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Abstract 

Most cells in the human body, including human mesenchymal stem cells (hMSCs), have 

evolved to survive and function in a low, physiological, oxygen (O2) environment. 

Investigators have become increasingly aware of the effects of O2 levels on hMSC biology 

and culture and are mimicking the natural niche of these cells in vitro to improve cell culture 

yields. This presents many challenges in relation to hMSC identity and function and in the 

maintenance of a controlled O2 environment for cell culture. The aim of this review is to 

discuss a “hMSC checklist” as a guide to establishing which identity and potency assays to 

implement when studying hMSCs. The checklist includes markers, differentiation potential, 

proliferation & growth, attachment & migration, genomic stability and paracrine activity. 

Evidence drawn from the current literature demonstrates that low O2 environments could 

improve most “hMSC checklist” attributes. However, there are substantial inconsistencies 

around both the terminology and the equipment used in low O2 studies. Therefore, “hypoxia” 

as a term and as a culture condition are discussed. The biology of short (acute) vs long-term 

(chronic) hypoxia is considered and a nascent hypothesis to explain the behaviour of hMSCs 

in long-term hypoxia is presented. It is hoped that by establishing an ongoing discourse and 

driving towards a regulatory recognisable “hMSC checklist”, we may be better able to 

provide the patient population with safe and efficacious regenerative treatments. 

Introduction 

Regenerative medicine is an active area of public health research. The definition of 

regenerative medicine can be extensive, covering a large spectrum of therapies spanning 
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across the generation and use of therapeutic cells to correct aberrant enzymic function, the 

generation of organic and inorganic scaffolds to promote wound healing, to the production of 

artificial limbs, joints and organs. Mason and Dunnill suggest a succinct definition including 

therapies incorporating the use of human cells whereby “Regenerative medicine replaces or 

regenerates human cells, tissues or organs, to restore or establish normal function” [1].  

Stem cells are viewed by many as a primary raw material for the industry of regenerative 

medicine but even here lies debate around what crucially defines a stem cell (SC)[2,3]. Even 

on the backdrop of ongoing scientific discussion SCs are clearly a fundamental tool in the 

field and are presented as a long-term hope in the resolution of treatment refractory health 

problems. Yet to fully address the potential and hope associated with SC therapies we, as a 

scientific community, must continue to discuss and define what is sound science and to mean 

what we say when we report or collate results [3]. It is only then that we will provide the 

FDA [4,5], other regulatory authorities and above all patients with genuinely hopeful and safe 

and efficacious treatment(s) [6]. 

Stem cells commonly come from one of two main sources either being embryonic or adult 

(somatic) stem cells. Yet whatever the source of the cells and state of the debate around 

infinite asymmetric division they are commonly categorized by their potential to differentiate 

into other types of cells on a varying spectrum of potency. Human Mesenchymal Stem Cells 

(hMSCs) are multipotent SCs, which can be isolated with relative ease from various tissues 

including bone marrow, umbilical cord, adipose tissue and dental tissues [7]. As well as the 

relative ease of extraction and supply they can give rise to, minimally, specialized cell types 

such as osteoblasts, chondrocytes and adipocytes. In addition to their multipotent spectrum 

hMSCs have widespread immunomodulatory effects [8] as well as an angiogenic induction 

ability [9]. Taken together these characteristics give hMSCs a high potential of becoming a 

primary therapeutic option. There are 815 clinical trials listed by the US National Institute of 
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Health aiming to assess the effectiveness of MSCs in treating diseases such as Parkinson’s, 

diabetes, liver, kidney and lung diseases as well as cardiovascular, bone and cartilage 

diseases [10]. Yet to date published clinical data does little to support the advancement of this 

therapeutic hope [4]. 

A significant delaying factor in the translation of hMSC therapies into the clinic is their low 

number in vivo; for example, they constitute about 0.001 to 0.01% of the bone marrow 

nucleated cell population [9]. After hMSC isolation there is a requirement for tremendous in 

vitro expansion to produce a therapeutic dose of cells; estimated at 10 to 50 million hMSC 

per treatment [11]. This process must be performed without compromising the viability, 

safety, purity or potency of the cells. The expansion step is challenging and requires a 

comprehensive understanding of cell culture conditions in order to produce validated 

therapeutic cells in large quantities.  

Human MSC expansion has been studied widely across a variety of equipment types and 

culture condition combinations. The various cell culture systems available include uni-

layered T-flasks, multi-layered T-flasks, hyper-stack cell culture vessels, cell factories, 

different bioreactor types with/without micro-carriers in suspension and manual versus 

automated systems. In terms of culture conditions, the variation is also extensive and involves 

serum-free medium [12,13], defined medium [14,15], human platelet lysate as fetal bovine 

serum replacement [16,17] and various serum (5-20%) [18] and oxygen levels (0.2-5%) [19] 

[18,20–26]. This backdrop is akin to having multiple synthetic routes for the generation of a 

single drug yet, in that instance as well as here, the ultimate goal from a manufacturing and 

patient perspective, is to produce a regulatory approved product able to deliver the desired 

“therapeutic function” with minimal side effects.  This review aims to propose a “hMSC 

checklist” and then to discuss one influencing culture/manufacturing variable for the 
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production of therapeutic and regulatory quality hMSCs which is the level of dissolved 

oxygen (dO2) in the medium. 

"hMSC checklist" - a proposal to both enhance therapeutic potential and to navigate 

the regulatory terrain 

Initially, three main criteria were used to define hMSCs; adherence to plastic, fibroblast-like 

morphology, and the presence of certain surface markers. However, relying solely on these 

criteria was problematic because they are not exclusive to hMSCs but shared with many 

primary mammalian cell types such as endothelial cells, fibroblasts, hematopoietic stem cells 

and B- and T- lymphocytes [27]. In 2006, the International Society for Cellular Therapy 

(ISCT) described a basic unified guideline on characterizing hMSC which consisted of:  

-plastic adherence. 

-expression of CD105, CD90 and CD73 with lack of expression of CD45, CD34, CD14 or 

CD11b, CD79alpha or CD19 and HLA-DR surface molecules. 

- ability to differentiate into osteoblasts, adipocytes and chondroblasts in vitro [28]. 

Since 2006, to date the use of hMSCs has significantly increased [29]. In parallel, the criteria 

and indicators that can be used to define hMSCs and assess their quality have developed 

considerably [29,30]. By a working consensus in the scientific community these currently 

include (Refer also Figure 1):  

Markers: These have become numerous and include the presence of CD105, CD73, CD90, 

CD102 and CD124 and absence of CD45, CD34, CD14, CD15 and CD18 (for expanded list 

see [9,31]). Ongoing discussion in the scientific community may yet widen the list of 

potential surface phenotypic markers for hMSCs [29,30] as the expression of even an ISCT 

guided set of surface markers has yet to guarantee hMSC homogeneity. 
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Differentiation potential: Human MSCs expanded in vitro are routinely assessed for their 

ability to differentiate into osteoblasts, adipocytes and chondrocytes. The protocols for 

inducing these specific linages are well-established and are routinely performed in MSC-

based studies [15,22,32,33] assessing MSCs for tri-linage differentiation potential [33–35]. 

Also the differentiation of hMSCs into neural cells [33] and endothelial cells [36] has been 

achieved in vitro and the differentiation of hMSCs into cardio-myocytes in vivo and in vitro 

has also been discussed [37,38]. However, the differentiation assays commonly used are 

qualitative and not easy to quantify thus, making changes in differentiation open to some 

subjectivity. 

Proliferation and growth: This can be evaluated via many methodologies including 

population doubling levels, population doubling times, cell mean viability, viable cell yield, 

and expansion yield. It has been demonstrated that hMSC proliferation rate can be enhanced 

by modifying culture conditions [11,19,22,24,26]. In parallel with proliferation rate are the 

determination of passages, or population doublings, up to which hMSCs can still be used for 

therapeutic purposes (i.e. before senescence or losing multipotency). The proteins that are 

more likely to be defected by population expansion are components of the cytoskeleton and 

those involved in stress response, metabolism, cycle regulation and apoptosis [39]. The 

number of passages may not be a concern for autologous therapies because usually one to 

four passages are enough to produce clinically relevant cell numbers [40]. However, for 

allogeneic banked cells, where an extensive in vitro expansion is required, growth without 

replicative senescence is an important factor. 

Attachment and migration potential: Human MSC attachment and migration are vital for 

successful therapies. It is well documented that one of the main problems in the 

transplantation of stem cells in the human body is their loss or their navigation far from the 

desired therapeutic site, in other words, poor engraftment. MSC are often injected in injured 
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tissues where they must adapt to low oxygen and nutrients, oxidative stress and inflammatory 

and apoptotic signals [41]. This micro-environment affects the MSC’s ability to adhere to the 

extracellular matrix resulting into cell death by anoikis [42]. Attachment and migration 

assays are established [43–48] and routinely used in hMSC studies but the protocols used can 

be subject to a high level of variation.  

Genomic stability: Long-term hMSC in vitro expansion makes them vulnerable to 

accumulate genetic defects which may alter the potency of the cells and raise safety concerns. 

[49,50]. Cell expansion during the manufacturing process may be a cause of replicative 

stress, chromosomal abnormalities [39], reduced telomerase activity [51] and senescence 

[52]. Therefore, cells from early passages were recommended to be used in clinical settings 

[32,53,54]. However, there are conflicting reports on genomic stability in MSCs [55,56] , 

suggesting that bone marrow MSCs may remain suitable for cell therapy even after extended 

ex-vivo expansion and that genomic stability may be a donor dependent variable [57]. A 

second level of genomic assessment may be a profile for the proteome of hMSCs listing 

highly expressed proteins involved in different defining aspects of stem cell activity such as 

metabolism, differentiation and structural components [58].   

Paracrine function: This may become central to the assessment of hMSC function as there 

is growing evidence that in many cases it is not the hMSCs arriving at the site of injury alone 

which achieves tissue repair, but a significant part of their therapeutic potential relies on the 

growth factors and cytokines that they secrete (the hMSC secretome [59–63]). Human MSC 

secreted proteins include fibroblast growth factor 2 (FGF-2), hepatocyte growth factor (HGF) 

and epidermal growth factor (EGF) [30,64] among others.  This secretome profile enables 

hMSCs to exert paracrine activity in key areas such as tissue regeneration, 

immunomodulation [65–70], and angiogenic induction [45,71–77], which in turn potentiates 

their therapeutic application.  Although this functional capacity of hMSCs was not originally 
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listed in the ISCT 2006 criteria its emerging importance can be seen by the 2014 

recommendation by the ISCT to assess human MSC immunomodulatory activity [78] and 

other ongoing discussions related to functional assay stabilisation for product development 

[30,67,79].  The strengthening of this facet of the “hMSC checklist” via the ISCT suggested 

assays shows the importance of defining these parameters for regulatory interaction.  

It is currently relatively frequent practice to take into consideration the first three criteria 

(markers, differentiation potential and attachment & migration) from the “hMSC checklist” in 

most hMSC-based studies. However when we consider the production of hMSCs in the fast-

evolving cell therapy industry, cell manufacturing for approved therapies will most probably 

follow two different routes: “on-site” [80] and “off-the-shelf” [19]. “On-site” or autologous 

therapies are more likely to be totally processed at the clinic i.e. harvesting, expanding, 

delivering and if required, storage of cells. In this case, assay implementation and attributes 

assessment will heavily rely on the nature of the treatment, on the facility and the staff [80]. 

“Off-the-shelf” or allogeneic therapies are more likely to be manufactured at a large scale, 

enabling mass production, banking and distributing. In such a setting, the implementation of 

many of the “hMSC checklist” attributes become even more important to enable product 

validation and regulatory compliance.  

The translation from bench to bedside requires that hMSC efficacy to be proven both in vivo 

and in vitro. That is why more research and experimentation are required to develop potency 

assays that can define and quantify, at a regulatory level, hMSC efficacy in all facets 

especially paracrine effects such as angiogenesis and immunomodulation. While research 

works to discuss and reduce the inherent variability of these assays it is critical they 

effectively mimic the physiological niche of the cells to improve in vitro-in vivo correlation. 

One key culture condition that is suggested to be taken into consideration in developing these 

assays and in hMSC experimentation in general is low O2 tension. 
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Dissolved Oxygen levels in hMSC culture  

The ability of mammalian cells to survive limited O2 is reflective of an earlier evolutionary 

stage where unicellular organisms were exposed to a low O2 atmosphere [81]. A few human 

cell types have adapted to ambient atmospheric 21% O2, such as those found in the lining of 

the oral cavity, trachea and the lungs; whereas the majority of the others in tissues and organs 

including stem cells, remained adapted to low O2 supply. This is illustrated by the enhanced 

proliferation that primary cells, including hMSC [20], display in low O2 environments and 

the widespread transcriptional alterations low O2 induces via the evolutionarily conserved 

HIF family of transcription factors [81–84].  

Human MSCs reside in tissues such as bone marrow, adipose, articular cartilage, brain, 

dental, skin and perinatal organs [7] where the levels of O2 are precisely tuned. Inspired air 

has an O2 concentration of 21% dropping to approximately 12% at the alveolar level. As O2 

diffuses across the Type I pneumocytes in the lungs it then circulates in the capillaries, 

complexed to haemoglobin, to reach organs and tissues. O2 concentration drops dramatically 

to reach approx.1-6% in the bone marrow, 2-8% in the adipose tissue and 4-14% in the heart 

[85]. This means that hMSC physiological niche is a low O2 environment. In other words, it 

can be said that the “normal” environment for hMSC is limited in O2 supply.  

Due to the variation in oxygen concentrations in the human body it is important to cast light 

upon the terminology used in cell biology and regenerative medicine with regards to O2. In 

the past twenty years, it has become more evident that culturing stem cells in conditions like 

their natural niche or similar to the niche where they are intended to be engrafted is more 

reliable when drawing conclusions about the cells’ potencies. Over the years, the terminology 

has settled on the use of “normoxic” culture condition when the cells are exposed to 20% O2 

level in culture headspace and the use of “hypoxic” culture condition when the cells are 
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exposed to 0.5-10% O2 levels. According to the medical dictionary, “normoxia” can be 

defined as: “A state of oxygen normalcy; normal levels of oxygen in tissue or blood” [86] 

while “hypoxia” can be defined as: “A decrease below normal levels of oxygen in inspired 

gases, arterial blood, or tissue without reaching anoxia” [87]. 

From these definitions, taken together with their commonly applied terminology, it becomes 

clear that confusion and inaccuracy can easily and commonly prevail. Zoran Ivanovic [81] in 

his article titled “Hypoxia or in situ normoxia: The stem cell paradigm” considered that the 

term “normoxia” was transferred from physiology to cell biology and to cell culture with 

scant regard to the prevalence of “low” yet normal O2 level in tissues and that hypoxia itself 

is often linked to disease. In addition, this oversight goes beyond the terminology itself to 

include a number of vital biological processes reliant upon a limited O2 supply including 

erythropoiesis, angiogenesis, brain development, and regulation of gene expression. This 

historical oversight has resulted in the majority of cell culture being performed in 

atmospheric 21% O2 which for virtually all tissues is considered to be a high O2 level or 

“hyperoxia” (excess supply of O2). Rafiq et al. [88] estimated that normoxia referring to a 

20% O2 level in the head space of a cell culture vessel is equivalent to a 100% dO2 in the 

medium (physiologically hyperoxic) while hypoxia referring to an O2 level between 0.5% 

and 10% oxygen in the head space is equivalent to 10-25% dO2 in the medium (approaching 

physiologically normoxic when referencing 21% atmospheric oxygen).  

To lend clarity to this discussion (to try and “mean what we say” [3]) what follows is an 

explanation of widely used O2 terminology in relation to the physiochemical properties of 

oxygen. The amount of O2 is always referred to as a percentage. In particular, the percentage 

of O2 in the atmosphere, as aforementioned, is about 21%. However, O2 percentage does not 

always correspond to the O2 concentration which is measured in ppm or mg/L. The 

correspondence between the percentage and the concentration depends on the altitude which 
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subsequently affects O2 partial pressure [89]. Measuring O2 concentration in a cell culture 

system is complicated because O2 exists in two phases: gaseous in the headspace and 

dissolved in the liquid media. The concentration of O2 in the two phases is not the same. O2 

diffuses from the headspace into the liquid and this diffusion is ruled by several laws 

including Henry’s law [90] and Fick’s law [91]. Moreover, O2 solubility is affected by 

several factors including temperature, salinity and pressure. In fact, dissolution reduces with 

increasing temperature, salinity and pressure. For example, in a hypoxic tissue culture 

workstation set at 5% O2 level, a liquid medium can hold a maximum of X mg/L O2 at 

temperature T1. At temperature T2, the same liquid medium at 5% O2 will hold a maximum 

of Y mg/L O2. The difference between X and Y is of high importance when considering the 

amount of O2 available for the cells in each scenario (refer Figure 2). Doran [92] explains in 

great details all the steps involved in calculating the dO2 level in a cell culture system namely 

fermenters, bioreactors and shake flasks. However, monitoring dO2 in small scale plastic cell 

culture flasks is less common but methods have been published on how to perform it [93,94].   

So, when we come to consider cell culture the following terminology is often used with 

“normoxia”, referencing a 20% O2 level in the head space and “hypoxia”, referring to an O2 

level between 0.5% and 10% O2 in the head space. These terms are broad and only refer to O2 

in the gaseous phase without taking into consideration the temperature, salinity, pressure of 

the liquid phase, cell growth phase, media composition and the subsequent O2 dissolution. 

Therefore, monitoring dO2 must be one of the main steps when culturing cells in low O2. It is 

recommended that the terminology used in research articles to describe O2 culture condition 

is defined early and kept constant.  

Inducing hypoxia in an experimental setting  
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Environmental hypoxia induction techniques vary hugely among laboratories ranging from 

home-made systems, hypoxic incubators and chambers to hypoxic workstations [19]. In 

multi-user facilities using hypoxic incubators prone the cells to periods of re-oxygenation 

every time the incubator door is opened (i.e. every time flasks are taken out for microscopic 

examination, medium change or passaging) [95]. This oxygen level fluctuation accompanied 

by the lack of direct oxygen monitoring in media may lead to unpredicted or conflicting 

results. Hypoxic workstations remain the current ultimate option for creating and maintaining 

a low oxygen environment throughout an experiment. These stations are usually equipped 

with humidity, temperature, oxygen and carbon dioxide controls that are connected to a real-

time feedback system. They can be large enough to home a microscope and to host all 

activities so that flasks are not removed or exposed to ambient air at any point. In terms of 

hypoxia better experimental designs that allow close oxygen level monitoring and 

maintenance should enable current literature disparities to be resolved in the move towards a 

standardized and validated therapeutic product. Indeed, commercial systems are now entering 

the marketplace which describe the controlled modulation of dO2 within culture media, to 

desired levels, prior to its use in cell culture. Environmental hypoxia induction techniques 

(equipment) are still surrounded by various challenges such as cost and stabilisation of low 

O2 levels throughout experiments (Table 1). Alternatively, chemical induction of hypoxia 

using mimetic agents such as Cobalt Chloride (CoCl2) and Deferoxamine Mesylate 

(Desferrioxamine; DFO) can be deployed. Both CoCl2 and DFO are chelating agents which 

act to stabilise Hypoxia Inducible Factor (HIF) at atmospheric oxygen levels. Chemical 

induction of hypoxia is cheap and easy to perform and circumvents the main limitation of 

environmental hypoxia, re-oxygenation, but chemical induction of hypoxia has its own 

limitations as well (Table 1) [96]. 

Culturing hMSC in hypoxic conditions 
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If we accept some of the variation with O2 (detailed above) as the current scientific paradigm 

and adopt a starting perspective that low O2 reflects the hMSC endogenous environment, we 

can reflect on a volume of research from recent years (2006 to date) investigating the effect 

of low O2, in percentage terms, on hMSC performance in culture. There is a mounting 

evidence that low O2 affects all aspects of hMSC biology listed on the “hMSC checklist” and 

from the data collated from human cell-based studies it is revealed that environmental 

hypoxia generally enhances hMSC performance (refer Table(s) 2-7 and Figure 3). 

aFrom the data presented in Table 2 it can be concluded that hypoxic culture has no 

significant effect on hMSC cellular phenotype (defined as defined as the presence of CD105, 

CD73, CD90 and absence of CD45) regardless of cell source. This conclusion aligned to the 

tripartite release criteria for MSC-like cellular products, and the physiological hypoxic niche 

of hMSCs, should enable some confidence that hypoxic culture conditions could become the 

“norm” for the generation of these cellular and gene therapy (CGT) based products. When 

examining the effects of hypoxia on hMSC population expansion (Table 5), again the data for 

hypoxic conditioning is mainly positive showing that hMSC yield is likely to be greater when 

the cells are cultured, across a number of days, under low O2. Thus, hypoxia would enable a 

faster, larger-scale manufacturing platform for this CGT product. Hypoxia also appears to 

generally enhance the ability of implanted hMSCs to migrate which may be essential for 

certain therapeutic applications [158,159] (Table 4). With respect to favourable hMSC 

characteristics [98] which are not yet formally required for product authentication, the current 

literature strongly supports the maintenance of multi-potency [22,24,107,111,123], genetic 

stability [11,101,103,132] and paracrine activity [98,99,134,135] (refer Tables 6&7). Table 7, 

although directed to paracrine activity, indicates the influence of hypoxia upon microRNA 

(miRNA) release [136,137]. MiRNAs are one of several epigenetic regulators in hMSCs that 

alter in response to hypoxia and/or oxidative perturbations [160,161]. Epigenetic changes 
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produce alterations in gene expression that are not hard coded in the hMSC genome [162], 

encompassing mechanisms such as such as DNA methylation and histone modification as 

well as the non-coding RNAs (ncRNAs). Most data support the maintenance of “stemness” 

by hypoxic epigenetic pathways [130,163,164] and that these hypoxic pathways may involve 

epigenetic plasticity akin to that identified in a tumour microenvironment [160,165,166]. An 

epigenetic profile desired in a hMSC CGT product has yet to be fully elucidated but as 

knowledge develops the ambition would be to examine the full effects of hypoxia on the 

agreed epigenetic genotype.  

Despite the high level of accord generated by environmental hypoxia on the “hMSC 

checklist”, differentiation potential is still seen as varied in low O2 (Table 2). It is generally 

accepted that low O2 promotes chondrogenic differentiation via hypoxic downregulation of 

RUNX2 [167]. Yet bidirectional variability exists with respect to osteogenic and adipogenic 

differentiation, which may be reflective of the different O2 concentrations in in vivo niches 

for these different cells, the subsequent variation exerted on epigenetic regulation of 

differentiation, variability at the assay level or donor mediated variability [103,168–170]. 

Although hypoxia’s effect on hMSC differentiation potentially introduces variation to the 

ISCT criteria and the “hMSC checklist”, there is an accumulating body of evidence that 

hMSC’s paracrine activities are improved by environmental hypoxia (Table 7). So the 

potential endorsement of hypoxic culture conditions for hMSC product generation would 

depend on the relative importance placed on the secretion of trophic factors compared to the 

capacity to differentiate into various lineages by the scientific community [78,79].  

The switch to chemical hypoxia leaves a slightly more complex landscape than 

environmental hypoxia in terms of the “hMSC checklist”. Tables 8 summarise studies (from 

2006 to date) which investigate the effects of chemical hypoxia, mediated via CoCl2 and 

DFO on hMSCs. It is apparent that both CoCl2 and DFO at various concentrations and 
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incubation times upregulate HIF-1α and increase the release of angiogenic mediators. 

However more conflicting data exists related to cell morphology, viability and proliferation 

rate. This increased variation could be explained by the different mode of hypoxic induction 

(chemical v environmental), variation in hypoxic mimetic concentration, incubation time 

and/or cell source. In this respect, environmental hypoxia appears superior as the data 

regarding hMSC characteristics is slightly less variable and mainly positive (the mixed 

pattern of data is further reinforced when including other species such as mice and rats, yet 

this species extension is beyond the scope of this review).  

The biology of acute and chronic hypoxia 

As cited above O2 sensing plays a role in genetic stability, survival, differentiation and 

proliferation of cells. The mechanism behind this powerful control is the tight regulation of 

gene expression. O2 enters the cells by diffusion. Once in the cytoplasm its level regulates the 

function of a transcription factor called Hypoxia Inducible Factor 1 (HIF1) which is a dimer 

composed of two subunits HIFα and HIFβ [82–84]. It is important to note that the production 

of the two subunits is O2-independent. This means that they are produced in the cells 

regardless of the level of O2. It is the dimerization of the two subunits that is O2-dependent. 

In a normoxic culture condition where hMSCs are exposed to a high percentage of O2, the 

enzymes HIF-Prolyl-Hydroxylases (HPHs), whose function relies on O2, hydroxylate the 

proline residues 402 and 564 on the alpha subunit of HIF1[85,171]. As a result, HIF1α 

becomes tagged for ubiquitination and subsequently degraded. So, in a high level of cellular 

O2 HIF1 is not functional. In a setting where hMSCs are exposed to a physiological O2 level, 

HPHs become unable to perform the hydroxylation process allowing for the HIF1α subunit to 

accumulate in the cytoplasm. This enables the HIF1 subunits to dimerize and translocate to 

the nucleus where they bind to specific DNA regions of gene promoters called Hypoxia 

Response Elements (HRE) [85,171]. This binding results in the regulation of hundreds of 
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genes involved in various cellular functions such as angiogenesis, migration and metabolism 

[18,19]. So, in a low level of cellular O2 HIF1 is stabilised and functional and is considered a 

key regulator of cells’ response [85,172] 

Hypoxic conditions can be maintained across both the short and long term (Refer Figure 4) 

often with differing end points in terms of cellular health. When hMSCs are cultured in 

hypoxia for a short-time, the cells become prone to apoptosis which is translated as a 

decrease in proliferation. Alternatively, an extended duration under hypoxic conditions gives 

the cells some time to adapt and reprogram so survival is promoted, and proliferation 

increases after a lag period [22,100,123,173]. One can argue here that the process is not an 

adaptation but a selection process since an MSC population is not homogeneous, or a 

combination of both adaptation and selection.  

A closer look at HIF could offer an additional biological explanation to the MSC response to 

long-term exposure to hypoxia which appears biphasic. There are three types of HIF namely 

HIF1, HIF2 and HIF3 whose composition and production are similar. HIF1 is well studied 

and its role in controlling the cellular response to hypoxia is well established [111,142,174–

177]. The role of HIF2 in hMSC response to hypoxia is not as well assessed, however, it is 

more studied in several cancer types as well as in embryology [178]. HIF3 role in hypoxia is 

the least investigated with reports on its supportive [179] and/or inhibitory effects [180] on 

HIF1 [82]. Further to the variable role of HIF3 in response to oxygen  when interacting with 

HIF1 differential expression of HIF3 has been documented in hMSCs related to epigenetic 

changes elicited by pro-inflammatory cytokines in an oxygen-independent manner [181]. In a 

review published by Mei Yee Koh and Garth Powis [171]) entitled “Passing the baton: the 

HIF switch”, the authors discuss that between two of the types of HIF, HIF-1 and HIF-2, 

gene regulation is not completely overlapping with each HIF having unique genes that they 

regulate as well as some common ones.  
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The modulation of gene expression in hMSCs via HIFs has been reported and is summarised 

in Table 9, and although the dissection to the level of individual HIFs in hMSCs has yet to 

emerge, in some cell lines HIF-1 drives the initial response to hypoxia while HIF-2 drives the 

chronic response to hypoxia [171] see Figure 5 [182]. One can suggest here that a switch 

from HIF1 to HIF2 or HIF3 occurs during hMSC response to chronic hypoxia. The mode of 

action of these two types of the transcription factor HIF could then be correlated to the two-

phase events that occur in MSC long-term hypoxia. That is the lag phase at the beginning of 

the exposure could be mainly driven by the expression of HIF1 which stimulates metabolic 

switching to enhance glycolysis [11,26,141]. As the switch from HIF type 1 to type 2 occurs, 

MSC multi-potency and cell cycle progression are promoted in hypoxia, with examples of 

this HIF switching seen in other stem cell types [178,183,184]. The correlation suggested 

here is a novel suggestion, and the pathways potentially involved in this time course are 

complex [102], which means like many other facets of MSC biology it requires further 

research and investigation but hopefully could become a final addition on the “hMSC 

checklist”.  

Conclusion and Future Perspectives 

This review shows that culturing hMSCs in low oxygen is beneficial for most of their 

characteristics in terms of the “hMSC checklist” (proposed) and should be used in therapy 

development. Understanding the biology of hMSC hypoxia in more detail along with 

improved experimental design and reporting would offer a better basis for successful 

translation into the clinic and enable the stem cell community to provide the “scientific 

evidence” that the FDA [6] and other regulators require. The consensus through open 

discussion we may be able to afford our “hMSC checklist” experimental assays may also help 

with the ongoing quest “to mean what we say” as scientists as well as gaining regulatory 

acceptance.  Attributed to Dostoevsky “Intelligence alone is not nearly enough when it comes 
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to acting wisely.” So maybe we need to be organised as well as intelligent to get MSCs to the 

point of regulatory compliant therapies of choice for both public and health care providers. 
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Figure legends 

Figure 1: Human MSC checklist. ‘Critical to quality’ therapy-specific attributes that could be 

defined. The above list could serve as a checklist when deciding which assays to implement 

when conducting a study to produce regulatory compliant hMSCs.  
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Figure 2: A schematic representation of the levels of gaseous (tissue culture head space) and 

dissolved (media dissolution of O2) oxygen in tissue culture illustrating that at 5% O2, any 

increase in; Temperature (T) and/or Salinity (S or mg/L) and/or Pressure (p) will see gaseous 

O2 (culture headspace) will fall and dissolved O2 (media) will rise. 1Henry’s law put into 

mathematical terms (at constant temperature) provides p = kHc where p = the partial pressure 

of the solute in the gas above the solution; c = the concentration of the solute; k = the 

solubility of the substance; H = Henry’s law constant (which depends on the solute, the 

solvent, and the temperature). 2Fick's Law essentially states that the rate of diffusion of a gas 

across a permeable membrane is determined by the membrane itself (material, thickness and 

surface area) the partial pressure gradient of the gas across the membrane: V' gas = 

D*A*ΔP/T where V' gas = Rate of gas diffusion across permeable membrane; D = Diffusion 

coefficient of that particular gas for that membrane; A = Surface Area of the membrane; ΔP = 

Difference in partial pressure of the gas across the membrane; T = Thickness of the 
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membrane.

 

Figure 3: A generalised schematic representation summarising the effects of hypoxic cell 

culture conditions on human mesenchymal stem cells. Closed (black) arrows represent a 

positive influence of hypoxia, open (white) arrows represent no significant impact of hypoxic 

conditions and the patterned (grey) arrows reflect a mixed response displaying both positive 

and negative outputs. 
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Figure 4: Summary of a review by Buravkova et al., [172] on the impact of chronic and acute 

hypoxia on hMSCs. Acute exposure (maximum duration of 72 hours to a level of 

atmospheric oxygen between 0 and 5%) and chronic exposure (minimally, one week to 

continuously, with a level of atmospheric oxygen between 0.5 to 10%). Analysis took into 

consideration MSC viability, proliferation, migration, metabolism, angiogenic activity and 

gene expression. 
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Figure 5: HIF1 and HIF2 mode of action. “HIF-1 drives the initial response to hypoxia while 

HIF-2 drives the chronic response to hypoxia” [85]. 
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Table 1: Methods of induction of hypoxia with strengths and limitations 

(*https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/076019_S000_DEFEROXAMI

NE%20MESYLATE_PRNTLBL.pdf, accessed on 10/05/2018). 
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Table 2: The consequence of hypoxia on hMSC cell surface phenotype. [Key to source of 

human Mesenchymal Stem Cells (hMSCs) column abbreviations: AD; Adipose tissue: BM; 

Bone Marrow: DP; Dental Pulp: WJ; Wharton’s Jelly: UC; Umbilical Cord: UCB; Umbilical 

Cord Blood: Other sources written in full). 

Effect of hypoxia Hypoxia conditions (% 
O2 and duration) 

Source of 
hMSC 

Ref 

Cell surface markers 

ADMSC cell surface markers unaltered 1%; 48h AD 97 

1%; 48h AD 98 

1%; 48h AD 99 

2%; 7 days AD 100 

2%; up to 21 days AD 101 

5%; Early & late 
passage 

AD 102 

ADMSC cell surface markers slightly altered 5%; up to 14 days AD 103 

BMMSC cell surface markers unaltered 2 & 0.2%; 21 days BM 19 

1%; up to 24h BM 104 

<2%; 14 days BM 105 

2%; 7-14 days BM 106 

2%; 14 days BM 26 

2%; up to 21 days BM 107 

5%; up to passage 4 BM 108 

BMMSC cell surface markers upregulated 1%; up to 90 days BM 109 

2% & 5%; up to 21 
days 

BM 25 

WJMSC cell surface markers unaltered 2-3%; up to passage 
10 

WJ 110 
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5%; 14 days WJ 111 

UCBMSC cell surface markers unaltered  5%; 5 days UCB 112 

 

Table 3: The effect of hypoxia on hMSC multi-lineage differentiation. Hypoxia appears to 

assist in the maintenance of chondrogenic differentiation while it may improve or diminish 

osteogenic and adipogenic differentiation.  [Key to source of human Mesenchymal Stem 

Cells (hMSCs) column abbreviations: AD; Adipose tissue: BM; Bone Marrow: DP; Dental 

Pulp: WJ; Wharton’s Jelly: UC; Umbilical Cord: UCB; Umbilical Cord Blood: Other sources 

written in full). 

Effect of hypoxia Hypoxia conditions (% O2 and 
duration) 

Source of 
hMSC 

Ref 

Differentiation potential 

Increased adipogenic differentiation 0.2%; 7-14d BM 113 

1%; up to 3d BM 114 

1%; up to 90 days BM 109 

1%; 100d BM 24 

Decreased adipogenic differentiation 1%; 7 days BM 115 

1%; 28 days BM 116 

1%; 28 days BM 117 

2%; 7-14 day BM 106 

<2%; 14 days BM 105 

3%; 28-31 days BM 118 

No significant effect on adipogenesis or 
osteogenesis  

2%; 24h BM 44 

No significant effect on osteogenesis or 
adipogenesis  

2%; 14 days BM 26 
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Enhanced chondrogenic potential  1%; 100 days BM 24 

2%; 14 days BM 119 

2%; 42 days BM 19 

2 & 5%; 21 days BM 25 

3%; 21 days BM 21 

No significant effect on chondrogenesis 2% 7-14 day BM 106 

Enhanced osteogenic differentiation 
potential 

1%; 28 days BM 117 

1%; up to 90 days BM 109 

2%; 3 day 
(preconditioning)then 21 
days 

BM 120 

<2%; 14 days BM 105 

Impaired osteogenic differentiation 
potential  

0.2%; 7-14d BM 113 

1%; 72h BM 121 

1%; 7d BM 115 

1%; 28d BM 116 

2%; 21 days BM 120 

2% & 5%; 21 days BM 25 

3%; 28-31 days BM 118 

No significant effect on osteogenesis  1%; 100 days BM 24 

No significant effect on osteogenesis or 
chondrogenesis 

2%; 7-14 day BM 106 

No effect on tri-lineage differentiation 1%; 48h AD 122 

1%; 48h AD 99 

1-3%; 21 days AD 123 

2-3%; up to passage 10 WJ 110 

Enhanced tri-lineage differentiation 5%; 21 days AD 102 
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Table 4: The effect of hypoxia on hMSC attachment and migration. [Key to source of human 

Mesenchymal Stem Cells (hMSCs) column abbreviations: AD; Adipose tissue: BM; Bone 

Marrow: DP; Dental Pulp: WJ; Wharton’s Jelly: UC; Umbilical Cord: UCB; Umbilical Cord 

Blood: Other sources written in full). 

Effect of hypoxia Hypoxia conditions (% 
O2 and duration) 

Source of 
hMSC 

Ref 

Attachment and migration 

Higher migration rate 1-3%; 24h BM 124 

1%; 7 days BM 117 

2%; 72h BM 107 

3%; 6h BM 47 

5%; 4h BM 125 

5%; up to 14 days AD 103 

5%; 24h DP 126 

Increased expression of cell adhesion 
molecules 

2%; 72h BM 107 

Increased motility and vascularisation and/or 
innervation of tissue 

1-3%; 24h BM 124 

 

 

Table 5: The impact of hypoxia on hMSC proliferation and growth. [Key to source of human 

Mesenchymal Stem Cells (hMSCs) column abbreviations: AD; Adipose tissue: BM; Bone 

Marrow: DP; Dental Pulp: WJ; Wharton’s Jelly: UC; Umbilical Cord: UCB; Umbilical Cord 

Blood: Other sources written in full). 
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Effect of hypoxia Hypoxia conditions (% 
O2 and duration) 

Source of 
hMSC 

Ref 

Growth and proliferation 

Enhanced MSC expansion 2%; 7 days BM 127 

5%; up to passage 4 BM 108 

5%; up to 100 days AD 102 

Enhanced MSC expansion and proliferation 2%; up to 12 days BM 26 

Increased proliferation rate 1-3%; 72, 96 & 144h AD 123 

1.5, 2.5 & 5%; 72h UC 128 

1%; 7 days BM 117 

1%; 7 days AD 129 

1%;2 passage (8 days) BM 116 

1%; up to 84 days BM 130 

2%; 24h BM 44 

2%; 3-7 day BM 127 

2%; up to 14 days AD 100 

2%; up to 21 days AD 101 

2-3%; up to passage 
10 

WJ 110 

5%; 5 days UCB 112 

5%; up to 14 days AD 103 

5%; up to passage 12 WJ 111 

No effect proliferation 1-3%; 16h BM 124 

1%; up to 33 days BM 115 

Higher population doublings 1%;2 passage (8 days) BM 116 

1%; up to 52 days BM 115 

1%; up to 90 days BM 109 
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1%; up to 350 days BM 24 

3%; up to 120 days BM 118 

3%; up to passage 22 AD 11 

5%; up to 100 days AD 102 

5%; up to passage 12 WJ 111 

Increased number of CFU recovered  1%; 48h AD 99 

1%; 14 days BM 115 

2%; 14 day BM 131 

3%; 14 day BM 21 

5%; 14 days BM 125 

No significant alteration in CFU-F  2%; up to 21 days AD 101 

2%; up to 21 days BM 25 

Decreased number of CFU-F  5% ; up to 21 days BM 25 

 

 

Table 6: The effect of hypoxia on hMSC genomic stability and expression. [Key to source of 

human Mesenchymal Stem Cells (hMSCs) column abbreviations: AD; Adipose tissue: BM; 

Bone Marrow: DP; Dental Pulp: WJ; Wharton’s Jelly: UC; Umbilical Cord: UCB; Umbilical 

Cord Blood: Other sources written in full). 

Effect of hypoxia Hypoxia conditions (% 
O2 and duration) 

Source of 
hMSC 

Ref 

Genomic stability and profiling 

Enhancement of a genetic profile that maintains 
the cells undifferentiated and multipotent  

1%; up to 7 days BM 117 

1%; up to 90 days BM 109 

5%; 14d BM 22 
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5%; 24h DP 126 

Partial genetic profile that maintains the cells 
undifferentiated 

5%; 24h DP 126 

Telomere maintenance 1%; up to 100 
population doublings 

BM 130 

2%; up to 21 days AD 101 

2%; up to passage 5 AD 132 

2%; up to passage 5 BM 132 

3%; up to passage 15 AD 11 

Reduced DNA damage 2%; up to 21 days AD 101 

Chromosomal variability and instability 5%; up to passage 7 BM 133 

Reduced expression of tumor supressing genes 
p16, p21, p53 and pRb 

2%; up to 21 days AD 101 

 

Table 7: The influence of hypoxia on hMSC paracrine activity. [Key to source of human 

Mesenchymal Stem Cells (hMSCs) column abbreviations: AD; Adipose tissue: BM; Bone 

Marrow: DP; Dental Pulp: WJ; Wharton’s Jelly: UC; Umbilical Cord: UCB; Umbilical Cord 

Blood: Other sources written in full). 

Effect of hypoxia Hypoxia conditions (% 
O2 and duration) 

Source of 
hMSC 

Ref 

Paracrine activity 

Increased release of growth factors 1%; 24h BM 134 

1%; 48h AD 122 

1%; 48h AD 99 

1%; 7 days BM 117 

1%; 7 days BM 115 

1%; 7 days AD 129 
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2%; up to 21 days AD 101 

3%; 16h BM 47 

3 & 5%; up to passage 
5 

DP 126 

Increased release of chemotactic and 
angiogenic mediators 

0.1%; 14 days BM 135 

Decreased release of chemotactic and 
angiogenic mediators 

5%; 14 days BM 135 

Increased release of 
inflammatory/immunomodulatory mediators 

5%; up to passage 5 DP 126 

Altered microRNA (miRNA) release 0-1%; 12-24h BM 136 

2%; 21 days BM 137 

Increased motility and vascularisation and/or 
innervation of tissue 

1-3%; 24h BM 124 

Increased and altered activity of ERK 
pathway 

1%; up to 24h BM 104 

1%; up to 24h AD 129 

Increased release of angiogenic mediators 
(altered secretome profile) 

1%; 48h AD 98 

 

Table 8: The effect of chemical hypoxia, mediated by CoCl2 and DFO, on the “hMSC 

checklist” parameters.  

Effect of hypoxia Chemical Concentration 
and duration  

Source of 
MSC 

Ref 

Cell morphology 

Altered cell morphology CoCl2: 100 µM for 4 days UC 146 

DFO: 120µM for 4 days UC 146 

Unaltered cell morphology DFO: 150µM or 400µM 
for 48h 

AD 147 
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Growth and proliferation 

No effect on viability CoCl2: 100µM for 24h Abdominal 
aortic 

aneurysm 

148 

Limited proliferation CoCl2: 50µM or 100µM 
up to 72h 

UC 149 

  DFO: 150µM or 400µM 
for 48h 

AD 147 

Decreased proliferation CoCl2: up to 100 µM up 
to 96h 

UC 146 

CoCl2: 500µM for up to 
72h 

Abdominal 
aortic 

aneurysm 

148 

DFO: up to 120µM up to 
96h 

UC 146 

Differentiation potential 

Enhanced osteogenic differentiation 
potential 

CoCl2: 50µM or 100µM 
for 10 days 

UC 149 

CoCl2: 100µM up to 21 
days 

UC 150 

Decreased osteogenic differentiation 
potential 

CoCl2: 100µM for 7 days BM 151 

CoCl2: 100µM up to 21 
days 

AD, DP 150 

Attachment and Migration 

Higher migration rate DFO: 120µM for 24h AD 152 

DFO: 120µM for 24h BM 153 

Increased expression of CXCR4 CoCl2: 100µM for 24h AD 152 

DFO: 120µM for 24h AD 152 

DFO: 120µM for 24h BM 153 

Unaltered CXCR4 and CXCR7 expression CoCl2: 100µM up to 24h BM 153 
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Paracrine activity 

Increased release of angiogenic mediators CoCl2: 50,100 or 150µM 
for 7 days 

Periosteum-
derived 

154 

DFO: 150µM or 400µM 
for 48h 

AD 147 

DFO: 15µM , 50µM or 
100µM up to 5 days 

BM 155 

DFO: up to 120µM up to 
7days 

AD 156 

HIF-1α regulation 

Up-regulation of HIF-1α  CoCl2: 250µM up to 24h BM 136 

CoCl2: 50 or 100µM for 
48h 

BM 151 

CoCl2: 100µM for 6 to 
48h 

DP, UC 150 

CoCl2: 100µM for 72h BM 157 

DFO: up to 120µM for 
12h 

AD 156 

DFO: 150µM or 400µM 
for 48h 

AD 147 

No change in HIF-1α CoCl2: 100µM for 6 to 
48h 

AD 150 

 

 

Table 9: Genes that are reported to be regulated by HIFs in human MSCs (* designates a 

mixed species example (human/mouse)). 

  Reference 

Up regulated 
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VEGF  101, 115, 138, 139 

HGF 115 

FGF 100, 115 

MIF  140 

CHIP, Sox9 138 

CFD, Leptin, LPL, 
PGAR 

113 

Wnt10b  116 

G6PT 141* 

HK1, HK2, PKM1, 
PDK1 

142 

TWIST 121 

CXCL12 143 

3BP2, MT1-MMP   

Down regulated 

E2A, p21 130 

RUNX2  120, 145 

PDK2 142 
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