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Abstract 

Compounds with the general composition Ni2+xMnl_xGa belong to the 

group of ferromagnetic shape memory alloys. These materials have 

recently attracted a considerable amount of interest due to their potential 

for applications. Ferromagnetic shape memory alloys, in contrast to 

conventional shape memory materials, offer the possibility to initiate a 

change of shape with the application of an external magnetic field of 

modest magnitude in addition to shape changes induced via a shift in 

temperature. 

In this thesis the magnetic and crystallographic properties of 

Niz+xMnl-xGa alloys are investigated within the range 0 < x < 0.17. 

Structural investigations using both X-ray as well as neutron scattering 

have been carried out. The low temperature phase has been determined 

and structural information has been obtained within the transition region 

for the first time. Magnetic properties have been investigated using a 

SQUID magnetometer within the temperature range of T = 2 K to 360 K 

and using magnetic fields up to 5.5 Tesla. The locations of phase 

transitions were investigated using DSC and resistivity measurements for 

both heating as well as cooling. The . composition dependence of the 

martensitic and ferromagnetic transition temperatures have been 

confirmed. The first order nature of the martensitic phase transformation 

has been confirmed in DSC, magnetisation and resistivity measurements. 
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• S. Becker, P.J. Brown, B. Dennis, K Frohlich, T. Kanomata, M. Matsumoto, 
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K.R.A. Ziebeck, lnt. J. Appl. Electrom. Mech., Proceedings of 1 st INABIO, Sendai, 

Japan, 2004, (submitted for publication) 

• K. Frohlich, B. Dennis, T. Kanomata, M. Matsumoto, K- U. Neumann, 

K. R. A. Ziebeck, lnt. J. Appl. Electrom. Mech., Proceedings of 1 st INABIO, 

Sendai, Japan, 2004, (submitted for publication) 
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2) Introduction 

Ferromagnetic shape memory. materials (SMM) have recently attracted 

considerable interest as they are promising candidates for several new and 

exciting applications e.g. in medicine. The interest in shape memory 

alloys (SMA) arises due to their ability to remember the shape which they 

have had at higher temperatures after having been cooled down below the 

martensitic transformation tempe~ature TM and deformed. As indicated 

above the material undergoes a martensitic phase transformation. Huge 

changes in the lengths of cell parameters occur at this transformation. 

Although the lattice constants change there is almost no change in the 

volume of the unit cell [1]. The martensitic phase transformation is a 

1 st order phase transition and it is fully reversible. Furthermore for 

materials of composition NhMnGa the phase transformation can be 

cycled many times without a degradation of the sample, even for bulk 

material and single crystals [2]. 

Compared to ordinary shape memory alloys ferromagnetic SMAs have 

the advantage that the martensitic phase transformation may be controlled 

by the application of an external magnetic field. This yields a wider range 

of possibilities for applications, for example in the area of medicine, 

where a change of temperature is not always feasible. This is the case for 

a device which has been implanted inside a patient. Here a magnetic field 

of modest magnitude could be used for switching such a device. 

Furthermore since temperature changes are intrinsically slow a change of 

the external field can affect a form change much faster than a martensitic 

phase transformation driven by a change of temperature. 
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In this thesis ferromagnetic SMAs of composition Nh+xMnl-xGa 

(0 < x < 0.2) will be discussed. Ni2MnGa was first discovered by Webster 

et al. [3]. The structure of pure Ni2MnGa, the various phases occurring as 

a function of temperature and the magnetic properties have recently been 

clarified by P. J. Brown et al. [4]. The phase diagram of Nh+xMnl_xGa 

with increasing Ni-content in the region of 0 < x < 0.2 has been 

determined by Matsumoto et al. [5]. With x increasing the martensitic 

transition temperature increases and the magnetic transition temperature 

decreases. They merge for x = 0.18. 

Magnetisation measurements, differential scanmng calorimetry (DSC) 

and electric resistance measurements have been carried out on samples of 

composition Nh+xMnl_xGa (x = 0.05, 0.10, 0.17) to determine the 

martensitic and magnetic transition temperatures. X-ray and neutron 

diffraction experiments have been undertaken in order to investigate the 

structure of the alloys at different temperatures and investigate the 

martensitic phase transition. 

A brief, and simplified, description of the shape memory effect will be 

given next in an attempt to illustrate the main features. The description is 

aimed at indicating the important characteristics for the experimental 

investigations which form the basis of this thesis. 
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2.1) The Shape Memory Effect and the Martensitic Phase 

Transformation 

As discussed in the prevIOus section materials exhibiting the shape 

memory effect are able to remember the shape they have had prior to a 

deformation. The necessary condition for the occurrence of the shape 

memory effect is the presence of a martensitic phase transition. The 

characteristic of this kind of crystallographic phase transition is that it is 

diffusionless. Large changes in the unit cell are taking place but at the 

same time there are no changes in the volume of the unit cell. This feature 

distinguishes martensitic materials from other materials with 

crystallographic phase transitions. Figure (2.1) illustrates how the shape 

memory effect is being used in industry for an application in 

telecommunication. Here the shape memory alloy has been trained to be 

in the form of an antenna to be used on a satellite. 
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Martensitic alloy in wire form 

is used to create the desired 

form, e.g. an antenna. The 

form is 'trained' by heat 

treating at high temperatures. 

t 
~ 

t 
• 

Heat 

The shape of the antenna is 

fully recovered once the 

transformation is completed. 

This is the case whenever all 

parts of the wire have 

attained a temperature above 

the martensitic phase 

transition temperature. 

When heat is inputted into 

the system and when the 

temperature is raised above 

the martensitic phase 

transition temperature the 

material remembers its 

original shape (i.e. the form 

of the antenna) and reverts 

back to this form. The form 

transformation does not 

require the input of force 

from any external source. 

Below the martensitic phase transition temperature the antenna can be deformed 

(e.g. it can be compressed into a small volume for transport into outer space) and 

stored in a satellite. This form is stable as long as the temperature is kept below the 

martensitic phase transition temperature. 

Figure 2.1 

Illustration of the behaviour of a shape memory alloy in a practical application. Here the 

use of a shape memory alloy as an antenna for a satellite is being considered. It has the 

particular advantage of allowing transport in a compact form and then, in outer space, it 

enables a form change without the need for motors. The illustration is taken from [2, 6]. 
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The principle of the shape memory effect is illustrated in figure (2.3). The 

mechanism is described using a two-dimensional unit cell. At high 

temperatures the structure is considered to be represented by a square unit 

cell, as shown in figure (2.2a). As the temperature is lowered below the 

martensitic phase transformation temperature T M, the crystallographic 

structure changes. The unit cell deforms to become rectangular, figure 

(2.2b). This happens either by shrinking the top and the bottom part and 

simultaneously extending the left and right sides of the unit cell or vice 

versa, i.e. by shrinking the left and right hand side and simultaneously 

extending the top and bottom part of the unit cell. Thus at low 

temperatures two crystallographic domains develop. 

D 
Figure 2.2a 

Unit cell of the high 

temperature 'square' 

phase 

domain 2 

D
~ .................. ~ ~ high temperature phase 

~- i-------t --: domain 1 
I; ; I~ 

:! i ~ 
I! ! I 

:-- ~------~- -: 
l ...................... ...I 

Figure 2.2b 

Low temperature 'rectangular' phase. The rectangle 

can be deformed by either elongation of the square 

to the left and right (dashed rectangle) or, 

alternatively, to the top and bottom (dotted 

rectangle). 

In principle, different parts of the crystal will develop into different 

crystallographic domains. The various domains are expected to occur 

with equal probabilities. In the low temperature phase the "material may 

be deformed by the application of a force. The force causes the 

crystallographic domains to align. As the change of the unit cell 
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parameters may be large, a redistribution of crystallographic domains 

yields a macroscopic change of shape. If the temperature is kept below 

T M this form change is permanent and the domain distribution is stable. If 

the material is heated above T M it remembers the shape it has had before 

and it reverts back to its original form. This occurs as all rectangles revert 

back to their cubic form, which is independent of the orientation in the 

low temperature marten si tic phase. 

DD 
BB T 

force~ 

Figure 2.3 
lllustration of one possible transformation mechanism for shape memory 

alloys. Within the low temperature (martensitic) phase the applied force is 

able to change the crystallographic domain distribution. Thus a macroscopic 

change of shape occurs. If the deformed material is warmed up again above 

the martensitic phase transition and the material reverts back to the square 

shape the sample is changed back to its original form. The illustration is 

taken from [2]. 

This simple model illustrated some essential features of SMAs. In order 

to understand the shape memory effect in NhMnGa alloys it is important 

to establish the structural aspects of the alloys as well as details in the 

transition region, i.e. for T close to the martensitic phase transition 

temperature T M. 

-6-
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3) Theoretical Background and 

Experimental Set-up 

3.1) Sample Preparation 

Samples have been prepared using the following procedure: High purity 

metals of 3N purity have been used for preparing alloys of composition 

Niz.17Mno.83Ga, Niz.IOMnO.90Ga and Nh.osMnO.9SGa. The ingredients were 

weighed out with a precision of 0.00001 g. They were melted under a 

reduced atmosphere in an argon arc furnace. The weight loss after 

melting for each compound is listed below: 

Comuosition weight loss samllle size 

Nh.1 7MnO.83Ga 0.13 % 20g 

Nh.lOMnO.90Ga 0.52% 109 

Nh.osMno.9SGa 1.10 % 109 

Table 3.1 

Part of each ingot was powdered to a grain size of less than 250 Jll11 • Both 

the powder and the remainder were annealed for 4 days at T = 800 QC 

under a reduced argon atmosphere and subsequently quenched into ice 

water. 
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After heat treatment a small piece in the form of a long thin bar was spark 

eroded from the solid part of the ingot of Nh.17MnO.83Ga and polished. 

The sample dimensions were determined to (24.27 ± O.Ol)mm for its 

length, (0.97 ± 0.01 )mm for its height and (2.20 ± 0.01 )mm for its width. 

The bar was used for resistivity measurements. 

Specific heat measurements were carried out using differential scanning 

calorimetry both for powder samples and polished plates which had been 

spark eroded from the solid ingot. The details are given later in the 

appropriate chapter. 

The annealed powder was used for structural investigations using X-ray 

diffraction experiments as well as for magnetisation measurements. In 

addition to the sample of Niz.17MnO.83Ga listed in table (3.1) a second 

sample ofNh.17MnO.83Ga prepared earlier has been used for magnetisation 

experiments. The conditions of the preparation of this sample were 

identical to the conditions described above in terms of weighing, melting 

and powdering. The weight loss for this sample was less than 1 %. The 

heat treatment was different as it was heat treated for 5 days at 

T = 800 QC. After annealing it was quenched into ice water. 

Neutron diffraction experiments were carried out on a sample of 

Nh.17MnO.83Ga heat treated for 2 days at T = 800 QC and quenched into ice 

water. The weight loss of this sample was less than 1 %. 
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3.2) Experimental Techniques 

The experimental techniques used for the investigation of the SMAs 

Ni2+xMnl-xGa have been electrical resistivity, specific heat using 

differential scanning calorimetry, magnetisation measurements as well as 

structural investigations using both. X -ray diffraction and neutron 

scattering. 

In the following section the physical background of the vanous 

techniques used for this thesis is presented. Particular emphasis is placed 

on the structural investigations and on magnetisation measurements. 

3.2.1) Resistivity 

Background 

If a conductor IS connected to leads with an electrical potential 

difference U (measured in Volt V) an electric current I (measured in 

Ampere A) will flow. The current is proportional to U. The factor of 

proportionality is the electric resistance R (measured in Ohm Q). This 

quantity is a measure of the ability of a material to conduct an electrical 

current. The relationship is given by Ohm's law: 

U=R·I. (3.1) 

The electrical resistance depends on the material properties and on 

geometric factors. For example for a uniform rectangular bar R depends 

on the length L and the cross section A. 
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L 
R=p­

A' (3.2) 

The value p is called the resistivity or specific resistance. The resistivity 

is a characteristic of the material. It is sensitive to atomic and magnetic 

disorder, strain and band structure effects [1]. Resistance can be thought 

of as arising due to friction of electrons as they flow to equalise the 

potential difference. Electrons scatter because of deviations of atoms (or 

magnetic moments) from a periodic structure. Deviations of the nuclear 

structure (phonons, atomic disorder, dislocations, strain) or the 

arrangement of magnetic moments (spin waves, magnetic defects) make a 

contribution to the electric resistance. With changes in the electric 

resistance as a function of temperature it is possible to identify structural 

or magnetic phase transitions. Therefore a change in slope of the 

resistivity may be connected to a change in the crystallographic or 

magnetic structure of the material being tested. 

Experimental set-up 

The resistivity of Nh.17Mno.83Ga was measured using the conventional 

four-point niethod as shown in figure (3.1). The sample is situated on a 

non-conducting sapphire plate in an evacuated space. The set-up is 

located on the cold finger of a displex (a closed cycle He-gas cooling 

device). A heater and a temperature sensor are connected to the sapphire 

plate. External leads are connected to the wire of the sample: 2 leads for 

the electric current and 2 leads for measuring the voltage drop across a 

known length of the sample. The current, which is flowing through the 

sample, and the voltage across the sample were determined using an 

ammeter and a voltmeter. Power was provided by a dc power supply. In 

order to eliminate contact voltages and thermal emfs the current direction 
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was reversed. The voltage drop across the sample was obtained as the 

appropriately average voltage for both current directions. 

Experimentally the electric resistivity was determined as a function of 

temperature. In general measurements were carried out while heating as 

well as cooling. This allows the investigation of hysteretic properties for 

phase transitions of 1 st order. 

Figure 3.1 

The schematic set-up of the four­

point-resistivity measurement. The 

outer connections are the current 

leads and the inner connections are 

the voltage probes. 
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3.2.2) Specific Heat 

The determination of the specific heat, or heat capacity, of a material 

enables phase transitions to be identified and to obtain information on the 

properties (e.g. lattice vibrations) of the material. Phase transitions 

manifest themselves as anomalies in the specific heat. At higher 

temperatures the "background" level of the specific heat, as provided by 

lattice vibration or magnetic contribution, will be a slowly varying 

function of temperature. Their contribution is described using some 

simple models such as the Einstein model or the Debye model for the 

lattice contribution to the specific heat. First the phenomenological 

description of the specific heat, and its connections to entropy SeT), is 

briefly described. Thereafter the Einstein and Debye models will be 

introduced, before the theory of differential scanning calorimetry 

measurements is presented. 

Definition of heat capacity and specific heat 

Adding an infinitesimal amount of heat dQ to a macroscopic system 

usually results in an infinitesimal change in temperature dT. This gives 

rise to a value called "heat capacity" c as the ratio of added heat to 

temperature rise. 

dQ 
c=-

dT· (3.3) 
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The specific heat C = ~ ~; is defined as the heat capacity per unit 

volume or per unit mass or per mole, where N is the appropriate number 

of units [2]. One has to distinguish between the heat capacity at constant 

volume and the heat capacity at constant pressure. This will be indicated 

in the formula using a subscript V (constant volume) or P (constant 

pressure). 

Usually the heat capacity of a solid is measured at constant pressure. 

Thus the system is free to expand and thereby does mechanical work. 

This means that part of the heat input is used to do the mechanical work. 

Therefore more heat has to be added to achieve the same rise in 

temperature as compared to a specific heat measurement at constant 

volume: 

C =dU+pdV 
p dT 

(3.4) 

Theoretically the more fundamental entity is the specific heat at constant 

volume since no work is done by the system and all added heat 

contributes fully to the rise in temperature. Therefore a heat input dQ is 

used entirely for increasing the internal energy dU: 

C =dU 
v dT' 

(3.5) 

The difference between these two quantities Cv and Cp is usually small 

for metals. 
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pdV 
Cp=Cv+-­

dT 

(3.6) 

H I (BV). h d· b . ·b·l· d 1 (BVJ . ere KT = -- - IS tea la abc compress1 1 1ty an a = - - IS 
V Bp T V BT p 

the coefficient of thermal expansion. T is the temperature and V is the 

volume of the sample [3]. 

The second law of thermodynamics states that 

dQ=T·dS, (3.7) 

where S is the entropy. Thus it follows that 

(3.8) 

which yields an expression for the entropy itself 

(3.9) 

Contribution to the Heat Capacity 

In general there are three contributions to the heat capacity of a solid, 

which arise from the lattice, the conduction electrons and from magnetic 
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moments ordering [5]. Here the contribution due to the lattice will be 

discussed first. Two approximate models, the Einstein and the Debye 

model, are useful for this purpose. 

Einstein Model 

Consider a crystal lattice. Atoms located at their respective equilibrium 

positions oscillate around the reference points. This motion contributes to 

the specific heat. If one assumes that all atoms vibrate independently of 

one another and with the same frequency then one arrives at the Einstein 

model. It has to be noted that with these assumptions no propagating 

modes exist. Despite this the Einstein model gives a fairly satisfactory 

description of the main features of the specific heat. In the Einstein model 

the thermal energy U of a sample containing N atoms is given by 

(3.10) 

1 
where 1i OJ is the energy of one oscillating atom and the factor (nO)) IS 

e k8
T -1 

the Bose factor. The Bose factor yields the average occupancy of a 

phonon mode in thermal equilibrium at temperature T. The second term 

1 
proportional to 2 nO) arises due to the zero point motion of atoms. This 

contribution is constant and independent of temperature. It vanishes when 

the internal energy is being differentiated with respect to temperature. 
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Since the heat capacity is defined as the derivative of internal energy with 

respect to temperature one arrives at 

(3.11) 

For low temperatures, i.e. nm» 1, the specific heat predicted by the 
kBT 

Einstein model tends to zero. This is in agreement with experimental 

observations. For high temperatures, i.e. nm« 1, the specific heat 
kBT 

becomes temperature independent and constant. It then follows the 

Dulong and Petit value which is 

(3.12) 

The Einstein temperature () Einstein is identified as () Einstein nO). It 
kB 

indicates the point where the Einstein model "begins" to follow the law of 

Dulong and Petit. [2, 5]. 

Debye-Model 

One shortcoming of the Einstein model is the absence of collective 

modes. This is rectified in the Debye model which takes into account that 

oscillators which contribute to the specific heat affect each other. This 
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gives rise to sound waves in a solid. To simplify the model the Brillouin 

zone is approximated by a sphere. Propagating modes are describes as 

OJ=v·k , (3.13) 

where v = Ivl is the sound velocity and k a wave vector in the first 

Brillouin zone. The energy E of the modes is given by 

E=v·k·tz. (3.14) 

If needed the model can be extended to include longitudinal and 

transverse oscillations. The dispersion of sound waves is linear up to a 

cut-off. Waves of frequencies greater than 

(3.15) 

are not allowed [5]. This frequency OJD is called the Debye frequency. 

Here N is the number of unit cells contained in the sample (equal to the 

number of acoustic phonon modes) and V is its volume. The number of 

modes per frequency range is given by the density of states for phonons. 

It is defined as 

(3.16) 

- 18 -



OJ and v are the frequency and the sound velocity as already defined in 

equation (3.l3). The thermal energy due to 3 independent modes of 

vibration is given by 

3VIi WD 0/ u = 2 3 jdm-liw--
21f v 0 TT I eO -

and with the substitution x == lim it follows that 
k8T 

(3.17) 

(3.l8) 

where XD == 1i00D == BD . ~erebY BD = kliV .(6J(;N)~ is called the Debye 
kBT T B 

temperature. Therefore the internal energy can be written as 

(3.19) 

Accordingly the heat capacity is given by 

(3.20) 

At high temperatures, i.e. x« 1, each mode contributes kB to the heat 

capacity [3]. Therefore the high temperature limit of the heat capacity is 

3N
A
k

B
• At low temperatures, i.e. x» 1, the upper limit in the integral 
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XD 4 x 

can be replaced by infinity. Since the integral f dx ( : e ) is a defInite 
o e -l 

integral, it has a constant value. Therefore in the low temperature region 

the heat capacity behaves as r3. In the following fIgure a superposition 

of the Einstein model and the Debye model is shown. The Einstein model 

agrees well with the experimental observation for higher temperatures, 

whereas for low temperatures the Debye model is more appropriate since 

the heat capacity approaches zero as T3 . 

O.B 

coO.6 
"5L 

~ 
z 
ho.4 
o 

0.2 

Figure 3.2 

Einstein model 

0.4 O.B 1.2 1.0 
T T 

2 

A comparison of the specific heat using the Einstein 

and the Debye models. At high temperatures the 

specific heat is normalized to 1. The temperature 

axis is in units of the Debye temperature BD or 

alternatively the Einstein temperature (JEinstein, 

respectively. For the calculation it has been assumed 

that BD = B Einstein . 
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3.2.2.1) Experimental Set-up and Background of the DSC 

Measurements 

DSC is an abbreviation for Differential Scanning Calorimetry. The 

differential scanning calorimetry is a method that determines the heat 

flow to the specimen whilst being heated or cooled using a constant 

heating or cooling rate. The heat flow is determined by comparing the 

heat flow to or from the sample to that of a reference object (which 

exhibits a linear temperature rise and heat input relationship). The sample 

is situated in a standard aluminium pan. The reference object is an empty 

aluminium pan. This procedure ensures that the difference in heat flow is 

only due to the heat that goes into the sample. A sketch of the 

experimental set-up is shown in figure (3.3). 

Figure 3.3 

reference pan soecimen 

UAl ~ 
~~ !::= '-=-=/==:!:!II ~ 

temperature 
sensor "'-heating wire 

Experimental set-up of the DSC. The measurement takes place in an 

isolated environment (a cylinder surrounded by a heating wire). Both 

the reference pan (empty sample holder) and the sample holder 

including the specimen are supplied with an equal amount of heat. A 

temperature sensor measures the temperature difference of the 

reference and the sample holder including the specimen. 
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The heat flow to the sample is determined using the equivalent of Ohm's 

law for heat flow: 

U=R·]. (3.21) 

For electrical transport measurements U is the electric potential and 

] = Q is the electric current. For the case of an ohmic resistance, R is a 

constant. This principle can be translated to the case of heat transport [6]. 

Then the variables are interpreted as 

(3.22) 

Hereby Q is the heat transport, ~ - T2 is the temperature difference and 

Rth is the thermal resistance. The temperature difference ~ - T2 is the 

driving force behind every heat transport. The thermal resistance Rth can 

be determined in a calibration measurement using a substance with well 

known thermodynamic behaviour. 

If TF is the temperature of the furnace, Ts the temperature of the sample 

holder including the specimen and TR the temperature of the reference 

object, the difference in heat flow to the sample and the reference object 

can be rewritten as 

(3.23) 
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Here it is assumed that the thermal resistances are equal for both the 

sample pan and the reference pan and that the temperature of the furnace 

is also the same for sample and reference. Simplifying equation (3.23) 

one arrives at 

(3.24) 

The physical quantity of interest for phase transitions is the specific heat. 

In the sample a phase transition gives rise to a change in heat flow. The 

. dQ . dT 
heat flow Q = - and the heating rate T = - are a direct measure for . 

dt dt 

the specific heat ep according to 

(3.25) 

Once Cp(T) has been determined other quantities, such as the entropy as 

a function ofT, can be obtained using equation (3.8). 

- 23-



3.2.3) Magnetism and Magnetic Moments 

Introduction to Magnetism 

Magnetism arises due to either the motion of an electron or due to the 

spin of the electron. These give rise to a magnetic moment m of a free 

atom. The macroscopic magnetisation M is defined as the magnetic 

moment per unit volume or per unit mass. 

There are three possible contributions to the magnetic moment [5]: 

spin of electrons 

Figure 3.4 

orbital angular 
momentum 

paramagnetic 
contribution from 

unfilled shells 

MAGNETIC 
MOMENT OF A 

FREE ATOM 

change in orbital 
moment induced by an 
applied magnetic field. 

diamagnetic 
contribution 

Before discussing the actual contributions to the magnetisation the 

various types of magnetic response will be briefly described. To 
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distinguish between these different contributions to the magnetic signal 

one can consider the magnetic susceptibility X per unit volume or per 

unit weight (in short: susceptibility). It is defined as 

X =_1 . M (SI units), 
f.1o H 

x = Z (cgs units), 

(3.26) 

(3.27) 

where H is the macroscopic magnetic field (in the following SI units will 

be used). Often the susceptibility is referred to per unit mass or per mole 

(or formula unit) of the substance [5]. 

Diamagnetism 

The susceptibility of a diamagnetic substance is negative and its 

magnitude is very small [4, 5]. Diamagnetism arises from complete 

electronic shells of atoms in response to the application of an external 

magnetic field. It is an induction phenomenon for which the induced 

magnetic moment is oriented antiparallel to the applied magnetic field 

direction. This applies to the orbital currents in complete shells of atoms 

as well as to conduction electrons in metals. For free atoms and insulators 

this is known as Langevin diamagnetism and for metals as Landau 

diamagnetism. The diamagnetic contribution is only detectable if other 

contributions, e.g. those arising due to local magnetic moments, are either 

zero or small (e.g. only arising from impurities). 
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Pauli Paramagnetism 

The conduction electrons of metals give rise to Pauli paramagnetism. 

Here the spin is relevant [5]. If no magnetic field is applied there are as 

many electrons with spin up as there are with spin down in the 

conduction band. Thus there is no net magnetic moment. If a magnetic 

field is applied the electrons receive a small change in energy depending 

on whether their spin is oriented parallel or antiparallel to the applied 

magnetic field. The requirement of a common chemical potential (Fermi 

energy at T = 0) changes the numbers of electrons in the "up" band and 

"down" band. They adjust to equalize the chemical potential for both 

bands. Hence there are more electrons with a parallel than antiparallel 

spin orientation. Thus a net magnetisation results. The macroscopic 

magnetic moment can be described by 

M = X pp • flo H . (3.28) 

The susceptibility Xpp is known as the Pauli paramagnetic susceptibility. 

It is positive and essentially temperature independent. The contribution of 

conduction electrons is three times bigger than the contribution of the 

Landau diamagnetism. 

Paramagnetism 

The susceptibility of a paramagnet is positive. For many substances the 

paramagnetic signal arises due to localised magnetic moments [ 4]. 

Paramagnetism occurs in atoms when the outer shell is partially filled. It 

also arises in metals for which some ions carry a net magnetic moment. 
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If some. inner shells of a metal ion are only partially filled (as for example 

for rare earth ions) there is a permanent magnetic moment. In a magnetic 

field and at finite temperatures these moments are partially aligned with 

respect to the applied field. But at elevated temperatures the thermal 

motion introduces disorder into the magnetic subsystem. Temperature 

randomises the orientation of magnetic moments and, without an external 

magnetic field, the macroscopic magnetisation vanishes: 

- -
M = %p. JtoH. (3.29) 

For small applied fields the magnetisation is a linear function of the 

applied magnetic field H. The susceptibility % p is strongly tempera~re 

dependent: 

(3.30) 

Ferromagnetism of localised moments 

Ferromagnetism is an example of collective magnetism. The following 

discussion focuses on systems with a well defined local magnetic 

moment. For collective magnetism there exists a critical temperature 

below which the magnetic moments are ordered even without an applied 

magnetic field [4, 5, 7]. 

For ferromagnetic substances the critical temperature is called the 

Curie temperature Tc. For T = 0 K all magnetic moments are oriented 
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parallel. With increasing temperature disorder increases. The average 

angle between magnetic moments on neighbouring atoms increases until 

all moments are randomly oriented. The overall magnetisation vanishes at 

Te . Above Te the ferromagnet behaves like an ordinary paramagnet. 

The Magnetic Moment and a Model ora Ferromagnetic Phase Transition 

For this thesis the case of a ferromagnetic sample, namely NhMnGa, will 

be of interest. Therefore it is appropriate to discuss in some detail a model 

for which all relevant entities can be calculated. The model considered 

here is one of magnetic moments of fixed magnitude created by one 

electron per atom. The moments interact with one another within a mean 

field model. Such a model system captures some essential features of the 

actual NhMnGa system to be discussed later. 

The magnetic energy E of an atom in an external field is given by 

E =-M . (PoiI)=-M ·B, (3.31) 

where M is the magnetic moment, H is the magnetic field and 

- -
B = JioH is the magnetic induction. Jio is the vacuum permeability and 

its value is 

7 T·m 
Jio = 4JZ" ·10- --. 

A 

The magnetic moment is given by 

(3.32) 
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(3.33) 

where JiB' the Bohr magneton, is the magnetic moment of a single 

electron. The value of fiB is 

fiB = en = 9.2741.10-24 J 
2m T 

(3.34) 

(or in cgs units: fiB = 9.2741.10-21 erg ). 
G 

g is the Lande factor. For a free atom it is given by 

-1 + J(J + 1)+ S(S + 1)- L(L + 1) 
g- 2J(J+1) 

(3.35) 

Here hS is the spin, hL the angular momentum and the total angular 

momentum 1iJ = hL ± hS . For a free electron g = 2 and L = 0 [4,5, 7]. 

If Sz is the projection of the spin onto the axis of quantisation (which will 

be takes as the z-axis for all calculations carried out in this thesis), then 

one can express the magnetic moment with respect to the z-axis as 

M =-1/ ·g·S . 
z rB z 

(3.36) 
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Energy levels 

The energy levels of a system in a magnetic field B may be described by 

modifying equation (3.31): 

E=g·PB·mj·B, 

where m j consists of all values - J, -J + 1, ... ,J -1, J 

and J = L ± S according to Hund's rules. 

(3.37) 

Example: Non-interacting electrons with spin! in a magnetic field B, 
2 

1 
J=L+S=S=-

2 

1 1 
=> There exist two values of mt -1-: +"2' -"2' 

Here "t" indicates that the spin direction is parallel to the 

applied field. 

1 
Et = g. mt · Ps' B = 2 '2,' B· PB = B· Ps , 

E. = gom. °,uB oB = 2{- ~}Bo,uB = -Bo,uB 0 

The effect of applying a magnetic field on the energy levels is 

shown in figures (3.5) and (3.6) [5]. 
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Figure 3.5 

\ 1 

H:;f 0 

Spin --
2 

Splitting of energy levels for one electron due to the 

application of a magnetic field. The magnetic moment is 

opposite in sign to the spin direction. 

E 
1 

Pt = Z .exp(- PJLo .B) 

o M =2PBH 

Figure 3.6 

p), =~.exp(+ PJLo .B) 
Z 

H 

Splitting of energy levels as a function of 

applied field. The occupation probabilities 

Pt and P,J. are also given. 

The entity Z is the partition function and will be explained in the 

following part. Pt,J. are the occupation probabilities of the energy levels 

"up" and "down", respectively. 
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Thermodynamics 

All equilibrium thermodynamic entities can be calculated once the 

partition function of the system is known. For a system of non-interacting 

magnetic moments the partition function is given by 

(3.38) 
v 

1 
Here the sum runs over all energy states v with energy cv' fJ = kT' 

B 

where kB = 1.381.10-23 ~ is the Boltzmann constant [3]. For a spin ~ 

system and an external applied field B equations (3.31), (3.36) and 

(3.38) yield an explicit expression for the partition function: 

1 
+-

2 
Z = L e-p·g·,uB·Sz·B = e-P·,uB·B + eP·,uB·B 

S =-.!. 
z 2 

= 2 cosh{fJ· f.lB • B) (3.39) 

With the expression for the free energy F , which is given by 

(3.40) 

the magnetic moment M in an applied field B can be obtained as 
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M =_oF 
Z oB' 

(3.41 ) 

An explicit calculation yields the following expression for the magnetic 

moment: 

(3.42) 

where Moz = g~B is the saturation moment at T = 0 K. This expression 

determines the magnetisation as a function of temperature T and applied 

magnetic field B. For a small argument, that is fiMozB« 1, an 

expansion of equation (3.42) yields the Curie susceptibility as 

MoB Mg M=M =M z =_z B= y.B 
z Oz k T k TA,· 

B B 

With Mg z = 3
1 Mg one obtains for the susceptibility X = M~ . 

3kBT 

(3.43) 

This model is one of non-interacting magnetic moments. For such a 

model the thermodynamics of a system of magnetic moments in thermal 

equilibrium at temperature T can be analysed without problems. 

However, due to the absence of interactions, phase transitions cannot be 

explained within such a model. Next the model is extended to take into 

account interactions between magnetic moments. This is done within a 

mean field approximation. Such a model is able to explain some 
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important features of real systems. The mean field model for interacting 

magnetic moments of spin 1. will be discussed next. 
2 

Interacting Magnetic Moments in Mean Field Approximation 

Magnetic interactions between the microscopic magnetic moments in a 

solid are included in a model description using a mean field 

approximation. It IS assumed that for a given magnetic moment an 

effective internal field exists [5]. This field is proportional to the 

polarisation of the magnetic moments in the immediate neighbourhood of 

the magnetic moment which is being considered: 

- -B. =A·M mt z' (3.44) 

A determines the strength of the interaction. It is also a function of the 

number of nearest neighbours. Taking into account the internal magnetic 

field as well as the external magnetic field, one arrives at 

(3.45) 

This is a self-consistent equation for which a solution can be found either 

numerically or graphically. If there is more than one solution one has to 

take the one which minimises the free energy. Equation (3.45) can be 

rewri tten as 

(3.46) 
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If no external field is applied equation (3.46) can be expressed as 

M z = tanh(mJ = m. 
Moz t 

(3.47) 

M z • h' d' f h Here m = M IS t e magnetIc moment measure III umts 0 t e 
oz 

saturation magnetisation at T = 0 K. It depends on the reduced 

temperature t =; . The identity k sTc == AMg z has been used for the 
c 

calculation. Here T c is the ferromagnetic transition temperature. The 

magnetisation as a function of reduced temperature is shown in figure 

(3.7). Details of the calculation will be discussed below. 

O.s 
El 
§ 
.~ 

Cl) O.e 

°1 
El 04 "0. 
C1.l 

.g 
C1.l 

p::: 0.2 

o 0.2 0.4 O.e o.s 
Reduced temperature t 

Figure 3.7 

The magnetisation as a function of 

temperature. Interactions between 

magnetic moments are taken into 

account within a mean field 

approximation as gIven by 

equation (3.47). No external 

magnetic field is applied. 

This shows that a ferromagnetic phase transition is possible if an 

interaction between magnetic moments is included. For a measurement 

using an external magnetic field equation (3.45) has to be used. 
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For M «Mo the left-hand side of equation (3.46) can be expanded in a 

Taylor series, such that 

. B 
Usmg b = and the reduced variables already employed in equation 

AMoz 

(3.47) and equation (3.48) one obtains 

m3 m5 b+m 
m+-+-+ .... =--. 

3 5 t 
(3.49) 

m5 

Neglecting terms of higher order (beyond 5) equation (3.49) can be 

rewritten as 

2 3 b 1 
m =-·-+3(--1) 

t m t 
(3.50) 

b 3 
For small fields this is a linear equation in - and m2 

• Its slope is - and 
m t 

1 
its intersection with the m2 -axis is 3(- -1) . Since for paramagnetic phase 

t 

the magnetisation is directly proportional to the applied magnetic field, 

the intersection with the ! -axis yields the inverse susceptibility ~. 
m X 

(3.51) 
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=> ~= T-Tc 
X Tc 

(3.52) 

Without using the reduced parameters equation (3.48) can be expressed 

as 

(3.53) 

The inverse susceptibility is then given by 

(3.54) 

Using the en.tity M:. = g' f1~S: = ~ g'f1;S' = ~g' f1~S(S + 1) the inverse 

susceptibility can be represented as 

1 B 3kB (T-TJ 
X = M

z 
- g2 Jl~S(S + 1)" 

(3.55) 

Arrott plots 

The graph of the linear part given by equation (3.53) is called Arrott plot. 

It is named after A. Arrott who developed this method in 1957 in order to 

identify the transition temperature Tc [8]. It is also a valid method to 

determine the magnetic moment m in zero-applied field at T = 0 K. If 

the magnetisation as a function of external applied magnetic field is 
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measured for fixed values of temperature (isotherms), one can plot the 

square of the magnetisation against the ratio of applied field Band 

magnetisation M for each isotherm. The intersection of the linear part of 

the isotherms with the positive !!.-- axis yields the inverse susceptibility 
M z 

for the appropriate isotherm. A plot of the inverse susceptibility against 

temperature enables the magnetic transition temperature T c to be 

identified. 

!=o= 3kB (T-TJ 
X NAJ.iB . g2 S(S + 1)' 

(3.56) 

Here the inverse susceptibility is expressed in terms of the number of 

atoms which are contained in one mole. NA is the Avogadro constant. If 

the extrapolation of the Arrott plots intersects with the positive ~ -axis, 
M z 

the material is in the paramagnetic phase at that temperature. If it 

intersects with the positive M2 -axis, then it is in the ferromagnetic phase. 

For Tc the isotherm of the Arrott plot goes through the origin. Plotting the 

intersections of the linear part of the isotherms with the positive 

M; -axis against temperature yields the spontaneous magnetic moment as 

well as the Curie temperature. 
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Model Solution (or Spin 2. 
2 

A small C++ program was written in order to solve the self-consistent 

equation (3.53) giving the magnetisation M z as a function of 

temperature T, applied magnetic field B and internal magnetic field 

AM
z

• This program can be found in the appendix. The variables have 

been scaled as already introduced in equations (3.47) and (3.49): 

_ M z b- B t=~ 
m- ,- "M I ' T' , Moz /l, z T=O C 

The magnetisation against applied magnetic field is plotted in 

figure (3.8). It can be seen that for temperatures significantly greater than 

Tc the magnetisation only saturates for very high fields. In fact, the 

external applied field B has to be more than 3 times greater than the 

internal field AMoz for temperatures greater than 2.5 times the transition 

temperature Tc. 

e 
= Cl 
~ os 

~ 
= en os 
8 0.4 

'tl .. .-,. 
'tl 
~ 0.2 

o 

Figure 3.8 

0.2 0.4 0.6 

Reduced magnetic field b 
O.S 

2,5· Tc 

Magnetisation curves for isotherms in paramagnetic 

phase as well as in the ferromagnetic phase. They 

have been normalized to 1. 
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At T = 0 K the strength of the internal magnetic field is determined as 

(3.57) 

For a sample with Tc = 360K and spin ! the internal magnetic field is 
2 

evaluated to B
int 

= 536 Tesla. The figure below shows Arrott plots for the 

case of S = .!.. in mean field description as discussed above. The same 
2 

model data points have been used as for figure (3.8). 

T<Tc 

0.8 

T>Tc 

0.4 

0.2 

o 0.2 0.4 0.6 

b/m 

Figure 3.9 

Arrott plots which belong to the 

magnetisation curves shown in figure (3.8). 

The magnetisation B is measured in units of 

the saturation magnetisation Mo. The 

magnetic field is measured in units of the 

internal magnetic field Bint. 
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3.2.4) Powder diffraction 

Introduction 

A crystal can be understood in terms of a three-dimensional lattice. Each 

lattice point is attached to a basis of atoms such that the basis is identical 

in composition, arrangement and orientation for every lattice point [5]. 

Every lattice point is taken to be the origin of a unit cell. A lattice point 

is not necessarily occupied by an atom. However atoms are distributed 

within the unit cell. The crystal is then build up by translations of unit 

cells. The translation vectors are determined by the lattice translations of 

the three dimensional lattice. A unit cell can be identified as the basic 

building block. 

Figure 3.10 

A two-dimensional array of atoms. The straight lines are the 

lattice. The dotted lines mark the unit cell which does not 

necessarily coincide with the lattice. The circles and crosses 

present atoms. 

The choice of a unit cell is arbitrary. Usually there is more than one 

possibility to find a basis which describes the lattice. The only restriction 

for choosing the primitive unit cell is given by the requirement that the 

primitive unit cell contains the smallest possible number of atoms. 
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However, sometimes it is more convenient to choose a larger unit cell 

such that it reflects the full symmetry of the lattice. Independent of the 

choice of the unit cell the atomic arrangement looks the same from every 

lattice point rand "i' which is related to one another by a lattice 

translation: 

-
r'=r+u·Zi+v·b+w·c (3.58) 

Here a, b, c are the fundamental lattice translation vectors which belong 

to the chosen basis and u, v, ware integers. The position of the atoms 

inside the unit cell can be identified with respect to the translation vectors 

a, b, c: 

"i. = x .a + y .b + z .c 
J J J J' (3.59) 

-Here rj is the position of atom j in the unit cell. 0 ~ x j' Y j ,Z j < 1. The 

reference point is taken to be the origin of the unit cell which is being 

considered. 

For a periodic crystal one can identify planes on which atoms are located. 
" 

A plane is usually indexed using "Miller indices" (h k 1). In order to 

obtain these values the intercepts of the plane with the a, b, c -axes of 

the coordinate system need to be determined. The Miller indices are the 

three smallest numbers which have the same ratio as the reciprocals of 

these intercepts. In figure (3.11) an example is shown of the identification 

of Miller indices. 
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Bragg's law 

Figure 3.11 

Identification of crystal planes with 

Miller indices. The shaded plane cuts the 

a - axis at 1, but it does not cut the 

b - and c - axes. Hence the intercepts 

are 1,00, 00 for the a, b, c -axes . 

Evaluating the reciprocals of these 

numbers, one arrives at (1 0 0). These 

are the (h k I)-values for this particular 

plane. 

If a plane wave with wave vector k falls onto one of these crystal 

planes, it will be partly reflected. Part of it penetrates into the crystal and 

is then reflected by parallel planes below the surface. 

Figure 3.12 

Coherent scattering of a wave on crystal planes. The 

distance between the scattering planes is d. The angle of 

the incoming and outgoing beam is e. 

- 43 -



Since for an ideal crystal the distances between the planes are constant 

and of atomic order, ~ 10-8 m, the outgoing waves are coherent and have 

a fixed path difference. Hence interference occurs. For neutrons this can 

be used to determine the magnetic and nuclear structure of a crystal. 

Suppose that a wave is incident onto a crystal such that the angle between 

1 
the plane and the incident beam is () with 0 < f) < 2 J'{. The angle 

between incident and outgoing beam is 2fJ. The path difference 8 

between two waves reflected by two parallel planes is 

6 = 2 ·d ·sine (3.60) 

If the path difference between the interfering waves is an integer multiple 

of the wavelength A, the outgoing waves are in phase and interfere 

constructively. This can be expressed using the formula 

2 . d . sin () = n . A . (3.61) 

Here n is an integer. Destructive interference occurs if the path difference 

2n+1 
between the interacting waves equals 2 A. Equation (3.61) is called 

Bragg's law. The investigation of Bragg reflections enables the crystal 

structure to be determined. Bragg diffraction can be observed using 

powder samples as well as single crystals employing X -ray diffraction, 

neutron scattering or other particles (e.g. electrons). In the following, the 

experimental and theoretical background for the case of powder 

diffraction will be explained in more detail. 
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A powder contains grains with a random orientation. Thus if a beam 

(X-rays or neutrons) falls onto the powder there is no preferred direction 

in which the crystal is oriented with respect to the beam direction. Thus 

in a powder there will always be grains with the correct orientation for 

Bragg reflections to occur. Therefore a single wavelength can be used for 

powder diffraction. The intensity of the reflected beam is then measured 

as a function of scattering angle 2B . The materials of interest for this 

Mn Ga 

Figure 3.13 
The Heusler structure. 

thesis are Heusler alloys. At high 

temperatures, i.e. for T > T M, they 

have the face centred cubic L21 

Heusler structure. The Heusler 

structure IS build up of four 

interpenetrating fcc sub-lattices. In 

the following the physics of a 

diffraction pattern of a cubic 

structure will be explored in more 

detail. This includes a discussion of 

how (h k 1) values can be assigned to 

an observed Bragg peak. This 

indicates the crystallographic plane 

giving rise to constructive inference at a particular scattering angle in the 

diffraction pattern. The scattering angle 2{) is related to a scattering 

vector k as indicated in figure (3.14). 

Figure 3.14 

A wave hits a plane and is reflected. 

The wave vector of the incident beam 

is ki and the wave vector of the 
----------~~~~------+----

outgoing beam is ko . The difference 

- -between k i and ko is the scattering 

vector k. 
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- 1 
The wave vector k is a reciprocal lattice vector with dimension length' 

If et , b * , c* are unit vectors of reciprocal space and {i, b , c are 

vectors of real space, then the following conditions are fulfilled: 

b- - * - b-* 0 =a ·c= ·c= (3.62) 

(3.63) 

-
The wave vector k may be parameterised as 

k = h . {i * + k . b * + I . c* . (3.64) 

Here h, k, I are the same Miller indices as have been used for the 

indexation of lattice planes. Using equations (3.63) and (3.64) the 
-+ 

magnitude of the wave vector k can be written as 

h2 k 2 /2 
=2rc· - 2 +-2 +-2 . 

a b c 
(3.65) 

For the cubic lattice (a = b = c) this formula takes the form 

(3.66) 
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As may be seen from figure (3.14) there is the following relationship 

between the incident wave vector kj and the scattering wave vector k : 

(3.67) 

~ 

The magnitude of the wave vector ko of the outgoing wave is defined by 

the wavelength: Ika I = 2;. Therefore the wave vector k can be 

expressed in terms of the scattering angle: 

2. sin ()= If I 
2;rr I-I 4;rr ~ k =Tsin(}. (3.68) 

A 

Equations (3.66) and (3.68) lead to a condition for the cubic unit cell 

which enables the lattice parameter and the scattering planes to be 

determined: 

(3.69) 

Using equation (3.69) the high temperature phases of the Ni-rich 

compounds Ni2.osMno.9sGa, Ni2.IOMno.90Ga and Ni2.17Mno.83Ga have been 

investigated. Table (3.2) contains data of an X-ray diffraction pattern at 

room temperature of Nh.I oMna.90Ga. The wavelength used was 

A = 1.54 A. A picture of the X-ray diffraction pattern is shown in 

figure (3.15). Table (3.2) contains peak positions, their respective Miller 
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indices and the lattice constant obtained from a calculation employing 

equation (3.69). 

One possible procedure for numerically identifying the peak indices is the 

following: For each peak position Bj , which can be read of the diffraction 

pattern, the sin ()i - and sin 
2 

()i - values are calculated. According to 

equation (3.69) this corresponds to 

(3.70) 

The ratios of the sin 
2 

()i - values can then be calculated. The constant 

factor (:a J drops out. This procedure yields the ratios of Miller indices: 

(3.71) 

Bragg peaks can be indexed using equation (3.71). Each Bragg reflection 

is characterised by a single integer (h2 + k2 + Z2). Equation (3.69) then 

enables the lattice constant to be determined. 

Peak Lattice 
i Position in . 2eB.~) sin 2 (28,) sin ' (28,) sin' (28,) sin 2 (28, ) 

(h k 1) Constant SIn -
sin '(28,) sin '(28, ) sin'(28,) sin '(28,) 360 

2(); [deg] [A] 
1 26.50 0.0525 1 0.37 0.l9 0.12 Cl 1 1) 5.82 

~ 44.01 0.1404 2.67 1 0.50 0.33 (2 2 0) 5.81 
3 64.00 0.2808 5.34 2.00 1 0.67 (400) 5.81 

14 80.89 0.4209 8.01 3.00 1.50 1 (422) 5.81 

Table 3.2 
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Figure 3.15 

An X-ray diffraction pattern ofNi2.10Mno.90Ga at room temperature. The (h k 1) 

values given by table (3.2) are also given. 

Whereas the peak position is only a function of the lattice parameter and 

symmetry (the effect of symmetry will be discussed in the experimental 

section), the intensity of a Bragg reflection is a function of the atomic 

positions. These are taken into account in the structure factor Fhkl • The 

intensity is determined by the following relationship: 

I ocN . \ Fhkl \2 . (3.72) 

Here N is the number of unit cells in the sample. In general the structure 

factor is a complex entity. It is given by 
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F hkl = Ib j . exp~. k· rJ. 
j 

-

(3.73) 

Here hj is the scattering length of atom j. k is the wave vector as 

given by equation (3.64) and r j is the position of atom j. The 

summation j is carried out over all atoms within the unit cell. 

The structure factor takes into account the phase difference of waves 

scattered from the various atoms located within the unit cell. If a plane 

wave falls onto a crystalline sample a spherical wave develops at each 

atom position. As indicated in figure (3.16) for the whole crystal it is the 

superposition of the spherical waves which is registered in the detector 

(located far away from the sample) as a plane wave emerging from the 

crystal. The emerging wave front can be described as a plane wave using 

(3.74) 

where A is the complex amplitude and expV' k . r) represents the phase 

factor. 

11111~ Emerging spherical 
) waves Jllllllt (not drawn to scale) 

Scattered wave 

Figure 3.16 
Schematic figure of a plane wave scattered by the atoms 
of a crystal. 
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As seen from the indexation of the Bragg reflections shown in figure 

(3.15) not all Bragg reflections are observed. In the pattern only those 

reflections have non-zero intensity for which (h k 1) is either all odd or all 

even. This occurs due to centring translations within the unit cell. These 

symmetry operations are reflected in systematic absences (i.e. zero 

scattering intensities for some Bragg reflections). 

The centring translations which are relevant for a cubic structure are the 

bcc and fcc centring translations. For a body centred lattice each atom at 

position (x, y, z) has a symmetry related atom sitting at 

1 1 1 
( x + 2 ' Y + 2 ' z +"2 ). For a fcc lattice an atom at (x, y, z) has identical 

atoms sitting at 
1 

( x+-
2 ' 

1 
Y+-

2 ' 
z), 

1 
( x+-

2 ' 
y, 

1 
z+-) 

2 
and 

1 1 
(x, y + -, z + -). The consequences for the structure factor will be 

2 2 

analysed next. 

For a bcc lattice one obtains 

~kl = Lbj .expV·k .~J 
j 

=L ., 
} 

1 
xJ'+2 

1 I}· y .. +­
J 2 

1 
zj'+2 

= L (b j' e 21ri (h.xj'+k.yj'+I.zj' )(1 + e1l'i(h+k+/})) 

., 
] 
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Here the sum over j' runs over a reduced set of atoms (reduced by a 

factor of 2 for a bcc lattice) within the unit cell. For (h + k + 1) even 

exp(;r.i(h+k+Z))=+l while for (h + k + 1) odd one obtains 

exp(;r. i(h + k + Z)) = -1. Thus the structure factor Fhkl == 0 for (h + k + 1) odd. 

For a fcc lattice one obtains: 

2ni(h k I).[;~:l 
= '" b., e ZJ' • {. 4 if h, k, 1 are all even or all Odd} . 

L. J • 0 all other cases 
j' 

(3.76) 

Here j' runs over a reduced set of atoms of the unit cell. For a fcc 

structure the reduction factor is 4. For (h, k, 1) all even the {} brackets 

yield a factor of 4, 'while for the case of 2 even and 1 odd or 1 even and 

2 odd the summation in {} yields zero. Thus for a fcc structure only those 

Bragg reflections occur for which the (h k I)-values are all even or all 

odd. 
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Thus the diffraction pattern ofNh.IOMnO.90Ga as shown in figure (3.15) is 

expected to exhibit all reflections with the Miller indices either all even or 

all odd. However, as seen from table (3.2) and figure (3.15) the peaks 

indexed with values of the form (4*n-2 0 0), where n is an integer, do not 

occur in the pattern with an appreciable intensity. By contrast peaks such 

as the (4 0 0) reflection, are observed as intense peaks. In order to 

understand the reason for this relation one has to analyse the Heusler 

structure in more detail. 

The Heusler lattice is build up of four interpenetrating ffc sub lattices. 

The sublattices are shifted with respect to one another. This influences the 

intensity of Bragg reflections such that particular reflections are either 

week or strong. By denoting the structure factor of each sub lattice X as 

"'" 
F x the combined structure factor F can be written in the following form: 

r-J 2m -+-+- 2m -+-+- 2m -+-+-.(h k I) .(h k I) .(3h 3k 3/) 
F=F. +e 4 4 4 • F. .. +e 2 2 2 • F, +e 4 4 4 • F. . 

Mn Nl Ga Nl' 

(3.77) 

For the particular case of a (2 0 0) reflection, or more generally for a 

reflection of the form (4*n-2 0 0), it follows that 

(3.78) 

The structure factor is proportional to the scattering length, and 

"'" 
F oc bMn + bGa - 2 . bNi • Since for X-rays the scattering lengths are 
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fairly similar the difference is small. Thus in a diffraction experiment one 

can not easily distinguish between the scattering lengths of manganese, 

gallium and nickel. As a consequence the (2 0 0) reflection, and more 

generally the (4*n-2 0 0) reflections, are weak. 

For a single cubic structure there are no centering translations. As a 

consequence all Bragg reflections are possible. A comparison with the 

indexation deduced in table (3.2) confirms that NhMnGa compounds 

have a fcc structure. 
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4) Experimental Results 

4.1) Resistivity 

Resistivity in the low temperature phase 

The resistivity of Nh.17MnO.83Ga was determined in the temperature range 

from T = 320 K to T = 50 K whilst cooling and heating. For a virgin 

sample measured for the first time with the temperature range from 

T = 320 K to T = 50 K the resistivity varies continuously with no 

discontinuity for either cooling or heating. 

Contributions to the resistivity of a metal may anse from different 

sources. A temperature independent contribution arises due to disorder 

frozen into a lattice by quenching or equilibrium disorder. Thermal 

excitations of the lattice as well as magnetic excitations for a 

magnetically ordered sample contribute temperature dependent terms to 

the resistivity. All contributions to the resistivity add according to 

Matthiessen's rule [1]: 

(4.1) 

Here Po is the temperature independent term ansmg from atomic 

disorder. The temperature dependent contributions pp(T) and Pm(T) 

originate from thermal excitations in the nuclear and magnetic 

subsystems, respectively. 
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The lattice contribution to the resistivity has a simple power law 

dependence expressed by the "Bloch T5 law" [2]: 

(4.2) 

This expression is valid for low temperatures, i.e. T« BD' It will be 

argued below that the lattice contribution is not the dominating influence 

on the resistivity for Nh.I7MnO.83Ga. 

The contribution to resistivity ansmg from magnetic disorder can be 

obtained using a simple model. A fixed magnetic moment system is 

considered with long-range magnetic interactions. For magnetic moments 

determined by a spin S and in the ferromagnetically ordered state the 

following expression for the resistivity has been derived [1, 3]: 

( 
(S)2 J 

Pm(T)=const. 1- S(S+l) . (4.3) 

The resistivity was measured for Niz.17Mno.83Ga below 300 K and within 

the ferromagnetically ordered state. Magnetisation measurements have 

been used to determine the spontaneous ferromagnetically ordered 

moment as a function of temperature using Arrott plots. This information 

can be used to model the magnetic contribution to the resistivity. This is 

done by replacing the square of the expectation value of the spin S, 

namely (s) 2 , by the experimentally determined square of the magnetic 

moment M2(T) and S(S+ 1) by an appropriate function of the moment at 

T = 0 K. Thus equation (4.3) becomes 
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PlheOry (T) =:: const(l- M 2 J 
m - M 2 , 

o 
(4.4) 

where M~ = M 2(T = 0) . 

From equation (4.4) and using a power series expansion one can derive 

the following relationship: 

which is an approximate expreSSIOn for modelling the magnetic 

contribution to the resistivity. a and n are the parameters which are 

determined by fitting the expression to an experimental observation. This 

has been done for a Ni2.17MnO.83Ga sample. Magnetisation data, obtained 

from Arrott plots, were taken and inserted into equation (4.4). In figure 

(4.1) a superposition is shown of the data obtained from the Arrott plots 

and a model calculation given by equation (4.5). 

0 

-e--t--a. 

1.0 Ni2.17Mno.83Ga 
• 

magnetic resistivity model: p{T)=a*Pn • 
• 

l = 0.00024, R2=0.99273 • 

a = (1.6 ± 1.3)*10" 

0.5 n = 2.21 ± 0.15 • 

0.0 -IL--~::::::::='----'---"----'-----r-----'-­
o 100 200 300 

T [K] 
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Figure 4.1 

The magnetic contribution to 

the resistivity as obtained 

from Arrott plots (points) is 

fitted by the model given in 

equation (4.5). The fitted 

values for the parameters a 

and n are: 

a = (1.6 ± 1.3 ).10-6, 

n=2.21±0.15 . 



For the fit only the first 7 points have been taken into account because at 

higher temperatures the structural transition around T = 300 K changes 

the atomic configuration. Thus at temperatures above 300 K the 

resistivity is a more complicated function involving the various 

contributions with changed constants. The fit as presented in figure (4.1) 

yields a power of T with n = (2.21 ± 0.15). This is the temperature 

dependence of the magnetic contribution to the resistivity expected for 

the temperature dependent static magnetic contribution. 

Spin waves also contribute to the resistivity. This contribution involves 

inelastic scattering. It is expected to be proportional to T2 [1]. In addition 

the magnetic moment correlations have contributions arising from pair 

correlations which are not taken into account properly by the simple 

model used here. Therefore slight deviations of the exponent are to be 

expected. 

Both the power of T of the static contribution and the magnetic spin wave 

contribution are consistent with an expression for the resistivity which 

has the following power law: 

peT) = Po + a· T n 
n~2 (4.6) 

Within the magnetically ordered phase, and away from the temperature 

region where the structural phase transition takes place, one can attempt 

to fit the experimentally observed resistivity using a power law 

dependence. Such a fit is shown below: 
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Figure 4.2 

A fit of the experimental observation of the resistivity 

according to equation (4.6). The temperature independent 

term and the parameters a and n are also given. 

The exponent obtained by fitting a power law to the temperature 

dependence of the resistivity at low temperatures is broadly consistent 

with the value obtained on the basis of spin waves and for a magnetic 

contribution. However, it is pointed out that the different estimates of the 

parameter n obtained using the different models do not coincide within 

the error bars. 

In order to test the hypothesis that there may be other contributions to the 

resistivity (e.g. due to phonons) a different model has also been 

investigated. According to Matthiessen's rule [1] the resistivity has been 

taken to have the following contributions: 

p(T) = Po + a·T2
.
21 + b·Tn

. (4.7) 
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Here the additional term b . T n takes into account other possible 

contributions to the resistivity. The magnetic contribution was included 

with an exponent of T as defined by the fit to the magnetisation model. 

The parameters Po, a, band n have been taken as adjustable parameters to 

be fitted to the temperature dependence of the observed resistivity. The 

resulting fit and the parameters are shown below: 

.r" 
'0 
or" 
-le 

30 

E 20 
-le 

E 
~ 

o ..... 

Chi2=0.0045, R2=0.99991 

po=4.65378 ±0.41114 
a=0.00005 ±7.7573E-7 
b=0.27476 ±0.10171 
n=0.6043 ±0.06059 

o+---~--~----~--~--~--~----~ 
o 100 T [K] 200 300 

Figure 4.3 

A fit of the resistivity fiXing the parameter n to 2.21 and 

including an additional term b*Tn
, where n is fitted to the 

experimental observation. 

The fit indicates that a possible 2nd contribution might have a TO.6 

dependence. However, the amplitude of such a term is close to zero as 

measured in terms of its error value. Therefore such a contribution does 

not have an immediate physical significance. In particular, the data do not 

support a model with a T5 contribution. 
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Rather it is argued here that the temperature dependence of the resistivity 

is close to the temperature dependence expected on the basis of the 

magnetisation model, as given by equation (4.5) with n = 1.75. This 

dependence minimises the change of the magnetic order using the 

experimentally observed magnetisation values as obtained using Arrott 

plots. 

The Resistivity in the Transition Region 

In the following section the experimental data will be discussed in the 

transition region at approximate T = 300 K. At these temperatures the 

resistivity for the Ni2.17Mno.83 Ga sample is strongly influenced by 

structural changes. In figure (4.4) a comparison is shown between the 

resistivity for the virgin sample and the sample which has been heated 

through the transition for the first time. The data for the cooling and 

heating cycle at low temperatures is also included (hollow symbols) 

together with the measurement to higher temperatures above the 

structural phase transition (full symbols). 
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1st cycle 
direcUy after 
quenching from 800°C 

sample is heated to 
above the transition 
for the first time after 
quenching from 800°C 

Resistivity of Nh.17MDo.83Ga in the temperature range from T = 50 - 350 K. 

For the investigation in the temperature range below room temperature 

the virgin sample shows the same behaviour for both heating and cooling. 

The experimentally observed data points are found to be essentially 

identical for the cooling and heating investigations. However, as the 

sample is heated to temperatures above room temperature and through the 

structural phase transition, anomalies occur. A distinct anomaly is 

observed which is identified as the structural phase transition. As the 

sample is cooled again the data taken during cooling show an anomaly at 

a different temperature indicating thermal hysteresis of the structural 

transition. Furthermore the anomaly is associated with a discontinuous 

increase of the resistivity at the transition, contrary to a distinct change of 

slope only on heating. After the transition has been traversed on cooling 

the resistivity is slightly higher than before. 
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On heating from room temperature at approx. T = 337 K a distinct change 

of slope of the resistivity is observed. This is the temperature where the 

sample is believed to undergo the structural phase transition on the 

heating part of the cycle. For temperatures larger than 337 K the slope is 

smaller than for lower temperatures. At higher temperatures the 

temperature variation of the resistivity is smooth and continuous up to 

350 K the highest temperature employed for these measurements. 

On cooling from T = 350 K to T = 338 K the resistivity retraces the same 

curve as was obtained for the heating cycle. It decreases further down to 

T = 330 K. At this temperature the resistivity begins to increase sharply 

and has a local maximum at 335 K. As the temperature is lowered further 

the resistivity decreases again. Both the peak on cooling and the change 

of slope on heating are interpreted as arising from the structural phase 

transition in the material. The transition is of first order with a 

temperature hysteresis of approximately ,1 T = 10 K. 

In order to determine the behaviour of the sample and the characteristics 

of the phase transition the sample was repeatedly (3 times) cycled 

through the transition within the temperature interval of T = 250 K to 

T = 350 K. When the sample was cooled from T = 350 K down to 

T = 250 K the phase transition was observed at the same temperature as 

before. On further heating to T = 350 K the phase transition occurs at the 

same temperature as observed during the first heating cycling, albeit with 

slightly increased value of the resistivity. This confirms that on multiple 

cycling the temperature hysteresis of the phase transition is a reproducible 

feature. 
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Resistivity of Nh.I7Mno.83Ga during multiple cycling through the 

transition temperature. 

If the heating and cooling cycle is repeated the sample exhibits the same 

behaviour as it has shown before. With decreasing temperature, a peak 

occurs at T = 328 K indicating the onset of the phase transition. On the 

heating part of the cycle a change in the temperature slope of the 

resistivity occurs at T = 337 K. For each cycle the resistivity is observed 

to increase slightly. This is a known feature for shape memory alloys as 

the repeated cycling of samples through the phase transition while 

mechanically constraining the sample gives rise to forces which slightly 

change the experimental conditions for each cycle. Ideally a measurement 

of the resistivity of shape memory materials would require a method 

without the need to make electrical (and mechanical) contact to the 

sample. This, however, has not been part of this investigation. Therefore 

the unconstrained measurement of electrical resistivity will not be 

pursued further here. 
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4.2) Differential Scanning Calorimetry 

DSC measurements have been carried out on samples of Nh.17MnO.83Ga, 

Nh.lOMnO.90Ga and Nh.05MnO.95Ga. In the following table the properties of 

the respective samples and the experimental details are given: 

Sample Weight Constitution Annealing Heating rate Scanned 

Nh+xMnl.xGa temperature range 

x = 0.05 56.16 mg powder 4 d. 800°C 10 K1min 
heating: (-J 20) -> 300°C 
cooling: 300 -> (-120) °C 

x = 0.10 60.00 mg powder 4 d. 800°C 10 K1min 
heating: (-J 20) -> 250°C 
cooling: 250 -> (-120) °C 

X =0.17 15.90 mg polished disk 4 d. 800°C 10 K1min 
heating: 0 -> 200°C 
cooling: 120 -> 0 °C 

Table 4.1 

Sample characterisation 

The sample with composition Nh.o5MnO.95Ga exhibits two distinct peaks 

in the DSC response. On cooling there is one peak at T = -58 QC and one 

smaller enhancement in the form of an asymmetric peak at T = 60 QC. 

The 2 peaks also occur during heating and with hysteresis. 

250 298 158 189 50. • ef -58 . -HiS 
T [0C] 

Figure 4.7 

A temperature scan ofNb.05MnO.95Ga during cooling. Two peaks appear at 

T = 60 °c and -58 °c which corresponds to T = 333 K and 215 K, 

respectively. 
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Figure 4.8 

A temperature scan of Nh.osMno_9SGa during heating. Two peaks occur at 

T = 88°C and -12°C. This corresponds to 361 K and 261 K, respectively. 

The heat flow to the sample is measured in terms of the heat flow to a 

reference object. If an endothermal phase transition occurs in the sample 

while heating the heat input to the sample is not used for an 

increase of its temperature. Thus the temperature of the sample lags 

behind and for some time it is lower than the temperature of the reference 

object. This is interpreted as a decrease in heat flow and the response 

given by the DSC is a dip in the heat flow curve. If a 

exothermal phase transition occurs during cooling the sample 

liberates heat and transfers it to the sample holder. Thus for the 

time of this phase transition the temperature of the sample is higher than 

the temperature of the reference object. Consequently the response given 

by the DSC is a positive peak. 

Figures (4.9) and (4.10) show temperature scans for Nh.lOMnO_90Ga during 

cooling and heating. This sample shows two broad anomalies in the 

temperature scans. The response is only small. 
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Figure 4.9 

A temperature scan of NhIOMnO.90Ga during cooling. Two peaks occur at 

T = 58 QC and -10 QC. This corresponds to 331 K and 263 K, respectively. 

I I I I i r--r--r-
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Figure 4.10 

A temperature scan of Nh.IOMnO.90Ga during heating. Two peaks occur at 

T = 70 QC and 15 QC. This corresponds to 343 K and 288 K, respectively. 

While Nh17MnO.83Ga exhibits two peaks on cooling, on heating only one 

single peak is observed. The peaks shown on cooling are small and broad, 

but in contrast to the response ofNhlOMnO.90Ga these peaks show a clear 

maximum. The single peak exhibited on heating is more intense than the 

small peaks on cooling. 

80. 69. T["C] 40. 20. 

Figure 4.11 

A temperature scan of Nh.17MnO.83Ga during cooling. Two peaks occur at 

T = 42 QC and 33 QC. This corresponds to 315 K and 306 K, respectively. 
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Figure 4.12 

A temperature scan of Nh.17Mno.83Ga during heating. One peak occurs at 

T = 64°C. This corresponds to 337 K. 

The peak positions are summarised in the table (4.2). 

Composition Peak Position Peak Position 

Heating 261 K 361 K 
Nh.oSMnO.9SGa 

Cooling 215 K 333 K 

Heating 288K 343 K 
Nh.lOMnO.90Ga 

Cooling 263 K 331 K 

Heating 337K -
Nh.17MnO.S3Ga 

Cooling 306K 315 K 

Table 4.2 

Experimental results of the DSC measurements. 

The compositional dependence of the phase transitions is shown in the 

figure (4.13). The high temperature anomalies, marked with A, T in 

figure (4.13), are associated with the ferromagnetic transition 

temperature T c. The ferromagnetic transition temperature is found to 

decrease with increasing Ni-content. This phase transition is expected to 

be of second order. However, experimentally hysteresis is found for this 

transition. The transition at lower temperatures, marked with .6., \l in 

figure (4.13), is associated with the martensitic phase transition for which 
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thermal hysteresis is expected on the ground of this transition being of 

1 st order. 

360 
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Figure 4.13 

Phase transitions as a function of Ni-content. The open and 

filled triangles correspond to one transition, respectively. 

The data for the pure compound with x = 0 is taken from [4], 

This phase diagram indicates the changes of transition temperatures as a 

function of increasing Ni content for Niz+xMnl-xGa. The phase diagram 

obtained here is entirely consistent with the phase diagram given by 

Matsumoto et al. [5]. 
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4.3) Magnetisation measurements 
. 

uSing a SQUID 

magnetometer 

Magnetisation measurements have been carried out on the following 

powdered samples using a SQUID magnetometer (Quantum Design): 

Composition Annealing Mass Molar weight 
fdays,OC1 fmg1 fg/mol1 

NhosMno.9sGa 4,800 3.80 242.2356 

Nh.lOMnO.90Ga 4,800 1.49 242.4233 

Niz.17MnO.83Ga (A) 4,800 4.10 242.6863 

Table 4.3 

Sample characteristics. 

A second sample of composition Nb.17Mno.83Ga was prepared at an 

earlier stage for a different set of measurements (for details see 

paragraph (3.1)). The characteristics of sample B are presented in 

table (4.4). The measuring conditions for the magnetic investigations 

were identical for all samples. 

Composition Annealing Mass Molar weight 
[days,°C] rmg1 rg/mol1 

Nh.17MnO.83Ga (B) 5,800 5.19 242.6862 

Table 4.4 

Sample characteristics of sample B. 

Initially the magnetisation was measured as a function of temperature, 

for T = 5 - 360 K, in magnetic fields of B = 0.1 and 5.5 Tesla. The 

magnetisation data for Nb.17Mno.83Ga was obtained in two subsequent 

sets of measurements. Magnetic isotherms were determined over the 

same temperature range in fields up to 5.5 Tesla. 
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Temperature scans ofNh.17Mno.83Ga 

In figures (4.14) to (4.16) temperature scan are shown of the two different 

samples with the nominal composition ofNh.17Mno.83Ga. 

60 

~40 
~ 
:::::" 
:::2. 
:E 

-.-.-.- ~ .-. -.-. ---. 

20 ~F<>--<:)-1()='O:~~:S7<:> 

'\ 
'., 

___ cooling in 5.5T 
-.- heating, cooled in 5.5T 
~cooling 

-T- heating, cooled in 0.1 T 
---'V'- heating·, cooled in O.H 
-<>-- cooling· 

....... ....... . , 
........ , 5.5T ., .'. 

O+-----~~----_r------~----~L--

250 

Figure 4.14 

300 
T[K] 

350 

Temperature scans of Nhl7Mno.83Ga CB) at different fields and 

whilst cooling and heating. Magnetisation data on heating was 

obtained from the sample when it was cooled down in high and 

low fields. Measurements indexed with * were taken earlier than 

measurements with no index. 

Figure (4.l4) shows temperature scans for sample B. The sample was 

heated to 350 K and a field of 5.5 Tesla was applied. Measurements were 

taken while cooling in a field to 250 K (.). At T = 250 K the field was 

changed to O.l Tesla (as indicated by an arrow in figure 4.3), and the 

magnetisation was determined while heating to 350 K (.). For 

comparison a measurement was also taken for the sample cooled from 
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350 K in a low field (0.1 T) to 250 K while heating in a field of 0.1 Tesla 

to 350K (T). Subsequently field-cooled measurements in a field of 

o.f Tesla were obtained. These are displayed in figure (4.14) using ... 

symbols. The results of previous measurements are indicated by hollow 

symbols. The same sample was cooled in low field and measured while 

heating in a field of 0.1 Tesla (V) and cooling (0). 

The magnetisation shows a discontinuity at approximately 310 K. With 

decreasing temperature an increase occurs for measurements in high 

magnetic fields, while for low fields the magnetisation decreases. Such 

behaviour is connected with the structural phase transition. The decrease 

of the magnetisation at higher temperatures arises due to the 

ferromagnetic phase transition at approximately 340 K. 

There is a distinct difference of magnitude of the magnetisation at low 

temperatures between high field (5.5 Tesla) cooled and low field 

(0.1 Tesla) cooled measurements. For the measurements in fields of 

0.1 Tesla the magnetisation is observed to be higher by ~ 15 % for 

samples which were cooled in a high field than for the low field cooled 

cases. 

For comparison measurements on sample A were also taken. These are 

shown in figure (4.15). The measurement cycle was identical for sample 

A as for sample B. 
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Figure 4.15 
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Temperature scans of Nh.17Mno.83Ga at 5.5 Tesla and 

0.1 Tesla applied magnetic for cooling and heating. The 

measurements on heating were taken when the sample was 

cooled down on high and low field previously. The 

measurement indexed with * was taken in advance to the other 

measurements. 

Sample A shows the same gross features under high field and low field 

cooling as does sample B. However, the discontinuity as a function of 

temperature in the magnetisation data is not observed for sample A. The 

onset of the magnetically ordered phase is accompanied by a steeper 

increase of the magnetisation with reducing temperature for sample A 

compared to sample B. 

The reason for the difference in the magnetisation is attributed to a shift 

in the martensitic phase transformation. For sample A the ferromagnetic 

and structural transitions coincide while for sample B the martensitic 

phase transformation takes place at a slightly reduced temperature of 
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310 K. It is argued that despite the nominally identical composition 

sample B has a slightly different Mn content. The weight loss for 

sample A was only 0.13% while for sample B it was higher, but still 

below 1 %. The transformation temperatures observed in the 

magnetisation measurements are consistent with the phase diagram of 

Matsumoto et al. [5] for sample A. However, for sample B to agree with 

the phase diagram the composition has to be richer in Mn by 

approximately 0.02 compared to the nominal composition. According to 

Matsumoto et al. for a composition of approximately Nb.14Mno.86Ga the 

structural transformation occurs at ~ 310 K. Such a change in 

composition is entirely within the error and the weight loss of the sample 

preparation process for sample B. Therefore it is argued here that 

sample B has a true composition which is richer in Mn and poorer in Ni 

than is indicated by the nominal value. This interpretation is supported by 

the observation that the high field magnetisation is larger for sample B 

compared to sample A. 

An interesting observation is made on these measurements with respect to 

the difference of results as a function of time. There is a distinct variation 

on the same sample for measurements taken at different points in time. 

For sample B the magnetisation for the low field cooled case in a field of 

0.1 Tesla increases while for sample A a substantial reduction is 

observed. There seems to be an aging effect. This may arise either due to 

the presence of the martensitic phase or due to, for example, oxidation. 

This observation should form the basis for a future study. 

In order to see the difference of the measurements more clearly the 

heating curves only are shown for both the A and the B samples in 
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figure (4.16). All measurements have been carried out ill a field of 

0.1 Tesla. 

-f' 20 
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Figure 4.16 

A comparison is shown of the magnetisation of the two 

samples of Ni2.17Mno.83Ga for heating in external 

applied field of B = 0.1 Tesla. The red data points 

belong to sample B. Measurements indexed with * 
were taken earlier than the other measurements. 

F or these measurements the magnitudes of magnetic moments are 

comparable. A variation of up to 15 % is observed in the size of the 

macroscopic magnetic moment depending on the conditions leading up to 

the measurement. This dependence reflects the hysteretic nature of the 

martensitic phase transformation. 

The step like feature in the magnetisation data at the structural phase 

transition arises due to the formation of domains. The decrease in 

symmetry from the high temperature cubic phase to a phase of lower 
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symmetry is accompanied by a significant rearrangement of magnetic 

moments. This occurs due to the appearance of an easy axis of 

magnetisation for the phase of lower symmetry in the martensitic phase. 

For low fields the magnetic moments are not pulled into the external 

magnetic field direction, but are rather aligned along the easy axis of 

magnetisation. This results in a decrease of the magnetic moment 

projection onto the external magnetic field direction which is observed as 

a reduction of the macroscopic magnetic moment. By contrast if the 

phase transition occurs in the presence of a strong magnetic field the 

applied field is strong enough to select those crystallographic and 

magnetic domains which are aligned favourably to the external magnetic 

field direction. If the sample is cooled down in low fields the external 

applied magnetic field can only exert a limited influence on the 

orientation of the crystallographic domains in the low temperature phase. 

In this case in the high temperature phase the magnetic moments are 

partially aligned parallel to the external magnetic field direction. At the 

structural transition the structural domains pull the magnetic moments 

into the magnetically easy direction, thus reducing the effective number 

of magnetic moments which are aligned parallel to the external field 

direction. This increases the disorder of magnetic moments and reduces 

the macroscopic magnetisation. This situation is depicted in figure (4.17). 

High External Field Low External Field 

mm mm 
t t ~ I t 

Figure 4.17 

Domain distribution for external fields of different magnitude. 
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Temperature scans ofNi2.osMno.9sGa and Ni2.lOMno.90Ga 

Figure (4.18) shows temperature scans of the magnetisation for the 

samples with composition NhosMno.9sGa and Nh.lOMnO.90Ga. To ease the 

comparison for Ni2+xMnl_xGa samples as a function of Ni-content x 

sample B of composition Nh17MnO.83Ga is also displayed. For these 

measurements the external magnetic field was fixed in magnitude to 

0.1 Tesla. 

Temperature scans have been measured while heating from low 

temperatures. At low temperatures the magnetisation is only weakly 

temperature dependent. At temperatures between 250 K and 300 K, and 

depending on composition, a sudden increase in the magnetisation is 

observed for all samples before the magnetisation starts to fall off more 

rapidly towards zero with a further increase of temperature. 

Figure (4.18) shows that as a function of temperature the magnetisation 

decreases with increasing Ni-content. This is consistent with the notion 

that it is the Mn atoms which carry the main contribution to the 

macroscopic magnetic moment. Therefore a decrease of the Mn-content 

should be mirrored by a decrease of the macroscopic magnetic moment. 

At the same time, the peak, which occurs just below the magnetic phase 

transition, shifts to higher temperatures with increasing Ni-content. As 

argued more fully below this peak is related to the structural phase 

transition. With increasing Ni content the temperature for the structural 

transition increases, and the ferromagnetic transition temperature 

decreases. 

- 78 -



45 -- Ni2.17Mn083Ga (8) 

---- Ni2.10Mno.90Ga i--_ 
40 - .A- Ni205 Mn 095Ga C!;\--. 

~ ~ 1 \ 
f: 30 F-~-"""'~ ................ ~~.1I ~ ~ 
-, "- I ~ ', ... 
-; 25 • • _ • 

. 2 / \ ~l ro 20 ••.•••.••••••.••••.•••.••••••. - • \1 

~ 15 ~ 11 
~ 10 B = 0.1 Tesla \ t 
E -5 Temperature scan i ~ . , 
o+-~~~~~~~~~~-'~-~T-~ 

o 50 100 150 200 250 300 350 400 

T [K] 
Figure 4.18 

A superposition of the magnetisation is shown as a 

function of temperature in an applied field of 

B = 0.1 Tesla for Ni2.osMno.9sGa, Ni2.IOMno.90Ga and 

Nh.I7MnO.83Ga CB). 

Next the magnetisation measurements are discussed which have been 

obtained as a function of applied magnetic field and at different 

temperatures. From these isotherms Arrott plots were constructed. With 

the help of Arrott plots the magnetisation was obtained at zero external 

field and as a function of temperature. 

Ni2.osMno.9sGa was measured as a function of applied field between 0.01 

and 5.5 Tesla and within the temperature range from 5 K to T = 360 K. 

For a selection of the measured isotherms the magnetisation is shown in 

figure (4.19) and the Arrott plots are displayed in figure (4.20). The 

spontaneous magnetisation was obtained by fitting the high field part of 

the Arrott plot by a straight line and extrapolating it back to the 

M2-axis. Figure (4.21) sho;vs the spontaneous magnetisation obtained for 

Nh.oSMnO.9SGa as a function of temperature. 
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Figure 4.19 

Magnetisation as a function of applied magnetic field for 

Ni2.o5Mno.95Ga. 
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Figure 4.20 

Arrott plots for Nh.o5Mno.95Ga using the magnetisation data of 

figure (4.19). 
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Figure 4.21 

Magnetisation as a function of temperature as obtained from 

the Arrott plots. The saturation magnetic moment and the Curie 

temperature are fitted. The red data points belong to Arrott 

plots which were measured after cooling the sample. 

A fit of the magnetisation at low and at high temperatures has been 

carried out and is also shown in figure (4.21). These fits yield the 

saturation magnetisation at T = 0 K and the Curie temperature T c. For 

Ni2.osMno.9sGa a transition temperature of Tc = (371.4 ± 1.5) K and a 

J 
ground state magnetisation of Mo = (86.2 + 0.2) T. kg is obtained. In the 

temperature region between approximately T = 200 K and 300 K an 

anomaly appears in the magnetisation. This anomaly is due to a structural 

phase transition which according to DSC measurements occurs at 

T = 260 K during heating. This corresponds well to the anomaly obtained 

from the Arrott plots. 
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Next the results of the measurements on the sample with composition 

Ni2. JOMnO.90Ga are presented. 
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Magnetisation as a function of applied field of NhIOMno.90Ga. 

Isothenns were measured between T = 5 K and 350 K. 
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Figure 4.23 

Arrott plots ofNh. IOMno.90Ga. 
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Magnetisation of Nh.lOMno.90Ga as a function of temperature as 

obtained from the Arrott plots. Fits of the saturation magnetisation 

Mo and T c are also included. 

For Ni2.lOMno.90Ga the temperature dependent spontaneous magnetic 

moment at zero applied field as obtained from the Arrott plots is shown in 

figure (4.12). A fit to the low temperature data yields a ground state 

J 
moment of Mo = (84.0 ± 0.2) T . kg . The ferromagnetic transition occurs 

at Tc = (356.7 ± 0.6) K. The isotherms were measured with increasing 

temperature. Thus the anomaly which occurs at T = 284 K corresponds to 

the structural phase transition during heating. The transition temperature 

obtained from magnetisation measurements is in agreement with DSC 

results which yield a martensitic transition temperature of 288 K. 

Next measurements are presented on the Ni-rich sample with composition 

Nh17MnO.83Ga (sample B). 
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Magnetisation as a function of applied magnetic field. Isotherms were 

measured between T = 5 K and 350 K. 
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Figure 4.26 

Arrott plots ofNi2. 17Mno.83Ga. 
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Magnetisation as a function of temperature of Ni2.17Mno.83Ga 

obtained from Arrott plots. 

The magnetisation is presented in figure 4.25 and the Arrott plots of the 

same data are shown in figure 4.26. The thermal variation of the 

spontaneous magnetisation obtained from Arrott plots are given in figure 

(4.27). Fits of the low temperature data indicate that the ground state 

J 
magnetisation is Mo = (78.3 ± 0.2) T . kg . The ferromagnetic transition is 

determined to be Tc = (338.0 ± 0.6) K. An anomaly related to a structural 

phase transition occurs at T = 305 K. 
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A summary of the magnetic and structural transition temperatures as 

obtained from the zero applied field magnetisation and the temperature 

scans at 0.1 T is given in table (4.5). 

Sample structural transition magnetic transition 

Ni2+xMnl_xGa TM Tc [K] 

Arrott 
260K 372 ± 2 

X=O.05 plot 

0.1 T 260K 357.4 ± 0.2 

Arrott 
284K 357 ± 1 

X=O.10 plot 

0.1 T 280K 349.5 ± 0.2 

Arrott 
X=O.17 305 K 338.4 ± 0.3 

CB) 
plot 

0.1 T 310 K 337.2 ± 0.5 

Arrott 
X=O.17 - -

CA) 
plot 

0.1 T 330K 339.2 ± 0.6 

Table 4.5 

Magnetic and nuclear transition temperatures obtained from temperature scans and 

Arrott plots. 

With increasing Ni-content the structural transition temperature also 

increases, but the magnetic transition temperature decreases. This is 

consistent with the data obtained from the Arrott plots as well as with the 

data obtained from temperature scans at B = 0.1 Tesla. 
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Magnetic Moment and Spin 

In order to calculate the magnetic moment m at zero applied field and 

T = OK the Arrott plots have been evaluated for each sample. The 

magnetic moment is calculated using the following formula: 

(4.8) 

Mo is the spontaneous magnetisation at T = 0 K in units of [ J ] , 
T·kg 

m is the molar weight of the sample in units of [~] , 
IV mol 

N A = 6.022.1023 is the number of atoms per mole, 

1', = 9.27 ·lO~" is the Bohr magneton in units of [~] and 

C Mn is the content of Mn in one formula unit. 

The spin Sz can be obtained from equation (4.8) using 

m=g'S z· 

The effective magnetisation is given by 
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In table (4.6) the spontaneous magnetisation per Mn-atom in units of one 

Bohr magneton, the spin and effective magnetisation per Mn-atom are 

summarised. Here g was taken to be g = 2. 

Sample J 
Mo[-] M [,liB] SZ Peff [,liB] 

Ni2+xMn l-xGa 
kgT 

X= 0.05 86.2 3.94 1.97 4.83 

X = 0.10 84.0 4.05 2.03 4.95 

X= 0.17 78.3 4.10 2.05 5.00 

Table 4.6 

Magnetic moments obtained from Arrott plots. 
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4.4) Determination of the Structure of Nh.17MnO.83Ga 

using Neutron Powder Diffraction 

Introduction 

At high temperatures, l.e. T > T M, alloys with the composition 

Ni2+xMnl _xGa have the cubic L21 Heusler structure. When the temperature 

is lowered below T M the alloys undergo a martensitic phase transition to a 

structure with lower symmetry. Knowledge of the crystal structure at high 

temperatures enables appropriate candidates for the low temperature 

structure to be identified. Using symmetry and group theory a crystal 

lattice can be described using one of the 230 different space groups. The 

symmetry operations, which generate the atom positions within the unit 

cell, are elements of that particular space group. A phase transition will 

remove some of the symmetry elements such that the lower symmetry 

phase is characterised by a reduced set of symmetry operations. 

According to group theory there is a group - subgroup - relationship. 

Group A' is called a subgroup of group A if each element of A' is also 

present in group A. Since the subgroup usually contains fewer symmetry 

elements than its supergroup the removal of symmetry constraints allows 

more flexibility in the positioning of atoms and/or lattice parameters. 

In order to identify an appropriate space group to describe the low 

temperature martensitic structure (which has a lower symmetry than the 

high temperature austenite) one has to start with the space group 

describing the high temperature phase. For Ni2.1 7Mno.83Ga this 

o 

corresponds to Fm3m with a lattice parameter of a = 5.79 A. Reducing 

the symmetry means choosing a subgroup of the space group Fm 3 m . 

- 89 -



The choice of subgroup is guided by companson with experimental 

observation. Usually the low temperature phase will have more Bragg 

peaks than the higher symmetry phase. The position of Bragg reflections 

will allow the translation symmetry of the lattice to be identified, while 

the actual intensity of a peak is mostly affected by the atom positions. 

After having established the description of different phases at high and 

low temperatures by comparison with the experimental neutron 

diffraction patterns the transition region will be investigated III more 

detail. This will be followed by a discussion of the relationships between 

the various space groups relevant for the structure of Ni2. 17Mno.83Ga. A 

table will be given of atomic positions of the relevant space groups as a 

supplement to these discussions. 

Experimental details 

Neutron scattering diffraction experiments have been carried out on 

annealed powder samples at the ILL using the instrument D2b with a 

wavelength of 1.59 A. The refinement was carried out using the FullProf 

program [1]. All parameters needed for the model calculation are 

contained in a file with extension pcr. A copy of the pcr-files used in the 

refinements is given in the appendix. 

The diffraction experiments on Ni2.17Mno.83Ga have been carried out at 

different temperatures but otherwise under identical conditions and using 

the same diffractometer. Measurements were taken at T = 250 K, 295 K, 

300 K, 305 K and 310 K. This temperature range covers the low 

temperature phase at 250 K and the high temperature phase at 310 K. 
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High temperature phase 

At 310 K Ni2. 17Mno.83Ga has a cubic L21 Heusler structure (fcc). It is well 

described using the space group Fm3 m with lattice constant 

a =(S.79±O.Ol)A. The accuracy of the lattice parameter is determined by 

the precision of the wavelength which is given by A = (1.59 ± O.OI)A. 

The unit cell volume is V310K = 194 A3. Since the magnetic transition 

temperature is close to 330 K the compound is still ferromagnetic at 

310 K. Therefore magnetic as well as nuclear scattering has to be 

included for the neutron powder refinement. A model using the cubic 

Fm3 m structure only accounted for all major peaks in the observed 

pattern but failed to predict intensity for two small peaks in the pattern. 

These additional peaks could be explained with the onset of the phase 

transition whereby the most intense Bragg reflections of the low 

temperature phase start to emerge from the background. The low 

temperature phase is most intense in the diffraction pattern measured at 

250 K. It will be explored in a separate section. Including the low 

temperature phase in the powder refinement R -factors of less than 5 and 

less than 8 have been achieved for nuclear and magnetic scattering, 

respectively. This refinement had an overall X2 value of ;:::; 7. Such a X2 

value is a good indication for the quality of the fit and the accuracy of the 

proposed structures. 
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Figure 4.28 

The experimental observation and the refmement of Ni2.17Mno.83Ga at 310 K is shown 

in the picture above. The red dots are the observed data points. The superimposed 

black line is the calculated model. The blue line below shows the difference between 

observation and calculation. The green bars indicate peak positions of Bragg peaks 

according to the phases used to describe the structure (from top to bottom: cubic 

nuclear, cubic magnetic and low temperature nuclear phase). 
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This picture shows a small section of the neutron diffraction patterns. At 45 0 in 2 e 
one can see a small peak emerging from the background. This peak is not accounted 

for by the cubic phase but it belongs to the low temperature tetragonal phase. 

Occupation numbers for each atom type 

The sample investigated here has the chemical composition 

Ni2.17Mno.83Ga. Therefore there is a surplus of Ni- and a deficiency of 

Mn-atoms compared to stoichiometric Ni2MnGa. It is assumed that the 

surplus Ni-atoms occupy vacant Mn-sites. Thus the effective occupation 

of Mn-sites is 0.83 Mn and 0.17 Ni. 

In the pcr-file, one can fmd the occupation value of each lattice site under 

the heading "occ". This value accounts for the actual occupation of atoms 

on their respective lattice sites. The occupation of atoms can be refined 

using the FullProf program according to the experimental observation. It 

is generally expected that the occupation numbers will mirror the 
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composition of the samples. Therefore for Ni2MnGa one would expect to 

have the occupation numbers: 

Ni 2.00000 

Mn 1.00000 

Ga 1.00000 

Table 4.7 

Occupation numbers 

for Ni2MnGa. 

The deviation in composition for Ni2.I7Mno.83Ga can be modelled either 

by having an occupation of Mn (0.83) and Ni (0.17) on the Mn-sites or, 

alternatively, by an effective Mn occupation. This effective occupation 

has to take into account the difference in scattering lengths of Mn and Ni. 

Therefore the effective Mn occupation of the manganese position is given 

by 

P~eff = P MIl . bMn + P Ni . bNi 

Mn b ' 
Mn 

(4.9) 

where P Mn lNi is the occupation of the manganese site with manganese 

and nickel atoms, respectively. Using b
MIl 

= - 0.373 .10-12 cm and 

bNi = 1.03 .10-12 cm [2] one obtains p"/L = 0.36056 as the effective occupation 

of Mn on Mn-sites. In essence this occupation number takes into account 

the surplus of nickel atoms in the alloy. The scattering length of gallium 

is given by b
Mn 

= 0.7288 .10-12 cm [6]. For the refinement of the magnetic 

scattering contribution the Mn-site occupation has to be fixed to 0.83 per 

Mn-site. This assumes that Mn carries a moment and that any Ni atom 

located on the Mn-site does not. 
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For a ferromagnetically ordered sample the ferromagnetic scattering 

contribution can be treated as an additional phase. The unit cell of the 

magnetic phase is the same as for the nuclear scattering, but only 

Mn-atoms are included as magnetic atoms . In addition the scale factors of 

the two phases have to be matched. This is done by adjusting the 

occupation numbers. The occurrence of each kind of atom (more general: 

atom position) has to be divided by the number of symmetry elements 

within the space group . By taking the ratio of these two parameters 

(occurrence of atom position / number of symmetry elements) for both 

nuclear and magnetic phases, and for all atoms, the same overall scale 

factor can be used for both contributions. 

Values of occupation numbers for the atom positions of Ni2.17Mno.83Ga 

are given in the table below for the cubic space group Fm3m : 

according to 
according to according to 

atom symmetry symmetry 
one formula unit 

(atom position) elements elements 
(nuclear) 

(nuclear) (magnetic) 

Ni 2.00000 0.416666 

Mn 0.36056 0.075117 8.300000 

Ga 1.00000 0.208333 

Table 4.8 

Occupation numbers for Ni2.17Mno.83Ga. 

The occupation numbers in table (4.8) are listed according to two 

different models. The second column shows the occupation numbers of 

Ni, Mn and Ga in terms of one formula unit. Here 0.36056 is the effective 

Mn-atom occupation of Mn-sites. The third and fourth columns display 
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the occupation numbers in terms of symmetry elements describing the 

full symmetry of the unit cell. At high temperatures the nuclear structure 

of Ni2,I 7Mno,83 Ga is described using the space group Fm3m . This space 

group contains a total of 192 symmetry elements. The unit cell contains 4 

Mn atoms at position (4a) in the unit cell at (0, 0, 0) . The ratio of 4· j51!n 

to 192 yields 0.0075117. This is the occupation number for a Mn-site. 

The magnetic unit cell contains only Mn atoms. The set of symmetry 

operations can be reduced to 4 symmetry elements . The ratio of 4 to 4 

yields one. This has to be multiplied with the actual occupation of Mn 

sites by Mn atoms. Thus in the magnetic unit cell the occupation number 

ofMn sites is 0.83 . 

Magnetic moment obtained from the diffraction experiment 

The magnetic moment obtained from the refinement at 310 K is 

(1 .54 ± 0.06),uB per Mn-atom. This takes into account the occupation of 

Mn atoms on Mn sites. The value of the magnetic moment has to be 

compared to the moment obtained in magnetisation measurements. Using 

Arrott plots for 310 K a magnetisation of (36.0 ± 0.3) _J_ is obtained. 
kg ·T 

This value corresponds to a magnetic moment of (l.89 ± 0.02) J.lB per 

Mn-atom. Thus the magnetic moment is higher for the macroscopic 

magnetic moment by a margin which is significantly larger than the 

errors of the individual measurements. 

In order to resolve this discrepancy the observations by Brown et al. [7] 

have to be consulted. Brown et al. measured the magnetisation density in 

Ni2MnGa at 100 K and 230 K. The diffraction experiment allowed the 

determination of lattice site-specific magnetic moments . For a 
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measurement at 230 K and under the assumption that Ga does not carry a 

magnetic moment a Ni-moment for Ni-atoms located on Ni-sites was 

refined. Its magnitude was determined as 0.22 ~B. For the Mn-moment a 

value of 2.30 ~B was obtained. 

It is not unreasonable to assume that a similar situation prevails for the 
-

Ni-rich compounds. Thus the difference may be attributed to a Ni-atom 

polarisation parallel to the Mn moment and with a magnitude of:::::; 0.09 ~B 

per Ni-atom on Ni-sites. The temperature of 310 K is higher than the 

temperature at which the measurement in [7J was carried out. The smaller 

Mn moment and the reduced moment on Ni-sites is therefore consistent 

with the measurements on pure Ni2MnGa. 

Including a small moment on Ni-sites for the neutron refinement is not 

feasible, as the sensitivity of the powder refinement for such a small 

moment IS not sufficient. Macroscopic magnetisation measurements, 

however, are sensitive to the total moment. Such a moment will also 

include a contribution from Ni-atoms should these atoms carry a 

magnetic moment. It is therefore concluded that under the assumption of 

a small magnetic moment on Ni-atoms, which are located on Ni-sites, the 

macroscopic magnetisation measurements and the neutron results are in 

good agreement. 
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Low temperature phase 

Below the martensitic transformation temperature, at T = 250 K, 

Ni2. 17Mno.83Ga has a tetragonal non-modulated body centred structure. 

The atomic arrangement can be described well using the space group 

] 4/ mmm. This is the same low temperature phase which started to 

emerge in the diffraction pattern at 310 K. On transforming from the high 

temperature cubic phase to the low temperature tetragonal phase the 

lattice parameters undergo a significant change in length. 

As discussed above, at high temperatures Ni2.17Mno.83Ga has a fcc Heusler 

structure with the space group Fm3m. A subgroup of Fm3m is the 

tetragonal body centred space group ]4/ mmm. The tetragonal setting 

can be constructed from the Heusler structure by choosing a different unit 

cell. The construction is indicated graphically in figure (4.30). The new 

unit cell is body centred and it contains two formulae units per unit cell. 

This is only half the number of atoms compared to the fcc unit cell. 

Figure (4.30) shows an arrangement of 4 cubic unit cells (top view) using 

a solid line, while a broken line indicates the unit cell for the setting of 

space group ]4/ mmm. The lattice parameters of the tetragonal cell are 

1 
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Figure 4.30 

Setting of 4 face centred cubic (solid 

1 ine) cells and one tetragonal cell 

(dashed line) . 
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For the tetragonal setting the explicit value of the lattice parameters of the 

high temperature phase would be: 

a = b = 5'~29 = 4.09A 
tetra letra -V L 

c = C . = 5.79A . 
lelra cubic 

The diffraction pattern taken at a temperature of T = 250 K indicates that 

the low temperature phase can be described using a tetragonal unit cell as 

given above. However, the lattice parameters are drastically changed. 

Lattice parameters for the low temperature martensite were refined to: 

a' = b' = (3.87 ± o.ol)A 
c' = (6.47 ± o.ol)A . 

The correctness of the description is mirrored by R-factors of 4.2 for both 

nuclear and magnetic scattering. 

Although the low temperature phase is described correctly usmg a 

tetragonal unit cell at low temperatures and despite the neutron diffraction 

measurement having been carried out at a temperature of T = 250 K Ca 

temperature significantly lower than the martensitic transition 

temperature of T M = 301 K) some minor Bragg peaks remain unaccounted 

for by such a model. Therefore a contribution was included of the 

intermediate meta-stable phase which has been identified in diffraction 

patterns at temperatures located within the martensitic transition region. 

This phase essentially accounted for the additional peaks both in intensity 

as well as in peak position. The details of diffraction pattern in the 

transition region and the intermediate phase will be discussed in the 

following section. For the pattern at T = 250 K including both the low 

- 99 -

. I 



temperature tetragonal phase as well as remnants of the phase identified 

for the transition region resulted in an acceptable fit. For the refinement a 

X2 -value of X2 ~ 9 was obtained. The R-factor for the refinement of the 

low temperature phase is R ~ 4, while for the intermediate phase a value 

of R ~ 11 was obtained. These results indicate that the model for the 

intermediate phase is able to account for all significant features of the 

pattern, such as peak positions and intensities of Bragg reflections. 

However, some finer aspects (mainly connected to the form of Bragg 

peaks of the intermediate phase) remain unresolved. This shortcoming is 

responsible for the slightly enhanced X2 -value at 250 K. However, the 

overall analysis shows that the structural model proposed here for the low 

temperature phase is the correct description. 

Ni (2.1 7 )Mn (O.83 ) Ga T=250K 
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Figure 4.31 

Neutron diffraction pattern of Niz.17Mno.83Ga at 250 K. The model comprises the low 

temperature tetragonal phase (nuclear and ferromagnetic contributions) as well as a small 

contribution arising from the intermediate phase. This phase is a meta-stable phase which 

persists down to 250 K. 
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Figure 4.32 

Low angle section of the diffraction pattern of figure (4.30). The major peaks arise 

due to the low temperature tetragonal phase, while the small additional reflections 

arise due to remnants of the intermediate phase. 

Details of all the refined parameters can be read off the pcr file given in 

the appendix. For the low temperature tetragonal phase the length of the 

a- and b-axes decreases by 5.5 % in relation to the cubic phase, whereas 

the length of the c-axis increases by 11.7 %. The volume of the cubic 

austenite unit cell (194.1013 at T = 310 K) corresponds well to the 

volume of the tetragonal martensite (96.9013 at T = 250 K). A factor of 2 

arises in the volume of these unit cells because the tetragonal unit cell 

contains only half as many atoms as the fcc unit cell. 

I t should be noted that the change in length of the lattice parameters is 

huge. However, almost no change is observed in the volume of a unit cell. 

Such a feature is connected with the details of the martensitic phase 

transformation. The martensitic phase transition is diffusionless and 

evolves via sheer displacement of atomic planes. For pure Ni2MnGa the 
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transformation details have been investigated by Brown et al. [4]. For 

comparison the observed length changes in pure Ni2MnGa are 2 % for the 

a- and b-axes and of 5 % for the c-axis. It has to be noted that the changes 

in length have a different sign. For pure NizMnGa the c-axis shortens on 

transforming to the low temperature phase, while for Ni2+xMnl-x Ga the 

c-axis lengthens. For both compounds the volume of the unit cell per 

formula unit IS not appreciably changed by the martensitic 

transformation. 

The low temperature martensitic phase is different from that of the pure 

compound. At low temperatures Ni2MnGa exhibits a 7-fold increase of 

the tetragonal unit cell and is orthorhombic, whereas the low temperature 

structure of Ni2.I7Mno.83Ga can be explained by the non-modulated 

tetragonal structure. 

The magnetic moment obtained from the diffraction experiment 

The magnetic moment of Mn obtained from the refinement of the 

diffraction pattern at T = 250 K is (2 .05 ± 0.06),uB/per Mn-atom. This 

value is larger than the value obtained at 310 K. This arises due to an 

increase in the degree of magnetic order when lowering the temperature. 

A comparison with the magnetisation data obtained from the Arrott plot 

at 250 K yields a magnetisation of (66 ± 1) ~. This corresponds to 
kg·T 

(2.87 ± 0.04) JiB/per Mn-atom. 

The value of the magnetic moment obtained in the neutron scattering 

experiment is consistent with the value of 2.30 ~BlMn-atom obtained by 

Brown et al. [7] for pure Ni2MnGa at a slightly lower temperature of 

230 K. However, the magnetic moment deduced from magnetisation data 
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IS significantly larger. If the model of a Ni-moment IS adopted a 

Ni-moment on Ni-sites of 0.49 /-lBlNi-atom is obtained. This value is 

substantially larger than the value deduced at the temperature of 310 K. 

However, as the high field part of the magnetisation curve has been used 

to extract the spontaneous magnetic moment it is possible that the 

application of a strong external magnetic field has changed the 

distribution of magnetic domains in favour of those domains which have 

their magnetic moments aligned close to the external magnetic field 

direction. Such a redistribution of domains would give rise to an 

enhanced value of the magnetic moment. In view of the variation of the 

magnetic moment in the low temperature martensitic phase on the 

conditions under which the magnetisation measurements have been 

carried out (see figures (4.14) and (4.15)) the macroscopic magnetic 

moment values in the martensitic phase have to be interpreted with care. 

Variations of up to 15 % are observed at 250K in figures (4.14) and 

( 4.15). 

Description of the intermediate phase in the region of the martensitic 

phase transition 

The phase transition 

The temperature dependence of diffraction patterns obtained in the 

transition region between 250 K and 310 K is shown in figure (4.33). A 

close inspection reveals that there are at least three phases present within 

the transition region. First some simple characteristics of these phases 

will be explored in more detail. Based on the temperature dependence of 

Bragg peaks in figure (4.33) their assignment to various phases is given. 
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For T = 310 K pattern the (2 0 0) Bragg peak occurs as a dominant 

feature at an angle of ~ 32 ° in 28. On cooling to 305 K the intensity of 

this peak drops slightly, and on further cooling to 300 K the intensity falls 

more rapidly towards zero. Its intensity diminishes but the peak intensity 

does not go to zero completely, even at a temperature of 250 K. This 

arises due to the fact that as the proportion of the cubic phase decreases a 

Bragg reflection of a low temperature phase emerges close to the position 

of the cubic (2 0 0) peak. 

For the diffraction patterns at low temperatures a strong peak is also 

observed at a 28 angle of 34°. However, with increasing temperature the 

peak intensity diminishes and merges into the background. At 310 K the 

peak intensity is essentially zero. The peak intensity is maximal at 

T = 250 K. Since at 250 K it is the low temperature phase that prevails it 

is argued that the peak at 34° in 28 belongs to the low temperature phase. 

In addition to the characteristics described above there are some smaller 

peaks, which appear only in an intermediate temperature range. These 

peaks are found to have substantially smaller intensities at high and at 

low temperatures as compared to a temperature located within the 

martensitic transition region. 
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Figure 4.33 

Temperature dependence of the low angle part of the neutron diffraction of 

Ni2.17Mno.83Ga in the martensitic transition region. The blue line shows the 

data observed at 310 K. The red line was measured at 305 K, the green line 

displays at 300 K, the pink line at 295 K and the brown line at 250 K. 

F or the interpretation of the additional peaks two different models can be 

invoked. For the first model a modulation of one phase can be considered. 

This modulation, e.g. via an increase of the unit cell as for the pure Ni-

2MnGa compound, will yield additional Bragg reflections. If the 

modulation amplitude is small, those Bragg reflections, which reflect the 

change in symmetry of the unit cell, will also have low intensity. 

Alternatively, a model can be considered where the transition occurs via 

an intermediate phase. Due to the huge, but reversible, changes in lattice 

parameters between the low and high temperature phases of 

Ni2.I7Mno.83Ga this is a real possibility. 

Both models have been used as a working basis for the interpretation of 

the diffraction pattern in the transition region. Best agreement between a 
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model and observation was obtained usmg a combination of high 

temperature cubic phase, a low temperature tetragonal phase and an 

intermediate phase of orthorhombic symmetry. A modulation model, 

based either on the high temperature cubic or the low temperature 

tetragonal phases, had only limited success in accounting for the observed 

diffraction patterns. The best results were obtained using a combination 

of an additional intermediate phase plus a modulation. Details of the 

various models are given next. 

The structure of the intermediate phase 

The intermediate phase, which is of orthorhombic structure, is a distorted 

phase exhibiting a two fold modulation along the [1 OO]cubiC and [01 O]cubiC 

axes. Almost all peaks, which are could not be accounted for by the high 

or low temperature phases, can be assigned using the intermediate phase 

described by the face centred space group Cmmm. The lattice parameters 

used are a = 10.99 A, b = 11.51 A and c = 6.08 A. However, the 

calculated intensities at the observed peaks do not fully account for the 

observed peak intensities. 

The second model based on a 5-fold modulation along the [110]cubic - axis 

with space group Immm and lattice parameters a = 4.09A, b = 20.4SA and 

c = 5.79 A is able to generate peaks with proper intensity at positions 

which were not fully captured within the model discussed above. A 

combination involving both models provides a good basic description 

yielding an overall i :::::; 20. Within the transition region no other model, 

which has been put forward in the literahlre, comes as close to the 

observed structure ofNi2. I7Mno.83Ga as the one proposed here. 
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Next the neutron diffraction pattern at T = 300 K is shown. The black line 

is the calculation based on the models described above. 
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Figure 4.34 

The calculated pattern based on the model of two intermediated phases described 

above is superimposed on the observed neutron diffraction pattern at 300 K. The 

green bars show the peak positions of each phase. The phases included are (from 

top to bottom): low temperature nuclear phase, low temperature magnetic phase, 

orthorhombic intermediate phase, cubic 5-fold modulated intermediate phase. 
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A section of the superposition of the observed and calculated pattern 

at T = 300K. 

An attempt to use only one phase as the intermediate phase was not 

successful. The best model description is obtained using an orthorhombic 

and the intermediate 5-fold modulated cubic structures. Also choosing a 

monoclinic [8, 9] or hexagonal structure as the intermediate phase have 

not resulted in an improvement on the model discussed above. Indeed a 

monoclinic model as proposed by [8] for a similar composition had 

significantly worse X2 values compared to the best model involving 2 

intermediate phases. Models based on a different increase of the unit cell, 

i.e. a five-, seven-, ten-, or even twelve fold modulation, as proposed by 

[10], have been tried, but no satisfactory agreement with experimental 

observations could be obtained. 
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Towards an Understanding of the processes involved in the martensitic 

phase transition 

The martensitic phase transition III Ni2. I7Mno.83Ga is significantly 

different to that of NizMnGa. Therefore the structure of the low 

temperature phases and the pre-martensitic phases of these two 

compounds are not implicitly related to each other. However, the high 

temperature phases have cubic face centred symmetry and can be 

described within the same space group using slightly different lattice 

constants. 

In the stoichiometric case the pre-martensitic as well as the martensitic 

phase of Ni2MnGa can be described using the orthorhombic space group 

Pnnm by a n-fold modulation along the [llO]cubic axis (where 

n = 3 for the pre-martensitic phase and n = 7 for the martensitic phase at 

low temperatures). Therefore the martensitic transformation of the pure 

compound is driven by a rearrangement of atoms within the tetragonal 

unit cell. For the non-stoichiometric Ni2.1 7Mno.83 Ga the martensitic 

transformation takes place by first shifting the atoms within the cubic 

Heusler setting. This is then followed by contraction and expansion of the 

lattice parameters resulting in a drastic loss of symmetry elements. The 

cubic high temperature phase has been described using the space group 

Fm3 m containing 192 symmetry elements. The orthorhombic unit cell 

of the second intermediate phase has been described using the symmetry 

of the space group Cmmm which is characterised by 16 symmetry 

elements. This is a reduction by factor 12. The second intermediate phase 

is transformed into the low temperature tetragonal phase. The low 

temperature phase has been described using the space group 14 / mmm 

which contains 32 symmetry elements. This implies that the dramatic loss 
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of symmetry elements is followed by a new gain of symmetry elements 

on lowering the temperature towards 250 K. Such a sudden loss and 

regain of symmetry elements is unusual, but it is consistent with the 

interpretation of the intermediate phase being meta-stable. 

In Ni2. 17Mno.83Ga the transformation takes place over a large temperature 

range . Although the martensitic transformation start temperature obtained 

from magnetisation measurements is ~ 305 K the neutron diffraction data 

show that a small amount of the low temperature martensitic phase is 

already present at 310 K. Furthermore at 250 K the coexistence of two 

phases (the low temperature and the orthorhombic intermediate phase) 

has been established. Therefore the martensitic transformation (on 

cooling) covers at least the temperature range between 310 K and 250 K. 

This, too, is different from the martensitic transformation observed for 

Ni2MnGa, in which case the transformation from the pre-martensitic to 

the low temperature phase takes place "instantly" [4] without the 

involvement of an intermediate phase. 

The distortion observed for Ni2MnGa is 4.6% along the c-axis, 1.7 % 

along the b-axis and 2.4 % along the a-axis [4]. This is remarkably in 

itself but still less than those observed for Ni2. 17Mno.83Ga, where length 

changes were found to be twice as big. An overview over the observed 

length changes for Nh. 17MnO.83 Ga is presented in table (4.9) and figure 

( 4.36). 
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a [A] 
b [A] 
c [A] 

Volume rA3
] 

Table 4.9 

6.6 

6.4 

E 
c: 6.2 
o 
!:. 
Xl 6.0 
)( 
IV 

'0 
or; 5.8 -Cl 
c: 
.! 5.6 

Cubic Intermediate Tetragonal 
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5.790 5.495 5.473 
5.790 5.755 5.473 
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Figure 4.36 

The lattice parameters as a function of the phase. 

Figure (4.36) shows that the high length changes observed for 

Ni2.17MnO.83Ga, and which are needed for the transition from the high 

temperature phase to the low temperature tetragonal structure, are realised 

by stepping towards the other phase via an intermediate structure. On 

cooling the cubic phase the length of the b-axis remains almost unaltered 

while the length of the c-axis is changed by half the length change 

involved for this axis in the whole martensitic transformation. The a-axis 

changes such that the volume of the unit cell is effectively constant for 

the first transformation step. For the second step, i.e. when transforming 

from the intermediate phase to the low temperature tetragonal phase, the 
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c-axis changes again by a similar amount as in the first transition step. 

The a-axis remains unchanged in length for the second transformation 

step, while the b-axis changes its length to coincide with the length of the 

a-axis. Thus the whole transformation process is split into 2 transition 

steps. This step-wise martensitic phase transformation as observed for 

Ni2.I7Mno.83Ga enables these enormous length changes to occur while at 

the same time keeping the volume of the unit cell unchanged. 

Details of the transformation have been checked using X-ray scattering as 

a function of temperature. However, only the neutron data has been used 

and presented here due to its superior quality. 

Details of the refinement and additional information on the phases 

involved in the refinement can be found in the pcr-files. These have been 

used as input files for the refinement using the FullProf- programme. The 

files are attached in the appendix and should be consulted for more 

detailed information on particular parameters. 
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5) Discussion 

The investigations in this thesis have centred on Ni rich samples of 

composition Ni2+xMnl_xGa with 0 < x < 0.2. For samples within this 

compositional range ferromagnetic order exists and a martensitic phase 

transition is observed within the ferromagnetically ordered state. 

Structural investigations using X-ray and neutron scattering have been 

used in order to clarify the crystallographic details of the various phases. 

While for the pure Ni2MnGa compound a transition to a low temperature 

modulated structure is observed, for the Ni-rich compound with x = 0.17 

the transition occurs to a tetragonal structure. In the transition the length 

of the axes change substantially. However, for the pure NhMnGa 

compound the c-axis shortens, while for the x = 0.17 alloy it lengthens. 

This implies that the mechanism is slightly different for the Ni-rich 

compound. The shears driving the martensitic phase transition for pure 

NhMnGa have been identified by Brown et al. For x = 0.17, however, the 

mechanism must be different, as the deformation leaves the c-axis 

lengthened rather than shortened. On the basis of the neutron diffraction 

data taken on a powder it was feasible to make detailed statements 

regarding the transition mechanism. However, measurements in the 

transition region and as a function of temperature indicate that an 

intermediate phase is involved. This phase has orthorhombic symmetry 

with lattice parameters which can be considered to be 'in between' the 

high temperature cubic and the low temperature tetragonal phases. Such 

an intermediate phase seems to assist in the completion of the martensitic 

phase transition. For all NhMnGa compounds the unit cell volume does 

not change appreciably in the phase transition. This lends support to the 

notion that volume conserving shears are responsible for this phase 
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transition. For the x = 0 compound this has been shown by single crystal 

investigations. It will be of interest to see whether or not this is also the 

case for the Ni-rich compounds. 

The presence of an intermediate phase in the martensitic phase 

transformation process also contributes to the hysteretic nature of the 

phase transformation. This has been evidenced in DSC measurement with 

a considerable difference in transition temperatures observed while 

heating and cooling. These measurements support the interpretation of the 

phase transition as being of 1 st order by the observation of a considerable 

temperature hysteresis and by the observation of a latent heat contribution 

to the DSC measurements. For the transition itself magnetisation 

measurements are more sensitive. SQUID measurements reveal a much 

sharper feature for the martensitic phase transformation than DSC 

measurements. 

The magnetisation of Ni-rich samples reveals that the structural changes 

are coupled to the ferromagnetism of the sample. Structural transitions 

are evidenced by a change in the magnetisation either as a step feature or 

a kink. Large fields are able to align crystallographic domains due to 

forcing the magnetic moment into the external magnetic field direction. 

, This change of magnetic moment direction is accompanied by a change 

of the orientation of the crystallographic domain. The axes are 

redistributed such that the easy axis of magnetisation is oriented closer to 

the external magnetic field direction. The observations in magnetisation 

measurements support this point of view. However, it is surprising that 

the coupling to the lattice is so strong for these compounds. The magnetic 

moment of Mn-atoms is dominated by the electronic spin contribution. In 

order to couple the spin to the lattice degrees of freedom an orbital 
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moment contribution is also needed. Both the spm and the orbital 

contributions are coupled to one another via the spin orbit coupling 

constant. This constant is of relativistic origin, and its value is expected to 

be small for 3d transition metals. However, from an experimental point of 

view the magnetic moment is found to be strongly coupled to the lattice. 

This may be assisted firstly by the fact that the energy barrier for the 

motion of crystallographic domain walls is particularly low, and secondly 

by the observation that the anisotropy develops in the low temperature 

phase, for which the crystallographic symmetry is reduced from the cubic 

structure at high temperatures. 

Brown et al. have also proposed that the martensitic phase transformation 

for pure NbMnGa is driven by a band Iahn-Teller effect. Such a 

mechanism would, of course, give rise to some anisotropy due to changes 

in the symmetry of the electron distribution in the phase transformation. 

An external magnetic field of sufficient magnitude could influence the 

distribution of magnetic electrons on the symmetry adapted orbitals 

located on the Mn-atoms. Within such an interpretation the coupling 

would arise due to a magnetic field induced shifting of energy levels on 

manganese, akin to a crystal field splitting. This splitting is then exploited 

by the lattice such that it adopts a more favourable configuration with an 

overall reduction in the free energy of the system. It will be of interest to 

investigate the changes of the magnetisation density on undergoing the 

martensitic phase transformation. For such an experiment single crystal 

magnetic form factor measurements have to be carried out. It is expected 

that such an experiment is entirely feasible as the changes in lattice 

parameter are even larger for Nb.17Mno.S3Ga than for the pure NbMnGa 

compound, thus allowing the contribution of various low temperature 

crystallographic domains to be separated from one another. 
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In this context it is of interest to observe that resistivity measurements 

have a temperature dependence more consistent with an electronic 

scattering mechanism than with a lattice contribution. This indicates that 

those electrons responsible for the conduction of an electrical current are 

also strongly influenced by the magnetic moments located on Mn-atoms. 

For a magnetic moment of fixed magnitude the influence is exerted via a 

contact polarisation. For such a case the simple model used for the 

analysis of the electric resistance measurement is expected to be a 

reasonable model. If, however, the manganese d-electrons participate at 

the Fermi surface it is not possible to readily disentangle their 

contribution to the conduction current. However, the correct analysis of 

the resistivity data requires more information than is available at present. 

The nature of the magnetic moment can be, at least partly, inferred from 

neutron and magnetisation measurements. The values obtained from 

magnetisation measurements for the value of the ground state magnetic 

moment seems to indicate that the moment is not an integer multiple of a 

Bohr magneton. This interpretation, however, rests on the assumption that 

the magnetic moment is only carried by manganese atoms. As indicated 

above in the discussion of the magnetisation,. data, there are some strong 

hints of a small, but non-zero, magnetic contribution of Ni-atoms located 

on Ni-sites. The measurement at T = 310 K and the small difference 

between magnetic moments determined using magnetisation and neutron 

data is strongly supportive of such an interpretation. The much larger 

discrepancy at T = 250 K is less certain due to the effect a strong 

magnetic field has on the alignment of crystallographic domains. Thus 

the strong field magnetisation measurement will overestimate the 

magnetic moment due to the deviation of crystallographic domains from a 
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random and spherical distribution in the sample. Based on this 

observation the magnetisation measurements will overestimate the size of 

the magnetic moment. Neutron measurements do not need an external 

magnetic field and as a consequence they do not suffer from the problems 

highlighted here for the magnetisation measurements. 

This open question of a magnetic moment located on Ni-atoms can also 

be answered by magnetic form factor measurements. Here site-specific 

magnetisation values can be determined. Such a magnetisation density 

determination experiment carried out on a Ni-rich NhMnGa sample will 

be a very revealing and informative experiment. 

The physics of the Ni-rich NhMnGa samples has been investigated in 

some detail. Structural and magnetic properties have been determined for 

a variety of samples and under various conditions. The characteristics of 

the magnetic and martensitic phase transformations have been 

investigated. The huge changes of the lattice parameters observed for the 

x = 0.17 compound are surprising. In particular in view of the fact that 

such form and length changes can also occur in bulk materials and single 

crystal without a degradation of the material. The observation that the 

transformation takes place via an intermediate phase gives some clues as 

to the mechanism via which the phase transformation takes place. The 

coupling of the magnetic moment to the lattice is also puzzling. The 

investigation presented here has indicated that the coupling does exist and 

that it can be used to align crystallographic domains within the low 

temperature martensitic phase. However, more work is needed before a 

full understanding of the transformation and low temperature properties 

ofNi2+xMnt_xGa compounds is achieved. 
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Appendix A: C++-program for mean field calculation 

A small C++ -program was written to solve the self-consistent equation 

(3.53). The results of this calculation are shown in figures (3.8) and (3.9). 

The content of the program is shown next: 

II routine to calculate magnetisation of spin 112 system 

II in mean field approximation 

II 

II K. Frohlich, Jan 2004 

II 

#include <conio.h> II load header files 

#include <iostream.h> 

#include <math.h> 

float mainO 

{ 

float m,b,t,Mold; 

int irun,itest; 

for(t=O.OOOOOOI; t<=2.51; t=t+O.1) II temperature loop 

{ 

itest=O; 

cout«" t = "« t«endl; 

for(b=O.OOOl; b<=0.81; b=b+0.02) 

{ 

m=O.2; II initialize iteration 

irun=O; 

do 

{ 

Mold=m; 

II magnetic field loop 
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m=tanh((b+m)It); 

irun +=1; 

}while(1000000*fabs(Mold-m) > 0.00000001 11 irun < 10000); 

itest+=1; 

if(itest 4) 

{ 

itest=O; 

cout«endl; 

} 

II cout«n[n«b/m«n n«m*m«n] n. , , , 

cout« n[n«b«" "«m«n] 11. , , , 

} 

cout«endl; 

getch(); 

} 

getch(); 

return(O); 

} 
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Appendix B: FullProf Data files 

The following pcr files have been used in the structural refinement of 

neutron data. The various parameters are listed according to the 

contributing phases. For details of their interpretation and the refinement 

the reader is referred to the FullProf manual 

(http://www-llb.cea.fr/fullweb/fp2k/fp2k.htm ). 

Content of the pcr file of the refinement at T = 310 K 

COMM Ni(2.17)Mn(0.83)Ga 31 OK 

! Current global Chi2 (Bragg contrib.) = 7.047 

! Files => DAT-fiIe: nmg7310, PCR-fiIe: ni217_310k_2phases 

!Job Npr Nph Nba Nex Nsc Nor Dum Iwg lIo Ias Res Ste Nre Cry Uni Cor Opt Aut 

153 0 2 001 1 0 0 0 0 0 0 0 0 0 0 

!Ipr Ppl loc Mat Pcr LsI Ls2 Ls3 NLI PrfIns Rpa Sym Hkl Fou Sho Ana 

001 1 100 001 6 000 0 0 0 

! lambdal Lambda2 Ratio Bkpos Wdt Cthm muR AsyLim Rpolarz ->Patt# 1 

1.590000 1.590000 1.0000 49.000 5.0000 0.0000 0.0000 50.00 0.0000 

!NCY Eps R_at R_an R-yr R~I Thmin Step Thmax PSD SentO 

7 0.1 0 0.80 0.80 0.80 0.80 -7.4500 0.0500 162.0000 0.000 0.000 

! Excluded regions (LowT RighT) for Pattern# 1 

-100.50 8.00 

147.20 180.00 

21 !Number of refined parameters 

! Zero Code Sycos Code Sysin Code Lambda Code MORE ->Patt# 1 

0.00913 11.00 0.00000 0.00 0.00000 0.00 0.000000 0.00 0 
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! Background coefficients/codes for Pattern# 1 

141.67 -1.3741 37.242 -23.781 5.6990 0.0000 

41.000 51.000 61.000 71.000 81.000 0.000 

! -------------------------------------------------------------------------------

! Data for PHASE number: 1 ==> Current R_ Bragg for Pattern# 1: 4.18 

! -------------------------------------------------------------------------------

Ni2MnGa 

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

3 0 0 0.0 0.0 1.0 0 0 0 0 0 968.23 0 5 0 

F m 3 m <--Space group symbol 

!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes 

Ni8c NI 0.25000 0.25000 0.25000 0.72645 0.41667 0 0 0 0 

0.00 0.00 0.00 141.00 0.00 

Mn4a MN 0.00000 0.00000 0.00000 0.72645 0.07512 0 0 0 0 

0.00 0.00 0.00 141.00 0.00 

Ga4b GA 0.00000 0.00000 0.50000 0.67624 0.20833 0 0 0 0 

0.00 0.00 0.00 161.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shapel Bov Strl Str2 Str3 Strain-Model 

0.46776E-02 -0.07087 0.00000 0.00000 0.00000 0.00000 

21.00000 131.000 0.000 0.000 0.000 0.000 

u V W X Y GauSiz LorSiz Size-Model 

0.063270 -0.133062 0.125524 0.003270 0.000000 0.000000 0.000000 0 

91.000 101.000 111.000 121.000 0.000 0.000 0.000 

a b c alpha beta gamma 

5.792132 5.792132 5.792132 90.000000 90.000000 90.000000 

31.00000 31.00000 31.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asy1 Asy2 Asy3 Asy4 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 

! ---------------------------------------------:.---------------------------------

! Data for PHASE number: 2 > Current R _ Bragg for Pattern# 1: 7.45 

! -------------------------------------------------------------------------------

Ni2.17Mn.83Ga 

!Nat Dis Mom Prl Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

o 0 0.0 0.0 1.0 -1 0 -1 0 0 0.00 0 5 0 
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F1 <--Space group symbol 

!Nsym Cen Laue MagMat 

4 2 1 1 

SYMM X,Y,Z 

MSYM V,V,W, .0 

SYMM X+0.5,Y+0.5,Z 

MSYM V,V,W,.O 

SYMM X+0.5,Y,Z+0.5 

MSYM V,V,W,.O 

SYMM X,Y+0.5,Z+0.5 

MSYM V,V,W, .0 

!Atom Typ Mag Vek X Y Z Biso Occ Rm Rphi Rtheta 

! lm lphi !theta beta!l beta22 beta33 MagPh 

MN MMN2 1 0 0.000000.000000.000000.726458.30000 1.536 0.000 0.000 

0.00 0.00 0.00 141.00 0.00 151.00 0.00 0.00 

0.000 0.000 0.000 0.000 0.000 0.000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shape 1 Boy Strl Str2 Str3 Strain-Model 

0.46776E-02 -0.07087 0.00000 0.00000 0.00000 0.00000 

21.00000 131.000 0.000 0.000 0.000 0.000 

V V W X Y GauSiz LorSiz Size-Model 

0.063270 -0.133062 0.125524 0.003270 0.000000 0.000000 0.000000 0 

91.000 101.000 111.000 121.000 0.000 0.000 0.000 

! a b c alpha beta gamma 

5.792132 5.792132 5.792132 90.000000 90.000000 90.000000 

31.00000 31.00000 3l.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asy1 Asy2 Asy3 Asy4 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 

! -------------------------------------------------------------------------------

! Data for PHASE number: 3 -> Current R_Bragg for Pattern# 1: 44.64 

! -------------------------------------------------------------------------------

Ni2MnGa 

!Nat Dis Ang Prl Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

3 0 0 0.0 0.0 1.0 0 0 0 0 0 968.23 0 5 0 
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P n n m <--Space group symbol 

!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes 

Ni4fNI 0.00000 0.50000 0.25000 0.00000 0.20833 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn2a MN 0.00000 0.00000 0.00000 0.00000 0.00375 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga2b GA 0.00000 0.00000 0.50000 0.00000 0.1 0417 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shapel Bov Strl Str2 Str3 Strain-Model 

0.37665 1.08098 0.03832 0.00000 0.00000 0.00000 

211.00000 191.000 201.000 0.000 0.000 0.000 

U v W X Y GauSiz LorSiz Size-Model 

0.063270 -0.133062 0.125524 0.003270 0.000000 0.000000 0.000000 0 

91.000 101.000 111.000 121.000 0.000 0.000 0.000 

a b c alpha beta gamma 

3.880890 3.880890 6.436859 90.000000 90.000000 90.000000 

171.00000 171.00000 181.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asyl Asy2 Asy3 Asy4 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 

Content of the per file of the refinement at T = 300 K 

COMM Ni2MnGa 3 phase, 300K 

! Current global Chi2 (Bragg contrib.) = 23.86 

! Files => DAT-file: nmg7309, PCR-file: ni217_3phasesl 

!Job Npr Nph Nba Nex Nse Nor Dum Iwg Ho Ias Res Ste Nre Cry Uni Cor Opt Aut 

1 5 402 0 0 1 1 000 0 0 000 0 0 

!Ipr Ppl Ioe Mat Pcr Lsl Ls2 Ls3 NLI PrfIns Rpa Sym Hkl Fou Sho Ana 

001 1 1 0 0 0 0 1 6 0 0 0 0 0 0 

! lambdal Lambda2 Ratio Bkpos Wdt Cthm muR AsyLim Rpolarz ->Patt# 1 

1.590000 1.590000 1.0000 49.000 5.0000 0.0000 0.0000 50.00 0.0000 

!NCY Eps R_at R_an R-pr R_gl Thmin Step Thmax PSD SentO 

17 0,01 0.08 0.80 0.80 0.80 -7.4500 0.0500 162.0000 0.000 0.000 
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! Excluded regions (LowT RighT) for Pattern# 

-100.50 8.00 

147.20 180.00 

33 !Number of refined parameters 

! Zero Code Sycos Code Sysin Code Lambda Code MORE ->Patt# 1 

0.00280 11.00 0.00000 0.00 0.00000 0.00 0.000000 0.00 0 

! Background coefficients/codes for Pattern# 1 

131.89 -4.3539 32.759 -25.033 6.9738 0.0000 

131.000 141.000 151.000 161.000 171.000 0.000 

! -------------------------------------------------------------------------------

! Data for PHASE number: 1 --> Current R _ Bragg for Pattern# 1: 12.10 

! -------------------------------------------------------------------------------

Ni2MnGa 

!Nat Dis Ang Prl Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

3 0 0 0.0 0.0 1.0 0 0 0 0 0 968.23 0 5 0 

I 4/m m m <--Space group symbol 

!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes 

Ni4fNI 0.00000 0.50000 0.25000 0.00000 1.25000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn2a MN 0.00000 0.00000 0.00000 0.00000 0.22535 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga2b GA 0.00000 0.00000 0.50000 0.00000 0.62500 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shapel Bov Strl Str2 Str3 Strain-Model 

0.72169E-02 0.12810 0.19531 0.00000 0.00000 0.00000 

21.00000 221.000 231.000 0.000 0.000 0.000 

U V W X Y GauSiz LorSiz Size-Model 

0.059681 -0.127074 0.161483 0.009923 0.000000 0.000000 0.000000 0 

181.000 191.000 201.000 211.000 0.000 0.000 0.000 

a b c alpha beta gamma 

3.881999 3.881999 6.434086 90.000000 90.000000 90.000000 

31.00000 31.00000 41.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asyl Asy2 Asy3 Asy4 
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0.00000 0.00000 0.07691 0.01492 0.00000 0.00000 

0.00 0.00 0.00 QOO 0.00 QOO 

! -------------------------------------------------------------------------------

! Data for PHASE number: 2 > Current R _ Bragg for Pattern# 1: 15.15 

! -------------------------------------------------------------------------------

Ni2MnGa 

!Nat Dis Ang Pr! Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

12 0 0 0.0 0.0 1.0 0 0 0 0 0 968.23 0 5 0 

C m m m <--Space group symbol 

!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes 

Ni4fNI 0.12889 0.13633 0.22615 0.00000 8.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ni4fNI 0.13519 0.38762 0.29163 0.00000 8.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn2a MN 0.00000 0.00000 0.00000 0.00000 0.36056 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn2b MN 0.50000 0.00000 0.00000 0.00000 0.36056 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn4e MN 0.25000 0.25000 0.00000 0.00000 0.72112 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn4h MN 0.24142 0.00000 0.50000 0.00000 0.721l2 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn4j MN 0.00000 0.23100 0.50000 0.00000 0.72112 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga2d GA 0.00000 0.00000 0.50000 0.00000 1.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga2c GA 0.50000 0.00000 0.50000 0.00000 1.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga4fGA 0.25000 0.25000 0.50000 0.00000 2.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga4g GA 0.23299 0.00000 0.00000 0.00000 2.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga4i GA 0.00000 0.28492 0.00000 0.00000 2.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shapel Bov Str! Str2 Str3 Strain-Model 

0.26616E-03 0.45309 0.52086 0.00000 0.00000 0.00000 

51.00000 241.000 251.000 0.000 0.000 0.000 
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u v w x y GauSiz LorSiz Size-Model 

0.059681 -0.127074 0.161483 0.009923 0.000000 0.000000 0.000000 0 

181.000 191.000 201.000 211.000 0.000 0.000 0.000 

a b c alpha beta gamma 

11.029306 11.527459 6.088085 90.000000 90.000000 90.000000 

61.00000 71.00000 81.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asyl Asy2 Asy3 Asy4 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 0.00 ono 
! -------------------------------------------------------------------------------

! Data for PHASE number: 3 => Current R _ Bragg for Pattern# 1: 12.56 

! -------------------------------------------------------------------------------

Ni2MnGa 

!Nat Dis Ang Prl Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

9 0 0 0.0 0.0 1.0 0 0 0 0 0 968.23 0 5 0 

P n n m <--Space group symbol 

!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes 

Ni4fNI 0.00000 0.50000 0.24836 0.00000 2.00000 0 0 0 0 

0.00 0.00 291.00 0.00 0.00 

Ni8h NI -0.00122 0.10000 0.25285 0.00000 4.00000 0 0 0 0 

301.00 0.00 311.00 0.00 0.00 

Ni8h NI 0.08080 0.30000 0.24273 0.00000 4.00000 0 0 0 0 

321.00 0.00 331.00 0.00 0.00 

Mn2a MN 0.00100 0.00000 0.00000 0.00000 0.36056 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn4g MN 0.00000 0.20000 0.00000 0.00000 0.72112 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn4g MN 0.00000 0.40000 0.00000 0.00000 0.72112 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga2b GA 0.50000 0.50000 0.00000 0.00000 1.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga4g GA 0.50000 0.10000 0.00000 0.00000 2.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga4g GA 0.50000 0.30000 0.00000 0.00000 2.00000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shapel Bov Strl Str2 Str3 Strain-Model 

0.75821E-03.-0.22072 0.69512 0.00000 0.00000 0.00000 
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91.00000 261.000 271.000 0.000 0.000 0.000 

u V w X Y GauSiz LorSiz Size-Model 

0.059681 -0.127074 0.161483 0.009923 0.000000 0.000000 0.000000 0 

181.000 191.000 201.000 211.000 0.000 0.000 0.000 

a b c alpha beta gamma 

4.096430 20.481590 5.789271 90.000000 90.000000 90.000000 

101.00000 Il1.00000 121.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asyl Asy2 Asy3 Asy4 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 

! -------------------------------------------------------------------------------

! Data for PHASE number: 4 -> Current R_Bragg for Pattern# I: 13.89 

! -------------------------------------------------------------------------------

Ni2.17Mn.83Ga 

!Nat Dis Mom Pr! Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

o 00.00.01.0 -I 0 -I 0 0 0.00 0 5 0 

PI <--Space group symbol 

!Nsym Cen Laue MagMat 

2 2 I I 

SYMM -X,-Y,-Z 

MSYM U,V,W, .0 

SYMM -X+0.5,-Y+0.5,-Z+0.5 

MSYM U,V,W, .0 

!Atom Typ Mag Vek X Y Z Biso Occ Rm Rphi Rtheta 

Im Iphi Itheta betall beta22 beta33 MagPh 

MN MMN2 I 0 0.000000.000000.000000.000008.30000 2.906 0.000 90.000 

0.00 0.00 0.00 0.00 0.00 281.00 0.00 0.00 

0.000 0.000 0.000 0.000 0.000 0.000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # I 

! Scale Shape I Bov Strl Str2 Str3 Strain-Model 

0.72169E-02 0.12810 0.64255 0.00000 0.00000 0.00000 1 

21.00000 221.000 231.000 0.000 0.000 0.000 

U V W X Y GauSiz LorSiz Size-Model 

0.059681 -0.127074 0.161483 0.009923 0.000000 0.000000 0.000000 0 

181.000 191.000 201.000 211.000 0.000 0.000 0.000 
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a b c alpha beta gamma 

3.881999 3.881999 6.434086 90.000000 90.000000 90.000000 

31.00000 31.00000 41.00000 0.00000 0.00000 0.00000 

! Pref! Pref2 Asy1 Asy2 Asy3 Asy4 

0.00000 0.00000 0.07691 0.01492 0.00000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 

Content of the pcr file of the refinement at T = 250 K 

COMM Ni(2.17)Mn(0.83)Ga T=250K 

! Current global Chi2 (Bragg contrib.) = 8.895 

! Files => DAT-file: Ni2P17_250, PCR-file: ni2l7 _250k_2phases 

!Job Npr Nph Nba Nex Nsc Nor Dum Iwg lIo Ias Res Ste Nre Cry Uni Cor Opt Aut 

153 0 2 0 0 1 1 000 0 0 0 0 0 0 0 

!lpr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI PrfIns Rpa Sym Hkl Fou Sho Ana 

001 1 100 0 0 1 6 0 0 0 000 

! lambda 1 Lambda2 Ratio Bkpos Wdt Cthm muR AsyLim Rpolarz ->Patt# 1 

1.590000 1.590000 1.0000 59.000 5.0000 0.0000 0.0000 55.00 0.0000 

!NCY Eps R_at R_an R--pr R~l Thmin Step Thmax PSD SentO 

17 0.01 0.18 0.80 0.80 0.80 -7.4500 0.0500 162.0000 0.000 0.000 

! Excluded regions (LowT HighT) for Pattern# 

-100.50 8.00 

145.20 180.00 

36 !Number of refined parameters 

! Zero Code Sycos Code Sysin Code Lambda Code MORE ->Patt# 1 

0.01770 11.00 0.00000 0.00 0.00000 0.00 0.000000 0.00 0 

! Background coefficients/codes for Pattern# 1 

135.93 2.4269 -19.289 -4.2098 76.360 -42.542 

131.000 141.000 151.000 161.000 171.000 181.000 

! -------------------------------------------------------------------------------

! Data for PHASE number: 1 --> Current R _Bragg for Pattern# 1: 4.24 

! -------------------------------------------------------------------------------
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Ni2MnGa 

!Nat Dis Ang Pr! Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

3 0 0 0.0 0.0 1.0 0 0 0 0 0 968.23 0 5 0 

I 4/m m m <--Space group symbol 

!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes 

Ni4fNI 0.00000 0.50000 0.25000 0.00000 1.25000 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn2a MN 0.00000 0.00000 0.00000 0.00000 0.22535 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Ga2b GA 0.00000 0.00000 0.50000 0.00000 0.62500 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shape 1 Bov Strl Str2 Str3 Strain-Model 

0.16294E-01 0.28955 0.27791 0.00000 0.00000 0.00000 

21.00000 201.000 191.000 0.000 0.000 0.000 

v V W X Y GauSiz LorSiz Size-Model 

0.103768 -0.149351 0.156234 0.005421 0.000000 0.000000 0.000000 0 

241.000 251.000 261.000 211.000 0.000 0.000 0.000 

a b c alpha beta gamma 

3.868827 3.868827 6.466137 90.000000 90.000000 90.000000 

31.00000 31.00000 41.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asy1 Asy2 Asy3 Asy4 

0.00000 0.00000 0.07689 0.01492 0.00000 0.00000 

0.00 0.00 111.00 121.00 0.00 0.00 

! -------------------------------------------------------------------------------

! Data for PHASE number: 2 => Current R _Bragg for Pattern# 1: 4.23 

! -------------------------------------------------------------------------------

Ni2.17Mn.83Ga 

!Nat Dis Mom Pr! Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

1 0 0 0.0 0.0 1.0 -1 0 -1 0 0 0.00 0 5 0 

I 1 <--Space group symbol 

!Nsym Cen Laue MagMat 

4 2 1 1 

SYMM X,Y,Z 

MSYM V,V,W,.O 
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SYMM -X+0.5,Y+0.5,-Z+0.5 

MSYM U,V,W,.O 

SYMM -X,-Y,Z 

MSYM U,V,W,.O 

SYMM X+0.5,-Y+0.5,-Z+0.5 

MSYM U,V,W, .0 

!Atom Typ Mag Vek X Y Z Biso Occ Rm Rphi Rtheta 

Im Iphi Itheta beta11 beta22 beta33 MagPh 

MN MMN2 1 0 0.000000.000000.000000.000004.15000 2.047 0.000 0.000 

0.00 0.00 0.00 0.00 0.00 51.00 0.00 0.00 

0.000 0.000 0.000 0.000 0.000 0.000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shape 1 Bov Strl Str2 Str3 Strain-Model 

0.16294E-Ol 0.28955 0.27791 0.00000 0.00000 0.00000 

21.00000 201.000 191.000 0.000 0.000 0.000 

U V W X Y GauSiz LorSiz Size-Model 

0.103768 -0.149351 0.156234 0.005421 0.000000 0.000000 0.000000 0 

241.000 251.000 261.000 211.000 0.000 0.000 0.000 

! a b c alpha beta gamma 

3.868827 3.868827 6.466137 90.000000 90.000000 90.000000 

31.00000 31.00000 41.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asyl Asy2 Asy3 Asy4 

0.00000 0.00000 0.07689 0.01492 0.00000 0.00000 

0.00 0.00 111.00 121.00 0.00 0.00 

! -------------------------------------------------------------------------------

! Data for PHASE number: 3 ==> Current R_Bragg for Pattern# 1: 11.39 

! -------------------------------------------------------------------------------

Ni2MnGa 

!Nat Dis Ang Prl Pr2 Pr3 Jbt IrfIsy Str Furth ATZ Nvk Npr More 

12 0 00.00.0 1.0 0 0 0 0 0 968.23 0 5 0 

C m m m <--Space group symbol 

!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes 

Ni4fNI 0.12889 0.13633 0.22615 0.00000 8.00000 0 0 0 0 

331.00 291.00 311.00 0.00 0.00 

Ni4fNI 0.13519 0.38762 0.29163 0.00000 8.00000 0 0 0 0 

341.00 301.00 321.00 0.00 0.00 
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Mn2aMN 0.00000 0.00000 0.00000 0.00000 0.36056 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn2bMN 0.50000 0.00000 0.00000 0.00000 0.36056 0 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn4eMN 0.25000 0.25000 0.00000 0.00000 0.72112 o 0 0 0 

0.00 0.00 0.00 0.00 0.00 

Mn4hMN 0.24142 0.00000 0.50000 0.00000 0.72112 o 0 0 0 

101.00 0.00 0.00 0.00 0.00 

Mn4jMN 0.00000 0.23100 0.50000 0.00000 0.72112 0 0 0 0 

0.00 271.00 0.00 0.00 0.00 

Ga2dGA 0.00000 0.00000 0.50000 0.00000 1.00000 000 0 

0.00 0.00 0.00 0.00 0.00 

Ga2cGA 0.50000 0.00000 0.50000 0.00000 1.00000 000 0 

0.00 0.00 0.00 0.00 0.00 

Ga4fGA 0.25000 0.25000 0.50000 0.00000 2.00000 000 0 

0.00 0.00 0.00 0.00 0.00 

Ga4g GA 0.23299 0.00000 0.00000 0.00000 2.00000 0 0 0 0 

351.00 0.00 0.00 0.00 0.00 

Ga4i GA 0.00000 0.28492 0.00000 0.00000 2.00000 0 0 0 0 

0.00 361.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 

! Scale Shape 1 Bov Strl Str2 Str3 Strain-Model 

O.l1076E-03 0.72047 0.14238 0.00000 0.00000 0.00000 

61.00000 221.000 231.000 0.000 0.000 0.000 

u v w x Y GauSiz LorSiz Size-Model 

0.103768 -0.149351 0.156234 0.005421 0.000000 0.090291 0.000000 0 

241.000 251.000 261.000 211.000 0.000 281.000 0.000 

! a b c alpha beta gamma 

10.993261 11.508169 6.082433 90.000000 90.000000 90.000000 

71.00000 81.00000 91.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asyl Asy2 Asy3 Asy4 

0.00000 0.00000 0.07689 0.01492 0.00000 0.00000 

0.00 0.00 111.00 121.00 0.00 0.00 
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Appendix C: Structural Relationships between various 

phases 

The relationship between possible phases have been studied in an attempt 

to systematically evaluate their potential for explaining details of the 

observed diffraction patterns. 

m-3m I clIhic Fm-3 1192 SE, 
# 225 

• • 
4/m m m I tetragonal I4/mm 132 SE, 

# 139 

• If \t 
mmm l°rthorhombic Immm 116 SE, 

# 71 I F m m m I ~26~E, 

1 • ~ • 
Pnnm 18 SE, I C2/m 18 SE, 

# 58 # 12 

2/m I monoclinic ~ / 
I 14 SE, P2/m # 10 

The position of atoms of the Heusler structure in unconventional setting 

of various space groups and unit cells 

Here the position of atoms are discussed when the description is 

transformed from the conventional Heusler structure to a different space 

group. This transformation is relevant for structure determinations such as 

the one which is of interest here for the various phases ofNh17Mno.83Ga. 
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The Heusler structure can be described usmg the space group 

symbol Fm3m . The number behind the space group symbol is the 

number according to [International Tables For Crystallography, volume 

A, Space Group Symmetry: Theo Hahn (editor), D. Reidel Publishing 

Company, 2nd edition, 1987]. 

A comment is given in brackets there in order to identify particular 

features of the chosen unit cell. This is followed by a graphical 

representation of the relationships between the various space groups. 

Only those space groups have been considered which might be of 

relevance for structural transformation. 

Fm-3m 

Mn 4a 

Ga 4b 

Ni 8e 

(3 1 1) 
4'4'4 

#225 (no increase along any axis): 

(3 1 3) 
4'4'4 (3 3 1) 

4'4'4 

Appendix C 
- 134 -

(3 3 3) 
4'4'4 



Fmmm #69 (3-fold increase along b-axis): 

Mn 4a (0,0,0) 

8h 

Ga 4b 

8h 
(o,~,o) 

Ni 8f 

(
1 1 1) (1 1 3) (1 11 1) (1 11 3) 

16k 4' 12' 4 4' 12 ' 4 4' 12 ' 4 4' 12 ' 4 
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14/m m m 

Mn 2a (0,0,0) 

Ga 2b 

Ni 4d 

#139 (no increase along any axis): 
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Immm #71 (3-fold increase along b-axis): 

Mn 2a (0,0,0) (~,~,~) 

4g 

Ga 2e 

4h 

Ni 4j 

81 

(1 5 1J (1 1 1J 
2'6'2 2'6'2 

Appendix C 
- 137-



Pnnm 

Mn 2a 

4g 

Ga 2b 

4g 

Ni 4f 

8h 

#58 (3-fold increase along b-axis): 

(0,0,0 ) G, ~ , ~ J 
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Pmmm #47 (2-fold increase along b-axis): 

MD la 

le 

2p 

Ga le 

19 

20 

Ni 2s 

2t 

4u 

(0,0,0 ) 

(0, ~ ,DJ 

G,~,~J 

( 0,0, ~J 

(0, ~, ~J 

G, ~ ,DJ 

G,!,~J 

G,! ,DJ 
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