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SYNOPSIS 

This research has been sponsored by Courtauld 1 s Educational Trust 

Fund to investigate miniature hydraulic actuation techniques, and 

demonstrates how linear mechanical motions can be replaced by hydraulic ·• 

devices. 

Basic actuators have been outlined in the author's thesis 

"The Development of a Miniature Hydraulic Actuator for Application to 

a Circular Weft Knitting.Machine" submitted for M.TECH. Degree 1970 

and as a continuation of this stud~, the concepts have been applied to 

textile machinery. 

The thesis presented is in four main parts • 
.. , 

Part 1. The design and development of a hydraulic circular weft 

knitting machine. 

Part 2. The construction and testing of a hydraulic lockstitch 

sewing machine •. 

Part 3. A deta1led design study and analysis of pulse-generating 

rotary valves. 

Part 4. The design of a multi-feeder hydraulic circular weft knitting 

machine. 

Part 1 deals with the knitting machine aspect of the project 

consisting of ver~fying that a multi-actuator rotary valve system 

would operate with the desired time disp~acement profile, and in the 

correct sequence. This was then used as the basis for developing 

a ninety-six needle, single feeder hydraulic circular weft knitting 

machine. This prototype machine was tested to obtain an assessment 

as to the advantages offered by hydraulic knitting techniques. 

xiii. 



Part 2 involved replacing the needle and thread take-up 

mechanisms of a lockstitch sewing machine, by two miniature 

hydraulic actuators, controlled by a rotary valve. The purpose 

of this machine was to prove that stitches could be formed successfully, 

thus demonstrating any beneficial features offered by hydraulic sewing 

devices. 

Part 3 deals with the detailed d~sign study for pulse-generating 

rotary valves resulting from the previous applications. This 

valve was a new concept in valve technology and having established 

its' definite potential, warranted the formation of a design 

procedure. The study outlines a method of optimising the torque 

required to rotate the bobbin by the construction of a mathematical 

model • 

. Part 4 was concerned with designing a multi-feeder hydraulic 

circular weft knitting machine. This machine, controlled by an 

integrated actuator rotary collar valve to generate pulses, demonstrated 

how a series of twelve knitting time-displacement profiles could be 

created by ninety-six actuators positioned in a circular configuration. 

Thus, the research programme has been aimed at demonstrating how 

high speed motions, normally obtained by mechanical devices (cams, 

lin~ages) can be produced by miniature hydraulic actuation techniques. 

The feasibility of using these techniques has been verified by the 

building and testing of probably the first ever hydraulic knitting 

and sewing machines. 
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NOTATION Units 

e. Angular Displacement degrees 

t Time se cl 
p Supply Pressure lbf/in2 

E Exhaust Pressure lbf/in2 

'X Linear Displacement in. 

'j Linear Displacement at right angles to the in. 
direction of x 

h. Lubrication Film Thickness iri. 

p Pressure Variable lbf/in2 

u Linear Velocity in/sec 

'\ Viscosity (reyns) lbf.sec/in2 

~ Angular Velocity rad/sec 

c Radial Clearance in. 

e. Eccentricity Ratio 

e Eccentricity in. 

R Radius in. 

<t> Eccentricity Angle degrees 

I.. Length in. 

~ Breadth in • 
.. 
~· Dimensionless Value of Pressure p 

-
~ Dimensionless Value of y 

-':C Dime!l.Sionless Value of x .. 
h Dimensioriless Value of h 

w Load lbm. 

(J.. Mesh Size in x direction 

fi Mesh Size in y direction 

~ Relaxation Factor 
' 
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Units. 

F Totai Force lbf 

"'( Shear Stress lbf/in2 

c?c Hoop Stress lbf/in2 

M Modulus of Elasticity lbf/in 

).< Poisson's Ratio 

D Diameter in. 

~~ Radial Stress lbf/in2 

/ 
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l. INTRODUCTION 

The research presented in this thesis has been sponsored 

by Courtauld's Educational Trust Fund and througho~t the period 

of study, investigations have been directed towards the creation 

of novel hydraulic control systems for application to textile 

machinery. The work presented is in three main sections:-

(i) The design and development of a hydraulic circular 

weft knitting machine. 

(ii) The construction and testing of a hydraulic lockstitch 

sewing machine. 

(iii) A detailed design study and analysis of pulse

generating rotary valves, which have been used as the 

control mechanism in both the previous developments. 

The first section of the project deals with a hydi·aulic 

knitting machine, and involves the application of basic high 

speed actuation techniques outlined in the author's thesis: 

"The Development of a Miniature Hydraulic Actuator for Applicat~on 

to a Circular Weft Knitting Machine". (18). The actuators and 

rotary control mechanism previously designed and tested as a 

single unit,had demonstrated.that a time displacement profile 

suitable for the formation of a plain knitted stitch could be 

obtained by using hydraulic devices. The aim of this project 

was to use technical knowledge gained in previous research to 

create a hydraulic knitting machine. 

1. 



Initially, a block of actuators simulating a knitting 

station had to be designed and commissioned. This study would 

produce information to answer the following questions:-

(iv) Would actuators operate in sequence? 

·(v) Would a single pulse-generating rotary valve be 

capable of operating at the desired speed? 

(vi) Could actuators be packaged at 16 per inch? 

(vii) Could the three basic knitting actions (knit, tuck 

and miss) be programmed into the system? 

(viii)Would the actuators operate in the three different 

modes? 

The parameters for this rig were a block of twenty-four 

actuators in a 16 gauge orientation, sequenced from a single 

rotary valve. The programming features were restricted to four 

individual selections per needle, before repeating the cycle. 

The programming aspect was limited to enable the full speed 

potential to be realised. This rig was fully tested in the 

laboratory and the needles found to function· at near maximum 

cycling rates of 25 cycles per second. All the needles operated 

in sequence and could be programmed for the knit, tuck and miss 

modes. Having demonstrated how a series of miniature. hydraulic 

actuators could be controlled to operate in sequence at sp~eds 

in excess of existing mechanical cam systems, the outstanding 

consideration still to be determined was its actual knitting 

capability. 

It was at this juncture, using the technical eXPerience 

gained in developing the multi-actuator rig, that the specification 

2. 



for· a prototype circular weft knitting machine was compiled, 

taking into consideration exi~ting hardware. The 

specification for the machine was:-

(ix) A machine having a single set of needles traversing 

continually through the knitting profile, 

(x) A single feeder machine, 

(xi) Ninety-six needles spaced at four to the inch 

in a circular configuration. 

This prototype machine would provide the basis for future 

developments and enable the performance of a hydraulic single 

jersey circular weft knitting machine to be evaluated. A 

design study for a prototype machine was completed, being based 

on the existing rotary valve with a new actuator block and trix 

mechanism. The time displacement profile generated by this 

configuration, was to have six consecutive needles in the 

extended knitting position, followed by six needles at tuck 

height, with the remaining eighty-four needles in the miss 

(static) condition. When the hydraulic control system for the 

machine had been assembled, the system was tested under similar 

conditions to that of the multi-actuator block. This provided 

a visual demonstration of how the time displacement profile was 

formed, and its traversal round the series of actuators produced 

a cam-like profile. After finalising the construction of the 

machine and introducing minor modifications to the yarn carrier, 

results.were obtained showing that knitting speeds previously 

.unobtainable by mechanical cam systems were possible using hydraulic 

actuation techniques. After building and testing this machine 
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further major advantages were discovered. The number of 

possible knitting stations per machine could be increased:-

the independent moveme~t of each needle removed the limitation 

imposed by the length of cam track. This feature would allow 

the number of needles per knitting station to be greatly reduced 

so enabling greater fabric production by utilising more feeders. 

The quality of knitting produced by the hydraulic machine at 

high speed was relatively good, due to the single needle 

knitting action characteristics madepossible by hydraulic 

devices. Consequently, this section of the project has indicated 

a new technique of needle motivation for knitting machines, 

and· while a commercial machine has yet to be developed, this 

new approach offers certain features that may have great 

potential in the textile industry. 

A second development for the application of miniature 

hydraulic actuation techniques in textile engineering was for 

use on a sewing machine. Sewing machines contain a number of 

complex mechanisms that culminate in a linear motion. To 

demonstrate the feasibility of applying miniature hydraulic 

actuators to a sewing machine, a mechanical lockstitch machine 

was converted by introducing miniature hydraulic actuators to 

function as the needle and thread take-up mecl~isms. The 

control for the actuators was accomplished by introducing a 

rotary valve at the end of the hook driving mechanism, thus 

establishing a phase relationship between the hook and the 

hydraulic motions. The designing and testing of a hydraulic 

sewing machine has demonstrated that a lockstitch can be formed 

·using this technique. 

4. 



In specific applications, the benefits of this technique 

may be as follows:-

(xii) Mechanically decoupling the hook and needle 

motions. 

(xiii) 

(xiv) 

Removing the restrictions of the throat. 

Providing a simple method of reversing the 

direction of individual components. 

(xv) Removing restrictions imposed by.mechanical· 

mechanisms. (i.e. excessive needle movement 

·due to the slider crank mechanism). 

Two such applications could be manifest in a left-hand 

overlocking machine, also a moveable co-ordinate sewing head. 

The work undertaken and presented in this thesis serves as 

an introduction to hydraulic sewing techniques and provides 

a ba6is for future developments. 

The necessity for the third section of this study had 

arisen from previous developments. · These two applications 

of pulse-generating rotary valves established that they 

functioned effectively and possessed characteristics not found 

when using conventional hydraulic control devices. Therefore, 

a further study to rationalise the overall design technique 

for this type of valve was essential. Up to this juncture 

valves had been designed solely to generate the required 

pulses, so powering the systems. The valves had now to be 

analysed to optimise the overall performance in any future 

.applications. During the testing of the two systems, it 

became apparent that unbalanced forces were created within the 

5. 



· valve due to irregular pressure distribution between the 

rotor and the cylinder. A method of analysing the pressure 

distribution based upon hydro-dynamic bearing theory was 

evolved, and the results u5ed ~o design compensating pads, so 

balancing the internal hydrostatic forces. A test rotary 

valve, designed using results obtained from this analysis, 

showed a marked improvement in performance. This also 

enabled a prediction as to the torque required to rotate the 

valve under particular operating conditions to be made. This 

analytical technique was established in the form of computer 

programmes, enabling the operating characteristics to be 

determined once the physical dimensions of the valve had been 

selected. 

The research presented in this thesis has provided a novel 

and viable alternative approach to the well-established 

mechanical mechanisms of knitting and sewing machines. The 

application of miniature hydraulic actuators and pulse-generating 

rotary valves in these two instances will, it is hoped, 

stimulate interest in miniature hydraulic devices and provide 

encouragement for designers in attempting to obtain cyclic 

linear motions by using these techniques. 
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PART 1 

THE DESIGN AND DEVELOPi1ENT OF A HYDRAULIC CIRCULAR 

WEn KNI'ITING MACHINE 

2. DESIGN AND DEVELOPMENT OF A HULTI-ACI'UATOR BLOCK 

2.1. Introduction 

2.1.1. Previous Work. 

In the thesis "The Development of a Miniature Hydraulic 

Actuator for Application to a Circular Weft Knitting Machine" 

by the author, details are given on how a miniature compound 

hydraulic actuator was developed to produce the desired time 

displacement profile required for producing a knitted loop. 

In conjunction with the actuating device a study was also made 

of the control aspect of the actuator, both in relation to 

the cyclic displacement and the sequencing of the actuators 

to each other. This resulted in the development of a rotary 

supply valve; the rotary valve is essentially a bobbin with 

slots machined into the surface such that when the bobbin is 

encased in a cylinder and supplied with"pressurised oil, a 

train of pulses are generated by revolving the bobbin. 

At the end of the thesis a design for a Multi-Actuator 

·Block is briefly outlined, together with the drawings required 

for a twenty-four actuator system. This multi-actuator block 

together with its development, provides the starting point for 

the continuation of the research, which is culminating in the 

building and testing of probably the first ever hydraulic 

knitting machine. 
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2.1.~ Technical Decisions Relating to the Development of a 
Hulti-Actuator Block. 

A decision to build a multi-actuator block was taken at 

a t~chnical meeting in Cove~try between Hr. K. Hartley, 

Head of Research and Development at Courtaulds, Mr. B. Baker, 

a Courtaulds Engineer and Mr. T.P~ Priestley and the author. 

It was agreed at this meeting that the application of 

hydraulic actuators to knitting machines should be directed 

towards increasing the production speed of conventional 

knitted fabrics with only limited pattern capabilities. 

To this end, a block of twenty four actuators would be built 

·with sixteen actuators to the inch. At this juncture it .was 

envisaged that the Department of Hechanical Engineering would 

be responsible for building a block of twenty four actuators 

which would operate in sequence and have a limited patterning 

facility. The knitting aspect of the project would be 

undertaken by Courtaulds' own knitting engineers once the 

actuators had been fully tested. 

2.2. The Time Displacement Profile 

Th~ first consideration for any work on a knitting machine 

must be the time displacement profile that is required by 

, the needle to form the knitted stitch. A knitting machine 

has three basic stitch forms, see figure 1 which shows the 

basic profiles required. 

(i) The knitting movement; here the needle rises to the 

maximum position (AB) passing the loop already on 

the needle over the open latch. The needle then 

10. 
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returns to the tuck position (CD) and dwells for 

a period (DE). At this stage'the new yarn is 

introduced under the hook of the needle before the 

needle returns to the miss position (EF) pulling 

the new yarn through the old loop to form the knitted 

stitch. 

(ii) The tuck movement; where the needle rises to 

· approximately half the maximum stroke (AJ) and retains 

the old loop in the hook of the needle. A new yarn 

is introduced and is held together with the old loop 

in the hook of the needle. The tuck action can only 

be performed for four consecutive movements without 

fear of damaging the needle, after which the basic 

knitting action must be performed to clear the hook. 

The tucking action permits texture to be knitted into 

a fabric. 

(iii) The miss movement is no movement of the needle and in 

effect produces a ladder, its main application 

being the knitting of multi-colours and the colours 

not required for the pattern are wrapped into the 

back of the fabric. 

These.three basic movements enable the vast majority of 

fabrics in current production to be knitted, consequently 

any device for driving a knitting needle must be capable of 

these three actions. However, the basic knitting action can 

be used on its own to produce "plain knitting" which accounts 

for over 5~& of all knitted fabric. The demand for plain 
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knitting is ever-increasing as:- the basic backing for 

bonded fabrics, and the disposable fabrics that are becoming 

more popular. 

2.3. _The Miniature Hydraulic Actuator 

The basic hydraulic actuator developed for use in a 

circular weft knitting machine can be seen in figure 2. 

This actuator is a compound device with a knitting piston (5) 

and a tuck probe (6). The knitting piston is able to slide 

axially in.the top bore through a displacement in the order 

6! one inch and when the piston is in either extreme position 

then the hydraulic stop port 7 is open to tank, hence 

relieving the supply pressure. This central hydraulic stop 

prevents hydraulic pressure from driving the piston hard 

against the mechanical boundaries of the actuator, and thus 

prevents self destruction of the knitting piston. Similarly 

the tuck probe (6) can slide axially along its bore through 

a displacement equal to half that of the knitting piston. The 

hydraulic stop 8 is used to reduce the impact forces on the 

tuck probe. These two bores are linked by a smaller bore 

which allows the rod on the tuck probe to protrude into the 

knitting piston bore and make mechanical contact with the bottom 

of the knitting piston (5). The distance between the bores 

is such that when the tuck probe (6) is fully protruding 

into the knitting piston bore and in mechanical contact with 

.the knitting piston, then the top edge of the piston is 

central to port 4, (the tuck position). The only other 

precaution necessary is to make the axial displacement of the 

13. 
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tuck probe of sufficient length to allow the probe rod to 

retract into the small bore linking the two cylinders. This 

prevents the tuck pro~e from taking the impact at the end 

of the knitting piston movement. 

To drive the miniature hydraulic actuator through the 

knitting time displacement profile outlined in figure 1, 

and considering the hydraulic actuator shown in figure 2, 

the following sequence of pressure and exhaust pulses must 

.be supplied to the actuator through ports 1,2,3 and 4. If 

t~e total cycle time of the movement is defined as T = 4t 

and the four basic movements, 

(i) Travel from the miss to the knit position AB in time 

tl 

(ii) Travel from the knit to the tuck position CD in time 

(iii) Travel from the tuck to the miss position EF in time 

(iv) Dwell in the miss position GH for the time t 4 

are considered to take place in a period of equal duration 

namely time t. Then considering figures 1 and 2: 

( v) In period t 1 :- the knitting piston 5 and tuck probe 6 

are driven out to a maximum displacement by applying 

pressure pulses at ports 1 and 2 and exhausting ports 

3 and 4 •. 

(vi) Period t 2:- the tuck probe 6 is kept in the extended 

state by maintaining the pressure at port 1 while the 
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knitting position 5 is retracted, by applying a 

pressure at port 4, until it makes mechanical 

contact with the tuck probe 6. At this instant 

the knitting pis~on is in the tuck position and 

port 3 is open to exhaust hence acting as a 

hydraulic stop. 

(vii) Period t
3
:- the knitting pisto? 5 and the tuck 

probe 6 are retracted back to the.miss position by 

applying a pressure at ports 3 and 4. 

(viii)Period t 4:- the knitting piston 5 and the tuck 

probe 6 are held in the retracted miss position. 

Thus summarising the sequence of pulses required for any 

period t to enable the hydraulic actuator to be driven through 

the knitting time displacement profile. 

TABLE 1 

SEQUENCE OF HYDRAULIC PULSES 

TIME PORT 1 PORT 2 PORT 3 PORT 4 

tl Pressure Pressure Exhaust Exhaust 

t2 Pressure Exhaust Exhaust Pressure 

t3 Exhaust Exhaust Pressure Pressure 

t4 Exhaust Exhaust Pressure Pressure 

To drive the miniature hydraulic actuator through the 

tuck profile, the knitting piston 51 in period t 1 , has to be 

moved through a displacement AJ. This is achieved by preventing 
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2.4. 

the pressure pulse at port 2 activating the knitting piston 5, 

allowing the tuck probe 6 to push the knitting piston 

mechanically into the tuck position. This can be effected by 

placing an on-off valve in line 2. The rest of the cycle 

is identical to the knitting mode. 

The miss movement can similarly be performed by preventing 

the pressure pulses in period t1 from reaching ports 1 and 2 

again by the use of an on-off switcr~ng system in the supply 

line. 

A'Basic Rotary Valve 

To obtain the sequence of pressure and exhaust pulses. 

outlined in section 2.3. a.new type of valve was developed, 

namely a rotary pulse-generating valve. The rotary valve .. 

consists primarily of a bobbin with radially machined slots. 

These slots are linked to either an exhaust sink or a pressure 

source. The bobbin is placed into a cylinder with ports machi~ed 

to coincide with the slots in the bobbin, hence as the bobbin 

is rotated a series of pressure and exhaust pulses are generated 

at the cylinder ports. Thus·for a rotary valve to drive a 

single -actuator through the time displacement profile outlined 

in figure 1, the pressure and exhaust slots have to be 

·constructed to meet the requirements specified in TABLE 1. 

Figure 3 shows the cross section of the slots together with 

a sectional view of the bobbin. These views of the bobbin 

indicate a method of how the slots can be linked to a pressure 

source,or to exhaust. A central hole is machined in the bobbin 
I\ 

acting as a common sink. To produce an exhaust slot in the 
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bobbin a radial slot is milled on the surface of the bobbin 

for the required duration and then linked to the central 

cavity by a hole drilled normal to the slot. The pressure 

slots are created by drilling axial hoies into an annulus 

that is supplied with pressurised oil. The sn!"face slots are 

linked to the pressurised axial holes by drilling normal to 

the milled slots, thus producing a pressure slot of the 

required duration. 

This technique offers·a method of generating a series of 

cyclic pulses that are capable of driving the hydraulic actuator 

t~ough the time displacement profile once for every revolution 

of the bobbin. 

To link the actuator to the rotary valve requires 

hydraulic connections between the ports on the actuator and the 

ports on the rotary valve. This hydraulic circuit can be seen 

in figure 3. 

It will have been noted that in some instances where a 

chamber between the piston rod and the top of the cylinder · 

contains two ports (example being ports 3 and 4 when the piston 

is travelling from the tuck to the miss position) then one 

port will be redundant. In the example outlined, pressure 

was maintained at ports 4 for t
3 

and t 4 however it is obvious 

' that to block port 4 during this period would have been 

adequate. 
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2.5. Variations and Extensions to the Basic Rotary Valve, 
Sequence Control 

In the previous example the time interval required for 

the actuator movements were specified as being equal, thus 

each interval occupied 9C!' of the rotary valve surface.· 

However, the time allowed for each movement can be controlled 
• 

' by the length of slot in the bobbin, the controlling factor 

being the pulse of oil required by the system. For example 

the time interval when the yarn is fed into the needle 

(DE on figure 1) can be increased by lengthening time t 2 and 

reducing time t
3

• The overall length of the slots are 

calculated by expressing the duration of the pulse as a 

fraction of the total cycle time • 

• •• Subtended Angle of the slot on the surface of the 

bobbin= ~;s~ ~im~ xt?60~ Thus, the overall dimensions o a ye e ~me 

of the displacement profile can be selected at the design 

stage by adjusting the actuator size and valve bobbin geometry 

to suit the particular application. 

The idea of the rotary valve for driving more than one 

actuator in sequence with other actuators can be extended. 

If the basic rotary valve phown in figure 3 is used to drive 

eight actuators, ea~h operating in sequence with a 45° phase 

lag between subsequent actuators, the eight sets of pressure 

supply ports would have to be spaced equally round the rotary 

valve as shown in figure 4. Thus, actuator 1 would be 

.supp~ied by ports 11 , 21, 31 , 41 , actuator 2 by 12 , 22 , 

32 , 42 , etc. The governing factor as to the number of 

actuators that can be driven in sequence is the number of pipe 

20. 
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fittings that can physically be placed round the valve. 

To overcome this limitation,valvea_have to be made in series. 

For example if a knitting machine required sixty four needles 

to work in sequence and the maximum number of fittings that 

can be placed round the periphery of the valv~ is sixteen, then 

a rotary valve (which in effect is four rotary valves joined 

together) would have to be used. This valve would require 

sixteen slots, that is, four sets of the slots shown in figure 

3· To produce a continual sequence of. 1 - 64 needles, the 

sets of slots would have to be out of phase by ~/4 where-~ 

is the angle between two adjacent pipe fittings. The piping 

of the actuators would then be as in figure 5 (which for 

clarity only shows the port 1). Similar rows would exist 

for ports 2, 3 and 4. 

To extend even further; if the knitting machine required 

was a six hundred and forty needle machine with ten knitting 

stations, then each of the ports from the rotary valve would 

_have to supply ten actuators, thus port 11, would provide 

power for actuators (1, 65, 129, 193, 257, 321, 385, 449, 

513, 577). · 22 power for (2, 66, 130, 258, 322 etc). These 

examples are not intended to represent typical machines but 

merely"to indicate how sequence control can be effected to suit 

all combinations of the size of the knitting station and the 

overall size of the machine. 

2.6. Variations and Extensions to the Basic Rotary Valve, stitch 
selection control. 

To obtain full control over the knitting needle, the 

aspect of selecting the needle position, that is, whether the 
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needle operates in the knit, tuck or miss mode, has to be 

considered. Up to this stage, only the plain knitting profile 

·has been considered, consequently to obtain the tuck motion 

the actuator amplitude r~s to be constrained. This is achieved, 

as explained previously in.section 2.3 by preventing the 

pressure pulse from reaching port 2. The miss stroke is 

similarly obtained by preventing the pre~sure pulses~from 

reaching ports 1 and 2 in figure 2. The·selection of the 

needles into a particular configuration of knit, tuck and miss 

combinations is known as programming. · 

For relatively simple programmes, i.e. stitch combinations 

requiring up to eight selections before repeating, the rotary 

valve can be used as a selecting device thus enabling fixed 

patterning blocks to be used.· 

Take, for example, a knitting machine where it is required 

to make four selections of knit, tuck or miss for each 

individual needle i~ sequence before repetition, then the 

following technique can be used. The rotary valve is designed 

so that it will supply oil to the actuator from four independent 

rotor positions for every revolution of the rotary valve. This 

involves machining the desired slots into a 90° segment of 

the bobbin thus the cycling rate of the actuator would be four 

·cycles per revolution, with the pulses from the rotary valve 

being supplied from a different hydraulic circuit in each 

·instance. A pictorial diagram for such a rotary valve can be 

seen in figure 6. These four separate supply paths, namely 

a, b, c and d for actuator ports 1 and 2 are taken via a pattern 

block. This consists of two steel plates with a plastic shim 

24. 
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clamped between them; if a hole is drilled the actuator 

receives the pulse of oil, if the hole is omitted the supply 

· line is blocked. The hole punching technique enables each 

individual needle to be progra~med for four selections before 

repetition. Once the pressure signal has passed through the 

pattern block, the four separate lines can be taken to a 

manifold before being connected to the a~tuator. A circuit 

diagram for such a valve actuator combination can be seen 

in figure 7• A one-way valve has to be introduced to enable 

the residual oil at port 2 to be exhausted when the actuator 

operating in the tuck mode is returning from the tuck position. 

(It will have been noted that the supply line 2 has been 

blocked for patterning purposes and the oil trapped betweeri the 

piston rod and port 2 cannot be exhausted). This technique 

could usefully be employed when producing mono-colour, textured 

fabric, where the tuck stitch is used to produce a regular 

surface pattern. 

2.7. The Prototype Multi-Actuator Block. 

The basic design for the hydraulic actuators were of the 

type previously tested, but to accommodate the actuators at 

intervals of a sixteenth of an inch a packaging exercise had 

to be completed. This resulted in alternate actuators being 

·supplied with oil from opposite sides of the block, with the 

actuators staggered in both a horizontal and vertical plane. 

·The orientation of the actuators is clearly defined in 

Drawing Numbers J.D.G. ·o30 and J.D.G. 031 which can be seen 

in figures 8 and 9. The size limitation imposed by using 

sixteen needles per inch prevented the use of conventional 

26. 
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pipe connections, consequently provision was made to solder 

the pipes directly into the block, hence brass was chosen for 

the actuator block. The sealing of the pistons in the 

actuator employed a techniq~e developed on a final test 

actuator (see figure 10), The 'Oi ring seal for the piston 

rod is held in position by a spacer of larger diameter than 

the cylinder bore, and a top plate fastened over the actuator 

with small screws. A similar spacer and cover plate was used 

to retain the tuck probe in position. 

2.7.1. Design of the Rotary Valve. 

The Rotary Valve drawings, J.D.G. 028, J.D.G. 027, 

J.D.G. 025 and J.D.G. 026 which can be seen in figures 11,· 

12, 13 and 14 respectively show its basic construction. This 

Rotary Valve is a complex device in that it uses the 

techniques outlined in sections 2.5 for sequence control and 

2.6. for introducing patterning facility. The bobbin is 

basically three rotary valves of the type shown diagrammatically 

in figure 6, joined in series. Examining drawing number 

J~.D.G. 026, figure 14, it can be seen that the three sections 

have been displaced by 120° so that theSlots are distributed 

evenly round the surface of the bobbin. This displacement 

is principally to balance the hydrostatic pressure distribution 

produced by the slots, and to aid the hydrodynamic lubrication 

of the bobbin as it rotates in the cylinder bore. 

units consist of:-

Unit 1 

Unit 2 

Unit 3 

sections AA, BB, LL, ~fi~ 

sections CC, DD, JJ, KK 

sections EE, FF, GG, Ini 

30. 
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Using the actuator as defined in figure 2, the actuator ports 

~11 be supplied by the follo\'ring sections:-

Port 1 sections BB, DD, FF 

Port 2 sections AA, cc, EE 

Port 3 sections GG, JJ, LL 

Port 4 sections HR, KK, MM 

(It will be noticed from the drawings that the exhaust slots 

in the bobbin are connected to an annular exhaust groove 

similar to the pressure ~oove. The length of the exhaust 

0 
slot in sections AA, CC, and EE only occupy 18.9 • These 

are two modifications that will be explained in section 2.8). 

At each section, the maximum number of pipe fittings that 

could be accommodated round the periphery of the cylinder 

was thirty two, hence the three sections gave the total number 

of ninety six actuator outlets from the rotary valve. As 

each set of slots was confined to a rotor sector of 90°, each 

of the twenty four actuators could be supplied from four 

independent supply ports thus enabling the needles to be 

programmed for four movements before repeating the sequence. 

The materials used to manufacture the Rotary Valve were 

Aluminium HE 30WP for the bobbin and Meehanite Cast Iron for 

. the cylinder. Aluminium was chosen for its easy machining 

properties. Meehanite Cast Iron was chosen as it is a good 

bearing material sui table for use \'f'i th hydraulic oil. 

2.7.2. Assembly of the Rotary Valve. 

The various components required for the multi-actuator 
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block and the rotary valve were manufactured as specif i ed on 

the detail drawings. Meanwhile, a suitable frame for mounting 

the various components was constructed. The frame had to 

support a variable speed motor, the rotary valve, the pattern 

and manifold blocks plus the actuat ors, consequently the frame 

was solidly constructed. A Carter variable speed gearbox was 

mounted at one end of the frame as can be seen in figure 15. 

This gear box is basically a variable displacement hydraulic 

piston pump and a fixed displacement motor. · It was used for 

turning the rotary valve because it was readily available aud 

possessed the required speed-torque characteristics. The 

rotary valve was mounted on cross plates and connected to the 

variable speed motor by a Fenner flexible coupling (see figure 

15). The alignment of the two shafts was critical but clearance 

was allowed in the fixing holes to enable the rotor to be set 

up. Once the rotor had been positioned and found to run 

smoothly over relatively long periods the frame\.,rork carrying 

the pattern and manifold blocks was positioned and bolted into 

place. (see figure 16). The pattern blocks consisted of two 

steel plates \oJith a sheet of vinyl sandwiched between them. 

The manifold blocks enabled the four separate supply paths to 

be linked. For the actuators to operate in sequence it was 

necessary f or the correct supply ports of the rotary valve to 

. be linked to the correct actuators. The outlet ports, to 

supply a particular actuator, on the rotary valve were s t aggered 

round its periphery, so preventing symmetrical pipe forma t ion 

between rotary valve and manifold blocks. As can be seen in 

figure 17, the path for the piping between the rotary valve and 

the manifold blocks is completely random, the only essential 
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FIG. 15 ROTARY VALVE FHAMF A 'D DHIVE .I.ECil\ I.'M 
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FIG . 16 FRAMEWORK FOR THE PA T'I'ER 

MANIFOLD 13LOCK ' 



FIG. 17 FLEXIBLE PIPE CON ECTIO. S 
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detail being that the outlet from the rotary valve was 

connected to the correct place in the manifold block. To 

simplify this task, flexible nylon tubing of .25 inches 

external diameter was used in five different colours. The 

colours were used in sequence round the rotary valve, one 

colour being used to link all the four separate supply paths 

to a particular actuator. For example, actuator one had 

sixteen red pipes j.oined into the first four positions in 

the manifold block, while pipes for actuator. two occupied 

the first four positions in the manifold blocks at the opposite 

side of the rotor. The piping of the system up to the 

stage shown in figures 16 and 17 was not as complex as it 

might appear after gaining an understanding of the system. 

The use of coloured pipe provided a visual check as to 

actuator sequence, but no definite proof of this could be 

obtained until the actuators moved correctly in sequence. 

The next consideration \'Jas the hydraulic stops; each actuator 

had to be linked to exhaust via a restrictor, this being 

used to limit the volume of oil pumped to exhaust at the end 

of each movement. Previous tests on hydraulic stops had 

indicated that ten inches of .058 inches internal diameter 

pipe was sufficient to allow the static pressure to be 

e~~austed whilst keeping the wasted energy at an acceptable 

level. Each actuator required two hydraulic stops so an 

exhaust gallery was placed alongside the manifold blocks 

into which all the hydraulic stops could be connected. Thus 

·all the connections that had to be made to the actuators 

were grouped into blocks of six, with the sequence running 

from alternate manifold blocks mounted at each side of the 
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Rotary Valve. The pipework to each actuator could then be 

made symmetrical. 

2.7.3. Assembly of the Actuators. 

Once the rig had reached this stage of development, work 

assembling the actuators commenced. The knitting pistons and 

the tuck probes had been manufactured from Kelock 795 which 

. is a 14% tungsten high speed steel recommended for its 

toughness in ardous punching operations. These components 

required a centreless grinding facility which was not available 

within the Department. 

Each actuator was assembled individually, ensuring that 

both pistons were free to slide axially in their respective 

bores, before fit t ing the distance collar and '0' ring, as 

shown in figure 10. By this stage it was realised that 

soldering· the pipes directly into the actuator body \-Tas not 

feasible because of the thermal distortions that might occur. 

The pipes therefore, were all silver soldered, using a low 

melting point compound, into two face pla tes that could be 

screwed to the f ace of the actuator block. The pipes were 

allowed to protrude through the face plate and into the 

previously drilled actuator block. The side pl at es were then 

screwed to the actuator block with a thin Walkerite gasket 

clamped between the two surfaces. The assembled actuator 

block and pipes can be seen in figure 18 . A view of the ri g 

from b'oth sides can be seen in figures 19 and 20. Here the 

completed multi-actuator rig is shown together with the 

variable speed drive. It will be noted that the hydraulic 
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FIG. 18 ASSEMBLED ACTUATOR BLOCK 



FIG. l9 COMPLETE MULTI-ACft:\TOR RIG 
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FIG. 20 COMPLETE MULTI-ACTUATOR RIG 

SHOOING STARTER SWITCH 
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pipework on the outside of the rig is symmetrical and that 

all the links between the manifold blocks and the actuator 

have been formed in copper pipe. 

2.8. Testing the Mulit-Actuator'Block 

2.8.1. The Actuators 

A hydraulic power pack was connected to the rig and 

oil was pumped through the system ~dth the rotor stationary 

to flush away any contamination and to fill the pipes with 

fluid. The system was then run for a considerable period 

with the relief valve fully open in order to check the 

hydraulic pipe connections. After this initial stage 

the relief valve was closed and the actuators were seen to 

move. The sequencing of the actuators was visible at 

the lower speeds and it was accepted that the inter-connections 

between the rotor and the actuators must be correct. After 

the initial proving run, a modification had to be made to 

the sealing plate on the top of the actuators. This was 

because a plate to oover twenty four actuators was not able 

t~ accommodate the variation in machine tolerances between 

actuators. This limitation was partially overcome by machining 

a new top plate with individual gland nuts for each actuator. 

This arrangement can be seen in figure 18. Here each '0' ring 

can be nipped to suit the piston rod, thus allowing each 

actuator to be adjusted separately. Once this modification 

_had been made, the actuator block remained unchanged throughout 

the tests. 
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· 2.8.2. The Rotary Valve. 

The multi-actuator block was run over several long 

periods to ensure that the· system was run in before applying 

any instrumentation. ~~ing tP~s period it was noticed 

that when ruqning the system at rotor speeds above 350 

revolutions per minute, with a high supply pressure, the 

motor would stall after a few minutes. When the rotor was 

removed, no signs of metal to metal contact could be 

detected. However, the rotor was basically a bearing which 

relied on a hydrodynamic pressure to prevent seizure. 

Consequently, in order to centralise the rotor, grooves were 

machined at regular intervals of .25 inches. These grooves 

served two basic purposes:-

(i) to equ~lise the pressure distribution round the 

periphery of the bobbin hence tend to centralise it. 

(ii) to ensure that a supply of oil was maintained in 

the surface between the bobbin and the cylinder, 

thus promoting a hydrodynamic bearing action. 

A further modification at this stage was the introduction 

of an 1 0' ring between the high pressure groove and the end 

of the bobbin. The purpose of this seal was to prevent 

the high pressure oil from acting on the back of the bobbin, 

so eliminating a hydraulic ram action, crushing the P.T.F.Ei 

thrust bearing. Both these modifications gave improved rotary . 

. valve performance. The circumferencial grooves reduced the 

·static torque although some of the power saved by the '0' 

ring had to be consumed overcoming its frictional resistance. 
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No actual torque measurements were recorded, but a measure 

of the performance could be gauged by the pressure required 

to stall the rotor. 

The actuators performed as predicted, but it was 

noticed that the supply pressure required for the rig was 

~fo higher than that required to run each actuator individually 

using a servo valve. This indicated that the pressure pulses 

from the rotary valve were not of the same magnitude as 

those of the servo valve. 

2.8.3. Instrumentation. 

To investigate this discrepancy, four S.E. Laboratories 

variable reluctance pressure transducers were used and this 

type of pressure instrumentation was used throughout the 

project for all dynamic pressure measurements. Before a 

value of pressure could be obtained, the pressure transducer 

had to be calibrated for a particular channel and galvanometer. 

The simplest method.of calibrati~g the pressure transducer 

was to mount it onto a dead weight pressure gauge and record 

traces of various known pressures within the required range. 

Once this calibration had been performed the instruments could 

be readily set up, provided that the same Attenuation and 

Gain settings were used with the same carrier signal and 

galvanometer. 

In this instance, the four pressure transducers were 

all calibrated to give the same output for a given input 

signal. This was achieved by adjusting the Attenuation and 
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Gain settings for each channel to produce the same 9utput 

as the largest transducer. The details of the amplifier 

settings, together ~~th the results obtained from calibrating 

the transducers against a dead weight pressure gauge, can be 

seen in Table 2. 

2.8.4~ Testing the Rotary Valve to check the 9u~put Pulses 

The pressure pulses to one actuator were recorded-at 

the rotary valve, the manifold block, and the actua_tor itself 

using various supply pressures and rotor speeds. A sample 

of these recordings can be seen in figures 21, 22 ~~d 23. 

Figure 21 shows the absolute pressure pulses at the rotary 

valve. Here, the transducers only are connected to the 

supply ports, so creating a no-flow condition. The pulse 

into actuator port 1 shows a clear step with a differential 

pressure of 180 lbf/in2 , though it will be noticed that the 

low pressure state is at a level of 70 lbf/in2• The peak 

at the front edge of the pulse shows the time lag between 

actuators supplied by the same slot. The leading pulse is 

larger because no pressure can be leaked through the hydraulic 

stop. The pulse into the bottom of the knitting piston, i.e. 

at port 2, is also very sharp on the leading edge, with a 

drop in pressure when the second knitting piston is supplied 

with hydraulic fluid. As before, the lower state of the pulse 

is still at 70 lbf/in2• On examining the pulses into ports 3 

.and 4, it will be noticed that the pulse remains in the high 

state after the port is cut off, indicating that leru{age 

between the rotor and the cylinder wall is negligible,_ proving 
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TABLE 2. 

CALIBRATION OF PRESSURE TRANSDUCERS 

Carrier System Channel 

Pressure Transducer 

Range 0 - lbf/in2 

S.E. Lab. Number 

Galvanometer 

Type 

S.E. Lab. Number 

Carrier System Settings 

Balance 

Attenuation 

Gain 

. 2 
Pressure lbf/in 
applied to transducer 

0 

100 

200 

300 

.. _: - 4oo ; 

500 

600 

700 

1 

5000 

56280 . 

B450 

74o8 

0 

4 

3000 

64188 

5-71 

0 

8.4 . 

5 

2000 

5.2 

9 

6 

6 

2000 

58739 

B450 

55548 

Distance from 0 lbf/in2 

on U.V. Trace. in. 

0 

.27 

-55 

.82 

1.10 

1~37 

1.63 

1.88 

The above table gives a straight line graph of gradient 366 lbf/in2 in. 

so. 
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that the bobbin must be running centrally within the 

cylinder and the machining tolerances required between 

rotor and cylinder satisfactory. Again it can be seen 
. 2 

that the pulse steps from a pressure level of 70 lbf/in 

to 250 lbf/in2 which is a pressure differential of 180 lbf/in
2

• 

Figure 22 shows the-pressure pulses generated at the four 

points round the rotary valve as they are supplied to the 

manifold block. It will be noticed that all the pulses 

appear to have the same form, indicating that all the sectors 

on the rotor are functioning identically, and a method of 

using different supply paths to introduce a patterning facility 

is feasible. These traces also show that the variation in 

the length of pipe between the rotary valve and manifold block 

does not have a significant effect upon the size and shape 

of the pulse. It can also be seen that whilst the pressure 

differential of the pulse is well defined, the low pressure 

level is almost 100 lbf/in2 in some instances. These results 

can be seen in Table 3 for 360° of valve rotation. Figure 23 

shows the pressure pulses at the actuator; this trace is very 

similar to figure 22, the only significant point being that 

both traces were recorded at the same supply pressure of. 

250 lbf/in2• The pulses at the actuator have been attenuated 

due to the pressure drop required to deliver the oil through 

the smaller diameter pipe. · This series of tests showed that 

the rotary valve was capable of supplying sharp pressure pulses 

_required by the actuators, and in the correct sequence. 

The only feature that was not satisfactory was the back pressure 

of 80 lbf/in2 in the exhaust line. This high exhaust pressure 

level indicated that the exhaust side of the rotary valve was 



TABLE 3 

TYPICAL VALUES FOR THE PRESSURE LEVELS FOR THE 
PULSES DISTRIBUTED JY TIIE ROTARY WuNE TO A 
SINGLE ACTUATOR PER HEVOLUTION OF THE ROTARY 2 
VALVE, WITH A MAIN SUPPLY. PRESSURE OF 250 1bf/in • 

ANGLE OF PRESSURE LEVEL 1bf/in2 

VALVE ACTUATOR ACTUATOR ACTUATOR ACTUATOR 
ROTATION PORT 1 PORT 2 PORT 3 PORT 4 
degrees. 

0 210 210 50 90 

22.5 175 20 70 240 

45 50 50 240 210 

67.5 50 50 210 210 

90 210 210 50 90 

112.5 175 20 70 24o 

135 50 50 24o 210 

157-5 50 50 210 210 . 
180 210 210 50 90 

. 202.5 175 20 70 240 

225 ·:50 50 24o 210 

247.5 50 50 210 210 

. 270 210 210. 50 90 

292.5 175 20 70 240 

315 50 50 240 210 

?>37-5 50 50 210 210 
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restricting flow of fluid back to the reservoir. This 

necessitated a higher supply pressure to.obtain the pressure 

· pulse differential required to operate the actuators. 

2.8.5~ Modifications to the Rotary Valve .. 

This back pressure had to be reduced by introducing 

larger exhaust passages within the bobbin of the valve, and 

it was at this stage that the central exhaust hole wa6 machined 

down the centre, and the oil exhausted through the rotor and 

the back plate of the valve. This can be seen in figure 24 

which shows the components for the modified rotary valve. 

This central exl1aust passage had the further advantage of 

simplifying the rotor design. This one large diameter 

passage replaced the twelve axial holes required previously. 

Another modification to the rotor at this stage was to extend 

the exhaust slot in sections AA, CC an~EE to the form shown 

in figure 6 (section 2.7). Until this point when the actuator 

was returning from the tuck to the miss position the exhaust 

oil at port 2 had been taken via the one-way valve to the 

exhaust in port 1.- However, the introduction of the longer 

exhaust slot at port 2 meant that for plain knitting, the 

one-way valve could be omitted.· 

The rig was finally reassembled in its modified form and 

a displacement transducer was placed over an auxilliary actuator 

so that the time displacement profile of the actuator could be 

.checked against the required profile of figure 1 and compared 

with the results obtained in previous tests on individual 

actuators and rotary valves. The trace obtained from this test 
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FIG. 21 COMPONENTS FOR THE MODIFIED ROTARY V LVE 
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can be seen in figure 25. Here the time displacement 

profile for the actuator can be seen at 10 hertz, together 

with the pressure pulses at the manifold block. This figure 

shows that an actuator can. be driven through the required time 

displacement profile to produce a knitted loop with aoonventional 

latch needle. A demonstration of the multi-actuator block, 

operating at various speeds up to 4o hertz, can be seen in 

the first part of the film entitled "Development of a Hydraulic . . 
Knitting Machine". This film was taken as a permanent record 

of the prototype multi-actuator rig and shows the general 

layout of the system together with views of the actuators. 

The actuators were filmed at various operating speeds, showing 

the shape of the time displacement profile for each individual 

needle and how they operate in sequence. Even at cycling rates 

as high as 30 hertz, the general wave pattern does not alter. 

It is envisaged that the film will be viewed as a complementary 

item·to this thesis because it illustrates the achievements 

and results of the project in a significant m~er. 
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3.·.·1 A HYDRAULIC CIRCULAR WEFT KNITTING MACHINE. 

3.1. Introduction 

3.1.1. Technical Decisions Relating to the Development of a 
Hydraulically actuated Circular Weft Knitting Hacr,ine 

The building of the Multi-actuator rig completed a 

stage of the project as initially defined in section 2.7. 

The Department of Mechanical Engineering had built a block 

of twenty four actuators suitable for a knitting machine. 

These actuators operated in sequence and possessed a limited 

patterning facility. A technical demonstration and 

discussion was held at the University between ~~. K. A. Hartley 

Mr. \-1. Betts, Mr. Maidens, Hr. F. Garrotte, Hr. T. Priestley 

and the author, to assess the potential of the project and 

attempt to define its commercial application. It had 

always been agreed that the knitting ~pect of the project 

would be undertaken by knitting experts within the Courtauld's 

Group, hence the specification of a sixteen gauge block of 

actuators. However, once confronted with the hardware 

that eliminated the use of cams on a weft knitting machine, 

confusion arose as to how it should be applied. A Courtaulds 

decision was not forthcoming and finally put the onus onto 

the Department to make the decision as to the next. stage of 

the project. At a technical discussion between Hr. T. Priestley 

' and the author, a decision was made to answer the only 

outstanding question:- "Can a: hydraulic actuator system be made 

to knit?". The task of producing a hydraulic knitting machine 

had been declined by Courtaulds which left the Department to 

build a Hydraulic Circular Weft Knitting Hachine, and· prove 

the system. 
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3.1.2. Basic Concept of the Machine 

Up to this stage in the project the·technological 

involvement with knitting had been very limited, because 

it had been understood that Courtauld's would fulfil the 

knitting aspects. However, this situation had changed, 

the Department now deciding to produce a prototype hydraulic 

knitting machine. A general survey of knitting machines 

was made, which included informal discussions with Mr. F. 

Garrotte, Technical Director of Kirkland Engineering Ltd, 

and Mr. H. Wignall, Head of the Textile Department at 

Leicester Polytechnic. It was evident that hydraulic 

actuators could not be applied directly to a sophisticated 

production machine, and it was suggested that a hand-operated 

hose machine migh~ form the basis for the initial design. 

These hand machines have been used by hose manufacturers 

since the early 1900's and while basic in form and 

construction, operate on the same principle as present day 

machines. A Griswold hand machine was donated by Mr. F. 

Carrotte to the Department. This was a single feeder, six 

gauge 4~ inch diameter weft knitting machine. The needles 

were located round a circular trix and held in position with 

a split collar. Round the base of the trix ran a single cam 

mechanism which moved 25/o of the needles in sequence through 

the knitting profile. The yarn carrier had to be rotated 

in phase With the knitting cam, because using this configuration, 

the needles were held stationary. The yarn carrier was 

attached to the cam mechanism and being a single feeder machine 

permitted the creel to remain stationary. The yarn was fed 
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to the carrier from a feeder located on the central axis of 

the machine, twelve inches above the needles. The take .. down 

mechanism of the Griswold was a fabric clamp onto which weights 

could be attached. This simple method of tensioning the 

fabric gave an even pull. ·The machine was h~1d operated 

driving a bevel gear mechanism to the cam and yarn carrier. 

Three basic adjustments could be made to the machine:-

(i) Yarn tension, by means of a pivoted counter-balance 

weight or light spring on the creel. 

(ii) Fabric tension, by applying more weights onto the 

·fabric via the clamp. 

(iii) The stitch length, by moving the stitch cam 

relative to the trix. This adjustment could be 

made externally to the cam machine via a graduated 

lever on the body of the machine. 

The yarn and fabric tensioners were found to be flexible 

provided that the yarn strength was not exceeded. The yarn 

tensioner was basically to prevent uncontrolled vibration modes 

being set up in the yarn as it unwound from the bobbin. The 

fabric tensioner produced a restraint on the needle latches, 

consequently the tension had to be sufficient to hold the 

latches open but to not impart a high frictional resistance 

to needle motion. It was found that the fabric tensioner could 

'also be used to vary the knitting density i.e. applying more 

tension increased the length of the knitted loop so producing 

a slacker fabric. The stitch length needed critical adjustment 

and even a slight movement of the cam altered the quality of 

the knitted fabric. To start the machine knitting, a piece of 

knitted fabric had to be hooked over the needles, and by using 
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a long stitch length the new yarn was introduced via the 

carrier. ~he knitting could be improved by opening the non~ 

functioning latches and removing loops from needles operating 

in pairs. Within four or five revolutions of the machine, all 

the needles could be made to knit, and the cam controlling 

the stitch length could be adjusted in conjunction with the 

fabric tension to produce the desired quality of plain 

knitting. 1his machine indicated the problems associ~ted 

with knitting and highlighted the areas requiring special 

attention when designing a knitting machine. This machine 

was examined in detail and considerable time was spent 

becoming competent in basic knitting techniques. 

The configuration of the Griswold machine was suitable 

for applying the concepts derived from the hydraulic multi

actuator system to an actual knitting machine:-

(iv) The needles did not move radially; thus the actuators 

could pe machined into a block and fixed to the 

frame of the prototype machine. 

(v) The creel arrangement was simplified by using·a 

single feeder. 

(vi) The knitted fabric leaves the machine as a cylindrical 

tube, thus requiring only a simple tensioning 

mechanism. 

(vii) The circular configuration of the needles permits 

the yarn carrier to be driven by, and in phase 

with, the rotary valve. 

(viii) The rotary valve developed on the multi-actuator 
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block could be used without any modifications. 

(ix) The actuators would be applied to a circular 

weft knitting machine which is how they were 

intended to be used at the outset of the project. 

3.2. Designing the Circular Weft Knitting Hachine 

3.2.1. Specification for the Knitting Hachine. 

?rior to any design work on the knitting machine," a 

specification for the type of machine had to be formulated. 

Using the experience gained in designing the multi-actuator 

block, and using the Griswold knitting machine, a specification 

for the prototype hydraulic knitting machine was derived and 

stated as:-

(i) 

(ii) 

(iii) 

(iv) 

A circular configuration using a coarse gauge. 

A single feeder. 

No patterning facility; all needles producing 

plain knitting. 

Standard latch needles. 

Before embarking upon the design, the components of the 

multi-actuator block were evaluated with a view to using them 

in the prototype knitting machine. Various components such 

as the actuator and manifold blocks could not be employed but 

' the basic chassis, variable speed gear box and. rotary valve 

could be used. As explained in section 2.7. the rotary valve 

was used for sequence control and also for introducing a 

patterning facility of up to four selections, thus giving a 

total of ninety-six actuator outlets. If all these outlets 

were connected to an individual actuator, then the system 
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would operate in a similar manner to the Griswold machine 

with only 2~~ of the actuators operating at any particular 

instance. Using the rotary valve with no patterning facility 

would provide a system fo~ driving ninety six actuators in 

sequence. The needle gauge then had to be selected. Using 

the actuator form already tested and considering the 

man~facturing problems involved in high density actuator 

packaging, the application problems were simplified by· machin~ng_, 

all actuators to a common depth on the same pitch circle 

diameter •. The piston diameter for the actuator was .125 inches 

and experience with the multi-actuator block indicated that 

for relative ease of packaging, the actuators should not be 

pitched closer than .25 inches. In order to produce a 

machine capable of knitting, this .25 inch pitch allowed 

tolerances on the machining limits, and allowed standard pipe 

fittings to be used in the actuator block. 

With due refer~nce to these facts, the gauge of the 

machine was specified as 4, with ninety six needles on a 7.625 

inch diameter pitch circle. 

An aim of the design was to utilise standard latch needles 

of the correct gauge. The four needles selected w.ere two 

plate needles type F.264 and F.327 and two wire needles type 

H.9 and F.13. The wire needle type F.l3 (complete specification 

GROZ-BECKERT Aha 78.130 Gl) was selected because it had the 

.longest straight section after the latch, thus making it more 

adaptable • 
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3.2.2. Relating the Specification to· a Prototype Knitting Machine. 

The needle characteristics were studied to assess the 

relative displacements required to form a stitch. Each 

needle works like a crochet hook. The cycle begins with a stitch 

in the hook; the needle is then pushed until the stitch passes 

behind the latch on the body of the needle. The needle is 

then returned to the tuck position, with the stitch still 

behind the latch, and new yarn is fed into the hook. The 

needle is returned to the miss position whence the latch is 

closed by the original stitch as it is dropped from the needle. 

To form the stitch, the needle required a minimum of .875 

inches of movement, consequently using the same actuator . 

displacements as had been used throughout the project, (that 

being a relative movement of one inch for the knit position 

and half an inch for the tuck movement). would form the stitch 

and allow flexibility in determining the stitch length. 

Therefore, extending the specification, the machine 

conforms to:-

(v) A circular configuration with ninety six needles 

spaced at .25 inch intervals on a 7.625 inch 

diameter pitch circle. 

(vi) 

(vii) 

Twenty four needles to be in operation at any 

one time; six in the extended knit position, six 

in the tuck position, and the remaining twelve 

held in the miss position. · 

Four gauge needles type F.l3 to be used. 
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. . 
(viii) Use to be made of the existing rotary valve as 

a sequencing device. 

(ix) The dimensions for the miniature hydraulic 

actuators to be identical to those in the 

multi-actuator block. · 

With the above parameters determined, the two outstanding 

factors to be considered before the actua~ design could be 

evolved was the yarn carrier and the fabric.tensioning.mechanism. 

3.2.9. The Yarn Feed. 

The yarn carrier had to revolve in phase with the needles 

in knitting profile and since the rotary valve sequenced the 

needles, the obvious solution was to take a drive directly 

from the rotary valve shaft. This ensured that the carrier 

would remain in phase with the needles and any increase in 

rotor speed would automatically be transferred to the yarn 

carrier. This carrier had to be placed above the actuator feed 

pipes thus making the top of the.actuator block a bearing face. 

The only outstanding problem was how to transmit the rotary 

· valve drive from a vertical plane to a horizontal plane round 

the needles. Several methods were considered, from a complete 

gear train to an electrical stepping motor. When actual 

hardware was considered, the most convenient method seemed to 

be two stepped belts and a small right angled gear box. 

However, when considering stepped timing belts no reason could 

.be found for not attempting to twist the belt drive through 

90° by using two auxilliary idler gears, so eliminating the 

bevel gear box. Modern timing belts have nylon bracing so 
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should not fatigue under the twisting action. Using this 

drive mechanism involved mounting a stepped pulley on the 

rotary valve shaft, and a similar sized pulley to revolve on 

the top of the actuator blo~k, so keeping the 1:1 speed ratio. 

Two idler pulleys had to be mounted at the intersection of the 

horizontal and vertical planes of the two major pulleys, following 

the established flat belt techniques. The use of the stepped 

timing belt would ensure the phase relationship between the 

rotary valve and the yarn carrier, regardless of the rotational 

speed of the valve. 

3.2.4. Fabric Tensioning Hechanism. 

The only fact still to be considered was the fabric 

tensioning mechanism. The simplest tensioning device would 

have been a series of pulleys and a weight hung onto the fabric, 

but this technique limits the quantity of fabric that can be 

knitted before weight adjustment. A more satisfactory device 

would be a pair of adjustable rollers to pull at a predetermined 

tension. Various slipping clutch mechanisms were considered, 

both mechanical and electro-magnetic, but these were not 

suitable from a torque rating and consistency aspect. An 

alternative mechanical method would be to turn the rollers in 

phase with the yarn carrier, through a variable ratio gear box 

that could be adjusted to suit the required fabric being knitted. 

When this method was examined it was evident that the idler gears 

. were ih phase with the yarn carrier so could be used as a drive 

for the fabric tensioning gear box. Numerous small variable 

ratio gear boxes were available but one, the Zero-Max, was the 
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most suitable because the reduction ratio couid be ·adjusted 

from 4 : 1 through the range to infinity. The drive from the 

idler geax to the gear box could be made with a vee belt 

because the timin0 did not warraut the sophistication of a 

stepped belt. These concepts were investigated by sketching 

the various possibilities on large sheets of paper, until a 

feasible orientation had been evolved. These ideas were roughly 

formulated; taking into account the individual limitations 

imposed by the various components. Having arrived at a 

suitable sketched design, the components were drawn to scale 

in relationship to· each other to form layout drawings. These 

provided a basis for fixing component size thus ensuring that 

the basic elements could be assembled \'then manufactured. 

3.2.5. Detail Design for the Actuator Block. 

The first detail drawing to be made \'las that of the actuator 

block. (see figures 26 and 27). Figure 26 (drawing no. 

J.D.G. 042) shows the-overall dimensions of the actuator block 

which was to be manufactured in Heehani te Cast Iron. The 

annulus shown in figure 26 had to be machined from solid as 

this was more convenient and time-saving than manufacturing a 

pattern for an individual casting. The solid Meehani te rod•.:. 

was centrifugally cast which helped to minimise the possibility 

of blow holes. Figure 27 (drawing no. J .D.G.n04;;) shows the 

actuator dimensions; the actuators are basically the same as 

·thos~ developed in the first research project, with refinements 

being made to the sealing of the knitting piston rod and to the 

positioning of the supply ports. When the multi-actuator rig 
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was dismantled, the actuator block was examined for signs 

of design weakness and it was found that the '0' rings were 

being sheared by the continual impact of the knitting piston. 

To prevent this impact bei~g transmitted to the mechanical 

seal, a small grub screw was introduced to absorb the shock. 

The '0' ring protected by two small washers, was retained by 

a gland nut which was screwed down to make contact with ·the 

face of the actuator block. The actuator ~upply ports had 

long drilled passages enabling conventional pipe fittings to 

be used. .It was the spacing required for the .187 inch 

diameter pipe fittings that deter~ned the overall diameter of 

the actuator block. (The pipe fittings used were Enots 

standard fittings for .187 inches diameter tube, with the 

hexagon machined away and replaced by two small flats.) The 

ports for the hydraulic stops were machined to take the .125 

inch diameter tube fittings in order that the restrictors 

could be attached directly to the block. The step at the 

bottom of the actuator block waa.to provide clearance for the 

bottom seal~ng screws; the top recess acted as a bearing for 

the stepped tooth pulley used to drive the yarn carrier. The 

central hole in the actuator block allowed the knitted fabric 

to pass through and acted as a knitting trix locator which 

had to be suspended in such a manner that it could be moved 

relative to the actuators. Figure 28 is a photograph of the 

actuator block viewed from the top and figure 29 shows the 

-reverse side. 
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FIG. 29 ACTUATOR BLOCK VIEWED FROM TilE BASE 
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3.2.6. The Knitting Trix. 

The complementary component to the actuator block was 

the knitting trix. The form of the trix was modelled on 

the Griswold machine, and since the needles had already been 

selected, the section required to form the knitted stitch 

was a straightforward design exercise. A method of locating 

and fixing the trix relative to the actuator block created 

problems. The slots in the trix had to correspond to the 

positions of the actuator while allowing movement of the trix 

relative to the actuators in a vertical plane. vlhen producing 

fabric, the centre of the trix would be inaccessible so any 

axial adjustment had to be made externally. The method 

finally adopted was to extend the edge of the trix radially 

and use three dowel posts in the actuator block to locate 

and constrain the trix while three screwed rods provided 

adjustment relative to the actuator blo~k. The detailed design 

for the knitting trix can be seen in figure 30 (dravdng no. 

J.D.G. 046). Again the material specified was Meehanite Cast 

Iron. The needle slots were cut with a slitting sav1 and the 

knitting trix formed using an end-mill. Figure 31 shows the 

completed trix, the central body being a sliding fit in the 

actuatqr block. Figure 32 shows the trix as viewed from the 

underside. A recess was machined to allow a coupling joining 

. the actuator and needle, ~o be fitted without fouling the trix. 

These figures illustrate the complexity of the machining 

required to produce the trix mechanism. The remaining components 

required for the actuator block and knitting trix can be seen 

in figures 33 and 34. Figure 33 (draVIing no. J.D.G. 044) 
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FIG. 31 KNITTING TRIX 
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FIG. 32 UNDERSIDE OF niE KNITTING 11UX 
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shows the knitting piston and tuck probe dimensions. These 

two components were manufactured in Kelock 795 outside the 

University. The only modification to the knitting piston was 

the centre section. This was relieved to help centralise 

the piston and reduce the hydraulic lock found on earlier 

pistons. The drawing J.D.G. 045 (figure 34) contains all the 

small components required for effecting the seal on the actuator 

and also the linking member for fixing the needles to the 

actuator. 

3.2.7. The Yarn Carrier. 

The components for the yarn carrier are shown in figure 

35 on drawing J .D.G. 048. This particular yarn carrier was 

again based on the Griswold machine . The components ..,.,ere 

designed such that it could be adjusted vertically and horizontally 

to suit the knitting trix. Figure 36 dra\ring J.D.G. 047 

shows the retai ning ring for the stepped pulley. In figure 

37 the complete assembly of the timing belt pulley and yarn 

carrier can be seen mounted onto the actuator block. The 

stepped pulley was manufactured by purchasing a standard timing 

pulley and machining away the centre. 

3.2.8. Detail Design for Auxilliary Items. 

The remainder of the desi gn work consisted of auxilliary 

items. The basic layout was to be similar to the mulit

actuator block therefore the actuator block would be positioned 

over the rotary valve. Using this configuration the knitted 

fabric would have to pass through the actuator block and then 
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----------------------------------------------------------------------------------, 

over a roller to emerge horizontally from the machine. 

Tests were performed on the Griswold machine and provided 

that the vertical fall of knitted fabric exceeded six inches, 

no knitting complications ~ere introduced by changing the 

direction of the fabric. The tensioning force on the fabric 

was introduced by two rollers that were rotated in a set 

relationship to the speed of the rotary valve. Figures 38 

to · 42 (drawing nos. J.D.G. 049, J.D.G. 050, J.D.G. 051 

J.D.G. 052, J.D.G. 053) give details and dimensions of the 

framework required to mount the actuator block to the existing 

chassis and frame, and rollers. The roller blocks were made 

·adjustable and the fixing holes for the various components 

elongated, to enable timing belt length adjustment to be made. 

To complete the design, the hydraulic circuits between. 

the rotary valve and the actuators, together with the 

restrictors for the hydraulic stops had to be accommodated. 

This again involved using manifold blocks in the circuits 

between the rotary valve and the actuators. Inserting a 

manifold block enabled the pipes from the actuators to be made 

symmetrical, thus enhancing its appearance. It also allowed 

larger .bore pipe to be used between the rotary valve and the · 

manifold block, thus reducing the overall pressure drop in 

. the pipes. The actuators each required two hydraulic stops 

to be returned to tank. This was simplified by using a 

common connecting block into which the pipes could be fed, 

with a single large bore pipe taken to tank. These designs 

can be seen on drawings J.D.G. 04o and J.D.G. 041 in figures 

43 and 44 respectively. 
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3.2. 9. Assembly of the Hydraulic Knitting Hachine. 

All the components were manufactured by the technical 

staff of the department ready for asoembly. Each ·-.actuator 

was built individually; all the bores were lapped to ensure 

a smooth finish with no burrs where the supply holes entered 

the actuator. The tuck probe and the kn~tting piston were 

checked to ensure free movement before thB sealing mechanisms 

were inserted, completing the actuator assembly. As each 

actuator was completed it was tested using a servo-valve. 

This ensured that all the supply ports had been drilled into 

the actuators and that it would operate in both the knit and 

tuck mode at cycling rates of 20 cycles per second using a 

supply pressure of 200 lbf/in2• If this specification was 

not achieved or the '0' seal allowed excessive oil to escape, 
.. 

then it was broken down and rectified. -When the complete 

actuator block had been tested and assembled six actuators 

were found to have ~achining inaccuracies that were probably 

due to blow holes or hard particles in the original casting. 

However, after polishing and careful assembling, four were 

found to operate at a slightly higher pressure, leaving only 

two actuators not operating with 1~~ repeatability. These 

two actuators would operate at low speeds'but when performing 

·at high cycling rates, the amplitude of the tuck stroke was 

attenuated. At this stage the actuator block was accepted as 

complete. 

The next stage ·in.the building sequence was to fix the 

actuator block onto the base plate (see J.D.G. 052) and to 
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assemble the knitting machine complete with manifold blocks, 

and tensioning rollers. Once the framework was complete, the 

yarn carrier drive was fitted. Care was taken to align the 

idler pulleys to the two main stepped pulleys mounted at right 

angles, before fitting the endless belt over the pulley system. 

The slack in the belt was taken up by adjusting the position 

of the actuator block on the base plate, before finally fixing 

all the components. Power was applied to the variable speed 

drive and the belt system operated with no tendency to run 

off either pulley wheel. The belt system to the small variable 

speed gearbox was installed on the outer edge of the machine. 

3.2.10. Piping the Hydraulic Circuits 

All that remained was to construct the hydraulic circuits 

between the rotary valve and the actuators. Consideration had 
. 

been given to the rotary valve's rotational direction and to 

the yarn carrier mechanism, .so that the actuators could be piped 

in sequence following the same direction of rotation. A set 

of pipes joined the rotary valve to the manifold block. 

(Position number one). The next set of· ports in sequence from 

the rotary valve were connected to position number two in the 

manifold block. This procedure was repeated round the rotary 

valve and manifold block until all the ninety six supply ports 

were connected in sequence. The pipe connections between the 

valve' and manifold block were made using .25 inches outside 

diameter flexible nylon tube with Enots fittings. Five colours 

were used to provide a visual check for the sequencing of the 

connections and assisted when tracing the various supply paths. 
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The connections between the manifold blocks and the actuators 

was a straightforward process of linking the correct ports 

in sequence. Figure 45 shows the actuators as pipeu to the 

manifold blocks. 

3.2.11. Initial Tests on the Hydraulic Actuators. 

When all the actuators were piped to the rotary valve, 

the rig was connected to a hydraulic power pack. After flushing 

the system for several minutes, the supply pressure was 

increased l'rith the rotary valve stationary. On applying the 

power to turn the rotary valve, the actuators started operating 

in sequence forming a perfect cam profile, as defined in figure 

1, circulating round the top of the actuator block like a moving 

wave. Each motion of the actuator \'v'as so precise that only one 

actuator performed a particular movement at any instance. A 

film of the circular actuator block was taken at this stage, 

to enable a direct comparison to be made with the first multi

actuator block. This sequence can be seen in the film 

"Development of a Hydraulic Knitting Machine" and it shows the 

actuators operating at various cycling rates, up to 40 hertz. 

It must be realised that the speed of the rotary valve must be 

multiplied by a factor of four to obtain the equivalent cycling 

rate between the two systems, because each actuator is only 

pressurised for 2~6 of a complete revolution of the rotary valve. 

3.2.12. Introduction of the Knitting Mechanism. 

After the system had been run faultlessly for ten hours, 

the decision to complete the machine was taken. It had been 
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FIG. 45 ASSEMBLED ACTUATOR BLOCK PIPED 
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envisaged that the needles should be attached to the actuators 

by means of a collar with two grub scre\-.rs provid±ng the locking 

force. However, sevE:ral linking methods were tested, and it 

soon became apparent that the lighter the liP-~i~g piece, the 

more reliable it would be at high cycling rates when inertia 

forces are at · a maximum·• Several methods involving indentation 

of the actuator shaft were investigated but resulted in the 

indent shearing. The method which was finally adopted, and 

found to hold the needle onto the actuator at cycling rates of 

75 hertz, was to solder the needle int o a brass slug, and using 

a 9 B.A. thread on the end of the actuator piston rod, to screw 

the needle onto the actuator. This technique had two main 

advantages in that the height of the needlerould be adjusted 

by screwing the piston rod into the needle; the linking member 
11 

could be made uEing .i52 hexagonal brass rod thus keeping the 

inertia lo\<r. A tension t est \'/as conducted on several of the 

methods investigated. Under pure tension, the screw thread 

required a braaking force of 200 lbf. to snap the rod across 

the thread. This technique was only intended for use on a 
, 

prototype machine because of inherent limitations i.e. having 

to remove the trix to change a broken needle and having to cut 

a screw thread on the piston rod, thus creating a stress ra~s cr. 

However, it would enable the question of 11\Vill it knit?" to be 

answered. It was envisaged that a further area of research 

-
would be in techniques for a ttaching the needles to the actuators. 

Techniques of producing the actuator and needle as a single 

unit, or friction welding the needle to an actuator, or sweating 

the two components together, all require investigating. The 
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most suitable solution would be a small clip that would allow 

broken needles to be removed from the actuator rod without 

disturbing the knitting. 

A batch of needles were cut off at the butt and soft 

soldered into brass slugs that had been machined in ,. the base 

with a 9 B.A. thread. The soldering was performed using a 

small jig to maintain an alignment between the needle and 

the screw thread. Each actuator red was then screwed for .375 

inches and a needle attached. Each needle was set to a 

predetermined height and locked into position using a locking 

nut coated in shellac. When all the needles had been correctly 

fitted, the knitting trix was offered up to the actuator block. 

It was suspended above the needles on the locating rods and 

each individual needle introduced into a guide slot before 

lov1ering the complete trix to the knitting position and 

clamping it with locking nuts. The machine was no\.,r complete 

and ready for commissioning. 

3.3. Testing the Circular Weft Knitting Machine 

3.3.1. Initial Attempts to Produce a Knitted Fabric. 

All the needles in the trix were lubricated and the machine 

run with no yarn in the carrier to check that the needles 

' would function cnrrectly. It was realised that as knitting 

was about to commence the slowest speed of the variable speed 

drive would not provide sufficient flexibility when setting up 

the machine for knitting. This difficulty was overcome by 

fitting a mechanical handle to the main electric motor shaft. 
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The yarn carrier was fixed onto the stepped pulley and adjusted 

radially to be in the same sector as the needles, constituting 

the knitting prof ile. The height and position of the yarn 

carrier was also adjusted relative to the needles so that the 

yarn would be introduced under the hook of the needles. A 

length of loosely knitted fabric was threaded through the pulleys 

and hooked over the needles. A new yarn was introduced via 

the yarn carrier and with the hydraulic pressure set at 300 

lbf/in2 th~ machine was turned by hand. This produced a long 

"spider's web" with about l a% of the needles knitting at any 

particular time. The reasons for not knitting were twofold. 

Firstly, the knitted stitches did not appear to fall off 

the needles. This could be traced to the trix not being 

bevelled sufficiently to allow the knitted fabric to be pulled 

down off the needles. Secondly, the yarn was not introduced 

accurately into the hook of every needle as the carrier was 

rotated. The first problem was solved by re-shaping the 

curve on the inside of the trix. · This was remachined to form 

a 20° bevel that would allow the knitted fabric to be pulled 

off the needles without making contact •ri th the lO\·Jer reaches 

of the trix. To solve the yarn carrier problem, a new yarn 

post was introduced capable of feeding the yarn to the needles 

from a higher position. After re-hooking the length of fabric 

onto the machine, it was again turned over by hand. A piece 

of fabric resembling knitting was then produced. The setting 

· for the yarn carrier was readjusted until the machine could 

produce an acceptable fabric on power drive at low running speeds. 
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The quality of knitting appeared to be good, though when 

the knitting speed was increased, the yarn tended to vibrat~ 

and jump over the hook of the needles. 

3.3.2. Modifications to the Yarn Carrier. 

To overcome this yarn vibration, a tensioner vtas 

introduced making a marginal improvement to the performance. 

The results at this stage were encouraging. Hovtever, when 

the yarn carrier was moved closer to the needles, to a position 

where the latches appeared to be at rest ~/o of the latches 

were broken in two subsequent revolutions of the machine. The 

machine was completely re-needled and a small circular brush 

was placed on the yarn carrier, so that as the needles travelled 

from the miss to the knit position, the latches were held open 

by the bristles. This brush had an advantageous effect in 

helping to pick up dropped stitches. It also allowed the yarn 

post to be positioned nearer the needles without damage being 

caused to the latches~ At this stage, the machine was knitting 

relatively satisfactorily, producing a row of 96 stitches per 

second. On close examination it was seen that the yarn was 

caught by the needles as they travelled from the knit to the 

tuck position. Theyarn carrier was lowered to prevent this 

happening. However, the occasional latch bounced ~d closed 

before the new yarn was introduced in the hook, thus creating 

a ladder. A new yarn carrier was designed based on the latch' 

guar~s fitted to production machines. This technique involved 

introducing a plate over the needles when the latches were 

open so preventing the latches from closing until the new 
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yarn was introduced. With the new yarn carrier, the 

improvement in performance was very marked and speeds 

exceeding 180 revolutions per minute were easily a~hieved . 

In a paper by J. Knapton (17) titled "The Dynamics of 

Weft-Knitting · : a Mathematical Analysis", it is quoted 

"At present, needle velocities, as they are moved through 

the cam system, are limited to the order of 165 cm/sec., 

equivalent to a 3t inch diameter hosiery machine running 

at 230 revolutions per minute" (Textile Research Journal 

August 1966). Thus, the hydraulic knitting machine, when 

operating at 115 revolutions per minute was running faster 

than the quoted 3~ inch diameter hosiery machine. 

3.3.3. Film of the Hydraulic Knitt ing Hachine 

The knitting machine operating at various speeds can 

be seen in the latter section of the film titled "Development 

of a Hydraulic Knitting Machine". This film shows the overall 

layout of the rig together with the knitting of fabric at 

various speeds from 60 to 180 rows per minute. At the slower 

speeds, the knitting is 10~6 but as the kni~ting speed 

. greatly exceeds 165 cm/sec. two ladders appear in the fabric 

in positions corresponding to the faulty actuators. A close

up of the knitting profile filmed at the laddered section 

clearly indicates that the needle overshoots the tuck position 

and comes to rest below the other needles. This overshoot 

causes the yarn to miss the hook and results in a dropped 

stitch. The actuator block could have been modified by 

plugging the offending bores and re-machining the two actuators, 

but at this stage it was not deemed necessary, as the system 
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could be made to operate with 98% accuracy at speeds 

approaching double the accepted knitting speed for cam-driven 

, • I J • - 1 • 

~n~~~~ng macn~nes. (Also, the reason for the faults had been 

established). In. futur-e machine:::, the actuators would have 

to be produced as exchangeable units in order to allow for 

any inconsistencies in machining. 

3.3.4. Description of the Completed Hachine 

Figures 46 ·and 47 show general vie'tTS of the complete 

machine together \'li th the knitted fabric as it emerges through 

the tension rollers. Figure 47 shows the complete yarn feed 

mechanism, the bobbin holder, and the tensioning mechanism. 

The modified yarn carrier still utilises the brush to open 

the latches, but the triangular-shaped latch guard holds the 

latches open while travelling from the knit to tuck position. 

The fabric take-off ru1d tensioning mechanism can be seen in 

figure 48. The variable ratio gear box allows the take-off 

rate to be adjusted to suit the type of fabric being produced. 

This mechanism was satisfactory for the prototype machine, 

but for future machines a well-established commercial take-down 

mechanism should be used. These have a compensating 

mechanism whereby the tension in the fabric is obtained by a 

combination of a static load and a dynamic pull exerted by 

the rollers. The timing belt drive for the yarn carrier 

can be seen in fi gure 49, This shO\·IS the technique used to 

alte~ the direction of the drive from the horizontal to the 

vertical plane by means of the idler pulleys. The idler 

pulley as can be seen in the fi gure, also provides the drive 

for the :.f,abric tensioning gear bo.x. 
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FIG. 46 SIDE VIEW OF 'I1fE HYDRAULIC 
KNITTING MACHINE 
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FIG. 47 GENERAL VIEW OF IliE 
KNIITING TR IX 
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FIG. 48 FABRIC TAKE-OFF MECHANISM 
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FIG . 49 YAR~ CARRTER DHIVE 
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Figure 50 shows t he knitting as it is held on the needles. 

It will be noted that the cam profile is a block formation with 

six needles in the knit, and six in the t uck position, indicating 

that only one needle transposes position at any one time. 

This feature makes a hydraulic knitting machine superior to 

present day cam driven machines. On a cam driven knitting 

machine, when the loop for a stitch is being formed, (i.e. 

knitting) several consecutive needles are all at some stage 

of loop formation. Consequently, the yarn has to be pulled 

through the hook of several needles which introduces tensions 

in the yarn leading to needle and yarn breakage. However, on 

the hydraulic lcnitting machine only one needle is knitting 

at any particular instance, which enables all the yarn to be 

pulled directly from the yarn carrier vnthout passing through 

the other hooks, thus · relieving tension and strain. This 

unique advantage is manifest in the machines' ability to knit 

cotton yarn at high knitting speeds (as can be seen in the film). 

The quality of the knitted fabric is of an acc.eptable standard, 

because the characteristic described above (known as pull-back ) 

has been eliminated by knitting with a single needle. 

3.3.5. Comments on Machine Performance. 

This prototype hydraulic knitting machine has been run 

over considerable periods at various speeds, and on no occasion 

has either a needle or the yarn brok en, i n the process of 

knitting. The only fault in the design has been the breakage 

of actuator rods across the screw thread. The screv1 thread 

on the piston rod had i •ntroduced a stress raiser, and the slight 
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FIG. 50 KNITTING 0 . ntF EEDLES 
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deflection imposed on the rod ~ue to misalignment of the 

piston rod and needle, eventually caused a fracture. This 

fault occurred on six occasior~ but never in the same actuator 

position. 

The overall performance of the first prototype hydraulic 

knitting machine has been most encouraging, the quality and 

speed of knitting providing stimulus for futlire work. The 

concept of hydraulic knitting has been proved and the project 

has shown beyond any doubt that knitting can be produced by 

using hydraulic actuators. 

3.4. The Hydraulic Power Pack. 

The pO\•ter pac;k used to supply the hydraulic oil vTas a 

Vickers V230 11 W Vane pump, driven by a 5 H.P. three phase 

motor at 1480 revolutions per minute. This system can be 

seen in figure , 5Yand it delivered 10 gallons of oil per 

minute at .400 lbf/in2 •. It vtas custom-built in the department 

to suit the prototype hydraulic knitting machine. However, 

this present system is uneconomical from a power aspect due 

to the large number of needles being supplied with oil at 

the knitting station and by redesigning the rotary valve 

bobbin the same quantity of knitting could be produced using 

a 1.5 H.P. motor. 

3.5. Findings and Recommendations for the Application of Hydraulic 
Actuation Techniques t o Knitting l•1achines 

3.5.1. Future Areas of Research 

Now that a hydraulic knitting machine is a reality, with 

clearly defined advantages, the areas for future development 
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are as followsi-

(i) To examine the rotary valve's overall design in 

order to produce a design procedure for predicting 

the optimum valve dimensions, and hence calculate 

the performance characteristics by using 

mathematical models. · 

(ii). To study the orientation of the rotary valve and 

(iii) 

actuator block so that an_integrated actuator

valve block could be produced, so eliminating 

the flexible piping. 

To investigate the number of needles per feeder 

required for maximum fabric production. 

(iv) To study more deeply the technique of knitting by 

hydraulic actuators, taking into account the present 

state of knitting technology as applied to cam 

driven machines. 

(v) To decide in the light of technical experience 

gained, the most suitable commercial applications 

for hydraulic knitting machines. 

(vi) To examine the feasibility of producing patterned 

fabrics using the various hydraulic control 

mechanisms. 

3.5.2. ·Further Practical Usage of Hydraulic Actuation Techniques 
as Applied to Knitting Hachines 

The areas for further research mentioned above must 

take into account the greater degree of flexibility offered 

-by a hydraulic knitting machine over a conventional cam-driven 

machine, and consideration must be given to the following 
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concepts:

(vii) The number of needles per knitting station is 

not governed by the length of c~~ track 

required to move the needles. Using hydraulic 

needle actuators, a knitting station with only 

two needles is feasible, although eight needles 

may well be regarded as the optimum number in 

the light of present technical knowledge. Eight 

needles would allow for two needles in the knit 

position, two needles in the tuck position, and 

four in the miss state, in readiness for the next 

cycle. From this, it can be seen that it would 

be possible to increase fabric production without 

increasing yarn velocities, by Using a larger 

number of feeders. Taken to its ultimate 

conclusion, a circular warp knitting machine with 

a feeder per needle is feasible. 

(viii) The bed configuration would no longer be limited 

to a circular or flat formation by the necessity 

of a cam drive. The flexibility of the actuators 

would enable any desired shape to be adopted. 

This could have applications when knitting a complete 

garment, e.g. when producing a pulloyer, three 

separate tubes (body, arms) could be knitted up to 

the arm holes after which the needles on the extreme 

perimeter of the tubes could be selected to knit 

an elipse (forming the neck section), hence a 

seamless garment. 
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(ix) The needle orientation of the machine could be 

varied to suit the yarn. It might well be 

advantageous to have some needles operating in 

the vertical plane progressively going to needles 

in the horizontal plane; using hydraulic actuators 

this could be accommodated. 

(x) The gauge of the needles could be varied around 

the machine periphery, consequently when producing 

a body tube the section t o fit the front and back 

of the body could be knitted on a different gauge 

to the sides, thus increasing fabric flexibility 

and producing a better fitting garment. 

(xi) To a limited degree, the needles could be made 

to move radially on a circular machine which would 

enable the gauge of the machine to be adjusted 

for shaping garments. 

(xii) Complete control over each individual actuator 

would enable infinite patterns to be designed 

for exclusive garments. 

(xiii) Very large gauge machines could be used for knitting 

carpets, exploiting the advantages of infinite 

pattern selection. 

The hydraulic knitting machine developed in this project 

was never intended to have a direct commercial application but 

merely to demonstrate that knitting by using hydraulic actuators 

was possible. The research has clearly shown that the techniques 

outlined in this work have great potential provided that its 

application is considered carefully~ 
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PART 2 

THE CONSTRUCTION AND TESTING OF A HYDRAULIC 

LOCKSTITCH SE\;TING HACHII\TE 

4. HYDRAULIC SEWING MACHINE 

4.1. Concept of a Hydraulic Se\ving Hachine 

A second application using miniature hydraulic actuators 

and rotary valves in the field of textile engineering was 

for the needle and thread take-up mechanism of a sewing 

machine. A mechanical lockstitch sewing machine basically 

consists of a rotating bobbin and two linear motions of the 

needle and the thread take-up, thus it appeared to be ideally 

suited for the application of miniature hydraulic actuators 

and rotary valves. 

' 
The basic techniques for designing the miniature 

hydraulic actuators and rotary valve had been established 

in earlier work, consequently the project involved applying 

the expertise gained in the field of miniature hydraulic 

actuation techniques to an industrial sewing machine. 

~he main purpose in building a hydraulic sewing machine 

was to investigate new techniques in stitch formation for 

automatic machines. It was envisaged that a hydraulic sewing 

head would offer more flexibility than existing mechanical 

sewing actions in the f?llowing areas:-

'(i) A smaller more compact sewing unit could be 

designed for automated machines • 
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(ii) A decoupling of the rigid driving link between 

(iii) 

the hook and needie drive shafts would be possible. 

It would enable the mechanics of right and left 

hand machines to be simplified. 

The decoupling of the two main driving shafts would 

~nable simpler control t"echniques to be used on automated 

machines where the machine is to be moved on co-ordinate axes 

The use of hydraulic actuators would reduce (to four flexible 

pipes) the linkage between the top and bottom sections of the 

sewing machine, provided a register could be maintained 

between the needle and the hook. Greater manoeuverabili ty 

could be obtained by considering the needle as a rotatable axis 

for the base of the machine, providing that the eye of the 

needle could present a loop of thread that could be picked up 

by the hook. This would simplify the control system required 

for contour seaming. 

Some types of automatic sewing stations ~ew two sides 

of a garment at a single pass. This process utilises two 

machines, that is, a right hand and a left hand machine. 

While the mechanics for the right hand machine are well 

established, the reversal of particular components to make a 

left hand machine is relatively difficult. It is envisaged 

that using hydraulic techniques this reversal procedure will 

be simplified. 

Consequently, in collaboration with Courtauld's Engineers, 

a decision to build a lockstitch sewing machine was made. The 

lockstitch machine was chosen because its basic mode of operation 
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was fundamental to all types of sewing machine. This 

prototype machine was to show that a lockstitch could be 

produced by using hydr-c.ulic devices and also provide a basis 

upon which to assess future developments and digressions. 

4.2. Selecting a Machine. 

A survey of various types of industrial lockstitch 

machines was made by visiting the major manufacturer's sales 

offices situated in the Leicestershire area. The machines 

viewed were all basically similar in operation, but a final 

selection had to take into account the following features:-

(i) The needle and thread take-up mechanism must . 

be contained in the arm of the sewing machine. 

(ii) The shuttle and fabric feed mechanism had to be 

completely housed in the base of the machine. 

(iii) The casing of the machine must be in two 

separable castings. 

(iv) The stitch length adjustment had to be accessible 

and provide a fabric feed reversal facility. 

(v) The machine had to be in current production with ... 
spare parts readily available. 

The machine that fitted this specification was the Singe~ 

~60 Lockstitch machine. .A complete sewing machine with stand 

and motor was purchased to provide the starting point for the 

project. · 
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4.3. The Mechanical Sewing Machine 

Prior to any modification to the sewing machine, a 

period of time was spent becoming familiar with the basic 

sewing machine mechanics. This involved operating the 

machine and investigating the effects of bobbin and needle 

tensions, and also becoming familiar with the setting up and 

· timing procedures. In order to obtain detailed information 

concerning the needle motion and thread take-up mechanism, 

a series of scale drawings showing the crank at 30° intervals 

were constructed. From these, vector diagrams of velocity 

and acceleration were drawn. These vector diagrams can be 

seen in Figures 52 - 64, and a summary of the results is 

given in table 4. These results assume a crank speed of 

one radian per second which can be scaled to suit any desired 

crank.input speed. 
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TABLE4 

SUMMARY OF THE RESULTS OBTAINED FROM THE ANALYSIS OF THREAD TAKE-UP. AND NEEDLE BAR MECHANISHS. 

Drawing Position -----.... 
Number of Needle Bar Thread Take Up Mechanism 

Crank 
Distance Velocity Acceleration Vertical Absolute Vertical Absolute Vertical 
of N from of N of N relati~e Displacement Velocity Component Accn. of component 
0 in with res- to o in/sec of T from 0 ofT with of the vel. T relative of T rel. 2 pect to 0 (VT) in respect to of T l'Jith to 0 in/sec2 to 0 in/sec 

in/sec 0 in/sec respect to 
0 in/sec 

J.D.G.202 ou -2.187 -.265 -.455 •. 910 +1.290 +1.200 -2.)5 -2.35 

J.D.G.203 30° -2.412 -.481 -.360 2.288 + .300 + .191 -1-31 -1.27 

J.D.G.204 G"oo -2.710 -.612 -.108 2.200 - .460 - .420 - -571 -.565 

J.D.G.205 900 -3.020 ·-.580 +.268 2.000 - -515 - .• 507 - .247 -.241 ' 

J.D.G.206 120° -3.2509 -·342 +.614 1.700 - .607 - .607 - .245 ··-.086 

J.D.G.207 150° -3-375 +.030. +.745 1.375 - .700 -· .675 - .387 -.218 

J.D.G.208 180° -3-24o +.381 +-542 1.000 - .84o - .Boo - .209 -.17.5 

J.D.G.209 210° -2.960 +.600 +.208 . -530 - .831 - .825 + -378 +.165 

J .D.G~.210 24oo -2.660 +.605 -.165 .250 --555 - -553 + .700 +.682 

J.D~G.211 270° -2.410 +.492 -.362 0 -.088 - ,,.o88 +1.472 1.421 
·< 

J.D.G.212 300° -2.200 +.225 -.462 .230 +1.108 +1.066 . , . +2-385 .,.2.350 

J.D.G.213 330° -2.125 -.026 -.478 1.000 +1.980 +1.978 +1.382 +.188 



4.4. Designing the Hydraulic Sewing Head. 

Once the two motions had been analysed and the timing 

established, the hydraulic sewing head and rotary valve could 

-then be designed. 

4.4.1. The Sewing Head. 

The design for the sewing head containing the two 

actuators can be seen in figure 65. The head contains two 

miniature hydraulic devices, both simple actuators using a 

hydraulic stop in the mid-position to reduce the impact at the 

end of the traverse. ·The sewing unit layout conforms with 

the mechanical sewing head and houses the presser foot for 

the fabric feed together with a thread tensioning mechanism~ 

In order to keep the machining requirements to a minimum, 

all auxilliary fittings that could be utilised on the hydraulic 

sewing head were transferred directly from the original machine, 
' 

leaving only the components shown in figures 66 and 67 to be 

manufactured. These compon~nts included the hydraulic pistons, 

cover plates, needle. holder, and thread take-up arm. 

4.4.2. The Rotary Valve. 

The rotary valve design which can be seen in figures 68 

69 and 70 accommodates the refinements established with the 

knitting machine rotor. Such features as an '0' ring groove 

and central exhaust bore were introduced at the design stage. 

The valve porting and slot lengths were designed using the 

results obtained from t~e analysis of the mechanical motions. 

At this stage it became evident that the timing could not be 

based directly on the mechanical system and the switching of the 

hydraulic actuators had to be tailored to suit the hook geometry. 
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The shuttle rotation is geared to be twice the speed of the 

input shaft and so enables the basic motion of the machine to 

be considered as four segments each of 90° duration. 

(i) 0 - 90° of rotation of the main shaft; the needle 

must enter the fabric to enable the hook to pick 

up the thread passing through the eye of the needle. 

The thread take up mechanism must also move·to 

create slack in the thread. 

( o . n/of 
· ii) 90 - 180 of rotatio the input shaft the needle 

must withdraw from the fabric to prevent the needle 

being damaged by the shuttle, the thread take-up 

mechanism remaining stationary enabling the yarn 

to pass round the shuttle. 

(iii) 180 - 270° of shaft rotation the actuators do not 

move. 

(iv) 270 - 360° of shaft rotation the thread take-up 

mechanism is powered to pull the thread off the 

shuttle and lock the thread into the fabric •. 

These motions were selected as the basis for the valve 

bobbin design and since the two motions were similar in duration 

with a phase difference of 90°, then both actuators could be 

driven from the s~e pair of slots with the required-phase 

difference being obtained by the relative position of the take 

off ports. 

The materials used for the sewing head actuator block was 

brass with Kelock 795 pistons. The rotary valve was manufactured 

with a Meehanite Cast Iron cylinder and a. mild steel bobbin. 
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4.4.3. Mounting the Sewing Head and Rotary Valve. 

The sole remaining task before the sewing head could 

be tested was to devise a method of mounting the sewing head 

over the shuttle and to position the rotary valve so that it 

could be directly coupled to the main drive shaft of the sewing 

machine. Since only the base of the existing sewing machine 

was going to be used, the obvious place to mount the rotary 

valve was on the end of the hook drive shaft. The drive for 

the machine was then transferred from the top needle drive shaft 

to the hook driving shaft. This was ac_complished by designing 

a new starting wheel and pulley that could be fixed to the main 

machine driving shaft. 

The arm for holding the hydraulic sewing head was 

manufactured from two pieces of rectangular steel section 

welded together to form an overhang very•similar to that of the 

existing mechanical sewing machine. The general view and layout 

of the hydraulic sewing machine can be seen in figures 71, 72 

and 73. 

Figure 71 shows the machine, stand, hydraulic power pack 

and main driving motor. Figures 72 and 73 show details of the 

sewing head and rotary valve respectively. 

4.5. Testing the Hydraulic Actuators. 

4.5.1. Initial Tests and Modifications. 

Prior to installing the hydraulic system onto the sewing 

· machine, a series of bench tests were constructed to assess the 

performance of the hydraulic devices. At this juncture it 

became evident that the actuators similar inform to those used 
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FIG. 71 GE.i'.'"ERAL VIEW OF TilE IIYORAUL I C 
LOCKSTITCII SEWI'IIG '\11\CIIINl:: 

\44 



FIG. 72 IIYDRALLrC SE~I. G HEAD 



FIG. 73 ROTARY VALVE IN POSITIO~ 0 
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successfully on previous occasions were too large for this 

particular application. !~creasing the size of the piston 

from .12511 diameter to .18711 diameter had introduced high impact 

forces at the end of the uctuator ~ovement due to the inertia 

of the piston rod. +his problem could only be solved by 

reducing the mass of the moving parts, which could be achieved 

in three ways. 

(i) Manufacture the pistons from.a light alloy such 

(ii) 

(Hi) 

as titanium. This piston could suffer from 

deformation on the lands. 

Reduce the diameter of the piston. 

Re-design the actuator to have two programmed 

hydraulic exhausts in place of the central hydraulic 

stop; This would enable the length of the piston 

to be reduced. 

To investigate the most suitable modification a series 

of test actuators were manufactured. These tests showed that 

the piston length could be reduced by using an actuator with 

two hydraulic stops. These stops could not be connected 

directly to exhaust but ;.required separate complementary exhausts. 

For testing this type of actuator the system was piped with 

two one-way valves.linking the hydraulic stops to the main supply 

lines. This technique proved that the idea was feasible but 

for a full assessment1 a new rotary valve with a set of grooves 

cut in the rotor was required. These new grooves would be 
( 

positioned to provide a hydraulic stop only when the actuator 

was travelling in a particular direction. The second modification 

to the actuator consisted of reducing its overall diameter to 
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.125 inches. This proved equally successful and under the 

circumstances seemed the most practical solution to the 

problem. To change the overall diruneter of the actuator 

entailed bushing the .187 inch diameter bores and re-machining 

them to .125 inches diameter as against re-designing the 

complete sewing head and rotary valve. Once the hydraulic 

sewing machine has been shown to be viable then further 

development of the rotary valve and actuator could well be 

justified, however, at this juncture it was felt that the 

sewing action must be verified. 

4.5.2. Instrumentation and U. V. Recordings. 

In order to ascertain the performance of the hydraulic 

devices, the system was instrumentated using pressure transducers 

on the oil supply lines together with a linear displacement 

transducer to monitor the piston rod action. The results were 

recorded on an ultra violet recorder using the techniques 

outlined previously in section 2.8. The calibration of the 

pressure transducers was again set to correspond to the values 

given in Table 2. A sample of the ultra violet recording 

traces obtained for the needle actuator can be seen in figure 74. 

Here the pressure pulses generated by the rotary valve are 

monitored and are shown in relation to actual piston movement. 

The amplitude of the needle movement was 1.25 inches and the 

calibration of the linear transducer showed that it provided 

a linear output that wa5 acceptable for the accuracy required. 

The traces show the actuator operating at 11 hertz at a pressure 

of 20blbf/in2 , this produ~es a cyclic motion of the actuator, 
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but the dwell in the extended position is only a few milliseconds. 

However, it can be seen that if the pressure is increased to 

400 lbf/in2 , the speed of the actuator is increased and consequently 

the dwell time which is required to enable the hcok to pick up 

the thread, is extended. Figure 75 shows the ultra-violet 

recordings obtained for the thread take-up hydraulic actuator, 

here the amplitude of the actuator is greater, 2.312 inches, 

consequently an increased force is required to produce a cyclic 

displacement in the same. period as the needle actuator. Thus 

the overall performance of the machine will be governed by the 

functioning of the thread take-up actuator. On examining the 

pressure traces, it can be seen that the pulses are sharp on 

the leading edge and when switched the port is exhausted with 

no back pressure being generated, due to a restriction in the 

flow back to tank. The leading spike on the pressure pulses 

could well be overshoot on the recording instrument while the 

cyclic pressure vibrations c~uld be generated by the hydraulic 

pump in the power pack. The main purpose for taking the ultra-

violet recordings was not to give analytical results but to 

verify that the systems were operating through the desired 

amplitude with no freak pressure variations. 

4.5.3· Comments on the U •. V. Recordings. 

The traces shown in figure 76 gives the phase relationship 

between the needleretuator and the thread take-up actuator. 

Here it can be seen that the needle and thread take-up actuators 

are powered simultaneously. The needle passes down through the 

fabric into a position where the hook can pick up the yarn. 

At the same moment, the thread take-up actuator introduces 
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sufficient slack into the yarn to enable it to pass round the 

shuttle. Once the yarn has_been picked up by the hook, the 

needle is withdrawn allowing the hook to take the y~·n round 

the shuttle, then the tr~ead takc~up actuator is moved to pull 

the stitch to its pre-set tension. A useful exercise at this 

juncture was to compare t~e motions of the mechanical and hydraulic 

systems, so that conclusions could be drawn as to their respective 

merits. The relative positions of the needle actuator and the 

thread take-up actuator were scaled directly from the ultra-violet 

traces shown in figure 76. A complete cycle was divided into 

24.equal strips and measurements taken at each co-ordinate to 

give the results in Tables 5 and 6. To enable further comparisons 

between the two types of drive, the average velocity and acceler~ 

ation between each ~wo adjacent points were calculated for 

the complete cycle. 

4.5.4. Comparison of the Hydraulic and Mechanical Systems. 

In order to compare the two systems, the results in Table 4 

have to be scaled to the equivalent angular velocity for the 

drive shaft. The frequency of the hydraulic system is 18.82 

cycles per second thus the values in Table 4 scaled to the same 

shaft speed can be seen in Table 7. 

Wlule no rigorous comparisons can be drawn, it is 

interesting to compare the overall features. Figures 77 and 78 

show the relative displacement of the two systems. In figure 

77 which shows the relative motions for the needle movement, 

it can be seen ~hat the mechanical system produces a smooth 

cyclic motion per revolution of the input shaft while the 

hydraulic system moves faster and the cycle is completed in half 
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TABLE 5 

RESULTS FOR THE NEEDLE ACTUATOR AS TAKEN FROM THE U. V. RECORDING 

IN FIGURE 76 

EQUIVALENT U. V. RECORDING ACTUAL·. AVERAGE .· AVERAGE 
CRANK VALUES IN ACTUATOR VELOCITY OF ACCELERATION 
ANGLE0 POSITION IN ACTUATOR IN/ OF ACTU~TOR 

SEC IN/SEC 

0 0 0 0 0 

15 0 0 0 0 

30 0 0 0 0 

45 0 0 0 0 

60 0 0 ' 0 0 

75 0 0 -64.70 -29276 

90 .25 -.143 -258.37 -87633:. 

105 1.25 -.714 -145.70 +50981 
120 1.812 -1.036 -96.83 +22113 

135 2.187 -1.250 0 +43814 

150 2.187 -1.250 +32.57 +14738 

165 2.062 -1.178 ~96.83 +20976 
180 1.687 -.964 +81.00 -7162 

195 1.375 -.785 +161.08 +36235.· 
210 -75 -.429 +178.28 +7782 

225 .062 -.035 +15.82 -73506 

24o 0 0 0 -7162 

255 0 0 0 0 

270 0 0 0 0 

285 ·:,0 0 0 0 

300 0 0 0 0 

315 0 0 0 0 

330 0 0 0 0 

345 0 0 0 0 

360 0 0 0 0 
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TABLE 6 

RESULTS FOR THE THIRD TAKE-UP ACTUATOR AS TAKEN FROH THE U. V. RECORDINGS 

IN FIGURE 76 

EQUIVALENT U. V. RECORDING ACTUATOR AVERAGE AVERAGE 
CRANK VALVES IN DISPLACEHENT VELOCITY OF ACCELERATION 
ANGLE IN ACTUATOR OF ACTUATOR 

IN/SEC nVsEC2 

0 2.375 1.204 214.93 -12104 

15 3-312 1.679 143.43 -32352 

30 3-937 1-995 142.98 -203 

45 4.562 2.312 0 -64696 

60 4.562 2.312 -57.01 -25796 

75 4.3i2 2.185 -29.86 +12285 

90 4~182 2.119 -73-75 -19859 

105 3.862 1.957 -68.32 +2457 
120 3.562 1.805 -71.49 -1434 

135 3.230 1.636 -114.93 -19656 

150 2.750 1.393 -114.93 +208 

165 2.250 1.140 -157.91 -19656 

180 1.562 -791 -143.43 -6552 

195 -937 .474 -171.94 -12900 

. 210 .187 .094 -49.77 +552.80 

225 .062 .031 -14.47 +15972 
240 0 0 0 -6547 

255 0 0 0 0 

270 0 0 0 0 

285 0 0 0 0 

300 0 0 0 0 

315 0 0 0 +39104 

330 -375 .190 86.42 57941 

345 . 1.312 .664 214.47 13312 

360 2.375 1.204 243.89 -13104 

.. 
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TABLE 7 

RESULTS FOR THE HECHANICAL SEVIING BACHINE \VITH A HAIN SHAFT SPEED 
OF 18.82 REvOLUTIONS PER SECOND 

POSITION NEEDLE BAR THREAD TAKE-UP 
-

OF DISTANCE VELOCITY ACCN.OF N VERTICAL ABSOL.VEL. ABSOL.ACCN. 
FROM OF N WITH REL. TO 0 DISP.OF. OF T \·/ITH OF T REL. 

CRANK HOOK IN RESP.TO 0 IN/SEC2 T FR0!1 0 RESP.TO 0 TO· 0 IN/SEC2 
IN/SEC2 IN+ IN/SEC 

0 -.062 -31.33 -6362 1.910 +152-54 -32862 

30 -.287 -56.87 -5032 2.28.8 +35.47 -18318 . 
60 -·585 ·72-37 -1510 2.200 -54.39 -7984 

90 -.895 -68.58 . 3747 2.000 -60.90 -3454 

120 -1.125 -4o.44 '8586· 1.700 -71-78 -3426 

150 -1.250 3-50 10418 1.375 -82.77 -5411 

180 -1.115 45.05 7579 1.000 -99-33 -2922 

-.835 2908 
. 

-98.26 +5285 210 70.95 -530 

24o --535 71.54. -2307 .250 -65.63 +9788 

270 -.285 58.53 -5062 0 -10.40 20584 . 
300 -.075 26.60 -6460 .230 +131.02 33351 

330 0 3-07 . -6684 1.000 +234.14 19325 
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the period. The faster movement of the hydraulic device is not a 

particular advantage because of heat generation and shock loading 

of the sewing thread, also a further advantage of the mechanical 

system is in being able to adjust the timing such that the hook 

picks up the needle thread as it is about to withdraw from 

the fabric, so providing a loop of thread to be picked up 

by the hook. However, a significant advantage of the hydraulic 

system is that the penetration of the needle through the fabric 

is not governed by the size of the slider crank mechanism and 

hook geometry, consequently the overall movement of the needle 

can be greatly reduced such that only a small percentage of the 

total movement takes place while not piercing the fabric. 

Using this criteria the needle could be re-designed on a much 

shorter stroke which in turn would relieve some of the more 

inherent disadvantages~-

Figure 78 shows the relative motions of the thread take-up 

mechanisms. Here the hydraulic actuator motion more closely 

resembles the mechanical movement, but once again is faster 

with the dwells accuring prior to each displacement curve. The 

shape of the time displacement curve can be adjusted slightly 

by varyipg the supply pressure, but the points A and B on the 

curve are fixed by the geometry of the rotary valve. 

A survey of the results shown in Tables 5, 6 and 7 show 

that the values of velocity and acceleration for the hydraulic 

devices are much higher, and more sensitive to system fluctuations. 

This was to be expected as the calculated values for the 

mechanical system were based upon a constant speed drive whilst 

the results for the hydraulic devices were practical results 
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obtained in the laboratory. The main purpose for presenting 

these results was to enable comparisons to be drawn, and any 

future developments can be assessed using the data produced 

contrasting the two systems .of motivation. 

4.6. Testing the Rotary Valve. 

While bench testing the hydraulic actuators, a drive for 

the rotary valve was obtained from a hydra~lic servo-motor. 

This unit was standard laboratory equipment with a power rating 

in the region of 10 H .• P. at 1200 revolutions per minute. This 

system, known as the Telehoist Rig, was used extensively throughout 

the tests performed on the rotary valves. The parameters of 

performance to be determined by the tests were the relationships 

between supply pressure, speed and torque. 

4.6.1. Instrumentation. 

The supply pressure to the rotary valve was assumed to 

be constant once an even cycling rate for the actuators had been 

established, thus e~bling the&pply pressure to be monitored 

using a Bourdon tube pressure gauge. The speed of rotation was 

scaled from a tache-generator fixed to the back of the hydraulic 

motor which gave a signal voltage proportional to speed. The 

torque required to rotate the bobbin of the valve was the most 

difficult parameter to determine, this involved using a British 

Hovercraft Corporation torque transducer. This utilised a 

network of bonded foil strain gauges cemented to a high tensile 

torsion shaft. These gauge~, which are connected in a full 

bridge circuit,·produce an electrical bridge unbalanced proportional 

to torsional strain and the signal is passed via a system of 

silver sliprings into an indicator unit which is calibrated to 
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give a direct dial reading in lbf - ft. 

Having instrumentated the rotary valve, its performance 

could be assessed on recorded data and conclusions drawn as 

to the effect of any future modifications to the valve. 

4.6.2. Modifications to Rotary Valve Design. 

The first modification to the valve·was to drill a series 

of pressure tappings into the cylinder such that pressure 

transducers could be used to measure transient pressures in 

the clearance between the bobbin and the cylinder. These 

recordings indicated that the pressure slots were creating high 

pressure areas in particular sectors of the valve, hence the 

second modification was to machine a series of radial grooves 

round the bobbin, as had been done previously on the knitting 

machine bobbin. These grooves helped to distribute the 

pressure round the bobbin thus allowing the bobbin to run 

more concentrically so reducing the torque requirements of 

the valve. The third modificatio~ was to measure the change 

in rotary valve performance due to the '0' ring, originally 

introduced to prevent the high pressure supply oil going 

behind the end face of the bobbin and producing a ram action. 

The results obtained were most surprising in that the frictional 

resistance due to the '0' ring absorbed considerably more power 

than the load created by the end pressure. This fact instantly 

necessitated a further modification whereby grooves were cut 

in the end caps of the bobbin to create pressure annulii. 

These in turn were linked to each other via an external pipe 

so equalising the pressure distribution. 
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4.6.3. Readings for Rotary Valve Performance 

At this juncture a series of readings were obtained 

to give an indication of the rotary valve's performance with 

and ·without the '0' ring. These results c·an be seen in 

Tables 8 and 9 together with the graphs shown in figures 79 

and 80. The torque requirements for the rotary valve with an 

~0! ring can be seen in figure 79 and the series of curves 

clearly indicate that the torque required to rotate the valve 

is a function of the supply pressure whilst being almost 

independent· of rotational speed. Since the torque requirements 

for the valve double when using the 1 0' ring seal, it must be 

presumed that the operating characteristics of the seal 

predominate, and in consequence account for the rather unexpected 

results. The family of curves in figure. '80 (the torque 

requirements without the '0' seal) are nearer to what would be 
' 

expected, with the torque requirements being dependent upon 

rotational speed and supply pressure. 

Marginal improvements in performance were obtained by 

changing the 10 1 ring groove into a second pressure annulus 

in an attempt to balance the pressure distribution within the 

valve, and also to create a better centralising mechanism for 

the rotor. However, it became evident that no real improvement 

in performance was going to be achieved by experimental 

techniques, and it was at this juncture that the decision to 

embark upon a detailed study into the performance of rotary 

valves was taken (see Part 3). 
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TABLE 8 

RESULTS OBTAINED FROM THE SEWING HACHINE ROTARY VALVE HITH AN '0' RING 

THE RESULTS GIVE THE TORQUE LBF-IN REQUIRED TO ROTATE THE BOBBIN AT 
THE INDICATED SPEED AND PRESSURE SETTINGS. 

- .,._ 

~ 50 100 200 500 800 

0 15.6 15.6 15.6 16.8 18.4 

50 19.2. 18.0 19.2 18.0 20.4 

lOO 24.0 20.6 22a8 22.8 24.0 

150 28.8 26.4 26.4 27.6 28.8 
.. 

200 34.8 31.2 32.4 33.6 33.6 

250 40.8 36.0 36.Q 37-2 37-2 
.. 

300 48.0 42.0 
. 

42.0 43.2 43.2 

350 54.0 48.0 48.0 46.8 48.0 

400 6o.o 54.0 52.8 49.2 50.4 

/ 

1200 

20.0 

20.4 

26.4 

30.0 

33.6 

37-2 

40.8 

44.4 

48.0 



.· ... 

TABLE 9 

RESULTS OBTAINED FROH THE SE\VING HACHINE ROTARY VALVE \-IITHOUT AN '0' RING 

THE RESULTS GIVE THE TORQUE LBF-IN REQUIRED TO ROTATE THE BOBBIN. AT THE 
INDICATED SPEED AND PRESSURE SE'ITINGS. 

SPEED 

PRESSU REVS/ 50 100 200 500 Boo 1200 
LBF/IN 

1IN 

0 7-2 7.2 7.2 9.6 12.0 14.0 

50 8.4 8.4 8.4 9.6 12.6 14.4 

1100 9.6 9.6 9.6 12.0 13.8 15_.6 

150 10.8 10.8 12.0 13.2 15.6 16.8 

200 14.4 13.2 15.6 15.6 18.0 19.2 

250 16.8 15.6 18.0 19.2 20.4 21.6 

300 19.2 18.0 . 20.4 21.6 22.8 24.0 

350 21.6 21.6 22.8. 25.2 26.4. 27.6 

Itoo 24.0 .24.0 26.4 28.8 30.0 31.2 
' 
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4.?. Commissioning the Hydraulic Sewing Machine. 

Prior to any sewing being performed upon the machine, 

the overall power requirements had to be estimated using the 

data obtained from the rotary valve. Since the original sewing 

machine motor was rated at half a horse power, the maximum 

input speed possible was 1,000 revolutions per minute. This 

input speed was obtained by adjusting the pulley dimensions 
. 

on the motor and hook drives accordingly. The machine was then 

fully assembled with the thread carriers, needle and yarn, as 

can be.seen in figure 71 in preparation for sewing. 

4.?.1. T~ming the Sequence of the Various Mechanisms. 

The first attempts at producing a lock stitch were made 

by man~ally turning the rotor so that phase adjustments to the 

rotary valve and hook mechanism could be made. This adjustment 

consisted of rotating the bobbin of the rotary valve such that 

the needle actuator was retracted at the moment the hook had 

passed the eye and picked up the thread. Having succeeded in 

co-ordinating the relative motions of the needle, thread take-

up, hook drive and feed dogs, an attempt to sew under power 

was made. It was realised that the clutch mechanism could not 

transmit the torque required to give even acceleration and in 

consequence tended to grab, producing needle breakage. To 

relieve this problem, the drive motor was replaced by a half 

horse-power motor, driving through a variable ratio Car_ter 

gearbox. This motor was installed and was capable of producing 

a constant speed drive that could be controlled at the gearbox. 
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4.7.2. Testing the Sewing Action. 

The machine could now be tested for sewing performance. 

At low speeds, the stitch was formed with the two threads being 

satisfactorily interlocked, but as the speed was increased, 

the back of the fabric appeared to have a double loop. This 

double-looping was traced to the hook picking up the loose 

yarn for a second time, after the stitch had been formed. A 

solution was to advance the point at which the thread take-up 

mechanism was withdrawn, so removing the loose yarn before the 

· hook had completed its first revolution. This modification 

involved drilling a second pair of supply ports in the cylinder 

body of the rotary valve such that the thread take-up actuator 

was advanced. This resulted in higher sewing speeds. One further 

problem existed, that of random yarn breakage. Here the problem 

was confined to the hook picking up the yarn from the needle and 

passing it behind the shuttle. In order to perform this operation, 

a slight resistance had to be introduced into the yarn to ensure 

that it was pulled into the neck of the hook. If the yarn 

remained at the point of the hook, the yarn was cut by the hook 

mechanism. Several attempts to solve this problem were made, 

the best two solutions being the introduction of a small spring 

latch or a pair of loose tension discs. However, the problem 

~as basically due to the linear motion of a hydraulic actuator 

replacing the complex thread take-up motion, and is an area that 

requires further invest~gation. A pictorial record of the sewing 

machine has been made on the film entitled "The Development of 

a Hydraulic Sewing Machine". 
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This film shows the general layout of the sewing machine 

together with the rotary valve and sewing head. It also 

demonstrates the machines' ability to produce a lockstitch 

on a piece of fabric. It is envi8~ged that the film should 

be viewed as a complementary feature to this section. 

4.8. · Findings and Recommendations for the Application of Hydraulic 
Actuation Techniques to Sewing l1achines. 

4.8.1. Comments on the Hydraulic Sewing Machine. 

The work undertaken to build a lockstitch sewing machine 

provided useful experience and served as an exercise to highlight 

the main criteria to be considered in future work. It has 

proved that sewing is possible by using hydraulic actuators 

to replace the linear mechanical motions, but further research 

would be required if a commercial machine were to be a reality. 

4.8.2. Further Practical Usage of Hydraulic Actuation Techniques as 
Applied to Sewing Machines. 

The following areas require special consideration as the 

basis for future developments:-

(i) The type of stitch that is most applicable to the 

media of hydraulic actuation must be selected. 

The lockstitch machine chosen had a limited sewing 

capacity before the shuttle has to be rewound thus 

restricting its application for automatic machines. 

(ii) It must be investigated where the greater degree 

of flexibility offered by the hydraulic control 

m~dia can best be exploited, for example~ when 

producing left-hand chain stitch machines. 
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(iii) The further development of miniature hydraulic 
. 

devices in order to obtain higher cycling rates 

would be necessary, so enabling the l~·draulic 

machine to be compe.re.'ble in speed with mechanical 

systems. This research would involve testing 

actuators with programmed hydraulic stops and could 

even involve introducing cushioning devices to 

protect the actuator at the extremities of the stroke. 

(iv) Compound and multiple actuators could provide 

useful techniques for extending the effective 

cycle times. For instance, a compound actuator 

on the needle could shape the time displacement 

profile so that the small movement required to 

make the needle clear the hook had to be completed 

in the critical 180° of hook rotation. The 

remaining movement could be contained in the other · 

54o0 (the hook rotating twice per revolution of 

the rotary valve) hence providing a more even 

·cycling profile. One of the major disadvantages 

of the thread take-up mechanism was the excessive 

amplitude that had to.be accommodated. Consequently, 

a single actuator of two inch amplitude could be 

replaced with two actuators each of one inch. These 

could be programmed to operate in series and so 

effectiv~ly reduce the time required to complete 

the cycle. The use of multiple actuators could 

also provide extra control over the yarn, by 

introducing a further two fixed points on the thread 
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take-up time displacement profile. 

(v) A basic study_must be performed on the stitch 

formation so that the hydraulic machine would be 

designed to effect the desired stitch formation 

-(vi) 

and not simply to replace the existing mechanical 

motion. Taking the needle movement on the lockstitch 

machine; the fabric penetration is governed by the 

hook geometry with the crank dimensions governing 

the overall movement of the needle. Using 

hydraulic techniques a better utilization of needle 

movement could be obtained by ensuring that a high 

percentage of the total needle movement took place 

whilst the needle penetrated the fabric. This 

would allow a reduction in needle amplitude. 

Auxilliary mechanisms would require further 

detailed thought. The mechanisms most directly 

effecting the overall performance are those used 

to attach the thread carrying devices to the 

actuators. These components would essentially 

be as light as possible in order to reduce the 

inertia forces, but also be able to withstand 

the high cyclic stresses to which they would be 

subjected. 

Whilst this study has not produced a commercially viable 

sewing machine, it is hoped that this new sewing technique will 

provide a fresh approach to the concept of automatic sewing 

machines. The work performed in this field is very limited 

due to the time allocation f?r the various aspects of the 
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overall project, but it has provided a foundation upon 

which further development can be based and it is believed 

that an extension of the work will be undertaken by Courtaulds. 
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PART 3 

A DETAILED DESIGN STUDY AND ANALYSIS 

OF PULSE-GENERt\TING ROTARY VALVES 

173· 



~-----------------------------------------------

5. ROTARY VALVE DESIGN 

5.1. ROTARY VALVES 

5.1.1. Geometrical Layout of the Bobbin 

5.1.2. Balancing Techniques 

5.2. BASIC THEORY AND ASSID1PTIONS 

5.3. SOLUTION OF LAPLACE EQUATION FOR THE PRESSURE DISTRIBUTION 
ROUND THE RO'rOR 

5.4. APPLICATION OF IiAPLACE EQUATION TO THE ROTARY VALVE 

5.5. THE PULSE-GENERATING SECTION OF THE VALVE 

5.6. TORQUE REQUIRED TO TURN THE PULSE-GEHERATING SECTION 

5. 7. THE DESIGN OF COHPENSATING PRESSURE PADS 

5.8. VERIFICATION OF TiiE PREDICTED THEORY BY PRACTICAL TESTS 

5.8.1. Design data for Test Rotary Valve 

5.8.2. Computer predictions for the Out-of~Balance Forces 

5.8.3. Results obtained from Test Rotary Valve 

5.8.4. Input data for Computer Programme used in Theoretical Predictions 

5.8.5. Physical Parameters affecting Input Data 

5.8.6. Torque Predictions 

5.8.7. Comparison of Predicted and Practical Results 

5. 9. FURTHER WORK BASED ON ROTARY VALVES 

5.9.1. ·Internal Flow 

5.9.2. External Flow 

174. 



PART 3 

A DErAILED DESIGN STUDY AND ANALYSIS OF PULSE-GENERATING 

RO'fARY VALVES 

5· ROTARY VALVE DESIGN 

5.1.. Rotary Valves 

From the experimental application of rotary valves to 

a circular weft knitting machine and a lockstitch sewing machine, 

it was evident that the rotary valves revealed a new technique 

for generating a series of cyclic pulses. The rotary valves 

thus far designed !1c:.ve been solely concerned with producing 

a device capable of generating the pulses required to control 

the external system. However, having demonstrated this 

capability, a further study was required to enable the general 

design criteria to be resolved and a procedure specified 

as to how efficient valves may be designed. It was also 

envisaged that a method for predicting the power requirement 

for the valve should be evolved so permitting the drive 

mechanism for the rotor to be specified at the design stage. 

Experience with rotary valves has demonstr.ated.:.that out 

of balance of forces can be generated by the pressure and 

exhaust grooves cut in the bobbin for pulse generation purposes • 

. Since the most desirable running condition appears to be when 

these forces are minimised (a low supply pressure), a method 

of construction has to be devised whereby these internal 

forces are constrained or balanced. They could be constrained 

or carried by bearings placed externally to the pulse-generating 

section, thereby producing a shaft running in a cylinder. 

175. 



~ 0\ ~a,~"M lo SHow \\-\£ \.\06,. ScJ\"TA&u;. &~&&C. 

L."VO\),. FOE. " ~OTAR.V "A\..Vf!. • 

COMPENSJ!\"T\NG PM) COMPENS~iiNG PAD 

CYL.INCE2. 

- 1--

,_ 

---+-1- _ --+---~~ _ B_o~_~_\N---+--+-----+--+~-~--
1 ' 

~lG 81 

,,, 



These hearings could be of any known type:- ball race, hydro

static, or hydrodynamic providing that the load-carrying 

capacity was greater than the out-of-balance forces and that 

the eccentricity when loaded did not detract from the valve 

performance. A further examination of the rotary valve 

revealed that without the pulse-generating grooves, the valve 

would in effect be a plain hydro-dynamic be~ing, running with 

no externally applied load. Under these conditions, the.bobbin 

should run centrally in the cylinder (as a non-loaded shaft), 

and the torque requirements would be at a minimum. Consequently, 

the optimum valve performance could be obtained by regarding 

the valve as a complete hydrodynamic bearing, with the internal 

forces balanced at the design stage. The balancing would be 

achieved by considering the geometry and orientation of the 

pulse-generating pads, leaving only small residual forces to 

be counteracted by compensating pads. These will have to 

be individually designed for each particular slot geometry, 

and mounted at the end of the pulse-generating section. 

5.1.1. Geometrical Layout of the Bobbin. 

Therefore to design a balanced valve, the first consideration 

must be the geometrical layout internally, of ports and pads, 

in order to produce as symmetrical a design as possible. 

The suggested basic form for any future valves can be seen 

in figure 81. The bobbin,. which is free to rotate about 

the central axis, is shown to be symmetrical about the main 

supply annulus. This central supply groove is fed, via 
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5.1.2. 

the cylinder, by a high pressure source, serving as a 

common chamber to all the high pressure pads. The pulse

generating sections are placed to each side of the supply 

grooves and the exhaust pads connected to the central exhaust 

bore that runs along the axis of the bobbin. The geometry 

of the pulse-generating section is largely governed by the 

pulse requirements of the external system, but since the 

take-off ports can generally be placed at any point on the 

diameter of the cylinder, the orientation of one set of grooves 

with respect to a second set of grooves can be manipulated to 

produce a small resultant load. The most convenient way to 

reduce the resultant force is to make the pressure and exhaust 

pads symmetrical as possible across any diameter. Compensating 

pads placed at the bobbin extremeties can then be used to 

counteract the residual forces generated by the pulse-generating 

sections. 

Balancing Techniques. 

Having formulated this design strategy, a method of 

calculating the residual out-of-balance forces for any pad 

geometry had to be found, and then these forces used to 

calculate the physical pad dimensions. · 

The most common form of balancing pad used in general 

engineering practice is the hydrostatic bearing. The fluid 

film separating the journal and the bearing is maintained by 

a source of pressurised fluid external to the bearing with 

flow restrictions both in and external to the bearing. 

Therefore, the hydrostatic bearing pad provided a basis upon 
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which to develop the compensating pads for the rotor. 

The.hydrostatic bearing requires a control device such 

as a restrictor or ~~ orifice plate to limit the flow of fluid 

through the pads, thus preventing the complete system from · 

being exhausted through a single pad. However, with the 

compensating pads the fluid flow rate will be many times greater 

than the internal leakage of the valve. Therefore, it could 

be assumed that the system would be constantly flow-saturated 

so acting as a self-compensating control device. Using this 

technique, the pressure at the compensating pads would vary in 

relation to the system pressure at the main take-off ports, 

so automatically restoring the pressure distribution balance 

as the demand on the rotary valve changes. A further advantage 

of using flow saturation would be that no pressure drop would 

be required across a control device so enabling the overall 

dimensions for the compensating bearing to be kept to a 

minimum. 

• 
The shape of the compensating pad would be a rectangular 

recess a few thousandths of an inch deep although it must have 

sufficient depth to not restrict the flo\-r of fluid. 

The assumption that the rotor will act as a hydrodynamic 

·bearing provided a starting point from which an analytical 

solution could be developed. 

5.2. Basic Theory And Assumptions. 

The basic equations of fluid film lubrication for rigid 

bearing components are based upon the following fundamental 
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relationships:-

(i) The continuity equation which represents the 

conservation of mass. 

(ii) The equations of motion \'Thich represent~ the 

conservation of momentum. 

(iii) The energy equation which represents the conserv-

ation of energy. 

These three equations apply to all fluids, when written 

in their most general form. Osborne Reynolds, in 1886, 

derived from the first two equations a differential equation 

governing pressure distribution in a fluid film bearing. The 

derivation and simplification of this equation is standard 

Hydrodynamic theory and can be found in several text books 

(references 1 and 2) consequently it is not reproduced in this 

thesis. 

When applying Reynold 1 s Equation to a finite journal 

bearing and taking the assumptions which are known to be true 

for all ordinary lubrication conditions, then the equation may 

be written in two dimensions with steady motion as 

__ (1) 

,providing that the following assumptions are made:-

(iv) Lubricant is Newtonian 

(v) Fluid is i~compressible 

(vi) Flow is laminar 

(vii) Fluid film is so thin that the pressure remains 

constant across the depth. 
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(viii)No slip occurs between fluid and bearing surfaces. 

(ix) The viscosity of the film is uniform throughout. 

(x) The effects of thermal end elastic distortion' 

are neglected. 

(xi) The shaft axis is parallel to the axis of the bearing. 

(xii) Inertia and body forces are negligible. 

(xiii)The curvature of the bearing surfaces are considered 

to be large compared with the film thickness so that 

the film may be unwrapped for analysis. 

Thus; looking at the bearing at any instance in time when 

travelling with angular velocity, (.,..), the system will be of 

the form seen in,.figure 82 and it can be shown that the fil.m 

thickness, h, at point e round the bearing can be found from 

the relationship:-

h::: c ( 1 + E.cos(e-cp)) ____ (2) 

where C is known as the radial. cl~arance of the bearing 

and E, the eccentricity ratio defined as ~ and </> the 

eccentricity angle. 

Reynold's Equation in its most convenient form, is 

expressed in Cartesian Co-ordinates. Therefore, using the 

assumption that the bearing can be unwrapped and letting the 

arc length produced by angle Gbe expressed as the x eo-

ordinate and the breadth of the bearing as the y co-ordinate, 

the bearing can be expressed as a pad, of length L = 21t R 

and breadth B. In order to use Reynold's Equation it is 

usual to express it in a dimensionless form:-

p = ____ (3) 
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____ (4) 

- :X:. 
"X.= L ___ (5). 

h ::r 
h 
ho ___ (6) 

(,.,rhere ho is the minimum film thickness) 
Expressing Reynold's Equation for a finite bearing in 

dimensionless form gives:-

which on rearranging produces:-

____ (7) 

-Gdh 
c:A-i: ____ (8) 

Thus, if the values of <f> and e are either kno\m or 

, assumed, then the pressure distribution for a finite journal 

bearing can be found by solving the differential equation. 

However, in this part~cular instance, neither parameter was 

known, and since it is hoped to design a balanced rotor 

equivalent to an unloaded shaft, it was reasonable to assume 

that the bobbin would run almost centrally within the cylinder 
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so approximating eccentricity€ to zero, which in· turn eliminates 

the angle <f> (the eccentricity angle). Making such an 

assumption simplifies the Reynold!s Equation because, 

h = h = con5tant 
0 

thus giving the Laplace Equation 

-----(9') 

The solution of the Laplace Equation would enable the 

pressure distribution round the bearing to be found. This 

in turn could be used to calculate the magnitude and direction 

of the residual out-of-balance forces. Having compensated the 

system with hydrostatic pads, the assumption that the rotor acts 

as a non-loaded shaft should be true. 

5.3. . Solution of Laplace Equation for the Pressure Distribution 
round the Rotor. 

The equation to be solved was the Laplace Equation with 

special boundary conditions· depending upon the geometry of the. 

slots required by the system. Several methods of solving the 
. 

equation from series approximations to electrical analogue 

were available and fully established, but with the advent of 

the digital computer the most convenient solution would be a 

relaxation method, as all fluid film lubrication problems can 

· be made to yield to them. First approximations can be obtained 

quickly and the numerical procedure pursued infinitely to 

achieve any required degree of accuracy. Using the relaxation 

process, the first step was to·replac"e the differentials in 

the equation by finite difference approximations. The area 
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to be considered was covered by a mesh and the method 

relies upon the fact that a function can be represented with 

sufficient accuracy over a small range by a quadratic expression. 

Consider the variation of a function p in the direction 

of x and let the mesh size beOC(see figure 83i) thus it can 

be seen that:-

X= 0 

X=+ 0C 

x = -oc 

p = p 
0 

p = f'+.e 
P =~-cc 

And by using a finite difference form the rate of change of 

p at a ·point x = - ~ ~an be expressed as, 

Similarly at point 

po- P-.c 
cC 

::c.= +oe 
2. 

___ (10) 

___ (11) 

Again, by a similar finite difference representation 

- ()-) 
the rate of change of ( ~ at x = o can be expressed as 

. 'doe. 

\~L) = \~)~~-l~'L'"' o:x:. 0 2 ~ 2 (12) 

f~) 
\~ -2. 
0~ 0 

oc ---------

___ (13) 

.A-lso:-by considering the variation-of a function pin the direction 
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of y and letting the mesh size be~ 

then(~) = 
~~2 0 

____ (14)' 

These two expressions for d
2p and ()2~ can be substituted 

'a x.?.. o'j2 
directly into the Laplace Equation 

____ (15) 

thus 

____ (16) 

____ (17) 

Therefore, by setting out a grid over the pad (as shown 

in figure 83ii) an approximation of the pressure at any 

point could be found, if the pressures around the point were 

known. Consequently to start'the relaxation process in motion 

the boundary conditions must be known and also since the 

hydrodynamic·action is being neglected, a pressure source 

must be introduced. If the system. were being worked by hand, 

the c.entre point vtould be investigated first with oC # _jS = ~ 
and then the grid'size gradually increased to the desired mesh. 

Once the first approximations have been found, the relaxation 

procedure could be i~tiated. This technique would involve 

taking each point on the grid in turn, and putting the values 

first calculated into the general expression for the pressure 
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distribution. These would not satisfy the equations exactly 

so the value of p would be adjusted such that the residual 
0 . 

\-Ta.s equal to zero, hence satisfying the equation.. This 

adjustment would affect the pressure at the points around 

p so the process would have to be repeated at each point 
.0 

across the whole grid. Once having traversed the grid, all 

the pressure values would have been altered, so repeating the 

process until the equations are satisfied to a sufficient 

degree of accuracy. This process may take as many as lOO 

iterations across the grid depending upon the accuracy required. 

To speed up the relaxation process, a technique of over-relaxation 

could be employed. .This was put forward by Gauss-Seidel stating 

that:-

Value of p to be put onto grid 

= Previous value of p + Relaxation Factor (A):><. 

(Calculated value of p - Previous value of r) 
This relaxation factor is a number between 1.0 and 2.0 and is 

set to the value that produces the most accurate answer for the 

minimum number of iterations·. round the grid. 

It will be appreciated that only an outline of the process 

has been included in this thesis, as the techniques have ·been 

fully developed and can be found in references (4) and (5). 

5.4. 'Application of Laplace Equation to the Rotary Valve 

The approach adopted for the application of·the Laplace 

Equation to the rotary valve involved using relaxation techniques 

on a digital computer. The computer programme can be used for 

solving the Laplace Equation for any size valve and pad geometry. 

In section 5.5. an outline will be given as to how the 
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programme was evolved and how it can be used. 

5.5. The Pulse~Generating Section of the Valve. 

The positioning of the slots to be cut in the central 

section of a rotary valve is always dictated by the external 

system. e.g. if the system is supplied with a pressure pulse 

at a given inatant, a slot must have been machined radially 

into the bobbin so producing a pressure pad. (This procedure 

has been dealt with in detail in Chapter 2.) The first 

consideration of any design must be pad geometry. This is 

most easily solved by drawing cross sectional views of the 

rotary valve through the pressure and exhaust pads, as shown 

in figure 4. This enables the train of pulses generated by 

valve station to be simulated. Once the pad dimensions have 

been established, the overall pad layout must be made as 

symmetrical as possible by adjusting the radial position of 

the slots. The overall. breadth of the valve is governed by 

the number of slots that have to be cut in the valve bobbin 

to satisfy the system. The overall diameter of the valve should 

be made as small as possible to reduce such factors as inertia, 

torque requirements and material utilisation, but is primarily 

govern~d by the n~mber of take-off points required by the 

system. The volume flo\1 rate passed through the internal 

bores of the bobbin must not create too large a pressure drop 

across the ports. Experience has shown to err on the large 

side when deciding th~ diameter .of the internal bores,as not 

all the factors that contribute to the total pressure drop 

can be accounted for in a mathematic model. The size of the 
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bores required will also be related to the number of pulses 

required per revolution, and the speed at which the bobbin is 

rotating. However, a few simple calcul~tior~ cor.ccrning the 

parameters of the system and the Rpplication of those parameters 

to the rotary valve would provide a basis upon which the 

diameter of the valve could be selected. 

Having established the size of the pulse-generating 

section, these two most important facts still have to be 

determined:-

(i) The out-of-balance forces, at each end of the 

pulse-generating section, so that suitable pads 

can be designed to oppose them. 

(ii) The minimum torque required to overcome the viscous 

frictional resistance of the bobbin. 

Since both calculations were dependent upon the pressu~e 

distribution over the bobbin, the starting point must be to 

solve the Laplace Equation for a particular pad geometry. To 

solve the Equation using the computer the pad geometry was 

transposed onto the grid containing the.complete pulse-generating 

section, and the equations solved for the given boundary 

conditions imposed. The easiest method of performing this 

procedure was to seleet a mesh size,for the Breadth of the 

. section~ and the developed Length of the sectionOC; the number 

of grids could be any even number between 20 and 100, (though 

solutions for grids larger than 50 by 50 become rather lengthy 

even'on a fast computer). This grid was then plotted, using 

a convenient scale, onto graph-paper such that the grid points 

could be numbered. \1hen considering the breadth of the valve, 
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the grid could be numbered from 1 toN+ 1 where)Sis the 

grid size. initially selected, and the boundary condition set 

by letting the pressure be equal to that in the exhaust line. 

(P MIN). When considering the boundary conditions for the 

developed length of the valve, the end conditions cannot 

be specified directly. Since it was a continuous band, the 

pressures at both ends of the section de~ined by length ·L must 

be the same. Consequently, the solution for the boundary cond~ 

i tions could be overcome by· extending the two ends so ··.that 

they overlapped. Thus when considering the grid points, the 

length L is described by the grid points 2 to N + 2, oCbeing 

the grid size initially selected. It can be stated that the 

pressure at grid point 1 io equal to the pressure at grid point 

N + 1, the pressure at 2 is equal to the pressure at grid 

point N + 2 and the pressure at 3 is equal to the pressure at 

N + 3· Figure 84 shows the basic grid structure upon which 

the orientation of the slots on the rotary valve have to be 

transposed. This technique involves taking the cross sectional 

views of the rotary valve and mapping the various pressure and 

exhaust pads onto the grid drm..m on the graph paper; a typical 

plot is shown i~ figur~ 85. This plot enables the position 

oi the pressure pads to be expressed in co-ordinate values 

of I and J to be fed in as data for the computer. The number 

of pads and the position of the co-ordinates were all processed 

in a subroutine named,PRESSURE POINTS (I, J, K) (which can be 

expanded by increasing the number of logic statements required; 

each stat~ment identifies one slot in the rotary valve). This 

sub-routine consisted of a series of. IF statements into vrhich 
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the grid points of the slots had been transposed, and the 

pressure at the various slots \'/ere set to either PHAX or PMIN 

depending upon the s·bte of the slot. The co-ordinates of a 

particular slot were punched onto a card with tne I values 

followed by the J values using a 410 format. These cards 

. were put into sequence; all the high pressure slots were followed 

by the low pressure slots. The last card was used to define 

the high pressure supply annulus. The value of NSLOT gave the 

instruction as to the number of co-ordinates to be read from 

the data cards. 

The computer programme, compiled in FORTRAN IV FOru1AT 

entitled HASTER PRESSURE OF SLOTS calculated the pressure · 

distribution over the valve's surface, the out-of-balance load, 

and the minimum torque required to overcome viscous friction. 

The information to be supplied to the programme took the following 

formj~ 

(iii) DATA CARD 1, contained the fixed design parameters 

of the valve and the system 

DIAMETER of the Rotor (in) 

BREADTH of the pulse-generating section (in) 

VISCOSITY of the oil to be used in the system 
(centipoises) 

HO the radial clearance of the bearing (in) 

These four values had been temporarily fixed at the 

initial design stage and in consequence were unlikely 

to be required as variables in the programme. 

(iv) DATA CARD 2, set the desired accuracy to which the 

relaxation solution was required. An EPS value of 

0.1 gives a largest error of 1% as: 
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EPS = P. NEW - P. OLD 
P.NEVI 

The MAXIT figure usually set at a value of about loo 

enables a result to be obtained after a given number 

of iterations round the relaxation loop. The maxit 

facility is mainly used when initiating the solution, 

and for checking the various parameters in the 

programme. For example, running the programme to 

fix the best value of A (the relaxation factor) 

for a particular grid size and pad geometry. This 

cannot be calculated directly, but the value of 

the residual after 20 iterations for three different 

values of A will enable it to be optimised and hence 

save computer time for a more accurate solution 

involving a larger number of iterations. 

(v) DATA CARD 3 - 11 (depending upon the number of 

slots in the pad) contained the co-ordinates of a 

slot. Each card contained four numbers giving 

first the I grid co-ordinates, followed by the J 

co-ordinates. These pad co-ordinates are usually 

fixed once the geometry of the valve has been 

established but certain minor adjustments to the 

relative positions of adjacent sets of slots may 

enable the forces created by the pressure and exhaust 

slots to·be balanced. It should be noted that if the 

outlet port is displaced through the same angle as 

the pulse-generating slots in the bobbin, then the 

pulses remain in the same sequence. 
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(vi) DATA CARD 12 contained the operating variables 

· of the rotary valve: SPEED of valve rotation 

\·thich •.-:as directly related to the system pararneters. 

(revs/min). P~~X being the system pressure to 

2 
perform the duty for \.,rhich it was designed. (lbf/in ) 

PHIN being the exhaust pressu:re; this is ideally 

set at zero, but in practice was always found to 

be at some absolute value, depending upon the size 

of the return lines back to tank. (lbf/in2). 

Once having compiled the required data in the units 

specified by the programme, the computer proceeded to calculate 

the solution to the Laplace Equation. The process of logic 

used in the programme is outlined as follows:-

(vii) The data is converted into compatible units to 

conform with the linear pad geometry. 

(viii)The grid size is set to the selected value, and all 

the pressures at the mesh points are given an initial 

value of PMIN, (the exhaus~ pressure). 

(ix) The iteration process is then performed in ··.which 

the values of the pressure at the supply ports are 

set and the pressure distribution calculated, using 

the Gauss Seidel technique (see section 5.3). 

Having calculated the pressure distribution to the desired 

accuracy, the information can be utilised to give an estimation 

as to the magnitude of the out-of-balance forces produced 
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within the system. 

(x) The force at each grid point can be calculated by 

using the pressure and the area over which it acts. 

Therefore, by taking the force on each element 

round the circumference of the bobbin, and converting 

each one into vertical and horizontal components, . 

the total value of the force at each section across 

the valve in the I direction can be found. 

(xi) The force at each section can then be summated. 

By taking moments about each end of the pad section 

in turn, and summing the moments, a value for the 

out-of-balance force at each end of the rotor ea~ 

be found in both magnitude and direction. 

The computer programme '\oras compiled to give a print-out 

of the results calculated at each stage, so providing information 

for mru(ing design improvements to the pulse-generating section 

of the valve. 

5.6. Torque Required to Turn the~1se-Generating Section. 

The torque expression can be derived from established • 

theory,- see references (1) and (2). The expression of the 

total force is given by integrating the value of the shear 

'stress~ over the bearing surface:-

F =if '( dt-2-EA 
___ (18) 
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The expression for the shear stress 't can be shown to be:-

___ (19) 

All the values are known,r.except the term* which by using 
()X. 

the finite difference relationship 

____ (20) 

The ~otal Frictional force can be calculated by solving 

n?merically the following expression:-

Frictional Force 

____ (21) 

which produces:-

Total Torque = Frictional Force x Radius of the Bobbin. 

The programme to calculate ~he torque required "'as a 

logical continuation because the pressure distribution had been 

calculated at each mesh point and held in store, consequently 

the expression for the shear stress could be calculated over 

the complete grid using a single mathematical expression. 

The double integration was performed by applying Simpson's 

Rule in two directions (hence the even number of grids) to 

give the overall shear force. The torque required by the system 

was printed out at the end of the sequence. 
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This programme, the HASTER PRESSURE OF SLOTS, .,.,.hich 

. can be seen in Appendix 1,_ took a simplified expression for the 

pressure distribution in a rotary valve and used it to calculate 

the overall load on the pulse-gcr.~rating section. Having 

once established an approximate direction and magnitude for 

the out-of-balance load, the expression for the pressure 

distribution could be made more complex by introducing the 

eccentricity term which would invalidate the Laplace Equation 

and require the pressure distribution solution to be obtained 

by relaxing Reynold's Equation. The complexity of the theoretical 

study could be expanded further by allowing the centre of the 

bobbin to whirl about an eccentric centre, thus again 

increasing the Reynold's Expression for the pressure distribution. 

However, it was felt that the simplified expressions developed 

in this section made possible sufficiently accurate 

theoretical predictions upon which to base a practical design 

procedure. 

5.7. The Design of Compensating Pressure Pads. 

Once the magnitude and direction of the out-of-balance 

forces had been determined, two hydrostatic compensating 

pads had to be designed, such that. the pressure distribution 

would balance the resultant force generated by the slots. A 

, second computer programme ~!ASTER COHPENSATING PADS was compiled. 

This programme used the same assumptions and techniques as 

the first programme but was self-checking, producing a result 

·which gave the. compensating bearing and pad dimensions •. 

The parameters fixed in this solution were that the full 

·compensating pad covered a 180° arc of bearing surface, and 
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also that the recess perimeter was between 0.4 and 0.6 of 

the bearing perimeter. (This value was recommended by 

0 1Donoghue (11)) 

When calculating the dimensions of the compensating pad, 

the direction of the balancing force was neglected because it 

had already been determined, and since the balancing pad 

was symmetrical, it's centre had to be d~signed to oppose the 

out-of-b.alance force produced by the pulse-generating section. 

The DATA supplied to the computer was basically the same 

as for the first programme, with the addition of EHO, which 

was the clearance of the end plates on the rotary valve. This 

information was used to calculate the viscous friction produced 

by the end caps. The only other amendment was the replacement 

of the .data containing the co-ordinates of the pressure slots 
. ' 

by a value of the out-of-balance force. 

The basic sequence of the programme was as follows:-

(i) To convert the input data into compatible units and 

adjust the parameters of the system to conform to a 

linear pad geometry. 

(ii) To set the grid to a convenient size, though if the 

grid areaoC~JS used to calculate out-of-balance 

forces was large, no benefit would be gained by 

using a very fine mesh. 

(iii) The pad co-ordinates are then calculated and set 

such that the pad perim~ter will be half the 

bearing perimeter. 

(iv) An estimate as to the breadth of the compensating 

pad is then made using the assumption that a linear 
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pressure gradient will be generated across 

the bearing surface. 

(v) The pressure is calculated over the bearing surface, 

and this pressure is summed over the area to 

produce a value of the resultant force, (as in 

HASTER PRESSURE OF SLOTS programme) • 

(vi) This calculated.resultant force is then compared 

with the known force to be balanced, and the pad 

size is then adjusted by a single co-ordinate across 

the breadth of the bearing to either increase or 

decrease·as required, the force generated by the 

compensating pad. The force generated by this new 

size pressure pad is recalculated and compared again 

with the known out-of-balance force. This process 

is repeated until the difference between the calculated 

value and the known value changes sign, indicating 

that the bearing pad dimension must lie between the 

two co-ordinates. The breadth of the pressure pad 

can then be calculated using the assumption that 

the resultant force will vary linearly with respect 

to the pad size, between the two adjacent grid points. 

(vii) A check is then made as to the ratio of the bearing 

perimeter to the pad perimeter. If this lies outside 

the optimum value, then the breadth of the bearing 

is readjusted using the calculated pad size, and 

the complete calculation repeated. 
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(viii) Having optimised the pad size and bearing breadth, 

these two values are printed out and can be used 

directly in the design of the rotary valve. 

(ix) The remaining section of the programme is directed 

to calculating the torque required to overcome the 

frictional resistance generated by the compensating 

pad. (This process is again ~ described in ·section 

5.6). This torque value can be.added to the viscous 

friction produced by the complementary plain bearing 

covering the remaining 180° arc of the compensating 

pad. 

(x) To finalise the calculation, the frictional torque 

due to the end covers is added to the programme (The 

basic derivation Zor. this can be found in Appendix V). 

It must be remembered when using this second programme 

that different compensating pads were required at each end of 

the rotary valve, so the reactions at ends A and B had to be fed 

in as data, and the final print-out gave full details of both 

compensating bearings. The complete computer programme for the 

compensating pad bearings can be seen in Appendix II. As with 

the first programme, the mathematical model could be increased 

in complexity. If rotary valves find a direct commercial 

application, then a further study using mathematical techniques 

will be justified, however it was felt that these two programmes 

enabled valve performance to be predicted to a limited degree 

of accuracy, and would serve as useful tools when designing a 

rotary valve for a particular application. 
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5.8. Verification of the Predicted Theory by Practical Tests. 

Once having developed_ a basis upon which rotary valves 

could be designed, a comparison had to be made between the 

results predicted by the analytical approach and the parameters 

found in experimental tests. The most effective method of 

performing this comparison was to design a rotary valve·, based 

on the pulse requirements of the sewing machine, using the 

computer programmes previously outlined. Tests on the valve 

could then be performed enabling the predicted results to be 

examined in the_ light of practical results obtained. 

5.8.1. Design data for Test Rotary Valve. 

The first task \rlas to design the pulse-generating section 

to suit the system previously specified. The systems' 

requirements were translated into design parameters so providing 

the following data for the computer:-

(i) Diameter of the rotor - 2 inches 

(ii) Breadth of the pulse-generating section - 4 inches 

These two parameters were governed by the earlier rotary 

valve. 

(iii) The Vi6cosity of the oil - 90 centipoise 

(iv) The radial clearance of the bearing - 0.001 inches. 

The two values outlined abo~e have been based on an 

, ideal specification. 

(v) The co-ordinates of the pressure and exhaust pads 

on the grid:-
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5.8.2. 

4 66 21 28 
10 12 30 37 
22 24 12 19 
28 ~ 21 ~28 

4 6 30 37 
10 12 21 28 
22 24 21 28 
28 30 12 19 
15 19 

The technique for setting out the relaxation grid and 

superimposing the pressure and exhaust'ports has been detailed 

in section 5.5, with the results being shown in figure 85. 

Here the actual ports are plotted onto a grid and the co-ordinates 

can·be scaled directly from the plot to give the input data. 

(vi) Speed of rotation - 500 revolutions per minute 

(vii) Pressure at the feed slot - 300 lbf/in2 

. 2 
(viii) Pressure at the exhaust slot - O.Olbf/in 

These three input parameters are variable under different 

running conditions. However, for the purposes of the initial 

design, an optimum value for ~ach parameter had to be established. 

These values were not critical provided that they were consistent 

for both computer programmes and thought to represent the mean 

operating conditions for the valve. 

Computer.Predictions for the Out-Of-Balance Forces. 

The computer then calculated the magnitude and direction 

of the resultant end forces:-

Total reaction at A = 30.586 lbf at an angle of -43.97 degrees 

Vertical Component- ve·Horizontal Component +Ve 

Total.reaction at B = 30.678 lbf at an an~le of -45.493 degrees 

Vertical Component - ve Horizontal Component +ve. 

These two reactions have to be examined in context with 

the horizontal and vertical reactions, to enable the correct 
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quadrant for the balancing pad to be determined. The balancing 

pad was then designed in order to produce a resultant force 

equal to the reaction required to balance the pulse-generating 

section of the vaJ.ve. For exarr.pl0, the angle of the reaction 

at end A was -44 degr~es with a -ve vertical component and +Ve 

horizontal component, thus producing an angle of 136 degrees 

for the direction of the total reaction. When the pressure 

compensating pad was introduced, it had to produce a resultant 

force in this direction so necessitating its introduction with 

a radial mid-position of 316 degrees. 

The aame parameters for the diameter of the valve, 

viscosity of the oil, radial clearance, speed of rotation, 

pressure at the feed slots, pressure at the exhaust slots plus 

the out-of-balance forces calculated by the first programme, 

were introduced into the second computer programme, MASTER 

COHPENSATING PADS. This produced the following print-out for 

end A:-

Length of bearing - 3.1415 in

Breadth of bearing - .0865 in 

Length of high pressure pad - 1.5708 in 

Angle subtended by the pad - 90.0 degrees 

Breadth of the high pressure pad - 0.0469 in 

and for the end B:-

Length of bearing - 31.415 in 

Breadth of bearing - 0.0867 in 

.Length of High pressure pad- 1.5708 in 

Angle subtended by the pad - 90.QO degrees 

Breadth of the high pressure pad - 0.0471 in. 
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This information to be used for bal~ncing the rotor, 

enabled the design to be completed, and a series of detail 
( 

drat-rings made. ~o',a!ever, 1.•1hen sur't.reying the overall s1zes 

of the compensating pads it \oJas obvious that this particular 

system \oJas almost self-balancing, a desirable feature in itself 

in a rotary valve except for \V"hen a performance assessment for 

balancing pads was required. This situation was resolved by 

rotating the third pair of pressure and exhaust slots through 

a phase change of 90 degrees. This modified the pad co-ordinate 

input data to:-

4 6 21 28 
10 12 30 37 
22 24 21 28* 
28 30 21 28 
~ 6 30 37 

10 12 21 28 
22 24 30 37* 
28 30 12 19 
15 19 

(* denoting the mo1ified pads) 

This new pad geometry produced a marked effect upon the 

overall balance within the system and gave the follO\ring 

results:- Total Reaction at A - 130.23 lbf at an angle of 

13.668 degrees 

Vertical Co~ponent - ve Horizontal Component - ve 

Total Reaction at B - 286.110 lbf at an angle of 29.270 degrees 

Vertical Component - ve Horizontal Component - ve 

The corresponding pad geometries were calculated in 

the ~econd programme and found to be:-

End A End B 

Length of Bearing 3.141 in 3.141 in 

Breadth of Bearing 0.368 in .809 in 

Length of High Pressure Pad 1.57 in 1.57 in 
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End A End B 

Angle subtended by the pad 90.00 deg 90.00 deg 

Breadth of High Pressure 0.179 in 0.331 in 
Pad 

A decision to build the rotary valve with interchangeable 

bobbins \'/as made. The design of bobbin 1 was for the self-

balancing rotor, bobbin 2 had inherent out-of-balance forces. 

The detail dra\'.rings for the manufacture of these t\"lO bobbins 

can be seen in figure 86 drawing number J.D.G. 130, and figure 

87, drawing number J.D.G. 132. Also the valve cylinder, drawing 

number J.D.G. 131 in figure 88. The end caps were identical 

to those used on the sewing machine valve seen in figure 70. 

The materials used in manufacture were similar to those 

used on the earlier rotary valve. The only difference was 

that the bobbins were finished using a grinding operation for 

a better surface finish. Photographs of the test bobbins can 

be seen in figure 89 (Bobbin 1) and figure 90 (Bobbin 2). 

These photographs enable the compensating pads to be compared 

and the overall assembly of the rotary valve is shoHn. 

5.8.3. Results obtained from Test Rotary Valve. 

The rotary valve was assembled (with Bobbin 1 as the 

rotor) and the complete valve mounted onto the Telehoist Rig. 

The drive for the valve was obtained from the hydraulic serve-

motor with the torque transducer interposed, thus enabling 

a torque measurement to be obtained. The oil supply to the 

valve \·las taken from an ind~pendent hydr~ulic power pack, and 

a supply line pressure tapping made to a Bourdon tube pressure 

gauge. The input speed was again monitored using the tache-
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generator on the back of the hydraulic motor, so enabling 

the three main parameters of rotary valve performance to 

be measured. To obtain performance data under the same 

conditions as those assumed in the theoretical predictions, 

the supply ports from the valve were blocked thus creating 

an ideal running condition with no pressure fluctuation. 

The complete system t~s run for a period ?f three hours ·to 

enable the rotor to lap into the cylinder and to allo\v: the shaft 

seal to polish the shaft. It was during this running-in period 

that the torque fluctuations could be examined under constant 

running conditions and it was noted that the torque requirement 

was gradually decreasing. A second run from cold under the 

same conditions revealed a similar performance pattern, thus 

indicating that a system parameter was again changing. A 

series of viscosity measurements were taken of the Tellus 27 

hydraulic oil, revealing dramatic viscosity fluctuation in 

relation to a rise in temperature. 

To obtain meaningful results, the system was run for a 

short period prior to the readings being taken, enabling an 

ambient running temperature to be obtained. The viscosity 

of the oil was then measured and the follovring readings of valve 

performance noted (see Table 10). The speed of rotation of 

the valve was adjusted to a known value, and the supply pressure 

increased by increments of lOO lbf/in2 to enable torque 

requirements to be ta\Julated. This procedure was repeated over 

a range of valve input speeds. A second viscosity reading 

was then obtained to enable a mean value to be found, and to 

be used in calculating the predicted results. A further test 

213. 



1\) 
~ 
~ • 

T A B L E 10 

PRACTICAL RESULTS OBTAINED FROH ROTOR 1, SEE DRAi>/ING J .D.G. 130 •. _THE RESULTS GIVE THE TORQUE (LBF-IN) 

REQUIRED TO ROTA~E TliE BOBBIN AT THE INDICATED SPEED AND PRESSURE SETTINGS. 

~ lOO 200 300 4oo 500 600 700 Boo 900 1000 

100 3.0 5·5 7-2 9.0 . 9-9 10.8 11.4 11.7 12.0 12.3 

200 3.1 5.6;, 7-3 9.0 10.0 10.9 11.4 11.7 12.0 12.3 

300 3-2 5.6 7-3 9.1 10.0 11.0 11.5 11.7 12.0 12.3 

400 6.0 5.6 7-3 9.1 10.1 11.0 11.5 11.7 12.0 12.4 

500 8.4 5-7 . 7.4 9.2 10.1 11.0 11.5 11.7 12.0 12.5 
. 

600 9.6 6.0 7-5 9.6 10.4 11.4 11.7 . 11.7 12.0 12.6 

700 10.8 8.4 9.6 10.2 11.0 11.7 12.0 12.0 12.2 12.7 



of valve performance was made by removing the plugs from 

the valve distribution ports· and replacing them with .25 inch 

di~ueter tubing going directly back to tar~. Under these 

operating conditions, severe pressure fluctuations were introduced 

into the valve and it was thought that valve performance may 

be impaired. However, a series of readings were obtained, 

taking first the valve under no flow conditions followed 

by the readings for maximum flow conditions and no meaningful 

increase in torque requirements could be found. This indicated 

that the pressure fluctuations had a direct influence on the pressure 

distribution within the valve, and in consequence the system 

remained in balance. The rotor within the valve was replaced 

by Bobbin 2 and a similar test procedure conducted. The 

results of performance were noted and can be seen in Table 11. 

These results have also been plotted in graph form and can 

be seen in figures 91 and 92. The most noticeable feature 

is that the torque curve is almost independent of supply 

pressure, indicating that the internal forces must have been 

partially balanced. However, these resul~s will be discussed 

in greater detail when comparisons are drawn with the 

predicted results. 

5.8.4. Input Data for Computer Programme used in Theoretical Predictions. 

To obtain the theoretical predictions, the physical . 

parameters of the system had to be supplied as input data to 

the co~puter programme. This involved measuring the diameter 

of the bobbin and the cylinder to obtain an accurate value 

for the radial clearance. The Department had no standard measuring 
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TABLE 11 

.. 
. PRACTICAL RESULTS OBTAINED FROM ROTOR 2, SEE DRL\\YING J .D.G. 132, THE RESULTS GIVE THE TORQUE (LBF-IN) 

REQUIRED TO ROTATE THE BOBBIN AT THE INDICATED SPEED AND PRESSURE SETTINGS. 

SPEED 

RFNS/ 
PRESSU HIN lOO aoo 300 4oo 500 600 700 800 900 1000 

LBF/IN2 

100 3-6 6.9 8.4 10.2 11.7 12.7 14.6 15.6 18.0 20.5 
l 

200 4.2 7-1 8.6 10.2 11.7 12.8 14.6 15.6 18.0 20.5 

300 4.3 7.1 8.6 10.3 11.8 12.8 14.7 15.7 18.5 .20-.'8 

4oo 5.4 7-1 8.6 10.3 11.8 12.9 14.7 15.7 18.7 21.0 

500 6.6 7.2 8.7 10.3 11.9 12.9 14.7 15-7 18~8 21.3 

600 9.0 7-2 8.7 10.4 12.0 13.0 14.8 15.8 19.0 21.5 

700 9.6 7.4 8.8 10.4 12.0 13.1 14.8 15-~ 19.2 21.7 
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equipment so the following results were obtained with the 

aid of the Production Engineering Department. The measurement 

taken after a considerable stabilizing period was the degree 

of roundness using a Rank Taylor Hobson, Talyrond which gave 

the following results; 

Cylinder Bore: 

Bobbin 1: 

Bobbin 2: 

0.0003 inches ovality 

0.00005 inches ovality 

0.00005 inches ovality 

These measurements were necessary to confirm that all 

the components were·round. The internal cylinder bore was 

measured using a three point micrometer and a series of readings 

gave values of 2.0016, 2.0020, 2.0018 for a measure of the 

internal diameter, producing a mean value of 2.0018 inches 

diameter. The diameter of the bobbins were measured using an 

optical comparitor technique and produced readings of:-

Bobbin 1: 2.0006 inches diameter 

Bobbin 2: 2.0004 inches diameter. 

The end clearance within the rotary valve was measured 

using a depth gauge micrometer and found to be .008 inches 

giving an end clearance of .oo4 inches. 

Physical Parameters affecting Input Data. 

The physical dimensions for the radial clearance measured 

could not be used directly because no account had been taken 

of the dimensional changes that could occur under operating 

conditions. For example, the effects of thermal expansion of 

the two components had to be examined to prove that it had 
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no.,significant effect upon the radial clearance. In this 

instance using steel and cast iron, the difference between 

the two values for the coefficient of expansion was 1.5 x lo-6 pe,· 
deg C so this factor was neglected. A second parameter to be 

examined was the effect of internal supply pressure in the 

valve. The·expansion of the radial clearance was calculated 

using the Strength of Haterials Theory for thick. cylinders. 

This theory is \v'ell-established and can be seen in reference (10). 

Applying this theory to the rotary valve cylinder:-

The radial stress ____ (22) 

where R = the radius 

Using the dimensions for the cylinder to find the constants 

of integration A1 .and B1 

c::?~ = -p vrhen R = 1.00 in 

where p = the internal pressure 

c:? R ~ 0 when R = 1.187 in. 

(The effective thickness of the cylinder was .187 in 

due to the flat surface being machined for mounting purposes). 

Thus, when the supply pressure to the valve was 

350 l~f/in2 (the average supply pressure) 

A1 = 1,030 

B1 =-1,450 

which produces a maximum hoop stress c::?c = 2,480 .lbf/in2 

at the inner surface of the cylinder. 

The increase in radius of the cylinder bR vras given by 

the expression 

6R = ~ [ a~ -_,A ( c?R.)j 
____ (23) 
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where M = Hodulus of Elasticity = 20 x 10
6
1of/in 

;£< = Poisson's ratio = .26 

eo R. = • ooo13 (expansion) 

The effect of pressure on the bobbin could b~ calculated 

using the fact that it was a solid cylinder and the maximum 

hoop stress would be c:i'c.: - p = 350 lbf/in
2 

giving R = -0.00002 (compression) for an Elasticity 

Modulus of 28 x l06lbf/in2• This gave a total increase in 

radial clearance of 0.00015 inches which was added to the 

measured radial clearance of the valve. 

This produced average values for the radial clearance of 

Bobbin 1 as .00075 inches and Bobbin 2 as .00085 inches. 

Had the expansive effect of applying the irt.ternal 

pressure been realised at the design stage, an alternative 

method of securing the test valve prior to fitting it to the 

se\'ling machine would have been adopted, so that the cy;J:.inder 

wall would not have been w~akened for the test. However, by 

increasing the radial clearance the amount calculated at the 

mean supply pressure, partially compensated for this discrepancy. 

An alternative method of measuring the radial clearance of the 

valve would have been to secure the cylinder, and jack the 

bobbin through the extremities of its movement. This movement, 

which could be measured with a dial gauge would give a direct 

reading for the mean radial clearance with all the discrepancies 

trucen into account. Viscosity readings of the hydraulic oil 

had been taken during the practical tests and from these 

values a mean figure of 35 centipoise was selected as the 

average value. 
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5.8.6. Torque Predictions. 

In order to provide a series of torque predictions at 

various supply pressures, the two computer programmes were 

modified to calculate the pressure distribution for unit 

supply pressure, and to scale the results accordingly by means 

• of a 1D0 1 loop. This reduced the overall computing time, because 

the relaxation routine had only to be completed on the initial 

unit pressure, as opposed to re-calculating the complete 

solution for each individual pressure level. The programme 

for the compensating pads ('l'lhich calculated pad dimensions) had 

to be further modified to accept pad dimensions as data and to 

calculate the values of the torque required to. overcome the 

viscous friction. These two modified programmes are sho'l'm in 

Appendices III. and IV. 

A summary of the results from the computer programme can 

be seen in Tables 12 and 13. Table 12 and figure 9~ show 

the predicted results for Rotor.l. These results which give 

the predicted torque required to turn the rotor, are given in 

tabular and graph forms. Similar results for Bobbin 2 are shown 

in Table 13 and figure 94. Table 14 shO\o!S the po\V'er requirement 

for Bobbin 2. 

5.8.7. Comparison of Predicted and Practical Results 

Comparing the results shown in figures 91 and 92 it can 

be seen that the general range of values is similar, and that 

the increase in torque due to pressure is as predicted in the 

theoretical solution. The variation in torque at speeds 

below 200 revolutions per minute is due to the rotor not running 
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T A B L E 12 

THEOREI'ICAL PREDICTION FOR ROTOR 1, THE RESULTS GIVING THE TORQUE (LBF-IN) REQUIRED TO ROTATE 

THE BOBBIN AT THE INDICATED SPEED AND PRESSURE SETriNGS 

~ lOO 200 300 4oo 500 6oo 700 800 900 

lOO 2.06 3-97 5.86 7-76 9.66 11.56 13.46 ·15.36 17.26 

200 2.24 4.13 6.04 . 7-93 . 9.82 11.74 13.63 15.53 17.43 

300 . 2.4o 4.30 6.20 8.10 10.00 11.90 13.81 15.70 17.60 

4oo 2.57 4.47 6.37 8.27 10.18 12.07 . 13.97 15.87 17.77 

500 2.74 4.64 6.54 8.44 10.34 12.24 14.14 16.04 17.94 

600 2.91 4.81 6.71 8.61 10.51 12.41 14.31 16.21 18.11 

700 3.08 4.98 6.88 8,78 10.68 12~58 14.48 16.38 18.28' 

1000 

19.16 

19.34 

19.50 

19.67 

19.84 

20.01 . 

20.18 
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TABLE 13 

THEOREriCAL PRED_ICTIONS FOR ROTOR 2, THE RESULTS GIVING THE TORQUE (LB-IN) REQUIRED TO ROTATE THE 

BOBBIN AT THE INDICATED SPEED AND PRESSURE SEl'TINGS. 

~ lOO 200 300 4oo 500 600 700 Boo 900 

100 2.34 4.42 6.49 8.57 10.65 12.72 14.80 16.88 18.95 

200 2.61 4.69 6.76 8.84 10.92 12.99 15.07 17.15 19.22 

300 2.88 4.96 7.04 9.11 11.19 13.27 15.35 17.42 19.50 

4oo 3.16 5.23 7-31 9.38 11.46 13-54 15.61 17.69 19-'?7 

500 3.43 5.50 7.58 9.66 . 11.73 13.81 15.88 17.96 20.04 

600 3-70 5-77 7.85 9-93 12.00 14.08 16.16 18.24 20.31 

700 3-97 6.05 8.12 10.20 12.28 14.35 16.43 18.51 20.58 

1000 

21.03 

21.30 

21.57 

21.84 

22.11 

22.38 

22.66 
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TA B LE 14 

THE PREDICTED HORSE POWER.REQUIRED TO ROTATE BOBBIN 2. \iiTH SUPPLY PRESSURES OF lOO LBF/IN
2 

AND 700 LBF/I~ AT VARIOUS INPUT SPEEDS 

SPEED OF VALVE SUPPLY PRESSURE lOO LBF/IN2 VALVE SUPPLY PRESSURE 700 LBF/IN2 
ROTARY VALVE TORQUE LBF - IN POWER TORQUE LBF - IN PO\</ER 

REVS/lUN 

.. 

100 2.34 .0037 3-97 

I 

.0062 

200 . 4.42 .Ol4o 6.05 .0191 

300 6~1,.9 .0308 8.12 .03866 

400 8.57 .0543 10.20 .0647 

500 10.65 .0844 12.28 ! .0973 
l 600 12.72 .1210 14.35 .1365 

. 
700 14.80 • 1643 ·16.43 .1824 

800 16.88 .2141 18.51 .2348 

900 18.95 .2704 20.58 .2~37 . 

1000 21.03 .3335 22.66 -3593 



~------------------------------------------ ---

centrally as assumed by the theory, and at theselower speeds 

the hydrodynamic action within the valve must be causing 

the increased torque. The curvature as seen on the practical 

results graph, can only be 'explained by a viscosity change. 

These results were obtained in a single run starting \'lith low 

speeds and using the pressure setting as the variable, consequently 

the oil was gradually changing ~n viscosity. In the second 

series of tests with Bobbin 2, the practical and theoretical 

results are in much closer agreement and this could be due to 

obtaining the torque readings at t\'ro separate sessions thereby 

keeping the fluid temperature within a narrm..rer band. The 

first series of tests were partially repeated and in fact .found 

to be in closer agreement with the theoretical predictions, 

but the results were not modified because they are typical of 

the operating results to be found in practice under normal 

working conditions. 

The results from the second rotor, Bobbin 2, are the more 

significant because the pressure-generating section had an 

inherent out-of-balance that had to be compensated by end pads. 

These results show that the compensation technique is working 

as pre~icted and the torque requirements for a rotary valve of 

this type can be calculated by using simple hydrodynamic bearing 

, theory. Figure 95 which shows the theoretical and practical 

results plotted on the same graph, gives an indication as to 

the correlation between the results. The torque requirement at 

speeds below 200 revolutions per minute·again indicates that 

the rotor is not running centrally within the bore, but once 

having achieved this critical speed, the curve closely resembles 
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the predicted line. These results also represent the optimum 

performance for the rotary valve because the theory assumes 

ideal bearing running conditions, that is, of a non-loaded shaft, 

so indicat±ng that the design of the rotary valves using this 

technique has been optimised. A measure of the improvement 

in performance can be gauged by comparing the resultsfor the 

sewing machine rotor shown in figure 80 with the· newly-designed 

Rotor 2. The physical linear dimension for the sewing machine 

rotor is much shorter, thus reducing the contact araa, but the 

torque meter readines tru{en during practical tests are:-

At a speed of 600 revolutions per minute with a supply 

pressure of 4oo lqf/in2:-

For the Sewing Hachine Rotor: 

For the Rotor with Bobbin 2: 

29.2 lbf/in 

13.2 lbf/in 

This represents an over 10016 improvement in valve performance· 

and fully justifies the time spent in analysing the performance 

of rotary valves. 

5.9. Further Hork Based on Rotary Valves. 

Throughout this project, rotary pulse-generating valves 

have been applied to novel hydraul~c systems and if this type 

of work were to be continued be~ause of a commercial demand 

for them, then further analytical work maybe justified. This 

work has clearly sho\·m how ana;l.ytical design can improve the 

performance of the valve and any future valve designers need 

to use the compensating pad technique for balancing. This 

involves using the digital computer programmes given in Appendices 

I and II. The predicted values of the torque requirement would 
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be a useful guide in selecting the size or' the drive 

required to turn the valve, but to finally select and specify 

a drive prior to kno\cing the actual physical parameters of the 

valve could be rather difficult. This reservation is made based 

on the experience of measuring actual running clearances for 

the bobbin, and in obtaining a realistic value for the viscosity 

of the oil under true working conditions~ vlliile it is 

comparitively easy to measure to a tenth of·one thousandths of 

an inch the machining of components to that tolerance is compart 

atively difficult. It must also be remembered that machining 

marks and ovali ty :Ln components cannot al'l'rays be measured 

with normal measuring instruments, thus making for discrepancies 

in radial clearance. A useful empirical basis upon which initial 

calculations could be made (when it is expected that the bobbin 

will be a smooth running fit in the cylinder) , would be to all0\-1 

.0007 inches of clearance per inch of radius. 

One aspect of the rotary valve which has yet to be examined 

is its flow characteristics. This work would,fall into two 

catagories:- internal and external flow conditions. 

5.9.1. Internal Flow. 

The study of internal flow, (leakage) would have to be 

based on an analytical solution for the pressure distribution 

round the rotary valve. The mathematical model of the pressure 

variations within the radial clearance could be used to predict 

the leakage flow both radially and axially. (The basic equations 

can be found in Ref 1.). 

This study would involve similar techniques to those 

used for predicting the torque requirement of a rotary valve. 
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A design study could then follm-r enabling the radial 

clearance within the valve to be optimised. The po\'ter 

required to rotate the valve, for various values of radial 

clearance at a constant speed and supply pressure, could be 

compared with the power required to supply the leakage flow due 

to radial clearance of the valve. This aspect of rotary valve 

performance is at present being undertak~n by a final year 

student at Loughborough University and will-provide more 

data upon \'thich to base future rotary valve designs. 

5.9.2. External Flow. 

Examiningfue external flow would involve a study of the 

transient flow patterns from the s1:pply ports, so enabling the 

flow function to be expressed correctly for use in classical 

control theory. A further development could be to derive an 

overall expression for predicting the total delivery of fluid 

by the valve, per unit time. This expression would essentially 

be based upon the internal dimensions of the valve and the type 

of fluid being delivered. Future"developments in valve compensation 

techniques could involve replacing the compensating pads by other 

fixed bearings i.e. ball racers, or full hydrostatic bearings. 

These may offer adv.antages in particular applications, but it 

id thought that generally the compensating pad would serve 

, adequately. Other general fields of analytical and practical 

work could be into examining the effects of individual system 

parameters such as temperature rise, and internal pressure. 

Both these parameters could alter the physical dimensions of 

the valve, so would be worthy of a specialised study. For 

applications involving high rotor speeds, a system of mechanical 
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balancing, similar to that already used on electrical motors, 

would have to be devised. This mechanical balancing would 

reduce the ccntrifuga.l forces \·:i thin the valve, so improving 

the overall dynamic perform.ance~· 

To conclude, this study has resulted in the derivation 

of a design technique that can be applied to produce all pad 

geometries and dimensions of pulse-generating rotary valves. 

A general layout plus a method of obtaining optimum performance 

has been given so enabling this type of valve to be designed 

using a technological approach in future applications. 
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6. SUHHARY OF THE MAIN FDIDINGS AND CONCLUSIONS 

·6.1. HYDRAULIC CIRCULAR WEFT KNITTING MACHINE 

6.2. HYDRAULIC LOCKSTITCH SEwiNG MACHINE 

6.3. PULSE-GENERATING ROTARY VALVES 
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6. SUMHARY OF THE MAIN FINDINGS AND CONCLUSIONS 

The research undertaken in this project has been 

concerned with replacing linear mechanical mechanisms by 

miniature hydraulic actuators. The project, sponsored by 

Courtauld's Educational Trust Fund, has been directed 

towards textile machinery, in particular, Knitting and 

Sewing Machines. However, the project basically demonstrates 

how the well-established mechanical motions of either a cam 

or linkage can be replaced by miniature hydraulic actuators. 

6.1. Hydraulic Circular Weft Knitting Machine 
• 

The first example of this technique was demonstrated on 

a prototype ninety-six needle hydraulic circular weft knitting 

machine. This machine had ninety-six independent actuators, 

placed in a circular configuration at four actuators per inch, 

controlled by a single pulse-generating rotary valve. This 

valve powered 2~fo of the needles at any particular instance, 

and was capable of sequencing each actuator for ten movements 

per second. The prototype machine built and tested in the 

Department provided the basis for the following conclusions:-

(i) Knitting speeds above the accepted maximum running 

speeds for conventio11al machines were obtainable. 

The maximum velocity for needles passing through 

a cam is regarded as 65 inches per second, which 

represents a 3.75 inch diameter hosiery machine 

running at 230 revolutions per minute. The hydraulic 

devices attached to the needles were capable of 

driving the prototype machine at a speed equivalent 

to ~b above this accepted limit and still produce 
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a satisfactory knitted fabric. This increase 

in speed was due to two factors:-

(ii) The actuators could move the needles fnster than 

was possible using a cam track. 

(iii) Only one needle was in the process of knitting at 

any particular instance. 

Tests performed on single hydraulic actuators had 

demonstrated that cycling rates of 50 hertz were 

possible, without damaging the actuators. This 

type of motion was feasible using hydraulic devices, 

because the driving force, i.e. stored energy in 

the hydraulic fluid, has a cushioning effect when 

first applied to the actuator piston, compared to 

the direct impact of a butt onto a 45° gradient. 

This comparatively damped movement reduced the shock 

loading transmitted to both the needle and the yarn. 

Research into new parabolic cam profiles for knitting 

machines has been undertaken at various institutions, 

but the actual increase of cam velocities achieved 

over the last twenty years on commercial machines·is 

less than 3~/o. Using the hydraulic actuator technique 

speed restriction imposed by the cam track has 

been removed because the equivalent cam velocity of 

65 inches per second represents a cycling rate of 

3 hertz for each actuator on the prototype machine. 

A further advantage of hydraulic actuators was the 

geometry of the time displacement profile described 
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by the needle. It was noticed that as the needles 

operated in sequence, one actuator completed its 

movement in a particular part of the cycle prior 

to the next one starting. This individual needle 

movement when pulling the new yarn through the old 

loop meant knitting could be produced on a single 

needle. The advantage gained by this action was 

that problems associated with "pull back" no longer 

existed. On conventional cam driven machines, the 

knitting action takes place as the needles traverse 

the last slope of the cam. (i.e. travelling from the 

tuck to the miss position). By the nature of'the 

cam track, more than one needle must be moving 

down this slope at any one instance, thus new yarn 

when introduced has to be pulled through the hooks 

of several needles. This function introduces tension 

in the yarn and.research outside this University has 

shown that 70% of yarn required to form the new 

loop is obtained from the yarn carrier, while the 

remaining 3~/o is pulled from previously formed loops. 

This undesirable tension imposes restrictions on 

knitting speeds, because at high operating rates perma

nent damage may be caused to the needles. Using 

the single knitting action of hydraulic devices, 

no yarn restrictions are imparted by other needles, 

permitting all the yarn required to form the loop 

to be pulled directly from the yarn carrier. 
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\~en knitting had been established using 

hydraulically-powered needles, a further significant 

advantage was realised:-

-(iv) The nu:nber of needles per knitting station could be 

greatly reduced. 

On a conventional knitting machine, the number 

of needles per knitting station is governed by the 

parameters of the needle and the length of cam track 

necessary to move the needle through the complete 

knitting cycle. This usually creates knitting 

stations of 30 - 4o needles. Using hydraulic 

actuators, the displacement '>'laS a function of time, 

and not cam geometry, and since higher velocities 

for needle movement were possible, the number of 

needles per knitting station could be reduced. When 

knitting, the prototype machine had six needles 

in the extended knitting position followed by six 

needles in the mid or tuck position, with the other 

eighty-four needles in the miss position. This 

arrangement could be modified to; two needles 

extended, with two needles in the tuck position 

without altering thc:.~,dynamic performance of the 

actuators. (Remembering that each actuator is 

stationary after completing a movement). Then by 

allo\ring four needles to occupy the miss st'ate before 

repetition, the complete knitting station would 

comprise of eight needles. Using this configuration, 

the ninety-six needle machine could be fitted with 
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twelve feeders with a resultant increase in fabric 

production without increasing the speed of the 

actuator movement. An equivalent cam machine to the 

prototype hydraulic machine would ue limited to a 

maximum of four feeders, thus producing only a third 

as much fabric. Taking the technique to its 

ultimate limit could provide a knitting station per 

needle, so creating a circular warp knitting machine. 

This feature was of major importance, because it 

permitted a substantial increase in production from 

the hydraulic machine, using current yarn handling 

techniques. It is believed that even if it were 

possible to double the cam velocity on mechanical 

machines, the associated yarn handling problems 

would prevent commercial exploitation. 

(v) The use of hydraulic actuators permits new control 

techniques to b~ applied to the aspect of programming 

needles.for patterning purposes. 

Using an actuator per needle, the control of the 

displacement between the knit, tuck and miss modes 

can be effected by on-off devices in the supply 

paths. While the full practical aspects of progrrunming 

have to be investigated in future work, it was 

evident from the tests performed that individual 

needle selection was feasible using the type of 

actuator already developed. 

The practical hardware used in this section of 

the research can be seen in a film titled "Development 
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of a Hydraulic Knitting Hachine". This film sho1.rrs 

the general layout of the rig together with a 

demonstration of knitting at speeds ranging from 

sixty, to one hundred and eighty rows per minute •. 

Any benefits to the textile industry derived from 

this project have yet to be realised. The initial 

experiments in applying miniatu.re hydraulic actuation 

techniques to knitting machines provided an indication 

that it could form the basis for a future generation 

of knitting machines provided that sufficient time 

was spent in development. 

Future practical ,.Jork on the prototype machine 

must be concentrated in three sections:-

(vi) Adjust the time displacement profile of the actuator. 

This would be converted to a direct in and out 

motion. Using this motion, attempts to produce a 

plain knitted fabric would provide useful knowledge 

for assessing further aevelopments. If this motion 

could be used successfully, then future machines 

required for knitting single jersey could be simplified 

by using a single hydraulic piston in the actuator. 

This would reduce the complexity of the hydraulic 

control aspect considerably. 

(vii) Verify that patterned fabrics could be knitted on a 

hydraulic knitting machine. 

To verify that patterned fabrics could be knitted, 

several solenoid on-off valves could be introduced 

into the system thereby allowing manual selection of 

the time-displacement profile. 

240 •. 



(viii) Check that the system would operate as a ·multi

feeder machine. 

This check 0ould be made by changing the rotor 

of the valve, or by deoigning an integrated valve 

and actuator block system. The purpose of this 

test would be to prove that a knitting station could 

be constituted by as little as eight needles. 

All these future areas of research on the prototype 

hydraulic machine are based upon the rig that has 

already been built and are currently being investigated. 

(ix) Examine rotary valve design procedures. 

Th±s work has already been performed and will be 

reported later in this summary. 

(x) Devise and develOF a method of integrating the 

actuator block and rotary valve. 

The most convenient method of integrating these 

two components would be to use the actuator block 

as the rotor of the valve, with a ported collar 

'around it to supply the hydro-static pressure. As 

the needle block was rotated the actuators would 

perform in the desired manner. A design for an 

integrated system is at present under consideration 

and details can be found in Part 4. 

Once the various aspects of the project have been 

assessed then a feasibility study will be required to highlight 

the commercial potential of the numerous advantages offered by 

hydraulic knitting techniques. It is then possible that the 

specification for a commercial machine could be derived, and 
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the work to develop it undertaken by a knitting machine 

manufacturer. 

Further ideas to demonstrate the extra versatility of 

knitting with hydraulic actuators:-

(xi) The bed configuration would noJbnger be restricted 

to a circular or flat by necessity of the cam drive. 

Positioning of the actuators would enable any desired 

shape to be adopted. This might have applications 

when knitting a complete garment. 

(xii) The needle orientation of the machine could be 

varied to suit the yarn. 

(xiii)The gauge of the machine could be varied around the 

periphery so allowing different parts of e.g. garments, 

to be more flexible. 

(xiv) To a limited degree, the needles could be moved 

raidally enabling e.g. garments to be shaped. 

(xv) Complete control over each individual needle could 

be incorporated so enabling infinite patterns to be 

knitted. 

(xvi) Larger gauge machines could be employed e.g. knitting 

carpets, exploiting the advantages of infinite _pattern 

selection. 

Finally, the work presented in this thesis has demonstrated 

that the advantages to be gained by applying hydraulic actuation 

techniques to knitting machines could be considerable, provided 

that initial research is backed by a full development programme 

to assess their true commercial potential. 

A second application of miniature hydraulic actuation 
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techniques to be considered was for a sewing machine. 

Such machines contain a number of complex machanical mechanisms 

that culminate in a linear motion. 

6.2. Hydraulic Locksti tch Sewing Hachine 

';['he technique of a hydraulic se\..ring action was demonstrated 

using a lockstitch sewing machine with:the needle and thFead 

take-up mechanisms being replaced by miniature hydraulic devices. 

A pulse-generating rotary valve again acted as the control 

medium. 

This study proved that a lockstitch could be produced on 

a hydraulic sewing machine and a full demonstration together with 

the overall layout of the rig can be seen in the film 

"Development of a Hydraulic Sewing Hachine11 • The main purpose 

for building the locksti tch machine was to sho\..r that sewing 

using hydraulic sewing heads was possible, and to provide 

information upon which to base future sewing machine applications. 

The benefits to be gained by using hydraulic actuation 

techniques on sewing machines could be in the following areas:

(xvii) A decoupling of the mechanical linkage between the 

needle and thread take-up mechanisms and the hook drive. 

This feature would be useful on a moveable 

co-ordinate sewing head. If a sewing station producing 

say bed quilts or regular shapes requiring se..,ting 

to take place away from the edge of the fabric, then 

a moveable automatic sewing head would be advantageous. 

Using hydraulic actuation techniques the sewing head 

could be compactly made, housing only two acutators 

and linked only to the base of the machine by four 
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flexible hydraulic connections, provided that 

external controli systems maintained a register 

between the needle and the hook. 

(xviii)Removing the restrictions of the throat. 

This is linked with (xvii) and would provide a 

method of building deep throated machines without 

having to alter the size of the mechanisms. The 

only necessary modification \vould be increased pipe 

length from the actuators to the rotary valve. 

(xix) Provide a method of reversing the direction of individual 
components. 

In particular types of machines, i.e. chain stitch 

and overlocking machines, the nature of the mechanical 

mechanism prevents individual elements from being 

reversed to form left-hand machines. These opposite 

hand machines are used when sewing two edges of a 

garment at the same time. While these machines are 

available,- they tend to be very expensive and unreliable, 

therefore the application of hydraulic devices would 

provide a useful alternative method. Using miniature 

hydraulic actuators, the phasing and direction of 

the various components can be adjusted by the 

positioning of the part-circumferencial grooves in the 

rotary valve. 

(xx) Removing the restrictions imposed by the mechanical 
mechanisms. 

It was found when examining the needle slider crank 

mechnnism that only 2~/o of the total needle amplitude 

was required to form the lockstitch. The remaining 
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7~6 of the needle movement took place without the 

needle piercing the fabric in order to re-orientate 

the needle in readiness for the next stitch. The one 

inch movement required by the slider crank mechanism 

could be replaced by a hydraulic actuator having an 

amplitude of a quarter of an inch. This illustrated 

that not only must the mechanical motions be examined, 

but also the mechanics of se'tring. 

Therefore, the work presented in this thesis is 

intended to serve as an introduction to hydraulic sewing 

techniques and to provide a basis for future developments. 

Advantages could be obtained using hydraulic sewing 

units, but more research will be necessary before a 

viable alternative to mechanical systems can be produced. 

Pulse-Generating Rotary Valves 

The necessity for the third section of this project had 

arisen from the previous developments. The two applications 

of pulse-generating rotary valves has established that they 

function effectively and possess charact~ristics not found in 

conventional hydraulic control devices. Therefore, a design · 

procedure was evolved in order to rationalise the general layout 

for the valve and establish a technique for optimising its 

·performance. 

Until this juncture, rotary valves had been designed 

solely to generate the pulses required by the external system. 

It was evident that the po'trer requirements to rotate the bobbin 

were excessive, increasing proportionally to the supply pressure 

to the ,valve. The high power required could only be attributed 
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to one factor, that of an unequal pressure distribution in 

the radial clearance between the bobbin and the cylinder. 

Experimental techniques of machining radial clearance grooves 

to sustain a more equal pressure distribution had produced 

marginal improvements in performance, but it was evident that 

to obtain significant benefits an analytical approach would be 

required. Estimates regarding the volume flow rates distributed 

by the valve could be obtained using standard theory for flow 

in pi..pes, but no direct method of calculating the torque 

required to rotate the valve bobbin was available. This 

resulted in an'analytical study to:-

(xxi) Develop a method of balancing the internal forces 

of the valve. 

(xxii) Provide a technique for estimating the power 

required to rotate the valve bobbin. 

The un·ev.en pressure distribution in the radial clearance 

of the valve was inherent due to the radial part-circumferential 

grooves that generated the pressure and exhaust pulses. The 

effect of this pressure distribution could be represented by 

a resultant force of unknown magnitude and direction. Therefore 

the initial task was to derive a method of calculating the· 

.magnitude and direction of this unbalanced force in order to 

compensate for it. The annulment of this force could be 

.attempted by using load-carrying bearings (i.e hydrostatic 

or roller bearings) or by using high pressure pads to create 

equal and opposite compensating forces. The second method 

was adopted because the out-of-balance force compensation could 

be made integral with the rotor. Thus, the general layout for 

t~e rotor was to site the pulse-generating section between two 

246. 



compensating pads. 

To calculate the size and radial position of the 

compensating pads, the solution for the pressure distribution 

in the radial clearance was· calculated by solving a differential 

equation derived from theory related to hydrodynamic bearings. 

The solution was obtained by using a relaxation procedure on 

a digital computer• Knowing the pressur~ distribution, 'the 

forces on the rotor could be calculated. By.resulving the 

elements of force in a horizontal and vertical direction and by 

taking moments about each end of the rotor, the magnitude and 

direction of the resultant end reactions could be found. The 

magnitude of the force was then used to calculate the dimension 

for the compensating pad, again using a solution to the pressure 

distribution equation. This design technique was tested by 

designing a rotary valve and results successfully showed that 

the power requirement for the rotor, \'/hen compared with similar 

valves designed previously, was halved. 

Having calculated the pressure distribution around the 

valve, estimation of the torque requirements to rotate the 

bobbin was necessary. This involved using the differential 

pressures between each element.in a general expression and 

su,nnling to find the total torque required. This calculation 

,was also performed on the computer. 

The correlation between calculated and practical results 

agreed to within an error of 10% \'!hen account had been taken 

of the variable physical parameters experienced in practice. 

Parameters for radial clearance and viscosity had to be assumed 

constant in the theoretical expression. In practice, the 

radial clearance ( 1r1hich had to be expressed to an accuracy of 
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1 x 10-5 inches) was difficult to measure to such fine 

limits and no method of making allowances for the ovality 

and taper on the components was feasible. Other system 

variables affecting the radial clearance v1ere the expansion 

of the cylinder due to the internal supply pressure and the 

expansion of the components due to thermal effects. The value 

for the viscosity of the oil had to be averaged for the series 

of tests and assumed constant. Viscosity readings showing a 

6CP~ fluctuation due to temperature rise in the oil, were 

recorded, (although during the series of tests for Bobbin 2 

care was taken to maintain a constant temperature). These 

variations in valve parameters could be allovled for in the . 

computer programme,but would increase considerably the complexity 

of the pressure distribution differential equation. This was 

not deemed necessary iri this application due to the large number 

of physical variables. To solve an up-graded equation would 

take much longer on the computer so pricing this design technique 

beyond the commercial user. 

The design technique presented could be applied to all sizes 

of rotary valve with all forms of pad geometry. The practical 

results taken from the two bobbins demonstrated that the major . 

assumptions made to simplify the analytical solution were 

justified. One assumption was that the bobbin ran centrally 

in the cylinder under optimum running conditions. Since the 

practical results for rotor speeds above 200 revolutions per 

minute support the calculated values, this design technique 

can be considered a suitable method upon which to base future 
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developments. The predicted values for the torque requirements 

will serve as an indication as to the size of motor r~quired 

to turn the valve, provided that sufficient details concerning 

the input parameters for the computer programme are known. 

As a result of this research, new techniques for producing 

the linear motions required on a knitting and a sewing machine 

have been evolved. These techniques, while still needing· 

further investigation, have shown that they CQuld form the basis 

for a future generation of machines, and if adopted, could 

provide commercial benefits to the textile industry. As a 
secondary function, it is hoped that engineers in other industries 

not conversant with miniature hydraulic devices will be inspired 

into assessing the possibility of adopting hydraulic devices to 

replace conventional mechanical mechanisms. 
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APPENDIX I 

Computer programme for calculating_the out of balance forces generated 
by the pressure and exhaust grooves in a rotary valve. 

MASTER PRESSURE OF SLOTS . 
DI~ENSION FORCE(60),THETA(60),SVFO(GO),SHF0(60),TOR(60,60),STOR(60 

.1) 

COlaWN /PP /P ( 60, 60) , PBMA, PB!H, IS ( 100) 
READ(1,20)DIA,BRED,VISCO,IIO 

20 FOmt~AT(4FO.O) 
READ( 1, 21 )EPS ,T!tAXIT 

21 FORMAT(F10.7,I4) 
C DIAKETER OF VALUE IN n 
C BREADTH OF PORT SECTION IN 
C VISCOSITY OF OIL CENTIPOISES 
C SPEED OF ROTATION REVOLUTIONS PER MIN 
C PMAX IS PRESSURE AT HIGH PRESSURE SLOTS LBF/IN2 
C PMIN IS PRESSURE AT EXHAUST SLOTS LBF/IN2 
C HO IS THE P..ADI£!l,", CLEARAIWE OF THE BEARING IN 

PI =·3.14159 
NSLOT = 34 
READ(1,22) (IS(I),I = 1,NSLOT) 

22 FORI\~AT ( 4IO) 
WRITE( 2, 23)DIA, BRED, VISCO ,HO ,EPS ,r,!:\XIT 

23 FOR:t\':AT(1H1,21H DIA:'i:.ETER OF VALVE= ,F10.5,5H IIIS,6X,13H BREADTH 
1 = ,F10.5,5H IHS,//20H VISCOSITY OF OIL = ,F10.5,15H CENTIPOISE 
2 ,6X,20H RADIAL CLEARPJWE = ,F10.7,5H INS,// 
311H EPSILON= ,F10.7,6X,32H MAXnmr.~ NUf;lBER OF ITERATIONS = ,I4,//) 
WRITE(2,24) (IS(I),I = 1,NSI,OT) 

24 FORMAT (78H GRID POIHTS OH THE SURFACE OF THE VALVE FOR PRESSURE 
1 EXIUUST AUD FEED SLOTS,//, (4( 6X,I3)/)/ /) 

50 READ(1,25) SPE;.;D,Pl\iAX,PrJIN 
. 25 FORTViA T (JFO. 0) 

WRITE( 2, 28) SPEED,PMA:X, PraN 
28 FORr.:l\.T (21H SPEED OF ROTATION= ,F10.5,14H REVS PER MIN ,// 

126HPRESSURE AT FEED SLOTS= ,F10.5,12H LBF PER IN2,6X,// 
229H PRESSURE AT EXHAUST SLOTS = ,F10.5,1~H LBF PER IN2,//) 

RLEN = PI* DIA 
VIS = VISCO* 1.45* 0.0000001 
VEL = SPEED * 2.0*PI*(DIA/2.0)/ 60.0 
PBMA = PMAX-l<· H0**2 /(VIS*VEL*RLEN) 
PBr..:I = PrHN* H0**2 /(VIS*VEL*RLEN) 

C SET THE GRID SIZE 
N.\LFA = 36 
NBETA = 32 

C SET ALL THE PRESSURES ON THE GRID EQUAL TO ZERO 
DO 1 I= 1,NBETA+1 
DO 1 J = 1,NALFA+J 

1 P(I ,J) = PBrH 
ITN = 0.0 
A= 1.6 

10 D = 0.0 
ITN = ITN+1 
ALFA = 1.0/NALFA 
BETA= 1.0/NBETA 
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600 

260 

DO 2 I = 2,NBETII. 
DO 2 J = 2 ,NALFA 4--2 
CALL PRESSURE POINTS (I,J,K) 
IF (K .EQ. 1) GO TO 2 
P(I,1) = P(I,NALF~h1) 
P(I,NALFAit3) = (I,3) 
PPLA = P(I,Jo+-1) 
PMN A = P (I , J -1) 
PPLB = P(I-1,J) 
PMNB = P(I~1 ,J) 
DENOM = 2 .0*( 1.Q+(RLEU*ALFA/(BRED* BETA))**2) 
RNUM : PPLA+PivlNA -+(RLEN*ALFA/(BRED*BETA) P*2*(PPLBJ.P!fNB) 
PTEMP = RNUM/DENOM . 
PNEW = (1.0-A)* P(I,J) :f:-1 A* PTEHP 
IF (PNEW .EQ. 0.0) GO TO 600 
RESID = ABS(1.-P(I,J)/PNEW) 
IF (RESID .GT. D) D = RESID 

CONTINUE 
P(I,J) = PNEW 

2 CONTINUE 
WRITE (2,260) ITN ,D 
FOR!IIAT (24H NUiiBER OF ITERATIONS = ,I4,6X, 12H RESIDUAL : ,F12.8,/) 
IF (ITN .GT. MAXIT) GO TO 3 
IF (D .GE. EPS) GO TO 10 

3 DO 18 I = 1 ,NBETA-+'1 
DO 18 J = 1 ,HALFA.Y.3 
P(I,J) = P(I,J)* VIS * VEL* RLEN /(H0**2) 

18 CONTINUE 
WRITE(2,26) ITN, D, ((P(I,J) ,J = 2,NALFA ... 1), I= 1,NBETA+1) 

26 FORMAT (24H NUMBER OF ITERATIONS= ,I4,6X,12H RESIDUAL= ,F12.8, 
1///22H PRESSURE DISTRIBUTION,//,( 9 (1X,F 8.3)/)///) 

TO CALCULATE THE HORIZONTAL AND VERTICAL FORCES 
DO 4 I = 2,NBETA+1 
SVFO(I) = 0.0 
SHFO(I) = 0.0 
DO 5 J : 2 ,NALF,'\+1 
DTFO = P(I,J)*AI,FA*RLEN*BETA*BRED 
VERFO = DTFO *COS((J-2)*2.0*PI*ALFA) 
HORFO = DTFO *SIN((J-2)*2.0*PI*ALFA) 
SVFO(I) = SVFO(I)+VERFO 
SHFO (I) = SHFO (I )+l:IORFO 

5 CONTIHUE 
FORCE(I) = SQRT((SVFO(I)**2)~(SHFO(I)**2)) 
IF (FORCE (I) • EQ. 0.0) GO.TO 4 
THETA(I) = (180.0/PI)*ATAN(SHFO(I)/SVFO(I)) 

4 CONTINUE 
TO CALCULATE THE TOTAL LOAD 

TOSVFO : 0.0 
TOSHFO = 0.0 
DO 6 I = 2,NBETA+1 
TOSVFO = TOSVFO +SVFO(I) 
TOSHFO = TOSHFO +SIIFO(I) 

6 COHTINUE 
TOFOR = SQRT( ( TOSVFOH·2)+(TOSHF0**2)) 
TOTHET = (180.0 /PI)* AT~~ (TOSHFO /TOSVFO) 
WRITE (2,31) 
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31 FORr.~AT(1H1,4X,6H INDEX,6X,16H TOTAL FORCE LBF,6X, . 
121H HORIZONTAL FORCE LBF,6X,19H VZRTICAL FORCE LBF,6X, 
214H THETA DEGREES,//) . 

WRITE. ( 2, 32 )(I ,FORCE(I), SHFO(I), SVFO (I), THETA(I), I ·: 2 ,HBETA+1) 
.32 FOrJ.1AT( ( 6X' I4' 9X' .F1 0. 5' 1 3X' F1 0. 5' 15X' F 10. 5' 12X, I!' 10. 5' I) I I) 

ViRITE ( 2, 33) TO FOR, TO'rHET, TOSHF'O, TOSVE'O 
33 FORL'!AT(7X,17H sm; Oi.i' FOfWE3 = ,Fi0.5,5II LBF,8X, 

1JOH DIRECTIOH OF FORCE (THETA) : ,F10.5,8H DEGREES,//,7X, 
227H SUM OF HORIZOHTAL FORCE = ,F10.5,5H LBF,8X,25H sm,: OF VERTICAL 
3 FORCE = ,F10.5,5ll LBF,//) 

C TO FIHD THE END REACTIONS 
TVMOA = 0.0 
THxOA • O.,O 
TV:MOB = 0.0 n 
THJ\iOB = 0.0 
DO 7 I = 2,NBETA+1 
~JOA = SVFO(I) *((I-1)* BETA*BRED ) 
IDWA = SHFO(I) *((I-1)* BETA*BRED ) 
TVJ.iOA = Tn:OA + VrWA 
THIWA = THr.:OA. · HMOA 
~.mB = SVFO(I) *(NBETlrt·1-I) *BETA *BRED 
IDWB = SHFO(I)*(nB'2TA·H-I)l<·BETA*BRED 
TVT<iiOB = TVfiOB + ViWB 
THMOB = T!UWB t· HMOB 

7 CONTINUE 
VREA : TVI~10B /BRED 
HREA = THTWB /BRED . 
VREB = TVI110A /BRED 
HREB = THTV:O A /BRED 
TOREA = SQRT((VREA**2)~(HREA**2)) 
REATH = (180.0/PI)*ATAN(HREA/VREA) 
TOREB.= SQRT((VREB**2)+(HREB**2)) 
REBTH = (180.0/PI)~·ATAN(HREB/VREB) 
VffiiTE(2,34) TOREA ,VREA,HREA,REATH,TOREB,VREB,HREB,REBTH 

34 FORMAT(6X,22H TOT,\L REACTION AT A= ,F10.5,5H LBF,6X, 
125H VERTICAL REACTION AT A = ,F10.5,5H LBF,6X,//,6X, 
228H HORIZOHTAL REACTION AT A= ,F10.5,5H LBF,6X,21H AJJGIJE OF RE~ 
)ACTION = ,F10.5,9H DEGREES,//,6X,22H TOTAL REACTIOn AT B = ,F10.5, 
45H LBF,6X, 
525H VERTICAL REACTION AT B = ,F10.5,5H LBF,6X,//,6X, 
628H HORIZO!ITAL REACTIOn AT B = ,F10.5,5H LBF,6X,21H AJWLE OF RE-
7ACTION = ,F10.5,9H DEGREES,//) . 

C TO FIND THE TORQUE REQUIRF.r 
DO 8 I = 1 ,NBETA.,.1 
DO 8 J : 2,NALFA+2 
PD = (P (I ;J+1 )-P(I ,J -1)) 
TOR(I,J) : ABS(PD)*H0/(4.0*ALFA*RLEN)+(VIS*VEL/HO) 

8 CONTINUE 
DO 11 I = 1,NBETA+1 
ODD : 0.0 
EVEN = q.o 
DO 12 J = 3,NALFA+1,2 

12 EVEU = EVEN ;.TOR(I,J) 
DO 13 J : 4,NALFA,2 

13 ODD = ODD +TOR(I,J) 
STOR(I) = (ALFA /J.O)*(TOR(I,2)+4.0*EVEN+2.0*0DD ~OR(I,NALFA+2))* 
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1RLEN 
11 COIITINUE 

·oDD= 0.0 
EVEN = 0.0 
DO 14 I = 2,UBETA,2 

14 EVE1I = EVETI + STOR(I) 
DO 15 I = 3,NB~TA-1,2 

15 ODD= ODD+ STOR(I) 
FOTOR = (BETA/3.0) *(STOR( 1 )T.1-.0*EVEII;12 .O*ODD +·STOR(NBETA+1)) *BRED 
TOTOR = FOTOR *DIA /2.0 
WRITE (2,35) TOTOR 

35 FORJ.1AT(6X,16H TOTAL TORQUE·:: ,F10.5,8H LBF IN,//) 
GO TO 50 
STOP n 
END 

.:: ,-: •·:~ ~V, • ,• • *';, r- (. f-' I.' 

SUBROUTINE PRESSURE POIIJTS(I,J,K) 
COMMON /PP/ P(60,60),Pm;~A,PBTH, IS(100) 

C POSITION OF HIGH PRESSURE POIHTS 
IF(I.GE.IS(1). AHD.I.LE.IS(2).AND.J.GE.IS(3).AND.J.LE.IS(4))GO TO 100 
IF(I.GE .IS ( 5) .AIW.I.LE .IS ( 6) .A!JD.J. GE. IS(?) .AI:D.J .LE .IS (8)) GO TO 100 
IF (I. GE. IS ( 9) • AIJD. I. LE. IS ( 10). Aim .J. GE. IS ( 11) .AHD. J .LE. IS ( 12)) 

1 GO TO 100 · 
IF (I. GE. IS ( 1 3) • AND. I. LE. IS ( 14) • AHD. J. GE. IS ( 15) • Aim. J. LE. IS'( 16) ) 

1 GO TO 100 
C POSITIOn OF J,o·:r PRESSURE POIHTS 

IF (I. GE. IS ( 17) • Aim. I. LE. IS ( 18) • AND. J. GE. IS ( 19) • AND. J. LE. IS ( 20) ) 
1 GO TO 200 . 
IF(I .GE.IS(21) .AND.I .LE .IS( 22) .AUD.J .GE .IS( 23) .A!ID.J .LE .IS( 24)) 

1 GO TO 200 
IF(I.GE.IS(25) .AND.I.LE.IS(26) .AHD.J .GE.IS(27) .AND.J .LE.IS(28)) 

1.GO TO 200 
IF(I.GE. IS ( 29) .AND. I. LE .IS (30) .AND .J. GE .IS ( 31) .AND .J .LE .• IS (32)) 

1 GO TO 200 · 
C POSITION OF SUPPLY PORT 

IF(I.GE.IS(33) .AND.I.LE.IS(34)) GO TO 100 
C CHECK TO rJAKE PRESSURE +VE 

IF(P(I,J).LT.O.O) P(I,J) :: 0.0 
K =· 2 
GO TO 300 

100 P(I,J) :: PBMA 
K = 1 
GO TO 300 

200 P(I,J) = PBlvli 
K = 1 

300 RETURN 
END 

255. 



APPENDIX II 

Computer programme for designing the compensating pad dimensions once 
the out•of-balance forces in a rotary valve have been determined. 

MASTER COMPEf~SA'riNG PADS 
DD'EHSION FORCE ( 60), P( 60,60), SVFO( 60), SHFO ( 60), TOR ( 60,60), STOR( 60) 

1, THETA( 60) 
READ(1,21) DIA,VISCO,HO,EHO 

21 FORMAT (4FO.O) 
READ(1,20) EPS,MAXIT 

20 FORMAT (F10.7,I4) 
C DIAN.ETER OF VALVE IN 
C VISCOSITY OF OIL CENTIPOISES 
c· SPEED OF ROTATION REVOI,UTIONS PER MIN . 
C P!flAX IS PRESSURE AT HIGH PRESSURE STJOTS LBF/Il12 
C PMIN IS PRESSURE AT EXHAUST SLOTS LBF/IN2 
C HO IS THE RADIAL CIJEARANCE OF TH~~ BEARING IN 
C EHO IS THE END CLEARANCE OF THE BEARinG 

PI = 3.14159 . 
V/RITE (2,23) DIA,VISCO,HO,EPS,MAXIT 

23 FOREAT ( 1H1, 21H DIAJV:ETER OF VALVE = ,F10. 5, 5H INS, 
1//20H VISCOSITY OF OIL= ,F10.5,15H CENTIPOISE ,6X, 
220H RADIAL CliEARANCE = ,F10.7,5H I1TS,//11H EPSILON: ,F10,7,6X, 
332H MAXIMUM NUf.1BER OF ITERATIONS :-; , I4, / /) 

M6 = 1 
50 READ(1,25) SPEED,PKAX,PMIN,RLOAD 
25 FORr:rAT (4FO.O) 

WRITE (2,28) SPEED,Pr>7AX,PMIN,RLOAD 
28 FORII:AT ( 21H SPEED OF ROTATION = , F1 0. 5, 14H REVS PER MIN , // 

126H PRESSURE AT FEED SLOTS= ,F10.5,12H LBF PER IN2,6X,// 
229H PRESSURE AT EXHAUST SLOTS= ,F10.5,12H IJBF P:t:R IN2,// 
323H OUT OF BALANCE LOAD = ,F10.5,5H LBF,//) 
RLEN = PI*DIA 

;PLEH = PI*DIA/2.0 
VIS = VISC0*1.45* 0.0000001 
VEL = SPEED *2.0*PI*(DIA/2.Q)/60.0 
PBMA = PMAX* H0**2 /(VIS*VEL·*PLETI) 
PBMI = Ht.IN* H0**2 /(VIS*VEL*lLEN) 

C SET THE GRID SIZE F 
NALFA = 20 
NBETA = 20 
MK = 0 
A ="1.8 

C SET THE PAD SIZE AND VALUE OF BREADTH 
ALFA: 1.0 /HALFA 
BETA : 1 .0 /NBETA 

83 IPAD1 = (NBETA/4)+-1 
IPAD2 = ((3·*NBETA)/4)+1 
JPAD1 = (NALFA /4)+1 
JPAD2 = ((3*UALFA)/4)i-1 
M1 a 0 
:M2 = 0 
KK : 0 
IF(MK.EQ.1)GO TO 101 
PPLJ = (JPAD2 -JPAD1)*ALFA!PLEN 
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C TO FIHD BREADTH OF VALVE ASSUJ\II1!G LINEAR PRESSURE GRADIENT 
BRED.= (RIJOAD/H.TAX)/( 0.75*1.50*PPLJ *0.667) 

C SET AJJL THE PRESSURES ON THE GRID TO EXHAUST PRESSURE 
101 DO 1 I = 1 ,NBETA+-1 

DO 1 J = 1 ,NALFA+-1 
1 P(I ,J) = PBUii 

:t.'rN = o 
10 D = 0.0 

ITN = ITN +1 
DO 2 I = 2,NBETA 
DO 2 J = 2,NALFA 
IF(I.GE.IPAD1.AIJD .I.LE.IPAD2.AND.J .GE.JPAD1.AND.J .LE.JPAD2)GO TO 60 
K = 2 
GO TO 61 

60 P(I,J) : PBMA 
K = 1 

. 61 IF(K.EQ.1) GO TO 2 
PPLA = P (I, J4-1 ) 
PMN A = P (I , J -1 ) 
PPLB = l?(I-1,J) 
PMNB : P(I-t1 ,J) 
DEN01.':' = 2.0 -l<·(1.0 +(PLEN*.\I;FA/(BRED* BETA))**2) 
RNUM = PPLA +PrtiNA -..(PLEN* ALFA /(BRED *BETA) )**2*(PPLB +PMNB) 
PTEMP = RIJU~~ /DENDrJ 
PNEW = (1.0 -A)·ll- P(I,J) .J.:.A*PTEI,}P 
IF (PNEW.EQ.O.O) GO TO 62 
RESID = ABS( 1.0 -P(I,J)/PNE:,y) 

62 CONTINUE 
IF (RESID .GT.D) D = RESID 
P(I,J) = PIIEW 

2 CONTINUE 
WRITE (2,63) ITN,D 

.63 FORMAT(24H Nm.:BER OF ITERATIONS = ,I4,6X, 12H RESIDUAL : ,F12.8,/) 
IF (ITN.GT.ItAXIT) GO TO 3 
IF ( D.GE.EPS) GO TO 10. 

3 DO 64 I = 1 ,NBE·rA""1 
DO 64 J = 1 ,NALFA+1 

64 P(I,J) = P(I,J)*VIS*VEL* PLEU /(H0**2) · 
WRITE (2,26) ITH,D, ((P(I,J), J = 2,NALFA•1, I: 1,NBETA+1) 

26 FORMAT (24H NUKBER OF ITERATIONS= ,I4,6X,12H RESIDUAL= ,F12.8, 
1///22H PRESSURE DISTRIBUTION,//,(10 .(1X,F8.3)/)///) 

C TO CALCULATE THE HORIZONTAL AND VERTICAL FORCES 
DO 4 I = 2 ,NBETA+1 
SVFO(I) = 0.0 
SHFO(I) = 0.0 
DO '5 J = 2,NALFA+-1 
DTFO = P(I,J)*ALFA*PLEH*BETA -lC·BRED 
VERFO = DTFO*COS((J-1)* PI *ALFA) 
HORFO = DTFO*SIH((J-1) * PI *ALFA) 
SVFO(I) = SVFO(I) + VERFO 
SHFO(I) .= SHFO(I) + HORFO 

5 CONTINUE 
FORCE(I) = SQRT((SVFO(I)**2)+(SHFO(I)**2)) 
IF (FORCE (I).EQ. 0.0) GO TO 4 
THETA(I) = (180.0/PI)*ATMI(SHFO(I)/SVFO(I)) 

4 CONTINUE 
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i C TO CALCULATE THE TOTAL LOAD 
TOSVFO = 0.0 
TOSHFO = 0.0 
DO 6 I = 2,HBETA+1 
TOSVFO : TOSVFO+SVFO(I) 
TOSHJ!'O = TOSHFO+SHFO (I) 

6 CONTINUE 
TOTFO = SQRT((TOSVF0**2)+(TOSHF0**2)) 
TOTHET = (180.0/PI)*AT.AN(TOSIIFO /TOSVFO) 
WRITE (2,33) TOTFO,TOTHET,TOSHFO,TOSVFO 

33 FORMAT(7X, 17H sm~ OF FORCES = ,F10.5,5H LBF,8X, 
130H DIRECTION OF FORCE. (THETA) = , F10. 5 ,8H DEGREES,//. 7X, 
227H sur;; OF HORIZONTAL FORCE = ,F10.5,5H LBF,8X, 
325H SUM OF VERTICAL FORCE = ,F10.5,5H LBF,//) 

Vr'RITE(2,41) IPAD1, ··t PAD2, JPADl, JPAD2. 
41 FORMAT (7'X,33HGRID POIIITS ACROSS TIIE BEArtiHG = ,I3,4X,I3,//,7X, 

132HGRID POINTS ROUND THI~ BEARING = , I 3, 4X, I3, / /) 
C TO ADJUST THE PAD SIZE 

IF((RLOAD -TOTFO).LT.O.O) M1 : 1 
IF((RLOAD -TOTFO) .G3.0.0) M2 = 1 
IF((M1-M2).EQ,O) GO TO 71 
RELQAD = RLOAD - TOTFO 
WRITE(2,87) RELO.m 

87 FORTiiAT(6X,23H OUT OF BALANCE LOAD = ,F10.6,5H LBF,/) 
IF(KK.EQ.1) GO TO 72 
IF(RELOAD) 73,74,75 

73 IPAD1 = · ,r-·pAD 1 + 1 
KK = 1 
lVlM = 1 
GO TO 101 

75 IPAD1 = IPAD1 -1 
KK = 1 
MM = 2 
GO TO 101 

72 IF(RELOAD) 76,74,77 
76 IPAD2 = IPAD2 -1 

KK : 0 
MM = 1 
GO TO 101 

77 IPAD2 = IPAD2 ~1 
KK = 0 
l'tiM = 2 
GO TO 101 

71 REMLOAD = RLOAD - TOTFO 
IF(~M.EQ.1) GO TO 78 
BRPAD = ( ( IPAD2-IPAD1 )+(REP,!LOAD/ (RELOAD-REfJI,OAD))) *BETA *BRED 
GO TO 74 

78 BRPAD = ((IPAD2 -IPAD1)+(RET'rLOAD/(REJIILOAD -RELOAD)))*BETA*BRED 
74 PERPAD = ( 2 .0* BRPAD)i.( (JPAD2.,.JPAD1) *PLEN*ALFA *2 .0) 

PERBER = 2.0*(PLEN+BRED) 
RATIO = PERPAD/PERBER 
Ij(RATIO.LT.0.4.AND.RATIO.GT.0.6) GO TO 81 
GO TO 82 

81 BRED = BRPAD *2.0 
MK = 1 
GO TO 83 
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82 ANPPLJ = (PPLJ/(DIA/2.0))*180.0/PI 
WRITE(2,85) RELOAD,REMLOAD,PLEN,BRED,PPLJ;ANPPLJ,BRPAD 

85 FORMAT(6X,63H LIMIT OF OUT OF BALANCE LOAD AT NEXT TO LAST GRID 
1 POINT = ,F10.5,5H LBF,/6X,55H LIMIT OF OUT OF BALANCE LOAD AT THE 
2 LAST GRID POINT = ,F10.5,5H LBF,/6X 
3 21H LENGTH OF BEARING = ,F10.5,5H INS,6X,22H BREADTH OF. BEARING = 
4 ,F10.5,5H INS,/6X, 
5 31H LENGTH OF HIGH PRESSURE PAD = ,F10.5,5H INS,6X, 
6 )OH ANGLE SUBTENDED BY THE PAD = ,F10.6,8H DEGREES,/6X, 
1 36H BREADTH OF THE HIGH PRESSURE PAD = ,F10.5,5H INS,///) 

C TO FIND THE TORQUE REQUIRED OVER THE PAD SEGit.ENT 
DO 8 I = 1 ,NBETA+1 
DO 8 J = 1,NALFA+1 
IF ( J.EQ. 1) GO TO 103 
IF ( J.EQ. NALFAt1 ) GO TO 104 
PD = (P(I,J+1)-P(I,J-1)) 
GO TO 106 

103 PD = (P(I,Jt1)-PMIN) 
GO TC 106 

104 PD: ( PMIN -P(I,J-1)) 
106 TOR(I,J) : ABS(PD)*H0/(4.0*ALFA*PLEN)+(VIS*VEL/HO) 

8 CONTINUE 
WRITE (2,120) ((TOR(I,J), J = 2,21), I= 1,21) 

120 FORMAT (6X,5H TOR ,//,(10 .(1X,F8.3)/) ///) 
DO 11 I = 1,NBETA+1 
ODD : 0.0 
EVEN = 0.0 
DO 12 J = 2,NALFA;2 

12 EVEN = EVEN+ TO~(I,J) 
DO 13 J = 3,NALFA-1,2 

13 ODD = ODD +TOR(I,J) 
STOR(I) = (ALFA /3.0)*(TOR(I,1)+4.0*EVEN+2.0*0DDtTOR(I,NALFA+1))* 

. 1 PLEN 
11 CONTINUE 

ODD = 0.0 
EVEN = 0.0 
DO 14 I =2,NBETA,2 

14 EVEN = EVEN +STOR(I) 
DO ~5 I= 3,NBETA-1,2 

15 ODD = ODD +STOR(I) 
FOTOR: (BETA/3.0)*(STOR(1)+4.0*EVEN+2.0*0DD +STOR(NBETA+1))*BRED 

C TO FIND THE TORQUE DUE TO THE PLAIN SIDE OF BEARING 
FOPLB : (VIS*VEL/HO) * BRED*(RLEN-PLEN) 
TOTOR = (FOTOR + FOPLB)*DIA/ 2.0 
TOPAD : FOTOR *DIA/ 2.0 
TOPLB = FOPLB *DIA/ 2.0 
WRITE (2,17) TOTOR ,rOPAD,TOPLB 

17 FOill~AT(6X, 16H TOTAL TORQUE • ,F10.5,8H LBF IU,/6X, 
130H 10RQUE DUE TO PRESSURE PAD : ,F13.9,8H LBF IN,/6X, 
231 TORQUE DUE TO PLAIN BEARING = ,F13.9,8H LBF IN,//) 
IF (~6 .EQ. 2) GO TO 102 
M6 = 2 
GO TO 50 

C TO CALCULATE THE FRICTIONAL TORQUE DUE TO THE END COVERS 
102 RAD1 • DIA/2.0 

RAD2 = RAD1 *0.333 
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DIA2 : 2.0*RAD2 
ANGVEL = (SPEED 160.0)* 2.0*PI 
TOREHD = PI*ANGVEL*VIS* (RAD1**4 -RAD2**4)1( 2.0* EHO) 
TOTEND = 2~0* TOREND 
WRI'i:E (2,18) TOREHD ,TOTEND, DIA,DIA2 

18 FOilli~AT( 6X, 25H TORQUE DUE TO EJm PAD = ,F10 .5, BH LBF IH ,/I, 
16X, 37H TOTAL TORQUE DUE '1'0 BOTH t:ND PADS = , F10 .5, 8H LBF IN ,I I, 
26X,27H OUTSIDE DIM.:ZTER OF PAD= ,F10.5,5H IHS,6X, 
326H I!ISIDE DIAl'LrO:TER OF PAD= ,F10.5,5H IHS,II) 
HP= ANGVEL* 1.0 1(550.0 *12.0) 
~VRITE ( 2, 42) HP 

42 FORrf:AT(6X,44H THE HORSE POWER PER UNIT TORQUE (LBF IN) :: ,F10.5,/) 
STOP 
EHD 
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APPENDIX III 

Computer programme to estimate the torque required to rotate the centre 
section of the rotary valve at various supply pressures and rotor speeds. 

MASTER PRESSURE OF SLOT 2 
DIMENSION FORCE(60),THETA(60)~SVF0(60),SHF0(60),TOR(60,60),STOR(60 

1),R(60,60) 
COMMON/PP/P(60,60),PBMA,PBMI,IS(100) 
READ(1,20)DIA,BRED,VISCO,HO 

20 FORMAT(4FO.O) 
READ(1,21)EPS,MAXIT 

21 FORMAT(F10.7,I4) 
C DIAMETER OF VALVE IN 
C BREADTH OF PORT SECTION IN 
C VISCOSITY OF OIL CENTIPOISES 
C SPEED OF ROTATION REVOLUTIONS PER MIN 
C PMAX IS PRESSURE AT HIGH PRESSURE SLOTS LBF /IN2 
C PMIN IS PRESSURE AT EXHAUST SLOTS LBF /IN2 
C HO IS THE RADIAL CLEARANCE OF THE BEARING IN 

PI : .3.14159 
NSLOT = .34 . 
READ(1,22) (IS(I),I: 1,NSLOT) 

22 FORMAT (4IO) 
WRITE(2,2.3)DIA,BRED,VISCO,HO,EPS,MAXIT 

2.3 FORMAT(1H1,21H DIAMEI'ER OF VALVE= ,F10.5,5H INS,6X,1.3H BREADTH 
1 : ,F10.5,5H INS,//20H VISCOSITY OF OIL= ,F10.5,15H CENTIPOISE 
2 ,6X,20H RADIAL CLEARAN9E = ,F10.7,5H INS,// 
.311H EPSILON : ,F10.7,6X,.32H MAXIMUM NUMBER OF ITERATIONS : ,I4//) 
WRITE(2,24) (IS(I),I: 1,NSLOT) 

24 FORMAT (78H GRID POINTS ON THE SURFACE OF THE VALVE FOR PRESSURE 
1 EXHAUST AND FEED SLOTS,//. (4(6X,I.3)/)//) 
SPEED: 1.0 
PMAX : 1.0 
PMIN = PMAX *0.1 
RLEN .: PI* DIA 
VIS = VISCO* 1.45* 0.0000001 
VEL : SPEED * 2.0*PI*(DIA/2.0)/ 60.0 
PBMA = PMAX* H0**2 /(VIS*VEL*RLEN) 
PBMI = PMIN* H0**2/(VIS*VEL*RLEN) 

C SET THE GRID SIZE 
NALFA = .36. 
NBETA = .32 

C SET ALL THE PRESSURES ON TnE GRID EQUAL TO ZERO 
DO 1 I= 1,NBETA+1 
DO '1 J: 1,NALFA+.3 

1 P(I,J) : PBMI 
ITN : 0.0 
A= 1.6 

10 D = 0.0 
ITN = ITN+1 
ALFA = 1.0 /NALFA 
BE'l'A = 1 • 0 /NBETA 
DO 2 I : 2,NBETA 
DO 2 J = 2,NALFA +2 
CALL PRESSURE POINTS (I,J,K) 
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IF (K .EQ. 1) GO TO 2 
P(I,1) = P(I,NALFA+1) 
P(I,NALFA-3) = P (I,3) 
PPLA = P(I~J+1) 
PMNA = P(I,J-1) 
PPLB = P(I-1,J) 
PMNB = P(I+1,J) 
DENOM ~ 2.0*(1.0-tr(RLEN*ALFA/BRED* BETA))**2) 
RNUM = PPLA+PMNA +(RLEN*ALFA /(BRED*BETA))**2*(PPLBf.PMUB) 
PTEMP = RNUM /DENOM 
PNEW = ( 1 • 0-·A) * P ( I , J ) + A* PTEMP 
IF (PNEW .EQ. 0.0) GO TO 600 
RESID: ABS(1.-P(I,J)/PNEW) 
IF (RESID .GT. D) D = RESID 

600 CONTINUE 
P(I,J) = PNEW 

2 CONTINUE 
WRITE (2,260) ITN ,D 

260 FORMAT (24H NUMBER OF ITERATIONS= ,I4,6X,12H RESIDUAL: ,F12.8,/) 
IF (ITN .GT. MAXtT) GO TO 3 
IF (D .GE. EPS) GO TO 10 

3 DO 18 I= 1,NBETA+1 
DO 18 J = 1,NALFA+3 
P(I,J) = P(I,J)* VIS * VEL* RLEN /(H0**2) 

18 CONTINUE 
WRITE (2,26) ITN, D, ((P(I,J) ,J = 2,NALFA+1), I= 1,NBETA+1) 

26 FORMAT (24H NUMBER OF ITERATIONS= ,I4,6X,12H RESIDUAL= ,F12.8, 
1///47H PRESSURE DISTRIBUTION FOR UNIT SUPPLY PRESSURE,//, 
2{ 9 (3X,F8.6)/)///) 

C TO CALCULATE THE HORIZONl'AL AND VERTICAL FORCES 
DO 90 M = 50,700,50 
DO 91 I: 1,NBETA+1 
DO 91 J = 1,NALFA+3 
R(I,J) = M*P(I,J) 

91 CONTINUE 
PPMAX = M*PMA.."\ 
PPMIN = PPr.iAX*0.1 
DO 4 I = 2,NBETA+1 
SVFO(I) = 0.0 
SHFO(I) = 0.0 
DO 5 J = 2,NALFA+1 . 
DTFO = R(.I,J)*ALFA*RLEN*BETA*BRED 
VERFO : DTFO *COS((J-2)*2.0*PI*ALFA) 
HORFO = DTFO *SIN((J-2)*2.0*PI*ALFA) 
SVFO(I) = SVFO(I)+VERFO 
SHFO(I) = SHFO(I)+HORFO 

5 CONTINUE 
FORCE(!) = SQRT((SVFO(I)**2)+(SHFO(I)**2)) 
IF (FORCE (I) • EQ. 0.0 ) GO TO 4 
THETA(I) = (180.0/PI)*ATAN(SHFO(I)/SVFO(I)) 

4 CONTINUE 
C TO CALCULATE THE TOTAL LOAD 

TOSVFO : 0.0 
TOSHFO : 0.0 
DO 6 I = 2,NBETA~1 
TOSVFO = TOSVFO +SVFO(I) 
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TOSHFO = TOSHFO +SHFO(I) 
6 CONT!NUE 

TOFOR = SQRT(( TOSVF0**2)+(TOSHF0**2)) 
TOTHET: (180.0 /PI)* ATAN (TOSHFO /TOSVFO) 
WRI'l'E(2,29) PPL~AX , PPMIN 

29 FORrf:AT (6X,26H PRESSURE AT FEED SLOTS= ,F10.5,12H LBF PER IN2,//, 
16X:,29H PRESSURE AT £;XHAuST SLOTS = ,F10.5, 12H LBF PER ITI2,//) 
\ffiiTE(2,33) TOFOR, TOTHET, TOSHFO,TOSVFO 

33 FORr.:AT(7X, 17H Sur.! OF FO~CES = ,F10.5,5H LBF,8X, 
130H DIRECTION OF FORCE (THETA) = ,F10.5,8H DEGREES,//,7X, 
227H SUTI! OF HORIZOHTAL FORCE = ,F10.5,5H LBF,8X,25H SUM OF VERTICAL 
)FORCE = ,F10.5,5H LBF,//) 

C TO FIND THE END REACTIOIIS 
TVMOA = 0<0 
TID·.~OA = 0.0 
TVT;iOR = 0. 0 
THrf~OB = 0.0 
DO 7 I : 2,NBETA+1 
VX.OA = SVFO(I) *((I-1)* BETA*BRED ) 
IDI'lOA = SHFO (I) * (( I-1) * BETA *BRED ) 
TV1WA = TVfWA + VrWA 
THIWA = TW.~OA + HrWA 
VMOB = SVFO(I)*(NBETA+1-I)*BETA*BRED 
HJVIOB = SHFO(I)*(HBETA+1-I)*BETA*BRED 
TVrWB = TVl'WB + VMOB • 
THJ'.~OB = THMOB 1- Hrf.OB 

7 CONTI1IUE 
VREA : TVMOB /BRED 
HREA = THrr'iOB /BRED 
VREB = TV1iOA /BRED 
HREB = THrWA /BRED 
TOREA = SQRT((VREA**2)+(HREA**2)) 
REATH = (180.0/PI)*ATAN(HREA/VREA) 
TOREB = SQRT((VREB**2)+(HREB**2)) 
REBTE = (180.0/PI)*ATAN(HREB/VREB) 
WRITE(2,34) TOREA ,VREA,HRFA,REATH,TOREB,VREB,HREB,REBTH 

34 FORMAT(6X,22H TOTAL REACTIOn AT A = ,F10.5,5H LBF,6X, 
125H VERTIC,\JJ REACTION AT A= ,F10.5,5H LBF,6X,//,6X, 
228H HORIZONTAL REACTION AT A : ,F10.5,5H LBF,6X,21H ANGLE OF RE 
)ACTION = ,F10.5,9H DEGREES,//,6X,22H TOTAL REACTION AT B: ,F10.5, 
45H LBF,6X, 
525H VERTICAL REACTION AT B: ,F10.5,"5H LBF,6X,//,6X, 
628H HORIZONTAIJ RK·~CTIOH AT B;:: ,F10.5,5H LBF,6X,21H ANGLE OF RE 
?ACTION = ,F10.5,9H DEGREES,//) 

C TO FIND THE TORQUE REQUIRED 
DO '90 N = 50,1000,50 
REV= N 
VELO = N*VEL 
DO 8 I : 1 ,NBETA+1 
DO 8 J = 2,NALFA-t2 
PD = (R(I,J-1)-R(I,J-1)) 
TOR(I ,J) = ABS(PD) *H0/(4 .O*AIJFA *RLEN)+(VIS*VELO/HO) 

8 CONTINUE 
DO 11 I = 1 ,NBETA+-1 
ODD = 0.0 
EVEN = 0.0 
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DO 12 J = 3,N~LFA+1,2 
12 EVEN = EVEN ;-TOR(I,J) 

DO 13 J = 4,NALFA,2 
13 ODD = ODD ~TOR(I,J) 

STOR(I) = (ALFA /3.0)*(TOR(I,2)+4.0*EVEN+2.0*0DD +TOR(I,NALFA+2))* 
1RLEN 

11 CONTINUE 
ODD = 0.0 
EVEU : 0.0 
DO 14 I = 2,NBETA,2 

14 EVEN = EVEN-+ STOR(I) 
DO 15 I = 3,NBETA-1 ,2 

15 ODD = ODD+ STOR(I) 
FOTOR = (BETA/3. 0) *(STOR( 1 )+4 .O*EVEN+2 .O*ODD +STOR(NBETA+1)) *BRED 
TOTOR = FOTOR *DIA /2.0 
V/RITE ( 2, 28) REV 

28 FORr!iAT (21H SPEED OF ROTATIOn= ,F10.5,14H REVS PER IHN) 
WRITE (2,35) TOTOR 

35 FORMAT(9X,16H TOTAL TORQUE= ,F10.5,8H LBF IN,//) 
90 CONTIIIUE 

STOP END 
':-- .:-

.. 
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APPEHDIX IV 

Computer programme to calculate the torque required to rotate the cornpen
satin~ pads and end bearings of a rotary valve, at various supply press
ures and rotor speeds. 

MASTER Cm.~PE!WATING PADS 2 · 
DH:ENSIOH FORCE ( 60), P( 60, 60), SVFO( 60), SHFO ( 60), TOR( 60,60), STOR( 60) 

1,THETA(60),R(60,60) . 
READ(1,21) DIA,VISCO,HO,EHO 

21 FORMAT (4FO.O) 
READ(1,20) EPS,fliAXIT 

20 FORMAT (F10.7,I4) 
. c· DIAr.:ETER OF VALVE IN 
C VISCOSITY OF OIL CENTIPOISES 
C SPEED OF ROTATIOn REVOLUTIONS PER MIN _ 
C PMAX IS PRESSURE AT HIGH PRESSURE SLOTS LBF/IN2 
C PMIN IS PRESSURE AT EXHAUST SLOTS LBF/IN2 
C HO IS THE RADIAL CLEARANCE OF THE BEARING IN 
C RHO IS THE END CLEARATJCE OF THE BEARinG 

PI= 3.14159 
WRITE (2,23) DIA,VISCO,HO,EPS,r.'iAXIT 

23 FORMAT (1H1,21H DIAI.~t:TSR OF VALVE= ,F10.5,5H INS, 
1//20IT VISCOSITY OF OIL: ,F10.5,15H CENTIPOISE ,6X, 
220H RADIAL CLEARAIJCE = ,F10.7,5!-I INS,//11H EPSILOn: ,F10.7,6X 
332H It~Ax.Irv:ur.; nur::BER OF ITERATIONS = , I4, / /) 
r:I6 = 1 

50 Rl!:AD (1,25) IPAD1,IPAD2,JPAD1,JPAD2,BRED 
25 FORMAT (4IO,FO.O) 

\'IRITE(2,41) IPAD1,IPAD2, JPAD1, JPAD2,BRED 
41 FORr.~AT (7X,33HGRID POINTS ACROSS THE BEARIHG = ,I3,4X,I3,//,7X, 

132HGRID POIITTS ROUND THE BEARING = ,I3,4X,I3,//, 
27H,22H BREADTH OF BEARING = ,F10.5,5H IHS,//) 

PMAX = 1.0 
PMIN = PJ.lAX *0.1 
SPEED = 1 .o 
RLEN = PI*DIA 
PLEN = PI*DIA/2.0 
VI~ = VISC0*1.45* 0.0000001 
VEL = SPEED *2.0*PI*(DIA/2.0)/60.0 
PBJiJA = Pr.lAX* HOH-2 /(VIS*VEL*PLEN) 
PBMI = PMIN* H0**2 /(VIS*VEL* PLEN) 

C SET THE GRID SIZE 
NALFA = 20 
NBETA = 20 
A a 1.8 

C SET THE PAD SIZE AND VALUE OF BREADTH 
ALFA = 1~0 /lJALFA 
BETA = 1.0 /l~BETA 

C SET AI,L THE PRESSURES OU THE GRID TO EXHAUST PRESSURE 
101 DO 1 I = 1 ,NBETA+1 

DO 1 J = 1,NALFA+1 
1 P(I, J) = rm::I 

ITU = 0 
10 D = 0.0 

ITN :::: ITN +1 
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DO 2 I = 2,NBETA 
DO 2'J = 2,NALFA 
IF(I. GE.IPAD1.AND .I.LE.IPAD2.AND.J .GE.JPAD1.AND.J .LE.JPAD2)GO TO 60 
K = 2 
GO TO 61 

60 P(I,J) : PBII~A 

r~ = 1 
61 IF(K. EQ.1) GO TO 2 

PPLA = P(I,J+1) 
Pif.N A = P ( I , J -1 ) 
PPLB = P(I-1,J) 
PKNB = P(I-t-1 ,J) 
DElWM = 2.0 *( 1.0 + (PLEN*ALFA/(BRED* BETA) )**2) 
RNUM = PPLA +Pf.'JL'I. ;-(PI,EJl* AI,FA /(BRED *BETA)) **2*(PPLB +Pl\'JlB) 
PTETi:P = RHUrL /DENor.~ 
PNEW = (1.0 -A)* P(I,J) +A*PTEMP 
IF (PIJE'N.EQ.O.O) GO TO 62 
RESID = ABS(1.0 -P(I,J)/PNEW) 

62 COIJTINUE 
IF (RESID .GT.D) D = RESID 
P(I,J) = PNEW 

2 cor;TnmE 
',VRI TE ( 2 , 6.3 ) ITN , D 

6.3 FORrt~AT(24H nu;,·_BER OF ITERATIONS= ,I4,6X,12H RESIDUAL= ,F12.8,/) 
IF (ITN.GT.KAXIT) GO TO .3 
IF ( D.GE.EPS) GO TO 10 

.3 DO 64 I = 1 ,NBETA+-1 . 
DO 64 J = 1 ,NALFA+1 

64 P(I,J) = P(I,J)*VIS*VEL·* PLEN /(HOH~) 
WRITE (2,26) ITN,D, ((P(I,J), J = 2,NALFA+1), I= 1,NBETA+-1) 

26 FORrt,AT (24H NUNBER OF ITERATIOI~S = ,I4,6X,12H RESIDUAl,= ,F12.8, 
1///47H PRESSURE DISTRIBUTION FOR UNIT SUPI'LY PRESSURE,//, 
2( 10(.3X,F8.6)/)///) 

C TO CALCULATE TEE HORIZONTAL AND VERTICAL FORCES 
DO 90 U = 50,700,50 . 
DO 91 I = 1 ,HBETA+-1 
DO 91 J = 1,NALFA+1 
R(I,J) = M*P(I,J) 

91 COlrTINUE 
PPMAX = M*PKAX 
PP1o"IN : PPJI:AX *0. 1 
DO 4 I = 2 ,HBETA+1' 
SVFO(I) = 0.0 
SHFO(I) = 0.0 
DO 5 J = 2,NALFA+o1 
DTFO = R(I,J)*ALFA*PLETJ'*BETA*BRED 
VERFO = DTFO*COS((J-1)* PI *ALFA) 
HORFO = tTFO*SIN((J-1)* PI *ALFA) 
SVFO(I) = SVFO(I) + VERFO 
SHFO(I) = SHFO(I) + HORFO 

5 CONTII1UE . , 
FORCE(I) = SQRT((SVFO(I)**2)+(SHFO(I)**2)) 
IF(FORCE (I).EQ. 0.0) GO TO 4 
THETA(I) = (180.0/PI)*ATAN(SHFO(I)/SVFO(I)) 

4 CONTII1UE 
C TO CALCULATE THE TOTAL LOAD 
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TOSVFO = o.o 
TOSHFO = o.o 
DO 6 I = 2,IIBETA+-1 
TOSVFO = TOSVFO+SVFO(I) 
TOS!-'!FO = 'i'OSHFO+SHFO(I) 
COIJTI!~UE 

TOTFO = SQRT((TOSVF0**2)+(TOSHF0~~2)) 
TOTHET : (180.0/PI)*ATA11(TOSHFO /TOSVFO) 
WRITE ( 2, 29) PPMAX , PPf.Ull 

29 FORMAT (6X,26H PRESSURE AT FEED SLOTS= ,F10.5,12H LBF PER DT2,//, 
16X,29H PRESSU!lli AT EXHAUST SLOTS= ,F10.5,12H LBF PER IN2,//) 

WRITE ( 2, 33) TOTFO, TOTF.ET, TOSHFO, TOSVFO 
33 FORMAT(7X,17H SUM OF FORCES = ,F10.5,5H LBF,8X 

130H DIRECTION OF FORCE (THETA) = ,F10.5,8H DEGREES,//,7X, 
227H SUJ'.1 OF HORIZONTAL FORCE = ,F10.5,5H LBF,eX, 
325H sur,~ OF VERTICAL FORC3 = ,F10.5,5H IJBF,/;)_ 

C TO Film THE TORQUE REQUIRED OVER THE PAD SEGrlENT. 
DO 90 N = 50,1000,50 
REV = N 
VELO = N*VEL 
DO 8 I ::: 1 ,HBETA+1 
DO 8 J = 1 ,NALFA+-1 
IF ( J.EQ. 1) GO TG 103 
IF ( J .EQ. N AI·FA+1 ) GO TO 104 
PD = (R(I,J+1)-R(I,J-1)) 
GO TO 106 

103 PD = (R(I,J+1)-PPMIN) 
GO TO 106 

104 PD = ( PHnn -R(I ,J-1)) 
106 TOR(I,J) = ABS(PD)*H0/(4.0*ALFA*PLEN)+(VIS*VELO/HO) 

8 CONTINUE 
DO 11 I = 1 ,NBETA+1 
ODD = 0.0 
EVEN = 0.0 
DO 1 2 J = 2 , N AL FA, 2 

12 EVEN = EVEN + TOR(I,J) 
DO 13 J = 3,NALFA-j,2 

13 ODD = ODD +TOR(I,J) . 
STOR(I) = (ALFA /3.0)*(TOR(I,1)+4.0*EVEH+2.0*0DD+TOR(I,NALFA""'r1))* 

1PLEN 
11 CONTINUE 

ODD = 0.0 
EVEN = 0.0 
DO 14 I = 2,!rBETA,2 

14 EVEN = EVEN +STOR(I) 
DO 15 I = 3,NBETA-1,2 

15 ODD = ODD +STOR(I) 
FOTOR = ( BETA/3 .0) *(STOR(I)+4.0*EVEH-t-2.0*0DD +STOR(HBETA+1)) *BRED 

TO FIND THB TORQUE DUE TO THE PLAIN SIDE OF BEARDJG 
FOPLB = (VIS* VELO/HO)* BRED*(RLEIJ-PLEN) 
TOTOR = (FOTOR +FOPLB)*DIA/ 2.0 
TOPAD =·FOTOR *DIA/ 2.0· 
TOPLR = FOPLB *DIA/ 2.0 
WRITE (2,28) REV 

28 FORMAT (21H SPEED OF ROTATION = ,F10.5,14H REVS PER MIN ,/) 
VffiiTE (2,17) TOTOR,TOPAD,TOPLB 
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17 FORMAT(6X,16H TOTAL TORQUE= ,F10.5,8H I1BF IN,/6X, 
130H TORQUE DUE TO PRESSURE PAD = ,F13.9,8H LBF IH,/6X, 
231H TORQUE DUE TO PLAI!l BEARING= ,F13.9,8H LBF IN,//') 

90 COHTINUE 
IF (M6 .EQ. 2) GO TO 102 
M6 = 2 
GO TO 50 

C 1 TO CALCULATE THE FRICTIONAL TORQUE DUE TO THE END COVERS 
10 2 RAD1 = DIA/2 .0 

RAD2 = RAD1 *0.333 
DIA2 = 2.0*RAD2 
WRITE (2,19) DIA,DIA2 

19 FORMAT(6X,27H OUTSIDE DIAMETER OF P~D = ,F10.5,5H INS,6X, 
126H INSIDE DIAr.'IETER OF PAD = , F10. 5, 5H INS,//) 

DO 94 N = 50,1000,50 
REVO = N 
ANGVEL = ( REVO /60.0)* 2.0*PI 
TOREND = PI*ANGVEL*VIS* (RAD1**4 -RAD2**4)/( 2.0* EHO) 
TOTEND = 2.0* TOREND 
WRITE (2,28) REVO 
WRITE ( 2, 18) TOREliD , TOTEND 

18 FORMAT(6X,25H TORQUE DUE TO ErTD PAD = ,F10.5,8H LBF IN,//, 
16X,"37H TOTAL TORQU~DUE TO BOTH END PADS= ,F10.5,8H LBF IN,jj;) 
HP = ANGVEL* 1.0 /(550.0 *12.0) 
'!/RITE (2,42) HP 

42 FORl'.iAT(6X,44H THE HORSE PO':'iER PER UlriT TORQUE (LBF IN) = ,F10.5,/) 
94 CONTinUE 

STOP 
END 
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APPENDIX V 

The frictional torque due to an annulus running en a flat 

surficc, with film thickness h. 

Let the relative angular velocity be~and assume that the 

circumferential. component of velocity of the fluid varies linearly 

across the film. 

Consider the elementary section shown 

Viscous shear stress = 

And Area= R d9dR 

Therefore the shear force on the element 

'1 wR2 dRd9 
h 

Therefore fhe total frictional torque 

' Frictional torque = 1\ 'l, L\) 

2h 
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PART'4 

THE DESIGN OF A MULTI-FEEDER'HYDRAULIC'CIRCULAR'WEFT 
KNITTING MACHINE. 

7. A MULTI-FEEDER HYDRAULIC CIRCULAR WEFT KNITTING'MACHINE 

7.1. Introduction 

Previous work on the first Hydraulic Circular Weft 

Knitting Machine can be seen in Part 1 Chapter 3. This work 

has demonstrated that a knitted fabric can be produced on a 

camless knitting machine by using individual hydraulic actuators 

to move a latch needle through the desired time displacement 

profile. 

7.1.1. Areas of Further Research. 

One of the most significant factors arising from this 

research was that each needle transposed position individually. 

This gave two main advantages:-

i) Only one needle was knitting at any particular instance. 

ii) The number of needles required for a knitting station could 

be greatly reduced, 

The first advantage (i) was inherent in the hydraulic motion and 

should subsequently lead to higher needle speeds. The second 
I 

factor (ii) will enable more feeders to be introduced round a 

machine so ultimately producing a greater volume of fabric per 

revolution of the machine, The number of.needles required per 

knitting station could be as few as four thus giving:-

(iii) one needle in the knit position 

(iv) ··one needle in the tuck position, and 

(v) two needles in the miss position. 
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A second feature worthy of further development was the 

integration of the rotary valve and actuator block. The actuator 

block could be made into the rotor of the valve, and a collar 

placed round it to produce high and low pressure annulii. These 

would be positioned radially and axially around the actuator block. 

On rotation, the system would produce a series of pressure and 

exhaust pulses to drive the actuators through the pre-described time-

displacement profile. This technique of using a collar valve 

would enable a large number of feeders to be introduced round a. 

machine and also eliminate the complex pipework required between 

an actuator block and a separate rotary valve, see figure 17. 

A proposal to build a multi-feeder machine was accepted 

by Courtaulds Educational Trust and the money for a fourth year 

granted. 

7.2. Specification for a Multi-feeder Hydraulic Circular Weft 
Knitting Machine 

The objective of this second prototype machine was to 

assess the feasibility of using a collar valve to give an integrated 

actuator-valve system and to prove that a multi;feeder machine could 

be made to knit successfully. 

After consultation with Mr. F. Carrotte (Technical Director 

of Kirkland Engineering Ltd) it was decided that considerable time both 

in design and manufacture could be saved by using the framework 

of an existing circular weft knitting machine. The advantages 

to be gained by using an existing machin.e were:-

i) The fabric tensioning and take-down mechanism could be used 

without modification thus removing the limitations imposed 
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7.2.1. 

by the previous fabric tensioning device. 

ii) The actuator block would be rotated so 'the creel would 

be kept 

machine 

stationary again conforming to the existing 

iii) A drive mechanism already existed for driving the needle 

cylinder and this could readily be adapted for powering 

the actuator block. 

iv) The structure of the machine provided a solid base upon 

which to build the hydraulic system; 

A redundant experimental knitting machine was donated to the 

Department by Mr. Carrotte and its framework was to be used as 

the basis for the second hydraulic circular weft knitting machine. 

Design Considerations for the Hydraulic System. 

The actuator block and trix mechanism built for the 

first prototype machine (see Chapter 3) was examined with the 

view to retaining the actuators for the second machine. The 

actuator block could be modified by re-machining the outside 

diameter, so removing the pipe connections and producing the rotor 

for a rotary collar valve. The salvaging of the first actuator 

block would save on manufacturing time and also enable the proven· 

knitting aspect to be retained. 

Therefore, the only major component to be considered was 

the collar of the rotary collar valve. This collar had to be 

designed to accommodate the existing actuator block which imposed 

several restrictions:- one being that the overall length of the 

collar was limited by the· length of the existing actuator block. 
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7.2.2. 

However, after a detailed investigation it was found to be 

feasible to use the existing actuator block and was thus adopted. 

The only outstanding decision to be taken for the multi-feeder 

machine was to specify the number of feeders. 

The Collar Valve. 

For ease of machining and symmetry, the number of 

feeders had to be a multiple of ninety-six. The time 

displacement profile had been previously considered as occupying 

four equal time intervals. (see figure 1), so making the number 

of needles per knitting station a multiple of four, (if the same 

number of needles were to occupy the same state at any partic~lar 

instance). Consequently for the purpose of the first multi

feeder machine a general compromise was made thus giving a twelve 

feeder machine with eight needles per knitting station. This 

configuration would prove if hydraulic knitting techniques could 

be applied to multi-feeder machines and still allow space to 

accommodate the yarn carriers round the trix. It also would 

produce a symmetrical needle formation with two needles in the 

knit position, two in the tuck position and £our in the miss 

position. The pulses required to drive the actuators through 

the time displacement profile have been outlined in Table 1 and the 

collar valve technique consists of creating a series of pressure 

and exhaust _ports so that as the actuator block rotates, the 

actuators receive the correct sequence of pulses. A diagrammatical 

representation of the pressure and exhaust positions for a knitting 

station can be seen in figure 96. As the actuators pass a 
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different row of-~orts corresponding to a time interval t, 

the pulses described in Table 1 will be generated. 

Hence the specification for the Multi-feeder Circular 

Hydraulic Knitting Machine:-

(v) Circular configuration with ninety-six needles spaced 

at four needles to the inch. 

(vi) Twelve equally spaced feeders. 

(vii) The actuator block to rotate anticlockwise to conform 

with the existing knitting machine components. 

7.2.3. Design of the Collar Valve. 

Twelve sets of ports (as shown in figure 96) were positioned 

radially round the annular block. The shape of the port~ was not 

regarded as critical provided that sufficient.pressurised oil could 

be del1vered to the actuator in the t1me available. Consequently 

for ease of manufacture, all the supply ports in the collar valve 

were made circular. The designated positions of all the pressure 

' and exhaust ports were used.as data to check the out-of-balance 

forces due to the pressure distribution using the computer programme 

MASTER PRESSURE DISTRIBUTION OF SLOTS (see Appendix 1) •. 

·This indicated that using twelve equally spaced supply 

areas, the system was inherently balanced, although physical 

dimensions of the collar necessitated using a large grid size, which 

tended to reduce the overall accuracy of the· calculation. 

The remaining features to be resolved were the fixing of the 

end seals on the actuator block and the positioning of the exhaust 
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passages allowing the rotor leakage oil to pass back to tank. 

The sealing problem was solved by the use of standard rotary 

7.2.4. 

shaft seals lvith a back-up ring to support the seal when subjected 

to pressures greater than 8 lbf/in2• -This pressure in the 

clearance at the back of the seal was regulated by a series of exhaust 

passages taking the leakage oil back to tank. The rotor leakage 

oil was also exhausted at two other points on the actuator block 

so providing specific low pressure areas round the valve. These 

exhaust points were grouped at the position where the actuators 

were in the fourth part of the cycle, that is being held in the miss 

state prior to the start of the next cycle. 

The design for the collar valve can be seen in figures 

97 and 98 which show the detail drawings J.D.G. 150 and J.D.G. 151 

respectively. This component was to be manufactured in Meehanite 

cast iron, the same material as the actuator block. The actuator 

block was modified to drawing J.D.G. 153 (see figure 99) and 

these two components then formed the integrated actuator.;rotary 

collar valve. Photographs of the collar valve, actuator block 

and the integrated actuator-rotary collar valve can be seen in 

figures 100, 101 and 102 respectively. 

Other ~omponents 

The donated circular weft knitting machine was dismantled 

to the basic framework. The only features to be retained were 

the fabric tensioning mechanism and the circular driving gear for 

the needle cylinder. The electric ·motor previously used to drive 

the machine was replaced by a hydraulic motor so that the driving 

speed could be varied for test purposes. A Vickers M2-200 Vane 

278 



........ 
IF IN DOUBT ASK 

.,... ........... C1'10M 

.,. -(p . 

- a::. c::. SIGil o::. .... 

~ 
Q 

·-g 
8o 
+i 
in 
£! 
a-

_ _j 
l 

. SITY OF TECHNOLOGY LOUGHBOROUGH UNIVER 't& OCALI ~ IIU 
""'~•w. tA&lWitrl mu 

..... 
GIOUP 



.. ~ .. 
lP IN DOUIT AIK 

,_, A!!!LI !!MCT"" 

I'Cilltl CIIT ·1!10'1:111> 
- .,.,.,.. o.!'A 
..,.. 01T 101 ( ·IMO'M ~ 

- ·= c:. E F ... 

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY 
MAfliW. 7. 1•0 ICAll! 2d,&A.IIU 

" ----. "'"- - PMIDUCf tm.l _. • ..._ ..... _ ll~llfD ......,.._. 
::-'.,.'":-:"".:..m.=, ~ ~ 
::' .::::": ~ •.u. • l-o----••----w•~ro:...:..::_:..__+-_,--,..----r...,=::-,..--; ---...-. ~ """"'./ . .-.a~- DIG.IIa. 
...... - -... •uc•o :roa lSI 

..... OAftnQ:r'll -



N • -

If IN DOUIT AIK 

!lW ... """"'" 

I I , 
I 
I 

l 
·= 

i:) 0 

c: 

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY 

·---·"--·........... fiLl~ ._.. ..... ...._ .. .,.., ........ ._ __ _ ---..... -- ..... - f.U.W ----.~ ......... ~ -- .... ---.. 



J 

FIG . 100 COLLAR VALVE 
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FIG. 102 INTEGRATED ACTUATOR RarARY COLLAR VALVE 
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7.2.5. 

was mounted on to the input gearbox, giving a direct drive to 

the cylinder rack. This motor was to be coupled to a Vickers 

PBV 6 variable delivery piston pump so that the knitting speed 

could be manually controlled. 

The only other components to be designed were adapting 

discs (these were manufactured from steel plate), The discs 

enabled the framework to accommodate the integrated actuator 

collar valve and provide a link to the existing needle cylinder 

drive. Figure 103 shows the knitting machine with the adaptor 

discs and actuator block in position. These were all securely 

bolted to the existing framework after having been checked for 

concentricity using a clock dial gauge. 

Hydraulic Circuits. 

For each knitting station the collar valve required 

five pressure supplies and twelve exhausts. These could all 

be taken from a common manifold at each knitting station, so a 

series of pressure manifolds (each manifold to supply two 

knitting stations) were positioned round the machine with s~x exhaust 

manifold blocks interspaced between the pressure supplies. The 

system pressure for driving the actuators was expected to be less 

than 400 lbf/in2 so nylon flexible hoses could be used to link 

the collar valve to the manifold blocks. A colour code was used 

to enable the supply to the various parts of the actuator to be 

distinguishable. The main supply to the pressure manifolds was 

taken via a continuous copper ring thus linking the system. 

At a point on both sides of the first pressure block, two shut-off 

valves were introduced to enable the machine to operate as a 
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FIG . 103 ACTUATOR BLOCK IN POSIT! 

28(0 



twin feeder machine on commencement of knitting. The exhaust 

manifolds were again linked to the collar valve with nylon pipe, 

and some lengths of smaller bore pipe were introduced to act as 

hydraulic stops in both mid and tuck positions_ of actuator 

displacement. The exhaust from each manifold which served two 

knitting stations, was taken back to tank via an independent path. 

Each return line was formed in copper pipe, ~rom the manifold 

block to a common point under the driving motor on the machine. 

This group of six pipes was then linked to the power pack reservoir 

with .75 inch diameter nylon tube. The pipework for this multi
was 

feeder machinejmuch simplified and required only half the number 

of connections than the first machine. 

7.3. Power Requirement for the Actuators 

The Power requirement to move the actuators through the time 

displacement profile cannot be rigorously calculated at this 

stage in the project due to the internal leakage flows within 

the collar valve •. This leakage flow will run partially into the 

exhaust grooves in an axial direction, whilst the remainder will 

run both radially and axially across the radial clearance that 

links two adjacent collar valve ports. The method of calculating 

this leakage flow would be again by using hydro-dynamic bearing 

theory to calculate the pressure distribution. This pressure 

pattern could be used to estimate the flow of oil. The mathematical 

study required to estimate the leakage flow would be relatively 

complex and not until the technique of using a rotary collar 

valve has been fully established and proved to function effectively 

can such analysis be deemed worthwhile. 
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Practical tests on the first hydraulic knitting machine 

established that a knitted structure could be produced using 

a supply pressure of 300 lbf/in2 on a .125 inch diameter piston. 

This pressure produced sufficient force to overcome the.frictional 

resistance due to the 'O' seal; the knitting needle friction on 

the trix; the inertia of the moving componen~s; plus the force required 

to pull the new yarn through the old loop. Therefore a nominal 

working pressure for the system could be regarded as 300 lbf/in2 • 

The flow of oil required per actuator can be considered to 

comprise of three elements:-

i) The volumetric displacement of the pistons 

ii) The leakage past the pistons 

iii) The leakage through the hydraulic stop at the end of 

each piston movement. 

The volumetric flow per cycle is easily calculated from the 

physical dimensions of the actuator and is found to be .0272 in3• 

The theoretical leakage flow in the annular clearance between 

the piston and the cylinder is .004266 in3/sec. Both these 

values have been calculated in the author's previous thesis 

(see chapter 4 reference 18). It is also shown that the leakage 

through the hydraulic stop at the end of each piston movement is 

responsible for controlling the volume of oil required for each 

actuator. The volume of oil required for powering ninety-six 

actuators in sequence is a function of the length, diameter and pressure 

drop across the hydraulic stop, plus the transient time of each 

piston movement which governs the length of time that each hydraulic 

stop is in operation. 
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Prior to carrying out exhaustive tests on the rotary collar valve 

actuator system, estimates for the power requirements can only 

be gauged from the performance of the previous hydraulic knitting 

machine. This machine had 25% of the needles supplied with 

pressure oil at any particular instance and required approximately 

eleven gallons of oil per minute. The new collar valve system 

-has main supply ports spaced radially at .5 inch intervals. 

To supply actuators at .25 inch pitch means that 50% of the 

actuators are being supplied with oil at any particular time. 

Consequently the estimated volume of oil required per minute 

(allowing for the leakage of the collar valve) is approximately 

25 galls/min. This figure has been selected for the size of pump 

required, but once the system has been found to knit satisfactorily 

extensive tests will be required to optimise the length of the 

hydraulic stops. The shape of the time-displacement profile could 

be measured together with the pressure readings at the hydraulic 

stops so that a real estimate of power loss could be obtained. 

An alternative to the hydraulic stop may be small reservoir which 

would absorb the initial surge of pressure but control the volume 

of fluid pumped directly back to tank. The power losses within 

the system are of prime importance and will have a direct influence 

on the ultimate success of the hydraulic knitting machine and it is 

hoped that this first multi-feeder hydraulic knitting machine will 

provide useful data upon which to base future decisions. 
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7.4. The Knitting Aspect 

7.4.1. 

The basic knitting mechanism for the multi-feeder machine 

were the needles, and the existing knitting trix. Prior to 

dismantling the first machine, tests were performed to assess 

methods of attaching the needles to the actuators, One method 

that functioned satisfactorily was to leave on part of the 

needle butt to form a hook at the bottom of the needle, This 

hook could then be attached to an eye in a slug mounted onto the 

end of the actuator, This technique removed the soldered joint 

and produced a flexible coupling which would allow compensation 

for any slight mis-alignment. The slug was attached to the · 

actuator rod by means of a screw thread which enabled linear 

adjustment to be made to each needle independently, In order 

to accommodate this modification, the knitting trix had to be 

re-machined to allow for the slight mis-alignment between the 

actuator rod and the back of the needle. This technique necessitated 

restraining the needle from moving forward out of the trix; this 

was achieved by machining a groove round the top of the trix to 

accept a spring retaining hoop, 

Yarn Carrier, 

The yarn carrier developed for the previous machine provided 

the basic pattern for the new yarn carrier, The overall length 

was reduced to suit the more compact time-displacement profile, 

'but these basic mechanisms were all adopted at the outset:-

i) a brush to open any closed latches 

ii) a guard to keep the latches open while travelling from the 

knit to the tuck position and, 

iii) a chamfered leading edge to control the latches as the 

needle travelled from the miss to the knit position, 
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7.4.2. 

The twelve yarn carriers were mounted onto a detachable ring 

that provided an adjustment both radially and axially, so 

enabling each yarn carrier to be adjusted to suit a particular 

knitting station. 

The Creel 

Using the configuration of rotating the needles, the 

creel remains .stationary so enabling the existing framework 

for the bobbin holders to be used. New bobbin holders were 

supplied by Kirklands, and since the knitting periods would be 

relatively short the introduction of stop motions was not 

warranted at this time. The yarn was also supplied by Courtaulds, 

but two ends of yarn per knitting station were required to make 

standard yarn more suitable for the coarse gauge machine. This 

had an advantage in the fact that if one yarn broke then the 

knitting would still be retained on the needles. Therefore, provision 

for twenty four cones of yarn was made on the creel and the yarn 

brought down to the carriers through a series of pot eyes. 
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7.5. Hydraulic Power Pack 

A special power pack was built by Hymid Hydraulics Ltd to 

meet the estimated power requirements of the multi-feeder 

knitting machine. This power pack comprised of:-

i) a thirty gallon reservoir 

ii) a twenty eight gallon per minute submerged fixed 

displacement vane pump, driven by a 10 H.P. electric motor, 

for powering the actuators. 

iii) a five gallon per minute (maximum) variable delivery 

pump driven by a 7.5 H.P. electric motor for powering 

the hydraulic motor to drive actuator block in the 

rotary collar valve. 

The hydraulic circuit for the actuators comprised ofQpressure 

relief valve and a pressure gauge. The pressure relief valve 

was fitted with a solenoid-operated dumping valve for off-loading 

the system while not actually knitting. A pressure relief valve 

and a solenoid-operated directional control valve, made up the 

hydraulic circuit for the motor.· This control valve enabled 

the speed of rotation to be switched from a slow speed .for setting 

up purposes to the normal running speed required for knitting, 

All the return pipes terminated at a common manifold and the 

otl passed through a filter and cooler before returning to tank. 

(See Appendix VI for l!ydraulic Circuit Diagram} •. 

7.6. ·:Commissioning the Multi-feeder Hydraulic Krtittirtg ·Hachine 

The hydraulic knitting machine was connected to the 

hydraulic power pack. The type of pipe fittings required had 

been previously established so providing compatible connections. 

~he electrical switch gear was mounted onto the power pack and 

appr~priate electrical connections made to the two motors and 

the solenoid valves. 
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The system was switched on and allowed to cycle with both 

the pressure relief valves open. This allowed the pipes to be 

flushed and remove any contamination that remained in the 

hydraulic pipework. Gradually the pressure to the actuators 

was increased and the drive applied to the actuator block. When 

the supply pressure to the actuators reached approximately 200 lbf/in2, 

the actuators began to cycle through the desired time-displacement 

profile and twelve cam-like shapes appeared round the actuator 

block. Unlike the previous single feeder machine, these profiles 

appeared stationary though were similar in form with only one 

needle transposing position at each knitting station at any given 

instance. The cycling rate of the actuators was difficult to 

judge because the knitting profile appeared stationary, regardless 

of rotational speed. A method of gauging the cycling rate was 

to take a reference from a fixed member on the actuator block 

i.e. a trix support, or thetake-down mechanism. 

(It had to be remembered that each actuator made twelve cycles 

per revolution). After an initial test run, minor oil leaks 

had to be eliminated at the manifold blocks and at the bottom of 

the actuators. The machine was run intermittently to establish 

that all the actuators were functioning correctly, prior to the 

commencement of knitting. At the end of this initial testing period, 

three actuators tended to stick in the knit. position but could 

easily be released by rotating the actuator rod. These actuators 

have given some trouble on the previous machine.and the problem 

was traced to the alignment of the actuator bores. 
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7.6.1. Testing Actuator Performance. 

The integrated actuator rotary collar valve was run 

at various speeds ranging from 10 to 90 revolutions per 

minute, (the maximum driving speed for the hydrostatic transm

ission). At the highest spe~d, the actuators were operating· 

at 18 cycles per second and still producing the desired time

displacement profile. Examination of the profile showed a 

slight tendency to overshoot the tuck position. This was 

remedied by introducing a larger hydraulic stop at the tuck 

port to enable the pressure oil driving the actuator from the 

knit to the tuck position to be more quickly exhausted. 

7.6.2. Setting the Machine up in preparation for Knitting. 

The final task prior to attempting to knit was to complete 

assembly of the knitting mechanism. Each actuator was fitted 

with a needle holder and each holder set to a common level in 

the not-knit position. This was to ensure that each actuator 

would pull the same length of loop when actually knitting. 

The needles were then attached to the actuators and the 

knitting trix introduced onto the actuator block. The 

creel was fitted with twenty-four cones of yarn and twelve ends 

brought down through the creel mechanism to the twelve yarn 

carriers mounted round the top of the trix. A piece of fabric 

knitted on the first prototype machine was then hooked onto the 

needles in preparation for knitting. The machine at this stage 

of development can be seen in figures 104, 105 and 106. 

Figure 104 shows a general view of the machine with the 

yarn and fabric in position. Figure 105 shows detail of the 
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FIG. 104 GLN"FR.AL VIEW OF \1ULTI-FEEDER 
HYDRAULIC CIRCULAR WEFT KNITTING 
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FIG. 101 ACTUATOR BLOCK AND KNITTING MKCHANISM 



FIG. 106 VIEW OF 'IllE TRIX SHOWING 'IllE KNITTING 

PROFILE OF 'IllE NEEDLES 
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hydraulic aspect of the machine, (how the manifold blocks 

are connected to the collar valve). The yarn carrier 

mechanism is also clearly visible. The last figure, 106 

shows the knitting profile of the needles round the trix, 

without the yarn carriers in position. This needle profile 

round the trix mechanism remains static regardless of the 

rotational speed of the actuator block, so creating a hydraulic 

actuator system that should be capable of producing a knitted 

fabric in the near future. 

7.6.3. Knitting with the Multi-feeder Hydraulic Circular Weft 
Knitting Machine. 

The scheduled programme for this research will continue 

for a further -.s.ix .months. Prior to submitting this thesis, 

time has not been available for studying the new knitting 

technology necessary to make the hydraulic actuator-rotary 

. collar valve system knit. The techniques involved will be 

similar to those required for the previous prototype machine, 

but will be more complex due to the multi-feeder system. 

A premature initial attempt to knit was made after the 

photographs had been taken, but (as could well be expected) 

an error resulted in the running on procedure. Several 

needles were damaged and no further attempts were possible in 

the time available. 

7.7. · ·cortclusions·and·Recommertdatiorts for Further Research 

The integrated actuator rotary-collar valve from a 

hydraulic aspect functioned as predicted and produced the time 

displacement profile required for a multi-feeder knitting 

machine. The overall shape of this profile should be 
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capable of producing a plain knitted stitch using latch needles. 

The areas for future research are initially concerned 

with the testing of the multi-feeder knitting machine:-

i) Devise and investigate the new knitting technology 

required to make the hydraulic actuator system knit. 

This will involve examining the time displacement 

profile in detail and acquiring a technique for 

"running on" the new knitting, together with a start

up procedure for commencing knitting. 

ii) Experiment with needles and yarn characteristics in 

order to improve the quality of the knitted fabric. 

iii) Test the actuator performance over a long period 

in order to determine the reliability of the system, 

and assess the limitations of hydraulic actuation 

techniques. 

iv) Conduct dynamic performance tests on the overall system 

and measure the power consumption. These tests could 

be used to improve the overall efficiency of the 

system and enable the hydraulic stops to be optimised. 

They would also provide data regarding the oil volume 

flow rate required ryy individual actuators. 

v) Experiment with the time-displacement profile and 

attempt to obtain a yarn feeder that would enable plain 

fabric to be knitted using a rectangular needle profile. 

(This would eliminate the tuck probe, hence simplifying 

the actuator system). 
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Having drawn conclusions from a full test programme on 

the second prototype hydraulic knitting machine a series of 

basic policy decisions would have to be taken. These would 

determine the immediate future of the hydraulic knitting 

machine. Two probable courses could be:-

vi) Develop a programming technique for producing a tuck 

and miss stitch. This would enable the range of knitted 

fabric to be extended from the basic plain knitted structure. 

vii) Design and test a further multi-feeder circular hydraulic 

knitting machine with even less needles per knitting station. 

This development would also incorporate advances in actuator 

design and enable preliminary production techniques to be 

studied. 

The techniques evolved in this research have established a 

new approach for generating a regular time-displacement profile 

and could well provide the basis for a future generation of textile 

machines. 
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