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ABSTRACT 

Some experimental details of the construction and programming of the equipment 

is presented and discussed. The calorimeter is used do determine the specific heat 

of solid, approximately 1 g samples within the temperature range 4 to 210 K. 

Initially, the performance of the calorimeter is demonstrated by measuring the 

specific heat of a spectroscopically pure copper sample. The working of the 

apparatus is demonstrated with the experimental investigation of the specific heat 

of some Pd2[Rare Earth]In Alloys. The 4j-electron contribution to the specific heat 

of Pd2Ybln and Pd 2Holn is determined, by subtraction of isostructural Pd2Luln from 

the measured specific heat of Pd2Ybln and Pd2Holn. 
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Introduction 1 

1 INTRODUCTION 

Specific Heat measurements constitute a very useful tool for investigating the 

magnetic properties of Rare Earth intermetallic compounds. In these systems with 

total angular momentum J, the 21+1 associated quantum levels are split by the 

surrounding crystalline electric field (CEF). That leads to a rapid change in the 

internal energy as the temperature increases from OK and the exited CEF levels 

become populated. This provides a large contribution to the specific heat at 

temperatures around the Schottky peak. Furthermore, other contributions to the 

specific heat may arise from the magnetic excitations present in ordered materials, 

from critical phenomena in the vicinity of the ordering temperature, or from spin 

fluctuations above it [4.4]. At sufficiently low temperatures the specific heat of the 

investigated materials can be considered to have the form 

c = rr + /31' 3 +cm . (1.1) 

The linear term is due to conduction electrons and is related to the density of states 

at the Fermi level. The term that is cubic in temperature is the low-temperature 

approximation to the lattice heat capacity of a solid. The coefficient f3 is related to 

the Debye temperature. Cm stands for the contribution of the specific heat due to 

the magnetic degrees of freedom of the material. 

The work presented in this thesis details the design and automation of a 

calorimeter for the measurement of specific heat of solid samples in the 

temperature range from 4.2 K to 210 K. The functioning of this instrument is then 

demonstrated by measuring and analysing the specific heat of members of the 

Pd2 [RE]In alloys series (RE = Rare Earth metal). 
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Structure of this Thesis 

Chapter two: Gives a short introduction to the properties of Rare Earth metals, 

such as electron configuration, crystal structure, the magnetic properties of pure 

Rare Earth metals and the mechanism of magnetic interaction of the Rare Earth 4/ 

electrons in Pd2 [RE]In intermetallic alloys. 

Chapter three: An outline of the crystal field theory is given which leads to the 

discussion of the effect of the crystal field on the degenerated Rare Earth 4/ 

electron levels. In order to calculate the Hamiltonian of the 4/ electrons the 

Stevens operator equivalent method is introduced as well as the crystal field 

parameterisation scheme by Lea, Leask and Wolf (LLW). 

Chapter four: The theory of the specific heat of solids is presented. The different 

contributions due to conduction electrons, the lattice heat capacity and magnetic 

degrees of freedom as well as thermal properties of the crystal field splitting are 

discussed. 

Chapter five: The Design and automation of the calorimeter is presented. The 

working procedure of the software is shown, as well as the tuning of the shield 

temperature control. The accuracy of this system is tested by measuring the 

specific heat of Copper. 

Chapter six: Samples are prepared by melting of the appropriate quantities of 

starting elements in an argon arc furnace. A structure determination is 

performed using X-ray powder diffraction. The heavy Pd2[RE]In alloys 

(RE = Ho, Er, Yb and Lu) are being examined as well as some light Pd2[RE]In 

compounds (RE = La, Ce and Nd). 

Chapter seven: The subject of this chapter is the specific heat of Pd2[RE]In 

Heusler alloys (RE = Ho, Yb and Lu). The heat capacity of each compound is 

measured and an analysis is made. The CEF level scheme of the Rare Earth 4/ 

electrons obtained by previous investigations are verified. 

Chapter eight: Gives a general conclusion. Recommendations for further work and 

improvements on the instrument are discussed. 
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2 ELEMENTRARY PROPERTIES OF RARE 

EARTH METALS AND Pd2[RE]In ALLOYS 

2.1 Introduction 

3 

Rare Earth metals, elements alternatively known as Lanthanide's, have an atomic 

number between Lanthanum (Z=57) and Lutetium (Z=71). Strictly speaking, 

Lanthanum is not a Rare Earth element and is often omitted in discussions of their 

properties [2.1]. Praseodymium (Pm) is a radioactive element with a half-life time 

of six hours (Pm145
) and therefore people refrained from investigating its properties. 

Rare Earth elements form a subgroup in the periodic table and are usually arranged 

outside the periodic table, since they all exhibit similar chemical characteristics. 

This is due to the fact, that the electronic structure is given by 

(4f)"(Ss)2(Sp)6(Sd) 1(6s)2
, where n increases from 0 to 14 as the atomic number 

increases from 57 to 71 [2.2]. The Sp and 6s electrons form part of the conduction 

band in the metals, while the 4/ -electrons are well embedded within the atom and 

shielded by the Ss and Sp states from surroundings [2.3]. 

2.2 Structural Behaviour 

The structure of Rare Earth metals at room temperature was first investigated by 

Klemm and Bommer in 1937 [2.4]. Since then a complete classification of the room 

temperature crystal structures has been carried out and is given by Taylor and 

Darby [2.1] for example. The results for those Rare Earth elements under 

consideration in this work are given in Table 2.1. The structures are shown in 

Figure 2.1. 

Table 2.1: The room temperature strutural properties of the pure Rare Earth metals 

l---2omic Molar Metallic Ionic Struc- Space 
mber mass radius radius tu re Group 

[.8.] [.8.] 

Lanthanum La 57 138.91 1.877 1.061 d-hex P66/mmc 

Cerium Ce 58 140.12 1.825 1.034 d-hex P63/mmc 

Neodymium Nd 60 144.24 1.821 0.995 d-hex P63/mmc 

Holmium Ho 67 164.93 1.766 0.894 hcp P63/mmc 

Erbium Er 68 167.26 1.757 0.881 hcp P63/mmc 

Ytterbium Yb 70 173.04 1.940 0.858 fee Fm3m 

Lutetium Lu 71 174.97 1.734 0.848 hcp P63/mmc 
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Figure 2.1: Closed-packed structures [2.1) 

The atomic radius decreases from Lanthanum to Lutetium, while the atomic number 

increases (with two exceptions for Europium and Ytterbium). This effect is known as 

the Lanthanide Contraction and is shown in Figure 2.2. 

Lanthanide's Contraction 

2.1 

1.9 

1.7 

~ 1.5 

la Ce Pr Nd Pm Sm Gd Tb Dy Ho Er Tm Lu 

·-"C 
1.3 (t::l 

c::: 
1.1 G~ -G 

0.9 
-~G--G 

- -G - ~G - -G - ~G 
- -G - ~G - -G - ..1"> 

~- ~G- -G--o 

0.7 -~-Metallic Radii 
0 

-- Q-- Ionic Radii 

Figure 2.2: Lanthanide's Contraction, the variation of the metallic radius of the Rare Earth 
elements with atomic number 

The great uniformity of the crystalline structure and of the atomic radius can be 

described in a first approximation as resulting from the (Sd)1(6s)2 electron shells 

which are nearly the same for all Rare Earth metals, while the interaction between 

the nucleus and the electrons is increasing with atomic number. 

1 hexagonal closed packed 
2 face centred cubic 
3 double hexagonal closed packed 
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2.3 Magnetic Properties 

As already mentioned previously, the electron configuration of the Rare Earth 

elements is given by: 

(2.1) 

They all appear to be group Ilia elements of the periodic table. This arises from the 

fact, that the number of outer valence electrons remains unchanged, while the (41)" 

shell is been filled with increasing atomic number. The 4! electrons are closely 

bound inside the outer shells and thus they play only a small role in chemical 

bounding. In metallic alloys, the Sd and 6s levels are partially filled and form part of 

the conduction electron band [2.5]. The intra-atomic electron-electron interactions 

among 4! electrons generate a localised magnetic moment. The overlap of 4! 

orbitals of different atoms is too small to create magnetic ordering. Therefore, the 

magnetism cannot be explained by a direct exchange mechanism. However, it can 

be described by an indirect exchange mechanism (see next page, RKKY 

interaction). 

For systems with localised magnetic moments, the magnitude of the magnetic 

moment depends on the filling of the electron shells. For the Rare Earth metals, 

spin s and the orbital momentum L are coupled to give the total angular 

momentum J. The total magnetic moment fJ is equal to 

(2.2) 

where fJ 8 is Bohr magneton, g L the Lande factor. 

s, L and therefore J are given according to the Hund's rules [2.6]. In order to 

calculate the magnetic moment of atoms, the Lande factor has to be calculated 

using the Lande formula: 

= 1 + 1(1 + 1)+ s(s + 1)+ L(L+ 1) 
gL 21(1+1) 

(2.3) 

With this, the atomic magnetic moment can be calculated, which is shown for Rare 

Earth metals in Figure 2.3. Pure Rare Earth metals are paramagnetic at sufficiently 

high temperature and present different magnetic orderings at low temperatures 

[2.7]. 
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Figure 2.3: Calculated Magnetic Moment of Rare Earth metals 

2.4 The RKKY Interaction 

The RKKY (Ruderman, Kittel, Kasuya & Yosida) interaction describes magnetic 

ordering of localised magnetic moments in Rare Earth metals. In this theory, the 

magnetic ordering of the localised moments is caused by an indirect exchange 

interaction mediated by the conduction electrons. The conduction electrons move in 

the field of the localised moments on the atoms. Each localised moment interacts 

with the conduction electrons. As a result, a certain direction of the localised 

moment and the polarisation of the conduction electrons is favoured. Because of 

their itinerant character, the conduction electrons interact with many neighbouring 

localised moments. Therefore, it is favourable for the localised moments to align in 

a certain way to enable the most favourable interaction of each of the localised 

moments with the conduction electrons. Whether a ferro- or antiferromagnetic 

alignment of the localised moments is preferred, depends on the sign of the 

exchange interaction. This exchange interaction is oscillatory. Since the conduction 

electrons spin may interact with impurities and magnetic disorder, the interaction is 

damp. The RKKY has been applied to many different materials, such as for example 

Cu-Mn alloys (Yosida [2.8]), Pd2[RE]Sn (Babateen [2.9]). Furthermore, various 

extensions have been made to the theory. Reviews are given, for example, by Kittel 

[2.6], and Kasuya [2.10]. Calculations, especially for Heusler alloys, were done by 

Blandin & Campbell [2.11], Malmstroem, Geldart & Blomberg [2.12], Price [2.13] 

and Kuebler, Williams & Sommers [2.14]. 
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3 OUTLINE OF CRYSTAL FIELD THEORY 

3.1 The Free Ion 

3.1.1 The Ground State of the Free Ion 

The unpaired electrons in any particular ion exist in shells and have energies 

appropriate to it. The electron energy in each shell, when neglecting all interactions 

(besides the coulomb interaction between the nucleus and the electrons), is given 

by [3.1] 

ezz 4 z mee 
E =--=----

n 2r 2 li 2 n 2 
(3.1) 

where n is the principle quantum number of the electron shell, Z the atomic 

number, me and e the electron mass and electron charge, li Planck's constant 

divided by 2n . 

Within each shell n of an atom there are n sub-shells characterised by f , the 

angular quantum number that ranges from 0, 1 to n -1. These sub-shells f 

contain 2£ + 1 states labelled by m, the magnetic quantum number which can 

take values - f, (1 - f), ... , (l - 1) and f . In addition, each state can be occupied 

by two electrons with opposite spin. s characterises the spin quantum number and 

is limited to the values ±1/2. For each n there are 

n-1 

L',2(2f+1)=2n 2 
(3.2) 

l=O 

possible combinations of quantum numbers f, m and s . Such states are called 

degenerate. According to Pauli's exclusion principle, the maximal number of 

electrons in a sub-shell f, is equal to the number of possible states. For the 4f­

shell, which is of particular interest in the investigation of the magnetic behaviour 

of Rare Earth ions in a crystal lattice, f is equal to three and thus the maximum 

number of electron states in this shell is 14. 

For more complex atoms with more than one electron, the rather simple model of a 

central coulomb potential must by extended by the impact of the coulomb 

interaction between the electrons with each other, as well as spin-orbit interaction 

[3.1]. Pauli's exclusion principle prevents electrons with the same spin to be at the 
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same state. Moreover, because of the coulomb interaction the energy of electrons 

with the same spin is lower [3.2] than of those with opposite spin in the same shell. 

For Rare Earth metals, the coulomb repulsion between electrons is large compared 

to the spin-orbit interaction. Therefore, Russeii-Saunders coupling scheme4 can be 

applied. The individual R; and s; couple as 

and (3.3) 

to give the total orbital angular momentum number L and the total spin number s. 
Due to the spin-orbit interaction, the total orbital angular momentum and the total 

spin then couple to give the total angular momentum. In order to appraise the 

groundstate electron configuration of the free ion, s and L have to be determined 

according to Hund's5 rules to yield the total angular momentum quantum number 

J . The value of J is given by 

J = IL- sI (3.4) 

if less then half of all states in the shell are occupied by an electron and 

J = L + S (3.5) 

if more then half of the states within the shell are occupied. If exact half of all 

states are occupied, then, according to the first Hund's rule, L is equal to zero and 

therefore 

J = s (3.6) 

The degeneracy of an energy level En with respect to R is reduced by the 

electron-electron interaction. The degeneracy with respect to m is not lifted as 

long as the spherical symmetry of the potential is unchanged. The spherical 

symmetry is broken, for example, by an external magnetic field [3.3]. 

To illustrate this by an example, S, L and J are given for Ytterbium-, Erbium- and 

Holmiumion [3.4] 

4 known as LS-coupling, after Kubo & Nagamiya [3.5], it can be applied to Rare Earth metals 
5 see for example Kittel [3.2] 
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1. Ytterbium (Yb3+), 

£=3 

1-1 13 S =~si 
1=1 

1-1 13 L = ~ li = 3 
1=1 

1 

2 

13 electron in the 4f-shell 

The groundstate degeneracy is 21 + 1 = 8 

The groundstate configuration of Yb3+ is 2F712 

2. Erbium (Er3+), 11 electron in the 4f-shell 

1-1 11 S =~si 
1=1 

3 

2 

1-1 11 L = ~ li = 6 
1=1 

1-1 15 1 =IL+SI=2 

The groundstate degeneracy is 21 + 1 = 16 

The groundstate configuration of E~+ is 211512 

3. Holmium(Ho3+), 10 electron in the 4f-shell 

1-1 10 S =~si= 2 
1=1 

1-1 10 L = L li = 6 
1=1 

The groundstate degeneracy is 21 + 1 = 17 

The groundstate configuration of Ho3+ is 5I 8 

10 

(3.7) 

(3.8) 

(3.9) 



Crystal Field Theory 11 

3.1.2 The Hamiltonian of the Free Ion 

Considering a single particle with an electric charge e in a central 

Coulomb potential V(r), in example the hydrogen atom, the Hamilton operator 

is given by [3.3]: 

with (3.10) 

where r is the distance between the electron and the nucleus. 

There are different interactions within the free ion, which contribute to form the 

Hamiltonian of a many electron atom. The most important of these are [3.1], [3.6]: 

1. Nucleus Screening 

For electrons in outer shells in atoms with more then one electron, the coulomb 

potential of the nucleus is screened by the inner shell electrons. This effect is 

recognised by introducing the effective nucleus number. 

zeff = z -s (3.11) 

s is correction term [3.1]. 

2. The Coulomb Repulsion 

Since electrons are particles of the same charge, they are reviled by each other, 

this is known as Coulomb repulsion. The magnitude of this potential is inversely 

proportional to the distance between the electrons. 

(3.12) 

3. Spin-Orbit Coupling 

A magnetic field is produced by the orbital motion of the electron around the 

nucleus. An interaction arises between the orbital momentum and the electron spin, 

which can be described by 

1 N 1 dV(r) {- -) 
V se = - 2 2 L- \Si • f i • 

2me c i=l r; dr; 
(3.13) 
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Considering these effects, the Hamiltonian of the free atom H 
1 

is given by 

(3.14) 

3.2 Interaction of the Ion with the Crystalline Environment 

If a magnetic ion is placed into a crystal lattice, a perturbation of the free ion 

electron states will occur because of the electrostatic field caused by the 

neighbouring atoms. This field is of certain symmetry. As a result, the degenerated 

electron levels will separate analogue to the Stark effect6
• The number of 

components, into which a term of the free ion will separate, depends on the 

symmetry of the field, as determined then by the symmetry of the crystal. This 

interaction between the magnetic ion and its surroundings is often treated using 

Crystalline Electric Field (CEF) theory. 

3.2.1 Classification of the Crystal Field 

In order to determine the effect of the electric crystalline potential Hcef provided by 

the symmetrical distribution of the negative point charges about the central positive 

ion, one has to classify its magnitude relative to the Coulomb repulsion H,, and the 

Spin-Orbit coupling H1s. Three different cases are distinguished [3.7]: 

1. Strong Crvstal Field: Hcef >>Hee >>H1s 

The energy of the field is stronger than the spin-orbit coupling and the Coulomb 

repulsion. The LS coupling is included using perturbation theory. The electrostatic 

interaction of the electrons can be included by using a self-consistent field, in 

example the Hartree-Fock approximation. 

2. Intermediate Crystal Field: Hee >>Hcef >>H1s 

The crystal field is smaller than the electron-electron interaction but stronger than 

the spin-orbit coupling. The Hamiltonian of the free atom has to be considered with 

Coulomb repulsion and with the crystal field potential but without spin-orbit 

coupling. 

6 Stark (1913) describes the splitting of energy levels of atoms in homogeneous electric field 
see for example [3.1]. 
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3. Weak Crystal Field: Hee >>H1s >>Heel 

The crystal field is small. The "free ion", also considering electron repulsion and 

spin-orbit coupling, is influenced by the crystal field. The total angular momentum 

aligns relatively to the axes of the crystal field since the total orbital angular 

momentum and the total spin remain coupled. 

This is the case for the Lanthanide. 

3.2.2 Crystal Field Potential 

Placed in the Pd2[RE]In crystal lattice, the Lanthanide ion is exposed to a cubic 

electrostatic field of the surrounding Palladium ions. 

Earth i n 

Figure 3.1: Rare Earth ion in the Pd2[RE]In crystal lattice, surrounded by Pd ions 

In order to calculate the potential due to the ionic crystal, a simple point charge 

model can be used, although it is known to posses several weaknesses. It neglects 

the finite extent of charges on the ions, the overlap of the magnetic ion's wave 

functions with those of neighbouring ions, and the effects of "screening" of the 

magnetic electrons by the outer electron shells of the magnetic ion. However, it can 

be used to calculate ratios of terms of the same degree in the Hamiltonian of 

magnetic ions on lattice sites of high symmetry [3.8]. 

The electrostatic potential v(r,9,cp) due to the surrounding point charges, at a 

point (r,9,cp) near the origin at the magnetic ion is given by [3.8] 

qj 
V (r' 9' cp) = ~ I R j - r I (3.15) 

where q j is the charge of the jth ion, a distance R j from the origin. 
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If the magnetic ion is of the charge qi at (r;,(Jp(/J; ), then the crystalline potential 

energy will be given by 

(3.16) 

As the crystal field affects closed shells only in a higher order of the perturbation 

expansion, the summations in (3.16) will only concern electrons in the unfilled 

shell. The crystalline potential in (3.15) may be calculated in Cartesian co­

ordinates, or directly in terms of spherical harmonics. Both methods are 

demonstrated for example Hutchings [3.8]. 

3.2.3 Stevens Operator Equivalent Method 

As already revealed, the Rare Earth ions show Russeii-Saunders coupling, so the 

single electron angular momentum and spins are fist combined after (3.3) to yield J 

according to Hund's rules. For these states, the total angular momentum operator J 
is a constant, according to Stevens [3.9]. 

Stevens Operator Equivalent Method depend largely on the result, that within a 

manifold of states for which J is a constant there are simple relations between the 

matrix elements of potential operators and appropriate angular momentum 

operators [3.9]. In the following, this method is briefly discussed. 

In [3. 9] the crystal field potential considered is a sum of potential functions, 

n,m 

where 

v2o = 2, (3z2- r2) 

v4° = 2, (35z 4 -3oz 2 r 2 +3r4) 

V6° = 2,(23lz 6 -315z2 r 4 +5r6) 

v66 = 2, (x6 -tsx4y2 + tsx2l + l ). 

The summations are taken over all coordinates of all electrons. 

(3.17) 

(3.18) 

Each potential V can be written in the form J(r )Pnm (e, (/)) and thus transforms 

under rotation according to an irreducible representation of the rotation group. 

Therefore, the matrix elements of V6
6 can be obtained from those of V6° by pure 

symmetry arguments [3.9]. In order to determine the potential functions in (3.17) 

respectively (3.18), using Stevens operator equivalent method x, y and z have to be 



Crystal Field Theory 15 

replaced by 1x, 1y, and 1z· Since each potential transforms under rotation according 

to an irreducible presentation of the rotation group, for an operator equivalent to 

hold, the equivalent must transform in exactly the same way. There is no difficulty 

in doing this provided allowance is made for the non-commutation of 1x, 1y, and 1z. 

For example the product of xy is given by 1/2 (1 J Y + 1 Y1 x ). 

For a manifold of angular momentum 1 composed of j-electron wave functions the 

most general operator equivalent potential with cubic point symmetry may be 

written, according to Baker et al. [3.10], as 

Reef= B4 (0~ +50!)+B6 (0~ -210:) 

Where the potential functions are given by the Stevens operator equivalents 

0~ = 351:- [301(1 + 1)- 25]1;- 61(1 + 1)+ 31 2 {1 + 1)2 

04 = .!..(14 + 14) 
4 2 + -

0~ = 2311: -105[31(1 +1)-7]1: 
+ [1051 2 (1 + tY -5251(1 + t)+ 294}1; 

-51 3 (1 +tY +4012 (1 +tY -6o1(1 +t) 

o: = ~ [111; -1(1 +1)-3sl1: +1~) 

+ ~ (1: +1~ ltu; -1(1 +1)-3s]. 

(3.19) 

(3.20) 

The coefficients B4 and B6 are factors which determine the scale of the crystal field 

splitting's. They are linear functions of <r4> and < r6>, the mean fourth and sixth 

power of the radii of the magnetic electrons (and thus depend on the detailed value 

of the magnetic ion wave function). 

3.2.4 The LLW Parameterisation Scheme 

Lea, Leask and Wolf (LLW) [3.11] have investigated the effect of a cubic crystal 

field Hamiltonian, as given in (3.19), as a function of the ratios of the fourth and 

the sixth degree terms. LLW rewrote (3.19) in the form 

(3.21) 

where W is the overall energy scale of the crystal field splitting and x determines 

the ration between the fourth and the sixth order contribution. 
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lxl <1 so that 

B4 =0 forx= 0 
B6 

while 
B 

-
4 = + oo for I xI = 1 

B6 -

16 

{3.22) 

(3.23) 

F(4) and F(6) are numerical constants, their values are tabulated in [3.11]. These 

calculations have been done for all J manifolds between 2 and 8 in half-integral 

steps. Table 3.1 shows the LLW crystal field parameters for the alloys considered in 

this work. The values are taken from [3.11] and [3.12] 

Table 3.1: LLW parameters for members of the alloys series Pd2[RE]In, vales taken from 
[3.11] and [3.12] 

F(4) F(6) W (meV) X OES7 (meV) 

Holmium 60 16860 0.0267 0.3543 19.9 

Erbium 60 13860 -0.0462 0.3644 19.9 

Ytterbium 60 1260 -0.7058 0.7758 18.8 

It is this information which is been used to calculated the expected thermal 

response of the CEF in form of the specific heat (see also section 4.5 Determination 

of the Thermal Properties of Crystal Field Splitting). 

7 OES - Overall Energy Splitting 
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4 SPECIFIC HEAT 

4.1 Heat Capacity 

The heat capacity of a system is defined as the ratio of energy input to the system 

by heating dQ and the resulting temperature rise dT . 

C=dQ 
dT 

(4.1) 

From the first law of thermodynamics, which gives a relationship between dQ, the 

change in the internal energy dU and the work dA done by the system due to a 

change in volume dV at a given pressure p and the second law of 

thermodynamics, from which it can be obtained that for reversible isothermal 

processes dQ can be written as temperature times change in entropy, it follows 

dQ =TdS = dU -dA. (4.2) 

Differentiating (4.2) with respect to T at constant volume V or, experimentally 

more relevant, at constant pressure p, the heat capacity can be written as a 

function of the internal energy U. 

c =(au) 
v ar 

V 

(4.3) 

(4.4) 

4.1.1 Heat Capacity of ideal Gases 

For an ideal gas, the internal energy can be written as a function of temperature 

and the number of atoms/molecules (with k8 being the Boltzmann constant). 

3 
U =U(T,N)=-k8 TN 

2 
(4.5) 

1 
Each degree of freedom has an average energy of -k8 TN. Using (4.3) it follows 

2 
that 

CGas -~k N 
V - B ' 

2 
(4.6) 
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By deriving the ideal gas law for classic, ideal gases 

(4.7) 

with respect to temperature and under constant pressure 

(4.8) 

and substitute (4.8) in (4.4), one obtains CP for an ideal gas 

(4.9) 

The heat capacity at constant pressure C P is larger than Cv because some energy 

is required for the work as the gas expands. 

4.1.2 Heat Capacity of Solids 

To maintain the heat capacity for solids equations (4.3) and (4.4) have to be 

rewritten as functions of entropy (cp. (4.2)). 

c =.,( asJ 
V ~ l i)T V 

c =.,( asJ 
P ~ l i)T P 

(4.10) 

(4.11) 

Considering entropy as a function of T and V and taking the number of atoms N 

to be constant, the total differential of S is given as 

S=S(T,V) ~ dS=(i)SJ dT+(i)SJ dV 
ar v av r 

(4.12) 

Differentiating (4.12) with respect to T under constant pressure p gives 

(4.13) 

Multiplying (4.13) by t reveals 

c =C +T(asJ(avJ 
p v :~v ar 

U T p 
(4.14) 
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By using the following Maxwell relations and the reciprocal relation for p, V and 

T, Scan be eliminated 

(;a =(:n. 
( 

ap 1 (aTj (av) __ 1 
aT Jv av JP ap T 

and (4.14) can be modify to 

c = c -T(avj2( ap J 
p v aT av 

p T 

Introducing the volume expansion coefficient a 

1 (avj 
a= V aT JP 

and the isothermal compressibility 

equation (4.17) can finally be expressed as 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

C Ptv gives the heat capacity of the entire system. C Ptv divided by the system's 

mass or number of particles N provides the heat capacity per mass unit or 

particle. This is called Specific Heat. It is a function of T and the material. 

Similar to the results for an ideal gas, C P is larger than Cv. The difference 

between C P and Cv decreases linear with decreasing T and C P ~ Cv if T tends 

towards 0 K. At room temperature and for the most metallic alloys C P is 3-5% 

larger than Cv. This is shown for Copper in Figure 4.1. 
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Figure 4.1 : The specific heat of Copper at constant volume and pressure [ 4.1] 

4.2 Lattice Heat Capacity 

For most solids, the energy of the lattice vibrations provides the dominant specific 

heat contribution. For non-magnetic insulators it is the only contribution. At lower 

temperatures, the importance of the lattice heat capacity decreases and 

contributions from magnetic ordering or conduction electrons may dominate. At 

temperature below 1 K, and in particular for magnetically ordered samples, the 

heat capacity due to the orientation of nuclear spins may become important. 

4.2.1 Classical Interpretation 

There is more than one model to describe the motion of atoms in a crystal. From 

the classical statistics point of view and with the application of the theorem of 

equipartition of energy it follows that in a system of classical particles the average 

energy per degree of freedom in thermal equilibrium is e = Yzk 8 T. Thus for a 

crystal lattice, each atom has 6 degrees of freedom and therefore the energy is 

given as 

U =Le; =3k8 TN. (4.21) 
i 
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Hence the heat capacity Cv is obtained by calculating the derivative of U with 

respect to T, the phonon heat capacity C~1 becomes 

ciar =(()U)Iar = 3Nk 
V ()T B 

V 

and C~1 (per mol) = 3R (4.22) 

with the molar gas constant R = N Ak8 , the Avogadro constant N A and the 

Boltzmann constant k8 • This was discovered in 1819 by Dulong and Petit. In this 

model Cv is a constant. At low temperatures, this is not in agreement with 

observations. It is found, that as the temperature of a system decreases, the heat 

capacity is reduced well below the Dulong-Petit value, tending towards zero at zero 

temperature. 

4.2.2 Quantum Mechanical Theories 

At lower temperature, the energy of the harmonic oscillator decreases sufficiently 

so that the discrete nature of particles becomes important and quantum mechanics 

has to be used to explain the behaviour of the heat capacity. A lattice vibration 

mode n of frequency w is restricted to the energy levels given by 

(4.23) 

Einstein developed a model considering the vibrating atoms in a solid as 

independent oscillators, i.e. non-coupled, all vibrating at the same frequency w. So 
-

the average energy of a vibration mode is e with Pn being the probability of 

finding the oscillator in the nth energy state en. 

(4.24) 
n 

The probability of occupation of an energy level is given by the Boltzmann factor 

(4.25) 

thus (4.24) becomes 

(4.26) 
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To evaluate the average energy of a vibration mode (4.26) has to rewritten to 

(4.27) 

where the partition function z is given by 

Z ~ {-liw(n+I/2)} = L..Jexp 
n=O kBT 

=exp -- · l+exp -- +exp + ... {-liw} ( {-liw} {-21iw} J 
2~T ~T ~T 

(4.28) 

=exp{ -liw} ·(1-exp{-liw}Y
1 

2k8 T k8 T ) 

By substituting (4.28) in (4.27) the average energy of a harmonic oscillator can be 

obtain as 

- tUJ) 
£ = 1/Zfim + tzwfk r 

e 8 -1 

For very low temperatures c tents towards the zero point energy 

e:::: 1/21im 

(4.29) 

(4.30) 

and for high temperatures the exponential term in (4.29) can be expanded to 

(4.31) 

and thus yields the Dulong/Petit law for the heat capacity. 

(4.32) 
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At any arbitrary temperature, the molar specific heat of the lattice is obtained by 

taking the derivative of the internal energy U = 3 Ne with respect to 

temperature. It can be expressed by using the Einstein temperature e E = nw/ks 
as 

(4.33) 

The Einstein model was found to describe the experiment reasonably well. 

However, at low temperatures Cv(Einsrein} decreases faster than observed 

experimentally. 

A more advanced model which takes into account that the harmonic oscillator do 

not vibrate independently was introduced by Debye who considered the system as 

a continuous elastic body. Based on the phenomenological theory of elasticity a 

continuum model is employed for all possible vibrational modes of a crystal in which 

the phonon frequency is not restricted to one value but ranges from m = 0 to some 

maximum value m 0 • 

It is an assumption of the Debye model, that the distribution of the modes is 

spherically symmetric, i.e. the frequency of a mode only depends on the magnitude 

of the wave vector. This approximation is found to work reasonably well for crystals 

with high symmetry (for example Heusler alloys with a cubic structure). In the 

Debye approximation, the dispersion of acoustic waves is neglected. 

m0 , the cut-off frequency, is taken to be the frequency which yields the correct 

total number of lattice modes. For a crystal of volume V and containing N atoms 

there are 3N lattice vibration modes. 

(4.34) 

with the density of states per unit frequency range g(m) being chosen as 

Vm
2 

( 1 2 ) g(m)=-
2 

2 -3 +-3 · 
7r VL VT 

(4.35) 

V L and V T represent the velocity of sound for longitudinal and transversal modes. 

Substituting (4.35) into (4.34) and integrating over all the distributions of vibration 

frequencies, the energy of the lattice vibrations is obtained as 
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9 9N iwv liOJ
3 

U =-NiiOJ0 +-3 li /k T dOJ. 
8 (J)D 0 e (J) B -1 

(4.36) 

The derivative of U (4.36) with respect to temperature provides the heat capacity 

(4.37) 

with the variable x=lim/k8 T and the Debye temperature 8 0 =lim0 jk8 • 

For high temperatures the integrand reduce to x 2 and thus the heat capacity yields 

the Dulong/Petit value. 

(4.38) 

At low temperatures solving the integral results in 4n4/15 and from this the specific 

heat at low temperatures is given by the Debye T3 law. 

(4.39) 

The Debye model describes the heat capacity of most solids with some success, 

even though the actual phonon density of states can be different to that assumed in 

the model. 

The applicability of the Debye model to fit the specific heat of a system can be 

readily investigated by plotting 8 0 versus T. If the Debye model fits perfectly this 

would give a constant value for 8 0 , however the Debye temperature does vary with 

temperature and the degree of variability depends on the system under 

consideration. A particular variation in 8 0 (T) is often found where at low 

temperatures a minimum is found indicating that the specific heat rises more 

rapidly with temperature than would be expected from the Debye model. Despite 

having some weaknesses, the Debye model represents the specific heat of most 

solids well and it has been widely used to interpret experimental data [4.2]. 
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4.3 Free Electron Heat Capacity 

The contribution to the specific heat due to the free electrons applies only for 

metals and is given by 

cez =(au)ez 
v ar v 

(4.40) 

The theory, which describes the heat capacity of free electrons, was initiated with 

the discovery of the Pauli principle and the subsequent development of the Fermi­

Dirac distribution function. When a system is heated from absolute zero, not all the 

free electrons gain an energy proportional to k 8 T as expected classically, but only 

those electrons within a range of k 8 T around the Fermi level are thermally excited 

(Figure 4.2). 

The probability of occupation of an electron energy state e is given by the Fermi 

distribution function 

1 
J(c,T)= e<e-p.)/koT +1 

where )l is the chemical potential, equal to the Fermi energy e F at T =OK. 

(4.41) 

In the independent electron approximation the internal energy is given by the sum 

over all energy levels multiplied by the probability of occupation. The change in the 

internal energy by heating 

11U =U(T)-U(O) 

is therefore given as 

D.U = fooo de cD(e )J(e,T)- s:F de eD(e) 

with D(s) the density of states. 

Multiplying the identity 

N = fooo de D(e )J(e,T)= s:F de D(e) 

by e F to obtain 

(4.42) 

(4.43) 

(4.44) 

(4.45) 
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Figure 4.2: The Number of electrons per unit energy range according to the free electron 

model. The arrow shows the migration of electrons for T>O K. For clarity the 

situation is shown for which k8 T is a significant proportion of EF, in general 

however, for all temperatures considered in this thesis ksT << EF, [4.2) 

With (4.45), (4.43) can be rewritten as 

flU =I: d£ (e- £ F )D(£ )J(e,T) 
(4.46) 

- s:F d£ (eF -£)[1- j(e,T)]D(e) 

The heat capacity of the free electrons can be found by differentiating (4.46) with 

respect to temperature. Since f (s ;r) is the only temperature dependent term in 

(4.46), hence the terms can be grouped to obtain 

(4.47) 

At the temperatures of interest in metals, (E- EF)df/dT has a large positive peak at 

energies near £ F, see for example Ashcroft [4.1]. According to Ashcroft, it is a 

good approximation to evaluate the density of states D(s) at the Fermi level and 

taking it outside the integral. 
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D 3N 3N 
(eF )= 2e= 2k T 

F B F 

(4.48) 

Solving the integral for k 8T << eF, and with D(s), the heat capacity of free 

electrons becomes 

12 ( )2 12 T eel = -n D e F kBT = -n Nk B- = yT. 
3 2 TF 

(4.49) 

Although T F is called the Fermi temperature, it is not an actual temperature but a 

convenient reference notation. 

4.4 Magnetic Heat Capacity 

The energy required to align magnetic moments to form an ordered magnetic state, 

such as a ferromagnet, provides a contribution to the specific heat. The magnetic 

specific heat is associated with the magnetic entropy of a system 

_ (dSmag J Cmag - T 
dT B 

(4.50) 

A change in entropy of the magnetic state is given by 

(4.51) 

and can be obtain from experimental measurements. Furthermore, this entropy is 

directly related to the quantum number of the magnetic atom J 

(4.52) 

where c is the number of atoms per unit cell present carrying the magnetic 

moment. 

The total integral of the magnetic contribution to the specific heat is proportional to 

ln[2J+l]. This assumes that the entropy of the ground state is equal to zero and 

that the temperature integration is carried out such that all CEF contributions are 

incorporated. 
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4.5 Determination of the Thermal Properties of Crystal Field 
Splitting 

The free energy is a thermodynamic potential and thus it describes the 

thermodynamics of the system. F can be calculated as followed 

F=U-TS. (4.53) 

Deriving (4.53) with respect to temperature yields, that the entropy S of a system 

is proportional to the derivative with respect to temperature of the Helmholtz free 

energy F, 

S=-aF 
ar (4.54) 

while the partition function Z, of a system of N particles, is related to the 

Helmholtz free energy F via 

F =-Nk8 Tin{Z}. (4.55) 

In order to obtain the partition function it is necessary to sum over all energy levels 

(4.56) 

where e; is the energy of the irh level and d; is its degeneracy. 

Thus, by substituting the partition function z of a system (4.56) in (4.55) and 

taking from that result the derivative with respect to temperature, the entropy 

(4.54) of a system can be obtained. Multiplying T to derivative of the entropy of the 

system with respect to temperature (4.50) yields the specific heat contribution due 

to the population of the exited electrons levels. 

Therefore, by evaluating the partition function of a system, the thermodynamic 

properties with respect to the magnetic properties of that system are readily 

obtained and it follows that 

CcEF = .,( dS) = Nk8 T ~[T Log(~d; exp{~}J] 
£ l dT B dT I kBT 

B 

(4.57) 
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At absolute zero, only the ground state electron levels are populated and as T is 

increased, energy must be provided to raise electrons to higher energy levels. 

There is only a limited range of magnetic energy levels. At very high temperatures, 

all levels are nearly equally populated so any increase in temperature will not lead 

to a significant gain in entropy of the system. Hence, the magnetic heat capacity at 

high temperatures is small. Cm is therefore expected to show a maximum at a 

temperature such that the thermal energy is of the order of the separation of the 

levels. This phenomenon is known as the Schottky anomaly [4.3]. 

As illustrated in Table 3.1, the overall CEF splitting energy (OES) of the investigated 

Pd2 [RE]In alloys is approximately 20 meV, which is equal to a temperature of 

230 K. However, the magnetic heat capacities of those systems under 

considerations is being calculated using the CEF level schemes8 obtained from 

neutron scattering experiments by Babateen [4.5]. 
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Figure 4.3: Calculated Magnetic Specific Heat ([J/(moi*K)]) of Pd2Ybln, Pd2Erln & Pd2Holn 

As shown in Figure 4.3, the Schottky peaks occurs for all alloys at temperatures 

T <70K. Furthermore, for temperatures above "'70 K the magnetic heat capacity will 

be less than 1% of the measured heat capacity and thus the experimental 

uncertainty makes 70 K a suitable upper limit for the investigation. 

8 For further details see to paragraphs 7.2.2 and 7.3.2. 
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4.6 Isolating Different Contributions 

At low temperatures, were C P == Cv the heat capacity of a system is given by 

for small T (4.58) 

As already shown, the electronic and phonon heat capacities are given by 

eel =rr (4.59) 

and 

(4.60) 

In order to analyse the measured specific heat of a material and to obtain the 

magnetic contribution to the specific heat, electronic and phonon specific heats 

have to be isolated. 

4.6.1 Non Magnetic Materials 

For systems, for which the electronic and phonon heat capacities are the only 

contributions to the specific heat, the two contributions can be separated by 

plotting the experimental data in the form of Cp I T versus r as 

(4.61) 

This yields a straight line with intercept y and with a slope of f3 

From this plot, the heat capacities due to the conduction electrons and the crystal 

lattice vibration can be obtained according to ( 4.59) and ( 4.60) respectively. 

The analysis of the specific heat measurement of a system becomes more difficult if 

an additional contribution exists, such as that from magnetic moments. 

4.6.2 Estimating the Conduction Electron and Phonon Contribution of 

Magnetic Materials 

As before, the heat capacities due to the conduction electrons can often be obtained 

by plotting the low temperature data (where no magnetic contribution exists) in the 

form Cp IT versus r [4.2]. Varying the Rare Earth atoms in the series Pd2[RE]In is 

not expected to give rise to a significant change in the conduction electron density 

of states as a result of the localised nature of the 4j-electrons. 

The main difficulty is to evaluate the lattice contribution of magnetic compounds, 

since it cannot be obtained directly. One way is to measure the specific heat at 
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temperature much higher than the magnetic ordering temperature, where the 

magnetic contribution vanishes, then to extrapolate the values to low temperatures 

according to the Debye model [4.4]. Since the accuracy of the considered 

instrument decreases with higher temperatures, another method is used to 

estimate the phonon contributions. 

The lattice contribution is obtained by the measurement of the specific heat of an 

isomorphic non-magnetic compound. Here Pd2Luln is used. The results are 

renormalised by taking the different molar masses into account. For that purpose, 

Bouvier, Lethuillier and Schmit [4.4] have developed a many Debye function model 

of which a short outline is presented below. 

The phonon part of the heat capacity may be written (cp. (4.37)) as 

(4.62) 

with the variable x=limjk8 T and the Debye temperature 8 0 =limjk8 • 

For convenience, ( 4.62) may be written as 

(4.63) 

where f 0 (E> 0 /T) is the single De bye function. 

Applying the model to ternary compounds X mREnZ P , the lattice heat capacity can 

be expressed by the relationship 

Clar (XmREnZp) = mfv(E>x /T)+n fo (E>RE /T)+ P fo(E>z /T) (4.64) 

This can be rewritten by considering low temperatures and using a single effective 

Debye temperature E> 0 (XmREnZp) according to 

(4.65) 

where E> 0 (X mREnZ P) is an effective Debye temperature which refers to the partial 

De bye temperatures E> x , E> RE and E> z associated with X, RE and z atoms in a 

given compound. m, n and p are the number of atoms per mole. 
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For further simplifications it is assumed, that all atoms in the crystal have the same 

mean-square displacement. It follows that 

(4.66) 

where M x, M RE and M z are the molar masses of X, RE and z atoms. Identifying 

the coefficients of the f3 terms in equation (4.64) and (4.65) leads to the following 

relationship between all Debye temperatures 

m+n+p m n p 

[E>o(XmREnZp)f = [E>x]3 +[E>RE]3 + [E>z]3 (4.67) 

It is assumed, that by replacing RE with another RE' element the partial Debye 

temperatures of the X and z atoms are not modified. The corresponding effective 

Debye temperatures of both compounds are related by 

I 

- E> o(X mREnZ P)- [m (M x )2/3 +n (M~E )2/3 +m (M z )2/3 ]3 
Psca/e - E> D (X mRE~Z p)- m (M X )2/3 +n (M RE )2/3 +m (M z )2/3 (4.68) 

This renormalisation ratio Pscare provides the correction factor for the C P versus T 

curve by which the nonmagnetic compound must be multiplied in order to obtain 

the lattice contribution of the magnetic compound under investigation. This factor 

has been calculated for the magnetic compounds considered here in [ 4.2] and is 

tabulated in Table 4.1 

Table 4.1: Renormalisation parameters of the lattice specific heat of Pd2Luln to obtain the 
phonon blank for some of magnetic Rare Earth compounds [4.2] 

Holmium Erbium Ytterbium 

P scale 1.012 1.009 1.002 
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4.7 Summary 

The heat capacity C of a system can be written as 

a2 a2 
Cp = Cv +-VT =-VT+Cet +Ctar +Cm 

Kr Kr (4.69) 

C P = "/T + fJT 3 + Cm for small T 

considering contributions due to the free electrons, the crystal lattice, magnetic 

momentum and the crystal field. 

Except for low temperatures where T << E> D, the phonon contribution to the 

specific heat dominates that of the electron gas. For non-magnetic compounds and 

temperatures less than approximately E> D /10, the phonon contribution falls off 

rapidly as r and the electronic contribution becomes a significant contribution to 

the measured specific heat. By plotting experimental data in the form Ctff versus 

r the two contributions can be isolated. Considering a model of free conducting 

electrons, the values of y (the extrapolated intercept of the graph at T=O) and f3 

(the slope) can be obtained from which the Fermi and Debye temperatures can be 

calculated. Substituting TF into equations (4.48) and (4.49) the density of states at 

the Fermi level can be derived. 

For magnetic materials, the electronic contribution can be obtained like for non­

magnetic materials. However, the phonon blank can be estimated by the 

measurement of specific heat of an isomorphic nonmagnetic compound and by 

normalising the data using the ratio of the effective Debye temperatures of the 

compounds considered. 

Knowing the heat capacity of the material obtained by measuring and deriving the 

electronic and phonon heat capacities as described above, the magnetic 

contribution to the specific heat can be calculated using equation (4.69). 

The change in the internal order of a magnetic material as it passes through the 

transition temperature may be clearly displayed by plotting experimental data in 

the form C P versus T. A sharp peak at the transition temperature is typical of a 

second order phase transition and is associated with the disappearance of long­

range magnetic order. The small contribution of the magnetic specific heat just 

above the transition temperature arises from the presence of residual short-range 

magnetic order [4.6]. 
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5 CALORIMETER DESIGN AND AUTOMATION 

5.1 Introduction 

Heat capacities have been measured using a variety of experimental methods. In 

this work the "heat pulse method" is being used since bigger samples c~ 1g) can be 

investigated. In this work a calorimeter based on the Nernst heat pulse method is 

used. 

The specific heat measurement apparatus was originally designed by W. A. Hussen 

[5.1] within the scope of his PhD thesis and further improvements are implemented 

by M. J. Parsons within his PhD thesis with the help of J. W. Taylor and B. Dennis 

[5.2]. In order to increase the system's accuracy and temperature stability the 

sample temperature sensor was recalibrated and a new heater was added. This 

change in the calorimeter set-up is accompanied by a rewriting of the control 

software, using new temperature control parameters as well as new calibration data 

for the temperature sensors and the heat capacity of the empty calorimeter. 

5.2 Adiabatic Calorimetrv 

For the determination of the specific heat the method of adiabatic calorimetry was 

used. Adiabatic calorimetry involves injecting a known quantity of energy into the 

sample and measuring its response in terms of a temperature variation. In the heat 

pulse method, the heat energy is supplied with constant power for the heat pulse 

time. The sample temperature is measured before and after the heat pulse is 

applied. The heat capacity is derived from the ratio of the heat input to the 

temperature rise. 

C=llQ 
llT 

(5.1) 

From observing the sample temperature before and after the heating period, 

respectively pre-drift and post-drift (Figure 5.1), the rate of heat flow from the 

sample to the surrounding system can be estimated and incorporated into the 

calculation of llT. Due to the design of the calorimeter9
, the temperature 

measured during the heat pulse is slightly different from the actual temperature 

across the sample. 

9 The sample temperature sensor is placed close to the edge of the sapphire plate, so while 
heating, the temperature at the heater is higher then at the sensor position. After the heat 
pulse is applied, the remaining energy dissipates towards the temperature sensor. This 
results in the overshoot observed. See also section 5.3.1 The Calorimeter. 
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To equalise this temperature gradient the system is given a short delay time before 

the post-drift measurement starts. 
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Figure 5.1: Variation of sample temperature during one measuring cycle, schematic 

5.3 Design Overview 

The cryogenic environment is provided by means of a 4He storage Dewar (Oxford 

Instruments Ltd.). This Dewar consists of an outer liquid N2 jacket acting as an 

intermediate cooling stage to the 4He reservoir which provides a sample 

environment down to 4.2 K. A vacuum jacket separates the N2 from the outer 

Dewar wall and from the 4He. 

5.3.1 The Calorimeter 

The calorimeter consists of a sapphire disc of 25.4 mm in diameter and with a 

thickness of 0.5 mm, with a thin chromium heater on the side below. The sample is 

positioned on the disc above the heater by using a small amount (approximately 6 

to 10 mg) of Apiezon N grease. The electrical connection to the sample heater is 

provided by 10 J.lm Gold wire (Goodfellows) and electrical conductive paint (RS 

Products Ltd.). The temperature of the sapphire plate and the sample is measured 

by a CERNOX™ temperature sensor (Lakeshore™; model: CX-1050-SD; serial 

number: SN X05304). The sensor is attached at the bottom of the plate using GE 

7031 low temperature varnish. The set-up is shown schematically in Figure 5.2. 

The ensemble is situated within two copper radiation shields aimed at minimising 

thermal response time. The outer shield is a copper can, on which copper wire has 

been wound. The wire acts as a shield heater. A second heater placed on top of the 
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copper can. Temperature control of the outer shield is provided by means of 

another CERNOX™ sensor (Lakeshore™; CX-1050-SD; SN X06942) situated on the 

upper flange. The calorimeter is suspended from the outer 4 He bath by a stainless 

steel can which can be evacuated down to pressures of approximately 10·6 mbar, to 

minimise the heat transport by convection. 

A cross-section of the calorimeter is shown in Figure 5.3. 
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Figure 5.2: Schematic of the sample system, a) underside view, b) top view [5.2] 
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Figure 5.3: Cross-section of the calorimeter 
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5.3.2 Temperature Measurement 

The temperature is determined by measuring the resistance of the CERNOX™ 

temperature sensors and calculating the temperature using calibration data. 

Setting, measurement and control of the temperature of the shield inside the 

calorimeter and measuring of the temperature of the sample is carried out by using 

a LakeShore Cryotronics, Inc. TEMPERATURE CONTROLLER MODEL DRC-93C. The 

temperature controller also contains a 9318C RESISTANCE INPUT CARD and an 

additional 8229 SCANNER CONVERSION OPTION. The DRC-93C is connected to a 

PC via a MODEL 8223 RS-232C INTERFACE. 

The TEMPERATURE CONTROLLER MODEL DRC-93C is operated in RESISTANCE 

MODE, the 9318C RESISTANCE INPUT CARD in the CONTROL INPUT mode. The 

shield sensor X06942 is connected to channel A while the sample sensor X05304 is 

connected to channel B. A schematic picture of the data flow is shown in Figure 5.8. 

The DRC-93C is an analogue controller. Its current variability has four ranges. 

Within each range there are 54 independent values. The supply voltage across the 

sensors is maintained at 10.5 millivolts. To do so, the 9318C RESISTANCE INPUT 

CARD has to alter the supply current. 

To eliminate the resistance of the wiring of the sensor connection cable, the 

resistance is obtained in a four-lead measurement scheme. 

~------------------V­
~------------------1-

Figure 5.4: Four-Lead Sensor Connection 

5.3.3 Sensor Calibration 

CERNOX™ temperature sensor model CX-1050-SD have a negative temperature 

coefficient over a wide temperature range. These thin film sensors offer a small 

package size and low weight, which leads to a small sensor heat capacity to 

minimise addenda heat capacity. Furthermore, these sensors are easy to mount in 

packages designed for excellent heat transfer [5.3]. LakeShore™ offers a series of 

CERNOX™ temperature sensors with different characteristics. The sensor model CX-

1050-SD was found to have the highest sensitivity over the whole temperature 

range covered by the calorimeter. 
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Figure 5.5: Typical Resistance and Sensitivity values for CERNOX™ Sensors [5.3] 

The sensor X06942 has a known temperature response. To calibrate the sensor 

X05304 both sensors are placed next to each other (near the heater on the shield). 

A set temperature <~ set resistance) as well as the temperature control settings 

(PID10 and heater current setting) is sent to the controller. When the system is 

stable, the values for the resistance of both sensors are obtained. 

The system is considered stable, if the temperature drift is smaller then 2SmK/min 

for at least 100 seconds for temperatures below 80K and temperature drift smaller 

than SOmK/min for at least 200 seconds for temperatures above 80K. 
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Figure 5.6: Sensor Resistance Calibration 

10 See section 5.4 Shield Temperature Control 
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The data of the shield sensor temperature response is interpolated using a cubic 

spline interpolation method [5.4]. Using the shield - sample sensor resistance 

calibration in addition to the known temperature response of the shield sensor, the 

resistance versus temperature curve of both sensors can be obtained. 
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Figure 5.7: Resistance response with respect to temperature of shield and sample sensor 

5.3.4 Interfacing 

The automation is based around a PC with a Pentium processor running at 90 MHz. 

Communication with the temperature controller (Lakeshore MODEL DRC-93C) and 

digital voltmeter (DVM, Selfcal Digital Volt Meter 1271, Datron Wavetek) is made 

using an IEEE-488 interface. The IEEE-488 is an instrument bus with hardware and 

programming standards designed to simplify instrument interfacing [5.5]. The 

current source is built in-house. Any instrument on the interface bus has at least 

one of the three operating states: talker, listener or controller. Both, the 

temperature controller and the DVM can operate In either a talker or a listener 

mode, as data are being sent to or being read from these devices. The PC acts as a 

controller in that it designates to the devices on the bus, which function are to be 

performed. All instruments are connected in parallel to allow transfer of data 

between all the devices on the bus. Further details are given by Parsons [5.2] 
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Figure 5.8: Layout of equipment and data acquisition pathways [5.2] 

5.4 Shield Temperature Control 

The shield temperature control has a significant impact on the measurement of the 

specific heat. The shield temperature is to be chosen in such a way, as to minimise 

influence on the sample. 

It was found that if the shield temperature is stable at a given value, the sample 

temperature settles with time at a value slightly below the shield temperature. 

Therefore, in preparation for one specific heat measurement cycle, the shield 

temperature is set slightly above the starting temperature. This will almost 

eliminate the pre-heat drift. While performing a specific heat measurement run, the 

shield temperature has to be raised from the previous set point to a new value. The 
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aim is to reach the target temperature as fast as possible. At the same time, it is to 

ensure that a possible overshoot in shield temperature (which can cause 

instabilities in the sample temperature) is minimised. This is achieved by using the 

feedback control system of the TEMPERATURE CONTROLLER MODEL DRC-93C. 

5.4.1 Feedback Control 

Feedback is the process of measuring the controlled variable (here temperature) 

and using that information to influence the value of the variable, to be controlled, in 

this case the shield heating power [5.6]. 

Reference 
lnp ut 
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Input Outpu 

Controller Procs~~ 
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Figure 5.9: Block diagram of a process with a feedback controller 

In the Model DRC-93C this is realised by the PID-technique. 

The Proportional-Integral-Derivative {PID) control was first described by Callendar 

et al. [5.7]. It is developed in order to control processes which are not only highly 

complex but also non-linear and subject to relatively long time delays between 

actuator and sensor. Today, PID controller is the most common by used control 

algorithm. Most feedback loops are controlled by this algorithm or minor variation 

of it [5.8]. 

The control equation for the PID algorithm has three variable terms, a proportional 

(P), and integral (I) and a derivative (D) term. The equation that is used in the 

Model DRC-93C to alter the heater output is given by: 

Heater Output= P [e + .!_ J e dt + D de] 
I dt 

(5.2) 

where e is the error, which is defined as the difference between the setpoint and 

feedback temperature. 

Error (e) = Setpoint- Feedback Reading (5.3) 
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Every system requires its specific PID settings. Changing these variables for best 

control is called tuning (see also section 5.4.3 Tuning PID Parameter). The different 

impacts of these three parameters will be discussed in the following sections. 

5.4.1.1 Proportional (P) 

The proportional term, also called gain, scales the heater output in proportion to 

the error on the setpoint and must have a greater value than zero for the control 

loop to operate. 

Heater Output (P )= P e (5.4) 

If one only uses proportional feedback control, P can be either chosen 

a) too high, which will lead to an oscillation of the temperature around the setpoint 

. . • • • • • . • • • . • • . • _setpoint 

-1---------------- Time 

Figure 5.10: P only (too high} 

b) too low, which results in a smooth curve forT 
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Figure 5.11: P only (too low} 
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c) at the optimum. In that case, the system stabilises after a few damped 

oscillations. 
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Figure 5.12: P only 

However, even with P set to its optimum, with only proportional feedback control, it 

is not possible to stabilise the system at the setpoint. The reason for it is that, if the 

system temperature is equal to or higher than the setpoint, the error is zero and 

therefore the heater output is zero as well. Therefore, the system is cooling down. 

If P is too high the control will respond too rapidly and the heater output is 

significantly larger than the cooling rate and T overshoots. This will result in an 

oscillation of the system temperature around the setpoint. The temperature of any 

stable state, where the heater output is equal to the cooling power of the 

surrounding, is lower than the setpoint. 

5.4.1.2 Integral (I) 

The integral term, known as reset, integrates the system temperature error over a 

pre-set time period. 

Heater Output (1 )= P ~ f e dt (5.5) 

The main function of the integral action is to make sure that the process output 

agrees with the setpoint in the steady state. If the error is zero, the integral 

component will have a constant output. The integral setting is proportional to the 

period of oscillations or time constant of the cryogenic system. If this time constant 

is determined, I can be estimated. 
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setpoint 
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Figure 5.13: P & I 

5.4.1 .3 Derivative (0) 

The rate, as what the derivative is also entitled, acts on the change in error with 

time to get its contribution to the output. 

de 
Heater Output= P D­

dt 
(5.6) 

By reacting to a fast changing error signal, the derivative can work to boost the 

output when the setpoint changes quickly, reducing the time it takes for 

temperature to reach the setpoint. It can also see the error decreasing rapidly 

when the temperature nears the setpoint and reduces the output for less 

overshoot. The derivative term can be useful in a fast changing system. In steady 

state control, it is often turned off because it reacts too strongly to small disturbers. 

Like the integral term, it is related to the time constant of the system. 

setpoint 

~---------------------------------- Time 

Figure 5.14: PID 
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5.4.2 Heater Power Range 

In addition to the PID control parameters, the heater current can be altered. The 

Model DRC-93C provides five different current settings labelled R1 (min) to R5 

(max), which correspond to a heater output multiplier of, 10-4
, 10-3

, 10-2
, 10-1 and 1 

respectively. Selecting the appropriate heater current will be disamed in 5.4.3 

Tuning PID Parameter. 

5.4.3 Tuning PID Parameter 

Since in general there is only little information provided concerning system's 

properties with respect to temperature, finding the optimal PID settings is done by 

trail and error. For estimate the best control settings one aims to find the balance 

between reaching the set temperature as fast as possible (to minimise total run 

time) while minimising the overshoot. In addition to the PID control parameters, 

heater rang is the main control parameter. It multiplies the heater power which is 

to calculate using equation (5.2). It was found that if the multiplier was chosen too 

high, for example range R3 at 85K the overshoot was enormous. On the other 

hand, when chosen too low, for example R2 at 150.2 K the shield temperature did 

not reach the setpoint. In fact, the shield temperature dropped. The appropriate 

heater current multiplier was found to be 

R1 for T < 14 K, 

R2 for 14 K < T < 88 K and 

R3 for 88 K > T. 

Following the "textbook procedure" for manually tuning PID parameters (see [5.5], 

[5.6], [5.7] or [5.8] for example), an appropriate value for P has to be found first, 

for which the system temperature settles after a few oscillations just below the 

given setpoint. Then, an integral setting is to be chosen, which corresponds to the 

period of the observed oscillations. Finally, the derivative parameter can be found 

which is also connected to the time constant of the oscillation. 

However, the particular system under consideration does not behave as it is 

predicted from textbooks. The effect of P only is investigated for T = 150.2 K and 

shown in Figure 5.15. Even for maximum value of P (P99) the system does not 

oscillate, instead it settles after an overshot. This behaviour is due to the pre 

selected heater output range. Therefore, the proportional and integral parameter 

combination had to be estimated (see Figure 5.16). As a first guess P45 (as a value 

a little below half the scale) and 110 are chosen. Since the shield temperature 

oscillates around the setpoint, they seam not to be totally off. In order to lower the 

overshoot a smaller proportional parameter is set for the second run. To study the 



Calorimeter Design and Automation 48 

effect of I, it is set to half of the previous value (P30 IS). The overshoot did not 

respond as rapidly as it was expected. For the next run, the priority was given to 

the new integral setting, I3, and P set to P40. The result of this combination of 

parameters seemed promising, as a smaller overshoot and damped oscillation of 

the shield temperature was observed. Obviously, in this case, the important 

parameter is I, so it was lowered again by one. The value of P was kept unchanged 

(P40 I2). The response of the shield temperature to these parameters is nearly 

perfect and the overshoot and the temperature drift are within the range of the 

stabilisation criteria 11
• Thus, the values of P and I approached are considered to be 

appropriate. From the manual [5.5] it is suggested, that the value for the derivative 

should be of the order of I/4. This leads to P40 I2 DO.S. The effect on the setting of 

the shield temperature is to produce an overshoot, which is slightly higher than for 

D=O. Therefore, P40 I2 DO is taken as the final PID parameter setting for 

temperatures around 150.2 K. 

Optimisation procedures similar to the one described above are carried out for a 

series of temperatures, namely for 12.5K, 85 K and 150.2 K, shown in Figure 5.18, 

5.17 and 5.16. For temperatures in-between, the PID parameters were estimated 

by interpolating. The fine-tuning was carried out for temperatures points separated 

by 5 to 10 degrees. 

11 see paragraph 5.5.2 Preparation Phase 
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5.5 Software 

In order to run continuous measurements and due to long duration of the 

measurement, it was essential to automate the data acquisition. The software was 

originally written by Parsons and Taylor [5.2]. It was further modified for the 

purpose of this investigation. The software for the control of the calorimeter was 

written in Microsoft QuickBasic 4.50. 

For economical reasons, it is possible to use Nitrogen instead of Helium as cooling 

liquid for temperatures above rv80K. Since the cooling power is different for each of 

the two cooling liquids, the necessary temperature control parameters alter. 

Therefore, two nearly identical programs were written with temperature control 

parameters appropriate to the temperature range under consideration. The low 

temperature version covers the temperature range from 4 K to 100 K cooled with 

liquid Helium, while the high temperature version uses liquid Nitrogen and ranges 

from 77 K up to 210 K. The overlap of rv20 K is considered to be sufficient to prove 

smooth transition between both data sets obtained. 

Due to the different tasks, the program is divided into four separate sections. These 

are described in the following. A flow diagram representing the data acquisition 

program is presented in Figure 5.19: The construction of the data acquisition 

program. 

5.5.1 System Set-up Phase 

This is the initial phase of the program. The communication to the measurement 

devices checked. This involves declaring input and output of the DVM, current 

source as well as the temperature controller. Sample characteristics such as name, 

weight, molar mass and grease mass are recorded. Also within this pre-run phase, 

the operator is asked for the initial experimental run parameters including, 

temperature range, initial heating current, heating time and drift time. Finally, the 

recording files are declared and their headers are written (which include the sample 

characteristics). 

5.5.2 Preparation Phase 

Prior to the measurement phase, communication to the peripherals is initialised. 

Run parameters like heating current and heating time are defined. The shield 

control phase begins with writing set-point and PID parameters to the temperature 

controller. The set-point is chosen between the starting temperature of the sample 

before the energy input and the excepted finishing temperature. The shield is 

considered stable, if the shield temperature is within the range of set-temperature 
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± 0.1 K and the temperature drift is smaller than ±SO mK/min. As the computer 

waits for the shield to become stable, it is checking the shield temperature every 20 

seconds and determine the drift for that period. If the observed shield temperature 

and drift are within the predetermined limits, than the shield is considered stable 

passes. Five passes in a row are required for the continuation to the sample 

preparation phase. 

The sample catch-up routine allows time for the sample temperature to stabilise. It 

is considered stable if the temperature drift is smaller than ± 25 mK/min. This 

criterion is checked every 20 seconds and has to be fulfilled for 60 seconds before 

the program starts the measurement phase. 

5.5.3 Measurement Phase 

In Figure 5.1 the variation of the sample temperature during one measuring cycle is 

presented. To determine pre- and post-heat temperature a drift time is given the 

system. During this time interval, the sample temperature is measured every two 

seconds. 

At the start of this part of the program, the computer timer is reset, so all calls to 

the timer are made with respect to this starting time. After the pre-drift period the 

heat pulse is supplied. While heating, the heating current and voltage are measured 

frequently. As noted before, the temperature measured at the sample sensor 

position is still rising for a short time after the end of heat pulse. A delay time, 

which depends on sample properties and on the shield temperature, is implemented 

to allow temperature to equilibrate throughout the sample, sample holder and 

temperature sensor. 
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Figure 5.19: The construction of the data acquisition program 
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5.5.4 Analysis Phase 

The analysis routine calculates the energy input ll.Q into the sample system, the 

temperature rise ll.T and the heat capacity C( T)of the system. 

The energy input into the sample system is evaluated by averaging the heater 

current I and heater voltage U and multiplying it by the heating time ll.T. 

(5.7) 

In order to compute the sample temperature rise, the drift curve data is subjected 

to a linear regression fit. Prior to this, the time t scale is normalised to have the 

reference point at the middle of the sample heating phase. Thus, the intercept of 

the pre- and post-drift extension of the fits at t=O yields the pre- and post-heating 

sample temperatures. The change in temperature is determined as the difference 

between pre- and post-heating temperatures. 

(5.8) 

This allows to estimate the temperature rise while correcting for any heat loss. The 

gradient of the linear regression is a measure of this heat loss and it is used as an 

indication for obtaining the appropriate delay time. The heat capacity of the sample 

system is calculated as the radio ll.Q I ll.T (equation (5.1)). 

The heat capacity is then corrected by subtracting the heat capacity of addenda and 

grease (see also sections 5.6.1 and 5.6.2 respectively), to obtain the sample heat 

capacity. Finally, the specific heat of the sample material is put onto an absolute 

scale by normalising the sample heat capacity using the ratio of molar mass divided 

by sample mass. The temperature to which this value of the specific heat 

corresponds to is taken to be temperature midway between pre and post heating 

temperatures. 

Cp(T)= C(T) M (5.9) 
m 
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5.6 Heat Capacity of the Calorimeter 

The heat capacity of the sample system contains in addition to the sample heat 

capacity other contributions from all additional components to the calorimeter, such 

as the grease, used to mount the sample. The values of these contributions can be 

determined separately. There are then subtracted from the total heat capacity of 

the sample system to extract the heat capacity of the pure sample. 

5.6.1 Addenda 

The addenda consists of a sapphire plate, the sample heater, the sample 

thermometer (CERNOX™ temperature sensor model CX-1050-SD, SN X05304) and 

the Apiezon N high vacuum grease (see also Figure 5.2). Because the heat capacity 

of the grease depends on the amount of grease used for mounting the sample, it is 

discussed separately in the next paragraph (5.6.2). 

The heat capacity of the remaining addenda is shown in Figure 5.20 for the 

temperature interval [4, 210] K. The absence of any saturation for temperatures up 

to 210 K is a result of the high Debye temperature of sapphire. This contributes to 

the minimisation of the addenda heat capacity at low temperatures. 

The addenda heat capacity in the temperature range of the low temperatures 

version of the control software is fitted by a polynomial fit of the order of 9, 

represented by 

9 

C Addenda = L AnT n 
i=O 

(5.10) 

The coefficients of this fit are given in Table 5.1. The deviation of the measured 

Addenda heat capacity from the fit is shown in Figure 5.21. 

The data are nearly equally spread around both sides of the zero line, indicating 

that the fit is reasonable. The spread also indicates the resolution of the 

measurement. 

In order to fit the curve using a polynomial regression for temperatures from 80 K 

to 210 K, the graph is do be divided into sections, which fitted individually. To avoid 

such fractionating, the data where interpolated using a cubic spline fit [5.4]. 

The addenda heat capacity at a given temperature can be calculated as described 

and the obtained value is subtracted to eliminate the addenda contribution to the 

heat capacity measured. 
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Figure 5.20: Addenda Heat Capacity without Grease 

Table 5.1: Polynomial Coefficients, equation (5.1 0), representing the Heat Capacity of 
the Addenda forT [4, 1 OO]K, units [J/K] 

Parameter Value 
2.6895 10-4 

-2.44017 10-5 

2.13087 10-5 

-1.98211 10-6 

9.84904 10-8 

-2.71518 10-9 

4. 72425 10-11 

-5.02856 10-13 

2.95372 10-15 

-7.29039 10-18 

Standard Deviation: 7.9448110-4 

0.003 

a: 0.002 

~ 
C) 0.001 
~ 
E" o 
C) 

.::: 
6 -0.001 
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Figure 5.21: Deviation of the Addenda Heat Capacity from Polynomial Fit 
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5.6.2 Apiezon N High Vacuum Grease 

Apiezon N high vacuum grease is used to provide good thermal contact between 

the sample and the sapphire disk. Its heat capacity is widely reported in the 

literature ([5.9] to [5.13]). Although the amount of grease used is small ( < 10 mg) 

its contribution is significant, especially in the region above 200 K where specific 

heat anomalies are present. 

For temperatures below 80 K, the polynomial equations and coefficients published 

by W. Schnelle et al. [5.13] is used. Above 80 K, especially in the temperature 

range where the specific heat anomaly is observed, because of the greater number 

of data points published by Bunting et al. [5.9], this data is used. The data obtained 

by Bunting where interpolated using a cubic spline interpolation. 

Specific Heat of Apiezon N high vacuum grease 

Bunting J.G. et al., Cryogenics 9 (1969) 385 
4.0 

~ 
3.5 W. Schnelle et al., Cryogenics 39 (1999) 271 

3.0 

2.5 ........ -~ 
t!n 2.0 -...... 

J ........ 
c. 1.5 

(.) 

1.0 

0.5 

0.0 
0 50 100 150 200 250 300 

Temperature [K] 

Figure 5.22: Specific Heat of Apiezon N high vacuum grease 
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5. 7 Copper Standard 

By using a sample whose thermal properties are well known, the accuracy of the 

calorimeter can be investigated. The heat capacity of pure copper (99.995%, 

Johnson and Mathey) is measured over the temperature range from 4 to 210 K. 

The result is shown in Figure 5.23. The data obtained are in good agreement with 

previous investigations, for example see work by Martin [5.14]. 

Copper is a nonmagnetic material. If the low temperature data are within the 

Debye model of the heat capacity (see section 4.2.2 ff), then the data should be 

well represented by equation (4.61) 

(5.11) 

where yr is the conduction electron contribution and {3T 3 represents the phonon 

contribution to the specific heat. The low temperature data for T < 14 K are 

presented in the form Cp/T vs. T2 in Figure 5.24. 
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Figure 5.23: Specific Heat of Copper, Solid Line: D. L. Martin [5.14] 
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Figure 5.24: Low Temperature Specific Heat of Copper, 
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A least square linear regression of the low temperature data plotted in the form 

Cp/T vs. T2 reveals the coefficient of the conduction electron contribution to the 

specific heat y = (0.694±0.139) mJ/(mol K2
) and the coefficient of phonon 

contribution ~ = (0.0469±0.0013) mJ/(mol K4
). From the slope ~ of the graph in 

Figure 5.24, the low temperature approximation to the Debye temperature can be 

calculated using (4.39). 

(5.12) 

where R is the molar gas constant. This leads to a Debye temperature of Copper of 

e D (0) = (346± 3) K. Even though, e D is slightly higher than expected, the values 

obtained are in reasonable agreement with those, given in the literature and 

presented in Table 5.2. 
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Table 5.2: Comparison of the experimental specific heat coefficients of Copper 

y [mJ/(mol K2
)] 8 D (0) [K] Reference 

0.694±0.139 346±3 this work 

0. 723±0.012 341±1 Parsons [5.2] 

0.505 343 Kittel [5.15] 

0.688±0.5 343.8±0.5 Corak et al [5.16] 

315 Ashcroft [5.17] 

Because the Debye result (4.37) is viewed more general than a rough interpolation 

formula, the practice arose of fitting observed heat capacities with (4.37) by 

allowing E> D to depend on temperature. The thermal dependence of the Debye 

temperature of Copper is shown in Figure 5.25. 

As expected, at lowest temperatures e D (T) approaches the value of e D (0) . A 

minimum is observed at approximately TIE> D (0):::::: 0.9 after which e D (T) I e D (0) 

rises to a plateau. Such a temperature dependence of the Debye temperature is 

generally observed in several metallic and non-metallic elements [5.17]. 
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Figure 5.25: Debye Temperature as a Function of Temperature 
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5.8 Summary 

The design and automation of a calorimeter based on the Nernst heat pulse method 

was discussed. The working of the control software was described. The 

contributions to the measured heat capacity from the empty calorimeter and 

Apiezon N high vacuum grease were pointed out and their values estimated to 

isolate the heat capacity of the sample. 

To test the functioning of the calorimeter, the specific heat of a well known 

element, in this case Copper, was measured. The specific heat of Copper obtained 

from the measurement is in reasonable agreement with theoretical models and the 

various coefficients from the models are comparable with those given in the 

literature. 

The spread of data points around the polynomial fit of the Addenda heat capacity 

gives an indication of the accuracy of the calorimeter. 
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6 SAMPLE PREPARATION AND 

CHARACTERISATION 

6.1 Sample Preparation 

65 

Samples were prepared by the repeated melting of the appropriate quantities of 

starting elements in an argon arc furnace. The furnace was built in house and 

consists of a small chamber, a water-cooled copper table and a tungsten-electrode, 

which is also used to flip the samples before re-melting. All starting materials were 

of a purity of at least 99.95% and placed on the furnace table in reverse order to 

their melting temperature. 

The system was flushed at least 5 times with argon and than left under an argon 

atmosphere with a pressure of "'0.2 bar. To remove any remaining oxygen 

Titanium is melted for "'1 min using the arc. If the Titanium is still shiny after 

melting, the atmosphere is considered clean. The cold copper table prevents the 

melting of the bottom of the sample thus avoiding copper contamination. All 

samples were melted at least 4 times and furnace cooled. From each compound, 

the weight loss after melting is listed in Table 6.1. While melting Pd2Ybln, the 

sample exploded, which caused the huge weight loss. 

From each sample, an approximately lg piece was cut off by spark erosion for the 

specific heat measurement. The rest was crushed into powder with a grain size 

smaller than 100 J.lm using a steel pestle and mortar. Both, powder and specific 

heat samples were annealed for "'4 days at 800° C and quenched in ice water with 

the exception of the Pd2Ndln sample which was slow cooled for 13 hours. 

Table 6.1: Sample Preparation and Structur 

Weight Weight Sample weight Structure Literature 
loss after for specific heat 
melting measurement 

Pd2Laln Sample by Babateen [6.1] P63 /mmc P63 /mmc [6.2] 

Pd2Celn 5g 0.03% P63 /mmc 

Pd2Ndln lOg 0.27% P63 /mmc 
-

Pd2Holn 5g 0.91% 1.10890g Fm3m F m3m [6.3] 

Pd2Erln lOg 0.55% Fm3m F m3m [6.3] 

Pd2Ybln 5g 6.64%* 1.1309g Fm3m F m3m [6.3] 

Pd2Luln 5g 1.04% 0.7649g Fm3m F m3m [6.3] 

*The weight loss is caused by a sample explosion while melting. 
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6.2 X-Ray Diffraction 

In order to resolve structural details of a crystal lattice, the wavelength of the 

observation radiation (X-ray, electrons, neutrons) must be of the order of the 

lattice parameter or smaller. 

X-ray radiation is located at the high-energy end of the electromagnetic spectrum. 

It can be classified according to its wavelength 

- X-rays with a wavelength between 0.12 Ji. (Ji.ngstn21m) and 1.2 Ji. are called 

"hard X-rays" 

- X-rays with a wavelength between 1.2 Ji. and 12 Ji. are called 

"intermediate X-rays" 

- X-rays with a wavelength between 12 Ji. and 120 Ji. are called "soft X-rays" 

Since the lattice parameters of the investigated materials are of the order of a few 

Ji.ngstn,m, as reported by Babateen [6.1] and Xue [6.2], intermediate X-rays were 

used. 

6.2.1 Experimental Set-up for X-ray Diffraction 

The X-ray diffraction measurements are made using a powder diffraction set-up 

employing a standard Philips X-ray source. A broad focus PW2 103/100 copper 

radiation tube is used in conjunction with a PW 1050/25 goniometer. A proportional 

detector PW 1965/20/30 is fixed on the diffractometer axis. The X-ray system is 

remotely controlled by a PC, using the software package Sietronics PW1050 

diffraction automation SIE 1220. The X-ray tube is powered using a voltages of Ux 

= 40 kV and a current of Ix = 20 mA, it emits Cu Ka12 radiation. The Cu Kp radiation 

component was suppressed by the use of a nickel filter. As a result of using the Cu 

Kat·Ka2 doublet, reflection peaks split, especially for higher angles. The scans are 

performed such, that the beam hits the sample surface under an angle ~ while the 

detector is placed at an angle 2~ with respect to the transmitting beam. Sample 

and detector are moving by a preselected angular step, keeping the ratio ~ 1 2~ 

constant. The exposure time for each step is constant. Scans are performed in the 

range 20°< 2~ <85°. In order to obtain the lattice parameter, the diffraction 

patterns are analysed using Fu11Prof13
, a computer program for structure profile 

refinement. 

12 wavelengths Aa1 = 1.540562 A (Ka1) and Aa2 = 1.544390 A (l<ra) respectively 
13 Version 3.5d Oct98-LLB-JRC by Juan Rodriguez-Carvajal, it has been initiated by the 

program of Wiles & Young, J. Applied Cryst. 14, 149 (1981) 
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Beam 

Figure 6.1 : X-ray Set-up, schematic 

Since the samples are mounted on an aluminium holder, for some patterns 

diffraction of aluminium are observed. 

Aluminium (AI) has a face-centred cubic (fee) unit cell, with space group symmetry 
-

Fm3m. To identify reflections of the aluminium holder in the X-ray diffraction 

pattern of the investigated materials, a scan of the empty holder was performed. 

The diffraction pattern is shown in Figure 6.2. The lattice parameter obtained from 

the Aluminium holder reflection is given in Table 6.2. 

Table 6.2: Lattice parameter of the Aluminium 

Lattice Parameter [.8.] Literature [.8.] 
(FuiiProf) [6.31 

Aluminium Holder 4.0507±0.0007 4.0488 

X-ray diffraction pattern of the empty Aluminum holder 
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Figure 6.2: X-ray pattern of the empty holder {Aluminium) 
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6.2.2 Structure of Pd2[Heaw Rare Earthlln Alloys 

The basic formula for the structural determination of a material from diffraction 

peaks is the Bragg' law: 

A= 2dhkl sin(n) (6.1) 

where A is the wavelength of the radiation, 2tJ the detector angle of the reflecting 

planes with Miller indices (hkl) and dhkl is the separation of two parallel lattice 

planes with equal indices. For cubic lattices dhkl can be calculated as 

2 d2 ___ a __ _ 
hkl - h2 +k2 +12 

(6.2) 

where a is the lattice parameter. Therefor, for cubic samples, (6.1) can be written 

to 

(6.3) 

The atomic scattering factor f is a property of the elements. The structure factor is 

the collection of all the waves scattered by the individual atoms of one unit cell. It 

is given by 

N 

F ""' E 2·n-i-(h·u +k·v +l·w } 
hkl=,L.;Jn"e n n n (6.4) 

n=l 

where the summation is carried out over all atoms of the unit cell. (hkl) are again 

the Miller indices of the reflecting plane, un, vn, wn are the positions of the nth atom 

in the unit cell and fn its atomic scattering factor. The exponential term describes 

constructive and destructive interference of the scattered waves of the individual 

atoms. The total intensity of a peak, specified by (hkl), is proportional to !Fhkl· 

As shown by M.O. Babateen [6.1], Pd2[RE]In containing heavy Rare Earth metals 

are Heusler alloys at room temperature. Heusler alloys are ternary intermetallic 

compounds, at the stoichiometric composition X2YZ [6.5]. The Heusler L21 structure 

can be considered to composite of four interpenetrating fee sublattices with atoms A 

(X), B (Y), C (X) and D (Z) at locations (0, 0, 0), (114, 114, 114), (Y2, Y2, Y2) and (3.4, 3.4, 

3.4) respectively (see Figure 6.3). 
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• 0 • EB 
A B c D 

Figure 6.3: L21 Heusler alloy structure 

The Heusler L21 structure is the ordered version of Heusler alloys. Heusler 82 is a 

disordered version with the elements Y and Z being randomly placed at the lattice 

sizes 8 and D. 

The structure factor is given as 

F _ 4 . (J + F • em(h12+k12+112) +f. . em(h+k+l) + F • em(3hl2+3kl2+3112)) 
hid- A JB C JD ' (6.5) 

In Pd 2 [RE]In Heusler L21 alloys, the A and C sites are occupied by Pd atoms, the 8 

sites by the Rare Earth atoms and the D sites by In atoms. Therefore, equation 

(6.5) can be investigated for different sets of lattice planes: 

1. h,k,l are all odd: (6.6) 

2. h,k,l are even and (h+k+l)/2=2n+l: Fhkl =412/Pd -(!RE+ / 1JI (6.7) 

3. h,k,l are even and (h+k+l)/2=2n: (6.8) 

The reflections described in case three are called "principal reflections". They are 

independent of chemical order and occur at the same positions and with the same 

intensities in the patterns of both, ordered (Heusler L21) and disordered 

(Heusler 82) alloys. The principal reflections have generally the highest intensities. 

For Heusler 82 alloys these are the only reflections observed. 
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Figure 6.4: Pd2Luln X-ray diffraction pattern 
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The lattice parameters for these alloys are obtained by solving the Bragg equation 

for cubic lattices (6.3) and by refining the diffraction pattern using FuiiProf. 

Table 6.3: Lattice parameter for Pd2[Heavy Rare Earth]ln Alloys 

Lattice Parameter Lattice Parameter Literature 
[.8.] [.8.] (FuiiProf) [.8.] 

Pd2Hoin 6.687±0.090 6.7014±0.0005 6.685±0.012 [Babateen] 

Pd2Erin 6.682±0.076 6.6855±0.0003 6.668±0.005 [Babateen] 

Pd2Ybin 6.643±0.084 6.646±0.001 6.618±0.011 [Babateen] 

Pd2Luin 6.635±0.067 6.6350±0.0004 6.692 [Parsons] 

6.2.3 Structure of Pd2[Light Rare Earthlln Alloys 

Following B.Xue et al. [6.2] Pd2Lain crystallises in the hexagonal GdPt2Sn structure 

with symmetry P63 /mmc (space group No. 194 [6.4]). This is an ordered version 

of the TiAs structure, with fractional atomic co-ordinates given in Table 6.4. 

Table 6.4: Atomic Positions of Pd2Laln 

Wyckoff Notation X y z 

Palladium (Pd) 4(f) 1/3 2/3 0.57732 

Palladium (Pd) 4(f) 2/3 1/3 -0.57732 

Lanthanum (La) 2(c) 1/3 2/3 1/4 

Indium (In) 2(a) 0 0 0 

For hexagonal crystals the Bragg-equation (6.3) has to be rewritten to 

. 2( ) ..1? ( 2 2) A? 2 sm tJ =--
2 

• h +h·k+k +--
2 

·l . 
3·a 4·c 

(6.9) 

According to "International Tables of Crystallography" [6.4], the reflection 

conditions for alloys with such symmetry are 

1. l = 2n or 

2. h-k=3n+l or (6.10) 

3. h- k = 3n + 2 . 

The structure factor Fhkt can be written as 

F _ f e211i(ht3+2kt3+lz) + f e211i(2ht3+kt3-lz) + f e211i(ht3+2kt3+114) + f 
hid - Pd Pd In In (6.11) 
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Taking the symmetry of the crystalline structure (P6 3 /mmc) and the atomic 

positions for Pd2Laln (Table 6.4) a picture of the unit cell is drawn, see Figure 6.12 . 

• 
• 

• 

The crystalline structure of Pd2Laln (Xue [6.2]) was also applied to Pd2Celn and 

Pd2Ndln. The lattice parameters were obtained by calculation and by refinement 

using FuiiProf. 

Table 6.5: Lattice parameter for Pd2[Light Rare Earth]ln Alloys 

a [.8.] c [.8.] A [.8.] (FuiiProf) c [.8.] (FuiiProf) 

Pd2Laln 4.6445(7) 9.3542 ( B.Xue et al [6.2]) 

Pd2Laln 4.641±0.096 9.33±0.36 4.6490±0.0004 9.362±0.001 

Pd2Celn 4.631±0.109 9.21±0.29 4.6273±0.0004 9.198±0.001 

Pd2Ndln 4.605±0.109 9.05±0.30 4.609±0.002 9.067±0.004 
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6.3 Conclusion 

Concluded it can be stated, that the structure of all Pd2[RE]In alloys investigated is 

solved and the lattice parameter obtained are in good agreement with those values 

given in the literature. In the diffraction patter of Pd2Hoin only the principle 

reflections occurs while the diffraction pattern of Pd2Erin, Pd2Ybin and Pd2Luin 

show additional reflections of planes corresponding to reflection conditions 

described as case 1 and 2, section 6.2.2. Therefore, Pd2Erin, Pd2Ybin and Pd2Luin 

are Heusler L21 alloys while Pd2Hoin is a Heusler B2 alloy. Since no other peaks 

except those expected arise and the back ground is low, the alloys are considered 

single phase and of high purity. 

The diffraction pattern of those alloys having hexagonal structure show, although 

most of the peaks are identified, a few peaks which are of small magnitude and are 

not recognised. These may be due to impurities or an additional phase. 
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7 MEASURMENT OF SPECIFIC HEATS OF SOME 

Pd2[RE]In ALLOYS 

7.1 Specific Heat of Pd2Luln 

The specific heat of Pd2Luin is measured from 4 K to 210 K, shown in Figure 7.1. 
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Figure 7.1: Specific Heat of Pd2Luln 

Hence Pd2Luin is a non-magnetic material, the specific heat is given by 

for small T (7.1) 

where CP = Cv. 

The contributions due to the conduction electrons and the crystal lattice vibration 

can be separated by plotting the experimental data in the form Cp IT versus r (see 

section 4.6.1) which is presented in Figure 7 .2. With the intercept y and slope f3 

of least square linear fit of the data, the Fermi TF and the Debye eD temperatures 

can be calculated using equations (4.49) and (4.39). 

(7.2) 

(7.3) 
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The y value is also directly related to the density of states at the Fermi surface 

(from equation (4.48)) by 

(7.4) 

The results are shown in Table 7.1. 
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Figure 7.2: Low Temperature specific heat of Pd2Luln, in the form CpfT vs. T2 

Table 7.1: Low Temperature Properties of Pd2Luln 

Pd2Luln Literature 

y [ mJ/(moi*K2)] 10±5 10±1 [7.1] 

TF [K] ~16'000 

D(e F) [states I f.u.* eV] ~1.1 

f3 [ mJ/(moi*K4
)] 1.19±0.03 

8 D [mor 113*K1
] 187±3 194±1 [7.1] 

*formula ynit 

In the following specific heat of Pd2Luln is used as the phonon blank in the analysis 

of the specific heat measurement of other Pd2[RE]In alloys. Therefore, the data in 

the temperature interval 4 K to 70 K are fitted by a polynomial fit of the order of 6. 

Figure 7.3 shows the quality of the fit. The data are nearly equally spread around 

both sides of the zero line, indicating that the fit is reasonable. The spread also 

indicates the resolution of the measurement. 
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Figure 7.3: Deviation of the experimental data from the polynomial fit for Pd2Luln 

7.2 Crvstal Field Excitations in Pd2Ybln 

The specific heat of Pd2Ybln was been measured within the temperature interval 

4 K to 200 K, shown in Figure 7 .4. 
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Figure 7.4: Specific Heat of Pd2Ybln 
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Figure 7.5: Specific Heat of Pd2 Ybln 

The solid line Indicates the fit for Pd2Luln multiplied with P scale. 

Clearly, the data for Pd2Ybin remains in excess of that for Pdzluin over the 

temperature range measured, indicating a magnetic contribution to the specific 

heat exists. The magnetic contribution is illustrated in Figure 7.7. 

7.2.1 CEF Level Scheme 

The ground state configuration of the 13 4/ electrons of the Yb3+ ion is given by 4/ 
2F712 with a total angular momentum 1=7/2 (3.7). According to LLW [7.2], when 

placed in a cubic crystal field, the 8-fold degenerated ground state is expected to 

split into a ground state quartet with two excited doublets as given by 

(7.5) 

Therefore, two crystal field transitions are predicted. However, neutron scattering 

measurements reported by Babateen [7 .3] indicate only a single transition due to 

the crystal field excitation14 at approximately 6.5 meV with no further transitions 

observed up to an energy transfer of 20 meV. The reason for this can be that either 

the two energy levels are too close to each other and therefore can not be 

separated by inelastic neutron scattering or that the most energetic CEF level is 

beyond the measured energy transfer range measured, in this case 20 meV. The 

two possible scenarios of CEF level schemes are presented in Figure 7.4. 

14 further on called crystal field transition for simplicity 
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7.2.2 CcEF of Pd2Ybln 
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Figure 7.6: Possible CEF level schemes for Vb3
+ in Pd2Vbln, 

from neutron measurements [7.3]. 

To investigate the nature of this contribution, the magnetic specific heat is being 

calculated, in case A, for the thermal responds of the crystal field transitions of a 

ground sate quartet with two exited doublets at 6.2 meV and 7.4 meV respectively 

shown in Figure 7.7 as a dashed line and in case B for a ground sate quartet with 

only one exited doublet at "'6.5 meV and a second doublet above 20 meV, shown in 

Figure 7.7 as a dotted line. Since the energy gap between the ground sate quartet 

and the second exited doublet in case B is large compared to the thermal energy of 

the investigated temperature range, possible electron transition are unlikely for low 

temperatures and therefore these transition is neglected in the calculation of the 

magnetic specific heat of Pd2Ybln at low temperatures. 

As illustrated in Figure 7.7, the exposed magnetic heat capacity of Pd2Ybln 

corresponds more likely to a crystal field level scheme as described in case A, 

where two exited doublets are located at 6.2 meV and 7.4 meV above a ground 

sate quartet then to case B. The Schottky peak occurs with a magnitude which is 

slightly to high but still comparable to that calculated but at temperature 

approximately 24 K which is 7 K to low. 
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Figure 7.7: Magnetic specific heat of Pd2Ybln. The theoretical contribution of the CEF 
level scheme in Case A (dashed line) and B (dotted line), as illustrated in 
Figure 7.6, are given. 

7.3 Crystal Field Excitations in Pd2Holn 

The specific heat of Pd 2Holn is been measured within the temperature interval 5 K 

to 35 K shown in Figure 7 .8. 
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Figure 7.8: Specific Heat of Pd2Holn. The solid line is the corrected fit for Pd2Luln 
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7.3.1 CEF Level Scheme 

Holmium has 10 4! electrons with total orbital angular momentum L=6, a total spin 

S=2 and total angular momentum 1=8 (see (3.9)). The 17-fold degenerated ground 

state is expected to split up in the presence of a cubic field according to LLW [7.2] 

as followed 

(7.6) 

Figure 7.9 shows the CEF level scheme for Pd2Holn, obtained from inelastic neutron 

scattering measurements [7.3]. 
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Figure 7.9: CEF level scheme for Ho3
+ in cubic Pd2Holn, from [7.3] 

7.3.2 CcEF of Pd2Holn 

The magnetic specific heat of Pd 2Holn is isolated by subtracting the phonon specific 

heat, Pd2Luln corrected by Pscale, from the measured specific heat. The magnetic 

heat capacity of Pd2Holn is shown in Figure 7.10. 

Again, the data for the magnetic capacity respond in shape and magnitude to the 

calculated curve but an offset is observed. 
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Figure 7.10: Magnetic specific heat of Pd2Holn. The theoretical contribution of the CEF 
level scheme as illustrated in Figure 7.4, is given. 

7.4 Discussion 

The curves of the magnetic specific heats of Pd2Holn and Pd2Ybln are above the 

calculated values. Therefore, it was assumed that a general error in the 

measurement might influence the result. On the other hand, the specific heat of 

Copper obtained corresponds well with previous results. Thus, it appears that the 

only possible error, which both magnetic specific heats have in common, must arise 

from the phonon contribution namely the specific heat of Pd2Luin. 

Therefore, from the measured heat capacities of Pd2Holn and Pd2Ybln the heat 

capacities of the grease, the addenda and the calculated magnetic contributions are 

subtracted to obtain the theoretical phonon heat capacity. The results are 

normalised to obtain the specific heat of Pd2Luin. The outcome is plotted in Figure 

7.11. The graphs reveal that the specific heat of Pd2Luln calculated from Pd2Hoin 

and Pd2Ybin are almost identical while the value of measured specific heat of 

Pd2Luin is significantly lower. 

Since the two independent measurements of the specific heats of Pd2Holn and 

Pd2 Ybln come to the same result for the specific heat of Pd2Luin using the two 

different crystal field level scheme of Pd2Holn and Pd2Ybin it is assumed that the 

offset in the magnetic specific heats of Pd2Hoin and Pd2Ybin is coursed by an 

incorrect specific heat of Pd2Luln measured. 

Therefore, the crystal field level scheme of Pd2Holn and Pd2Ybln obtained from 

inelastic neutron scattering measurements by Babateen [7 .3] can be confirmed. 
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Specific Heat of Pd2Luln from different measurments 

70 

60 

50 -~ 
!!.. 
Q .s 40 -::2. 

~ u 
~ 30 c. 
~ u -~ Q) 20 :r: 

10 

0 
0 10 20 30 40 50 60 70 

Temperature [K) 

Figure 7.11 :The Specific Heat of Pd2Luln measured (diamonds), calculated from the 
Specific Heat of Pd2Ybln (solid line) and calculated from the Specific Heat of 
Pd2Holn (dashed line) 

For very low temperatures, T < 10K, the measured and calculated specific heat of 

Pd2Lu!n seam to be equal. Therefore, the obtained values for y and 8 0 are assumed 

to be correct. 

The reason for the measured specific heat of Pd2Lu!n being to low is assumed to be 

found in the sample size. 

While the post-heat temperature is measured during the post-heat-drift time, the 

sample system loses energy to the calorimeter, since its temperature is higher. For 

samples of approximately 1 gram and a difference in sample- and shield­

temperature of less than 1K, the cooling rate is of the order of 10-3 K/sec. For 

smaller samples, here Pd2Luin with 0.7649g, this gradient is of the order of 

10-2 K/sec, schematically demonstrated in Figure 7.12. This leads to a higher post­

drift temperature. The effect does not occur when measuring the pre-heat-pulse 

temperature since the sample is given time to stabilise before measuring the heat 

capacity at a certain temperature (see section 5.5.2 Preparation Phase). 

Consequential a higher temperature rise is assumed, equation (5.8). 
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Therefore, if the sample is too small, the temperature taken as the post-drift 

temperature is too high and thus !J.T is too large. Since the heat capacity is inverse 

proportional to the temperature rise (equation (5.1)), the heat capacity obtained is 

smaller than the actual value. 
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Figure 7.12: The effect of the sample weight on the post-heat temperature. 
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8 SUMMARY AND OUTLOOK 

This thesis is a summary of the work done by the author during the period 

2000-2001 in the Department of Physics, Loughborough University and under the 

guidance of Dr. K.-u. Neumann. It was aimed to improve the performance of the 

instrument used to measure the specific heat of solids and to make statements on 

the crystal field level scheme of the 4/ electrons of some Rare Earth metals in 

Pd2[RE]In alloys. 

Placed in a crystal lattice, the degeneracy of the degenerated ground state of the 

Rare Earth 4/ electron levels is lifted partially. The crystal field level scheme of the 

Pd2[RE]In alloys under consideration was obtained from inelastic neutron scattering 

by previous works. The exited CEF levels become populated if temperature is 

increase from OK. This contribution to the specific heat was isolated for Pd2Ybln and 

Pd2Holn. 

To improve the shield temperature responds a new heater was installed. Therefore, 

the shield control parameter had to be refined. To improve the accuracy of the 

measurement, the sample temperature sensor was recalibrated, new Apiezon N 

grease heat capacity data and new Addenda heat capacity data were obtained. 

Furthermore, to acknowledge the possibility to use different cooling liquids the 

control software was rewritten. 

X-ray diffraction measurements were performed to characterise the samples 

prepared such as Pd2[RE]In (RE = Ce, Nd, Ho, Er, Yb, In, Lu). It reviled the so far 

unknown structure of Pd2Celn and Pd2Ndin. 

To complete the studies of the thermal properties of Pd2[RE]In alloys in future 

work, the specific heat of those materials which were not investigated in this work 

needs to be measured. In order to obtain the magnetic specific heat, it is 

recommended to prepare a larger Pd2Luin sample. 

It is suggested to replace the LakeShore Cryotronics, Inc. TEMPERATURE 

CONTROLLER MODEL DRC-93C by a later model since most of the unctr"t~~s, 
shown for example in Figure 5.21 and Figure 5.23, especially Hgh 

temperatures, arise from the circumstances, that the 9318C RESISTANCE INPUT 

CARD alters the supply current in steps to maintain the supply voltage across the 

sensors. Newer models do not work in that way. For further detail see section 5.3.2 

Temperature Measurement and the Lakeshore manual [5.5] 




