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CHAPTER l 



SUMMARY 

1 • A Steady State model has been developed which characterises the Steady 

State profile of a continuous distillation column with a total condenser. 

lt takes into account the non-ideality of the system under investigationo 

The system being Acetone, Methanol, and Isopropyl Alcohol. 

Experimental results have been obtained and comp(lred with the numerical 

experimentation. 

2. A Dynamic model has been developed. • 

3. Analytical expressions and solutions to characterise the dynamics have 

been obtained making use of matrix techniques. Tne Analytical solution 

works equally well for both distinct and complex conjugate eigenvalues. 

4. Numerical method determining the transients of a continuous distillation 

column is based on Markov's Probabalistic technique. Numerical and 

Analytical results compare very well. 

5. Two techniques, namely, $argent's a'nd Wood's formulation of dynamic 

equations has been investigated. It was found that Wood's formulation 

due to more interactions in its equations, represents a multi-component 

distillation system better, as compared to $argent's. 

6. A method of analysis to investigate the effect of non-linearity on a change 

in feed composition is suggested as further worko 
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1. INTRODUCTION 

The control of industrial processes has become a very interesting and exiting 

subject for the members of the Chemical Engineering profession. The control of 

distillation columns has been in the forefront of this increased interest because 

distilling operations are found in almost every phase of the chemical industry, 

and through effective control of distillation columns, the industry can reap 

considerable dividends. 

The research in distillation column control has been primarily concerned with 

determination and prediction of the dynamic behaviour of distillation columns. 

In general, two different paths have been followed in studying distillation column 

dynamics. One path has been to use a "rigorous" approach. According to this 

11rigorous" approach, a distillation column is considered to consist of a known 

number of plates. Each of the plates is assumed to play an equal role in the 

dynamic behaviour of the column and a separate differential equation is written 

for each component on each plate. A simultaneous solution of all of these 
' 

differential equations results in the dynamic behaviour of the column. Obviously, 

the simultaneous solution of a large number of differential equations is a time 

consuming task, even with most modern computer. To add to the computational 

difficulties, the "rigorous 11 model should consider the vapour-liquid contacting 

efficiency, so that the theoretical model will have practical applications. When 

all of the factors have been considered the resulting model is usually too complex 

to be useful in an operating control scheme. 
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To avoid the computational difficulties encountered with the "rigorous" model, 

some researchers have used an alternate approach in determining the dynamic 

behaviour of a distillation column. This approach is to consider the column 

according to a section concept. According to that concept, the portion of the 

column that lies between points where either material or energy enters or leaves 

the column is a section. In the present investigation the "rigorous" approach was 

felt to be more satisfactory for these reasons: 

1) it gives more accurate prediCtions about experimental results in areas 

of operation well away from the region of recorded data; 

2) it computes plate compositions and flow rates as well as product data; 

3) it gives a greater insight into the behaviour of the a·ctual system. 

Distillation columns are very good examples of units exhibiting time lags. Such 

lags occur in internal and external flows of vapour and liquid. A change in 

reflux flow will be transmitted from plate to plate inside the column. The rate at 

which the change is transferred will consequently depend on the volume of liquid 

{or 'hold-up') present on each tray. Neither wi 11 the effect of a change in feed 

composition can be instantaneously transmitted through the column, but will be 

subject to an accumulative time-log on each plate, which again is a function of 

plate hold-up. The controlability of the plant is dependent upon the time- log it 

produces, particularly if input disturbances are rapid. 
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The usual control criterion for a fractionator is to produce products of particular 

specifications and to keep within those specifications. Occasionally one .< 

product composition is required to be controlled, e.g., overhead product 
.. 

composition. Sometimes bottom product composition is also specified. Often in 

the case of multi-component mixture there are more than two products to keep 

within specification. 

Disturbance:s in ~olumn operation are generally produced by variations in feed 

composition, feed flow and feed quality. These may be termed uncontrolled 

variables although, if intermediate storage is used, it is possible to control feed-

flow to the unit by a simple feed-back flow control system. Furthermore, feed 

quality may be controlled using a preheater of some kind. 

Other principal variables are column pressure, reflux quality, reflux and reboi 1-

vapour flow rates. The former two are held constant using feed back control for 

a particular distillation operation. ·The latter two' have a very considerable . 

effect on column performance and are easily controlled. They are thus generally 

used as controlling variables to correct variations in product~ due to uncontrolled 

disturbances. 

Because of the time lags present the distillation unit lends itself well to the 

applications of predictive control. For binary distillation with two product streams 

it may be necessary to control either or both by feed-forward systems. lt is 

necessary to employ at least one controlling variable for each output variable 

controlled in this manner. For example, to control both overhead and bottom 

product compositions in the face of fluctuations in feed compositions it is necessary 
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to use both reflux and reboil-vapour flow rates as controlling variables. For 

steady state on dynamic control the relations (transfer functions) between feed 

composition, reflux and reboil vapour flow rates as inputs, and product 

compositions as outputs, must be determined. The control model will then be 

based on the criteria that variations in the latter be zero. This model can itself 

be specified in terms of transfer functions. In order to be useful in practice the 

action of the controller must at least approximate the transfer function of the 

model. This may raise some difficult problems for the more complex control 

schemes. 

In order to obtain starting or boundary conditions for an unsteady state calcula

tions, a solution must be obtained for the steady state preceding transient 

operation. Equation for steady state- can be obtained by reducing the normal 

equations by imposing the condition of time independence of all variables; that 

is, the steady state equations are a special case of the unsteady state equations. 

If a column has reached a steady state in given operating conditions, then a 

small change in the operating conditions wi 11 initiate a transient response. After 

sufficent time the column will have reached a new steady state. Calcvlation of 

transient response is difficult whereas the initial and final steady states, however, 

can be calculated relatively easy. Transient section for the problem under 

discussion has been developed both Analytically and numerically in Chapter 5 & 6. 

For purpose of control, there are two main types of information which can be drawn 

from such calculations. First, the calculations show the extent of change which is 

to he measured. Secondly, although the com-position ":"i 11 be estimated and 
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controlled at a point within the column, the real concern of control is to achieve 

satisfactory products at the top and bottom of a column. 

A problem confronting the operation of a distillation column is in the controllability 

of the top and bottom product to a specified purity and accuracy. What happens 

is that some sort of disturbance in the form of limit cycle occurs internally, 

which effects the purity of the product. In other words, the product goes off 

specification at one half of the cycle and returns to the desired specification 

later on. This clearly indicates that the p11rity of the said product is undergoing 

an oscillatory phenomeon. This limit cycle is due to the fact that distillation is 

a non-linear operation. lt would be worthwhile to study the effect of non 

li~earity on changes in feed composition and reflux ratio and see their effect 

on product compositions. Suggestions of these lines have been· included in the 

scope for further work. For the present, it needs to be proved that the above 

mentioned phenomenon is theoretically explainable and justified.; 

The dynamic equations have been formulated in two ways, namely Sargent's method 

and Wood's method. Both these techniques are discussed in Chapter( 6 ) . 

Method proposed by Sargent uses an approximdting system which reproduces 

correctly the completequalitati:;cbehaviour of the real system and further does 

not depend on estimates of x. to determine dxi/dt. On1be other hand in Wood's 
I . 

method the slopes g (n, i) in eq( 1 ) for multi component mixtures 

k 
g (n, i) = dY * n, i/d x := 2: ( C:Hi/ ~x-

n,1 r=l u n, r 
• X - ) n,r/x . · n, 1 

_( ) 
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depend on all the perturbations in composition on a plate n. This is because the 

slope of the equilibrium data ;s no longer a line of fixed gradient, but is a line 

in a vector space. In order to determine the direction of such a line in such a 

space it is necessary for the I iquid compositions to be specified i.e., x • must n,1 

be known. lt is evident that as g • are functions of x • with j = 1, ••... k, 
. n, 1 n, 1 

that it will be necessary to solve the equations for all k components simultaneously. 

In other words it will be impossible to obtain a solution for the transient behaviour of • 

one component in isolation. 

Wood has reported that there are essential differences between the transient 

behaviour of multi_component and binary distillation columns. The differences 

arise because, in binary distillation if one component increases in composition, 

the other must decrease by an equal .amount and the linearised· response to 

individual disturba.nces are simple monotonic exponential decay function. 

However, in multi component distillation, the time response for a given component 

on a given plate may go through a maximum and change sign. For flow disturbances, 

bec4Dse the steady state profiles for the least and most volatile components are 

monotonic, the responses for these components would be expected to have a 

similar form to those for binary distillation responses. However, for the components 

of intermediate volatility, the steady state profiles can go through a maximum 

value and this is part of the reason why the responses for these components can 

be substantially different even on adjacent plates in a distillation column. 

The eigoenvalues obtained by Wood's method are negative and have a complex 

pair indicating an oscillatory system as compared to Scrgent's method, which 

gives distinct and negative eigenvalues. 

... 
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lt would be appropriate to define few of the terms used in this investigation for 

specifying control system performance. 

They are as follows: 

The STEADY STATE RESPONSE is that part of the total response which 

does not approach zero as time approaches infinity. 

The TRANSIENT RESPONSE is that part of the total response which 

approaches zero as time approaches infinity. 

The TOTAL RESPONSE is a sum of steady state response and transient 

response. 

The UNIT IMPULSE RESPONSE of a linear system is· the output y {t) 

of the system when the input x {t) = a {t) and all initial conditions are 

zero. 

The UNIT STEP RESPONSE is the output y {t) when the input x {t) = 

u (t) and all initial conditions are zero. 
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CHAPTER 3 

REVIEW OF THE PAST WORK 
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3 REVIEW OF PAST WORK 

Considerable inte~est has been given to the study of the transient behaviour 

of a fractionation column in recent years. Some investigators have considered 

the problem of the start up and the rate of approach to equilibrium of a 

column. Since the present investigation is concerned mainly with the behaviour 

of the column subjected to feed composition disturbances, reflux ratio disturbance 

and boil up rate disturbances, and its control, the works of those investigators 

will not be mentioned here. 

Prior to 1932 almost no work had been done in developing dynamic models 

of industrial processes. In 1932 lvanhoff (11) presented .a paper in which he 

made the first attempt at developing a mathematical model, from a strictly 

emperical point of view. From the discussion accompanying the article, the 

results of his experiments appear to have been widely accepted. Several 

other early authors (1, 39) also approached the development of dynamic models 

from an emperical point of view. These men correlated statistically the 

behaviour of a process with changes in in~ependent variables and developed 

and approximate model of the process. Several other researchers (8,10, 19, V/) 

approached the problem of developing a dynamic model by constructing small 

scale plants and then developing a dynamic model from the results obtained. 

Although these early workers ~ere not interested in the control of distillation 

columns, but in transient systems in general, their works formed the foundation 

of modern process dynamics. 
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Of. •' the earliest theoretical treatments on the tran.sient behaviour of a 

distillation column was given by Amundson and Acrivos (2), who employed 

matrix algebra to the I inearized model and proved that for an uncontrolled 

column all the roots of the characteristic equation are real and negative. This 

was later on supported by other workers notably Sargent (6/, 50). 

In 1947, Marshal! and Pigford {16) proposed the first mathematical model 

of a distillation column. Their model was based on the equilibrium stage 

as shown in Figure 1. According to the equilibrium tray concept, each tray 

must be considered individually, and the differential equation that predicts 

the transient behaviour must be written for each component in the form 

do Lx 
n n + 

d~ Vy 
n n = (L X +V y ) 

dt dt n-1 n-1 n+1 n+1 · 

- (Ln x - V y ) (1) n n n 

where 

= change in liquid holdup of a component on tray n with 

time 

d 6n Vy n/dt = change in vapour hold up of a component above ·tray n 

with time. 

L X V y 
n-1 n-1+ n+1 n+l = rate at which a component flows to tray n. 

LX +V y 
n n n n 

= ~ate at which a component flov.saway from 

tray n. 

·. 
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DXD · ' ]. 

wx . 
w, 1 

Fig 1. A SCHEMATIC DIAGRAM OF A DISTILLATION COLUMN HAVING TRAYS 

• 
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While this concept is theoretically sound, there are several drawbacks in 

the vast number of equations that must be solved. This problem is perhaps 

best illustrated by an example. If the column under investigation has n trays 

and i components, the number of differential equations that must be solved 

is of the order of n times i. Thus, the model is severely limited in its complexity. 

Since neither Digital nor Analog computers were welldeveloped at the time that 

Marshal! '!nd P~gford developed the plate-to-plate model, a rigorous solution of the 

equations was almost impossible. The.difficulty in using the Marshal! and 

Pigford model was compounded further by the fact that the trays are not norm-

ally equilibrium ones. Thus, some method of estimating the efficiency, or the 

approach to equilibrium, of each tray was required. In order to make their 

. model more useful, Marshal! and Pigford made the following assumptions : 

1. Constant molal overflow, 

2. Negligible vapour holdup above a tray, 

3. Approach to equilibrium between the I iquid on the tray and the vapour 

above the tray could be represented by a straight ps;udo equilibrium 

line. 

While these assumptions enabled Marshal! and Pigford to obtain an analytical 

solution to the differential equations, the accuracy of the model was reduced 

considerably. The. assumption of negligible vapour holdup is normally a good 

one, but since the assumption of constant moral overflow required that the 

molar heats of vaporization of the components be equal and the assumption of 

a straight I ine requires that the concentration of the component be small, the 

integrated equations are normally too restricted to be useful on actual systems. 
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Sometime after Marshall and Pigford developed their model, Rose and his eo

workers (2&, 23, 24, 25) applied the basic equation, equation (1), to a batch 

distillation column. In this application, Rose eta I. avoided the assumption 

that limited the usefulness of the Marshall and Pigford equations by programming 

the differential equations on a digital computer. They were, however, confronted 

by the problem of excessive computer time. 

About the same time that Rose et al. were publishing their work, Robinson and 

Gilliland (2.1) developed an approximate graphical method for predicting the 

approach to steady state of a distillation column. Their method was restricted 

to cases where the column was upset by a change in the feed composition, and, 

like previous models, was based on the equilibrium tray concept. 

Voetter (Jf) was perhaps the first to co~bine experimental data with a theoretical 

analysis. He compared the equations of Marshall and Pigford with experimental 

data that he obtained on a sixty tray oldershaw distillation column. He studied 

the response of an uncontrolled column to step and sinusoidal disturbances in the 

concentration of the feed stream. The experimental and the calculated values 

compared excellently during the early portion of the transient period, but as the 

column approached steady-state the experimental and calculated values differed 

considerably. By means of finite difference method two sets of response equations 

were obtained, one connecting the top composition response with feed compo

sition disturbances and one connecting the bottom composition response with the 

feed composition disturbances. The two equations were coupled mathematically 

to obtain the response for a complete column under the influence of a frequency 
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response function. An equation for calculating the retention time was also given. 

The effect of various simplifying assumptions were discussed in terms of addition-

al retention time over and above that obtained for the simplified model. An error 

of up to 40% was said to be possible with the simplified model. 

In 1957, Wilkinson and Armstrong (5, 371, 36) presented experimental data that 

were obtained as a response of 21 tray four-inch diameter column operating with 

a mixture of benzene and carbon tetzachloride to step disturbances in feed 

concentration and in reflux ratio. For the systems investigated fair agreement 

was obtained between the experimentally determined time response curves of 

various plates and the digital computer solutions of Rosenbrock (2q). 

Wilkinson and Armstrong (37) also derived an approximate mathematical solution 

for the response of a distillation column to step disturbances in feed composition. 

The assumptions made in deriving the equation were the same as those made by 

Voetter, except that the equilibrium line was replaced by two-straight lines, 

one for the enriching section and one for the stripping section. Theoretical 

response curves were compared with those obtained by expe'riment. Fair agree-

ment was obtained for the initial part of the curves, but the agreement was poor 

when .the system approached the new equilibrium state. 

By using the same theoretical model as that of Wilkinson and Armstrong (3"f,), 

Wood and Armstrong (3~) were able to obtain an improved expression which gives 

better prediction of the response curve when the column approaches the new state 

of equilibrium after a step disturbance. The agreement between theory and 

experiment was within 20%. 
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By using a I inearised model and then ta:l<ing laplace transformation of the 

I inearised equations, Armst•mgand Wood (4) were able to obtain an analytical 

expression for the response of adisUJ.ifuncolumn to step changes in reflux 

_flow rates from total to practical reflux conditions with the change being made 

so as to keep the feed plate constant composition. This expression was then 

extended to cover the more practical case of varying feed-plate composition. 

At the top of the column the experimental and the calculated values were in good 

agreement, but at the bottom of the column the experimental and calculated 

values did not agree .well. 

Rose and Will iams (28) studied the control problem of a fiw-e plate distillation 

column subjected to step and sinusoidal variations in feed composition with the 

aid of an analogue computer. The composition sampling arrangements included 

two point sampling using top plate and bottom plate samplers,. two point sampling 

using distillate and bottom plate samplers, single point sampling from distillate 

only, single point sampling from top plate only, single point sampling from 

bottom plate only. All three types of controllers (proportional,- integral and 

derivative) were used in the study; they were used either singly or in combination 

with each other. Top plate sampling with proportional controller used either 

singly or in combination with integral controller was found to be the most 

effective. The use of derivative controller either singly or in combination with 

others was not recommended. 

,. 
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Will iams, Harnett, and Rose (3S) extended the study of Rose and Will iams (21.) 

to cover the effect of cold reflux and imperfect sampler on the overall control

ability of the column. lt was found that if the minimum composition variation 

detectable by a particular sampler was 1 .5% or less, top plate sampling should 

be used. The deviation of the temperature was found to be significant only 

if the resulting change in vapour rate amounts to 50% or more of the original 

liquid rate for intermediate plate sampling. In the case of the top plate sampling, 

the difference between the re lux temperature and the top plate boiling temper

ature was significant only if the resulting change in vapour rate amounts to 80% 

or more of the original liquid rate. 

In 1961 Baber (1, 6) presented the most extensive experimental and calculational 

study that has been published. He programmed a series of differential equations 

that were developed by Lamb and Pigford (1(f), but were based on the earlier 

Marshall and Pigford equations, on an analog computer. Baber compared the 

results obtained on the computer with the experimental data he obtained. The 

data were obtained on a five tray I single section distillation column. The 

method of operating the column was to allow the column to come to steady -

state at total reflux and then change one of the operating variables; either 

the reflux rate, the reflux composition, or the vapour rate. 

The flow rates and compositions of the various streams were determined before 

the step change was made and the compositions were measured at intervals 

throughout the transient period. When the column reached steady-state, the 

flow rates and the compositions were again measured. For some of the experimental 
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runs, Baber was able to get good agreement between the experimental and the 

computer calculated values, but for most of the runs he was unable to obtain 

good agreement. 

At the Baltimore meeting of the American Institute of Chemical Engineers, Marr 

· (15) SUQgested a new concept for predicting the transient behaviour of a 

I 

distillation column. He suggested that in order to get away from the conventional 

and complicated plate-to-plate model, some parameter which could be used to 

describe the degree of separation that was occuring in a distillation column 

should be developed. However, a~ter suggesting the simplified model, Marr 

complicated it by considering all aspects of the rrechanics of construction of the 

column. Due to these additions, the final model was almost as complex as 

the plate-to-plate model. Little simplification was actually accomplished. 

After Marr'swork; 1:1~ fur~her efforts were made to develop a simplified model 

until Reynolds (211r began his work. 

Reynolds envisioned a distillation column as being composed of several sections 

in which there could be any number of trays. According to !he section concept 

as shown in figure 2, a section of a distillation column is that part of the column 

which lies between the points at which either feed streams enter or product 

streams leave the column according to Reynolds, the rate at which mass is trans-

ferred from the vapour phase to the I iquid phase can be expressed by the equation 

Nv • = 
n,t Jn,i (/"- y)n,i ----- (2) 

where J • is the parameter which describes the degree of separation occuring 
n,t . 

in a section and (/- y) • is the driving force for mass transfer in the section. 
n,a 

.-



---------
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FXf . 
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"-------~ wxw, i 

Fig 2. A DISTILLATION COLUMN ACCORDING TO THE SECTION CONCEPT. 
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The reader will notice that equation (2) is identical in form with the equation 

that is normally used for mass transfer 

* N = K (y - y) 

There are, however, fundamental differences between equation (2) and the 

conventional mass transfer equation. In deriving the conventional equation, 

the coefficient K is related to the diffusivity of the components being transferred. 

The coefficient in equation (2), however, is not related directly to the physical 

properties of the component being transferred~ The coefficient, J ., is a 
n,1 

parameter that describes the degree of separation occuring in a section end is 

an emperically determined factor. 

Using this idea for the rate of mass transfer in the section, Reynolds developed 

a set of differential equations for the transient behaviour of the I iquid and 

vapour streams leaving the section. In developing the equations, Reynolds made 

two ma·,or assumptions. The first of these assumptions was that J . remained 
· n 1 - I 

constant for small changes of column conditions and the second was that of 

constant mo~'aJ overflow throughout the section. After developing the model, 

Reynolds attempted to prove the model by comparing the values predicted with 

the model with experimental data, but was unable to obtain good agreement. 

In the time since Reynolds completed his work using the lumped parameter model, 

the research in distillation column dynamics has followed two distinctly different 

paths. One path has been toward the investigation of the use of lumped para-

meter models. The other path has been toward the use of increasingly more 

complex models. 



In the direction of the lumped parameter models, Osborne (fGq ) has shown 

that the model proposed by Reynolds could be used to reproduce the transient 

behaviour of a column. Mur- ,·ill (lq) has shown experimentally that the 

transient behaviour of the composition of !he liquid leaving a tray can be 

accurately represented by an equation of the form 

X (t) = X
00 

[ 1 ; (t/T) ] 

' 

+X . 
0 

-(t/T) 
e (3) 

Finally, Moczek, et al. (11) have shown theoretically that the transient 

behaviour of the composition of the products from a distillation column can 

be represented by a simple method using a· dead time and two time constants. 

In the opposite direction, i.e. toward. the use of increasingly more complex 
_, 

models, Huckaba et al. (1 :fl) have shown that by using plate efficiencies and 

continuous heat balancing the unsteady state behaviour of the composition of 

the distillation column products can be accurately represented. The model that 

they used is based on the plate concept and is restricted to binary systems. 

Waggoner and Holland (36) developed a theoretical model for the transient 
I 

behaviour of the multicomponent distillation column. They assumed plate 

efficiencies were known, and used an external material balance to force the 

column into material balance at the final steady state. 
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Following the trend towards increasingly more complex models, Tetlow, 

Groves and Holland (32.) proposed a method for estimating transient plate 

efficiencies in a distillation column. Using this method for estimating 

efficiencies, the same authors (33) presented a transient model in which they 

considered the hydrodynamics on each tray in the column. They proposed 

that the I iquid on each tray could be represented by a combination of plug 

flow, ideal mixing and bypassing. Independently Duffin and Gamer.(;=}) 

developed a mathematical model in which they used the FrancisWeir formula 

to determine the holdup of each tray. Neither Holland, et al, nor Duffin 

and Gamer presented any experimental data to prove their proposed model. 

A great deal of attention is being devoted to improvement of generalised 

stage models for rigorous, plate-to-plate, multi-component, continuous 

distillation of ideal and non-ideal systems, assuming implementation by a 

computer. 

Tierney and Bruno (4M reported on use of the Newton-Raphson iteration method. 

Billingsley (Q) demonstrated the mathematical basis for the Holland 8 method 

of convergence, as well as introducing techniques based on Jacobian matrices. 

Petryschuk and Johnson (45) compared the 8 and block relaxation methods 

for convergence. Tri-diagnol matrices were introduced by Wang and Henke 

(46). Wilhelm (47.i) developed an analytical solution to the differential equations 

describing open distillation of ideal mixtures~ Takamatsu and Tosaka (4~) 

proved that plate-column models can be rigorously employed in packed column 

applications, provided the proper physical model transformations are made. 

A number of dynamic analyses of distillation columns were repeated. 
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Wood (4~) studied the theoretical frequency response of mu I ti-component 

distillation columns followed imposed disturbances. 

He found out that under some conditions the transient responses for a multi

component can be quite unlike those obtained under similar conditions from 

binary mixtures. 



.. 

CHAPTER 4 

STEADY STATE MODEL 
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4.1 INTRODUCTION 

The program is designed for a distillation system using a total condenser. The 

nomenclature used in Fortran I isting has been given in Appendix (A 1 ). 

The system under investigation being non-ide.al, it was necessary to recognise 

the effect of composition on the equil ibrum relation, which can be expressed by 

means of activity coefficient as follows: 

(k) modified = y (k) ideal 

where the values of gamma {activity coefficient) ore determined by a three suffix 

Morgles equation for multi-component systems. They values are determined in 

subroutine -ACTO -and are stored in a two dimensional array for use by the main 

program. They values ore also made use of in bubble point col culation. lt should 

be noted that only mass balance and no energy balance has been programmed 
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4.2 PROPOSED MATHEMATICAL MODEL FOR NON-IDEAL, STEADY STATE 

DISTILLATION IN A PLATE COLUMN 

The extensive use of fractionating columns, which often determine the 

quality of the final products, in the chemical industry justifies the 

interest of investigators in search for new calculation methods and 

improvement of the existing ones. Mathematical analog methods are 
. . 

of special significance in this respect, as they allow comprehensive 

studies of a given process for determination of the most effective-

means of economic production, even at the planning stage. 

The following ASSUMPTIONS are made in the present case for 

description of the steady state in operation of a frationating column: 

1) the column operates adiabatically; 

2) the molar flows of lquid and vapor are constant along the 

column; 

3} there is no entrainment of liquid from the plates wit~ the 

vapour; 

4) complete mixing of the liquid occurs on the plates. 

Figure 1 is. a schematic representation flows in a frationating column, 

with the plates numbered from bottom to top. 
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The overall material balance equation for the column is 

(1) 

The equation for the enriching section is 

ll = V + lyy - LF (2} 

and for the stripping section 

l = V + lyy (3) 

where 

l = liquid rate. 

V = vapour rate. 

F 1 D and W = Feed, Disti I late and bottoms respectively. 

The material balance of the column for component i is 

LF xFi = '"w><wi + v0 Yoi, i=1,2, ... : .. k (4) 

For any plate in the enriching section 

1 
l X • =V 

nt y 1 .+ L .. X • L f 1 ~ ~ N . 1 2 k n- ,t -w m - F xFi' + -..:: n.... , •= , ..... (5} 

For the stripping section 

Lx .=V 
1

• +L .. xw .• ,2~n~ f, i=1,2, ........ k {6} 
nt yn- 1 I -w 

.• 
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and for the feed plate 

I ::: y f . 
I I 

(Z) 

where, 

X ::: 

ni 
cone. of comp. i in. the liquid flowing down from plate n, 

y = ni 
cone. of comp. i in the vapor leaving platen; 

XF. = 
. I 

cone. of comp. i in the feed; 

n = plate index; 

N ::: indicates that the given quantity relates to the condenser; 

f = number of feed plate; 

VF = content of vapor phase in the feed. 

If it is assumed that the still operates as a partial bofler and a total 

condenser is used, we obtain, 

(V+ lyy) x2i - (lyy - V~i) xli = 0, i = 1 ,2 ......... k (8) 

y Ni = X Ni I i = 1,2 ........ k (9) 

where Ki is the index referring to th~ particular component. · 
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I 
The various equations used in our mode I for predicting the vapor comp. 

leaving any plate are as follows: 

N 
I: 

n=1 

N 
I: 

n=1 

x.=1,i"=1,2 ......... k 
nr 

Y .=1,i=1,2 ........ k 
n1 

where n = vapor pressure 

0 
Also y • = p .• x • 

nr n1 n• 
P. I:P .. x 

1 n n 
"P'i 

= pO. X- • 
n m 

n 

= y • po ~x • {for non ideal mixtures) 
"• 01 01 

n 

where Y . = activity coeff 
01 

p0 • = Partial pressure 
nJ 

P0 =M t + c 

{1 0) 

(11) 

{12) 

{13} 

(14) 

{15} 

{16} 

·' 
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combining 14, ll and 16, we get 

k k 
[ ( L: (y • M . X .) t + L: (Y • c . X .) } = 1T 

n1 n1 m m m m 

or 
k 

t = 7 60 - L: ( y . c .x . ) 
m m m 

k 
L: (Y .M .x . ) 

m m m 

(17) 

(18) 

Rewriting eq. 15, using 16, the vapor composition can be calculated 

if the liquid composition, the activHy coeffichnts and the values of 

constants M and C over the workable te'mperature range for the 

particular mixture are known. 

Hence the final equation 

k = y • X ; (M, t +Cl) m n1 

n 

Putting the value oft from equation 18, we get 

k k k 
y • = y .x . {M

1 
{760 - L: (Y .x . C .) + c 1) 

n1 m m m m · m 
k Lf..y .x . M .) 

m m m 

TEMP. M1 s. ~ _:a_ ~ s 
50 23.5 609.1 19.64 417.1 9,96 177,:4 
55 26,96 726.6 23.4 515.3 12.2 227.2 
60 30.72 861.4 27.58 632.3 14.96 288.3 

' 66 35.2 1015 32.4 770.2" 18.1 363.1 
70 39.4 1191 37.76 932.2 21.8 453.6 
75 44.6 1388 44 1121 26.1 562.6 
80 50 1611 50.4 1341 30.98 693.1 
85 55.6 1961 58.2 1593 36.6 848.0 

Values of 1\1 and C constants. 

(19) 

(20) 
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The activity coefficient can be calculated by making use of the 

morgules equation for Ternery mixture. 

(21) 

The rotation of the coefficient in the above equation to find out the 

other two activity coeff. would be as follows: 

2 3 

2 3 (22) 

3 1 2 

After having calculated the composition of the vapor leaving any 

plate, we come to finding the composition of the ~quilibrium ratio on 

the pate, which is given by the solution of the system of equ9tions. 

Y ni * = K.x • 
I nl 

(23) 
k 
l:: * = 
i=l 

Y n i 



3.1 

where K are phase equilibrium constants and ·can be represented by 

K • = EXP (A • - B • 
n1 n1 n1 

=-""~=-"="'"-=--=--. 0.555T+212.3 + C .(0 .555T +212 .3)-5 .487) 
m (24) 

The calculation comprises two independent problems. The first involves 

calculation of the concentration distribution between the p~lates in the 

column, and the second requires determination of the compositions of 

the bottoms and distillate satisfying the overall material balance 

equations for each component of the original mixture. Each of these 

problems present its own specific calculation difficulties. The "plate 

to plate" method is suitable for calculation of the composition 

distribution. The general form of the system of equations 5, 6, 10 to 

22 leads to the conclusion that the preferable direction of the 

calculation is from the boiler to the condenser, as in calculations 

from condenser to the boiler, it becomes necessary to solve the 

systems of equations 5, 6 and 10 to 22 for the variables in the R.H.S. 

This could result in complication of the calculation scheme, an 

increase in the required computer memory capacity, and. could 

lengthen the computer time. The advantage of "plate to plate" 

method is that these calculations can be performed for a virtually 

unlimited number of plates with a minimum computer memory 

capacity. This scheme could exhibit instability because of the fact 

that for a given precision in determination of the composition of the 

bottoms in calculations in an upward direction, the precision in the 
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determinations of the compositions of the more volatile component on 

the plates decreases with increasing plate number. The instability 

of the computation scheme in the plate to plate method has been seen 

to become especially pronounced in calculations for conditions such 

that the column contains zones of nominally constant concentrations 

{regions of very low separation power); the instability is not 

eliminated in such cases even by increase of the precision in the 

calculations. 
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4. 3 BREAKDOWN OF THE STEPS 

The following functions are performed in the first section of the program. 

1. Reads input data and writes data on I ine printer before starting calculation. 

2. Sets various counters to zero. 

3. Calculates stage dependent indexes for later use in DOioops and other 

places. 

4. Calculates total feed of each component for subsequent use in program. 

5. Fills the GENX, GENY, and GAML arrays with starting values needed 

for the equations involving mass balances. 

The statements from that just prior to 13 to and including statement 24 .decide whether 

the feed to the system is all I iquid, all vapour or both I iquid and vapour. 

Depending on the feed state, a liquid and/or vapour composition is calculated and 

stored in the composition arrays. Activity coefficients are all set to 1 .0 to start 

the calculation. 

6. Calculation of Plate compositions: 

Normally the equil ibruim constant, K, for a component is a function of 

composition. In many cases, including the present investigation, due 

to non ideal ity, the equilibrium constants must also be corrected for 

composition. The competing effects on the composition map of first 

temperature and second composition dependent activity coefficients 

often result in severe oscillation of the composition profile from 
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iteration to iteration, with I ittle or no tendency to converge. Hence 

an.)terative scheme based on a method of balance, which approaches 

convergence in an asymptotic fashion but with less tendency to oscillate, 

becomes necessary. 

The method proposed by Hanson, et. al, is one derived from the basic differential 

equation of the system, and can be called the method of successive flashes. The 

unsteady state equation for any component i on any plate n would be: 

H.. dyn + 
· 'Vn eft 

where 

HVn 

Hln 

t 

= 

= 

= 

dxn 
dt ·- V y 

n-1 n-1 + L 1 n+ X n+ 1 - (V y· +l x ) 
n n n n 

vapour holdup on plate n, assumed constant, 

I iquid holdup on plate n, assumed constant, 

time 

If Yn = K xn and assumption made that Hyn is much smaller than Hln' then for any 

component one has 

&c%") V K = n-1 n-1 
X 

n-1 + L '~ - x (V K + L ) 
n+1 n+1 n n n n 



35 

Substituting the definition 

,. = t/H 
ln 

results in 

dxn· 
ar= V 

n~1 
K n-1 X.· 1 + L +1 x . +1 - ~x (V K + L ) n- n n n n n n 

If a. = V K X l X 
n-1 n-1 n-1+ n+1~ n+1 

and B =(V K +l ) r n n n 

Putting these terms in the above equation and separating variables leads to 

d'l' = 
. dx .. 

n 

An iterative type of solution .can be obtained by intergerating from the point x at 
n 

iteration r to the point ·x at iteration r + 1, with the corresponding finite 
n , 

difference in 'I' being 1:!. 'I' • The assumption needed to carry out this integeration 

is that a.and Bare constant across the iteration. The resulting equation is: 

exp (- ~A'I' ) 

a.- {xnrr 
which can be rearranged as follows: 

(l' . ' .. 

~ n) r + 1 ~ {x.n) r exp (G~) + --=~-- ( 1 - exp ( -~ ) ) 

where ~ = p 1:!. 'I" · 
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Sirce steady-state values of the composition were the object of the calculation, 

it was desirable to use large values of'!' to obtain rapid convergence on the steady 

state composition.· 

If it is arbitrarily assumed that the values of'!' are chosen so that exp (-.'1) = 0 

for each iteration, then the very simple basic expression for the r + 1st value of 

{ x.n) becomes. 

= V 1 K 1 x 1 + L 1. x. n·+·1· n- n- n- · n+ 

V K + L 
n n n 

. This equation has the exact form of the well-known flash equations,· so that repeated 

application of this equation aci:Qss iterations-leads to the nami~g of this method as 

the method of successive flashes. 

In the use of method, it is necessary to assume all stage temperatures and set all 

vapour and I iquid flows. Also the starting composition on every stage must be 

assumed. lt is not necessary to have accurate compositions, since the steady-state 

solution is independent of any starting compositions .• A singl7 way of starting is to 

fill every stage with feed liquid at its bubble point while the vapour is in equilibrium. 
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4.4 CORRECTION OF PRODUCT COMPOSITIONS 

The over-all material balance for any component in a process y!elding two products 

can be written as: 

. d 
·X 

b ( xb/xd ) +d 

If the distribution ratios, xb/xd, have been calculated for a'll components through 

calculation of the composition map, this equation can be used to determine a more 

accurate estimate of the product compositions. From the nature of the calculation, 

it can be seen that all of the distribution ratios for the components will be ·in 

error in the same direction. As a-first assumption it can be said that the distribution 

ratios are all in error by the same factor. This factor can be found by altering 

all of the distrl·bi.Jtion ratios by a factor 1 <P 1 such that when the· altered component 

distribution ratios are used in the above equation, the calculated values of xd 

sum to unity. Thus: 

F. X 
(xd) = 

corr b (~) ~ +d. 

and 

(xb) corr = ( ~ ) ~ (xd) corr. 

Thus, even though the temperature map is quite different from the correct 

temperature map for the given flow map, and hence the calculated product 

compositions do not sum to unity, the corrected compositions obtained from the 

above equation are usually quite close to the correct composition for the product 

amounts set. 
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In the same way these equations can be used to predict the product compositions 

which would result from a change in the bulk split, i.e., a change in d and b. 

If the set of distribution ratios is known for a given bulk split the product 

compositions can be obtained for any other bulk split by using the new values of 

band d and determining the value of ~such that ~ {xd ) corr = 1. 

If it is desired to find the total amounts of the products which will yield a certain 

ratio bx!l'dxd for a particular component, the similar e~uation. 

. . rx " . . . · '.· r- p· ... 

= 

can be used, where now 

= (bxb ) desired for a certain component 
@Kcll 

(bxb 
dxd) 

calculated for the same component 

The corrected value of d will then be 

{d) corr corr. 
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4.5 CORRECTION OF STAGE COMPOSITIONS 

In the iterative scheme of column calculation used for this investigation, the total 
t 

amount of top and bottom products is held throughout the calculation. Thus, it is 

desirable to calculate a corrected set of compositions for the set amounts of top and 

bottom product. The corrected product compositions can then be used to correct 

the compositions on the stages before de term in ing a new temperature map, and 

convergence on the correct temp'eratures considerably speeded. 

Each component is considered separately. The til'ole fraction of all components in 
• 

either product will, of course, be corrected in the same direction. If, for example, 

the correction is such that (xd) is greater than (xd) I ('~<. 1), the · corr ea c ~ 

temperature map was predominantly low. At the same time, (xb) will be lower 
corr 

than (xb) 1 • ea c 

lt is logical then to reduce the mole fraction of the component in the stages below 

the feed stage ard raise the mole fraction of the component in the stages above the 

feed stage, so as to follow the corrected product mole fraction. It has been found 

that a simple ratio correction such as: 

= (xb) c;r~ 

(xb) calc 

where n is any plate below the feed, is in general over correcting by a considerable 

amount. Perhaps the most logical correction would be to hold the shape of the 

gradient of mole fraction anchored at the feed stage, with no change in the 

fraction, but yielding a larger and larger degree of correction as the end stage 

from which the product is drawn is approached. 
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7. This small section of program is essentially self-explanatory as written 

in the FORTRAN language. lt deals with Product amounts, Recovery 

Fractions and Summations. 

8. The results are output when the convergences takes place. The final 

exit from this section is always to statement 1000 where the program 

is directed to read another set of data and proceed with the next problem. 

?. All vapour and liquid compositions are normalized. Following this, control 

is transferred to subroutine ACTCO where a whole new array of iivalues 

is col culated based on the current values of composition at every stage. 

The new¥ values are calculated a stage at a time and are then stored 

in the GAML array. 

" 
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SUB ROUTINE -ACTO 

This a subroutine for supplying the main program with activity coefficients 

calculated using the following three-suffix Margules equation for componenti 

in a mixture of L components 

. y (I) = exp 

L 

- 2l 
1=1 

L 

2xl I 
J=l 

L 

(XI) 
2 I 

J=l 

V' A 
.;::....J Jl 

XJAIJ 

The constants used are the one's 

A 
12 

Acetone/Methanol 0.2740 

Acetone/IPA 

Methanol/ IPA 

l 

i L 
\ 2 

+ L (XI) AIJ 

ll=l 

L 

- 2 I 
1=1 

I~ J 
I~ K 
J<K 

L L 

+ I I XJ XK A \JK 
J=l K=l 

If J 
lfK 
J<K 

L 

I 
J=2 

L 

I X 1 XJ XK A* IJK 

K =3 

reported by Pike (iS) and are as follows: 

A A A A A32 21 13 31 23 

0.2468 

0.2572 0.2343 

-0.0305 -0.0469 

The ACTO subroutine evaluates the yvalues and stores them in an erasable vector, 

GAMMA (1), for use by the main program when control is returned to it. The 

information that ACTCO gets from the main program consists of stage compositions 

which are stored in the eras:~ble vector QUIDX (I) at the time of transfer to the 

subroutine and the number of actual components, L, used. 
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10. Correction of temperatures. At this point the new y values just obtained 

are used in the BUBPTG subroutine to correct the .temperature map of 

the system. 

11. Following this, control is returned to the "Calculation of Plate 

compositions" section. 

SUBROUTINES - BUBT AND DEWPT 

Both of these subroutines operate in essentially the same way. The data needed by 

the subroutines are the existing stage temperature (an approximate first temperature 

guess), the number of components, and the composition of the I iquid or vapour to 

be used in the calculation. 

Using the composition and existing temperature, one of the following sums is formed. 

for bubble point 

for dew pobt 

and compared to 1 • If it is not arbitrarily close (BPERR) to 1, an extrapolation process 

is started and finds that temperature which makes the above sums fall in the range of 1 

plus or minus the allowable error. To start the process, a second point is needed 

and is arbitarily calculated at the existing temperature plus 10 deg. 



CHAPTER 5 

DYNAMIC MODEL 
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THE PREDICTION OF THE DYNAMIC PERFORMANCE OF A MULTI-COMPONENT 
DISTILLATION COLUMN 

5.1 Introduction 

A mathematical model of a 10 plate distillation column separating a 
multi-component mixture is described. This model takes the form of 
a set of non-linear ordinary differential equations in which the com
ponent liquid concentrations are the dependent variables and time is 
the independent variable. 

5.2 A general discussion of the variables which describe the dynamic 
behaviour of a plate distillation column 

lt can b~ assumed that a plate distillation column is completely described 
quantit~ely by the values of the following variables in the reboiler, and 
in the condenser, and on each plate. 

1) the average molar fraction of each component in the liquid hold
up i 

2) the average molar fraction of each component in the vapour hold
up; 

3) the liquid molar .hold-up; 

4) the vapour molar hold-up; 

5) the average molar enthalpy of the liquid hold-up; 

6) the average molar entha lpy of the vapour hold-up; 

7) the heat content of the dry plate; 

8) the molar fraction of each component in the feed; 
• 

9) the molar flow rate of the feed; 

1 0) the entha lpy of the feed; 

11) the molar flow rates of the products; 

12) the rate of heat transfer to the reboi I er and from the condenser. 
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The externally applied control variables 8 to 12 are assumed to be 
given fixed functions of the independent variable time for the 
duration of the distillation operation. The state variables 1 to 7 
are functions of time over the operating period and are such that 
they must be solutions of non-linear ordinary differential equations 
with time as the independent variable. These equations result from 
heat and material balances on the plates. The derivatives of the 
state variables 1 to 7 with respect to time are functions of the 
variables 1 to 12 and the compositions, flow rates, and enthalpies 
of the liquid and vapour streams leaving each plate and the heat 
transfer from each plate to the surroundings. lt is assumed that these 
are given as algebraic functions of the variables 1 to 12 at each 
instant of time. The values of the variables 1 to 12 which describe 
the Column are all given at the start of the operating period. The 
time trajectories of the state variables 1 to 7 can be determined by 
integrating the differential equations with respect to time with the 
given initial conditions. In practice a large number of plates are 
often required to achieve a given separation. This, together with 
the vapour liquid equilibrium relationships, gives rise to a very 
large set of non-1 i near differentia I equations. 

Some assumptions were made in order to simplify the model. These 
assumptions are as follows : 

1) The vapour hold-up is zero. This is a reasonable assump
tion since the vapour hold-up is usually small. 

2) There is no heat transfer from the column to its surroundings. 

3) The temperature dynamics on a plate are neglected by 
assuming that the vapour and liquid hold;-up on the dry plate 
have no heat capacity. The temperature of the plate and its 
contents are given at each instant of time by a boiling point 
calculation of the liquid on the plate. That is to say that this 
temperature is a function of composition alone. This is a 
reasonable assumption except for periods immediately follow
ing large changes in the boi I up rate. 

4) The liquid hydrodynamics are neglected by assuming that the 
liquid hold-ups on each plate, in the reboiler, and in the 
condenser are constant. 

5) . The liquid hold-up is perfectly mixed so that the composition 
of the liquid leaving a plate is the same as the average com
position of the liquid hold-up on that plate. 
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6) The total vapour pressure on a plate is constant and is there
fore independent of the liquid and vapour flow rates to and 
from the plates. 

The vapour and liquid phases on each plate are assumed to 
be iri equilibrium. This means that the Murphee plate 
efficiency is 100%. 

Assumptions 1, 2 and 3 are relatively unimportant. Assumptions 4, 5, 
6 and 7 result in large differences between the complete model and 
the simplified model. lt is reasonable to neglect plate hydrodynamics 
except for periods immediately following large changes in the controls 
since ·the time constant for the flow response is much lower than that 
for the concentration response. The temperature on each plate and the 
composition of the vapour leaving a plate are functions of the com
position of the liquid leaving that plate only by a boiling point cal
culation. This results from assumptions 5, 6 and 7. Since the boiling 
point varies strongly with the total pressure the assumption that this is 
independent of the liquid and vapour flow rates is very unrealistic. 
The Murphee plate efficiency is usually significantly less than 100% 
in practice. Since it varies strongly with the liquid and vapour flow 
rates, assumption 7 will effect any kind of control scheme which may 
be determined by the simplified model. 

The simplified model is described in detail in the next section. 
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.. 
5.3 Description of the Mathematical Model of the Distillation Column 

The dynamic performance of a plate distillation column can be solved 
by integrating a set of non-linear ordinary differential equations over 
the required operating time period. The solution is completely deter
mined by: 

i) the conditions in the column at the start of the operating 
period, 

ii) the external inputs to the column given as a function of time 
over the operating period, and the 

iii) differential equations describing the column. 

The distillation column is made of C plates, a general platen of which 
is shown in Fig. 1. The reboiler is taken to ;be plate 0 and the con
denser is taken to be plate C (11th). The mixture to be separated is 
made up of k components. Namely, Acetone, Methanol and Isopropanol. 
It has already been mentioned that this is a non-ideal mixture and all the 
steady state concentrations have been corrected taking the activity 
coefficient into consideration. 

It follows from the definition of mole fractions, that: 

k 
L: x. 1 
i=1 

1,n = 
= 1 1 k •• 0 •• , 

k n = 1 1 c • • • • • I 

L: Yi,n = 1 
i=l 

•• I 
I 



47 

THEORY 

5.4 Derivation of Differential Equations 

Figure 1 shows the conditions inside a plate-type distillation column 
separating a ternary mixture. A material balance of the more volatile 
component around the nth plate yields: 

d (H xn 
dt n n 

where L , 
n 

V , V 
1 n n-

H 
n 

h 
n 

xn, xn+ 1 

Y,Y 
1 n n-

xn yn 
n' n 

t 

+ H Y 11
) = L X 

n n n+1 i ,n+1 
L. X. 

1, n 1,n 
V X. 

n 1,n 

Ln+1 = -

= 

= 

= 

= 

= 

= 

= 

i=l, ..... ,k 
n·=l, ..••• ,c 

Liquid flow rate from the nth plate and 
the n + 1 th plate respectively in mols/hr. 

Vapour flow rate from the nth plate and 
the n -1 th plate respectively in mols/hr. 

liquid hold-up on the nth plate in mols. 

Vapour hold-up on the nth plate in mols. 

(1) 

Composition of the more volatile component 
in Ln and Ln+

1 
respectively in mol fraction. 

Composition of the more volatile component 
in V and V 

1 
respectively in mol fraction. 

n n- , 

Composition of the more volatile component 
in the liquid hold-up and in the vapour hold-
up respectively in mol fraction; these are 
equal to Xn and Y n respectively if perfect 
mixing is assumed. 

is the independent variable and denotes the 
time from the start of the operating period. 



FZ - · 
f 

H 
11 

n+ll xri+1 

H XII 
n1 n 

H 
n-1 1 x" 

n-1 

-

10 

-

~ 

4Q 

f vlO' Y1o 

ll10,x1o 

fv I Y n n . ! Ln+11Xn+1 

jVn+11 y n+1 I L I X n n 
~ 

lln-1 ,Xn-1 

.. 

r1,Y1. !lz' x2 

. Figure 1 

Ho 
c 

=H10X10 

-
L 
c .. 

H101xlo 

n+1 

n 

n-1 

2 

' 
1 

D..:,. 

x1o =X 
D 
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A total material balance gives: 

Similarly, for the condenser: 

= 

for the feed plate: 

l - D 
c 

where F is the feed rate in mols/hr, and Zf is the feed compos it ion of 
the more volatile component in mol fraction. 

for the reboi I er: 

d (H X" + h y") = 
dt R R R R 

(3} 

(4) 

(7) 

(8} 

To make the equations amenable to numerical solution and also for the 
sake of simplicity in programming, the following assumptions are adopted 
for the problem under consideration.· 

1) Negligible vapour hold-ups; i.e. hn=O for alf'n. 

2) Complete liquid mixing on each plate; X
11 = X • 
n n 



so 

3) Ideal plates; i.e. the vapour leaving a plate is in equilibrium 
with the liquid leaving that plate. 

4) Constant relative volatility; t.e. 

5) 

* y = 
n 

a X 
n 

1 +(:t-1)X 
n 

Constant condenser hold-up and constant reboi I er hold-ups; 
i.e. H10 = H(: =constant, and HR= H~ =constant, where 
He and H~ are the steady state liquid hold-up of the con
denser and that of the reboi I er respectively •. 

(9) 

6) The variation of the liquid hold-up from the steady state 
liquid hold-up is proportional to the variation of the liquid 
flow rate from the steady state liquid flow rate for each plate 
except the condenser and the reboiler, i.e. 

0 0 
a (H - H ) = L - L for n I= C or R 

n n n n 

where a is a constant, and H
0 

and L 
0 

are the steady state 
liquid hold-up and liquid flo~ rate r~spectively for the nth 
plate. 

7) The plate heat and mass transfer efficiencies are 100%, so 
that the composition and temperature of the vapour leaving 
a plate are given directly by a steady state boiling point 

·calculation on the liquid I.eaving the plate. It follows that: 

Y. = K. X. 
t,n t,n t,n 

i=l,._ •••• ,k 
n=l, ....• ,c 

where the equilibrium constants (Ki n) are functions of the 
liquid mole fractions on platen only. . 

(1 0) 



8) 

dX 

SI 

V = V except at the feed plate; i.e. 
n-1 n 

V = V = constant for n ~ f 
n e 

V = V = constant for n > f 
n s 

Making use of the above assumptions and combining equation 
3 with equation 4, equation 1 with equation 2 1 equation 5 
with equation 6, and equation 7 with equation 8 field: 

l v1o c 
yi 1 10 

( 10+0) 
xi, 10; i=11 •••• ,k (11) 

dt 
= -

H10 H10 

dX ln+ 1 ln+ 1 V V 
n 

X. 1 X. ~y n-1 
= - + t:J Y. 1 ; 

dt H 1,n+ H I, tl H i,n 1 n-
n n n n ' 

i=lt••••ork 
n= 10, •••• ,1 
nf f. (12) 

dXf lf+ 1 1
f+1 

+ F + vfr - vf 

dt = xi,f+1 X. f 
Hf Hf I, 

+ 
· vr-1 

y i 1 f-1 

vf 
Y. f + 

F 
Zf; i=l,.o•••tk {13) -

Hf Hf I, Hf 

dXR lR+ 1 
xi,R+1 

VR LR 
X. R; i = 1 1 • • e o 1 k (14) 

dt = -r- -.Y -
HR i,R HR I, 

R 

This set of equations can be written in the vector form: 

-dX 
dt 

= F (15) 

-- ~ 
where X and F are vectors. 
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5.5 Linearization 

The system of non-linear differential equations derived above can be 
readily linearised by means of perturbation methods. Suppose that the 
distillation column is initially operating at a certain steady state. 
When the disturbances are small, all quantities can be assumed to be 
displaced from their steady state values by small amounts. Under these 
conditions, the instantaneous values of Z, X, H, L, Y 1 etc. can be 
expressed as: 

zf 
0 

6Zf = zf + 

X = xo + 6X 
n n n 

H = Ho + 6H n=l,2 ••••• c 
n n n 

L = Lo + 6L 
n n n 

y = Lo + 6Y 
n n n 

{16) 

where 6Zf1 6H 1 6Xn, 6L , 6Y n are small quantities. Substituting these 
expressions int~ equation f5 and ignoring all second order terms yields a 
set of linear first. order ordinary differential equations with constant 
·coefficients. These set of differential equations can be written in the 
form: 

-dX 
dt 

[A l X + B {17) = 

where [A ] is a Jacobian matrix whose elements aq can be obtained 
by the operation. 

oF. 
I X~ a •• = <oX. x. = 

IJ 
I 

I I 
i=l, ••••• ,c 
i = i+l, i, i-1 

The vector B is defined as: 

- ..3.. [A] 
_,_ 

B = F X {19) 
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In summary, the elements aij of the matrix [A J are: 

all = - (Lo + D
0

) I H~ 1 

0 V~ P~)l H~ iff a .. = - (L i+l + 
11 I I I 

aff = - [(Lof+1 + Fo + Vo Vo ) + Vo po J I Ho 
f-1 f f f f 

o I o i=2,3, •••• ,c; i = i + 1 a •. = - L i+l Hi IJ 

= 0 0 0 
V. 

1 
P.

1
1H. i=1,2,3, •••• c-1; j=i-1 

1- 1- I 

= 0 i = 1 ,2,3, ••••• c; i ~ i + 2, i > i - 2 

0 
where p • is defined as 

I 

0 
p. 

I 
= (oY) X~ 

oX 1 

a. = 
[ 

o~2 
1 + (a. - 1 ) X i J 

~ 

The elements B. of the column vector B are: 
I 

= 

B. 
I 

0 0 0 0 
V.q.+V.1q'1 

I I 1- 1-
- - + 

H~ 
I 

=2, ..... ,c-1 
i/f 

(20) 

(21) 

(22) 



0 0 0 0 
+ FZ + 

0 0 0 
V f qf + V f-1 q f-1 (X f+1 - X f)(Lf+1 - L f+1 ) 

Bf = -
Ho 

f 

0 0 0 - Xo) (LR+1 
0 

V R qR + (XR+1 - LR+1) 

BR 
R = -

Ho 
R 

where 

= y~ 
I 

X~ = 
I 

. 0 2 
a. (a.-1) (X.) 

I 0 
q. 

I 
{23) 

The set of non-linear differential equations, equation 15, can also be 
written in the form of equation 17. In this cas~the elements aq of the 
matrix [A J and the elements Bi of the vector B can a I so be oota i ned 
from equation 18 and 19, respectively, provided instantaneous values of 
Xi' Li, H., etc. instead of the steady state values are used. In other 
words, th~ elements aij of the matrix (A] for the non-linear case are 
defined as: 

oF. 
a.. = 

11 

I 
(oX~) X. 

I I 
\24) 
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5.6 Derivation of Forcing Vectors 

5.6.1 Feed Change 

5.6.2 

If a step change is made in the feed, then the forcing vector 
are added only to the equations describing the feed plate, 
which is: 

The lxn+l + Vy n+l - lxn+2 - Vy n + Fxf=O 

as y = Kx 

Hence the dynamic equation wi 11 become: 

VKxn - (L+VK) xn+l + lxn+2 + Fxf = Hx 

for a step change equation (28) wi 11 take the form: 

Boi I Up Change 

a) For a plate 

' 
n+2 

i Yn+l 

X 
n+2 1 

n+l 

1 Yn 
xn+l J 

n 

1 
L 

(25) 

(26) 

(28) 
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The steady state materia I balance for one component 
on plate n + 1 is : 

Lxn+1 + Vy n+1 - Lxn+2-Vy n = 0 (25) 

Now y = K'.x (26) 

:. Equation (25) becomes: 

VKxn - (L+VK) xn+1 + Lxn+2 = 0 (27) 

The dynamic equation is: 

· VKxn - (L +VK) xn+1 + Lxn+2 = H~ (28) 

For a step change in V and L at t = 0, equation 
(28) becomes : 

(V +t.V) K (xn +6xn) - [ (L +6L) +(V +6V) K] 

(xn+1 + 6xn+1) + (L +6L) (xn+2 +6xn+2) = Hx (29) 

Expand equation (.29) to get: 

- - r 
K: Vx +V6x +6Vx +6V6x ; - • (L+VK) 

L n n n n~ L 

.., 

(xn+1 +6xn+l) + (6L+6V .K) (xn+1 +6xn+1)j 

(30) 

Subtract (2~ from equation (30): 

VK6x + K6Vx + K6V6x - (L+VK) 6x +1 n n n . n 

+ (L + 6L) 6xn+2 = Hx 
fl 

(31) 
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Re-arrange equation (31): 

N + !:N) Kllx - Lr (L + lll) + N + liV) K l 
n J 

+ lll.xn+2 = Hx {32) 

For reboiler and the condenser the above equation 
(32)will not be valid, hence separate expressions 
for the forcing vectors have to be found for the 
two. 

~ 

b) Reboiler 

Steady state material balance around the reboiler 
section gives: 

H~ =-Bx' -Vy' +N+B)x
1
' 

0 0 0 

For a step change in V and L, 
equation {33) becomes: 

H ~~ = - B {x + ~x ) - N + ll V) (y + ll y ) 
0 0 0 ' 0 0 

Subtracting {34) from {33): 

(33) 

{34) 

H~ =-Bllx -N+liV)lly +N+liV+B)~x1 {35) 
0 0 0 

Comparing it with (- B x - Vy + N+B) x
1
) (36) 

0 0 0 

the forcing function is: 

(37) 

, 
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c) Condenser 

Steady state material balance around 
the condenser section gives: 

As the vapour from plate 10 is being returned as 
liquid reflux, hence: 

Substituting (39) in (38) 
• 

(38) 

(39) 

(40) 

For a step change in V and l, equation {40) changes 
to: 

resulting in the forcing function, which is: 

(42) 

Reflux Change 

For a reflux change the vapour flow up the column remain 
unchanged, but the liquid flows down the column core altered 
corresponding to the change in the reflux rate or ratio. 

Hence equation (25) becomes for a step change only in the 
liquid flow rate: 
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{L+lll)(xn+l +llxn+l) + Vyn+l - (L+t~L) (xn+2 +llxn+2) 

- Vy = H~ 
n 

(43) 

or 

,.... 

Lxn+l + Lllxn+l + lllxn+l + lllllxn+l + Vy n+l - L Lxn+2 

~ 

+lllxn+2 + Lllxn+2 + lllllxn+2 j- Vyn = Hx· (44) 

Take away (43) from equation (44) : 

= H~ (45) 

Re-arranging equation (45), the forcing funCtion is obtained, 
which is: 

lll(x -x ) 
(L L) - (L +lll) llx - n+l n+2 

+ll llxn+l · n+2 (46) 

FOR Cl NG FUNCTION 

Summary of Equations for Forcing Vectors' 

1) Feed Change 

2) Reflux Change 

- ll L (x. +1 - x. .-"
2
) ; i = 1 , ••••• , k 

1, n 1, n• 
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. ' 

3) Boil-up-rate change 

a) For a Plate 

6R ~l:6Vy. - 6Lx. +1 - 6Vy. +1 + 6Lx. +2 ~ J 1,n 1,n 1,n 1,n 

i=l, ..... , k 

where 6R = 6V = 6L 

b) For the Reboiler 

(-6Vy. O + 6Vx. 1); ., ., 

c) For the Condenser 

(-6Lx.
10

+6Vy. ); i=1, ..... ,k ., ., 9' 
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Sargents Method 

A material balance for a typical stage yields: 

H 
n Vy1 

1
n-1 - Lx1 

1
n Vy 1 1 n + Lx1 

1 
n+ 1 

Similar equations can be written for the other components. These 
equations have been solved for two steady states at which the left 
ha.nd si~es of all these equations are zero. 

To define the problem completely it is necessary to prescribe further 
relations between x and y 1 and between the average compositions at 
the inlet and outlet of any stage. These correspond to the equilibrium 
relations and mixing characteristics of the flow system. 

If equilibrium ratios are introduced : 

= K. X. 
11 n. 11 n 

then 

H 
n 

dx1 In 
dt = VK1 

1
n-1 x1 

1
n-1 - (L+VK) x1 

1
n + Lxl 

1
n+l 

The equation (3) can be written for each component in the following . . 
time varying form: 

d 
dt 

x. 
I 

A. 
(t) = I (t) 

x. 
I (t) + 

CD, 
. I 

(t) ; j = lr•o•••! k 

X· 
where .!. (t) is the column vector concentrations in the liquid phase 
on the successive stages and Ai (t) is the nxn tridiagonal matrix whose 
non-zero elements are: 

(1) 

(2) 

(3) 

(4) 



a. 1 
1, n, n-

= 

a. = 
1, n, n 

a. 1 1, n, n+ = 

V 
n-1 K. 1 1,n-

H 
n 

V K. + L 
n 1, n n 

H 
n 

Ln+1 

H 
n 
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n=1, ••••• ,c 

. c:pi . 
and - {t) is the column vector whose elements are: 

F xF. n 1,n 
H 

n=l, ..•.. ,c, 
n 

where 

X• 
K. , V , L , F , xF. and H are evaluated using . ...! {t); i = 1, •••• , k. 

1,n n n n 1,n n 

The matrix representation has been given in Figure {1). 



Sargent's Matrix Figure ( ') -t 5.1.\ 

- (L+KV) L 

KV - (L+KV) L 

KV - (L+KV) L 

KV - (L+KV) L 

KV - (L+KV) L 

KV - (L+KV) L 

KV - (L+KV) 
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Wood's Method 

Material balances for three components on a stage yield: 

dx
1 

H 
,n = Vy1 n-1 - Lx - Vy + Lx 

dt ' 1,n 1,n 1, n+1 

dx
2 

H 
,n = Vy - Lx - Vy + Lx dt 2,n-1 2,n 2,n 2,n+1 

dx
3 

H 
,n = Vy3,n-1 -Lx - Vy +Lx dt 3,n 3,n 3,n+1 

These equations have been solved for two steady states at which the 
L.H.S's of all these equations are zero. 

Whereas $argent considers a change in composition to·be directed 
towards each component separately, Wood has suggested that a change 
effects all the components simultaneously, hence 

Yi n 
' 

= K X 
1,n 1,n 

+ X X + K X 
2,n 2,n 3,n 3,n 

Substitutions (4) in equation {1), {2), (3). 

(1) 

{2) 

(3) 

(4) 



dx
1 

H ---!...!! = 
dt 

dx31n = 
H dt 

"" 
(VK1 1 -1 1 x -1) (VK1 2 -1 1 x -1) (VK1 3 -1 1 x -1) _L; (L+VKl 1 )x1 + VK1 2 x2 +VK1 3 x3 J 

1 1
n n 1 1 n n 1 1 n n 1 1 n 1 n 1 1n 1 n 1 1 n 1 n 

+Lx 1 1 n+1 

[ 

I 

(VK x )(VK x )(VK x )- VK x +(L+VK )x +VK x 
2

1
1 

1
n-1 n-1. 21 21 n-1 n-1 2 13 1n-1 n-1 21 1 1 n 1 1 n 2 1 21n 2 1n 213 31 nJ 

+Lx 
21n+1 

(VK x > (VK x > (VK x > - r vK x + vK . x + <L + vK > x J 3 I 1 I n-1 n-1 3 I 2 I n-1 n-1 3 I 3 I n-1 n-1 l 31 1 1 n 1 1 n 3 1 21 n 2 1 n 3 I 31 n 3 I n 

+Lx 
31n+1 

(5) 

(6) 

(7) 



For the matrix, all K coefficients are different and can be calculated 
as explained in the next paragraph. The diagonal terms are negative 
and the elements around the diagonal are positive as they are negative 
in the first place being the values of K calculated by equation (5 6 & 7) 

As an example, consider the case of a step change in composition feed 
to demonstrate the calculation of the elements for the matrix depicted 
in Figure (3) formed by Wood •s method. 

Let Y1 = f (x
1

, x
2

, x
3 

) . 

For a step change 

yl + 6Yl = f (x
1 

+ llx
1 

, x
2 

+ 6x
2

, x
3 

+ llx
3

) 

6Y
1 

of
1 

llx
1 + 

of
1 

llx2 

af
1 

llx
3 = +-

oxl ox2 ox3 

Similarly 

af
2 

af
2 

llx
2 

af
2 

llY
2 = llXl + 

ox2 
+ ox3 llx3 oxl 

and 

' 
af

3 
af

3 
af

3 
I:N3 = llxl + ox2 llx2 + llx

3 oxl OX3 

Thus, in contrast to binary distillation, where the slopes are constants, 
the slopes g (n, i) for multi-components mixtures depend on all the 
pertubations in composition on platen. 

-* k dy • 
= n, 1 = L: dx 

n,i r=l 

of. 
I 

<ax-
n,r 

X 

...!2.!:..) 
X • n,1 

(8) 

(9) 

00) 

01) 

02) 

03) 
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This is because if more than two components or~ present in a mixture 
the slope of the equilibrium data is no longer a line of fixed gradient 

• but is a line in a vector space. In order to determine the direction of 
a line in such a space it is necessary for the liquid compositions to be 
specified, i.e. x . must be known. 

n,1 

It is evident from this discussion that as g • are functions of xn · with 
J = 1, ••••• , K, that it will be necessart't

1
o solve the equation~ 1 for 

all k components simultaneously. In other words, it will be impossible 
to obtain a solution for the transient behaviour of one component in 
isolation. 

Equation {13) can be expanded as: 

of. 
I = ox 
n,r 

X • n,1 

X • n,1 
+ 

of. x 2 I .!!..!._ + 
OX X • 

n, r n,1 

of. x 
2 I ...!2__ 

OX 
2 

X • 
· n, n,1 

Equations (1 0), (11) and (12) are linear with respect to the compositions 
perturbations because although 9n,i is non-linear with respect to xn,i 1 

the terms which appear in these equations are of the form 9n, j xn i, 
which from equation 04) may be seen to be a linear function of the 
composition perturbations. 

(14) 

The partial derivatives of equation {14) are evaluated from the appropriate 
steady state plate compositions. For example, if the equilibrium data may 
be represented by constant relative volati lities: 

* a.. x. 
i.e. Y. = I I 

I k 
(15) 

L: a.rxr 
r=1 

of. a.1 (a.2 x2 + a.3 x3) 
then 

I 
= .ox. k 2 I (i~1 a.. x.) 

I I 

{16) 



of. 
and 

I -. 
ox. 

I 

and = 
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et1 a.2 x2 

k 2 
( i~1 et. x.) 

I I 

et1 a.3 x3 

k 2 
( L: a.. x.) 

i=1 I I 

Substitution of these partial derivatives in expression (14) 1 yields the 
slope of the equilibrium data for all the three components as follows: 

91 1 I 

= 
et1 (a.2 x2 +et3 x3) 

3 
( L: a.. x.) 
i=1 I I 

a.1 et3 x1 

3 2 
( l: a.. x.) 

i=1 I I 

a.1 a.2 x2 

2 

3 2 
( L: et. x.) 
i=l I I 

a.l a.3 x3 

3 2 
( L: et. x.) 

i=l I I 

etl et3 x3 . 
= -

3 2 
( L: et. x.) 
i=l I I 

x1 11 ---
x1 1 

I 

a.1 a.2 x1 x1 12 

3 2 x1 11 
( L: a.. x.) 

i=1 I I 

a.2 (a.1 x1 +et3 x3) 

3 2 
( l: et. x.) 

i=l I I 

(17) 

(18) 

{19) 

(20) 

(21) 
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Equations 5, 6, 7 apply for all components and plates apart from the 
feed stage, but similar equations may be set up for the feed stage, 
the condenser and the reboiler. 

The equations so obtained for all components and stages may be com
bined into the single matrix equation: 

AX = C 

where A = a banded matrix with real coefficients, 

X = the column vector of composition perturbance for all 
components and plates, 

and C = the forcing vector for the particular disturbance. 

The elements in X are written in the order: 

The width of the non-zero bands is 3k, because three plate numbers, 
each having k components appear in equation 5, 6 and 7. The matrix 
representation for wood is given in Figure {3). A matrix comparison 
with sargents matrix is given in Figure (4). 



WOOD'S MATRIX rlfi (?) * 5.7.').. 

xo, 1 x0,2 xo 3 
I 

x1, 1 x1,2 x1,3 x2, 1 x2,2 x2,3 

-(L+go, 1,1 V} (go, 1,2 V) (go, 1,3 V) L 

(g0,2, 1 V) -(L +g0,2,2 V) (g0,2,3 V) L 

(g0,3, 1 V) (g0,3,2 V) -(L+g0,3,3 V) L 

(go 1 1 V) -(go, 1,2 V) -(go, 1,3 V) - (L +g 1 I 1, 1 V) (g1 I 1 ,2 V) (g1 I 1 ,3 V) L 
I I. 

-(g0,2, 1 V) (g0,2,2 V) -(g0,2,3 V) (g 1 ,2, 1 V) -(L+g1 ,2,2V) (g1 ,2,3 V) L 

-·(g0,3, 1 V) -(g0,3,2 V) (g0.3 .3 V) (g1 ,3 I 1 V) (g1 ,3,2 V) -(L +g1,3,3 V) L 

(g 1 I 1 I 1 V) -(g1 1 2 V) 
I I 

-(g1 I 1,3 V) -(L+g2,1,1V) 

-(g1 ,2, 1 V) (gl ,2,2 V) -(gl,2,3 V) -{L+g2,2,2V) 

g -(g1 3 1V) -(g1 ,3,2 V) (g1,3,3 V) -(L+g2,3,3 V) 
I I. 



REBOILER 1ST PLATE 2ND PLATE 3RD PLATE CONDENSER 

XOl XQ2 x03 xl 1 
I 

xl,2 xl,3 x2,1 x2,2 x2,3 x3,1 x3 2 
I . x3,3 x4, 1 x4,2 x4,3 

(S) (S) 
w w w w xo, 1 

(S) (S) 
w w w w x0,2 

($) (S) 
w w w w x0,3 

C\1 
....... (S) (S) (5) 

w w w w w w w xl,l 

(S) (S) (S) 
w w w w w w w xl,2 

(S") (S) (S) 
w w w w w w w xl,3 

(S) (.S) (S) 
w w w w w w w x2,1 

(S) # (S) (S) 
w w w w w w w x2,2 

(S) :(S} (S) 
w w w w w w w x2,3 

($) (S) (S) 
w w w w w w w x3,1 

----·· -- --- ($)- . (S) (S) 
-- ------ ---------

w w w w w w w X 
3,2 

(s) (S) (.S) 
w w w w w w w .x3,3 

KN
2 (S) (S} 

SARGENPS MATRIX = w w w w x4, 1 

WOOD'S MATRIX = (KN)
2 

(S) (S) 
w w w w x4,2 

(s) (S) 
w w w w x4,3 

-....... 
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5. 7. 2. 1 Steps involved in calculation of constants for Wood's case 

1. Calculation of relative volatility for each plate form: 

= 

where values of x's and y's are steady state values. 

2. Calculate the partial derivatives of w. Y. t. all three components 
form the equilibrium relationship: 

* y. 
I 

= et. x. 
I I 

k 
I l: 

-r=l 
et X 

r r 

et being calculated as in step (1). 

3. Calculation of the slope of the equilibrium data for all the three 
components by express ion: 

of. X 
I ~ + = ox X 

of. x 
2 

of. x 
1 n, + 1 n,r 

OX X • OX X • 
n,r n,1 n,r n,1 n,r n,1 

so for three components on three plates the above expression 
takes the form: 

et1 (a.2 x2 +a3 x3) al a2 xl a1 a3 x1 
91,1 

= 
k 2 3 2 3 2 

( l: et. x.) ( L: et. x.) ( L: a. x.) 
i=1 I I i=1 I I i=1 I I 

= 
a.1 a2 x2 

+ 
a2 (a1 xl +a.3 x3) a.l a3 x2 

91 ,2 -
3 2 3 2 3 2 

( l: et. X.) ( l: a.. x.) ( l: et. x.) 
i=l I I i=1 I I i=1 I I 

c 
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a.l a.3 x3 a.2 a.3 x3 
+ 

a.3 (a.l xl +a.2 x2) 
9 1 3 

= -
I 3 2 3 2 3 2 

( i: a.. x.) ( L: a.. x.) ( L: a.. x.) 
i=l I I i=l I I i=l I I 

4. Calculation of constant K ( ofi/oxi etc). Multiply it with the 
vapour rate and addition of liquid rate to the diagona I elements 
of the matrix only. 

, I 



CHAPTER 6 

CALCULATION OF THE TRANSIENTS 
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6.1 Sununary 

The sets of ordinary differential equations can be 

written in matrix form: 

. 
x = A x, t = o, x = x:. (o) ( 1) 

which has the solution (56): 

X = 
At 

e x (o) (2) 

To convert the matrix from eAt into a usable equation 

a number of procedures can be adopted. 

Analytical Solution 

Find the eigenvalues and eigenvectors of the matrix 

A and then 

X 
:),t -1 = Q e Q x (o) (3) 

-1 A is the matrix of eigenvalues and Q and Q are the 

matrices of the eigenvectors and their inverse. The 

numerical calculations involved are often large and 

there may be stability problems in evaluating Q and 

-1 
Q numerically. 



I 
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Nwnerical Methods 

As the series expansion: 

exp (At) = 1 +At + A
2 

t
2 

21 

always converges a numerical procedure can be 

developed using a truncated expansion: 

exp (At) = exp (A 6 tn) 

(4) 

(5) 

(6) 

Equation (6) is a matrix representation of the Euler 

method. By a similar procedure it is possible to 

obtain a matrix representation of other numerical 

methods such as that of Crank-Nicolson. 

Equation (7) can be obtained by substituting equation 

(5) in (2): 

X = [ exp (A 6 t) ]" x (o) (7) 

Any numerical method can be obtained by inserting a 

suitable approximation for the matrix form exp (A At) 

and this can be represented in general by equation (8) 

. 
X • 

n A x (o) (8) 
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By using a probabilative method ( 57 ) it has been 

possible to choose a form of A which is absolutely 

stable whatever the choice of 6 t and, in addition, 

the largest suitable value of 6 t is of the same order 

of magnitutde as that for the Crank-Nicolson method. 

In this case the relationship between the matrix A 

and the transition method is given by the equation: 

= A (9) 

Both the techniques described above have been used 

to calculate the transients of a continuous Distillation 

column. A detailed description of the two techniques 

has been discussed in later sections. 
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6. 2. Analytical Solution of the Dynamic Equ(1tions for a non-id~al multi
component mixture in a continuous distillation column 

6. 2. 1 Description and Discussion 

The material balance equations of a Distillation Column can be 

represented as a set of I inear differential equations and can be 

written in the form given below for matrix representation. 

x = A x + B; x (o) = o (l} 

where A is the system matrix and B represents the forcing 

vector. 

Equatiqn (1) can be separated into two equations whose 

sol uti on can be considered independently 1 i.e. 1 

Ax+B=o (2) 

. 
x = A x ; x = x (o) 1 t = o (3) 
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A new set of dependent variables, y, can be defined as 

follows 

_r = X - X (o) 

But from equation (3) 

-1 
x (o) - - A B 

-1 
Therefore l :;: x + A B 

or A_r=Ax +B 

and r = X; y (o) = X (o) 

so that the equation may now be written as 

. 
_r=A_r 

Subject to l ~ y (o) ot t ~ o; l (~) =[ ~] 

(4) 

(5) 

(6) 

(7) 

The formal solution of equation (7) may be written down as 

for a scalar equation (in terms of the conventional method of 

solution via Eig.;nval ues and ei g3nvectors), i.e. , 

At 
l = e l (o) (8) 
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. To convert the exponential term in equation (8) into a 

· useful form, first define a matrix E such that the following 

resu It is obtained: 

EA G = A (9) 

where A is a diagonal matrix. These coefficients are 

known as EIGENVALUES and the matrix E is known as the 

matrix EIGENVECTORS corresponding to the above 

mentioned eigenvalues. G is the inverse of E. 

At 
+ At + A2 t2 + A3 t3 e = 

2~ 3! 

E eAt G = E [t + At + A2 t2 +A 3t3 J G 
2! 3~ 

= E G + E A G t + E A G E A G t
2 

2! 

= e 
At (10) 

According to matrix rules, equation (10) is a diagonal matrix 

or 1 we can write: 

At 
e = G (11) 
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The desired solution may be obtained by substituting equation 

. (11) in equation (8). 

= G .r 
At 

e E l (o) {12) 

The eigenvalues and eigenvectors involved in equation (12) 

may be calculated by Q - R method. 

This method is available as a computer library sub-routine 

developed by Wilkinson {58). This technique is really only 

useful for numerical evaluations carried out on a Digital 

computer. Theprocedure can be used for real unsymmetric 

matrixes and the routines available furnish excellent results. 

The program making use of these routines shall be discussed 

later. 

If, for example, in equation {12), complex conjugate 

eigenvalues are encountered, they can also be handled in 

exactly the same way os real eigenvalues by putting complex 

conjugate columns in the transformation matrix. This, 

however, wastes computer storage space and calculation time 

because each of the array must be doubled in size to hold the 

imaginary components. Rather than doing this it may be 

advantageous to modify the Jordan canonical form os suggested 

by Ogato {59). The modification is based on the fact that one 

of o pair of complex conjugate · vector contains all of the 

essential information of the pair. 
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Consider, for example, the case where the Jordan Canonical 

form is diagonal. Notice that the diagonal matrix 

' . . 
a + jw 

a- jw 
' " ~ .. .. 

' 

can be transformzd into the form 

--------- .. . . 
:a w: . 
. . 
;-w cr-! 
!__ ----- -- .. , ··. 

',,A 
n 

by means of the transformation matrix 

·. . : 
-l: 

2· 
! i . 2 . 

.. - -- - ... - -- ..... ,_ 



-1 K = 

B3 

whose inverse _ is given by 

. ·· . . . . '.---------. 
I I '· I 

I • • I 

: I - I ~ ---- -·--- ... "' 
' '· ·., 

Namely the modified Jordan Canonical form~ is given 

as 

(13) 

!1. 
Not only does J have only real elements but, more 

significantly, K-l P-
1 

and PK have only 'real elements. lt 

may be seen that the effect of post multiplying P by K is to 

set one column equal to the real part 1 and the next to the 

imaginary part of the complex eigenvectcrs. Both vectors 

are entirely real. All other columns of Pare merely copied. 

-1 ' -1 
K has similar effect upon the rows of P 

Setting E = PK 
- -1 . 

E-
1 = [PK] and 

· the transformation is given the standard form of 

!1. -1 
A = E E J 14(a) 

A e" -1 
or = E 

J 
14(b) 
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In use, simply the real and imaginary parts of the appropriate 

eigenvectors as two adjacent columns of Pare entered, and 

it should be used as though it were a true transformation matrix. 

Coming back to the case of complex conjugate eigenvectors, 

equation {12) can be modified and written as 

I\ 

x = E eJt G x {o) 

where x {o) is the initial state vector. 

Let G X {o) = r 

Taking the case of a 3 x 3 matrix 

I\ 
Jt A.1t 0 

e = e 
A. t 

0 e 2 cos w
2

t -
0 A.2t ~ t e w

2 

= A.l 0 . 0 

0 a.2 - ~2 

According to equation (15) 

-
e12 e13 A.l 0 0 yl 

e22 e23 0 a.2 - ~ 2 y2 

e32 e33 0 ~2 a.2 y3 

(15) 

(16) 

~wtl 
0 

eA.2t 

eA.2t 
cos wt J 

(17) 

(18) 
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(19) 

+ 

e21 A.1 Y1 + e22 (a2 Y2 - ~2 Y3) + e23 (~2 Y2 + a2 Y3 ) 20) 

e31 A.1 Y1 + e23 (~ Y2 - ~2 Y3) + e33 (~2 Y2 + a2 Y3) 

Rearranging (20) 

ell Y1 (e12 Y2 + e13 Y3) ( e13 Y2 - el2 Y3 ) A.1 

e21 Y1 (e22 Y2 + e23 Y3) ~e23 Y2 e22 Y3) a2 

e31 Y1 (e32 Y2 + e33 Y3) ( e33 Y2 - e32 Y3 ) ~2 

L B J A.l 
(22) 

0"2 

~2 

The constants in matrix B can be evaluated by th~ rules 

given in TABLE 1 • 

Alternatively expression (18) can also be expressed as 

ell e12 e13 yl 0 0 A.1 

e21 e22 e23 0 y2 - y3 a2 (23) 

e31 e32 e33 0 y2 + y3 ~2 

(21) 

In this case the above mentioned coefficient matrix B can be 

calculated by a straight matrix multiplication. 
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TABLE 1 

COLUMNS OF MATRIX B 

1) FOR REAL EIGENVALUES 

b .. = e .. y. ; 
1J 11 I 

= 1,2 ......... N 

2) FOR COMPLEX EIGENVALUES 

{a) first column 

b.. = e .. y. + e., 
11 11 I I 

+ 1 y. + 1 ; = 1, 2 •.•.•• N 
I 

{b) second column 

b .. = e. j + 1 y. - e. . y. + 1 ; 
11 11 I I, I I 

= 1, 2 ....... N 

The constants in matrix B provide a good indication of the 

transient behaviour of the distillation column under investigation. 

Further to that if the final time solution to the problem has to be 

calculated, then the complex eigenvalue vector has to be 

multiplied to the constants of matrix B in equation {22) in the 

following way. 

• -A.1 t -a,.. - a. 
x = s11 e + s12 e --Lt cos (~2 t) + s

13
e 2t sin ~2 t (23) 

This can either be incorporated in the main computer program 

or a separate routine may be written to calculate the transients 

to any kind of input disturbance. 
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6.2.2 ExOrriple· of the Analytical Solution Technique' 

A 3 x 3 matrix illustrating the above technique to find out the time 

solutions of a separation problem is given below. The computer 

program confirms the hand calculation. For the present investigation, 

the technique has been successfully applied to a 40 x 40 matrix and may 

be used for larger matrices. 

- 1 0 -3.375 

A= 
1 -1 0 

0 -1 

Having calculated the eigenvalues, the eigenvectors and the inverse of 

eigenvectors, the values are substituted in equation {15) 

1.0 1.0 0 -2.5 0 0 0.3333 -0.5 .0.75 l 

-0.6667 0.3333 0.5774 0 -0.25 -1 .299 0.6667 0.5 -0.75 0 

0.4444 -0.2222 0.3849 0 1.299 -0.25 0 0.8660 1.299 0 

1t E e G :_ {o) 
~ 

0.3333 0.6667 0.6667 -2.5 

= -0.2222 0.2222 0.3849 -0.25 

0.1481 -0.1481 0.2566 ':!: 1 .299 

Finally the time solution can then be calculated using equation (23) 



a a 

0.3333 -2.5t 
+ 0.6667 

-0.25t 
cos (1 .299t) 

-t'Q5t 
(1 .299t) e e + 0 . 6667 e sin 

. -0.2222 
-2.5t 

+ 0.2222 
-0.25t 

cos (1 .299t) +0.3849 e 
-o.25t 

(1 .299t) X = e e sin 

0.1481 -2.5t 
- 0.1481 

-0.25t 
cos (1 .299t) + 0.2566 e 

-0.25t 
sin (1 .299t) e e 

/. 
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6.3 NumeriCcil Approach 

6.3 .1 Introduction 

·Differential equations describing the dynamic response of a 

distillation column have been solved by both analytical and 

numerical techniques; the formulations of the problems as 

well as the methods of solution being fully deterministic in 

character. But the problems themselves can often be 

probabilistic in nature, or at least capable of a probabilistic 
~ 57 

interpretation .Gibilaro and Kropholler have developed a 

powerful method for solving flow models consisting of networks 

of completely mixed vessels. This method is similar in many 

· ways to more conventional numerical techniques, but has the 

considerable advantage, from the engineering point of view 1 

that the physical significance of the treatment is not obscured 

by the mathematics. The program to be described computes the 

response of continuous flow models that comprise a finite number 

of ideal mixing stages is based on simple probability method and 

can be treated as a simple Markov process. The input data 

comprises of the volumes of the stages and the magnitudes of 

the flows between the stages. The response of the model to 

impulse, step, or arbitrary inputs can be obtained. 
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Theory 

Let the concentration of tracer in the Nth stage 

at time t be X (t). The general equation 
n 

describing the behaviour of a number of mixing stages 

is, by mass balance: 

N 
=~ 

i=l 

q. x. + m 1 

N 

- ~ qni 

i=1 

X • • • • • • • n 

A numerical method for solving equation (1) has 

been deni·ed using a simple probability approach (57). 

The principle of the method of sol uti on can be 

illustrated by considering a single ideal mixing 

stage of volume V with a continuous flow q as 

shown in Fig (1). 

q 

V 

FIG (l) 

q 

1'---r-

(1) 
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If the concentration of tracer x in the vessel 

at time t and t + (). t is x(t) and x (t + (). t) then 

the probability of a tagged element remaining 

in the vessel, p , at time t + (). t is equivalent to 
y 

the fraction of material remaining in the vessel. 

Similarly the probability of a tagged element 

leaving the vessel, pq, is equivalent to the 

fraction of the material which has left the vessel 

at time t +u t. Hence: 

Vx(t+M) = Py = e-q().t/v 

Vx(t) 

Vx (t) - Vx (t + (). t) -q (). t/ = pq = 1 - e v 

Vx(t) 

P.. = e 
11 

p .. = 
11 

If this vessel is now considered as the ith vessel in 

a network of N vessels then the probabilities of 

an element remaining in vessel i will be : 
N 

q.k (). t/v.} 
I I 

and the probability of transferring to any other 

vessel j will be given by 

q •• 
IJ (1 - p .. ) 

N 
11 

2: qik 
k=l 

" 

(2) 

(3) 

(4) 

(5) 



92 

.These probabilities of remaining in a stage 

and of transferring to another stage are independent 

of the past history of the tagged element, and 

therefore enable the process to be treated as a 

simple Markov process. 
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1) 

2) 
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Summary ofDefinations 

p .. = 
11· 

p = 

p = 

the probability of a transition from state i to state j. 

the transition matrix containing the elements P... The 
'I 

rows P consist of all possible transitions from a given 

state and so sum r·o 1 • 

This matrix completely describes the Markov Process, 

so that: 

A pictorial representation of P is given in fig (1) 

Probabilities of 
leaving vessel i 

fig (1) 

. 
J 

< -o CD -, 
"' 0 "' aCl) 0 
-2: 

:::!". 
CD 

"' 0 ...... 
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S.(N) = the state probability. Defined as the probability 
I 

that the system will be in state i after n transitions 

from a given starting point. 

4) S (N) = the state probability vector: a line vector composed 

of elements Di (n) 

= (S1 (n), s
2 

(n),· s
3 

(n), ..•• , Sn (n)) 
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The Markov Process 

As an example of a Markov Process, Howard (Ref. 60) 

has chosen the frog in a I il y pond. The frog can 

jump from one lily leaf to another, so that if 

there are N leaves, numbered in any fashion from 

1 to N, the state of the system at any time may be 

unambiguously defined as the number of the leaf 

occupied by the frog at the time considered. Thus 

the state of the system can be 1, 2, ••••••• , N. 

A •state transition• occurs when the frog jumps from 

one leaf to another: a jump from leaf i to leaf j 

being referred to as a transition from state i to state 

j. . 

By considering discrete time increments t. t small 

enough to exclude 1 for a 11 practice I purposes, 

the possibility 'of the frog making two jumps in one 

time increment 1 then the analogy between this 

system and the network of stirred vessels becomes 

apparent; the tagged fluid element in the latter 

case replacing the frog as the means of determining 

the state of the system, and the well mixed vessels 

replacing the numbered lily leaves. 
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. If we are able to assign ·probabilities to all possible 

state transitions, the Markov Process is completely 

described. These probabilities must depend solely 

on the state of the system. The probability P •. , 
I( 

of the frog jumping from leaf i to leaf j must be 

quite independent of how it got to leaf i in the 

first place, or of any changing internal or external 

conditions: if the frog tires with time or the leaves 

drift further apart we no longer have a Markov 

process; analogies may still be drawn between 

such systems and some non -1 inear chemical process 

systems but the following analysis cannot be used. 

The probability that the frog will be on a particular 

leaf, i, after a given number of transitions n from 

a particular starting point is referred to as the state 

probabilities at any subsequent time as shown below. 

It will be seen that this computation for. the case 

of the fluid network provides us with the model 

solution. 

The system transition matrix, P, has elements 

p .. and equations (4) and (5) can be used to 
I( 

construct P from the data. 
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Given that the frog makes a transition from a 

certain starting point 1 there exist probabilities 

that it will end up on each leaf. The_ sum of 

these probabilities must be 1 

N 

z. S.(n) = 
I 

S{o) is the initial state vector. The elements of 

S {o) 1 S(o) 1 S
2

(o) 1 ••• •• 1 SN {o) 1 are the 

probabilities that a tracer module at time o is in 

vessels 1, 21 • ••••••••• 1 N. 

Multiplying P by S(o) yields the vector 5(1) -

the state probabilities after time A t or 

S (n + 1 ) = S (n). P (6) 

Thus a knowledge of the state probabilities at 

any time enables the new state probabilities after 

one transition to be computed. 
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6.3 .4 a "Derivation of First Order MARKOV Formulation 

The problem to be solved can be stated as 

. 
vx. = Ax x = ~ (o) at t = o 

v-1Ax hence 
. 
X = 

- y-1At x - e 

let D be a matrix containing the diagonal elements of A 
(negative). 

V x - D x = (A- D) ~ = Q ~ ; where Q =A-D 

multiplying both sides by the integration factor eV-1 Dt 

V e-v-1Dt X - D e-v-1Dt X = e -v-1Dt (A- D) X 

Now 

Vd ( e -v-1 Dt .:_) -v-1 Dt • 
VDV-1e 

-v-1 Dt 
X= l.H.S. cTt = Ve x -

Hence 

d (e~v-1 Dt.:) 
-1 -v-1Dt 

V cTt = e-V Dt (A - D)~ = e Qx 

-1 
assuming V, D, and A to be constant and defining E = e V D 
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The integrating w.r.t. time between the limits t, t + L'lt 

[ ((t + Ll t) ~ (t + L'lt) - (t ~ (t) J = 

= 
t +M _

1 
I -1 -V Dt 

V e Q • x (t + Llt/ ) dt 
- 2 

{1) 

t 

-1 t + L'lt 

= -
[ V-1V 0-1 e-V Dt J Q ( ~ t + Mj2) 

t 

Multiplying through by Et+ £l t 

. ~t 1- 1:1=""· J -1 
~ {t + £l t) - E ~(t) = _ E - I D Q ~ (t + Mj2) 

The first order approximation uses x (t) as an approximation 
for~ {t + Mj2) 1 thus equation (2)becomes 

' 

~ (t + L'lt) .:. ~t;: {t) = ( EM - I) D - 1 
Q ~ {t) 

Rearranging 

or 
- -1 J L'lt ~ {t + l:t) = L c + {c - I) D Q ~ (t) ; if C = E 

(2) 
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Following the above procedure, the second order formulation 
can be derived by substituting !1tj2 for /1t in equation (2) 

t-,T/2 [ LiTj l -1 .. 
:. ( t + Li tj2) -E :. ( t) = E 2 - I J D O:. ( t + M/ 4) 

x (t + Litj2) can now be eliminated between equations (2) and 
{3) 

(3) 

LiT 
Lit r LiT J -1 [ LiT/2 l -1 -

:.(t+Lit)=E :.\t)+LE -1 D Q E -l_jD O:.(t+~)+E2:.(t) 
4 

The second order approximation :.(t) = ~ (t + Lit/4) is now 
made, hence 

. b • • C EM or su st1tut1ng = 

:. (t +Lit) = (C +(C-l) D -lQ (C-!+(C-!-1) D - 1 Q) ) :. (t) 

(4) 
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6.3.4 b Fo.rinulation 

lt has been showin the derivation that the first order Markov 
procedur~ may be formulated as:-

x (t +M)= [ C +(C- I) D-
10 ]x (t) = P

1 
x (t) 

where D contains tre diagonals of the flow matrix A (negative) 
and Q =A-D; C = ev-1 D M; C and D are both diagonal 
matrices. 

A single element of P1 may thus be expressed as: 

-1 
( p • ") = ( e Vi D i M - 1) D-! Q .. 1 ., I j -:J j . I lJ 

= (EXP (D(J) * L'lT/V(J)) - 1 .) *Q(J, J)/D(I) 

and 

= EXP(D(I)* L'1TjV(I))~EXP(D{I)*L'1T/V(I))-I.)*Q(I,J)/D(I) 

Similarly from the formulation for the second order Markov 
procedure 

x (t + L'lt) = [ C+ (C-1) D- 1 Q(C1+(c~-l) D - 10) J x(t) = P 
2 

x(t) 

If = (C-J)D-J 

and = (C~- I) D -l ~-.. 



then the above expression becomes 

1 

[ C + D1 (Q C2 + QD
2
Q) ]x (t) 

A single element of P 
2 

may be expressed: 

and (P
2 

.. ) 
q· 

. 
\ N 

, D . ·(a·· VjDj ~T \ Q "k D k Q ) 
1 F 11 e T + L t 2 kj 

k = 1 

-1 
= (P ) + e Vi Di ~ T 

2ij i=j 

In the FORTRAN terminology, the above expressions can be 
written as 

Pii,J)1 ~ J = DI(I)*((Q(I,J)* EXP (D(J);V(J) * DT/2.) 

N 

Dl (I) 

D2 (I) 

+I Q (I, K) * D2(K) * Q (K, J)) 

k = 1 

= P 2(I,J) + EXP (D(I) ;V(I) * DT) 
l=J 

= ((EXP (D(I) /V(I) * DT) - 1 • /D(I)) 

= ((EXP (D(I) /V(I) * DT/ 2 .) - 1. /D(I)) 
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-1 
Wh D• • h · Vi Di .6T b 1 d h en 1 1s zero t e express1on e ecomes an t e 

-1 
• (Vi Di .6T-l.)/ o· d"ff • • f express1on e 11 on 1 erent1at10n o 

numerator and denomenator using L1Hopitals 1 rule, becomes 

Similarly for Vi = 0, the above two expressions become zero 
and -1 ./Di respectively. 

Provided all elements of D are non positive, all the exponential 
terms will have values beh¥een zero and unity irrespective of 
the size of .6T. 
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Breakdown and Discussion of Linear Problem Using Margot 

Dimensioning 

Allocate the necessary storage space to the dimensioned variables 

using Equivalence Statement to minimise core storage. 

DIMENSION Q (40,40), D(40), IV(40), V(40), F(40,40,2), R(40,40) 

EQUIVALENCE (Q(l), F(160)), (R(1), F(l)) 

Count Number 

Commence an example count number 

N ~ = 0 

Read in First Part of Data 

This data is read in using free integer format. 

N • • • The size of the flow matrix without integration states. 

NR.. Total number of stages from which responses are required. 

The VECTOR (IV) containing the above ~tage numbers. 

NTR.. The total number of trapping states. 

98 READ (1, 101) N,NR, (IV(I), I= N-NR+l, N), NTR 

101 FORMAT (900 I 0). 

To provide the user with a print out of the time taken for each example, 

the time at the beginning is stored in 11. 

CALL ITIME (I 1) 
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The total number of stages, including integration states, should be 

stored in the variable NT. 

NT = N + NTR 

Test for Control Data 

Test the data for a control data card to stop the program 

IF (NTR + 1) 30, 99, 0 

Read in Second Part of the Data: 

The flow m:::rix (square (N x N)), column by column 

((Q(I,J), I= 1,N), J =- 1, N)) 

volume matrix V, which is a diagonal matrix, is handled as a vector 

(VCI), I = 1, N) 

Time increment of output •••••• H 

The length of time over which output is required ••••• Tlv\AX 

Volumetric throughput rate ••••• QTHRO 

Total volume of the system •••••• VTOT 

Minimum probability of an element remaining in a stage during 

the time interval 6. T ••••••• STAYP 

READ (1, 104) ((Q(I,J), I= l,N), J = 1,N), (V(I), I= l,N), H, 

1 TMAX, QTHRO, VTOT, STAYP 

104 FORMAT (1600 FO.O) 
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Test if there are not any Integration States: 

IF (NTR.EQ.O) GO TO 203 

Integration States 

If there are any integration states, then each one of these require 

a set of N numbers. 

If these numbers were A 1, A2, A3, •••• An, for the kth integration 

stage, then the output from this integration stage would correspond 

to 
N 

I 
I -1 . 

where Ck is a constant read in as data later in the program {see Initial 

+ stage i 

State Vector) 

READ (1, 104) ((Q(I,J), J = 1,N), I= N + 1, NT) 

Also increase the size of the vector IV from N to NT so that responses 

from the integration states are outputted. 

DO 201 J=N+1, NT 

201 IV (J) = J 

The intrinsic routine AMIN 1 is used in this program to find the 

minimum of a set of numbers. This routine, in the first·instance, requires 

a dummy argument (CC) which initially must be set to a very large number. 

203 CC= 1.0E + 76 
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Form the "D" Matrix 

This matrix is a diagonal matrix formed from the elements of the matrix 

Q; however, it may be treated as a column vector whose elements 

are the c9rresponding elements of the diagonals of Q 

Do 1 I = l,N 

D(l) = -Q(I,I) 

In order to preserve the formulation used in this program to derive the 

terms in the transition matrix, the matrix Q must have zero elements on its 

leading diagonal. Thus having formed D, the diagonal elements of Q 

must be made zero. 

Calculation of the time Increment 

The program alows for zero volume stages and these must not be 

considered in this calculation, so a test must be made for testing this 

condition. 

The maximum allowable time increment 11 T that an element may remain 
' 

in any stage is related to the stated minimum acceptable probability of 

any element staying in any stage during this time and also the 

minimum stage time constant of the system, by the equation: 

11 T= -LOG (Minimum acceptable staying probability) (. t) 

minimum stage time constant 
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A stage time constant can be expressed as V/D and the minimum 

stage time constant of a system is found using the routine AMIN 1, 

the final result being stored in CC. 

IF (ABS (\1{1)). GE.l.OE-10) CC= AMIN T (CC, V(I)/D(I)) 

Q(l,l) = 0.0 

The value oft. T, as calculated above,must be constrained, so that 

its corresponding value on the normalised time scale t:. Tn 

( t:. T n = . t:. T x volumetric throughput rate) 

total--system volume 

is an exact multiple ( 21X - where IX is an integer) of the printout 

interval H. 

IX= (1. +DIM (ALOG(H * VTOT/C-ALOG (STAYP)*CC*QTHRO))/ 

ALOG (2) I 0)) 

The time increment AT is calculated from the equation :-

t:. Tn x 2IX = H 

t:. T = H l (2. **IX) * VTOT I QTHRO 

A 
This is the largest value of which:-

a) fits the constraint that it is a 2IX multiple of H. and 

b) is less than the maximum allowable time increment determined from 

the minimum acceptable probability of an element staying in any 

stage. 
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However, this final value of 1:. Twill correspond to a higher value 

of the staying probability than that originally read in, therefore 

the probability is recalculated from d> 

STA YP . EXP ( -DT/CC) 

-ov-1or 
Calculation of e 2 and 

1
_ e ov-1 DT 

2 

When calculating the terms in the transition matrix, two matrices 

are predominant. These matrices are 

- ov-1 DT 
e 2 

and 1-e DV; 
1 

DT /D 

Both of these matrices are diagonal matrices and may be stored in 

vectors, in this program 

ov-1or 
~ 2 is stored in V, and 

- ov-1or 
I - e 2 / D is stored in D 

However, the program allows for zero volumes, and the values of the 

expressions for zero volumes must be pre-determined. 

i.e. 
- ov-1or CD 

e 
2 0 = e = 

-Dv-1or 
l-e 2 /D -1 = 1/D D = 

so 
v-- o 

DO 3 I= l,N 

IF (ABS(V (I)).GE. 1. OE-10) V(I)=EXP(-D(I)*DT/(2. *V(I))) 

3 D(l) = (1. - V(I))/D(I) 
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Formation of the Transition Matrix: 

At present the Q matrix is a N x NT matrix, which comprises thus:-

N 
NT 

E 

The general term R(l, J), If J in the transition matrix can be expressed 

as 

R(l, J) = .... 

1_e D(I)V(I)-1DT 

D(l) 

N 
) 
L...l 

K=l 

1 
_ e-D(K)V(K) -l DT 

D(K) 2 

+ eD(J)V(J)-1 DT 

2 

The term expressing the diagonal element R(l, I) 

is given by 

R(l I) .... R(l J) + · ;;D(I)V(I)-
1 

T 
I - I I=J 

*Q(I,K)*Q(K,J) · 

* Q(l ,J) 
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When formulating the terms in the transition matrix, two cases 

must be considered. 

1. when the terms result directly from the Q matrix and lie 

within the area ABCD (M x M) 

2. Terms re suiting from the integration states. 

These are cases when the value of !::. is zero and the expression 

·1- eDV-
1
!::. T is found by L1hopital 1s rule to be equal to!::. T, 

D 

The transition matrix Q is of size NTXNT, however, all the terms 

in the last NTR columns are zero, except the diagonal elements of the 

integration states. These terms can be omitted and are not considered 

The matrix is formed row by row 

D04 I = l,NT 

A test must be made to ascertain exactly which row of the transition 

matrix is being formed. 

If the terms are resulting from the original Q matrix, i.e. being within 

· ov-1~::. T 
the area ABCD tre n the term 1-e must be set equal to 

D 

!::. T. This and any subsequent rows must initially contain unit diagonal 

elements. 



IF (1-N-1) 0,8, 10 

CC= (1.0 + V(I))*D(I) 

GOT09 

8 CC= DT 

10 R (I~ 1), V(l) = l. 0 
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Also the value of e DV-
1 

L\ T for D = 0 (i.e. I integration states) must 
2 

be set equal to unity for use later in the program 

Individual terms are calculated in cash row. 

9 DOS" J = l,N 

When calculating the general term R (I,J) it is necessary to compute 

the sum 

I { 
-D(K) V 1(K) L\ T 

1-e 2 
D (K) 

CD= 0 

DO 6 K = l,N 

* Q(l, K) * Q(K,J 

6 CD = CD + D(K) * Q(I,K) * Q (K, J) 

} 

-1 
-D(J)V(J) 6 T * Q (1, J) 

Having computed this value the term· e 

must be added and the total multiplied by the appropriate value of 

_ -e DV-1 t. T 

D 
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5 R(l, J) = CC * (CD+ V(J) * Q (I,J)) 

The diagonal term R (1, I) is computed from the general J·erm 

-1 
R {I J) by adding on the term eD(I) V {I) AT 

I I'"'J 

4 R{l,l) = R(I,I) + V(l) *V (I) 

Matrix Powering 

lt is necessary to power the transition matrix by squaring it IX times. 

Since it is impossible to square a matrix and at the same time overwrite 

• 
the answers in the original matrix, it is necessary to have available 

storage space equal to twice of the matrix being squared {i.e. F(40,40,2) 

The original transition matrix is stored in R so that the first half ofF and 

R can be made equivalent. Also, the elements of the matrix Q can be 

made equivalent to the second half ofF. Hence the equivalence 

statement. 
, 

EQUIVALENCE (Q(I), F(1601)), (R(l), F(l)) 

As it is necessary during consecutive squaring to store the resulting 

matrices in F (*, *, t) and F (*, *, 2) alternatively, two variables 

L, and Ll must be defined so that when L = 1, L1 = 2 and when Ll = 1 

L=1, etc. 

L = 1 

DO 37 M= 1, IX 

L = 3 -L 

Ll = 3-L 
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N 

NT 

DTR 
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consider the terms that are presently stored in the transition matrix,; 

which is of size N X NT 

THESE 
TERMS 
ARE ZERO 
SO ARE 
NOT USED 
OR DEFINE 

G 

~ e~~~~J-~--~~~~~~~~~---------
F 

when squaring the matrix, tre calculation is simplified since all the 
• 

terms in the area BGHC are zero, whence terms of the resulting squared 

matrix may be calculated in two pasts. 

1. If the resultant term lies within the area ABCD, then no 

multiplication of terms outside the limits N x N need be considered 

as they are multiplied by z~ro. 

2. If the resultant term lies within the area DCFE, then because 

the diagonal element in the row corresponding to this is 

unity, then all that is necessary is to calculate the result 

as though it were within the N x N matrix and add itself to the sum. 
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These two parts need not be considered separtel y as a variable may be 

defined such that when computing terms within the area ABCD the 

variable has the value zero, and when computing terms within the 

area DCFE it has value of unity. Such a variable is ATR. 

DO 37 I= 1, NT 

ATR =FLOAT ((I+ NL) / N) 

The matrix is then squared 

DO 37 J= l,N 

CA = 0.0 

DO 38 K = l,N 

. 38 CA = CA + F (1, K, Ll ) * F (K, J, ll) 

37 F (I,J,l) = CA+ ATR * F (1, J, Ll) 

~esponse Stages 

As previously mentioned when reading in the first part of the data 

that if the values of the response stage numbers were stored in 

consecutive elements at the end of the vector IV, that when using 

these values, whether for the column heading or as subscripts, 

programming is easier. 

To commence the output of these values at the correct element of the vector 

IV an integer variable NS is defined as: NS = N-NR+l 
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The Initial State Vector: 

The initial state vector contains NT elements. The first N elements of 

which correspond to the initial concentration in the respective real 

stages, whilst the remaining NTR elements correspond to the constant 

of integration for the respective stages. The vector is read in using 

free format. 

READ(1,104) (V{I), l=l,NT) 

page and column Headings 

For each case a new page is started giving details of:-

1 • The Case number 

2. The volumetric throughput of the system ) 
) read in as data 

3. The total vel ume of the system ) 

4. The corrected value of the probability of an element remaining 

in any stage over the time increment used. 

5. The number of times which the transition matrix has been squared. 

6. The column headings. 

WRITE {2,103) NZ, QTHRO, VTOT, STAYP, IX, (IV(I)), l=NS, NT) 

103 FORMAT (lHl, 8HCASE No, 13// 17H THROUGHPUT RATE=, G12.4/ 

14 TOTAL VOLUME=, Gl2.4/7H STAYP =, Gl2.4/// 

2 3H M=, 13// 5H TIME, 25X, 21H STAGE CONCENTRATIONS/ 

3 lOx, 10 (5X, 12, 5X)/) 

Set the variable time equal to zero 

TIME= 0.0 

The value of the normalised time and the stage concentrations are outputted. 
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97 WRITE (2, 102) TIME, (V(IV (1)), I=NS, NT) 

102 FORMAT (F6.2, 4X, lOG 12.4) 

Test the value of the variable TIME against the value of TMAX to find 

sufficient output has been given. 

IF (TIME. GE. TMAX) GO TO 151 

Calculation of Stage Responses 

The concentrations of the stages after each print out time internal 

are obtained by successive_premultipl ication of the stage vector by 

the powered transition matrix. When calculating the elements in the 

state vector corresponding to integration states. The same arguments apply 

as when powering the transition matrix. 

DO 42 I= l,NT 

CB= 0. 

DO 43 J = l,N 

43 CB= CB+ V(J) * F (J,J,L) 

42 D(l) = CB + FLOAT ((J+NL)/NT) * V(J) 

The vector D is stored in the vector V so that after the time count has 

been increased an amount equal to the print and interval, the write 

statement labelled 97 may be used to output the stage concentrations. 

DO 45 I= l,NT 

45 N(J) = D(l) 

TIME= TIME+ H 

GO TO 97 
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The time at the end of each run is recorded in· 12. By the Subtraction 

of the time at the beginning, the total time taken for each run can be 

outputted. 

151 CALL I TIME (12) 

12 = 12-11 

WRITE (2, 150) NZ, 12 

150 FORMAT (1Ho,23H TIME TAKEN FOR CASE 

NO, 1~, 2H = I 14, 5H SECS) 

The value of the state vector can be outputted for the last time. 

107 WRITE (2, 102) TIME, (V(J), I= 1,NT) 

control is transferred to start another case, and the segment is finished. 

GO TO 98 

99 CONTINUE 

STOP 

.END 

Operational Details 
. 

Data required as the input for this prpgram can be devided into four sections. 

Each section starts on a new card. All the data is in free format. 

Section 1 

All variables of type 1 Integer 1 
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Variable List · Significance in the Prog~am _ 

N Number of system stages excluding integration 

states; 

NR Numbers of the N stages for which a time response 

is required, followed by NR numbers corresponding 

to these stages; 

NTR Number of integration states required. 

Section 2 .. --

Type of variables used 'Real' 

Variable list Significance in the Program 

Q An array of N x N numbers giving the system 

intestage flows. The numbers are input in matrix; 

form as follows:-

Q (1, 1) the flow through stage 1 ( a + tiv.e number) 

Q (2, 1) flow from stage 1 to stage 2. 

Q (3, 1) flow f~om stage 1 to stage 3 • 

Q (N, 1) flow from stage 1 to stage N. 

Q ( 1,2) flow from stage 2 to stage 1. 

Q (2,2) the flow through stage 2. 

Q (2,3) etc to Q (NxN) 
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V N numbers corresponding to the volumes of the 

N stages. 

H The print out interval in normalised 

time 

TMAX The maximum normalised time value for which 

responses are required. 

QTHRO The volumetric throughput 

VTOT Total volume of the N stages 

STAYP The minimum acceptable probability of an element 

remaining in any stage during time DT. 

Note: 

N I. d t' T- t VTOT h •t• . I t' orma 1se 1me - xQTHRO , w ere 1s rea 1me, i.e., itistime 

expressed as multiples of the mean system time constant. Artificial values 

of VTOT and QTHRO may be used to alter the normalisation i.e., VTOT = 

QTHRO will give the real time response. 

Section 3 ( Omit if NTR = 0) 

Variables used are of type 1Real 1
• 

This section consists of Nx NTR numbers. Each block of N numbers 

gives information concerning one trapping state or integral. For the 

first block let these numbers be A1, A2 

integral will be 
N 

c + I [ Ai X 

i = 1 

T J (Stage i) dT 

0 

, An then the output 

(1) 
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where T is at 0, H, 2H etc to TMAX and C is a constant. Hence if 

the integral response of stage 1 were required, the data would comprise 

of a 1 followed by N-1 Zeros giving 

. T 
X I (Stage 1) dT, since A •••• A are zero 

2 n 

0 

Section 4 

All variables used are of type 1Real' 

This section comprises of N + NTR numbers which are the initial states 

of all the stages. The first N numbers should be the required concentrations 

of the tracer component in each stage at time 0. The next NTR numbers 

correspond to the values of C in equation (1) for each trapping state. 

Note: 

Stages within the system may be numbered arbitrarily provided there 

are assigned numbers from 1 to N. These numbers represent the order 

in which information concerning !he N stages is put. All the 

integration stages will have their time responses outputted and will be 

numbered N + 1 to N + NTR by the machine in the order in which the 

data is presented. 

6.3.7. Advantages of Using Markov frocedu~ 

In the deriatioh it has been shown that the first order Markov procedure 

uses the approximation 
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-1 
e + V At:. T (1) 

and the second order Markov procedure uses the approximation 

-1A·t:.T V 
e = 

-1 
+ V A 

-1 2 
t:.T+ (V A) (2) 

The advantages of the Markov procedures as compared to the evaluation 

of the right hand sides of the two equations given above are as follows: 

First let us consider the term 6 T, for the required accuracy in equation 

(1), terms containing t:.T2 must be negligible •. Hence !I itself must be 

small so that unless the elements of v-1A approximate to the reciprocal 

of 6 T, the product, when added to the unit matrix, will loose significant 

digits of accuracy, but the elements of V- lA may not be adjusted in this 

way since (V- 1A)2 6 T2/2~ would then certainly not be negligible, 

and in fact the accuracy of the approximation is increased if the elements 

of V- lA are made small. This problem increases as, higher order approxi-

• t k • 1\Tn 1\Tn+ 1 . . mat1ons are a en smce u -+ u as m mcreases. 

The Markov procedures depend on the evaluation of diagonal matrices 

of ;he form eK, where K is v- 1 D A TG, and G is a constant between 

zero and one. If b. T= lin (STAYP)/(-max (D/V)), then eK will have 

values between STAYP and one, hence the loss of significant digits 

is held to a minimum. 
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Secondly, v-1
A cannot be evaluated .if an element of V is zero. 

No such restriction applies to the Markov procedure, since the exponent K 

(which is always negative) becomes _oo and eK becomes zero, 

The Markov procedure can also be used if elements of Dare zero since 

K -1 
e becomes unity and V D ~T G can be evaluated by L 'Hopitals 

rule 

= ~T G 
V 

e - 1/D 

v-1 
D ~T G 

e 

----------- at D = 0 ='= 
~TG 

V 

The significance of allowing V to become zero is that differential 

equations can be mixed with algeoraic equations, whilst if D is zero, 

integration of the inputs to this stage is implicit. 

Integration routine written in the computer program is in fact explicit, 

since the computer is unable to evaluate e V-1 D ~T -1 , when D is 

zero. Since this possibility must th!'!_refore be aiPowed for separately, 

advantage has been taken, of the knowledge that the columns of the 

flow matrix corresponding to integration states are all zero in order to 

reduce the amount of computation. For example, for a system comprising 

of ten stages and ten integration states the program uses a ten by 

twenty matrix and not a twenty by twenty matrix. 
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CHAPTER 7 

EXPERIMENTAL WORK 
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7.1 . PURITY OF MATERIALS 

After the preliminary investigation by using a gas liquid chromatograph 

to measure and check the purity of the starting materials, a further 

comparison was made of some of the physical properties. 

The refractive indices and specific gravities of the three compounds 

were measured and compared with values taken from International 

Critical Tables (61) and the Handbook of Chemistry and Physics (62). 

In all cases the agreement was excellent which confirmed that a very 

high degree of purity had been obtained. The values taken experi-

mentally together with the values obtained from the references given 

above, as presented os Table 7.1 • 

Refractive Index at 20° c Specific Gravity at 20° c 

Component Ref.(61) Purified Ref .(62) Purified 
Material Material 

Acetone 1 .3588 1 .3590 0.7900 0.7902 

Methanol 1 .3288 1 .3287 0.7914 0.7915 

Isopropanol 1 .3776 1 .3775 0.7851 0.7850 

Table 7.1 Physical Properties of the Pure Materials 

The normal boiling points of the three materials were also measured 

for several samples of the purified materials. The results were averaged 

and compared with values from International Critical Tables (61) as 

shown in Table 7.2. 
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Boiling Point at 760 mm Hg Pressure 

Component Ref (61) Purified materials 

Acetone 56.10°C 56.25°C:!,O .05 

Methanol 64.60°C 
0 

64 .45 c :!,{) • 05 

Isopropanol 82.26°C 82 .30°Cj:O .05 

Table 7.2 Boiling Points of the Pure Materials 

The redetermined values were very close to the temperatures given 

in column three apart from siight variations in the last decimal place 

which were within the accuracy of the temperature measurements. 

Other physical property sources; (63, 64, 65) were then considered 

and the spread of the quoted boiling points at 760 mm Hg pressure are 

• 0 0 0 0 
nr:m g1ven; 56.10 C to56.50 C; Methanol, 64.96 C to 64.1 C; 

0 
Isopropanol, 82 .5 to 82 .26 C • 

With these figures in mind and also the close agreement between the 

values of specific gravity and refractive index, it was decided that 

the purity of the materials was sufficient for this investigation. To 

avoid deterioration of the compoun~s by sunlight or other light sources, 

they were stored in a dark place. Oxidation was overcome by keeping 

the containers tightly stoppered. 
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7.2 DESCRIPTION OF THE EQUIPMENT 

General arrangement. The overall height of the unit above ground is 

19 ft. All valves etc. which require manual adjustment during a run 

will be accessible from ground level. 

Process flow scheme.· The unit operates as follows:-

(a) Feed section. The feed material is first charged to a 200 

gallon feed tank. From here it is metered by a gear pump 

to the pre-heater and then to the column. During vacuum 

operation a needle valve in the feed line is partially 

closed to ensure that the pump is working against a positive 

head. The feed rate is indicated locally and also recorded 

on the instru~ent panel. 

The feed pre-heater consists of a coil immersed in a heated 

lead ba.th. A temperature controller regulates a portion 

of the electrical load on the pre-heater to maintqin a 

constant feed temperature to the column. The feed lines 

between the pre-heater and column are electrically heated. 

The load on the windings is adjusted by a variac at the. start 

of a run and then the feed temperature controller compen

sates for any change in heat loss during a run. 
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(b) ·Column and Reboiler. The feed enters the column at any 

one of eight points, depending on the relative amounts of 

rectification and stripping required. The column is made 

up· of two 4 ft. lengths of 3 in.· I.D. pipe packed with a 

protruded stainless steel packing to a depth of 7 ft. 10 in •. 

Conical packing supports made of metal gauze are fitted in 

the base of each section. A gauze packing retainer is 

fitted at the top of the column. 

Electrical heafing cables compensate for any heat losses 

from the column. The cables are wound round a mild steel 

sheath surrounding the column. Lagging is placed on top 

of the cables. An adjustable portion of the power input 

to the cables is switched off or on by an automatic tem

perature difference controller. The controller operates in 

order to keep the temperature of the sheath equal to the 

temperature inside the column. 

A tube flanged directly to the bottom of the packed column 

acts as the reboiler. 

The boil-up heat is provided by electrical resistance heaters 

clamped to the outside of the tube. 

The composition of either product from the column is main

tained at the specified value by controlling either the 

• 
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temperature in the reboiler or the temperature at some point 

in the column. This is done by an automatic temperature 

controller which adjusts the electrical load on the reboiler 

heaters. A multi point temperature indicator is used to show 

the temperature pattern in the column. 

(c) Bottoms section. The liquid level in the reboiler is kept 

constant by pumping off excess liquid as bottoms product. 

The gear pump runs continuously (P .753). When the level 

in the reboile~ exceeds the desired value, then a control 

valve (CV .753) opens and liquid passes through the cooler 

(E .755) to the product receiver. If this valve is closed 

then the bottoms liquid is continually recirculated by the 

pump through another valve (CV .755). The receivers are 

used alternatively so that the product can be run off into 

drums while the column is running. Automatic level 

detectors (L .1752) are fitted to the rec~ ivers so that a 

warning light shov1s on the control panel when the receivers 

are nearly full. The receivers are steam jacketed and the 

lines steam traced so that the bottoms product with high 

melting points can be handled. 

(d) Overheads section. The vapours from the top of the column 

pass through an electrically heated line to the condenser 

(E .753). The pressure in the condenser is kept constant 
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during a run. lt is conrrolled during vacuum operation by 

a monostat (PC .751) and during high pressure operation by 

the pressure controller (PRC .751). The latter controller 

acts in one of fwo ways: if sufficient inerts are present 

then it regulates the rate at which these are vented to 

atmosphere; if only a small quantity of inerts are present 

then it regulates the flow of cooling water to the condenser. 

The reflux divider (RD .751) works on a time cycle basis 

and maintains a constant reflux ratio throughout a run. 

Liquid reflux returns to the column under gravity through 

an electrically heated line. The distillate product passes 

to a cooler (E .754) and then to the receiver (V .753). When 

the column is operating either above or below atmospheric 

pressure then a liquid seal is maintained in the p~oduct 

line by a level controller (LC .752). 
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DESIGN CONSIDERATIONS 

1 • Selection of duty 

The column was intended for general use as a pilot plant. 

Jt had therefore to be flexible enough to operate over a 

wide range of conditions. However this flexibility had to 

be balanced against the cost of construction and ease of 

operation of the unit. 

{a) Feed capacity. A column which would handle 

feed rates up to approximately 5 gallons/hour 

seemed to be the most suitable size of column for 

the pilot plant (the quantity of feed material to 

be treated being of the order of 40-500 gallons). 

With a larger column excessive amounts of material 

would be lost before the column settled down. 

The capacity i~ reduced considerably when the 

distillation pressure is reduced and therefore a 

smaller column would probably have too low a 

capacity when operating under a vacuum. 

{b) Pressure. Operation at pressures both above and 

below atmospheric was desirable and a column which 

could operate from 20 mm Hg to 150 psig would 
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be capable of handling most distillation problems. 

(By limiting the maximum pressure to 150 psig, the 

use of class 150 flanges for most of the joints was 

possible and so simplified the construction of the 

process equipment). 

(c) Temperature. Reboiler temperatures up to 300°C 

were possible without introducing undue compli-

cations in the construction. A water-cooled 

condenser would cope with most overheads and 

thus the installation of a refrigerated condenser 

did not appear to be justified. 

(d) Separation power. A column having the equivalent 

of 20-30 theoretical stages would cope with most 

of the separations encountered in the pilot plant. 

(e) Reflux ratio. This had to be. adjustable. A standard 
' 

timer with a range of ratios from 1:1 up to 50:1 

was considered adequate. 

(f) General construction. The column had to be con-

structed ofF .M .B. stainless steel so that it could 

handle corrosive fluids. All equipment had to be 

flame-proof. The unit should be adequately 

instrumented so that ·only one operator is required 

to run it. 
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2. Design oF more important items 

(i) Column 

(a) Type. The required flexibility of operation 

could only be achieved by using a packed column. 

To reduce the height of the column a protruded 

metal pack with low HoE. T .P. values was used. 

{This type of packing has a very low pressure 

drop per plate and is therefore particularly 

suitable for vacuum distillation). A column 

filled with this packing is more compact than 

one filled with a conventional packing and it 

should therefore take less time to reach steady 

conditions after start up. 

(b) Calculation of the column diameter. The diameter 

was calculated by considering the vapour liquid 
' 

loading at the flood point. The vapour velocity 

at the flood point for this type of packing is 

given by the equation:-

G = 270(pL)"
58 

(pg).4
2

1b.jhr.ft.
2 

(1) 

pL = liquid density lb./ft.
3 

p g = vapour density lb ./ft. 
3 
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Consider below the simple hypothetical separation 

used in order to obtain some idea of the columns 

diameter. 

Hypothetical separation:-

Feed composition 

Distillate product 
composition 

Bottom product 
composition 

Feed as boiling liquid 

M. W • of m • v . c • 

M • W • of I • v . c . 

Pressure 

Reboiler temperature 

Density of liquid in 
reboiler 

= 0.3 mole fraction m .v .c. 

= 0. 99 mole fraction m. v .c. 

= 1.10 mole fraction m.v.c. 

= lOO 

= 200 

= 150 psig 

= 260°C 

3 = 50 lb ./ft. 

For most separations, flooding will begin at the. 

lower end of the column. Therefore in equation 

(1) the physical properties of the materials 

entering and leaving the reboiler have been used. 
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Average M.W. of vapour= 190 

Then vapour density = 3.0 lb ./ft. 3 

Then in equation (1) 

Vapour velocity at 
flooding 

If maximum vapour 
velocity is taken as 70% 

= 270 X 50.58 
X 3.42 

2 
= 4,1 00 I b ./hr. ft. 

of that at flooding, then 
maximum vapour velocity= 

• 2 
2,870 lb./hr .ft. 

A mass balance over the column shows that: 

Flow of vapour up 
column (lb.) 

Now feed rate 

:. Flow of vapour up the 
column 

Then X-sectional area 
required 

:. I.D. of column 

= 2.21 x feed rate {lb.) 

= 5. gallons/hr. 

= 45 lbs ./hr. 

= 99.5 lb./hr. 

99.5 2 = 2 870 = 0.0348 ft. 
I 

= '2 .2 ins. 

This calculation is based on a single hypothetical 

separation and therefore only gives an approximate 

idea of the column diameter. 

A more rei iable estimate of the required column 

diameter can be obtained by referring to a des-

cription of an existing pilot plant column. This 
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column is filled with the same type of packing 

and can cope with a feed rate of up to 10 ga lis./ 

hour of a wide variety of hydrocarbon I iquids. 

The I.D. of the column is 3 inches. The maximum 

pressure is 600 ps ig . 

From equation (1) we see that the capacity of 

h I . • I .42 d t e co umn IS proport1ona to .42 pg an 

therefore approximately proportional to (absolute 

pressure). The proposed column operates at a 

maximum pressure of 150 psig. Then it should 

have an inside diameter of 3 inc. to deal with 

feed rates up to 5 galls ./hour: The column is 

made of 3 in. N .B. tube. 

(c) Height of packing. Experimental data is avail-

able which gives the values of H .E. T .P. for 

protruded packings at different vapour rates. 

The H .E. T.P. is of the order of 2-3 inches at 

normal vapour velocities (0 .5 - 1 .5 ft./sec.). 

However, these values of H .E. T .P o were measured 

at total reflux. At finite reflux ratios the 

H .E. T .P o would be somewhat higher. 
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A packed height of 7 ft. 10 ins. is then used to 

provide the 20-30 plates required. The overall 

length of the column is 8 ft. and for ease of 

handling and construction it is divided into two 

sections of length 4 ft. Liquid redistributors are 

not used because they are of little value in a 

3 in. diameter column. 

(d) Pressure drop. Experimental data shows that the 

• 
pressure drop per foot of protruded packing varies 

from 0.4 mm Hg at a vapour velocity of 0.5 ft./ 

sec. up to 4 .5 mm Hg at a vapour velocity of 

1 .8 ft./sec. 

Then the pressure drop across the packed column 

will vary approximately from 3 mm Hg up to 

33 mm Hg depending on the vapour velocity. 

The vacuum pump should provide a condenser 

pressure of l 0 mm Hg • Therefore the pressure 

in the reboiler could reach as low as say 15 mm 

Hg under low liquid and vapour loadings. 

(ii) Reboiler 

(a) Heat load. For most separations the boil-up 

rate wi 11 not exceed 60 lb./hour. 
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Average latent heat of = 80 C .H .U ./lb. 
organic liquids 

Then maximum heat load =4,800 C.H.U./Ib. 

= 2.52 k .w. 

To allow for heat losses and for the possibility of 

dealing with liquids of high latent heat, electrical 

resistance heaters with a total load of 4 kW are 

provided. 

(b) Design. The tota'l heat load is made up by 8 

electrical resistance heaters clamped to the out-

side of the reboiler tube. J.t was attempted to 

reduce the heat capacity of the reboiler plus 

contents to a minimum. The liquid hold is only 

of the order of 1 gallon. Thus any change in the 

heat input quickly produces a change in the boil-

up rate. 

Fins are welded to the inside of the reboiler tube 

to increase the heat transfer area and so reduce 

the chance of local overheating of liquid. The 

. . 2 
maximum heat .flux will then be 2600 CHU/hr .ft. 

The heat input is varied by varying the number of 

heaters connected to the electrical supply. Fine 

control is achieved by connecting one of the 
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heaters to a variac and an on/off controller. 

The on/off controller will tend to make the boil-

up rate oscillate. The load on the heater is 

reduced by adjusting the variac until this 

oscillation has been diminished. 

(iii) Condenser 

(a) Heat load and area required. A heat balance 

over the whole column shows that the maximum 
• 

heat load on the condenser will be approximately 

equal to maximum heat load on the reboiler. 

Then take maximum heat load as 4 kW= 7 1 600 

CHU/hr. 

The area required for heat transfer will be 

greatest when the overhead vapours are at a low 

temperature. 

Theoretically 1 it should be possible to condense 

vapours at 20°C using water at 15°C. However 1 

if the column were also operating at full capacity 

then a very large condenser would be required. 

The condenser is therefore sized on a vapour 

temperature of 55°C when the column is running 

at full capacity. 



139 

Using water as coolant 1 average temperature = 

35°C. Take overall heat transfer coefficient 

,11... 2o as 70 CHU; nr .ft. C. 

Then area of heat transfer = 7,600. 
35 X 70 

2 
= 3.5 ft. 

(b) Design. An area of 3.1 ft. 
2 

is provided by 

30ft. of 1/8 11 NB tube wound into two concentric 

coils. These coils are fitted inside a length of 

6 11 NB tube. Hold up of water in the tubes is 

low and high water velocities are achieved. 

Therefore the condensation rate will respond 

rapidly to changes in the flow of the water. An 

additional heat transfer area of 1 .5 ft. 
2 

is pro-

vided by jacketing the 6 11 tube. This jacket 

will only be used when the heat load is abnormally 

' 
high. Under_ normal circumstances it would tend 

to produce excessive subcooling of condensate. 

(iv) Feed preheater 

(a) Heat load 

Maximum feed rate = 45 lb .yhr. 
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Then take maximum feed temperature as 275°C 

when operating at this rote. 

Assume average specific heat of 0.6 CHU/Ib. 

Then maximum heat load = 45 x 0.6 x 255 

= 6,900 CHU/hr. 

= 3.63 kW. 

To allow for heat losses a 4.0 kW. maximum heat 

impact is provided • 
• 

(b) Design. In order to obtain feed temperatures up 

to 300°C, lead is used as the heat transfer medium 

in the preheater. The feed passes through a 

coiled tube which is immersed in lead. The lead 

is contained in a 6" NB tube and 8 heaters, each 

of 0 .5 kW., are clamped to the outside of this 

tube. The feed temperature is controlled by 
' 

regulating the electrical load on these heaters. 

Several of the heaters are switched on to provide 

a base load. The fine control of temperature is 

achieved by manually adjusting a varioc connected 

to a single heater and then allowing a temperature 

controller to switch this small load on and off as 

required. 
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(v) Vacuum pump 

The size of this pump can only be determined by past 

experience on vacuum systems. Condenser pressures 

as low as 5 mm Hg were achieved on a similar pilot 

plant column by using a pump with a capacity of 

13 ft.
3
/min. 

The proposed column has a vacuum pump with a capacity 

of 16 ft.
3
/min. The pump is of the rotary type so that 

a non-pulsating pressure is obtained. 

(vi) Control system 

The aim of nearly all distillation operations is to make 

a product of specified composition. The proposed 

control method is based on the principle that the tern-

perature of a vapour is a direct measure of its composition 

at constant pressure. This method' of control is used 

because it should work equally well during pressure 

and vacuum operation. 
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CONTROL OF DIFFERENT VARIABLES 

After the initial start up period the control of the different variables 

is as follows:-

{i) Composition 

The composition of either product is maintained at the 

required specification by controlling the temperature at 

·some point in the column or in the reboiler. The temperature 

to be controlled will be that temperature on which the 

product composition is most dependent. 

When the bottom product is the specified product, then the 

controlled temperature will be that of the reboiler of some 

point in the lower section of the column. 

When the top product is specified, then the controlled 

temperature will probably be in the upper section of the 

column. There are eight alternative temperature control 

points in the column itself and one in the reboiler o 

The temperature at these points is in turn controlled by the 

boil-up rate o The temperature is measured by a thermocouple 

connected to a Honeywell Brown Electronic Controller 

{TIC 751) o This controller th~n varies the heat input to the 
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reboiler. The set temperature on the controller can be 

adjusted by ~°C divisions • 

. The overall action of the system is as follows: 

Suppose the top product contains too much of the least 

volatile component. Then the value of the controlled 

temperature must be reduced; the set point on the controller 

is lowered so that heat input to the reboiler is reduced; 

the boil up rate is reduced so that temperatures throughout 

the column are reduced; then the proportion of the less 

volatile components in the top product also decreases. 

There should be little time Jag before these changes occur 

because the hold up of liquid in the packing and reboiler 

is low. 

{ii) Feed Rate 

This should remain constant throughout a run. The speed of 
' 

the gear pump is set at the beginning of the run. 

(iii) Feed Temperature 

Automatic adjustment of the heat input to the preheater 

ensures that this temperature is constant during a run. 

fl 



(iv) Reflux Ratio 

A constant reflux ratio is used during a run. lt is unaffected 

. by changes in the condensate rate. 

(v) Pressure 

The pressure should remain constant throughout a run. When 

the column is operating under vacuum, then the presssure 

is controlled by a manostat (P .751). When the column is 

operating above atmospheric pressure, then the pressure in 

the condenser is controlled by PRC 751 in one of two ways: 

If the overheads contain sufficient inert gases, then a 

constant pressure is maintained by controlling the rate at 

which these are vented to the atmosphere. 

If the quantity of inerts is low 1 then the constant pressure 

is maintained by controlling the flow of cooling water to 
' 

the condenser. 

(vi) Product Rates 

Both products are allowed to come off freely; no attempt is 

made to maintain a constant rate. The rate at which dis-

tillate product is delivered varies with the condensation 

rate. The rate at which bottoms product is delivered depends 

on the liquid level in the reboiler. 
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(vii) Liquid level in reboiler 

The level of the liquid in the reboiler should remain con

stant. The discharge pump (P .753) operates continuously. 

The control valve (CV .753) only opens when the liquid 

level in the reboiler exceeds the desired level. 

When this control valve closes, then the pump discharge 

pressure increases.. The controller (PlC 751) is set to open 

the control valve (CV .755) when the pressure is about 

10 p .s. i. higher than the reboiler pressure. The I iquid 

then recirculates through the pump and cooler and so 

reduces the operating temperature of the pump and the 

possibility of vaporization in the pump. 
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7. 3 MECHANICAL TESTING 

Before the rig could be operated as a distillation unit, it had to be 

checked for mechanical defects, omissions and other inconsistencies 

according to the flow diagram (R .555). Each of the individual plant 

items had to be checked and certified. 

The following work scheme was adopted:-

(i) By following the flow scheme all omissions and inconsis-

tencies are to be found and rectified. 

(ii) All valves to be labelled as indicated 'on the flow scheme 

to facilitate operation. 

(iii) A 11 thermocouples to be checked and defects replaced. 

(iv) All relief valves to be checked in place and certified. 

(v) All process lines to be purged with compressed air to 

eliminate scale and accumulated water blown from the 

instrument air I ines. 

(vi) All leaks to be reduced to· a minimum. 

(vii) Air purge system to be tested and flow rates to instruments 

and heaters adjusted. 
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{viii) All gear pumps to be run in with lubricating oil, after 

being checked. 

{ix) . Feed metering system to be checked and made operational. 

{x) Level control system on the reboiler has to be completed 

and adjusted. 

{xi) Reflux divider has to be checked and calibrated. 

{xii) All electrical wiring to the heaters should be tested and 

anomalies corrected. 

{xiii) Control equipment to be repaired and connected up. 
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7.4. STARTING UP PROGRAMME FOR THE PLANT 

(Based on Dwg • R .555 (Mod .2)) 

1 • Valves to coolers opened, where required, and cooling 

water to condenser turned on. 

The required valv.es are located 

(i) on ground floor opposite main entrance (Mains 

Valves). 

(ii) on 1st floor behind coolers (Distillate and Bottoms 

Coolers). 

(iii) on upper platform at top of column (Condenser). 

2. Feed line connected to appropriate feed point on column. 

There are eight such feed points on the' column, the most 

suitable one for any part.icular case being determined by 

trial and error initially and by calculations from desired 

product and feed compositions once some experiment data 

is obtained from the plant. (Connect TR .751 to appropriate 

feed point thermocouple). 
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3. All valves to manometers should be shut along with all out

let valves (i.e. from various tanks -not including different 

sections of plant) and vents to product receivers opened. 

The column is vented by opening valve (54) on diagram, 

located near top of column but not labelled. 

4. Feed now pumped to storage tank by means of air pump, 

ensuring valves (1) and (3) are open and valves (4) and (18) 

are closed. Tank should be filled in 1-H· hours; no quicker 

since considerable pressure drop before pump. 

5. Feed Stock may now be blended by opening valve (2) and 

closing valve (1) i.e. recirculated to feed tank using Pump 

(P .752) and using vessel (V .755) as guide to condition of 

feed. 

6. level in tank may be observed by opening valve (15) and 

shutting valve (8). 

7. Calibration of FJ.751/P •. Open valves (9), (11) and fill 

(V .755) with feed liquid. Shut valves (9), (6) and (18) and 

open valve (17). Then pump back into storage tank. Flow 

rate being measured by time interval for the liquid level 

to fall between adjacent Jubilee clips (the volume between 

top and second clips is (440 m/s), between second and third 

clips (400 m/s) and between third and fourth clips (340 m/s). 
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This measure of flow rate must be carried out for each 

change of feedstock. 

8. Valves (9), (11) and (17) now closed and valves (18) and 

(6) opened and enough liquid pumped into column through 

preheater to fill reboiler. Feed metering pump set to give 

required flow rate and then feed preheater turned on. 

These should be trimmed down to maintain a constant feed 

temperature when Tl.751 nears boiling point of liquid 

(provided feed is I iquid at boiling point). 

9. All heaters, i.e. reboiler, column and trace heaters are 

turned on (many trace heaters are missing or not connected). 

10. Bottoms take-off pump is switched on, having set the 

pressure indicator/controller to about 20 p.s .i. Liquid 

must pass across pressure control system and valve {114) may 

need to be adjusted. 

11. Valves (120), (110), (111) and (124) must be open (valves 

to bottom tank). The controller which maintains the 

reboiler level at about 3" below the top may also have to 

be adjusted. 

12. Switch on all instruments. 
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13. No trace heaters are connected, therefore adjustements to 

bring in line the temperature indicators and controllers are 

not possible. 

14. The temperature recorder and controller installed for control 

of the boil up rate is unsuitable because of ambient pressure 

changes. The only manual way of altering the B .U .R. is 

by way of the reflux ratio. Once the heating to the reboiler 

is reset, the boil up rate in the column remains reasonably 

constant. The reflux time is set to an arbitrary value and 

top take-off rate is measured {D). The boil up rate is thus 

equal to D(R+1). By trial and error the boil up rate can be 

set to the required value and to give the required flow 

conditions in the column the reflux ratio is set. 

15. Continuous watch on temperatures to check that they remain 

constant. 

16. The top and bottoms tank may be changed by opening and 

closing valves {126) and (124) respectively for bottoms and 

(75) and (77) for tops • (For numbers refer to Dwg • R .555 

Mod (ii)). 

Shutting Down 

(i) Switch off all heaters. 
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{ii) Switch off pumps. 

(iii) Switch off instruments. 

Imp. Note 

If the Alarm Bell sounds either the reboiler or the feed heaters will 

have exceeded their maximum temperature {400°C), or the liquid 

level in the reboiler will be below its minimum. This will be indicated 

by the appropriate instruments. In any event the heaters and pumps 

• should be switched off immediately and the defect rectified. 



CHAPTER 8 

ANALYSIS OF Ll QUID SAMPLES 



153 

8. ANALYSIS OF LIQUID SAMPLES 

In the present experimental work a new method of analysis is suggested, (Ref.6~, 

using a gas liquid chromatograph connected directly to a data logging system. 

lt will be interesting to note that, though the method has been developed and 

tested on a ternary mixture, it is easily extended to handle multi-component 

mixtures. . 

The method is discussed under the following headings. 

The .Gas Liquid Chromatograph 

Data Processing 

The Digital Computer Programme 

Analysis Procedure 

Observations on the Analysis Procedures. 
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8.1 THE GAS LIQUID CHROMATOGRAPH 

8.1 .1 Summary 

The chromatograph used was a Perkin Elmer Model 800 

with a flame ionisation detector. The chromatograph 

column was 2 metres, 1f8" 0 .D. tube packed with 80% 

chromoscfbp, and Disodecylpthalate was used as the 

ttl:
stationery liquid phase. This column was maintained 85°C 

~ 

as the separation of the three components was best at this 

temperature. The carrier gas was pure N
2 

and the flow 

rate was regulated using a soap film flowmeter. After 

passage through the chromatograph column the carrier gas 

was burnt at a small jet in the combustion chambers, air 

being supplied to the combustion chambers at an inlet 

pressure of 35 Psig. The output voltage of the thermoscope 

was an indication of the flame tempera,ture and the flame 

size, and was recorded on the Sunvic chart recorder. 

Before a sample was injected into the chromatograph 

column, the temperature and size of the flame would be 

steady and the recorder would have a straight I ine recorded 

as the base line. When a sample was injected the corn-

ponents of the sample were separated into distinct bands of 

each component which finally reached the flame burning 
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at the jet in the combustion chamber·. The band of each 

component was burnt in the flame with the effect that the 

size and temperature of the flame increased according to 

the amount and the nature of the respective components. 

As the three components were separated into distinct bands 

by the chromatograph column there were three separated 

peaks shown on the chart recorded • 

The area of these peaks were measured by recording a 

large number of peak height values, read at regular intervals, 

and performing an integration to obtain the area. 
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Description of the Perkin Elmer Chromatograph 

The Model 800 gas chromatograph, 

is a sensitive laboratory instrument designed to separate 

complex mixtures of organic compounds with wide boiling 

ranges. This instrument is a dual column temperature 

program chromatograph. lt can be operated with either 

one or two columns under isothermal conditions. Close 

column temperature control is ensured by use of a propor

tional temperature controller and a high velocity circulating 

air bath. 

One of the unique features of this instrument is the incor

poration of a differential flame ionization detector which 

provides the high sensitivity inherent in flame ionization 

detectors over the entire temperature program range. The 

Model 800 provides programmed analysis with minimum 

signal instability due to column substra'te elution. In the 

differential detector, a reference flame compensates for 

base line shift due to the substrate elution of the column. 

Other features are two separate pneumatic flow controllers 

for the independent control of column flow and a dual 

liquid injector which allows sample introduction into both 

chromatograph columns. 
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This instrument consists of two major sections: 

1. the upper oven cabinet containing the circulating 

heated air bath, the injection columns, the columns 

and the detector and 

2. the lower cabinet which contains the carrier gas· 

flow controller, fuel gas controls, and the elec-

tronic and mechanical assembles associated with 

the detector, programmer and oven thermostat. 

The analytical or pneumatic system is equipped with two 

independent proportional flow controllers which assure 

constant flow during the temperature programme cycle. 

The flow to either column can be controlled independently 

by means of a needle valve adjustment. Sample is injected 

into the carrier stream by inserting a hypodermic syringe 

through a self-sealing rubber septum into an injector capable 
' 

of operation to 500°C. The injector is designed so that the 

carrier gas is preheated to a temperature approximating the 

injector block temperature before reaching the point of 

sample injection. As the sample is vapourised it immediately 

passes to the column as a discrete 'slug' of vapour. 
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The sample is separated into its various components within 

the column and as each component elutes it is carried into 

the column effluent splitter. The column effluents entering 

the detector are mixed with hydrogen and burned at the 

flame jets in an atmosphere of purified air. As organic 

sample molecules are burned, ions are formed and collected 

on their associated electrodes. Under steady state conditions 

i.e. both columns eluting equally, the ions currents in 

each flame oppose each other and no signal is generated at 
• 

the output. The presence of sample ions in one flame 

unbalances the detector and yields an output current. This 

current is simplified and converted to a signal suitable for 

driving an auxilliary recording device. The recorder pen 

foJIONs the increase and decrease of the signal and therefore 

traces peaks on the chart. The area under each peak is 

proportional to the concentration of the ionized sample 

component. 

The Model 800 is designed primarily for use with either one 

or two packed columns with outside diameters of 1/a inch. 

The standard coil diameter. of both lfa inch and* inch O.D. 

columns is 2.5 inches. The column outlets are connected 

directly to a receiving block where either the entire flow 

or a portion of the flow can be passed to the flame detector. 
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Excess flow can be split off and vented to suitable sample 

collection devices or auxilliary detecting units • 

. The basic features of the flame ionisation detector are many 

including wide dynamic, low effective volume resistcnce 

to contamination, and capability of operating over the 

entire temperature range of the instrument. The detector 

consists of two flame ionisation units housed within a single 

chambe" The column effluent from each stream mixes with 

hydrogen and flows to the associated flame jet. The platinum 

electrodes for each flame are arranged in such a way as to 

form a differential circuit. The flames are oppositely 

polarised and have a common output electrode. While the 

ionization caused by the substrate elution in one flame 

gives a positive going output, the ionization in the other, 

oppositely polarised flame gives a negative going output. 

When operated together, the flames tend to give a zero 
' 

output signal when temperature programming chromatograph 

columns at elel;tated temperatures. As sample components 

are eluted into the sensing flame, the ionization current 

produced by this flame increases over that of the reference 

flame and gives an output signal proportional only to the 

amount of sample present. 
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The output from the detector is connected directly to the 

input of an electrometer amplifier capable of driving either 

galvanometer or potentiometric recorders. The negative 

feedback amplifier has a full scale sensitivity of 2.4 x 10-
12 

amperes and has an eighteen stop attenuator which attenuates 

the sensitivity from Xl to X500,000. The special amplifier 

design yields a time constant of no greater than lOO milli

seconds which allows the instrument to be used for high 

speed analysis with both small diameter packed columns and 

capillary columns. The sensitivity of the Model 800 is such 

that a two ppm sample of propane (or c3 equivalent at 

50cc/min) eluting into the detector gives approximately 

full scale deflection on maximum sensitivity. 

A centrifugal blower circulates air within the oven chamber. 

The air flow is approximately 125 cubic feet per minute, 

and air within any section of the chamber changes approxi

mately seven times per second. The interior of the oven is 

constructed entirely of stainless steel. The low mass con

struction ensures efficient heating and cooling of the entire 

structure with minimum gradients and close temperature 

control. The oven temperature controller is a proportional 

controller which uses a silicon rectifier and platinum sensor. 

The rectifier continuously delivers the exact power to the 

" 
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heater required to maintain the desired column temperature. 

A thermocouple is installed in the oven chamber to monitor 

the temperature. Oven temperatures can be controlled 

anywhere between 50°C and 400°C and can be set to within 

2 .5°C. The column assembly can be cooled from 400°C to 

50°C in less than 8 minutes. 

Automatic column temperature programming is provided by 

selection of any of twelve different linear program rates 

ranging from 0~.5°C/min to 48°C/min. 



8.2 DATA PROCESSING 

Although it is possible to obtain quantitative analyses by measuring 

only the maximum heights of peaks from a chart record, the accuracy 

obtainable is not sufficient for a rigorous investigation of any ternary 

organic mixture sample. Quantitative analysis by using the areas of 

peaks is however a method which can provide analyses of sufficient 

accuracy 1 :!{). 1%. The area of a peak can be measured by a folded 

peak chart recorder 1 a shaft encoded counter 1 a planimeter or by 

cutting out and weighing of the actual peaks on the chart. All of 

these methods, to varying degrees, involves the manipulation of 

equipment by an operator to obtain peak areas. The operator also has 

the role of deciding on the acceptability of the peak areas obtained 

for further manipulation to obtain analysis of samples. The method of 

analysis used for this project avoids the use of an operator to interpret 

recorded peak data and produces as an answer, the analyses result 

expressed in percentages of molefractions. 

A data logging system, available for the recording of experimental 

information was used to record information on peak heights at short 

time intervals. lt may be mentioned that the data logger was directly 

I inked to the Model 800 chromatograph. The system consisted of a 

data source scanner, a dig ita I voltmeter and a paper tape punch. 

Ancilliary equipment in the system drove. these units and supplied a 
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trigger pulse for the scanner to read data at precise time intervals. 

The time interval used to scan the signal voltage supplied by the 

chromatograph as it went along the peaks was one second, but there 

could be one, two or four readings taken per second depending on the 

operator. The magnitude of the signal voltage was measured by the 

digital voltmeter and recorded on punched paper tape. Then a computer 

program was written in Fortran code and using the above obtained data 

tape calculated the areas. 
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8.3 COMPUTER PROGRAMME 

The computer program has been included as Appendix (A2). The pro-

gramme operates on a count routine from a marker voltage on the data 

tape at the commencement of each chromatograph analysis cycle. 

The three components were well resolved with a sufficient time interval 

between each peak to allow a base line voltage to be calculated, 

hence only the area of the peak above the baseline was determined. 

The small baseline drift which occasionally occurs in a prolonged 

investigation with a gas liquid chromatograph could thus be discounted. 

Before each peak emerged a number of signal vol!age readings were 

averaged to give a value of the baseline voltage. This value was then 

subtracted from the values of the signal voltage recorded while the 

peak was emerging. The values ~f peak heights above the baseline 

were then integrated using Simpson•s rule in the form 

+ •••••••• +Error function (1) 

where h = increment, one second 

y =peak height above baseline 

which gives 

h 
f(x)dx = ~y 

0 
-t4y 

1 
+2y 

2 
-t4y 

3 
+2y 

4 
+ ••••• ) 

+Error function (2) 
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For the type of peaks obtained, with the signal voltage equalling the 

baseline voltage immediately before and after a peak, the first and 

last terms tended to zero and were negligible for the size of the 

increment being considered. 
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8.4 ANALYSIS PROCEDURE 

Samples from the Reboiler and top of the column were taken and 

analysed by the chromatograph. Each sample from the bottom of the 

column took four minutes and from the top three minutes. On the 

average about thirty samples were taken from each run of the column 

and analysis of these thirty took at least three and a half hours. 

The tape of peak height data was processed by the Argus (Ferranti) 

computer using the programme written for this analyses to give per

centage of each component with respect to others. The average 

processing time for these data tape was five minutes. 
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8.5 OBSERVATIONS ON THE ANALYSIS PROCEDURE 

The .sole function o~ .the operator in this ~malysis procedu~e is to insert 

either samples or data tapes into machines. The operator takes liquid 

samples for injectio~ into the gas liquid chromatograph and the next 

stage is the processing of a data tape by a digital computer. 

The remoteness of the operator, from the manipulation of interim 

results to obtain actual analysis, is a distinct advantage ove~ the mor~ 

traditional methods of analysis used. The chromatographic analysis 
. ' 

method can be easily extended to the cmalysis of more complex mixtures 

which makes the method of particular interest now that vapour liquid 

equilibrium relationships of multicomponent systems are being 

increasingly considered. 

" 
The accuracy of analysis results which are produced by this method 

compare favourably with the accuracy obtained by other analytical 

methods of ±() .2%. 'A drawback to the method is the time taken 

between the sampling time and the production of the analysis results 

for the samples. Having an operator to inject each sample into the 

chromatograph is also a limitation though not a serious one. The 

principal source of sampling error is that air and vapour bubbles can 

be included in the volume ofliquid sample to be injected into the 

chromatograph. Other sampling errors can arise from failure to change 

·serum caps before leakage occurs and from pre-vapourization of part 
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of the liquid sample by accidental contact between the tip of the 

syringe needle and the hot metal mounting at the injection point. 
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CHAPTER 9 

RESULTS 
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9.1 Steady S tote Runs {R .S .S. No) 

9 .1. 1 Numerical Experimentation 

To develop a dynamic model, the initial requirement is to study the 

steady state behaviour of the multicomponent system under 

investigation. If a knowledge of two steady states is available, 

then a change {step or impulse) in one of them can provide the 

transients conditions till the new steady state is reached. 

This change may also be reversed to obtain the initial steady 

state. 

Hence, various runs were made at differe~t physical conditions 

(TABLE 1). The parameters altered were feed composition, 

reflux ratio, changing feed composition and reflux ratio 

simultaneously and varying the amount of top and bottom 

take offs. An appreciation of the steady state runs is given 

here by 

RUNS 1 .... 9 A few runs were made with 0.3 Top product and 

0.7 Bottom product takeoffs. lt can be seen FIG( 1 ), 

that not a very good separation was obtained in the column of 

the three components for all the reflux ratios {1 : 1 to 30: 1) tri.ed. 

But the trend was towards better separation between the three 

components as the reflux ratio increased, but still did not meet 

the requirements set. 
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TABLE (1) 

STEADY STATE NUMERICAL RUNS 

Run No. Feed Composition Distillate Bottom Reflux Feed 

Acetone Methane f IPA Rate Rate Ratio Plate 

R .S .S. 1 0.475 0.05 0.475 0.3 0.7 1 1 5th 

R.S.S.2 11 11 11 11 11 2:1 11 

R.S.S.3 11 11 11 11 11 3:1 11 

R.S.S.4 11 11 11 11 11 4:1 11 

R.S.S.5 11 11 11 11 11 5:1 11 .. 
R.S.E,,6 11 11 11 11 11 10:1 11 

R.S .S .7 11 11 11 11 11 20:1 11 

R.S.S.8 11 11 11 11 11 30:1 11 

R.S .S. 9 11 11 11 11 11 60:1 11 

R .S .S. 10 0.475 0.05 0.475 0.5 0.5 1 : 1 5th 

R.S.$11 11 11 11 11 11 2:1 11 

R.S.S12 11 11 11 11 11 3:1 11 

R.S.S13 11 11 11 11 11. 4:1 11 

R.S.S14 11 11 11 11 11 5:1 11 

R.S.S15 11 11 11 11 11 10:1 11 

R.S.S16 0.465 0.05 0.485 0.5 0.5 . 5:1 11 

R.S.$17 0.485 0.05 0.465 0.5 0.5 5:1 11 

R.S.$18 0.465 0.05 0.485 11 11 4:1 11 

R.S.S.19 0.485 0.05 0.465 11 11 4:1 11 

R.S.$.20 0.475 0.05 0.475 0:6 0.4 4:1 11 

R.S.S.21 0.465 0.05 0.485 11 " 4:1 11 

R.S.S.22 0.485 0.05 0.465 11 11 4:1 11 
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TABLE (1) contd ••• / 

Run No. Feed Composition Distillate Bottom Reflux Feed 

Acetone Methanol IPA Rate Rate Ratio Plate 

R.S.S.23 0.475 0.05 0.475 0.5 0.5 5·1 4th 

R.S.S.24 11 11 11 11 11 11 3rd 

R. S .S .25 11 11 11 11 11 11 6th 

R.S.S.26 0.475 0.05 0.475 0.5 0.5 5:1 7th 
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RUNS 10--19 

The feed composition and the feed rate were allowed to 

remain the same as in the previous runs, but the top and bottom 

take offs were altered to 0.5. top and 0.5 bottom, and 

runs were made at 6 different reflux ratios • The resultant 

separation was highly encouraging as can be seen from the 

composition profile in FIG (2-8). Separation was good 

right from lower reflux ratios and improved considerably with 

increasing reflux ratios. 

By changing the top and bottom take off rate, a marked 

difference in the composition profiles of the ternary system 

was observed. The separation throughout the column became 

better and more even. Acetone increased in the distillate, 

Methanol increased and Isopropanol had no effect. On the 

other hand, Acetone and Methanol decreased considerably in 

the bottom product and thereby increasing the quantity of 

Isopropanol in the bottom product. 

RUNS 20 _. 22 

In Runs 10 ---19, both vapour and I iquid flow rates changed 

as the reflux ratio was changed, in other words the profiles could 

well be interpreted as boil up rate change profiles. In order to 

keep the vapour flow constant in the column or to have conditions 

of constant boil up rate, top and bottom product takeoffs 

were changed to 0.6 and 0.4 respectively. Hence these runs 
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may also be accounted for as the changes in reflux rafio only. 

The separation was not very good, but the profiles provided, fig." 

(11, 12, 13) were used for studying the dynamics of the system to 

a reflux change • 

RUNS 23 _. 26 

Composition profiles for feed on different plates were computed 

and are given in Fig (14, 15, 16, 17). Plate 6 and 7 were 

above the originaJ feed plate and 3 and 4 were below. 

lt can be seen that the separation is 'nt effected very much by 

feeding in plate 3 and 4, but changes considerably when the 

feed is on 6th and 7th plate. The whole concentration profile 

is shifted towards the top half of the column. lt could be 

due to the presence of methanol which is more volatile than 

I. P.A. that its tendency to separation takes it towards 

the distillate, end, but the-n it drops down as there is so little 

of it in the feed. lt can be seen tfnt when the feed plate is 

moved upto 7, the concentration profile also shifts slightly 

further up. 
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The effect of reflux ratio on composition profils of all the 

three components is shown in figure ( 18 ). Briefly, the 

graph can be interpreted as follows: 

Acetone increases in purity with increase in reflux ratio. 

Methanol, which gives a double peak effect intially 

(at lower R.R. ), gets well distributed over the column later 

on. Finally, the quantity of isopropanol on top of the 

column decrease with increase in reflux ratio. 

Next, from one steady state: 1 hvo step changes in 

the fe~d composition were made and the profiles have been 

compared with the initial steady state in fig ( 19). it was 

very interesting to find that whole profile ( including methanol 

although no disturbance was made in that parti cubr component ) 

moves in the directio11 of increment in the feed compO<;ition of 

Acetone or isoproP,anol. 

Fig ( 21 ) shows that the values of K ( equilibruim 

constants) increase slightly in the lower reflux ratios, 1: ut 

become appreciably constant as the reflux ratio was increased. 

The values of K decrease from bottom to top of the column 

as shown in fig { 22) for all the three components. 

The effect of volatility can also be deduced from this fig. 



175 

which is that the equilibruim constents K's decrease with 

decreasing volatility. 

The liquid compositions vary considerably from in the 

initial changes in the reflux ratio, but became 

constant with increasing reflux ratio as can be see from 

fig {23 ). It should be remembered that these are all 

steady state compositions & M~thanol is very evenly 

distributed throughout 1 just like suggested by general composition 

profiles of runs 10 to 19. 

A simi ltaneous changa in feed composition and reflux raHo 

can be seen in fig ( 20 ) 
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9 .1.2. EXPERIMENTAL RUNS 

Having obtained the knowledge about the sort of steady 

state profiles resulting from numeri.cal runs, the next obvious 

step was to confirm these ex per imenta lly. 

The experiments were perfo.-med on the distillation column 

described in chapter 7. Only a few of the runs are given 

here just to give the reader an idea about the so.-t of 

agreement between the numerical and experimental results. 

This not only provided a good cross cheque for the 

numerical and experimental runs, but also reassured about 

the fact that they were so•Jnd results to base the future 

dynamic runs. The a~thenti city of these results became 

even more critical, when it was no more feasible to perform 

dynamic runs on the column and all the dynamic runs had to 

be produced in a simulated version. 

Feeds were made of the same compositions as for numerical 

runs and the column was operated as described in chapter 7 

to reach.a steady state. Whi eh on the average took 2-4 hours • 

Then samples were taken and analysed as described fully in 

chapter 8. A typical chromatographic analysis of both top 

and bottom products can be seen in fig ( 24, 25 ). The actual 

results show the liquid concentrations for :::~11 the three components 

at varying feed composition, fixed top & bottom take off, and 

the reflux ratio varying from 1.1. to 5.1. The steady state 

runs ( R.S.S. No. ) have the same physical conditions as 

given in table ( I ) • The results on the whole show a very good 
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trend towards agreement with the numerically predicted· 

results. 
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TABLE (2) 

STEADY STATE EXPERIMENTAL RUNS 

RUN NO EXPERIMENTAL 

ACETONE METHANOL IPA 

XI X2 X3 

R .5' .S .10 (top) 0. 9153 0.0783. 0.000 

R.S.S.IO {bottorn) 0.001 0,0400. 0. 9510 

R.S.S.II (top) 0.9274 0.0786. 0.004 

R.S.S.II (bottom) 0.03 0.02 0.9110 

R.S.S.I3 (top) 0. 9213 0.0687. 0.0 

R.S.S.I3 (bottom) 0.008 0.064. 0.928 

R.S.S.I4 (top) 0.9261 0.0432. 0.0309 

R.S.S.I4 (bottom) _ 0.0098 0.0534. 0.9368 

R.S.S.I6 (top) 0.8658 0.1297 0.000 

R.S.S.I6 (bottom) 0. 077 0.1677 0.7545 

R.S.S.I7 (top) 0.9428 0.0566 o.oooo 
R.S.S.I7 (bottom) 0.038 0.11 0.8471 

R.S.S.I8 (top} 0.8656 0.08 0.0 

R.S .S.I8 (bottom} 0.06 0.04 0.981 

R.S.S.I9 (top) 0.9428 0.0567 0.0 

R.S.S.I9 (bottom) 0. 05 0.06 0. 9631 

PREDICTED 

ACETONE METHANOL IPA 

XI X2 X3 

0.9352 0.0583 0.0064 

0.0154 0.416 0.9432 

0.9421 0.0568 0.0009 

0.0088 0.0481 0.9483 

0.9447 0.055 0.0002 

0.0059 0.0449 0.9492 

0.9452 0.0545 0.0002 

0.0053 0.0454 0.9493 

0.9287 0.0709 0.0003 

0.0022 0.0291 0.9687 

0.9588 0.0409 0.0001 

0.011 0.0589 0.9299 

0.9284 0.0711 0.0004 

0.0025 0.0289 o. 9686 

0. 9581 0.0416 0.0002 

0.0121 0.0583 0. 9296 
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9.2. TRANSIENTS BY SARGENT'S AND WOOD'S TECHNIQUES 

The steady states at different conditions were made as the 

basis; for the work in this phase of the investigation. Two 

different techinques of formulating a dynamic problem 

were investigated and shall be discussed appropriately when 

their respective usage is encountered. At this point it 

would be worth while saying something about the numerical 

techinque which was used in this project & has been fully 

described in chapter 6. 

When using numerical integration techniques to solve 

multicomponent distillation equations, the following 

question always arises. Does one work with only C-1 

components and obtain the other by difference, or does 

one work with all C components and normalise the sum 

of the composition to equa I one? The later was adopted 

in the present investigation for two reasons, first, because 

it is difficult, in a general program, f9 pick which C-1 

components to use (or which component should be 

obtained by difference); and second, because it is believed that the 

normalisation of the sum of the components to equal_ one 

acts as a damping device on small numerical errors. 

The main criterion to use in the selection of a suitable 

numerical integration procedure for transient dist~llation 

calculations is the stability characteristics of the procedure. 

For example, given the choice bet~een two methods, it 

is usually advantageo•Js to use the one with the greater 

stability range, even at the expense of a large increase in 

the truncation error. The reason for this is that in problems of 

this nature the maximum step size for numerica I integration , 
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is nearly always limited by the of..)solute stability of 

the method. Therefore the step size required is usually 

so small that the truncation error is independent of 

the order of the method. 

Stability problems are apparent when the maximum 

allowable step size is small compared with the time 

constant of the system 1 that is. When the maximum 

step size is sosnall .that vary little change takes 

place in the actual system over one integration step. 

Mahetal discussed the inabilities of numerical 

techinques when applied to continuous distillation 

calculatio•l. 

As previously tested by Gibilaro 1 Kropholfer 1 (57) 

mar.kov probabalislic procedure provides one with a very 

sophisticated numerical techinque which is quite stable 

as compared to other techinques. 

A dimension less time step of 0 .I was used in the 

numerical solution of the differential eqJations. 

This was found to be the largest time step that co•Jid 

be used without reducing the occuracy of the solutions 

significantly. Table ( 3) compares the response of the 

distillate composition to o•Jr impulse disturbance in 

feed composition computed withAl= 0.1 with that 

computed with.t. T = 0.05. If the area under the unit 

impulse response curue is used for compqrision 1 the erro.-

resulting from using6T = 0.1. instead ofbT = 0.05 or less is 0.5%. 
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TABLE (3) 

Comparison of Responses to Impulse Disturbance obtained by using different time steps 

t,.t = 0.05 6t = 0.1 

xd xd 

0.0 0.0 0.0 

2.0 0.1472 0.1472 

4.0 0.2857 0.2858 

6.0 0.3427 0.3429 

8.0 0.3585 0.3586 

10.0 0.3575 0.3577 

20.0 0.3089 0.3091 

30.0 0.2595 0.2598 

60.0 0.1477 0.1478 
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9.2 .1 Numerical Solution (MARKOV) using Sargents Method. 

The changes in this case were made only in the feed composition 

and have been compared with resu Its obtained by wood •s method. 

later on. 

The intention was to see the effect of a step change in the feed 

composition on the middle component (methanol in this case) 

of a multi-component mixture. In fact the problem was to 

look for certain conditions which would give rise to limit 

cycling in a column separating a multicomponent mixture, 

when the product take off are at the top and bottom with very 

slighter no change at all in the middle c.omponent. This was 

the reason that most of the runs have been investigated 

around one main feed composition and that was a very high 

concentration of both very volatile and least volatile 

component and just a si ight proportion of the third component 

(Methanol). By keeping its concentration constant it was 

decided to see the effec.ts on the separation of the whole 

system. 

A column with 10 plates plus a reboiler was made the test 

case and all the stages were assumed to be perfectly mixed 

stages. Markov method, as explained fully in chapter 6, 

was used to calculate the transients. Appropriate data was 

fed and results obtained are discussed below. 
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As a first case, taking steady state values for two cases, 

certain disturbance was made in the feed composition {each 

component separately) and studied the effect of the unit impulse 

and step response at the top and bottom of the column. Impulse 

responses for the plates 8, 9, lO:and the reboiler can be seen in 

Fig (26, 27 I 28). 

Fig (29) shows: 

i) speed of response and time taken to reach a new steody 

state value of the M.V.C. {Acetone) and L.V.C. 

{IPA) is practically the same for both cases of feed 

composition. 

ii) The speed of response of middle component {methanol) 

differs from one feed composition to another. lt is 

opposite to the other two i.e., Acetone and IPA. 

iii) The~e is more Acetone on the top, no IPA and an equal 

' 
distribution of methanol throughout the column. 

The response at the bottom of the column for the three components 

is exactly opposite to the one at the top as shown in Fig (30) 

i) The speed of response for L VC & MVC is same but this time 

IPA replaces Acetone being the heavier component. 
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ii) . The speed of response of methanol is different and it 

can be seen again that it is opposite to the other two and also 

apposite to that in Fig (29) 

Step responses for one steady state with different reflux ratios 

is plotted in Fig 31). 

lt can be seen that 

i) For Ac~tone {MVC), it takes more time to come to a new 

steady state with a reflux ratio of 5:1 than 1:1 

ii) The speed of response for IPA {L VC) is practically 

the same for both reflux ratios. 

iii) Methanol has the same magnitude, but has a quicker 

speed of response for a re lux ratio of 1:1 as compared 

to 5:1 

Till now the unit disturbance was being put in each component and 

the impulse or step response for individual components were being 
' 

plotted. But this individual treatment did not provide with enough 

information of the whole system. So it was the next step to try 

to diffuse the unit disturbance in all the three components st one 

time. To meet this particular requirement, another technique 

('Wood's) was also used and shall be discussed in detail later. 
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lt was decided to make an actual step change from one 

steady state to another i.e. 

0.475 

0.05 

0.475 

0.465 

---}) 0.05 

0.485 

Acetone 

Methanol 

IPA 

In the physical system change corresponded to a change of 001 

for Acetone, and - 0.01 for IPA, whilst methanol was not 

altered. This restricted our previous procedure to treat each 

component individually (because for Markov, we have to put 

the disturbance as a state vector and it would have been 

allright for Acetone and IPA both having a disturbance, but 

methanol response would be zero with a zero state vector). 

lt was decided to make a modification in the original Markov 

program so that we were able to deal with all the three 

components in one matrix (Tri-diagonal form) and 

the disturbance applied to Acetone & I,PA should alsogive 

us the relative effect on methanol without having_ to make 

any disturbance for that particular component initially. 
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I 

Briefly, the modification was to read ·the initial state vector 

and then correct it to a new state vector by adding it to the 

·steady state values and so on, till we get the required response. 

lt can be represented as 

j~ 1 (sij(l) + xij(o)) = Yi = j ~ 1 Yij 

, Yij 
S.(l) = ~- x.(O) 

]. Oi ]. 

Fig (3 2) shows the response to a disturbances of o·.ol in 

Acetone and -0.01 in IPA. Taking the whole column, 

the step response for Acetone on the top is faster than IPA 

at the Bottom and all others are negligible as can be seen 

from fig (32) for R. T. S ~ I. This has been compared with the 

corresponding change under wood's technique. 
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I 
I 

9.2.2 Analytical Solution using Sargent1s Method 

The tridigional matrix for any feed charge can also be used 

as the system matrix to find its eigenvalues and eigenvectors, 

which could give as information about the transient behaviour. 

Eigenvalues and eigenvectors were found by technique described 

in chapter { 6 ). The resulting time solutions agreed very well 

with the time solutions obtained by Numerical method. The 

eigenvalues have been listed in TABLE (17,18) and it may be 

noted that they are all distinct and negative. 

The time solutions are approximately the reciprocals of the 

smallest eigenvalues. lt was found that the time solutions 

were highly sensitiye! to any change in the feed composition. 

For a feed change the change in time constants is as follows : 

Acetone et/A et/3 

Methanol et/18 --t et/15 

1PA -et/7 -t/8 e 

That shows that the response of Ace:';tone si ightl y, 1 PA be corn: ~s 

slower - almost ~rd of what it was before and Methanol 

remains very much the same. This indicates that the operation 

is a non-linear one and could be fairly consistent. 
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Numerical Solution (Markov) using Wood's Technique 

Markov was used again to calculate the transients, but 

this time the dynamic formulation of the problem was done 

in Wood's technique, which has been fully explained in 

chapter 5. 

Transient runs were made for feed changes, reflux change 

and boil up rate changes. All the transient runs for wood's 

case (R. T. W. No) and Sargent's case (R. T .S. No) are listed 

in Table 1. Forcing functions used as input disturbances have 

given in Tables 2, 3 and 4. These were calculated using the 

methods described in chapter 5. The responses have been 

plotted for the first 40 minutes time because after that the 

response tend to become constant. The responses are all 

plotted as step responses at the top and bottom of the column 

for all the three components and have been briefly given below. 

i) The responses to all feed changes show a very similar 

trend. As a general inference Acetone (the most 

volatile compone~t) responds at the top and 1 PA (the 

least volatile component) responds at the bottom. 

Methanol responds with a very even distribution 

throughout the columno 
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2) Responses, though similar in trend were not 

necessarily of the same magnitude. When a change 

was made towards the positive directions, the 

magnitude was more and reverse was the case when 

the change was made in the negative direction. 

This trend can be noticed in most of the responses. 

Fig 33 to fig 46. 

• 
3) The response of the system is much quicker when the 

change in feed was made in one direction as compared 

to the case when this direction was reversed .. 

See R. T. W. 1 & R. T. W .2 

4) When the changes were made of equal magnitude 

from one feed in either direction of the responses 

were exactly the same, but of ~n opposite sign. 

See R.T.W.1 and R.T.W.3. 

5) When the same feed change was made but at a 

different reflux ratio, the resulting responses were 

. not effected appreciably. See R, T. W. 1 and 

R. T. W .5. 



6) Change in the top and bottom take off rate had 

very considerable effect on the response of the 

system. See R.T.W.1 and R.T.W.9. The 

system responded much quicker in this case both 

at the top and bottom of the column. 

7) Keeping the feed fixed and changing the reflux 

ratio the responses were of higher magnitude as 

compa_red to feed changes. See R. T. W. 11. 

The most effected section was the top of the column. 

8) Responses obtained by changing the boil up rate 

were completely different as compared to either the 

feed changes or the reflux change. See R. T. W. 12 

and R. T. W. 13. The system responded very quickly 

in the initial stages but drops down very readily. 

9) lt may be noted that all feed responses have been 

scaled down by a factor 1o2, for ease in plotting 

results. Tables of results are given in Appendix 

(A4 ). 



RUN'NO 

R.T.W .1 

R.T.W .2 

R.T.W.3 

R.T.W.4 

R. T .W .5 

R.T.W.6 

R.T .W .7 

R.T.W.8 

R.T.W.9 

TABLE (.f) 
. I . 

FEED CHANGE 

0.475 . 
0.05 .... 
0.475 

0.465 
0.05 .... 
0.485 

0.475 
0.05 -+ 

0.475 

0.485 
0.05 .... 
0.465 

0.475 
0.05 .... 
0.475 

0.465 
0.05 .... 
0.485 

0.475 
0.05 -t 

0.475 

0.485 
0.05 -+ 

0.465 

0.475 
0.05 .... 
0.475 

0.465 
0.05 
0.485 

0.475 
0.05 
0.475 

0.485 
0.05 
0.465 

0.475 
0.05 
0.475 

0.465 
0.05 
0.485 

0.475 
0.05 
0.475 

0.485 
0.05 
0.465 

0.475 
0.05 
0.475 

0.465 
0.05 
0.485 
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'REFLUX' RA TJO 

5 : 1 

5 : 1 

5 : 1 

5 : 1 

4 : 1 

4 : 1 

4 : 1 

4 : 1 

4 : 1 

TAKEOFFS. 
TOP BOTTOM 

0.5 0.5 

0.5 0.5 

0.5 0.5 

0.5 0.5 

0.5 0.5 

0.5 0.5 

0.5 0.5 

0.5 0.5 

0.4 0.6 



RUN NO 

R.T.W.lO 

R.T.W.ll 

R.T.W.12 

R.T.W.13 

RUN NO 

R. T.S .1 

R.T.S.2 
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i=EED CHANGE 

0.465 
0.05 
0.485 

.... 

FEED 

0.475 
0.05 
0.475 

0.475 
0.05 
0.475 

0.475 
0.05 
0.475 

0.475 
0.05 
0.475 

FEED CHANGE 

0.475 
0.05 ... 
0.475 

0.465 
0.05 --t 

0.485 

0.465 
0.05 
0.485 

0.475 
0.05 
0.475 

REFLUX RATIO 

4 : 1 

REFLUX CHANGE 

4:1--5:1 

Boil up Ratecharge 

5:1--4:1 

4 : 1 --5 : 1 

REFLUX RA Tl 0 

5 : 1 

5 .: 1 

TAKEOFFS 
TOP BOTTOM 

0.4 0.6 

0.5 0.5 

0.5 0.5 

0.5 0.5 

TAKEOFFS 
TOP BOTTOM 

0.5 0.5 

0.5" 0.5 



1. 

2. 

3. 

4. 

TABLE 2 

.FEED ·cHANGE 

0.475 
0.05 
0.475 

0.465 
0.05 
0.485 

0.475 
0.05 
0.475 

0.485 
0.05 
0.465 

0.465 
... 0.05 

0.485 

0.475 
... 0.05 

0.475 

0.485 ... 0.05 
0.465 

0.475 ... 0.05 
0.475 
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.. 

FORCING FUNCTION 
ON THE FEED PLATE 

-0.01 
0.0 
0.01 

0.01 
0.0 

-0.01 

0.01 
0.0 

- 0.01 

- 0.01 
0.0 
0.01 



PLATE NO. 

Reboiler 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

A 
M 
IPA 

TABLE 3 

FORCING FUNCTION 
FOR 

BOIL UP RATE CHANGE 

5:1 .... 4:1 

0.0011 . 
0.0034 

-0.0045 

0.0033 
0.0052 

- 0.0085 

0.0084 
0.0056 

·- 0.0140 

0.0148 
0.0021 

-0.0169 

0.0154 
-0.003 
-0.0124 

-0.0231 
-0.0248 

0.0479 

-0.0084 
0.0026 
0.0058 

-0.0045 
0.0026 
0.001•8 

- 0.0028 
0.0023 
0.0005 

-0.0022 
0.002 
0.0002 

-0.0017 
0.0017 
0.00005 
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FORCING FUNCTION 
FOR 

BOIL UP RATE CHANGE 

4:1 .... 5:1 

-0.0014 
-0.0039 
0.0053 

-0.0041 
-0.0057 
0.0098 

-0.0101 
-0.006 
0.0161 

-0.0173 
-0.0019 
0.0192 

-0.0176 
0.0035 
0.0141 

0.0261 
0.0266 

-0.0527 

0.0106 
-0.0026 
-0.008 

0.0055 
-0.0028 
-0.0027 

0.0034 
-0.0026 
-0.0008 

0.0025 
-0.0023 
-0.0002 

0.0022 
-0.002 
-0.00015 



TABLE 4 

PLATE NO FORCING FUNCTION FORCING FUNCTION 
FOR FOR 

REFLUX CHANGE REFLUX CHANGE 

5:1 -+4:1 4:1 .... 5:1 

Reboilar A - 0.013 0.0003 
M -0.0413 - 0.0007 
IPA 0.0544 - 0.001 

1 A - 0.0396 0.001 
M -0.0622 0.0015 
IPA 0.1018 - 0.0025 

2 A - 0.1 0.0037 
M -0.0677 0.0029 
IPA 0.1677 - 0.0066 

3 A -0.1769 0.0131 
M - 0.0258 0.0054 
IPA 0.2028 -0.0185 

4 A -0.1850 0.0435 
M 0.0362 0.0094 
IPA 0.1487 -0.0529 

5 A -0.1876 0.0045 
M 0.0151 0.0051 
IPA 0.1726 - 0.0096 

6 A -0.1023 0.0149 
M 0.0322 0.0107 
IPA 0.0701 -0.0256 

7 A -0.0538 0.0488 
M 0.0316 0.0201 
IPA 0.0221 - 0.0689 

8 A -0.0344 0.1379 
M 0.0279 0.028 
IPA 0.0065 - 0.1659 

9 A -0.0260 0.2635 
M 0.0241 0.0145 
IPA 0.0019 -0.2780 

10 A -0.0213 0.2605 
M 0.0208 -0.0163 
IPA 0.0005 - 0.2442 
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An.alytkafS61titiori Using Wood•s ·Method 

The eigenval ues calculated for various step changes in feed, 

boil up rate and the reflux ratio are given in Tables (5 to 14). 

In all these cases, the matrices were based on Wood •s form

ulation. 

The following observations were made. 

1) A step change in feed composition or a step change 

in reflux ratio does not have any apparent effect on 

the eigenvalues of the system •. 

2) Two cases can be made for a·feed change 

a} ·when a feed is changed in both directions 

{+tive or -tive) from a fixed feed composition, 

the eigenvalues remain the same see Tables(51 7) 

but the time solution depends on the sign of 

the forcing function, and so does the resulting 

time ·solution. 

b) when the above feed changes are reversed, the 

eigenvalues are effected in two ways, see Table (6) 

i) the most significant eigenvalues increase 

in their value, and 

ii) the complex pair, although occuring in 

the same place, changes in its value. 
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I 
I 

3) Similar changes may be seen, Tables(7
1

8), when 

the above procedure is tried for the same feed change 

at a different reflux ratio, say 4:1, as compared 

to 5:1 as in the previous case. 

4) If the reflux ratio changes are compared separately 

the significant eigenvalues increase slightly with 

increase in reflux ratio and decrease with lowering 

the reflux ratio, TSJbles(13 1 14) 

5) If the feed compos it ion rem a ins same as in (1), but 

the top and bottom product take-offs are altered, the 

resulting eigenvalues undergo a considerable change, 

Table (11). This is applicable to the reversal in this 

feed change, Table (12). 

6) lt may be inte~esting to note that for constant top and 

bottom take-offs, the fourth significant eigenvalue 

remains constant for nearly all the feed changes and 

reflux ratios. This could mean that the system behaves 

similarly for both conditions after the initial .ossillations 

due to a si ight change. 
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TABLE 5 

Feed Change TakeOffs 

Acetone 0.475 
Methnol 0.05 
Isopropanol 0.475 

0.485 
0.05 
0.465 

Top Bottom · 

0.5 0.5 

EIGENVALUES 

DISTINCT COMPLEX PAIR 

-0.02140 
-0.04009 
-0.4842 
-0.5000 
-0.7695 
-1.308 
-1.591 
-2.190 
-2.419 
-2.469 -0.07841 
-2.469 -t0.07841 
-2.571 -0.05758 
-2.571. -t0.05758 
-2.741 
-3.411 
-3.442 -0.04191 
-3.442 -t0.04191 
-3.524 -0.06152 
-3.524 -t0.06152 
-3.563 
-3.920 
-4.610 
-5.125 
-5.603 
-6.449 
-7.124 
-8.161 
-9.094 
-9.957 
-11.68 
-14.48 
-15.91 
-22.42 

Reflex 
Change -
5-d 
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TABLE 6 

Feed Change TakeOffs 

Acetone 0. 485 
Methnol 0.05 
Isopropanol 0.465 

0.475 
0.05 
0.475 

Top Bottom 

0.5 0.5 

EIGENVALUES 

DISTINCT 

-0.02202 
-0.04994. 
-0.4301 
-0.5000 
-0.7506 
-1.279 
-1.473 
-2.117 
-2.446 
-2.481 
-2.481 
-2.546 
-2.546 
-2.603 
-3.208 
-3.462 
-3.462 
-3.516 
-3.516 
-3.543 
-3.788 
-4.383 
-4.947 
-5.503 
-6.107 
-6.764 
-7.751 
-8.678 
-9.184 
-10.76 
-13.23 
-14.50 
-20.82 

COMPLEX PAIR 

-0.05162 
+0.05162 
-0.03636 
+0.03636 

-0.02948 
+0.02948 
-0.04205 
+0.04205 

Reflex 
Ratio 

5~1 
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TABLE 7 

Feed Change TakeOffs 

Top Bottom 

Acetone 0.475 
Methnol 0.05 
Isopropanol 0. 0475 

0.465 
0.05 
0.485 

0.5 0.5 

EIGENVALUES 

DISTINCT 

-0.02185 
-0.04248 
-0.3947 
-0.5000 
-0.6132 
-1.068 
-1.274 
-1.572 
-1.572 
-1.920 
-1.920 
-2.133 
-2.332 . 
-2.374 
-2.374 
-2.843 
-2.843 
-3.198 
-3.198 
-3.419 
-3.419 
-3.774 
-4.242 
-4.583 
-5.346 
-5.981 
-6.787 
-7.513 
-8.423 
-9.827 
-12.20 
-13.37 
-18.83 

COMPEX PAIR 

-0.2450 
+0.2450 
-0.4547 
+0.4547 

-0.4817 
+0.4817 
-0.4997 
+0.4997 
-0.4031 
+0.4031 
-0.1492 
+o.1492 

Reflox 
Change 

4:1 
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Feed Change TakeOffs 

Top Bottom 

Acetone 0.465 
Methnol 0.05 
Isopropanol 0.485 

0.475 
0.05 
0.475 

. 0.5 0.5 

EIGENVALUES 

DISTINCT 

-0.01634 
-0.04214 
-0.4491 
-0.5000 
-0.6537 
-1.095 
-1.421 
-1.906 
-1.965 
-1.965 
-2.012 
-2.012 
-2.047 
-2.353. 
-2.960 
-2.986 
-2.986 
-3.025 
-3.025 
-3.041 . 
-3.333 
-4.005 
-4.402 
-4.770 
-5.634 
-6.543 
-7.064 
-8.018 
-9.495 
-10.86 
-13.17 
-14.84 
-19.99 

COMPLEX PAIR 

-0.02268 
;{).02268 
-0.04362 
;{).04362 

-0.03606 
;{).03606 
-0.02994 
;{).02994 

Re flax 
Ratio 

4:1 
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Feed Change 

Acetone 0.475 
Methnol 0. 05 
lsoporpanol 0.475 

0.485 
0.05 
0.465 

TABLE 9 

TakeOffs 

Top Bottom 

0.5 0.5 

EIGENVALUES 

DISTINCT COMPEX PAIR 

-0.02185 
-0.04248 
-0.3947 -
-0..5000 
-0.6132 
-1.068 
-1.274 
-1.572 -0.2450 
-1.572 -t0.2450 
-1.920 -0.4547 
-1.920 -t0.4547 
-2.133 
-2.332 
-2.374 -0.4817 
-2.374 -t0.4817 
-2.843 -0.4997 
-2.843 -t0.4997 
-3.198 -0.4031 
-3.198 -t0.4031 
-3.419 -0.1492 
-3.419 -t0.1492 
-3.774 
-4.242 
-4.583 
-5.346 
-5.981 
-6.787 
-7.513 
-8.423 
-9.827 
-12.20 
-13.37 
-18.83 

Reflux 
Ratio 

4:1 



Feed Change 

Acetone 0.485 
Methnol 0.05 
Isopropanol 0.465 

0.475 
0.05 
0.475 

261 

TABLE 10 

TakeOffs 

Top Bottom 

0.5 0.5 

EIGENVALUES 

DISTINCT 

-0.02303 
-0.05102 
-0.3519-
-0.5000 
-0.5863 
-1.053 
-1.196 
-1.629 
-1.886 
-1.886 
-1.998 
-1.998 
-2.004 
-2.145 
-2.617 
-2.617 
-2.660 
-3.160 
-3.260 
-3.260 
-3.587 
-3.587 
-4.102 
-4.515 
-5.071 
-5.674 
-6.478 
-7.178 
-7.738 
-9.061 
-11.14 
-12.20 
-17.44 

COMPLEX PAIR 

-0.3598 
+0.3598 
-0.00338 
+0.003338 

-0.6087 
+0.6087 

-0.5125 
+0.5125 
-0.06533 
+0.06533 

Reflt1x 
Ratio 

4:1 
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TABLE 11 

Feed Change TakeOffs 

Top Bottom 

Acetone 0.475 
Methnol 0.05 
Isopropanol 0.475 

0.465 
0.05 
0.485 

0.4 0.6 

EIGENVALUES 

DISTINCT 

-0.09406 
-0.2435 
-0.4000 
-0.8616 
-1.860 
-2.329 
-2.374 
-2.374 
-2.389 
-2.464 
-2.464 
-3.105 
-3.341 
-3.341 
-3.425 
-3.425 
-3.466 
-3.694 
-4.849 
-5.433 
-6.687 
-7.567 
-8.823 
-10.13 
-11.02 
-12.65 
-12.91 
-15.47 
-15.85 
-18.19 
-18.37 
-22.50 
-26.73 

COMPLEX PAIR 

-0.06972 
0.06972 

-0.05085 
0.05085 

-0.04739 
0.04739 

-0.06402 
0.06402 

Re flax 
Ratio 
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TABLE 12 

· Feed Change TakeOffs 

Top Bottom 

Acetone 0.465 
Methnol 0.05 
Isopropanol 0.485 

0.475 
0.05 
0.475 

0.4 0.6 

EIGENVALUES 

DISTINCT 

-0.1071 
-0.2613 
-0.4000 
-0.8686 
-1.883 
-2.351 
-2.384 
-2.384 
-2.428 
-2.449 
-2.449 
-3.143 
-3.358 
-3.358. 
-2.418 
-3.418 
-3.449 
-3.763 
-4.914 
-5.495 
-6.788 
-7.673 
-8.936 
-10.26 
-11.12 
-12.82 
-13.03 
-15.50 
-16.02 
-18.23 
-18.45 
-22.56 
-26.74 

COMPLEX PAIR 

-0.04823 
. 0.04823 

-0.03272 
0.03272 

-0.04740 
0.04740 

Reflsx 
Ratio 

4:1 
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TABLE 13 

Feed Change TakeOffs 

Top Bottom 

Acetone 0.475 
Methnol 0.005 
Isopropanol Oo475 

0.475 
0.005 
0.475 

0.5 . 0.5 

EIGENVALUES 

DISTINCT COMPEX PAIR 

-0.02140 . 
-0.04.009 
-0.4842 
-0.5000 
-0.7695 
-1.308 
-1.591 
-2.190 
-2.419 
-2.469 -0.07841 
-2.469 -1{).07841 
-2.571 -0.05758 
-2.571 -1{).05758 
-2.741 
-3.411 
-3.442 -0.04191 
-3.442 -1{).04191 
-3.524 -0.06152 
-3.524 -1{).06152 
-3.563 
-3.920 
-4.610 
-5.125 
-5.603 
-6.449 
-7.124 
-8.161 
-9.094 
-9.957 
-11.68 
-14o48 
-15.91 
-22.42 

Reflt:Jx 
Change 

5d 4:1 



Feed Change 

Acetone 0.475 0.475 
Methnol 0.05 0.05 
lsoproponal 0.475 0.475 
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TABLE 14 

TakeOffs 

Top Bottom 

0.5. 0.5 

EIGENVALUES 

DISTINCT 

-0.02185 
-0.04248 
-0.3947 
-0.5000 
-0.6132 
-1.068 
-1.274 
-1.572 
-1.572 
-1.920 
-1.920 
-2.133 
-2.332 
-2.374 . 
-2.374 
-2.843 
-2.843 
-3.198 
-3.198 
-3.419 
-3.419 
-3.774 
-4.242 
-4.583 
-5.346 
-5.981 
-6.787 
-7.513 
-8.423 
-9.827 
-12.20 
-13.37 
-18.83 

COMPEX PAIR 

-0.2450 
+0.2450 
-0.4547 
+0.4547 

-0.4817 
+0.4817 
-0.4997 
+0.4997 
-0.4031 
+0.4031 
-0.1492 
t0.1492 

Reflux 
Change 

4:1 5! 1 

-

- ! 
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DISCUSSION AND CONCLUSIONS 

Work in this thesis helps in its own way towards better understanding of the dynamics 

of a column, so that full control of distillation columns by computer is expected. 

The steady state model used in this project was based on the model suggested by 
' 

Han·son ( 67), but modified to suit the problem being investigated. Although 

66 
Han·son's model was not very efficient'· as was found out by another worker in 

the department, who used 8 - method, yet when it was used, did provide with 

the relevant information which was needed for the purposes of the work being 

carried out in this thesis. As the prime object was to investigate the transient 

compositions between steady states, it was not necessary to hav~ a very high 

powered steady state model. What was needed was steady states at different 

operating conditions, from which disturbances could be made in one direction 

or the other and the resulting transients investigated. 

The various steady states are illustrated in figs (1-23) and Appendix (A4). The 

next and the main object was to develop a dynamic model. The equations 

describing the transient behaviour may be formulated in two different ways. 

Sargents and Woods' techniques have been investigated and the comparison 

between the two has been discussed later on in detail. lt was also decided to 

get to the predicted transients both analytically and numerically. The purpose 

for this was, apart from providing a useful cross check for each technique, to 

make use of two very useful techniques such as eigenvectors and eigenvalues and 

' 
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a numerical method called Markov probabilistic method. After a successful appli-

cation of this technique to mixing in stirred vessels (57), it was thought worth-

while to see its application to mixing in continuous counter current vessels which 

depicts a distillation column adequately. 

In this investigation Matrix techniques have been fully utilized to describe the 

formulation of the problems both analytical and numerical. As the matrices used 

in both analytica·I and numerical, $argent and Wood were same for any given 

particular situation, it reduced the work to quite an extent, specially in case of 

multi-component mixtures. 

As mentioned earlier two different methods of formulating the dynamic equations 

:e been tried. Sargents method was a bit earlier then Wood 1s. Formulating in 

Sargents• method, the equations form a tridiagonal matrix, for each component 

separately. In a multi-component system this may not be good enough as the 

interactions between the different components is a very important feature. 

Moreover as a.J I the K •s are composition dependent, temperature is a valid 

parameter to be added into the equations. Adding a temperafure term to Sargent•s 

equation did increase the matrix elements but .it no more remained a tridiagonal 

matrix. 

Wood 1s method was triedas the equations are composition based and the components 

are interrelated by the relative volatilities. As this provided a scope tf more inter-

action between components, more stress was laid on this technique to investigate a 

multi -component system. 



I 

The analytical method handles both real eigenvalues and the complex conjugate 

columns in the trans~ortation matrix. This wastes computer storage so the method 

was modified based on .the fact that one of a pair of complex conjugate vector 

contains all of the essential information of the pair. The method is discussed in 

detail in Chapter 4. 

Next it would be worthwhile to mention point by point the essential differences in 

Sargents 1 method and Woods 1 method. 
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I 

COMPARISON OF SARGENT AND WOOD'S METHODS 

1. Wood determines the transient response of a column in the frequency 

response domain, whereas Sargent studies the dynamic behaviour of 

multistage systems without any reference to frequency domain. 

2. The matrix formulation for the two are quite different as shown in figs 5.7. 1 

Fl G~.7 .2) $argent's is a tridiagonal matrix whereas Wood's is a 

band matrix.FIG{5.7..3)r~presents the difference adequately. 

FIG5._7 ._3) also indicates that $argent's ·method involves less number 

of interactions than Wood's which could contribute towards 

misrepresenting or underrepresenting the actual problem by Sargent. 

3. $argent can deal with only one component at a time, whereas Wood 

deals with all the components' in the same matrix • 

SARGENT. .. 
A1 0 ~1 0 ~1 . 

~2 = 0 A2 0 ~2 + F (1) 
. 

A3 
' 

~ 0 0 ~ 

WOOD . 
X = Bx + F (2) 

4. In Sargent's method, disturbance in one component does not have any 

effect on the other components whereas in Wood's technique disturbance 

is equally distributed through all the components which is more consistent 

with the physical system of disturbance in a distillation column. 



270 

5. Method proposed by Sargent uses an approximating system which 

reproduces correctly the complete qualitative behaviour of the real 

system, and further does not depend on estimates of the xj to deter-

mine the dxi/dt. On the other hand in Wood's method the slopes 

gn, i for multi-component mixtures depend on all the perturbations 

in composition on platen, this is because the slope of the equilibrium 

data is no longer a line of fixed gradient but is a line in a vector 

space. In order to determine the direction of a line in such a space 

it is necessary for the liq~.id compositions to be specified, i.e., xn,i 

must be known. lt is evident that as g . are functions of x • with 
n, 1 . nd 

j = 1 •••• k, that it will be necessary to solve the equations for all 

K components simultaneously. In other words, it will be impossible 

to obtain a solution for the transient behaviour of one component in 

isolation. 

6. The assumptions made by Wood are : 

i) composition changes are sufficiently small so that the equations 

which determine the transient behaviour of the column may be 

linearised. This in itself is a big assumption, 

ii) the plates are ideal stages and any time dependent variable may 

be set equal to its steady state value plus a small perturbation. 



-

271 
... 

Sargent assumed that each stage behaved as a theoretical plate, the vapor 

holdup was negligible and the mixture obeyed the ideal solution laws in 

both phases. 

· 7-. $argent's equilibrium relationship depend on K (equilibrium constant) 

which are dependent on temperature at each plate. Wood on the other 

hand makes use of relative volatilfty and assumes it constant throughout 

(in our case, the relative volatility was calculated at each stage for the 

sake of greater accuracy and rigorous apprehension of the problem 

involved). 

8. Wood's matrix is more time consuming than $argent's in terms of corn-

putation. 

9. $argent's eigenvalues are real and negative with no complex pair, 

whereas eigenvalues found in Wood's case have a real negative part 

and a complex pair. 

10. As the basic forms of characteristic equations roots ,in the two cases 

are different, their representation on complex plane, and their nature 

of effect on transient response are quite different. However both 

represent stable systems which decrease with time in $argent's case 

and decays with time in Wood's method. 
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TABLE 15 

Feed Change TakeOffs 

Top Bottom 

Acetone 0.475 
Methnol 0.05 
Isopropanol 0.475 

0.465 
0.05 
0.485 

0.5 0.5 

EIGENVALUES 

DISTINCT 

-0.02140 . 
-0.04009 
-0.4842 
-0.5000 
-0.7695 
-1.308 
-1.591 
-2.190 
-2.419 
-2.469 
-2.469 
-2.571 
-2.571 
-2.741. 
-3.411 
-3.442 
-3.442 
-3.524 
-3.524 
-3.563 
-3.920 
-4.610 
-5.125 
-5.603 
-6.449 
-7.124 
-8.161 
-9.094 
-9.957 
-11.68 
-14.48 
-15.91 
-22.42 

COMPEX PAIR 

-0.07841 
+0.07841 
-0.05758 
+0.05758 

-0.04191 
+0.04191 
-0.06152 
+0.06152 

Reflex 
Change 

5; 1 



Feed Change 

Acetone 0.475 
Methanol 0.05 
Isopropanol 0.475 

0.465 
0.05 
0.485 

~73 

TABLE 17 

TakeOffs 

Top Bottom 

0.5 0.5 

EIGENVALUES 

ACETONE 

-0.2668 
-1.130 
-2.547 
-4.143 
-5.783 
-7.694 
-9.389 
-10.81 
-13.21 
-17.57 
-23.36 

METHANOL 

-0.0557 
-0.6274 
-1.595 
-2.668 
-4.097 
":"5.598 
-6.985 
-8.402 
-9.384 
-12.10 
..;15.89 

ISOPROPANOL 

-0.1456 
-0.7584 
-1.314 
-1.863 
-2.826 
-3.614 
-4.543 
-5.234 
-6.178 
-7.966 
-10.46 

Reflex 
Ratio 

5:1 
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Feed Change 

Acetone 0.47.>5 
Methnol 0.05 
Isopropanol 0.485 

0.475 
0.05 
0.475 
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TABLE . 16 

TakeOffs 

Top Bottom 

0.5 0.5 

EIGENVALUES 

DISTINCT COMPLEX PAIR 

-0.01603 
-0.04030 
-0.5000 
-0.5549 
-0.8328 
-1.334 
-1.758 
-2.302 

. -2.467 
-2.488 
-2.502 
-2.502 
-2.540 
-2.859 
-3.440 
-3.485 
-3.485 
-3.545 
-3.545 
-3.668 
-4.033 
-4.859 
-5.337 
-5.765 
-6.859 
-7.812 
-8.569 
-9.721 
-11.24 
-13.05 
-15.63 
-17.91 
-23.98 

-0.03765 
+0.03765 

-0.05573 
+0.05573 
-0.03066 
+0.03066 

Reflux 
Ratio 

5d 



· Feed Changes 

Acetone 0.465 
Methanol 0.005 
lsoproponal 0.485 

0.475 
0.005 
0.475 

ACETONE 

-0.3090 
-1.36 
-2.773 
-4.405 
-6.052 
-7.994 
-9.778 
-11.11 
-14.356 
-19.052 
-24.409 
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TABLES IS 

TakeOffs 

Top Bottom 

EIGENVALUES 

Reflux 
Ratio 

5:1 

METHANOL ISOPROPANOL 

-0.0662 -0.0543 
-0.6847 -0.6837 

~ -1.668 -1.232 
-2.732 -1.846 
-4.261 -2.842 
-5.771 -3.738 
-7.229 -4.612 
-8.511 -5.272 
-9.875 -6.569 
-12.96 -8.640 
-16.64 -1 o. 91 
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Coping up the comparison between the two techniques, it can be concluded that 

Sargent's technique although relatively simpler to use, does not define a multi

component system fully as compared to Wood's technique which uses more inter

actions than $argent's to define the same problem. 

lt was noticed that the discrepancy between the two techniques was quite large 

and needed probing into. The idea was to see which of the two was better or at 

leastVA:~S able to define specifically about the type of case where one or the other 

technique may be applied advantageously. 

This discrepancy, it was felt, was due to the fact that the number of equations used 

by Wood were more than $argent's. Sargent's, admittedly has its advantage 

in its simplicity and the ease with which the three components can be handled 

separately 1 independent of each other 1 but it falls down if the components are 

to be handled jointly or if the intention is to see the effect of disturbance in one 

. component transmitted to the rest of the system. Wood's technique handles this 

situation very adequately. lt can tackle all the components and all the plates 

and a disturbance in one component is equally distributed in ~he rest of the 

components. In other words, disturbance in each component equals the total 

disturbance. Whereas, in $argent's method the total disturbance equals only 

to the one component in which the disturbance is made at one particular time. 

Individual disturbances in each components are shown in section 9.2 .3. Attempt 

was also made to combine all the three matrices for three components in one matrix 

to study the resulting transients which could be compared with Wood's technique. 

lt is given in Section·9.2.1. 

Cl 
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Another worth noting feature of Wood's technique is that it furnishes besides the 

distinct negative eigenvalues some complex pair, which not only illustrates that 

the system is oscillatory, but has the potentialities of rendering more information 

regarding the non-linearity of the system. 

Although the eigenvalues obtained by the Wood's method are complex, thereby 

showing the oscillatory tendency of the system, yet it was observed that the 

complex eigenvalues do not have an appreciable effect on the dynamics. The 

reason being that the ratio of the most significant eigenvalue and the eigenval':'~ 

just before the complex pair occurs, is more than 100:1 to cause the system to 

oscillate significantly. lt could be more appreciable if there were more than 

three components or even if the concentration of the middle component was more 

than what was used in the present investigation. 

The responses obtained for one particular feed change for both techniques illustrates 

the difference very well. Comparison has been made both analytically and numerically.· 

Both numerical responses and the eigenvalues which give the analytical solution are 

given in fig. R. T.W.I. and R. T.Sol. and Tables (15-18). If can be seen that the 

responses obtained by Wood's technique provic;le more information regarding the 

system as compared to Sargent's technique. 

Some of the other results are briefly summarised as follows: 

The quasi-linearisation technique described in this work has been shown to give 

g~od approximation to the dynamic characteristics of a distillation column. 
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I 

The responses ·of a distillation column to reflux disturbances generally follows the 

same pattern as in the case of feed composition disturbances. In case of reflux 

changes, the shape of the impulse response curve for reflux disturbance was the 

same whether the disturbance is expressed in t~rms of reflux ratio disturbance, L)R, 

or in terms of reflux rate disturbances, L)l. The only difference is that for the 

system considered, L)R was larger than L)l. In other words, the impulse response 

curves in terms of reflux ratio disturbance are lower than those obtained in terms 

of reflux flow rate disturbance. In practical terms this amounts to setting the 

appropriate values (L)R or L)L) on the proportional controller •. 

When a digital computer is employed for the analysis, simultaneous determination 

of the impulse response to feed composition disturbance and ~hat to reflux disturb

ance is not recommended because of the effect of non-linearities and because of 

the almost two fold increase in sample length required for an accurate determination 

of .the responses. 



CHAPTER ll 
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11. FUTURE WORK 

A logical continuation a the present work is to compare the cost integral 

approach with the minimum start up time approach on a more realistic 

distillation column model. On-line feed back and feed forward control 

schemes are required for practical application and in order to do this, methods 

of generating simplified modes which preserve the important features of the 

dynamic behaviour of the process are required. 

Another important class of end point problems which have not been solved 

numerically here are those for which the final state variables are constrained. 

For example, if there is only a limited amount of feed material available, the 

integral of the feed rate over the operating period must not be greater than a 

given value. 

Effect of nonlinerarity on the dynamics of a distillation column is another worth 

investigating subject. This particular suggestion has been discussed in detail 

in the next section. A complete method of Analysis is also suggested. 
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1 1.1 Introduction 

Another objective of this investigation is to study the effect of 

nonlinearities on the response of a distillation column to feed 

composition disturbances and reflux disturbances. 

The transient behaviour of a plate-type distillation column can be 

described by a set of nonlinear, first order, ordinary differential 

equations. The nonlinearity of the equations is due to the nonlinear 

relationships between the equilibrium vapour compositooond the liquid 

composition. In their general form, these equations cannot be solved 

analytically. To obtain an approximate solution and also for the sake 

of simplicity in the analysis, many investigators (4) (5) (33) (35) (36) (38) 

(53) (54) resort to the technique of linearization. Linearisation is a 

valuable tool in the analysis of many physical problems of interest. 

However, there are many phenomena peculiar to nonlinear systems, such 

as the existence of the limit cycles, which cannot be explained by the 

analysis of the linear approximation to the original system. Furthermore, 

linearization is a valid approximation to the actual system only for small 

departures from equilibrium. The purpose of this research is, therefore, to 

investigate the manner in which the solution to the linearized equations may 

differ from the solution to the original set of nonlinear equations after 

disturbances have been introduced into the system. 
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The most important property of a linear system is that the principle 

of superposition applies. The sum of any two solutions of a linear 

system is also a solution, and any constant multiple of a solution is 

also a solution. The response of a constant coefficient linear system 

to a unit impulse disturbance, the impulse response, and its laplace 

transform, the transfer function, are the characteristics of the system. 

The importance of the impulse response comes from the fact that once 

the impulse response of any linear system is known, the response of 

that system to any arbitrary inputs is also known. The relationship of the 

output of a linear system with constant coefficients, Y (t), to the 

unit impulse response, g(t), and any arbitrary input, X(t), is given by 

the superposition integral. 

y (t) = J g (t - 1) X (rr) d -r 
0 

The integral g(t-1) X (T) has the signigicance of being the output of the 

system at tim7 t for an impulse of magnitude X (i) applied at time r 

As a consequence of the validity of the principle of superposition, 

certain test signals such as the step function, the impulse function, or 

the sinusoidal function with variable frequency can be used to measure 

the transient characteristics, that is the impulse response or the transfer 

function, of a linear system; the magnitude of the signal is immaterial. 

In the case of nonlinear systems, none of the properties mentioned above 

need to be true. The principle of superposition does not apply. The 

• 
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transient behaviour of a nonlinear system frequently depends on the 

initial conditions, the type of input, and its magnitude. Therefore, 

in the investigation of the transient behaviour of a nonlinear system, the 

input employed should be the one which actually occurs in practice or a 

time function which approximates it as closely as possible. Since the 

distrubances which occur in practice are more or less tandem, therefore, 

in this investigation, emphasis should be placed on the study of the 

response of the distillation system to random disturbance in feed 

composition and reflux rate, although system response to step and 

impulse disturbances have also been investigated already. 

Objective is to investigate the use of a technique with random input for the 

analysis when the response of the distillation system to ttmdom 

disturbance in feed composition or reflux rate is investigated. One 

such technique is Booton's(69)quasi-linearization technique with random 

input and involves the fitting of an equivalent linear system in the form 

of an equivafent impulse response to a given set of, input-output data 

by the least mean square error criterion. The equivalent impulse 

response obtained is a function of the mean square magnitude of the 

random disturbance. By verifying the mean square magnitude of the 

input, a set of equivalent impulse responses are obtained. These are 

then compared with the impulse response of the linearized system, 

which is independent of the mean square magnitude of the input, to 

determine the effect of nonlinearity. 



28S 
- ! 

. - ... '-

11.1.1 Method of Analysis 

A. Determination of Equivalent Linear System 

In this investigation, a least mean square equasiae linear-

ization technique with random inputs is employed for the 

analysis of the non linear control system in question. The 

technique involves the fitting of a physically realiable 

equivalent linear system (usually defined either by a unit 

impulse response or a transfer function) to a given set 

of i!1put and output data. The best equivalent linear system 

is defined as the one which gives the minimum mean square 

error between the output and the actual output of the 

non-linear system, since such a criterio11 is the simplest 

to handle mathematically. 

Let the input to a nonlinear system be a stationery random 

time function X(t) and the output by Y(t). An attempt will be 

made to find NONLINEAR 
Y(t) ... SYSTEM 

7 + X(t) ~ 

EQUIVALENT - e(f) 

LINEAR SYSTEM 
- -- j S(t): G(jw) IY1(t) 

FIG. 1 EQUIVALENT LINEAR SYSTEM 
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an equivalent linear system which will give the minimum mean square 

error between its output Y
1 

(t) and the actual output Y(t) for the input 

X(t) as shown in Figure 1 • 

The output of the equivalent linear system is related to the input by the 

integral equation 
CO 

I 0 S('r) X ( t-'r)d ,. (1) 

where 9('1") is the unit impulse response of the equivalent I inear system. 

The difference Y(t) - v
1 
(t~ between the actual output Y( t) and the 

output Y
1 

{t) of the equivalent linear system is the error e{t) resulting 

from the approximation Hence. 

0) 

Y(t) = e(t) + fo 9('1") x (t-'r)d '!" • (2) 

Minimization of the mean square error between Y {t) and v
1 

{t) means 

that the expression 

0) 

e
2 

(t) dt lim 1 fo = T-o:> n-
T 0) 1 

Lim 2T I,. [Y(t)- I 0 

2 
9('1") x (t-'r)dr ] dt 

= T .... m 

(3) 

is to be minimum. lt can be shown(70X7'D(72) that the necessary and 

sufficient condition for the expression (3) to be a minimum is that the 

equivalent impulse response !l(t) be a solution of the integral equation 
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CX) 

Rxy ('f)= J 
0 

9(t) Rxx ('f-t)dt; 'l>o (4) 

where R (t) and R ('f) are correlation functions defined by 
XX xy 

Lim ·1 .. 
R ( -r) = 

XX T-tco 2T I T X {t) X (t -'f) dt 

-T 

R {'f) = TL~moo ; lT·' . J T Y(t) X (T -'f) dt {6) 
xy -T 

(5) 

In this· investigation, the random input can be obtained by generating a 

random number at the beginning of each time interval, and the system 

output can be obtained by solving the set of differential equations which 

describes the transient behaviour of the column by finite difference method. 

According to the finite difference scheme(56), the input during an .interval 

of integration is 

Z (nM) = X(n•l). + X {n) 
(7) 

2 

where X{n-
1
) and X (n) denotes the random number generated at t = (n-1) 

M and t=nb.t respectively. lt can be shown that th~ autocorrelation 

. function R ('T) decreases linearly from R (u):! R {o) toR 
ZZ ZZ XX ZZ 

(2M) = o as 'f changes from 'f = o to 'T = 2b.t. 

The autocorrelation function for R {'f) is shown in Fig:2. 
zz 

-2 b. t 0 2 M 
FIG:2 AUTOCORRELATION FUNCTION 
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lt can also be shown that when N = T/M is large and when the time 

increment M is small in comparison with the effective memory time 

of the system, the crosscorrelation funcfion R {rr) is approximately 
zy 

equal to R {rr) for the system investigated. Hence, 
xy 

'T' + 26 t 
R ( rr) = R ( rr) = J 
zy xy T- 2f). t 

9(-r) R (rr-t) dt, 'l'>o 
zz 

{8) 

Since the interval of integration is very small, 9{t) can be considered 

to have a constant value 9{-r) within the internal of integration and 

taken outside of the integral • Thus 

T+2M 

f sE!) R (rr-t) dt, 
J T-2f).t zz 

= g (rr) R {o) M 
XX 

(9) 

and 

R (rr) 
. xy 

{10) 
R {o) M 

XX 

~ 
The de~i~tion of equation (1::0) from equation~) is based on the assumption 

that the impulse response b(t) can be considered to have a constant 

value g(rr) .within the interval of integration['T'- 2M, 'f + 2 f). t]. The 

discussion of the error in the calculated value of g (rr) resulting from 

making such an assumption is given in the following paragraphs. 
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Since R ('T- t) does not change its sign in the interval 'T-2M] and g (t) is 
zz 

continuous therefore on the basis of the mean value theorem of integral calculus 

'T +2M . - ~+ 2~ t I g ( t) R zz ( 'T - t) d t = g ( t ) I R ( 'T- t) d t ( 11 ) 
'T-2~ . /r'-2 M zz 

where (i) is some unknown point in the interval 'T - 2 ~ t 1 'T ] or 

in the interval 'T 1 'T+2M]. Comparison of equations (11) on with 

equation (9) shows that it is g (t) instead of g ( 'T) that was actually ~ ing 

evaluated. 

From the mean value therom 1 g {t) can ~e expressed as 
4 

g (t) =g ('T) +g (t) (t -T) (12) 

where t 1 is some unknown point in the interval 'T~ t - T]. Substitution 

of this expression in the tight hand side of equation (11) yields 

· - T+2~t.. 'T'+2M 
9 (t) J R (~-t) dt =g(~) J R ('T-t) dt 

'T-2M zz 'J"-2M zz 

T+2M 
+ J g(t

1
)(t-'T)R ('T-t)dt 

7-2 ~t , zz (13) 

The error is therefore 

- I(J" + 2M - -E =g ~) -g('T) = 9(t
1
) (t- 'T) R ('T- t) dt 

zz 
1"-2M .. 

R (o) 2 ~ t 
zz 

(14) 
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I 
and the maximum absolute error is 

I E I ~ 
I ~Ht) I T+26 t 

, max I ..,l(t' -r) Rzz (r-t) ldt 
. .T-26t .. . . .. , ............ . 

R (o) 2 6 t 
zz 

= \ g (t) lmax 4/3 (M)2 

2 6 t 

... 
= I ' (t) \ ~ M 9 max (15) 

where I g (t) I is the maximum absolute value of the slope ofg (t). 
max . 

it could be that equation 15 gives a conservative error estimate. A 

less conservative error estimate can be obtained if the impulse 

response g(t) is expanded in terms of a Taylor's series with remainder 

term instead of making use of the mean value theorem. let 
• 

(16) 

where 

R(2) _. (2) (A.) (t - ,.)2 A. - ,- >t - ,. 
-g 2 ~ 

Substituion of this expression into the integral on the right hand side 
' 

of equation@) yields 

I
,.+ 26 t g (t) R ('~"-t) dt = g ('~") IT+ 2 6 t R ('~"-t) dt 
T-2 6 t zz T-2M zz 

(l) r'l"+2M . T+2M ( ) 
+g ('~") J (t-'1") R (T-t) dt +I R 

2 
(r) R (T-t) dt 

"1'-2 M zz T-2M zz 

(17) 
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I 
The second integral on the right hand side vanishes, hence 

J
r+2M g 'I" + 2 M 

(t) R (r-t) dt = g (r) J R (r-t) dt 
r-2M zz r-2M zz 

r -r+2M (2) 
+J R R (r-t) dt 

-r-2M zz 

(18) 

Apply the mean value theorem of integral calculus to the left 

hand side and rearrange to obtain 

r+2M (2) 
e = g(t) - g ( r) = J R R (-r -t) dt 

,. = 2-M zz 
• 

R (o) 2 6 t 
zz 

(19) 

The absolute error is 
'1"+2M 

- I I I e I = I g (t) - g < r) I = ,. -2M 

R(2) R ( ) d zz r-t t I :s;; 

R (o) 2 6 t 
zz 

'1"+2M 
I R {2)1 . J Rzz (r-t) dt 

max r-2M I R(2) I , (20) = max ------
R (o) 2M 
zz 

where 

= i g(2) {'f) I 2 (M)
2 

max 



292 

Equation (19) shows that the error is positive or negative, depending 

on whether the second derivative of g(t) is positive or negative at 

the point in question. Thus, for any two impulse response curves 

which have approximately the same geometrical shape such as the 

equivalent impulse response of the nonlinear system and the impulse 

response of the I in ear system, the error at corresponding points on 

the two curves such as the peaks should be in the same direction. 

Equation (19) shows that if g(t) can be assumed to vary linearly with 

t inside the interval (r-2M, 'f+2M), that is R(
2

) can be considered 

to be negligible, then t coincides with 'f and the errore= g (t) -

g (r) l:ecomes zero. This ought to be verified experimentally from 

the impulse responses which have been obtained on the present 

multicomponent system for disturbances in feed comp. 

Nomenclature: 

e = error between the output of the non I inear system and that if the 

equivalent linear system. 

G(S) =closed loop transfer function connecting distillate comp. 

deviation to feed composition disturbance. 

g{t) =closed loop unit impulse response connecting distillate comp. 

deviation to feed composition disturbance 

R ('T") = autocorrelation function of random disturbances 
XX 

R (r) =cross correlation between disturbance and output. 
xy 

N = Total number of plate or numeric~l factor. 

T = Total length of sample in time unit • 

• 
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t= time 

'!'= dimension less time = F t /Hg 

B. THE CLOSED LOOP 

Use can be made of the .open loop impulse responses obtained 

from the open loop computation. The entire control system can be represented 

by the block diagram as shown in Fig. 4. The closed loop transfer function 

for the control system may be synthesized according to the block diagram 

and the closed loop impulse response can then be obtained by taking 

inverse Laplace transfo~mation of the closed loop transfer function. 

A brief description of the~ method of closed loop synthesis is given 

in the following paragraphs. 

FIGURE 4 

EQUIVALENT BLOCK DIAGRAM OF THE CONTROL SYSTEM. 
' 

The transfer function of a linear system, which is equal to the laplace 

transform of the impulse response, is defined as the ratio of the Laplace 

transform of the output of the system to the laplace transform of the 

input. Let F{s) be the open loop transfer function of the equivalent 

I inear system connecting the change in distillate composition to feed 

composition disturbance, and Q (S) that connecting the change 

in distillate composition to change in reflu~ rate. Also, let M{S), 

C{S), and V{S) be the transfer function for the measuring unit, the 

• 
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controlling, and the reflux value, respectively. If the disturbance 

entering the column is in the form of feed composition disturbance, and if 

the reflux rate to the top plate is used as the control medium, then 

the equivalent block diagram of the whole control system is as shown 

in Figure 4. 

According to Figure 4, the closed loop transfer function connecting 

the change in distillate composition with the change in feed composition 

is 

Xd(S) 

G(S) = Z f(S) = 
F(S) (21) 

1 + M(S)C(S)V(S)Q(S) 

If a proportional controller is used and if M(S) and V(S) are assumed to 

be pure gains then Equation (21) becomes. 

F (S) 
G(S) - 1 + KQ (S) (22) 

. where K is a constant. The equivalent closed loop impulse response can 

be obtained by taking inverse lap lace transform of G(S). 

Equation (22) shows that the sylthesis of the closed loop equivalent transfer 

function requires the knowledge of the equivalent open loop transfer 

function for feed composition disturbance and that for reflux distrubance 

The equivalent open loop impulse responses obtained by open loop 

computation are in the form of sets of data. To facilitate the synthesis 

of the closed loop transfer function and the subsequent inversion of the 

• 
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Laplace transform to obtain the equivalent closed loop impulse response, 

it is desirable to represent each equivalent open loop impulse response 

by an orthonormal expansion that transforms into rational functions when 

it is subjected to Fourier or laplace transformation. When the impulse 

response is aperiodic, the more common practice is to express it either 

in terms of Lagandre polynomials or in terms of Laguerre functions. To 

a given circumstance on or the other of these two methods may be 

preferred. In this investigation, the latter is preferrable because when 

the data are of limited accuracy the inversion of the laplace transformation 

to restore the indical funCtion can be accompalished more accurately 

in terms of laguerre functions than in terms of legendre polynomials, 

especially when the terms in the expansion is large. Although discussion 

of the merits of various ways to carry out the inverse lap lace transform 

can be found in reference (7~). In general, whenthe equivalent open 

loop impulse response is obtained by taking inverse laplace transform of 

the equivalent closed loop transfer function by Laguerre functions, it is 

given in the form 

g(t) = c o f o (2t) - c1 <f1 (2t) + c
2 

<P 
2 

(2t) ------(23) 

where 

~<t> = ~t/2 I k(t) 

1 k (t) ( 
k -t 

t e ) 

\ (2t) 
2t = e 

• 
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when the closed loop impulse response is obtained in the form of 

Equation (23), the mean square deviation of the distillate composition 

from the steady state value, (o X d)2, for the closed loop system can 
s 

be calculated with the equation 

where 

C =the coefficients in Equation {23) 
n 

R =the auto correlation of the feed composition 
XX 

disturbance with zero time leg 

{oXd)t = the mean square deviation of the distillate composition 

0 
from the steady state value xd 

{X d) 
m = mean distillate composition 

l:lr = size of the time step 

Equation {24) can be derived in the following manner: 

let X(t) and Y(t) be the feed composition disturbance and the deviation 

of the distillate composition from the mean value, respectively. 

Making use of the superposition integral, Y (t) can be expressed 

as 
CO 

y (t) = J g{t) X (t-\) d \ r (25) 

0 
The mean square deviation is 

lim 
=T -+coif 

T CO 

I [ I 
0 

CO 

g(\) x (t-\)d~ I g~a) x (t-a )d a J dt 
0 

Y(t)2 
-T 

• 
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change the order of integration to obtain 

Y(t)2 
CX) 

= I 
0 

CX) Lim 1 IT J dA.dcr J g (A.) g(cr) [ T-ooo 2T x (t-A.) x (t-cr) dt 
o -T 

CX) CX) 

= I I g (A.) g (cr) R 
XX 

{A-cr) d x d cr 
0 0 

= 
r g (A.) [ JCX) g (cr) Rxx {A.- cr) d cr] dA. 

0 0 

Using the same argument as that employed in deriving Equation (9) 

from Equation (8) yields 

= 

CX) 

R 
XX 

(A. - cr) dcr l dA. 
J 

= R (o) M l g (A.) g {A.) dA. 
XX J 

0 

Substitution of the expression g(o:: A. ·) = L: Cn cPn (2o:: A. ) into the 

above equation and making use of the orthogoncl property of <Pn 

(2 o:: A.) results in 

y (t) 2 = 2o:: Rxx (o} M I: C~ (26) 



I 

- -- ----------------- -- --- ------ --------

where a: is the scale factor in the transformation ,. = o:t. 

To obtain the expression for {& X d~ it is necessary to correct for 

the difference between the mean distillate composition and the steady 

state distillate composition. Thus 

( o X d); 

CJ = 

I (t)= 
n 

k = 

~ (t)= 
n 

I ( Xd- X
0 

)
2 

= N d 

2 
1 l: [xd- (Xd)m + 

0 J (Xd)m- xd 
= N 

1. 
l: {Y(t?- 2Y (t) c. (X d) m- X~ ]! re l\,1)"'- Xd] 

21 = N 

+ (27) 

Standard deviation of disturbance 

feed composition 

distillate composition 

Laplace transform variable 
23 

Laguerre function of n the order is defined by eq ~) 

system gain 

Laguerre function. 
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I 

NOMENCLATURE 

AS IT APPEARS IN THE FORTRAN LISTING 

GENX (I,J) 

GENY (I,J) 

SUMX (J) 

SUMY (J) 

TEMP (J) 

VAPOR (J) 

QUID (J) 

FD1LIQ (I) 

FD1VAP (I) 

FD2LIQ (I) 

F~2VAP (I) 

FD3LIQ (I) 

FD3VAP (I) 

A (I) 

B(l) 

C(l) 

FD(J-1) 

SFM(J-1) 

EQK(J-1) 

= liquid mole fraction of any component I on any stage J. 

= vapour mole fraction of any component I on any stage J. 

= liquid mole fraction summation at each stage J. 

= vapour mole fraction summation at each stage J. 

= temperature at each stage J. 

= total vapour flow from eaci} stage J - moles 

= total I iquid flow from each stage J -moles 

=moles of component I in liquid position of feed 1. 

= moles of component I in vapor position of feed 1 

= moles of component I in liquid position of feed 2. 

= moles of component I in vapor position of feed 2. 

= moles of component I in liquid position of feed 3. 

= moles of component I in vapor position of feed 3. 

COMPOSITION DEPENDENT CONSTANTS APPEARING IN 

= THE EQUILIBRIUM RELATION (EQUILKF) APPEARING 

6 BELOW. 

= vector set aside for feed ·flows at each stage. 

= vector set aside for modified stripping factor at each stage. 

= vector set aside for modified equilibrium constant at each 

. stage. 
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I 

TS(lO) = ten position vector for erasable or temporary storage 

RFBOT(I) = vector set aside for bottom product recovery fraction 

of each component I • 

RFTOP(I) = vector set aside for top product recovery fraction of 

each component 1. 

RFSUM(I) = vector set aside for sum of recovery fractions of each 

component I • 
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BOTP(I) = composition of bottom product- - moles of component I. 

TOPP (I) = composition of top product -moles of component I. 

QUIDX (I) = erasable vector set aside for stage I iquid compositions. 

. VAPY (I) = erasable vector set aside for stage vapour compositions. 

GAMMA (I) = erasable vector set aside for stage activity coefficients. 

EQUILUF 
(A, B, C,l) = equilibrium function defined by the equation. 

l = actual components used in a given calculation 

- (2 < l <I) - I imit for DO loops. 

M = number of plates in column between raboiler and feed 1. 

MI = number of plates in column between feed 1 and feed 2. 

M2 = number of plates in column between feed 2 and feed 3. 

N = number of plates in column between feed 3 and top of column. 

JT = total number of stages in column plus 1 for equilibrium reboiler 

=(M+ M 1 +M2+N+ 1) 

JC = total number of stages in column plus 1 for equilibrium reboiler 

plus 1 for partial condenser= (JT +1). 

JD . = total number of stages in column plus 3 = (JC+l) 

JMIN = total number of stages in column only= (JT-1) 

FD1LIS = total feed 1 I iquid flow - moles. 

FD1VAS = total feed 1 vapor flow - moles. 

FD2liS = total feed 2 I iquid flow - moles. 

= total feed 2 vapor flow -moles. 

FD3 LIS = total feed 3 I iquid flow -moles. 

, . 



310 

FD3VAs = total feed 3 vapor flow -moles 

SUMERR = arbitrarily small number for acceptable I im it of error in stage · 

summations. 

RFERR = arbitrarily small number for acceptable limit of errror in bubble 

point calculation. 

SUBRTG = counter used by activity coefficient sub-routine to determine 

which pate to follow. 

ITERAT = counter used by main program to tally the iterations. 

SUMFDL = total feed liquid to the column. 

SUMFDV = total feed vapour to the column. 

T = counter set to current value of stage temperature. 

J = counter set to various values depending on number of stages. 

BOT PS = summation of bottom products. 

TOP PS = summation of top products. 

SUMFD = total feed to column 

ACTCO = SUBROUTINE FOR DETERMINING ACTIVITY 

Coefficients using multicomponent Margules equation. 

BUBPTG = bubble point subroutine using activity coefficients. 



-- - - --- ------ -- ------------

3ll 

ACTO 

TERMS USED IN THE ACTIVITY COEFFICIENT SUBROUTINE, WHICH DO NOT 

APPEAR IN THE LISTING OF THE MAIN PROGRAM. 

AVAL (I,J) = two dimensional array of binary interaction constants. 

ASTAR (I,J,K) = three dimensional array of A* value already defined 

RHO (I) 

JMAX 

KMIN 

. TAU 

THETA 

TSTO 

OMEGA 

PSI 

BUBPT G 

SUMY 

SUMYO 

TO 

TN 

by eq ( ) 

= one dimensional array of P, defined by eq ( ). 

= maximum value of J index 

= minimum value of K index 

= 'T" as defined by eq ( ) • 

= e as defined by eq ( ). 

= temporary storage counter 

= w 1 as defined by eq ( ). 

= '1' 1 as defined by eq ( ) • 

= Summation of vapour compositions 

= old value of summation of vapour compositions 

= old value of stage temperature 

= new value of stage temperature. 



'· 

I' 

LTST<LP) 
SPNO TO (~D,FORTCOMPAREA ONE> 
PROGRAM(jjP11) 
I PJ P ll T 1 : C R 0 
011TPUT2,(MONIT0R)::~LP0 
TRACE 
ENO 
~1ASTER SHAHtD 

w 
1\J 



c 
C BASIC PRUGRAM FOR NON•IDEAl DISTILLATION WITH TOTAL CONDENSFR 
c 
c 
C HIXTIJRF. BEING USED ACETONE METHANOL ISOPROPA~JOL 
c 

OTMENSION GENX(10.~0]},GENVC10r103).SUMX(103),SUMVC103).TEMPC103), 
1VAPO~C103),QUI0(103),~D1LI0{10),F01VAP(10\#~D'LJQf10>.Fn2VAPf10),f 
?n1lJQ(1Q),F03VAP(10),A(10),RC10),C(10),GAML<1n,103),FOC102),~FMC10 
~?.' ,F.<JK(102> ,T~(1()) .RFROT(1()) ,RFTOPC10> rRF«;UM(1Q) ,R0TPl10> ,TOpoC10~ 
4,0lJJDX(10) ,VAPY(10) .GAMMAl10> 

C IHH11J ~J G E ~J X • G F. N V , ~ 1J M X • S Ut_, V • T F. M P , V A P 0 R , Q U I 0 , F D 1 li Q , F D 1 V A P , F D 2 I t Q , F D 
12VAP.~03LtQ,Fn3VAP,A,R,C,~AML.FD,~FM,EQK,TS,R~BOT,RFTnP,R~SUM.B0TP 
,.,TOPP,QUIDX,VAPV,r.AMMA 

F.oiJTLK(A,R,C,T)aExpCA·B/(.555•T•212.3>+C•C.S55•T+212.3>-5.487l 
3 FIHH1AT (5J3l . 

1000 RI=AF)(1 ,3) 'LrM,M1 tM2rN 
J T:M+M1 .~,?.+N+1 
Jr=.JT+1 

J f)=·' c + 1 
JM trJ=J T-1 

4 FflRMAT(9F8,0) 
R~AOC1,4),(TEMP(JY,.J:1,JO\ 
RF=A0(1 ,4), (VAPOR(,J) ,J=1 rJD) 
R ~=An < 1 , 4 > , c Q lJ t 1> c J ~ , J = 1 , J fJ , 
RI=AO( 1, 4>, ( FD1 LTQi I), I ::1, l) 
D=4~t1 .~\.f~01VAPtT,.T:1.1 \ 



RI=Afl(1 ,4), (FD~VAPti), 1=1 ,l) 

RFAD(1,4),(A(T),I:1,L' 
RI=AD<1 ,4), (Fl(t), 1=1 I L~ 

RFA0(1,4),(C(l),I:1,L) 
RI=A0<1,4),FD1Lt~,FD1VAS.~O?.Ll~,FD2VAS,FD3L!~,FD3VAS 
Rt:A0(1 ,4) ,SUMF.RRrRFERRrBP~RR 

5 FORMAT(49H1INPUT oATA FOH PROR. NO. USING ~ROGRAM CGP11>) 
\.JQITE(2,5) 

6 FM!MAT (116HONO. OF COMPcJNENTS PLATES IN '>ECTION M PLATES 
1IN SECTION M1 PLATES IN SFCTION M2 PLATES IN SE~TION N/110 
?.,T?.~,T24,t25,t?5) 

WRlTc<2,6>,LrMrM1 .M2rN 
? 'FORMAT <SOHOFF.ED FLOW~ tN OROFR OF LOWEST ENTFRJNG TO HTGHEST/38Hn 

1 1-1 n I. F. S F E E D l I Q 11 I D M 0 L F. S F E F 0 V A PI) R I C F. 1 6 • 8 , F 21 • ~ ) ~. 
W~tTEt2,7),FD1LIS.FD1VAS.FD2LTS,F02VASrFD~LIS,FD3VA~ 

n FORMAT(23HOC:0Mi'0NFNT FF.Ei> AM01JNTSIQ5H I OWF.ST FEEI'I 
1 INTF.RMF.DIAT~ FF.FD HIGHFST FF.F.D 
?./QQH LTQIIID VAP~R I.IQlJTD VA 
~PnR LUlllTO VAPOR/(6E17.8)) 

\.JQITE<2,8l,lFn1LinCI).FD1VAP<t> .FD2LIO(JJ,FD2VAP<f),FD3 
1LTAti) 1 FD~VAPtl),T:1,Ll 

9 FORMAT(85HOEQillliRRIUM CONSTANTS A enUILTBRtiJM CON~TAI>Jrs B 
1 EQU!LtBQIUM CON~TANTS C/(E1Q.8,?.E29.8)) 

L.JR IT 1:: ( 2, 9' , (A l I) , a (I ) · C ( 1:) , I= 1 , L) 
10 FORMATC98HOERROR I IMIT ON SUMMATION ~RROR LJMTT ON PECOVFRV F 

1RACTION SUM F=RRO~l l.IMtT Oi~ BIIBIHE POINT/E20,8,F35.8,F36.8) 



~IIFHHG=O. 0 
~tiART:rO.O 
CHF.CK=O.O 
ITF.RAT=O 
1>0 12 I=1•L 

12 T~(I>=FD1liQ(t)+F~1VAP(!>+FD2tiQ(t)+FD2VAP(I)+FD3LIQ(J)+FD3VAP(t) 
S 11 M F D I. = F D 1 L t S .., F !) 2 l I S + ~ D 3 I. t S 
!;IIMFDVaFD1VAS•FD2"AS+FD3VAS 
I~ tSUMFDL) 13,13,17 

13 I~ (SUMFDV) 57,57,14 
14 no 15 I=1.L 
15 VAPV(J)a(FD1VAP(ll+FD7.VApC!)•FD3VAPCI))/StJMFDv 

T = T F. ~1 P ( 1 ) 
CALL DEWPT (VAPV,r,A,A,C,L,APF.RR) 
no 16 Ia1.L 

16 QtiiOXCI)r:.VAPVti)/F.QUILK(ACil,IHI>,CCI.>,T> 
CiO TO 23 

17 I~ CsUMFDV) 18,18,21 
1R no 19 I=1.L 
19 QtltOX(I)a(FD1LIQCT)+F02LIQ(l)+F03LIQ(I))/SUMFnl 

T=TFMP(1) 
CALL BUBPT (QIJIDX.T,A,B,I~,t..BPERR' 
no ?.u l=1,L 

2 0 V A. P V ( I ) = <J 11 I D X ( t ~ * F. Q lJ I I. K ( A ( l ) , A ( t ) , C C I ) , T ) 
(jO TO 23 

7.1 DO ?.1. Ia1,L 
2?. VhPV<t>=<FD1VAPCil+F07.VAJJCO+~D3VAPCI>>ISIJMFOv 

Q tl I n X ( I ) = C F n 1 LI Q ( T ) • F f) 2 L IQ { t > .., F 0 3ll Q ( I ) ) I~ UM F n L 
7.3 no 7.4 J=1 ,Jr. 

oo 7.4 I=1•L 



G~NX<J,J)aQUinXCI~ 
G=NV(t,J)=VAPV(I) 

?.4 GAML<I,J)a1.0 



c 
C CALCIJI ATION OF PLATE COMPOSITIONS 
c 

~5 Dn 29 Ia1.L 
Dn 1?6 J=1 ,JC 
-~n~tJ>=GAMLCI,J>•FQUilK(Ati>,n<t>,CCl>rTEMP(J)) 
~ ~M ( J ) =V A P 0 R ( .1 ) • Et) K ( J ' + Q 1J I D C J ' 

?.6 FI'>CJ>=O.O 
.I: ~1"- 1 
Fn<J>=FD1LIQ(t>+F~(J) 
.1 =r.,+2 
Fll(JJ=FD1VAP<t>+FD(J) 
J:o:M+M1+1 
FnCJ>=FD2LIQ(t)+Fn(J) 
.J:M+t11+2 
Fn(J):FD2VAP(t)+FD(J) 
J = M + 1·11 + M 2 + 1 
Fn<JJ=FD3LIQ(tJ+FDCJ> 
.1 =M H11 +M 2 + 2 
Fn(J):fD3VAP(t)•FnCJ) 
G~NX<t,1>=<GENXCI,2>•0UIDl?.)+FDC1))/SFMC1)+1.0E·20 
GFNV(I,1>=GF.NX(lr1>•EOK(1) 
Dn 27 J:2,JT 
G F N X < I , J ) :1( c; t N X C I , J + 1 ) • Q 1J t DC J + 1 ) + G EN V (I , J •1 ) *\fA P 0 RC J ·1 ) + F D ( J ) ) IS F 

H1 ( .1 ) + 1 • 0 F. • 2 0 
?. 7 G ~ N V ~ I , J ) = G F. N '( ( I , .I ) • t 0 I( C .1 ' 

~~NX<JrJC~=rtENVCI,JT) 

GFNX(IrJD>=GENVti,JT) 
J :o:,J T 
ll •1 ? H K = 2 , J T 



GFNX(J,J)2(GENXCI,J+1l•QUIDCJ+1)+GENY(I,J•1)•vAPOR(J•1>+FD(J>)/SFM 
1C.I>+1.0E-20 
G~NVClrJ>=GENX(J,J)*EQK(J) 

28 J=J-1 . 
GFNX<I,J>=<GENXCI,2>•0UI~(~)+FDC1>)/SFMC1)+1.0E-20 

?.9 GFNY(l,1)=GENX(I,1)•EQKC1) 

w -Q) 



r. 
C PROI>t1r.T AMOUNTS 
c 

RECOVF.RY ~RACTION~ 

Bl'lTPS=O.O 
Tl'lPPS=O.O 
!;trt-1J:o=O. o 
Dl'l 30 I=1,L 
S 11 M F D = S U ~1 F D + T !; ( t ) 
T n p P < J ) = Q 1J I 0 < .l D ) * G E N X ( I , J D > 
~~TOP(I)=TOPP([)/TS(Il 

RnTP<I):QIJII>(1)•GFNX(T,1) 
R~ROTCI>=ROTP(I)/T$(1) 
R~SUHCI>=RFT0P(I)4~FBOT(() 
Rl'lTPS=BOTPS+BnTP(Y) 

30 Tl'lPPS=TOPPS+TOPP(T~ 

Dl'l 31 J=1 ,JD 
!;IIMX<J>=O.O 
SllMVtJ):O.O 
l>l'l 31 I=LL 
S 11 M X < J ) : S U M X ( .I ) + G J: N X ( J , J > 

J 1 S IH·l V < J ) = SUM V (.I) + G F= N Y (T ' J J 

SUMMATTONS 



c 
C OIJTP!J"!' 
c 

ITF.~AT=JTF.RAT+1 
r,n TO 32 

~2 nn ~4 J=1,JT 
I~ tARS(SUMX(J)•1.0>-~UMeRR) 33,33,58 

13 I~ (ARS(SUMV(J)•1.0)-~UM~~R) ,4,34,58 
34 CONTlNUE 

nn 35 I=1.L 
t~ <ABS(RFSUM(I)•1.0>-RFF.RR) ~5.35,58 

35 CONTINUE 
,6 FO~MATC12H1PROBLEM N0./1S~OtTERATION NO.at3/4QHOMOLE FR.CTION~ 

1LT~TEO AS COMPONENTS PER PLATF) 
3? W~tTE(2,36),ITERAT. 
~8 FORMAT(21HO ROTTOM PRODUCT/(5E20.8)) 

\.J R ! T E < 2 , 3 8) , ( G F. N X ! I , 1 ' , I :l1 , I. J 

39 FORMATC21HO RF.BOTLE~ VAPOR/(5E20.8)) 
W Q f T t ~ 2 , 3 9 ) , ( G t: N V f I , 1 ' , I ;;: 1 , 1. > 
JPLATE=O 
DO 4t!. J:2,JT 
JDLArE=JPLATE-+1 

40 FORMATC17HO PLATF. No.at:S/7HOLIQUID/(5E20 8>> 
W~tTt:C2,4()) ,JPLATF=, (.GF=NX, I ,J), 1=1 .U 

41 FORMAT(6HOVAPOR/(~F.20 8) I 

42 WRtTE(2,41),(GENVti,J1,I:1,L) 
4 3 F n R M A T ( 1 3 H 0 R F. F L IJ X I ( 5. F. 2 0 . 8 ) ) 

\.IQtTF.(2,43>, <GF.NX< I ,Jr.), £=1, U 
44 FORMAT(18HO TOP PR0DUCT/C5F20.8)) 

l,JQtTc(2,44),(GF.NX!TrJ0),[:1,Ll 

w 
~ 

0 



45 FORMAT(34HOBOTTOM PP.OnUCT RECOVERY FRACTIONS/(5E20.8)) 
~DtTF.(2,45),(RFBOT(I) .1~1 ,L) 

46 FORMAT(31HOTOo PROOIICT RECOVERY FRACTT0NS/(5E?0.8l) 
WPtTEC2.46) ,(RFTQp(J) .I=1 ·L) 

47 Ff'lRMAT(32H0!;1JMMATT0N OF RF.COVF.RV FIUCTION~/(5F20.~)) 
WQtTEC2,47),(RFSUMCt).I=1,L) 

4 8 F n R M AT ( 2 1 H 0 M 0 I. F. S 0 F F ~ F. 0 AND PR 0 D IJ C T S ) 
WPtTf.C2,48) 

49 FORMAT(75HO COMPONHNT FEED BOTTOM PRODUCT 
1 TOP PROOVr.TICT11 .F.22.8,7.F.19.8)) 
~QtTEf2,49),(J,TS(J),R0TPCI),T0PPCI),J=1,L) 

50 FORMAT<2H /E~3.8,2E19.8J 
WQIT~C2,50),SUMFD,BOTPS,10PPS 

51 FORMAT(16HOPLATE VARIABLE~) 
WQtTEC2,5,) , 

5?. FnRMAT(99H() LIQUTD. SIJMMATIONS VAPOR SUMMATIONS TEMP 
1F.~ATURES LIQIIID FLOWS VAPOR FL0WS/(5E20.8)) 

WqT.Tt:C2, 52), (SUMXCJ) ,sUMV<J) ,TEMPCJ) ,QUIDCJ) ,vAPOR(J) ,J=1 ,JDl 
no 54 J=1.JT 
I~ CABSCSUMXCJ)•1.0>-SUM~RR) 53,53,58 

53 IF CABSCSUMV(.J>-1.0>-SUMF.RR) ~4,54,58 
54 CONTINUE 

1>0 5S I=1•L 
t~ CABS(RFSUMCil•1.0)-RF~RR) 55,55,58 

55 CONTINUE 
I~ CCHECK> 1000,5R,1000 

51 F. ~J !> F I L E 2 
PAIJSE 
GO TO 1000 

w 
1\) -



c 
C NORMAI.t7.ATION AND CALCULATION OF ACTIVITY COEFFICIENTS 
c 

liB nn 59 J=1,JT 
r>n 59 I=1·L 
t; r: N X < I , J ) = G EN X ( I , .I ) I S tJ M X < .J \ 

59 GFNV<I,J>=GENV(tr.I)/SUMV~.J) 
llt'l 6ll I=1, L 
GPNX\I,JC):GENXti,JC>ISUHX<JCl 

~0 GFNX(J,JD)=G~NXfi.JC) 

nn ~~ J=1.JC 
nn 61 I=1·L 

~, ll!lfOX<I>=GENX([,J\ 
CAU ACTO (SURRTG,QtJIDXrGAMMA,U 
nn 62 I=1.L 

~2 GAML(I,J>=GAMMACI~ 



c 
C CORRE~TION OF TEMPERATIJ~E~ 
c 

DO 64 J:1,JC 
DO 63 I=1rl 
QIIII'>XCI>=GENXO ,J) 

63 GI\MMA(I)::GAML(I,J"' 
Chll BUBPTG (QIJJOX,GAMMA,TEMPtJ),A,B,C,L,RPERR) 

64 CONTINUE 
T~MP<JD):TEM~lJC) 

GO T\J 25 
F.Nf> 



r. StlR~OIITTNE FOR ACTIVITY COEFFtr.tENT~ THREE SUFFIX MARGULES FQUATJON 
c 
c 

S 11 R R t) tJ TI N F. A C T 0 ( ~ U B R T G , X , G A M M A , L ) 
DTMENSION X<10> .GAM~1Af10l .AVAt(10.10> ,ASTAR(10,10.10> .RHOC10> 

3 F0Rt-,AT(9F8.1)) 
tl= (SIJBRTG) 11,G.,11 

4 1)0; I=1,L 
R~A0(1,3),(AVALCI,Jl,J=1,Ll 

5 CONTINUE 
on 1•J I=1rL 
J ~•A X= L-1 
nl'l 9 J=1 ,JMAX 
I!= CJ-1) ft,9,ft 

6 KM t N =,1 +1 
Dl'l R K=K~1! N, t. 
11= (1(-1) 7,8,7 

7 A~TA~<J,J,Kl= S•<AVALrt,,J)•AVALCJ,I)+AVAL(I,K)+AVAL(K,t)+AVALCJ,K) 
1 +<\\fA L( K, J)) 

8 CnNTlNtJE 
9 CONTlNIJE 

10 r.n~JT I NUE 
SIIRR rG=SURRTG•1. 0 

11 TAII=O.O 
nn 16 I=1·L 
R.,;ocr>=O.O 
JMAX=I.-1 
on 15 J=1,JMAX 
11= (J-I> 12.1';,12 

1 ?. K ~1 OJ = .J + 1 



r-----------------------------------------

r>n 14 K=l(r-1IN,I 
I~ CK-1) 13,14,13 

1 3 RH n < 1 ) = R H 0 ( I J + ( Y ( .I ) •1 . 0 F. -1 0) • C X ( K l + 1 • 0 E • 1 0 ) *A c:: TAR ( I , J , K \ 
14 CMJTINlJE 
15 CONTINUE 
1f, TI\!J:TAU+(X(!)+1.0r:-10'*R~O(t> 

TAIJ:TAlJ/3. 0 
TUF.TA=O.O 
on 18 I=1,L 
TC:TO=O.O 
on 1? J=1·L 

1 7 T c: T n = T S T 0 + ( X ( .I ) + 1 . 0 E •1 0 ) * A V A L ( I , J \ 
1R T~F.TA=THETA+T~TO•rX(I'+1 .OF.•10)•(X(t)+1.0E·10\ 

r>n ?.11 I=1.L 
OMF.GA=O.O 
pcq:O.O 
on 19 J=1·L 
0 rH: r, A = 0 M E G A + ( X ( J > + 1 . 0 F •1 0 ) *A V A U J , I ) 

1 Q Pc: T =PS I + ( X ( J ) + 1 . 0 F - 11.) ' • ( ,\ ( .J ) + 1 • 0 E •1 0 > *A V A L ( I ' .I ) 
GAMMACI>=F.XP<?..{)•'I((I)•0MEGA•I>!o;I+f<H0(1)•2.0•THFTA·2.0•TAII) 

7.0 C:ONTINlJE 
RI= rtlf~ N 
F.t-.Jn 



C SIJRROIITtNF. FOR DEW POTNTS 
c 
c 

!;IIRRUIJTINF. DEWPT <VApV,T,A,B,r.,t,APER~) 
OTM~NSION VAPV(2Q,,A(20).A(2b,,CC20) 
EOIJTLK<A,BrCrT>=EY~(A-BI, 555•T+212.3>+C•C.555•T+~12~3>·5.487> 
I(T01t~=1 

3 SIJt.1X=O. 0 
I)O l. t:1,l 
X::\IAPV(l)/EQIJTLK(/1.(1) .B(l) ,C(t) .T~ 

4 S IH-1 X = ~ tJ M X + X 
I~ (ARS(SUMX-1.0>-BPERR) 8,8,~ 

5 KTtMES=KTYMES-1 
I~ CKTIME~) 7.6,6 

6 SIIMXU:SUMX 
Tt'l=T 
T=T+10.0 
r,n TO 3 

7 c; ' 0 p E = ( s u,., X ... s IH~ X 0 ) I ( T - T 0 I 

TN=Cl1.0-SUMX'/SLOVE)+T 
SIIMXu=SUt~X 

Tt'l=T 
T=TN 
c;n TO 3 

8 ~PTIJHN 

F: ~~ n 
C SIIBROIIYTNE FOR RURBLE POINT 
c 



c 
SIIRROUTtNF BUR~->T (QUIDX,T,A,B,C,L,BPERR) 
0 T i·1 F N S I 0 N Q tl I I') X ( t! n ) • A ( 2 0 • , B C 2 0 > , C ( 2 0 > 
~orJTLK(A,R,C,T)~Ev~CA·B/' 55S•T•212.3>+C•C.555•T+212.3)•5.487> 
K?tM~~=1 . 

3 S 11 ~I V = 0 • 0 
on 4 t=1rl 
V= F. aUt L K <A ( I ) • R ( I ) , C ( T. ) , T ) • Q UT D X ( T ) 

4 SliMY= S UMV•V 
t~ (ABS(SUMV-1,0)-BPERR) 8,8,~ 

5 KTtMtS=KTIMF.S-1 
I~ ((TIMES) 7.6.6 

6 SIIMVU=SUt-1V 
TO=T 
T=T•'IO.O 
CiO TO 3 

1 S Ul P E = ( S U M V • S 1J M V 0 ) I t T • T 0 > 
TN=«1.0·SUMY>/SLnPF.H·T 
S 1lt·1V 0 = S Ul-1¥ 
T,=T 
T=TN 
r,n TO 3 

8 RI=TURN 



e~n 
C SlJRROIJTJNE FO~ NON'IDF.AL BUBBLE P(HNTS 
r. 
c 

S 11 R R 0 UT I N F. B IJ R PT G ( Q U t D X , G A M.M A , T , A , B , C , L , R PE R R ) 
DTME'NSION QIJII"'XC10) ,GAMMAt10> .A(10) ,BC10> ,C(10) . 
F.0111LK(A,~,C,TI=E~PCA-B/(,555•T+212.3>+C•(.555•T+212.3>•5.487) 
KTtMES=1 

J Sllt-1V=0. 0 
DO 4 I=1,L 
V=t:QUJ LK(A(t) oiH l \ ,C( t> rn•GAMMA(t)~~rQUIDXCI> 

4 SIIMV= SUMV+V 
I~ CABS(SUMV-1.0)-BPERR) 8,8,~ 

5 KTlMES=KTlMF.S-1 
l~ CKTIMES) 7,6,6 

6 SIIMVU=Sllt~V 

TO=T 
T=T+10.0 
(j0 TO 3 

7 SIOPE=(SUMV•SIJM¥0,/(T·TOl 
TN=C<1.0-SUMV\/~LOPE)+T 
SIIMVU=SUtH 
TO=T 
T=TN 
r,o TO 3 

R RI=TlJHN 
F. ~J I') 
FTNt:-lH 



3 ? 3 
1'.5. , 21 • 118 
103 9 ('. 88 
:s. 0 3 I) 3.0 
3.0 ~.11 
.5 ~- 5 3.5 
2.5 2.5 2.5 
.4?; 050 .4"1'; 

16.46n3 1R.0958 19.?578 
2R13.4?~3377.4523947..131 

, . 0 
• I) 01 
. :nt.J 
. 2468 

O!J1 • OtJ01 
-.11469 

... 0305 . 
.2l40 .257?. 

, 16- 114. 112. 1 1 1 . 1 1 0 . 107. 
88. 

3.0 3.0 3.0 3.0 3.0 3.1) 

:L 5 3.5 3.5 3.5 3.5 2.') 
. 5 



A3: LISTING OF THE ANALYTICAL PROGRAM. 



LT«;T<I.P> 
SFN~ TOC~n,~O~T~OMPAR~A.ON~' 
I.TRQA~VCEO,~UR(jl)()lJPFSr.E) 

P~O('HUdH G086) 
l"'Ptlr1=CR0 
!111TPIIT2, CMONITOR)r::LPO 
Nil T~ACE 

F. ~I 0 

~ 
0 



c 
C THt~ PROGRAM ~AICtiLAT~S THE ANALYTICAL ~OLUTtON OF THE FQUATTON~ 
C CHARACTERISTNt; THF TRANSIF.NT CONnTTIONS o,:: A r.ONTTNtiOU~ 
C I')T~TtlLATION COIIJMN ••.•• VIA EIGFNVAI.UFS AND F.JGFNV~r.TnRS 
c 

"''A~TF.R EI(jEN 
OTMFN~ION AC3~.~3),AA(33.33),TT~(40),X(40),V(40),1NTC40~,TC1RA0),~ 

1 ( ~ ~~ , .1) ~ ) , r 1. ( 4 0 ' , R ( ~ 3 , 3 ~ ) , R F t N T t 7 , "f ) , V V ( 4 0 ) , Z ( 4 0 ) , R B ( 1 3 , 3 ~ ) 
~n1JTVALENCE(A<1.n ,G(1 ,1 \), (8(1.1' ,T(1)l 
~I=AIH 1, 50) NT 
no 1 2 L=1 • NT 
RI=AIH1,50) M 
1')0 1 ,1::1,,., 
RI= An ( 1 , 54 ) ( A ~.I , T ) , t • 1 , M) 

1 r.nNTINliE 

2 
2R 
Si' 
c;o 
54 
51 

RFAf)(1,50)J 
t~CJ.GT.M)GO TO 2 
RFA0<1,54)(A(T,J),Ia1,M) 
no ~·" I=1·M 
W ~ t i F. ( ?. , r; ? ) t , t A C I , J ) , .I •1 , M ) 
~O~MAT(6H0ROW =.I~.7G16.6/(QX,7G16.6)) 
~O~MAT(t~ ) 
!=0PMAT(1600F0.0l 
C:OR~1AT(10F8.4' 

'"~=1 
~.11 =M•M+?..,M 
Chl.l. F4DIRHF.S~E(M,A,INT) 
CAI.I. F4rJRHE~SF(M,A.If!;,X,V,AA,JVS) 

CAll F4QQUS(M.M1,A.AA•X•V,T) 
C 1\ •. 1. F 4 BACK (M , A , A A , V , J N T ) 

~ -



4~tTF(2,~~)((X(T),V(I)),t•1,M) 

5, ~ORMAT(/9~ F.tGFN 2G14.4) 
nn 1110 I=1,M 

100 WQTTFC2,5?)J,CAA(T,J),J•1,M~ 

nn 1.() 1=1 ,M 
nn t.O J=1,M 

40 ~rt ,J):AACI ,J) 
NA::M•:-;3 
NR=M•~3 

31 

116 

5'i 
2')0 

T ~~:: 1 
IHl "JCJ 1=1 ,M 
nn '?9 J=1 ,M 
t~ (J .. J) 30,31,30 
(1(f,J):0.0 
Gn Ttl 29 
Gtt.J>=1.0 
c;n TO 20 
r.nNTINIJE 
C4ll F4SOLVE(R,~,M,NA,NB,TN,D,tn,tT,R~TNT> 

nn 116 I=1,M 
.. , Q I T F ( 2 I !i '? ) l , ( G ( f, J ) , J •1 , M , 
tj R f T F ( 2 , 5 li ) I T 
~ n IH1 A T ( 1 H 0 , t 3 ) 
RS:Ail(1 ,50) MK 
t r: c ~, K > 2 51 , z.~ 1 • 2 s 2 
RCAOC1.~4)(VVftl,t:1,M) 

nn 11A tc1,M 
l)llt·1=0. 
nn 111 J:1,M 

117 l')llr~=OIIH+G(I ,J)*VVCJ) 



118 

102 

103 
, (} 1 

106 
10? 
1 11 

113 
105 

11 5 

'!tt):DIJM 
1'10 101 ta1,M 
J~(V(t).LT.1.0E•10) GO TO 102 
Tl(t>=I 
r,n TO 101 
U:(V(t).t.T.•1.0F•10)G0 TO 103 
11 <T>=O 
r,n TO 101 
Tl(f):•t 

l':MJT I NIJE 
nn 105 J=1,M 
t~(ll(J)) 108.107,106 
c;n Tn 105 
nn 111 t=1 ,M. 
~rt,J)=AA(I,J'*'!(J) 
r,n TO 105 
r>n 113 t=1,M 
~ r t , .I ) =A A ( I , J '\ * 7 (.I ) +A A ( I , J •1 > * 1 t J + 1 ) 
R ( T I .I + 1 ) =A A ( I , J •1 ) * z ( ·' ) -A A ( T , .I ) • 1. ( J + 1 , 
r.nNTJNilE 
nn 115 r=1,M 
'.Jt"TTF(2,5~) I, tBti ,.J) ,J•1 ,M) 
(j() TO 250 
r.nNTINLIE 
STOP 
F.Nn 
P NT SH 



1 
'Pi 

-12.7'A n.003 0.001 3.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
o. n n. o. 0. 0. o. 0. 0. o. 

o.o~ -7 046 o.oos o ~.4 o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o .. o. 
n. o n_ o. o. o. o. o. o. o. 

12.36 6 643 -0.406 o. 0. 3.4 0 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 
n. o fl. o. o. o. o. o. o. o. 

12.38 -n_oll3 -0.001 -15.74 0.01 0.005 3.4 0. 0. O. o. 0. 0. 0 0. 0. 0. 0. 0. 
n. n. 'l_ o. o. o. o. o. o. o. o~ o. o. o. 

-n.o?. 6 646 -o.oos o.o4 -1o.o2 o.o1 o. 3.4 o. o. o. o. o. o. o. o. o. o. o. o. 
n. o o. o. o. o. o. o. o. o. o. o. o. 

-12. -~(, -6.643 0.006 12.3 6.61 •3.41~ 0. 0. 3.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
n . f) n . o . o . o . . o . o _ o . 0 • o . o o . 

"· o. o 12.34 -0.01 -o.oos -15.62 o.o4 o.o1s 3.4 o. o. o. o. o. o. o. o. o. o. 
0 . 0 . () . (J • 0 . 0 . 0 . 0 . () • 0 • 0 . 0 . 0 . 

o.· 0. n -0.04 6,62 .. 01 .OR •C.J.97 n.o2 0. 3.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 
n. o n. o. o. o. o. o. o. o. o. o. 

o. n. o -12.3o -!...61 o.015 12 14 6.5~ ·3.4~8 o. o. 3.4 o. o. o. 0. o. o. o. o. 
(}. o n. o. o. o. o. o. o. o. o. o. o. 

o.· o.·o o. o. o. 17.7z- .. n.o4 -o.o1R -15.26 0.136 o_06 3.4 o. n. o o. o. o. o. 
n. o. n. o. o. o. o. o. o. o. o_ o o. · 

0. 0. I) 0. 0. 0 ... OR 6.57 •0 02 0.16 •9.8?.7 0.04 0. 3 .. 4 0. 0. 0. 0. 0. 0. 0. 
n. o tl. o. o. o. o. o. o. o. o. o. 

o.· o. o o. o. o. -1.2.14 .. 6.53 o.o3A 11.1 6.291 -3.5 o. o. 3.t. o. o. o. o. o. 
o. o. n. o. o. o. o. o. o. o. n. o. o. o: n. o o. o. o. o. n. o. 11.~6 •0.136 "o.n6 -14.16 0.44 o.1o 3.4 o. o. o. o. 
o. o. o. o. o. o. o. o. o. o. o. o. n. 

o.' o. o n. o. n. o o. o ... 0.16 6.427 ·0.04 0.28 -9.48 0.07 o. 3.t.. o. o. o. o. 
o. o. n. o. o. o. o. o. 1), o. o. o. 



o. o. o o. o. n. o n. o. -11.7 •6.291 0.1 10.1.8 5.64 -3.66 n. o. 3.t. o. o. o. 
o. o. o. o. o. o. n. o. o. o. o. o. · 

0.' o. o. 0. 0. o. 0 o. o. o. (), 0. 10.76 -0.44 -0.19 -11.54 1.16 0.52 2.4 0. 
0. 0. o. 0. 0. 0. o. 0. o. o. 0. 0. 0. 

o · o. o n. o. o. o o. o. o. o. o. -o.28 6.0R •0.07 0.39 -R.~4 o.n9 o. 2.4 o. 
n . tl o . n . o . o . o . o . o • o • o . o . 

n. o. o o. 0. 0. 0 n. 0. o. •L o. -10.48 -5.64 0.::>6 7.7~ 4.0R •4.01 0. 0. 2.4 
0 • 0 () . () . 0 • 0 . 0 • 0 . 0 • 0 • 0 • () . 

t"\ : 0 . 0 0 . 0. 0. 0 ,., . 0. 0. (j • 0. 0 . 0. 0. 8. 1 4 •1. 1 6 • 0. 52 _, 0. ~9 1. '- 0. 54 
2.4 o o. o. o. o. o. n. o o o. o. 

n: o. o o. o. o. o. n. o. o. o. o. o. o. o. ·o.39 5.24 ~0.09 0.47 •7.5 0.11 o. 
2.1. o. o. o. o. o. o. o. o o o. 

o. n. o n. o. o. o o. o. o. o. o. o. n. o. -7.75 -4.0R o.61 7.42 J.9 •3.05 o. 
o.-2.4 o. o. o. o, o. o. o o o. 

0. o. o o. 0. o. o n. 0. o. o. o. 0~ o. o. 0. 0. o. 7.89 -1 2 •0.54 •Q.S? 1.34 
0.6 2 '· 0. 0. o. 0 o. 0. o. o. 

o· o. o o. o. o. o o. o. o. o. o. o. o. o. o. o. o. -0.47 51 •.11 .61 -1.11 
0.14 I) 2.4 0. 0. 0. 0. 0. o. 0. 

o . o . o o . o . o . o n . o . o . I) . o . o : o . o . o . o . o • -7 . 4 2 .. ~ . 9 0 . 6 5 6 . 5 6 3 . 4 3 
-3.14 o_ o. 2.4 o. 0 o. 0. 0 0. 

0. o. o o. o. o. o o. 'o. o. n. o_ o. o. o. o. o. o. o. o. o 7.1? -1.l4 -0.6 
-7 7R 1 66 0.75 2.1. o. o. o. o. n. 

n_· o. o o. o. o. o n. o. n. ''· o. o o. o. o. o. n. o. o. o -o.61 4.77 •0.14 
0.72 -t'..4~ 0.16 0. 2 4 lt. o. 1). 0. 

o. o. o n. o. o. o. o. o. o. 11. n. o. o. o. o. o. n. o. o. o -6.56 •3.43 0.'74. 
4. • 6 6 2 4 2 • 3 . 31 0 . 0 . 2 • 4 0 . I) • 0 . 

o . o . o o . tl • n . · o n • o . n • I) • o . o . o . o . n . o . n • o . n . o n . n . n • 5 • 3 A 
-1 66 -0 ?5 •5.12 2.0 O.R6 2.4 0. 0. 

o· o. o o. o. n. o. n. o. o. o. n. o. o. o. o. o. n. o. n. o o. o. o. 
-n.7~ 4 OR -0.16 O.A3 •5.5 0.14 0. 2.4 0. 



{) 0 . 0 0 . 0. 0 •. 0 o. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0. 0. 0 0. 0. 0. .. &.66 
-2.4?. O.Q1 2.oo 1 • 1 -3.4 0. 0 2.4 

() 0 . 0 0. 0. 0. 0 n. 0. 0. t) • 0. 0. 0. 0. 0. 0. 0 • 0 . n. 0 0~ n. o. 0. t) • 

0. 2 .,., -2.0 -0.86 -?.585 0.40 (). 1 59 
0. 0 . 0 () . 0. 0. 0 n. 0. 0 • l) • 0. 0. n. 0. 0. 0. 0. 0. n. 0 0. n. 0. 0. 0. 

n. .. O.n:'l 3. 1 .. 0.14 0.014 -?..86 0.017 
(l (') . 0 () . 0. n . 0 n'. 0. 0. ll. 0. 0. 0 . 0. 0. 0. n . 0. n. 0 0. 0. 0. 0. 0. 

0. •?..OQ .. , • 1 1 • (} 0.111 0.06 -2.§71, 
1.0 

1 
() 0. 0 0. 0 • 0. . 0 n. 0 . n. () . 0. 0. 0. 0 . -.01 0. 0.01 

0 0. () n. 0. o. 0 0. 0 . o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ~ 
w 
o-

.. , 



A3: LISTING OF THE MARKOV PROGRAM. 



LTSTd.P) 
sr.NI") TO( Er), F()RTr.OMPARF.A.IJNE) 
PL)(}f;I{AM(G~03J 

PJPIU1 =CRO 
OIITPUT2=LP0 
N() TKAC:E 
F. ~J D 



c 
C T4Y~ PROGRAM nF.~CqiRE~ A NUMERICAL METHOD TO CALCtJLAT~ TH~ 
r. T.PAN::,IENT~ OF A CONTINUE~; DJSTILL.ATION COI.UMN AND I!; 9A~F.D 
C Cl N T ii E M ARK ()V P lW RA B I LI S ·t J C T F. CH N T Q IJ E 
c 

~AST~R HARGOT BABY 
OTMF~qiON Qt40.40),D(4Q).IV(40>,V<40),FC40,40.2l,P(40,40) 
F.OilfVALENCE (1'3('1J,f!(1601·),(Rf1>,J:(1)) 

~"'=0 
08 Rr::AI)(1,101) N.NR,(IV(I),l=N•NR+1,N),NTR 

C A 1.1 I T H1 F. ( t 1 ' 
I ~ ( N .i R + 1 ) 3 0 , 9 Q , () 

101 FORMATC900I0J 
N"!"=N+NTR 
Nt =t-n-N-1 

C I'ATA N IS NIIMRE~ OF STAGF.!;<UITHOUT tNTEGRATTON !;TATES) 
r. 'JR IS TtiF. Nllt·H3F.R OF STAt;F~ RE!;PONSES REQ!JIRED MJD THE VF.CTOR tV 
C HnLDS THE NUM"ERS OF THOsF. ~TAGFS, ALL INTEGRATION ~TATFS ARF. OUTDUT 
C Tfl TcR~1INATE .IOR t!SE CARr> PIINr.H£0 1 1 1 •1 
t Ft.OW MATHTX Q, VOlUME V~r,TOR V 
C H rs PRINTOUT OJT-FRVAL, ,·t-IAX TS MAX TtME VALU~, tHHRO IS VOL. THROUGHPUT 
C V ·'I) T I S T H E T 0 T A L S V S T E M V 0 L IJ M E , S T. A V P T $ T H E M I N T M IJ M P R 0 B A B T li T V 
C 0~ A4 ELEMENT RFHATNING tN ANY ~rAGF. DURING TlM~ OT, E.G. STAVP=0.9' 

RrA!"' '1 ,104) < fQ( I ,J) ,.1:1.N>, 1=1 .N', CVCI>, t=1 ,N) .H.TMAX,QTHRO.VTOT 
1,C.TA'lP 

104 Fn~MAT(1600FO 0, 
52 FOWMAT(6HOROW =.1~,8G14.4/(9X,8G14,4)) 

I> n 1 \} 0 I = 1 , N 
1 0 0 ~~" I T l: C 2 , 5 ~ ) T , ( () ( l , J ) , .I :s 1 , N ) 

l~(NfR.F.0.0) r,o TO 203 



c 
c 

r: 
r: 

201 

RFA!'H1 r104) ( fQ(I ,J) ,J•1.N) .I=N..,1.NT> 
Of) 2oJ1 J:::N+1 rNT 
l'I(.IJ=J 

203 C~=1 . 11E+7~ 

1 

n ,.., 1 r = 1 , ~J 

Df!);:-Q(f,l) 
C r. I :-1 M I N H1U t1 STAGE T T ME C 0 N S TAN T 
Pl'lStTTVE STAGF. THP.OIIGH Ft.OW!; TN o, DlAGONALS OF Q MADE 7ERO 
t e ( AHS (V( I)). r.t:. 1. OE-1 0) CC:::AMIN1 (CC ,\I( I> /0( I)> 
Qrt,t>=O. 
C~r.r.:JLATION OF TIMe INCRF.MF.NT 
CIHISiRAIN OT TO FtT IN WITH NORMAI.ISED TIME PRINT OUT INTERVAL 
t~=( I.+DIH (AIOr.CH•VrOTI\•ALOr,(sTAVPl*CC•QTHRO))/ALOG(2.>rO.>l 
OT:::H/(2.••IX>~VTOT/QTHR0 
STAYP=~XP\-~1/~~J 
I~ V 1~ Z~KV MA~t tA~\·u:v•DIJ ZtKU1 ~1-~A~~·UIV*VTI~)Jf~ IS ~UT 1N ~ 

DU ~ 1 ='I r N 
IF~AU~\V(lJJ.u~,r.u~·IVI Vt1J=tX~t-U\1J*UI/\~o*V\1)JJ 

- ... -· 
~ DtiJ=\1,-V\1/J/D\lJ - .. . .. 

,A~t IKAN~lllVN MAIKI~t ~~ 15 \1,V~tA~~-O/V*UTI~.JI/U 

1 t- t 1 •• N ... 'I } V r 0 ' 'I V 

C~=t I.V+V\lJI*U(l) 
IJU TU 'I 

0 C~=t> I -

1U RUr1JrVU)=!•V 
'I t)U' J='ldt 

co=u. 
DUOI'\='IrN 

o Ct>=~t>+Ut~J*~\lr~J~~\~t~l .. .. . 



c 

4o R(l,lJ=tUl~lJ+V(l)•V\IJ 
~1ND1NU Tnt ~••M '" ~UWtK V~ IMt IKAN~lllUN MAIKlA R lN F 
L=·r 
DU~/ M=1r1A 
l.=.) .. L 

DU.)/ P'1rNI 
AIR=~LUAT\\&•NL]/NI/ 

DU.)/ ,pq,N 
CA=u. 

~0 CA=~A+~llr~rL1J*~\~rJr~l} 

'' FtlrJrL)~~A+~IK*~llrJrL1) 

, 03 
1 
7. 
~ 

Q7 
102 

N~=N···NK+1 
- .-

RtAO 1Nll1AL ~fAit Vt~IUK IN~LUD1N~ 1Nit~KAI1UN ~IATt~ 

WKIT~ VUT ~VLUMN HtAUINU~ 
CUNTlNUf: 
~EADC1r104,tVtl)ri=1rNT) 

Nz=NZ+1 
~RITEC2r103) NZ,Q~HROrVTOT,STAVP,IX,CIV(l)ri=NSrNT> 
FORMATC1H1,8H CASE NOrll//17H THROUGHPUT RATE:,G12.4/ 

14H TOTAL VOLtJr.1E=rG12,4/7H STAVP=,G12,4//// 
~H M=ri3//SH TIMF.r25Xr21H STAGE CONCENTRATIONS/ 
10X,10<~X.I?,5X)/) 

TH1S::0. 
WQJTF.(2,102l TtM~,(V(tV(t)),t=N~,NTl 
~ORHAT(~R.2.4~,QG12.4/(1lX,QG12.4)) 

T~CTIME.GF.TMAX, no TO 151 
CttLCIILATF. RF.SPONSFS 



nn 42 I=1 ,NT 
CR=O. 
n.n '~:~ J=1 ,N 

4 ~ C R:: r. R "'V ( J ) * F= ( T , .I , l) 
42 nft):CB+~LQATI(T+NL)/NT)•V(T) 

1'10 45 1=1 rNT 
1.'; Vfn:D(I> 

T H1 F = T I M F- • H 
(1/'l T() 97 

1~1 CALL ITtMECT2' 
f?=T7.-I1 
WatTF(2,150) N7.•I~ 

1~0 ~nRMAT(1H0,23H TIME TAKEN FnR CASF NO,I2,~H =.I4,5H ~~C~) 
1 tl 7 w a T T != { 2 , 1 I) 2 ) . T I r-1 E , ( V < T ) ' I = 1 , N T ) 

c;n Ttl 9R 
99 f:ONTiNIJF. 

STOP 
F. PI f') 

~HJISH 



I 
I 

; 33 , 1 ' ~ 31 32 33.6 
1 ·12.77 n.oo3 0.001 ~-4 o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. n. o. o. 
· ,, . o . .n . o. o. 0 . n . o . o. 0. 

0 0~ _., 0~5 0.005 0 ~-~ o. o. 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 
r1 . o . o n . o . o . o . n . o . o . 

. 1 2 . ~ 5 I> (, 4l - 0 . 4 0 6 0 . 0 . 3 • 4 1) () . 0 . () . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 • 0 - 0 . 0 . 0 . 0 • 
o ~ o . o o. o. o. o n~ · o. · o·;-
, ?. • 3 ? • () . () I) 3 .. 0 . I) 0 1 .. 1 5 . 7 4 0 • 0 1 0 . 0 0 5 3 . 4 0 . 0 . 0 • 0 . 0 . 0 . 0 0 . 0 . 0 • 0 . 0 . 0 . 
o . o n . o . o . o . o . o . rl • o • o . o n . 

-o.n2 f! 1;45 -o.oos o.ns -10.02 o·.o11 o. 3.4 o. o. o. o. o. o. o. o. o. o. o. o. 
o. o. o o. o. o. o "· o. n. o. o. o. 
-12. 3~ -(,_642 o.oo6 1~.i'9 6.61 -3 416 o. o. 3.4 o. n. o. o. o o. o. o. o. o. o . 

. 0. () ··0 ..... 0 .. 0. 0. n. 0. 1), 0~ 0. 0 0~-------
" o . o 1 1. • 3 4 - o . !l 1 ·O . I) o s .. 1 5 . 61 n . o 4 o . o ?. 3 . 4 o . o . o . o . n . o . o . o . o . o . 
o o. o o. o. n. o n. o. o. ,, . o. o 
n o. n -o.05 6,(,7. -n.n11 o.ox -Q.96 o 02 o. 3.4 0 n_ 0. o. o. 0. o o. 0. 0. 
o o. o o. o. o. o il. o. n. o. o. 
o._ o. o -12.2Y -6.A1 u.016 12 13 6 5f» -3.44 o. o. ~.4 n. o. n. o. n. o. o. o. 
l'l . o . n n . o . 0 • 0 n . o . o • r) • o _ o . · 
o.· o. n n. o. o. 1?..:?1 -o.o4 -0.02 -15.24 n.14 0.06 3.4 n. o o. o. o. o. o. o. 
o. o. n. o. o. o. o. o'. o. o. o. o n: o. n o. o. o. -n.n8 6.56 ·•1.02 0.17 -·9.82 0.04 n. 3.4 o. n. o. o. o. o. o. 

o : o . n o . o . n . o o . o . o • •l . n . 
o n. o o. o. o. -1?. 13 -6 52 o.o4 11.67 6.28 -3.5 o. o. 3.4 o. o o. o. o. o. 
0_ 0. 0 0. o. o. o. o. o. 0. 0. 0. 
n o. o o. o. o. o n. o. 11.H4 -n.14 -o_o6 -14.16 0.45 0.2 ~.4 o. o. o. o. o. 
o: 0. 0 0. 0. (l. 0 o. 0. 0. 0. 0. n: o. ll n. o. o. o P. o. -0.11 6.4?. -n.o4 0.29 -9 45 o.o7 o ~-4 o. o. o. o. 
0. 0. 0 0. 0. o. 0 o. o. 0. 11. 0. 
0. 0. () 0. 0. 0. 0. o. 0. ·11 67 •A.'18 0.1 10.47 56 •3.117 0 0. 3.4 0. 0. 0. 



() . 0. I) 0. 0. 0. 0. 0. o. o. ll . 0. 
0 o. () o. 0. 0. 0 0. 0. o. (J • 0. 10.76 -0.45 -0.2 -11.43 ; 2 0.5~ 2.4 0. 0. 
fl . 0. o. 0. o. n. 0 n. o. n. 0. 0. 
0. 0. () 0 . 0. 0. 11 0. 0. 0. ,) . 0. -o.29 6.05 •0.0? 0.4 •8.6 0.1 0. 2.4 0. 0. 
0. 0 . 0 0 . 0. 0. 0 0. 0. 0. 0 . 
0: 0. I) ll. 0. o. 0 0. 0. 0. (). 0 . •10.47 -5.6 0.2? 1.63 4.0 -4.03 0. 0. 2.4 0. 
o. 0 0. I) • 0. 0. n . 0. 0. o. o. 

0. 0. 0 ('I • 0 . (l • 0. 0. tl • 0. ,, . 0. 0 0. I) • 8.03 _, • 2 ... 0,';3 -10.14 1.23 0.55 
2.4 () () n. o. 0. 0 . 0. o. o. 0. 0. 
(I : 0. () 0. 0. o. 0 .. ·o. 0 • o. 1), 0. 0 0 . () . .. 0.4 5.2 -0.1 0.1..9 -7.45 0. 12 0. 
2.4 0 0. 1). 0. 0. 0. 0 . 0. o. 0. 
0 .. () . () 0. o. 0. 0 0. 0. 0. (1, n. 0. 0. 0. ..7'.63 -4.0 0.63 ?.25 ~.82 •3.01 0. 
0 . ?..4 0. 0. 0. 0. 0. u. o. o. 0. 
I) n. 0 n 0 . 0. I) 0. () . n . 0. 0. 0. 0. o. 0. 0. 0. 7.74 -1 23 •0.55 ..9.32 
1. 3Q O.il?. 2.4 0. 0. t) 0. 0. 0. () . 0. 
I) 0 . 0 0. 0. 0. 0 o. 0. 0. 0 . () . 0. n. () . 0. 0. 0. -0.1.9 5 05 •0.12 0.63 
·?.OR I) 1 r.; 0 . 2.4 0 o. 0. 0. 0. 0. 0. 
{) () . 0 f) • 0. 0. () (: . () . 0. () . 0. 0. 0. 0. 0. 0. (l. -?.2t; -~.28 0.67 11.29 
3.2Q -~ 17 0. (I • 2.4 0. 0 . 0 . I) • 0. 0 
0. 0. () 0 . 0. 0. I) (j • 0. 0. I) . n . 0. 0 . 0. 0. 0. n. 0. 0. 0 lt.9i) ..1. 39 -0.62 
-?.4 1 . ? 1 0.7? 2,4 0. o.'o. 0. 0. 
0 0. 0 0. 0. 0. 0 n. 0. 0. () . 0. 0. o. n. 0. 0. o. 0. n . 0 ·n.,~ 4.68 -0.15 
0.7~ ·6 33 0. 17 0 . 7..4 0. 0. 0. 0. 
0. 0. () 0. 0. 0. 0. 0. 0. 0. I) • 0. 0. 0 . () . 0. 0. 0. 0. 0. 0 •6.;'>Q ..3 29 0.77 
4.?.7 7.?2 -3.34 0. n .. 2.4 0. 0. 0. 
0 0. 0 (). 0 . 0. u C' • 0. o. I> • 0. 0. 0. 0 . 0. 0. o. 0. 0. 0 0. 0. 0. •;. 0 
-1 . ?1 -0.'77 -4. A ?,0 n.A6 2 4 0. 0. 
(l 0. 0 n. 0. o. I) n. (l • 0. I) • 0. 0. 0 . 0. 0. 0. 0 • 0. n . 0 0. 0 n. •0.?3 
3.9~ -o 17 0.61 -5.~4 0.14 0. ?. 4 0. 
0 0. I) 0. 0. 0. 0 i) • 0 . 0. 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 . o. •4.27 



-2.~2 0 Q4 1.19 0. 94 -3.4 0. 0. 2.4 
0. f) • (} () . 0 . n 0 0 0 0 0 . n 0 0 o. 0. 0 0 0 . 0. Oo Oo 0 . 0. 0 0. 0. Oo 00 0. 00 

204 - ?.. 0 -0086 -2oc;,; 0,3Q6 0.1';8 
0 0. 0 (I • 0 . 0 0 I) f) 0 I) • 00 ., . 0. 0. 0 0 0 . 0. 0 0 n 0 0. 0 . 0 0. 0. Oo 0. 0. Oo 
-o 61 , 94 -0.14 0 0'7 -20849 () . () 1 6 

() 0. 0 0. 0 . 00 0 0 . () . 0 0 0. 0. 0. n . 0. n . 0 . 0 0 0. 0. 0 0. 0. 0. 0. 0. 0. 
-1 . "fQ -0.94 1.0 0.09 0.053 "'2.574 

1 1 . 1 1 . 1. 1 0 1 1 • 1 . 1 0 1 . 1 . 1 1 0 1 0 1 . 1. 1 0 1 . 1 . 
1 1 . 1 1 . 1. 1 0 1 1 • 1 0 1 0 1 . 1 . 1 . 
?.. 4000 1 0 1 0 0.98 
1 0. 0 0. 0. 0 0 0. n. 0. 00 0. 0. 0. 0 0 0. 0. 0. o. 0 .. 0. 0 
0. 0. (} 0. 0. 00 0 0. () . Oo 0 . 0. 
0 . 1 . 0 0. 0. o. 0 () . 0. 0. I) • n. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 
0. 0. () 0. 0 . 0 0 9 Cl 0 0 0 I) • 0, 
0 .· 0. 1 0. 0 0 o. 0 n. 0 • n. 0 . 0. 0. 0. 0. 0. 00 0. 0 . 0 . 0 0. 0. 
() 0 0. 0 0. 0 0 o. 0 0 0 0. 00 
() _. 0. () 0. 0 . n. 0 n. 0. 0. I) • 00 0. 0. 0. 0. 0. 0. 0. 0. 
0. 0. 0 0. 0. 00 0 0 0 () . 0. , . n. 0. 
(l () . 0 ()0 0. 0. 0 0. 0. o. 0. 0. 0. 0. 0. 0. Oo 0. 0. 0. 
0. 0. 0 (I • 0. 0. 0 n. 0. 0. \1 • 1 . 0 
() 0. () 0. 0. 0. 0 n • () . 0. t). 0. 0. 0. 0. 11 • 0. 0. 0 . 0. ·. 
0 (). 0 0. 0. (). 0 (l • 0. o. I) • 0. 1 0 
0 0. 0. 0 0. 0. 0. 0 n. 1). 0. 1). 0. 0. 0. 0. -0.01 0. 0.01 
0 () . 0 0. 0. 0. 0 n. 0. 0. 4) .. n. 0 0. 0. 
() 0. 0 n. 0. 0. \ . 



.-

A 2: LISTING OF THE ANALYSIS PROGRA~l 



. ... "·" "· . I. ··•. '11 : .. ~ 

' : : :: 
'. 

1F<T!~>:-2S9.>3_,,3S•35·Cj .··~: 
35 SUMJ=SUM3•DT/3~ . 
TOTAL=SU:~ I •SUM2+SUM_3 ___ ...., 
Pl=<SUMliTOTAL>*lOO· 
P2=<SUM21TOTAL)$\OO· 
P3:CSUM31TOTAL>•100• i''· 

PRINT, Pl, P2, P3. ______ __. 
END 

! ' 
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PEP.c_t:.-./TA6i.. cF E.A.:/-1 

IN . 711-£. M I X /Ui< £ 

r 

I 
i 
\ 
I 
i 

l 
I 
1 

: 
• I 



-.\.·' 

... ~ : : 'J: ,•, ;' ,. 

READ,COUNTi~============~ 
40 READ,S J 
Ir <S+t.0>40,40,43 1--------
43 DT=60./COUNT ·====~I 
TIME=O· ~.-------

TIME=TIME+DT ~-----
4 READ,A I 
Ir <TIME-1·>4,5,5 
5 SUM=D·:-~=============--
8 READ,B 
TIME=TIME+DT 
lr <TIME-171·>6,7,7 

.·' 

6 SUM=SUM+B 
GO TO 8 
7 suM=SUM+B 
AV 1 =SUM/<< TIME- 1. > I...::D:..:T~)=~ 
SUMI=O· 
15 READ,C,D 
T IME=TI ME+2 •* DT 
Ir <C-AV1>5t,51,12 
12 C=<C-AV1>*4~ 
SUMl=SUMl+C+<D-AV1>*2• 
51 CONTINUE 
Ir <TIME-400.>15,\6,16 
16 SUMl=SUMl*DT/3. -=-=========== SUM=O· 
20 REAO,E 
TIME=TIME+DT 
Ir CTIME-4\0.)18,19,19 
18 SUM=SUM+E 
GO TO 20 
19 SUM=SUM+E 
AV2=SUMIC<TIME~4QO.>IDT> 

, SUM2=0• ·--
24 REAO,r,G 

T lME=TI ME+2 ·* DT 
Ir <r-AV2>52,52,23 
23 r=<r-AV2>*4· 
SUM2=SUM2+r+CG-AV2>*2• 
52 CONTINUE 
I r <TIME- 543. > 24,25,25 
25 SUM2=SUM2*0T~/~3~·======~ 
SUM=O· 
30 READ,H 
T IME=TI ME+DT 
lr <TIM~-553.>27,28,28 
27 SUM=SUM+H 
GO TO 30 
28 SUM=SUM+H 
AVJ=SUM/CCTIME-543·>/DT> 
SUMJ=O· 
34 READ, P ,Q 

· T IME=Tl ME+2 ·* DT 
lr CP-IWJ >53,53,33 
33 P=<f'-AV3>*4! 
SUM3=SliM3 +P+ < Q-AV3 >*2 • 

.I :,• 53 CONTINUE 
. !6 < SUJMB- 8 59. >3 ill:; 5, 3 5 

---

u. L 
.. 

. ~.: 
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A4: TABLES OF RESULTS. 



MOLES OF FEED & PRODUCTS --
Feed Bottom Top 

x1 0.475 0.0076 0.467 
x2 0.05 0.021 0.029 
x3 0.475 0.471 0.0030 

PLATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION EQUILIBRIUM.CONSTANT 

x1 X 2 x3 y1 y2 y3 k1 k2 k3 

REBOILER 0.01514 0.0416 0. 91~32 0.05735 0.08377 0.8589 3-794 2.01. . 0.910 

1 0.04328 0.0697 0.8870 0.1497 0.1267 0.7235 3.465 1.817 0.815 

2 0.1048 0.09836 0.7968 0.3092 0.1505 0.5LW1 2.942 1.531 0.678 

3 0.2112 0 .11~~3 0.67Lt-6 0.5002 0.1LW1 0.3596 2.369 1.225 0.533 
4 . 0-3381~ 0.1073 0.5542 0.6514 0.1088 0.2397 1.926 1.015 0.432 

5 0.4393 0.08644 0 .471~3 0.7395 0.07866 0.1817 1.683 0.909 0.383 

6 0.51~39 0.0989 0.3570 0.7987 0.08192 0.1193 1.469 0.827 0.334 

7 0.6623 0.1055 0.2321 0.8505 0.08113 0.06824 1.283 0.768 0.294 

8 0.7659 0.1039 0.13 0.8882 0.07681~ 0.03488 1.16 0.739 0.268 w 

9 o.s1n2 0.0954 0.0633 0.9144 0.0694 0.01612 1.086 0.727 0.254 
IJJ 
~ 

10 0.8936 0.08049 0.0258 0.9352 0.0583 0.0064 1.074 0.724 0.248 

TOP PRODUCT 0.9352 0.0583 0.0064 

TABLE R.S.S.10 



HOLES OF FEED 8..:. PRODUCTS 

Feed Bottom Top 

x1 0.475 0.0044 0.471 
x2 0.05 0.022 0.028 
x3 0.475 0.474 0.0005 

PLATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION EQUILIBRIUI'"T CONSTANT 

x1 x2 :x3 y1 y2 y3 k1 k2 k3 

REBOILER 0.0088 0 .OL~31 0.9483 0.0339 0.08802 0.8781 3.845 2.044 0.926 

1 0.0276 0.0768 0.8956 0.0989 0.1446 0.7564 3-577 1.885 0.844 

2 0.0764 0.1192 0.8044 0.2366 0.1919 0;.5713 3-097 1.609 0.71 

3 0.1796 0.1547 0.6657 O.Lt-41 0.1962 0.3626 2.455 1.267 0.545 

4 0.3329 0.1578 0.5092 0.630L~ 0.1579 0.2116 1.894 1.0 0.415 

5 0 .Lt 7Lf-8 0.1292 0.3959 0.7486 0.1121 0.1391 1.576 0.868 0.352 

6 0.652 0.1397 0.2083 0.8331 0.1072 0.0591 1.278 0.766 0.286 

7 0.7787 0."1322 0.08903 0.88 0.0969 0.0229 1.130 0.733 0.257 

8 0.8491 0.1169 0.03386 0.9068 0.08L~76 0.0084 1.068 0.725 0.246 

9 0.8892 0.0986 0.01205 0.9256 0.07136 0.0029 1.04 0.722 0.244 

10 0.9174 0.0786 0.0039 0.9421 0.0568 0.0009 1.027 o. 723 . 0.244 

TOP PRODUCT 0.9421 0.0568 0.0009 ~ 
0 

TABLE ( ) R..S.S.11 



MOLES OF FEED & PRODUCTS 

Feed Bottom Top 

x1 0.475 0.0029 0.472 
x2 0.05 0~022 0.027 

x3 0. 1t-75 0.47Lt-6 0.0001 

PLATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION 

x1 x2 x3 y1 y2 y3 

RE BOILER 0.0059 0.0449 0.9492 0.0227 0.0925 0.8847 

1 0.0199 0.0846 0.8955 0.0722 0.1617 0.7660 

2 0.06118 0.1422 0.7966 0.1933 0.2333 0.5733 

3 0.1620 0.2019 0.6360 0.4002 0.2571 0.3426 

• 4 0.3344 0.2217 0.4438 0.6117 0.2152 0.1729 

5 0.5107 0.1868 0.3024 o. 71~92 0.1545 0.0962 

6 0.7004 ,0.1795 0.1201 0.8348 0.1336 0.0315 

7 0.8075 0.1532 0.0393 0.8791 0.1112 0.0096 

8 0.8627 0.1252 0.0119 0.9066 0.0905 0.00289 
~ 

9 0.8971 0.0993 0.00355 0.9272 0.0718 0.00086 

10 0.9229 0.0759 0.00101 0.941~7 0.05496 0.0002 

TOP PRODUCT 0.91~47 0.055 0.0002 

TABLE ( ) R.S.S.13 



MOLES OF FEED & PRODUCTS 

Feed Bottom Top 
x1 0.475 0.0026 0.473 
x2 0.05 0.0227 0.0272 
x3 0.475 0.4746 0.00009 

PLATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION EQUILIBRIUM CONSTANT 

x1 x2 x3 yl y2 y3 kl k2 k' 
3 

Mo1.Fr .Ho1.Fr 1'1o1 •. Fr Mo1.Fr I1o1.Fr 1'1ol.Fr 

REBOILER 0.0053 O.OL~54 0. 9l~93 0.0205 0.0936 0.8858 3-877 2.061 0.933 
1 0.0183 0.0867 0.8949 0.0666 0.1662 0.7670 3.635 1.916 0.857 
2 0.0579 6.1489 0.7931 0.1834 0.2451 0.5714 3.167 1.646 0.720 

3 0.1579 0.2166 0.625l~ 0.3898 0.2753 0. 33l~8 2.468 1.271 0.535 
4 0. 331t9 0.2424 0.4226 0.6056 0.2330 0.1613 1.808 0.961 0.381 

5 0.5198 0.2062 0.2739 0.7470 0.1684 0.0845 1.437 0.816 0.308 

6 0.7075 0.1911' 0.1013 0.8323 . 0.1416 0.0261 1.176 0.74 0.256 w 
.b. 

7 0.8098 0.1589 0.03123 0.8871 0.1152 0.0076 1.083 0.724 0.2l~3 
rv 

8 0.8636 0.1273 0.00907 0.9058 0.0919 0.0022 1.048 0.722 0.241 

9 0.8979 0.'0994 0.00258 0.9275 0.0718 0.0006 1.033 0.722 0.241 

10 0.9239 0.0753 0.0007 0.9452 0.051~5 0.0002 1.023 0.772 0.244 

TOP PRODUCT o. 91t52 0.05'~5 0.0002 

TABLE ( ) R.S.S.14 



MOLES OF FEED & PRODUCTS 

Feed Bottom Top 

x1 0.465 0.0011 0.464 

x2 0.05 0.0145 0.0354 
x

3 
0.485 O.Lm4 0.00015 

PI.ATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION EQUILIBRiill1 CONSTANT 

x1 X 2 x3 y1 y2 y3 k1 k2 k3 

RE BOILER 0.0022 0.0291 0.9687 0.0086 0.0615 0.9298 3-954 2.111 0.959 

1 0.0077 0.0569 0.9354 0.02955 0.1153 0.8552 3.818 2.025 0.914 

2 0.0256 0.1029 0.8714 . 0.0905 0.1908 0.7187 3-529 1.853 0.825 

3 0.0778 0.1677 o. 751f-5 0.2331 0.2:596 0.5073 2.991 1.548 0.672 

~~ 0.2001 0.2267 0.5733 0.4543 0.2659 0.2796 2.272 1.173 0.487 

5 0.3897 0.2321 0.3782 0.651~6 0.2107 0.131~5 1.679 0.907 0.355 

6 0.5999 0.2387 0.1613 0.7726 0.1833 0.04395 1.287 0.768 0.272 

7 0. 7LH5 0.2058 0.0527 0.8367 0.1502 0.0129 1.123 0.729 0.245 

8 0.8185 0.1661 0.0154 0.8762 0.1199 0.0037 1.071 0.722 0.239 
' 

9 0.8658 0.1297 O.OOlf-37 0.9052 0.0936 0.001 1.01~5 0.722 0.239 
~ 

10 0.9006 0.09817 0.0012 0.9287 0.07092 0.0003 1.031 0.722 0.243 \AI 

TOP PRODUCT 0.9287 0.07092 0.0003 

TABLE ( ) R.S.S.16 

., 



-----. 
!'10LES OF FEED & PRODUCTS 

Feed Bottom Top 

x1 0.485 0.006 0.479 
x2 0.05 0.029 0.021 
x

3 
O.L~65 0.4649 0.00007 

PLATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION EQUILIBRIUM CONSTANT 

x1 x2 x3 y1 y2 y3 k1 k2 k3 

RE BOILER 0.0110 0.0589 0.9299 O.OL~16 0.1181 0.8402 3-781 2.005 0.903 
~ 

1 0.0373 0.1097 0.8531 0.1272 0.1960 0.6768 3.410 1.788 0.793 

2 0.1106 0.1764 0.7129 0.3072 0.2527 0 .L~1~01 2.776 1.432 0.617 

3 . 0_.2649 0.22.50 0.5101 0.5392 0.2391 0.2218 2.036 1.062 0.434 

4 0.4637 0.2134 0.3229 0.7123 0.1818 '0.1059 1.536 0.852 0.328 

5 0.6122 0.161+3 0.2236 0.8071 0.1279 0.06503 1.318 0.778 0.290 

6 0.7767 0.11+53 0.078 0.8738 0.1063 0.0198 1.125 0.731 0.253 w .... 
7 0.8569 0.1194' 0.0237 0.9078 0.0864 0.0058 1.059 0.729 0.244 ... 
8 0.8976 0.0955 0.00694 0.9293 0.069" 0.0017 1.035 0.722 0.243 

9 0. 9231~ 0.0746 0.002 0. 91~54 0.0539 0.0005 1.023 0.723 0. 21~5 

10 0.9LQ8 0.0566 0.0006 0.9588 O.OL~09 0.0001 1.016 0.724 0.246 

TOP PRODUCT 0.<)588 0.01~09 0.0001 

TABLE ( ) R.S.S.17 

., 



MOLES OF FEED & PRODUCTS 

Feed Bottom 

x1 0.465 0.0012 
x2 0.05 0.0145 
x

3 
0.485 0.481~ 

PLATE NO. LIQUID COMPOSITION 

xl x2 x3 y1 

Top 

0.464 

0.0355 
0.0002 

VAPOUR COMPOSITION 

y2 y3 

Mol.Fr T1o1. Fr Mol. Fr 

RE BOILER 0.0025 0.0289 0.9686 0.0098 0.0611 0.9291 

1 0.0086 0.0557 0.9356 0.0328 0.1128 0.8544 

2 0.0277 0.0989 0.8735 0.0976 0.1828 0.7196 

3 0.0817 0.1572 0.7612 0.2441 0.2431 0.5127 

4 0.2038 ,0.2071~ 0.5888 0.4648 0.2445 0.2906 

5 0.3877 0.2085 0.4037 0.6610 0.1916 0.11~73 

6 0.5943 0.2216 0.1841 0.7769 0.1716 0.0514 

7 0.739~ 0.1967 0.06l~1 0.8400 0.1439 0.0159 

8 0.8180 0.1622 0.0197 0.8779 0.1172 0.0048 

9 0 .865l~ 0.1288 0.0058 0.9056 0.0929 0.0014 

10 0.8999 0.09842 0.0016 0.928l~ 0.0711 0.0004 

TOP PRODUCT 0.9284 0.0711 0.0001~ 

TABLE (. ) R.S.S.l8 

t.al ... 
U"l 



MOLES OF FEED & PRODUCTS 

Feed Bottom Top 

x1 0.485 0.006 0.479 
x2 0.05 0.0292 0.208 
x

3 
0.465 0.465 0.000099 

PLATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION 

x1 X 2 x3 y1 y2 y3 

Mo1.Fr Mo1.Fr Mo1.Fr 

REBOILER 0.0121 0.0583 0.9296 0.0456 0.1165 0.8379 

1 0.04002 0.1068 0.8532 0.1361 0.1899 0.6741 

2 0.115l~ 0.1679 0.7167 0.3189 0.2395 0.4414 

• 3 ·o.2678 0.2093 0.5228 0.5471 0.2233 0.2296 

4 0.4579 0.1958 0.3463 0.7148 0.1687 0.1165 

5 0.5976 • 0.1503 0.2520 0.8059 0.1184 0.0755 ~ 
6 0.7680 0.1376 0.094·3 0.8745 0.1011 0.0243 

a-

7 0.8536 0.1159 0.0304 0.9085 0.0839 0.0075 

8 0.8961 0.09'~6 0.0093 0.9293 0.0684 0.0023 

9 0.9222 0.0751 0.0028 0.94l~9 0.0543 0.0007 

10 0.9L~17 0.0575 0.0008 0.9581 0.0416 0.0002 

TOP PRODUCT 0.9581 0.0416 0.0002 

TABLE ( ) R.S.S.19 



-----MOLES OF FEED & PRODUCT 

Feed Bottom Top 

x1 0.475 0.00004 0.475 
x2 0.05 0.00031 0.049 
x

3 
0.475 0.399 0.075 

PLATE NO. LIQUID COMPOSITION VAPOu~ COMPOSITION 

x1 x2 x3 y1 y2 y3 

REBOILER 0.00011 0.0008 0.9992 0.0004 0.0017 0.9979 

1 0.0004 0.0016 0.9980 0.0016 0.0034 0.9949 

2 0.0015. 0.0031 0.9954 0.00586 0.0067 0.9873 

3 0.0052 0.006 0.9887 0.0207 • 0.0128 0.9664 

4 0.0183 0.0114 0.9703 0.0701 0.0234 0.9065 

5 0.06183 0.02074 o. 9171~ 0.2113 0.03728 0.7514 w 
A 

6 0.0663 ' 0.0259 0.9078 . 0.2233 -0.0458 0.7308 .... 

7 0.0812 0.0366 0.8822 0.2624 0.0619 0.6757 
8 0.1300 0.05668 0.8133 0.3726 0.08432 0.5429 

9 0.2679 0.081~6 0.64·74 0.5834 0.09596 0.3205 
10 0.5314 0.0992 0.3693 0.7918 0.0829 0.1251 

TOP PRODUCT 0.7981 0.0829 0.1251 

~ABLE ( ) R.S.S.20 

., 



MOLES OF FEED & PRODUCTS 

Feed Bottom Top 

x1 0.465 0.00004 0.465 
x2 0.05 0.0003 0.0497 
x3 0.485 0.3996 0.0851 

PLATE NO. LIQUID CO~WODITION VAPOUR COMPOSITION 
x1 x2 X 

3 y1 y2 y 
3 

REBOII:ER 0.0001 0.0007 0.9992 0.00043 0.0016 0.9979 
1 0.00038 0.0015 0.9981 0.00157 0.00329 0.9951 
2 0.0014· 0.0029 0.9956 0.0056 0.0065. 0.9878 

3 0.00501 0.0058 0.9892 0.02 0.012 0.9675 
4 0.0177 0.011 0.9713 0.0679 0.0227 0.9094 

5 0.0599 0.0201 0.9199 0.2059 0.0363 0.7577 
6 0.0637 0.0246 0.9117 0.2162 . 0.01~39 0.7398 c.u 

..b 

7 0.0765 0.031+2 0.8893 0.2503 0.0586 0.6910 ()) 

8 0.1192 0.0525 0.8283 0.3503 0.0803 0.5693 

9 0.2442 0.07963 0.6762 0.5553 0.0939 0.3507 
10 0. 5001~ 0.0967 0.4029 0.7752 0.0829 0.1418 

TOP PRODUCT 0.7752 0.0829 0.1418 

TABLE ( ) R.S.S.21 



-------------------------------------------------------------------------------

MOLES OF FEED & PRODUCTS 

Feed Bottom Top 

x10.485 0.00004 0.485 
x20.05 0.0003 0.0497 
x30.lt-65 0.399 0.065 

PLATE NO. LIQUID COMPOSITION VAPOUR COMPOSITION 

xl x2 x3 y1 y2 y3 

RE BOILER 0.0001 0.0008 0.9991 0.0005 0.0017 0.9978 

1 0.0004 0.00164 0.9979 0.00168 0.0036 0.9949 

2 0.0015 0.0032 0.9952 0.00606 0.00702 0.9868 

3 0.0054 0.0063 0.9883 0.0214 0.013Lt- 0.9651 

4 0.01887 0.0119 0.9692 0.7232 0.02434 0.9033 

5 0.0638 0.0216 0.9146 0.2169 0.0385 0.7444 

6 0.0691 • 0.0275 0.9033 0.2311 O.OLt-82 0.7206 ~ 
\0 

7 0.08079 0.0396 0.8135 0.2754 0.06593 0.6576 

8 0 .11+-33 0.0617 0. 791+-9 0.3984 0.0889 0.5126 

9 0.2960 0.0905 0.6135 0.6137 0.09797 0.2882 

10 0.5652 0.1017 0.3331 0.8085 0.08287 0.1081+ 

TOP IJRODUCT 0.8085 0.0828 0 .108lt 

TABLE ( ) R.S.S.22 
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