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Abstract 

The concept of a phased mission has been introduced as a sequential set of objectives 

that operate over different time intervals. During each phase of the mission, the 

system may alter such that the logic model, system configuration, or system failure 

characteristics may change to accomplish a required objective. 

A new fault tree method has been proposed to enable the probability of failure in each 

phase to be determined in addition to the whole mission unreliability. Phase changes 

are assumed to be instantaneous, and component failure rates are assumed to be 

constant through the mission. For any phase, the method combines the causes of 

success of previous phases with the causes of failure for the phase being considered to 

allow both qualitative and quantitative analysis of both phase and mission failure. A 

new set of Boolean laws is introduced to combine component success and failure 

events through multiple phases so that the expression for each phase failure can be 

reduced into minimal form. 

The binary decision diagram (BDD) method offers an alternative approach to the fault 

tree method and reduces the complexity of the problem. For larger fault trees it is 

more efficient to convert to a BDD prior to analysis, and this is particularly true of the 

non-coherent phase failure fault trees. The standard BDD technique has been extended 

to develop a method for use in missions of multiple phases. 

Markov methods are considered for the analysis of phased missions where repair of 

components is possible. A full Markov model is generated by using a single model 

which works over all phases of the mission, and is constructed by the inclusion of all 

components featured in every stage. By identifying certain types of phases and 

components, it is possible to reduce this full Markov model further. 

The phases of a mission may be characterised in certain ways. If a phase requires the 

relevant system function to work at an instant in time it is defined as discrete, and no 

state transitions may occur during the phase. A continuous phase requires the 

appropriate system configuration to be reliable for the specified phase duration. 
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The concept of sequential failure relationships has been introduced to missions of 

multiple phases. Component failures can be identified as initiating or enabling events, 

and the function of a component is subject to change through the mission duration. A 

maintenance policy is considered where components can be subject to scheduled 

inspection. 

Later sections of the thesis consider appropriate importance measures for phase and 

mission reliability. 
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Chapter 1 Introduction 

1.1 Introduction to Risk and Reliability Assessment 

The catastrophic consequences due to the failure of systems in industries such as 

aeronautical, nuclear, offshore, and transport demonstrate the requirement for 

improved methods of ensuring the reliability and safety of complex systems. 

Examples of such eventualities are the fire and explosion on the Piper Alpha oil 

platform in 1988 and the Chemobyl nuclear power plant disaster in 1986, both of 

which caused multiple fatalities. System assessments applied in a systematic way at 

the design stage can reduce the possibility of undesirable incidents occurring in the 

future when the system is operational. 

Methods to assess the risk and reliability of systems have been developed over a 

number of years, with significant advances made since the Second World War. Such 

methods enable the evaluation of the probability or frequency by which a hazardous 

event could occur (accounting if necessary for the safety systems failure to respond). 

The risk, or 'expected loss' of a specific incident, R, is defined as the product of the 

consequences of the event, C, and the probability or frequency of the event 

occurrence, P, in equation (1.1). 

R=CxP (1.1) 

For safety studies, the consequence is generally measured by the number of resulting 

fatalities. The risk can therefore be reduced by reducing either the consequences of the 

incident or the associated incident probability or frequency. The risk assessment will 

compare the predicted risk with an acceptable level. 

In assessing the adequacy of engineering systems, the Health and Safety Executive 

(HSE) assume a three-zone approach to define the acceptable level of risk. The 

highest zone denotes the unacceptable risk levels, where either the consequences of 

the incident or the associated incident probability or frequency must be reduced to 

bring the risk into an acceptable level. The lowest zone represents negligible risk 

levels that are considered to be acceptable. The intermediate zone is defined as the 
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'ALARP' region (As Low As Reasonably Practicable). In this case the risks must be 

shown to be as low as possible, whilst still being economically feasible. 

To determine the zone for a specific hazard requires a quantified risk assessment. This 

is defined in four basic stages: 

1. Identification 0 f the potential safety hazards. 

2. Estimation of the consequences of each hazard. 

3. Estimation of the probability of occurrence of each hazard. 

4. Comparison of the results of the analysis against the acceptability criteria. 

The consequences of an equipment failure are generally measured in terms of cost or 

the number of fatalities. Such consequences can be extremely severe, and are very 

much dependent on the failure mode and industry involved. Reliability assessment 

techniques considering the probability or frequency of system failure occurrence are 

generic and thus are extensively implemented within many industries. Examples of 

such methods are Failure Mode and Effect Analysis (FMEA), Event Tree Analysis 

(ETA), Fault Tree Analysis (PTA), and Markov Analysis. 

1.2 System Failure Quantification 

The reliability performance of a system can be predicted in terms of the reliability 

performance of its components using suitable techniques. The performance of a 

system or component is described by the quantification of system and component 

failure probabilities, using the parameters defined below. 

Where failure is tolerated and repair is possible, an appropriate performance measure 

is the availability of a system or component. This is defined as: 

The fraction of the total time that a system (or component) is able to perform 

its required function. 

This parameter can also be defined at a specified time point t as: 

The probability that a system or component is working at time t. 

2 



The complement of availability is unavailability, where: 

Unavailability = 1 - Availability 

The unavailability of a system or component is the probability that the system or 

component does not work at time t, and is denoted by QSYS (t) for a system and 

q c (t) for a component c. 

The reliability of a system or component is the probability of the successful 

performance ofthe system or component over a period of time, and is defined by: 

The probability that a system or component will operate without failure for a 

stated period oftime under specified conditions. 

The probability that a component or system fails to function successfully over a 

specified time period under particular conditions is defined as its unreliability, F(t), 

where: 

Unreliability = 1 - Reliability 

This parameter is generally more relevant for systems where failure cannot be 

tolerated and so the system or component is required to function successfully for a 

specified time duration. If a component or system is non-repairable and is known to be 

working at time t, it must have worked continuously over [O,t). In this case the 

unreliability is equal to the unavailability. 

The transition to a failed state of a component or system can be characterised by the 

hazard rate or conditional failure rate, het). This is a measure of the rate at which 

failures occur given successful operation to this point in time, i.e. still functioning at 

time t with the potential to fail, and is defined as: 

The probability that a component or system fails in the interval [t, t + dt) given 

that it has not failed in [O,t). 

The reliability characteristics of a component family are usually modelled by a 

'reliability bath-tub curve', illustrated in Figure 1.1. 
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In the first phase of Figure 1.1, the hazard rate (failure rate) reduces as the weak 

components are eliminated_ In the second phase, the hazard rate remains 

approximately constant and this is classed as the useful life of the components. In the 

final phase, the hazard rate increases as the components start to wear out. Reliability 

assessment is typically performed on components that are considered to be in their 

useful-life phase. The reliability of a system, RSYS (t) , can be expressed in terms of its 

constant hazard or failure rate A by the expression in equation (1.2). 

(1.2) 

Further component and system quantification techniques are presented in [1] and [2]. 

Reliability assessment tools can be applied to evaluate the reliability parameters of a 

system in terms of the reliability performance of its constituent components. Some of 

the most common are discussed in the following sections. 

1.3 Fault Tree Analysis 

The concept of fault tree analysis was first introduced by H.A. Watson in the 1960's, 

presenting a deductive analysis method of identifying the causes of a particular system 

failure mode using a 'what can cause this' approach. A fault tree provides a visual 

symbolic representation of the combination of component failure events resulting in 

the occurrence of a particular system failure mode. Analysis of the fault tree is a 

logical, structured process that provides information on the causes of system failure 

and associated reliability parameters. 

The system failure mode of concern is termed the top event of the fault tree, with 

branches below this determining its causes. Events within the fault tree are continually 

redefined in terms of their causes until component failure events (basic events) are 
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reached. The probability of the top event occurrence can then be calculated by the 

probability of the basic events. This is an example of a 'top-down' approach, in 

comparison to 'bottom-down' approaches such as FMEA which begin with a set of 

component failure conditions and implement a 'what happens if approach to identify 

possible consequences. 

The quantitative analysis of a fault tree is defined as Kinetic Tree Theory, and was 

developed in the early 1970's by Vesely [3]. This allowed calculations of parameters 

such as the probability and frequency of top event occurrence to be made in order to 

determine the risks involved with system failure. The disadvantage involved with fault 

tree quantification is that for large fault trees the analysis can become computationally 

demanding. Approximations are often used to quantify large fault trees, however the 

results will show inaccuracies. A new method has been developed to analyse a fault 

tree, the Binary Decision Diagram technique. 

1.4 Binary Decision Diagrams 

The Binary Decision Diagram (BDD) technique does not analyse the fault tree 

directly, but constructs a BDD to provide an efficient representation of the system 

with a Boolean equation for the top event. A BDD is a directed acyclic graph, and is 

dependent on the order in which the basic events of the fault tree are considered. 

Qualitative and quantitative analysis can be performed on a BDD, and exact solutions 

can be obtained without the need for approximations of the conventional fault tree 

approach. The use of BDDs in reliability analysis was initially developed by Rauzy 

[4]. 

1.5 Markov Methods 

The kinetic tree theory requires the assumption that the basic events in a fault tree are 

statistically independent. In many cases this assumption cannot be made, such as in 

systems where standby redundancy, common cause failures, secondary failures, or 

multiple-component states are possible. 
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Markov analysis provides a means of analysing the reliability and availability of 

systems whose components exhibit strong dependencies. The Markov method is a 

state-space approach. The likelihood of any event in the chain is determined only by 

the immediately preceding state and is independent of any other past events. A 

Markov model can be discrete or continuous in both time and space. The disadvantage 

of this method is that the model can increase rapidly with the number of components. 

1.6 Phased Mission Systems 

If the success of a system is reliant upon a sequential set of objectives operating over 

different time intervals, it may be referred to as a Phased Mission. During the 

execution of the phases in a mission, the system is altered such that the logic model, 

system configuration, or system failure characteristics may change to accomplish a 

different objective. The phases in a mission may be identified by; phase number, time 

interval, system configuration, task(s) to be undertaken, performance measure(s) of 

interest, or maintenance policy. 

A multi-phased mission can be characterized as a sequence of discrete events required 

to complete a task. Many types of system operate for missions which are made up of 

several phases. For the complete mission to be a success, the system must operate 

successfully during each of the phases. Examples of such systems include an aircraft 

flight, and also many military operations for both aircraft and ships. An aircraft 

mission could.be considered as the following phases: taxiing to the runway, take-off, 

climbing to the correct altitude, cruising, descending, landing and taxiing back to the 

terminal in Figure 1.2. 

Phase 11 Phase 2 Phase 31 Phase 4 Phase si Phase 6 Phase 7 
~-------------------{ ! 

~ 
Altitude Taxi Cruise De cent! Land Taxi 

: 
! 

I 

Time 

Figure 1.2 Transport phases of an aircraft 
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Component failures can occur at any point during the mission but their condition may 

only be critical for one particular phase. As such it may be that the transition from one 

phase to another is the critical event leading to mission failure, the component failures 

resulting in the system failure may have occurred during some previous phase. 

The reliability of a mission may not be obtained by the simple multiplication of the 

individual phase reliabilities. This is due to the fact that at the phase change times, the 

system must occupy a state that allows both of the involved phases to function. The 

phases of the mission will be statistically dependent. In order to identify possible 

causes of phase and mission failure, a method is required to express how 

combinations of component failures (basic events) can occur during the phases 

throughout the mission and cause system failure. These failure events then require 

quantification to enable the likelihood and frequency of mission failure to be 

determined. Mission unreliability is defined as the probability that the system fails to 

function successfully during at least one phase of the mission. An important problem 

is to calculate, as efficiently as possible, the exact value for the mission unreliability 

parameter. 

The main techniques that have previously been implemented for the solution to 

phased mission problems are that of fault tree analysis, Markov analysis and 

simulation. Fault tree analysis is a commonly used tool to assess the probability of 

failure of industrial systems. This method may be adapted for analysis of systems 

comprising of more than one phase, where each phase depends on a different logic 

model. Hence the complexity of the modelling is significantly more difficult than for 

single phase systems. Situations may be encountered in phased mission analysis that 

prevent the assumption of independence between component failure or repair being 

made. In such circumstances, methods such as the Markov approach must be 

employed. In some cases it will be difficult to model a system by fault tree or Markov 

methods. This type of situation will occur if a system is too complex to use 

deterministic analysis, or if the failure and repair distributions of a component do not 

have a constant failure or repair rate. In such circumstances, simulation may be 

necessary. Of the many considered solutions to phased mission problems, simulation 

techniques typically offer the greatest generality in representation, but are also often 

the most expensive in computational requirements. 
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1.7 Research Objectives 

The aim of this research is to consider analytical techniques for the efficient 

representation and solution of phased mission systems. Two distinct types of system 

will be examined. The first comprises of only non-repairable components and 

explores the possible methods for the representation of both phase and mission 

unavailability. The second type of system considers the possibility of repairable 

components in some or all phases of the mission with added dependencies. Previous 

work has concentrated on the object of assessing mission success. The presented 

methods will focus on the probability of success and failure in individual phases, 

where depending on the phase that the failure occurs, the consequences can be 

significantly different. The objectives of the project are listed below: 

Non-Repairable Systems: 

• Review of existing methods for non-repairable phased mission systems. 

• Present new techniques to identify the causes of phase and mission failure, and 

calculate exact phase and mission unavailability and frequency. 

• Develop current importance measures to include the importance of 

components to both individual phase and mission failure in a mUlti-phased 

mission. 

Repairable Systems: 

• Review of existing methods for repairable phased mission systems. 

• Present new techniques for calculating exact phase and mission unreliability 

for systems where some or all phases are repairable. 

• Develop the proposed techniques to include the possibility of : 

o Initiating and enabling events. 

o Appropriate maintenance policies. 

o Discrete and continuous phases. 
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Chapter 2 Reliability Analysis Tools 

2.1 Introduction 

There are many methods that can be used to predict the reliability performance of a 

system in terms of the reliability performances of the components of which it is 

constructed. Three widely used techniques, fault tree analysis, binary decision 

diagrams, and Markov analysis are discussed in the following sections. 

2.2 Fault Tree Analysis 

A fault tree provides a visual symbolic representation of the combination of 

component failure events required for the occurrence of a particular system failure 

mode. Fault tree analysis is a logical, structured process that provides information on 

the causes of system failure and associated reliability parameters and thus is very 

important in the design stages of a system. The entire system as well as human 

interactions would be analysed by performing a fault tree analysis. 

2.2.1 Construction of a Fault Tree 

The first step in the construction of a fault tree is to identify the system failure mode 

of concern. A system may have the potential for more than one undesirable failure 

mode, and so multiple fault trees would be constructed. The top event is defined as a 

particular system failure mode, with fault tree branches below this determining its 

causes. Events within the tree are continually redefined in terms of lower resolution 

events as causes for their occurrence. This process continues until all branches of the 

fault tree terminate in component failure events, termed basic events. Fault tree 

analysis can then be executed using data on the basic event failure probabilities. 

A fault tree comprises of symbols which represent events and gates. An event can be 

classed as intermediate or basic. The causes of an intermediate event can be expressed 

by other, lower resolution events, where as a basic event is the termination of a fault 

tree branch. Event symbols are shown in Table 2.1. Events are linked using a logical 

structure of gates. The three primary gate types used in fault trees are defined as 
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'AND', 'OR', and 'NOT' gates, which combine events in the same way as the 

Boolean operations of 'intersection', 'union', and 'complementation'. Another 

frequently used gate is the kin vote gate which requires that at least k out of n inputs 

occur for the output to be true. The gates are symbolised in Table 2.2. 

Event Symbols Meaning of Symbol 

D Intermediate event further 
developed by a gate 

6 Basic event 

Table 2.1 Event Symbols 

Gate Symbol Gate Name Casual Relation 

(] AND gate Output event occurs if all input 
events occur simultaneously 

6 OR gate 
Output event occurs if at least 
one of the input events occurs 

6 kin vote gate Output event occurs if at least k 
out of the n input events occur 

n inputs 

* NOT gate 
Output event occurs if the 
input event does not occur 

Table 2.2 Gate Symbols 

A system in which failure can only be caused by component failures and is made up 

of only 'AND' and 'OR' gates is defined as a coherent system. If the failure mode can 

be expressed by both component failures and successes, the use of 'NOT' gates is 

required and it is defined as a non-coherent system. 
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The analysis of a fault tree provides two types of result: qualitative and quantitative. 

Qualitative analysis identifies the combination of basic events that cause system 

failure. Quantitative analysis predicts system failure parameters in terms of basic 

event failure probabilities. 

2.2.2 Qualitative Analysis 

Qualitative analysis allows a system failure mode to be represented logically by 

combinations of basic events. Each combination of basic events that cause system 

failure is termed a cut set, defined as: 

A cut set is a collection of basic events such that if they all occur, the top event 

also occurs. 

A cut set may contain unnecessary events for the occurrence of the system failure 

mode. For example, a cut set {A, B, C} would guarantee system failure if all events 

occur. However if A and B alone can cause system failure, the state of C becomes 

irrelevant. This defines a minimal cut set: 

A minimal cut set is the smallest combination of basic events, such that if any 

basic event is removed from the set, the top event will not occur. 

Fault trees that produce identical minimal cut sets are logically equivalent. The order 

of a minimal cut set is the number of basic events which are contained in it. In general 

it is the lower order minimal cut sets that contribute most to system failure, and effort 

should be concentrated in the system design on the elimination of these. If NOT logic 

is used or implied in a fault tree, the combinations of basic events that cause system 

failure are defined as implicants. Minimal sets of implicants are termed prime 

implicants. 

The minimal cut sets of a fault tree are determined using either a 'top-down' or 

'bottom-up' approach to develop a Boolean logic expression in terms of component 

failure. The 'top-down' approach begins with the top event and continually substitutes 

Boolean events appearing lower down in the tree until the expression comprises of 

only basic events. The 'bottom-up' approach begins at the base of the tree and works 
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towards the top event. The product, '.' is used to represent 'AND', and the sum, '+' is 

used to represent 'OR' in the logic expressions. This expansion technique results in a 

sum-of-products (s-o-p) expression from which the cut sets can be determined. To 

ensure that the cut sets obtained are minimal, the s-o-p expression must be made 

minimal by removing redundancies with laws of Boo lean algebra. 

2.2.2.1 Example - Obtaining the Minimal Cut Sets 

The top-down approach for obtaining the minimal cut sets of a system is demonstrated 

using the example in Figure 2.1. 

Figure 2.1 Example Fault Tree 

The top-down approach begins with the event Top. This is an AND gate with two 

inputs, G 1 and G2, and so can be expressed as the product of the inputs: 

Top=G1·G2 

G1 is an OR gate and can be defined in terms ofthe two input events A and B: 

G1 =A+B 

This may be substituted into Top to give: 

Top = (A + B) . G2 
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Similarly, G2 can be written as the 'sum' ofC and G3: 

G2=C+G3 

G2 can then also be substituted into Top: 

Top = (A + B) . (C + G3) 

Finally G3 can be expressed as the 'product' of A and D: 

G3 =A· D 

And the expression for the Top event becomes: 

Top = (A + B) . (C + A . D) 

Since this expression now only contains basic events, Top can be expanded to give: 

Top = A-C + A·A·D + B·C + B·A·D 

= A-C + A·D + B·C + B·A·D (since A·A=A) 

This gives the cut sets of the fault tree expressed in s-o-p form. Redundancies can be 

removed using the absorption law, and the minimal s-o-p expression for Top becomes: 

Top = A-C + A·D + B·C 

This is the minimal s-o-p or disjunctive normal form of the logic equation, and each 

term represents a minimal cut set of the system. In this example there are three 

minimal cut sets of order two (i.e. contain two basic events). These are {A,C}, {A,D}, 

and {B,C}. 

The minimal cut sets in this example are obtained easily. In some cases a complex 

system can produce thousands of minimal cut sets which becomes very 

computationally intensive to analyse. Approximations can be used where only 

minimal cut sets above a certain order or below a specified probability are removed 

during the calculation process. This reduces the accuracy of the minimal cut sets 

leading to further inaccuracies in the quantitative analysis. 
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2.2.3 Quantitative Analysis 

Quantitative analysis of a fault tree provides predictions of the systems performance. 

Widely used parameters are the top event probability and frequency, along with the 

expected number of top event occurrences. 

2.2.3.1 Top Event Probability 

The probability of occurrence of the top event, also termed the unavailability of the 

system, can be directly obtained from the minimal cut sets. This method is known as 

the inclusion-exclusion expansion. 

The probability of existence of a minimal cut set Ci is obtained by the product of the 

probabilities of existence of the events that contribute to the minimal cut set. For 

example, the probability of existence of C,={A,B} is obtained by the failure 

probability of component A multiplied by the failure probability of component B. In 

general terms, the probability of existence of cut set Cj containing N c. events, P( Ci), is , 

expressed by equation (2.1). 

Ne; 

P(C;) = TI qc(t) (2.1) 
c=l 

The top event will occur by the existence of any minimal cut set, Ci . For a system with 

Nmcs minimal cut sets, the system failure probability at time t, QSYS (t), is given by 

equation (2.2). 

(2.2) 

This may be expanded as shown in equation (2.3). 

Q (t)= ~ P(c.)-~~ P(C.nC.)+· .. +(_I)Nmes-1 p(C nC n .. ·nC ) (2.3) 
SYS L I L L..J I ] 1 2 Nmes 

i=l i=2 j=l 

In many cases the top event of a system is made up of a large number of minimal cut 

sets. In such cases obtaining the top event probability using the inclusion-exclusion 
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expansion is not possible due to the number of calculations required. This is overcome 

by employing approximation techniques. 

2.2.3.1.1 Upper and Lower Bounds for System Unavailability 

The terms in equation (2.3) provide less significant contributions as more minimal cut 

sets are combined. This series can be truncated to give upper and lower bounds for the 

system unavailability, shown in equation (2.4). 

(2.4) 
i=! i=2 j=! i=! 

Lower Bound Exact Upper Bound 

The upper bound is also known as the rare event approximation since it is itself 

accurate if the component failure events are rare. 

2.2.3.1.2 Minimal Cut Set Upper Bound 

The Minimal Cut Set Upper Bound, QMCSU, is a more accurate upper bound of the 

system failure probability. This is derived below and results in equation (2.5). 

Then, 

So, 

P(system failure) = peat least one minimal cut set exists) 

= 1 - P(no minimal cut sets exist) 

N mcs 

P(no minimal cut sets exist) ~ IT P (minimal cut set i does not exist) 
i=! 

(equality being when no event appears in more than one minimal cut set) 

N mcJ 

P(system failure) ::; 1- ITP(minimal cut set i does not exist) 
i=! 

N mcs 

QMCSU = 1- IT[1-P(CJ] 
i=! 

15 

(2.5) 



2.2.3.2 Top Event Frequency 

The system unconditional failure intensity, WSYs(t) , is defined as the probability that 

the top event occurs at t per unit time. The probability that the top event occurs in the 

time interval [t, t+dt) is given by WSys(t) dt . For the top event to occur during [t, 

t+dt), no minimal cut sets can exist at t, and one or more must occur in [t, t+dt). This 

can be expressed as, 

(2.6) 

where A is the event that no minimal cut set exists at time t 

Nmcs USi is the event that one or more minimal cut sets occur in [t, t+dt) 
i=1 

Since P(A) = 1-P(A) , the right hand side of equation (2.6) can be expressed by 

equation (2.7), 

(2.7) 

where A is the event that at least one minimal cut set exists at time t 

Therefore: (2.8) 

The first term on the right hand side of equation (2.8) represents the contribution from 

the occurrence of at least one minimal cut set. The second term represents the 

contribution of minimal cut sets occurring while other minimal cut sets already exist 

(i.e. the system has already failed). The two terms can be denoted by WSYS (I) (t) dt and 

WSYS (2) (t) dt respectively, and equation (2.8) becomes, 

d (I) d (2) WSYS (t) t = WSYS (t) t - WSYS (t) dt (2.9) 

Both of the terms on the right hand side can be obtained using the inclusion-exclusion 

expansion (equation (2.3». Since this is even more computationally intensive than the 
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equivalent top event probability calculation, an approximation for the system 

unconditional failure intensity is used. 

2.2.3.2.1 Approximation for the System Unconditional Failure Intensity 

In most situations, the event of component failure is very unlikely and so the 

occurrence of a minimal cut set will be a rare event. The second term of equation (2.9) 

requires the probability that minimal cut sets exist and then others occur. When the 

occurrence of a minimal cut set is a rare event, this term becomes negligible, and an 

upper bound for the system unconditional failure intensity, W SYSMAX (t) dt, is obtained 

by considering only the first term of the equation, W SYS (1) (t) dt, as given in equation 

(2.10), 

W
SYSAUX 

(t) dt ~ W
SYS 

(1) (t) dt (2.10) 

W SYS (1) (t) dt may be expanded using the inclusion-exclusion technique and again 

truncated after the first term to give the rare event approximation (equation (2.11)), 

Nmcs 

WSYSAUX (t) dt ~ L we; (t)dt 
i=1 

Nmcs 

WSYSAUX (t) ~ L we; (t) (2.11) 
;=1 

where we; (t) is the unconditional failure intensity of minimal cut set S; 

The unconditional failure intensity of a minimal cut set S;, we. (t) , is the probability of , 

occurrence of the minimal cut set per unit time at t. Since only one component failure 

can occur in a small time element dt, the probability of occurrence of minimal cut set 

S; is the probability of any event c from the set occurring during [t,t + dt) given that 

all other basic events in the minimal cut set have already occurred. Considering each 

of the Ne. events in turn allows the unconditional failure intensity of the minimal cut , 

set to be expressed in equation (2.12). 
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(2.12) 

2.2.3.3 Expected Number of System Failures 

The expected number of system failures during [0, t) is denoted by WSYS (0, t) and is 

obtained by the integral of the system unconditional failure intensity in the interval 

[O,t) shown in equation (2.13), 

WSYs(O,t) = S; WSys(u) du (2.13) 

If the system is reliable, the expected number of system failures can be used as an 

upper bound for the system unreliability. 

2.2.3.4 Structure Functions 

The state of a component or system may be considered to either work or fail. This can 

be represented by a binary indicator variable. A component c is assigned a binary 

indicator variable Xc, such that, 

{
I if the component is failed 

Xc = ° if the component is working 

Similarly the top event of a system may be assigned a binary function, ~ , such that, 

{
I if the system is failed 

~(x) = ° if the system is working 

This is known as the System Structure Function, and shows the system state in terms 

of its component states, x. The system structure function may be expressed in terms of 

its component states using equation (2.14). 

N mcs 

~(x) = 1- IT (1- p;(x)) (2.14) 
;=1 

where p; (x) is the binary indicator variable for each minimal cut set C;, i=1..Nmcs 
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Ne, 

Then, p/(X) = IT Xj 
jEC, 

{
I if cut set Cj exists 

Where p;(x) = o if cut set Cj does not exist 

(2.15) 

The probability of the top event occurrence can be obtained by the expected value of 

the structure function, E [ ~ (x)] , in equation (2.16), 

QsyS (t) = E[ ~(x)] (2.16) 

If the minimal cut sets are independent, E[~(x)] = ~[E(x)]. In most cases the 

minimal cut sets will not be independent and so a full expansion of the structure 

function must be performed prior to taking the expectation. 

2.2.3.5 Importance Measures 

The contribution of a component or cut set to the occurrence of a top event is defined 

as its importance. The measure of importance is a function of time, system structure 

and failure and repair characteristics. It is clear by the structural arrangement of a 

system that some components will be more critical to the success of a system than 

others; a component in a series arrangement will generally be more important than a 

component placed in a parallel arrangement. 

The analysis of importance is a sensitivity study method that allows identification of 

the weak areas of a system, thus is a very useful tool in the design and optimisation 

stages. Fault tree analysis is a suitable technique of identifying the basic causes that 

contribute to system failure. Quantification of a fault tree can be performed if 

component data is known, and the importance of each individual component may be 

calculated as a value between 0 and 1. 

There are several importance measures that have been developed to analyse the 

contribution of both individual components and minimal cut sets to the occurrence of 

the top event. These may be divided into two categories of importance measure, 

deterministic and probabilistic. Probabilistic measures can be further categorised as 

dealing with system unavailability or system unreliability assessment. 
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2.2.3.5.1 Deterministic Measures of Importance 

Deterministic measures of importance analyse the importance of a component to a 

system with no reference to its probability of occurrence. The Structural Measure of 

Importance is one such measure. 

Structural Measure of Importance 

For a component c the structural measure of importance is defined by equation (2.17). 

I ST = number of critical system states for component c 
C total number of states for the (n -1) remaining components 

(2.17) 

A system is in a critical state for a component c if the remaining (n-l) components are 

in a state that allows the failure of component c to cause the system to go from a 

working to a failed state. This can be demonstrated on a single system, shown in 

Figure 2.2. 

Figure 2.2 Single System 

The critical states for each ofthe components can be summarised in Table 2.3. 

States For Other Components 
Critical State For Component 

A B C 

Component A: - 0 0 Yes 
- 0 1 Yes 
- 1 0 Yes 
- 1 1 No 

Component B: 0 - 0 No 
0 - 1 Yes 
1 - 0 No 
1 - 1 No 

Component C: 0 0 - No 
0 1 - Yes 
1 0 - No 
1 1 No 

where 0 = Component Success, 1 = Component Failure 

Table 2.3 Critical States for Components in Single System 
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The Structural Measure of Importance for each of the components is found in equation 

(2.18). 

I ST_~ A -
4 

1 ST =..!.. 
B 4 1 ST _..!.. 

c -
4 

(2.18) 

Since each component will have a different rate of failure, in reality this measure is 

not very useful. Probabilistic measures of importance depend on component failure 

probability and intensity and so are generally of more use than deterministic measures. 

Such measures for dealing with system unavailability and unreliability assessment are 

presented in the following sections. 

2.2.3.5.2 Probabilistic Measures of Importance 

Several probabilistic measures have been developed to compute the importance of 

both basic events and minimal cut sets to the occurrence of the top event with 

consideration of system unavailability. Many of these importance measures depend on 

the criticality function G(q(t)). This function may be formally defined as: 

Gc(q(t)) = The probability that the system is in a critical system state for component c 

Birnbaum's Measure of Importance 

Bimbaum's measure of importance [5] is also known as the criticality function. The 

criticality function is found by the sum of the probabilities of occurrence ofthe critical 

system states for component c. To demonstrate this, the example given in Figure 2.2 

may be used, and the system state probabilities are summarised in Table 2.4. 

Bimbaum's measure of importance for each of the components is found using this 

method in equations (2.19) 

(2.19) 
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States For Other Components 
Probability Critical State For Component 

A B C 

Component A - 0 0 (1-q B )(1-q c) Yes 

- 0 1 (1-q B)q c Yes 

- 1 0 qB(1-qc) Yes 

- 1 1 qBqC No 

Component B: 0 - 0 (1-qA)(1-qc) No 

0 - 1 (1-q A)q c Yes 

1 - 0 qA(1-qc) No 

1 - 1 qAqC No 

Component C. 0 0 - (1-q A )(1-q B) No 

0 1 - (1-q A)q B Yes 

1 0 - qA(1-qB) No 

1 1 - qAqB No 

Table 2.4 Example of Bimbaum's Measure ofhnportance 

Bimbaum's measure of importance can also be directly obtained using equations 

(2.20) and (2.22): 

where QSYS (t) = probability that the system fails 

(lc,q(t» = (qp···,qc-1'1,qc+I'···,qn) 

(Oc,q(t» = (qp···,qc-l'0,qc+l'···,qn) 

(2.20) 

component c failed 

component c working 

Equation (2.20) is the probability that the system fails with component c failed 

minus the probability that the system fails with component c working. This 

expression therefore represents the probability that the system fails only when 

component c fails. Considering the example in Figure 2.2, Bimbaum's 

importance measure for components A, B, and C is given in equations (2.21). 
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• 

(lA,q(t» =l+qBqc -qBqe =1 

(OA,q(t»=qBqe 

(lB,q(t» = qA +qe -qAqe 

(OB,q(t» = qA 

(le,q(t»=qA +qB -qAqB 

(Oe,q(t» = qA 

This is equivalent to equation (2.20) since: 

8QSYS (q(t» QsyS (lc,q(t» - QSYS (Oc ,q(t» 

~c«) 1-0 

(2.21) 

(2.22) 

Equation (2.22) is defined as the partial derivative of the probability that the 

system fails with respect to the probability of failure of component c. Applying 

this method to the example in Figure 2.2 gives the same results as in equations 

(2.21). 

Bimbaum's measure of importance is not a function of a component's own failure 

probability. Many further importance measures are defined using this parameter. 

Criticality Measure of Importance 

The criticality measure of importance is defined as the probability that the system is in 

a critical state for component c, and component c has failed (weighted by the system 

unavailability). This is represented by equation (2.23). 

I eR = Gc(q(t»qc«) 
c QSYS (q(t» 

(2.23) 
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Applying this to the example in Figure 2.2 gives: 

IB eR = (l-qA)qeqB 
qA + qBqe -qAqBqe 

(2.24) 

Fussell-Vesely Measure of Importance 

For system failure to take place, it is possible that one or more minimal cut sets could 

occur simultaneously. Component c will contribute to the failure of a system by the 

occurrence of a minimal cut set containing c. 

The Fussell-Vesely measure of importance [6] is defined as the probability of the 

union of the minimal cut sets Ck containing c given that the system has failed 

(equation (2.25». 

(2.25) 

Application of this measure of importance to the components in the example (Figure 

2.2) with minimal cut sets {A} and {B,C} gives: 

(2.26) 

The rankings found by the Fussell-Vesely measure of importance are seen to closely 

relate to those found by the criticality importance measure. 

Fussell-V esely Measure of Minimal Cut Set Importance 

The Fussell-Vesely measure of minimal cut set importance ranks the minimal cut sets 

in the order of their contribution to the top event. The importance of each cut set Ck 

can be defined as the probability of existence of the minimal cut set given that the 

system has failed: 

(2.27) 
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The importance of each of the minimal cut sets for the example in Figure 2.2 can be 

expressed by equations (2.28). 

(2.28) 

2.2.3.5.3 Probabilistic Measures for Initiating and Enabling Events 

The original, pioneering work, in fault tree analysis held the assumption that the 

sequence of occurrence of basic events is not important, thus a minimal cut set will 

cause system failure regardless of the order of component failures. However, in some 

cases the top event of a fault tree may only be caused by a certain sequence of basic 

event occurrences. An example of such a situation would be a safety protection 

system designed to protect against a specific hazard. If the hazardous event occurs 

while safety protection devices are functioning, the top event will not occur and a 

shutdown would be instigated. If the hazardous event occurs while safety protection 

devices are not working a more catastrophic system level failure will occur. This 

introduces a limited ordering requirement on the basic events. In this case the last 

event to occur needs to be the hazardous one. If the safety features have failed (in any 

order) prior to this then the system failure represented by the fault tree will occur. 

Such a system, with limited sequential aspects, can be modelled using component 

failure events classified as initiating or enabling events. 

t=O tEf T tEr 

I 
Initiating Events I 

Occurs 

Final Enabling Enabling Event 
Event Occurs Repaired to Restore 

Protection Capability 

Figure 2.3 Example of A Safety System 

Consider the situation illustrated in Figure 2.3. The final safety feature fails at t=tE/, 

and the protection capability is restored again at t=tEr' During the period of time from 

tE/to tEr. the system is in a critical state and vulnerable to the occurrence ofthe hazard. 

If the hazardous event occurs prior to tE!> the safety systems will respond as required 
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and the system will not fail. If the hazardous event occurs while the safety system is 

inactive, the safety system is unable to respond and so a hazardous system failure will 

occur. Thus the order in which components fail will be of importance to the system 

outcome. In this type of situation, failed safety features are known as enabling events. 

The occurrence ofthe hazardous event is known as an initiator. Initiating and enabling 

events may be formally defined as: 

Initiating Events: 

Enabling Events: 

Perturb system variables and place a demand on control 

or protective systems to respond. 

Inactive control or protective systems which permit 

initiating events to cause the top event. 

In a system, an initiator may act as either an enabler or an initiator, whereas an enabler 

can only act in this capacity. Every minimal cut set of the system requires at least one 

initiator in order to cause system failure. 

The importance measures described in the previous sections assume that the order of 

component failures in a minimal cut set is irrelevant. Probabilistic measures of 

importance are presented to deal with the interval reliability of a system where the 

order of component failures is important. All such measures are weighted according to 

the expected number of system failures, WSYS (0, t) . 

Expected Number of System Failures 

The system unconditional failure intensity, WSys(t) , is defined as the probability that 

the top event occurs per unit time at t. This is the sum of the probabilities that the 

system is in a critical state for each initiator i and the frequency that i occurs at t, and 

is given in terms of the criticality function in equation (2.29). 

N, 

WSys(t) dt = L G;(q(t»). w;(t)dt 
;:1 

i initiator 

= t(BQSys(q(t»].W;(t)dt 
;:1 Bqj(t) (2.29) 

i initiator 

where Ni is the number of initiating events 
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The expected number of system failures can be calculated by the integral of the 

system unconditional failure intensity over the interval [O,t) (equation (2.30». 

w, (0 t) = rt w (u) du = rt~( 8QSYS (q(u »). w. (u)du 
SYS' Jo SYS Jo L.J 8 () I 

i=1 qi U 
(2.30) 

j initiator 

Barlow-Proschan Measure of Initiator Importance 

The Barlow-Proschan measure of importance is the probability that initiating event i 

causes system failure over the interval [O,t). This is defined in terms of the criticality 

function and weighted according to the expected number of system failures, 

WSYS (O,t) , in equation (2.31) 

r {QSys(1pq(u» - Qsrs (0i'q(u»}wi (u)du 
I.BP = _0 _____________ _ 

I WSys(O,t) 
(2.31) 

Measures of Enabler Importance 

The sequential contributory measure of enabler importance was introduced by 

Lambert [7], and is defined as the probability that enabling event e permits an 

initiating event i to cause system failure over [O,t). The failure of the enabler e is 

considered only a factor when it is contained in the same minimal cut set as the 

initiating event i. Again, since the interval reliability is the parameter of interest, 

Lambert's measure is weighted by the expected number of system failures and is 

given in equation (2.32). 

L s; {Q(1e,l i ,q(u» - Q(1e,Oi ,q(u»}qe (U)Wi (u)du 
i 

e*i 
eand ieCk 

I sc = for some k 
e 

Wsrs(O,t) 

where i runs over each initiating event in the same minimal cut set as e 

(2.32) 

This expression is an approximation since it does not account for the separate roles of 

events e and i in causing or contributing to system failure. For enabling event e to 

allow initiating event i to cause system failure, e and i must occur in at least one 
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minimal cut set together and it must be the existence of one such minimal cut set that 

causes system failure. 

A method has been developed by Beeson and Andrews [8] to obtain the exact 

importance of an enabler e when initiating event i causes system failure, however this 

technique is very computationally intensive to perfonn. In recognition that equation 

(2.32) is not an accurate calculation, a better approximation is presented by 

Dunglinson and Lambert [9]. This is defined as the fraction of time that minimal cut 

sets containing event e have caused the top event to occur given that the top event has 

occurred, and is expressed in equation (2.33). 

t N, 

fo I P(Ukli,eek E k )Wi (u) du 
I DL = _.o....i=~l _______ _ 

e 
WSys(O,t) 

(2.33) 

where Ek is the event that minimal cut set k occurs with initiating event i set to true 

This Dunglinson-Lambert measure is only an approximation since the existence of 

other minimal cut sets that do not contain both events e and i has not been accounted 

for. 

2.3 Binary Decision Diagrams 

The size of a fault tree problem can become very large, especially when considering 

the possibility of multiple phased missions. An alternative method to assess the 

reliability performance of a system is by converting the fault tree to a Binary Decision 

Diagram (BDD) prior to analysis. A BDD provides an efficient representation of a 

system with a Boolean equation for the top event. BDDs are often preferred structures 

to that of fault trees due to the fact that the logic expression offers efficient 

mathematical manipulation. Qualitative and quantitative analysis can be performed on 

a BDD, and exact solutions can be obtained without the need for approximations of 

the conventional fault tree approach. The use of BDDs in reliability analysis was 

initially developed by Rauzy [4]. 
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2.3.1 Properties of the BDD 

A BDD is a directed acyclic graph, and so paths through a BDD can only travel in one 

direction without the possibility of looping. A BDD comprises of both tenninal and 

non-tenninal nodes (also called vertices) which are connected by branches. The non

tenninal nodes of a BDD represent the basic events of the fault tree and the tenninal 

nodes represent the final state of the system. The tenninal nodes of a BDD are defined 

by: 

o 
1 

System works 

System fails 

An example of a binary decision diagram is given in Figure 2.4. 

Root Node 

Figure 2.4 Example Binary Decision Diagram 

Each non-tenninal node has two outgoing branches. Generally, the left '1' branch 

represents the occurrence of the basic event (the component fails), and the right '0' 

branch represents the non-occurrence of the basic event (the component works). The 

size of a BDD is defined by the number of non-tenninal nodes. 

Each path through a BDD begins at the root node and moves through the diagram 

until a tenninal node is reached. Paths that tenninate in a '1' node can be used to 

generate the cut sets of a system. On these paths the cut sets are produced by listing all 

basic event occurrences as these lead to system failure. Only the branches representing 

the occurrence of a basic event are included in the cut set. For example, there are two 

paths in the BDD in Figure 2.4 that end in a tenninal '1' node: 
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1. A,B 

2. A,B,C 

The cut sets obtained by only the occurrence of basic events become: 

1. A,B 

2. A,C 

There are various methods of obtaining the BDD for a system. All methods require an 

ordering of the variables (basic events of the fault tree). This ordering represents the 

sequence of the basic events in the construction of the BDD, and can be chosen to 

define an optimal BDD for analysis. Further work on the qualification and 

quantification ofBDDs is developed by Sinnamon and Andrews [10], [11]. 

2.3.2 Formation of a BDD Using Structure Functions 

The structure function of a fault tree can be used to demonstrate the formation of a 

BDD by successively substituting one and zero into the structure function equation in 

the sequence of the chosen ordering. This is demonstrated using the example fault tree 

in Figure 2.5 .. 

Figure 2.5 Example Fault Tree 

The minimal cut sets of this example are {A,C} and {B,C}, and the structure function 

is given by: 
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If the variable ordering is chosen as the events appear from left to right on the fault 

tree, A<B<C, A is considered first, followed by B and then C. The first non-terminal 

node 'A' is drawn with 2 outgoing branches denoting the failure (occurrence) and the 

success (non-occurrence) of the event. The result of the failure and success branches 

is obtained by substituting '1' and '0' respectively for X A in the structure function 

equation. The same is then done for B and C until terminal nodes are reached which 

determines the system state. The resulting BDD with Boolean equations is shown in 

Figure 2.6. 

Figure 2.6 Binary Decision Diagram with Boolean Variables 

2.3.2.1 Reduction of the BDD 

A series of operations may be applied to reduce the size of a BDD: 

1. If the two sons of a node 'a' are equivalent, then delete node 'a' and direct 

all of its incoming branches to its left son. 

2. Ifnodes 'a' and 'b' are equivalent, then delete node 'b' and direct all of its 

incoming branches to 'a'. 

where the son of a node is the node which either branch leads to. 

This reduction technique may be applied to the example BDD in Figure 2.6. The first 

operation may be applied to delete node F2 since both of its sons are equivalent. Node 
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FI passes directly to its left son, F4. Node F5 is deleted. Application of the second 

operation identifies the identical nodes F4 and F6. F6 and sons can be deleted and the 

incoming branch from node F3 passes instead to node F4. The resulting BDD is given 

in Figure 2.7. 

o 

o 

Figure 2.7 Reduced BDD from Figure 2.4. 

The reduced BDD is considerably smaller than the original BDD in Figure 2.6, with 

three non-terminal nodes rather than six. 

Although this method results in a significant reduction in the size of a BDD, it does 

not always result in the minimal BDD. A minimisation procedure to obtain the 

minimal cut sets of a BDD is presented in Section 2.3.4. The use of structure functions 

to form the BDD clearly demonstrates the relationship between the fault tree and the 

BDD, however an obvious disadvantage is that the cut sets must be determined to 

define the system structure function prior to construction ofthe BDD. 

2.3.3 Formation of a BDD using If-Then-Else Structure 

An alternative method to construct a BDD was developed by Rauzy [4] where each 

gate of a fault tree is defined using an if-then-else (ite) technique. The top event of a 

fault tree can be expressed as a Boolean function, f(x), and pivoted about any variable 

Xl. Shannon's formula can then be expressed in equation (2.34). 

f(X) = Xl· f1 + Xl· f2 (2.34) 

where f1 and f2 are functions with Xl =1 and Xl =0 respectively 
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The ite structure for this is represented as ite(X1, fl, f2), and is defined by 'if Xl fails, 

then consider fl, else consider f2'. In the BDD, fl is achieved by the '1' branch of the 

Xl node (occurrence of Xl), and f2 is achieved by the '0' branch of the Xl node 

(non-occurrence of Xl). This structure is shown in Figure 2.8. 

f1 

Figure 2.8 A Binary Decision Diagram Vertex ofite(Xl, fl, f2) 

To begin the construction of the full BDD, each basic event x is given the structure 

ite(x, 1, 0). To combine basic events within the BDD, the following rules must be 

applied: 

To combine two basic events (X and Y) using a logical operation E9, 

If J = ite(X,[ 1,[ 2) 

and H = ite(Y,gl,g2) 

If X < Y J ffi H = ite(X,jl ffi H,j2 ffi H) 

If X = Y J ffi H = ite(X,[l ffi gl,j2 ffi g2) 

This method has the advantage of automatically eliminating the repetition of nodes. 

The ite method may be applied to the fault tree in Figure 2.5, again using the ordering 

A<B<C: 

G 1 is defined as: G1 =A+B 

= ite(A, 1,0) + ite(B, 1,0) 

= ite(A, 1, ite(B, 1,0» 

Top is then found as: Top = G1 . C 

= ite(A, 1, ite(B, 1,0» . ite(C, 1,0) 

= ite(A, ite(C, 1,0), ite(B, ite(C, 1,0),0» 
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The BDD can then be constructed by considering the '1' and '0' branches of each 

variable in turn until the terminal vertices are reached. The resulting BDD is given in 

Figure 2.9. 

o 

Figure 2.9 BDD of fault tree in Figure 2.3 using ite technique 

The paths terminating in '1' give the cut sets ofthe system: {A,C} and {B,C}. 

2.3.4 BDD Minimisation 

In most cases, the BDD will not be minimal and so the cut sets that are obtained will 

also not be minimal. A minimisation process has been developed by Rauzy [4] to 

create a new BDD that encodes the minimal cut sets of the fault tree. 

A general node in the BDD is defined by equation (2.35). 

F = ite(x, G, H) (2.35) 

If 8 is a minimal solution of G, which is not a minimal solution of H, then the 

intersection of 8 and x ({ 8 } (Ix) will be a minimal solution of F. The set of all 

minimal solutions ofF, solmin(F) will also include the minimal solutions ofH, and can 

be expressed in equations (2.36) and (2.37). 

solmin(F) = { cr } (2.36) 

where cr = [{ 8 } (Ix] U [solmin(H)] (2.37) 
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Rauzy has also defined the without operator which removes all paths from Groin that 

are included in Hmin. This ensures that by removing any minimal solutions of G that 

are also minimal solutions ofH, equation (2.37) becomes minimal. 

2.4 Markov Analysis 

Markov methods provide a means of analysing the reliability and availability of 

systems whose components exhibit strong dependencies. Markov diagrams for large 

systems are generally exceedingly large and complex and are often difficult to 

construct. Markov models are more suitable for analysis of smaller systems. The 

Markov approach assumes that the system is characterised by a lack of memory, 

where the future behaviour of the system is only dependent on the immediately 

preceding state and not on the full history. Each event is determined only by the 

present system state and is independent of any other past events. A Markov process 

features a constant transition rate between the system states, and can be used for 

solution to systems that vary discretely or continuously with respect to time or space. 

A Markov Model consists of two elements: states and transitions. Only transitions 

between linked states are possible. In reliability problems it is possible that a state can 

cause terminal system failure. This is defined as an absorbing state and no transitions 

may be made from it. 

For the method described below it is assumed that the system has a fixed number of 

identifiable discrete states and that the rate of transition between states is constant 

with time. This implies that the times to failure and repair of the components are 

associated with (negative) exponential distributions. This Markov method is discrete 

in space and continuous in time. 

2.4.1 Markov Model Concepts 

To begin Markov analysis a directed graph is constructed where each node represents 

one of the discrete system states, and the edges represent the transition rates between 

the states in the direction ofthe arrow. 
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Considering a single repairable component that may exist in one of two states, 

working (O-W) or failed (l-F), and can be represented by x(t) in equation (2.38). 

{
I Component Failed 

x(t) = o Component Working 
(2.38) 

The state of a repairable component with failure rate A and repair rate v can be 

represented by a transition diagram in Figure 2.10. 

Failure 
'A 

Repair 
u 

where port) = Probability that component is in the working state at time t 

PJ(t) = Probability that component is in the failed state at time t 

Figure 2.10 Single Repairable Component Markov Transition Diagram 

The parameters A and u are referred to as state transition rates since they represent the 

rate of communication between the states. 

The failure and repair density functions,j(t) and g(t), of a component with failure rate 

A and repair rate u are given in equations (2.39). 

f(t) = Ae-1.t g(t) = ue-ut (2.39) 

To begin the solution of a Markov model, incremental intervals of time dt must be 

considered. Each interval must be sufficiently small so that there is an insignificant 

chance of two or more events occurring and so a maximum of one state transition may 

take place in anyone interval. 

A set of differential equations may be obtained from the state transition diagram in 

Figure 2.10. The probability of a component being in the working state at a time t+dt 

is dependent only on the state of the component at time t, and can be defined as, 
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Po(t+dt) = [Probability of component working at time t AND not failing in time dt] 

+ [Probability of component failed at time t AND repaired in time dt] 

The probability that the component is in the working state at time t+dt may be 

represented by equation (2.40). 

Po (t + dt) = Po (t)(I- Adt) + ~ (t)(udt) 

This may be expressed as a differential equation as shown in equation (2.41) 

Asdt~O 

Po (t + dt) - Po (t) "I D ( ) D ( ) -"-----"--- = -JI.f 0 t + Url t 
dt 

Po (t + dt) - Po (t) 

dt 
_ dPo(t) _ pt' ( ) 
- - 0 t 

dHO dt 

Thus equation (2.40) can be expressed by equation (2.42). 

Po (t) = -APo (t) + u~ (t) 

(2.40) 

(2.41) 

(2.42) 

Similarly the probability that the component is in the failed state at time t+dt may be 

derived to form equation (2.43). 

A (t) = APo (t) - U~ (t) (2.43) 

A more simple way to represent such systems of differential equations is by the use of 

matrices. In matrix form these equations are represented in equation (2.44). 

Or, 

[P] = [P][A] (2.44) 

where Po (0) and ~ (0) are the known initial system state probabilities at t=0 

37 



This square matrix A can easily be found from the transition diagram where, 

• There are the same number of rows and columns of the matrix as there are 

states in the diagram. 

• Each row has a sum of zero. 

• All non-diagonal elements in row i and columnj represent the transition from 

state i to state j. 

• All diagonal elements ii represent the transition rate out of state i. 

N 

The sum of the system state probabilities at any time t must be equal to 1, ! P
j 
(t) = 1. 

j~1 

In reliability problems, a system failure mode may be catastrophic. In this case a state 

is entered that cannot be left, and is known as an absorbing state. For a single 

component, this would be represented by the state transition diagram in Figure 2.11. 

Figure 2.11 Single Non-Repairable Component Markov Transition Diagram 

Again using matrices, this system can be represented by equation (2.45). 

(2.45) 

2.4.2 Laplace Solution of Markov Differential Equations 

Since the state equations are linear differential equations with constant coefficients, 

one method for solution is using Laplace transforms. This technique may be applied to 

both the non-repairable and repairable single component systems in the following 

sections. 
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2.4.2.1 Non-Repairable Single Component 

Since Po (t) + l't (t) = 1, transition to the failed state 1 is obtained by the matrix set of 

differential equations (2.45) and can be represented as given in equation (2.46). 

dl't (t) = A[1-l't (t)] 
dt 

Applying Laplace transforms to this differential equation gives equation (2.47). 

A 
sl't (s) -l't (0) = - - Af't (s) 

s 

(2.46) 

(2.47) 

If the component is known to be working at t=O, the initial condition l't (0) = 0 holds 

and equation (2.47) may be written as shown in equation (2.48). 

A 
sl't(s) =--Al't(S) 

s 

A 
(s + A)l't (s) =-

s 

A 
l't(s)=--

s(s + A) 

1 1 
l't(s)=---

S S+A 
(2.48) 

Inverting equation (2.48) gives the unavailability (unreliability) of the non-repairable 

component with time in equation (2.49). 

l't (t) = 1- e-i..1 (2.49) 

The availability (reliability) of the component with time is given in equation (2.50). 

(2.50) 

2.4.2.2 Repairable Single Component 

The Laplace transform of the repairable single component failure state in equation 

(2.43) is given in equation (2.51). 
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s~ (s) - ~ (0) = "A.Po (s) - u~ (s) (2.51) 

Equation (2.51) may be rearranged to give equation (2.52). 

"A. 1 
~(s)=-Po(s)+-~(O) 

s+u s+u 
(2.52) 

Similarly the Laplace transform of the working state in equation (2.42) can be 

rearranged to form equation (2.53). 

u 1 
Po(s)=-~(s)+--Po(O) 

s+A. s+"A. 
(2.53) 

Equations (2.52) and (2.53) may be solved simultaneously to give equations (2.54). 

Po(s) = _U_[Po(O) + ~ (0)] +_1_. 1 ["A.Po(O) -u~ (0)] 
"A.+u s "A.+u s+"A.+u 

(2.54) 

~ (s) = _A._[Po(O) + ~(0)]+_1_. 1 [u~ (0) -"A.Po(O)] 
"A.+u s "A.+u s+"A.+u 

Inverting the Laplace transforms back to the real time domain gives equations (2.55). 

u e-(A,+u)t 

Po(t) = -[po (0) + PI (0)]+ ["A.Po(O) -u~ (0)] 
. "A.+u "A.+u 

(2.55) 

A. e -(A,+u)t 

~ (t) = -[po (0) + ~ (0)]+ [u~ (0) - "A.Po(O)] 
"A.+u "A.+u 

The component will begin life in the working state and so the initial conditions are 

Po (0) = 1 and ~ (0) = O. This reduces equations (2.55) to give equations (2.56). 

~(t) =_v_+ k-(Mu), =l __ A_[l_e-(l+U),] 
A+V A+V A+V 

A A -(l+u)1 A 
P'(t)=--- e = __ [l_e-(l+U)t] 

A+V A+V A+V 

(2.56) 
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2.4.3 Numerical Solution of Markov Differential Equations 

For complex problems it is more suitable to solve the set of Ns differential equations 

using numerical methods. Equation (2.44) may be written in expanded form by 

equation (2.57). 

[P]=[P][A] 

[A,~, "', PN.l= [~, P2 , "', PN, HA] (2.57) 

Since, Pet) = f1;(t + dt) - f1;(t) 
I dt 

(2.58) 

Equation (2.57) may be represented by equation (2.59). 

l~ (t + dt), P2 (t +dt),"', PN, (t +dt)J= l~ (t), Pz(t),' ", PNs (t)j[1 + [A]dt] (2.59) 

The general numerical solution to the set of differential equations is therefore given by 

equation (2.60). 

[pet + dt)] = [P(t)] [K] where [K] = [I + [A]dt] (2.60) 

This leads to a recursive solution to the differential equations over a duration of time. 
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Chapter 3 Review of Existing Methods for Phased Mission Systems 

3.1 Introduction 

The topic of phased mission analysis has been the focus of several researchers in the 

broader field of risk and reliability assessment. Methods have been investigated to 

identify possible causes of phase and mission failure by the combination of basic 

event occurrences throughout the mission. The quantification, using the failure event 

probabilities, enables the likelihood and frequency of mission failure to be 

determined. 

The methods that have been developed for solution to phased mission problems can be 

categorised as those appropriate for non-repairable or repairable systems. In the case 

of non-repairable systems, a component failure will be permanent and the component 

will remain failed for the duration of the mission. In the case of repairable systems, it 

is possible for a component to be restored to new condition after failure. The 

techniques that have been found appropriate for solution to these cases are discussed 

in the following sections. 

3.2 Non-Repairable Systems 

The earliest consideration of the analysis of phased missions was made by Esary and 

Ziehms [12] using fault tree analysis. A mission is split into consecutive phases, and 

each phase performs a specified task. The system at any time may be represented by 

one of two states - working or failed. The success of the mission depends on the non

repairable components used during each phase, and the probability of the successful 

completion of all phases is referred to as the Mission Reliability, RM1SS• 

The reliability of a phased mission cannot simply be obtained by the multiplication of 

the reliabilities of each of the individual phases. This involves the false assumptions 

that all components are in the working state at the beginning of each phase and that 

components are not shared between the phases, and results in an appreciable over

prediction of system reliability. This point is illustrated using the example in Figure 

3.1. 
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Phase 1 Phase 2 

Figure 3.1 Example Mission with Two Phases 

Let P Cl be the probability that component c functions through phase I, and P C2 be the 

conditional probability that component c functions through phase 2 given that it has 

functioned through phase 1. The system reliability for phases 1 and 2 would be found 

by: 

Phase 1 

Phase 2 

RI = PAl + P BI - PAl P B, 

R2 = PA2 PB2 

The multiplication of the separate phase reliabilities would give the incorrect value of 

mission reliability, RM1SS • , shown in equation (3.1) 

(3.1) 

For the mission to be achieved successfully, both components must function through 

both phases. The correct mission reliability defined by Esary and Ziehms is obtained 

by the probability that the components both function through phases 1 and 2, and is 

given in equation (3.2). This is less than the inaccurate mission reliability calculated 

by the multiplication of individual phases in equation (3.1). 

(3.2) 

It can easily be seen that the mission reliability defined in equation (3.2) is also 

incorrect. The multiplication of the component reliability in individual phases assumes 

that the probability of success in each phase is independent. Since the success of each 

component in phase 2 implies that the component must have worked successfully 

through phase 1, the reliabilities should be combined to a single term. 

43 



Since a component cannot be repaired or replaced, it will function continuously until 

failure occurs and will subsequently remain in the failed state. A method is presented 

by Esary and Ziehms to transform and reduce a multi-phase mission into an equivalent 

single-phase mission, allowing existing techniques to be applied to calculate the 

mission reliability. This is discussed in the following section. 

3.2.1 Transformation of a Multi-Phased Mission to an Equivalent Single

Phase Mission 

In a multi-phased mission, the performance of a component in a phase depends on its 

behaviour through previous phases. It will only be in the working state in a phase if it 

has performed successfully through all preceding phases. 

A single component c in phase j may be replaced by a series system of components 

which represent the performance of component c in all phases up to and including 

phase j, cl' c2 , ••• , C j' demonstrated in Figure 3.2. 

Single phase 

Multiple phases 

Figure 3.2 Single and Multiple Phase Component Block Diagrams 

Similarly using fault tree analysis, the single event input of the failure of component c 

is replaced by an OR combination of the failure of component c in any phase up to 

and including phasej, shown in Figure 3.3. 

Figure 3.3 Component Failure in Fault Tree of a Multi-Phased Mission 
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The individual phase configurations can then be joined in series to form a single 

system. As a demonstration this will be applied to a simple mission network 

comprising of three phases and three components, A, B, and C given in Figure 3.4. 

Phase 1 Phase 2 Phase 3 

Figure 3.4 Reliability Network of a Simple Phased Mission System 

This multi-phased mission can be transformed to a single-phase mission as 

demonstrated in Figure 3.5. 

Transformed Phase 1 Transformed Phase 2 Transformed Phase 3 

Figure 3.5 Equivalent Single Phase Mission 

The three original sequential phase configurations have been transformed to a single 

network comprising of three sub-systems in a series arrangement. Since the 

subsystems will generally have components in common, they will not function 

independently. In this case the product of the subsystem reliabilities will not be equal 

to the mission reliability. 

The subsystem reliabilities become, 

Phase 1 

Phase 2 

Phase 3 

(3.3) 

where Pc is the conditional reliability of component c in phase j: 
j 
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The product of the subsystem reliabilities would be less than the true system 

reliability, RM1SS = PA.PA2PA3PB.PB2PB3PC.PC2PC3 which is found by the simplest form of 

Figure 3.5, shown in Figure 3.6. 

Figure 3.6 Simplest Form of Figure 3.5 

3.2.1.1 Cut Set Cancellation 

Further simplification of the phase configurations may be made pnor to the 

transformation of the multi-phased mission to an equivalent single phase mission. 

This is achieved by the technique of cut set cancellation. 

If minimal cut sets of an earlier phase contain any minimal cut sets from a later phase, 

they may be removed from the earlier phase. Since mission success is the only 

consideration, there is no need to repeat such events as later phases take into account 

the failure of components in all phases up to the inspected phase. 

Phase fault trees for the example given in Figure 3.4 can be constructed and are shown 

in Figure 3.7. 

Figure 3.7 Phase Fault Tree Representation of Figure 3.4 

The minimal cut sets for each phase are: 

Phase 1 

{A,B,C} 

Phase 2 

{A} 

{B,C} 
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Minimal cut set {A,B,C} can be removed from phase 1 as A failing in phase 1 means 

it will still be failed in phase 2 which will fail the mission and make the states of 

components Band C irrelevant. In the same way, the phase 2 minimal cut sets may be 

removed since they contain the single order phase 3 minimal cut sets. The phase 

minimal cut sets become, 

Phase 1 Phase 2 Phase 3 

{A} 
{B} 

{Cl 

Both systems are equivalent and result in the same mission reliability, however the cut 

cancellation technique presents a more simple transformation to a single-phase 

mission. 

In summary, Esary and Ziehms present a suitable method of transforming a multi

phased mission into an equivalent single phased mission to allow the use of existing 

reliability techniques. The cut set cancellation technique presents a more simple 

transformation process. However if minimal cut sets are removed from a phase, it is 

not possible to determine individual phase unreliability or reliability, and calculations 

can only be made for the entire mission. 

3.2.2 Obtaining Bounds for Mission Unreliability 

Mission unreliability is defined as the probability that the system fails to function 

successfully during at least one phase of the mission. An important problem is to 

calculate as efficiently as possible either the exact value or bounds for this parameter. 

The developments by Esary and Ziehms in this area are reviewed by Burdick et al [13] 

with presentation of mission reliability approximation methods. These methods use 

only statistically independent, non-repairable components to find approximation 

techniques that can be applied to systems containing a large number of components. 

The method presented by Esary and Ziehms can be applied to an original fault tree of 

a multi-phased mission assuming zero-duration phase boundaries. However, the 

transformation of each basic event c in phase j into a series of events, Cj •• Cj leads to a 
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large increase in the number of cut sets of the mission. The exact unreliability 

becomes difficult to calculate and may become costly. Methods have been developed 

to estimate the system unreliability without the use of basic event transformation. Four 

of the most accurate and conservative were found to be: 

• Inclusion-Exclusion Expansion of Phase Unreliabilities 

The minimal cut sets are obtained for each phase of the original model. The 

unreliability of phase}, Qj' is calculated using the inclusion-exclusion 

expansion of the phase} minimal cut sets (equation (2.3)) using unconditional 

basic event unreliabilities. The conditional basic event c reliability Pc. was 
J 

obtained in equation (3.3), and the unconditional basic event c reliability Pc 
) 

is derived from this in equation (3.4). 

j 

Pc} = P[xc(tj ) = 0] = TIpc; for }=l, .. ,m 
i:\ 

(3.4) 

An approximation for mission reliability, QIN-EX' can be expressed by the 

product of the individual phase reliabilities in equation (3.5). 

m 

QIN-EX = TI Rj 
j:\ 

(3.5) 

This is usually expressed as an approximation of mission unreliability, QIN-EX' 

and is obtained by the sum of the individual phase unreliabilities in equation 

(3.6). 

m 

QIN-EX ~LQj (3.6) 
j:\ 

This approximation technique may also be applied after the cut set cancellation 

method has been implemented to give another approximation of the mission 

unreliability, QIN-EX(CC)' The result will generally be less than with no cut set 

cancellations due to the fact that there are fewer cut sets in each phase. 
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• Minimal Cut Set Bound 

The minimal cut sets are obtained from the original logic model. The 

probability of failure of cut set Cj in phase}, qc' is calculated using equation 
IJ 

(3.7). 

NC;J 

qC
iJ 

= IT p{c} 
c;l 

(3.7) 

where c occurrence of basic event c in cut set Cj of phase} 

Nc number of basic events in minimal cut set Cj of phase} 
IJ 

The reliability of phase} can then be estimated using the minimal cut bound in 

equation (3.8). 

Nmc'J 

R. = TIpc 
J IJ 

j;1 

(3.8) 

where Nmcs . number of minimal cut sets in phase} 
J 

Pc is the probability of success of cut set Cj in phase} 
IJ 

The approximation for the reliability of the mission using the minimal cut set 

bound, QMCB' can then be obtained in the same way as for equation (3.5). This 

method may again be used after applying the cut set cancellation technique to 

give another approximation ofthe mission unreliability, QMCB(CC)' 

The four mission unre1iability approximation methods are ordered in terms of their 

accuracy in equation (3.9). 

(3.9) 

Since the outcome of previous phases in each calculation is not accounted for, the 

bounds are only estimates. However such approximation techniques can be useful in 

finding estimations for systems containing a large number of components where an 

exact solution would be costly or difficult to calculate. 
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A further technique is presented by Veatch [14] to approximate the unreliability of a 

phased mission by constructing a lower bound structure function with application to 

periodic systems. 

3.2.3 Redundancy 

The reliability of a system can be improved by adding redundant elements that are not 

required for the successful operation of the system. The number of redundant elements 

for a system whose parameters do not vary with time are determined at the start of the 

mission time. In the case of phased missions, failure rates and number of redundancies 

can vary with time and it becomes more difficult to calculate the exact mission 

reliability. This problem is identified and an optimisation solution is presented by 

Vujosevic and Meade [15]. 

The redundancy issue is also considered by Lee and Hong [16] with derivation of an 

expression for system reliability. A system is presented whereby the failure rate of a 

component and added redundancy levels are subject to change during the period of the 

mission. However this method concentrates on only a simple series and parallel 

arrangement and performs calculations based on the difference in the number of 

working components at the start and end of each phase. This technique does not 

demonstrate the general case of the combination of series and parallel systems as 

represented by fault trees. 

3.2.4 Expected Number of Failures 

The expected number of system failures in a single phase mission can be obtained 

using the method presented in Sections 2.2.3.2 and 2.2.3.3. When considering a multi

phased mission, this parameter becomes more difficult to calculate. The boundary 

between two phases involves a change in failure logic model. This phase transition 

may cause the system to fail without the occurrence of a component failure. Montague 

and Fussell [17] present a method to determine the expected number of system 

failures for a phased-mission system. 

The standard method for obtaining the top event frequency of a system is given in 

equation (2.8). This is the contribution from the occurrence of at least one minimal cut 
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set minus the contribution of the occurrence of minimal cut sets when the system has 

already failed. The expected number of system failures is then obtained by the integral 

ofthis parameter over a specified time interval in equation (2.13). 

This principle is adapted for use in phased-mission systems by Montague and Fussell. 

The expected number of failures for a phased-mission system with m phases may be 

expressed in equation (3.10). 

m m-I 

WMISS(to,tm) = L r Wj(t)dt + Lboundary condition W/t) 
j=1 tj _1 j=1 

(3.10) 

The first term of equation (3.10) represents the number of failures during each phase j 

of the mission, using a separate integral term to define a new function in each phase j. 

Montague and Fussell state that this function may be estimated by application of the 

inclusion-exclusion expansion to the occurrence of phase j cut sets to approximate the 

rate ofphasej failure, wj(t). 

The second term accounts for the occurrence of the top event when a boundary is 

crossed. This allows for the possibility of failure when entering a new phase due to the 

basic events that exist from the previous phase. The boundary condition may be 

expressed as the expected number of system failures in an arbitrary small time 

interval, Ilt, in equation (3.11). 

~(tj) = (0 failures in M).P[S(tj - ~)r.S(tj + ~)]+(1 failure in M).P[S(tj - ~)r.S(tj + ~)]+ .... 
(3.11) 

where S(t j ) top event does not exist at time Ij 

S (t j ) top event exists at time Ij 

Taking the limit of equation (3.11) as M ~ 0, the expected number of failures across 

the phase j boundary becomes as given in equation (3.12). 

(3.12) 

where S(tjJ top event does not exist at the instant before the transition 

S(tjJ top event exists at the instant after the transition 
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This boundary expression is the probability that the system is in the working state 

before the transition and is in the failed state after the transition. Since the transition is 

assumed to be instantaneous, it does not include the possibility that a basic event has 

changed state during the transition. Equation (3.12) may be expanded to represent 

every possible combination of a minimal path set existing before the phase boundary 

and a minimal cut set occurring due to the phase transition, and is summarised in 

equation (3.13). 

-
Top event does not exist at tj _ S(tj_) = Dlj_1 

(tjJuD2j_1 
(tjJu ... UDNmp'j_l (tjJ 

Top event exists at tj+ S(tj.J = Cl (tj.J U C2 . (tj.J u ... U CN (tj.J 
j j mcsj 

Path set I ofphasej-l exists at t = t.i-

Cut set k of phase j exists at t = t.i+ 

N 
mpSj_l 

Number of minimal path sets in phasej-l 

Then, 

S(tjJnS(tjJ=[~j_l (tjJuD2j_1 
(tjJu ... UDNmp'j_l (tjJ]n[Gj (tjJuG;j (tjJU ... UCNmcsj (tj+)] 

= [Dlj_1 
(tjJnGj (tj+)]u[Dlj_1 

(tjJnC2j (tjJ] ... u[DIJ_1 
(tjJnCNmc./tjJ] 

... [DNmpsj_t (tjJnG/tj+)]u ... [DNmp'J_t (tjJnCNmc'J (tjJ] 

(3.13) 

Each path set and cut set pair can be further expanded in terms of basic events. If a 

basic event is common and complementary between the pair, the intersection becomes 

zero since it'is not possible for an event to change state during the phase transition. 

The probability of each combination is then calculated by the product of the collective 

component availabilities or unavailabilities at the time of transition. Since this can be 

computationally intensive, approximation methods are presented to estimate the 

expected number of failures across each phase boundary. 

The method presented by Montague and Fussell to obtain the expected number of 

failures in equation (3.10) successfully identifies the problems faced across a phase 

boundary. The first term in this equation represents the expected number of failures 

during each phase of the mission, however this cannot be derived using a simple 

inclusion-exclusion expansion of the occurrence of the phase cut sets since the 
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outcome of previous phases is not accounted for. The second term of equation (3.10) 

represents the expected number of failures across each phase boundary, and is 

obtained using equation (3.13). However, the combination of all path and cut sets at 

each phase transition will be computationally time consuming, and approximation 

techniques would not generate an accurate result. In general, this method does not 

produce an accurate calculation of the expected number of mission failures since for 

each phase calculation the outcome of earlier phases is not included. 

3.2.5 Laws of Boolean Phase Algebra 

Previous methods have considered the performance of a component c as a separate 

event in different phases, with the system reliability parameters obtained as a product 

of the event probabilities. A set of Boolean algebraic laws have been developed by 

Dazhi and Xiaozhong [18] to represent combinations of component behaviour. A 

basic event A may be represented in the following way: 

Aj Basic event A occurs in phase}, i.e. failure occurs in one phase. 

A(j) Basic event A exists in phase}, i.e. failure could have occurred 

in phases l.J. 

If phases} and k are taken in the order of};::: k;::: 1, the intersection and union concept 

rules given in equations (3.14), (3.15), and (3.16) can be applied to phased mission 

systems: 

j 

= ~k) UA; (3.14) 
i=k+l 

=~k) (3.15) 
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= ~j) (3.16) 

For the system to be failed in phase j, X(j)' phase failure could have occurred in any 

phase up to and including phasej. This can be expressed in equation (3.17). 

where Xi is the event that the system fails first in phase i 

NmsCj 

. Xi = U C(i)j , and C(i)j is the existence of cut set Ci in phase j 
i;\ 

The mission unreliability can then be expressed in equation (3.18). 

(3.17) 

(3.18) 

Equation (3.18) automatically implements the cut set cancellation technique presented 

in Section 3.2.1.1. The Boolean laws described above are applied to the solution of 

accident sequences by Dazhi and Xiaozhong. Further Boolean laws are presented by 

Kohda et al [19] using the minimal cut sets and path sets of each phase to eliminate 

the requirement of converting the mission into a single phase system. 

The introduction of Boolean laws to the solution of phased missions overcomes the 

false assumption made in Esary and Ziehms method that the performance of a 

component through different phases is separate. The algebraic combination of the 

separate phase events implements the cut set cancellation method and presents a 

correct representation of the events that cause phase or mission failure. 

Somani and Trivedi [20] present further methods for phased mission system reliability 

analysis based on Boolean algebraic methods of fault trees. Rather than manipulating 
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a multi-phased mission into an equivalent single phase mission where combination 

techniques encounter the problem of multiple repeated events, the phase fault trees are 

solved individually. However, this requires that information must be carried from 

phase to phase since phases are not independent. 

This proposed method is based on the concept of cumulative distribution functions 

with a mass at the origin. A random variable X has a cumulative distribution function 

with time t given by equation (3.19). 

(3.19) 

where TJ is the time at the start ofthe phase 

This function has a mass at the origin given by P(X = 0) = (1- e-'u;) which is the 

probability that the component exists in the failed state at the start of the phase, and 

e -AT. (1- e -At) represents the continuous part of the function which is the failure 

probability distribution of the component in the current phase. Failure probabilities of 

individual components may be represented using such distribution functions. 

Somani and Trivedi consider the simple situation where each phase has the same 

system configuration and failure criteria. The only difference between phases is the 

component failure rates. Three situations are considered - phase-dependent failure 

rates, age-dependent failure rates, and random phase durations. Further considerations 

are made for situations where the system configuration varies between the phases. 

Reasons for this may include the change of operational level requirements of 

components, or addition or removal of redundant modules during operation. It is 

possible that a combination of component failures in a phase will not cause the phase 

to fail, but on transition to a later phase may cause an instant failure to occur. Four 

possible scenarios across a phase boundary are considered, 

1. A combination of component failures does not lead to system failure in either 

phase} or}+ 1. 

2. A combination of component failures leads to system failure in both phase} 

andj+1. 
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3. A combination of component failures does not lead to system failure in phasej 

but leads to system failure in phase j+ 1. 

4. A combination of component failures leads to system failure in phase j but not 

in phasej+ 1. 

The failure criteria do not change with respect to the failure combination under 

consideration between phases for the first two situations. The failure combinations in 

the third situation can also be treated as failure in both phases (as failure will occur at 

the transition point). The mission reliability for all three cases are treated in the same 

way as for a mission where all phase configurations are identical by solution of the 

fault tree for the final phase. 

A method is presented to solve the fourth situation to account for the probability of 

occurrence of failure combinations in phase j. The unreliability of a system can be 

divided into two parts - common failure combinations, and phase failure 

combinations. 

Common Failure Combinations 

This involves the probability of the component failure combinations that are 

common to all phases. If a combination leads to failure in phase j+ 1 it is also 

considered to be a failure combination of phase j. The unreliability due to such 

common failure combinations is solved using the same method as for a 

mission with phase independent failure criteria, the failure distribution for each 

component is evaluated and the fault tree for the last phase is solved. 

Phase Failure combinations 

This involves the probability of failures specific to individual phases - the 

probability of occurrence of component combinations that cause failure in 

phase j but in no subsequent phases. Phase failure combinations for phase j 

(PFCj), that are treated as success combinations for all the subsequent phases 

are given by equation (3.20). 

(3.20) 

where Ej represents Boolean expression for the failure combinations of phase j 
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This can be simplified in equation (3.21). 

(3.21) 

The phase failure combinations for phase j require the same notation as for the Esary 

and Ziehms' method where a separate symbol (a) is assigned to denote the 

occurrence of an event in each phase j. A new notation is defined, where A j 

represents the failure of component A in any phase up to and including phase j, 

and A j represents the success of component A from the start of the mission to the end 

ofphasej, 

Since the phase failure combinations expression represents both component failure 

and success events, simplification will merge combinations of both terms. Algebraic 

rules are required to simplify such success and failure combinations. If i andj are two 

phases in a mission where i<j, the Boolean laws can be summarised in equations 

(3.22). 

1. Ai·Aj ~Aj 

2. Ai·Aj ~Ai 

3. Ai .Aj ~O 

- -
4. Ai+Aj ~Ai (3.22) 

5. 4 +Aj ~Aj 

6. Ai+Aj ~1 

7. 4 + A j ~ no physical meaning 

The phased mission Boolean laws presented in equation (3.22) show a deficiency. The 

sixth law represents the event that component A succeeds up to and including phase i 

OR component A fails in any phase up to and including phase j. By the Boolean law 

of complementation, an event or its complement is equal to 1, implying the expression 
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Aj + Aj ~ 1. Although this sixth law for phased mission algebra is correct, the 

combination technique could be misleading. 

This method also becomes complex when combining terms that cannot be simplified, 

for example Aj . Aj . Somani and Trivedi express this as the event that component A is 

operational until the end of phase i, and then fails sometime between the end of phase 

i and the end ofphasej. This is not consistent with the original definition of Aj as the 

event that component A fails in any phase up to and including phase j. The probability 

ofthis combination of events is obtained in equation (3.23). 

P(Aj · Aj = 1) = E[Aj · Aj] = E[Aj · (1- A)] 

=E[AJ-E[(Aj . A)] = P(Aj =l)-P(Aj =1) (3.23) 

It can be seen from equation (3.23) that the probability of event Aj . Aj is the same as 

the probability that component A fails between the end of phase i and the end of phase 

j. It would be useful if this term could be directly obtained without the inclusion of the 

component success probabilities. 

The system unreliability is obtained by computing the phase failure combinations for 

all phases and is given in equation (3.24). 

m-I 

QMISS=P(Em)+ LP(PFC) (3.24) 
j=1 

The unreliability at the end of each phasej can be expressed in equation (3.25). 

j 

Qj = "LP(PFC;) (3.25) 
;=1 

where PFC;,j is the PFC of phase i (i<j), assumingj is the last phase 

PFC1 · = PFC.. 1 nE. J IJ- J 

At a phase transition, a jump in unreliability may be seen. This may be due to more 

stringent failure criteria in a later phase, and is described as a latent failure. 
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The method presented by Somani and Trivedi successfully identifies the possible 

situations that can occur across a phase boundary. The Boolean laws defined in 

equations (3.22) allow further possible combinations of component failure and success 

events in a phased mission system, however it can be seen that there are representation 

problems in the rules. In all previous methods, the event of phase failure would cause 

failure of the entire mission. This assumption means that it is not possible for the 

mission to continue after the failure of a phase, and so a phase j failure combination 

could not become a successful combination in phase j+ 1. Somani and Trivedi's 

method allows the phases of a mission to occur in any order, and so this situation 

becomes possible. The calculation of the system performance parameters involves the 

combination of the current phase failure combinations with the success combinations 

for all subsequent phases. This leads to lengthy calculations for situations where there 

are numerous phases or cut sets in each phase. 

This work is extended by Ma and Trivedi [21] who obtain the mission unreliability in 

the form of the sum of disjoint products using a computational algorithm and 

implement the algorithm using the SHARPE software package. 

3.2.6 Binary Decision Diagrams 

A single phase system can easily be represented in BDD form using the method 

demonstrated in Section 2.3. When considering the possibility of multiple phases, the 

state of a component in a phase is dependent on the performance of the component 

through all previous phases, and the BDD technique becomes more complex. 

Trivedi et al [22] present a method whereby this binary decision diagram technique 

can be applied to missions of multiple phases. The behaviour of a component in a 

phase is represented by the performance of the component up to and including the 

phase in question using a series of sub-components as described in Section 3.2.1. 

The failure function for component c in phase j, q c/t), is the probability that 

component c is failed in phasej, and is expressed in equation (3.26). 
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Since all cp i = 1,2, .. . ,j are in series, 

(3.26) 

where t is measured from the start ofphasej, 0 ~ t ~ ~ 

The first term of equation (3.26) represents the probability that the component has 

already failed during the previous 1..)-1 phases. The second term represents the 

failure probability distribution of the component in phasej. 

In the same way as for a single phase mission, an ordering sequence is required to 

enable the construction of the BDD. Trivedi et al present two possible ordering 

schemes, where each component C is expanded into its series of sub-components in 

the following ways: 

• Forwards Phase-Dependent Operation (PDO): The variables are ordered in the 

same pattern as the phase order, Cl, C2, •.• , Cm. 

• Backwards Phase-Dependent Operation (PDO): The variables are ordered in 

the reverse pattern ofthe phase order, Cm, Cm-I. •.. , Cl· 

The ite structure of the performance of component C in two phases i and j can be 

represented by E j and Ej respectively, 

Ej = ite(cj, G], G2 ) 

Ej = ite( Cj, HI. H2 ) 

The logic operation between Ej and Ej can be represented by BDD manipulations as: 

Forwards PDO : ite(cj, G], G2)ffi ite(Cj, HI, H2) = ite(cj, GI E9 HI, G2 E9 Ej ) 

Backwards PDO : ite(cj, GI, G2 ) E9 ite(Cj, HI, H2 ) = ite(Cj, Ej E9 HI, G2 ffi H 2) 

The ordering of variables is very important to the size of a BDD. Methods such as 

heuristics may be implemented to select the most appropriate or efficient ordering 

sequence of variables in the BDD. Once the components are ordered, each component 
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is replaced by a series of sub-components in either a forwards or backwards phase 

ordering pattern. If backwards PDO is used, generally a smaller BDD is produced 

using Trivedi's approach and common component cancellation is achieved without 

requiring additional operations. 

An algorithm is presented to construct a BDD for a phased mission system: 

1. Obtain the failure function for each variable using equation (3.26). 

2. Order the mission components using a heuristic method. 

3. Generate the BDD for each phase using logic equations. 

4. Use phase algebra and the backwards PDO to combine each phase 

. BDD using OR logic to obtain a mission BDD. 

5. Calculate the unreliability of the PMS from the mission BDD. 

In a backwards PDO BDD, the '0' branches (non-occurrence of the basic events) 

always links two variables that belong to different components. However, the '1' 

branches (occurrence ofthe basic events) can connect nodes in two ways: 

1. The' 1 ' branch links variables of different components. 

2. The' 1 ' branch links variables of the same component. 

Considering a BDD for function G, 

Since the '0' branch always links events of different components, G2 will not 

represent any event of component c. This implies that Cj and G2 are always statistically 

independent events and so, 

P( c j • G2 = 1) = P( C j = 1) . P( G2 = 1) 

In the case where the '1' branch links nodes from different components, G 1 also does 

not represent any variable of c, and the same method can be applied as for a single 

phase system shown in equation (3.27). 
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P(G= l)=E[G] =E[cj ·GI +Cj ·G2 ] 

= E[c
j

] • E[GI] + E[cj l' E[G2] 

= E[GI] + (1 - E[ cj ]) • (E[G2] - E[GI]) 

= P(GI = 1) + (1 - P( C
j 

= 1)) . (P(G2 = 1) - P(GI = 1)) (3.27) 

For a '1' branch that links two nodes belonging to the same component, GI will also 

be dependent on a variable of c. Since the two events are not independent, the 

following structures apply: 

Also, P(G = 1) = E[G] = E[ c j • GI + c j • G2 ] 

= E[ C j • ( c
j 

• HI + c j • H2) + E[ C j ] . E[ G2] 

=E[c
j

' Cj'HI+ cj ' cj 'H2)+E[cj ] 'E[G2] 

Using the rules of phase algebra in equations (3.22), a branch linking two nodes 

belonging to the same component is given in equation (3.28). 

P(G = 1) = E[c
j 
·H

I 
+c j ·H2 ] - E[cj ]' E[H2] + E[c j ] • E[G2] 

= E[GI] + E[c j ] • (E[G2] - E[H2]) 

= P(GI = 1) + (1- P( cj = 1)) . (P(G2 = 1) - P(H2 = 1)) (3.28) 

Depending on whether the' 1 ' branch links events of different components or the same 

component, equations (3.27) or (3.28) respectively would be applied. 

Trivedi et al also identify the possibility of latent failures across phase boundaries. 

The phase BDDs can be used to obtain the system unre1iability at the instant before 

and after the phase boundary to calculate the unreliability jump across the phase 

transition. 

The limitations of Trivedi et aI's approach are identified by Xing and Dugan [23]. The 

developed phase dependent operation will only generate the correct phased mission 

system binary decision diagram ifthe following rules are adhered to: 
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1. Orderings implemented in the generation of each phase BDD must be consistent 

or the same for all phases. 

2. Variables belonging to the same component in different phases must stay together 

in the ordering scheme. This is achieved by expanding each component into sub

component form after the ordering of components has been defined using 

heuristics. 

If an arbitrary ordering scheme is implemented, the phase dependent operation is not 

complete enough to combine the single phase BDDs into an equivalent mission BDD. 

The problem with the method is that a BDD with backwards PDO may represent an 

impossible situation, for example the success of an event in a later phase ordered 

before the failure of the same event in an earlier phase. An example mission to 

demonstrate this is shown in Figure 3.8. 

Figure 3.8 BDD Ordering Pattern 

If A is successful in phase 2, it is not possible for it to have failed in phase 1. Node 

combinations that represent such impossibilities can be removed from the BDD. The 

incoming branch to each impossible node is then passed to the node on its right '0' 

son, since this implies for the component to work in a later phase, it must have worked 

through earlier phases. Any nodes below the left son are also removed, along with any 

redundant nodes. The example in Figure 3.8 becomes as shown in Figure 3.9. 

Figure 3.9 BDD of Figure 3.8 with Impossible Nodes Removed 
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A similar method must be applied to remove impossible nodes using the forwards 

ordering scheme. 

If all impossible node combinations are removed from the BDD, any arbitrary 

ordering scheme may be used to obtain the final phased mission BDD. 

The BDD method presented by Trivedi et al demonstrates an efficient representation 

of the failure logic of a phased mission. Xing and Dugan identify some limitations in 

this method by the way in which the variables are ordered. A further deficiency is that 

each phase j BDD is constructed from only the phase j failure conditions. Although 

each phase j basic event is expanded into its series of sub-events, the outcome of 

previous phases is not accounted for and so the phase BDDs will be incorrect. 

3.2.7 Imperfect Coverage 

Xing and Dugan [24], [25] consider the possibility of imperfect coverage in phased 

mission analysis. This means that a single point failure could cause system failure 

despite the fault-tolerant mechanisms in place. A system can exhibit one of two failure 

modes: covered failure which is local to the affected component and does not lead to 

system failure, and uncovered failure which causes immediate system failure. A 

generalized phased-mission technique is proposed to take these factors into account. 

3.2.8 Markov Methods 

An alternative to combinatorial techniques is by application of Markov methods. 

There are two general approaches to the solution of multi-phased missions using 

Markov methods; treating each phase individually, or analysing the entire mission 

with a single model. If the phases of the mission are treated separately, each 

individual Markov model must be solved separately and linked by a state probability 

vector. The alternative is to solve a single large model with state space at least equal 

to the size of the sum of the components in each individual phase model. This 

problem is considered by Dugan [26] who presents a method to construct a single 

continuous-time discrete-space Markov model for phased mission systems where the 

state space is the size of the union of the components in each phase model. The 
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Markov model is constructed from the set of phase fault trees, and can be used to 

calculate many reliability measures. 

The example in Figure 3.4 may be examined with the following assumptions: 

• Failure rates for the components are constant for the duration of the phase, 

but can be different for each phase. 

• The system fails due to failure in any phase of the mission. 

• Phase change times are deterministic. 

Problems are encountered using this Markov model when a set of components is not 

consistent between phases, or when components are not subject to failure in a phase, 

since the system states do not match. The phase fault trees of a mission represent the 

failure conditions of the system and can be converted to Markov chains for further 

analysis. The phase fault trees in Figure 3.7 can be converted to separate Markov 

models with system states representing the states of components A, B, and C in the 

form {A,B,C} with 0 as working and 1 as failed in Figure 3.10. 

Phase 1 Phase 2 Phase 3 

Figure 3.10 Phase Markov Models for Figure 3.4 

To combine the three separate Markov models into a single mission Markov model, a 

multiplicative factor ([>i is appended to each phase i transition. The combined Markov 

chain has a state space defined by the union of the individual phase Markov models, 

and transitions that are defined by the sum of corresponding phase transitions, and is 

given in Figure 3.11. 
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Figure 3.11 Combined Mission Markov Model 

This combined model may be solved using a standard numerical technique. For 

solutions to phase i (tj-l :s t :s tj), Wj is set to one, and all other ~, i.:4 are set to zero 

thus removing any transition that does not belong to the current phase. The state space 

does not change and rather than transforming the state probabilities, the state 

transitions change as the phases change. 

In the case that the components are not the same in each phase, a full Markov state 

listing is formed by the expansion of all components that contribute at some point 

during the mission. For each source state in the combined Markov model, the 

destination state corresponding to the failure of a component can be different in 

different phases, and so each component must be considered several times for each 

phase of the mission~ A state in one phase that causes the system to fail is not 

necessarily a failure state of previous phases. However, if a system failure state is 

reached in phase i, it becomes absorbing for all later phases. The system states are 

then defined as 'operational for all phases' or 'failed in phase i', where phase i is the 

first phase in which the system fails. Dugan also considers this method for systems 

with imperfect coverage. 

The final combined mission Markov model results in a set of differential equations 

which must be solved numerically using methods such as Runge-Kutta. The initial 

conditions for the first phase are known, and the failure and success probability of 

each phase can be obtained using the Markov state probabilities at the end of the 

phase. The final state probability vector of each phase is passed directly to the 

following phase for further analysis. 
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This approach provides an efficient representation of the multi-phased mission. The 

construction of a single model eliminates the problems faced across a phase boundary 

if the state-space of the phases is not the same. However, the single model has a state 

space defined by all components required in the mission. In some cases a mission may 

require a large number of components that are not necessarily required through all 

phases. The resulting state space of the single model will become large and the set of 

differential equations will also increase and become very complex to solve. It is also 

not correct to assume that if a system failure state is reached in phase i, it becomes 

absorbing for all later phases. A state may be possible and reachable in a later phase 

even when it was an absorbing state in an earlier phase. The possibility of transition 

failures is not identified in this model. 

3.2.9 Modular Solution of Missions with Static and Dynamic Phases 

All of the methods discussed so far have applied to only static phases, where AND 

and OR gates are used to represent the phase failure configuration. In some cases, 

failure will only occur if components fail in a specific order, and dynamic gates are 

required. The possibility of static and dynamic phases in a multi-phased mission is 

considered by Ou and Dugan [27]. A modular solution is presented to combine BDD 

solution techniques for static modules with Markov methods for dynamic modules. 

The main deficiency of this method is that the modules must represent an independent 

subtree throughout all phases. In many cases, the configuration of a phased mission 

system will vary considerably across phases, and it will not be possible to identify 

distinct modules through the mission. Each module is solved using the same technique 

throughout the phases, and so the methods already identified can be implemented. 

3.2.10 Summary 

Much research has been employed into the analysis of non-repairable phased mission 

systems. The main features of the methods presented are: 

• The expansion of each basic event into a series of sub-events representing the 

separate performance of a component in each phase of the mission. 
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• Transformation of a multi-phased mission into an equivalent single phase 

mission to allow existing fault tree techniques to be implemented. 

• Cut set cancellation for cut sets of an earlier phase that contain cut sets of a 

later phase. 

• Parameter of interest is mISSIOn success, either by full calculation or 

appropriate approximation techniques using negative exponential component 

failure distributions. 

• Phase changes are assumed to be instantaneous, and failure rates are assumed 

to be constant within each phase. 

• Boolean algebra phase laws can be applied to combine component success and 

failure events through multiple phases. 

• Binary decision diagrams can be applied to provide an alternative 

representation of the top event of phase and mission failure with appropriate 

ordering schemes. 

• Markov methods represent the dynamic nature of component failures. 

However, it is also seen that the methods presented result in some deficiencies. The 

cut set cancellation method by Esary and Ziehms allows analysis only for the total 

mission rather than for individual phases. Also the concentration of research into 

mission success does not identify the causes of individual phase failure. The BDD 

approach is seen to provide an efficient representation of mission failure and success, 

but does not take account of the outcome of previous phases when representing each 

individual phase BDD. It would be useful to be able to identify the causes and 

quantify each phase failure with account for previous phase successes, as well as for 

the entire mission. 

The Markov model suffers a state explosion problem as the number of components 

and phases in the mission increases. As components are not necessarily required 

through all phases of the mission, it would become time consuming to expand all 

possible states for every component in the mission, and the single Markov model 

presented would become very complex. 
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A simple combinatorial method is required to allow straightforward qualification and 

quantification of both phase and mission reliability to account for the dependency 

between phases. 

3.3 Repairable Systems 

The methods presented so far have only been appropriate for non-repairable systems. 

In systems on-board an aircraft or spacecraft it would be very difficult to perform a 

repair whilst carrying out a mission, and so these methods are suitable for such system 

analysis. However, in many practical situations it will be possible for maintenance to 

be performed on a system, and the change in requirements between phases of a multi

phased mission leads to the possibility of component repair. Methods presented for 

analysis of repairable multi-phased missions are discussed in the following sections. 

3.3.1 Combinatorial Approaches 

An extension of the work by Trivedi and Somani [20] is presented usmg 

combinatorial approaches for the solution of repairable components in a multi-phased 

mission by Somani [28]. However, this approach is very limited since a component 

can only be repaired if it is not required in a particular phase. Whilst a component is 

required for successful operation of a phase, repair cannot be initiated. 

If c is a component whose failure and repair rates in phase p are denoted by Ae and 
p 

/le ' the failure and repair times are assumed to follow an exponential distribution. 
p 

The definitions in equations (3.29) are made: 

(3.29) 

where t is the time after the system entered phase p. 

Four possible cases must be considered for the component in a phase - the component 

may begin in the working or failed state, and may end in either the working or failed 

state. Using notation whereby the first suffix is the name of the component, the second 
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represents the state of the component at the start of the phase (u=up, f =failed), the 

third represents the state ofthe component at the end of the phase and the fourth is the 

phase number, formulae are developed. 

If the component c is up at the start of the phase, the probability that it will be in the 

working or failed state at the end of the phase is given by: 

Pc (t)=ac (t)+Pc *(1-ac (t» 
uup p p p 

Pc (t)=(1-ac (t»*(1-Pc) ufp p p 

If the component c is failed at the start of the phase, the probability that it will be in 

the working or failed state at the end of the phase is given by: 

Pc (t)=~c *(I-ac (t» fup p p Pc (t) =1-~c *(I-ac (t» 
~ p p 

If the probability that component c is up at the start of a phase is represented by Pc' ubp 

and down at the start of a phase is represented by Pc then the state of the component Jbp 

after time t has elapsed may be represented by equations (3.30). 

~uep (t) = PXubp * PCuup (t) + PCJbp * PCfUP (t) 

(3.30) 

~fep (t) = PCubP * PcuJp (t) + PCJbp * PcJJP (t) 

The main deficiency of this approach is that the reparability is not considered for all 

components, and is only applicable to the idle components in a phase. A method is 

required to model the situation where any components in a phase can be repaired. 

Another combinatorial approach is presented by Vaurio [29] who considers 

calculations for the system unavailability and failure intensity for each phase of the 

mission separately. The unavailability and failure intensity for a component c that is 

known to be working at the start of the mission is obtained using Laplace transforms 

and given in equations (3.31) and (3.32) respectively. 
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(3.31) 

(3.32) 

This method does not model the dependencies that arise in repairable systems and so 

the component unavailability is only an approximation. The unavailability function for 

phase j, Qj, is obtained for each phase interval using the phase specific fault tree, 

where t E (t j-1 ,t j ). The system failure intensity in each phase and expected number of 

phase failures is then calculated using equations (3.33). 

N, 8Qj(t) 
~ lVi(t) 

i=l oqi 
(3.33) 

i initiating event 

At each phase boundary, a joint fault tree is constructed to represent the top event of 

phase j failure (.0) AND phase j+l failure (0+1), Zj nZj +1 • The probability of 

occurrence of this top event is then calculated using the basic event probabilities at 

t=lj. The probability of system failure at the phase transition, !l. j' can then be 

represented by equation (3.34). 

(3.34) 

The expected number of mission failures is then obtained by equation (3.35). 

m-I m 

WMISS(O,tm) =!l.o + I!l.j + I~ (3.35) 
j=1 j=1 

It can easily be seen that this method does not model the dependencies that arise in the 

situation of repairable systems. The phase unavailability and failure intensities will be 

approximations of the exact values, and thus not very useful in the solution of many 

reliability problems. Also the phase calculations involved do not include the outcome 

of previous phases. 
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3.3.2 Markov Methods 

The consideration of repairable phases in a multi-phased mission means that the phase 

algebra can no longer be applied. In such circumstances, combinatorial methods may 

not be used as only approximations could be calculated, and so other techniques must 

be employed .. The Markov approach is a very useful technique for the solution of 

repairable systems, and much research has been undertaken in this area. Many 

applications of the Markov approach in phased mission systems have been considered. 

The reliability of a mission cannot be obtained by the simple multiplication of the 

individual phase reliabilities since at the phase change times, for the system to 

function, it must occupy a state that allows both of the involved phases to be 

successful. Markov methods offer a means of overcoming this. 

3.3.2.1 Homogeneous Markov Model 

The homogeneous property of a Markov model means that the state transitions are not 

dependent on time, and are instead governed by a constant rate. Certain assumptions 

must be made: 

• The system is comprised of elements that may be good or bad with 

independently exponentially distributed failure and repair times. 

• Repair of a component restores it to the perfect condition. 

• Each phase may have more than one purpose. However if a system fails in a 

phase, the mission will fail. 

• Transition between successive phases occurs instantaneously. 

Early investigations into the use of Markov methods to solve phased mISSIOn 

problems were carried out by Clarotti et al [30]. 

Consider the example in Figure 3.12, 
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Phase 1 Phase 2 Phase 3 

Figure 3.12 Simple Three-Phased Mission 

There are eight possible states ofthe system, S} .. S8, defined in terms ofthe states of its 

components. The states are defined in Table 3.1. 

State A B C 

8 1 0 0 0 
82 1 0 0 
83 0 1 0 
84 1 1 0 
8s 0 0 1 

86 1 0 1 

8 7 0 1 1 

88 1 1 1 

where o working 

1 failed 

Table 3.1 System States of Component Combinations 

Considering each ofthe three phases: 

• Phase 1 (0, t}) 

The probability vector expresses the likelihood that the system resides in each of the 

eight possible states. The mission begins with all components in the working state, 

and so the initial condition probability vector, P(O), can be represented by equation 

(3.36). 

P(O) = [1 0000000] (3.36) 
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For the system to function successfully during the first phase, at least one component 

must be in the working state (Figure 3.12). If all three components reside in the failed 

state at the same time, the phase will fail. The state representative of this phase failure 

is S8 where no components are functional. 

In matrix form as defined in equation (2.44), the evolution of phase 1 may be 

represented by matrix equations (3.37). 

· T T 
Ps..(t) PsI(t) - 2:1 AA AB 0 Ae 0 0 0 
· PS2 (t) Ps

2 
(t) VA -2:2 0 AB 0 Ae 0 0 

· PS](t) PS] (t) VB 0 -2:3 AA 0 0 Ae 0 

· Ps
4 
(t) -2:4 PS4 (t) 0 VB VA 0 0 0 Ae 

= (3.37) · Pss (t) 0 0 0 -2:5 AA ~ 0 Pss(t) Ve 

· Ps
6 
(t) 0 Vc 0 0 VA -2:6 0 ~ Ps6 (t) 

· PS] (t) 0 0 Ve 0 VB 0 -2:7 AA 
PSr(t) 
· PSg (t) 0 0 0 0 
PSg(t) 

where: 0 represents an impossible state transition 

represents an absorbing state (no transition is possible out ofthe state) 

L j is the sum of the non-diagonal entries in the lh row 

At the phase change time t1, the system must occupy a successful state for both phases 

1 and 2. For phase 2 success (Figure 3.12), component A must be working along with 

either component B or C. To successfully be able to enter phase 2, the system must 

reside in one of the states representative of this, S1, S3, or S5 in Table 3.1. The 

probability of the system residing in each of these states at t=t1 is represented by 

PSI (t
l

) , ps] (tl)' and PSs (tl) respectively. The probability that the system successfully 

completes the first phase and is able to enter the second phase is given by the sum of 

these probabilities in equation (3.38). 

(3.38) 
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The system will only begin this second phase if it is in one of the states S1, S3, or S5, 

and will evolve from these states at the start of the phase. All other states are 

considered to be absorbing at the phase change time since mission failure would be 

caused. The vector of initial phase 2 system state probabilities has all entries equal to 

zero apart from those corresponding to working states for both phases 1 and 2, 

PSI (tl)' P
S3 

(t1), and P Ss (t l ), and is shown in equation (3.39). 

The matrix equations for solution of phase 2 are given in equation (3.40). 

• T 
Pst(t) 

T 
~Jt) - L1 
~2(t) 

~3(t) VB 

~4 (t) 0 
= 

~s(t) Ve 

~6(t) 0 

~7(t) 0 

~8 (t) 0 

o 

o 
o 

o 
o 

o o 

o 0 

o 0 

Ae 0 

o Ae 

AB 0 

o AB 

-2:7 AA 

(3.39) 

(3.40) 

For the second phase to be considered successful, the system must occupy a working 

state for both phases 2 and 3 at the end of the phase. For successful entry to phase 3 

(Figure 3.12), all components must be working (state S1) at time t2 when it enters the 

third and final phase. The probability that the system has successfully achieved the 

second phase and is able to enter the third and final phase is given in equation (3.41). 

(3.41) 

• Phase 3 (t2, fJ) 

To successfully complete the mission, the system must remain in state S1 with all 

components working for the duration of the phase. The initial phase 3 state probability 

vector is given in equation (3.42). 
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P(t2) = [PSI (t2) 0000000] (3.42) 

The matrix equations for solution of phase 3 are given in equation (3.43). 

· T T PsI(t) PsI(t) - L1 AA AB 0 Ac 0 0 0 · PS2 (t) Ps
2 
(t) -L2 0 AB 0 Ac 0 0 

· Ps) (t) Ps) (t) 0 -L3 AA 0 0 Ac 0 
· Ps

4 
(t) -L4 PS4 (t) 0 0 0 0 Ac 

= (3.43) · Pss (t) 0 0 0 -Ls AA AB 0 PSs (t) 
· Ps

6 
(t) 0 0 0 -L6 0 AB PS6 (t) 

· Ps
7 
(t) 0 0 0 0 -L7 AA Ps7 (t) 

· Pss (t) 0 0 0 0 
Pss(t) 

The success probability of the mission is given by the probability that the system 

resides in state S1 with all components working at the end of the mission (t=t3) in 

equation (3.44) 

(3.44) 

This method identifies that the main difference between the application of a Markov 

model to a single-phase system and a multi-phased system is the need to determine the 

initial conditions at the start of each phase. This initial condition problem is also 

identified by Gray [31] using parallel subgroups with identical components. The 

deficiencies in the method presented by Clarotti et al. are that the entire mission is 

solved using phase Markov models with the same state space. In some cases, the 

number of components required in a mission will be very large, and not all 

components will be required in every phase. The resulting Markov model will become 

very complex and difficult to solve. Also, the phase reliabilities are determined by the 

probability that the system is in a final successful state that is also a success state of 

the subsequent phase. The correct reliability should be obtained by the probability that 

the phase has completed successfully, regardless of the requirements for the following 

phase. The failure upon transition to the following phase will contribute to the 

subsequent phase failure. 
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3.3.2.1.1 Random Phase Durations 

The methods presented so far have assumed that the duration of phases in a multi

phased mission are deterministic and thus defined at the start of the mission. Wells 

and Bryant [32] begin to consider the principle of random durations by application to 

only a single-phase system. Alam and Al-Saggaf [33] consider two approaches to 

determine an appropriate description of the marginal distributions of the mission 

phase change times (MPCTs) when the phase-change times are random variables. 

The first approach investigates a general formula for the joint probability density 

function of the MPCTs, which may be statistically dependent. The second models the 

MPCTs as order statistics of a continuous random variable. The solution to a 

probabilistic MPCT is then similar to the deterministic approach. The example 

demonstrated in Section 3.3.2.1 by Clarotti et al. produced the probability that the 

system completed each phase successfully, and was able to enter the next phase. The 

initial conditions in each phase were given in equations (3.36), (3.39), and (3.42). The 

solutions for probabilistic MPCTs require a modification to be made to these initial 

conditions, shown in equations (3.45). 

P(O) = [ 1 0 0 0 0 0 0 of 

P(T1) = [E{P1(TI)} 0 E{P3(T1)} 0 E{P5(TI)} 0 0 of 

P(T2) = [E{PI(T2)} 0 0 0 0 0 0 of 
(3.45) 

where 1j is the random variable of the mission phase change time for phase j 

The expected probability values are obtained using the probability density functions of 

the random phase change time variables over the phase durations. This method is 

further developed by Kim and Park [34] using the system eigenvalues for solution to 

the differential equations established by the Markov model. 

Random phase durations are also considered by Somani et al [35] using phase Markov 

models. The change in system failure criteria between individual phase Markov 

models requires mapping of the system states from phase i to phase i+ 1. The 
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reliability of the mission is then obtained by the successful system state probabilities 

at the end of the final phase. 

It is possible that for a particular state in a phase, there may not be an equivalent state 

in the immediately succeeding phase. Similarly, there may be numerous system states 

that have the same equivalent state in the next phase. Such situations arise due to the 

operational requirements of the components through the phases. Components may 

only be required in certain phases of the mission, and also redundancy and spares may 

be added into particular phases. The mapping of system states between phases can be 

implemented using the Hybrid Automated Reliability Predictor (HARP) software for 

phased mission systems, and is discussed by Somani et al. 

In summary, the time-homogeneous Markov model provides a suitable method for the 

solution of phased mission systems where each phase has the same state space but 

may have different failure and repair characteristics. The phase models can be 

combined sequentially, and the success initiation of a phase depends on the 

probability that the system resides in a successful state for both phases across the 

transition. The state probability vector at the end of each phase represents the phase 

success or failure probability and is linearly transformed into the initial probability 

vector for the next phase. The state probability vector at the end of the last phase 

represents the mission success or failure probability. The limitation of this approach is 

that the state space is defined by all components required in the mission, and so can be 

susceptible to state explosion problems. It would be useful if only the components 

required in a phase were included in each phase model. 

3.3.2.1.2 State Dependent Phase Sequences 

It is possible that phases may have a pre-determined time duration, but the next phase 

to be performed is chosen depending on the system state. This is discussed by Mura 

and Bondavalli [36] who present a two-level analysis method of a phased mission 

system. The higher level method models the structure of the mission with regards to 

only the pattern of phases, and the lower level method models the configuration of the 

individual phases. 
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The components can be subject to different failure and repair rates in each phase due 

to environmental conditions. Since both remain constant through the phase duration, 

the conditions are homogeneous within each phase. The order of phases in the mission 

can be dynamically adjusted depending on the state of the system at the end of a 

phase. An example system is presented of the case study of a spacecraft with phases: 

Launch (L): Launch of spacecraft. Short phase with stressing 

conditions. 

Hibernation (H): Long dormancy periods for cruIse navigation 

characterised by minimal activity. 

Planet (P): In range of planet. Short phase with stressing 

conditions. 

Scientific Observations (SO): Conducted while cruising in close proximity to space 

objects and represent the goals ofthe mission. 

The upper level model of the spacecraft mission is given in Figure 3.13. The failure of 

any phase causes failure of the mission, but this is not represented in this upper level 

model since only the possible phase sequences need to be clarified. 

S02',S 

PH1,p 
PS02,S 

1c8 
where PSI.S2 is the probability of executing state S2 after state S1 

Figure 3.13 Upper-Level Model of a Spacecraft Mission 

Each phase requires a minimum number of processors to function successfully. The 

requirements can be summarised as: 
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Hibernation 

Launch 

Planet 

clentl lC servatlOns 

Number of Processors Required 

1 (2 if possible) 

3 

3 

3 
S · 'fi Ob . }cruise 

Perform Observations 1 

There are 4 identical processors to meet the requirements of the phases. The primary 

objective is S02 which must be performed, and SOl is a secondary goal. At the end 

of phase H2 if there are any faulty processors, SO 1 will be skipped and the next phase 

to be performed will be H4. If there are no faulty processors, the system is capable of 

executing SO 1 and so this will be the next phase. The determination of the subsequent 

phase to H2 is therefore state dependent. Reward rates can be cumulated to determine 

the benefits when a particular phase is executed. 

The lower level models can be represented using generalised stochastic petri nets, and 

translated into a continuous time Markov model. Each state in phase H, L, and P of 

the Markov model can be represented by the number of working, spare, and failed 

components in the form: {#Working, #Spare, #Failed}. {F} is the absorbing failure 

state. In the SO phases, since all components are required, the states are represented 

by the number of working and failed components in the form: {#Working, #Failed}. 

A separate phase transition model is presented between phases to map the final state 

probabilities of one phase to the initial state probabilities of the subsequent phase. If 

there is no choice of possible following phases, such as between phases HI and P, a 

deterministic model is applied. For the transition between phases HI and P, with the 

probability of successful reconfiguration denoted by c, the non-failure states would be 

mapped as shown in Figure 3.14. 

Figure 3.14 Deterministic Phase Transition model from HI to P 
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Since three processors are required in phase P, a successful transition from phase HI 

will only occur if there are sufficient working or spare components to satisfy the phase 

P requirement. The mapping technique of this deterministic model can be translated 

into a transition matrix where the number of rows is equal to the number of states in 

the originating phase, and the number of columns is equal to the number of states in 

the successive phase. The entries in the matrix represent the probability on each arc of 

the phase transition model. 

A probabilistic phase transition model represents the state dependencies between 

phases, and can be shown for the possible transitions from phase H2 in Figure 3.15. 

///~-------- --------------

! 
\, ..... 

............ -._---_ ... _----------_._-------

Figure 3.15 Probabilistic Phase Transition model from H2 to SDI and H4 

The transition matrix for a probabilistic transition model is obtained in the same way 

as for a deterministic model apart from the number of columns is equal to the sum of 

the state space of all possible subsequent phases. 

Each lower level model is solved in the order of the phase sequences in the upper 

level model, where the initial state probability vector for each phase is obtained by 

application of the appropriate transition model to the state probabilities at the end of 

the previous phase. The upper level model can then be solved to evaluate parameters 

of interest. Further methods for solution to phased mission systems usmg 

deterministic and stochastic petri nets are discussed by Mura et al [37]. 

3.3.2.2 Non-Markovian Models 

The traditional Markov approach involves each phase being treated separately to 

obtain a state probability vector at the time of the phase change. Each probability 
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vector is then linearly transformed into the appropriate initial condition vector for the 

next phase. This continues until the vector of the last phase is found, representing the 

predicted reliability of the total mission. However, this method is limited due to the 

assumption that phase changes occur at specified discrete points in time and are 

instantaneous and state-dependent, i.e. the system will only begin a phase if the state 

is successful for both the preceding and succeeding phases. Such a model alone is not 

able to represent the amount of work performed or the relative values of task 

accomplishment in many practical situations. 

A non-Markovian model represents the general case where the transition matrix [ A] of 

equation (2.44) contains globally time-dependent coefficients (A{t) and u{t». The 

homogenous case is the special case where these transition rates are constant (A and 

u). 

The deficiencies of the homogeneous method are identified by Smotherman and 

Zemoudeh [38]: 

• Phase changes and phase change times depend only on the current phase, and 

not individual states. This cannot represent, for example, that a degraded 

system would require longer to complete a phase than a fully functional 

system would. 

• The number of phases with a random time duration is limited, or requires the 

computation of order statistic integrals. 

• Failure and repair rates must be constant within each phase. This does not 

allow representation of burn-in effects or wear out effects of mechanical 

components. 

A generalised method is presented where the performance of the system is modelled 

by a continuous time finite-state Markov process. The distributions of phase change 

times are considered to be non-overlapping uniform distributions that are ordered 

according to the sequence of phases, and the failure and repair rates are assumed to be 

globally time-dependent. 

Transitions are generalised to represent phase changes as well as component failure 

and repairs so that arbitrary distributions of phase change times can be established in 

82 



hazard rate fonn as time-varying transition rates in the non-Markovian model. The 

numerical solution to the non-Markovian matrix set of differential equations is then 

solved using the fifth order Runge-Kutta method. This is extended for time-dependent 

transition rates, and includes infonnation on each type of phase change; exiting state, 

entry state(s), and the branching possibility for multiple entry states. Fixed-time phase 

changes do not affect the transition matrix but cause an instantaneous transfer of 

probability from the exiting state to the entry state(s). 

This work is continued by Smothennan and Geist [39] who introduce measures of 

effectiveness for a single non-Markovian mission model using reward rates to provide 

more infonnation on system effectiveness. This model can be applied in situations 

where' component failure is not exponentially distributed, and failure rates are not 

constant. 

If {X(t)lt ~ o} is a finite state stochastic process with state probabilities 

Ps (t) = P[X(t) = j], the set of state differential equations can be expressed by 
j 

equation (3.46). 

N 

ps! (t) = ! PSi (t)aij (t) 
i=1 

(3.46) 

where Ns is the number of system states. 

This is represented in matrix from in equation (2.44), however in this case the 

transition matrix is time dependent, [A(t)]. Each phase is represented as a separate 

subset of states of the single model. Phase changes are represented by time-varying 

transitions among these subsets, and are state dependent. Phase changes that are not 

instantaneous are modelled by including intennediate states. This allows 

representation of different phase change durations and also multi-objective missions. 

A reward model applies instantaneous and cumulative measures of weighted state 

occupancy. Each state Si has an associated weight called a reward rate, Rs/ (t) , which 

represents the relative value of the system residing in the state. Reward rates may also 

be time-dependent. 
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The vector of system state reward rates, R(t) is defined by equation (3.47). 

R(t) = [Rs (t), Rs (t), ... , Rs (t) r 
1 2 Ns 

(3.47) 

The instantaneous reward rate of the system at time t is then given by pet) R(t). The 

expected value of the accumulated reward until time t, Yet), is obtained in equation 

(3.48). 

(3.48) 

If used with proper reward rates this may give information on the expected time spent 

in a certain subset of states, and may be used as a measure for providing life cycle 

measures such as expected duty time and expected time under repair. 

A standard initial-value solution algorithm may be used to find the state probabilities 

of the system of differential equations with appropriate reward rates. The transition 

rate matrix must be re-evaluated at each time step of the algorithm since the matrix 

entries are time-varying rates. If a transition rate approaches a discontinuity, 

increasingly smaller step sizes are required and the solution process becomes 

computationally longer. Models of complex systems have potentially large state 

spaces due to the representation of all states in all phases. The possible extra 

computational effort is the main disadvantage when considering the increase in 

flexibility of the model. 

This method can be applied to an example system comprising of two components that 

is initialised and loaded and then remains on duty until the end of a 100 hour period, 

summarised in Figure 3.16. 
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Initialisation 
Sub-model 

Loading 
Sub-model 

On Duty 
Sub-model 

Inactive 
Sub-model Where: 

State 
I 3 components available 
2 2 components available 
3 I component available 
4 0 components available 

(unrecoverable system 
failure) 

5 3 components available 
6 2 components available 
7 I component available 
8 3 components available 
9 2 components available 
10 I component available 
11 Unrecoverable System 

Failure 

cr Initialisation system failure 
rate 

h,(t) Phase change rate 
).,(t) Time-dependent component 

failure rate in phase i 
Cl Coverage probability during 

initialization 
C2 Coverage probability on duty 

Figure 3.16 Non-Markovian Model Example 

This example demonstrates the possibility of state dependent phase change times. In 

the loading phase if two components are operational (state 5) then loading is 

completed at rate h2(t), however if only one component is operational (state 6), the 

loading requires a longer interval and the phase change rate h3(t) is used. This also 

demonstrates the possibility of time-dependent failure rates, for example 23(t) in phase 

3. Reward rates can be assigned by the number of components that are operational in 

the state per unit time. This example is quantified by Smotherman and Geist and 

further examples are considered to represent multi-objective and pipe leakage models. 

This work is also developed using semi-Markov models with fixed (maximum) 

durations in a given set of system states by Becker et al [40]. 

3.3.3 Summary 

The methods that have been presented for solution to repairable phased mISSIOn 

systems exhibit the following properties: 

• Combinatorial approaches do not account for possible dependencies between 

components and phases, and thus produce only an approximation for phase 

and mission unreliability. 
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• Markov methods implementing a single model eliminate the problem of state 

mapping across a phase boundary. Markov methods based on separate phase 

models result in state mapping problems at each phase transition. 

• Homogeneous Markov models require constant state transition rates within 

each phase. Non-Markovian models allow for varying state transition rates 

within a phase. 

• Phase durations can be deterministic or random. Phase sequences can be 

deterministic or state-dependent. 

A method is required to suitably represent the dynamic and dependent behaviour of a 

multi-phased mission. Since combinatorial approaches allow only approximations of 

phase and mission unreliability, Markov methods are preferred. However, Markov 

models are susceptible to state explosion problems as the number of components 

increases and so a technique is required to eliminate this. A state mapping procedure 

is required across phase transition boundaries ifusing separate phase Markov models. 

The presented methods have considered all phases in a mission to be of a single type, 

either non-repairable or repairable. There are many phased mission features that have 

not been identified. It is possible that a phase can be either discrete or continuous in 

duration. Also, little research has been undertaken into the possibility of sequential 

failure relationships with scheduled inspection policies. Therefore a general method is 

required to include the possibility of a combination of discrete and continuous phase 

durations, with non-repairable and repairable phase types and the consideration of 

sequential failures and scheduled inspection. 
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Chapter 4 Non-Repairable Phased Missions 

4.1 Introduction 

The method of calculating the reliability of a phased mission cannot simply be 

obtained by the multiplication of the reliabilities of each of the individual phases as 

this involves the false assumptions that the phases are independent and all components 

are in the working state at the beginning of each phase. To make these assumptions 

results in an appreciable over-prediction of system reliability. Other techniques must 

be applied. 

For the case of a multi-phased system containing only non-repairable components, 

various methods have been developed to assess the mission reliability. Past research 

has demonstrated that the Markov approach is susceptible to potential explosions in 

the number of state equations for even moderate sized problems. For the more simple 

case of a system allowing no repairs, the preferred approaches are that of the fault tree 

and binary decision diagram techniques. 

Previous methods have provided means of estimating the failure probability of a 

mission as a whole, but little investigation has been made into the additional 

possibility of the attainment of individual phase failure. A new fault tree method is 

proposed to enable the probability of failure in each phase to be determined in 

addition to the whole mission unreliability. For any phase, the method combines the 

causes of success of previous phases with the causes of failure for the phase being 

considered to allow both qualitative and quantitative analysis of both phase failure and 

mission failure. This will overcome some of the deficiencies of other fault tree 

techniques. The proposed method is also presented in [41]. 

The binary decision diagram method offers an alternative approach to the fault tree 

method in the aim of reducing the complexity of the problem, thus making the 

solution process more accurate and efficient. The standard binary decision diagram 

technique is consequently modified to produce a more general method for use in 

missions of multiple phases. 
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Once the probability of phase and mission failure has been determined by either the 

fault tree or binary decision diagram method, it is possible to calculate the frequency 

of phase and mission failure. 

4.2 Fault Tree Method 

The proposed method considers the performance of a system not only for the duration 

of the phase in question, but also for all preceding phases. A component that is known 

to be in the failed state in a phase could have failed at any point up to that time. By 

considering the component failing in each phase as a separate event, component 

failure in a particular phase fault tree is replaced by an OR combination of the events 

for the component failing in that and all preceding phases. The event of component 

failure in phase i is represented as the event that the component could have failed 

during any phase up to and including phase i. For example, component A failure in 

phase 2 would be represented by the OR of the failure of the component in phase 1 

(AI) and in phase 2 (A]) since the component is non-repairable, shown in Figure. 4.1. 

Figure 4.1 Replacement OR combination 

System failure in phase i is represented by the AND ofthe success of phases l..i-l and 

the failure during phase i, demonstrated in Figure. 4.2. All phase failures may then be 

combined using an OR gate to represent causes of overall mission failure as the event 

that any phase does not complete successfully. 

This method allows for the evaluation of individual phase failures, and also accounts 

for the condition where components are known to have functioned to enable the 

system to function in previous phases. However, owing to the fact that cut sets are not 

removed until a later stage in the analysis, the fault tree can be much more complex 

and require significantly more effort to solve. 
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Success in 
Previous 
Phases 

Failure 
During Phase 

; 

Failure in Failure in 
Phase 1 Phase ;-1 

Failure 
Conditions 
Met During 

Phase; 

Phase ifault tree with 
each basic event 

replaced with an OR 
combination of 

component failure in 
any phase from 1 .. ; 

Figure 4.2 Generalised Phase Failure Fault Tree 

4.2.1 Qualitative Analysis 

The failure of a system can occur in many different ways. Each unique way is referred 

to as a system failure mode, and involves the failure of either a single component, or 

the combination of failures of multiple components. 

To determine the minimal cut sets of a phase or mission, either a top-down or a 

bottom-up approach is applied to the relevant fault tree. For any phases after the first 

phase, the incorporation of the success of previous phases means that the fault tree 

will be non-coherent and not simply consist of' AND' and 'OR' gates. NOT logic will 

be required to represent this success (not failed), and the combinations of basic events 

that lead to the occurrence of the top event will be referred to as implicants. These 

implicant sets are not always minimal and so simplification techniques are required 

for reduction to prime implicant sets in phased mission systems. 

This proposed method may be applied for the simple three-phase mission given in 

Figure 4.3. 
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Phase 1 Phase 2 Phase 3 

to------~) tl ------~) t2 ------7) t3 

Figure 4.3 Reliability Network of a Simple Phased Mission System 

The failure causes for each phase may be expressed using separate fault trees III 

Figure 4.4. 

Figure 4.4 Fault Tree Representation of Individual Phase Failures 

The fault tree to represent the initial phase failure of the mission remains identical to 

the fault tree representation of the individual phase failure of phase I shown in Figure 

4.4. Failure during phase 2 can then be shown as the combination of phase 1 success 

and failure in phase 2, using the basic event expansion, in Figure 4.5. 

Figure 4.5 Phase 2 Failure Fault Tree 
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Similarly, phase 3 failure can be represented as the combination of phase 1 and 2 

successes, and failure in phase 3 in Figure 4.6. 

Figure 4.6 Phase 3 Failure Fault Tree 

4.2.1.1 Fault Tree Modularisation 

Fault tree modularisation techniques are helpful to reduce the size of a fault tree to 

enable prime implicants to be found more efficiently. These modularisation 

techniques reduce both memory and time requirements. A non-coherent extension of a 

modularisation technique has been employed in this work [42]. It repeatedly applies 

the stages of contraction, factorisation and extraction to reduce the complexity of the 

fault tree diagram. The stages are identified as: 

1. Contraction 

Subsequent gates of the same type are contracted to form a single gate. The resulting 

tree structure is then an alternating sequence of OR and AND gates. 

2. Factorisation 

Identification of basic events that always occur together in the same gate type. The 

combination of events and gate type is replaced by a complex event. However, since 
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NOT logic is included in order to combine phase success and failure, in this stage the 

primary basic events that are found to always occur together in one gate type must 

have complements that always occur together in the opposite gate type by De 

Morgans' laws, e.g. 

2000=A+B 2001 = A·B 
-- --
2000=A·B 2001 = A+B 

3. Extraction 

Searches for structures within the tree, of the form shown in Figure 4.7, that may be 

simplified by extracting an event to a higher level. 

Figure 4.7 Extraction Stage of the Modularisation Technique 

4.2.2 Prime Implicants in Phased Mission Systems 

Owing to the non-coherent nature of the fault trees, the combinations of basic events 

that lead to the occurrence of the top event of either phase or mission failure are 

expressed as prime implicants. The notation used to represent the failure of 

component A in phase i is 4. 4 represents the functioning of component A 

throughout phase i. The notation used to indicate the failure of a component in phase i 

through to and including phase j is Ay, i.e. component A fails at some time from the 

start of phase i to the end of phase j. Conversely, the success of component A in phase 

i through to and including phase j is Aij . 
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This notation enables us to define a new algebra over the phases to manipulate the 

logic equations. What is of concern in later phases is the phase during which the 

component failures occur. So we can produce a combination of events for component 

A e.g. it works successfully through phases 1 and 2 and fails in either phase 3 or phase 

4. This is expressed algebraically as: 

This means that the top event will only occur if A fails in phases 3 or 4 i.e. A34 where, 

14 

qA
34 

= QA(t2 ,t4 ) = ffAt)dt 
12 

where q A is the failure probability for component A in phases 3 or 4 
34 

fA (t) is the density function of failure times for component A 

The top event of phase or mission failure can contain multiple events belonging to the 

same component. Since each phase is obtained as a combination of current phase 

failure with previous phase successes, the events can represent either component 

failure or success in various phases. A new set of Boolean laws is required to reduce 

the expression for each phase failure into minimal form. The application of these laws 

will allow the prime implicant sets to be obtained for each phase. 

A summary ofthe new algebraic laws where phase i<j is: 

Component A fails in phase i AND phase i. Repeated 

Event. 

Component A fails in phase i AND phasej. These are 

mutually exclusive events so cannot both occur. 

Component A fails in phase i AND between phase i and 

phase j. As the failure of component A in phase i and 

any other phase from i+ 1 to j are mutually exclusive 

events, they cannot occur together. The common event 

is the failure of component A in phase i. 
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4. Ai ·Ai = 0 

6. Ai· Aij = Ai+1,j 

Component A works in phase i AND fails in phase i. An 

event and its compliment cannot occur at the same time. 

Component A works through phase i AND fails in phase 

j. The failure of component in phase j implies that it 

must have worked up to the start of phase j, and so the 

success event in phase i can be eliminated. 

Component A works in phase i AND fails between 

phase i and phase j. The success and failure of 

component A in phase i cannot be combined. The 

combination is the event of component A failure in 

phase i+ 1 up to and including phase j. 

Component A works through phase i up to phase j 

inclusive. Combine to standard notation. 

8. Ai + Ai+1 .. + A j = Aij Component A fails in any phase through phase i up to 

phase j inclusive. Combine to standard notation. 

If two prime implicant sets contain exactly the same components where all but one of 

which occur over the same time intervals and the other is a failure in contiguous 

phases, the two prime implicant sets may be combined with the period of failure for 

the component having time index adjusted, eg: 

) 

As the components are non-repairable, the event of component failure will only be 

possible during one of the contiguous phases. 

This simplification approach allows the prime implicants for the example with phase 

fault trees given in Figures 4.4, 4.5, and 4.6 to be obtained as follows: 
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Phase 1 

Al 

Minimal Cut Sets: BI 

Cl 

Phase 2 

The top event of failure during phase 2 is obtained by the combination of 

phase 1 success with phase 2 failure: 

The full expansion ofthis becomes: 

Using law 4, an event and its compliment cannot occur at the same time. The 

top event becomes: 

By law 5, the failure of a component in phase 2 implies that it must have 

worked through phase 1, and so the success of the component in phase 1 can 

be eliminated. The minimised top event of phase 2 failure becomes: 

The prime implicant sets for the failure of phase 2 are: 
~BICI 

Phase 3 

The top event of failure during phase 3 is obtained by the combination of 

phase 1 and 2 successes with phase 3 failure: 

T2 = (AIBICJ. (CAIA2CBI +CI)'CBI +C2)'CB2 +CI )'CB2 +C2 ))· 

(CAI +A2 +A3)'CBI +B2 +B3 )'CCI +C2 +C3 )) 
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In the same way as for phase 2, using the laws of phase algebra this expression 

can be expanded and reduced to: 

The prime implicant sets for the failure of phase 3 are: 

If it is assumed that the success events of a phase have a very high likelihood of 

occurrence, the prime implicant sets can be expressed as minimal cut sets. Events that 

appear in their negated form in the prime implicant sets are deleted thus reducing the 

list to a coherent approximation. 

4.2.3 Quantitative Analysis 

Having established the prime implicants for each phase failure, they may now be used 

to quantify the probability of phase and mission failure. 

The probability density function of a component A with constant failure rate in a non

repairable single phase mission is found by the negative exponential distribution given 

in equation (4.1). 

for t > 0 (4.1) 

It is assumed that the component is subj ect to a constant failure rate through all 

phases, regardless of whether it is required for a particular phase success. The 

unavailability of the component, q A (t), over a duration of time [O,t) is modelled by 

the cumulative probability function FA (t) in equation (4.2). 

(4.2) 

The unavailability of the component over a phase i is derived in a similar way to 

equation (4.2) by integration of the probability density function (equation (4.1)). The 
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integration time limits for phase i will be t=t;_1 to t=t;, and the component A 

unavailability in phase i is derived in equation (4.3). 

(4.3) 

The probability of failure of a non-repairable component A during phases i to j in time 

period [tH,t) is given by qAq in equation (4.4). 

J. t -J. t 
q = e- A 1-1 _ e A J 

Aij 
(4.4) 

The unreliability, Qi' for each individual phase i is found using the inclusion-exclusion 

expansion for the existence of phase i prime implicant sets, KII ' in equation (4.5). 

where Npil is the number of prime implicant sets in phase i 

The event of phase failure for the simple three-phase mission with prime implicant 

sets given in Section 4.2.2 can be obtained using the inclusion-exclusion expansion 

(equation (4.5», and is expressed in equations (4.6). 

Phase 1: 

Phase 2: (4.6) 

Phase 3: 

As the failure of each of the phases produces mutually exclusive causes, the 

probability of mission failure, QMISS' may be expressed as a sum of the unreliabilities 

of the individual phases in equation (4.7). 

m 

QMISS = IQ; 
;=1 

where m is the total number of phases 
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4.2.4 Summary 

This method allows for the evaluation of individual phase failures, and also accounts 

for the condition where components are known to have functioned to enable the 

system to function in previous phases. However, due to the fact that cut sets are not 

removed until a later stage in the analysis compared with methods based on the 

technique by Esary and Ziehms [12], the fault tree can be much more complex and 

require significantly more effort to solve, especially in later phases. 

4.3 Binary Decision Diagram Method 

A fault tree structure very efficiently represents system failure logic, but is not an 

ideal form for mathematical analysis. Binary decision diagrams represent a logic 

expression and offer efficient mathematical manipulation, although it is very difficult 

to construct directly from the system definition. For larger fault trees it is more 

efficient to convert to a BDD prior to analysis. The approach of performing the 

quantification process after first converting the fault tree to a BDD form offers 

significant advantages for large complex fault trees. This is particularly true of 

structures that are non-coherent, such as the phase failure fault trees. 

4.3.1 Construction of a Phased Mission BDD 

The phased mission BDD is constructed using a similar method to the single system 

BDD (Section 2.3). The basic event of the failure of component A in phase j, Aj , can 

be represented in Figure 4.8. 

Figure 4.8 

,Cil, 
c51 

1 Occurrence of Aj 

o - Non-Occurrence of Aj 

Binary Decision Diagram Vertex for Component A Failure in Phase j 

The failure of component A in phase j can be represented using if-then-else form in 

equation (4.8). 

(4.8) 
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One of the features of the BDD structure is the ease with which the dual can be 

fonnulated. If the primary (system failure) BDD represents the structure function 

$(x), the dual function of system success, $(x), is constructed from $(x) = 1- $(x) . 

The dual BDD of a phase j represents the top event of phase success, 1j, and is 

created by switching the terminal nodes, i.e. a terminal 1 node is replaced by a 

tenninal 0, and a terminal 0 node by a tenninal 1. It must be noted that in the 

fonnulation of the dual of the BDD, the non-tenninal nodes still represent the failure 

event of components. The dual of Figure 4.8 to demonstrate the success of component 

A in phase j can therefore be represented by Figure 4.9. 

,(fj, 
~~ 

Figure 4.9 Binary Decision Diagram Vertex for Component A Success in Phase j 

The success of component A in phase j can be represented using if-then-else form in 

equation (4.9). 

(4.9) 

An ordering of the basic events in the fault tree must be chosen. At this stage, the 

components are ordered first (A<B<C), and then each component is expanded into its 

senes of sub-components III a forwards phase ordering sequence 

(A]<A2<A3<B]<B2<B3<C]<C2<C3), Ordering techniques are discussed further in 

Section 4.3.5. 

To combine basic events within a phased mission BDD, the following rules are 

applied: 

• To combine two different basic events (X; and Jj) using a logical operation EEl, 

If 
and 

If X; < Jj 

If X; = Jj 

J = ite(Xpj 1,j2) 

H = ite(Yj,g1,g2) 

J ffi H = ite(Xpjl ffi H,j2 ffi H) 

J ffi H = ite(Xi ,Jl ffi gl,j2 ffi g2) 
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These rules are general for all variable combinations. Since the Boolean laws for 

phase algebra (Section 4.2.2) are applied to the implicant sets once the BDD is 

constructed, no special laws are applied for combinations of events belonging to the 

same component. 

The simple 3-phase mission given in Figures 4.4, 4.5, and 4.6 may be represented in 

BDD form for each phase and quantified. However, the proposed method combines 

the failure in a phase with the success of all preceding phases. This is achieved using 

the logical operation methods, where the AND of previous phase successes and 

current phase failure is required, and is presented in Section 4.3.4. 

4.3.2 Qualitative Analysis 

The paths through a binary decision diagram terminate in either a 'l' or a '0' vertex. 

A terminal 'l' vertex signifies system failure, and thus those paths leading to such a 

vertex indicate the system failure modes. These disjoint paths leading to system 

failure represent implicant sets. The simplification technique is applied as in the fault 

tree approach given in section 4.2.2 using the Boolean laws to reduce the implicant 

sets to prime implicant sets. 

4.3.3 Quantitative Analysis 

The top event probability of a BDD is derived from Shannon's formula (pivotal 

decomposition). The state of a component Xi in phase j is denoted by: 

X. ={o 
I} 1 

If component Xi is working in phase j 
forj = 1,2, .... ,m 

If component Xi fails in phase j 

The phase j binary function, ~j , is then, 

~.= {o 
'J 1 

If phase j works 

If phase j fails 
forj = 1,2, .... ,m 

and ~j = ~ix), where x is the vector of all component states through phases l.j 
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$ix) is the system structure function in phase j and can be found using equation 

(4.10). 

$J'(X) =Xj $(lj ,x)+(l-xj )$(Oj ,x) forj = J,2, .... ,m 
J J J J 

(4.10) 

The probability of the top event (i.e. phase failure probability) can be found by taking 

the expectation of each term of equation (4.10) as shown in equation (4.11). 

E[$J'(x)] =qj .E[$(lj ,x)]+(1-qj )·E[$(O; ,x)] forj = J,2, .... ,m (4.11) 
J J J J 

where qj = E[xj ] is the probability that Xj fails in phase j 
J J 

The phase j failure probability can be calculated by summing the probabilities of the 

disjoint (mutually exclusive) paths through the unminimised BDD from the root 

vertex to each terminal 1 vertex (equation (4.12)). Each disjoint path represents a 

combination of working and failed components in any phase up to and including 

phase j that lead to phase j failure, and so events lying on both one and zero branches 

are included in the probability calculation. 

ndj 

Qj = LP(li) 
;=1 

where p(rj) is the probability ofthe ith disjoint path to a terminal 1 node 

ndj is the number of disjoint paths to a terminal 1 node 

4.3.4 Example 

(4.12) 

Application of this method may be demonstrated using the fault tree technique in 

Section 4.2 on the three-phased mission given in Figures 4.4, 4.5 and 4.6. Each 

success or failure basic event is assigned an ite structure according to equations (4.8) 

or (4.9), and the phases may be constructed using the logical combination rules as 

follows: 
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Phase 1 

Phase 1 failure F1 = ite(AI ,1,0) + ite(BI ,1,0) + ite(CI ,1,0) 

= ite(Aj ,I,ite(Bj ,1, ite(Cj ,1,0») 

Al 
Minimal Cut Sets: BI 

o 

Figure 4.10 Failure in Phase 1 BDD 

Al 

The disioint paths to the terminal 1 node are: A B 
~ I I 

= 1-(1- q Al )(1- q BI )(1- q Cl ) 

Phase 2 

Cl 

(4.13) 

(4.14) 

The failure in phase 2 is found by the AND combination of phase 1 success and phase 

2 failure. The success of phase 1 is obtained by the dual of the BDD in equation 

(4.13), where the terminal nodes are changed from' 1 ' to '0' and '0' to '1' in equation 

(4.15). 

Success through phase 1: (4.15) 

The ite expression for phase 2 failure is obtained by the phase 2 fault tree with top 

event defined as 'failure conditions met in phase 2' in Figure 4.5, and is given in 

equation (4.16). 

Phase 2 failure: 

102 



The BDD for this phase 2 failure is given in Figure 4.11. 

o 

o 

Figure 4.11 Phase 2 Failure BDD (not including phase 1 success) 

The BDD for phase 2 failure in Figure 4.11 does not take into account the 

requirements for system success through phase 1. Using the proposed method to 

combine the BDDs of success through phase 1 (equation (4.15» and phase 2 failure 

(equation (4.16», the failure in phase 2 (SF2) BDD is as given in equation (4.17). 

SF2 = SI·F2 

=ite(Al ,0,ite(B1 ,0, ite(C1 ,0,1») . 

it(Al,l,it(A2,1,it(Bl,it(Cl,1,it(C2,1,(J»jt(B2,it(Cl,1,it(C2,J,0»{1)) 

= ite(~ ,0, ite(~, ite(BI ,0, ite( Cl ,0,1», ite(BI ,0, ite(B2 , ite( Cl ,0, ite( C2 ,1,0»,0»» 

(4.17) 

The BDD for failure in phase 2 is given in Figure 4.12. 

Figure 4.12 Failure in Phase 2 BDD 
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The implicant sets are found by the disjoint paths to a terminal 1 node and are 

simplified using the Boolean laws for phased mission systems in Section 4.2.2: 

Al A2Bl Cl 

Al A2B1B2 Cl C2 

The failure probability in phase 2 is then given in equation (4.18). 

(4.18) 

Phase 3 

The failure in phase 3 is found by the AND combination of phase 1 and 2 successes 

and phase 3 failure. The success of phase 1 is given in equation (4.15), and the success 

of phase 2 is obtained by the dual of the phase 2 failure BDD in equation (4.16), 

where the terminal nodes are changed from '1' to '0' and '0' to '1' in equation (4.19). 

Phase 2 success: 

S2=ite(~ ,0,ite(A2 ,0,ite(B, ,ite(C, ,0,ite(C2 ,0,1)),ite(B2 ,ite(C, ,0,ite(C2 ,0,1)),1))) (4.19) 

The ite expression for phase 3 failure is obtained by the phase 3 fault tree with top 

event defined as 'failure conditions met in phase 3' in Figure 4.6: 

Phase 3 failure: F3 = ite(~,K,ite(~,K"ite(~,K"O))) 

Kt = ite(B"K2,ite(B2,K2,ite(B3,K2'0))) 

K2 = ite( C"I, ite( C2 ,1, ite( C3 ,1,0))) 

The BDD for this phase 3 failure is given in Figure 4.13. 
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o 

o 

Figure 4.13 Phase 3 Failure BDD (not including phases 1 and 2 successes) 

The BDD for phase 3 failure in Figure 4.13 does not take into account the 

requirements for system success through phases 1 and 2. Using the proposed method 

to combine the BDD of phase 1 success (equation (4.15», phase 2 success (equation 

(4.19» and phase 3 failure (equation (4.20», the failure in phase 3 (SF3) becomes as 

given in equation (4.21). 

SF3 = SI·S2·F3 

=ite(AI'O,ite(BI'O,ite(CI'0,I») . 

ite(~ ,O,ite(~ ,0,ite(B. ,ite(C. ,0,ite(Cz ,0,1»,ite(Bz ,ite(C. ,0, ite(Cz ,0,1»,1») . 

where: 

where: 

K. = ite(B .. Kz, ite(Bz, Kz, ite(B3 , Kz,O))) 

Kz = ite(C.,1,ite(Cz,1,ite(C3 ,1,0») 

L. = ite(CI'0, ite(Cz ,0, ite(C3 ,1,0») 

L2 = ite(BJ' ite(Cl'O, ite(C2 ,1,ite(C3 ,1,0»,0» 

The new BDD for failure in phase 3 becomes as shown in Figure 4.14. 
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Figure 4.14 Failure in Phase 3 BDD 

The implicant sets are found by the disjoint paths leading to a terminal 1 node, and 

reduced to minimal form using the Boolean laws in Section 4.2.2. 

The quantification for phase 3 is then given in equation (4.22). 

(4.22) 

It can be seen that the unreliability of each of the phases found by the BDD method in 

equations (4.14), (4.18), and (4.22) are identical to that obtained using fault tree 

analysis in equations (4.6). 

4.3.5 Ordering 

A binary decision diagram structure is dependent on the ordering in which the events 

are considered during construction. A simple single phased mission consists of only 

the events of component failure or success, and each variable in the scheme relates to 

a different component. However, a multi-phased mission involves component failure 

or success with a time factor involved to identify the phase. This leads to an 

interesting comparison of different ordering schemes in the aim of reducing the size 
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and thus the number of nodes in the BDD to make a quicker and more efficient 

computational process. 

Application of the Boolean laws for phased mission analysis presented in Section 

4.2.2 allow any ordering of variables to be implemented when constructing each phase 

BDD. The events are initially assigned an optimal ordering sequence in each phase j, 

and then can be expanded into sub-events to represent the failure of the component 

through phases l.j. The most general sequences are discussed below, with example of 

an event order A < B < C in phase j: 

Component Forwards Ordering (CFO) 

Each event is expanded into its series of sub-events in the order of first phase to 

current phase, i.j. 

Component Backwards Ordering (CBO) 

Each event is expanded into its series of sub-events in the order of current phase to 

first phase, j .. i. 

A <···A < J <B <···<B <B <C <···<C <C j 2./"'1 J 2 1 j 2 1 

Phase Forwards Ordering (PFO) 

Each event is expanded into its series of sub-events in the order of first phase to 

current phase, i.j. The sub-events are then considered in the ordering sequence 

A < B < C for each consecutive phase i.j. 

Phase Backwards Ordering (PFO) 

Each event is expanded into its series of sub-events in the order of current phase to 

first phase, j .. i. The sub-events are then considered in the ordering sequence 

A < B < C for each consecutive phase j .. i. 
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The four ordering schemes are applied to the second phase of the example in Figure 

4.4 using the method of combining phase 1 success with phase 2 failure. The resulting 

phase BDDs are given in Figures 4.15(a), 4.15(b), and 4.15(c) and 4.15(d). 

(a) Component Forwards Ordering (b) Component Backwards Ordering 

( c) Phase Forwards Ordering (d) Phase Backwards Ordering 

Figure 4.15 Comparison ofBDD Variable Ordering Schemes 
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It can be seen from Figure 4.15 that the ordering scheme of even a simple 2-phased 

mission can make a difference in the size ofthe BDD. The largest BDD represents the 

component backwards ordering scheme with 9 non-terminal nodes, and the smallest 

BDDs represent the phase backwards and forwards ordering schemes with 6 non

terminal nodes. All four BDD ordering patterns produce the correct prime implicant 

sets, however the complexity of the BDD will influence the ease of obtaining and 

simplifying the implicant sets. 

To construct. the most minimal phased mlSSlon BDD, the optimal ordering of 

components in a phase is obtained and then expanded using an optimal expansion of 

the sub-components. This particular feature is not considered further in this thesis but 

is a topic for further research. 

4.4 Test Cases 

The methods described have been applied to some simple systems in order to quantify 

both phase and mission failure probabilities. Comparisons may also be made to results 

obtained by a simple Monte Carlo simulation program operating the system over 

1000000 simulations. 

Four simple systems are given in Figures 4.16 - 4.19. 

Phase 1 Phase 2 

Phase 1 Phase 2 

Figure 4.16 Example 1 Figure 4.17 Example 2 

Phase 1 Phase 2 Phase 3 

Figure 4.18 Example 3 
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Phase 1 Phase 2 Phase 3 

Figure 4.19 Example 4 

The quantification of the fault tree and BDD approaches when each component is 

given a failure rate of 0.001 per hour and all phases are run for the duration of 100 

hours (Table 4.1) show that the results obtained by each of the methods are identical. 

FT BOO MC 

Example 1 

Phase 1 Failure Probability 9.5163x10-2 9.5163x10-2 9.5162x10-2 

Phase 2 Failure Probability 1.6402x10-1 1.6402x10-1 1.6405x10-1 

MISSION FAILURE PROBABILITY 2.5918x10-1 2.5918x10-1 2.5921x10-1 

Example 2 

Phase 1 Failure Probability 9.0559x10-3 9.0559x10-3 9.0561x10-3 

Phase 2 Failure Probability 3.2062x10-1 3.2062x10-1 3.2064x10-1 

MISSION FAILURE PROBABILITY 3.2968x10-1 3.2968x10-1 3.2970x10-1 

Example 3 

Phase 1 Failure Probability 2.5918x10-1 2.5918x10-1 2.5921 x1 0-1 

Phase 2 Failure Probability 7.6569x10-2 7 .6569x1 0-2 7.6568x10-2 

Phase 3 Failure Probability 1.5184x10-3 1.5184x10-3 1.5187x10-3 

MISSION FAILURE PROBABILITY 3.3727x10-1 3.3727x10-1 3.3730x10-1 

Example 4 

Phase 1 Failure Probability 9.0559x10-3 9.0559x10-3 9.0560x10-3 

Phase 2 Failure Probability 3.1217x10-2 3.1217x10-2 3.1215x10-2 

Phase 3 Failure Probability 5.7953x10-2 5. 7953x1 0-2 5. 7954x1 0-2 

MISSION FAILURE PROBABILITY 9.8226x10-2 9.8226x10-2 9.8225x10-2 

Table 4.1 Test Case Quantifications 

where FT - Fault Tree Approach 

BDD - Binary Decision Diagram Approach 

MC - Mean Failure Probability by Monte-Carlo Approach 
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4.5 Unconditional Phase Failure Intensity 

The rate of phase j failure, wj ' is the probability that phase j failure occurs per unit 

time during [~_], ~). Considering the method presented for single phase systems in 

Section 2.2.3.2, the unconditional failure intensity of phase j could be represented by 

equation (4.23). 

where A is the event that at least one phase j prime implicant set exists at time t 

Cl is the event that prime implicant set Cl occurs in phase j 
J 

or W. dt = Wj(l) dt - w.(2)dt 
J J 

(4.23) 

The first term on the right hand side of equation (4.23) represents the contribution 

from the occurrence of at least one implicant set during phase j. The second term 

represents the contribution of prime implicant sets occurring while other prime 

implicant sets already exist in phase j (i.e. phase j has already failed). This method can 

be applied to the simple 2-phased mission in Figure 4.20, and the unconditional failure 

intensity of both phases is derived in Appendix A. 

A B 

B C 

Figure 4.20 Example 2-Phase System 

The approach presented in equation (4.23) is seen to be very computationally 

intensive when applied to the simple example in Figure 4.20. It would be useful if the 

unconditional phase failure intensity could be derived using a more direct method. 
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The rate of failure of a phase j, wj ' can also be defined as the probability of phase j 

failure per unit time given that a mission is taking place. An alternative method to 

calculate this parameter is presented using the probability of phase failure, Qj' and 

the mission frequency, AMISS' in equation (4.24). 

(4.24) 

This can be applied to the example in Figure 4.20 as follows: 

Phase 1 

Top event: 

Phase failure probability: 

Unconditional failure intensity: w\ = Q\ AMISS 

(4.25) 

Phase 2 

Top event: 

Phase failure probability: 

= qA2qB2 + q A2 (1- qBI )qc12 - qA2 qB2qC12 

= (e-AJI _e-AJ2)(e-AUI _e-AU2) + (e-AJI _e-AJ2)e-AUI(1_e-Y2)_(e-AJI _e-AJ2)(e-AUI _e-AEI2 )(1_e-Y2 ) 
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Unconditional failure intensity: w2 = Q2 f... MISS 

(4.26) 

The unconditional failure intensity for the phases of the example in Figure 4.20 

(equations (4.25) and (4.26» are found to be consistent with the expressions obtained 

in Appendix A (equations (A.9) and (A.30». The relationship presented in equation 

(4.24) is therefore seen to be correct, and provides a straightforward method to obtain 

the unconditional failure intensity of a phase or mission. The fault tree method 

(Section 4.2) or the BDD method (Section 4.3) allow the failure probability of each 

individual phase to be calculated. The simple substitution of this parameter into 

equation (4.24) allows the frequency of phase failure to be obtained. 

Similarly, the unconditional failure intensity of a component c in phase j, Wc , can be 
J 

defined as the probability that the component fails per unit time during phase j given 

that it is in a mission. The unconditional failure intensity of component c in phase j 

may be obtained directly from the component c failure probability in phase j, qc , 
J 

using equation (4.27). 

Wc = qc f... MISS J J 
(4.27) 

h 
-A IJ -A IJ were q = e C -\ - e C 

cJ 

f... MISS = Mission frequency 

4.6 Summary 

The four simple systems described in Section 4.4 are useful to make a suitable 

quantification. for three different methods and allow comparisons between the 

techniques. In reality a practical system would consist of many more basic events, and 

operate over additional phases, however the principles of the method are the same. 

The techniques described in this chapter are found to be suitable for the solution of 

systems comprising of non-repairable components operating over a small number of 

phases. The fault tree method that has been developed for this analysis suffers an 
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explosion in the number of phase failure modes and complexity as the number of 

phases increases. This leads to computationally intensive calculation procedures. 

The binary decision diagram approach is found to provide an efficient alternative to 

the fault tree technique. The combination of phase failure with previous phase 

successes can be very simple with an optimal ordering scheme as the events of 

components failing through sequential phases are considered only once. The 

quantification of the binary decision diagram approach leads to an exact answer rather 

than the approximation calculated by the fault tree method. The frequency of phase 

and component failure is easily obtained using the phase or component failure 

probability. 

There are however certain limitations of this method in terms of its general 

applicability due to the assumption of non-repairable components. Whilst many 

systems such as aircraft and spacecraft missions are non-repairable, others will be 

repairable. In such circumstances the failure probability calculations would need to 

take account of components repaired upon failure and an alternative approach needs to 

be developed to account for this. 
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Chapter 5 Systems with Repairable Components 

5.1 Introduction 

In many systems, the option of component maintenance will be available. The ability 

to transform a component from a failed state into a working state is known as repair, 

and the components are described as repairable. For modelling purposes, revealed 

failures are detected instantly and upon repair a component is considered to be as 

good as new. 

A system is required to work continuously over each of the phases in order to achieve 

mission success, therefore the parameter of interest is the reliability of the system. 

Fault trees can be used to express the failure logic of a repairable system, but cannot 

be analysed for an accurate solution. The consideration of repairable components 

means that the phase algebra in Section 4.2.2 is no longer appropriate, and so other 

techniques must be employed. Simulation offers a flexible alternative analysis 

method, however it may be a very computationally time consuming option. 

The Markov approach is an appropriate analytical method for the prediction of system 

reliability (Section 2.4). Conversely this approach is also known to be susceptible to 

explosions in the number of state equations for even moderate sized problems. 

Previous research on Markov methods for the solution to phased mission problems by 

Clarotti et al [30] and Alam and AI-Saggaf [33] have provided a means of calculating 

the reliability of both individual phases and the entire mission. However these 

approaches have implemented a full component state transition table comprising of 

every possible combination of states for all components required in the entire mission. 

Little investigation appears to have been made into the possibility of reducing the size 

of the Markov model by considering phase by phase models. 

A mission may comprise of both discrete and continuous phases. A discrete phase is a 

phase which requires the relevant system function to work at an instant in time, thus 

no state transitions may occur during the phase, and any component failures which 

exist would have occurred prior to this phase. Component states will be determined by 

failures and repairs that have taken place in previous phases. A fault tree approach 
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could be applied to model such a phase. A continuous phase requires the appropriate 

system configuration to be reliable for the specified phase duration and the possibility 

of component repair requires a Markov approach. 

To illustrate the distinction between discrete and continuous phases consider a ship in 

a battle group in action. An example of the discrete phase would be for the ship to 

launch a missile at a point in time during a manoeuvre. The ship would need the 

propulsion and steering system to work over a period of time (reliability) whilst 

getting to the correct location. To defend itself by launching a missile it would need 

the missile launch system to function at the instant required. In this case, for 

efficiency, it may be possible to combine fault tree and reduced Markov methods to 

produce an accurate and efficient calculation of phase and mission reliability whilst 

reducing the complexity ofthe model and computational time. 

The methods developed to analyse a phased mission where the components are 

repairable are reviewed in the remainder ofthis chapter. Since not all components will 

be required in every phase ofthe mission, an irrelevant component is defined: 

An irrelevant component in phase j is not required for the successful operation 

ofphasej but may contribute to previous or subsequent phases of the mission. 

5.1.1 Markov Model Explosion Problem 

The Markov model for a system is susceptible to an explosion in the number of state 

equations as the number of components in the model increases. If n components are 

required in a phase and each can work or fail (i.e. 2-state), there will be 2n system 

states. To implement this model, the 2n state equations are formed using a 2n x 2n 

transition matrix. 

As the mathematical treatment of the model assumes that only one event (usually 

corresponding to a single component failure or repair) can occur in a small period of 

time dt, the possible state changes are very limited. This leads to a very sparse 

transition matrix as the number of components increases. Most matrix entries are 0, 

indicating that states cannot communicate with each other. To store every element of 

such a large matrix would require the use of substantial amounts of unnecessary 
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computer memory. This severely limits the size of the analysis which can be 

performed. It is possible to do this more efficiently by creating a linked list. Such a list 

would allocate space only to store transitions that can occur, thus freeing memory for 

other purposes. 

To demonstrate the construction of a linked list, an example system consisting of 

components A, B and C can be used, shown in Figure 5.1. 

B C 

Figure 5.1 Example 3-Component System 

There are eight possible system states, denoted by Sl(ABC) - S~ABC) • A full listing of the 

system states is given in Figure 5.2. 

A B C 

S(ABC) 
1 0 0 0 

S(ABC) 
2 0 0 I 

S(ABC) 0 I 0 3 

S(ABC) 0 1 1 
where 1 Failed 

4 0 Working 
S(ABC) 1 0 0 5 

S(ABC) 
6 1 0 1 

S(ABC) 
7 1 I 0 

S(ABC) 
8 I 1 I 

Figure 5.2 System states for 3-Component Model 

The failed states of this system are S~ABC) - S~ABC) • If the failed states of the system are 

known to be absorbing so that no transitions may be made out of them, the state 

transition matrix is found to be very sparse in equation (5.1). 
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-(AA +AB +Ad AC AB 0 AA 0 0 0 

Uc -(AA +AB +Uc ) 0 AB 0 AA 0 0 

UB 0 -(AA +UB +AC) Ac 0 0 AA 0 

[A] = 
0 0 0 0 0 0 0 0 (5.1) 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

There are 64 possible system state transitions, but only 12 have non-zero values. To 

store all 64 entries in a data array would use unnecessary memory, thus only the non

zero entries are allocated space. This dynamic memory allocation is only limited by 

the size of available memory. 

A linked list is a collection of structures, each containing a set of member variables. In 

this example, the member variables will contain data for each non-zero state transition 

- the departure state, the destination state, and the rate of transition. Each structure 

will also have a member that references the next structure in the list. By defining a 

head structure as the first entry of the list, subsequent non-zero transitions are 

referenced by sequential structures. The final entry in the list is defined as the tail 

structure, and is terminated by a NULL pointer reference. In this way it is possible to 

store only the 12 non-zero transition rate values, and access to each is obtained by 

traversing the list. 

This dynamic memory allocation with structures and pointer references IS 

demonstrated in Figure 5.3. 

Head 

From To Transition 
State State Rate 

'----'-----'-___ --"-----'-•• -.--.-)---•• -~'__3 --,1,----7 --'--_"-,-A_---'-_+-' NULL 

JJ 
Figure 5.3 Dynamic Memory Allocation - Linked Lists 
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This process has been implemented in all three modelling scenarios presented in the 

following sections. 

5.2 Reliability of a Phased Mission with Discrete and Continuous Phases 

The method for solution to a repairable phased mission system using a full Markov 

model is presented in Section 5.2.1. The possibility of reducing the size of the Markov 

model by considering phase by phase models is discussed in sections 5.2.2 and 5.2.3. 

5.2.1 Full Markov Method 

A full Markov model is generated by using a single model which works over all 

phases of the mission. This model will have a single vector [P] of system state 

probabilities for every phase of the mission. [P] is constructed including all 

components featured in every stage. The model is then formed by considering the 

different requirements for each phase success and mission success. The state transition 

matrix is used to obtain the probability of the system residing in each of the total 

possible system states (Ns). The matrix equations used to model this are represented 

by equation (5.2). 

[P] = [P][A] (5.2) 

where [A] is the state transition matrix 

At the start of a mission, it is assumed that all components are in the working state, 81. 

The initial Ns state vector would be given as equation (5.3). 

P(O) = [100 ...... 0] (5.3) 

Since all components are initially in the working state, if the first phase is discrete 

then phase success is guaranteed and the original state vector is passed straight to 

phase 2. If the first phase is continuous, the Ns x Ns state transition matrix must be 

created. All possible component state transitions are entered into the transition matrix 

[A]. The identification of states that cause system failure determines absorbing states, 

and thus no transitions out of them are possible. All entries in the row of an absorbing 

state become zero. 
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The set of differential equations are evaluated over the duration of the phase. The 

reliability of the phase is calculated by the sum of the probabilities of the system 

residing in a successful state at the end of phase 1 at t=t1. 

The system can begin a new (next) phase if and only if it is in a successful state for 

both the new phase and the preceeding phase, thus the failed and success states of the 

new phase must be identified. If a successful state of the preceeding phase becomes a 

failed state in the new phase, it is known as a transition failure and causes termination 

of the system. The total transition failure probability on commencing a new phase is 

calculated by the sum of the probability of all such cases at the phase boundary. 

The successful entry into a phase i produces a new set of initial conditions, equation 

(5.4) 

(5.4) 

This set of initial state probabilities is derived from the final state probabilities of the 

previous phase. Since the system cannot reside in a failed state for either phase at the 

transition point all states representative of this are assigned an initial probability of 0: 

For all states} that result in system success for both phases, 

(i.e. remain unchanged) 

For all states k that cause failure in either or both phases, 

If the new phase is of a discrete nature, the phase solution is obtained directly from the 

previous phase. If the new phase is continuous, all possible component state 

transitions are again entered into the transition matrix. The new set of differential 

equations are then solved over the time duration of phase i. 

This process is repeated until the end of the mission is reached. The final mission 

reliability is obtained by the sum of the probabilities that the system is in a successful 

state at the end of the final phase. The algorithm for this method is given in Figure 

5.4. 
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DISCRETE 

Start phase 1 
Initial Conditions 
P(O)=[1 00 ... 0) 

Identify from Full 
Component States those 

that cause System 
Failure and System 

Success in the phase 

Discrete or 
Continuous 

Phase? 
CONTINUOUS 

Construct Nsx Ns 
Markov State 

Transition Matrix for 
Phase i 

Solve N s differential 
equations over Phase 

i (t~1 to tl ) 

Calculate Phase Reliability 
and Unreliability: 

F~tl)=2.P failed states(tj) 
R,{tj)="i.Psuccess states(t/) 

All ~{t) - Probabilities of 
states at boundary tl 

MISSION 
SUCCESS 

PROBABILITY 

=LPsuccess states(tm) 

YES 
End of 

Mission? 
NO i -> i+1 

Initial conditions for 
Phase i equal to final 
state probabilities of 
Phase i-1. All states 

causing failure in 
Phase i-1 given initial 

probability of O. 

P(t/-l) = [P,(t,_,) ,P'(t/-l) ' 

P,(t,_,) , ... PN, (t/-l) 

Failed states for Phase l(t~1 )=0 

TRANSITION 
FAILURE 

PROBABILITY 

=~ P Success states for 

Phase ;-1 that cause failure 

jn Phase I (tj) 

Figure 5.4 Algorithm to Demonstrate Full Markov Method 

An example of a simple 3-phased mission illustrated in Figure 5.5 may be used to 

demonstrate this method. In this example there are a total of four components in the 

system, A, B, C, and D. Each component k has an associated failure and repair rate 

denoted by Ak and Vk respectively. The total number of component states, 24, means 

that continuous phases require the construction of a 16 x 16 state transition matrix. 

The components may be required in some or all of the phases. 
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Phase 1 

A B C 

CONTINUOUS 

Phase 2 

B D 

DISCRETE 

Phase 3 

A B 

CONTINUOUS 

Figure 5.5 Discrete and Continuous Phased Mission 

The first phase is of a continuous nature, commencing at t=O and finishing at t=t1. The 

second phase is instantaneous and thus t1=t2. The third and final phase is again 

continuous and runs from to t=t2 to t=t3. Fault trees represent the failure conditions for 

the system in each phase. 

There are 16 possible combinations of component conditions shown in Figure 5.6. 

The possible state transitions have a rate which corresponds to either the failure or 

repair of a single component. These rates are assumed to be constant for each 

component, and repair is revealed and initialised as soon as component failure occurs. 

The full state transition matrix for all possible 16 x 16 component state transitions, not 

accounting for any particular phase, is represented in equation (5.5). 
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[A] = 

A BeD 
S(ABCD) 0 0 0 0 

I 

S(ABCD) 
2 

S(ABCD) 
3 

S(ABCD) 
4 

S(ABCD) 
5 

S(ABCD) 
6 

S(ABCD) 
7 

S(ABCD) 
8 

S(ABCD) 
9 

o 0 0 1 

001 0 

o 0 1 1 

o 1 0 0 

o 1 0 1 

o 1 1 0 

Where 1 Failed 
S(ABCD) 

10 

S(ABCD) 
11 

o 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 
o Working 

-Lt AD 

vD -L2 
Vc 0 

o Vc 

VB 0 

o VB 

o 0 
o 0 

VA 0 

o VA 

o 0 

o 0 

o 0 

o 0 
o 0 
o 0 

S(ABCD) 1 0 1 1 
12 

S(ABCD) 1 1 0 0 
\3 

S(ABCD) 1 1 0 1 
14 

S(ABCD) 1 1 1 0 
15 

S(ABCD) 1 1 1 1 
16 

Figure 5.6 Four Component State Table 

.le 0 
o .le 

-L3 AD 

vD -L4 
o 0 
o 0 

VB 0 

o VB 

o 0 

o 0 

VA 0 

o VA 

o 0 
o 0 
o 0 
o 0 

AB 0 

o AB 
o 0 

o 0 

-LS AD 

vD -L6 
Vc 0 

o Vc 
o 0 

o 0 
o 0 

o 0 

VA 0 
o VA 

o 0 
o 0 

o 0 
o 0 

AB 0 
o AB 

.le 0 
o .le 

-L1 AD 

vD -L8 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

VA 0 

o VA 

AA 0 

o AA 

o 0 
o 0 
o 0 
o 0 

o 0 
o 0 

-L9 AD 

vD -LIO 
Vc 0 

o Vc 

VB 0 

o VB 

o 0 
o 0 

o 0 
o 0 

AA 0 

o AA 

o 0 
o 0 

o 0 
o 0 

.le 0 
o .le 

-LII AD 

vD -Lt2 
o 0 
o 0 

VB 0 

o VB 

o 0 
o 0 
o 0 
o 0 

AA 0 

o AA 

o 0 
o 0 

AB 0 

o AB 

o 0 
o 0 

-LI3 AD 

vD -Lt4 
Vc 0 

o Vc 

o 
o 
o 
o 
o 
o 

AA 
o 
o 
o 

AB 
o 

.le 
o 

where element in row j and column k represents the transition from state 

SjABCD) to SiABCD) 

and L j = sum of elements in row j (except element jj) 

123 

o 
o 
o 
o 
o 
o 
o 

AA (5.5) 
o 
o 
o 

AB 

o 
.le 

l 



Phase 1 

All components are considered to be in the working state at the start of a mission and 

so the initial state probabilities are defined in equation (5.6). 

P(O) = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (5.6) 

Phase I will complete successfully as long as components A, B, and C do not reside in 

the failed state at the same point in time, i.e. states Sl(~CD) and Sl(:BCD) are not reached. 

As these states cause system failure, they are defined as absorbing states. Once an 

absorbing state is entered, no transitions may be made into other states and the system 

will remain failed. All matrix entries on the row of an absorbing state are assigned to 0 

in [A] to represent this. The transition matrix becomes as shown in equation (5.7). 

-2:1 AD Ac 0 AB 0 0 0 AA 0 0 0 0 0 0 0 

VD -2:2 0 Ac 0 AB 0 0 0 AA 0 0 0 0 0 0 

Vc 0 -2:3 AD 0 0 AB 0 0 0 AA 0 0 0 0 0 

0 Vc vD -2:4 0 0 0 AB 0 0 0 AA 0 0 0 0 

vB 0 0 0 -2:s AD AC 0 0 0 0 0 AA 0 0 0 

0 vB 0 0 VD -2:6 0 Ac 0 0 0 0 0 AA 0 0 

0 0 vB 0 Vc 0 -2:7 AD 0 0 0 0 0 0 AA 0 

0 0 0 vB 0 Vc VD -2:s 0 0 0 0 0 0 0 AA (5.7) [AJ= 
0 0 0 0 0 0 0 -2:9 AD Ac 0 AB 0 0 0 vA 

0 vA 0 0 0 0 0 0 vD -2:10 0 Ac 0 AB 0 0 

0 0 vA 0 0 0 0 0 Vc 0 -2:" AD 0 0 AB 0 

0 0 0 vA 0 0 0 0 0 Vc vD -2:12 0 0 0 AB 

0 0 0 0 vA 0 0 0 vB 0 0 0 -2:13 AD Ac 0 

0 0 0 0 0 vA 0 0 0 vB 0 0 VD -2:14 0 Ac 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The evaluation of the state probabilities over the period from the start of phase 1 (t=0) 

to the end of phase 1 (t=t1) allows the continuous model to be solved by the set of 

differential equations as represented in equation (5.2). This will lead to a set of values 

representing the probability that the system is in each of the 16 states at the end of 

phase 1. Phase success is achieved if the system is found to reside in any of the 

working states (Sl(ABCD) - Sl<:BCD») at the end of phase 1. As the states are mutually 

exclusive, state probabilities can be added and the reliability at the end of phase 1 may 

be represented by equation (5.8). 

124 



Phase 2 

14 

R(t
l
) = LPj(ABCD) (t

l
) 

j=1 

(S.8) 

To successfully begin phase 2, the system must reside in a state that produces a 

working system for both phases 1 and 2. For phase 2 to be in a successful state, 

component A must be working OR B and D are both working, i.e. the system must be 

in one of states S(ABCD) - S(ABCD) and S(ABCD) Transition failure will occur if the 
I 9 11' 

system is in a working state for the first phase, but a failed state for the second phase, 

in this case SI<:CD) and SgBCD) - SI<:"BCD). Since phase 2 is a discrete phase, the phase 

unreliability is equal to the transition failure probability in equation (S.9). 

14 

Tr(t
l
) = Pl~ABCD)(tl) + LPj(ABCD) (t

l
) 

j=12 

where Tr(t) is the probability of transition failure at time t 

(S.9) 

The conditions to represent successful entry to phase 2 are found by the state 

probabilities at the end of phase 1. All states that result in either phase 1 failure or 

phase 2 failure are assigned a final probability of 0 at t=t1. 

As this second phase is a discrete phase, t1=t2, and no state transitions may be made 

during the phase. Phase success is achieved if the system resides in a successful state 

upon transition from phase 1. The probability that the system successfully completes 

phase 2 is the probability that the system resides in a state which is successful for both 

phases 1 and 2, SI(ABCD) - S~ABCD) and SI(~BCD), and is found by equation (S.1 0). 

Phase 3 

9 

R(t
2

) = LPj(ABCD) (t
2

) + ~~ABCD) (t
2

) 

j=1 

(S.10) 

To successfully begin phase 3, the system must reside in a state that produces a 

working system for both phases 2 and 3. Transition failure will occur if the system is 
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in a working state for phase 2 and a failed state for phase 3, S~ABCD) - S~ABCD) and 

Sl(~BCD), and is found by equation (5.11). 

9 

Tr(t2) = LP
j
(ABCD\t2 ) + ~~ABCD)(t2) 

j=5 

(5.11) 

Phase 3 will be in the working state as long as A or B do not fail, thus the success 

states for phase 3 are Sl(ABCD) - S~ABCD). All other states are assigned an initial 

probability of O. 

The state probabilities are again evaluated over phase 3 [t2, t3) by the solution of the 

set of differential equations as represented in equation (5.2). The state transition 

matrix will resemble that of equation (5.5), however since states S~ABCD) - Sl(:SCD) are 

failed and thus absorbing states, all transition rate entries along rows 5-16 become O. 

This will again lead to a set of values representing the probability that the system is in 

each of the 16 states at the end of phase 3. Phase and mission success is achieved if 

the system is found to reside in any of the phase 3 working states (S?BCD) - S~ABCD») at 

time t=t3' Reliability at the end of phase 3 may be represented by equation (5.12) 

4 

R(t3) = LPj(ABCD) (t3) 
j=l 

And thus the probability of mission success is given by equation (5.13) 

4 

R - " p(ABCD) (t ) 
MISS-L,. j 3 

j=l 

5.2.2 Combined Reduced Markov and Fault Tree Method 

(5.12) 

(5.13) 

Full Markov models can get very large and in some cases become too large to 

generate and solve. More efficient ways need to be found which will reduce the size 

of the Markov model generated. It is only the continuous phases where the reliability 

calculations necessitate the use of Markov methods. As such it may be possible to 

develop a method which simplifies the Markov model, to some extent, by removing 

components which only contribute to the failure of discrete phases. 
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In segregating components that only feature in discrete phases from those which 

contribute to the failure of continuous phases, it may be possible to analyse discrete 

and continuous phases using different methods. A full Markov model for all 

components featured in only continuous phases (Nscont x NScont) may be detennined to 

identify the requirements for phase success using the set of differential equations 

given in equation (5.2). The elimination of components used in only discrete phases 

reduces the size of the full Markov model. Fault trees may then be used to obtain the 

minimal cut sets of a discrete phase to recognise working and failed phase states of the 

Markov model combined with discrete phase component states to evaluate phase 

success. 

At the start of a mission, it is assumed that all components are in the working state. 

Therefore considering continuous phases, the initial NScont state probability matrix 

would be given as in equation (5.14). 

P(O) = [100······0] (5.14) 

As the first phase will be continuous it is required to identify, from amongst the Ns 
cont 

system states of the reduced Markov model, those that cause system failure and those 

that cause system success for phase 1. The N Scont x N Scont transition matrix [ A] is 

created. All entries in the row of an absorbing failed state become zero, and the set of 

NScont differential equations are evaluated over the duration of the phase. The 

reliability of the phase is calculated by the sum of the probabilities of the system 

residing in a successful state at the end of phase 1, at time t= t1. 

If the proceeding phase is continuous, the final state probabilities with failed states set 

to zero may be directly passed to the next phase to give a set of initial state 

probabilities. All states that cause failure in the proceeding phase contribute to the 

phase transition failure and are also assigned a probability of o. The following phase 

would then be solved in the same way. 

If the proceeding phase is discrete, it may feature components that were not 

considered in the model for the previous phase. The probability of a component c that 

is not required for the Markov model of continuous phase i being in the failed and 
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-
success state at the end of the phase is easily evaluated by equations (5.15) as derived 

in Section 2.4.2.2. 

ac (tj ) = 1- qc (tj ) (5.15) 

The states of the continuous phase Markov model are expanded to give the full system 

states for the proceeding discrete phase, and their likelihood determined at the end of 

the continuous phase. By the multiplication of the reduced state probabilities with the 

availability or unavailability (as appropriate) of the excluded components, it is 

possible to achieve each ofthe desired expanded state probabilities. 

The failure and success states of the discrete phase may be identified using minimal 

cut sets determined from the fault tree analysis. All states causing an instant failure in 

the phase contribute to the phase transition failure and are assigned probability 0 for 

input into the following phase. 

When entering a continuous phase from a discrete phase, the expanded discrete states 

must be reduced. This is achieved by the summation of the probabilities of all 

expanded states that contribute to each of the continuous Markov model states to 

produce a reduced list of initial state probabilities (equation (5.16)) for input to the 

next phase i. 

(5.16) 

All states that cause failure in either the current or previous phase, and also those that 

cause transition failure are assigned an initial probability of o. 

The algorithm to accomplish this method is given in Figure 5.7. The application of 

this algorithm may be demonstrated using the 3-phased mission in Figure 5.5. 
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Figure 5.7 Algorithm to Demonstrate Combined Markov and Fault Tree Methods 

Prior To Analysis 

It can be noted that component D is only required in the discrete phase 2. Therefore 

the reduced continuous phase Markov model is formed by considering the states of 

only components A, Band C as shown in Figure 5.8. The reduced state transition 

matrix, not accounting for any particular phase, is given in equation (5.17). 
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A B C 

S(ABC) 
1 0 0 0 

S(ABC) 
2 0 0 1 

S(ABC) 
3 0 1 0 

S(ABC) 
4 0 1 1 

S(ABC) 
5 1 0 0 

S(ABC) 
6 1 0 1 

S(ABC) 
7 1 1 0 

S(ABC) 
8 1 1 1 

Figure 5.8 Three Component State Table 

-Il Ae AB 0 AA 0 0 0 

Ve -I2 0 AB 0 AA 0 0 

VB 0 -I3 Ae 0 0 AA 0 

[A] = 
0 VB Ve -I4 0 0 0 AA 

0 0 0 -Is Ae AB 0 
(5.17) 

vA 
0 vA 0 0 ve -I6 0 AB 

0 0 vA 0 VB 0 -I7 Ae 

0 0 0 vA 0 VB Ve -I8 

Phase 1 

The analysis for phase 1 is performed in the same way as that of the full Markov 

method. However in this case there is only one failed state, S(ABC) • As this failed state 
8 

is absorbing, the transition rate entries along row 8 become 0 and the transition state 

matrix is as shown in equation (5.18). 

-Il Ae AB 0 AA 0 0 0 

ve -I2 0 AB 0 AA 0 0 

VB 0 -I3 Ae 0 0 AA 0 

[A] = 
0 VB ve -I4 0 0 0 AA 

0 0 0 -Is Ae AB 0 
(5.18) 

vA 
0 vA 0 0 ve -I6 0 AB 

0 0 vA 0 VB 0 -I7 Ae 

0 0 0 0 0 0 0 0 
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The initial conditions for the probability of each of the states are given by equation 

(S.19). 

P(O) = [1 0 0 0 0 0 0 0 ] (S.19) 

The solution of the set of differential equations (S.2) produces the final state 

probabilities at t] for each of the 8 states in Figure S.8. The success probability for 

phase 1 is found by the probability that the system resides in any of the phase 1 

success states, S(ABC) - S(ABC) , in equation (S.20). 
1 7 

Phase 2 

7 

R(t)) = LPj(ABC) (t)) 
j=) 

(S.20) 

Until now, the state of component D has not been considered. It is assumed that 

component D could have failed during phase 1 with failure rate A.D , and been repaired 

in phase 1 with repair rate U D. To begin phase 2, the probability of this component 

being in the failed and working state at the end of phase 1 must be calculated. As a 

discrete phase occurs at an instant of time, these probabilities are easily found by the 

unavailability and availability of the component at t=t]. Since component D is 

repairable up to this point, this would be calculated using equations (S.IS) where i=1. 

The state probabilities for the end of phase 1 may be multiplied by the availability and 

unavailability of component D at the phase change time to produce the probabilities of 

the full listing of all 16 possible phase states as shown in Table S .1. 

Phase 2 transition failure will occur if the system resides in a state representative of 

success in phase 1 but failure in phase 2 at the phase boundary, and would have a 

probability associated with it found by summing the likelihoods of all such states. 
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Discrete Phase 2 

State Probability 

(Figure 5.6) 
p'(ABCD) 

1 

p(ABCD) 
2 

p(ABCD) 
3 

p(ABCD) 
4 

p(ABCD) 
5 

p(ABCD) 
6 

p(ABCD) 
7 

p(ABCD) 
8 

p,(ABCD) 
9 

p,(ABCD) 
10 

p'(ABCD) 
11 

p'(ABCD) 
12 

p'(ABCD) 
13 . 

p'(ABCD) 
14 

p'(ABCD) 
15 

p'(ABCD) 
16 

Table 5.1 

Component Calculation from Phase 1 Continuous State 

A B C D Probabilities (Figure 5.8) 

0 0 0 0 p.,(ABC) (t
l
). aD (tl) 

0 0 0 1 p.,(ABC) (t
l
). q D (t

l
) 

0 0 1 0 p?BC) (tl). aD (tl) 

0 0 1 1 p}ABC) (tl). q D (t
l

) 

0 1 0 0 P3(ABC) (tl)· aD (t
l

) 

0 1 0 1 P3(ABC) (tl)· q D (tl) 

0 1 1 0 P4(ABC) (tl)· aD (t
l

) 

0 1 1 1 p}ABC) (t
l
). q D (t

l
) 

1 0 0 0 p?BC)(tI)· aD (t l ) 

1 0 0 1 p?BC) (t l )· q D (tl) 

1 0 1 0 P6(ABC) (tl)· aD (t
l

) 

1 0 1 1 P6(ABC) (t
l
)· q D (t

l
) 

1 1 0 0 p}ABC) (tl). aD (t
l

) 

1 1 0 1 P7(ABC) (tl)· q D (t
l

) 

1 1 1 0 0 

1 1 1 1 0 

Obtaining Discrete Phase 2 State Probabilities from Reduced 

Continuous Phase 1 State Probabilities 

It is possible to evaluate the failed states of phase 2 using fault tree analysis. By 

obtaining the minimal cut sets for this phase it enables identification of all states that 

would cause the phase transition to result in failure of the system. In this case the 

minimal cut sets are: 

AB 

AD 

From the full component state list (Figure 5.6) it can be seen that the failed states for 

this phase are S(ABCD) and S(ABCD) _ S{IfBCD) However since states S(ABCD) _ S(ABCD) 
10 12 16·' 15 16 

represent failure in phase 1, the transition failure is found by the sum of the 

Probabilities that the system is in states S(ABCD) and S(ABCD) - S(ABCD) at the transition 
10 12 14 
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point between the first and second phases in equation (5.9). So, using the extended 

(full) state listing, the success of this phase is again found using equation (5.10). 

Phase 3 

All states that cause failure in phase 2 (S(ABCD) and S(ABCD) - S(ABCD») are assigned a 
10 12 16 

final probability of 0 for entry to phase 3. The expanded discrete phase 2 states must 

be reduced to give the initial continuous Markov model states for phase 3 (Figure 5.8). 

This is achieved by the summation of the probabilities of all expanded states that 

contribute to each of the continuous Markov model states to produce a reduced list of 

initial state probabilities for input to phase 3 and is summarised in Table 5.2. 

Continuous State Component State Probability from Phase 2 Discrete 

Ref (Listed in 

Figure 5.8) 

S(ABC) 
1 

S(ABC) 
2 

S(ABC) 
3 

S(ABC) 
4 

S(ABC) 
5 

S(ABC) 
6 

S(ABC) 
7 . 

S(ABC) 
s 

Table 5.2 

States State Probabilities (Figure 5.6) 

A B C 

0 0 0 p.,(ABCD) (/
2

) +p?BCD) (/
2

) 

0 0 1 P3(ABCD) (/
2

) + p?BCD) (/
2

) 

0 1 0 ps(ABCD) (/
2

) +p?BCD) (/
2

) 

0 1 1 p?BCD) (/
2

) + PS(ABCD) (/
2

) 

1 0 0 P9(ABCD) (/
2

) 

1 0 1 p,(ABCD)(1 ) 
11 2 

1 1 0 0 

1 1 1 0 

Obtaining Continuous Phase 3 Initial State Probabilities from 

Expanded Discrete Phase 2 State Probabilities 

To successfully begin phase 3, the system must reside in a state that produces a 

working system for both phases 2 and 3. From the simplified component state list 

(Table 5.2) it may be identified that the states to successfully complete phase 2 are 

those where either A or B are working, Sl(ABC) - S~ABC). The success states for phase 3 

are Sl(ABC) - SJABC). Therefore phase 3 transition failure will occur if the system is in 

states SjABC) - S~ABC) and is given in equation (5.21). 

6 

Tr(t2) = Ip?BC) (t2) 
j=3 
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Since the success states for phase 3 are Sl(ABC) - S~ABC) , all other states are assigned an 

initial probability of 0 on entering the phase. 

The state probabilities are again evaluated over the time between the start of phase 3 

(t=t2) and the end of phase 3 (t=t3) by the solution of the set of differential equations 

as represented in equation (5.2). The state transition matrix will resemble that of 

equation (5.17), however since states S1
AB

C) - SiABC) are failed and thus absorbing states, 

all entries along rows 3-8 will be O. This will again lead to a set of values representing 

the probability that the system is in each of the 8 states at the end of phase 3. Phase 

and mission success is achieved if the system is found to reside in either of the 

working states (Sl(ABC)_S~ABC») at the end of phase 3. Reliability at the end of phase 3 is 

represented by equation (5.22). 

2 

R(t3) = LP?BC) (t3) 
j=i 

And thus mission success is denoted by equation (5.23). 

2 

RM1SS = LP?BC) (t3) 
j=i 

(5.22) 

(5.23) 

It can be seen that by identifying components that are only present in discrete phases, 

they can be eliminated from the Markov model which then only considers components 

featuring in continuous phases. This can result in a much smaller set of system states 

and therefore equations. The model formulation is such that every component which is 

removed from the Markov model will halve its size. The state of all components used 

in only discrete phases is easily calculated at any point to allow accurate calculation of 

phase success. 

5.2.3 Combined Minimal Markov and Fault Tree Method 

The elimination of components used in only discrete phases from the full Markov 

Model results in a reduction in the number of system states and thus the number of 

differential equations to be solved over the phase duration. However, the solution of 

all continuous phases still requires a transition matrix defined by the number of 
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possible states of all remaining components i.e. components which appear in any of 

the continuous phases. The Markov models can still be large and so there is still room 

for improvement. 

The smallest possible Markov models that could be formed are those used to model 

each individual continuous phase. Analysis over a continuous phase duration is 

performed by application of a minimal Markov model (Ns, x Ns/) using only the 

components required in the particular phase i. The full set of states for the total 

mission is reduced to evaluate initial conditions for each phase, and expanded out 

again at the end of a phase to enable calculation of successful entry to the immediately 

succeeding phase. Discrete phase success may again be calculated using fault tree 

analysis. 

At the start of a mission, it is again assumed that all components are in the working 

state, which is labelled state SI. Since the first phase will be a continuous phase, the 

initial Ns, state probability matrix is given by: 

P(O) = [1 0 0····· ·0] (5.24) 

Identification of the success and failure states out of the minimal Ns, states allows the 

Ns, x Ns, transition matrix [A] to be created. All entries in the row of an absorbing 

failed state become zero, and the set of N s. differential equations are evaluated over 
I 

the duration of the phase. The reliability of the phase is calculated by the sum of the 

probabilities of the system residing in a successful state at the end of phase 1 (t=tl). 

As proceeding continuous phases may not reqmre the same components, it is 

necessary to expand the reduced continuous phase component state probabilities into 

the full Ns state probabilities regardless of whether the next phase is discrete or 

continuous. By the mUltiplication of the reduced state probabilities with other 

excluded component availabilities and unavailabilities at the end of the phase, it is 

possible to achieve each ofthe desired full state probabilities. 
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The failure and success states of a discrete phase may be identified using fault tree 

analysis. All states causing an instant failure in the phase contribute to the phase 

transition failure and are assigned a probability 0 for input into the following phase. 

To begin a later continuous phase it is necessary to identify the initial state 

probabilities. The full Ns states are minimised to states that account for only those 

components contributing to the phase. This is achieved by the summation of the 

probabilities of all full states that contribute to each of the reduced states to produce a 

minimal list of initial state probabilities for input to the next phase i, given in equation 

(5.25). 

(5.25) 

All states that cause failure in either the current or the previous phase, and also those 

that cause transition failure are assigned an initial probability of O. 

This method leads to a sequence whereby the reduction of component states during a 

phase is expanded to give a full set of Ns state probabilities at all phase boundaries. 

The probability of each component c that is not required for a particular continuous 

phase Markov model being in the failed or success state at the end of the phase is 

evaluated using equations (5.15). 

The minimal Markov model state probabilities at the end of phase i are multiplied 

with the unavailability or availability of all components not required in the phase to 

evaluate the full Ns state probabilities. These full state probabilities are then easily 

combined to provide reduced state probabilities for input into further minimal Markov 

models. The algorithm for this method is given in Figure 5.9. 
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Figure 5.9 Algorithm to Demonstrate Minimal Markov and Fault Tree Method 

Demonstrating the Minimal Markov model approach, the simple 3-phased mission 

example defined earlier (Figure 5.5) is again used. 

Phase 1 

The first phase requires all components that are not discrete phase components and 

therefore the analysis is the same as in Section 5.2.2. The success probability ofphas~ 

1 is evaluated by equation (5.20). 
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Phase 2 

This discrete phase is solved in the same way as Section 5.2.2 to obtain a full solution 

of all Ns state probabilities (Table 5.1), and calculations of phase (transition) failure 

(equation (5.9)), and phase success (equation (5.10)). All phase 2 failure states are 

assigned a final probability of zero for entry to phase 3. 

Phase 3 

The final phase requires only 2 out of the 4 possible components, A and B. Therefore 

the full 16 states representing all component combinations can be reduced to a 4 state 

list shown in Table 5.3. 

Full states from Figure 5.6 A B 

S(ABCD) S(ABCD) S(ABCD) S(ABCD) 
1 '2 '3 '4 • S(AB) 

1 0 0 
S(ABCD) S(ABCD) S(ABCD) S(ABCD) 

5 '6 '7 '8 • S(AB) 
2 0 1 

S(ABCD) S(ABCD) S(ABCD) S(ABCD) • S(AB) 1 0 
9 , 10 , 11 , 12 3 

• S(AB) 1 1 S(ABCD) S(ABCD) S(ABCD) S(ABCD) 4 
13 , 14 , 15 , 16 

Table 5.3 Two Component State Table 

The full possible 2-component state transition matrix A is given by equation (5.26). 

-Ll AB AA 0 

[A] = VB -L2 0 AA 

0 -L3 AB 
(5.26) 

VA 

0 VA VB -L4 

Since SiAB) - S~AB) are failed and thus absorbing states, the state transition matrix for 

this phase becomes as shown in equation (5.27). 

-Ll AA AB 0 

[A] = 
0 0 0 0 

0 0 0 0 
(5.27) 

0 0 0 0 
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The initial probabilities are calculated by the reduction of the full set of system states 

to those states required for phase 3. For this phase, the four minimal states SI(AB)

S~AB) would have initial probabilities found by the full Ns state list (Table 5.3) as 

shown in equations (5.28). 

Full States 
4 

~(AB)(t2) = LP';(ABCD) (t2) 
j=1 

Full States 
12 

~(AB)(t2) = LP?BCD) (t2) 
j=9 

Full States 
8 

p?B) (t2) = LP?BCD) (t2) 
j=5 

Full States 
16 

P4(AB) (t2) = LP?BCD)(t2) 
j=i3 

(5.28) 

From the simplified component state list (Table 5.3) it may be identified that the states 

to successfully complete phase 2 are those where either A or B are working, SI(AB)_ 

SjAB) . The success state for phase 3 is SI(AB). Therefore phase 3 transition failure will 

occur if the system is in states S~AB) - SjAB) ,and is given in equation (5.29). 

3 

Tr(t 2) = L p';(AB) (t 2) 
j=2 

(5.29) 

Since the success state for phase 3 is SI(AB) , all other states are assigned an initial 

probability of 0 on entering the phase. 

The initial minimal phase state probabilities may be entered into the system of state 

differential equations (5.2) with transition matrix (5.27) and solved over the duration 

of phase 3 to calculate the probability of the system residing in each of the 4 possible 

states at the end of the phase. Phase success would only be found if the system was in 

state SI(AB) of Table 5.3 with both components working at the end of the phase in 

equation (5.30). 

R(t3) = ~(AB) (t3) (5.30) 

And thus mission success maybe found by equation (5.31). 

(5.31) 
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If subsequent phases were present in the mission, these 4 minimal phase 3 state 

probabilities would again be expanded to produce a full set of system state 

probabilities. It is possible to calculate the availability and unavailability of all 

components not required in the phase using equations (5.15). The probability of the 

system residing in each of the 4 minimal system states would be multiplied by every 

possible failure and success combination of all other components at the end of the 

phase. This produces a full set of system state probabilities at the phase boundary for 

input to the next phase. 

The extra computational effort required in the expansion and reduction of system 

states between phases is insignificant compared with the considerable reduction of 

intensive effort required to solve the reduced system state differential equations over a 

long time period. 

5.2.4 Comparison of Results 

A general computer program has been developed using C to implement the three 

methodologies for the phased mission analysis of repairable systems. The problem 

- defined in Figure 5.5 has been analysed by this software. 

The components A, B, C and D are each given a failure and repair rate (per hour) as 

follows: 

AA =0.001 \) A = 0.02 

AB =0.0005 \)B = 0.001 

Ac =0.0008 \)c = 0.04 

AD =0.002 \)D = 0.002 

The phases are defined to be: 

Phase 1 Continuous 100 hour 

Phase 2 Discrete 

Phase 3 Continuous 200 hours 

The comparison of outputs for phase failure, transition failure and mission success by 

each of the three methods is given in Table 5.4. 
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Full Markov Method 
Reduced Markov and Minimal Markov and 

FT Method FT Method 

Mission Reliabilit 6.7709x10-1 6.7707x10-1 6.7705x10-1 

Phase 1 Unreliabili 1.2523x10-4 1.2522x10-4 1.2521 x1 0-4 

Phase 2 Unavailabili 8.4371 x1 0-3 8.4353x10-3 8.4353x10-3 

Phase 3 Unreliabilit 2.3668x10-1 2.3666x10-1 2.3666x10-1 

Phase 2 Transition Failure 8.4371 x1 0-3 8.4353x10-3 8.4353x10-3 

Phase 3 Transition Failure 7.7732x10-2 7.7725x10-2 7.7725x10-2 

Table 5.4 Comparison of Mission Reliability Data for Three Methods 

It can be seen that all methods produce consistent results for the test problem. The 

differences in part will be due to the errors in the numerical solution routine for the 

differential equation using time increments of L\t=0.05s. In this small problem, the 

gains in efficiency cannot be demonstrated. However for large, real systems, problems 

this can reasonably be expected to be significant. 

5.2.4.1 Further Example 

To test this method more fully and justify the generality of the methods, a mission 

consisting of an increased number of phases and components may be considered in 

Figure 5.10. 

Phase 1 Phase 3 Phase 5 

~I 
Phase 2 Phase 4 

A B A B C A C 

BD E C D 

CONTINUOUS DISCRETE CONTINUOUS DISCRETE CONTINUOUS 

Figure 5.10 Further Example 

The component usage may be summarised as follows: 
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Component Phases Required Failure Rate (Per hour) Repair Rate (per hour) 

A 1,2,3,5 0.0001 0.02 

B 1,2,4 0.00005 0.001 

C 2,3,4, 5 0.00008 0.04 

D 4,5 0.0002 0.002 

E 4 0.0005 0.005 

Phase 1 : Continuous 100.0 Hour 

Phase 2: Discrete 

Phase 3 : Continuous 200.0 Hours 

Phase 4: Discrete 

Phase 5: Continuous 100.0 Hour 

The phase results by each method are given in Table 5.5. 

Full Markov Reduced Markov Minimal Markov 
Method and FT Method and FT Method 

Mission Reliability 9.8201 x1 0-1 9.8194x10-1 9.8283x10-1 

Phase 1 Unreliability 3.8140x10-5 3.8135x10-5 3.8132x10-5 

Phase 2 Unavailability 1 . 7633x1 0-5 1.7631x10-5 1. 7629x1 0-5 

Phase 3 Unreliability 1.1591x10-4 1.1590x10-4 1 .1596x1 0-4 

Phase 4 Unavailability 2.0213x10-3 2.0213x10-3 2.0223x10-3 

Phase 5 Unreliability 1.0274x10-2 1.0272x10-2 1.0282x10-2 

Phase 2 Transition Failure 1.7633x10-5 1.7631x10-5 1 . 7629x1 0-5 

Phase 3 Transition Failure 0 0 0 
Phase 4 Transition Failure 2.0213x10-3 2.0213x10-3 2.0223x10-3 

Phase 5 Transition Failure 4.9308x10-3 4.9311x10-3 4.9340x10-3 

Time Taken to Process Results (s) 45.0 6.0 4.0 

Table 5.5 Comparison of Mission Reliability Data for Three Methods 

The minimal method is found to vastly reduce computational time whilst producing 

consistent results to the other methods using time increments of ~t=0.05s in the 

numerical solution routine for the differential equations. This minimal method greatly 

reduces the time required to perform reliability calculations on a phased mission 

compared to the full Markov solution implemented in the past. 
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5.3 Reliability of a Mission with Non-Repairable Continuous Phases 

So far only missions comprising of repairable continuous phases and instantaneous 

discrete phases have been considered. Another possibility is that maintenance may not 

be allowed for certain periods of time throughout a mission. For such a continuous 

phase the components would be classed as non-repairable. 

The proposed methods in the previous sections allowed the application of fault tree 

methods to discrete phases to obtain the minimal cut sets for the phase and thus 

establish working and failed phase states. However, as no state changes were possible 

at this discrete phase, state probabilities remained the same once transition from the 

previous phase had been completed. 

The introduction of missions that comprise of both non-repairable and repairable 

continuous phases means that the methods presented in Sections 4.2.3 and 5.2.3 to 

model the failure of a component over a continuous phase cannot be implemented. 

Component failure probability distributions are not consistent throughout the duration 

of the mission, and must be modelled separately for each phase. Methods are 

presented to calculate the probability that a component resides in a working or failed 

state at the end of a repairable or non-repairable continuous phase in Sections 5.3.1 

and 5.3.2. A technique is presented for solution of missions comprising of both non

repairable and repairable continuous phases in Section 5.3.3. 

5.3.1 Component Failure Probability Over a Non-Repairable Phase 

The probability density function of a component c in a non-repairable mission is 

found by the negative exponential distribution given in equation (5.32). 

for t>O (5.32) 

The unavailability of the component, qc(t) , with time over the mission duration is 

modelled by the cumulative probability function Fe (t) in equation (5.33). 
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(5.33) 

In the case of a completely non-repairable mission (Chapter 4), the failure distribution 

of all components remains constant throughout the mission. The unavailability of a 

component c over the duration of the mission would be modelled as shown in Figure 

5.1 1 (a), and for each separate phase in 5.1 1 (b). 

Unavailability 

qc(t) 
1 

Phase 1 Phase 2 : 
1 

o 

1 1 
1 1 
IPhase 41 Phase 3 

--!--~--

(a) Over the Mission 

Unavailability 

t t;-1 

(b) During Phase i 

Figure 5.11 Unavailability of a Non-Repairable Component 

t 

The unavailability of the component over phase i would be derived in a similar way to 

equation (5.33) by integration of the probability density function (equation (5.32)). 

The integration time limits for phase i would be t=t;_1 to t=t; in equation (5.34). 

(5.34) 

For sequences of repairable and non-repairable phases, the unavailability of a 

component over a non-repairable phase becomes more complex. The cumulative 

probability function cannot be represented as in equation (5.33) since this implies that 

the negative exponential distribution is continuous from t=O to t=tm and that the initial 

component c unavailability, qc(ti-l) , in any non-repairable phase i of a multi-phased 

mission is found by equation (5.35). 

q (t. ) = 1-e-Adl
-
I 

C I-I (5.35) 
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Each non-repairable phase following any sequence of repairable and non-repairable 

phases will have a different negative exponential distribution dependent on the 

probability of the component being in the failed state at the start of the phase. The 

distribution of a non-repairable component unavailability can be obtained by Laplace 

transforms (Section 2.4.2.1). The Laplace transform of a single component 

unavailability (equation (2.47)) with initial failure probability qc(O) at t=0 is given in 

equation (S.36). 

(S.36) 

The inverse of equation (S.36) gives the appropriate exponential distribution with time 

t in equation (S.37). 

q c (t) = 1-ac (O)e -Act (S.37) 

where t is measured from the start of the mission 

Since we require the unavailability of the component over phase i, the initial failure 

probability of component c at t=ti-l is q c (ti-l) , and t must be replaced by t-ti-l as shown 

in equation (S.38). 

(S.38) 

The probability that the component is in the failed state at the end of phase i can be 

found by solution of equation (S.38) at t=ti in equation (S.39) 

q (t.) = 1- a (t. )e-'<c(t;-t;-I) 
c , c ,-1 (S.39) 
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The probability of component c failure during this non-repairable phase is then 

evaluated as the difference in unavailability between the start of the phase (t=t,.-I) and 

the end of the phase (t=t,.) in equation (5AO). 

q = (l-a (t. )e-A.c(ti-ti-I»)_(l_a (t. )e-A.C(ti-l-ti-I») 
Ci C 1-1 C 1-1 

= (1- ac (tj-l )e-Ac(li-ti-l) )- (1- ac (t,._I)) (5AO) 

= a
c 
(tj-l) (1- e -A.c(t/-ti - 1) ) 

The initial component c availability in phase i, aC(ti-I) ' is obtained directly from the 

previous phase and will be dependent on the nature of phase i-I. 

5.3.2 Component Failure Probability Over a Repairable Phase 

The solution to a repairable phase is achieved by the Markov method. If a component 

c is required for successful system operation in a repairable phase, the final 

component availability would be derived from the Markov state model. The 

probability that the component is in the working or failed state at the end of the phase 

i is found by the sum of all Markov states with contribution from the component 

working or failed respectively in equations (SAl). 

ac(tJ = L~(tJ 
j slates with 
cworldng 

qc(tJ = L~(tJ 
k states with 
cfailed 

(SAl) 

If the component is not required during the repairable phase, the final component 

availability must be obtained using alternative methods. The unavailability of a 

component not required in a repairable single phase mission is given in equation 

(2.56). For missions of multiple phases, this equation cannot be used since it implies 

the exponential distribution is continuous from t=O to t=tm and the initial component c 

unavailability, q c (tj-}) , in any phase i of a multi-phased mission is found by equation 

(5A2). 

(5A2) 

The probability that a component will fail during a repairable phase given any initial 

value of unavailability is required. This is modelled in Figure 5.12. 
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Unavailability qc(t) 

A __ c_ 

A +0 
C C 

ti-1 t 

Figure 5.12 Unavailability of a Discrete Phase Component During Continuous 

Phase i 

In the same way as for a component over a non-repairable phase, the exponential 

unavailability model must be derived using Laplace transforms. The Laplace 

transform for the unavailability of a single repairable component (equation (2.54)) is 

given in equation (5.43). 

This function is inverted at t=ti_1 in equation (5.44). 

(5.44) 

Since ac (tH) + q c (tH) = 1, the distribution of unavailability of the component 

becomes as given in equation (5.45). 

The probability that the component is in the failed state and success states at the end 

of phase i is found by equations (5.46) and (5.47) respectively. 

(5.46) 

(5.47) 
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The initial component availability, aC(ti-t) and unavailability, qc(ti-t), in phase i is 

obtained directly from the previous phase and will be dependent on the nature of 

phase i-I. 

5.3.3 Combined Minimal Markov and Continuous Phase Fault Tree Method 

It may be possible to reduce the Markov models further where non-repairable 

continuous phases are encountered if the failure of the continuous non-repairable 

phase can also be modelled using a fault tree. It is possible to use the previously 

described Markov based methods with repair rates set to zero in non-repairable 

phases. However there would be processing advantages if the results can be 

accomplished using smaller models. 

To demonstrate a method which can accomplish the analysis of such systems, an 

adaptation ofthe example given in Figure 5.5 will be used, shown in Figure 5.13. 

Phase 1 

A B C 

CONTINUOUS 
NON-REPAIRABLE 

Phase 2 

B 0 

DISCRETE 

Phase 3 

A B 

CONTINUOUS 
REPAIRABLE 

Figure 5.13 Discrete and Continuous Phased Mission with Repairable and Non

Repairable Phases 

The probability of a component residing in the working or failed state at the start of a 

non-repairable phase i is obtained from the solution of the previous phase. If the 

previous phase was non-repairable, this would be determined using the method 

presented in Section 5.3.1 (equation (5.39». If the previous phase was repairable, this 
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would be obtained using either of the techniques demonstrated in Section 5.3.2 

(equation (5.41) or (5.46». In the example given in Figure 5.13, the non-repairable 

continuous phase is phase 1, and the system will start at to with all components 

working. If the non-repairable phase were to come later in the mission then failures 

could exist at the start of the phase. 

Qualitative analysis can be implemented to determine the minimal cut sets of a non

repairable continuous phase i. If the initial availability of each component c is known, 

the probability that component c fails during phase i can be obtained using equation 

(5.40). The failure probability of phase i, Q;, can then easily be obtained using a 

simple inclusion-exclusion expansion of the probability of existence of phase i cut sets 

in equation (5.48). 

Nma, Nma, j-I 
Q; = LP(Cj)- LLP(Cji nCk)+ .. ·+(-I)Nmai-Ip(Cli nC2, n ... nCNma) (5.48) 

j=1 j=2 k=1 

where N is the number of minimal cut sets in phase i 
mcsl 

The probability that each component is in the failed or working state at the end of 

non-repairable continuous phase i is obtained using equation (5.39). This is passed 

directly to the next phase which will be solved depending on the type of phase i+ 1: 

• Phase i+ 1 Continuous and Non-Repairable 

The state probabilities for each component can be passed directly to phase i+ 1, 

which will be solved in the same way. 

• Phase i+ 1 Discrete 

The state probabilities for each component can be passed directly to phase i+ 1. 

The probability of the discrete phase failure is obtained by the inclusion

exclusion expansion of the existence of phase i+ 1 cut sets (that did not cause 

phase i failure) at the end of phase i. 

• Phase i+ 1 Continuous and Repairable 

The component state probabilities must be transformed to the required vector 

of initial system state probabilities for solution of the phase i+ 1 Markov 
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model. This is achieved by the combination of the relevant final component 

state probabilities. 

This method can be applied to the example in Figure 5.13 in the following way: 

Phase 1 

The first phase of the mission is non-repairable and all components are assumed to 

begin phase 1 in the working state, i.e. qc(O) = 0 for all c. There is only one minimal 

cut set in this initial phase, {AI. BI. Cl}, and so the phase 1 failure and success 

probabilities are obtained using equation (5.48) in equation (5.49). 

Al = 1 - q A qo qc 
I I I 

(5.49) 

where qCI for each component c is obtained using equation (5.40) 

The final phase 1 component state probabilities are obtained using equation (5.39), 

and are given in equations (5.50). 

(5.50) 

Phase 2 

The second phase of the mission is of a discrete nature. The minimal cut sets for this 

phase are CI={A, B} and C2={A, D}. If either minimal cut set exists at the end of 

phase 1, system failure will occur on transition to phase 2. The probability that a phase 

2 minimal cut set exists at the end of phase 1 is obtained using the inclusion-exclusion 

expansion (equation (5.48)) of the existence of phase 2 cut sets at t=t1 in equation 

(5.51). 

Q2 = qC
1 
(t\) + qC

2 
(t1) - qC

1 
qC

2 
(t1) 

Q2 = q A (tl)qo (t\) + q A (t\)q D (t\) - q At\)qo (t\)qD (t\) (5.54) 

and 
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The final component state probabilities at the end of phase 2 can then be passed 

directly to phase 3. 

Phase 3 

The Markov model for phase 3 requires the initial state probability vector determined 

by components A and B. This would be obtained by the component state probabilities 

at the end of the discrete phase 2 as demonstrated in Table 5.6. 

State Ref A B Initial Phase 3 State Probabilit 
S(AB) 0 0 a A (t2 ) ·aB(t2 ) 

1 

S~AB) 0 1 aAt2 ) ·qB(t2 ) 

S(AB) 
3 

1 0 qAt2 ) . aB (t2 ) 

S(AB) 
4 

1 1 qAt2 ) 'QB(t2 ) 

Table 5.6 . Initial State Probabilities of Repairable Ph ase 3 from Discrete Phase 2 

However, since the event of components A and B both residing in the failed state at 

the discrete second phase would have caused phase 2 failure, it is not possible for the 

system to begin phase 3 in state S!AB) . This is assigned a state probability of zero at 

the start of phase 3. 

The phase 3 transition failure is determined by the event that either of components A 

or B are failed at the start of phase 3 using equation (5.29). The phase 3 Markov 

model is again defined by the transition model given in equation (5.27). Phase 3 

success is found by the probability that the system resides in state SI(AB) at the end of 

the mission in equation (5.30), and the mission success is obtained using equation 

(5.31). 

Using this method, it is possible for repairable and non-repairable continuous phases 

to be solved separately. Each non-repairable phase can be solved using standard fault 

tree techniques, and each repairable phase can be solved by application of a Markov 

model. The expansion of the state probabilities at the end of each phase allows the 

unavailability or availability of all components to be calculated for transition to the 

next phase. The failure probability of an irrelevant component over a non-repairable 
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or repairable phase can easily be obtained using the methods presented in Sections 

5.3.1 and 5.3.2. 

5.3.4 Comparison of Results 

Using the same component and phase data as in Section 5.2.4, the 3-phased mission 

example given in Figure 5.13 may be solved using a full Markov model, and also 

using the proposed combined minimal Markov model with continuous phase fault tree 

method. The phase and transition failure probabilities and mission success probability 

for each method are compared in Table 5.7 using a time increment value of 8t=0.05s 

for the minimal solution routine for the differential equation. It can be seen that using 

the combined minimal Markov and continuous phase fault tree technique produces a 

very close agreement to that found by the full Markov method. 

Full Markov Method Combined Minimal Markov and 
Continuous Phase Fault Tree Method 

I----M-is-s·-Io-n -R-el-ia-b-ility--+---6-.3-7-93-X-1-0·T1 --t- 6.3777x10.1 

Phase 1 Unreliability 3.5691x10"" 3.5683x10-4 
Phase 2 Unreliability 2.0697x1 O'~ 2.0693x1 D· 
Phase 3 Unreliability 2.2299x10" 2.2294x10'1 

Phase 2 Transition Failure 2.0697x10'~ 2.0693x10' 
Phase 3 Transition Failure 1.1832x10'1 1.1824x1O·1 

Table 5.7 Comparison of Mission Reliability Data for Two Methods 

To gain confidence in this methodology and its computer implementation, the method 

has been applied to the example considered before in Section 5.2.4.1. In this analysis 

all phases are considered repairable apart from phase 3 and a time step value of 

8t=0.05s is used for the minimal solution routine for the differential equation. The 

results presented in Table 5.8 were obtained. A second model analysis was then 

performed for the same example with different repairable and non-repairable phases. 

Results from this further example where phases 1 and 5 were assumed non-repairable 

with all other phases repairable are given in Table 5.9. 

Close agreement between the methods is agam evident. The updated method of 

dealing with non-repairable phases gives faster processing times and offers a 

significant advantage. It is reasonable to expect that this would be even more dramatic 

for larger system problems. 
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Phase 3 Non-Repairable 

Full Markov Method 

Mission Reliabili 9.4861x10' 
Phase 1 Unreliabili 3.8140x10' 
Phase 2 Unreliabili 1.7633x10' 
Phase 3 Unreliabili 4.1806x10-4 
Phase 4 Unreliabili 1.7454x10' 
Phase 5 Unreliabili 1.0007x10·2 

Phase 2 Transition Failure 1.7633x10' 
Phase 3 Transition Failure o 
Phase 4 Transition Failure 1.7454x10·2 

Phase 5 Transition Failure 2.3554x10' 
Time Taken to Process Results (s) 38.0 

Combined Minimal Markov and 
Continuous Phase Fault Tree Method 

9.4829x10' 
3.8136x10' 
1.7630x10' 
4.1858x10-4 
1.7464x10' 
1.0003x10' 
1.7630x10' 

o 
1.7464x10' 
2.3567x10·2 

1.0 

Table 5.8 Comparison of Further Mission Reliability Data for Two Methods 

Phase 1,5 Non-Repairable 

Full Markov Method 

Mission Reliabili 9.8268x10' 
Phase 1 Unreliabili 4.9644x10' 
Phase 2 Unreliabili 1.1827x10-4 
Phase 3 Unreliabili 1.5214x10-4 
Phase 4 Unreliabili 2.0280x10-3 
Phase 5 Unreliabili 1.0372x10·2 

Phase 2 Transition Failure 1.1827x10-4 
Phase 3 Transition Failure o 
Phase 4 Transition Failure 2.0280x10'3 

Phase 5 Transition Failure 5.0312x10·3 

Time Taken to Process Results (s) 40.0 

Combined Minimal Markov and 
Continuous Phase Fault Tree Method 

9.8256x10' 
4.9627x10' 
1.1823x10-4 
1.5213x10-4 
2.0240x10 
1.0280x10·2 

1.1823x10-4 
o 

2.0240x10·3 

5.0305x10' 
1.0 

Table 5.9 Comparison of Further Mission Reliability Data for Two Methods 

5.4 Summary 

The methods presented in this chapter allow solution of a mission that is capable of 

repair in some or all phases. The inclusion of both discrete and continuous phase 

models many practical situations where a system is required to work on demand. A 

non-repairable phase can be solved using standard fault tree techniques, and a 

repairable phase can be solved by application of a minimal Markov model. The 

expansion of the state probabilities at the end of each phase allows the unavailability 

or availability of all components to be calculated for transition to the next phase, and 

thus any sequence of repairable and non-repairable phases can be modelled. 
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The main deficiency of this model is that dependencies between components have not 

been considered. Methods to account for dependencies such as sequential failures and 

maintenance policies are presented in the following chapters. 
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Chapter 6 Sequential Failures 

6.1 Introduction 

In some situations, the top event of a fault tree can only be caused by a sequence of 

basic event occurrences, thus the order in which components fail will be of 

importance to the system outcome. This concept of sequential failures was introduced 

in Section 2.2.3.5.3. 

An example of a situation where the system outcome is dependent on the failure 

ordering of components is a safety protection system designed to protect against a 

specific hazard (Figure 2.3). If the hazardous event occurs while safety protection 

devices are functioning, the top event will not occur and a shutdown would be 

instigated. If the hazardous event occurs while safety protection devices are not 

working a more catastrophic system level failure will occur. In this type of situation, 

failed safety features are known as enabling events. The occurrence of the hazardous 

event is known as an initiator. In a system, an initiator may act as either an enabler or 

an initiator, whereas an enabler can only act in this capacity. Every minimal cut set of 

the system requires at least one initiator in order to cause system failure. 

A limited ordering requirement is introduced on the basic events. The last event to 

occur needs to be the hazardous one. If the safety features have failed in any order 

prior to this then the system failure represented by the fault tree will occur. 

6.1.1 Failure Modes 

A system may fail through a number of different causes. The order in which 

components fail in a system may contribute to different outcomes (failed system 

states), and the outcomes are defined as failure modes. The failure modes of the safety 

system example given in Figure 2.3 could be classified as 'Safe System Shutdown' 

and 'Catastrophic System Failure'. A safe system shutdown will happen if the 

initiating event occurs while an enabling event does not exist, whereas a catastrophic 

failure will be caused if the initiating event occurs when all the enabling events 
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already exist. Both cause the system to cease functioning, however the consequences 

of catastrophic system failure would be far more serious than a safe system shutdown. 

Fault tree representation allows the logical development of each failure mode 

individually in an inverted tree structure, however this method is not appropriate to 

accurately account for the dynamic relationship between component failures. 

Consider all possible component failure orderings which can be demonstrated using a 

tree structure. The component failure events are considered in every possible order to 

determine the maximum number of system states possible and the appropriate system 

outcome noted. However in a practical situation once a catastrophic system failure 

state is reached, the system resides in an absorbing failed state and further component 

failures are irrelevant. Take the example shown in Figure 2.3, considering only two 

component level events. One is the enabler CE), the second the initiator (I), then all 

sequences may be represented as given in Figure 6.1: 

< If: - - Cawtrophlc System Fa""", 

If f---=~---j Safe System Shutdown 

Figure 6.1 Failure Event Tree 

Each system outcome may have a different consequence. A safe system shutdown 

would allow defective items to be repaired to good as new condition and the system 

would be restored to full working order. In the event of a catastrophic failure 

maintenance may not be possible, further complications may be caused, and if the 

reliability of the system is to be modelled it would be considered to reside in an 

absorbing failed state. 

For a system where the order of component failures can result in a different system 

state outcome, it is important to be able to identify the outcomes to ensure that 

adequate protection is provided in a system. 
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6.2 Reliability of a System with Sequential Failures 

Two methods are considered by which the reliability of a system involving sequential 

failures can be calculated: 

6.2.1 Fault Tree Method 

A logic gate has been developed whereby the gate outcome depends on the order in 

which the events occur. This gate is defined as a priority-AND gate and is represented 

in Figure 6.2. 

Figure 6.2 Priority-AND gate 

The events must occur in the order A}, A2 ••• An for the output of the gate to be true. If 

the events occur in any other sequence to this, the gate output will be false. 

Gates such as this where the order of component failure is important are classed as 

dynamic gates. Other non-sequential tree structuring such as AND and OR gates are 

classed as static gates. Methods have been developed to calculate the reliability of 

static fault tree structures [3], however to perform analysis on a dynamic gate type it is 

necessary to develop further methods. The Markov method is suitable for dynamic 

fault tree analysis. 

6.2.2 Markov Method 

The Markov method models the possible system states and transitions to allow the 

reliability of a system to be calculated over a duration of time. In order to model the 

distinction between initiating and enabling events requires the event ordering to be 

considered and increases the number of possible system states in the model. 
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In previous Markov models developed, the states in the model took no account of the 

order of failure. Thus without the distinction between initiating and enabling events, a 

2-component parallel system Markov model for system unreliability would be 

represented by Figure 6.3. 

o = Absorbing State 

o = Non-Absorbing State 

Figure 6.3 2-Component Markov Model 

If both components A and B fail, the system will reside in the absorbing state 4. 

However this state does not account for the order in which the components have 

failed. If component B can only cause system failure when component A is down, 

component A failure is the enabling event and component B failure is the initiating 

event. The Markov model for this situation would be given in Figure 6.4. 

')..B 

Figure 6.4 2-Component Markov Model with Initiating and Enabling Events 

Since the order of component failures is important, states that involve more than one 

component failure must be expanded to denote the sequence of event occurrence. 

Where originally state 4 in Figure 6.3 represented both components residing in the 

failed state, the Markov diagram is now expanded to allow for all possible failure 

sequences, given by states 41 and 42• The two failure sequences result in a different 

type of system failure. State 41 leads to catastrophic system failure - failure of 

component A enables failure of component B to cause system failure. This state is 

absorbing and thus the system remains in the failed state. State 42 does not result in a 
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catastrophic system failure. The system would be safely shut down and both the 

components could be restored to the new condition with repair rate VAB. This would 

bring the system back into state 1 with all components functioning successfully, and 

allow the phase to continue. 

As the number of components increases, the number of possible orders of component 

failure increases rapidly. This may be demonstrated in Figure 6.5 for systems 

comprising of 1, 2, 3 and 4 components using a tree structure. 

0--A--Q 

1 Component - 1 Order of Failure 

~B-O 
()-<:::B---()-A-D 

2 Components - 2 Orders of Failure 

3 Components - 6 Orders of Failure 4 Components - 24 Orders of Failure 

Figure 6.S Failure Order Combinations for Different Numbers of Components 
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The development of a Markov model allowing for sequential failures results in an 

increase of possible system states. For 2 components a full Markov model requires 

only one extra state, however as the number of components increases the number of 

possible Markov system states shows a dramatic explosion (Table 6.1). 

No. Of Components 

1 
2 
3 
4 
5 

Number Of Markov System States 
Without Se uential Failures With Se uential Failures 

2 2 
4 5 
8 16 
16 65 
32 326 

Table 6.1 Number of States in a Markov Model With Sequential Failures 

Since the order of occurrence of the enablers does not matter and it is only the initiator 

that has to be the last to occur it is possible to reduce the number of states. For 

example in a system comprising of three components in parallel, if the failure of 

components A and B are enabling events and the failure of component C IS an 

initiating event, a full Markov model would be represented by Figure 6.6. 

Figure 6.6 Full Markov Model for Cut Set ABC 

Catastrophic system failure will occur if the enabling events, components A and B 

fail, before the failure of component C. A non-catastrophic failure will occur if the 
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components fail in any other order. Therefore the only concern is the order of failure 

for component C. It is possible to combine the failure states in the model; the 

absorbing failure states 84 and 86 represent a catastrophic failure and are combined to 

form state 84,6, the non-catastrophic failure states 81. 82, 83, and 85 can be combined to 

form state 81,2,3,5. Similarly since catastrophic failure will only occur if components A 

and B fail first in any order, states 7 .. and 72 can be combined to form state 71,2. Non

catastrophic failure will occur if the initiating event of component C failure occurs 

before either of the enabling events, and so states 41 and 42 can be combined to form 

state 41,2, and 6.. and 62 can be combined to form state 61,2. The reduced Markov 

model is given in Figure 6.7. 

Figure 6.7 Reduced Markov Model for Cut Set ABC 

This state reduction technique becomes more complex when applied to phased 

mission systems and will be discussed later. 

6.3 Initiating and Enabling Events in Phased Mission Systems 

To apply enabler and initiator theory to multi-phased missions there is the possibility 

that a component is not required during certain phases of the mission. In any phase, 

the events may be divided into categories: 

• Enabler - will only allow initiating events to cause the top event to 

occur, cannot cause direct phase failure. An enabling event failure may 

occur in any phase prior to the occurrence of an initiating event. 
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• Initiator -Upon failure, if enablers are failed then phase failure will 

occur, otherwise maintenance may be performed to restore all 

components to full working order. It is also possible for an initiator to 

act as an enabler for other initiators if they both occur in the same 

minimal cut set. 

• Not Required - The component is not required for the particular phase, 

but may have been used previously and may be required in future 

phase configurations. That is to say the system state is not dependent 

on these component failure modes in this phase. 

When considering phased missions it is possible that a component may change 

function through different phases. A simple example of a road sign illumination 

system may be used to demonstrate this, shown in Figure 6.8. 

Light 

~'-------ll Switch 

Battery 
City Power 

Figure 6.8 Power Source System 

In the first phase the light is required to work continuously to illuminate a road sign 

for motorists. The light is powered by the city power supply, however in the event of a 

power failure the switch will transfer over to the backup battery. After a specified 

period of operation the bulb must be replaced and so the second phase requires 

disconnection of the light from the power supply in order for the bulb to be changed 

safely. The failure events in this system are given as: 
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L - Bulb Failure 

P - City Power Supply Failure 

B - Battery Failure 

Si - Switch Control Fails to Isolate Power Source 

Sb - Switch Control Fails to Transfer to Backup Source 

Phase 1 Failure will occur if the light does not work continuously for the specified 

duration of time as an accident could arise. The city power supply will be used 

constantly unless failure occurs, at which point the switch control will be activated 

and the battery is used as a backup source. If the battery is in the working state at the 

time of the failure of the city power supply, it will be put into operation and used 

continuously until the city power supply is restored. When the city power supply is 

restored, the switch control will activate the city power supply as being the primary 

power source. In the event that the battery fails before the city power supply has been 

restored, no power will be supplied to the bulb and the light will go out. The road sign 

will not be illuminated until the city power supply is restored. In such a situation, the 

failure of the city power supply is the initiating event due to the continuous 

requirement for successful operation. If this event occurs, the switch control is 

activated in order for the backup battery to take over. The failure of the switch control 

is therefore the enabling event. If this event occurs prior to the initiating event, the 

failure of the city power supply causes the light to go out and a potential dangerous 

situation to arise. If the enabling event occurs after the initiating event, the light will 

remain lit since the power supply has already been successfully transferred to the 

backup battery. 

The second phase requires a successful routine bulb change. The continual 

requirement for the bulb to be lit in the first phase meant that a demand was only 

placed on the switch control in the event that the city power supply failed. The 

successful shutdown of the system in the second phase to enable a safe bulb change 

places a demand on the switch control to cut off both power supplies to the bulb. 

Since the failure of the switch control on its own can fail the system it becomes an 

initiating event. 
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It is possible to construct fault trees to represent Phase 1 failure - Light Does Not 

Work Continuously and Phase 2 failure - System not Shutdown for Period Routine 

Maintenance, shown in Figure 6.9. 

P B 

Phase 1 Failure
Light Does Not 

Work 
Continuously 

Phase 2 Failure -
System Not 

Shutdown for 
Routine 

Maintenance 

1 I 

Figure 6.9 Road Sign Illumination System 

It can be noted that the switch component failure will contribute differently to the 

system failure mode in different phases. In this case the failure of the switch control in 

phase 1 acts as an enabling event. Failure of the switch control in phase 2 acts as an 

initiating event. Similarly the role of the failure of the city power supply and the 

battery in phase 1 act as initiating events and change in phase 2 to have no 

requirement. This demonstrates the possibility for the event of component failure to 

change contribution through different phases. 

6.4 Maintenance Policies 

A further consideration is the way in which the components are maintained. So far, it 

has been assumed that all components begin repair as soon as failure occurs. However 

as an enabler may not be required continuously, the failure may not be detected unless 

an inspection takes place or an initiating event occurs and a demand is placed on it to 

respond. Such a situation can arise in a safety system which is not required until a 

component fails and places a demand on it to react. As the safety system is dormant 

and not used continuously, a failure will not be detected. Failures can therefore be 

categorised as either revealed or un revealed. 
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A revealed failure is detected as soon as a component fails. This generally applies to 

components that are monitored continually over periods of time, or when they fail 

cause a noticeable system effect. The repair of such a failure assumes that there is no 

detection time and that the repair rate will depend only on the time to repair the 

component. 

An unrevealed failure is usually detected by a scheduled maintenance routine. This 

type of maintenance policy is commonly used in safety and standby systems where 

components are not continuously operational. Otherwise the failure may not be 

noticed until a demand is placed on the component to work. The time that the 

component remains in the failed state depends not only on the component repair time, 

but also on the time taken to detect the failure. It is commonly assumed that the item 

is inspected every () time units. 

The failure of a component in a phase may be detected in different ways. The failure 

of a component causing an initiating event is detected instantly, however a component 

failure acting only as an enabling event or a component not used in the phase are not 

monitored continuously and thus failure can occur and remain unrevealed until the 

next inspection takes place. This is summarised in Table 6.2. 

Component Contribution Type of Failure 

Initiator 
Enabler 

Not Required 

Revealed 
Unrevealed 
Unrevealed 

i 

Table 6.2 Component Failure Types 

The calculation of phase and mission reliability of a system that contains both 

initiating and enabling component failure events becomes very complex due to the 

large number of combinations of revealed and unrevealed failures that can occur. 

6.4.1 Markov Model for Revealed and Unrevealed Failures 

For an enabler or a component that is not required in a particular phase, it is possible 

to use a Markov model for the relationship between the revealed and unrevealed 

failure states as shown in Figure 6.10. 
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Figure 6.10 Unrevealed Component Failure in Markov Model 

If the component begins life in the working state (W) with probability P1(t) it is 

possible for a transition to occur to the unrevealed failed state (Funrevealed) at any point 

in time with failure rate A. 

If a scheduled inspection of the component takes place every ne (n=I,2 ... ), an 

unrevealed failure will not be detected until the next planned maintenance point. The 

probability of the component residing in this unrevealed failure state is denoted by 

P2(t). As soon as the failure is detected at ne, the component state moves directly from 

the unrevealed failure state into the revealed failure state (Frevealed). The component 

may then be restored to full working order with repair rate u. The probability of the 

component residing in this revealed failure state is denoted by P3(t). 

Transitions linking working and failed states can only occur between inspection points 

of a phase i. If phase i begins at time t=t;_1 and ends at t=t;, the state change model is 

shown in Figure 6.11. 
t 

------------------------------7) 

F unrevealed Pit) 

for t;-1 ~ t ~ t; 
t-:j:. ne 

Figure 6.11 Markov Model Between Inspection Points 

At every ne, any unrevealed failures are detected and thus an instant transition 

between the unrevealed and revealed failure states occurs, shown in Figure 6.12. 
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Figure 6.12 Markov Model At Inspection Points 

The probability of the component residing in the unrevealed failed state (P2 * (n()) and 

revealed failed state (P3 * (n()) just after every n() is given by equations (6.1) 

* ~ (nS) = P2 (nS) + ~ (nS) 

P2* (nS) = 0 
n = 1,2, .. (6.1) 

where Pn * (t) is the probability of the component residing in state n just after time t. 

The concept for a single component Markov model for revealed and unrevealed 

failures may be extended to represent a system comprising of enablers, initiators, and 

components that are not required for a particular phase. If a mission is considered in 

its entirety, a total of Ne components from all phases must be considered throughout 

the mission duration. 

Until now the states in the Markov models used for phased mission analysis have 

taken no account of scheduled inspection and the distinction between initiating and 

enabling events has not been made. A 2-component parallel system Markov model to 

calculate system unreliability was represented by Figure 6.3. Considering the 

possibility of sequential failures where all component failures are revealed, the 2-

component Markov model was expanded to allow for sequential failures with 

component A failure as an enabling event and component B failure as an initiating 

event (Figure 6.4). 

If a mission is considered in its entirety, a complete set of system states must be 

developed. As the failure of a component could act as an enabling event or an 

initiating event and in some phases not be required, there is a possibility that any 
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component could fail unrevealed and thus a full Markov model must be developed to 

represent this. A new set of notation is introduced, 

o Component in the working state 

Inu Component is the nth to fail. Failure unrevealed. 

InR Component is the nth to fail. Failure revealed. 

For a 2-component system, the full set of system states may be summarised in Table 

6.3. 

State A B 

1 0 0 
21 0 11U 

22 0 11R 
31 11U 0 

32 11R 0 

41 12U 11U 
42 11U 12U 
43 12U 11R 
44 11U 12R 
45 12R 11U 
46 11R 12U 
47 12R 11R 
48 11R 12R 

Table 6.3 Possible States for a Mission Comprising of2 Components 

The Markov model in Figure 6.4 must be further expanded to identify revealed and 

unrevealed failures as repair of the enabling event cannot be initiated until a failure is 

identified at an inspection point. The Markov model would become that illustrated in 

Figure 6.13. 

Figure 6.13 2-Component Markov Model with Unrevealed failures 
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If the system begins with both components working (state 1), component failure may 

occur in either order. If the initiating event, component B revealed failure, occurs first 

with rate AB and component A is in the working state, system failure does not occur 

and the system will reside in state 22. From state 22 two transitions may be made. 

Component B may be restored to the good as new condition with repair rate VB and 

transfer back to state 1. Alternatively before component B is repaired, component A 

may fail unrevealed and the system will make a transition to state 43. As the initiating 

event occurred prior to the enabling event, the resulting state with both components 

failed is a non-catastrophic system failure. A non-catastrophic failure occurs if the 

initiating event puts a demand on the safety system when the enabler allows safe 

shutdown. The enabler may be restored, therefore either component B is repaired with 

rate VB back to state 3t. or the next scheduled inspection point reveals the failure of A 

and the system moves directly to state 47, where both components may be repaired 

with rate VAB back to state 1. 

The alternative sequence is that the enabling event, component A failure, occurs first. 

This failure will be unrevealed and the system will make a transition from state 1 to 

state 31• The occurrence of the enabling event first puts the system into a critical state 

for component B. Two transitions are possible - component A failure is revealed at 

the next inspection point, or component B fails before the failure of component A is 

detected. If the failure of component A is revealed at the next inspection point, instant 

transition to state 32 will occur where it may be restored to new condition (state 1) 

with rate VA. State 32 is also a critical state for component B. If component B fails 

during the critical time that the system resides in state 31 or 32, instant system failure 

will occur. This will automatically reveal the fact that component A has failed and the 

system will transfer to state 48• This catastrophic failure is absorbing and the system 

will remain in this state. 

It is seen that when considering a two-component parallel system with no sequential 

failures or scheduled inspection (Figure 6.3) there was only 1 state to represent both 

components in the failed state (4). This represented the only system failure mode. 

Once initiating and enabling events are taken into consideration with both unrevealed 

and revealed failures, there becomes a possibility of 8 failure states (41-8 in Table 6.3). 

Now there are two revealed system failure outcomes, states 47 and 48. If the enabling 

event occurs and allows the initiating event to cause system failure, the result is 
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catastrophic. If the initiating event occurs prior to the enabling event, repair is possible 

and the outcome is non-catastrophic. 

For a 2-component system with both unrevealed and revealed component failures 

there is a possibility of 13 system states (Table 6.3). However, since component B 

failure is an initiator and thus cannot fail unrevealed, states 21,41,42,45, and 46 will not 

be used in the model. As the number of components in a system increases, the 

consideration of scheduled inspection points and sequential failure relationships 

results in an explosion of possible system states. Table 6.4 gives a comparison of how 

the possible number of system states increases as the number of components in the 

system increases. The elimination of system states that are not required for a particular 

model due to the function of components is discussed further in Chapter 7. 

No. Of Components 

1 
2 
3 
4 

Number Of States 
Revealed Failure Only Model Revealed and Unrevealed Failure Model 

2 3 
4 13 
8 79 
16 553 

------------------~ 
Table 6.4 Number of System States for Revealed and Unrevealed Failures 

6.5 Summary 

If events are categorised as initiators or enablers which fail revealed or unrevealed 

respectively, the Markov model gets very large for even small or moderate numbers of 

components. A method is required to reduce the number of possible system states as 

far as possible. If components that are not required for a particular phase can be 

identified, and separated from the components that are required in the phase and the 

failures that act as initiating or enabling events, a reduced Markov model may be 

constructed. For a two component system (one initiator), this is shown by comparison 

of the complete list of 13 system states (Table 6.3) with the reduced 7 state diagram 

(Figure 6.13). Rules to identify the possible system states in any phase required for a 

Markov model are presented in the following chapter. 

It is also possible that an initiating event may only cause system failure if it occurs 

during a particular phase. If it occurs prior to the phase in question, the phase failure 

will not occur. Each type of initiating event must be modelled accordingly. Methods 
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are required to solve such a phased mission system where the function of a component 

failure and appropriate maintenance policy can change through the phases. This is 

discussed in the next chapter. 
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Chapter 7 Phase Specific and Non- Phase Specific Initiating Events 

7.1 Introduction 

A component failure that acts as an initiating event in a phase may occur either prior 

to, or during the phase in question. In some cases, the top event of phase failure will 

only occur if the initiating event fails during a particular phase. If the initiating event 

occurred prior to the phase, it will not contribute to phase failure. This type of 

initiating event is defined as phase specific (PS) and is denoted by Ip. Other initiating 

events that can contribute to a phase failure regardless of which phase they occurred 

in are non- phase specific (NPS) and are defined by 1. 

The general case of non- phase specific initiators will be considered first in Section 

7.2, followed by the introduction of phase specific initiators in Section 7.3. 

7.2 Non-Phase Specific Initiators 

This section considers a phased mission system comprising of only NPS initiating 

events. Failure of a phase may be caused by the existence of a sequential cut set 

regardless of whether the events in the cut set occurred prior to or during the phase in 

question. 

When considering a phased mission, it is possible that component failures can act in 

different capacities through the phases. The analysis of a phased mission involving 

enabling events and NPS initiating events can be demonstrated using a simple 

example consisting ofthree components, A, B and C (Figure 7.1). 

The three phases are of a continuous nature. No state transitions can occur during a 

discrete phase and so a priority-AND gate would not occur in this type of phase. Since 

the inclusion of discrete phases is accommodated by simply checking for system 

compliance conditions at the appropriate time point it is not felt necessary to consider 

this in the demonstration example. 
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A component failure event can be categorised as a different type in each of the three 

phases. An event that only acts as an enabler in a phase may result in either an 

unrevealed or revealed component failure. If an enabling event occurs unrevealed, it 

will become revealed either by the occurrence of an initiating event from the same 

sequential cut set or at the next inspection point. The Markov model representing 

unrevealed enabling events requires states to signify both the unrevealed and revealed 

failure possibilities. If an enabling event only occurs revealed, it cannot reside in the 

unrevealed failure state at any point in the phase. The Markov model representing 

revealed enabling events requires states to signify only the revealed failure. Since 

considering the worst case scenario (in terms of model development) where enabling 

events occur unrevealed encompasses the simpler situation where an enabling event 

can occur revealed, enabling events will be treated as unrevealed. 

Figure 7.1 

A B 
(E) (I) 

REPAIRABLE 

where E 

I 

lIE 

A B 
(lIE) (lIE) 

REPAIRABLE 

Enabling Event 

A B 
(E) (I) 

NON-REPAIRABLE 

Initiating Event not Specific to Phase 

Initiating Event Capable of Enabling 

Mission with Sequential Failures and NPS Initiating Events 

The occurrence of an initiating event is a revealed component failure. It is possible 

that an initiating event can also act as an enabler, for example in a parallel 

arrangement of 2 components where at least one component is required to work for 

the system to function successfully. The failure of either component would act as an 

enabling event for the initiating failure of the other component. 
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The type of event caused by component failure in each of the phases of Figure 7.1 is 

summarised in Table 7.1. 

Component Failure Phase 1 Phase 2 Phase 3 

A Enabler Initiator! Enabler Enabler 
B Initiator Initiator! Enabler Initiator 
C Not Required Initiator! Enabler Initiator 

Table 7.1 Component Failure Events in 3-Phased Mission 

7.2.1 Full Markov Model 

Since the phases in the example (Figure 7.1) are either repairable or contain dynamic 

gates, a suitable method for analysis is the Markov method. Using a full Markov 

model as described in Section 5.2.1, a complete list of possible system states can be 

constructed. As component failure may occur revealed or unrevealed and is subject to 

change through the phases, the full list requires the inclusion of each type of failure 

for every component. The ordering of failure events is also important, thus for each 

state involving failures a suitable representation must be given for the sequential 

failure ordering. 

For a system with three components the list is developed and all possible system states 

with appropriate ordering and failure type are given in Table 7.2. 

Using the relevant sub-set of states from the full listing in Table 7.2, a full Markov 

model comprising of every component and appropriate state transitions can be 

constructed for each of the three phases, represented by Figures 7.2, 7.3 and 7.4 

respectively. 
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State Ref . Component States State Ref Component States 

A 

l(ABC) 0 
2(ABC) 

I 0 
2(ABC) 

2 0 
3(ABC) 

I 0 
3(ABC) 

2 0 
4(ABC) 

I 0 
4(ABC) 

2 0 
4(ABC) 

l 0 
4(ABC) 

4 0 
4(ABC) 

5 0 
4(ABC) 

6 0 
4(ABC) 

7 0 
4(ABC) 

8 0 
S(ABC) 

I 11U 
S(ABC) 

2 11R 
6(ABC) 

I 12U 
6(ABC) 

2 11U 
6(ABC) 

3 12U 
6(ABC) 

4 11U 
6(ABC) 

5 12R 
6(ABC) 

6 11R 
6(ABC) 

7 12R 
6(ABC) 

8 11R 
7(ABC) 

I 12U 
7(ABC) 

2 11U 
7(ABC) 

3 12U 
7(ABC) 

4 11U 
7(ABC) 

5 12R 
7~ABC) 11R 
7~ABC) 12R 
7(ABC) 

8 11R 
S(ABC) 

I 13U 
S(ABC) 

2 12U 
S(ABC) 

3 13U 
S(ABC) 

4 12U 
S(ABC) 

5 11U 
S(ABC) 

6 11U 
S(ABC) 

7 13U 
S(ABC) 

8 12U 
S(ABC) 

• 13U 

where 

Table 7.2 

B 

0 
0 
0 

11U 

11R 

12U 

11U 

12U 

11U 

12R 

11R 

12R 

11R 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 1U 

12U 

11R 

12R 

11U 

12U 

11R 

12R 

12U 

13U 

11U 

11U 

13U 

12U 

12U 

13U 

11U 

C A B 

0 S(ABC) 
10 12U 11U 

11U S(ABC) 
11 11U 13U 

11R S(ABC) 
12 11U 12U 

0 S(ABC) 
Il 13U 12R 

0 S(ABC) 
14 12U 13R 

11U S(ABC) 
IS 13U 11R 

12U 
S(ABC) 

16 12U 11R 

11R S(ABC) 
17 11U 13R 

12R S(ABC) 
18 11U 12R 

11U S(ABC) 
I. 13U 12R 

12U 
S(ABC) 

20 12U 13R 

11R S(ABC) 
21 13U 11R 

12R s(ABC) 
22 12U 11R 

0 S(ABC) 
23 11U 13R 

0 S(ABC) 
24 11U 12R 

11U S(ABC) 
25 13R 12U 

12U 
S(ABC) 

26 12R 13U 

11R S(ABC) 
27 13R 11U 

12R S(ABC) 
28 12R 11U 

11U S(ABC) 
2' 11R 13U 

12U 
S(ABC) 

30 11R 12U 

11R S(ABC) 
31 13R 12U 

12R S(ABC) 
12 12R 13U 

0 S(ABC) 
II 13R 11U 

0 s(ABC) 
34 12R 11U 

0 S(ABC) 
35 11R 13U 

0 S(ABC) 
36 11R 12U 

0 S(ABC) 
37 13R 12R 

0 S(ABC) 
38 12R 13R 

0 S(ABC) 
3. 13R 11R 

0 S{ABC) 
40 12R 11R 

11U S(ABC) 
41 11R 13R 

11U s(ABC) 
42 11R 12R 

12U 
S(ABC) 

4l 13R 12R 

13U 
s(ABC) 

44 12R 13R 

12U 
S(ABC) 

45 13R 11R 

13U S(ABC) 
46 12R 11R 

11R S(ABC) 
47 11R 13R 

11R s(ABC) 
48 11R 12R 

12R 

Component in the working state 
Component is the nth to fail. Failure unrevealed. 
Component is the nth to fail. Failure revealed. 

C 

13R 

12R 

13R 

11U 

11U 

12U 

13U 

12U 

13U 

11R 

11R 

12R 

13R 

12R 

13R 

11U 

1 1U 

12U 

13U 

12U 

13U 

11R 

11R 

12R 

13R 

12R 

13R 

11U 

11U 

12U 

13U 

12U 

13U 

11R 

11R 

12R 

13R 

12R 

13R 

Full State Representation of 3-Component System with Sequential 
Failures and Scheduled Inspection 
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Figure 7.2 Full Markov Model for Phase 1 

Figure 7.3 Full Markov Model for Phase 2 
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Figure 7.4 Full Markov Model for Phase 3 

Out of the 79 possible system states, only 38 are used during the three phases of the 

mission. It must also be noted that from these 38 mission system states, several are not 

possible within some phases. To analyse the full Markov model using the matrix 

method would produce a very sparse transition matrix and would require the solution 

ofthe full set of 79 differential equations. The full Markov method was investigated in 

Section 5.2.1 and demonstrated the susceptibility to state space explosion with only 

revealed failures. In this case components can fail both revealed and unrevealed and 

ordering is important thus the state space explosion becomes increasingly problematic. 

As found in Section 5.2.1 it uses unnecessary computer memory resources and extra 

computational time to develop a full Markov model for every phase in an entire 

mission. The solution process can be made significantly more efficient if unused states 

can be eliminated from the model. 

7.2.1.1 State Identification 

If the mission is taken in its entirety, it is very difficult to identify all states that can be 

eliminated from the full model listing (Table 7.2) due to the change in sequential 

failure relationships throughout the mission. Considering each component 

contribution over the phases of the mission (Table 7.1), there are two impossibilities 
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that allow some states to be removed from the full Markov model. These are 

summarised in Table 7.3. 

Impossibility 

1. Every cut set of a phase must involve an initiating event. 

is impossible for all components to be in the unrevealed 

failure state at any point in time. 

2. A component that is required in all phases and only 

ever fails as an initiating event can never fail unrevealed. 

(component B) 

8(ABC} _ 8(ABC} 
I 6 

3 (ABC) 4 (ABC) _ 4 (ABC) 7(ABC} _ 7(ABC} 
I 'I 4' I 2' 

7(ABC} _7(ABC} S(ABC) _ 8(ABC} S(ABC} _ S(ABC} 
5 6' I 12' 25 36 

Table 7.3 Summary of Impossible System States due to Component 

Contributions 

Application of these two rules to the full state listing (Table 7.2) eliminates 33 states 

from the model. However since these rules apply for the whole mission, the generality 

of them fails to identify all of the states that are never required and also the states that 

are not possible within each individual phase. Identification of all states that the 

system cannot reside in both for the entire mission and also within each phase can 

only be accomplished by examination of the individual sequential failure relationships 

and cut sets of the mission. For the example mission shown in Figure 7.1, the cut sets 

are given by, 

Phase 1 

Phase 2 

Phase 3 

A IIEe liE 

B liE C liE 

where E = Enabling Event 
I = NPS Initiating Event 
liE = Initiating Event Capable of 

Enabling 

There are certain points to be noticed from the full list of cut sets of this mission that 

allow further state reduction of the full Markov model, summarised in Table 7.4. 
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Impossibility States Removed 

1. The system cannot reside in a state where component A has failed 

unrevealed and component B fails after this revealed. This is justified since in 
7(ABC) g(ABC) g(ABC) _ g(ABC) 

4 , 14 , 17 18' 

Phases 1 and 3 the failure of component B automatically reveals the failure of g(ABC) g(ABC) _ g(ABC) 
20 '23 24 

component A, and in Phase 2 component A cannot fail unrevealed. 

2. The system cannot reside in a state where components A and B fail revealed 

in the order of A then B, and component C fails last unrevealed. This state is 

not possible since in phases 1 and 3 system failure will occur after the first two 8(ABC) 
42 

failures and no further state transitions may take place, and in phase 2 

component C cannot fail unrevealed. 

Table 7.4 Summary of Impossible System States due to Mission Cut Sets 

This state reduction method becomes very complex with increasing numbers of 

components, making it more difficult to identify all states from the full expansion 

(Table 7.2) that are not possible at any point during the mission. Since these points 

identify state impossibilities that are consistent through the entire mission, the 

generality of them fails to recognise all of the impossible system states in each 

individual phase. 

A general set of rules for any phased mission system is produced to enable the 

removal of impossible system states from the full Markov model within each phase. 

Given a full list of system minimal cut sets it is possible to identify the unattainable 

system states for each phase of the example given in Figure 7.1, shown in Table 7.5. 

Impossibility Impossible States 

Phase 1 Phase 2 Phase 3 

1. An initiating 
3~ABC) ,4~ABC) _ 4~ABC) ,7~ABC) _ 2~ABC) ,3~ABC) ,4~ABC) _ 4~ABC), 2~ABC) ,3~ABC) ,4~ABC) _ 4~ABC), 

event cannot fail 
7~ABC), 7~ABC) _ 7~ABC) ,8~ABC) _ 5~ABC) ,6~ABC) _ 6~ABC), 7~ABC) _ 6~ABC) _ 6~ABC) ,6~ABC) _ 6~ABC) , 

unrevealed 
8~~C) ,8~1BC) - 8~:SC) 7~ABC) ,8~ABC) _ 8~~C) 7~ABC) _ 7~ABC) , 7~ABC) _7~ABC) , 

8~ABC) _ 8~:SC) ,8~~C) _ 8~~C) 

2. The occurrence 

of a sequentially 

ordered cut set 7~ABC) ,8~:SC) ,sl~C) - Sl:BC) , 7~ABC) ,sl:aC) ,g~~C) , 
-

reveals failures of 8~~BC) ,8~fC) _ 8~~C) g~~C) _ g~~BC) 

all components in 

the cut set. 

3. Once a cut set 
4~ABC) ,6~ABC) ,6~ABC) , 

occurs, no further 
g(ABC) g(ABC) S(ABC) _ g(ABC) g(ABC) gl:SC) ,S~;SC) ,g~~C) -

component failures 
42 , 48 43 4S' 47 

g~~C) ,s~fC) _ g~~BC) 
may take place. 

Table 7.5 State Removal within Each Individual Phase 
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If all the possible system states through the duration of the mission are identified, the 

full Markov model can be implemented. However since this requires the use of 

identical system states throughout the phases, the full Markov model for each phase 

must include all ofthe 38 possible system states listed in Table 7.6. 

State Ref Component States Phase 1 Phase 2 Phase 3 
A B C 

l(ADC) 0 0 0 W W W 
2(ADC) 

I 0 0 11U W R R 
2(ADC) 

2 0 0 11R W W F 
3(ADC) 

2 0 11R 0 W W W 
4(ADC) 

5 0 12R 11U W R R 
4(ADC) 

" 
0 11R 1 2U W R R 

4(ADC) 
7 0 12R 11R W F R 

4(ADC) 
8 0 11R 12R W F F 

s(ADC) 
I 1 1U 0 0 W R W 

s(ADC) 
2 11R 0 0 W W W 

6(AliC) 
I 1 2U 0 11U W R R 

6(ABC) 
2 11U 0 1 2U W R R 

6(ABC) 
3 12U 0 11R W R R 

6(ABC) 
4 11U 0 12R W R F 

6(ADC) 
5 12R 0 11U W R R 

6(ADC) 

" 11R 0 1 2U W R R 
6(ABC) 

7 12R 0 11R W W R 
6(ABC) 

8 11R 0 12R W W F 
7(ABC) 

3 1 2U 11R 0 W R W 
7(ADC) 

7 12R 11R 0 W F W 
7(ADC) 

8 11R 12R 0 F F F 
g::BC) 13U 12R 11U W R R 
g(ADC) 

15 13U 11R 1 2U W R R 
g(ADC) 

I" 
1 2U 11R 13U W R R 

g(ASC) 
19 13U 12R 11R W R R 

g(ABC) 
21 13U 11R 12R W R R 

g(ADC) 
22 1 2U 11R 13R W R F 

g(ADC) 
37 13R 12R 11U W R R 

g(ASC) 
38 12R 13R 11U F R R 

g(AIiC) 
39 13R 11R 1 2U W R R 

g(ASC) 
40 12R 11R 13U W R R 

g(ADC) 
41 11R 13R 1 2U F R R 

g(ABC) 
43 13R 12R 11R W R R 

g(ADC) 
44 12R 13R 11R F R R 

g(ABC) 
45 13R 11R 12R W R R 

g(ADC) 
4" 12R 11R 13R W F F 

g(ASC) 
47 11R 13R 12R F R R 

g(ADC) 
48 11R 12R 13R R F R 

W - Working State in Phase F - Failed State in Phase R - Unreachable State in Phase 

Table 7.6 Possible System States for Full Markov Model of 3-Component 
System Example with Sequential Failures and Scheduled Inspection 
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The full Markov model system states may be classed as either required or 

unreachable during each phase of the mission. A required system state is achievable 

during a phase, where as an unreachable system state is not possible during a phase 

but may be attainable during other phases of the mission. An unreachable state will 

have no transitions either into or out of it, in which case a series of zero entries will 

appear in the corresponding row and column ofthe full 38 x 38 state transition matrix. 

Since the probability of the system residing in an unreachable state is zero, only the 

equations to represent the possible system states must be solved in each phase. In the 

same way as for the full Markov model in Section 5.2.1, the sparse nature of this 

matrix must be accounted for and memory storage allocated as described in Section 

5.1.1. 

7.2.1.2 State Combination 

It may be possible to combine states with the same failure mode to reduce the Markov 

model further. If a component is identified that never contributes to a sequential 

failure cut set during the mission, it is possible to remove that component failure from 

the ordering scheme. Since the order of failure of the component compared to other 

components is irrelevant throughout the mission, state combination will be consistent 

through all phases. At this stage using a full Markov model it is not possible to 

remove components from the failure ordering scheme during individual phases. Since 

the initiating events are not phase specific, the ordering of a component failure not 

contributory to a particular phase sequential cut set may become important in a later 

phase. 

This state combination technique can be applied to the example in Figure 7.1. 

Component C is not an input to a dynamic gate in any phase of the mission and so it is 

not necessary to consider the order of failure of component C in relation to the other 

components. Component C is not required during phase 1 but it is possible that it can 

fail during this phase. The failure of component C can be classed as either lu or l R, 

with no representation of order. All other component failures may then be re-ordered 

with respect only to each other. The possible mission system states after this re

ordering process are given in Table 7.7. 
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State Ref 

l(ABC) 

2(ABC) 
I 

2(ABC) 
2 

3(ABC) 
2 

4(ABC) 
S 

4(ABC) 
6 

4(ABC) 
7 

4(ABC) 
8 

S(ABC) 
I 

S(ABC) 
2 

6(ABC) 
I 

6(ABC) 
2 

6(ABC) 
3 

6(ABC) 
4 

6(ABC) 
S 

6(ABC) 
6 

6(ABC) 
7 

6(ABC) 
8 

7(ABC) 
3 

7~ABC) 

7(ABC) 
8 

g(ABC) 
13 

g(ABC) 
IS 

g(ABC) 
16 

g(ABC) 
19 

g(ABC) 
21 

g(ABC) 
22 

g(ABC) 
37 

g(ABC) 
38 

g(ABC) 
39 

g(ABC) 
40 

g(ABC) 
41 

g(ABC) 
43 

g(ABC) 
44 

g(ABC) 
4S 

g(ABC) 
46 

g(ABC) 
47 

g(ABC) 
48 

Table 7.7 

Component States Phase 1 Phase 2 
A B 

0 0 

0 0 
0 0 

0 11R 
0 11R 
0 11R 
0 11R 
0 11R 

11U 0 

11R 0 

11U 0 

11U 0 

11U 0 

11U 0 

11R 0 

11R 0 

11R 0 

11R 0 
12U 11R 
12R 11R 
11R 12R 
12U 11R 
12U 11R 
12U 11R 
12U 11R 
12U 11R 
12U 11R 
12R 11R 
11R 12R 
12R 11R 
12R 11R 
11R 12R 
12R 11R 
11R 12R 
12R 11R 
12R 11R 
11R 12R 
11R 12R 

Where 

C 

0 W W 

1u W R 
1R W W 
0 W W 

1u W R 
1u W R 
1R W F 

1R W F 
0 W R 
0 W W 

1u W R 
1u W R 
1R W R 
1R W R 
1u W R 
1u W R 
1R W W 

1R W W 
0 W R 
0 W F 
0 F F 

1u W R 
1u W R 
1u W R 
1R W R 
1R W R 
1R W R 
1u W R 
1u F R 
1u W R 
1u W R 
1u F R 
1R W R 
1R F R 
1R W R 
1R W F 

1R F R 
1R R F 

W - Working State in Phase 
F - Failed State in Phase 
R - Unreachable State in Phase 

Phase 3 

W 
R 
F 
W 
R 
R 
R 
F 
W 
W 
R 
R 
R 
F 
R 
R 
R 
F 
W 
W 
F 
R 
R 
R 
R 
R 
F 
R 
R 
R 
R 
R 
R 
R 
R 
F 
R 
R 

Possible System States for Full Markov Model of 3-Component 
System Example with No Ordering of Component C 
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The removal of component C from the order of failure has produced multiple states 

representing the same failure mode in the model. It is possible to combine all states 

with the same combination of component failures into a single state. For example 

states 4~ABC) and 4~ABC) now represent the situation that component B fails revealed, 

and component C has failed unrevealed either before or after the failure of component 

B. The replication of the state means that states 4~ABC) and 4~ABC) can be combined to 

form a single state, and is defined by 4~::C). In general, the combination of replicated 

states is defined by equation (7.1). 

(7.1) 

All replicated states in Table 7.7 may be combined using this method. However, in 

some phases an unreachable state will be combined with a required phase state. For 

example, states 4~ABC) and 4~ABC) now represent the same component combination 

where component B fails revealed, and component C has failed revealed either before 

or after the failure of component B. In phase 3, state 4~ABC) was previously an 

unreachable state since component B cannot fail after component C, and state 4~ABC) 

was an achievable phase state. In such a case the new combined state takes the place 

of the achievable phase state and results in the same success or failure outcome. The 

final combined states are consistent through all phases of the mission and are given in 

Table 7.8. 

The single states in each of the three phases given by Figures 7.2, 7.3, and 7.4 may be 

replaced where possible by the new combined states. The full Markov models for 

phases 1,2, and 3 become as shown in Figures 7.5, 7.6, and 7.7 respectively. 
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State Ref Component States Phase 1 Phase 2 Phase 3 
A B C 

l(ABC) 0 0 0 W W W 
2(ABC) 

1 0 0 1u W R R 
2(ABC) 

2 0 0 1R W W F 
3(ABC) 

2 0 11R 0 W W W 
4(ABC) ',. 0 11R 1u W R R 
4(ABC) 

7,8 0 11R 1R W F F 
s(ABC) 

1 11U 0 0 W R W 
s(ABC) 

2 11R 0 0 W W W 
6(ABC) 

1,2 11U 0 1u W R R 
6(ABC) 

3,' 11U 0 1R W R R 
6(ABC) ',. 11R 0 1u W R R 
6(ABC) 

7,8 11R 0 1R W W F 
7(ABC) 

3 12U 11R 0 W R W 
7(ABC) 

7 12R 11R 0 W F W 
7(ABC) 

8 11R 12R 0 F F F 
g(ABC) 

13,15,16 12U 11R 1u W R R 
g(ABC) 

19,21,22 12U 11R 1R W R F 
g(ABC) 

37,39,40 12R 11R 1u W R R 
g(ABC) 

38,41 11R 12R 1u F R R 
g(ABC) 

43,45,46 12R 11R 1R W F F 
g(ABC) 

44,47,48 11R hR 1R F F R 

Table 7.8 Possible System States for Full Markov Model of 3-Component 

System Example with Sequential Failures and Scheduled Inspection 

Figure 7.5 Full Markov Model with Combined States for Phase 1 
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Figure 7.6 Full Markov Model with Combined States for Phase 2 

Figure 7.7 Full Markov Model with Combined States for Phase 3 

It can be seen that combining states in the full Markov diagram produces a more 

compact model for analysis. For example in Phase 1 (Figure 7.2) there were 

previously three paths leading to a catastrophic system state. The path to state 78 

cannot be combined with any others since there are no other states representing the 

same component failure combination. The two paths originally resulting in a 

catastrophic state with all three components A, B, and C in the failed state are shown 

in Figure 7.8. 
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Path 1 

Path 2 

Figure 7.8 Original Paths Leading to Catastrophic Failure in Phase 1 

The identification of states representing the same system failure mode allows the two 

paths in Figure 7.8 to be combined into a single path as shown in Figure 7.9. 

Figure 7.9 Combined Paths Leading to Catastrophic Failure in Phase 1 

The combination of states representing this particular catastrophic failure mode has 

halved the number of possible system states from 12 to 6. 

The comparison between the number of states forming the original full Markov model 

for each phase and the reduced number of states using this combination technique is 

summarised in Table 7.9. 

Phase 

1 
2 
3 

Table 7.9 

Number of States in Number of States in Combined 
Original Full Markov Model State Full Markov Model 

37 21 
12 10 
13 13 

Comparison of the Number of States of the Original Full Markov 

Model and the Combined State Markov Model 
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This state combination technique is seen to reduce the number of states required for 

the full Markov model, especially in the first phase. The reduced number of system 

states results in a much smaller model for analysis, thus reducing the computational 

time and memory requirements. 

Once the achievable system states have been identified and the state combination 

technique has been applied, the final phase Markov models are defined by Figures 7.5, 

7.6, and 7.7 with all possible system states of the full Markov model listed in Table 

7.8. 

7.2.1.3 Phase Transition Problem 

When considering the full Markov model for a system with no sequential failure 

relationships or scheduled inspection as presented in Section 5.2.1, the states are 

common from one phase to another. The probability of a system residing in a 

particular state can be directly passed to the same state in the immediately proceeding 

phase at any transition point. Since only static fault tree gates are considered, a failure 

outcome is achieved if the events of a cut set occur in any order. The system will 

reside in a model state representative of the components that have failed, regardless of 

how this state was achieved. When considering the possibility of sequential failures, 

further analysis must be carried out across a phase boundary. 

At transition points between phases the situation may arise where a working system 

state in the previous phase is not an achievable system state in the immediately 

succeeding phase. The reasons for this are discussed as follows: 

• A component failure cannot occur unrevealed in the next phase 

An initiating event will always occur revealed in a phase. In the case that an 

unrevealed enabling event at the end of one phase assumes the role of an initiating 

event at the start of the next phase, the component failure will automatically be 

revealed at the time of transition. A similar situation occurs if a component that does 

not contribute to the system failure for a particular phase experiences failure, if it acts 

as an initiating event in the immediately succeeding phase the failure of the 

component is revealed at the phase transition. States that represent the unrevealed 
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failure of the event become unreachable in the following phase when it begins to act 

as an initiator. 

Application of this rule to the example in Figure 7.1 identifies that enabling event A in 

phase 1 becomes an initiating event in phase 2. All states representative of an 

unrevealed component A failure at the end of phase 1 become equivalent to the same 

state with component A in the revealed failure state on transition to phase 2. Similarly 

component C does not contribute to the failure conditions in phase 1 and so failure 

will occur unrevealed. The failure of component C in phase 2 acts as an initiating 

event and so at the time of transition to phase 2 this failure will also become revealed. 

The probability of the system residing in a state with the component in the unrevealed 

failure state at the end of the phase is redistributed to the probability of the system 

residing in the same state with the component in the revealed failure state, and the 

unrevealed failure state probability is set to zero. The final re-assigned phase 1 system 

state probabilities for entry to phase 2 become as shown in equations (7.2). 

p(ABC)(1 ) = p(ABC)(I ) + p(ABC)(I ) 
~ 1 ; 1 ~ 1 P(ABC)(I ) ~ 0 

2, 1 

p(ABC)(1 ) = p(ABC) (I ) + p(ABC)(I ) 
4',11 1 4,,6 1 47 ,1 1 

P(ABC)(/) ~ 0 
4,,6 1 

p(ABC)(/) = p(ABC)(1 ) + p(ABC)(I ) 
5, 1 5, 1 5, 1 P(ABC)(I ) ~ 0 

5, I 

p(ABC) (I ) = p(ABC) (I ) + p(ABC) (t ) + p(ABC) (t ) + p(ABC) (I ) 
~ 1 ~ 1 ~ 1 ~ 1 ~ 1 

P,(ABC)(/) P,(ABC)(I ) p(ABC)(1 ) ~ 0 
61,2 I' 63,4 I' 6,,6 1 

p(ABC)(1 ) = p(ABC)(I ) + p(ABC)(I ) 
7, 1 7, 1 7, 1 

P(ABC)(I ) ~ 0 
7, I 

p(ABC) (I ) - p(ABC) (I ) + p,(ABC) (t ) + p,(ABC) (I ) + p(ABC) (I ) 
843,,,,,46 1 - 811,15,16 I 819,21,22 t 837 ,39,40 1 843 ... '.46 1 

p,( ABC) (I ) p( ABC) (I ) p.( ABC) (I ) ~ 0 
8 13,15.16 l' 8 19,21.22 I' 8 37 ,39,40 1 

p'(ABC) (I ) = p(ABC) (I ) + p'(ABC) (I ) 
8 .... ,.7,'1 1 Sn,... 1 8«,47,41 1 

P.,(ABC)(I ) ~ 0 
831 ,41 1 

(7.2) 

• A particular combination of component failures cannot occur 

A phase system state representing a particular combination of component failures can 

be unreachable if the phase fails prior to the state being reached. Consider the simple 

2-phase example in Figure 7.10. 
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B 

A B 

(a) Phase 1 Markov Model (b) Phase 2 Markov Model 

Figure 7.10 Two Phase Example 

State 4~AB) represents the revealed failure of component B followed by the revealed 

failure of component A. This is a working state in phase I since the sequential cut set 

{A (E) B(I)} has not occurred. State 4~AB) becomes unreachable in the second phase 

since phase 2 failure occurs after the failure of component B (state 2~AB» and no 

further component failures can take place. If such a situation occurs across a phase 

boundary, the working system state probability will directly contribute to the phase 

transition failure probability into the following phase. In the example in Figure 7.10, 

transition failure will occur if the system resides in a working phase 1 state that is 

failed in phase 2 (2~AB», or a working phase 1 state that becomes unreachable in phase 

2 because the state cannot be reached (4~AB) and 4~AB», 

Tr(t ) = p(AB) (t ) + p(AB) (t ) + p(AB) (t ) . 
1 22 1 4) 1 47 1 

If the reverse situation occurs whereby an impossible system state becomes possible 

in a later phase, it will be assigned an initial state probability of zero. 

189 



7.2.1.4 Final Full Markov Model Solution Process 

The reliability of each phase and the overall mission illustrated in Figure 7.1 would be 

solved using a full Markov model in the following way: 

Phase 1 

The full 21 Markov model states are listed in Table 7.8. The system can reside in any 

of these 21 system states in phase 1, as shown in Figure 7.5. The mission is assumed 

to commence with all components in the working state 1 and so the initial 21 state 

probability matrix is given by equation (7.3). 

P(O) = [100······0] (7.3) 

The set of differential equations to give transient state probabilities are solved over the 

duration of phase 1. The reliability of phase 1 is found by the sum of the final 

probabilities of the system residing in a successful state (Table 7.8), given by equation 

(7.4). 

R(t ) = 1- (p(ABC) (t ) + p,(ABC) (t ) + p.,(ABC) (t ») 
I 78 I 838,41 I 8«,47,48 1 (7.4) 

Phase 2 

All states that cause failure or are not possible in phase 1 are assigned a probability of 

o at the phase termination. The final set of sequential state probabilities at the end of 

phase 1 must then be combined to form a reduced set of state probabilities 

representative ofthe possible phase 2 states. 

As described in Section 7.2.1.3, the enabling event of component A failure in phase 1 

becomes a NPS initiating event in phase 2. Also, the event of component C failure 

which does not contribute to system failure in phase 1 becomes an initiating event in 

phase 2. At the transition point between phases 1 and 2, the failure of components A 

and C will automatically become revealed. The first step is to re-assign all 

probabilities for states representative of components A or C in the unrevealed state to 

contribute to the identical system state with components A or C respectively in the 
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revealed state. The final re-assigned phase 1 system state probabilities are given in 

equations (7.2). 

Transition failure will occur if the system resides in a successful phase 1 state that 

represents the. existence of a phase 2 minimal cut set. In this case, both the phase 2 

minimal cut sets are non-sequential, {A,C} and {B,C}. Transition failure will occur if 

the system resides in any states with components A and C, or B and C failed, 

irrelevant of failure order at the end of phase 1. Transition failure must account for all 

successful phase 1 states representative of phase 2 failure including those states that 

become unreachable and do not contribute to the system states in phase 2 (Section 

7.2.1.3). Phase 2 transition failure is found by equation (7.5). 

(7.5) 

Each possible phase 2 system state is assigned an initial probability equal to the 

corresponding state probability at the end of phase 1. All states that were not possible 

in phase 1, or that cause phase 2 transition failure, are assigned an initial probability of 

zero in phase 2. The initial sequential state probabilities for phase 2 are given in 

equations (7.6). 

p,(ABC) (t ) - p,(ABC) (t ) 
I I - I I 

p(ABC)(t ) = p(ABC)(t ) 
22 I 22 I 

p(ABC) (t ) = p,(ABC) (t ) 
32 I 32 I 

p(ABC) (t ) = 0 
47,. I 

p'(ABC) (t ) = 0 
67,. I 

p(ABC)(t ) = p(ABC)(t ) 
77 I 77 I 

P7~ABC) (tl ) = 0 

p,(ABC) (t ) = 0 
843 ,45,46 I 

p,(ABC) (t ) = 0 
844,47,48 I 

(7.6) 

The full Markov model with transitions between states (Figure 7.6) may then be 

solved over the duration of phase 2 taking into account the sparse nature of the matrix. 

The reliability of phase 2 is found by the sum of the probabilities that the system 

resides in a successful state at the end of the phase in equation (7.7). 

R(t ) = p,(ABC)(t ) + p(ABC)(t ) + p,(ABC)(t ) + p'(ABC)(t ) + p(ABC)(t ) + p(ABC)(t ) (7.7) 
2 I 2 22 2 32 2 52 2 77 2 7. 2 
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Phase 3 

The final state probabilities at the end of phase 2 are passed directly to phase 3, where 

all states that cause failure or are not possible in phase 2 are assigned a final 

probability of zero. Since all events in phase 2 are required and initiating, there will be 

no unrevealed component failures at the start of phase 3. 

The system must reside in a state that is successful for both phases 2 and 3 to 

complete the transition successfully. In the same way as for the transition to phase 2, 

transition failure will occur if the system resides in a state representing the existence 

of a phase 3 minimal cut set. There are two phase 3 minimal cut sets; non-sequential 

{Cl, and sequential {A(E),B(I)}. Transition failure will occur if the system resides in a 

successful final phase 2 state with component C in the failed state (2~ABC»), or in a 

state representative of the failure sequence of components A then B (7~ABC»). In this 

case there are no successful phase 2 states that become unreachable and thus 

contribute to the transition failure in phase 3. The phase 3 transition failure is given by 

equation (7.8). 

Tr(t ) = p(ABC) (t ) + p(ABC) (t ) 
2 22 2 78 2 (7.8) 

The final phase 2 state probabilities are passed directly to the identical state in phase 

3. All states that were unreachable in phase 2 but become possible in phase 3, and also 

states causing phase 3 transition failure are assigned an initial probability of zero. The 

initial phase 3 system state probabilities become as given in equations (7.9). 

p,(ABC) (t ) - p,(ABC) (t ) 
p,(ABC) (t ) = 0 I 2 - I 2 

P2~ABC)(t2) = 0 
67,8 2 

P7~ABC) (t2 ) = 0 
p(ABC) (t ) = p(ABC) (t ) 

32 2 32 2 
p(ABC) (t ) = p(ABC) (t ) 

p(ABC) (t ) = 0 
77 2 77 2 (7.9) 

47,8 2 
P7~ABC) (t

2
) = 0 

p?BC) (t2 ) = 0 
1 p,(ABC) (t ) = 0 

p,(ABC) (t ) = p,(ABC) (t ) 
819,21,22 2 

52 2 52 2 
p,(ABC) (t ) = 0 

p(ABC) (t ) = 0 
843,45,46 2 

63,. 2 

The full Markov model with transitions shown in Figure 7.7 may then be solved over 

the duration of the phase. The reliability of phase 3 is found by the sum of the 
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probabilities that the system resides in a successful state at the end of the phase in 

equation (7.10). 

R(t3) = ~(ABC)(t3) + ~;ABC)(tJ + LPs~ABC)(t3) + LP"~BC)(t3) (7.10) 
}=I,2 }=3,7 

The total mission unreliability is the probability that the system failed during the 

mission, thus does not reside in a successful system state at the end of phase 3. This is 

given in equation (7.11). 

Q - 1- (p'(ABc) (t ) + p,(ABC) (t ) + "'" p(ABC) (t ) + "'" p(ABC) (t )J 
MISS - 1 3 32 3 L..J 5) 3 L..J 7) 3 

j=I,2 j=3,7 

(7.11) 

7.2.2 Reduced Markov Model 

The Markov models can become very large with only a moderate number of 

components and so this process needs to be made more efficient if at all possible. By 

considering only the Markov model for each phase it may be possible to further 

reduce the size and complexity ofthe problem. 

There are two methods by which the Markov model can be reduced further. One is 

through the elimination of irrelevant component states from the phase Markov model, 

and the other is the implementation of fault tree analysis for solution to non-repairable 

phases. At the end of each phase, the reduced models are expanded to represent the 

required states of all components contributing to later phases in the mission for entry 

to the next phase. 

7.2.2.1 Phase Transition Model 

A new model is defined between phases, the phase transition model. This is the 

minimal model required at a particular point in the mission. At the start of the mission, 

all components that do not contribute to any NPS sequential minimal cut sets in any 

phase are eliminated from the ordering scheme of the full Markov state model as 

discussed in Section 7.2.1.2. This defines the initial transition model. 
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At each following transition point, a new transition model can be defined. If a 

component is not required in any later phases, it may be removed from the transition 

model completely. All further components that do not contribute to any NPS 

sequential minimal cut sets in later phases can be eliminated from the ordering scheme 

ofthe most recent transition model. 

Minimisation of the Markov model within each individual phase may only be 

implemented where components do not contribute to any NPS sequential minimal cut 

sets in later phases. At the end of each phase the minimised model is expanded back to 

the transition model for input to the next phase. 

In the example in Figure 7.1, the initial transition model for components A, B, and C 

is defined by identifying that component C does not contribute to any NPS sequential 

cut sets during the mission (Section 7.2.1.2). Since all three components are required 

in the final phase, it is not possible to remove any components completely from the 

transition model. Components A and B both contribute to a NPS sequential cut set in 

phase 3, and so this transition model cannot be further reduced at any phase 

boundaries through the mission. The transition model is discussed further with 

inclusion of PS sequential minimal cut sets in Section 7.3.1. 

7.2.2.2 Removal oflrrelevant Components 

A smaller Markov model in a repairable phase could be formed by including only the 

components contributing to the phase failure. Analysis over a continuous phase 

duration is performed by application of a minimal Markov model (Ns, xNsj ) using 

only the components required in the particular phase i. The full set of states for the 

transition model is reduced to evaluate the N s. initial conditions for each phase, and , 

expanded out to the transition model at the end of a phase to enable calculation of 

successful entry to the immediately succeeding phase. 

This method may only be implemented for situations where an irrelevant component 

only contributes to non-sequential cut sets or PS sequential minimal cut sets in later 

phases. If the component failure is known to contribute to a NPS sequential minimal 
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cut set later in the mission, the order of failure of the component with respect to other 

components would be required and so cannot be removed from the model. 

As described in Section 5.2.3, it is possible to eliminate components that are not 

required in a phase from the full Markov model. In the example shown in Figure 7.1, 

state removal due to non-required components is only possible in phase 1. Component 

C is irrelevant during this phase, and only contributes to static gates in later phases. 

The phase 1 Markov model can be reduced to 7 system states dependent on only the 

status of components A and B (Table 7.10 and Figure 7.11). 

State A 8 

I(AB) 0 0 
2(AB) 

1 0 11U 
2(AB) 

2 0 11R 
3fAB) 11U 0 
3~AB) 11R 0 
4(AB) 

1 12U 11U 
4(AB) 

2 11U 12U 
4(AB) 

3 12U 11R 
4(AB) 

4 11U 12R 
4(AB) 

s 12R 11U 
4(AB) 

6 11R 12U 
4(AB) 

7 12R 11R 
4(AB) • 11R 12R 

Table 7.10 States of A and B Figure 7.11 Reduced Phase 1 Markov Model 

The failure of a component c that is not required in a particular phase is assumed to 

occur with rate Ae and is unrevealed since it is not continuously monitored. This failure 

will be revealed at the next inspection point or where it appears as an initiator in a 

later phase, and the component may then be restored to new condition at repair rate VC' 

The scheduled inspection of a component c takes place every n()e (n=I,2, .. ), where ()e 

remains consistent for each component through the mission and n;max ()e is the last 

inspection point for component c in phase i. The inspection period ()e is considered to 

be much larger than the mean repair time. 

There are two possibilities of scheduled maintenance in phase i. The first assumes that 

if the component was monitored continuously in the previous phase, or maintenance is 

known to begin at the start of a phase, then scheduled inspection points begin at (i-1. 
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The unavailability of an irrelevant component under scheduled maintenance that 

begins at ti-1 over the duration of phase i can be given as a function of time as shown 

in Figure 7.12. 

Unavailability 
qc(t) 

t; 

Time 

Figure 7.12 Unavailability of an Irrelevant Component Under Scheduled Inspection 

beginning at ti-1 

Alternatively if the scheduled maintenance of the component is continued from the 

previous phase, the scheduled inspection points depend on the most recent inspection 

time in the last phase. The last scheduled inspection of component c in phase i is 

defined as being at t= tn . The unavailability of an irrelevant component under 
/max 

scheduled maintenance in phase i that continues from phase i-I can be given as a 

function of time as shown in Figure 7.13. 

Unavailability 
qlt) 

t + 2() 
n(l-Il max C 

t + n. () f. 
n(l-I) max I max C I 

Time 
where· t 

n(i-llmax 
is the last inspection point in phase i-I 

tn + n. Bc is the last inspection point in phase i 
(/-llrnax ,max 

Figure 7.13 Unavailability of an Irrelevant Component Under Scheduled Inspection 

Continuing from Phase i-I 
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Considering the first phase of the mission, all components are known to begin in the 

working state and so the initial unavailability of an irrelevant component will be zero. 

As the mission progresses it is possible that the component will not begin a phase in 

the working state, and the initial component unavailability in a phase i will be greater 

than zero. 

Using the derivations in Section 5.3.1 of component failure probability with time for a 

component beginning a phase i with initial unavailability greater than zero (equation 

5.38), it is possible to obtain the unavailability ofthe component with time up until the 

first inspection point in a repairable phase. The unavailability of an irrelevant 

component c in phase i is given as a function oftime from the start of phase i, at t=ti_1, 

to the first inspection point by equation (7.12), and from the first inspection point to 

the end ofthe phase, at t=lj, by equation (7.13). 

1- a (t. )e-'<c(I-li-l) for t. :::; t:::; (t + e) 
C I-I I-I n(i-I)max C 

(7.12) 

for (tn. +(n-1)8c):::;t:::;(tn +n(}c) n=2,3, ... ,n. +1 
(I-I}max (/-I)max I max 

(7.13) 

where t"(l-I)max = t i- 1 ifthe first scheduled inspection point is at t =ti- 1 

Since the component is not required in the phase, the reliability of the component over 

the phase duration is not important. The only requirement is the probability of the 

component residing in the working or failed state at the end of the phase for transition 

into the next phase. If the phase finishes before the first inspection point, the 

unavailability ofthe component at the end of the phase i is given by equation (7.14). 

q (t.) =1-a (t. )e-Ac(ti-ti-I) 
C I C 1-1 (7.14) 

If phase i finishes after the first inspection point, the final unavailability of the 

component is found by equation (7.15). 

(7.15) 

where t", = t i- 1 if the first scheduled inspection point in phase i is at t =ti- 1 ··,I-I)max 
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The initial component c availability in phase i, ac (tH ) , is obtained depending on the 

configuration of the previous phase. If the previous phase i-I was non-repairable and 

component c did NOT contribute to a sequential failure relationship (Section 7.2.2.3), 

regardless of whether the component was required in the previous phase, the 

probability that c is available at the end of phase i-1 is obtained from equation (5.39) 

in equation (7.16). 

(7.16) 

where ac (tl_2 ) is the initial availability of component c in phase i-1 

In the case that the previous phase i-1 was non-repairable and component c 

contributed to a sequential failure relationship, or if the previous phase i-1 was 

repairable and component c was required in the phase configuration, the probability 

that c is in the working state at the end of phase i-1 is obtained using the previous 

phase Markov model in equation (7.17). 

(7.17) 

where j are successful phase i-1 states with contribution of component c working 

If the previous phase was repairable but component c was not required in the phase 

configuration, the final component availability would be obtained using equation 

(7.14) or (7.15). 

In the same way as presented in Section 5.2.2, the probability of the reduced set of 

Markov states may be multiplied by the unavailability and availability of irrelevant 

components at the end of a phase to produce a full set of transition model state 

probabilities for input to the next phase. If an irrelevant component failure acts as an 

enabler or is not used in the following phase, the unavailability of the component 

relates to the initial unrevealed failure state. If an irrelevant component failure acts as 

an initiating event in the following phase, the unavailability relates to the initial 

revealed failure state. Since the component does not contribute to any NPS sequential 

minimal cut sets in later phases, the order of failure of the component in the transition 

model is not important. The only requirement is the probability that the component is 

in the working or failed state at the end of the phase. 
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The failure of a component that is not required during a non-repairable phase and does 

not contribute to any NPS sequential minimal cut sets in later phases is modelled as 

described in Section 5.3.1. 

Once any irrelevent components are removed from the state model and the required 

system states for a phase have been identified, the reduced Markov models for each of 

the individual phases may be solved. 

7.2.2.3 Combined Fault Tree and Markov Method 

If a phase is non-repairable, other methods may be investigated for solution. Fault tree 

methods allow the calculation of system unreliability for systems comprising of only 

non-repairable components. It is possible to combine solutions of event probability for 

static and dynamic gate types to calculate phase unreliability. 

It can be seen that phase 3 in example Figure 7.1 consists of only non-repairable 

components. However the fault tree representation of the system uses both static and 

dynamic gate types to show the logic of the top event occurrence of phase 3 failure. A 

static gate may be solved using simple fault tree analysis. Since a dynamic gate 

involves sequential failures, treating a priority-AND gate as a normal AND gate 

would give a pessimistic result. Solution of the top event occurrence probability 

including a dynamic gate requires a method that allows for dependencies in a system 

such as a Markov model. 

A combination of fault tree and Markov methods may be implemented for situations 

where components that are input to static gates of a non-repairable phase do not 

contribute to any NPS sequential minimal cut sets of later phases. If a component is 

known to contribute to a later NPS sequential minimal cut set, the ordering of the 

component with respect to the other components would be required later in the 

mission. The component could not be treated independently from the components 

input to dynamic gates and eliminated from the Markov model. In this example, 

component C does not contribute to any later NPS sequential minimal cut sets, and so 

it is possible to model the component failure probability using fault tree analysis. 
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Figure 7.14 shows the labelling of the output events for gates in phase 3 of Figure 7.1. 

A B 

Figure 7.14 Phase 2 Representation 

The top event occurrence, phase 3 failure, is the output of gate G 1 and can be 

represented by logic equation (7.18). 

G1 =C+G2 (7.18) 

Gate G2 is a dynamic gate which since it is independent of the rest of the fault tree 

can be considered as a separate subsystem for analysis. The dynamic nature of G2 

means that the probability of the system residing in a state that allows occurrence of 

G2 must be found using a Markov Model. The Markov model would be represented 

using the state listing in Table 7.10 and is given in Figure 7.15. 

A-F2R 
.... )... B-F'R 

4r"" 

Figure 7.15 Markov Model of Dynamic Gate G2 

The final state probabilities from phase 2 may be combined to give a set of initial 

reduced Markov system state probabilities for phase 3 by removing component C 

from the transition model. The solution of the set of differential equations for this 

model over the phase 3 duration results in a final set of system state probabilities at 
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t=t3' The probability that gate G2 fails and thus contributes to the top event 

occurrence is found by the probability that the enabling event, component A failure, 

occurs prior to the initiating event of component B failure. This is represented by the 

probability that the system resides in state 4~AB) in Figure 7.15 at the end of the phase. 

The probability of event G2 is found by equation (7.19). 

(7.19) 

Equation (7.18) demonstrates the relationship between the occurrence of the top event, 

Gl, and the dynamic gate occurrence, G2. Once the probability of occurrence of G2 

has been calculated it is possible to incorporate the results into the event of the static 

gate G 1 occurrence. 

Since component C failure is an initiating event, it is automatically revealed. The 

probability that component C fails during phase 3 and thus contributes to the top event 

occurrence is required. This is found by fault tree analysis as derived in Section 5.3.1 

(equation (5.40», and is given by equations (7.20). 

(7.20) 

where ac (t2 ) is found by the contribution of all transition model state probabilities 

with component C working at the end of the previous phase. 

The results can then be combined to allow calculation of the probability of the top 

event occurrence, Gl, in equation (7.21). 

(7.21) 

7.2.2.4 Final Reduced Markov Model Solution Process 

The final solution process for a phased mission system where all sequential cut sets 

are NPS can be summarised in algorithmic form in Figure 7.16. The proposed method 

for solution to a mission comprising of both non-repairable and repairable continuous 
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phases with only NPS sequential minimal cut sets and scheduled inspection will be 

demonstrated in more detail by application to the example given in Figure 7.1. 

Non-Repairable----< 

Assign initial phase; 
sequential Markov state 
probabilities taking into 

account phase transitions 

NO 

Non-repairable or 
repairable ph .. e? 

i=i+1 

Fonn new TRANSITION MODEL 

YES (N.-y-z) non-sequential components 
z sequential components 

YES 

Remove irrelevant 
component(s) from 

state list to give 
minimal phase 
Markov model 

(Section 7.2.2.2) 

Repairable 

Combine final minimal 
Mat'koy state probabilities 

with failure/success 
probability of any 

irrelevent components 
removed from model to 
give transition Markov 

model 

>-________ .-___ NO ________ L-__ ~~ 

YES 

Remove component(s) from 
state list to give minimal 

M arkov ph .. e model 
(Section 7.2.2.3) 

Solve minimal 
Markovmodel 

Combine final minimal Markov 
state probabilities with failurel 

success probability of 
components input to static gates 

Figure 7.16 Algorithm to Solve a Phased Mission System with only NPS Sequential 
Failure Relationships 

Phase 1 

The important things to notice are that, 

• Component C is not required in the phase, but will be used in later phases. 

• There is a sequential relationship between components A and B. 
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Since component C is not required during this phase and does not contribute to any 

later NPS sequential cut sets, it can be removed from the sequential ordering of the 

Markov model and the initial transition model is defined by the state listing in Table 

7.8. In this first phase, component C can be eliminated from the Markov model 

completely to reduce computational time and model complexity as discussed in 

Section 7.2.2.2. 

The initial sequential phase 1 states must represent the sequential failure relationship 

between components A and B, and are listed in Table 7.10. Referring to the rules as 

given in Sections 7.2.1.1 it is possible to identify all system states that are not required 

in phase 1. There is only one minimal cut set that contributes to the occurrence of the 

top event, AB. However in order to cause phase 1 failure, the components must fail in 

the order of A first and B second. Failure of component B only ever acts as an initiator 

and so can never occur unrevealed. This eliminates states 2 (AB) 4 (AB) 4 (AB) 4 (AB) 1 , 1 , 2 , 5 , 

and 4~AB) from the model. If component A fails before component B fails, the 

enabling event allows the initiating event to cause phase 1 failure. This automatically 

reveals the fact that component A has failed and thus state 4 ~AB) is also an impossible 

system state for this phase The remaining states I(AB) 2(AB) 3(AB) 3(AB) 4(AB) 
. '2'1 '2'3' 

4~AB) , and 4~AB) , are all possible system states in phase 1 as shown in Figure 7.11. 

It is assumed that all components begin the mission in the working state and so the 

probability that the system resides in state 1 (AB) is assigned the value of 1.0 whilst all 

other non-sequential states are assigned an initial probability of 0.0. 

In the same way as in Section 5.2.3, the set of differential equations for this reduced 

Markov model are solved over the duration of Phase 1. Although states 4~AB) and 

4~AB) represent both of the components in the failed state, the phase can still continue 

and restoration of the components is allowed. Since the only system state that causes 

phase termination is state 4~AB) , phase 1 reliability can be obtained by equation (7.22). 

(7.22) 
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Phase 2 

The second phase of this mission introduces component C which until now has not 

been required. Since the component was known to be working at the start of the 

mission, the unavailability of component C at the end of the repairable first phase is 

found depending on the appropriate situation: 

• Scheduled Inspection - phase 1 ends before first scheduled inspection point. 

Use: equation (7.14) where i=i 

• Scheduled Inspection - phase 1 ends after first scheduled inspection 

Use: equation (7.15) where i=i and tn . = 0 
(.-I)max 

• Constant Monitoring - component C failure automatically revealed (equation 

5.46) 

The availability of component C at the end of phase 1 can be found by adt.), 

whereacCtJ = l-qc(tJ. 

The beginning of a new phase requires a set of initial transition model system state 

probabilities. To calculate the initial system state probabilities in phase 2, the 

probability that the system resides in any working transition model state (Table 7.8) at 

the end of phase 1 is required. 

Since component C was excluded from the phase 1 Markov model, the probability of 

component C being in the working or failed state at the end of the phase must now be 

incorporated. The probability that component C is in the failed and working state at 

the end of phase 1 is included using the calculation method for the unavailability of 

irrelevant components at the end of a phase (7.2.2.2). Component C is assumed to be 

maintained under scheduled inspection in phase 1. Since component C was not 

required in phase 1 and acts as an initiator in phase 2, the final phase 1 failure is 

classed as revealed. The final revealed failure probability of component C is obtained 

using equations (7.14) or (7.15). The transition model state probabilities at the end of 
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the first phase are obtained from the working states of the reduced Markov model in 

Figure 7.11, as shown in Table 7.11. 

Transition Com~onent States Reduced Markov Model 
Model (Figure 7.10) with Component 

State Ref A B C C Final State Probability 

l(ABC) 
0 0 0 p.(AB) (I.) . ac(t.) 

2(ABC) 
• 0 0 1u 0 

2(ABC) 
2 0 0 1R ;:(AB) (I.)· qc (t.) 

3(ABC) 
2 0 11R 0 P2;AB) (t.). ac (t.) 

4(ABC) 
5 •• 0 11R 1u 0 

4(ABC) 
7.8 0 11R 1R p2;AB) (t.). qc (t.) 

S(ABC) 
• 11U 0 0 p~AB)(t.). ac(t.) 

S(ABC) 
2 11R 0 0 P3~AB)(t.). ac(t.) 

6(ABC) 
•• 2 11U 0 1u 0 

6(ABC) 
3.' 11U 0 1R P3~AB) (t.). qc (t.) 

6(ABC) 
5 •• 11R 0 1u 0 

6(ABC) 
7.8 11R 0 1R P3~AB) (t.) . q C (t.) 

7(ABC) 
3 12U 11R 0 P.~AB)(/.)' ad/.) 

7(ABC) 
7 12R 11R 0 p.~AB)(t.). ac(/.) 

7(ABC) 
8 11R 12R 0 0 

g(ABC) 
13,15.16 12U 11R 1u 0 

g(ABC) 
19,21,22 12U 11R 1R P4~AB) (t.). qc(t.) 

g(ABC) 
37.39,40 12R 11R 1u 0 

g(ABC) 
38,41 11R 12R 1u 0 

g(ABC) 
43.45,46 12R 11R 1R p.~AB)(t.). qc(t.) 

g(ABC) 
44,47,48 11R 12R 1R 0 

Table 7.11 Phase 1 Final Transition Model State Probabilities 

As described in Section 7.2.1.3, the enabling event of component A failure in phase 1 

becomes an initiating event in phase 2. At the transition point between phases 1 and 2, 

the failure of component A will automatically become revealed. The probabilities of 

all transition model states (Table 7.11) representative of component A in the 

unrevealed state must be re-assigned to contribute to the identical system state with 

component A in the revealed state. The final re-assigned phase 1 transition model 

state probabilities are given in equations (7.23). 

p(ABC)(t )=P(ABC)(t )+P(ABC)(t) 
52 1 SI 1 52 1 

p(ABC) (t ) ~ 0 
5, • 

p(ABC) (t ) = p(ABC) (t ) + p(ABC) (t ) 
6". 1 63.4 1 67,. I 

p(ABC) (t ) ~ 0 
6],4 I (7.23) 

p(ABC) (t ) = p(ABC) (t ) + P(ABC) (t ) 
77 I 7] I 7, I 

p(ABC)(t ) ~ 0 
7, • 

P(ABC) (t ) = p(ABC) (t ) + p(ABC) (t ) 
843 ,45,46 I 819,21.:n 1 8U ,4'.46 I 

p(ABC) (t ) ~ 0 
819,21,22 1 
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Transition failure will occur if the system resides in any successful phase 1 state that 

represents the existence of a phase 2 minimal cut set. The phase 2 minimal cut sets are 

{A, C} and {B, Cl, thus phase 2 transition failure will occur if the system resides in a 

transition model state with either components A and C, or Band C in the failed state 

at the end of phase 1, and is given in equation (7.5). 

Since phase 2 is repairable and requires all three components, the Markov model 

shown in Figure 7.6 is solved over the duration of phase 2, [t], t2), with initial state 

probabilities given in Table 7.11 and redefined in equations (7.23). Any states that 

cause phase 1 or phase 2 failure are assigned an initial state probability value of zero. 

The reliability of phase 2 is found by the sum of the probabilities that the system 

resides in a successful state at the end of the phase (t=t2) in equation (7.7). 

Phase 3 

Since the phase 2 Markov model required the full transition model states, the state 

probabilities can be passed directly to phase 3, and all states that caused phase 2 

failure are assigned a probability of zero on entering phase 3. All components were 

required in phase 2 and so the final failure probabilities are classed as revealed. 

Transition failure will occur if the system resides in a working phase 2 state 

representing the existence of a phase 3 minimal cut set. There are two phase 3 

minimal cut sets; non-sequential {Cl, and sequential {A(E),B(I)}. Transition failure 

will occur if the system resides in a successful final phase 2 state with component C in 

the failed state (2~ABC», or in a state representative of the failure sequence of 

components A then B (7~ABC». In this case there are no successful phase 2 states that 

become unreachable and thus contribute to the transition failure in phase 3 (Section 

7.2.1.3). The phase 3 transition failure is given by equation (7.8). 

Since the third phase consists of only non-repairable components, the method 

described in Section 7.2.2.3 can be applied for solution. Component C is only input 

into a static gate and does not contribute to any later NPS sequential minimal cut sets, 

thus can be removed from the dynamic Markov model of the phase. To solve this 

reduced Markov model (Figure 7.15) we are only interested in the states of 

components A and B at the start of the third phase. The successful transition model 

states listed in Table 7.11 must be reduced to represent only the states of components 
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A and B and are given in Table 7.12. For example, state 7~ABC) in Table 7.11 

represents the event that component B fails revealed followed by component A 

revealed failure. Since component C is not required in the model, this state is 

equivalent to state 4~AB) in Table 7.12 with the same failure combination of 

components A and B. All states that cause phase 3 failure are assigned an initial state 

probability of zero. 

State Ref 

2(AB) 
2 

Table 7.12 

Component States Combination of Initial 

A B 

0 0 

0 11R 

11U 0 

11R 0 

12U 11R 

12R 11R 

11R 12R 

Transition State Probabilities 
(Table 7.11) 

-------I 
p"(ABC) (t

2
) 

P3~ABC)(t2) 

o 
P5~ABC) (t 2) 

o 
P7~ABC)(t2) 

o --------' 
Phase 3 Initial Non-Sequential State Probabilities 

The set of Markov differential equations can now be solved over the duration of phase 

3. The end system state probabilities can be combined with the unavailability of 

component C over the duration of the phase to calculate the reliability of phase 3. 

Using equations (7.19), (7.20) and (7.21), the reliability of phase 3 is expressed in 

equation (7.24) 

(7.24) 

where 

In many practical situations it is likely that a system will comprise of phase specific 

sequential cut sets. The inclusion of phase specific sequential cut sets is discussed in 

the following sections. 

7.3 Phase Specific Initiators 

This section considers the possibility of phase specific (PS) initiating events. In such a 

situation, failure during a phase will only be caused if the PS initiating event of a 
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sequential minimal cut set occurs during the phase in question. If a PS sequential 

minimal cut set exists at the start of a phase, it will not contribute to the phase failure. 

This allows further state reduction between phases to achieve a minimal transition 

Markov model. The possibility of the minimisation of the model allows us to reduce 

the size of the phase transition matrices and decrease computational time. 

Consider the example shown in Figure 7.1 where the initiating events of the sequential 

minimal cut sets are PS. The phase failure criteria are given in Figure 7.17. 

REPAIRABLE 

A B 
(liE) (liE) 

REPAIRABLE NON-REPAIRABLE 

Figure 7.17 Mission with Phase Specific Initiating Events 

7.3.1 Phase Transition Model 

The transition model was discussed for only NPS sequential minimal cut sets in 

Section 7.2.2.1. This is the minimal model required at a particular point in the 

mission, and can be redefined at each transition point. All components that are not 

required for the remaining phases can be removed from the transition model. Any 

further components that do not contribute to any NPS sequential minimal cut sets in 

later phases can be eliminated from the ordering scheme of the most recent transition 

model. Since PS sequential minimal cut sets can only cause phase failure if the 

initiating event occurs during a particular phase, the transition model can be expanded 

at the start of the phase to include the order of failure of the components contributing 

to the cut set. At the end of the phase the expanded model is reduced back to the 

transition model for input to the next phase. 
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At the start of the mission in Figure 7.17, it can be seen that none of the components 

contribute to a NPS sequential cut set during any phase. The transition model is 

defined by eliminating the failure ordering of all components in the Markov model, as 

discussed in Section 7.2.1.2, from the full state listing in Table 7.6. This is given in 

Table 7.13. 

It can be seen that the removal of the order of failure of all components has produced 

mUltiple states representing the same failure mode in the model. It is possible to 

combine all states with the same combination of component failures into a single 

state. The final combined states ofthe transition model are given in Table 7.14. 

Since none of the transition model states in Table 7.14 represent component failure 

ordering, this is the minimal transition model possible and is defined as non-sequential 

for all components. No further minimisation can be implemented due to components 

not contributing to NPS sequential minimal cut sets at later phase boundaries. Also, 

since all components are required in phases 2 and 3, no components can be completely 

removed from the transition model at any stage. 

PS sequential· minimal cut sets must be identified at the start of each phase. The 

transition Markov model states between each phase must be expanded to allow for 

sequential failures during the proceeding phase. 
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State Ref 

l(ABC) 

2(ABC) 
I 

2(ABC) 
2 

3(ABC) 
2 

4(ABC) 
S 

4(ABC) 
6 

4(ABC) 
7 

4(ABC) 
8 

s(ABC) 
I 

S(ABC) 
2 

6(ABC) 
I 

6(ABC) 
2 

6(ABC) 
3 

6(ABC) 
4 

6(ABC) 
S 

6(ABC) 
6 

6(ABC) 
7 

6(ABC) 
8 

7(ABC) 
3 

7(ABC) 
7 

7(ABC) 
8 

g(ABC) 
13 

g(ABC) 
IS 

g(ABC) 
16 

g(ABC) 
19 

g(ABC) 
21 

g(ABC) 
22 

g(ABC) 
37 

g(ABC) 
38 

g(ABC) 
39 

g(ABC) 
40 

g(ABC) 
41 

g(ABC) 
43 

g(ABC) 
44 

g(ABC) 
4S 

g(ABC) 
46 

g(ABC) 
47 

g(ABC) 
48 

Table 7.13 

Component States Phase 1 Phase 2 Phase 3 
A B C 

0 0 0 W W W 

0 0 1u W R R 

0 0 1R W W F 

0 1R 0 W W W 

0 1R 1u W R R 

0 1R 1u W R R 

0 1R 1R W F R 

0 1R 1R W F F 

1u 0 0 W R W 

1R 0 0 W W W 

1u 0 1u W R R 

1u 0 1u W R R 

1u 0 1R W R R 

1u 0 1R W R F 

1R 0 1u W R R 

1R 0 1u W R R 

1R 0 1R W W R 

1R 0 1R W W F 

1u 1R 0 W R W 

1R 1R 0 W F W 

1R 1R 0 F F F 

1u 1R 1u W R R 

1u 1R 1u W R R 

1u 1R 1u W R R 

1u 1R 1R W R R 

1u 1R 1R W R R 

1u 1R 1R W R F 

1R 1R 1u W R R 

1R 1R 1u F R R 

1R 1R 1u W R R 

1R 1R 1u W R R 

1R 1R 1u F R R 

1R 1R 1R W R R 

1R 1R 1R F R R 

1R 1R 1R W R R 

1R 1R 1R W F F 

1R 1R 1R F R R 

1R 1R 1R R F R 

Transition Model States for 3-Component System Example with 

PS Sequential Failures and Scheduled Inspection 
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Transition Component States 

Model A B C 
l(ABC) 0 0 0 
2(ABC) 

I 0 0 1u 
2(ABC) 

2 0 0 1R 
3(ABC) 

2 0 1R 0 
4(ABC) 

5,6 0 1R 1u 
4(ABC) 

7,' 0 1R 1R 
S(ABC) 

I 1u 0 0 
S(ABC) 

2 1R 0 0 
6(ABC) 

1,2 1u 0 1u 
6(ABC) 

3,' 1u 0 1R 
6(ABC) 

5,6 1R 0 1u 
6(ABC) 

7,' 1R 0 1R 
7(ABC) 

3 1u 1R 0 
7(ABC) 

7,8 1R 1R 0 
g(ABC) 

13.15,16 1u 1R 1u 
g(ABC) 

19,21,22 1u 1R 1R 
g(ABC) 

37,38,39,40,41 1R 1R 1u 
g(ABC) 

43,44,45,46,47,48 1R 1R 1R 

Table 7.14 Transition Model State Listing 

7.3.2 Phase Transitions for PS Sequential Cut Sets 

When considering PS sequential minimal cut sets, it is not always possible to assign 

the probability of the system residing in a particular state to the same state in the next 

phase. Where phases contain dynamic gates, the system level outcome depends on the 

order of component failure. In some cases an initiating event may be PS and only 

relevant to the phase in which it occurs. 

For example when considering the 3-phased mission in Figure 7.17, it is seen that 

there is a PS sequential failure relationship between components A and B CA must fail 

before B) in phase 3 which is reflected in the phase failure modes of the reduced 

Markov model in Figure 7.15. The enabling event of component A failure could have 

occurred in any phase prior to and including phase 3, however for this sequential cut 

set to occur, the PS initiating event of component B failure must occur during phase 3. 
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If the system reaches the state in phase 2 where component C is working and 

components A and B have failed in the order of A then B with both failures revealed, 

phase 2 failure will not occur. The state representative of this failure relationship is 

state 7~ABC) in Table 7.8. If the same failure sequence occurred in phase 3, however, 

this would cause system failure. 

Using the method for only NPS initiators as demonstrated in Section 7.2, if this state 

were achieved in phase 2 then failure would occur on transition to phase 3 (due to the 

NPS initiator) where it satisfies the phase failure requirements and state 7~ABC) 

represents the absorbing failure state 4~AB) of phase 3 (Figure 7.15). However, as 

failure of component B in phase 3 is a PS event this is not now the situation. Since the 

failure sequence occurred in phase 2, it is not representative of the same failure state 

in phase 3. Misrepresentation occurs if the two states are taken to be the same in the 

two phases. This state only results in failure in phase 3 if the initiating event, B, 

occurs in phase 3 not on phase transition if it has occurred previously. 

In such cases, a temporary state is introduced to the phase model that represents the 

same combination of component failure conditions but makes a distinction as to the 

failure mode of the state. This state cannot occur during the phase, but can exist at the 

start of the phase. Thus no state transitions into the state are possible during the phase, 

however state transitions may be made out of the state during the phase. In the event 

that state transitions are possible out of a temporary state, the correct destination state 

must be identified with the appropriate failure mode. For example, considering the 

phase 3 Markov model in Figure 7.15, the only state that causes phase failure due to 

just the occurrence of the PS sequential minimal cut set is state 4~AB). A temporary 

state is introduced, 4~~), to represent the same component failure combination but 

with a failure outcome that does not cause phase failure. No state transitions are 

possible into the state during phase 3, and in this case since the phase is non

repairable and component C is not represented in the model, no transitions are 

possible out of the state. The probability of the system residing in this temporary state 

will remain constant until the end of the phase. This is demonstrated in Figure 7.18. 
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Figure 7.18 Reduced Phase 3 Markov Model 

The reliability of phase 3 remains as given in equation (7.24). If there were later 

phases in the mission, the probability that the system resides in the original state with 

components A and B failed in the order of A then B at the end of the phase becomes 

equal to the temporary state (4~1B») (equation (7.25)) for input to the next phase, and 

the temporary state is removed. 

p(AB) (t ) = p(AB) (t ) 
48 3 48, 3 

p(AB)(t ) ~ 0 
4 8, 3 (7.25) 

7.3.3 Final Solution Process 

The methods presented in Sections 7.2.2.2 and 7.2.2.3 can again be applied to systems 

comprising of PS sequential minimal cut sets as long as the failure order of 

components removed from the model is not required for any later NPS sequential 

minimal cut sets. The general method to solve a phased mission system comprising of 

PS and NPS initiating events is summarised in Figure 7.19. 
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No .... Repairable'-----< 

YES 

Expand transition model 
to identify failure ordering 

of components 
contributory to phase 
specific sequential cut 

sets 

sSlgn 101 a p ase I 
sequential Markov state 
probabilities taking Into 

account phase transitions 

NO 

No .... repalrable or 
repairable phase? 

1=/+1 

Form new TRANSITION MODEL 

YES (N,Y-z) non-sequential components 
z sequential components 

NO 

Remove Irrelevant 
component(s) from 

state list to give 
minimal phase 
Markovmodel 

(Section 7.2.2.2) 

Reduce sequential 
Markov model Into 

transition model for input 
to next phase 

Combine final minimal 
Markov state probabilities 

with fallure!success 
probability of any 

Irrelevent components 
removed from model to 
give full phase Markov 

model 

Repairabl Solve Markov model 

~-------.-------------NO------~ 

YES 

Remove component(s) from 
state list to give minimal 

Markov phase model 
(Section 7.2.2.3) 

Solve minimal 
Markovmodel 

Combine final minimal Markov 
state probabilities with failure! 

success probability of 
components input to static gates 

Figure 7.19 Algorithm to Demonstrate Solution to a Phased Mission System with both 
PS and NPS Sequential Failure Relationships 
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This may be applied to the example in Figure 7.17 in the following way: 

Phase 1 

Since no components contribute to any later NPS sequential cut sets, the failure 

ordering of all components can be removed from the full Markov model to reduce 

computational time and model complexity as discussed in Section 7.3.1. The 

transition model is defined by the non-sequential state listing in Table 7.14. 

The initial sequential phase 1 states must represent the sequential failure relationship 

between components A and B, and are listed in Table 7.10. By application of the rules 

to identify all system states that are not required in phase 1 (Section 7.2.1.1), the 

possible states are I(AB), 2~AB), 3~AB), 3~AB), 4jAB), 4~AB), and 4~AB), and are shown in 

the phase 1 Markov model of Figure 7.11. 

We assume that all components begin the mission in the working state and so the 

probability that the system resides in state I(AB) is assigned the value of 1.0 whilst all 

other non-sequential states are assigned an initial probability of 0.0. Since the only 

system state that causes phase termination is state 4~AB), phase 1 reliability can be 

obtained by equation (7.22). 

Phase 2 

The beginning of a new phase requires a set of initial system state probabilities. To 

calculate the initial phase 2 system state probabilities, we require the probability that 

the system resides in any working state of the transition model at the end of phase 1. 

The most minimal transition model listed in Table 7.14 requires no representation of 

component failure orderings. The Markov model states at the end of the first phase 

(Figure 7.11) may be represented in non-sequential form using Table 7.15. The state 

probabilities are assigned in equations (7.26) where all states that caused phase 1 

failure are given a final probability of zero. 
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State Component 

Ref A B 
1 (AB) 0 0 
2(AB) 

2 0 1R 
3(AB) , 1u 0 
3(AB) 

2 1R 0 
4(AB) 

3 1R 1u 
4(AB) 

7 1R 1R 
4(AB) 

• 1R 1R 

Non-

Sequential 
1 (AB) 

2(AB) 
2 

3(AB) , 
3(AB) 

2 

4(AB) 
l 

4(AB) 
7,8 

Final Phase 1 
Non-Sequential State 

EfAB)(t1) 

l{,AB)(t1) 

11,AB)(t1) 

F{AB)(t1) 

~AB)(tl) 

p:AB)(t) 
4". 1 

= 

= 

= 

= 

= 

= 

Final Phase 1 
Sequential State 

FfABJ(t,) 

RAlJ}(t) 
2, , 

I{,ABJ(t,) + I{,ABJ(t,) =I{,ABJ(tl ) 

(7.26) 
Table 7.15 Final Phase 1 Non-Sequential States 

The second phase of this mission introduces component C which until now has not 

been required. The unavailability of component C at the end of the first phase is 

obtained in the same way as presented in Section 7.2.2.2 using equation (7.14) or 

(7.15). Since component C failure acts as an initiating event in phase 2, the final 

failure is classed as revealed. The probability of component C being in the working or 

failed state at the end of phase 1 must be included in this model. The transition model 

state probabilities at the end of the first phase using the working states of the reduced 

Markov model in equation (7.26) are found using Table 7.16. 

As described in Section 7.2.1.3, the enabling event of component A failure in phase 1 

becomes an initiating event in phase 2. At the transition point between phases 1 and 2, 

the failure of component A will automatically become revealed. The probabilities of 

all transition model states representative of component A in the unrevealed state must 

be re-assigned to contribute to the identical system state with component A in the 

revealed state. The final re-assigned phase 1 transition model state probabilities are 

given in equations (7.27). 

p,(ABC)(t ) = p,(ABC)(t ) + p,(ABC)(t ) 
5, 1 5, 1 5, 1 

p,(ABC) (t ) ~ 0 
S, I 

p,( ABC) (t ) = p,( ABC) (t ) + p,( ABC) (t ) 
6". 1 6". 1 6". 1 (7.27) 

. p(ABC)(t ) = p(ABC)(t ) + p(ABC)(t ) 
7~ 1 ~ 1 ~A 1 

p(ABC)(t ) ~ 0 
7, I 

p,(ABC) (t ) - p,(ABC) (t ) + p,(ABC) (t ) 
84l.4!:.~,41.41 1 - 819,21.22 1 8.0.":5,46, .. ,,018 1 

p,(ABC) (t ) ~ 0 
819•21,21 1 

216 



Transition 
Reduced Markov Model 

Model 
Component States (Figure 7.10) with 

State Ref 
Final Component C 

A B C State Probability 

l(ABC) 0 0 0 p,(AB) (t,). ac (t,) 

2(ABC) , 0 0 1u 0 
2(ABC) 

2 0 0 1R ~(AB)(t,)·qc(t,) 

3(ABC) 
2 0 1R 0 P2~AB)(t,). ac(t,) 

4(ABC) 
5,6 0 1R 1u 0 

4(ABC) 
7,8 0 1R 1R P2~B)(t,), qdt,) 

s(ABC) , 1u 0 0 ~~AB)(t,). ac (t,) 

s(ABC) 
2 1R 0 0 ~~AB)(t,). adt,) 

6(ABC) 
',2 1u 0 1u 0 

6(ABC) 
3,4 1u 0 1R P3~AB)(t,), qc(t,) 

6(ABC) 
5,6 1R 0 1u 0 

6(ABC) 
7,8 1R 0 1R P3~AB)(t,), qc(t,) 

7(ABC) 
3 1u 1R 0 P4~AB) (t,) , ac (t,) 

7 (ABC) 
7,8 1R 1R 0 P4~~,B) (t,) , ac (t,) 

g(ABC) 
13.15,16 1u 1R 1u 0 

g(ABC) 
19,21,22 1u 1R 1R P4;AB) (t,) , q C (t,) 

g(ABC) 
37,38,39,40,41 1R 1R 1u 0 

g(ABC) 
43,44,45,46,47,48 1R 1R 1R p}AB) (t,)' q cCt,) 

7,1 

Table 7.16 Final Phase 1 Transition Model State 

Transition failure will occur if the system resides in any successful phase 1 state that 

represents the existence of a phase 2 minimal cut set. The phase 2 minimal cut sets are 

{A, C} and {B, Cl, thus phase 2 transition failure will occur if the system resides in a 

transition model state with either components A and C, or B and C in the failed state 

at the end of phase 1, and is given in equation (7.28). 

Tr(t ) - RABC) (t ) + R-ABC) (t ) + RABC) (t ) 
I - 47,8 I 67,8 I 843,44,45,46,47,48 I 

(7.28) 

Phase 2 is repairable and requires all three components. Since there are no sequential 

failure relationships that contribute to phase 2 failure, the transition model states do 

not need to be expanded and the phase 2 Markov model can be represented by Figure 

7.20. 
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Figure 7.20 Non-Sequential Phase 2 Markov Model 

The Markov model shown in Figure 7.20 is solved over the duration of phase 2, [t], 

t2), with initial state probabilities given in Table 7.16 and equations (7.27). Any states 

that cause phase 1 or phase 2 failure are assigned an initial state probability value of 

zero. The reliability of phase 2 is found by the sum of the probabilities that the system 

resides in a successful state at the end ofthe phase in equation (7.29). 

R(t ) = p,(ABC) (t ) + p'(ABC) (t ) + p,(ABC) (t ) + p,(ABC) (t ) + p'(ABC) (t ) 
2 1 2 22 2 32 2 S2 2 7,,8 2 (7.29) 

Phase 3 

Since the phase 2 Markov model required the full non-sequential states of the 

transition model, no reduction of sequential states is applied at the end of phase 2. The 

phase 2 failure states are assigned a final probability of zero, and all working 

transition model states can be passed directly to phase 3. 

Transition failure will occur if the system resides in a state representing the existence 

of a phase 3 minimal cut set. There are two phase 3 minimal cut sets; non-sequential 

{Cl, and sequential {A(E),B(Ip)}. However since cut set {A(E),B(IP)} is PS, it cannot 

exist at the start of phase 3. Only non-sequential and NPS sequential minimal cut sets 

can exist at the start of a phase. Phase 3 transition failure can only occur if the system 
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resides in a successful final phase 2 state with component C in the failed state (2~ABC) 

in Figure 7.20). The phase 3 transition failure becomes as given by equation (7.30). 

(7.30) 

Since the third phase consists of only non-repairable components, the method 

described in Section 7.2.2.3 can be applied for solution. We are only interested in the 

states of components A and B (Table 7.10) at the start of the third phase to solve the 

reduced Markov model. The phase 3 specific sequential minimal cut set {A(E),B(Ip)} 

cannot exist at the start of the phase, and so state 4~AB) is an impossible initial phase 3 

state. As discussed in Section 7.3.2, a temporary state (4~~» is introduced to 

represent the same failure conditions but signifying a failure mode that does not cause 

phase 3 failure, and is shown in Figure 7.18. 

The transition model states listed in Table 7.14 must be reduced to represent only the 

states of components A and B. In this case, since the transition model is representative 

of only non-sequential failures and the components are non-repairable, the probability 

that both components are in the failed state can be passed to either of the non

catastrophic failure mode states, 4~AB) or 4~1B) . In the event that the transition model 

contained sequential states or repairable components, this may not be possible. The 

reduced phase 3 Markov model states are obtained in Table 7.17. All states that cause 

phase 3 failure are assigned an initial state probability of zero. 

Combination of Initial 
State Ref Component States Transition Model State 

Probabilities (Table 7.14) 
A B 

l(AB) 0 0 ~(ABC)(/2) 

2(AB) 
2 0 11R p(ABC)(t ) 

32 2 

3(AB) 
I 11U 0 0 

3(AB) 
2 11R 0 p'(ABC) (I ) 

52 2 

4(AB) 
3 12U 11R 0 

4(AB) 
7 12R 11R 0 

4(AB) , 11R 12R 0 
4(AB) ,. 11R 12R p(ABC)(1 ) 

71.1 2 

Table 7.17 Phase 3 Initial Non-Sequential State Probabilities 
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The set of Markov differential equations can be solved over the duration of phase 3. 

The final system state probabilities can be combined with the unavailability of 

component C over the duration of the phase to calculate the reliability of phase 3. 

Using equations (7.19), (7.20) and (7.21), the reliability of phase 3 is expressed in 

equation (7.31) 

(7.31) 

where q C
3 
= ac (t2 )(1- e -AC(t3-12») 

and (Figure 7.20) a (I ) = p,(ABC) (t ) + p(ABC) (t ) + p,(ABC) (I ) + p(ABC) (t ) 
C 2 1 2 32 2 S2 2 77,. 2 

7.4 Summary 

The methods presented in this chapter provide a means of analysing a phased mission 

system with sequential failure relationships. The state explosion problem encountered 

when applying Markov models to phased mission systems is reduced by the definition 

of a minimal model between the phase transitions. 

At each transition point, a new transition model is defined. All components that do not 

contribute to any further phases of the mission may be removed completely from the 

transition model. All remaining components that do not contribute to any NPS 

sequential minimal cut sets in later phases are expressed in non-sequential form, and 

all components that do contribute to a later NPS sequential minimal cut set must 

remain in sequential form. The model can then be expanded to represent PS failure 

relationships within each phase. Minimisation of each phase model due to either 

irrelevant components or components input to only static gates in a non-repairable 

phase may only be implemented if the components do not contribute to any NPS 

sequential minimal cut sets in later phases. At the end of each phase the minimised 

model is expanded back to the transition model for input to the next phase. By 

minimising the size of the Markov model, both at the phase boundaries and within 

each phase, an optimal solution for analysis is achieved. 
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Chapter 8 

8.1 Introduction 

Importance Measures for Non-Repairable Phased 

Missions 

Measures of importance may be developed for components that are used in one or all 

phases of a multi-phased mission. Such measures will allow the criticality of each 

component to both individual phases and the entire mission to be calculated. 

Although the· importance of component failure will be assessed using the same 

method in each of the phases, the consequence of phase failure is not considered. For 

example in the flight pattern of an aircraft a failure in the initial phase where the 

aircraft is taxiing to the runway will not be catastrophic. The aircraft could remain 

grounded and repair initiated. However, if a later phase failure occurs while the 

aircraft is in flight, it is likely that the consequences would be more severe. From a 

risk perspective, components would have a higher importance in phases where failure 

has catastrophic consequences. Traditional importance measures can only analyse the 

importance of each component to a phase, the consequence of phase failure is not 

considered. 

In this chapter, importance measures for non-repairable phased mission systems are 

developed. The minimal cut sets in each phase are non-sequential, and so phase failure 

will be caused by the occurrence of the events in a minimal cut set regardless of order. 

Further importance measures for repairable phased mission systems and sequential 

failure relationships are considered in Chapter 9. 

All measures that are proposed to analyse the importance of components in non

repairable phased mission systems will be demonstrated by application to an example. 

In this case a mission comprising of 3 phases and non-repairable components A, B, C, 

and D will be used, shown in Figure 8.1. 
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I 

13 

Phase 3 

Phase 2 
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Figure 8.1 3-Phased Mission 

8.2 Deterministic Importance Measures 

A detenninistic measure of importance will analyse the importance of a component to 

a phase with no reference to its probability of occurrence. 

8.2.1 Phase Structural Importance Measure 

For a single system comprising of n components, the structural measure of importance 

for a component was defined by equation (2.17). A component c is in a critical system 

state if the remaining (n-1) components are in a condition such that the failure of the 

component will cause the system to go from a working to a failed state. 

If we treat each phase of the multi-phase mission in Figure 8.1 as a separate single

phase system, the critical states for component A in phases 1, 2 and 3 as defined in 

Section 2.2.3.5.1 are summarised in Table 8.1. 
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Phase 1 

Phase 2 

Phase 3 

Table 8.1 

States For Other Components in Phase 
B C D 

0 0 -
0 1 -
1 0 -
1 1 -
0 - 0 
0 - 1 
1 - 0 
1 - 1 

- 0 1 
- 1 0 

where 0 = Component Success 

1 = Component Failure 

-= Not Required in Phase 

Critical State For Component 

Yes 
No 
No 
No 

No 
Yes 
No 
No 

No 
Yes 

Critical States for Component A in Each Phase of Example 

The structural measure of importance for component A in each of the phases is found 

using equation (2.17) to be: 

(8.1) 

However, SInce this measure does not take into account the behaviour of the 

components or the system through all previous phases, and also the performance of 

components that are not required in a particular phase, the results are not very 

informative. Treating each phase as a separate system assumes that all components are 

in the working state at the start of a phase. We require a method to obtain the critical 

system states for a component dependent on past and present behaviour of all other 

components in the system. The method must be capable of eliminating states which 

would have resulted in system failure in a previous phase. 

The total number of components required in a multi-phased mission is Ne, however 

not all components will be required in every phase of the mission. There will be a total 

of Ns possible system states in phase j that are formed by the pattern of all Ne 
J 

component success and failure combinations through all preceding phases up to and 

including phase j. The system will be in a critical state for a component if the 
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combination of component states through the previous phases presents a working 

system state in phase j such that the failure of component c in phase j will cause phase 

failure. The structural measure of importance for a component c in phase j is defined 

in equation (8.2). 

I ST = number of critical system states for component c in phase j 

C
J number of phase j possible system states for (Nc -1) remaining components 

(8.2) 

To obtain the possible system states in phase j, all valid combinations of component 

failure and success must be considered through all previous phases. As an example we 

can consider a system comprising of two components, A and B. To obtain the critical 

states for component A in phase 2 we must analyse the behaviour of component B 

through phases up to and including phase 2. There are four possibilities, B can work 

throughout phase j, Bj' or fail during phase j, Bj' in each of the two phases (;=1,2). 

The four possibilities are presented in Table 8.2. 

Performance of Component B Definition Combinatior 

Phase 1 Event Phase 2 Event 

- - -
Success Bl Success E2 Component works through both Bn 

phases 1 and 2 
-

Success Bl Failure E2 Component works through phase 1 B2 
and fails in phase 2 

-

}BJ 
Failure Bl Success E2 } Not Possible. If component B fails 

in phase 1 it will remain failed in 

Failure Bl Failure E2 phase 2 as it is non-repairable. No 

further behaviour is considered. 

Table 8.2 Performance of Component B over 2 Phases 

For a larger mission, the performance of components through the phases must be 

considered in a similar way with all impossible states eliminated. A state that is 

representative of component failure in a phase need not consider the later performance 

for that component since once it has failed it must remain in the failed state. 

The identification of all possible component performance combinations does not 

generate an accurate list of all the possible system states in phase j. Some of the state 
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combinations would have resulted in failure in a previous phase and must also be 

eliminated from the structural importance model. The remaining states are all possible 

phase j system states. 

The structural importance for component A through each of the phases in the example 

given in Figure 8.1 will be determined to illustrate these points. The critical state of 

component A in phase 1 is not affected by component behaviour in previous phases 

and so can be obtained in the same way as for a single-phase system. However, since 

components which do not contribute to phase 1 failure will be required later in the 

mission, it is necessary to include the behaviour of all Ne - 1 components used in the 

mission. The critical states for phase 1 are summarised in Table 8.3. 

Other Component States Critical State For A 

---
(.,Bl,Cl,Dl ) Yes 

(.,BpCpDl) Yes 

(., Bl , Cl' Dl ) No 

(., Bl , Cl' Dl ) No 

(.,Bl,Cl, Dl ) No 

(.,BpCpDl) No 

(.,BpCl,Dl) No 

(.,Bl,Cl,Dl ) No 

Table 8.3 Critical States for Component A in Phase 1 

There is a possibility of 8 system states in phase 1. We can identify that 2 of the 

possible system states are critical for component A, and so the structural importance 

for component A in this first phase is given by equation (8.3) 

/sT=2=.!. 
Al 8 4 (8.3) 

As expected, the structural importance for component A in the first phase is found to 

be identical to that obtained using conventional single system analysis. 

To evaluate the importance of component A in the second phase, we must include the 

performance of all other components through the first phase. The list of possible 
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system states in phase 2 is generated by the combination of the behaviour of 

components B, C, and D through both phases 1 and 2 in the same way as presented for 

component B in Table 8.2. The importance of component A in phase 2 is summarised 

in Table 8.4. Component behaviour combinations that cause failure in phase 1 cannot 

contribute to the importance of component A in phase 2 and are identified in column 

2. From all possible phase 2 system states, those that are critical for component A are 

listed in column 3. 

Other Component. Fails in Critical State Other Component Fails in Critical State 

States Phase 1 for Component States Phase I for Component 
A A 

----
(.,BI2 , C12 , D)2) No No (.,BI2 ,CI'DI ) Yes -

-
(., B)2, Cl' D2 ) Yes -

---
(., BI , C)2' D)2) Yes - (.,B)2,C2 ,DI ) No Yes 

---
(., B2 , C12 , D)2) No No (.,B)2,C2 ,D2 ) No Yes 

- -
(., B)2, Cl' D12 ) Yes -

- -
(., B)2, C2 , D)2) No No (.,BI ,Cl ,DI ) Yes -
--

(., B)2' C12 , DI ) No Yes (.,BI' CI'D2 ) Yes -
--

(.,B)2,CI2 ,D2 ) No Yes (.,BI ,C2 ,DI ) Yes -
(.,BI'C2 ,D2 ) Yes -

-
(.,BI' CI'DI2 ) Yes - (.,B2 ,Cl ,DI ) Yes -

-
(., BI , C2 , D)2) Yes - (.,B2 ,CI'D2 ) Yes -

-
(., B2 , Cl' D)2) Yes - (.,B2 ,C2 ,DI ) No No 

-
(., B2 , C2 , D)2) No No (.,B2 ,C2 ,D2 ) No No 

-
(., BI , C12 , DI ) Yes -

-
(., BI , C12 , D2 ) Yes -
(., B2 , C12 , DI ) No No 

-
(., B2 , C12 , D2 ) No No 

Table 8.4 Critical States for Component A in Phase 2 

There are 27 possible component performance combinations through phases 1 and 2. 

However, since the failure of components B or C in phase 1 would cause system 

failure, there are 15 component performance combinations that terminate the mission 

during phase 1 and are impossible phase 2 states (column 2). The remaining 12 states 

are all possible phase 2 states, and 4 of those are identified as critical states for 

component A (column 3). The structural importance of component A in phase 2 is 

given by equation (8.4), 
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I ST =~=.!. 
A2 12 3 

(8.4) 

The structural importance for component A using this method is found to be greater 

than that obtained without accounting for the phased nature of the mission in equation 

(8.1). Treating the second phase as a separate system results in an optimistic 

assessment of structural importance for component A. 

To evaluate the importance of component A in the final phase, we must again include 

the performance of all other components through the first and second phases. The list 

of possible system states in phase 3 is generated by the combination of components B, 

C, and D behaviour through phases 1, 2 and 3. The importance of component A in 

phase 3 is summarised in Table 8.5. Component behaviour combinations that cause 

failure in phases 1 or 2 cannot contribute to the importance of component A in phase 3 

and are identified in columns 2 and 3. From all possible phase 3 system states, those 

that are critical for component A are listed in column 4. 

There are 64 possible component performance combinations through phases 1, 2 and 

3. However, certain combinations would have caused system failure during phases 1 

or 2. The failure of components B or C in phase 1 would cause system failure and so 

28 component behaviour combinations are eliminated from the possible phase 2 states 

(column 2). Phase 2 failure will occur if components B and D, or A and D, both fail 

either prior to or during phase 2, eliminating a further 6 component behaviour 

combinations from the possible phase 3 states (column 3). The remaining 30 

component performance combinations are all possible phase 3 states, and 20 of those 

are identified as critical states for component A (column 4). The structural importance 

of component A in phase 3 is given by equation (8.5), 

I ST = 20 = 2 
A) 30 3 

(8.5) 

The structural importance for component A using this method is again found to be 

greater than that obtained using conventional structural analysis on single systems in 

equation (8.1). Treating the final phase as a separate system for analysis again results 

in a optimistic assessment of structural importance for component A. 
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Fails in Fails in 
Critical 

Fails in Fails in 
Critical 

Other Component State for Other Component State for 
States Phase Phase Component States Phase . Phase 

Component 
1 2 A 1 2 

A 
--- -

(.,B\23' C\23, Dm) No No No (BI23,C2,D2') No No Yes 
-

(BI23,C2,D3') No No Yes 
-- -

(.,Bl, C123 , D\23) Yes - - (BI23,C3,Dl') No No Yes 
-- -

(.,B2, C\23, D\23) No No No (BI23,C3,D2') No No Yes 
-- -

(.,B3, C123 , D\23) No No No (BI23,C3,D3') No No Yes 
- -

(.,B\23,Cp D\23) Yes - -
- -

(.,BI23 ,C2,D\23) No No Yes (.,Bl,Cl,Dl) Yes - -
- -

(.,BI23 , C3, D\23) No No Yes (.,Bp Cp D2) Yes - -
--

(.,B\23, C\23, Dl) No No No (.,Bp Cl,D3 ) Yes - -
--

( ., Bm , C\23, D2 ) No No No (.,Bl,C2,Dl) Yes - -
--

(.,B\23' C\23, D3) No No No (.,Bp C2,D2) Yes - -

(.,Bl,C2,D3) Yes - -
-

(.,Bl, Cl' D\23) Yes - - (.,Bp C3,Dl) Yes - -
-

(.,Bp C2,D\23) Yes - - (.,Bl,C3,D2) Yes - -
-

(.,Bp C3,D\23) Yes - - (.,Bp C3,D3) Yes - -
-

(.,B2, Cl ,D\23) Yes - - (.,B2,Cl,Dl) Yes - -
-

(.,B2,C2,D\23) No No Yes (.,B2,Cp D2) Yes - -
-

(.,B2,C3,D\23) No No Yes (.,B2,Cl,D3) Yes - -
-

(.,B3 ,Cl ,D\23) Yes - - (.,B2,C2,Dl) No Yes -
-

(.,B3,C2,D\23) No No Yes (.,B2,C2,D2) No Yes -
-

(.,B3, C3, D\23) No No Yes (.,B2,C2,D3) No No Yes 
-

(.,Bl, C123 , Dl) Yes - - (.,B2,C3,Dl) No Yes -
-

(.,Bl,CI23,D2) Yes - - (.,B2,C3,D2) No Yes -
-

(.,Bl,CI23,D3) Yes - - (.,B2,C3,D3) No No Yes 
-

(.,B2, C123 , Dl) No Yes - (.,B3,Cl,Dl) Yes - -
-

(.,B2, C123 , D2) No Yes - (.,B3,Cp D2) Yes - -
-

(.,B2, C123 , D3) No No No (.,B3,Cl,D3) Yes - -
-

(.,B3, C123 , Dl) No No No (.,~,C2'~) No No Yes 
-

(.,B3,CI23,D2) No No No (.,~, C2, D2) No No Yes 
-

(.,B3, C123 , D3) No No No (.,B3,C2,D3) No No Yes 
-

(.Bm , Cl' Dl,) Yes - - (.,B3,C3,Dl) No No Yes 
-

(Bm ,Cl,D2,) . Yes - - (.,B3,C3,D2) No No Yes 
-

(BI23,Cl,D3') Yes - - (.,B3,C3,D2) No No Yes 

(BI23,C2,Dl') No No Yes 

Table 8.5 Critical States for Component A in Phase 3 
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8.3 Probabilistic Measures of Importance 

Probabilistic importance measures for components in non-repairable phased mission 

systems can be developed by appropriate extensions to the definitions presented for 

single phase systems in Section 2.2.3.5.2, and are discussed in the following sections. 

8.3.1 Phase CriticaIity Function 

The phase criticality function for a component c in a phase j is defined as the 

probability that the system is in a critical state for component c in phase j, and is 

denoted byGc (q(t)). Since the mission is non-repairable, for the system to be in a 
J 

critical state for component c in a phase, certain criteria must be met: 

• All phases prior to phase j must have been completed successfully. 

• Component c is in the working state at the start ofphasej, i.e. has not failed in 

a previous phase. 

The phase criticality function for component c may also be defined as the sum of the 

probabilities of occurrence ofthe critical states for component c in phase j. 

The phase criticality function for component A in each phase for the example given in 

Figure 8.1 will be illustrated. Since the critical states for component A in each of the 

three phases (Tables 8.3, 8.4 and 8.5) has already been identified it is possible to 

calculate the probability of occurrence of the critical states to achieve phase criticality 

functions for component A. The critical states for component A in each of the three 

phases with associated probability is summarised in Table 8.6. 
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Critical State Probability Critical State Probability 

Phase 1: Phase 3 Cont. 
--- -

(.,BpCpDl) (1- q BI )(1- q Cl )(1- q DI ) (.,B3, C3 ,Dl23 ) qB3qC3 (1- qn..J 
-- -

(.,BpCpDl) (1- q BI )(1 - q Cl )q DI (Bl23 ,C2,Dp) (1- q Bm )qc2 q DI 
-

(BI23,C2,D2') (1- qBm )qc2 qD2 
-

Phase 2: (BI23,C2,D3') (1- qBm )qc2 qD3 
-- -

(.,BI2,CI2,Dl) (1- q BI2 )(1- q C
I2 

)q DI (BI23,C3,Dp) (1- q Bm )q C
3 
q DI 

-- -
(.,BI2,CI2,D2) (1- q BI2 )(1- q C

I2 
)q D2 (BI23,C3,D2') (1- q Bm )q C

3 
q D2 

- -
(.,BI2 ,C2,Dl) (1- q BI2 )q C

2 
q DI (Bl23 ,C3,D3,) (1- q Bm )q C

3 
q D3 

-
(.,BI2 ,C2,D2) (1- q BI2 )q C

2 
q D2 (.,B2,C2,D3) qB2qC2qD3 

(.,B2,C3,D3) qB2qC3qD3 

Phase 3: (.,B3,C2,Dl) qB3qC2qDI 
- -

(.,Bl23 , C2,Dl23 ) (1- q Bm )qc2 (1- qn..23) (.,B3, C2, D2) qB3qC2qD2 
- -

(.,BI23 , C3,Dl23 ) (1- q Bm )q C
3 
(1- q Dm ) (.,B3,C2,D3) qB3qC2q~ 

-
(.,B2,C2,Dl23 ) q B2 q C

2 
(1 - q Dm ) (.,B3,C3,Dl) qB3qC3qDI 

-
(.,B2,C3,Dl23 ) q B2 q C

3 
(1- q Dm ) (.,B3,C3,D2) qB3qC3qD2 

-
(.,B3, C2,Dl23 ) q B3 q C

2 
(1 - q Dm ) (.,B3,C3,D2) qB3qC3qD3 

Table 8.6 Probability of Critical States for Component A 

The resulting expressions to represent the sum of the probabilities that the system has 

not failed in a previous phase and is in a critical state for component A in phases 1, 2 

and 3 are given by equations (8.6), (8.7) and (8.8) respectively. 

GAl (q(t))=Q(criticalfor A in phase 1) 

= (1- q BI )(1- q Cl )(1- q DI ) + (1 - q BI )(1- q Cl )q DI 

= (1 - q BI )(1- q Cl ) 

G
A2 

(q(t))=Q(no failure in phase1 & critical for A in phase 2) 

(8.6) 

= (1- qBI2 )(1- qC12 )qn.. + (1- qBI2 )(1- qC12 )qD2 + (1- qB12 )qc2qn.. + (1- qBI2 )qC2qD2 
= (1- qBI)qDI2 (1- qcl ) (8.7) 
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G
A3 

(q(t» =Q(no failure in phases 1 and 2 & critical for A in phase 3) 

= (l-qB.2I1c; (l-qLl)+(I-qB.2I1q (l-qLl) 

+q~ qc; (l-qLl)+q~ %.1 (1-qLl)+q~ qc; (1-qLl)+q~ qq (l-qLl) 

+(I-qB.23)qc; qLl +(I-qB.2I1c; q~ +(I-qB.2I1c; q~ +(1-qB.23)qq qLl +(1-qB.2I1q q~ +(1-qB.211c, q~ 

+~~~+~~~+~~~+~~~+~~~+~~~+~~~+~~~ 

= (1-qBt)qc;3 -qBzQCz3QDt2 (8.8) 

The process of identifying the critical states and calculating the sum of the 

probabilities of occurrence of each state becomes more complex as the number of 

phases and components increases. Alternative methods of calculating the criticality 

function are implemented for single phase missions whereby the expression for the 

probability of the system being in a critical state for a component can be obtained 

directly from the system failure probability equation (equations (2.20) and (2.22». 

Similar methods are developed to obtain an expression for the probability that the 

system is in a critical state for a component in any phase of a multi-phased mission 

using the phase failure probability equation, and are presented in the following 

sections. 

8.3.1.1 Phase Criticality Function using the Phase Failure Function 

It is not possible to calculate the failure probability of a phase as the probability that 

one or more minimal cut sets occur during the phase duration as this does not take into 

account the successful outcome of all previous phases. Similarly as presented in 

Chapter 4, it is not possible to multiply the probability of success or failure of 

individual phases as this assumes that phases are independent and that all components 

are in the working state at the start of each phase. 

A method to overcome these problems and obtain the phase failure probability was 

presented in Chapter 4, where the performance of a system is ~onsidered not only for 

the duration of the phase in question, but also for all preceding phases. A component 

that by being in the failed state in a phase would put the system in a critical state for 

another component could have failed at any point up to that time. By considering the 

component failing in each phase as a separate event, component failure in a particular 

phase fault tree is replaced by an OR combination of the events for the component 
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failing in that and all preceding phases. The component failure in phase j is expressed 

as the event that the component could have failed during any phase up to and 

including phase j. 

System failure in phase j is then represented by the AND of the success of phases 1 • .j-

1 and the failure during phase j (Figure. 8.2). 

Success in 
Previous 
Phases 

Failure 
Durtng Phase 

} 

Failure in Failure In 
Phase 1 Phasej-1 

Failure 
Conditions 
Met Durtng 

Phase} 

Phase} 1ault tree with 
each basic event 

replaced with an OR 
combination of 

component failure in 
any previous phase 

from 1..} 

Figure 8.2 Generalised Phase Failure Fault Tree 

All phase failures may then be combined using an OR gate to represent causes of 

overall mission failure as any phase failure will mean the mission does not complete 

successfully. 

For the 3-phased mission in Figure 8.1, the phase failure fault trees and unavailability 

quantifications are given in Figures 8.3, 8.4, and 8.5 and equations (8.9), (8.10), and 

(8.11) respectively. 

(8.9) 

A1 B1 Cl 

Figure 8.3 Phase 1 Failure 
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l-,-----r-' 

Q2 =q~ (l-q~)(l-qC)q~2 +(l-q",)qBz (l-qC)q~2 -q~qBz (l-qC)q~2 

(8.10) 

Figure 8.4 Phase 2 Failure 

Figure 8.5 

T3 = Al BI Cl (DJ2 + AJ2 BJ2)A123 CJ23 

= A23 BIC23 DI2 +A3BJ2C23 

Q3 = q~l (l-q~ )qC2l (l-q~) +q~ (l-q~)qC23 -qAl (l-q~)qCzl (l-q~) 

(8.11) 

Phase 3 Failure 
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Once the prime implicant sets and probability of phase failure have been obtained it is 

possible to directly calculate the probability that the system is in a critical state for all 

components in the phase in a similar way as for a single phase system presented in 

Section 2.2.3.5.2. The phase failure probability equations (8.9), (8.10), and (8.11) are 

used. 

An expression to obtain the probability that the system is in a critical state for a 

component c in phase j is derived using equation (2.20) and is given in equation 

(8.12). 

(8.12) 

where Qj(lc} ,q(t)) is the unavailability ofphasej with component c failing in phasej 

Q/OC} ,q(t)) is the unavailability ofphasej with component c working in phasej 

This is the probability that the system fails in phase j with component c failing in 

phase j minus the probability that the system fails in phase j with component c 

working throughout phase j, i.e. the system fails in phase j due to component c failing 

in phasej. 

To obtain the phase criticality function for a component c in phase j, the event that 

component c failed at any point from the start of phase i to the end of phase j, qc' in 
I} 

the phase failure probability equation must be expanded into two separate terms. The 

only interest is the term that represents the failure of component c in phase j, q c. , and 
J 

so the expression is expanded as shown in equation (8.13). 

(8.13) 

This is necessary since if the system is in a critical state for component c in phase j it 

implies that component c cannot have failed in a previous phase. When obtaining the 

probability that the system fails in phase j with component c failing in phase j minus 

the probability that the system fails in phase j with component c working throughout 

phase j, the terms including q c become irrelevant. 
I}-I 
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This method may be applied to the example in Figure 8.1. The evaluation of the phase 

criticality function for component A in phases 1, 2 and 3 is given by equations (8.14), 

(8.15), and (8.16). 

Phase 1 

Phase 2 

Q(1A2 ,q(t)) = (1- qB, )(1- qc, )qD12 + (1- qA, )qB2 (1- qc, )q~2 - qB2 (1- qc, )q~2 

Q(O A2 ,q(t)) = (1- qA, )qB2 (1- qc, )q~2 

GA2 (q(t)) = Q(1A2 ,q(t)) - Q(O A2,q(t)) = (1- qB)(1- qc, )q~2 + (1- qA)qB2 (1- qC)qD'2 

- qB2 (1- qc, )qD'2 - (1- qA,)q B2 (1- qc, )qD'2 

= (1- q B'2 )(1- qc, )q DI2 (8.15) 

Phase 3 

Expand all qA. ~ qA +qA 
, .. 3 , .. 2 3 

Q3 = (qA, +qA, )(l-qs. )qCn (l-qv.,)+qA, (l-qs.,)qCz, -qA, (l-qs.,)qCz, (l-qv.) 

=qA, (l-qs. )qc" (l-qv.,) +qA, (l-qs. )qCz, (l-qv.,) +qA, (l-qs.,)qc" -qA, (l-qs.,)qCz, (l-qv.,) 

glA"q(t))=qA, (1-q~)qc,3 (1-qL\)+(1-q~)qCz3 (1-qL\)+(1-q~2)qCz3 -(1-q~2)qCz3 (l-qL\) 

go A, ,q(t)) = qA, (l-q~ )qCz3 (1-qL\2) 

235 



G~ (fit) )=gl ~ ,fit) )-go ~ ,fit) )=q~ (l-qIlt )q~3 (l-qn.) + (l-qIlt )q~3 (l-qn.2) +(1-qIlt2)q~3 

-(1-qBt2)q~3 (l-qn.) -q~ (l-qIlt )q~J1-qn.) 
(8.16) 

It can be seen that equations (8.14), (8.15) and (8.16) are identical to those calculated 

by the sum of the occurrences of the critical states (equations (8.6), (8.7) and (8.8». 

The same methods can also be applied to components B, C and D for the mission. 

8.3.1.2 Phase Criticality Function using the Derivative of the Phase Failure 

Function 

The probability of failure in phase j, Qj' is linear in the probability that component c 

fails in phase j, qc' The phase criticality function of component c in phase 
j 

j, Gc. (q(t» , can be derived from equation (2.22) and is given in equation (8.17). 
J 

(8.17) 

This method will again be dem<?nstrated by application to the example in Figure 8.1 

using the expansion technique to separate terms given in equation (8.13). Birnbaum's 

measure of importance for component A in phases 1, 2 and 3 is derived and given in 

equations (8.18), (8.19) and (8.20). 

Phase 1 

(8.18) 

Phase 2 
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Phase 3 

Expand all qA. ~ qA. +qA 
1 •• 3 1 .. 2 3 

Q3 = (qAz +qA,)(l-qn, )qCn (l-qDt)+qA, (1-qn,2)q~ -qA, (l-qn,)q~ (l-qDt) 

=qA, (l-qn, )qCn (l-qDt) +qA, (l-qn, )qCn (l-qDt)+qA, (l-qa,)qC:3 -qA, (l-qa,)qCn (l-qDt) 

(8.20) 

The results obtained by this direct partial differentiation of the phase failure 

probability equation (equations (8.18), (8.19) and (8.20)) are identical to those found 

by calculating the sum of the occurrences of the critical states in equations (8.6), (8.7) 

and (8.8). The critical states with associated probabilities for components B, C, and D 

are identified, and the phase criticality function is calculated as both a sum of the 

probability of occurrence of the critical states and using equation (8.17), given in 

Appendix B. 

8.3.2 Mission CriticaIity Function 

It is possible to combine the results of each phase criticality function to achieve an 

overall mission criticality function with ranking for all components. Since each phase 

may have different time duration, taking an average of all the phase criticality 

functions for each component would not give an accurate representation of the 

importance of a component to the entire mission. The period oftime for which a phase 

is in operation must be accounted for when calculating the mission criticality function 

since a component with higher importance in a shorter phase could be just as 

significant as the same component with lower importance in a longer phase. 
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The mission criticality function for a component is defined as the probability that the 

system is in a critical state for component c in a multi-phased mission, and is denoted 

by G
CMlSS 

(q(t)). This can be represented by equation (8.21). 

m 

G - '" P(System is critical for component c in phase j I in phase j) * P(In 
CMlSS L..J 

j=' 

phasej) (8.21) 

where P(System is critical for component c in phasej I in phasej) = Gc (q(t)) 
J 

The mission criticality function for component A in the example given in Figure 8.1 

can be found by equation (8.22). 

(GA (q(t)) *t,)+ (GA (q(t)) * (t2 -t,))+(GA (q(t))*(t3 -t2)) 
G (q(t)) = 1 2 ~ 1 (8.22) 

AMISS t 
3 

It is possible to rank the components in order of importance by the criticality function 

for both each individual phase and the entire mission. To demonstrate this, numerical 

values are assigned to the component failure probabilities in phases 1, 2, and 3 in 

Figure 8.1, given in equations (8.23). 

Mission Data 

Phase 1 = 2 hours 

Phase 2 = 10 hours 

Phase 3 = 5 hours 
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Component Data 

AA = 0.01 Ih 

AB= 0.02 Ih 

A.c= 0.03 Ih 

AD= 0.04 Ih 



Component Failure Probabilities 

Phase 1 Phase 2 Phase 3 

qA = 0.020 
I 

qA =0.093 
2 

qA
3 

=0.043 

qB =0.039 qB =0.174 qB =0.075 
I 2 3 (8.23) 

qC
1 
=0.058 qC

2 
=0.244 qC

3 
=0.097 

qD
1 
=0.077 qD

2 
=0.304 qD = 0.112 

3 

The criticality function with ranking for components A, B, C and D in phases 1, 2 and 

3 and for the entire mission are summarised in Table 8.7. 

Phase 1 Phase 2 Phase 3 Mission 
Mission 

Component Criticality Rank Criticality Rank Criticality Rank Criticality 
Rank 

Function Function Function Function 

A 0.905262 3 0.2824559 2 0.3050947 1 0.3623857 1 
,~'_ff'~'~~_~_ 

B 0.92316 2 0.3183461 1 0 3 0.2958695 2 
~-"C-- 0.94178 1 0 0.0937942 

----___ 0 

4 2 0.1383842 3 
_0 

0 0 4 0.2295758 3 0 3 0.1350446 4 

Table 8.7 Phase and Mission Criticality Functions 

It can be seen that the component importance values in phase 1 are significantly larger 

than in any other phase. This is due to the series arrangement of the components in the 

first phase compared with parallel and combined parallel and series arrangements in 

the final two phases. Since components A and B are less likely to fail in the first 

phase, the system is more likely to be in a critical state for component C and so it has 

the highest importance ranking. This is followed by component B, and then 

component A. In phase 2, the parallel arrangement means that as component D has the 

highest failure rate, components A and B will have the highest importance. In phase 3, 

components A and C are again arranged in parallel and so since component C has the 

higher failure rate, the system is more likely to be in a critical state for component A. 

Component A has the overall highest importance ranking due to the fact it is the only 

component required in all three phases. Component B has the second highest 

importance ranking since from the two phases of requirement it is always connected in 

a series arrangement with other components. Components C and D have lower values 

of importance since they are required in fewer phases and are generally arranged in 
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parallel with other components. The system is most likely to be in a critical state for 

components A and B. 

If each phase is treated as a separate system, using the critical states given in Table 

8.1, Bimbaum's importance for component A in would be represented by equations 

(8.24). 

Q(critical in phase 1) = (1- q BI )(1- q Cl) 

Q(critical in phase 2) = (1- q B
2
)q D2 (8.24) 

Q(critical in phase 3) = qC
3 

Numerically, the criticality function for each of the components when treating each 

phase as a separate system produces the results shown in Table 8.8. 

Component 

A 
B ------
C 

-~----

D 

Table 8.8 

Phase 1 Phase 2 Phase 3 Mission 
Mission 

Criticality Rank Criticality Rank Criticality Rank Criticality 
Rank 

Function Function Function Function 

0.905262 3 0.251104 2 0.097 1 0.2827391 1 
0.92316 2 0.275728 1 0 3 0.2708 2 
0.94178 1 0 

--4--
0.043 2 0.1234447 --.r-

0 -4- 0.250818 3 0 3 0.14754 3 

Phase and Mission Criticality Functions Treating Each Phase as a 

Separate System 

It is seen that although the rankings remain consistent to those in Table 8.7 through 

the phases, the values obtained for the criticality function of each component become 

increasingly inaccurate as the phases progress. When treating each phase as a separate 

system, the values of importance are generally smaller through the phases, implying 

that the probability of the system being in a critical state for each component is less 

than it actually would be. This is due to the assumption that all components are in the 

working state at the start of a phase. The overall mission rankings using equations 

(8.24) produce a different result to the proposed method, implying that component D 

is more important than component C. 
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8.3.3 Criticality Measures of Component Importance 

The criticality measure of importance is defined as the proportion of system failures 

caused because the system is in a critical state for component c, and component c has 

failed. For a single phase system, this could be directly obtained using the criticality 

function. The criticality measure of importance for a single phase mission is 

calculated as. the product of the criticality function (Bimbaum's measure of 

importance) and the component failure probability at time t, weighted by the system 

failure probability in equation (2.23). 

The criticality importance measure may be developed further to include the possibility 

of phased mission systems. This is the probability that the system is in a critical state 

for component c in phase j, and component c has failed (weighted by the phase j 

system failure probability). However, if the system is in a critical state for component 

c in phase j, it is possible that component c could fail during phase j or exist in the 

failed state at the start of phase j. Both events would cause phase j failure. 

Two new importance measures are developed, the criticality measure of in-phase 

component importance and the criticality measure of transition component 

importance. The criticality measure of in-phase component importance,lc CR(/-P), is 
J 

defined as the probability that the system is in a critical state for component c in phase 

j, and component c has failed during phase j. The criticality measure of transition 

component importance, leeR(Tr) , is defined as the probability that the system is in a 
J 

critical state for component c in phase j, and component c has failed prior to phase j. 

Both are weighted by the phase j system failure probability. 

The total criticality measure of phase component importance,lc CR, is then derived as 
J 

the sum of the contribution of in-phase and transition criticality importances, given in 

equation (8.25). 

I CR = I CR(I-p) + I CR(Tr) 
CJ CJ CJ 

(8.25) 

The criticality measure of in-phase component importance is obtained using the same 

approach as for a single phase mission, by multiplying the probability that the system 
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is in a critical state for component c in phase j with the probability that component c 

fails in phasej. This is given in algebraic form in equation (8.26). 

I CR(l-p) = GC} (q(t))qC) (t) 

c) Qj(q(t)) 
(8.26) 

Where the probability that component c fails in phasej, q c = rl) Ic (t) dt 
) J1)_1 

The phase j failure probability, Qj (q(t)) , is derived by considering the method of 

combining previous phase successes with phase j failure (Figure 8.2). 

This measure is best demonstrated by considering the example given in Figure 8.1. 

The criticalitymeasure of in-phase importance for component A in phase 3 is given in 

equation (8.27). 

((I-qo, )qc" - qB, qc"q~,)qA, ((1- qo,) - qB, q~,)q A, I CR(/-p) 
A, 

qA" (1- qo, )qc" (1-q~,) + qA, (1- qB")qc,, -qA, (l-qB")qc,, (I-q~,) qA" (1- qo, )(1-q~,) +qA, (l-qB" )q~, 

(8.27) 

This method has evaluated the probability that the system is in a critical state for 

component A in phase 3, and component 3 fails during phase 3 (weighted by the 

phase 3 system failure probability). 

To account for the event that component A exists in the failed state at the start of 

phase 3, the criticality measure of transition component importance is required. The 

method given in equation (8.26) can be adjusted to represent the probability that the 

system is in a critical state for component c in phase j, and component c fails in any 

phase up to but not including phase j. This is summarised in equation (8.28). 

I CR(Tr) = GCl (q(t))qcIl_I (t) 

c) Qj(q(t)) 
(8.28) 

This may be evaluated for component A in phase 3 in equation (8.29). 

lA CR = ((1-qOt)qc2, -qB2qC2,q~)qA,.2 = ((1-qOt)-qB2q~)qAI2 
, qA23 (1- qOt )qc2, (1- q~2) + qA, (1- qOt2)qC23q~2 qA23 (1- qOt )(1- q~2) + qA, (1- qOt2)q~2 

(8.29) 
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It can be seen that the method presented in equation (8.28) is wrong since if 

component A fails in phase 1, phase 1 failure will occur and the mission will not 

transfer to phase 2. It is only possible for component A to be failed at the start of 

phase 3 due to failure in phase 2, q A
2

' However, the combination of this event (q A2 ) 

with the second term ofBirnbaum's measure of phase importance for component A in 

phase 3 (QB,QC'3 Qv.,), represents the occurrence of a phase 2 implicant set, A.z.B1C1D12 • 

This would cause phase 2 failure and so since phase 3 would not be reached 

successfully it is also an incorrect method of obtaining the criticality measure of 

transition importance. 

A new method is presented to derive the correct criticality measure of transition 

importance for a component c in phase j. The probability that the system is in a critical 

state at the start of phase j for the failure of component c in any phase k up to but not 

including phase j, and the component has failed in phase k is required. This is 

represented algebraically in equation (8.30). 

(8.30) 

This method may be applied to derive the criticality measure of transition importance 

for component A in phase 3 of example 8.1 and is given in equation (8.31). 

lA CR(Tr) = ((1-qB,)qC,,(1-qv.,,))·qA, = ((l-qB,)qC,,(l-qv.,,))·qA, 

, Q3(q) qA" (l-qB)qC" (l-qv.,,)+qA, (l-qB")qC,, -qA, (l-qB,,)qCn (l-qD,,) 

(8.31) 
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The total criticality measure of phase importance for component c in phase j is found 

by the sum of the contribution of the in-phase and transition criticality importances. 

This is derived in equation (8.32). 

I CR = I CR(I-p) + I CR(Tr) 
Cl cl cl 

(8.32) 

The total criticality measure of phase importance for component A in phase 3 of 

example 8.1 is given in equation (8.33). 
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I CR = ((1- qn, )qc" (1- q~»). qA, + ((1- qn, )qc" (1- q~,) + (1- qn" )qc" - (1- qn,,)qc,, (1- q~,)). qA, 
A, . . Q3 (q(t)) 

lA CR = ((1-qB)qC" (1-QD,,))·qA,, + ((1-QB")QC,, -(1-qB,)QC,,(1-QD,))'QA, =1 

, qA" (1- qB, )qc" (1- qD,,) + qA, (1- qB" )qc" - qA, (1- qB" )qc" (1- QD,,) 

(8.33) 

For phase 3 failure to occur, component A must either exist in the failed state at the 

start of phase 3 or fail during phase 3 (with component C failed) due to the parallel 

arrangement between components A and C. The result of unity in equation (8.33) is 

consistent with this and shows that for phase 3 failure to occur, component A must be 

in the failed state. 

The criticality measures of importance for components A, B, C and D in the three 

phases of Figure 8.1 are derived using the methods presented and are given in 

equations (8.34), (8.35), and (8.36) respectively. 

Phase 1 

Criticality Measure of Component Phase Importance 

O·qD, 
--------------~----------=O 

(8.34) 
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Phase 2 

Failure Probability 

Criticality Measure of Component Importance 

[ CI(T-I 

... 
(~}q.., 

Q,(q) 

(
iQ,(q»).q 

[ CR = [ CI(I-p) EX[... ... 
...... Q,(q) 

(~}q~ 
Q,(q) 

(
iQiq»).q 

((l-qo,,)(I-qq)qL\,h... (l-qo,,)q ... 

q ... (l-qo,)(l-qq)ql\, +(l-q..,)qB, (l-qG)ql\, -q ... qB, (l-qq)ql\, q ... (l-q~,)+(I-q..,)qB, 

o·q~ o 

((l-q..,)(l-qc,)qDt, -q..,(l-qC,)qL\,hB, (l-qA,,)qB, [ CR _[ C/(l-p) EX[B, B, 
B, - B, Qiq) q.., (l-qB,)(l-qq)ql\, +(l-qA,)qB, (l-qc,)ql\, -q..,qB, (l-qq)ql\, q.., (l-qo,,) + (l-qA,)qB, 

(~(q»).q [ CR _ I C/(l-p) _ Oqc, C, 

C, - C, - Qiq) 
o 

(
iQ2(q»).q 

[C/(l-p) EX[v, V, (qA,(I-qB,)(l-qc;)+(I-qA,)qB,(I-qc;)-q..,qB,(I-qc,»)-qv, 

v, Q2(q) q..,(I-qB,)(l-qc)ql\, +(I-qA,)qB,(I-qc;)ql\, -qA,qB,(I-qC,)ql\, 

(
CQ,(q»).q +(CQ,(q»).q 

[ CR = [ CI(1)) + [ CI/V-p) = OqD, D, OqD, D, 

D, D, D, Q,(q) 

(qA, (I-qo, )(l-qc; )+(I-q.., )qB, (I-qC)-q..,qB, (I-qc»)·(ql\ +qo,) 1 

q.., (I-qB, )(l-qc, )ql\, + (I-q.., )qB, (I-qc, )ql\, -q..,qB, (I-qc; )ql\, 

(8.35) 
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Phase 3 

Failure Probability 

Criticality Measure of Component Importance 

I CR(I-p) 
A, 

(~}q~ +( ~ }q~ 
Q,(q) 

Qlq) 

({l-qn,)qc" (l-qD,,) + (l-qBIl)qC" -{l-qBIl)qc" (l-qD,,»)' qA, 

qA" {l-qB.)qC" (l-qD,,) + qA, (l-qB)qc" -qA, {l-qB.)qC" (l-qD,,) 

(~}qB,+(~}q~ 
Q,(q) 

I eR 

'" 
(~}qB,+(~}q",+(~}q", 

Q3(q) 

(q.." (l-q .. ){l-qo,,)+q.., (l-q.,,}-q.., (l-q.")(l-q,,,,)). qc, 

q.." (l-q .. )qc" (l-qo,,)+q.., (l-q .. ,)qc" -q.., (1- q .. ,)qc" (l-qo,,) 
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(8.36) 

As for the mission criticality function (equation (8.21)), it is possible to obtain a 

measure of the criticality of each component in the entire mission. This is defined as 

the probability that the system is in a critical state for component c during any phase j 

of a multi-phased mission, and component c has failed (weighted by the mission 

failure probability). Since the probability of component c failure in phase j accounts 

for the duration of phase j, the period of time for which the phase is in operation for is 

not included. The criticality measure of mission component importance is obtained by 

the sum of each individual phase j criticality importance given that phase j has been 

reached successfully and is derived in equation (8.37). 

ICMISS eR - i: P(System is critical for component c in phase j, and component c has 
j=) 

failed I in phase j) (weighted by the mission failure probability) 

(8.37) 

Using the mission data given in equations (8.23) it is possible to obtain the criticality 

measure of phase and mission importance for each component in Figure 8.1. The 

results of this are summarised in Table 8.9. 

Criticality Criticality Criticality Criticality 
Mission 

Component Phase 1 Rank Phase 2 Rank Phase 3 Rank Mission 
Rank 

Importance Importance Importance Importance 

A 0.1604459 3 0.3003188 3 1 1 0.3287084 4 
B 0.3190554 2 0.6332829 2 0 2 0.3934449 1 
C 0.484063 1 0 4 1 1 0.3728316 3 
0 0 4 1 1 0 2 0.3765393 2 

Phase 1 Phase 2 Phase 3 Mission 
Unavailabilit}' 0.1128432 0.0874684 0.0319838 0.2322954 

Table 8.9 Criticality Measure of Component Phase and Mission Importance 
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The criticality measure of importance can be used to analyse which of the components 

are most likely to be in the failed state when the system is failed. In phase 1, 

component C has the highest importance ranking since it is the most likely to fail and 

contribute to phase failure, followed by component B, and component D has the 

lowest. For phase 2 failure to occur, component D must fail, and so if the system fails 

in this phase it is definite that component D is in the failed state. The series 

arrangement between components A and B results in an equal system contribution 

however since component B has a higher failure rate, it is more likely to be in the 

failed state when phase 2 failure occurs. In phase 3, components A and C are arranged 

in parallel, and both must be in the failed state for phase 3 failure to occur. 

From the components with the highest value of mission criticality function, A and B, 

it is component B that is most likely to be in the failed state when the system fails. 

Component A is the least likely to be in the failed state when the system fails. 

If the results are again compared to those obtained by treating each phase as a separate 

system, it is possible to see the inaccuracies when disregarding the performance of 

components through all previous phases, shown in Table 8.10. 

Criticality Criticality Criticality Criticality 
Mission 

Component Phase 1 Rank Phase 2 Rank Phase 3 Rank Mission 
Rank 

Importance Importance Importance Importance 

A 0.1604459 3 0.3062699 3 1 1 0.2360976 4 
B 0.3190554 2 0.6292132 2 0 2 0.4345371 1 
C 0.484063 1 0 4 1 1 0.3042189 3 
D 0 4 1 1 0 2 0.3945334 2 

Phase 1 Phase 2 Phase 3 Mission 
Unavailability 0.1128432 0.0762487 0.004171 0.1932629 

Table 8.10 Criticality Measure of Component Phase and Mission Importance 

when Treating each Phase as a Separate System 

Comparisons between treating each phase as a separate system with the combination 

of previous phase success with current phase failure shows that the component 

criticality importance rankings through the phases are identical and the importance 

values in this simple example are very similar. 
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However, the phase unavailability is seen to become increasingly more inaccurate as 

the phases progress. This is due to the fact that no account is taken of previous phase 

outcome, and the assumption that all components are in the working state at the start 

of each phase. Therefore the importance values for components that do not contribute 

to all implicant sets of a phase will also become more inaccurate as the phases 

progress. 

In this simple example, the greatest inconsistency is seen when considering the overall 

mission values. This is accounted for by considering the increasing inaccuracies in the 

values of phase and mission unavailability when treating each phase as a separate 

system. 

8.3.4 Measures of Component Importance 

For phase failure to arise, it is possible that one or more phase prime implicant sets 

could have occurred. The failure of a component can contribute to the failure of a 

system without being critical. Component c will contribute to the failure of a phase j 

by the occurrence of a prime implicant set containing the failure of c. 

The occurrence of a prime implicant set in phase j could arise at the time of transition 

due to a component failure in a previous phase. An example of this is the prime 

implicant set in the third phase of Figure 8.1, A23 Bl C23 Dl2 • This phase 3 prime 

implicant set is representative of components A and C failing in either of phases 2 or 

3, and so if the components failed in the second phase it will cause phase 3 failure at 

the time of transition. The prime implicant sets that contain the event of a component 

failure must be considered regardless of which phase(s) the failure could have 

occurred in. 

For phased mission analysis, an extension of the Fussell-Vesely measure of 

importance is defined, the Measure of Phase Component Importance. This is the 

probability of the union of the occurrence of phase j prime implicant sets, E k , 
f 

containing the failure of component c (in any phase) given that phase j failure has 

occurred, and is weighted by the phase failure probability in equation (8.38). 
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I FV = P(Ukjlcekj C kj ) 

Cj Qj(q(t)) 
(8.38) 

This measure may be applied to the example in Figure 8.1. The prime implicant sets 

ofthe mission are given in Figure 8.6. 

Phase 1 

Phase 2 

Phase 3 

Reference Implicant Set 

A23 Bl C23 D\2 

A3Bl2C23 

Figure 8.6 Mission Implicant Sets 

The measure of phase importance for each ofthe components in phases 1, 2, and 3 are 

given in equations (8.39), (8.40) and (8.41) respectively. 

Phase 1 

I IT A, 

Phase 2 

qA, I IT 
B, 

lA FV = q A, (1- qB, )(1- qc,)qv" 

, q A, (1- qB,)(I- qc, )qv" + (1- q A,)q B, (1- qc,)qv" - q A, qB, (1- qc,)qv" 

I B FV = (1- qA,)qB, (l-qc,)qv" 

, q A, (1- q B,)(I- qc,)q 0" + (1- q A, )qB, (1- qc,)q 0" - q A, q B, (1- qc,)q 0" 

251 

qB, 

(8.39) 

qA, (1- qB,,)+ (l-qA, )qB, 



ID, FV = qA, (1- qB)(I- qC)qv" + (1-q At )qB, (1- qC)qv" - qA,qB, (1- qC,)qv" = 1 

qA, (1- qB)(1- qC)qv" + (1-qA, )qB, (1- qC,)qv" -qA,qB, (1-qC,)qv" 

Phase 3 

lA FV = qA,,(I- qB,)qC
13 

(1- qv,,) +qA, (1- qBI1 )qc13 - qA, (1- qBI1 )qc13 (1- qv.) = 1 

J qA
13 

(1- qB,)qC
13 

(1- qv,,) +qA, (1- qB
I1 

)qc
13 

- qA, (1- qB
I1 

)qc
13 

(1-qv,,) 

IB,FV =0 

I FV_O 
D, -

(8.40) 

(8.41) 

As for the criticality measure of mission component importance (equation (8.37», it is 

possible to obtain a measure of mission importance for each component. This is 

defined as the sum of the probabilities of the union of the occurrence of prime 

implicant sets 8 k containing the failure of component c (in any phase) given that 
J 

phase j failure has occurred, and is weighted by the mission unavailability. This 

measure may be obtained by the sum of each individual phase j component 

importance given that phase j has been reached successfully, and is shown in equation 

(8.42). 

I CMISS FV - I P(Union of the 8 k implicant sets containing failure of c (in any phase) I 
j;l J 

phase} failure has occurred) (weighted by the mission failure probability) 

(8.42) 

Using the mission data given in equations (8.23) it is possible to obtain the measure of 

phase and mission importance for each component in Figure 8.1. The results of this 

are summarised in Table 8.11. 
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Component 
Phase 1 

Rank 
Phase 2 

Rank 
Phase 3 

Rank 
Mission Mission 

Importance Importance Importance Importance Rank 

A 0.177237 3 0.3438838 3 1 1 0.3618667 4 
B 0.3456122 2 0.6561162 2 0 2 0.4313471 1 
C 0.5139874 1 0 4 1 1 0.3873681 2 
0 0 4 1 1 0 2 0.3765393 3 

Phase 1 Phase 2 Phase 3 Mission 
Unavailability 0.1128432 0.0874684 0.0319838 0.2322954 

Table 8.11 Measure of Component Phase and Mission Importance 

This measure of importance ranks the contribution each component failure makes to 

system failure. In phase 1, component C has the highest value of importance followed 

by component B and component D has the lowest. Since the components are linked in 

series, from the three first order cut sets, {Cl will contribute most highly to phase 

failure as component C has a greater failure rate than components A and B. In phase 

2, component D is present in both prime implicant sets of the phase and so for phase 2 

failure to occur, component D must have failed. In phase 3, components A and C 

contribute to both prime implicant sets, and so they are of equal importance to the 

success of the phase. For the overall mission, component B has the highest ranking 

followed by component C. 

The phase importance rankings are seen to be identical to those obtained using the 

criticality measure of importance and so produce the same conclusions. The mission 

importance rankings are different in that component C is now more important to the 

overall mission than component D. 

It is possible to compare the component phase and mission importance values to those 

obtained by treating each phase as a separate system. The results are given in Table 

8.12. 
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Component 
Phase 1 

Rank 
Phase 2 

Rank 
Phase 3 

Rank 
Mission Mission 

Importance Importance Importance Importance Rank 

A 0.177237 3 0.3707868 3 1 1 0.2713557 4 
B 0.3456122 2 0.6937301 2 0 2 0.4754973 2 
C 0.5139874 1 0 4 1 1 0.3216913 3 
0 0 4 1 1 0 2 0.3945334 1 

Phase 1 Phase 2 Phase 3 Mission 
Unavailability 0.1128432 0.0762487 0.004171 0.1932629 

Table 8.12 Measure of Component Phase and Mission Importance when Treating 

each Phase as a Separate System 

Component failures that contribute to all implicant sets in a phase result in the same 

phase importance value of unity as the presented method. Component failures that 

contribute to only some of the implicant sets in a phase produce a different importance 

value for all phases after the first phase when treating each phase as a separate system. 

By considering each phase separately, the phase importance values are generally 

higher which implies that components make a higher contribution to phase failure 

than is true. This is due to the assumption made that all components are in the working 

state at the start of a phase. 

The mission importance rankings are different when treating each phase as a separate 

system as component D is considered to be the most important rather than component 

B. This is due to the increasing inaccuracy in the phase unavailability calculation as 

the phases progress. 

8.3.5 Measures of Prime Implicant Set Importance 

A measure exists to rank the importance of each cut set in a single phase mission. This 

Fussell-Vesely measure of minimal cut set importance defines the probability of 

occurrence of each minimal cut set given that the system has failed (equation (2.27». 

This measure may be extended for application to phased mission systems. A measure 

of phase prime implicant set importance is defined as the probability of occurrence of 

prime implicant set 8 k given that phase j has failed (weighted by the phase j system 
J 

failure probability), and is expressed in equation (8.43). 
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(S.43) 

The measure of phase prime implicant set importance may be applied to the example 

in Figure S.l, and the importance for the prime implicant sets in each of the 3 phases 

(Figure S.6) are given in equations (S.44), (S.45) and (S.46) respectively. 

Phase 1 

(S.44) 

Phase 2 

I., FV = qA, (1-qB, )(I-q(:)q~, qA, (l-qB,) 

qA, (1-qB, )(l-qc; )qL\, +(I-qA, )qB, (1-qc; )q~, -qA,qa, (l-qc; )q~, qA, (l-qB,,)+(1-qA, )qB, -qA,qB, 

12 FV = (l-qA,)qa, (l-qc)qL\, (l-qA,)qB, 

, qA, (l-qB)(l-qC)qL\, + (l-qA,)qB, (l-qc)q~, -qA,qB, (l-qc)qD., qA, (l-qB
Il

)+(I-qA, )qB, -qA,qB, 

(S.45) 

Phase 3 

I. FY = qA" (1- qB,)qC" (1- qD,,) qA" (1- qB,)(1- qD,,) 

, qA" (1- qB, )qc" (1- qD,,) + qA, (1- qB")qC,, - q A, (1- qB" )qc" (1- qD,,) qA" (1- qB, )(1- qD,,) + qA, (1- qB" )qD" 

12 FV = qA, (1-qB,,)qc,, qA, (1-qo,,) 

, q." (1-qB, )qc" (1- q~,)+ qA, (1-qB")qc,, -qA, (1-qB")qc,, (1- q~,) qA" (1-qB, )(1-q~,)+ qA, (1- qB,,)q~, 

(S.46) 

The event of mission failure is represented by the OR combination of the system 

failure during each of the phases. It is possible to obtain a measure of prime implicant 

set importance for the contribution of prime implicant sets to the failure of the entire 
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mISSIon. This is defined as the probability of occurrence of prime implicant set 

E k. given that phase} has failed (weighted by the mission failure probability), and is 
} 

given in equation (8.47). 

lE FV =P(Occurrence of prime implicant set Ek I phase} fails) (weighted 
kM/SS J 

by the mission failure probability) 

QMISS (q(t» 
(8.47) 

Using the mission data given in equations (8.23) it is possible to obtain the measures 

of prime implicant set importance for each of the prime implicant sets in Figure 8.6. 

The results ofthis are summarised in Table 8.13. 

Phase 1 Phase 2 Phase 3 Mission 
Prime Prime Prime Prime 

Mission 
Cut Set Implicant Rank Implicant Rank Implicant Rank Implicant 

Rank 
Set Set Set Set 

Importance Importance Importance Importance 

11 0.177237 3 - - - - 0.0860973 6 

21 0.3456122 2 - - - - 0.1678896 3 

31 0.5139874 1 - - - - 0.249682 2 

12 - - 0.3438838 2 - - 0.1380834 4 

22 - - 0.6561162 1 - - 0.2634575 1 

13 - - - - 0.8625351 1 0.118759 5 

23 - - - - 0.3608004 2 0.0496772 7 

Table 8.13 Measure of Prime Implicant Set Importance 

In this example, the prime implicant sets with the highest importance to the mission 

are in the first two phases of the mission. 

If each phase is treated as a separate system, the phase minimal cut sets would be as 

given in Figure 8.7. 
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Reference Minimal Cut Sets 

Phase 1 It Al 

21 RI 
31 Cl 

Phase 2 12 ~D2 
22 R2D2 

Phase 3 13 A3C3 

Figure 8.7 Mission Cut Sets when Treating each Phase as a Separate System 

The Fusse11-Vesely measures of cut set importance would be found as given in Table 

8.14. 

Fussell- Fussell- Fussell-
Fussell-

Vesely Vesely Vesely 
Vesely 

Mission 
Cut Set Rank Rank Rank Mission Cut 

Phase 1 Phase 2 Phase 3 
Set 

Rank 
Cut Set Cut Set Cut Set 

Importance 
Importance Importance Importance 

11 0.177237 3 - - - - 0.103486 5 

21 0.3456122 2 - - - - 0.2017976 3 

31 0.5139874 1 - - - - 0.3001093 1 

12 - - 0.3707868 2 - - 0.1462878 4 

22 - - 0.6937301 1 - - 0.2736997 2 

13 - - - - 1 1 0.021582 6 

Table 8.14 Fusse11-Vesely Measure of Cut Set Importance when Treating each 

Phase as a Separate System 

Considering each phase as a separate system results in different importance values and 

rankings for the mission minimal cut sets. Treating the prime implicant sets as 

minimal cut sets does not take into account the requirement for previous phase 

successes. The difference in minimal cut set importance is due to the assumption that 

all components are working at the start of a phase. 
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8.4 Summary 

The analysis of importance is a very useful tool in the design and optimisation stages 

of a system. Since many systems comprise of multiple phases, it is useful to be able to 

implement importance measures during these initial stages. 

The importance measures presented for single phase systems (Section 2.2.3.5.2) have 

been successfully developed to allow the assessment of component importance in non

repairable multi-phased missions. Probabilistic measures can easily be obtained using 

combinatorial methods, and are weighted according to either the phase or mission 

failure probability as appropriate. Further measures for initiating and enabling events 

and repairable systems are presented in the following chapter. 
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Chapter 9 Importance Measures for Initiating and Enabling Events 

in Phased Missions 

9.1 Introduction 

The importance measures described in the previous chapter assumed that the order of 

component failures in a minimal cut set is irrelevant. In some cases the top event of a 

fault tree may only be caused by a certain sequence of basic event occurrences. 

Probabilistic measures of importance are presented in Section 9.2 to deal with the 

interval reliability of a system where the order of component failures is significant. 

Markov models are implemented for the solution to repairable multi-phased missions. 

The model state probabilities can be used to calculate the importance of components 

rather than using combinatorial approaches. Methods to assess the probabilistic 

importance of repairable components using Markov models are presented in Section 

9.3. 

9.2 Probabilistic Measures for Initiating and Enabling Events 

The inclusion of sequential failure relationships in phased mission analysis allows us 

to extend the current initiator and enabler importance measures to derive further 

measures for multi-phased systems. Probabilistic measures of importance are 

presented to deal with the interval reliability of a multi-phased mission where the 

order of component failures is important. It is assumed that a mission is taking place, 

and all such measures are weighted according to the expected number of phase j 

failures, Wj(t.;-l, tj}. 

The example in Figure 8.1 has been modified to include representation of sequential 

failure relationships. This will be used to demonstrate the sequential importance 

measures developed for phased mission analysis and is given in Figure 9.1. 
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Figure 9.1 3-Phased Mission with Sequential Failure Relationships 

9.2.1 Expected Number of Phase Failures 

The unconditional phase failure intensity for single phased missions can be derived 

using the criticality function as presented in Section 2.2.3.5.3, given in equation (9.1). 

NI 

wsrs= L G;(q(t»). w; 
;=1 

I initiator 

(9.1) 

i initiator 

where Nj is the number of initiating events 

This is the sum of the probabilities that the system is in a critical state for initiating 

event i, and initiating event i occurs. 

In a multi-phased mission, phase j failure can occur due to either the occurrence of an 

initiating i event during phase j or the existence of initiating event i at the start of 

phase j (if i is non-phase specific). The system can therefore be in a phase j critical 

state for the event of component i failure in any phase k up to and including phase j. 
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The unconditional failure intensity for a phase j, Wj , is defined as the sum of the 

probabilities that the system is in a phase j critical state for component i failure in any 

phase k up to and including phase j, and the frequency that event i occurs during phase 

k. This is expressed in equation (9.2). 

phasej 

initiating event 

phase} (9.2) 
initiating event 

where Ni is the number of initiating events in phase j 
J 

. Wik is the is the frequency that initiating event i occurs during phase k 

The unconditional failure intensity of an initiating event i in phase k, W i
k 

' is obtained 

from the component i failure probability in phase k, qi
k

' using equation (9.3). 

h -'J..../. I -'J...·/k were q. = e ,.- - e ' 
'k 

(9.3) 

The expected number of failures for a single phase system can be obtained by the 

integral of the unconditional system failure intensity over the mission duration [0, t} 

(Section 2.2.3.5.3, equation (2. 30}}. We require a similar method to obtain the 

expected number of system failures during each phase j of a multi-phased mission. 

Phase j failure may occur due to the existence of non-sequential and non-phase 

specific sequential minimal cut sets at the start of the phase, or due to the occurrence 

of any minimal cut sets during the phase. The expected number of phase failures may 

be separated into two discrete terms, the expected number ofphase transition failures, 

and the expected number of in-phase failures. The total expected number of phase 

failures is obtained as the sum of the two terms. 
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The expected number of phase j transition failures, J~t (t j_I)' is obtained by the 

integral of the occurrence of non-sequential and non-phase specific phase j minimal 

cut sets prior to the start of phase j which do not cause failure in a previous phase. We 

require the expected number of phase j failures due to the occurrence of any non

phase j specific initiating event i in any phase k up to but not including phase j. This is 

the integral of the phase j unconditional failure intensity due to initiating events that 

occurred prior to phase j over the interval [tk-l, tk), and is represented algebraically in 

equation (9.4). 

i=1 

non - phase J (9.4) 
specific initiating event 

The expected number of in-phase j failures, Wj I-p (t j_I' t j) , is obtained by the integral 

of the occurrence of all phase j minimal cut sets during phase j. We require the 

expected number of system failures due to all initiating events i in phase j. This is 

represented algebraically in equation (9.5). 

Nij 

njI-P (t j _l , t) = L 
i=l 

i phase J (9.5) 
initiating event 

The total expected number of phase j failures is obtained by the contribution of both 

the expected number of phase j transition failures and the expected number of in

phase j failures. This combines equations (9.4) and (9.5), and is summarised in 

equation (9.6). 

iphaseJ (9.6) 
initialingevent 

The inclusion of sequential failure relationships in the example in Figure 9.1 means 

that the top event and thus the phase failure probability equations (8.9) - (8.11) need to 

be adjusted. Since phase failure will only occur if all enabling events occur before the 

initiating event in a sequential cut set, any component failure combinations which do 
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not represent the required sequential relationship of the cut set must be eliminated 

from the phase failure probability equation. 

In phase 1 there are no sequential cut sets and so the phase 1 failure probability 

remains as given in equation (8.9). In phase 2, there are two prime implicant sets, 

A2 BI Cl D12 and Al B2 Cl D12 • However since both represent the event that D occurs 

before A or B, the phase 2 failure probability remains as given in equation (8.10). 

In phase 3 there are two prime implicant sets, A23BIC23D12 and A3B12C23 . With the 

inclusion of sequential failure relationships, for phase 3 failure to occur, event A must 

occur prior to event C. The prime implicant sets must be altered to represent this, and 

become: 

*No longer a prime implicant set 

There are now three prime implicant sets, A2 BIC23 D12 , A3BIC3D12 , and A3B12C3· 

The probability of phase 3 failure becomes as given in equation (9.7). 

(9.7) 

The expected number of system failures in each phase of the example in Figure 9.1 

can be obtained in the following way: 
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Phase 1 

For the first phase of the mission, no previous component performance is considered. 

The expected number of phase 1 failures due to each phase 1 initiating event is 

obtained using equation (9.5), and is given in equation (9.8). 

;=1 
i phase t 

initiating event 

(9.8) 

Phase 2 

The second phase of the mission consists of enabling event (D), phase-specific 

initiating event (B), and non-phase specific initiating event (A). Phase 2 transition 

failure can only be caused by initiating event A if it occurs prior to phase 2 with 

component D failed. The expected number of phase transition failures is obtained 

using equation (9.4) and is given in equation (9.9). 

(9.9) 

Failure in phase 2 can be caused by initiating events A or B if either occurs during 

phase 2 with component D failed. The expected number of in-phase system failures is 

obtained using equation (9.5), and is given in equation (9.10). 
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2 

W/-P (tp t2 ) = I 
;=1 

i phase 2 

initiating event 

(9.10) 

The total expected number of phase 2 failures is obtained by the sum of the 

contributions of both the expected number of phase 2 transition failures (equation 

(9.9)) and the expected number of in-phase 2 failures (equation (9.10)), and is 

summarised in equation (9.11). 

(9.11) 

Alternatively the total number of phase 2 failures could be obtained directly using 

equation (9.6). 

Phase 3 

The third phase of the mission consists of enabling event A in a sequential failure 

configuration with non-phase specific initiating event C. Phase 3 failure can be caused 

by initiating event C either at the phase transition if it occurs prior to phase 3 with 

component A failed, or during phase 3 if it occurs in phase 3 with component A 

failed. 

The expected number of transition system failures is obtained using equation (9.4), 

and is given in equation (9.12). 
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(9.12) 

The expected number of in-phase system failures is obtained using equation (9.5) and 

is given in equation (9.13). 

W/-P(t t)= rtl(iQ3(Q)].w dt 
3 2' 3 JI ~ Cl 

1 lA[ C
J 

The total expected number of phase 3 failures is obtained by sum of the contributions 

of both the expected number of phase 3 transition failures (equation (9.12», and the 

expected number of in-phase 3 failures (equation (9.13», and is summarised in 

equation (9.14). 

~ (t2,t
3

) = ~Tr (t2) + ~/-P (t2,t3 ) 

= r (qA
1 
(1-q~)(1-q~2»)· wc2dt+ f:(qA23 (l-q~)(l-q~)+q~ (l-qB12 )qDt2)· wcldt 

(9.14) 

Alternatively the total number of phase 3 failures could be obtained directly using 

equation (9.6). 

9.2.2 Measures of Initiator Importance 

Barlow and Proschan presented a time-dependent approach in analysing the 

importance of initiating events in a single phase system (Section 2.2.3.5.3). If only 

one component can fail in a small transition of time dt, then system failure must have 

occurred due to the failure of that component. The Barlow-Proschan measure of 

importance defined a method to calculate the probability that initiating event i causes 
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system failure over the interval [O,t). This was given in terms ofthe criticality function 

and weighted according to the expected number of failures, W(O,t), in equation (2.31). 

The Barlow-Proschan measure of importance is extended to give two new importance 

measures for phased mission analysis. The first is the measure of in-phase initiator 

importance, 1;0 BP(I-P). This is the probability that initiating event i causes system 
J 

failure during phase j [~_/, ~). The second is the measure of phase transition initiator 

importance, 1/ BP(Tr) , and is the probability that initiating event i causes system failure 
J 

at the transition into phase j due to failure in a previous phase. The total measure of 

phase initiator importance, I; BP , is the sum of the contribution of in-phase and phase 
J 

transition initiator importances. 

A phase j specific initiating event can only cause system failure if it occurs during 

phase j. All other initiating events can cause system failure by occurring prior to or 

during phase j. The phase j failure probability, Qj' includes contribution of all 

possible component failure combinations with account for sequential failures. The 

measure of in-phase j importance for initiating event i, I;J BP(I-p) , can be derived from 

equation (2.31) and is given in equation (9.15). 

(9.15) 

The measure of phase j transition importance for initiating event i, I;J BP(Tr) , is the 

probability that initiating event i causes system failure at ~-J due to failure of the 

initiating event in any phase k up to but not including phase j. This is derived and 

given in equation (9.16). 

(9.16) 
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The total measure of phase initiator importance is found by the sum of the 

contribution of in-phase and phase transition initiator importances (equations (9.15) 

and (9.16» in equation (9.17). 

(9.17) 

The measures of phase initiator importance may be applied to the initiating events of 

the example in Figure 9.1 in the following way: 

Phase 1 

The measure of phase initiator importance due to each phase 1 initiating event is given 

in equations (9.18). 

f:'( ~:q)}.dt r I Bl{l-p) 
o (1-q~)(l-qCj)w4dt 

= 4 TP;(O,t,) f' o (1-q~ )(l-qCj )W4 +(1-q4 )(l-qCj )w~ +(1-q4 )(l-q~ )wCj dt 

c[ ~~q)}.dt f' I Bl{l-p) 
o (1-q4)(l-qCj)w~dt 

~ TP;(O,t,) f' o (1-q~)(l-qCj)W4 +(1-q4)(l-qCj)w~ +(1-q4)(l-q~)wCj dt 

c[ ~~q)}Gdt f' I Bl{l-p) 
o (1-q4)(l-q~)wCjdt 

= Cj 
TP;(O,t,) r o (1-q~)(l-qCj)W4 +(1-q4)(l-qCj)w~ +(1-q4)(l-q~)wCj dt 

(9.18) 

Phase 2 

The second phase of the mission consists of two initiating events, phase-specific 

initiating event (B), and non-phase specific initiating event (A). The Barlow-Proschan 

measure of phase initiator importance for events B and A are given in equations (9.19) 

and (9.20) respectively. 
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/ 
BP _/ Bl{l-p) 

B, - B, 
(9.19) 

/ 
BP _/ Bl{l-p) 

A, - A, 
(9.20) 

Phase 3 

The third phase of the mission consists of only one initiating event, non-phase specific 

initiating event C. Phase 3 failure can be caused by initiating event C if it occurs prior 

to or during the phase with component A already failed. The Barlow-Proschan 

measure of phase initiator importance for event C in phase 3 is given in equation 

(9.21). 

J,"fqA (l-qB )(l-qn )),wc dt+ J,']fqA (l-qB )(l-qn )+qA (l-qB )qn ),wc dt 
'1 ~ 1 I L11 1 '1 ~ II I L11 J 11 ..... 12 3 

(9.21) 

It is possible to obtain a measure of the initiator importance of each component in the 

entire mission; This is defined as the probability that initiating event i causes system 

failure during any phase j, [~-1' ~), of a multi-phased mission (weighted by the 

expected number of mission failures). The measure of mission initiator importance is 

obtained by the sum of each individual phase j initiator importance given that phase j 

has been reached successfully in equation (9.22). 
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m 

I
iM1SS 

BP = L P(Initiating event i causes system failure during phase j I in phase j) 
j=l 

(weighted by the expected number of mission failures) 

m 

where WMIss(O,tm) = L Wj(tj_pt) (9.22) 
j=l 

The total measures of phase importance for all initiating events in Figure 9.1 may be 

quantified and ranked using the mission data given in equations (8.23). Since the 

importance measures are time dependent, the equations are solved numerically and the 

Runge-Kutta method is used for solution. The results of this are summarised in Table 

9.1. 

Phase 1 Phase 2 Phase 3 Mission 
Mission 

Component Initiator Rank Initiator Rank Initiator Rank Initiator 
Importance Importance Importance Importance 

Rank 

A 0.166666 3 0.328079 2 0 2 0.1838108 3 
B 0.333332 2 0.671911 1 0 2 0.3719455 2 
C 0.5 1 0 3 1 1 0.4442423 1 
D 0 4 0 3 0 2 0 4 

Expected Number Phase 1 Phase 2 Phase 3 Mission 
of Failures 0.113068 0.0551839 0.0327668 0.2010187 

Table 9.1 Measure of Initiator Phase and Mission hnportance 

The measure of initiator importance ranks the probability that each initiating event i 

causes system failure during phase j. In phase 1, component C has the highest value of 

importance followed by components B and A. In phase 2 there are only 2 initiating 

events, A and B. Component B has a higher failure rate thus has a higher importance 

value during phase 2. Component C failure must be the initiating event to cause phase 

3 failure, and so has an importance value of 1. 

For the overall mission, component C has the highest initiator importance ranking 

followed by component B, and then components A and D. During the first and final 

phases it is most likely that component C causes system failure, and this is reflected in 

the overall mission rankings. 
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It is possible to compare the initiator importance values to those obtained by treating 

each phase as a separate system. The results are given in Table 9.2. 

Phase 1 Phase 2 Phase 3 Mission 
Mission 

Component Initiator Rank Initiator Rank Initiator Rank Initiator 
Importance Importance Importance Importance 

Rank 

A 0.166666 3 0.333337 2 0 2 0.2012932 3 
B 0.333332 2 0.666674 1 0 2 0.4025858 1 
C 0.5 1 0 3 1 1 0.3961247 2 
D 0 4 0 3 0 2 0 4 

Expected Number Phase 1 Phase 2 Phase 3 Mission 
of Failures 0.113068 0.040313 0.0069945 0.1603755 

Table 9.2 Measure of Initiator Phase and Mission Importance when Treating each Phase 
as a Separate System 

Comparisons between treating each phase as a separate system and combining 

previous phase success with current phase failure shows that the initiator importance 

rankings through the phases are identical, and the importance values are very similar 

for this simple example. However, as the phases progress, the expected number of 

failures is increasingly inconsistent. This is due to the fact that no account is taken of 

previous phase outcome and the assumption that all components are in the working 

state at the start of each phase. The inaccuracies in the expected number of phase and 

therefore mission failures are reflected in the mission initiator values which show 

greater inconsistencies. 

9.2.3 Measures of Enabler Importance 

In a sequential failure relationship, system failure will only be caused if the order of 

component failures occurs in the correct sequence. It is possible that the failure of a 

component can permit the failure of another component to cause system failure, but is 

not able to cause system failure alone. The Dunglinson-Lambert measure of enabler 

importance for a single phase system presented a method to approximate the 

probability that enabling event e permits an initiating event i to cause system failure 

over [O,t) in equation (2.33). A new importance measure is presented to give the 

probability that enabling event e permits an initiating event i to cause system failure 

during phase}, [~-J, ~). This is an extension of the Dunglinson-Lambert measure and is 

defined as the measure of phase enabler importance. 
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We require the measure of enabler importance (le DL) for enabling event e in phase j. 
} 

This is the fraction of time that prime implicant sets containing event e have caused 

the top event to occur given that the top event has occurred. This can be expressed as 

two separate measures, the measure of in-phase enabler importance, and the measure 

of phase transition enabler importance. 

The measure of in-phase enabler importance, le} DL(I-P) , is the probability that 

enabling event e permits an initiating event i to cause system failure during phase j. 

This is found by the expected number of phase j failures due to the union of all prime 

implicant sets 8k with contribution of enabling event e and occurrence of initiating 
} 

event i in phase j, and is weighted by the expected number of phase j failures in 

equation (9.23). 

I DL(I-p) = 
e} 

(9.23) 

where Ek (i ) is the event that phasej prime implicant set 8 k occurs with initiating 
} } } 

event i in phase j set to true 

The measure 0/ phase transition enabler importance, le DL(Tr) , is the probability that 
} 

enabling event e permits an initiating event i to cause phase j failure at the time of 

transition. This is found by the expected number of phase j failures due to the union of 

all prime implicant sets 8k with contribution of enabling event e and occurrence of 
} 

initiating event i in any phase I up to but not including phase j, and is weighted by the 

expected number ofphasej failures in equation (9.24). 

(9.24) 

where Ek}(i/) is the event that phasej prime implicant set 8 k} occurs with initiating 

event i in phase I set to true 
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The total measure of phase enabler importance, le DL , is obtained by the contribution 
} 

of both the in-phase and phase transition enabler importances. This is the expected 

number of phase j failures due to the union of all prime implicant sets 8k with 
} 

contribution of enabling event e and occurrence of initiating event i in any phase I up 

to and including phase j, and is weighted by the expected number of phase j failures 

in equation (9.25). 

~ rl, ~ P(U. Ek (i »)wi dt 
DL DL(I) DL(Ti) L JI1_1 L..J kjlll,eek}} 1 1 I =1 -p +1 r =....:;I=::!..I_....:l.:::=I _______ _ 

e} e} e} W.(t. t .) 
J J-I' J 

(9.25) 

This approximation is demonstrated by application to the enabling events of the 

example in Figure 9.1 as follows: 

Phase 1 

Since the components are arranged in series, all events are initiating and there are no 

enabling events that can allow system failure in this first phase. 

Phase 2 

There are two phase 2 prime implicant sets: 

The phase enabler measure of importance for enabling event D in phase 2, IDz DL, is 

given in equation (9.26). 

Z 1 

'\' rl P(U E)w dt 
~ J(O k li Dek k,(il) '1 

1 
DL(Tr) _ i=1 ' I' , 

D -, W2(tI,t2) 

J;I ({O}. wA1 +{O}.wB)it = 0 

f' ((1-qTJ.., )(1-qc1 )qo,.,)' w A,dt + f' ((1-qA,,)(I-qc, )qo,.,)' wB,dt 
1 1 

For phase 2 failure to occur, enabling event D must have occurred before either of 

initiating events A or B. This is consistent with the result of unity in equation (9.26). 
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Phase 3 

There are four phase 3 prime implicant sets, 

. A2B1C23D12 
- -

A3 B1C3Dl2 

A3 B12C3 

Expand E2J = A2 B1C3 Dl2 
--~~~ - -

E3
J 

= A3 BP3 Dl2 

E4J = A3 Bl2C3 

The measure of phase enabler importance (IAJ DL) for enabling event A in phase 3 is 

given in equation (9.27). 

1'1 i" {O}·wc dt+ qA (l-q.J(I-qn )wc dt o :I '1:Z .... ....,1 1 

i
"{qA (l-q. )(l-qn »)'Wc dt+ J,"{qA (l-q. )(l-qn )+qA (l-q. )qn )'Wc dt 
I, ~:I ..... "12 :I '] ~ 23 .... L")1 ] VJ.2 ...... 2 1 

J,"(qAn (l-qs, )(I-ql\,)wC, +qA, (l-qs,,)ql\, Wc,}tt , 

J,"{qA (l-q. )(l-qn »).Wc dt+ i"{qA (l-q" )(l-qn )+qA (l-q. )qn ).Wc dt tl~2 ..... "12 1 12~21 ~ • .... U 1 V(1 "12 ] 

(9.27) 

Phase 3 failure will only occur if enabling event A occurs before initiating event C. 

This is consistent with the result of unity in equation (9.27). 

It is possible to obtain a measure of enabler importance of each component in the 

entire mission. This is defined as the probability that enabling event e permits an 

initiating event to cause system failure during any phase j, [;-I. ;), of a multi-phased 

mission. The measure of mission enabler importance is obtained by the sum of each 

individual phase j enabler importance given that phase j has been reached 

successfully, and is weighted by the expected number of mission failures in equation 

(9.28). 
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m 

feM/ss DL - L P(Enabling event e permits an initiating event to cause system failure 
}=1 

during phasej I in phasej) (weighted by the expected number of mission 

failures) 

(9.28) 

The total measures of phase importance for all enabling events in Figure 9.1 may be 

quantified using the Runge-Kutta method and ranked using the mission data given in 

equations (8.23). The results of this are summarised in Table 9.3. 

Phase 1 
Phase 2 Enabler 

Phase 3 Mission 
Component Enabler Rank 

Importance 
Rank Enabler Rank Enabler 

Importance Importance Importance 

Cut Set Cut Set 
Total 

{D,S} {D,A} 

A 0 - 0 0 - - 1 1 0.16300374 
S 0 - 0 0 - - 0 - 0 
C 0 - 0 0 - - 0 - 0 
D 0 - 0.671911 0.328079 1 1 0 - 0.27452123 

Expected 
Phase 1 Phase 2 Phase 3 Mission 

Number of 
Failures 0.113068 0.0551839 0.0327668 0.2010187 

Table 9.3 Measure of Enabler Phase and Mission Importance 

The measure of enabler importance ranks the probability that enabling event e permits 

an initiating event to cause system failure during phase j. Since in this example there 

is never more than one enabling event in a phase, comparisons within individual 

phases cannot be made. However, it can be seen that the probability that enabling 

event D allows initiating event B to cause phase 2 failure is much greater than the 

probability that enabling event D allows initiating event A to cause phase 2 failure. 

This is due to the fact that initiating event B has a higher rate of occurrence. 

For the overall mission, Component D has the highest ranking of enabler importance 

followed by component A. During the longest phase 2, it is most likely that 

component D allows an initiating event to cause system failure and this is reflected in 

the overall mission rankings. 
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It is possible to compare the enabler importance values to those obtained when 

treating each phase as a separate system. The results are given in Table 9.4. 

Component 

A 
B 
C 
D 

Expected 
Number of 

Failures 

Table 9.4 

Phase 1 Phase 3 Mission 
Enabler Rank Phase 2 Enabler Importance Rank Enabler Rank Enabler 

Importance Importance Importance 

Cut Set Cut Set 
Total 

{D,B} {D,A} 

0 - 0 0 - - 1 1 0.04361321 

0 - 0 0 - - 0 - 0 

0 - 0 0 - - 0 - 0 

0 - 0.666674 0.333337 1 1 0 - 0.25136634 

Phase 1 Phase 2 Phase 3 Mission 

0.113068 0.040313 0.0069945 0.1603755 

Measure of Enabler Phase and Mission Importance when Treating each 

Phase as a Separate System 

Comparisons between treating each phase as a separate system with the combination 

of previous phase success with current phase failure show that the importance 

rankings through the phases are identical and the values are very similar. However, a 

larger inconsistency is seen in the mission importance values. This is again due to the 

increasing inaccuracy of the expected number of phase failures as the phases progress. 

9.3 Repairable Systems 

The importance measures presented in the previous sections can be applied to 

repairable as well as non-repairable systems. If a Markov model is implemented for 

solution to a repairable multi-phased mission, the model state probabilities can be 

used to calculate the importance of components rather than using the combinatorial 

approaches described previously in this chapter. 

Methods to assess the probabilistic repairable component importance with Markov 

models are presented in the following sections. 
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9.3.1 Probabilistic Measures of Importance 

Probabilistic measures of importance for phased mission systems where the order of 

component failures in a minimal cut set is irrelevant (Section 8.3) can be 

demonstrated by example to the second phase of a simple 2-phased mission, given in 

Figure 9.2. The Markov model for the repairable second phase is given in Figure 9.3. 

A B 

A B 

Figure 9.2 Example 2-Phase Mission 

Figure 9.3 Phase 2 Markov model 

The initial state probabilities of this phase 2 Markov model are determined by the 

final Markov system state probabilities at the end of phase 1 using the methods 

presented in Chapter 5. The importance measures can then be calculated using only 

the phase 2 Markov model since the previous phase is accounted for in the initial 

phase system state probability vector. 

277 



The unavailability of the system at time t in phase j, Qj (t), can be calculated as the 

sum of the probabilities that the system resides in an absorbing phase j failure state at 

time t. This is summarised in equation (9.29). 

Qj(t) = L~(t) 
sail phasej 
failure states 

where t is measured from the start ofthe mission 

(9.29) 

For the example in Figure 9.3, the unavailability at time t in phase 2 would be found 

by the sum of the probabilities that the system resides in an absorbing phase 2 failure 

state (4,6, or 8) at time t in equation (9.30). 

Q2 (t) = ~ (t) + Pr, (t) + Pg (t) (9.30) 

9.3.1.1 Phase Criticality Function 

The phase j criticality function for a component c is the probability that the system is 

in a critical state for component c in phase j at time t. The Markov model states can be 

identified that are critical for component c such that if component c fails, transition to 

an absorbing phase failure state will occur. The criticality function for component c in 

phase j at time t is given in equation (9.31). 

Gc (q(t» = 
J 

s allphasej 
critical states for c 

(9.31) 

This measure may be demonstrated by application to the phase 2 Markov model in 

Figure 9.3. The critical states for components A, B, and C can be identified as: 

Component Critical States 

A 2 

B 2 

C 3,5,7 
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The criticality function for each of the components at time t in phase 2 is calculated in 

equations (9.32). 

GA (q(t» = li(t) 
2 

9.3.1.2 Criticality Measure of Phase Component Importance 

The criticality measure of importance for component c in phase j is the probability 

that the system is in a critical state for component c in phase j, and c fails. Using a 

Markov model, this is the sum of the probabilities that the system is a critical phase j 

Markov system state for component c at time t, and component c fails. This is 

obtained using the phase j criticality function for component c at time t and is 

weighted by the phasej unavailability at time t in equation (9.33). 

(9.33) 

The criticality measure of importance for components A, B, and C in the example in 

Figure 9.3 are given in equations (9.34). 

I CR(t) = GA2 (q(t»· qA(t) = P2(t)·qA(t) 
A2 Q2 (t) Q2 (t) 

I CR(t) = GB2 (q(t»· qB(t) =P2(t)·qB(t) 
B2 Q2 (t) Q2 (t) 

I CR(t) = GC2 (q(t»·qc(t) = (~(t)+Ps(t)+P.,(t»)·qc(t) 
C2 Q2 (t) Q2 (t) 

(9.34) 

9.3.1.3 Measure of Phase Component Importance 

The measure of phase component importance is the probability of the union of phase j 

minimal cut set occurrences, ek , containing the failure of component c given that 
J 

phase j failure has occurred. Using a Markov model, this is the sum of the 
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probabilities that the system resides in an absorbing failure state representative of the 

existence of minimal cut sets Ck at time t in phase j, and is weighted by the phase j 
} 

failure probability at time t in equation (9.35). 

L~(t) 
s all phase j states 

representing existence of Ct } 

lc} FV (t) = whereceCt } 

Qj(t) 
(9.35) 

This measure may be demonstrated by application to the example in Figure 9.3. The 

measures of phase importance for components A, B, and C are obtained in equations 

(9.36). 

Component Cut Sets Including States Representing 

Component Existence of Cut Set 

A {A, C} 6,8 

B {B, C} 4,8 

C {A, C},{B, C} 4,6,8 

(9.36) 

9.3.1.4 Measure of Minimal Cut Set Importance 

The measure of phase minimal cut set importance is the probability of the existence of 

minimal cut set Ck given that phasej has failed. For a repairable system represented 
} 

by a Markov model, this is the sum of the probabilities that the system resides in an 

absorbing failure state due to the occurrence of minimal cut set Ck at time t, and is 
} 

weighted by the phasej system failure probability at time t in equation (9.37). 

L~(t) 
sail phasej 

states representing 
I FV (t) = _ex_ist_enc_eo_if_Ct },"-

Ct} Qj(t) 
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The measure of minimal cut set importance for each of the minimal cut sets in the 

phase 2 Markov model in Figure 9.3 is obtained in equations (9.38). 

Phase 2 Minimal Cut Sets: 
12 = {A, C} 

22 = {B, C} 

I FV (t) = P4 (t) + Pg(t) 
22 Q2(t) 

9.3.2 Probabilistic Measures for Initiating and Enabling Events 

(9.38) 

Probabilistic measures of importance for phased mission systems where the order of 

component failures in a minimal cut set is important (Section 9.2) can be 

demonstrated for a repairable system using an extension of the example in Figure 9.2, 

shown in Figure 9.4. The Markov model for the second phase is given in Figure 9.5. 

A B 

A B 

Figure 9.4 Example 2-Phase Mission 
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Figure 9.5 Phase 2 Markov model 

9.3.2.1 Expected Number of Phase Failures 

The rate of phase j failure, Wj (t), is the rate that phase j failure occurs at time t 

between [~-1' ~). Using a Markov model, this may be found by the sum of the 

probabilities that the system is in a critical state for initiating event i at time t, and the 

frequency that event i occurs at time t in equation (9.39). 

w/t) = L Gij (q(t)) . Ai 
i phasej 

initiating event 

where Gi/q(t)) = L~(t) (9.39) 
sail phasej 

critical states for i 

The expected number of phase j failures is the integral of the unconditional phase j 

failure intensity (equation (9.39)) over the time interval [~_], tj), and is given in 

equation (9.40). 

(9.40) 

In the example given in Figure 9.5, the initiating events are the failures of components 

A and B. The expected number of phase 2 failures can be obtained using the critical 

states for initiating events A and B and is given in equation (9.41): 
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Initiating Event Critical States 

A 

B 

2,42 

2,62 

W
2
(t p t

2
) = f2 L Gi2 (q(t)) 'A i dt = f(G A2 (q(t)) 'AA + GB2 (q(t)) 'A B )dt 

tl i phase 2 1 

initiating event 

where G A2 (q(t)) = P2 (t) + P42 (t) 

GB2 (q(t)) = P2 (t) + P62 (t) 

9.3.2.2 Measure of Phase Initiator Importance 

The measure of phase initiator importance is the probability that initiating event i 

causes system failure during phase j. Using Markov models, this is the integral of the 

sum of the probabilities that the system is in a critical state for event i at time t, and 

the frequency that i occurs at time t in equation (9.42). 

rtJ 
Gi (q(t))· Aidt 

J. BP =_Jt~J_:....1 _J ___ _ 

IJ W/tj_l't) 
where G

iJ 
(q(t)) = L~(t) (9.42) 

sail phasej 
critical stales for i 

The phase initiator importance for initiating events A and B in Figure 9.5 is obtained 

using equation (9.42) as follows: 

where G A2 (q(t)) = P2 (t) + P42 (t) 

(9.43) 
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9.3.2.3 Measure of Phase Enabler Importance 

The measure of phase enabler importance (le DL) for enabling event e in phase j is the 
J 

expected number of failures due to the union of all phasej minimal cut sets ek . with 
} 

contribution of enabling event e. Using a Markov model, this is the integral of the sum 

of the probabilities that the system is in a critical state for an initiating event i 

contributing to the same minimal cut set as e, multiplied by the rate of occurrence of i. 

This is weighted by the expected number of phase j failures and is given in equation 

(9.44). 

L~(t) Aidt 
sal/phase} 

crilical slales for i 
suchlhalCk, will occur 

I DL = __ ---!:...if_IO_C_CuT_s,_an_d e_E_Ck.:...., ~_ e, (9.44) 

In the example shown in Figure 9.5, component C failure is the only enabling event. 

Enabling event C contributes to two sequential minimal cut sets, {C(E), A(I)} and {C(E), 

B(I)}. The critical system states for initiating events A and B such that the failure of 

either event would cause a minimal cut set containing C to occur are: 

Initiating Event Critical States for Occurrence 

of Cut Set Containing C 

A 

B 

The measure of enabler importance for enabling event C in phase 2 is therefore: 
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9.3.3 Mission Importance Measures for Repairable Systems 

The phase importance measures for a repairable system are obtained using separate 

phase models, and the outcome of the previous phases are accounted for in the initial 

system state probability vector. Since the duration of each phase is accounted for in 

the solution of each Markov model, the mission importance measures can be obtained 

as an average of the individual phase importance measures. 

9.4 Summary 

The importance measures presented for initiating and enabling events in single phase 

systems have been successfully developed to allow the assessment of component 

importance in multi-phased missions where the order of component failure is relevant. 

The probabilistic measures are weighted according to the expected number of phase 

failures. 

For repairable systems, the Markov phase system state probabilities can be used to 

accurately assess the importance of both individual components and minimal cut sets, 

rather than the approximations obtained using combinatorial techniques. 
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--------------------------------------

Chapter 10 Conclusions and Further Work 

10.1 Summary 

The concept of a phased mission has been introduced as a sequential set of objectives 

that operate over different time intervals. During each phase of the mission, the 

system may alter such that the logic model, system configuration, or system failure 

characteristics may change to accomplish a required objective. 

The unreliability of a phased mission cannot be obtained by the simple multiplication 

of the individual phase unreliabilities due to the fact that the system must occupy a 

state that allows both of the involved phases to function at the phase change times. 

The phases of a mission are statistically dependent. The event of component failure 

can be critical for either the phase in which it occurs, or for a later phase of the 

mission. As such it can be the transition from one phase to another that is the critical 

event leading to mission failure. 

The most common existing techniques for solution to non-repairable phased mission 

systems are fault tree analysis and binary decision diagrams. Due to the potential 

system state explosion problem encountered when employing Markov methods, it is 

useful to be able to implement alternative combinatorial techniques. Many of the 

existing techniques also concentrate on the transformation of a multi-phased mission 

into an equivalent single phased mission. The main disadvantage identified in the 

existing approaches is that due to cut set cancellation between phases, it is not 

possible to accurately calculate the failure probability of individual phases, only the 

mission as a whole. 

A new fault tree method has been proposed to overcome some of the deficiencies of 

other fault tree methods, and enable the probability of failure in each phase to be 

determined in addition to the whole mission unreliability. Phase changes are assumed 

to be instantaneous, and component failure rates are assumed to be constant through 

the mission. The basic events are expanded into a series of sub-events representing the 

separate performance of the component in each phase of the mission. For any phase, 

the method combines the causes of success of previous phases with the causes of 
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failure for the phase being considered to allow both qualitative and quantitative 

analysis of both phase failure and mission failure. A new set of Boolean laws is 

introduced to combine component success and failure events through multiple phases 

so that the expression for each phase failure can be reduced into minimal form. The 

application of these laws allow the prime implicant sets to be obtained for each phase. 

The fault tree structure efficiently represents the non-repairable phase failure logic, 

but is not an ideal form for mathematical analysis. The binary decision diagram 

(BDD) method offers an alternative approach to the fault tree method and reduces the 

complexity of the problem. For larger fault trees it is more efficient to convert to a 

BDD prior to analysis, and this is particularly true of the non-coherent phase failure 

fault trees. The standard BDD technique has been extended to develop a method for 

use in missions of multiple phases, allowing the exact phase and mission unreliability 

to be calculated. 

The current importance measures defined for single phase systems have been 

developed for missions of multiple phases. This allows the importance of a 

component, minimal cut set, or prime implicant set to each individual phase and the 

entire mission to be calculated. 

Markov methods are considered for analysis of phased missions where repair of 

components is possible, and also for situations that prevent the assumption of 

independence between component failure or repair being made. A full Markov model 

is generated by using a single model which works over all phases of the mission, and 

is constructed by the inclusion of all components featured in every stage. The model is 

formed by considering the different requirements for each phase success and mission 

success, and the state transition matrix is used to obtain the probability of the system 

residing in each of the possible system states. By identifying certain types of phases 

and components, it is possible to reduce this full Markov model further. 

The phases of a mission may be characterised in certain ways. If a phase requires the 

relevant system function to work at an instant in time it is defined as discrete. No state 

transitions may occur during a discrete phase, and any component failures that exist 

would have occurred prior to the phase. A continuous phase requires the appropriate 

system configuration to be reliable for the specified phase duration. 
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The components in each phase may be non-repairable or repairable. The most 

simplistic repair model assumes that failures are detected instantly and upon repair a 

component is considered to be as good as new. However if a component is not 

monitored continuously, this assumption cannot be made. A maintenance policy is 

considered where components can be subject to scheduled inspection. In this case the 

failure of a component will occur unrevealed and remain in this state until it is 

revealed at the next scheduled inspection point, when it can be restored to good as 

new condition. 

The concept of sequential failure relationships has been introduced to missions of 

multiple phases. Component failures can be identified as initiating or enabling events. 

The occurrence of an initiating event can directly cause phase failure, where as the 

occurrence of an enabling event can permit the failure of another component to cause 

phase failure, but is not able to cause system failure alone. The function of a 

component is subject to change through the mission duration. 

Modified Markov methods have been presented to account for the possible types of 

phase, component, and maintenance policy, and the conclusions from this work are 

discussed in the following section. 

10.2 Conclusions 

The aim of this research was to consider analytical techniques for the efficient 

representation and solution of phased mission systems. The following conclusions are 

made: 

10.2.1 Non-Repairable Missions 

• The proposed fault tree technique for combining the causes of success of previous 

phases with the causes of failure for the phase being considered allows the phase 

failure probability to be determined in addition to the mission failure probability. 

This method is seen to be more suitable for the solution of systems which operate 

over a small number of phases. As the number of phases increases, this fault tree 
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technique is susceptible to a large state explosion which leads to extra 

computational time and effort being required. 

• Since each phase is obtained as a combination of current phase failure with 

previous phase successes, the basic events can represent either component failure 

or success in different phases. The top event of phase or mission failure can also 

contain multiple events belonging to the same component. A new set of Boolean 

laws is introduced which allows the expression for each phase failure to be 

reduced into minimal form, and the prime implicant sets to be obtained. 

• The BDD approach is found to provide an efficient and accurate alternative to the 

fault tree technique. With an optimal ordering scheme, the combination of phase 

failure with previous phase successes can be very simple as the events of 

components failing through sequential phases are considered only once. The 

quantification of the binary decision diagram approach leads to an exact answer 

rather than the approximation calculated by the fault tree method. 

• Once the phase or mission failure probability is calculated using either fault tree 

analysis or BDDs, the frequency of phase and mission failure can be easily 

obtained using the mission frequency. 

• Standard deterministic and probabilistic importance measures for single phase 

systems have been successfully developed to allow the assessment of component 

importance in multi-phased missions. For non-repairable systems, the probabilistic 

measures can easily be obtained using combinatorial methods, and are weighted 

according to either the phase failure probability or expected number of phase 

failures as appropriate. 

10.2.2 Repairable Missions 

• The full Markov model generated by using a single model which works over all 

phases of the mission and constructed by the inclusion of all components featured 

in every stage can get very large and in some cases become too large to generate 

and solve. this full Markov model may be reduced in the following situations: 
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• Discrete and Continuous Phases. It is only the continuous phases where the 

reliability calculations necessitate the use of Markov methods. Components 

that only feature in discrete phases are segregated from those which contribute 

to the failure of continuous phases. Discrete phases can be solved using fault 

tree analysis and continuous phases can be solved using Markov models. Only 

components contributing to each phase failure are included in the model. The 

full set of states for the total mission are reduced to evaluate initial conditions 

for each phase, and expanded out again at the end of a phase to enable 

calculation of successful entry to the immediately succeeding phase. 

• Non-Repairable and Repairable Phases. A non-repairable phase can be 

solved using standard fault tree techniques, and a repairable phase can be 

solved by application of a minimal Markov model. The expansion of the state 

probabilities at the end of each phase allows the unavailability or availability 

of all components to be calculated for transition to the next phase, and thus any 

sequence of repairable and non-repairable phases can be modelled. 

• Scheduled Inspection. A scheduled inspection routine is introduced for 

components that are not monitored continuously. The Markov model states for 

each phase of the mission can be expanded to represent the possibility of both 

unrevealed and revealed component failures. 

• Initiating and Enabling Events. The consideration of sequential failure 

relationships in phased mission Markov analysis is susceptible to state 

explosion problems, and so a minimal model is defined at each transition 

point. Initiating events that can only cause system failure by occurring in a 

particular phase are defined as phase specific. All components that do not 

contribute to any further phases of the mission may be removed completely 

from the transition model at each phase boundary. All remaining components 

that do not contribute to any non-phase specific sequential minimal cut sets in 

later phases are expressed in non-sequential form, and all components that do 

contribute to a later non-phase specific sequential minimal cut set must remain 

in sequential form. The model can then be expanded to represent phase 

specific failure relationships within each phase. If components do not 

contribute to non-phase specific sequential minimal cut sets in later phases, it 

is possible to remove them from the model during phases in which they are not 
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required, and also apply fault tree techniques where they are input to static 

gates in non-repairable phases. 

• If a system is too complex to use deterministic analysis, or if the failure or repair 

distributions of a component do not have a constant failure or repair rate, 

simulation may be necessary. Simulation techniques typically offer the greatest 

generality in representation, but are also often the most expensive in computational 

requirements. 

• The importance measures for non-repairable multi-phased missions have been 

extended to include the possibility of repair. Where systems are repairable, the 

Markov system state probabilities can be used to assess the importance of both 

individual components and minimal cut sets. 

10.3 Further Work 

The scope of this research leads to the possibility of further areas of investigation. 

Potential directions are discussed in the following sections. 

10.3.1 Optimum BDD Ordering Schemes 

The effect of basic event ordering schemes in single phase system BDDs has been 

subject to much research. Since the BDD approach can also be applied to non

repairable multi-phased missions, it would be useful to be able to obtain an optimal 

event ordering scheme to result in the most accurate and efficient phased mission 

BDD. 

10.3.2 Dependency 

The assumption that components are independent is not always practicable. In some 

situations it is possible that the failure of a component may depend on the state of 

another component, in which case this assumption no longer holds. The current 

research into dependencies within single phase systems could be extended for 

application to multi-phased missions. 
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10.3.3 Varying Failure Rates 

The methods presented for solution to phased mission systems assume that the failure 

and repair rates of a component remain constant throughout the mission duration. It is 

possible that the requirements of a phase may cause an increase or decrease in the 

failure or repair rate of a component. Modifications of the current method can be 

made to allow for the possible change in failure or repair rate of a component between 

phases. 

10.3.4 Phase Sequences 

The research in this thesis has assumed that the phases in a mission occur in a set 

order. In reality, this may not be true. Depending on the outcome of a phase, the 

immediately succeeding phase may be different. An extension of the current methods 

could allow for any combination of phase patterns depending on the outcome of each 

phase. 

10.3.5 Variable Phase Durations 

The proposed methods for phased mission analysis assume that each phase is of a 

fixed time duration. In some cases it is possible that the interval over which a phase 

operates can be variable, for example if a phase transition will only occur due to the 

system reaching a particular state. It would be useful to extend the current techniques 

to allow for the possibility of variable phase durations. 

10.3.6 Delayed Phase Transitions 

The assumption that the transition between phases is instantaneous cannot always be 

made. It is possible that a delayed time period between phase boundaries can occur, 

for example due to the replacement of components. The current method could be 

modified to include the situations where phase transitions are not instantaneous. 

10.3.7 Phase Consequences 

The research in this thesis does not consider the consequence of each phase failure. In 

reality components would be more important in phases where failure has catastrophic 

consequences. Extensions could be made to this work to consider the consequence of 

each phase failure. 
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Appendix A Unconditional Phase Failure Intensity Example 

Phase 1 

The phase 1 prime implicant sets are: El = {AI} 

E2 = {BI } 

The phase 1 failure intensity can be expressed in equation (A. 1 ), 

W
I 

dt = w
I 
(I) dt - W

I 
(2) dt (A. 1) 

The first term on the right hand side of equation (A. 1) represents the contribution from 

the occurrence of at least one prime implicant set in phase 1, and can be expressed in 

equation (A.2). 

W/ = P(EI) + P(E 2 ) - P(EI (JE2) 

= P(EI) + P(E 2 ) since there are no common events (A.2) 

Each term of equation (A.2) may be obtained as follows to give W1

1 
in equation (A.3). 

P( El) = P(Prime implicant set El occurs during phase 1) x AMISS 

P(E 2 ) =P(Prime implicant set E2 occurs during phase 1) x AMISS 

P( E2 ) = A MISS S:· IB (t)dt = A MISS (1- e -AB I. ) 

(A.3) 

The second term of equation (A. 1 ) represents the contribution of prime implicant sets 

occurring while other prime implicant sets already exist in phase 1 (i.e. the system has 

already failed). This can be expressed in equation (A.4). 

(A.4) 
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The first tenn of equation (AA) represents the probability that prime implicant set El 

occurs in phase 1 while any other prime implicant sets already exists. This is 

expanded in equation (A.S). 

since a prime implicant cannot exist and occur (A.S) 

The probability that prime implicant set El occurs while prime implicant set E2 

already exists is the probability that component A fails in phase 1 when component B 

is already failed. This can be represented diagrammatically in Figure A.1. 

Bfails 

1 A fails 

1 Ir 
)1 

0 u u+du I, 

Figure A.1 Component B Fails Followed by Component A in Phase 1 

The situation demonstrated in Figure A.1 can be represented algebraically and is 

derived in equation (A.6). 

P(sl'u2) = AMISS r fB(U{ r fA (t)dt) du 

= AMISS f;1 fB (u)( [- e-AAI ]~ )du 

- A rll 
I' (u)(_e-AAII +e-AAU )du 

- MISS Jo J B 

= AMISS rABe-ABU(-e-AAII +e-AAU )du 

- A rll 
- A e -AAII-ABU + A e -(AA+AB)U du 

- MISS Jo B B 
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Similarly, the second term of equation (A.4) may be expanded as, 

This is the probability that prime implicant set Et exists when prime implicant set E2 

occurs, and is calculated in equation (A. 7). 

The third term of equation (A.4) becomes zero since the prime implicant sets contain 

no common events and so cannot both occur at the same instant of time, 

The second term of equation (A.I) is then obtained as the sum of equations (A.6) and 

(A.7) in equation (A.8). 

(A.8) 

The phase I unconditional failure intensity is calculated using equations (A.3) and 

(A.8) in equation (A.9). 

(A.9) 
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Phase 2 

The prime implicant sets for phase 2 are: 

f:l = {A2BJ 

f:2 = {A2 B.G.}. 

f:3= {A2 B.C2 }· 

Using equation (4.23), the unconditional failure intensity of phase I can be found by 

equation (A. I 0). 
I 2 

W2 =W2 -W2 (A.IO) 

The first terrn on the right hand side of equation (A. I 0) represents the contribution 

from the occurrence of at least one prime implicant set in phase 2, and can be 

expressed as, 

It is not possible for prime implicant sets f:2 and f:3 to both occur since component C 

cannot fail in both phases I and 2. The occurrence of at least one prime implicant set 

becomes as given in equation (A. I I). 

(A. I I) 

The first term on the right hand side of equation (A.4) represents the probability of 

occurrence of minimal cut set f: 1 • For f:1 to occur, components A and B must both fail 

in phase 2 in any order. The two possible failure orderings are represented 

diagrammatically in Figure A.2. 

B fails A fails 

1 A fails 

)1 
1 B fails 

II( II( )1 

u u+du ~ 11 u u+du 12 

Figure A.2 Failure Orderings for Occurrence of Prime Implicant Set f: I 
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The probability of occurrence of minimal cut set El is expressed as the sum of the 

probabilities of either A failing followed by B in phase 2, or B failing followed by A 

in phase 2. This is derived and given in equation (A.12). 

(A. 12) 

The probability of occurrence of prime implicant set E2 is the probability that 

component B works through phase 1, component C fails in phase 1, and then 

component A fails during phase 2. This is derived algebraically and is given in 

equation (A. 13). 

(A. 13) 
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E3 will occur if component B works through phase 1, and components A and C both 

fail in phase 2 in any order. Since only dynamic failure relationships are considered in 

phase 2, the probability that component B works through phase 1 is treated separately. 

The probability of occurrence of prime implicant set E3 is expressed in equation 

(A.I4). 

(A. 14) 

Using the derivation method presented in equation (A. 12), the probability of 

occurrence of prime implicant set E3 is derived and expressed in equation (A. IS). 

P(E3) = ')..,MISS e -ABt• (e -(AA+ACltl + e -(AA+ACltl - e -AAt2-ACtl - e -ACt2-AAt1 ) 

P(E3) = ')..,MISs(e-Astl-(AA+Aclt2 +e-(AA+As+Acltl _e-AAtl-(AB+Acltl _e-Act2-(AA+ABltl ) (A. IS) 

Minimal cut set El and prime implicant set E2 can both occur at the same instant of 

time if C fails in phase 1, B fails in phase 2, and A fails after B in phase 2. Component 

A must be the last to fail since the failure of A in phase 2 is the only common event 

between the two sets. If the event of component C failure in phase 1 is treated 

separately, the probability of occurrence of El AND E2 can be expressed in equation 

(A. 16). 

(A.I6) 

The probability that component B fails followed by component A in phase 2 can be 

derived using equation (A.I2), and the probability of occurrence of El AND E2 is 

calculated in equation (A.I7). 

(A. 17) 
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Minimal cut set E, and prime implicant set E3 can both occur at the same instant of 

time if C and B fail in phase 2, and A fails last in phase 2. Component A must be the 

last to fail in phase 2 since component A failure in phase 2 is the only common event 

between the sets. There are two possible failure orderings, CT-+B2~A2 or 

B2~C2~A2, given in Figure A.3. 

Bfails Cfails 

I( 
Cfails 1 A fails 

)1 I( 
Bfails 1 A fails y )II( )1 

t, uu+du t. " uu+du t. 

Figure A.3 Failure Orderings for Occurrence of Prime Implicant Sets E, and E3 

The probability of occurrence of E, AND E3 can be derived and is given in equation 

(A.I8). 

= L:2 ~-.lcl' _ e-.lcu)ABe-Aau ( e-AAU - e-AAI2 )du 

= J 12 (A e-.lcI,-(AA+Aalu _ A e-(AA+Aa+.lc)U - A e-.lc I,-AA I2-AaU + A e-AA'2 -(Aa+Ac)u)du 
I, B B B B 

=[ AB e-Ac,,-(AA+ABlu + AB e-(AA+AB+Aclu +e-Ac,,-AA'z-ABu AB e-AAlz-(AB+AclU]IZ 

~+~ ~+~+~ ~+~ I, 

AB e-Ac,,-(AA+ABl', + AB e-(AA+AB+Ac)I, + e-Acl,-(AA +AB It, AB e-(AA+AB+Aclt, 

AA+AB AA+AB+AC AB+Ac 

+ AB e-(AA+AB+Acl', 

AA +AB 

AB e-(AA+AB+Acl', _e-(AB+Acl,,-AAlz + AB e-(AB+Acl,,-AAlz 

~+~+~ ~+~ 
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Therefore, 

The contribution from the occurrence of at least one prime implicant set in phase 2 

can be expressed using equations (A.12), (A.13), (A.15), (A.17) and (A.18) and is 

given in equation (A. 19). 

303 



AB +Ac ]} 
AA +AB +Ac 

(A. 19) 

The second term of equation (A. 1 0) represents the contribution of prime implicant sets 

occurring while other prime implicant sets already exist in phase 2 (i.e. the system has 

already failed). This can be expressed in equation (A.20). 

2 - - - - - - -
W2 = P(E.,A) + P(E 2 ,A) + P(EJ,A) - P(E.,E 2 ,A) - P(Et ,EJ,A) - P(E 2 ,EJ,A) + P(E.,E2 ,EJ,A) 

(A.20) 

Each term of equation (A.20) can be further expanded. The first term on the right hand 

side of equation (A.20) is the probability that minimal cut set El occurs while any 

other minimal cut sets or prime implicant sets exist. This is expanded as, 

Since it is not possible for a minimal cut set to both occur and exist, and also prime 

implicant sets E2 and E3 cannot both exist together, many of the terms are eliminated. 
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The probability that minimal cut set El occurs while any other prime implicant set 

exists becomes as given in equation (A.2I). 

(A.2I) 

The probability that prime implicant set E2 exists requires C to fail in phase 1, B to 

work through phase 1, and finally A to fail in phase 2. Since A is already failed in 

phase 2, for minimal cut set El to occur, B must then fail in phase 2. The probability 

that minimal cut set El occurs while prime implicant set E2 exists is the probability 

that C fails in phase 1, A fails in phase 2, and B fails last in phase 2. This is 

represented algebraically in equation (A.22). 

(A.22) 

Using the derivation in equation (A.I2), equation (A.22) can be calculated and is 

given in equation (A.23). 

(A.23) 

The probability that minimal cut set El occurs while prime implicant set E3 exists is 

the probability that C fails in phase 2, A fails in phase 2, and B fails last in phase 2. 

Components A and C can fail in any order, but component B must fail last for 

minimal cut set El to occur. This is represented in equation (A.24). 

P(EI'U3)=AMISs{f( (fc(t')dt'YA(U{ r fB(t)dtYu + f((fA(t')dt'Yc(u{ r fB(t)dt)dU} 

(A.24) 

Using the derivations in equation (A.I8), this may be obtained in equation (A.25). 
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(A.2S) 

Prime implicant set E2 can not occur while any other minimal cut sets or prime 

implicant sets exist. The existence of any other prime implicant sets would require 

component A to be failed in phase 2. Since the last component of E2 to fail is 

component A in phase 2, it is not possible for E2 to be the last prime implicant set to 

occur, 

P( E2, A) = P( E2, u1) + P(E2' u2) + P(E2 ,u3 ) - P(E2 ,u1' u2) - P(E2 ,u1 ,u3 ) - P( E2 'U2 ,u3 ) + P( E2 ,u1 'U2 ,u3 ) 

P(E2,A) =0 since prime implicant set E2 cant be the last to occur 

The probability that prime implicant set E3 occurs while any other minimal cut sets or 

prime implicant sets exist is expanded as, 

Since it is not possible for a prime implicant set to both occur and exist, and prime 

implicant set E3 cannot occur if E2 already exists since component C is already failed 

in phase 1, many of the terms are eliminated. The probability that prime implicant set 

E3 occurs while any other prime implicant set exists becomes as given in equation 

(A.26). 
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(A.26) 

The probability that minimal cut set El exists requires A and B to both fail in phase 2. 

Since A is already failed in phase 2 and component B must have worked through 

phase I, for prime implicant set E3 to occur, C must fail last in phase 2. The 

probability that prime implicant set E3 occurs while minimal cut set El exists is the 

probability that A and B fail in phase 2 in any order, and C fails last in phase 2. This is 

represented algebraically in equation (A.27). 

P(E3 ,UI ) = AM1SS{ C( (fit')dt')fB(U{ r fc(t)dt)du+ C( ffB (t')dt') fA (u{ r fdt)dt)dU} 

(A.27) 

Using the derivations in equation (A.I8), this may be obtained in equation (A.28). 

(A.28) 

It is not possible for minimal cut set El and prime implicant set E2 to both occur while 

any other minimal cut sets or prime implicant sets exist and so, 

P(&..,~,A) =P(&",~,14)+ P(&..,E2'~)+P(&.., ~,ll:l) 

-P(&",~,14,~)-P(&",~,14,ll:l)-P(&",~,~,ll:l)+P(&",~,14,~,ll:l)=o 
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Similarly, it is not possible for minimal cut set f>l and prime implicant set f>3 to both 

occur while any other minimal cut sets or prime implicant sets exist, 

Also, it is not possible for prime implicant sets f>2 and f>3 to both occur at the same 

time and so, 

p(lj, 62, 63, A) = p(lj, 62, 63, 14)+ p(lj, 62, 63,~)+ p(lj, 62, 63,~) 

- p(lj, 62, 63, 14'~) - p(lj, 62, 63, 14, ~)-p(lj, 62, 63,~, ~)+ p(lj, 62, 63, 14,~,~) = 0 

The contribution of prime implicant sets occurring while other prime implicant sets 

already exist in phase 2 can be expressed using equations (A.23), (A.25), and (A.28), 

and is given in equation (A.29). 

2 - - -
W 2 = P(f> p u2 ) + P(f> p u3 ) + P(E3 ,U1) 

(A.29) 
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The unconditional failure intensity of phase 2 as defined in equation (A. 1 0) can be 

obtained using equations (A. 19) and (A.29) and is given in equation (A.30). 

(A.30) 
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AppendixB Criticality Function Example 

B.t Critical States 

In tabular form, the arbitrary components X, Y, and Z are assigned for each component as 

given in Table B.I. 

X Y Z 

ComponentB A C D 

Component C A B D 

ComponentD A B C 

Table B.t Component Representation 

The critical states for components B, C, and D are shown for phase 1,2, and 3 in Tables B.2, 

B.3, and B.4 respectively 

Other Component 
Critical State 

Probability 
States 

B C D 

(.,X1,J-;,Zt) (1-qx. )(I-q1\ )(I-qz.) Yes Yes No 

(.,XPJ-;,Zl) (1- qx. )(1- q1\ )qz. Yes Yes No 

(.,XpJ-;,Zt) (1- qx. )q1\ (1-qz.) No No No 

("XI'J-;,Zt) (I-qx)q1\qz. No No No 

(.,XpJ-;,Zt) q XI (1- q 1\ )(1- q z\ ) No No No 

(.,XpJ-; ,Zt) qXI (I-q1\)qz. No No No 

(.,XI'J-;,Zt) q X. q 1\ (1- q z) No No No 

("XI'J-;,Zt) qx.q1\qz. No No No 

Table B.2 Critical States in Phase 1 
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Other 
Component Probability 

Phase Critical Phase Critical Phase Critical 

States 
1 Fail forB 1 Fail forC 1 Fail forD 

(.,Xt2 'Y;2,Zt2) (l-qx12 )(1- q>;2 )(1- qZ12) No No No No No No 

("Xl 'Y;2 ,Zt2) qX1 (1- qr..2 )(1- qZ(2) Yes - Yes - Yes -

(.,X2'Y;2,Zt2) qX2 (1- qYl2 )(1- qZ(2) No No No No No Yes 

("Xt2 ,.¥;,ZI2) (1- qX(2 )qY1 (1- qZ(2) Yes - Yes - Yes -

(.,Xt2 'Y2,Zt2) (1- qX(2 )qY2 (1- qZ(2) No No No No No Yes 

("XI2 '.¥;2,Zt) (1- qX12 )(1- qY(2 )qz( No Yes No No Yes -

("X12 '.¥;2,Z2) (1- qX12 )(1- qY(2 )qZ2 No Yes No No No No 

("XP.¥;,ZI2) qx(qy( (1- qZ(2) Yes - Yes - Yes -

(.,XPy;,Zt2) qx( qY2 (1- qZI2) Yes - Yes - Yes -

(.,X2,.¥; ,Zt2) qx2qy( (1-qz() Yes - Yes - Yes -

("X2,y;,Zt2) qX2 qY2 (1- qZ(2) No No No No No Yes 

("Xp .¥;2,Zt) qx( (1- qY12 )qz( Yes - Yes - Yes -

("Xp .¥;2,Z2) qx( (1- qr..)qZ2 Yes - Yes - Yes -
("X2'.¥;2,Zt) qX2 (1- q>;2 )qz( No No No No Yes -

("X2'.¥;2,Z2) qX2 (1- qr..2 )qZ2 No No No No No Yes 

(.,Xt2,y;,Zt) (1- qX12 )qy( qz( Yes - Yes - Yes -

("XI2,y;,Z2) (1- qX12 )qy( qZ2 Yes - Yes - Yes -
(.,Xt2 ,Y2,Zt) (1- qX12 )qY2 qz( No Yes No No Yes -

("XI2,y;,Z2) (1- qX12 )qY2 qZ2 No Yes No No No Yes 

(.,xpy;,Zt) Qx(Qy(Qz( Yes - Yes - Yes -

(.,XPy;,Z2) Qx(Qy( QZ2 Yes - Yes - Yes -

("XpY2,ZI) Qx(Qy2QZI Yes - Yes - Yes -

("XpY2,Z2) Qx(Qy2QZ2 Yes - Yes - Yes -

("X2,y;,Zt) Qx2Qy(Qz( Yes - Yes - Yes -

("X2,y;,Z2) QX2Q>; QZ2 Yes - Yes - Yes -

("X2,y;,Zt) QX2Qy2QZ( No No No No Yes -

("X2,y;,Z2) QX2Qy2QZ2 No No No No No Yes 

TableB.3 Critical States in Phase 2 
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- -

Other Component Phase Phase Critical Phase Phase 

States 
Probability I Fail 2 Fail forB I Fail 2 Fail 

Critical Phase Phase Critical 
forC I Fail 2 Fail forD 

(.,XI23 ,1';23,ZI23) (1-lJXj2)(l-q>;)(l-qZt2l) No No No No No No No No No 

(.,Xp 1';23,ZI23) qX
1 
(1- qY12l )(1- qZ12l) Yes - - Yes - Yes 

(.,X2, 1';23' Z\23) qX2 (1- qY12l )(1- qZ12l) No No No No No Yes No No No 

(.,X3,1';23,ZI23) qXl (1- qY12l )(1- qZ12l) No No No No No Yes No No No 

(.,XI23' 1';, Z123) (1- qX12l )qY
1 
(1- qZ12l) Yes - - Yes - Yes 

(.,XI23 , y;,ZI23) (1- qXI2l )qY2 (1- qZ12l) No No No No No No No No No 

(.,XI23,y;,ZI23) (1- qX12l )qYl (1- qZ12l) No No No No No No No No No 

(.,X123 , 1';23' Zl) (1- qX12l )(1- qY12l )qzl No No No No No No No No No 

(.,XI23 , 1';23' Z2) (1- qX12l )(1- qY12l )qZ2 No No No No No No No No No 

(.,X123 , 1';23' Z3) (1- qX12l )(1- qY12l )qZl No No No No No No No No No 

(.,Xl,1';,Z123) qX
1 
q1( (1- qZ12l) Yes - - Yes - Yes 

(.,Xl,y;,ZI23) qX
1 
qY2 (1- qZ12l) Yes - - Yes - Yes 

(.,XPy;,ZI23) qX
1 
qYl (1- qZ12l) Yes - - Yes - Yes 

(.,X2,1'; ,ZI23) qX2 q1( (1- qZl2l) Yes - - Yes - Yes 

(.,X2,y;,ZI23) qX2 qY2 (1- qZ12l) No No No No No Yes No No No 

(.,X2' ~,ZI23) qX2 qYl (1- qZ12l) No No No No No Yes No No No 

(.,X3,1';,Z\23) Qxl Q1( (1- QZ12l) Yes - - Yes - Yes 

(.,X3,y;,ZI23) QXl Qy2(1- QZ12l) No No No No No Yes No No No 

(.,X3' ~, Z123) QXl QYl (1- QZ12l) No No No No No Yes No No No 

(.,X1,1';23,ZI) qX
1 
(1-qy12l )QZI Yes - - Yes - Yes 

(.,Xp 1';23,Z2) qX
1 
(1- q1(21 )QZ2 Yes - - Yes - Yes 

(.,Xp 1';23,Z3) qX
1 
(1- q1(21 )QZl Yes - - Yes - Yes 

(.,X2,1';23,ZI) QX2 (1-Q1()Qzl No Yes - No Yes Yes 

(.,X2,1';23,Z2) QX2 (1- QY12l )QZ2 No Yes - No Yes No No No 

(.,X2,1';23,Z3) QX2 (1-Q1()QZl No No No No No Yes No No No 

(.,X3,1';23,ZI) QXl (l-Q1()Qzl No No No No No Yes Yes 

(.,X3,1';23,Z2) QXl (1- QY12l )QZ2 No No No No No Yes No No No 

(.'X3' 1';23' Z3) QXl (1- QYI2l )QZl No No No No No Yes No No No 

(X123'1';,Zp) (1- QXI2l )QY1 QZI Yes - - Yes - Yes 

(XI23 , 1'; ,Z2') (1- QX12l )Q1( QZ2 Yes - - Yes - Yes 

(X123 ,1';,Z3') (1- Q X12l )QY1 QZl Yes - - Yes - Yes 

312 



Other Component Phase Phase Critical Phase Phase Critical Phase Phase Critical 

States 
Probability 1 Fail 2 Fail forB I Fail 2 Fail forC I Fail 2 Fail forD 

(X123 , ~ , ZI ,) (1-qx.)qy2qz. No No No No Yes - Yes - -

(X123 'Y2,Z2') (1- qX123 )qY2 qZ2 No No No No Yes - No No No 

(XI23,~,Z3') (1- qX123 )qY2 qZl No No No No No No No No No 

(XI23'~'Zp) (1-qx.)qylqz. No No No No No No Yes - -

(XI23,~,Z2') (1-qx123 )qylqZ2 No No No No No No No No No 

(XI23,~,Z3') (1-qx.)qylqZl No No No No No No No No No 

(.,XPy;,ZI) qx.qy.qz. Yes - - Yes - - Yes - -

(.,XPy;,Z2) qX8r.qZ2 Yes - - Yes - - Yes - -
(.,XPy;,Z3) qX.qr. qZ3 Yes - - Yes - - Yes - -

("XP~,ZI) qx.qy2qz. Yes - - Yes - - Yes - -

("Xp Y2,Z2) qx.qy2qZ2 Yes - - Yes - - Yes - -

("XP~,Z3) qx.qy2qZ3 Yes - - Yes - - Yes - -
("XP~,ZI) qx.qylqz. Yes - - Yes - - Yes - -

("XP~,Z2) qx.qylqZ2 Yes - - Yes - - Yes - -
(.,XPl';,Z3) qx.qylqZl Yes - - Yes - - Yes - -
("X2,y;,ZI) qx2qr. qZ• Yes - - Yes - - Yes - -

("X2,y;,Z2) qX2qr. qZ2 Yes - - Yes - - Yes - -
("X2,y;,Z3) qX2 qr. qZ3 Yes - - Yes - - Yes - -
(.,X2, Y2, ZI) qX2qy2qZ. No Yes - No Yes - Yes - -
("X2,~,Z2) qX2qy2qZ2 No Yes - No Yes - No No No 

("X2'~' Z3) qxZqYZqZl No No No No No Yes No No No 

(.,X2,l';,Zl) qX2qylqZ. No Yes - No Yes - Yes - -
(.,X2,l';,Z2) qX2qylqZ2 No Yes - No Yes - No No No 

(.,X2,l';,Z3) qX2qylqZl No No No No No Yes No No No 

("X3,y;,ZI) qxlqy.qz. Yes - - Yes - - Yes - -

("X3,y;,Z2) qxlqy.qzz Yes - - Yes - - Yes - -

("X3,y;,Z3) qxlqy.qZl Yes - - Yes - - Yes - -
("X3,~,ZI) qXlqy2qZ. No No No No Yes - Yes - -
("X3,Y2,Z2) qXlqy2qZZ No No No No Yes - No No No 

("X3,Y2,Z3) qxlqYZqZl No No No No No Yes No No No 

("X3,l';,ZI) qXlqylqZ. No No No No No Yes Yes - -

("X3,l';,ZJ qXlqylqZZ No No No No No Yes No No No 

("X3,l';,Z3) qXlqylqZl No No No No No Yes No No No 

Table B.4 Critical States in Phase 3 
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B.2 Phase Criticality Function 

The criticality function for components B, C, and D calculated by the sum 'of the 

probabilities of occurrence of the critical states and also by differentiation of the phase 

unavailability are given in Table B.5. 

Sum of Probability of Occurrence 

ComponentB 

Q(critical in phase 1) 

= (1- qA. )(1-qc, )(I-qv,) + (1- qA. )(1- qc, )qv, 

= (1- qA. )(1- qc,) 

Q(no failure in phase1 & critical in phase 2) 

= (1- qA" )(1- qc" )qv, + (1- qAt, )(1- qc" )qv, + (l-qAt,)qc, qv, + (1- qAt,)qc, qv, 

= (1- qA,)(1-qC" )(qv, + qD)+ (l-qA.)qc, (qD, +qD) 

= (1- qA" )(1-qc" )qD" + (1-qA" )qc,qv" 

= (1-qA" )qv" (1- qc" + qc,) 

= (1-qA,,)qD,, (1-qc, -qc, +qc,) 

= (1- qA
Il 

)qv" (1- qc,) 

Q(no failure in phases 1 and 2 & critical in phase 3)=0 

Component C 

Q(critical in phase 1) 

= (1- q A, )(1- q B, )(1- qv, ) + (1- q A, )(1- q B, )q V, 

= (1- q A, )(1- q B, ) 

Q(no failure in phase1 & critical in phase 2)=0 
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Partial Differential 

8QI 
--I-q -q +q q a - A, c, A, c, 

qB, 

= (1 - qA )(1 - q c ) 
I I 

8Q2 = (1- q )(1 - q)q - q (1 - q )q 8 A, c, D
" 

A, c, D" 
qB, 

= (1-qC,)qD,,(1-qA, -qA) 

=(1-qc, )qv" (1-qA,,) 

8QI 
8q =1-qA, -qB, +qA,qB, 

c, 

= (1- q A, )(1- q B,) 



Sum of Probability of Occurrence 

Q(no failure in phases 1 and 2 & critical in phase 3) 

= q A, (1- q B123 )(1- q ~" ) + q A, (1- q B123 )(1- q ~23 ) 

+ qA,qB, (1- q~23) + qA, qB, (1- q~23) + qA, qB, (1- qD123 ) + qA, qB, (1- q~23) 

+ q A, (1- q B123 )q D, + q A, (1 - q B123 )q ~ + q A, (1- q ~23 )q D, + q A, (1- q B123 )q D, 

+ q A, q B, qV, + q A2 q B, qV, + q A, q B, qV, + q A, q B, qv.. + q A, q B, q D2 + q A, q B, q D, 

= (qA, + qA, )(1- qB
123 

)(1- qD
123

) 

+ (qA,qB, +qA,qB, +qA,qB, +qA,qB,)(l-qD123 ) 

+qA,(l-qB123 )qD, +qA,(1-qB
123

)(qD\ +qD, +qD,) 

+qA,(qB, +qB,)qD, +qA,qB,qD, +qA,qB,(qD\ +qD2 +qD,) 

= qA23 (1- qB
I2l 

)(1- qD
123

) + qA23 qB
2

, (1- qv..23) + qA, (1- qB
I2l 

)qD, + qA, (1- qB123 )qv..23 

+qA,qB
2J

qD, +QA,QB2 QV, +QA,qn,Qv..23 

= qA" (l-q~" +qB" )(I-q~,,)+qA, (l-q~" +qB,,)qo, +qA, (l-q~" +qB,)q~" +qA,qB,qo, 

= qA" (l-q~ )(l-q~,,) + qA, (l-qB)qo, +qA, (l-q~,)q~" +qA,qB,qo, 

= qA" (l-q~ )(I-q~,,)+ qA, (l-q~ )qo, +qA, (l-q~,)q~, +qA, (l-q~, +qB, )qo, 

= qA" (l-q~ )(I-q~,,)+qA, (l-q~)qo, +qA, (l-q~,)q~, +qA, (l-q~ )qo, 

= qA" (l-q~ )(I-q~,,) + (qA, +qA,)(I-q~ )qD, +qA, (l-qB12 )qo, 

= qA
D 
(I-q~ )(I-q~,,) + qA" (I-q~ )qo, +qA, (I-q~, )qo, 

= qA" (I-q~ )(I-q~" +qD, )+qA, (I-q~,)qo, 

= qA" (l-qs.)(I-q~,)+qA, (l-q~, )qo, 

ComponentD 

Q(critical in phase 1) =0 

Q(no failure in phase1 & critical in phase 2) 

=~(l-lhJ,)q-qq,)+(1~2~(l-qq)~~(l-qq)~{l-lhJ)1C2 +(1~,~QC2 ~~QC2 

~ (l-lhJ -cm, ~)q-qc;)+(I~,~ (l-qc; ~ +qc;)~ (1-lhJ -qBz ~)qc; 

=~ {l-lhJ )q-qc;,)+(1~,~ (l-qq)~ (1-lhJ)qc; 

=~ (l-lhJ)q-Qc; -qc; +qC2)+(I~,~ (I-Qq) 

=q.., (I-ql\)(l-qc;) + (l-qA,,)qs, (I-qc,) 

Q(no failure in phases 1 and 2 & critical in phase 3)=0 

ferential Partial Dif 

aQ3 a =qA" (l-q~ )(I-q~, 
qc, 

) +qA, (l-q~,) 

=qA" (l-q~)(l-q~, ) + q A, (l- q ~,)q~, 

)+qA, (l-q~,)q~, =qA" (l-q~)(l-q~, 

aQ2 =0 
aqo. 

~-il:JE! =fJA. (1-ql\,)~-qc;)+(l-qA, JIB, (l-qc;) 

=qA, (l-ql\ )~-lk)-qA, qB, (I -qc; )+(I-qA, JIB, (I-qc;) 

JIB,(I-qc;) =qA, (l-ql\ )~-qc; )+(I-qA" 

aQ2 =0 
aqD, 

Table B.S Criticality Function for Components B, C, and D 
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