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Abstract 

Recently N evanlinna theory (the theory of meromorphic functions) has been used as 

a detector of integrability of difference equations. In this thesis we study meromor­

phic solutions of so-called q-difference equations and extend some key results from 

Nevanlinna theory to the q-difference operator. 

The Lemma on the Logarithmic Derivative of a meromorphic function has many 

applications in the study of meromorphic functions and ordinary differential equa­

tions. In this thesis, a q-difference analogue of the Logarithmic Derivative Lemma is 

presented, and then applied to prove a number of results on meromorphic solutions 

of complex q-difference equations. These results include a difference analogue of the 

Clunie Lemma, as well as other results on the value distribution of solutions. 
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Introduction 

In this thesis we study meromorphic solutions of q-difference equations and extend 

some key results from Nevanlinna theory to the q-difference operator. In particu­

lar a q-difference analogue of the Logarithmic Derivative Lemma is presented, and 

then applied to prove a number of results on meromorphic solutions of complex 

q-difference equations. 

q-difference equations arise naturally in many contexts, such as q-Painleve equa­

tions, the Schroder equation and iteration theory. Recent work on q-difference equa­

tions by Bergweiler, Ishizaki and Yanagihara [7] has shown that any meromorphic 

solution of a linear q-difference equation with rational coefficients has zero-order 

growth. It should be noted that q-difference equations are less likely to admit gen­

uinely meromorphic solutions than difference equations. However as shown at the 

end of chapter two we are dealing with a non-trivial set. 

In chapter one we present the key ideas of Nevanlinna theory so that we can apply 

them in our study of q-difference equations later on, where we find interesting results 

for the q-difference operator. The N evanlinna theory of meromorphic functions was 

created by R. Nevanlinna (partially in cooperation with F. Nevanlinna) in 1925. A 

good introduction to the subject is [23]. 

N evanlinna theory is an efficient tool for studying the density of points in the 

complex plane at which a meromorphic function takes a prescribed value. It also 

provides a natural way to describe the growth of a meromorphic function. The key 

tool used in Nevanlinna theory is the characteristic function T(r, J). This measures 

the average size of a meromorphic function on large circles, taking into account the 

number of poles inside the circles. Chapter one is a review of known theory. 

In chapter two we start to look at how the Nevanlinna theory introduced in chap­

ter one can be applied to studying meromorphic solutions of q-difference equations. 

A autonomous first order non-linear q-difference equation is the Schroder equation. 

In the first part of chapter two we review a standard result which shows there ex­

ist meromorphic solutions of the Schroder equation. In the second part we look 

at the growth of meromorphic solutions of the general linear q-difference equation. 

Linear q-difference equations with rational coefficients do not always admit mero­

morphic solutions, even if the coefficients are constants. Bergweiler, Ishizaki and 

Yanagihara gave sufficient conditions for the existence of meromorphic solutions 

of linear q-difference equations, and characterized the growth of solutions in terms 

of the Nevanlinna characteristic T(r, J) [7]. They concluded that all meromor­

phic solutions f of a linear q-difference equation with rational coefficients satisfy 
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T(r,1) = O((logr)2), from which it follows that all solutions are of zero order 

growth. 

Valiron has shown that the non-autonomous Schroder q-difference equation 

(1) 

where the coefficients aj(z), bj(z) are meromorphic functions and q is a complex 

constant, admits a one parameter family of meromorphic solutions, provided that 

q E C is chosen appropriately [44]. It was shown by Gundersen et al. [18] that the 

order of growth of solutions of (1) is equal to logq(deg j R), where logq is the q-based 

logarithm. In section 3 we show how this result implies a q-difference analogue of 

the classical Malmquist's Theorem [32]. That is we show that if (1) possesses a 

zero-order solution then it is the discrete Riccati equation. These results suggest to 

us that the development of Nevanlinna theory for zero-order solutions of q-difference 

equations is natural. Chapter two is a review of known theory. 

Chapter three contains most of the original research carried out. We develop a q­

difference analogue of the Lemma on the Logarithmic Derivative. Due to the findings 

of chapter two our theory is for zero-order meromorphic functions. The Lemma 

on the Logarithmic Derivative is one of the most important and useful results of 

Nevanlinna theory, it has applications in the theory of meromorphic functions and 

in the theory of ordinary differential equations. For example, the Lemma on the 

Logarithmic Derivative is a key ingredient in the proofs of the Second Main Theorem 

of Nevanlinna theory [36] and Yosida's generalization [46] of the Malmquist Theorem 

[32]. In the rest of the chapter we use our result to study zero-order meromorphic 

solutions of large classes of q-difference equations. Applications include a q-difference 

analogue of the Clunie Lemma, (see Lemma 21 or [12]). The original lemma has 

proved to be an invaluable tool in the study of non-linear differential equations. The 

q-difference analogue gives similar information about the zero-order meromorphic 

solutions of non-linear q-difference equations. 

Historical Background 

An important question we sometimes ask about systems of ordinary differential 

equations is 'How do we know when they can be solved explicitly?' It was observed in 

the late nineteenth and early twentieth centuries that ordinary differential equations 

whose general solutions are meromorphic appear to be integrable in that they can be 

solved explicitly or they are the compatibility conditions of certain types of linear 

problems. In the 1880s Kovalevskaya [28, 29] observed that all known solutions 
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of the equations of motion of a spinning top were meromorphic when extended 

to the complex plane. Searching for further meromorphic solutions she was able 

to explicitly solve for one further unknown case. No further cases in which these 

equations can be solved explicitly have been discovered since. 

Malmquist looked at equations of the form 

l' = R(z, 1), (2) 

where R is a rational function of z and f. The Malmquist Theorem says that if (2) 

admits a non-rational meromorphic solution, then R is quadratic in f. That is, the 

equation is the Riccati equation. Equations of this form are special since they can 

be linearised. 

A century ago Painleve [37, 38], Fuchs [14] and Gambier [15] classified a large 

class of second order differential equations in terms of a characteristic which is 

now known as the Painleve property. An ordinary differential equation is said to 

possess the Painleve property if all of its solutions are single-valued about all movable 

singularities (see, for example, [1]). Painlevc and his colleagues showed that any 

equation with the Painleve property of the form 

f" = F (z; f, 1') , 

where F is rational in f and f' and locally analytic in z, can be transformed to 

one of fifty canonical equations. Forty four of these were integrable in terms of 

previously known functions (such as elliptic functions and linear equations). The 

remaining six are now known as the Painleve differential equations. During the 

twentieth century it was confirmcd by differcnt authors (and by different methods) 

that these equations possess the Painleve property [37, 33, 31, 27, 16]. 

The Painleve property is a good detector of integrability. For instance, the six 

Painleve differential equations are proven to be integrable by the inverse scattering 

techniques based on an associated isomonodromy problem, see, for instance, [3]. 

It is widely believed that all ordinary differential equations possessing the Painleve 

property are integrable, although there are examples of equations which are solvable 

via an evolving monodromy problem but do not have the Painleve property [10]. 

Recently there has been much interest in extending the idea's of Painleve to 

difference equations. Ablowitz, Halburd and Herbst [2] suggested that the growth 

(in the sense of Nevanlinna) of meromorphic solutions could be used to identify those 

equations which are of "Painleve type". In [20] the existence of one finite order non­

rational merornorphic solution was shown to bc sufficient to reduce a gcneral class 
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of difference equations to either one of the known difference Painleve equations, or 

to the difference Riccati equation. This indicates that the existence of a finite-order 

(in the sense of Nevanlinna theory) meromorphic solution of a difference equation 

is a strong indicator of integrability of the equation. 

Ablowitz, Halburd and Herbst [2] considered the question of when a difference 

equation is integrable (or otherwise). For a large number of difference equations 

they found that the answer can be found from the singularity structure at infinity. 

This coupled with the fact that many ordinary difference equations admit mero­

morphic solutions, suggests that Nevanlinna theory is an important ingredient in 

the study of integrable discrete or difference systems. This has led to recent work 

in generalizing the theorems of Nevanlinna theory concerning differential equations 

to analogous theorems concerning difference equations. When applying Nevanlinna 

theory to study the growth and value distribution of meromorphic solutions of dif­

ferential equations, estimates involving logarithmic derivatives have often proved to 

be useful [16, 30]. Recently, similar tools involving shifts have been developed to 

study ordinary difference equations [11, 21, 22]. The following theorem by Halburd 

and Korhonen [21] is among the fundamental results of this type. 

Theorem 1 Let J be a non-constant .finite-order meromorphic Junction, and c E C. 

Then 

m (r, J~;(:) c)) = 0 (T(;~ 1)) 
Jor any 8 < 1, and Jor all r outside oJ an exceptional set with finite logarithmic 

measure. 

Note that Chiang and Feng [11] have also obtained the following theorem which is 

a similar but weaker estimate. 

Theorem 2 Let J(z) be a meromorphic Junction oJ finite order (J' and let TJ be a 

non-zero complex number. Then Jor each E > 0, we have 

( 
J(z + TJ)) (. J(z) ) _ O( a-l+f) 

m r, J(z) +m 1, f(z + ''7) - r . 

Theorem 1 and its corollaries proved to be indispensable when singling out Painleve 

type equations from large classes of difference equations [19, 20]. Theorem 1 may 

also be used to study value distribution of finite-order meromorphic solutions of large 

classes of difference equations, including difference Riccati and difference Painleve 

equations. 
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Chapter 1 

Introduction to N evanlinna 

Theory 

Introd uction 

This chapter is mainly a review of known material, the majority of the ideas 

come from [30] and [17]. In 1925 R. Nevanlinna (partially in cooperation with 

F. Nevalinna) created what is now called the Nevanlinna theory of meromorphic 

functions. A good introduction to the subject is [23]. 

N evanlinna theory is an efficient tool for studying the density of points in the 

complex plane at which a meromorphic function takes a prescribed value. It also 

provides a natural way to describe the growth of a meromorphic function. In this 

chapter we present the key ideas of Nevanlinna theory so that we can use them in 

our later work concerning q-difference equations. 

1.1 The Nevanlinna Characteristic Function and 

The First Main Theorem 

For entire functions g( z) where z = re'itp, the device we use for measuring the growth 

is the maximum modulus .M (r, g) = maxlzl=r Ig( z) I. Many of the properties of entire 

functions are encoded into the maximum modulus. In the study of meromorphic 

functions a natural analogue of the maximum modulus is needed, this analogue 

is called the characteristic function, T. The characteristic function measures the 

average size of a meromorphic function on large circles, it takes into account the 

number of poles inside the circles and is derived from the Poisson-Jensen formula 

which we state below. 

Theorem 3 Let J be a meromorphic Junction such that J(z) =1= 0,00 and let 

aI, a2, ... (resp. bI, b2, ... ) denote its zeros (resp. poles), each taken into account 
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according to its multiplicity. Suppose z = rei<p and r < R. Then 

log If(z)1 - r 1 R iO dB 1 1
211" R2 2 

27r 0 R2-2Rrcos(cp-B)+r2 oglf( e )1 

+ ~ log IR(z -_ai) 1_ ~ log IR(z - bj ) I. 
~ R2 - aiz ~ R2 - b· z 

lail<R Ibjl<R J 

(1.1 ) 

The Poisson-Jensen formula relates log If(z)1 to its zeros and poles. For details of 

the proof see [23]. 

Taking z = 0 in Theorem 3 gives us the Jensen Formula, i.e. 

1 (211" R R 
10glf(0)1 = 27r lo loglf(Re

i9
)ldB- L log~+ L loglbl· 

o lail<R I Ibjl<R J 

(1.2) 

In order to make sense of the above formula we make the following definition. 

Definition 4 For meromorphic functions f, the unintegrated counting function de­

noted n(r, a, /), is the number of times fez) = a for Izl ::; r (counting multiplicities). 

Note that n(r, a) := n(r, a, /). 

There are 2 summation terms in the Jensen formula, one for f's zeros and one for 

f's poles. We want to split the integral term in a similar way so that we have a 

term that relates to zeros and a term that relates to poles. To do this we define the 

log+ function. 

Definition 5 For x > 0 we define 

log+ x := max(1og x, 0) 

The log+ function satisfies the following. 

Lemma 6 (a) log et ::; log+ et; 

(b) log + et ::; log + f3 for et ::; f3 ; 

(c) loga = log+ a -log+~; 
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Using definition 4 and Lemma 6 we can show that the Jensen Formula becomes 

log IJ(O)I = 
1 1211" iT n(t (0) 

- log+ IJ(reiB)1 de + 'dt 
27f 0 0 t 

~1211"1 + I 1 I de -iT n(t,O) d 
2 og J( ilJ) t. 7f 0 re 0 t 

(1.3) 

We now look at what happens to equation (1.3) when J can have zeros and poles at 

the origin. That is we let J be a meromorphic function with the Laurent expansion 

00 

J(z) = LCiZi, Cm =J 0, mE Z 
i=m 

at the origin. Then defining h(z) := J(z)z-m, we have 

00 

h(z) = L Ci zi- m = Cm + ... 
i=m 

and therefore the Jensen formula gives 

log !cm 1 log Ih(O)1 

_ ~ 1211" log Ih(reilJ )I de + iT n(t, 00, h) dt -iT n(t, 0, h) dt 
27f 0 0 tot 
1 1211" . iT n(t (0) - n(O (0) 

- log I/(re10)1 de + ' 'dt + 71,(0, (0) log r 
27f 0 0 t 

(foT n(t, 0) ~ n(O, 0) dt + n(O, 0) log r) . (1.4) 

To make equation (1.4) more meaningful wc make the following definitions. 

Definition 7 (Proximity Junction). For a meromorphic Junction I, we define 

m (r, -I 1 ):= ~ 1211" log+ I J(.!) I de 
- a 27f 0 rei - a 

supposing 1 -=t a E re and 

1 1211" m(r,1) := - log+ I/(reilJ)1 de. 
27f 0 

The proximity function describes the average "closeness" of 1 to any poles (or Q,­

points) on a circle of radius r. 

Definition 8 (Counting Junction). For a meromorphic Junction I, we define 

N ( 
1) . -iT n ( t, a) - n (0, a) d ( ) I r, -1-- .- t + n 0, a og r 
- a 0 t 
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supposing f 1= a E re and 

N( f) '-IT n(t, (0) - n(O, (0) d ( ) 1 r, .- t + n 0, 00 og r. 
o t 

The counting function, N(r, I), is used to give us a measure of the density of f's 

poles (or a-points) in the disc JzJ :::; r. We are now able to define the characteristic 

function, T. 

Definition 9 (Characteristic function). For a meTamorphic function f, we define 

T(r, I) := m(r, I) + N(r, I). 

T can be understood as an analogue of the logarithm of the maximum modulus of an 

entire function and therefore it is used as a measure of the growth of a meromorphic 

function f. 

The characteristic function satisfies the following properties. 

Proposition 10 Let f,.h, .. . ,fn be meromorphic functions and 0:', {3, ,,/, 8 E re such 

that 0:'8 - {3,,/ # O. Then 

(a) T(r,.h··· fn) :::; 2:7=1 T(r, fi), 

(b) T(r, .m) = nT(r, I), nE N, 

(c) T (r, 2:~=1 fi) :::; 2::~1 T(r, fi) + log n, 

(cl) T (r, ~~!~) = T(r,1) + 0(1), 

assuming f 1= -8/,,/. 

The following proposition tells us that when our new tool T is applied to entire 

functions it behaves similarly to the log of the maximum modulus. 

Proposition 11 Let g be an entire function and assume that 0 < r < R < 00 and 

that the maximum modulus 1I1(r, g) = maxlzl=T Jg(z)J satisfies },1(r, g) ~ 1. Then 

R+r 
T(r,g) :::; log lVl(r, g) :::; R _ rT(R,g). 

Also the function T(T, I) is an increasing function of T and a convex increasing 

function of log r. This enables us to define the order of growth of a meromorphic 

function in a natural way as follows: 

1
. log T( r, I) 

p:= lm sup . 
T->OO log r 
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We remark that for entire functions p(f) is equal to the classical growth order 

(f) .- l' log log M(1', 1) 
a .- lm sup 1 . 

r-oo og l' 

1.1.1 Nevanlinna's First Main Theorem 

Nevanlinna's First Main Theorem follows from equation (1.4). It states that 

T(1', 1) = T (1', f ~ a) + 0(1) (1.5) 

for all complex numbers a (for details of the proof see [30]). This implies that if f 
takes the value a less often than average so that N(1', f~a) is relatively small, then 

the proximity function m(1', y~a) must be relatively large. And vice versa. This 

reasoning can be illustrated by the exponential function, eZ
• Since eZ =I- 0, 00 we 

have that N(1', eZ
) = N(1', }z) = O. The First Main Theorem states that m(1', eZ

) and 

rn(r, elz ) must be large and this is certainly true since m(r, eZ
) = rn(r, e

l
.) = ;. This 

means that on any large circle there must be a large part on which eZ is close to zero 

and another large part on which eZ is close to infinity. And we can see that this is 

the case by observing that the exponential is very large in most of the positive half 

plane and very small in most of the negative half plane. 

Using The First Main Theorem we are able to prove the following result 

Theorem 12 A me1'omorphic function f is rational if and only if T(1', 1) 

O(log 1'). 

For details of the proof see [30]. 

1.2 Applications to Differential Equations 

We are now ready to start looking at how Nevanlinna theory can be developed as 

a tool to assist in the process of solving differential equations. A useful starting 

point would be to have an estimate for T(1',I') in terms of T(1', 1). Since the 

Poisson-Jensen formula gives us an expression for log If(z)1 it turns out that we can 

estimate the proximity function of the logarithmic derivative 1'/ f more easily than 

the proximity function of the derivative 1'. 
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Using the Poisson-Jensen formula it can be shown that in a neighbourhood of Zo 

we have the following expression: 

log l(z) = ~ 1271" log 11(p' eiB ) 1 p' e
iO 

+ Z dB 
21f 0 p'e2B - Z 

+ ~ log p'(z - ai) _ ~ log p'(z - bj ) + 'le 
~ p'2 - ai z ~ p,2 - b· z ' 
2=1 J=1 J 

where c is a real constant, 0 < r < p < Rand p' = (p + r) /2. Taking derivatives on 

both sides with respect to z gives 

1'(z) 
l(z) 

(1.6) 

Formula (1.6) is valid in a neighbourhood around Zo and in particular, at the point 

zoo Since Zo is arbitrary we have that (1.6) is valid everywhere except at the zeros 

and poles of 1. But since (1.6) assumes infinity on both sides when there are zeros 

and poles we have that (1.6) is valid everywhere in the disk Izl < p'. 

Since we want to estimate the proximity function of 1'/1 we take the modulus of 

(1.6) and consider each term separately. We get 

I 
1~(z) 1< 4p' {T(P'.1) + log+ _1_} + n(p') {_r_ + _r_} . 
j(z) - (p'-r)2' 11(0)1 l' 8(z) p'-r 

Taking log+ of both sides, estimating the terms and integrating then gives 

I.e. 

1 1 1 
log+ p' + 2log+ -- + log+ T(p', 1) + log+ log+ -Il( )1 + log+-

~-r 0 r 

1 1 
+ 3log+p+3log+--+3log+T(p,1)+3log+log+-1 -( -)1 +6log2 

p-~ 10 
1 r + -2 + log+ -- + 5log2, 

p'- r 

m (" j) < 4log+ T(p, f) + 4log+ log+ If to) 1 + 5log+ p 

1 1 
+ 6log+ -- + log+ - + 14. (1.7) 

p-r r 

(For more details of the above argument see [17]). Transcendental functions, 1, 
have the property that logr = o(T(r, f)) as r -t 00. Therefore we see that the only 
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important term in the above lemma is the 4log+ T(p, f) term. But it turns out that 

this term is also insignificant and this is shown using the Borel-Nevanlinna Growth 

Lemma [9] which is the following. 

Lemma 13 Let F(r) and cp(r) be positive, nondecreasing, continuous functions de­

fined for ro ::; r < 00, and assume that F(r) ~ e for r ~ ro. Let ~(x) be a positive, 

nondecreasing function defined for e ::; x < 00. Let C > 1 be a constant, and let E 

be the closed subset of [ro, (0) defined by 

Then, for all R < 00, 

r dr 1 1 I F
(R) dx 

JEn[rQ,R] cp(r) ::; ~(e) + logC e .T~(X)" 

Proof. To simplify notation set 

cp(r) 
h(r) = ~(F(r))' 

If E is empty then the lemma is proved, hence we can assume E is non empty. First 

we construct two sequences {rn} and {sn}. 

The first point in the sequence {r n} is ro (given above). Suppose {r n} has been 

defined. Then each Sn is defined in terms of r n in the following way. If there is no 

s> rn such that F(s) ~ CF(rn) then our sequences are complete. Otherwise, by the 

continuity of F (see diagram below), there exists an s > rn such that F(s) = CF(rn). 

We take 

sn:= smallest s ~ Tn such that F(s) = CF(Tn). 
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Proceeding inductively we define 

Tn+l := the smallest TEE with T ~ Sn. 

If T n+l does not exist then our sequences are complete. 

We now show that either the sequence {rn} is finite or rn -t 00 as n -t 00. 

Suppose the sequence {rn} is infinite. Then for all j we have that 

F(rj+l) ~ F(sj) = CF(rj) (by definition F is nondecreasing and rHl ~ Sj). 

Hence, 

(1.8) 

and this implies F(T n) -t 00 as n -t 00 and therefore l' n -t 00 as n -t 00, as 

required. 

We now use our sequences to show that E has finite logarithmic measure. Fix 

R < 00 then take 

N:= largest n such that Tn < R. 

If SN does not exist then let SN = R. By definition we have that the set En [ra, R] 

is contained in 

Hence 

( dr < 
J En[ro,Rj q;(r) 

(c/J is nondecreasing) 

Now since r nEE we have 

and this implies 

and therefore 
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Thus we have 

r dr < 
} En[TQ,Rj cp(r) 

( by the definition of h) 

But 

1 N 1 

~(F(rl)) + ~~(cn-lF(rl)) 
1 N 1 

- ~(F(rl)) + ~ ~(exp(log F(rl) + (n - 1) log C)) 

1 1 tOgF(Tl)+(N-l) logC dv 

< ~(F(rl)) + logC JIogF(Tl)+logC ~(ev)· 

By (1.8) and the definition of N we have 

Hence 

log F(rl) + (N - 1) log C ::; log F(R) 

and therefore 

The lemma follows since F(rl) ~ e and ~(x) ~ ~(e) for e ::; x < 00. D 

Corollary 14 Let T : [ra, (0) ----+ [1,(0) be a continuous, nondecreasing function. 

Then 

T (". + _1_) < 2T(r) 
T(r) 

outside of a possible exceptional set Eo C [ra, (0) with linear measure::; 2. 

(1.9) 

Note that Corollary 14 is often referred to as the Borel Lemma. Due to the excep­

tional set in the Borel Lemma we introduce the S(r, f) notation. A quantity which 

is of the growth o(T(r, f)) as r -+ 00 outside of a possible exceptional set of finite 

linear measure, is denoted by S(r, f). We now have 
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Theorem 15 Let f be a transcendental meromorphic function. Then 

m (r, ~) = S(r, 1). 

If f is of finite order growth, then 

m (r, ~) = O(logr). 

Proof. By equation (1.7) we have 

4Iog+T(p,1) + 4log+log+ If to) I +5Iog+ p 

1 1 
+ 6log+ -- + log+ - + 14 

p-r r 

{

410g+ T(p, 1) + S(r, 1), 

4log+ T(p, 1) + O(logr), if f is of finite order growth. 

if f is transcendental, 

If we can show that 4log+ T(p, 1) = S(r,1) then we are done. Fix r sufficiently 

large such that T(r, 1) ~ 1. Choose p = r + T(;,f) , then by Corollary 14 we have 

T(p, f) = T (r + T(: 1) , f) < 2T(r, 1), 

outside of a possible exceptional set of finite linear measure. This implies 

log+ T(p, 1) log+(2T(r, 1)) 0 
T(r,1) < T(r, 1) ~, as r ~ 00, 

outside of a possible exceptional set of finite linear measure, as required. 0 

Corollary 16 Let f be a transcendental meromorphic function and k ~ 1 be an 

integer. Then 

( 
f(k)) 

m r'T = S(r, 1), 

and if f is finite order of growth, then 

( 
f(k)) 

m T'T = O(log T). 

Corollary 17 For any transcendental meromorphic function f, 

T(r,.f') :::; 2T(r,.f) + S(r,.f). 
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Proof. The corollary follows by noting that 

( f' f) (f') mer,!,) = m r, T :::; rn r, f + m(r, f) 

and 

N(r,l') :::; 2N(r, 1). 0 

The Lemma on the Logarithmic Derivative is an integral part of the proof of the 

Second Main Theorem, one of the deepest results of Nevanlinna theory. In addition, 

logarithmic derivative estimates are crucial for applications to complex differential 

equations. 

Consider equations of the form 

l' = R(z, 1), (1.10) 

We make the following which comes from [30]. 

Definition 18 Let R(z, 1) be rational in f with meromorphic coefficients. A mero­

morphic solution, f, of equation (1.10) is called admissible, if T(r, a) = S(r, 1) 

holds for all coefficients a(z) of R(z, 1). Note that if the coefficients a are rational 

then any meromorphic solution is admissible if and only if it is transcendental. 

By proving the Malmquist Theorem we will find that if (1.10) possesses a non­

rational meromorphic solution then it must reduce to 

(1.11) 

where at least one of the coefficients ai does not vanish. Hence by demanding 

an admissible solution we are led to the the Riccati equation (1.11). The Riccati 

equation is special since it can be linearised. 

The following result is the Valiron-Mohon'ko Theorem, see [30] Theorem 2.2.5 

for the proof, it tells us about the characteristic function of rational functions with 

meromorphic coefficients in S(r,f). 

Theorem 19 Let f be a meromorphic function. Then for all irreducible rational 

functions in f, 

(1.12) 
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with meromorphic coefficients ai(z),bj(z) such that 

{

T(r, ad = S(r, 1), i = 0, ... ,p 

T(r, bj ) = S(r, 1), j = 0, ... ,q, 
(1.13) 

the characteristic function of R(z, f(z)) satisfies 

T(r, R(z, 1)) = dT(r, 1) + S(r, 1), (1.14) 

where d = max(p, q). 

The following theorem is the Malmquist Theorem. 

Theorem 20 Let R(z, 1) be rational in f with meromorphic coefficients. If the dif­

ferential equation (1.10) possesses an admissible meromorphic solution, then (1.10) 

reduces to 

where at least one of the coefficients O'i (z) does not vanish. 

Proof. Let 

and 

d := max(p, q). 

Equation (1.10) and Theorem 19 imply that 

dT(r,1) + S(r, 1) = T(r, R(z, 1)) = T(r, 1'). 

Hence by Corollary 17 we have 

dT(r,1) + S(r, 1) :S 2T(r, 1), 

i.e. 

(2 - d)T(r, f) ~ S(r, f). 

This implies d :S 2. 

With d :S 2 equation (1.10) becomes 

Let 

l' = ao(z) + aI(z)f + adz ).J2 .= P 
bo(z) + bI (z)f + b2 (z)j2· Q. 

1 
q:=-f-' 

-0' 

18 
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for some ()I E re. Then (1.15) becomes 

Choosing ()I such that the g4 coefficient in the numerator is non-zero and using the 

same argument as above we have that deg (~) :::; 2. Since we have a degree four 

polynomial divided by a degree two polynomial that has a maximum degree of two 

the right hand side must cancel to a degree two polynomial. Since ~ is irreducible 

this implies b1(z) = b2 (z) = 0. 

Therefore equation (1.15) is actually the Riccati equation. I.e. 

where 

j = 0,1,2. o 

The following theorem is the Clunie Lemma, it has numerous applications to the 

study of complex differential equations, and beyond. 

Lemma 21 Let f be a transcendental meromorphic solution of 

fn P(z, f) = Q(z, f), 

where P(z, f) and Q(z, f) are polynomials in f and its derivatives with meromorphic 

coefficients, say {aA : A E I}, such that m(r, aA) = S(r, f) for all A E I. If the total 

degree of Q(z, f) as a polynomial in f and its derivatives is :::; n, then 

m(r, P(z, f)) = S(r, f). 

Proof. We split the proximity function of P into two parts by defining 

El := {<p E [0,27r] : If(rei"")1 < I}, 

Now we have 

27rm(r, P(z, f)) = r log+ IPI dcp + r log+ IPI dcp. 
} El } E2 

First we consider El. Each term of P is of the form 
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Hence P can be expressed in terms of A = (lo, ... , lv). Therefore 

P(z, f) = L P>.(z) = L a>.(z)flo(f')ll ... (J(v»)lv . 
>'E! >'E! 

Therefore 

- r log+ I L a>.(z)flo(f')h ... (f(v»)lv I dcp 
) El >'E! 

< L r log+ la>.(z)fIO(f')h ... (J(v)/v I dcp + 0(1) 
>'E! } El 

r ( I f'IIO I f(V) IIV) < f;: } El log+ la>.(z)1 7 ... T dcp + S(r, f) 

- f;: .l. (lOg+ laA(z)1 + hlog+ I j 1+'" +lvlog+ I I;l I) d<p 

+S(r, f) 

- 27f f;: [m(r,aA) + t,l;m (r, In] +S(r,fl 

- S(r, f), (1.16) 

by our assumption in the lemma and Corollary 16. 

Now we consider E2 . To do this case we note that 

But 

Q(z, f) - L Q>.(z) 
>'EJ 

- L b>.(z)f10(f')h ... (f(v»)lv. 
>'EJ 
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By our assumption 11 + ... + Lv S; n for all A = (lo, ... , Lv) E J. Hence we have 

(1.17) 

Combining (1.16) and (1.17) gives us the lemma. 0 

1.3 Nevanlinna's Second Main Theorem 

A very important theorem in complex analysis is Picard's Great Theorem [43]. It 

states that every non constant entire function attains every complex value with 

at most one exception. Nevanlinna offered a deep generalization of Picard's Great 

Theorem in the form of his Second Main Theorem. The First Main Theorem tells us 

that for every complex number a the sum m(r, a, .f)+N(r, o".f) is largely independent 

of a. The Second Main Theorem tells us that in general it is the term N(r, a,.f) 

that is dominant in the sum N + m and also that for most values of a the equation 

j(z) = a has mostly simple roots. 

Theorem 22 Let j be a non-constant meromorphic junction, let q > 2 and let 

0,1: •.. ,o'q E C be distinct points. Then 

m(r, J) + t, m (r, f ~ aJ <: 2T(r,f) + S(r,f), 

Proof. Throughout this proof we will make use of proposition 10 without reference. 

Denote 
q 

P(f) := IT (f - an). 
n=l 
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Using the First Main Theorem we have 

t, m (r, f ~ aJ ~ t, T (T' f ~ aJ -t, N (r, f ~ aJ 
~ qT( T, f) - t, N (T' f ~ a,,) + S(T,J). 

But by the Valiron-Mohon'ko Theorem we have that 

qT(r, 1) = T(r, P(f)) + S(r, 1). 

We also have that 

Since ptn can be expressed as a partial fraction (for some constants an E C) we 

have that 

( 
q f') - m r,L:O'nf_a 

n=l n 

< t, k~;+::~ +m (T' f !'aJ] + 0(1) 

S(r, 1) by the logarithmic derivative result, Theorem 15. 

Hence we have 

Using The First Main Theorem this implies 

t, m (T' f ~ aJ ::; T(r, f') - N (T' ;,) + S(T, f) 

m(r, 1') + N(r, 1') - N (r, ),) + S(r, 1). 

00 



Now using 

m(r,1') = m (r, fj) ~ m(r, f) + m (r, j) = m(r, f) + 5(r, f), by Theorem 15, 

we have 

t, m (r, f ~ a,,) < m{r, f) + N{r, f') - N (r, ;,) + S{r, f) 

T(r, f) + N(r, 1') - N(r, f) - N (r, ),) + 5(r, f). 

Therefore we have 

m{r, f) + t, m (r, f ~ aJ < m{r, f) + T{r, f) + N{r, f') 

-N(1', f) - N (r, ),) + 5(1', f) 

- 2T(1', f) - (N (1', ),) + 2N(1', f) - N(1', 1')) 
+5(1', f). 

Now if we can show 

(N (1', ),) + 2N(1', f) - N(1', 1')) 2: 0, 

we are done. To do this we show that 

N(1',1') = N(1', f) + N(1', f), 

where N(1', f) is the counting function for distinct poles of f, i.e. 

N(1', f) := i r 

fi,(t, f) ~ fi(O,.f) dt + n(O, f) log 1', 

where fi(1',.f) is the number of poles (not counting multiplicities) f has in the disc 

Izl ::; 1'. And we see that this is true by substituting n(1', 1') = n(r, f) + n(1', f) into 

the definition for N(1', 1'). Hence we have 

2N(T, f) - N(T, f') = 2N(T, f) - N(r, f) - N(r, f) = N(r, f) - N(T, f) 2: 0, 

and therefore 

m{r,f} + t m (r, f ~ aJ 0; 2T{r, f) + S{r, f), 
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as required. 0 
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Chapter 2 

Existence and Growth of 

Meromorphic Solutions of some 

q-Difference Equations 

Introd uction 

This chapter is mainly a review of known material from [42], [7] and [18]. 

In this chapter we start to look at how the Nevanlinna theory introduced in chapter 

one can be applied to studying meromorphic solutions of q-difference equations. A 

natural class of equations to consider are linear equations and autonomous first order 

non-linear equations. 

In the first section we look at a natural class of autonomous first order non-linear 

q-difference equations, i.e. the Schroder equation 

J(qz) = R(J(z)), (2.1) 

where q = R'(O), Iql =1= 0,1, and R(J) is a rational function in f. We show that 

the Schroder equation (2.1) has a convergent power series solution J(z) = z + ... 
in a neighbourhood of z = 0, where R is a rational function in J with constant 

coefficients and q is not a root of unity. 

In the second section we look at the growth of meromorphic solutions of the 

general linear q-difference equation. 

n 

2::o,.i(z).f(q.i z ) = Q(z), 
j=O 
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where ° < Iql < 1 is a complex number, and aj(z), j = 0, 1, ... ,n and Q(z) are ratio­

nal functions and ao(z) '¥= 0, an(z) = 1. Linear q-difference equations with rational 

coefficients do not always admit meromorphic solutions, even if the coefficients are 

constants. Bergweiler, Ishizaki and Yanagihara gave sufficient conditions for the 

existence of meromorphic solutions of linear q-difference equations, and character­

ized the growth of solutions in terms of the Nevanlinna characteristic T(r, J) [7]. 

They concluded that all meromorphic solutions J of a linear q-difference equation 

with rational coefficients satisfy T(r, J) = O((logr)2), from which it in particular 

follows that all solutions are of zero order growth. In the next chapter we will de­

velop N evanlinna theory for the q-shift operator acting on zero-order meromorphic 

functions. 

It was shown by Gundersen et al. [18] that the order of growth of solutions of the 

non-autonomous Schr6der q-differellcc equation 

J(qz) = R(z, J(z)), 

where R(z, J(z)) is rational in both arguments, is equal to logq(degj R), where logq 

is the q-based logarithm. In section 3 we show how their result implies a q-difference 

analogue of the Malmquist Theorem [32]. 

2.1 The Existence of Solutions of Schroder's 

Equation. 

The following is an expanded form of the argument given in [42] . 

First take 0' to be a fixed point of R, i.e. R(O') = 0' (if we assume R(f(z)) '¥= 
J(z) + k for some constant k, we know 0:' exists, this is because to find 0:' we must 

find the roots of a polynomial with degree greater than one). We define g(z) by 

g(z) := J(z) - 0:', then by (2.1) we get 

(}' + g(qz) = R(O:' + g(z)) = 0:' + R(g(z)), 

where 

R(g(z)) = R'(O:')g(z) + .... 

Hence we can transform equation (2.1) to the equation 

.q(qz) = R(g(z)), 
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and this equation has solution g(z) - O. Therefore without loss of generality we 

assume R(O) = 0 and look for a series solution of the form 

(2.3) 

Equation (2.1) implies that in order for solutions to exist we must have R'(O) = q, 

therefore we make the assumption that R'(O) = q and write R in the form 

q =1= O. (2.4) 

2.1.1 Formal Series Solution 

We seek a solution to (2.1) in terms of a formal power series as in (2.3). Under the 

assumption that q is not a root of unity, comparison of coefficients will give rise to 

exactly one solution, which we will call the Schroder series. We now prove that this 

is the case inductively. 

The first coefficient b1 is 1. Let n 2: 2, and assume that the coefficients bk 

(1 < k < n) have been determined so that both sides of (2.1) agree in terms of order 

k < n. 

Subtract q.f(z) from both sides of (2.1) to get 

f(qz) - qf(z) = R(.f(z)) - qf(z). 

Then using (2.3) and (2.4) we get 

00 00 00 

1=2 1=2 1=2 

i.e. 
00 00 

(2.5) 
1=2 1=2 

On the right hand side the zn coefficient is a polynomial in al (l = 2, ... ,n) and bk 

(k = 2, ... ,n - 1), hence the right hand side is known. On the left hand side the zn 

coefficient is (qn_q)bn. Since q is not a root of unity we have qn_q = q(qn-1_1) =1= 0 

and therefore we can uniquely find each bn by recursion. 

2.1.2 Convergence of Formal Series Solution 

We will prove the convergence of (2.3) by showing that there is a series of the form 

00 

F(z) = L Bnzn, (2.6) 
n=1 
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where En ~ Ibnl, n E N, which converges for Izl < Ro for some Ro > O. The function 

F is said to majorize f. 

Since (2.4) has a non-zero radius of convergence there exists a positive number a 

such that lan +11 < an, n EN. Substituting i := az into (2.4) we get 

Taking R(i) := aR (~) we get 

Finally taking an := a~~l we get 

We are therefore able to transform our series (2.4) to a series such that 

Vn E N. (2.7) 

Therefore without loss of generality we assume (2.7) holds for (2.4). Also since q is 

not a root of unity and Iql =1= 1 we have that there exists c such that 

Iqn+l - ql > c > 0, (n=0,1,2, ... ). 

By (2.5) 
b _ Pn(ao, ... ,an, b2 , ... , bn- 1 ) 

n - ql _ q 

for some polynomial Pn for all n ~ 2. Hence 

Ibnl ::; IPn(1, ... : 1, b2 :···, bn-l)1 
c 

for all n ~ 2. Therefore we define the sequence En inductively by taking Bl = 1 

and 
Bn = IPn(1, ... , 1, B 2 ,···, Bn-dl. 

c 

It then follows by induction that Ibnl ::; Bn for all n E N. By (2.5) we have 

00 00 

LcBnzn = L(z + B2Z2 + ... t, 
n=2 n=2 

i.e. 
00 

c(F - z) = LFn, 
n=2 
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We have shown that if the solution of equation (2.8) exists then it majorizes f· 

The series 

converges for IFI < 1. Differentiating with respect to F we find that 

dz I dF = 1. 
F=O 

Hence by the Inverse Function Theorem the series has an inverse which converges 

in a neighborhood of z = O. This implies that the series for f converges in a 

neighborhood of z = 0 also. Therefore there exists p > 0, such that the series for f 
converges when Izl < p. Using equation (2.1) we find that the series for f converges 

when Izl < Iqlp. Arguing inductively the series for f converges when Izl < Iqlnp for 

all n E N. This implies that we can find f(z) for any z E C (since we have assumed 

Iql < 1). 

2.2 Growth of Meromorphic Solutions of Linear 

q-Difference Equations 

The following is an expanded form of the arguments given in [7]. Consider the 

following linear q-differcnce equation 

Tt 

"Laj(z)f(qjz) = Q(z), (2.9) 
j=O 

where 0 < Iql < 1 is a complex number, and aj(z), j = 0, ... : nand Q(z) are rational 

functions and ao(z) ;:j. 0, an(z) == 1. We have the following 

Theorem 23 All meromorphic solutions of {2.9} satisfy T(r,.f) = O((10gr)2). 

Proof. Since Q and aj are rational functions we can choose R so that Q and aj 

have no zeros (unless they are identically zero) or poles in the set 

BR := {z E C : Izl ~ R}. 

We now show that n('I', f) = O(logr) by estimating how many poles f has in the 

set BR' 

Let 8 = i, w E BR and suppose w, 8W, ... , 8
n -

1
W are not poles. Then by equation 

(2.9) sTtw is not a pole. By induction it follows that sjw is not a pole for any 

j E N. (I.e. w, sw, . .. ,sn-lw are not poles implies sjw is not a pole for all j EN). 
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Therefore we find that for every pole, w, such that Iwl 2': Isln R, there exists a pole 

in the annulus 

Since f is meromorphic, DR contains a finite number of poles. Call them Wl, ... , Wm' 

Hence we have that every pole of f in BR belongs to the set 

{sjWI: j E N,l E {I, . .. ,m}}. 

In order to estimate n(r, I) we fix r. Then n(r, I) is less than or equal to n(R, f) 
(a constant) plus the number of terms of the form sjwl (l E 1, ... , m) such that 

Isjwzi < r. Fixing l we have that Isjwd < r if and only if j < IOg~~~I;llwzl. Therefore 

for each l E {I, ... , m} we have that 

. {I [IOgr -log IWlll } 
J E , ... , log I si' 

where here the square brackets are used to denote the integer part. Thus for all 

I E {I, ... , m} there are O(logr) poles of the form sjwl' This implies 

n(r, I) = O(logr). 

Therefore 

N(r,1) .- r n(t, I) - n(O, I) dt + n(O, I) log r 
lo t 

fR n(t, I) - n(O, I) dt + r n(t, I) - n(O, I) dt + n(O, I) log r 
lo t In t 
O((logr)2). (2.10) 

To estimate the proximity function, m(r, j), we will use the maximum modulus, 

M(r, I). The maximum modulus is only defined when f does not have poles. As 

described above for .,. 2': R, f's poles have modulus Isjwll, I = 1, ... , rn, j = 1, ... , 'n. 

Hence if we fix T E [R, Isln R] such that Isjwll =I- T for all j E {I, ... , n} and 

l E {I, ... , m}, we have that f has no pole with modulus IsljT for any j E N. We 

therefore have the inequality 

(2.11) 

where 

Ah := . max AI(lsl jT, I) + l. 
J=O,l, ... ,k 
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We now show that Lk :S Ck2 (k E N) by first showing that Mk :S Isl Bk Nh-l' for 

some positive constants Band C. First let 

J := min{j : Mk = M(lsljT, 1) + I}. 

We must have that either J < k or J = k. If J < k then by definition we have 

Mk = Mk- 1• If J = k then Mk = M(lslkT, 1) + 1. Therefore we have two cases to 

consider 

In this case we clearly have lvh :S Isl Bk Mk- 1 straightaway. 

By rearranging equation (2.9) and taking the maximum modulus we have 

lvl(r, f) = 

Since the aj and Q are rational functions there exists A such that 

j = O, ... ,n 

and 

Hence 

It follows that for k 2:: n we have 

M(lslk1', J) :S (lslk1').1 (t, M(lslk-i1', J) + 1) 
(lslk1')A (%n M(lsliT, J) + 1) 

< Isl
k
•
1
1'

.1 (%n M; + 1) 
< IslkATA(n + 1)Mk- 1 . 
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Thus we have 

for some B > A and all kEN. Taking logs we have 

log Nh :::; (B log Isl)k + log M k - 1 , 

i.e. 

where Lk := log Mk and C := B log Is I. We see that Ll :::; C + Lo and from here 

prove by induction that 

k 

Lk < CLj+Lo 
j=1 

Ck(k + 1) L 
2 + 0 

< Ck2 , 

for large k. 

Going back to the inequality (2.11) we have 

But 

k 2 _ k 2 (log 181 ) 2 
log Isl 

(
log 181k)2 
log Isl 

(
log(lslkT) -lOgT)2 

log Isl 

hence 

m(lslkT,f)::; C Cog(lsl:)lsilogT) 2 

Combining (2.13) and (2.10) we obtain 

T(r, 1) = m(r, f) + N(r, 1) = O((logr)2) 

(2.13) 

for r = IslkT, kEN, k ----> 00. But since T(r,1) is an increasing function we are 

able to prove that the last equation also holds if r ----> 00 through any sequence of 

,,.-values. 0 
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Theorem 24 All transcendental meromorphic solutions of equation {2.9} satisfy 

(logr)2 = O(T(r, f)). 

Proof. As in the proof of Theorem 23 we take s = ~ and choose R so that the Q 

and aj have no zeros or poles in the set 

BR := {z E C : Izl ~ R}. 

We have two cases to consider. Either f has infinitely many poles or f has finitely 

many poles. 

Case 1: f has infinitely many poles. 

The argument at the beginning of the proof of Theorem 23 states that if there are 

no poles in 

then there are no poles in BR. Therefore if there are infinitely many poles in BR, 

then there is at least one pole in DR. The same argument works for any S ~ R. 

Thus if for Izl ~ R we partition the complex plane into sets of the form 

then each Ci has at least one pole for all 'l E {I, 2, ... }. 

If we fix r ~ R, then we have that there exists i E {I, 2, ... } such that 

This implies n(r, f) 2': i - 1. We then have 

log'r < log R + in log Isl 
< log R + 2n log 18In(r, f), 

provided our original r was chosen large enough. It immediately follows that 

logr = O(n(r, f)). 
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Finally we have 

N(r, I) > r n(t, I) - n(O, I) dt 
JR t 

> r Klogr - 71,(0, I) dt, 
JR t 

for some K > O. This implies that 

(logr)2 = O(N(r, I)), 

and hence 

(logr)2 = O(T(r, I)), 

as required. 

Case 2 : f has finitely many poles. 

Without loss of generality we assume f is entire. If f is not entire then there exists 

a polynomial, P(z), such that j := P(z)f(z) is entire and solves an equation of the 

form (2.9). If we can prove the result holds for j then we have that the result holds 

for f, since T(r, I) = T(r, j) + O(logr). 

The idea of the proof here is to prove the result holds for log M(r, I) and then 

apply proposition 11. 

We write equation (2.9) in the form 

I-I n 

UI(z)f(qlz) = - Laj(z)f(qjz) - L Uj(z)f(qjz) + Q(z), 
j=O j=l+l 

for 0:::; I :::; n. For mEN, m > I, we take the modulus and evaluate at Izl = IslmR 

with z taken such that J\!I(lslm-IR, I) = If(qlz)l. We then obtain 

I-I n 

lal(z)llvI(lslm-1 R, I) :::; L laj(z)IM(lslm-j R, 1)+ L laj(z)llVI(lslm-j 
R, f)+IQ(z)l· 

,j=O ,j=I+l 

Since the OJ and Q are rational we can assume that 

and 

Q(z) '" .-\Izll' 
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as Izl -+ 00, where Cj, A > 0 and dj, 'Y E Z, j = 0, 1, ... , n. Also for i EN we define 

By the maximum modulus principle, (7i) is an increasing sequence and therefore 

our estimate becomes 

cIRdllslmdlTm_l 

< (1 + 0(1)) (t. cjRd, 1"lmd'T m + j~' cjRd, I SI",d'7;"_I_') + AR' Islm". 

Considering the above estimate with m = kl where kEN, k 2:: 2 yields 

cIRdllslkldlT(k_l)1 

< (1 + 0(1)) (t. cjRd'lslkld'T" + j~' CjRdiISlkld'T(k_111_1) + AR"lsl""· 

Define 

d := max{ dj : j = 0,1, ... ,n} 

and choose 

l = min {j : dj = d}. 

Then we have dj :::; d - 1 for 0 :::; j :::; l - 1 and dj :::; d for l + 1 :::; j :::; n. Our 

estimate then becomes 

clRdlslkldT(k_l)1 

< (1 + o( 1)) (t. Cj Rd- 1Islkl(d-1 IT .. + j~ 1 Cj RdISlkIdT(k_111_1) + AR" Isl""· 

It follows that 

(2.14) 

with positive constants Aj . (Note we chose l in order to get the Isl- k1 factor in the 

Tkl term.) 

Since log .!I1(o:r, 1) is convex in log r and since f is transcendental, 

.!I1(exr,f) d .!I1(r,f) 
.!I1(r,1) -+ 00 an r{] -+ 00 
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as r ----7 00 for each Q, (3 E lR, Q > 1. This implies that 

7i 7i 
-- ----7 00 and ----:- ----7 00 
7i-l J.1,~ 

(2.15) 

for each J.1, > 0 as'i ----7 00. Therefore provided we take k large enough it follows that 

and 
A Isl klCr- d) = A IsI ICr-d)lsl(k-l)ICr-d) < ~T. 3 3 - 3 (k-l)l· 

Thus for sufficiently large k (2.14) becomes 

We put Sk := Tkh then for B < l we have 

for all large kEN. We now argue in a similar way to the proof of Theorem 23. 

Taking logs we have 

log Sk 2: (B log Isl)k + log Sk-b 

i.e. 

where Lk := log Sk and C := B log Isl. We see that Ll 2: C + Lo and from here 

prove by induction that 

j=1 

C
k(k + 1) 

2 +Lo 

> Ck2 

C (log Isl
kl R - log R) 2 

llog Isl 

for large k. Therefore we conclude that 

for r = Isl kl R, kEN, k ----7 00. Since the maximum modulus and log functions 

are increasing we have that the above result holds for any sequence of r-values. 
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Therefore using proposition 11 we arrive at 

(lOgT)2 = O(T(2T, f)) 

as '(' ---+ 00. It then follows that 

(lOgT)2 = O(T(7', j)) 

as T ---+ 00, as required. 0 

Note that if in equation (2.9) we had Iql > 1 we can make the change of variables 

( = qn z. Then we can apply Theorem 23 and Theorem 24 taking our q shift to be 

q
A _ !. 

- q' 

2.3 A q-Difference Analogue of the Malmquist 

Theorem 

Ablowitz, Halburd and Herbst [2] considered discrete equations as delay equations 

in the complex plane which allowed them to analyze the equations with methods 

from complex analysis. The equations they consider to be of "Painleve type" possess 

the property that they have sufficiently many finite-order meromorphic solutions. 

Heuristically if we make a change of variables, i.e. if we take x := qZ we are 

able to transform a difference equation into a q-difference equation. This suggests 

a logarithmic change in the growth of the solution, i.e. it suggests that difference 

equations that possess finite order growth solutions have q-difference analogues that 

possess zero-order growth solutions. We stress here that this argument is only 

heuristic and not a proof for the following two reasons. Firstly making the change 

of variables x := qZ does not necessarily preserve the singularity structure. For 

example, suppose that g(x) was a meromorphic solution of the difference equation 

O(x, g(x), g(x + Cl), ... , g(x + Cn )) = O. 

Making our change of variables gives 

(
log z ) o logq,f(z),j(qlz), ... ,f(qnz) =0, (2.16) 

where J(z) := g(x) and qj = qj, j = 1, ... , n. Equation (2.16) shows that after a 

change of variables the solution can become branched. The second reason is that 

our results rely on Nevanlinna theory. In Nevanlinna theory we need our solutions 

to be valid on disks Izl < T. Making the change of variables x := rt maps disks to 
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other regions, so knowledge of how 9 grows on disks Izl < r does not immediately 

translate into knowledge of how f grows on disks Izl < R for some R > O. For 

example suppose q > 1, then if x = qZ we have 

if and only if 

if and only if 

Ixl < r 

IqRe(z) I < r 

R () 
logr 

e z < --. 
logq 

Therefore in this case, x in the disk of radius r corresponds to z in a 'half plane 

type' region. 

In the above section we showed that a general linear q-difference equation pos­

sesses solutions with zero-order growth. Valiron has shown that the non-autonomous 

Schroder q-difference equation 

(2.17) 

where the coefficients aj(z), bj(z) are meromorphic functions and q is a complex 

constant, admit a one parameter family of meromorphic solutions, provided that 

q E re is chosen appropriately [44]. We ask the question, what are the necessary 

conditions for (2.17) to possess meromorphic solutions with zero-order growth. 

Let d := max{ m, n} where m and n defined as in (2.17). 'vVe make the following 

definition in analogy with the differential case, definition 18. 

Definition 25 Let R(z, f) be rational in f with '{1/,CTomorph-i,r: coefficients. A mcro­

morphic solution, f, of equation (2.17) is called admissible, if T(r, a) = S(r, f) 

holds for all coefficients a(z) of R(z, I). 

In [18] the following lemma and theorem are proved. 

Lemma 26 Suppose that Iql ~ 1 and that f(z) is an admissible solution of an 

equation of the form (2.17). Then d ~ 1. 

Theorem 27 Suppose that f is an admissible solution of an equation of the form 

(2.17) with Iql > 1. Then 
logd 

p(f) = log Iql· 

Combining the above lemma and theorem we have the following 
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Theorem 28 Suppose equation {2.17} admits a zero-order meromorphic solution. 

Then d = 1. I.e. 

We substitute 

into (2.18). This yields 

J(qz) = ao(z) + al (z)J(z) 
ho ( z) + b1 ( z ) J ( z) . 

_ al (~) (g(Z) - g(~)) 
J (z) - b

1 
(~) 9 (z ) 

-b1 (~) (adz) b1 (~) bo (z) + adz) bdz) al (~) ) 9 (z) 

-b1 (~) (-a1 (z)b1 (~) bo(z)+b1 (~) b1 (z)ao(z)) g(qz) 

+b1 (~) al (z) b1 (z) al (~) 9 (~) = 0, 

(2.18) 

which is a linear equation in g. Since (2.18) can be linearised, Theorem 27 sug­

gests that the existence of zero-order meromorphic solutions is a good detector of 

integrable q-difference equations. And since (2.18) can be linearised we call it the 

q-discrete Riccati equation. 

Example 1 

Consider the following 2-difference equation 

f(2z) = ~ J(z) 
z f(z) + 1 

(2.19) 

Equation (2.19) is an example of a discrete Riccati equation. If we let g(z) := flz) , 

then (2.19) becomes the linear equation 

g(2z) = z + zg(z). (2.20) 

This equation was considered by \Vittich [45] who showed it can be solved by 

00 n 

g(z) = I: 2n (:+I)/2' (2.21) 
n=1 

which is a transcendental function of zero-order. Hence (2.19) possesses a zero-order 

meromorphic solution. 

Example 2 
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Consider the following two q-difference equations of the form (2.17) from [18], 

• J(2z) = -1 + 2J(Z)2, 

• J((71, + l)z) = eZ J(zt· 

(2.22) 

(2.23) 

Equation (2.22) has the solution J(z) = cosz, which is meromorphic. Equation 

(2.23) has the solution J(z) = eZ
• Note that both these solutions have order 1, they 

are not zero-order because the equations are not of the form (2.18). 
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Chapter 3 

The q-Difference Analogue of the 

Lemma on the Logarithmic 

Derivative with Applications to 

q-Difference Equations 

Introduction 

This chapter contains most of the original work of the thesis. In it we derive a 

q-difference analogue of the Lemma on the Logarithmic Derivative. The Lemma on 

the Logarithmic Derivative states that 

m (r, j) = o(T(r, I)), 

outside of a possible small exceptional set. This is one of the most important 

results in Nevanlinna theory, it has many applications in the theory of meromorphic 

functions and in the theory of ordinary differential equations. For example it plays 

a major part in the proofs of the Second Main Theorem of Nevanlinna theory [36] 

and Yosida's generalization [46] of the Malmquist Theorem [32]. In this chapter we 

prove the following theorem. 

Theorem 29 Let f be a non-rational zero-order meromorphic junction, q E C. 

Then 

( 
f(qz)) 

m r, f(z) = o(T(r, I)), (3.1) 

on a set oj logarithmic density 1. 

Theorem 29 is an analogue of the Lemma on the Logarithmic Derivative for q­

difference equations. It may be used to study zero-order meromorphic solutions 

of q-difference equations in a similar manner as Theorem 1 applies for finite-order 
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meromorphic solutions of difference equations. The restriction to zero-order mero­

morphic functions is analogous to demanding finite order of growth in the ordinary 

shift case. For instance, all meromorphic solutions of linear and q-Riccati difference 

equations with rational coefficients are of zero order. 

Concerning the sharpness of Theorem 29, the exponential function does not satisfy 

(3.1) for any q E C, and so the assertion of Theorem 29 cannot be extended to hold 

for all finite-order meromorphic functions. 

In the rest of the chapter we use our result to study zero-order meromorphic solu­

tions of large classes of q-difference equations. One result is a q-difference analogue 

of the Clunie Lemma, (see Lemma 21 or [12]). The original lemma has become an 

invaluable tool in the study of non-linear differential equations. The q-difference 

analogue gives similar information about the zero-order meromorphic solutions of 

non-linear q-difference equations. 

3.1 Analogue of the Logarithmic Derivative 

Lemma 

The natural q-difference analogue of the logarithmic derivative is 

J(qz) - J(z) = J(qz) _ 1. 
J(z) J(z) 

But since the contribution from the -1 term is not significant we work with the 

quantity ~gi. As in the proof of the Lemma on the Logarithmic Derivative given 

by [17] we start with the Poisson-Jensen Formula (1.1). This gives the following 

Lemma 30 Let f be a meromorphic Junction such that f(O) =1= 0, CXJ and let q E C 

such that Iql =1= O. Then, 

( 
J(qz)) 

m r, J(z) 

where z = TCi<P, P > max(T, Iql'f') and 0 < 6 < 1. 

Proof: Using the identity 

p2 _ r2 { pe
iB + z } 

p2 _ 2pr cos( cp - e) + r2 = Re peig - z ' 
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and the Poisson-Jensen formula with R = p we see 

1 IJ(qz) 1 
og J(z) 

where {an} and {bn} are the zeroes and poles of J respectively. 

Integration on the set E := {-if; E [0,27r] : I f)~e~~i I ;::: 1} gives us the proximity 

function, 

( 
J(qz)) 

m r, J(z) 

We will now proceed to estimate each Jo27r ISj(Tei.,p)I~~ separately. Since 

1
1 i'27r iO ( 2(q - l)zpe

iO 
) 1 

- -2 log IJ(pe )IRe ('0 )('0 ) de 7r . 0 pet - q z pet - z 

1
1 2p(q - l)r 1127r iO 

< 27r (p -Iql"')(p - r) 0 Ilog IJ(pe )11 de 

< 1 (p ~I~~r)(~)~ r) 1 (m(p, j) + m (p, 7 ) ) , 
we have 

1
27r . i.,p d1j; 4plq - 11r ( + 1 ) 

o ISl(le )1 27r ::; (p-Iqlr)(p- r) T(p,j) + log IJ(O)I . 
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Next we consider the cases j = 2,3 combined together. By denoting {en} = {an} U 

{bn }, we obtain 

< 

+ 

+ 

+ 

+ 

+ 

+ 

Define 

g(x) := (1 + x)" - (1 + x"), 

then g(O) = 0 and 

g'(x) = 6(1 + X)"-l - 6X"-1 < 0 since 6 - 1 < Q. 

This implies g(x) ~ 0, hence 

log(l + x) 
1 . 
-g log(l + x)1I 

1 
< -g log(l + x") 

X 
t5 

< T' 
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using the fact that log(l + Ixl) :=:; Ixl for all x. Therefore we have 

Then using Irei 1/! -Icnll > ~r'lj; for all 0 :=:; e :=:; ~ we get 

and 

127r log+ 11 _ (q ~ l)re
i
1/! 1 d'lj; < Iq - 11° . 

a qre!1/! - Cn 27r - Iq106(1 - 6) 
(3.3) 

Again using the fact that log(l + Ixl) :=:; Ixl for all x we have 

Using the fact that for all a such that lal < p, 

we obtain 

(3.4) 

and 

127r log+ 11- (q ~ l)c~rei!£' 1 d'lj; :=:; Iq -llr. 
a P - cnz 27r P - r 

(3.5) 

Combining (3.2), (3.3), (3.4) and (3.5) gives 
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The assertion follows by combining the obtained bounds for the Si terms. 0 

If J(z) has either a zero or a pole at the origin, then, for a suitable p E Z, we 

may write J(z) = zPg(z) where g(z) is finite and non-zero at the origin. Hence, by 

taking K > max{l, Iql} and applying Lemma 30 with p = K" we have, for all I 

sufficiently large, 

( 
J(qz)) 

m I, J(z) < D1 (n(KI,f)+n (KI'7)) 
+ iT(KI,f)+O(~), (3.6) 

where D1 and D2 are constants independent of I and K. 

In order to deal with the T(KI, f) term we use the following result which is a 

special case of Lemma 4 in [24]. 

Lemma 31 Suppose T : lR.+ ----+ lR.+ is an incleasing continuous Junction such that 

Hm logT(/) = O. 
T-+OO log I 

Then the set 

has logalithmic density 0, whe,e Cl > 1 and C2 > 1. 

Proof. We prove this lemma in the following way. First we inductively define a 

sequence {'n} so that the set E is contained in the intervals (In' C1In)' We then 

show these intervals have logarithmic density O. 

Let 

1'1 := the least value of I such that I :::: 1 and lEE. 

If T1 does not exist then the lemma is proved. Also we take 

Tn+1 := the least value of I such that I :::: C11n and lEE. 

Therefore we have that 
00 

E c U ('n, C11n) =: E'. 
n=l 
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Now if we can show E' has logarithmic density 0 we are done. But 

1 d E' -1' - 1 1 dr og ens = lm--
T-+OO log r E'n[l,Tj r 

-- 1 l C1Tn 
dr lim--I: -

T-+OO log r T r 
Tn~T n 

-1 ~ 
Hm -1- ~IOgCl 

T-+OO og r 
n~T 

- 1 
lim -1-klogCl , 

T-+OO ogr 

where 

k = k(r) := the largest integer, k, such that rk ::; r. 

By definition, for all n, rn E E, hence we have 

This implies 

and therefore 

T(r) 
log T(1) ~ (k - 1) log C2 , 

k log Cl - (k-1)logCl +logCl 
log Cl T(r) 

< logC210gT(1) + log Cl 

log Cl 
< -1 C logT(r) + 0(1). 

og 2 

Substituting (3.8) into (3.7) we get 

log Cl-I' -log T(r) 
logdensE' < -- lm ---=-----'--'­

log C2 T-+OO log r 
0, 

from the assumption in the lemma. 

(3.7) 

(3.8) 

To show that the n(K r, f) term in equation (3.6) is small we first prove the 

following lemma. 

Lemma 32 Suppose f is a meromorphic function with order zero. Then for all 

n E N the set 

{ 
T(r, f)} 

En := r ~ 1 : n(r,.f) < 2n 

has logarithmic density 1. 
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Proof: 

N(J(r, I) l
Kr 

n(t, I) - n(O, I) dt + n(O, I) log J(r 
o t 

> l K
'r n(t, f) - n(O, I) dt + n(O, I) log J(r 

r t 

> l Kr 
n(t, I) dt 

r t 

l
Kr dt 

> n(r,1) -
r t 

n(r, I) log J(, 

By Lemma 31, for any J( > 1 we have N(J(r, 1) :S 2N(r, I) on a set oflogarithmic 

density 1. Therefore 

122 
n(r, I) :S log J(N(J(r, I) :S log J(N(r, I) ':S log J(T(r, I), 

on a set of logarithmic density 1. If for a given n E N we take log J( = 2n+1, i.e. 

J( = exp 2n+ 1 > 1 then for all n E N the set 

{ 
T(r, I)} 

En := r 2: 1 : n(r) < 2n ' 

has logarithmic density 1, as required. 0 

The following lemma together with Lemma 32 implies that for all meromorphic 

functions, j', with zero-order, n(r, I) = o(T(r, I)), on a set of logarithmic density 1. 

Lemma 33 Let T : IR+ -+ IR+ be an increasing function, and let U : IR+ -+ lR,+. If 

there exists a decreasing sequence, {Cn}nEN, such that Cn -+ ° as n -+ 00, and, for 

all n E N, the set 

Fn := {r 2: 1 : U(r) < cnT(r, f)} 

has logarithmic density 1, then 

U(r) = o(TCr, I)), 

on a set of logarithmic density 1. 

Proof: Since each set Fn has logarithmic density 1 we have 

lim-- - = 1 - 1 1 dt 
r->oo log r [l,r]nFn t ' 
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which implies that for all 11" there exists rn, such that 

-- ->1--1 1, dt 1 
log r [l,rlnFn t 11, ' 

for all r 2: rn· 

I.e. 
r dt > (1 - .!.) logr, 

J[l,rlnFn t 11, 

for all r 2: rn. We set F to be the union of the sets [rn' rn+l) n Fn where 11, runs 

through all positive integers. Then for all r E F we have that 

U(r) < cnrT(r, I), 

where 11,r -+ 00 as r -+ 00. Since Cn -+ 0 as 11, -+ 00, this implies that U(r) 

o(T(r, I)) on F. Therefore if we can show that F has logarithmic density 1 we are 

done. 

Since for all sufficiently large r there is 11, so that r n ::; r ::; r n+l, we have 

1, dt 1, dt ( 1) - > - > 1 - - log r. 
[l,rlnF t - [l,rlnFn t 11, 

Dividing through by log r and taking the limit as 11, -+ 00 gives us that F has 

logarithmic density 1, as required. 0 

The following corollary is an immediate consequence of Lemmas 32 and 33. 

Corollary 34 For all meromorphic junctions, j, with zero-order, we have that 

n(r, I) = o(T(r, I)), 

on a set of logarithmic density 1. 0 

Now we are ready to complete the proof of Theorem 29. Applying Corollary 34 

to equation (3.6) we get 

on a set of logarithmic density 1. 

But by Lemma 31 we have that T(KT,1) < 2T(T, I) on a set of logarithmic 

density 1. Therefore we have 

( 
f(qz)) 2D2 

U(r) := m r, f(z) + o(T(r, I)) ::; TT(r, I), 
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on a set of logarithmic density 1. By taking K = 2n and applying Lemma 32 we 

have that the set 

{ 2D2} Fn := r ~ 1 : U(r) < 2nT (r, 1) 

has logarithmic density one. Lemma 33 then immediately implies 

( 
f(qz)) 

m r, f(z) = o(T(r, 1)). 

on a set of logarithmic density 1, as required. 0 

3.2 Applications to q-Difference Equations 

The Lemma on the Logarithmic Derivative is a key component in the proof of the 

Second Main Theorem, one of the deepest results of Nevanlinna theory. It is also 

important for applications to complex differential equations. Similarly, Theorem 29 

enables an efficient study of complex analytic properties of zero-order meromorphic 

solutions of q-difference equations. In this chapter we are concerned with functions 

which are polynomials in .[(%z), where qj E C, with coefficients a>.(z) such that 

T(r, a>.(z)) = o(T(r, 1)) 

on a set of logarithmic density 1. Such functions will be called q-difference polyno­

mials in f(z). 

The following theorem is analogous to the Clunie Lemma [12]. It can be used to 

study pole distribution of meromorphic zero-order solutions of non-linear q-difference 

equations. 

Theorem 35 Let f(z) have zero-order growth and be a non-rational meromorphic 

solution of 

f(z)n P(z, 1) = Q(z, 1), 

where P(z,1) and Q(z, f) are q-difference polynomials in f(z). If the degree of 

Q(z, f) as a polynomial in f(z) and its q-shifts is at most n, then 

m(r, P(z, f)) = o(T(r, 1)), 

on a set of logarithmic density 1. 

Proof: We follow the reasoning behind the original Clunie Lemma, see, for instance, 

[30], replacing the Lemma on the Logarithmic Derivative with Theorem 29. 
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In calculating the proximity function of P, we split the region of integration into 

two parts. By defining 

and 

we have 

27rm(r, P(z, I)) = r log+ IPI dcp + r log+ IPI dcp. (3.9) 
lE! 1 E2 

First we consider El. Each term of P is of the form 

Hence writing with A = (1o, ... , Iv), 

AEI AEI 

For each A we have 

whenever cp E El. Therefore for each A we obtain 

and so by Theorem 29 and our assumption in the theorem, 

r log+ IP(rei<P, 1)1 dcp = o(T(r, I)) 
l~ 27r 

(3.10) 

on a set of logarithmic density 1. 

Now we consider Ei. To do this case we note that 

P(z,1) = Qj~ I). 

But 
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By our assumption h + ... + lJ.L ~ n for all 'Y = (lo, ... ,lJ.L) E J. Hence we have 

Therefore by Theorem 29 again, 

(3.11) 

on a set of logarithmic density 1. The assertion follows by combining (3.9), (3.10) 

and (3.11). 0 

Let a and f be meromorphic zero-order functions such that T(r, a) = o(T(r, f)) 

on a set of logarithmic density 1. Then a is said to be a slowly moving target or a 

small function with respect to f. In particular, constant functions are always slowly 

moving compared to any non-constant meromorphic function. The next result can be 

used as a tool to analyze the value distribution of zero-order meromorphic solutions 

f, with respect to slowly moving targets. It is an analogue of a result due to A. Z. 

Mohon'ko and V. D. Mohon'ko [34] on differential equations. 

Theorem 36 Let f (z) have zero order growth and be a non-rational meromorphic 

solution of 

P(z,f) =0 (3.12) 

where P(z, f) is a q-difference polynomial in f(z). If P(z, a) ~ 0 for a slowly moving 

target a, then 

m (r, f ~ a) = o(T(r, f)) 

on a set of logarithmic density 1. 

Proof. By substituting f = g + a into (3.12) we obtain 

Q(z, g) + D(z) = 0, (3.13) 

where Q(z, g) = L-YEJ u-y(z)G-y(z, f) is a q-difference polynomial in 9 such that all 

of its terms are at least degree one, and T(r, D) = o(T(r, g)) on a set of logarithmic 

density 1. Also D ~ 0, since a does not satisfy (3.12). 
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Using (3.13) we have 

(3.14) 

Note that the integral to be evaluated vanishes on the part of Izl = r where 191 > 1. 

It is therefore sufficient to consider only the case 191 ::; 1. Hence 

(3.15) 

Since Q (z, 9) is a q-difference polynomial we have 

m(r, bi ) = o(T(r, g)) 

on a set of logarithmic density 1 for all 'Y E J. Also by Theorem 29 

In (r, 99(1~)) = O(T(T, 9)) 

on a set of logarithmic density 1 for all q E <C. Hence by (3.14) and (3.15) and the 

fact that 2:;=0 lj ~ 1 for all 'Y E J we have 

on a set of logarithmic density 1. Since 9 = f - a the assertion follows. 0 

3.3 Second Main Theorem 

The Lemma on the Logarithmic Derivative plays a key role in the proof of the Second 

Main Theorem of Nevanlinna theory. Similarly the following theorem is obtained by 

using an analogue of the standard proof technique behind the Second Main Theorem 

[35] together with Theorem 29. 
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Let J(z) be a non-constant meromorphic function of zero-order, let q E C\{O, I} 

and let a E C. By denoting 

6.qJ := J(qz) - J(z), 

and by applying Theorem 29 with the function J(z) - a, we have 

( 
J(qz) - a) 

m r, J(z) _ a + 0(1) 

o(T(r, J - a)) + 0(1) (3.16) 

on a set of logarithmic density 1. We denote by Sq(f) the set of all meromorphic 

functions 9 such that T(r, g) = o(T(r, f)) for all r on a set of logarithmic density 1. 

Functions in the set Sq(f) are called small compared to J or slowly moving with 

respect to J. Also, if 9 E Sq(f) we denote T(r, g) = Sq(r, f). 

Theorem 37 Let q E C, and let J be a meromorphic Junction oJ zero-order such 

that J(qz) =.j. J(z). Let p ~ 2, and let aI, ... ,ap E re be distinct points. Then 

where 

Proof. 

m(r,.f) + t m (r, J ~ ak) :::; 2T(r, f) - Npair(r, f) + Sq(r,.f) 
k=l 

Npair(r,.f) := 2N(r, 1) - N(r, 6.qf) + N (r, 6.:J) . 

Using the First Main Theorem we have 

t rn (r, f ~ aJ = t T (r, f ~ aJ -t N (1, f ~ aJ 
pT(r,f)- tN(r, J~ak) + S'l(r, f). (3.17) 

k=l 

But by the Valiron-Mohon'ko Theorem (Theorem 19) we have that 

pT(r, f) = T(r, P(f)) + Sq(r,.f), 

we also have that 
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where 
p 

P(f) := IT (f - ak), 
k=l 

Now 

Hence by (3.16), we obtain 

m (r, ~(1)) s t m (r, f r:~k) + Sq(r, j) ~ Sq(r, f), 
k=l 

and so 

m (r, P~I)) = m (r, ~tf) ~:f ) ~ m (r, ~:f ) + Sq(r, I). (3.18) 

Hence by the First Main Theorem (3.17) becomes 

- m (r, P~I)) + Sq(r, I) 

< m (r, ~f) + Sq(r, I) 

< T(r, ~ql) - N (r, ~:f ) + Sq(r, I). 

Therefore we have 

m(r, J) + t m (r, f ~ ak) < T(r, J) + N(r, 6.qJ) + m(r, ~qJ) 
k=l 

-N (r, 6.:f) -N(r, J) + Sq(r, J). 

But 

m(r, 6.qJ) = m (r, f~;f) ~ m(r, J) + m (r, ~;f) = m(r, I) + Sq(r, I) 
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by equation (3.16). This implies 

m(r, I) + t m (r, f ~ aJ < T(r, I) + N(r, t>ql) + m(r, I) 

-N (r, ~:j ) - N(r, j) + Sq(r, j) 

- 2T(r, 1) + N(r, ~q1) - N (r, ~:j ) 
-2N(r, 1) + Sq(r, 1), 

as required. D 
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Conclusions 

In this thesis we have gone a good way in developing Nevanlinna theory for the 

q-difference operator acting on zero-order meromorphic functions. In particular we 

have found a q-difference analogue of the Lemma on the Logarithmic Derivative (see 

Theorem 29). This result has potentially a large number of applications in the study 

of q-difference equations. Many ideas and methods from the theory of differential 

equations may now be used together with Theorem 29 to obtain information about 

zero-order meromorphic solutions of q-difference equations. In chapter three we 

provided examples of this, for example we presented a q-difference analogue of the 

Clunie Lemma (see Theorem 35). 

Nevanlinna's Second Main Theorem implies that a non-constant meromorphic 

function cannot have too many points with high multiplicity. In this thesis we 

have presented a q-difference analogue of Nevanlinna's Second Main Theorem (see 

Theorem 37). 

Our findings are an analogue of the results concerning the difference operator by 

Halburd and Korhonen in [21, 22]. Historically q-difference equations are the most 

natural class of equations to look at after differential equations and difference equa­

tions. The restriction to zero-order meromorphic solutions is natural in light of the 

results found in chapter two. Here we reviewed results that show that all mero­

morphic solutions of linear q-difference equations have zero-order growth. We also 

showed that by looking for zero-order solutions in a class of non-linear q-difference 

equations we are led to an analogue of the Malmquist Theorem. I.e. looking for 

zero-order solutions singles out 'integrable' equations. 

In chapter one we review the key ideas of Nevanlinna theory. In particular Nevan­

linna's First Main Theorem (see equation (1.5)), the Lemma on the Logarithmic 

Derivative (see Theorem 15), the Malmquist Theorem (see Theorem 20), the Clunie 

Lemma (see Lemma 21) and Nevanlinna's Second Main Theorem (see Theorem 22). 
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