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Abstract—In this letter, we investigate the outage probability
(OP) and ergodic capacity of downlink hybrid satellite terrestrial
relay networks (HSTRNs) with a cooperative non-orthogonal
multiple access (C–NOMA) scheme, in which a user with better
channel condition acts as a relay node and forwards information
to other users, thus alleviating the masking effect of users with
poor channel conditions in heavy shadowing. Specifically, the
exact analytical expression for the OP of the considered system
is derived. Furthermore, the ergodic capacity expression is
also developed to facilitate the performance evaluation of the
proposed framework. Finally, simulations are provided to show
the impact of key parameters on the considered system and the
superiority of introducing the C–NOMA scheme to the HSTRNs.

Index Terms—Hybrid satellite terrestrial relay networks, co-
operative non-orthogonal multiple access, outage probability,
ergodic capacity.

I. INTRODUCTION

INCORPORATING the benefits of relaying techniques into
satellite systems, hybrid satellite terrestrial relay networks

(HSTRNs) can significantly improve the performance of the
user whose direct link is unavailable or deteriorated. Until now,
several works have been done on the HSTRNs from various
key performance measures, such as the outage probability
(OP) and ergodic capacity [1]–[4]. Despite of the advantage
of the HSTRNs, the time division multiple access (TDMA)
scheme adopted in those aforementioned works cannot meet
the increasing requirement for high resource efficiency because
two time slots are needed to serve a user with a deteriorated
link quality. Moreover, the TDMA scheme prefers to serve
user with better link qualities to achieve an optimal throughput.
Thus, the quality of service for users with deteriorated links
may be sacrificed when the number of users is large, which
is a common scenario in future satellite communications [3].
Under this condition, other multiple access scheme should be
taken into consideration to achieve performance enhancement.
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Recently, a novel multiple access scheme, referred to as co-
operative non-orthogonal multiple access (C-NOMA) scheme,
has been proposed and studied in a number of works such as
[5]–[8]. The key merit of C-NOMA is to transmit multiple
signals simultaneously by using the NOMA scheme [9] in the
transmission phase, then a user with a better channel condition
acts as a relay node and forwards information to other users
during the cooperation phase [5]. In this way, more users
can gain access than the TDMA scheme to achieve a higher
resource utilization efficiency and an improved performance
for users with deteriorated link condition. Obviously, this key
advantage is quite beneficial for HSTRNs due to the following
reasons: 1) The deployment of an extra terrestrial relay node
is unnecessary, which is economically and operationally pre-
ferred. 2) The cooperation within the group of adjacent users
greatly alleviate the poor link gains of users in spot beam edge
or in masking effect due to heavy shadowing. However, to the
best of our knowledge, existing works on the combination of
C–NOMA scheme and HSTRNs have not yet been reported.
To fill this gap, this letter studies the performance of C–NOMA
based downlink HSTRNs. Specifically, the OP and ergodic
capacity expressions for the proposed system are derived.
Simulations are provided to show the impact of key parameters
on the system performance and the superiority of introducing
the C–NOMA scheme to the HSTRNs.

II. SYSTEM MODEL

Consider a land mobile satellite communicate system with
two pre-paired terrestrial users1, User p and User q, via the
C–NOMA scheme. Each node in the considered system is
equipped with a single antenna. We further assume that Users
p and q are located in the same spot beam but with different
locations. The overall communication takes place in two or-
thogonal time slots. During the first phase, the satellite broad-
casts a superposed signal x (x =

√
αPsxp +

√
(1− α)Psxq)

to satellite users, the received signal at User j (j = p, q) is

yj =
√
LjGsGj(φj)hjx+ nj , (1)

where α (0 ≤ α ≤ 1) is a fraction of the transmit power Ps

allocated to User p, xj (E
[
|xj |2

]
=1) and nj (E

[
|nj |2

]
=

N0) are the transmit signal and the additive white Gaussian
noise (AWGN) at User j, respectively. Lj denotes the free
space loss (FSL) of the link from the satellite to Users j.

1Only two users are considered here since a NOMA group with two users
has been included in the Third Generation Partnership Project (3GPP) [10]
and an important conclusion drawn from [11] is that a lower sum rate can be
obtained when more than two users are admitted into a cluster.
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Here, we consider Lp=Lq since users within a beam present
similar FSL towards the satellite [9]. Gs is the antenna gain at

the satellite. Gj(φj) = Gj

(
J1(uj)
2uj

+ 36
J3(uj)

u3
j

)2

[12] is the
beam gain depending on both satellite beam pattern and the
position of User j with J(·) denoting the Bessel function and
uj = 2.07123

sinφj

sinφj3dB
. Gj denotes the antenna gain at User

j, φj is the angle between User j and the beam center with
respect to the satellite, and φj3dB denotes the 3-dB angle. As
for the fading model, a widely-adopted Shadowed Rician (SR)
fading model is adopted and the probability density function
(PDF) of |hj |2 is given by [2] as

f|hj |2 (x) = αje
−βjx

1F1 (mj ; 1; δjx) , (2)

where αj = 0.5(2bjmj/(2bjmj +Ωj))
mj/bj , βj = 0.5/bj ,

δj = 0.5Ωj/bj/(2bjmj +Ωj), 2bj and Ωj are the average
power of the multipath component and line-of-sight (LoS)
component, respectively, mj (mj > 0) denotes the Nakagami-
m parameter, and 1F1 (a; b; c) represents the confluent hyper-
geometric function [13, Eq (9.100)]. Moreover, we assume
User p has a better channel condition than that of User q, i.e.,
Gq(φq) |hq|2 < Gp(φp) |hp|2 in this letter.

At the receiver side, the user with worse channel condition
can decode its own information directly. Thus, the signal-to-
interference-plus-noise ratio (SINR) for User q is

γ1
q=

(1−α)PsQq |hq|2

αPsQq |hq|2 +N0

, (3)

where Qq =LqGsGq(φq). At the same time, the user with
better channel condition first decodes the information of
User q according to the principle of successive interference
cancellation (SIC). So, the decoding SINR can be derived as

γp→q=
(1−α)PsQp |hp|2

αPsQp |hp|2 +N0

, (4)

where Qp = LpGsGp(φp). One can obtain that γ1
q < γp→q

since Gq(φq) |hq|2 < Gp(φp) |hp|2. Then, User p decodes its
own information, and the received SINR at User p is

γp = αPsQp |hp|2 /N0. (5)

During the second time phase, User p forwards the decoded
information to User q, and the received SINR at User q is

γ2
q=PpQpq |hpq|2

/
δ2, (6)

where Qpq = GpGq

/
dupq , Pp is the transmit power at User p,

dpq , hpq , and δ2 are the distance, the channel coefficient, and
the variance of AWGN of User p → User q, and u is the path
loss exponent. In this letter, we model the terrestrial link, hpq ,
as a Nakagami-m fading channel, the PDF of |hpq|2 can be
written as

f|hpq|2 (x) =
ξmxm−1

Γ (m)
e−ξx, (7)

where Γ (·) is the Gamma function, ξ = m/Ω with m being
the fading severity parameter and Ω being the average power.

III. PERFORMANCE ANALYSIS
In this section, key performance merits, including OP and

ergodic capacity, are derived in the following subsections.

A. Outage probability

1) OP of User p: Based on the downlink NOMA protocol,
an outage of User p can occur when either the decoding SINR
γp→q falls below a predefined threshold γthq, or the received
SINR γp below a threshold γthp [6], [7], namely,

Poutp(γthp)=Pr (γp→q≤γthq)+Pr (γp≤γthp, γp→q>γthq)

=Fγp→q (γthq)+Fγp (γthp)
[
1−Fγp→q (γthq)

]
.(8)

From (4) and (5), the cumulative distribution functions (CDFs)
of Fγp→q (γthq) and Fγp (γthp) can be respectively written
as Fγp→q (γthq)=Pr

(
PsQp |hp|2 (1−α− αγthq) /N0 ≤ γthq

)
and Fγp(γthp)=Pr

(
αPsQp |hp|2 /N0 ≤ γthp

)
. Applying the

technique in [13, Eqs. (9.14.1), (3.381.1)], we get

Fγp→q(γthq)=


∞∑
k=0

Ξpγ
(
k+1,

γthqβpN0/Qp

Ps(1−α−αγthq)

)
, 1−α

α >γthq

1, 1−α
α ≤γthq

, (9)

Fγp (γthp)=
∞∑
k=0

Ξpγ

(
k + 1,

γthpβpN0

αPsQp

)
, (10)

where Ξp=
αp(mp)kδ

k
p

(k!)2βk+1
p

with (a)k=
Γ(a+k)
Γ(a) [13] and γ (a, x) =∫ x

0
e−tta−1dt represents the incomplete Gamma function [13,

Eq. (8.350.1)]. Substituting (9) and (10) into (8), we can get
the OP of User p.

2) OP of User q: According to the principle of the decode-
and-forward (DF) relaying strategy and the maximal ratio
combining (MRC) scheme, the output SINR at User q can
be expressed as γq =min

{
γp→q, γ

1
q + γ2

q

}
. Thus, the OP of

User q can be expressed as

Poutq (γthq)=1−
[
1−Fγ1

q+γ2
q
(γthq)

] [
1−Fγp→q (γthq)

]
. (11)

Due to the fact that Fγp→q
(γthq) in (11) has been obtained

by (9), the remaining task is to compute Fγ1
q+γ2

q
(γthq), which

can be re-expressed as

Fγ1
q+γ2

q
(γthq) = Pr

(
γ1
q ≤ γthq − γ2

q , γ
2
q ≤ γthq

)

=



∫ ∆

0

F|hq|2 [g (z)]f|hpq|2 (z) dz︸ ︷︷ ︸
I1

, 1−α
α ≥γthq

∫ ∆

∆(1− 1−α
αγthq

)

F|hq|2 [g (z)]f|hpq|2 (z) dz︸ ︷︷ ︸
I2

+

∫ ∆(1− 1−α
αγthq

)

0

f|hpq|2 (z) dz︸ ︷︷ ︸
I3

, 1−α
α <γthq

, (12)

where g (z)=
γthqN0(1−z/∆)

PsQq(1−α−αγthq(1−z/∆)) with ∆=
γthqδ

2

PpQpq
. Since

PDFs of |hq|2 and |hp|2 have the same form, following similar
steps as those in the derivation of Fγp (γthp), we get

F|hq|2 [g (z)] =
∞∑
k=0

Ξqγ (k + 1, g (z)βq), (13)
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I1 =
∞∑
k=0

Ξq

∞∑
n=0

(−1)
n+r

βw
q N

w
0 γ−l

thq

n!wPw
s Qw

q Γ (m)

∞∑
l=0

(
−w
l

)
(1− α)

l

(−α)
w+l

∞∑
r=0

(ξ∆)
m+r

r! (m+ r)
2F1 (l,m+ r;m+ r + 1; 1). (14)

I2=

∞∑
k=0

Ξq

∞∑
n=0

(−1)
n+r

βw
q N

w
0 γ−l

thq

n!wPw
s Qw

q Γ (m)

∞∑
l=0

(
−w
l

)
(1−α)

l

(−α)
w+l

∞∑
r=0

(ξ∆)
m+r

r! (m+r)
2F1 (l,m+r;m+r+1; 1)

[
1−

(
1− 1−α

αγthq

)r+m
]
. (15)

where Ξq =
αq(mq)kδ

k
q

(k!)2βk+1
q

. By substituting (7), (13), and the
expression of g(z) into (12), expanding γ (k + 1, g(z)βq)
and e−ξx into series representations with [13, Eq. (8.354.1)]
and [13, Eq. (1.211.1)], respectively, and utilizing [13, Eq.
(3.194.1)], I1 defined in (12) can be derived as (14), in which
w = n + k + 1 and 2F1 (·) represents the hypergeometric
functions [13, Eq. (9.100.1)]. Then, based on (14), I2 can
be derived as (15) by applying the Newton-Leibniz formula∫ b

a
f (x) dx = F (b) − F (a). At last, I3 can be derived by

inserting (7) into (12) and applying [13, Eq. (3.381.1)], as

I3 =
γ
(
m, ξ∆

(
1− 1−α

αγthq

))
Γ (m)

. (16)

Substituting (9) and (12)–(16) into (11), we can obtain the OP
of User q.

The OP of the considered network is defined as the event
that neither User p nor User q can detect information reliably
[9], i.e., Pout = 1 − [1− Poutp (γthp)] [1− Poutq (γthq)].
Substituting (8) and (11) into this equation, we can directly
obtain the OP of the proposed system.

B. Ergodic capacity

The ergodic capacity is defined as the expected value of the
instantaneous end-to-end mutual information [3]. In this letter,
it can be written as

Eerg = E [log (1+γp)] + E [log (1+γq)] . (17)

Substituting (2) and (5) into (17), we have

E [log (1+γp)]

(a)
=

1

ln 2

∫ ∞

0

G1,2
2,2

[
αPsQpy/N0

∣∣∣∣ 1, 1
1, 0

]
f (y) dy

(b)
=

αpβ
−1
p

ln 2Γ (mp)
G1,1,2,1,1

1,[1:2],0,[2:2]


−δp
βp

αPsQp

βpN0

∣∣∣∣∣∣∣∣
1, 1

1−mp; 1, 1
−−

0, 0; 1, 0

 , (18)

where G [·|·] denotes the Meijer-G functions [13, Eq. (9.301)].
Here, (a) is obtained by expanding log (1+x) into Meijer-G
functions with the aid of [14, Eq. (11)], (b) arises by expanding
1F1 (a; b; c) in (2) into Meijer-G functions according to [13,
Eq. (9.34.8)] and applying [15, Eq. (2.6.2)].

According to the output SINR at User q, we have

E[log(1+γq)]=min
{
E
[
log(1+γp→q),E

[
log

(
1+γ1

q+γ2
q

)]]}
. (19)

We define Ψ1 and Ψ2 to denote the first and second expected
values of (19), respectively. Based on (4) and the rules of
Logarithm, Ψ1 can de further derived as

Ψ1=E

[
log

(
1+

Ps

N0
Qp |hp|2

)]
−E

[
log

(
1+

αPs

N0
Qp |hp|2

)]
. (20)

Note that the second expected value of (20) has been obtained
by (18), the first term of (20) can also be derived by following
similar steps. Since Ψ2 consists of two different fading dis-
tributions and its PDF is mathematically intractable. Here, we
seek to consider the approximation expression for Ψ2, which
can be obtained as [3]

Ψ2≈
1

2 ln 2

ln(1+E
[
γmrc
q

])
−
E
[(
γmrc
q

)2]−(
E
[
γmrc
q

])2
2
(
1 + E

[
γmrc
q

])2
 , (21)

where γmrc
q =γ1

q+γ2
q . Due to the independence of |hq|2 and

|hpq|2, we have E
[
γmrc
q

]
=E

[
γ1
q

]
+E

[
γ2
q

]
and E

[(
γmrc
q

)2]
=

E
[(
γ1
q

)2]
+E

[(
γ2
q

)2]
+2E

[
γ1
q

]
E
[
γ2
q

]
. Firstly, we compute

the η-order moments (η = 1, 2) of γ1
q , as

E
[(
γ1
q

)η]
=

∫ ∞

0

(1−α)
η
P η
s Q

η
qy

η

(αPsQqy +N0)
η f (y) dy. (22)

Expressing 1F1 (mq, 1, δqy)=
∞∑
k=0

(mq)kδ
k
q

(k!)2
yk according to [13,

Eq. (9.100.1)] and utilizing [16, Eq. (2.3.6.9)], we can get

E
[(
γ1
q

)η]
= αq

∞∑
k=0

(1−α)
η
(mq)k δ

k
q

(k!)
2
(αPsQqN

−1
0 )1+k

Γ (k + η + 1)

×Ψ

(
k + η + 1, k + 2;

βqN0

αQqPs

)
, (23)

where Ψ(·) is the confluent Hypergeometric function [13, Eq.
(9.210.2)]. Then, substituting (7) into (6) along with [13, Eq.
(3.381.4)], the η-order moments of γ2

q can be derived as

E
[(
γ2
q

)η]
=

P η
p G

η
pqΓ (m+η)

Γ (m) ξηδ2η
. (24)

Thus, (21) can be obtained via (23) and (24) with η = 1, 2.
At last, by substituting (18) and (21) into (17), the ergodic

capacity of the considered system can be obtained.

IV. NUMERICAL RESULTS

This section provides numerical results to corroborate our
theoretical results and show the superiority of introducing
the C–NOMA scheme to the HSTRNs. Here, we set the
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Fig. 1. The OP of the considered system versus Ps=Pp with various values
of α, γth, and m.
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Fig. 2. Ergodic capacity versus Ps=Pp with different values of α and m:
(a) the sum capacity and (b) each user.

carried frequency to be 2 GHz, Gs = 52.1 dBi, φp = 0.1◦,
φq = 0.8◦, φp3dB = φq3dB = 0.3◦, u = 2, dpq = 1 Km,
γthp = γthq = γth, Ω=1, and Gp =Gq =3.5 dBi. Moreover,
we assume that User p undergoes an infrequent light shad-
owing (ILS) with (mp, bp,Ωp) = (19.4, 0.158, 1.29), while
User q experiences a frequent heavy shadowing (FHS) with
(mq, bq,Ωq)=

(
0.739, 0.063, 8.97× 10−4

)
[2], [12].

We first conduct numerical simulations to show the impact
of various parameters on the OP performance of the considered
network, as depicted in Fig. 1. It can be seen that the OP
performance degrades when either the outage threshold γth
increases, or the power allocation factor α increases, or the
fading severity parameter m decreases. The reason behind is
that an outage of the considered system happens when any
user can not achieve a reliable detection, while the OP of
User p given in (8) or that of User q given in (11) degrades as
α or γth increases. Meanwhile, a more favourable condition
is achieved when m is larger. Moreover, we can see that the
analytical results agree well with the Monte Carlo simulations.

Then, we analyze ergodic capacity of two schemes. The er-
godic sum capacity with different parameters is firstly studied
in Fig. 2(a), from which we can see that the capacity curves
with the C–NOMA scheme outperform those with the TDMA
scheme. That is because in two time slots, multiple users can
access in the C–NOMA scheme, while only one user whose
direct link is deteriorated and helped by a DF relay node can
be served with the TDMA scheme. Moreover, we note that the
values of α and m have little effect on the proposed system
performance. This phenomenon can be explained by the fact
that the γq always equals to γp→q when γp→q ≤ γ1

q + γ2
q .

Thus, the ergodic sum capacity of the proposed system can be
derived as Eerg = E[log(1+PsQp |hp|2 /N0)]. Furthermore,
the ergodic capacities of each user are depicted in Fig. 2(b).
As illustrated, capacity curves of User q with the C–NOMA
scheme are first superior and then at some point inferior to
those with the TDMA scheme. The point occurs at a lower
transmit power for a larger α. This implies that with a suitable
α, the performance of the user with deteriorated channel
quality can be further improved with the C–NOMA scheme
when the transmit power is not high. It can also be observed
from Fig. 2(b) that the more power allocated to User p, i.e.,
α gets larger, the better the ergodic capacity of User p is, but
the worse the performance of User q is.

V. CONCLUSIONS
In this letter, we have investigated the performance of

downlink HSTRNs with the C–NOMA scheme. In particular,
we have derived the exact expression for the OP of the
considered system. Then, the ergodic capacity has also been
analyzed. Simulation results have been provided to show the
effect of different channel parameters, the power allocation
factor, and the threshold on the system performance. Our
findings suggest the superiority of intrducing the C–NOMA
scheme in downlink HSTRNs.
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