 +1: I ~) +~) 
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Now the final value theorem states (56): 

limit x( t) = limit s x(s) 
t _00 

So x (00) 

Substituting the parameters of Table 3.3 yields: 

x (00) = - 0.2105 L 

hence p = 0.2105 V/p.s.i.g. 

The gain, p, for a pure measurement error in the valve stem 

position or the pi! transmitter is simply 1.0 v/v. 

The d.d.c. loop may be analysed in a similar manner to determine 

p and the resulting values are summarised in Table 3.15. 

3.17 Malfunction detection experimental results .. 

Based upon the information generated by the state and loop security 

parameter (l.s.p.) estimators there are two types of check which indicate 

loop malfunction. 

The first method is based upon the information generated by the 

Kalman filter. The filter innovation process waS defined.in equation 

(3.6.2.1). At a particular setpoint and load the process measurements 

were sampled and analysed by the Kalman filter, so that an innovation 

time series could be generated. This sequence may then be compared to 

an original malfunction free innovation sequence, corresponding to the 

same loop setpoint and load, and the changes examined. In fact, this 

type of check was adopted in the flow-control loop experiments where a 

reSidual process was monitored for indications of malfunction. 
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The methods of residual analysis discussed in section 2.6.2 and 

2.6.3 may be applied to the filter innovation sequence, while some 

statistical tests of the time series were given by Hehra and Peschon 

(108 ). In these experiments inferences of loop security were derived 

by monitoring the innovation mean using a student's 't' test. As was 

pointed out in section 2.9, it was found that it was necessary only to 

monitor the valve demand innovation, and the results are presented in 

the same format as section 2.9, except that no innovation normalisation 

was perfonned. 

The l.s.p. estimator fonns the basis for the second method of mal-

function detection. This estimator uses the innovations generated by 

the Kalman filter to estimate parameters which are indicative of the 

control loop security. Since a time series of bia.s eStimates ~(kik) 

are fonned, a simple convenient visual display of the· loop malfunction 

is possible. 

The model formulations for the l.s.p. estimators in the analogue 

setpoint and d.d.c. loops were given in section 3.10. For the 

analogue setpoint control loop the l.s.p. b
1

(k) was indicative of mal

function in the piI converter, while b2(k) arose because of an error 

in the control valve stem pOSition measurement or malfunction in the 

actual feedback control loop instrumentation. The d.d.c. loop mal

functions were summarised by a single l.s.p. b(k). 

At a particular loop setpoint and load, the process measurements 
A 

are analysed to yield estimates of the l.s .p. 's ~(k/k). These para-

meters then represent a characteristic of the control loop under the 

given process operating conditions. At sane later date, with the 

control loop operating at the same setpoint and load, the l.s.p.'s 

may be re-estimated and compared visually, or by Some other means, with 
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the original parameter estimates. Inferences may then be made con-

cerning the control loop security. 

3.17.1 Analogue setpoint control loop 

The results corresponding to the experiments detailed in Table 

3.15 are given in Table 3.16 and Figures 3.23 to 3.27. 

These results show that the method of examining the innovation 

sequence mean is able to indicate loop malfunction. The runs AS/1 -

AS/2 illustrate the consistency of innovations statistics when the 

Run Valve demand innovation Modulus of change in mean of 
~umber sequence statistics valve demand innovation 

Mean Variance Actua.L Significant change 
change at the 95% limit 

AS/1 0.97697 x 10-2 0.101908 x 10-2 - -
AS/2 0.838387 x 10-2 0.9370383 x 10-3 0.138583 x 10-2 0.272922 x 10-2 

AS/Aa 0.146417 x 10-1 -2 0.1l1302 x 10 0.4872 x 10-2 0.2850387 x 10-2 

AS/AI: 0.107003 x 10-1 0.102374 x 10-2 0.93233 x 10-3 0.2789575 x 10-2 

AS/Ac 0.298211 x 10-2 o . 972764 x 10-3 0.678759x10-2 0.27662 x 10-2 

AS/B 0.16343 x 10-1 0.949316 x 10-3 6 -2 o. 5733 x 10 . 0.273785 x 10-2 

AS/D~ -1 
0.18452 x 10 0.1l5655 x 10-2 0.86823 x 10-2 

0.287957 x 10-2 

TABLE 3.16 Behaviour of valve ~emand innovation for analogue setpoint 

c?ntro1 loop malfunction experiments .• 

Figure 

3.23 

3.23 

3.24 

3.24 

3.25 

3.26 

3.27 

control loop is malfunction free, while the other runs show the . magnitude of 

the observed :innovation mean shift compared to the significant shift at the 

95% confidence limit. 

In addition to the statistics of the innovations, the estimates of the 

l.s.p.'s reveal some interesting features. 
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" " The estimates b1 (k/k) and b2(ly'k) for the malfWlction free runs 

are shown in Figures 3. 23a and b. -The parameters are not zero, as may 

be expected for an error free loop, when the Kalman filter is operating 

optimally. There are two possible explanations for these non-zero 

parameter estimates. 

Primarily the Kalman filter used to generate the innovation data 

base for malfWlction detection waS not optimal. The filter used in 

this study-resulted from Mehra's adaptive estimator, run AMI/G/N, which 

was discussed in section 3.15. The suboptimality of the derived 

filter was indicated by the non-whiteness of the innovation sequence, 

as shown in Table 3.9. 

The second possible source of error lies in the selection of the 

a priori information for the secondary.l.s.p. estimator. It was 

pointed out in section 3.10 that to implement this secondary filter 

the designer must choose the a priori covariance matrix Pb(O/O). 

The effect of the choice of this matrix on the estimated value 

of ~(k/k) was investigated by repeating run AS/1 with various initial 

matrices P;(O/O). The results are given in Table 3.17, which 
A 

indicates that !!(k/k) is relatively insensitive to Pb(O/O) and so 

Pb(O/O) = diag (10) waS maintained throughout the studies on the 

analogue setpoint control runs. 

Figures 3.23 to 3.27 confirm the postulations made in section 3.3 

concerning the effect of malfunction on control loop operation and in 

particular the l.s.p. estimator is able to discriminate between some 

types of loop malfunction. For example, run AS/B, which has a -10% 

P/I transmitter zero error, results in the l.s.p. estimates shown in 

Figures 3.26 a and b. There is a large deviation between the currently 
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Pb(O/O) b
1 
(k/k) b2(k/k) hI (k/k) b2(k/k) b1 (k/k) " b2(k/k) 

k 500 500 750 750 1000 1000 

LO
. 0.] 

0.16l.l42 0.12704 0.23368 0.164786 0.16998 0.172775 

o. 10. 

[1. 0] 0.160535 0.12694 0.23297 0.164656 0.16958 0.172655 
o. 1. 

L· 1 O. ] 0.154707 0.125932 0.226108 0.163395 0.165641 0.171487 
O. 0.1 

[0.01 O. ] 0.113392 0.117948 0.17444 0.153157 0.134082 0.161781 
O. 0.01 

, 1\ 

'TABLE 3.17. Effect of Pb(O/O) on ,2(k/klin analogue setpoint 

control experiments. 

A 

estimated 1.s.p. b1(k/k) (denoted Qy curve 2 in Figure 3.26a), and the 

malfunction free characteristic (denoted by curve 1).' Figure 3.26b 
A 

shows that the corresponding change in the l.s.p. b2 (I</k) is small. 

This phenomenon is exactly that expected for a p/I transmitter mal-

function as discussed in section 3.10. 

The knowledge that a pure measurement error has occurred in the 

p/I transmitter and the estimated loop security parameter b1(k/k) 

associated with it meanS that the measurement Y1 (k) can ~ corrected 

to eliminate the effect of the malfunction. 

fu section 3.10.1 the p/I malflDlction was modelled as: 

Now the measurement Y1 (k) is biased because of the malfunction and so 

the true proceSS measurement is: 
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" The loop security parameter b1(k/k) is an estimate of b
1

(k) 

and from Figure 3.26a it can be seen that the loop malfunction causes 

" b1 (k/k) to deviate by -1.016 from the malfunction free estimate, thus 

the compensated procesS measurement becomes: 

Now the actual error imposed on to the. pi! transmitter measurement 

was -1.0V and so the malfunction compensation provides excellent 

estimates of the true process meaSurement. 

This error compensation technique is particularly valuable when 

the measurement Y1(k) is used in some other process performance 

evaluation computer program, because the compensated measurement may 

be used as a substitute for the real measurement until the pi! trans-

mitter is repaired. 

Examina tion of Figures 3.25 to 3.27 reveals the presence of a 

" loop malfunction which causes the parameter b2(k/k) to be large. 

Such a deviation could arise from either a pure measurement error in 

the control valve stem pOSition or a 6 pip transducer malfunction. 

The l.s.p. estimator is unable to discriminate between these two 

types of malfunction. 

The actual shift in the estimates of the l.s.p.'s fran the mal-

function free characteristics may be compared with the expected 

deviations derived from a conSideration of the loop malfunction gain 

~. These results are sUllDllarised in Table 3.18. 

Notice that the check based upon monitoring the innovation mean 

does not determine the malfunction for run AsIAb as shown in Table 

3.16 . However, inspection of Figures 3.24 a and b, and Table 3.18 
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shows that the l.s.p. estimator does give an indication of this fault. 

Summarising, these experiments on the analogue setpoint control 

loop have shown that the proposed malfunction detection method is able 

Run Expected deviation due Actual deviation due 
11 to malfunction to malfunction 

number " (V) b'2 (V) ~1 (V) ()2 (V) b1 

AS/l -
AS/Aa 0.2105 V/p.s.i.g. o. 0.2526 0.045 0.166 

AS/Ab 0.2105 V/p.s.i.g. o. 0.2526 0.1128 0.18 

AS/Ac 0.2105 V/p.s~i.g. o. -0.2526 0 • .00015· -0.172 

AS/B 1.0 V/V -1.0 o. -1.016 -0.0441 

AS/D* 1.0 V/V o. i{).5 0.175 0.362 

TABLE 3.18 Expected and actual shifts of loop security parameters for 

analogue setpoint control experiments. 

to expose errors. In particular, the method can discriminate between a 

p/! transmitter malfunction and a pure valve stem position measurement 

error or a 6 pip transducer malfunction. However, the check is unable 

to differentiate between thes~ two latter malfunctions. 

3.17.2 Direct digital control loop 

Table 3.19 details the statistics of the control valve demand signal 

innovation sequence corresponding to the experiments outlined in Table 

3.15. RunS DS/1 - 00/4 represent malfunction free experiments and the 

results show the consistency of the innovation statistics, The reniaining 

experiments demonstrate that malfunctions can be detected by examining 

the shift of the innovation mean from the malfunction free characteristics. 
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Run . Valve demand innovation Modulus of change in mean of I 
numbe. statistics ·valve demand innovation Figure I 

Mean Variance Actual Significant 
change change at 95% 

limit 

DS/l -1 0.321232 x 10-1 0.155451 x 10 - -
00/2 0.602586 x 10-2 0.306119 x 10-1 0.951924 x 10-2 0.155242 x 10-1 

00/3 0.390723 x 10-2 0.31716 x 10-1 0.1163787 x 10- 0.156602 x 10-1 

00/4 0.274055 x 10-1 0.315153 x 10':'1 0.118604 x 10-1 0.156356 x 10-1 

OO/Aa -0.277109 x 10-1 0.309236 x 10-1 . -1 
0.43256 x 10 0.155627 x 10-1 

00/ Ab -0.226125 x 10-1 0.310138 x 10-1 0.381576 x 10-1 0.155739 x 10-1 

00/ Ac ~.242276 x 10-1 0.319993 x 10-1 0.397727 x 10-1 0.15695 x 10-1 

DS/Ad ~.240471 x 10-1 0.312199 x 10-1 0.395922 x 10-1 0.155993 x 10-1 

OO/Ae 0.106938 0.385525 x 10-1 . . -1 
0.913929 x 10 0.164775 x 10-1 

OO/Af 
-1 0.898643 x 10 0.340735 x 10-1 0.743192 x 10-1 0.159468 x 10-1 

OO/Ag 0.986288 x 10-1 o . 34666 x 10-1 0.830837 x 10-1 0.16018 x 10-1 

OO/Ba -o.1ll814 0.516182 x 10-1 0.1273591 0.17936 x 10-1 

OO/Bb -0.105139 0.45693 x 10-1 0.1206841 0.172898 x 10-1 

DS/Ca -0. -1 .534161 x 10 0.341493 x 10-1 0.689612 x 10-1 0.159559 x 10-1 

DS/Cb -0.515355 x 10-1 0.334092 x 10-1 0.670806 x 10-1 0.158666 x 10-1 

OO/Cc -0.432993 x 10-1 . -1 
0.330094 x 10 . 0 .• 588444 x 10-1 0.158181 x 10-1 

DS/Cd 0.148659 0.556092 x 10-1 0.1331139 0.18358 x 10-1 

DS/ee 0.157395 0.556232 x 10-1 0.1418499 0.183599 x 10-1 

DS/Cf 0.152682 0.655709 x 10-1 
0.1371369 0.193727 x 10-1 

TABLE 3.19. Behaviour of valve deriland innovation for direct digital 

control loop malfunction experiments. 

3.29 

3.29 

3.29 

3.29 

3.30 

3.30 

3.30 

-
3.31 

3.31 

3.31 

3.32 

3.32 

3.33 

3.33 

3.33 

3.34 

3.34 

3.34 

The. malfunction detection method based upon the 1.s.p. estimator was 

also used to check the control loop performance. At a particular loop 

setpoint and load the Kalman filter processed the measurements to yield 

an innovation sequence data base from which a 1.s.p; ~stimate S(k/k) 

was determined. Figure 3.28 shows this parameter estimate for the 

four experiments on the malfunction free control loop' 00/1 - DS/4. 
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. A 
This F i,gure illustrates that there is quite a wide spread of b(k/k) 

values which is unsatisfactory. 

A . . 

1he effect of Pb(O/O) on the quantity b(k/k) was investigated by 

eJaUDining run DS/1 for different a priori estimates of Pb(O/O)~ The 
. A 

results are given in Table 3.20 which shows that b is insensitive 

to the choice of Pb(O/O) and so Pb(O/O) '" 10 was used throughout 

these experiments. 

It is suggested that the reason for the inconsistency in the four 

malfunction free runs was due to the initial mechanisation of the l.s.p. 

estimator. At the beginning of the algorithm for runs DS/1,DS/2, DS/4, 

large values of the l.s.p. estimator gain ~(k) were asso~iated with 

. " large innovations, thereby generating large estimates b(k/k). The 

matrix Kb(k) Soon decayed to its nominal value which was small. Now 

the baSic loop security parameter algorithm is: 

~ " b(k/k) = (I - Kb(k) S(k» b(k-1/k-1) + Kb(k) Y. (k) 

This equation is baSically a "smoother" and since Kb(k) was small, its 

A 

b(k/k) 
A 

Pb(O/O) b(k/k) b(k/k) 

k 500 750 1000. 

[10 ] 0.280462 0.27064 '0.267823 

[0.01 ] 0.231668 0.229343 0.231403 

TABLE 3.20 
A 

Effect of Pb(O/O) on b(k/k) in d.d.c. experiments. 

,.. 
response is slow, thus if b(k/k) was initially large, it would decay 

to the true value very slowly. 

1hia problem was overcome by delaying the beginning of the estimation 

252 



,.. 
of b(k/k) until the matrices ~(k), S(k) and y. (k) had achieved 

their nominal values. This delay was chosen to be k = 100. The 
A .. 

resulting estimates of b(k/k) for runS 00/1 - 00/4 are shown in 

Figure 3.29 from which it may be seen that reasonable consistency with 

a spread of 0.12, is achieved. 

,.. 
Figures 3.30 to 3.34 Show how the parameter b(k/k) varies when 

the control loop is subject to malfunction while Table 3.21 compareS 

the actual change of b(k/k) with the expected change calculated from 

the knowledge of ~. 

Run Expected deviation Actual deviation 

number ~ 
due to malfunction due to malfunction 

~ (V) • b (V) 

00/1 - - -
DS/Aa -0.5106 V/p.s .i.g. - 0.619 - 0.284 

DS/Ab 11 11 - 0.244 . 

DS/Ac 11 11 ;.. 0.246 

00/ Ad 11 11 - 0.249 

ffi/ Ae 11 0.619 0.556 

DS/Af 11 11 0.462 

ffi/Ag 11 11 0.516 

DS/Ba -1.32 V/V - 0.66 - 0.72 

ffi/Bb 11 11 - 0;673 

DS/Ca -0.7353 V/p.s.i.g. - 0.882 . - 0.392 

ffi/Cb 11 11 . - 0.391· .. 

DS/Cc 11 11 - 0.357 

DS/Cd 11 0.882 0.781 

DS/Ce 11 11 0.823 

ffi/Cf " " 0.758 

TABLE 3.21 Expected and actual shifts of loop security·parameter 

for direct digital control experiments. 
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These results show that the two proposed techniques of malfwlction 

detection can detennine faults in a d.d.c. loop. However, the checks 

do not yield any diagnostic information concerning the source of the 

control loop malfunction. 

3.18 Concluding r~rks 

A general method for detecting malfunction in an analogue setpoint 

or direct digital control loop has been proposed in this Chapter. 

The method aSSumes that the control loop can be represented by a 

linear, time invariant state variable model. The proposed checks can 

only be performed when the control loop is operating at a ·particular 

setpoint and nominal steady state value of process load as. detailed in 

the algorithm specification. 

The fundamental technique is based upon analysing closed control 

loop aperation under conditions of malfunction. The feasibility of 

detecting a particular instrumentation malfunction in a given control 

loop has been formulated in terms of a malfunction gain, ~, relating 

the change in magnitude of the control valve demand signal to the mal-

function. As'the magnitude of ~ increases, the ease of malfunction 

detection increases. In fact, for some critical loops where small 

malfunction cannot be tolerated, it is suggested that ~ may be used 

as a design criterion in specifying the control loop. 

Two malfunction detection techniques have been developed and both 

can be used while the control is operating·on~line. The two check 

methods are based upon an analysis of the available process meaSure-

ments using a Kalman filter to provide the data base for loop security 

interrogation. 
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The Kalman filter used in the development of the proposed checks 

was constrained in this d1apter to be "opt:imal", although this is not 

a necessary condition for the implementation of the malfunction detec-

tion schemes. The problem of designing an "opt:imal" Kalman filter, 

due to uncertain a priori information about the system models and 

process noise statistics has been considered and Kehra's adaptive 

estimator was used to overcome this difficulty. 

The experimental results derived from a level control loop have 

shown that this adaptive technique fails to converge to an "opt:imal" 

filter when the true process measurement noise is small. In noisier 

systems, however, it has been found that the method is robust, consis

tent and provides good estimates of the system state in spite of poor 

a priori information. 

The first proposed malfunction detection method is based upon 

the comparison of an original and current innovation sequence generated 

by the Kalman filter from a control loop operating at the same setpoint 

and load in each case. This check is applicable to both analogue set-

point and direct digital control loops. However~ the information 

gained from this check is only that a malfunction exists in the control 

loop and no diagnosis of the caus,e is possible. This type of check 

was in fact ,used in the detection of malfunction in a flow control 

loop. 

The second' check method is based upon the estimation of various 

loop security parameters which are indicative of malfunction." These 

parameters are calculated 'from the innovation sequence, generated by 

the KalIDan filter, and various system matrices est:imated in Mehra's 

adaptive est:imation scheme. This method provides a convenient and 

simple visual display of control loop security and does yield sane 

diagnostic in forma tion. 
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The laboratory experiments on an analogue setpoint control loop 

have shown that this method is able to discriminate between a pII 

transmitter malfunctiOn and other control loop errors. When the 

Kalman filter is designed optimally, the resulting estimates of the 

loop security parameters may be used to compensate for, this pII trans

mitter malfunction, thereby creating a substitute corrected process 

measurement which is available to the computer. This is particularly 

important when this measurement is used in other computer programs for 

process evaluation, since incorrect measurements render such calcula

tions useless. 

However; these comments do not apply to a dfrect digital control 

loop and as in the first check method" the loop security parameter 

estimation yields no diagnostic information on loop malfunction. 

The limitation of the proposed algorithms is the requirement that 

the tests should be perfonned at the same control loop setpoint and 

under the same process load each time an assessment of loop security 

is required. 

The setpoint constraint is not a major drawback since, as discussed 

in the flow control loop experiments of Chapter 2, it is possible to 

store in the computer the meanS of the innovation sequence or the loop 

security parameter estimates for several different valu,es of setpoint. 

Thus, when a malfunction' check is perfonned the current control loop 

characteristics may be compared with the stored values at the given 

setpoint. 

The problem of "large" changes in the nominal value of the load is 

more difficult. 

If the load change is measured, or can be approximated, from other 
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process considerations, then this poses no problem since the basic 

state variable model may be extended to include this extra coefficient. 

For example, the state space representation of the analogue setpoint 

control loop used in this Chapter, assuming constant nominal process 

load., was 

~(k+1) = A x{k) + r Q. (k) - - ~ 

I (k) = H ~(k) + .!(k) 

where ~ was a deviation variable representing small random unmeasured 

load disturbanceS. Now if Qi is subject to large changes, which are 

measured, the state variable model may be written as: 

~(k+1) = A x{k) + r Q. (k) + r w (k) - - ~ - (3.18.l) 

I (k) = H ~(k) + .! (k) (3 ,18 .2) 

In this fonnulation, .!(k), A, C, I{k), H, .!(k) have the same meaning 

and values as defined in Table 3.4. The process load Qi (k) is 

measured at each sample interval and w{k) is a zero mean Ge.ussian 

white noise sequence of covariance Q. . w{k) is included to account 

for uncertainty in measuring ~ (k) and other stochastic disturbanceS. 

Equations (3.18.l) and (3.18.2) are suitable for use in the Kalman 

filter, c.f. equations (3.4.l) and (3.4.2), and the malfunction detection 

method may be used with this new fonnulaticm. 

However, the case where the load is unmeasured and varies widely 

over short periods of time is not easily accounted for in the present 

method and it is suggested that this is an area for further research. 
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CHAPl'ER 4 

THE ROLE OF MALFUNCTION DEfECTION IN RELIABILITY, 

KAINTAINABILITY AND AVAILABILITY. 



4.1 List of Symbols 

A random var:iable assoc:iated with . 

real var:ia ble a. various 

mean system downtme per inspection interval tme units 

randllill var:ia ble assoc:ia ted with e
1 

event consisting of an observation of the 

monitor signal at tme 1: when it is healthy. 

randllill vam ble assoc:ia ted with eZ 

event consisting of an observation of the 

monitor signal at time 1: when it is 

unhealthy. 

conditional probability density function for 

the monitor signal a. given event e
Z 

f CUt ,e
2

) 
A/T

m
,E

2 
m 

fE (e1) 
1 

fE (eZ) 
Z 

fT (t) 

conditional probability density function for 

the monitor signal a. given event eZ and tm 

probability density function for event e1 

probability density function for event eZ 

equipnent/system failure probability density 

function; designer1s failure density function. 

probability density function for tme of failure 

when the monitor signal is a. 

-

fT/T~t(t/t ~ 1:) Conditional probability density function describing 

time of failure given survival up to time 1: 

f T/
Tm

,E
1 

(t/tm, e l ) conditional probability density function for 

time to failure given tm and event e1 

fT/Tm,Ez (t/tm, ez) conditional probability density function for 

time to failure given tm and event ez 
probability density function for time to init:ial -

malfunction. 

265 



fTJ~ (tJe1) conditional. probability density function for time 

to initial. ma1.function given event e1 

f
TJE2 

(tJe
2

) conditional. probability density function for t:ime 

to initial. ma1.function given event e2 

f
TJA

,E
2 
(to/a. ,e2) conditional. probability density function for 

time to initial. ma1.function t m, given the monitor 

signal. a. and the event e2 

f~ (Q) probability density function for t:ime to failure Q 

(operator's failure density function) 

proba bility density function for t:ime of failure 

when the monitor signal. is a 

f~/T~L(Q/t~L) conditional. probability density function for 

t:ime of failure Q given survival. up to tme L 

f~/T = L (~/tm = L) conditional. probability density function 
m 

for t:ime of failure Q given the t:ime of 

observa tion equa1.s the initial. ma1.function t:ime 

(tenninal. failure density function) 

fQ/ T El (Q/tm, e1 ) conditional. probability density function 
m, 

for t:ime of failure Q given tm and the 

event e1 

f~/Tm,E2 (~/tm,e2) conditional. probability density function for 

t:ime of failure ~ given tm and the event, e2 

fX (x) 

F( L ) 

K 

k 

probability density function 

failure probability distribution (= [LfT(t) dt) 

constant in equation (4.7.l..5.6) 

constant in equations (4.6.l..4), (4.6.l.o5) and 

constant in equation (4.7.1.1.1) 

) 
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m 

R(9} 

Rn(t} 

R01 (9) 

ROII(9} 

Rom(9} 

T 

t 

x 

x 

z{t} 

constant in equation (4.7.1.2.1) 

constant in equation (4.7.l.6.l) 

mean time between failure (1 lA ): 

constant in equations (4.6.l.4), (4.6.l.S) 

and (4.7.1.1). 

mean time between failure for an 

inspected system. 

constant in equation (4.7.1.1.1) 

constant in equation (4.7.1.2.1) 

constant in equation (4.7.1.6.1) 

prOM bility. 

system reliability: reliability function on 

the des:i,gner's time scale: des:i,gner' s 

reliability. 

reliability function on the operator's t:ime 

scale: opera tor's reliability. 

des:i,gner's reliability. 

operator's reliability 1 

operator's reliability 11 

operator's reliability III 

random variable associated with t. 

time : time on the des:i,gner1s time scale. 

random variable associated with tm 

time of initial malfunction measured on the 

des:i,gner's time scale. 

random variable associated with x 

dummy variable 

hazard rate on des:i,gner1s time scale. 

time 

units 

time 

units 

time units 

11 11 

11 " 
11 " 

failures/ 
. unit time 



z{t/t~1) 

Greek letters 

a 

13 

n) 
e 

e 

I-1T 

I-1T 
m 

l-1a/T =1 m 

1-1 x 

hazard rate corresponding to fa:i.lure density 

function fT/T~"[ (t/t;?1 ) 

hazard rate corresponding to fa:i.lure density 

function f T/ T E (tit ,e1 ) 
m' 1 m 

hazard rate corresponding to fa:i.lure density . 

function f T/ T E (tit ) 
. . m' 2 m,e2 

monitor signal 

probability level 

gamma function 

t:ime to failure on operator's time scale 

(measured from the t:ime of monitor observation 

:i..e. 8 = t -"[ ) 

randan variable associated with e 

hazard (failure) rate (constant) 

mean of random variable T 

mean of randan variable Tm 

mean of random variable a given that this 

is measured from the t:ime of the :i.nitial 

malfunction. 

mean of the dunmy random variable X 

:i.nspection frequency; 

t:ime of observation of the equipnent andjorof 

the monitor, measured on the designer's t:ime 

scale. 

jo:i.nt probability density function of the 
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failure/ 
unit t:ime 

11 

n 

various 

t:ime 

units 

t:ime 

units 

failures/ 
unit t:ime 

time units 

time units 

11 11 

t:ime 

units 



t:ime to failure t, the t:ime of the initial 

malfunction tm and the event e
1 

(/JT l' E (t, t m, e 2) joint probability density function of 
'"111' 2 

the time to failure· t, the time of the 

initial malfunction tm and the event e2 

(/JT
m

,A,E
2 
(tm, a ,e2) joint probability density function of the 

tu.e to initial malfunction, tm' the monitor 

signal a and the event 6 2 
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4.2 Introduction 

AB the chemical industry has developed, the st:imulatiim of the 

economic rewards which may be obtained from rapid process commi ssioning, 

fewer major equipment failures, reduced maintenance costs and a ltigher 

on-stream production t:ime has led to the increasing application and 

development of reliability engineering (3). (7), (116), (117). 

The concepts of reliability engineering originated in the aircraft 

industry during world War n, and have now developed into a discipline 

with applications ranging :from the aerospace to the nuclear reactor 

industry. Reliability engineering relies heavily upon probability 

theory for its developnent, and many of the fundamental concepts may 

be found in references (28), (118) -(121). 

Paralleling this growth has been an interest in the monitoring of 

equipnent to detect potential failures in advance. 1his may result 

in four advantages: 

i) Dangerous proceSS Situations which may put personnel at risk 

may be avoided. 

ii) Unscheduled process stoppages which diBrupt production may be 

avoided. 

iii) Unnecessary damage to equipment may be prevented by identifying 

the fault at an incipient stage, 

iv) A rational approach to equipment maintenance may be employed 

since the forewarning of :impending fail.ure enables a planned 

scheduled repair to be perfonned rather than an emergency repair. 

Also the need to djsmantle serviceable equipnent for examination 

during the preventive maintenance period may be avoided. 

The use of a monitoring device for any particular application 

requires a knowledge of the failure mechanisms of the system, the 
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operating Characteristics of the heal.thy system and the optimum type 

of monitor for the given system. Edwardli and Lees (1) have suggested 

that malfunction monitoring schemes. can be based upon the condition or 

perfonnance of·the equipment. However, the fonner is more couunon and 

is referred to as condition monitoring. 

Sane methods of equipnent condition monitoring have been reviewed 

by Dowson (11) and Trotter (12). . The method of vibration analysis is 

well developed and widely USed to monitor the state of rotating 

machinery (122), (123), (124). Other monitoring techniques, such as 

shock pulse testing (125), meChanical debris analysis (126) and acoustic 

ineasurements (22), (127), (128), (129) are less well developed, but 

their practical appl.ication is increasing. Typically these monitors 

produce a signal which is indicative, with some degree of uncerta:inty, 

that the equipment is healthy, unheal.thy or failed. 

The case for using a. process computer to monitor and detect system 

mal.flUlction was considered, in general terms, in Chapter 1. Initially, 

in formulating this project, it was decided to examine the role of 

equipment condition monitoring by considering. the conSequences of equip.. 

ment inspection and malfunction detection on both the economic and 

rel.iability aspects of the system. Details. of this study are given in 

section 4.4. 

However, as this project developed, it became apparent that the 

precise way in Which the condition monitor· :infol1lllL tion was used to 

modify est:imates of the system rel.iability, availability and ma:inta:in

ability was not adequately described by the existing rel.iability theory. 

Section 4.5 of this Chapter is a contribution to such a theory. 
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4.3 Some fWldamental concepts and definitions 

Inperfonning any study in reliability engineering it is of prime 

importance to define explicitly what constitutes an equipment failure. 

Lees (4) has suggested that the most common practical definition 

of instrument failure is that the instrument is not operating to the 

satisfaction of the process operator. 

Green and Bourne (119) have fonnally defined failure as: 

"The condition of a component, equipment or system whereby a 

particular performance characteristic or m.unber of performance 

characteristics, of such a device has moved outside the assessed 

specification range for that characteristic in such a way that 

the component, equipment or system can no longer perform 

adequa tely in the deSired manner." 

The point about these definitions is that the application of the 

equipment determines what constitutes a failure. This feature was 

discussed in Chapter 2, when the rel:ia.bility of a flow control loop was 

discussed in terms of the reproducibility and absolute accuracy of the 

system. 

Equipment failures may be further subdivided into revealed and 

Wlrevealed failures. 

A revealed failure is defined in (119) as a failure of a component, 

equipment or system which is autanatically brought to light on its 

occurrence. 

An WlTevealed failure (119) is a failure of a component, equipment 

or system Wich remains hidden Wltil revealed by some thorough proof

testing. procedure. 
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To complete this definition, the concept of proof testing is 

required (ll9). 

"Proof testing is a method of ensuring that a component, 

equipment or system possesses all the required performance 

chamcteriBtics and is capable of responding to input conditions 

in the deSired manner. tI 

In terms of these definitions the malfunction detection algorithms 

developed in this thesis and (1) and (9) are system proof tests des~ed 

to detect unrevealed failures, particularly gmdual and developing 

faults. 

4.4 The effect of a periodic equipment inspection policy on some 

reliability perfo:noance indices 

'Dlis section examines the effect of equipJlent condition monitoring 

on seveml aspects of system reliability. 

There is an extensive litem ture on the design of opt:iJDal inspection 

and maintenance policies for stochastically failing equipment. Reviews 

of these schemes have been given by McCall (130), Berg and Epstein (131), 

and Jardine (132). Ingeneml, the des~ of such policieS is based 

upon the optimisation of some formulated economic objective function. 

For example, the cost of equipment inSpection in terms of labour, lost 

production, etc., may be balanced again~t the benefits of' detecting 

failure, such as minimising the equipJlent repair time. 

However in this section a much more fundamental approach is 

adopted. Possibly the s:implest equipment inspection scheme of all is 

the periodic policy, where the state of the system is determined every 

"( time units. Now one of the suggested advantages of using a process 
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computer to monitor equipment condition was that the machine could 

perfonn very frequent tests or checlal of the system state without 

incurring a higher probability of error in interpreting the results. 

'Ihi.S is contrary to the human operator's performance. AlBo, the 

use of a process computer to monitor equipnent condition is relatively 

inexpensive, since often tests may be perforined while the equipnent is 

on-J.ine. 

In the follow:ing sections it is assumed that a process canputer 

is used to periodically inspect and detect unrevealed faults in the 

system, and the effect .of the inspection frequency, 1 , on some 

features of the system reliability is examined. 

It is assumed throughout the analysis that the computer is a 

perfect detector, i.e. if an unrevealed equipment failure is present, 

then the computer detects it with probability 1. 

4.4.1 Mean downtime per inSpection interval 

Suppose that a system is operated continuously and is inspected 

for an unrevealed fault every 1 time units. An example of such a 

system may be a control loop which is examined for malfunction using 

one of the techniques developed earlier. Obviously, the system can 

be in a failed state during some proportion of the time between 

monitorings without the process operator being aware of this. 

Now let the system failure probability density function be fT(t), 

ehen the mean system downtime in the interval (0,1 ) between ·inspections 

is (120): t 
~ (1 - t) fT(t) dt 

o 

d 1 represents the mean time from system failure until inspection (and 
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detection) • Now assuming the repair time is significantly less than 

the time between monitorings, the mean downtime (unavailability) in a 

time period T can be found in the steady state as: 

L 
i 

Clearly, d1: is a function of 1: , and an investigation of how this 

relationship varied with inspection interval for several eqUipment con-

f~ tions was conSidered. Table 4.1 summarises the systems analysed 

and the assumptions made in deriving the system failure density function 

fT(t). The fundamental failure probability density function for a 

single equipment was assumed to be exponential with a hazard rate A • 

'!he relationship between d 1: and 1: for various systems is shown 

in Figure 4.1. This Shows that d1: decreases as the inspection interval, 

1: ,decreases, although the relationship is not linear and the reduction 

in downtime achieved becomes smaller as the inspection frequency increaSes. 

In particular, it can -be seen that for system applications where an 

infrequent inspection policy is adopted, then a 2 out of 3 parallel redun-

dIlnt system will, on average, be in -a failed condition for more time than 

_a single equipment. Thus, in terms of the mean downtime per inspection 

interval, a single eqUipment offers better perfo:nnance and also represents 

a smaller capital cost. 
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Configuration fT(t) A d1: Alisumptions 

Single A e-At 0.001 1: -\ (1- e-A1: ) -
equipment 

TWo equipment . i) Switch is ~erfect. 

standby redun- A2 t e-At 0.001 -h 2 2 ii) Equipments fail only in the on-e (1:+ -r) + (1: - T) line ~osition; 
dant system. iii) SYStem is failed when both 

equipments are failed. 

iv) Both equipments have the same 
failure rate and ex;ponent:ial 
failure probability density 
function. 

TWo equipment 
e..)..1:(..1_..!... e-A1: 

i) System is failed when both 

parallel redun- 2 A (e~t_e-2A t) 0.001 ) equipments are failed. 
A 2A 

dantsystEIII. + (l: ;. ir ) ii) Both equipments have the same 
failure rate and' exponent:ial 
failure probability density 
function. 

TWo out of three i) System is failed when two or 

parallel redun- 6 A (e-2A t _ e-JAt ) 0.001 ! (i + .1 e-2~.l: _ ~ e-3AT ) more equipments are failed. 

dan t systEIII. 
A 2 3,. ii) All equipments have the same 

+1: failure rate and exponent:ial 
failure probability density 
function. 

TABLE 4.1. Effect of inspection interval on system downt:ime. 



1 

A 

1 
2A 

downtime/inspection 

interval 

time units 

2-3 parallel 
~-,ingle 
V equipment 

2 parallel 

2 standby 

o ~~~=e~----------~I~----------------~~In----------o 1.0 2.0 

Normalised inspection interval At 

FIGURE 4.1 Effect of inspection interval on systElll downtime. 
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4.4.2 Mean t:ime between failures of maintained redundant systems 

'Dle mean t:ime between failure (MTBF) of a system is often used as 

a fi8w'e of merit in reliability engineering, and is defined as the 

expected t:ime for a system to reach a failed state. 

It may be shown (118) tbat the MTBF is given by integrating the 

reliability fWlction, R{t), aver the range t = 0 to 00 

m = lR (t) dt 

o 

Thus on average any given redWldant system w:iJ.l fail once every m 

t:ime units if the failed components of a redundant system are not 

replaced Wltil the complete system fails. 

m may be increased by introducing a maintenance policy (130), 

(131). Suppose the adopted policy is one such tbat the system com-

ponents are inspected periodically to determine failure, and on deteo-

tion, failed components are repaired or replaced. If this policy is 

USed then the system may be expected to fail less frequently tban it 

would without inspections, because it is assumed tbat every new opera

ting period after inspection begins with full system redWldancy 

restored. Thus the MTBF for the inspected system; dehoted m"[, 

becomes longer tban m and in theory it would become infinite if 

failed redWldant components were immediately detected and replaced. 

m"[ is a function of the inspection interval,"[ , and Bazavsky 

(133) has shown that it is related to the system reliability, R (t), 

according to: "[ 

!R{t) dt 

o 

1 - R{"[) 
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Under the adopted maintenance policy, the redundant system is 

inspected for failures in its canponents every l: time units. If the 

inspection reveals failed components, they are replaced or repaired so 

that full system redundancy is restored. If an inspection does not 

reveal failures, then assuming the system components have exponential 

failure probability laws, the system is considered renewed. 

The inspected system MTBF, ml: ' is a -function of the inspection 

frequency, l:, and the relations between them for several redundant 

systems were derived using equation (4.4.2.1) and are given in Table 

4.2. The assumptions made in deriving Table 4.2 were the same as 

those described in Table 4.1. 

Figure 4.2 shows how m. varies, as a function ofl: for the systems 

Configuration fT (t) R (t) m ml: 

Two equipment 
-At e..f..t(l +A t) 

m - e-l..l:~m +l: ~ 
standby A 2t e 2 

- e-t..l:(l +A l: ) 
redundant 'X 1 

Two equipment 
2A(e-zAt_ e...:t..t ) e..{..t(2 _ e...:t..t ) 

...:t..l: 2 e -A l: 
parallel 1- m-e (A-~) 

2A 
redundant 1 - e:::Xl: (2 - ;=-t) 
Two out of - ).: -Al: 

6A(e-zAt_ e-3At ) e-zAt (3 _ 2e~t ~ 
-2 I(3 2e ) 

three m - e 2X - 3A 

parallel 
1 _ e-2Al:(3- _ 2e-Al: ) 

redundant 

TABLE 4.2. Effect of inspection interval on redundant- system mean time 

between failures 

given in Table 4.2. 

In each of the systems considered there is quite a Significant 

improvement in MTBF as the inspection frequency increases (orl: decreases). 
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time 
!Q. 

between 
A 

failure 

m 
1: 

6 

A 

1 3 4 
Nomalised inspection interval A 1: 

5 

2 standby 

2 parallel 

2/3 parallel 

6 

FIGURE 4.2 Effect of inspection interval on redundant system 

mean system between failure 
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4.4.3 

In particular, for a two equipment standby redundant system, the MTBF 

can be doubled by inspecting the system once every 0.75 lA time units. 

For example, suppose A = 0.001 then m = 2000. Now using the· 

described inspection policy with I = 750, gives mI = 4000. 

DesY;n and economics of maintained redundant systems 

A designer is often called upon to specify a system to meet a 

certain MTBF criterion. There are a number of design alternatives 

available, ranging from a single equipment to redundant systems main-

tained in such a way as to minimise some cost function. The precise 

selection of the system is a function of many criteria. However, to 

illustra te the value of a malfunction detection policy, it is assumed 

that the designer has only two alternatives. 

To meet the specified MTBF the designer may use an n parallel 

redundant system or a 2 parallel system employing a periodic inspection-

maintenance policy with an inspection interval I 

Section 4.4.2 has shown that by choOSing the interval I , the 

designer can achieve any deSired system MTBF, and so make the 2 

parallel system equivalent to any n parallel redundant system. 

For example, the 2 parallel system with a periodic inspection 

policy has a MTBF given in Table 4.2 by 

\ -AI 3 -/\1 (2 e ) 
m = "iX- e X-~ 

I 1 _ e-X"! (2 - e-I) 

Now Suppose the deSign requirement is for a system to have a MTBF of not 

11 
less than OX" . The designer may thus choose a 3 parallel redundant 

system or a 2 parallel system with a periodic inspection-maintenance 

policy Where 1 is determined by solving:-
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~. -At 3 -At: (2 e ) 
= iA- e X-~ 

1 - e-Xt (2 _ e=1) 

The solution of this equation yields the maximum value of the inspection 

interval t max which meets the design requirement. Any inspection 

interval t less than tmax consequently results in the 2 parallel system 

having a longer MTBF than the design specification. 

In a similar manner, the value tmax such that a 2 parallel system 

has an equivalent MTBF to any n parallel redundant system may be deter-

mined. 

The results of such an analysis are shown in Figure 4.3. . This 

Figure shows that the inspection frequencies needed to replace n 

parallel systems are modest. For example, a 7 parallel redundant 

system may be replaced by a 2 parallel system With a periodic inspection 

scheduled every O~65 time units, where ~ is the MTBF of a single 

component. 

Summarising, sections 4.4.1 to 4.4.3 have examined and quantified, 

in terms of some reliability perfonnance indices, the consequences of 

employing a periodic malfunction detection policy to determine unrevealed 

failures in plant equipment and instruments; 

This rather brief and tentative study has revealed that the conSe

quences of monitoring can be profound and that, for the reliability 

perfonnance indices conSidered, relatively infrequent inspections 

resulted in Significant improvement. The indications are that campu-

terised monitoring schemes, which may be implemented frequently, would 

enhance the overall system security and as such should be the subject 

of continuing effort so that baSic system malfunction detection 

algorithms are available. 
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3 

2 

• 
; .. 

• 
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1: of 2 para.llel redundant max 
systems. 

FIGURE 4.3 Equivalence of n parallel and inspected 2 parallel systems. 
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4.5 The effect of malfunction monitoring on reliability, 

maintainability and availability 

.' 

.'. , . 

Despite the voluminous literature on reliability and maintenance 

probl.e1DB and policies (130), (131), the effect of equipment malftmction 

monitoring does not appear to have been adequately considered in terms 

of reliability theory. 

Derman (134), Kolesar (135), Klein (1.36) and many others have repre-

sented a single equipment, subject to degradation, by a series of 

healthy, unhealthy and failed Markov states and subsequently derived 

maintenance policies designed to achieve the odnimisation of some 

economic objective function. The proposed maintenance strategies 

assume that an equipment inspection procedure is capable of detecting 

which state the system is in at the observation time. 

A more general Markov model was used by Saw and lave (137) who 

assumed that the equipment state could not be observed directly, but 

only through a probabilistic observer. The extension of the Markov 

system degradation representation to redundant systems has not proved 

trivial, although Mine and Kawai (138) have considered two equipment 

systems. 

The problem of a post-mortem failure diagnosis has been considered 

by Gross (1.39). It is assumed that a 2 component system fails, but 

whether component 1 or 2 is the cause is unknown. The repairman can 

use a diagnostic monitor which enables the failed component to be 

located. By balancing the additional cost incurred in system repair 

if the repainnan makes the incorrect decision concerning the choice of 

component for repair against the cost of purchaSing a diagnostic tool 

Gross determines·the optimal amount to be spent in providing such a 

tool. 
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Polovko (140) and Jensen (141) have examined the problem of calcu

lating the reliabiJ.ity of systems which are subject to gradual failure 

(as opposed to catastrophic failure) due to component parameter drift. 

In this case failure is defined when the system output does not-meet 

some predetermined specification. 

Dle problem of equipments deteriorating over a period of time in 

store has been discussed by Welker (142). The degradation process is 

characterised by some ContinUDUS parameter (for example temperature) 

which is discretised to form a series of Markov states. By using 

Markovian theory with this monitoring process an equipment replacement 

maintenance policy is derived. 

However, in spite of this activity, there does not appear to be an 

adequate framework for the assessment and contribution of malfunction 

monitoring to reliabiJ.ity. In this work the approach adopted is that 

the reliabiJ.ity is a function of the state of knowledge of the system 

(143), and as such can be decomposed into the designer's and operator's 

reliabiJ.ity. The impact of malfunction monitoring on the operator's 

reliability is then considered. 

The mathematical quantities and notation used in the following 

sections have been reviewed in Appendix I, while some problems encoun

tered in the use of Markov models are given in Appendix V. 

4.5.1 Malfunction monitoring 

Some reviews of malfunction monitoring techniques were discussed 

in section 4.2. In general, equipnent monitors are special, dedicated 

instruments which measure some distinctive feature of the system's 

condition or perfo:nnance. However, a monitor need nO.t be·a special 
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instnnnent and a process canputer examining the state of its measuring 

instnnnents may als.o be considered as a ma:Lfunction monitor. 

The fundamental feature of these monitors is that they produce a 

signal which is indicative of the equipnent health. This signal on 

. which the monitor is based may be a direct reading or a derived function 

(for example, vibration measurements often involve spectral analysis). 

However, in each case it is assumed that the final monitor signal v.ill 

resemble the function shown in Figure 4.4. 

This ·curve has three regions: I, the equipnent is healthy; 

n, the initial ma:Lfunction has developed at time tm' so that the equip.. 

ment is unhealthy and failing; Ill, the equipment has failed. Region 

Il represents the failure characteristic of the equipnent and is the 

time period in which incipient malfunction detection is possible. 

I n. III 

Monitor 

signal 

.Time t 

Figure 4.4 Typical signal from malfunction monitor. 
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4.5.2 Re~bility! m~int~in~bility ~d ~v~ilAbility 

Before proceeding with the theoretical development, it ill necessary 

to explicitly define what can and cannot be achieved by malfunction 

monitoring. AIJ a vehicle for ·dilIcussion a single equipment is con

sidered since this illustrates most clearly the capabilities and 

limitations of malfunction monitoring. 

4.5.2.1 Failure and reliability regimes 

Failure rate may be regarded as a property of the equipment, 

although it may not be known. Reliability, however, ill a probability 

which an engineer estimates. Now adopting the interpretation of 

Tribus (143) that probability ill smplya n\Dllerical encoding of the 

state of knowledge about a system, then the concept of reliability may 

be decomposed into several different regimes. 

The first reliability regime pertains to the plant designer!s 

ri.ewpoint of the equipment operation. The designer adopts a macro-

scopic view of the equipment ·operation and ill concerned with the over

all reliability of the equipment measured from the t:ime of plant start-

up. This tme ill denoted t. In fonnulating his estimate of reli-

ability the designer considers the ·overall failure rate and charac

teristiCS of the equipment. This reliability ill the conventional 

reliability, R{t), which ill referred to here as the "designer's 

reliability", 

The second reliability regime ill thAt of the plant operator. The 

plant operator ill much more concerned with the ~ operation of 

the equipment than the designer since, after the ·plant sta~p, he can 

inspect the equipment for failure at any particular t:ime 1: and thereby 

actively update hiS knowledge of equipment operation. For example, 
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the desii;ner may estimate that the reliability of the equipment 

surviv:ing 1: time units fran start up as R(1: ) -= 13 • However, the 

operator can :inspect the equipment at time 1: and if it is operating 

his assessment of reliability is 1, while if it is failed it is O. 

This is not the same reliability estimate as the desii;ner1s. 

The time scale of the plant operator is measured from the time 

that he observes the state of the equipment and is denoted Q. Since 

the observation occurs at time 1: on the first time scale t then: 

(4.5.2.1.1) 

By redef:in:ing his time scale like this, the operator can make a running 

or dynamic estimate of the reliability, denoted R(Q). This is true 

, whether or not the plant opera tor is practising malfunction monitoring, 

s:ince the information ga:ined at each izispection is Simply that the 

equipment has not failed :in the ':interval (0,1:). 

This second reliability regime is referred to as the "operator1s 

reliability" • 

If the plant operator is practis:ing malfunction monitoring, however, 

his state of knowledge about the equipment operation is :increased 

further by conSidering the monitor ':information. When the operator 

examines ,the monitor at time 1: and records a healthy mon;i,.tor signal, 

then he has three pieces of :information. He knows the overall equip

ment failure rate and failure probability density function, the fact 

that the equipment has not failed :in the interval (0,1: ) and finally 

that the monitor signal is healthy and so immediate equipment failure 

is less likely. However, if the signal is unhealthy when he examines 

the monitor, he again knows the,above information except that he now 

expects failure to be more likely :in the near future. 

using these various :information sets, it can be seen ,that there 
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are four possible reliability regimes and est:imates to consider: 

i) Designer's reliAbility; 

ii) Operator's reliAbility I - no monitor; 

iii) Operator's reliAbility II - monitor 

signal healthy; 

iv) Operator's reliAbility III - monitor 

- signal unhealthy. 

1hese different est:imates of the reliAbility of a single equipment 

do not in any way change its failure rate. However, they can be used 

to modify decisions in the operation and maintenance of1he equipment. 

4.5.2.2 Maintainability and availability 

Several advantages of equipment monitoring were discussed in 

section 4.2. However, the aspect considered here is the reduction of 

repair time and the improvement of maintainability. There are several 

ways in which equipment repair may be improved by monitoring. These 

include avoiding severe equipment damage, pennitting better repair 

strategies (such as the organisation and coordination of maintenance 

crews, and the location of the relevant equipment spares), and allowing 

better planning of process operation. If these benefits did material-

_ ise, then repair time and consequently maintainability of a single 

equipment may be a function of monitoring. 

Since single equipment availability is also a function of repair 

time and failure rate, then it too may be a function of the monitoring 

activity; 

However, as already stated, the -reliAbility of a single equipment, 

in the conventional Sense of the designer's reliability, is not affected 

by monitoring. 
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4.6 Reliability functions for a single equipment 

4.6.1 Designer1s reliability 

'l'h:ia is the conventional reliability function. Denoting the 

overall probability failure density function by fT(t), then the 

reliability flD1ction is given by: 

~(t) = 1 - fT(t) dt J
t 

o 

If the designer uses an exponential failure density function for 

f T( t), then: 

fT(t) c: A exp (-At) 

Rn(t) = exp (-A t) (4.6.1.3 ) 

If a Weibull failure density flD1ction is used, then (118): 

fT(t) c: k tmexp(- ~:+~) (4.6.1.4) 

~(t) = exp (- ~+m;1) 

4.6.2 Operator1s reliability I 

In this case the opera tor does not ,have the benefit of a maL

fuD.ction monitor, but' he can inspect the equipment at any t:ime 1: and 

satisfy hlmself that the equipment has not failed. Thus at the 

inspection time 1: the infomation available to the operator is: 

i) The equipment has not failed in the interval (0,1: ). 

ii) The overall probability failure density function of the equipment. 

He can use this infomation to condition the failure density func

tion and pose the question: "What is the probability of failing at 

time t, given equipment survival up to time 1: (i.e.t> 1: )1" 
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Mathematically, the conditional failure density flDlction is 

described by {28}: 

f T/ T ~"t (t / t ~"t ) = 0 

fT{t) 
= 

1 - jiT{t) dt 

"t s;t<oo (4.6.2.2) 

o 

Now setting e = t -"t and using the random var:iable transfonnation 

theorem (28), 

= 
fT{e+t) 

o <e<oo 
1-F{"t) 

and so the rel:iabiJity becomes: 
e . 

RoI (e)= 1 - jfe/T>"t (e / t>"t) de 

o 

'" 1 __ .....::1 __ 

.1-F{"t) 

e 

J fT (eH) de 

o 

lIhen fT ( t) is exponent:ial then: 

RoI (a) = exp (-Aa) 

If fT{t) is a Weibull flDlction then: 

a 

(4.6.2.5) 

(4.6 .2.6) 

1 - . 1 J k(8+"t)m f_k(8-R)m+1) d8 

(
_ k"t m+1). exp, m+1 .. 

exp m+1 . . 
o (4.6.2.8) 

RoI (a) s:imply represents a "running" est:imate of the rel:iabiJity 

designed to include the fact that the equipment has not failed up to 

the current observation t:ime. 
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4.6.3 Operator's reliability 11 

The operator has a malfWlction monitor. At time t he examines the 

monitor and recordS a healthy s~l and so he has the following 

infonnation: 

i) The equipment has not failed in the interval (0, t), i.e. 

t <t<oo 

ii) The monitor reading is healthy and so incipient failure has not 

begun, i.e. 1 <tm:S:OO 

iii) The terminal probability failure density function. This density 

function represents the wear-out characteristic of the equipment 

and it is assumed that this can be derived from an analysis of 

the experimental failure data when the time of failure is measured 

fran the first occurrence of the init:iAl malfunction, i.e. 1 = t 
m 

This is denoted fg /~ =1 (e /tm = t ). 

iv) The malfunction monitor is perfect, i.e. the instrument does not 

fail. 

The reliability function may be derived as follows. 

Let the event el be defined as the facts that a monitor observation 

is made at time t , the s~l is healthy, t < t:5:00 and 1 < tm:5:00. 

Now defining a joint probability density function for the random var:iAbles 

T, Tm and El gives (28): 

PT,Tm,~ (t,tm,el ) = fT/Tm,E
l 

Integrating ldth respect to t and el yields the marginal failure m. 

density function fT(t), i.e. 

fT(t) = J J fT/Tm'~ (t/tm,el ) fTm/~ (tm/el ) fEl (el)dtm del 
range range 

. Tm 
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However, the event el is a certain event and so: 

fE (el ) = 5 (e l ) 
1 

Then equation (4.6.3.2) becanes: 

fT(t) = f fT/Tm,E
l 

(t/tm,el ) \/~ (tJel ) dtm 
range 

Tm 

Now recalling that e = t -1: and using the transfonnation theorem 

(28) gives: 00 

. fe(e)= ffT/Tm'~ (1:+e/t m,el ) fTJ~ (tJel ) dtm (4.6.3.5) 

1: 

The density function for the randan variabJ.e Tm' conditioned upon the 

event el' simply states that Tm cannot have a value in the interval 

(0,1:) '. Mathematically this is given by: 

fTm (tm) t < t~OO (4.6.3.7a) 

fTJ~ (tJel ) = :t 

1- ffTm (tm)d tm 

'0 

=0 

The reliability function is deteI1llined fran equation (4.6.3.5) as: 

e 

or 

RoII( e) = 1 - f f e (e) de , 

o 

1 -

293 



4.6.4 Operator's reliability III 

The operator has a monitor which he :inspects at time 1:, but this 

t:ime the signal :indicates an unhealthy equipnent. Therefore at the 

observation time the following :infonnation is available to the operator: 

i} The equipment has not failed:in the :intervai (0,1:), i.e.1: <t<oo 

ii} The monitor read:ing is unhealthy and has a particular value a. at 

time 1: , and cansequently 0 < t ~ 1: • . m 

ill} The terminal failure density flmction felT =1: (9 /tm =1: ). 
m 

iv} The probability density flmction describ:ing the values of the 

monitor signal values a. frem the t:ime of :initial mal.i'uilction. 

It is assmned that this would. be determ:ined exper:imentally from 

the characteristics of the monitor. 

v} The malfunction monitor is perfect, i.e. the :instrument does not 

fail. 

The derivation of the reliability proceeds as follows. The event 

e2 is def:ined as the observation time 1:, the signal is unhealthy, 

0< tms 1: and 1: < tSoo. Then writing the joint probability 

density function for the random variables T, . Tm and E2 gives: 

Integrating with respect to tm and e2 yiel.dl! the marginal probability 

density flmction 

f f fT/Tm,E2 (t/tm,e2) fTn/E
2 
(tn/e2) fE2 (e2}dtm de2 
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But by definition: 

fE (ez ) = 5 (ez ) 
Z 

The conditional probability density function fToIEz (tolez ) is 

derived frlJll the probability density function for the time of initial 

malflDlction fT (tm) given the event eZ' i.e. 0 < tms t . 1his 
m 

is given by,: 

fToIEz (tm/ez ) = 

= 0 

In this context fToIEz (tolez) is;1n a priori density function. 

However, there is ;1vailible further infonnation in the form of the 

malfunction monitor si,gruLl a. which may be used to modify the estimate 

, The joint probability density function for the random vari.a.bles 

Tm' A, EZ may be written as: 

= fA/Tm,Ez (a./tm,ez ) fTo!EZ (to!ez) fEZ (ez ) 

(4.6.4.7) 

F.qullting (4.6.4.6) and (4.6.4.7) yields B<1yes; theorem: 

fA/Tm,Ez (a. /tm,ez ) fToIEz (to!ez )' 

fA/Ez (a. fez) 
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But by the extension :rule (28),(143) fA/E2 (a/e2) may be written 

as: 

f 
and so equation (4.6.4.8) becomes: 

= fAlT,E (a /tm,e2) fT lE (tu/e2) 
f Tu/A,E

2 
(tu/a ,e2) . m 2 of 2 

f fAIT E (a/t ,e2) fT lE (tu/e2) dtm ~ 2 m of 2 
range 

Tm (4.6.4.10) 

The conditional probability density function f Tu/A,E
2 

(tu/a ,e2) is an 

a posteriori density function. This is simply the conditional density of 

T given the value a, and expresses the degree of belief of the location m . 

of the value of tm given the result of observing the malfunction monitor. 

Equation (4.6.4.10) is used in place of (4.6.4.5) in equation (4.6.4.4) 

to give: 

Changing the variable e = t -t and using the transformation theorem (28) 

t . !fT/ Tm,E
2 

( t +e/tm,e2) f Tu/A,E
2 

(tu/a ,e2) d tm 

o 

The reliability function then becomes: 
e 

ROIl! (e ) = 1 - f f e (e ia) dB 

o 



e 1: 

= 1 - f f fT'T E· (1: +ejtm,e2) fT lA E (to!a ,e2) d tm de 
, m' 2 n( , 2 

o 0 

4.7 Illustrative example 

4.7.1 Basic probability density fWlctions 

The expressions for the designer's and operator's reliability were 

given in equations (4.6.1.1), (4.6.2.5), (4.6.3.8) and (4.6.4.13). 

Their use will be illustrated, but first the probability density fWlc-

tions used in the previous mater:iAl will be considered, and typical 

density fWlctions chosen for the illustrative example. 

The main probability density fWlction used is the Weibull fWlction 

which is 

and !-LX 

(118): 

fx (x) '" k J!l exp (- kmX:~) 
r~\ 1) 

= 
m + 1 (L ). l/mH 

m+1 

This density ftmction is very flexible and byappropr:iAte choice of m 

and k can be made to approximate other standard probability density 

fWlctions. When m = 0 the exponent:iAl distribution is obtained, and 

when m = 1 the distribution becomes the Rayleigh distribution. Thus 

the parameter m determines the' shape of the distribution while k 

does not affect the shape but, serves as a scaling factor. 

4.7.1.1 Overall failure density fWlction fr--ill 

It is assumed that the designer knows fran an analysis of the 

equipnent failure data the overall failure density fWlction, which is 

represented in this case by the Weibull fWlction: 
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The corresponding hazard function is 
m1 z (t) = k1 t 

For the purpose of this analysis it is assumed that the operator 

knows. the equipment tenninal failure density function. This is deter

mined on monitored equipment by analysing the data on failures when the 

t:ime of failure is measured from the initial malfunction t:ime t m• In 

this eJIllmple it is assumed that the teIminal failure hazard rate is 

given by: 

Generally the failure density function is related to the hazard 

l1L te according to (li8): 
t 

f z(t) dt) 

o 

Thus using equation (4.7.1.2.1) in (4.7.1.2.2) the corresponding tel1llinal 

failure density function is found as: 

fT(t) = 0 

'" (kz+ kit - tm)~) ~ 

Setting e = t - 1: and noting t '" 1: then the transformation theorem . . m 

yields the tel1llinal failure density function 
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m 
felT =1: (9/tm=1:) = (~+ k:3 g 2) exp 

m 

Now consider the event el' which is an observation at t:ime 1: with 

the monitor signal healthy. 

The opera tor's equipment failure model· is described as follows. 

He knows the equipment has not failed in the t:ime :interval (0, 1:), and 

that it cannot fail IDltil the :initial malfunction has occurred. After 

t the equipment fails accord:ing to the tezminal probability failure m . 

density function. Thus the hazard rate is: 

z (t) = 0 

= 0 

O<t:::;: 1: . (4.7.1.2.5&) 

1:< t~tm (4.7.1.2.5b) 

tm<t:::;:oO (4.7.l.2.5c) 

and the' corresponding failure density function is: 

= 0 

0< t~ 1: 

1:< t~ tm (4.7.l.2.6b) 

~+1 
k3(t - t m) 

-kz(t- t m) - m
2 

+ 1 

t < t< oa(4.7.l.2.6c) m ". 

Now the failure density flDlction conditioned on the t:ime t m· and 

on the event el is detennined using an equation corresponding to 

(4.6.3.7), i.e. 

fT/Tm,Et (t/tm,el ) = 

so 
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- k (t - t ) -2 m 

Now setting e = t -1 and using the randan variable transformation 

theorem (28): 

f'e/T E (e/tm,e1 ) = 0 
m' 1 

e<o 

= 0 0< e<tm -1 (4.7.1.2.8b) 

~ 1 k ( 1 +e - t t2 + 1 
= (~+ k3(1 +9- t m) ) exp . - k2(1 +9- t m) - 3 m

2 
+ 1 m 

t -1<9<00 (4.7.1.2.8c) m -

4.7.1.3 Failure density functions fT/Tm,E2(t/tm,e2) 

t'a/T E (e/tm,e2) 
m' 2 --.:..~-

The development of these density functions follows the same procedure 

as above. The event e 2 is a monitor inspection at time 1 resul.ting in 

an unhealthy signal. 

The operator thus fo:nnulates a failure model which :infonns h:im that 

the equipment has not failed up to t;ime 1 , that the initial malfunction 

has occurred at some time 0< tm~ 1 and that the equipment will subse

quently fail according to the tenninal probability failure density func

tion. For thiS model the hazard rate becomes: 

z (t) = 0 O<t::;;: tm (4.7.1.3.1a) 

.. ~ 

= k2 + k3(t - t m) t m< ts: 1: (4.7.1.3.1b) 

= ~ + "J (t - tm)~ 

The corresponding failure density functi<n is: 
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= 0 I o<t< tm (4.7.~;!~2a) 
m . (t - t ) 

= (k
2
+ k

3
(t - t ) 2) exp _ k

2
(t _ t ) _ 'J m 

m m m + 1 
2 

(4.7.1.3.2b) 

Now conditioning the failure density function an tm and event e
2 

gives 

= 0 O<t";;;. 

= 

I 
m2+1 

k3 (1: - t ) 
exp -k

2
(. _ t ) _ m 

m m2 + 1 

The .variable is changed accorcUng to e = t -1: which yields (28): 

1-
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4.7.1. 4 Summary of failure density functions 

Sketches of the shapes of typical failure density functions for 

the four reliability reg:imes are shown in Figure 4.5. Figure 4.5& 

shows the designer's failure density function calculated from equation 

(4.7.1.1.1) with valUes ~ = 0 and 3. Figure 4.5b gives the operator's 

failure density function fT/T~1:(t/t> 1:), correaponding to operator's 

reliability II, which is calCulated from equations (4.6.2.3) and (4.7.1.1.1) 

This function is s:imilar to Figure 4.5& except for the modification due 

to t . 

The failure density function,. f T .... E (t/tm,e1 ) for a particular 
'"m' 1 

value of tm envisaged by the operator, correspOnding to operator's 

reliability II, is shown in Figure 4.5c. This is calculated fran 

equation (4.7.1.2.3) with an assumed valUe mz = 3. 

Figure 4.5d shows fT'/T E (t/tm,e2) for operator's reliability ITI, 
. m' 2 . 

which aga:in involves a modification by truncation at the observation 

t:ime 't. The density is determined from equation (4.7.1.3.3) with the 

same valUe of mz as above, and tm is a particular value envisaged by 

the operator for the purpose of the sketch. 

Figure 4.6 shows the corresponding hazard rates. 

'lhe analysis of section 4.6 assumed that the operator knew the over-

all probability density function for failure when time was measured from 

the beginn:iJlg of the equipnent's life (t = 0), fT(t), and the terminal 

failure .density when the failure time was measured fran the time of the 

initial malfunction (t '" t m, e '" 0), fe/Tm=t (e/tm =1:). 

However, there is a third probability density function which is 
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FIGURE 4.5 Typical failure density functions. 
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.. 

needed. This is the density function describing the time of ulitial 

malfunction, fT (tm) , when time is measured from the beginning of the 
m 

equipment life (t = 0). 

In practice this may be available from an analysis of the experi-

mental data, however,. it is assumed that this is unlikely and therefore 

must be derived. 

Suppose that the observation time 1: is made equal to the initial 

malfunction time tm' then by definition 

e = t - tm (4.7.1.5.1) 

or t = t - ~ m 

NOli fT (t) and feiT =1: (e/tm =1:) are given and so 
m 

be determined fran the transfonnation theorem as (28): 

f fT (t) 

range. 
T 

(4.7.1.5.2) 

The range of t and e are both 0 to 00 and so examination of equa tion 

(4.7.1.5.2) reveals that in theory negative values of tm are possible. 

However,thiS contradicts intuition since it is :impossible for the 

equipment to malfunction before it has started to operate, i.e. tm 

cannot be less than 0, although tm can equal o. 

Now for t > 0 equation (4.7.1.5.3) becomes m-
oo 

f fT(t) fS/Tm =1 (t - tu!tm = 1:) dt 

tm 

arid for tm ~ 0, theoretically 

fTm(tm) = fOOfT(t) fe /
Tm

=1(t - tu!tm=1:) dt 

o 
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Since tm cannot be less than 0, then a density function is fonned 

where the probability of obtaining tm < 0 is located, in the fonn of 

an impulse, at the origin, i.e., 

o 00 

P{tm<O) = I I fT{t) fe/Tni 1: (t - tJtm=1:) dtdtm (4.7.1.5.6a) 

-00 o 

= K 6 (tm = 0) 

The resulting probability density function fT (tm) is therefore 
m 

a mixture of both an impulse at the origin and a continuous function, 

which is given by substituting equations (4.7.1.1.1) and (4.7.1.2.4) 

o 00 

II 
_00 0 

= K (j (t = 0) m 

exp 

m 
({k2 + k

3
{t - tm) 1x 

) dt 

m2 
({k2 + k

3
{t - t m) ) x 

Then the failure density functions conditioned upon the events e1 and 

e2 are given by equations (4.6.3.7) and (4.6.4.5) respectively, i.e.: 

fT (tm) 
fTJEl (tu! e1) =. --:;;m'---1:-_-

/f
Tm 

(tm) dtm 

(4·7.1.5.8) 

1 -

o 
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4.7.1.6 Density functions f"",T
m

,E
2 
(a /tm,e2), f Tu/A,E

2 
(tJ a , e 2) 

The density function f A/~,.E2 (a /tm,e2) described the location 

of A, given a particular observation time 1: and :initial mal£unction 

time ~ '" t m• 'Il1iB density is dependent upon the characteristics 

of the malfunction monitor and the equipment failure characteristic as 

shown in Figure 4.4. 

In this study it is assumed that fA/T
m

,E
2
(a/tm,e2)is given 

by a Weib~type distribution.· However,:in this Case the monitor 

variable is nonnalised to be :in the range O~ a$ 1 and so the Weibull 

density function of equation (4.7.1.1) istransfozmed using the 

rela tion (28): 

a '" 

Hence 

x 

x+l 

0:::;;: a< 1 (4.7.1.6.1) 

The a posteriori·conditiona1 probability density function for the 

time to initial malfunction f
TJA

,E
2 

(tm /a , e 2).is 

equation (4.6.4.10) using (4.7.1.5.9) and (4.7.1.6.1). 
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4.7.2 Reliability estimates for a single equipment 

4.7.2.1 

The probability density functions described in section 4.7.1 are 

noW used to estimate sjngle equipment rel:ia.bility for the four regimes 

discussed earlier. 

The parameters used in this example are given in Table 4.3. 

i 

1 
2 
3 
4 

\.LT 

!-lefT =1: m 

!-IT m 

1: 

a. 

TABLE 4.3. 

k. m. 
:1. :1. 

0.04 0 
0.02 1 
0.1615 1 

("t - t m) -

25 

3 

21.8 

25 

0.25; 0.75 

NumericRl v~lues of, the parameters used in the 

illustrative example. 

A priori density functions 

The overall equipment failure characteristic fT{t), which the 

des~er knows, is the exponent:ial density function (m1 = 0) with a mean 

!-IT = 25. 1his is shown in Figure 4.7. 

To determine the operator's reliabilities, it is assumed that the 

operator has a priori information in the form of experimentally deter-

mined probability density functions fe/T
m

=1: (e/tm=r.), fA/T
m

,E
2 

(U/tm,e2) 

and the calculated function fT (tm). These were given in equations 
m, 

I 

1" 



(4.7.1.2.4), (4.7.1.6.1) and (4.7.1.5.7) and using the parameters of 

Table 4.3 are shown in Figures 4.8, 4.9 and 4.10. 

FigIITe 4.9 was derived by assuming k4 = (-1:- t m), i.e •. the 

scaling factor increases linearly as the difference between the 

observation time t and the time of initial malfunction detection t m• 

Normally it is expected that in practice this density function would 

be available from an experimental analysis of the malfunct:ion monitor 

signal characteristics. 

Notice in Figure 4.10 that fT (tm) is a discontinuous function 
m 

consisting of an impulse at the origin and a continuous function. 

The ratio of the means of the total equipment life (1-1 T) to the 

unhealthy period (1-1 elT =t) is 25 : 3. 
m 

4.7.2.2 Designer's reliability 

The deSigner's reliability is simply calculated from the overall 

equipment failure probability density function using equation (4.6.1.1) 

and is actually gi""Eln by equation (4.6.1.5) with k = k1 and m = m1 • 

This reliability is shown in Figure 4.11. 

4.7.2.3 Operator's reliability I 

The operator's failure density function I fe/T;;:::t (e/t;::: t) and 

reliability I are calculated from equations (4.6.2.4) and (4.6.2.5) 

respectively and are shown in Figures 4.1Za and b. 

Since the fUndamental overall equipment failure characteristic is 

exponential, then observation at time t contributes nothing to the 

aSsessment of reliability and the operator's reliability I is the same 

as the deSigner's except the time scale :Ui different. This is a basic 
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property of the exponential probability distribution (li8). 

4.7.2.4 QPerator's reliability 11 

The 

are 

This failure density function is calculated from equation (4.6.3.5). 

density functions felT· E (e /tm,e1 ) and fT lE (trlel) which 
m, 1 . of 1 . 

required for this integration were calculated from equations 

(4.7.1.2.8) and (4.7.1.5.8) respectively. 

The operators reliability Il Roll (e) was subsequently determined 

by equation (4.6.3.8). 

This calculation procedure is summarised as a flow diagram in 

Figure 4.13. The integration limits of equation (4.6.3.5) are changed 

from 1: to 00 to 1: to 1: + e in Figure 4.13, which may be verified by 

inspection from equations (4.7.1.2.8). 

Figure 4.14 shows the density function fTrlEl (trle1) while the 

resulting operator's failure density function f e (El) and his reli

ability Il, RoIl ( El) are shown in Figures 4.1,Sa and b. 

Figure 4.1Sb also shows the operator's reliability I and reli-

ability III if the time of initial malfunction tm is the current 

observation time 1: (which is calculated by integrating equation (4.7.1.2.4». 

This Figure illustrates that operator's reliability 11 is significantly 

higher than operator's reliability I in the immediate future (Le. e small). 

·This is the expected result since there is a malfunction monitor which is 

showing a healthy signal and therefore there is a greater probability that 

equipment failure will. not occur in the immediate future. Operator's 

reliability III is much lower than operator's reliability I or Il. Again 

this is the expected result since the monitor signal has changed from 
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healthy to lDlhealthy thereby :indicat:ing that the equipnent has 

started to wear out and so there is a much greater probability that the 

equipment will fail :in the near future. 

4.7.2.5 Operator's reliability III 

The calculation procedure is outl:ined :in F:l.gure 4.16. 

The a priori :infonna tion :input was aescribed above. This first 

stage :in the calculation is the determ:ination of f
TJE2 

(tJe2 ) which 

is shown :in Figure 4.17 for 1: = 25. '!he a posteriori density function 

f I (t la ,E2 ) is then calculated from equation (4.6.4.10) and is 
Tm' A,E2 m' 

shown :in Figures 4.l8a and b fora=0.25 and 0.75. 

The operator's failure density function nI, f e (e;a) and his 

reliability function Roln (e) are then determ:ined from equations 

(4.6.4.12) and (4.6.4.13), and are illustrated :in Figures 4.19a and b, 

and Figure 4.20 respectively. Curves are shown for the same parameter 

values as :in Figure 4.18. 

Also shown :in Figure 4.20 for comparison are the operator's reli-

ability I and reliability nl if the time of :initial malfunction is the 

current observation time. These additional curves were also illustrated 

:in F:l.gure 4 .1Sb. 

The same comments apply to the comparison of the reliability curves 

:in Figure 4.20 as were made :in section 4.7.2.4. In particular the 

operator's reliability In estimate when a= 0.25 is lower than that for 

a = 0.75. This is expected s:ince a reading a = 0.25 means that the 

:initial equipment malftmction occurred further in the past from 1: than 

that :indicated by a= 0.75. Therefore the equipment has been ttwearing

out" longer and so has a higher probability of fail:ing :in the immediate 

future. 

318 



Eguation 
n\Dllbcr 

START 

1 

319 

INTIDRATE 

Ior--'" fTm (tm) dtm 
o 

. INTIDRATE 

f------"'I}A/T E (1/tm• Cz )fT (tu! Cz )dl 
m' Z m 

o 



Equation 

number 

1 

CALCULATE 

Ron(9) '" 1 - /9(9;a) d9 

o 

STOP 

9 INrFx}RATE 

f9 (9;a) d9 

o 

FIGURE 4.16 Flow diagram of operator's reliability III calculation. 

320 



x: 

.... 

o 
~~ 

0~ __________ ~ ________ -, __________ .-________ -. __________ -, ________ -, 
..:.') I I 

(:.5S7 1. 'JjJ 2.000 2.687 O,DOO 
TH1t.UNTrS tm XW-I 

4.GGG 

FIGURE 4.17 

321 



() 
LJ 
w' 

c..J ... : 

x_ 

7. 
LJ ."') 
-~2"-' 
!- r.;:.. 
L-.) ... : 
Z 

>-
~-. ~:'I 
_ j"'J en IJ~ 
Z~:" 
I.L~ 
C'1 

Cl 
o 
cO a. a= 0.25 

;z 
LJ _ 
"--t :::~ 
!-- ,~:" 

~j • z_·, 

>-
~ (:; 
~_ID 

c~ 

~t.-; 
(.J..j 

Cl 

1.~~1 z.naD 
TIMEUNlrS 

Z.G67 
t X'fT-1 m l c. 

I 
3.J3'3 

------l 

4.CSG 

L~ 
,-~ 

o ) +-______ ~------_.------_.--~~L-~------._----__. 

-r-I~'F -iN'rQ :.'... U 1. . ...J 

b. a = 0.75 

2.6fi7 
tm X W'l 

4,oeo 

FIGURE 4.18 Illustrative example: A posteriori density function fT/A,E (tor-kl,e2 ) • 
- m 2 

322 



-----------------------------------------------------------

C', 

,.', 
(.-, 
'.' ) 

- . L.'.::-. 

:,7 
L"J 

'. 
- ,'..j 

'~2: l~' 

L _ Ci 

.... I ~.:; 
\.:.~ , . 
2(·1 
i.:..i 
C:! 

' .. ! \ '7 
C< . '. 
D -r---""=~----- ·-----,-----,------·,------T---'----, 

.;- .. 
1..- ~~: 

!.-~12 .. ") . 

2.':'; 
~~ 
c:-: 

c" 

-, .,",r"'r 
I ~ _ ,-, . .J...) 

a. a = 0.25 

'.) , 

!,3JJ 2.nso :~ r>. ' • .c. -' ... '.'-' 
T' .\1" , "·Ir <.. ••. ). e 11., "C. UI'~ I. 

,~ . 
. .. ,+-I ---__.~'~""--__.-----__.---_,_--------,--

1.:'1 , I 
~:,':,C.Ci [i,Gfl( 1.3~j 2,(:C:~ ~~.66·,~ r.. ,~-::.:-

~ '.".".' 

Ti~1F~ f.r,lrise Xj~.i··l 

b. a=0.75 

FIGURE 4.19 Illustrative example: Operator's failure density function 

fo (9; a). 

323 

/,. '-. '''',. o . ',' -,,_, 



,~ 

OlD 
rI (~ 
~ . 
..-l0 
L;..; 
CL 

a = 0.75 

= o. 

Cl.CGO J • ~,3.3 2. (lOO 
TIME UNITS e 

Z. GS 7 
X 10- 1 

FIGURE 4.20 Illustrative example: Operator's reliability Ill. 

324 

I 
1. Ci~JG 



4.7.2.6 SUllllllll.ry of reliability functions 

The designer's reliability and the operator's reliability I - III 

are shown together in Figure 4.21, which il1.ustrates how they are 

related. The curves are self explanatory. 

4.8 Applications of the reliability functions 

The immediate application of the operator's reliability functions 

with malfunction monitoring is as an operational tool to obtain updated 

estimates of the reliability of single equipments and systems. However, 

it is anticipated that the knowledge of the functions could be used to 

detennine a "real time" maintenance strategy which involves continuous 

decision-making, after the detection of the initial malfunction. 

Another application is as a design tool to obtain estimates of 

reliability, maintainability and availability of Systems as a function 

of the particular maintenance policy adopted when a malfunction is 

detected. Such a study may in fact suggest the optimal type of action 

to take when a malfunction is shown on the monitor. 

Although the theory developed in this study has emphaSised the 

condition monitoring of machinery and malfunction detection in instru

ments, it is potentially applicable to a diverse range of monitoring 

activities from non-destructive testing to medical work. For example, 

in non-destructive testing the ideas may be applied to the monitoring 

of crack growth in materials to determine-reliability functions. 
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4.9 Concluding remarks 

The effect of equipnent malfunction monitoring On some aspects of 

system security has been considered. A periodic inspection policy was 

used to detennine unrevealed equipment failures and the relationship 

between inspection frequency and several reliability performance indices 

was examined. It was found, for the criteria considered, that the 

system security increased as the inspection frequency increased and in 

particular significant improvements of perfonnance could be achieved by 

adopting relatively infrequent inspection policies. 

The second part of this Chapter was concerned with the relation 

between malfunction monitoring and reliability, maintainability and 

availability. The reliability of a system has been categorised into 

four regimes depending upon whether malfunction monitoring is carried 

out or not and the type of information obtained from a monitor. 

EXpreSSions have been derived for the reliability function of a 

single equipment with and without malfunction monitoring from the time 

of observation of the equipnent state. The information required to 

Use these expreSSions is the conventional reliability function together 

with the probability density functions for the time to failure and for 

the monitor signal after the initial occurrence of the malfunction. 

These reliability expreSSions may be used as an operational tool 

to give "running" estimates of the reliability of the equipment or as a 

design tool to obtain advance estimates of the equipment reliability, 

maintainability and availability. In this latter case it is necessary 

to specify maintenance policies in whiCh the monitoring is an integral 

part. The determination of suCh maintenance policieS and their 

relation to the information gained from a malfunction monitor provides 

a basis for further researCh. 
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CHAPTER 5 

CONCLUSION) 
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· This thesill has examined ways in which a proceSs computer can be 

used to improve the overall security of chemical plant by detecting 

instrument and equipment malfunction. To this end the first part of 

this study developed methodS by which a process computer can be used to 

detect malfunction in its own instrumentation and control loops. The 

second study in this thesill assumed the existence of malfunction 

detection techniques and examined the role of malfunction monitoring in 

improving process security. 

in some detail. 

These two aspects will now be diBcussed 

Chapter 2 has described a control valve position - flow check 

which may be implemented on a process computer to detect malfunction 

in a flow control loop. The fundamental idea of the proposed detection 

algorithm ill that for loops in which there ill a constant system flow 

pressure drop characterilltic, there exists a unique relationship between 

the control valve pOSition and the flowrate. ThiB means that knowledge 

of the valve pOSition implies a measurement of the flowrate, which ill 

additional to the usual primary flowmeter measurement. Thus the 

control loop has measurement redundancy, thereby providing a foundation 

for a malfunction detection algorithm. 

Two types of check have been developed. In the first a control 

valve characteriBtic is obtained of flowrate vs valve position. nu.s 

requires that the valve be moved over its entire range of travel, 

thereby permitting the or~inal and current characteristic to be com

pared. This full valve characterilltic compariBon enables the source 

of the malfunction to be detemin,ed in some cases. 

The second check method assumes that control valve "stroking" is 

inadmiBsible and so uses a state estimator to process the measurements 
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to yiel.d a data base from which the control loop security is inferred. 

The actual check is based upon the comparison of the original and 

current residuals generated from the state estimator. No diagnostic 

infonnation concerning the source of the malfunction can be obtained 

from this check. 

In formulating this check the state estimates were not constrained 

to be particularly accurate, and so no dynamic modelling of the control 

loop was necessary. The sole purpose of the state estimator is to 

condition the process measurements into a convenient form for loop 

security interrogation. 

The proposed methodS do not require additional process instrumen

tation, but exploit the capability of thecanputer to proceSs, store 

and display infonnation. The computer storage and time requirements 

for the checks are modest and since most malfunctions appear not to 

occur very SUddenly the algorithms can be executed at quite infrequent 

intervals and at low computer priority. 

The malfunction detection algorithms have been tested by ·extensive 

laboratory trials on an experimental rig which USed industrial control 

equipment. In addition some industrial experiments have been per

formed. . These revealed that models based upon process design manuals 

were adequate to implement the proposed checks.and no difficulty was 

experienced in tracking the operation of d.d.c. loops ·or calculating 

the values o{ residuals. However, during the period of experimentation. 

control loop malfunction did not occur, although a simulated fault lias 

detected by the algorithm. 

the major assumption in the derivation of this position-flow check 

is that the system flow-pressure drop characteristic is relatively 
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constant. If this criterion is' not completely met then the lev"l of 

detectable malfunction will be increased. The adaptation of the method 

to control loops which do not satisfy this assumption of constant system 

flow-pressure drop characteristic is an area for further research. 

However, in spite of this it is considered that the flow control loop 

malfunction detection techniques are at a stage where more comprehensive 

industrial tests will be most profitable in determining the value and 

success of the methods. 

In principle, there appears to be no reason why the techniques of 

Chapter 2 should not be generalised to other control loops. All that 

is required of the loop is that there should be a constant load and a 

known relationship between the controlled variable and the valve demand 

signal, thereby creating measurement redundancy. The success of the 

method will then depend upon the characteristics of the control loop 

such as the dynamics. However, in practice the relationship between 

the controlled variable and the valve demand signal is unknown and so 

a more general malfunction detection technique is needed. 

Chapter 3 has developed a general malfunction detection method to 

encompass all control loops uSing a Kalman filter. This method was 

adopted so that tests could be performed on operating control loops. 

Also it was desired to generate optimal estimates of the control loop 

state vector when the system was without malfunction, thereby increas

ing the process operator's knowledge of the loop operation. 

The control loops are modelled by linear time - invariant transfer 

functions and it is assumed that the load entering the loop is constant 

at some nominal value although some stochastic deviations are accounted 

for. At a given setpoint and load there is an expected control valve 

demand signal. Deviations from this expected value are used to 
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determine the loop malfunction by directly estimating various loop 

security parameters or examining changes in the statistical properties 

of the resulting filter innovation sequence. 

The implementation of the malfunction detection method has been 

separated into two problems; the first being the ordinary Kalman 

filter and the second being Friedland's filter to estimate the loop 

security parameters. The mechanisation of the primary Kalmari filter 

is fraught with uncertainty in the system models, noise statistics and 

initial conditions. These problems were overcome by using the innova

tion correlation technique of Mehra to directly estimate the optimal 

Kalman gain. The combination of Mehra's and Friedland's algorithms 

reduces the uncertainty problem to the specification of one covariance 

matrix. 

The malfunction detection method has been tested on a laboratory 

level control rig, where experiments on both analogue setpoint and 

direct digital control loops have been performed. It was found that 

Mehra's adaptive estimator failed to converge to the optimal state 

estimator if the true process measurement noise covariance matrix was 

small. However, in "noisier" systems the technique proved to be 

robust and consistent. 

The loop security parameter estimator is successful in estimating 

control loop malfunction and in particular is able to diagnose and 

estimate the magnitude of a measurement instrument fault in an analogue 

setpoint control loop. Thus a correction can be made to the measure

ment and hence a substitute measurement is available for use in other 

computer programs. The experiments on the d.d.c. loops provide no 

diagnostic information. 
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The second check method which is based upon examining the statistics 

of the Kalman filter innovation sequence also indicates control loop 

malfunction, but no diagnostic information is obtained. 

The main limitation of· the proposed check is the need for a 

relatively constant nominal load. If this is not true, but the load is 

measured or can be approximated, e.g. from the overall process through

put, then the method can still be used simply by including this 

"measurement" in the system model as disCUSSed .in section 3.18. For 

the case of an approximated or estimated unmeasured load the level of 

detectable malfunction will depend upon the malfunction gain. p, and 

upon how well the load can be estimated. For example, errors in esti

mating the load may cause a loop security parameter to change by x%. 

Hence the malfunction has to be of such a magnitude that the resultant 

change in the loop security parameter is greater than x%. 

The case of unmeasured load disturbances which cannot be approxi

mated and which occur relatively frequently is more difficult to account 

for and the methods will fail to detect malfunction under these 

circlDDstances. 

AS in the control valve position-flowmeter the modification of 

the method to cope with large unmeasured load changes is a topic for 

further exploration. 

The methods of malfunction detection developed in Chapters 2 and. 3 

have been based upon the premise that in a given control loop, which is 

operating at a particular setpoint and load, there is a unique relation

Ship between the controlled variable and the control valve. demand signal. 

This relationship has been exploited to detect malfunction. 'lhe tech

nique used in this thesis was to relate the control loop measurements 

through a state estimator mathematical model to yield a data base from 
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which inferences on loop security could be made. 

The precise form of the state estimator used for malfunction 

detection differed in Chapters 2 and 3. 

The flow control loop check in Chapter 2 assumed that there was a· 

known steady state relationship between the system flowrate (controlled 

variable) and the control valve demand signal, i.e. the control valve 

characteristic. This relationship was additional to the usual equation 

describing the primary flowmeter measurement. Now a state estimator 

was used to process measurements of the valve demand and flowmeter 
A 

signals to estimate the system flowrate Q, thereby creating a set of 

residuals from which loop security could be inferred. 

The philosophy adopted in designing the flow control loop estimator 

was that the simplest technique which detected malfunction was the best. 

It was· therefore considered. unnecessary to model the dynamics of the 

loop and a steady state model was assumed, although some dynamic effects 

were accounted for by expanding the steady state estimator into a track-

ing steady state .estimator. 
A 

The resultant state estimate, Q, was 

therefore not necessarily optimal. 

The malfunctions in the control loop were detected by examining 

the difference between the assumed state estimator model and the .actual 

process under conditions of no malfunction and malfunction. 

The techniques of Chapter 3 used the same fundamental ideas as 

Chapter 2, Le. the concept of relating the control valve demand signal 

and the controlled variable, except that the more general case of state 

estimation was conSidered. 

In Chapter 3 it was assumed that the steady state measurement 

equation relating the valve demand signal to the tank height was 
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Wlknown. The design of the state estimator was also constrained to 

y'ield optimal state estimates and therefore the state estimator was 

based upon a dynamic model of the closed loop. A Kalman filter state 

estimator was used to relate the resultant process measurements and 

hence generate a residual from which loop malfunction could be inferred 

exactly as was done in Chapter 2. 

This discussion has highlighted the common and differing features 

of the proposed malfWlction detection algorithms suggested in Chapters 

2 and 3. The choice of method in any particular application will 

depend upon: 

i) The degree of information known. 

For example, the application of the tracking steady state 

estimator to the level control loop requires the characteristic 

of the tank height versus the control valve demand signal. 

usually this ~ill not be available but could be determined on

line during normal process. operation. 

ii) The quality of the info.nnation required. 

If optimal state estimates are required when the control loop 

operates in a malfWlction free condition, then it is Wllikely 

that the tracking steady state estimator would be adequate. 

Also the diagnostic information on malfunction which is gener

ated from the Kalman filter may be important in some applications. 

iii) The characteristics of the control loop. 

iv) The available effort for technique implementation. 

The use of the Kalman filter method for detecting control loop 

malfunction is likely to involve more work than the tracking 

steady state estimator because of the modelling. and computer 

programming involved. 
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Many of these' features may be explored by exam:ining the Kalman 

filter method applied to the flow control loop, while the tracking 

state estimator's performance may be tested by detecting malfunction 

in the level control loop. 1hese comparisons could be performed on 

the existing laboratory rigs. 

The final part of this thesis has assumed the existence of mal

function detection algorithms or malfunction monitors and has examined 

the effect of monitoring on equipment reliability, availability and 

maintainability. 

The details of this study are given in Chapter 4. 

Initially, it was assumed that a periodic inspection policy was 

used to detect unrevealed equipnent malfunctions and the relationship 

between the inspection frequency and several reliability performance 

indices was examined. 1his analysis shows that the system security 

increases as the inspection frequency increases and in particular 

Significant improvements can be achieved by adopting relatively infre

quent inspection policies. 

'The second part of Chapter 4 has considered how the information 

obtained from a malfunction monitor can be used to update estimates of 

reliability, availability and maintainability. 1he system reliability 

is viewed as a numerical encoding of the process operator's state of 

knowledge of the system rather than an inherent system characteristic. 

Using this concept, the reliability of a system has been categorised 

into four regimes depending upon whether malfunction monitoring is 

performed or not, and the type of information obtained from a monitor. 

Reliability expreSSions for a single equipnent have been derived 

for these four regimes based upon the time at which a monitor inspection 
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occurs (if monitoring is practised) and the indicated monitor signal. 

These expressions are derived from probability density functions and 

the information required is the .conventional reliability fWlCtion . 

together with the probability density functions for the time to failure 

and for the monitor signal after the occurrence of the initial mal.

function. 

These reliability expressionS provide an operational tool to give 

"running" estimates of equipment reliability. It is envisaged that 

these renewed estimates may provide a basis from which real time 

decisions concerning equipment maintenance policieS may be made. 

However, precisely how this information can be incorporated into the 

deciSion making process is not trivial. 

For example, if a process engineer inspects a malfunction monitor 

which indicates a failing equipment, then he can use one of the derived 

reliability expreSSions to estimate the probability of equipment sur-

vival in the subsequent time intervals. He is then faced with a 

deciSion either to let the equipment continue operating, thereby risking 

severe equipment damage, but performing a planned repair, or to shut the 

equipment down immediately and perform an emergency repair. The 

operator's decision must balance the relative advantages and disadvantages 

of these criteria. It is suggested that the determination of "real time" 

maintenance policies is an area. for further study •. 
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A.I.I List of Sym~~~ 

A matrix 

a vector 

a. 
-~ 

.th 
~ vector 

a .. 
~J 

.. th le f 
~J e ment 0 A 

a( ) parameter 

B matrix 

b scalar variable 

C matrix 

c .. 
~J 

1j th cofactor of A 

E( ) expectation 

E{/ ) conditional expectation 

F(x) probability distribution function for 

random variable X 

probability density function describing 

random variable X 

joint probability density function 

describing random variables Xl and Xz 
fX /X (xI/xZ) conditional probability density function 

I Z 

k 

n 

m 

p( ) 

pyf.x) 

describing Xl given X
2 

= Xz 
discrete time counter 

matrix· dimension 

matrix dimension 

probability 

probability function for discrete random 

variable X 

PX:t' Xz(xl,xZ) joint probability function describing discrete 

random variables Xl and X2 
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Superscripts 
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Subscripts 
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conditional probability function describing 

discrete random variable Xl given Xz= x 2 

matrix dimension 

initial time 

time at kth sampling interval 

time 

sampling interval 

random variable associated with the real 

variable x 

random vector associated with the real 

vector 'l!; 

vector 

ith element of x 

real variable 

i th scalar variable 

expected value of random variable X 

expected value of random vector X 

variance of random variable X· 

matrix tranSpose 

matrix inverse 

matrix pseudoinverse 
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A.I.:! Nomenclature 

In this Appendix the notation and mathematical quantities used in 

this thesis are defined. Although most of the concepts used are 

standard, they are included here to avoid confusion in terminology. 

Several estimation problems considered here will be restricted to 

those containing discrete time dYnamic and measurement models. In 

other wordS, the dYnamics and measurements are treated at fixed time 

increments which take on only integer values, Le. a(k) = a(tk ) where 

tk = t + k/1 t with t the initial time treated in the problem and /1 t o 0 

the time increment used. If the parameter a(k) doeS not vary with 

time, then the subscript k is omitted. If the state dynamics are 

characterised by a difference equation with constant coefficients, the 

model is said to be stationary. 

When the dynamics and measurement models are written matrix-vector 

notation is used. 

underscore, Le. 

x = 

Vectors are denoted by lower-caSe letters with an 

x 
n 

(A.I.2.1 ) 

where xi' i = 1, • • • ,n are scalar quantities and are referred to 

as the components of the vector. If n = 1, the quantity x is a scalar 

and the letter is not underscored. Matrices are denoted by upper-case 

letters, Le. 
a12 ., . . . 

A = (A.I.2.2) 

an2 . . . ". 
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where the elements of A, a .. , i = 1, .•. , nand j = 1, .... , m are 
l.J 

scalars and n is the number of rows and m is the number of colwnns. 

If n = m = 1, A is a scalar quantity. 

The transpose of a matrix is denoted by a superscript T, i.e. 

all a 21 •..•..•..•..••.• an1 

= (A.I.2.3) 

Throughout this thesis several matrix operations are referred to or 

uSed. 1hese include the determinant of a matrix, the trace of a matrix, 

the inverse of a matrix and the pseudoinverse of a matrix. The deter-

minant of a matrix, A,is denoted by det(A) and is def:inable for square 

ma trices only, Le., the number of rows equals the number of colwnns. 

The determinant of A is given by: 

where A is given by equation (A.I.2.2) with m = nand c
1i 

is the 

1ith cofactor and is the determ:inant of the subnatrix formed by striking 

out the first row·and the ith colwnn multiplied by (_ 1)i+1. 

The trace of a square matrix is defined as the Sum of the diagonal 

elements, Le., 
n 

tr(A) = L 
i=1 

a .. 
l.l. 

(A.I.2.5) 

The inverse of a matrix, A, is fomed as follows: 

where 

-1 of A • 

= 1 
det(A) 

(c .. ) 
Jl. 

(A.I.2.6) 

th 1·· th 
c ji is the ji cofactor of A and (A- )ij is the ij element 

From equation (A.I.2.6) it is obvious that the inverse of a 
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matrix exists only if it is square and its determinant is nonzero. 

For matrices which are not square or those which have zero valued 

determinants, the concept of a pseudoinverse (27) can be applied. 

Before this concept can be defined, the concepts of linear independence 

and matrix rank must first be discussed. A set of n-vectors, i.e. each 

vector contains n components, ~1' .•• ,~, is said to be linearly 

independent if the following vector equation 

(A.I.2.7) 

implies that each scalar is zero. The rank of a matrix 

is then defined as the maximum number of linearly independent rows or 

columns of the matrix. For an n x n matrix, a determinant of zero 

implies a rank less· than n. 

Returning to the definition of the pseudoinverse of a m x n matrix, 

A of rank r, denoted by A""" , then: 

(A.I.2.8 ) 

where 

A = BC 

and B is m x. r, C is r x n and both B and C are of rank r. From 

equation (A.I.2.8) it is obvious that the pseudoinverse of a m x n 

matrix is an n x m matrix. A complete disCUSSion of the matrix pseudo-

inverse can be found in IJeutsch (27). 

Another matrix property that is referred to is that of a positive 

definite matrix. A real, symmetric (aij = a ji, i,j = 1, ••• , n) 

matrix A is said to be positive definite if the quantity b, 

b =l Ax 

is non-negative for all ! f Q and zero only if x = o. Similarly, A 

is positive semidefinite if b can be zero for some x f O. 
. - -
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The remainder of this APpendix deals with some basic definitions 

associated with random proceSscs. Initially the concept of a random 

variable must· be defined. Simply, a random variable X is a function 

whose values depend upon the outcome of a chance event. Here capital 

letters are used to denote random variables while lower case letters 

stand for particular values in the range of the random variable. 

Random variables may be discrete or continuouS. A random variable 

X is said to .be discrete if its range forms a discrete (countable) set 

of real numbers, while X is continuous if its range fonns.a continuous 

(uncountable) set of real numbers and the probability of X equalling 

any single value in its range is zero. 

If X is a discrete random variable then the probability function 

for X is a function of the real variable x and is denoted: 

PX (x) = p (X = x) for all real x 

The distribution function for a random variable X is defined and 

denoted as: 

F (x) = P (X ~ x) 

Hence F(x) gives the total accumulation of probability for X equalling 

any number less than or equal to x. 

If X is a discrete random variable, then: 

F (x) = L PX (x) 
x 

\\hen X is a continuous random variable then the concept of a 

probability density function is valuable. The probability density 

function is denoted by fX(x) and is related to the distribution 

function according to 

fX(x) = ~ F (x) 

and F(x) = P(X ~ x) = J 
_00 
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The expected or mean value of a random variable X is given by: 

I-1x = E (X) = L x Px (x) discrete X 

range 
of X 

00 

I-1x = E (X) = f x fX (x) dx continuous X 
-00 

The variance of a random variable is denoted by: 

0 2 = E ( (X _ I I )2) 
x t-"x 

A random vector, denoted!, is a vector wnose components are each a 

random variable. The above notation for one-dimensional random variables 

may be extended to the n dimensional Case and the joint distribution 

and density functions are given by: 

F (!) = p (~ ~ xl; 

xi "n. 
F (!) = f'! 

-00 -00 

fX (x) = 

. . . . , 

fJc <!) dxl . . dx
n 

X ,,;; x ) 
n n 

Knowledge of the n dimensional density function fX <!) enables the 

one dimensional density function fXl (Xl) to "be determined. This "is 

called the marginal density function for Xl and is found by integrating 

fX "(!) over x 2 to xn ' Le. 

00 00 

fXl (Xl) = f·· f fx <!) dx2 dx3 .•• dxn 
-00 -00 

The expected or mean value of a random vector is given by: 
00 

1-1 ~ = E (~) = f! fx (!) d! 
_00 

A measure of how . . , 
variance matrix and is defined by: 

X vary together is called the co
n 
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One of the most important concepts in the application of proba-

bility theory is that of independent random variables. n random vari-

ables are said to be independent if the joint density function or 

probability function will factor into the product of the marginals, i.e., 

... discrete 

continuous 

Another statement which is true for the random variables Xl·' .•. X to 
. n 

be independent may be Written in terms of the joint distribution function, 

i.e. , 

(x ) 
n 

If the above statements are not true then the random variables are 

dependent, and it is necessary to define a conditional probability 

function. Suppose Xl and X2 are jointly discrete random variables, 

then the conditional probability function for Xl' given X2 = x2 is 

defined to be: 

If Xl and X2 are continuous random variables, then the conditional 

density for Xl' given X2 = x2 is given by 

Of particular interest in estimation theory is the concept of a 

random or stochastic process. The estimation theory used in this work 

is limited to discrete random processes.. A discrete .random process is a 
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Sequence of random variables which are indexed according to their time 

of occurrence, i.e. Xk is the random variable at the kth time blterval. 

A sequence of random variables may be described by the probability 

distributions and density functions discussed above. 

A parameter of particular importance is the expected value of a 

random variable or vector at the k+l th time increment, !ktl' given that 

the sequence of random variables .!t to !k have· occurred. 

ditional expectation is defined by: 
00 

E~+1/!l' "", !k) = £4.+1 f! (:!l' ••• , :!k+1) ~+l 
fx (:!l'····' 4.) 

The con-

Further information and definitions for random processeS may be 

found in· Papoulis (28). 

362 



APPENDIX II 

PROCESS DATA VALIDATION CHECKS 
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, 
A.II.t List of symbols 

A 

aij 

b 

Cp 

D 

dij 

Ds 
ei 

e(D) 

e(dij ) 

!~) 

e(gi) 

e(~)g. 
J 

E 

FA 

f 

f. (l:) 
J 

ll. 

il-;"w ; 
A 

H~; Ht; 

I 

k 

L 

1 .. 
l.J 

1 

constraint matrix 

.. th 1 t fA 1.J e emen 0 

vector 

specific heat 

square matrix 

ijth element of D 

distillation column product 

relative error 

matrix of error coefficients in D 

ijth element of e(D) 

vector of error coefficients in ll. 

ith element of e(ll.) 

error in solution g. when matrix error 
1. 

coefficients are chosen to maximise 

solution vector error matrix 

distillation column feed 

vector 

non-linear constraint equation 

vector 

Wlit matrix 

fraction 

square matrix 

ijth element of L 

number of constraint equations 
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chu/lb.mole 

Ib.mole/hr 

various 

various 

Ib.mole/hr 

chu/lb . mole 



m 

m 

s .. 
l.J 

T' 

~B 

Greek 

o 
Ri 

bottom product flowrate from column B 

reflux flowrate 

vector of process measurements 

ith element of m 

number of process measurements 

condenser heat load 

distillation column heat loss 

reboiler heat load 

q line 

diagonal matrix 

ijth element of S 

temperature of column B overhead liquid 

temperature of column B subcooled overhead 

liquid 

temperature of column B overhead vapour 

overhead vapour flowrate from column A 

vapour flowrate below feed point in column A 

overhead vapour flowrate from column B 

bottoms product flowrate from column A 

bottoms product flowrate from column B 

vector of predicted process measurements 

ith element of Z 

vector of Lagrange multipliers 

latent heat 

measurement noise standard deviation 

sum of squares cost function 

vector of constraint equations 

Ib.mole/hr 

Ib.inole/hr 

various 

chu/hr 

chu/hr 

chu/hr 

Ib.mole/hr 

" 11· 

" 11 

" n 

n It 

-. 
various 

chu/lb.mole 

various 



Subscripts 

i 

A 

B 

Superscripts 

L 

T 

V 

- 1 
, 

variable i 

distillation column A 

distillation column B 

overhead product from column B 

feed to column A 

overhead vapour from column A 

overhead vapour from column B 

bottoms product from column A 

liquid 

transpose 

vapour 

inverse 

stripping section of column A 
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A.II.2 Sensitivity analySis 

Section 2.1 reviewed methods due to Ripps (35) and Nogita (36) for 

detecting instrument malfunction when the process measurements were 

related by linear equations. 

A least squares criterion was proposed to predict a consistent set 

of data 1. from a set of measured data !!!. This was written: 
m· 

= L (A.I1.2.1) 
i=1 

It was assumed that the measurements were related by linear relationships 

yielding the constraint equations: 

4J. = 
J 

m 

L 
i=1 

j = 1,2, •••• 1 (A.II.2.2) 

Now equation (A.II.2.1) may be minimised subject to the constraints 

(A.II.2.2) by introducing lagrange multipliers resulting in the solution: 

where: ~ 

1. 

A 

S 

is an (l.xl) 

is a (mx1) 

is an (l.xm) 

is a (mxm) 

2 

0 2 
i 

vector of lagrange multipliers 

vector of the estimates of the 

matrix of constraint 

matrix with 

s .. = 0 
l..J 

equation 

ifj 

11 is a (mx1) vector with 
2mi 

=-~ o 2 
i 

(A.n. 2.3) 

process measurements 

coefficients 

The solution given by equation (A.II.2.3) is valid only if the 

constraint coefficients a .. are known with certainty or are assumed as 
Jl.. . 

such. However, in fonnulating the constraint equations (A.II.2.2) often 



a.. will be subject to lUIcertainty, as for example in the case of 
J~ 

enthalpy coefficients in heat balances. It is then necessary to examine 

the ·sensitivity of the solution vector to this uncertainty in the co-

efficients a.. and detennine whether this invalidates the malilUlction 
J~ 

detection algorithm. 

Equation (A.II.2.3) is simply the solution of a set of linear 

equations. In order to develop a sensitivity analysis a general set of 

linear equations may be written as: 

D~ = f (A.II.2.4) 

where D = [:T :] 
~ = 

[;] 
f = 

[!] 
If e(D) denotes the matrix of errors in the coefficients of matrix 

D then Dwyer (38) shows that the change in the solution vector ~~) is 

given by: 

(A.II.2~S) 

Now usually the actual value of e(D) is lUIknOwn but often a bOlUld on 

each error is definable. In such caseS it is possible to detennine 

the maximum errors associated with each element g. 
. ~ 

of the solution 

II -1 . 
vector Hi' Reca. that ~ = D 1. and so equat~on (A.II.2.S) may be 

written: 

.!:.~) = D-1 
(- e(D) Hi) (A.II.2.6) 

For a two dimensional problem this equation written in full 

becomes: 
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[
e (g1)] = 

e (g2) 

112] [- e 

122 _ - e 

where the matrix L = D-1. Multiplying out gives: 

(A.II.2.7) 

(A.II.2.8) 

Now by inspection of equation (A.11.2.7) it can be Seen that the error 

in g1' e(g1)' may be maximised by choosing the signs of e(d11 ), 

e(d12 ), e(d21 ) and e(d22 ) to be identical with those of -111g1' 

-111g2' -112g1 and -112g2 respectively. 

e(g1) • When these values e(diJ·) 

This error is denoted as 

g1 
are substituted into equation 

(A.11.2.8) they result in a value of which 

correspondS to the maximum error e(g1) . By similar reasoning, the 
g1 

values of e(d .. ) may be chosen to maximise the error in g2 by 
1J -

examining equation (A.II.2.8) and choosing appropriate error signs. 

This results in an error e(g2) and a corresponding error in gl' 
g2 

denoted e(g1) , found by substituting the chosen errors e(d .. ) into 
g2 1J 

equation (A.11.2.7). 

These solution vector errors e(g.) may be combined to give a 
1 gj 

matrix of error coefficients of the general form: 

E= 

• (A.II.2.9) 

. -
• 
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A.II.3 Illustrative example: Distillation column mass and heat balallce 

This sensitivity allalysis was applied to the data validation method 

of llipps and Nogita by considering a mass and heat balance arowld all 

industrial distillation column situated at Works A. 

A schematic diagram of the column is shown in Figure A.n.l. 

The following notation is adopted in Figure A.II.l: 

* F = 
A 

V = 
A 

* W = 
A 

Q*= 
R 

VB = 

* ~ = 

= 

feed to column A 

overhead vapour flowrate from column A 

bottoms product from column A 

re boiler heat load for column A 

overhead vapour flowrate from column B 

reflux flowrate to column B 

column B product flowrate 

column B condenser heat load 

* W B = L A = bottom product flowrate from column B 

~ = hea t loss from both columns. 

The measured process variables are denoted by an asterisk. Now the 

constraint equations relating the process measurements are formulated 

by conSidering material and heat balances around the column as follows: 

1 ) Overall Mass Balance: 

(A.n.3.1) 

2) Overall Heat Balance: 

(A.n.3.2) 

were ~ = enthalpy of the feed 

MwA 
= enthalpy of the liquid WA 

HIla 
= 11 11 11 11 

Ila 
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, 

V
A 

- c 
VB 

~f-

f4- ~ -r Ds 
LA 

A B 

" F"A 

Q 'i} 

R 

< Y 

W"" 
B . 

~ 
* WA 

FIGURE A.I!.l Schematic illuatration of distiJJ.ation colUmn. 

* denotes a process measurement. 
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Now % may be derived by considering a heat balance over the condenser, 

i.e. , 

where Ay = latent heat of vaporisation of vapour VB 
B 

C = specific heat of vapour VB 
Py 

B 
C = specific heat of condensed vapour VB 

PL 

T = boiling point of column B overhead liquid 

temperature of vapour VB 

temperature of column B subcooled overhead liquid. 

However, VB = ~ + Da and 

writing 

equation 

3) Mass Balance on the vapour: 

y = V' + (1 - q) F -
B A A 

~+ 
AV' 

QL 
(1 - q) F - --

A Ay 
A B 

where q = heat of vaporise 1 mole of feed FA 

molar latent heat of the feed FA 

, 
V

A 
= vapour below the feed point in column A 

A ,= latent heat of vaporisation of vapour v
A
' VA 
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4) Liquid balance on colWDn B: 

but LA = wB 
QL 

so lis = La + kAv 
B 

+ La HDa 
AV 

B 

(A.II.3.5) 

where k is a constant denoting the proportion of the total heat loss 

from coluinn B. 

The. constraint equations (A.II.3.1), (A.II.3.3), (A.II.3.4) and 

(A.II.3.5) may be written in the matrix fom of equation (A.n.2.1) as 

~ = AI = 0 (A.II.3.6 ) 

where A = 
1 -1 0 0 o - 1 o 

-Mw 1 0 
A 

-(AV+H1ifli-(Hn .. +Av +H1+P.)-1 
B -8 B 

-1 
-(l-q) 0 AV' 0 

A 

H 

(1 + A~) 
B 

1 

H 1 
0 0 0 1 -( 1 +~) 0 -:kf 

VB 
AV

B 

and I = FA 

WA 

QR 
WB 

La 
Da 
QL 
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The important feature of these constraint equations is that many of 

the elements of matrix A are entha1py terms which themselves are functionS 

of temperature and pressure process measurements and therefore subject to 

some uncertainty. 

In order to examine the effect of this uncertainty, the masS and 

heat balance was closed by choosing the following parameters. 

A = 1 -1 0 0 0 -1 0 

1188.49 -1584.55 1 0 -4901.9 -6089.29 -1 

-1.34 0 -o.2203x1O-3 0 1.2465 1 0.2073x10-3 

0 0 0 1 -1 0 0 

and a vector of true measurements: 

I: = 194.712 1b.mo1e/hr 

18.1 " " 
0.138785 x 108 chu/hr 

1934.72 1b.mo1e/hr 

1934·72 " " 
176.612 " " 

0.352202 x 107 chu/hr 

To demonstrate the use of Nogita's serial elimination algorithm 

several simulations were performed. 

The parameters of the constraint matr;ix A were chosen to be correct 

and assumed constant, while the measurement noise standard deviations 

were selected to be approximately S% of nanina1 measurementS. This 

results in a vector of measurement standard deviations of: 

10 

1. 

0.5 x 106 

100 

100 
10 

0.5 x 105 
374 , 
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The measurement correlation matrix was assumed to be the Wlit matrix 

I, i.e. 

1. o. 

1. 

o. 
1. 

The experiments performed are given in Table A.n.l, where the 

measurement errors are defined in terms of a relative error: 

Simulation Predicted Predicted True Relative 

number measurements 
in error Yi value true 

Ml - 194.71 194.712 0 
18.1 8 18.1 8 0 

0.138786 x 10 0.138785 x 10 0 
1934.73 1934.72 0 
1934.73 1934.72 0 
176.611 176.612 0 

0.352202 x 107 0.352202 x 107 0 

M2 1, 4, 5 194.473 194.712 ~ 6 
18.6 8 18.1 8 -0.5 

0.138655 x 10 0.138785 x 10 -0.003 
1932.73 1934.72 0.2 
1932·73 1934.72 0.2 
175.87 176.612 0.1 

0.35222 x 107 0.352202 x 107 0 

M3 1, 2, 4 194.8 194.712 -6 
19.79 18.1 8 -6 

0.138756 x 108 0.138785 x 10 -0.003 
1935.58 1934.72 0 
1935.58 1934· 72 0 
175.01 176.612 0.1612 

0.352204 x 107 0.352202 x 107 0 

TABLE A.n.l. Detection of measurement data inconsistencies on a 

distillation column • 
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error 

Found 

0 
0 
0 
0 
0 
0 
0 

- 6.023 
0 

-0.029 
0.18 
0.18 
0.027 
0 

- 6 
.,. 4.31 

-0.0088 
0.0088 
0.0088 

0 
0 



The results presented in Table A.II.1 illustrate the power of 

Nogitafs technique for detecting errors in process measurements, when the 

constraint equation coefficients are deterministically known. In the 

simulations MZ and M3, the method makes it clear which process measure-

. ments contain gross errors. 

However, when there is uncertainty in the constraint equation c~ 

efficients a sensitivity analysis should be perfonned. Consider again 

the constraint equations defined in equation (A.II.3.6). Many of the 

A coefficients are enthalpies or latent heats which were estimated from 

process measurements of temperature and pressure. Of course these 

measurements themselves are subject to errors (both' small random and' 

gross errors). It was determined that a ZoO temperature measurement 

error resulted in the following coefficient errors: 

= so chujlb.mole 

= 0.000005 lb.mole/chu 

= 0.05 

The sensitivity of the solution of equation (A.II.Z.3) to these 

coefficients errors was detennined by implementing equation (A.II.Z.6) 

and examining the max:imum errors in the solution vector uSing the method 

. discussed in deriving equations (A.II.Z.7) and (A.n. 2.8). The results 

of two sensitivity analyses are given in Tables A.n. Z and A.II.3, and 

are presented as a matrix of solution vector errors, E, corresponding to 

the predicted measurement vector :t.. 

Table A.II;Z shows the E matrix when the enthalpy coefficients ~, 

flwA and HIla of the constraint equations can each have an error of 50 

chu/lb.mole . 
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enthalpy errors, since the maximum solution vector errors are well 

within the measurement standard deviations. Hence the measurement 

error achieved in calculating enthalpies from process temperatures does 

not particularly hinder the operation of the grosS measurement detection 

algorithm. 

Table A.II.3, however, details the solution vector error matrix E 

when the constraint coefficient lfAv' has an error of 0.000005 lb.mole/chu. 
A . 

The results show that the maximum errors in the solution vector are now 

quite Significant. For example, the predicted measurement Yl can have 

an apparent error of 25 lb.mole/hr which is 2.5 measurement standard 

deviations. These solution vector errors would manifest themselves as 

gross measurement errors when a set of heat and mass balance data are 

analysed using Nogita's data consistency check and hence yield an incor-

rect solution. 

This feature is illustrated by examining the check method when the 

constraint equation coefficient 1 lA V ' has an "unknown" error of 0.000005. 
A . 
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25.11 0.24 
6 

- 0.84 x 10 - 201 - 201 24·9 0.2 x 105 

25.11 0.24 
6 

- 0.84 x 10 201 - 201 24.9 0.2 x 105 

-25.11 -(). 24 .0.84 x 10
6 201 201 -24.9 -0.2 x 105 

-25.11 -0.24 0.84 x 106 201 201 -24·9 -0.2 x 105 

-25.11 -0.24 0.84 x 106 201 201 -24·9 -0.2 x 105 

25.11 0.24 -0.84 x 106 -201 -201 24.9 -0.2 x 105 

25.11 0.24 -0.84 x 106 -201 -201 24·9 -0.2 x 105 

TABLE A.I1.3 Matrix of measurement error coefficients: 

coefficient in error. 

1/A I constraint 
VA 

1he constraint equations, measurement standard deviations and parameters 

have been given earlier. 

Table A.II.4 ·shows the resultS of two simulations. 

In simulation S1 there were no process measurement errors. Nogita's 

algorithm knows nothing of the constraint equation uncertainty and pro-

cesses the measurements in the usual manner. The final result is a 

suggestion that the measurements QR and QL contain groSs errorS, 

although the predicted value of the heat loss QL' is negative (i.e., 

there is a heat input to the distillation column), which is nonsense. 

However, this type of solution is not altogether valueless since it may be 

able to USe such results as an inference of which constraint equation 

coefficient is in error. 

The case of a gross meaSurement error and an uncertain constraint 

equation coefficient is more difficult to analyse and the simu-

lation S2 in Table A.II.4 details the· results of Nogita's algorithm. 

The method suggests measurements 1, 2 and 4 are in error, which is correct 

with respect to measurement Y1' However, the predicted measurements Z 

are nonsense and would inspire little confidence in these suggestions. 
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i 
I 

Simulation Predicted Predicted True value Relative error 

number measurements 
in error Yi True Found , 

I 

Sl 3,7 194.7 194.712 0 0 
18.1 8 18.1 8 0 0 

0.100238 x 10 0.138785 x 10 0 -7.71 
1934.69 1934.72 0 0 
1934.69 1934.72 0 0 
176.6 176.612 0 0 

'-3.3255 x 105 0.352202 x 107 0 -77.1 

S2 1,2,4 146.43 194.712 ~ -10.83 
- 29.19 8 18.1 8 -0.5 -47.8 

0.138681 x 10 0.138785 x 10 -0.003 -0.024 
1937.36 1934.72 0 0.0026 
1937.36 1934.72 -0.003 0.0024 

175.622 176.612 0.1 0.0022 
0.352214 x 107 0.352202 x 107 0 0.0024 

TABLE A.I1.4 Detection of measurement data inconsistencies on a distillation 

colmnn; subject to constraint equation uncertainty. 

These results demonstrate that care is needed in making assumptions 

about the nature of the constraint equation coefficients. If these 

coefficients are not deterministic, then the particular application of the 

detection method will determine to what degree the performance is degraded. 

The sensitivity check derived earlier provides an insight into this 

phenomenon. 

A.II.4 Process data validation check when the constraint-equation 

coefficients are uncertain 

The problem of uncertain constraint equation coefficients may be 

solved by treating these coefficients as additional process measurements 

with a corresponding measurement error standard deviation. In tlrill case 
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the least Squares criterion of equation (A.U.2.l), i.e., 

m 

= 1:: 
i=1 

(A.II.4.1) 

can stilJ. be minimised, but the constraint equations are now non linear, 

i.e., equation (A.II.2.2) becomes: 

= f.Cl:) = 0 
J 

j = 1.2, ••• 1 (A.II.4.2) 

The minimisation of equation (A.II.4.1) subject to the non linear 

constraints of equation (A.II.4.2) may be solved directly as an optimisa-

tion problem by using standard techniques, e.g. penalty function optimisa

tion, or the problem may be transformed into the solution of a set of non 

linear simultaneous equations by introducing lagrange multipliers. This 

latter approach is ilJ.ustrated here. 

In this example, the maSS and heat balances around the distillation 

column are considered again, except that.the uncertain coefficient 1/A V' 
A 

is treated as a further process measurement, yS' to be estimated. The 

set of constraint equations which are equivalent to equation (A.II.3.6) 

become 

ljJ2 = a 21 Y1 - a 22 Y2 + a 23 Y3 - a 25 Y5 - a 26 Y6 - a 27 Y7 = 0 

(A.II.4.4) 

ljJ 3 = -31 Y1 - Y3 YS + a35 Y 5 + a 36 Y6 + a 37 Y7 = 0 

(A.U.4.5) 

= o 

and the vector of measurements to be predicted is : 

3S0 



~ = 
FA 

WA 

QR 

~ 
La 
Da 
QL 

1 
fAV' A 

Now equation (A.II.1.1) is minimised subject to equation (A.II.4.2) 

by introducing the lagrangian multipliers "1 to "4 which results in 

the following set of non linear simultaneous equations 

022 (Y1- m1 ) +aU"l+ a 21 "2 - a 31 "3 = 0 

1 

(A.II.4.7) 

0 22 (Y2- m2 ) - a12 "1 - a 22 "2 
2 

022 (Y3- m3 ) + a 23 "2 - Y8 "3 

3 

2 
Q2 

5 

2 

o 2 
6 

2 

Q2 
7 

= 0 (A.II.4.8) 

= 0 (A.II.4.9) 

= 0 (A.II.4.10) 

(A.II.4.11 ) 

(A.II.4.12) 

(A.II.4.13) 

= 0 (A.II.4.14) 

Given a set of process measurements mi , measurement standard devia-

tions o i' i = 1, 8 and the coefficients a .. defined. earlier, equations 
~J . 
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(A.II.4.3) to (A.II.4.l4) can be solved for the vector of unknown 

(~ , ll· 
The detection of gross measurement errors may be performed using 

Ripp's suggestion of discarding elements from the baSic least squares 

criterion in equation (A.II.4.l), i.e., 

.0 = [ Oi(Yi~:i)2 
i=l 

(A.II.4.l5) 

where 0. = 0 
~ 

if element i is discarded 

= 1 otherwise. 

The consequence of this new least squares criterion in equation (A.II.4.l5) 

is simply to modify the first term in equations (A.II.4.7) to (A.II.4.14) 

to 20i (y.- m.). Gross meaSurement errors are then determined by (j2 ~ ~ 

i 
examining p when measurementS are discarded, and the minimum .0 usually 

coincides with the gross measurement errors. 

This technique is illustrated by using the same parameters as before 

with ° 8 = 0.000005, and repeating simulations 81 and 82, denoted NS1 and 

NS2 respectively. The set of nOn linear equations (A.II.4.13) to 

(A.II.4.14) were solved uSing Powell's method for minimising a sum of 

squareS without calculating the derivatives. 

Table A.H. 5 shows how the least squares criterion .0 varies as 

measurements are discarded from the problem formulation for runs NSl and 

NS2. 

The predicted data set corresponding to the minimum .0 in each run is 

presented in Table A.II.6. Run NS1 shows that the method is able to 

cope with the uncertain constraint equation parameter lAy. by estimat
A 

ing it as well as the other process measurements. Run N82 contains both 

t . d . lAy·' a gross measuremen error ~ m1 an an error ~ A • The results 
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SiJnulation N51 Simulation NS2 

Discarded Discarded 
measurements ~ measurements ~ 

0 0.8566 0 20.633 
1 0.8387 1 0.820 
2 1.3776 2 4.452 
3 0.8526 3 20.495 
4 0.8464 4 46.228 
5 0.8464 5 20.630 
6 0.8390 6 4·727 
7 1.1063 7 20.379 
8 0.000233 8 18.264 

1 ; 8 0.000232 1 ; 2 0.00216 
2 ; 8 0.486 -14 1 ; 3 0.817 
3 ; 8 0.13 x 10 1 ; 4 0.810 
4 ; 8 0.000176 1 ; 5 0.811 
5 ; 8 0.000176 1 ; 6 0.113 
6 ; 8 0.000232 -18 1 ; 7 0.795 
7 ; 8 0.139 x 10 1 ; 8 0.879 x 10-4 

TABLE A.II.5 Variation of ~ in non-linear distillAtion column problem. 

Simulation Predicted Predicted True value Relative error 
number measurements Yi True Found in error 

NS1 7 ; 8 194.712 194.712 0 0 
18.1 8 18.1 8 0 0 

0.138879 x 10 0.138785 x 10 -0.0188 0 
1934.72 1934.72 0 0 
1934.72 1934.72 .0 0 
176.612 176 .612 0 0 
0.353135 x !~7 0.352202 x 107 0 0.186 
0.2203 x 10 0.2203 x 10-3 - 1· - 1 

NS2 1 ; 8 194.207 194.712 - 6 - 6.05 
18.6 8 18.1 8 - 0.5 0 

0.138763 x 10 0.138785 x 10 - 0.003 - 0.0074 
1935.21 1934.72 0 0.0051 
1935.21 1934.72 - 0.003 0.0021 
175.607 176.612 0.1 0 
0.352206 x 10~ 0.352202 x !~7 0 0 
0.22036 x 10- 0.2203 x 10 -'1 -0.934 

TABLE A.II.6 Detection of measurement data inconSistencies; non-linear 

distillAtion problem. 
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illustrate that the detection method determines these errors and also 

predicts a consistent, accurate data Set. The results presented for 

nms NS1 and NS2 in Table A.II.6 are a vast improvement over those of 

Table A.II.4 where the Wlcertainty in 1/'11. v. was ignored. 
A 

This Appendix has considered a process measurement validation method 

which maybe used to detect gross measurement errors. 'Dle method was 

applied to a typical distillation column and the effect of uncertainty 

in the process measurement linear constraint equation coefficients was 

examined. A method has been suggested whereby the sensitivity of the 

technique to these Wlcertainties may be examined, and it is suggested 

that this analysis Should be perfonned to test the feasibility of the 

method in any particular application. 

If this analysis reveals critical constraint coefficients the 

measurement validation check may still be perfonned by considering the 

Wlcertain coefficients as additional process measurementS. This fonnu-

lation results in an optimisation, subject to non-linear constraints, 

problem. The optimisation was solved here by using Lagrange multipliers 

to transform the problem into the solution a set of non-linear simultane-

ous equations, which were solved using Powell' s method. The serial 

elimination method of Ripps was used to detect malfWlction and simulations 

demonstrated the power of the technique. 
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APPENDIX III 

MFlIRA'S INNOVATION CORRELATION ADAPl'IVE 

ESTIMATOR 
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--- - --------------------------------------------------------

This Appendix describes Mehra IS algoritlun (~7) for a<iaptillg the 

Kalman filter to cope with uncertainty in a priori system information. 

The nomencla ture is the same as that used in Chapter 3. 

Mehra considers the system model described by: 

x (kti) = A x (k) + r.!! (k) 

I (k)· = H x (k) + ~ (k) 

(A.m.l) 

(A.III.2) 

The noise sequences j.!! (k)} and j ~ (k)} are assumed to be zero 

mean Gaussian, white noise sequences with covariances. 

E(,!! (k) l (j» = Q 5 (k,j) 

E~ (k) ~T (j» = R 5 (k,j) 

E(,!! (k) l (j» = 0 for all k,j and Q and Rare 

bounded positive definite matrices. 

The system considered above is also assumed to be completely 

controllable and observable. 

Now Mehra examines the steady state Kalman filter, as guaranteed 

by the constraint of system controllability and observability, for 

which the filtering equations are: 

g (k!k) = ~(k!k-l) + K(z (k) - Hi (k!k-l» (A.III.3) 

K = PHT (HPHT + R)-l (A.III.4) 

P = A (I - KIf) P (I - KIf)T AT+ AKRKTAT+ rQrT (A.IlLS) 

In equations (A.III.4) and (A.III.S) Q and R represent approximations 

to the true noise covariance matrices.' For this case, the covariance 

matrix of the innovation sequence is given by: 

'1.: = E ( Y. (i + k) y-T (i» 

= HPHT + R 
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Since the autocorrelation function is not a function of tme (i), then 

the innovation sequence is stationary, and by virtue of linearity Mehra 

shows it is also GaUSsian • 

. The testing scheme proposed by Mehra is based upon the criterion 

that the innovation sequence be white for the Kalman filter to be 

optimal. This means that if Ck is est:iJDated then the filter is 

optimal if ~ is approximately zero for k > O. The estimate of ~ 

is formed as: N-k 
" 1 
~ = N L ~ (i + k) ~ T (i) 

i=1 
(A.ilI.7) 

with N, the number of sample points assumed to be large. 

The elements of the matrix of the normalized autocorrelation 

coefficients are estimated by: 

" ( Ck )·· 
1J 

where is the ijth element of the matrix P.k • It can be 
1\ 

shown that the probability distribution for (Pk).. is asymptotically 
11 . 

Thus the 9Sfo confidence limits for (P k)' . for k> 0 are 
. l.l. 

Normal. 

+ (1.96/./N). The test for filter opt:iJDality therefore becomes: 

" Compute (Pk)ii' k> 0, for N sample points. If less than 

Sfo of the k values fall outside the band formed by the 9Sfo con

fidence limits, the sequence ~(i) is white and the filter is 

optimal. 

If the above test is not passed, this indicates that the Kalman gain 

used in the filter equation is incorrect. To correct the filter, 

Mehra generates new estimates for Q and R. However, it is first 

necessary to est:iJDa te PHT 

NOW, using equation (A.TII.6), Mehra shows that an est:iJDate of 
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puT is given by 

AT A Ft 
PU=KC+L o 

-------
en 

where LFt is the pseudo inverse of 

L= HA 

HA(I - KH) A 

• 

H (A (I - KH»n-l A 

and r = (LT L)-l LT 

The estimate of R is given by: 

A " "'T R .= C - H (PH ) o 

(A.III.8) 

(A.III.9 ) 

To estimate Q, equations (A.III.9) and (A.III.S) are used, although 

the latter equation cannot be used directly since an estimate of P 

is not available. Equation (A,III.S) may be rewritten as: 

P = APAT+M+fQfT (A.III.l0) 

where M = . A(KCoKT - KHP _ PHTKT) AT 

Now the expression for P is substituted into the right hand side of 

equation (A.III.10). The process is repeated n-l times and the 

following set of equations is generated: 

k[l Aj fQfT (Aj)T = P _ Ak P(Ak)T _ 

j=o 
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If equation (A.ll.ll) :ill premultiplicd by Hand postmultiplicd by 

-k)T T (A H , the result is: 

k-l 
(A-k)T HT _ HA~T _ L HAjM(Aj-k)T HT 

j=o 

k=1, .•. ,n (A.III.12) 

The right hand side of equation (A.III.12) can be computed if PH and Co 

AT " are known. If the estimates of PH and Co are used in equation 

(A.IIl.12) then nm equations will be available to solve for the q2 

unknown elements of Q. Clearly if 2 
q > nm, a unique solution can-

not be found. If the 
2 

q < nm, a solution can be obtained but first 

a linearly dependent subset of equations (A.IIl.12) must be chosen. 

'!he Kalman filter may then be adapted using the computed values of Q 

" and R. 

The adaptation scheme derived above is only applicable if Q hes 

nm or fewer unknown elements. If Q has more than run unknowns or 

unknown structure, then Mehra shows it :ill still possible to estimate 

" an optimal Kalman gain Kopt 

In his paper Mehra describes two related iterative procedures for 

" calculating Kopt • He proves that, for steady state filtering, the 

successive error covariance matrices (obtained at each iteration) con-

verge, i.e. Pj +1 < Pj and Pj > 0, and in conjunction the corres

ponding sequence of Kalman gain Kj converge to some Kopt ' i.e., 

limit 

One gain estimation scheme proceeds as follows. 

i) Let Ko be initial or a priori gain of the filter. . Obtain an 
, 

estimate of Kl using equations (A.IlI.4) and (A.IIl.8) 
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(A.IlI.1;1) 
• 

" C 
n 

and obtain P~HT and R frc:xn equations (A.nI.B) and (A.nI.9). 

ii) ·Define 0 P1 = P2 - P
1 

and then obtain an estimate: . 

~1 = A(I - K1H) O~l(I -·K1H)T AT - A(K1- Ko) Co(K
1
- Ko)T AT 

where P. j = 1, 2 
J 

are the steady state error covariance 
A . 

matrices using Ko and K1 for the filter gains. 

A " 
OP 1 is the estimate of 0 P 1 using K1 

iii) Obtain {i!1 and K2 as follows: 

A . AT A T 
PHT=PH+OPH 

2 1 1 

K2 = {~T (H P;-HT + R )-1 

oocome iv) Repeat steps ii) and iii) until l5Pil 
small with respect to ~ Pi ~ or 11 Kill • 

matrix nonn. 

. refers to a suitable 

.,. 
An alternative way of detennining K2 would be to refilter the 

A 
data sequence (f(k» using K1 and then using equation (A.III.13) 

t\ 
obtain a new K2 . This procedure may then be repeated until conver-

gence is obtained. 

This second measurement refiltering method was used in the present 

work. 
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APPENDIX IV 

FRIEDLAND'S BIAS ESTIMATOR 
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The nomenclature used in this Appendix has been defined in 

Chapter 3. 

In the application of the Kalman filter an accurate model of th~ 

process dynamics and observation is required. If this is not possible, 

then unknown parameters may be. added to the original state vector. 

The filter then estimates these unknown parameters or bias terms as 

well as the original state vector. Although this method is reasonably 

effective when the· number of bias terms is relatively small, a problem 

ariSes when the number of bias terms is comparable to the number of 

state variables of the original problem because of the larger problem 

dimension. Friedland1s paper (109) was thus motivated by the need 

for a method whereby the numerical inaccuracies introduced by computa-

tions with large vectors and matrices could be avoided. 

Although Friedland considers linear continuous time filtering, 

only the diScrete time case will be reviewed· here. 

Friedland writes the system models as: 

x (k+1) = A(k+1, k) ~(k) + Ab(k+1,k) ~(k) + !(k) 

b (k+l) = ~ (k) 

.r (k) = H(k) ~(k) + Hb(k) ~ (k) + .! (k) 

(A.IV.1) 

(A.IV.2) 

(A.IV.3) 

The matrices ~ and ~ determine how the components of the bias 

vector enter into the dynamics and observations respectively and repre-

sent the general case. 

Now an augmented state variable model may be written frOm equations 

(A.IV.I) - (A.IV.3) as: 

where 

z (k+l) = F(k+1,k) i. (k) + G !: (k) 

.r (k) = L(k) ~ (k) + .! (k) 
• 

~ (k) = 

t~-~~~j 
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~'(k+1,k) = 

[

A (k+l, k) : ~ (k+l, k) ] --------1--------
I 

o t I . 

G = 

L(k) = [H (k) : '\, (k)] 

Direct application of the Kalman filter of section 3.4 results in: 

g(k/k) = F(k,k-l) ~(k-l/k-l) + K(k)(r(k) - L(k) F(k,k-l) g(k-l/k-l» 

K(k) = P(k/k-l) LT(k) (L(k) P(k/k-l) LT(k):+ &(k»-l 

P(k/k-l) = F(k,k-l)P (k-l/k-l)FT(k,k-l) + G Q (k-l) UT (A.IV.4) 

The error covariance matrix P(k/k-l) may be partitioned as: 

P(k/k-l) = 

where: 

Px (k/k-l) = variance of the original state x 

Pb (k/k-l) = variance of the bias b 

P xb (k/k-l ) = covariance of ! and ~ 

Now by partitioning of the other matrices in a similar fashion and 

uSing a transformation of the variance e·quation (A.IV.4), Friedland 

derives the following recursive algorithm for estimating the bias ~(k). 

The subscript x refers to matrices calculated by ordinary bias-free 

Kalman filtering. 

U(o) = 0 : M(o) = Pb(o) 

S(k) = H(k) U(k) + '\, (k) 

V(k) = U(k) - Kx (k) S(k) 

~ (0) = 0 
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M(k+1) = M(k) - M(k) ST(k) (H(k) Px (k/k-1) HT(k) + R (k) 

+ S(k) M(k) S7 (k»-l S(k) M(k) 

~ (k) = M(~l) (VT(k) HT (k) + Hb(k» R-1 (k) 

1\ . /"< .1\ 

~(k/k) = (1 - ~(k) S(k» .!!(k-1/k-l) + ~(k) (z(k) - H(k) ,!(k/k-1» 

U(k+1) = A(k+1,k) V(k) + Ab(k+ 1, k) 

A 
In this algorithm Kx(k), Px (k/k-1) and ,!(k/k-1) are calculated 

from the usual Kalman filter as if there were no bias .!!(k) present. 

ThuS the result of Friedland's variance transformation is that the 

problem of estimating the state ,! in the presence of a constant but 

unknown bias .!! is decomposed into two separate tasks. The first part 

is the standard Kalman filter algorithm that generates an estimate of 

the state vector ~(k/k) as if there were no bias present. The second 

filter due to Friedland estimates the bias vector b(k/k) from the 

innovation sequence generated by the "bias-free" Kalman filter. 

Finally, Friedland shows that the "bias-free" estimate of the state 

f(k/k) and the estimated bias f(k/k) may be combined to form an optimum 

state estimate 
A' 
::!;(k/k) according to: 

~ '(k/k) = ~(k/k) + V(k) ~(k/k) 

Recent extensions of Friedland's technique to cover time varying 

bias and randomly varying bias estimation have been given in references 

(110), (111). 
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-- - -_. ------------

APPENDIX V 

MARKOV RELIABILITY MODElS . 
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A. V.1 List or symbols 

k1 ) 
) constants in hazard rate equation 

k2 ) 

ps.(t) probability of being in state 
~ 

s. at time t. 
~ 

P. . transition probability from state i to j. 
~J 

R(t) system reliability . 

. th 
~ system state. 

T random variable associated with time 

t time 

D.t time increment 

time on time scale t 

X random variable associated with the system state. 

z(t) hazard rate 

Greek letters 

failure rate 

Subscripts 

0, 1, 2 state 0, 1 and 2 

i state i 

j state j 
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failures 

(Wlit time)2 

time units 

" " 
" " 
" " 

failure 
Wlit time 

failure 
Wlit time 



A.V.2 Markov processeS (118), (120) 

Markov models play a central role in relia bili ty theory. Markov 

models are a fWlction of two random variables, the state of the system 

X and the time of observation T. Reliability theory is usually con-

cerned with the discrete-state continuous time Markov process. 

A Markov model is defined by a set of probabilities P.. which 
" . ~J 

define the probability of transition from any state i to any state j. 

The important feature of a Markov process is that the future stateS of 

the process depend only on its immediate past history, i.e. the transi-

tion' probability P ij depends only on states i and j, and is com

pletely independent of all past states except the last one, state i. 

In order to formulate a Markov model it is first necessary to 

define all the mutually exclusive states of the system. For example, 

in a system composed of a single equipment there are two possible 

sta tes : So = Xl' the element is good, sl = Xl' the element is 

failed. The states of the system at time t = 0 are called initial 

states,and those representing a final state are called final stateS. 

The set of Markov state equations describes the probabilistic transi

tions from the initial to the final states and the transition proba':" 

bilities must obey the following rules: 

i) The probability of transition in time 11 t from one state to 

'another is given by z(t) 11 t where z(t) is the hazard associ-

ated with the two states in question. 

ii) The probabilities of more than one transition in time 11 t are 

negligible • 

Although Markov models have been extenSively used some conceptual 

difficulties were enc,ountered in the course of this work. 
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Consider a single equipment with an overall constant hazard rate 

A failure/tmit time. o 

lJefin· s d :mg . 0 an sl as good and failed sta tes, Ps (t + I::. t) 
o 

and P
Sl 

(t + I::. t) as the probability of being in states So and sl 

at time ·t +1::. t, and Ps (t)" and Ps (t) as the probability of being 
o 1 

in state So and sl at time t then the Markov state equations are: 

P (t +1::. t) = (1 - A I::.t) P (t) 
So 0 So (A.V.2.1) 

P (t + I::. t) = A I::. t Ps (t) + Ps (t) 
Sl 0 0 1 

(A.V.2.2) 

These equations yield, in the limit, the first order differential 

equations 

dPs 
(t) + Ao Ps (t) 0 0 = 

d't 0 
(A.V.2.3) 

dP
Sl (t) = A o Ps (t) 

d't 0 
(A.V.2.4) 

Equations (A.V.2.3) and (A.V.2.4) may be solved using laplace 

transforms with the initial conditions (Ps (0), Ps (0» to yield: 
_ Aot 0 1 

Ps (t) = Ps (0) e (A.V.2.S) 
o 0 

and = 1 - Ps (0) 
o 

(A.V.2.6) 

Now the reliability of the Single equipment is the probability of being 

in state s i.e., o 

R(t) (0) e 
-A t o 

(A.V.2.7) 

Suppose the single equipment is now considered to have 3 states, 

Le., So is the good state, sl is an unhealthy state (equivalent to 

a degrading equipment) and s2 is the failed state. Then the Markov 
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. graph becomes (118): 

FIGURE A.V.l Markov.graph for an equipment with a single degraded State. 

In this process AOl tJ. t is the probability of the equipment 

. moving from a good to a degraded state, X 12 tJ. t is the probability 

of moving from the degraded to the failed state and A 02tJ. t is the 

probability of the equipment failing directly. 

The Markov state e qua tions are: 

. Ps (t +tJ.t) = (1 - (X + X )tJ.t) Ps (t) 
.0 02 01 0 

(A.V.2.8) 

Ps (t +tJ. t) = X tJ. t Ps (t) + (1 - A 12tJ. t) Ps (t) (A.V.2.9) 
1 0 1 0 1· 

P (t +tJ. t) = A tJ. t P (t) +A12tJ. t Ps (t) + Ps (t) (A.V.2.i0) 
s2 O2 So 1 2.. 

Solving the resultant differential equations, subject to the initial 

conditions P (0), P (0) and P (0) gives: 
So sl s2. 

~(A +A )t 
p(t) = P (0) (1· _ e 01 02 ) 

So So 

-A t 
Ps (t) = Ps (0) e . 12 + 

1 1 

1 
P (t) = 1 - L 
s2 

i=o 

P (t) 
si· 

(A.V.2.11) 

(A.V.2.12) 

(A. V .2.13) 

The equipnent reliability may be defined as the probability of not being 

in state. s2' i.e. 

R(t) = 1 - PS2(t) = Ps (t) +. Ps (t) 
o 1 
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-A t 
+ Ps (0) e 12 

1 

(A.V.2.14) 

Now the three state single equipnent model is characterised by 

the hazard rates A 01 ' A 02,A 12 but how these coefficients are 

specified is not trivial. Intuitively, it may be postulated that A02 

represents the nmnber of failures/unit time which do not fail through 

a degraded state. Also it may be expected thatA 12 > A01 or A02 

since this represents the failure rate of a degraded equipment and 

represents a wearing out phase of the equipnent. 

However, the fact that the single equipment has been represented 

by a three state Markov model should not affect the overall equipnent 

failure rate and reliability as given in equation (A.V.2.7), thus 

equation (A.V.2.1.4) should reduce to this. 

Unfortunately this is impoSSible because the 3 state fonnulation 

is fundamentally a different model. For example, an analogy is two 

stirred tanks in series. No matter how the time constants are chosen 

for the tanks, the dynamic responSe will never be the same as a single 

stirred tank although the responses can be very close. By appropriate 

selection of A 01' A 02 and A 12 it is poSSible to achieve the same 

overall equipnent failure rate A 0 but the reliability functions will 

never be quite equal (except lihen A 0 = A 01 + A 02 and A 12 = - ). 

Thus the introduction of additional Markov states to represent" 

the degradation of an equipment yields a model which does not satisfy 

intuitive conceptions of single equipment reliability. 
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In the above fonnulations, ·it was assumed that the equillment 

hazard rates were constants. Although the Markov fonnulation can 

handle time varying hazard rates (118) of the type shown in Figure 

A.V.2a, the method breaks down for the hazard shown in Figure A.V.2b. 

z(t) 
z(t) 

t 
a b 

FIGURE A.V.2 Time dependent hazard models. 

For the model shown in Figure A.V.2b, the. hazard for t > tm is 

Thus the state proba-

bilities will be functions of t and t and the technique is no 
m 

longer directly applicable. Shooman (118) has discussed this problem 

in some detail, and suggests that in such situations the analysis 

should be perfonned using a joint density flDlction or compolDld events 

approach. The joint density function method is particularly conveni-

ent for incorporating information from a malfunction monitor into the 

analysis, whereas the use of such information with a Markov process is 

not so well defined. 
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