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Abstract 

This thesis addresses the problem of road intersection safety with regard to a mixed 
population of automated vehicles and non-automated road users. The work derives 
and evaluates safety-critical scenarios at road junctions, which can pose a particular 
safety problem involving automated cars. A simulation and evaluation framework for 
car-to-car accidents is presented and demonstrated, which allows examining the safety 
performance of automated driving systems within those scenarios. 

Given the recent advancements in automated driving functions, one of the main 
challenges is safe and efficient operation in complex traffic situations such as road 
junctions. There is a need for comprehensive testing, either in virtual testing 
environments or on real-world test tracks. Since it is unrealistic to cover all possible 
combinations of traffic situations and environment conditions, the challenge is to find 
the key driving situations to be evaluated at junctions.  

Against this background, a novel method to derive critical pre-crash scenarios from 
historical car accident data is presented. It employs -medoids to cluster historical 
junction crash data into distinct partitions and then applies the association rules 
algorithm to each cluster to specify the driving scenarios in more detail. The dataset 
used consists of 1,056 junction crashes in the UK, which were exported from the in-
depth “On-the-Spot” database. The study resulted in thirteen crash clusters for T-
junctions, and six crash clusters for crossroads. Association rules revealed common 
crash characteristics, which were the basis for the scenario descriptions. 

As a follow-up to the scenario generation, the thesis further presents a novel, modular 
framework to transfer the derived collision scenarios to a sub-microscopic traffic 
simulation environment. The software CarMaker is used with MATLAB/Simulink to 
simulate realistic models of vehicles, sensors and road environments and is combined 
with an advanced Monte Carlo method to obtain a representative set of parameter 
combinations. The analysis of different safety performance indicators computed from 
the simulation outputs reveals collision and near-miss probabilities for selected 
scenarios. The usefulness and applicability of the simulation and evaluation 
framework is demonstrated for a selected junction scenario, where the safety 
performance of different in-vehicle collision avoidance systems is studied. The results 
show that the number of collisions and conflicts were reduced to a tenth when adding 
a crossing and turning assistant to a basic forward collision avoidance system. 

Due to its modular architecture, the presented framework can be adapted to the 
individual needs of future users and may be enhanced with customised simulation 
models. Ultimately, the thesis leads to more efficient workflows when virtually testing 
automated driving at intersections, as a complement to field operational tests on 
public roads. 
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1 Introduction  

1.1 Research problem 

Current developments and ambitions for the future of the road transport system are 
now working towards automated driving. Over the past few years, automation of 
road vehicles has gained an increasing presence on the agendas of companies and 
public authorities. OEMs and their suppliers, as well as the European Commission, 
have started to push Automated Driving Systems (ADS) into the forefront of research 
(Jääskeläinen, 2013). The word “autonomous” stems from the Greek word 
“autonomos”, meaning “having one’s own laws”(Oxford Dictionaries, n.d.). With the 
rise of autonomous vehicles on public roads, it hence seems obvious that they must 
have their own principles and that they cannot just take over human principles in 
order to function properly1. The introduction of self-driving vehicles of whatever level 
of automation necessitates a shift of “laws”, both in a legal and in a technical sense. 
This shift also involves a change in road safety policy as well as road infrastructure 
management and maintenance.  

Concerning road safety, it is still not clear what impact automated vehicles can have 
on crash risk, and what kinds of (new) risks they might cause. In particular, the safety 
risks coming with a mixed vehicle population, namely traffic with both driverless and 
driver-operated vehicles are still subject to research. While automated cars and their 
onboard sensors have better capabilities to recognise their environment compared to 
the human drivers, they have limitations, e.g. in challenging urban traffic situations, 
inclement weather conditions or when facing unexpected behaviour of traffic 
participants.  

On spots in a road network, where traffic conflicts are likely to occur, e.g. at 
intersections, it must be ensured that automated vehicles can operate safely and 
efficiently, and even more important, that conventional vehicles driven by humans will 
have the same safety level as they have now. Figure 1 illustrates the transition phase 
from the safety situation nowadays to the one coming with automated vehicles in 
public road traffic. While nowadays the nature and distribution of crashes is widely 
known based on historical accident data, the future situation can only be assessed by 
assumptions, since automated cars are not yet widely spread on public roads. Hence, 
it is neither entirely clear what crash risks can be expected nor how much the overlap 
to the existing situation will be. Which crash types might become negligible in road 
safety policy, and what new crash types will come with automated driving? 

The technical reliability of ADS depends on the functionality under varying road 
infrastructure and environment conditions as well as on a safe interplay with 

                                                 
1 A further definition of different automation levels is given in Section 2.1, but it should be clarified at 
this point that automated driving can still involve a human driver, although he or she does not have to 
permanently monitor the traffic environment anymore, as this is done by the vehicle. 
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traditional vehicles and vulnerable road users. Consequently, verification and 
validation procedures2 for those systems are paramount. There is a need for 
comprehensive testing, either in virtual environments or on real-world test tracks. 
While in some countries testing on public roads has been allowed, all OEMs use 
virtual testing methods to evaluate their vehicle systems’ functionality and reliability. 
Apart from driving simulators, there are different levels of simulation, ranging from 
macroscopic to microscopic analysis of traffic. The so-called sub-microscopic 
simulation level refers to the most detailed scale of investigation, because single 
vehicles are simulated using physical models, e.g. for tires, suspension, engine or 
sensors, and their interaction with the surrounding road area can be studied. While 
microscopic traffic simulation is normally used to evaluate traffic flow for 
transportation system design, traffic operations and management alternatives 
evaluation, sub-microscopic simulation is applied to validate vehicle systems and 
components in particular situations.  

 

Figure 1: Gap of knowledge on crash risks in a mixed vehicle population 

Simulation is an appropriate method for studying complex systems that are 
inaccessible through direct observation and real-world measurement, because they 
create abstractions of the system (Lamotte et al., 2010). Those abstractions are made 
by modelling traffic including vehicle systems, sensors, road environment and driving 
behaviour. The current problem in this respect is how to ensure realistic and 
representative behaviour of the models. On the one hand, real-world data can be 
processed to create models, e.g. pre-crash behaviour from accident studies. On the 
other hand, valid and representative assumptions must be made for the parameters, 
where limited data is available. 

Maximum reliability of ADS must be achieved even in the rarest events that can occur 
in traffic. This leads to another challenge, namely to find the key driving situations to 
be evaluated. The space of possible scenarios is spanned by many dimensions, such as 
road geometry, the behaviour of the driver and other participants, weather conditions, 
vehicle characteristics, component faults and others (Tatar, 2016). Since it is 
unrealistic to cover all possible combinations of traffic situations and environment 

                                                 
2 A simple way to explain the difference between those terms is: Are we building the product right? 
(Verification) And, are we building the right product? (Validation) 

Crash risks 
nowadays

Assessable based 
on historical data

Crash risks in a 
mixed vehicle 
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Unknown, 

assessable based 
on assumptions

Fully automated 
road traffic 

overlap 
unclear 

FUTURE/FICTION? 



3 

 

conditions, the most representative “benchmark” scenarios must be known. The 
automotive industry is still seeking these key scenarios (Lemmer, 2017; Pütz et al., 
2017). There may be different testing scenarios depending on which issue is targeted. 
For example, targeting at maximum casualty reduction for vulnerable road users will 
require different testing measures than just targeting at the vehicles’ full functionality.  

As road intersections are locations, where the paths of multiple traffic participants are 
crossed, they are considered high-risk spots for safety researchers. For automated 
vehicles, road intersections of whatever type constitute a major point of interest along 
their routes due to the increased likelihood of conflicts with other road users. 
Therefore, intersections play a particularly important role in testing assisted and 
automated driving. Automated vehicles should be capable of safely manoeuvring 
through an intersection and of avoiding or mitigating a collision. Intersection 
assistance systems, also denoted as intersection crash avoidance and mitigation 
systems (ICAMS), can be either vehicle-based or infrastructure-based. The latter type 
of systems, e.g. roadside-based warnings communicated to the vehicles can assist 
vehicle-based ICAMS, which have limitations in adverse conditions and particular 
situations. However, there is still no commercially available intersection assistance 
system for automated vehicles on the market. There is a need to evaluate those 
systems on a large variety of intersection layouts and characteristics, taking into 
account the most critical combinations of collision parameters.  

The assessment of testing scenarios is commonly based on safety indicators, which can 
be used to measure the spatial and temporal proximity of safety-critical events, 
assuming that they have an established relationship with accidents (Archer, 2005). 
Hence, the safety evaluation of simulation runs should not only result in collision 
probabilities, but also in near-miss probabilities. There has been significant research 
on appropriate indicators to evaluate the severity of road conflicts (Archer, 2005; 
Bagdadi, 2013; Brown, 2005; De Ceunynck, 2017; Laureshyn et al., 2017, 2010; 
Mahmud et al., 2017), but only a few studies have investigated indicators for 
simulated junction scenarios in particular. Since such indicators are the most 
important elements of a virtual testing procedure, there is a need to establish a 
profound method to assess the safety performance of ICAMS. 

In summary, the research problem addressed by this thesis comprises two issues: First, 
to ensure that automated vehicles can operate safely and efficiently at road 
intersections. Second, to identify the key scenarios and virtual testing procedures for 
evaluating intersection assistance for ADS.  

1.2 Objectives and research questions 

The objective of the thesis is to provide a novel validation tool for testing the safety of 
automated vehicles in road junction environments. This tool is realised in the form of 
a simulation and evaluation framework, which leads to more efficient workflows 
when virtually testing ICAMS. The work includes the development of a method to 
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generate safety-critical testing scenarios from accident data, a method to virtually 
reconstruct and evaluate the scenarios as well as the application of indicators to 
quantify the safety performance of ICAMS. 

The thesis primarily targets the automotive and supply industry to test and develop 
vehicle sensors and automated driving systems in a more efficient way. Furthermore, 
the thesis enables the systematic testing of roadside-based ICAMS, which helps 
infrastructure providers or manufacturers to evaluate the effectiveness. The 
framework is to be designed in a modular architecture, which can be adapted to the 
individual needs of future users and enhanced with customised models. Accordingly, 
the following research questions are addressed in this thesis. 

RQ1. Which technical hurdles and challenges do ADS currently have to overcome?  
 Literature review (Chapter 2) 

 Expert survey (Chapter 4) 

RQ2. What are the state-of-the-art technologies to enable automated driving in 
junction environments? 
 Literature review (Chapter 2) 

RQ3. What are the current collision scenarios at three- and four-legged at-grade 
junctions and how can they be clustered from historical accident data? 
 Initial analysis of accident data (Chapter 4) 

 Identification of critical scenarios from crash data (Chapter 5) 

RQ4. How can those collision scenarios be represented and enhanced for sub-
microscopic simulation to evaluate the safety performance of intersection 
assistance systems?  
 Development of a modular simulation and evaluation framework (Chapter 6) 

RQ5. What general recommendations can be made for the safety performance 
indicators to be considered in virtual testing of ADS at junctions? 
 Safety performance evaluation (Chapter 6.5) 
 Discussion and conclusions (Chapter 7) 

1.3 Scope and contributions 

This thesis deals with safety aspects of automated road transport. The scope is limited 
to at-grade road intersections involving all types of three- and four-legged junctions, 
i.e. excluding roundabouts. This limitation has been chosen due to the following 
reasons: 

 Every third accident occurs at a junction, which can therefore be considered as 
a relevant risk area for road safety(European Commission, n.d.). 
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 Junctions have more conflict points between road user paths than other road 
areas. Hence, passing an intersection constitutes a complex and challenging 
driving task for ADS (European Commission, 2015). 

 Elvik and Vaa (2004) state that the total number of accidents is significantly 
reduced when converting intersections to roundabouts, e.g. due to fewer 
conflict points, lower speeds or avoidance of 90 degrees angles etc. As 
mentioned in the previous section, this thesis presents a framework to test 
automated vehicle systems in challenging intersection scenarios. Roundabouts 
were excluded from the analysis, because risks that come with sight 
obstructions and crossing road users are mitigated to some extent by the safe 
design of roundabouts. Also, the different design principle of a roundabout 
limits the number of parameter variations compared to other junctions. For 
example, the directions of travel, the driving manoeuvres or the yield 
instructions do normally not vary at roundabouts. However, this exclusion 
does not restrict the methodology and applicability of this thesis, because the 
provided framework can be adapted to evaluate roundabouts as well. 

 Vehicle sensors and automated driving technologies struggle with complex 
traffic environments that involve many different road users or sight 
obstructions (Templeton, n.d.). A profound investigation of intersection safety 
would contribute to the near-term challenges coming with the deployment of 
automated vehicles, especially on non-motorway roads or in urban areas. 

As the research questions imply, the thesis investigates how collision scenarios derived 
from accidents in driver-operated traffic can be utilised for virtual, simulation-based 
testing, where an automated driving system replaces the driver. At the moment, there 
are limited European regulations on validating the reliability of highly automated 
road vehicles. Standardized procedures for evaluating automated driving systems are 
highly relevant to guarantee high safety in a varying environment. To this end, this 
research will contribute to the development of novel vehicle environment recognition 
systems (e.g. visual or LIDAR –based systems) and infrastructure-based intersection 
assistance systems by providing the following main outputs: 

1. Pre-crash scenarios for testing ADS at intersections, taking into account 
different intersection characteristics as well as interplay with non-automated 
vehicles: A novel method to derive pre-crash scenarios from historical car 
accident data is presented. It employs -medoids to cluster historical junction 
crash data into distinct partitions and then applies the association rules 
algorithm to each cluster to specify the driving scenarios in more detail. 

2. A sub-microscopic simulation framework to virtually reconstruct and evaluate 
collision scenarios for automated cars under various conditions and in 
different junction sceneries: The framework uses physical models for vehicles 
and their sensors as well as accurate road environment models and applies the 
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Monte-Carlo method to sample a representative set of parameter 
combinations.  

3. Safety performance indicators as metrics to quantify the impact of in-vehicle 
or roadside-based intersection assistance systems on collision and near-miss 
risk: Those indicators are a direct output of the simulation framework. 

1.4 Thesis structure and chapter summary 

The thesis is structured as depicted in Figure 2. The background on the topic as well 
as existing work and findings are reviewed in Chapter 2, by summarising literature on 
current challenges and technologies for automated driving, the particular safety 
problems at intersections, technology-based solutions for avoiding or mitigating 
intersection accidents as well as current testing and validation procedures. Finally, 
Chapter 2is concluded with a definition of research gaps to be addressed by this 
thesis. It addresses the research questions 1 and 2. 

 

Figure 2: Structure of the thesis chapters 

In Chapter 3, the overall research design is described. This is done for all three 
research studies within the thesis, respectively, and gives a complete picture of the 
methods used. The first research study is presented in Chapter 4, which sets the scope 
for the further studies. It presents a web expert survey conducted to identify current 
challenges and influencing factors for the performance of automated vehicles, 
followed by a descriptive analysis of historical junction accident data. Hence, the 
expert survey enhances the literature review and addresses research question 1, while 
the accident analysis provides initial findings for research question 3. 

The conclusions from the scoping study lead to the second study, which is explained 
in Chapter 5. It deals with the clustering of in-depth crash data to identify safety-
critical scenarios at junctions and addresses research question 3. 

Chapter 3
Research Methodology

Overall research design and methods

Chapter 2
Literature Review

Background and gaps addressed

Chapter 4
Study 1

Scoping and initial accident analysis

Chapter 5
Study 2

Critical scenarios from crash data

Chapter 6
Study 3

Simulation and evaluation framework

Chapter 7
Discussion and Conclusions

Synthesis of study results
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Chapter 6 follows up on the clustering analysis and presents a novel methodology that 
aims to transfer the derived collision scenarios to a sub-microscopic traffic simulation 
environment, where the safety performance of automated driving functions can be 
evaluated. The usefulness and applicability of the simulation methodology is 
demonstrated for a selected junction scenery, where the safety performance of two 
different intersection assistance systems is studied. This third study provides answers 
to the research question 4 and 5. 

Ultimately, the results from all three studies are synthesised in Chapter 7. It covers 
research question 5 by discussing virtual testing procedures. Limitations of the 
methods and the generalizability of the results are discussed, before the thesis is 
concluded with a summary and remarks for future work. 

1.5 Publications 

Throughout of the duration of the doctoral study, the following topic-related papers 
were published by the author (see full texts in Appendix H): 

Nitsche, P., Thomas, P., Stuetz, R., Welsh, R., 2017. Pre-crash scenarios at road junctions: A clustering 
method for car crash data. Accident Analysis & Prevention 107, 137–151. 

This journal paper was published in Accident Analysis and Prevention in October 
2017. It presents the method and results from study 2, i.e. a novel data analysis 
method including the preparation, analysis and visualisation of car crash data, to 
identify the critical pre-crash scenarios at three- and four-legged junctions as a basis 
for testing the safety of automated driving systems. 

Nitsche, P., Mocanu, I., Reinthaler, M., 2014a. Requirements on Tomorrow‘s Road Infrastructure for 
Highly Automated Driving, in: The 3rd International Conference on Connected Vehicles & Expo 
(ICCVE 2014). Vienna, Austria. 

This paper was submitted to the ICCVE conference 2014 in Vienna. It summarises the 
web survey results from the scoping study, where ADS was distinguished into lane 
assistance systems, speed control systems and collision avoidance systems. The paper 
was selected for oral presentation, which was held by the co-author Martin Reinthaler 
due to unavailability of the main author. The paper was published in the conference 
proceedings. 

Mocanu, I., Nitsche, P., Saleh, P., 2015. Highly automated driving and its requirements on road planning 
and design, in: Proceedings of the 25th PIARC World Road Congress. Seoul, Korea. 

This paper was submitted to the PIARC World Road Congress 2016 in Seoul. It is an 
extension to the ICCVE paper from 2014, by summarising the literature review of the 
scoping study, the web survey results and by giving implications on road planning and 
road design principles. The latter part of the paper was not part of the PhD activities 
and was written by Isabela Mocanu and Peter Saleh. The paper was selected for 
poster presentation, which was done by Philippe Nitsche. Additionally, the authors 
were invited to present the paper in a special plenum session, which was done by 
Philippe Nitsche. 
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2 Literature review 

This chapter summarises the literature review carried out and is concluded with 
research gaps addressed by the thesis. Each literature review section is condensed by 
listing the most important findings. 

2.1 The state of play concerning automated driving 

There are different terms used for automated cars, among which are autonomous, 
self-driving, driver-less or robot cars. However, it is argued that automation and 
connectivity are strongly linked (ERTRAC, 2017). Hence, automated cars will have to 
be connected and to receive data from “the outside” such as digital map updates, 
dynamic traffic or route information or hazard warnings. The car can thus not be 
called “autonomous” anymore. Therefore, this thesis henceforth uses the term 
“automated”. 

2.1.1 Evolution vs. revolution 

Automated vehicles were not brought to market directly, but were introduced 
incrementally due to different reasons concerning legal, technical, economical and 
other barriers. This step-wise introduction can be called an evolution instead of a 
revolution (Vanholme et al., 2013). This viewpoint is argued with the fact that 
Advanced Driver Assistance Systems (ADAS) have built the bridge towards automated 
driving, with clear evolutionary steps from basic stability assistance such as the Anti-
Lock Braking System (ABS) to more sophisticated technologies.  

 

Figure 3: Evolution vs. revolution in automated road transport  

As depicted in Figure 3, automated parking, Autonomous Emergency Braking (AEB), 
Adaptive Cruise Control (ACC) and Lane Keeping Assist (LKA) are examples of 
technologies that have been brought into the market in the past decade. Among 
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others, these systems have enabled partial automation in certain driving situations 
with the aim of increasing travel comfort, safety and efficiency. On the other hand, 
new players such as Google, Tesla or Navya have started to produce automated 
vehicles, which can be seen as a revolutionary step. Automated vehicles were built 
from scratch, mostly based on electric drive technologies.  

2.1.2 Levels of automation 

The American National Highway Traffic Safety Administration (NHTSA, 2013), 
Germany’s Bundesanstalt für Straßenwesen BASt (Gasser, 2012) and the Society of 
Automotive Engineers (SAE, On-road Automated Vehicle Standards Committee 
(2014) have introduced certain levels of automation, which differ in the extent of 
human driver involvement. The European industry has agreed to use the SAE levels 
from 0 to 5 as common understanding of automated driving (see Figure 4) and 
therefore, this thesis refers to those levels in the further chapters.  

 

Figure 4: Levels of vehicle automation (adapted from ERTRAC, 2017) 

There is a clear shift from level 2 (partial automation) to level 3 (conditional 
automation), namely that the vehicle system takes over the monitoring of the driving 
environment. While in level 3, the driver still has to take over vehicle control 
appropriately if requested, level 4 (high automation) does not require the driver to 
respond in time, at least for a certain amount of time or travel route. Promising near-
future systems of level 4 are the highway pilot or parking garage pilot, as certain car 
manufacturers name them. Level 5 (full automation) is the only level where the human 
driver is fully kept out of the loop from source to destination, or might not even be 
present in the car. The latter level is often called “robot car”, e.g. particularly 
interesting for car sharing companies to relocate their fleet. 
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While level 1 and 2 systems are already on the market (e.g. adaptive cruise control, 
stop &go functionality, lane keeping assist), little market research can be found about 
the timescale of introducing level 3 to 5 on European roads. However, experts 
estimate fully automated cars to be ready not before 2025, although the area of use 
must be considered. For example on highways, highly automated vehicles are 
expected earlier than on urban roads (ERTRAC, 2017). 

2.1.3 Current challenges 

Many prototypes of automated vehicles have been developed and demonstrated in 
recent years, originally initiated in the USA by the DARPA Grand Challenges (2004 
and 2005) for autonomous land vehicles or the DARPA Urban challenge in 2007 
(Buehler et al., 2009). Nowadays, the rapid developments in automated driving 
technologies encouraged European organisations to establish real-world testing areas 
for automated vehicles. Examples for such test sites are AstaZero (Chalmers, 2014), 
the IDIADA testing grounds in Spain, DRIVE-ME (Volvo Car Group, 2013) in 
Sweden, the A9 Digital Motorway Testbed (BMVI, n.d.) and the Testfeld 
Niedersachsen (DLR, n.d.) in Germany, AlpLab in Austria (“AlpLab - Die Zukunft 
des Fahrens,” 2017) or several test sites in the UK (Burn-Callander, 2015; Council, 
n.d.; TRL, 2014). The overall goal of those real-world tests is to reveal challenges and 
problem areas when driving on public roads. Among the most important known 
challenges for ADS, as published in various papers (Dokic et al., 2015; ERTRAC, 
2017; iMobility Forum, 2013), are: 

 Environment detection, perception and prediction: The capability to perceive a 
vehicle’s environment with high accuracy and reliability is crucial for ADS. 
The performance of environment sensors must meet regulatory requirements, 
and sensor fusion techniques must be further investigated and applied. 
Furthermore, robustly predicting other road users’ trajectory and movements 
will be a central part of future research. 

 Reliability and safety of technology: Reliable and safe system performance is a 
prerequisite for implementing automated driving. This involves a fault-tolerant 
architecture, but more importantly, the technological readiness must be 
demonstrated to convince public decision makers. 

 Common validation and testing procedures: A common validation procedure 
is required to test ADS under all circumstances including varying road 
infrastructure and environmental condition or false usage. Issues such as key 
performance indicators, certification procedures and cost-effectiveness are still 
subject to research. 

 Interplay with the road infrastructure: Basic research is needed on what 
adaptations existing roads require for implementing self-driving vehicles. Or 
vice versa, what minimum requirements do vehicles need to function properly. 
This also includes digital infrastructure, such as level of connectivity and data 
provision. 
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 Human factors: The automation level 3 still involves the driver in certain 
phases, so that behavioural factors, situation awareness and intuitive usability 
must be ensured, especially when handing over control. This involves research 
areas such as human-machine interface (HMI) design or long-term effect 
studies. 

 Users’ and societal acceptance: Besides affordability, which is, without doubt, 
a major acceptance hurdle, safety, trust, data security and privacy play an 
important role. Research is needed to identify the benefits of ADS to raise 
public awareness about the impacts of ADS on society. However, also the 
negative effects need to be investigated. 

 Traffic management: A further challenge is to identify the role and tasks of 
traffic management systems in the world of automated vehicles. Research is 
needed on the level of supervision of automation, cooperation and 
communication with vehicles or new logistics applications. 

 Liability and legal aspects: Legal issues have to be regulated and harmonised 
for maintaining Europe’s competition in the automotive section compared to 
the US. It must further be clarified, how insurance companies can adapt their 
liability models considering the new requirements with ADS.  

 Data security: On the one hand, data security needs further research on 
reliable and secure vehicular communication and data storage or accessibility. 
On the other hand, this also involves issues such as data ownership. 

Recent developments regarding sensing, perception and trajectory planning, as 
summarised by Okuda et al. (2014), show promising improvements. This includes 
vision-based algorithms for object recognition, Simultaneous Localization and 
Mapping (SLAM, Lategahn et al., 2011) and sophisticated path and motion planning. 
Keeping these technologies in mind, the following chapter focuses on the challenges 
from an engineering point of view. Legal and societal challenges as well as human 
factors certainly constitute major barriers for ADS introduction on a large scale, but 
are not addressed by this thesis. 

2.1.4 European research projects 

The EU projects SCOUT (Safe and Connected Automation in Road Transport) and 
CARTRE (Coordination of Automated Road Transport Deployment for Europe) are 
coordination and support actions that have built a joint initiative called CAD 
(Connected and Automated Driving) to support the development of clearer and more 
consistent policies. On their website3, the initiative lists all completed and ongoing 
research projects and field trials dealing with automated road transport. Table 1 gives 
all ongoing projects, sorted by the project end date. When looking at the scope of 
those projects, it can be seen that the focus of current European research points 
towards 1) real-world testing areas and pilot sites, 2) validation procedures for 

                                                 
3 https://connectedautomateddriving.eu/, accessed on 11 July 2018. 
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sensors, in particular in adverse weather conditions and 3) integration of cooperative 
ITS in vehicle automation. 

Table 1: Ongoing European research projects (status: April 2018) 

Project name Countries Duration Description 

Digital Motorway Test Bed 
https://www.bmvi.de/SharedD
ocs/EN/Articles/DG/digital-
motorway-test-bed.html  

DE 15.9.2015 – 
31.12.2022 

Test Bed on the A9 motorway in 
Bavaria, Germany 

C-ROADS 
https://www.c-
roads.eu/platform.html  

AT, BE, CZ, FI, FR, 
DE, HU, IE, NL, SI, 
CH, UK 

1.2.2016 – 
31.12.2020 

Open platform for interoperable C-
ITS services for European travellers 

TransAID 
https://www.transaid.eu  

DE, BE, FR, GR, NL, 
UK 

30.9.2017-
31.8.2020 

Transition Areas for Infrastructure-
Assisted Driving, traffic management 
procedures and protocols 

L3Pilot 
http://www.l3pilot.eu/ 
  

AT, BE, FI, FR, DE, 
GR, IT, NL, NO, SE, 
CH, UK 

1.9.2017 – 
31.8.2020 

Large-scale piloting of SAE Level 3 
functions, with additional assessment 
of some Level 4 functions 

INFRAMIX 
http://www.inframix.eu 

AT, DE, ES, GR 1.6.2017 – 
31.5.2020 

Road infrastructure to support the 
coexistence of conventional and 
automated vehicles 

ADAS&ME 
http://www.adasandme.com/ 

SE 9.1.2016 – 
29.2.2020 

ADAS development to incorporate 
driver state, situational/ 
environmental context and adaptive 
interaction 

AUTOPILOT 
http://autopilot-project.eu  

FI, FR, IT, NL 1.1.2017 – 
31.12.2019 

IoT integration into the automotive 
world to transform connected 
vehicles into highly and fully 
automated vehicle 

VI-DAS 
http://vra-net.eu/  

ES 1.9.2016 – 
31.8.2019 

Non-invasive, vision-based sensing 
technologies to enable contextual 
driver behaviour modelling 

MAVEN 
http://www.maven-its.eu/  

DE, NL, UK 1.9.2016 – 
31.8.2019 

Infrastructure assisted algorithms for 
the management of automated 
vehicles for trajectory and 
manoeuvre planning 

AutoMate 
 

DE 1.9.2016 – 
31.8.2019 

Novel driver-automation interaction 
and cooperation concept 

PEGASUS 
http://www.pegasus-
projekt.info  

DE 1.1.2016 – 
30.6.2019 

Standardized procedure for the 
testing and experimenting of 
automated vehicle systems in 
simulation, on test stands and in real 
environments 

DENSE 
http://dense247.eu  

BE, FI, FR, DE, NL, 
ES, SE 

1.6.2016 – 
31.5.2019 

Environmental sensing system for 
adverse weather conditions 

ENABLE-S3 
http://www.enable-s3.eu/  

AT + 73 partners 1.5.2016 – 
30.4.2019 

Virtual testing, verification and 
coverage-oriented test selection 
methods for automated systems 

AUTOC-ITS 
https://project.inria.fr/autocits/ 

FR, PT, ES 1.11.2016 – 
31.12.2018 

Enhancing C-ITS interoperability for 
autonomous vehicles through 3 pilots 

SCOOP@F 
 

AT, FR, PT, ES 1.1.2016 – 
31.12.2018 

C-ITS pilot deployment for 
validating hybrid communication 
(ITS-G5/3-4G) on five test sites 

Aurora 
http://www.liikennevirasto.fi/
web/en/e8-

FI 1.1.2016 – 
31.12.2018 

Test area for verification and 
validation of intelligent transport 
automation in real extreme weather 
conditions 
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aurora#.WY2CjsYlFaR  

UnCoVerCPS 
https://cps-
vo.org/group/UnCoVerCPS  

FR, DE, IT, ES, UK 1.1.2015 – 
31.12.2018 

Control and verification concepts for 
cyber-physical systems in unknown 
environments and unanticipated 
situations. 

Venturer 
http://www.venturer-
cars.com/  

UK 1.7.2015 – 
1.7.2018 

Test site facility for connected and 
autonomous vehicles in the South 
West UK. 

aFAS 
https://www.afas-
online.de/projektueberblick/  

DE 1.8.2014 – 
31.7.2018 

aFAS pilots driverless road 
maintenance utility vehicles on public 
motorways 

inLane 
https://inlane.eu  

AT, BE, FR, DE, NL, 
ES 

1.1.2016 – 
30.6.2018 

Development of a low-cost, lane-
level, precise turn-by-turn navigation 
application through the fusion of 
EGNSS and computer vision 
technology 

SocialCar 
http://socialcar-project.eu/  

BE, HR, HU, IT, LU, 
MK, PL, SI, ES, UK 

1.6.2015 – 
31.5.2018 

Intelligent transport system for 
carpooling in urban and peri-urban 
areas. 

RobustSENSE 
https://www.robustsense.eu/  

AT, FI, DE, IT, ES 1.6.2015 – 
31.5.2018 

Test bench for sensors of ADS to be 
validated in harsh environmental 
conditions 

ROADART 
http://www.roadart.eu/  

DE, GR, NL 1.5.2015 – 
30.4.2018 

Integration of ITS communication 
units into trucks to boost road safety 
(truck-to-truck and truck-to-
infrastructure systems) 

HIGHTS 
http://hights.eu/  

FR, DE, LU, NL, SE 1.5.2015 – 
30.4.2018 

High precision positioning system 
with the accuracy of 25cm for C-ITS 

SADA 
http://robotik.dfki-
bremen.de/en/research/project
s/sada-1.html  

DE 1.2.2015 – 
31.1.2018 

Smart Adaptive Data Aggregation, 
by linking data from mobile onboard 
sensors with data from stationary 
sensor infrastructure. 

UKAutodrive 
http://www.ukautodrive.com/  

UK 1.1.2015 – 
31.1.2018 

Programme for trialling automated 
vehicles in the UK, including sites in 
Coventry, Milton Keynes and the 
HORIBA-MIRA test track. 

GATEway 
https://gateway-
project.org.uk/  

UK 1.1.2015 – 
1.1.2018 

Pilot test site for automated shuttle 
buses in Greenwich, London 

Nordic Way 
http://vejdirektoratet.dk/EN/r
oadsector/Nordicway  

DK, FI, NO, SE 1.1.2015 – 
31.12.2017 

Pilot to enable vehicles to 
communicate safety hazards through 
cellular networks on a road corridor 
through Scandinavia. 

Drive Me 
http://www.volvocars.com/intl
/about/our-innovation-
brands/intellisafe/autonomous
-driving/drive-me  

SE 30.11.2012 – 
30.11.2017 

Large-scale autonomous driving pilot 
project in which 100 self-driving 
Volvo cars will use public roads in 
Gothenburg, Sweden 

HFAuto 
http://hf-auto.eu/  

DE, NL, SE, UK 1.11.2013 – 
31.10.2017 

Multidisciplinary research and 
training programme for human 
factors of automated driving 
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2.1.5 Findings 

In summary, the following findings about automated driving in general can be stated: 

 While traditional OEMs are advancing their driving assistance systems step-
wise towards automated driving, new players such as Google or Tesla 
revolutionised the market with their vehicles. 

 There is common agreement among the automotive industry to use the five 
levels of automation published by SAE. Accordingly, there is a clear shift from 
level 2 to level 3, where the vehicle system takes over the monitoring of the 
driving environment. 

 Highly or fully automated vehicles are far from operating perfectly, as there 
are still major technical challenges when it comes to robust environment and 
object perception, interplay with other road users and trajectory prediction. 

 There is a large number of ongoing research projects funded by the European 
Commission that address various challenges of automated road transport. The 
main focus points towards validation and verification procedures, either on 
public roads or in virtual environments. 

2.2 Current technologies for automated vehicles 

Automated vehicles employ numerous technologies to drive safely and efficiently 
through road traffic. This section summarises state of the art sensors, algorithms and 
methods for self-driving vehicles by describing their technical capabilities as well as 
limitations. There are different ways for structuring ADS technologies. For example, 
one option is to investigate the wide range of ADAS and to distinguish between 
stability assistance, longitudinal and lateral assistance (Vanholme, 2012).  

Stability assistance outperforms the driver in critical situations, e.g. by changing the 
speed or the trajectory, as done with systems like ABS, Electronic Stability Control 
(ESC, Liebemann et al., 2004) or Traction Control Systems (TCS, Emig and Schramm, 
1989; Maisch et al., 1993). These systems intervene when the limits of vehicle stability 
are reached, with almost no human controllability except the option to deactivate the 
function. 

Longitudinal assistance works continuously during the trip by controlling speed, 
braking or gear changing. An early application was the automatic transmission 
system, followed by cruise control and later Adaptive Cruise Control (ACC, Fancher 
et al., 2004; Yamamura et al., 2001), which keeps the target speed and safe distance 
to vehicles ahead, in stop-and-go or free flow traffic. As a next step, Intelligent Speed 
Adaptation (ISA) was developed to support drivers in keeping the prevailed speed 
limit, either by advising/warning the driver (e.g. visual or audio signals) or by active 
intervention, e.g. haptic or dead throttle (Brookhuis and de Waard, 1999; Carsten, 
2001; Lai et al., 2012; Partrouche, 2006). ISA requires precise information on actual 
speed limits and can therefore be based on visual recognition of speeds signs or on 
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updated digital maps, preferably on a combination of both. Regarding automated 
driving, ISA paved the way towards automated longitudinal control. 

The third type of driver assistance, namely lateral assistance, delivers support for 
drivers to stay within the lane or to change to another lane. Automotive 
manufacturers first introduced a Lane Departure Warning System (LDWS, Visvikis et 
al., 2013), followed by the Lane Keeping Assistant (LKA), which actively prevents 
lane departure by intervening in steering or braking. As driving often requires 
changing a lane or merging to another lane, automotive developers made progress in 
terms of lane change assistance systems. This increased complexity, since the positions 
and velocities of surrounding vehicles must be recognised by environment sensors, and 
the optimal timing of the lane change manoeuvre must be determined by intelligent 
algorithms (Tideman et al., 2007). 

However, since the categorisation into stability assistance, longitudinal and lateral 
assistance is based on ADAS, i.e. SAE automation level 1 and 2, only a combination 
of these assistance systems lead to a successful implementation of automated vehicles 
from level 3 to 5. Furthermore, collision avoidance is a core function of modern 
vehicles, but not included in the categories above. Therefore, another grouping similar 
to those reported by Okuda et al. (2014) or Lutin et al. (2013) is chosen for 
summarising the state of the art (see Table 2): 

 Sensing and perception: Sensing and perceiving the vehicle’s environment is an 
elementary task of automated vehicles. This includes the recognition of lane 
edges, other road users and objects mainly based on vision sensors. 

 Vehicular communication: Connectivity between vehicles (vehicle-to-vehicle, 
V2V) or between vehicles and roadside units (vehicle-to-infrastructure, 
V2I/I2V) is a main trend in automotive technologies and therefore considered 
an important aspect in ADS.  

 Route and motion planning: This group comprises techniques to find and 
follow a route to the desired destination as well as methods for short-term 
manoeuvre planning, e.g. lane changes, evasion manoeuvres or trajectory 
planning at intersections. Mapping technologies play a significant role in this 
category, as do collision avoidance and the imitation of human behaviour. 

Table 2: Categories of technologies applied to ADS 

Sensing and perception (3D) LIDAR 
Computer vision (Mono/Stereo vision) 
Radar 
Sonar sensors 
Data fusion methods 

Vehicular communication WiFi (IEEE 802.11) 
3G/4G LTE cellular networks 
Bluetooth 

Route and motion planning GNSS + Inertial sensors 
Digital maps 
SLAM 
Collision avoidance and mitigation systems 
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It is important to note that these three categories should not be seen as individual 
functions but as a joint system. For example, motion planning techniques also use 
information gathered from environment sensors or V2I/I2V or V2V messages.  

2.2.1 Sensing and perception 

Vehicle sensor technology comprises a variety of hardware elements, while perception 
includes the software to fuse information gathered by the different sensors. 
Nowadays, data fusion has become an essential function of ADS developments. 

The particular strength of LIDAR is the robust recognition of directly visible elements, 
independent of ambient light, e.g. during the night. Especially in combination with 
recorded digital LIDAR maps, this enables real-time vehicle localisation. Another 
advantage is its robustness against interference, which is the reason why LIDAR is 
preferred to radar4 in many applications. However, some drawbacks must be 
mentioned. First, besides the high costs that are expected to decrease in the upcoming 
years, most current devices are mounted outside, ideally on the vehicle roof, to 
function properly. This contradicts most automotive design principles, where all 
sensors are supposed to be mounted in an unobtrusive way somewhere in the vehicle 
chassis. Secondly, LIDAR still struggles with adverse weather conditions such as 
snow, heavy rain and fog, as do other vision sensors (Templeton, n.d.). Here comes 
the main advantage of radar, which works under conditions where optical sensors 
normally fail. 

Since LIDAR recognises its environment by distance vectors to illuminated targets, it 
obviously cannot see colour. For example, when approaching a signalised intersection, 
LIDAR could detect the position of a traffic signal, but not its status (red/green). Due 
to this fact and due to reasons such as lower costs, higher resolution and higher sight 
distance, cameras are often used as a supplement to LIDAR. In vehicular applications, 
computer vision is used to detect traffic signs, lane edges or other objects, persons or 
vehicles. In theory, computers are trained to extract information from images, similar 
to the human ability to understand what the eyes see.  

Many applications use only one camera to capture the environment, a technique 
called mono-vision, which is sufficient in many cases as they can recognize objects and 
estimate distances quite robustly by using state-of-the-art image processing algorithms 
(e.g. Gornea et al., 2014; Klappstein et al., 2007; Lategahn and Stiller, 2013; 
Nienhuser et al., 2008). Those algorithms are mainly based on machine learning 
models trained with a large set of images. However, monovision has some limitations 
when it comes to measuring the position of and distance to unknown objects, i.e. 
those, which are not included in the training data.  

In stereo-vision, depth-in-field is inferred from two or more cameras, making it 
possible to estimate relative distances to objects and therefore reconstruct the 

                                                 
4 Radar was originally an acronym for Radio Detection And Ranging. The term radar has since entered 
English and other languages as a common noun, losing all capitalisation. 
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environment. In other words, stereo vision extracts 3D image information from digital 
images. A major challenge for stereo vision is variations in light conditions such as 
shadows, light reflections or sun glare (Huh et al., 2008). 

As mentioned, LIDAR as well as computer vision rely on optical information captured 
by light sensors, which makes them susceptible to perception problems in conditions 
such as rain, snow or fog. That is why modern vehicles still use radar as additional 
environment sensor, as it transmits radio waves instead of light. Furthermore, sonar 
sensors are used for vehicle parking assistance to measure the distance to obstacles. 

2.2.2 Vehicular communication 

Without a doubt, vehicular communication could bring tremendous benefits in road 
safety, as most collisions could be avoided due to Car-to-X information systems. 
Examples of promising safety applications are hazardous location warning (e.g. 
slippery roads), pre-crash sensing, stop sign assist or speed advisory (Baldessari et al., 
2007; Ibanez et al., 2011a).  

The de facto standard for vehicular communication is the WiFi-based IEEE 802.11p 
(IEEE, 2007), which is also known as WAVE (Wireless Access in Vehicular 
Environments) or DSRC (Dedicated Short Range Communication) in the US. The 
standard was developed to provide the minimum set of specifications required to 
ensure interoperability between wireless devices in environments that might rapidly 
change and where delivery must be completed in a very short time period. Examples 
of applications for WAVE are forward collision warning, lane change warning or 
traffic signal timing information (Ibanez et al., 2011b). 

Vehicular communication can either be realised by V2I/I2V or V2V applications. V2V 
is also known as VANETs (vehicular ad hoc networks). However, most safety 
applications based on V2V communication require a high penetration of equipped 
vehicles in order to bring substantial benefits for road safety. For example, there are 
intersection collision avoidance systems assuming that all vehicles are equipped with 
communication devices. As this seems unrealistic, Tsugawa (2005) argues that drivers 
should not become dependent on such systems and that they must conduct a visual 
check. Hence, those systems are “meaningless”, he states. The development of V2V 
applications should begin with services that bring benefits even in the absence of high 
penetration, e.g. incident information from preceding to succeeding vehicles. It can 
therefore be stated that I2V systems constitute a more promising option to improve 
intersection safety in the near term. 

An alternative for vehicular communication is the use of the 4G/5G network, which 
has limited applicability for V2V, but more for I2V/V2I. While IEEE 802.11p is 
designed to operate in a range of up to a few hundred metres, 4G, LTE (Long Term 
Evolution) or 5G can cover areas of 100 km. That is why it is applied to other 
vehicular fields such as information systems about road or traffic condition or probe 
vehicle data collection. Performance studies have shown that 4G meets most of the 
application requirements regarding reliability, scalability, and mobility support, but 
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has high delays in the presence of higher cellular network load (Abid et al., 2012; Mir 
and Filali, 2014). Furthermore, Bluetooth can be used for other applications (e.g. 
parking lot payment), but due to its limited range of 10 metres, it is more practical for 
stationary or very slow moving vehicles. 

2.2.3 Route and motion planning 

When a vehicle receives data from its environment sensors or via vehicular 
communication, it can use the underlying information to perform a certain manoeuvre 
or to navigate through a critical traffic situation. The third category of ADS 
technologies, Route and Motion Planning can be described by three different layers 
(Okuda et al., 2014), see Figure 5. In the highest layer called route planning, given 
road network information is used to create a directed graph to reach the desired 
destination. GNSS (Global Navigation Satellite Systems) such as GPS combined with 
inertial sensors, digital maps and route planning methods are the basic technologies 
for doing this. In areas of low or no satellite coverage or where no digital maps are 
available, vehicles use SLAM to acquire a map of their environment while 
simultaneously localising itself relative to the map (Thrun et al., 2006). In the middle 
layer called manoeuvre planning, the self-driving vehicle needs to compute and 
perform the actual basic manoeuvres along the route, such as lane-change, giving way 
according to traffic laws or other safety decisions. And the third and lowest layer of 
planning can be called motion planning, when the vehicle has to compute a path to 
avoid an obstacle or a collision. Along with the interpretation of the vehicle’s 
environment, as described before, algorithms must generate a dynamically feasible 
trajectory, which is a crucial part of future collision avoidance systems. For ensuring 
safe automated driving, relevant types of collisions must be evaluated and varying 
realistic circumstances (e.g. road layout, behaviour of other traffic participants) must 
be taken into account. The latter issue of collision avoidance is the core topic of this 
thesis and is described in Section 2.4. 

 

Figure 5: Three layers of automated route and motion planning 

Motion planning

e.g. collision avoidance

Manoeuvre planning
e.g. lane change

Route planning

e.g. navigating from A to B
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2.2.4 Findings 

The previous sections can be concluded by the following findings: 

 LIDAR, radar and camera systems are the most commonly used sensors in 
automated vehicles. As they all have particular strengths and weaknesses, 
sensor fusion techniques are applied. 

 Vehicular communication can be distinguished into infrastructure-to-vehicle 
and vehicle-to-vehicle. The de facto standard for the latter group is the WiFi-
based IEEE 802.11p, while for the first group the cellular 4G/5G system can 
also be used depending on the application. For intersection safety, I2V systems 
are more promising in the near term than V2V, as long as the penetration of 
equipped vehicles is low. 

 Satellite navigation and highly-precise digital maps are core parts for the route 
and motion planning of automated vehicles. For areas without satellite 
coverage or digital map data, the SLAM method can be applied. 

2.3 Accident analysis and safety at road intersections 

From the previous sections, it can be seen that a large amount of different 
technologies is applied to ADS. Evaluating these technologies is a main part of ADS 
development, reaching from the automotive industry to sensor manufacturers and 
software developers. Also, road and vehicle safety research is an important field to 
enable safe automated driving. As intersections are locations, where the paths of 
multiple traffic participants are crossed, they are considered high-risk spots for safety 
researchers. For automated vehicles, road intersections of whatever type constitute a 
major point of interest along their routes due to the increased likelihood of conflicts 
with other road users. This thesis addresses the problem of road intersection safety 
with regard to a mixed population of automated and non-automated vehicles. 
Therefore, the following section comprises an overview of the current situation about 
safety at intersections, by giving figures of macroscopic crash data as well as results 
from microscopic analyses. 

2.3.1 Types of accident data analysis 

Accident data coming from national accident databases, mostly collected from police 
records, can also be called macroscopic data. Macroscopic crash data is commonly 
used for descriptive statistical analysis aiming at describing general road safety 
problems, e.g. problems of each road user group. In contrast to microscopic data, this 
data type does not include detail on causation, but can mostly be considered 
statistically representative for the region where the data was collected. Examples for 
macroscopic databases are CARE (Community Road Accident Database, Sanz 
Villegas, 2011), where all EU member states except Germany are included, or STATS-
19, the National accident database from the UK. CARE is a centralised database on 
road accidents in the European Union resulting in injury or death. It provides access 
to member states to identify and quantify road safety problems, to evaluate road 
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safety measures and to facilitate the exchange of experience in the field of accident 
data analysis (Sanz Villegas, 2011). The full operation of CARE started in 1999 and it 
includes data from the respective National databases of all Member States. 

A microscopic analysis aims at describing the accident mechanisms with the use of in-
depth data. Contrary to macroscopic crash data, this type is rarely representative due 
to a limited number of cases available. This is because microscopic data is derived 
from in-depth accident investigations, which provide a much more comprehensive set 
of crash information. Accident investigation comprises the acquisition of factual 
information regarding an accident, which can include on-scene elements, elements 
recorded retrospectively, or both of these. Those investigations are typically done by 
on-scene inspections immediately after the occurrence of a crash, accident 
reconstruction and driver interviews. Prominent examples of in-depth databases are 
OTS (On the Spot, Cuerden et al., 2008) and RAIDS (Road Accident In-Depth 
Studies, Department for Transport, 2013) in the UK, or the German GIDAS (German 
In-depth Accident Studies). There is an ongoing project aiming to develop a 
harmonised European in-depth database, called iGLAD (Initiative for the global 
harmonisation of accident data, Hainig, n.d.), currently containing sample, mostly 
non-representative data from ten countries.  

The project GIDAS was initiated in 1999 including two regions in Hannover and 
Dresden, with the aim to provide a comprehensive in-depth crash database for 
automotive manufacturers, suppliers, public bodies and research institutes. The 
locations were selected in a way to cover almost all relevant traffic situations and to 
include a representative sample of collision types. There are three requirements for an 
accident that must be fulfilled in order to collect accident data by the investigation 
teams: (1) it is an injury accident, (2) it happened within the two geographical regions 
and (3) it happened within the predefined daytimes, which alternate weekly between 
00:00-06:00 and 12:00-18:00 or 06:00-12:00 and 18:00-24:00. The investigation 
teams consist of engineers, technicians and medical staff and attend the crash location 
as soon as it was reported. The collected crash information includes data about the 
road layout, environmental conditions, traffic rules, vehicle types and their 
deformations, crash causations, personal data, injury details etc. The on-site 
inspections are complemented by computer simulations, where the crashes are 
reconstructed, e.g. to obtain collision speeds. In this way, data relating to 
approximately 2,000 accidents are collected annually. 

In the same year as GIDAS started, the OTS project was commissioned by the UK 
government to gather in-depth information at the scene of road accidents (Mansfield 
et al., 2008a). Between the year 1999 and 2010, data were collected in two 
geographical regions, namely Thames Valley and Nottinghamshire in the Midlands. 
For the Midlands, a research team from the Loughborough University collected data, 
while for the Thames Valley region, the Transport Research Laboratory (TRL) was 
responsible. Expert investigators typically attended accidents spots within 15 minutes 
after its occurrence and were thus able to collect vital information about the scene. 
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Data from both teams were collated into a single database that contains more than 
2,000 variables.  

In 2012, the UK Department for Transport brought together different types of 
investigation from earlier studies into a single accident data collection programme 
called RAIDS. It combines existing studies including OTS, CCIS (Cooperative Crash 
Injury Study) and HVCIS (Heavy Vehicle Crash Injury Study) with new data in a 
common database. OTS data was used for this thesis and is further described in 
Section 4.2.1. 

2.3.2 Proportion of junction accidents and injury severities 

A query from the CARE database was analysed to get a picture of the intersection 
accident situation in the European Union. In the following sections, accident figures 
for the years 2003 until 2013 are given for the EU-27. However, eight countries were 
excluded due to missing values in that decade. It is important to note that junction 
accidents in this analysis only include the types four-legged crossroad, multiple 
junction and T or staggered junction, both signalised and non-signalised, and exclude 
roundabouts and other types. 

In Figure 6, the number of road injury accidents at junctions compared to all injury 
accidents is given per year. It shows the general decrease in accident numbers and that 
the proportion of junction accidents lies between 27 and 32 percent throughout the 
decade.  

 

Figure 6: Proportion of road injury accidents at junctions compared to all accidents, by year in EU-27 
(excluding BG, CY, DE, EE, LV, SE, SI and SK due to missing data), queried from CARE on 11 Aug 

2015 (n=9,269,493) 

A similar conclusion can be drawn from the analysis of fatalities, as depicted in Figure 
7. The proportion of fatalities remains between 13 and 15 percent throughout the 
decade, and the total number of fatalities has been reduced to almost the half. In 
terms of serious injuries, an average proportion of 24.4 percent at junctions can be 
observed for the years from 2003 to 2013 (see Figure 8).  
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Figure 7: Proportion of fatalities at junctions compared to all fatalities, by year in EU-27 (excluding BG, 
CY, DE, EE, LV, SE, SI and SK due to missing data), queried from CARE on 11 Aug 2015 (n=327,039) 

 

Figure 8: Proportion of seriously injured persons at junctions compared to all seriously injured, by year in 
EU-27 (excluding BG, CY, DE, EE, LV, SE, SI and SK due to missing data), queried from CARE on 11 

Aug 2015 (n=1,551,039) 

2.3.3 Differences in junction types 

Due to the higher number of conflict points, four-legged junctions were found to be 
generally less safe than three-legged junctions (Bauer and Harwood, 1996; David and 
Norman, 1975; Hanna et al., 1976; Harwood, 1995), without distinguishing into 
signalised and non-signalised junctions. The pie charts in Figure 9 depict the 
proportion of fatally injured and seriously injured persons by junction type, which 
confirms this finding. For comparison, roundabouts have been included. Crossroads 
have the highest amount of both fatal and serious injuries with 43.9 and 43.2 percent, 
respectively. For both injury levels, roundabouts have the lowest proportion, which 
can be explained by the safer design principles such as limited points of conflict and 
lower speed (see Section 2.3.7). However, it must be noted that those percentages also 
depend on the exposure of different junction types, which has not been further 
analysed in this review. The category “Other or unknown” comprise the types 
“Multiple junctions”, “Not at grade”, “Other” and “Unknown”, with “Other” as the 
most frequent type.  
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Figure 9: Proportion of fatalities (left) and seriously injured (right) by junction type, in EU-27 (excluding 
BG, CY, DE, EE, LV, SE, SI and SK due to missing data), years 2003-2013, queried from CARE on 11 

Aug 2015 

2.3.4 Proportions of different road user types 

To get a complete picture of the situation of intersection safety, it is useful to know 
the modes of transport involved in fatal accidents at intersections. Figure 10 depicts 
the total proportion of junction fatalities by the different modes. Due to their higher 
exposure, passenger cars have the highest amount throughout the decade with more 
than a third of all fatalities at junctions, followed by pedestrians and motorcycles. 
However, all vulnerable road user types (pedestrian, motorcycle, moped and pedal 
cycle) combined have a proportion of almost 59.4 percent, which is much higher than 
for passenger cars.  

 

Figure 10: Proportion of fatalities at junctions, by traffic unit type, in EU-27 (excluding BG, CY, DE, EE, 
LV, SE, SI and SK due to missing data), years 2003-2013, queried from CARE on 13 Aug 2015 

(n=327,039) 

In contrast to that, Figure 11 gives the percentage of how many persons were fatally 
injured at junctions compared to all fatally injured in the respective modes, by 
stretching each bar to 100 percent. The chart reveals that persons on pedal cycles and 
motorcycles were more often fatally injured at junctions than persons using other 
modes of transport. Every fourth fatally injured person riding on a pedal cycle was 
killed at a junction, while only every tenth fatally injured car occupant died due to a 
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junction crash. This means that junctions pose a particular risk for powered two-
wheelers, cyclists and pedestrians, although their total number of fatalities at 
junctions is lower than e.g. for car occupants. 

 

Figure 11: Normalized proportion of fatalities at junctions, by traffic unit type, in EU-27 (excluding BG, 
CY, DE, EE, LV, SE, SI and SK due to missing data), years 2003-2013, queried from CARE on 13 Aug 

2015 (n=327,039) 

2.3.5 Relevant collision scenarios 

Van Maren (1980) reported that (multi-lane) non-signalised intersections have a lower 
number of crashes per million conflicts than signalised intersections. For signalised 
intersections, it was found that the dominant crash types are rear-end and head-on 
collisions (Obeng, 2007; Polders et al., 2015), however, Abdel-Aty et al. (2006) 
argues that this also depends on the number of lanes and traffic volumes. In 
comparison to that, the majority of non-signalised intersection accidents are angle 
collisions (Arndt, 2003; Layfield et al., 1996; Molinero Martinez et al., 2008; 
Pickering and Hall, 1985). Given the finding that signalised intersections have a 
higher number of crashes, it is difficult to say whether those areas are particularly 
risky for automated vehicles, too. As the other studies showed, the crash types differ 
between non-signalised and signalised junctions. Future studies are needed to analyse 
whether ADS are more effective in e.g. avoiding rear-end crashes than angle crashes.  

The most important variables affecting the safety of non-signalised intersections were 
studied by Haleem et al. (2010). Accordingly, these include the traffic volume on the 
major road and the existence of stop signs, and among the geometric characteristics, 
the configuration of the intersection, number of right or left turn lanes, median type 
on the major road, and left and right shoulder widths. In particular for angle crashes 
at non-signalised intersections, the factors were found to be traffic volume on the 
major road, the upstream distance to the nearest signalized intersection, the distance 
between successive non-signalised intersections, median type on the major approach, 
percentage of trucks on the major approach, size of the intersection and the 
geographic location within the state (Abdel-Aty and Haleem, 2011). 
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A study by Molinero Martinez et al. (2008) for EU-27 in 2004 concluded that 
intersection accidents occur rather in urban regions (64 to 73%), during daylight and 
good visibility, and with passenger cars driven by male drivers (65 to 76%) having the 
highest distribution. They further identified relevant intersection scenarios that can 
build a basis for this thesis: 

 Scenarios, where vehicles cross the trajectory of an opponent vehicle that turns 
left, right or not at all. (70% of all intersection accidents) 

 Scenarios involving a rear-end crash, where the struck vehicle intended to turn 
right or left. (2% of all intersection accidents) 

 Scenarios involving a rear-end crash with no special manoeuvre of the struck 
vehicle (e.g. going straight). (5% of all intersection accidents) 

 Scenarios involving a head-on collision of two vehicles going different 
directions (2% of intersection accidents) 

 Scenarios involving a crash on a roundabout (11% of intersections accidents) 
 Other scenarios including pedestrian collisions (9% to 15% of intersection 

accidents) 

2.3.6 Typical causation factors 

An interesting aspect to understand intersection crashes is the critical event that led to 
an accident. According to a query from the SafetyNet Accident Causation database 
(Thomas et al., 2009) based on DREAM causation charts, the events leading to 
junction accidents differ from those in non-junction accidents (see Figure 12). In this 
in-depth study, the critical events “Late action”, “Premature action”, “Skipped 
action”, “Prolonged action” and ‘No action’ are recorded more often than for non-
junction accidents. In contrast to that, surplus speed or surplus force (inappropriate 
for the conditions) as well as incorrect driving direction have much lower 
distributions compared to non-junction accidents. Similar findings were also 
published by Sandin (2009), where six pre-defined risk situations at intersections were 
analysed by using the DREAM method for 52 drivers. It was concluded that the most 
common causation patterns include missed observation due to distraction or sight 
obstructions, which then led to no, late or premature action. Furthermore, a common 
causation was found to be incorrect prediction or faulty diagnosis, e.g. they did not 
expect another vehicle to cross their path. One the one hand, assisted and automated 
driving systems such as automated emergency brake or forward collision avoidance 
are expected to mitigate the safety problems caused by human error (Cunningham and 
Regan, 2015; Fitch et al., 2014), i.e. through sensing and perception technologies. On 
the other hand, it is argued that automated driving modes reduce the overall driver 
vigilance and situational awareness, which makes it difficult to take back the driving 
control if needed (Merat et al., 2012; Neubauer et al., 2012; Saxby et al., 2013). Also, 
failures of the sensor systems cannot be excluded and sight obstructions and 
unexpected road user behaviour still pose problems for ADS. 
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Figure 12: Distribution of specific critical events at junctions (SafetyNet 2005-2008) (Broughton et al., 
2013) 

Other studies (e.g. Lee et al., 2004; Molinero Martinez et al., 2008; Najm et al., 
2001) achieved similar results concerning causation factors and have further shown 
that failure to yield right-of-way is the most dominant violation in crossing path 
scenarios. This is followed by running a traffic signal or sign as one of the most 
frequent violations. It was found that alcohol and drug violations are minor factors 
compared to the others. 

2.3.7 Traffic conflicts as surrogate measures for safety 

The previous sections have presented the safety situation at intersections by 
summarizing recent studies and analysing crash data records. For road safety research, 
the frequency and severity of accidents have traditionally been used for analysis, 
because they are direct measures of safety. However, there are well-known quality 
problems of accident data such as small sample sizes leading to inconclusive results, 
lack of details or underreporting (Tarko et al., 2009). Therefore, developing non-
crash or so-called surrogate measures of road safety have been subject to research over 
the past five decades. The idea behind is to study near-misses, further denoted as 
conflicts, which are assumed to happen much more often than accidents and could be 
used as a complementary source of information for safety analyses. 

Traffic conflicts are defined as critical incidents not necessarily involving collisions 
(Chin and Quek, 1997). The concept of the Traffic Conflict Technique was first 
published by Perkins and Harris (1967), who observed and counted instances in 
which cars took evasive actions to avoid a collision. The goal was to find out whether 
General Motors cars are less often involved in unsafe driving situations than other 
manufacturers’ cars. While their study was industry-driven, this new safety technique 
gained immediate interest among other researchers, who recognised the potential of 
conflicts as surrogates for accidents (e.g. Allen et al., 1978; Baker, 1972; Hydèn, 
1987; Williams, 1981; Zegeer and Deen, 1978). 
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So far, there is still a discussion about the understanding of what a traffic conflict is. 
One the one hand, traffic conflicts can be marked by evasive actions, i.e. that crashes 
and conflicts are of similar nature except for the conduction of a successful braking or 
steering manoeuvre to avoid the collision. For example, Parker and Zegeer (1989) 
stated that “a traffic conflict is an event involving two or more road users, in which 
the action of one user causes the other user to make an evasive maneuver to avoid a 
collision”.  

On the other hand, a crash does not always involve an (unsuccessful) evasion action, 
e.g. due to inattention, which somehow weakens the relationship between conflicts 
and crashes according to the definition above. This led to the development of 
temporal and spatial proximity indicators, which should detect the closeness of two 
road users in time and space, even if there was no evasion action. In the first 
workshop on traffic conflicts in Oslo 1977, it was therefore agreed that a traffic 
conflict can be defined as “an observable situation in which two or more road users 
approach each other in space and time to such an extent that there is a risk of 
collision if their movements remained unchanged” (Amundsen and Hydèn, 1977). 
This adapted definition implies that there are quantitative indicators to assess 
temporal and spatial proximity, such as time-to-collision (Hayward, 1972), post 
encroachment time (Archer, 2005), time-to-accident (Hydèn, 1987), proportion of 
stopping distance (Gettman and Head, 2003) and others. In this thesis, both traffic 
conflict definitions are used for the safety performance evaluation and a combination 
of numerical indicators and thresholds is used, as described in Section 6.5.  

In comparison to the collection of accident data, which normally requires several 
years of recording, traffic conflicts are traditionally collected over a shorter period of 
time. Earlier studies relied on on-site observations on particular risk spots, typically at 
intersections, either done by on-site observers or by reviewing videos afterwards 
(Hydèn, 1987; Parker and Zegeer, 1989). While this method might be more valid than 
objective measurements, it involves high costs and requires well-trained observers. 

With the rise of image processing techniques, computer vision has become an 
alternative method to collect traffic conflict data. The automated detection and 
classification of events based on road-side cameras are relatively cost-effective and can 
be used on a larger scale. However, shortcomings are the fact that high-quality 
cameras are needed and that tracking algorithms are still not reliable under all 
conditions (Zheng et al., 2014). In the past years, image processing has become 
particularly interesting for analysing naturalistic driving data, when combined with 
kinematic triggers obtained from in-vehicle data (Bagdadi, 2013; Bagdadi and 
Várhelyi, 2013; Dingus et al., 2006; Valero-Mora et al., 2013; Wu and Jovanis, 
2012). Using naturalistic driving data for traffic conflict analyses has the advantage 
that its longitudinal data helps to understand crash causation and driving behaviour 
better, because rare events can be studied in detail including information about driver 
vigilance and reactions. 
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There have been numerous studies investigating the predictive validity of conflicts, i.e. 
the statistical significance of the correlation between conflicts and collisions. In fact, 
this is still an open research question. In their survey paper, Zheng et al. (2014) 
compared different arguments for and against the validity of the traffic conflict 
technique. In summary, if there was a poor correlation found, this can either be 
explained by the inaccurate, underreported crash population itself or by the 
discrepancy between observation durations for conflicts and crashes. As mentioned, 
conflict data are usually collected over a much shorter period of time than crashes and 
hence may not cover sufficient variability in traffic. Researchers who found a strong 
correlation between crashes and conflicts recommend disaggregating both data 
sources into specific characteristics such as road type, manoeuvres or severity level. 

Given the counts of conflicts and crashes, Hauer and Garder (1986) suggested the 
following relationship: 

	 (1)

with  as the expected number of crashes,  the conflict-to-crash ratio and  as the 
number of observed conflicts of severity level . Various regression techniques were 
proposed to calculate  (Lord, 1996; Lord and Mannering, 2010; Sayed and Zein, 
1999), which differ in the accident types analysed.  

Another promising approach to estimate the crash frequency from conflicts is the 
extreme value theory model, which was investigated by Songchitruksa and Tarko 
(2006) for signalised intersections. It considers interactions between vehicles as 
surrogate events that are analysed individually. Accordingly, the expected number of 
crashes  is a product of the number of observed conflicts  and the estimated 
conditional probability of a crash | : 

| 	 (2)

The probability of a crash is estimated with the fitted extreme value distributions 
given for the surrogate event H for the specific road location. Hence, crash counts are 
no longer taken into account, but instead, the method uses more frequent conflicts to 
predict less frequent crashes. 

Simulations can help to automate conflict analysis and to increase the number of 
“virtual observation” of conflicts. Gettman and Head (2003) investigated the 
potential for deriving surrogate measures of safety from existing microscopic traffic 
simulation models for intersections and developed the Surrogate Safety Assessment 
Methodology (SSAM). To assess a specific road location with SSAM, the location is 
first modelled in a microscopic environment and then simulated with the desired 
traffic conditions. Trajectories obtained from each simulation run are post-processed 
to identify conflicts according to predefined proximity indicators. Gettman et al. 
(2008) carried out a field validation exercise to compare the output from SSAM with 
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real-world crash records. By modelling and simulating 83 intersections, they found the 
following relationship: 

0.119 ∙
.

	 (3)

The authors conclude that this relationship provides a good estimate for future 
studies, because it is consistent with the range of correlations reported in several 
studies between ADT and crashes for urban, signalized intersections. They further 
found a conflict-to-crash ratio of 20,000 to 1, although this ratio varied by conflict 
type. 

Despite the long-year research undertaken in the field of traffic conflicts, the 
relationship between conflicts and crashes is still not solved. It is recommended in 
literature to use longer conflict observation periods to improve the validity, or to 
combine on-site observations with simulations. Also, there is little research on the 
analysis of single-road-user conflicts (e.g. run-off-road) or multi-road-user and 
secondary conflicts. 

2.3.8 General safety principles for intersections 

The previous sections were devoted to safety analysis in relation to crashes and 
conflicts. This section briefly summarises the road design principles to avoid critical 
events at intersections. There are numerous design manuals and guidelines for 
intersection layout in different countries (AASHTO, 2012; Austroads, 2009; 
Fitzpatrick et al., 2004; Golembiewski and Chandler, 2011; “TD 42/95 - Geometric 
Design of Major/Minor Priority Junctions,” 1995), but most recommendations 
involve the following safety principles, adapted from the Safe System Intersection 
design principles published by Candappa et al. (2015): 

Limit travel speeds through intersections to 50 km/h 

It has been proven that collisions close to 90° impact angle with speeds over 50 km/h 
exceed the biomechanical tolerance threshold for humans (Bostrom et al., 2008). In 
order to keep this kinetic energy low, the approaching speed should be limited by safe 
intersection design instead of just setting new speed limits. 

Minimize the points of possible conflicts 

Every intersection has a certain amount of conflict points between vehicle paths (see 
Figure 13), but safer intersection design could avoid many of those. Limiting the 
points of conflict reduces the risk of a collision. A roundabout is an example, where 
the points of conflict have been successfully minimised to four to eight depending on 
the design. In comparison, a typical crossroad junction has 32 conflict points. 
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Figure 13: Number of conflict points for examples of intersections (European Commission, 2015) 

Ensure sufficient sight distances 

Providing appropriate stopping sight distance at intersections is a fundamental 
principle, especially with no traffic-control device. Each quadrant of a junction should 
contain a triangular unobstructed area, as depicted in Figure 14. The triangle 
dimensions depend on the design speed of the intersection as well as the type of traffic 
control. 

 

Figure 14: Principle of sight triangles at intersections (AASHTO, 2012) 

Avoid 90° impact angle 

Optimising impact angles to minimise the kinetic energy for vehicle passengers is 
crucial for a safe intersection design. At roundabouts, the impact angle is halved and 
therefore a lower injury severity can be expected. 

Physically separate vulnerable road users or provide travel speeds <30km/h 

Pedestrians and non-motorized two-wheeler users are often temporally separated from 
other vehicles, but only a physical separation ensures maximum intersection safety. 
Where physical separation is not possible, inducing travel speeds to below 30 km/h is 
recommended. 

Raise awareness of intersections 

Beck (2015) suggests that the layout, delineation and visibility, when approaching an 
intersection, must meet a driver’s expectations. Warning signs such as “Intersection 
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ahead”, improvements to street lighting or treatments to the pavements, e.g. rumble 
strips, markings are examples to improve awareness. 

Exclusive turn lanes 

Turning movements constitute a particular risk at intersections. Li and Tarko (2011) 
found that introducing left-turn lanes can reduce rear-end crashes at junctions by 20 
to 40 percent. It must further be ensured that the turn lane is of sufficient length to 
avoid queues (Beck, 2015). 

Optimize signalling 

There are several treatments to traffic signals that help to reduce the crash risk at 
junctions. For example, it has been proven that a separate phase for turning 
movement can reduce rear-end crash rates (Baldock et al., 2005). Furthermore, the 
coordination of signals along a route can decrease the frequency of stops and 
therefore the risk of rear-end crashes (Antonucci et al., 2004; Wang and Abdel-Aty, 
2006). 

Road designers have introduced various novel intersection types, but they are 
currently only implemented occasionally. Examples are turbo-roundabout, cut-
through roundabouts or raised intersections, but they will not be further discussed in 
this thesis, because the focus is on evaluating safety on commonly existing road design 
and not on novel infrastructure measures such as new intersection types.  

2.3.9 Findings 

The following findings summarise the review of safety aspects of road intersections: 

 The proportion of junction accidents among all accidents is approximately 
30 percent, while the proportion of fatalities at junctions among all fatalities is 
around 14 percent. 

 Crossroads have the highest amount of both fatal and serious injuries, and 
roundabouts have the lowest proportion. Signalised intersections have a higher 
number of crashes compared to non-signalised junctions. However, this does 
not lead to the conclusion that crossroads or signalised junctions are the major 
risk spots for ADS, because the effectiveness of ADS on certain crash types, 
e.g. rear-end or angle collisions, must be proven first. While signalised 
accidents have a higher proportion of rear-end and head-on collisions, angle 
collisions are the main crash type at non-signalised junctions. 

 Due to their higher exposure, passenger cars have the highest amount with 
more than a third of all fatalities at junctions. However, relative proportions 
show that vulnerable road users have the highest risk of fatal injuries. 

 The most common causation patterns for human drivers include missed 
observation due to distraction or sight obstructions, incorrect prediction or 
faulty diagnosis, e.g. they did not expect another vehicle to cross their path. 
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While human errors are likely to be reduced by ADS, sight obstructions and 
faulty sensor perception still pose current safety problems. 

 Failure to yield right-of-way is the most dominant violation in crossing path 
scenarios. This is followed by running a traffic signal or sign as one of the 
most frequent violations. At the current state of research, there is no evidence 
to extrapolate this to the safety situations relevant for ADS. While the primary 
task of a vehicle should be to eliminate its own driving failures, a secondary 
task should be to avoid or mitigate collisions caused by the violation of others.  

 The traffic conflict technique is a well-recognised supplement to traditional 
crash analysis and has been applied in various studies related to intersection 
safety. However, there is still no clear evidence on the relationship between 
crashes and conflicts. 

 There are several basic safety principles for intersections, among which are 
minimizing possible conflict points, ensuring proper sight distance, avoid right 
angles or separate vulnerable road users from other vehicles. It is subject to 
research, which additional safety principles should be applied for automated 
driving at intersections. 

2.4 Automated intersection collision avoidance and mitigation systems 
(ICAMS) 

Due to their high number of conflict points and possible critical scenarios, 
intersections are one of the most challenging spots for ADS. There have been 
numerous studies and developments of systems, which aimed at avoiding or mitigating 
collisions at intersections. In principle, ICAMS can be categorised into the following 
groups (Mages, 2008): 

1. Vehicle-based systems, solely based on the perception of the in-vehicle sensors 

2. Infrastructure-only systems, based on roadside sensors and roadside warnings 

3. Cooperative infrastructure-to-vehicle (I2V/V2I) systems, based on roadside 
sensors and data communication to the vehicles 

4. Cooperative vehicle-to-vehicle (V2V) systems, solely based on inter-vehicular 
communication messages 

While this categorisation distinguishes between different technologies, Mages et al. 
(2015) presented another way of grouping intersection assistance systems based on 
the assistance function: 

a. Crossing Traffic Assist, which assists drivers in merging into or crossing a 
major road. 

b. Turning Assist, which assists drivers in avoiding collisions with oncoming 
traffic while turning at a junction. 

c. Stop Sign Assist, which informs or warns drivers to avoid failure to stop. 
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d. Traffic Light Assist, which assists drivers in approaching a traffic light, 
primarily to avoid a red light violation. 

In context with the scope of this thesis, which is to evaluate the safety of automated 
driving systems at road junctions, this list of functions is extended with Forward 
Collision Avoidance (FCA) systems, as they are a core function to avoid frontal 
collisions. Considering the two ways of categorisation, ICAMS can be structured as 
given in Table 3. Past developments of stop sign and traffic light assistants were 
realised by infrastructure-only or V2I/I2V systems. Vehicle-based or V2V systems can 
also realize the other three categories.  

In the following sections, the first three groups of technology categories are further 
explained by summarising relevant literature. For the reasons argued in Section 2.2.2, 
V2V is out of the scope of this thesis and will not be further reviewed. 

Table 3: Categories of ICAMS 

Technologies FCA Crossing 
Assist 

Turning 
Assist 

Stop Sign 
Assist 

Traffic 
Light Assist 

Vehicle-based x x x x  
Infrastructure-only x x x x x 
V2I/I2V x x x x x 
V2V x x x   

 

2.4.1 Vehicle-based systems 

Modern vehicles are equipped with collision avoidance and mitigation systems, mostly 
as an optional feature. Those systems belong to the group of ADAS, which intervene 
when a potential collision is sensed, either by warning the driver, by supporting 
emergency manoeuvres or by acting autonomously. This section surveys recent 
literature of in-vehicle systems relevant for intersection collisions, as they are a core 
function of ADS.  

2.4.1.1 Forward Collision Avoidance 

Many accidents are caused by late or insufficient braking, e.g. due to driver 
distraction, poor visibility or unexpected behaviour of other road users. FCA systems, 
also known as Automated Emergency Braking (AEB), are designed to detect an 
imminent frontal collision with other road users or obstacles and to intervene by 
applying the brakes. Usually, drivers are warned beforehand (Forward Collision 
Warning, FCW) and some systems deactivate when they detect avoidance action being 
taken by the drivers. Of course, this step would not be necessary for future fully 
automated vehicles. Although FCW and FCA systems are similar in terms of sensor 
technology, they present different challenges. For example, FCW relies on a quick 
driver reaction and must thus deal with appropriate HMI design. Faulty interventions 
from FCW systems may be tolerated to a certain extent, while FCA decisions are 
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much more critical and are usually taken at the very last second before a collision 
(Winner, 2015). 

FCA systems are made to avoid frontal collisions, including rear-end collisions as well 
as collisions with crossing traffic pedestrian and cyclist accidents. Some examples for 
real-world applications are 

 FIAT City Brake Control,  
 BMW Pedestrian Warning with City Brake Activation,  
 Mitsubishi Forward Collision Mitigation, 
 Skoda Front Assistant, 
 Audi Pre Sense Front Plus, 
 Volkswagen Front Assist or City Emergency Brake, 
 Mercedes-Benz Collision Prevention Assist, 
 Volvo City Safety, 
 Tesla Model S, 
 Google Self-Driving Car 

FCA (as well as FCW) systems use data collected by the in-vehicle radar, LIDAR, 
camera sensors or a fusion of those. Radar is the most common sensor type used in 
FCA systems thanks to its high detection accuracy, robustness, and wide sensing 
capability (Bloecher et al., 2009). Low-cost cameras can be applied, because they can 
detect lanes, vehicles, and pedestrians in short range (Stein et al., 2010). To detect the 
right of way, the vehicles use digital maps and GNSS positioning, camera-based traffic 
sign recognition or a combination of both (Chen et al., 2011; Lindner et al., 2004; 
Ruta et al., 2011). 

In their survey paper about intersection safety systems, Shirazi and Morris (2017) 
distinguished between “mild”, “moderate” and “intense” ADAS for intersection 
collision avoidance. While “mild” ADAS comprise information systems to enhance 
the driver’s perception, e.g. through in-vehicle displays and maps, “moderate” ADAS 
goes one step further towards warning systems by visual, audio or haptic means to 
suggest appropriate driving actions. “Intense” ADAS would be the relevant group for 
ADS, because they actively intervene in risky situations. As a conclusion, the authors 
suggest that vehicle-based systems should cooperate with infrastructure-based systems. 

In literature, many research papers can be found that deal with rear-end collision 
avoidance and mitigation methods, algorithms or strategies. One of the crucial tasks 
for FCA is the assessment of critical states or threats in dynamic road situations. 
Typical measures to characterise the threats are time-to-collision (TTC, Leonard et al., 
2009), headway time (Polychronopoulos et al., 2004) or required deceleration 
(Karlsson et al., 2004). However, these measures are tailored to avoidance systems for 
frontal collisions. Intersection situations require more complex measures, since 
vehicles may approach from different angles. For example, time-to-intersection and 
distance-to-intersection are useful measures to evaluate the threat of traffic 
movements at intersections (Chan et al., 2004). 
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Focussing on road intersections, Hillenbrand and Kroschel (2006) used additional 
metrics to assess the situation, namely the time-to-react (TTR), time-to-brake (TTB), 
time-to-kickdown (TTK) and time-to-steer (TTS), which all refer to the time the driver 
has left to begin with a manoeuvre. This could be translated to fully automated 
vehicles, e.g. by lowering the thresholds for reaction times. However, this issue was 
not covered in the paper.  

Developing a robust FCA system for intersections requires a prediction model of the 
future motion of the vehicles (Aoude et al., 2010). De Campos et al. (2014) presented 
a probabilistic collision detection and decision-making algorithm for safety 
interventions at intersections. The method comprises 1) a path prediction model based 
on a Kalman filter, 2) a threat assessment model to detect the risk of a future collision 
based on vectors defined by reference points on the vehicle’s structure and 3) a 
minimally invasive intervention protocol that triggers an emergency brake as late as 
possible. Although experimental results showed promising reaction times and 
efficiency, the research does not take into account road geometry and lane topology. 
Moreover, only braking and no steering manoeuvres are considered. 

Aoude et al. (2010) combined an intention predictor based on support vector 
machines with a threat assessor using rapidly-exploring random trees. This threat data 
was used to evaluate the safety of several possible escape paths at busy intersections, 
by maximising TTC and thus minimising the threat level. Through simulation and 
experimental results with a small autonomous vehicle prototype, Aoude et al. (2010) 
demonstrated that their threat assessment algorithm can be used for real-time 
applications. A limitation of this research is that it was only conducted on a single 
type of intersection. 

Not necessarily targeted at road intersections, Li et al. (2014) presented a fuzzy-based 
active control strategy to avoid or mitigate rear-end crashes in low-speed urban 
traffic. A crisis index was introduced to evaluate the risk of a crash with the following 
vehicle. A fuzzy logic based controller was designed to identify the crisis state based 
on the velocity of the vehicles and the distance between the vehicles. Ultimately, the 
research focussed on finding the right appropriate deceleration in certain driving 
conditions based on the evaluated crisis state, which may be useful information for 
vehicle actuators. 

An et al. (2014) proposed a warning system for rear-end collisions by using Linear 
Discriminant Analysis (LDA). Features for the LDA are the state of the vehicles and 
the remaining TTC, which were projected into linear space to indicate alarm 
thresholds for collisions. Simulation studies resulted in an average alarm time of 
1.86 seconds before the collision, which would be sufficient to activate the brakes in 
most cases. The paper only focusses on the algorithm development, apparently 
assuming ideal sensor signals, because they do not mention a specific set of in-vehicle 
sensors. 
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Kim and Jeong (2014) used Monte Carlo simulations, i.e. a stochastic sampling 
technique for a given probability distribution, to assess the crash probability for FCA 
systems in three different scenarios, namely rear-end, cut-in and T-bone collision. To 
detect an imminent collision, varying driver behaviour models characterised by 
steering and braking as well as vehicle dynamics are taken as inputs for the Monte 
Carlo simulations. A threat assessment algorithm combined with a vehicle tracking 
algorithm compute the point of no return and warning times in different scenarios. 
The authors discriminated between collision and near-miss cases, which are also 
considered critical for drivers or passengers. Related to the objectives of this thesis, 
this approach is highly relevant, as it includes various safety-critical situations and 
driver models. However, it is limited to three scenarios, which would not be sufficient 
to evaluate the safety performance on intersections in detail. Further evaluations are 
necessary to include more scenarios. 

An FCA system based on emergency steering instead of braking has been studied by 
Keller et al. (2014). A path-planning algorithm for steering torque overlay in critical 
rear-end situations was developed by using a 5th order polynomial. The polynomial’s 
coefficients are determined by the bounding conditions that are implied by the traffic 
situation and the course of the road. A drawback of the paper is that it does not 
include automated braking. Future ADS might use a combination of braking and 
steering actions to avoid a collision. However, this depends on many parameters of 
the situation. The work does not target intersection in particular, so the FCA 
algorithms would have to be validated in more complex situations. 

Research has been carried out to develop robust methods for detecting vulnerable 
road users, which is particularly important for the safety at road intersections. The 
challenges are to distinguish pedestrians and cyclists from each other or from other 
objects as well as to predict their future path of motion. Many approaches to tackle 
these challenges are based on image processing, such as the method proposed by 
Chien et al. (2013). Their method detects pedestrians with a single camera mounted in 
the vehicle and includes the vehicle‘s motion, lane types, boundary detection as well as 
the driver’s visual focus (i.e. line of sight) to assess the situation. The driver’s line-of-
sight is analysed by a fuzzy-rule-based system using an interior camera. Pedestrians 
were detected successfully in more than 93 percent of the test cases. It is not explicitly 
mentioned in this paper, but there may be limitations in severe weather conditions or 
poor light conditions. 

Fernandez Llorca et al. (2011) presented a pedestrian collision avoidance system for 
automated vehicles, based on a stereo-vision based system that detects pedestrians and 
computes the TTC. The proposed method implements a fuzzy-control based 
automated steering manoeuvre to avoid the collision. Lateral displacement and the 
actual speed of the vehicle are used as fuzzy inputs, and the steering wheel position is 
the controller’s output. The setup with an experimental vehicle showed promising 
results at speeds of up to 30 km/h. For higher speeds, the collision avoidance 
performance was not acceptable. Furthermore, the study is restricted to the case where 
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the vehicle drives in the right lane, the pedestrian has to be in the same lane and the 
left lane has to be free and long enough.  

A prototype active pedestrian protection system was introduced by Eckert et al. 
(2013), which executes both steering and braking to avoid collisions. A stereo-video 
camera combined with a radar sensor recognises pedestrians as well as available 
manoeuvring space and can predict pedestrian movements. The system achieved 
promising results in 135 vehicle-pedestrian situations. However, the authors suggest 
future research on detecting pedestrian of a more generic appearance, e.g. sitting in 
wheelchairs or pushing a trolley. 

A similar system was presented by Hayashi et al. (2013), combining radar and stereo-
video cameras including infrared vision at night time. The system detects vehicles, 
pedestrians and other objects, estimates the collision probability and activates the 
brakes automatically. Parameters such as the position, speed and predictive courses of 
the vehicles and pedestrians are taken into account.  

Coelingh et al. (2010) demonstrated a robust AEB system for both rear-end and 
pedestrian collision scenarios. The authors raise an interesting point, namely that the 
risk of automated emergency braking has to be minimised in non-collision situations, 
such as pedestrians on the kerb, which do not enter the road. The issue of false alarms 
in complex scenarios is still one of the main research gaps. 

In the European project PROTECTIVE, a method to assess the risk of collision with a 
pedestrian was developed with the aim to minimise false alarms (De Nicolao et al., 
2007). Pedestrian detection was done by onboard LIDAR, radar and video fusion. 
The risk assessment is based on extensive offline Monte Carlo simulations conducted 
to determine collision probability functions in certain situations. The system has been 
successfully assessed with real drivers in demonstrator vehicles. However, it was not 
designed for ADS and may need to be adapted. 

2.4.1.2 Crossing and turning assistance  

The previous section summarised methods to avoid or mitigate forward collisions, 
either rear-end or vulnerable road users collisions. Another significant aspect for 
intersection collision avoidance systems is assistance to avoid turning or angle 
collisions. In literature, most approaches to avoid those types of collisions are based 
on roadside sensors, which are explained in Section 2.4.2 and 2.4.3. Nevertheless, 
there have been several developments of vehicle-based systems that become active 
before an imminent collision. The following paragraphs give an overview of recent 
literature in that field. 

One of the main factors that lead to collisions at non-signalized intersections is 
misjudgement of the speed and acceleration of the vehicles in the cross traffic stream 
(Pierowicz et al., 2000). Dabbour and Easa (2010) developed a collision warning 
algorithm for non-signalised intersections, which can detect imminent angle and 
turning collisions at semi-controlled intersections by utilising a pair of sensors, either 
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radar sensors or laser scanners. Approaching vehicles are detected and their speed and 
acceleration characteristics are determined. Ultimately, the driver can be aided in 
finding the right gap in crossing the junction. Further research is necessary to evaluate 
the functionality of the radar/laser detectors under adverse weather conditions. For 
vehicles crossing non-signalised intersections autonomously, the appropriate 
judgement of approaching vehicles and gaps must be a core function. 

Another approach for mitigating unavoidable collisions for crossing traffic was 
proposed by Heck et al. (2013). The authors developed a system based on a mono-
camera, which performs an automated emergency brake and/or steering manoeuvre 
when a collision is detected. This study, along with others (Klappstein et al., 2007; 
Sato et al., 2011) has demonstrated that low-cost camera-based systems perform 
reliably in detecting crossing objects. However, a robust mitigation system may 
intervene differently according to the type of the crossing vehicles and thus has to 
classify those types and set appropriate intervention actions. In practice, a fusion of 
video cameras and LIDAR/radar is preferable.  

In the European project INTERSAFE-2, an onboard stereo-video system was 
combined with a LIDAR sensor to perceive and assess collision risks with road users 
at an intersection (Aycard et al., 2011). A risk assessment module takes as inputs the 
position and speed of the host vehicle along with the list of detected objects and 
delivers an estimation of the collision risk between the host vehicle and objects around 
based on the TTC. This is done by a trajectory prediction algorithm for detected 
vehicles. Pedestrians are modelled as circles with a predefined radius, because 
detecting their movements were reported as difficult. 

Brännström et al. (2011) presented a real-time implementation of collision avoidance 
for both rear-end and intersection angle collisions. A sensor fusion system is used to 
estimate the motion and properties of surrounding road users and objects. Then, a 
decision-making algorithm based on a model predictive control approach uses the 
estimates to assess the traffic situation and may brake or steer autonomously. 
However, one major drawback of this approach is that it did not use real in-vehicle 
sensors, but positions of surrounding vehicles communicated by WiFi. The argument 
was that they focus on the development of the risk assessment method first, before 
suitable onboard sensors are available. 

Chakraborty et al. (2011) investigated this idea by developing a control mechanism 
for T-bone collisions, involving a rapid yaw rotation of one of the vehicles. The 
manoeuvre is posed as an optimal control problem, whose numerical solution yields 
the optimal control strategy. The study utilises differential braking and active 
differential, which means that the torque of the wheels can be controlled individually 
by an automated system. A follow-up paper by Chakraborty et al. (2013) extends the 
previous work by modelling additional vehicle dynamics and by utilising 
conventionally available control commands such as conventional braking and 
steering. The experimental results confirm the existence of an “option zone” for some 
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situations, within which a sudden yaw rotation manoeuvre may be possible and 
perhaps even preferable to straight braking. 

An intersection collision avoidance and mitigation algorithm that also takes into 
account near-misses in addition to imminent collisions was proposed by Kim and 
Jeong (2014), whose paper is explained in the preceding section.  

2.4.1.3 Stop sign and traffic signal assistance 

There has been little research regarding vehicle-based systems to avoid violations at 
stop signs or traffic signals, since most of the recent approaches utilise V2I/I2V 
communication. However, an important study to mention was published by Lee et al. 
(2004). They investigated an intersection crash avoidance and violation warning 
system that consists of four functional subsystems: Positioning, in-vehicle sensors, a 
dynamic warning algorithm and a driver-vehicle interface. The traffic signal warning 
function included an additional subsystem, namely a communication link to the traffic 
signal interface to determine signal phase and timing. This relatively early work was 
further developed in the American research programme CICAS (Cooperative 
intersection collision avoidance systems) carried out between 2006 and 2009, which 
will be explained in the later sections. 

2.4.2 Infrastructure-only systems 

In addition to vehicle-based systems, roadside units can be used to detect and warn 
traffic participants at intersections. Infrastructure-only systems are independent from 
vehicle technologies as they do not exchange data with vehicles. Information to road 
users is given by Variable Message Signs (VMS) or simple warning lights. For 
example, if the roadside sensors detect an approaching road user or a potential 
misbehaviour such as failure to stop at a stop sign, warning signs are displayed to the 
other road users. Radar, video or induction loops may be used as infrastructure 
sensors (Chan et al., 2004; Frye, 2001, pp. 41–46).  

Decision support for rural, non-signalised intersections was investigated by Alexander 
et al. (2007). In their system to support drivers in turning into a crossing road, 
roadside radar sensors are used to detect position and speed of surrounding vehicles. 
Cameras recognise vehicles waiting to turn and an appropriate gap is determined. 
Drivers waiting at the junction are informed by additional signs, e.g. as a supplement 
to a stop sign. 

Chan et al. (2004) focussed on threat assessment for signalised intersection to give 
warnings to the drivers through an infrastructure-based or vehicle-based display. For 
example, a driver intended to make a permissive turn will have to judge how fast a 
vehicle coming from the opposite direction is approaching. They used two measures 
for evaluating potential threats of traffic movements towards a signalised intersection, 
namely time-to-intersection (TTI) and distance-to-intersection (DTI). Their paper 
concluded that the simple TTI is a good indicator for threat assessment, but with its 
limitations. Pulsing traffic streams and wave behaviour, such as at the beginning of 



40 

 

green, TTI may be fluctuating or changing quickly. Therefore, they suggest combining 
it with DTI to take the distance gap into account. Furthermore, those indicators 
should be evaluated by considering traffic signals. Since this paper focussed on the 
threat assessment algorithm, implementation of the system in real-world scenarios was 
foreseen as future work. 

Infrastructure-only systems can be used for all of the five assistance functions listed in 
Table 3. Automated vehicles may use such infrastructure-only systems to support their 
environment perception. However, most recent approaches tend to utilise V2I/I2V 
communication, as the next section explains. 

2.4.3 Cooperative infrastructure-to-vehicle systems 

From the previous sections, it can be concluded that both vehicle-only and 
infrastructure-only systems have their limitations when avoiding collisions at 
intersections. It is commonly agreed that vehicular communication, either between 
vehicles or between vehicle and infrastructure, is crucial for future automated road 
transport. I2V-based intersection systems can be used for all of the five assistance 
functions listed in Table 3. In the following, the most relevant research studies are 
summarised. 

The American cooperative research programme CICAS aimed to reduce the number of 
crashes and fatalities at intersections by equipping dangerous intersections with 
sensors, warning systems and communication units. The program was divided into 
three functional segments based on the crash type, namely 1) Stop Sign Assist, 2) 
Signalized Left Turn Assist and 3) Violation of stop signs or traffic signals. The 
functions correspond to four of the categories given in Table 3, because the FCA 
system was not included in the programme. The CICAS functions were validated in a 
field operational test, where the main functionality as well as the drivers’ acceptance 
and reactions were assessed. After all, the CICAS programme focussed on driver 
warnings and appropriate driver interfaces, either displayed on the roadside or on-
board. Hence, the projects were not carried out to assist automated vehicles, which 
would mean that only active intervention in the driving control must be considered. 

One of the largest recent European project dealing with cooperative intersection 
assistance was INTERSAFE-2, which was completed in 2011. The project combined 
warning and intervention functions that were demonstrated on three vehicles. The 
system architecture includes both vehicle and infrastructure systems, linked by 
V2I/I2V communication. Four vehicle support functions were investigated: 1) Right 
turn Assistance to prevent VRU collisions, 2) left turn assistance, 3) assistance when 
crossing a priority road and 4) traffic light assistance to prevent red light violations 
(Roessler, 2010) 

2.4.3.1 Forward Collision Avoidance 

As reviewed in Section 2.4.1.1, the application of FCA systems is not restricted to 
intersections, because e.g. rear-end collisions can happen at any part of a road. 
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However, rear-end collisions pose a major problem before entering a junction, and 
therefore, cooperative intersection assistance can help to warn or intervene in critical 
situations. For example, V2I/I2V messages can be distributed within an intersection’s 
surrounding area to warn other drivers. The warning message can be triggered by a 
vehicle’s braking system or roadside sensors (Le et al., 2009). 

Milanes et al. (2012) presented an approach to avoid rear-end collisions by using two 
fuzzy controllers, namely an FCA and an FCW controller. The former was developed 
to generate an output control signal for the steering wheel in order to avoid the 
collision. The inputs provided to the system are the vehicle speed and the displacement 
required to perform the manoeuvre safely. Based on I2V communication, the system 
detects a potential collision and performs an evasion manoeuvre without leaving the 
road. Although the proposed system might be useful to avoid rear-end collisions at 
intersections, there is more research needed in more complex situations, e.g. when the 
leading vehicle performs a steering manoeuvre or when driving on a curvy road 
stretch. 

A cooperative FCA system that focusses on collision with crossing pedestrians is 
proposed by Köhler et al. (2013). The active pedestrian protection system was 
developed for urban traffic scenarios to perform an autonomous evasive manoeuvre if 
the intention of a pedestrian to cross the road is detected. This is realised by 1) a 
mobile roadside unit with a camera and an image processing engine, which can be 
placed at hazardous spots to observe the sidewalk or the parking lane, and 2) an 
onboard unit to receive the message of the warning algorithm from the roadside unit. 
For future automated road traffic, this approach seems promising, although the 
system has only been tested with one pedestrian at a time. Future work may be to 
enhance the method for detecting multiple pedestrians or other road users, such as 
bicyclists. 

2.4.3.2 Crossing and turning assistance 

There have been numerous developments regarding a warning system based on 
wireless communication, particularly for intersections. Usually, roadside sensors 
monitor oncoming traffic and a warning system provides information to the drivers 
when there is a high collision probability. Some approaches determine the risk for 
multiple collision types (Basma et al., 2011; Basma and Refai, 2009), while others 
focus on particular collision types. 

The CICAS signalised left turn assist aims to address collisions caused by vehicles 
making left turns at signalised intersections where there is no protected left-turn signal 
(Misener et al., 2010). The system helps to judge the gaps in oncoming traffic and also 
informs drivers when other users, such as pedestrian and cyclists, pose hazards. The 
left turn assist combines roadside sensors such as radar and cameras, roadside 
messaging signs, communication and positioning units, dynamic maps and traffic 
signal interfaces. 
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If there are no traffic lights present, other approaches need to be taken. Lee and Park 
(2012) developed an agent-based algorithm that could be called cooperative virtual 
traffic lights. The algorithm was designed to manipulate individual vehicles’ 
manoeuvres so that all vehicles can safely pass a non-signalised intersection without 
collision. The assumptions are that all vehicles are automated and thus controllable, 
that all vehicles are equipped with communication devices and that there are no 
communication latencies. The agent projects the vehicles’ trajectories and computes 
the intersection point of two vehicles. In case of a possible collision, the trajectories 
are adjusted. The approach assumes a centralised intersection control agent, which 
could be realised by infrastructure-based roadside units. However, considering the 
scope of this thesis with a mixed vehicle population, it is unlikely in the near future 
that all vehicles approaching an intersection are automated. 

An intersection agent that takes vehicular status information from vehicle agents and 
learns, detects and warns collisions at a road intersection was proposed by Salim et al. 
(2008). In their paper, they tackle intersection collision problems entirely instead of 
focussing on a particular collision type. They introduced a learning component that 
enables the collision warning system to adapt to different types of intersections taking 
into account varying collision patterns (Salim et al., 2007). 

Dabbour and Easa (2014) proposed an infrastructure-based collision warning system 
to aid right-turning drivers at stop-controlled rural intersections. The system utilises a 
roadside radar that measures the location, speed, and acceleration of the approaching 
vehicles on the major road. The algorithm evaluates if there will be any potential 
collision between the approaching and the turning vehicles and warns the driver of the 
turning vehicle if such a conflict is found. Computer simulations were conducted to 
assess the performance of the system, so there was no real-world test included. 
However, the turning vehicle’s acceleration profile was derived from real-world 
measurements. 

A system developed in the European project INTERSAFE was called “Intersection 
Assist”, which aimed to inform drivers about potentially dangerous situations when 
turning into an intersection (Chen et al., 2007). This was achieved by using path 
prediction of road users based on laser scanner data and I2V communication. The 
follow-up project INTERSAFE-2 further developed this assistant. Fusion techniques 
for in-vehicle and roadside sensor data and V2I as well as V2V communication were 
investigated to interpret the scene, to assess the collision risk and to perform warning 
or intervention actions (Roessler, 2010). 

One of the research objectives in the project of Donath et al. (2007) was the design 
and implementation of a rural intersection decision support system that determines 
the safe gaps in traffic and communicates this information to the drivers intending to 
enter a major road. One of the conclusions was that the thresholds for a safe gap 
should be individualised to the driver, or in the case of automated vehicles, the 
passengers. In their work, they used a single threshold based on behaviour data from 
older drivers, which is clearly a limitation. Overall, it can be expected that passengers 
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of automated vehicles will have different acceptance levels for safe gaps when crossing 
or turning into an intersection. This must be taken into account, especially when 
actively performing an intervention action by accelerating and steering. 

2.4.3.3 Stop sign and traffic signal assistance 

Stop sign assistants and traffic sign assistants are designed to avoid a red light or stop 
sign violations and subsequent collisions. In cooperative intersection systems, the 
technologies are similar and mainly differ in the information given to the driver. 
Therefore, those systems are reviewed together in this section. 

Le et al. (2009) suggested that V2I/I2V communication can be used to inform 
approaching vehicles about the traffic light status and the remaining time until the 
status changes. They outline that when traffic lights become dynamic, e.g. due to 
inductive loops or push buttons, a real-time communication system is necessary.  

The CICAS function to avoid stop sign and traffic signal violation assists drivers in 
avoiding crashes in the intersection by warning the driver of an impending violation 
(Maile et al., 2008). Equipped vehicles approaching an equipped intersection receive 
messages about the intersection geometry, GPS differential corrections and status of 
the traffic signal. A warning algorithm in the on-board processing unit determines 
whether the driver is predicted to violate the signal and issues a warning by a visual 
icon, a brake pulse or an audio signal. 

The CICAS stop sign assistant for rural intersections aids drivers in deciding when to 
proceed onto or across a major road after stopping at a rural road stop sign. This is 
realised either via animated display signs or wireless communication (Le et al., 2009). 
A field trial study compared different warning systems, both in-vehicle and roadside-
based warnings. The use of an in-vehicle stop sign assistant resulted in improved 
intersection crossing performance, measured by an increased likelihood of making a 
complete stop at the stop sign and a decreased probability of accepting critical gaps 
(Becic et al., 2012).  

The project INTERSAFE-2 also focussed on traffic light and stop sign assistance. The 
systems warn or intervene with a brake jerk, when a violation is predicted or when 
the driver is approaching the traffic light or the stop sign with a speed that is too high 
(Schirokoff et al., 2012).  

Jang et al. (2012) presented a cooperative intersection collision warning system for 
non-signalised intersection without a stop or yield sign. Multiple sensors located at 
intersection approaches monitor the vehicles’ location and speed, taking into account 
sight distance relationships. In contrast to most of the other approaches, they utilised 
the traffic conflict technique, i.e. near-miss detections that are included in the 
dangerous situation forecast. Microscopic simulation models were conducted to assess 
the system performance, which resulted in promising prediction rates for potential 
conflicts. However, the study lacks to incorporate detailed varying driver behaviour 
such as acceleration patterns or reaction times. Nonetheless, the use of near-miss 
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indicators can be seen as useful decision support for automated vehicles, since not 
only collisions must be avoided, but also almost-collisions (e.g. close contact to 
opposing traffic) that certainly have a negative impact on the passenger’s comfort. 

2.4.4 Findings 

The previous sections have surveyed recent literature on intersection assistance and 
collision avoidance, distinguished into vehicle-based, infrastructure-only and 
cooperative I2V/V2I systems. All the studies reviewed so far, however, show certain 
limitations when considering the safety aspects required for robust operation of 
automated vehicles at intersections. Despite the many projects and research studies in 
the field, there is still no commercially available intersection assistance system for 
automated vehicles on the market. The following remarks summarise the review: 

 Forward Collision Avoidance systems are the most advanced driving assistance 
systems available to avoid or mitigate collisions. However, current solutions 
are primarily tailored to rear-end and pedestrian collisions. For intersections, 
detecting and avoiding angle or turning collisions must be a key feature of 
ADS. 

 Instead of relying on a single sensor technology, a fusion of data from different 
sensors is preferable. Vehicle-based as well as roadside-based collision 
avoidance systems mainly use a combination of LIDAR, radar and stereo-
video. Traditional technologies such as induction loops may be a useful 
supplement. 

 Motion prediction of vehicles and other road users is a crucial function of 
intersection collision avoidance and mitigation systems. Numerous prediction 
models exist, but further research is needed to make them reliable in complex 
environments or under adverse weather conditions. 

 An intersection collision detection system must be able to adapt to different 
intersection types. It has been found that most studies do not validate their 
models on a large variety of intersection layouts and characteristics. 

 Various collision detection algorithms have been proposed, but the coverage of 
these algorithms is limited to only a few scenarios. Validation and verification 
of the systems must take into account the most critical combinations of 
collision parameters. Detailed accident analyses may be necessary. 

 Infrastructure-only systems are mainly designed to inform and warn human 
drivers. For automated vehicles, vehicular communication technologies are 
preferable, since active steering, braking and acceleration intervention is 
required.  

 Cooperative roadside-based I2V/V2I systems help to enhance the vision of 
automated vehicles and make it possible to inform the vehicles about 
approaching road users that are obstructed by parked cars, buildings or other 
obstacles. 
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 Instead of solely focussing on collisions, it is also recommended to consider 
near-misses as threat measure. Near-misses do not lead to a collision, but may 
result in discomfort for vehicle passengers and should therefore be avoided, 
too.  

2.5 Current testing procedures for automated vehicles 

This thesis aims to provide critical scenarios for testing automated vehicles. Hence, 
current testing activities and virtual testing procedures are reviewed in the following 
sections.  

2.5.1 Testing on public roads 

Many countries are signatories to the Vienna Convention (UN, 1968) on Road Traffic 
and have also ratified it. The Vienna Convention originally states that “every moving 
vehicle or combination of vehicles shall have a driver” as well as that “every driver 
shall at all times, be able to control his vehicle”. An amendment to the Vienna 
Convention entered into force on the 23rd of March 2016. Accordingly, “the driver, 
still in control of the vehicle, can be helped by a system under some conditions” as 
long as the system can be overridden or switched off by the driver (UK Department 
for Transport, 2015). However, it has been argued that a further change is needed to 
allow automated vehicles on the roads in various countries. The UNECE regulation 
No. 79 states that whenever automated steering becomes operational, this shall be 
automatically disabled, if the vehicle speed exceeds 10 km/h by more than 20 percent. 
This is certainly a hurdle, which would require another amendment. At the time when 
this thesis was compiled, a proposal for the amendment of regulation 79 was under 
review.  

Several European countries have already started in-depth research and have taken 
action to address the legal challenges of automated vehicles, some of which are 
introduced below. Mostly, special permits granted by the government are currently 
necessary to allow public road testing of ADS. 

As the first European country to allow large-scale testing of automated vehicles on 
public roads, the Netherlands commenced the Dutch Automated Vehicle Initiative 
(DAVI, Happee, 2015) in 2015. This public-private partnership aims to investigate, 
improve and demonstrate ADS at SAE level 3 to 5 on public roads. The initiative 
involves several research projects covering safety, vehicular connectivity, human 
factors and the exploration of legalisation including type-approval procedures for 
automated vehicles aligned with the applicable EU and ECE forums.  

In Germany, vehicles have been tested with varying levels of automation. Test drives 
require a special permit granted by the individual Federal states. However, the 
German minister for transport announced at the beginning of 2015 that the A9 
motorway between Munich and Berlin will be equipped with technology to allow 
automated vehicles to drive on the road and communicate with other vehicles and the 
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road infrastructure (Eckardt, 2015). This has been realized by the Digital Motorway 
Test Bed project running until 2022 (BMVI, n.d.). 

The current Swedish vehicle legislation, driver’s license and liability rules may need 
amendments to permit the testing of highly automated vehicles. However, the launch 
of the joint initiative “Drive Me – Self-driving cars for sustainable mobility” (Volvo 
Car Group, 2013), endorsed by the Swedish Government allowed testing of 100 self-
driving Volvo cars on selected roads in and around the area of Gothenburg.  

The UK government has invested significantly in the development of ADS, which led 
to numerous R&D projects (CCAV, 2017). In 2015, four test trials were started: in 
Milton Keynes and Coventry as part of the LUTZ pathfinder project (Burn-Callander, 
2015) in Bristol by the Venturer consortium and in Greenwich, where the Gateway 
project (TRL, 2014) tested automated electric shuttles buses, plus robotic valet 
parking for automated cars. The three-year project MOVE_UK started in August 
2016 and aims to accelerate the development and market readiness of ADS. This will 
be achieved by trialling a small fleet of self-driving cars in real-world conditions on 
the roads of Greenwich, London.  

Other European countries such as Austria, Finland, France, Italy and Spain are also 
currently conducting or preparing experiments and field trials on public roads. For 
example, the Italian PROUD (Public Road Urban Driverless) car test 2013 
demonstrated a fully autonomous vehicle around the city of Parma. This was carried 
out in a mix of rural, motorway and urban traffic, but requiring a police escort at all 
times and a passenger ready to take over in case of an emergency. With projects such 
as SARTRE (Robinson et al., 2010), Citymobil (van Dijke, 2011) and Citymobil 2 
(Roberts, 2015), the Spanish Government has invested in an outdoor test track for 
testing the most advanced technologies. Austria has recently initiated test regions for 
ADS for different forms of automated road traffic such as passenger light vehicles, 
public buses and freight transport. 

Currently, consortia from different European countries are collaborating in various 
research projects as given in Table 1. The projects HAVE-iT (Hoeger et al., 2008), 
InteractIVe (Etemad, 2013), and AdaptIVe (Amditis and Ghosh, 2014), CityMobil 
(van Dijke, 2011), CityMobil2 (Alessandrini et al., 2015) or PEGASUS (Hallerbach et 
al., 2017) are examples of large European projects, where various levels of automated 
driving have been and are currently being tested. AdaptIVe started in January 2014 
and aimed to demonstrate automated driving in complex scenarios, as well as define 
and validate specific evaluation methodologies.  

In InteractIVe, several automated driving functions such as Curve Speed Control, 
Lane Change Collision Avoidance, Emergency Steer Assist and others have been tested 
for different use cases: rear-end, head-on or blind-spot collisions, collisions with 
VRUs, lane departure accidents, traffic rule violations. Seven demonstrator vehicles 
were used for real-world testing, as well as various simulators for virtual testing and 
evaluation. Similarly, they employed their own-developed testing procedures.  
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In HAVEit, use cases included normal driving in a lane and activation of different 
automation levels possible (from Driver assisted to Highly Automated), driver 
unresponsive and transition to Minimum Risk Maneuver, driving and speed limit 
change, etc.  

As one of the recent ongoing projects, the German research project PEGASUS focuses 
on quality criteria, tools and methods for testing the highway chauffeur application. 
This includes the determination of safety level through assessment of the probability 
of occurrence and mechanical manageability in critical situations, determination of 
critical traffic situations and quality measures (Lemmer, 2017).  

In the United States of America, Nevada was the first state to authorise the operation 
of automated vehicles on public roads in 2011. Currently, more than twenty states 
have passed legislation related to automated vehicles and others already issued 
executive orders (status from 27 May 2017). However, the NHTSA does not 
recommend permission to operate self-driving vehicles for anything other than testing 
purposes at the moment. Nevertheless, in the absence of a clear European legal 
framework, in September 2014, vehicle manufacturers such as Daimler and Audi 
obtained two permits each for testing self-driving vehicles in California. Google won 
25.  

In Japan, Toyota stated that “an infrastructure-cooperative type of automated 
driving” is a priority and manufacturers such as Honda and Nissan have also planned 
to release various ADS, such as motorway assistant and fully automated parking. The 
Japanese government announced that ADS will be tested on public roads and 
highways between 2017 and 2019, inviting foreign car manufacturers to participate. 
The test area comprises a road network of 300 km (“Automated driving systems to be 
tested on Tokyo roads from 2017,” 2016). A “Strategic Innovation Program” is 
underway in Japan, aimed at introducing next-generation ADS by the target year of 
2020, when Tokyo is scheduled to host the Olympic and Paralympic Games. 

2.5.2 Virtual testing methods 

For testing assisted and automated driving functions, virtual testing is being used by 
car and sensor manufacturers, as it can decrease costs in the development cycle (see 
Figure 15). In contrast to real-world testing, where only a limited number of testing 
scenarios can be evaluated involving high costs, virtual testing using computer 
simulation models can comprise high numbers of scenarios with combinations of 
varying factors leading to more flexibility and repeatability. However, the fidelity of 
real-world tests is higher. In practice, automotive developers use a combination of 
simulation, laboratory experiments and real-world testing.  
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Figure 15: Different levels of vehicle testing (source: Valeo Germany) 

Apart from driving simulator studies, there are four categories to simulate traffic, 
namely sub-microscopic, microscopic, mesoscopic and macroscopic, according to the 
level of detail from high to low, respectively (Aria, 2016).  

Sub-microscopic refers to the most detailed scale of investigation, because single 
vehicles are simulated using physical models, e.g. for tires, suspension, engine or 
sensors, and their interaction with the surrounding road area can be studied. The next 
lower scale of detail is microscopic, where individual vehicles are simulated in a traffic 
stream to investigate the effects on traffic performance due to changes in 
infrastructure or driving behaviour (Olstam, 2009). In comparison to sub-microscopic 
simulation, vehicle models are simplified, but a larger road area can be studied. 
Prominent software tools for microscopic simulation are VISSIM, AIMSUN or the 
open source software SUMO. Mesoscopic and macroscopic models have the lowest 
level of detail and are used to investigate travel demand between origin and 
destination. For the scope of this thesis, sub-microscopic simulation is the most useful 
approach, since automated vehicles and their interaction in specific situations are 
investigated. Moreover, simulated scenarios are entirely quantifiable, controllable and 
reproducible. There are multiple simulation tools currently on the market that allow 
testing of various advanced driver assistance systems, as well as ADS. In the following, 
some of the most common sub-microscopic simulation tools are introduced. 

The software CarMaker distributed by the company IPG is a vehicle simulation 
software with a variety of additional functionality and tools that can be used to 
implement complex simulation cases. All models are real-time capable and support the 
model-based development from MIL (Model-in-the-loop), SIL (Software-in-the-loop) 
through HIL (Hardware-in-the-loop). Several modules are available to construct a 
simulation model: IPG Driver, IPG Road, IPG Traffic, etc. Representations of the road 
can also be developed by using measured road data as a three-dimensional track 
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model. The software tool also includes an upgraded module called TestWare for 
Advanced Driver Assistance Systems that contains test cases, test automation and 
post-processing routines. A test and evaluation catalogue developed by TÜV SÜD 
Automotive can be used for testing ADAS within a series of test scenarios build on the 
basis of real driving tests. With the latest version 6, CarMaker supports realistic in-
vehicle sensor models to simulate environment recognition and object detection. Since 
CarMaker was used for this thesis, the following paragraphs give an overview on 
relevant literature in the field of virtual testing for safety purposes. 

Riegger et al. (2016) used CarMaker to developed and validate a centralised system, 
which takes control over autonomous vehicles within a certain surrounding of an 
intersection to optimise their trajectories for safe crossing. However, the study 
assumes that all vehicles approaching an intersection are automated, and is limited to 
straight crossing because turning manoeuvres were not included. Interaction with 
driver-operated vehicles, more complex manoeuvres as well as sensor noise were left 
for future studies. 

Überbacher et al. (2017) applied CarMaker’s vehicle-in-the-loop (VIL) function to 
evaluate a lane change warning and side collision warning. Information about the 
environment is modelled via virtual sensors and can be displayed to a driver in a real 
vehicle by means of a monitor or augmented reality glasses using the function 
IPGMovie. The advantage of VIL is that there is no need for additional vehicles or test 
drivers, as the environment is virtually created. However, it normally requires a closed 
test track with enough space to perform the defined manoeuvres. 

Another VIL test using CarMaker was conducted by Pfeffer and Haselhoff (2016), 
where artificial pedestrian models were injected into the video stream of a camera-
based driving assistance system. This was done to validate the performance of the 
camera-based ADAS in complex scenarios involving pedestrians. The implementation 
required a transfer of the vehicle’s position in the real world into the simulated world.  

Ni et al. (2016) developed a lane-departure prevention system, which was validated as 
MIL in CarMaker. In particular, the driver behaviour models of CarMaker were 
applied to take different driving steering inputs into comparison. Improved stability 
and velocity-keeping performance across a range of different drivers could be 
achieved. 

A trajectory planning algorithm for lane change manoeuvres on motorways has been 
developed by Hansen et al. (2016). They used CarMaker to test different lane change 
scenarios and to analyse the algorithm’s performance. During the simulation run, the 
planning adapts the trajectory to the changing surrounding situation. 

In a study by Erbsmehl and Wagner (2012), CarMaker was used to reconstruct road 
accidents stored in the German in-depth database GIDAS. The study demonstrated the 
applicability of CarMaker in accident research by simulating a junction crash and by 
changing the configuration of the crash to make comparisons. However, the 
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experiment was conducted for a simple test case (sight obstruction yes/no) and was 
limited to one reference accident. 

Holzmann (2006) applied the CarMaker software to a simulation-based development 
of a chassis control systems. HIL test runs using electronic vehicle units were 
conducted to validate the system. 

Being an alternative to CarMaker, PreScan is a physics-based simulation platform 
developed by Tass International and TNO used by the automotive industry for 
developing ADAS and ADS based on sensor technologies such as radar, LIDAR, 
camera and GNSS. PreScan is also used for designing and evaluating V2V and V2I 
communication applications. The software can be used from model-based controller 
design (MIL) to real-time tests with software-in-the-loop (SIL) and hardware-in-the-
loop (HIL) systems. A dedicated pre-processor (GUI) allows users to build and modify 
traffic scenarios using a database of road sections, infrastructure components, actors, 
weather and light sources. Applications include autonomous and connected driving, 
emergency braking, lane assistance systems, pedestrian detection and avoidance or 
parking assistant systems. Bours et al. (2014) used PreScan to develop virtual driving 
scenarios from real-world tests, which are then varied to evaluate different situations. 
Another study was carried out by Schubert et al. (2014), who used PreScan to validate 
their probabilistic ADAS sensor models with real-world data. Autonomous emergency 
braking as well as a pre-safe seat belt system were evaluated by Seo et al. (2014), 
where PreScan provides a realistic radar sensor model, which is then coupled with 
control logics in Matlab/Simulink. 

dSPACE is a producer of engineering tools for developing and testing mechatronic 
control systems, with applications in the automotive, aerospace and industrial 
automation. In the context of driver assistance systems, dSPACE offers a toolchain for 
function development, automatic production code generation and simulation that 
include Automotive Simulation Models. The models allow users to construct road 
networks, traffic, add objects and sensors and predefine manoeuvres. Representations 
of real roads can also be imported: map data (Open Street Map, Google Maps), 
ADAS RP or Open Driver format. Moreover, dSPACE provides an extensive test 
environment for executing Euro NCAP tests and validating the relevant systems by 
means of simulation. Standardized testing procedures for Automated Emergency 
Brake procedures for pedestrian detection have been incorporated into the latest 
versions. Virtual validation and hardware-in-the-loop simulation can be performed 
for adaptive cruise control, lane-keeping assistant, pedestrian detection, intersection 
traffic assistant etc.  

The German company Vires developed the software VTD (Virtual Test Drive), which 
can be used to test ADAS and ADS. Similar to the abovementioned tools, it covers the 
whole range from MIL, SIL, HIL and VIL as well as driver-in-the-loop (DIL) (von 
Neumann-Cosel et al., 2009).  
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The simulation software Pro-SiVIC, originally developed by IFSTTAR and 
industrialised by a company called CIVITEC, was designed to reproduce various 
sensor functions of a vehicle. This allows simulating a vehicle’s automated behaviour 
in varying road environments (Grapinet et al., 2013). The sensor models in the 
software package include vision sensors and individual test environments (such as 
road, roadside, weather and other road users) can be created. 

2.5.3 Generation of test scenarios 

The previous section has introduced different methods and tools to virtually validate 
ADS. Demonstrating the reliability, safety and robustness of ADS in all possible traffic 
situations under all road and environmental conditions is today’s main challenge 
towards the approval and certification of ADS (ERTRAC, 2017). Kalra and Paddock 
(2016) investigated the miles needed to demonstrate that the failure rate of automated 
vehicles is below those of humans. Their statistical approach is based on per-mile 
injury rates from historical accident data and equivalent assumptions for autonomous 
vehicles. Figure 16 depicts the results by showing the miles needed in contrast to the 
assumed percentage of improvement in failure rates. For instance, a 20 percent 
improvement can be demonstrated by driving 11 billion miles, which would take a 
few hundred years. The number of miles decreases with a falling assumed reduction of 
failures. 

 

Figure 16: Miles needed to demonstrate with 95% confidence that the autonomous vehicle failure rate is 
lower than the human driver failure rate (Kalra and Paddock, 2016) 

Wachenfeld and Winner (2015) studied the approval requirements for automated cars 
and based their calculations on German accident data. In average, there are 
210 million kilometres between two fatal accidents with human-operated cars. They 
found that if the automated car were twice as safe as the conventional car, the 
distance would increase to 2.1 billion kilometres assuming a statistical success rate of 
50 percent. Although their calculations are simple and theoretical, it could be shown 
that the safer a vehicle is expected to operate, the higher is the required test amount. 
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Those findings support the need for alternative testing methods to supplement real-
world tests, in particular by virtual tests and simulations, which is recommended in a 
large number of publications (e.g. Beglerovic et al., 2017; Chen and Chen, 2010; 
Masuda, 2017; Olivares et al., 2016; Rolfsmeier, 2013). Simulations allow to run 
considerably more tests for a large number of situations. The most crucial aspect for 
defining virtual tests is the selection of critical scenarios, because they can significantly 
reduce the distances needed to be covered (Bock, Julian, 2017; Junietz et al., 2017).  

In literature, many different definitions for scenarios can be found. According to the 
European AdaptIVe project, a driving scenario is an abstraction and general 
description of a driving situation without any specifications of the parameters of the 
driving situation. In contrast to that, a situation describes a specific scenario in more 
detail (Rodarius et al., 2015). A synthesis of various definitions of scenarios was 
proposed by Ulbrich et al. (2015). Accordingly, a scenario spans a certain amount of 
time, which consists of one scene or a sequence of scenes. A scene would be a 
snapshot of a scenario, where a certain driving action is performed. 

In the PEGASUS project (Lemmer, 2017), the definition of a scenario has been 
categorised into 

1. functional scenarios that contain natural language with a high level of 
abstraction (e.g. “ego car approaching with high speed on a three-lane 
motorway”), 

2. logical scenarios that describe parameter ranges to reduce the level of 
abstraction (e.g. approaching speed: [60-90] mph, lane width: [2.7-3.9] m) and 

3. concrete scenarios that have the lowest level of abstraction and specify each 
parameter precisely (e.g. approaching speed: 81.4 mph, lane width: 3.5 m). 

Naturally, the number of scenarios increases from functional to concrete scenarios. 
The reason why these three categories were introduced is that different phases of the 
development cycle in the V-model require different levels of abstraction. For example, 
the concept phase necessitates a vocabulary that is readable and easy to understand 
for human experts, while in the validation phase the scenarios must be interpretable 
by computers for running the simulations.  

This thesis has its own definition of a scenario, as explained in Section 6.2. 
Accordingly, a scenario defines dynamic traffic objects, how road users move, while a 
scenery includes the static elements such as the road environment. Translating the 
thesis’ approach to the PEGASUS definition above, this thesis first derives functional 
scenarios from the accident data in study 2, and second, specifies concrete scenarios 
for the simulation models in study 3. 

Several data sources can be used to generate and collect appropriate testing scenarios, 
which are: 

 Real-world driving data from in-vehicle recordings, e.g. from previous field 
operational tests, naturalistic driving studies such as UDRIVE or SHRP2 
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 Real-world traffic observation data, e.g. from roadside traffic cameras 
 Historical accident data, preferably in-depth statistics to get enough 

information about the scenario parameters 
 Reused results from previous projects and pilot tests 
 Results obtained from risk analysis methods such as FMEA (Failure Mode and 

Error Analysis) or FTA (Fault Tree Analysis) 

The European research project ENABLE-S3 uses a combination of those sources to 
derive validation scenarios, as Figure 17 illustrates. It can be seen that real-world data 
is linked to scenarios obtained from other projects and scenarios derived from risk 
analysis methods. The parameters within those scenarios, e.g. weather conditions, 
vehicle types, are then varied to generate test runs for the validation platform. 
Following the V-model, the scenarios are tested on several levels from MIL/SIL to 
driving tests on the proving ground. The system was applied to evaluate testing 
methods for several use cases such as the highway pilot. 

 

Figure 17: Validation architecture of ENABLE-S3 (Beglerovic et al., 2017) 

In the project PEGASUS, testing procedures were developed for the highway pilot, 
including a novel scenario generation method (Bock, Julian, 2017; Pütz et al., 2017; 
Zlocki et al., 2017). A database was implemented to process data from different 
sources in a uniform toolchain, which comprises the analysis of FOT data, accident 
data, driving simulators, traffic simulations and experts knowledge. The concept in 
Figure 18 shows that the database is used to extract information for different levels of 
the V-model to define the tests, but is also used to store information from those tests. 
They call it a circuit of relevant scenarios, which is constantly updated with new 
information. A main element of the database is the storage of parameter distributions 
obtained from driving data, which are important to parametrise simulation models. 
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Figure 18: Database-driven scenario generation in PEGASUS (Zlocki et al., 2017) 

Kim et al. (2017) evaluated collision warning systems (camera-based and radar-based) 
for intersections based on scenarios derived from naturalistic driving data and 
accident records. They identified sixteen vehicle-to-vehicle accident scenarios and 
studied the accident prevention capabilities in those scenarios. However, their study 
considers only one safety indicator called safety-remaining distance and no conflicts, 
and the interaction with vulnerable road users is not included. 

An interesting approach to reduce the approval effort and parameter variations is the 
principle of functional decomposition (Amersbach and Winner, 2017). The approach 
is commonly used in robotics and informations, but also in the analysis of the human 
driving task. Graab et al. (2008) suggest five levels of failure classification, 
distinguishing into information access, information reception, information processing, 
behavioural decision and the final driving action. Each of those levels can have 
different causes of failures. For instance, was the information perception influenced by 
distraction, was the information correctly interpreted or did the drive take the right 
decision for an action? Amersbach and Winner (2017) translated this approach into a 
systematic decomposition of automated vehicle operations. The different levels were 
used to set specific critical scenarios based on an FTA. Their approach certainly has 
the potential to reduce the approval effort, but this reduction has to be quantified in 
future studies. 

A conclusion that can be made after reviewing current projects regarding scenario 
generation and testing of ADS is that they focus on near-term applications of 
automated vehicles, such as the highway pilot. There is little research on testing 
scenarios for other applications of ADS, in particular for urban or suburban sceneries. 
This underlines the need for a validation method for junction sceneries, which pose a 
particular risk for ADS. 
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2.5.4 Testing standardisation  

Currently, standardised and harmonised testing procedures or safety guidelines for the 
on-road testing of vehicles equipped with prototype automated vehicles do not exist. 
However, in March 2015, the SAE On-Road Automated Vehicle Standards 
Committee has released J3018, which provides general guidelines for performing tests 
of prototype ADS equipped on test vehicles operated in mixed traffic environments on 
public roads (On-road Automated Vehicle Standards Committee, 2014). Additionally, 
SAE is currently preparing the standard J3092, which will contain dynamic test 
procedures for verification and validation of ADS, such as those performed on a test 
track.  

In 2013, Euro NCAP released the test protocol for Automated Emergency Braking 
(AEB) systems for low-speed and urban type car crash scenarios (Fildes et al., 2015), 
in which they describe the standardised testing procedures (e.g. measuring equipment, 
test conditions etc.) for this type of system. A similar protocol for more complex 
scenarios, such as pedestrian detection followed in 2016, but there are still much more 
scenarios that must be considered. 

Testing of ADS has been and is being performed in various European and national 
projects, by vehicle manufacturers and automotive suppliers. However, the literature 
review revealed that there are no common and harmonised procedures for testing 
ADS. For the automotive industry, the international standard ISO 26262 (ISO, 2011) 
is of main importance, when it comes to the functional safety of vehicle systems. The 
ISO 26262 is named “Road Vehicles – Functional Safety” and provides regulations 
and recommendations throughout the product development process for automotive-
specific electrical and electronic (E/E) systems. Although ISO 26262 compliance is not 
mandatory, it is considered state-of-the-art concerning functional safety for road 
vehicles up to 3.5 tonnes (Weigl, 2014). The standard introduced a risk-based 
approach for determining risk classes, namely the Automotive Safety Integrity Levels 
(ASILs) from A to D, with D requiring the highest integrity requirements on the 
product. The ASILs ask the question “If a failure arises, what will happen to the 
driver and associated road users?” (National Instruments, n.d.). Hence, level D rated 
systems have a likely potential for severe or fatal injury when they fail and therefore 
require the highest QM standards. The risk level is determined by three variables: 
severity, probability of exposure and controllability. And this poses a problem when 
defining ASILs for fully automated vehicles, because as the standard reads now, the 
absence of a human driver means zero controllability (Lee and Hobbs, 2013).  

2.5.5 Findings 

In summary, the review of testing and validation procedures for ADS can be 
concluded as follows: 

 Regulations such as the Vienna Convention on Road Traffic and UN 
regulation 79 have been amended to allow testing of automated vehicles on 
public roads. However, there are still legal hurdles. 
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 Worldwide, ADS testing is being initiated. In Europe, several test sites have 
been opened to validate automated driving functions. Twenty states of the 
USA have allowed public testing and Japan aims to introduce automated road 
traffic by 2020. 

 Before testing on the road, the automotive industry validates their systems in 
virtual environments to cover numerous scenarios and different testing 
conditions. Commercially available simulation software packages are 
CarMaker, dSPACE, PreScan, VTD or Pro-SiVIC. 

 Virtual or real-world tests require a clear definition of relevant test scenarios. 
A combination of different data sources is recommended to derive such 
scenarios, including accident data, real-world driving data or risk analysis 
methods. However, there is a need to derive scenarios for ADS applications on 
non-motorway areas, since most current projects focus on motorway 
scenarios. 

 SAE is currently preparing the standard J3092, which will contain dynamic 
test procedures for ADS on a test track. However, there are currently no 
standardised procedures for testing ADS, especially not for intersections.  

 

2.6 Research gaps addressed by the thesis 

Among the many challenges that ADS face, the functional safety and reliability of 
environmental perception and motion planning were found to be the most crucial one 
for market introduction. Therefore, the automotive industry keeps on testing their 
vehicles under different circumstances. However, the literature review showed that 
there are currently no common validation procedures and benchmark scenarios. As a 
summary of this chapter, three main research gaps are defined in the following, which 
are addressed by the thesis. 

Research Gap #1: Ensuring high road safety at road intersections with mixed vehicle
population of automated and non-automated vehicles: 

One of the high-level research gaps in the world of automated driving is how to 
achieve full reliability of highly automated vehicles on public roads, taking into 
consideration other traffic participants and non-automated vehicles. Especially in 
urban areas, automated vehicles still struggle with complex environments and 
unexpected behaviour of other drivers or vulnerable road users. The purpose of this 
thesis is to provide novel methods for improving testing procedures, which lead to 
avoidance or mitigation of intersection crashes involving automated vehicles.  

Research Gap #2: Identifying key scenarios and testing procedures for ADS at 
intersections: 

Another main research gap addressed by this work is that there are no standardised 
procedures for evaluating automated driving systems in junction environments. The 
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literature review has revealed that it is too comprehensive to cover all relevant driving 
situations when testing ADS, either in real-world or in virtual test environments. 
Therefore, there is a need for identifying key driving situations used as “benchmark 
scenarios”, which constitute the core population of driving situations to be passed by 
automated vehicles. This thesis contributes to the problem of finding such scenarios 
for the areas of road intersections, e.g. including relevant crash types, collision 
scenarios or junction characteristics. This research gap is linked to the research 
questions 3 and 4 given in Section 1.2. 

Research Gap #3: Providing a method to evaluate the safety performance of ICAMS
under a representative variation of real-world conditions: 

An intersection assistance system for automated cars must be able to adapt to 
different intersection types. The literature review has shown that most studies do not 
validate their models on a large variety of intersection layouts and characteristics. 
Furthermore, various collision detection algorithms have been proposed, but the 
coverage of these algorithms is limited to only a few scenarios. Validation and 
verification of the systems must take into account the most critical combinations of 
collision parameters. However, those parameters may not be available from real-
world observations or accident data. This gap is particularly addressed by the research 
question 4 and 5. 
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3 Research methodology 

This purpose of this chapter is to explain the methods used to achieve the research 
objectives. First, the overall research design is presented, followed by a detailed 
description of each research study’s methodology. 

3.1 Overall research design 

The thesis is structured into three studies, as depicted in Figure 19. The initial study 1 
was conducted to set the research scope according to relevant research gaps as well as 
challenges and problems for automated traffic at intersections. The research gaps and 
challenges were identified by reviewing literature in various areas and by surveying 
experts with an online questionnaire. After that, a preliminary analysis of junction 
accident data helped to understand the main safety problems and accident 
circumstances at junctions. Thus, study 1 addressed the research question 1, 2 and 3 
(see Chapter 1.2). 

Study 2 built upon the findings of study 1 to investigate junction crashes in detail. By 
clustering historical in-depth accident data from the UK, the key crash scenarios at 
junctions were identified and described. The underlying data comprised accidents 
involving human drivers only and was used to draw a picture about critical 
intersection situations that drivers usually encounter. The results of study 2 deliver 
answers to the research question 3. 

In the third and final study, a novel, modular simulation and evaluation framework is 
presented to reconstruct the crash scenarios in a virtual testing environment, where 
automated driving functions replace the driver. The framework is demonstrated on a 
particular junction scenery, where automated collision avoidance systems are 
evaluated. The simulation output comprises various safety indicators to quantify the 
relative safety performance. Thus, the third study addresses research question 4 and 
provides the basis for recommendations on safety performance indicators as part of 
research question 5. 

 

Figure 19: Overall research design 
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3.2 Study 1 

As the first step of the scoping study, literature was reviewed to explore the context 
and identify research gaps. The review comprised the following topics (see Chapter 2): 
Technical hurdles for automated driving systems including their limitations of vehicle 
technologies, accident data types and investigation methods, safety at road 
intersections including accident statistics, automated intersection collision avoidance 
and mitigation systems as well as current testing and validation procedures for ADS. 

A problem that occurred during the literature review is the novelty of the topic, which 
limits the number of available research papers and reports. Furthermore, given the 
fact that this topic is mainly industry-driven, recent developments are rarely made 
public. Additional information was necessary to get a complete picture of current 
developments and challenges in road transport automation. Therefore, a web 
questionnaire was set up to address experts in the field of ADS, working in the 
industry, academia, research institutes and public authorities. For the survey study, 
the following steps, loosely based on the guide by Burgess (2001), were undertaken: 

1. Decide on the information required according to the research aims: The 
literature review showed that more information on the technical readiness of 
automated driving functions is needed. Furthermore, factors that influence the 
performance of automated vehicles on public roads needed to be surveyed. 
This information helped to select appropriate accident variables and indicated, 
which automated driving subsystems needed to be investigated. 

2. Define the target respondents: The idea was to reach as many representatives 
from industry as possible. However, due to limited response, the target 
population was widened to research institutes and academia, as well as public 
authorities and consultants. In total, 54 complete responses were received. 

3. Design the questionnaire: Given the purpose of the survey, an exploratory 
questionnaire design was chosen to gather preliminary information to define 
the problem. For each topic of the questionnaire, namely technologies for ADS 
and influencing factors, closed questions were stated with predefined 
categories for the answers, followed by a text box for comments. The 
questionnaire was designed using Google Forms and did not take longer than 
10 minutes on average. All the questions from the survey can be found in 
Appendix A. 

4. Run a pilot survey: A pilot survey was conducted among colleagues to check 
for mistakes or usability issues. 

5. Carry out the main survey: After making some amendments, the main survey 
was carried out by distributing the questionnaire link among colleagues and 
professional contacts, networking organisations and the professional social 
network LinkedIn. 
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6. Analyse the data: After the deadline given for survey responses, data were 
analysed using the exported Google summaries in MS Excel. See Section 4.1 
for further information and results of the survey. 

The expert survey was followed up by an initial data analysis of junction accidents. It 
was decided to focus on accident data, as this can draw a picture of the current safety 
aspects. First, it was investigated and selected which accident database to be used for 
the thesis. To obtain in-depth information, the following microscopic UK databases 
were investigated: CCIS, OTS and RAIDS (see Section 4.2.1). RAIDS was found to be 
too sparse for the desired data query with only 75 cases to investigate. So, CCIS and 
OTS were among the candidates, but difficult to merge data-wise. Instead of 
conducting two separate analyses, and because CCIS only contains car accidents, OTS 
was chosen as dataset, having a proper sample size and a sufficient number of 
attributes included. 

From the OTS database, data elements to be queried were defined and exported from 
an online interface. After data post-processing, i.e. reducing variables and removing 
missing values, a descriptive statistical analysis of the main accident parameters was 
conducted. A significance test was done to confirm the generalizability of the OTS 
data sample in comparison to the overall accident population taken from the CARE 
database.  

3.3 Study 2 

The second study is related to the research question 3 (see Chapter 1.2). The goal of 
the second study was to identify distinct groups of junction accidents by applying an 
appropriate clustering technique. Due to the different principles of the algorithms, one 
method might produce different clusters to another method. Hence, one has to choose 
the most appropriate method for the underlying dataset, taking into account the 
sample size, the number of attributes, the attribute types as well as the desired output 
of the study.  

An important prerequisite of the clustering exercise is that it needs to deliver results 
for defining the simulation parameters in study 3. Modelling a virtual road 
environment and collision scenarios necessitates detailed information on the 
circumstances and location of the accidents, which assists the definition of static and 
variable simulation parameters. For example, a static attribute can be the junction 
type and the type of vehicles involved, while varying parameters can be the driving 
trajectories, traffic conditions or driving velocity. Therefore, the overall methodology 
of study 2 is strongly linked to the requirements of the subsequent simulation study. 
One major requirement is that the number of varying parameters is kept low in order 
to reduce the number of possible combinations. Also, the range of variations should 
be narrowed down as much as possible. Consequently, study 2 aims at providing 
enough information on possible junction scenarios and parameter combinations.  
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The methodology flowchart is depicted in Figure 20. Inspired by a study from Kumar 
and Toshniwal (2015), the idea was to initially partition the data by a clustering 
technique for categorical data and then apply the association rule method on the data 
subsets. Note that the elements of study 3 are greyed out. 

 

Figure 20: Methodology of study 2 

The historical crash data used and its processing steps are explained in Section 4.2, 
including the procedure of attribute selection. Section 5.2 describes the attribute 
coding and grouping into two levels. Level 1 is a reduced set of attributes describing 
the collision parameters, for better partitioning and easier interpretation of the results, 
while Level 2 adds additional attributes describing the environment and causation 
factors. Level-1 data is used as input for the clustering algorithm and level-2 data for 
finding association rules. The main reasons why this two-level approach has been 
chosen are the following: 

1. Most clustering methods achieve superior clustering results on a smaller set of 
attributes. No clear partitioning would be achieved when using all available 
attributes. 

2. The results from applying the association rules on the whole dataset (without 
prior clustering) would be hard to interpret due to the high number of 
obtained rules. It must be noted that depending on the sample size and 
attribute dimensionality, millions of rules might be computed. This requires 
post-processing by applying dedicated algorithms or pruning techniques. 

The accident data used in this study is of categorical nature, i.e. described by 
qualitative attributes (also called nominal attributes) of mainly arbitrary order. 
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Although the categories can be coded as numbers, e.g. 1: female, 2: male, those 
numbers would not have mathematical meaning (Han et al., 2011; Lourenco et al., 
2004). Therefore, dedicated statistical methods are necessary to analyse categorical 
data. Data mining techniques are based on a dissimilarity or distance measure 
between samples. This is especially true for clustering, which can be described as a 
collection of data objects such that the objects within a cluster are similar to each 
other and dissimilar to the objects in other clusters. Conventional clustering 
techniques often use the Euclidean distance measure, which would not make sense for 
the given OTS dataset.  

In literature, a range of different definitions are given for clustering, but one of the 
most apposite ones for this thesis is: “Finding of natural groups from a data set, when 
little or nothing is known about the category structure” (Anderberg, 1973). In fact, 
natural groups of accident circumstances at UK junctions are unknown, and the goal 
of this thesis is to discover such groups.  

Clustering methods can be classified into the following groups (Berkhin, 2006; Han et 
al., 2011): 

1. Partitioning methods decompose a data set into a set of disjoint clusters. 
Popular methods are e.g. k-means and -medoids that usually start with a 
random partitioning and refine it iteratively to find a (not necessarily global) 
optimum. See Section 5.3.1 for a more detailed explanation. 

2. Hierarchical methods build a tree of clusters, also known as dendrogram, 
where each cluster node contains child clusters. The number of clusters 
depends on where the tree is cut. This approach has the advantage that data 
can be explored at different levels (hierarchies). 

3. Density-based methods can cope with clusters of arbitrary shape and data 
outliers, since they are based on a density metric instead of a distance metric. 
The most popular algorithm, DBSCAN (Ester et al., 1996), clusters points that 
are closely packed together and takes note of single outlier points in low-
density areas. 

4. Grid-based methods quantise the object space into a finite number of cells that 
form a grid structure (Schikuta, 1993). The idea is to organise the value space 
surrounding the patterns and not the patterns, as the other three cluster 
method groups do. For large datasets, this approach tremendously increases 
execution times. 

Elavarasi and Akilandeswari (2014) and Rezanková (2009) published surveys on 
clustering algorithms for categorical data and presented possible methods, among 
which are SQEEZER (He et al., 2002), ROCK (Guha et al., 1999), LIMBO (Andritsos 
et al., 2004), STIRR (Gibson et al., 1998), Link Clustering (LC, Zengyou et al., 2004) 
or CACTUS (Ganti et al., 1999). Also, conventional clustering algorithm were 
modified to deal with categorical data, such as -modes (Huang, 1997; Huang and 
Ng, 1999), -histograms (Zengyou et al., 2003), -medoids (Kaufman and 
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Rousseeuw, 1990) or Generalized Self-Organizing Maps (SOM, Hsu, 2006), all of 
which having their advantages for different applications. Basically not a clustering 
method, but a popular classification algorithm for categorical data is Latent Class 
Analysis (LCA, Goodman, 1974), which is a model-based approach, assuming that a 
mixture of underlying propability distributions generates the data. In contrast to 
conventional clustering techniques, LCA assigns probability of each sample to be in 
different classes, instead of partitioning the data into fixed clusters. In the following, it 
is explained how clustering has been set up in this study and which technique and 
parameters were chosen. 

According to Anderberg (1973), the procedure of clustering should contain at least 
nine elements. Äyrämö and Kärkkäinen (2006) extended this list by adding a missing 
data strategy: 

1. Choice of objects 
2. Choice of variables 
3. What to cluster: data units or variables 
4. Normalization of variables 
5. Choice of (dis)similarity measures 
6. Choice of clustering criterion (objective function) 
7. Choice of missing data strategy 
8. Algorithms and computer implementation (and their reliability, e.g., 

convergence) 
9. Choice of appropriate number of clusters 
10. Interpretation of results 

In this study, this process was undergone as follows:  

(1) The choice of objects, i.e. data samples, was done by filtering and exporting OTS 
data from the online database (see Section 4.2.2).  

(2) The variables were selected according to the scope of this study. For example, 
detailed occupant injury data, or vehicle damage information is not relevant for this 
study. Hence the corresponding variables were removed. As Section 4.2.4 will 
describe in detail, many of the remaining variables were removed as well, among 
which are low-semantic variables (e.g. Case ID, weekday), variables with mainly high-
occurrence values, highly correlated variables or those with many missing values. For 
clustering, the number of variables was again narrowed to achieve interpretable 
results, as explained in Section 5.2.  

(3) According to the research questions, it is necessary to cluster the data units and 
not the variables, although the latter might reveal similar variables that could be 
grouped in order to reduce the dimensionality.  

(4) “Normalisation is the process of scaling individual samples to have unit norm” 
(“Normalization - PHP-ML - Machine Learning library for PHP,” n.d.). It is a 
common pre-processing step for many machine learning methods. However, since this 
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study uses categorical attributes and not numeric ones, normalisation is not needed. It 
must be noted that all attributes were coded in a binary format (see Section 4.2.4). 

(5) The choice of dissimilarity measures was narrowed down by the fact that the 
underlying OTS data is of categorical nature. Categorical variables require a non-
numerical distance metric. Commonly used measures for binary-coded categorical 
data, as used in this study, are the Hamming distance or Jaccard distance. While the 
Hamming metric simply gives the number of elements that are different between two 
binary vectors, the Jaccard distance gives the percentage of non-zero elements that 
differ. See Section 5.3.1. 

(6) The clustering criterion is predefined by the algorithm used. For partition-based 
clustering, the criterion is the minimisation of the within-cluster distances of the 
points in a cluster and likewise, the maximisation of the intra-cluster distances, i.e. the 
distances between the cluster centres. 

(7) For the purpose of clustering, samples with missing values, i.e. samples with 
unknown attributes, were removed (see Section 4.2.2).  

(8) After investigating different clustering techniques, the -medoids method was 
chosen, in particular an algorithm called PAM (Partitioning Around Medians, 
Kaufman and Rousseeuw, 1990) was applied to compute the clusters. -medoids was 
found to be most appropriate for the given dataset, since the method is robust against 
outliers and can cope with categorical data. See Section 5.3.1 for further information. 

(9) As for -means, -medoids requires a predefined number of clusters ( ’s) to 
partition the data accordingly. In an iterative process, the number of  was 
incremented to a maximum  and a validity measure called silhouette value was used 
to identify the best . See Section 5.3.2. 

(10) One of the trickiest part of cluster analysis is the interpretation of the results. The 
aim is to describe each cluster by words so that a critical scenario can be derived. A 

-goodness-of-fit test was carried out on the sample population within each cluster 
compared to the population of all clusters to identify significant differences and over-
represented attributes. See Section 5.3.3.  

Association rules are a popular method in data mining to discover hidden associations 
within variables in large datasets. A popular application of association rules is the so-
called market basket analysis, where associations between supermarket products from 
a large record of transactions are computed (Agrawal et al., 1993). For example, a 
resulting simple rule could be “beer → crisps”, which would indicate that customers 
who buy beer also buy crisps. The information derived from such rules can be used as 
a basis for decisions about marketing activities and product placement. In the case of 
this thesis, association rules are used to get insight into the collision circumstances 
within each cluster. For example, a rule “SpdLimit=20mph → MaxInj=Slight” would 
indicate that low-speed accidents are associated with slight injury. It is important to 
note that association rules do not indicate causality, which the arrow might suggest. 
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Section 5.4 explains the principles of association rules in more detail and presents and 
discusses the results obtained.  

Ultimately, the association rules result in various crash scenarios that can be described 
by four groups of simulation parameters: Road configuration, driving scenarios, ego 
car behaviour and opponent behaviour (see definitions in Chapters 6.8.2 and 6.8.3). 
Those parameters are further modelled in the virtual environment. 

3.4 Study 3 

The third and final study is related to the research questions 4 and 5 (see Section 1.2). 
The goal was to develop a methodology to transfer the derived collision scenarios (see 
Section 5.4.3) to a sub-microscopic simulation environment for examining the safety 
performance of ADS at junctions. The methodology for study 3 is given in Figure 21 
and shows that the simulation module is strongly related to the clustering analysis. 
Note that the elements of study 2 are greyed out.  

 

Figure 21: Methodology of study 3 

In general, the proposed simulation framework is based on one or more experiments 
to test pre-defined hypotheses. Those hypotheses are related to the objectives of the 
virtual test, as described in Section 6.1. While study 2 analysed junction accidents 
involving driver-operated vehicles only, the simulation framework replaces the driver 
with an automated vehicle, further denoted as ego car. On the one hand, this affects 
the parameters for the ego car model, such as reaction times or driving behaviour. On 
the other hand, factors that are assumed to be problematic for automated vehicles 
must be taken into account. Risks that could negatively influence the safety 

Crash Data 
Analysis

Attribute Grouping 
into Level 1 and 2

Historical
Crash Data

Data Processing & 
Attribute Selection

Simulation 
Parameters

Road scenery

Driving scenarios

Sub-microscopic
Simulation

Clustering
Level 1

Association Rule 
Mining
Level 2

Road Environment 
Models

Vehicle and Sensor 
Models

Driving Behaviour 
ModelsSafety 

Evaluation
Test Objectives

and Research Questions

EXAMPLE:
Evaluate the safety performance of different in-vehicle 

collision avoidance systems for various junction scenarios.

Ego car behaviour

Opponent behaviour
Hypotheses of 

criticalities
e.g. poor visibility

Monte Carlo 
Sampling

Collision probability

Near-miss prob.

Probability distributions

Safety 
performance  

indicators

Criticality factors



66 

 

performance of ADS are specified as “criticalities” (see Section 6.2.5). Hence, 
criticality factors are added to the parameters derived from the association rule 
analysis. For the demonstration of the framework, the simulations were realised by 
using the computer simulation tool CarMaker, which allows to virtually evaluate a 
large number of variants in comparison to real-world tests. The reasons for using 
CarMaker are given in Section 6.3. However, any other simulation tools such as 
dSPACE or PreScan might be used instead, as long as they can provide the same 
output parameters used for the safety performance evaluation. 

As Section 6.2 defines, a simulation experiment contains various sceneries, i.e. road 
and junction environments to be analysed. Each scenery itself contains various 
scenarios, selected from those presented in Section 5.4.3. It is significant to mention 
that not all simulation parameters can be derived from the clustering study. For 
example, approaching speeds, lane width or vehicle parameters have to be assumed, 
because they were not given in the underlying accident dataset. The original crash 
scenario is modified and simulated until the point of impact, by implementing 
automated driving functions and varying collision and road infrastructure parameters. 
The method can therefore also be called a pre-crash simulation, because it does not 
replicate post-collision damage, injury and vehicle positions. 

For each scenario, some of the simulation parameters remain static and some are 
varied within a certain range, such as the lateral position in the lane and the speed of 
the opponent, the friction coefficient of the road surface or the level of collision 
avoidance systems to study their impact. The Monte Carlo sampling method, in 
particular the Latin Hypercube Sampling (LHS, McKay et al., 1979), was applied to 
randomly select samples among the value range of the varying parameters. There is no 
single Monte Carlo method definition, but most approaches follow this pattern: 1) 
model a system as a (series of) probability density functions (PDFs), 2) repeatedly 
sample from the PDFs and 3) compute the statistics of interest (Harrison et al., 2010). 
The three steps were also taken in the underlying study, by defining PDFs for each 
varying parameter, sampling from the PDFs by taking into account the previously 
generated sample points and computing a collision and near-miss probability from the 
simulations. A detailed explanation of the sampling method is given in Section 6.7. 

The simulation block in Figure 21 is divided into the model groups  

 road environment (see Section 6.6.1),  
 vehicle and its sensors (see Sections 6.6.3 and 6.6.4) as well as 
 driving behaviour models (see Section 6.6.5). 

CarMaker allows to accurately designing road environments including road layout, 
surface parameters and roadside elements. A large number of car models can be 
chosen and parametrised for the ego car and surrounding traffic such as the opponent 
can be modelled as all road user types (e.g. cars, trucks, pedestrians, cyclists). The 
sensor models are used to replicate an automated car’s ability to sense its 
environments and also reflect their limitations due to poor visibility or sensor failure. 



67 

 

The vehicle control module that perceives the sensor data as well as the opponent 
behaviour is specified by the driving behaviour model. This includes the modelling of 
longitudinal and lateral control, or in the case of ADS, automated lane assistance 
(lane keeping, lane change), automated speed and/or distance control system (when 
approaching and crossing an intersection) and automated emergency braking to avoid 
a collision. 

An important task to assess the safety performance of ADS is to use appropriate safety 
indicators. In this study, not only crash indicators are investigated, such as collision 
yes/no, impact speed or angle, but also near-miss indicators are taken into account, 
e.g. post encroachment time or time-to-collision. By varying parameters, many 
different scenario configurations are simulated and the actual collision is then 
unlikely. Hence, by evaluating near-misses one can obtain additional information on 
safety risks. See Section 6.4 for further information. The resulted safety performance 
indicator values are then used to compute a collision and near-miss probability for 
each scenario variation to derive findings. The findings are discussed against the 
hypotheses stated for each experiment. 

The developed simulation framework is demonstrated for a specific junction scenery 
to show its level of usefulness and versatility. Instead of modelling an artificial, virtual 
road scenery, a real-world junction in the East Midlands, UK, was chosen to showcase 
the method for a practical example. This had the advantage that the environment 
parameters such as lane and shoulder widths, position of roadside elements, gradients, 
i.e. parameters that may not be directly derived from the crash clusters, were taken 
from an on-site inspection. Furthermore, taking a real-world scenery for the 
simulation experiment demonstrates the use of the framework for road operators and 
authorities to evaluate particular junctions in their network.  

This approach is different from traditional crash simulation studies, where real-world 
road locations are reconstructed case-by-case from a crash sample of the underlying 
accident database and the effectiveness or crash avoidance rates of safety interventions 
is studied (Brunner et al., 2003; Canu et al., 2016; Cliff and Moser, 2001; Helmer, 
2014; Sander, 2017; Sander and Lubbe, 2018). Commonly, those studies use a crash 
reconstruction tool such as the software PC-Crash. In this thesis, the virtual junction 
is not included in the OTS samples, because the crash samples are not evaluated case 
by case. Instead, generalised abstract scenarios are obtained from clustering and 
further specified by association rules. More concrete, less abstract scenarios are then 
produced by parametric variation using the LHS method (see Table 4). In other 
words, artificial critical scenarios are evaluated instead of accident scenarios that 
really happened. In this way, more parametric variation can be implied than by using 
a limited crash population. 

In the demonstration experiment, the safety performance of two different automated 
collision avoidance systems is studied and the capabilities as well as the limitations of 
the framework are discussed later on. 
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Table 4: Types of scenarios and how they are derived 

Type: Functional scenario Logical scenario Concrete scenario 

Level of 
abstraction: 

High  Low 

Source: Clustering results Association rule results Sampling of parameter 
distributions (LHS) 

Described 
by: 

Natural language Parameter ranges and 
attributes 

Precise parameter values 

Examples: A car turns left on an 
urban T junction and hits 
another PTW. 

Surface: wet (friction 
coefficient: 0.3-0.9), speed 
limit (30-40mph), traffic 
control: light, road type: 
dual carriageway 

Position in lane: 0.3m, 
velocity: 27mph, Friction 
coefficient: 0.43 
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4 Study 1: Scoping and initial analysis 

The following sections describe the work carried out during the first study of this 
thesis, to set the research scope according to relevant research gaps as well as 
challenges and problems for automated traffic at intersections. Besides a 
comprehensive literature review, research activities included a web expert survey as 
well as an initial analysis of in-depth accident data. The work of this initial study 
addresses research question 1 and was published by Nitsche et al. (2014). 

4.1 Web expert survey 

The literature review described in Chapter 2 was complemented by a web survey to 
get insights, which have not been published by the industry or are not yet available 
due to the novelty of the topic. At the time the survey was conducted, the scope of the 
thesis was not completely defined. It therefore helped to get ideas on the challenges 
that ADS currently face and the readiness of ADS technologies. The survey was 
designed as exploratory questionnaire targeting experts in the field of automotive 
development and testing. For each topic of the questionnaire, namely technologies for 
ADS and influencing factors, closed questions were stated with predefined categories 
for the answers, followed by a textbox for individual comments. The questionnaire 
was designed using Google Forms and did not take longer than 10 minutes on 
average. 

To ensure acquiring expert opinion, the questionnaire invitations were sent to 
contacts in well-known institutions active in the fields of automotive research and 
development, with the request to forward it to relevant persons. For example, the link 
was distributed among the CLEPA (European Association of Automotive Suppliers) 
partner network. In addition, project teams of the DARPA challenges were 
approached, as well as other European networks such as ERTICO (European Road 
Transport Telematics Implementation Coordination) and FEHRL (Forum of 
European Highway Research Laboratories). Furthermore, the questionnaire link was 
distributed through dedicated LinkedIn groups with members in the field of 
automated driving and ADAS. Due to this approach, a response rate is difficult to 
calculate, because the overall number of recipients, who have actually read the survey 
invitation, is not clear.  

In total, 54 persons completed the questionnaire, which was considered a satisfactory 
sample size. The questions included the role of road infrastructure, market readiness 
as well as to which extent certain factors influence the performance of selected ADS 
groups. The survey was kept anonymously, with the option for the respondents to 
state their institution and email address. As shown in Figure 22, the majority of 
responses (36 of 54) came from research and development experts, which could either 
be from research institutes or industry companies. Multiple answers were possible, if 
the expert worked in several domains. 13 out of 54 respondents worked in academia, 
followed by 8 experts from the industry domain, 3 from public authorities and 5 from 
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other domains such as consultants or civil engineers. It must be noted that the survey 
was conducted in 2014 and their opinions and developments might have changed 
since then. However, for the further work in the thesis, the survey provided a relevant 
complement to the literature review. 

 

Figure 22: Number of responses per domain of work (n=54, multiple answers possible) 

As a first question, the role of the road infrastructure was rated as “very important” 
by 76 percent of the respondents (see Figure 23). Only one participant believed that 
the infrastructure is not important at all. This question served as a simple 
introductory question and was asked to get a general idea if ADS require additional 
road infrastructure and if the infrastructure itself might have an influence on the 
performance of ADS. 

 

Figure 23: Number of online survey responses to the question “How important would you rate the role 
of road infrastructure in a world of self-driving cars?” (n=54) 

In terms of technological readiness for market (see Figure 24), selected automated 
driving systems were rated as “still under research” (green bars), “prototyping” (red 
bars) and “ready for market” (blue bars). The selected automated driving subsystems 
are explained in Table 5. 
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Table 5: Explanation of automated driving subsystems listed in the survey 

System Description 

Automated lane keeping Systems which take over steering, keep the car centred in the lane, and 
ask the driver to take over when needed. 

Dynamic speed control and 
adaptation 

Systems which take over longitudinal control by selecting, keeping and 
adapting the driving speed according to speed limits and environment 
conditions. 

Fully automated parking Systems which take over steering and accelerating/braking to bring the 
vehicle into a parking position. 

Fully automated braking Systems which activate the brakes in an emergency situation, when a 
collision is imminent. 

Obstacle crash avoidance Systems which take over steering and braking to avoid a collision with 
an obstacle on the road or roadside. 

Collision avoidance with other 
road users 

Systems which take over steering and braking to avoid a collision with 
other road users such as vehicles or pedestrians or cyclists. 

Fully automated steering System which take over steering in all driving situations even if there is 
no lane marking. 

Automated safety pull-over in 
emergeny cases 

Systems which perform a safe exit manoeuvre with minimal risk, e.g. 
drive to the shoulder and stop when the human passenger does not 
respond to take over. 

Automated lane changing Systems which change from one lane to another by observing the 
surrounding traffic. 

Automated lane merging Systems which change to another lane, because the current lane is 
ending, e.g. on motorway on-ramps. The surrounding traffic must be 
observed and a safe gap must be found. 

Automated overtaking Systems which change from one lane to another, overtake and change 
back the lane, by observing surrounding and oncoming traffic. 

 

It is important to note that the rating is based on technological readiness in the year 
2014, disregarding legal, liability and privacy issues. The coloured areas in the 
background were added to visualise the decline of responses for systems that are 
market-ready, while the responses for “still under research” are increasing for those 
systems. This is logical and shows that e.g. automated lane keeping only needs little 
research, because it is already ready for the market, while more complex systems such 
as automated overtaking are still under research and not ready for the market yet. In 
general, responses indicate that lane keeping, speed adaptation and parking systems 
are in an advanced stage of deployment, while assistance systems that must handle 
more complex manoeuvres, e.g. overtaking, are still under research. However, there is 
still some discrepancy, such as with automated braking, where more than twenty 
responses were given for either “prototyping” or “still under research”. A reason for 
this could be that the definition of this ADS category was not fully clear to the 
respondents.  

The respondents were asked to mention additional systems, which they consider 
relevant for automated transport, among which are traffic sign recognition, detection 
of markings other than lane markings, trajectory planning, negotiation and 
compromise with other road users, platooning, intersection communication assistant 
or traffic signal communication. 
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Figure 24: Number of online survey responses regarding the technical readiness of ADS 

The survey further focused on three distinct groups of ADS, which differ in their 
purpose of use, technologies applied and market readiness:  

1. Lane assistance, aiding drivers by performing actions such as keeping or 
changing the lane automatically, comprising of the subsystems “Automated 
lane keeping”, “Automated lane changing”, “Automated lane merging” and 
“Automated overtaking” given in Figure 24. 

2. Collision avoidance, aiding drivers in avoiding collisions with other traffic 
participants (e.g. vehicles, pedestrians, cyclists) or other obstacles by means of 
automated steering or braking, including the systems “Obstacle collision 
avoidance”, “Collision avoidance with other road users” 

3. Speed control systems, aiding drivers by adapting the vehicle’s speed 
automatically, based on legal speed limits or other external factors, such as 
road alignment, weather conditions, congestion, road works etc. (Fancher et 
al., 2004; Yamamura et al., 2001). The group consists of Intelligent Speed 
Adaptation (ISA), dynamic speed adaptation and curve speed control. 

It is significant to mention that the three groups analysed in this study do not cover 
the whole range of subsystems in automated transport. For example, automated 
parking systems, truck platooning, re-routing or automated docking systems for 
public transport are also available or under development.  

To the question regarding to which extent certain factors influence the performance of 
specific ADS groups, the respondents gave a rating from very high to very low 
regarding the influence of a factor, e.g. poor visibility. To present the rating on a 
linear scale, the following weighting function has been applied: 
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3

	 (4)

with 	as the total number of responses for each factor, and ∑ ∙ , with  as 
the number of responses for each rating category  from 1 (very low) to 4 (very high 
influence). This 4-point scale was preferred over a 5-point or Likert scale to avoid a 
neutral response, which keeps the number of analysable answers higher. Having a mid 
point on the scale would mean that the respondent had the possibility to opt out of 
the question and that a decrease of responses is likely. Resulting in a scale from 0 to 1, 
the influence weights were simply divided into three equal ranges indicating ‘low’, 
‘medium’ and ‘high influence’ for each automated driving subsystem (see Figure 25 to 
Figure 27). 

 

Figure 25: Factors influencing the performance of lane assistance systems 

Considering the fact that lane assistance systems (see Figure 25) are mainly based on 
vision sensors, it is not surprising that poor visibility and low quality of lane markings 
and road edges are among the factors with high influence. Complex urban 
environments were rated with the highest influence, meaning that lane assistance 
systems might struggle with obstructed intersections, parked vehicles or crossing 
pedestrians and cyclists. Temporary work zones may constitute a problem for lane 
assistance of ADS, since temporary markings often replace lane markings. 

As seen in Figure 26, the ratings for collision avoidance systems indicate that visibility 
due to bad weather is still an issue, but not the visibility and quality of road 
infrastructure and equipment. For this subsystem of ADS, the interaction between 
road users comes into play, which could obviously be a challenge in complex urban 
environments.  

Speed control systems are mainly based on traffic sign detection and digital maps, 
which are influenced by changing environments, such as it happens on temporary 
work zones or urban roads and intersections (see Figure 27).  
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Figure 26: Factors influencing the performance of collision avoidance systems 

 

Figure 27: Factors influencing the performance of speed control systems 

Summarizing the web survey results, the main challenges for ADS are complex urban 
environments, temporary work zones and poor visibility due to bad weather 
conditions. Road surface characteristics, road alignment and lighting were rated as 
minor influencing factors. Intersections are assumed to be complex road environments 
for ADS due to the likely occurrence of other road users and crossing traffic. Given 
the survey results, it can be concluded that intersections with poor visibility due to 
obstructions or bad weather, or unclear lane markings and traffic signs pose 
particular problems. This helped to select the variables from the in-depth crash 
database, as explained in the following section, as well as to define the parametric 
variation in the simulation study. 

4.2 Initial analysis of in-depth accident data on junctions 

As an essential task of the scoping study, in-depth crash data from OTS was collected 
to enhance the findings given in Section 2.3, where the general safety aspects at 
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intersections have been discussed. While the macroscopic analysis of European CARE 
data revealed the proportion of accidents and injured persons at junctions compared 
to all cases, this task is carried out to explore the data in detail and to set the scope 
for the upcoming analyses. 

4.2.1 The OTS study 

The data used for this thesis stems from a project called OTS (On-The-Spot), which 
was commissioned by the UK Department for Transport and the Highways Agency 
(HA). It aimed to establish an in-depth research database of a representative sample of 
road accidents in the UK, to better understand the cause of accidents and injuries (Hill 
et al., 2001). Two crash investigation teams collected data from the years 1999 to 
2010. One team was located at Loughborough University covering the South 
Nottinghamshire area in the East Midlands, and the other at the Transport Research 
Laboratories (TRL) covering the Thames Valley region. See the locations of team in 
Figure 28. The teams were responsible for collecting information at the scene of the 
accidents or, when the accidents already occurred, by liaison with emergency services, 
hospitals and local authorities. To arrive at the accident scene as quick as possible, the 
teams had a direct link with the local police, and response vehicles driven by an OTS 
police officer were used (Cuerden et al., 2008). 

 

Figure 28: Locations of the OTS investigation teams (Mansfield et al., 2008) 

The collected data was structured into eleven hierarchical sections as depicted in 
Figure 29. The “scene” level contains approximately 200 variables, e.g. relating to the 
date, time and location of the accident, general environmental conditions and possible 
contributory factors. For each scene, there is at least one “path” record, defined by 
the direction of travel. If two vehicles collided while travelling in the same direction 
(e.g. rear-end collisions), they share one path, while typical head-on collisions would 
have two paths. The path section includes data about road layout, surface condition, 
traffic control or potential distractions or obstructions. 

For each vehicle on each path, there is a “vehicle” record, comprising information on 
the vehicle type, condition and safety features installed. Pedestrians and bicycles are 
also counted as vehicles. There are several subsections for each vehicle, such as 
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accident position or information on involved persons (“human”), which is further 
subdivided into “medical”, “injury”, “interaction” and “questionnaire”. 

 

Figure 29: Hierarchical structure of the OTS database (Mansfield et al., 2008) 

In addition to OTS, several other crash data collection programmes for different 
purposes have been completed in the UK. For example, CCIS (Cooperative Crash 
Injury Study) is a study for car accidents only with focus on injury causation and 
crashworthiness of vehicles (Department for Transport, 2006). For causes and 
personal injury consequences of crashes involving trucks and bus crashes, the Heavy 
Vehicle Crash Injury Study (HVCIS, Department for Transport, 2003) was carried out 
using a similar methodology to CCIS. As a follow-up programme addressing each of 
the areas of the former work, the project RAIDS (Road Accident In-Depth Studies) 
was initiated in 2012. Similar to OTS, TRL attends the scene of crashes and examine 
vehicles that have been involved in police-reported collisions in the Thames Valley 
and Hampshire regions, while the Loughborough University team focused on 
Nottinghamshire. The data structure is also similar to OTS. However, RAIDS was 
found to be too sparse for the desired data query with only 75 cases to investigate. So, 
CCIS and OTS were among the candidates, but difficult to merge data-wise. Instead 
of conducting two separate analyses, and because CCIS only contains car accidents, 
OTS was chosen as dataset, having a proper sample size and a sufficient number of 
attributes included. 

4.2.2 Data collection and processing 

OTS is part of the RAIDS project, whose data query and export tool was used to 
download all necessary data elements including collisions with the following 
prerequisites:  

 Junction type = “T or staggered junction”, “Crossroads”, “Multiple 
junction”, “Other junction” or “Using private drive or entrance”. 

 Police Accident Severity = “Fatal”, “Serious” or “Slight” 

It is important to mention that although the police reported a certain injury level, this 
might have been adapted by the crash investigation team based on more precise 
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evidence. Therefore, there can be uninjured cases within the dataset according to the 
OTS investigations, although the police reported an injury accident. 

As mentioned before, roundabouts were excluded from this study. The junction types 
included comprise signalised and non-signalised junctions of different shapes. This 
query resulted in 1,056 crash cases (see Table 6), including more than 400 variables. 
The entire export was securely stored in an MS Access database for further queries 
and easier handling. All tables are related via key fields corresponding to their 
respective ID fields (see Appendix C). 

Table 6: Results from the initial OTS query 

Number of accidents: 1,056 
Number of involved persons: 3,112 
Number of injured or killed*: 1,278 
Number of fatalities*: 36 
Number of seriously injured*: 198 

(* Police accident severity) 

It was decided to analyse the data on the driver level, i.e. every sample corresponds to 
one driver involved in a crash, regardless if he/she was injured or not. This also means 
that every sample contains one vehicle. Consequently, if two or more vehicles are 
involved in the same crash, the underlying crash and environment data is simply 
duplicated. Furthermore, there should be at least one car (including VANs, minibuses 
and SUVs) involved. This principle is illustrated in Figure 30 and required a second 
query from the MS Access database as follows: 

 Seating position of occupant = “Driver / Rider” 
 At least 1 vehicle = “Car” 
 Total number of vehicles > 1 

 

Figure 30: Principle of crash data filtering to obtain one driver per sample. Single vehicle accidents are 
excluded and only car drivers are selected. 

The requirement of more than one vehicle means that single-car accidents were 
intended to be excluded, because speeding, fatigue or other human causation for 
single vehicle accidents are likely to be minimised by ADS and are therefore not 
relevant to the thesis. Also, single-vehicle accidents do not belong to the common 
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crash types at intersections (Abdel-Aty et al., 2006; Polders et al., 2015). This 
additional query resulted in a final sample size of 1,540, i.e. 1,540 drivers, regardless 
if they are injured or uninjured. Compared to an analysis on the crash level, with 
1,056 cases, the sample size has been increased that way. The background of the 
analysis gives another reason for scaling it to the driver level: In the further steps, the 
thesis will investigate safety risks involving automated vehicles instead of drivers. To 
this end, it is necessary to know the critical situations to be handled by drivers 
nowadays, as they are likely to happen to automated vehicles as well. Each sample is 
thus associated with an ego car, later denoted as car A, which collides with a 
secondary vehicle or road user, later denoted as B. 

To filter out the drivers, the field “Seating position” was relevant, as shown in Figure 
31. It further gives the distribution of the gender showing that approximately two-
thirds of all drivers were male. 

 

Figure 31: Number of all involved occupants by seating position and gender (OTS, n=3112) 

4.2.3 Generalizability of the OTS data sample 

The following charts were produced to explore the queried data and most important 
accident figures. This exercise was not done to prioritise or to identify the highest 
risks, but to compare OTS data to the National UK data from CARE in terms of 
generalisability of analysis results as well as to get a picture about the proportions of 
accidents and injury severities for different junction types. 

When comparing data from OTS with CARE, it must be noted that some definitions 
differ, e.g. the junction types. Therefore, only the two most frequent junction types “T 
or staggered” and “Crossroad” have been compared (see Figure 32 and Figure 33), 
for all injury accidents, fatal accidents and serious injury accidents, respectively). It 
can be seen that the proportions highly correspond between the two datasets. The 
largest difference can be observed for the fatal accidents (see Figure 33), where in the 
CARE data, the T or staggered junction has a higher proportion and the crossroad a 
lower one than the OTS dataset. For better comparison, the police injury severity has 
been used instead of the severity assessed by the OTS investigators.  
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Figure 32: Comparison of the proportion of all accidents at two different junction types between CARE 
and OTS (other junction types not included due to different definitions) 

 

Figure 33: Comparison of the proportion of accidents with fatalities (left) and serious injuries (right) at 
two different junction types between CARE and OTS (other junction types not included due to different 

definitions) 

A -test (using an  value of 0.05) was made to see whether the proportions of 
injury levels in the two datasets are the same. In Table 7, it can be seen that the null 
hypothesis, i.e. the hypothesis that there is no difference between OTS and CARE, has 
to be rejected when including all three injury levels separately. The -value is lower 
than 0.05. Since it is assumed that this is due to the difference in fatalities and 
their low sample size, severe and fatal injuries were combined to determine the effect 
on the chi-square value. Apparently, the null hypothesis becomes now valid with a -
value much greater than 0.05. This means that the proportions between CARE and 
OTS are similar in a statistically significant manner. Since it is not the aim of this 
study to investigate injury levels in detail separately, the difference in the fatality 
proportions can be considered negligible. 

Table 7: Results from the  homogeneity test (alpha=0.05) on OTS and CARE 

Junction type Variables Chi-Square 
Value 

Degrees of 
freedom 

p-value 

Crossroads Fatal/severe/slight 33.80 2 0.00 
 Fatal+severe/slight 0.04 1 83.97 
T or staggered Fatal/severe/slight 58.08 2 0.00 
 Fatal+severe/slight 0.01 1 94.33 
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Figure 34 and Figure 35 give the percentage of the injury severities for the respective 
junction types, by stretching each bar to 100 percent. For example, the bar charts 
show that 3.9 percent of all accidents at crossroads ended fatally in the OTS dataset, 
while the CARE dataset gives only 0.8 percent. This could be explained by the low 
sample size of fatalities in the OTS data and reflects the results from the -test. 
However, the proportions of accidents resulting in slight injury have almost identical 
values for T or staggered junction and crossroads. It must be mentioned that only the 
upper two bars can be compared directly, since “Other junction” have a different 
definition and “Private drive or entrances” are not included in the CARE data. 

 

Figure 34: Proportion of queried OTS junction accidents by max. injury severity and junction type, 1999-
2010 (n=1,056) 

 

Figure 35: Proportion of queried CARE junction accidents by max. injury severity and junction type, 
1999-2010 (n=1,260,977) 

When exploring the data, it was interesting to see that the proportions of the injury 
levels “Fatal” and “Serious” are similar for the different junction types “T or 
staggered junction” and “Crossroads”. While the private drive crashes ended fatally 
in 5.9 percent, crossroad and T-junction crashes have a fatality proportion below 
4 percent in the OTS dataset.  
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Figure 36: Proportion of involved persons in junction accidents, by road user type (OTS, 1999-2010, 
n=3,112) 

In Figure 36, the proportion of all involved persons in the exported OTS accidents is 
given by road user type. Not surprisingly, car occupants show the highest proportion 
with more than 78 percent, also due to their higher exposure, followed by 
motorcyclists and lorry occupants. 

Although car occupants are most frequently involved in junction accidents, they are 
among the safest when looking at the injury levels, as depicted in Figure 37. Only 
0.5 percent of all involved car occupants were fatally injured, and more than the half 
remained uninjured. In comparison, motorcyclists died in 6.7 percent, and pedestrians 
in 16.1 percent of all cases. Interestingly, the proportion of fatalities among cyclists is 
relatively low with 1.4 percent, but they were injured in approximately 96 percent of 
all cases, having the highest amount of slight injuries. 

  

  

Figure 37: Proportion of involved persons in junction accidents, by OTS injury severity and road user 
type, excluding unknowns (OTS, 1999-2010) 

The proportion of fatally and seriously injured persons by road user type was 
compared to CARE, as given in Figure 38. In the OTS dataset, car occupants have the 
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highest proportion of fatal and severe injuries, followed by motorcyclists and 
pedestrians. CARE data show a different picture. It seems like pedestrians are 
underrepresented in the OTS dataset. 

 

Figure 38: Comparison of the proportion of fatally and seriously injured persons (police severity) at 
junctions (crossroads and T/staggered) between CARE and OTS, by road user type 

 

Figure 39: Number of OTS junction crashes, by collision type and max. injury (police severity) (n=1,056) 

The collision types in the queried OTS dataset are given in Figure 39. For better 
readability, only the collision type labels are plotted, and not the subtypes. It shows 
that crossing collisions while one of the involved vehicles was turning are the most 
frequent types, followed by rear-end collisions, collisions at right turns and right-angle 
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collisions (i.e. Crossing with no turns). Not surprisingly, pedestrian crossing accidents 
do not happen that often, but when they happen, the injury severity is among the 
highest. It can further be observed that head-on collisions or overtaking and lane 
change collisions occurred less frequently. 

4.2.4 Attribute selection and reduction 

In the previous sections, the underlying database queries and data processing steps 
have been explained. What follows is a description of the variable selection process. 
The second query, resulting in 1540 samples, originally consisted of more than 400 
variables including categorical, continuously numeric as well as binary types. The 
number of variables was further reduced according to the following steps, similar to a 
study by Uno et al. (2013): 

1. Include only variables that fit the scope of the study, e.g. not relevant were 
weekday or time of the crash, occupant data such as age or gender, vehicle 
damage or detailed injury data of different body parts. 

2. Exclude variables with low variance, because they would fail to make a 
positive impact on model performance. In this study, all observations with 
more than 95 percent same values were excluded. 

3. Group or combine highly correlated variables, e.g. OTS injury severity and 
police injury severity. 

4. Exclude variables having unknown values in more than 30~percent of all 
samples. 

Following this reduction process, the number of variables was reduced to 41, which 
were grouped according to the original OTS data hierarchies „scene“, „vehicle“ and 
„path“. The „scene“ variables include general attributes about the crash, such as 
collision type and maximum injury of all involved persons. The „vehicle“ variables 
are related to the pre-crash and collision circumstances from the perspective of the 
individual vehicle, i.e. driver, and includes for example the precipitating factor 
attributed to the vehicle, driver injury level or the pre-impact manoeuvre. The „path“ 
variables describe the road environment, e.g. junction type, weather, traffic density or 
speed limit. 

4.3 Analysis of processed OTS data 

After post-processing the data, the most important variable distributions were 
analysed. In total, the dataset contains 619 injured car drivers (OTS injury level, 
excluding unknowns), with 91 percent slight injuries, 8 percent serious injuries and 
around 1 percent fatal injuries in total. For further analyses, the OTS injury level is 
preferred to the injury level recorded by the police in the first place, because it is based 
on more accurate evidence. Figure 40 shows a comparison of both records, where the 
numbers of unknown injury level differ the most. Cases, where the injury level could 
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not be estimated in the OTS project, were set to “unknown”, which resulted in less 
“uninjured” and “slightly injured”.  

 

Figure 40: Comparison of injury levels from OTS and police records 

It was found that there is a high number of uninjured drivers (791). This means that 
in the underlying accident case of these samples, the other driver(s) or road users (e.g. 
pedestrians) involved were injured, but not the driver of this sample. The proportion 
of the car drivers’ injury levels by junction type are depicted in Figure 41. T-junctions 
or staggered junctions have the highest share of injured car drivers, followed by 
crossroads. Regarding the percental distribution of injury levels, it can be seen that T-
junctions and crossroads have similar values, with the crossroads showing a slightly 
lower proportion of serious injuries. There were no serious or fatal injuries recorded 
for private drives or entrances and other types of junctions, but the sample size is low. 

 

Figure 41: Proportion of injured car drivers by OTS injury level and junction shape (OTS, n=619) 

Figure 42 shows the number of car drivers for each of the collision code letters. The 
letter represents the supercategory of a collision, whereas the collision code number 
expresses the subcategory. Interestingly, rear-end collisions (letter F) are the most 
frequent collision types with 327 drivers involved, followed by turning collisions 
(letters J and L). This is a different finding to what Molinero Martinez et al. (2008) 
reported. Accordingly, collisions, where vehicles cross the trajectory of an opponent 
vehicle, are the most frequent. However, the study included EU-27, while this analysis 
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only focuses on two regions in the UK, with roundabouts excluded and at least one 
car involved.  

Pedestrian accidents occurred to 3 percent of all drivers (letters N and P). Conditioned 
by the OTS query, where single-vehicle accidents were excluded, the dataset comprises 
low numbers for the collision letters C (Lost control or off road) and E (Collision with 
obstruction). An overview of all collision code letters and numbers is given in 
Appendix B. 

 

Figure 42: Number of car drivers by collision letter (OTS, n=1,540) 

 

Figure 43: Number of car drivers by first interaction (OTS, n=1,540) 

The variable “First interaction” reveals the potential collision partners for the car 
drivers (see Figure 43). An interaction could also mean a near-miss or no impact at 
all. However, only 13 of the 1,540 car drivers had no collisions as their first 
interaction, which equals 0.8 percent of all samples. By far, other cars or car-derived 
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vans (CDV) are the most frequent first interaction partners for car drivers with 
73 percent (1,129 out of 1,540). Bicyclists (55) had slightly more interactions with car 
drivers than pedestrians (46) and interactions with objects are negligible. 

In the OTS study, precipitating factors indicate the trigger for the crash, meaning that 
it is most likely that the crash could be avoided if those factors did not occur. In 
Figure 44, the ten most frequent precipitating factors are plotted. There is also a 
variable for a second precipitating factor included in the OTS data, but it was 
discarded due to a high number of unknown or “not answered” values. Around 
40 percent of all queried intersection crashes were caused by a failure to give way, 
which corresponds to the two most frequent collision types involving crossings with 
no turns. “Failed to stop” and “failed to avoid object or vehicle on carriageway” can 
be associated with rear-end collisions.  

 

Figure 44: Number of car drivers by the Top 10 precipitating factors (OTS, n=1,501) 

4.4 Conclusions 

To set the scope of the thesis, an expert survey was conducted including questions on 
the role of road infrastructure, market readiness as well as to which extent certain 
factors influence the performance of selected automated driving functions. In 
summary, the main challenges found for ADS are complex urban environments, 
temporary work zones and poor visibility due to bad weather conditions. Road 
surface characteristics, road alignment and lighting were rated as minor influencing 
factors. 

In addition to the survey, a comprehensive set of junction crash data was collected to 
identify common crash figures and circumstances. 1,056 junction accident cases were 
exported from the OTS (On-The-Spot) database, including 3,112 involved persons, of 
which 1,278 were injured or killed. A comparison of OTS data with National UK 
data queried from the CARE database showed high similarities in terms of the 
proportions of accident cases by junction type as well as by injury level. Although 
there are differences in the distribution of fatalities due to the low number of OTS 
samples (n=36), the queried OTS data can be considered generalizable and reliable for 
further investigations in the UK. However, a direct extrapolation of the data to other 
countries is not recommended due to the differences in road layout, traffic regulations 
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or driving styles. For example, the data is based on left-hand driving, which cannot be 
directly used for analyses in countries with right-hand driving, because other scenarios 
may arise. Also, the design of junctions in the UK differs from the layout in other 
central-European countries, e.g. pedestrian fences and traffic islands are more 
frequently used, road markings and pedestrian crossings are different as well as speed 
limits. 

The OTS data was prepared to categorise and reduce variables, which resulted in a 
number of 41 categorical variables. The data was further analysed on the driver level 
so that each sample corresponds to one car driver, and consequently to one vehicle. 
This was done, because this thesis focuses on critical scenarios for automated vehicles 
depending on their environment, and because the sample size could be increased that 
way. 

More than three-quarters of the involved persons were car driver occupants, of which 
38 percent were injured. The road user group showing the highest injury rate are 
pedestrians. In general, car occupants are among the safest road users, together with 
HGV occupants. 

An initial descriptive analysis of the causation factors showed that a failure to give 
way, to stop and to avoid are the top three precipitating factors for junction accidents. 

The data was further analysed on the driver level so that each sample corresponds to 
one car driver, and consequently to one vehicle. This was done, because this thesis 
focuses on critical scenarios for automated vehicles depending on their environment, 
and because the sample size could be increased that way. 

While a larger sample size is desirable in most cases, a lower number of variables is 
recommended to avoid high dimensionality in data. To this end, data has been 
reduced to 41 categorical variables by following a pre-defined reduction process, e.g. 
by excluding variables with many missing values or by grouping highly correlated 
ones. This resulted in a set of mainly uncorrelated variables describing relevant 
information.  

Preparing and analysing the queried in-depth data built the basis for clustering on a 
multivariate level. Sufficient data was prepared to carry on studying safety-critical 
scenarios at junctions. To get a deeper insight into the high-dimensional data, data 
mining techniques are applied in the second study to reveal undiscovered structures 
and thus safety-critical situations at junctions.  
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5 Study 2: Identifying critical scenarios from crash data 

The previous chapter explained how the in-depth accident data was processed and 
analysed. The descriptive analysis is now complemented by a data mining technique to 
derive safety-critical scenarios. This chapter describes how the accident data was 
clustered and how the scenarios were identified. The study addresses the research 
question 3 (see Section 1.2) and was published in the journal Accident Analysis and 
Prevention (Nitsche et al., 2017). 

5.1 Problem definition 

Virtual vehicle testing has many advantages, but especially regarding automated 
vehicles, which have to fulfil functional safety requirements, there are still some open 
questions: When is a system “good enough” for public roads? Which scenarios must 
be passed in the MIL, SIL and HIL tests? How many scenarios must then be physically 
re-tested on real roads?  

Concerning road safety, it is still not clear what impact automated vehicles will have 
on crash risk, and what kinds of (new) risks they might cause. In particular, the safety 
risks coming with a mixed vehicle population, namely traffic with both automated 
and driver-operated vehicles are still subject to research. Although automated cars use 
sophisticated onboard sensors to recognise their environment, they have limitations, 
e.g. in challenging urban traffic situations, inclement weather conditions or when 
facing unexpected behaviour of traffic participants. In study 1, an expert survey was 
conducted including questions on the role of road infrastructure, market readiness as 
well as to which extent certain factors influence the performance of selected 
automated driving functions on public roads. In summary, the main challenges found 
for ADS are complex urban environments, temporary work zones and poor visibility 
due to bad weather conditions. Road surface characteristics, road alignment and 
lighting were rated as minor influencing factors. 

Three-legged and four-legged junctions are high-risk areas, which future automated 
cars should be capable to pass safely. Therefore, intersections play a particularly 
important role in testing assisted and automated driving. Automated vehicles should 
be capable of safely manoeuvring through an intersection and of avoiding or 
mitigating a collision. One of the main research gaps addressed by this work is that 
there are no standardised procedures for evaluating automated driving systems in 
junction environments and that the key scenarios need to be defined. Hence, this 
study addresses research question 3. 

As explained in Section 3.3, the method for study 2 clusters historical accident data to 
understand the critical situations and factors at road junctions. Similar research has 
been conducted (INTERSAFE, 2005; Molinero Martinez et al., 2008; Plavsic, 2010; 
Polders et al., 2015; Wiltschko, 2004). However, the usage of k-medoids clustering 
and association rules in this context is novel. Due to a lack of accident data involving 
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automated vehicles, it is a reasonable starting point to analyse historical accidents 
with human drivers, assuming there is a certain overlap to the crash risk for ADS. It is 
not the goal of this study to identify new, still unknown scenarios that will arise with 
a higher penetration of automated vehicles on the road. Instead, the study is 
preparatory research to develop and demonstrate a simulation and evaluation 
framework (see Chapter 6). The scenarios obtained in the underlying study will help 
to reduce the possible number of model parameter variations, such as vehicle 
trajectories, velocities or road and junction parameters. 

5.2 Preparation of OTS data for clustering 

In Section 4.2, it is explained how the accident data was exported, filtered, reduced 
and grouped. However, one important step is missing: The variable coding. The 
original data contains variables in the following format: 
“Maximum injury level = Serious” from the four possible values uninjured, slight, 
serious and fatal. For the further calculations, all variables were converted to the 
binary-coded format as follows: 

 

 Uninjured Slight Serious Fatal 

Maximum injury 0 0 1 0 

 

Consequently, this resulted in much more attributes, as each possible value was 
assigned to its own column, but it is a necessary step for applying most clustering 
algorithms.  

The high number of attributes of the pre-processed OTS dataset made it necessary to 
further prepare the data for clustering. Usually, the fewer attributes, the easier the 
cluster results can be interpreted. Initial experiments with a varying number of 
attributes as input showed that the performance of the -medoids method suffers 
from a higher dimensionality. Therefore, all attributes were divided into two levels as 
follows: 

1. First level (5 variables, 25 attributes, see Table 9): This level of attributes was 
used as input for the -medoids clustering. The idea is to derive clusters based 
on a set of main collision attributes first, before association rule mining is 
applied to each cluster with the second level attributes. 

2. Second level (10 variables, 61 attributes, see Table 11): This level adds more 
detailed attributes on road infrastructure and accident causation to the level-1 
attributes. They are intended to help telling a “story” describing each cluster 
by association rule mining. 

The first-level attribute groups are given in Table 8, including a description of the 
group. For this study, these five attribute groups were used to separate the data space 
into easily interpretable clusters. Apart from that, this particular set of attributes 
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resulted in the highest validity in comparison to other combinations of attributes. 
Hence, the original number of 41 accident variables was further reduced to 20 (5+15). 
Furthermore, all attributes describing unknowns (e.g. “Area=Unknown”) and all 
samples that are true for these attributes were removed.  

Table 8: Collision attribute groups (first level) 

Category Hierarchy Description 

Maximum injury Scene The maximum injury of all persons involved in the accident 
Junction shape Path The detailed shape of the junction, attributed to the vehicles’ path 
First interaction Vehicle Road user type or object, which the vehicle first interacted with 
Manoeuvre Vehicle Action of the vehicle immediately before the accident 
First point of 
impact 

Vehicle First point to come into contact with another vehicle, pedestrian 
or other objects 

 

The maximum injury gives information on the severity of the clustered accidents. The 
junction shape does not only differentiate between T-junction, crossroads and other 
junction, it also gives the shape from the perspective of the driver’s path. For different 
vehicle paths of an accident case, there are different ways to describe the junction 
shape, although all involved vehicles approached at the same junction. All attributes 
of the first-level groups are listed in Table 9, including the short name used for 
presentation, a description of the attribute as well as count and relative frequency. 

Table 9: Collision attributes (first level) 

Category Short name Description Count* 
Rel. 

frequ. 
Max. injury 
(of all persons 
involved in the crash) 

MaxInj=Uninjured No person injured (OTS injury 
level) 

196 14.8% 

MaxInj=Slight At least one person slightly injured 
(OTS injury level) 

919 69.4% 

MaxInj=SeriousFatal At least one person seriously or 
fatally injured (OTS injury level) 

210 15.8% 

Junction shape 
(attributed to the 
vehicle’s path) 

JctShp=X-minJoin Road continues straight on with 
(minor) road joining from the left 
and right (crossroad) 

224 16.9% 

JctShp=X-brkMaj Road is temporarily broken by a 
(major) road passing across the 
path of the vehicle (Crossroad) 

144 10.9% 

JctShp=NoJct No junction present 20 1.5% 

JctShp=Other Private drive, entrance or other 
junction type 

7 0.5% 

JctShp=T-minLeft Road continues straight on with 
(minor) road joining from the left 

350 26.4% 

JctShp=T-minRight Road continues straight on with an 
additional (minor) road joining 
from the right (T-Junction) 

309 23.3% 

JctShp=T-termMaj Road terminates with a (major) 
road passing across the vehicles 
path (T-Junction or acceleration 
lane) 
 

271 20.5% 
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First interaction 
(Road user type or 
object which the 
vehicle first 
interacted with) 

1stIntAct=Car Driver interacted with another car 987 74.5% 

1stIntAct=LGV-HGV Driver interacted with a large or 
heavy goods vehicle 

97 7.3% 

1stIntAct=PTW Driver interacted with a powered 
two-wheeler (motorcycle or 
moped) 

115 8.7% 

1stIntAct=Other Driver interacted with another type 
of vehicle or object 

37 2.8% 

1stIntAct=Cycle Driver interacted with a bicyclist 50 3.8% 

1stIntAct=Pedestrian Driver interacted with a pedestrian 39 2.9% 

Manoeuvre 
(Action of the vehicle 
immediately before 
crash) 
  

Manvr=GoingAheadOther Driver was going straight ahead 781 58.9% 

Manvr=TurnL Driver was turning left 59 4.5% 

Manvr=TurnR Driver was turning right 79 6.0% 

Manvr=WaitTurnR Driver was waiting to turn right 353 26.6% 

Manvr=Other Driver was reversing, doing a u-
turn, overtaking, undertaking, held 
up or waiting to turn left 

53 4.0% 

First point of impact 
(First point to come 
into contact with 
another vehicle, 
pedestrian or other 
object) 

1stImpact=Back First point of the impact was the 
car’s back 

126 9.5% 

1stImpact=Front First point of the impact was the 
car’s front 

674 50.9% 

1stImpact=Nearside First point of the impact was the 
car’s nearside 

218 16.5% 

1stImpact=Offside First point of the impact was the 
car’s offside 

307 23.2% 

*The count represents the number of samples on a driver level, i.e. the number of drivers related to the respective 
attributes. 

As described above, the second-level attributes deliver more information on the 
accident environment and causation. Most of the additional attribute groups in Table 
10 are related to the vehicle’s path describing the road layout, e.g. road type, speed 
limit or curvature. The attribute groups “collision code”, “precipitating factor” and 
“driver injury” were added to the list to understand the accident circumstances better.  

Table 10: Additional attribute groups (second level) 

Category Hierarchy Description 

Collision code Scene The category letter of the STATS-19* collision code 
Precipitating factor Vehicle The main cause of the accident, attributed to the respective occupant 
Driver injury Occupant OTS injury level of the respective driver 
Area Path Local area around the location of the accident 
Horizontal geometry Path Qualitative assessment of curvature of road at locus 
Lighting Path Light conditions at locus, at the time of the accident 
Road type Path Type of the road on which the accident occurred 
Speed limit Path Speed limit posted at the location of the accident 
Surface Path Road surface condition due to weather at the accident location 
Traffic control Path Type of traffic control at the location of the accident 

* STATS19 is the National UK protocol for information to be collected whenever an injury crash is reported to the 
Police (see section 2.3.1) 

Table 11 gives all additional second-level attributes including the short name and a 
description of the attribute. Originally, it was planned to use the collision code (letter 
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+ number) as the attribute to distinguish between the different sub-categories of 
collisions (see Appendix B). However, the collision number was found to be erroneous 
due to a coding problem in the OTS database error. At the time when the study results 
were compiled, the data error was not eliminated yet, which made it necessary to use 
the collision letter (supercategory) only. Nevertheless, enough information can be 
derived from other attributes such as “manoeuvre” and “first point of impact”. 

Table 11: Additional collision attributes (second level) 

Category Short name Description Count* 
Rel. 

frequ. 

Collision code 
(The category letter 
of the UK STATS-
19 collision code) 

Coll=D-Cornering Cornering (D) 16 1.5% 

Coll=H-CrossingNoTurns Crossing (no turns) (H) 202 18.9% 

Coll=J-CrossingVehTurning Crossing (vehicle turning) (J) 236 22.1% 

Coll=M-Manoeuvring Manoeuvring (M) 104 9.7% 

Coll=Other Other collision code 11 1.0% 

Coll=A-OvertakingLaneChange Overtaking and lane change (A) 30 2.8% 

Coll=P-PedestrOther Pedestrians Other (P) 25 2.3% 

Coll=F-RearEnd Rear end (F) 188 17.6% 

Coll=L-RightTurnAgainst Right turn against (L) 204 19.1% 

Coll=G-TurningVsSameDir Turning versus same direction 
(G) 

54 5.0% 

Precipitating factor 
(The main cause of 
the crash, 
attributed to the 
respective 
occupant) 

Prec=FailAvoidDriver Driver failed to avoid object or 
vehicle on carriageway 

64 6.0% 

Prec=FailAvoidOther Other road user failed to avoid 
object or vehicle on carriageway 

58 5.4% 

Prec=FailGiveWayDriver Driver failed to give way 266 24.9% 

Prec=FailGiveWayOther Other road user failed to give 
way 

217 20.3% 

Prec=FailStopDriver Driver failed to stop 84 7.9% 

Prec=FailStopOther Other road user failed to stop 95 8.9% 

Prec=LossCntrDriver Driver lost control of vehicle 23 2.1% 

Prec=LossCntrOther Other road user lost control of 
vehicle 

17 1.6% 

Prec=OtherDriver Other precipitation by driver 27 2.5% 

Prec=OtherOther Other precipitation by another 
road user  

29 2.7% 

Prec=PedEnter Pedestrian entered road without 
due care (driver not to blame) 

17 1.6% 

Prec=PoorOvtkDriver Inappropriate overtake by driver 7 0.7% 

Prec=PoorOvtkOther Inappropriate overtake by other 
driver or rider 

23 2.1% 

Prec=PoorMnvrDriver Inappropriate turn or manoeuvre 
by driver 

80 7.5% 

Prec=PoorMnvrOther Inappropriate turn or manoeuvre 
by other driver or rider 

63 5.9% 

Driver injury 
(OTS injury level of 
the 
respective driver) 

DrvInj=Uninjured Driver suffered no injury 576 53.8% 

DrvInj=Slight Driver was slightly injured 445 41.6% 

DrvInj=Serious Driver was seriously injured 42 3.9% 

DrvInj=Fatal 
 

Driver was fatally injured 7 0.7% 



93 

 

Area 
(around the crash 
location) 

Area=Rural Rural area (countryside, fields 
and only sparse housing) 

368 34.4% 

Area=Urban Urban area (at least one side of 
the road built up) 

702 65.6% 

Horizontal 
geometry 
(Qualitative 
assessment of 
curvature of road) 

HorizGeom=Left Left curve 22 2.1% 

HorizGeom=LeftSharp Left sharp curve 4 0.4% 

HorizGeom=LeftSlight Left slight curve 51 4.8% 

HorizGeom=Right Right curve 25 2.3% 

HorizGeom=RightSharp Right sharp curve 9 0.8% 

HorizGeom=RightSlight Right slight curve 77 7.2% 

HorizGeom=Straight Straight (no curve) 882 82.4% 

Lighting 
(Light conditions at 
the time of the 
crash) 

Light=DarkNSL Darkness: no street lighting 50 4.7% 

Light=DarkSLUnk Darkness: street lighting 
unknown 

11 1.0% 

Light=DarkSL Darkness: street lights lit 188 17.6% 

Light=DayNSL Daylight: no streetlighting present 571 53.4% 

Light=DaySLUnk Daylight: streetlighting unknown 243 22.7% 

Light=DaySL Daylight: streetlights present 7 0.7% 

Road type 
(on which the crash 
occurred) 

RdType=DualCgw Dual carriageway 161 15.0% 

RdType=OneWayStr One way street 26 2.4% 

RdType=SingCgw Single carriageway 883 82.5% 

Speed limit 
(posted at the crash 
location) 

SpdLim<=20mph 20mph and less 1 0.1% 

SpdLim=30mph 30mph 584 54.6% 

SpdLim=40-50mph 40 or 50mph 270 25.2% 

SpdLim=60mph 60mph 159 14.9% 

SpdLim=70mph 70mph 56 5.2% 

Surface 
(Road surface 
condition due to 
weather at the 
crash 
location) 

Surf=Dry Dry surface 673 62.9% 

Surf=Flood Flooded surface 9 0.8% 

Surf=Icy Icy surface 6 0.6% 

Surf=Snowy Snowy surface 3 0.3% 

Surf=Wet Wet surface 379 35.4% 

Traffic control 
(Type of traffic 
control at the 
location of the 
crash) 
  

TrfCtrl=None No active or static yield 
instruction 

582 54.4% 

TrfCtrl=GW Static give-way instruction 245 22.9% 

TrfCtrl=Stop Static stop instruction 14 1.3% 

TrfCtrl=Light Traffic light control 229 21.4% 

*The count represents the number of samples on a driver level, i.e. the number of drivers related to the respective 
attributes. 

Samples with at least one unknown attribute value were removed as part of the data 
processing steps. This happened at two instances, namely 1) before computing the 
cluster with level-1 data and 2) before computing the rules with level-2 attributes for 
the data in each cluster. The first removal of unknowns resulted in a final sample size 
of 1325 for clustering, including 930 for T-junctions, 368 for crossroads 
and 27 for other or no junctions. The frequencies of the attributes are given on 
the right-hand side in Table 9 and * STATS19 is the National UK protocol for 
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information to be collected whenever an injury crash is reported to the Police (see 
section 2.3.1) 

Table 11 gives all additional second-level attributes including the short name and a 
description of the attribute. Originally, it was planned to use the collision code (letter 
+ number) as the attribute to distinguish between the different sub-categories of 
collisions (see Appendix B). However, the collision number was found to be erroneous 
due to a coding problem in the OTS database error. At the time when the study results 
were compiled, the data error was not eliminated yet, which made it necessary to use 
the collision letter (supercategory) only. Nevertheless, enough information can be 
derived from other attributes such as “manoeuvre” and “first point of impact”. 

. The second removal of unknowns was done on the extended level-2 dataset. 
Therefore, the final overall sample size (n=1070) of the dataset used for the 
association rules is different to the clustering dataset. 

5.3 Clustering with -medoids 

Having discussed which attributes are used, the following sections address the 
clustering method chosen, how it was applied to the accident dataset and which 
results were achieved. 

5.3.1 Introduction to -medoids 

Partitioning methods organise all samples into  partitions, i.e. clusters. One of the 
most commonly used partitioning method is -means (Lloyd, 1982; MacQueen, 1967; 
Steinhaus, 1956), which treats each data sample as an object having a location in 
Euclidean space. It finds a partition, in which objects within each cluster are as close 
to each other as possible, and as far from objects in other clusters as possible. This is 
usually based on a Euclidean distance measure. The spatial centre of each cluster is 
called “centroid” that is the mean of all objects within the cluster, and that is the 
point to which the sum of distances from all objects in that cluster is minimized. 
Those centroids are initially placed in space, randomly in the simplest case, but ideally 
far from each other. Each sample or object is iteratively assigned to the cluster that 
has the closest centroid. When all objects have been assigned, the positions of the 
centroids are recalculated. This process is repeated until the centroids no longer 
change.  

However, -means has some limitations. For example, with fewer samples, the initial 
configuration of the centroids will influence the cluster results significantly, not 
leading to the global optimum (Äyrämö and Kärkkäinen, 2006). The number of ’s 
must be determined beforehand, and due to the distance principle, only circular or 
spherical shapes are clustered, although some applications would require arbitrary 
shapes. Also, -means is sensitive to outliers, and such outliers may have a 
disproportionate impact on the final cluster configuration (Chawla and Gionis, 2013).  
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One of the main limitations regarding this study is the fact that the standard k-means 
algorithm is not applicable to categorical data. Euclidean distance functions and mean 
values would not make sense for the given OTS dataset. Therefore, a derivate of -
means is used, called -medoids. The method uses objects called medoids instead of 
centroids. Instead of using the mean as the centre of the cluster, a member of the 
cluster is chosen as the centre, whose average dissimilarity to all the objects in the 
cluster is minimal. In other words, the medoid is the most centrally located point in 
the cluster. Thus it is more robust to outliers, because it does not minimize a sum of 
squared Euclidean distances, as -means does. Furthermore, -medoids allows 
clustering categorical data, where a mean is impossible to define. For this reason, 
alternative dissimilarity measures can be applied, such as the “Hamming distance” 
(Hamming, 1950; Wegner, 1960) or the “Jaccard coefficient” (Jaccard, 1901). See 
Section 5.3.2 for details on the dissimilarity measure used for this study.  

One of the most powerful and commonly used algorithm for -medoids is PAM 
(Partitioning Around Medoids) proposed by Kaufman and Rousseeuw (1990). It 
proceeds in two steps as follows: 

Build step: 

(1) Choose  objects to become the medoids, or in case these objects were 
provided use them as the medoids 

(2) Calculate the dissimilarity matrix if it was not given 
(3) Assign every object to its closest medoid 

Swap step: 

(4) Within each cluster, each object is tested as a potential medoid by checking if 
the sum of within-cluster distances gets smaller using that object as the 
medoid. If so, the object is defined as a new medoid. 

(5) If at least one medoid has changed, go to (3), else end the algorithm. 

Whatever distance or dissimilarity measure is used, the absolute-error criterion of -
medoids can be defined as  

	 , 	 (5)

where  is the sum of the absolute error for all objects  in the dataset,  is the 
number of clusters and  is the representative object (medoid) of the cluster . The 
PAM algorithm works effectively for small data sets such as the underlying OTS 
dataset. For larger datasets, alternative -medoids algorithms should be used, such as 
CLARA (Clustering Large Applications, Kaufman and Rousseeuw, 1990). The -
medoids clustering was implemented in MATLAB by using the in-built library. 
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5.3.2 Clustering parameters 

In MATLAB, the following parameters were chosen for the -medoids 
implementation: 

 Algorithm: “PAM“ 
 Dissimilarity measure: “Hamming” 
 Number of maximum : 15 
 Number of replicates: 5 
 Initialization method: “Plus” 
 Validity index: Silhouette value 

The PAM algorithm (see Section 5.3.1) was chosen, because it is most appropriate for 
the given sample size. The algorithm can produce better solutions than other -
medoids algorithms in some situations, but the computation times can be longer.  

MATLAB provides many different distance measures, among which two are 
applicable to categorical, binary-coded data, namely Hamming and Jaccard. The 
Hamming distance, originally used for the detection of errors in information 
transmission (Hamming, 1950), was chosen as the distance measure, because it treats 
0’s and 1’s equally, i.e. it does not prefer 1’s over 0’s. In contrast to that, the Jaccard 
distance only counts the differences of non-zero elements. The Hamming distance 
gives the number of mismatches and is calculated by 

, , , 	
(6)

with  and  being the two objects compared, and  as the index of the respective 
attribute value  out of the total number of variables . 

A crucial issue of -medoids is the initial selection of the medoids, i.e. the starting 
configuration of the PAM algorithm. An easy way of doing this is to randomly select 
them, but it was preferred to use the -means algorithm for cluster centre 
initialization (called “plus”). However, a poor selection of medoid positions would 
result in poor partitioning. Therefore, MATLAB provides the option to define a 
certain number of replicates, i.e. the number of times to repeat clustering using new 
initial medoid positions. The best replicate is then chosen for the final output. For this 
study, a number of 5 replicates was defined.  

The best number of clusters  was achieved by iteratively stepping from 2 to 
15 clusters. Experiments with the dataset showed that a 15 does not 

result in any more change of the error function, as the curve flattens. The results from 
each k were compared to find the best , i.e. the one with the lowest average 
silhouette value (see Section 5.3.3). Actually, finding the best k is one of the most 
debated problems in the clustering community. In literature, various validity metrics 
can be found to compute a cluster’s performance in partitioning, among which are the 
Akaike’s Information Criterion (AIC, Akaike 1974), the Bayesian Information 
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Criterion (BIC, Schwarz, 1978), Calinski-Harabasz (Calinski and Harabasz, 1974) or 
Davies Bouldin index (Davies and Bouldin, 1979). For the scope of this study, the 
Silhouette value was used, developed by Rousseeuw (1987) as a graphical display for 
validating clusters. The so-called silhouette plot was chosen for this study, because it 
provides a simple visualization to decide on the number of . The entire clustering is 
displayed by combining the silhouettes into a single plot, as seen in the example in 
Figure 45. The plot consists of the silhouette values , ranked in decreasing order 
for all objects  within a cluster. Considering  as the average dissimilarity of an 
object  to all other objects within its own cluster , and min ,  as the 
minimum average dissimilarity of  to all objects of a neighbouring cluster , then  
is calculated as follows: 

	 ,
	 (7)

 

Figure 45: Example of a silhouette plot (left) compared to the corresponding feature space (right) (scikit, 
n.d.) 

Ultimately,  measures how well object  has been allocated to the right cluster. The 
range of  reaches from -1 to +1, where a value close to 1 means that  has been 
perfectly classified, and a negative value indicates that  might have been falsely 
allocated. The vertical width of the silhouette represents the cluster size. For 
evaluating the best , the average silhouette value of all objects is calculated and 
compared to the others. In the following subsection, the clustering results are 
presented and discussed. 

5.3.3 Clustering results 

The crash dataset was divided into the two main junction types: (1) Three-legged T-
junctions and (2) four-legged crossroads. For other types of junctions (e.g. private 
drives, pedestrian crossings), the sample size was too small ( 27) to compute 
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clusters. This partitioning prior to clustering was done due to the scope of the study, 
namely to provide targeted scenarios and parameter variations for virtual vehicle 
simulations. The goal was not to find clusters characterized by junction types, but by 
driving situations, manoeuvres and injury outcome (see level-1 attributes). 
Furthermore, the number of intersection legs was found to be a significant variable to 
model intersection crashes (Abdel-Aty et al., 2006) and was used to group intersection 
crashes in various studies (e.g. Abdel-Aty and Haleem, 2011; Arndt, 2003; Persaud 
and Nguyen, 1998; Vogt and Bared, 1998). 

Before interpreting the computed clusters, the results had to be processed as follows: 
For both the T-junction and the crossroads dataset, a table was created giving the 
frequency of each attribute per cluster (see Table 12 and Table 13). A -goodness-of-
fit test (Pearson, 1900) was applied to the data, by testing the 99.5% significance of 
each distribution of attributes within a cluster (e.g. maximum injury = Uninjured, 
Slight, SeriousFatal) compared to the overall (expected) distribution of this attribute 
group. The null hypothesis, i.e. the statement that there is no relationship between the 
two distributions, was confirmed or rejected according to the -value. To get valid 
results, only the attribute groups where all expected frequency values are greater or 
equal to 5 were tested. By doing so, it could be determined whether a cluster is 
significantly different to the total distribution of attributes. If the null hypothesis is 
rejected for an attribute group, and if an attribute within this group is higher than the 
expected value (the frequency of this attribute in the overall population), then it is 
highlighted as over-represented. 

5.3.3.1 Clusters found for three-legged junctions 

The silhouette plot in Figure 46 (left) shows the average silhouette values (cluster 
validity) for all ’s. In general, the higher the number of clusters the higher the 
silhouette values get. A higher number of clusters might lead to over-fitting and a 
lower number of clusters to under-fitting. To find the best , a compromise between 
cluster size and cluster validity had to be found. Association rules, which are 
computed for each cluster in the next step, were originally made for large-scale data. 
Hence, the goal was to avoid very small clusters, i.e. results with clusters containing 
less than 30 samples are disregarded ( 14 and 15). Since 13 has the 
highest average silhouette value with 0.383, the lowest number of samples that were 
allocated to the wrong cluster, and overall, the lowest percentage of clusters with 
negative silhouette values, it was chosen as most valid . 

Figure 46 (right) depicts the silhouette plot for each of the thirteen clusters, with one 
horizontal bar per sample within the cluster. Samples with a negative silhouette value 
might be assigned to the wrong cluster. However, the number of those samples is 
considerably low, except for cluster 4, where the average silhouette value suffers 
compared to the other clusters. Cluster 4 must therefore be treated carefully when 
interpreting the results. 
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Figure 46: Mean silhouette values for all ’s (left) and silhouette plot for =13 (right) for T-junctions 

Table 12: Cluster results for T-junctions ( , ) 

Level-1 Attributes T-
C1 

T-
C2 

T-
C3 

T-
C4 

T-
C5 

T-
C6 

T-
C7 

T-
C8 

T-
C9 

T-
C10 

T-
C11 

T-
C12 

T-
C13 

Sample size 212 90 62 62 102 43 63 83 52 46 38 42 35 

MaxInj=Uninjured 0 11 7 8 15 9 63 7 0 0 4 2 5 

MaxInj=Slight 212 69 52 42 78 30 0 68 45 0 29 0 25 

MaxInj=SeriousFatal 0 10 3 12 9 4 0 8 7 46 5 40 5 

JctShp=T-minLeft 195 0 1 0 0 0 58 3 51 41 0 1 0 

JctShp=T-minRight 0 0 58 62 102 0 0 0 0 0 38 14 35 

JctShp=T-termMaj 17 90 3 0 0 43 5 80 1 5 0 27 0 

1stIntAct=Car 183 60 53 40 81 24 53 60 37 33 27 0 23 

1stIntAct=LGV-HGV 18 6 5 4 5 2 7 2 5 5 4 3 2 

1stIntAct=PTW 3 10 3 10 6 4 0 14 3 2 3 35 6 

1stIntAct=Other 4 4 1 3 4 2 2 2 4 2 1 1 0 

1stIntAct=Cycle 1 8 0 5 2 10 0 5 2 1 1 2 1 

1stIntAct=Pedestrian 3 2 0 0 4 1 1 0 1 3 2 1 3 

Manvr=GoingAheadOther 201 0 17 6 97 0 50 7 45 43 27 1 0 

Manvr=Other 8 11 1 4 5 0 4 2 2 3 11 2 0 

Manvr=TurnL 2 0 0 1 0 43 7 0 4 0 0 2 0 

Manvr=TurnR 1 75 5 51 0 0 1 69 0 0 0 36 35 

Manvr=WaitTurnR 0 4 39 0 0 0 1 5 1 0 0 1 0 

1stImpact=Back 25 9 55 0 0 5 10 0 0 4 0 1 0 

1stImpact=Front 162 68 1 0 102 18 35 0 0 37 0 11 35 

1stImpact=Nearside 0 13 1 48 0 6 10 0 52 0 0 1 0 

1stImpact=Offside 25 0 5 14 0 14 8 83 0 5 38 29 0 

 

The frequencies of each attribute within each cluster were compiled in a table to 
present the results at a glance (see Table 12). Cells shaded in grey indicate that the 
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distribution of numbers for the given field is significantly different from the 
distribution in the whole population ( -test with significance 0.05) and that the 
particular number highlighted is over-represented. Due to values lower than 5 in the 
expected frequency table, the -test could not be applied to all observations. For 
example, Cluster 2 contains 90 samples and all of these occurred at “JctShp=T-
termMaj” compared to a distribution of 350 “JctShp=T-minLeft”, 309 “JctShp=T-
minRight” and 271 “JctShp=T-termMaj” in the overall 930 population. The 
probability that this would happen by chance is less than 0.05% and the number 90 is 
over-represented, as it is higher than the expected value. 

In what follows, the respective clusters are explained in detail: 

Cluster T-C1: “The car hits another car or LGV with its front, while going straight on 

a road with a minor roads joining from the left.” 

Cluster T-C1 is the largest cluster with a size of 212 crashes, from which all resulted 
in slight injury. More than 90 percent of the accidents occurred at T-junctions with a 
minor road joining from the left. „1stImpact=Front“ and „1stImpact=Back“ are over-
represented as well as „Manvr=GoingAheadOther“. There is no clear indication on 
the collision type of this cluster, thus association rules are used for further analyses.  

Cluster T-C2: “The car hits another car or PTW with its front, while turning right 

into a major road.” 

The third largest cluster T-C2 clearly groups collisions while turning right, with a 
highly significant representativeness of frontal and nearside impacts, all of which 
occurring at roads terminated by a major road. Powered two-wheelers (PTW) and 
bicyclists have relatively high frequencies, but the car is still the dominant crash 
partner.  

Cluster T-C3: “The car is hit on its back, while waiting to turn right into a minor 

road.” 

Cluster T-C3 with 62 samples represents car-to-car collisions at roads with minor 
roads joining from the right, mainly resulting in slight injury. Since there are mainly 
impacts on the back of the car, this cluster can be seen as rear-end crash group.  

Cluster T-C4: “The car is hit on the nearside, while turning right into a minor road.” 

Cluster T-C4 occurred on a road with a minor road joining from the right, with 
nearside impacts in 77 percent of the cases and high frequencies for „Manvr=TurnR“ 
and „1stIntAct=Car“.  

Cluster T-C5: “The car hits another car with its front, while going straight over a T-

junction with a minor roads joining from the right.” 

The second largest cluster T-C5 indicates rectangular collisions with another car 
crossing the car’s trajectory from the right, although this assumption will be validated 
by association rule mining.  
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Cluster T-C6: “The car collides with another road user, while turning left into a 

major road.” 

Cluster T-C6 is characterized by a left turn into a major road, which results in a 
collision mainly with another car. This cluster has a relatively high number of bicycle 
crashes (10).  

Cluster T-C7: “The car collides with another car, while going straight over a T-

junction with a minor road joining from the left.” 

All 63 accidents in cluster T-C7 resulted in no injury for any of the participants. This 
is clearly a minor risk cluster mainly with cars and goods vehicles involved, with 
„Manvr=GoingAheadOther“ having a high frequency.  

Cluster T-C8: “The car is hit by another car or PTW on its offside, while turning right 

into a major road.” 

Cluster T-C8 represents slight injury collisions with mainly other cars or PTW. 
Offside impacts were found over-represented, while turning right into a major road. 

Cluster T-C9: “The car is hit by another car on its nearside, while going straight over 

a T-junction with a minor road joining from the left.” 

Cluster T-C9 involves nearside collisions only, which happened on a T junction with a 
minor road joining from the left, while the car was going straight. 45 of the 52 cases 
resulted in slight injury. 

Cluster T-C10: “The car hits another car with its front, while going straight over a T-

junction with a minor road joining from the left.” 

Cluster T-C10 represents a group of high-risk collisions with serious or fatal injuries 
in all 46 cases. Front impacts are over-represented and „Manvr=GoingAheadOther“ 
and „1stIntAct=Car“ have high frequencies. Association rules will be used to analyse 
this cluster in more detail.  

Cluster T-C11: “The car is hit by another car on its offside, while going straight over 

a T-junction with a minor road joining from the right.” 

In comparison to T-C9, cluster T-C11 involves offside collisions only, which 
happened on a T junction with a minor road joining from the right, while the car was 
going straight or made another manoeuvre. Five of the 38 cases resulted in serious or 
fatal injury.  

Cluster T-C12: “The car collides with a PTW, while turning right into minor or major 

road.” 

Cluster T-C12 is a PTW cluster, with 40 out of 42 collisions resulting in serious or 
fatal injury. In 85 percent of the cases, the car was turning right. Association rules will 
be used to analyse this cluster in more detail.  

Cluster T-C13: “The car hits another car or PTW with its front, while turning right 
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into a minor road.” 

The smallest cluster T-C13 is characterised by right-turns into a minor road, with 
„1stImpact=Front“ in all cases. Five of the 35 cases resulted in serious or fatal injury, 
which is most likely due to the six cases involving PTW. Association rules will be used 
to analyse this cluster in more detail. 

5.3.3.2 Clusters found for four-legged junctions 

For the crossroads dataset with 368 samples, 6 was found to be most valid for 
separating the clusters, because it has a high average mean silhouette value of 0.395. 
The silhouette plot in Figure 47 (left) shows the average silhouette values for all ’s. 
Although larger values were computed for higher ’s (10-15), they were disregarded 
due to their small cluster sizes (<30) and possible overfitting.  

Figure 47 (right) depicts the silhouette plot for each of the six clusters, with one 
horizontal bar per sample within the cluster. The total mean silhouette value is higher 
and the number of samples with a negative value is lower compared to the T-junction 
dataset. This means that for the attributes and for the k chosen, the four-legged 
junction dataset seems to be better separated. 

 

Figure 47: Mean silhouette values for all ’s (left) and silhouette plot for =6 (right) for four-legged 
junction clusters 

As for the T-junction dataset, the frequencies of each attribute within each cluster 
were compiled in a table to present the results at a glance (see Table 13). Cells shaded 
in grey indicate that the distribution of numbers for the given field is significantly 
different from the distribution in the whole population ( -test with significance	
0.05) and that the particular number highlighted is over-represented.  
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Table 13 shows that the four-legged junction dataset is mainly separated by the type 
of junction and first point of impact. Experiments with varying parameters, such as 
initial medoid configuration or including the missing values did not result in different 
partitions. Including more attribute groups resulted in a decrease of the average 
silhouette value. For all clusters, the -test was not applied to the attribute groups 
“1stIntAct” and “Manvr” due to expected frequency values lower than 5. For the 
attribute group “1stImpact”, only cluster X-C1 had sufficient frequency values for a 

-test. The distributions for injury level (“MaxInj”) do not significantly differ in any 
cluster from the total population in their attribute group. 

Table 13: Cluster results for Crossroads ( , ) 

Level-1 Attribute X-C1 X-C2 X-C3 X-C4 X-C5 X-C6 

Sample size 142 60 48 49 35 34 

MaxInj=Uninjured 22 13 8 10 4 4 
MaxInj=Slight 98 39 35 29 28 24 
MaxInj=SeriousFatal 22 8 5 10 3 6 

JctShp=X-minJoin 142 0 48 0 0 34 
JctShp=X-brkMaj 0 60 0 49 35 0 

1stIntAct=Car 118 44 38 39 30 28 
1stIntAct=LGV-HGV 9 4 4 6 2 4 
1stIntAct=PTW 3 7 1 3 1 0 
1stIntAct=Other 3 1 1 0 0 2 
1stIntAct=Cycle 2 2 4 1 1 0 
1stIntAct=Pedestrian 7 2 0 0 1 0 

Manvr=GoingAheadOther 116 32 25 35 25 29 
Manvr=Other 4 0 0 0 0 1 
Manvr=TurnL 5 9 2 2 1 1 
Manvr=TurnR 15 19 21 12 9 3 
Manvr=WaitTurnR 2 0 0 0 0 0 

1stImpact=Back 12 5 0 0 0 0 
1stImpact=Front 130 55 0 0 0 0 
1stImpact=Nearside 0 0 48 0 35 0 
1stImpact=Offside 0 0 0 49 0 34 

 

The clusters for crossroads can be further described as follows: 

Cluster X-C1: “The car hits another road user with its front, while going straight over 

a crossroad with minor roads joining left and right.” 

Cluster X-C1 is the largest cluster with 142 samples, which mainly include rear-end 
collisions, as the clusters X-C3 to X-C6 have no samples for „1stImpact=Back“ and 
cluster 2 has only 5.  

Cluster X-C2: “The car hits another road user with its front, while crossing or turning 

into a major road.” 

Cluster X-C2 groups situations on crossroads broken by a major road, with high 
numbers for turning left or right as well as „1stImpact=Front“. Cars and PTWs were 
mostly involved.  
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Cluster X-C3: “The car is turning right into a minor road, when being hit on its 

offside by another vehicle.” 

All situations in Cluster X-C3 occurred on a road with minor roads joining from the 
left and right, and in all situations, the car was hit on its nearside.  

 

Cluster X-C4: “The car is crossing or turning into a major road, when being hit on its 

offside by another vehicle.” 

All situations in Cluster X-C4 occurred on a road broken by a major road passing the 
car’s path, and in all situations, the car was hit on its offside.  

Cluster X-C5: “The car is going straight on a road broken by a major road, when 

being hit on its nearside by another vehicle.” 

All situations in Cluster X-C5 occurred on a road broken by a major road passing the 
car’s path, and in all situations, the car was hit on its nearside, mainly by another car. 
As for the previous clusters, there is no statistical significance given for the 
manoeuvre, interaction or injury level distribution.  

Cluster X-C6: “The car is going straight over a junction with minor roads joining 

from the left and right, when being hit on its offside by another car or goods vehicle.” 

The smallest Cluster X-C6 represents collisions on roads with minor roads joining 
from left and right, where the car was hit on its offside, while going straight over the 
junction. 

5.4 Association rule mining 

As illustrated in the methodology flowchart in Figure 20, the obtained clusters are 
further analysed by association rule mining. This section gives an overview on the 
principle of association rules and describes how the rules help to derive scenario 
parameters for the simulation. 

5.4.1 Introduction to association rules 

The -medoids partitioning resulted in 13 and 6 distinct clusters, for T-junctions and 
crossroads respectively. For each of the clusters, it is now interesting to identify the 
attributes that often occur together, in order to understand the clusters. Association 
rule mining is a method to discover associations between attributes, also called 
“frequent itemset mining”. A popular example of association rules is the market 
basket analysis. Retailers can get insights into which items are frequently purchased 
together, so that marketing strategies and product shelving can be optimized. For 
example, if a customer buys “beer”, then he/she also buys “crisps”. This would be 
expressed as “beer → crisps”, where the item “beer” is called the antecedent and the 
item “crisps” the consequent. One itemset  can contain multiple items. Applying the 
association rules terminology to the OTS dataset, then each sample is called a 
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transaction , , … , ∈ , and each attribute is an item , , … , ∈ . An 
association rule can be written in the following mathematical form: →  where 
⊂ , ⊂  and ∩ ∅. Each rule is characterised by its support and its 

confidence: 

| ∈ ; ⊆ |
	 (8)

→
∪

| 	 (9)

For itemsets, the support value gives the proportion of transactions  in the dataset, 
which contains the itemset . For rules, the support is defined as the support of all 
items in the rule, i.e. → Y ∪ ∧ . 

Equivalently, the confidence measures the strength of the rules and gives the 
conditional probability of the consequent  given the antecendent . In other words, 
it is the proportion of the transactions that contain , which also contain . To 
explain the difference between the two measures, it is important to mention that two 
rules with flipped antecedent and consequent would both have the same support 
value. However, they would not have the same confidence, because the direction is 
taken into account. 

The most common implementation of association rules was proposed by Agrawal et 
al. (1993), who called their method the Apriori algorithm. Accordingly, finding 
association rules involves two steps:  

1. Find all frequent itemsets 
2. Generate association rules from the frequent itemsets 

The algorithm necessitates two parameters, namely a minimum support threshold, 
and a minimum confidence. By definition, if an itemset is below the minimum support 
threshold, then it is not frequent. If so, all its subsets must also be infrequent and can 
be pruned. In contrary, any subset of a frequent itemset must be frequent. By 
following this principle iteratively, the number of possible itemset configurations can 
be reduced tremendously with a simple algorithm.  

The second step is to generate rules from the frequent itemsets found in step 1. Here, 
the minimum confidence threshold comes into play: For each frequent itemset , all 
nonempty subsets are generated. For every nonempty subset  of , create the rule 
→  if the minimum confidence for this rule is given. Since the rules are 

generated from frequent itemsets, each one also satisfies the minimum support. In this 
way, strong association rules can be found. 

Depending on the data dimensionality, and on how low the minimum support and 
confidence thresholds have been set, the algorithm might produce millions of rules. In 
literature, numerous rule pruning and post-processing methods to identify the rules of 
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most interest were published. It was found that the confidence measure is a rather 
poor measure to discover the dependence of the consequent with respect to the 
antecedent (Guillaume et al., 1998; Silverstein et al., 1998). In this study, a metric 
called lift, also known as “interestingness” is chosen, which is calculated as follows: 

→ →
∪

∙ 	
∧
∙

	 (10)

If the lift value is less than 1, then the occurrence of  is negatively correlated with the 
occurrence of , meaning that the occurrence of one likely leads to the absence of the 
other one. If the resulting value is greater than 1, then  and  are positively 
correlated, meaning that the occurrence of one implies the occurrence of the other. If 
the lift equals 1, then  and  are independent (Han et al., 2011). By setting an 
appropriate minimum lift value greater than 1, only high-lift rules can be extracted for 
interpretation. 

As a popular and simple data mining technique, various accident researchers used this 
approach to discover patterns in their data (Kumar and Toshniwal, 2015; Mirabadi 
and Sharifian, 2010; Montella, 2011; Pande and Abdel-Aty, 2009; Weng et al., 2016). 
In this study, association rules are applied to the discovered clusters to get more 
information on the underlying patterns of accident attributes. Association rule mining 
was implemented in R by using the “arules” package (Hahsler et al., 2017, 2005). 

5.4.2 Parameters for the algorithm 

In MATLAB, the following parameters were chosen for the association rules 
implementation: 

 Algorithm: “Apriori“ 
 Minimum support: 0.03 
 Minimum confidence: 0.75 
 Minimum lift: 1.25 

The choice of the minimum support and confidence depends on the application and 
the expected outcome of the study. In theory, it is desirable to obtain rules with high 
support, high confidence and a lift value much greater than 1. The idea of this study 
implies the analysis of certain accident situations and characteristics, which can be 
very rare (Montella et al., 2012). After experimenting with different values, a 
minimum support of 0.03 was chosen, so that all itemsets occurring in less than 
3 percent of the samples are disregarded. Choosing a lower threshold results in an 
increase of computation time and rules, which would all have to be interpreted. 
Choosing a higher support value might disregard relevant information about the 
clusters.  

There are different approaches in literature on the choice of a minimum confidence 
value. For example, Montella (2011) chose a threshold with 0.1 for their 
powered-two-wheeler study, which is much lower than usual. However, in this study 
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it is preferred to obtain rules, where the probability of the consequent given the 
antecedent is higher than 75 percent. Additionally, only rules with a 1.25 are 
considered for the results. 

To further reduce the number of rules obtained, redundant rules were excluded 
according to the following procedure: A rule is redundant if a more general rule with 
the same or a higher lift exists. That is, a more specific rule is redundant if it is only 
equally or even less correlated than a more general rule. A rule is more general if it has 
the same consequent but one or more items removed from the antecedents. Formally, 
a rule →  is redundant if for ⊂ : → →  (Hahsler et al., 
2017). 

5.4.3 Results and derived scenarios 

For each identified cluster, association rules were computed using the parameters 
given in Section 5.4.2. In total, the analysis of each cluster resulted in 42 different 
crash scenarios comprising various parameters, which are all given in Appendix D (for 
T-junctions) and Appendix E (for four-legged junctions). This means that some 
clusters have two or more subgroups of scenarios, because the analysis revealed 
differences in the crash circumstances, even within the clusters. The next sections will 
explain how those scenarios were derived and give a description of each scenario, 
including a simplified illustration of the crash. Simplified means that not all 
circumstances could be visualised in the sketch, such as road types (minor/major), 
number of lanes, horizontal alignment, speed limits, vehicle types or injury levels. The 
red dots in the collision sketches are the points of impact (i.e. front, back, offside or 
nearside). 

5.4.3.1 High-injury scenarios 

For each identified cluster, association rules were computed using the parameters 
given in Section 5.4.2. In total, the analysis of each cluster resulted in 42 different 
crash scenarios comprising various parameters. Only high-risk scenarios, which 
resulted in serious or fatal injury, are presented in this section, as they provide a set of 
safety-critical situations. More precisely, the further scenarios include crash situations 
from the T-junction clusters T-C4, T-C10, T-C12 and T-C13, and from the four-
legged junction clusters X-C1, X-C2, X-C4 and X-C6. 

As an example, Cluster T-C10 is selected for further explanation. The following 
procedure was applied to every cluster in the same manner. All association rules 
obtained for each cluster are given in Appendix F. Given the distributions in Table 12, 
the cluster T-C10 can be described as follows: “The car hits another car with its front 
resulting in serious or fatal injury, while going straight on a road with a minor road 
joining from the left.” 

A useful attribute to give a clearer indication about the crash circumstances is the 
collision type, indicated by letters A to Q in the OTS data specification (see 
Appendix B). For cluster T-C10, the collision types L („Right Turn Against“) and J 
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(„Crossing with Vehicle Turning“) were found to be the most frequent. Therefore, all 
rules containing those attributes within their items were further analysed to see which 
other attributes are associated with them. 

Table 14 gives the 2-item and 3-item rules for T-C10 and collision type L, sorted by 
the five highest support values. The rules are sorted by the support to obtain the 
attributes that are often associated with each other. It can be seen that this collision 
type is associated with single carriageways (rule nr. 1) as well as with no traffic 
control (“TrfCtrl=None”, see rule nr. 2, 4 and 11) and going straight (“Manvr 
=GoingAheadOther”, see rule nr. 3). Another car as collision partner is already 
defined by the cluster, but the rules reveal that “Coll_L=RightTurnAgainst” and 
“FirstIntAct=Car” are associated with dry surface (see rule nr. 5), uninjured driver of 
the ego car (see rule nr. 10), a fail to give way by the other car driver (see rule nr. 12), 
daylight (see rule nr. 13), 40-50 mph speed limit (see rule nr. 9) and urban area (see 
rule nr. 22). 

Table 14: 2-item and 3-item rules obtained for cluster T-C10 with collision type L, sorted by the five 
highest support values 

Nr Antecedent Consequent Supp Conf Lift 

1 Coll_L=RightTurnAgainst RdType=SingCgw 0.237 0.818 1.413 

2 Coll_L=RightTurnAgainst & TrfCtrl=None RdType=SingCgw 0.237 1.000 1.727 

3 Coll_L=RightTurnAgainst & 
Manvr=GoingAheadOther 

RdType=SingCgw 0.237 0.900 1.555 

4 Coll_L=RightTurnAgainst & RdType=SingCgw TrfCtrl=None 0.237 1.000 1.357 

5 Coll_L=RightTurnAgainst & Surf=Dry FirstIntAct=Car 0.184 1.000 1.357 

6 Coll_L=RightTurnAgainst & Surf=Dry RdType=SingCgw 0.158 0.857 1.481 

7 Coll_L=RightTurnAgainst & Area=Rural RdType=SingCgw 0.158 0.857 1.481 

8 Coll_L=RightTurnAgainst & DrvInj=Uninjured RdType=SingCgw 0.132 1.000 1.727 

9 Coll_L=RightTurnAgainst & SpdLim=40=50mph FirstIntAct=Car 0.132 1.000 1.357 

10 Coll_L=RightTurnAgainst & DrvInj=Uninjured FirstIntAct=Car 0.132 1.000 1.357 

11 Coll_L=RightTurnAgainst & DrvInj=Uninjured TrfCtrl=None 0.132 1.000 1.357 

12 Coll_L=RightTurnAgainst & Prec=FailGiveWayOther FirstIntAct=Car 0.132 1.000 1.357 

13 Coll_L=RightTurnAgainst & Light=DayNSL FirstIntAct=Car 0.132 1.000 1.357 

14 Coll_L=RightTurnAgainst & Light=DaySLUnk RdType=SingCgw 0.105 1.000 1.727 

15 Coll_L=RightTurnAgainst & SpdLim=40=50mph Surf=Dry 0.105 0.800 1.448 

16 Coll_L=RightTurnAgainst & DrvInj=Uninjured Surf=Dry 0.105 0.800 1.448 

17 Coll_L=RightTurnAgainst & Prec=FailGiveWayOther Surf=Dry 0.105 0.800 1.448 

18 Coll_L=RightTurnAgainst & Light=DayNSL Surf=Dry 0.105 0.800 1.448 

19 Coll_L=RightTurnAgainst & Light=DaySLUnk TrfCtrl=None 0.105 1.000 1.357 

20 Coll_L=RightTurnAgainst & Area=Urban FirstIntAct=Car 0.105 1.000 1.357 

21 Coll_L=RightTurnAgainst & Light=DaySLUnk HorizGeom=Straight 0.105 1.000 1.267 

22 Coll_L=RightTurnAgainst & Area=Urban HorizGeom=Straight 0.105 1.000 1.267 

23 Coll_L=RightTurnAgainst & Surf=Wet HorizGeom=Straight 0.105 1.000 1.267 
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Table 15 gives the 2-item and 3-item rules for the cluster T-C10 and collision type J, 
sorted by the five highest support values. It can be seen that this collision type is 
associated with a failure to give way by the other driver (see rule nr. 1). This 
combination is further associated with another car as collision partner (see rule nr. 5), 
no traffic control (see rule nr. 6), wet surface (see rule nr. 10), single carriageway (see 
rule nr. 11), rural area (see rule nr. 12), serious driver injury (see rule nr. 20) and 40-
50 mph speed limit (see rule nr. 35). Taking a deeper look into the serious driver 
injuries, it can be noted that they are further associated with 40-50 mph speed limit 
(see rules nr. 27 and 28), wet surface (rule nr. 29) and single carriageway (rule nr. 30). 
However, this set of rules show that there is no clear indication on some attributes, 
such as the road type, as “RdType=DualCgw” is among the frequent items (see rules 
42 to 45). Also, the driver can be uninjured or seriously injured or the area can be 
urban or rural. Those varying attributes could be used as varying parameter in the 
simulation, while the others constitute the “static” environment and situation. 

While the rules in the tables are relatively easy to interpret, this is no more the case 
with 4-, 5- or 6-item rules, also due to the high number of obtained rules. Therefore, 
each set of rules (comprising 2- to 6-item rules) was further visualised by directed 
graphs that were created from adjacency matrices of the associations found between 
all attributes. The graph was then reduced to the edges that direct to a certain 
consequent, represented by edge tables including source, target and weight of the 
edges. In this case, the targets (or consequents) were the collision types L (see Figure 
48) and J (see Figure 49), and the sources were all remaining attributes. The weight or 
thickness of each edge represents the number of associations identified between the 
respective antecedent node and the given consequent in the centre. In other words, 
nodes with thick edges indicate dominant crash attributes and thus define the 
scenario. For antecedent nodes that are not present in the graph, there were no 
associations found in the rules. Thus they can be considered negligible for the 
respective scenario. Note that the graph does not reflect support, confidence or lift. 

 

Figure 48: Weighted, directed graph obtained from all association rules for cluster T-C10 having collision 
type L as consequent 
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Table 15: 2-item and 3-item rules obtained for cluster T-C10 with collision type J, sorted by the five 
highest support values 

Nr Antecedent Consequent Supp Conf Lift 
1 Coll=J Prec=FailGiveWayOther 0.211 0.800 2.338 

2 Coll=J Light=DayNSL 0.211 0.800 1.520 

3 Coll=J & Light=DayNSL HorizGeom=Straight 0.211 1.000 1.267 

4 Coll=J & HorizGeom=Straight Light=DayNSL 0.211 1.000 1.900 

5 Coll=J & FirstIntAct=Car Prec=FailGiveWayOther 0.184 0.875 2.558 

6 Coll=J & TrfCtrl=None Prec=FailGiveWayOther 0.184 0.875 2.558 

7 Coll=J & Area=Rural Light=DayNSL 0.184 1.000 1.900 

8 Coll=J & Area=Rural HorizGeom=Straight 0.184 1.000 1.267 

9 Coll=J & Prec=FailGiveWayOther Surf=Wet 0.158 0.750 1.781 

10 Coll=J & Surf=Wet Prec=FailGiveWayOther 0.158 1.000 2.923 

11 Coll=J & RdType=SingCgw Prec=FailGiveWayOther 0.158 0.857 2.505 

12 Coll=J & Area=Rural Prec=FailGiveWayOther 0.158 0.857 2.505 

13 Coll=J & Surf=Wet Light=DayNSL 0.158 1.000 1.900 

14 Coll=J & Light=DayNSL Surf=Wet 0.158 0.750 1.781 

15 Coll=J & Surf=Wet Area=Rural 0.158 1.000 1.407 

16 Coll=J & Area=Rural Surf=Wet 0.158 0.857 2.036 

17 Coll=J & Surf=Wet HorizGeom=Straight 0.158 1.000 1.267 

18 Coll=J & HorizGeom=Straight Surf=Wet 0.158 0.750 1.781 

19 Coll=J & TrfCtrl=None RdType=SingCgw 0.158 0.750 1.295 

20 Coll=J & DrvInj=Serious Prec=FailGiveWayOther 0.105 1.000 2.923 

21 Coll=J & SpdLim=30mph Area=Urban 0.079 1.000 3.455 

22 Coll=J & Area=Urban SpdLim=30mph 0.079 1.000 3.800 

23 Coll=J & SpdLim=30mph Surf=Dry 0.079 1.000 1.810 

24 Coll=J & Surf=Dry SpdLim=30mph 0.079 0.750 2.850 

25 Coll=J & SpdLim=30mph RdType=SingCgw 0.079 1.000 1.727 

26 Coll=J & SpdLim=30mph TrfCtrl=None 0.079 1.000 1.357 

27 Coll=J & DrvInj=Serious SpdLim=40=50mph 0.079 0.750 2.375 

28 Coll=J & SpdLim=40=50mph DrvInj=Serious 0.079 1.000 3.455 

29 Coll=J & DrvInj=Serious Surf=Wet 0.079 0.750 1.781 

30 Coll=J & DrvInj=Serious RdType=SingCgw 0.079 0.750 1.295 

31 Coll=J & Area=Urban Surf=Dry 0.079 1.000 1.810 

32 Coll=J & Surf=Dry Area=Urban 0.079 0.750 2.591 

33 Coll=J & Area=Urban RdType=SingCgw 0.079 1.000 1.727 

34 Coll=J & Area=Urban TrfCtrl=None 0.079 1.000 1.357 

35 Coll=J & SpdLim=40=50mph Prec=FailGiveWayOther 0.079 1.000 2.923 

36 Coll=J & SpdLim=40=50mph Surf=Wet 0.079 1.000 2.375 

37 Coll=J & SpdLim=40=50mph Light=DayNSL 0.079 1.000 1.900 

38 Coll=J & SpdLim=40=50mph Area=Rural 0.079 1.000 1.407 

39 Coll=J & SpdLim=40=50mph HorizGeom=Straight 0.079 1.000 1.267 

40 Coll=J & DrvInj=Uninjured Light=DayNSL 0.079 1.000 1.900 

41 Coll=J & DrvInj=Uninjured HorizGeom=Straight 0.079 1.000 1.267 

42 Coll=J & RdType=DualCgw Light=DayNSL 0.079 1.000 1.900 

43 Coll=J & RdType=DualCgw Area=Rural 0.079 1.000 1.407 

44 Coll=J & RdType=DualCgw FirstIntAct=Car 0.079 1.000 1.357 

45 Coll=J & RdType=DualCgw HorizGeom=Straight 0.079 1.000 1.267 

46 Coll=J & Surf=Dry RdType=SingCgw 0.079 0.750 1.295 
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Figure 49: Weighted, directed graph obtained from all association rules for cluster T-C10 having collision 
type J as consequent 

By visually inspecting the graphs and rules tables, the scenarios for this cluster can be 
described as follows (note that all crashes in the data occurred on UK roads with left-
hand traffic):  

Scenario T-10.1 (related to collision type L): Car A goes straight on a major road and 
hits another car B with its front, which is coming from the opposing direction and is 
turning right into a minor road. This happens on a single carriageway with a speed 
limit of 40 mph or 50 mph at a non-signalised junction and is caused by B failing to 
give way. The surface is dry and B suffers serious or fatal injury. 

Scenario T-10.2 (related to collision type J): Car A goes straight on a major road and 
hits another car B, which is emerging from a minor road on the left with the intention 
to turn right. This happens on a single carriageway in a rural area with a speed limit 
of 40 mph or 50 mph at a non-signalised junction and is caused by B failing to give 
way. The surface is wet and A suffers serious injury. 

The same procedure was applied to the other clusters and their respective collision 
types. Table 16 gives all descriptions for the identified high-injury scenarios including 
the count, followed by simplified illustrations in Figure 50 for T-junctions and Figure 
51 for four-legged junctions to better understand the descriptions in the text. The red 
dots in the figures are the points of impact (i.e. front, offside or nearside). Surface 
conditions, area (rural/urban), speed limits, vehicle types and injury levels are not 
shown, but described in the following from the perspective of car A, i.e. the ego car 
associated with each sample. 

The described scenarios build the foundation for further research on testing 
automated vehicle technologies. It can be observed that there are no rear-end 
collisions included in the set of high-risk scenarios. This is because the injury outcome 
was found to be lower for rear-end collisions than for angle collisions.  
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Table 16: High-injury scenario descriptions  

Scenario Count Description 

Three-legged junctions 
T-4.1  
(coll. type L) 

39 Car A is turning into a minor road and is hit by a PTW B on its nearside, which 
is going straight in the opposing direction. A is travelling on a single carriageway 
with 40-50 mph speed limit without active or static yield instruction. It is caused 
by A failing to give way or manoeuvring inappropriately. 

T-10.1 
(coll. type L) 

13 Car A is going straight on a major road and hits another car B with its front, 
which is coming from the opposing direction and is turning right into a minor 
road. A is travelling on a single carriageway with a speed limit of 40 mph or 50 
mph without active or static yield instruction, and it is caused by B failing to give 
way. The surface is dry and B suffers serious or fatal injury. 

T-10.2 
(coll. type J) 

11 Car A is going straight on a major road and hits another car B, which is 
emerging from a minor road on the left with the intention to turn right. A is 
travelling on a single carriageway in a rural area with a speed limit of 40 mph or 
50 mph without active or static yield instructions, and it is caused by B failing to 
give way. The surface is wet and A suffers serious injury. 

T-12.1 
(coll. type J) 

20 Car A is turning right into a major road and is hit by a PTW B on the offside, 
which is going straight on the crossing path. A is travelling on a rural single 
carriageway controlled by a static give-way sign and it is caused by A failing to 
give way. The surface is wet and B suffers serious or fatal injury. 

T-12.2 
(coll. type G) 

9 Car A is turning right into a minor road and is hit on the offside by a PTW B, 
which is overtaking. A is travelling on an urban single carriageway with 30 mph 
speed limit without active or static yield instruction, and it is caused by an 
inappropriate overtake from B. 

T-12.3 
(coll. type M) 

6 Car A is turning left into a major road and is hit by a PTW B on its offside, 
which is going straight on the major road from the right. A is travelling on an 
urban single carriageway with 30 mph speed limit controlled by give-way signs, 
and it is caused by A failing to give way. B suffers serious or fatal injury. 

T-13.1 
(coll. type L) 

25 Car A is turning right into a minor road and hits a PTW B with its front, which 
is going straight in the opposing direction. A is travelling on a rural single 
carriageway with 30 to 50 mph speed limit without active or static yield 
instruction, and it is caused by A failing to give way or manoeuvring 
inappropriately. The surface is wet and B suffers serious or fatal injury. 

Four-legged junctions 

X-1.1 
(coll. type H) 

59 Car A is going straight on a major road and hits another car B with its front, 
which is crossing the path from the left. A is travelling on a rural single 
carriageway with 60 mph speed limit without active or static yield instruction 
and it is caused by B failing to give way. 

X-2.1 
(coll. type H) 

25 Car A is crossing a four-legged junction and hits another car or PTW B with its 
front, which is crossing the path from the right. A is travelling on a rural single 
carriageway road with 40-50 mph speed limit controlled by static give-way signs, 
and it is caused by A failing to give way. A remains uninjured or suffers slight 
injury. Max. injury of B: Serious or fatal. No clear indication on the surface 
condition. 

X-4.1 
(coll. type J) 

12 Car A is turning right into a major road and is hit by a car or LGV B on the 
offside, which is going straight on the major road from the right. This happens 
on a rural dual carriageway with 40-50 mph speed limit controlled by static give-
way signs and is caused by A failing to give way. The surface is wet and A suffers 
serious or fatal injuries. 

X-6.1 
(coll. type H) 

15 Car A is going straight on a major road and is hit by car B on the offside, which 
comes from a minor road and crosses the path from the right. A is travelling on a 
single carriageway road with 30 mph speed limit controlled by traffic lights, and 
it is caused by B failing to give way. The surface is wet and B suffers serious or 
fatal injuries. 

X-6.2 
(coll. type L) 

7 Car A is going straight on a major road and is hit by car B on its offside, which 
turns right from the opposing direction. A is travelling on a road with 60 mph 
speed limit controlled by traffic lights, and it is caused by B losing control of the 
vehicle. B suffers serious or fatal injuries. 
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Figure 50: Simplified illustrations of all high-injury scenarios identified for T-junctions 

 

Figure 51: Simplified illustrations of all high-injury scenarios identified for four-legged junctions 

There was no high-injury scenario found that involves car-pedestrian or car-bicycle 
collisions only. This can be explained by the low number of pedestrians (2.2%) and 
cyclists (2.5%) among all involved persons in the given accident dataset, compared to 
car occupants (78.5%), motorcyclists (6.3%) or goods vehicle occupants (8.6%). 
Although there is no doubt about the importance of vulnerable road user safety, 
neither the cluster analysis nor the association rule method resulted in a distinct 
pedestrian or cyclist scenario. Considering the frequency of certain crash types at 
junctions, car-pedestrian and car-cyclist collisions are discounted, which might not be 
true if injury frequencies were taken into account. 

5.4.3.2 High-frequency scenarios 

This section presents the scenarios that were found to be most frequent, independent 
on the injury outcome. Figure 52 and Figure 53 depict the top five high-frequency 
scenarios for three-legged and four-legged junctions, respectively, i.e. the scenarios 
with the highest number of crashes included. Note that the traffic control type is given 
for the path of A. 

Table 17 shows the crash counts for each high-frequency scenario including a short 
description. Some of the three-legged junction scenarios were combined due to their 
similarities. For example, T-2.1 and T-8.1, which were derived from two different 
clusters, were grouped. This was also done for the second and third most frequent 
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scenario groups for three-legged junctions. The count column in the table gives the 
number of crashes within the respective cluster that are allocated to the particular 
collision type. For example, the 44 samples for T-1.1 are the collisions of type F (rear-
end) within cluster T-C1. 

 

Figure 52: Simplified illustrations of the five most frequent scenarios identified for T-junctions 

 

Figure 53: Simplified illustrations of the five most frequent scenarios identified for four-legged junctions 

It can be observed that the top five most frequent scenarios at four-legged junctions 
do not include rear-end collisions. This finding corresponds to the crossing-path 
scenarios identified by Najm et al. (2001), which are primarily angle crashes. 
Furthermore, there is no particular scenario involving car-pedestrian or car-bicycle 
collisions only. This can be explained by the low number of pedestrians (2.4%) and 
cyclists (3.6%) as collision partners, compared to other cars (71.8%), PTW (9.7%) or 
goods vehicles (7.8%).  

The frequency of collision types per cluster is given in Table 18 for T-junctions and in 
Table 19 for four-legged junctions. Grey cells represent high-frequency scenarios, 
while the cells with red font are the high-injury scenarios. Note that there are many 
different collision types per cluster with smaller sample sizes, which can be explained 
by the limitations of clustering. As shown in Section 5.3.3, some samples are wrongly 
allocated to a neighbouring cluster and do not necessarily belong to the key scenarios 
for the respective partition.  

It can be seen that the high-frequency scenarios at three-legged junctions do not 
include any of the high-injury scenarios. The high-frequency scenarios for three-legged 
junctions include two rear-end collisions (T-5.1/5.2 and T-1.1), which are not 
included in the high-injury scenarios. This is because the injury outcome was found to 
be lower for rear-end collisions than for angle collisions, which was also reported by 
Beck (2015).  
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Table 17: High-frequency scenario descriptions 

Scenario Count Description 

Three-legged junctions 

T-2.1/8.1 
(coll. type J) 

99 Car A is turning right into a major road and hits another car with its front, which 
is coming from the right. A is travelling on an urban single carriageway with 30 
to 50 mph speed limit controlled by a static give-way sign and it is caused by A 
failing to give way, leading to no or slight injury. 

T-1.2/7.4/9.1 
(coll. type J) 

69 Car A is going straight on a major road and hits another car B with its front, 
which turns right from a minor road joining from the left. A is travelling on an 
urban single carriageway with 30 to 50 mph speed limit without active or passive 
yield instruction, and it is caused by B failing to give way. The surface is dry and 
A suffers slight injuries. 

T-5.1/5.2/11.2 
(coll. type F) 

55 Car A is going straight on a major road and hits car B at the rear-end, which is 
going straight. A is travelling on a single or dual carriageway with 30 to 60 mph 
speed limit without active or static yield instruction. It is caused by A failing to 
stop or to avoid, leading to no or slight injury. 

T-1.1 
(coll. type F) 

44 Car A is going straight on a major road and hits another car at the rear end. A is 
travelling on a rural dual carriageway with 70 mph speed limit without active or 
passive yield instruction, and it is caused by A failing to stop or failing to avoid 
or by other precipitating factors from B. The surface is dry and A remains 
uninjured or suffers slight injury. 

T-1.3 
(coll. type L) 

42 Car A is going straight on a major road and hits another car B with its front, 
which is turning right into a minor road. A is travelling in dark light conditions 
on an urban single carriageway with 40 to 50 mph speed limit controlled by 
traffic lights, and it is caused by B failing to give way or manoeuvring 
inappropriately. A suffers slight injuries. 

Four-legged junctions 

X-1.1 
(coll. type H) 

47 Car A is going straight on a major road and hits another car B with its front, 
which is crossing the path from the left. A is travelling on a rural single 
carriageway with 60 mph speed limit without active or static yield instruction 
and it is caused by B failing to give way. 

X-1.2 
(coll. type L) 

28 Car A is turning right into a minor road and hits another car B, which is coming 
from the opposing direction. A is travelling on an urban road with 40 to 50 mph 
speed limit controlled by traffic lights, and it is caused by B violating the red 
light. Max. injury: Slight. 

X-4.2 
(coll. type H) 

24 Car A is crossing a major road and is hit by another car B on its offside, which is 
crossing from the right. A is travelling on an urban single carriageway road 
controlled by traffic lights, and it is caused by A failing to give way. Max. injury: 
Serious or fatal. There is no clear indication of the surface condition. 

X-2.1 
(coll. type H) 

21 Car A is crossing a four-legged junction and hits another car or PTW B with its 
front, which is crossing the path from the right. A is travelling on a rural single 
carriageway road with 40-50 mph speed limit controlled by static give-way signs, 
and it is caused by A failing to give way. A remains uninjured or suffers slight 
injury. Max. injury of B: Serious or fatal. No clear indication of the surface 
condition. 

X-5.1 
(coll. type H) 

21 Car A is crossing a major road and is hit by another car B on its nearside, which 
is crossing from the left. A is travelling on an urban or rural single carriageway 
road with 30 mph speed limit controlled by static give-way signs, and it is caused 
by A failing to give way. There is no clear indication of the injury severity. 
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Table 18: Frequency of collision types for the T-junctions clusters (red font: high-injury scenarios, grey 
fill: high-frequency scenarios) 

Collision letter 
T-
C1 

T-
C2 

T-
C3 

T-
C4 

T-
C5 

T-
C6 

T-
C7 

T-
C8 

T-
C9 

T-
C10 

T-
C11 

T-
C12 

T-
C13 

A: Overtaking and lane change 10 0 1 4 4 3 6 3 6 2 3 2 0 

D: Cornering 8 1 0 1 2 3 2 2 2 0 0 0 0 

F: Rear end 64 7 43 0 48 7 18 1 1 7 6 1 1 

G: Turning vs. same direction 3 0 13 7 13 0 3 0 3 0 1 9 0 

H: Crossing no turns 14 6 2 3 10 10 8 9 5 5 7 1 2 

J: Crossing vehicle turning 47 55 3 3 0 4 7 60 24 11 3 20 3 

L: Right turn against 47 8 0 39 7 0 11 6 2 13 0 2 25 

M: Manoeuvring 13 10 0 5 15 15 7 2 6 1 15 6 1 

P Pedestrian other 3 2 0 0 3 1 1 0 1 3 2 1 3 

Other (B, C, E, K, N, Q) 3 1 0 0 0 0 0 0 2 4 1 0 0 

SUMME 212 90 62 62 102 43 63 83 52 46 38 42 35 

 

Table 19: Frequency of collision types for the four-legged junctions clusters (red font: high-injury 
scenarios, grey fill: Top 5 high-frequency scenarios) 

Collision letter X-C1 X-C2 X-C3 X-C4 X-C5 X-C6 

A: Overtaking and lane change 3 0 0 1 0 2 

D: Cornering 3 0 0 0 0 0 

F: Rear end 17 7 0 0 1 0 

G: Turning vs. same direction 4 1 3 0 0 2 

H: Crossing no turns 59 25 17 30 23 15 

J: Crossing vehicle turning 8 5 8 12 0 1 

L: Right turn against 34 11 18 4 6 7 

M: Manoeuvring 7 8 2 2 4 7 

P Pedestrian other 7 2 0 0 1 0 

Other (B, C, E, K, N, Q) 0 1 0 0 0 0 

SUMME 142 60 48 49 35 34 

5.5 Conclusions and outlook 

This chapter presented a novel approach on how to extract pre-crash scenarios from 
accident data, which was applied to three-legged and four-legged road junctions in the 
UK. The clustering method -medoids was found to be most appropriate for the given 
dataset, since it is robust against outliers and can cope with categorical data. The 
study resulted in thirteen crash clusters for T-junctions and six crash clusters for four-
legged junctions. Association rules were computed for each cluster and revealed 
associated crash characteristics, which were the basis for the scenario descriptions. 
Considering the clusters with high injury outcome, twelve pre-crash scenarios were 
identified, which constitute the core population of critical driving situations in the 
given dataset. Failure to give way and inappropriate manoeuvres are among the main 
precipitating factors. There was no scenario found involving car-pedestrian or car-
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bicycle collisions, which can be explained by the low number of vulnerable road users 
among all involved persons in the given accident dataset. In summary, however, the 
results support existing findings about junction safety and add further definition to 
the clusters identified. For example, as indicated in the literature, higher injury levels 
coincide with powered two-wheelers involved as well as higher speed limits.  

The study was preparatory research for the development of a sub-microscopic 
simulation framework, which is described in the chapter that follows. The scenarios 
obtained help to reduce the possible number of simulation parameter variations, such 
as vehicle trajectories, velocities as well as road and junction parameters. The crucial 
question to answer is how to transfer the scenarios into simulation and how to 
enhance them with representative variations of real-world effects.  
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6 Study 3: Developing a simulation and evaluation framework 

As described in the previous chapter, study 2 resulted in a set of safety-critical 
scenarios at road intersections, derived from historical junction crash data. The third 
study aims to transfer the derived collision scenarios to a sub-microscopic traffic 
simulation environment, where the safety performance of automated driving functions 
can be evaluated. While the second study is based on crashes involving human drivers 
only, this study presents a novel methodology that adds the automated driving 
functionality to understand their impact on intersection safety. The study results and 
findings deliver answers to the research questions 4 and 5. 

6.1 Problem definition 

Numerous research projects have been conducted to virtually assess the safety 
performance of automated vehicles (Beglerovic et al., 2017; Olivares et al., 2016; Pütz 
et al., 2017; Rodarius et al., 2015; Roesener et al., 2017). Virtual testing can decrease 
costs in the development cycle, because it can comprise high numbers of scenarios 
with combinations of varying factors, which would not be feasible in real-world tests. 
To the author’s knowledge, there was no research undertaken and published, which 
particularly defined testing scenarios and procedures for evaluating the safety 
performance of ADS at junctions. 

The scenarios obtained in study 2 help to reduce the possible number of simulation 
model parameter variations, such as vehicle manoeuvres, trajectories, velocities as well 
as road and junction parameters. However, not all parameters for the simulations can 
be derived from the clustering analysis. Some data elements are simply not included in 
the accident database, such as exact driving trajectories or driving behaviour. The 
proposed methodology fills this gap by enhancing the collision scenarios with 
representative variations of real-world conditions, sampled by a Monte Carlo 
approach. 

Automated driving functions are influenced by various factors that can be divided into 
behaviour of other traffic participants, road and junctions design as well as adverse 
weather and light conditions. It is assumed that the sensor functionality works reliably 
under “normal” laboratory conditions, but real-world effects and events can 
compromise it. For example, vision sensors struggle with limited visibility due to 
adverse weather conditions or sight obstructions and the motion planning might be 
influenced by unexpected behaviour of other road users. This limited functionality 
poses a risk not only for the automated vehicle’s occupants, but also for other road 
users. There is a need to investigate the influence of such factors, henceforth referred 
to as “criticalities”, on the safety performance in various scenarios at road junctions. 

Besides the normal automated driving function such as lateral and longitudinal 
control, collision avoidance and mitigation systems play an important role for safe 
operation of ADS at road junctions (see review in Section 2.4). Common systems such 
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as forward collision avoidance (or automated emergency braking) cannot cope with 
all accident or conflict situations at junctions. The automotive industry strives to 
develop reliable systems able to avoid side or angle collisions, including vehicular 
communication technologies. However, there are no common testing procedures and 
the high number of possible combinations of testing conditions pose a challenge. This 
thesis leads to recommendations for testing and validating automated driving systems 
at junctions, with focus on virtual vehicle testing as a pre-stage or parallel activity to 
field operational tests on public roads, including static (e.g. road design and layout) 
and dynamic content (e.g. involved road users and vehicles, their trajectories and 
behaviour). In summary, the research questions addressed by this study are RQ4 and 
RQ5: 

 How can those collision scenarios be represented and enhanced for sub-
microscopic simulation to evaluate the safety performance of intersection 
assistance systems?  

 What general recommendations can be made for the safety performance 
indicators to be considered in virtual testing of ADS at junctions? 

6.2 Ontology for simulation experiments 

Before describing the simulation framework in detail, this section defines a set of 
important terms used in the further sections. In literature, there is no consistent 
terminology for scenarios and vehicle simulation of automated and assisted driving. 
Kienle et al. (2014) proposed a fundamental ontology to simplify communication and 
the exchange of findings in this research field. This thesis uses an adapted version of 
this ontology, as given in Figure 54. The figure depicts a hierarchical structure to 
illustrate the different levels in the simulation study. In the following sections, the 
terminology is defined in detail. 

 

Figure 54: Ontology and hierarchy for simulation experiments (adapted from Kienle et al. (2014)) 
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6.2.1 Experiments  

As the top level, an experiment is defined as a systematic procedure carried out to 
validate a hypothesis. It is further specified by the requirements for the tests, such as 
the vehicle or road models to be included or the study duration and computational 
constraints to be considered. The applicability of the simulation and evaluation 
framework is demonstrated by an experiment presented in Section 6.6. 

6.2.2 Sceneries 

The term scenery describes all static elements of the surrounding area. In other words, 
it is defined by the layout and geometry of the road section to be simulated, including 
static single elements such as road signs, markings or traffic lights. The road type 
could be a single or dual carriageway with a specific number of lanes with or without 
hard shoulder. The horizontal geometry can be a left or right curve or straight, the 
junction shape can be three- or four-legged, controlled by a traffic light, static yield 
instruction or uncontrolled. Furthermore, the junction can be equipped with an 
infrastructure-based intersection assistance system. The parameters derived from the 
association rules in study 2 help to specify a scenery to be simulated. 

The following basic sceneries are examples that can be used for the simulation 
experiments and are based on the Highways England design guidelines on priority 
junctions (“TD 42/95 - Geometric Design of Major/Minor Priority Junctions,” 1995).  

 Simple T-junction (see Figure 55): without any ghost or physical islands in the 
major road, without channelising islands in the minor road approaching and 
with road markings. 

 Ghost island T-junction (see Figure 56): with a physical island on the minor 
road and ghost island markings on the major road to direct traffic movement. 

 Single-lane dualling T-junction (see Figure 57): with a physical island on the 
minor road and central reservation islands on the major road to direct traffic 
movements. 

 Dual-carriageway T-junction (see Figure 58): with a widening of the central 
reserve on the major road to provide an offside diverging lane and waiting 
space for vehicles turning right into the minor road. 

 Simple four-legged junction (see Figure 59), with static give-way instruction, 
two roads crossing at right angle and road markings 

 

Figure 55: Scenery Tsimple: Simple T-junction 
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Figure 56: Scenery Tghost: Ghost island T-junction 

 

Figure 57: Scenery Tisland: Single-lane dualling T-junction 

 

Figure 58: Scenery Tdual: Dual-carriageway T-junction 

 

Figure 59: Scenery Xsimple: Simple non-signalized crossroads 

6.2.3 Scenarios 

While the scenery describes all static elements of the road environment, a scenario 
introduces dynamic traffic objects, i.e. moving road users. For each scenery, a certain 
set of scenarios is simulated according to the results of study 2. A scenario thus 
defines the interaction between the ego car and its opponent, including their 
manoeuvres, their exact trajectory and velocity (driving behaviour) to conduct the 
manoeuvre and their position, i.e. which lane they are driving. Furthermore, the 
vehicle models are specified, along with the sensor models of the ego car.  
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6.2.4 Ego car 

The sub-microscopic simulation environment requires a primary car as the main 
subject of investigation. In this study, the ego car is the automated car equipped with 
modern sensors and collision avoidance technologies. In contrast to the opponent 
vehicles, the ego car has detailed physical models, driving dynamics and physical 
sensor models. 

6.2.5 Criticalities 

The term criticality defines a certain factor or condition that may influence the safety 
performance of automated collision avoidance systems. It is assumed that a criticality 
has a negative impact on the performance, but this needs to be studied. For example, 
poor surface friction influences the braking performance in critical situations. Poor 
visibility due to weather influences the sensor perception and sight obstructions pose 
challenges for object detection. An additional criticality is sensor failure or inaccuracy, 
which can occur due to interference, e.g. for radar.  

6.3 Requirements and selection of simulation software 

Section 2.5.2 introduced common sub-microscopic simulation software used for 
virtual vehicle testing. The following simulation platforms were selected as candidates 
to be used for the study, because they provided ready-to-use models for the vehicle 
and sensors as well as driving behaviour: 

 PreScan, by Tass International 
 CarMaker, by IPG Automotive 

Besides others such as dSPACE, VTD and Pro-SiVIC, those two platforms are widely 
used in the field of pre-crash simulation and ADAS development. They are designed to 
test vehicle components, either in SIL, MIL, HIL or VIL, but have limitations in 
modelling physical vehicle deformation, rebound effects and occupant injury. For this 
purpose, other software tools such as PC-Crash, Virtual CRASH or MADYMO are 
used, primarily for accurate accident reconstruction. However, this thesis focuses on 
the simulation of pre-crash situations and not on post-impact effects. Therefore, a list 
of requirements was collected, which are necessary to complete this study. For both 
tools, test licences were provided with full functionality for a maximum of one month. 
During this test period, the functionality of the tools was reviewed with regards to the 
requirements. The resulting checklist for CarMaker is given in Table 20, the one for 
PreScan in Table 21. Note that the requirements were collected in February 2016 with 
the software releases that were available at that time. Some of the functionalities have 
been updated during the development of this thesis.  
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Table 20: Requirement analysis of CarMaker 

Requirement Fulfilled 
(✓/~/x) 

Comment 

Environment sensor models to simulate 
camera, LIDAR, radar and others under 
varying conditions 

~ Recognition sensors included, but as ideal 
models. Realistic models are included from 
Version 6, but not in combination with 
Simulink. 

Road and roadside models to create a virtual 
road environment including junction features, 
which can also be perceived by the sensor 
models 

✓	 Road and roadside models can be added 
and are also perceivable by the sensors.  

Realistic vehicle models to simulate different 
vehicles with varying mass, shape and 
handling 

✓	 Available with a detailed modelling of 
engine, tire, steering, suspension, brake 
and more.  

Pedestrian and bicycles models, including dark 
clothing etc. 

~ Pedestrian and bicycles can be added as 
traffic objects. Textures for certain objects 
could be added but they do not influence 
the sensors. 

Realistic driver or manoeuvre modelling to 
allow reconstructing crash scenarios and road 
user movements 

✓ Certain driver models are available, also 
ABS, ESP implementations are available, 
realistic simulations through proper 
modelling. 

Capability to simulate adverse weather 
conditions (perceived by sensor models) 

x Weather conditions (fog is currently 
available) can be added to the simulation 
environment but they do not influence the 
sensors. 

Scripting and automation functionality and 
links to other platforms, e.g. to 
MATLAB/Simulink  

✓ Matlab/Simulink integration and scripting 
automation support is available, 
TestManager is implemented in the GUI 

Capability to simulate limited visibility, e.g. 
darkness and realistic headlight beam 
modelling to simulate visibility at night 

~ Darkness and headlight beams can be 
added to the simulation movie, but will not 
affect the detection rate of the sensor. 
However, sensor parameters can be 
manually estimated for different 
conditions. 

Capability of simulating imperfections of 
traffic signs and lane markings, which 
influences the sensor models 

~ Not implemented, workaround through 
recognition of the sensor rate is possible. 

Import of road infrastructure data and (semi-) 
automatic generation of road models 

~ Automatical import of *.kml files is 
available, but the network can also take 
general settings then (lane width, friction 
stripes, etc.), automated generation of 
additional infrastructure (road markings, 
traffic signs, etc.) is currently not 
supported. 

Interface to OpenCRG ✓ Available by adding a road marker to a 
road segment 

Interface to OpenDRIVE x Not implemented, but planned for future 
versions. 

Non-obligation to buy additional software 
tools (e.g. Matlab/Simulink) 

✓ Works for simulation purposes standalone, 
Matlab/Simulink extension is optional. 
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Table 21: Requirement analysis of PreScan 

Requirement Fulfilled 
(✓/~/x) 

Comment 

Environment sensor models to simulate 
camera, LIDAR, radar and others under 
varying conditions 

✓ Realistic sensor models are available. 

Road and roadside models to create a 
virtual road environment including 
junction features, which can also be 
perceived by the sensor models 

✓ Virtual road environment can be built in 
detail. Due to predefined road segments a 
network can be set up easily and quickly. 
Sensor models can perceive objects.  

Realistic vehicle models to simulate 
different vehicles with varying mass, shape 
and handling 

~ Available with a predefined modelling of 
driveline (transmission, shifting strategies), 
engine and suspension. Simulink is necessary 
for modification. 

Pedestrian and bicycles models, including 
dark clothing etc. 

✓ Several human models available (children, 
men, woman, with/without raincoat etc.). 
Textures can be defined per object to change 
clothing or upper/lower body clothing colour 
can be set.  

Realistic driver or manoeuvre modelling to 
allow reconstructing crash scenarios and 
road user movements 

~ Driver models are available, but a data 
verification test showed that no ABS, ESP is 
implemented per se and that models are 
idealised.  

Capability to simulate adverse weather 
conditions (perceived by sensor models) 

✓ Different weather can be added and 
influences the recognition rate of sensors  

Scripting and automation functionality and 
links to other platforms, e.g. to 
MATLAB/Simulink  

✓ Matlab/Simulink integration, TestManager in 
the GUI implemented 

Capability to simulate limited visibility, e.g. 
darkness and realistic headlight beam 
modelling to simulate visibility at night 

✓ Darkness and headlight beams can be added 
to the simulation movie and affect the 
detection rate of the sensors. 

Capability of simulating imperfections of 
traffic signs and lane markings, which 
influences the sensor models 

✓ Imperfections are implemented for traffic 
signs and road markings and are sensor 
detectable. 

Import of road infrastructure data and 
(semi-)automatic generation of road models 

~ Only through OSM, but with limited 
capability for traffic signs (workaround by 
adding them in the OSM-File). Additional 
infrastructure (road markings etc.) must be 
added manually. 

Interface to OpenCRG x Not available, implementation is evaluated 
by TASS. 

Interface to OpenDRIVE x Not available, implementation is evaluated 
by TASS. 

Non-obligation to buy additional software 
tools (e.g. Matlab/Simulink) 

x The standalone simulation does not take 
dynamics, etc. into account. Matlab/Simulink 
availability is mandatory. 

 

In summary, CarMaker has its strengths, when it comes to the availability of 
predefined models. For example, sensor and driver models are available from scratch 
and can be configured by the user. In contrast to that, PreScan requires 
MATLAB/Simulink to build one’s own models for the driving control. This is a 
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drawback in relation to this thesis, because ready-to-use driver models are not 
available.  

The main disadvantage of CarMaker is that weather and visibility conditions can only 
be added as a visual feature in the video creation, but not as integrated part of the 
environment model. This means that the effect on sensor perception must be 
estimation by modifying the values for range and accuracy of the perception, e.g. 
reduced range in case of fog. 

Based on the requirement analysis, taken into consideration the slightly higher price of 
PreScan, it was decided to purchase the CarMaker software.  

6.4 Simulation framework 

The following section will explain how the simulation framework was set up and 
which models are included. After explaining the data input configuration and the test 
automation method, the models are categorised into road environment, vehicle and 
sensors and driving behaviour.  

6.4.1 Overview of simulation architecture 

The software CarMaker distributed by the company IPG is a vehicle simulation 
software with various functionality and tools for investigating complex traffic 
scenarios. It allows virtual test driving of passenger cars and light utility vehicles, by 
simulating the interaction between vehicle, driver, other traffic and road environment. 
Apart from the classic vehicle dynamics simulation, CarMaker enables the testing of 
driver assistance systems, which is the main focus of this thesis, since automated 
driving can be seen as a further advancement of driving assistance. The simulation 
possibilities comprise model-in-the-loop (MIL) simulations, as done in this thesis, as 
well as hardware-in-the-loop (HIL) tests on specific electronic components 
(Holzmann, 2006). 

The developed simulation architecture comprises five elements, as shown in Figure 60. 
The input for the simulations, i.e. the varying parameters and combinations of those 
are specified by an XML-structured configuration file (1). This allows the script file 
for the simulation automation to be kept slim without changing the code for each new 
test run. The automation script (2) is implemented in MATLAB and sets up the 
simulation environment, interprets the input XML-file and communicates with the 
CarMaker-Simulation instance. In Simulink, the CarMaker model blocks can be 
modified and input and output quantities can be specified. The CarMaker GUI (3) is 
then executed to perform the simulation runs and to deliver the specified output 
quantities as CSV-files for each run. Those output files are stored in the simulation 
database and are post-processed to compute the safety indicators (4), which are 
described in Section 6.4. Finally, the resulting indicators, including the information if 
it was a collision, near-miss or no conflict at all, are stored in the results database (5).  
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Figure 60: Simulation architecture 

6.4.2 XML-based data input and parameter configuration 

The number, values and ranges of the simulation parameters vary depending on the 
test requirements and objectives. Therefore, a graphical user interface was created in 
C#, which allows the user to configure the parameters and their variations and to 
automatically generate XML-files as inputs for the simulation automation script. The 
XML structure and the tag names are based on the hierarchy given in Figure 54 and 
allow to configure different experiments and scenarios.  

 

Figure 61: GUI for XML-based parameter configuration 

Within a scenario, the user must define at least one parameter variation tag, which 
consists of a name (that must be the same as in the CarMaker parameter list) and its 
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actual numerical variation. A parameter can either be a Monte Carlo parameter, 
where the input probability distribution is specified (see Section 6.7) or a parameter 
that is varied in a range of fixed values with a fixed interval. Figure 61 depicts a 
screenshot of the GUI with the parameter configuration of the demonstration 
experiment presented in Section 6.8.  

The resulting XML-file (see below) is interpreted in MATLAB by the simulation test 
automation script, which is explained in the section that follows.  

<?xml version="1.0" encoding="utf-8"?> 
<Experiment> 
  <Scenery path="T_12_1_England_FORSIDEW_FCA"> 
    <Scenario id="1"> 
        <MC> 
            <name>Traffic.T0.tRoad</name> 
            <distribution>normal</distribution> 
            <par1>0.2</par1> 
            <par2>0</par2> 
        </MC> 
        <MC>  
            <name>Traffic.T0.AutoDrv.DesrSpd</name> 
            <distribution>normal</distribution> 
            <par1>4</par1> 
            <par2>17</par2> 
        </MC> 
        <MC> 
            <name>Road.Friction</name>  
            <distribution>uniform</distribution> 
            <par1>0.9</par1> 
            <par2>0.3</par2> 
        </MC> 
        <Criticality> 
            <name>Detection.Prop</name> 
            <distribution>-1</distribution> 
            <par1>0.95</par1> 
            <par2>0</par2> 
        </Criticality> 
    </Scenario> 
  </Scenery> 
</Experiment> 

6.4.3 Simulation test automation 

A MATLAB script was written to prepare and to execute the simulations as well as to 
process and export the simulation results. Based on the input XML-file, the varying 
parameters are created and transferred to the CarMaker/Simulink instance.  

The simulation procedure consists of the following main steps: 

1. Manually create a CarMaker test run for each scenery, configuring all static 
parameters. 

2. Import the inputs from the XML-file and add the variable parameters to the 
MATLAB workspace. 

3. Create the output directory structure, following the hierarchy given in Figure 
54 and based on the predefined parameter configuration (e.g. “…\ 

ExperimentA \ Scenery1 \ Scenario1 \ ParameterVariation1”). 

4. Load the Simulink model and execute two simulation runs for each parameter 
variation in CarMaker, 
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a. one without an intervening manoeuvre from the vehicles (“reference 
run”) and  

b. one with collision avoidance models activated 

5. Save the output files of each simulation run into the predefined output 
directory. 

 

Step 1 is the only manual task of the presented testing procedure, because the static 
parameters must be modelled in the CarMaker GUI. Therefore, a CarMaker test run 
is created for each scenery. Detailed information on the CarMaker GUI and the 
simulation models is given in Section 6.6. Besides the static road information, there 
may be other parameters that do not vary between the scenarios, such as the ego car 
model or its manoeuvres. For instance, the proposed demonstration experiment in this 
chapter varies the speed and lateral position of the opponent car, the road friction and 
the ego car’s sensor systems. Hence, all other parameters such as vehicle and 
component models or the ego car’s velocity and manoeuvres are also set static in the 
test run. 

Step 2 imports the XML file and creates the respective variables in the MATLAB 
workspace. Plausibility checks are done to ensure the correct hierarchy structure, 
which should be Experiment->Scenery->Scenario->Parameter variation. This structure 
is also used for creating the output directories in Step 3. 

Step 4 initiates the Simulink interface and executes the simulation. Each simulation 
run is defined by a certain combination of parameter variations sampled by a Monte 
Carlo approach (see Section 6.7). However, there are two simulation runs necessary 
for each parameter combination, one with all collision avoidance models deactivated 
(reference run) and one with activated collision avoidance. The reference run can be 
seen as an equivalent to the path and motion planning of automated vehicles, where 
the future trajectories of both the ego vehicle and the potential opponent road user are 
predicted. This “prediction” is replaced by the reference runs and can thus be seen as 
ideal without prediction errors. The calculation of some of the safety performance 
indicators require the future trajectory to imitate an automated vehicle’s path and 
motion planning. As soon as an intervening manoeuvre is performed by one of the 
vehicles, e.g. an emergency braking, the actual trajectory differs due to vehicle 
instabilities such as skidding.  

In Step 5, the simulation outputs are exported. The evaluation procedure, which is 
explained in the following section, requires the outputs listed in Table 22. This list of 
output quantities is used throughout the following sections to explain the evaluation 
procedure. 

An overview of all MATLAB functions for the simulation test automation is given in 
Appendix G. 
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Table 22: Simulation output quantities for both vehicle A and B 

Output description Variable name 

Global time t 

Distance covered over time for both vehicles vehc_A/B_Route_x 

Position of both vehicles over time in the global coordinate system vehc_A/B_Global_x, 
vehc_A/B_Global_y 

Velocity of both vehicles over time vehc_A/B_v 
Longitudinal accelerations of both vehicles over time vehc_A/B_ax 

Brake/decelerator activity for both vehicles over time vehc_A/B_brk 

Binary collision detection flag for each timestamp collision_detect 

6.5 Safety performance evaluation 

The previous section described the overall simulation architecture and how a 
simulation run is configured and executed. Each simulation run has one output file 
including all quantities of Table 22, which is further analysed by an evaluation script 
to derive safety indicators. This section is devoted to the metrics used to quantify the 
safety performance of the automated vehicle in the given scenario. Basically, the safety 
performance analysis is similar to the traffic conflict technique, which aims to observe 
and record unsafe interactions between vehicles or road users (Perkins and Harris, 
1968, 1967). Instead of analysing detected collisions only, near-misses are also taken 
into account. (Hydèn, 1987) published a safety pyramid (see Figure 62), which 
illustrates that collisions are only the tip of the iceberg regarding driving situations.  

 

Figure 62: The safety pyramid adapted from (Hydèn, 1987) 

A large number of events happening in traffic are not reported, such as conflicts, 
which are defined as “traffic events involving the interaction of two or more road 
users, where one or both drivers take evasive action such as braking or swerving to 
avoid a collision” (Parker and Zegeer, 1989). However, this definition can be 
extended, because there might be events where none of the involved road users takes 
an evasive action, but they almost collide. For example, this could happen if there is 
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not enough time to react or the road users fail to react in time. There is consensus 
among traffic safety experts that detected conflicts can be an appropriate predictor for 
collisions, depending on factors such as traffic volumes (Sacchi and Sayed, 2016). In 
this simulation study, the frequency and severity of collisions as well as the frequency 
of conflicts help to quantify the safety performance of the system under test.  

6.5.1 Overview of safety indicators used 

Tolouei et al. (2013) mentioned two aspects of the safety performance of a vehicle in 
traffic. First, the primary safety performance, which refers to the risk of crash 
involvement of the vehicle in general. And second, the secondary safety performance, 
which is linked to the risk and severity of occupant injury, when the vehicle is 
involved in a crash. In the following subsections, selected safety performance 
indicators are explained, some of which having a certain threshold (see overview in 
Table 23). There are three uses of indicators in the study, namely 1) metrics used for 
the apriori collision avoidance algorithm that are computed during the simulation 
runtime, 2) metrics used for the a-posteriori detection and severity estimation of 
collisions and 3) metrics used for the a-posteriori detection of conflicts or near-misses. 
While the apriori indicators are the basis for the forward and side collision avoidance 
system of the ego car (see Section 6.8.3.1), the a-posteriori indicators are computed 
after each simulation run as safety performance metrics (see sections 6.5.2 and 6.5.3). 
Note that it is not the goal of this study to estimate the severity of conflicts, but the 
severity of collisions in terms of estimated injury risk. For the purpose of this thesis, it 
is sufficient to detect whether there was a conflict or not, in order to compute a 
conflict probability along with a collision probability. For a complete overview and 
explanation of available surrogate indicators, refer to Mahmud et al. (2017). 

Table 23: List of safety performance indicators selected for the evaluation 

Use Indicator (Threshold) Value 

Collision avoidance 
(a priori) 

Time-To-Intersection (TTI) Continuous value 

Time-To-Disappear (TTD) Continuous value 

Time-To-React (TTR) 0.01 s 

Gap acceptance time (GA) 1 s 

Collision detection and 
severity estimation 
(a posteriori) 

Collision detection  1 

Pre-impact velocity  see Eq. (11)-(19) 

Impact angle ( ) n/a 

Delta of velocity ∆  see Eq. (23)-(26) 

Conflict detection 
(a posteriori) 

Time-To-Collision (TTC) 1.5	  
Time-To-Accident (TTA) see Figure 72 
Post Encroachment Time (PET) 1	  
Longitudinal jerk ( ) 8	 / ³ 

 

The choice of indicators depends on the collision scenario to be evaluated. For 
example, the  is used for angle and turning collision scenarios, where both road 
users’ trajectories do not end in the same path and direction, but it is not applicable to 
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rear-end, merging or head-on situations. For those scenarios, the minimum  or its 
derivatives such as the time-integrated  are preferred (Mahmud et al., 2017). 

Figure 63 depicts a flowchart for the indicator calculation proposed and applied to 
the demonstration experiment in Section 6.6. When a collision is detected, the aim is 
to estimate the severity in terms of injury risk. To do so, the impact velocities and the 
impact angle are calculated to obtain the ∆ , along with the information which vehicle 
is the “bullet” vehicle. In case there is no collision detected, the aim is to find out 
whether the scenario is a critical conflict or an undisturbed situation. There are two 
decision points to answer this: First, did one of the vehicles perform an evasion 
manoeuvre, i.e. an emergency braking? Second, did the vehicles come close to each 
other, even if there was no braking involved. The first question is answered by the 
maximum jerk value combined with the , while the  or the  thresholds 
give an indication on the second question, depending on whether there was an angle 
(side) collision or another collision type. For head-on and rear-end collisions, the PET 
is replaced by the minimum TTC. If the minimum TTC is below 1.5 seconds, the 
situation is classified as conflict.  

 

Figure 63: A-posteriori evaluation of the safety performance 

The following sections explain how the safety indicators are calculated in detail, 
divided into collision detection/severity estimation and conflict detection.  
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Based on the information given above, the evaluation procedure consists of the 
following steps: 

1. Import the simulation output files that were stored according to the directory 
structure defined by the simulation automation script. 

2. Iterate through all output files and apply the safety evaluation algorithms. 

3. Generate result plots and result files for each iteration (see Section 6.9). 

4. Calculate a collision and conflict probability and generate distribution plots by 
processing all iterations at once. 

 

6.5.2 Collision detection and severity estimation 

As mentioned, CarMaker does not simulate the actual collision and deformation of 
the vehicles. Instead, collision detection is realised by a virtual sensor that delivers a 
binary output, namely whether the ego car intersects with another object or not. A 
cuboid or an extruded contour specify the detection area (see Figure 64 and 
Section 6.6.4 for more details). 

 

Figure 64: Collision detection in CarMaker with vehicle body and with wheels (IPG Automotive, 2016) 

The velocities of the colliding vehicles are typically used to estimate the severity of a 
collision. One of the simplest indicators is the maximum speed  observed of 
either vehicle during a conflict event (Gettman and Head, 2003). This basic approach 
follows the “speed kills” principle, but does not take into account different collision 
types, vehicles masses or relative vehicle speeds. Hence, it is not a reliable estimator 
for injury severity.  

Another simple approach is to take the pre-impact velocity  as severity indicator, 
which works well for the injury estimation of vehicle-pedestrian or vehicle-cyclist 
collisions due to their biomechanical vulnerability (Jurewicz et al., 2015a). However, 

 has its limitations for estimating the severity of vehicle-vehicle collisions, because 
vehicle masses as well as different collision types and impact angles should be 
considered. Critical impact speed thresholds for different collision types were 
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published by Jurewicz et al. (2015b), as given in Table 24. The curves are based a 
study by Bahouth et al. (2014) on historical accident data from the American 
NASS/CDS database. Note that the values given in the table refer to the “bullet 
vehicle”, i.e. the vehicle that hits another “target vehicle”. The critical speed values in 
this table are derived from the injury probability functions depicted in Figure 65 by 
taking the 10 percent probability as a threshold for the respective collision types.  

 

Figure 65: Serious injury risk as a function of  (Jurewicz et al., 2015b) 

Table 24: Critical pre-impact velocity thresholds for different collision types (Jurewicz et al., 2015b) 

Collision type Critical  in km/h 

Vehicle-pedestrian 20 
Head-on 30 
Adjacent direction 30 
Opposing-turning 30* 
Rear-end 55 

* This value may vary, depending on the impact angle and turning vehicle speed. 

The functions are based on the MAIS (Maximum Abbreviated Injury Scale), which is 
an anatomical-based coding system to classify injury severity (Gennarelli and Wodzin, 
2008). The AIS code for an injury has seven digits in the form of 12(34)(56).7, with 

 digit 1 for the body region (e.g. 1-Head, 2-Face, 3-Neck etc.),  
 digit 2 for the type of anatomical structure (e.g. 1-Whole area, 2-Vessels etc.),  
 digits 3 and 4 for the specific anatomical structure (e.g. 02-skin abrasion, 04 

contusion, 10-amputation etc.),  
 digits 5 and 6 for specific injuries, and 
 digit 7 as the severity from 1 to 6 (minor to maximum/fatal) and 9 as not 

further specified. 

It is common in crash studies to use the single MAIS code, which defines the 
maximum injury severity of all body regions. MAIS1 is therefore defined as minor 
injury, MAIS3 as serious injury and MAIS6 as currently unsurvivable injury. Note 
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that the underlying data from Bahouth et al. (2014) was taken from accidents in right-
hand traffic and that the MAIS3+ probability refers to the injury of the “target” road 
users that have MAIS3 or higher. 

Currently, there is limited research published on the severity estimation of cyclist or 
motorcycle collisions in relation to the impact speed. Jurewicz et al. (2015a) suggest 
extending the vehicle-pedestrian value to other vulnerable road users, until there is 
more evidence available.  

It is agreed among experts that the change in velocity of a vehicle during a crash gives 
superior estimation than . For example, Stoff and Liers (2013) analysed data 
from 16,000 crashes with injured car occupants from the German GIDAS database 
(“GIDAS - German In-Depth Accident Study,” n.d.) and developed injury risk 
functions. They found that the change of velocity is the most influencing measure to 
estimate injury severity, compared to average deceleration, angle velocity, shock pulse 
and Energy Equivalent Speed (EES). This delta of velocity ∆  is simply calculated by: 

∆ 	 (11)

with  as the post-impact velocity of the vehicle. From a simulation tool like 
CarMaker,  can be easily obtained, but  is unknown, because the crash 
impact and vehicle deformations are not physically simulated.  

The following analysis considers totally inelastic collisions, where the maximum 
amount of kinetic energy of a system is lost and the colliding vehicles stick together 
after the collision with an equal post-impact speed. It is significant to mention that 
this approximation is simplified, as other important factors such as the part of the 
vehicles hit, the vehicles’ stiffness, the vehicles’ rotation or the post-impact rebound 
are not included (Jurewicz et al., 2015b). However, according to Newton’s mechanics, 
given  and  as the masses of vehicle 1 and vehicle 2, respectively, the momentum 
of both vehicles is conserved as follows: 

	 (12)

 (13)

For collision, where both vehicles travel in exactly the same direction, such as rear-
end crashes, Eq. (11) can be rewritten as 

∆ , 	 (14)

∆ , 	 (15)
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For situations in which the two vehicles travel in opposite directions, such as in head-
on collisions, one speed vector is considered negative and the other positive. Thus, 
attention must be given to the vector nature of momentum and  becomes negative. 
However, most collisions involve a certain angle between the vehicles. For exact right-
angle collisions, the Pythagoras theorem can be applied to compute the resulting 
vector after the collision: 

∆ , 	 (16)

∆ , 	

(17)

Side impacts with a collision angle ∅ different to 90 degrees require the law of cosines 
to give the resulting magnitude of post-impact velocity, which changes the formula to: 

∆ , 	 2 ∅	 (18)

∆ , 	 2 ∅	 (19)

Note again that, if vehicle 2 hit or was being hit by vehicle 1 at a greater angle than 
90 degrees, then  becomes negative when used in Eq. (18) and (19). To prove 
whether the calculated ∆  is correct, it can be determined if the momentum change 
experienced by vehicle 1 equals in magnitude and opposite in direction to the 
momentum change experienced by vehicle 2: 

∆ , ∆ , 	 (20)

NHTSA uses the WinSMASH computer software to estimate ∆  based on detailed 
measurements from the crash scene, vehicle damage and vehicle stiffness 
characteristics (Sharma et al., 2007). Their algorithm computes the energy absorbed 
by the vehicle, but also has a missing vehicle algorithm that is used to estimate ∆  
when the damage to one of the vehicles is unknown. The algorithms assume that the 
impact was instantaneous and that, at some point during the impact, both vehicles 
reached a common velocity. Due to these assumptions, WinSMASH has its limitations 
for some collision types, e.g. rollovers, sideswipes, over-ride/under-ride, multiple 
impacts to the same area, and towed trailer or vehicles. 

Laureshyn et al. (2017) extended and operationalised the measure ∆  within the 
context of traffic conflict observation. Their adaptation estimates the expected change 
of velocity experienced by a driver in the event that the conflict would have resulted in 
a crash. It takes into account both the proximity to a crash and the severity of its 
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potential consequences. It would therefore be a promising candidate for a conflict 
indicator for the simulation framework of this thesis. However, since it was decided 
to disregard conflict severity estimation, it was not implemented. Furthermore, the 
proposed ∆ 	 extension was not yet sufficiently validated, i.e. further research is 
needed to show close correlations between conflicts and crashes.  

Other studies break the velocity vector into lateral and longitudinal components of ∆  

(Bostrom et al., 2008; Digges et al., 2005; Kullgren, 2008). This has the advantage 
that side impact injury severity can be estimated more precisely in comparison to rear-
end or head-on collisions. For the scope of this study, it is sufficient to estimate an 
approximate level of injury severity, which can be derived from a single ∆  vector in 
combination with the impact angle. Numerous studies were conducted to estimate the 
relationship between ∆  and injury severity for different collision types (Berg et al., 
1998; Bostrom et al., 2008; Digges et al., 2005; Evans, 1994; Gabauer and Gabler, 
2006; Gabler et al., 2005; Hassan et al., 1999; Kullgren, 2008; Meyer, 2016; 
NHTSA, 2001; Stigson et al., 2012; Thomas and Bradford, 1988; Thomas and 
Frampton, 1999).  

For this simulation study, it was decided to implement the ∆  calculation as given in 
Eq. (26) and (27). The following code shows the MATLAB implementation of the 
data preparation according to the impact angle and which vehicle was the bullet. 

function [dvA, dvB, vpost, bulletIsA, bulletIsB] = calcDeltaV(safetyObj) 
 
coll_index = find(safetyObj.coll_detect == 1); %check if a collision happened 
bulletIsA = []; 
bulletIsB = []; 
  
if(isempty(coll_index)) %if no collision happened 
    safetyObj.vehc_A_deltav = -1; 
    safetyObj.vehc_B_deltav = -1; 
else 
    %if A entered the conflict zone first, then B is the bullet vehicle 
    if safetyObj.t_enter_A_real <= safetyObj.t_enter_B_real 
        bulletIsB = 1; 
        bulletIsA = 0; 
        %In case of rear-end case or angle < 90 deg: 
        if safetyObj.impact_angle<90             
            m1 = safetyObj.vehc_B_mass; %Vehicle mass 
            m2 = safetyObj.vehc_A_mass; %Vehicle mass 
            v1 = safetyObj.vehc_B_vimp; %Vehicle impact speed 
            v2 = safetyObj.vehc_A_vimp; %Vehicle impact speed 
            [dvB, dvA, vpost] = deltav(m1, m2, v1, v2, safetyObj.impact_angle); 
        else 
            %all other cases: 
            m1 = safetyObj.vehc_A_mass; %Vehicle mass 
            m2 = safetyObj.vehc_B_mass; %Vehicle mass 
            v1 = safetyObj.vehc_A_vimp; %Vehicle impact speed 
            v2 = safetyObj.vehc_B_vimp; %Vehicle impact speed 
            [dvA, dvB, vpost] = deltav(m1, m2, v1, v2, safetyObj.impact_angle); 
        end 
    else 
        %if B entered the conflict zone first, then A is the bullet vehicle 
        bulletIsB = 0; 
        bulletIsA = 1; 
        %same for all cases: 
        m1 = safetyObj.vehc_A_mass; 
        m2 = safetyObj.vehc_B_mass; 
        v1 = safetyObj.vehc_A_vimp; 
        v2 = safetyObj.vehc_B_vimp; 
        [dvA, dvB, vpost] = deltav(m1, m2, v1, v2, safetyObj.impact_angle); 
    end 
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    safetyObj.vehc_A_deltav = dvA; 
    safetyObj.vehc_B_deltav = dvB; 
end 
 
end 

The following code shows the implementation of the actual ∆  calculation: 

function [dv1, dv2, vpost] = deltav(m1, m2, v1, v2, alpha) 
%Calculates the delta-v for a totally inelastic collision 
 
dv1 = (m2/(m1+m2))*sqrt(v1^2 + v2^2 - 2*v1*v2*cosd(alpha)); 
dv2 = (m1/(m1+m2))*sqrt(v1^2 + v2^2 - 2*v1*v2*cosd(alpha)); 
 

if alpha > 90 && alpha<=180         
    v2 = -v2; %change speed vector direction for post impact speed calculation 
end 

 
vpost = (m1*v1+m2*v2)/(m1+m2); %Post-impact speed magnitude for both vehicles 
 
%proof 1: Is the momentum change experienced by vehicle 1 equal in magnitude and 
opposite in direction to the momentum change experienced by vehicle 2? 
dv1 = -dv1; 
tol = 0.0001; % A small value to set a tolerance for the equality check 
equal = ismembertol(m1*dv1, -m2*dv2, tol); %are the momentums near to equal? 
if ~equal 
    error('Momentum changes not equal and opposite in direction'); 
end 
 
%Go on with absolute values for injury severity estimation: 
dv1 = abs(dv1); 
dv2 = abs(dv2); 
 
%proof 2: The heavier vehicle must have a lower delta-v 
lower = []; 
if m1>m2 
    lower = dv1 < dv2; 
elseif m1<m2 
    lower = dv2 < dv1; 
end 
if ~lower && ~isempty(lower) 
    error('Heavier vehicle has a higher delta-v.'); 
end 
 
end 

In one of the earlier studies, Evans (1994) investigated the injury and fatality risk for 
car-car accidents based on ∆  in miles per hour. They analysed over 14,000 crashes 
from an American accident database from the years 1982 to 1991, and fit a 
generalized functional form to data for both injury prediction and fatality prediction. 
For belted occupants, the probability function of fatality risk resulted in: 

∆
69.2

.

	 (21)

Equivalently, the probability function of injury risk is: 

∆
67.4

.

	 (22)
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Gabauer and Gabler (2006) fitted binary logistic regression models to available data 
from in-vehicle event data recorders (EDR) to obtain a probability function for 
serious injury risk (MAIS 3+) based on ∆ . The model results are given in Figure 66, 
without distinguishing into belted and unbelted occupants. A limitation of their study 
is that it solely includes frontal collisions and cannot be extrapolated to all collision 
modalities. For example, lateral velocity information would allow a more 
sophisticated prediction of injury risk for a broader set of crash modes.  

 

Figure 66: Serious injury risk as a function of ∆  (Gabauer and Gabler, 2006) 

In a study by NHTSA (2001), NASS-CDS5 data from 1995 to 1999 was examined to 
derive a relationship between Δ  and the probability of occupant injury along all 
different MAIS levels, as a basis for estimating the impact of improved stopping 
distance on vehicle safety. The percent probability risk of each MAIS injury level at 
each Δ  was defined as the number of MAIS injury divided by the total number of 
occupants involved at a certain Δ . The risk prediction curves were derived using a 
mathematical modelling process with Δ  as the independent variable and the 
probability risk as the dependent variable. The probability for MAIS 0 (no injury) was 
calculated as: 

	
100 ∙ . ∙ , 35

0, 	 36
	 (23)

The probability for slight injury (MAIS 1+) was derived as follows: 

                                                 
5 The American NASS (National Automotive Sampling System) is composed of two systems - the 
Crashworthiness Data System (CDS) and the General Estimates System (GES). Both are based on police 
crash reports, but CDS focuses on passenger vehicle crashes to investigate injury mechanics. 
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93.221 ∙ 0.0449 ∙ , 35

100, 	 36 	 (24)

The serious injury probability (MAIS 3+) was calculated by: 

	 100 ∙
. ∙ .

1 . ∙ . 	 (25)

Equivalently, a fatal injury (MAIS 6) has the following probability risk function: 

	 100 ∙
. ∙ .

1 . ∙ . 	 (26)

Similar to the study by Gabauer and Gabler (2006), these formulas have to be used 
with care, because they might not be applicable to all types of collisions. Furthermore, 
the study included only accidents, where at least one vehicle used the brakes. Another 
limitation is that the underlying accidents stem from the years 1995 to 1999. 
Considering that modern vehicle technologies and safety systems might have changed 
the overall injury probability in relation to the velocity, those functions could be 
replaced by more up-to-date data in the future. However, for this simulation study, 
their results provide a good estimation of injury probability, distinguished into no, 
slight, serious and fatal injury. In MATLAB, the injury estimation was implemented as 
follows: 

function [P_inj] = calcPMAIS(safetyObj, vehc) 
 
P_inj = zeros(7,1); 
if ~isempty(vehc) 
    if vehc == 'A' 
        dv = safetyObj.vehc_A_deltav*3.6/1.6; %convert m/s to miles/hour  
    elseif vehc == 'B' 
        dv = safetyObj.vehc_B_deltav*3.6/1.6; %convert m/s to miles/hour 
    else 
        disp('Warning: P(injury) cannot be calculated. Please specify a vehicle.'); 
    end 
    if dv<=35 
        P_inj(1) = 100*exp(-0.0807*dv); %no injury 
        P_inj(2) = 93.221*sin(0.0449*dv); %MAIS1+ 
    elseif dv>=36 
        P_inj(2) = 100; %MAIS1+ 
    end 
    P_inj(3) = 100*exp(0.1683*dv-5.0345)/(1+exp(0.1683*dv-5.0345)); %MAIS2+ 
    P_inj(4) = 100*exp(0.1292*dv-5.5337)/(1+exp(0.1292*dv-5.5337)); %MAIS3+ 
    P_inj(5) = 100*exp(0.1471*dv-7.3675)/(1+exp(0.1471*dv-7.3675)); %MAIS4+ 
    P_inj(6) = 100*exp(0.1516*dv-7.8345)/(1+exp(0.1516*dv-7.8345)); %MAIS5+ 
    P_inj(7) = 100*exp(0.1524*dv-8.2629)/(1+exp(0.1524*dv-8.2629)); %MAIS6+, FATAL 
else 
    disp('Warning: P(injury) cannot be calculated. Please specify a vehicle.'); 
end 
 
end 

6.5.3 Conflict detection 

Apart from collisions, the proposed simulation framework is able to identify conflicts 
and near-misses. The following sections explain the conflict indicators used. 
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6.5.3.1 Time-To-Collision and conflict hexagon 

A popular indicator to distinguish from critical to normal driving behaviour is the 
Time to Collision ( ), which is used for traffic conflict analysis and collision 
avoidance systems. Hayward (1972) defined the  as the time required for two 
vehicles to collide if they were to continue their speed and path. Hence, it is a measure 
on how imminent a collision is. It is further a continuous parameter, which may be 
computed at every timestamp of a simulation or real-world observation. It was 
originally introduced for rear-end situations with two moving vehicles, where the  
is calculated according to the following equation (Minderhoud and Bovy, 2001): 

		∀	 	 (27)

with  as the current timestamp, X  and X  denoting the position of vehicle 1 (ahead) 
and 2 (following),  and  as the speed of vehicles and l  as the length of vehicle 1 
(see Figure 67a). For the case of a potential head-on collision, the formular can be 
modified as follows (see Figure 67b): 

	 (28)

Computing the  for crossing path or turning against situations is not trivial, since 
the trajectories of the road users have to be predicted in order to find a conflict point. 
This means that a real-world implementation is complex and suffers prediction 
inaccuracy, either in a vehicle system for real-time collision avoidance, in a roadside 
intersection assistance system or as part of a retroactive traffic conflict analysis with 
roadside sensors and cameras.  

Van der Horst (1990) calculates the  for angle collisions by taking into account 
the area around the conflict point instead of a single conflict point, which is further 
referred to as conflict zone (see Figure 67c). Presuming that the size of the conflict 
zone is based on the vehicle dimensions, the  is calculated as follows: 

, 	

, 	
	 (29)

with  and  as the distances from the fronts of the vehicles 1 and 2, respectively, to 
the beginning of the intersection area,  and  as the vehicle speeds,  and  as the 
vehicle lengths and  and  as the vehicle widths. The latter fraction terms are 
further denoted as Time-To-Disappear ( ), as they define the expected duration 
until the road user will have left the conflict zone, if its velocity does not change. 
Equation (29) can therefore be simplified to: 
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, 	
, 	 	 (30)

 

Figure 67: Calculation of TTC for (a) rear-end collisions, (b) head-on collisions and (c) angle collisions 
(adapted from Laureshyn et al., 2010) 

In MATLAB, Equation (29) was implemented as follows, taking the values for 
s_enter_A/B_theor and s_exit_A/B_theor as inputs that correspond to the timestamp 
where the vehicles will theoretically enter or exit the conflict zone:  

%Only distances and velocities are taken into computation: 
TTC_A = (safetyObj.vehc_A_xCord_theor(safetyObj.s_enter_A_theor) - ... 
safetyObj.vehc_A_xCord) ./ safetyObj.vA; 
TTC_B = (safetyObj.vehc_B_xCord_theor(safetyObj.s_enter_B_theor) - ... 
safetyObj.vehc_B_xCord) ./ safetyObj.vB; 
 
%continuous expected time to disappear (TTD) 
TTD_A = (safetyObj.vehc_A_xCord_theor(safetyObj.s_exit_A_theor) - ... 
safetyObj.vehc_A_xCord) ./ safetyObj.vA; 
TTD_B = (safetyObj.vehc_B_xCord_theor(safetyObj.s_exit_B_theor) - ... 
safetyObj.vehc_B_xCord) ./ safetyObj.vB; 
  
TTC_A(TTC_A<0)=0; 
TTC_B(TTC_B<0)=0; 
TTD_A(TTD_A<0)=0; 
TTD_B(TTD_B<0)=0; 
  
%Apply Van der Horst's formula (get only critical TTC for either A or B): 
TTC_A_crit = TTC_A .* (TTC_A < TTD_B) .* (TTC_B < TTC_A); 
TTC_B_crit = TTC_B .* (TTC_B < TTD_A) .* (TTC_A < TTC_B); 

The drawback of the formula by Van der Horst (1990) is that it is only applicable to 
right angle collisions in its original form. Miller and Huang (2002) developed a 
different calculation method to obtain  for varying collision angles as essential 
part of their proposed car to car collision warning system. In their algorithm, the 
future path intersection is estimated first by using both vehicles’ heading and locations 
in the global coordinate system. After the point of intersection is determined, the 
expected Time-To-Intersection  is estimated according to the velocities of both 
vehicles and the distance between the current position and the projected intersection 
point. Once a vehicle has cleared the intersection, its  becomes negative and there 
is no route contention. If there is a route contention, i.e. if is close to , then 
the  equals the . The closeness of the  values can be defined by a so-called 
contention parameter, which takes into account the vehicle dimensions and 
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uncertainties of velocity or heading angle. However, their approach does not consider 
exact vehicle dimensions and is not applicable to changing angles such as when 
driving a curve. 

Laureshyn et al. (2010) presented another method to calculate the  for potential 
angle collisions. Their study included different collision types, since the vehicles may 
approach each other with different angles. Therefore, they introduced a point and line 
principle, assuming that the vehicles are rectangles and that it is always the corner 
(point) of one of the vehicles that hits the side (line) of the other vehicle. Their 
approach overcomes the problem that the conventional geometry-based definitions, 
when the vehicle trajectories do not cross at a right angle. Consequently, the conflict 
zone shape may change from a rectangle to a parallelogram, and the entrance and exit 
from the zone are no longer time moments but periods. Both vehicles can appear in 
the same zone without collision. 

A  calculation method for the collision type “Right turn against” (assuming left-
hand driving) was investigated by Sobhani et al. (2013), which elaborates on the 
principle of Laureshyn et al. (2010), but additionally includes the curvature function 
of the turning vehicle in the formula. For the particular application of pedestrian 
safety, Salamati et al. (2012) proposed an adaptated  formula, which allows the 
calculation for different lanes in a multi-lane road configuration. The conflict zone in 
their method is the crosswalk that might cross more than one lane. 

In summary, it can be stated that for each collision type, a different  method must 
be applied. Hence, also the threshold values to measure the severity of a conflict vary 
accordingly. A table of published  thresholds reviewed from literature can be 
found in the survey of Mahmud et al. (2017). The minimum  lies between 0 and 
2 seconds, but some papers also state a “desired”  ranging 0.9 to 4 seconds. In 
general, a  lower than the perception and reaction time should be considered 
critical. A fixed threshold of 1.5  is typically chosen to distinguish between 
slight conflicts and serious conflicts, i.e. near-misses (Hydèn, 1987; Shbeeb, 2000). 

In the proposed framework of this thesis, the conflict zone (as depicted in Figure 67c) 
is determined as part of the evaluation script, i.e. by analysing the outputs of the 
simulation run. The algorithm combines the approaches from Van der Horst (1990), 
Miller and Huang (2002) and Laureshyn et al. (2010) and takes into account the 
driving directions, curvature as well as the vehicles’ dimensions and velocities. This is 
done by the following steps: 

1. The theoretical collision point is calculated by finding the intersection point of 
both trajectories. Since the trajectories are not lines but points sampled with a 
frequency of 1 ms, the minimum Euclidean distance between both coordinate 
vectors is computed to find the closest coordinate pair. 

2. For each vehicle path and timestamp, the current distance to the theoretical 
collision point is calculated. 
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3. To obtain the conflict entrance point, this distance is reduced by the half width 
of the conflict zone, which is henceforth denoted as .  

4. Equivalently, the conflict exit point of a vehicle is the distance to the collision 
point plus . In this way, the conflict zone can be spanned. 

For the case of precisely rectangular collisions (such as in Figure 67c), /2. 
However, in practice the collision angles deviate from 90 degrees, which necessitates 
another way of calculating . With other angles, the form of the conflict zone is 
no more a rectangle. It can be instead defined as hexagon, which is illustrated in 
Figure 68.  

 

Figure 68: Principle of the conflict hexagon 

In theory, the distance  can be determined by solving a trigonometric problem. 
Considering  as width of vehicle 2 and α as the angle of the trajectory intersection, 
the buffer for vehicle 1 is calculated as follows: 

2
	

	 (31)

Two triangles lead to the solution. Equation (31) gives the hypotenuse of the larger 
triangle with a given opposite leg, which is the sum of /2 and . The length of  
is the adjacent leg of the smaller triangle with a given hypotenuse of /2 and the 
same angle α: 

	 ∙
2
	 (32)
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By substituting  in Equation (31), the buffer length for vehicle 1 can be rewritten as 
follows, henceforth named “the needle and pin formula”6: 

∙ 	
2 ∙ 	 	

	 (33)

As the vehicle widths do not change within a simulation scenario, only the 
intersection angle varies according to the expected trajectories of the vehicles. Hence, 
the shape of the conflict hexagon changes with the angle, as Figure 69 depicts. 
Equation (33) can be proven by taking an  of 90 degrees, which results in a buffer of 
/2 and therefore a conflict rectangle. However, note that this principle is only valid 

for straight trajectories.  

  

Figure 69: Different shapes of the conflict hexagon depending on the collision angle 

Equation (33) necessitates the theoretical collision angle , which can be calculated by 

	
1

	 (34)

with  and  as the slopes of the two longitudinal centre line of vehicle 1 and 2, 
respectively (see Figure 70): 

, ,

, ,
	 (35)

, ,

, ,
 (36)

The principle of the angle calculation in Equation (34) is illustrated in Figure 70, 
showing the two trajectories as well as the two auxiliary lines to compute the slope.  

                                                 
6 The trigonometric problem of the conflict hexagon, i.e. the formula to compute the buffer distances, 
was solved in a pub called „The Needle and Pin“. 
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Figure 70: Illustration of the collision angle calculation 

As mentioned earlier, the calculation has to be enhanced in the case of curved 
trajectories by creating a tangent on the curves at the point of intersection to obtain 
the angle. This still leads to an imprecise calculation of  especially at very low 
curve angles, because the distance w/2 is computed from the tangent and not from the 
curve. Therefore, another approach was chosen, which makes use of the fact that 
from the simulation outputs the precise trajectories of both vehicles are known and 
that the distances and heading angles are available for each timestamp. The 
trajectories of both vehicles are not only represented by vectors, but by “trajectory 
bands” spanned by the respective vehicle width. This necessitates the calculation of 
laterally displaced trajectory curves parallel to each other. Additionally, the tractrix 
curve of the turning vehicle must be taken into account to calculate the size of the 
conflict hexagon. This is realized by using two trajectory bands, namely one for the 
front of the vehicle and one for the rear. 

For a situation as depicted in Figure 71, where one vehicle turns right and the other 
crosses the path from the right, the entrance and exit points of the zone are the 
intersections of the left-side trajectories of both vehicles or, vice versa, the intersection 
of the right-side trajectories. For example, the entry point for the turning vehicle is the 
intersection of its left trajectory from the front with the left trajectory of the 
approaching vehicle. Its exit point is the intersection of its right trajectory from the 
rear with the left trajectory of the approaching vehicle. The distance  is then 
determined by orthogonally projecting these points to the centre (front trajectory) line 
of the respective vehicle. In this way, the conflict hexagon is created. 

It is important to mention that the hexagon entrance and exit points are used for both 
the  and the  calculation, which is explained in Section 6.5.3.4. Both 
indicators are applied to assess the closeness of the conflicting vehicles, but the 
difference can be explained as follows: The  is a single value calculated by the 
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difference between the entrance and exit timestamps and considers braking 
manoeuvres that might have happened. In contrast, the  is a continuous value 
along the timeline and works as a virtual warning system, where the future trajectory 
is supposed to be unknown. The time until the conflict entrance ( ) and exit ( ) 
are theoretical assumptions given that the velocity of the vehicles will stay the same 
(see Eq. (29)).  

 

Figure 71: Principle of the conflict hexagon for curved trajectories 

The MATLAB code to calculate the parallel curves and the hexagon is shown below: 

v_threshold = 0.5; %Value in m/s, under which the trajectory coordinates are cropped 
  
sA_real = safetyObj.vehc_A_xCord; 
sB_real = safetyObj.vehc_B_xCord; 
posA_real_fr = [safetyObj.vehc_A_Global_xCord_front 
safetyObj.vehc_A_Global_yCord_front]; 
posA_real = [safetyObj.vehc_A_Global_xCord safetyObj.vehc_A_Global_yCord]; 
posB_real = [safetyObj.vehc_B_Global_xCord safetyObj.vehc_B_Global_yCord]; 
  
% Generate inner and outer parallels: 
vAStill = find(vA<v_threshold);  
posA_real(vAStill,:) = []; %remove samples while car is standing still  
posA_real_fr(vAStill,:) = []; %remove samples while car is standing still 
  
vBStill = find(vB<v_threshold); 
posB_real(vBStill,:) = []; %remove samples while car is standing still  
  
%Front trajectories (for A and B): 
[posAx_inner, posAy_inner, posAx_outer, posAy_outer, ~, ~, ~, ~]= ... 
parallel_curve(posA_real_fr2(:,1),posA_real_fr2(:,2),safetyObj.vehc_A_wid/2 + ... 
corrBuffer,0,0); 
[posBx_inner, posBy_inner, posBx_outer, posBy_outer, ~, ~, ~, 
~]=parallel_curve(posB_real(:,1),posB_real(:,2),safetyObj.vehc_B_wid/2 + 
corrBuffer,0,0); 
posB_inner = [posBx_inner posBy_inner]; 
posA_inner = [posAx_inner posAy_inner]; 
posB_outer = [posBx_outer posBy_outer]; 
  
%Rear trajectories (only for A, because B is going straight): 
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[posAx_innerb, posAy_innerb, posAx_outerb, posAy_outerb, ~, ~, ~, ]= ... 
parallel_curve(posA_real2(:,1),posA_real2(:,2),safetyObj.vehc_A_wid/2  + ... 
corrBuffer,0,0); 
posA_outerb = [posAx_outerb posAy_outerb]; 
  
[sA_enter, sB_enter, sA_exit, sB_exit, sA_enter_hex, sB_enter_hex] = ... 
ComputeConflictHexagon( posA_inner, posB_inner, posA_outerb, posB_outer, ... 
safetyObj.vehc_A_collIndex, safetyObj.vehc_B_collIndex, sB_real, ... 
safetyObj.vehc_B_len, vAStill, vBStill ); 
safetyObj.s_exit_A_real = sA_exit; 
safetyObj.s_exit_B_real = sB_exit; 
safetyObj.s_enter_A_real = sA_enter; 
safetyObj.s_enter_B_real = sB_enter; 
  
%% Get real entry timestamps: 
safetyObj.t_enter_A_real = safetyObj.time(safetyObj.s_enter_A_real);  
safetyObj.t_enter_B_real = safetyObj.time(safetyObj.s_enter_B_real);  
  
%% Get real exit timestamps: 
safetyObj.t_exit_A_real = safetyObj.time(safetyObj.s_exit_A_real);  
safetyObj.t_exit_B_real = safetyObj.time(safetyObj.s_exit_B_real);  

In more detail, the function for the conflict hexagon calculation was implemented as 
follows: 

function [ sA_enter, sB_enter, sA_exit, sB_exit, sA_enter_hex, sB_enter_hex ] = ... 
ComputeConflictHexagon( posA_inner, posB_inner, posA_outerb, posB_outer, ... 
collIndexA, collIndexB, sB_real, vehc_B_len, vAStill, vBStill ) 
  
if isempty(vBStill) 
    vBStill = 0; 
end 
if isempty(vAStill) 
    vAStill = 0; 
end 
  
%% Find index of hexagon entry point coordinates (intersection of the real inner 
front trajectory of A and the real inner of B): 
%in case the trajectories cross more than once: Take only the distance from the 
theoretical collision point 
if collIndexA>size(posA_inner,1) 
    collIndexA = size(posA_inner,1); 
end 
%Calculate distance: 
[~, minDistIndA, minDistIndB, ~, ~, ~, ~] = 
GetDistance(posA_inner(1:collIndexA,:),posB_inner); 
sA_enter_hex = minDistIndA(1); %Needed for plotting purposes 
sA_enter = minDistIndA(1)+length(vAStill); 
sB_exit = minDistIndB(1); 
  
%% Find index of hexagon exit point coordinates (intersection of the real inner rear 
trajectory of A and the inner of B): 
%in case the trajectories cross more than once: Take only the 
%distance around the theoretical collision point for B 
cropLenB = 3000; %crop for better performance. Adapt for other simulation data 
if cropLenB>collIndexB 
    cropLenB = collIndexB-1; 
end 
cropLenA = 5000; %crop for better performance. Adapt for other simulation data 
if cropLenA+collIndexA>size(posA_outerb,1) 
    cropLenA = size(posA_outerb,1)-collIndexA; 
end 
%Calculate distance: 
[~, minDistIndA, minDistIndB, ~, ~, ~, ~] = ... 
GetDistance(posA_outerb(collIndexA:collIndexA+cropLenA,:),posB_outer(collIndexB- ... 
cropLenB:collIndexB,:)); 
sA_exit = minDistIndA(1) + length(vAStill) + collIndexA-1; %add crop length 
sB_enter_hex = minDistIndB(1) + collIndexB-cropLenB; %Needed for plotting purposes 
%Reduce vehicle length to get actual entry point of B: 
minDistIndB = minDistIndB(1) + length(vBStill) + collIndexB-cropLenB; 
d = sB_real(minDistIndB); 
dist = abs(sB_real - (d-vehc_B_len)); 
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[~,sB_enter] = min(dist); 
  
end 
 

6.5.3.2 Time-To-Accident 

In the proposed simulation framework, the  is applied to the cases where an 
evasion action, e.g. a braking manoeuvre, was taken by either of the road users. From 
the timestamp, where a critical braking manoeuvre was detected, the  is computed 
a posteriori. In literature, this application of  is also denoted Time-To-Accident 

( ) (Hydèn, 1987). Accordingly, the  is defined as “the time that remains to an 
accident from the moment that one of the road users starts an evasive action if they 
had continued with unchanged speeds and directions” (Svensson, 1998). The  can 
be related to the conflict speed in order to define conflict severity levels, as depicted in 
Figure 72. The conflict speed is defined as the vehicle’s velocity at the moment the 
evasion action is taken. In comparison to the traditional approach with a fixed 

/  threshold, it can be seen that e.g. a  of 1.5 seconds indicates a serious 
conflict at a speed of 40 km/h, but it is considered not severe at a speed of 30 km/h. 
Hence, the detection of a conflict is velocity-dependent, which is more reliable than a 
simple threshold. 

 

Figure 72: Severity levels based on  and conflict speed (based on Hydèn, 1987) 

In MATLAB, the  is calculated as follows, taking the  values and the braking 
time (t_brakeA/B) as inputs. 

dt=1000; % Time between two samples  
%Conflict indicator based on TTA and conflict speed  
xtta_orig = 0:0.5:4.5; 
%Function based on Hyden (1987) 
yvc_orig = [0 0 17.6 34.8 48.4 61.6 73.6 84.4 95.6 105]./3.6; 
xtta = 0:0.01:xtta_orig(end); %new sampling 
yvc = interp1(xtta_orig,yvc_orig,xtta); %interpolated function 
  
%For A: 
if ~isempty(t_brakeA) 
    %do not calculate TTA if TTC is not critical 
    if ismember(t_brakeA*dt-cropBegin, find(indTTC_A)) 
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        TTA_A = TTC_A(t_brakeA*dt-cropBegin); 
        dist = abs(xtta - TTA_A); 
        [~, minIndex] = min(dist); 
        vc_threshold_A = yvc(minIndex); 
    else 
        TTA_A = []; 
        vc_threshold_A = -1; 
    end 
else 
    TTA_A = [];  
    vc_threshold_A = -1; 
end  
%For B: 
if ~isempty(t_brakeB) 
    %do not calculate TTA if TTC is not critical 
    if ismember(t_brakeB*dt-cropBegin, find(indTTC_B)) 
        TTA_B = TTC_B(t_brakeB*dt-cropBegin); 
        dist = abs(xtta - TTA_B); 
        [~, minIndex] = min(dist); 
        vc_threshold_B = yvc(minIndex); 
    else 
        TTA_B = []; 
        vc_threshold_B = -1; 
    end 
else 
    TTA_B = []; 
    vc_threshold_B = -1; 
end 

6.5.3.3 Longitudinal jerk 

When the driver model applies the brakes, it does not necessarily have to be a critical 
situation, since the driver models may decelerate when approaching an intersection. 
To distinguish critical braking events from non-critical ones, another indicator is 
applied to the proposed framework, namely the longitudinal jerk , which gives the 
derivative of the longitudinal deceleration when braking: 

	 (37)

with  as the longitudinal acceleration (negative in the case of braking) 
differentiated over time . In comparison to the deceleration rate, which can also be 
found in various papers about traffic conflict analysis, the jerk helps to better 
differentiate sudden braking manoeuvres from other decelerations, which are not 
necessarily conducted to avoid a conflict (Zaki et al., 2014). (Wåhlberg, 2000) first 
investigated the relation of the composite g-force and speed to traffic accident 
frequency, for the case of city busses. With the rise of probe vehicle data and 
naturalistic driving studies, the g-force has become a common indicator to identify 
safety-critical events. While the  does not consider evasion manoeuvres such as 
emergency brakings, the jerk is particularly used for those. The higher the negative 
jerk, the more critical is the situation. Zaki et al. (2014) found that the majority of 
vehicles at a selected intersection reacted to conflicts within a jerk range of -8 m/s³ 
and -10 m/s³. Although the relationship was found statistically not significant, vehicles 
with jerk values greater than 8 m/s³ tended to be involved in conflicts with 2 .  

A common practice to obtain a smooth jerk profile is to apply a moving average filter 
to avoid outliers in the derivative values, which might be mechanically unrealistic 
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(Bagdadi and Várhelyi, 2013; Feng et al., 2017; Zaki et al., 2014). This is realised by 
applying a second-order Savitzky-Golay filter with a 1 s time windows to the 
acceleration signal in MATLAB. The numerical differentiation of the smoothed 
acceleration signal results in the jerk profile. If this profile includes a negative jerk 
greater than a given threshold, then the braking manoeuvre is considered critical and 
a conflict is given. Based on the study by Zaki et al. (2014), a threshold value of -
8 m/s³ is chosen. The MATLAB function to calculate the jerk vector is given in the 
following: 

function [Jerk, ax_sm] = calcJerk(safetyObj, ax, vehc)  
  %Smooth ax: 
  ax_sm = sgolayfilt(ax,2,999); 
  %Differentiate smoothed ax to get the jerk: 
  Jerk = diff(ax_sm)./diff(safetyObj.time(1:end-1));  
  if vehc == ‚A‘ 
    safetyObj.vehc_A_jerk = Jerk; 
  elseif vehc == ‚B‘ 
    safetyObj.vehc_B_jerk = Jerk; 
  end 
end 

6.5.3.4 Post Encroachment Time 

As a variation to the , the Post Encroachment Time ( ) is an indicator that 
measures the temporal difference between two road users over a common spatial area 
(Archer, 2005), i.e. a conflict zone. In comparison to the , it requires transversal 
trajectories of the road users, hence it is commonly used to estimate the severity of a 
junction conflict. In its original form, it is not applicable to situations where both 
road users’ trajectories end in the same path and direction. For example, merging 
conflicts would require another indicator, such as the gap acceptance. However, the 
road users do not necessarily have to be on a collision course. The  is defined as 
the time difference between a road user 1 exiting the conflict zone and road user 2 
entering it: 

	 (38)

with  as the time when the first road user exits the conflict zone and  as the time 
when the second road user enters it. The smaller the , the higher is a potential 
conflict. Consequently, a negative value indicates that both road users are within the 
conflict zone. Figure 73 depicts the  calculation on a junction example. In 
literature, common threshold values lie between 1 s and 1.5 s (Archer, 2005). For 
example, if 10  and 12 , then the second vehicle has reached the conflict 
zone 2 seconds later than the first vehicle left it, i.e. the conflict zone was clear for 2 
seconds and the situation could therefore be considered as safe. 

There are different approaches for specifying the size of the conflict zone, which 
obviously affects the minimum  threshold. In the example in Figure 73, the zone 
size corresponds to the vehicle dimensions, which implies a smaller “safety buffer” 
than specifying the conflict zone according to the junction size. The conflict zone can 
also be set to the whole junction area, which is not recommended for large junctions, 
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or to the actual area of potential intersection, as proposed by this thesis, which 
requires the analysis of vehicle trajectories (see Section 6.5.3.1). Pirdavani et al. 
(2010) divided the junction into four equally sized areas to compute the  
separately. While commonly rectangular or squared areas are used, Killi and Vedagiri 
(2014) recommend a rhombus geometry further segmented into smaller grids. For the 
demonstration study explained in Section 6.6, it was decided to follow the conflict 
hexagon principle of the TTC calculation and to set the conflict zone according to the 
vehicle dimensions (see Section 6.5.3.1). The minimum  is set to a value of one 
second, similar to Ismail et al. (2009). 

  

Figure 73: Illustration of the  at  (left) and  (right) 

Apart from the fact that the  necessitates transversal trajectories, a common 
drawback of the  is that it does not require velocities or distances for its 
calculation. This limits the enhancement of these indicators, e.g. by different speed 
levels, and the possibility to compare the relative severity of different post 
encroachment times (Archer, 2005). The difference between  and  can be seen 
in Figure 74. It depicts a situation where vehicle 1 (blue line) and vehice 2 (grey line) 
are on a projected collision course, i.e. they are within the conflict zone at the same 
time. When vehicle 1 starts braking, the actual trajectory deviates and vehicle 1 enters 
the conflict zone after vehicle 2 has left it. This time difference is the . While the 

 gives the time until the projected arrival at the conflict zone (and equivalently, 
the  the time until the projected exit of the conflict zone), the  is based on the 
actual timestamps measured retroactively. The  is implemented as a separate 
MATLAB function as follows, taking the enter and exit timestamps for both vehicle 
class objects: 

function [PET, t2, t1] = calcPET(safetyObj) 
    %if A comes later than B, i.e. B exits the conflict zone first 
    if safetyObj.t_exit_A_real >= safetyObj.t_exit_B_real  
        t1 = safetyObj.t_exit_B_real; %B exiting with the rear 
        t2 = safetyObj.t_enter_A_real; %A entering 
    else 
        t1 = safetyObj.t_exit_A_real; %A exiting with the rear 
        t2 = safetyObj.t_enter_B_real; %B entering 
    end 
    PET = t2-t1; 
end 
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Figure 74: Illustration of ,  and  in the time-distance diagram 

6.6 Description of simulation models 

CarMaker offers a GUI to parametrise the virtual vehicle environment and to start a 
simulation. As mentioned above, a so-called test run is created manually for each 
scenery, before the simulation automation script sets up the desired parameter 
variations and executes the simulation instance. In CarMaker, a test run consists of 
the modules Vehicle, Road, Manoeuvre (driver’s tasks) and Driver, without which a 
simulation cannot be started. In addition, the user can define the modules Trailer, 
Tires, Traffic (other static or moving objects) and Environment (time and ambient 
conditions). All those modules have predefined models that can be parametrised by 
the user. The MATLAB/Simulink interface enables the user to use the signals that flow 
between the CarMaker models, either to read them for further calculations or to 
modify them. The following sections describe the CarMaker modules used for the 
proposed simulation framework (IPG Automotive, 2017). 

6.6.1 Road environment modelling 

The CarMaker Road module is a software library that defines the static road 
environment. The library can be used to build a road network that consists of several 
nodes connected by links, which can be further broken down into lane sections. A 
lane section can include several lanes. A brief definition of the different terms used in 
CarMaker is given in Table 25.  

Besides the basic elements listed in the table, additional obstacles can be added such as 
bumps, beams, curbs or freely configurable pavement overlays. An interesting element 
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to mention is the friction parameter, which can be set for a specific link. A change of 
friction can be realised by adding another link or by adding friction patches, e.g. to 
simulate worn pavement sections or aquaplaning.  

Table 25: Terminology of the Road module in CarMaker 

Name Description 

Link Section of the road network, started and terminated by a node 

Junction Road element to smoothly join different links (up to 8) 

Lane section Longitudinal section of a link with a constant number of lanes 

Lane Lateral section of a lane section (up to 10), for which the lane width and the type 
(driving lane, road border, roadside, bicycle lane, pedestrian path, traffic island, 
parking area, bus lane, HOV lane or emergency lane) can be defined individually. 

Elevation profile Profile changes in lateral and longitudinal direction 

Reference line Road curvature, i.e. theoretical course along a specific link 

Route Reference line defining the course of the vehicle travelling along consecutive links (the 
route equals the reference line of the respective link) 

Path Actual course of the vehicle travelling on the road, taking into account corner cutting 
and driving on a specific lane 

 

Accessories that can be added to a road include road markings, road paintings in the 
form of texture files, traffic signs, traffic signals, traffic barriers and guideposts. 
Additional scenery attributes are bridges, tunnels, roadside signs, trees and bushes as 
well as different geometry objects such as houses, street furniture, animals and people. 

CarMaker provides a GUI called Scenario Editor7 that allows the user to drag and 
drop road elements and to modify their parameters. Road sceneries created with the 
Scenario editor are stored as part of the test run, but can also be exported as 
individual files in the format “.rd5”. Figure 75 depicts a screenshot of the Scenario 
Editor. While the left tab provides all the tools to build a road by adding road 
attributes, the right tab is used to parametrise different aspects of a selected road 
attribute.  

As part of the road configuration, the start positions of the vehicles can be specified, 
along with their longitudinal and lateral offset, their orientation and their route. 
However, detailed manoeuvres are defined in the Manoeuvre module, as the following 
section explains. 

                                                 
7 The term Scenario Editor might be misleading at this point, since this thesis defines a scenario as the 
movements of dynamic traffic objects within a scenery. Strictly speaking, it could be called a Scenery 
Editor. 
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Figure 75: Screenshot of CarMaker’s Scenario Editor 

6.6.2 Manoeuvre modelling 

In order to build a driving scenario, the user has to add and parametrise manoeuvres 
in CarMaker. A manoeuvre can consist of (1) longitudinal dynamics actions such as 
accelerating, braking or gear shifting, (2) lateral dynamics action such as steering and 
(3) additional actions defined by a list of special mini-manoeuvre commands using a 
script language. A manoeuvre may include several manoeuvre steps, each of which 
consists of a duration and a description of the driver’s task. Each manoeuvre step 
must have an end condition, which can either be the time when the duration is 
reached, a distance covered or other user-defined end conditions. An alternative way 
to end a manoeuvre is to add a road marker at a given point on the road, which 
triggers the end of the current manoeuvre step. 

The longitudinal manoeuvres can be specified in different ways. To accelerate and 
brake the vehicle according to its dynamic limits, the option IPGDriver is the default 
and recommended way (see Section 6.6.5). However, another option is to import real-
world vehicle speed measurements to obtain a speed profile that the driver model 
must follow. Contrary to the IPGDriver module, a simple speed controller can be 
specified, which accelerates to or keep the desired speed, but cannot brake the vehicle. 
Alternatively, the position of the pedals (clutch, gas, brake) can be controlled 
manually along with the gear. 

Also for the lateral manoeuvres, the IPGDriver module can be used to steer the vehicle 
according to its dynamics limits. There are alternative options such as a sinusoid input 
to the steering wheel or a manual change of the steering angle, which are however not 
applied to this study.  
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6.6.3 Vehicle modelling 

CarMaker’s Vehicle Data Set library provides detailed parametrisation of the ego 
vehicle, ranging from vehicle body characteristics to vehicle components such as 
engine, suspension, steering, tires, brakes or powertrain. Sensors are also part of the 
library, but are explained separately in the following section. If a real reference vehicle 
was available, the library would allow to create a validated virtual vehicle that 
replicates the real vehicle’s behaviour to a great extent. If the user does not have 
access to such detailed information about the vehicle or if the test does not require a 
validated virtual vehicle, the Vehicle Data Set Generator can be used. This was done 
for this study. It creates an entire vehicle data set based on limited information, e.g. 
vehicle class, driving axle, vehicle dimensions and weight (see Figure 76 left). 
Additional settings include simple steering, engine, transmission, suspension and 
aerodynamics parameters as given in Figure 76 (right).  

  

Figure 76: Screenshots of the basic (left) and advanced (right) parameters in CarMaker’s Vehicle Data Set 
Generator 

To understand the vehicle modelling, CarMaker’s coordinate axis system (called 
frames) is essential to know. The software uses different axes depending on which 
object of the vehicle is specified. Figure 77 depicts that the virtual world coordinate 
frame is named Fr0, while Fr1 denotes the frame of moving objects within the virtual 
world. The frame Fr1 performs all movements of the object such as translations and 
rotations. Note that X points in forward driving direction, Y points to the left and Z 
is directed upwards. The origin O of the vehicle frame is located at the rear of the 
vehicle on the ground, and no part of the outer skin of the object is situated behind 
the (O-Y-Z)-plane. This is important to know when evaluating safety parameters such 
as  or . For every wheel, there is a mounting point Mnt located within the Fr1 
frame, which is the origin of the frame Fr2 and hence the centre of the wheel. Again, 
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X points towards the driving direction, Y points to the left of the wheel spin axis and 
Z is directed upwards. 

 

Figure 77: CarMaker’s coordinate systems (IPG Automotive, 2017) 

In the presented study, the default values created by the Vehicle Data Set Generator 
were sufficient to evaluate automated driving functionality. The basic vehicle 
parameters were set in a way to replicate a Tesla Model S for demonstration purposes 
(see Section 6.8.3.1). The most important parameters are related to the environment 
sensors, which are described in the following section. 

6.6.4 Vehicle sensor modelling 

In CarMaker, several vehicle sensors can be placed on the car to replicate safety 
systems and environment perception for ADAS. Table 26 gives an overview on the 
sensor models available in CarMaker, which can be distinguished into three groups of 
physical models. 

First, ideal models replicate sensors for rapid prototyping or proof of concept that 
provide ground truth information concerning environment and object detection. They 
deliver a list of objects detected including all relevant information needed from those 
objects such as type, position, velocity and size. 

Second, the high-fidelity sensors are useful for more advanced function development 
and testing. They replicate the physical boundaries and effects that real-world sensors 
encounter, such as reduced propagation, multi-path effects or erroneous signals. 
Currently, CarMaker provides high-fidelity sensors for radar and GNSS. Similar to 
the ideal sensors, they deliver an object list, but this might vary depending on the 
sensor characteristics. 

Third, the raw signal interface sensors provide raw signals, such as the output of a 
video camera, instead of an object list. This allows the development and testing of 
signal processing and object tracking algorithms. 
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Table 26: Overview of CarMaker sensor models 

Application Physical model Sensor name Description 

Vehicle 
dynamics 

Ideal Slip Angle Sensor Measures a vehicle’s side slip angle 
Ideal Inertial Sensor Measures inertial body movements such as 

velocity, acceleration and rotation 

ADAS Ideal Object Sensor Detects traffic objects and gives information 
Ideal Free Space Sensor Detects free and occupied spaces between 

traffic objects, equivalent to stereo video 
Ideal Free Space Sensor Plus Detects free and occupied spaces in the whole 

environment 
Ideal Traffic Sign Sensor Detects traffic signs along the road 
Ideal Line Sensor* Detects road markings such as lanes as well as 

guard rails, barriers etc. 
Ideal Road Sensor Provides road information as electronic 

horizon 
Ideal Collision Sensor Detects contacts of the test car with other 

traffic objects 
High Fidelity Radar Sensor Detects traffic objects based on the signal-to-

noise ratio by a realistic radar replication 
High Fidelity Global Navigation 

Sensor 
Simulates GNSS satellites and their visibility 
for the vehicle receiver  

Raw Signal Interface Camera RSI Camera sensor providing picture information 
using IPGMovie 

 

For this study, the vehicle dynamics sensors are disregarded and a selection of ADAS 
sensors is used, namely various object sensors, which are further explained in the 
following paragraphs. Those sensors were placed on the vehicle model in a way to 
replicate the sensing system of a Tesla Model S (see Section 6.8.3.1). 

An object sensor works as an ideal sensor that detects all traffic objects within its 
range and field of view. The free space sensor is an extended module to the object 
sensor, as its sensor beams are subdivided into horizontal and vertical segments to 
scan the environment. Similar to the object sensor, the range and angle of view can be 
configured to mimic e.g. stereo-video or LIDAR sensors and the number of segments 
can be specified according to the desired level of resolution. Each segment of the free 
space sensor detects the nearest point of the surrounding traffic objects and delivers 
the detected objects’ coordinates, approaching velocity and relative distance to the ego 
vehicle. Figure 78 (left) shows the GUI to set up the free space sensors, while Figure 
78 (right) visualises the segment-based detection with green segments to highlight 
detected objects and grey segments to show the range of the sensor. 

With CarMaker’s new release version 6, the so-called Free Space Sensor Plus was 
made available for purchase, which is a high-fidelity sensor and further subdivides 
each segment into horizontal and vertical rays. Unlike the free space sensor, this 
sensor cannot only detect traffic objects, but all objects of the environment within the 
specified range and field of view. It thus represents a more realistic physical sensor 
model where the complete 3D environment can be reconstructed, similar to LIDAR. 
Due to the increased computational requirements, this sensor is calculated using the 
GPU. However, in the current release, the Free Space Sensor Plus can only be used in 
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the CarMaker’s standalone GUI, but not in the Simulink environment. That is why 
this study uses the conventional object sensors instead, because the framework is 
based on Simulink. 

Figure 78: CarMaker’s free-space sensor (left: GUI for sensor parametrization, right: visualization of 
segments) (IPG Automotive, 2017) 

The traffic sign sensor is used to detect pre-defined traffic signs (as road accessory) 
within its range and field of view. It outputs the total number of detected signs, the 
distance to each detected sign, the traffic sign type as well as the attribute values such 
as the speed limit. It verifies if the signs are facing to the sensor and sorts all detected 
signs by ascending distance. The traffic sign sensor can be used to influence the driver 
model behaviour, e.g. by placing a stop sign or reducing the speed limit. 

The line sensor detects road markings and traffic barriers within its range and acts 
like an idealised camera. The sensor delivers all markings and barriers with ascending 
lateral distance to a specified point in the vehicle frame. Besides the lateral distance, 
the sensor provides the colour code, type, width and height of the detected marking or 
barrier. The line sensor adapts to the route the vehicle is supposed to take. Figure 79 
depicts how the line sensor visualises its detection results (left) and in which way the 
sensor works (right). It creates a shape with seven points on the road (orange shape), 
which is determined by the intersecting plane of the road surface with five vertical and 
three horizontal areas. Within this shape, the road markings and barriers are detected. 

  

Figure 79: Illustration of CarMaker’s line sensor (IPG Automotive, 2017) 
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The collision sensor simply detects if the ego vehicle body or wheels gets in contact to 
another traffic object. Therefore, a cuboid or a user-defined contour defines the 
vehicles’ envelope. The sensor then returns a counter for the number of detected 
collisions of the vehicle body or the wheels. 

The radar sensor is implemented as a high-fidelity sensor, which means that it is able 
to consider occlusion effects and propagation losses. The object detection is affected 
by signal propagation latency and noise, but also by the radar cross sections defined 
for each object, which depends on the direction of incidence, statistical fluctuations, 
object occlusion and merging of objects (see example in Figure 80). Similar to real 
radar, an object is detected, if the signal-to-noise ratio exceeds a certain threshold. 
CarMaker provides a detailed GUI for modifying the characteristics of the antenna 
(gain map) to imitate specific radar sensor systems. Ultimately, the radar sensor model 
delivers the position, velocity, acceleration and relative course angle of detected 
objects, along with the objects’ dynamics mode (standing, stopped, moving or 
oncoming), dimensions and probability of existence as well as a probability of the 
object being an obstacle on the path of the ego vehicle. Besides, the detected object ID 
is provided as a ground truth information.  

 

Figure 80: Example of a radar cross section (left: top view, right: side view) (IPG Automotive, 2017) 

6.6.5 Driving behaviour modelling 

A requirement for the driver model is that it behaves similar to a human in terms of 
acceleration, deceleration, steering and distance keeping. Researchers argue that it 
would increase the acceptability of assisted and automated driving functions if they 
behave human-like (Bifulco et al., 2008). The IPG Driver module enables the 
replication of realistic driving behaviour of the ego car. It consists of a controller for 
following a course and a speed controller on a given track, including the following 
actions: 

 Choice of course within lane boundaries 
 Choice of driving speed according to the course and vehicle behaviour 
 Influence on speed by gas and brake pedal as well as by clutch operation and 

gear shifting 
 Steering to stay within the lane boundaries 
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In the initialisation phase, i.e. before the simulation starts, the driver model calculates 
a static desired course and speed profile along the predefined road. This initial 
calculation allows that all marginal requirements, which are independent of the 
vehicle dynamics, are computed in advance. The course is determined by a spline 
approximation using the road lane information and the so-called corner cutting 
coefficient ccc (see Figure 81). The corner cutting is calculated by an optimisation 
algorithm that adapts the weights of the spline approximation. A corner cutting 
coefficient of one means that the total lane width is used to drive the curve 
considering the vehicle width, while a value of zero follows precisely the lane centre, 
i.e. the given course in the road model, which may not reflect realistic driving 
behaviour. 

The second initialization step is the calculation of the static speed along the computed 
course, which can be seen as the intended velocity the longitudinal control model aims 
to maintain. Therefore, a kinematics model takes the cruising speed as well as the 
maximum lateral and longitudinal accelerations as input to determine a speed profile 
along the entire distance of the ego vehicle path.  

 

Figure 81: Principle of the corner cutting coefficient (IPG Automotive, 2017) 

The desired static course and speed from the initialisation phase, along with the 
vehicle state (current vehicle motion including velocity, accelerations, side slip angle 
etc.) and the steering wheel torque, are the inputs for the driver model during the 
simulation phase. The output comprises the pedal positions (gas/brake/clutch), the 
gear shifter position and the steering wheel angle. The actions during the simulation 
can be grouped into steering and influence on speed (see Figure 82).  

The steering control continuously recognises the motion and vehicle dynamics of the 
ego car and predicts the future course, which might deviate from the desired course 
computed in the initialisation phase. The distance, for which the future course is 
predicted, depends on the preview time, which is continuously adjusted according to 
the current vehicle dynamics. If the deviation between the predicted and the desired 
course exceeds a certain threshold, the driver model interferes by changing the steering 
behaviour. Besides the threshold, an important parameter for this steering action is 
the reaction time, which delays the model interference. 
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The controller to influence speed initially starts with desired speed that is suitable for 
the course and then continuously compares it to the actual speed. By doing so, the 
desired longitudinal acceleration or deceleration is determined, based on preset 
parameters such as the maximum longitudinal acceleration and deceleration. User-
defined values to specify the dynamic behaviour of the controller include a tolerated 
speed deviation, reaction time, time to change pedals as well as a prognosis time, 
which is equivalent to the preview time of the steering controller. The controller 
outputs are the brake pedal force and the position of the accelerator pedal. 

Steering 

 

Influencing speed 

Figure 82: CarMaker’s driver module to steering (left) influencing speed (right) (IPG Automotive, 2017) 

6.6.6 Traffic modelling 

Traffic as it is defined in CarMaker includes all stationary or movable objects other 
than the ego car. Movable traffic objects constitute the dynamic part of the test run, 
which can be parametrised to influence the simulation, e.g. parking vehicles, vehicles 
that change the driving lane, car that coincide at a junction, bicycle riders or 
pedestrians and animals. Stationary objects include e.g. residential or office buildings. 
Traffic objects are three-dimensional bodies that can have a certain geometry 
performing closed loop or open loop8 driving manoeuvres. They can be used to test a 
driver’s reaction or for ADAS validation, since the ego vehicle’s sensors are able to 
detect traffic objects. The main difference of a movable traffic object to the ego vehicle 

                                                 
8 An open-loop (feedforward) controller is independent of the process output, while a closed-loop 
(feedback) controller returns the output to control states of a dynamical system.  
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is that the vehicle dynamics are not calculated, i.e. they constitute much simpler 
vehicle models.  

Basically, a traffic object’s motion can be parametrised in two ways: 1) By defining 
manoeuvres in CarMaker including longitudinal and lateral movements or 2) by 
defining free motion, i.e. from external sources such as positioning data from real-
world measurements. The longitudinal or lateral motion of a manoeuvre can be 
specified in several ways, e.g. by simply predefining a velocity or acceleration curve or 
by defining path points, which the traffic object must follow. In the demonstration 
experiment explained in Section 6.8, the opponent vehicle is modelled as traffic object 
with a predefined route and manoeuvre, which crosses the path of the ego vehicle. To 
this end, the option “Autonomous Driving” was chosen, which might lead to 
confusion given the context of the study. Actually, the traffic objects are supposed to 
be operated by human drivers, while the ego vehicle imitates an automated car. The 
option “Autonomous Driving” as function of CarMaker traffic objects models a 
realistic driving behaviour based on parameters such as maximum velocity, 
acceleration and deceleration or distance keeping characteristics for the ACC model 
(see Figure 83). 

 

Figure 83: CarMaker’s Autonomous Driving parameters for traffic objects 

6.6.7 CarMaker/Simulink interface 

The presented simulation framework uses the MATLAB/Simulink interface as a layer 
over CarMaker, to read and modify the signals that flow between the CarMaker 
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models. This is necessary to build new controllers, e.g. the crossing and turning 
assistant or a smooth deceleration to the junction stop line.  

The features of CarMaker are implemented into the Simulink environment using an S-
function and the API functions that are provided by Matlab/Simulink. The CarMaker 
blocks are connected the same way as other Simulink blocks and existing Simulink 
models can be added to the CarMaker vehicle model. However, using the Simulink 
interface decreases the simulation performance in comparison to the standalone 
CarMaker software.  

The CarMaker for Simulink simulation model consists of a subsystem containing a 
chain of individual blocks (see Figure 84). When Simulink executes CarMaker, all 
blocks of the CarMaker blockchain must be executed exactly once and in order. In 
order to replace existing CarMaker functionalities, the best way is to override signals 
transferred between the blocks. The blocks consist of a driving manoeuvre, vehicle 
control and vehicle model, which can be modified. The block, which is further 
modified for this study is the vehicle control model. Other functionalities of 
CarMaker, such as the configuration of traffic objects or sensors are included in the 
CarMaker simulation library and can be added when needed. The Simulink 
controllers for the intersection collision avoidance function are explained in the 
following sections. 

 

Figure 84: General structure of CarMaker in Simulink  

6.6.8 Collision avoidance modelling 

Avoiding collisions with other road users is one of the main tasks of an automated 
driving system. For an intersection situation, the vehicle must be able to predict and 
avoid potential collisions for a variety of scenarios (see Section 2.4) such as head-on, 
rear-end, turning or right-angle collisions, referred to as ICAMS in this thesis (see 
Section 2.4). The proposed simulation and evaluation framework uses two collision 
avoidance models, which are compared to each other: 

1. Forward collision avoidance (FCA), based on forward-facing vehicle sensors, 
also known as automated emergency brake, to sense other road users in front 
of the vehicle and to avoid collisions by evasion actions. 

2. Crossing and turning assistance, based on both forward and sideward-looking 
sensors, designed to find a safe gap to cross or turn and to avoid side and 
angle collisions. 
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6.6.8.1 Forward collision avoidance 

The forward collision avoidance model is predefined as Autonomous Emergency 

Braking (AEB) in the CarMaker vehicle control. Its task is to decelerate the vehicle to 
avoid a crash with the target object ahead. For this, the system compares the TTC 
with a time-threshold-brake to decide if a braking intervention is required. For a 
stationary or very slow-moving vehicle, the TTC is simply calculated as in Eq. (27). 
For a non-stationary target object, the formula is extended to: 

2 ∙ ∙
	

(39)

with  as the relative distance,  as the relative velocity and  as the relative 
deceleration between ego car and target object. 

The time-threshold-brake for a non-stationary target object is 

∙
∙

2 ∙
	 (40)

with  as the brake loss time,  as the maximum allowed deceleration of the ego 
vehicle and  as the actual target object deceleration detected by the ego car 
sensors. If , the AEB system activates a braking manoeuvre by setting 

 as target deceleration for the controller.  

It must be noted that this AEB controller was designed to avoid forward collisions, 
primarily in rear-end situations. For the case of crossing and turning collisions, this 
system is assumed to have significant limitations. Therefore, it is compared to a 
crossing and turning assistant, which is explained in the following section. 

6.6.8.2 Crossing and turning assistance 

Collisions while crossing and turning are a relevant type of accidents at junctions, 
which pose a particular challenge for automated vehicles. To avoid those collisions, a 
crossing and turning assistant must detect approaching road users, predict their speeds 
and decide whether a safe turning or crossing manoeuvre can be made. There are 
several types of collisions that the assistant must avoid (see collision code sheet in 
Appendix B), such as: 

 H: Crossing (no turns) 
 J: Crossing (vehicle turning) 
 K: Merging 
 L: Right turn against 
 N: Pedestrians crossing 

The demonstration experiment explained in Chapter 6.6 includes the simulation of a 
crossing situation, where the ego car is waiting to turn right (type J). It waits for an 
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appropriate gap between the crossing traffic, which in this case will be only one other 
opponent vehicle. Hence, a model to assist the ego car in finding a safe gap was 
developed as MATLAB/Simulink controller, which is illustrated in Figure 85. Similar 
to the work published by Dabbour and Easa (2014), it necessitates four apriori 
indicators (see Table 23): 

 Time-To-Intersection ( ) 
 Time-To-Disappear ( ) 
 Time-To-React ( ) 
 Gap acceptance time ( ) 

 

Figure 85: Illustration of the crossing and turning assistant model for collision type J “Crossing (vehicle 
turning)” 

The  is a continuous metric and is defined as the estimated time a vehicle needs to 
reach the conflict zone, assuming that it does not change speed and direction of travel. 
The  equals the , if both vehicles are on a collision course and the conflict zone 
is based on the vehicle dimensions (see Section 6.5.3.1).  

The  is defined as the estimated remaining time a vehicle needs to exit the conflict 
zone, also assuming constant speed and direction. For the given case, the  is the 
time vehicle 1 needs to cross the trajectory of vehicle 2 in order to make the turn. 

The  is the reaction time the vehicle needs before the turning manoeuvre is 
performed. In comparison to human drivers, automated driving systems will have a 
much faster reaction time, which basically comprises the duration of electrical signal 
transmission and mechanical acceleration. 

The  is the accepted time for a gap, i.e. an appropriate gap that does not make the 
car passengers feel uncomfortable or inpatient. As previously stated, the vehicle 
should behave as human-like as possible. Therefore, a gap acceptance time of 
1 second is assumed, which equals the  threshold defined in Section 6.5.3.4. This 
means that the time between one car leaving the conflict zone and the other one 
arriving at the conflict zone should be at least one second.  

Ultimately, the model results in one of the two output states “remain waiting” or 
“turn”, which are calculated as: 
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,			 	
,			 	 	 (41)

As soon as the ego vehicle has reached the intersection and stopped to observe 
crossing traffic, Equation (41) is calculated at each timestamp. The initial state of this 
model is always “remain waiting”. Obviously, Equation (41) only applies if the 
vehicle sensors have detected a vehicle within their range. Otherwise  could not be 
estimated. If there is no vehicle detected, the state changes from “remain waiting” to 
“turn”. 

From the moment the vehicle starts the turning manoeuvre, the crossing and turning 
assistant has done its job and the forward collision avoidance model becomes active 
again. Depending on the sensor range and angle coverage, the assistant will result in 
varying safe gap estimations. For example at very high speeds, the opponent vehicle 
might enter the sensor range when the vehicle has already entered the intersection 
(conflict zone), which may result in a critical situation. Note that the sensor coverage 
(grey area) in Figure 85 is illustrative. In the demonstration experiment, the sensor 
coverage is a varying simulation parameter in order to evaluate the safety performance 
differences between a forward-looking sensor system and an additional sideward-
looking sensor system. 

The crossing and turning assistant was implemented in MATLAB/Simulink by 
creating several modelling blocks: 

1. The overall assistant input/output model, which takes the brake and gas pedal 
position as input and feeds them back to the vehicle control according to the 
assistant’s output (see Figure 86).  

2. The crossing and turning assistant block to control the manoeuvre for 
approaching the junction and or setting the actions according to the decision 
whether to remain waiting or to start accelerating (see Figure 87). 

3. A block to decide whether to remain waiting or to start accelerating (see 
Figure 88), depending on the safe gap calculation. 

4. A block to identify if there is a vehicle approaching (see Figure 89). 

5. A block to calculate a safe gap to turn, according to Eq. (41) (see Figure 90) 

As depicted in Figure 87, the crossing and turning assistant (2) is based on the input 
from the different object sensors mounted on the ego car. More precisely, a Boolean 
whether the respective object sensor identified the opponent vehicle or not is taken as 
input for the junction entrance decision block (3), which decides if the junction can be 
entered or not. Furthermore, this block controls the junction approach by calculating 
the optimal deceleration to stop smoothly before the junction. 
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Figure 86: Simulink inputs and outputs for the crossing and turning assistant 

 

Figure 87: Simulink block for approaching the junction 

The junction entrance decision block (3) is shown in Figure 88. The object sensor 
signals are transferred to the object detection block (4), which issues a warning if an 
object is within the range of the sensor. This warning is fed into the safe gap 

calculation block (5), which outputs a 1 if there is a safe gap and a 0 if the vehicle has 
to remain waiting. 

(1) 

(2) 

(3) 
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Figure 88: Junction entrance decision block in Simulink for the decision to enter the junction 

Figure 89 depicts the object detection block (4), which issues a warning if one of the 
sensors has detected an object within its range and if the detection is activated for this 
run. As explained later in Section 6.8.4, one of the varying parameters for the 
simulations is the sensor detection probability. This probability is implemented by 
setting either 0 or 1 for the sensor activation of each run, randomly distributed among 
all runs according to the overall probability defined. 

 

Figure 89: Object detection block in Simulink for identifying if there is an object within the range 

Eq. (41) is then applied in the safe gap calculation block (5), as shown in Figure 90. 
First, the  of the opponent is computed by dividing its current distance to conflict 
by its current velocity. The distance to the conflict equals the conflict zone entrance 
point, which varies depending on the size of the conflict hexagon that is spanned by 
the projected impact angle and the vehicle dimensions. If 1 , 
then the block outputs a 1, which triggers the ego car model to accelerate and turn. 
The  was set to a very low value of 0.01 seconds to correspond to the reaction 
time setting of the ego car’s driving behaviour model defined later in Table 31. 

(3) 

(4) (5) 

(4) 
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Figure 90: Safe gap calculation block in Simulink for calculating a safe gap to turn 

6.7 Monte Carlo sampling 

The proposed simulation and evaluation framework is designed to process a 
multidimensional input space consisting of varying parameters for the road 
configuration, driving scenario including vehicles and their sensors as well as driving 
behaviour. Each of those model inputs has a certain probability distribution, e.g. the 
velocity of vehicles might be normally distributed around the speed limit, while other 
variables might follow a uniform distribution. The basic tasks of the framework are 
(1) to generate samples from the given input distributions, (2) to run simulations for 
each set of the samples and (3) to perform statistical analyses on the simulation output 
values (see Figure 91). 

 

Figure 91: Principle of the Monte Carlo approach within the simulation framework 

To this end, the framework applies a derivative of the Monte Carlo method 
(Metropolis and Ulam, 1949), which samples values from the input range using a 
(pseudo-)random number generator and then performs a large number of 
computations. The accuracy of the Monte Carlo method’s output depends on the 
number of inputs used, because it approximates solutions to quantitative problems 
through statistical sampling. Hence, the exact solution would be found for an infinite 
number of samples. More precisely, the Monte Carlo method involves two 
computational steps: 

1. Generate random variable samples , , … ,  that are uniformly 
distributed between 0 and 1 

2. Transform the samples of the uniform variable  into a random variable  
that follows the given distribution , as given by 

(5) 
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, 1,2, … , 	 (42)

where  is the inverse of the cumulative distribution function of  and  is the 
number of samples.  

The Monte Carlo method is usually applied for computationally inexpensive models, 
because there are a high number of samples necessary to obtain satisfactory results. 
The approach results in much lower confidence bounds when the sample size is 
reduced. To cope with this problem, the framework uses a derivative of the Monte 
Carlo method called Latin Hypercube Sampling (LHS, McKay et al., 1979), which 
divides the cumulative probability curve into equal intervals on the scale and samples 
a random value from each interval of the input distribution (see Figure 92). Each 
output sample is constrained to match the input distribution very closely, which is 
why LHS is commonly used to reduce the number of runs in a Monte Carlo 
simulation. It takes even unlikely extremities into account as it is often desired. The 
number of segments equals the number of samples, i.e. a computation with 200 
samples would split the probability range into 200 segments, each representing 
0.5 percent of the total distribution. Figure 92 (left) illustrates the difference between 
the traditional Monte Carlo method and LHS and shows that the same number of 
samples might be distributed more irregularly. 

 

Figure 92: Difference between Latin Hypercube Sampling and Monte Carlo Sampling 

The word Latin Hypercube stems from the Latin Square principle, which is defined as 
a square grid containing sample positions with strictly one sample in each row and 
each column (see Figure 92 right). Since the Latin Square represents two-dimensional 
input, the Latin Hypercube is the generalisation of this concept to a higher number of 
dimensions with each sample being the only one in its hyperplane segment. This 
means that LHS requires the knowledge about the position of the previously 
generated sample points, while the traditional Monte Carlo method is memoryless, as 
Figure 92 (right) depicts. In the demonstration experiment explained in the next 
section, LHS is applied to a three-dimensional input space (see Table 35), which 
includes the velocity and lateral position of the opponent vehicle as well as the surface 
friction. The sampling approach ensures that the input probability distributions are 
maintained and that the resulting simulation outputs are considered representative in 
this respect. By varying those three inputs, the ego vehicle is exposed to a large 
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amount of different situations that combined will lead to conclusions about the 
collision risk and near-miss risk for the system under test. 

6.8 Demonstration experiment 

This chapter deals with the simulation experiment to demonstrate the applicability 
and versatility of the simulation and evaluation framework. A particular hypothesis is 
tested, which is explained in Section 6.8.1. This is followed by a description of the 
junction scenery (Section 6.8.2) and the collision scenario (Section 6.8.3) chosen for 
the demonstration. Section 6.8.4 gives a summary of all varying parameters, before 
the results for those particular variations are presented. Note that the real-world 
junction used for the demonstration is located in the UK and therefore, the 
simulations were done for left-hand driving and the speed limits are given in miles per 
hour. 

6.8.1 Hypothesis to be tested 

The advantage of the proposed simulation framework is that its modular architecture 
allows a number of different test objectives, e.g. to compare different vehicle sensor 
systems, evaluate varying intersection designs or assess the impacts of different driving 
behaviour models. For the demonstration, it was chosen to focus on the comparison 
of two different in-vehicle sensor systems with respect to their crash avoidance 
capabilities. In particular, a right-turn manoeuvre by an automated vehicle at a non-
signalised T-junction is evaluated, where another vehicle is crossing from the right 
with the right of way. Against this background, the following hypothesis can be 
stated, which will be tested in the demonstration experiment: 

A forward collision avoidance system is not sufficiently safe to avoid collisions with 
crossing traffic and therefore needs additional crossing and turning assistance. 

This leads to the following test objectives: 

1. Define a junction scenery that fits the test requirements (see Section 6.8.2). 

2. Identify an appropriate collision scenario for the given test experiment (right 
turn, vehicle crossing) and junction scenery, based on the results of the 
association rule study (see Section 6.8.3). 

3. Simulate the scenario with a representative combination of selected parameter 
variations (see Section 6.8.4). 

4. Evaluate the collision and conflict probabilities for all simulation runs based 
on the safety indicators (see Section 6.9). 

6.8.2 Scenery description and parameters 

The demonstration experiment comprises a certain junction environment 
reconstructed from a real-world example, denoted as scenery. Instead of modelling an 
artificial, virtual road scenery, a real-world junction in the East Midlands, UK, was 
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chosen to showcase the method for a practical example. This had the advantage that 
the environment parameters such as lane and shoulder widths, position of roadside 
elements, gradients, i.e. parameters that may not be directly derived from the crash 
clusters, were taken from an on-site inspection. Furthermore, taking a real-world 
scenery for the simulation experiment demonstrates the use of the framework for road 
operators and authorities to evaluate particular junctions in their network. This 
particular junction was selected after reviewing numerous potential sites around the 
Loughborough University campus, because 1) it is non-signalised, which is considered 
as a risk factor for ADS when testing crossing and turning assistance systems, 2) the 
sight distance is limited due to obstructing bushes, trees and a fence, 3) the junction 
angle is not orthogonal and both paths have one lane in each direction with relatively 
narrow widths, and 4) it is a hilly environment with slopes and chances of glare by the 
afternoon sun.  

This approach is different from traditional crash simulation studies, where real-world 
road locations are reconstructed case-by-case from a crash sample of the underlying 
accident database and the effectiveness or crash avoidance rates of safety interventions 
is studied (Brunner et al., 2003; Canu et al., 2016; Cliff and Moser, 2001; Helmer, 
2014; Sander, 2017; Sander and Lubbe, 2018). Commonly, those studies use a crash 
reconstruction tool such as the software PC-Crash. In this thesis, the virtual junction 
is not included in the OTS samples, because the crash samples are not evaluated case 
by case. Instead, generalised abstract scenarios are obtained from clustering and 
further specified by association rules. More concrete, less abstract scenarios are then 
produced by parametric variation using the LHS method. In other words, a large 
number of artificial critical scenarios are evaluated instead of accident scenarios that 
really happened. In this way, more parametric variation can be implied than by using 
a limited crash population. 

Figure 93 shows four pictures of the environment, which is a rural T-junction 
(without any traffic islands or dualling features) with 40 mph speed limit, with a 
minor road terminated by a major road. There is no shoulder, neither on the major 
nor on the minor road. A pedestrian footpath can be seen between the major road and 
the houses as well as on the nearside of the minor road. The existing road markings 
are slightly worn but still well visible. The yield instructions are indicated by a give-
way sign and a road marking before the stop line.  

Table 27 lists all simulation parameters necessary to build up the virtual scenery. The 
first column gives the name of the parameter and the second column tells whether the 
parameter is kept static or variable. According to the chosen scenario, A and B are 
allocated to a certain path of the scenery (see Section 6.8.3). The third column gives 
the actual parameter values used for the simulations. It can be seen that only one 
parameter is set to variable (shaded in light blue), namely the surface friction for wet 
conditions. This is a criticality factor that affects the modelling of the scenery.  
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Figure 93: Example junction selected for the demonstration experiment (Source: Google Street View) 

Not all of the parameter values could be derived from the accident dataset, because 
they were not available in the final selection of variables. This is the number of lanes, 
the lane width, the existence of a shoulder, the junction angle and information about 
existing road markings. Therefore, those values have to be assumed. All other 
parameters were taken from the description of a selected scenario as result of study 2, 
which is explained in the next section. The virtual representation of the selected 
scenery in CarMaker is depicted in Figure 94. 

Table 27: Simulation parameter setup related to the scenery 

Road Scenery Parameters Static/Var. Values 

Area static Rural 

Carriageway type in path of A and B static Single carriageway in both paths 

Number of lanes in path A and B* static 1 lane in both paths 

Lane width in path of A* static 2.7 m 

Lane width in path of B* static 2.7 m 

Roadside in path of A* static Nearside: Pedestr. sidewalk, Offside: No shoulder 

Roadside in path of B* static Nearside: No shoulder, Offside: Pedestr. sidewalk 

Road markings available at junction* static Yes 

Speed limit at the path of A static 40 mph 

Speed limit at the path of B static 40 mph 

Junction shape from A’s path static T: minor road terminated by a major road 

Junction angle* static 80 degrees 

Junction type static Simple T-junction without island or dualling 

Traffic control for path of A static Give-way sign 

Horiz. geometry static Straight 

Light conditions static Daylight 

Surface friction coefficient variable Wet conditions, uniform distribution from 0.3 to 0.9 

* Parameter value that is not available from the selected accident data set and has therefore to be 
assumed. 

Top view Approach from the minor road 

Illustration of the simple T junction Approach from the major road (right) 
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Figure 94: Virtual reconstruction of the selected junction scenery in CarMaker 

6.8.3 Scenario description and parameters 

The collision scenario selected for the abovementioned scenery is T-10.2 (see 
Section 5.4.3.1), where car B is simulated as automated vehicle and A as human-
operated car:  

“Car A is going straight on a major road and hits another car B, which is 
emerging from a minor road on the left with the intention to turn right. A is 
travelling on a single carriageway in a rural area with a speed limit of 40 
mph or 50 mph without active or static yield instructions, and it is caused by 
B failing to give way. The surface is wet and A suffers serious injury.”  

As explained in Section 6.2, the scenario is defined by parameters for the ego car and 
the opponent road user. In this case, the opponent is a car going straight and the ego 
car is the automated vehicle turning right. Hence, the collision is of type J, called 
“Crossing-Vehicle Turning” (see Appendix B) and the collision is caused by B failing 
to give way. Table 28 lists all parameters necessary to reconstruct the scenario in 
CarMaker. The variable parameters related to the ego car are the type of collision 
avoidance system, the sensor range according to weather conditions, the sensors’ 
accuracy of object detection capability. The variable parameters related to the 
opponent are the lateral position in the lane and the velocity when approaching the 
junction. 

Table 28: Simulation parameter setup related to the scenario 

General Scenario Parameters Static or variable Values 

Collision type static J – Crossing (Vehicle Turning) 

Main causation factor static Fail to give way from ego car 

Ego Car Parameters 

Car model* static see Table 29 

Car sensor models* static see Table 30 

Manoeuvre static Turning right into the major road 

Driving lane* static 1 

Top view 

Approach from the major road (right) Conflict situation 

Approach from the minor road 
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Lateral position in lane* static Centre of the lane 

Target velocity* static 17.77 m/s (according to speed limit of 40 mph) 

Driving behaviour* static see Table 31 

Pre-crash reaction* static Full braking 

Collision avoidance system* variable FCA, Crossing & Turning Assistant 

Object detection probability* variable  95% (rather satisfying) / 75% (poor) 

Opponent Parameters   

Opponent model static Passenger car (BMW 5) 

Manoeuvre static Going straight on the major road 

Driving lane* static 1 

Lateral position in lane* variable Normal distribution around lane centre 

Approaching velocity* variable Normal distribution around speed limit 

Driving behaviour* variable see Table 32 

Pre-crash reaction* variable Full braking 

Collision avoidance system* static None 

* Parameter value that is not available from the selected accident data set and has therefore to be assumed. 

6.8.3.1 Ego Car Parameters 

The ego car is simulated as automated vehicle, which requires a number of model 
parameter assumptions, such as vehicle dimensions, weight, engine, transmission, 
suspension or sensors. The electric vehicle Tesla Model S was taken as basis for the 
car model (see Figure 95). The most important model parameters selected for this 
experiment are given in Table 29. 

  

Figure 95: Tesla Model S and its self-driving functionality (Source: tesla.com) 

Table 29: Ego car model parameter setup 

Vehicle model parameters Value 

Vehicle model Tesla S 75D 
Transmission Automatic 
Power train Electric 
Engine power 190 kW 
Maximum engine torque 345.0 Nm at 3750.0 rpm 
Wheel base 2,959 mm 
Unloaded weight 2,108 kg 
Vehicle length 4,976 mm 
Vehicle width and height W 1,963 mm, H 1,435 mm 
Track width Front: 1,661 mm, Rear: 1,699 mm 
Rear overhang 1,009 mm 
Driving axle Rear driven 
Turning radius 11.3 m 
Tire size 245 / 35 / R21 
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The Tesla vehicle uses a fusion of different sensors, which includes a combination of 
radar, cameras and ultrasonics. In fact, there are two different philosophies on which 
sensors to use for automated driving. While Tesla believes in camera vision and image 
processing methods, other manufacturers such as Google use LIDAR instead. Both 
approaches have their strengths and weaknesses. In this demonstration experiment, a 
combination of three video cameras is assumed (1x forward and 2x sideways) and the 
radar is disregarded. Ultrasonic sensors are also disregarded, because they are mainly 
relevant for low-speed manoeuvres such as parking. In CarMaker, the cameras are 
modelled as object sensors, which detect objects and other road users within their 
range. Those object sensors are the primary source for the recognition of other road 
users and the crash avoidance model. Table 30 lists the sensor model parameters set 
up in CarMaker. The main forward camera is mounted near the rear-view mirror 
oriented towards the direction of travel, having a horizontal field of view of 100 
degrees. The sideward-facing cameras are mounted over the front doors with an 
orientation orthogonal to the direction of travel and a field of view of 100 degrees 
(see Figure 96). 

 

Figure 96: Illustration of the ego car’s sensing system 

Table 30: Ego car’s sensor model parameters setup 

Sensor model parameters Value 

Number and type of environment sensors 3 cameras 
Main Forward Camera: Range 100 m 
Main Forward Camera: Orientation Direction of travel 
Main Forward Camera: Angle (horizontal) 100 degrees 
Main Forward Camera: Angle (vertical) 20 degrees 
Main Forward Camera: Mounting position Near the rearview mirror behind the windscreen 
Sideward-facing Cameras: Range 100 m 
Sideward-facing Cameras: Orientation Orthogonal to direction of travel 
Sideward-facing Cameras: Angle (horizontal) 100 degrees 
Sideward-facing Cameras: Angle (vertical) 20 degrees 
Sideward-facing Cameras: Mounting position Vehicle sides over the front doors 
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Modeling automated driving behaviour is a complex task and requires assumptions 
on how an automated vehicle behaves in comparison to a human driver. While e.g. 
the reaction time can be assumed to be minimised in automated vehicles, other factors 
such as deceleration, acceleration and steering behaviour needs to be assumed. 
Nowadays, fully automated vehicle prototypes such as the Google self-driving car 
behave rather defensively than aggressively. Most passengers would feel 
uncomfortable in an automated vehicle that accelerates and brakes heavily or that 
does not keep an appropriate distance to the vehicle in front, which must be taken 
into account by the vehicle manufacturers. For this demonstration experiment, the 
automated driving behaviour is set to rather defensive, e.g. the maximum acceleration 
and deceleration is relatively low. Table 31 lists all relevant driving behaviour 
parameters and their values. Note that the collision avoidance models described in 
Section 6.6.8 ignore the maximum deceleration value, since they use much higher 
decelerations for emergency braking. The reaction time was set to a very low value, 
since human reactions are replaced by system reactions for steering and braking. This 
is also the reason why the time to change pedals was decreased to 0.1 second, which 
would normally equal the time to move the foot from the throttle to the brake pedal.  

Table 31: Ego car’s driving behaviour parameters setup 

Driving behaviour parameter Value Comments 

Max. longitudinal acceleration 2.0 m/s² CarMaker’s default value for “defensive” driving 
Max longitudinal deceleration -2.0 m/s² Not relevant for collision avoidance manoeuvres 
Max. lateral acceleration 3.0 m/s² CarMaker’s default value for “defensive” driving 
Reaction time 0.01 s Longitudinal and lateral reaction time (braking/steering) 
Time to change pedals 0.1 s An ADS is assumed to do this rather quickly 
Corner cutting coefficient 0.25 CarMaker’s default value for “defensive” driving 
Traction control On Reduction of throttle if wheelspin occurs 
Target speed 40 mph Corresponds to the speed limit 
Tolerated speed deviation 1.0 mph Deviation from target speed 
Tolerated lateral deviation 0.05 m Lateral deviation from target trajectory 
Max. steering wheel angle 630 deg CarMaker’s default value 
Max. steering wheel velocity 1,000 deg/s between defensive and normal 
Max. steering wheel acceleration 6,000 deg/s² between defensive and normal 

 

In CarMaker, the way to take a curve can be parametrised by the corner cutting 

coefficient. It defines the driving course within the lane borders and lies between 0 
and 1. Zero means that the vehicle precisely drives in the middle of the driving lane, 
while one means that the driver model uses the whole lane width to calculate its 
desired trajectory. A value of 0.25 was chosen, because an automated vehicle is 
supposed to turn precisely, while a lower value may affect passenger comfort due to 
more abrupt steering.  

CarMaker’s driver model includes an internal traction controller, which reduces the 
throttle when wheel spin occurs. The traction control was activated, because it is 
assumed that automated vehicles will avoid spinning wheels, as modern cars do. The 
target speed was set to the local speed limit of 40 mph, i.e. the driver model aims to 
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hold this speed within a tolerated deviation of 1 mph. The lateral deviation was set to 
a very low value of 0.05 m to allow minimum deviation from the calculated 
trajectory.The maximum steering wheel angle was kept at the default value of 
630 degrees, which means that the driver stops turning the steering wheel when this 
angle is reached. Additionally, the maximum steering wheel velocity and acceleration 
were set to lie between the default values for defensive and normal driving. 

6.8.3.2 Opponent Parameters 

The opponent vehicle in this simulation experiment is modelled as a traffic object (see 
Section 6.6.6). Hence, the opponent vehicle model is simplified and does not include 
physical dynamics models and sensor models. However, traffic objects still react to 
other traffic objects or the ego car, e.g. to avoid collisions, to overtake or to follow 
behind. Vice versa, the ego car is able to detect the traffic object with its sensors. 
Table 32 gives the main vehicle parameters as well as the opponent’s basic driving 
behaviour settings. The 3D visualisation of the opponent vehicle is depicted in Figure 
97. 

Table 32: Opponent car model parameter setup 

Vehicle model parameters Value 

Vehicle model BMW 5 
Unloaded weight 1,600 kg 
Vehicle length 4,800 mm 
Vehicle width 1,800 mm 
Vehicle height 1,250 mm 
Front / Rear overhang 800 / 1000 mm 
Max. longitudinal acceleration 2.0 m/s² 
Max longitudinal deceleration -10.0 m/s² 
Max. lateral acceleration 4.0 m/s² 
Initial speed 40 mph 
 

 

Figure 97: Opponent car model 

 

6.8.4 Summary of parameter variations 

Given the test objectives, the main parameter to vary for the comparison is the type of 
collision avoidance system of the ego car, which has two states (see Table 33). The 
safety performance of the forward collision avoidance system (AEB) is compared to 
the more advanced crossing and turning assistant combining forward and sideward-
facing sensors (see collision avoidance systems explained in Section 6.6.8). It is 
expected that the advanced system results in lower collision and conflict probabilities. 
However, this hypothesis is tested and quantified by the demonstration experiment.  

Table 33: Varying parameters with two states each to compare against 

Parameter name Possible states 

Collision avoidance system 
[Forward-facing sensors, 

Forward&sideward-facing sensors] 
Object detection probability by vehicle sensor [95%, 75%] 
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Since the collision avoidance models are ideal systems, i.e. they do not have any faults, 
a fault must be injected that leads to a system failure, denoted as failure or fault 

injection (Elgharbawy et al., 2016; Pintard, 2015; Pintard et al., 2013; Ziade et al., 
2004). Table 34 gives examples of failure modes of a collision avoidance system that 
can lead to a non-detection or late and false detection of other road users or obstacles. 
In the simulation framework, a failure is represented by two different object detection 
probabilities, where 95% defines a rather satisfying value and 75% a rather poor 
value. The object detection probability is defined as the likelihood that another road 
user is detected by the vehicle sensors within their range. Vice versa, the failure 
probability is 5% and 15%, respectively. This assumption is simplified, since in reality 
the detection probability depends on several influencing parameters such as light and 
shade areas, where the image processing algorithms may have problems to identify 
objects and measure their distance, reflections or sun glare, which affects the overall 
image quality of the camera, or poor weather conditions such as heavy rain, snow or 
fog, which negatively influences the object recognition and distance measurement. 

Table 34: Examples of collision avoidance system failure modes, causes and effects  

System Failure mode Possible effects Possible causes 

Sensing system Sensor is defect and does not 
record any data. 

No sensor data transferred 
to perception/control unit. 

Overheated, power supply 
error, cable disconnected etc 

 No communication to 
perception unit. 

No sensor data transferred 
to perception/control unit. 

Faulty connectors, cable 
disconnected etc. 

 Raw sensor data is noisy or 
erroneous. 

Erroneous data transferred 
to perception/control unit. 

Dirty sensor, interference, 
cable defect etc. 

Perception and 
control unit 

Image or pattern recognition 
algorithm fails to detect. 

No, late or false detection of 
road users or obstacles. 

Poor light/weather 
conditions, reflections etc. 

 No communication to 
braking or steering systems. 

Vehicle control does not 
react to detected objects. 

Faulty connectors, cable 
disconnected etc. 

 Wrong information is 
transferred. 

No, late or false detection of 
road users or obstacles. 

Cyber attack and misuse, 
interference, cable defect etc. 

Braking system Fail to brake. Collision or near-miss with 
other road user or obstacle. 

Overheating, brake valve 
fault etc. 

 Insufficient braking  Collision or near-miss with 
other road user or obstacle. 

Overheating, blocked wheels 
etc. 

 

In the presented case, the detection state is either 0 or 1 for each run, randomly 
distributed, meaning that from 100 runs the opponent vehicle will not be detected in 5 
runs or 25 runs, depending on the probability variation. This simplified approach was 
chosen, because the CarMaker software version used had limitations regarding 
physical sensor models when used with MATLAB/Simulink. This is why a failure 
injection was implemented. For future studies and future releases of CarMaker, it is 
planned to replace the ideal sensors with high-fidelity sensor models that can 
accurately replicate real-world behaviour and weaknesses of sensors.  

Since both variables have two possible states, the simulations must be performed for 
four combinations. In addition to the varying collision avoidance system and object 
detection probability, there are the Monte Carlo parameters (see Table 35), which are 
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sampled from a predefined probability distribution, as explained in Section 6.7. These 
include the opponent’s lateral position within the lane and its velocity when 
approaching the junction as well as the surface friction coefficient, which influences 
the braking distance and vehicle stability. While the first two parameters are sampled 
from a normal distribution, the latter one is based on a uniform distribution in the 
range from 0.3 to 0.9.  

Table 35: Varying parameters for Monte Carlo sampling 

Parameter name Range Distribution Mean Std. dev. 

Opponent’s lateral position in lane [-1;1] Gaussian 0 m (centre) 0.2 m 
Opponent’s approaching velocity [0;17.77] Gaussian 17 m/s 4 m/s 
Surface friction coefficient [0.3;0.9] Uniform n/a n/a 

 

The lateral position in the lane describes the deviation of the opponent’s driving 
trajectory from the lane centre. Note the lane centre is defined as 0 m, with the lane 
boundaries defined as +/- half of the lane width. Since the opponent is going straight, 
the trajectory and hence the lateral position in the lane remains constant throughout 
the simulation run, if there is no vehicle instability due to a braking manoeuvre. The 
mean equals the lane centre and the standard deviation has been set to 0.2 m to allow 
enough variation of the vehicle within the lane and to reduce the likelihood of 
travelling outside the lane, which has been set to 2.7 m. The probability density 
function (PDF) and cumulative density function (CDF) for the lateral position are 
given in Figure 98a. 

The approaching velocity of the opponent vehicle is the second variable for the LHS. 
The speed limit at the selected junction scenery in the UK is 40 mph, which equals 
17.77 m/s. Thus, the mean velocity has been set to 17 m/s, which is slightly below the 
speed limit. The standard deviation has been set to 4 m/s, which equals 9 mph, 
according to speed measurement data that were provided by the local authorities for 
the selection junction. The PDF and CDF for the approaching velocity are given in 
Figure 98b. 

The surface friction coefficient is uniformly distributed between a range of 0.3 and 
0.9, which was found to be an appropriate range for wet surface conditions (Gruber 
and Maurer, 2004; Velske et al., 2009, p. 263), as the scenario requires. Note that the 
friction coefficient remains constant for the entire road surface within the simulation 
run. The PDF and CDF for the friction coefficient are given in Figure 98c. 

The output dataset (from the LHS) for comparison has been set to 4,000 samples for 
each of the four variable combinations, respectively. This results in 16,000 
combinations, i.e. simulation scenarios, which comprise around 142 hours of driving 
for the ego car. Considering that each parameter combination requires a reference run 
to obtain the theoretical, ideal vehicle trajectories (as explained in Section 6.4.3), the 
number of simulation result files increases to 20,000.  



181 

 

It must be noted that not all of the simulation runs necessarily lead to a collision, 
because (1) the cars could miss each other due to the varying approaching speed and 
lateral position of the opponent, and (2) the vehicle sensors avoid the collision 
successfully. However, to decrease the probability of undisturbed situations, which 
are not relevant for the safety evaluation, the initial longitudinal position of the 
opponent car was set in a way that both cars would collide with each other, if the 
opponent drove exactly with the mean of its approaching speed distribution, if the 
opponent was located exactly at the mean of the lateral position distribution and if 
the road friction was exactly the mean of its distribution. Note that the ego car always 
starts at the same longitudinal position, approaches with the same speed and on the 
same lateral position. Through the variation of the parameters for the opponent car, 
and also through varying road surface friction, either the point of collision changes or 
there is no collision at all. In the latter case, the conflict indicators help to evaluate 
whether it is a near-miss or an undisturbed situation. 

(a) (b) (c)

Figure 98: PDFs and CDFs of the three Monte Carlo variables (a) lateral position in lane, (b) approaching 
velocity and (c) friction coefficient 

Figure 99 visualises the results of the Latin Hypercube sampling for the three variables 
according to their probability distributions. The dots represent the samples in the 
respective two-dimensional plane for better readability. For example, the yellow dots 
show the y-z plane (velocity against friction) and the sample distribution. The red dots 
represent the samples in the x-z plane (velocity against lateral position) and the x-y 
plane distribution (lateral position against friction) is shown by the blue dots.  
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Figure 99: Results of the Latin Hybercube sampling for the three variables 

6.9 Results of the safety performance evaluation 

This section summarises the demonstration experiment by presenting the resulting 
performance indicator figures. The first three sections provide guidance through the 
evaluation of individual simulation runs, distinguished into an example run resulting 
in a collision, one resulting in a conflict and one undisturbed scenario. Following up 
on this, Section 6.9.4 presents the overall results of the vehicle sensor system 
comparison, including all 16,000 simulation runs. 

6.9.1 Example evaluation of a collision  

As mentioned in Section 6.5, there are different indicators used depending on whether 
there was a collision or a conflict. The following example simulation run was picked 
from the collisions that resulted when using the forward-facing sensor system with 
75 percent detection probability. It is shown to demonstrate the evaluation procedure 
based on the collision indicators. 

Figure 100 depicts a time-distance diagram of both the ego car A (blue line) and the 
opponent car B (ochre line) with a summary of the calculated indicators in the 
textbox on the left. As in all runs of this experiment, A intends to stop before the 
intersection, intends to detect a safe gap to cross the lane and then turns right. This 
explains the flattening of the curve before the time of collision. In this case, A has 
entered the junction without recognising B correctly and hence fails to give way. Note 
that due to the setting of the starting conditions, the distance from the start position 
to the intersection differ from A to B. Therefore, both trajectories were aligned in the 
plot based on the distance to the collision point, i.e. the trajectories intersect where 
the collision point and collision time intersect. The plot further illustrates the arrival 
at the conflict zone (see Figure 71). It can be seen that A enters the conflict zone 
approximately two seconds before B. As soon as B enters the conflict zone it collides 
with A, because A is still located within the conflict zone. B can therefore be called the 
bullet vehicle. As explained, CarMaker does not simulate impacts and deformations. 
From the time of the collision, the ongoing trajectory curves can thus be disregarded, 
because the cars continued travelling as if there was no collision. 
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Figure 100: Summary plot of a collision scenario 

The velocity of B when approaching the intersection was 15.4 m/s (34.7 mph), which 
is below the speed limit of 40 mph. At the time of collision, A was in the turning 
phase with a speed of 4 m/s. The impact speed of B reduced to 12.1 m/s due to an 
emergency braking manoeuvre. The corresponding changes in velocity ∆  were 
estimated with 6.5 m/s for A and 8.5 m/s for B, respectively. The reason why ∆  for A 
is higher than its actual impact velocity is the way it is calculated, namely based on 
Newton’s momentum conservation principle, as Eq. (18) shows. The impact is 
assumed inelastic and does not include vehicle rotation or post-impact rebound. 

The collision severity is estimated by the injury risk probabilities for the different 
MAIS levels, but only MAIS0, MAIS 1+, MAIS 3+ and MAIS 6 are given in the figure. 
Due to the relatively low ∆  values, the serious or fatal injury risk is low. However, 
there is a 56.7 percent and 70.7 percent risk for the occupants of car A and car B, 
respectively, to suffer slight injuries. The probability of remaining uninjured is 
30.9 percent for the occupants of car A and 21.3 percent for those of car B. 

In order to calculate the timestamps of entering and exiting the conflict zone, the 
trajectories of both cars must be analysed in detail. Figure 101 (left) gives a screenshot 
of the collision situation from the CarMaker video, while Figure 101 (right) plots the 
trajectories within the global coordinate system of the simulation environment. Note 
that for car A there are two trajectories depicted, namely the front axle centre 
plus/minus half of the vehicle width (blue lines) as well as the rear axle centre 
plus/minus half of the vehicle width (grey lines). The ochre lines represent car B's 
trajectory. Since A was turning, its tractrix curve must be taken into account to 
calculate the size of the conflict hexagon. The green dots indicate the hexagon entry 
points of both vehicles and the resulting hexagon is highlighted in dark blue. The red 
dots represent the cars’ position at the time of the collision. The resulting hexagon is 
highlighted in dark blue. 
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In CarMaker, the origin of the ego vehicle frame is located at the rear of the vehicle. 
To calculate the hexagon entry point precisely, the frontmost point of the ego car A is 
taken as new reference point in the global coordinate system. This is done in 
CarMaker by placing a so-called inertial sensor on the vehicle front and to output its 
coordinates. The opponent car model is simplified and there is no option to place an 
inertial sensor. Hence, for car B the reference point remains at the rear of the vehicle. 
This means that the distance to the hexagon entry point had to be corrected by the 
vehicle length. For the vehicle exit points, the time at which the vehicles pass with 
their rear end is relevant. Consequently, the origin at both cars’ rear end was used for 
that. Given the two different origins of the vehicle frame, it can be explained why the 
position at the time of collision (red dots in Figure 101 right) is located at the front of 
car A, but at the rear of car B. 

 

  

Figure 101: Screenshot of collision (left) and trajectory intersection plot (right) with B driving southwards 
and A turning right coming from the west 

So far, Figure 100 has shown the distances covered over time and Figure 101 gave an 
idea on the vehicle trajectories and conflict hexagon calculation. The velocity, 
longitudinal acceleration and the jerk over time are depicted in Figure 102. It can be 
seen that the collision happened after 14 seconds indicated by the red vertical line. 
The blue line shows a deceleration of A before the collision, which is caused by a stop 
before the intersection. The collision thus occurred after the acceleration of A. On the 
right side, the velocity and acceleration curves of B show an emergency braking 
conducted right before the crash. It can be seen that there are two negative peaks in 
the jerk curve of B, although only the second peak exceeds -8 m/s³, which indicates a 
critical braking manoeuvre. Again, the curves after  can be disregarded, because 
the drive would practically end there. 

The fourth and last plot of this example evaluation is the Time-To-Collision curve 
shown in Figure 103. The  and  of A is coloured in blue, while the curves of B 
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are shown in ochre. Three timestamps are plotted by vertical lines, namely the time of 
collision and the time when A and B entered the conflict zone.  and  are 
continuous values computed at each timestamp and decrease as the vehicles approach 
the conflict zone. The increase of  and  of A after 10 seconds can be 
explained by the vehicle stop and therefore decreased velocity. Since the time is 
calculated by the distance divided by velocity, the curves would become infinite if the 
vehicle stands still. As car A continues driving shortly after the stop, the  and  
values drop again. Not surprisingly, the  values become zero (and theoretically 
negative after that) at the time when the conflict zone is reached. 

 

Figure 102: Velocity, longitudinal deceleration and jerk over time for vehicle A (left) and vehicle (B) 

 

Figure 103: TTC and TTD over time for both vehicles in a collision scenario 
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Applying the formula used by Van der Horst (1990) in Eq. (30) reveals the timespan 
at which a critical  is reached. As long as car A has not left the conflict zone, i.e. 
as long as , car B is on theoretical collision course, assuming that both 
vehicles continue driving at the same speed. 

Summing up the indicator results for this example case, it can be observed that this 
particular simulation sample caused a collision, where B hit A on its offside, while A 
was turning right. Car A failed to give way due to inaccurate detection of B and 
crossed the intersection, although car B was approaching with a speed of 34.7 mph. 
This resulted in a 56.7 percent risk of slight injury for A.  

6.9.2 Example evaluation of a conflict 

In comparison to the collision scenario in the previous section, this section presents 
the results obtained for a near-miss event. The following example simulation run was 
picked from the conflicts that resulted when using the forward-facing sensor system 
with 75 percent detection probability. It is shown to demonstrate the evaluation 
procedure based on the conflict indicators. 

Figure 104 depicts a time-distance diagram of both the ego car A (blue line) and the 
opponent car B (ochre line) with a summary of the calculated indicators in the 
textbox on the left. As in all runs of this experiment, A intends to stop before the 
intersection, intends to detect a safe gap to cross the lane and then turns right. Similar 
to the collision case, A has entered the junction without recognising B correctly and 
hence fails to give way. Both trajectories were aligned in the plot based on the 
distance to the conflict zone entry point. It can be seen that A enters the conflict zone 
approximately three seconds before B. When B arrives at the conflict zone, A has just 
left it, which resulted in a  of 0.5 seconds. Since the threshold for a safe gap is a 

 of one second, this simulation was classified as conflict event. Furthermore, a 
 of 2.1 seconds was measured for car B, which means that an emergency braking 

manoeuvre was conducted at a  of 2.1 seconds. 

Figure 105 (left) gives a screenshot of the conflict situation from the CarMaker video, 
while Figure 105 (right) plots the trajectories within the global coordinate system of 
the simulation environment. Again, for car A there are two trajectories depicted, 
namely the front axle centre plus/minus half of the vehicle width (blue lines) as well as 
the rear axle centre plus/minus half of the vehicle width (grey lines). The ochre lines 
represent car B's trajectory. The green dots indicate the hexagon entry points of both 
vehicles and the resulting hexagon is highlighted in dark blue. Not surprisingly, the 
resulting conflict hexagon has a similar shape to the collision scenario presented 
above, because the trajectories changed only slightly. The main difference to the 
collision scenario is the time when the vehicles enter and exit the conflict zone. In this 
case, it can be seen that car B could avoid a collision by braking and the low PET 
shows how close the vehicles have passed this junction. 
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Figure 104: Summary plot of a conflict scenario 

 

Figure 105: Screenshots of a conflict in the simulation environment (left) and trajectory intersection plot 
(right) with B driving southwards and A turning right coming from the west 

The velocity, longitudinal acceleration and the jerk over time are depicted in Figure 
106. On the right side of the figure, the velocity and acceleration curves of B show an 
emergency braking conducted at approximately 12 . The negative jerk 
value exceeds -8 m/s³, which indicates a critical braking manoeuvre. It can further be 
seen that A did not brake at all, except when approaching the intersection to stop 
regularly. 

The curve in Figure 107 shows the  and  over time. Two timestamps are 
plotted by vertical lines, namely the time when A and B entered the conflict zone. 
Equivalently to the collision scenario, the increase of  and  of A after 10 
seconds can be explained by the vehicle stop before the junction. As car A continues 
driving shortly after the stop, the  and  values drop again.  
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Applying the formula used by Van der Horst (1990) in Eq. (30) reveals the timespan 
at which a critical  is reached. As long as car A has not yet left the conflict zone, 
i.e. as long as , car B is on a theoretical collision course, which is 
indicated by the grey area in the plot. During this timespan, in fact slightly after A 
enters the conflict zone, B performed a harsh braking manoeuvre, which resulted in a 

 of 2.1 seconds. From second 12.8 on, , which means that car A 
would have left the zone already, if B continued driving with the same speed.

 

Figure 106: Velocity, longitudinal deceleration and jerk over time for vehicle A (left) and vehicle (B) 

 

Figure 107: TTC and TTD over time for both vehicles in a conflict scenario 

This example scenario can be summed up as follows: Car A failed to give way due to 
inaccurate detection of B and crossed the intersection, although car B was 
approaching with a speed of 34.4 mph. This resulted in a near-miss event with a  
of 0.5 seconds and a  of 2.1 seconds. If B had not pushed the brakes, a collision 
would have happened most likely. 
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6.9.3 Example evaluation of an undisturbed situation 

The third example simulation run was picked from the undisturbed situations that 
resulted when using the forward-facing sensor system with 75 percent detection 
probability. Neither a conflict indicator threshold was exceeded nor a collision was 
detected by CarMaker’s collision sensor. In this experiment, this happens when A 
correctly detects the position and velocity of B to find a safe gap to turn, or when the 
velocity of B is too high or too low to cross the intersection the same time as A does.  

The summary plot in Figure 108 shows a  of 1.8 seconds, which is above the 
critical threshold of one second. Apparently, B enters and exits the conflict zone 
before A arrives, which can be explained by the higher speed of B (52 mph in 
comparison to 34 mph in the previous cases). It demonstrates that the variation of B’s 
approaching speed results in a variety of situations, which the ego car A is exposed to. 

 

Figure 108: Summary plot of an undisturbed scenario 

Figure 109 (left) gives two screenshots of the undisturbed situation from the 
CarMaker video, while Figure 109 (right) plots the trajectories within the global 
coordinate system of the simulation environment. Again, the resulting conflict 
hexagon has a similar shape to the scenarios presented above, because the trajectories 
changed only slightly. The main difference to the previous scenarios is the time, when 
the vehicles enter and exit the conflict zone. In this case, it can be seen that car B 
could safely pass the conflict zone before car A arrives at the intersection. 

Figure 110 shows the velocity, longitudinal acceleration and the jerk over time. 
Neither A nor B performed a braking manoeuvre, expect when smoothly decelerating 
towards the junction. There is no critical event indicated by those curves. The increase 
of velocity and hence acceleration of B is caused by the starting conditions of the 
simulations. In each run, B has a starting velocity of 17 m/s and then reduces or 
increases this speed to the target approaching speed. 
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Figure 109: Screenshots of an undisturbed situation (left) and trajectory intersection plot (right) with B 
driving southwards and A turning right coming from the west 

 

Figure 110: Velocity, longitudinal deceleration and jerk over time for vehicle A (left) and vehicle (B) 

The  curves in Figure 111 confirm the finding derived from the previous plots. 
The illustration of the timespan of critical  shows that B (ochre curves) is on a 
theoretical collision course (without knowing and considering that A stops before the 
junction) from second 6.7 to second 8.2, but this changes as soon as . 
From second 8.2 to second 9, car A is on a projected collision course, because 

. In other words, during this timespan car B would still be in the conflict 
zone, if A continued driving with the same speed. From second 9 on, , 
which means that car B would have left the zone already, if A continued driving with 
the same speed. 
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Figure 111: TTC and TTD over time for both vehicles in an undisturbed scenario 

This example scenario can be summarised as follows: There was no conflict or 
collision, because car A correctly detected B and identified a safe gap. The PET is 
1.8 seconds and therefore not critical and there were no emergency braking 
manoeuvres. 

6.9.4 Overall comparison of vehicle sensor systems 

As explained in Section 6.8.4, the varying parameters for the analysis are the type of 
vehicle sensors and the detection probability. This leads to four different results, each 
of which based on 4,000 simulation runs. Figure 112 shows a general overview of the 
frequency of collisions, conflicts and undisturbed situations, for the forward-facing 
sensor (left) in comparison to the additional sideward-facing sensor (right) and for 
75 percent (top) and 95 percent detection probability (bottom). The figures thus 
present the overall results of the safety performance evaluation. 

For the worst-case combination, i.e. 75 percent detection probability with forward-
facing sensors only, the experiment resulted in 1,214 collisions, 379 conflicts and 
2,407 undisturbed situations. It must be mentioned that even with zero percent 
detection probability, the experiment would have resulted in undisturbed situations, 
since due to the distribution of approaching speeds there might be runs where the cars 
do not come close within the conflict zone.  

The additional sideward-facing sensors resulted in much lower numbers of collisions 
(305 for 75 percent and 49 for 95 percent detection probability). Equivalently, the 
number of conflicts was reduced by more than a half from 379 to 169 for the 
sideward-facing sensors with 75 percent detection probability. For 95 percent 
detection, the number decreased to more than a third from 370 to 92 conflicts.  
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Figure 112: Frequency of collisions, conflicts and undisturbed scenarios for different detection 
probabilities of forward-facing sensors (left) and additional sideward-facing sensors (right) 

In addition to the visual presentation above, the probabilities for collision, conflict 
and undisturbed situation are listed in Table 36. It can be seen that in the best case, 
i.e. sideward-facing sensors with 95 percent detection probability, 96.5 percent of all 
simulations resulted in no collision or conflict. This implies that not all of the 5% 
corner cases with detection failure led to a collision or conflict. The reason why the 
percentage of undisturbed situations is higher than the detection probability is due to 
the nature of the parameter variation for the opponent’s approaching speed. In some 
runs, the vehicles were just not close enough to exceed a conflict indicator threshold. 

Table 36: Probabilities for a collision, conflict and undisturbed situation for all parameter combinations 

Parameter combinations Collision Conflict Undisturbed 

Forward-facing sensors, 75% detection probability 30.3% 9.5% 60.2% 
Forward-facing sensors, 95% detection probability 29.9% 9.3% 60.9% 
Sideward-facing sensors, 75% detection probability 7.6% 4.2% 88.2% 
Sideward-facing sensors, 95% detection probability 1.2% 2.3% 96.5% 

6.9.5 Analysis of collision indicators 

Having presented the overall outcome of the parameter variations, this section will 
now move on to show the detailed results for different collision indicators such as 
injury probabilities, impact speed or impact angle. Note that for the sake of brevity, 
forward-facing sensor system (FCA) is henceforth referred to as FS and the additional 
sideward-facing sensor system (crossing and turning assistant) as F+SS. Furthermore, 
the ego car is represented by A and the opponent car by B. 
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The charts in Figure 113 show the distributions of MAIS 1+ (slight injury) injury 
probabilities for all detected collisions in the four variations. In general, the 
percentages lie between 40 and 90, which indicates a wide range of possible slight 
injury outcome. The mean value of all combinations is between 66 and 69 percent, 
and the standard deviation lies between 8.5 and 9.0 percent. There is no observable 
difference between  and  of the four combinations, but the distribution indicates 
that the FS simulations do have a steeper slope towards the lower probability values. 
However, the sample size of F+SS (95%) is considerably lower than for the other 
distributions. 

  

  

Figure 113: Probability distributions for MAIS 1+ injury probability, for collisions that occurred with 
forward-facing sensors (left) and additional sideward-facing sensors (right) 

The charts for the distributions of the MAIS3+ probability are shown in Figure 114. 
The mean values of all four combinations are between 4.0 and 4.5 percent with a 
standard deviation of 1.4-1.6 percent. This means that the injury probability strongly 
decreases from slight to serious. The main reason for this can be found in the 
relatively low impact speeds of the ego car and the resulting ∆ . More information is 
given in Figure 116.  

As expected, the probability for a fatal injury (MAIS6) is also low, with mean values 
between 0.4 and 0.5 percent (see Figure 115). Note that the horizontal scale was 
adapted due to the low values in comparison to MAIS1+ and MAIS3+. As for the 
previous injury levels, this estimation is based on a simplified model for calculating 
∆ . Accordingly, only inelastic collisions are assumed and rotations or secondary 
impacts of the vehicles are not considered. Also, the model for the injury estimation 
assumed belted occupants. There is no notable difference between the four 
combinations and the small sample size of 49 for F+SS (95%) seems to represent the 
overall distributions quite accurately. 
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Figure 114: Probability distributions for MAIS 3+ injury probability in percent, for collisions that 
occurred with forward-facing sensors (left) and additional sideward-facing sensors (right) 

  

  

Figure 115: Probability distributions for MAIS 6 injury probability in percent, for collisions that occurred 
with forward-facing sensors (left) and additional sideward-facing sensors (right) 

Due to the predefined manoeuvre for the ego car, which includes a stop before the 
intersection, the impact speed of the ego car has a low mean value between 6.8 and 
7.3 mph (see probability density functions in Figure 116). The standard deviation lies 
around 2 mph. The deviations in the ego car’s impact speed are caused by the 
different times of collisions. At some collisions, the ego car has just entered the 
conflict zone, i.e. it has just started to accelerate from the standstill and the impact 
angle is close to 90 degrees. In other collision cases, the ego car has almost completed 
the turn, but is still hit by the opponent car, which hence results in higher impact 
speeds (and lower impact angles) of the ego car. 
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In comparison to the ego car A, the opponent B has higher impact speeds, because it 
cruises downhill with a constant approaching speed defined by the given probability 
distribution for the Monte Carlo sampling. The mean values range from 27.3 to 
29.4 mph with a standard deviation between 7.5 to 7.8 mph (see Figure 117). Similar 
to the previous results, the sensor systems or the detection probability do not have a 
notable influence on the distributions, but on the overall frequency of collisions. 

  

  

Figure 116: Probability distributions for the impact speed of the ego car, for collisions that occurred with 
forward-facing sensors (left) and additional sideward-facing sensors (right) 

  

  

Figure 117: Probability distributions for the impact speed of the opponent car, for collisions that 
occurred with forward-facing sensors (left) and additional sideward-facing sensors (right) 

The ∆  of A in comparison to B is presented in Figure 118. The probability 
distributions show that ∆  of the ego car A is considerably lower than the ∆  of the 
opponent . The mean values of B range from 17.8 to 18.7 mph, while those for A 
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are around 14 mph. One of the factors that influence the calculation of ∆  is the angle 
at which the vehicles collide. Figure 119 presents the probability distributions 
obtained for the impact angle. The mean values throughout all combinations lie 
between 111 and 115 degrees, with a standard deviation between 19.0 and 
19.2 degrees. This indicates that the cars mostly collided at higher angles, i.e. when 
the right-turning ego car is within the conflict zone or about to leave, being hit by the 
opponent from the right. Lower impact angles would suggest that car A was about to 
enter the zone, when hit by car B. 

  

Figure 118: Probability distributions for delta-v of A and B, for collisions that occurred with forward-
facing sensors (left) and additional sideward-facing sensors (right) 

  

  

Figure 119: Probability distributions for the impact angle, for collisions that occurred with forward-
facing sensors (left) and additional sideward-facing sensors (right) 
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An interesting aspect when analysing the collisions is the information about which car 
was the bullet vehicle, because this helps to estimate injury severities and to define the 
collision type. As shown in Figure 120, in approximately 60 percent of all simulation 
runs, the opponent vehicle was the bullet and the ego car was the target. Only in the 
F+SS case with 75 percent detection probability, the ego car was equally often the 
bullet or the target. In most cases of this particular scenario, if the ego car A was the 
target, then B would hit the offside of A. On the other hand, if B was the target, then 
A would most likely hit the nearside of B. 

  

  

Figure 120: Frequency of collisions for the ego car as bullet or target vehicle, for collisions that occurred 
with forward-facing sensors (left) and additional sideward-facing sensors (right) 

6.9.6 Influence of Monte Carlo parameters on injury severity 

The three Monte Carlo parameters surface friction, lateral position and approaching 
speed of the opponent car were further analysed used MATLAB’s curve fitting 
toolbox. Figure 121 depicts the fitted curves for the relationship between friction, 
approaching speed and slight injury probability. The regression method ‘lowess’ 
(locally weighted scatterplot smoothing, Cleveland, 1981) was used to fit a surface to 
the simulation data that led to a collision. The smoothing process is called local, 
because each smoothed value is determined by neighbouring data points. A linear 
polynomial is fitted using weighted least squares, giving more weight to points near 
the point whose response is being estimated and less weight to points further away. It 
is a non-parametric method and it does not produce a regression function in terms of 
a mathematical formula, which can be easily transferred to others. However, the curve 
can be easily reproduced when the data and the two model parameters are available, 
namely the span and the type of polynomial model.  

The span defines the percentage of the total number of points used for the regression 
weight function. Reducing the span makes the surface follow the data more closely. 
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For the given dataset, a span of 10 percent was used for the FS (75%), FS (95%) and 
F+SS (75%). Due to the lower sample size, the span for F+SS (95%) was increased to 
25%. For all cases, the polynomial model was set to linear. 

  

  

Figure 121: Fitted probability curves for slight injury by varying friction and opponent velocity, for 
collisions that occurred with forward-facing sensors (left) and additional sideward-facing sensors (right) 

The fitted surfaces show that a higher opponent velocity leads to a higher probability 
to suffer slight injury, which is not surprising. Also, there is a slight increase of injury 
probability with a lower friction coefficient, especially at a lower velocity around 
35 mph. At speeds higher than 40 mph, this increase is negligible. The coefficient of 
determination ² ranges from 0.937 to 0.972, which is indicates a good 
approximation of the curve. The root mean square error  represents the sample 
standard deviation of the differences between the regression curve and the actual data 
points. Also, the values from 1.67 to 2.15 percent are satisfactory. The  (Sum of 
Squares of Error) measures the total deviation of the observed values from the fit. It 
ranges from 109.9 to 5,549.5. However, for the given regression application, the SSE 
value is not as useful as it would be when comparing different regression models. 

The curves obtained for the serious and fatal injury probability showed similar results 
and are therefore not presented here by additional plots. A regression analysis 
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including the lateral position resulted in an unsatisfying goodness of fit, because its 
relation to injury probability appears to be arbitrary and not explanatory. 

6.9.7 Analysis of conflict indicators 

The previous sections presented the safety performance indicators for simulations that 
resulted in a collision. This section is devoted to the conflict indicators, which were 
the decision criteria to differentiate between an undisturbed and a critical situation. 
As explained by the flowchart in Figure 63, a conflict is first determined by the jerk 
value, which indicates a critical braking manoeuvre. In case of an increased jerk 
threshold, the speed driven right before braking is related to the time-to-accident in 
order to determine if it is a conflict or not (see Figure 72).  

Figure 122 presents this -conflict speed threshold function, which was applied to 
the simulation outputs. Note that the  given in the plots does not correspond to the 
number of conflicts. The number of blue points corresponds to the number of 
situations, where the ego car performed a harsh braking manoeuvre to avoid a 
collision. Hence, due to the random distribution of detection probability within each 
of the four combinations, the actual number of braking events ( ) vary. The red line 
represents the threshold, with all points on the left considered as critical conflicts (see 
Figure 72). It is not to be confused with a regression line. 

The mean value of  differs between the four parameter combinations and ranges 
from 0.53 (FS, 75%) to 0.87 seconds (F+SS, 95%). The ego car with an additional 
sideward-facing sensor resulted in a mean  value that is almost twice as high as 
the mean value for the forward-facing sensors. The smaller the , the more critical 
is the situation. Consequently, the FS simulations resulted in more critical braking 
situations than the F+SS simulations.  

In fact, the distributions of samples in Figure 122 show two clusters, which are 
swapped between FS and F+SS. The lower cluster around the conflict speed of 
2.5 mph is larger in the FS simulations, while the upper cluster around 5 mph is larger 
in the F+SS case. This observation reveals that there are two main types of braking 
situations for the ego car. First, a braking manoeuvre performed at around 2.5 mph, 
which corresponds to the acceleration phase right after the standstill. Second, a 
braking manoeuvre performed at around 5 mph, which means that the car braked 
when the turning manoeuvre was almost completed. In the first type, car A enters the 
junction but immediately detects B. In the second case, car A detects B at a later stage 
of the turn and the AEB controller performs the braking. 

The conflict speed vs.  curve for the opponent vehicle B shows a different picture 
(see Figure 123). Note that the x- and y-scales were adapted for better readability. 
There is only one main cluster observable from the plots, which ranges from a  of 
approximately 2 to 3.5 seconds with mean values around 2.6 seconds for all four 
combinations. The plots also reveal that the overall number of braking manoeuvres 
reduce from 371 for FS (75%) to 25 for F+SS (95%). In other words, the additional 
sideward-facing sensor decreases the number of safety-critical events for B.  
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Figure 122: Conflict speed vs.  of the ego car, with forward-facing sensors (left) and additional 
sideward-facing sensors (right) and the red line representing the threshold function for critical events 

  

  

Figure 123: Conflict speed vs.  of the opponent car, with forward-facing sensors (left) and additional 
sideward-facing sensors (right) and the red line representing the threshold function for critical events 

If a simulation run did not show a critical braking manoeuvre, the  is taken as 
additional conflict indicator. If the  falls below one second, the situation is 
defined as conflict. Figure 124 presents the distribution of the  for the four 
combinations. Note that the plots show the values for all detected conflicts, i.e. also 
those where the  vs. conflict speed threshold was exceeded. This explains why the 
plots contain  values higher than 1 second. 
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Figure 124: Frequency of conflicts by PET, for simulations with forward-facing sensors (left) and 
additional sideward-facing sensors (right) 

In fact, the FS simulations reveal two clusters of conflicts. First, situations with the 
 ranging from 0 to 2 seconds, i.e. with a close encounter of the cars. Second, 

conflicts with a  between 5 and 6.5 seconds, where there was enough time 
between one vehicle entering and the other one leaving the conflict zone, but where 
one of the vehicles performed a critical braking manoeuvre. Otherwise, it would not 
have been classified as conflict. Due to this bipolar distribution, the median  is given 
instead of the mean and standard deviation.  

The second cluster of conflicts does no more exist in the F+SS simulations, as the plots 
on the right side clearly show. The cause for this is the improved capability of the ego 
car to detect the approaching opponent car by the sideward-looking sensor, which 
results in the ego car waiting for an appropriate gap. In the FS simulations, the ego 
car happens to overlook the approaching car and may perform an emergency braking 
as soon as the forward-facing sensor detects the opponent.  

Another time-related conflict indicator is the minimum , which is independent of 
braking manoeuvres. The minimum  gives the time required for the two cars to 
collide if they were to continue their speed and path. A threshold of 1.5 seconds was 
defined in Section 6.5.3.1, under which the situation would be defined as critical. It 
must be mentioned that the minimum  was not used in the evaluation algorithm 
to determine a conflict. However, it is still an interesting measure to analyse the 
simulation results.  

Figure 125 depicts the frequencies of minimum  combined for both cars in the 
four combinations. The number of samples corresponds to the number of non-
collisions, i.e. both conflicts and undisturbed situations. The mean values for the FS 
simulations are 2.08 and 2.06 seconds, respectively. For the F+SS simulations, those 
values increase to 2.17 and 2.18 seconds, which indicates fewer critical situations in 
general. For both FS and F+SS, there is a high number of runs with a minimum  
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below 1.5 seconds. They are represented in the  plot in Figure 122, because at 
such a low  value, the braking controller normally activates an emergency 
braking. 

  

 

 

Figure 125: Frequency of non-collision scenarios by minimum TTC, for simulations with forward-facing 
sensors (left) and additional sideward-facing sensors (right) 

In summary, the conflict evaluation complements the collision indicator analysis by 
revealing situations that might have led to a crash if there was no evasion action taken 
by one of the vehicles. The analysis has shown the versatility of the simulation 
framework to understand the safety problems in the particular scenario. The 
evaluation method is applicable to other scenarios as well and depending on the test 
objectives, it can be enhanced with additional safety indicators or more advanced 
impact severity estimations. 

6.10 Conclusions 

This chapter presented a simulation and evaluation framework for assessing the safety 
performance of automated vehicles at junctions. The third study of this thesis 
followed up on the scenario identification of study 2 by transferring the information 
from the accident data to a sub-microscopic simulation environment based on the 
CarMaker software combined with MATLAB/Simulink models. Basically, the 
simulation framework consists of a road environment model, vehicle and sensor 
models as well as driving control and behaviour models. The output of the 
simulations is analysed by an evaluation script that computes a set of quantitative 
safety performance indicators. Therefore, a novel approach denoted as conflict 
hexagon was developed. 
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One challenge to create representative simulations from accident data is the lack of 
information due to incomplete crash records. Not all of the information is available 
that is needed to model the static and dynamic content. The proposed methodology 
fills this gap by enhancing the collision scenarios with representative variations of 
real-world conditions, sampled by a Monte Carlo approach. Those variables included 
the approaching speed and lateral position of the opponent vehicle in the lane as well 
as the road surface friction, which has an influence on the braking distance. The ego 
car represents the automated car and is equipped with in-vehicle sensors to detect 
objects within its sensing range.  

The applicability of the simulation and evaluation framework was demonstrated by 
an experiment based on a selected collision scenario from study 2. In particular, a 
right-turn manoeuvre by an automated car at a non-signalised T-junction was 
evaluated, where another car is crossing from the right with the right of way. The 
study focused on the comparison of two different in-vehicle sensor systems (basic FCA 
vs. crossing and turning assistance system) with respect to their crash avoidance 
capabilities (75% vs. 95% detection probability). For each of the four combinations, 
a number of 4,000 simulations were performed, all of which have an equal sampling 
distribution of the Monte Carlo variables for a proper comparison. 

The safety performance evaluation resulted in 1,214 collisions and 379 conflicts for 
the worst-case setting compared to 49 collisions and 92 conflicts for the best case. For 
95 percent detection probability, the number of collisions and conflicts were reduced 
to a tenth, when adding a crossing and turning assistant (based on sideward-facing 
cameras) to a basic forward collision avoidance system (based on forward-facing 
cameras only). This obviously demonstrated the safety performance increase in this 
particular junction scenario. By using additional sideward-facing sensors with 
95 percent detection probability, 96.5 percent of all simulations resulted in no 
collision or conflict. 

A detailed analysis of the resulted collisions revealed that the injury probability 
strongly decreases from slight (mean value around 67 percent) to serious (mean value 
around 4 percent). The main reason for this can be found in the relatively low impact 
speeds of the ego car and the resulting low delta of velocity, which is used to estimate 
the injury severity. Apart from the fact that the frequencies strongly declined, it was 
found that the different sensor types and detection probabilities do not necessarily 
influence the distribution of injury probability. Instead, the varying Monte Carlo 
parameters do. For example, a fitted probability curve showed that a higher opponent 
velocity leads to a higher probability to suffer injury and that there is a slight increase 
of injury probability with a lower friction coefficient. 

The conflict indicator analysis also confirmed the hypothesis that a forward collision 
avoidance system is not sufficient to avoid collisions with crossing traffic and 
therefore needs additional side collision assistance. Simulations with forward collision 
avoidance only resulted in more critical braking situations than with an additional 
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crossing and turning assistant. In general, the additional sideward-facing sensor 
system decreases the number of safety-critical events for both vehicles. 

In summary, the presented framework eases the modelling and simulation of critical 
scenarios, which leads to more efficient workflows when virtually testing automated 
driving. Limitations include the simplified, inelastic computations of impacts and the 
fact that only primary collisions are considered. Furthermore, the computation 
efficiency is subject to future work to increase the number of simulation runs and 
parameter combinations. However, due to its modular architecture, the framework 
can be adapted to other collision scenarios and may be enhanced with customised 
models. The indicators in this study could be used as pass/fail criteria for future 
vehicle tests as part of the overall homologation and certification process. 
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7 Summary, discussion and conclusions 

This chapter brings all three studies together and synthesises the results and the 
contributions to the state of the art. It further discusses the drawbacks of the chosen 
methods and states, which results could not be achieved and why. The chapter also 
points out the study results that should be used with care, as they might not be 
applicable for all cases. Ultimately, recommendations for future research are made. 

7.1 Focus of the thesis 

The aim of this dissertation was to develop a modular framework that simulates 
automated driving at intersections and evaluates the safety in mixed traffic situations 
with conventional vehicles. The scope is limited to road intersections involving all 
types of three- and four-legged at-grade junctions excluding roundabouts. The 
research was structured as follows: 

 Study 1: The initial study was conducted to set the research scope according to 
relevant research gaps as well as challenges and problems for automated traffic 
at intersections. These were identified by reviewing literature, analysing 
macroscopic accident data and conducting an online expert survey. 

 Study 2: The follow-up work clustered and evaluated safety-critical scenarios 
at road junctions from historical accident data, which can pose a particular 
safety problem involving automated cars.  

 Study 3: A simulation and evaluation framework was developed and 
demonstrated, which allows examining the safety performance of automated 
driving systems within those scenarios. 

The thesis included five research questions, which were addressed as follows. 

RQ1. Which technical hurdles and challenges do ADS currently have to overcome? 

Many prototypes of automated driving systems have been developed and 
demonstrated in recent years, but the safety risks coming with a mixed vehicle 
population, namely traffic with both driverless and driver-operated vehicles are still 
subject to research. Research gaps and challenges were identified by reviewing 
literature in various areas and by surveying experts with an online questionnaire. 
After that, a preliminary analysis of junction accident data helped to understand the 
main safety problems and accident circumstances at junctions. 

RQ2. What are the state-of-the-art technologies to enable automated driving in
junction environments? 

Automated vehicles employ various technologies to drive safely and efficiently 
through road traffic. There have been numerous developments to facilitate a safe 
interaction of automated vehicles and non-automated road users at intersections, 
which can be either vehicle-based or infrastructure-based. A comprehensive review of 
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literature was conducted to categorise intersection assistance systems and to discuss 
their strengths and weaknesses. 

RQ3. What are the current collision scenarios at three- and four-legged at-grade 
junctions and how can they be clustered from historical accident data? 

Given the challenges of ADS, there is still a need for comprehensive testing, either in 
virtual environments or on real-world test tracks. The challenge is to find the 
benchmark driving situations to be evaluated at junctions. By applying a novel 
clustering technique on historical in-depth accident data from the UK, a set of key 
crash scenarios at junctions was identified and described.  

RQ4. How can those collision scenarios be represented and enhanced for sub-
microscopic simulation to evaluate the safety performance of intersection assistance
systems? 

For testing assisted and automated driving functions, virtual testing is being used by 
car and sensor manufacturers, as it can decrease costs in the development cycle. In 
sub-microscopic traffic simulations, single vehicles are represented by detailed physical 
models and their interaction with the road environment and other road users can be 
investigated. This thesis presented a framework to transfer the derived collision 
scenarios to a sub-microscopic simulation environment, where the safety performance 
of automated driving functions was evaluated for a particular demonstration scenario. 
The study focussed on car-to-car scenarios, where the ego car is highly automated 
(SAE Level 4/5) and the opponent car is driven by a human.  

RQ5. What general recommendations can be made for the safety performance
indicators to be considered in virtual testing of ADS at junctions? 

There is little research on the best combination of indicators to evaluate the safety 
performance in virtual vehicle tests at junctions. Existing approaches to estimate 
collision and conflict risk must be adapted to the particular junction simulation 
scenarios. As part of the developed framework, this thesis provides recommendations 
for metrics to quantify safety performance, based on a review of existing literature 
and tests conducted in the demonstration experiment. 

7.2 Novelty and contribution to the state-of-the-art 

As the research questions imply, this thesis investigates how collision scenarios can be 
derived from accidents in driver-operated traffic and applied to virtual, simulation-
based testing, where an automated driving system replaces the driver. At the moment, 
there are limited European regulations on validating the reliability of highly 
automated road vehicles. Standardized procedures for evaluating automated driving 
systems are highly relevant in order to guarantee high safety in a varying environment. 
To this end, this research will contribute to the development and approval of novel 
vehicle environment recognition systems (e.g. visual or LIDAR-based systems) or 
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infrastructure-based intersection assistance systems by providing the following 
outputs: 

Output #1: Evaluation scenarios for testing ADS at intersections 

Novelty A novel method to derive pre-crash scenarios from historical car accident
data is presented, taking into account different intersection characteristics
as well as interplay with non-automated vehicles. It employs -medoids to 
cluster historical junction crash data into distinct partitions and then
applies the association rules algorithm to each cluster to specify the
driving scenarios in more detail. 

Possible 
applications 

A predefined set of critical scenarios allows cost-efficient testing, both in 
virtual and real-world test environments. The scenarios obtained will help 
to reduce the possible number of model parameter variations, such as
vehicle trajectories, velocities as well as road and junction parameters.
This leads to a faster development cycle for the automotive and supply
industry as well as for manufacturers of infrastructure-based intersection 
assistance systems. Furthermore, the work leaves an impact on research
and development in the fields of road safety and infrastructure. 

Output #2: A sub-microscopic simulation framework to virtually reconstruct and 
evaluate collision scenarios 

Novelty The framework uses realistic models for vehicles and their sensors as well
as accurate road environment models and applies the Monte Carlo
method to sample a representative set of parameter combinations,
including information from the accident data as well as assumptions on
critical factors for ADS. 

Possible 
applications 

The framework eases the modelling and simulation of critical scenarios, 
which leads to more efficient workflows when virtually testing automated
driving. Due to its modular architecture, the framework can be adapted to
the individual needs of future users and may be enhanced with customised
models. The results of this thesis can therefore be used by the automotive
industry to further test and develop vehicle sensors and automated driving
systems, either by MIL, SIL or HIL. For example, the Simulink model
blocks can be replaced by real hardware components or individual 
parameter combinations may be tested. Due to the principle of parametric
variation and scenario generation, ADS can be exposed to a large number
of critical situations and their safety performance can be optimised
towards better detection probability and crash avoidance capability.  

Output #3: Safety performance indicators as metrics to quantify impact 

Novelty A combination of indicators (temporal and spatial proximity metrics) was
used to quantify the impact of in-vehicle intersection assistance systems on 
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collision and near-miss risk. Those indicators are a direct output of the 
simulation framework. A novel approach denoted as conflict hexagon was
developed to compute the numerical indicators. 

Possible 
applications 

One step towards uniform criteria for approving automated vehicles for
public roads is the definition of pass/fail criteria for tests. This thesis
provides the baseline for such criteria by delivering safety performance
indicators, which are then used to calculate the overall collision and 
conflict probabilities. 

Furthermore, the indicators applied in the study provide the basis for a-
posteriori conflict studies. This is not only relevant for virtual test
simulations, but also for the analysis of real-world video observations or 
naturalistic driving data. The indicators can be further used to estimate
the societal benefits from introducing ADS, such as reduced accident
costs. Considering the current progression of automated transport, the 
results of this research are highly relevant, both for virtual as well as real-
world testing environments. 

7.3 Key results and findings 

This section summarises the most important findings and results for each of the 
research questions. 

Findings related to RQ1: Which technical hurdles and challenges do ADS currently 
have to overcome? 

 According to the web survey conducted, the main challenges found for ADS are 
complex urban environments, temporary work zones and poor visibility due to 
bad weather conditions. Road surface characteristics, road alignment and lighting 
were rated as minor influencing factors. Given the survey results, it can be 
concluded that intersections with poor visibility due to obstructions or bad 
weather, or unclear lane markings and traffic signs pose particular problems. 

 As the literature review concludes, there is a clear need to improve in-vehicle 
environment detection and perception systems (cameras, LIDAR etc.) in adverse 
weather conditions. Sensor fusion techniques are being used to compensate for 
the weaknesses of single sensors, but they still need further testing to function 
reliably in complex and challenging traffic situations. In particular, predicting 
other road users’ trajectory and movements will be a main part of future research. 

 Testing procedures for ADS must be harmonised to prepare for a uniform 
certification and homologation process. Currently, there are numerous projects 
dealing with virtual or real-world testing, but uniform solutions are preferable. 
SAE is currently preparing the standard J3092, which will contain dynamic test 
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procedures for ADS on a test track. However, there are currently no standardised 
procedures for virtually testing ADS, especially not for intersections. 

 Another main challenge as essential part of the testing procedure is to identify the 
testing scenarios that represent an application-specific typical or critical 
combination of actions or events in a traffic situation. In current approaches, 
these so-called benchmark scenarios can be found by analysing real-world driving 
data, accident data or risk analysis methods. 

 Regulations such as the Vienna Convention on Road Traffic and UN regulation 
79 have been amended. Test licenses have been granted in several countries for 
specific test sites. However, there are still legal hurdles to allow the operation of 
automated vehicles on public roads. 

Findings related to RQ2: What are the state-of-the-art technologies to enable
automated driving in junction environments? 

 Intersection collision avoidance and mitigation systems can be distinguished into 
vehicle-based, infrastructure-only and cooperative I2V/V2I systems. Despite the 
many projects and research studies in the field, there is still no commercially 
available intersection assistance system for automated vehicles on the market. 

 Forward Collision Avoidance systems are the most advanced driving assistance 
systems available to avoid or mitigate collisions at junctions. Current solutions 
are primarily tailored to rear-end and pedestrian collisions. Detecting and 
avoiding angle or turning collisions must be a key feature of ADS. 

 An intersection collision detection system must be able to adapt to different 
intersection types. It has been found that most studies do not validate their 
models on a large variety of intersection layouts and characteristics. 

 Various collision detection algorithms have been proposed, but the coverage of 
these algorithms is limited to only a few scenarios. Validation and verification of 
the systems must take into account the most critical combinations of collision 
parameters. 

 Instead of solely focussing on collisions, it is also recommended to consider near-
misses as threat measure. Near-misses do not lead to a collision, but may result in 
discomfort for vehicle passengers and should therefore be avoided by ADS. 

Findings related to RQ3: What are the current collision scenarios at three- and four-
legged at-grade junctions and how can they be clustered from historical accident data? 

 In the 1,056 junction accidents investigated, more than three-quarters of the 
involved persons were car driver occupants, of which 38 percent were injured. 
The road user group showing the highest injury rate are pedestrians. In general, 
car occupants are among the safest road users, together with HGV occupants. 
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 An initial descriptive analysis of the causation factors showed that a failure to 
give way, to stop and to avoid are the top three precipitating factors for junction 
accidents. 

 The k-medoids method was found to be a valid technique for the given dataset 
and resulted in satisfactory partitioning quality, which was measured by the 
average silhouette value. The clustering exercise resulted in thirteen crash clusters 
for T-junctions and six crash clusters for four-legged junctions, which were 
further analysed by association rules. 

 The scenarios obtained from the association rule method revealed seven high-
injury scenarios (i.e. with serious or fatal injury) for T-junctions and five high-
injury scenarios for four-legged junctions, which mainly involve a failure to give 
way.  

 There are no rear-end collisions included in the set of high-risk scenarios. This is 
due to the fact that the injury outcome was found to be lower for rear-end 
collisions than for angle collisions. 

 The high-frequency scenarios at three-legged junctions do not include any of the 
high-injury scenarios. They include two rear-end collisions, which are not 
included in the high-injury scenarios. 

 There was no scenario found involving car-pedestrian or car-bicycle collisions, 
which can be explained by the low number of vulnerable road users among all 
involved persons in the given accident dataset. 

Findings related to RQ4: How can those collision scenarios be represented and
enhanced for sub-microscopic simulation to evaluate the safety performance of
intersection assistance systems? 

 This thesis presents the first study that developed and demonstrated a simulation 
and evaluation framework for assessing junction safety involving automated cars. 
It includes the creation of models for the road environment, vehicles, sensors, 
driver behaviour and collision avoidance systems as well as a comprehensive 
evaluation procedure based on safety performance indicators.  

 The study has shown that not all of the data needed to create the models can be 
derived from the accident data. Therefore, missing information was supplemented 
by assumptions and was enhanced with representative variations of real-world 
conditions, sampled by a Monte Carlo approach. 

 The applicability of the simulation and evaluation framework was demonstrated 
by an experiment based on a selected collision scenario from study 2. In 
particular, a right-turn manoeuvre by an automated car at a non-signalised T-
junction was evaluated, where another car is crossing from the right with the 
right of way 
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 The number of collisions and conflicts were reduced to a tenth, when adding a 
sideward-facing sensor to the automated vehicle’s crash avoidance system. This 
clearly demonstrated the safety performance increase in this particular junction 
scenario. By using additional sideward-facing sensors with 95 percent detection 
probability, 96.5 percent of all simulations resulted in no collision or conflict. 

 The conflict indicator analysis of the demonstration study confirmed the 
hypothesis that a forward collision avoidance system is not sufficient to robustly 
avoid collisions with crossing traffic and therefore needs additional side collision 
assistance. Simulations with forward-facing collision avoidance only resulted in 
more critical braking situations than with additional sideward-facing sensors. In 
general, the additional sideward-facing sensor decreases the number of safety-
critical events for both vehicles. 

 

Findings related to RQ5: What general recommendations can be made for the safety
performance indicators to be considered in virtual testing of ADS at junctions? 

 For different collision scenarios, different combinations of safety performance 
indicators are recommended. For example, TTC calculation varies for different 
crash types. Therefore, the evaluation algorithm was developed for angle 
collisions, rear-end and head-on collisions separately.  

 In general, it is recommended to analyse both the collision and the conflict risk as 
part of the safety performance evaluation. The traffic conflict technique is a well-
recognised supplement to traditional crash analysis and has been applied in 
various studies related to intersection safety. However, there is still no clear 
evidence on the relationship between crashes and conflicts, but taking into 
account near-misses gives a more complete picture and allows to analyse events 
that might have led to a collision if there was no evasion manoeuvre. 

 The collision analysis should include an estimation of the injury severity. The sub-
microscopic simulation environment used in this study does not include a physical 
impact or deformation computation. Collision severity was therefore estimated by 
impact angle and speed relationships.  

 To identify if there was a conflict or not, a combination of several indicators is 
recommended. First, the analysis of the longitudinal jerk indicates a critical 
braking manoeuvre, which is then used to compute the time-to-accident. The 
TTA is further related to the speed driven before the braking and a threshold 
function is used to determine if it was a critical braking event or not. If there was 
no braking at all, the post encroachment time is used as an indicator to identify 
close encounters of the involved road users. A PET smaller than 1 second 
indicates a conflict.  

 Instead of using a single point of conflict, it is recommended to define a zone that 
depends on the vehicle dimensions. In the study, this zone is spanned by a conflict 
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hexagon, which is used to obtain the projected and actual timestamps, when the 
vehicles enter or exit the potential area of collision. The hexagon principle can be 
used for both TTC as well as PET calculations. 

7.4 Discussion on generated scenarios for automated driving 

The validity of a virtual test of an automated vehicle is strongly related to the 
underlying knowledge base (Helmer et al., 2015), which the testing scenarios and 
simulations models are derived from. This knowledge base can be built from a variety 
of sources, such as previous field operational tests, naturalistic driving studies, expert 
opinions, surveys or historical accident data. Ideally, testing scenarios are identified 
from a combination of all of those sources, although the synthesis could be 
challenging. A database-driven method to follow this holistic approach was developed 
by Pütz et al. (2017) within the project PEGASUS. This thesis focused on one aspect 
of this knowledge base, namely the analysis of accident data to identify critical testing 
scenarios. Hence, instead of spanning the number of possible scenarios at junctions by 
all variations in traffic situations and environment conditions, the study focussed on 
the identification of relevant existing, hazardous situations. 

The method of clustering intersection crashes into distinct groups, including such a 
high number of variables as used in this thesis, is novel. However, there has been 
much research using other methods for a similar purpose. For example, Abdel-Aty et 
al. (2006) analysed numerous parameters to identify crash profiles for 45 different 
intersection configurations in Florida. However, this was made for different AADT 
values and numbers of lanes, which were not included in this study. Also, the 
objective of this thesis is different, because it aimed at extracting relevant 
combinations of junction situations for simulation, while Abdel-Aty et al. (2006) 
provided crash profiles that assist in identifying intersections with specific problems. 
Therefore, the results cannot be directly compared. 

Most existing research on intersection scenarios focussed on the classification of pre-
crash manoeuvres, not combined with parameters about the road environment, 
collision partners, points of impact, injury types, causation factors and traffic control. 
Compared to literature, this thesis study can be seen as more detailed in terms of crash 
circumstances. In the European INTERSAFE project (INTERSAFE, 2005), 
intersection accidents were classified according to the pre-crash driving manoeuvres 
(in right-hand traffic). Twenty intersection situations were identified, of which the top 
five were: 1) Vehicle A crossing path, with vehicle B coming from the left or right 
(which corresponds to the high-injury scenarios X-1.1, X-2.1 and X-6.1), 2) A turning 
left into the path of B coming from the left (see X-4.1), 3) A turning across the path of 
B coming from the opposite direction (see X-6.2, T-4.1, T-13.1), 4) A turning right 
into the path of B coming from the left (see T-12.3) and 5) A hitting the rear of B 
waiting to turn left (see the high-frequency scenarios T-1.1, T-1.2, T5.1). 
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The TRACE project identified six different scenarios at four-legged intersections from 
a statistical analysis of crashes in the European Union (Molinero Martinez et al., 
2008). The scenario where A crosses the road and the trajectory of the opponent 
vehicle B, which is turning or going straight, is more frequent and more severe than 
any other. 70 percent of all intersection accidents belong to that scenario. This 
corresponds to the most frequent scenarios X-1.1, X-4.2, X-2.1 and X-5.1, from 
which X-1.1 was also found as one of the high-injury scenarios. 

Of all intersection-related crashes analysed by Choi (2010), about 96 percent had 
critical reasons attributed to drivers, while critical reasons related to vehicle or 
environment were assigned in less than three percent of these crashes. Wiltschko 
(2004) concludes that intersection assistance systems must be particularly designed to 
avoid red-light violations and fail to give way. This is also confirmed by this thesis 
since failures to give way are a precipitating factor in most scenarios. 

Kim et al. (2017) evaluated collision warning systems for intersections based on 
scenarios derived from naturalistic driving data. They identified sixteen vehicle-to-
vehicle accident scenarios and studied the accident prevention capabilities of camera-
based and radar-based collision warning in those scenarios. The study primarily 
focussed on vehicle movements and did therefore not differentiate between different 
junction types and does not include information about traffic control or speed limits. 
A drawback of their study is that it considers only one safety indicator called safety-
remaining distance and no conflicts, and the interaction with vulnerable road users is 
not included. In comparison to their work, this thesis uses accident data instead of 
naturalistic driving data. The latter is certainly interesting for deriving scenarios from 
a wider perspective, and a systemic approach including several sources of information 
for generating scenarios is recommended for the future. 

It can be seen that an examination of the results from study 2 in relation to existing 
research shows similarities, although a direct comparison is difficult due to varying 
data sources and methods used. The clusters and scenarios obtained certainly 
delivered useful information to proceed to study 3, the virtual assessment. But it is 
also worth to discuss, if the results can be generalised for other purposes and future 
studies. A comparison of the accident data sample with UK data as given in the CARE 
database resulted in significant similarities in terms of the proportions of accident 
cases by junction type as well as by injury level. Thus, although this study was 
conducted in a specific area in the UK, the results should be generalizable to other 
areas. However, since the data is based on left-hand traffic, the direct transferability 
of the obtained scenarios to other countries should be validated with additional data.  

A new challenge for generating virtual testing scenarios is the identification of yet 
unknown, automation-specific scenarios, which might be hidden in the whole 
spectrum of situations (Helmer et al., 2015). A limitation of study 2 is that the 
scenarios identified are based on human-related crash situations and do not 
necessarily reflect critical situations that come with sensor failure or misinterpretation 
of the automated driving control. Assuming that the car operates automated, some 
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scenarios such as rear-end crashes might be avoided to a great extent by reliable 
environment perception and motion planning, but there might be new hazards caused 
by automation.  

Certainly, there may be different key testing scenarios depending on which issue is 
targeted. For example, targeting at maximum casualty reduction for vulnerable road 
users will require different testing measures than targeting at the vehicles’ full 
functionality. The pre-crash scenarios derived from this study build the foundation for 
further research on testing assisted and automated vehicle technologies. The study 
focussed on the scenarios with serious or fatal injury outcome, which were compared 
to the high-frequency scenarios. Although there is no doubt about the importance of 
vulnerable road user safety, neither the cluster analysis and thus nor the association 
rule method resulted in a distinct pedestrian or cyclist scenario. Considering the 
frequency of certain crash types at junctions, car-pedestrian and car-cyclist collisions 
are discounted, which might not be true if injury frequencies were taken into account. 
A larger sample size or additional accident data sources may have to be added to 
derive testing scenarios for vulnerable road user interaction. 

A final issue to mention with regards to the generated scenarios is that they might 
change over time as road user behaviour will probably change with increased 
automation. This means that some situations currently encountered in traffic will 
become rarer, while there might be new situations coming up due to behavioural 
changes. For instance, new critical scenarios may arise from misunderstandings 
between human road users and automated vehicles. Consequently, a sound database 
of scenarios should be regularly updated with new knowledge and data. 

7.5 Discussion on virtual assessment of safety performance 

There are strong arguments that vehicle automation will have a positive impact on 
overall safety. However, those arguments are not yet sufficiently proven by 
quantitative figures (Helmer et al., 2015). In this context, virtual testing plays a vital 
role in demonstrating this positive impact by using appropriate indicators. Numerous 
research projects have been conducted to virtually assess the safety performance of 
automated vehicles (Beglerovic et al., 2017; Olivares et al., 2016; Pütz et al., 2017; 
Rodarius et al., 2015; Roesener et al., 2017). However, those studies primarily 
focussed on automated driving functions on the motorway, but did not particularly 
address junction safety. Kim et al. (2017) evaluated collision warning systems for 
intersections based on scenarios derived from naturalistic driving data and accident 
records. However, their study focuses on accident prevention rates and considers only 
one safety indicator and no conflicts. This thesis is the first work, to the author’s 
knowledge, which thoroughly generated critical situations for testing automated 
driving at junctions, and which developed a modular simulation and evaluation 
framework to allow the assessment of various safety indicators for those junction 
scenarios. 
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The virtual experiments conducted within this thesis provide a quantification of the 
effectiveness of different characteristics of automated intersection assistance systems. 
Those systems are assumed to be a core element of future automated vehicles to 
ensure safe and efficient operation, e.g. in urban areas. The intersection assistance 
systems were tested in four variations, which differ in the type of vehicle sensors 
(forward-facing sensor only vs forward plus sideward-facing sensor) and the quality 
of object detection within the vehicle’s environment (75% vs 95% detection 
probability). A lower detection probability infers the occurrence of detection failures, 
which are modelled by stochastic sampling. In reality, these failures may be caused by 
environment phenomena such as light and shade areas, reflections, sun glare or poor 
weather conditions such as heavy rain, snow or fog, which negatively influence the 
object recognition and distance measurement.  

The simulation and evaluation framework was demonstrated for one selected collision 
scenario, for which the safety performance was calculated as the sum of the 
effectiveness of the system divided by the overall amount of simulations. The 
effectiveness was quantified by the number of occurred collisions and near-miss 
events, also called conflicts. Hence, each of the four combinations in this scenario 
resulted in a collision and conflict probability, which were compared to derive 
conclusions. For a complete vehicle test, the overall safety performance would result 
from the sum of the effectiveness in several scenarios weighted by their respective 
frequency. Since it was not feasible to assess all scenarios obtained in study 2, the 
conducted simulation experiment does not give a generalised indication of how 
junction safety will change with increased automation. In fact, this was not the aim of 
the thesis. Instead, a basic modular framework for future evaluations was built, and 
one particular scenario was assessed to showcase the framework’s applicability and 
versatility. 

Due to its modular architecture, the framework is applicable to other simulation 
environments and can be enhanced or replaced by other modules. For example, this 
thesis used CarMaker as simulation environment, because it provides sophisticated 
vehicle, road and driver models, which can be easily adapted. Basically, this 
environment can be replaced by other tools as long as they can provide the same 
output quantities. The developed framework can also be used for other vehicle types, 
such as automated mini-busses, which must pass junctions. The safety performance 
indicators and the resulting evaluation process would remain the same. 

A novelty of this thesis is the method how to evaluate the safety performance from 
numerical indicators. A combination of indicators and respective thresholds was 
implemented for the particular requirements that a junction scenery imposes. This 
evaluation method can be used for other studies as well, as it comprises a self-
contained module with defined inputs and outputs. Parameters such as indicator 
thresholds (e.g. minimum time-to-collision) can be set according to the needs of the 
virtual test. 
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The application of conflict and near-miss indicators in the evaluation procedure may 
raise a discussion about the relationship between accidents and near-misses. For 
almost five decades, researchers have been discussing whether near-misses as 
surrogates are valid measures for safety. On the one hand, there have been numerous 
publications that presented a foundation for certain crash-conflict ratios. On the other 
hand, doubts about the validity of surrogate measures were expressed due to 
unconvincing evidence from observed data. The presented thesis does not provide 
such conflict validation methods, but includes the number of detected conflicts as 
overall safety performance measure. For future applications of the presented 
framework, the expected number of accidents based on the detected conflicts may be 
taken into account to derive a pass/fail criterion for the tests. 

The demonstration experiment proved that additional sideward-facing sensors 
tremendously increase the safety performance in comparison to forward-facing 
sensors. One might argue that this finding is not surprising. However, the two sensor 
systems were additionally varied by the detection probability, and the resulting 
analysis on indicators gave insights into the influence of detection failure on impact 
speeds, impact angles as well as time-related conflict measures. Hence, the study 
resulted in more than just collision and conflict probabilities. If applied to numerous 
sceneries and scenarios, the results can lead to recommendations on road 
infrastructure adaptations or advanced collision avoidance methods. 

The study has a number of possible limitations. For example, the way of deriving 
collision indicators such as the delta of velocity and the resulting injury probabilities is 
based on a simplified approximation following Newton’s principle of momentum 
conservation. Since CarMaker was not designed for collision simulations, effects such 
as deformations, rotations or rebound of the vehicles after the impact are disregarded. 
If CarMaker was replaced or complemented by a tool that is able to calculate those 
effects, the evaluation procedure would achieve a more realistic estimation of injury 
severity. 

Furthermore, the injury risk curves used to define the probability of different injury 
levels are based on US crash data recorded between 1995 and 1999. Taking into 
account the safety improvements due to modern vehicle technologies and safety 
systems in the last two decades, one might argue that the overall injury risk in relation 
to the driven speed might have changed. An update of those injury risk curves with 
more recently collected data could improve the accuracy of injury estimation, but this 
was kept for future work. 

Another limitation related to the collisions is that only primary collisions are 
investigated. Secondary collisions, e.g. caused by the vehicle hitting a nearby roadside 
object or approaching traffic after the impact, would enhance the risk assessment by 
an additional factor. However, this would also increase the model complexity. 
Another way for enhancing the simulations would be to include steering evasion 
manoeuvres to the collision avoidance models in addition to emergency brakings. This 
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might also lead to collisions caused by excessive steering and instabilities of the 
vehicle, such as run-off-road accidents. 

In comparison to a real-world system, a simulation-based approach has the advantage 
that the road users’ trajectories and velocities are precisely known and do not have to 
be predicted. Thus, this thesis did not develop a trajectory prediction algorithm, but 
instead, used the data from a reference simulation to calculate e.g. the time-to-
collision. It is significant to mention that this implies an ideal system with a 100% 
accurate prediction. In practice, a range of possible trajectory variations is computed 
as a threat assessment procedure for collision warning systems. The presented 
framework would have to be enhanced if such models wanted to be evaluated, too. 

The environment sensor models used in this study imitate a camera vision system for 
object recognition, with several cameras combined to increase the field of view. 
Detection failures were injected stochastically to the object detection model to imitate 
real-world effects such as adverse lighting or weather conditions. In reality, those 
detection failures are minimised by sensor fusion techniques, i.e. combining image 
processing methods with radar, ultrasonic and LIDAR data. This thesis did not go so 
far, since the CarMaker software version used had limitations regarding physical 
sensor models when used with MATLAB/Simulink. By default, the sensor models used 
are ideal sensors that detect each object with 100 percent accuracy. This is why a 
failure injection was implemented. For future studies and future releases of CarMaker, 
it is planned to replace the ideal sensors with high-fidelity sensor models that can 
accurately replicate real-world behaviour and weaknesses of sensors.  

Regarding the validity of the simulation models, it can be seen as a limitation that the 
automated vehicle model as a whole was not validated with real-world measurements. 
It must be noted that all submodels such as tires, suspension system, brakes etc. are 
well-recognised reference models with validated behaviour, but the entire vehicle 
system including environment sensors and collision avoidance control might not 
entirely reflect the real-world behaviour. Future work would be necessary to create an 
accurate replication of an automated vehicle based on calibration measurements, 
which was not feasible within this thesis. However, the modular design of the 
developed framework allows replacing or enhancing the models as required. 

Besides the variation of environment detection systems and their accuracy, each 
simulation run was defined by a unique combination of parameters that were sampled 
by the Latin Hybercube method. Those parameters were the velocity and the lateral 
position of the opponent vehicle as well as the road friction coefficient. Other 
parameters such as the junction configuration or the driving manoeuvres and 
behaviour of the ego car were kept static. For the objectives of the demonstration 
experiment, this set of varying parameters was sufficient to assess the performance of 
the different sensor systems. Actually, the number of variations can be increased, 
because the Latin Hypercube supports a highly dimensional parameter space to 
sample from. Interesting other variations could be the driving behaviour of the 
opponent or the variation of traffic control at the junction. 
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The limited number of parameter variations was also caused by the relatively high 
computational requirements. On average, a simulation run needed 12 seconds to be 
completed while the subsequent evaluation script had an average computation time of 
8 seconds. For each of the four sensor systems, 4,000 simulations were conducted. 
The accuracy of the outcome depends on the number of random numbers used. For 
an infinite number of Monte Carlo samples, the solution would be exact. Considering 
that there needs to be a reference simulation for each run, as explained above, the 
total number of simulations was 20,000. Consequently, more than 100 hours were 
needed to complete all calculations. It must be mentioned that computation efficiency 
was not a main goal of the study. Certainly, future work will include measures to 
improve the performance, e.g. by parallelising simulations. Seidel (2017) used cloud 
computing for the automated vehicle simulations, which is also a promising way to 
reduce simulation times.  

The study applied a sub-microscopic simulation method to assess safety performance. 
As explained, the main focus was to investigate the main influence of sensor systems 
to detect the environment. The role of the passengers in the automated car was 
disregarded. Driver behaviour models solely defined the automated car’s behaviour 
and scenarios that involve a handover of control to the passenger were not discussed. 
Without a doubt, the issue of safe handovers and observation of the passenger’s state 
of vigilance are important elements for a future operation of ADS. Numerous driving 
simulator studies were conducted to examine the best ways for human-machine 
interaction (Bahram et al., 2015; Beller et al., 2013; Brandenburg and Skottke, 2014; 
Kircher et al., 2014; Körber et al., 2015; Merat et al., 2012; Naujoks et al., 2014), 
including different test scenarios where a handover is required. This affects ADS for 
SAE level 3, where the driver needs to take over in critical situations. However, 
current developments aim to reach level 4 systems, where the vehicle must be able to 
perform a safe exit manoeuvre without involving the driver at all. Therefore, this 
thesis has been limited to level 4 operation without including additional handover 
scenarios. 

There are many other issues to discuss with regards to limitations and opportunities 
of virtual vehicle tests, because there is a lot of research ongoing in this field. New 
studies are being published almost daily and by the time this thesis is published, new 
research will be available to review. There have been lively discussions about the role 
of virtual testing in the vehicle certification and approval process. Real-world driving 
tests may become less and less important due to their high required costs and time, 
and virtual tests may be the main method for type approval, as it is the case today for 
the electronic stability control (Lutz et al., 2017). Nevertheless, virtual testing 
methods still suffer less fidelity and overall acceptance in comparison to real-world 
tests. Certification bodies tend to trust real-world tests more than simulations. This is 
due to missing evidence on the validity of simulations. This is also true for the results 
of this thesis, which would have to be confirmed with physical measurements. The 
collision and conflict situations reconstructed in the virtual environments must be 
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validated with real-world driving data or investigations of selected crashes. Certainly, 
this is an important issue for future research. 

Overall, the methods developed in this thesis and the results obtained can be highly 
beneficial for future assessment of automated vehicles that will be operated in road 
areas with at-grade junctions. Especially for non-signalised junctions, ADS are still 
facing technical challenges, which require comprehensive tests supported by 
simulation.  

7.6 Recommendations for further research 

Several issues have been discussed in the previous sections that lead to possible future 
work. In the light of the results and findings discussed above, two main questions 
remain to be resolved. First, what are the new risks at junctions that come with an 
increased penetration of automated vehicles and how must the testing scenarios be 
enhanced? And second, what are the key criteria and procedures for certification and 
homologation of ADS? 

Regarding the first question, there is a need to identify risks that are related to vehicle 
automation only. There might be new collision types, which are currently unknown. 
This is also related to the question how the derived accident scenarios can be merged 
with scenarios obtained from other sources, e.g. real-world driving data? In the near 
future, a large amount of data will be available from ongoing pilot tests of ADS. This 
data can deliver insights and new information about risks and can thus lead to new 
test conditions and parameters. Further studies are required to enhance current 
methods for generating validation scenarios with driving data from pilot tests. While 
this thesis provides a novel method for evaluating junction scenarios from crash data, 
a holistic, systematic approach is recommended for the next step, which takes into 
account various sources of data. For instance, this thesis did not result in any 
vulnerable road user scenarios due to the dataset used. Real-world observations of the 
interaction between automated vehicles and pedestrians or cyclists at intersections will 
reveal such scenarios. Furthermore, the scenario generation procedure should be as 
automated as possible to reduce workload. 

The second recommendation that can be made is related to the certification and 
homologation process for automated vehicles. More research on approval criteria is 
needed to develop a harmonised process. Currently, there are no standardised 
procedures for approving ADS and each manufacturer has its own test methods. 
Certainly, certification will depend on the ADS function to be approved or the areas, 
in which the vehicle operates. For example, the highway pilot will have different 
approval requirements than an urban automated shuttlebus. As soon as an automated 
vehicle has to pass junctions, the approval criteria must include a certain level of 
safety for the relevant junction scenarios. Further studies are required to establish a 
uniform process for certification and homologation, which necessarily have to include 
procedures for junctions, too.  
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One step towards uniform approval criteria is the definition of pass/fail criteria for 
automated vehicle tests. This thesis provides the baseline for such criteria by delivering 
safety performance indicators, which are then used to calculate the overall collision 
and conflict probabilities. Future work will include the investigation of reasonable 
thresholds for the probabilities, which can then be used as pass/fail criteria. 

A promising approach towards approval of ADS is functional decomposition, as 
currently applied in robotics or informatics (Amersbach and Winner, 2017). 
According to that, the driving task is split up into several layers, each of which being 
tested individually. For instance, information reception can be separated from 
information processing. While the reception may have failures caused by dirty sensors 
or errors in receiving C2X messages, the processing could be influenced by 
inaccuracies in object classification. The understanding of the situation, the decision 
on which action to take and the final action could be other layers of the 
decomposition. This approach is expected to reduce testing complexity and might 
bring answers to the question, where the cut between virtual and real-world testing 
must be made. 

7.7 Overall conclusions 

In this thesis, a new validation method has been developed for automated driving 
systems at road junctions. The method comprises the clustering of critical traffic 
scenarios at junctions as well as a simulation and evaluation framework to validate 
those scenarios. The applicability of the framework was demonstrated by an 
experiment based on a selected car-to-car collision scenario. It could be shown that 
the number of collisions and conflicts were reduced to a tenth when adding a crossing 
and turning assistant to a basic forward collision avoidance system. The safety 
performance indicators selected and implemented in the framework can be seen as a 
new reference for conducting virtual tests at junctions. The outputs of this thesis lead 
to a faster development cycle for the automotive and supply industry as well as for 
manufacturers of infrastructure-based intersection assistance systems. Considering the 
current progression of automated transport, the results are highly relevant, both for 
virtual as well as real-world testing environments and are an important step towards a 
novel certification and homologation process of automated vehicles. 
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9 Abbreviations 

Abbreviation Description 
AADT Annual Average Daily Traffic 
ABS Anti-lock Braking System 
ACC Adaptive Cruise Control 
ADAS Advanced Driving Assistance Systems 
ADS Automated Driving Systems 
AEB Automated Emergency Braking 
CDF Cumulative Probability Density Function 
CICAS Cooperative Intersection Collision Avoidance Systems 
DSRC Dedicated Short Range Communication 
DST Deceleration to Safety Time 
DTI Distance-to-Intersection 
EDR Event Data Recorder 
EES Energy equivalent speed 
ESC Electronic Stability Control 
FCA Forward Collision Avoidance 
FCW Forward Collision Warning 
GNSS Global Navigation Satellite System 
GPS Global Positioning System 
GUI Graphical User Interface 
HIL Hardware-in-the-Loop 
HMI Human Machine Interface 
I2V Infrastructure-to-Vehicle 
ICAMS Intersection Collision Avoidance and Mitigation Systems 
ICT Information and Communication Technologies 
ISA Intelligent Speed Adaptation 
ITS Intelligent Transport Systems 
LHS Latin Hybercube Sampling 
LIDAR Light Detection and Ranging 
LKA Lane Keeping Assist 
MAIS Maximum Abbreviated Injury Scale 
MIL Model-in-the-loop 
NHTSA National Highway Traffic Safety Administration 
OEM Original Equipment Manufacturer 
OpenCRG Open Curved Regular Grid 
OSM Open Street Map 
OTS On the Spot 
PDF Probability Density Function 
PET Post Encroachment Time 
RAIDS Road Accident In-Depth Studies 
RMSE Root-Mean-Squared Error 
SAE Society of Automotive Engineers 
SCA Side Collision Avoidance 
SIL Software-in-the-loop 
SLAM Simultaneous Location and Mapping 
SSAM Surrogate Safety Assessment Methodology 
TCS Traction Control System 
TLC Time to Line Crossing 
TTA Time-to-Accident 
TTC Time-to-Collision 
TTD Time-to-Disappear 
TTI Time-to-Intersection 
TTR Time-to-React 
V2I Vehicle-to-Infrastructure 
V2V Vehicle-to-Vehicle 
VRU Vulnerable Road User 
WiFi Wireless Fidelity 
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Appendix A: Web survey questions 

Screenshots of the web survey “Tomorrow's Road Infrastructure for Automated 
Driving” 
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Appendix B: Collision code sheet 
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Appendix C: OTS database tables 

Figure 126 give an overview on the table relationships in the MS Access database, 
which was created for the OTS accident data analysis. 

 

Figure 126: Relationships of all OTS tables in the database 



253 

 

Appendix D: Overview of all scenarios at T-junctions 

The association rules resulted in 24 scenarios for three-legged junctions, which are 
described on the following pages. The figures illustrate the scenarios in a simplified 
manner to better understand the descriptions in the text. The red dots in the figures 
are the points of impact (i.e. front, offside or nearside). Surface conditions, area 
(rural/urban), speed limits, vehicle types and injury levels are not shown. Note that all 
crashes in the data occurred on UK roads with left-hand traffic and that the road 
parameters are given for the path of A. Some scenarios were combined due to similar 
characteristics. 

 

Scenario T-1.1 (F: Rear End): Car A is going straight on a major 
road and hits another car at the rear end. A is travelling on a rural 
dual carriageway with 70 mph speed limit without active or passive 
yield instruction, and it is caused by A failing to stop or failing to 
avoid or by other precipitating factors from B. The surface is dry 
and A remains uninjured or suffers slight injury.  

 

Scenario T-1.2 / 7.4 / 9.1 (J: Crossing/Vehicle Turning): Car A is 
going straight on a major road and hits another car B with its front, 
which turns right from a minor road joining from the left. A is 
travelling on an urban single carriageway with 30 to 50 mph speed 
limit without active or passive yield instruction, and it is caused by B 
failing to give way. The surface is dry and A suffers slight injuries.  

Scenario T-1.3 (L: Right Turn Against): Car A is going straight on a 
major road and hits another car B with its front, which is turning 
right into a minor road. A is travelling in dark light conditions on an 
urban single carriageway with 40 to 50 mph speed limit controlled 
by traffic lights, and it is caused by B failing to give way or 
manoeuvring inappropriately. A suffers slight injuries.   

Scenario T-2.1/8.1 (J: Crossing/Vehicle Turning): Car A is turning 
right into a major road and hits another car with its front, which is 
coming from the right. A is travelling on an urban single 
carriageway with 30 to 50 mph speed limit controlled by a static 
give-way sign and it is caused by A failing to give way, leading to no 
or slight injury. 
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Scenario T-2.2 (K: Merging): Car A is pulling out from a minor road 
to turn right into a major road and is hit by another car B on its 
nearside, which is going straight. A is travelling on an urban or rural 
road controlled by a static give-way sign, and it is caused by A 
failing to give way. 

 

Scenario T-3.1 (F: Rear End): Car A is hit by another car or HGV B 
on its rear end, while waiting to turn right. A is travelling on a single 
carriageway with 30 to 60 mph speed limit without active or static 
yield instruction. It is caused by B failing to stop, leading to no or 
slight injury.  

Scenario T-4.1 (L: Right Turn Against):Car A is turning into a 
minor road and is hit by a PTW B on its nearside, which is going 
straight in the opposing direction. A is travelling on a single 
carriageway with 40-50 mph speed limit without active or static 
yield instruction. It is caused by A failing to give way or 
manoeuvring inappropriately. 

 

Scenario T-5.1 / 5.2 /11.2 (F: Rear End): Car A is going straight on 
a major road and hits car B at the rear-end, which is going straight. 
A is travelling on a single or dual carriageway with 30 to 60 mph 
speed limit without active or static yield instruction. It is caused by 
A failing to stop or to avoid, leading to no or slight injury.  

Scenario T-5.3 (M: Manoeuvring): Car A goes straight on a major 
road and hits an LGV or HGV B with its front, which is 
manoeuvring on the junction. A is travelling on a single or dual 
carriageway with 60 mph speed limit, and it is caused by an 
inappropriate manoeuvre by B. There is no clear indication on the 
type of traffic control. 

 

Scenario T-6.1 (M: Manoeuvring): Car A is turning left into a major 
road and collides with another car, cycle or PTW B, which is coming 
from the right. A is travelling on a rural or urban dual carriageway 
road. There is no clear indication on the speed limit, traffic control, 
point of impact (either front or offside of A) or injury severity. 
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Scenario T-6.2 (F: Rear End): Car A is approaching a T-junction 
terminated by a major road and hits another car or PTW B on its 
rear end, which is waiting to turn. A is travelling on a rural single or 
dual carriageway road with 30 to 60 mph speed limit controlled by 
a static give-way sign, and it is caused by A failing to stop. The 
surface is dry and A remains uninjured or suffers slight injury. 

Scenario T-7.1 (F: Rear End): Car A is going straight on a major 
road and hits another car B on its rear-end. A is travelling on a rural 
dual carriageway road without active or static yield instruction, and 
it is caused by A failing to stop or to avoid. The surface is dry and 
both drivers remain uninjured. There is no clear indication on the 
position or intended manoeuvre of B. 

 

Scenario T-7.2 (L: Right Turn Against): Car A is going straight on a 
major road and hits another road user B with its front, who is 
turning right into a minor road. A is travelling on an urban road 
with 30 mph speed limit either without yield instruction or 
controlled by traffic lights, and it is caused by B failing to give way. 
The surface is dry and both road users remain uninjured. There is no 
clear indication on the opponent road user type. 

 

Scenario T-7.3 (H: Crossing / No Turns): Car A is going straight 
over a T-junction and hits another car B with its front. A is 
travelling on an urban road with 30 mph speed limit without active 
or static yield instruction, and it is caused by B failing to give way. 
The surface is wet and both drivers remain uninjured. There is no 
clear indication on the manoeuvre taken by B. Since collision type H 
is unlikely to happen on a T-junction, this scenario is disregarded. 

Since collision type 

H is unlikely to 

happen on a T-

junction, this 

scenario is 

disregarded. 

Scenario T-7.5 (M: Manoeuvring): Car A is going straight on a rural 
road and hits another road user B with its front, which is pulling out 
of a minor road from the left. This is caused by B failing to give 
way. The surface is dry, there are dark light conditions without 
street light and both drivers remain uninjured. There is no clear 
indication on the speed limit, carriageway type or traffic control.  

Scenario T-9.2 (M: Manoeuvring): Car A is going straight on an 
urban road with 30 mph speed limit and is hit by another car B on 
its nearside, which is pulling out of a minor road. This is caused by 
B failing to give way. The surface is dry. There is no clear indication 
on the carriageway type or traffic control. 
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Scenario T-10.1 (L: Right Turn Against): Car A is going straight on 
a major road and hits another car B with its front, which is coming 
from the opposing direction and is turning right into a minor road. 
A is travelling on a single carriageway with a speed limit of 40 mph 
or 50 mph without active or static yield instruction, and it is caused 
by B failing to give way. The surface is dry and B suffers serious or 
fatal injury. 

 

Scenario T-10.2 (J: Crossing/Vehicle Turning): Car A is going 
straight on a major road and hits another car B, which is emerging 
from a minor road on the left with the intention to turn right. A is 
travelling on a single carriageway in a rural area with a speed limit 
of 40 mph or 50 mph without active or static yield instructions, and 
it is caused by B failing to give way. The surface is wet and A suffers 
serious injury. 

 

Scenario T-10.3 (F: Rear End): Car A is going straight on a major 
road and hits another car B on the rear end. A is travelling on a 
rural single carriageway road with 30 mph speed limit controlled by 
a traffic light, and it is caused by A failing to avoid. The surface is 
dry and A suffers slight injury. There is no clear indication on the 
position or intended manoeuvre of B. 

 

Scenario T-11.1 (M: Manoeuvring): Car A is manoeuvring (possibly 
making a U-turn) on a T-junction and is hit by another road user B 
on its offside. A is travelling on an urban and rural road, and it is 
caused by A manoeuvring inappropriately. There is no clear 
indication on the injury severity, carriageway type, surface 
condition, speed limit or traffic control.  

Due to unclear 

indications on the 

manoeuvres, there 

was no figure 

created for this 

scenario. 

Scenario T-12.1 (J: Crossing/Vehicle Turning): Car A is turning 
right into a major road and is hit by a PTW B on the offside, which 
is going straight on the crossing path. A is travelling on a rural single 
carriageway controlled by a static give-way sign and it is caused by 
A failing to give way. The surface is wet and B suffers serious or 
fatal injury. 

 

Scenario T-12.2 (G: Turning versus Same Direction): Car A is 
turning right into a minor road and is hit on the offside by a PTW B, 
which is overtaking. A is travelling on an urban single carriageway 
with 30 mph speed limit without active or static yield instruction, 
and it is caused by an inappropriate overtake from B.  
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Scenario T-12.3 (M: Manoeuvring): Car A is turning left into a 
major road and is hit by a PTW B on its offside, which is going 
straight on the major road from the right. A is travelling on an 
urban single carriageway with 30 mph speed limit controlled by 
give-way signs, and it is caused by A failing to give way. B suffers 
serious or fatal injury. 

 

Scenario T-13.1 (L: Right Turn Against): Car A is turning right into 
a minor road and hits a PTW B with its front, which is going 
straight in the opposing direction. A is travelling on a rural single 
carriageway with 30 to 50 mph speed limit without active or static 
yield instruction, and it is caused by A failing to give way or 
manoeuvring inappropriately. The surface is wet and B suffers 
serious or fatal injury. 
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Appendix E: Overview of all scenarios at four-legged junctions 

The association rules resulted in 18 scenarios for four-legged junctions, which are 
described on the following pages. Figures illustrate the scenarios in a simplified 
manner to better understand the descriptions in the text. The red dots in the figures 
are the points of impact (i.e. front, offside or nearside). Surface conditions, area 
(rural/urban), speed limits, vehicle types and injury levels are not shown. Note that all 
crashes in the data occurred on UK roads with left-hand traffic and that the road 
parameters are given for the path of A. 

 

Scenario X-1.1 (H: Crossing / No Turns): Car A is going straight 
on a major road and hits another car B with its front, which is 
crossing the path from the left. A is travelling on a rural single 
carriageway with 60 mph speed limit without active or static yield 
instruction and it is caused by B failing to give way. 

 

Scenario X-1.2 (L: Right Turn Against): Car A is turning right 
into a minor road and hits another car B, which is coming from 
the opposing direction. A is travelling on an urban road with 40 to 
50 mph speed limit controlled by traffic lights, and it is caused by 
B violating the red light. Max. injury: Slight. 

 

Scenario X-1.3 (F: Rear End): Car A is crossing a junction and is 
hit by another car B on its rear-end. A is travelling on an urban 
dual carriageway road with 40-50 mph speed limit controlled by 
traffic lights, and it is caused by B failing to avoid. Surface: Dry. 
Max. injury: Slight. 

 

Scenario X-2.1 (H: Crossing / No Turns): Car A is crossing a 
four-legged junction and hits another car or PTW B with its front, 
which is crossing the path from the right. A is travelling on a rural 
single carriageway road with 40-50 mph speed limit controlled by 
static give-way signs, and it is caused by A failing to give way. A 
remains uninjured or suffers slight injury. Max. injury of B: 
Serious or fatal. No clear indication on the surface condition. 
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Scenario X-2.2 (F: Rear End): Car A is turning left and hits 
another car or LGV/HGV B at the rear end or is hit on its rear 
end. A is travelling on an urban or rural single carriageway road 
with 40-50 mph speed limit controlled by traffic lights, and it is 
caused by A or B failing to avoid. There is a slight left curve on the 
path of A. Max injury: Slight. There is no clear indication on the 
surface condition. 

 

Scenario X-2.3 (J: Crossing/Vehicle Turning): Car A is turning 
right into a major road and hits another car B with its front, 
which is coming from the right. A is travelling on an urban single 
carriageway road with 30 mph speed limit controlled by static 
give-way signs, and it is caused by A failing to give way. The 
surface is wet and both drivers remain uninjured. 

 

Scenario X-2.4 (L: Right Turn Against): Car A is turning right 
into a major road and hits another car B with its front, which is 
coming straight from the opposite direction. A is travelling on an 
urban single carriageway road with 30 mph speed limit controlled 
by traffic lights, and it is caused by B failing to give way. Max. 
injury: Slight. 

 

Scenario X-3.1 (L: Right Turn Against): Car A is turning right 
into a minor road and is hit by another car B on its nearside, 
which is coming from the opposite direction. A is travelling on a 
rural single carriageway road with 40-50 mph speed limit 
controlled by traffic lights, and it is caused by A failing to give 
way or manoeuvring inappropriately. Max. injury: Serious or 
fatal. 

 

Scenario X-3.2 (H: Crossing / No Turns): Car A is going straight 
over a junction and is hit by another car B on its nearside, which is 
crossing from the left. A is travelling on a road with 30 to 50 mph 
speed limit without active or static yield instruction. It is caused by 
B failing to give way. There is no clear indication on the area 
(rural/urban) or injury severity. 

 

Scenario X-3.3 (J: Crossing/Vehicle Turning): Car A is going 
straight on a major road and is hit by another car B on its 
nearside. A is travelling on an urban single carriageway road with 
30 mph speed limit without active or static yield instruction. It is 
caused by B failing to give way. The surface is wet and A suffers 
slight injury. 
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Scenario X-4.1 (J: Crossing/Vehicle Turning): Car A is turning 
right into a major road and is hit by a car or LGV B on the 
offside, which is going straight on the major road from the right. 
A is travelling on a rural dual carriageway road with 40-50 mph 
speed limit controlled by static give-way signs, and it is caused by 
A failing to give way. The surface is wet and A suffers serious or 
fatal injuries. 

 

Scenario X-4.2 (H: Crossing / No Turns): Car A is crossing a 
major road and is hit by another car B on its offside, which is 
crossing from the right. A is travelling on an urban single 
carriageway road controlled by traffic lights, and it is caused by A 
failing to give way. Max. injury: Serious or fatal. There is no clear 
indication on the surface condition. 

 

Scenario X-5.1 (H: Crossing / No Turns): Car A is crossing a 
major road and is hit by another car B on its nearside, which is 
crossing from the left. A is travelling on an urban or rural single 
carriageway road with 30 mph speed limit controlled by static 
give-way signs, and it is caused by A failing to give way. There is 
no clear indication on the injury severity. 

 

Scenario X-5.2 (L: Right Turn Against): Car A is turning right 
into a major road and is hit by another car B on its nearside, 
which is coming from the opposite direction. A is travelling on an 
urban road with 30 to 50 mph speed limit controlled by traffic 
lights, and it is caused by A failing to give way or manoeuvring 
inappropriately. The surface is dry and A suffers no or slight 
injuries. There is no clear indication on the carriageway type. 

 

Scenario X-5.3 (M: Manoeuvring): Car A is manoeuvring on a 
junction and is hit by another car B on its nearside. A is travelling 
on a single carriageway road with 40 to 50 mph speed limit 
controlled by static give-way signs, and it is caused by A failing to 
give way. Max. injury: Slight. There is no clear indication on the 
manoeuvre by A or B.  

Scenario X-6.1 (H: Crossing / No Turns): Car A is going straight 
on a major road and is hit by car B on the offside, which comes 
from a minor road and crosses the path from the right. A is 
travelling on a single carriageway road with 30 mph speed limit 
controlled by traffic lights, and it is caused by B failing to give 
way. The surface is wet and B suffers serious or fatal injuries.  
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Scenario X-6.2 (L: Right Turn Against): Car A is going straight on 
a major road and is hit by car B on its offside, which turns right 
from the opposing direction. A is travelling on a road with 60 
mph speed limit controlled by traffic lights, and it is caused by B 
losing control of the vehicle. B suffers serious or fatal injuries. 

 

Scenario X-6.3 (M: Manoeuvring): Car A is going straight on a 
major road and is hit by another car B on its offside, which is 
manoeuvring on the junction. A is travelling on an urban single 
carriageway road with 30 to 50 mph speed limit without active or 
static yield instruction, and it is caused by B failing to give way. 
The surface is dry and A suffers slight injury. 
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Appendix F: Association rule tables and graphs for each cluster 

On the following pages, the association rules obtained for each cluster (13 for T-
junctions and 6 for four-legged junctions) and collision type (see Appendix B) are 
given. Note that only rules with up to three items are presented, sorted by the support 
value. Furthermore, the network graphs are depicted for each cluster, which represent 
the amount of associations identified between the respective antecedent node and the 
given consequent in the centre. The weight or thickness of each edge represents the 
number of associations identified between the respective antecedent node and the 
given consequent in the centre. In other words, nodes with thick edges indicate 
dominant crash attributes and thus define the scenario. For antecedent nodes that are 
not present in the graph, there were no associations found in the rules. Thus they can 
be considered negligible for the respective scenario. 

  



263 

 

Cluster T-C1: “The car hits another car or LGV with its front, while going straight on 

a road with a minor roads joining from the left.” 

Table 37: All rules (up to 3 items) obtained for cluster T-C1 with collision type F (scenario T-1.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=F & RdType=DualCgw Surf=Dry 0.101 0.773 1.389 

Coll=F & RdType=SingCgw DrvInj=Uninjured 0.095 0.762 1.839 

Coll=F & SpdLim=70mph Surf=Dry 0.077 0.867 1.558 

Coll=F & Prec=FailStopDriver FirstImpact=Front 0.065 1.000 1.310 

Coll=F & Prec=FailAvoidOther RdType=DualCgw 0.053 0.818 3.841 

Coll=F & Prec=FailStopDriver DrvInj=Uninjured 0.053 0.818 1.975 

Coll=F & Prec=FailAvoidDriver RdType=DualCgw 0.047 0.800 3.756 

Coll=F & Prec=FailAvoidDriver DrvInj=Uninjured 0.047 0.800 1.931 

Coll=F & SpdLim=60mph Area=Rural 0.041 1.000 2.600 

Coll=F & Light=DarkSL DrvInj=Uninjured 0.041 0.875 2.113 

Coll=F & SpdLim=60mph DrvInj=Uninjured 0.036 0.857 2.069 

Coll=F & Prec=FailStopOther DrvInj=Uninjured 0.036 0.750 1.811 

Coll=F & SpdLim=40=50mph Area=Urban 0.036 1.000 1.625 

Coll=F & Prec=FailStopOther Light=DayNSL 0.036 0.750 1.440 

Coll=F & SpdLim=40=50mph HorizGeom=Straight 0.036 1.000 1.420 

Coll=F & TrfCtrl=GW Surf=Dry 0.036 0.750 1.348 

Table 38: All rules (up to 3 items) obtained for cluster T-C1 with collision type J (scenario T-1.2), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J & TrfCtrl=None RdType=SingCgw 0.219 0.949 1.253 

Coll=J & TrfCtrl=None Prec=FailGiveWayOther 0.183 0.795 2.099 

Coll=J & Prec=FailGiveWayOther TrfCtrl=None 0.183 1.000 1.280 

Coll=J & RdType=SingCgw Prec=FailGiveWayOther 0.178 0.769 2.031 

Coll=J & Prec=FailGiveWayOther RdType=SingCgw 0.178 0.968 1.278 

Coll=J & DrvInj=Slight Prec=FailGiveWayOther 0.136 0.767 2.024 

Coll=J & SpdLim=30mph TrfCtrl=None 0.136 1.000 1.280 

Coll=J & Surf=Dry FirstImpact=Front 0.130 0.957 1.253 

Coll=J & Light=DayNSL DrvInj=Slight 0.124 0.955 1.629 

Coll=J & Light=DayNSL RdType=SingCgw 0.124 0.955 1.260 

Coll=J & SpdLim=30mph Prec=FailGiveWayOther 0.107 0.783 2.067 

Coll=J & Surf=Dry DrvInj=Slight 0.107 0.783 1.336 

Coll=J & Surf=Wet RdType=SingCgw 0.107 0.947 1.251 

Coll=J & Light=DayNSL Prec=FailGiveWayOther 0.101 0.773 2.040 

Coll=J & Area=Rural FirstImpact=Front 0.101 1.000 1.310 

Coll=J & Surf=Wet Prec=FailGiveWayOther 0.089 0.789 2.085 

Coll=J & Area=Rural DrvInj=Slight 0.089 0.882 1.506 

Coll=J & SpdLim=40=50mph FirstImpact=Front 0.089 1.000 1.310 

Coll=J & SpdLim=40=50mph Light=DayNSL 0.071 0.800 1.536 
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Coll=J & SpdLim=40=50mph DrvInj=Slight 0.071 0.800 1.366 

Coll=J & DrvInj=Uninjured Area=Urban 0.065 0.846 1.375 

Coll=J & Light=DaySLUnk FirstImpact=Front 0.065 1.000 1.310 

Coll=J & Light=DarkSL TrfCtrl=None 0.053 1.000 1.280 

Coll=J & Light=DarkSL Area=Urban 0.047 0.889 1.444 

Coll=J & HorizGeom=RightSlight Prec=FailGiveWayOther 0.041 0.778 2.054 

Coll=J & Light=DarkSL Prec=FailGiveWayOther 0.041 0.778 2.054 

Coll=J & Light=DarkSL SpdLim=30mph 0.041 0.778 1.546 

Coll=J & HorizGeom=RightSlight DrvInj=Slight 0.041 0.778 1.328 

Coll=J & Prec=PoorMnvrOther TrfCtrl=None 0.041 1.000 1.280 

Coll=J & Prec=PoorMnvrOther Surf=Dry 0.036 0.857 1.541 

 

Table 39: All rules (up to 3 items) obtained for cluster T-C1 with collision type L (scenario T-1.3), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=L DrvInj=Slight 0.189 0.762 1.301 

Coll=L & Manvr=GoingAheadOther DrvInj=Slight 0.183 0.775 1.323 

Coll=L & TrfCtrl=None RdType=SingCgw 0.178 0.968 1.278 

Coll=L & HorizGeom=Straight DrvInj=Slight 0.142 0.774 1.322 

Coll=L & Area=Rural RdType=SingCgw 0.118 0.952 1.257 

Coll=L & Prec=FailGiveWayOther DrvInj=Slight 0.112 0.826 1.410 

Coll=L & Light=DayNSL RdType=SingCgw 0.112 0.950 1.254 

Coll=L & Area=Rural DrvInj=Slight 0.101 0.810 1.382 

Coll=L & Light=DayNSL DrvInj=Slight 0.095 0.800 1.366 

Coll=L & Light=DayNSL Area=Rural 0.089 0.750 1.950 

Coll=L & Surf=Wet DrvInj=Slight 0.089 0.882 1.506 

Coll=L & SpdLim=30mph DrvInj=Slight 0.083 0.778 1.328 

Coll=L & Prec=PoorMnvrOther RdType=SingCgw 0.065 1.000 1.320 

Coll=L & DrvInj=Uninjured RdType=SingCgw 0.059 1.000 1.320 

Coll=L & TrfCtrl=Light DrvInj=Slight 0.053 0.900 1.536 

Coll=L & Prec=PoorMnvrOther Surf=Dry 0.053 0.818 1.471 

Coll=L & TrfCtrl=Light HorizGeom=Straight 0.053 0.900 1.278 

Coll=L & HorizGeom=RightSlight RdType=SingCgw 0.047 1.000 1.320 

Coll=L & Light=DarkSL HorizGeom=Straight 0.047 1.000 1.420 

Coll=L & Light=DarkSL FirstImpact=Front 0.047 1.000 1.310 

Coll=L & HorizGeom=RightSlight DrvInj=Slight 0.041 0.875 1.494 

Coll=L & Light=DarkSL Area=Urban 0.041 0.875 1.422 

Coll=L & HorizGeom=RightSlight Prec=FailGiveWayOther 0.036 0.750 1.980 

Coll=L & Light=DarkSL Surf=Wet 0.036 0.750 1.760 
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Figure 127: Weighted, directed graphs obtained from all association rules for cluster T-C1 
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Cluster T-C2: “The car hits another car or PTW with its front, while turning right 

into a major road.” 

Table 40: All rules (up to 3 items) obtained for cluster T-C2 with collision type J (scenario T-2.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J & Area=Urban FirstImpact=Front 0.473 0.972 1.262 

Coll=J & Prec=FailGiveWayDriver FirstImpact=Front 0.446 0.971 1.260 

Coll=J & TrfCtrl=GW Prec=FailGiveWayDriver 0.419 0.861 1.300 

Coll=J & FirstIntAct=Car FirstImpact=Front 0.365 0.964 1.252 

Coll=J & SpdLim=40-50mph FirstImpact=Front 0.216 1.000 1.298 

Coll=J & Surf=Wet FirstImpact=Front 0.216 1.000 1.298 

Coll=J & DrvInj=Slight FirstImpact=Front 0.189 1.000 1.298 

Coll=J & DrvInj=Slight Light=DayNSL 0.162 0.857 1.669 

Coll=J & Light=DaySLUnk Surf=Dry 0.135 1.000 1.805 

Coll=J & Light=DaySLUnk DrvInj=Uninjured 0.135 1.000 1.480 

Coll=J & Light=DaySLUnk Area=Urban 0.122 0.900 1.332 

Coll=J & Light=DaySLUnk SpdLim=30mph 0.108 0.800 1.444 

Coll=J & TrfCtrl=Light FirstImpact=Front 0.081 1.000 1.298 

Coll=J & MaxInj=Uninjured FirstImpact=Front 0.081 1.000 1.298 

Coll=J & TrfCtrl=Light Prec=FailStopOther 0.068 0.833 8.810 

Coll=J & Prec=FailStopOther SpdLim=40-50mph 0.068 1.000 3.217 

Coll=J & Prec=FailStopOther FirstImpact=Front 0.068 1.000 1.298 

Coll=J & TrfCtrl=Light SpdLim=40-50mph 0.068 0.833 2.681 

Coll=J & TrfCtrl=None Area=Urban 0.068 1.000 1.480 

Coll=J & TrfCtrl=None FirstImpact=Front 0.068 1.000 1.298 

Coll=J & Prec=PoorMnvrDriver DrvInj=Uninjured 0.054 1.000 1.480 

Coll=J & Prec=PoorMnvrDriver Surf=Dry 0.041 0.750 1.354 

Coll=J & MaxInj=SeriousFatal Area=Urban 0.041 1.000 1.480 

Coll=J & MaxInj=SeriousFatal FirstIntAct=Car 0.041 1.000 1.451 

Coll=J & MaxInj=SeriousFatal FirstImpact=Front 0.041 1.000 1.298 

Table 41: All rules (up to 3 items) obtained for cluster T-C2 with collision type M (scenario T-2.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=M  &  Prec=FailGiveWayDriver MaxInj=Slight 0.095 1.000 1.276 

Coll=M  &  MaxInj=Slight Prec=FailGiveWayDriver 0.095 0.875 1.321 

Coll=M  &  HorizGeom=Straight Light=DayNSL 0.081 0.750 1.461 

Coll=M  &  RdType=SingCgw Prec=FailGiveWayDriver 0.081 0.857 1.294 

Coll=M  &  DrvInj=Uninjured MaxInj=Slight 0.081 1.000 1.276 

Coll=M  &  DrvInj=Uninjured Prec=FailGiveWayDriver 0.068 0.833 1.259 

Coll=M  &  TrfCtrl=GW Prec=FailGiveWayDriver 0.068 1.000 1.510 

Coll=M  &  TrfCtrl=GW MaxInj=Slight 0.068 1.000 1.276 

Coll=M  &  Area=Rural FirstImpact=Nearside 0.054 0.800 4.933 

Coll=M  &  Area=Rural Light=DayNSL 0.054 0.800 1.558 
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Coll=M  &  Surf=Dry Light=DayNSL 0.054 1.000 1.947 

Coll=M  &  SpdLim=30mph Prec=FailGiveWayDriver 0.054 1.000 1.510 

Coll=M  &  SpdLim=30mph Area=Urban 0.054 1.000 1.480 

Coll=M  &  Area=Urban SpdLim=30mph 0.054 1.000 1.805 

Coll=M  &  SpdLim=30mph MaxInj=Slight 0.054 1.000 1.276 

Coll=M  &  Surf=Dry MaxInj=Slight 0.054 1.000 1.276 

Coll=M  &  Area=Urban Prec=FailGiveWayDriver 0.054 1.000 1.510 

Coll=M  &  Area=Urban MaxInj=Slight 0.054 1.000 1.276 

Coll=M  &  Surf=Dry FirstImpact=Nearside 0.041 0.750 4.625 

Coll=M  &  Surf=Dry Area=Rural 0.041 0.750 2.313 

 

 

Figure 128: Weighted, directed graphs obtained from all association rules for cluster T-C2 
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Cluster T-C3: “The car is hit on its back, while waiting to turn right into a minor 

road.” 

Table 42: All rules (up to 3 items) obtained for cluster T-C3 with collision type F (scenario T-3.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=F & Manvr=WaitTurnR DrvInj=Slight 0.333 0.818 1.425 

Coll=F & Area=Urban SpdLim=30mph 0.296 0.800 1.878 

Coll=F & Light=DayNSL Prec=FailStopOther 0.296 0.762 1.524 

Coll=F & Area=Rural SpdLim=60mph 0.278 0.789 2.368 

Coll=F & SpdLim=60mph DrvInj=Slight 0.222 0.800 1.394 

Coll=F  &  Light=DarkSL Surf=Wet 0.111 0.857 2.571 

Coll=F  &  RdType=DualCgw Area=Urban 0.074 1.000 1.929 

Coll=F  &  SpdLim=40-50mph Area=Urban 0.074 0.800 1.543 

Coll=F  &  TrfCtrl=Light Surf=Wet 0.056 1.000 3.000 

Coll=F  &  Manvr=TurnR Surf=Dry 0.056 1.000 1.543 

Coll=F  &  RdType=DualCgw Light=DaySLUnk 0.056 0.750 4.500 

Coll=F  &  FirstIntAct=LGV=HGV Surf=Wet 0.056 1.000 3.000 

Coll=F  &  FirstIntAct=LGV=HGV Area=Rural 0.056 1.000 2.077 

Coll=F  &  MaxInj=Uninjured Surf=Wet 0.037 1.000 3.000 

 

Figure 129: Weighted, directed graph obtained from all association rules for cluster T-C3 
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Cluster T-C4: “The car is hit on the nearside, while turning right into a minor road.” 

Table 43: All rules (up to 3 items) obtained for cluster T-C4 with collision type L (scenario T-4.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=L  &  SpdLim=40-50mph FirstIntAct=Car 0.276 0.842 1.357 

Coll=L  &  SpdLim=30mph Area=Urban 0.259 1.000 1.450 

Coll=L  &  Area=Rural FirstIntAct=Car 0.190 1.000 1.611 

Coll=L  &  Light=DayNSL Prec=FailGiveWayDriver 0.190 0.786 1.899 

Coll=L  &  Light=DarkSL FirstImpact=Nearside 0.155 1.000 1.289 

Coll=L  &  Area=Rural SpdLim=40-50mph 0.155 0.818 2.260 

Coll=L  &  Area=Rural Light=DayNSL 0.155 0.818 1.977 

Coll=L  &  MaxInj=SeriousFatal Surf=Dry 0.138 0.800 1.326 

Coll=L  &  FirstIntAct=P2W Area=Urban 0.086 1.000 1.450 

Coll=L  &  FirstIntAct=P2W FirstImpact=Nearside 0.086 1.000 1.289 

Coll=L  &  MaxInj=Uninjured FirstImpact=Nearside 0.069 1.000 1.289 

Coll=L  &  MaxInj=Uninjured Surf=Wet 0.052 0.750 2.175 

Coll=L  &  MaxInj=Uninjured Prec=FailGiveWayDriver 0.052 0.750 1.813 

Coll=L  &  MaxInj=Uninjured SpdLim=30mph 0.052 0.750 1.450 

Coll=L  &  SpdLim=60mph FirstImpact=Nearside 0.052 1.000 1.289 

Coll=L  &  FirstImpact=Offside FirstIntAct=Car 0.052 1.000 1.611 

Coll=L  &  TrfCtrl=GW Surf=Dry 0.034 1.000 1.657 

Coll=L  &  DrvInj=Serious HorizGeom=LeftSlight 0.034 1.000 11.600 

Coll=L  &  DrvInj=Serious Area=Rural 0.034 1.000 3.222 

Coll=L  &  DrvInj=Serious SpdLim=40-50mph 0.034 1.000 2.762 

Coll=L  &  DrvInj=Serious FirstImpact=Nearside 0.034 1.000 1.289 

 

Figure 130: Weighted, directed graph obtained from all association rules for cluster T-C4 



270 

 

Cluster T-C5: “The car hits another car with its front, while going straight over a T-

junction with a minor roads joining from the right.” 

Table 44: All rules (up to 3 items) obtained for cluster T-C5 with collision type F (scenario T-5.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=F  &  DrvInj=Slight FirstIntAct=Car 0.218 1.000 1.261 

Coll=F  &  Light=DaySLUnk HorizGeom=Straight 0.184 1.000 1.279 

Coll=F  &  Light=DaySLUnk Area=Urban 0.161 0.875 1.313 

Coll=F  &  SpdLim=60mph FirstIntAct=Car 0.115 1.000 1.261 

Coll=F  &  RdType=DualCgw Area=Urban 0.115 1.000 1.500 

Coll=F  &  RdType=DualCgw FirstIntAct=Car 0.115 1.000 1.261 

Coll=F  &  SpdLim=60mph Area=Rural 0.103 0.900 2.700 

Coll=F  &  TrfCtrl=Light Area=Urban 0.080 0.875 1.313 

Coll=F  &  SpdLim=40-50mph RdType=DualCgw 0.080 0.875 5.075 

Coll=F  &  SpdLim=40-50mph Area=Urban 0.080 0.875 1.313 

Coll=F  &  SpdLim=40-50mph DrvInj=Uninjured 0.069 0.750 1.332 

Coll=F  &  MaxInj=Uninjured SpdLim=30mph 0.069 1.000 1.813 

Coll=F  &  MaxInj=Uninjured Area=Urban 0.069 1.000 1.500 

Coll=F  &  MaxInj=Uninjured HorizGeom=Straight 0.069 1.000 1.279 

Coll=F  &  MaxInj=Uninjured Light=DaySLUnk 0.057 0.833 3.452 

Coll=F  &  Light=DarkSL FirstIntAct=Car 0.057 1.000 1.261 

Coll=F  &  Light=DarkSL SpdLim=30mph 0.046 0.800 1.450 

Coll=F  &  HorizGeom=LeftSlight Area=Rural 0.034 1.000 3.000 

Coll=F  &  HorizGeom=LeftSlight FirstIntAct=Car 0.034 1.000 1.261 

Table 45: All rules (up to 3 items) obtained for cluster T-C5 with collision type G (scenario T-5.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=G  &  Manvr=GoingAheadOther Light=DayNSL 0.115 1.000 1.673 

Coll=G  &  Surf=Dry HorizGeom=Straight 0.103 1.000 1.279 

Coll=G  &  MaxInj=Slight Light=DayNSL 0.103 1.000 1.673 

Coll=G  &  HorizGeom=Straight Surf=Dry 0.103 0.900 1.477 

Coll=G  &  HorizGeom=Straight DrvInj=Uninjured 0.092 0.800 1.420 

Coll=G  &  DrvInj=Uninjured HorizGeom=Straight 0.092 1.000 1.279 

Coll=G  &  Surf=Dry DrvInj=Uninjured 0.080 0.778 1.381 

Coll=G  &  Prec=FailAvoidDriver Light=DayNSL 0.080 1.000 1.673 

Coll=G  &  Prec=FailAvoidDriver HorizGeom=Straight 0.080 1.000 1.279 

Coll=G  &  FirstIntAct=Car DrvInj=Uninjured 0.080 0.778 1.381 

Coll=G  &  DrvInj=Uninjured Surf=Dry 0.080 0.875 1.436 

Coll=G  &  Area=Urban Surf=Dry 0.080 0.875 1.436 

Coll=G  &  SpdLim=30mph Area=Urban 0.069 1.000 1.500 

Coll=G  &  Prec=FailAvoidDriver DrvInj=Uninjured 0.069 0.857 1.522 

Coll=G  &  Prec=FailAvoidDriver Surf=Dry 0.069 0.857 1.407 

Coll=G  &  DrvInj=Uninjured Prec=FailAvoidDriver 0.069 0.750 2.719 
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Coll=G  &  SpdLim=30mph Surf=Dry 0.057 0.833 1.368 

Coll=G  &  SpdLim=60mph Prec=FailAvoidDriver 0.034 1.000 3.625 

Coll=G  &  SpdLim=60mph Area=Rural 0.034 1.000 3.000 

Coll=G  &  SpdLim=60mph DrvInj=Uninjured 0.034 1.000 1.776 

Coll=G  &  SpdLim=60mph Light=DayNSL 0.034 1.000 1.673 

Coll=G  &  SpdLim=60mph HorizGeom=Straight 0.034 1.000 1.279 

Coll=G  &  SpdLim=60mph FirstIntAct=Car 0.034 1.000 1.261 

Coll=G  &  DrvInj=Slight Light=DayNSL 0.034 1.000 1.673 

Coll=G  &  DrvInj=Slight Area=Urban 0.034 1.000 1.500 

Coll=G  &  Area=Rural SpdLim=60mph 0.034 1.000 4.833 

Coll=G  &  Area=Rural Prec=FailAvoidDriver 0.034 1.000 3.625 

Coll=G  &  Area=Rural DrvInj=Uninjured 0.034 1.000 1.776 

Coll=G  &  Area=Rural Light=DayNSL 0.034 1.000 1.673 

Coll=G  &  Area=Rural HorizGeom=Straight 0.034 1.000 1.279 

Coll=G  &  Area=Rural FirstIntAct=Car 0.034 1.000 1.261 

Table 46: All rules (up to 3 items) obtained for cluster T-C5 with collision type M (scenario T-5.3), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll_M  &  Surf=Dry Light=DayNSL 0.092 1.000 1.673 

Coll_M  &  Light=DayNSL Surf=Dry 0.092 0.889 1.459 

Coll_M  &  MaxInj=Slight Light=DayNSL 0.080 0.875 1.464 

Coll_M  &  MaxInj=Slight Surf=Dry 0.080 0.875 1.436 

Coll_M  &  Area=Rural HorizGeom=Straight 0.069 1.000 1.279 

Coll_M  &  FirstIntAct=Car Area=Rural 0.057 0.833 2.500 

Coll_M  &  FirstIntAct=Car Light=DayNSL 0.057 0.833 1.394 

Coll_M  &  DrvInj=Slight Light=DayNSL 0.057 1.000 1.673 

Coll_M  &  Area=Rural Light=DayNSL 0.057 0.833 1.394 

Coll_M  &  SpdLim=30mph Area=Urban 0.046 1.000 1.500 

Coll_M  &  DrvInj=Uninjured Surf=Dry 0.046 0.800 1.313 

Coll_M  &  DrvInj=Slight Surf=Dry 0.046 0.800 1.313 

Coll_M  &  Area=Urban SpdLim=30mph 0.046 0.800 1.450 

Coll_M  &  Area=Urban Surf=Dry 0.046 0.800 1.313 

Coll_M  &  Surf=Wet HorizGeom=Straight 0.034 1.000 1.279 

Coll_M  &  SpdLim=60mph Prec=PoorMnvrOther 0.034 0.750 8.156 

Coll_M  &  SpdLim=60mph DrvInj=Uninjured 0.034 0.750 1.332 

Coll_M  &  Prec=PoorMnvrOther SpdLim=60mph 0.034 0.750 3.625 

Coll_M  &  FirstIntAct=LGV_HGV HorizGeom=Straight 0.034 1.000 1.279 
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Figure 131: Weighted, directed graphs obtained from all association rules for cluster T-C5 
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Cluster T-C6: “The car collides with another road user, while turning left into a 

major road.” 

Table 47: Rules (up to 3 items) obtained for cluster T-C6 with collision type M (scenario T-6.1), sorted 
by the five highest support values 

Antecedent Consequent Supp Conf Lift 

Coll=M  &  Prec=FailGiveWayDriver DrvInj=Uninjured 0.219 1.000 1.333 

Coll=M  &  DrvInj=Uninjured Prec=FailGiveWayDriver 0.219 0.778 2.263 

Coll=M  &  HorizGeom=Straight Prec=FailGiveWayDriver 0.219 0.778 2.263 

Coll=M  &  Area=Urban Surf=Dry 0.219 0.875 1.333 

Coll=M  &  Prec=FailGiveWayDriver Surf=Dry 0.188 0.857 1.306 

Coll=M  &  Surf=Dry Prec=FailGiveWayDriver 0.188 0.750 2.182 

Coll=M  &  SpdLim=30mph DrvInj=Uninjured 0.188 1.000 1.333 

Coll=M  &  FirstImpact=Offside Surf=Dry 0.156 0.833 1.270 

Coll=M  &  Light=DayNSL Surf=Dry 0.156 1.000 1.524 

Coll=M  &  Light=DayNSL Area=Urban 0.156 1.000 1.391 

Coll=M  &  Area=Rural Light=DarkNSL 0.094 1.000 10.667 

Coll=M  &  FirstIntAct=Cycle SpdLim=30mph 0.094 1.000 1.455 

Coll=M  &  TrfCtrl=None Light=DayNSL 0.094 1.000 1.684 

Coll=M  &  TrfCtrl=None Surf=Dry 0.094 1.000 1.524 

Coll=M  &  Area=Rural FirstIntAct=Car 0.094 1.000 1.600 

Coll=M  &  FirstImpact=Front Prec=FailGiveWayDriver 0.094 1.000 2.909 

Coll=M  &  FirstImpact=Front DrvInj=Uninjured 0.094 1.000 1.333 

Coll=M  &  SpdLim=60mph Light=DarkNSL 0.063 1.000 10.667 

Coll=M  &  SpdLim=60mph FirstIntAct=Car 0.063 1.000 1.600 

Coll=M  &  FirstIntAct=P2W Prec=FailGiveWayDriver 0.063 1.000 2.909 

Coll=M  &  FirstIntAct=P2W FirstImpact=Offside 0.063 1.000 2.667 

Coll=M  &  FirstIntAct=P2W Area=Urban 0.063 1.000 1.391 

Coll=M  &  FirstIntAct=P2W MaxInj=Slight 0.063 1.000 1.333 

Coll=M  &  Light=DaySLUnk Surf=Dry 0.063 1.000 1.524 

Coll=M  &  SpdLim=40-50mph FirstImpact=Offside 0.063 1.000 2.667 

Coll=M  &  SpdLim=40-50mph Surf=Dry 0.063 1.000 1.524 

Coll=M  &  SpdLim=40-50mph Area=Urban 0.063 1.000 1.391 

Coll=M  &  SpdLim=40-50mph MaxInj=Slight 0.063 1.000 1.333 

Coll=M  &  MaxInj=Uninjured Prec=FailGiveWayDriver 0.063 1.000 2.909 

Coll=M  &  MaxInj=Uninjured FirstIntAct=Car 0.063 1.000 1.600 

Coll=M  &  MaxInj=Uninjured Surf=Dry 0.063 1.000 1.524 

Coll=M  &  DrvInj=Slight FirstIntAct=Car 0.063 1.000 1.600 

 

Table 48: Rules (up to 3 items) obtained for cluster T-C6 with collision type F (scenario T-6.2), sorted by 
the five highest support values 

Antecedent Consequent Supp Conf Lift 

Coll=F Light=DayNSL 0.188 0.857 1.444 

Coll=F Surf=Dry 0.188 0.857 1.306 
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Coll=F  &  Light=DayNSL Surf=Dry 0.188 1.000 1.524 

Coll=F  &  Surf=Dry Light=DayNSL 0.188 1.000 1.684 

Coll=F  &  Light=DayNSL Prec=FailAvoidDriver 0.156 0.833 4.444 

Coll=F  &  Prec=FailAvoidDriver Surf=Dry 0.156 1.000 1.524 

Coll=F  &  Surf=Dry Prec=FailAvoidDriver 0.156 0.833 4.444 

Coll=F  &  DrvInj=Uninjured Prec=FailAvoidDriver 0.156 1.000 5.333 

Coll=F  &  RdType=SingCgw Prec=FailAvoidDriver 0.156 0.833 4.444 

Coll=F  &  DrvInj=Uninjured Light=DayNSL 0.156 1.000 1.684 

Coll=F  &  HorizGeom=Straight Light=DayNSL 0.156 1.000 1.684 

Coll=F  &  DrvInj=Uninjured Surf=Dry 0.156 1.000 1.524 

Coll=F  &  HorizGeom=Straight Surf=Dry 0.156 1.000 1.524 

Coll=F  &  HorizGeom=Straight MaxInj=Slight 0.156 1.000 1.333 

Coll=F  &  FirstImpact=Front Prec=FailAvoidDriver 0.125 1.000 5.333 

Coll=F  &  HorizGeom=Straight Prec=FailAvoidDriver 0.125 0.800 4.267 

Coll=F  &  FirstImpact=Front Light=DayNSL 0.125 1.000 1.684 

Coll=F  &  FirstImpact=Front Surf=Dry 0.125 1.000 1.524 

Coll=F  &  FirstImpact=Front MaxInj=Slight 0.125 1.000 1.333 

Coll=F  &  FirstImpact=Front DrvInj=Uninjured 0.125 1.000 1.333 

Coll=F  &  DrvInj=Uninjured FirstImpact=Front 0.125 0.800 1.969 

Coll=F  &  HorizGeom=Straight FirstImpact=Front 0.125 0.800 1.969 

Coll=F  &  FirstIntAct=Car MaxInj=Slight 0.125 1.000 1.333 

Coll=F  &  FirstIntAct=Car Area=Rural 0.094 0.750 2.667 

Coll=F  &  SpdLim=30mph MaxInj=Slight 0.094 1.000 1.333 

Coll=F  &  Prec=FailStopOther FirstImpact=Back 0.063 1.000 8.000 

Coll=F  &  FirstImpact=Back Prec=FailStopOther 0.063 1.000 10.667 

Coll=F  &  Prec=FailStopOther DrvInj=Slight 0.063 1.000 4.000 

Coll=F  &  DrvInj=Slight Prec=FailStopOther 0.063 1.000 10.667 

Coll=F  &  Prec=FailStopOther Area=Rural 0.063 1.000 3.556 

Coll=F  &  Prec=FailStopOther FirstIntAct=Car 0.063 1.000 1.600 

Coll=F  &  FirstIntAct=P2W Prec=FailAvoidDriver 0.063 1.000 5.333 

Coll=F  &  FirstIntAct=P2W Light=DayNSL 0.063 1.000 1.684 

Coll=F  &  DrvInj=Slight FirstImpact=Back 0.063 1.000 8.000 

Coll=F  &  SpdLim=40-50mph Prec=FailAvoidDriver 0.063 1.000 5.333 

Coll=F  &  SpdLim=40-50mph Area=Rural 0.063 1.000 3.556 

Coll=F  &  SpdLim=40-50mph Surf=Dry 0.063 1.000 1.524 

Coll=F  &  SpdLim=40-50mph DrvInj=Uninjured 0.063 1.000 1.333 

Coll=F  &  Area=Urban Prec=FailAvoidDriver 0.063 1.000 5.333 

Coll=F  &  DrvInj=Slight Area=Rural 0.063 1.000 3.556 

Coll=F  &  DrvInj=Slight FirstIntAct=Car 0.063 1.000 1.600 

Coll=F  &  Area=Urban FirstImpact=Front 0.063 1.000 2.462 

Coll=F  &  Area=Urban Light=DayNSL 0.063 1.000 1.684 

Coll=F  &  Area=Urban Surf=Dry 0.063 1.000 1.524 

Coll=F  &  Area=Urban SpdLim=30mph 0.063 1.000 1.455 

Coll=F  &  Area=Urban MaxInj=Slight 0.063 1.000 1.333 

Coll=F  &  Area=Urban DrvInj=Uninjured 0.063 1.000 1.333 
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Figure 132: Weighted, directed graphs obtained from all association rules for cluster T-C6 
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Cluster T-C7: “The car collides with another car, while going straight over a T-

junction with a minor road joining from the left.” 

Table 49: All rules (up to 3 items) obtained for cluster T-C7 with collision type F (scenario T-7.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=F HorizGeom=Straight 0.289 1.000 1.267 

Coll=F  &  TrfCtrl=None Area=Rural 0.211 0.800 1.900 

Coll=F  &  Light=DayNSL Area=Rural 0.158 0.857 2.036 

Coll=F  &  RdType=DualCgw SpdLim=70mph 0.105 0.800 7.600 

Coll=F  &  SpdLim=30mph Surf=Dry 0.105 1.000 1.357 

Coll=F  &  Prec=FailAvoidDriver Area=Rural 0.079 1.000 2.375 

Coll=F  &  Prec=FailAvoidDriver Light=DayNSL 0.079 1.000 1.810 

Coll=F  &  Area=Urban Surf=Dry 0.079 1.000 1.357 

Coll=F  &  Light=DarkSL Surf=Dry 0.053 1.000 1.357 

Coll=F  &  SpdLim=60mph Surf=Wet 0.053 1.000 3.800 

Coll=F  &  Surf=Wet SpdLim=60mph 0.053 1.000 5.429 

Coll=F  &  SpdLim=60mph Light=DayNSL 0.053 1.000 1.810 

Coll=F  &  Light=DaySLUnk Area=Rural 0.053 1.000 2.375 

Coll=F  &  Light=DaySLUnk Surf=Dry 0.053 1.000 1.357 

Coll=F  &  Surf=Wet Area=Rural 0.053 1.000 2.375 

Coll=F  &  Surf=Wet Light=DayNSL 0.053 1.000 1.810 

Table 50: All rules (up to 3 items) obtained for cluster T-C7 with collision type L (scenario T-7.2), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=L FirstImpact=Front 0.158 0.857 1.357 

Coll=L  &  Surf=Dry Light=DayNSL 0.105 0.800 1.448 

Coll=L  &  HorizGeom=Straight Light=DayNSL 0.105 0.800 1.448 

Coll=L  &  Area=Urban SpdLim=30mph 0.105 1.000 1.652 

Coll=L  &  SpdLim=30mph Area=Urban 0.105 1.000 1.727 

Coll=L  &  Prec=FailGiveWayOther HorizGeom=Straight 0.079 1.000 1.267 

Coll=L  &  Area=Rural Light=DayNSL 0.079 1.000 1.810 

Coll=L  &  Area=Rural FirstImpact=Front 0.079 1.000 1.583 

Coll=L  &  TrfCtrl=None Light=DayNSL 0.079 0.750 1.357 

Coll=L  &  TrfCtrl=Light HorizGeom=Straight 0.053 1.000 1.267 

Coll=L  &  Prec=PoorMnvrOther FirstImpact=Front 0.053 1.000 1.583 

Coll=L  &  Prec=PoorMnvrOther Surf=Dry 0.053 1.000 1.357 

Coll=L  &  SpdLim=60mph Light=DayNSL 0.053 1.000 1.810 

Coll=L  &  SpdLim=60mph FirstImpact=Front 0.053 1.000 1.583 

Coll=L  &  Light=DaySLUnk Area=Urban 0.053 1.000 1.727 

Coll=L  &  Light=DaySLUnk FirstImpact=Front 0.053 1.000 1.583 

Coll=L  &  Surf=Wet Prec=FailGiveWayOther 0.053 1.000 2.714 

Coll=L  &  Surf=Wet FirstImpact=Front 0.053 1.000 1.583 

Coll=L  &  Surf=Wet HorizGeom=Straight 0.053 1.000 1.267 
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Table 51: All rules (up to 3 items) obtained for cluster T-C7 with collision type H (scenario T-7.3), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=H  &  FirstIntAct=Car Surf=Wet 0.105 0.800 3.040 

Coll=H  &  Area=Urban SpdLim=30mph 0.105 1.000 1.652 

Coll=H  &  SpdLim=30mph Area=Urban 0.105 1.000 1.727 

Coll=H  &  Light=DaySLUnk Area=Urban 0.079 1.000 1.727 

Coll=H  &  Area=Urban Light=DaySLUnk 0.079 0.750 3.167 

Coll=H  &  SpdLim=30mph Light=DaySLUnk 0.079 0.750 3.167 

Coll=H  &  Light=DaySLUnk HorizGeom=Straight 0.079 1.000 1.267 

Coll=H  &  HorizGeom=Straight Light=DaySLUnk 0.079 0.750 3.167 

Coll=H  &  Surf=Wet Area=Urban 0.079 0.750 1.295 

Coll=H  &  Area=Urban Surf=Wet 0.079 0.750 2.850 

Coll=H  &  SpdLim=30mph Surf=Wet 0.079 0.750 2.850 

Coll=H  &  HorizGeom=Straight Surf=Wet 0.079 0.750 2.850 

Coll=H  &  Prec=FailGiveWayOther HorizGeom=Straight 0.079 1.000 1.267 

Coll=H  &  HorizGeom=Straight Prec=FailGiveWayOther 0.079 0.750 2.036 

Coll=H  &  HorizGeom=Straight Area=Urban 0.079 0.750 1.295 

Coll=H  &  FirstImpact=Front Light=DaySLUnk 0.053 1.000 4.222 

Coll=H  &  FirstImpact=Front Prec=FailGiveWayOther 0.053 1.000 2.714 

Coll=H  &  Area=Rural Light=DayNSL 0.053 1.000 1.810 

Coll=H  &  FirstImpact=Front Area=Urban 0.053 1.000 1.727 

Coll=H  &  FirstImpact=Front SpdLim=30mph 0.053 1.000 1.652 

Coll=H  &  FirstImpact=Front HorizGeom=Straight 0.053 1.000 1.267 

Table 52: All rules (up to 3 items) obtained for cluster T-C7 with collision type J (scenario T-7.4), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J Prec=FailGiveWayOther 0.132 0.833 2.262 

Coll=J Area=Urban 0.132 0.833 1.439 

Coll=J SpdLim=30mph 0.132 0.833 1.377 

Coll=J  &  Prec=FailGiveWayOther Surf=Dry 0.132 1.000 1.357 

Coll=J  &  Surf=Dry Prec=FailGiveWayOther 0.132 1.000 2.714 

Coll=J  &  Manvr=GoingAheadOther Prec=FailGiveWayOther 0.132 1.000 2.714 

Coll=J  &  Manvr=GoingAheadOther Surf=Dry 0.132 1.000 1.357 

Coll=J  &  Area=Urban FirstImpact=Front 0.105 0.800 1.267 

Coll=J  &  FirstImpact=Front Area=Urban 0.105 1.000 1.727 

Coll=J  &  HorizGeom=Straight Area=Urban 0.105 1.000 1.727 

Coll=J  &  FirstIntAct=Car FirstImpact=Front 0.105 0.800 1.267 

Coll=J  &  Light=DayNSL Prec=FailGiveWayOther 0.079 1.000 2.714 

Coll=J  &  Light=DayNSL SpdLim=30mph 0.079 1.000 1.652 

Coll=J  &  Light=DayNSL Surf=Dry 0.079 1.000 1.357 

Coll=J  &  HorizGeom=RightSlight Prec=FailGiveWayOther 0.053 1.000 2.714 

Coll=J  &  HorizGeom=RightSlight SpdLim=30mph 0.053 1.000 1.652 

Coll=J  &  FirstImpact=Nearside Prec=FailGiveWayOther 0.053 1.000 2.714 

Coll=J  &  FirstImpact=Nearside SpdLim=30mph 0.053 1.000 1.652 

Coll=J  &  FirstImpact=Nearside Surf=Dry 0.053 1.000 1.357 
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Table 53: All rules (up to 3 items) obtained for cluster T-C7 with collision type M (scenario T-7.5), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll_M_Manoeuvring HorizGeom_Straight 0.105 1.000 1.267 

Coll_M_Manoeuvring,Manvr_GoingAheadOther FirstImpact_Front 0.079 1.000 1.583 

Coll_M_Manoeuvring,Light_DarkNSL SpdLim_60mph 0.053 1.000 5.429 

Coll_M_Manoeuvring,SpdLim_60mph Light_DarkNSL 0.053 1.000 12.667 

Coll_M_Manoeuvring,Prec_FailGiveWayOther Light_DarkNSL 0.053 1.000 12.667 

Coll_M_Manoeuvring,Light_DarkNSL Area_Rural 0.053 1.000 2.375 

Coll_M_Manoeuvring,Area_Rural Light_DarkNSL 0.053 1.000 12.667 

Coll_M_Manoeuvring,SpdLim_60mph Prec_FailGiveWayOther 0.053 1.000 2.714 

Coll_M_Manoeuvring,Prec_FailGiveWayOther SpdLim_60mph 0.053 1.000 5.429 

Coll_M_Manoeuvring,Area_Rural SpdLim_60mph 0.053 1.000 5.429 

Coll_M_Manoeuvring,SpdLim_60mph Surf_Dry 0.053 1.000 1.357 

Coll_M_Manoeuvring,Prec_FailGiveWayOther Area_Rural 0.053 1.000 2.375 

Coll_M_Manoeuvring,Area_Rural Prec_FailGiveWayOther 0.053 1.000 2.714 

Coll_M_Manoeuvring,Prec_FailGiveWayOther Surf_Dry 0.053 1.000 1.357 

Coll_M_Manoeuvring,Area_Rural Surf_Dry 0.053 1.000 1.357 

Coll_M_Manoeuvring,Area_Urban SpdLim_30mph 0.053 1.000 1.652 

Coll_M_Manoeuvring,SpdLim_30mph Area_Urban 0.053 1.000 1.727 

 

 

 

 

 

Figure 133: Weighted, directed graphs obtained from all association rules for cluster T-C7 

The network graph for collision type M could not be created due to not enough rules 
obtained. 
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Cluster T-C8: “The car is hit by another car or PTW on its offside, while turning right 

into a major road.” 

Table 54: All rules (up to 3 items) obtained for cluster T-C8 with collision type J (scenario T-8.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J  &  TrfCtrl=GW Prec=FailGiveWayDriver 0.500 0.900 1.271 

Coll=J  &  SpdLim=30mph Area=Urban 0.472 0.919 1.408 

Coll=J  &  Area=Urban SpdLim=30mph 0.472 0.895 1.400 

Coll=J  &  SpdLim=30mph Prec=FailGiveWayDriver 0.458 0.892 1.259 

Coll=J  &  Surf=Wet Prec=FailGiveWayDriver 0.278 0.909 1.283 

Coll=J  &  Area=Rural FirstIntAct=Car 0.181 0.929 1.311 

Coll=J  &  Light=DaySLUnk Area=Urban 0.167 0.857 1.313 

Coll=J  &  Area=Rural Light=DayNSL 0.167 0.857 1.714 

Coll=J  &  Light=DarkSL Area=Urban 0.139 1.000 1.532 

Coll=J  &  FirstIntAct=P2W Prec=FailGiveWayDriver 0.139 1.000 1.412 

Coll=J  &  FirstIntAct=P2W TrfCtrl=GW 0.139 1.000 1.286 

Coll=J  &  SpdLim=40-50mph FirstIntAct=Car 0.125 1.000 1.412 

Coll=J  &  Light=DarkSL SpdLim=30mph 0.125 0.900 1.409 

Coll=J  &  SpdLim=40-50mph DrvInj=Slight 0.097 0.778 1.697 

Coll=J  &  SpdLim=40-50mph Light=DayNSL 0.097 0.778 1.556 

Coll=J  &  Prec=PoorMnvrDriver FirstIntAct=Car 0.083 1.000 1.412 

Coll=J  &  RdType=DualCgw FirstIntAct=Car 0.083 1.000 1.412 

Coll=J  &  HorizGeom=Right SpdLim=30mph 0.042 1.000 1.565 

Coll=J  &  Manvr=WaitTurnR Surf=Dry 0.042 0.750 1.459 

 

Figure 134: Weighted, directed graph obtained from all association rules for cluster T-C8 
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Cluster T-C9: “The car is hit by another car on its nearside, while going straight over 

a T-junction with a minor road joining from the left.” 

Table 55: All rules (up to 3 items) obtained for cluster T-C9 with collision type J (scenario T-9.1), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J Area=Urban 0.450 0.900 1.286 

Coll=J FirstIntAct=Car 0.450 0.900 1.286 

Coll=J  &  Manvr=GoingAheadOther FirstIntAct=Car 0.425 0.944 1.349 

Coll=J  &  TrfCtrl=None FirstIntAct=Car 0.400 0.941 1.345 

Coll=J Prec=FailGiveWayOther 0.375 0.750 1.500 

Coll=J  &  Manvr=GoingAheadOther Prec=FailGiveWayOther 0.375 0.833 1.667 

Coll=J  &  MaxInj=Slight Prec=FailGiveWayOther 0.375 0.833 1.667 

Coll=J  &  HorizGeom=Straight Area=Urban 0.375 1.000 1.429 

Coll=J  &  Prec=FailGiveWayOther FirstIntAct=Car 0.350 0.933 1.333 

Coll=J  &  FirstIntAct=Car Prec=FailGiveWayOther 0.350 0.778 1.556 

Coll=J  &  TrfCtrl=None Prec=FailGiveWayOther 0.350 0.824 1.647 

Coll=J  &  MaxInj=Slight Surf=Dry 0.350 0.778 1.296 

Coll=J  &  SpdLim=30mph Area=Urban 0.350 1.000 1.429 

Coll=J  &  Surf=Dry Area=Urban 0.325 0.929 1.327 

Coll=J  &  TrfCtrl=None Surf=Dry 0.325 0.765 1.275 

Coll=J  &  DrvInj=Slight Prec=FailGiveWayOther 0.300 0.923 1.846 

Coll=J  &  Prec=FailGiveWayOther SpdLim=30mph 0.300 0.800 1.280 

Coll=J  &  SpdLim=30mph Prec=FailGiveWayOther 0.300 0.857 1.714 

Coll=J  &  DrvInj=Slight FirstIntAct=Car 0.300 0.923 1.319 

Coll=J  &  SpdLim=30mph Surf=Dry 0.300 0.857 1.429 

Coll=J  &  Surf=Dry Prec=FailGiveWayOther 0.275 0.786 1.571 

Coll=J  &  Light=DayNSL Surf=Dry 0.275 0.786 1.310 

Coll=J  &  DrvInj=Slight Surf=Dry 0.250 0.769 1.282 

Coll=J  &  Surf=Wet FirstIntAct=Car 0.150 1.000 1.429 

Coll=J  &  DrvInj=Uninjured SpdLim=30mph 0.125 1.000 1.600 

Coll=J  &  DrvInj=Uninjured Area=Urban 0.125 1.000 1.429 

Coll=J  &  DrvInj=Uninjured HorizGeom=Straight 0.125 1.000 1.379 

Coll=J  &  SpdLim=40-50mph Surf=Wet 0.100 0.800 2.133 

Coll=J  &  DrvInj=Uninjured Surf=Dry 0.100 0.800 1.333 

Coll=J  &  Light=DarkSL Area=Urban 0.075 1.000 1.429 

Coll=J  &  Light=DarkSL FirstIntAct=Car 0.075 1.000 1.429 

Coll=J  &  Light=DaySLUnk Prec=FailGiveWayOther 0.075 1.000 2.000 

Coll=J  &  Light=DaySLUnk SpdLim=30mph 0.075 1.000 1.600 

Coll=J  &  Light=DaySLUnk Area=Urban 0.075 1.000 1.429 

Coll=J  &  Light=DaySLUnk FirstIntAct=Car 0.075 1.000 1.429 

Coll=J  &  Light=DaySLUnk HorizGeom=Straight 0.075 1.000 1.379 

Coll=J  &  Area=Rural HorizGeom=Right 0.050 1.000 13.333 

Coll=J  &  MaxInj=SeriousFatal SpdLim=40-50mph 0.050 1.000 5.714 

Coll=J  &  MaxInj=SeriousFatal FirstIntAct=Car 0.050 1.000 1.429 
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Coll=J  &  DrvInj=Serious SpdLim=40-50mph 0.050 1.000 5.714 

Coll=J  &  DrvInj=Serious FirstIntAct=Car 0.050 1.000 1.429 

Coll=J  &  TrfCtrl=Light Surf=Wet 0.050 1.000 2.667 

Coll=J  &  TrfCtrl=Light FirstIntAct=Car 0.050 1.000 1.429 

Coll=J  &  HorizGeom=RightSlight Prec=FailGiveWayOther 0.050 1.000 2.000 

Coll=J  &  HorizGeom=RightSlight DrvInj=Slight 0.050 1.000 1.667 

Coll=J  &  HorizGeom=RightSlight SpdLim=30mph 0.050 1.000 1.600 

Coll=J  &  HorizGeom=RightSlight Area=Urban 0.050 1.000 1.429 

Coll=J  &  HorizGeom=RightSlight FirstIntAct=Car 0.050 1.000 1.429 

Coll=J  &  Area=Rural SpdLim=40-50mph 0.050 1.000 5.714 

Coll=J  &  Area=Rural Prec=FailGiveWayOther 0.050 1.000 2.000 

Coll=J  &  Area=Rural DrvInj=Slight 0.050 1.000 1.667 

Coll=J  &  Area=Rural Light=DayNSL 0.050 1.000 1.538 

Coll=J  &  Area=Rural FirstIntAct=Car 0.050 1.000 1.429 

 

Table 56: All rules (up to 3 items) obtained for cluster T-C9 with collision type M (scenario T-9.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll_M_Manoeuvring FirstIntAct_Car 0.100 1.000 1.429 

Coll_M_Manoeuvring HorizGeom_Straight 0.100 1.000 1.379 

Coll_M_Manoeuvring DrvInj_Slight 0.075 0.750 1.250 

Coll_M_Manoeuvring,Prec_FailGiveWayOther DrvInj_Slight 0.050 1.000 1.667 

Coll_M_Manoeuvring,SpdLim_30mph DrvInj_Slight 0.050 1.000 1.667 

Coll_M_Manoeuvring,Area_Urban DrvInj_Slight 0.050 1.000 1.667 

Coll_M_Manoeuvring,Surf_Dry Light_DayNSL 0.050 1.000 1.538 

Coll_M_Manoeuvring,Light_DayNSL Surf_Dry 0.050 1.000 1.667 

Coll_M_Manoeuvring,SpdLim_30mph Area_Urban 0.050 1.000 1.429 

Coll_M_Manoeuvring,Area_Urban SpdLim_30mph 0.050 1.000 1.600 
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Figure 135: Weighted, directed graph obtained from all association rules for cluster T-C9 

The network graph for collision type M could not be created due to not enough rules 
obtained. 
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Cluster T-C10: “The car hits another car with its front, while going straight over a T-

junction with a minor road joining from the left.” 

Table 57: Rules (up to 3 items) obtained for cluster T-C10 with collision type L (scenario T-10.1), sorted 
by the five highest support values 

Antecedent Consequent Supp Conf Lift 

Coll=L RdType=SingCgw 0.237 0.818 1.413 

Coll=L  &  RdType=SingCgw TrfCtrl=None 0.237 1.000 1.357 

Coll=L  &  TrfCtrl=None RdType=SingCgw 0.237 1.000 1.727 

Coll=L  &  Manvr=GoingAheadOther RdType=SingCgw 0.237 0.900 1.555 

Coll=L  &  Surf=Dry FirstIntAct=Car 0.184 1.000 1.357 

Coll=L  &  Surf=Dry RdType=SingCgw 0.158 0.857 1.481 

Coll=L  &  Area=Rural RdType=SingCgw 0.158 0.857 1.481 

Coll=L  &  SpdLim=40-50mph FirstIntAct=Car 0.132 1.000 1.357 

Coll=L  &  DrvInj=Uninjured RdType=SingCgw 0.132 1.000 1.727 

Coll=L  &  DrvInj=Uninjured FirstIntAct=Car 0.132 1.000 1.357 

Coll=L  &  DrvInj=Uninjured TrfCtrl=None 0.132 1.000 1.357 

Coll=L  &  Prec=FailGiveWayOther FirstIntAct=Car 0.132 1.000 1.357 

Coll=L  &  Light=DayNSL FirstIntAct=Car 0.132 1.000 1.357 

Coll=L  &  Light=DaySLUnk RdType=SingCgw 0.105 1.000 1.727 

Coll=L  &  Light=DaySLUnk TrfCtrl=None 0.105 1.000 1.357 

Coll=L  &  Light=DaySLUnk HorizGeom=Straight 0.105 1.000 1.267 

Coll=L  &  Area=Urban FirstIntAct=Car 0.105 1.000 1.357 

Coll=L  &  Area=Urban HorizGeom=Straight 0.105 1.000 1.267 

Coll=L  &  SpdLim=40-50mph Surf=Dry 0.105 0.800 1.448 

Coll=L  &  DrvInj=Uninjured Surf=Dry 0.105 0.800 1.448 

Coll=L  &  Prec=FailGiveWayOther Surf=Dry 0.105 0.800 1.448 

Coll=L  &  Surf=Wet HorizGeom=Straight 0.105 1.000 1.267 

Coll=L  &  Light=DayNSL Surf=Dry 0.105 0.800 1.448 

Table 58: Rules (up to 3 items) obtained for cluster T-C10 with collision type J (scenario T-10.2), sorted 
by the five highest support values 

Antecedent Consequent Supp Conf Lift 

Coll=J Prec=FailGiveWayOther 0.211 0.800 2.338 

Coll=J Light=DayNSL 0.211 0.800 1.520 

Coll=J  &  Light=DayNSL HorizGeom=Straight 0.211 1.000 1.267 

Coll=J  &  HorizGeom=Straight Light=DayNSL 0.211 1.000 1.900 

Coll=J  &  FirstIntAct=Car Prec=FailGiveWayOther 0.184 0.875 2.558 

Coll=J  &  TrfCtrl=None Prec=FailGiveWayOther 0.184 0.875 2.558 

Coll=J  &  Area=Rural Light=DayNSL 0.184 1.000 1.900 

Coll=J  &  Area=Rural HorizGeom=Straight 0.184 1.000 1.267 

Coll=J  &  Prec=FailGiveWayOther Surf=Wet 0.158 0.750 1.781 

Coll=J  &  Surf=Wet Prec=FailGiveWayOther 0.158 1.000 2.923 

Coll=J  &  RdType=SingCgw Prec=FailGiveWayOther 0.158 0.857 2.505 

Coll=J  &  Area=Rural Prec=FailGiveWayOther 0.158 0.857 2.505 
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Coll=J  &  Surf=Wet Light=DayNSL 0.158 1.000 1.900 

Coll=J  &  Light=DayNSL Surf=Wet 0.158 0.750 1.781 

Coll=J  &  Surf=Wet Area=Rural 0.158 1.000 1.407 

Coll=J  &  Area=Rural Surf=Wet 0.158 0.857 2.036 

Coll=J  &  Surf=Wet HorizGeom=Straight 0.158 1.000 1.267 

Coll=J  &  HorizGeom=Straight Surf=Wet 0.158 0.750 1.781 

Coll=J  &  TrfCtrl=None RdType=SingCgw 0.158 0.750 1.295 

Coll=J  &  DrvInj=Serious Prec=FailGiveWayOther 0.105 1.000 2.923 

Coll=J  &  SpdLim=30mph Area=Urban 0.079 1.000 3.455 

Coll=J  &  Area=Urban SpdLim=30mph 0.079 1.000 3.800 

Coll=J  &  SpdLim=30mph Surf=Dry 0.079 1.000 1.810 

Coll=J  &  Surf=Dry SpdLim=30mph 0.079 0.750 2.850 

Coll=J  &  SpdLim=30mph RdType=SingCgw 0.079 1.000 1.727 

Coll=J  &  SpdLim=30mph TrfCtrl=None 0.079 1.000 1.357 

Coll=J  &  DrvInj=Serious SpdLim=40-50mph 0.079 0.750 2.375 

Coll=J  &  SpdLim=40-50mph DrvInj=Serious 0.079 1.000 3.455 

Coll=J  &  DrvInj=Serious Surf=Wet 0.079 0.750 1.781 

Coll=J  &  DrvInj=Serious RdType=SingCgw 0.079 0.750 1.295 

Coll=J  &  Area=Urban Surf=Dry 0.079 1.000 1.810 

Coll=J  &  Surf=Dry Area=Urban 0.079 0.750 2.591 

Coll=J  &  Area=Urban RdType=SingCgw 0.079 1.000 1.727 

Coll=J  &  Area=Urban TrfCtrl=None 0.079 1.000 1.357 

Coll=J  &  SpdLim=40-50mph Prec=FailGiveWayOther 0.079 1.000 2.923 

Coll=J  &  SpdLim=40-50mph Surf=Wet 0.079 1.000 2.375 

Coll=J  &  SpdLim=40-50mph Light=DayNSL 0.079 1.000 1.900 

Coll=J  &  SpdLim=40-50mph Area=Rural 0.079 1.000 1.407 

Coll=J  &  SpdLim=40-50mph HorizGeom=Straight 0.079 1.000 1.267 

Coll=J  &  DrvInj=Uninjured Light=DayNSL 0.079 1.000 1.900 

Coll=J  &  DrvInj=Uninjured HorizGeom=Straight 0.079 1.000 1.267 

Coll=J  &  RdType=DualCgw Light=DayNSL 0.079 1.000 1.900 

Coll=J  &  RdType=DualCgw Area=Rural 0.079 1.000 1.407 

Coll=J  &  RdType=DualCgw FirstIntAct=Car 0.079 1.000 1.357 

Coll=J  &  RdType=DualCgw HorizGeom=Straight 0.079 1.000 1.267 

Coll=J  &  Surf=Dry RdType=SingCgw 0.079 0.750 1.295 

Table 59: Rules (up to 3 items) obtained for cluster T-C10 with collision type F (scenario T-10.3), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll_F_RearEnd Surf_Dry 0.132 1.000 1.810 

Coll_F_RearEnd Light_DaySLUnk 0.105 0.800 3.040 

Coll_F_RearEnd DrvInj_Slight 0.105 0.800 2.533 

Coll_F_RearEnd,Area_Rural FirstIntAct_Car 0.105 1.000 1.357 

Coll_F_RearEnd,FirstIntAct_Car Area_Rural 0.105 1.000 1.407 

Coll_F_RearEnd,Area_Rural HorizGeom_Straight 0.105 1.000 1.267 

Coll_F_RearEnd,HorizGeom_Straight Area_Rural 0.105 1.000 1.407 

Coll_F_RearEnd,Manvr_GoingAheadOther Area_Rural 0.105 1.000 1.407 



285 

 

Coll_F_RearEnd,FirstIntAct_Car HorizGeom_Straight 0.105 1.000 1.267 

Coll_F_RearEnd,HorizGeom_Straight FirstIntAct_Car 0.105 1.000 1.357 

Coll_F_RearEnd,Manvr_GoingAheadOther FirstIntAct_Car 0.105 1.000 1.357 

Coll_F_RearEnd,Manvr_GoingAheadOther HorizGeom_Straight 0.105 1.000 1.267 

Coll_F_RearEnd,RdType_SingCgw Light_DaySLUnk 0.079 1.000 3.800 

Coll_F_RearEnd,RdType_SingCgw Area_Rural 0.079 1.000 1.407 

Coll_F_RearEnd,Area_Rural RdType_SingCgw 0.079 0.750 1.295 

Coll_F_RearEnd,RdType_SingCgw FirstIntAct_Car 0.079 1.000 1.357 

Coll_F_RearEnd,FirstIntAct_Car RdType_SingCgw 0.079 0.750 1.295 

Coll_F_RearEnd,RdType_SingCgw HorizGeom_Straight 0.079 1.000 1.267 

Coll_F_RearEnd,HorizGeom_Straight RdType_SingCgw 0.079 0.750 1.295 

Coll_F_RearEnd,Manvr_GoingAheadOther RdType_SingCgw 0.079 0.750 1.295 

Coll_F_RearEnd,Prec_FailAvoidDriver DrvInj_Slight 0.053 1.000 3.167 

Coll_F_RearEnd,Prec_FailAvoidDriver RdType_DualCgw 0.053 1.000 2.533 

Coll_F_RearEnd,RdType_DualCgw Prec_FailAvoidDriver 0.053 1.000 12.667 

Coll_F_RearEnd,TrfCtrl_Light Light_DaySLUnk 0.053 1.000 3.800 

Coll_F_RearEnd,TrfCtrl_Light SpdLim_30mph 0.053 1.000 3.800 

Coll_F_RearEnd,SpdLim_30mph TrfCtrl_Light 0.053 1.000 6.333 

Coll_F_RearEnd,TrfCtrl_Light RdType_SingCgw 0.053 1.000 1.727 

Coll_F_RearEnd,TrfCtrl_Light Area_Rural 0.053 1.000 1.407 

Coll_F_RearEnd,SpdLim_30mph Light_DaySLUnk 0.053 1.000 3.800 

Coll_F_RearEnd,SpdLim_30mph RdType_SingCgw 0.053 1.000 1.727 

Coll_F_RearEnd,SpdLim_30mph Area_Rural 0.053 1.000 1.407 

Coll_F_RearEnd,SpdLim_30mph FirstIntAct_Car 0.053 1.000 1.357 

Coll_F_RearEnd,SpdLim_30mph HorizGeom_Straight 0.053 1.000 1.267 

Coll_F_RearEnd,RdType_DualCgw DrvInj_Slight 0.053 1.000 3.167 

Coll_F_RearEnd,TrfCtrl_None DrvInj_Slight 0.053 1.000 3.167 

Coll_F_RearEnd,TrfCtrl_None Area_Rural 0.053 1.000 1.407 

Coll_F_RearEnd,TrfCtrl_None FirstIntAct_Car 0.053 1.000 1.357 

Coll_F_RearEnd,TrfCtrl_None HorizGeom_Straight 0.053 1.000 1.267 

 

 

Figure 136: Weighted, directed graphs obtained from all association rules for cluster T-C10 

The network graph for collision type F could not be created due to not enough rules 
obtained.  



286 

 

Cluster T-C11: “The car is hit by another car on its offside, while going straight over 

a T-junction with a minor road joining from the right.” 

Table 60: All rules (up to 3 items) obtained for cluster T-C11 with collision type M (scenario T-11.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=M  &  Manvr=GoingAheadOther Prec=FailGiveWayOther 0.188 0.857 2.743 

Coll=M  &  FirstIntAct=Car Surf=Wet 0.188 0.750 2.000 

Coll=M  &  SpdLim=30mph Area=Urban 0.188 0.857 1.371 

Coll=M  &  Prec=PoorMnvrDriver Manvr=Other 0.156 1.000 3.556 

Coll=M  &  Light=DarkSL FirstIntAct=Car 0.094 1.000 1.524 

Coll=M  &  Light=DarkSL HorizGeom=Straight 0.094 1.000 1.524 

Coll=M  &  SpdLim=40-50mph HorizGeom=Straight 0.094 1.000 1.524 

Coll=M  &  HorizGeom=RightSlight Manvr=Other 0.063 1.000 3.556 

Coll=M  &  HorizGeom=RightSlight Light=DayNSL 0.063 1.000 2.133 

Coll=M  &  HorizGeom=RightSlight DrvInj=Uninjured 0.063 1.000 1.882 

Coll=M  &  HorizGeom=RightSlight SpdLim=30mph 0.063 1.000 1.684 

Coll=M  &  HorizGeom=LeftSlight Prec=FailGiveWayOther 0.063 1.000 3.200 

Coll=M  &  HorizGeom=LeftSlight DrvInj=Slight 0.063 1.000 2.286 

Coll=M  &  HorizGeom=LeftSlight Light=DayNSL 0.063 1.000 2.133 

Coll=M  &  HorizGeom=LeftSlight SpdLim=30mph 0.063 1.000 1.684 

Coll=M  &  HorizGeom=LeftSlight Area=Urban 0.063 1.000 1.600 

Coll=M  &  Light=DaySLUnk Surf=Wet 0.063 1.000 2.667 

Coll=M  &  Light=DaySLUnk HorizGeom=Straight 0.063 1.000 1.524 

Coll=M  &  MaxInj=SeriousFatal FirstIntAct=Cycle 0.031 1.000 32.000 

Coll=M  &  Prec=OtherDriver Surf=Flood 0.031 1.000 32.000 

Coll=M  &  MaxInj=Uninjured Light=DarkSLUnk 0.031 1.000 32.000 

Coll=M  &  Prec=FailStopDriver Light=DarkSLUnk 0.031 1.000 32.000 

Coll=M  &  MaxInj=Uninjured SpdLim=70mph 0.031 1.000 32.000 

Coll=M  &  Prec=FailStopDriver SpdLim=70mph 0.031 1.000 32.000 

Coll=M  &  Prec=OtherDriver FirstIntAct=LGV=HGV 0.031 1.000 8.000 

Coll=M  &  Prec=OtherDriver Manvr=Other 0.031 1.000 3.556 

Coll=M  &  Prec=OtherDriver DrvInj=Slight 0.031 1.000 2.286 

Coll=M  &  Prec=OtherDriver HorizGeom=Straight 0.031 1.000 1.524 

Coll=M  &  MaxInj=Uninjured Prec=FailStopDriver 0.031 1.000 16.000 

Coll=M  &  Prec=FailStopDriver MaxInj=Uninjured 0.031 1.000 16.000 

Coll=M  &  MaxInj=Uninjured TrfCtrl=GW 0.031 1.000 10.667 

Coll=M  &  MaxInj=Uninjured RdType=DualCgw 0.031 1.000 10.667 

Coll=M  &  MaxInj=Uninjured FirstIntAct=LGV=HGV 0.031 1.000 8.000 

Coll=M  &  Prec=FailStopDriver TrfCtrl=GW 0.031 1.000 10.667 

Coll=M  &  Prec=FailStopDriver RdType=DualCgw 0.031 1.000 10.667 

Coll=M  &  Prec=FailStopDriver FirstIntAct=LGV=HGV 0.031 1.000 8.000 

Coll=M  &  Prec=FailStopDriver DrvInj=Uninjured 0.031 1.000 1.882 

Coll=M  &  Prec=FailStopDriver Area=Urban 0.031 1.000 1.600 

Coll=M  &  Light=DarkNSL RdType=DualCgw 0.031 1.000 10.667 
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Coll=M  &  Light=DarkNSL Prec=FailGiveWayOther 0.031 1.000 3.200 

Coll=M  &  Light=DarkNSL Surf=Wet 0.031 1.000 2.667 

Coll=M  &  Light=DarkNSL DrvInj=Uninjured 0.031 1.000 1.882 

Coll=M  &  FirstIntAct=P2W SpdLim=60mph 0.031 1.000 8.000 

Coll=M  &  FirstIntAct=P2W Prec=PoorMnvrDriver 0.031 1.000 4.000 

Coll=M  &  FirstIntAct=P2W Manvr=Other 0.031 1.000 3.556 

Coll=M  &  FirstIntAct=P2W Area=Rural 0.031 1.000 2.667 

Coll=M  &  FirstIntAct=P2W Light=DayNSL 0.031 1.000 2.133 

Coll=M  &  FirstIntAct=P2W DrvInj=Uninjured 0.031 1.000 1.882 

Coll=M  &  MaxInj=SeriousFatal SpdLim=40-50mph 0.031 1.000 4.000 

Coll=M  &  MaxInj=SeriousFatal Prec=FailGiveWayOther 0.031 1.000 3.200 

Coll=M  &  MaxInj=SeriousFatal Area=Rural 0.031 1.000 2.667 

Coll=M  &  MaxInj=SeriousFatal Light=DayNSL 0.031 1.000 2.133 

Coll=M  &  MaxInj=SeriousFatal DrvInj=Uninjured 0.031 1.000 1.882 

Coll=M  &  MaxInj=SeriousFatal Surf=Dry 0.031 1.000 1.684 

Coll=M  &  MaxInj=SeriousFatal HorizGeom=Straight 0.031 1.000 1.524 

Table 61: All rules (up to 3 items) obtained for cluster T-C11 with collision type F (scenario T-11.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll_F=RearEnd HorizGeom=Straight 0.156 1.000 1.524 

Coll_F=RearEnd SpdLim=30mph 0.125 0.800 1.347 

Coll_F=RearEnd Surf=Dry 0.125 0.800 1.347 

Coll_F=RearEnd  &  Light=DaySLUnk SpdLim=30mph 0.094 1.000 1.684 

Coll_F=RearEnd  &  SpdLim=30mph Light=DaySLUnk 0.094 0.750 4.000 

Coll_F=RearEnd  &  Light=DaySLUnk Manvr=GoingAheadOther 0.094 1.000 1.391 

Coll_F=RearEnd  &  
Manvr=GoingAheadOther 

Light=DaySLUnk 0.094 0.750 4.000 

Coll_F=RearEnd  &  Area=Rural Surf=Dry 0.094 1.000 1.684 

Coll_F=RearEnd  &  Surf=Dry Area=Rural 0.094 0.750 2.000 

Coll_F=RearEnd  &  Area=Rural FirstIntAct=Car 0.094 1.000 1.524 

Coll_F=RearEnd  &  FirstIntAct=Car Area=Rural 0.094 0.750 2.000 

Coll_F=RearEnd  &  DrvInj=Slight Surf=Dry 0.094 1.000 1.684 

Coll_F=RearEnd  &  Surf=Dry DrvInj=Slight 0.094 0.750 1.714 

Coll_F=RearEnd  &  DrvInj=Slight Manvr=GoingAheadOther 0.094 1.000 1.391 

Coll_F=RearEnd  &  
Manvr=GoingAheadOther 

DrvInj=Slight 0.094 0.750 1.714 

Coll_F=RearEnd  &  Area=Urban Light=DaySLUnk 0.063 1.000 5.333 

Coll_F=RearEnd  &  DrvInj=Uninjured SpdLim=30mph 0.063 1.000 1.684 

Coll_F=RearEnd  &  DrvInj=Uninjured FirstIntAct=Car 0.063 1.000 1.524 

Coll_F=RearEnd  &  Area=Urban SpdLim=30mph 0.063 1.000 1.684 

Coll_F=RearEnd  &  Area=Urban Manvr=GoingAheadOther 0.063 1.000 1.391 

Coll_F=RearEnd  &  Surf=Wet Prec=FailAvoidDriver 0.031 1.000 16.000 

Coll_F=RearEnd  &  FirstIntAct=P2W Prec=FailStopOther 0.031 1.000 16.000 

Coll_F=RearEnd  &  Manvr=Other Prec=FailStopOther 0.031 1.000 16.000 

Coll_F=RearEnd  &  Light=DayNSL Prec=FailStopOther 0.031 1.000 16.000 

Coll_F=RearEnd  &  Prec=FailStopDriver Light=DarkNSL 0.031 1.000 16.000 
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Coll_F=RearEnd  &  Light=DarkNSL Prec=FailStopDriver 0.031 1.000 16.000 

Coll_F=RearEnd  &  Prec=FailStopDriver SpdLim=60mph 0.031 1.000 8.000 

Coll_F=RearEnd  &  SpdLim=60mph Prec=FailStopDriver 0.031 1.000 16.000 

Coll_F=RearEnd  &  Prec=FailStopDriver Area=Rural 0.031 1.000 2.667 

Coll_F=RearEnd  &  Prec=FailStopDriver DrvInj=Slight 0.031 1.000 2.286 

Coll_F=RearEnd  &  Prec=FailStopDriver FirstIntAct=Car 0.031 1.000 1.524 

Coll_F=RearEnd  &  SpdLim=60mph Light=DarkNSL 0.031 1.000 16.000 

Coll_F=RearEnd  &  Light=DarkNSL DrvInj=Slight 0.031 1.000 2.286 

Coll_F=RearEnd  &  Light=DarkNSL Surf=Dry 0.031 1.000 1.684 

Coll_F=RearEnd  &  FirstIntAct=P2W Light=DaySLUnk 0.031 1.000 5.333 

Coll_F=RearEnd  &  FirstIntAct=P2W DrvInj=Slight 0.031 1.000 2.286 

Coll_F=RearEnd  &  FirstIntAct=P2W SpdLim=30mph 0.031 1.000 1.684 

Coll_F=RearEnd  &  FirstIntAct=P2W Area=Urban 0.031 1.000 1.600 

Coll_F=RearEnd  &  FirstIntAct=P2W Manvr=GoingAheadOther 0.031 1.000 1.391 

Coll_F=RearEnd  &  SpdLim=60mph DrvInj=Slight 0.031 1.000 2.286 

Coll_F=RearEnd  &  SpdLim=60mph Surf=Dry 0.031 1.000 1.684 

Coll_F=RearEnd  &  SpdLim=60mph FirstIntAct=Car 0.031 1.000 1.524 

Coll_F=RearEnd  &  SpdLim=60mph Manvr=GoingAheadOther 0.031 1.000 1.391 

Coll_F=RearEnd  &  Surf=Wet Light=DaySLUnk 0.031 1.000 5.333 

Coll_F=RearEnd  &  Manvr=Other Area=Rural 0.031 1.000 2.667 

Coll_F=RearEnd  &  Manvr=Other Light=DayNSL 0.031 1.000 2.133 

Coll_F=RearEnd  &  Light=DayNSL Manvr=Other 0.031 1.000 3.556 

Coll_F=RearEnd  &  Manvr=Other DrvInj=Uninjured 0.031 1.000 1.882 

Coll_F=RearEnd  &  Manvr=Other SpdLim=30mph 0.031 1.000 1.684 

Coll_F=RearEnd  &  Manvr=Other Surf=Dry 0.031 1.000 1.684 

Coll_F=RearEnd  &  Manvr=Other FirstIntAct=Car 0.031 1.000 1.524 

Coll_F=RearEnd  &  Light=DayNSL Area=Rural 0.031 1.000 2.667 

Coll_F=RearEnd  &  Surf=Wet DrvInj=Uninjured 0.031 1.000 1.882 

Coll_F=RearEnd  &  Surf=Wet SpdLim=30mph 0.031 1.000 1.684 

Coll_F=RearEnd  &  Surf=Wet Area=Urban 0.031 1.000 1.600 

Coll_F=RearEnd  &  Surf=Wet FirstIntAct=Car 0.031 1.000 1.524 

Coll_F=RearEnd  &  Surf=Wet Manvr=GoingAheadOther 0.031 1.000 1.391 

Coll_F=RearEnd  &  Light=DayNSL DrvInj=Uninjured 0.031 1.000 1.882 

Coll_F=RearEnd  &  Light=DayNSL SpdLim=30mph 0.031 1.000 1.684 

Coll_F=RearEnd  &  Light=DayNSL Surf=Dry 0.031 1.000 1.684 

Coll_F=RearEnd  &  Light=DayNSL FirstIntAct=Car 0.031 1.000 1.524 
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Figure 137: Weighted, directed graphs obtained from all association rules for cluster T-C11 
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Cluster T-C12: “The car collides with a PTW, while turning right into minor or major 

road.” 

Table 62: All rules (up to 3 items) obtained for cluster T-C12 with collision type J (scenario T-12.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=J Prec=FailGiveWayDriver 0.382 0.813 1.625 

Coll=J  &  HorizGeom=Straight Prec=FailGiveWayDriver 0.353 0.857 1.714 

Coll=J  &  TrfCtrl=GW Prec=FailGiveWayDriver 0.294 0.909 1.818 

Coll=J  &  Prec=FailGiveWayDriver TrfCtrl=GW 0.294 0.769 1.538 

Coll=J  &  FirstImpact=Offside Prec=FailGiveWayDriver 0.294 0.909 1.818 

Coll=J  &  DrvInj=Uninjured Prec=FailGiveWayDriver 0.294 0.833 1.667 

Coll=J  &  FirstImpact=Offside TrfCtrl=GW 0.265 0.818 1.636 

Coll=J  &  Light=DayNSL Prec=FailGiveWayDriver 0.235 0.889 1.778 

Coll=J  &  Area=Rural Prec=FailGiveWayDriver 0.206 1.000 2.000 

Coll=J  &  Area=Rural FirstImpact=Offside 0.206 1.000 1.417 

Coll=J  &  Light=DayNSL TrfCtrl=GW 0.206 0.778 1.556 

Coll=J  &  SpdLim=30mph Prec=FailGiveWayDriver 0.206 0.875 1.750 

Coll=J  &  Area=Rural TrfCtrl=GW 0.176 0.857 1.714 

Coll=J  &  SpdLim=30mph TrfCtrl=GW 0.176 0.750 1.500 

Coll=J  &  FirstImpact=Front Area=Urban 0.147 1.000 1.417 

Coll=J  &  FirstImpact=Front DrvInj=Uninjured 0.147 1.000 1.259 

Coll=J  &  TrfCtrl=None DrvInj=Uninjured 0.147 1.000 1.259 

Coll=J  &  SpdLim=60mph Prec=FailGiveWayDriver 0.088 1.000 2.000 

Coll=J  &  SpdLim=60mph Light=DayNSL 0.088 1.000 1.700 

Coll=J  &  SpdLim=60mph FirstImpact=Offside 0.088 1.000 1.417 

Coll=J  &  Light=DaySLUnk TrfCtrl=GW 0.088 0.750 1.500 

Coll=J  &  Light=DarkSL Prec=FailGiveWayDriver 0.059 1.000 2.000 

Coll=J  &  Light=DarkSL FirstImpact=Offside 0.059 1.000 1.417 

Coll=J  &  Prec=PoorOvtkOther SpdLim=40-50mph 0.059 1.000 4.250 

Coll=J  &  Prec=PoorOvtkOther FirstImpact=Front 0.059 1.000 3.778 

Coll=J  &  Prec=PoorOvtkOther TrfCtrl=None 0.059 1.000 2.125 

Coll=J  &  Prec=PoorOvtkOther Area=Urban 0.059 1.000 1.417 

Coll=J  &  Prec=PoorOvtkOther DrvInj=Uninjured 0.059 1.000 1.259 

Table 63: All rules (up to 3 items) obtained for cluster T-C12 with collision type G (scenario T-12.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=G TrfCtrl=None 0.206 1.000 2.125 

Coll=G FirstImpact=Offside 0.206 1.000 1.417 

Coll=G Light=DayNSL 0.176 0.857 1.457 

Coll=G SpdLim=30mph 0.176 0.857 1.325 

Coll=G  &  FirstIntAct=P2W Light=DayNSL 0.176 1.000 1.700 

Coll=G  &  SpdLim=30mph Area=Urban 0.176 1.000 1.417 

Coll=G  &  Area=Urban SpdLim=30mph 0.176 1.000 1.545 
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Coll=G  &  DrvInj=Uninjured SpdLim=30mph 0.147 1.000 1.545 

Coll=G  &  DrvInj=Uninjured Area=Urban 0.147 1.000 1.417 

Coll=G  &  Prec=PoorOvtkOther DrvInj=Slight 0.059 1.000 11.333 

Coll=G  &  Prec=PoorOvtkOther Light=DayNSL 0.059 1.000 1.700 

Table 64: All rules (up to 3 items) obtained for cluster T-C12 with collision type M (scenario T-12.3), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=M SpdLim=30mph 0.147 1.000 1.545 

Coll=M Area=Urban 0.147 1.000 1.417 

Coll=M DrvInj=Uninjured 0.147 1.000 1.259 

Coll=M Prec=FailGiveWayDriver 0.118 0.800 1.600 

Coll=M  &  TrfCtrl=GW Prec=FailGiveWayDriver 0.088 1.000 2.000 

Coll=M  &  TrfCtrl=GW Light=DayNSL 0.088 1.000 1.700 

Coll=M  &  Light=DayNSL TrfCtrl=GW 0.088 1.000 2.000 

Coll=M  &  Prec=FailGiveWayDriver Light=DayNSL 0.088 0.750 1.275 

Coll=M  &  Light=DayNSL Prec=FailGiveWayDriver 0.088 1.000 2.000 

Coll=M  &  TrfCtrl=None FirstImpact=Offside 0.059 1.000 1.417 

 

Figure 138: Weighted, directed graphs obtained from all association rules for cluster T-C12 
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Cluster T-C13: “The car hits another car or PTW with its front, while turning right 

into a minor road.” 

Table 65: All rules (up to 3 items) obtained for cluster T-C13 with collision type L (scenario T-13.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=L  &  SpdLim=30mph Surf=Dry 0.406 0.867 1.261 

Coll=L  &  Prec=FailGiveWayDriver MaxInj=Slight 0.344 1.000 1.333 

Coll=L  &  Area=Urban Surf=Dry 0.344 0.917 1.333 

Coll=L  &  DrvInj=Slight MaxInj=Slight 0.281 1.000 1.333 

Coll=L  &  Prec=PoorMnvrDriver Surf=Dry 0.250 0.889 1.293 

Coll=L  &  DrvInj=Slight Surf=Dry 0.250 0.889 1.293 

Coll=L  &  Surf=Wet FirstIntAct=Car 0.188 1.000 1.524 

Coll=L  &  Surf=Wet Area=Rural 0.156 0.833 2.051 

Coll=L  &  MaxInj=Uninjured Prec=PoorMnvrDriver 0.125 1.000 2.909 

Coll=L  &  TrfCtrl=Light DrvInj=Uninjured 0.094 1.000 1.684 

Coll=L  &  TrfCtrl=Light MaxInj=Slight 0.094 1.000 1.333 

Coll=L  &  Light=DarkSL MaxInj=Slight 0.094 1.000 1.333 

Coll=L  &  MaxInj=Uninjured Area=Rural 0.094 0.750 1.846 

Coll=L  &  MaxInj=SeriousFatal Light=DaySLUnk 0.063 1.000 4.571 

Coll=L  &  MaxInj=SeriousFatal SpdLim=30mph 0.063 1.000 1.455 

Coll=L  &  TrfCtrl=GW FirstIntAct=P2W 0.031 1.000 5.333 

Coll=L  &  TrfCtrl=GW Light=DaySLUnk 0.031 1.000 4.571 

Coll=L  &  TrfCtrl=GW DrvInj=Uninjured 0.031 1.000 1.684 

Coll=L  &  TrfCtrl=GW Area=Urban 0.031 1.000 1.684 

Coll=L  &  TrfCtrl=GW SpdLim=30mph 0.031 1.000 1.455 

 

Figure 139: Weighted, directed graph obtained from all association rules for cluster T-C13 
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Cluster X-C1: “The car hits another road user with its front, while going straight over 

a crossroad with minor roads joining left and right.” 

Table 66: All rules (up to 3 items) obtained for cluster X-C1 with collision type H (scenario X-1.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=H  &  SpdLim=30mph RdType=SingCgw 0.202 1.000 1.308 

Coll=H  &  Prec=FailGiveWayOther TrfCtrl=None 0.193 1.000 2.017 

Coll=H  &  TrfCtrl=None Prec=FailGiveWayOther 0.193 0.767 2.401 

Coll=H  &  Area=Rural TrfCtrl=None 0.109 0.765 1.542 

Coll=H  &  SpdLim=60mph RdType=SingCgw 0.101 1.000 1.308 

Coll=H  &  SpdLim=60mph Surf=Dry 0.092 0.917 1.330 

Coll=H  &  MaxInj=SeriousFatal RdType=SingCgw 0.084 1.000 1.308 

Coll=H  &  Prec=FailStopDriver TrfCtrl=Light 0.084 1.000 1.983 

Coll=H  &  SpdLim=60mph DrvInj=Slight 0.076 0.750 1.684 

Coll=H  &  Light=DarkSL RdType=SingCgw 0.076 1.000 1.308 

Coll=H  &  Light=DarkSL SpdLim=30mph 0.067 0.889 1.603 

Coll=H  &  FirstIntAct=LGV=HGV DrvInj=Slight 0.034 1.000 2.245 

Coll=H  &  FirstIntAct=LGV=HGV MaxInj=Slight 0.034 1.000 1.337 

Table 67: All rules (up to 3 items) obtained for cluster X-C1 with collision type L (scenario X-1.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=L  &  Manvr=GoingAheadOther TrfCtrl=Light 0.126 0.789 1.566 

Coll=L  &  SpdLim=30mph Area=Urban 0.126 1.000 1.266 

Coll=L  &  DrvInj=Uninjured TrfCtrl=Light 0.109 0.813 1.611 

Coll=L  &  Surf=Dry TrfCtrl=Light 0.109 0.765 1.517 

Coll=L  &  Light=DayNSL RdType=SingCgw 0.101 1.000 1.308 

Coll=L  &  Surf=Wet MaxInj=Slight 0.092 1.000 1.337 

Coll=L  &  DrvInj=Slight MaxInj=Slight 0.092 1.000 1.337 

Coll=L  &  DrvInj=Slight RdType=SingCgw 0.092 1.000 1.308 

Coll=L  &  Manvr=TurnR MaxInj=Slight 0.076 1.000 1.337 

Coll=L  &  Light=DaySLUnk Area=Urban 0.076 1.000 1.266 

Coll=L  &  Manvr=TurnR SpdLim=30mph 0.067 0.889 1.603 

Coll=L  &  SpdLim=40-50mph TrfCtrl=Light 0.067 1.000 1.983 

Coll=L  &  Prec=FailGiveWayOther TrfCtrl=Light 0.067 0.889 1.763 

Coll=L  &  TrfCtrl=None MaxInj=Slight 0.067 1.000 1.337 

Coll=L  &  TrfCtrl=None RdType=SingCgw 0.067 1.000 1.308 

Coll=L  &  TrfCtrl=None SpdLim=30mph 0.050 0.750 1.352 

Coll=L  &  Prec=FailGiveWayDriver Manvr=TurnR 0.042 1.000 9.154 

Coll=L  &  Prec=FailGiveWayDriver SpdLim=30mph 0.042 1.000 1.803 

Coll=L  &  Prec=FailGiveWayDriver MaxInj=Slight 0.042 1.000 1.337 

Coll=L  &  Light=DarkSL TrfCtrl=Light 0.042 1.000 1.983 

Coll=L  &  Light=DarkSL MaxInj=Slight 0.042 1.000 1.337 

Coll=L  &  Light=DarkSL Area=Urban 0.042 1.000 1.266 
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Coll=L  &  Area=Rural RdType=SingCgw 0.042 1.000 1.308 

Coll=L  &  Prec=PoorMnvrOther RdType=SingCgw 0.034 1.000 1.308 

Coll=L  &  Light=DarkSL Manvr=TurnR 0.034 0.800 7.323 

Coll=L  &  Light=DarkSL DrvInj=Uninjured 0.034 0.800 1.535 

Coll=L  &  Area=Rural DrvInj=Slight 0.034 0.800 1.796 

Coll=L  &  Area=Rural Light=DayNSL 0.034 0.800 1.561 

Table 68: All rules (up to 3 items) obtained for cluster X-C1 with collision type F (scenario X-1.3), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=F Area=Urban 0.143 1.000 1.266 

Coll=F Light=DayNSL 0.109 0.765 1.492 

Coll=F  &  MaxInj=Slight Light=DayNSL 0.092 0.846 1.651 

Coll=F  &  FirstIntAct=Car Light=DayNSL 0.092 0.786 1.533 

Coll=F  &  MaxInj=Slight TrfCtrl=Light 0.084 0.769 1.526 

Coll=F  &  SpdLim=30mph RdType=SingCgw 0.076 1.000 1.308 

Coll=F  &  RdType=SingCgw SpdLim=30mph 0.076 1.000 1.803 

Coll=F  &  FirstImpact=Back Surf=Dry 0.067 0.889 1.290 

Coll=F  &  RdType=DualCgw TrfCtrl=Light 0.067 1.000 1.983 

Coll=F  &  RdType=DualCgw MaxInj=Slight 0.067 1.000 1.337 

Coll=F  &  FirstImpact=Back Light=DayNSL 0.059 0.778 1.517 

Coll=F  &  RdType=DualCgw Surf=Dry 0.059 0.875 1.270 

Coll=F  &  SpdLim=30mph Light=DayNSL 0.059 0.778 1.517 

Coll=F  &  RdType=SingCgw Light=DayNSL 0.059 0.778 1.517 

Coll=F  &  RdType=DualCgw SpdLim=40-50mph 0.050 0.750 3.078 

Coll=F  &  SpdLim=40-50mph RdType=DualCgw 0.050 1.000 4.958 

Coll=F  &  SpdLim=40-50mph TrfCtrl=Light 0.050 1.000 1.983 

Coll=F  &  SpdLim=40-50mph Light=DayNSL 0.050 1.000 1.951 

Coll=F  &  SpdLim=40-50mph MaxInj=Slight 0.050 1.000 1.337 

Coll=F  &  DrvInj=Slight MaxInj=Slight 0.050 1.000 1.337 

Coll=F  &  FirstImpact=Front TrfCtrl=Light 0.050 0.750 1.488 

Coll=F  &  FirstImpact=Front DrvInj=Uninjured 0.050 0.750 1.440 

Coll=F  &  DrvInj=Slight Light=DayNSL 0.042 0.833 1.626 

Coll=F  &  TrfCtrl=None Light=DayNSL 0.042 1.000 1.951 

Coll=F  &  TrfCtrl=None SpdLim=30mph 0.042 1.000 1.803 

Coll=F  &  TrfCtrl=None Surf=Dry 0.042 1.000 1.451 

Coll=F  &  TrfCtrl=None RdType=SingCgw 0.042 1.000 1.308 

Coll=F  &  Prec=FailAvoidOther TrfCtrl=Light 0.034 0.800 1.587 

Coll=F  &  MaxInj=Uninjured SpdLim=30mph 0.034 1.000 1.803 

Coll=F  &  MaxInj=Uninjured Surf=Dry 0.034 1.000 1.451 

Coll=F  &  MaxInj=Uninjured RdType=SingCgw 0.034 1.000 1.308 

Coll=F  &  Prec=FailStopDriver Light=DayNSL 0.034 1.000 1.951 
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Figure 140: Weighted, directed graphs obtained from all association rules for cluster X-C1 
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Cluster X-C2: “The car hits another road user with its front, while crossing or turning 

into a major road.” 

Table 69: All rules (up to 3 items) obtained for cluster X-C2 with collision type H (scenario X-2.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=H Manvr=GoingAheadOther 0.340 0.810 1.619 

Coll=H  &  Area=Urban SpdLim=30mph 0.300 0.833 1.302 

Coll=H  &  RdType=SingCgw Manvr=GoingAheadOther 0.280 0.824 1.647 

Coll=H  &  FirstIntAct=Car Manvr=GoingAheadOther 0.260 0.813 1.625 

Coll=H  &  Surf=Dry Manvr=GoingAheadOther 0.240 0.857 1.714 

Coll=H  &  DrvInj=Uninjured SpdLim=30mph 0.240 0.800 1.250 

Coll=H  &  TrfCtrl=GW Prec=FailGiveWayDriver 0.200 0.909 1.748 

Coll=H  &  Prec=FailGiveWayDriver TrfCtrl=GW 0.200 0.769 1.748 

Coll=H  &  MaxInj=Slight SpdLim=30mph 0.200 0.833 1.302 

Coll=H  &  Light=DayNSL Prec=FailGiveWayDriver 0.180 0.900 1.731 

Coll=H  &  TrfCtrl=GW SpdLim=30mph 0.180 0.818 1.278 

Coll=H  &  Surf=Wet SpdLim=30mph 0.140 1.000 1.563 

Coll=H  &  Light=DarkSL Manvr=GoingAheadOther 0.100 0.833 1.667 

Coll=H  &  DrvInj=Slight Manvr=GoingAheadOther 0.100 1.000 2.000 

Coll=H  &  TrfCtrl=Light Manvr=GoingAheadOther 0.100 1.000 2.000 

Coll=H  &  TrfCtrl=Light Surf=Dry 0.100 1.000 1.429 

Coll=H  &  Prec=FailStopDriver Manvr=GoingAheadOther 0.080 1.000 2.000 

Coll=H  &  DrvInj=Slight Light=DayNSL 0.080 0.800 2.105 

Coll=H  &  SpdLim=40-50mph Manvr=GoingAheadOther 0.080 1.000 2.000 

Coll=H  &  SpdLim=40-50mph Surf=Dry 0.080 1.000 1.429 

Coll=H  &  SpdLim=40-50mph FirstIntAct=Car 0.080 1.000 1.351 

Coll=H  &  Light=DaySLUnk Manvr=GoingAheadOther 0.080 1.000 2.000 

Coll=H  &  Light=DaySLUnk SpdLim=30mph 0.080 1.000 1.563 

Coll=H  &  Light=DaySLUnk MaxInj=Slight 0.080 1.000 1.515 

Coll=H  &  Light=DaySLUnk FirstIntAct=Car 0.080 1.000 1.351 

Coll=H  &  FirstIntAct=P2W Light=DayNSL 0.060 0.750 1.974 

Coll=H  &  FirstIntAct=P2W TrfCtrl=GW 0.060 0.750 1.705 

Coll=H  &  SpdLim=40-50mph MaxInj=SeriousFatal 0.060 0.750 5.357 

Coll=H  &  TrfCtrl=Stop Manvr=GoingAheadOther 0.060 1.000 2.000 

Coll=H  &  TrfCtrl=Stop MaxInj=Slight 0.060 1.000 1.515 

Coll=H  &  Area=Rural Light=DayNSL 0.060 1.000 2.632 

Coll=H  &  Area=Rural Manvr=GoingAheadOther 0.060 1.000 2.000 

Coll=H  &  Area=Rural Prec=FailGiveWayDriver 0.060 1.000 1.923 

Coll=H  &  Area=Rural Surf=Dry 0.060 1.000 1.429 

Coll=H  &  SpdLim=40-50mph DrvInj=Slight 0.060 0.750 3.125 

Coll=H  &  RdType=OneWayStr TrfCtrl=None 0.040 1.000 25.000 

Coll=H  &  Prec=FailStopOther Light=DarkSL 0.040 1.000 4.167 

Coll=H  &  Prec=FailStopOther SpdLim=40-50mph 0.040 1.000 3.846 

Coll=H  &  Prec=FailStopOther Manvr=GoingAheadOther 0.040 1.000 2.000 
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Coll=H  &  SpdLim=60mph Manvr=GoingAheadOther 0.040 1.000 2.000 

Coll=H  &  SpdLim=60mph DrvInj=Uninjured 0.040 1.000 1.351 

Coll=H  &  RdType=OneWayStr MaxInj=SeriousFatal 0.040 1.000 7.143 

Coll=H  &  RdType=OneWayStr Light=DarkSL 0.040 1.000 4.167 

Coll=H  &  RdType=OneWayStr Surf=Wet 0.040 1.000 3.333 

Coll=H  &  RdType=DualCgw MaxInj=Slight 0.040 1.000 1.515 

Coll=H  &  Manvr=TurnL Light=DayNSL 0.040 1.000 2.632 

Coll=H  &  Manvr=TurnL TrfCtrl=GW 0.040 1.000 2.273 

Coll=H  &  Manvr=TurnL Prec=FailGiveWayDriver 0.040 1.000 1.923 

Coll=H  &  Manvr=TurnL SpdLim=30mph 0.040 1.000 1.563 

Coll=H  &  Manvr=TurnL MaxInj=Slight 0.040 1.000 1.515 

Coll=H  &  Manvr=TurnL DrvInj=Uninjured 0.040 1.000 1.351 

Coll=H  &  Manvr=TurnL FirstIntAct=Car 0.040 1.000 1.351 

Coll=H  &  MaxInj=Uninjured TrfCtrl=GW 0.040 1.000 2.273 

Coll=H  &  MaxInj=Uninjured Manvr=GoingAheadOther 0.040 1.000 2.000 

Coll=H  &  MaxInj=Uninjured SpdLim=30mph 0.040 1.000 1.563 

Coll=H  &  MaxInj=Uninjured Surf=Dry 0.040 1.000 1.429 

Coll=H  &  MaxInj=Uninjured FirstIntAct=Car 0.040 1.000 1.351 

Coll=H  &  Manvr=TurnR Prec=FailGiveWayDriver 0.040 1.000 1.923 

Coll=H  &  Manvr=TurnR SpdLim=30mph 0.040 1.000 1.563 

Coll=H  &  Manvr=TurnR DrvInj=Uninjured 0.040 1.000 1.351 

Table 70: All rules (up to 3 items) obtained for cluster X-C2 with collision type F (scenario X-2.2), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=F MaxInj=Slight 0.100 0.833 1.263 

Coll=F  &  HorizGeom=LeftSlight Manvr=TurnL 0.080 1.000 5.556 

Coll=F  &  Manvr=TurnL HorizGeom=LeftSlight 0.080 1.000 8.333 

Coll=F  &  MaxInj=Slight HorizGeom=LeftSlight 0.080 0.800 6.667 

Coll=F  &  RdType=SingCgw HorizGeom=LeftSlight 0.080 0.800 6.667 

Coll=F  &  Manvr=TurnL MaxInj=Slight 0.080 1.000 1.515 

Coll=F  &  MaxInj=Slight Manvr=TurnL 0.080 0.800 4.444 

Coll=F  &  RdType=SingCgw Manvr=TurnL 0.080 0.800 4.444 

Coll=F  &  FirstIntAct=Car MaxInj=Slight 0.080 1.000 1.515 

Coll=F  &  FirstImpact=Front MaxInj=Slight 0.080 1.000 1.515 

Coll=F  &  DrvInj=Uninjured Prec=FailAvoidDriver 0.060 0.750 12.500 

Coll=F  &  FirstImpact=Front Prec=FailAvoidDriver 0.060 0.750 12.500 

Coll=F  &  FirstIntAct=Car HorizGeom=LeftSlight 0.060 0.750 6.250 

Coll=F  &  FirstImpact=Front HorizGeom=LeftSlight 0.060 0.750 6.250 

Coll=F  &  FirstIntAct=Car Manvr=TurnL 0.060 0.750 4.167 

Coll=F  &  FirstImpact=Front Manvr=TurnL 0.060 0.750 4.167 

Coll=F  &  SpdLim=40-50mph TrfCtrl=Light 0.060 1.000 2.632 

Coll=F  &  TrfCtrl=Light SpdLim=40-50mph 0.060 1.000 3.846 

Coll=F  &  SpdLim=40-50mph MaxInj=Slight 0.060 1.000 1.515 

Coll=F  &  SpdLim=40-50mph Surf=Dry 0.060 1.000 1.429 

Coll=F  &  Surf=Dry SpdLim=40-50mph 0.060 1.000 3.846 
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Coll=F  &  SpdLim=40-50mph FirstIntAct=Car 0.060 1.000 1.351 

Coll=F  &  FirstIntAct=Car SpdLim=40-50mph 0.060 0.750 2.885 

Coll=F  &  Area=Urban SpdLim=40-50mph 0.060 0.750 2.885 

Coll=F  &  Surf=Wet TrfCtrl=GW 0.060 1.000 2.273 

Coll=F  &  TrfCtrl=GW Surf=Wet 0.060 1.000 3.333 

Coll=F  &  TrfCtrl=Light MaxInj=Slight 0.060 1.000 1.515 

Coll=F  &  TrfCtrl=Light Surf=Dry 0.060 1.000 1.429 

Coll=F  &  Surf=Dry TrfCtrl=Light 0.060 1.000 2.632 

Coll=F  &  TrfCtrl=Light FirstIntAct=Car 0.060 1.000 1.351 

Coll=F  &  FirstIntAct=Car TrfCtrl=Light 0.060 0.750 1.974 

Coll=F  &  Area=Urban TrfCtrl=Light 0.060 0.750 1.974 

Coll=F  &  Surf=Dry MaxInj=Slight 0.060 1.000 1.515 

Coll=F  &  Surf=Dry FirstIntAct=Car 0.060 1.000 1.351 

Coll=F  &  Light=DarkNSL SpdLim=70mph 0.040 1.000 25.000 

Coll=F  &  Area=Rural SpdLim=70mph 0.040 1.000 25.000 

Coll=F  &  Light=DarkNSL HorizGeom=LeftSlight 0.040 1.000 8.333 

Coll=F  &  Area=Rural Light=DarkNSL 0.040 1.000 12.500 

Coll=F  &  Light=DarkNSL Manvr=TurnL 0.040 1.000 5.556 

Coll=F  &  Light=DarkNSL Surf=Wet 0.040 1.000 3.333 

Coll=F  &  Light=DarkNSL TrfCtrl=GW 0.040 1.000 2.273 

Coll=F  &  FirstImpact=Back Prec=FailAvoidOther 0.040 1.000 12.500 

Coll=F  &  DrvInj=Slight Prec=FailAvoidOther 0.040 1.000 12.500 

Coll=F  &  FirstIntAct=LGV=HGV Surf=Wet 0.040 1.000 3.333 

Coll=F  &  FirstIntAct=LGV=HGV TrfCtrl=GW 0.040 1.000 2.273 

Coll=F  &  Area=Rural HorizGeom=LeftSlight 0.040 1.000 8.333 

Coll=F  &  DrvInj=Slight HorizGeom=LeftSlight 0.040 1.000 8.333 

Coll=F  &  Light=DayNSL HorizGeom=LeftSlight 0.040 1.000 8.333 

Coll=F  &  Area=Rural Manvr=TurnL 0.040 1.000 5.556 

Coll=F  &  Area=Rural Surf=Wet 0.040 1.000 3.333 

Coll=F  &  Area=Rural TrfCtrl=GW 0.040 1.000 2.273 

Coll=F  &  Area=Rural MaxInj=Slight 0.040 1.000 1.515 

Coll=F  &  DrvInj=Slight Manvr=TurnL 0.040 1.000 5.556 

Coll=F  &  Light=DayNSL Manvr=TurnL 0.040 1.000 5.556 

Coll=F  &  DrvInj=Slight MaxInj=Slight 0.040 1.000 1.515 

Coll=F  &  Light=DayNSL SpdLim=40-50mph 0.040 1.000 3.846 

Coll=F  &  Light=DayNSL TrfCtrl=Light 0.040 1.000 2.632 

Coll=F  &  Light=DayNSL MaxInj=Slight 0.040 1.000 1.515 

Coll=F  &  Light=DayNSL Surf=Dry 0.040 1.000 1.429 

Coll=F  &  Light=DayNSL FirstIntAct=Car 0.040 1.000 1.351 

Coll=F  &  HorizGeom=Straight DrvInj=Uninjured 0.040 1.000 1.351 

Table 71: All rules (up to 3 items) obtained for cluster X-C2 with collision type J (scenario X-2.3), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J Manvr=TurnR 0.080 1.000 3.125 

Coll=J TrfCtrl=GW 0.080 1.000 2.273 
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Coll=J Prec=FailGiveWayDriver 0.080 1.000 1.923 

Coll=J  &  MaxInj=Uninjured SpdLim=30mph 0.040 1.000 1.563 

Coll=J  &  MaxInj=Uninjured FirstIntAct=Car 0.040 1.000 1.351 

Coll=J  &  Surf=Wet SpdLim=30mph 0.040 1.000 1.563 

Coll=J  &  Surf=Wet FirstIntAct=Car 0.040 1.000 1.351 

Coll=J  &  Light=DayNSL MaxInj=Slight 0.040 1.000 1.515 

Coll=J  &  MaxInj=Slight Light=DayNSL 0.040 1.000 2.632 

Coll=J  &  SpdLim=30mph FirstIntAct=Car 0.060 1.000 1.351 

Coll=J  &  FirstIntAct=Car SpdLim=30mph 0.060 1.000 1.563 

Coll=J  &  Surf=Dry DrvInj=Uninjured 0.040 1.000 1.351 

Table 72: All rules (up to 3 items) obtained for cluster X-C2 with collision type L (scenario X-2.4), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=L TrfCtrl=Light 0.160 1.000 2.632 

Coll=L FirstIntAct=Car 0.160 1.000 1.351 

Coll=L MaxInj=Slight 0.140 0.875 1.326 

Coll=L Surf=Dry 0.140 0.875 1.250 

Coll=L  &  Area=Urban Surf=Dry 0.140 1.000 1.429 

Coll=L  &  RdType=SingCgw MaxInj=Slight 0.120 1.000 1.515 

Coll=L  &  Manvr=GoingAheadOther Surf=Dry 0.100 1.000 1.429 

Coll=L  &  SpdLim=30mph MaxInj=Slight 0.100 1.000 1.515 

Coll=L  &  SpdLim=30mph Surf=Dry 0.100 1.000 1.429 

Coll=L  &  RdType=SingCgw SpdLim=30mph 0.100 0.833 1.302 

Coll=L  &  DrvInj=Uninjured Surf=Dry 0.100 1.000 1.429 

Coll=L  &  Prec=FailGiveWayOther MaxInj=Slight 0.080 1.000 1.515 

Coll=L  &  Prec=FailGiveWayOther Surf=Dry 0.080 1.000 1.429 

Coll=L  &  Light=DaySLUnk Surf=Dry 0.080 1.000 1.429 

Coll=L  &  DrvInj=Uninjured Light=DaySLUnk 0.080 0.800 2.857 

Coll=L  &  DrvInj=Uninjured Manvr=GoingAheadOther 0.080 0.800 1.600 

Coll=L  &  DrvInj=Uninjured SpdLim=30mph 0.080 0.800 1.250 

Coll=L  &  DrvInj=Slight MaxInj=Slight 0.060 1.000 1.515 

Coll=L  &  Light=DaySLUnk Manvr=GoingAheadOther 0.060 0.750 1.500 

Coll=L  &  Manvr=TurnR MaxInj=Slight 0.060 1.000 1.515 

Coll=L  &  Prec=FailGiveWayDriver MaxInj=Slight 0.060 1.000 1.515 

Coll=L  &  RdType=DualCgw SpdLim=40-50mph 0.040 1.000 3.846 

Coll=L  &  Light=DayNSL SpdLim=30mph 0.040 1.000 1.563 

Coll=L  &  Light=DayNSL MaxInj=Slight 0.040 1.000 1.515 

Coll=L  &  Light=DayNSL Surf=Dry 0.040 1.000 1.429 
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Figure 141: Weighted, directed graphs obtained from all association rules for cluster X-C2 
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Cluster X-C3: “The car is turning right into a minor road, when being hit on its 

offside by another vehicle.” 

Table 73: All rules (up to 3 items) obtained for cluster X-C3 with collision type L (scenario X-3.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=L Manvr=TurnR 0.341 0.933 2.251 

Coll=L TrfCtrl=Light 0.293 0.800 1.367 

Coll=L  &  Manvr=TurnR TrfCtrl=Light 0.293 0.857 1.464 

Coll=L  &  TrfCtrl=Light Manvr=TurnR 0.293 1.000 2.412 

Coll=L  &  DrvInj=Uninjured Manvr=TurnR 0.220 1.000 2.412 

Coll=L  &  Light=DayNSL Manvr=TurnR 0.220 1.000 2.412 

Coll=L  &  Prec=FailGiveWayDriver Manvr=TurnR 0.195 1.000 2.412 

Coll=L  &  Prec=FailGiveWayDriver TrfCtrl=Light 0.195 1.000 1.708 

Coll=L  &  SpdLim=40-50mph Manvr=TurnR 0.195 1.000 2.412 

Coll=L  &  SpdLim=40-50mph TrfCtrl=Light 0.195 1.000 1.708 

Coll=L  &  Area=Urban Manvr=TurnR 0.195 1.000 2.412 

Coll=L  &  Light=DayNSL TrfCtrl=Light 0.195 0.889 1.519 

Coll=L  &  Area=Urban TrfCtrl=Light 0.195 1.000 1.708 

Coll=L  &  Area=Urban Prec=FailGiveWayDriver 0.171 0.875 3.261 

Coll=L  &  Surf=Wet Manvr=TurnR 0.122 1.000 2.412 

Coll=L  &  Surf=Wet MaxInj=Slight 0.122 1.000 1.281 

Coll=L  &  Prec=PoorMnvrDriver Manvr=TurnR 0.098 1.000 2.412 

Coll=L  &  DrvInj=Slight FirstIntAct=Car 0.098 1.000 1.323 

Coll=L  &  Prec=PoorMnvrDriver Area=Rural 0.073 0.750 2.563 

Coll=L  &  SpdLim=60mph Area=Rural 0.073 0.750 2.563 

Coll=L  &  SpdLim=60mph TrfCtrl=None 0.073 0.750 1.922 

Coll=L  &  TrfCtrl=None SpdLim=60mph 0.073 1.000 8.200 

Coll=L  &  SpdLim=60mph DrvInj=Uninjured 0.073 0.750 1.618 

Coll=L  &  Light=DaySLUnk Prec=FailGiveWayDriver 0.073 1.000 3.727 

Coll=L  &  Light=DaySLUnk Manvr=TurnR 0.073 1.000 2.412 

Coll=L  &  Light=DaySLUnk TrfCtrl=Light 0.073 1.000 1.708 

Coll=L  &  Light=DaySLUnk MaxInj=Slight 0.073 1.000 1.281 

Coll=L  &  SpdLim=30mph Prec=FailGiveWayDriver 0.073 1.000 3.727 

Coll=L  &  TrfCtrl=None Area=Rural 0.073 1.000 3.417 

Coll=L  &  TrfCtrl=None FirstIntAct=Car 0.073 1.000 1.323 

Coll=L  &  TrfCtrl=None MaxInj=Slight 0.073 1.000 1.281 

Coll=L  &  SpdLim=30mph Manvr=TurnR 0.073 1.000 2.412 

Coll=L  &  SpdLim=30mph TrfCtrl=Light 0.073 1.000 1.708 

Coll=L  &  SpdLim=30mph Area=Urban 0.073 1.000 1.414 

Coll=L  &  SpdLim=30mph MaxInj=Slight 0.073 1.000 1.281 

Coll=L  &  MaxInj=SeriousFatal DrvInj=Serious 0.049 1.000 10.250 

Coll=L  &  DrvInj=Serious Manvr=TurnR 0.049 1.000 2.412 

Coll=L  &  DrvInj=Serious TrfCtrl=Light 0.049 1.000 1.708 

Coll=L  &  DrvInj=Serious Surf=Dry 0.049 1.000 1.323 
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Coll=L  &  MaxInj=Uninjured Manvr=TurnR 0.049 1.000 2.412 

Coll=L  &  MaxInj=Uninjured TrfCtrl=Light 0.049 1.000 1.708 

Coll=L  &  MaxInj=Uninjured Light=DayNSL 0.049 1.000 1.708 

Coll=L  &  MaxInj=Uninjured Surf=Dry 0.049 1.000 1.323 

Coll=L  &  RdType=DualCgw Surf=Wet 0.049 1.000 4.100 

Coll=L  &  RdType=DualCgw Prec=FailGiveWayDriver 0.049 1.000 3.727 

Coll=L  &  RdType=DualCgw Manvr=TurnR 0.049 1.000 2.412 

Coll=L  &  RdType=DualCgw DrvInj=Uninjured 0.049 1.000 2.158 

Coll=L  &  MaxInj=SeriousFatal Manvr=TurnR 0.049 1.000 2.412 

Coll=L  &  MaxInj=SeriousFatal TrfCtrl=Light 0.049 1.000 1.708 

Coll=L  &  MaxInj=SeriousFatal Surf=Dry 0.049 1.000 1.323 

Table 74: All rules (up to 3 items) obtained for cluster X-C3 with collision type H (scenario X-3.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=H Manvr=GoingAheadOther 0.366 1.000 1.864 

Coll=H  &  MaxInj=Slight Surf=Dry 0.293 1.000 1.323 

Coll=H  &  RdType=SingCgw TrfCtrl=None 0.244 0.833 2.135 

Coll=H  &  Area=Urban Surf=Dry 0.244 1.000 1.323 

Coll=H  &  Area=Urban MaxInj=Slight 0.244 1.000 1.281 

Coll=H  &  DrvInj=Slight Surf=Dry 0.220 1.000 1.323 

Coll=H  &  MaxInj=Slight DrvInj=Slight 0.220 0.750 1.708 

Coll=H  &  RdType=SingCgw Light=DayNSL 0.220 0.750 1.281 

Coll=H  &  TrfCtrl=None Light=DayNSL 0.195 0.800 1.367 

Coll=H  &  Light=DayNSL TrfCtrl=None 0.195 0.889 2.278 

Coll=H  &  SpdLim=30mph Surf=Dry 0.195 1.000 1.323 

Coll=H  &  SpdLim=30mph MaxInj=Slight 0.195 1.000 1.281 

Coll=H  &  SpdLim=30mph TrfCtrl=None 0.171 0.875 2.242 

Coll=H  &  Prec=FailGiveWayOther TrfCtrl=None 0.146 1.000 2.563 

Coll=H  &  Prec=FailGiveWayOther Surf=Dry 0.146 1.000 1.323 

Coll=H  &  SpdLim=30mph Light=DayNSL 0.146 0.750 1.281 

Coll=H  &  Prec=FailGiveWayOther SpdLim=30mph 0.122 0.833 1.708 

Coll=H  &  Prec=FailGiveWayOther Light=DayNSL 0.122 0.833 1.424 

Coll=H  &  Area=Rural TrfCtrl=None 0.122 1.000 2.563 

Coll=H  &  Area=Rural FirstIntAct=Car 0.122 1.000 1.323 

Coll=H  &  TrfCtrl=Light Area=Urban 0.122 1.000 1.414 

Coll=H  &  TrfCtrl=Light Surf=Dry 0.122 1.000 1.323 

Coll=H  &  TrfCtrl=Light MaxInj=Slight 0.122 1.000 1.281 

Coll=H  &  Light=DarkSL Surf=Dry 0.098 1.000 1.323 

Coll=H  &  Area=Rural Light=DayNSL 0.098 0.800 1.367 

Coll=H  &  TrfCtrl=Light DrvInj=Slight 0.098 0.800 1.822 

Coll=H  &  DrvInj=Uninjured Light=DayNSL 0.098 1.000 1.708 

Coll=H  &  Prec=FailStopDriver Light=DarkSL 0.073 1.000 6.833 

Coll=H  &  Light=DarkSL Prec=FailStopDriver 0.073 0.750 7.688 

Coll=H  &  Prec=FailStopDriver DrvInj=Slight 0.073 1.000 2.278 

Coll=H  &  Prec=FailStopDriver MaxInj=Slight 0.073 1.000 1.281 
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Coll=H  &  RdType=DualCgw DrvInj=Slight 0.073 1.000 2.278 

Coll=H  &  RdType=DualCgw FirstIntAct=Car 0.073 1.000 1.323 

Coll=H  &  RdType=DualCgw Surf=Dry 0.073 1.000 1.323 

Coll=H  &  MaxInj=SeriousFatal Area=Rural 0.073 1.000 3.417 

Coll=H  &  MaxInj=SeriousFatal TrfCtrl=None 0.073 1.000 2.563 

Coll=H  &  MaxInj=SeriousFatal Light=DayNSL 0.073 1.000 1.708 

Coll=H  &  DrvInj=Uninjured TrfCtrl=None 0.073 0.750 1.922 

Coll=H  &  DrvInj=Uninjured SpdLim=30mph 0.073 0.750 1.538 

Coll=H  &  DrvInj=Serious Area=Rural 0.049 1.000 3.417 

Coll=H  &  DrvInj=Serious TrfCtrl=None 0.049 1.000 2.563 

Coll=H  &  DrvInj=Serious Light=DayNSL 0.049 1.000 1.708 

Coll=H  &  Prec=FailStopOther Light=DaySLUnk 0.049 1.000 5.125 

Coll=H  &  Light=DaySLUnk Prec=FailStopOther 0.049 1.000 8.200 

Coll=H  &  Prec=FailStopOther Area=Urban 0.049 1.000 1.414 

Coll=H  &  Prec=FailStopOther FirstIntAct=Car 0.049 1.000 1.323 

Coll=H  &  Prec=FailStopOther Surf=Dry 0.049 1.000 1.323 

Coll=H  &  Surf=Wet MaxInj=SeriousFatal 0.049 1.000 8.200 

Coll=H  &  Light=DaySLUnk DrvInj=Slight 0.049 1.000 2.278 

Coll=H  &  Light=DaySLUnk Surf=Dry 0.049 1.000 1.323 

Coll=H  &  Light=DaySLUnk MaxInj=Slight 0.049 1.000 1.281 

Coll=H  &  Surf=Wet Area=Rural 0.049 1.000 3.417 

Coll=H  &  Surf=Wet TrfCtrl=None 0.049 1.000 2.563 

Coll=H  &  Surf=Wet SpdLim=40-50mph 0.049 1.000 2.563 

Coll=H  &  Surf=Wet Light=DayNSL 0.049 1.000 1.708 

Coll=H  &  Surf=Wet FirstIntAct=Car 0.049 1.000 1.323 

Table 75: All rules (up to 3 items) obtained for cluster X-C3 with collision type J (scenario X-3.3), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J SpdLim=30mph 0.146 1.000 2.050 

Coll=J Area=Urban 0.146 1.000 1.414 

Coll=J  &  Surf=Wet FirstIntAct=Car 0.073 1.000 1.323 

Coll=J  &  TrfCtrl=None Manvr=GoingAheadOther 0.073 1.000 1.864 

Coll=J  &  Manvr=GoingAheadOther TrfCtrl=None 0.073 1.000 2.563 

Coll=J  &  TrfCtrl=None MaxInj=Slight 0.073 1.000 1.281 

Coll=J  &  Manvr=TurnR FirstIntAct=Car 0.073 1.000 1.323 

Coll=J  &  DrvInj=Slight FirstIntAct=Car 0.073 1.000 1.323 

Coll=J  &  Manvr=GoingAheadOther MaxInj=Slight 0.073 1.000 1.281 

Coll=J  &  Surf=Dry MaxInj=Slight 0.073 1.000 1.281 

Coll=J  &  Light=DaySLUnk Surf=Dry 0.049 1.000 1.323 

Coll=J  &  Light=DaySLUnk MaxInj=Slight 0.049 1.000 1.281 

Coll=J  &  Prec=FailGiveWayOther TrfCtrl=None 0.049 1.000 2.563 

Coll=J  &  Prec=FailGiveWayOther DrvInj=Slight 0.049 1.000 2.278 

Coll=J  &  Prec=FailGiveWayOther Manvr=GoingAheadOther 0.049 1.000 1.864 

Coll=J  &  Prec=FailGiveWayOther FirstIntAct=Car 0.049 1.000 1.323 

Coll=J  &  Prec=FailGiveWayOther MaxInj=Slight 0.049 1.000 1.281 
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Coll=J  &  Prec=FailGiveWayDriver Manvr=TurnR 0.049 1.000 2.412 

Coll=J  &  Prec=FailGiveWayDriver DrvInj=Uninjured 0.049 1.000 2.158 

Coll=J  &  Prec=FailGiveWayDriver FirstIntAct=Car 0.049 1.000 1.323 

Coll=J  &  TrfCtrl=Light Manvr=TurnR 0.049 1.000 2.412 

Coll=J  &  TrfCtrl=Light FirstIntAct=Car 0.049 1.000 1.323 

Coll=J  &  TrfCtrl=Light MaxInj=Slight 0.049 1.000 1.281 

 

Figure 142: Weighted, directed graphs obtained from all association rules for cluster X-C3 
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Cluster X-C4: “The car is crossing or turning into a major road, when being hit on its 

offside by another vehicle.” 

Table 76: All rules (up to 3 items) obtained for cluster X-C4 with collision type H (scenario X-4.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=H Manvr=GoingAheadOther 0.561 0.958 1.310 

Coll=H  &  Area=Urban Manvr=GoingAheadOther 0.390 1.000 1.367 

Coll=H  &  MaxInj=Slight Manvr=GoingAheadOther 0.341 1.000 1.367 

Coll=H  &  TrfCtrl=Light Manvr=GoingAheadOther 0.293 1.000 1.367 

Coll=H  &  Area=Urban DrvInj=Uninjured 0.293 0.750 1.337 

Coll=H  &  SpdLim=30mph Manvr=GoingAheadOther 0.268 1.000 1.367 

Coll=H  &  Prec=FailGiveWayDriver TrfCtrl=GW 0.268 0.917 1.708 

Coll=H  &  TrfCtrl=GW Prec=FailGiveWayDriver 0.268 1.000 2.050 

Coll=H  &  TrfCtrl=Light Area=Urban 0.244 0.833 1.367 

Coll=H  &  Light=DayNSL Surf=Dry 0.244 1.000 1.577 

Coll=H  &  Light=DayNSL Manvr=GoingAheadOther 0.244 1.000 1.367 

Coll=H  &  SpdLim=30mph DrvInj=Uninjured 0.220 0.818 1.458 

Coll=H  &  Prec=FailGiveWayDriver DrvInj=Uninjured 0.220 0.750 1.337 

Coll=H  &  TrfCtrl=GW DrvInj=Uninjured 0.220 0.818 1.458 

Coll=H  &  SpdLim=40-50mph Manvr=GoingAheadOther 0.195 1.000 1.367 

Coll=H  &  Light=DarkSL Manvr=GoingAheadOther 0.171 1.000 1.367 

Coll=H  &  DrvInj=Slight Manvr=GoingAheadOther 0.171 1.000 1.367 

Coll=H  &  SpdLim=40-50mph TrfCtrl=Light 0.146 0.750 1.809 

Coll=H  &  DrvInj=Slight Surf=Dry 0.146 0.857 1.352 

Coll=H  &  Surf=Wet Manvr=GoingAheadOther 0.146 1.000 1.367 

Coll=H  &  Area=Rural Prec=FailGiveWayDriver 0.146 0.750 1.538 

Coll=H  &  SpdLim=60mph Surf=Dry 0.122 1.000 1.577 

Coll=H  &  Prec=FailGiveWayOther TrfCtrl=Light 0.122 1.000 2.412 

Coll=H  &  Prec=FailGiveWayOther Area=Urban 0.122 1.000 1.640 

Coll=H  &  Prec=FailStopOther Manvr=GoingAheadOther 0.122 1.000 1.367 

Coll=H  &  MaxInj=SeriousFatal Surf=Dry 0.122 1.000 1.577 

Coll=H  &  MaxInj=SeriousFatal Manvr=GoingAheadOther 0.122 1.000 1.367 

Coll=H  &  Surf=Wet DrvInj=Uninjured 0.122 0.833 1.486 

Coll=H  &  SpdLim=60mph Light=DayNSL 0.098 0.800 1.640 

Coll=H  &  Prec=FailGiveWayOther Surf=Dry 0.098 0.800 1.262 

Coll=H  &  Prec=FailStopOther Surf=Dry 0.098 0.800 1.262 

Coll=H  &  Light=DarkNSL Prec=FailGiveWayDriver 0.073 1.000 2.050 

Coll=H  &  Light=DaySLUnk Manvr=GoingAheadOther 0.073 1.000 1.367 

Coll=H  &  RdType=DualCgw SpdLim=40-50mph 0.073 1.000 2.929 

Coll=H  &  RdType=DualCgw TrfCtrl=Light 0.073 1.000 2.412 

Coll=H  &  RdType=DualCgw DrvInj=Uninjured 0.073 1.000 1.783 

Coll=H  &  RdType=DualCgw Area=Urban 0.073 1.000 1.640 

Coll=H  &  RdType=DualCgw Manvr=GoingAheadOther 0.073 1.000 1.367 
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Table 77: All rules (up to 3 items) obtained for cluster X-C4 with collision type J (scenario X-4.2), sorted 
by support 

Antecedent Consequent Supp Conf Lift 

Coll=J  &  HorizGeom=Straight TrfCtrl=GW 0.171 0.778 1.449 

Coll=J  &  RdType=SingCgw TrfCtrl=GW 0.146 0.857 1.597 

Coll=J  &  Manvr=TurnR Prec=FailGiveWayDriver 0.122 0.833 1.708 

Coll=J  &  Prec=FailGiveWayDriver Manvr=TurnR 0.122 0.833 3.796 

Coll=J  &  Manvr=TurnR Light=DayNSL 0.122 0.833 1.708 

Coll=J  &  Light=DayNSL Manvr=TurnR 0.122 1.000 4.556 

Coll=J  &  Prec=FailGiveWayDriver Light=DayNSL 0.122 0.833 1.708 

Coll=J  &  Light=DayNSL Prec=FailGiveWayDriver 0.122 1.000 2.050 

Coll=J  &  Surf=Wet Manvr=TurnR 0.098 1.000 4.556 

Coll=J  &  Area=Rural Manvr=TurnR 0.098 0.800 3.644 

Coll=J  &  DrvInj=Slight MaxInj=Slight 0.098 1.000 1.577 

Coll=J  &  MaxInj=Slight DrvInj=Slight 0.098 0.800 2.343 

Coll=J  &  Area=Rural Prec=FailGiveWayDriver 0.098 0.800 1.640 

Coll=J  &  Area=Rural Light=DayNSL 0.098 0.800 1.640 

Coll=J  &  Light=DayNSL Area=Rural 0.098 0.800 2.050 

Coll=J  &  Area=Rural TrfCtrl=GW 0.098 0.800 1.491 

Coll=J  &  SpdLim=30mph Area=Urban 0.098 1.000 1.640 

Coll=J  &  Area=Urban SpdLim=30mph 0.098 0.800 1.822 

Coll=J  &  Light=DayNSL TrfCtrl=GW 0.098 0.800 1.491 

Coll=J  &  Area=Urban Surf=Dry 0.098 0.800 1.262 

Coll=J  &  Manvr=GoingAheadOther Surf=Dry 0.098 1.000 1.577 

Coll=J  &  MaxInj=SeriousFatal Manvr=TurnR 0.073 1.000 4.556 

Coll=J  &  MaxInj=SeriousFatal Area=Rural 0.073 1.000 2.563 

Coll=J  &  MaxInj=SeriousFatal Prec=FailGiveWayDriver 0.073 1.000 2.050 

Coll=J  &  MaxInj=SeriousFatal Light=DayNSL 0.073 1.000 2.050 

Coll=J  &  MaxInj=SeriousFatal TrfCtrl=GW 0.073 1.000 1.864 

Coll=J  &  Light=DarkSL Area=Urban 0.073 1.000 1.640 

Coll=J  &  Surf=Wet Area=Rural 0.073 0.750 1.922 

Coll=J  &  Surf=Wet Prec=FailGiveWayDriver 0.073 0.750 1.538 

Coll=J  &  Surf=Wet Light=DayNSL 0.073 0.750 1.538 

Coll=J  &  Surf=Wet TrfCtrl=GW 0.073 0.750 1.398 

Coll=J  &  SpdLim=30mph TrfCtrl=GW 0.073 0.750 1.398 

Coll=J  &  DrvInj=Uninjured Area=Urban 0.073 1.000 1.640 

Coll=J  &  DrvInj=Uninjured Surf=Dry 0.073 1.000 1.577 

Coll=J  &  FirstIntAct=LGV=HGV DrvInj=Fatal 0.049 1.000 20.500 

Coll=J  &  FirstIntAct=LGV=HGV MaxInj=SeriousFatal 0.049 1.000 5.125 

Coll=J  &  FirstIntAct=LGV=HGV Manvr=TurnR 0.049 1.000 4.556 

Coll=J  &  FirstIntAct=LGV=HGV SpdLim=40-50mph 0.049 1.000 2.929 

Coll=J  &  FirstIntAct=LGV=HGV Area=Rural 0.049 1.000 2.563 

Coll=J  &  FirstIntAct=LGV=HGV Prec=FailGiveWayDriver 0.049 1.000 2.050 

Coll=J  &  FirstIntAct=LGV=HGV Light=DayNSL 0.049 1.000 2.050 

Coll=J  &  FirstIntAct=LGV=HGV TrfCtrl=GW 0.049 1.000 1.864 

Coll=J  &  Prec=FailStopOther RdType=DualCgw 0.049 1.000 6.833 



307 

 

Coll=J  &  TrfCtrl=Light RdType=DualCgw 0.049 1.000 6.833 

Coll=J  &  MaxInj=Uninjured Area=Urban 0.049 1.000 1.640 

Coll=J  &  MaxInj=Uninjured Surf=Dry 0.049 1.000 1.577 

Coll=J  &  MaxInj=Uninjured Manvr=GoingAheadOther 0.049 1.000 1.367 

Coll=J  &  SpdLim=60mph DrvInj=Slight 0.049 1.000 2.929 

Coll=J  &  SpdLim=60mph Area=Rural 0.049 1.000 2.563 

Coll=J  &  SpdLim=60mph MaxInj=Slight 0.049 1.000 1.577 

Coll=J  &  Prec=FailStopOther Light=DarkSL 0.049 1.000 3.727 

Coll=J  &  TrfCtrl=Light Prec=FailStopOther 0.049 1.000 5.125 

Coll=J  &  Prec=FailStopOther Area=Urban 0.049 1.000 1.640 

Coll=J  &  Prec=FailStopOther Surf=Dry 0.049 1.000 1.577 

Coll=J  &  Prec=FailStopOther Manvr=GoingAheadOther 0.049 1.000 1.367 

Coll=J  &  TrfCtrl=Light Light=DarkSL 0.049 1.000 3.727 

Coll=J  &  TrfCtrl=Light Area=Urban 0.049 1.000 1.640 

Coll=J  &  TrfCtrl=Light Surf=Dry 0.049 1.000 1.577 

Coll=J  &  TrfCtrl=Light Manvr=GoingAheadOther 0.049 1.000 1.367 

 

Figure 143: Weighted, directed graphs obtained from all association rules for cluster X-C4 
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Cluster X-C5: “The car is going straight on a road broken by a major road, when 

being hit on its nearside by another vehicle.” 

Table 78: All rules (up to 3 items) obtained for cluster X-C5 with collision type H (scenario X-5.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=H Manvr=GoingAheadOther 0.700 1.000 1.364 

Coll=H  &  TrfCtrl=GW Prec=FailGiveWayDriver 0.467 0.933 1.474 

Coll=H  &  Prec=FailGiveWayDriver TrfCtrl=GW 0.467 0.933 1.474 

Coll=H  &  MaxInj=Slight Surf=Dry 0.467 0.933 1.333 

Coll=H  &  SpdLim=30mph RdType=SingCgw 0.333 1.000 1.304 

Coll=H  &  Area=Rural DrvInj=Slight 0.300 0.818 1.888 

Coll=H  &  DrvInj=Slight Area=Rural 0.300 0.818 1.888 

Coll=H  &  Area=Rural TrfCtrl=GW 0.300 0.818 1.292 

Coll=H  &  Area=Urban SpdLim=30mph 0.267 0.800 1.714 

Coll=H  &  SpdLim=30mph TrfCtrl=GW 0.267 0.800 1.263 

Coll=H  &  SpdLim=30mph Prec=FailGiveWayDriver 0.267 0.800 1.263 

Coll=H  &  DrvInj=Uninjured Prec=FailGiveWayDriver 0.267 0.800 1.263 

Coll=H  &  Surf=Wet RdType=SingCgw 0.200 1.000 1.304 

Coll=H  &  Surf=Wet TrfCtrl=GW 0.167 0.833 1.316 

Coll=H  &  TrfCtrl=Light Area=Urban 0.133 1.000 1.765 

Coll=H  &  MaxInj=Uninjured Surf=Wet 0.100 1.000 3.333 

Coll=H  &  MaxInj=Uninjured SpdLim=30mph 0.100 1.000 2.143 

Coll=H  &  MaxInj=Uninjured RdType=SingCgw 0.100 1.000 1.304 

Coll=H  &  Light=DarkSL SpdLim=30mph 0.100 1.000 2.143 

Coll=H  &  Light=DarkSL RdType=SingCgw 0.100 1.000 1.304 

Coll=H  &  RdType=DualCgw Surf=Dry 0.100 1.000 1.429 

Coll=H  &  RdType=DualCgw MaxInj=Slight 0.100 1.000 1.304 

Coll=H  &  TrfCtrl=Light DrvInj=Uninjured 0.100 0.750 1.324 

Coll=H  &  SpdLim=40-50mph RdType=DualCgw 0.067 1.000 5.000 

Coll=H  &  SpdLim=40-50mph TrfCtrl=Light 0.067 1.000 3.750 

Coll=H  &  SpdLim=40-50mph Area=Urban 0.067 1.000 1.765 

Coll=H  &  SpdLim=40-50mph DrvInj=Uninjured 0.067 1.000 1.765 

Coll=H  &  SpdLim=40-50mph Surf=Dry 0.067 1.000 1.429 

Coll=H  &  SpdLim=40-50mph MaxInj=Slight 0.067 1.000 1.304 

Coll=H  &  Prec=FailGiveWayOther SpdLim=30mph 0.033 1.000 2.143 

Coll=H  &  Prec=FailGiveWayOther Area=Urban 0.033 1.000 1.765 

Coll=H  &  Prec=FailGiveWayOther Light=DayNSL 0.033 1.000 1.765 

Coll=H  &  Prec=FailGiveWayOther Surf=Dry 0.033 1.000 1.429 

Coll=H  &  Light=DarkNSL MaxInj=SeriousFatal 0.033 1.000 10.000 

Coll=H  &  Light=DarkNSL SpdLim=60mph 0.033 1.000 3.750 

Coll=H  &  Light=DarkNSL TrfCtrl=GW 0.033 1.000 1.579 

Coll=H  &  Light=DarkNSL Prec=FailGiveWayDriver 0.033 1.000 1.579 
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Table 79: All rules (up to 3 items) obtained for cluster X-C5 with collision type L (scenario X-5.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=L SpdLim=40-50mph 0.100 1.000 4.286 

Coll=L TrfCtrl=Light 0.100 1.000 3.750 

Coll=L  &  RdType=DualCgw Manvr=TurnR 0.067 1.000 4.286 

Coll=L  &  Manvr=TurnR RdType=DualCgw 0.067 1.000 5.000 

Coll=L  &  RdType=DualCgw Area=Urban 0.067 1.000 1.765 

Coll=L  &  Area=Urban RdType=DualCgw 0.067 1.000 5.000 

Coll=L  &  RdType=DualCgw Surf=Dry 0.067 1.000 1.429 

Coll=L  &  Surf=Dry RdType=DualCgw 0.067 1.000 5.000 

Coll=L  &  Manvr=TurnR Area=Urban 0.067 1.000 1.765 

Coll=L  &  Area=Urban Manvr=TurnR 0.067 1.000 4.286 

Coll=L  &  Manvr=TurnR Surf=Dry 0.067 1.000 1.429 

Coll=L  &  Surf=Dry Manvr=TurnR 0.067 1.000 4.286 

Coll=L  &  DrvInj=Slight MaxInj=Slight 0.067 1.000 1.304 

Coll=L  &  MaxInj=Slight DrvInj=Slight 0.067 1.000 2.308 

Coll=L  &  Area=Urban Surf=Dry 0.067 1.000 1.429 

Coll=L  &  Surf=Dry Area=Urban 0.067 1.000 1.765 

Coll=L  &  MaxInj=Uninjured Prec=PoorMnvrDriver 0.033 1.000 30.000 

Coll=L  &  Light=DaySLUnk Prec=PoorMnvrDriver 0.033 1.000 30.000 

Coll=L  &  DrvInj=Uninjured Prec=PoorMnvrDriver 0.033 1.000 30.000 

Coll=L  &  Prec=FailGiveWayOther Light=DarkNSL 0.033 1.000 15.000 

Coll=L  &  Light=DarkNSL Prec=FailGiveWayOther 0.033 1.000 15.000 

Coll=L  &  Prec=FailGiveWayOther Surf=Wet 0.033 1.000 3.333 

Coll=L  &  Surf=Wet Prec=FailGiveWayOther 0.033 1.000 15.000 

Coll=L  &  Prec=FailGiveWayOther Area=Rural 0.033 1.000 2.308 

Coll=L  &  Area=Rural Prec=FailGiveWayOther 0.033 1.000 15.000 

Coll=L  &  Manvr=GoingAheadOther Prec=FailGiveWayOther 0.033 1.000 15.000 

Coll=L  &  RdType=SingCgw Prec=FailGiveWayOther 0.033 1.000 15.000 

Coll=L  &  Surf=Wet Light=DarkNSL 0.033 1.000 15.000 

Coll=L  &  Area=Rural Light=DarkNSL 0.033 1.000 15.000 

Coll=L  &  Manvr=GoingAheadOther Light=DarkNSL 0.033 1.000 15.000 

Coll=L  &  RdType=SingCgw Light=DarkNSL 0.033 1.000 15.000 

Coll=L  &  Light=DarkNSL MaxInj=Slight 0.033 1.000 1.304 

Coll=L  &  MaxInj=Uninjured RdType=DualCgw 0.033 1.000 5.000 

Coll=L  &  MaxInj=Uninjured Light=DaySLUnk 0.033 1.000 5.000 

Coll=L  &  Light=DaySLUnk MaxInj=Uninjured 0.033 1.000 7.500 

Coll=L  &  MaxInj=Uninjured Manvr=TurnR 0.033 1.000 4.286 

Coll=L  &  MaxInj=Uninjured Area=Urban 0.033 1.000 1.765 

Coll=L  &  DrvInj=Uninjured MaxInj=Uninjured 0.033 1.000 7.500 

Coll=L  &  MaxInj=Uninjured Surf=Dry 0.033 1.000 1.429 

Coll=L  &  Light=DarkSL RdType=DualCgw 0.033 1.000 5.000 

Coll=L  &  Light=DarkSL Manvr=TurnR 0.033 1.000 4.286 

Coll=L  &  Light=DarkSL DrvInj=Slight 0.033 1.000 2.308 

Coll=L  &  Light=DarkSL Area=Urban 0.033 1.000 1.765 
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Coll=L  &  Light=DarkSL Prec=FailGiveWayDriver 0.033 1.000 1.579 

Coll=L  &  Prec=FailGiveWayDriver Light=DarkSL 0.033 1.000 6.000 

Coll=L  &  Light=DarkSL Surf=Dry 0.033 1.000 1.429 

Coll=L  &  Light=DarkSL MaxInj=Slight 0.033 1.000 1.304 

Coll=L  &  Light=DaySLUnk RdType=DualCgw 0.033 1.000 5.000 

Coll=L  &  DrvInj=Uninjured RdType=DualCgw 0.033 1.000 5.000 

Coll=L  &  Prec=FailGiveWayDriver RdType=DualCgw 0.033 1.000 5.000 

Coll=L  &  Light=DaySLUnk Manvr=TurnR 0.033 1.000 4.286 

Coll=L  &  Light=DaySLUnk Area=Urban 0.033 1.000 1.765 

Coll=L  &  Light=DaySLUnk DrvInj=Uninjured 0.033 1.000 1.765 

Coll=L  &  DrvInj=Uninjured Light=DaySLUnk 0.033 1.000 5.000 

Coll=L  &  Light=DaySLUnk Surf=Dry 0.033 1.000 1.429 

Coll=L  &  DrvInj=Uninjured Manvr=TurnR 0.033 1.000 4.286 

Coll=L  &  Prec=FailGiveWayDriver Manvr=TurnR 0.033 1.000 4.286 

Coll=L  &  Surf=Wet Area=Rural 0.033 1.000 2.308 

Coll=L  &  Area=Rural Surf=Wet 0.033 1.000 3.333 

Coll=L  &  Surf=Wet DrvInj=Slight 0.033 1.000 2.308 

Coll=L  &  Surf=Wet Manvr=GoingAheadOther 0.033 1.000 1.364 

Coll=L  &  Manvr=GoingAheadOther Surf=Wet 0.033 1.000 3.333 

Coll=L  &  Surf=Wet RdType=SingCgw 0.033 1.000 1.304 

Coll=L  &  RdType=SingCgw Surf=Wet 0.033 1.000 3.333 

Coll=L  &  Surf=Wet MaxInj=Slight 0.033 1.000 1.304 

Coll=L  &  Area=Rural DrvInj=Slight 0.033 1.000 2.308 

Coll=L  &  Area=Rural Manvr=GoingAheadOther 0.033 1.000 1.364 

Coll=L  &  Manvr=GoingAheadOther Area=Rural 0.033 1.000 2.308 

Coll=L  &  Area=Rural RdType=SingCgw 0.033 1.000 1.304 

Coll=L  &  RdType=SingCgw Area=Rural 0.033 1.000 2.308 

Coll=L  &  Area=Rural MaxInj=Slight 0.033 1.000 1.304 

Coll=L  &  Prec=FailGiveWayDriver DrvInj=Slight 0.033 1.000 2.308 

Coll=L  &  Manvr=GoingAheadOther DrvInj=Slight 0.033 1.000 2.308 

Coll=L  &  RdType=SingCgw DrvInj=Slight 0.033 1.000 2.308 

Coll=L  &  DrvInj=Uninjured Area=Urban 0.033 1.000 1.765 

Coll=L  &  Prec=FailGiveWayDriver Area=Urban 0.033 1.000 1.765 

Coll=L  &  DrvInj=Uninjured Surf=Dry 0.033 1.000 1.429 

Coll=L  &  Prec=FailGiveWayDriver Surf=Dry 0.033 1.000 1.429 

Coll=L  &  Prec=FailGiveWayDriver MaxInj=Slight 0.033 1.000 1.304 

Coll=L  &  Manvr=GoingAheadOther RdType=SingCgw 0.033 1.000 1.304 

Coll=L  &  RdType=SingCgw Manvr=GoingAheadOther 0.033 1.000 1.364 

Coll=L  &  Manvr=GoingAheadOther MaxInj=Slight 0.033 1.000 1.304 

Coll=L  &  RdType=SingCgw MaxInj=Slight 0.033 1.000 1.304 

Table 80: All rules (up to 3 items) obtained for cluster X-C5 with collision type M (scenario X-5.3), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=M DrvInj=Uninjured 0.133 1.000 1.765 

Coll=M Light=DayNSL 0.133 1.000 1.765 
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Coll=M MaxInj=Slight 0.133 1.000 1.304 

Coll=M Manvr=TurnR 0.100 0.750 3.214 

Coll=M Area=Urban 0.100 0.750 1.324 

Coll=M  &  Manvr=TurnR Prec=FailGiveWayDriver 0.100 1.000 1.579 

Coll=M  &  Prec=FailGiveWayDriver Manvr=TurnR 0.100 1.000 4.286 

Coll=M  &  FirstIntAct=Car Manvr=TurnR 0.100 1.000 4.286 

Coll=M  &  Area=Urban Surf=Dry 0.100 1.000 1.429 

Coll=M  &  Surf=Dry Area=Urban 0.100 1.000 1.765 

Coll=M  &  TrfCtrl=GW RdType=SingCgw 0.100 1.000 1.304 

Coll=M  &  RdType=SingCgw TrfCtrl=GW 0.100 1.000 1.579 

Coll=M  &  FirstIntAct=Car Prec=FailGiveWayDriver 0.100 1.000 1.579 

Coll=M  &  SpdLim=40-50mph Manvr=TurnR 0.067 1.000 4.286 

Coll=M  &  SpdLim=40-50mph TrfCtrl=GW 0.067 1.000 1.579 

Coll=M  &  SpdLim=40-50mph Prec=FailGiveWayDriver 0.067 1.000 1.579 

Coll=M  &  SpdLim=40-50mph RdType=SingCgw 0.067 1.000 1.304 

Coll=M  &  SpdLim=30mph Area=Urban 0.067 1.000 1.765 

Coll=M  &  SpdLim=30mph Surf=Dry 0.067 1.000 1.429 

Coll=M  &  Surf=Wet SpdLim=40-50mph 0.033 1.000 4.286 

Coll=M  &  Area=Rural SpdLim=40-50mph 0.033 1.000 4.286 

Coll=M  &  Surf=Wet Manvr=TurnR 0.033 1.000 4.286 

Coll=M  &  Area=Rural Manvr=TurnR 0.033 1.000 4.286 

Coll=M  &  Surf=Wet Area=Rural 0.033 1.000 2.308 

Coll=M  &  Area=Rural Surf=Wet 0.033 1.000 3.333 

Coll=M  &  Surf=Wet TrfCtrl=GW 0.033 1.000 1.579 

Coll=M  &  Surf=Wet Prec=FailGiveWayDriver 0.033 1.000 1.579 

Coll=M  &  Surf=Wet RdType=SingCgw 0.033 1.000 1.304 

Coll=M  &  Area=Rural TrfCtrl=GW 0.033 1.000 1.579 

Coll=M  &  Area=Rural Prec=FailGiveWayDriver 0.033 1.000 1.579 

Coll=M  &  Area=Rural RdType=SingCgw 0.033 1.000 1.304 
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Figure 144: Weighted, directed graphs obtained from all association rules for cluster X-C5 
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Cluster X-C6: “The car is going straight over a junction with minor roads joining 

from the left and right, when being hit on its offside by another car or goods vehicle.” 

Table 81: All rules (up to 3 items) obtained for cluster X-C6 with collision type H (scenario X-6.1), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=H  &  FirstIntAct=Car Light=DayNSL 0.345 0.769 1.394 

Coll=H  &  RdType=SingCgw Prec=FailGiveWayOther 0.310 0.818 1.318 

Coll=H  &  TrfCtrl=None Prec=FailGiveWayOther 0.276 0.889 1.432 

Coll=H  &  Prec=FailGiveWayOther TrfCtrl=None 0.276 0.800 1.450 

Coll=H  &  Light=DayNSL Prec=FailGiveWayOther 0.276 0.800 1.289 

Coll=H  &  Prec=FailGiveWayOther Light=DayNSL 0.276 0.800 1.450 

Coll=H  &  Area=Urban SpdLim=30mph 0.276 1.000 1.611 

Coll=H  &  DrvInj=Slight Prec=FailGiveWayOther 0.276 0.800 1.289 

Coll=H  &  MaxInj=Slight Prec=FailGiveWayOther 0.276 0.800 1.289 

Coll=H  &  Surf=Wet SpdLim=30mph 0.241 0.875 1.410 

Coll=H  &  SpdLim=30mph Surf=Wet 0.241 0.778 1.880 

Coll=H  &  Area=Urban Surf=Wet 0.241 0.875 2.115 

Coll=H  &  Area=Rural TrfCtrl=None 0.172 0.833 1.510 

Coll=H  &  Area=Rural Light=DayNSL 0.172 0.833 1.510 

Coll=H  &  Area=Rural Surf=Dry 0.172 0.833 1.422 

Coll=H  &  Surf=Dry Area=Rural 0.172 0.833 3.021 

Coll=H  &  Surf=Dry TrfCtrl=None 0.172 0.833 1.510 

Coll=H  &  Surf=Dry Light=DayNSL 0.172 0.833 1.510 

Coll=H  &  Surf=Dry Prec=FailGiveWayOther 0.172 0.833 1.343 

Coll=H  &  TrfCtrl=Light Surf=Wet 0.138 0.800 1.933 

Coll=H  &  TrfCtrl=Light Light=DayNSL 0.138 0.800 1.450 

Coll=H  &  TrfCtrl=Light SpdLim=30mph 0.138 0.800 1.289 

Coll=H  &  Prec=FailStopOther Surf=Wet 0.103 1.000 2.417 

Coll=H  &  Prec=FailStopOther TrfCtrl=Light 0.103 1.000 2.231 

Coll=H  &  MaxInj=SeriousFatal Light=DayNSL 0.103 1.000 1.813 

Coll=H  &  DrvInj=Uninjured SpdLim=30mph 0.103 1.000 1.611 

Coll=H  &  RdType=DualCgw SpdLim=70mph 0.069 1.000 14.500 

Coll=H  &  SpdLim=60mph TrfCtrl=None 0.069 1.000 1.813 

Coll=H  &  SpdLim=60mph Light=DayNSL 0.069 1.000 1.813 

Coll=H  &  HorizGeom=RightSlight Area=Rural 0.069 1.000 3.625 

Coll=H  &  HorizGeom=RightSlight MaxInj=Slight 0.069 1.000 1.318 

Coll=H  &  RdType=DualCgw Area=Rural 0.069 1.000 3.625 

Coll=H  &  RdType=DualCgw Light=DayNSL 0.069 1.000 1.813 

Coll=H  &  Light=DaySLUnk Surf=Wet 0.069 1.000 2.417 

Coll=H  &  Light=DaySLUnk TrfCtrl=None 0.069 1.000 1.813 

Coll=H  &  Light=DaySLUnk SpdLim=30mph 0.069 1.000 1.611 

Coll=H  &  Light=DaySLUnk Prec=FailGiveWayOther 0.069 1.000 1.611 

Coll=H  &  Light=DaySLUnk Area=Urban 0.069 1.000 1.381 

Coll=H  &  Light=DaySLUnk DrvInj=Slight 0.069 1.000 1.318 
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Coll=H  &  Light=DaySLUnk MaxInj=Slight 0.069 1.000 1.318 

Coll=H  &  Light=DaySLUnk RdType=SingCgw 0.069 1.000 1.261 

Coll=H  &  Light=DarkSL Prec=OtherDriver 0.034 1.000 29.000 

Coll=H  &  SpdLim=40-50mph HorizGeom=Right 0.034 1.000 29.000 

Coll=H  &  FirstIntAct=LGV=HGV Light=DarkNSL 0.034 1.000 29.000 

Coll=H  &  FirstIntAct=LGV=HGV RdType=OneWayStr 0.034 1.000 29.000 

Coll=H  &  Manvr=TurnR Prec=FailStopOther 0.034 1.000 7.250 

Coll=H  &  Manvr=TurnR MaxInj=SeriousFatal 0.034 1.000 7.250 

Coll=H  &  Manvr=TurnR Surf=Wet 0.034 1.000 2.417 

Coll=H  &  Manvr=TurnR SpdLim=30mph 0.034 1.000 1.611 

Coll=H  &  Manvr=TurnR RdType=SingCgw 0.034 1.000 1.261 

Coll=H  &  FirstIntAct=LGV=HGV Prec=FailStopOther 0.034 1.000 7.250 

Coll=H  &  FirstIntAct=LGV=HGV Surf=Wet 0.034 1.000 2.417 

Coll=H  &  Light=DarkSL HorizGeom=RightSlight 0.034 1.000 9.667 

Coll=H  &  Light=DarkSL DrvInj=Uninjured 0.034 1.000 4.833 

Coll=H  &  Light=DarkSL Area=Rural 0.034 1.000 3.625 

Coll=H  &  Light=DarkSL TrfCtrl=None 0.034 1.000 1.813 

Coll=H  &  Light=DarkSL Surf=Dry 0.034 1.000 1.706 

Coll=H  &  Light=DarkSL MaxInj=Slight 0.034 1.000 1.318 

Coll=H  &  MaxInj=Uninjured Surf=Wet 0.034 1.000 2.417 

Coll=H  &  MaxInj=Uninjured TrfCtrl=None 0.034 1.000 1.813 

Coll=H  &  MaxInj=Uninjured Light=DayNSL 0.034 1.000 1.813 

Coll=H  &  MaxInj=Uninjured SpdLim=30mph 0.034 1.000 1.611 

Coll=H  &  MaxInj=Uninjured Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=H  &  SpdLim=40-50mph MaxInj=SeriousFatal 0.034 1.000 7.250 

Coll=H  &  SpdLim=40-50mph Area=Rural 0.034 1.000 3.625 

Coll=H  &  SpdLim=40-50mph TrfCtrl=None 0.034 1.000 1.813 

Coll=H  &  SpdLim=40-50mph Light=DayNSL 0.034 1.000 1.813 

Coll=H  &  SpdLim=40-50mph Surf=Dry 0.034 1.000 1.706 

Coll=H  &  SpdLim=40-50mph Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=H  &  SpdLim=40-50mph DrvInj=Slight 0.034 1.000 1.318 

Coll=H  &  SpdLim=40-50mph RdType=SingCgw 0.034 1.000 1.261 

Table 82: All rules (up to 3 items) obtained for cluster X-C6 with collision type L (scenario X-6.2), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=L  &  FirstIntAct=Car DrvInj=Slight 0.138 1.000 1.318 

Coll=L  &  Light=DaySLUnk DrvInj=Slight 0.103 1.000 1.318 

Coll=L  &  DrvInj=Slight Light=DaySLUnk 0.103 0.750 2.417 

Coll=L  &  FirstIntAct=Car Light=DaySLUnk 0.103 0.750 2.417 

Coll=L  &  Surf=Wet SpdLim=30mph 0.103 1.000 1.611 

Coll=L  &  SpdLim=30mph Surf=Wet 0.103 1.000 2.417 

Coll=L  &  Surf=Wet Area=Urban 0.103 1.000 1.381 

Coll=L  &  Area=Urban Surf=Wet 0.103 0.750 1.813 

Coll=L  &  SpdLim=30mph Area=Urban 0.103 1.000 1.381 

Coll=L  &  MaxInj=Slight DrvInj=Slight 0.103 1.000 1.318 
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Coll=L  &  Light=DarkSL Surf=Wet 0.069 1.000 2.417 

Coll=L  &  Light=DarkSL TrfCtrl=Light 0.069 1.000 2.231 

Coll=L  &  Light=DarkSL Area=Urban 0.069 1.000 1.381 

Coll=L  &  Surf=Dry Light=DaySLUnk 0.069 1.000 3.222 

Coll=L  &  Surf=Dry TrfCtrl=Light 0.069 1.000 2.231 

Coll=L  &  Surf=Dry DrvInj=Slight 0.069 1.000 1.318 

Coll=L  &  MaxInj=SeriousFatal Prec=LossCntrOther 0.034 1.000 29.000 

Coll=L  &  SpdLim=40-50mph Prec=LossCntrOther 0.034 1.000 29.000 

Coll=L  &  FirstIntAct=Other Light=DarkSL 0.034 1.000 9.667 

Coll=L  &  FirstIntAct=Other MaxInj=Uninjured 0.034 1.000 9.667 

Coll=L  &  MaxInj=Uninjured FirstIntAct=Other 0.034 1.000 14.500 

Coll=L  &  FirstIntAct=Other DrvInj=Uninjured 0.034 1.000 4.833 

Coll=L  &  DrvInj=Uninjured FirstIntAct=Other 0.034 1.000 14.500 

Coll=L  &  FirstIntAct=Other TrfCtrl=Light 0.034 1.000 2.231 

Coll=L  &  FirstIntAct=Other SpdLim=30mph 0.034 1.000 1.611 

Coll=L  &  FirstIntAct=Other Area=Urban 0.034 1.000 1.381 

Coll=L  &  Area=Rural SpdLim=60mph 0.034 1.000 9.667 

Coll=L  &  SpdLim=60mph Light=DaySLUnk 0.034 1.000 3.222 

Coll=L  &  SpdLim=60mph TrfCtrl=Light 0.034 1.000 2.231 

Coll=L  &  MaxInj=Uninjured Light=DarkSL 0.034 1.000 9.667 

Coll=L  &  DrvInj=Uninjured Light=DarkSL 0.034 1.000 9.667 

Coll=L  &  DrvInj=Uninjured MaxInj=Uninjured 0.034 1.000 9.667 

Coll=L  &  MaxInj=Uninjured Surf=Wet 0.034 1.000 2.417 

Coll=L  &  MaxInj=Uninjured TrfCtrl=Light 0.034 1.000 2.231 

Coll=L  &  MaxInj=Uninjured SpdLim=30mph 0.034 1.000 1.611 

Coll=L  &  MaxInj=Uninjured Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=L  &  MaxInj=SeriousFatal SpdLim=40-50mph 0.034 1.000 4.833 

Coll=L  &  SpdLim=40-50mph MaxInj=SeriousFatal 0.034 1.000 7.250 

Coll=L  &  MaxInj=SeriousFatal Light=DaySLUnk 0.034 1.000 3.222 

Coll=L  &  MaxInj=SeriousFatal TrfCtrl=Light 0.034 1.000 2.231 

Coll=L  &  MaxInj=SeriousFatal Surf=Dry 0.034 1.000 1.706 

Coll=L  &  MaxInj=SeriousFatal Area=Urban 0.034 1.000 1.381 

Coll=L  &  MaxInj=SeriousFatal DrvInj=Slight 0.034 1.000 1.318 

Coll=L  &  DrvInj=Uninjured Surf=Wet 0.034 1.000 2.417 

Coll=L  &  DrvInj=Uninjured TrfCtrl=Light 0.034 1.000 2.231 

Coll=L  &  DrvInj=Uninjured SpdLim=30mph 0.034 1.000 1.611 

Coll=L  &  DrvInj=Uninjured Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=L  &  DrvInj=Uninjured Area=Urban 0.034 1.000 1.381 

Coll=L  &  SpdLim=40-50mph Light=DaySLUnk 0.034 1.000 3.222 

Coll=L  &  SpdLim=40-50mph TrfCtrl=Light 0.034 1.000 2.231 

Coll=L  &  SpdLim=40-50mph Surf=Dry 0.034 1.000 1.706 

Coll=L  &  SpdLim=40-50mph Area=Urban 0.034 1.000 1.381 

Coll=L  &  SpdLim=40-50mph DrvInj=Slight 0.034 1.000 1.318 

Coll=L  &  Area=Rural Light=DaySLUnk 0.034 1.000 3.222 

Coll=L  &  Area=Rural TrfCtrl=Light 0.034 1.000 2.231 

Coll=L  &  Area=Rural Surf=Dry 0.034 1.000 1.706 
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Coll=L  &  Area=Rural Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=L  &  Area=Rural DrvInj=Slight 0.034 1.000 1.318 

Coll=L  &  Area=Rural MaxInj=Slight 0.034 1.000 1.318 

Coll=L  &  TrfCtrl=None Light=DaySLUnk 0.034 1.000 3.222 

Coll=L  &  TrfCtrl=None Surf=Wet 0.034 1.000 2.417 

Coll=L  &  TrfCtrl=None SpdLim=30mph 0.034 1.000 1.611 

Coll=L  &  TrfCtrl=None Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=L  &  TrfCtrl=None Area=Urban 0.034 1.000 1.381 

Coll=L  &  TrfCtrl=None DrvInj=Slight 0.034 1.000 1.318 

Coll=L  &  TrfCtrl=None MaxInj=Slight 0.034 1.000 1.318 

Table 83: All rules (up to 3 items) obtained for cluster X-C6 with collision type M (scenario X-6.3), 
sorted by support 

Antecedent Consequent Supp Conf Lift 

Coll=M  &  Surf=Dry Area=Urban 0.172 1.000 1.381 

Coll=M  &  Area=Urban Surf=Dry 0.172 1.000 1.706 

Coll=M  &  Surf=Dry RdType=SingCgw 0.172 1.000 1.261 

Coll=M  &  RdType=SingCgw Surf=Dry 0.172 1.000 1.706 

Coll=M  &  FirstIntAct=Car Surf=Dry 0.172 1.000 1.706 

Coll=M  &  Area=Urban RdType=SingCgw 0.172 1.000 1.261 

Coll=M  &  RdType=SingCgw Area=Urban 0.172 1.000 1.381 

Coll=M  &  FirstIntAct=Car Area=Urban 0.172 1.000 1.381 

Coll=M  &  DrvInj=Slight MaxInj=Slight 0.172 1.000 1.318 

Coll=M  &  MaxInj=Slight DrvInj=Slight 0.172 1.000 1.318 

Coll=M  &  Manvr=GoingAheadOther DrvInj=Slight 0.172 1.000 1.318 

Coll=M  &  HorizGeom=Straight DrvInj=Slight 0.172 1.000 1.318 

Coll=M  &  Manvr=GoingAheadOther MaxInj=Slight 0.172 1.000 1.318 

Coll=M  &  HorizGeom=Straight MaxInj=Slight 0.172 1.000 1.318 

Coll=M  &  FirstIntAct=Car RdType=SingCgw 0.172 1.000 1.261 

Coll=M  &  Light=DayNSL Prec=FailGiveWayOther 0.138 1.000 1.611 

Coll=M  &  Prec=FailGiveWayOther Light=DayNSL 0.138 1.000 1.813 

Coll=M  &  Light=DayNSL DrvInj=Slight 0.138 1.000 1.318 

Coll=M  &  DrvInj=Slight Light=DayNSL 0.138 0.800 1.450 

Coll=M  &  Light=DayNSL MaxInj=Slight 0.138 1.000 1.318 

Coll=M  &  MaxInj=Slight Light=DayNSL 0.138 0.800 1.450 

Coll=M  &  Manvr=GoingAheadOther Light=DayNSL 0.138 0.800 1.450 

Coll=M  &  HorizGeom=Straight Light=DayNSL 0.138 0.800 1.450 

Coll=M  &  Prec=FailGiveWayOther DrvInj=Slight 0.138 1.000 1.318 

Coll=M  &  DrvInj=Slight Prec=FailGiveWayOther 0.138 0.800 1.289 

Coll=M  &  Prec=FailGiveWayOther MaxInj=Slight 0.138 1.000 1.318 

Coll=M  &  MaxInj=Slight Prec=FailGiveWayOther 0.138 0.800 1.289 

Coll=M  &  Manvr=GoingAheadOther Prec=FailGiveWayOther 0.138 0.800 1.289 

Coll=M  &  HorizGeom=Straight Prec=FailGiveWayOther 0.138 0.800 1.289 

Coll=M  &  SpdLim=30mph Surf=Dry 0.103 1.000 1.706 

Coll=M  &  SpdLim=30mph Area=Urban 0.103 1.000 1.381 

Coll=M  &  SpdLim=30mph DrvInj=Slight 0.103 1.000 1.318 
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Coll=M  &  SpdLim=30mph MaxInj=Slight 0.103 1.000 1.318 

Coll=M  &  SpdLim=30mph RdType=SingCgw 0.103 1.000 1.261 

Coll=M  &  Light=DaySLUnk Surf=Dry 0.069 1.000 1.706 

Coll=M  &  Light=DaySLUnk Area=Urban 0.069 1.000 1.381 

Coll=M  &  Light=DaySLUnk RdType=SingCgw 0.069 1.000 1.261 

Coll=M  &  Prec=PoorMnvrDriver Manvr=Other 0.034 1.000 29.000 

Coll=M  &  HorizGeom=RightSlight Manvr=Other 0.034 1.000 29.000 

Coll=M  &  MaxInj=Uninjured Manvr=Other 0.034 1.000 29.000 

Coll=M  &  DrvInj=Uninjured Manvr=Other 0.034 1.000 29.000 

Coll=M  &  FirstIntAct=Other RdType=DualCgw 0.034 1.000 5.800 

Coll=M  &  RdType=DualCgw FirstIntAct=Other 0.034 1.000 14.500 

Coll=M  &  FirstIntAct=Other SpdLim=40-50mph 0.034 1.000 4.833 

Coll=M  &  FirstIntAct=Other Area=Rural 0.034 1.000 3.625 

Coll=M  &  Area=Rural FirstIntAct=Other 0.034 1.000 14.500 

Coll=M  &  Surf=Wet FirstIntAct=Other 0.034 1.000 14.500 

Coll=M  &  FirstIntAct=Other Light=DayNSL 0.034 1.000 1.813 

Coll=M  &  FirstIntAct=Other DrvInj=Slight 0.034 1.000 1.318 

Coll=M  &  FirstIntAct=Other MaxInj=Slight 0.034 1.000 1.318 

Coll=M  &  Prec=PoorMnvrDriver HorizGeom=RightSlight 0.034 1.000 9.667 

Coll=M  &  HorizGeom=RightSlight Prec=PoorMnvrDriver 0.034 1.000 14.500 

Coll=M  &  Prec=PoorMnvrDriver MaxInj=Uninjured 0.034 1.000 9.667 

Coll=M  &  MaxInj=Uninjured Prec=PoorMnvrDriver 0.034 1.000 14.500 

Coll=M  &  Prec=PoorMnvrDriver DrvInj=Uninjured 0.034 1.000 4.833 

Coll=M  &  DrvInj=Uninjured Prec=PoorMnvrDriver 0.034 1.000 14.500 

Coll=M  &  Prec=PoorMnvrDriver Light=DaySLUnk 0.034 1.000 3.222 

Coll=M  &  Prec=PoorMnvrDriver RdType=SingCgw 0.034 1.000 1.261 

Coll=M  &  HorizGeom=RightSlight MaxInj=Uninjured 0.034 1.000 9.667 

Coll=M  &  MaxInj=Uninjured HorizGeom=RightSlight 0.034 1.000 9.667 

Coll=M  &  HorizGeom=RightSlight DrvInj=Uninjured 0.034 1.000 4.833 

Coll=M  &  DrvInj=Uninjured HorizGeom=RightSlight 0.034 1.000 9.667 

Coll=M  &  HorizGeom=RightSlight SpdLim=40-50mph 0.034 1.000 4.833 

Coll=M  &  HorizGeom=RightSlight Light=DaySLUnk 0.034 1.000 3.222 

Coll=M  &  HorizGeom=RightSlight Area=Urban 0.034 1.000 1.381 

Coll=M  &  HorizGeom=RightSlight RdType=SingCgw 0.034 1.000 1.261 

Coll=M  &  DrvInj=Uninjured MaxInj=Uninjured 0.034 1.000 9.667 

Coll=M  &  MaxInj=Uninjured SpdLim=40-50mph 0.034 1.000 4.833 

Coll=M  &  MaxInj=Uninjured Light=DaySLUnk 0.034 1.000 3.222 

Coll=M  &  MaxInj=Uninjured Surf=Dry 0.034 1.000 1.706 

Coll=M  &  Prec=FailStopOther Light=DaySLUnk 0.034 1.000 3.222 

Coll=M  &  Prec=FailStopOther Surf=Dry 0.034 1.000 1.706 

Coll=M  &  Prec=FailStopOther SpdLim=30mph 0.034 1.000 1.611 

Coll=M  &  Prec=FailStopOther Area=Urban 0.034 1.000 1.381 

Coll=M  &  Prec=FailStopOther DrvInj=Slight 0.034 1.000 1.318 

Coll=M  &  Prec=FailStopOther MaxInj=Slight 0.034 1.000 1.318 

Coll=M  &  Prec=FailStopOther RdType=SingCgw 0.034 1.000 1.261 

Coll=M  &  RdType=DualCgw SpdLim=40-50mph 0.034 1.000 4.833 
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Coll=M  &  RdType=DualCgw Area=Rural 0.034 1.000 3.625 

Coll=M  &  Area=Rural RdType=DualCgw 0.034 1.000 5.800 

Coll=M  &  RdType=DualCgw Surf=Wet 0.034 1.000 2.417 

Coll=M  &  Surf=Wet RdType=DualCgw 0.034 1.000 5.800 

Coll=M  &  RdType=DualCgw Light=DayNSL 0.034 1.000 1.813 

Coll=M  &  RdType=DualCgw Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=M  &  RdType=DualCgw DrvInj=Slight 0.034 1.000 1.318 

Coll=M  &  RdType=DualCgw MaxInj=Slight 0.034 1.000 1.318 

Coll=M  &  DrvInj=Uninjured SpdLim=40-50mph 0.034 1.000 4.833 

Coll=M  &  DrvInj=Uninjured Light=DaySLUnk 0.034 1.000 3.222 

Coll=M  &  DrvInj=Uninjured Surf=Dry 0.034 1.000 1.706 

Coll=M  &  DrvInj=Uninjured Area=Urban 0.034 1.000 1.381 

Coll=M  &  Area=Rural SpdLim=40-50mph 0.034 1.000 4.833 

Coll=M  &  Surf=Wet SpdLim=40-50mph 0.034 1.000 4.833 

Coll=M  &  Area=Rural Surf=Wet 0.034 1.000 2.417 

Coll=M  &  Surf=Wet Area=Rural 0.034 1.000 3.625 

Coll=M  &  Area=Rural Light=DayNSL 0.034 1.000 1.813 

Coll=M  &  Area=Rural Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=M  &  Area=Rural DrvInj=Slight 0.034 1.000 1.318 

Coll=M  &  Area=Rural MaxInj=Slight 0.034 1.000 1.318 

Coll=M  &  Surf=Wet Light=DayNSL 0.034 1.000 1.813 

Coll=M  &  Surf=Wet Prec=FailGiveWayOther 0.034 1.000 1.611 

Coll=M  &  Surf=Wet DrvInj=Slight 0.034 1.000 1.318 

Coll=M  &  Surf=Wet MaxInj=Slight 0.034 1.000 1.318 
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Figure 145: Weighted, directed graphs obtained from all association rules for cluster X-C6 
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Appendix G: Simulation automation in MATLAB 

The following two graphs show the simulation automation script as flowchart (top) 
and class diagram (bottom), which were realised in MATLAB. 
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Appendix H: Publications 

Three publications are attached on the following pages, which were published during 
the development of this thesis: 

1. Nitsche, P., Mocanu, I., Reinthaler, M., 2014a. Requirements on Tomorrow‘s 
Road Infrastructure for Highly Automated Driving, in: The 3rd International 
Conference on Connected Vehicles & Expo (ICCVE 2014). Vienna, Austria. 

2. Mocanu, I., Nitsche, P., Saleh, P., 2015. Highly automated driving and its 
requirements on road planning and design, in: Proceedings of the 25th PIARC 
World Road Congress. Seoul, Korea. 

3. Nitsche, P., Thomas, P., Stuetz, R., Welsh, R., 2017. Pre-crash scenarios at 
road junctions: A clustering method for car crash data. Accident Analysis & 
Prevention 107, 137–151. 
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