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Abstract 

Abstract 

Wheatfeed is a low value by-product of the cereal milling industry and has 

potential as an ingredient of pet foods. However, it has a high fibre content and 

this renders it unsuitable for non-ruminants unless some means can be found to 

convert the fibre to more digestible substances. This work considers enzyme 

hydrolysis,as a means for improving the nutritional value of wheatfeed. 

Preliminary investigations focused on evaluating mixtures of enzymes in various 

combinations. The extent of hydrolysis was routinely assayed by measuring the 

release of sugars and proteins. Further experiments were performed to establish 

the optimal conditions under which a mixture of enzymes, comprising cellulase, 

hemicellulase and pectinase, hydrolysed wheatfeed. Studies were also conducted 

where these enzymes were added sequentially to wheatfeed and useful 

information was gained on the composition of the susceptible components. Steam 

explosion was investigated as a pretreatment of wheatfeed to make subsequent 

enzyme treatment more effective. However, the results were inconclusive. Trials 

were carried out using commercially available enzymes to compare their 

effectiveness on the wheatfeed. A cellulase, was selected for further investigation 

into the effects of particle size, extent of agitation, and enzyme concentration on 

sugar release. An empirical mathematical model describing the action of this 

enzyme was developed. Enzyme treatment of wheatfeed was also performed 

under conditions of reduced water content, or 'solid state'. However, enzyme 

action was limited, yielding lower quantities of sugars and protein. 

The treatment of wheatfeed with enzymes was shown to increase digestibility of 

the substrate. However, the high costs of enzymes would effectively rule this out 

as a commercial option and alternative methods such as for example a form of 

composting using cellulolytic fungi might prove more economic. 

Keywords: Enzymes, animal feeds, milling by-products, wheatfeed, steam 

explosion, digestibility. 
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Introduction 

1 Introduction 

Feed processors are continuously seeking to reduce costs of production in order to 

maintain profitability. One way of achieving this is to substitute cheaper sources 

of nutrients for the more costly ones. By-products of the food industry, 

particularly those considered as wastes, may have potential as low cost feed 

additives. If the nutritional properties of such materials can be improved through 

appropriate treatment, they could constitute an important source of ingredients for 

the feed industry. One such material is 'wheatfeed' a by-product of flour milling. 

Wheatfeed consists mainly of wheat bran. The cell wall material of wheat bran 

comprises about half of the dry weight of the bran, with arabinoxylans being the 

major components (Voragen et aI., 1994). Wheatfeed in its natural state is 

indigestible by dogs owing to its high fibre content. 

The research described here has, as its objective, the task of enhancing the 

nutritional value of wheatfeed. The approach taken is to make use of enzymes to 

digest the fibres contained within the wheatfeed thereby releasing metabolisable 

sugars and proteins. This type of processing is widely accepted for the treatment 

of wood, and materials derived from wood, primarily for the production of 

renewable energy, but its use for nutritional enhancement has been less well 

studied. 

The structure of wheatfeed is complex and it was accepted from the outset that no 

single enzyme was likely to result in the maximum release of sugars and proteins 

from the indigestible components. Initial studies were conducted to evaluate the 

action of a number of different enzymes (in purified form) in various 

combinations with a view to identifying combinations that may lead to significant 

fibre digestion. Further studies were undertaken to identify operating conditions 

that may lead to the optimal release of sugars and proteins. The order in which 

enzymes were added would result in differential patterns of sugar release, and 
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Introduction 

experiments in which various enzymes were added in different orders were 

undertaken so that information on the action of individual enzymes as well as the 

composition of the susceptible wheatfeed components could be obtained. 

Included alongside these experiments were those in which the wheatfeed was 

subject to a form of pretreatment by steam explosion. The latter process was 

chosen because it was essentially a thermal treatment and did not involve the 

addition of substances that may have proved injurious to the health of the animals 

consuming the treated feed. 

Commercialization of an enzyme-based treatment process would ultimately be 

reliant on the types of enzymes available in the market place and comparative 

experiments were conducted with a number of commercial enzyme preparations. 

Allied to these experiments were more detailed investigations into the mode of 

action of a selected commercial cellulase. Also reported here are attempts to 

model the behaviour of this enzyme. 

Conventional modes of treating a solid substrate in dilute suspension in water with 

enzymes, would incur high costs in reducing the water content of the finished 

product. Consequently, enzyme digestion experiments were conducted using 

wheatfeed under reduced water conditions similar to the 'Koji' fermentations of 

the Far East. 

The ultimate test of the acceptability of the enzyme-treated wheatfeed would be to 

feed it to animals under laboratory conditions. However, evaluations of this sort 

were beyond the scope of the present work and as an alternative, a series of 

digestibility tests were conducted as a measure of the nutritional valorization of 

the final product. 
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Literature Review 

2 Literature Review 

2.1 Wheat 

Wheat is the most widely cultivated (Leonard and Martin, 1963) and most 

important cereal crop (Kent-Jones and Amos, 1967). It has been used as a food 

source since prehistoric times (Kent-Jones and Amos, 1967). The exact dates as 

to when it was first grown are unknown (Faridi and Finley, 1989), but it has been 

grown for at least the last 12,000 years and there is even some archaeological 

evidence that it was used around 15,000 BC (Gooding and Davis, 1997). 

It is believed that wheat first evolved from wild grasses (Mattem, 1991) and was 

first grown in the Middle East, but the cultivation has now spread (Scade, 1975) 

and it is grown in most parts of the world (Leonard and Martin, 1963). 

The best conditions for growing wheat are a cool and moderately moist early 

growing season. This is followed by a warm dry sunny period during which the 

plant can mature (Scade, 1975). Probably for this reason wheat is grown in all 

temperate countries (Leonard and Martin, 1963). With special breeding and 

selection some varieties have been grown from near tropical areas to those 

bordering the Arctic circle (Scade, 1975). Wheat can also be grown in almost any 

kind of soil (Kent-Jones and Amos, 1967). It is therefore perhaps no surprise that 

wheat is an important foodstuff, as it is available to many people. 

Commercially three different types of wheat are grown; Triticum aestivum, 

Triticum compactum and Triticum durum. Triticum aestivum dominates world 

production and can be used for making bread flour, pastries and biscuits (Mattern, 

1991). Triticum compactum is used to produce flours for cakes and pastries and 

Triticum durum is used for macaroni and pastas (Mattern, 1991). 
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Wheat can also be classified by grain hardness, grain colour and the time of year it 

is planted. Winter wheat is planted late in the summer or autumn and matures in 

early spring, whereas spring wheat is planted in spring and matures in late 

summer (Faridi and Finley, 1989). In the United States, Triticum aestivum is 

divided into four classes for marketing purposes; hard red winter wheat, hard red 

spring wheat, soft red winter wheat and common white. Hard wheat is mainly 

used for bread whilst the soft variety is used for cakes and pastries (Mattem, 

1991). Nearly all English wheat is soft wheat and is used to produce flour for 

biscuits and cakes rather than bread. The wheat has a high moisture content and 

needs drying before storage or milling (Scade, 1975). 

The grains of common wheats range from lengths of 5 to 8 mm and widths of 2.5 

to 4.5 mm. The weights range from 20 to 60 mg, with an average of weight 37 

mg (Mattem, 1991). A grain of wheat consists of a pericarp and seed. The seed 

can be further split up into three parts; the seedcoat, the endosperm and the germ 

(Kent, 1966). These are further subdivided as shown in Figure 2.1. It should be 

made clear at this point that different texts refer to the same layers of the grain 

using different nomenclature. 

2.1.1 Anatomy of The Grain 

2.1.1.1 Pericarp 

The tissues of the pericarp form a protective layer over the entire wheat grain 

(Leonard and Martin, 1963). It is made up of several layers; the epidermis, the 

epicarp and the endocarp (Scade, 1975). The pericarp represents about 5% by 

weight of the grain, the constitution of which can be seen in Table 2.1. 
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Figure 2.1 A Longitudinal Section of a Wheat Grain (Scade, 1975). 

Table 2.1 The Constitution of the Pericarp (Laszity, 1999). 

Component Percentage (by weight) 

Cellulose 20 

Protein 6 

Ash 2 

Fat 0.5 

Other Polysaccharides 70 
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2.1.1.2 Seedcoat 

The seedcoat fonns a cover over the embryo and endospenn. It is finnly joined to 

the innennost layer of the pericarp (Leonard and Martin, 1963). The nucellar 

layer is a single row of compressed cells (Leonard and Martin, 1963) which are 

moisture proof and protect the endospenn from moisture effects. Together the 

nucellar layer and testa represent 2 - 3% of the grain (Kent-lones and Amos, 

1967). 

The aleurone layer consists of thick walled cubical cells (Kent, 1966). It is 

relatively high in protein, ash, phosphorous, vitamins and enzymes compared to 

the rest of the grain (Laszity, 1999). The aleurone layer is the innennost layer of 

bran, that is all the layers above it (Le. those previously described) are all known 

as bran (Kent, 1966). This is shown in Figure 2.1. The bran is about 13-17% by 

weight of the wheat grain (Laszity, 1999). 

2.1.1.3 Germ 

The genn is partly embedded in the endospenn at the base of the grain (Leonard 

and Martin, 1963). It accounts for 2-3% of the grain (Laszity, 1999) and is made 

of the embryo (plumule), primary root (radicle) and the scutellum (Leonard and 

Martin, 1963).The latter is used for food storage (Laszity, 1999). 

2.1.1.4 Endosperm 

The endospenn is the major part of the grain (Leonard and Martin, 1963). It has 

thin walled cells that vary in size, shape and composition depending on the 

position of the cell within the grain (Kent, 1966). The starch granules within the 

endospenn are embedded in a matrix of proteinaceous material (Leonard and 

Martin, 1963). There is more protein in the outer layers of the endospenn than the 

inner layers. The protein content per unit volume of the endospenn is lower than 

that of the genn and the aleurone layer, but because it is such a large part of the 

grain it contains approximately 73% of the grain protein content (Pace, 1959). 
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The protein content of wheat usually exceeds 12% by weight of the grain 

(Johnson et al., 1972). The wheat grain has four types of protein; albumin, 

globulin, gliadin and glutenin. Combined gliadin and glutenin are referred to as 

gluten. It is gluten and its water absorbing properties which give many baked 

products their characteristics. The main proteins in the wheat grain are the storage 

proteins, gliadins and glutenins in the endosperm (Kent, 1966). 

As it is the starchy endosperm which is used for flour, the bran is removed from 

the grain by milling and is a waste product. 

2.1.2 Use of Wheat as a Feedstufl' 

A significant amount of wheat is used for animal feed. The actual amount varies 

from year to year depending on the price of the wheat in relation to other grains 

(Faridi and Finley, 1989). Wheat bran is composed of the pericarp, seedcoats and 

aleurone layer and remnants of endosperm (Antoine et al., 2003). The milling by

product, bran and intermediates between bran and flour are often called 

'wheatfeed'. They are often used as ingredients of swine feed (Huang et al., 

2001). If wheatfeed is to be used in animal feed the amount of fibre in the diet 

must be controlled, as excessive fibre may render a food injurious to some 

animals (Kent-Jones and Amos, 1967). As the milling by-products also include 

the aleurone layer, wheat bran is also a potential source of nutrients (Antoine et 

al., 2003). The bran waste consists of 12% protein; if this could be utilized, then 

it could become a cheap protein source. Unfortunately, little is known about the 

proteins in the aleurone layer. It is known however, that a high proportion of the 

proteins are soluble in water or dilute neutral salt solutions. More protein could 

be released and used if the links between the fibre and protein could be broken. 

Cereal brans are rich in cell wall polysaccharides (Voragen et al., 1994), which 

are mainly insoluble celluloses and hemicelluloses (Klopfenstein, 1990). These 

cell wall polysaccharides have a heterogeneous nature and are poorly 

7 



Literature Review 

characterized (Wen et aI., 1988). The composition of wheat bran is shown in 

Table 2.2. 

Table 2.2 Composition of Wheat Bran (Fisher, 1985). 

Component Percentage 
(By weight) 

Starch 22.0 

Hemicelluloses 24.5 

Cellulose 10.2 

Lignin 4.3 

Free sugars 7.6 

Protein 12.4 

N on-Protein, non-nucleic nitrogen 3.6 

containing compounds 

Nucleotides 0.2 

Lipids 4.4 

Ash 6.1 

Phytate 4.0 

Total recovered 99.3 

2.1.3 Cellulose 

Cellulose is one of the main components of the plant cell wall (Walker, 1993). It 

is a linear structural polysaccharide, made of D-glucose units which are ~ (1 ---7 4) 

linked (Garrett and Grisham, 1995) by glucosidic linkages (C-O-C) (Walker, 

1993). Its structure is shown in Figure 2.2. The disaccharide cellobiose is the 

repeating unit as each glucose unit is rotated by 1800 relative to its neighbour. 

Therefore cellulose may also be thought of as a polymer of cellobiose (Walker, 

1993). The size of cellulose molecules can vary from 7,000 to 14,000 glucose 

units in secondary plant walls, but can be as Iow as 500 units in primary walls 

(Leschine, 1995). The most soluble celluloses have the smallest molecular 

weights and conversely the least soluble the highest (Immergut, 1963). 
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H OH 
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Figure 2.2: Cellulose (Wenzl, 1970). 

The two glucose units at either end of the chain differ to the other units, one has a 

reducing hemiacetyl, the other has a non-reducing alcoholic hydroxyl (Walker, 

1993). 

Cellulose has both amorphous and crystalline structures. In the former the 

molecules are arranged randomly and in the latter they are arranged in a lattice

like form (Wenzl, 1970). Crystalline cellulose occurs in long filaments, called 

microfibrils. These are separated from one another by amorphous cellulose 

(Walker, 1993). Microfibrils consist of bundles of cellulose molecules which are 

in a regular alignment, these make up larger cellulose fibres. The microfibrils lie 

in almost the same plane as the larger fibre but at a slight angle to it (Farmer, 

1967). Figure 2.3 shows how the microfibrils build up on the cellulose fibre. 

Figure 2.3 The Build-up of Microfibrils of Cellulose (Emons and Mulder, 2000). 
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Microfibrils have a diameter of about IOOA. The average diameter depends on 

the origin of the cellulose, with the smallest being wood cellulose and then cotton, 

bacterial cellulose and finally, ramie (a plant with a flax-like stem). This order is 

reflected in the resistance of hydrolytic degradation of the cellulose, although this 

also depends on crystallinity (Immergut, 1963). 

All cellulose fibres have a similar structure consisting of a primary wall, a 

secondary wall and a lumen, or central canal. The primary wall is quite thin and 

is mainly made up of noncellulosic material like waxes and pectin. The thickness 

of the secondary cell wall may vary depending on the maturity of the fibre. This 

is where most of the cellulose material is contained (i.e. the microfibrils). The 

central canal is mainly proteinaceous material (Immergut, 1963). Figure 2.4 

shows this arrangement for a cotton fibre. 

Primary wall and cuticle 
( rv 0.11' lhlck) 

Secondary lamellae 
( "" 41' thick) 

Figure 2.4 The Structure of Cotton Fibre (Immergut, 1963). 

The configuration of the cellulose chains allow hydrogen bonding to take place 

between residues of the same chain. The chains run parallel to one another and 

therefore hydrogen bonding can occur between cellulose chains. Intramolcular 

and intermolecular bonds allow all the available hydroxyl groups to exhibit 

hydrogen bonding. A covalent glucosidic bond is stronger than a hydrogen bond, 

but there are a large number of hydrogen bonds along the chain. The hydrogen 

bonded cellulose chains form sheets which pack on top of each other to form the 
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three-dimensional crystal structure. These sheets are held together by weak Van 

der Waals forces (Walker, 1993). 

Cellulose is very resistant to hydrolysis by acids, or enzymes of the digestive tract 

and consequently most animals can not digest it. Cattle, deer and other ruminants 

are able to digest cellulose as they have bacteria in the rumen which secrete 

cellulases (Garrett and Grisham, 1995). 

2.1.4 Hemicellulose 

Many different terms have been suggested to describe this fraction. For example, 

hemicellulosic polysaccharides are sometimes characterized according to their 

sugar components and referred to as pentosans or hexosans (Wenzl, 1970). The 

term hemicellulose is unsatisfactory, but it has generally been and can be defined 

as, the non-cellulosic cell wall polysaccharides (Farmer, 1967). Unfortunately, 

some quite different terminologies are in use and this can make the study of this 

subject confusing. 

Hemicelluloses are the major constituents of plant cell walls, filling the voids 

between the cells in the middle lamella (Wilkie, 1979), this is shown in Figure 

2.5. They consist of long chains of sugar residues, but unlike cellulose they 

contain several different sugar residues including both hexoses and pentoses. 

More than one sugar can also be found in the main chain. Hemicelluloses have 

much shorter chains than those of cellulose, they are often branched and may have 

uronic acid and acetyl groups attached. The main chain is not always (1~4) 

linked. Because the molecules are less regular and branched, they will not pack 

into bundles easily and therefore do not have marked fibre-forming properties, but 

they are more gelatinous. They are fairly readily hydrolysed by acid and a large 

amount of those in wood can be extracted by alkali (Farmer, 1967). 
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Figure 2.5 Cross Section of a Group of Wood Cells (Farmer, 1967). 

Hemicelluloses typically have molecular weights from 60,000 to 600,000 Daltons 

(Low, 1994). Differences in solubility occur due to differences in the average 

molecular weight, the distribution of the molecular weight, molecule structure, the 

functional groups, the homogeneity of the composition and the relationship with 

the cell walls (Wenzl, 1970). 

Doree (1950) reported that after fractionating the hemicellulose in wheat bran it 

was found that the chief products obtained on hydrolysis were xylose, arabinose, 

uronic acid and a small amount of glucose. Fincher and Stone (1986) reported 

that wheat bran was composed of 39% xylose, 34% glucose, 26% arabinose, 0.1 % 

mannose and 1.1 % galactose by weight. With the major polysaccharides present 

being arabinoxylan (64%), cellulose (29%) and non-cellulosic glucan (6%). 

The function of hemicellulose is uncertain, but it is possible it could form the link 

between cellulose and lignin (Walker, 1993). Some workers have suggested that 

arabinoxylans may aid the movement of nutrients through the porous gel, or even 

that they may inhibit intercellular ice formation (lzydorczyk and Biliaderis, 1995). 
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2.1.4.1 The Xylans 

Although arabinoxylans are a minor part of the entire cereal grain, they make up 

an important part of the cell walls. The thin walls that surround the endosperm 

cells and the aleurone layer walls are mainly arabinoxylan (60-70%) (lzydorczyk 

and Biliaderis, 1995). 

Arabinoxylans have highly branched structures (Edwards et aI., 2003) and are 

made up from a linear f3-D-(1~4) linked xylopyranose backbone with a-L

arabinofuranose substitutions attached by a-(1 ~3) or a-(1 ~2) linkages (Edwards 

et aI., 2003). The ratio of arabinose to xylose varies (Schuerch, 1963) as do the 

sequences of the linkages of these sugars and the presence of other substituents 

(Edwards et aI., 2003). A fairly high ratio of arabinose to xylose gives the 

molecule a rigid rod-like conformation (Izydorczyk and Biliaderis, 1992). The 

hemicelluloses from the pericarp of wheat bran contain both arabinose and xylose 

singly and doubly branched (Schuerch, 1963). 

It has been suggested that wheat arabinoxylans are heterogeneous and that it is 

difficult to assign them a single structure (Izydorczyk and Biliaderis, 1995). 

Edwards et al. (2003) suggest however, that the distribution of the arabinose 

substituents along the backbone is probably as important as the extent of the 

substitution, as it will affect the conformation of the chain and therefore the ability 

of the arabinoxylans to interact. They also found that although there is a large 

amount of structural heterogeneity among cereal arabinoxylans, recent studies 

would suggest that the distribution of the arabinosyl residues along the xylan 

backbone is non-random. Edwards et al. (2003) went on to propose a structure for 

arabinoxylan in wheat bran this is shown in Figure 2.6. 
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Figure 2.6 The Proposed Structure for Arabinoxylans of Wheat Bran (Edwards et 

al., 2003). 

Arabinoglucuronoxylans contain both arabinose and uronic acids. The 

hemicelluloses from the pericarp of wheat bran contain both arabinose and xylose, 

in addition to D-Glucuronic acid and its 4-0-methyl derivative (Schuerch, 1963). 

2.1.4.2 Mannans 

Glucomannans may be present in wheat cell walls, as some residues of glucose 

and mannose have been isolated after extraction with concentrated alkali, 

However, if present at all, they will account for only a small percentage of wheat 

endosperm and aleurone cell walls. 

2.1.4.3 ~-Glucans 

~-Glucans are found in the endosperm and aleurone cell walls of wheat. They 

consist of linear chains of ~-glucosyl residues joined by (l~3) and (l~4) 

glycosidic linkages (Fincher and Stone, 1986). 
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2.1.5 Proteins 

Protein is known to be present in the aleurone layer (Amrein et al., 2003). The 

aleurone cells have thick walls inside which protein bodies are densely packed 

(Autio, 1996), the cell wall matrix may account for the low digestibility of protein 

in wheat bran (Saunders et al., 1972). It has been shown that protein digestibility 

of the aleurone cells increases once the walls are physically broken (Saunders et 

al., 1972). The proteins in the aleurone layer are albumins and globulins, hence 

they are water or salt soluble. The aleurone layer is the main storage location for 

amylases, proteases (for storage proteins) and hemicelluloses (Laszity, 1999). 

2.1.6 Pectin 

Wheat bran also contains pectic substances (Hwang et al., 1993). These are 

thought to consist of linked units of D-galacturonic acid, D-galactose and L

arabinoses (Stephen, 1983). 

2.1.6.1 Arabinogalactans 

These polymers have a galactose backbone with arabinosyl branches. They are 

also water soluble and form part of the pectic substances (Southgate, 1995). 

2.1.6.2 Galacturonans 

Galacturonans have linear backbones formed by galacturonic acid residues, they 

are a 1 ~ 4 linked and are soluble in water. These polymers are the major part of 

pectic substances and are found in the middle lamellae (Southgate, 1995). The 

pure polymer is rare in nature, most have rhamnose residues at intervals along the 

chain and are known as "Rhamnogalacturonans". 

2.1.7 Lignin 

Lignin is the second most abundant renewable material on Earth, second only to 

cellulose and is the most abundant renewable aromatic substance (Kirk and 

Farrell, 1987). It is present in most plant tissues (Sarkanen, 1963) and is the third 

major component in the wood cell wall (Farmer, 1967) where it is interspersed 
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with hemicelluloses to form a matrix which surrounds the cellulose microfibrils 

(Kirk and Farrell, 1987). Lignin is present in wheat bran and as Table 2.2 shows, 

it accounts for 4.3% by weight of the bran. In wood it is the major constituent of 

the middle lamella (Farmer, 1967; Kirk and Farrell, 1987) which forms the 

boundary of adjacent cells (Farmer, 1967). It protects the cellulose and 

hemicelluloses in the plant cell wall from enzyme attack (Kirk and Farrell, 1987). 

Lignification is a process where hydrophobic lignin replaces water in the cell wall, 

encrusting cellulose, other polysaccharides and protein and primary cell wall. This 

wood-like substance results in cells with extra strength and makes them 

impenetrable to water and enzymes (Iiyama et aI., 1994). The deposition of lignin 

will over fill the spaces between the cell material and therefore causes the cell 

wall to thicken and swell (Walker, 1993). Lignification is an irreversible process 

which will stop the living functions of the cell by the time the process is 

completed (Sarkanen, 1963). Plant lignins can be separated into three groups, 

softwood (gymnosperm), hardwood (dicotyledonous angiosperm) and grass and 

annual plant (monocotyledonous angiosperm) (Pearl, 1967). They contain 

different base units but the term "lignin" is used for the family of related 

polymers (see Figure 2.7), (Kirk and Farrell, 1987). 

Phenylpropane unit. 

Jro-i > 
CH,O 

Gualacyl 

c:n 
HOP 

CH,O 

Syrln~'l 

Figure 2.7 The Structure of Some Moieties Isolated from Lignin (Wenzl, 1970). 
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Studying the chemical structure of lignin is difficult as it is insoluble (Farmer, 

1967) and can not be easily hydrolysed into smaller units. Studies on the structure 

of lignin are often based on the modified fragments which have been extracted 

from finely ground wood (Walker, 1993). 

No regular structure has been established for lignin (Walker, 1993). It is a 

polymeric material with a basic structural unit built up from the phenolpropane 

nucleus i.e. an aromatic ring with a three carbon side chain (Farmer, 1967). 

Lignin is amorphous which means that the structure can only be described 

generally and depends on the way the basic monomer units are linked together. 

These linkages can be (see Figure 2.8); 

Head to tail. For example linkages between C4 and a side chain carbon of 

another unit, or a carbon to carbon C5 to Cf3 linkage. 

Head to head. For example linkages between the a and a' f3', or y' positions and 

a-a and f3-f3 carbon linkages. 

Tail to tail. For example C5-C5linkages (Walker, 1993). 
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Figure 2.8 Some linkages in Lignin (Wenzl, 1970). 

The question as to whether lignin-carbohydrate bonds occur puzzled investigators 

for some time. It was known that there was lignin in the cell and also 

carbohydrate, but it is impossible to extract carbohydrate from unhydrolysed 

wood by using carbohydrate solvent cuprammonium hydroxide and also 

impossible to extract more than a trace of lignin using well known lignin solvents. 

Other methods isolated compounds that contained no free sugars, then liberated 

both lignin and sugars after further hydrolysis. 

More recent postulations are that the surfaces of the lignin are associated with and 

cover the wall polysaccharides and proteins giving the chance for covalent cross

linking to occur. Three types of cross-links are shown in Figure 2.9 (Iiyama et aI., 

1994). 
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Figure 2.9 Possible Covalent Cross-Links Between Polysaccharides and Lignin 

(Iiyama et al., 1994). 

2.1.8 Inorganic Materials 

Plant cell walls usually contain some inorganic materials, calcium, potassium and 

magnesium for example (Southgate, 1995). 

2.1.9 Fibre 

2.1.9.1 Introduction 

The definition of the term fibre has changed over the years. For many years the 

fibre content was expressed as "crude fibre" which was measured by a test 

referred to as the Weende method. This method was used to analyse fibre in 

animal forages in the United States for many years (Trowell, 1985). 

Unfortunately, this test results in the loss of about fifty percent of the cellulose 
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and eighty five percent of the hemicellulose during the extraction process and 

therefore the measurement is widely considered to be inaccurate (Trowell, 1985). 

Some workers have preferred to split plant sources into two groups, the digestible 

group is referred to as 'available carbohydrates' and the indigestible groups are 

'unavailable carbohydrates'. The former are susceptible to the endogenous 

enzymes of the upper digestive systems of humans to produce energy within the 

body. Glucose, fructose, sucrose, lactose, maltose, raffinose and stachyose are 

available carbohydrates, as are starch and dextrins (partly hydrolysed starch 

molecules) (Trowell et aI., 1985). 

Some starch, referred to as 'resistant starch,' is not susceptible to enzymic attack 

and is therefore not part of the available carbohydrates as defined above (lames, 

1995). As discussed later, resistant starch has to be taken into account in methods 

for analysing dietary fibre. 

Unavailable carbohydrates are not susceptible to the actions of endogenous 

enzymes (lames, 1995). It is now known that these polysaccharides can be 

fermented by bacteria in the large bowel and will contribute a small amount of 

absorbed energy (Trowell et aI., 1985) so the term 'unavailable carbohydrates' is 

essentially obsolete. The term mainly used today is 'dietary fibre' which is 

defined as the sum of the polysaccharides and lignin which are not digested by the 

endogenous secretions of the human gastrointestinal tract, this fraction has a 

variable composition and is made up of different types of polysaccharides 

(cellulose, hemicelluloses and pectic substances) and the non carbohydrate lignin 

(Trowell, 1985). 

This definition has however not been universally accepted and variations of it 

exist in the literature. More importantly, without unanimous agreement as to the 

definition of what fibre is, it is difficult to make sense of some experimental 

measurement, particularly where there are large discrepancies in the protocols. 
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2.2 Enzymes 

Enzymes are very effective and highly specific biocatalysts. Enzymes are 

proteins, or to be more precise, their main components comprise proteins. 

Generally, one enzyme will catalyse the reaction of one, or a pair of substrates 

(Simon, 1996). The enzyme will react with the substrate at specific areas referred 

to as active sites see Figure 2.10. 

Subst ... lte 
1110Iecule" 

Enzynlc 
1I101ecule 

Figure 2.10 A Simplified Diagram of an Active Site (Garrett and Grisham, 1995). 

The enzyme (E) will bind with the substrate (S) to give an enzyme substrate 

complex (ES), this complex is usually unstable and decomposes to give a product 

whilst regenerating the free enzyme. 

E+SHES~E+P (2.1) 

The enzyme-substrate interaction has been likened to the operation of a key in a 

lock to explain the high levels of specificity which some enzymes display. 
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2.2.1 Enzyme Inhibition 

Some compounds are able to inhibit the activity of enzymes. This manifests itself 

by a decrease in the rate of the reaction (Garrett and Grisham, 1995). There are 

two different kinds of inhibition, reversible and irreversible. 

2.2.1.1 Reversible Inhibition 

Reversible inhibition can be sub-divided further into competitive, non-competitive 

and uncompetitive inhibition. 

Competitive Inhibition 

Where competitive inhibition takes place an inhibitor (l) can bind to the enzyme at 

the active site and thus competes with the substrate for this site. The substrate and 

the inhibitor are likely to have a similar structure allowing them both to bind 

(Garrett and Grisham, 1995). In the lock and key analogy described earlier, for a 

different key to fit the lock, it must be similar in shape to the key made for the 

lock (Figure 2.11). The reactions that occur when competitive inhibition takes 

place comprise those described above (Equation 2.1). In addition a reaction 

where the inhibitor binds to the enzyme must also be considered (Equation 2.2). 

E+I H El (2.2) 

Increasing the substrate concentration decreases the effects of inhibition, as the 

increased substrate means it is more likely to be a substrate molecule rather than 

an inhibitor which binds with any given enzyme (Garrett and Grisham, 1995). 

22 



Literature Review 

Figure 2.11 A Simple Representation of Competitive Inhibition (Levenspiel, 

1999). 

Non Competitive Inhibition 

In non-competitive inhibition the inhibitor can react with both the enzyme and the 

enzyme-substrate complex. As it can react with both, it can be concluded that the 

inhibitor is not binding to the same site on the enzyme as the substrate. However, 

in binding to the enzyme the inhibitor reduces the catalytic power and the ES 

substrate cannot form, or decompose to give the products at the normal rate 

(Garrett and Grisham, 1995). The reactions that take place include those 

previously described (Equations 2.1 and 2.2) but also the following ones: 

EI+S HESI (2.3) 

ES+I HESI (2.4) 
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Figure 2.12 A Representation of Non-competitive Inhibition (Levenspiel, 1999). 

Uncompetitive Inhibition 

In uncompetitive inhibition, the inhibitor binds to the enzyme-substrate complex 

which gives a complex which can not undergo a reaction to produce the product. 

In this case inhibition may increase when the substrate concentration is increased 

(Lehninger, 1975). The reactions concerned are the same as those shown by 

Equations 2.1 and 2.4. 

2.2.1.2 Irreversible Inhibition 

In irreversible inhibition the inhibitor comes into contact with the enzyme and 

attaches covalently, modifying the enzyme so that it can no longer bind with the 

substrate in the manner for which it was to be used. Enzyme activity will 

decrease over time. In this case the inhibition reactions are the same as those 

described by Equations 2.2 and 2.4 but the reaction is irreversible (Garrett and 

Grisham, 1995). 

2.2.1.3 Activation energy 

Any reaction can be described by a reaction coordinate diagram which is a picture 

of the free energy changes. The free energy of a system is plotted against the 

progress of the reaction. Each reactant has an energy level called the ground state, 

to get from one ground state to another via a reaction may require an increase in 

the free energy of the system even if the ground state of the product is less than 
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the ground state of the reactant. This energy is required for alignment of reacting 

groups, qond rearrangements and other transformations required for the reaction 

to proceed in either direction. Figure 2.13 shows the ground states for the reaction 

(2.5) 

the increase in energy required can be seen. For the reaction to go ahead the 

molecules must have an energy level raised to the top of the free energy peak. At 

this point both the forward and the backward reactions can and are equally likely 

to take place. This point is the transition state. The difference between the 

ground state and the transition state is called the activation energy. The higher the 

activation energy the slower the reaction will be (Lehninger, 1975). 

Transition state (:l:) 

.... 

L 
J.G~....:,.s 1 ~ 4.-

---:'"- "--"------l:1GfO 
> " \; ---------p 

G;round 
state 

Reaction coordinate 

Figure 2.13 Reaction Coordinate Diagram (Lehninger, 1975). 

Using a cataIylst, such as an enzyme is a way of altering the reaction pathway. If 

an enzyme is used to catalyse the reaction described above the following equation 

describes the reaction. 
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E+S ~ ES ~ EP ~ E+P (2.6) 

In this case the reaction pathway is altered. The activation energies required to 

fonn ES then EP and finally E+S, is low compared to the uncatalysed activation 

energy and therefore the reaction will happen faster. This is shown in Figure 2.14 

(Lehninger, 1975). 

Transition state (:t)' 

llG';f. 
uncat 

, , , -,-------

p 

Reaction coordinate 

Figure 2.14 Reaction Coordinate Diagram Comparing Enzyme Catalysed and 

Uncatalysed Reactions (Lehninger, 1975). 

2.2.1.4 Michaelis-Menten Kinetics 

For most enzyme systems the variation in the initial reaction rate can be described 

by Michaelis-Menten kinetics. If it is assumed that the pH, non-substrate 

components and buffer have no effect on the reaction, then the following equation 

describes the system 
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(E)+ (S) H (ES) -) (E)+ n{P) (2.7) 

where: (E) = enzyme concentration 

(S) = initial substrate concentration 

(ES) = cellulose-cellulase complex concentration 

n = number of moles of product 

(P) = product concentration 

The steady state rate of the reaction v is given by: 

v = V(S) (2.8) 
(S)+ Km 

where: V = K3 (Eo) 

(Eo) = initial concentration of enzyme 

(S) = initial concentration of substrate 

= Michaelis constant = K2 + K3 
KI 

Km represents the substrate concentration at which half of the maximum rate. 

(Vm) is reached under the experimental conditions (Ghose and Das, 1971). 
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v 

-----------------------------------------

s 

Figure 2.15 The Hyperbolic Relationship Between Initial Reaction Rate and 

Substrate Concentration of a Simple Catalysed Reaction (Yudkin and Offord, 

1973). 

If the Equation 2.6 is linearised 

1 Km 1 1 -=-.-+-
V V (S) V 

(2.9) 

A plot of l/v against 11(S) (a Lineweaver-Burk plot) is a straight line with a 

gradient of K,,/V and an intercept of JIV. The gradient is dependent on the 

reaction mechanism and any inhibition (Ghose and Das, 1971; Yudkin and 

Offord, 1973) and is steeper for inhibited reactions. The value where the line 

crosses the x axis = (-lIKm). 
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Figure 2.16 Lineweaver-Burk Plot (Yudkin and afford, 1973). 

2.2.2 Enzymes in the Feed Industry 

In the 1880s Takamine developed the idea of ingesting an enzyme to help aid 

digestion. His enzyme Takadiesterase was the first relatively sophisticated 

commercial enzyme to be produced (Dunne, 1991; Gharpuray et al., 1983). The 

enzyme industry is now highly sophisticated and enzymes are used throughout the 

food and beverage industry, although Dunne claimed in 1991 that the overall 

successful usage of enzymes in the food, beverage, and pharmaceutical industries 

has yet to be realized in the feed industry. 

Between the late 1980s and mid 1990s, feed enzyme supplements specifically for 

animal diets became more readily available. In this time feed enzyme 

supplementation increased, but mainly in pig and poultry diets (Officer, 2000). 

Certainly the literature on the subject seems biased towards these areas of study 

and still reflect Takamine's original idea of adding enzymes directly to feed as an 

aid to digestion. 
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The fibre content of a feedstuff will ultimately limit its productive value 

(Hutcheson, 2002). The carbohydrases produced in the digestive tracts of animals 

will not be able to completely degrade the complex mixtures of carbohydrates 

typically found in commercial feed (Simon, 1996). Ruminant animals (i.e. those 

which have more than one stomach) consume diets which are high in fibre and 

which consist mainly of cellulose, hemicellulose and lignin. Enzymes produced 

by several predominantly ruminal bacteria can attack the xylan molecules in the 

fibre and release sugars which are then fermented by other bacteria (Martin et aI., 

1998). Monogastric animals can not utilize fibre. Enzymes can be used to 

degrade specific bonds in the feedstuff that would not be broken down by 

endogenous enzymes in the animal (Hutcheson, 2002). They act at a molecular 

level but they can also generate changes in the microstructure and the functional 

properties of cereal foods (Poutanen, 1997). In this way, the enzymes will release 

more nutrients which the animal can then use (Hutcheson, 2002). This would 

obviate the need to add such nutrients exogenously. 

It is also believed that the water holding capacity of soluble and insoluble fibre 

fractions in grain and grain products, can result in water-soluble nutrients being 

trapped in the fibre matrix and therefore not being available for digestion. If the 

fibre matrix is disrupted by enzymes, these nutrients may be released (Partridge 

and Hruby, 2002). 

When choosing the enzyme for a particular application, it is important to match 

the enzyme activity and the feed composition and target the parts of the food 

which will be harmful, or of no nutritional value to the animal without enzyme 

treatment. If a foodstuff can be treated in such away, then there is the possibility 

of using cheaper ingredients which were previously unacceptable (Officer, 2000). 

As previously described a large amount of wheat bran is cellulose. Trichodenna 

reesei (formerly Trichodenna viride) has been found to be amongst the most 

highly effective fungi for hydrolysing cellulosic materials, producing at least five 
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different cellulases, two cellobiohydrolases and three endoglucanases (Medve et 

aI., 1994). These components work to provide a synergistic effect. Converse and 

Optekar (1993) measured the degree of synergy which is defined as the ratio of 

glucose produced when both cellobiohydrolase and endoglucanase enzyme 

components are present to the sum of the glucose produced when they are present 

individually. It is widely accepted that the endoglucanase breaks internal 

glucosidic bonds in the chain, after which the cellobiohydrolase cleaves cellobiose 

units from the nonreducing ends of the chain (Medve et aI., 1994). The degree of 

synergy is less at lower enzyme concentrations as the number of chain ends 

available for the cellobiohydrolase is sufficient for the reaction to continue. As 

the enzyme concentration increases, the cellobiohydrolase is more dependant on 

the endoglucanase to produce more chain ends for the reaction, therefore the 

synergy of the system increases (Converse and Optekar, 1993). At very high 

enzyme concentrations there is a decrease in the degree of synergy as the enzymes 

are acting competitively against one another (Converse and Optekar, 1993). 

Results showing the benefit of adding enzyme preparations to ruminant feed are 

inconsistent (Bhat, 2000). Some researchers report improvements in feed 

digestibility, yet others report no difference. Variable responses have been found 

when feed products have been given to animals of the same age in a similar diet. 

This is either due to variability in the enzyme formulation or in the feedstuff itself 

(Officer, 2000). In regard to plant feedstuffs, Dunne (1991) reported that the 

complex structure of plant cell walls and the variability in the composition from 

plant to plant makes the job of enzymic hydrolysis very difficult, this may account 

for the inconsistency of research results. 

By-product feeds have been used extensively in dairy cattle rations in many parts 

of the world as economical substitutes for corn and soybean meal. There is 

increasing interest in the nutritive value of by-product feeds as nutritionists seek 

to manipulate undegraded intake protein and non-fibre carbohydrate 

concentrations of dairy cattle rations (Batajoo and Shaver, 1998). 
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Work has previously been carried out by Waszczynskyj et al. (1981) using 

cellulase, pectinase and hemicellulase to break down wheat bran in a pre

treatment step for a process to extract protein using alkaline conditions. Their 

report confirmed that there was potential for carbohydrases to increase the yield of 

intracellular constituents from a solid substrate such as wheat bran. Weinburg et 

al. (1995) showed that cellulase alone was not effective at hydrolysing alfalfa cell 

walls and a mixture containing hemicellulase and pectinase was necessary. 

Bedford (2000) in his work concluded that the enzymes used must have broad 

hydrolytic activity, as the carbohydrates comprising the cell wall structures and 

the indigestible starch/protein complexes are extremely heterogeneous. 

Enzyme inhibitors have been reported in several cereal grains, for example protein 

inhibitors of amylases are naturally present in the endosperm. Rouau and Surget 

(1998) showed that there is a water extractable and thermo-Iabile compound 

which inhibits extrogenous hemicellulases present in wheat grains, especially in 

the endosperm. 

Enzymes used in processing feed must undergo toxicity testing as specified by EU 

regulations, Council Directive 70/524IEEC (The Commission 2002). Issues 

concerned are the evaluation of toxicity to the animal and the consumer via 

residues in human food (Simon, 1996). 

One disadvantage of using enzymes in feed processing is their high cost. 

According to (Ishihara et aI., 1991) enzymes make up 60 to 80 % of the total 

process cost. Process costs need to be tightly controlled in instances where it is 

proposed to treat low-value by-products with enzymes. This is because high 

processing costs will eliminate the advantages of using low value by-products. 

Slow reaction kinetics and the heterogeneous nature of reactions in solid-liquid 

systems renders the process an unlikely candidate for continuous processing. In 

addition, the mechanisms of hydrolytic reactions in heterogeneous systems are 

difficult to model. 
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2.2.3 Enzyme Kinetics. 

The hydrolysis of cellulose has been studied by many workers and a number of 

models for the kinetics of the reaction have been proposed. 

Huang (1975) claimed that the initial absorption of the cellulase from Tricodenna 

reesei onto the cellulose is fast, but that the subsequent reaction is slow, after 

which the enzyme will gradually be released back into the liquid. The slow 

kinetics lead to high processing costs and this makes enzymic treatment 

uneconomic (Gan et aI., 2002b; Gharpuray et aI., 1983). The slow reaction rates 

also render the process unsuitable for continuous reactor systems, also high 

enzyme concentrations are needed to achieve high cellulose conversions (Eriksson 

et aI., 2002). 

In the hydrolysis of cellulose by cellulase, it has been observed that the reaction 

rate decreases rapidly over time. Initially there is a rapid release of sugars, this is 

then followed by a second phase in which the sugar production follows a 

declining rate (Ortega et aI., 2001). This decrease in reaction rate has been the 

subject of much discussion and a number of different theories have been proposed 

to explain it. 

Some explanations focus on the structure of the substrate. As previously 

discussed in section 2.1.3, cellulose in plant materials exists in two forms, 

amorphous and crystalline. Katz and Reese (1968) suggested that in the initial 

stages of the reaction the more susceptible amorphous cellulose is hydrolysed first 

to produce reducing sugars, leaving the more resistant crystalline cellulose intact. 

The more resistant crystalline material will then be hydrolysed at a reduced rate. 

This phenomenon was demonstrated by Desai and Converse (1997) who 

hydrolysed cellulose for a given period of time, then contacted the partly 

hydrolysed cellulose with fresh enzyme (non-deactivated). A reduced initial rate 

of hydrolysis was observed supporting the view that the remaining cellulose was 

more resistant to enzymic attack. However, the rate of reaction in this experiment 
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was higher than that of an experiment allowed to continue with the original 

enzyme solution, this lead them to conclude that the loss of substrate reactivity 

was not the principle cause for long residence times required for complete 

conversion. 

Caufield and Moore (1974) indicated that milling increased the susceptibility of 

crystalline and amorphous cellulose to enzymic attack, but that the digestibility of 

the crystalline fraction was improved more than that of the amorphous fraction, 

suggesting that the increase in the digestibility was probably due to a decrease in 

particle size. The structural features of the cellulose are probably interIinked, thus 

physical pre-treatments to reduce the crystallinity will inevitably also increase the 

surface area so it is difficult to find a meaningful relationship between an 

individual structural feature and the hydrolysis rate without taking all the physical 

characteristics into account (Gharpuray et al., 1983). 

Product inhibition of cellulases has been studied by a number of workers (Gan et 

al., 2002b; Ghose and Das, 1971; Howell and Mangat, 1978; Huang, 1975; Ortega 

et al., 2001). Cellobiose, an intennediate product in the production of glucose 

from cellulose, inhibits the cellulase as does glucose. Medve et al. (1998) 

proposed that the enzyme binds to the surface of the cellulose and successively 

cleaves off cellobiose units from a single cellulose chain without being released 

from the enzyme substrate binding site. Gan et al. (2002b) suggest that the 

enzyme adsorbs onto the surface of the cellulose substrate and then desorbs again 

after completing it's catalytic action 

Movaghamejad et al. (2000) modelled enzyme action by using a shrinking particle 

model, this decreases the amount of binding sites available on the surface of the 

cellulose. This shrinkage will continue until there are no available binding sites 

on the surface at which point the reaction ceases. 
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The time dependent change in the molecular weight of the substrate coupled with 

the observed loss of enzyme activity, render it difficult to model cellulase action 

mathematically (Gan et aI., 2002a). Many workers have assumed Michaelis

Menten kinetics (Gan et aI., 2002b). The models of cellulose degradation 

proposed differ in the assumptions made relative to the structure of the substrate, 

product inhibition and enzyme stability, however Zhang et al. (1999) suggest that 

this approach is inadequate at describing how cellulase digests insoluble cellulose. 

Another factor adding to complexity of the models is the synergism of the 

components in the cellulase. The synergistic effect of the cellulases varies 

depending on the cellulase mixture and the substrate composition (Ortega et aI., 

2001). Despite the level of interest in enzymic cellulase hydrolyses the 

mechanism of cellulase action still remains unknown (Ortega et aI., 2001). 

2.2.3.1 Substrate Inhibition 

It is generally observed that for relatively low substrate concentrations the initial 

rate of an enzyme reaction will increase until a maximum is reached. At high 

substrate concentrations a decrease in rate is often observed. This phenomenon is 

known as substrate inhibition (palmer, 1993). This could occur for several 

reasons, firstly there could be two types of substrate binding sites on the enzyme, 

the first substrate molecule binds to the enzyme, then a second also binds, this 

forms a dead end complex (Palmer, 1993). Secondly, high levels of substrate 

could generate an altered reaction pathway, causing partial (or hyperbolic) 

substrate inhibition. In this case, an infinite amount of substrate will give a 

reduced, but finite rate of reaction. Thirdly, the substrate could act as an allosteric 

inhibitor (Cleland, 1979), binding at a different site to usual changing the reaction 

characteristics. The plot of the initial rate of the reaction against the initial 

substrate concentration gives a sigmoidal plot (Palmer, 1993), with either partial 

or total inhibition (Cleland, 1979). Fourthly, a high level of substrate could cause 

inhibition by an increase in ionic strength or a higher concentration of toxic 

counterions (Cleland, 1979). 

35 



Literature Review 

2.2.3.2 Product Inhibition. 

Mandels and Reese (1963) found that of 36 cellulases they tested, most were 

competitively inhibited by cellobiose. Glucose was also shown to inhibit 

cellulase. Susceptibility to inhibition by the end products depends on the source 

of the cellulase (Ghose and Das, 1971). For finely milled and heat-treated 

cellulose the efficiency of Trichoderma reesei is reduced by 40% in the presence 

of 30% glucose (Ghose, 1969). 

2.3 Pretreatment of Lignocellulosic Material 

One of the main problems in using lignocellulosic materials as a fermentation 

substrate is their resistance to hydrolysis. Over the last twenty years, many 

different methods of pretreating lignocelluloses have been developed and 

evaluated to assess whether they can enhance the enzymic hydrolysis of 

carbohydrates in lignocelluosic feeds (Belkacemi et aI., 2002). As previously 

discussed in section 2.1, lignocelluloses comprise a matrix of crystalline and 

amorphous' cellulose and hemicellulose which is closely associated with lignin. 

This configuration and composition of these constituents confer protection from 

enzymic attack. Pretreatment methods which disrupt the highly ordered cellulose 

structure, reduce the lignin content and increase the surface area available for 

hydrolysis, will increase the rate and degree of hydrolysis (Fan et aI., 1982). 

There are various forms of pretreatment and these are classified as physical, 

chemical and biological pretreatment (Fan et aI., 1982). 

2.3.1 Physical Pretreatment 

2.3.1.1 Steam Explosion 

The first steam explosion experiments were carried out by (Mason, 1928). It is 

now classed as one of the major processes for pretreating cellulose (Wood and 

Saddler, 1988). Steam explosion is most often used in the wood industry, wood 

chips, or shavings are treated with pressurized steam. This is then quickly 
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released through a valve (Josefsson et aI., 2002). During the steam explosion 

process the structure of the lignocellulosic material disintegrates, the 

hemicellulose is partially hydrolysed to sugars and the lignin melts, increasing its 

susceptibility to enzyme hydrolysis (Vlasenko et aI., 1997). Unfortunately, side 

reactions during lignin degradation may form toxic compounds (Belkacemi et aI., 

2002). During steam pretreatment the pentoses and hexoses formed from 

hydrolysed hemicellulose and cellulose may be degraded to furfural and 5-

hydroxymethylfurfural, levuIIinic acid and formic acid together with other 

substances such as aliphatic acids, furan derivatives and phenolic compounds. 

The latter three could inhibit subsequent fermentation (Soderstrom et aI., 2003). 

Under very severe conditions sugar degradation during pretreatment causes a loss 

of substrate, as well as undesirable by-products (Soderstrom et aI., 2003). 

The most important operational conditions in steam explosion pretreatment are 

time, temperature and chip size (Negro et aI., 2003). The severity of the steam 

pretreatment (Ro) allows a comparison of steam pretreatment compared to a 

standard rate. It is given by the following equation of Overend and Chomet 

(1987). 

Ro = exp[(Tr -I;,)Jxt 
14.75 

Where: 

Ro = severity 

t = time (mins) 

Tr = temperature of reaction (OC) 

Tb = base temperature (i.e. 100°C) 

(2.10) 

Equation 2.8 was modified by Heitz et aI. (1987) to take into account slow 

indirect heating whilst the steam explosion chamber reaches temperature. It was 

predicted that the long time taken to reach the stable temperature (30-60 minutes) 
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would have a significant effect compared to the short time at which the material is 

held at a constant temperature (0-3 minutes). 

The modified equation is given as: 

Ro = fo exp dt t (T -100) 
14.75 (2.11) 

Where 

Ro = modified severity 

T = temperature of the reaction (OC) 

t = time of the reaction (s) 

An increase in crystallinity has been observed in steam exploded samples and was 

attributed to the degradation and dissolution of easily accessible components of 

lignocellulose i.e. hemicellulose and lignin thus resulting in a product with 

increased concentration of crystallites (Puri, 1984). 

Femandez-Bolanos et al. (2001) reported that pretreating olive stones by steam 

explosion converted hemicelluloses into soluble carbohydrates and that the 

susceptibility to hydrolysis with cellulase improved. Dekker and Wallis (1983) 

found steam exploded bagasse produced a material highly susceptible to enzymic 

hydrolysis by Trichoderma reesei. 

Josefsson et al. (2002) found that steam pretreating aspen wood gave a resulting 

material with lower molecular weight cellulose with increased time and 

temperature of the pretreatment. The cellulose content increased with increased 

temperature and explosion time which was interpreted as a consequence of the 

removal of lignin and hemicellulose (Josefsson et aI., 2002). 

Some workers have carried out acid-catalysed steam explosion and ammonia fibre 

explosion of wheat straw. They found that both methods of pretreatment 
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increased the enzymic digestibility of the straw (Vlasenko et aI., 1997). It was 

reported that the acid-catalysed steam explosion reduced the amount of 

hemicellulose by 2.1 times, but the ammonia fibre explosion treatment only 

reduced the hemicellulose content slightly (Vlasenko et aI., 1997). 

Saddler et al. (1982) reported that air drying reduced the enzymic hydrolysis of all 

steam exploded wood samples as the structure of the material shrank and 

collapsed and thus became less accessible to the enzyme. The contraction reduces 

the internal surface area of the substrate (Femandez-Bolanos et aI., 2001). They 

also determined that grinding samples with a pestle and mortar increased the 

accessibility of the samples (Saddler et aI., 1982). 

2.3.1.2 Milling and Grinding 

Lignocelluloses can be ball milled to reduce both the particle size, the degree of 

crystallinity and the amount of polymerisation (Fan et aI., 1982). 

2.3.2 Chemical Pretreatment 

2.3.2.1 Hydrogen Peroxide 

Hydrogen peroxide is an oxidizing agent which can be use to pretreat 

lignocelluloses. Oxidizing agents penetrate into the cellulose and then oxidize 

causing structural modification (Fan et aI., 1982). With most oxidants the reaction 

is confined to the amorphous regions of the cellulose (Han and Callihan, 1974). 

Hydrogen peroxide releases lignin from the lignocellulose matrix (Gould, 1985b), 

the hemicelluloses are also soluble in H202 if the pH is above 11.5 (Curreli et al., 

1997). Gould (1984) reported that after hydrogen peroxide treatment of wheat 

straw, enzyrnic hydrolysis with Trichoderma reesei yielded glucose with an 

efficiency of almost 100%, based on the cellulose content of the insoluble residue. 

He also reported that the straw loses some of its integrity during the pretreatment 

and that the changes observed in the physical and morphological properties of the 
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cellulose fibres, suggest that some of the glucose units may also be modified 

during the treatment. The percentage of glucose units affected must be small due 

to the large glucose yield. He went on to predict that a change in a small amount 

of the glucose units would be enough to disrupt the hydrogen bonding pattern 

between the chain resulting in an open structure which could not reform a 

crystalline structure. This loss in integrity is accompanied by a large increase in 

the water absorbency of the residue (Gould, 1985b). 

Alkaline peroxide pretreatment are most effective with monocotyledonous plants, 

especially members of the family Graminae (cereal grasses, ego wheat, rye, oats). 

One difficulty with this pretreatment is that the solubilised hemicellulose will be 

lost in the liquor and will therefore be more difficult to recover. For feed 

applications it may be beneficial to keep both the hemicellulose and the cellulose 

(Gould, 1985a). 

Hydrogen peroxide pretreatment occurs at a fairly rapid rate at room temperature 

and so is an effective pretreatment method which does not require a costly energy 

input. Furthermore, the lignin degradation products released are not toxic in the 

subsequent enzyme saccharification (Gould, 1984). 

2.3.2.2 Sodium Hydroxide Treatment 

Treating lignocellulosic materials with dilute sodium hydroxide will cause the 

material to swell, thus increases the internal surface area, decreases the degree of 

polymerisation, decreases crystallinity, disrupts the lignin structure and separates 

the linkages between the lignin and carbohydrates (Fan et aI., 1982). All of these 

effects will enhance the enzymic hydrolysis. 

2.3.2.3 Acid Treatment 

Dilute acid can be used to pretreat lignocellulosic materials. There are two types 

of dilute acid pretreatment; high temperature (greater than 160°C) continuous 
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flow for low solids (5-10%) loadings, or low temperature (less than 160°C) batch 

process for high solid loadings (10-40%) (Sun and Cheng, 2002). 

Choteborska et al. (2004) found that first treating wheat bran to eliminate residual 

starch, then pretreating using dilute sulphuric acid increased the amount of sugars 

released during enzymic hydrolysis. They reported that the best results were 

achieved using 1 % sulphuric acid at l30°C for 40 minutes giving a sugar yield of 

52.1g/100g of substrate. Moreover, under these conditions there was only a low 

level of furfural and 5-hydroxy-methyl-2-furaldehyde produced, these compounds 

are toxic to the enzymic hydrolysis as previously discussed in section 2.3.1.1. 

Other acids also used for dilute acid pretreatment of lignocelluloses include 

hydrochloric acid and phosphoric acid (Fan et aI., 1982). 

Although dilute acid pretreatment increases the cellulose hydrolysis it is usually 

more expensive than steam explosion and the pH has to be neutralized 

downstream prior to enzymic hydrolysis (Sun and Cheng, 2002). 

2.3.2.4 The Organosolv Process 

This uses organic or aqueous organic solvent mixtures sometimes with an acid or 

an alkali catalyst to disrupt the internal lignin and hemicellulose bonds (Sun and 

Cheng, 2002). The solvents mostly used are acetone, methanol, ethanol, ethylene 

glycol, triethylene glycol and tetrahydrofurfuryl alcohol (Duff and Murray, 1996). 

The solvents need to be removed from the process as they may be inhibitory to the 

enzymes in the enzymic hydrolysis step (Sun and Cheng, 2002). 

The organsolv process gives three fractions; dry lignin, aqueous hemicellulose and 

cellulose. The cellulose fraction is fairly susceptible to enzymic hydrolysis, which 

increases with the removal of hemicellulose as this opens the pores in the 

cellulose structure (Duff and Murray, 1996). 
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2.3.3 Biological Pretreatment 

Biological pretreatment uses micro-organisms to degrade the lignin and 

hemicellulose. White, brown and soft rot fungi are used. Brown rot fungi mainly 

attacks cellulose whilst white rot and soft rot attack lignin and cellulose. A 

disadvantage with this type of pretreatment is the slow rate of hydrolysis (Sun and 

Cheng, 2002). 

2.4 Extrusion 

Extrusion is used to either cook or form foods into products having particular 

characteristics such as novelty shapes. This process generally occurs at high 

temperatures for a short period of time, and is capable of generating temperatures 

of up to 180°C, pressures up to 2000 psi and relatively high shear rates. 

Residence times are typically between three and five minutes (Sharma et aI., 

2000). 

On entering the extruder, the feed gradually loses granular identity under the 

influence of shear. The temperature and pressure increase rapidly, then the 

product is forced through a die which shapes the final product (Figures 2.15 and 

2.16) (Sharma et aI., 2000). After the material is fed through the die, it expands 

rapidly and loses some moisture due to the release in pressure (Harper, 1981). 

The process will denature proteins including many natural enzymes and gelatinise 

starch (Wang et aI., 1993). Proteins denature, or change their structure at around 

60 to 70°C and starch gelatinises at around 51 to 78°C (Keams, 1999). 

Gelatinised starch forms an elastic, inflatable mass and the whole formulation will 

puff when it is discharged through the die (Williams, 1999). Extrusion will 

inactivate anti-nutritional factors and helps stop bitter flavours and this renders the 

food more palatable and digestible (Williams, 1999). 
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Hopper Heated Barrel 

Die 

Figure 2.17 Diagram of a Single Screw Extruder (Jaluria and Wang, 1999). 

Extruding a product will add texture and shape as desired (Sharma et al., 2000). 

Dog food is sometimes extruded through novelty shaped dies to produce a shaped 

final biscuit, formed into a bone for example. After extrusion, the product is dried 

and it may also be coated with fat, or a gravy powder to add to the palatability of 

the final product (Williams, 1999). Extrusion will allow the size of the product to 

be varied (Stratford, 1996), this allows the producer to cater for animals of all 

sizes. 

Extrusion may be conducted either with single or twin-screw extruders. The 

former are mainly used by pet food manufacturers, as they are simpler 

mechanically and cheaper than twin-screw extruders. However, some difficulty 

with mixing raw ingredients may be encountered in single screw services (Starer, 

1999). For foods with high fat levels (above 17%) a twin-screw extruder should 

be used (Kearns, 1999). Single screw extruders can not process low viscosity 

material (such as that with a high oil content) because the material must stick to 

the screw to be pumped forward (Starer, 1999). 

The goal of the extrusion process is to make a product which has a maximum of 

12% moisture, this will help to avoid spoilage during storage (Kiang, 1999). 

Many extruded dog foods have a shelf life of 12 -18 months which exceeds that 

of some other forms of dog foods (Stratford, 1996). 
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Figure 2.18 Flow Diagram of an Extruder (Brent, 1999). 

2.5 Dog Food and Nutrition 

2.5.1 Food Requirements of the dog 

The diet required by an animal will vary depending on its lifestyle and life stage. 

For example, a working animal, will need a different diet from one who is kept as 

a companion. A pregnant animal will have different requirements to a puppy, or 

young male adult (Burrows, 1988). In all cases a balanced diet is important. 

The food which is consumed by the animal will provide the nutrients for energy 

and materials which can be used for growth or repair of the body (Simpson et aI., 

1993). The nutrients can be split into groups of proteins, fats, carbohydrates 

vitamins and minerals (Simpson et aI., 1993). 

2.5.1.1 Carbohydrates 

There is no known minimum dietary carbohydrate for the dog (Burger, 1988), the 

carbohydrates are mainly used as an energy source, but may also be converted 

into body fat and stored, or used as a material from which the metabolism of other 
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compounds can be started (Simpson et aI., 1993). If a dog is suddenly given a 

large amount of a disaccharide such as lactose or sucrose it may become ill with 

diarrhoea, however low levels of carbohydrates are well tolerated (Burger, 1988). 

2.5.1.2 Proteins 

Protein in the diet is broken into the amino acids and reformed into new proteins 

which regulate the metabolic processes (as enzymes), or as structural proteins 

required for the growth and repair of the tissues. Amino acids can be classed as 

essential or non-essential. Essential amino acids can not be made by the body of 

the animal and must therefore be present in the food. The essential amino acids 

for the dog are shown in Table 2.3. 

Table 2.3 The Essential Amino Acid Requirements of the Dog (Simpson et al., 

1993). 

Amino Acid Amount Required 

(gllOOOKcal of metabolisable energy) 

Arginine 1.37 

Histidine 0.49 . 
Isoleucine 0.98 

Leucine 1.59 

Lysine 1.40 

Methionine + cystine 1.06 

Phenylalanine + tyrosine 1.95 

Threonine 1.27 

Tryptophan 0.41 

Valine 1.05 

Total 11.57 

45 



Literature Review 

2.5.1.3 Fat 

Fat in the food is a concentrated energy source, which makes the food more 

palatable, and provides an acceptable texture (Burger, 1988). 

2.5.2 Dog food 

Dog food is available in several types. Canned dog food is a wet food and has a 

long shelf life, it is very digestible and the nutrients are highly available. Most 

canned dog foods are formulated to provide a balanced diet with sufficient 

amounts of nutrients in relation to energy. In order to derive the recommended 

amount of energy large amounts of this type of food will need to be consumed. 

Therefore, although it is possible to feed a dog solely on canned food they are 

mainly intended to be used in conjunction with another cheaper source of energy 

such as biscuits (Rainbird, 1988). 

Completely dry dog foods are usually made from cereals, or cereal by-products, 

protein concentrates and fat, mineral and vitamin supplements. These will then 

provide a balanced diet when mixed with canned food. Dry dog foods are less 

palatable than moister foods (Rainbird, 1988). 

Dry dog foods are available as biscuits, or mixtures of meals and flakes. They can 

be formulated to be complete foods or intended to be used with fresh meat or 

canned foods. Dry products look similar, but contain different ingredients 

depending on the life stage of the target animal. They will have a long shelf life 

(several months) as there is insufficient moisture for the growth of micro

organisms (Rainbird, 1988). 

2.5.3 The Digestive System of the Dog 

The dog is a monogastric animal. Food is received into the stomach where it is 

stored and digested. Different glands in the stomach secrete mucous, hydrochloric 

acid, pepsinogen and the hormone gastrin (Reece, 1997). Pepsinogen is converted 

to pepsin by the presence of hydrochloric acid. As the stomach empties into the 
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small intestine a release of the honnone entergastrone causes the stomach to stop 

producing acid. Prior to entering the small intestine the antral mucosa produces 

an alkaline solution which is low in enzymes, this is mixed with the food. 

In the small intestine more enzymes are added, some from the dudodenal mucosa 

and some from the pancreas. The pancreatic enzymes are proteases, lipases and 

amylase. The digestion is completed in the small intestine i.e. the proteins, fats, 

and carbohydrates are broken down into amino acids, dipeptides, glycerol, fatty 

acids and monosaccharides. These components are absorbed as they are released 

(Burger and Blaza, 1988). 

The stomach of ruminant animals have four compartments, this enables them to 

digest both cellulose and hemicelluloses. The rumen of these animals is host to a 

number of micro-organisms inside that can utilize cellulose and hemicellulose to 

produce acetic acid, lactic acid, butyric acid and propionic acid. These acids can 

then be absorbed by the animal and used as an energy source (Svendsen and 

Carter, 1984). 

2.6 Solid State Bioreactors 

There are various different types of enzyme bioreactors which can be used for 

process scale up. In industry it would be beneficial to use a solid state reaction, a 

reaction carried out on solids in the absence (or near absence) of free water 

(Pandey, 2003) for wheatfeed digestion as this saves on costs of drying the final 

product. 

2.6.1 Batch Bioreactors 

2.6.1.1 Tray Bioreactor 

Tray bioreactors are the simplest bioreactors (Pandey, 1991). Traditional tray 

Koji bioreactors were made from bamboo baskets, although now larger trays with 

47 



Literature Review 

a wire mesh base (Cannel and Moo-Young, 1980) or perforated bottoms are used 

(Pandey, 1991). The trays have a thin layer of substrate (about 9 cm thick) spread 

over them and they are placed in a stack with a small gap between them to allow 

air to pass through. The stack is held in a chamber under controlled conditions 

(see Figure 2.17) (Cannel and Moo-Young, 1980). Mixing may be done 

occasionally - this is usually manual (Chisti, 1999). Tray bioreactors are labour 

intensive and take up a large amount of space (Pandey, 1991). 

Exhaust-+-

Figure 2.19 A Tray Stack (Chisti, 1999) 

2.6.1.2 Rotary Drum Bioreactors 

Conditioned 
.....-- air 

A rotary drum bioreactor consists of a horizontal cylindrical vessel rotated around 

the long axis (Chisti, 1999), causing the substrate to mix (Figure 2.18). Various 

workers have used drum bioreactors with modifications such as more than one 

chamber and internal baffles. A difficulty encountered with some substrates 

however, is that they tend to agglomerate into balls (Pandey, 1991). 
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Figure 2.20 A Rotating Drum (Robinson and Nigam, 2003). 

2.6.1.3 Fluidized Bed. 

A fluidized bed has a relatively shallow bed of substrate through which air is 

passed causing fluidization (Chisti, 1999). The fluidization causes the substrate to 

tumble and mix (Figure 2.19). 

Exhaust 

t 
1 I 
I 1 
I I ___ I 

Substrate 

Conditioned ___ 
air r-'---J_...J 

Figure 2.21 A Fluidized Bed Bioreactor (Chisti, 1999). 
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2.6.1.4 Packed Bed 

Packed bed reactors usually comprise columns made of either glass or plastic. 

The solid substrate sits on a perforated base through which a flowing stream of air 

is introduced (Robins on and Nigam, 2003) (Figure 2.20). 

Airout t 

Substrate 

Wire mesh 

,..----+- +-- Air in 

Figure 2.22 A Packed Bed Bioreactor (adapted from Robinson and Nigam, 2003). 

2.6.1.5 Agitated Tank Bioreactors. 

These are stationary batch bioreactors which have paddles to stir and mix the 

substrate shown in Figure 2.21. 

Arrin 1 Air out 

Substrate suspension 

Figure 2.23 Agitated Batch Reactor. 
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2.6.2 Continuous Bioreactors 

2.6.2.1 Continuous Screw Bioreactors 

In the continuous screw bioreactor the substrate is fed in at one end of the screw 

and undergoes a reaction along the length of the screw as it moves along until it 

reaches the outlet (Chisti, 1999) (Figure 2.22). The screw bioreactor does not 

compact the substrate and gives good mixing (Tengerdy, 1985). 

Sterile substrate 
and inoculum 

t 

Fermented 
product 

Figure 2.24 Continuous Screw Bioreactor (Chisti, 1999) 

2.6.2.2 Tower Bioreactor 

Tower bioreactors have stacks of trays which rotate. The substrate enters at the 

top of the bioreactors and slowly falls down to lower and lower trays until it exits 

at the bottom as reacted product (Tengerdy, 1985). 
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Figure 2.25 A Diagram of Three Trays Within a Tower Bioreactor. 
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3 Materials and Methods 

This study aims to build on the knowledge obtained from the literature to 

characterize a Iow value by-product of the cereal milling industry (wheatfeed) and 

reduce its fibre content using enzymes to digest it into sugars. The reduction in 

fibre would allow wheatfeed to be used in petfood in the place of more expensive 

components. 

Work was carried out using enzymes in both purified forms and commercially 

available enzyme mixtures. There follows a description of these enzymes and the 

optimum conditions for their usage. Protocols used for the preparation of 

wheatfeed prior to enzymic digestion are described. The experimental work was 

carried out in both free liquid and solid state digestion environments. The basic 

protocols for these experimental methods are given here. A method of steam 

pretreating the wheatfeed prior to enzymic digestion was also investigated to 

evaluate if this would give increased digestion during the enzyme treatment. The 

protocols for this treatment are described here. 

The amount of sugars and proteins released from the wheatfeed during enzymic 

hydrolysis was measured to compare the effectiveness of different treatments. 

The sugars were measured using several different analysis methods employing a 

glucose test kit, a glucose meter and high performance liquid chromatography 

(HPLC). Total protein content was measured by both the Lowry-Peterson and the 

Kjeldahl methods. The methods used in this PhD work are described in this 

chapter. 
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3.1 Wheatfeed 

Wheatfeed is a by-product of the milling process and was provided by Witworths 

(Wellingborough, Northamptonshire, UK). Wheatfeed is a wheat bran and 

published compositions of wheat bran were used throughout this work. 

3.2 Enzymes 

Cellulase (C-9422), hemicellulase (H-2125), pectinase (P-2401) and xylanase (X-

3876) were obtained from Sigma (Poole, Dorset, UK), and B-glucanase (49101) 

was obtained from Flukka (Gillingham, Dorset, UK). These enzymes were 

supplied in solid form and are referred to here as 'single enzymes'. Celluclast, 

viscozyme, and ultraflow were obtained from Novozymes (Bagsvaerd, Denmark) 

and ronozyme and roxozyme from Roche (Basel, Switzerland). These enzymes 

were supplied as aqueous solutions and are referred to here as 'commercial 

enzymes'. 

3.2.1 Cellulase (C·9422) 

This cellulase is a crude powder from Tricoderma viride. It has an activity of 8.4 

units/mg solid and 1 unit will liberate 1.0 Ilmole of glucose from cellulose in one 

hour at pH 5.0 and 37°C. 

3.2.2 Hemicellulase (H·2125) 

This hemicellulase is a crude powder from Aspergillus niger. It has an activity of 

1.5 units/mg and 1 unit will liberate 1.0 Ilmole of product from hemicellulose in 

one hour at pH 5.5 and 37°C. 

3.2.3 Pectinase (p.240l) 

This is a crude powder from the Rhizopus species. It has an activity of 711 units/g 

and 1 unit will liberate 1.0 Ilmole of galacturonic acid from polygalacturonic acid 

per minute at pH 4.0 and 25°C. 
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3.2.4 B-glucanase (49101) 

This enzyme is cultivated using Aspergillus niger it contains 1.1 V/mg, where the 

international unit (V) is 'the amount of enzyme needed to catalyse a rate of IJ.lmol 

of substrate per minute (Garrett and Grisham, 1995). 

3.2.5 Xylanase (X-3876) 

This powder will liberate 1.0 J.lmole of xylose per minute at pH 4.5 and 30°C. 

3.2.6 CelIuclast 1.5L 

This is a liquid cellulase preparation produced by Novozymes using a selected 

strain of Trichoderma reesei. It catalyses the breakdown of cellulose into glucose, 

cellobiose and higher glucose polymers, and is supplied with an activity of 700 

endoglucanase units (EGU)/gram. Celluclast is designed to be used for the 

breakdown of cellulosic material into fermentable sugars, or to increase the 

extraction yield of products from plants. The optimum pH is 5.0 and temperature 

is 65°C, after which the activity decreases rapidly. The influence of pH and 

temperature on the activity of celluclast are shown in Figures 3.1 and 3.2. 
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Figure 3.1. The Effect of pH on the Activity of Celluclast (Novozymes). 
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Figure 3.2. The Effect of Temperature on the Activity of Celluclast (Novozymes). 

3.2.7 Viscozyme L 

Viscozyme L is a liquid preparation produced by Novozymes from a selected 

strain of Aspergillus aculeatus. It contains a mixture of carbohydrases; including 

arabinase, cellulase, (3-glucanase, hemicellulase and xylanase. It also has some 

activity on branched pectin substances. Viscozyme is designed to break down 

plant cell walls to allow extraction of useful plant material and also for use in 

cereal and vegetable processing. The activity is 100 fungal (3-glucanase units 

(FBG)/gram. The optimum conditions are quoted as pH in the range of 3.3-5.5 

and temperatures between 25-55°C. 

3.2.8 U1traflow 

This is a liquid carbohydrase preparation produced by Novozymes from 

fermentation of a selected strain of Humicola insolens. Ultraflow is a heat stable 

multi-active (3-glucanase. The most important activities are cellulase, xylanase, 

pentosanase and arabinase. It is designed for use in the brewing industry to break 

down pentosans with a xylan backbone and single arabinose side chains attached. 

Ultraflow contains 45 FBG/gram along with some side activities. The enzymes in 

ultraflow have optimal conditions at the typical temperatures and pH for the 

mashing part of the brewing process, i.e. a pH in the range of 5.2-5.6 and a 

temperature in the range of 45-65°C (Bamforth, 2003) 
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3.2.9 Ronozyme 

This is a liquid carbohydrase preparation produced by Roche from the 

fermentation of Humicola insolens. The main activities are endo-l,4-f3-xylanase 

and endo-l,4-f3-glucanase activity, in addition to cellobiase, hemicellulase and 

cellulase. It is designed as a feed additive to be sprayed onto feed pellets. 

3.2.10 Roxozyme 

The main activities in this enzyme mixture produced by Roche, are endo-l,4-f3-

glucanase (minimum of 8,000 units/ml), endo-l,3-f3-glucanase (minimum of 

18,000 units/m!), and endo-l,4-f3-xylanase activity (minimum of 26,000 units/ml). 

It is designed to be used as a feed additive. 

3.3 Substrate Preparation Methods 

3.3.1 Riming 

Prior to all experiments the wheatfeed was riffled. The riffler conveys wheatfeed 

from a hopper to rotating containers. The wheatfeed is distributed evenly into the 

containers, helping to ensure that it is well mixed, eliminating settling effects and 

ensuring that the experiments were conducted with a consistent product. The 

wheatfeed was processed using two rifflers. The first one, manufactured by The 

Pascall Engineering Company Limited (Crawley, Sussex UK), separated it into 

larger fractions (approximately 200 g) which were then further processed through 

a second riffler, manufactured by The Triton Engineering Company Limited 

(Ashford, Kent, UK) into smaller fractions (approximately 50 g). The Triton 

riffler had a speed control, this was set at 80. The rifflers used are shown in 

Figures 3.3 and 3.4. 

57 



conveyer 

Collection __ ---.;.. 
chambers 

Materials and Methods 

1---- Hopper 

Open/close valve to allow 
wheatfeed through 

Collection chambers 
---1I11III-.,....;----

Figure 3.3 Pascall Riffler. 
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Figure 3.4. Triton Riffler 

58 



Materials and Methods 

3.3.2 Sieving 

For particle sizing experiments the substrate was sieved into fractions using an 

automatic sieve shaker (Model 03502, Fritsch An al ysette , Idar-Oberstein, 

Germany) at an amplitude setting of '9.8' with permanent shaking for 10 minutes 

and sieves (Endecotts Limited, London) of sizes 839, 553, 348 and 197 /-lm were 

used in the sieve shaker. 

3.4 Substrate Processing 

3.4.1 Milling 

For experiments where the particle size of the substrate had to be reduced a 

rotating knife mill was used (ABM GmbH., Marktredwiz, Germany). The 

substrate was passed through the mill until the particles would pass through a 197 

/-lm sieve. 

Figure 3.5 View of the Interior of the Mill. 

59 



Materials and Methods 

3.4.2 Steam Explosion 

Steam explosion was carried out in a stainless steel pressure vessel of capacity 

270 ml which was placed in a chromatography oven, (Model PU 4500, Philips, 

Blackbum, Lancashire, UK). A schematic diagram of the experimental set-up is 

shown in Figure 3.6. 

Steam release 
valve 

Steam outlet 

Condensate 
collection 
chamber 

~---Pressure relief 
valve 

14-----Thermocouple 

Oven 

Stainless 
steel 
pressure 
vessel 

Figure 3.6. Steam Explosion Experimental Equipment. 

The pressure release valve was set at 12 BarG and was tested using nitrogen. 

Wheatfeed and distilled water were mixed then loaded into the pressure vessel, the 

lid sealed and the steam release valve closed. The temperature of the oven was set 

and quickly reached. The temperature in the pressure vessel slowly increased, as 

it did so, the pressure inside rose as the water evaporated to form steam. 

After the required holding time had elapsed, the steam release valve was opened 

releasing the pressure. The steam released was caught in the condensate 

collection chamber. The set point temperature was reduced to ooe and the oven 
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door opened allowing the whole system to cool for twenty minutes before the 

pressure vessel was removed. 

Unless otherwise stated, 10 g of riffled wheatfeed was steam exploded using 10 

ml of distilled water, an oven temperature of 130°C and a holding time of 45 

minutes. 

The steam exploded wheatfeed was either used as generated, or after drying in a 

vacuum oven by Townsend and Mercer, Limited (Croydon, UK) overnight (at a 

vacuum of 600 mm Hg and a temperature of 55°C). It was then ground with a 

pestle and mortar to produce a substrate with a particle size of between 35 !lm and 

1000 !lm using sieves manufactured by Endecotts (test sieves) Limited (London, 

UK). This material was frozen until required. 

3.5 Citrate Buffer 

Citrate buffer was used for all of the experiments. It was produced using solutions 

of 0.1 M citric acid and 0.1 M sodium citrate. To make one litre of citrate buffer 

at pH 5.0, 205 ml citric acid and 295 ml sodium citrate were added to 500 ml 

distilled water and mixed. 

3.6 Analytical Methods 

A comparison of some of the analysis techniques used for this work, with other 

well know techniques can be found in Appendix 1. 

3.6.1 Moisture Analysis 

The moisture of samples was found by measuring the weight of the samples 

before and after drying overnight at 105°C in an oven (Gallenkamp, 

Loughborough, Leicestershire). 
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3.6.2 High Performance Liquid Chromatography (HPLC). 

HPLC was used to analyse the post treatment liquor for xylose, arabinose, 

fructose and glucose. 

A column 25 cm long by 4.6 mm (inside diameter) containing a reverse phase 

silica material was used at 37°C. The column was manufactured by Arganaut 

Technologies Limited (Hengoed, Mid Glamorgan UK). The mobile phase 

through the column was a mixture of 80% acetonitrile and 20% distiIled water. A 

Waters 410 differential refractometer manufactured by MiIlipore (Stonehouse, 

Glouscestershire) was used to detect and quantify the sugars. Sample (0.35 ml) 

was injected into the system to ensure the 0.02 ml sample loop was sufficiently 

filled. Between injections the needle was cleaned using fresh eluent. The 

flowrate of the mobile phase was 2 ml/minute and each run took 25 minutes, this 

allowed higher molecular weight components to leave the column. 

The sugars used as standards comprised D-glucose, Fisher scientific 

(Loughborough, Leicestershire, UK), D-xylose, Fisher Scientific (Loughborough, 

Leicestershire, UK), D-fructose, BDH Chemicals (Lutterworth, Leicestershire, 

UK) and D-arabinose, Aldrich, (GiIlingham, Dorset, UK). The acetonitrile eluent 

was obtained from Fisher Scientific (Loughborough, Leicestershire, UK). 

Calibrations were carried out for all the sugars by first preparing stock solutions 

by dissolving 4 g of the individual sugar in 100 ml of distilled water. Dilutions of 

the stock solution were prepared as required and injected into the HPLC. Peak 

areas were plotted against concentration to verify that the relationship was linear 

(Figures 3.7 to 3.10). 
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Figure 3.7 HPLC Calibration Results for Xylose. 
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Figure 3.8 HPLC Calibration Results for Arabinose. 

63 



Materials and Methods 

1000 

.-.. 900 
'" 'C 800 = ~ 700 '" ::I 
0 600 ..s 
'-' 

500 ~ 
~ 

"" 400 < 
U 300 
~ 200 = 100 

0 

J 
~ 

~ 
~ R2 = 0.9826 

~. 
~ .,......-

~ .,......-
o 5 10 15 20 25 30 35 40 45 

Fructose Concentration (mglml) 

Figure 3.9 HPLC Calibration Results for Fructose. 
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Figure 3.10· HPLC Calibration Results for Glucose. 
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3.6.3 Glucose Determination Using Glucose Oxidase. 

A Sigma Glucose kit (catalogue number 51O-DA) was used, this comprised an 

enzyme preparation, barium hydroxide and zinc sulphate solutions (O.IM), 0-

Dianisidine Dihydrochloride and a glucose standard. The kit was obtained from 

Sigma (Poole, Dorset, UK). 

The test measures glucose colourmetically. The principle is based on two 

enzymic reactions which are coupled (Sigma, 1990). 

Glucose+2H
2
0+0

2 
Glucose Oxidase )Gluconic acid+2H

2
0

2 
(3.1) 

H 202 + 0 - Dianisidine Peroxidase ) Oxidised 0 - Dianisidine (3.2) 

(colourless) (brown) 

The intensity of the brown colour was measured on a spectrophotometer, Model 

number 510269, by Shimadzu Europa (Milton Keynes UK), at a wavelength of 

450 nm and compared to a blank with no glucose present. This should be 

prepared at the same time as the samples. A calibration chart (Figure 3.11) was 

prepared using samples with known glucose concentrations between 100 J..lglrnl 

and 3000 J..lglml. A new calibration graph was produced each time new kit 

reagents were used. 

The glucose kit was used to analyse the amount of glucose present for the 

experiments to determine which mixture of single enzymes gave the best 

digestion. 
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Figure 3.11 A Typical Sigma Glucose Kit Calibration Graph. 

3.6.4 Measurement of Glucose using the Accu-chek Advantage 11 Meter 

The Accu-chek Advantage IT meter (Roche Diagnostics, Lewes, East Sussex, UK) 

is designed as a quick home test for diabetics to use and can be obtained over the 

counter at a chemist shop. The test measures the level of glucose in a liquid and 

gives an estimate within forty seconds. A test strip is inserted into the machine 

and then a spot of sample squeezed into a small slit in the side of the strip (Figure 

3.12). The glucose is oxidized in reactive glucose dehydrogenase during which 

hexacyanoferrate (ill) is reduced to hexocyanoferrate (IT). The hexocyanoferrate 

(IT) produced is reoxidized by a palladium containing electrode and the electron 

flow released is proportional to the glucose concentration in the sample. 

The Accu-chek meter was used as a rapid means to determine approximate 

glucose levels released into solution. The range of the meter is from 0.6 mmolell 

to 33 mmole/l glucose. 
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Figure 3.12. Accu-chek Advantage IT Glucose Detector. 

3.6.5 Lowry-Peterson Method for Protein Determination. 

Protein analysis was carried out on the sample supematants according to the 

method of Lowry et al. (1951) incorporating the changes proposed by Peterson 

(1977). Bovine serum albumin (BSA) was obtained from Fisher Scientific 

(Loughborough, Leicestershire, UK). Sodium carbonate, copper sulphate, 

potassium sodium tartrate, sodium hydroxide and Folin-Ciocalteu Reagent used 

for the Lowry-Peterson reagents were also from Fisher Scientific. 

In this assay 1 ml of reagent (A), containing 0.25 mg/ml copper sulphate, 0.5 

mg/ml potassium tartrate carbonate, 25 mg/ml sodium carbonate and 0.25 mUml 

0.8 M sodium hydroxide (see Appendix 2 for composition of reagents) were 

added to the Iml of the protein sample, mixed and allowed to react for 10 minutes 

at 25°C. Reagent B (0.5 ml), which is Folin-Ciocalteu Phenol reagent diluted 
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with distilled water in the ratio 1:5, was then added and the samples immediately 

vortexed. The samples were left for another 30 minutes at 25°C, before the 

solutions are transferred to micro-cuvettes. The absorbance at 750 nm was 

measured in relation to a blank sample containing 1 ml citrate buffer processed at 

the same time as the samples. 

Protein in the sample reacts with copper to produce a protein copper complex, this 

then reduces the FoIin-CiocaIteu Phenol reagent (phosphomolybdate

phosphotungstate reagent) to give a blue colour (Lowry et al., 1951). 

The calibration for the Lowry-Peterson method was carried out using bovine 

serum albumin (BSA). BSA (0.05 g) was dissolved in 100 ml of citrate buffer 

solution at the same pH as the samples to be analysed. A 2 ml aliquot of this 

solution was then taken and made up to 10 ml with citrate buffer solution and 

mixed. 

The Lowry-Peterson analysis was executed in the same way as previously 

discussed for samples and a graph plotted of log absorbance at 750 nm versus log 

concentration of protein. 

Reagent A is only stable for three weeks. A calibration was performed whenever 

new reagents were prepared and also for all the pH values used in experiments to 

be analysed. A typical Lowry-Peterson calibration graph can be seen in Figure 

3.13. 
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Figure 3.13 A Typical Lowry-Peterson Calibration Graph at pH 5.0. 

3.6.6 Kjeldahl Method for Nitrogen Determination. 

In the Kjeldahl method, the nitrogen from the protein in the sample tested, was 

converted into ammonium sulphate by sulphuric acid. Sodium hydroxide is added 

to make the solution alkaline, after which the ammonia was distilled into an 

excess of boric acid. The sample was then titrated to estimate the level of total 

nitrogen in the initial sample. Total nitrogen is multiplied by a factor dependent 

on the sample material to find the protein content (Pearson, 1962). In the case of 

wheat bran, this factor is 6.25 (James, 1995). 

Ammonium sulphate was obtained from Hopkins and Williams (Cheadwell 

Heath, Essex, UK), and the catalyst tablets, hydrochloric acid, boric acid and 

sodium hydroxide were obtained from Fisher scientific (Loughborough, 

Leicestershire, UK). 

Sample (0.5 g) was placed into a glass digestion tube on ashless filter paper, a 

catalyst tablet was added to each tube together with 15 ml concentrated sulphuric 

acid. The tubes were placed into a Buchi (Manchester UK) digestion chamber 

unit and the digestion was allowed to take place for approximately 40 minutes at 

heat setting 7 on the unit. The tubes were allowed to cool. Each tube was placed 
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into a distillation unit, (Buchi, Manchester UK) where water and sodium 

hydroxide was added and the sampled distilled over into a conical flask containing 

50 ml 0.2 M boric acid and methyl red indicator. This mixture changes colour 

from grey to light green. The mixture was titrated with 0.1 M hydrochloric acid, 

the end point was when the when the mixture changed back to the original grey 

colour. 

An ammonium sulphate control (using 0.0.5 g ammonium sulphate) and a blank 

(just filter paper) were processed along with the samples. 

The percentage nitrogen of the sample can be calculated using the following 

equation. 

%N = 14.0Ix{S, -B,}xA 
M 

Where 

%N = percentage nitrogen 

Bt = ml of titrant of blank 

M = mass of sample (g) 

St = ml of titrant of sample 

A = molarity of acid 

(3.3) 

The ammonium sulphate control has a known nitrogen content, the percent 

recovery of nitrogen can be calculated and the figures adjusted to allow for this. 

3.6.7 Englyst Fibre Method 

This is a method which will report the total, soluble and insoluble non-starch 

polysaccharides in a sample. 

For total fibre, the sample (0.25 g) was de-starched by adding 2 ml dimethyl 

sulphoxide (DMSO) which disperses the starch. This was then gelatinised by 
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boiling in water for 65 minutes after which 8 ml acetate buffer at pH 5.2 and 50°C 

was added. Following this, starch was digested to glucose using 0.5 ml amylase 

solution and 0.1 ml pullulanase solution. The samples were incubated at 42°C for 

16-18 hours before the tubes were cooled in cold water for 10 minutes. 

Approximately 40 ml industrial methylated spirit (IMS) was added and the 

mixture allowed to stand for 60 minutes to precipitate out soluble fibre. The 

sample was then centrifuged at 1500 rev/minutes for 10 minutes and the 

supernatant (IMS/aqueous layer) removed. The solids were washed with 85% 

IMS and 15 % water, then 100% IMS. Acetone (20 ml) was added, the mixture 

vortexed, and the supematant taken and dried at 80°C. Sulphuric acid (5 ml of 12 

M) was added vortexed and then left at 35°C at for 60 minutes to digest the non

starch polysaccharides into sugars. A 3 ml aliquot of this solution was added to a 

test tube containing 1 mg/ml allose as an internal standard. The solution was 

adjusted to an alkaline pH using 12.5 M ammonium hydroxide. Sodium 

borohydride (0.2 ml) was added to convert the sugars to their corresponding 

alditols. These were then changed to alditol acetates using 5 ml acetic anhydride 

in the presence of 0.5 ml methylimidazole, extracted into 0.9 ml IMS for 5 

minutes and analysed by gas chromatography. The results for the sugars could 

then be related to fibre. 

Uronic acids may also be present and are also non-starch polysaccharides. These 

cannot be measured by gas chromatography so after the extraction into IMS, some 

of the sample was assayed for uronic acids using a colourmetric method. 

Sulphuric acid (0.3 ml at 2 M) was added to 0.3 ml sample, 0.3 ml sodium 

chloride and boric acid mixture was added and vortexed. The tubes were left for 

40 minutes at 70°C and cooled in water for up to 1 hour. Dimethylphenol (0.2 ml) 

was added, then the absorbance measurement could be made using a 

spectrophotometer at a wavelengths of both 400 and 450 nm. The reading at 400 

nm is subtracted from that at 450 nm to correct for hexose interference. 

The results for both tests were included for the total fibre results. 
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The insoluble fibre was analysed in the same way as the total fibre, with the 

modification that instead of adding IMS to precipitate out the soluble fibre, 40 ml 

phosphate buffer (pH 7.0) was used to wash this fibre off. The resulting fibre was 

therefore insoluble. The soluble fibre is found by calculating the difference 

between the total and insoluble fibre results (Hebbs, 2004). 

3.6.8 Total Starch Method 

The sample (2.5 g) was filtered and extracted into 80 ml 40% IMS for 1-1.5 hours, 

which helps prevent shorter chain polysaccharides from dissolving into the 

solution. This allowed for sugars present in the sample initially. The sample was 

filtered and 2.1 ml of 27% hydrochloric acid was added to 50 ml filtrate. This 

was boiled for approximately 15 minutes to break the starch down into glucose. 

Next, clarification was carried out using 10 ml carrez solution, to precipitate out 

protein and the sample filtered. The optical rotation was measured using a 

polarimeter which calculates the glucose concentration (Hebbs, 2004). 

3.6.9 Gel Starch Method 

Gel starch is described as 'digestible starch,' in pet food it is important that the gel 

starch to total starch ratio is high. 

For gel starch analysis, the sample (approximately 0.5 g) was digested with 10 ml 

enzyme amyloglucosidase at 37°C for 3 hours to convert the gel starch to free 

glucose. The protein was precipitated using carrez solution and the samples 

filtered. Glucosidase (4 ml) was added to 1000 III sample to oxidize the glucose 

which produces hydrogen peroxidase. A 4-amino phenazone and phenol indicator 

turns pink in the presence of peroxidase, this can then be measured using a ultra 

violet spectrophotometer to indicate the level of glucose present, which in turn 

indicates the initial level of starch present (Hebbs, 2004). 
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For samples where sugar is present prior to starch digestion, a sugar correction 

must be carried out by running the gel starch method without adding 

amyloglucosidase. This gives the background glucose level. A sugar correction 

was performed for all the samples in this study (Hebbs, 2004). 

3.7 Experimental Methods 

The experiments are split up into two types, firstly using single enzymes (and 

mixtures of single enzymes) and secondly using industrial enzymes. The single 

enzyme experiments are all small scale as the cost of the enzymes limited scale 

up. 

3.7.1 Single Enzyme Treatment 

The basic method for the single enzymic treatment of wheatfeed is described. 

Various modifications of the basic method were employed and these are described 

in the chapters relating to experiments. 

Experiments were carried out in a heated water bath, (Grant Instruments 

Cambridge Limited, Cambridge, UK) at 50°C with a shaker at 150 rpm, using 2 g 

of wheatfeed and 10 ml citrate buffer at pH 5.0 in 50 ml conical flasks. The 

enzymes were mixed into the buffer and placed in the water bath to heat for 30 

minutes, before being added to the wheatfeed in the conical flask. This was then 

covered with parafilm (Fisher Scientific, Loughborough Leicestershire, UK) to 

avoid evaporation and allowed to digest for 4 hours. After digestion the sample 

was centrifuged at 15,000 rpm for 10 minutes at 10°C, (Model 2383K, Hermle, 

Huddersfield UK) and the supematant collected and frozen for HPLC and Lowry

Peters on protein analysis. 
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3.7.2 Commercial Enzyme Treatment 

The work with the commercial enzymes was carried out in 50 ml conical flasks, 

using a stirred bioreactor, or in petri dishes, depending on the nature of the 

experiment. Some work was also carried out on the mode of the enzyme action, 

this was performed in a 500 ml conical flask. 

For work carried out using 50 ml conical flasks the basic procedure is the same as 

that used for work with the single enzymes. 

3.7.2.1 Stirred Bioreactor Experimental Method 

For larger scale work, a 2 litre glass bioreactor manufactured by Quickfit, (Fisher 

Scientific, Loughborough, Leicestershire UK), with a metal stirrer was used. The 

stirrer consisted of a U-shaped paddle and a small Rushton impeller, (Figure 

3.14). The entire bioreactor was placed into a water bath, screwed onto a stand 

and connected to a drive motor (Model 502D, LH Fermentation, Emeryville, 

USA). The water bath was plastic and jacketed with insulating wrap to reduce 

heat loss. A water heater, (Gallenkamp, Loughborough, Leicestershire, UK) was 

clamped to one side of the bath. The bath had plastic balls floating on the water to 

reduce water evaporation. 

A sampling point was fitted through the lid of the bioreactor which enabled 

samples to be withdrawn into the sample collector. This can be seen in Figure 

3.14. 
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Figure 3.14. Glass Bioreactor. 

For all the experiments carried out in this equipment, the water bath was set at 

50°C. Citrate buffer (1500 ml) was preheated in a microwave to approximately 

50°C, after which it was poured into the bioreactor through an opening in the lid. 

Stirring was commenced at this stage and 25 ml enzyme was added and mixed at 

approximately 200 rpm to distribute the enzyme, before the stirrer was slowed to 

50 rpm. The system temperature was allowed to equilibrate for 30 minutes, after 

which 300 g wheatfeed was added through an addition port in the lid using a 

funnel. Addition of the wheatfeed represented 'zero time'. Variations in the 

method for individual experiments are discussed in the relevant chapters. 

3.7.2.2 Solid State Digestion Experimental Method 

Small scale experiments were carried out using 5 g wheatfeed and 5 ml buffer

enzyme solution in petri dishes which were sealed and placed in an incubator. 

The enzyme used was cellucIast. 

There were two sets of solid state experiments, but both follow the same basic 

method. Firstly the enzyme-buffer solutions were mixed then heated in an 
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incubator at 50°C for 30 minutes, to allow the solution to reach thermal 

eqUilibrium prior to being mixed with 5 g riffled wheatfeed. After the addition, 

the mixture was placed into a petri dish which was then sealed with parafilm. The 

dishes were then placed in an incubator for 24 hours. After 24 hours, the petri 

dishes were removed from the incubator and placed in ice. Samples were put into 

a stomacher bag with 40 ml citrate buffer at pH 5.0 and treated for 1 minute in a 

laboratory stomacher Model 400, Steward (Norfolk, UK). When all the samples 

had been processed in this way, they were centrifuged at 15,000 rpm for 10 

minutes at 100e. Supematant (1 ml) was placed into a test tube for Accu-chek 

analysis; the remainder was frozen and later analysed by HPLC for sugars and 

Lowry-Peterson for protein. 

On defrosting for analysis, the samples were centrifuged and filtered before 

analysis was performed. 

3.7.2.3 Enzyme Mode of Action Experiments 

Citrate buffer (300 ml) at pH 5.0 was dispersed into a 500 ml conical flask with 

0.3 ml celluc1ast. This was covered with parafilm and placed into a bioreactor 

with a shaker at 15°C for 1 hour to allow thermal eqUilibrium to be reached. A 5 

ml sample was taken filtered and subjected to immediate Lowry-Peterson protein 

analysis. Fibrous cellulose powder (20 g) (from Whatman) was added to a second 

500 ml conical flask, the buffer enzyme solution was added to this and the flask 

placed in the bioreactor with shaking. Samples (5 ml) were taken filtered and 

subjected to immediate Lowry protein analysis at regular intervals of time. 

3.7.2.4 Digestibility Tests 

In standard digestibility tests it is the solid remaining after digestion which is of 

primary interest. However, for experiments using a variation of the basic 50 ml 

conical flask digestion method described previously (section 3.7.1), the liquid 

fraction could not be disregarded after digestion as it contained released sugars 
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and protein. If the solution were removed the fibre result would show an 

artificially high level. To resolve this problem all the contents of the conical flask 

were mixed with a readily digestible component of pet food (i.e. poultry meal) and 

dried in a vacuum oven (Townsend and Mercer, Limited, Croydon, UK) overnight 

(at a vacuum of 600 mm Hg and temperature of 55°C) prior to analysis. It was 

then ground with a pestle and mortar to produce a sample with a particle size of 

between 355J.lm and 1000 J.lm using sieves manufactured by Endecotts (test 

sieves) Limited (London, UK). 

3.7.3 Basic Liquid Sample Preparation for Analysis. 

Most of the experiments analysed the liquor after treatment. This was often 

frozen for storage, then defrosted and filtered before analysis. The filters used 

were 0.45J.lm polypropylene Whatman filters (Fisher Scientific, Loughborough, 

Leicestershire, UK). 

3.7.4 Extrusion 

The ultimate objective of this work was to establish whether enzyme treated 

wheatfeed could be incorporated into dog food. Following standard practice with 

formulation of this type of food, the digested wheatfeed would be blended with 

other ingredients and then extruded through a twin-screw Clextral Extruder, 

(Model 21, Firminy, France). Maximum temperatures in the range of 130°C-

140°C were used, along with a feed flowrate of approximately 5 kglhr and a water 

feed flowrate in the range of 30-50 lIhour. 
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4 Digestion of Wheatfeed Using Enzyme Mixtures 

4.1 Introduction 

The composition of wheatfeed was discussed in Chapter 2. As there is no single 

'target' substrate against which an individual enzyme could be directed at, it was 

decided to pursue a strategy of using multi-enzyme mixtures to break down the 

indigestible elements of wheatfeed. For ease of analysis the latter are defined as 

breaking down into proteins and simple sugars. However, it is likely that short 

chain oligomers of both carbohydrates (arising from the incomplete digestion of 

complex polymers such as cellulose and hemicellulose) and the amino acids 

(produced from the breakdown of proteins) would also be digestible but very 

much harder to quantify. 

The choice of enzymes used was largely determined by the composition of the 

wheatfeed; it was therefore decided to investigate the action of a cellulase, a 

hemicellulase, a pectinase, a xylanase and a p-glucanase. 

Initially these enzymes were used in various combinations to obtain a rapid 

comparison of the yields of glucose using a rapid method of analysis. In 

subsequent experiments the spectrum of sugars obtained was compared using 

HPLC. In the final series of experiments, the yields of protein resulting from the 

treatment of wheatfeed with various enzyme mixtures were compared. 

4.2 Method 

All the experiments were carried out in 50 m1 conical flasks using 2 g of 

wheatfeed and 10 ml of citrate buffer (pH 5.0) following the basic method 

detailed in section 3.7.1. 
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In the initial experiments the following quantities of enzymes were used: 

Cellulase 40 mg, hemicellulase 50 mg, pectinase 1.2 mg, xylanase 32 J.lg 

In subsequent experiments the xylanase was replaced by f3-glucanase. The 

quantity added to the reaction mixture was 2 mg. 

The solutions were analysed for glucose using the Sigma glucose kit (glucose 

oxidase) method outlined in section 3.6.3. Table 4.1 shows the enzyme 

combinations used for the first set of experiments. 

Table 4.1. Enzyme Mixtures Investigated. 

Experiment Enzymes 

number Cellulase Hemicellulase Xylanase Pectinase 

C + - - -
H - + - -
X - - + -
P - - - + 

HC + + - -
CX + - + -
CP + - - + 

HX - + + -

HP - + - + 

PX - - + + 

HCX + + + -

HCP + + - + 

CPX + - + + 

HPX - + + + 

HCPX + + + + 

Control - - - -
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Once the preliminary experiment with combinations of both single and enzyme 

mixtures had been performed, four enzyme treatments were selected for more 

intensive investigation. This involved comparing the spectrum of individual 

sugars produced using HPLC. 

For the third set of experiments another enzyme was introduced into the study, 

this enzyme was ~-glucanase. Another matrix was drawn up so that mixtures of 

~-glucanase could be tested. The resulting solutions for analysis for these 

experiments were analysed by HPLC. The matrix of experiments are shown in 

Table 4.2. 

Table 4.2. Combinations Including ~-glucanase. 

Experiment Enzymes 

number ~-Glucanase Hemicellulase Cellulase Pectinase 

G + - - -

GH + + - -

GC + - + -
GP + - - + 

GCH + + + -
GCP + - + + 

GHP + + - + 

GHCP + + + + 

From all the results gained so far, four enzyme mixtures were chosen and the 

solutions tested for protein using the Lowry-Peterson assay. 

There was some concern as to the reproducibility of the experiments and the 

performance of the HPLC. To evaluate possible problems a more thorough 

investigation was carried out using HCP and GC mixtures along with a xylanase 

treatment as a comparison and a control. Duplicates of these treatments were 
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compared using the Students two tailed t-test. The comparison was carried out at 

the 5% level. This work is shown in Appendix 3. 

4.3 Results 

The results obtained for the first matrix of experiments using the Sigma glucose 

kit analysis are shown in Table 4.3, ranked in order of highest glucose 

concentration. 

Table 4.3 Glucose Release from Wheatfeed using Different Enzyme Mixtures . 
. 

Enzyme Mixture Glucose mg/ml 

HP 24.8 

HCX 21.7 

CP 21.5 

HCP 17.5 

HCPX 16.7 

HPX 16.5 

HX 15.9 

PX 15.3 

HC 15.1 

H 15.0 

CPX 13.9 

C 11.9 

P 11.4 

CX 11.0 

X lOA 

Control 7.3 

Where 

X = Xylanase, C = Cellulase, H = Hemicellulase, P = Pectinase. 
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Table 4.4 shows the HPLC results for the four enzyme treatments selected for 

further investigation. It can be seen from the results that xylose was mainly 

released from samples contacted with cellulase. Some xylose was released from 

the HP and X and control treatments, however, this was less than 1 mg/ml, 

whereas both the RCP and RCPX treatments where cellulose was present, 

released xylose in the region of 6 mg/m!. The results obtained for fructose show 

that the liberation of this sugar was similar for all treatments giving results in the 

range of 3.8 to 5.8 mg/m!. Glucose was the sugar which showed the greatest 

release for all of the enzyme treatments. The control released the lowest amount 

of glucose (4.77 mg/ml). The two highest glucose liberations were obtained from 

the treatments with cellulase in the enzyme mixture. 

Table 4.4 HPLC Sugar Release from Wheatfeed using Different Enzyme Mixtures 

Enzyme mixture Reducing su !ars mg/mI 
Xylose Fructose Glucose Total 

HP 0.25 3.88 8.24 12.37 

RCP 6.08 4.83 15.25 26.16 

RCPX 5.72 4.58 14.67 24.97 

X 0.49 5.78 7.04 13.31 

Control 0.20 4.13 4.77 9.10 

Comparing the results it was decided that xylanase did not give high sugar yields 

and therefore was unlikely to be successfully digesting the wheatfeed. At this 

stage it was eliminated from the experiments. 

The enzyme mixtures were supplemented with another enzyme, B-glucanase, this 

was tested alone and in mixtures with the other enzymes already used (excluding 

xylanase). Table 4.5 shows the results gained. 
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Table 4.5 HPLC Sugar Release from Wheatfeed using Different Enzyme Mixtures 

Including ~-Glucanase. 

Enzyme mixture Reducing su !ars mg/ml 
Xylose Fructose Glucose Total 

G 0.44 5.30 9.39 15.13 

GC 6.29 5.95 12.75 24.99 

GH 0.81 5.84 20.40 27.05 

GP 0.42 5.57 10.49 16.48 

GHC 7.58 4.73 20.53 32.84 

GHP 0.72 4.47 22.14 27.33 

GCP 7.33 6.20 12.81 26.34 

GHCP 6.81 4.78 18.95 30.54 

Where G = ~-glucanase 

It can be seen from the res'uIts (Table 4.5) that xylose was generally released most 

after it had been contacted with cellulase. The fructose liberation results were 

similar for all the treatments. Glucose was the sugar released most for all of the 

treatments tested, the highest results were generally obtained from samples with 

hemicellulase, cellulase, or both in mixture with ~-glucanase. 

From all the results gained so far, four enzymes mixtures were chosen, they were 

HCP, HCPX GC and GHC. These four enzyme mixtures were used for further 

experiments using the Lowry-Peterson assay, to evaluate the protein content of the 

buffer solutions after the digestion. The results gained are shown in Table 4.6. 

The highest result was obtained by the GHC mixture with a protein yield of 34.6 

mg/ml, this was followed by HCP (30.7 mg/ml). The lowest two results were 

only just over 1 mg/ml apart in the protein yield and still gave fairly high results. 
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Table 4.6 Results from the Lowry-Peterson Assay. 

Enzyme Protein Released 

mixture (mg/ml) 

HPCX 27.9 

RCP 30.7 

GRC 34.6 

GC 26.8 

Control 6.5 

4.4 Discussion 

From the results obtained from the preliminary experiments (see Table 4.1) (not 

including ~-glucanase), four enzyme mixtures were chosen for further work. The 

mixtures chosen were HP, RCP, RCPX and X (where R denoted hemicellulase, 

C, cellulase and X, xylanase). These were chosen for different reasons. HP was 

chosen as it was the mixture that gave the highest amount of glucose in the 

solution. Xylanase was chosen, as although it gave the lowest glucose 

concentration its products of digestion would not have been detected by the assay 

method used here. Analysing the solution by high performance liquid 

chromatography (HPLC) would enable the spectrum of sugars released by this 

enzyme to be revealed. 

The RCPX and RCP mixtures were chosen, partly because they gave relatively 

high glucose yield, but also to establish whether the addition of the xylanase could 

improve the overall sugar yield. The inclusion of hemicellulose seemed to be 

beneficial and to result in high glucose yield (Table 4.4). 

For the second series of experiments using these four enzyme mixtures and 

analysing by HPLC, it can be seen by comparing the results of the control with the 

xylanase experiments, that the xylanase was not effective at breaking down 
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carbohydrates. It released a little glucose though, which concurred with the 

glucose kit data. These results also showed that the HCPX and HCP mixtures 

yield similar amounts of reducing sugars including xylose. The results show that 

xylanase was less effective at releasing xylose than some of the other enzymes. 

There was however a noticeable difference between the HP results and the HCPX 

and HCP results showing that the latter two enzyme mixtures were more 

successful than the HP mixture. This was in contrast to the findings obtained 

using the Sigma glucose kit. However, it could be argued that the HP mixture 

gave unusually low results as it can be seen that the fructose released was less 

than that released by the control. 

The ~-glucanase was introduced into the study and another matrix of experiments, 

was drawn up so that mixtures of ~-glucanase could be tested. In this matrix 

(shown in Table 4.2) xylanase was omitted for the reasons stated above. 

The final series of experiments incorporated ~-glucanase (G). The first mixture 

chosen was GC as this had yielded a high fructose concentration in combination 

with a relatively high xylose release. The second mixture chosen was GCH as this 

gave the highest glucose result coupled with the highest xylose result, but a low 

fructose result. It also had a high total reducing sugar result. The work continued 

using the new four chosen enzyme mixtures, these were HCPX, HCP, GC, GCH 

for protein analysis after which the best enzyme combination was determined. 

It was concluded that the most promising two enzyme mixtures were ~-glucanase, 

cellulase (GC) and hemicellulase, pectinase, cellulase (HPC) mixtures. This is in 

the light of both sugar and protein experimental results and economic 

considerations, that is they may not give the best results but the difference in the 

results is small compared to the much higher cost of more expensive enzymes 

(cellulase and ~-glucanase are the most expensive). From these two enzyme 
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mixtures the best mixture to use is HCP as the hemicellulose and pectinase are 

fairly cheap compared to J3-glucanase. 

The final chosen enzyme combination, of hemicellulose, cellulose and pectinase 

was a combination used as a pretreatment step in work by Waszczynskyj et al. 

(1981), who found that using this combination of enzymes had potential to 

increase the yield of protein from wheat bran when followed by an alkaline 

extraction process. 

4.5 Conclusion 

It is difficult to choose a 'best' enzyme mixture for the further work as HPLC 

analysis gives results for more than one reducing sugar. The aim of the project is 

to use an enzymic mixture to digest the fibre of wheatfeed to produce reducing 

sugars and render the wheatfeed more digestible. The breakdown of the fibre will 

release protein bound up in the fibre matrix and therefore it will be free for use by 

the animal when it is incorporated into animal food. It is not known which sugars 

released correspond to a more digestible product, or to a high protein release. The 

hemicellulose, cellulose and pectinase combination of enzymes was effective at 

breaking down fibre to release sugars and protein, this combination was the most 

economically viable from those which gave good results. 

The Hest results (Appendix 3) show that the experiments are repeatable. 

Generally there was no significant difference between duplicates of the same 

treatment, the main exception to this rule was the HPLC xylose results. The 

HPLC fructose results showed that this is not a good sugar to use for different 

treatment comparisons, therefore the best sugar to compare is glucose. The 

protein results showed that experiments were repeatable and reliable using the 

Lowry-Peterson analysis. 
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5 Digestion of Wheatfeed by Sequential Addition of 

Enzymes. 

5.1 Introduction 

The series of experiments described in this chapter were conducted in order to 

determine whether the sequence in which individual enzymes were added to 

wheatfeed was significant and whether by comparing patterns of sugar and protein 

release, clues could be gained about the susceptibility to enzyme attack of the 

various components of wheatfeed. In the experiments described below, digestion 

of the wheatfeed was achieved by adding single enzymes in sequence. Three 

enzyme types were incorporated- cellulase, pectinase, and hemicellulase. In each 

case digestion was allowed to proceed for 2 hours before adding the second 

enzyme; after a further 2 hours the third enzyme was added. The experiments 

were designed so that every permutation of enzyme addition was examined. In 

all, two series of experiments were carried out. In the first, untreated wheatfeed 

was used as the substrate whilst in the second series, both un-pretreated wheatfeed 

and steam exploded wheatfeed were employed. 

5.2 Method 

The experiments were carried out in 50 ml conical flasks and followed the basic 

method detailed in section 3.7.1. There were a few minor variations to the basic 

method however, the most significant being that 20 ml citrate buffer (at 50°C and 

pH 5.0) was used. All the experiments were performed in duplicate. 

The citrate buffer contained the first enzyme to be added. Once added, the flask 

was covered with parafilm and allowed to digest for 2 hours. After this time, the 

conical flasks were taken from the water bath and placed in ice to allow the 

wheatfeed to settle so that a sample (2 ml) could be taken. The second enzyme 

was added in 2 ml buffer (at room temperature) and allowed to digest at 50°C for 
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2 hours before the sampling process and enzyme addition was repeated. Finally, 

after a further 2 hours the third sample was taken. The samples obtained were 

filtered and frozen for high performance liquid chromatography (HPLC). It was 

decided not to analyse for protein for the first series of experiments. 

The combinations of enzymes used can be seen in Table 5.1, where 'H' denotes 

hemicellulase, 'C' denotes cellulase and 'P' denotes pectinase. 

Table 5.1.Notation for Sequential Digestion Experiments. 

Experimental First Enzyme Second Enzyme Third Enzyme 

Label 

HCP Hemicellulase Cellulase Pectinase 

HPC Hemicellulase Pectinase Cellulase 

CPH Cellulase Pectinase Hemicellulase 

CHP Cellulase Hemicellulase Pectinase 

PCH Pectinase Cellulase Hemicellulase 

PHC Pectinase Hemicellulase Cellulase 

Control None None None 

A second sequential addition experiment was carried out using a selection of the 

enzyme combinations (HCP, CPH, PCH and Control experiments). This set of 

experiments were performed as a repeat of the first set for un-pretreated 

wheatfeed, but the same treatments were also applied at the same time to steam 

exploded wheatfeed, which had previously been dried and frozen for storage. The 

experimental method was the same as that previously described, using 2 g steam 

exploded wheatfeed in the place of wheatfeed for the steam exploded 

experiments. The resulting solutions from these experiments underwent both 

HPLC and Lowry-Peterson protein analysis. The steam explosion was carried out 

as detailed in section 3.4.2. 
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The experiments are described in Table 5.2. In this table the labels are the same 

as previously used, (Table 5.1). 'S' is used to denote steam exploded wheatfeed. 

Table 5.2. Selected Sequential Treatment Experimental Design. 

Experiment Steam First Enzyme Second Third Enzyme 

Label Exploded Enzyme 

RCP NO Remicellulase Cellulase Pectinase 

CPR NO Cellulase Pectinase Remicellulase 

PCR NO Pectinase Cellulase Remicellulase 

Control NO None None None 

RCP (S) YES Remicellulase Cellulase Pectinase 

CPR (S) YES Cellulase Pectinase Remicellulase 

PCR (S) YES Pectinase Cellulase Remicellulase 

Control (S) YES None None None 

5.3 Results 

The results for the sugars released for the un-pretreated wheatfeed experiments are 

shown in Figures 5.1-5.3. 

Figure 5.1 shows the results for xylose liberation. By comparing the two 

treatments in which cellulase was added first (CPH, CHP) to all the other 

treatments it is evident that xylose is only liberated once the cellulose has been 

added. This is confirmed by examining the other results, for example PCR, where 

there is no sugar release after the first addition, but where xylose is only detected 

after the second addition. Further confirmation comes from the results for HPC 

where xylose is only detected after the final enzyme addition. No xylose was 

detected in the control. The maximum xylose detected after enzymic treatment 

lay within the range of 8.0 to 10 mg/ml. 
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o 1st Addition 

• 2nd Addition 

o 3rd Addition 

Figure 5.1 Xylose Released By Sequential Addition of Enzymes. 

The arabinose results are shown in Figure 5.2. Similar results were gained for 

both the control and the enzymic treatments of wheatfeed regardless of the order 

of enzyme addition. The results after the final stage of enzyme digestion were in 

the range of 4.0 to 4.5 mg/ml. 

o 1st Addition 

• 2nd Addition 

o 3rd Addition 

Figure 5.2 Arabinose Released By Sequential Addition of Enzymes. 

90 



Digestion of Wheatfeed by Sequential Addition of Enzymes 

The results for glucose are shown in Figure 5.3. Glucose is liberated for all of the 

treatments and also for the control, with the final values ranging between 17.5 and 

31.0 mg/ml. The glucose results for the control seem high, with more glucose 

released than for any of the treatments after the first addition. The variation 

between the duplicates was also high for these experiments with 4 out of the 21 

duplicate results having an error of over 50%. Only 5 out of the 21 duplicate 

results have an error of less than 10 %. 

The enzyme treatment results for the first addition stage show that most glucose 

was released from the wheatfeed treated with cellulase (CPH and CHP). If further 

comparisons are made between the second addition results for the HCP and HPC 

samples, it can be seen that the result for the HCP shows more glucose has been 

released than for the HPC result, however, once the cellulase is added in the third 

stage for HPC the glucose liberation greatly increases. This suggests that 

cellulose addition has a pronounced effect on glucose release. Further 

confirmation can be gained from the PCH and PHC results where it is clearly seen 

that after the second addition the glucose liberated is greater for the PCH 

treatment than for the PHC treatment. However, it is also evident that the glucose 

released during the PHC treatment increases after the third treatment where 

cellulase is added. Furthermore, if the final results for the HCP and HPC are 

compared it can be seen that the greatest final glucose liberation occurs when 

cellulase is added last, with a glucose increase of 20.9 mg/m:l between the second 

and third addition for the latter case. This is confirmed by the results from the 

PCH and PHC treatments where the final result is again greatest for the PHC 

treatment where cellulase is added last, in this case the glucose increase is 12.2 

mg/ml. 

A comparison of the CPH and ClIP reveals that the results are similar however, 

the greatest final sugar liberation is achieved from the CHP results suggesting that 

more glucose is liberated from the wheatfeed if hemicellulose is added before 

pectinase. This is confirmed by comparing the results from the PHC and HPC 
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treatments. Taken together these findings would suggest therefore that greatest 

sugar release would occur for the HPC treatment and this is confirmed by the 

results, as 6.1 mg/ml more glucose was obtained than for any other treatment. 

o 1st Addition 

• 2nd Addition 

o 3rd Addition 

Figure 5.3 Glucose Released By Sequential Addition of Enzymes. 

For the second experiment only a selection of the treatments were used. These 

were Rep, CPR, PCR and control. The repetitions were carried out for two 

reasons, firstly, as a contrast to the steam exploded wheatfeed, ensuring that the 

conditions were the same for both the un-pretreated wheatfeed samples and steam 

exploded samples. Secondly there was a problem with the column used to analyse 

the samples from the first experiment and a new column was fitted. Repeating the 

experiment allows a comparison between the results gained with the old analysis 

equipment and the new. The treatments repeated were chosen in such a way that 

each enzyme was the first added once. 

For the second experiment where both un-pretreated wheatfeed and steam 

exploded wheatfeed were used, no xylose was liberated from either of the controls 
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(Figure 5.4). Xylose was liberated during all the other treatments in the range 

between 8.5 to 12 mg/ml. The results for the treatment of un-pretreated wheatfeed 

shows the pattern of xylose liberation is broadly similar to the first series of 

experiments. The results show that no xylose was detected for the Rep and peR 

treatments until after the second enzyme cellulase was added, whereas for the 

ePR treatment, xylose was detected after the first enzyme addition. This again 

confirms findings from the first set of experiments (Figure 5.1). Xylose is also 

not detected after the first stage for both the Rep and peR treatments of steam 

exploded wheatfeed, but is detected after the second enzyme addition. In both 

cases the second enzyme to be added is cellulase. The steam exploded ePR 

sample liberates xylose after the first addition of cellulase. These results suggest, 

that xylose is not released until cellulase has been added. 

40 

35 

o 1st Addition 

• 2nd Addition 

D 3rd Addition 

Figure 5.4 Xylose Released By Sequential Addition of Selected Enzyme Mixtures 

for Steam Exploded and Un-pretreated Samples. 

(s) indicates steam exploded wheatfeed. 
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Figure 5.5 shows the results for arabinose release. Arabinose is released from the 

un-pretreated wheatfeed samples and the control in the range of 4.5 to 9.5 mg/ml. 

This range is higher than was previously observed (Figure 5.2). The first addition 

for the CPH experiment gives an unusually high result for arabinose compared to 

the earlier experiment (Figure 5.2). 

For the steam exploded wheatfeed samples no arabinose is detected for any of the 

treatments, or the control at any stage of the experiment. 

40 

35 

Cl 1st Addition 

• 2nd Addition 

o 3rd Addition 

Figure 5.5 Arabinose Released By Sequential Addition of Selected Enzyme 

Mixtures for Steam Exploded and Un-pretreated Samples. 

(s) indicates steam exploded wheatfeed. 

Both sets of results give a similar trend for glucose (Figure 5.6). The graph gives 

the impression that there is not much difference between the results for the un

pretreated wheatfeed. If however, the results from the first experiment are 

revisited (Figure 5.3) it can be seen that for the treatments repeated here, the 

difference in the final glucose released is slight. Some glucose is released with all 

the enzyme treatments and also in the controls, but the greatest increase is after 
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cellulase has been added to the mixture, this is shown very clearly by the steam 

exploded results with glucose release increasing by over 21 mg/ml for all the 

treatments after cellulase addition. Samples which have been steam exploded 

release much more glucose than the un-pretreated samples, except in the case of 

the control where less glucose is released. 

If the un-pretreated wheatfeed control results are compared to those gained in the 

first experiment (Figure 5.3) it can be seen that the results here are much lower 

than those gained in the first experiment. Because the HPLC column was 

changed after the first series of experiments were conducted, greater reliance is 

placed on the second set of results. 

35 

30 

[J 1st Addition 

• 2nd Addition 

o 3rd Addition 

Figure 5.6 Glucose Released By Sequential Addition of Selected Enzyme 

Mixtures for Steam Exploded and Un-pretreated Samples. 

(s) indicates steam exploded wheatfeed. 

The protein results, Figure 5.7, show that some protein is released for all enzyme 

combinations and also by the controls. However, it is apparent from comparing 
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the RCP and PCR results with the CPR results for first addition, that most protein 

is released after cellulose has been added to the mixture for both steam pretreated 

and un-pretreated samples. This is further confirmed by comparison of the first 

addition results for the RCP and PCR treatments with their respective second 

addition results after cellulase has been added, where the protein detected is 

greatly increased. The steam exploded treatments release less protein than the un

pretreated wheatfeed treatments. Both the wheatfeed control and the steam 

exploded control release less protein than the treated samples. 
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Figure 5.7 Protein Released By Sequential Addition of Selected Enzyme Mixtures 

for Steam Exploded and Un-pretreated Samples. 

(s) indicates steam exploded wheatfeed. 

5.4 Discussion 

Reference has already been made to the discrepancies in the sugar levels between 

the first and second experiments in which un-pretreated wheatfeed was used. This 

was almost certainly due to problems occurring with the HPLC analysis and 

resulted ultimately in the fitting of a new column. The new column gave better 
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separation of the sugars and this allowed better detection. The results for the first 

experiment controls were high and the duplicates gave values which for the final 

sample had a difference of over 17 mg/ml for the glucose release. These were the 

last samples to be analysed on the old column. These results must therefore be 

viewed as suspect. The errors calculated using the two duplicate results for 

glucose for the first experiment, were over 50% for 4 out of 21 duplicate pairs 

(19% of results) using the old column, only 5 samples gave results with errors of 

less than 10% (23.8% of results). The new column used for the second 

experiment analysis, for both steam exploded and un-pretreated wheatfeed, gave a 

difference of over 50% mg/ml for 3 out of 24 results (12.5% of results) and errors 

of less than 10 % for 14 out of 24 duplicates (58.3% of results). Notwithstanding, 

some useful results were obtained from the first experiment, in particular more 

enzyme combinations were tested in the first set of experiments which allowed an 

insight into the best order of enzyme addition. The results gave an indication for 

patterns of the release of sugars and the repeats show the same trends in the 

results. 

A particularly interesting result was that there was no xylose release until 

cellulase had been added. Xylose is present in the hemicellulose of wheat bran 

which is mainly made up from arabinoxylans (Fincher and Stone, 1986). The 

arabinoxylans are made up from a xylopyranase (3-D-(1~4) linked linear 

backbone with a-L-arabinofurnanase units attached (Edwards et al., 2003). 

Wilkie (1979) suggested that hemicellulose filled the void between the cellulose 

fibres, and Walker (1993) predicted that although the function of hemicellulose 

was unknown it could form a link between cellulose and lignin. The results 

obtained here suggest that the xylose is in fact entrapped in the bran within 

cellulose fibres or closely linked to the cellulose and that until the cellulose fibres 

are digested by cellulase the xylose is not released. The results obtained would 

therefore support the view that the hemicellulose is linked to the cellulose and the 

linkage is through the xylose chain. The xylose results could also be explained if 

the cellulase enzyme demonstrated xylanase activity. Both Kim, (1995) and Kim 
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et al. (1997) report that on producing a cellulase from Bacillus stearothennophilus 

and Bacillus circulans respectively, they found that it also acted on xylans. 

Notenboom et al. (1998) reported that a cellulase «(3-1,4-gycanase) hydrolysed 

xylan 40-fold more efficiently than cellulose. 

In the first set of experiments (un-pretreated wheatfeed only) similar amounts of 

arabinose was released regardless of which enzymes were added, or with no 

enzymes present. This indicates that arabinose is not trapped within a matrix and 

is either much nearer the surface of the wheatfeed, or less closely related to other 

constituents in the fibre and is released into solution under the reaction conditions 

selected. If the arabinose is present in the arabinoxylans as side chains then it 

may be easier for this to break free into solution. If arabinose was widely 

distributed within the fibre matrix, then one might expect that some additional 

arabinose would be released into the solution after digestion with enzymes, but 

this was not the case. 

The addition of cellulase unambiguously stimulated glucose release. It was noted 

from the results for the first experiment (Figure 5.3) that the best order of addition 

of enzymes was hemicellulase, pectinase then cellulase for the un-pretreated 

wheatfeed glucose release. As previously mentioned, the void between cellulose 

fibre is filled with hemicellulase, therefore adding the hemicellulase first would 

start to degrade some of this material allowing better access to the cellulosic 

fibres. The cellulose fibres are composed of a primary wall a secondary wall and 

a lumen. The primary wall is the outer layer and is mainly made up of non 

cellulosic material such as waxes and pectin. The secondary wall is where most 

of the cellulosic material is contained and the lumen comprises mainly 

proteinaceous material (Immergut, 1963). This explains why more glucose is 

liberated if pectinase is added after the hemicellulose, but before cellulase. Once 

the hemicellulase has allowed better access to the fibres then the pectinase is able 

to digest the pectin in the primary cell wall, allowing the cellulase better access to 

the cellulosic material in the secondary cell wall. It could also be possible that 

98 



Digestion of Wheatfeed by Sequential Addition of Enzymes 

better results are gained if hemicellulose is added before pectinase if the 

hemicellulase needs a longer reaction time, if it is added last it only has 2 hours to 

react. As only a selection of the enzyme treatments were performed on the steam 

exploded wheatfeed then this 'best' order of addition can not be concluded for the 

steam pretreated wheatfeed, however from the treatments carried out the best 

results were obtained from the CPH treatment. 

Glucose was released in the control experiments for both steam exploded and un

pretreated wheatfeed. This glucose may have come from starch present in the 

bran fraction possibly from endosperm still attached to the bran. The digestibility 

tests (section 10.3) show that 22% of the wheatfeed is composed of starch. 

The results from the steam explosion experiments show the same trend as was 

observed for the untreated wheatfeed with respect to xylose release, with no 

xylose released into solution until cellulase has been added. There is a difference 

however with regard to the arabinose. Steam exploded wheatfeed showed no 

arabinose release regardless of the enzymes added. This suggests that the 

arabinose is either more labile than the other sugar constituents or that it is more 

accessible during the pretreatment step and therefore degraded during steam 

explosion. It is possible that if the xylose part of the arabinoxylans are more 

closely linked with the cellulose fibres they may be protected from the steam 

explosion by the cellulose. 

The release of glucose from steam exploded samples clearly shows the same trend 

as the un-pretreated samples, with more glucose released after the addition of 

cellulase. In the case of steam exploded wheatfeed this trend is shown more 

clearly than for the un-pretreated wheatfeed. The release of glucose is greater for 

the steam exploded samples than from the un-pretreated wheatfeed. This agrees 

with findings from the initial steam explosion experiments, shown in Appendix 4 

and may be due to other components of the fibre being degraded allowing the 

cellulase better access. In both cases glucose is the predominant sugar released. 
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Most of the protein in the wheatfeed is released after cellulase has been added to 

the mixture for both un-pretreated and steam exploded wheatfeed. Protein is 

present in the aleurone cells in the inner layer of the bran and also inside the 

cellulose fibrils (Immergut, 1963). In the former case the aleurone cell wall must 

be degraded before the protein is released, in the latter case the cellulose fibrils 

must be degraded before the protein is free. This would explain why cellulose 

must be added before protein is released. Figure 5.7 shows that overall, less 

protein is released from the steam exploded wheatfeed than from the un-pretreated 

wheatfeed. This is probably due to protein degradation during steam explosion. 

5.5 Conclusion 

The experiments described here revealed important information about the action 

of the three enzymes hemicellulase, pectinase and cellulase, on wheatfeed. 

Xylose is either entrapped in the fibre in such way that cellulose must be digested 

before xylose is released, or the cellulase used also has some xylan activity. 

Arabinose is present in an easily soluble form and is released into solution without 

the use of enzymes. Some glucose is released into solution without the use of 

enzymes this is possibly due to the presence of starch. Most is released however, 

after cellulase is added. The order of enzymes which release the most glucose 

from un-pretreated wheatfeed is hemicellulase, pectinase and then cellulase. 

Steam exploding the wheatfeed prior to performing the experiment degrades 

arabinose and none is present in solution after digestion. More glucose was 

released when the wheatfeed was steam exploded. Although some protein was 

solubilised in the absence of enzymes, peak protein release occurred after the 

addition of cellulase. Steam exploding the wheatfeed led to reducing levels of 

protein release presumably because protein degraded during steam explosion. 

However, the breakdown products of proteins, oligopeptides and amino acids, 

although not detectable by the Lowry-Peterson assay would nonetheless have 

nutritional value. For the second experiment the highest total reducing sugars 

100 



Digestion of Wheatfeed by Sequential Addition of Enzymes 

released by the un-pretreated wheatfeed was obtained from the CPH treatment 

which released 42.0 mg/ml. The highest total reducing sugars from the steam 

exploded wheatfeed was obtained by the CPH treatment which liberated 48.5 

mg/ml. Therefore steam explosion pretreatment will allow liberation of 6.5 

mg/ml more sugar. 

A limitation of the experiments described is that the enzymes all had differing 

optimum conditions. Experiments employed one temperature and one pH and 

therefore not all the enzymes were at their optimum conditions. 
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6 Optimising the Digestion of Wheatfeed Using Enzyme 

Mixtures. 

6.1 Introduction 

The performance of all enzymes is strongly dependent on the environmental 

conditions in which they function. Outside of living cells the two parameters 

most easily varied are temperature and pH. 

Each of the enzymes used here was derived from a different source and had 

optimal conditions (as defined by pH and temperature) that differed from one 

another. The cellulase was from Trichodenna reesei and optimal performance 

was achieved at pH 5.0 and temperature 37°C. The hemicellulase was derived 

from Aspergillus niger and functioned optimally at pH 4.5 and 40°C. Finally, the 

pectinase used here was that produced by a species of Rhizopus and displayed 

optimum conditions of pH 4.0 and 25°C. It was proposed to use these enzymes in 

combination, in order to achieve high yields of sugars and proteins from the 

digestion of wheatfeed and therefore it was necessary to determine the conditions 

under which this occurred optimally. There was also a possibility that synergistic 

effects may be revealed by investigating the combined performance of the three 

enzymes mentioned above over a range of temperatures and pH. For example the 

action of one of the enzymes might result in increased availability of substrate for 

the next. 

In this Chapter, the effects of changing temperature in the range 30 to 55°C and 

pHs in the range 3.0 to 5.8 were investigated. The initial conditions investigated 

were temperatures of 50°C and 37°C and pHs of 3.4 and 5.0. Most of the 

previous experiments were carried out at pH 5.0 and 50°C. The intervals between 

the parameters investigated were chosen to be sufficiently distant from one 

another so as to reveal differences above the level of experimental errors in 
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detennining the concentration of sugars and protein, but not so great as to pennit 

significant peaks or troughs to be overlooked. Another important parameter in 

industrial enzymic processes is the time of digestion and in the experiments 

described two digestion times were investigated, 8 and 24 hours. 

6.2 Method 

Experiments were carried out using a cellulase, hemicellulase and pectinase 

mixture of single enzymes to evaluate the optimum conditions of the combination. 

All experiments were carried out in 50 ml conical flasks following the basic 

procedure outlined in section 3.7.1. Initial experiments were carried out using 

citrate buffer at pH 5.0 and 3.4, temperatures of 50°C and 37°C and times of 8 and 

24 hours. These experiments were carried out in duplicate and included controls 

(to which no enzymes were added) for each set of parameters. All samples were 

centrifuged and the supematants taken and frozen for high perfonnance liquid 

chromatography (HPLC) and Lowry-Peterson protein analysis. 

After these initial experiments had been conducted, surface graphs of total 

reducing sugar and protein released were plotted, this gave an indication as to 

whether to increase, or decrease the values of the parameters under investigation 

in order to move towards an optimum. Further experiments were therefore 

designed to more closely approach conditions at which the highest yields of 

sugars and protein release could be achieved. These later experiments were 

carried out at a wider range of conditions using pH 3.0 and 5.8 and temperatures 

of 30°C and 55°C as well as the original parameters. A final experiment was 

carried out at the discovered optimum conditions. 

Table 6.1 shows all of the experiments perfonned to produce the surface graph. 

Table 6.2 shows the amounts of citric acid and sodium citrate necessary to 

produce buffers of the desired pH. 

103 



Optimising the Digestion of Wheat feed Using Enzyme Mixtures 

Table 6.1. Experimental Conditions. 

Time (hours) Temperature (OC) pH 

8 30 3 

8 30 3.4 

8 37 3.4 

8 37 5 

8 50 3.4 

8 50 5 

8 50 5.8 

8 55 3.4 

8 55 5 

8 55 5.8 

24 30 3 

24 30 3.4 

24 37 3.4 

24 37 5 

24 50 3.4 

24 50 5 

24 50 5.8 

24 55 3.4 

24 55 5 

24 55 5.8 

The initial experiments carried out are shown in bold type. 
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Table 6.2. Formulation of Citrate Buffers from Cruickshank, (1960). 

pH 0.1 M Citric acid 0.1 M Sodium 

(ml)* citrate (ml)* 

3.0 465 35 

3.4 400 100 

4.8 230 270 

5.0 205 295 

5.8 118 382 

*Quantities added to 500 ml of distilled water. 

6.3 Results 

Figure 6.1 shows the surface plot for total reducing sugars released after 8 hours 

digestion. It is immediately apparent that there are no prominent peaks or troughs. 

There appears to be one more or less well defined peak at intermediate pH 

(between 4.0 and 5.0) and at high temperature 55°C and a ridge giving high sugar 

concentration at lower temperatures (between 35 and 40°C) over the entire pH 

range examined, with the possible exception of the lowest pH (3.5) which reveals 

a small minimum. 

The corresponding control experiment (Figure 6.2) shows that the highest 

concentrations of sugars were released at the lowest temperatures investigated, 

with a possible maximum at 35°C, or below and at pHs above 5.0. 

In the corrected plot (i.e. the values from Figure 6.2 subtracted from those of 

Figure 6.1) shown in Figure 6.3, the maximum at high temperatures (55°C) and 

intermediate pH persists, but the ridge which was observed in Figure 6.1 is now a 

more definite peak and occurs in a region of low pHs (approximately 3.5) and at 

low temperatures (35 - 40°C). 
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Figure 6.1 Surface Plot of Total Reducing Sugars Released from Wheatfeed after 

Enzymic Digestion for 8 Hours. 
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Figure 6.2 Surface Plot of Total Reducing Sugars Released from Wheatfeed in the 

absence of Enzymes for 8 Hours. 
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Figure 6.3 Surface Plot of the Corrected* Total Reducing Sugars Released from 

Wheatfeed after Enzymic Digestion for 8 Hours. 

* These were obtained by subtracting the concentrations detected in the control experiments 

conducted at identical conditions. 

The surface plot for 24 hour digestion is shown in Figure 6.4. Two maxima are 

revealed; one at low pH (3.0 to 4.0) and low temperature (between 35 and 40°C) 

and a lesser one at the higher temperature of 55°C and pHs in the range of 4.0 to 

5.0. A pronounced minimum is revealed at pHs above 5.5 and temperatures in the 

region of 42°C and below. 
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The controls (Figure 6.5) reveals a 'diffuse' maximum, at intermediate pHs and 

intermediate to higher temperatures (45 to 50°C) and a somewhat more distinct 

maximum at very low pHs and temperatures. 

The corrected plot (Figure 6.6) reveals a very similar profile to that of the 

uncorrected plot (Figure 6.4) albeit with reduced sugar yield. These results 

suggest that optimal sugar release occurs at pH 3.7 and at a temperature of 37°C. 

Moreover it is also clear that the longer digestion time of 24 hours is beneficial in 

resulting in increased yields. 
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Figure 6.4 Surface Plot of Total Reducing Sugars Released from Wheatfeed after 

Enzymic Digestion for 24 Hours. 
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Figure 6.S Surface Plot of Total Reducing Sugars Released from Wheatfeed in the 

absence of Enzymes for 24 Hours. 
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Figure 6.6 Surface Plot of the Corrected* Total Reducing Sugars Released from 

Wheatfeed after Enzymic Digestion for 24 Hours . 

* These were obtained by subtracting the concentrations detected in the control experiments 

conducted at identical conditions. 

The results for individual sugars are contained in Appendix 5. Arabinose and 

xylose were consistently released in small amounts during both enzymic digestion 

and control experiments and there is no obvious difference between the 8 and 24 

hours experiments. Glucose was released in the greatest amount and followed the 

pattern of the total reducing sugars shown here. 
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Figure 6.7 shows the surface plot for protein release after 8 hours digestion. The 

most obvious feature of this figure is the pronounced minimum at pHs in the 

region of 4.5 and temperatures below 40°C. High concentrations of proteins were 

released at low temperatures and pHs. A less pronounced region of high yield is 

that at low pH and high temperature. The controls (Figure 6.8) reveal an 

essentially featureless plane with protein yields of 10 mg/ml more or less 

uniformly spread over the entire region of interest. Figure 6.9 shows the corrected 

plot, the surface is very similar in appearance to the surface for the uncorrected 

data. 
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Figure 6.7 Surface Plot of Protein Released from Wheatfeed after Enzymic 

Digestion for 8 Hours. 
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Figure 608 Surface Plot of Protein Released from Wheatfeed in the absence of 

Enzymes for 8 Hours. 
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Figure 6.9 Surface Plot of the Corrected* Protein Released from Wheatfeed after 

Enzymic Digestion for 8 Hours. 

* These were obtained by subtracting the concentrations detected in the control experiments 

conducted at identical conditions. 

Figure 6.10 shows the surface plot for protein release after 24 hours digestion. 

The shape of the surface is similar to that obtained from the 8 hour data, however, 

the peak at low temperature and high pH gives a result about 10 mg/ml lower. 

Figure 6.11 shows the corresponding control surface, the data shows a slight 

maxima at low pH (3.0) and intermediate temperatures (35 to 45°C). As 
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previously, once the data has been corrected by subtraction of the control data, the 

overall shape of the surface plot (Figure 6.12) remains essentially unchanged 

although the drop in protein release as pH increases from low to intermediate pH 

is steeper. 

The suggested optimum conditions for protein release is therefore at pH 3.0 and 

30°C, with a sharp decrease in the amount of protein released as the pH increases. 
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Figure 6.1 0 Surface Plot of Protein Released from Wheatfeed after Enzymic 

Digestion for 24 Hours. 
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Figure 6.11 Surface Plot of Protein Released from Wheatfeed in the absence of 

Enzymes for 24 Hours. 
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Figure 6.12 Surface Plot of the Corrected* Protein Released from Wheatfeed after 

Enzymic Digestion for 24 Hours. 

* These were obtained by subtracting the concentrations detected in the control experiments 

conducted at identical conditions. 

Using the two optimum conditions for total reducing sugar and protein release a 

combined optimum was estimated. This was a pH of 3.2 and a temperature of 

35°C. The results for this experiment gave a total sugar release of25.6 mg/ml for 

the 8 hour experiment and 34.2 mg/ml for the 24 hour experiment and protein 

concentrations of 21 .3 and 22.0 mg/m! respectively. 
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6.4 Discussion 

The experiments described here successfully revealed the presence of optimal 

conditions for the release of sugars. Both the 8 hour and 24 hour results show a 

peak at low pH (about 3.5) and low temperatures (about 35 to 40°C) with a 

somewhat less prominent maximum at conditions described by a temperature of 

55° and a pH of 4.5 to 5.0 however, the latter conditions may represent those of a 

'descending slope' from a maximum that lies at temperatures above 55°C and 

possibly at intermediate pHs. 

Whereas sugars were released from wheatfeed under the conditions investigated 

here in the absence of enzymes (Figures 6.2 and 6.5), significantly greater 

amounts of sugar were solubilised when enzymes were added (corrected Figures 

6.3 and 6.6.). There was moreover a distinct advantage in prolonging the 

digestion time above 8 hours. Figure 6.3 shows that at 8 hours the maximum 

concentration of sugar solubilised was 18.0 mg/ml but after 24 hours (Figure 6.6) 

it was 30.0 mg/m!. 

Similarly, some protein was released in the absence of enzymes (Figures 6.8 and 

6.11) however, substantially greater amounts were solubilised in the presence of 

enzymes. In contrast to the findings for sugars a higher maximum was obtained 

after 8 hours digestion rather than after 24 hour digestion (by approximately 10 

mg/ml). This could be explained by the released protein denaturing over time in 

harsher conditions. Proteases are known to be stored in the aleurone layer of the 

bran (Laszity, 1999) and these might have degraded some of the protein released. 

The resulting peptides and amino acids would still be nutritionally available but 

would not be detectable by the Lowry-Peterson assay. 

The protein results (Figures 6.9 and 6.12) reveal a region at intermediate pH (4.5) 

and low temperature (35°C) where the conditions are apparently totally unsuitable 

for protein solubilisation. Although the apparent descent to zero is clearly an 
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artefact of the software used to obtain the surface plots, as even in the absence of 

enzyme (Figures 6.8 and 6.11) at least 5 mg/ml of protein was released at the most 

unfavourable combination of pH and temperature - and not uncommonly values in 

the region of 10 mg/ml were achieved. Protein is apparently released at all the 

extremities of the region investigated, however, the highest yield was obtained 

after 8 hours at low temperatures and low pH (28 mg/ml). 

The combined optimum conditions for sugar and protein release were discovered 

to lie at pH 3.2 and temperature 35°C. An experiment carried out at these 

conditions gave results similar to those suggested by the surface graphs with 25.6 

mg/ml sugar released from the 8 hour enzymic digestion and 34.2 mg/ml from 

the 24 hour digestion. Protein release was 21.3 and 22.0 mg/ml respectively. 

Waszczynskyj et al. (1981) used a hemicellulase, cellulase and pectinase (HCP) 

enzyme mixture on wheat bran in their work as a pretreatment step for a protein 

extraction process. They performed experiments to try to find optimum 

conditions of the mixture and varied the enzyme levels, pH and digestion time. 

Remarkably they did not investigate the effect of temperature. They found that 

the best yield was at pH 3.7 (the lowest tested), with maximum enzyme loadings 

and 7 hours digestion time (maximum tested). The results obtained here would 

appear to support their findings. Waszczynskyj et al. (1981) did not investigate 

the release of sugars. 

Naturally if enzymic digestion of wheatfeed was to be commercialized using 

combinations of enzymes, commercial enzyme preparations would be employed. 

These would almost certainly be derived from sources different to the purified 

enzymes employed here. Moreover, commercial preparations often contain more 

than one type of enzyme activity, Sanjust et al. (2004) found that commercial 

cellulases often contained xylanase activity. Consequently, experiments such as 

were described here would need to be repeated using commercial preparations. 
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6.5 Conclusion 

Conditions favouring the release of proteins and sugars from wheatfeed using a 

mixture of cellulase, hemicellulase and pectinase were identified. Not 

surprisingly these did not coincide. Most significantly long digestion times -

certainly in excess of 8 hours, possibly as high as 24 hours were needed to 

solubilise sugar but low digestion times favoured protein release (probably 

substantially less than 8 hours). Strictly speaking it would be misleading to 

describe the maximum identified here as optimal. True maxima are revealed by 

regions of descent in all directions from the maxima. An extension of the 

experiments to regions of pH lower than 3.0 and greater than 5.8 and to 

temperatures greater than 55°C would therefore need to be conducted. 

Notwithstanding, pHs in the region 3.5 and temperatures between 35 and 40°C 

would appear to result in relatively high yields of both proteins and sugars. 
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7 Experiments on the Digestion of Wheatfeed in a 

Bioreactor 

7.1 Introduction 

Whereas the use of purified enzymes as reported in previous chapters provided 

useful information as to the best combination of enzymes and processing 

conditions to enhance the nutritive value of wheatfeed, a commercialized process 

would be reliant on industrially available enzymes. In this chapter therefore, 

experiments are described using a commercial cellulase preparation 'celluclast', 

produced by Novozymes (Bagsvaerd, Denmark). 

One particular consideration during the scale-up of reacting systems is to 

determine whether mass transfer rates are significant compared to reaction rates. 

If they are, then there are implications for the design of the scaled-up reactors. In 

such cases, any design of reactor must ensure that access to the substrate must be 

readily granted to the enzyme. An indication as to whether mass transfer effects 

are significant can be gained by operating a continuously stirred tank bioreactor 

(CSTR) at two different stirrer speeds and comparing the rates of release of sugars 

and proteins at each set of conditions. The work conducted here examined the 

action of the celluclast enzyme at stirrer speeds of 50 and 150 rpm. 

Also described here are the effects of particle size on the rate of release of sugars 

and proteins. Such information could help to determine whether particle size 

reduction of the wheatfeed is economically beneficial. 

Finally, this chapter also includes work using celluclast to digest steam exploded 

wheatfeed in a CSTR. 
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7.2 Effect of Agitation Rate on Enzyme Reaction. 

7.2.1 Introduction 

Experiments were carried out in a stirred bioreactor. Both total reducing sugar 

and protein release were monitored during enzyme treatment. Stirrer speeds of 50 

and 150 rpm were used. 

7.2.2 Method 

All the experiments were performed using a 2 I continuously stirred tank 

bioreactor. The method used was as described in section 3.7.2.1 with a few 

variations. Celluc1ast enzyme (2.5 ml) was added to 1.5 litres of wheatfeed 

suspension of 20% (weight/volume) at 50°C. Samples were taken periodically 

throughout a 5 hour digestion. A control experiment was also carried out using 

2.5 ml distilled water in the place of the enzyme and a stirrer speed of 50 rpm. 

All samples were frozen to preserve them for subsequent HPLC and Lowry

Peterson protein analysis. 

7.2.3 Results 

Figure 7.1 shows the release of sugars over time. After five hours digestion at 

150 rpm, 15.7 mg/ml of reducing sugars were released, whereas at 50 rpm 14.0 

mg/ml were obtained. This compares with a value of 10.6 mg/ml for the control 

experiment. Although operating at a higher agitation rate does result in a greater 

final yield of sugars, the effect of agitation rate appears to be slight. 
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Figure 7.1 The Effect of Stirrer Speed on Sugar Release. 

The results for the protein liberation are shown in Figure 7.2. The effect of stirrer 

speed and indeed the presence of the enzyme, was less marked than was observed 

for sugars. 
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Figure 7.2 The Effect of Stirrer Speed on Protein Release. 

7.2.4 Discussion 

Enzyme treatment resulted in a higher release of reducing sugars than was 

obtained for the control (Figure 7.1). Although a higher final yield of sugars was 

obtained at the higher stirrer speed, the effect of agitation rate was slight. The 
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observed higher yield of sugars at 150 rpm might have resulted from a decrease in 

particle size owing to the more vigorous rate of agitation. 

An appreciable amount of sugars (10.6 mg/ml) were released during the control 

experiment. The source of these sugars is likely to be starch which subsequent 

analysis (section 10) showed was present in wheatfeed at a level of 22.2% 

(weight/weight). 

Protein release (Figure 7.2) seems to be independent of enzyme concentration or 

stirrer speed, this suggests that it is being solubilised at a rate which is probably 

only temperature dependent. 

These results indicate that the system is not external mass transfer limited, but 

rather limited by the rate at which the enzyme attacks its substrate. 

7.2.5 Conclusion 

The finding that the system is not external mass transfer limited has considerable 

implications for scale-up, provided that the enzyme can be evenly distributed 

throughout the reaction mixture the precise reactor configuration used should not 

significantly affect the rate of either protein, or sugar release. 

7.3 Effect of Particle Size on the Rate of Sugar and Protein 

Release. 

7.3.1 Introduction 

The particle size experiments were designed to investigate the effect of particle 

size of the substrate on the rate of enzymic digestion. Particle size experiments 

were carried out both in the 2 I continuously stirred tank bioreactor and at a 

smaller scale using 50 ml centrifuge tubes after it was discovered that the 

bioreactor agitator was not powerful enough to stir larger particle size 

experiments. Wheatfeed was sieved into various size fractions for both 
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experiments. The fractions were as shown in Table 7.1. For the stationary 

centrifuge tube experiments an additional fraction was used. This was obtained 

by milling large particles. Experiments were also carried out using 'as delivered' 

wheatfeed, i.e. wheatfeed that had not been separated into size fractions, in this 

report it is referred to as 'un-fractionated wheatfeed'. 

Table 7.1 Table of Wheat feed Fractions Used for Particle Size Experiments. 

Particle Size of Fraction, x (!-lm) 

x>839 

553<x<839 

348<x<553 

348<x<197 

x<197 

x< 197 'milled'* 

* This fraction comprised oversized particles (>839J.tm) milled to <197J..lm 

7.3.2 Bioreactor Method 

The bioreactor was used following the basic experimental method as described in 

section 3.7.2.1. but with the following variations. Riffled wheatfeed and various 

size fractions obtained from it as described in Table 7.1, were used in different 

experiments. The enzyme used was 2.5 ml celluc1ast. The experiment ran for 5 

hours with samples taken periodically. The samples were frozen and later 

subjected to HPLC and Lowry-Peterson protein analysis. Two control 

experiments were carried out using the fines and un-fractionated wheatfeed 

respectively and used 2.5 ml buffer in the place of the enzyme. 

7.3.3 Bioreactor Results 

The results for the release of total reducing sugar with time are shown in Figure 

7.3. The control composed of fines released the lowest amount of total reducing 

sugars achieving a final concentration of 5.0 mglml after 5 hours. A control 
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comprised of un-fractionated wheatfeed released rather more reducing sugars 

(10.6 mg/m!). The fines fraction with enzyme released 9.2 mg/ml, after 5 hours, 

which is less than the un-fractionated control. Treatment of a medium sized 

fraction (348<x<553Jlm) with enzyme lead to the release of 12.0 mg/ml after 5 

hours whereas with un-fractionated wheatfeed a final sugar concentration of 14.0 

mg/ml was obtained. Attempts to use particles of size greater than 348Jlm at a 

concentration of 200 g/l were unsuccessful owing to the fact the agitator was not 

powerful enough to stir the buffer-enzyme and wheatfeed mixture. The results 

obtained here show that higher yields and higher rates of sugar release were 

obtained from the larger size fractions, with the highest yields obtained from the 

unfractionated wheatfeed. 
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Figure 7.3 The Effect of Particle Size on Reducing Sugar Release. 

The protein results are shown in Figure 7.4. The control composed of fines gave 

the lowest amount of protein liberation, with a maximum of 6.4 mg/ml after 5 

hours. The un-fractionated control gave 9.9 mg/ml in the same time period. The 

fines fraction with enzyme released 7.9 mg/ml after 5 hours, the medium sized 
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fraction (348<x<553Ilm) released 10.6 mg/ml and the un-fractionated wheatfeed 

released 10.9 mg/m!. As for the release of sugars, the highest protein yields were 

obtained from the larger particle size fractions. 
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Figure 7.4 Effect of Particle Size on Protein Release. 

7.3.4 Stationary Centrifuge Tube Method 

In order to investigate the effects of particle size greater than 553 Ilm, a series of 

experiments were conducted using 50 ml centrifuge tubes. There was no mixing 

to ensure that the problems encountered with the continuously stirred tank 

bioreactor would not be repeated. The results are described in section 7.3.5. 

Smaller scale experiments were performed using all the fractions of wheatfeed 

listed in Table 7.1. The fines milled fraction was also included, this comprised 

particles greater than 839 Ilm that had been milled to a size of less than 197 Ilm. 

Experiments were executed in duplicate. Centrifuge tubes (50 ml) were loaded 

with 5 g of the relevant wheatfeed fraction. Buffer-enzyme solution (25 ml 
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including 6.66 III enzyme) was heated for 30 minutes in a water bath at 500 e until 

thermal eqUilibrium was reached. Next, the 25 ml buffer-enzyme solution was 

added to each of the centrifuge tubes, capped and mixed. The centrifuge tubes 

were placed in the water bath and allowed to digest for 24 hours with no shaking. 

After 24 hours the tubes were removed and centrifuged for 10 minutes at 10,000 

rpm and lOoe. The supematants were taken and frozen for subsequent analysis 

for sugars and protein. 

7.3.5 Stationary Centrifuge Tube Results 

Figure 7.5 shows the results obtained for sugar release. It can be seen that the 

fines obtained by milling large particles liberated less of any of the sugars (except 

glucose) than any other sample including the fines fraction. If the results from the 

other fractions are compared, the amount of xylose released was in the range of 

4.3 to 10.7 mg/ml. The maximum amount of xylose was released from the largest 

particle fraction, the least is released from the fines fraction with the sugar yield 

decreasing as the particle size decreases. Arabinose is released in the range of 1.8 

mg/ml to 3.1 mg/ml. The greatest release was achieved using the 553<x<839 

particle size fraction. However, the four largest fractions gave results within a 

fairly narrow range (2.9 to 3.1 mg/ml). The lowest yield was obtained from the 

fines fraction. 

The fructose liberation results show that the amount of this sugar released from 

the four larger particle size fractions lay within the range of 4.4 to 5.2 mg/ml. The 

fines fraction again gave a lower result at 3.5 mg/ml. Glucose was liberated in the 

range of 14.6 to 18.4 mg/ml. 
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Figure 7.5 The Effect of Particle Size on Sugar Release. 

The results for protein release (Figure 7.6) reveal similar yields for all particle size 

ranges, but somewhat higher yields were achieved for the larger end of the range 

for particle sizes. The milled fines again gave the lowest result. 
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Figure 7.6 The Effect of Particle Size on Protein Release. 
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7.3.6 Particle Size Experiments Discussion 

Overall the particle size experiments show a general trend that the smaller particle 

size fractions released less sugar and protein than the larger particles. The agitator 

of the large bioreactor was not powerful enough to stir the two largest particle size 

fractions although the experiments which were carried out on the smaller particles 

and fines, suggest that larger particles resulted in greater sugar release. This was 

an unexpected result; in normal circumstances reducing the particle size should 

result in an enhanced rate of release of sugars and proteins. One possible 

explanation for these findings is that various size fractions of the wheatfeed are 

obtained from different parts of the wheat during milling and therefore have 

different compositions. To investigate this possibility the largest particles (>839 

/lm) were milled to a size comparable to the fines fraction «197 /lm) and then 

digested under stationary conditions. The results obtained did not show 

significantly different patterns of sugar release. Unlike the bioreactor, samples 

could not be taken during the experiment so there are only final values available 

and no kinetic data was available. However, the possibility still remains that the 

fines were composed of those elements of the grain that are intrinsically less 

susceptible to attack by cellulase enzymes. 

The protein results showed that the release of protein decreased as the particle size 

decreased, this could be due to larger particles containing more protein to release 

than smaller particles, or it could be due to mechanical shear breaking the proteins 

down during upstream processing. These smaller proteins may not be detected by 

the Lowry-Peterson assay. 

More revealing results might have been obtained if a more powerful motor could 

have been fitted to the stirrer in the bioreactor so that kinetic data could have been 

obtained. 
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7.3.7 Particle Size Experiments Conclusion 

The experimental results were inconclusive. The agitator of the bioreactor was 

not powerful enough to perform a digestion of all the particle size fractions for 

comparison and the following stationary centrifuge tube digestion results gave 

insufficient data for a conclusion to be achieved. 

7.4 Effect of Steam Explosion On the Rate of Sugar and Protein 

Release. 

7.4.1 Introduction 

Initially the effects of pretreating the wheatfeed substrate by steam explosion were 

evaluated using substrate that had been pretreated and dried and at a much smaller 

scale than here (Appendix 4). If steam pretreatment were to be used in an 

industrial process, it is likely that freshly pretreated wheatfeed would be used. 

Enzymic digestion (24 hour) of freshly steam exploded wheatfeed in the 2 litre 

bioreactor was carried out to evaluate how such treatment would effect the results 

in an industrial process. The steam exploded wheatfeed was not dried prior to use 

in the digestion as in an industrial environment this step would be omitted. 

7.4.2 Method 

The steam explosion was carried out following the procedure detailed in section 

3.4.2. The steam exploded wheatfeed that was required for this experiment was 

produced in 30 g batches that were subsequently pooled. The pretreated 

wheatfeed was then digested in the 2 I bioreactor following the method described 

in section 3.7.2.1. The enzyme used was 25 ml celluclast and 1200 ml citrate 

buffer was used. 
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7.4.3 Results 

The results for the steam exploded wheatfeed run (Figure 7.7) showed that there 

was a small increase in the initial rate of reducing sugars released for the steam 

exploded wheatfeed compared to that of the un-pretreated wheatfeed. However 

after 15 hours there are is no significant difference between the yield of sugars 

obtained. 
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Figure 7.7. Total Reducing Sugar Released for Steam Exploded and Un-pretreated 

Wheatfeed After 24 Hours Digestion with CellucIast. 

Figure 7.8 shows the results for individual sugars released during the digestion. 

The un-pretreated results are shown as solid symbols and the steam exploded 

results are shown as open symbols. The results show that there was more xylose 

released from the steam exploded wheatfeed than the un-pretreated wheatfeed 

during the earlier part of the experiment although after 16 hours very similar 

results were obtained from both experiments. After 24 hours the xylose released 

from the un-pretreated wheatfeed had marginally exceeded that of the steam 

exploded wheatfeed to reach a value of 27.3 mg/ml. 

The arabinose results were very Iow for the un-pretreated wheatfeed with values 

less than 0.6 mg/ml. No arabinose was liberated from the steam exploded 
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wheatfeed. Less fructose was liberated from steam exploded wheatfeed than from 

un-pretreated wheatfeed with a final difference of 3.5 mg/ml after 24 hours. 

More glucose was released from the steam exploded wheatfeed than from the un

pretreated wheatfeed. At first the release from the un-pretreated wheatfeed was 

higher than that of the steam exploded wheatfeed but with time the steam 

exploded sample released more glucose leading to a difference in final yield of 4.8 

mg/m!. 
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Figure 7.8 Individual Sugars Released During Steam Exploded Wheatfeed and 

Un-pretreated Wheatfeed Enzymic Digestion. 

Figure 7.9 shows the final yields of sugars liberated from the wheatfeed and steam 

exploded wheatfeed after 24 hours digestion. The graph shows that the 

concentration of xylose and fructose present in the sample is less for the steam 

explosion samples than for the un-pretreated sample. Arabinose present in low 

amounts from un-pretreated wheatfeed is absent from the steam exploded 

wheatfeed. The figure shows that steam explosion led to an increase in glucose 

release from 11.9 mg/ml to 17.9 mg/m!. 
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Figure 7.9 The Composition of Sugars Released after 24 Hours Digestion with 

Celluclast for Steam Exploded and Un-pretreated Wheatfeed. 

The protein results (Figure 7.10) show that the yields of protein released from the 

steam exploded wheatfeed was lower than that from the un-pretreated wheatfeed 

with final results after 24 hours digestion of 9.6 and 18.6 mg/ml respectively. 
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After 24 Hour Digestion with Celluclast. 
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7.4.4 Discussion 

Steam explosion results in an altered pattern of sugar release. Arabinose and 

fructose are liberated in smaller quantities from steam exploded wheatfeed than 

un-pretreated wheatfeed, this could be because these sugars are degraded in the 

steam explosion process. In contrast, more xylose is liberated from steam 

exploded wheatfeed than from the un-pretreated wheatfeed during the early stages 

of digestion. Thereafter the rate of release slows and the final result after 24 hours 

is less than that of un-pretreated wheatfeed. Under severe steam explosion 

conditions sugars may degrade during the pretreatment step causing a loss of 

substrate (Soderstrom et aI., 2003) this could explain the reduced arabinose and 

fructose release from steam exploded wheatfeed. Hemicellulose comprises a 

xylose backbone with arabinose side chains (Edwards et aI., 2003), if the side 

chains are degraded by the steam explosion, better access to the xylose and the 

components closely associated with it might occur and consequently more xylose 

is released in the early stages of the digestion. All the available xylose might 

therefore be released early. In the case of the steam exploded sample the value of 

available xylose could be less than for the un-pretreated sample as some of the 

xylose may also have been degraded during the steam explosion process. 

Despite modest differences in the patterns of individual sugar release the overall 

total quantity of reducing sugar released during the digestion of steam exploded 

wheatfeed (27.2 mg/ml) is approximately the same as for un-pretreated wheatfeed 

(27.3 mg/ml) 

The amount of protein released is unambiguously lower for the steam exploded 

wheatfeed. This supports findings from the initial steam exploding experiments 

discussed in Appendix 4. The low yields are probably due to degradation of 

protein during the steam explosion process. However, the degradation products of 

protein are likely to be amino acids and oligopeptides which will still form a 

digestible part of the product. 
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The results show that steam explosion does not seem to enhance the final amount 

of sugar release as suggested by results from the initial steam explosion 

pretreatment experiments (Appendix 4) however this may be because these 

experiments use a longer digestion time (24 hours rather than 4) or due to 

differences in batches of wheatfeed. Whether steam explosion pretreatment is 

worth considering as a pretreatment step, may depend on the enzymic digestion 

time required. 

7.4.5 Conclusion 

Steam exploding the wheatfeed with no drying, prior to enzymic digestion does 

increase the initial rate of digestion of wheatfeed. However steam explosion 

resulted in the degradation of some sugars and the final yields after 24 hours were 

lower for steam exploded wheatfeed than for un-pretreated wheatfeed. 

7.5 Overall Conclusion 

The results from the effects of agitation rate suggest the system is not external 

mass transfer limited which means that provided that the enzyme can be evenly 

distributed throughout the reaction mixture the type of reactor employed for scale

up will not significantly affect the rate of either protein or sugar release. 

The results for the particle size experiments were inconclusive. The experiment 

could not be performed in the manner required as the agitator was not powerful 

enough to mix slurries using larger particle sizes. The experiments set up to 

compensate for these inadequacies, namely stationary centrifuge tube 

experiments, did not give sufficient data for a conclusion to be reached. 

The steam explosion results showed that steam exploding the wheatfeed 

immediately prior to digestion elevates the amount of sugar released for the early 

stages of digestion, however the final sugar liberation after 24 hours is lower for 

steam exploded wheatfeed than for un-pretreated wheatfeed. 
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8 Comparison of the Performance of Commercial 

Enzymes 

8.1 Introduction 

Any commercialization of the enzymic treatment of wheatfeed would be totally 

reliant on sources of enzymes which were commercially available. It is important 

to evaluate the ability of different enzymes to digest the wheatfeed in order that an 

informed decision can be made as to which enzyme will be the most economical 

to use taking into considerations both yields and costs. In this chapter a 

comparison of such enzymes is described. From these comparative experiments a 

single enzyme was chosen with which to conduct a number of further 

experiments, aimed at investigating the relationship between the amount of 

enzyme used and the release of sugars. These studies were conducted using a 

stirred bioreactor. 

In evaluating the feasibility of a particular process, it is useful to be able to model 

the progress of any reaction stages so that the effects of changes can be predicted 

and used to arrive at an overall optimization of the process. The experiments 

described above yielded data of the sort that was amenable to modelling 

mathematically. Two approaches were taken; the first involved a kinetic 

expression whilst the second made use of a purely empirical relationship. The 

results obtained from both methods are discussed here. 

8.2 Comparison of Enzymes Method 

Experiments were carried out in the bioreactor following the basic method 

detailed in section 3.7.2.1. The enzyme used (25 ml) was varied for each 

experiment, viscozyme, celluclast, ultraflow, ronozyme and roxozyme were 

considered. Samples were taken periodically over the 24 hour digestion and 

frozen for further analysis. 
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Experiments were also carried out using different amounts of celluc1ast 25 ml, as 

previously discussed, then 12.5 ml. These results were then used in a model to 

predict the amount of enzyme needed to release all the sugar from the wheatfeed, 

after which it was predicted that no additional enzyme would increase the yield. 

The experiment with the calculated value of enzyme was performed, as was one 

with an excess of enzyme and another experiment with less than the required 

amount of enzyme. In all these experiments the total liquid volume was kept 

constant. 

Prior to analysis, samples were defrosted, mixed, placed in micro-centrifuge tubes 

and centrifuged for 5 minutes at 10°C. The supematants were taken and filtered 

into clean centrifuge tubes before being centrifuged for another 5 minutes. The 

samples underwent HPLC sugar and Lowry-Peterson protein analysis. 

8.3 Comparison of Enzymes Results and Discussion 

The results gained for the different sugars against time are shown in Figure 8.1. 

The use of viscozyme led to the release of the highest concentration of reducing 

sugars (42.1 mg/ml) after 24 hours digestion, this was followed by ultraflow (29.1 

mg/ml) , celluc1ast (27.7 mg/ml), roxozyme (26.4 mg/ml) and finally ronozyme 

(8.9 mg/ml). The results for ronozyme show a final yield lower than that obtained 

after 16 hours digestion, with a decrease from 16.2 mg/ml to 8.9 mg/ml sugar 

liberation. The control liberated 10.7 mg/ml. 
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Digestion with Various Commercial Enzymes. 

Figure 8.2 shows that the enzymes differed in their pattern of digestion as 

manifested by the different proportion of individual sugars released. Viscozyme 

released predominantly glucose, whereas celluc1ast released a larger percentage 

xylose than any of the other enzymes (37%). 
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Figure 8.3 shows the protein released by the various enzymes over 24 hours. 

These results reveal less discrepancy between the different enzymes than was 

observed for the release of sugars (Figure 8.1). Celluclast released the most 

protein giving a protein liberation of 21.5 mg/ml, this was followed by viscozyme 

(21.1 mg/ml) , roxozyme (20.9 mg/ml), ultraflow (15.3 mg/ml) and finally 

ronozyme (14.1 mg/ml). The control released 11.3 mg/ml. 

8.4 Comparison of Enzymes Conclusion 

Although the use of viscozyme resulted in the highest yield of reducing sugars 

(Figure 8.1), the pattern of digestion (Figure 8.2) suggests that the enzyme 

celluclast appears to attack the xylans and other hemicellulosic components of 

wheatfeed more effectively. Coupled to this is the high yield of protein obtained 

(Figure 8.3) using celluclast. It was therefore decided to conduct further 

experiments with the latter. 
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8.5 Kinetic Modelling 

The protein release was measured after various celluclast loadings were added to 

the bioreactor and digestions carried out for 24 hours. The results are shown in 

Figure 8.4. Generally the greater the enzyme loading the more protein is released. 

This is an expected result, however there is a drop in protein concentration at long 

digestion times that appears to be significant. One explanation could be that the 

temperature of 50°C denatures the protein slowly over a period of time. 

Alternatively it could be that there may be natural proteases in the wheat bran 

which are released as the fibre is broken down by the enzyme. Once released, the 

proteases are free to break down the released protein. 
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Figure 8.4 Protein Released During Wheatfeed Digestion with Different Enzyme 

Loadings. 

An attempt was made to use Michaelis-Menten kinetics to describe the sugar 

release into solution during digestion over 24 hours with various celluclast 

loadings, but there was a clear deviation from Michaelis-Menten predictions and 
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the experimental results achieved. This is demonstrated by plotting the rate 

against the product concentration as predicted by Michaelis-Menten (Equation 

8.1) with the experimental results. 

Where 

KJ = constant (mg/ml)th. 

Km = Michaelis constant (mg/ml). 

CEO = The enzyme loading (mg/ml). 

CAD = The total sugar available in the fibre (mg/m). 

Cp = The concentration of sugar (mg/ml). 

Rp = Rate of production of sugar (mg/ml)th. 

(8.1) 

The Michaelis-Menten model takes into account the amount of substrate used and 

the initial rate of the reaction (Lehninger, 1975). 

The results for Rp against Cp were plotted and a curve fitting program used to fit 

the Michaelis-Menten equation to the data, the resulting graph is shown below for 

the case of 25 ml enzyme loading in the bioreactor. The graph (Figure 8.5) shows 

the data points and the fitted line. It can be clearly seen that the model does not 

give a good fit. 

142 



Comparison of the Performance of Commercial Enzymes 

I r' I I I 
--------~--------~----I----~--------~--------~---------

: I I: : : 
, I I 

I I I 
I --------1--------,- - - - - -:- - - -1- - - - T - - - - - - - - -:- - - - - - - -
I I 

I 

I I I 

--------~--------~---------~--------~--------~--------
: : I :, : 

I I I 
I I 
I I 
I I I I t - - - - - - - - i - - - - - - - - -:- -- - - - - - -; - - - - - - - - i - - - - - - - -~- - - - - - --
I I I I 
I I I I 
I I I • I I QJ 

~ ~~~~ro-r.-r.-rTlr+.-Tl-r~II-r,-r.-r.-~-rllrT~ 
~ 0.0 5.0 10.0 15.0 20.0 25.0 30.0 

TRS Concentration (mglml) 

Figure 8.5 The Michaelis-Menten Model Fitted to the Data. 

Where TRS means total reducing sugar. 

The results appear to show that the measured rate was greater than that predicted 

by the Michaelis-Menten kinetics (seen more clearly in Figure 8.5). 

Hellgardt (2002), proposed an expression that accounted both for enzyme 

concentration and the possible effects of product inhibition on the maximum 

concentration of sugar released during digestion by an enzyme. The expression 

was as follows 
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(8.2) 

Where 

Cpmax = the maximum concentration of product (sugar) that can be obtained at a 

given enzyme loading (mg/ml). 

CEo = The enzyme loading (mg/ml). 

CAO = The total sugar available in the wheatfeed (mg/ml). 

Cpo = The initial concentration of sugar estimated from experimental data 

(mg/ml). 

K = A constant (ml/mgt. 

n = A constant. 

CAO was taken as 68.3 mg/ml. This was calculated from values given for the 

weight percentage of hemicellulose and cellulose in bran from literature (Fisher, 

1985). 

In this model it is assumed that the final total reducing sugar concentration would 

increase as the amount of enzyme added was increased and that there existed a 

maximum level of enzyme which would release all the sugar bound in the 

wheatfeed. Enzyme loadings above this level would, according to the model, not 

result in additional sugar liberation. 

An experiment was carried out in the 2 I bioreactor using 300 g wheatfeed and 

1525 ml enzyme buffer solution following the procedure described in section 

3.7.2.1. The amounts of cellucIast used were 12.5 ml and 25 ml (concentrations 

in the bioreactor of 9.84 and 19.67 mg/ml respectively). 
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Figure 8.6 Total Reducing Sugar Release for Two Enzyme Loadings. 

Figure 8.6 shows that at the higher level of celluclast a greater yield of reducing 

sugars was released. 

By using the experimental data for the two enzyme levels at 12.5 ml and 25 ml 

and a Cpo of 7.5 mg/ml in Equation 8.2, simultaneous equations were set up to 

find the constants K and n. These were used in the equation with the maximum 

total reducing sugar available (68.3 mg/ml) to find the concentration of enzyme 

which will result in the release of all of the available sugar. 

The results were as follows; 

K=4.552 

n = 0.493 

Therefore 

C Pmax = C PO + 4.552C~~93 (8.3) 
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It was calculated that to release all the reducing sugar in the cellulose and 

hemicellulose, 245 ml of enzyme would be required. 

An experiment was carried out using this enzyme loading along with an excess 

loading (300 ml enzyme) to evaluate if all the total reducing sugar was released 

and if adding more enzyme had an effect. In addition, a value of 193 ml enzyme 

was used to determine whether the maximum total reducing sugar could be 

achieved with this enzyme loading even though it was less than the predicted 

maximum, it was however, much higher than the loadings used in previous work. 

The results are shown in Figure 8.7. 
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Figure 8.7 The Effect of using the Maximum and Excess Enzyme Loading on 

Concentration of Total Reducing Sugar Released. 

It can be seen that the calculated enzyme loading of 245 ml does just release all 

the total reducing sugar available, the excess amount of enzyme (300 ml) resulted 

in no further increase to the concentration of reducing sugars. From this data, it 

can be concluded that a higher enzyme loading will release a higher concentration 

of sugar into solution until a maximum concentration has been reached, after 

which additional enzyme addition will have no further effect. The result for the 
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193 ml enzyme loading also releases the maximum amount of total reducing sugar 

available but the final sample point deviates from the curve and so is deemed to be 

incorrect. 

A model proposed by Hellgardt (2002) was differentiated and used in an attempt 

to model the rate of sugar release, but the model did not fit the experimental data. 

However, it would be useful to be able to model the concentration-time curve for 

the results gained so that predictions can be made for the concentration of sugar 

released at a given time, for any enzyme loading below the maximum. 

A new kinetic model was formed by fitting a curve to the experimental data 

plotted against time and using a curve fitting program to find an expression which 

describes the curve, the data points for the concentration of sugars were 

recalculated using the expression. This was carried out for the 12.5 ml, 25 ml, 

193 ml and 245 ml enzyme loadings. The curve fitted to the experimental data for 

the 12.5 ml loading is shown below (Figure 8.8). The graphs for the 25, 193 and 

245 ml enzyme experiments can be found in Appendix 6. The expression was 

differentiated and applied to the recalculated concentrations to find the rate at a 

given time. The rates were plotted against the concentrations. This gave a series 

of straight lines (Figure 8.9). The gradients were all negative which suggests that 

at a given concentration of product the rate of sugar production falls to zero, the 

original concentration time graphs (Figures 8.6 and 8.7) would also suggest this. 

This suggests that the enzyme is subject to product inhibition, although an 

alternative explanation is that of enzyme denaturation, or inactivation occurring. 
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Figure 8.8 Total Reducing Sugar Concentration Plotted against Time for the 12.5 

ml Enzyme Loading. 

a=14.5 (mg/ml), b=1.47, c=0.121 (mllmg). where TRS means Total Reducing 

Sugar 

An exponential association was used to describe the data (Equation 8.4). 

(8.4) 

The expression was differentiated to give the rate of production of sugar. 

Rp = ac(e-CCp 
) 

(8.5) 

This was then plotted against the concentration (shown in Figure 8.9) resulting in 

a straight line. 
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(8.6) 

where m=gradient and A=intercept. 
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Figure 8.9 The Calculated Rate of Sugar Production Plotted against the Free 

Sugar Concentration for all the Enzyme Loadings. 

The trendlines gave the following equations. 

12.5mI; y =-0. 121x+2.59, 25ml; y = -0. 126x+3.50, 193ml; y = -0. 159x+8.43 

245mI; y = -0.185x+12.9 

As the intercept and gradients changed for each enzyme loading an expression 

was sought to describe the relationship between the intercepts, gradients and 

enzyme loading. Graphs were plotted of enzyme loading against the rate-sugar 

concentration expression intercepts and gradients (Figures 8.10 and 8.11) and 

subsequently found to be straight lines. The expression for each was substituted 

for m and A into the original rate expression (Equation 8.6) to predict an 

expression to describe the rate in terms of the concentration of sugar dependant on 

the enzyme loading. 
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Figure S.11 Gradients Plotted Against Enzyme Loadings. 

The expression was 

Rp = ((-0.0003CEO -O.US)Cp )+ (0.0504CEO + 2.14) (S.7) 
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This expression was then integrated between Cp and Cpo and t=t and t=0 (as 

dCp/dt =Rp). to give an expression for Cp as a function of time. 

where 

t=time (hours) 

and 

A = -Q.0003CEO -0.118 

B = 0.0504CEO + 2.14 

(8.8) 

This was performed using a value of7.5 mg/ml for Cpo as both the 25 ml and 12.5 

ml enzyme loadings had initial values close to this, however it was observed that 

the curve did not fit the experimental values well at the higher enzyme loadings. 

The model predicted the curves to start from the 7.5 mg/ml value and as the initial 

part of the experiment happened so quickly this was not the case. It was decided 

to use the value of sugar concentration at 0.5 hours to describe the initial value, it 

can be seen from the graph (Figure 8.7) that this is not far from the initial value 

gained if the curve is traced back to zero time. The initial value changed with the 

enzyme loading, a graph of the sugar released after 0.5 hours against the enzyme 

loading (Figure 8.12) was used to fit a curve and gain an expression to describe 

the relationship between the two. This was then substituted into the equation 

(Equation 8.8) in the place of Cpo. 
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Figure 8.12 Released Sugar Concentration after 0.5 Hours for Differing Enzyme 

Loadings. 

The final expression was as follows; 

(8.9) 

The modelled curves (denoted by lines) were fitted for the enzyme levels for 

which experiments had been carried out (see Figure 8.13) and compared to the 

original smoothed curves. The model was not able to return an answer for some 

of the results, this occurs when: 

(8.10) 

and the rate is effectively O. This feature however makes it possible to use the 

equation to calculate the highest concentration of total reducing sugar which will 
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be achieved by an enzyme loading. A concentration fractionally smaller than this 

can be put into the equation to determine a time at which that concentration will 

be achieved and therefore the curve modelled. A curve was generated for an 

enzyme loading of 100 ml, also seen in Figure 8.13. 
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Figure 8.13 Comparison of Smoothed Experimental Results and Modelled Curves 

for Different Enzyme Loadings. 

The treatment described above was purely empirical and not based on a 

mechanistic model. Movaghamejad et al. (2000) considered a shrinking particle, 

however in this model there are no terms to account for this. In the case of 

wheatfeed, the substrate is a mixture of a range of sizes so including a term to 

express the particle size specifically would be difficult. This may be appropriate 

for the situation described here but a mechanistic model would need to account for 

variations in particle size. The expression gained is simple and works for 

celluclast on wheatfeed. It is possible that a variation of the expression may apply 

to celluclast working on other substrates although this has not been studied in this 

project. 
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8.6 Overall Conclusion 

All the commercial enzymes resulted in the release of sugars and proteins. 

Different enzymes attack different parts of the wheatfeed and the resulting sugar 

solution composition varied depending on the enzyme used. 

A model was used to predict the maximum amount of celluc1ast necessary to 

release the maximum amount of sugar and experiments were performed to 

validate the predictions. 

An empirical model was formulated and used to fit the experimental data. 
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9 Solid State Digestion of Wheatfeed and Enzyme Mode 

of Action 

9.1 Introduction 

The intended ultimate use of the enzymically digested wheatfeed is as an 

ingredient in dry pet food formulations (e.g. as biscuits), therefore there are 

obvious benefits in conducting the enzymic process in the presence of as little 

water as possible. This would reduce both the time and costs of a subsequent 

drying operation. Reducing the amount of free water would have implications not 

only for the enzyme reaction itself and the products liberated, but also for the 

mixing of the wheatfeed mixture during enzyme processing. This chapter 

describes experiments performed at reduced water levels to investigate the 

performance of a commercially available cellulase (celluclast) on both un

pretreated and steam exploded wheatfeed. Different enzyme levels were added to 

un-pretreated wheatfeed in order to determine the effect on product yield. 

Operation of microbial or enzymic processes under such conditions is referred to 

in the literature as 'solid state' and the origins of this form of processing go back 

hundreds of years to the so-called 'Koji' processing of rice starch to produce sake 

and other alcoholic beverages developed in the Far East. 

Also described in this Chapter is a second series of experiments designed to gain 

some insight into the mode of action of the cellulase. Previous workers have 

claimed that cellulases bind to their substrate as a pre-requisite to hydrolysis 

(Medve et al., 1998). Experiments are described here in which cellulase was 

contacted with pure cellulose fibres and an assay was performed to estimate the 

fraction of cellulase remaining unbound to its substrate. 
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9.2 Solid State Digestion Introduction 

Two sets of experiments are described here. In the first the effects of the level of 

cellulase were investigated. These experiments were carried out using 2, 10 and 

20% enzyme loadings (weight percent of wheatfeed). The second experiment was 

designed to evaluate how the quantity of free liquid in the wheatfeed-enzyme 

system affected the digestion and to investigate if high yields could be achieved at 

low liquid levels. Enzyme-buffer solution volumes of 5, 12.5 and 25 ml were 

used, whilst keeping the amount of wheatfeed constant. Buffer is mainly distilled 

water and so in reducing the buffer level, the water level is consequently reduced. 

9.2.1 Enzyme Loading Experimental Method 

The basic method using petri dishes as detailed in section 3.7.2.2 was used, with a 

few variations and was always executed in duplicate. The enzyme-buffer 

solutions (10 ml) contained different levels of celluclast (a commercial enzyme), 

the composition of these are shown in Table 9.1. Riffled wheatfeed (10 g) was 

used. Digestion was carried out for 24 hours with manual stirring at 4, 8, and 16 

hours. The glucose release was measured using the Accu-check meter and the 

protein release by the Lowry-Peterson assay. 

Table 9.1 Composition of Enzyme-Buffer Solution for Various Enzyme Loadings. 

Enzyme level (% weight Citrate buffer at pH 5.0 Celluclast added (m1) 

of wheatfeed) added (m1) 

20 8.33 1.67 

10 9.17 0.83 

2 9.833 0.167 

Control 10 0 
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9.2.2 Enzyme Loading Results 

Figure 9.1. shows the results obtained for glucose release. Enzymic digestion of 

wheatfeed clearly released more glucose than the control, liberating 

approximately an additional 6 mg/ml. All the enzymic digestions released similar 

amounts of glucose, giving results within the range of 16.0 to 16.7 mg/ml. 
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Figure 9.1 Glucose Released after Solid State Digestion for 24 Hours at 50°C. 
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Figure 9.2 Protein Released after Solid State Digestion for 24 Hours at 50°C. 
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The protein release is shown by Figure 9.2. As with the sugars, the control gives 

the lowest result (7.6 mg/ml). However, in this case, protein yields decrease as 

the enzyme loading decreases. A difference of 4.7 mg/ml was obtained between 

the highest (20%) and the lowest (2%) loadings. 

9.2.3 Enzyme Loading Discussion and Conclusion 

The results showed that there was essentially no difference between the glucose 

liberation for the different enzyme loadings tested. This would suggest that the 

2% loading was sufficient and that no substantial benefit was gained by adding 

additional enzyme. 

The enzyme loading did appear to effect the protein release from the wheatfeed, 

however, enzymes are proteins and extra enzyme would be present in the solution 

tested. Therefore the increase in protein release with enzyme loading was 

probably a feature of the experiment. This is supported by work discussed later in 

this chapter (section 9.2.8) where 1 Jlg/ml of enzyme was used, (which is less than 

used here) and protein was detected using the Lowry-Peterson assay. Therefore 

further experiments were carried out using the 2% enzyme loading. 

9.2.4 Enzyme Digestion at a Reduced Water Content Method 

The basic method using petri dishes is detailed in section 3.7.2.2. This method 

was used with a few variations. Experiments were carried out on both un

pretreated wheatfeed and steam exploded wheatfeed. Wheatfeedlsteam exploded 

wheatfeed (5 g) was used in the petri dishes with varying amounts of buffer

enzyme solution (5, 12.5, or 25 ml). For each liquid level, experiments were 

carried out in duplicate, with a celluc1ast loading of 2% (2% of the weight of 

wheatfeed), controls with no enzyme present were also performed. 

After 24 hours digestion time, each of the samples were removed from the petri 

dish and placed individually into a stomacher bag and more buffer added. The 

amount of buffer added was dependant on the amount initially used for the 
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digestion. For example if 5 ml of buffer-enzyme solution was used for the 

digestion then 20 ml buffer was added, the total amount of buffer used for each 

experiment was 25 ml. The samples were then subjected to stomaching for 1 

minute. The liquor was frozen for subsequent HPLC sugar and Lowry-Peterson 

protein analysis. 

The experimental set up is shown more clearly in Table 9.2 where E denotes 

enzyme and S that steam exploded wheatfeed was used. The number refers to the 

amount of buffer used (ml) for the digestion. 

Table 9.2. Experimental Set up for Enzyme Digestion at a Reduced Water 

Content. 

Sample Enzyme Steam Buffer-enzyme Buffer added 

present exploded so In (ml) (ml) 

5 - - 5 20 

5E + - 5 20 

5S - + 5 20 

5ES + + 5 20 

12.5 - - 12.5 12.5 

12.5E + - 12.5 12.5 

12.5S - + 12.5 12.5 

12.5ES + + 12.5 12.5 

25 - - 25 0 

25E + - 25 0 

25S - + 25 0 

25ES + + 25 0 
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9.2.5 Enzyme Digestion at a Reduced Water Content Results 

The results obtained are shown in Figure 9.3 where the same sample nomenclature 

is as described earlier for Table 9.2. The results show that for steam exploded 

wheatfeed treated with enzyme the amounts of reducing sugars released increased 

with the quantity of water present. This was also the trend observed for each of 

the sugars detected. Arabinose if released at all was only present in small 

quantities. 

The un-pretreated wheatfeed results show the same trends as the steam exploded 

wheatfeed, with increased total reducing sugar liberation as the liquid level of the 

digestion increases. An exception was the un-pretreated 25ml enzymic results 

where the total reducing sugar released at the 25 mllevel was less than at the 12.5 

ml level. This is due to a decrease in both glucose and fructose release. For the 

un-pretreated wheatfeed experiments the results show (with the exception of 25E) 

that glucose and xylose liberation increased as the level of buffer was increased. 

Arabinose was released in small quantities over the range of liquid levels and the 

amount of fructose detected was fairly consistent across the samples. 

Both sets of control experiments (i.e. for steam exploded and un-pretreated 

wheatfeed) released less total reducing sugars than their respective enzymically 

digested counterparts. Enzymic digestion increased the amount of xylose and 

glucose released, the arabinose release was also enhanced in the un-pretreated 

samples. 

The levels of sugars released from the enzyme treated steam exploded wheatfeed 

was less than for the enzyme un-pretreated samples, except at the 25 ml level 

where both results were close together (18.5 mg/ml for un-pretreated and 19.1 

mg/ml steam exploded). For the first two enzyme-buffer solution levels the sugar 

yield was greater for the unpretreated control than the enzyme treated steam 

exploded wheatfeed. It can be seen that the increase in sugar yields were large as 

the buffer level increased for the enzyme treated steam exploded samples. 
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The levels of sugar liberated from the steam exploded wheatfeed controls were the 

lowest for all buffer levels. 
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Un-pretreated Wheatfeed. 
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The results for protein release (Figure 9.4) clearly show that as the level of water 

increases protein liberation also increases. The steam exploded control gave the 

lowest results, with the maximum result at 5.1 mg/ml. This can be compared to 

the enzymically digested' steam exploded wheatfeed samples which gave a 

maximum result of 8.0 mg/ml. The un-pretreated sample gave maximum results 

of 11.9 mg/ml and 15.0 mg/ml, for the control and enzymic digestions 

respectively. 

9.2.6 Enzyme Digestion at a Reduced Water Content Discussion 

The results show that reducing the amount of water led to a decrease in the yields 

of sugar liberated. 

The controls released less sugars for both steam exploded and un-pretreated 

samples than the equivalent samples enzymically digested with celluclast. The 

steam exploded controls released less sugar than the un-pretreated wheatfeed 

controls, this follows the same trend discovered in the initial steam explosion 

experiments discussed (Appendix 4). The steam exploded enzymically digested 

samples gave an unexpected result, in that the sugars released were lower than the 

amount released by the un-pretreated samples (Figure 9.3). This is in contrast to 

the findings from the initial steam explosion experiments, where the reverse was 

the case (Appendix 4) 

The protein results confirm findings from the sequential treatment experiments 

(section 5.3) which suggested that steam exploding reduced the amount of protein 

released. 

The liquid level used in the bioreactor and conical flask experiments uses a ratio 

of 1 g wheatfeed to 5 ml water, this is equivalent to the 25 ml experiments here. 

Whilst the lower level of water gives reduced sugar and protein yields it may be 

worth considering, given the cost and time savings of eliminating the need to dry 

the product. The amount of enzyme could also be reduced in this case as it has be 
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shown in this chapter that the enzyme loading need not be higher than 2% with 

regard to sugar release. Previous experiments with high liquid levels have been 

carried out using a 10% celluc1ast loading 

9.2.7 Enzyme Digestion at a Reduced Water Content Conclusion 

Reducing the amount of water added for the digestion of wheatfeed with a 

commercial cellulase generally resulted in lower yields of sugars and protein. The 

results obtained using un-pretreated wheatfeed showed that halving the liquid 

volume from 25 ml to 12.5 ml did not significantly affect sugar liberation but did 

result in lower yields of protein. A reduction in liquid volume of this magnitude 

would almost certainly be desirable. Reducing the liquid volume to 5 ml reduced 

the amount of sugar liberated by approximately 3 mglml compared to that 

released at the 12.5 ml liquid level (for all the experiments except steam 

pretreated control). In the un-pretreated wheatfeed digested with enzyme case, 

these conditions still give a good sugar liberation and the reduction of liquid by 

one quarter would be worth it. However in this case the protein release is almost 

halved. 

9.2.8 Enzyme Mode of Action Introduction 

The enzyme binding experiments were designed to evaluate the way which the 

cellulase acts on the substrate - that is whether it binds to the surface of the 

substrate and remains bound, or whether it binds and is then released. The 

amount of protein in the aqueous phase was assayed using Lowry-Peterson 

following contact with cellulose fibres. 

9.2.9 Enzyme Mode of Action Method 

The experimental method used is outlined in section 3.7.2.3. The Lowry-Peterson 

assay was used to analyse the concentration of protein (from the addition of 

enzyme), in the aqueous phase, after celluc1ast was contacted with cellulose fibre 

in a liquid medium. 
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9.2.10 Enzyme Mode of Action Results 

The results for the enzyme binding experiment are shown in Figure 9.5. The 

protein level drops sharply, from 0.1 mg/ml to 0.03 mg/ml within the first 10 

minutes, then remains fairly constant. 
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Figure 9.5 Assay of Free Protein Following Addition of Celluc1ast Enzyme to 

Cellulose Fibres. 

9.2.11 Enzyme Mode of Action Discussion 

The concentration of protein in solution drops quickly at first, this is probably 

because initially there are many unoccupied enzyme binding sites on the cellulose, 

As the enzyme attaches it is removed from the solution. The protein concentration 

after this initial attachment remains substantially constant and the variation 

observed in Figure 9.5 is probably the result of experimental errors. It is possible 

the enzyme binds to the substrate reacts and is then released into the solution. 

However once in solution it is rapidly bound up again. This evidence agrees with 

results from the commercial enzyme experiments discussed in section 7.2 where 

the stirrer speed of the bioreactor was varied and the rate of digestion observed. 

Changing the stirrer speed did not make much difference to the rate of digestion. 

The rate of enzyme attachment or reattachment to the substrate may be increased 
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by external mixing, but it seems likely that any such increase would be relatively 

small given the rapid attachment under conditions of mild agitation. 

9.2.12 Enzyme Mode of Action Conclusion 

Rapid removal of protein from solution was observed which is compatible with a 

mechanism in which the cellulase binds to its substrate. Subsequent release and 

binding are probably rapid. 

9.3 Overall Conclusion 

These experiments have shown that an enzymic digestion of wheatfeed can be 

successfully carried out in a reduced liquid system using a 2% loading of 

celluc1ast, however the more liquid available during the digestion step the greater 

the liberation of sugars and protein. Steam pretreating the wheatfeed prior to solid 

state digestion does not enhance the amount of sugars, or protein liberated. 

The enzyme binds to the substrate. The rate of binding is initially fast and then 

subsequent release and reattachment is also probably very rapid. 
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10 Digestibility of Wheatfeed After Treatment. 

10.1 Introduction 

All of the treatments of wheatfeed described in earlier chapters, were carried out 

in order to make a final product that is more digestible and could be incorporated 

into dog food. To evaluate how the treatments affect digestibility, wheatfeed 

which had undergone selected treatments was produced and then tested for the 

percentage of fibre left and also for starch and gel starch. Digestions were carried 

out either in excess liquid, or in solid state form. Wheatfeed subjected to both 

kinds of treatment was prepared for digestibility testing, but was handled in 

different ways. The samples reSUlting from the liquid digestion were added to 

poultry meal prior to drying, this step was omitted for the solid state digestion 

samples. 

10.2 Methods 

10.2.1 Reduced Liquid Samples 

The samples shown in Table 10.1 were analysed for both fibre and starch. 
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Table 10.1 Treatment of Wheatfeed for Starch and Fibre Analysis. 

Sample 

Wheatfeed 

Designation 

Figures 

wheatfeed 

in Treatment 

Riffled wheatfeed with no further 

treatment 

Solid State SS wheatfeed cont Riffled wheatfeed (10 g), added to 10 ml 

Wheatfeed citrate buffer at pH 5.0, digested in a 

Control sealed petri dish, in an incubator at 50°C 

for 24 hours. After this, it was dried in a 

vacuum oven before being ground in a 

pestle and mortar to a particle size of 355 

j.lm<1000 j.lm. 

Solid State SS wheatfeed cell 

Wheatfeed 

Digested with 

Celluclast. 

Steam 

Exploded 

Wheatfeed 

Steam 

Exploded 

Control 

SE wheatfeed 

SEcont 

Carried out as for the solid state control, 

except in place of the buffer, 10 ml buffer

enzyme solution (9.167 ml buffer, 0.83 ml 

enzyme) was used. 

Steam exploded wheatfeed which was then 

dried in the vacuum oven before being 

ground in a pestle and mortar to a particle 

size of 355 j.lm<1000 j.lm. 

This was to serve as a control for steam 

exploded wheatfeed. 10 ml distilled water 

was added to 10 g riffled wheatfeed and 

mixed, then dried in a vacuum oven 

overnight. It was then ground to a particle 

size of between 355 j.lm and 1000 J,lm. 
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10.2.2 Enzyme Digestions Carried Out With Excess Liquid 

It was important that experiments using an excess of liquid should be included in 

the production of samples for digestibility testing, in order to establish whether 

more liquid improves the final digestibility of the wheatfeed. These experiments 

were carried out in 50 ml conical flasks following the basic procedure set out in 

section 3.7.2.4. Celluclast was the enzyme used for the digestion. The buffer 

enzyme solution was made as follows. Citrate buffer pH 5.0 (8.33 ml) was mixed 

with 1.67 ml celluclast and mixed, 1 ml of this was added to a further 9 ml of 

buffer and mixed to make 10 ml enzyme-buffer solution. 

After digestion, the digested fibre would be present as oligomers of carbohydrates 

and proteins of various chain lengths in the liquor. Therefore the liquor could not 

be disregarded as this would leave more resistant fibre giving inaccurately high 

fibre results. The sample however, was too wet to dry in the vacuum oven 

without further processing. Therefore, the samples were added to a readily 

digestible component of pet food (poultry meal) in the ratio of 1 g of wheatfeed to 

3 g, (or 1 conical flask to 6g poultry meal) before being dried. After the samples 

were dried they were ground in a pestle and mortar, to particle sizes between 355 

Ilm and 1000 Jlm. 

These experiments were carried out for wheatfeed digested with a 10% celluclast 

loading (10% weight of wheatfeed), wheatfeed control (no enzyme present) and 

the same, but using steam exploded wheatfeed in place of wheatfeed as described 

in Table 10.2. 
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Table 10.2 Treatment of Wheatfeed for Fibre Analysis. 

Sample Designation in Treatment 

Figures 

Wheatfeed 4 hour wheatfeed 4hr cont Wheatfeed which has undergone a 

Digestion Control liquid 4 hour digestion with no 

enzymes present. 

Wheatfeed 4 hour wheatfeed 4hr cell Wheatfeed which has undergone a 

Digestion with liquid 4 hour digestion with 

Celluclast celluclast. 

Steam Exploded SE wheatfeed 4hr Steam exploded wheatfeed which has 

Wheatfeed 4 hour cont undergone a liquid 4 hour digestion 

Digestion Control with no enzyme present. 

Steam Exploded SE wheatfeed 4hr Steam exploded wheatfeed which has 

Wheatfeed 4 hour cell undergone a liquid 4 hour digestion 

Digestion with with celluclast. 

Celluclast 

10.3 Results 

Figure 10.1 shows the percentage starch in wheatfeed and treated wheatfeed. The 

samples have a starch composition in the range of 29.2% to 33.5%. The lowest 

result is given by the solid state celluclast sample and the highest is given by the 

steam explosion control (SE cont). There is not a large difference between the 

various treatments. 

The results for the percentage of starch gelatinisation were in the range of 10.5 % 

(wheatfeed) to 31.5 %. The highest result was clearly given by the steam 

exploded wheatfeed (SE wheatfeed), with 16.7 % more gelatinised starch than any 

other sample. There was slightly more starch gelatinisation for both of the solid 

state experiments (SS wheatfeed cont/cell) compared to the other results 

(excluding steam exploded wheatfeed). 
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There are no starch results for samples from the enzyme digestion with excess 

liquid because once the digested wheatfeed was mixed with poultry meal the 

overall level of starch in the mixture was too low to detect. 
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Figure 10.1 Starch in Wheatfeed Samples after Various Treatments 

The results for the total fibre in the samples are shown in Figure 10.2. These 

results can be split into three groups. The highest results are given by wheatfeed 

(32.2%) and steam exploded wheatfeed control 4 hour digestion (SE wheatfeed 4 

hr cont) (32.1 %) 

The lowest results are given by solid state celluclast digested (SS wheatfeed cell) 

(16.1%), wheatfeed 4 hour celluclast digested (wheatfeed 4hr cell) (17.2%) and 

steam exploded 4 hour celluclast digested (SE wheatfeed 4hr cell) (20.5%). These 

are the only three treatments which included enzyme digestion and would 

therefore suggest that using celluclast to digest the wheatfeed decreases the 

percentage of fibre in the sample. This is confirmed further by comparison of the 

enzyme treatments with their respective controls. The solid state wheatfeed 

control gave a result of 25.1 % fibre compared to 16.1%, the wheatfeed 4 hour 
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control gave a result of 29.0% compared to 17.2% and the steam explosion 4 hour 

digest control gave 32.1 % compared to 20.5%. In these comparisons it is the 4 

hour digest wheatfeed treatment which shows the greatest difference with 11.8 % 

reduction in total fibre. 

The other treatments are grouped closely together mainly giving fibre percentages 

between 28 % and 29.5 %. The solid state wheatfeed control gave a slightly lower 

percentage at 25.1 %. 

The soluble fibre results range between 2.3 % and 7.4 % with the lowest result 

from the steam exploded wheatfeed 4 hour celluc1ast digestion and the highest 

result from steam exploded wheatfeed. The insoluble fibre results range between 

13.0 % for the solid state celluclast digest sample and 28.6 % for wheatfeed. 

There is no significant difference in the total fibre results for the steam exploded 

wheatfeed and steam exploded wheatfeed control, however, the steam exploded 

wheatfeed shows a larger percentage of soluble fibre than the steam exploded 

control. 
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Figure 10.2 Fibre in Wheatfeed Samples after Various Treatments 

171 



Digestibility of Wheatfeed After Treatment 

10.4 Discussion 

The results show that the level of starch in all the samples are within a small range 

and are probably due to variations in the composition of the raw material. 

However, starch gelatinisation was most pronounced in the steam exploded 

sample. This is to be expected, as the heat treatment performed during steam 

explosion would be sufficient to cause the gelatinisation of the starch. Comparing 

the results for the steam explosion control samples with those that were steam 

exploded, further demonstrate that it was the steam explosion which was the cause 

of the gelatinisation. The control had not been steam exploded, the wheatfeed had 

been added to the same amount of water as the steam exploded sample and dried, 

this sample gave low starch gelatinisation results. The samples which underwent 

the solid state digestion showed some starch gelatinisation. This could be due to 

long treatment at 50°C prior to being dried. 

The samples containing the lowest amount of fibre were those treated with 

celluclast; this suggests that the enzyme does break down fibre contained within 

wheatfeed. The highest fibre contents were found in samples that had been steam 

exploded then subjected to a 4 hour control digestion. This somewhat anomalous 

result might have arisen because some of the more digestible components of the 

fibre were degraded during the steam explosion process, leaving the less 

digestible components and thus increasing the percentage fibre in the remaining 

material. 

Both the steam exploded wheatfeed and the steam exploded wheatfeed control had 

a similar amount of fibre component, however, a difference can be seen in the 

amount of soluble and insoluble fibre in these samples. The amount of soluble 

fibre is greater in the steam exploded sample than the steam exploded control 

sample, thus suggesting that the fibre is broken down during the steam explosion 

process to smaller molecules which are soluble. 
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Samples taken from the other treatments showed that both the insoluble and 

soluble fibre is greater in the control experiments than the celluclast digested 

samples. This suggests that the enzyme breaks down both insoluble and soluble 

fibre without discrimination. 

10.5 Conclusion 

The digestibility of wheatfeed is improved by enzymic digestion of wheatfeed. 

Steam explosion was shown not to significantly enhance hydrolysis. This type of 

thermal treatment does however cause the starch to become gelatinised rendering 

it more digestible. It is likely that extruding the product would also have this 

effect. 

Purely steam exploding the wheatfeed would produce material with a higher 

soluble fibre percentage than un-pretreated wheatfeed. 

Although useful indicators of digestibility the tests reported here are not a 

substitute for animal feeding trials which would have to be undertaken if 

commercialization of the enzymic treatment of wheatfeed was ever to become a 

reality. 
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11 Conclusions and Suggestions for Further Work 

11.1 Conclusions 

Digestion of wheatfeed using enzymes led to the release of a variety of sugars and 

proteins. 

A number of different enzyme mixtures were evaluated, but the combination of 

hemicellulose, cellulose and pectinase gave the most satisfactory yields of sugars 

and proteins. 

Experiments were conducted to determine the optimum conditions for the 

digestion of wheatfeed using hemicellulose, cellulose and pectinase; these were a 

pH of 3.2 and a temperature of 35°C. 

Sequential addition of enzymes revealed useful information on the pattern of 

attack of the components of wheatfeed by individual enzymes. Most significant 

was the finding that xylose is only released once cellulase has been added. 

The performance of commercially available enzymes was evaluated. All products 

tested successfully liberated sugars and proteins. One enzyme preparation, 

'celluclast' was selected for further study as it yielded appreciable amounts of 

sugars and proteins and appeared, uniquely, to attack xylans and other xylose

containing polymers present in wheatfeed. 

In kinetic evaluations using celluclast in a stirred bioreactor, the stirrer speed did 

not affect the rate of sugar release and it was concluded that mass transfer effects 

were not limiting. 
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The effects of particle size of the wheatfeed were also investigated. 

Unexpectedly, smaller particles were not digested more rapidly than larger ones. 

Substrate mixtures comprising of the largest size fraction could not be digested in 

an agitated bioreactor owing to torque limitations of the motor fitted to the 

bioreactor. 

Sugars and proteins were also shown to be liberated when wheatfeed was 

enzymically digested under conditions that are referred to as 'solid state'. 

However, the yields of sugars and proteins obtained were lower than those 

obtained at higher water content. The protein liberation was effected more than 

the sugar release. 

A kinetic model was used to predict the amount of enzyme necessary to release all 

the available sugars. Experiments conducted to investigate this prediction proved 

positive. Limitations in the model reduced its usefulness but an empirical model 

was subsequently proposed and described the kinetic behaviour of the process of 

digestion well. 

Pretreatment of the wheatfeed by steam explosion gave inconsistent results. The 

amounts of additional sugars released would not appear to warrant recommending 

steam explosion as a commercial process for wheatfeed, but further work would 

be needed to confirm this. 

A variety of digestibility tests were performed and the results obtained showed 

that enzymically digesting wheatfeed does result in an increase in digestibility. 

11.2 Suggestions for Further Work 

The strategy for seeking to replace the more expensive components of animal 

feeds with cheaper ones (provided that the nutritional value of the feed is not 

thereby impaired) makes economic sense. The sources of any such replacements 
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need to be consistent and any further processing necessary to make these materials 

acceptable should not add excessively to the costs of the final product. The 

commercial enzyme used in this study is expensive at £70Ikg, the cheapest 

enzyme from the range tested costs £15/kg and therefore these ensure the work 

here does not fall into the category described above. However, steps to convert 

what is essentially a waste material i.e. the wheatfeed, and improve its suitability 

for incorporation in feeds should be pursued further. Although commercial 

enzymes may be ruled out on economic terms, the use of crude preparations of 

enzyme mixtures might prove more attractive. One way of obtaining these would 

be to carry out a solid state fermentation on the wheatfeed, or some other 

substrate, using a potent cellulase producer. The most obvious candidate would 

be Trichodenna reesei but other cellulolytic organisms such as Cellulomonas fimi 

should also be considered. Batches of wheatfeed could be fermented in relatively 

small scale bioreactors and the partially digested material remaining at the end of 

the fermentation could be used as a source of crude enzymes for direct addition to 

wheatfeed. Alternatively, the wheatfeed could be fermented for long periods in a 

solid state fermentation to achieve the required increase in digestibility. This last 

option would require further work in devising low cost digesters. This should not 

present insuperable difficulties as the process approximates to a controlled 

composting and guidance would be available from the existing literature as to how 

this might be achieved. 

Any incorporation of ingredients that contained enzymes or living micro

organisms would need to be treated to ensure that enzymes and cells were 

inactivated. This would probably need to be achieved using thermal methods. 

Fortunately, the intended use of the final material is as a dry feed product which is 

traditionally produced by extrusion and the conditions under which extrusion 

takes place might prove sufficient to prove the thermal energy input for 

inactivation. This is a further area where more work needs to be done. It can be 

seen from a trial run carried out in this study that enzyme treated wheatfeed can be 

added to the other ingredients of dog food and extruded (Appendix 7). 
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A number of processes in the food industry result in the production of generally 

dilute aqueous stream containing sugars and/or proteins. It may be possible to 

economically concentrate such materials for incorporation in feeds. Alternatively, 

other cheap sources of protein could should also be evaluated these would include 

soya, rapeseed and other meals. Both enzymic digestion of meals and other 

technologies such as protein extraction should be investigated. 

The possibility of being able to dispense entirely with enzymes is another strategy 

worthy of further investigation. Steam explosion would certainly merit additional 

attention. Although the results obtained here were variable, different regimes of 

operation might exist that could either result in the partial break down of 

indigestible components or increase the susceptibility of such components to 

enzyme attack. Other pretreatment methods such as alkaline hydroxide, acid 

hydrolysis or milling would also warrant further investigation. 

The digestibility tests employed here, though useful in indicating the extent of 

fibre breakdown, are really only poor substitutes for in vivo feeding trials. These 

would need to be conducted to provide evidence of acceptability to the animals 

and to provide assurance that there were no long term health risks to the animal. 
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12 Appendices 

12.1 Appendix 1: Discussion of Methods of Analysis 

Protein 

There are several methods of protein and sugar analysis which could have been 

chosen for this study. The Lowry-Peterson assay was chosen as the method for 

most of the protein analysis as it works well on proteins in solution and is simple 

to carry out. The Kjeldahl method could also have been used but this method 

takes longer and less samples can be analysed together, however this method was 

used for solid samples such as evaluating the amount of protein initially in the 

wheat bran. 

A BioRad kit was trialed as the reaction for this test takes 5 minutes compared to 

two reactions of a total of 40 minutes for the Lowry-Peterson assay. The samples 

also required less dilution than the Lowry-Peterson test thus eliminating some 

dilution error. The BioRad kit is made by BioRad Laboratories and is based on 

the method of Bradford. In this method Coomassie Brilliant Blue G-250 binds to 

protein in the samples and changes from a reddish to a blue colour. The 

absorption maximum of the dye changes from 465 to 595 nm. Therefore the 

change of the absorbance at 595nm on a UV photospectrometer is proportional to 

the protein concentration in the sample (Chang, 1994). 

Chang (1994) reports that the Bradford method is more sensitive than the Lowry 

method, however the trials using this method of protein analysis gave much lower 

results than those obtained using the Lowry-Peterson method. The BioRad 

experimental procedure booklet showed a table of amino acids and gave a 

comparison of Lowry and BioRad measurements. For some of the amino acids 

the BioRad gave much lower readings than the Lowry method, this suggests that 
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these could have been the amino acids mainly present in protein from the wheat 

bran. 

Sugars 

In the analysis of sugars several methods were employed. The Accu-check 

method was very quick and simple to use and so gave a quick estimate as to the 

glucose present, however the results were generally higher than those obtained 

from HPLC. The glucose kit method gave results similar to those from HPLC 

analysis although there were some differences. HPLC was the most lengthy of the 

analysis methods used taking 25 minutes for each sample injected. The Accu

chek meter took 40 seconds per sample, the glucose kit method took 40 minutes 

for the reaction to occur although there was a longer preparation time than for the 

other methods of analysis. However in this method more than one sample could 

be analysed at once. 

Initially the Nelson-Smogui method was trialed as this would be a fairly quick 

way of testing for all reducing sugars rather than just glucose, however the results 

obtained were very low. Low (1994) states that this method can be interfered with 

by biological molecules which probably explains why the solutions from the 

wheat digestion did not give good results. Another problem with this method is 

that different reducing sugars give different results (Low, 1994) and therefore a 

good indication of how much the fibre had been digested could not be obtained 

unless the exact make up of the sugars in the solution was known. As the 

different enzymes combinations tested would digest different parts of the wheat 

releasing different sugars it would be impossible to know from the Nelson

Smogui method which enzyme combinations had been most effective. 
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Fibre 

There are two approaches to measuring dietary fibre:-gravimetrically, or 

chemically. In gravimetric methods, digestible carbohydrates, lipids, and proteins 

are solublised by chemicals and enzymes and the indigestible residues are 

collected by filtration. In chemical methods digestive carbohydrates are removed 

by enzymic digestion, the fibre components are hydrolysed with acid and the 

monosaccharides released are measured. In both approaches starch must be 

removed, otherwise it will increase the estimate for dietary fibre (Bennink, 1994). 

The most widely used dietary fibre analysis methods are those of the Association 

of Official Analytical Chemists (AOAC), the Theander-Marlett and the Englyst

Cummings methods (Bennink, 1994). 

The AOAC is a gravitational method of measuring fibre. Duplicates of dry, 

ground, fat-free samples are gelatinised with heat stable a-amylase, then 

enzymically digested with amyloglucosidase and protease. This removes the 

starch and proteins. The mixture is filtered and the insoluble fibre collected. 

Ethanol is added to the filtrate and the soluble fibre precipitates. This mixture is 

filtered and the soluble fibre collected. Both fibre residues are washed with 

ethanol and acetone, dried and weighed. One duplicate is incinerated and 

weighed to find the ash content and the other undergoes protein analysis 

(Bennink, 1994) to calculate the residual protein. 

Total dietary fibre = insoluble fibre + soluble fibre - protein - ash. (James, 1995) 

In the Theander-Marlett approach, free sugars and lipids are extracted with 

ethanol and hexane from duplicate samples of dry ground food. Starch is 

removed by enzymic digestion. The mixture is then filtered and centrifuged 

several times to remove the insoluble residue. Ethanol is then added to the 

filtrates and the soluble polysaccharides precipitated, both the fibre fractions are 
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hydrolysed with sulphuric acid separately and the concentration of the sugars in 

the two hydrolysates are detennined. The residue (lignin) is washed, dried and 

weighed. 

Fibre = monosaccharides +lignin (Bennink, 1994) 

For the Englyst-Cummings procedure, dietary fibre is measured as non-starch 

polysaccharides (NSP). The food is defatted if necessary then the starch is 

gelatinised and enzymically digested. Sulphuric acid is added to hydrolyse 

remaining NSP (Bennink, 1994), which can then be measured colourimetrically. 

The procedure can be modified so that values can be obtained for dietary fibre (as 

total NSP), soluble fibre (soluble NSP), insoluble fibre (insoluble NSP) and 

resistant starch (James 1995). 

The three methods explained give reasonably comparable estimates for dietary 

fibre. The Englyst-Cummings does not include lignin and resistant starch in the 

estimate, therefore this generally gives the lowest result. The AOAC method will 

tend to over-estimate the value for fibre if the food is rich in simple sugars. It is 

possible that some sugars are trapped and precipitated with ethanol. This issue is 

not encountered if the Englyst-Cummings method is used. The AOAC and 

Englyst-Cummings procedures use enzymes to digest protein, this allows some 

fibre to be solublised affecting the results (Bennink, 1994). 

The differences in the methods and values must be boume in mind when 

comparing results of fibre for different foodstuffs, although each are 

comparatively reliable. The Englyst-Cummings method requires the lowest level 

of skill and the simplest equipment (Bennink, 1994), and is therefore probably the 

easiest to conduct. 
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12.2 Appendix 2: Lowry-Peterson Reagents A and B 

Materials 

12.5g Sodium Carbonate 

O.125g Copper Sulphate 

O.25g Potassium Sodium Tartrate 

4g Sodium Hydroxide 

Folin-Ciocalteu Phenol Reagent 

Distilled water 

Copper Tartrate Carbonate 

12.5g of Sodium Carbonate was dissolved in 500ml of distilled water. 

Appendix 2 

O.125g Copper Sulphate and O.25g of potassium sodium tartrate were dissolved in 

62.5ml of distilled water. 

The sodium carbonate was added to the copper sulphate and potassium sodium 

tartrate solution slowly with stirring. 

O.8M Sodium Hydroxide 

4g Sodium hydroxide was dissolved in 125ml of distilled water. 

Reagent A and B 

Reagent A: 125ml of copper tartrate carbonate and 125ml of O.8M sodium hydroxide 

were mixed together along with 250ml distilled water. 

The solution must be stored in the fridge and will only remain stable for about three 

weeks, after which it should be disposed. 

Reagent B: Folin-Ciocalteu phenol reagent was diluted with distilled water in the 

ratio 1:5. It must be stored in the fridge in an amber bottle. 
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12.3 Appendix 3: Students Two Tailed T -Test 

Method 

The Hest experiments were carried out in 50 ml conical flasks and followed the basic 

method as detailed in section 3.7.1. Only experiments using the /3-glucanase and 

cellulase (GC) mixture, the hemicellulase, cellulase and pectinase (HCP) mixture and 

xylanase (X) on it's own will be repeated along with a control (C). The first two 

mixtures are the ones which seem to work the best, whereas the xylanase did not seem 

to have much effect on the wheatfeed and so is repeated as a contrast. 

The protein in the samples was measured using the Lowry-Peterson assay. The 

glucose was measured using the Sigma glucose kit method, and the reducing sugars 

were measured by HPLC. The glucose results from these last two tests can be 

compared. 

For each enzyme mixture duplicates were carried out, these are given the numbers 1 

and 2 in the nomenclature of the samples in the results. For each duplicate, for the 

Lowry-Peterson and glucose tests three samples were taken for analysis from the main 

sample. These are denoted by the letters A, B, and C. 

For the samples which underwent HPLC analysis, where there was sufficient sample, 

three injections from each duplicate were analysed, these are denoted A, B, and C. 

Where only two samples were injected they were called A and B. 

For example HCPIB was a sample where the wheatfeed was digested with an enzyme 

mixture of hemicellulase, cellulase and pectinase. The sample was taken from 

duplicate number one and was the second sample to be taken from the stock sample. 

The results achieved were used for a Student's two-tailed t-test to calculate if there 

were any significant differences between duplicates and different treatments. 
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Results and Discussion 

Lowry-Peterson Assay 

The samples for the different duplications for one enzyme treatment were compared 

using the Student's two-tailed t-test to find out if there was any significant difference 

between the two samples. The null hypothesis was that there was no difference 

between the means of the two samples. The results are shown in the table below. 

where the comparison is made at the 5% level. 

Confidence Level for Duplicates for Lowry-Peterson Assay 

Samples compared Test of significance 

Cl andC2 + 

Xl andX2 -

HCPl and HCP2 -
GCl andGC2 -

+ = significance at the 5% level. 

This identifies that there is no significant difference between Xl and X2, HCPl and 

HCP2 and GC 1 and GC2. Therefore the duplicates can now be treated as one as one 

group of samples, so the duplicates are merged. Cl and C2 however show that there 

is only a certainty of 0.12 % that there is no significant difference between the 

samples so these must still be treated as two separate samples and therefore are not 

merged and retain the duplicate number. 

The samples can now be compared to each other using the t-test to determine if there 

is any significant difference in the results between the different enzyme treatments of 

the wheatfeed (table shown below). 
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Confidence Levels for Comparing Samples from the Lowry -Peterson Assay Which 

Has Undergone Different Treatments. 

Enzymes Cl C2 X HCP GC 

compared 

Cl ------- + - + + 

C2 + ------ - + + 

X - - - - - -- + + 

HCP + + + ------ + 

GC + + + + -------

The results were calculated using an excel spreadsheet which returns a probability that 

the null hypothesis is true. From this, the percentage certainty, or confidence level is 

calculated. The lower the confidence level, the more likely the differences in the 

results have arisen by random error in the samples rather than due to the treatment. 

The samples are said to be significantly different, or to show no significant difference 

at the 5% level. That is, if the confidence level is over 5% then the differences in the 

means of the samples are real and are fairly likely to have come about due to different 

sample treatment rather than random error in the samples. 

It can be seen that although the control samples must be treated separately, there is no 

significant difference between the xylose result and both control results, thus 

suggesting that the xylose treatment does not have much effect on releasing protein. 

There is however, significant difference between both controls and both the HCP and 

GC samples suggesting that these samples do have an effect. 

Glucose Kit. 

The same numerical analysis was carried out using the results from the glucose kit 

test. The table below shows the results gained from this analysis. It can be seen all of 

the samples show no significant difference between the two duplicates so the samples 

from both duplicates can be merged and treated as one population. 
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Confidence Level for Duplicates for the Glucose Kit Test 

Samples compared Confidence Level 

Cl andC2 

Xl andX2 

HCPl and HCP2 

GCl andGC2 

Confidence Levels for Comparing Samples Which Have Undergone Different 

Treatments Using the Glucose Kit Test. 

Enzymes Con X HCP GC 

compared 

Con ------ - + + 

X - ------ + + 

HCP + + ------ -

GC + + - - - --

The glucose values determined for all the enzyme mixtures studied follow a similar 

trend to those found for protein; i.e. xylanase (X) does not have a large effect on 

glucose release, conversely HCP and GC mixtures do. There is no significant 

difference shown between these latter two enzymic treatments, so the amount of 

glucose released by both must be similar. 

The results demonstrate that although the results of duplicates often agree, it is useful 

to carry out experiments in duplicate as sometimes erroneous results occur. 
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HPLC 

For each of the three sugars the HPLC analysis from the duplicates were compared 

using the t-test to see if there was a significant difference between the means of the 

samples using the null hypothesis as before. The samples could then either be 

merged, or treated separately to compare the sugars released for different treatments. 

The sugars are treated separately. 

Xylose 

For xylose, the Cl and C2 results were not included in the calculations because there 

was a large difference in the Cl results and as only two samples underwent HPLC, it 

is difficult to say which is the unusual result. 

Results from HPLC for Duplicates Comparing the Sugar Xylose 

Samples compared Confidence Level 

Xl andX2 + 

RCPl and RCP2 + 

GCl andGC2 -

The table above shows that only the GC duplicates can be merged the others must be 

treated separately. Due to the differences in the duplicates of the same treatments, 

nothing would be gained from comparing the differences due to different treatments. 

Fructose 

The tables below show the results from comparing the duplicates of the treatments. 

The fructose results show that there is no significant difference between duplicates of 

the same treatment. The results from the duplicates can therefore be merged and 

treated as one population. The results from the different treatments can then be 

compared 
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Results from HPLC for Duplicates Comparing the Sugar Fructose 

Samples compared Confidence Level 

Con 1 and Con2 -

Xl andX2 -

RCPl and RCP2 -

GCl andGC2 -

Comparing Different Treatments for Fructose Results 

Enzymes C X RCP BGC 

compared 

C - - - - - - - - -

X - - - - - - -- - -

RCP - - - - - - - - -

GC - - - - -- - - - -

It can be seen that there is no significant difference in the amount of fructose released 

between any of the treatments. This suggests that an amount of fructose in the 

wheatfeed will dissolve into a liquid medium regardless of any enzymic treatment. 

This amount is not increased by enzymic degradation of the bran. 

Glucose 

The results comparing the duplicates of the treatments are shown below. 

Results from HPLC for Duplicates Comparing the Sugar Glucose. 

Samples compared Confidence Level 

ConI and Con2 -

Xl andX2 -
RCPl and RCP2 -
GCl andGC2 -
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As there is no significant difference between any of the duplicates all the duplicate 

samples can be merged and compared. The treatments compared. The results are 

shown in the table below. 

Comparing Different Treatments for Glucose Results 

Enzymes Con X HCP BGC 

compared 

Con ------- + + + 

X + ------- + + 

HCP + + ------- + 

GC + + + - - --

The results show that there is a significant difference between all of the treatments 

and also between the treatments and the control. 

It can be concluded from the HPLC results, that the best sugar to evaluate the effect of 

different enzyme mixtures is glucose, as the xylose results are generally low and 

duplicates of the same treatment show significant difference. The fructose has been 

shown to be an ineffective way of evaluating how well different treatments have 

worked. The glucose results however show no significant difference in the duplicates 

of the same treatment, but the effect of changing the enzyme mixture can be actively 

quantified. 

Sugar Comparison. 

HPLC data can be converted into concentrations for each reducing sugar using an area 

generated by the HPLC fot a known concentration of the sugar. These concentrations 

can be added together to give a total concentration of reducing sugars. This can be 

compared with results gained from the Glucose Kit test. The results are shown below. 
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Comparison of Glucose and Total Reducing Sugars from the Two Different Analysis 

Methods 

Sample Glucose concentration mg/ml TRS mg/ml 

Glucose kit HPLC HPLC 

Cl 8.25 6.63 13.40 

C2 9.55 6.53 11.93 

Xl 9.90 7.73 14.11 

X2 9.29 6.49 11.46 

HCP1 16.54 16.63 30.74 

HCP2 16.67 16.44 29.65 

GC1 17.78 11.51 25.68 

GC2 17.79 12.89 27.71 

Where TRS = total reducmg sugars. 

The glucose test only measured the glucose in the sample. The results for the HPLC 

only take into account xylose, fructose and glucose (not all the reducing sugars), but 

can also be shown just as a measure of glucose which can be directly compared with 

the results from the glucose test. It can be seen that the results from HPLC analysis 

are generally lower than the results from the glucose kit test, although not by a 

consistent value. This could account for the earlier findings by the glucose test that 

HP was the best enzyme mixture, a fact later contradicted by the results from the 

HPLC analysis. The glucose kit is however a fairly effective quick test. 
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12.4 Appendix 4: Processing Characteristics of Wheatfeed. 

Moisture and Protein Content 

It was important to measure the protein content of the wheatfeed to give an idea of 

the maximum amount of protein available for release by enzymes 

The protein content of dried samples of wheatfeed were analysed using the 

Kjeldahl method explained in section 3.6.5. It was found that the average protein 

content was 16.8%. 

The moisture content was analysed by taking multiple samples of 2 g of 

wheatfeed and drying it overnight in an oven at 105°C. The dry samples were 

then reweighed and the moisture content calculated, the average moisture content 

was 11 %. 

These results differ slightly from the values suggested by (Fisher, 1985) who gave 

percentages of various bran components at 14% moisture and also completely dry 

bran. This suggests the bran he tested composed of 14% moisture and not 11%. 

The wheatfeed used for this study had a protein content of 16.8%, or 18.9% if a 

dry sample was used, this value was higher than that suggested by (Fisher, 1985) 

which was 12.4%. The differences in the results could be due to bran tested in the 

literature being a different variety than that used in the study, or due to seasonal 

changes. There is also the possibility that the bran previously tested was 

subjected to different up-stream processing to that used in this study. The results 

would also be dependant on the analysis methods employed. 
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Steam Explosion 

Introduction 

Steam explosion was carried out to degrade part of the fibre, which would leave 

larger pores for the enzyme to access the remaining fibre and therefore enhance 

the enzymic treatment. 

Method 

The initial steam explosion pretreatment experiments were performed using the 

basic method detailed in 3.4.2 however, some variations to that method were used. 

The explosion was carried out under two very different conditions, firstly at 

250°C and secondly at 130°C. In the first case, the pretreatment was allowed to 

continue until the pressure in the metal container reached 10 barG and in the 

second, the duration of pretreatment was restricted to 45 minutes. 

After steam explosion the pretreated wheatfeed was dried and frozen for storage 

until later enzyme digestion. Before use the wheatfeed was defrosted. 

The enzymic digestion was carried out in 50 ml conical flasks following the basic 

method detailed in section 3.7.1. A variation to this method was that cellucIast 

was used. CeIIucIast (1.67 ml) was mixed into 10 ml citrate buffer at pH 5.0 and 

mixed. A further dilution was made hy taking 1 ml of this mixture and adding to 

9 ml of citrate buffer solution and mixing. The resulting 10 ml enzyme-buffer 

solution was used in the experiment. 

Results and Discussion 

The steam explosion pressure profiles for the two runs can be seen in the figure 

below. 
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Steam Explosion Pressure Profile for Two Extreme Runs. 

The wheatfeed pretreated under these two conditions underwent an enzymic 

digestion. The results shown in the figure below show that after enzymic 

digestion, the most glucose was released from the wheatfeed which had been 

subjected to 250oe, this was closely followed by the wheatfeed which had been 

subjected to 130oe. The un-pretreated wheatfeed, shown on the graph as H20E 

gave the lowest release of glucose. However, the results show a different pattern 

for the non enzymically digested samples, seen on the left three columns of the 

graph. In this case, the un-pretreated sample (H2O) releases the most glucose. 

This could be because some of the available glucose is lost by degradation of the 

fibre during the steam explosion process. The 1300 e steam exploded wheatfeed 

(130) could release less glucose than the 2500 e steam exploded wheatfeed (250) 

because the higher temperature may give a harsher treatment which opens the 

pores of the remaining fibre. 

193 



25.00 

c: 
Q 20.00 

~ c:,...... 
~ '8 15.00 
8'eb 
~ g 10.00 
~ 
y 
::s G 5.00 

0.00 
ri H 

130 250 

Appendix 4 

r-- ""70 

f---
i····. 

f---
r;--

I·~· .. ~ c-

I··: ) 

H2O 130E 250E H20E 

Treatment 

Comparison of the Sugar Released from Enzymically Digested Steam Pretreated 

and Un-pretreated Wheatfeed Measured using the Accu-check Meter. 

Where, 130 denotes wheatfeed steam exploded at 1300 e for 45 minutes, 250 denotes wheatfeed 

steam exploded at 2500 e until the pressure reached 10 barG., H20 denotes wheatfeed mixed with 

the same amount of water as the steam exploded wheatfeed, but omits the steam explosion step. 

An E in the treatment name denotes that the sample was digested by enzymes. 

The resulting pretreated wheatfeed from the 250°C looked and smelt burnt. It was 

consequently decided that treatment at this temperature would give the final 

product an undesirable taste and therefore experiments using these conditions 

were ceased regardless of the beneficial effects on glucose release. Further steam 

pretreatments were always carried out at 130°C for 45 minutes. 

It can be seen from the figure below that during a typical 130°C run, the metal 

container never quite reaches 130°C. The highest temperature achieved is about 

127°C. The sharp drop in temperature at the end of the graph was at a time of 45 

minutes, when the steam release valve was opened. The severity of the steam 

pretreatment was calculated by splitting the graph into three sections (0 to 12 

minutes, 12 to 24 minutes and 24 to 45 minutes) and assuming a linear gradient 

over each section of time. The severity of each section was calculated and then 
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the total severity of the process calculated. The severity of the three sections were 

1.96, 18.07 and 99.05 respectively. The total severity was 119.1, or a 10gRo of 

2.07. This is a lower severity than used by other workers (Josefsson et al., 2002; 

Soderstrom et al., 2003), but to achieve a higher severity would involve a higher 

temperature and as previously stated this is undesirable. 
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Steam Explosion Temperature Profile at an Oven Temperature of 130°C. 

Conclusion 

Steam explosion pretreatment of wheatfeed at both 130°C for 45 minutes and 

250°C for 18 minutes enhanced the release of glucose during enzymic digestion. 

The 250°C treatment releases the most glucose however, the wheatfeed looks and 

smells burnt. 

Steam explosion degrades some of the more easily available glucose, this is 

shown by the drop in glucose in the results for the control digest samples. 
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12.5 Appendix 5: Optimum Conditions Graphs 
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Surface Plot of Xylose Released from Wheatfeed after 
Enzymic Digestion for 8 Hours. 
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* These were obtained by subtracting the concentrations detected in the control 
experiments conducted at identical conditions. 
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Surface Plot of Arabinose Released from Wheatfeed after 
Enzymic Digestion for 8 Hours. 

Surface Plot of Arabinose Released from Wheatfeed in the 
Absence of Enzymes for 8 Hours. 

Surface Plot of the Corrected* Arabinose Release from 
Wheatfeed after Enzymic Digestion for 8 Hours. 
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Surface Plot of Fructose Released from Wheatfeed after 
Enzymic Digestion for 8 Hours. 
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Surface Plot of Fructose Released from Wheatfeed in the 
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Surface Plot of Glucose Released from Wheatfeed after 
Enzymic Digestion for 8 Hours. 
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Surface Plot of Total Reducing Sugars Released from 
Wheatfeed after Enzymic Digestion for 8 Hours . 

Surface Plot of Total Reducing Sugars Released from 
Wheatfeed in the Absence of Enzymes for 8 Hours. 

Surface Plot ofthe Corrected* Total Reducing Sugars 
Released from Wheatfeed after Enzymic Digestion for 8 

Hours. 
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Surface Plot of Xylose Released from Wheatfeed after 
Enzymic Digestion for 24 Hours. 
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Surface Plot of Arabinose Released from Wheatfeed after 
Enzymic Digestion for 24 Hours. 
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Surface Plot of Fructose Released from Wheatfeed after 
Enzymic Digestion for 24 Hours. 

Surface Plot of Fructose Released from Wheatfeed in the 
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Surface Plot of Glucose Released from Wheatfeed after 
Enzymic Digestion for 24 Hours. 
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Surface Plot of Total Reducing Sugars Released from 

Wheatfeed after Enzymic Digestion for 24 Hours. 
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12.6 Appendix 6: Enzyme Loadings Kinetic Graphs 
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12.7 Appendix 7: Extrusion 

The wheatfeed was incorporated into a typical kibble recipe and extruded through 

a single screw extruder. The ingredients representative of a dog biscuit (kibble) 

recipe (see table below) and extruding the mixture. The final product can be seen 

in the figure below. The digested wheatfeed caused no problem with extrusion. 

Typical Kibble Recipe. 

Ingredient Weight % of 

Mixture 

Wheat 65 

Poultry Meal 15 

Wheatfeed 10 

Maize 7 

Sunflower Oil 3 

Total 100 

-
Extruded Dog Food Using Enzymically Treated Wheatfeed 
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