

. • .

Some Studies in the Chemistry of Mercury and Lithium

A Thesis Submitted for the Degree

of

Doctor of Philosophy

ру

Denys Alan Wickens

Supervisor: Dr. A. G. Massey

Loughborough University of Technology October 1979

of	Technology Library	<u>,</u>	
Dete	Feb 80		
Clas	s		
Acc	· 101419 /01		

•

To my wife.

Contents

Abstract

Publications Acknowledgements List of Figures

Chapter 1: Literature Review and Introduction

Nomenclature

Introduction

Syntheses of Polyfluoroaromatic Systems Reactions of Fluoroarenes and Halofluoroarenes Properties of Polyfluoroaryllithium Compounds Preparation of Mercurials Properties of Mercurials Polyalkylbenzenes

Chapter 2: X-ray Crystallography

Theory and Technique Structure Analysis Preliminary Investigations Structure Determinations

Chapter 3: Solid State Chemistry

Introduction

Technique

Experimental and Results

-1-

Chapter 4: Radiochemistry

Introduction Results Discussion

Chapter 5: Computing

Chapter 6: Experimental

Chapter 7: Discussion

Spectra

References

Appendix 1 Temperature and Structure Factor Tables

Some Studies on the Organo-metallic Chemistry of Lithium and Mercury

The enhanced stability of perfluoroaromatic lithium species (compared with their hydrogen analogues) has been used to study their thermal degredation reactions and the reactions of the unstable intermediates thus produced, as effectively only one thermal reaction path exists. Attempts have been made to test exisiting hypotheses, and also to rationalise results by theoretical MO calculations. Especial emphasis has been put on ^{80m}Br radio-labelling studies.

A similar enhancement of stability for the perfluoro organo-mercurials makes some of them ideal substrates for solid state kinetic studies and a wide range of organo-mercury complexes has been studies by thermal and other techniques. Partly by way of comparison and partly as an extension of the work X-ray structure determinations have been carried out on the hydrogen analogue compounds as well as the fluoro compounds.

-3-

Publications

- The Addition of Li^{80m}Br to Polyhalogenoarynes; D.J. Malcolme-Lawes, A.G. Massey and D. Wickens; J. Chem. Soc. Chem. Commun. <u>1977</u> 933-934.
- 2. A Reinvestigation of o-Phenylenemercurials II: The Structure of Tribenzo [b,e,h][1,4,7] trimercuronin; D.S. Brown, A.G. Massey and D.A. Wickens; Acta Cryst. <u>B34</u> 1695-1697 (1978).
- 3. A Reinvestigation of o-Phenylenemercurials III: On the Decarboxylation of Mercury (II) Tetrafluorophthallate; D.S. Brown, A.G. Massey and D.A. Wickens; submitted to J. Chem. Soc. Dalton Trans.
- 4. A Reinvestigation of o-Phenylenemercurials IV; The adducts of perfluorotribenzo [b,e,h][1,4,7] trimercuronin and the crystal and molecular structure of its 1:1 4-phenylpyridine solvate; M.C. Ball, D.S.Brown, A.G. Massey and D.A. Wickens; submitted to J. Chem. Soc. Dalton Trans.

Conference Papers

- Some studies on the fluoroaromatic compounds of mercury; M.C.Ball, D.S.Brown, A.G. Massey and <u>D.A.Wickens</u>; 9th International Symposium on Fluorine Chemistry, Avignon, Sept. 3-7 1979.
- 2. o-Phenylenemercurials; D.S.Brown, <u>A.G. Massey</u> and D.A. Wickens; 9th International Conference on Organometallic Chemistry, Dijon, Sept. 3-7 1979.
- 3. o-Phenylenemercurials; <u>D.A.Wickens</u>; Midland Region Post-Graduate Meeting, Dalton Division, Chemical Society, Leicester, 27 March 1979.

Acknowledgements

-5-

I would like to thank all those people who have given me advice, help and encouragement during the course of this work, especially my supervisor, Dr. Massey and Drs. Brown, Ball and Malcolme-Lawes. I acknowledge also the assistance of Dr. D. R. Russel of Leicester University and Professor T. G. King of Nottingham University who kindly collected numerical X-ray data for me, and the Science Research Council who funded the whole project.

List of Figures

- 1. The numbering employed for tribenzo [b, e, h] [1,4,7]trimercuronin .
- 2.The "honeycomb" array formed by atoms Hg(1) and Hg(2) in orthorhombic tribenzo [5,e,h][1,4,7] trimercuronin .
- 3.Projection unit cell contents: orthorhombic tribenzo-[b,e,h][1,4,7] trimercuronin.
- 4.Frojection unit cell contents: monoclinic tribenzo-[b,e,h][1,4,7]trimercuronin.
- 5. The numbering employed for bis(2-hydrotetrafluorophenyl) mercury
- 6. Projection unit cell contents: bis(2-hydrotetrafluorophenyl)mercury.
- 7. The numbering employed for perfluorotribenzo [b,e,h][1,4,7]trimercuronin.4-phenylpyridine.

8.9. Projection unit cell contents: perfluorotribenzo[b,e,h]-[1,4,7] trimercuronin.4-phenylpyridine.

10,11.Normalised weight-loss curves used to obtain half-time figures.

12. Thermogravimetric results from the reaction $(C_6F_4Hg)_3$. 2DMF--(C_6F_4Hg)3.

-7-

- 13,14. Experimental and theoretical curves for isothermal TGA. 15. Thermal analysis results from the reaction $(C_6F_4Hg)_5$. 2DMF- $(C_6F_4Hg)_3$.
 - 16. Thermal and thermogravimetric curves for the reaction $(C_6F_4Hg)_3 \cdot 2DMF \rightarrow (C_6F_4Hg)_3$
 - 17. Graph of count-rate against sample volume for aqueous Li^{80m}Br .
 - 18. Graph of radiochemical yield against temperature for the reaction C_6F_4 +Li^{80m}Br $\longrightarrow C_6F_4$ ^{80m}Br Li.
 - 19. The numbering scheme adopted for pentafluorophenyllithium. 20. Graph of optimised energy against intermolecular separation during the reaction $C_6F_5Li \rightarrow C_6F_4$ + LiF.
 - 21. Infra-red spectra (800-250cm⁻¹) of orthorhombic and monoclinic tribenzo [b,e,h][1,4,7] trimercuronin.
 - 22. Infra-red spectra (300-32cm⁻¹) of orthorhombic and monoclinic tribenzo [b,e,h] [1,4,7] trimercuronin.
 - 23. Ultra-violet spectra of pyridine, perfluorotribenzo[b,e,h]-[1,4,7] trimercuronin and their 1:1 adduct in ethanol colution.

- 24. Nmr spectra of perfluorotribenzo [b,e,b][l,4,7]trimercuronin in various solvents.
- 25. Infra-red spectra of the DFF adducts of bis(pontafluorophenyl)mercury and perfluorotribenzo [b,e,h][1,4,7]trimercuronin in various solvents (1800-1600cm⁻¹)
- 26. Infra-red spectra of perfluorotribenzo [b,e,h][1,4,7]trimercuronin and its 1:1 and 1:2 adducts with DMF (1800-1500cm⁻¹).
- 27,28. Infra-red spectra of perfluorotribenzo [b,e,h][l,4,7]trimercuronin, its 1:1 adducts with DMF, pyridine and perdeuteriopyridine, and its 1:2 adduct with DMF (250-32cm⁻¹).

29. Infra-red spectra of sundry adducts of perfluorotribenzo-[b,e,h][1,4,7] trimercuronin (1100-1050cm⁻¹). Chapter 1

Introduction

Summary: the chemistry pertaining to highly fluorinated aromatic systems and the organolithium compounds derived from them is reviewed. The chemistry of organomercury compounds is briefly presented as is that of polyalkylbenzenes.

Introduction

Conventional ("perhydro") organometallic chemistry has produced a large number of interesting and unusual compounds which span a very wide range of bonding characteristics from the simple σ -bonds of tetramethyltitanium ¹ via the π -bonding of ferrocene ²³ to bis(cyclooctatetraene)uranium ⁴ in which the bonding is believed to involve f-orbitals. In addition there are many compounds such as methylcyclopentadienylmolybdenum tricarbonyl ⁵ which possess more than one type of metalcarbon bond. Given that this is so it seems at first odd that considerable effort has been expended to make the same compounds again save for halogen atoms or methyl groups in place of most or all of the hydrogen atoms. The reason is that, whilst many of the per-substituted compounds are very similar to the "parent" compounds, the differences in reactivities, properties and preparation techniques are often more informative than investigations on wholely new compounds.

Nomenclature

The normal rules for naming organic and organometallic compounds start on the assumption that all "spare" positions on carbon atoms are occupied by hydrogen atoms: any atom or group present other than hydrogen is specified. This rule is less reasonable' when most or all sites are substituted by identical atoms or groups and thus in perhalo chemistry the fully halogenated molecules are regarded as the parent species with hydrogen regarded as a substituent

e.g.

1,3-dihydrotetra-fluorobenzene l-bromo-2-nitrotetrachlorobenzene

(1,3,5,6-tetra-florobenzene) (1-bromo-2,3,4,5-tetrachloro-6-nitrobenzene)

2,2'-dibromoocta-fluorobiphenyl

(2,2'-dibromo-3,3',4,4',5,5',6,6'-octa-fluorobiphenyl)

As can be seen the above semi-systematic names are usually shorter than the wholely systematic names which are given in parentheses. The major reason, however, for the adoption of the semi-systematic approach is that, with no loss in clarity, it emphasises the similarities between conventional and perhalo molecules. Thus for the third example above, many of the reactions of 2,2'-dibromooctafluorobiphenyl are close or exact analogues of the reactions of 2,2'-dibromobiphenyl.

For the purposes of this thesis the spirit of the system has been extended to polyalkylbenzenes and their derivatives. The trivial names for the parent hydrocarbons are given together with the semi-systematic names in Table 1 as much of the literature cited uses the trivial names. Abbreviations used are also given in this Table.

A similar shorthand is employed for structural formulae, and F, Cl or Me in the middle of an aromatic ring indicates that all unmarked positions are appropriately substituted. The above examples thus become

and 1,2-dihydrotetramethylbenzene becomes

-12-

Syntheses of Poly fluoro-aromatic Systems

The Balz-Schiemann reaction ⁶ is the classical organic method for the introduction of fluorine into an aromatic system:

$$\operatorname{ArH} \longrightarrow \operatorname{ArNO}_2 \longrightarrow \operatorname{ArNH}_2 \longrightarrow \operatorname{ArN}_2 \cdot \operatorname{BF}_4 \longrightarrow \operatorname{ArF+N}_2 + \operatorname{BF}_3$$

It has the advantage that, after the initial nitration stage, no isomerisation is possible. The disadvantages are the several steps and the progressively more severe conditions required for the nitration as more electronwithdrawing fluorine atoms are introduced. After four fluorines have been inserted oxidation occurs instead of nitration:^{7,8}

Pyrolyses (of, for example ⁹, tribromofluoromethane) produce wholely halogenated aromatic systems but the commercially practical routes involve fluorinating agents such as bromine trifluoride,¹⁰ cobalt (III) fluoride ^{11,12} and gaseous fluorine ¹³ which simultaneously fluorinate and de-aromatise phenyl and biphenyl systems. Rearometisation under vigorous conditions ^{11,13,14,15,16}, gives a mixture of highly fluorinated aromatic systems. The more readily available perchloroaromatic compounds (produced by similar chlorination reaction schemes) can have the halogens exchanged with potassium fluoride either directly at high temperature ^{17,18} or in an aprotic solvent.^{19,20}

Some more exotic syntheses ^{21,22,23} have been reported more recently for fluoromethylated arenes and are summarised below. The extreme conditions employed make these derivatives still very much a specialised research area.

-15-

Reactions of Fluoro-aromatic Compounds

The combined electron-withdrawing effect of the fluorine atoms in hexafluorobenzene is shown both theoretically by SCF MO calculations ²⁴ and by the relative ease with which it undergoes nucleophilic attack ^{25,26,27}.

 $x^{\Theta} + c_6 F_6 \rightarrow c_6 F_5 x + F^{\Theta} x = OH, SH, OCH_3, NH_2$ etc.

These reactions have been studied kinetically ^{28,29} as well as by analysis of reaction products. The calculations show that in benzene the mean electronic charge on the carbon atom is 6.061 electrons, whereas in hexafluorobenzene it is 5.889 electrons.

Further nucleophilic attack occurs typically para to any substituent ²⁵, giving 1,4-disubstituted tetrafluorobenzenes. On the basis that a biphenyl can be treated as two mono-substituted phenyl systems, decafluorobiphenyl undergoes nucleophilic attack to produce 4,4'-disubstituted biphenyls.³⁰

Halogenation of hydrofluoroaromatics can be carried out in oleum, $^{31-35}$ the forcing conditions being necessary because of the electrophilic nature of the reaction. 36

Br₂ oleum 32

-16-

This is in complete contrast to methylated benzenes where, for example, the bromination of pentamethylbenzene occured at the speed of mixing at room temperature in glacial acetic acid.

Similarly, sulphonation of hydrofluoroarenes has been achieved in oleum ³⁷, and the corresponding desulphonation has been used to prepare organomercurials:³⁷

Mercuration is another electrophilic reaction that has been performed $\frac{38}{7}$, and permercuration can also be achieved $\frac{39,40}{2}$:

The reaction can be used to prepare halogenated derivatives by cleavage of the carbon-mercury bonds with trihalide ions. 39,40

Ullman coupling ⁴¹ occurs in good yield to give biphenyls:

-17-

Pentafluorobenzene and the various halopentafluorobenzenes all react with n-butyllithium to give pentafluorophenyllithium. 42,43,44 These are the most convenient preparations of this compound, but lithium metal will produce pentafluorophenyllithium with pentafluorobenzene 42 as will lithium amalgam with bromopentafluorobenzene.⁴⁵ The n-butyllithium reaction is mechanically the easiest preparation as it proceeds wholely in solution and, furthermore, n-butyllithium is available commercially in hexane solution. The usual practice is to inject a known volume of standardised n-butyllithium solution into a solution of a fluoroarene in ether or THF at $-78^{\circ}C_{\bullet}$ Standardisation is necessary as the commercial preparations of organolithium reagents often have alkoxide contaminants: the double titration method of Gilman 46 is used to assay both total and organic lithium. Empirically a cloudy solution is useless. Lithiation of C6F5X (X=H,Cl,Br,I) proceeds quantitatively in ether/hexane at -78°C, the only variations being those of reaction times: generally lithium/hydrogen exchange either takes longer or requires more forcing conditions, such as hexane/THF as solvent. 42 Lithium/halogen exchange occurs in preference to lithium/hydrogen exchange as would be expected from the above observations.

Dilithiation requires still more forcing conditions and specifically this means more reactive lithium alkyls: methyllithium has been reported both as giving 1,2-dilithiotetrafluorobenzene ⁴⁸ and 1,2-dimethyltetra-

-18-

fluorobenzene ⁴⁹ with 1,2-dibromotetrafluorobenzene. Of the two reactions that can occur (lithiation with production of alkyl halide and alkylation with production of lithium halide) metallation seems to predominate at low temperature. Gilman made 1,3,5-trilithiotrifluorobenzene at -110°C using t-butyllithium and 1,3,5-trifluorobenzene, but at -78°C the major product was 1,3,5-tris(t-butyl)trifluorobenzene.⁵¹

Formation of Grignard reagents is generally more difficult than the analogous lithiation, but has been achieved both from magnesium metal and halopentafluorobenzenes ⁵¹ and from the action of alkylmagnesium halides on pentafluorobenzene ⁴² and bromopentafluorobenzene.⁵² The Grignard reagents can be refluxed unchanged in diethyl ether, but unfortunately reaction yields can be very low from that solvent: carbonation gives pentafluorobenzoic acid in yields of 3% or less.^{33,51,53}. In THF, where

-19-

yields of acid were up to $70^{-53,54}_{7}$ nucleophilic attack by pentafluorophenyl "anions" takes place at -10° C 55,56,57 and solutions rapidly decompose on refluxing, 55,58,59 presumably by elimination of magnesium halofluoride.

To summarise, electrophilic attack on the polyfluoroaromatic system requires rather forcing conditions, whereas nucleophilic attack occurs much more easily. This is the reverse of the situation for perhydroaromatic systems. Properties of Polyfluoroaryllithium Compounds

The standard reactions of conventional aryllithium species are echoed for polyfluoroaryllithium compounds and a selection is given below.

Intermolecular elimination of lithium halide occurs with metal and metalloidal halides, to give organometallic compounds of boron,⁶¹ selenium, ⁶² copper ⁶³ and mercury⁶⁴ amongst many others. The reaction is not confined to monolithio species and perfluoro-o-phenyleneantimony has been claimed ⁴⁸ as have polymers from cadmium and mercury halides with 1,4-dilithiotetrafluorobenzene.⁶⁵

$$MX_n + n\Lambda r_F$$
 Li $\longrightarrow M(\Lambda r_F)_n + n$ LiX

Two major pathways exist for the thermal decomposition of lithium polyfluoroaryls that do not for conventional lithium aryls and both involve elimination of lithium fluoride ⁶⁶, ⁶⁷. At low temperature the elimination is due to intermolecular nucleophilic attack, building up para-linked polyfluoropolyphenylenes.⁶⁶

$$Ar_{F} - F + Ar'_{F} - Li \longrightarrow Ar_{F} - Ar'_{F} + LiF$$

Typically, reaction times of about 7 days and temperatures of -40°C are used. Not all reactions give totally parasubstituted products: nitropentafluorobenzene forms first 4-nitrononafluorobiphenyl, then the 2-position on the original ring is attacked in preference to the 4'-position, giving 2,4-bis(pentafluorophenyl)-1-nitrotrifluorobenzene, and considerably smaller amounts of 4-nitro-4'-(pentafluorophenyl)octafluorobiphenyl.⁶⁶ The greater polarity of the carbon-lithium bond compared with carbon-magnesium bonds presumably accounts for the greater thermal stability of polyfluoroaryl Grignard reagents; the lower effective negative charge on the organic moiety making it less effective in nucleophilic reactions.

The other possible elimination of lithium fluoride

is intramolecular, producing a reactive species best formulated as a polyfluorobenzyne:

Benzyne itself $(C_6H_4:)$ can be produced by lithiation of fluorobenzene, followed by elimination of lithium fluoride because lithiation occurs totally ortho to the fluorine atom.⁶⁸ Support for postulation of benzyne formation is given by a variety of chemical evidence. Tetrafluorobenzyne would be expected to be a very efficient dienophile in the Diels-Alder 1,4-addition reaction and products from 1,4-addition have been isolated from experiments with furan,⁴⁵ benzene,⁶⁴ and substituted benzenes.⁶⁹

These adducts form a convenient rigid diene group for the formation of transition metal complexes and several have been made.⁷⁰

Polyfluorobenzynes are also capable of 1,2-addition across polar bonds and this provides more evidence for their presence: the production of 2-bromonona-fluorobiphenyl would be quite difficult to account for otherwise:

Similarly lithium halides have been shown to add across tetrafluorobenzyne:

In the presence of excess lithium bromide and bromopentafluorobenzene, l,2-dibromotetrafluorobenzene is the major product. l,2-Diiodotetrafluorobenzene can similarly be produced from iodopentafluorobenzene and lithium iodide.⁶⁶ This "inorganic addition" is discussed more fully in the light of experimental work presented in Chapter 4 of this thesis. Similarly, benzynes generated from Grignard reagents have been shown to exhibit l,4-addition to dienes.⁷¹ Syntheses of Organomercurials

Organomercury compounds provide, in their preparation, a microcosm of general organometallic procedures. The only major synthetic route not used in mercury chemistry is transmetallation:

 $R_2M + Hg \longrightarrow R_2Hg + M$

On the contrary, mercury compounds are often used as the starting organometallic in this class of synthesis as mercury metal, being very inert and low in the electrochemical series, is eliminated by most metals as a readilyseparable liquid or colloid.

The reaction of alkyl and aryl halides with alkali metal amalgams often gives organomercurials and only two specific examples are quoted:

 $2 C_6 F_5 Br \xrightarrow{\text{Li}/\text{Hg}} (C_6 F_5)_2 Hg$ ref 45

 $o-C_6H_4Br_2$ Na/Hg (C_6H_4Hg) ref 72

These examples were chosen to illustrate the care needed in the examination of reaction-mixtures where reactive intermediates are possible: lithium amalgam has been used to prepare both bis(pentafluorophenyl)mercury and pentafluorophenyllithium⁴⁵. The other example is valid where the 1,2-dibromobenzene is dissolved in diethyl ether⁷², but in more strongly basic ethers (THF,1,2-dimethoxyethane) the major mercury-containing species is dimeric o-terphenylenemercury:⁷³

-26-

$$\circ -C_6 H_4 Br_2 \xrightarrow{\text{Na/Hg}} \left[(C_6 H_4)_3 Hg \right] 2$$

As discussed in the previous sections, mercurials can be made from lithium aryls and mercuric halides:⁶⁴

 $2 C_6 F_5 Li + HgCl_2 \xrightarrow{\text{ether}} (C_6 F_5)_2 Hg + 2LiCl$

Mercury(I) compounds disproportionate under these reaction conditions, and give mercury metal and mercury(II) organometallics.64 However, organomercury(I) compounds have been postulated as intermediates in electrochemical reactions.74 The intermolecular halide eliminations are performed by preparation of the organolithium species at -78°C in an ether solvent, followed by addition of mercuric halide, either as a solid or in solution (normally in THF) and allowing the stirred system to warm up to room This procedure minimises the production of temperature. benzyne decomposition products and has been used to prepare, for example, bis(2,3-dihydrotrifluomophenyl)mercury (this work). The analogous Grignard reactions have been employed to prepare, amongst others, bis(pentafluorophenyl)mercury.75

 $2 C_6 F_5 MgBr + HgCl_2 (C_6 F_5)_2 Hg + 2 MgClBr$

The organometallics of the other electropositive elements may be used in a similar manner, and some examples are given:

$$\operatorname{En}(\operatorname{CH}_2-\operatorname{CH}=\operatorname{CH}_2)_2 + \operatorname{EngCl}_2 \rightarrow 2(\operatorname{CH}_2=\operatorname{CH}-\operatorname{CH}_2)\operatorname{HgCl} + \operatorname{EngCl}_2 \operatorname{ref} 76$$

$$2Et_3Al+3HgCl_2$$
 $3Et_2Hg + 2AlCl_3$ ref 77

$$2C_5H_5Na+HgCl_2 \longrightarrow (C_5H_5)_2Hg + 2NaCl ref 78$$

The major preparative routes, however, arc from the lithium derivatives and Grignard reagents rather than the above reaction-types.

Intramolecular elimination reactions provide another route to organomercurials. The presence, in aromatic systems, of electron-withdrawing substituents makes the reactions either occur more easily or at temperatures which do not degrade the product mercurial. Eliminations of N_2 , CO_2 , SO_2 and SO_3 have all been shown:

$$\begin{array}{c} (1) & Cu \\ (1) & Cu \\ (2C_{6}H_{5}N_{2}Cl + 2HgCl_{2} \longrightarrow 2C_{6}H_{5}N_{2}Cl \cdot HgCl_{2} & (2) & NH_{4}OH \\ (C_{6}H_{5})Hg + 2N_{2} + HgCl_{2} & ref 79 \end{array}$$

$$3C_{6}F_{4}(CO_{2})_{2}Hg \longrightarrow (C_{6}F_{4}Hg)_{3} + 6CO_{2}$$
 ref 80

$$3C_6F_4(SO_3)_{\mathbf{z}}Hg \longrightarrow (C_6F_4Hg)_3 + 6SO_3$$
 ref 37

m-NO₂.C₆H₄SO₂Na+HgCl₂→ m-NO₂.C₆H₄HgCl+SO₂+NaCl ref 81

The usefulness of these methods largely depends on the ease of preparation of the starting materials: normally carboxylic acids are readily available, but decarboxylation may not be easy. Phthallic acid gives a monodecarboxylated cyclic internal salt:

ref 82

Further heating to 370°C caused only charring.⁸³ The monodecarboxylation also occured in mercury(II) tetrafluorophthallate, but the second decarboxylation proceeds at temperatures of about 300°C.⁸⁰

Desulphination follows the same trend in that it occurs more readily and at lower temperatures in compounds with electron-withdrawing substituents, and desulphonation is of use only in the fluoro-aromatic series.⁸⁴ The sulphonates are the least easy derivatives to prepare as sulphonation is reversible and the solubility properties of the products do not lead to easy separation from the reaction mixture. Continuous extraction was used to achieve the purification³⁷ of the tetrafluorobenzene-1,2-disulphonic acid employed in the example above.

The easiest synthesis for aromatic mercurials is probably the diazo preparation: the diazotisation of aromatic amines is normally quite straightforward.

-28-

Mercuric chloride forms insoluble double salts with the diazonium halides and as it is soluble in concentrated hydrochloric acid the precipitation can be carried out without jeopardising the stability of the diazonium compound. The double salt is then reduced with copper to form the arylmercuric chloride. This preparation also shows the effectiveness of electron-withdrawing groups and in their presence the reaction may not be possible due to decomposition of the diazonium salt:

 $\operatorname{ArN}_2^{\operatorname{O}}\operatorname{Cl}^{\operatorname{O}} \longrightarrow \operatorname{ArCl} + \operatorname{N}_2$

Replacement of a hydrogen atom by HgX (where X is an anion) is possible with active protons and is called mercuration; under forcing conditions less active hydrogen atoms may be replaced (third example below):

 $2CH_3-C=C-H + HgI_2 \xrightarrow{NaOH} (CH_3-C=C)_2Hg$ ref 86

 $C_6H_6+(CH_3CO_2)_2Hg \xrightarrow{EtOH} C_6H_5Hg(O_2C.CH_3)$ ref 87

$$2 \ C_{6}F_{5}H+HgF_{2} \xrightarrow{SbF_{5}} (C_{6}F_{5})_{2}Hg \qquad ref 88$$

The reaction is electrophilic in nature and thus requires more forcing conditions for compounds with electronwithdrawing substituents.⁸⁹ The co-ordination of an aromatic system to mercury-presumably an intermediate state in the reaction - has been demonstrated by

-29-

preparation of a series of complexes of the form $(\text{Sb}F_6)_2$ Hg.Ar where Ar represents benzene, toluene, etc. 90 Permercuration, as mentioned in the previous section can be accomplished using mercuric trifluoroacetate, either fusing it with the arene ³⁹ or in a trifluoroacetic acid/trifluoromethylsulphonic acid solvent system.⁹¹

Mercury metal will replace halogens both in alkyl and aryl halides, in halogenonium compounds and in favourable conditions will replace hydrogen:

MeX + Hg ---- MeHgX ref 92

$$(C_6H_5)_2Br_{\bullet}Cl + 2Hg \longrightarrow C_6H_5HgBr+C_6H_5HgCl ref 94$$

$$2C_{6}F_{5}H+Hg \xrightarrow{SbF_{5}} (C_{6}F_{5})_{2}Hg$$
 ref 88

Organomercurials can also be produced from organomercury salts by a process known as symmetrisation. The reaction

 $R_2Hg + HgX_2 \longrightarrow 2RHgX$

is reversible and can be driven to the left as the mercuric salt is removed either by reduction or by complex formation: $2(o-C_6H_5,C_6H_4,HgI)+2KI \longrightarrow (o-C_6H_5,C_6H_4)_2Hg+K_2HgI_4$ ref 95

2CH₃COCH₂HgCl+2NH₃-(CH₃COCH₂)₂Hg+(NH₃)₂HgCl₂ ref 96

 $2C_6H_5CH_2HgI+Ha_2SnO_2+H_2O-(C_6H_5CH_2)_2Hg+Hg+2HaI+H_2SnO_3 \text{ ref } 97$
Properties of Organomercurials

The carbon-mercury bond is thermally stable and is stable to moisture, light, bases and nucleophilic reagents. Hydrazine thus substitutes the aromatic ring in bis(pentafluorophenyl)mercury:⁹⁹

$$(c_6F_5)_2Hg \xrightarrow{H_2N \cdot NH_2} (p-c_6F_4NHNH_2)_2Hg$$

However, the action of organolithium species is to give the mercurial with the less negative organic fragment:⁹⁹

$$2 n-C_4H9Li + (C_6F_5)_2Hg \rightarrow 2 C_6F_5Li + (n-C_4H9)Hg$$

Symmetrisation was covered in the previous section as a preparative technique. The reverse reaction ("desymmetrisation") cleaves one of the carbon-mercury bonds:¹⁰⁰

 $(n-C_BH_{37})_2Hg + HgCl_2 \xrightarrow{\text{ether}} 2 n-C_{18}H_{37}HgCl$

Halogens and trihalide ions also cleave carbonmercury bonds³⁹ as mentioned in a previous section:

$$C_{6}H_{5}CO_{2}H \xrightarrow{(CF_{3}CO_{2})_{2}Hg} (CF_{3}CO_{2}Hg)_{5}C_{6}CO_{2}H \xrightarrow{I_{3}}C_{6}I_{5}CO_{2}H$$

The greater stability of polyfluoroarylmercurials to acids is shown by the recrystallisation of bis(penta-

fluorophenyl)mercury from conc. sulphuric acid⁷⁵, whereas this reagent cleaves diphenylmercury.¹⁰¹ Organomercurials are still less stable to complexing acids, particularly hydrochloric acid.¹⁰¹

The action of more electropositive metals is to deposit mercury metal and form organometallics, a particularly unexpected example being:¹⁰²

 $(C_6H_5-C=C)_2Hg + Yb \longrightarrow (C_6H_5-C=C)Yb + Hg$

A main-group example is 103

$$2(C_6F_5)_2Hg + Sn \rightarrow (C_6F_5)_4Sn + 2Hg$$

However, alternative reactions can occur where one carbonmercury is retained:¹⁰⁴

$$(C_{6}F_{5})_{2}Hg + \left[(C_{6}H_{5})_{3}P \right]_{3} Pt - C_{6}F_{5}-Hg - Pt - C_{6}F_{5} - Hg - Pt - C_{6}F_{5} - H$$

Spectroscopic investigation of mercury compounds is not simple for a variety of reasons: infra-red spectra suffer from the disadvantage that the Hg atom is both heavy, and fairly weakly bonded, so that vibrations involving it are at low frequency and tend to be coupled to other vibrations. By way of example, in the spectrum of diphenylmercury, all bonds involving mercury directly are below 375cm¹ and none correspond directly to a C-Hg stretching mode.¹⁰⁵ In perhaloaryl compounds the situation is even more complex as calculations on the C_6F_5X system display. The diagrams below show the atoms involved in C-X stretching for hydrogen and a number of halogens, 106,107 but the principle extends to all heavy substituents: 106

 $X = H \quad D = 3105 \text{ cm}^{-1} \quad X' = Cl \qquad D = 885 \text{ cm}^{-1}$ $X = D \quad D = 2315 \text{ cm}^{-1} \quad X' = Br \qquad D = 836 \text{ cm}^{-1}$ $X' = I \qquad D = 808 \text{ cm}^{-1}$

No direct allocation of a band to a C-Hg stretching mode was made in a far infra-red study of bis(pentafluorophenyl) mercury.¹⁰⁸

Mercury has a range of stable isotopes and two of these have magnetically quantized nuclei:¹⁹⁹ Hg (spin quantum number 1/2, abundance 16.86%) and ²⁰¹Hg (spin quantum number 3/2, abundance 13.24%). Almost no quadrupole resonance studies have been carried out on

-34--

²⁰¹Hg samples, probably because of its high absorbtion frequencies (300-350 MHz in a series of dioxan mercuric halide complexes¹⁰⁹) and because Zeeman studies are necessary to give value for the asymmetry parameter η . ²⁰¹Hg mur is largely unexplored¹¹⁰ since the nucleus both has a five-fold lower magnetic susceptibility than $199_{\rm Hg}$, and also suffers from quadrupolar relaxation.¹¹⁰ The magnetic susceptibility of ¹⁹⁹Hg in a natural abundance sample is 9.5 x 10^{-6} that of the proton¹¹¹ and shifts are up to 2300 ppm.¹¹² Shielding effects have been shown to be consistent in organocadmium and organomercury compounds¹¹³ and shifts have been shown to vary with sample concentration, 111, 114, 115 solvent, 111, 114, 115 temperature, 111,115,116 and pH. 199Hg nmr was used to show that cyclohexylmercurials adopt an equatorial configuration, virtually irrespective of the other group on the mercury atom.¹¹⁵

Moessbauer studies have been briefly described for 199_{Hg} 118,119, 197_{Hg} , 120 193_{Hg} 121 and 201_{Hg} 122 but no detailed chemical work has been reported.

Polyalkylbenzenes

The preparation of these compounds is normally accomplished by one of two routes: alkylation of benzene or cyclisation of acetylenes. Alkylation by alkyl halides with an aluminium halide catalyst (the Friedel-Crafts reaction) is of the form:¹²³

 $RX + AIX_{3} \rightarrow R[AIX_{4}]$

 $C_{6}H_{6} + R [Alx_{4}] \longrightarrow [C_{6}H_{6}R][Alx_{4}] \rightarrow C_{6}H_{5}R + HX + Alx_{3}$

Since the species R[AlX₄] is quite ionic the alkyl group has to support substantial positive charge and this has two consequences: the reaction with the aromatic system is electrophilic (and thus favoured by alkyl substituents) and, where possible, rearrangements to form secondary or tertiary carbon atoms are strongly favoured (for example, n-butyl halides can give t-butyl benzenes¹²³). Since the reaction products are activated towards further reaction, compared with the starting aromatic, and since aluminium halides also catalyse both intermolecular disproportionations.

 $2(CH_3)_5C_6H$ <u>Alcl</u> $(CH_3)_4C_6H_2 + (CH_3)_6C_6$

and intramolecular rearrangements

the reaction products form a Friedel-Crafts alkylation tend to be produced as a complex mixture.

Cyclisation has been used as an alternative route to alkylbenzenes. The general reaction is of the form:

To simplify the preparation normally either $R = R^1$ or $R^1 = H$, and tris(t-butyl)benzenes¹²⁴ have been produced by this route as has hexakis(trifluoromethyl)benzene.¹²⁵

The reactions of highly alkylated benzenes cannot be predicted from those of benzene. Nitration of benzene to nitrobenzene and then to m-dinitrobenzene requires forcing conditions (2-3 hours reflux in a conc.sulphuric acid fuming nitric acid mixture¹²⁶) but dinitration of 1,2-dihydrotetramethylbenzene has to be done in the cold and in the presence of an organic solvent immiscible with conc.sulphuric acid to prevent oxidative attack on the methyl groups of the 1,2-dinitrotetramethylbenzene produced.¹²⁷ The total reaction time is about 30 minutes. Pentamethylbenzene readily gives 1,2-dinitrotetramethylbenzene,¹²⁷ whereas pentaethylbenzene gives 1,4-dinitrotetraethylbenzene¹²⁸ The course of the reaction in acetic anhydride solution has been studied and shown to involve formation of classical Wheland intermediates where attack, has been on an unsubstituted carbon atom and of ipso-Wheland intermediates where attack has been on a substituted carbon atom. Some of the wide range of products and isolable intermediates have been prepared by low temperature chromatography and characterised.¹²⁹

-38-

Wheland intermediate

ipso-Wheland intermediate

isolable

Although kinetic studies in trifluoroacetic acid¹³⁰ appeared to give mononitration, our preparative scale reaction gave alkyl-substituted products.¹³¹ Mononitration is also claimed using methyl nitrate in nitromethane with a boron trifluoride catalyst.¹³²

Bromination is also an electrophilic reaction and 133 proceeds very readily. The only problem is the choice of solvent when multi-bromination is required, as the usual solvent (glacial acetic acid) will not dissolve all bromohydropolymethylbenzenes. Iodination is more difficult and oxidative conditions are necessary for the introduction of iodine¹³⁴ Mercuration followed by cleavage of carbon-mercury bonds by triiodide will introduce iodine into all available sites.³⁹

Sulphonation occurs readily and reversibly, but often causes rearrangements (the Jacobsen reaction). Polymethylbenzenes are reluctant to rearrange,¹³⁵ but polyethylbenzenes rearrange readily:¹³⁶

<u>Table 1</u>

(a) Nomenclature employed for polymethylbenzencs

Trivial Name	Formula	Semi-Systematic Name
Mesitylene	(CH3)3C6H3	1,3,5-trihydrotrimethylbenzene
Pseudocumene	(CH3)3C6H3	1,2,4-trihydrotrimethylbenzene
Hemimellitene	(CH3)3C6H3	1,2,3-trihydrotrimethylbenzene
Prehnitene	(CH3)4C6H2	l,2-dihydrotetramethylbonzene
Isodurene	(CH ₃) ₄ C ₆ H ₂	1,3-dihydrotetramethylbenzene
Durene	(CH3)4C6H2	l,4-dihydrotetramethylbenzene
	(CH3)5C6H	Pentamethylbenzene
- · · ·	(CH ₃) ₆ C ₆	Hexamethylbenzene

(b) Abbreviations employed for solvents

Acronym	Chemical
DMF	N,N-dimethylformamide
DMA	N,N-dimethylacetamide
DPF	N,N-diphenylformamide
DEF	N,N-diethylformamide
DMSO	Dimethylsulphoxide
TMED	N,N,N',N'-Tetramethylethylene-
THF	Tetrahydrofuran
Ру	Pyridine
2-Pic	2-Methylpyridine (2-picoline)

3-Pic 4-Pic 2,6-Lut 3-Methylpyridine (3-picoline)
4-Methylpyridine (4-picoline)
2,6-Dimethylpyridine (2,6-Jutiline)

Chapter 2

X-Ray Crystallography

Summary: The practical, theoretical and computational aspects of single-crystal X-ray structure analysis are reviewed. Some unsuccessful preliminary studies are presented and the completed analyses of monoclinic and orthorhombic tribenzo [b,e,h][1,4,7] trimercuronin, bis(2-hydrotetrafluorophenyl)mercury and perfluorotribenzo [b,e,h][1,4,7] trimercuronin.4phenylpyridine are given and discussed.

X-ray Crystallography

Theory and Technique

Suitable crystals for X-ray study are small (the optimum size is $2/\mu$ where μ is the linear absorbtion co-efficient) and well-formed. The former reduces absorbtion effects and the latter makes optical alignment simpler and absorbtion corrections possible. The three simplest methods of growing crystals are (a) sublimation (b) cooling a hot saturated solution and (c) vapour diffusion. This third technique involves the production of a saturated solution at room temperature of the substance under investigation, followed by diffusion of the vapour of a second, denser, liquid into that solution. If the compound is insoluble in the second liquid, which will mix because of its greater density, crystals will slowly form.

After separation from the mother liquor a sample of the crystals is then inspected on a polarising microscope and a crystal chosen. It must be physically single (not, for example, a fan-shaped cluster of smaller crystals) and as far as possible untwinned. This defect may show up on inspection when the crystal is rotated between crossed Nicol prisms: if there are substantial zones where the lattice is orientated differently then extinction (the crystal should be light against a dark background and go dark four times in a complete revolution) is observed in different parts of the crystal at different times. If extinction is not parallel to the edges of the crystal then the overall symmetry is monoclinic or triclinic. A crystal that is bent, cracked or grossly damaged should be rejected.

The crystal is then mounted on a goniometer head either by cementing it to a glass fibre with an epoxyresin glue or by inserting it into a thin-walled glass tube, either of which is then secured with wax or plasticine. Glass tubes, which are normally sealed after the crystal is inside, are used where the compound studied is sensitive to some component of the atmosphere or liable to effloresce. Glasses and glues produce diffuse background scattering only which do not affect data collection. Optical alignment is then performed and since this relies on the fact that the direction of extension of a needlelike crystal, or the edge of a plate-like crystal, is almost always one of the short unit cell axes (often the shortest) it is worthwhile adjusting a needle-like crystal so that it is as far as possible an extension of the fibre. Alignment is performed by rotation of the mounted crystal on its goniometer head and adjusting the arcs (for tilt) and the sledges (for centring at the focal point of the arcs) so that the crystal is perpendicular to the X-ray beam during a complete rotation. It must not move up or down and on goniometer heads where the sledges can be locked it is good practice to do this after each adjustment. Optical alignment normally produces

-1+1+-

recognisable diffraction lines on X-ray analysis, and if it fails, lines can often be produced by alteration of the setting of one arc in 15° steps. The final adjustments have to be performed with X-rays.

The Davies (double-oscillation) technique¹³⁷ is probably the best rapid alignment method. Deviations from alignment on the horigontal arc cause the layer lines to be curved, whereas misalignment on the vertical arc causes them to be tilted. The Davies method assumes that, for small angles of deviation, the curvature is negligable when the arcs are at 45° to the vertical. The tilt is measured, and corrected as it is projected by 45[°]. To eliminate as many sources of internal error as possible a double exposure is taken: an initial long exposure followed by another of half the original time with the goniometer head rotated through 180°. This doubles the tilt to be measured and by reference to the orientation of the lines (heavy on one side, light on the other) the direction of adjustment can be found. Other methods exist but the technique described is as accurate as any, is rapid and is easy enough to be the method of choice. In its disfavour are the facts that it is specific to a cylindrical camera and it is difficult to apply to long axes of oscillation as the layer lines may then be as close as the lines produced by the second exposure. This can make it virtually impossible to sort the weak exposure lines from weak spots on the strong In this work no precession-method exposure lines.

-45-

photographs were taken. This technique is considerably more complex to operate and has the general disadvantage compared with cylindrical camera techniques that considerably fewer reflections are available for study.

The "usual" cylindrical camera is the Weissenberg camera, and with this device alignment photographs are taken with the camera stationary and the crystal oscillating through $10-15^{\circ}$. This brings sufficient reflections into their diffracting positions that patterns can be seen. Oscillation photographs can yield three pixes of information: from the spacing of the lines the repeating distance along the needle axis can be determined; from the presence or absence of symmetry, information about the symmetry class of the crystal can be gleaned; and the presence of an n-fold axis of rotation can be shown if oscillation photographs taken $360/n^{\circ}$ apart are the same.

The next stage is to obtain Weissenberg pictures: oscillation photographs display a fraction of the possible reflections as a series of lines and the Weissenberg technique was developed to display a single line spread out over a complete film. An oscillation range greater than 180° is chosen for the crystal and both it and the camera then move. Since the zero layer (indexing of the lines starts at 0, then proceeds outwards to ± 1 , ± 2 etc) is directly in line with the crystal and higher layers are not, when these are studied by the equi-inclination or flat-cone techniques the angle of the camera assembly to

-46-

the beam is adjusted. In the equi-inclination method, the commonest as it makes most reflections available, both the camera and the screens (inserted to block reflections from other layers) are moved whereas in the other approaches only one of these adjustments is made.

The position of the spots and the size of the unit cell are related by Bragg's Law and as this involves an inverse relationship the positions of the reflections are called a reciprocal lattice. This lattice is determined solely by the wavelength of the radiation and the physical size of the unit cell: the contents determine the intensities of the spots but not their position. Α Weissenberg photograph gives a distorted view of one section through a reciprocal lattice and a precession photograph gives an undistorted picture. Either can be used to calculate lattice parameters. These can be calculated as follows: the length of the axis of rotation is obtained from the oscillation photograph using the relationship

$$b = \frac{n \lambda}{\sin(\tan^{-1} y_n/D)}$$

where

b is the direct lattice parameter (in Λ) n is the index number of the layer lines y_n is the separation (in mm) of the layer lines $\stackrel{+}{-}$ n D is the camera diameter (in mm) λ is the wavelength of the X-rays used (in Λ)

-47-

Usual practice is to calculate b for each layer-line pair and to use the mean value; yn is best measured near the backstop shadow to minimise misalignment errors. Pho other axes are obtained as the reciprocal parameter from the zero-layer Weissenberg photograph. In the case of monoclinic crystals rotated about the unique axis (conventionally b) and all higher symmetry crystals the oscillation and zero layer Weissenberg photographs together give sufficient information to define the unit cell completely. Conventionally an asterisk is used to denote a parameter defining a distance or angle in the reciprocal unit cell. In an orthorhombic cell the relationships

$$a = \frac{1}{a*}$$
 $b = \frac{1}{b*}$ $c = \frac{1}{c*}$

hold, and in a monoclinic system

$$a = \frac{1}{a \times \sin \beta} * b = \frac{1}{b} * c = \frac{1}{c \times \sin \beta} * \beta = (180 - \beta *)$$

In a triclinic system the relationships are considerably more complex. The reciprocal parameters are obtained from the zero-layer Weissenberg picture as follows: the angle between the reciprocal axes is obtained directly and the reciprocal spacings from the relationship

$$a^* = \frac{2\sin(y_n/\sqrt{5})}{n}$$

nλ

where a^* is the reciprocal lattice dimension (in A^{-1}) y_n is the separation (in mm) of the $\pm n$ th spots on the axial rows

> λ is the wavelength of the x-rays used $\sqrt{5}$ arises from the usual ratio of 2° crystal oscillation to lmm of camera transverse for a 57.3 mm diameter camera.

There are only 230 ways in which identical objects can be arranged into a regularly repeating 3-dimensional array and which of these is present is determined by the internal arrangement of the unit cell. The symmetry operations possible are rotations, micrors, centres of symmetry and combinations of the first two operations with translation. This produces screw axes and glide planes respectively. The other possible symmetry operations involve centring of the crystal lattice. The sum total of the symmetry operations in a unit coll define the space group and their number and nature decide the The clues to the space group of a crystal crystal class. under examination are twofold: the unit cell dimensions decide the crystal class and any translational symmetry shows up in systematically absent reflections. These also affect lattice calculations: if every alternate spot on an axial row is absent then the apparent reciprocal dimension will be twice its true value. Translational symmetry produces these absent reflections because certain projections of the unit cell will appear to repeat at shorter intervals and thus satisfy Bragg's Law for a value

-1+9-

that is a sub-multiple of the true value. A two-fold screw axis about an axis <u>a</u> means that a projection onto the one dimension of <u>a</u> will appear to repeat at units of $\underline{a}/2$: thus odd-indexed spots must have zero intensity. Since this shorter apparent axis is only valid for the one special projection only reflections whose indices involve <u>a</u> alone will be affected.

For triclinic crystals, and monoclinic crystals rotated about <u>a</u> or <u>c</u>, a single axis is not enough to define completely the unit cell: a second axis has to be examined. It is possible to obtain lattice parameters from the deviations of axial spots from linearity on higher axes but such values tend to be imprecise. A second axis can also give information about the crystal's space group through the absences (or lack of them) on the original oscillation axis.

Preliminary alignment and cell dimensions are always obtained by photographic techniques, but final alignment and measurement of cell dimensions is most often done with a diffractometer. These devices also measure reflection intensities by scintillation or proportional counting. Photographic techniques (microdensitometry) have the grave disadvantages of imprecise inter-layer scaling, absence of error estimates and the very long exposures to the X-ray beam needed.

The raw data is corrected for background, Lorentz and polarisation effects and, if necessary, absorbtion in order to obtain observed structure amplitudes. These

-50-

are then manipulated by one of a number of the available crystallographic computer packages until the structure is solved. The clationship between the intensity value and the structure factor is of the form:

$I = K |F|^{2} (hp) (Abs) (Tv)$

is a scale factor

where I is the intensity

Κ

 |F| is the magnitude of the structure factor
 (Lp) indicates a factor for Lorenz and polarisation corrections
 (Abs)indicates a factor for absorption corrections
 (Tv) indicates a factor for overall thermal vibration

The structure factor is composed of two terms, A and B, corresponding to the amplitude and phase of the reflection. Each of these terms is obtained by summing all the scattered radiation taking into account that the atoms will not all scatter in phase. If f_j is the scattering power of the jth atom, at co-ordinates x,y,z, towards the point h,k,l then the phase of the diffracted radiation is 2 π (hx + ky + lz) and

 $A(hkl) = \sum_{j} f_{j} \cos 2\pi (hx_{j} + hy_{j} + lx_{j})$

 $B(hkl) = \sum_{j} f_{j} \sin 2\pi (hx_{j} + ky_{j} + lz_{j})$ Since $|F| = (\Lambda^{2} + B^{2})^{1/2}$ and is derived from the intensity there is insufficient data to calculate both A and B. This is known as the phase problem since the parameter α is defined to make the unknown sought independent of any individual set of data for a particular compound. α is called the phase angle.

$$\alpha = \tan^{-1} \frac{B}{A}$$

Structure Analysis Nothods

There are two approaches to solving the phase problem in current use, called direct and indirect methods. The latter most usually work with the Patterson function:

 $\mathbb{P}(\mathbf{U},\mathbf{V},\mathbf{W}) = \frac{1}{\mathbf{V}e} \sum_{\mathbf{h}} \sum_{\mathbf{k}} \sum_{\mathbf{l}} |\mathbf{F}|^2 \cos 2\pi \quad (\mathbf{h}\mathbf{U} + \mathbf{k}\mathbf{V} + \mathbf{h}\mathbf{W})$

All the terms in this are known (V_c is the volume of the unit cell and P(U,V,W) is the value of the function at the point U,V,W) and so three-dimensional maps can be calculated by Fourier synthesis. The disadvantage of this treatment of the data is that the units of P are (electron density)² and for N atoms a Patterson synthesis produces N(N-1) unique peaks and a large peak at the origin. The heights of these peaks, which correspond to one "view" of the unit cell per atom, that atom being treated as the origin, are proportional to the electron density of both viewed and viewing atoms. On a Patterson map, therefore, any atoms which have many more electrons

than the other atoms present will give rise to considerably larger, higher peaks. The unit cell contents may thus be viewed neglecting the lighter atoms and a first trial structure obtained.

Direct methods consist of comparison of experimental values for intensities with those generated by a statistically random distribution of atoms in the unit cell. Thus the unit cell contents must be known: it can be calculated from the density, the unit cell volume and an empirical formula derived from elemental analysis. The difference between the two sets of values is used to define the (non-random) positions of atoms in the unit cell. Since the generation of a random set of data requires a random set of phases, direct methods work best in centrosymmetric space groups (where the phase angle is constrained to be $\pi \text{ or } 0$) and in space groups with considerable translational symmetry. Similarly equal-atom structures are best for direct methods, but large, planar molecules can be difficult to solve: both these generalisations are concerned with the assumption of random distribution built into the calculated set of values.

Once initial atomic positions have been determined the refinement of the model structure they define proceeds by least square analysis. Intensities are calculated based on the trial structure and small modifications are made to it to minimise the difference between observed and theoretical values. The residual term R is defined to

-53-

act as a gauge of the reliability of the optimised model:

$$R = \frac{\sum |(|F_0| - |F_c|)|}{\sum |F_0|}$$

Whilst a wide range of values of R is possible depending on how much of the complete structure forms the model and the amount of that that is correct, empirically if $R \leq \sim 10\%$ few structural features are incorrect and if $R \leq \sim 20\%$ the trial structure is substantially correct. Exceptions to these rules of thumb exist.

Extra features are normally added to a model structure by difference electron-density maps: these are generated by subtraction of all features of the model structure after a Fourier synthesis of the structure factors where the trial structure determines the phases. If the model phases are correct then the intensity values the model cannot account for will produce maxima on the difference map corresponding to the remaining atoms. If the model phases are not correct then the map will show no meaningful patterns. The fewer electrons an atom has the more of the structure has to be correctly determined before it will show up on a difference map.

-54-

Preliminary Investigations

The following substances were examined for suitability for single-crystal X-ray analysis but were rejected. Since some of the diffraction patterns obtained seemed at first quite eligible for further study and data collection, details are given below together with the reason for abandonment of the analysis.

(1) General

No untwinned crystals could be found in samples of o-biphenylenemercury, perfluoro-o-biphenylenemercury, bis(pentachlorophenyl)mercury, 1,2-diiodobenzene or the triphenylphosphine adduct of perfluoro-o-phenylenemercury. Adducts of this lattermost mercurial with DEF and DMA decomposed rapidly in the X-ray beam and the DPF adduct was shown to be twinned when two alternate oscillation axes gave values for the unit cell volume which differed by a factor of two. All three adducts gave triclinic systems.

(2) Bis(2,3-dihydrotrifluorophenyl)mercury.l,lO-phenanthroline. Oscillation photographs showed no symmetry and a zero-layer Weissenberg showed the reciprocal lattice to be hexagonal (or rhombohedral), with absences h + k = 2n + 1. This is not a possible condition in either a hexagonal system or a rhombohedral system defined on hexagonal axes and the study was terminated.

(3) o-Terphenylenemercury.lDMF

Crystals were studied both after preparation of the adduct in DMF solution and after recrystallisation from chloroform. Oscillation photographs showed m_{χ} symmetry on both needle and alternate axes; the needle-axis spacing was 27.51Å. A zero-layer Weissenberg photograph showed no meaningful patterns.

(4) Bis(perfluoro-2-biphenyl)mercury.l,10-phenanthroline Well-formed needle-like crystals were grown by diffusion of water into a chloroform/methanol solution of the sample. The needle-axis showed m_x symmetry but zero and higher layer Weissenberg pictures showed no systematic absences that corresponded to standard space group. Crystal data (oscillation about a): Orthorhombic or Tetragonal, a = 16.17Å, b = 16.37Å, c = 31.79Å; absences: Okl when k = 2n + 1, OOl when l = 2n + 1; no hhl absences.

(5) Perfluoro-o-phenylenemercury.2DMF

Crystals were grown by diffusion of water into a DMF solution of the parent mercurial and were allowed to effloresce. The study was terminated when several crystals had decomposed in the beam. The needle-axis dimension was 19.22Å and showed no symmetry on oscillation photographs.

(6) Perfluoro-o-phenylenemercury.lDMF

Crystals of the above DMF recrystallisation were heated at 120°C overnight then recrystallised by diffusion of water into a methanol solution. The presence of DMF in the resulting crystals was shown by i-r spectroscopy; on standing in the open the crystals did not become opaque, but after X-ray examination over 7-10 days no diffraction patterns could be detected. Oscillation axis spacings were 13.31Å and 11.31Å; neither axis showed any symmetry on the oscillation pictures.

(7) Bis(pentamethylphenyl)mercury

Crystals were grown by slow cooling from boiling of a solution in DMF. There was a fair approximation of m_{χ} symmetry on needle-axis oscillation photographs. The only absences on Weissenberg pictures were alternate festoons on the zero layer; one axial row became curved on higher layers. These two facts are irreconcilable with a standard space group and in addition the extra reflections on the first layer (compared with the zero layer) were displaced slightly from their festoons. The crystal was assumed to be twinned and X-ray studies abandoned.

Structure Determinations

1 Triben zo [b,e,h][1,4,7] trimercuronin (orthorhombic form) Crystals were prepared by slow cooling from boiling of a DMF solution. The compound was prepared by Dr. S. B. Awad via the reaction of sodium amalgam with 1,2-dibromobenzene in either solution.

Crystal data

orthorhombic a = 5.56(2) $Dx = 3.49 Mg/m^3$ b = 23.36(2) Z = 4 F(000) = 1440c = 12.24(2) U = 1589.8 R^3

> Absences OOl when 1 odd OkO when k odd hOO when h odd Space group P2₁2₁2₁ (No.19) Badiation:No. K. 20 51000

Radiation:Mo - K α λ = 0.71069Å μ = 8.35mm⁻¹ Crystal size: 0.05 x 0.05 x 0.5mm

Intensity Data

Intensities were measured on a Stoë automatic Weissenberg diffractometer equipped with a graphite monochromator. Rotation was about the crystallographic <u>a</u> axis; each reflection was counted for 60 seconds with variable ω scan and a twenty second background measurement was made at the beginning and end of each scan. A strong reflection was measured every 30 reflections but the data was not scaled to it and a new reflection was chosen for each layer. Systematically absent reflections were measured, checked and omitted from further data reduction; reflections where $F \leq 3_0(F)$ were classed as unobserved. Lorentz and polarisation effects were corrected but absorbtion was neglected.

Structure Determination and Refinement

After data reduction a Patterson map was calculated but only two major unique peaks appeared: at 0,0,0 and 0,0, $\frac{1}{3}$. Both also gave symmetry and vector related peaks, but there was no trace of the third mercury atom. Refinement of approximate atomic co-ordinates of 0,0,0 and 0,0, $\frac{1}{3}$ as isotropic mercury sites left R at 39.4%. A difference Fourier map showed four approximately equal peaks instead of a single maximum and trial structures involving both single and double disorder were calculated. The R factor would not reduce below about 25% nor would the resulting difference maps show any recognisable shapes.

•

order

single disorder

double disorder

6 x full weight atoms 4 x full-weight atoms 4 x fullweight atoms 4 x 0.5 weight atoms 8 x 0.25 weight atoms

-59-

The two sites which had seemed most amenable to refinement as mercury sites were then separately tried as the basis of new, ordered, models and one of these gave an anisotropic R of 13.6%. All the carbon atoms showed clearly on a difference map and isotropic refinement of these reduced R to 10.4%

At this stage it was noticed that the initial data had been incorrectly reduced as only reflections calculating less than background were classed as unobserved. Alteration of this that $F \leq 3\sigma(F)$ was the criterion for less-than status lead to a conventional R of 7.8% with mercury anisotropic, carbon isotropic and hydrogen atoms neglected. As no absorbtion correction had been applied further refinement was not attempted.

The structure obtained shows unequivocally the trimeric nature of orthorhombic o-phenylenemercury: 37,80,93 same as the proposed structure for its perfluoro analogue. Structure and temperature factors are listed in Appendix bond lengths (Tables 2,3), bond angles (Table 4) and I: positional parameters (Table 5) are given together with the equivalent values for the monoclinic form. Figure I shows the atomic numbering scheme adopted for both crystal modifications, Figure 2 shows the packing arrangement of the two atoms discovered first and Figure 3 shows the unit cell contents in projection. In Figure 2 the <u>a</u> and <u>c</u> axes are shown in small letters and of the contact distances shown only B is bridged; the distances involved are 3.98Å (A), 3.54Å (B) and 3.44Å (C).

, p71

Fig. 2

unit cell down b. a,c outline one unit cell

A,B,C are contact distances

Fig 3. Orthorhombic unit cell ;Tribenzo[b,e,h][1,4,7]trimercuronin

Table 2

Carbon-Mercury Bond-lengths in o-Phenylenemercury

(a) Orthorhombic Form

Atom 1	Atom 2	Bondlength(Å)
C(4)	Hg(l)	2.13(4)
C(17)	Hg(l)	2.12(4)
C(2)	Hg(2)	2.08(5)
C(9)	Hg(2)	2.09(5)
C(7)	Hg(3)	2.12(4)
C(18)	Hg(3)	2.07(5)

(b) Monoclinic Form

Atom 2	Bondlength(\hat{A})
Hg(1)	2.17(5)
Hg(l)	2.05(3)
Hg(2)	2.06(3)
Hg(2)	2.07(2)
Hg(3)	2.07(3)
Hg(3)	2.04(2)
	Atom 2 Hg(1) Hg(1) Hg(2) Hg(2) Hg(3) Hg(3)

Table 3

Carbon-Carbon Bondlengths in o-Phenylenemercury

(a) Orthorhombic Form

Atom 1	Atom 2	Bondlength (Å)
C(l)	C(2)	1.47(8)
C(2)	C(4)	1.38(7)
C(3)	C(1)	1.46(7)
C(4)	C(6)	1.44(6)
C(5)	C(3)	1.38(7)
C(6)	C(5)	1.38(6)
C(7)	C(8)	1.43(6)
C(8)	C(10)	1.45(7)
C(9)	C(7)	1.49(6)
C(10)	C(12)	1.30(6)
C(11)	C(9)	1.38(7)
C(12)	C(11)	. 1.38(6)
C(13)	C(14)	. 1.43(8)
C(14)	C(16)	1.39(9)
C(15)	C(13)	1.47(8)
C(16)	C(18)	1.43(7)
C(17)	C(15)	l.49(7)
C (18)	C(17)	1.42(6)

(b) Monoclinic Form

Atom 1	Atom 2	Bondlength(Å)
C(1)	C(2)	1.33(6)
C(2)	C(4)	1.30(5)
C(3)	C(1)	1.39(5)
C(4)	C(6)	1.51(7)
C(5)	C(3)	1.32(5)
C(6)	C(5)	1.41(6)
C(7)	C(8)	1.42(4)
C(8)	C(10)	1.35(4)
C(9)	C(7)	1.41(4)
C(10)	C(12)	1.39(5)
C(11)	C(9)	1.37(4)
C(12)	C(11)	1.45(4)
C(13)	C(14)	1.45(5)
C(14)	C(16)	1.29(4)
C(15)	C(13)	1.33(5)
C(16)	C (18)	1.45(5)
C(17)	C(15)	1.44(4)
C(18)	C(17)	1.45(4)

Table 4

Bondangles in o-Phenylenemercury

(a) Orthorhombic Form

Atom 1	Atom 2	Atom 3	Angle $1-2-3(^{\circ})$
C(4)	Hg(1)	C(17)	176.5(1.8)
C(2)	Hg(2)	C(9)	178.1(1.9)
C(7)	Hg(3)	C(18)	178.5(1.6)
C(2)	C(1)	C(3)	117.4(5.1)
C(1)	C(2)	C(4)	117.0(4.4)
C(l)	C(3)	C(5)	122.0(4.2)
0(2)	C(4)	C(6)	121.7(4.0)
C(3)	C (5)	C(6)	119.3(4.2)
C(4)	C(6)	C(5)	120.3(4.4)
C (8)	C(7)	C(9)	121.0(4.1)
C(7)	C(8)	C(10)	116.0(3.9)
C(7)	C(9)	C(11)	115.8(3.9)
C(8)	C(10)	C(12) .	120.7(4.4)
C(9)	C(11)	C (12)	121.1(4.4)
C(10)	C(12)	C(]])	124.4(4.9)
C(14)	C(13)	C(15)	123.5(5.7)
C(13)	C(14)	C(16)	118.7(5.2)
C (13)	C(15)	C(17)	112.5(4.4)
C(14)	C (16)	C(18)	123.7(5.2)
C (15)	C (17)	C(18)	125.0(3.8)
C (16)	C(18)	0(17)	116.6(4.4)
Hg(1)	C(4)	C(2)	119.6(3.2)

Hg (1)	C(4)	C(6)	118.5(3.2)
Hg(l)	C(17)	C(15)	118.6(2.9)
Hg (1)	C(17)	C(18)	116.3(3.1)
Hg (2)	C(2)	C(1)	116.9(4.0)
Hg(2)	C (2)	C(4)	123.9(3.3)
Hg (2)	C(9)	C(7)	116.5(3.4)
Hg (2)	C(9)	C(11)	127.6(3.3)
Hg (3)	C(7)	C(8)	117.0(3.1)
Hg (3)	C(7)	C(9)	121.4(3.1)
Hg (3)	C (18)	C(16)	118.0 (3.5)
Hg (3)	C(18)	C(17)	125.2(3.0)

(b) Monoclinic Form

Atom 1	Atom 2	Atom 3	Angle (⁰)
C (2)	C (1)	C(3)	125.4(3.4)
C(1)	C(2)	C(4)	116.3(3.3)
C(1)	C(3)	C(5)	118.2(3.8)
C(2)	C(4)	C (6)	124.4(4.4)
C(3)	C(5)	C(6)	123.1(3.2)
C(4)	C (6)	C (5)	112.5(3.5)
C(8)	C(7)	C (9)	118.0(2.4)
C(7)	C(8)	C(10)	119.2(3.1)
C(7)	C(9)	C(11)	120.4(2.4)
C (8)	C(10)	C(12)	125.7(2.7)
C(9)	C(11)	C (12)	.122.3(3.0)
C(10)	C(12)	C(11)	113.9 (2.6)
C(14)	C(13)	C(15)	121.1(3.1)
C(13)	C(14)	C(16)	120.5(3.6)

-67-
C (13)	C(1.5)	C(17)	118.6(2.3)
C(14)	C(16)	C(18)	121.5(1.7)
C(15)	C(17)	C(18)	118.8(2.9)
C(16)	C(18)	C(17)	117.1(2.3)
Hg(1)	C(4)	C(2)	124.5(3.1)
Hg(1)	C(4)	C(6)	111.0(3.0)
Hg (l)	C(17)	C(15)	121.3(2.2)
Hg(1)	C(17)	C(18)	119.9(2.0)
Hg (2)	C(2)	C(1)	124.5(2.4)
Hg(2)	C(2)	C(4)	118.4(3.1)
Hg(2)	C(9)	C(7)	120.8(1.7)
Hg (2)	C(9)	C(11)	118.4(2.2)
Hg (3)	C(18)	C(16)	122.0(1.8)
Hg(3)	C(18)	C(17)	120.9(2.1)
Hg (3)	C(7)	C(8)	119.4(2.3)
Hg(3)	C(7)	୯ (୨)	121.7(1.7)
C(4)	Hg(1)	C(17)	175.7(1.3)
C (2)	Hg (2)	C(9)	176.4(1.2)
C(7)	Hg(3)	C(18)	177.1(1.1)

-68-

C (13)	C(15)	C(17)	118.6(2.8)
C(14)	C(16)	C(18)	121.5(1.7)
C(15)	C(17)	C(18)	118.8(2.9)
C(16)	C(18)	C(17)	117.1(2.3)
Hg(l)	C(4)	C(2)	124.5(3.1)
Hg(1)	C(4)	C(6)	111.0(3.0)
Hg (l)	C(17)	C(15)	121.3(2.2)
Hg (1)	C(17)	C(18)	119.9(2.0)
Hg (2)	C(2)	C(l)	124.5(2.4)
Hg(2)	C(2)	C(4)	118.4(3.1)
Hg(2)	C(9)	C(7)	120.8(1.7)
Hg (2)	C(9)	C(11)	118.4(2.2)
Hg (3)	C(18)	C(16)	122.0(1.8)
IIg(3)	C(18)	C(17)	120.9(2.1)
Hg(3)	C(7)	C(8)	119.4(2.3)
Hg(3)	C(7)	C(9)	121.7(1.7)
C(4)	Hg(1.)	C(17)	175.7(1.3)
C(2)	Hg(2)	C(9)	176.4(1.2)
C (7)	Hg(3)	C(18)	177.1(1.1)

-68-

Positional Parameters (x10⁴) for o-Phenylene Mercury

(a) Orthorhombic Form

Atom	x	У	7
Hg(l)	-116(4)	-55(1)	76(1)
Hg(2)	5075(4)	32(1)	8317 (2)
Hg(3)	2095(4)	1317(1)	4197(2)
C(1)	4325(118)	1311(26)	8597 (47)
C(2)	3181 (105)	755(20)	8800(38)
C(3)	3038(87)	1821(17)	8957 (32)
C(4)	1275(86)	745(18)	9528 (35)
C(5)	891(91)	1789 (1 9)	9515 (37)
C(6)	91(95)	1264 (1 8)	9878(35)
C(7)	5832(82)	8738(18)	8094(35)
C(8)	6942(93)	8210(18)	7771 (35)
C(9)	6905 (98)	9299 (18)	7786 (36)
C(10)	9070(95)	8260(20)	7094(39)
C(11)	8999(98)	9274(19)	7185(39)
C(12)	9861 (96)	8760(18)	6792 (39)
C(13)	5893 (126)	8519(25)	1648 (55)
C(14)	7145(122)	8024(23)	1248 (45)
C(15)	6530(100)	9109(20)	1346(40)
C(16)	9176(119)	8104(25)	603(51)
C(17)	8717(82)	9136 (17)	647(35)
C(18)	35(87)	8653(17)	269(32)

-69-

(b) Fonoclinic Form

Atom		v	
$\operatorname{Hg}(1)$	-255(1)	2390(2)	-825(1)
Hg(2)	2710(1)	A758(2)	211(1)
Hg(3)	729(1)	2459(1)	1.093(1)
C(1)	2826(39)	5825(52)	-1284(19)
C(2)	2195(34)	4901 (42)	-913(17)
C(3)	2413(38)	6076(43)	-2038(19)
C(4)	1069(45)	4255(59)	-1290(22)
C(5)	1280(33)	5405 (43)	-2422(17)
C(6)	478(46)	4448 (59)	-2106(22)
C(7)	2420 (28)	3695(35)	1682 (13)
C(8)	2750(33)	3743(41)	2458(16)
C(9)	3134(26)	4722 (53)	1339(13)
C(10)	3819(28)	4624 (37)	2838(14)
C(11)	4217(30)	5585(39)	1746 (15)
C(12)	4619(32)	5583 (43)	2539 (16)
C(13)	-31.65(37)	- 348(46)	-405(18)
C(14)	-2819 (36)	-437(46)	383 (1 8)
C(15)	- 2608 (34)	759(44)	-735(17)
C(16)	-1745(32)	253(41)	783 (16)
C (17)	-1386(30)	1535(30)	-319(15)
C(18)	- 943(27)	1311(34)	469(13)

Discussion

The crystallographic point of interest in this structure lies in its failure to comply with some of the basic truisms of heavy atom X-ray analysis. Firstly, the Patterson map should have shown an arrangement based on a triangle of mercury atoms since the mathematics produces peaks proportional to the product of the electron densities of the two atoms concerned. A mercury atom (nominally) has 80 electrons to the 6 of a carbon atom. The projection Patterson synthesis for a triangle (a) and the observed map (b), however, are given below:

(a)

(b)

The subsequent different maps should have given a single major unique peak corresponding to the remaining mercury atom rather than four smaller maxima. The disordered models tried attempted to reconcile the presence of mercury as the only heavy atom present (this was shown by X-ray fluorescence for the particular batch of orystals concerned) with the smaller peaks and failed. In retrospect the problem a peaks to have arisen from the similarity in distance of the third mercury atom and the bridging phenyl ring from the two atoms located first. The phenylene bridge has 38 electrons in it and in a poorly defined structure (as shown by the R value of 39%) this was enough to produce features on the difference map indistinguishable from the heavy atom. The space group also contributed as shown below:

direction of screw axis

The screw axes meant that the three phenylene bridges and the remaining mercury formed an array virtually identical to that theoretically given by disorder.

The bond-lengths and angles are those one would expect from an organometallic: the values involving only light atoms have high standard deviations and this explains why some appear to deviate quite sharply from "normal". The mercury atoms are shown to be bonded linearly to their two phenyl rings and the carbon-mercury bond-lengths are within normal values for aromatic mercurials. Some literature bond-lengths are given in Table 9.

The chemical points of interest are two-fold: -the molecular structure of o-phenylenemercury is shown to be trimeric (this is discussed more fully in Chapter 7), and the van der Waals radius for mercury in its compounds is shown in a new light. Mercury metal is known in its solid state¹³⁸ to have two short interatomic contact distances of 3.000Å and 3.466Å; its three crystalline forms are all distorted forms of metallic close-packing. 139 The question of a van der Waals radius for mercury could then produce answers between 1.50% and 1.74%. Grdenic suggests that the lesser value be used, but that interatomic separations up to distances involving the larger radius can still involve bonding interactions. 140 The orthorhombic form of o-phenylenemercury appears to be held together by mercury-mercury contacts (Figure 2) and the shortest of these at 3.44 $^{\circ}$ suggests that a truer van der Waals radius would be about 1.72Å This structure is probably the only published case other than the metal where intermetallic contacts between uncharged mercury atoms are made. The phenylene bridges hold the metal atoms just further apart than this higher van der Waals distance, the separations being 3.54Å, 3.56Å and 3.61Å. 2.

2. Tribenzo[b,e,h][l,4,7] trimercuronin (monoclinic form) Crystals were grown by slow cooling from boiling of a DMF

-73-

solution. The compound was prepared via the reaction of a 1,2-dibromobenzene solution (in 1,4-dioxan) with sodium amalgam.

Crystal Data

Monoclinic a = 10.512(3) $Dx = 3.49 Mg/m^3$ b = 8.116(2) Z = 4 c = 19.128(7) U = 1561.2 $\beta = 106.92(3)^\circ$ F(000) = 1440

> Absences hOl when l odd OkO when k odd Space Group $P2_{I}/c$ (No.14) Radiation: No-Ka, λ =0.71069Å, μ = 8.35mm⁻¹ Crystal size: 0.2 x 0.05 x 0.6mm

Intensity Data

Intensities were reasured on a Hilger-Watt automatic Eulerian geometry diffractometer equipped with a graphite monochromator. Rotation was about the crystallographic \underline{b} axis; each reflection was counted for 28 seconds using an ω , ϑ scan. Background measurements were made for 7 seconds at the beginning and end of each scan. Three strong reflections were measured every 100 reflections and the data scaled to them. Cell dimensions were obtained by least-squares refinement of 30 reflections; systematically absent reflections were measured but omitted from data reduction after checking as were all reflections for which $I \leq 3\sigma(I)$.Lorenz and polarisation corrections were applied.

Structure Determination and Refinement

A Patterson function was calculated and was sufficiently well-defined to prove a trimeric structure but gave no idea as to the absolute position of that trimer. A variety of solutions was tried to no avail. Direct methods were then tried and the solutions with the best figures of merit refined by least-squares techniques. The second best set gave an R factor of 16.8% on anisotropic refinement of the mercury atoms: a difference map from this located all the carbon atoms and isotropic refinement of these atoms lead R to converge at 11.2%. The high value of R was attributed to the lack of absorbtion corrections.

Structure and temperature factors are given in Appendix I, bond lengths in Tables 2 and 3, bond angles in Table 4 and positional parameters in Table 5. The molecular numbering scheme used is shown in Figure 1 and the unit cell contents in Figure 4.

Discussion

The structure obtained shows unequivocally the trimeric nature of monoclinic o-phenylenemercury, a fact which was underlined during the course of this study when the orthorhombic form was produced from the monoclinic simply by recrystallisation from boiling quinoline. Since the Patterson map in projection was the same as the earlier work suggesting a hexamer,⁷², 141 and our unit cell is a simple diagonal to this (as shown both by dimensions and

-75-

∖p77

p75 D

the change of space group to P21/c) a hexamoric formulation for o-phenylenemercury is disproved.

In contrast to the orthorhombic form the van der Waals forces holding the crystal together shed no light on the appropriate radius for mercury: the closest (nonbridged) mercury-mercury contact distances are 3.67(0)^R and 3.82(0)^R. No trace of a mercury honeycomb is visible in the packing and no great deviation from linear geometry about the mercury atom is observed. The C-Hg bondlengths are normal and those involving the light atoms show the effect of the high R-factor.

The most puzzling fact about o-phenylenemercury is that the reluctance of the fwo forms to interconvert in solution (either can be recrystallised from DMF) implies an ordering the DMF temperatures (~152°C) are unable to break whereas quinoline temperatures (~235°) can. Both solvents are strongly solvating and it is probably this that produces the solution structure conversion. Dry heating at temperatures up to 320°C during thermal analysis showed no energy changes, nor did it change the respective i-r spectra.

3. Bis(2-hydrotetrafluorophenyl)mercury

Crystals were prepared by sublimation of a specimen of "perfluorotribenzo [b,e,h][1,4,7] trimercuronin" recrystallised from cyclohexanone.

-77-

First Set

Monoclinic

 $Dx = 2.78 Mg/m^3$ a = 11.07(5)b = 4.87(1)Å Z = 2 $c = 13.11(5)^{\circ}$ F(000) = 452 $\beta = 122.6(1)^{\circ}$ $U = 595.3^{3}$ Absences hOl when 1 odd OkO when k odd hkl weak when k + l odd Space group: P21/c (No.14) Radiation: Cu - Ka (Ni-filtered), $\lambda = 1.5418$, $\mu = 24.4 \text{mm}^{-1}$ Crystal size: 0.1 x 0.025 x 0.9mm

Second Set

Monoclinic

a = 11.786(7) Å Dx = 2.78Mg/m³ b = 4.871(6) Å Z = 2 c = 13.114 (5) Å F(000) = 452 β = 127.41(6)⁰ U = 598.0Å³ Absences: h01 when 1 odd Ok0 when k odd hk1 weak when k + 1 odd Space group: P21/c (No.14) Radiation: Mo - Ka, λ = 0.71069Å, μ = 12.47mm⁻¹ Crystal size: 0.1 x 0.005 x 0.65mm

Intensity Data

Set I was collected by multiple exposure Weissenberg techniques. The films were then submitted to the JRC microdensitometer service who measured integrated intensities, rejected equivalent reflections which gave differing values, scaled the data and returned the output as condensed format SHELX¹⁵² cards.

Set 2 consists of values measured on a Stoë automatic Weissenberg diffractometer equipped with a graphite monochromator. Rotation was about the crystallographic <u>b</u> axis; each reflection was scanned with variable ω and a 20 second background count was made at the start and end of every relection. A strong reflection was measured every 30 reflections but the data was not scaled to it and a new standard was chosen for each layer. Systematically absent reflections were measured but were omitted from data reduction after checking; reflections where I \leq 4 σ (I) were classed as unobserved. Lorentz, polarisation and absorbtion effects were corrected, the lattermost after structure solution.

Structure Determination and Refinement

Initial work was performed using the XRAY 72 153 suite of programs: the mercury atom was located from the pseudo A symmetry as being at 0,0,0 and $0,\frac{1}{2},\frac{1}{2}$. The structure refinement was conducted in space group Pl as this introduces no assumptions about symmetry: the reason for this was the method of preparation of the crystals. The bulk solid had complied with the i-r spectrum of $(C_6F_4Hg)_3$ and so the crystals were assumed to be that compound. This, however, gave a value of Z = 1 for any realistic density and in $P2_1/c$ only 2 or 4 are possible. The R factor in Pl was 19.2% (isotropic), refining to K.3% (anisotropic), and the subsequent difference map located the light atoms and hence the symmetry and molecular structure. R converged at 8.1% with light atoms isotropic. In order to apply absorbtion corrections the data was transferred to the SHELX 152 suite of programs; R refined to 5.1% with light atoms isotropic

Data set 1 was accumulated on an earlier crystal and the diffractometer data was obtained because the changes in spot-shapes during the long exposures required for photographic data indicated that the crystal had suffered decomposition. Solution of this data in $P2_1/c$ for anisotropic mercury gave R = 22.4% compared with R = 18.5%for the diffractometer data. The unit cell chosen for the photographic work had a different a* axis (and hence an alternate β^*) but comparison of the unit cell volumes (598 and 595 R^3) shows that it is a valid alternative. The a* and b* axes are common, but the photographic cell is left-handed: the common axes mean the space group is unchanged.

Structure and temperature factors are given in Appendix 1, bondlengths are in Table 6, bond angles in

-80-

Table 7. The positional parameters are given in table 8; the numbering scheme adopted is shown in Figure 5 and the unit cell contents in Figure 6.

Discussion

Preparation of perfluoro-o-phenylenemercury is most conveniently performed by the method of Sartori⁸⁰, and it was decided to recrystallise the product of this reaction

 $3 C_6 F_4 (CO_2)_2 Hg \xrightarrow{300^{\circ}C} (C_6 F_4 Hg)_3 + 6 CO_2$

from cyclohexanone to study the solvent/mercurial complex expected to form. On drying the sample in an oven a small quantity of feathery crystals grew on the neck of the flask. Proof of the identity of the compound as bis(2-hydrotetrafluorophenyl)mercury came as somewhat of a surprise; later thermogravimetric analysis showed it to comprise only about 1% of the mercurials produced. It presumably arises from the reaction sequence

^{CO2H} Hg(O2C.CH3) CO2H H2O/CH3CO2H

-81-

Fig. 5

Numbering scheme adopted for the assymmetric unit : Bis(2-hydrotetrafluorophenyl)mercury.

Fig. 6

Unit cell contents.

Bondlengths(Å) in bis(2-hydrotetrafluorophenyl)mercury with estimated standard deviations in parentheses

C(6)		Hg(1)	2.096(16)
C(6)		C(1)	1.346(23)
C(1)	-	C(2)	1.405(23)
C(2)		C(3)	1.369(22)
C(3)		C(4)	1.325(25)
C(4)	_	C(5)	1.380(26)
C (5)	-	C(6)	1.336(22)
C(2)	-	F(2)	1.388(21)
C(3)	-	F(3)	1.394(21)
C(4)		F(4 ¹)	1.337(17)
C(5)		F(5)	1.378(21)

Bondangles (°) with their estimated standard deviations in parentheses

C(6)	-	Hg(1)	-	C(6)'	1.80.0*
C(1)	-	C(6)		Hg(1)	119.8(1.2)
C(5)	-	C (6)	-	Hg(1)	120.4(1.3)
C(5)		C(6)	-	C(l)	119.8(1.7)
C(6)		C(1)		0(2)	117.7(1.6)
C(1)	-	C(2)	-	C(3)	120.4(1.7)
C(1)		C(2)	-	F(2)	121.8(1.7)
0(3)		C(2)	-	F(2)	118.0(1.8)
C(2)		C (3)	-	C(4)	121.0(0.8)
C(2)		C(3)		F (3)	119.8(1.7)
C(4)		C(3)	-	F(3)	119 . 1(1.6)
C (3)	-	C(4)	-	C(5)	117.3(1.5)
C(3)	-	C(4)	-	F(4)	122.4(1.9)
C(5)	-	C(4)	-	F(4)	120.1(1.7)
C(4)	-	°C(5)		C(6)	123.4(1.7)
C (4)	-	C(5)	•	F(5)	115.5(1.5)
C (6)		C(5)	-	F (5)	120.9(1.7)

* Fixed by symmetry considerations

Final positional parameters $(x10^4)$ with their standard deviations in parentheses

	x	У	Z
Hg(1)	0	5000	5000 *
C(1)	2232(18)	-576(41)	6211(17)
C(2)	3232(17)	1193(39)	6303 (16)
C(3)	3294(18)	1447 (43)	5298 (17)
C(4)	2514(14)	-144(54)	4271 (14)
C(5)	1578(17)	-1941(44)	4224(17)
C (6)	1449 (16)	-2185(37)	5164 (15)
F(2)	4075(12)	2038(30)	2334(11)
F(3)	4235(12)	3323(31)	5373(11)
F(4)	2534(11)	87(38)	3266 (10)
F(5)	832(12)	- 3642(28)	3168 (11)

* fixed atom, hence no standard deviation values

The successful structure solution shows that abandonment of chemical and symmetry considerations for a compound is no bar to a final, true, structure determination from X-ray data. Although it must be said that the case involved was favourable in that the single heavy atom in a cetrosymmetric special position weighted the data such that initial stages of structure determination were easy, the employment of Pl symmetry has been shown to be a very powerful analytical tool. The drawbacks of Pl were two-fold: true A symmetry for the heavy atoms produced an ill-conditioned matrix and the second atom refined away from its true position (the first atom was used to fix the origin). Secondly the true symmetry was not easy to pick out because of the very short <u>b</u> axis: this meant the possible space-groups of Pl, P2, P2/c and $P2_1/c$ could not be easily distinguished by the locations of the better-defined light atoms. P2 and P2/c would have meant a non-linear C-Hg-C system and they additionally gave higher values for R. The anisotropic heavy-atom value for R was 16.3% in Pl and 18.5% in P2₁/c. This can be attributed to two circumstances: Pl refinement used 15 variables (compared to 6), and the positional flexibility of the second heavy atom made it possible for the incomplete model to account for the data better.

-86-

The structure itself is interesting because it proves the supposition made about the structure of bis(pentafluorophenyl)mercury:¹⁴⁴ this is non-planar, which was attributed to electrostatic repulsion between the ortho fluorine atoms. Both the other phenyl mercurials 147 studied (diphenylmercury 146 and bis(4-methylphenyl)mercury) are planar and crystallise in P2₁/c with Z = 2. The 2-hydrotetrafluorophenyl molety would be expected to be chemically very similar to the pentafluorophenyl fragment, save that any electrostatic repulsions would tend to make it ordered and planar. The consideration of ordering is illustrated by the structure of 2-hydrononafluorobiphenyl which is non-randomly disordered.¹⁴²

An early study on bis(pentafluorophenyl)mercury⁴⁵, which could not be reproduced during the course of this work, stated that on fresh sublimation the melting point was lower (ll5-ll7°C) than after standing or solvent crystallisation (l35-l37°C). This suggests that a metastable crystalline form exists and one possibility is that condensation from the gas phase can occur to give a planar molecule, this ordering then breaking down on standing.

Unfortunately the determination of hydrogen positions in the presence of heavy atoms is not reliable and so hydrogen/fluorine interactions between molecules cannot be proved, although the orientation of the rings suggests that some association is geometrically possible (Figure 6).

The infra-red spectrum of the compound was inconclusive as an identity test as most peaks were considerably broadened, but the mass spectrum clearly corroborated the structure as $(C_6F_4H)_2Hg$. The only major degredative pathway was cleavage of the C-Hg bond

-87-

(i.e. loss of C_6F_4H or HC_6F_4Hg) but small peaks corresponding to loss of HF, F, F^{Θ} or Hg could also be seen. Loss of F^{Θ} to give a doubly charged ion was several times more favourable than the loss of F.

The carbon-mercury bondlength is normal (Table 9) as are the carbon-carbon bondlengths and angles. The worst-defined atom is C(4) which is involved in the shortest carbon-carbon value and both the bondangles which deviate most from 120°. This casts some doubt upon the value for C(4) - F(4) as it deviates from the other carbonfluorine distances. The other three carbon-fluorine separations, at about 1.38%, are about 0.04% higher than in non-metallic polyfluoroaromatic derivatives such as 2-hydrononafluorobiphenyl ¹⁴² and 2,6-bis(pentafluorophenyl)-1-bromotrifluorobenzene.¹⁴³ The values for bis(pentafluorophenyl)mercury average 1.38Å range but fall in the range 1.338 - 1.478. 144

4. Perfluorotribenzo [b,e,h][1,4,7]trimercuronin. 4-phenylpyridine

Crystals were prepared by slow evaporation of 1:1 methanol solution of the two separate compounds.

Crystal Data

Monoclinic	$a = 11.223(9)^{\circ}$	$Dx = 2.83 Mgm^{-3}$
	$b = 27.308(15)^{\circ}$	$\mathbf{Z} = 4$
	$c = 9.529(10)^{\circ}$	F(000) = 2052
	$\beta = 105.20(5)^{\circ}$	$U = 2818.2^{3}$

-88-

 $\sum p90$

Carbon-Mercury bondlengths in aromatic mercurials

Compound	C-Hg bondlengths (A)*	Reference
(C ₆ F ₅) ₂ Hg	2.10(-); 2.10(-)	144
C6 ^H 5 ^H gCN	2.05(2)	145
(C ₆ H ₅) ₂ Hg	2.085(7)	146
$(p-MeC_6H_4)_2Hg$	2.08(-)	147
(2-C ₄ H ₃ S) ₂ Hg	2.08(-)	148
(C ₆ H ₅) ₂ Hg.1,10-C ₁₄ H ₁₂ N ₂	2.10(-)	149
(C6H5)2Hg.1,10C16H16N2	2.10(-);2.13(-)	149
((C ₆ F ₅) ₂ Hg) ₂ .C ₁₃ H ₁₂ As ₂	2.15(4);2.07(4)	150

2.07(2);2.12(2) 151

2.07(5);2.13(6) 151

*values in parentheses are standard deviations

-89-

Absences: hOl when h + l = 2n + lOkO when k = 2n + lSpace Group: $P2_1/n$ (No. 14) Radiation: $Cu-K_{\alpha},\lambda=1.54178^{\circ}$, $\mu=30.1mm^{-1}$ Crystal size: 0.077 x 0.170 x 0.56mm

-90-

Intensity Data

Reflections were measured on a Stoë automatic Weissenberg diffractometer equipped with a graphite Rotation was about the crystallographic monochromator. a axis; each reflection was scanned with variable ω based on at 2.2° mosaic spread and a 20 second background count was made at the start and end of every reflection. A strong reflection was measured after every 25 scans, but the data was not scaled to it and a new standard was chosen for each layer. The decomposition observed during the course of data collection was not severe enough to necessitate correction of measured values: it was typically of the order of 10% in the intensity value. Systematically absent reflections were measured but omitted from data reduction after inspection; reflections where $I \leq 4\sigma(I)$ were classed as unobserved and omitted from least-squares refinement; 0kl and 1kl less-thans were included in direct-methods structure solution attempts. Lorentz, polarisation and absorbtion effects were corrected.

p88D

Structure Determination and Refinement

The direct-methods routine of the SHELX suite of programs 152 was used initially, but gave no success on least-squares refinement of the trial structure proposed. set of data was then generated for the NULTAN 74 program 154: the solution with the best figure of merit refined anisotropically for the heavy atoms to give an R value of 16.4%. A difference map located all the light atoms and of the 43 highest peaks 42 were real. Values for the scale-factor and for inter-layer factors were obtained by an isotropic refinement of all atoms (R was 8.8% at convergence) and then fixed during anisotropic refinement of the heavy atoms. No attempts were made either to refine the light atoms anisotropically or to locate hydrogen atoms. The nitrogen atom was allocated to position (34) rather than (44) on the basis of temperature factors. The final value of R was 7.4% for the 3533 observed reflections

Structure and temperature factors are given in Appendix I, positional parameters in Table 10, bondlengths in Table 11, bond-angles in Table 12 and short contact distances in Table 13. The numbering scheme adopted is shown in Figure 7; Figures 8 and 9 are two different projection views of the unit cell contents.

Discussion

There are two main chemical points of interest in this structure: the oligomeric nature of $(C_6F_4Hg)_n$ and

-91-

Fig. 7

Numbering employed for perfluorotribenzo[b,e,h][1,4,7]trimercuronin and 4-phenylpyridine (to different scales).

Fig.8

Unit cell contents : c axis projection.

- Nitrogen
- Mercury

Fig.9 Unit cell contents : a axis projection.

- Nitrogen
- Mercury

Positional parameters $(x10^4, with their estimated standard deviations in parentheses) for perfluorotribenzo(b,e,h)-(1,4,7) trimercuronin.4-phenylpyridine$

	x	У	\mathbf{Z}
Hg (1)	8212(1)	3359 (0)	7389(1)
Hg (2)	4911(1)	3287(0)	6066(1)
Hg (3)	6376(1)	4451 (0)	6963(1)
C (1)	3874(26)	3921(10)	5874(28)
C (2)	4439(25)	4388(9)	6316 (27)
C (3)	3704(30)	4801(11)	6238 (33)
C (4)	2447(31)	4772(11)	5797 (34)
C (5)	1904(32)	4334(12)	5422 (36)
C (6)	2646 (29)	3912(11)	5482 (31)
C(11)	8308(26)	4482(9)	7507 (28)
C(12)	9021(28)	4059(10)	7749 (31)
C(13)	10245(29)	4095(11)	8185 (32)
C(14)	10864(30)	4548(11)	8472(33)
C(15)	10108(28)	4966 (11)	8279 (31)
C(16)	8895(27)	4920(10)	7895(29)
C(21)	6023(27)	2661(10)	6436(29)
C(22)	7285(25)	2689(9)	6977(27)
C(23)	7962(29)	2255(11)	7275(33)
C(24)	7339(30)	1795(11)	7072 (32)
C(25)	6195(30)	1777(11)	6541 (32)
C(26)	5487(28)	2199(11)	6223 (31)

C(31)	4347 (29)	2835(11)	9333(32)
C(32)	4915(29)	2383(11)	9676(32)
C(33)	4260(32)	1955(12)	9350 (36)
N(34)	2971 (27)	1969(10)	8766 (30)
C(35)	2470 (33)	2387(12)	8380(37)
C(36)	3116(29)	2856(11)	8639 (32)
C(41)	5120(29)	3317(11)	9736 (32)
C (42)	4445 (31)	3749(12)	9855 (35)
C(43)	5041 (35)	4185(13)	10261 (39)
C(44)	6437(34)	4172(13)	10550 (38)
C(45)	6936 (35)	3769 (13)	10448 (39)
C(46)	6317(28)	3316(11)	9990(31)
F(3)	4274(16)	5236(6)	6640 (18)
F(4)	1786(18)	5180 (7)	5814 (21)
F(5)	675(20)	4297(7)	5006 (22)
F(6)	2020(18)	3490(7)	5114 (21)
F(13)	11017(17)	3703(7)	8324(20)
F(14)	12055 (18)	4592 (7)	8920 (20)
F(15)	10665 (18)	5405(7)	8607(20)
F (16)	8208(16)	5342 (6)	7803(18)
F(23)	9199 (16)	2255 (6)	7808(18)
F(24)	8077 (17)	1390(7)	7397(20)
F(25)	5568 (18)	1343(7)	6336(20)
F(26)	4213(16)	2154 (6)	5712 (18)

Bondlengths (Å) for perfluorotribenzo[b,e,h][1,4,7]trimercuronin.4-phenylpyridine with their estimated standard deviations in parentheses

Hg(1)		C (12)		2.105(29)
Hg (1)	. 	C(22)		2.089(25)
Hg(2)	-	C(l)		2.067(27)
Hg(2)	-	C (21)		2.090(27)
Hg(3)	-	C(2)	•	2.111(27)
Hg(3)	. –	C(11)		2.095(28)
C (l)	-	C(2)		1.436(35)
0 (2)		C(3)		1.385(38)
C (3)	-	C(4)		1.361(43)
C (4)	-	C(5)		1.343(42)
C (5)	-	C(6)		1.417(41)
C (6)		C(l)		1.332(40)
C(11)	-	C(12)		1.391(37)
C(12)	_	C(13)		1.331(41)
C(13)	-	C (14)		1.411(40)
C(14)	-	C (15)		1.405(40)
C(15)		C (16)		1.320(41)
C(16)	 4	C (11)	• •	1.367(36)
C(21)		C (22)		1.376(37)
C(22)		C (23)		1.396(38)
C(23)		C(24)		1.427(41)
C (24)		C(25)		1.289(41)

alor)		$\alpha(\alpha c)$		7 767/101
0(25)		0(26)		1.367(40)
C (26)	-	C (21)		1.391(38)
C (31)		C (32)		1.389 (39)
C (32)		Ç(33)	• •	1.371(42)
C(33)	-	N(34)		1.408(41)
N(34)	-	C(35)		1.284(40)
C(35)		C (36)		1.460(43)
C(36)	-	C(31)		1.367(41)
C(31)		C(41)		1.569 (40) [,]
C(41)	-	C (42)		1.421(32
C (42)	-	C(43)	•	1.372(44)
C (43)	-	C(44)		1.518(52)
C(44)		C(45)		1.249(46)
C(45)		C (46)		1.431(44)
C(46)	-	C(41)		1.301(41)
C(3)	-	F (3)		1.359(32)
C(4)	-	F(4)		1.342(34)
C(5)	-	F(5)		1.333(37)
C (6.)		F(6)		1.350(32)
C(13)	-	F (13)		1.362(33)
C(14)	-	F(14)		1.297(35)
C(15)	-	F (15)		1.349(32)
C (16)	-	F(16)	•	1.378(30)
C(23)		F (23)		1.348(34)
C(24)	-	F (24)		1.368(34)
C(25)		F (25)		1.346(33)
C(26)		F(26)		1.390(33)

* taken from rigid body refinement of the two phenyl rings

Bondangles (°) for perfluorotribenzo [b,e,h][1,4,7]trimercuronin.4-phenylpyridine

,						
Hg(l)		Hg(2)	-	Hg (3)		60.0 (0)
Hg(2)	-	Hg(3)	-	Hg(1)		60.2(0)
Hg (3)	-	Hg(1)	-	Hg(2)		59 .8(0)
C(22)	-	Hg(1)	-	C(12)		175.8(1.1)
C(21)		Hg(2)	-	C(1)		175.3(1.0)
C(2)		Hg(3)	-	C(11)		176.6(1.0)
Hg(1)		C(22)		C(23)		119.1(2.0)
Hg (1)		C(22)		C(21)		122.1(1.9)
Hg(l)	-	C(12)	-	C(11)		121.6(2.2)
Hg(1)	-	C(12)		C(13)		118.9(2.2)
Hg(2)	-	C(1)	-	C(2)		121.7(2.0)
Hg(2)	-	C(1)	-	C(6)		122.0(2.1)
Hg(2)	-	C(21)		C(22)	•	121.9 (2.0)
Hg(2)	-	C(21)	-	C(26)		120.0(2.1)
Hg(3)	-	C(2)	-	C(1)		119.8(1.9)
Hg(3)	-	C(2)	-	C(3)		120.1(2.0)
Hg(3)	-	C(11)		C (16)		119.8(2.0)
Hg(3)	-	C(11)	-	C(12)		121.3(2.0)
C (2)	 .,	C(1)	·	C (6)		116.0(2.6)
C(l)		C(2)	-	C(3)		119.9(2.5)
C (12)		C(11)	-	C (16)		117.8(2.6)
C(11)	-	C (12)	-	C (13)		119.4(2.7)
C(22)	-	C(21)	-	C(26)		118.0 (2.6)

-100-

C(1)	-	C(2)	-	C(3)	a		119.9(2.5)
C(2)	-	C(3)	-	F(3)			117.9(2.6)
C(4)	-	C(3)		F(3)	,		120.7(2.7)
C(2)	-	C(3)		C(4)			121.4(2.8)
C(3)	· _	C(4)		F(4)			118.7(2.8)
C(5)	-	C(4)	-	F(4)			121.6(3.0)
C(3)	-	C(4)		C(5)			119.7(3.1)
C(4)	-	C(5)	-	F(5)			120.8(3.0)
C(6)	-	C(5)		F(5)			119.8(2.9)
C(4)	-	C(5)		0(6)			119.3(3.1)
C(5)	-	C (6)	-	F (6)			115.4(2.7)
C(1)	-	C(6)	-	F(6)			121.0(2.7)
C(5)		C (6)		C(1)			123.6(2.9)
C(12)	-	C(13)	ilen av	F(13)			123.4(2.7)
C(14)		C(13)	-	F (13)			113.7(2.7)
C (12)	-	C(13)	••••	C(14)			122.8(2.9)
C(13)	-	C(14)		F(14)	1.		123.8(2.8)
C(15)	-	C(14)	-	F (14)	•		120.3(2.8),
C(13)	-	C(14)	-	C(15)			115.9(2.9)
C(14)	: 	C(15)	-	F(15)			117.6(2.7)
C (16)	 	C (15)	-	F (1 5)			122.1(2.7)
C(14)	. —	C(15)	-	C(16)			120.2(2.8)
C(15)	-	C (16)	-	F(16)			117.2(2.5)
C(11)	— ,i	C(16)		F (16)			119.5(2.5)
C(15)	-	C (16)	-	C (l l)			123.2(2.7)
C(22)	-	C (23)		F(23)			122.1(2.6)
C(24)	-	C(23)	-	F (23)		e La constante	118.0(2.7)
0(22)	-	C(23)	-	C(24)			119.9(2.8)

C(23)		C(24)		F (24)	115.8(2.7)
C(25)		C (24)		F(24)	123.8(2.9)
C(23)	-	C(24)	-	C(25)	120.3(3.1)
C(24)	-	C(25)	-	F(25)	120.5(2.9)
C(26)		C(25)	-	F(25)	119.2(2.8)
C(24)		C(25)		C(26)	120.3(3.1)
C(25)	-	C (26)	-	F(26)	117.3(2.7)
 C (21)	-	C(26)	-	F(26)	119.9(2.6)
C(25)	-	C (26)	_	C(21)	122.7(2.8)
C(41)	-	C(31)		C(32)	119.9(2.7)
C(41)		C(31)		C (36)	120.5(2.7)
C(32)	-	C (31)	-	C(36)	119.6(2.8)
C(31)		C(32)	-	C(33)	121.2(3.0)
C(32)	-	C(33)	-	N(34)	120.1(3.0)
C(33)	-	N(34)		C(35)	117.7(3.0)
N(34)	-	C(35)		C(36)	124.8(3.2)
C(35)	-	C(36)		C(31)	116.0(2.8)
C(31)	. —	C(41)	-	C(42)	116.3(2.7)
C(31)		C(41)	-	C(46)	121.4(2.8)
C(42)	-	C(41)	-	C(46)	122.2(3.0)
C(41)	-	C(42)	-	C(43)	120.8(3.2)
C(42)	. —	C(43)		C(44)	115.7(3.2)
C(43)	. —	C(44)	-	C(45)	118.0(3.5)
C(44)	-,	C (45)	-	C(46)	126.4(3.6)
C (45)		C (46)	-	C (41)	116.7(3.0)

Short contact distances in perfluorotribenzo [b,e,h]-[1,4,7] trimercuronin.4-phenylpyridine. Only distances less than 4.0Å are given.

(a)

Intramolecular distances (Å) involving mercury and fluorine atoms

Hg(1)		F(13)	3.181
Hg(1)		F(23)	3.201
Hg (2)	-	F(6)	3.180
Hg(2)	-	F (26)	3.188
Hg(3)		F(3)	3.143
Hg(3)	-	F(16)	3.151

(b) Intermolecular distances (Å) involving mercury atoms

Hg(l)		F (26)			3.374
Hg(2)	· •	F(24)	·	•	3.669
Hg(2)	-	F(23)			3.341
Hg(2)	-	C(23)			3.983
Hg(3)		F(4)			3.891
Hg(3)	-	F(3)			3.420
Hg(3)	. 	C(4)			3.872
Hg(3)	•	C(3)			3.656
(c) Contact distances (Å) involving mercury atoms and the
4-phenylpyridine system

Hg(1)	. 	C (45)	3.741	Hg(1)		C(33)	3.506
Hg(1)	-	C(46)	3.667	Ug(1)	-	N(34)	3.507
Hg(2)	•	C(31)	3.557	Hg(2)	-	C(41)	3.445
Hg(2)		C(36)	3.747	Hg(2)		C(42)	3.987
Hg(2)		C (46)	3.659	Hg(3)	-	C(43)	3.888
Hg(3)		C(44)	3.484	Hg(3)		C (45)	3.713

(d) Short contact distances (Å) between light atoms.
Distances less than 3.50 Å are given, and all values are intermolecular

C(1)	-	F(24)	3.308	F(4)	-	F(5)	3.030
C(4)	-	F (16)	3.329	F(5)	-	F (15)	3.478
C (5)		F (16)	3.165	F(5)	-	F(16)	3.387
C(6)	-	F(24)	3.120	F(6)		F (24)	3.134
C(11)	-	F (4)	3.273	C (13)	-	F (25)	3.165
c(14)	-	F (16)	3.429	C(15)	-	C (15)	3.354
C(15)		F(15)	3.451	C (16)		F(4)	3.423
C(16)	-	F (15)	3.356	F (13)	-	F(25)	3.042
F(14)	-	F(16)	3.220	F(15)		F(25)	2.921
C(22)	-	N(34)	3.472	C(22)	-	C (35)	3.493
C(24)	-	[*] F(6)	3.106	C(25)	-	F (6)	3.366
C(25)	— ,	F(13)	3.298	C(32)	-	F(6)	3.303
C (32)	-	F(23)	3.434	C(33)	-	F(26)	3.496
C(33)	-	F(6)	3.228	C(36)	-	F(13)	3.260
C(42)	· —	F (24)	3.212	c(43)		F (3)	3.258

C(44)		F(3)	3.398	C(44)	·	F(15)	3.346
C (45)	-	F (15)	3.447	C(46)	-	F (26)	3.396

p91 D

the location of the 4-phenylpyridine relative to this mercurial. The former observation is discussed more fully in Chapter 7, and the only note that will be made here is that a trimeric formulation is unequivocally proved as it was for $(C_6H_4Hg)_n$.

The adducts of the $(C_6F_4Hg)_n$ trimer are very numerous and are discussed in terms of their thermal decomposition kinetics in Chapter 3. 4-Phenylpyridine was chosen for a recrystallisation with X-ray studies in mind because it is a solid and the thermal stability of the adducts appeared to be linked to the vapour pressure of the free organic molecule. The 1:1 stoichiometry was chosen also for reasons of stability. The decomposition in the X-ray beam could not be attributed to thermal degradation since the sample from the recrystallisation had been allowed to stand for a considerable time before preliminary structure studies began and a mounted crystal was left for six months without deterioration. This decomposition probably accounts in large part for the relatively poor values for bond-lengths and angles involving light atoms: the intensity measurements were affected directly by a lessening of the numerical value for the reflection and indirectly as the spots became broader during data This smearing effect added to values for collection. The size of the crystal chosen also background. adversely affected intensity values: the optimum size for a crystal of the adduct is about 0.03mm and all

crystal dimensions were greater than this.

The bond-lengths and angles are within the normal range of values for carbon-mercury and for fluoroaromatic The Hg-Hg-Hg angles are quoted to show that systems. there is no significant deviation of the mercurial moiety from an ideal triangular array. The carbonfluorine distances were not sufficiently well-defined to determine if the "norm" value of 1.38% found in bis(2-hydrotetrafluorophenyl)mercury and bis(pentafluorophenyl)mercury ¹⁴⁴ is consistent with perfluorotribenzo[b,e,h][1,4,7]trimercuronin, but the mean of the twelve unique lengths is 1.35%. The mercury atoms were very close to isotropic in character and this explains the small change in R (from 8.8% to 7.4%) upon anisotropic heavy-atom refinement.

The position of the 4-phenylpyridine relative to the mercurial system was surprising since a classical complex had been expected with donation from the nitrogen to one of the metal atoms. The table of contact distances together with the two projection views (Figures 8 and 9) shows that the geometry of the molecular arrangement rules out hydrogen/fluorine bonding and charge-transfer effects as well as nitrogen-mercury interactions. The contact distances are quoted extensively to give inter-mercurial light atom separations for comparison with 4-phenylpyridine values. The only explanation remaining is that the

4-phenylpyridine acts as an inert spacer, intercalating

between the negatively charged fluorine atoms on the perimeter of the mercurial, and it is probably best described as a solvent of crystallisation. The van der Walls forces which hold molecular crystals together are caused by interactions between induced dipole moments,¹⁵⁵ and are a balance between attractive and repulsive forces. With this in mind the insertion of a molecular spacer between the negative fluorine atoms becomes reasonable on empirical grounds: it would not reduce the overall level of the attractive forces whilst decreasing electrostatic repulsions.

-107-

Chapter 3

Solid State Chemistry

Summary: the chemistry of the solid state is reviewed with particular reference to the analysis of reaction kinetics. Experimental data is presented for the complexes of perfluorotribenzo [b,e,h][1,4,7] trimercuronin and a model cobalt system.

Solid State Chemistry

Introduction

Reactions in the solid state are characterised by several important differences to those in the liquid and gaseous states. These are shown in their kinetics by the following effects: sample history can greatly influence reaction rates; and classical laws (with consequent equations) based on continuously homogenous systems do not usually apply. The first effect is not only due to such things as particle size, shape and, where relevant, crystal form, but also to more subtle influences such as the number and type of defects in the solid lattice. The second effect is caused by the non-homogeneity of solid systems during reactions: if a solid is heated and a reaction occurs it often starts on the surface and Endothermic reactions inhibit heat progresses inwards. transfer into the body of a particle and exothermic reactions start by increasing the temperature of the Reactions, therefore, that are rapid compared surface. with thermal equilibrium would hardly be expected to comply with kinetic models for homogenous systems. Where a gas or vapour is involved it has to diffuse in or out of the particle through a surface layer of reacted material: this surface changes in depth during the course of the reaction.

Solid state reactions can be regarded as occuring in three steps: nucleation, phase-boundary reaction, and

diffusion of the reaction products out of the solid. Any of these steps may be rate determining and all have different kinetics (although each overall type may be best described by one of a variety of mathematical Polymerisation is the classic example of a equations). nucleation-controlled reaction: formation of the initial reaction "nucleus" or particle of product is the highest energy step and further product rapidly forms around that Typically this means a slow start to a reaction nucleus. then it proceeds rapidly to completion. Phase-boundary controlled reactions are the most similar to liquid or gas phase reactions: nucleation is rapid and product forms smoothly on the nuclei. The reaction must, however, be treated as starting on the outside of a solid particle and proceeding towards its centre. This implies reactions that start a little more slowly and go to completion a little more rapidly than liquid phase Diffusion controlled reactions occur where reactions. nucleation is rapid and product is smoothly formed on these nuclei, but one or more products have a high energy barrier to diffusion from the reaction site to the outside of the particle. Additionally, if a high energy barrier exists to diffusion and one of the starting materials is present in a fluid phase, kinetics may be determined by this step. If the system that monitors such a reaction does so on the basis of weight changes then it will appear to start rapidly and go to completion very slowly. The following conventions have been adopted in

-110-

studies where thermogravimetry (TG) has been used as the analytical technique: the weight-loss curve is normalised by expression as a percentage of the total loss (either experimental or theoretical) and the reaction time is expressed as a multiple of the half-time. This. the time for the weight to change by 50% of the total value, does not imply any kinetic conclusion but merely puts all data on a common scale that favours no particular part of The half-time is obtained graphically from a plot it. of normallised weight loss $(\Delta W/W)$ against time: two such curves are shown in each of Figures 10 and 11. Reaction times are normallised for further data processing only where the analysis has been carried out isothermally. In general the best temperatures for isothermal data collection are the lower ones as this minimises the errors due to partial reaction during attainment of thermal equilibrium.

TG is by far the most common kinetic probe used since spectroscopictechniques have the grave drawbacks either of poor signal/noise ratio (e.g. n m r, reflectance spectroscopy), limited availability (e.g. n q r) or are limited by the method of sample preparation (e.g. i-r and absorbance U-V). The results from a typical temperature programmed experiment are shown in Figure 12: the reactions involved are two sequential losses of one molecule each of DMF from its 2:1 adduct with perfluoroo-phenylenemercury.

-113-

1,10 DMF 1,00 0 0 77°C ^гб 7° С O ٦ Scale: † Scale: †2 0 0,90 0 O 0 0 C Ū 0,80 O 0 Θ 0 G 0 D 0,70 0 ; B 0 Ū 0 0 0,60 D 0 O 0 O 0,50 0 0 Ο 0 0 Θ 0 0,40 Θ 0 G D 0 0 0,30 O Θ Ο 0 O Θ 8 0,20 • Ο Reaction : $(C_6F_4Hg)_3.2DMF - (C_6F_4Hg)_3.DMF$ O C Ō 0,10 0 O 0 t₁ (min) 0 20 10 6 8 30 2 4 0,00 12 16 8 20 4 40 0 60 t_2 (min) Fig.11 Normalised weight-loss curves used to find t_{1/2}

-114-

p112 D

Technique

Probably the optimal procedure for TG is as follows: a temperature-programmed run is performed at a fairly high heating-rate (say 15°/min) and, from the results of this, temperatures for one or more isothermal runs are In the isothermal case the sample is heated at chosen. the maximum possible rate to the chosen temperature and then maintained at that value. Finally a temperatureprogrammed run is performed at the slowest reasonable heating rate (say 1° or 2° per minute) with rapid heating to about 20° below the lowest reaction temperature if this is high. The first run can be set up to give the total sample weight as full scale deflection, whereas subsequent analyses are best performed to give the weight loss as close as possible to full scale in the interests of precision. It might seem that the exploratory initial TGA is unnecessary as its purpose could be served as effectively by the final programmed analysis, but it is useful (a) to give an idea of proportional weight loss so that all later runs can have this near full scale, (b) to give an idea of the maximum temperatures to use, (c) to relate to thermal analysis results and (d) to investigate rapidly whether a given sample is amenable to TG methods.

TGA can give mechanistic data and reasonable approximations for the activation energy and frequency factor of the rate-determining step in a reaction sequence. Graphically this is achieved as follows: a graph is

-116-

plotted of normalised weight loss against normalised time and the curve compared with theoretical values. 156 Examples of this technique are shown in Figures 13 and 14; the symbols used for theoretical curves are given in Table 14 together with the kinetic equation they represent. It can be seen that the line of best fit gives the most probable mechanism, but the geometrical approximations (e.g. cubes or spheres for 3-dimensional kinetics) in the mathematics may make the correlation The activation energy and frequency factor imperfect. may be obtained from a temperature-programmed analysis by the method of Satava and Skvara.¹⁵⁷ Using their symbols a plot of log $g(\alpha)$ against temperature is made: they give tables of log $g(\alpha)$ for values of normalised weight loss calculated for a variety of mechanisms. Curve matching against standard curves of log p(x) for various activation energies yields this datum and the frequency factor can be calculated from the equation

 $\log \frac{ZE}{Rq} = \log g(\alpha) - \log p(x)$

Z is the frequency factor E is the activation energy R is the gas constant q is the rate of heating $\log g(\alpha)$ and $\log p(x)$ are c

log $g(\alpha)$ and log p(x) are complex integrals: the numerical value corresponding to their difference is obtained from the standard log p(x) curves referred to above.

-117-

▷ p121

Explanation of kinetic symbols

Symbol	Equation*	Rate-Controlling Process
Dl	$\alpha^2 = kt$	One dimensional diffusion
D ₂	$\alpha + (1-\alpha) \ln(1-\alpha) = kt$	Two dimensional diffusion (Disc)
F ₁	-ln(l-a)=kt	Random nucleation, one nucleus per particle
R ₂	$1-(1-\alpha)^{\frac{1}{2}}=kt$	Phase boundary reaction (Disc)
R ₃	$1-(1-\alpha)^{\frac{1}{5}}=kt$	Phase boundary reaction (Sphere)
A 2	$(-\ln(1-\alpha)^{\frac{1}{2}}=kt$	Random Nucleation, Avrami Equation

* k is a numerical constant

t is time

 α is normallised weight loss

p117 D

Thermal Analysis

Two methods of scanning thermal analysis exist: differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The former technique heats a sample and a reference (normally an empty sample pan) and monitors the difference in temperature between them. The latter process also heats a sample and a reference, but adjusts the heating to the sample and reference probes so that there is no net temperature difference between The output from DSC is the energy needed to do them. the disadvantage of this technique relative to DTA this: is its cost. DTA results have to be calibrated by specific heats: if a substance of known specific heat is analysed by DTA then a difference in temperature can be related to The heats of fusion of metals or the specific energy. heat of α -alumina are commonly used. A base-line is provided by analysis of two empty pans and reversibility of reaction can be shown by iteration of analysis on a single sample. If the change or reaction monitored involves loss of a volatile product then a closed pan will produce different results from an open pan due to the product being retained in the atmosphere over the sample. Typically this results in removal of peaks to higher temperatures and in resolution of shoulders. All these aspects of DTA are illustrated in Figure 15 together with use of a substance which suffers a sharp energy change at a known temperature to calibrate this scale.

A note of caution must be sounded about DTA and DSC

> p123

p121 D

results: all they measure is energy change. They give no information about the reactions causing the changes and in a process

 $\Lambda B(s) \longrightarrow \Lambda(s) + B(g)$

several steps are involved: vapourisation of B, cleavage of A-B bonds, diffusion of B out of the residual solid, and rearrangement of the crystal lattice. This multiplicity of causes for DTA peaks explains why a single reaction (as monitored by TG) may have a more complex thermogram (Figure 16).

Experimental

TGA was performed on a Stanton-Redcroft TG750 Thermal Balance, temperature referenced against the triple point of water. Sample size was normally 1.5 - 12mg. A flowing atmosphere of dry nitrogen was maintained over the sample.

DTA was performed on a DuPont 900 Thermal Analyser, temperature referenced against the triple point of water. Sample size was normally 15-25mg. α -Alumina was used in an attempt to calibrate the temperature-difference scale.

Samples were prepared by recrystallisation of a solid starting material (e.g. perfluoro-o-phenylenemercury) from neat solvent where the resulting product would contain solvent of crystallisation; where the organic molecule desired to form an adduct was solid recrystallisation was

▶ p125

p123 🗅

of stoichiometric quantitites from ethanol. Samples were then removed from the mother liquor, dried on a filter paper, rapidly weighed and analysed.

Results

Reaction mechanism data obtained from the TG work is summarised in Table 15, activation energies and frequency factors are given in Table 16. Microanalytical results for some of the adducts are given in Table 17. Τo provide data from a complex of known structure the thermal decomposition of dichlorotetrapyridinecobalt(II) was investigated, and these results are also quoted. Direct comparison with mercury complexes was not possible as mercuric chloride- and bromide- pyridine complexes gave poor data because of the volatility of the metal halide; the mercuric iodide-pyridine complex did not give clearcut mechanistic data. Bis(pentafluorophenyl)mercury also was too volatile, and bis(pentachlorophenyl)mercury did not give adducts stable enough to study. Thermal analysis results were not converted into free energy values as attempts to do this for dichlorodipyridinecobalt(II) gave values differing from those in the literature 158,159,160, 161,162 by a factor of two.

Discussion

The failure of the thermal analysis performed was probably due to the sample size used, and this was determined by the need for a favourable signal/noise ratio. The

) p130

Table 15

Reaction mechanisms for the loss of solvent from adducts of perfluoro-o-phenylenemercury, I, and for $CoCl_2py_4$ and HgI_2py_2

Reaction	Temperature(\$)(K)	Mechanism(s)*
2DMF.I-1DMF.I	340, 350	R ₂
lDMF.II	425	R ₂
	447, 459	R ₃
	· · · ·	<i>y</i>
3DMA.I→2DMA.I	288	Λ_2 or R_2
2DMA.I->1DMA.I	351	A ₂ or R ₂
	377,379,382,392,410	R ₂
ldma.I	437	R ₂
	467,482,493	R ₃
		-
3DEF.I-2DEF.I	316,319,331,340	$A_2 \text{ of } R_2$
	312	R ₃
	314	R ₂
2DEF.I1DEF.I	354,370,397	R ₂
	386,393	R ₃
	404	D ₁ or F ₁
ldef.I-I	427	R ₃ or F ₁
	433	R ₃ or F ₁ or D ₁
	440	R ₃
	442	D ₂
	458,463	Dl

3py.I-lpy.I	311,320,325,332	R ₂
lpy.I—I	356	$R_2 \text{ or } R_3$
	360	R ₂
	375	R ₃
	406	R ₃ or D ₁

3(2-pic).I-2(2-pic).I	291	Λ2
2(2-pic).II	318	R ₃
	325	R ₂ or R ₃
l(4-phenylpyridine). T-→T	384,406	R ₃
2(triphenylphosphine).	421,434	R ₂

CoCl ₂ py ₄ -CoCl ₂ py ₂	318,334,345,346	$A_2 \text{ or } R_2$
CoCl ₂ py2 CoCl ₂ py	381,391,399,402,407,417	R ₂
CoCl ₂ py-CoCl ₂ py _{2/}	3 469	R ₃
	486	Dl
CoCl ₂ py _{2/3} CoCl ₂	521	R ₂
	559	R ₃
HgI2py2-HgI2	326	A_2 or R_2
	334	R ₃

* The mechanism symbols are explained in Table 14

Table 16

Activation energies and frequency factors for the loss of solvent from adducts of perfluoro-o-phenylenemercury, I, and for Copy₄Cl₂

Reaction Ac	tivation Energy (kcal/mole)*	Frequency Factor
2DMF.I	22	1.4×10^{14}
lDMF.II	26	9.7 x 10^{13}
2DMA.I1DMA.I	26	1.9×10^{12}
ldma.II	30	6.7 x 10 ¹¹
2DEF.I1DEF.I	30	6.7×10^{17}
3py.I →lpy.I	22	7.2 x 10^{13}
lpy.I→I	26	9.7 x 10^{13}
l(4-phenylpyridine).I	- I 30	2.1 x 10 ¹⁵
2(triphenylphosphine).	I →I 34	1.9×10^{15}
a-CoCl ₂ py ₂ -CoCl ₂ py ,	22	1.1 x 10 ¹⁰
CoCl ₂ py→CoCl ₂ py _{2/3}	34	2.3×10^{14}
CoCl ₂ py _{2/3} CoCl ₂	38	1.3×10^{14}

* Results are ± 4 kcal/mole

Table 17

Micro-Analysis Results (%)

Complex		C	I	ł]	N		2
	obs	calc	obs	calc	obs	calc	obs	calc
I	21.1	21.2	0.2?	0.0	0.0	0.0	22.2	2 2. 4
I.DMF	22.5	22.4	0.6	0.65	1.3	1.29	21.0	21.1
I.2DMF	24.2	24.17	1.1	1.17	2.1	2.35	19.4	19.14
I.2DEF	27:2	26.8	1. 8	1.76	2.2	2.2		
I.2DMA	25.8	25.6	1.5	1.47	2.5	2.3		
I.py	26.0	24.5	0.5	0.4	1.4	1.2		
I.1(2-pic)	22.4	25.2	0.5	0.6	0.9	1.2		-
I.2(3-pic)	30.1	29.2	1. 3	1.1	2.7	2.3		
I.2(4-pic)	27.5	29.2	0.9]1	1.9	2.3		
I.(2,6-lut)	25.8	26.0	l. 0	0.8	1.5	1.2		
I.(4-Ph-py)30.6	28.9	1. 0	0.7	1.6	1.2	-	
I.2(DMSO)	21.4	21.9	l. O	1.0	0.0	0.0		
I.C5H80	24.4	24.4	0.7	0.7	0.0	0.0		

p125 D

basis of thermal analysis is the assumption that the total effect of any change is measured (this is obviously much less problematical in TGA) and the larger the sample used the more effects of such tings as sample packing will be appreciable. On the wholely empirical basis the energy changes seemed to be about half those found in dichlorodipyridinecobalt (II).

The TGA results form an homogenous whole in which a variety of trends can be discerned. One of these is that the data for the adducts with most solvent present is often too poor for reliable determination of activation energies or even, in some cases, mechanistic data. The reasons for this are two-fold: the efflorescence reaction can be too rapid for the substance analysed to be of the original stoichiometry (this makes calculation of normalised weight curves valueless), and the mathematics on which the activation energies are calculated assumes that the substance is analysed over a range of temperature which covers indefinite stability through to completion of reaction. For these reasons activation energies were not evaluated for adducts very unstable at room temperature or for those which gave no clear-cut mechanism. This included all the mercuric halide-pyridine complexes analysed and the loss of the final molecule of DEF from the adduct with perfluoro-o-phenylenemercury.

As would be expected there was a correlation between thermal stability and activation energy, but the values do not distinguish between the chemical types of solvent used. The somewhat higher values for the cobalt complexes are probably a reflection of stronger bonding in these compounds. Another aspect of this is the reaction temperature needed to decompose the compounds studied: the classical complexes were stable toward final degradation at temperatures considerably above the boiling point of the ligand. The most stable organomercury adducts decomposed within 10°C of that value. The frequency factors for the adducts were sufficiently similar to those from the cobalt complexes to show them to be uninformative.

Whilst some adducts decomposed by a single mechanism over a wide range of temperature (e.g. the 1:3 adduct with pyridine) others had several stages and in general these can be associated with the rapidity of the reaction. Typically at the lowest temperatures reactions would comply with the R_2 model or be intermediate between R_2 and A_2 kinetics. As the temperature was raised the kinetic model of best fit would change to R_3 , then F_1 or even D_1 . This sequence, best illustrated by the decomposition of the 1:1 adduct with DEF, does not cast doubt on the analytical technique, but merely shows that a "single" reaction may consist of many steps. At different temperatures different steps may be rate-determining, and hence the kinetics may change.

-131-

Temperature

In the diagram step 1 would be rate determining from low temperature to A, step 2 from A to B and step 3 from B to high temperature. At no time would step 4 be ratedetermining; at A and B the kinetic data would not be clear-cut. A delicate balance between activation energy and frequency factor determines the relative rates for the various steps.

The actual data implies that substantial molecular forces, whose order of magnitude is that of weak chemical bonds, are in play but do not "prove" the substances analysed to be "complexes". The structure determination of the 4-phenylpyridine adduct makes the data from it of particular interest: it is in no way outstanding, both the activation energy and reaction mechanism of the decomposition being typical. This strong inference that all the adducts are of the same type, however, still does not constitute proof.

Chapter 4

Radiochemistry

-134-

Summary: the elimination of lithium fluoride was studied by radio-tracer techniques: experimental results are presented and discussed in the light of extant theories covering this reaction. The Addition of Li^{80m}Br to Polyhalogenoarynes

Introduction

The elimination of lithium fluoride from pentafluorophenyllithium generates a species best formulated as tetrafluorobenzyne, C_6F_4 : . The addition of inorganic lithium salts to this reactive intermediate has been established ⁶⁶ but not studied in detail: it was only careful analysis of some unexpected reaction products that indicated the reaction sequence below at all.

$$C_6F_5Br + 2Li \longrightarrow C_6F_5Li + LiBr$$

 $C_6F_5Li \longrightarrow C_6F_4: + LiF$

$$C_6F_A: + LiBr \longrightarrow C_6F_ABrLi$$

$$C_6F_4BrLi + C_6F_5Br \longrightarrow C_6F_4Br_2 + C_6F_5Li$$

Analogous reactions based on iodopentafluorobenzene and giving rise to 1,2-diidotetrafluorobenzene were also performed ⁶⁶ but chloropentafluorobenzene did not yield 1,2-dichlorotetrafluorobenzene. As lithium bromide is easily dried without decomposition (in contrast to lithium iodide) and as ^{80m}Br has the reasonably long half-life of 4.5hr it was decided to investigate the elimination reaction using radiobromine as a tracer.

Experimental

 $Li^{80m}Br$ was generated by fast neutron (~14MeV) irradiation of powdered anhydrous LiBr(dried at 150°C and stored over phosphorus pentoxide) in a stoppered polypropylene tube. A solution of polyhalogenoarene in ether (10mMole in 125ml) was thermostatically cooled to the desired temperature in a jacketed two-necked flask and active lithium bromide (2.4gm, 27.6mMole) added. Irradiation times varied as did neutron fluxes, but expression of the final results in terms of the radiochemical yields overcame these problems. The active suspension was magnetically stirred and n-butyllithium 1.3 molar in hexane) added under nitrogen. (5ml: The experiment times were measured from this addition. Reactions were quenched by addition of 5 (or 10ml) of approximately molar sulphuric acid, which caused less emulsion formation than water. The resulting mixture was then distilled at 60° C (water bath) to reduce its volume and a full sample-tube of each phase counted for 1000 sec in a γ -scintillation counter. Initial measurements showed the distillate to be free from detectable activity. The effect of sample volume on the detected count-rate was investigated and a full tube used as small variations in sample volume affect the measurements least (Figure 17). The results were corrected for the volumes of bulk liquid present and for the elapsed time between sample measurement. This latter correction was necessary as the counting time used is an

-136-

 D^{p138}

Fig. 17

appreciable fraction of the half-life. Some initial high-energy $_{\rm V}$ counting was performed to detect the decay

 $\begin{array}{c} 80_{\rm Br} & \xrightarrow{\beta} & 80_{\rm Se} & t\frac{1}{2} = 17 \text{ min} \\ \gamma & \end{array}$

Samplecourts were comparable but higher background countrates for the high-energy technique led to use of the low-energy counter to minimise statistical fluctuations.

In an attempt to obtain kinetic data from a single run for calculation of kinetic parameters (leading to activation energy and frequency factor values) a series of experiments was performed using Li⁸²Br. This was prepared by addition of an aqueous carrier-free Na⁸²Br (25_µ); obtained from the Radiochemical Centre, Amersham) to anhydrous THF (25ml) containing lithium bromide, added as a 50% w/w aqueous solution (0.4ml). Iml aliquots of this solution were then added, together with inactive lithium bromide, and the experiment started as described Aliquot samples (2ml) were taken at appropriate above. intervals, quenched with acid (5ml) and diluted with hexane (3ml). The technique was modified by successive extraction with acid, alkali, and acid in later experiments.

Results

Numerical results from the first technique are given in Table 18, from the second technique in Table 19, and from the modified second technique in Table 20. Figure 18 shows the variation of incorporation with temperature.

Discussion

The reactions possible during the nuclear irradiation are as follows:

Other theoretically possible reactions are of such low probability that they may be neglected. Nuclear reactions involve atoms in transitions where the available energy vastly exceeds that holding a crystal lattice together, so neutron bombardment and the "hot" atoms produced produce many lattice defects. A "new" nucleus, when most of its energy has been lost by collision processes, may either react chemically or lodge elsewhere

▶ P145

Table 18

Incorporation (with standard deviations from counting statistics in parentheses) for the reaction of lithiated polyhaloaromatics

Reagent	Temper- ature	Reaction Time	n Extra Conditions	% Incorporation
°6 ^F 5 ^{Cl}	0 ⁰ C	16 hr		49.21(58); 50.85(82)
				51.44(99); 48.72(1.18)
				44.50(50); 51.72(91)
				52.42(59); 52.50(27)
C ₆ F ₅ Cl	0, ⁰ C	l6 hr	LiBr*stood for 1 hour	40.21(27)
C ₆ F ₅ I	0°C	24 hr		45.70(94)
C ₆ F ₅ I	-10°C	24 hr		17.34(62)
C ₆ F ₅ I	0°C	6 hr		20.12(19); 32.14(33)
				12.60(10); 15.15(15
C ₆ F ₅ I	0°C	6 hr	25gm benzene added	23.99(30)
C ₆ F ₅ I	0 ⁰ C	6 hr	20m Mole nap thalene adde	h- 20.85(24) d
C ₆ F ₅ I	0 ⁰ C	6 hr	20m Mole ant acene added	hr- 11.27(23)
C_6F_5I	o ^o c	6 hr	No n-butylli	thium 2.74(10)
C_6F_5I	o°c	6 hr	20gm TMED ad	ded 3.90(12);4.16(18)
C ₆ F ₅ I	0 ⁰ C	6 hr	Hexane as so	lvent 1.28(10);2.73(15)

-141-

C ₆ F ₅ I	o ^o c	6 hr Na ⁸	^{80m} Br used	4.04(12)
C ₆ F ₅ I	10°C	l6 hr		35.90(40)
°6 [₽] 5 ^I	ooc	l6 hr		31.48(20)
CF5I	-5°C	l6 hr		24.41(51)
C ₆ F ₅ I	-10°C	l6 hr		18.47(32)
°6 [₽] 5 ^I	-15°C	l6 hr	ана стана Спорти и стана Полти и стана	9.76(22)
° ₆ ₽ ₅ I	-20 [°] C	l6 hr		4.44(13)
° ₆ ₽ ₅ I	-35 ⁰ C	16 hr		3.10(14)
°6°15 ^H	ooc	6 hr '		19.01(19)
°6°15 ^H	o ^o c	6 hrNo n-	butyllithium	2.13(10)
$C_{6}F_{4}Br_{2}$	o°c	4 hr		10.17(17);11.11(21)
$C_{6}F_{4}Br_{2}$	0 ⁰ C	6 hr		25.49(36);23.22(37)
				15.91(20);16.33(18)
$C_6F_4Br_2$	25 ⁰ C	l6 hr		0.88(9)
$C_6F_4Br_2$	0°C	2 hr	•	8.09(13); 10.76(32)
$C_6F_4Br_2$	ooc	6 hr slov n-b	w addition utyllithium	17.75(15)
$C_6F_4Br_2$	0 ⁰ C	16 hr 20m	Mole anthrace added	ne 6.56(38)

-142-

Table 19

Incorporation (with standard deviations from counting statistics in parentheses) for the reaction of lithiated C_6F_5Cl (l) and $C_6F_4Br_2^{(2)}$ with $Li^{82}Br$ at $0^{\circ}C$, single acid extraction.

<u>Time (minutes)</u>	% Incorporation (1)	<u>(2)</u>
15	3.00(6)	1.95(6)
40	3.86(6)	4.00(7)
130	8.26(9)	4.36(7)
180	10.41(11)	4.71(7)
240	21.21(15)	24.25(15)
305	17.07(13)	21.25(15)
370	21.02(14)	29.80 (18)
415	17.95(14)	9.04(11)
475	19.63(14)	14.49(12)
540	13.18(11)	15.48(13)
595	12.12(12)	12.54(10)
780		5.06(10)

Table 20

Incorporation (with standard deviations from counting statistics in parentheses) for the reaction of lithiated $C_6F_4Br_2$ with $Li^{82}Br$ at $-5^{\circ}C$, the organic phase (1) being successively extracted with approx M H₂SO₄(2), approx M NaOH (3) and approx M H₂SO₄(4)

<u>Time (min)</u>	<u>ז</u>	Incorrecte	d Counts 3	4 70	Incorporati	on
30	1172	75430	6378	1241	0.85(6)	
90	1514	61247	12877	2701	1.49(8)	
150	1541	73211	4353	852	1.56(8)	•
210	1941	72172	4535	963	2.02(8)	
270	3941	67865	9511	3405	4.40(10)	
340	7493	37384	37511	4459	8.17(12)	
575	2635	60401	4006	1646	3.38(10)	
1090	2905	55968	3100	982	4.21(12)	,
1330	2653	53114	3825	677	3.89 (12)	

Background: 366(19)

in the lattice. Possible chemical reactions for the active bromine atoms are:

(1) Li + Br*----LiBr* (re-formation of the crystal lattice)

(2) $Br* + Br \longrightarrow Br-Br*$

Reaction between two active species or between an active atom and one produced by nuclear decay is very unlikely because of the very small numbers involved compared with the quantity of starting material. These two possible reactions would give different results on addition of n-butyllithium:

(3) $Br - Br* + n-C_4H9Li \longrightarrow LiBr + n-C_4H9Br*$

(4) LiBr* + n-C₄H9Li --- No reaction

On lithiation, reaction (3) would put half of the activity into 1-bromobutane, and thence it would end up in the organic phase. Experimentally very little blank incorporation was detected so reaction (2) must be of very low probability.

The half-lives and energies of the isotopes produced are such that (a) tritium activity can be discounted, (b) after about two hours 78 Br activity is negligable and (c) the best way to detect the 80m Br activity is by low-energy γ scintillation counting.

It can be seen that the values from experiments run

for longer times are less variable than those obtained from shorter intervals for the ^{80m}Br work, and that the ⁸²Br work produced very low quality data, both before and after variation of the extraction procedure. It was not, therefore, possible to produce thermodynamic data from the work performed. The ^{80m}Br results were reasonably reliable as is shown in the incorporation/ temperature graph (Figure 18). The inference that benzyne formation occurs above about -20°C agrees with previous workers.⁶⁶

No significant difference can be seen between the results from iodopentafluorobenzene, chloropentafluorobenzene and 1,2-dibromotetrafluorobenzene. Bromopentafluorobenzene was not investigated as the possibility of halogen exchange

 $C_6F_5Br + LiBr + C_6F_5Br + LiBr$

could not be totally discounted and pentafluorobenzene was neglected because of doubts about the speed of metallation. The suggestion of Tamborski ¹⁶³ who explained the apparently anomalous elimination of lithium fluoride from 2-bromotetrafluorophenyllithium on the basis of the reaction scheme below does not appear to fit these unanimous results.

-146-

This scheme rationalised the preference for elimination of lithium fluoride over lithium bromide (as judged by the great preponderance of reaction products arising from bromotrifluorobenzyne) towards agreement with work on 2-halophenyllithium compounds. The ease of expulsion of lithium halide in these is $I > Br > Cl > F^{68}$. Were the reversible elimination of lithium bromide from 2-bromotetrafluorophenyllithium to take place the lithium bromide should be incorporated much more efficiently into that than pentafluorophenyllithium. This is particularly pertinent as the benzyne-trap competition reactions show there to be an association in solution between the lithium Charge transfer bromide and the polyhalophenyllithium. complexes are known to exist between benzene (and its methylated analogues) and hexafluorobenzene,¹⁶⁴ albeit the benzene complex has been shown to be weakly bound. 165 Organic benzyne products would be expected, were the lithium bromide not more strongly attached, in systems containing benzene, naphthalene etc. Only the results from the anthracene experiments show any significant reduction in incorporation and anthracene strongly favours ' 1,4-addition.

Two further investigations into the reaction were tetramethylethylenediamine (TMED) was carried out: added to the reaction mixture to increase the ionic nature of the organolithium species. The amount of incorporation was drastically reduced, possibly because the loose association between the lithium bromide and the organolithium compound was destroyed, possibly because nucleophilic reactions are more favourable in this Secondly, the addition of active lithium system. bromide was shown to take place in solution rather than on the surface of the solid present by two separate Hexane was used as the sole solvent present experiments. in one, and sodium bromide was substituted for lithium In neither case was incorporation bromide in the other. presumably this is related to the finding that a observed: molecule of solvent is present in the activated complex for the elimination of lithium halide from 2-halophenyllithium.⁶⁸

Chapter 5

Computing

Summary: the computing quoted during the course of this work was performed as a tool rather than as an end in itself and so most calculations were carried out using standard program packages. The GINO-F package was manipulated to produce drawings based on the atomic co-ordinates produced during X-ray structure analyses (Chapter 2) and the GAUSSIAN 70 package in an unsuccessful attempt to calculate thermodynamic energy values for pentafluorophenyllithium.

Computing

The following computer packages were used during the course of this work: XRAY 72,¹⁵⁵ MULTAN 74,¹⁵⁴ SHELX,¹⁵² ORTEP,¹⁶⁶ the Cambridge Data File,⁷ GINO-F³⁶⁸ and GAUSSIAN 70.¹⁶⁹ All are Fortran based and all but the last two were used in their normal applications and so no details of these will be given. Calculations were performed on the University of Manchester Regional Computing Centre CDC 7600, and the Loughborough University ICL 1904A or Primos machines.

GINO-F is a package for drawing pictures and it was used to produce views of the X-ray structures determined: Figures 3 and 6 (Chapter 2) are amongst those produced in Drawing was performed as a batch operation: this way. rotations, for example, were carried out as a series of The job that produced Figure 6 (Chapter 2) is steps. given as Table 21. The logic of the program is as initial viewing and scaling is performed, then follows: a unit box is drawn with the origin and axes marked. Α small, quite primitive loop uses a single set of atomic co-ordinates to produce several views of the asymmetric unit, then the program terminates. The scaling and shifting transformations are performed in a cumulative manner and unit cell translations are used to ensure that all points are within the unit cell. Probably the simplest example of this would be space group Pi: it has two general equivalent positions at x, y, z and -x, -y, -z.

 D^{p154}

Table 21

GINO-F program to draw Figure 6 CALL T4010 CALL DEVSPE (1200) CALL UNITS (7.0) CALL WINDOW (3) CALL PICCLE CALL SHIFT 3(-5.893, 0.0, -6.557)CALL AXON 3(0.0,19.484,0.0) CALL SHIFT 3(5,893,0.0,6.557) CALL SHEAR 3(1,3,0.7648) CALL SCALE 3(9.36,13.114,4.871) CALL SHIFT 3(1.5,0.0,-4.0) CALL ROTAT 3(1,5.0) CALL ROTAT 3(3,5.0) CALL MOVTO 3(0.0,0.0,0.0) CALL SYMBOL (8) CALL LINTO 3(1.0,0.0,0.0) CALL LINTO 3(1.0,1.0,0.0) CALL LINTO 3(0.0,1.0,0.0) CALL LINTO 3(0.0,0.0,0.0) CALL LINTO 3(0.0,0.0,1.0) CALL LINTO 3(1.0,0.0,1.0) CALL LINTO 3(1.0,1.0,1.0) CALL LINTO 3(0.0,1.0,1.0) CALL LINTO 3(0.0,0.0,1.0) CALL MOVTO 3(0.0,1.0,0.0)

	CALL LINTO 3(1.0,1.0,1.0)
	CALL MOVTO 3(1.0,0.0,0.0)
	CALL LINTO 3(1.0,0.0,1.0)
	CALL MOVTO 3(1.1,0.0,0.0)
	CALL CHACEN (1HA)
	CALL MOVTO 3(0.0,1.1,0.0)
	CALL CHACEN (1HB)
•	CALL MOVTO 3(0.0,0.0,1.15)
	CALL CHACEN (1HC)
	I = 0
	CALL SHIFT 3(0.0,1.0,0.0)
10	I = I + 1
	IF (I.LT.2) GO TO 20
	IF (I.LT.3) GO TO 30
	IF (I.LT.4) GO TO 40
	IF (I.LT.5) GO TO 50
	IF (I.LT.6) GO TO 110
30	CALL SCALE 3(-1.0,-1.0,-1.0)
	CALL SHIFT 3(-1.0,-1.0,-1.0)
	GO TO 20
40	CALL SHIFT 3(0.0,0.5,0.5)
	CALL SCALE 3(1.0,-1.0,1.0)
	GO TO 20
50	CALL SHIFT 3(1.0,0.0,0.0)
	CALL SCALE 3(-1.0,-1.0,-1.0)
20	CONTINUE
	CALL MOVTO 3(0.0,-0.5,0.5)
	CALL DOT (0.5)

-152-

CALL	LINTO	3(0.148,-0.233,0.517)		
САЛТ	LINTO	3(0.155,-0.225,0.422)		
CVPT	TINLO	3(0.251,-0.033,0.428)		
CVLL	LINTO	3(0.326,0.147,0.529)		
CVPT	LINTO	3(0.222,-0.067,0.618)		
CVPP	LINTO	3(0.148,-0.233,0.517)		
CALL	OTVOM	3(0.326,0.131,0.632)		
CVIT	LINTO	3(0.406,0.297,0.733)		
CALL	MOVTO	3(0.326,0.147,0.529)		
CALL	LINTO	3(0.423,0.351,0.537)		
CALL	MOVTO	3(0.251,-0.033,0.428)		
CALL	LINTO	3(0.253,0.031,0.326)		
CALL	MOVTO	3(0.155,-0.225,0.422)		
CVTT	LINTO	3(0.082,-0.342,0.317)		
GO TO 10				
CONTINUE				
CALL	CHAMO	D		
CVTT DEAEND				

CALL EXIT

END

110

p150 D

С

۵

To locate the two asymmetric units within the unit cell the positions x,y,z and l-x, l-y, l-z would have to be used. Equivalent positions are normally quoted in the first manner as this emphasises the symmetry concerned rather than a single unit cell contents.

Parallel projection was used, and the transforms on either side of this cell (AXON 3) together with the numerical values produce a simple axial projection. More general views can be produced by using rotations. The monoclinic unit cell shown in Figures 3 and 6 (Chapter 2) were achieved using the SHEAR3 call: this requires (a) that the d-spacing be used rather than the axis value and (b) that the shear parameter be $\tan(90-\beta)$.

(i) unsheared cell (projection) (ii) sheared cell (projection)

In the job shown the cell is sheared to define β before it is scaled to produce <u>a</u> and <u>c</u> thus there is no dependance of the shear parameter, x, on the unit cell values.

The advantages of GINO-F over the more usual packages lie in its semi-interactive availability. The Prime machine in conjunction with a Tektronix T4010 visual display terminal means that drawing programs could be run, debugged, and the angle of viewing optimised quite rapidly: job turn-round was often as low as 30 seconds. A hardcopy device was used in conjunction with the terminal. Apart from specialised problems where the relative orientation of two parts of a molecule is desired and rapid job turn-round is a great advantage, GINO-F is probably best employed in the production of views of an entire unit cell. ORTEP, for example, is a much more sophisticated program and produces molecular drawings with much more information on them (Figure 7, Chapter 2) but this sort of detail is at best wasted and at worst confusing when several molecules are viewed. It is the simplicity of GINO-F that makes the rapid job turn-round possible.

-155-

> p158

GAUSSIAN 70 is a program to calculate energy values based on SCF MO considerations. It was used to perform the calculations cited in reference 24 and on the lithiation of trifluorobenzene, but most effort was expended in an attempt to obtain a theoretical value for the activation energy of the loss of lithium fluoride from pentafluorophenyllithium. Since use of the program is not always obvious from the manual an example of a geometry optimisation job is given as Table 22. The atomic numbering scheme adopted is shown in Figure 19. As an internal check on the program no attempt was made to produce a symmetrical pattern in defining the atoms: if equivalent atoms defined "illogically" produce the same electron populations within the molecule then at least nothing too obvious can be invalid. The main points where the quoted job differs from a standard route calculation

Table 22

(a) Instruction cards for a geometry optimisation conserving calculated

orbitals and suppressing most of the output listing.

VERTAY	•	OPTIOUS	Aus	SEGME	NTS	JUMP
2		nacoocne) () Y ()	000010	000000000000000000000000000000000000000	10 0
र	00000-6000000000	104600-46	<u>) () - () -</u>	100011	10000000000000000	10 n
<i></i>	1000.000000000000	90090 <u>0</u> -60) () ~ <i>(</i>) (100010	000000000000000000000000000000000000000	00 0
5	00000.0010000000	inneuorei) () (16))00001	000000000000000000000000000000000000000	0 0
4	11000 <u>9000000000000</u>	0000000000) 0 000	060010	00000000000000000000000000000000000000	0 0
2	10005560000000	10000000	10:00	000010	6000000000000000	10 n
3	00000-1000000-00	រតិតិតតំប៉ូតតំប៉ូ	n an	000011	19099000000000000	0 06
٠,	000000010000000	000000.00	nec.	000001		10 n
2	1000000000000000	: 0 86005.40			000000000000000000000000000000000000000	10 -2
2	000012000000	007-00-00	ne or	100011	1000006000000000	0 0
÷	11000000000000000	00000000) il inter	0.010	00000000000000000000000000000000000000	0 0

(b) Data cards to define pentafluorophenyllithium as in Figure 19.

Numbers in parentheses are "variable" numbers allocated by the program. 6 1,000000 Û 1 : 1 1.385000 6 2) 240.0.00 (15) 385000 3) 1 1 120,0000 Ó. (16) 180.0060 3 (-28)6 4 1:385400 240.0000 43 (17)180 0000 3 (29) 1,385000 ζ 5) 240.0000 0 1 (18)180,0000 4 (-30)r. 1 385000 6 240.0000 61 (19)180 0000 £4 6 (31) 1 344000 9 7) 7 120.0000 (20) 3 180,0000 (32) G : 344000 5 3 : 126.0000 (21) 180,0000 (73) 6 \mathbf{Q} 3 i.344000 9; 1 120.0460 (22) 189.0000 (-34)С, -1.344000 6 (10) 120.0000 2.7 (23) 1 180.0000 (35) .6925000 1 11) 240,0000 U 1 1 241 186 00.00 4 (36) 1 450000 0 12 (12)1 271.0000 251 (2 180,0000 (-37)- 116300 13 (13) 276.0.00 1 : (26) 5 180 0000 (72) . 4214000 5 13 (14) 10 20 00-00 (27) 5 133 0000 (70)

-156-

0

0

()

0

n)

0

0

0

0

n

ñ

G.

1

Fig. 19

Numbering scheme adopted for pentafluorophenyllithium.

Broken lines: parameters varied Heavy lines : parameters fixed 1,3,4,5,6&7 : Carbon atoms 2,12&13 : Zero-weight "atoms" 8,9,10,11&14 : Fluorine atoms 15 : Lithium atom

p155 D

are that it re-uses the initial orbitals after the first The "initial guess" built into the program cycle. calculates values based on Hückel molecular orbitals for the first cycle. Since many parameters could be varied some assumptions were made and the results presented are in the nature of a preliminary study. Amongst the more obvious approximations made are nonrefinement of the planarity of the molecule or of bonds involving atoms other than those expelled. An apparently peculiar system was used to define the molecule to make meaningful calculations possible: for the purposes of the program, zero atomic number "atoms" can be used to fix points in space, and the distance of the two "real" atoms eliminated from the ring was varied using two such zero-weight "atoms". In terms of the Figure these are The separations of the eliminated atoms 12 and 13. atoms from the second non-atom (13) were optimised for a series of values for the distance between the two non-The figure shows these as variables 13,14 and 12 atoms. respectively. Final results from this are given in Table 23 and the variation of optimised energy value with intermolecular separation is shown in Figure 20. Optimisation involved several stages and normally four or five individual calculations were needed for each of the two variables before convergence on the lowest energy arrangement was achieved. It proved to be impossible to perform similar refinement on the angles involved as well: in the Figure these are 12-13-14 and 12-13-15 and

-158-

Dp161

Optimised values of energy and variables 13 and 14 over a range of values for variable 12

Variable	12 (Å)*	Variable	<u>13(R)</u>	Variable	14(8)	Energy	(a.u.)
1.350		1.3059		0.2595		-721.72	2327
1.400		1.2430		0.3563		-721.83	3781
1.425		1.2161		0.3977		-721.84	1345
1.450		1.1965		0.4241		-721.84	817
1.475		1.1870		0.4298		-721.85	5182
1.500		1.1142		0.5750		-721.85	5385
1.525		1.1196		0.5478		-721.85	596
1.550		1.0916		0.5988		-721.85	658
1.575		1.0876		0.5942		-721.85	640
1.600		1.0810		0.5967		-721.85	523
1.650		1.0467		0.6545		-721.85	051
1.750	:	1.0190		0.6753		-721.83	369
1.850		1.0218		0.6357		-721.81	150
1.950		1.0278		0.5740		-721.78	802

¥

For notation used see Figure 19

p158 D

are defined as 90°. Attempts to optimise the molecular arrangement with these two angles variable as well as the distances mentioned above ended in failure: the greater the values used for variable 12 then the greater became the distances between the expelled atoms and atom 13, together with correspondingly more acute angles. In empirical terms this meant that a single conformation of lowest energy overall was possible and the atoms were refining towards it. Figure 20 shows the reason for this: no maximum exists for overall energy thus at no point does refinement tend towards infinite separation of the lithium fluoride from the tetrafluorophenyl fragment.

The optimised energy values show that a meaningful activation energy calculation is almost certainly not possible: the simplifications involved in omitting solvation from consideration are too great for extrapolation from the gas phase to be valid. Two experimental facts pinpoint solvation as the crucial difference: the presence of a molecule of solvent in the activated complex when lithium halides are eliminated from 2-halophenyllithium ⁶⁸, and the appreciable difference in thermal stability between ether and THF solutions of pentafluorophenyllithium. It is always possible to criticise alltheoretical calculations on real systems: the singlemolecule assumption built into the computation is a considerable approximation even for most gas reactions (let alone liquid phase studies) but until the calculations

-161-

are tried the validity remains problematical. A truer theoretical value could be obtained, but only after a considerably longer series of calculations with many more parameters varied.

During the course of the computational work outlined above a chemical system was devised to check the relevance of GAUSSIAN 70 to polyfluoroaryl compounds. The internal check built into the program is a dipole moment calculation. This is of dubious use for activation energy work, and polyfluoroarenes themselves are very non-polar, yet to measure the dipole moment of pentafluorophenyllithium would be a major exercise. 1,2,3-Trifluorobenzene has two possible chemically distinct sites for lithiation and calculations were performed upon it and upon the two isomers of 1,2,3-trifluorophenyllithium:

$$H = \frac{H}{F} + \frac{n - BuLi}{-78^{\circ}C, THF} + \frac{H}{F} + \frac$$

The results from the calculations on trifluorobenzene are given in Table 24; they show no pronounced difference between the two proton sites. The calculations on the two organolithium compounds showed the asymmetric isomer to be favoured by c.20 KJ/mole. Chemically the isomeric analysis was performed by preparation of a mercurial: this method was chosen as it seemed probable that separation of organomercury compounds from the rest of the reaction

Dp164

-162-

Table 24

Atomic electron population 1,2,3-trifluoro-4,5,6-tri-

hydrobenzene*

<u>Atom(s)</u> *	Electronic Population
Carbon 1, Carbon 3	5.8708
Carbon 2	5.9015
Carbon 4, Carbon 6	6.0825
Carbon 5	6.0497
Fluorine 1, Fluorine 3	9.1228
Fluorine 2	9.1210
Hydrogen 4, Hydrogen 6	0.9240
Hydrogen 5	0.9273

*Atoms are numbered as in this name, rather than as in Figure.

p162 D

mixture would be quite straightforward, and that the "purification" involved would not resolve the ¹⁹F nmr was then bis(trifluorophenyl) mercury isomers. performed to establish which isomer was formed: the asymmetric isomer having three chemically non-equivalent fluorine sites and the symmetric isomer but two. Mass spectral data was also obtained as a check on the formula weight and chemical composition of the compound produced. X-ray studies (as further and conclusive evidence) were not possible, as detailed in Chapter 2. The isomer produced was the asymmetric possibility, bis(2,3-dihydrotrifluorophenyl)mercury, and this fact together with the data given in Table 24 show that GAUSSIAN 70 is capable of handling highly fluorinated aromatic systems. The activation energy results show also that the calculations are only as good as the molecular model used as input for the program: this implies that any approximations introduced are common in the case of the 1,2,3-trifluorophenyllithium isomers (and cancel) but invalidate theoretical data from pentafluorophenyllithium.

GAUSSIAN 70 has several drawbacks: it cannot compute d orbitals, it has fairly low limits on the number of atoms and orbitals usable and it is not always reliable in its handling of data calculated during intermediate stages of computation. These lattermost pitfalls can be quite subtle: the program has a default value of 20 stages for convergence of its SCF energy calculations and does not fail if all steps have been used. Oscillations

-164-

of 10-20 a.u. are possible if atoms are too close and these would not be detected by the program. Three energy values are needed to calculate the optimum, and the assumption is made that these points define a parabola whose minimum is at the numerical value sought. Whilst this makes interpolation reasonable, extrapolation can produce dubious or grossly incorrect results. Similarly the parameters varied will not give valid optima unless appreciably different energy values are produced by the intermediate calculations and the program has no inbuilt chuck that the "optimised" variable in fact gives a more favourable energy value than the preliminary stages.

The option in the program of simultaneous variation of more than one parameter was a blind alley as far as pentafluorophenyllithium was concerned. The parabolic assumption has limitations where the only parameters concerned are one variable and the energy, but extreme care would be needed before it could be used with two independent variables. In physical terms this would involve fitting a two-dimensional line onto points on a three-dimensional surface.

Parenthetically it can be remarked that the program is a heavy consumer of computer time: geometry optimisation jobs for a single parameter were typically of the order of 500 seconds.

-165-

Chapter 6

Experimental

Summary: Experimental details of the preparative chemistry performed are presented.

Experimental

Infra-red spectra were recorded on a Perkin-Elmer 457 machine using KBr discs or mulls between CsI plates. Raman spectra were recorded on a Cary 81 machine, ¹H nmr on a Nuclear Magnetic Resonance EM 360A machine and ¹⁹F nmr on a Perkin-Elmer R32. Far infra-red spectra were recorded by Dr. R.E. Humphries, University of Windsor, Ontario, on a Perkin-Elmer 180 machine using polyethylene plates. Micro-analyses were by the University of Manchester Micro-analytical service. n-Butyllithium was used in hexane solution.

Preparations

1. <u>Tribenzo [b,e,h][1,4,7] trimercuronin</u> was prepared by vigorous agitation of a solution of 1,2-dibromobenzene in an ether solvent with an alkali metal amalgam. A variety of ethers and of metals was employed. Product was extracted with boiling DMF from the insoluble residue and collected by filtration after the solvent had cooled. Yields: 20-40% M.pt. 325-328°C (decomp.)

2. <u>Perfluorotribenzo[b,e,h][1,4,7]trimercuronin</u> was prepared by the method of Sartori⁸⁰ modified as follows: mercuric acetate was dissolved in warm dilute acetic acid and this liquid was filtered into a warm aqueous solution of tetrafluorophthallic acid (Bristol Organics Ltd.). The filtered precipitate was dried at 110°C in a fume cupboard then heated in a sand-bath under vacuum. Crude product was collected on a water-cooled probe set immediately above the mercuric tetrafluorophthallate and purified by filtration of a DMF solution followed by heating to 220°C in a fume cupboard of the solid from a vapour diffusion crystallisation. Yields: 30-65% m.pt. c 340°C (subl.)

- 3. Bis(2,3-dihydrotrifluorophenyl)mercury was prepared by lithiation of 1,2,3-trifluorobenzene (1.32gm,10mMole, Imperial Smelting Co.) in anhydrous THF (100ml) at -60°C with n-butyllithium (7.5ml,10mMole). The resulting mixture was stirred for 2 hr, then mercuric chloride (1.35gm, 5mMole) was added in THF solution (5ml). The reaction mixture immediately darkened with a grey precipitate of colloidal mercury and was allowed to reach ambient temperature overnight before filtration. The solvent was removed and the resulting flakey crystals were washed twice with water (100ml) and twice with hexane (50ml). The product was recrystallised by boiling a methanol/THF/ water solution until precipitation just commenced; on cooling the solid was filtered off and allowed to Yield: 1.6gm (70%)m.pt. 152-155⁰ (subl.). evaporate dry. Shown to be $(C_6F_3H_2)_2$ Hg by m.s. and to be the 2,3-dihydroisomer by ¹⁹Fnmr.
- 4.4,4'-Dimethoxy-3,3',5,5'-tetramethyl-o-biphenylenemercury was prepared by lithiation of 2,2'-diiodo-4,4'-dimethoxy-3,3',5,5'-tetramethylbiphenyl (5.2gm,lOmMole) in anhydrous THF (lOOml) at 60°C with n-butyllithium (l5ml,20mMole)

over 30 minutes. The solution went immediately yellow, then cloudy. Ten minutes after the final n-butyllithium addition, mercuric chloride (2.71gm, 10mMole) was added in THF(10ml): the bulk liquid went immediately orange, then cloudy and grey with colloidal mercury. After being allowed to attain room temperature the solution was filtered, the THF was removed and the solid extracted with water and hexane. Yield 4.32gm (90%) mpt > 310° C.

- 5. <u>Bis(pentamethylphenyl)mercury</u> was prepared by lithiation of bromopentamethylbenzene (4.44gm,20mMole) in anhydrous THF(100ml) with n-butyllithium (15ml,20mMole) at -60° C added over 1 hr. The solution was allowed to warm to 0° C then solid mercuric chloride (27gm,10mMole) was added. The immediate grey/white ppt. was filtered, washed with water then extracted with boiling DMF. Yield: 4.5gm (80%).
- 6. <u>1,2-dibromotetramethylbenzene</u> was prepared by bromination of 1,2-dihydrotetramethylbenzene (20gm) in glacial acetic acid (60ml) with bromine (50gm) in the same solvent (40ml). After stirring for 1 hr. the excess bromine was destroyed with 60% aqueous sodium hydroxide and 100ml of water added. The solid product was filtered; then recrystallised by addition of ethanol to a boiling solution in chloroform until precipitation just occured. Yield: 17.7gm (30%) art 138-112⁻.

-169-

- 7. <u>1,2-diiodotetramethylbenzene</u> was prepared by fusion of 1,2-dihydrotetramethylbenzene (1.34gm,lOmMole) with mercuric trifluoroacetate (ll.0gm,30mMole) followed by heating until the mixture solidified. 150ml of DMF was used to wash this into a solution of 30gm each of iodine and potassium iodide in 75 ml of DMF. The mixture was stirred for 3 days, then diluted with 250ml of water and extracted with toluene. Yield: 1.9gm (45%) m.pt.182-186°C.
- 8. <u>2-Hydro-l-iodotetramethylbenzene</u> was prepared by refluxing l,2-dihydrotetramethylbenzene (lOgm) with iodine (l6gm) in glacial acetic acid (150ml). Iodic acid (8gm) in water (8ml) was added dropwise to the boiling solution which was then refluxed for 5 hr. After dilution with an equal volume of water and removal of the bulk of the aqueous layer by decantation the excess iodine was destroyed with 60% aqueous sodium hydroxide. The organic phase was extracted with chloroform then vacuum distilled. The fraction which came over at c.120°C and solidified in the condenser was shown by nmr to be 2-hydro-l-iodotetramethylbenzene. Yield: 3.6gm. (18%) m.pt. 28-30°C.
 - 9.<u>Bromopentamethylbenzene</u> was prepared by bromination of pentamethylbenzene (lOgm) in glacial acetic acid (50ml) with bromine (lOgm) in the same solvent (20ml). The product precipitated out immediately and after dilution of the reaction mixture with 70ml of water excess bromine was destroyed with 60% aqueous sodium hydroxide. The

product was washed with water, glacial acetic acid, alkali, and water; then recrystallised by addition of methanol to a boiling carbon tetrachloride solution. Yield 12.7gm (85%)

- 10. The reaction of 1,2-diiodotetramethylbenzene with mercury. lgm and 8gm respectively of the starting materials were heated at 200°C over night in a sealed tube then for 3hr at 250°C. No reaction was observed at 200°C and ether extraction of the final (charred) residue produced only hexamethylbenzene(?), a solid fluorescent in solution.
- 11.Reaction of 1,2-dibromotetramethylbenzene with 1.5% sodium amalgam. 2.2gm and 20gm respectively of the starting materials were heated slowly to 200°C in a sealed tube. The residue was extracted with 100-120 pet.ether, followed by water then boiling DMF. The insoluble residue had a melting point of 260-270°C (decomp.) Yield 50mgm. (2%)
- 12.Reactions of 2,3-dibromonaphthalene with alkali metal amalgams. 2,3-dibromonaphthalene (lgm) was reacted (l) in THF solution with 0.5% potassium amalgam (200gm), (2) in ether solution then 4:l ether/THF solution with 3.3% potassium amalgam (50gm), and (3) in freshly distilled diglyme with 1% sodium amalgam. In no instance could any organomercury products be detected.

13. <u>Permethyl-o-phenylenemercury</u> was prepared by agitation of a refluxing solution of 1,2-dibromotetramethylbenzene (5.8gm,20mMole) in tetralin (200ml) with 3.3% sodium amalgam (100gm). The resulting solid was extracted with chloroform, water, hexane, boiling DMF, DMSO and quinoline. The residue was proved to contain mercury by x-ray fluorescence and to be permethyl-o-phenylenemercury by preparation of 1,2-diiodotetramethylbenzene on reaction with triiodide ions in DMF solution. Yield: 4.6gm (65%) m.pt..260-270°C (decomp.) Discussion

Summary: The work presented in separate sections is discussed, wherever possible, in a unified manner.

Discussion

o-Phenylenemercury is a troublesome compound to study as it is quite insoluble in all solvents in the cold and in most boiling solvents, is high melting (325-328° with decomposition ⁷²) and is not particularly easy to prepare. It has the advantages, however, of the stability to heat, light and moisture typical of morcurials. As it contains a di-substituted phenyl ring a variety of oligomeric structures are possible, but a monomer and a dimer are ruled out on the principle that bicoordinate mercury must be linear to be a good approximation.

monomer

dimer

Early studies of mercurials quite often postulated structures like those above and one reason for this is the dipole moments possessed by many mercurials which are now believed to arise from the polarisation of the metal atom rather than from any asymmetry of the overall molecules.¹⁴⁴ Infra-red spectral studies have shown diphenylmercury to have the same conformation in solution as in the solid state,¹⁰⁵ where an X-ray structure analysis has shown it to be linear about the metal atom with the rings coplanar.¹⁴⁶ The outer electronic configuration of mercury (4f¹⁴5d¹⁰6s²) with the full f and d shells make the atom polarisable and in a bicoordinate system only two atomic orbitals would be used, to give a pair of co-linear sp hybrid orbitals.

Higher oligomers of o-phenylenemercury $(C_6H_4Hg)_n$ having C-Hg-C angles of 180° are possible for n = 3 or any even number other than 2. The trimer is planar but. the other oligomers - the limiting case is a polymer of formula (C₆H₄Hg)_{2n} - are not. Molecular point-groups are given in Table 26 for some of the lower oligomers. Group theory can be used to predict, on the basis of the point group, which vibrations should be active in the infra-red and which in the Raman, but it also predicts that the total number of modes is (3N-6) for a nonlinear molecule where N is the number of atoms present. For a trimer (C₁₈H₁₂Hg₃) this amounts to 93 bands, many of them being degenerate because the vibrational coupling is not great enough to lift the degeneracy arising from molecular symmetry. The portions of the infra-red spectrum of o-phenylenemercury shown in Figures 21 and 22 show that the compound is remarkable for its lack of absorbtion rather than the contrary. Attempts were made to obtain Raman spectra but both crystal modifications studied exhibited broad-band fluorescence and thus pointgroup analysis proved impossible. Comparison of the monoclinic and orthorhombic forms of o-phenylenemercury

Ď ^{p177}
Table 26

Molecule	Oligomer	Point Group
Bis(2-hydrotetrafluorophenyl)mercu	ry* -	C _{2n}
Bis(pentafluorophenyl)mercury•		cl
o-Phenylenemercury*	Trimer	D _{3h}
o-Phenylenemercury•	Tetramer	D _{2d}
o-Phenylenemercury•	Hexamer	D _{3d}
o-Phenylenemercury	Polymer	c_s^2
o-Biphenylenemercury	Trimer	C ₃
o-Terphenylenemercury•	Dimer	C _{2h}

* Planar molecule

• Non-planar molecule

p175 D

by spectral techniques revealed no major differences: small variations occur in the i-r band at c. 750cm⁻¹ (Figure 21) and the broad band at 150-250cm⁻¹ (Figure 22) appears to be more intense in the orthorhombic form. These differences can probably be attributed to differing inter-molecular contacts in the solid state: the orthorhombic form has metal-metal contacts but the monoclinic has not (Chapter 2). Additionally the orthorhombic form fluoresces somewhat more strongly under laser Raman conditions.

Low resolution microwave spectroscopy can resolve oligomers by measurement of the molecular moment of inertia, but only¹⁷⁰ if the molecule is a good approximation of a symmetrical rotor, has an appreciable dipole moment and a vapour pressure \geq c.20m Torr. o-Phenylenemercury is ineligible for such a study on both of the last two counts.

Mass spectrometry should be able to show the empirical formula of a compound by a display of the parent ion peak(s) and by detection only of ions derived from it. However, the conditions $(10^{-6} \text{ Torr, heat})$ needed for the technique are such that some doubt must always remain that the spectra are artefacts: the mass cut-off at Hg₃ species shown by o-phenylenemercury⁹³ is by no means rigorous proof that the parent compound is trimeric.

o-Phenylenemercury can be prepared only by metal amalgam reactions, typically

 $1,2-C_6H_4Br_2 \xrightarrow{Na/Hg} (C_6H_4Hg)$

D p180

Fig. 21

p177 D

The alternate methods of mercurial synthesis discussed in Chapter 1 are not available since both 1,2-dilithiobenzene and the ortho-diGrignard Reagent¹⁷² are both prepared from the mercurial; furthermore, 1,2-diaminobenzene diazotises abnormally¹⁷³ and mercuric phthallate monodecarboxylates only.⁸² Other halogens can be substituted for bromine and 1-bromo-2-fluorobenzene, 1,2-diiodobenzene and 1,2-dichlorobenzene have all been used, the lattermost reagent giving very poor yields.⁹³ The dihalides are dispersed in an inert (etherial solvent) and shaken with the amalgam for about an hour.

The most likely mechanism for the reaction invokes free radicals:

NaHg. + $1,2-C_6H_4Br_2 \rightarrow 1,2-C_6H_4BrHg.$ + NaBr

 $Na \bullet + 1, 2-C_6H_4Br_2 \rightarrow 2-BrC_6H_4 \bullet + NaBr$

$$Hg + 2-BrC_6H_4 \rightarrow 1, 2-C_6H_4BrHg_{\bullet}$$

The subsequent combination of radicals would eliminate mercury and quantities of grey colloidal mercury are indeed observed.

$$2(1,2-C_6H_4BrHg_{\bullet}) \rightarrow (2-BrC_6H_4)_2Hg + Hg$$

No other experimental evidence is available to support this theory, but any other mechanism seems even less

-180-

probable: metallation by the alkali metal would produce benzynes from 1,2-dihalobenzenes, and insertion of mercury into the carbon-halogen bond followed by reductive symmetrisation fails on two counts.

$$1,2-C_6H_4Br_2 + Hg \rightarrow 2-BrC_6H_4HgBr$$

2($2-BrC_6H_4HgBr$)+2Na \rightarrow ($2-BrC_6H_4$)₂Hg + Hg +2NaBr

The first of these is that the reaction works well with 1-bromo-2-fluorobenzene and mercury insertion into a carbon-fluorine bond is not a reasonable postulate. The second is the formation of o-terphenylenemercury,

 $\left[(C_6H_4)_3Hg \right]_2$, with more basic ethers.⁷³ The freeradical mechanism can account for this by solvation effects changing which of the two radicals is favoured. Coupling of the o-bromophenyl radical to give a biphenyl (and hence a terphenyl) is quite possible:

$$2(2-Brc_{6}H_{4}) \rightarrow 2,2'-Br_{2}c_{12}H_{8}$$

Single crystal X-ray and neutron diffraction are the only remaining techniques to distinguish between oligomers and in 1959 Grdenic published a partial structure determination on data he interpreted as proof for a hexameric structure.¹⁴¹ Closer examination of his published work, however, reveals that he was using a twinned crystal and basing his conclusions solely on a projection Patterson map. In mitigation it must be said that to obtain any results at all from a twinned crystal using the data collection and unautomated calculation techniques available at that time was something of a tour de force.

After several attempts using various solvents it finally proved possible to isolate single crystals of o-phenylenemercury from DMF by slow cooling. The structure was solved in space group P21212 (Chapter 2) and in that space group only a trimer is possible given the density of 3.5Mg m⁻³. Grdenic had found the compound to crystallise in the monoclinic space group $P2_1/n$ and no possibility exists of reconciliation between this and our orthorhombic system. In the centrosymmetric $P2_1/n$ a hexamer is possible with one half of the molecule as the asymmetric unit since the hexamer is itself centro-Further crystallisation attempts eventually symmetric. produced a monoclinic crystal modification on a unit cell diagonal to the unit used by Grdenic, giving the space group as P21/c. The trimer was finally proved to be the only oligomer by determination of the monoclinic structure (Chapter 2) and by interconversion of the two forms.

As both recrystallisations of o-phenylenemercury that had given suitable crystals for X-ray structure analysis had used DMF as solvent it was chosen again to purify a sample of perfluoro-o-phenylenemercury. The discovery and solid state kinetics of decomposition of

-182-

the adducts of perfluoro-o-phenylenemercury are given in Chapter 3 and the X-ray structure of the 1:1 adduct with 4-phenylpyridine is given in Chapter 2. This structure analysis proved that perfluoro-o-phenylenemercury is trimeric as originally proposed⁸⁰ and completes the cycle of evidence about these compounds. $(C_6H_4H_6)_n$ was investigated because n was stated to be 6 compared with 3 for $(C_6F_4H_8)_3$ and in the end both compounds were shown to be trimers. The only evidence for polymorphism in the fluorinated case is indirect: an ethanol recrystallisation gave a DTA peak at c.200-220°C yet the compound showed no weight change on TGA, thus indicating a phase transition of some sort.

The adducts of perfluoro-o-phenylenemercury are interesting in that the metal atoms in the mercurial are held in a rigid electron-withdrawing matrix. This restricts the ability of the mercury atom to complex (models showed that tetrahedral coordination was sterically impossible) whilst at the same time the electron-withdrawing groups make formation of donor/acceptor complexes at least theoretically possible. The recrystallisation of o-phenylenemercury from quinoline which converted the monoclinic modification into the orthorhombic was performed, in part, to investigate the ability of this compound to form adducts: the perfluoro mercurial had been shown to form an adduct with this solvent. The word "adduct" has been used to describe the compounds containing perfluoro-o-phenylenemercury and solvent

molecules since it does not define a specific type of bonding just as the trivial name for the mercurial does not state that any particular oligomeric state is present. Five "bonding" types are possible: clathrates, charge-transfer complexes, coordination complexes and packing involving hydrogen/fluorine bonding or van der Waals forces.

Clathrates are relatively rare and their decomposition kinetics would be predicted to be diffusion-controlled. It is also difficult to visualise a clathrate that (a) has up to three separate sites and (b) will accept molecules as diverse in size as acetone and triphenylphosphine. The most convincing evidence against clathrate formation, however, came from X-ray powder pictures. In any molecular array containing some very heavy atoms amongst other quite light atoms the greatest part of the X-ray diffraction patterns are determined by the heavy In a clathrate the relative positions of these atoms. atoms would be unchanged, yet the patterns from the original mercurial and its 1:1 and 1:2 adducts with DMF were all completely distinct.

Charge-transfer complexes are usually coloured and as stable in solution as in the solid state. The adducts examined, in contrast, were all colourless and the 1:1 pyridine compound in solution gave no extra band in the U-V region (Figure 23).

Hydrogen-fluorine bonding cannot be disproved on solely spectroscopic evidence, but the C-D stretching

-184-

p184 D

frequency in the 1:1 and 1:3 perdunteriopyridine adducts appeared to be unaltered in position, although the low intensity of the absorbtion would make slightly shifted bands difficult to detect. Additionally¹⁹F nmr spectra were recorded on samples dissolved in pyridine, DMF and ethanol, which last named solvent does not form adducts. It can be seen (Figure 24), in spite of the poor signal/ noise ratio, that no major changes in the chemical environments of the fluorine atoms have taken place. ¹⁹F nmr is prone to solvent shifts and the variations displayed are normal in this context: it is more important that no broadening of the peaks or major changes in coupling constants (which would also show as changes in peak shape) have occured.

Most spectral data is obtained from solutions and thus it would appear that some explanation for the general lack of liquid phase spectra of the adducts should be forthcoming. Empirically the 2-methylpyridine, adduct was shown to decompose in solution on the basis of This was insufficient in the 1:2 vapour pressure. adduct in the solid state for it to smell greatly of the solvent, but an ethanol solution of the same compound The ¹⁹F nmr smelt very strongly of 2-methylpyridine. spectra and also the U-V spectra mentioned previously also imply decomposition but the clearest proof comes from the solution i-r spectra of the DPF adduct (Figure There is no shift in the carbonyl band of the 25). DPF in polar solvents and there is evidence of decomposition

D 189

-186-

p186

D

even in ether solution. The carbonyl stretching mode is the only solvent band to show even slight shifts on adduct formation (Figure 26), and some values are presented in Table 25. The absorbtion attributed to (carbonyl) C-N bending, at 653cm⁻¹ in DMF,^{174,175} is unaffected both in DMF and DEF adducts: these results are in sharp contrast to transition metal complexes where quite substantial shifts of this band are reported.⁷⁵ Similarly the "umbrella" mode in pyridine at 703cm⁻¹ is unchanged in its 1:1 and 1:3 adducts despite reports of its sensitivity to complexation.¹⁷⁶

Infra-red spectra were recorded on mulls (in Nujol or hexachlorobutadiene) to avoid the possibility that the 18 ton/in² applied to sinter KBr into discs also changes the nature of the compounds studied. Far infrared examination was made of the parent mercurial and of four of its adducts (Figures 27,28) since conclusive proof of coordination-complex bonding would have been supplied by the presence of an absorbtion band in this region absent in the separate spectra. These occur at about 120-140cm⁻¹ for mercury-pyridine complexes.¹⁷⁷ As an extra check the 1:1 adduct with perdeuteriopyridine was also investigated as an isotopic shift would show up an absorbtion which was pyridine-sensitive. No extra bands are visible in any of the 1:1 adduct spectra. The extra peaks in the 1:2 adduct with DMF are thus impossible to attribute to a mercury-nitrogen vibration as DMF has eight modes which absorb¹⁷⁴ below 200cm⁻¹. Pyridine

> p194

Table 25

(a) Position of C = 0 stretching mode (cm⁻¹) in adducts $(C_6F_4Hg)_3 L_n$

\mathbf{L}	"Free"	n = 1	n = 2	n = 3
DMF	1670	1645	1660	
DEF	1675	1630	1643;1630	1660
DPF	1718; 1706	1650	-	
DMA	1640	1593	1604	1614
Acetone*	1712	1682	— ¹	
Cyclopentanon	e*1750;1740	1780	- • .	-

* stoichiometry of adduct not established

(b) Position of 0 = C - N bending mode (cm⁻¹) in adducts $(C_6F_4Hg)_3 L_n$

Г	"Free"	n = 1	n = 2	n = 3
DMF	660	665	661	-
DEF	647	645	642	645

p189

does not absorb¹⁷⁷ in the infra-red below 400cm⁻¹. The structure of the adduct with 4-phenylpyridine revealed that this adduct, at least, is not a coordination complex and would not be expected to reveal a mercury-nitrogen infra-red absorbtion.

The only real change in the mercurial component of the i-r spectra is the splitting of the band at c.l098cm⁻¹. This absorbtion is also moved to lower energy (Figure 29); error on the numbers quoted in the Figure is about ± 3 cm⁻¹. This splitting is probably due to a slight change in the molecular geometry, expected when extra molecules are co-crystallised: the slight nature of the difference between the new values would indicate that any deviation from D_{3h} point symmetry is small. Just as with o-phenylenemercury the complicated nature of the molecule combined with broad-band fluorescence under laser Raman conditions makes detailed analysis of the spectra (to find which oligomer occurs) impossible.

The 4-phenylpyridine adduct was shown (Chapter 2) to be bound together solely by van der Waals forces and the strength of these forces were shown by the kinetic studies (Chapter 3). It is, however, anomalous in some respects. The free organic molecule is a solid and it is the only adduct studied whose crystallisation gave a monoclinic system: all the others were triclinic. In line with the other pyridine and substituted pyridine adducts it shows little change in the i-r between "complexed" and "free" spectral values. It is thus not

-194-

D p196

p194 D

possible on spectral evidence to state whether it is typical or atypical of the series of adducts examined. The kinetic data from the 4-phenylpyridine adduct which show it to be wholely uniform with the other adducts - does not form conclusive proof that all the adducts are of the one type. It can be cogently argued that steric factors are very important in these adducts (this would be true irrespective of the type of bonding) and that the shape of 4-phenylpyridine may make a "solvent of crystallisation" adduct more favourable than a coordination complex solely for this molecule. Novertheless all the molecules which formed adducts contain appreciable dipole moments and this appears to be their major physical or chemical property in common. The van der Waals forces between the divole of the organic molecule(s) and the induced dipoles of the mercurial are considerably stronger than those between non-polar molecules and this may explain (in part) the weakness of the association between hexafluorobenzene and hexamethylbenzene.¹⁶⁵ Final proof that all the adducts form an homogenous series or, indeed, that they do not, must await further X-ray studies.

Discussion of the possible symmetry around a mercury atom in a compound is made difficult by the very extensive distortions found, and X-ray structure determinations have variously described coordinated mercury as tetrahedral¹⁷⁸, trigonal,¹⁷⁸ octahedral¹⁷⁹, trigonal bipyramidal¹⁸¹, square-¹⁸¹ and T-shaped¹⁵⁰. With this

-196-

in mind the description in this work of a mercury adduct as "non-complexed" requires some justification. In the complex [HgCl₂py₂] the Hg-N separation of 2.60% was initially thought to disprove coordination¹⁸³ but later spectroscopic work showed an interaction to exist.¹⁷⁷ In contrast the complex [HgCl₂col] gave the Hg-N separation as 2.18% in a dimer¹⁸⁰:

col = collidine(2,4,6--trimethylpyridine)

This incidentally shows the preference of mercury for tetrahedral coordination(albeit the bridging halogen atoms are not equidistant from the two metal atoms: there is one short and one long bond) rather than Tshaped. This latter form of co-ordination has been shown, by X-ray methods, to occur in the 2:1 complex between bis(pentafluorophenyl)mercury and bis(diphenylarsino)methane,¹⁵⁰ and indicated by thermodynamic results¹⁸⁴ 199_{Hg} nmr also indicates for the 1:1 pyridine complex. T-shaped mercury co-ordination in solutions of methylmercuric chloride in the presence of excess chloride ions.¹⁸⁵ Presumably bonding is dative to an empty mercury p orbital. 184

Trigonal bipyramidal co-ordination, an alternative formulation for the collidine complex above, 180 is

-197-

strongly disfavoured to the point that a mercury-phenyl interation is proposed to complete an octahedral mercury environment in the 1:1 complex between mercuric chloride and diphenylsulphoxide.¹⁷⁹ Mercury complexes have been proved by X-ray methods both where the donor molecule is nitrogen and where it is oxygen: 1,10-phenanthroline¹³⁶, 2,2'-bipyridyl^{187,188}, dioxan¹⁸⁹, THF¹⁹⁰, methanol¹⁹¹, cyclononanone¹⁸¹ and cyclohexa-1,4-dione¹⁹² complexes have all been studied.

Organomercury complexes are found only where the fragment is strongly electron-withdrawing as in the bis(pentafluorophenyl)mercury complex¹⁵⁰ mentioned above, and in the complex between bis(phenylethynyl)mercury and l,10-phenanthroline.¹⁹³

Recrystallisation of bis(pentafluorophenyl)mercury either from, or in the presence of, donor/acceptor complexing solvents gives¹⁹⁴ complexes (as shown by spectral, analytical and molecular weight data) but similar treatment of the analogous non-fluorinated compounds yields only unchanged starting materials. An early report¹⁹⁵ of hexa-coordinate mercury in 1:2 adducts between diphenylmercury and 1,10-phenanthroline (or substituted phenantholines) were later shown by a crystal structure analysis to be false.¹⁴⁹ The compounds were formed of an organic matrix supporting an uncomplexed mercurial.

Perfluoro-o-phenylenemercury is thus interesting as it is a compound where the metal atoms are held in a rigid,

-199-

organically-bridged system. The tetrafluorophenyl moiety is electron-withdrawing but, unlike halide ions, it cannot provide bridging between molecules. Similar limitations apply to "donor" molecules such as pyridine, but oxygen in such ligands as cyclononanone¹⁸¹ and DMSO¹⁹⁶ can bridge between metal atoms. In contrast to bis(pentafluorophenyl)mercury, perfluoro-o-phenylenemercury is involatile enough to make thermochemical analyses possible at temperatures up to about 250°C. The rough idea of "bond-strengths" obtained from these studies is quite revealing about the nature of the bonding: in this case showing the adducts to be only slightly less strongly attached than in transition metal complexes. It is, nevertheless, a truism that TGA and DTA results cannot prove a particular type of bonding to be present: any interpretation of thermochemical data is at best intelligent guesswork in the absence of unambiguous structural information. Since mercury(II) complexes are less stable than the corresponding cobalt(II) complexes - [HgCl_py_] decomposes at room temperature [CoCl₂py₂] does not - this implies that the adducts but of perfluoro-o-phenylenemercury have some form of bonding more favourable than in mercury coordination complexes, either alone or in addition to electron donation. It is quite possible that rigid planar molecules such as pyridine or DMF¹⁷⁴ can form only "solvent of crystallisation" adducts whereas molecules which contain atoms capable of forming inter-molecular bridges can form adducts which

-200-

involve coordination to the metal as well. The planar nature of perfluoro-o-phenylenemercury is a contributing factor to the stability of its amide adducts as judged by the position of the carbonyl band in the i-r: it is at 1650cm⁻¹ in the DPF adduct of this compound compared with 1669cm⁻¹ in the "adduct" with bis(pentafluorophenyl)-There appears also to be a correlation mercury. between this parameter and the stability of the adducts: Table 25 shows that the more thermally stable adducts with few organic molecules to each molecule of mercurial, also exhibit greater shifts of the carbonyl stretching frequency. Were the DPF adduct a simple coordination complex then the more electron-withdrawing pentafluorophenyl groups would give greater stability to the bis (pentafluorophenyl) mercury adduct.

The properties of perfluoroaromatic compounds of metals and metalloids are quite well established and hence it was decided to investigate the analogous compounds where the aromatic system was substituted with methyl groups. Two mercurials were investigated as the initial stage of this study: bis(pentamethylphenyl)mercury and permethyl-o-phenylenemercury. These persubstituted compounds were chosen as considerable data was available about the properties of both the "parent" phenyl- and phenylene-mercurials and also their perfluorinated analogues. Additionally, per-substitution eliminates the chance of formation of structural isomers, if not of a variety of reaction products.

-201-

The synthetic starting points for all permethyl studies were the appropriate hydrocarbons: 1,2-dihydrotetramethylbenzene and pentamethylbenzene. Bromination of these compounds was extremely facile by the method of Smith¹³³ and iodination by the method of Deacon.³⁷ Bis(pentamethylphenyl)mercury was then prepared by the reaction sequence:

 $2(CH_3)_5 C_6Br + 2C_4H9Li \rightarrow 2(CH_3)_5 C_6Li + 2C_4H9Br$

 $2(CH_3)_5 C_6Li + HgCl_2 \rightarrow ((CH_3)_5C_6)_2 Hg + 2LiCl.$

These reactions were also extremely straightforward, the mercurial precipitating out at the speed of mixing on addition of the mercuric chloride. In contrast to diphenylmercury, which is somewhat soluble in polar organic solvents, bis(pentamethylphenyl)mercury proved to be freely soluble only in boiling DMF.

Permethyl-o-phenylenemercury was prepared only under vigorous conditions using amalgam reactions similar to those discussed for o-phenylenemercury itself. After initial reaction mixtures at room temperature had failed to yield mercurials a sealed tube reaction at 220°C and a preparation in refluxing tetralin were both tried. As indicated by melting point and i-r spectra the two preparations gave the same product which was insoluble in all solvents tried. These included hexane, chloroform, water, and the following boiling solvents: DMF, DMSO and quinoline. The presence of mercury and the absence of bromine in the residual fawn-coloured dust was proved by X-may fluorescence: it was assumed to be permethyl-o-phenylenemorcury. Further evidence for this postulation was obtained by cleavage of the carbonmercury bonds by triiodide ions: 1,2-diiodotetramethylbenzene was extracted in 60% yield from the final reaction mixture and identified by comparison with an authentic sample.

Attempts to prepare the permethyl mercurials, described above, by mercuration reactions came to nothing: the method of Smith¹⁹⁷ was followed but gave only unreacted starting materials. Also unsuccessful were attempts to prepare dihalo derivatives of partially methylated benzenes. The reaction sequence chosen was:

X = H, Me

Wittig used this route starting with 2,4,5-trimethylaniline (pseudocumidine) to prepare l-bromo-2-fluoro-5-hydrotri-

-203-

methylbenzene and thence a mercurial.¹⁹⁸ However, all attempts to prepare diazonium salts from either 2-bromo-6-methylaniline or 2-bromo-4,6-dimethylaniline ended only in elimination of nitrogen as the nitrite solution was added. The most extreme experimental conditions used in these attempts involved the use of aqueous tetrafluoroboric acid as solvent with diazotisation at -15° to -20° C.

In summary, then, the preparation of methylated aromatic organometallic compounds, at least of mercury, has been shown to be far from straightforward: the volatility, solubility and thermal stability of the permethyl derivatives, crucial to the preparation of pure compounds, are considerably less favourable than those of the "parent" unmethylated species. It was therefore not possible, for example, to extend the crystal structure determinations performed to include a study of the oligomeric nature of permethyl-o-phenylenemercury.

Further Work

In the nature of things, solution of one problem only leads to another and several further studies could be made. The oligomeric nature of o-biphenylenemercurials has not been determined by X-ray methods and all the reasons that necessitated studies of o-phenylenemercurials by this technique apply also to these compounds. Some unpublished mass spectral data from perfluoro-o-biphenyl-

enemercury have indicated that the reaction

produces both trimeric and tetrameric species. The preparation of one o-biphenylenemercurial was attempted as part of this work: reaction of 2,2'-diiodo-4,4'dimethoxy-3,3',5,5'-tetramethylbiphenyl in refluxing ethyl acetate with sodium amalgam gave only the biphenylene but lithiation followed by addition of mercuric chloride gave a mercury-containing compound. However, no crystals suitable for an X-ray study could be found.

Further X-ray studies would also clear up the problem of the amide adducts of perfluoro-o-phenylenemercury by showing how the molecular packing affects the carbonyl function: this would then show how typical the 4-phenylpyridine adduct is.

E.s.r. studies could be used to examine the reactive intermediate produced by the elimination of lithium fluoride from pentafluorophenyllithium to show whether it is a singlet or a triplet (i.e. a benzyne or a diradical). An investigation of the degree of solvation during this reaction would also be of interest. Spectra

-207-

Infra-red Spectra: 4000-250 cm⁻¹ or 4000-625 cm⁻¹ () Spectra were run as mulls in Nujol or as KBr discs (*); values are ± 3 cm⁻¹ Bis(pentamethylphenyl)mercury; $C_{22}H_{30}H_{30}H_{30}$ 1410, 1287, 1068, 818, 728, 574, 506, 350

- * Bromopentamethylbenzene; C_{ll}H₁₅Br 3010(sh), 2930, 2870(sh),1430(br), 1385(br), 1210, 1068, 1020(sh), 1005, 920, 818(w), 724, 506; all bands weak.
- * Pentamethylbenzene; C₁₁H₁₆ 3020(sh), 2960(br), 2880(sh), 2745, 1485(br), 1455(sh), 1395, 1085(w), 1025(w), 871(w).
- * Tetramethyl-o-phenylenemercury; (C₁₀H₁₂Hg)n 2980(sh), 2925, 2880(sh), 1445(br), 1388, 1237, 1206, 1085(w), 1070(w), 1025(w), 1008(w), 778, 697.

1,2-dihydrotetramethylbenzene; C₁₀H₁₄ (liquid film)
1471(br), 1450(sh), 1370, 1175(w), 1018, 813(str)

- * 1,2-dibromotetramethylbenzene; C₁₀H₁₂Br₂ 1440(br), 1404, 1380, 1260, 1198, 995(br), 955, 892, 775, 717(w), 580.
- * 1,2-diiodotetramethylbenzene; C₁₀H₁₂I₂
 2940(br), 1450(br), 1392(br), 1194, 1088, 1005, 951, 887,757.

1582, 1560, 1460(br), 1386, 1270(w), 1261(w), 1232(w), 1203, 1073, 1020(br), 940, 867, 749, 711, 521, 290.

3,3',5,5'-Tetramethyl-4-4'-dimethoxy-2,2'-biphenylenemercury; (C₁₈ H₂₀)₂Hg)_n

1262, 1211, 1176, 1147, 1027(br), 872, 771(w), 727, 595(w,br), 540(w), 522, 502, 340.

- * Bis(2,3-dihydrotrifluorophenyl)mercury; C₁₂H₄F₆Hg 2960, 2925, 2875(sh), 2860, 1890(w), 1760(w), 1638(sh), 1621, 1607, 1590, 1562(w) 1500(br), 1448, 1440, 1338(w) 1313(sh), 1293, 1279, 1270(sh), 1228, 1220(sh), 1180(w) 1114, 1092(w), 1082(w,sh), 1020, 879, 820, 788(w), 706, 686, 628, 590, 547(w), 340, 324, 285.
- * Bis(2,3-dihydrotrifluorophenyl)mercury.1,10-phenanthroline; C24^H12^F6^N2^{Hg}

2970, 2930, 2860, 1620, 1590, 1523, 1490, 1445, 1440(sh), 1435(sh), 1348(w), 1290, 1288(sh), 1229, 1212, 1152, 1112, 1109(sh), 1020, 1015, 1013, 906(w), 870, 850, 842, 812, 778(w), 769(w), 730, 705, 683(w), 645(w), 620, 587, 548(w), 540(w), 477(w), 424(w), 338(w), 320(w).

Bis(pentafluorophenyl)mercury.diphenylformamide 1718(sh), 1705(sh), 1669, 1599, 1517, 1500, 1419, 1397(w), 1356, 1338(w) 1308, 1289(sh), 1278, 1144, 1138(sh), 1088, 1079, 1071, 1008, 969, 915, 849, 810, 788(w), 770, 750, 702, 680, 578, 530, 461, 443(w), 400(w), 342(w), 292(w). CoCl₂py₄

1610, 1490, 1225, 1160, 1080, 1050, 1020, 941, 752, 726, 691, 657(w), 641, 425.

CoCl₂py₂ (α-form) 1607, 1578, 1420, 1243, 1222, 1156, 1086, 1045, 1016, 960(w), 380(w), 760, 691, 636, 434.

CoCl₂py₂ (β-form)
1609, 1488, 1448, 1280, 1219(sh), 1162, 1084, 1070, 1048,
1018, 762, 752, 700, 691, 645, 637(w), 432, 428, 348(w), 310.

CoCl₂py_{2/3} 1610, 1490, 1228, 1153, 1070, 1050, 1020, 942, 750, 724 690, 655(w), 643, 427.

Miscellaneous Organic Compounds

4,4 '-dimethoxy-3,3',5,5 '-tetramethylbiphenylene 1274. 1226, 1178, 1101, 1029, 980(w,br), 893, 870, 730, 662(w), 495(w), 323(w).

4,4'-Dimethoxy-3,3',5,5'-tetramethyl-o-biphenylenemercury 1630(br), 1263, 1212, 1180, 1149, 1030, 882, 870, 840(w), 729(br), 527(w), 505(w), 342(w,br). Complexes of Perfluoro-o-phenylenemercury (I), 2500cm⁻¹-250cm⁻¹ and of the ligands involved.

Ι

1620, 1588, 1420, 1370, 1330, 1313(w), 1290, 1252, 1098, 1055(w,br), 1010, 820, 777, 725, 643, 475, 370.

I,DMF

1645, 1620, 1588, 1418, 1366(w), 1359(w), 1328, 1310, 1290, 1252, 1109, 1088(sh), 1081, 1062(w,br), 1008, 819, 775, 725(w), 665, 642, 474, 412(w), 376, 336.

I.2DMF

1660(br), 1620, 1588, 1415, 1355, 1320, 1308, 1285, 1248, 1100, 1000, 812, 770, 661, 640, 472, 415(w), 370, 325.

DMF (liquid film) 1670(br), 1500, 1440, 1409(sh), 1390, 1259, 1254, 1094, 1067, 869, 660, 409(w), 353, 320.

I.lDEF

1630, 1595(w), 1582,1420(sh), 1415, 1396, 1366(w), 1351(w), 1321, 1304, 1285, 1250, 1213(w), 1123, 1110(w), 1082, 1078, 1006, 815, 771, 722, 645, 639, 471, 369.

I.2DEF

1643, 1630, 1413, 1398, 1392, 1365, 1350(w), 1320, 1304, 1284, 1265, 1241, 1211, 1120, 1103, 1077, 1072(sh), 1000, 824(sh), 819, 810, 768, 722, 642, 638(sh), 518, 470, 365, 345.

I.3DEF

1660(br), 1618, 1588, 1416, 1400, 1386, 1368, 1351, 1319, 1305, 1295, 1285(sh), 1268, 1245, 1218, 1120, 1107, 1077, 1000, 946, 826, 810, 769, 645, 640(sh), 520, 472, 361, 280.

DEF (liquid film)

1675(br), 1465, 1435, 1401, 1385, 1369, 1352, 1310, 1264, 1220, 1115, 1075(sh), 1005, 946, 826, 793, 647, 508, 353, 323, 285.

I. 1DMA

1593, 1418, 1322, 1308, 1285, 1250, 1090, 1080, 1077(sh), 1005, 814, 770, 739(sh), 720, 640, 586, 479, 470, 371.

I.2DMA

1600(br), 1415, 1321, 1305, 1285, 1245, 1188, 1080(sh), 1077, 1002(sh), 999, 810, 769, 739, 721, 639, 586, 478, 470, 367.

1.3DMA

1620(br), 1415, 1322, 1308, 1288, 1245, 1190, 1078, 1000, 812, 770, 742, 642, 590, 480(sh), 475, 370.

DMA (liquid film)

1640(br), 1507(br), 1418, 1400, 1360, 1270, 1194, 1065(sh), 1020, 740(w), 590, 477, 427(w), 340(w,br).

I.n(DPF)

1650, 1620, 1599, 1502, 1420, 1360, 1323, 1308, 1284,
\mathbf{DPF}

1718, 1706, 1676, 1597, 1500, 1417(w), 1392, 1256, 1168, 1139, 1080, 787, 761, 748, 698, 579, 530, 441, 410, 393, 325, 290, 267.

I. 2DMSO

1618, 1585, 1417, 1356(w), 1349(w), 1319, 1305, 1294, 1243, 1218, 1076, 1030(br), 1000, 951, 808, 765, 725, 680, 636, 471, 382, 360, 339.

DMSO

1437, 1405, 1312, 1045, 1030, 954, 700, 669, 382, 335.

I.n (Acetone)
1710(sh), 1682, 1620, 1588, 1420, 1327, 1310, 1290, 1255,
1240, 1092, 1082, 1008, 820, 785, 725, 642, 536, 475, 374.

Acetone (liquid film) 1750(sh), 1712, 1465, 1420, 1365, 1225, 1000

I.l (cyclopentanone)
1701(br), 1620, 1583, 1420, 1355, 1325, 1310, 1290, 1252,
1168, 1088, 1082, 1009, 960, 838, 820, 775, 726, 642, 590,
562, 475, 376.

I.3 (cyclopentanone)

1750(sh), 1730, 1617, 1588, 1420, 1365, 1318, 1303, 1292, 1245, 1160, 1076, 1044(4,, 1000, 960, 960, 960, 860, 860, 768, 724, 639, 582(w), 472, 361.

Cyclopentanone (liquid film) 1740(br), 1625(sh), 1471, 1455, 1410, 1365, 1280, 1270, 1232, 1155, 1025, 960, 916, 892(w), 835, 810, 712(w), 580, 472.

I.(4-phenylpyridine)
1620, 1595, 1552, 1422, 1411, 1323, 1308, 1285, 1250, 1085,
1072, 1044, 1008, 832, 813, 769, 760(sh), 750, 735, 697,
640, 612, 561, 470, 370.

4-Phenylpyridine

1611, 1595, 1554, 1486, 1411, 1344(w), 1074, 1048, 1008, 994, 923, 830, 761, 751(w), 738, 699, 611, 561, 442(br), 368(w).

I.n (Quinoline)

1622, 1599, 1578, 1573(sh), 1505, 1435(w) 1470, 1396, 1350(w) 1317, 1303, 1292, 1285(sh), 1245, 1220(w), 1145, 1125, 1078, 1041, 1000, 958(w), 947, 944(sh), 807, 788, 768, 740, 638, 631(sh), 620(sh), 616, 525, 480, 395, 380,362.

Quinoline (liquid film) 1622, 1598, 1573, 1503, 1472, 1433, 1395, 1374, 1316, 1142, 1121, 1036, 1018, 983, 942, 809, 789, 762, 740, 632, 615, 525, 481, 396, 380.

I.3(3-pic)

1618, 1600, 1578, 1418, 1320, 1306, 1285, 1250, 1192, 1129, 1105, 1075(br), 1048, 1030, 1000, 815, 782, 770, 722, 711, 638, 630(sh), 535, 471, 458, 400, 369.

3-pic (liquid film)
1599(sh), 1580, 1481, 1460(br), 1417, 1388, 1230, 1194,
1130, 1109, 1047, 1032, 790, 715, 634, 404.

I.3(2-pic) 1615(sh), 1610, 1588, 1418, 1319, 1305, 1079, 1071, 1044, 998, 802, 798, 769, 728, 641, 638, 522, 487, 364.

2-pic (liquid film)
1595, 1572, 1480, 1435, 1380, 1298, 1240, 1153, 1106, 1054,
1001, 756, 733, 632, 548, 424, 408, 362.

I.lpy

1617, 1592, 1582, 1420, 1323, 1310, 1290, 1255, 1226(w), 1220(w), 1090, 1085, 1010, 997(sh), 857, 820, 774, 750, 724, 700, 659, 640, 612, 475, 411, 375.

I.3py

1615, 1588, 1580, 1440, 1418, 1321, 1308(w), 1288, 1248, 1218, 1150, 1082, 1080(sh), 1064, 1032, 1004, 995(sh),

-215-

815, 770, 751, 725, 700, 639, 612, 471, 405, 377.

py (liquid film)
1635, 1600, 1580, 1483, 1440, 1219, 1149, 1070, 1031, 995,
942(w), 749, 705, 605, 408.

I.3(d₅-py)
2285, 2255, 1620, 1588, 1551(sh), 1540, 1418, 1312, 1250(w),
1165(w), 1072(br), 999, 970, 890, 825, 809, 768, 725, 639,
588, 528, 472, 370.

I.l(d₅-py)
2280, 2265, 1620, 1585, 1550, 1540, 1420, 1328, 1310, 1292,
1256, 1090, 1085, 1010, 968, 830, 820, 765, 726, 642, 588,
549, 527, 473, 376.

d₅-py 2292(sh), 2270(sh), 2250, 1650, 1552(sh), 1539, 1465, 1417, 1369, 1322(sh), 1301, 1230, 1043, 1011(br), 966, 910, 889, 815, 770, 692, 627, 579, 530(s), 370.

Inorganic pyridine complexes (2000-250cm⁻¹)
HgBr₂py
1599, 1482, 1447, 1242(w), 1215, 1210, 1154, 1068,
1033, 1010, 748, 692, 636, 628, 411.

HgBr₂py₂ 1600, 1245(w), 1217, 1152, 1070, 1037, 1010, 950(w), 750, 703, 695(sh), 679(sh), 630, 420, 413.

HgCl₂py_{2/3}

1610, 1489, 1220, 1162, 1072, 1046, 1020, 753, 725, 690, 645, 418, 355, **2**95.

HgCl₂py

1608, 1598(sh), 1570, 1560, 1489, 1418, 1244, 1222, 1163(sh), 1160, 1075, 1046, 1020, 800, 789, 751, 725(w), 702(w), 690, 656, 644, 425, 293.

HgCl₂py₂

1604, 1579, 1247, 1225, 1160, 1082, 1040, 1019, 759, 726, 696, 640, 422.

HgI2py2

1595, 1581, 1215, 1150, 1068, 1032, 1009, 745, 723, 701, 626, 600, 418, 410.

Far Infra-red Spectra: 400-32cm⁻¹ Spectra were run as mulls in Nujol; values are <u>+</u>2cm⁻¹ I

I.lDMF

374, 224.

374, 330(w), 224.

I.2DMF

375, 320, 276, 224, 126(br), 108(br), 95, 43.

I.py

396, 371, 364, 352(sh), 224.

I.d₅-py 372, 226.

(C₆H₄Hg)₃; P2₁/c form 320, 281, 240-150(br)

(C₆H₄Hg)₃; P2₁2₁²1¹ form 320, 281, 240-150(br)

 $(C_6F_5)_2Hg$

366, 362, 356, 342, 315(sh), 310, 282, 230, 198, 121, 100

Raman Spectra: 4000-cl00cm⁻¹

Spectra were taken from powder samples, some of them exhibited slight broad-band fluorescence (*) and in others this was severe $(\frac{*}{2})$. Values are ± 1 cm⁻¹.

ŤΙ

1615, 1252, 1055(w), 770, 596(w), 470, 410, 180.

Ž I.2DMF

1645, 1618, 1588, 1579, 1499(w), 1473, 1443, 1416, 1385, 1295, 1249, 1105, 1077, 1000, 866, 815, 769, 698(w), 663, 635(w), 599, 475, 410, 344, 185.

* I.2DEF

1640, 1630, 1612, 1462(sh), 1455, 1440(sh), 1395, 1260, 1239, 1120, 1078, 1055, 995, 820(sh), 807, 760, 640(w), 596(w), 469, 435(w), 407, 330, 280, 179.

Bis(2,3-dihydrotrifluorophenyl)mercury: (C₆F₃H₂)₂Hg 3080(w,br), 2930(w,br), 2860(w,br), 1603(w), 1443(w), 1298, 1151,1105(w), 1020, 884(w), 867(w,sh), 699, 616, 585(w) 491(w,br), 317, 287, 235, 172, 155(w), 111.

(C₆H₄Hg)₃ P2₁/c form 1025, 641, 272, 155, 86.

Bis(pentafluorophenyl)mercury; spectrum run on a Spectra Physics 700 instrument (±5cm⁻¹) 139, 153(sh), 157(sh), 166, 233, 287, 297, 333, 353, 383(w), 400, 444, 494, 572, 633, 803(w), 872(w); (±10cm⁻¹) 1094, 1133, 1367, 1420, 1620.

-212-References

References

(1.959)1.K. Claus and C. Beermann; Angew.Chem 71 627 168 1039-1040 (1951) 2.T.J. Kealy and P.L. Pauson; Nature 3a P. Seiler and J.D. Dunitz; Acta Cryst. <u>B35</u> 1068-1074 (1979) 3b F. Takusagawa and T.F. Koetzl; Acta Cryst.B35 1074-1081 (1979) 4.A. Steitweisser and U. Mueller-Westerhoff; J.Amer.Chem.Soc. (1968)90 7364 5.A. Davison, J.A. McCleverty and G.Wilkinson; J.Chem.Soc. 1133-1138 1963 6.H. Suschitsky; Adv. Fluorine Chem. 4 1-30 (1965) 7.G.C. Finger, F.H. Reed, D.M. Burness, D.M. Fort and R.R.Blough J.Amer.Chem.Soc.<u>73</u> 145-149(1951) 8.G.C.Finger, F.H. Reed and R.E. Oesterling; J.Amer.Chem.Soc. 73 152-153 (1951) Bull.Classe Sci.Acad.Roy.Belg. <u>41</u> 759-760 (1955); Bull.Soc.Chim.Belg.<u>67</u> 676-686 (1958) 9.Y. Desirant; 10.E.T. McBee, V.V. Lindgren and W.B. Liggett; Ind and Eng.Chem. 39 378-380 (1947) 11.J.A. Godsell, M. Stacey and J.C. Tatlow; Nature <u>178</u> 199-200 (1958) 12.B. Gething, C.R. Patrick, M.Stacey and J.C. Tatlow; Nature 183 588-589 (1959) 13.G.M. Brooke, R.D.Chambers, J. Heyes and W.K.R. Musgrave; Proc.Chem.Soc. 1963 94-95; J.Chem.Soc. 1964 729-733 14.J.A. Godsell, M. Stacey and J.C. Tatlow; Tetrahedron 2 193-202 (1958) 15.B. Gething, C.R. Patrick, J.C. Tatlow, R.E. Banks, A.K. Barbour and A.E. Tipping; Nature <u>183</u> 586-587 (1959) 16.R.D.Chambers, J. Heyes and W.K.R. Musgrave; Tetrahedron 891-900 (1963) 19 17.N.N. Vorozhtsov, V.E. Platonov and G.G. Yakobsen; I Akad.Nauk. SSSR Ser.Khim. 1524 (1963); Izv. Chem.Abs. 59 13846f (1963)

-222-

18. G.G. Yakobsen, V.D. Shteingarts and N.N. Vorozhtsov; Izv.Akad.Nauk.SSSR Sev.Khim. 1551 (1964); Chem. Abs. <u>64</u> 14142b (1966) 19. I.C.I. Ltd; Brit. Patent. No. 970,746 (1964) 20. Imperial Smelting Corpn. Ltd.; French Patent No.1,360,917; Chem.Abs.61 13235h (1964) 21. R.S. Dickson and G. Wilkinson; J.Chem.Soc. 1964 2699-2704. 22. S. Szilagyi, J.A. Ross and D.M. Lemal; J. Amer. Chem. Soc. 5586-5588 (1975) 97 23. V.G. Lukmanov, L.A. Alekseeva, A.L. Burmakov and L.M. Yagupol'skii; Zh.Org.Khim.9 1019-1-24 (1973) 24. D.J. Malcolme-Lawes, A.G. Massey and D.A. Wickens; Unpublished Data. Endeavour, <u>22</u> 89-95 (1963) 25. J.C. Tatlow; Fluorocarbons and Their Derivatives (1964) 26. R.E. Banks; Oldbourne. 27. L.A. Wall, W.J. Pummer, J.E. Fearn and J.M. Antonucci; J. Res. Nat.Bur.Stand. 67A 481-487 (1963) Chem.Abs. 60 9170b (19<u>64</u>) 28. R. Bolton and J.P.B. Sandam; J.Chem.Soc.Perkin Trans.2 137-141; ibid 141-144 1978 29. G.M. Brooke, R.S.Mathews and A.C. Young; J.Chem.Soc. Perkin Trans 1 1977 1411-1417 30. G.G. Yakobsen, V.D. Shteingarts, A.I. Miroshnikov and N.N. Vorozhtsov; Dokl.Akad.Nauk.SSSR 159 1109-1112 (1964) Chem.Abs.62 9040e (1965) 31. D.G. Holland and C. Tamborski; J.Org.Chem. 31 280-283 (1966) 32. E. Neild, R.Stephens and J.C. Tatlow; J.Chem.Soc. 1959 166-171 33. W.J. Pummer and L.A. Wall; J.Res Nat.Bur.Stand 63A 167-169 (1959); Chem.Abs. 54 10906h (1960) 34. W.J. Pummer, R.E. Florin and L.A. Wall; J.Res.Nat.Bur.Stand 113-117 (1959); Chem.Abs.<u>53</u> 21726e (1959) 62 35. M. Hellman and A.J. Bilbo; J.Amer.Chem.Soc. 75 4590-4591 (1953) 2nd Edⁿ. 36. R. Breslow; Organic Reaction Mechanisms; Benjamin, 1969 p 167-169. 37. P.G. Cookson and G.B. Deacon; Aust.J.Chem. 26 541-555 (1973)

38. G.B. Deacon and D. Tunaley; J.Organometal.Chem.156 403-426 (1978) 39. G.B. Deacon and G.J. Farquharson; Aust.J.Chem. 29 627-635 (1976) 40. H.B. Albrecht and G.B. Deacon; J.Organometal.Chem. 57 77-86 (1973) 41. P.E. Fanta; Synthesis 1974 9-21 and references therin 42. R.J. Harper, E.J. Soloski and C.Tamborski; J.Org.Chem. 2385-2389 (1964) 29 43. S.C. Cohen, M.L.N. Reddy, D.M. Roe, A.J.Tomlinson and A.G. Massey; J. Organometal. Chem. 14 241-251 (1968) 44. D.E. Fenton, A.J. Park, D.Shaw and A.G. Massey, Tetrahedron Lett. 1964 949-950. 45. P.L. Coe, R. Stephens and J.C. Tatlow; J.Chem.Soc. 1962 3227-3231 46. H. Gilman and A.H. Haubein; J.Am.Chem.Soc. 66 1515-1516 (1944)47. C. Tamborski and E.J.Soloski; J. Org.Chem.31 743-745 (1966) 48. W.R. Cullen and A.W. Wu; J.Fluorine Chem. <u>8</u> 183-187 (1976) 49. C. Tamborski and E.J. Soloski; J.Organometal. Chem. 20 245-250 (1969) 50. R.D. Howells and H. Gilman; Tetrahedron Lett. 1974 1319-1320 51. E. Neild, R.Stephens and J.C. Tatlow; J.Chem.Soc. 1959 166-177 52. W.L. Respess and C. Tamborski; J. Organometal. Chem. 11 619-622 (1968) 53. N.N. Vorozhtsov, V.A. Barkhash, N.C. Ivanova, S.A.Anichkina and O.I. Andreevskaya; Dokl.Akad.Nauk. SSSR 159 125-128 (1964); Chem. Abs. 62 4045a (1965) 54. R.J. Harper and C. Tamborski; Chem. Ind. 1962 1824 55. J. Thrower and M.A. White; 148th Meeting A.C.S. Chicago (1964) Abstract 19K 56. G.M. Brooke and W.K.R. Musgrave; J.Chem.Soc. 1965 1864-1869 57. R.D. Chambers, J. Hutchinson and W.K.R. Musgrave; J.Chem. Soc. 1965 5040-5045

-224-

58. E.J.P. Fear, J. Thrower and M.A. White; 19th Int.Congress of Pure and Appl. Chem., July 1963, London; N65-20663 Sci and Tech. Aerosp. Rept. 3(10) 1965 59. W.L. Respess and C. Tamborski; J.Organometal.Chem 11 619-622 (1968) 60. G.M. Brooke and B.S. Thurniss; J.Chem. Soc. 1967C 869-873 61. A.G. Massey, A.J. Park and F.G.A. Stone, Proc.Chem.Soc. 1963 212; A.G. Massey and A.J. Park; J. Organometal. Chem.2 245-250 (1964) 62. S.C. Cohen, M.L.N. Reddy and A.G. Massey; J. Organometal. Chem. 11 563-566 (1968) 63. S.S. Dua, A.E. Jukes and H. Gilman; J. Organometal. Chem. 12 24-26(1968)64. S.C. Cohen, D.E. Fenton, A.J. Tomlinson and A.G. Massey; J. Organometal. Chem.<u>6</u> 301-305 (1966) 65. P. Sartori and H.J. Fromm; Chem.Ber. <u>107</u> 1195-1206 (1974) 66. D.D. Callander, P.L. Coe and J.C. Tatlow; Tetrahedron 22 419-432 (1966) 67. S. Lin and J.M. Miller; J. Fluorine Chem. 9 161-169 (1977) 68. O.M. Nefedov and A.I. D'yachenko; Dokl. Akad. Nauk SSSR 198 593-596 (1971); Chem.Abs.<u>75</u> 88225j (1971) 69. D.D. Callander, P.L. Coe and J.C. Tatlow; Chem.Commun. 1966 143**-**144 70. A.J. Tomlinson and A.G. Massey; J.Organometal.Chem.8 321-327 (1967); A.J. Tomlinson, Ph.D. Thesis, London (1968) 71. J.P.N. Brewer and H. Heaney, Tetrahedron Lett. 1965 4709-4712 72. G. Wittig and F. Bickelhaupt; Chem. Ber. 91 883-894 (1958) 73. G. Wittig, E. Hahn and W. Tochtermann; Chem.Ber.95 431-442 (1962)74. K.P. Butin, A.B. Ershler, V.V. Strelets, A.N. Kashin, I.P. Betelskaya and O.A. Reutov, J. Organometal. Chem. <u>64</u> 171-180 (1974) 75. R.D. Chambers, G.E. Coates, J.G. Livingstone and W.K.R. Musgrave; J. Chem.Soc. <u>1962</u> 4367-4371 76. M. Gaudemar; Bull.Soc.Chim.Fr. 1962 974-987

-225-

77. G. Wilkinson and T.S. Piper; J.Inorg.Nucl.Chem. 2 32-37 (1956) 78. L.I. Zakharkin and O.Y. Okhlobystin; Dokl.Akad.Nauk.SSSR 116 236-238 (1957); Izv.Akad.Nauk. SSSR Otdd.Khim.Nauk. 1959 1942-1947 79. A.N. Nesmeyanov; Chem.Ber. <u>62</u> 1010-1018 (1929) 80. P. Sartori and A. Golloch; Chem.Ber. 101 2004-2006 (1968) 81. M.S. Kharasch and L. Chalkley; J. Amer.Chem.Soc. <u>43</u> 607-612 (1921) 82. L. Pesci; Atti Accod.Naz.Lincei Rc. 10,1 362 (1901) 83. D.A.Wickens and A.G. Massey; unpublished data. 84. R.J. Bertino, B.A.W. Coller, G.B. Deacon and I.K. Johnson; J.Fluorine Chem 5 335-357 (1975) 85. A.N. Nesmayanov, N.F. Glushner, P.F. Epifanskii and A.M. Flegentov; Chem.Ber. 67 130-134 (1934) 86. J.R. Johnson and W.L. McEwen; J.Amer.Chem.Soc.48 469-476 (1926) 87. J.L. Maynard; J. Amer. Chem.Soc. 46 1510-1512 (1924) 88. G.G. Furin, O.I. Andreevskaya and G.G. Yakobsen; Zh.Org. Khim <u>12</u> 2627-2628 (1976); Chem.Abs. <u>86</u> 121473 (1977) 89. M. Goswami and H.N. Das Gupta; J. Indian Chem.Soc. 475-478 (1931); Brit.Chem.Abs.1931 A14351 90. L.C. Damude and P.A.W. Dean; J.Chem.Soc.Chem.Commun.1978 1083-1084 91. G.B. Deacon and D. Tunaley; J. Organometal.Chem. 156 403-416 (1978) 92. E.Frankland; Ann. der Chem. Justus. Leibigs 85 365 (1853) 93. C.M. Woodard, G. Hughes and A.G. Massey; J. Organometal. Chem. 112 9-19 (1976) 94. A.N. Nesmayanov, T.P. Tolstaya and L.S. Isaeva; Dokl.Akad. Nauk. SSSR 125 330-335 (1958) 95. G. Wittig and W. Herwig; Chem. Ber. 88 962-976 (1955) 96. A.N. Nesmayanov, I.F. Lutsenko and R.M. Khomntov; Dokl. Akad.Nauk. SSSR 88 837-838 (1953) 97. J.L. Maynard; J. Amer. Chem.Soc. <u>54</u> 2118-2120 (1932) 98. R.Adams, F.L. Roman and W.N. Sperry; J.Amer.Chem.Soc.<u>44</u> 1781-1792 (1922)

-226-

99. J.L. Burdon, P.L. Coe, M. Fulton and J.C. Tatlow; J. Chem.Soc. 1964 2673-2676 100. R.N. Meals; J. Org. Chem. 9 211-218 (1944) 101. L.G. Makarova and A.N. Nesmeyanov; The Organic Compounds of Mercury 338-339; Vol 4 in series Methods of Elemento-Organic Chemistry, A.N. Nesmeyanov and K.A. Kocheshkov eds, North-Holland 1967 102. G.B.Deacon and A.J. Koplick; J. Organometal.Chem. 146 C43-C45 (1978) 103. J. Burden, P.L. Coe and M. Fulton; J.Chcm.Soc. 1965 2094-2096 104. V.V. Bashilov, V.I. Sokolov and O.A. Reutov; Dokl.Nauk. SSSR 228 603-605 (1976); Chem.Abs. 85 143232 (1976); also V.I. Sokolov, V.V. Bashilov and O.A. Reutov; J. Organometal. Chem. 111 C13-C16 (1976) 105. C.G. Barraclough, G.E. Berkovic and G.B. Deacon; Aust. J.Chem. 30 1905-1916 (1977) 106. D.A. Long and D. Steele; Spetrochim.Acta 19 1947-1954 (1963); ibid 19 1955-1961 (1963) 107. S.G. Frankiss and D.J. Harrison; Spectrochimica Acta 31A 1839-1864 (1975) 108. D. Seybold and K.Dehniche; J.Organometal.Chem. 1-8 (1968) 109. D.B. Patterson, G.E. Peterson and A. Carnevale: Inorg. Chem. <u>12</u> 1282-1286 (1973) 110. O.E. Bartenev, S.L. Yotyakav and L.N. Novikov; Opt. Spectrosk. 36 845-847 (1974); Chem.Abs. 81 56336d (1974) 111. H. Kreneger, O.Lutz, A.Nolle and A.Schwenk; Z.Phys. A 273 325-330 (1975) 112. J.D. Kennedy and W. McFarlane; J.Chem.Soc. Faraday Trans 2 72 1653-1660 (1976) 113. C.J. Turner and R.F.M. White; J.Magn. Reson. 26 1-5 (1977) 114. M.A. Sens, N.K.Wilson, P.D. Ellis and J.D. Odom; J. Magn. Reson. 19 323-326 (1975) 115. M. Borzo and G.E. Macird; J.Magn. Reson <u>19</u> 279-282 (1975) 116. P.F. Barron, D.Doddrell and W. Kitching; J. Organometal. Chem. 139 361-383 (1977)

117. J.L. Sudmeier, R.R. Birge and T.G. Perkins; J.Magn.Reson. 30 491-496 (1978)
118. W. Foch, F.E. Wagner, D.Flach and G.M. Kalvius; J.Phys. (Paris) Colloq. <u>1976</u> 693-695; Chem.Abs. <u>86</u> 130646 (1977)
119. W. Wurtinger; J.Phys.(Paris)Collog. <u>1976</u> 697-701; Chem. Abs. <u>86</u> 130647 (1977)
120. V.G.Tsinoev and E.P. Stephanov; Prib.Tech.Eksp. <u>1978</u> 61-62; Chem.Abs. <u>89</u> 120267 (1978)
121. M. Krishnan; Indian J.Pure Appl.Phys. <u>4</u> 480-482 (1966)
122. D.E. Carlson and A.A. Temperley; Phys.Letters <u>30B</u> 322-323 (1969)
123. J.D. Roberts and M.C. Caserio; Basic Principles of Organic Chemistry, Benjamin, 792-794 (1964)
124. U. Krueeke, C. Hoogzand, W. Huebel and G. Vaubee; Chem. Bev. <u>94</u> 2817-2820 (1961)
125. H.C. Brown, H.L. Gewanter, D.M.White and W.G. Woods; J.Org. Chem. <u>25</u> 634-635 (1960)
126. J.D.Roberts and M.C. Caserio; Basic Principles of Organic Chemistry, Benjamin, 801, 864 (1964)
127. L.I. Smith and S.A. Harris; J.Amer.Chem.Soc. <u>57</u> 1289-1292 (1935)
128. L.I. Smith and C.O. Guss; J.Amer.Chem.Soc. <u>62</u> 2625-2629 (1940)
129. A.Fischer and D.R.A. Leonard; Canad.J.Chem. <u>54</u> 1795-1806 (1976)
130. R.B. Moodie, K. Schofield and G.D. Tobin; J.Chem.Soc. Perkin Trans.2 <u>1978</u> 1688-1693
131. A.G. Massey and D.A. Wickens; unpublished data
132. G.A. Ulah and H.C. Lin; J. Amer.Chem.Soc. <u>96</u> 2892-2898 (1974); Synthesis <u>1973</u> 488-489
133. L.I. Smith and C.L. Moyle; J.Amer.Chem.Soc. <u>55</u> 1676-1682 (1933)
134. V.A. Semin'ko; Trudy Khar'hov.Farm.Inst. <u>1</u> 160-163 (1957) Chem.Abs. <u>54</u> 24077c (1960)
135. L.I. Smith and O.W. Cass; J.Amer.Chem.Soc. 54 1614-1621 (1932
136. L.I. Smith and O.C. Guss; J.Amer.Chem.Soc. 62 2631-2635 (1940

-228-

137. P.T. Davies; J.Sci.Instr. 27 338 (1950)

133. L. Fauling; The Mature of the Chemical Bond, Cornell University Frees (1960)

139. D. Weaire; Fhil. Hag. <u>18</u> 213-215 (1964)

140. D. Grdenic; Quart.Rev.Chem.Soc. 1965 303-328 141. D. Grdenic; Chem. Ber. 92 231-234 (1959) 142. M.J. Hamor and T.A. Hamor; Acta Cryst. B34 863-866 (1978) 143. D.S.Brown, J.Bowen-Jones and A.G. Hassey; unpublished data 144. N.R.Kunchur and M.Mathew; Chem. Commun. 1966 71-73 145. G.Gill, F.H.Cano and S.Garcia-Blanco; Acta Cryst. B32 2680-2 (1976)146. D.Grdenic, B.Kamenar and A.Nagl; Acta Cryst. B33 587-589 (1977) 147. N.Mathew and N.R.Kunchur; Canad.J.Chem. 48 429-434 (1970) 148. D.Grdenic, B.Kamenar and V.Žeželj; Izv.Jugolsl.Cent. Kristalografiju. Ser A 10 73 (1975) 149. A.J.Canty and B.M.Gatehouse; Acta Cryst. B28 1872-1888 (1972) 150. A.J.Canty and B.M.Gatehouse; J.Chem.Soc. Dalton Trans. 1972 511**-**514 151. F.W.Kupper and H.J.Lindner; Z.Anorg.Allg.Chem.359 41-50 (1968)

-230-

- 152. G.M.Sheldrick; SHELX, A Program for Crystal Structure Determination (1976)
- 153. XRAY System (1972); Tech. Rep. TR-192. Computer Science Centre, Univ. of Maryland, College Park, Maryland.
- 154. P. Main, L.Lessinger, M.M.Woolfson, G.Germain and J.P. Declerq; MULTAN 74, a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data (1974) York, England and Louvain-la-Neuve, Belgique.
- 155. K.B.Harvey and G.B. Porter; Introduction to Physical Inorganic Chemistry, Addison-Wesley, 1963.
- 156. J.H.Sharp, G.W.Brindley and B.N.N.Achar; J.Amer.Ceramic Soc. <u>49</u> 379-382 (1966)
- 157. V.Šatava and F.Škvara; J.Amer.Ceramic Soc.52 591-595 (1969)
- 158. W.W.Wendlandt; Chemist Analyst <u>53</u> 71-72 (1964)
- 159. M.S. Barvinok, A.V.Panin and L.A.Obozova; Zh.Neorg.Khim <u>18</u> 1572-1575 (1973)
- 160. G.Beech, C.T.Mortimer and E.G.Tyler; J.Chem.Soc. A. <u>1965</u> 925-928
- 161. G.Beech, C.T.Mortimer and E.G.Tyler; J.Chem.Soc. A. <u>1965</u> 929-930

162. E. Tomus and E. Segal; Analele Univ. Bucaresti Ser. Stiint. Nat. 12 103-105 (1966) 163. C.Tamborski and E.J.Soloski; J.Organometal.Chem.10 385-391 (1967) 164. T.Dahl; Acta. Chem.Scand. 25 1031-1039 (1971) and 27 995-1003 (1973) 165. J.B.Ott, R.J.Goates and D.L.Cardon; J.Chem.Thermodynam.8 505-512 (1976) 166. C.K.Johnson; ORTEP, ORNL-5138, US Department of Commerce, Springfield, Virginia 22161. 167. Cambridge Crystallographic Files; University Chemical Laboratory, Cambridge, implemented by UMRC, January 1978 168. GINO-F (1975); CAD Centre, Madingley Road, Cambridge. 169. P.D.Mallinson and D.Peters; University of London Computer Centre, Bulletin B5.10/1, Molecular Wave Functions by GAUSSIAN 70. 170. M.S.Farag and R.K.Bohn; J.Chem.Phys. 62 3946-3950 (1975) 171. H.J.S.Winkler and G.Wittig; J.Org.Chem. 28 1733-1740 (1963) 172. G.Wittig and F.Bickelhaupt; Chem. Ber. <u>91</u> 883-894 (1958) 173. J.Kroupa and M.Matrka; Collect.Czeck.Chem.Commun. 35 2187-2196 (1970) 174. G.Kaufmann and M.J.F.Leroy; Bull. Chim. Soc.Fr. 1967 402-406 175. M.A.J.Jungbauer and C.Curran; Nature, 202 290 (1964) 176. S.Milicev; J. Mol. Struct. 25 189-196 (1975) 177. R.M.Barr, M.Goldstein and W.D.Unsworth; J.Cryst.Mol.Struct 165 - 171 (1974)4 178. D.Grdenic, M.Sikirica and I.Vickovic; Acta Cryst. B.33 1630-1632 (1977) 179. P.Biscarini, L.Fusina, G.D.Nivellini, A.Mangia and G.Pelizzi; J. Chem. Soc. Dalton Trans. 1973 159-161 180. S. Kulpe; Z. Anorg. Allg. Chem. 349 314-323 (1967) 181. L.A. Malmsten; Acta Cryst. B35 1702-1704 (1979)182. S.Dahl and P.Groth; Acta Chem. Scand; 25 1114-1124 (1971) 183. D.Grdenic and I.Krstanovic; Arhiv.Kemi. 27 143-148 (1955) 184. Y.Farhangi and D.P.Graddon; J.Organometal.Chem.17-21 (1974)

-231-

185. P.L. Goggin, R.J.Goodfellow and N.W.Hurst; J.Chem. Soc. Dalton Trans. 1978 561-566. 186. A.D.Redhouse; J.Chem. Soc. Chem. Commun. 1972 1119-1120 187. D.Grdenic. B.Kamenar and A.Hergold-Brundic; Cryst. Struct. Commun. 7 165-173 (1978) 188. A.J.Canty, N.Chaichit and B.M. Gatehouse; Acta Cryst. B34 3229-3233 (1978) 189. O. Hassel and J. Hvoslef; Acta Chem. Scand. 1953 (1954) 190. M. Frey and M. Ledesert; Acta Cryst. B27 2119-2123 (1971) 191. H. Brusset and F. Madaule-Aubry; Bull.Soc.Chim.Fr. 1966 3121-3127 192. P. Groth and O. Hassel; Acta. Chem. Scand. 18 1327-1332 (1964) 193. E.M. Cano, A. Santos-Macias and R.L. Ballester; An. Quim. 73 1051-1056 (1977); Chem. Abs. 88 105503 (1978) 194. A.J. Canty and G.B. Deacon; Aust. J.Chem. 24 489-499 (1971) 195. G.B. Deacon and A.J. Canty; Inorg. Nucl. Chem. Lett. <u>5</u> 183-185 (1969) 196. M. Sandstrom and I. Persson; Acta. Chem. Scand. 32A 95-100 (1978) 197. L.I. Smith and F.L. Taylor; J. Amer. Chem. Soc. 57 2370-2372 (1935) 198. G. Wittig and H. Harle; Ann. der Chem. Justus Liebigs 623 17-34 (1959)

-232-

Appendix 1

Temperature Factors for the structures analysed in Chapter 2. Anisotropic parameters refer to the equation $\exp\left[-2\pi^2 (U_{11}a^{*2}h^2 + \dots 2 U_{23}b^{*}c^{*}kl + \dots)\right]$ Isotropic parameters refer to the equation $\exp\left[-8\pi^2 U \sin^2(\sqrt[4]{\lambda})\right]$ All values have been multiplied by 10^3 ; standard deviations are given in parentheses.

(a) Orthorhombic Tribenzo [b,e,h][1,4,7] trimercuronin

	Ull	U22	U ₃₃	^U 12	U ₁₃	U ₂₃
Hg (1)	42.6(9)	36.5(7)	39.2(8)	-6.0(10)	3.0 (10)	0.6(7)
Hg(2)	40.7(8)	34.0(7)	40.6(7)	6.0(9)	4.4(10)	-1.2(7)
Hg(3)	39.8(8)	39.3(8)	33.6(7)	-3.2(8)	-6.5(9)	1.9(8)
		۱.				
	U		U			U
C(l)	64.8(15.6)	C(7)	35.9(9.7) C(13) 69.	0(16.9)
C(2)	43.7(11.1)	C(8)	35.9(9.2) C(14) 54.	3(13.8)
C(3)	30.2(8.6)	C(9)	36.7(9.8) C(15) , 40.	2(11.9)
C(4)	34.8(9.7)	C(10)	41.8(11.	4) C(16) 60.	9(15.9)
C(5)	38.4(10.6)	C(11)	41.9(11.	4) C(17) 31.	7(9.4)
C(6)	40.4(9.6)	C(12)	44.5(9.8) C(18) 34.	3(8.6)
						,

(b) Monoclinic Tribenzo [b,e,h][1,4,7] trimercuronin

	Ull	U22	U33	U ₁₂	^U 13	U ₂₃
Hg (l)	74.6(8)	51.4(6)	31.7(5)	3.2(6)	19.0(4)	1.5(4)
Hg(2)	73.5(8)	56.8(7)	32.3(5)	3.6(6)	15.9(4)	-1.8(4)
Hg (3)	66.0(7)	52.0(6)	31.9(4)	0.0(5)	10.8(4)	-4.0(4)

	U		U			U
C(l)	60.4(9.2)	C(7)	44.6(5.7)	0(13)	63.5	(8.2)
C(2)	47.1(7.4)	C(8)	55.9(7.1)	C(14)	45.4	(8.1)
C(3)	64.3(8.7)	C(9)	45.5(5.3)	C(15)	63.1	(7.4)
C(4)	55.7(10.9)	C(10)	59.7(6.0)	C(16)	48.2	2(7.1)
C(5)	57.1(7.4)	C(11)	57.2(6.4)	C(17)	51.3	(6.3)
C(6)	86.4(11.4)	0(12)	59.7(7.1)	C(18)	39.1	(5.4)
(c) Bi	is(2-hydrotet	rafluorog	ohenyl)merc	ury		
		**		**	TT	TT
	Ull	^U 22	^U 33	^U 23	⁰ 13	⁰ 12
Hg(1)	41.7(5)	47.5(5)	65.1(6)	9.1(8)	30.9(4)	0.7(8)
	U			U		
C(l)	58.7(4.8)	C(6	5)	44.8(3.5)	
C(2)	47.4(3.7)	F(2	2)	76.5(3.2)	
C(3)	55.5(4.3)	F(3)	79.4(3.3)	
C(4)	49.6(3.3)	F(4	1)	83.3(3.0)	
C(5)	53.4(4.1)	F(5)	72.9(3.1)	
(d) Pe	erfluorotribe	enzo[b,e	h][1,4,7] 4-phen	trimercu ylpyridi	ronin. ne	
* .	TT	TT	TT	TT	TI	II.

Ļ

••	Ull	^U 22	^U 33	^U 23	⁰ 13	^U 12
Hg (1)	43.0(7)	34.6(5)	50.0(6)	-0.5(5)	9.1(5)	-1.7(5)
Hg (2)	41.7(7)	39.2(6)	50.8(6)	-1.4(5)	9.7(5)	0.0(5)
Hg (3)	41.0(7)	39.3(5)	50 .6(6)	-0.2(5)	8.0 (5)	1.2(5)

				x	х 1
	, a				
	U		U		U
C (1)	44.0(6.4)	C(11)	43.1(6.1)	C(21)	45.7(6.6)
C(2)	41.0(6.0)	C(12)	50.7(7.1)	0(22)	39.9(5.9)
C(3)	55.2(7.6)	C(13)	52.5(7.3)	0(23)	55.6(7.6)
C(4)	57.2(7.8)	C(14)	58.1(7.9)	C(24)	56.4(7.7)
C(5)	62.6(8.4)	C(15)	50.0(6.9)	C(25)	55.8(7.6)
C(6)	51.8(7.2)	C(16)	45.1(6.5)	C(26)	52.7(7.2)
F(3)	60 .3(4.4)	F(13)	68.0(4.9)	F(23)	60.1(4.3)
F(4)	73.5(5.2)	F(14)	69.4(4.9)	F(24)	69 . 2 (4.9)
F(5)	82.9(5.8)	F (1 5)	70.9(5.0)	F (25)	70.5(5.0)
F(6)	73.2(5.2)	F (16)	63.5(4.6)	F (26)	62.4(4.5)
C(31)	53.2(7.3)	C(41)	54.9(7.4)		•
C(32)	54.3(7.5)	C(42)	61.0(8.2)		•
C(33)	63.3(8.6)	C(43)	72.7(9.7)		
N(34)	68.2(7.5)	C(44)	70.6(9.4)		• .
C(35)	66.2(8.8)	C(45)	72.3(9.6)		
C (36)	54.0(7.3)	C(46)	52.9(7.2)		•

Structure Factor Tables for

Orthorhombic Tribenzo(b, e, h)(1,4,7)trimercuronin.

		n,K,	r		U, K,	Ż.	13	1093	1065	23	3 *	206
							14	1436	1359	29	j *	223
	66	229	6071	Ŀ,	2636	2860	15	1211	1 17 7	3.5	2,3*	91
	8 6	827	6542	1	365 3	3861	16	683	655	31	 i) *	102
	10 3	766	3548	2	1875	1151	17	1359	1283		Ŭ	A 10 L
	12 2	30.8	2262	7	41 6		18	36.2	100		nv	E .
	14 4	579	4392	<u> </u>	 .:¥	122	10	4152	1425		0989	9
	46 4	605	4450	5	775	760	20	746	504	4	4.714	4740
	10 1	354	4 284	5	102	1324	24	40.0	091	±	T 2 T T	1316
	70 T	0/1	14.77	2	1771 7330	7764	21	1045	200	2	1000	1303
	20	942 rom	25.27	(0022	3/01	22	309	465	5	945	974
	26 6	000	6961	. 8	2200	2329	23	1012	1018	4	1251	103
	24 1	520	1042		670	2302	24	428	534	2	1025	1623
	20	224	439	16	0/2	284	25	916	935	5	897	979
	28	583	683	11	0 .	138	26	U *	271		1067	1179
	30	934	1059	12	0+	183	27	580	740	3	551	533
	32	436	613	13	1115	991	- 28	421	529	9	208	942
				14	1141	1143	29	521	681	1.0	1915	993
		0,K,1	L	15	2640	2575	30	325*	202	11	281	157
				10	1086	1097	31	591	638	12	258	380
	31	591	1624	17	1366	1351	32	587	298	13	1518	1559
	4	347	296	18	U *	184		.:		14	410 .	429
	51	732	1686	19	20.3*	199		0,K,	4	15	613	576
	61	547	1592	20	0×	18				16	668	677
	7	709	791	21	73 5	733	ņ	107*	187	17	414	487
	8	0*	141	22	724	706	4	964	1031	13	594	564
	92	437	2333	23	1440	1360	2	1307	1436	19	495	4118
	10	546	546	24	 0*	376	3	4424	4453	- 25	118*	146
	11 1	315	1256	25	395	346	4	2097	2199	21	967	1628
	12	934	951	26	n*	202	5	3571	3564	22	63 *	51
	13	986	9.19	27	354	65	6	886	GLA	23	00 1) #	284
	14 1	270	1262	28	17 7 ¥	77	7	600	554	24	687	166
	15	495	510	29	67.1	572	g	005	163	24	705	2.0
	16	455	1.82	20	. 0.4	221	0	1606	1604	20	1.77	200
	17 1	684	1604	31	55.8	556		1000	4	20	- 413	220
;	4 J 4 J	766	240	70	20 (13)	75	- 10 - 44	7707	2:04	21	.309	425
	40	2664	267	52	42 7 1	00	40	41.30	5 391 1 / 20	20		120
	7.2	200'	6.96		n 12 -	2	12	1429	1429	29	335	- 201
	21	021	000		UgKgi	2	1.5	1983	1958	30	304	. 82
	21	0.5.7	321	ė	24.0	44.0	14	277	295	31	0 *	51
	22	823	190	1	21.8	142	15	255+	277		· · · ·	
• •	23	/31	039	2	397	1029	15	U.+	1/5		Ü , K , I	D
	24	0.0.0	74	3	487	562	17	1082	1135			
	25	897	1019	4	425	365	18	871	830	0	2068	1936
	26	313	213	5	- 555	537	19	2057	2067	1	140*	- 30 9
	27	0*	200	6	2832	2674	20	425	492	2	4154	4100
	28	391	572	7	738	79u°	21	979	926	3	498	590
	29	0.*	157	8	934	870	22	G *	65	4	5546	5452
	30	258*	312	. 9	1253	1229	23	U *	112	5	498	482
	31	462	391	10	2452	2412	24	207*	5	6	3231	3190
	32	103*	52	11	1178	11>2	25	. 0*	296	7	233*	306
				12	1110	1673	27	775	ŭ1 O			

. .

5

		ú,K,	6	25	81*	218	10	1285	1262		P. K.	. 4 4
				24	565	585	11	502	583		y 'N y	- - 1
	8	2249	2180	25	377	198	12	465	432	1	563	676
	9	343	281	26	475	425	13	795	803	2	2.502	201
	10	3512	3539	27	ų¥	37.0	14	75r	769	7	550	575
	11	484	436	23	(i*	176	15	598	616	. 0	170 #	212
•	12	3718	3718	29	476	528	16	778	776	- ''		140
	13	373	326	36	295*	264	17	421	500	c c	020	547
	14	1739	1757	•••			18	676	794	7	כטס י די די די	000
	15	177*	198		0.K.	R, ¹ .	19	683	715	ן מ		202
	16	1182	1138		~,,		20	432	705	0 1	0 T U T	247
	17	270*	213	11	517	514	24	721	71.0	. J	504	812
	18	2518	2471	1	155*	228	22	147	790	10	434	047
	19	- 63¥	246	2	521	540	27	411	306	11	325	309
	20	2108	2092	7	1783	1780	20	404	520	12	- U*	282
	21	177*	121	ŭ	156.2	1502	24	· · · · ·	222	13	392	445
	22	753	652	5	1267	1.00	20	424	445	14	613	464
	23	288*	66	5	31 /	210	20		318	15	81*	93
	24	786	748	К	- 514 - 4n 2	219 742	20	U.T.	487	15	552	327
	25	288*	443	o D	70 C 24 7 X	457	20	U	248	17	606	631
	26	1178	1255	1 0	707	700		D 1Z		13	295*	291
	27	1110 114	115	11	1462	1642		U y K y	10	19	330	266
	28	384	750	1.2	1010	1914	•	4040		20	- 34 <u>1</u> *	281
	29	004 0¥	24	1 7	74.6	776		1012	389	21	233*	211
	30	2144	219	14	768	64	2	2322	2331	22	Ŭ*	151
	00			4.5	. D X	204 200		224	513	25	277*	135
		0.4	7	4.6	41.1.1	070		639	681	24	417	229
			· .	17	24.2	209	ц. С	4000	138	25	517	355
	1	1 307	1262	1.8	425	501		1008	942			
	5	770	8/1	4.0	000	241		6U9	651		⊎ ,K, ;	12
	3	953	1000	20	120	TUCT		2420	2440	_		
	Ľ.	100*	44/	24	- 40 C - 71 7X	409	0	020	0/6	Ĵ	2343	2304
	5	1610	1650	21	030T 138	422	40	1805	1795	1	406	473
	6	196*	347	25	425	122	19	2137	287	2	1540	1469
	7	1104	1407	26	マロッ	319	11	340	296	3	110*	192
	8	561	618	27	524 E24	202	12	2074	23	4	646	645
	ă	1108	1010	29	17 44	209	10	094	907	5		271
	10	- 300	860	20	1/ 4/ 4/. 0×	92	14	473	406	Б	1//5	1690
	. 1 1	2074	- 147	6.5	14 0*	92	15	1754	1748	7	465	563
	12	201 205半	4 30		0 4 0		15	528	553	8	2308	2306
	4 3	1 577	1647		. U9 K99		17	809	862	9	177*	328
	14	758	1.20	4	45.08	45.5	18	0.* **	133	18	853	914
	15	570	100	1 2	1297	100	19	18*	201	11	155*	39
	16	205	7000	2	10+6	1785	20	. U T	37	12	428	423
	17	564	600	ა "	UT 	18	21	738	732	13	166*	237
	1 A	757	765	4	. UT 1.07	1(1	22	199*	227	14	1292	1301
	40	570	745	2	407	519	25	1052	95.8	15	281*	376
	2 U	209	2774	0 7	1301	1310	24	0 *	190	10	1263	1318
	21	1110	4076	/ 0	02 0 17 C	550	25	303*	335	17	273*	195
	22		2010 1010	0	47.0	50 B	25	395	49	18	462	476
	[[C () 4 (200	9	TO 0-	366					•	

••

									i i	
								,		
· · · · · · · · · · · · · · · · · · ·										
and a second		•								
			· •							
	8 . K. 12	17 380	147	1.	604	697	23	729	163	
	UNNIL	1.8 33*	101 101	- <u>י</u> י 5	1809	1692	2 5	842	892	
19	399 63	3 19 118*	¹⁶⁸	6	1521	1437	25	510	428	
20	251* 430)		7	2068	1 358	26	469	540	
21	343* 140) O,K,	15	8	768	763	27	214*	177	
22	820 866)		9	654	597	28	554	611	
23	321* 164	1 306*	166	17	679	644	23	270*	218	
		2 495	588	11	2289	2196	30	473	435	
	U9K91-3	3 24 04		12	1591	1479	31	3¶ **	94	
· · •	631 645	4 U* : E 240#	· 110	- 13-	1606	1579	32	U T	427	
· 2	288* 170	6 292¥	- <u>44</u> 0	15	1 3 8 5	1277		1.6.	2	
ц. ц	78* 77	່ 7 ຖ າ	· 74	16	1793	1 843		1909	C _	
5	506 515	5 5 199*	80	17	218*	21	ú	3131	3153	
δ. O	399 359	9 23 3*	244	18	1060	1034	1	1296	1429	
7	0* 162	10 U	208	19	1211	1250	2	510	520	
ð	0* 233	5 11 37*	241	21	1248	1306	- 3	1466	1559	
9	646 637	12 0*	263	21	× ۲.	54	4	2419	2455	
10	0* 45	13 218*	130	22	1196	1172	5	1004	1861	
11	410 258		371	23	517	086	6	694	708	
14	410 279	10 12 425	234	27	18*	267	· /	538	911	-
10	529 529 548 78/) <u>1</u> 0 UT	· 143	27	797 790	626	0	1200	1200	
15	377 91	К.	16	28	772	920 878	10	504 504	40	
10	0* 176			29	· 6*	150	11	39 7	942	
17	510 635	ើ ភ្លំ ភ្លំ¥	54	30	661	697	12	1370	1354	
18	354 208	1 343*	358	31	177*	257	13	779	683	-
19	0* 166	2 236 *	171	32	609	498	14	1041	991	
23	273* 350	3 107 8	983				15	1056	890	
21	447 232	4 0*	239		1,K,	1	16	1093	987	
		5 9/5	382	_			17	347	104.	
	0,K, 14	6 Ú*	90	5	1662	1786	13	931	865	
i	650 640		. С8 . ТЭА	4	4001	4 99 0	19	161	829	
1	358 408	0 0' 1 4 364	320	6	1034	1005	21	576	104 500	
2	521 97	1.0 262*	176	7	931	97 1	-22	827	815	
3	0* 306	11 905	954	8	2747	2587	23	469	452	
4	546 361	. 12 0*	164	9	1473	1382	24	495	444	
5	188* 137	• · ·		10	2799	2659	25	ə *	213-	
6	318* 177	й , К,	17	11	1551	1448	26	465	519	`
7	° 299* 445			12	1676	1652	27	332*	369	
8	314* 449	1 250*	194	13	1108	1087	28	447	380	
9	343 274	· 2 31.8*	272	14	2035	1987	29	435	299	
10	UT 85) <u>3</u> []* /₀ =≠=	1/5	10	1054	1057	30 ⇒▲	354 *	362	
11	910 231 255¥ 202	- + 2 52	104 926	1/	12.27	7.40 1.05.0	31 72	>2*	1/9	
12	14 ED	9 420	200	10	572	200 7202	ುಗ	U *	TOJ	
14	0* 265	1. K.	n	20	1060	1012				
15	354 374		-*	21	476	381				
16	0* 240	3 216 0	2119	22	1089	1007				

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•		
			: · · ·			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1, K, 3 6418 6341 473 455 399 450 4774 4738 402 477 4689 4625 657 707 4328 4309 199* 32 3508 3522 0* 223 3471 3428 473 460 2939 2863 406 389 2659 2694 0* 169	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	362 2 399 3 196 3 785 619 700 252 748 546 527 538 255 265 3749 1 349 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 236×315 121599101813665657141514158115720736151174124017513530181108113119107 \times 55201027110621255 \times 3142280179923325 \times 29724716713250 \times 19926295 \times 559270 \times 5328580502290 \times 216
141156118730380519130*132u26332587156837un14329429110781135168388781,K,715521644230324617646606166357043790838189821053017801840170*18442016194419174*123113701247185375395480483206577402261126171947336864845262152856036656372032537777868452244751942212221021208*114315911557230*2705816797224024079772799245725686237823642349535410750726250*300711081230244143611173875026583487817801820250*1291211711169270*12298799462640233513244*16128377488 <td>19 20 21 22 23 24 25 26 27 28 29 30 31 32</td> <td>1758 1769 0* 174 1780 1804 292* 288 1425 1441 258* 147 1159 1271 148* 108 716 860 0* 84 683 803 196* 142 620 567 0* 36 1,K,4</td> <td>1, K, 0 820 1 1294 2 1950 3 349 4 1617 5 1104 6 1946 7 1270 8 967 9 1274 10 1717 11 395 12 1329 13 927</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>13 343 191 14 676 631 15 1263 1255 16 1086 1059 17 498 457 18 1063 1094 19 805 774 19 805 774 19 805 774 19 $6*$ 157 22 580 716 23 498 701 24 820 884 25 $159*$ 166 26 565 695 27 373 371 28 465 471 29 $6*$ 191</td> <td>1,K,8 3 1182 1167 1 735 717 2 160* 326 3 668 655 4 1078 1051 5 394 368 6 0* 359 7 772 795 3 975 1131 9 491 447 10 535 546 11 561 586 12 668 794</td>	19 20 21 22 23 24 25 26 27 28 29 30 31 32	1758 1769 0* 174 1780 1804 292* 288 1425 1441 258* 147 1159 1271 148* 108 716 860 0* 84 683 803 196* 142 620 567 0* 36 1,K,4	1, K, 0 820 1 1294 2 1950 3 349 4 1617 5 1104 6 1946 7 1270 8 967 9 1274 10 1717 11 395 12 1329 13 927	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 343 191 14 676 631 15 1263 1255 16 1086 1059 17 498 457 18 1063 1094 19 805 774 19 805 774 19 805 774 19 $6*$ 157 22 580 716 23 498 701 24 820 884 25 $159*$ 166 26 565 695 27 373 371 28 465 471 29 $6*$ 191	1,K,8 3 1182 1167 1 735 717 2 160* 326 3 668 655 4 1078 1051 5 394 368 6 0* 359 7 772 795 3 975 1131 9 491 447 10 535 546 11 561 586 12 668 794
	U 1 2 3 4 5 6 7 8 9 10 11 12 13	2633258710781135303246790838201619444804834845267868451591155777279975072673875011711169244*161	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1187 3 700 878 606 1053 123 740 560 519 270 568 300 487 122 488 1	380 519 1,K,7 0 1780 1840 1 1370 1247 2 2611 2617 3 665 637 4 2212 2210 5 816 797 6 2378 2364 7 1108 1230 8 1780 1820 9 879 946 0 2049 2110	13 $0 *$ 13214329429155216441663570417 $0 *$ 18418587539194733682032537721208*11422402407234953542441436125 $0 *$ 12926402335

					,						
		. *									
	•				•						
	1.1.1	R.	4.2	871	80.7	h	414	122	2	347	137
	19199		13	43 9	555	5	5ù2	500	ے ح	414	376
27	391	184	1.4	443	534	6	528	466	4	277*	459
28	0*	155	15	35 8	432	7	535	620	5	¥ ل	278
			16	583	532	8	373	231	6	347	239
	1,K,	9	17	29 2¥	264	9	222*	247	7	414	417
			18	432	478	10	0 *	179	8	, 65 *	463
0	155*	69	19	41 7	469	11	554	752	9	316*	217
1	2648	2629	2.0	473	456	12	255*	508	13	210 *	201
2	528	512	21	200	497	1.5	897	246		204	438
- 3	2511	2539	22	ムイ ST 51 2	420	14 15	491	510 611	17	- 291 - 291	400
4	2511	2468	25	0) 2 ·	254	16	- 3144		14	 229.¥`	236
· 6	04	396	25	0 n×	198	17		71	15	- <u>n</u> *	272
7	2585	2616	26	28 8*	346	18	321*	351	16	155 *	227
8	0*	171				19	233*	508	17	0*	102
.9	2511	2480		1, K, 1	1	20	572	45 9	13	183¥	149
10	218+	414				21	0 *	127			
11	1639	1622	0	37 3	502	22	373 *	415		1,K,1	5
12	465	489	1	64 6	628	23	299 *	309			
13	1872	1869	2	90.8	920			1.44	G	192*	375
14	244*	181	3	698	573		1,K,	13	1	812	857
15	1551	1592	4	UT (4 7	138	•		1054	2	244*	203
10	UT.	15/	5	613	531		1045	1001		94 <u>2</u> 0#	920
11	1421	1496	7	2007 2027	7 C L 2 L Å	2	1278	1 261	4 5	954 954	924
10	4145	1170	8	447	407	ے ۲	539	475	6	-90∓ ∵ù¥	284
21	233*	259	ğ	55 9	517	4	1004	1006	7	635	714
21	1092	1121	10	635	528	5	358	400	8	0*	314
22	70*	33	11	35 8	327	6	1222	1167	Э	897	790
23	698	814	12	12 6¥	303	.7	. 0*	134	10	233 *	165
24	0*	129	13	50 2	490	8	853	896	11 -	720	734
25	631	- 743	14	521	515	9	366	3u 2	12	0 *	122
26	244*	144	15	329	22	10	1052	1001	13	679	701
27	0 *	464	• 16 -	362	439	11	402	3//	14	13/*	238
			11	51 (411	12	897	843	19	509	407
	1, K,	10	18	54 S	300	1.5	- 40U - 027	249		1 2 4	c
a	4 84 2	10 71	20	288	200	15	927 354	64		19891	.
1	181*	284	21	38.4	. 324	16	738	692	n	465	454
2	480	154	22	412	315	17	210#	203	1	225*	134
3	358	355	23	281*	101	- 18	569	619	2	170¥	2
4	1137	1129	24	22 2*	280	19	0 *	211	3	0*	147
5	491	466	·. ·			20	546	522	4 -	402	413
6	63*	396		1, K,1	٤.	21	0*	100	5	63¥	74
7	561	489						•	ó	321 *	136
8	927	911	0	174*	161		1,K,	14	7	107*	110
9	92*	161	1	35 5	497	•		9일 4	8	395 207 =	423
10	225	493	4	+4*	100	H 4	495	301	9	641 -	200
11	318	ა ა > >	ა	010	OTO.	7	6697	734			

• •

												•	
			-			'							
		1.K.	16	4	713	653	19	1591	1591	'n	1983	2117	
				5	1750	1778	20	580	536	1	3923	3220	
	10	162*	1.38	. 6	794	760	21	628	733	2	1322	1441	
	11	528	192	7	1226	1223	22	207*	59	3	894	95.0	
				8	1257	1243	23	92¥	53	4	318	192	
		1,K,	17	ÿ	93.8	915	24	214*	317	5	1252	1657	
		• •		10	1034	1003	25	484	621	6	1285	1390	
	0	- 0*	115	11	572	507	26	495	319	7	3128	3197	
	1	0*	261	12	56 1	478	27	. 546	698	8	1377	1484	
	2	292¥	287	13	1658	1620	28	255*	189	Э	2345	2383	
	3	332*	1 38	14	532	525	29	0*	214	13	724	748	
				15	83 1	746	30	0 *	133	11	436	451	
		1,K,	3	16	894	893	31	310*	78	12	469	475	
				17	491	421				13	1130	1187	
	3	4416	4377	18	735	768		2.K.	3 .	14	979	1014	
				19	43 2	508				15	2223	2257	
		2 , K,	0	20	+ ن	112	0	1015	931	16	868	673	
				21	L012	1078	1	594	670	17	1134	1146	
	3	753	655	22	336	468	2	1964	1955	18	491	435	
	. 4	6126	5982	23	436	366	- 3	908	931	19	g *	221	
	5	731	652	24	55 O	622	14	303	366	21	380	320	
	7	284	213	25	299¥	169	5	801	832	21	868	9119	
	8	2932	2849	26	469	389	6	1920	1.943	22	587	554	
	9	746	749	27	639	410	7	1130	1168	23	1159	1201	
	10	4025	3989	28	15.8*	01	8	809	844	24	 0 *	-341	
	11	303	280	29	343*	570	9	820	812	25	510	462	,
	12	4147	4115	30	31 0¥	292	10	1721	1696	25	n *	-44	
	13	624	460	31	J*	121	11	1296	1342	27	284*	112	
	14	2201	2117		-		12	738	7.15	28	; ×	268	
•	15	288	75		2 . K .	2	13	1012	1656	29	502	699	
	16	1617	1593		_,,	-	16	1111	1.154	30	- 321 ¥	168	
	17	646	721	់ម	30.6	249	15	1233	1186	00	VLL	1 00	
	18	2747	2680	1	93 8	834	16	845	76 1		2. K.	5	
	19	369	153	. 2	1215	1273	17	1041	1014			-	
	20	2215	2211	3	2491	3100	18	764	761	n	1012	1005	
J	21	347	306	· 4	1831	1913	19	986	1 68 0	1	353	980	
	22	919	912	5	2499	2590	20	657	555	2	1189	1207	
	23	329	194	6	1063	1071	21	905	94.8	3	4100 879	815	
	24	834	899	7	37 7	341	22	n×.	439	4	1086	1141	
	25	251*	319	- 8	25.5	378	23	871	90.1	5	850	984	
••	26	1237	1316	° q	1050	1666	24	619	564	F.	935	BBR	
	27	299¥	3	10	1 37 4	1317	25	820	78.0	7	783	860	
	2.8	687	853	11	2455	2419	26	270*	325	8	388	269	
	29	236*	53	12	1 32 9	1278	27	532	732	ă	1425	1496	
	30	. <u>n</u> *	2.19	13	1433	1455	28	185*	32.8	10	613	674	
	31	199*	204	14	21 4¥	347	30	10 ¥	124	11	764	942	
				15	28.4	67	31	572	547	12	609	665	
		2.K.	1	16	51 7	425	•	- · L		13	602	607	
		- 1 1 1	-	17	88.3	81.6		2.K.	L	14	757	744	
	3	1204	1192	18	76.4	656				. • •			
	v		نسا∕ يون مع	- - V									
							·				- -		
												-	•
									· .				
	•												
,													

	2,K,	5		2,К,	7	17	631	620	6	462	527
						18	425	82		454	485
15	366	500	U	532	502	19	262*	208	8	377	325
16	118*	378	1	1082	1u97	20	343	233	9	853	816
17	1075	1017	2	42.8	424	21	473	37 0	10	453	589
18	447	515	3	971	.894	22	325*	318	11	1754	1779
19	281*	254	4	716	769	23	587	625	12	507	587
20	646	693	5	71 3	772	24	480	189	13	1196	1192
21	273*	178	Ű	619	799	25	6*	207	15	462	383
22	347	393	7	321	287	26	362*	199	16	325*	251
23	428	413	8	587	611	27	0*	64	17	635	726
24	336	1 36	9	1219	1200				18	506	415
25	550	653	10	35 2	276		2,K,	9	19	1152	1670
26	277*	251	11	517	524				20	377	277
27	170*	199	12	75 0	321	n	0 *	57	żż	0.*	88
28	- 0 *	304	13	32.9	466	1	414	438	- 23	406	152
29	· 0*	119	1.4	831	740	2	949	974	24	0.4	196
			15	15.5*	370	3	166*	44.0	25	487	440
	2.K.	6	16	384	266	4	517	463		401	
	- ; . , ;	•	17	97 1	1042	5	- 2474	220		2.1.	14
n	5114	5108	18	487	1046	5	800	071		~ 9 ~ 9.	. .
1	2114	070	10	401	797	7	524	637	n	4.87	4.24
	7170	300	20	- 4 <u>9</u> 4	552	ģ	- 26 T	244	ات 4	765 ¥	1204
2	2109	5075 Eoz	20	172	220	0	- 220°	694	· 1	200-	430
. J.	4 1 7 7	41.71	22	47.0	229 505	10	209	604	2	4/0	241
4	14/7	14/4	22	· 22 4	292	10	500	655	<u></u> з	550	.476
2	709	7700	23	447	075	11	539	022	- 4	U T	211
7	3320	0099	24	42 1	230	14	294	248	2	551	644
	202	200	20	492	292	13	302	470	0	524	449
8	4032	41/0	26.		304	14	6/2	663	7	569	589
, y	606	6.55	27	5/*	82	15	742	696	8	247*	232
10	1983	2051	28	421	403	15	0 +	307	9	443	483
11	340	1/9		.	•	11	b1/	662	10	2774	321
12	1220	1222		2, K,	8	18	277*	353	11	0 *	438
13	687	730				19	532	584	12	-) *	150
14	2559	2592	U	95 3	1043	29	465	473	13	580	643
15	343	352	1	1333	1483	21	388	458	14	247*	36
16	2500	2590	2	521	259	22	74*	329	-15	236*	317
17	454	385	, 3	45 8	467	23	583	577	15	122*	317
18	1001	994	4	23 3*	259	24	0*	182	17	· 0 ¥	226
19	395	209	5	47 3	365	25	476	496	19	207*	198
20	886	755	6	75 7	619	26	6 ×	148	19	ə *	210
21	414	493	7	1219	1243				20	517	228
22	1495	1553	8	1049	1110	1	2,K,	1.0	21	521	401
23	0*	145	9	794	739				22	155 *	205
24	1156	1177	10	61 3	513	ņ	170*	108	23	181*	144
25	0*	155	11	0 *	130	1	738	796			*
26	402	345	13	41.4	356	2	742	784			
27	181*	151	14	69.8	675	3	2057	2069			
28	284*	436	15	95 3	1019	4	727	788			
29	273¥	246	15	45 0	498	5	1761	1775		-	

••

	2										
	2,K,	12	5 L)	<u>0</u> *	287		3,K	9 Ü	20	1115	1064
			. 1	. 476	303			-	21	450	498
1	0*	348	2	89*	206	3	491	490	22	366	533
2	1455	1419	3	3 458·	447	4	203	142	23	233 #	535
3	528	472	4	377	452	5	251	130	24	<u>ц</u> 58	520
4	1942	1982	5	5 58 7	353	6	650	651	25	177*	1 30
5	310*	441	6	21.4*	184	7	1717	1666	26	277	500
6	1078	1073	8	35 1	269	Å	1111	1682	27	2058	
7	277*	261	q	30.6*	202	á	075	1806	20	277	239
8	609	553	1.0	31.8*	293	10	1780	17/0	20	511	- 420
ģ	n*	426	11	36.6	370	14	524		29	267	200
1.0	1 3 3 7	1341	12	45.8	36.2	12	261	4 175	30	T9T	221
11	281*	387	13	417	237	17	4223	* 0000 K 076		7 1/	2
12	1444	1470	14		151	44	2663	· 200		39K 9	2
13		310	15	719	100	. 19	42601	- 10U			
14	650	651	16	099 	190	10	1440	1181	0	1034	1104
· 45	020	105	47	- U' 405x	101	10	1400	1441	1	823	882
16	587	44.0	± '	- T0 24	TO 0	1'	543	411	2	5/6	634
17	501	743		D 1/		18	1333	1352	3	617	672
4.2	027	077		29 Kg	15	19	450	359	4	742	730
4 0	200X	407	0	40.08	0 2 0	21	439	402	5	606	65ú
20	500°	100	ີ ປີ ເ	1997	238	- 21	2704	272	5	554	557
20.	4 6 6 4	020	1	33 2*	154	22	502	537	7	772	773
21	1957	161	2	34 0*	530	23	642	689	8	1255	1275
22	2027	250	3	25.6*	248	24	1093	1088	9	1134	1157
	.		- 4	U^	42	25	ຸ ິມ ¥	119	10	871	865
	29K93	13	5	391	269	26	919	780.	11	450	420
			6	395	400-	27	432	177	12	738	717
9 - O	602	405	- 7	25 8*	207	28	- 303*	287	13	495	498
1	439	473	8	347*	251	29	314*	167	14	602	476
2	114*	255	9	185*	66	30	388	468	15	594	600
	222*	382	18	43 g	423	÷			16	927	935
. 4	33*	340	11	Ŭ ¥	261		3,K,	1	17	805	747
5	550	558	12	148*	110				18	617	607
6	277+	138	13	203*	273	् उ ,	406	513	19	262*	245
7	292 *	365				<u> </u>	2263	2276	20	0 * '	272
8	288¥	406		2,K,1	L6 ·	<u>5</u>	687	697	21	0 *	276
9.	369	355				- 6	1843	1785	23	491	432
10	443	394	Û	0*	254	7	1750	1762	24	594	526
11	0*	47	_1	85 3	785	8	1255	1066	25	351 *	460
12	402	271	2	207*	23Û	9	1182	1123	26	299¥	377
13	757	583	3	23 3*	290	10	1765	1745	27	 	71
14	292*	214	4	0*	44	11	362	282	28	n *	140
15	207*	212	5	38.8	351	12	1662	1017	29	- a +	117
16	369	390	6	25 1*	254	13	705	666	30	377	270
17	454	254	7	698	812	14	1141	1109	- U	~ .	LIU
18	351*	345	. 8	27 7*	20.3	15	1182	1187		3.1.7	
19	0 ¥	151		.		16	687	737		01290	
-	2			2. K . II		17	395	460	'n	800	077
÷	2.K.1	4				18	1149	1 1 7 0	U	070	331
			б	402 B	3962	19	1140	1202			
			<u> </u>		V J U L.	1.1					

,

.

••

• • • •

3, K, 3 17 18 454 466 437 477 22 705 47 22 258 258 258 258 258 258 258		-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · ·		1. 1					, I						-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·		•							•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1. A.							*					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i		3.8.	3	17	(i ¥	205	3	1281	1249	21	151 ¥	9.9	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•	18	454	466	4	347	477	22	705	686	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	3390	3466	19	432	593	5	945	967	23	321 *	195	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	258	328	20	598	619	5	1171	1240	24	535	539	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 4	1189	1283	21	716	767	7	126*	316	25	0 *	275	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	3164	3139	22	332*	466	8	281¥	283	26	380	349	
7 3323 3436 24 0* 215 10 133* 217 3 796 35 25 35 137 11 1125 1121 3,K,8 9 3080 3105 26 469 332 12 927 1031 10 598 495 27 266* 372 13 713 531 0 628 513 11 2197 2181 28 0* 325 14 1119 1203 1 669 552 12 831 898 29 391 424 15 391 349 2 624 583 13 2297 2242 16 351 352 3 794 805 14 391 357 3,K,5 17 366* 216 4 783 847 15 2083 2083 1 428 153 20 883 924 7 39 847 16 340 432 0 1588 1611 19 694 749 6 558 676 17 1876 1348 1 439 438 20 883 924 7 332 378 13 694 593 2 1248 1273 21 310* 256 8 439 569 19 1396 1395 3 1244 1301 22 746 811 9 476 489 20 362 420 4 103* 257 23 210* 215 10 384 399 21 1303 1313 5 36 108 24 425 294 11 642 576 22 329* 371 6 159 1261 25 166* 211 12 761 749 23 1067 1068 7 0* 177 26 436 423 13 524 573 24 360 214 8 1289 1306 27 196* 367 14 558 595 25 901 868 9 473 563 29 639 691 15 0* 207 26 406 321 10 864 6400 16 24 435 27 450 583 11 950 927 3,K,7 151 364 28 314* 174 12 524 435 29 642 577 13 510 561 0 1854 1873 19 277* 391 14 890 961 1 0* 232 2055 444 3,K,4 15 247* 219 2 1651 1085 24 222* 329 0 753 810 17 399 463 4 1119 1205 23 354* 87 1 205 23 354* 87 1 205 23 314* 74 12 524 473 5 833 918 24 0* 12 29 642 577 13 510 561 0 1854 1873 19 277* 391 14 890 961 1 0* 232 2055 444 3,K,4 15 247* 219 2 1651 1085 24 222* 325 3769 357 20 140* 403 7 181* 242 226 432 200 1 753 810 177 399 463 4 1119 1205 23 354* 87 1 657 726 18 528 473 5 833 918 24 0* 125 2 428 421 19 620 580 671 9 428 514 3,K,9 0 753 810 107* 22 598 671 9 428 514 3,K,9 1 657 726 18 52 95* 261 11 971 1081 0 1652 1128 8 690 734 26 229* 1183 13 406 551 2 92* 310 10 594 629 213 133* 225 10 1167 1276 7 713 813 25 295* 261 11 971 1081 0 1652 1128 8 690 734 26 229* 1187 13 13 406 551 2 92* 310 10 594 629 23 134* 226 11 1972 11025 1354 87 11 972 1966 12 866 937 3,K,6 16 1075 1102 5 1835 1871 13 997 1079 14 713 675 6 314 328 19 746 725 7 1374 1433 15 450 397 1 281 354 19 746 725 7 1374 1433 15 450 397 1 281 354 19 746 725 7 1374 1433 15 450 397 1281 354 19 766 20 87 617		6	362	322	23	414	280	9	347	258	27	0 *	202	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	3323	3436	24	0*	215	19	133*	217		_		
9 30.00 31.05 26 469 332 12 927 1.031 10 598 495 27 266 * 372 13 713 531 0 628 513 11 2197 2181 28 0^{*} 325 14 1119 1203 1 669 552 12 831 898 29 391 424 15 391 349 2 624 569 13 2297 2242 16 351 352 3 794 805 14 391 357 3, K,5 17 366* 214 783 847 15 2083 2083 18 52* 307 5 702 997 16 340 432 0 1588 1611 19 694 749 5 558 678 17 1876 1348 1 439 438 20 883 924 7 332 378 13 694 593 2 12*8 1273 21 310* 256 8 439 969 19 1396 1395 3 1244 1301 22 746 811 9 476 489 20 362 420 4 103* 257 23 210* 215 13 384 399 21 1303 1313 5 986 1008 24 425 294 11 642 576 22 329* 371 6 1159 1261 25 166* 211 12 701 749 23 1067 1068 7 0* 177 26 436 423 13 524 573 24 380 214 8 1289 1306 27 196* 367 14 558 595 25 901 868 9473 563 29 639 631 15 3* 207 26 406 321 10 886 800 177 26 435 423 13 227* 391 24 380 214 8 1289 1306 27 196* 367 14 558 595 25 901 868 9473 563 29 639 631 15 3* 207 26 406 321 10 886 800 177 26 435 423 13 277* 391 14 430 961 1 0* 262 20 550 444 3,K,4 15 247* 219 2 1651 10*5 21 225* 325 29 642 577 13 510 561 0 1854 1873 19 277* 391 14 430 961 1 0* 262 20 550 444 3,K,4 15 247* 219 2 1651 10*5 21 225* 325 3779 857 2C 140* 403 7 181* 224 224 386 1 753 810 17 393 463 4 119 1205 23 354* 37 1 657 726 18 528 473 5 833 918 24 0* 125 2 428 421 19 620 580 6 71 9 428 514 3,K,9 6 709 729 23 133* 225 19 1157 1276 7 713 13 51 267 12 1123 101 277 299* 126 3 779 857 2C 140* 403 7 181* 242 26 432 200 4 1182 1231 21 107* 156 8 1359 1453 5 1082 1082 22 598 671 9 428 514 3,K,9 6 709 729 23 133* 225 10 1167 1276 7 713 13 22 298 1671 9 428 514 3,K,9 6 709 734 26 229* 157 12 1123 1012 1 1972 1966 9 484 520 27 299* 183 13 406 551 2 92* 310 10 594 629 23 1394 246 14 121 5127 3 1841 1893 11 576 526 7 713 310 25 135* 1671 13 997 1079 14 713 675 6 314 328 19 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 723 657 16 373 424 2 679 760 20 687 617		3	798	835	25	358	137	11	1915	1121		3,K,8	3	
10 598 499 27 266* 372 13 713 531 0 526 512 11 2197 2141 26 5* 325 14 1119 1203 1 669 552 12 831 898 29 391 424 15 391 349 2 624 559 13 2297 2242 16 351 352 3 794 805 14 391 357 3, K ,5 17 366* 216 4 733 847 15 2083 2083 18 52* 307 5 702 997 16 340 432 0 1588 1611 19 694 749 6 558 678 17 1876 1348 1 439 438 20 883 924 7 332 378 13 694 593 2 1248 1273 21 310* 256 8 439 969 19 1396 1395 3 1244 1301 22 746 811 9 476 489 20 362 420 4 103* 257 23 210* 215 13 384 399 21 1303 1313 5 96 1008 24 425 294 11 642 576 23 22* 371 6 1159 1261 25 166* 411 12 761 749 23 1067 1068 7 0* 177 26 436 423 13 524 573 24 380 214 8 1289 1306 27 196* 367 14 558 595 25 901 868 9 473 563 28 639 691 15 J* 207 26 406 321 10 886 800 16 20 7 196* 367 14 558 595 29 642 577 13 510 561 0 1854 1873 19 277* 391 14 890 961 1 0* 282 20 550 444 3, K ,4 15 224 * 35 4 16 45 362 311 36 227 2 36 163 221 225* 325 16 67 25 983 11 96 927 3, K ,7 17 510 366 29 642 577 13 510 561 0 1854 1873 19 277* 391 4 890 961 1 0* 282 20 550 444 3, K ,4 15 247* 219 2 1651 1085 21 225* 325 16 63 362 3163 918 24 3* 122 4 126 258 3164 17 339 463 4 1119 1205 23 354* 87 1 657 726 18 528 473 5 833 918 24 3* 125 2 428 421 19 620 580 6 1603 1037 25 199* 206 3 779 857 20 140* 403 7 181* 242 26 432 20 4 1182 1231 107* 156 8 1359 1453 5 1082 1082 22 598 671 9 428 514 3 405 22 22* 309 4 1187 223 133* 225 10 1167 1276 7 713 813 25 29* 251 11 971 1181 0 11552 1128 8 690 734 26 229* 157 12 1123 1107 1481 0 11552 1128 8 690 734 26 229* 157 12 1123 1107 1381 340 2 2125 10 1594 629 23 139* 246 14 1215 1227 3 1891 1893 11 576 526 15 0* 15 1075 1302 5 1335 1871 13 397 1079 17 241 324 328 18 746 725 7 1374 1433 15 560 397 3, K ,6 16 1075 1302 5 1335 1871 13 397 1079 12 211 354 187 46 725 7 1374 1433 15 450 397 1 241 354 19 594 607 8 723 673 3 16 373 424 2 679 760 20 687 617		9	3080	3105	26	45 9	332	12	927	1091	•	6.00		
11 2197 2181 28 9* 329 14 1119 1203 1 609 992 12 831 898 29 391 424 15 391 349 2 624 559 13 2297 2242 16 351 352 3 794 805 14 331 357 3, $K, 5$ 17 306* 216 4 783 847 15 2083 2083 18 52* 307 5 702 997 16 340 432 0 1588 1611 19 694 749 6 558 678 17 1876 1348 1 439 438 20 883 924 7 332 378 13 694 593 2 1248 1273 21 310* 256 8 439 969 19 1396 1395 3 1244 1301 22 746 811 9 476 489 20 362 420 4 103* 257 23 216* 215 13 384 399 21 1303 1313 5 986 1008 24 425 294 11 642 576 22 329* 371 6 1159 1261 25 166* 211 12 751 749 23 1067 1068 7 0* 177 26 436 423 15 524 573 24 360 214 8 1289 1306 27 196* 367 14 558 595 25 901 868 9 473 563 28 639 691 15 0* 207 26 406 321 10 866 900 37, 77 510 366 27 450 583 11 960 927 3, $K, 7$ 17 510 366 28 314* 174 12 524 436 27 450 583 11 960 927 3, $K, 7$ 17 510 366 29 642 577 13 510 561 0 1854 1873 19 277* 391 14 30 961 1 0* 282 20 550 444 3, $K, 4$ 16 633 862 3 1163 1237 22 554 437 3 610 17 399 463 4 1119 1205 23 354* 87 14 630 961 1 0* 282 20 550 444 15 247 249 21651 1085 21 225* 325 5 1082 1082 22 598 671 9 428 514 3*, $K, 9$ 1 657 726 18 526 473 5 883 918 24 0* 125 3 779 857 20 40* 403 7 181* 242 26 432 20 1 4 1182 1231 21 107* 156 8 1359 1453 5 1082 1082 22 7 294 13 3* 405 5 1082 1082 22 598 671 9 428 514 3, $K, 9$ 6 709 729 23 133* 225 10 1167 1276 7 713 813 25 295* 261 11 971 1081 0 1452 1128 8 690 734 26 229* 157 12 1123 1012 1 1972 1965 9 404 520 7 29 9* 183 13 406 551 2 92* 310 10 594 629 23 199* 246 14 1251 5127 3 1891 1893 11 576 526 15 0* 314 328 18 74 0* 125 12 26 433 1167 13 997 1079 17 12 1123 1025 51 297* 310 14 519 455 15 0* 266 937 3, $K, 6^{-1}$ 16 1075 1102 5 1835 1871 13 997 1079 17 121 354 18 746 725 7 1374 1433 15 450 397 1 281 354 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 657 16 373 424 2 679 760 20 687 617	· · · · ·	10	598	495	- 27	26.6*	37.2	13	713	551	U	628	613 552	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	11	2197	2181	28	10 T	325	14	1119	1203	1.	624	ຸ ວ ວ ເ 5 ຊ ລ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	831	898	29	39 T	424	17	391	<u>ンサラ</u> マドワ	27	704	205	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	229/	2642		2 2 5	;	47	371	216	5	793	847	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14	2083	2083		5989.		18	52*	307	्र म	702	697	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16	340	432	ß	158.8	1611	19	694	749	6	558	678	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17	1 876	1348	1	439	438	20	883	924	7	332	378	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	18	694	593	2	12+8	1273	21	310*	256	8	439	569	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19	1 396	1395	3	1244	1301	22	746	811	9	476	489	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	362	420	- 4	103*	257	23	210*	215	10	384	399	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21	1303	1313	5	98.6	1008	24	425	294	11	642	576	
23 1067 1068 7 0* 177 25 436 423 13 524 573 24 380 214 8 1289 1306 27 196* 367 14 598 595 25 901 868 9 473 563 25 639 691 15 $J* 207$ 26 406 321 10 886 800 16 203* 306 27 450 583 11 960 927 3,K,7 17 510 368 28 314* 174 12 524 436 1822 20 550 444 3,K,4 15 247* 219 2 1651 1085 21 225* 325 16 853 862 3 1163 1283 22 222* 389 0 753 810 17 399 463 4 1119 1205 23 354* 87 1 657 726 18 528 473 5 883 918 24 $J* 125$ 2 428 421 19 620 580 6 1603 1037 25 199* 206 3 779 857 20 140* 403 7 181* 242 26 432 200 4 1182 1231 21 107* 156 8 1359 1453 5 1082 1082 22 598 671 9 428 514 3,K,9 6 709 729 23 133* 225 10 1167 1276 7 713 813 25 295* 261 11 97 1081 0 1052 1128 8 690 734 26 229* 157 12 1123 1012 1 1972 1966 9 484 520 27 299* 183 13 406 551 2 92* 310 10 594 629 26 199* 246 14 1215 1227 3 1891 1893 11 576 526 15 0 314 328 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 657 16 373 424 2 679 760 20 687 617		22	329*	371	6	1159	1261	25	166*	211	12	761	749	
24 360 214 8 1289 1306 27 196 ⁺ 367 14 598 599 25 901 868 9 473 563 23 639 691 15 $J * 207$ 26 406 321 10 886 800 16 203* 306 27 450 583 11 960 927 $3, K, 7$ 17 510 368 28 314* 174 12 524 436 13 122* 296 29 642 577 13 510 561 0 1854 1873 19 277* 391 14 4390 961 1 0* 282 20 550 444 3, K, 4 15 247* 219 2 1651 1085 21 225* 325 16 853 862 3 1163 1283 22 222* 389 0 753 810 17 399 463 4 1119 1205 23 354* 67 1 657 726 18 528 473 5 883 918 24 $J *$ 125 2 428 421 19 620 580 6 1603 1037 25 199* 206 3 779 857 20 140* 403 7 181* 242 26 432 201 4 1182 1231 21 107* 156 8 1359 1453 5 1082 1082 22 598 671 9 428 514 $3, K, 9$ 6 709 729 23 133* 225 10 1167 1276 7 713 813 25 295* 261 11 971 1081 0 1052 1128 8 690 734 26 229 157 12 1123 1012 1 1972 1966 9 484 520 27 299* 183 13 406 551 2 92* 310 10 594 629 28 199* 246 14 1215 1227 3 1841 1893 11 576 526 15 0* 266 4 251* 450 12 886 937 3, K, 6 16 1075 1102 5 1835 1871 13 397 1079 17 192* 299 6 443 419 14 713 675 0 314 328 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 657 16 373 424 2 679 760 20 687 617		23	1067	1068	7	0*	177	26	436	423	13	524	5/3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	24	380	214	8	1289	1306	27	196*	367	14	558	595	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25	901	868	9	473	563	28	639	691	12		206	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	406	321	1.9	05 0	000		2 1	7	17	510	368	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21	47U 7468	2000	11	90 U 52 A	921		3989	1	48	1224	296	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	514*	577	13	510	561	n n	1.854	1873	19	277*	391	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		23	046	511	1 4	89.0	961	1	1004 84	282	20	550	444	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · ·		3.K.	4	15	247*	219	2	1651	1085	21	225 *	325	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			• • • • • •		16	85 3	862	3	1163	1283	22	222*	389	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Û	753	810	17	399	463	<u> </u>	1119	1205	23	354 *	87	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	657	726	18	52 8	473	5	883	918	24	· · i) *	125	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	428	421	19	620	580	F	1603	1 037	25	199¥	206	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	779	857	20	14 0*	403	7	181*	242	26	432	290	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	1182	1231	21	107*	156	8	1359	1453		-	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	1082	1082	22	598	671	9	428	514		3989	9	
7713 813 29 295^{+} 261 11 971 1081 0 1052 1123 8690 734 26 229^{*} 157 12 1123 1012 1 1972 1966 9 484 520 27 299^{*} 183 13 406 551 2 92^{*} 310 10 594 629 28 199^{*} 246 14 1215 1227 3 1891 1893 11 576 526 15 0^{*} 266 4 251^{*} 450 12 886 937 $3, K, 6$ 16 1075 1102 5 1835 1871 13 997 1079 17 192^{*} 299 6 443 419 14 713 675 0 314 328 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 857 16 373 424 2 679 760 20 687 617 720 857	••	6	709	729	23	133+	225		110/	12/0		1652	4428	
9 484 520 27 299* 183 13 406 551 2 92* 310 10 594 629 28 199* 246 14 1215 1227 3 1891 1893 11 576 526 15 0* 266 4 251* 450 12 886 937 3, k, 6 16 1075 1102 5 1835 1871 13 997 1079 17 192* 299 6 443 419 14 713 675 0 314 328 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 857 16 373 424 2 679 760 20 687 617		(600	774	22	- 290* - 290*	157	12	1123	1612	1	1972	1966	
10 594 629 28 199* 246 14 1215 1227 3 1891 1893 11 576 526 15 0* 266 4 251* 450 12 886 937 3, K, 6 16 1075 1102 5 1835 1871 13 997 1079 17 192* 299 6 443 419 14 71.3 675 0 31.4 32.8 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 857 16 373 424 2 679 760 20 687 617	- -	ຸ D ດ	690	526	20	2004	183	13	1120	551	2	q2*	310	
11 576 526 15 $0*$ 266 4 $251*$ 450 12 886 937 $3, K, 6$ 16 1075 1102 5 1835 1871 13 997 1079 17 $192*$ 299 6 443 419 14 713 675 0 314 328 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 857 16 373 424 2 679 760 20 687 617		7 10	59L	629	28	199*	246	14	1215	1 22 7	3	1891	1893	
12 886 937 3, K, 6 16 1075 1102 5 1835 1871 13 997 1079 17 192* 299 6 443 419 14 71.3 675 0 31.4 32.8 18 746 725 7 1374 1433 15 450 397 1 28.1 354 19 594 607 8 720 857 16 373 424 2 67.9 76.0 20 687 617	н Х.	11	576	526			640	15	0*	266	. 4	251 *	450	
13 997 1079 17 192* 299 6 443 419 14 713 675 0 314 328 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 857 16 373 424 2 679 760 20 687 617	· · · ·	12	886	937		3, K.	6	16	1075	1102	5	1835	1871	* *
14 713 675 0 314 328 18 746 725 7 1374 1433 15 450 397 1 281 354 19 594 607 8 720 857 16 373 424 2 679 760 20 687 617		13	997	1079				17	192*	299	6	443	419	× .
15 450 397 1 281 354 19 594 607 8 720 857 16 373 424 2 679 760 20 687 617		14	713	675	. O	31.4	328	18	746	725	. 7	1374	1433	
16 373 424 2 679 760 20 687 617		15	450	397	1	281	354	19	594	607	8	720	857	
		16	373	424	2	679	76ù	20	687	617				
								-						
												•		

-															
					•										
							n i. 3 n 1	100	7	1.30	557	L	1 953	1885	
				3,K,9	,	- 3	24.0*	190	,	435	668	5	1425	1111	
						4	616	629	7	040	040 222	7	1102	841	
			9	1606	1>33	5	43 2	214	9	665 222	715	, 0	2216	3147	
			19	428	222	6	424	463	14	602	112	0	3213	1100	
			11	1603	1651	7	59.4	511	11	0.4	181	9	1215	1162	
			12	369	268	8	44*	232	12	654	555	10	1931	1002	
			13	1370	1400	3	37 3	353	13	162*	180	11	2587	190	
			14	480	502	19	48 0	519	14	580	598	12	1241	11/4	
			15	1019	1053	11	Ű*	188	15	284*	410	13	1167	1154	
			16	495	492	12	56 1	520	16	617	456	14	1990	1910	-
			17	1030	1115	13	38 8	302	17	0*	13 ü	15	· 8 4	207	
			18	299*	205	14	358	318				16	1920	1942	
			19	805	830	15	18 5*	330		3,K,1	4	17	535	382	
			20	270*	1 92	16	30.3*	188				13	1108	1086	
			21	594	737	17	36.2	150	C	576	352	19	0*	286	
			22	130	401	1.8	399	410	1	399	303	20	883	869	
			22	546	550	19	35 8¥	161	2	377	302	21	654	616	
			23	2204	216	20	181*	274	3	٩٩	136	22	1148	1116	
			24	3691 9668	- E 94	C. 0	TOT	<u> </u>	6	1114	25.8	23	144*	92	
			25	244*	.20T		7 8.4	2	5	202*	167	24	868	906	
							39 N9 L	2	ĥ	414	224	25	126*	216	
				3, K,	19.		71 X	75	7	- 474 	25.8	26	258×	4.24	
		•				U	07	30	,	1.11.7	205	20	248 *	235	
			Ű	694	776	1	51.0	663	2	402	100	21	240 ¥	27.8	
			1	535	615	2 '	406	483	.9	UT	1024	20	09 '	310	*
			2	0*	166	3	177*	271	10	432	231		1 10		
			3	491	556	4	37 7	106	11		54		4969	L	
			4	469	495	5	0*	159	13	273*	171				
			7	354	328	6	177*	273	14	0 *	146	3	506	486	
			8	594	648	7	598	617		1		4	1318	1288	
			9	757	741	8	25 8¥	419		3,K,1	.5	5	229*	311	
			1.0	199¥	336	9	40.2	418				6	465	532	
			11	329¥	423	10	55 8	608	9	321*	105	7	679	ьù7	
			12	469	334	11	g¥.	227	1	713	730	8	620	610	
	3		17	n¥	186	12	30 3*	85	2	0 *	227	9	631	67 d	
			44	209*	334	13	<u>0</u> *	85	3	672	551	10	709	628	
	• .		45	- 201¥	391	14	19 9¥	102	4	295*	439	11	528	480	
			4.6	2484	485	15	425	491	5	572	505	12	916	982	
			47	697	671	16	795	462	6	318*	99	13	203*	159	
•			17	000	250	17	454	314	7	576	686	14	447	452	
			10	. U.	203	4.0	424	486	- A	×0	7.0	15	454	524	
			19	2017	200	10	-420 AX	402		600	635	16	137 +	345	
			20	222*	255	19	j j Ŧ	102	10	1774	251	17	661	691	-
			21	325*	25				10	100	271	1.8	600L 628	561	
			22	0*	276		39 K 9 :	13		7 1/ 7	,	10	2824	417	
			23	362*	367	11 A.				39893	>	20	5557 EGO	L28	
						1	65 U	521	-		7400	20	203	14.1	
				З,К,	11	- 2	96 U	876	3	3179	2130	21	1.47	747	
				•		3	24 0*	154				- 22	41/	394	
			ü	174*	215	- 4	879	831		8 4 , K , I	3	23	417	514	
			1	443	440	5	្រុ+	134				24	ŋ *	11/	
			2	210*	540	6	65 4	811	. 3	690	630				
					e see groot de								a an		

	4,K,	1	10	52.8	627		4.K.	5	20	1004	1665
	• • •		11	794	853				21	140 *	238
25	465	397	12	543	562	n	1841	1 03 1	22	569	556
26	462	391	13	65 1	606	1	524	419	23	262 *	c15
27	236¥	166	14	56 9	507·	2	299	364	24	532	490
28	281*	274	15	1019	1012	3	676	751	25	351 *	432
		. – .	16	30.6*	389	4	329	447			
	4.K.	2	17	75 0	689	5	679	751	•	4.8.	7
	,,,,,,	-	18	32.1	451	5	447	412			
n	923	971	19	805	845	7	657	679	n	938	971
1	1 3 8 5	1526	20	31.0	386	8	ANG	786	· 1	318	- 34 R
2	1075	1084	21	79 0	581	q	225 *	334	2	321	314
3	561	702	22	2554	332	10	67*	182	7	402	477
ц	1034	266	22	64.2	712	44	661	628	ц.	671	646
5	727	740	24	15 G#	231	12	255*	234	т С	601 621	570
	1 20 /	1204	25	12 J	520	472	71.2	217	2	121	260
	4 206	4267	20	- 22 4 - 05 6 ×	24.0	10	146	110	7	461	309
(1390	1000	20	27 74	210	14	521	492	(343	- 30U 207
0	097 4 4 7 b	900	21	21 1+	204	12	292*	408	8	020	897
9	1134	113/				10	624	595	9	218+	152
10	798	(50		49 K 9	♦	17	07	94	10	395	533
11	510	416				18	388	254	11	373	325
12	447	487	0	15 1*	272	19	340	386	12	414	463
13	809	766	1	91 6	994	20	229*	101	13	377	549
14	805	835	2	1012	1120	21	443	435	14	299*	423
15	1004	971	3	1014	1738	22	406	408	15	340	331
16	502	528	. 4	709	797	23	332*	283	16	532	591
17	668	718	5	1595	1635	25	0 *	94	17	299*	109
18	92¥	215	6	783	86 8	26	0 *	144	18	295 *	446
19	70*	230	7	713	723			_	19	251*	282
20	469	468	8	495	505		4 • K •	5	20	 ii +	225
21	532	537	ģ	77.9	880		,,	-	21	465	428
22	528	385	1 0	879	925	ึก	1536	1509	22	484	409
23	642	622	11	1444	1+41	1	635	626	23	251*	214
24	292¥	224	12	56.1	643	2	2012	2038	24	469	406
25	663	341	13	1241	1172	- .	495	611	L T		400
26	100*	1 20	4 4	554	458	Ľ,	2741	2 3 3 0		4.8.8	1 I
27	343*	135	15	43 9	476	5	628	628			,
			16	30 1	523	6	1647	1697	n	265 *	455
	L.K.	7	17	786	712	7	332	1001	4	200	1.1.1
	4303	0	-1 A	F1 3	502	2 ·	4200	1956	- -	505	- 414 ·
0	575	575	10	3010	016	. 0	020	1290	2	ショニア	002
· U	000	002	20	094	910. 757		4705	900	3 1	721	022
. 1	900	902	20	-21 0T	323	TO	1/92	1110	- 4	314	428
2	979	997	21	55 8	560	11	2997	403	5	598	123
3	1082	1009	22	525+	65	12	1798	1827	6	513	537
4	665	630	23	<u></u> *	230	14	1086	1125	7	0*	250
5	447	494	24	410	357	15	0*	197	8	417	270
6	801	813	25	447	393	16	860	877	9	210 ¥	451
7	871	883	26	0*	194	17	580	642	10	535	615
8	343	590	27	31 d#	498	18	1111	1140	11	535	o17
a	676	586				19	: n ¥	124			
		•									
-----	------	------	-----	----------------	------	----	--------------	------	--------------	---------------------------------------	-------
	4•K•	8	9	01.6	897	13	יי אין	405	12	849	795
			1 ú	55 0	418	14	7112	698	13	510	4.81
12	174*	361	11	487	401	15	, č L	164	- <u>i</u> 4	11.04	1883
13	646	557	12	391	3(18	16	517	711	15	313	228
14	137*	237	13	5+3	-597	•	- . .		16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.2
15	210*	52	14	354	492		4.K.	13	17	262*	297
16	458	305	15	338	803		.,,		18	11 ¥	141
17	92*	366	16	351*	311	ņ	<u>е</u> *	511	19	414	4.511
19	495	499	17	35 8*	511	4	258*	226	28	853	802
20	332*	141	18	133*	244	2	0×	105	21	0 ×	236
21	399	339	19	36.6	277	3	114*	153	22	757	673
22	0*	67	20	37 3	287	4	181*	431	23	 }*	51
23	0*	30				5	0*	139	- 24	ű *	153
	-			4.K.	11	6	0*	213	25	η. Υ	171
	4.K.	9				7	288*	140			
		-	9	13 3*	314	8	502	352		5.K.	1
0	532	558	1	421	364	9	0*	278			-
1	225¥	366	2	347	347	10	410	188	2	823	986
2	528	582	3	31.4*	30.2	11	0.4	176	3	493	1094
3	528	665	4	60.2	55 ü	12	ō×	381	4	450	408
4	310	173	5	0¥	206	13	0 ×	80	5	801	737
5	473	485	6	3*	168		-		6	993	971
6	524	566	7	476	405		4•K•	14	7	181*	191
7	487	554	8	244*	184			- 1	- 8	971	991
8	598	509	9	395	360	n	0*	106	ġ	0*	235
- 9	66*	315	10	277×	284	1	380	285	10	565	571
1 Ĵ	506	531	11	.336*	316	Ž	0.*	181	11	757	757
11	654	749	12	373	400	3	292*	202	12	535	524
12	0×	172	13	31 8*	96	4	107*	50	$13^{}$	454	372
14	354	399	14	0*	99	5	63*	255	14	816	775
15	535	545	15	0 *	310	6	399	225	15	3+7	330
16	373	397	16	0 *	153	7	0*	241	16	798	787
17	399	384	17	26.6*	224	Ą	0 *	126	17	247*	236
18	U ¥	291	18	33 8	294	9	0*	277	18	428	353
19	546	564							19	484	589
20	288*	149		4, K,:	12		4,K,	D .	20	373	239
21	329¥	345							21	266 ¥	69
22	0 ¥.	214	U	1311	1239	б	2780	2745	22	687	534
			1	46 9	455				23	0 *	262
	4,K,	10	2	897	869		5,K,	0	24	270*	558
			3	321*	323				25	399	160
Ü	0*	594	4	51 3	512	3	786	777			
1	1100	1125	5	37 7	438	4	447	339		5,K,2	2
2	594	704	6	838	859	5	794	769			· •
3	613	637	- 7	225¥	252	6	1071	1052	0	111 *	39
4	0 ¥	124	8	1049	1004	7	318	30 2	1	539	498
5	668	783	.9	43 9	314	8	122*	126	2	423	487
6	554	634	10	52.4	629	9	192*	334	3	665	562
7	1063	1ũ85	11	126¥	173	10	144×	213	4	436	446
8	425	436	12	6ũ 2	466	11	694	628			

	5,K,	2.	1	48 0	603		5,K,	6		5,К,	8
			2	399	348						
5	879	738	3	30 3	520	6	. 0 *	37	O .	421	336
6	679	723	4	9 *	27	1	650	636	1	458	369
ų	181*	193	5	43 4	548	2	831	890	2	473	415
9	753	718	6	34 J.	339	3	78*	254	3	514	325
10	362	412	7	432	388	4	210*	148	4	0*	- 93
11	410	334	8	36.2	463	5	185*	280	5	366	361
12	469	534	9	864	917	6	351	5ü5	б	266¥	288
13	801	772	10	55 D	568	7	513	593	7	÷ 0 ¥	264
14	587	537	11	0¥ -	390	8	6 ¥	407	8	302	328
15	310	208	12	n* ·	9.0	ģ	554	516	ģ	454	387
16	n*	103	13	177*	444	10	879	9114	19	391	361
17	240+	326	14		137	11	246 *	205	11	277 +	-196
4.8	0+	167	15	299+	26.8	12	181*	154	12		70
4 0	1064	260	17	624	655	13	4628	252	1 7	205	360
20	502	1.24	- <u>+</u> -	00 7 00 7 ¥	704	41.	102	75	47	1104	46
20	202	- 4 <u>4</u> 1	10	26.6	107	4.00	צררכ	12	. 14	200¥	102
21	409	440	19	300	103	.12	2137	434	19	3297	100
22	3/3	291	29	1227	10	10	140	112	10	9 -	342
23	100-	53	21	U+	184	11	421	330	11		308
24	181*	34	22	U+	172	18	750	693	13	510	259
		a da ser a comercia de la comercia d La comercia de la come	23	41 0	287	19	151*	93	19	0*	106
	5,K,	3	24	310¥	30.4	20	0 *	111	20	0 *.	94
						21	0 *	162			
0	849	··· 957		5, K, 5		22	229 *	166		5,K,	9
1	1654	1720									
2	0*	74	. G	0*	131		5,K,	7	0	0 ¥	380
4	720	792	1	772	815				1	1104	1111
5	1 599	1672	2	44 7	594	8	591	55 U	2	់ រៀ *	235
ó	222*	342	3	0×	350	1	724	827	3	919	.889
7	1 50 7	1514	4	97 1	976	2	846	868	4	624	682
8	831	898	5	ä*	138	3	6*	281	5	820	857
9	1462	1494	6	336	415	4	1045	1076	6	0*	110
10	107*	303	7	70 9	795	5	366	204	7	1012	1027
11	1 396	1354	8	n*	64	6	646	767	. 8		312
12	594	585	ă	539	425	7	786	834	· ď	934	423
1 3	1159	1201	10	65 0	624	А	528	536	10	n +	324
44	460	439	11	74.7	30.6	ä	332	464	11	ี 6วกั	678
4 5	1 007	10.91	4.2	697	744	10	764	757	4.2	090 580	1.00
12	200	E40	47	007 A X	171	44	101 101	200	47	6.20	711
10	000	045 010		. U*	114	17	005	202	10	2054	476
19	000 ELC	012	1.4	- U*	514 500	14	002	010	14	292*	700
20	240	290	10	00 2	290	10	2017	200	12	119	166
21	094	084	10	90°	23	14	521	720	10	U +	201
22	340*	380	1/	23.37	119	15	650	612	17	447	558
23	583	559	18	55 9	495	15	. 0 *	356	18	υ +	293
26	- L+	·					1 1 1				
64	· · · 0 *	251	19	26.24	344	1/	302	120			
64.	0*	251	19 20	26 2+ 26 2+	344 475	17	395	150 547			
24	0* 5,K,	251	19 20 21	26 2+ 26 2+ 25 2+	344 475 161	17 18 19	395 0*	190 547 293			
64	0* 5,K,	251	19 20 21 22	26 2* 26 2* 25 2* 19 7*	344 475 161 123	17 18 19 20	382 395 0* 491	190 547 293 518			

•												
		5.K. 1	n		5. K.	13	17	0.4	174	1.8	318*	231
		~ 7 ~ 7 4 4	• **				18	0 *	175	19	624	539
	1	406	349	n	65 7	512	19	273*	272	1,7		203
	2	380	180	1	07.	144	20	r*	154		6.K.4	•
		450	287	. 5	0*	450	21	0.4 0.4	152		-,.,	
	4	2814	249	3	484	403	NO 6-1	U	1 + ¢	з	319	312
	5	233*	482	ŭ	43.2	393		6.K.2	•	1	646	667
	6	114*	230	•	10 2			· / · · / -		2	591	615
	7	362	303		5. K.	3	0	267*	295		594	640
	8	114*	42		- , - ,		1	506	512	4	225×	191
	ų	384	260	3	168.4	1752	2	543	578	5	569	637
	10	148*	122	•			3	465	543	6	620	648
	11	314*	1.86		6. K.)	4	126*	156	7	450	558
	12	92*	255				5	620	620	8	0*	333
	13	650	519	3	45 0	397	5	510	50.8	g	594	537
	14	210+	209	4	1248	1187	7	358	390	10	332	418
	15	0*	207	5	57 2	515	8	402	328	11	628	562
	16	0*	81	7	30.6	27.0	9	506	410	12	373	268
	-			8	1100	1074	10	502	502	13	469	496
		5.K.1	1	ģ	85.3	781	11	454	455	14	380	440
				10	1078	985	12	399	156	15	373	385
	- Ú	306*	338	11	53 9	357	13	587	504	16	443	217
	1	236*	113	12	98.2	945	14	329	299	17	435	442
	2	295¥	161	13	52.4	384	15	358	327	18	380	144
	3	262*	306	-14	98.2	878	16	351	335	19	+	325
	4	×	210	15	21.8¥	71	17	343	332		-	
	5	336*	237	16	78 3	688	18	425	287		6.K.5	
	6	388	253	17	65 1	487	19	0 *	283			
	7	166¥	230	1.8	59.8	587	20	395	108	0	0 *	347
	8	258*	457	19	12 9¥	122				1	414	383
	9	354	118	20	746	570		6,K,3		2	37 *	234
	10	144*	168	- 21	366	124				3	0 ¥	140
	11	366	328				0	436	468	4	640	663
ì	12	- 0¥	159		6, K, 1	L	1	458	502	5	255 *	115
	13	0*	96				S .	284	426	6	ŋ *	41
	14	• 0 * ·	268	2	21 4*	150	-3	628	614	7	436	406
				3	41.4	431	4	325	421	8	0 *	222
		5,K,1	.2	4	391	399	5	336	398	9	384	216
••				5	273	338	6	384	420	10	295 *	346
	0	273*	149	6	25 1 *	31ü	7 .	447	449	11	33 *	193
	1	0*	143	-7	31 4	199	8	273*	393	12	- 10 *	470
	2	480	364	8	65 Û	019	9	214*	369	13	0 ¥	125
	3	0.	329	9	18 5 *	120	19	417	348	14	126 <i>*</i>	51
	4	0×	115	10	199 *	117	11	694	533	15	306	298
	5	0¥	317	11	28 1*	400	12	458	290	16	0 ¥.	136
	6	469	467	12	32.9	242	13	284*	265	17	238*	182
	7	6 3 *	190	13	31.8	270	14	377	322	18	0 +	310
	8	358	126	14	31.8	392	15	583	510			
	9	162*	146	15	24 0*	260	16	299*	308			
	10	229*	184	16	52 1	460	17	196*	356			

	6,K,6		2	432	162	6	255*	394	12	310*	264
			3	0×	41	7	325	264			
1.	414	347	4	476	·541	ዳ	× 0 -	43		6,K,1	່າ
2	967	943	5	36 9	111	9	366	354			
3	126*	293	6	Ð 🌴	132	10	329*	· 26 2	0	288 *	66
4	871	866	7	38 4	303	11	336	141	1	388	448
5.	510	515	8	377	334	12	6*	236	2	325*	414
6	871	857	- 9	391	20.8	13	6*	249	3	351	464
7	410	314	10	0*	291	14	U #	275	4	203*	214
8	849	880	11	31 8*	184				5	432	465
9	196*	487	12	30 3*	443		6,K,9		6	406	320
10	738	791	13.	0 *	124		4 A.		7	517	460
11	181*	102	14	39 0	201	0	0 ¥	196	8	229*	127
12	694	650	15	· U*	233	1	340	367			
13	583	539	16	0 *	217	2	343	285		6,K,1	.1
14	713	627	•			3	181*	26 2			
15	247*	169		6, K, 8		4	310 *	340	U	354	368
16	594	607				5	306*	221	1	U *	162
17	192*	198	0	0*	124	6	292¥	225	2	244 *	147
			1	45.2	301	7	550	451			
	6,K,7		2	20 3¥	357	ዓ	244*	182		6,K,0	· ·
			3	0¥	212	9	6 4	244			
Ŭ.	310	361	4	192*	114	10	· 0*	273	6	1097	1086
1	299	256	5	13 7*	288	11	0 ¥	279			

• •

. .

Structure Factor Tables for

Bis(2-hydrotetrafluorophenyl)mercury.

														· .			~							
	Ē.,																÷						*	
	·																							
. н	K	L	FO	FC	H	K	i.	FO	FC	н	κ	L	FO	FC	Н	κ	L	FÛ	FC	н	ĸ	L	FO	FC
-16	0	8	19	18	-11	0	6	46	49	-7	0	8	94	. 90	-2	0.	6	63	58	- 5	Û	0	105	103
-16	0	10	19	20	-11	0	8	22	25	-7	0	10	31	35	-2	0	8	69	64	5	0	2	108	87
-16	0	12	15	16	-11	<u>` 0</u>	10	25	27		ŋ	12	40	43	-2	0	10	40	38	5	0	4	55	53
-16	0	14	16	14	-11	0	12	. 32	-32	-7	0	14	20	21	-2	0	12	23	25	5	្រក	6	3.0	32
-15	0	4	20	20	-11	0	14	18	.21	6	0	0	58	55	-1	0	4	123	117	5	n	8	24	26
-15	0 -	6	22	24	10	0	0	1	51	-6	0	2	1.56	131	-1	0	6	103	97	6	<u>م</u>	0	60	5.5
-15	0	. 8.	2.8	2.4	-10	0	ΞŻ	40	>0	-6	0	4	87	85	-1	0	8	52	55	6	- ġ	2 ·	70	76
-15	0	10	21	22	-10	0	4	00	59	-6	0	° O	01	(0)	-1	0	10	60	- (1	6	<u> </u>	4	54	44
-15	0	12	21	19	-10	0	<u>ה</u>	57	27	-0	0	4.0	00	32	-1	0	12	1 2 2	21		0	0	35	51
- 7 T	0	14	15	15	-10	0	40	(1)	00	-0	0	10	24	72	0	0	4	128	125	<u>^</u>	0	. 0	1/	12
-14	0	2	16	18	-10	0	10	48	- 49.	-6	0	12	24	どり ○ つ ス	· ()	0	0	91 70	. 89	7	 	0	7.6 5 n	- ((E)
-14	0	4	21	- 64 25	-197	0	12	10	17	-0 E	0	14	401	407	() ()	0	0 4 0	70	47	, ,	14 n	4	<u>, </u>	72
-14	0	0 0	21	27	-19	- 0	14	10	17		0		104	105	0	• • •	10	50	50	·	· ()	4	43	42
-14	0	4 0	20	20	-10	0	10	10	10		0		71	440	1	0	12	70	17	7 0		0	57	21
-14	0. A	4 2	40	20	_9	0		55	47		<u> </u>	4 6	52	57	4	- 17 - A	4	87	84	ດ 		2))) //////////////////////////////////	20
- 14	0 0	12	10	10		0		c 1	51	-,	·''	0	70		4	~	0	74	70	: o	0		9.2	4)
17	0	2	24	77	_9	0	4	51	67	ר יי ד ב		10	55	(U) (Q)	4	0	10	15	15	0 0		4	47	76
-17	0	с 1.	20	20	_9	0	о 2	68	68	-5	۰ ۸	12	25	25	4	. 0	12	15	17	0	0	· 0	17	14
-13	Δ.	4	20	20	_9	ň	10	10	- 43	- 5	Ň	14	17	17	2	۰U ۸	12		86	ŏ	97 A	2	47	47
-13	0	Ř	35	36	_9	- ŭ	10	30	31	4	0	0	95	05	2	۰ ۵	2	154	151	Q		4	20	22
-13	0	10	30	1.1	-9	ő	14	17	17	-4	0	ž	101	0.8	2	Ň	4	116	112	10	- ñ	n	30	. 21
-13	٥ ۸	12	23	24	-9	ŏ	1.6	16	14	- 4	0	ŭ	99	94	2	0	6	71	74	7	5	ž	22	25
-13	ň	14	10	19	8	0	้อ	54	56	- 4	ň	6	76	72	2	ň	8	. 32	37	- 7	5	5	27	25
-13	0	16	15	13	-8	Ő	2	63	63	-4	Ő	8	55	57	2	0	10	20	22	-7	5	7	- 20	21
12	0	0	27	20	-8	Ō	4	53	61	-4	0	10	47	46	3	Ő	0	129	126	-7	5	9	16	19
-12	0	2	25	29	-8	0	6	96	93	- 4	0	12	27	27	3	0	Ž	88	82	-7	5	11	13	14
-12	Ô	4	37	38	-8	0	Я	52	62	- 4	0	14	15	16	3	0	4	61	64		5	1	23	26
-12	Ő	6	41	47	-8	Ō	10	58	56	3	0	0	128	126	3	. 0	6	44	41	-6	5	3	23	23
-12	٥	8	34	32	-8	0	12	44	47	~3	0	6	149	143	- 3	0	8	33	32	- 6	5	5	27	27
-12	0	10	25	24	-8	0	14	23	29	- 3	0	8	81	80	3	0	10	17	16	-6	5	7	24	25
-12	0	12	26	28	-8	-0	16	12	11	- 7	0	10	39	42	4	Ŋ	0	97	95	- 6	5	9	21	19
-12	0	14	18	18	.7	0	0	75	77	- 3	0	12	17	16	4	0	2	94	93	- 4	5	11	14	16
. 11	0	0	21	23	-7	0	2	147	115	-3	0	14	17	17	4	0	4	35	40	-5	5	1	33	31
-11	0	2	34	4 8	-7	0	4	109	104	2	0	Q	87	86	4	0	- 6	47	50	- 5	5	3	2 8	30
-11	0	.4	41		-7	0	6	70	73	->	ŋ	2	53	59	4	0	8	25	23	- 5	5	5	30	33

H	K	L	FO	۴C	Н	К	ા	ΕÛ	-FC	H	κ	L	FO	FC	н	K	. I.	FO	FC	Н	K	L.	FO	F C
- 5	5	7	26	27	2	5	7	14	14	-7	1	6	14	15	-8	5	3	16	22	-11	1	9	50	47
- 5	5	9	20	20	3	5	1	34	35	-7	1	7	63	68	-8	5	5	22	26	-11	1	11	37	37
-5	5	11	13	14	3	5	3	27	29	-7	1	9	65	60	- 8	- 5	7	19	20	-11	1	13	21	21
- 4	5	1	31	31	3	5	5	16	18	-7	1	11	38	35	-8	5	9	14	17	-11	1	15	1.7	17
- 4	5	3	32	35	·· 3	5	7	15	14	-7	.1	13	55	23	-16	1	9	19	17	-10	1	1	41	44
-4	5	5	26	26	4	5	1	33	29	-7	1	15	15	14	-16	- 1	11	15	15	-10	1	3	43	42
-4	5	7	26	28	4	5	3	22	25	-6	1	1	77	78	-15	1	5	18	18	-10	1	4	14	- 8
-4	5	9	19	21	4	5	5	19	19	-6	1	- 3	. 79	78	-15	1	7	18	20	-10	1	5	59	59
-4	5	11	15	15	5	5	1	<u> </u>	24	-6	1	5	87	83	-15	1	9	21	24	-10	1	7	52	54
- 3	5	1	36	39	5	5	3	20	20	-6	1	6	-28	27	-15	1	11	19	2.1	-10	1	9	36	36
- 3	5	3	30	31	6	5	- 1	21	22	-6	1	7	79	. 75	-15	1	13	15	. 16	-10	1	11	36	37
-3	5	5	20	32	6	5	3	17	16	-6	1	8	11	. 9	-15	1	15	15	13	-10	1	13	2 0	30
- 3	5	- 7	22	24	7	5	1	17	18	-6	1	9	54	54	-14	1	3	16	2.0	-10	1	15	1 र	16
-3	5	9	18	20	-9	1	4	12	-10	-6	1	11	45	45	-14	. 1	5	22	25	9	1	0	12	8
-3	- 5	11	15	13	-9	1	5	59	58	-6	1	13	28	29	-14	1	7	34	25	-9	1	1	46	53
-2	5	1	35	37	-9	1	7	58	61	-6	1	15	17	16	-14	1	9	21	23	_9	1	3	7 8	65
-?	5	3 :	.36	37	-9	1	8	18	-18	5	1	0	12	9	-14	1	11	21	23	: 12	Ð	2	14	17
-2	5	5	29	29	-9	1	Ģ	33	35	-5	1	1	145	117	-14	1	13	16	18	13	s	0	15	19
-2	5	6	11	10	-9	1	11	37	38	- 5	1	2	29	27	-13	1	1	17	19	-11	5	9	14	16
- 2	5	7	21	<u>30</u>	-9	1	13	33	31	- 5	1	3	133	130	-13	1	3	23	26	- 5	1	6	20	-20
-1	5	3	35.	37	-9	1	15	12	15	- 5	1	5	114	106	-13	1	5	29	33	- 5	1	7	104	97
-1	5	5	27	27	-8	1	1	63	64	-7	5	1	19	20	-13	1	7	28	31	- 5	1	8	10	10
-1	. 5	7	21	21	-8	1	3	32	81	10	0	2	12	16	-13	1	9	24	25	-5	1	9	58	62
-1	5	9	14	13	-8	1	4	12	9	. 11	0	0	20	23	-13	1	11	2.6	25	- 5	1	11	27	29
0	5	2	10	1.0	-8,	1	5	71	66	11	ð	2	17	17	-13	1	13	22	22	- 5	1	12	14	13
n	- 5	3	30	51	-8	1	. 6	10	9	12	0	0	26	29	-12	1	1	22	24	-5	1	13	25	25
0	5	5	26	26	<u>-8</u>	1	?	78	76	-10	5	<u> </u>	16	17	-12	1	3	32	34	-5	1	15	14	13
0	5	7	22	22	-3	1	3	16	13	-10	5	7	14	16	-12	1	5	42	37	4	1	0	12	11
1	5	. 1	24	24	-8	1	Q	70	67	-10	5	9	17	18	-12	1	7	37	39	-4	1	1	77	72
1	-5	3	28	27	-8	1	11	36	36	-10	5	11	13	15	-12	1	9	40	41	4	1	2	53	51
1	5	5	23	23	-8	1	13	25	25	с <mark>—</mark> О	5	1	15	18	-12	1	11	30	32	-4	1	5	152	143
1	5	7	18	19	~ 8	1	15	13	14	-9	5	3	22	21	-12	1	13	17	19	- 4	1	4	27	-25
1	5	9	14	1 3	-7	1	1	67	65	_9	5	5	18	19	-11	1	1	33	33	-4	1	5	88	85
2	5	1	36	78	-7	1	3	84	83		5	7	16	20	-11	1	3	33	35	-4	1	6	13	13
2	5	3	26	23	-7	1	4	10	-22	-9	5	9	12	14	-11	1	5.	40	42	- 4	1	7	76	72
2	- 5	5	23	24	-7	. 1	5	12	73	- 8	-5	1	15	4 R	-11	1	7	46	-4.8	- 4	1	9	63	61

			-																					
		2					·																	
			•			•	_	анан с. 1971 г.															•	
H	K L	FO	FC	Н	,≓ K.	t,	6 ع	FC	н	K	L	FO	F C	is H	K	L	FO	FC	Н	K	L	FO	FC	
								•										· ·						
-4	1 11	30	31	1	1.	2	15	14	6	1	5	36	31	-12	2	10	30	32	-8	2	6	59	57	
-4	1 13	19	21	1	1	3	97	95	6	1	7	20	19	-12		12	22	28		ົ່ງ	Ř	1.4	1.2	
7	1 0	20	-19	1	1	i.	10	0	7	4.	1	67	67	4 2	2	4.6	6.J 4.6	20	-0	5	40	70	- 42	
	A 41	10/	0.0		4	-		· 7 -	· · · · · · · · · · · · · · · · · · ·		7	17		-12	2	14	10	2.13	0	4	10	20	27	
· • ·		104	40	E .	1	2				1	5	4.5	46.	11	2	0	24	26	– <u>8</u>	. ?	12	- 2 <u>9</u> .	29°	
-3	1 4	36	34	1	1	. 6 .	12	15		1 °	5.	26	27	-11	2	5	31	35	- 8	2	14	17	17	
-3	1 5	124	110	1 -	1	7	52	50	7	_ 1 -	7	.16	18	2	2	0	66	66	-8	. 2	16	14	12	
- 3	1 6	24	-22	1	1	Q	38	39	8	1	11	.36	36	-11	2	4	44	43	7	2	0 ·	41	. 45	
	1 7	51	51	1	1	10	13	15	8	1	2	15	13	-11	2	6	43	42	-7	2	2	86	69	
-3	1 9	70	72	1	1	11	22	25	8	1	3	30	32	-11	2	8	42	43	-7-	ž	4	60	62	
- 7	1 10	10	-10	2	1	. ^	115	112	0	4	5	22	24		2	10	70	70	-,	, .,	Ε.	4.4		
- 3	4 4 4	67	- 1 - 1 1. Z	5	1	7	66	67	 	4	4	22	74		2	4.7	- 0 C	20	/		2		- (
	4 47	· 47		2	4		70	2017	~	1	- 1 	2.2	21		· 2 ·	12	67	27	- /	<i>.</i>	0	01	10	
- 2	1 15	1.5	18	2		4	50	20		1	2	21	20	-11	2	14	17	18	- /	2	8 -	45	46	
. 7	1 0	114	112	. 2	1	5	71	74	· 0	1	5	15	18	10	2	0	30	30	-7	2	9	14	-12	
-2	1 2	25	-22	2	1	7	50	- 49	10	1	1	34	35	-10	2	2	44	44	-7	5	10	32	35	
-2	1 3	108	106	2	1	0	116	112	1.0	1	3	21	22	-10	2	4	50	44	-7	2	11	11	12	
-2	1.4	18	-16	2	1	9	26	25	11	1	1	2 2	26	-10	2	6	41	43	- 7	2	12	25	25	
-2	1 5	114	104	2	1	11	15	16	12	1	-1	16	16	-10	2	8	42	45	-7	2	14	17	19	
-2	1 6	11	-11	3	1	1	125	123	-15	2	10	17	15	-10	2	10	27	78	6	, ว	0	55	56	
- 2	4 7	6.6	45	τ	1	2	0.3	82	- 4 5	2	1.	47	• • •	4.0	2	4.7	20	20	(,,	(
- 2		. 14	/ 5	7	4	.)	. 56	. 57		2	14	44		-10	2	12	24	27		1	1	21	21	
		40	4 1	ر ح		, 	10		-14	2	4	10	17	-10	2	14	13	17	-0	2	2	65	(1	
-/	1 11	24	50		. 1		42	44	-14	4	-0	21	22	2	- S	0	65	66	-6	2	4	90	95	
- 1	1 5	110	. 49	5	1	4	17	19	-14	2	8	2.0	24	9	2	0	39	41	-6	2	5	10	7	
-1	1 4	40	38	3	1	11	13	12	-14	2	10	2 2	21	-9	2	2	43	44	-6	2	6	· 7n	64	
- 1	1 5	120	113	4	1	0	12	11	-14	2	12	13	15	_9	2	4	49	54	- 6	2	7	21	21	
-1	1 6	12	14	4	1	- 1	110	94	-13	2	2	15	17	-9	2	6	47	49	-6	2	8	79	73	
-1	1 7	81	30	- 4	1	3	88	89	-13	2	4	19	24	-9	2	8	48	47	-6	2	9	16	17	
- 1	1 8	15	16	4	1	5	49	52	-13	2	6	31	26	-9	2	ģ	14	11	-6	2	10	62	1.7	
_1	1 0		27	4	1	7	77	37	_47	 ົ	2	24	7.0	0	2	10	10	17		5	4.4	4.0		
	A . A A	20	20	- -	4	ó	4.8	24	- 47	2	4 0	21	00 50	-7		10	47	47	-0	2	11.	10		
- 1	1 1 1	20	211				- +O . 	21	-15	2	10	6.5	. 20	-9	2	11	12	15	-6	2	12	26	25	-
` — 7	1 13	12	14	2	1	1	35	()	-15	2	12	14	20	-9	2	12	25	.26	- 6	? .	14	13	14	
0	1 2	54	-5.1	5	1	3	65	62	-13	2	14	15	14	-9	2	14	15	19	5	2	0	60	70	
С I I I I I I I I I I I I I I I I I I I	1 5	112	196	5	1	. 5	39	40	12	2	0	15	19	-9	2	16	15	10.	- 5	2	2	86	78	
0	1 6	17	-10	5	1	7	23	24	-12	2	2	23	24	8	2	0	53	54	- 5	2	4	74	72	
1 O T	1 7	55.	56	6	1	1	ń7	68	-12	2	4	28	28	-8	2	2	54	- 53	- 5	2	5	9	-13	
0	1 9	30	30	6	1	ξ	54	50	-12	2	6	35	36	-8	2	4	63	62	- 5	2	6	76	75	
0	1 11	27	22	6	1	1.	16	-7	-12	5	<u>g</u>	20	71	_ 2	2	, ,	10	1 8	- , c	ĥ	7	17	 34	
••		L)				-+		· · · ·	• 7		• 2	.,	< 1	-0	<i>.</i>	· ·	17	+ 0,	J		ć	1.1	C 1	

																	`					
Н	ΚL	FO	Fr	1	н к	ι. Έ	FÜ	FC	Н	ĸ	Ļ	FO	۶C	H.	K L	FO	FC	H	ĸ	L	FO	FC
- 5	2 8	63	62	- '	1 2	6	50	47	4	2	6	29	31	-13	3 11	17	18	-8	Ţ	0	37	7.8
- 5	2 10	50	59	- '	1 2	- 3	46	44	4	2	8	20	20	-13	3 13	15	16	-8	3	11	24	29
-5	2 12	26	30	- '	1 2	10	26	27	· 5	2	0	69	70	-12	3 1	15	18	-8	ζ.	13	16	17
	2 14	13	15		1 2	12	14	15	5	2	2	92	74	-12	3 3	19	23	-7	3	1	49	48
4	2 0	125	132	() 2	2	- 99	93	5	2	.4	42	41	-1.2	3 5	24	24	-7	3	3	47	46
-4	2 1	50	-29	() 2	3	24	23	5	2	6	30	33	-12	37	25	27	-7	3	5	54	56
· · · · 4	2 2		94	() 2	4	54	55	5	2	8	15	16	-12	3 9	23	25	-7	3	7 .	45	-44
	2 4	94		() 2	6	73	69 -	6	2	0	56	56	-12	3 11	19	17	7	3	9	52	52
-4	2.0	45	<u>90</u>) 2	- 8°	34	51	6	2	1	14	17	-12	3 15	14	11	-7	3	11	37	41
- 4	2 1	12			1 2	10	20	26	6	5	2	41	43	-11	3 1	18	19	-7	3 1	13	15	18
-4	2 10	57	. 37) <u>(</u>	1.2	15	15	6	2	4	54	39	-11	3 3	24	28	-6	5	1	73	75
_4	2 10	27	· · · · · · · · · · · · · · · · · · ·	4	2	1 7	1.5		· · · · ·	2	0	24	24	-11	3 5	32	31	-6	7	3	60	58
- 4	2 16	15	4.4		2		20	104	-	2	0	42	45	-11	3 7	27	27	-6	3	5	68	69
- 3	2 0	107	106	1	2	5	- 36	. 0.) >∡	7	2	2	56	34	-11	3 9	28	30	- 6	5	7	49	48
	2 1	15	15	1	2	.)	64	20	7	4	4	29	21	-11	5 11	19	21	-6	5	9	31	32
-3	2 2	130	126	1	2	· 🤉	62	47	2	2	0	20	18	-11	3 13	16	17	-6	3 1	11	24	56
-3	2 3	42	42	1	2	10	10	20	· 0	2 2	2	77	74	-10	5 1	25	26	-6	3.1	13	17	17
-3	2 4	94	88		2	0	65	66	0	2	C i	2.2 2 0	50	-10	55	51	- 5.5	5	ζ.	0	16	15
- 3	2 6	81	76	2	2	1	15	-17	Ô	. 2	4 0	20	6.1	-10	5 5	55	34	-5	3	1	74	62
-3	2 8	55	55	2	2	2	91	87	Q	2	2	24	20	-10	7 0	20	34	<u> </u>	۲ ۲	5	52	58
- 3	2 9	17	20	2	2	3	9	-7	9	2	4	20	10	-10	.) 7 Z 11	ייר דבר	21/	- 7	5	2	58	לל :
-3	2 10	24	24	2	2	4	25	74	10	2	0	30	30	-10	2 1 7	18	47	- `` -	د ۲	6	50	51
- 3	2 12	26	25	2	2	5	14	10	10	2	2	23	24	0	7,13	74	76	-)	ी जन्म	У А	20	19
2	2 0	65	66	2	2	6	45	46	10	2	ĩ	15	15	_9	- 7 - 1 - 7 - 7	17		د م	5 1 2 4	1	27	27
-?	2 1	Q	_9	2	2	9	35	37	11	2	0	26	26	_9	3 4	12	-+0 -7	· - 3	ン I フ	3	70	70
-2	5 3	10	11	2	2	10	22	20	11	2	2	15	17	-9	3 5	53	51	-4	7	। र	87	75
-?	24	110	104	.3	2	Ś	88	84	12	2	0	17	19	-9	3 7	45	45	-4	7	5	70	79
-2	2 S	24	-24	3	2	4	65	67	-14	3	5	16	17	-9	3 9	36	38	- /.	2	7	50	58
-?	26	82	30	3	2	6	41	43	-14	3	9	14	18	-9	3 11	23	23	-4	7	8	20	
-2	2 8	50	52	3	2	R	27	26	-14	3	11	16	19	-9	3 1 3	19	19	- ··	े र	9	61	۲.۲ ۱۲
-2	2 10	34	35	- 3	2	10	17	21	-14	3	13	17	17	-8	3 1	33	33	-4	, 7 1	1	24	24
-?	2 12	16	16	4	2	0	127	132	-13	3	3	15	21	-8	3 2	13	8	- 3	र	1	70	66
-1	2 3	20	20	4	2	1	37	33	-13	3	5	2.0	20	-8	3 3	51	50	- 7	7	3	71	68
- 1	2 4	100	108	4	2	2	77	74	-13	3	7	21	23	-8	35	45	46	- 3	۲.	5	52	50
- 7	2 .2	18	19	. 4	5	4	55	56	-13	3	0	20	21	-8	3 7	47	42	- र	3	6	13	12

	÷	
	C	599848324369761560296922713809972692
	F	432154135216 43241432113325 - 42143213
	۴n	432154135216 43241442113325142143213
	Ľ	468024562802346801246812460124602460
	K	464646466666666666666666666666666666666
	Н	-11-10000001111112222223333444444555556
	FC	321444 331215414142114542115463001412
	FO	2967321194163282137773844186659301198
	L	$\begin{array}{c} 8\\ 1\\ 0\\ 1\\ 2\\ 4\\ 5\\ 6\\ 8\\ 9\\ 1\\ 0\\ 2\\ 3\\ 4\\ 5\\ 6\\ 8\\ 1\\ 0\\ 2\\ 4\\ 6\\ 8\\ 1\\ 0\\ 2\\ 4\\ 5\\ 6\\ 8\\ 1\\ 0\\ 2\\ 1\\ 0\\ 2\\ 4\\ 5\\ 6\\ 8\\ 1\\ 0\\ 2\\ 1\\ 0\\ 2\\ 1\\ 0\\ 2\\ 1\\ 0\\ 2\\ 1\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
	ĸ	444444444444444444444444444444444444444
	H	$\begin{array}{c} -6 \\ -6 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\$
	FC	22112221123223133333213341431213444 227976599428809345608766131051823518
X	FO	23581758743999762140654641414972330 1123221233322134414314972330 10
	L	68024680024680202456890202467 102468024568902467
	ĸ	
	н	$\begin{array}{c} -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ 0 \\ -10 \\ -10 \\ -10 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -9 \\ -$
	FC	180 - 543 1343 21413 31632 42132 1218 176122 2132 1687 16122
	FQ	1883869843506485854415702584776570684 1873869843506485854415702584776570684 111112143
	t. L	012357913570123571351351351311430224
	H	2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 7 7 7 8 8 8 9 9 11 12 12 11 1 1 1 1 1 1 1 1 1 1 1 1
	FC	5328 5265 132 1 9 1 5 538 1 8 4 4 3 1 7 - 752 2 6 6 3 1 3 4 4 3 6 3 4 5 4 0 2 4 5 3 5 3 1 2 9 8 9 7 4 8 1 5 4 7 5 8 7 4 2 5 9 0 7
	FO	53285265132191553919414217 752266312 752266312 752266312 752266312
-	L	7911345789113345793135679112357913567
	K	333333333333333333333333333333333333
-	-	

Structure Factor Tables for

•••

Monoclinic Tribenzo(b,e,h)(1, 4,7)trimercuronin.

		0	.0.1.	21 22	334 236	8 9	295 51*	12 13	303 583	-6 7	2217 2912
		2	4874	23	182	10	1836	14	590	-7	1226
		4	1355			11	1054	15	534	8	1473
		6	3023	0	,3,L	12	1592			-8	844
		8	1664			13	882	<u> </u>	.9.1	9	1829
		10	2882	1	949	14	59*	*		-9	2204
		12	980	2	603	16	487	1	381	10	2966
		14	1081	3	1940	17	860	2	963	-10	2096
		16	1114	4	1218	19	749	3	221	11	1314
		18	861	5	2653	20	629	4	765	-11	1868
		20	840	6	2422			5	176	12	999
ĺ.		22	806	7	2521	0	.6.1	6	189	-12	2053
				. 8	953		• • •	7	330	13	1079
		0	.1.1	9	910	0	616	8	178	-13	2164
				10	1259	1	754	10	315	14	2053
		1	3460	11	711	2	541	11	317	-14	549
;	•	2	736	12	798	3	1022	12	586	15	1011
		3	1460	13	1140	- 4	1964		200	-15	1403
		4	1304	14	1423	5	134	0.	10,1	16	1996
		5	1703	15	472	6	1248			-16	2194
		6	2090	16	1895	ž	1358	3	254	17	930
		7	1447	18	474	8	408	7	408	-17	648
		8	571	20	830	9	1780	•	• • • • •	-18	700
		ğ	1102	21	389	10	712	1	.0.1	-10	527
		10	3123	22	506	11	1045	•		-19	454
		11	719		2.00	12	254	2	288	20	1192
		12	1938	0	. 4 . 1	13	60+	L L	59.01	-20	1098
		13	212	U,		14	475	-4	1864	-21	272
		14	1172	٥	3886	18	609	6	4926	22	427
		15	380	. 1	1100	10	231	-6	3637	-22	1186
		16	2045	2	2713	• /	6	O 	1402	-23	208
		17	701	ंद	2387	. Λ	7.1	-8	1622		200
		18	209	- 1 - 1	1088	."		10	633	4	2.1
		19	843	5	1421	1	322	-10	4536		1616
		20	1248	6	1100	2	922	12	1302	1	136
		21	572	7	664	3	305	_12	3562	- 1	1306
		22	875	8	1353	5	957	14	1782	2	885
	•	23	305	ğ	325	6	1157	-14	1280		2018
3				10	1991	7	1024	16	940	τ.	745
		0	.2.1	11	200	8	1207	-16	217	- T	2510
		U.		12	281	9	315	18	619	Ĺ	2313
		0	665	13	915	10	279	-18	626	-4	3365
		1	225	14	867	11	427	20	612	5	118
		2	535	15	1161	13	602	-20	405	-5	1230
		3	1238	16	604	14	403	22	310	6	507
		4	5751	17	669	16	714		• • •	-6	5467
		5.	115	20	327	17	310	4	.1	7	1085
		6	4865	21	244	••	510			-7	37*
		7	1161	22	550	0	.8.1	1	208	8	3179
		я	558				, , , ,	1	400	8	2644
		ŏ	1501	n	.5.1	0	536	2	281	ŏ	780
		10	1971	0	· · · · L	1	517	-2	274	_ 0	963
		11	977	1	2326	2	29.8	3	1262	1 ก์	3285
		12	9 00	2	1322	τ.	1026	-7	507	-10	660
		13	225	3	1409	ŭ	321	ŭ	1902	11	201
		14	740	4	912	5	671	- 4	80 2	_11	307
		18	759	5	367	8	655	5	2111	12	1522
		19	222	6	689	10	443	-5	1099	-12	47+
		20	481	7	726	11	309	6	1857		- •

•

.

	• • ·				·						
		1 		•		е 					• ,
t					•						·
к	·			• •							
		1	,2,1	-20	537	6	588	16	445	-10	705
				21	194	-6	1751	-16	638	-11	374
		13	261	-21	344	7	1985	, 17	528	12	619
		-13	393	-22	632	- / 8	305	18	248 188	-13	556
		-14	1770			-8	1516	-19	306	-14	439
		15	711	1	.4.1.	9	835	-20	189	-15	348
		-15	667	1	1553	~10	1312	1	.7.1		.9.1
		-16	1740	-1	383	-10	209				
		17	309	2	695	11	195	0.	163	0	319
	the second	-18	803	-2	2232	12	298	-1	013 530	-1	967
		-19	327	-3	676	-12	1434	ź	283	- 2	230
		-20	375	-4	1181	13	342	-2	1560	4	529
	•	-21	469	-5	978 563	-13	1567 921		. 265 ` 480	-4	287
		-22	344	6	2333	-14	162	-4	1602	-5	218
		-23	304	-6	1886	15	608	5	445	6	282
		- 1	.3.1	-7	241)	-15	082 1220		12/6	-0 7	209
			,,,,	4	3343	-16	623	-6	244	-7	307
		0	157	8	47*	.17	950	7	480	8	266
		-1	899	9	914	-19	255	8	1101	-8 0	917
		2	195	-9	1748	20	308	-8	466	10	209
		-2	1518	10	50*	-20	729	9	332	-10	327
		-3	900	-10	- 3101 - 464	1	.6.1	-9	670 480	11	312 270
		.4	2220	-11	1083			-10	276	-12	300
	~	-4	1096	12	1018	1	49*	11	851	-	
	Е. С	-5	2090	-12	1905	-1	1065	-11	505	٦,	10,1
		6	2676	-13	425	- 2	645	-12	541	-1	312
		-6	639	14	1077	3	587	13	744	-3	607
		-7	2696	-14	55* 301	- 3	2285	-13	488 563	-5	454
	3	8	213	-15	661	-4	1103	17	317	-8	307
		-8	276	16	373	5	282	-17	618		
		-9	1389	-10	711		1400	-18	484	2	,0,L
		10	2455	-18	562	-6	1581	1.	, 8 , 1	0	299
	••	-10	1844	19	484	-7	1126	•	4 5 0	2	2706
		-11	- 677	20	257	- / 8	1638	1	760	- 2	5004
		12	938	-20	493	-8	302	-1	270	-4	3480
		-12	1747	21	575	- 9	1165	2	326	6	2504
		-13	3767 51*	1	.5.1	10	1192	-2 3	519 1096	-6 8	6651 1131
		14	1213	•		-10	362	-3	253	-8	3858
		-14	583	1	530	11	58*	4	579	10	1363
		-15	750	- 1	1885	12	60*	-4	235 505	12	215
		16	993	-2	432	-12	391	-6	217	-12	2300
		-16	1889	3	553	13	365	7	201	14	341
		18	503	- 3 4	317	-13	≤⊃ō 63*	- 7	426	-14	2.54 880 °
		-18	924	- 4	357	-14	986	-8	538	-16	747
		-19	1085	5	1739	15	723	9	223	18	659
		20	1180	-5	465	-15	053	-9	815		

,

				•	-		•	- • .		•
			ika a	,						•
	5	.0.1	3	1192	-10	1595	18	547	6	486
	-20	809	- 5	2181	-11	1129	-18	219	-0 7	008 155+
	22	303	-4	1045	12	580	-19	324	-7	53*
	-22	546	5	612	-12	2327	-20	656	8	1121
	-24	335	- 5	1442	13	290	-21	453	-8	186
	,		6	218	-13	1172	-22	298	9	57*
	6		-0	2342	-14	777		5.1	-9	3/1-
	0	378	-7	175	15	623	c.	, , , , ,	-10	1205
	1	686	8	1750	-15	255	0	269	11	432
	2	936	- 8	381	16	725	1	46*	-11	197
		423	9.	161	-16	852	-1	45*	12	691
	3	1942	-9	411	17	1054	- 2	46*	-12	(5)
· · · · · ·	· • 3	1281	-10	2877	-17	684	-2	878	13	744
	-4	735	11	328	-18	676	-3	505	14	521
	5	1844	-11	278	19	732	4	1432	-14	512
	-5	2530	12	553	-19	1044	-4	655	15	735
	6	1677	-12	2535	20	871	5	1518	-15	1126
	-0	1258	1.5	142	-20	049 300	-5	1246	-10	043
	-7	2523	-13	764	~21	563	-6	822	-17	750
	8	1827	-14	50×	-22	1011	7	1243	-19	273
	-8	1209	15	602	-23	179	-7	1988	-20	237
	9	204	-15	825			8	229	_	_
	-9	1997	16	468	2	• 4 • L	-8	1666	. 2	,7,L
	10	801	-10	1346	0	280	-9	55* 1147	0	381
	- 10	668	-17	632	1	465	10	512	1	591
	-11	566	18	693	-1	40*	-10	802	-1	656
	12	49*	-18	878	5	1804	11	1038	2	836
	-12	1816	-19	173	-2	427	-11	200	-2	380
	15	771	20	851	- 3	252	12	-402	-5	5/1
	-15	2217	-20	207	-3	2668	13	810	4	1156
	-14	231	22	512	-4	1928	-13	893	5	511
;	15	613	-22	455	5	489	14	1310	6	190
	-15	368	-23	202	-5	746	-14	155	-6	380
	16	1325	-24	445	6	868	-15	529	7	549
	-10	2148	2	71	-0	3122	10	4274		520
	-17	225	E.		-7	911	-10	260	-8	449
••	18	623	2	725	8	970	-17	212	, 9	173
	-18	1458	-2	122	-8	1920 -	18	239	-9	211
	19	463	3	1219	9	1659	-18	987	10	1013
	-19	293	-3	1933	-9	2134	-19	388	-10	222
	-20	51026	-4	1415	-10	000 807	2	6.1	11	562
	21	497		342	11	834	<i>c.</i>	, , , ,	12	545
	-21	436	-5	620	-11	1583	1	717	-12	1071
	-22	1176	6	820	12	55*	-1	50*	13	308
	-23	570	-6	39*	-12	1078	2	148	-13	862
	-24	271	7	210	73	57*	-2	1554	-74	901
	2	.2.1	- 7 R	1940	-15	2011 50 ¥	د ۲=	1107	-15	330
	r.		-8	285	-14	374	4	596	-16	182
	1	934	9	478	15	300	-4	390	-17	357
	-1	972	-9	549	16	760	5	616		
	2	757	10	2736	-16	569	-5	1511		

		•							· ·	
									•	
		· /								
	2	.8.1	8	3015	-	3,2,1	-9	473	-18	866
	-	_	-8	4334			10	1406	-19	250
	2	450	10	2079	0	562	-10	46*	-21	615
	-2	223	-10	356	1	625	11	240	-23	575
	-3	204 588	-12	12/7		450	-11	1545		
	4	433	14	974	-3	042 715	-12	207		5+5,+6
	-4	387	-14	591	4	3351	13	278	. 0	187
	5	344	16	744	4	450	-13	1830	1	634
	-5	222	-16	2277	- 5	275	14	1925	-1	669
1	6	339	-18	1809	-5	450	-14	987	2	392
	-0	023	20	458	6	1827	15	825	-2	439
	-7	541	-20	007	-0	2088	-15	1356	7	219
•	8	580			-7	344	-16	862	- 5	1/00
	9	807	3	1.1.	. 8	243	17	734	-4	1521
	-9	1065			-8	1538	-17	516	5	340
	-10	356	0	365	9	696	18	491	-5	777
	11	586	1	772	· -9	1173	-18	1051	6	962
	12	5.42	-1	0.50	-10	915 2754	19	201	-6	867
	-13	282	-2	523	-10	51+	-20	436	-7	22*
	14	186	3	870	-11	1064	-22	1089	- / 8	836
	-14	448	-3	156	12	919	-23	387	-8	50+
	-16	277	4	2846	-12	4017			9	947
		o .	-4	598	13	339	3	.4.L	-9	1234
	2	,Y,L	-5	974	-15	216		205	10	1052
	2	255	-5	777	-14	1820	- 1	295	-10	52*
	-2	302	-6	35*	-15	670	2	4/8	-11	1442
	4	277	7	1411	16	173	3	481	12	60×
	-4	641	-7	1465	-16	201	- 3	1910	-12	1046
•	5	375	8	2544	-17	315	. 4	527	13	831
۰.	-5	750		339	18	454	-4	338	-13	424
	-6	187	-9	1966	-10	270	-5	10/7	14	015
	7	329	10	2452	20	511	- 5	1745	-15	59+
i	-7	371	-10	622	-20	681	-6	2394	-16	539
	8	497	11	1595	21	328	7	878	17	310
		900	-11	1468	-22	494	-7	456	-17	781
	-10	713	-12	2092	7	7.	8	1798	18	744
	-11	196	13	1214			-0 Q	500	-10	947
••	-13	350	-13	1087	1	125	-9	658	-20	248
			14	1760	- 1	395	10	954	-21	559
	2,4	10.1	-14	444	2	40*	-10	134		
			15	603	-2	1055	11	55*	3	6.L
	1	145	+15 44 ⁰	924	<u>ح</u>	1052	-11	490	•	m .
	- 3	296	-16	1400	-3	288 1287	12	57*	0	51*
	-3	294	17	204	-4	554	-12	618	-1	023 672
	-5	278	-17	1192	5	2106	-13	296	2	839
			18	965	-5	<u> 39</u> *	14	460	-2	680
	3 (,0,L	-18	1559	6	138	-14	652	- 3	994
	ſ	7	-19	1059	-6	507	15	802	-3	130
	6	1220	20	050 617	(_7	7999	-15	585	4	865
	-4	183	-21	1107	-7 8	361 1776	10	039 1647	-4 E	200 '
	6	1597	-24	491	-8	1550	-10	446	-5	202
	-6	4630			9	845	-17	457		ار ب ر ان ا

j

.

3	,6,1	0	144	-10	1490	4	,2,1	8	1319
		2	309	12	409		.	-8	703
6	55*	-2	271	-12	3643	0	366	9	452
-6	741	3	159	14	280	1	142	-9	1832
7	526	-3	814	-14	1958	-1	114	.10	600
-7	675	-4	176	16	47.3	-2	774	-10	915
8	221	5	27 8	-16	751	3	170	11	1016
8	308	5	969	18	1046	- 3	337	-11	677
9	534	6	670	` − 18	1436	4	1694	12	1256
-9	1452	-6	379	20	871	-4	469	-12	257
10	592	7	467	-20	666	5	477	13	658
-10	1062	-7	352	-22	206	- 5	851	-13	335
11	199	8	664	-24	321	6 -	45*	14	1396
-11	1053	-8	270			-6	3712	-14	315
12	908	9	305	4	1 1	7	930	-15	365
-12	1225	-9	257			-7	266	-16	954
13	64*	10	189	0	624	8	767	17	158
-13	60*	-10	208	1	1186	-8	4143	18	. 672
14	205	-11	253	2	1120	9	760	-18	1507
-14	174	12	356	-2	981	-9	1010	19	246
-15	545	13	361	. 3	507	10	238	-19	372
16	200	-13	247	- 3	1589	-10	913	-20	519
-16	303	-14	433	4	1978	11	217	-22	604
-17	535	-15	. 358	- 4	546	-11	1073	-23	374
-18	201	-16	359	5	280	12	262		
-20	533			~5	1842-	-12	1815	4	.4.L
		3	·9 · L	6	489	13	202		
3	,7.L			-6	377	-13	384	0	608
		-1	162	7	116	14	928	1	786
0	701	-2	357	-7	1089	-14	852	-1	299
-1	307	4	352	8	2777	15	220	2	444
2	581	-4	927	-8	107	-15	219	3	1030
-2	399	5	232	9	49 *	16	753	-3	1025
3.	321	6	382	-9	1256	-16	760	4	412
3	166	-6	629	10	1556	-17	174	-4	1806
4	144	7	245	-10	405	-18	728 /	. 5	448
-4	208	-7	266	11	174	19	245	-5	1089
5	934	9	202	-11	1121	-20	322	6	771
- 5	272	-9	267	12	984	-21	319	-6	441
6	257	-10	356	-12	1440	-22	655	7	51*
-6	209	-12	177	13	523	-23	264	-7	547
7	764	_		-13	852	-24	478	8	549
. - 7	490	. 3,	10,1	14	1537		<u>_</u>	-8	902
8	269		4 4 4	-14	1107	4	• 3 • L	9	54*
-8	1240	1	189	15	746		4	-9	518
9	158	. 1	195	-15	361	0	152	10	452
-9	228	Z	167	-16	643	1	323	-10	999
10	375	5	170	17	758	-1	41*	11	585
-10	959	-/	296	-17	375	2	1083	-11	368
11	448		A	18	848	- 2	755	12	654
-11	402	4	.0.1	-18	1251	· 5	876	-12	1940
12	284	2	100	19	416	- 5	061	15	074
-15	768	2	099	-19	202	4	1048	-15	4/0
14	275	4	7037	20	447	- 4	<u>つつお</u> 476	14	0.5*
~14	2078	·=4	2031 675	-20	105 500) 	1375	-14	ウリウムママ
10	606	0	1415		370 4074	- 7	1313	10	1444
-12	020	-0	070	- 22	200	0	204	- 10	111] 7777
	8.1	_0	711 2425	-23	2911	-0	291 527	- 10	757
	1011	10	407	- 2 4	107	·	1002	17	200
		10	100			- 1	1776	1.1	

i.

• •

•

.

.

	-,								
6	. 4 . 1	5	595	-4	340	2	1312	-9	187
-		- 5	839	5	217	· 2	1255	10	362
-17	1075	6	\$ 25	-5	557	्र	828	-10	1503
18	500	-6	1034	6	549	-3	171	11	56*
-18	777	7	1084	-7	259	4	1318	-11	471
-10	610	-7	155	ื่ผ่	256	-4	872	12	605
- 20	475	/ 	77/	_0	274		1406	-12	887
-20	1/C 277	- 9	1274	10	600	_5	1400	- 1 2	1.27
-25	66.6	-0	9.07	-10	31.7	~)	057		775
,	5 1	-0	1207	- 10	- 27/	-6	233	-+5	821
4	1216	10	205		614	-0	417	-17	234
•	804	-10	104	-13	. 440	-7	1.2.50	-14	202
4	000 405	-10	120	-15	505	- 1	2170	15	294
- 4	017	11	421	-16	202	Q	21/0	-15	275
- 1	743		1340	-10	505	-0	47.*		4 2 0 4
2	207	12	200	,	<u>.</u>	-0	472	* 10	1201
	254	-12	547	/+	1411.	-9	032	10	241
	* T	-12	767	•	707	40	474	10	3007
	1028	14	201	1	377		704	-10	2004
. 4	510	-15	2111	- 1	207	4.4	1050	-21	703
· - 4	410	10	4/0	- 1	2114	- 1 1	1055	= C 5 7	740
2	020	-10	285	С. 1	244	12	1303	- < 0	200
-5	100	-18	287	-4	- 476 つつの	-12	228	c	7 1
0	4.52	-17	200	ر ۲	6/0 603	10	1570		1010
-0	069	-20	575	•• O	240	-13	1377	•	4.0.0
-7	366	,	7 1	_ 10	219	-14	843	1	210
- /	20.5	4	<i>. ()</i> I.	- 10	512	- 14	700		4050
8	1456	•	104		40 (15	300	-1	1050
-0	717	0		4,	1011	-15	751	с Э	1113
9 0	519	2	185			10	173	- (440
-9	52*	5	536	0	145	-16	239	5	221
10	1051	4	831		172	17	207	- 5	002
-19	237	-4	49.5	-)	200	- 17	0.50	- 4	1224
11	333		044	-	• •	18	044	-4	
~11	682	->	507	5	, V , I.	-18	1202	۲ 	175
12	218	. 0	2010	•	0 / 7		0,55	- 5	2113
-12	907		394	() /	00(-20	445	0	200
-15	1104	7	250		1023	- 61	451	-0	1009
14	499	-/	092	-4	1239	-22	750	. 7	27.3
-14	1100	-0	098	0	17/0	-23	274	- /	4477
10	278	-0	426	-0 2	077	- 2 4	077	Q	1007
	1.54	-,	14/7	0	2007	-	.	0	4497
10	100	-10	1147	-0	2980	כ	•, C ≠ 1,		1100
-10	450	17	510	_10	2017	٥	561	10	5/8
· · · (/	303	4 3	217	- 10	207		201 201	10	4072
-17	207	-16	481	16	7545		477	11	747
-10	751	47	1.20	- 16	22/7	- 1	374	12	870
-17	F 0 0	-13	460	14	2243	2	105	- 12	605
- 21	240	14	474	-16	60Z 547	-7	629	-12	5/1
,	<i>.</i> .	- 14	201	- 10	217 675	د – ۱	647	-17	194
4	.0,1	10	6114	10	450	- 4	415	-13	101
0	204		מומ	- 10	109 245	- 4	1247	-16	917
U 4	271 271		8.1	-20	203 203	ر م_	1074	-14 1∡	. 0.54
1_4	374 57±	4	,0/L		541	- 5	1500	10 _1∡	4.21
- 1	257	~	770	- 4	514	- 4	1297	- 10	. 170 724
	078 274		314	F	1.1	-0 7	1684	-17	702
- 2	641 661	- 1	247	2	• 1 • 1.		760 LEA	. 1 2	0.97
2	× ⊂ (۱/۲۰۰۰	2	.) / 	^	3/1	- 1	4204	-10	1017
- 3	44(20E	- 2	207	1	2 04 5 32	_0	1691 20e2	-19	1047
4	200	د ۲	377 777	- 4	270	-0	2700	-20	0 V 4
- 4	141	- 2	337	- 1	ረ 4 ን	y	<u> </u>		

• •

						,				
	`					2		-		
							-			-
	5,	311.	7	700	1	281	-4	625	0	204
	~ ~		-7	500	-1	400	6	335	1	660
	-21	849	8	841	2	295	-6	1802	1	341
	-22	320	-8	515	-3	304	8	182	2	505
<i>'</i>	-23	640	_0	200		477	-0	24 <u>5</u> 1 3/3	- 2	1747
	5	4.1	10	64+	-4	27A	-10	245	- 7	594
	1	4/L	-10	1092	-6	933	-10	835	- 3	147
	0	546	11	224	-7	520	-12	570	- 4	2237
	1	836	-11	513	8	422	14	954	5	139
	-1	653	12	890	- 8	318	-14	1481	-5	541
	2	1121	-12	320	9	472	16	271	6	332
	-2	594	-13	1054	-9	511	-16	178		
	3	587	14	604	-10	225	18	201	7	,2,L
	-5	110	-14	349	11	566	-18	1126	_	
	4	894	15	436	12	191	-20	614	-7	49*
	-4	534		1000	-13	500	- 22	497		× 7.50
•	-5	357	_17	1.1.6	-14	279	- 24	077	-0	1402
	6	164	-18	440	-16	344	6	.1.1	-9	570
	-6	623	-20	250	-18	258	0	,,,,	10	357
	7	614	-21	188		·	0	406	-10	1094
	-7	232			5	,8,1	1	519	-11	765
	8	437	- 5	,6,1			-1	688	-12	1150
	-8	1441			0	347	2	1569	-13	419
	9	472	0	181	1	386	-2	1034	14	165
	-9	1287	1	233	-1	338	3	424	-14	2398
	10	<u> 900</u>	-1	183	2	296	-3	636	-15	189
	-10	208	2	253		208	4	861	16	396
	11.	174	- 2	486	-4	207	-4	978	-16	1177
	12	449	-3	876	7	220	-5	1201	-17	275
	-12	1955		6464	ġ	104	J 	1055	- 17	447
	-13	496	-4	772	-9	712	- 6	64*	-20	391
	14	208	5	287	10	452	7	52*	-23	219
	-14	1593	- 5	1286	-11	686	-7	1479		
	-15	511	6	844	-12	293	8	1415	7	.3.L
	-16	291	-6	194	-13	180	-8	456		
	17	193	.7	353	-14	174	9	518	0	387
	-1/	629	-7	752	-15	192	-9	1352	1	464
	-18	272	8 _ 9	504		<u>.</u>	10	56*	-1	51*
	- 19	205	-0	931	5	• 4 • 1.	-10	67* 574	2	1035
••	-20	566	-9	203 57*	٥	305		1070	- <u>-</u> 2	867
	tes May	J,	10	202	-1	152	12	1324	-7	166
	5.	5.1	-10	376	-2	283	-12	50*	 	54+
			11	251	3	149	13	580	-4	1029
	0	566	-11	524	5	269	-13	511	5	912
	1	52*	12	67*	6	165	14	666	-5	264
	-1	334	-12	345	-6	194	-14	411	6	982
	2	228	13	519	-7	159	15	383	-6	170
	-2	884	14	314	-8	303	16	388	7	527
	3	798	-15	535	-10	727	17	208	-7	453
	-5	617	-16	679 751	,	<u>م</u> ،	18	407	8	731
	_ 4 _ 4	404 31/	-17	374	ð	, V , I.	-18	ሃነ1 7ለ₽	6- 0	- 187 - 24 -
		1224	_20	181	٥	1271	-20	300	-0	01# 2/4
	-5	227		1 () 1	2	1075		2017		512
	6	322	5	771.	-2	448	6.	,2,1	-10	272
	-6	51*			4	463				

an an

				•				· · · ·			
			÷		•	` ~					
			· .							÷	
					F	7 / /		7 4 0	.7	707	
	6	• 4 • 1.	- 7	462	-7	200	-0	607	-7	128	
	-11	1205	ر - ۲	201	7	422	-9	417	-8	1531	
	12	432	-4	877	-7	176	10	346	8	61*	
	-12	350	5	222	-8	292	-10	455	9	210	
	13	180	- 5	695	-0	349	11	533	-9	53+	
	-13	658	6	302	-10	285	-11	607	10	331	
	14	627	-6	419	-11	617	12	939	-10	1961	
	-14	830	7	63*	-13	42.0	-12	188	-11	474	
	16	256	-7	417			13	215	12	665	
	-16	160	8	197	. 6	,9,L	-13	491	-12	671	
	-17	212	-8	240			14	162	-13	458	
	-18	740	9	65*	-1	174	-14	331	14	411	
	-20	176	-9	102	2	176	-15	530	-14	- 789	
	-21	433	10	535	-4	157	16	461	-16	495	
· · · · · ·	-22	451	-10		-0	- 326 175	-10	20.5	-18	047	
	,	ε,	_11	214	-7	208	-17	590	-20	276	
	0	1211		410	- 7	510	-10	802	-21	2,00	
	0	172	12	733	- 10	211	-20	667	-25	2 7 4	-
	1	54*	13	424	7	.0.1	-21	674	8	.3.1	
	-1	226	-14	650	•	and a second	-23	422			
	ż	903	-15	715	0	223	-24	572	0	1081	
	-2	178	-17	772	2	159			1	245	
	3	525	-18	377	-2	1269	7.	.2.1	- 1	54*	
	-3	53*	-19	378	4	776			2	1119	
	4	659	ж. Э		-4	1685	0 1	1209	-2	266	
	-4	137	6	,7,L	6	739	.1	488	3	415	
	5	568			-6	377	-1	565	- 3	253	
	-5	453	0	361	8	349	2	1050	4	58*	
	6	59*	1	100	-8	1739	-2	48*	-4	557	
	-0	569	- 1	520	10	313	5	170	2	54*	
	(60* 07/	<u> </u>	202	-10	1717	- <u>-</u> -) /	180		437	
	-/ 9	9/4 107		241	17	005 444	-4	900		277	
	-8	467 554	- J 5	360	_14	865	-++ 5	105	-0-7	266	
1	-0	505	-5	155	16	281	-5	163	-7	973	
	-9	1017	6	447	-18	1767	6	527	8	63+	
. 2	10	357	-6	384	-20	1623	-6	48*	-8	476	
	-10	706	-7	215	-22	486	7	278	9	493	
	11	633	· 8	523	-24	224			-9	1000	
	-11	516	-8	288			8.	.1,1	10	533	
	12	729	9	237	7	.1.1			-10	215	
••	-12	743	-10	236	-		-23	20.4	11	468	
	13	202	-11	170	0	902	a a	2	-11	711	
	-15	188	-15	476	- 4	0(14	8.		12	241	
	14	291	-14	202	-1	0.51 4777	•	774	- 1 C	337	
	-12	400	- 15	705	-2	1447	4	· · · · · · · · · · · · · · · · · · ·	-17	221	
		341	-10	r.v.s	- ८ र	425	1	275	-14	310	
	-20	770	6	.8.1	-3	607	2	287	-15	147	
	-21	208			ŭ	232	-2	317	-18	277	
	1	1	0	404	-4	1030	3	- 55*	-19	211	
	6	.6.1	2	194	5	523	- 3	238	-20	530	
,			-2	162	-5	264	Ĩ4	144	-21	251	
	0	338	3	159	6	1136	-4	340	-22	288	
	1	637	-3	223	-6	47*	5	278			
	- 1	469	4	267	7	758	-5	305			
	2	227	- 4	153	-7	335	6	58*			
	-2	363	5	29.0	8	969	-6	52*			

				X	
	8,4,1	0 483	8 473	-18 612	9,5,1
		1 63*	-8 504	-19 181	:
	1 630	-1 62*	-10 1178	-20 1147	0 453
	-1 494	2 64*	12 301	-21 179	1 406
	2 58*	-2 411	-14 1309	-22 646	2 322
		5 65* 7 7/5	-10 1489	071	- <u>-</u> 2 209 7 506
	5 501 7 657	-3 (4)	-10 209		-7 201
	-2 107	-4 557	-20 -403	0 1025	4 214
	-4 917	5 395	9.1.1	1 208	-4 768
	-5 396	-5 411	,	-1 713	5 423
	-6 778	6 67*	0 1233	2 660	-5 141
	-7 447	-6 176	1 598	-3 786	6 372
	8 386	-7 372	-1 422	4 419	-6 381
	-8 57*	8 164	2 830	-4 645	-7 360
	-9 57*	-8 402	3 658	5 233	8 159
	10 162	-12 502	-3 376	-5 526	
		-15 264	4 495 		-12 402
	-11 224	-14 200	5 468	-0 204	-14 369
	-13 232	-10 243	-5 360	8 153	-15 521
	-14 1252	8.7.1	6 864	-8 542	-17 369
	-15 446		-6 692	9 380	
	-16 742	0 363	7 265	-9 353	9,6,1
	-17 771	-1 223	-7 345	10 356	
	-18 234	2 391	-8 323	-10 650	2 384
	-19 457	3 314	10 538	11 232	-2 183
•	-20 460	-3 255	-10 531		-3 149
		5 155	-11 157	-12 231	4 308 -/ 360
	8,0,1	7 740	12 544	-10 177	-4 200
	0 106		-15 572	-20 272	-5 430
	1 60*	-9 374	-17 409	-21 611	-7 559
	-1 634	-11 274	-18 251		-9 231
	2 319	-12 523	-19 366	9,4,1	-10 345
	-2 559	-14 331	-20 320		-12 290
	3 402	-15 190	-21 281	0 636	-15 193
;	-3 779			1 368	-16 211
	4 385	8,8,1	2+2+L		071
	-4 679	0 335	A 243	2 165 -2 470	9,1,L
)))))))))))))))))))	U 227 1 24/	1 100	-2 979	0 274
• •	-> >18 6 791	-1 374	-1 144	5 243	-1 339
	-6 130	-2 268	2 579	6 404	2 172
	-7 59*	-3 151	-2 381	-6 284	3 164
	8 347	-4 163	-3 207	7 362	-3 396
	-8 471	- 5 175	4 568	-7 143	-5 157
	-9 KO*	-6 343	-4 922	8 316	-6 232
	-10 202	-7 226	-5 497	-8 222	-8 446
	-11 218	-11 196	-6 703	9 210	-9 163
	-13 569	~ ^ ·		-9 272	-10 228
	-14 201	9,0,L	-0 326 -0 409	=10 (1.5 _11 74⊅	10 0 1
		0 0 27	-> 187 10 705	-13 A74	1997 - 19 7 - 10
	-10 201	U 724 2 AAA	-10 1057	-16 7/0	0 257
	-18 346	-2 527	12 446	-16 910	-2 334
	-19 204	4 584	-12 555	-17 230	-8 484
	τ · τ · τω 1/ *Φ	-4 380	-14 599	-19 264	10 460
	8,6,1	6 627	-16 436	-20 262	-10 1374
		-6 397	-17 350		

12	3.L	12	,4,1.	13	,0,L	-7 -8	227 476	-12	234
0	553	-1	355	-4	349	-9	260	13	.3.1
-2	660	-3	244	-10	242	-10	171		
-6	571	-6	294	-12	357	-12	372	-5	416
-7	297	-7	175					-6	408
-9	416	-8	302	13	.1.1	13	.2.1	-7	256
-10	295	-13	220					-10	279
-11	328			0	363	-2	319		
-12	290	12	.5,1	-1	184	-4	189		
-13	181			-2	632	-6	264		
	• • •	- 5	261	-5	204	-7	197		
		-6	441	-6	672	-8	202		

· :

.

.

Structure Factor Tables for

Perfluorotribenzo(b, e, h)(1,4,7)trimercuronin.4-phenylpyridine.

							1																	
									*															
		·																						
ц	v	ł	FO	er		ĸ	:	ъù	Γ. Γ	н		x 1	F) FC			κı	FO	FĊ	н	K .	L	FO	FC
n	•	۴	F 17			~	••						•						-					
Ó	2	0	63	-36	0	7	3	126	11?	r,		9 (5 23	3 -26	· () 1(n 10.	21	-24	<u>ñ</u> 1	R .	2 2	211	-218
0	4	0	152 -	113	0	8	7	<u>69</u>	51	. 0	1	1 . e	5 5 i	3 16	() 11	1 10	27	32	0 1	0	2 1	183	-187
n	8	0	425 -	430	0	9	3	226	260	n.	1	2 (5 17'	5 -177	() '	1 11	17	18	0 3	? A	2	85	-84
6	10	n	467 -	463	٥	10	3	36	-40	า ก		1	7 104	4 -101	() 14	4 0	162	-164	ก่อ	22	2	20	19
Λ	12	0	190	217	<u>n</u>	11	3	78	31	, ,	۱	2 3	7 121	115	() 10	6 0	37	-52	0 8	23	2	21	-17
ñ	1	1	216	101	0	1.5	Ϋ́,	158	-148	<u> </u>	£	7, 7	r 34	÷ 25	· . () 18	80	415	441	0	24	2	31	-37
0	2	1	501 -	558	0	0	ι.	58	51	0		4 ,7	7 230	5 -235	() 2(0 0	98	-89	0	25	2 1	117	-117
9	3	1	118	-01	n	1	14	22	17	́ ()		6	7 5	-36	í) ?!	4 0	133	131	0	26	S	51	51
0	4	1	10	-16	0	3	4	123	i 12	Û	•	8	7 14) 136	. () 20	5 O	181	-179	1) 8		2	56	50
0	5	1	123	138	ŋ	4	1.	- 13	-108	đ) '	ņ i	7 11	5 116	() ?/	<u> ș</u>	118	-122	0	23	2 1	111	126
n	6	1	178 -	-165	0	5	4	<u>409</u>	201	ť	1	0 7	7 149	2 -148	() 31	n 0	66	/1	0 6	2 G.	2	51	45
e	7	1	30	Q.	0	6	+	5.5	-26	r	1	1	7 4	7 L.1	. (3	S 0	43	-54	0 3	sn	2	26	-27
0.	8	1	384 -	-390	0	7	4	1211	149	ſ) 1.	2 3	7 3	5	() 1	3 1	43	50	0 3	51	5	2.0	-22
0	Q	1	278 -	276	a	9 .	4	S 5	47)	0 1	3 50	9 62	. () 1	4 1	70	-64	0 3	52	2	15	-15
n	10	1	488	436	Ο	10	1.	17	-127	1	ı	1	11	2 121	(11	5 1	111	-111	0 1	्र	5.	25	-18
ſ	11	1	112	118	Ù	11	i,	100	-11	(1	1	2	3 124	4 -123	í) 1	6 1	350	~ 58	<u>0</u> .	4	.5	50	-23-
0	12	1	160	160	0	+2	1.	58	59	:)	4 1	3 79	- 85	() 1	7 1	166	166	0	15	3	72	61
0	0	2	375 -	-400	ð	1	5	64	69	ſ)	5 :	R 6'	1 -60	() 1)	8 1	23	17	0	17	5 1	178	-179
n	1	2	340 -	-350	ы С	2	5	33	-95	ſ	,	6 i	3 159	2 160	() 10	२ 1	36	36	n ,	9	3	96	-97
Λ	2	2.	88	-32	0	3	5	137	- 180	ť	•	7	3 12	3 122	() 24	n 1	580	-273	0		5 1	106	-105
n	- 3	2	161 -	-165	Ą	4	5	15	11)	. f	1	1	3 80	5 -29	. () <u>S</u> .	1 1	61	-57	0	20	5 1	105	101
0	4	2	51	-25	0	5	5	06	-98	í.) 1)	3 13	1 126	() 2	2 1	22	23	0	21	5	54	52
Ű	5	2	76	2.6	0	ń	5	35	49	C	}	1 1	> 5	5 53	1 A () 5.	3 1	21	-18	6	>>	3	80	84
0	6.	2	111 -	-111	٥	7	5	192	-187	C	<u>}</u>	7 () 9'	2 -166	ана () ?	4 1	88	-94	0 2	24	3	34	-36
0	7	5	324 -	-315	9	ö	5	137	-137	•	ł	4	2 3	5 94	() 2'	5 1	75	-41	0.	25	3	41	42
ĉ	3	2	186	1 - 2	9	9	5	51	-02	:)	ς (7 5	1 50	() 20	6 1	10/	~166	0	<u>, ,</u>	5	90	105
0	Q	2	63	51	ر. ا	11)	5	210	00	1)	6 () 5	2 5	. () 2.	7 1	82	-80	0 8		5]	105	112
۵	10	2	300	3.71	0	11	5	252	-269	r	ì	7 () 2	7 32) 23	8 1	99	107	Ċ,	.	3	27	2.6
ſ,	11	2	2.27	274	0	Ð.	5	143.	-139	7	; ·	n (> ?	5 -96	(1 20	7 1	20	55	n j	511	5	82	-04
0	12	2	52	- 15	0	2	4	5.54	157	i	i 1	1 0	7 5	1 0	l l	3	0 1	7.4	50	(i	5 '	5	14	11
0	1	3	164 -	-1, 2	ð	3	ň	× 27	-134	í	, 1	5 (<u>,</u> 3	1 – 11	1) 3	1 1	17	-20	r j	1 3	4 7	200	-175
0	?	- 3	108	., 5	Û	4	5	10,1	95	1)	7 1	9 4	i) (48	•) 1	3 2	74	-67	0		4	97	87
()	र	3	50	48	0 D	5	.6	154	-151	í),	2 1	n 2-	5 31	4) 1	4 7	۲1	2.5	4) '	15	4 1	154	-114
0	1.	3	110	1:1_	•)	Ó		· 7 A	-224	ſ	,	5 1	3 .4	- 1	() 1	5 2	168	167	0	14.	4	71	-64
ú	5	3	91	- 10	- 0	1	'n	. In	- 37	. /	•	21	9.3		1	1 1	6 2	36	51	 - () - ()	1 ⁻ '	4	<u>ר א</u> ר	- \ \
9	- 4	- 3	35	• 7	4	`>			57			- 1	0 4	J <u>- 5</u>) 1	7 2	157	152	 ÷,	L.C.	t.	6 -	ጙዓ

-

H K L F0 FC H K L F0 F0 F1 F0 F3																	•			·						
H K L F0 FC H K L F0 F0 F1 F2 F2 F1 F2 F2 F1 F2 F1							. ~												. •		· · · · ·		на на с. 1910 г.			
H K L F0 FC H K L F0 F0 F1 F1 F1 F1 F1 F1 F1 F2 F1 F1 F1 F1 F1 F2 F1 F2 F1 F2 F1 F2 F1 <thf2< th=""> <thf2< th=""> <thf2< th=""></thf2<></thf2<></thf2<>																										j.
H K L FO H K L FO FC H K L FO															•											
H K L HO PC H K L FO FC H K L FO FC 0 21 4 97 100 77 6 31 -40 -1 7 8 44 6 73 -68 -1 24 5 24 -17 0 23 4 75 75 0 16 7 98 104 106 -1 7 6 80 -71 -1 26 6 80 -71 -1 18 101 -101 -1 6 6 -1 24 40 127 27 27 -1 11 8 104 -1 10 6 35 -0 -1 24 40 147 274 -28 44 -1 10 6 35 -0 -1 4 42 147 10 14 57 75 15	·						 			:		الديمين الدين. الد		•••••			· · · · · · · ·	ing an	59 - 54 - 5 A			a	an sa		••••••	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. H	K	L	FO	· FC		п	. K	L.	FU	F C		H I	< L	. 70	F C		H I	ູ້	FO	FC	•	4 K	L	F ()	FC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) A	24		07	100		0	27	• 6	71	240		1 -	, 2		1.5		4		. 73	-68		11 7 /	5	21	-17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ο Ο	22	7	77	-75		Ő.	14	. 7	195	- 182	<u> </u>	1 . 1	, 	2 92	01		1	τ. Ο ζ. ζ.	27	-00		1. 3c	5	. 77	77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	័ក	23	4	75	75	1.1	0	16	7	96	-96	-	1 9	2 8	104	106	_	1	76	80	-71	_ 1	26	5	21	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	25	4	25	25	•	Ő	17	. 7		-64		1 11		3 110	-101	-	1	> 6	148	-129	-	28	5	71	-82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	° 0	26	4	44	44		0	18	7	28	20		1 1	1 8	91	81	-	1 10) 6	25	-4		29	5	55	-66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	27	4	33	35		0.	19	7	69	-71		1 1	2 8	3 66	-64		1.1	6	115	-103	- 1	1.1	4	278	-268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ō	28	4	71	-83	· ·	0	20	. 7	56	57		1 1	4 8	3. 94	88		1 13	36	38	26	-1	2	. 4	190	167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0	29	4	34	-44		- 0-	22	7	108	-123	·	1 10	5 8	73	-62	-	1 10	5 6	43	-40	-1	3	- 4	204	187
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	13	5	26	12		0	24	7	···· 19	-22	-	1 17	7 8	31	-28	•	1-17	7 6	53	50	1	4	4	121	118
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	14	5	126	-108		0	13	3	56	55	; –	1 19) 8	8 83	-88		1 18	3. 6	7.6	57	1	5	4	126	-124
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0	15	5	125	112		0	14	8	63	-54	-	1 21) 8	41	42		1 19) 6	133	116	1	6	- 4	81	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	16	5	73	59		. 0	15	8	- 40	-39	-	1 22	2 8	3 - 58	-68		1 2() 6	34	-31	1	7	4	30	-24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • 6	18	5	58	47		0	16	8	78	-77	~	1 23	5 8	17	27	-	1 27	2: 6	40	-42	- 1	8	4	105	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	19	5	137	125		0	17	8	64	-67	-	1 () 7	71	-70	-	1 23	56	47	-41	- 1	Ģ	4	385	- 376
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	20	5.	9.6	-86		0	18	- 8	2.2	26	. –	1 2	2 7	51	53	-	1 24	4 6	23	23	- 1	10	4	88	-93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	21	5	90	87		0	19	8	- 61	68		1 3	3 7	92	-93	-	1 20	5 6	36	-42	-1	11	4	99	-101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	22	5	43	40		0	20	8	60	-71	-	1 1	. 7	78	70	· . –	1 27	76	63	-76	-1	12	.4	170	-158
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	23	5.	70	-71		. 0	22	- 8.	29	- 35	-		5 7	102	-104	-	1 () 5	49	54	- 1	13	4	. 94	-89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	24	5	44	46		0	13	9	32	34			5 7	51	-45		1. 1	5	206.	202	-1	14	4	73	-65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0	26	5	45	-51		0	14	0	- 71	-//	* . *			65	-64	. · · · ·	1	2.5	129	152	-1	15	4	190	169
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	27	2	22	-74		0	15	4	50	- 29) (·		-		5 7	143	130	-1	16	-4	121	-104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	28	2	20	25		- 1	4 		40	440		1 1() (. 57	21		ן ג ג	•) • F	. 98.	. (9	-1		4	231	-190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	29	2	17	-00			· · · · · · · · · · · · · · · · · · ·	. 9		112			ין דרר	101	95	-	1 C a -	ר (ד ו	200	-03	- 1	18	4.	(1	-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	15	0	151	148		- 1	- A A		21	70	-	• 47		(ð). 179	-08	-	1 1	ר יי ה ב	208	197	-1	19	4	141	- 127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	14	0 4	00	04		-1	12	0	0.6	~ (4		1 12	57 57	· 150	110		1 C	ע (5	20	-0.		21	4	1400	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0	10	6	120	41		-1	16	0	52	-54		• • •	57	· 41			1 7	, , , , ,	112	- 107	- 1	22	4 /	- 10	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- U - A	10	6	120	. 7.9		_1	15	0	20	-26		, it 1 17	7 7		45	· -	1 1	5	726	- 207	- 1	. 27	4	3.2	- 40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i a	12	6	101	-02		_1	16	9	49	-49	_	1 12	י א 7	54	-45	_	1 12		224	-86	- 1	21	ž	47	- 30 - 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	6	34	20		-1	17	0	58	-66	-	21	í 7	97	-98	· •	1 12	Ś	79	73	- 1	26	ž	87	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	20	6	80	77		_1	18	0	26	28	_	1 2 2	, . , 7	30	32	-	1 1 4	5	112	-94	_ 1	27	4	124	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	21	6	0.2	-03		-1	19	9	30	39		2	x 7	25	-27	` -	1 17	, 5	149	-124	- 1	28	4	17	-18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	20	6	57	57		-1	1	8	72	-74		1 2/	7	30	- 35	-	1 1 () ⁻	114	100	- 1	29	4	18	-24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n.	27	6	30	- 35		-1	2	R	78	76	_	1		103	110	-	1 20	5	140	120	_ 1	30	L	61	-68
0 26 6- 16 20 -1 6 8 29 -34 -1 3 6 47 39 -1 22 5 24 -21 -1 1 3 609 -626	0	24	6	76	-35		-1	4	8	- 32	-133	-	1 2		22	-28	-	1 21	5	47	47	-1	0	3	1041-	1135
	0	26	6 -	16	20		-1	. 6	8	29	-34		1	3 6	5 4 7	39	-	1 22	2 5	24	-21	- 1	1	3	609	-626

				-	- 																					
						4 													·				•			
•																										
•								:							, · ·	e de c	in and the second			·	er a cada			1.414		
	н	K	L	FO	F C		I K	L	FO	FC		H	K	Ĺ	FO	FC	la sub ⊦	K	L	FO	FC		H	κL	FO	FC
		3.0					5		130	473		4	17	F	447			···· ·· · ·							· .	· ·
-	1	28	2	73	22	1	6	4	- 59	- 58		1	18	5	120	-142	1	11	7	62	-67		1 1	29	26	-30
1	1	30	2	75	-81	1	7	4	157	-153		1	20	5	154	146	1	13	7	77	81		1 1	5 7 ·	60	-20
	1	31	2	21	24	1	8	4	232	-215		1	21	5	53	-48	្រក់ខ្មែ	14	7	26	-23		1	1 10	56	55
3	1	0	3	100	78	1	. 9	4	57	43		-1	22	5	66	65	1	15	7	31	-23	÷	1 1	4 10	40	-49
20 20 20	1	1	3	145	-146	1	10	4	214	189		1	23	5	50	-50	1	16	7	101	-94		1 0	5 1 0	32	-34
-	1	2	3	96	-95	1	11	4	282	-253		1	24	5	134	-142	1	17	7	40	-34		1 (7 10	61	-66
	1	3	3	267	261	1	12	4	198. 72	-97		1	26	5	25	27	1	19	7	61	64		1 .	5 0	128	-113
1	1	4. E	5	06	-51		10	4. 	250	-70	Υ.	1	· 1 · 7	0	43/	-/6	1	20		55	-57	-	2	1 11	40	50
4.	. 1	7	J Z	418	391	1	15	4	210	180		4	. <u>C</u>	6	124	117		. 21	7	21	- 29		2	5 11	- 53	-41
4	1	7	3	68	- 60	. 1	16	4	11.9	132		1	4	6	321	-321	1	23	7	45	-27	-	2 4		4.5	56
-	1	9	3	68	65	1	19	* 4	83	81		1	5	6	28	-18	1	24	7	48	60		2 2	2 10	34	-42
•	1	10	3	51	- 44	1	20	4	110	-98		1	6	6	101-	-88	1	2	8	52	46		2 7	5 10	33	40
	1.	12	3	67	72	1	21	4	136	129		1	8	6	145	140	1	3	8	66	-72		2 4	5 10	41	41
	1	13	3	348	-327	1	22	4	150	146		1	. 9 .	6	105	103	. 1	4	8	79	83	-	2 7	7 10	48	50
÷	1	15	3	117	-104	1	. 25	4	61	-64		1	10	6	159	-158	1	5	8	37	39	-	2 11	10	5 R	-64
ie,	1	16	3	155	-141	1	24	4	42	42		1	11	6	27	-18	1	6	. 8.	79	83		2 12	2 10	39	41
	1	17	3	63	56	1	20	4	20	- 28		1	12	5 6	226	242	1	. 7	8	35	30	-	2 13	5 10	23	-28
	1	10	ר ד	07	. 07 -115		28	4	53	-17		1	16	6	79	-71	1	.9	° g	55	-20	-	2 14	10	-26	-25
	4	20	3	27	18	· . 1	29	4	78	-89		1	17	6	89	-87		12	g	23	-10	-	<u> </u>	2	20	-01
ž.	1	21	ž	118	120	1	0	5	239	247		1	10	6	29	-23	1	13	8	28	-17	_	2 0	9	67	- 29
1	1	22	3	100	-09	1	1	5	20	9		1	20	6	76	77	1	14	8	88	-83	-	2 10	9	27	-21
1	1	23	3	131	128	1	2	ς.	258	560		1	22	6	145	-148	1	15	8	42	-40	ʻ .	2 11	9	69	67
	1	24	3	51	50	1	3	5	68	-75		1	23	6	35	-38	1	16	8	37	-33	-	2 15	9	30	-25
	1	25	3	40	-42	1	4. r	5	169	178		1	24	6	40	-39	1	18	8	33	34		2 19	9	59	-72
	1 -	26	3	31	30	1	2	2	340	-137		1	25	0	21	21	1	21	8	24	-31	-	2 1	8	46	-48
	1	27	5	44	48	1	2	ר ב	26	- 300		1	20-	0 7	50	4.5	1	0	9	51	48		2 2	8	57	-64
	1	28	5 7	49	- 74	. 1	8	5	47	76		1	2	7	419	-118 	1	2 7	à	55	<u> </u>	-	23	8	83.	-89
	. 1	31	כ ד	25 80	-05	1	10	5	74	75		1	4	7	83	-87	· · ·	.) 4	ġ	31	21		/ 4 2 E	, Q	41	-44
	1	1	4	89	64	1	12	5	303	-275		1	5	7	72	-73	1	6	9	35	-37	· _	6 7 2 %	9 8	- 07 - 40	-00
:	1	Ż	4	175	-172	1	13	5	92	90		1	6	7	143	141	1	7	9	31	30		2 7	8	59	-62
	1	3	4	228	232	1	14	5	458	140		1	· 7 ·	7	119	122	1	8	9.	61	-64	-	2 9	× 8	30	-30
	1	4	•4	294	2,36	1	15	5	/5	71		1	8	7	65	68	1	11	9	27	-21	-	2 11	. 8	87	82

. ``

									:	н на 1910 година 1910 година	··· . ·		4 . A														
	H	ĸ	L	FO	F C		Н	K	L	۶Û	FC		H	K	. L	FO	FC	H	ĸ	L	FO	FC	н	K	L	FO	FC
¢	-?	12	8	60	55		-2	12	6	85	-85		-?	Só	5	58	55	-2	5	3	88	76	-2	13	2	94	90
•	-2	13	8	75	68		-2	13	ó	124	101		-2	27	5	106	110	-2	6	3	193	-195	-?	15	2	228	230
	-2	14	8	48	-43		-2	14	- 6	.43	31		-2	28	5	~ 33	-37	-2	2 7	3	106	116	-2	16	. 2	38	43
1	-2	17	8	58	54	•	-2	15	6	70	-57		-2	29	5	32	-37	-2	8	3	246	-258	-2	18	2	187	185
	-?	10	8	22	-8		-2	16	6	53	46		-2	- 1	4	233	-245	-2	10	3	317	312	-2	19	2	53	-56
;	-2	20	8	51	-53		-2	17	6	186	-159		-2	3	4	19	21	-2	11	- 3	66	57	-2	20	2	. 30	24
1.4 . 1.4 .	-7	21	ð	59	-66		-2	18	6	51	40		-2	4	4	103	88	-2	12	3	71	68	-2	21	2	38	40
12. •	-2	1	- (·	140	151		-2	19	6	175	154			5	4	214	215	-2	13	3.	93	82	-2	23	2	108	-108
1	-/	5	(7	54	- 55		-2	20	<u>, </u>	89	. 78		-?	. 6	- 4	171	-176	-2	14	3.	53	-44	-2	25	S -	78	-79
1	-2	4	7	145	-136		-2	25	6	52	- 35		-2	7	4	164	-169	-2	15	3	103	-83	-2	26	2	62	-65
	- <		7	. 34	74			24	<u>0</u> .		- 24			8	4	278	226	-2	16	5	294	282	-?	27	2	82	86
1		0	7	201	10			ر ہے۔ 1	Ĵ	201	200	1	~	40	4	41	. =41	-2	17	5	85	-77	-2	28	S	74	-82
	- C - D	10	7	6114	-134		-2	· · ·	ר ב	245	-219		~~~	10	4	201	263	-2	18	- 5-	57	- 38	-2	29	Z	20	-29
		12	7	00	- 10		-2	्र र	-	205	787			11	4	30	151	~2	19	5	49	41	-2	1	1	58	71
i.	-2	17	7	63	54		-2	4	5	174	112		- /	12	4	4 6 6	450		- 20	5	1/9	-1/8	-2	2	1	13	-34
	- 2	1/.	7	117	6 A		-2	5	ç	27	-77			47	4	100	- 1 - 7	- 2	21	.) 7)) 17	-37	: = 2	5	1	146	144
- 1 	-2	15	7	72	-55		-2	6	· · <	157	145		22	15	· 4 1	- 56	-35	-2	23	ר י ד	21	-23		4	1	185	185
Í,	-2	16	7	30	-34		-2	7	5	119	-113			14	7	51	-37	-2	24	.) 7	447	-70	-2	0	1	720	130
÷.,	-2	17	7	98	36		-2	8	5	118	111	2	-2	17	ž	150	- 36	- 2	22	ן. די	117	120	- 2		1	346	-295
÷.	-2	18	7	51	46		-2	9	5	347	745		-2	18	4	306	-286	-2	28	्र	82	87	- 4	10	4	204	-100
÷.,	-?	10	7	129	115		-2	10	5	167	-152		_2	10	4	114	-103	-2	- 20 - 70	र	18	21	-2	4 4	4	16/	-144
i.	-2	20	7	24	-12		-2	11	5	124	-124		-2	21	4	33	30	-2	31	Š	54	63	- 2	12	1	222	- 272
	-2	21	7	46	-42		-2	12	5	101	-97		-2	22	4	36	-25	-2	۰ آ	2	413	428	- 2	17	4	115	-176
	-?	22	- 7	67	-70		-2	13	5	36	-80		-2	23	4	71	70	-2	1	2	67	-77	-2	14	1	56	-120
1	-2	0	6	159	176		-2	14	5	59	-55		-2	24	4	46	-43	-2	2	2	134	-142	-2	15	1	101	106
	-2	1	6	370	309		-2	15	5	233	215		-2	25	4	78	-79	-2	3	2	30	-45	-2	16	1	23	-8
	-?	2	6	216	233		-2	16	5	147	-125		- 2	26	4	124	126	-2	4	Ž	22	-13	-2	17	1	200	208
	- 2	3	6	64	81		-2	17	5	175	-152		-2	27	4	21	-23	-2	5	2	190	-198	-2	18	1	9.6	-106
	-2	- 4	6	53	5 5		-2	19	5	119	-111		-?	28	4	48	49	-2	6	2	50	33	-2	20	1	88	89
	-?	5	6	123	-117		-2	20	5	114	102		-2	29	4	55	59	-2	7	S	197	-197	-2	21	1	112	110
	-?	6	6	93	-85		-2	21	5	117	104		-2	30	4	20	-21	-2	8	2	275	-256	-2	22	1	74	76
	-7	7	6	287	271		-2	22	5	74	72		-2	1	3	26	-7	-2	9	2	59	51	-2	23	1	41	45
	-?	8	6	75	-62		-2	23	5	03	-90		-7	2	3 -	259	-269	-2	10	2	222	-215	-2	24	1	33	-33
	- ?	10	6	110	-112		-2	24	٢	- 5	55		- 7	3	3	30	-37	- 2	11	2	25	-29	2	25	1	114	-118
	-7	11	6	525	-109		-2	25	5	<u> </u>	-60		- ?	4	3	71	79	-2	12	2	102	77	- 1	25	1	44	. 41

					- 					· · ·								· · · · ·							
НК	L	FO	FC	Н	K	L	FO	FC		ł K	L	۶O	FC		H	K	L	FO	FC		H	K	ι	FO	FC
-2 27	1	35	-40	2	8	1	69	78		2 17	2	123	129		2	26	3. z	58	-58		2	16	5	29	-26
-2 28	1	21	-77	- 2	9 · 11	1	420	408		> 19	2	142	-146		2	29	3	47	-52	5. S	2	19	5	28	28
-2 30	. 1	63	-68	2	13	1	115	121		2 20	2	109	-107		2	30	3	35	-42	in tr A	2	20	5	26	24
2 1	0	105	129	2	14	1	95	85		21	2	111	111		25	0	4	161	-180		2	21	5	25	24
2 2	•• 0 •	94	-07	2	15	1	372	-334		22	2	66	-70		2	2	4	234	241	·. ·	- 2	22	5	119	-117
	0	313	-318	2	18	1	67	-64		2.23	2	174	179		2	- 5	4	62	-64		2	25	.) E	47	
? . 5	0	390	-411	2	19	1	57	-56		2 24	2	115	116		2	- 4 · · · - 5 · ·	4	147	-116		2	24 2	- 2' - 5	43	46
26	0	52	51	- 2	20		236	364	· · · · · ·	2.2.2	- <u>c</u> - j:	27	- 71	an di Taga ta	2	6	4	394	- 393		2:	26	5	30	32
28	0	91	-31		21	4	88	92		2 27	2	24	24		2	7	4	97	-101		2	27	5	14	13
· 2 10	0	106	109	2	24	1	71	-75		2 30	ē	63	72		Ž	9.5	4.5	55	56	• •	2	28	5	16	-20
2 11	Ő	32	40	2	25	1	91	96	•	2 31	2	100	-115		2	12	4	292	-271		2	0	6	85	-90
2 12	0	105	103	2	26	1	42	46		2 2	3	226	-216		2	14	4	118	115		2	1	6	54	. 20
2 13	0	300	302	2	27	1	. 32	-31		2 3	5	215	221		2	12	4	147	1/6		2	くて	0 6	60	-47
2 14	0	66	-75	· · · · · · · · · · · · · · · · · · ·	24	1	11/	317	4 	2 4 7 5	े	475	- 4 <u>/</u> /		2	10	4	51	-48		2	L.	6	59	-61
2 15	0	202	206	2	. JU 71	1	ענ 72	- 34		2 J 2 K	3	163	141		Ž	200	4	160	161	•	Ž	5	6	38	-32
2 17		40	-0.7	2	31	1	40	48		2.7	3	193	-190		2	22	4	64	64		2	6	6	84	88
2 17	0	- 30	25	2	0	2	184	170		2 8	3	216	-204		2	23	4	50	-52		2	8	6	126	127
2 10	Ő	58	64	2	! 1	S	333	-318		2 9	. 3	124	118	1. 1. a.	2	24	4	129	-130		2	10	6	53	54
2 20	0	120	-127	. 2	2	2	506	-203	•	2 10	- 3	242	253		2	25	4	24	* -24		S	12	6	66	71
2 21	0	35	-41	- 2	3	2	154	171		2 11	- 3	198	-182		2	27	4	- 54		•	2	13	. O 	103	-101
2 22	0	75	77		4 5 E	2	741	-138	•	2 72	·	107	-102		2	20	4	10	-12		2	18	6	61	
2 23		160	-172	2		2	262	259		2 13	3	277	-276		Ž	3	5	79	89		Ž	20	6	33	-28
2 24		73	-72	2	7	2	190	-198	· .	2 15	3	212	193		2	4	5	275	-288		2	21	6	60	-59
2 28	Ň	68	73	2	8	2	27	-40		2 16	3	139	129		2	5	5	65	-64		2	22	6	52	-60
2 31	Ō	72	81	2	2 9	2	54	56		2 17	3	40	42		2	6	5	119	-122		5	24	6	35	41
2 32	2 0	40	-45	2	2 10	5	70	-72		2 18	3	66	-55		2	8	>	55	29		2.0	26	0 7	21	60
2. 1	1	72	-77	2	2 11	2	206	212		2 20	3	95	-98		2	40	5	91	- 83		. 2	1	7	58 58	-92
2	5 1	429	-436	6	2 12	2	740	778		2 21	<u>ר</u>	209	206		2	10	5	85	-76		2	ँ	7	28	43
. 7 4	• 1	212	-15 227		2 1 2	2	121	-115		2 23	3	- 32	-36		2	12	5		70		2	4	7	56	50
2	· · ·	31	-63	7	2 15	2	00	-95		2 24	. 3	30	29		2	14	5	222	207	-	2	6	.7	85	86
2	7 1	319	327		2 16	2	139	-137		2 25	- 3	73	- 69		2	15	5	35	29	4	2	0	7	111	109
	•																								
																		4							

	H	κ	L	FO	FC		н	K	L	FO	FC	н	ĸ	ι	FO	FC	н	ĸ	L	FO	FC	н	к	L	FO	FC
	2	4.0	7	1.4	-/0	,	2	3	10	.33	-40	-3	5	8	42	37	-3	74	7	29	-31	- 3	10	5	_135	125
	<u>_</u>	10	7	+0 2∡	- 49		2	ž	10	38	-44	- 7	6	8	67	-72	-3	25	7	73	87	-3	11	5	93	96
	5	47	7	20	- 37		2	5	10	26	-30	-3	7	8	32	27	-3	1	6	84	-88	- 3	12	5	33	-29
	<u> </u>	14		00 E D	-6.5		2,	~	10	65	78	-3	8	8	55	55	-3	2	6	122	130	-3	13	5	114	-105
	~	16	7	ラビ 5人	-57		2	7	10	47	-53	-3	ğ	8	195	-181	-3	3	6	156	147	-3	14	5	55	53
	2	40	7	57	- 0 4 / 0		-3	3	11	34	43	-3	10	8	61	-49	-3	4	6	26	21	-3	15	-5	120	-110
	5	10	' ' <mark>'</mark>	55	-54		-3	5	11	31	41	- 3	11	8	43	40	-3	5	6	126	-125	-3	16	5	104	-85
	r D	22	· '7	27	28		-3	7	11	21	22	- 3	12	. 8	69	62	-3	6	6	141	119	-3	17	5	77	65
	5	· ⊆ C. 1	Ŕ	07	04		-3	1	10	48	-54	-3	13	8	48	36	-3	7	6	111	-102	-3	18	5	182	-151
		· >	8	62	67		-3	2	10	34	-35	-3	14	8	129	108	-3	8	6	108	101	-3	19	5	48	-40
	- C - D	· C. Z	8	60	72		-3	4	10	56	55	-3	15	8	105	-91	-3	9	6	191	178	-3	22	5	47	-40
	- <u> </u>		8	34	44		-3	8	10	28	-23	-3	16	8	46	-38	-3	10	6	149	-127	-3	23	5	85	83
	· 2	· 6	8	50	-56	;	-3	Q .	10	51	53	- 3	17	8	106	89	- 3	11	6	121	-113	-3	26	5	97	101
	2	7	8	111	110		-3	10	10	30	31	- 3	19	8	77	77	-3	12	6	59	-49	-3	27	- 5	42	-43
1.	5	י ג	- 8	26	-32		-3	11	10	42	45	-3	21	. 8	38	-38	-3	13	6	88	-76	-3	28	5	22	23
	2	11	Ř	90	-89		-3	14	10	44	-47	- 3	22	8	74	-87	- 3	14	6	61	-50	-3	29	્ર 5	36	42
	ົ່ວ	17	Ŕ	50	-49		-3	16	10	23	27	- 3	23	8	28	34	- 3	15	6	182	159	-3	. 1	4	86	-79
•	5	15	8	63	-65		-3	0	o	55	61	- 3	0	7	94	0.0	-3	16	6	167	-142	-3	2	4	73	-56
•	2	16	8	60	61		-3	1	Q.	96	-100	-3	1	7	216	235	- 3	17	6	71	-57		3	4	31	-38
•••••	2	17	Ř	51	-53		-3	2	¢	127	-136	- 3	2	7	85	84	- t, - -3	18	6	37	34	-3	4	4	118	-118
	. 2	10	8	51	60		-3	3	0	66	-73	-3	5	7	157	-158	3	19	6	70	-59	-3	: 6	4	145	-165
	2	.,	ö	96			-3	4	Q	58	-63	-3	.6	7	64	-57	3	50	6.	89	81	-3	7	4	144	149
	2 2	2	Ó	53	56	2. j. – .	-3	6	, ç	115	108	-3	7	7	200	185	-3	21	-6	87	84	-3	8	-4	57	-54
	2	- Z	9	28	-37		-3	7	9	85	-87	- 3	8	7	9 9	-102	- 3	23	- 6	- 38	-39	-3	ò	-4	125	130
÷.	2		ģ	77	-70		-3	11	9	73	74	- 3	10	7	89	-81	-3	24	6	89	94	- 3	10	4	53	63
	2	5	9	35	36		-3	12	Q	97	95	- 7	11	7	190	-159	-3	25	6	66	-66	-3	11	4	56	41
	2	7	ģ	27	-24	•	-3	14	0	55	-49	- 7	12	7	75	-59	-3	26	6	10	20	-3	12	4	128	120
	2	8	9	53	50		-3	15	0	32	- 29	- 7	13	7	152	125	-3	27	6	61	70	- 3	13	4	139	120
	2	Q	9	102	-111		-3	16	0	41	- 42	· - 3	16	7	85	70	- 3	0	5	311	-307	-3	14	4	101	82
	2	10	9	47	-48		-3	17	- 9	58	57	- 7	17	7	164	-133	-3	1	5	147	-135	- 3	15	4	86	-65
	2	14	9.	- 50	70		-3	18	Q	. 33			18	7.	- 89		3	·~ 2,	5	59	53	-3	16	4	129	102
	2	15	9	24	-28		-3	19	9	35	-39	. .	5 19	7	130	115	-3	:3	5	85	95	+ 3	17	4	1.86	-169
	· · · · · · · · · · · · · · · · · · ·	16	9	20	-38		-3	20	9	54	-62	, - 7	5 20	7	63	59	-3	5	5	161	157	-3	19	. 4	40	36
	2	0	10	71	76		3	1	8	134	137		5 21	7	- 30	-22	- 3	6	5	44	-44	-3	20	4	20.	-42
•	2	1	10	26	-32		-3	3	8	122	-120	3	22	7	25	21	-3	8	.5	235	227	-3	21	4	83	-81
	2	2	10	36	-37		-3	- 4	- 8	167	-158		5 23	7	31	-41	-3	9	5	24	-12	- 3	22	4	40	-58
11				-					.: • .												•					
		. • • •	. • •				e e e			i e i e	e dê le gi			·												

													-		- 1							- -		
											•								•				-	1. A. 1.
•																								
									- /	· · ·														
, H	κ	Ŀ	FO	FC	Н	К	I.	F ()	FC	ł	K	Ł	FO	FC	ł	K	L	FO	FC	н н н . Н	K	L	FO	FC
-3	23	4	55	-54	- 3	2	. ?	118	-113	_ 7	5 13	1	377	-388	1	5 27	ö	58	-63	3	4	2	503	502
-3	24	4	40	-48	-3	- 3	2	283	290	_ 7	14	1	29	-29		28	Ň	19	-11	्र	5	2	58	-58
-3	25	4	101	101	-3	4	2	165	178	<u> </u>	15	1	119	-120		29	ň	103	109	ंद	- 6	2	162	141
-3	26	4	31	-25	-3	5	2	94	-111	- 3	5 16	- 1	33	73	7	5 30	Ő	19	19		7	2	87	-79
-3	27	4	27	74	-3	6	Ś	24	12	···	17	1	163	166	1	5 31	. Õ	38	45	3	. 8	2	97	-01
- 3	28	4	10	21	- 3	7	2	313	-300	- 3	18	1	95	26		5 0	1	155	165	- 3	9	Ž	32	32
-3	30	4	23	20	-3	8	2	119	-116	· · · · · · · · · · · · · · · · · · ·	19	1	148	-155	. ¹²⁴ . 3	5 1	1	301	-283	3	10	2	198	207
- 3	Û.	3	59	-44	-3	9	S	24	17		20	1	27	-41		2	1	235	-728	3	11	2	24	-32
- 3	1 :	3	37	-23	-3	10	2	255	252		21	1	100	103	. 3	5 3	1	90	97		12	2	135	-136
-3	2	3	165	172	-3	11	2	272	-245	·	22	1	30	27	3	\$ 4	1	159	-176	3	13	2	67	-73
3	3	3	189	-189	-3	12	2	111	-98		23	1	211	224	. 3	5	1	521	535	3	14	2	298	-293
- 7	4	3	40	2.2	- 3	13	2	28	-105	- 7	25	1	65	-68	3	5 6	1	387	401	3	15	2	141	133
- 3	5	3	226	-238	- 3	14	2	94	-94	- 7	26	1	64	-70	. 3	5 7	1	120	-124	3	16	2	92	96
-3	6	3	91	-88	-3	15	5	213	225	· - 3	29	1	31	39	3	8	1	32	-16	3	17	2	42	- 38
-3	7	3	115	-128	-3	16	5	1.12	114	· 3	31	1	104	-126	3	9	1	73	-69	3	18	2	41.	-38
-3	Q	3.	63	66	- 3	17	S	79	85		2	0	15	17	. 3	10	1	59	57	3	19	2	42	-46
- 3	10	3	128	-128	-3	18	2	79	-79	. 3	3	0	467	-533	3	11	1	169	169	5 3	20	2	34	-27
-3	11	3	56	53	-3	19	5	29	26	3	4	0	213	-255	3	12	1	257	244	3	21	2	86	80
- 3	12	3	136	-131	- 3	20	2	36	-38	7	5	0	319	321	3	13	1	248	-255	3	22	2	197	198
-3	13	3 :	163	139	-3	21	5	175	.174	3	6	0	168	-175	3	14	1	112	-119	3	24	2	43	40
-3	14	3	46	- 41	· - 3	22	. 2	112	112	3	8	0	37	-42	3	15	1	75	-79	3	25	2	102	-103
- 3	15	3	227	210		24	2	53	-56	- 3	, Ö	0	351	-330	3	16	1	134	-130	- 3	23	2	40	56
-3	16	3	50	53	-3	25	2	122	-126	3	10	0	28	-26	- 3	17	1	104	117	. 3	30	2	53	-68
-3	17	3	48	-36		28	2	62	65	· 1	11	0	360	359	3	19	1	119	-119	- 3	31	2	43	-52
-3	19	3	42	-43	- 3	29	2	51	-55	. 3	12	0	26	22	3	20	1	160	-175	3	0	3	46	51
- 3	20	3્ર	92	36	-3	30	2	. 47	-55	3	13	· 0	128	136	3	21	1	47	58		1	3	<u> </u>	-35
- 3	21	3 ~	40	38	- 3	31	2	60	-65	ব	14	0	99	105	- 3	22	1	39	-44		2	3	220	222
3	23	3	123	-126	-3	-3	1	202	191	3	15	0	364	-373	3	23	1	152	164	. 3	3	3	° 33	44
-3	24	3	64	-60	- 3	5	1	575	532	3	17	0	33	35	3	24	1	104	114	3	4	3	104	111
- 3	25	3	71	- ń9:	-3	6	1	134	109	3	18	0	45	49	3	25	1 -	64	-60	3	5	3	38	-54
- 3	27	3	71	72	-3	7	1	223	-201	. 7	10	0	30	-10	3	28	1	49	48	3	6	3	221	-216
-3	28	3	38	-45	-3	8	1	140	-108	. 7	21	0	259	-269	3	29	1	52	54	3	7	3	37	-36
- 7	20	3	19	-22	-3	9	1	48	43	3	22	0	86	-00	3	30	1	58	70	3	. 8	3	121	-119
-3	30	3	30	-31	- 3	10	1	22	-19	3	23	0	101	109	. 3	31	1	69	-81	3	ò	3	51	61
- 3	31	3	27	33	-3	11	1	: :0	235	2	24	0	32	- 76	3	?	2	01	-75	3	10	3	95	-96
- 3	1	Z	98	118	-3	12	1	11:8	105	. 7	25	ŋ	107	107	3	- 3	2	148	140	7,	11	3	31	-25

																			a se						
											•		а.	·				. •							
							. .								· · · · · ·										•
H K	L	FO	F C		Н	к	1	F0	FC	н	ĸ	Ľ	FO	FC	H	ł; k	L.	FÓ	FC		Н	ĸ	L	FO	FC
3 12	3	184	-187		3	25	4	50	54	3	16	6	42	-42	3	5 16	. 8	64	-66		- 1	7	o	0.0	0.5
3 13	3	34	- 52		3	27	4	28	-33	. 3	17	- 6	126	-123		17	8	61	71	-	-4		0	. 74	-00
5 14	3	67	60		3	28	4	25	32	3	18	6	41	43	3	19	8	42	62		- 4	ς	. 9	- 66	-90
5 15	. 5	118	105			0	5	179	-193	- 3	19	6	94	-100	. 3	5 · · · 0	9	98	102		-4	6	ó	. 5 2	-68
<u> </u>	-5	110	118		3	1	5	141	-142	र	21	6	60	6 6	3	2	- 9	25	-26		-4	7	ģ	46	-40
7 10	2	0.0	. 55		2	2	5	107	-111	3	23	6	-38	-47	3	3	9.	40	-45		-4	9	9	116	-115
7 70	ר ב	110	-25		: 5 7	່ ງ ເ	2		-99	3	24	6	57	69	3	. 4	9	33	-37	•	-4	11	9	54	56
2 21	2	119	119	. •	. ວ 7	27	2	. 38	29	.3	0	7	29	-36	. 3	5	9	25	-28		-4	12	- 9	43	40
7 22	7	00	ା <u>ମ</u> ୍ଭର ମୁହ		 	(9	יר	150	-141	3	- 1	7	137	145	3	6	9	75	79	•	- 4	14	9	98	90
3 27	7	4 I 2 ZZ	-17		. 7 . 7	0	ר ד	757	125	<u>3</u>	. 2	7	50	53		7	9.	33	-33	-	- 4	15	9	83	-84
3 24	3	76	 		ר ד	10	7	> C 9 L	-25	3	3	<u> </u>	78	86	. 3	- 8	9	58	-68	-	- 4	17	9	55	57
3 26	7	42	-/1		ן ד	11	5	477	420		4	<u>_</u>	.47	54	3	10	9	54	-61	•	-4	19	9	28	37
3 27	3	55			्र	16	5	01	729	<u>.</u>	<u>ר</u>	(31	-31	3	11	9	46	51	· •	• 4	0	8	70	64
3 28	3	30	-38		3	15	. 5	25	74	ר ד	0 	7	11	-76	: 3	12	9	47	58	•	• 4	1	8	143	142
3 29	3	36	- 1.6		्र	16	, 5	07	00	۲ به		7	191	199	. 3	13	9	32	39		- 4	2	8	51	51
3 30	3	47	-61		3	17	5	102	Q 5	ა 7	11	7	122	-157	3	14	9	27	-36		4	3	8	50	-53
3 1	4	71	69		3	18	Ś	05	-90	ר ד	17	7	01	-85	5	2	10	40	-52	-	4	5	8	100	-99
3 2	4	138	-133		3	19	5	.55	-52	ו ד	15	7		50	. 5	. (0	354	364		-4	6	8	30	-32
3 4	4	93	-91		3	21	5	67	-70	י ד	1.7	7	25	-79	-4	1	11	34	-44	-	4	7	8	96	87
35	4	43	-44		3	22	ŝ	4.2	-45	· · 7	47	7	57		-4	2	11	57	-44	-	4	8	- 8	97	-94
3 6	4	106	-111		3	23	Ś	20	21	.) 	12	7	71	-74	-4	4	11	74	84	•	4	10	8	48	-44
3 8	4	51	-50		3	25	5	52	-61	्र	10	7	78	- <u>-</u> 20	-4	0	11	72	-41		4	11	8	91	-83
39	• 4	75	-76		3	26	5	69	87	7	20	7	2/	00 54	-4	9	11	55	. 56	-	4	12	8	53	-42
3 10	4	80	84		3	27	5	19	-23	र	21	, 7	27	20	=4	0 4	10	45		-	4	17	8	96	86
3 11	4	103	-01		3	1	6	189	-206	3	22	7	27	20	- 4	ן ר	10	7 () 0 A	- ()		4	16	8	99.	79
3 12	4	98	02		3	2	6	52	55	3	1	8	99	106	-4	2	10	80	-82	-	4	17	8	75	-58
3 13	4	- 46	44		3	3	6	108	113	3	2	8	0.8	101		4 5	10	41	+44		4	18	ð	5.7	44
3 14	4	151	137		3	4	6	43	42	3	τ.	8	46	-46	-4	ر ۲	10	60	28		4	10	8	75	70
3 16	4	102	91		3	5	ń	39	-01	3	4	8	81	-98	-4	7	10	40	40		4 0	21	8	20 -	-18
3 18	4	53	-45		3	6	6	64	55	7	5	8	27	37	-4	11	10	56	-04	-	4 4	22	8. o	33	37
3 10	4	103	98		3	9	5	235	235	3	8	8	90	94		12	10	9 U 9 R	.)0 g∡	-	4 1	65	07	29.	- 39
3 20	4	27	-27		3	10	6	38	- 35	3	0	8	137	-144	-+	11	10	- 10 - - 72		-	4	2	17	03	67
3 22	. 4	62	-69		3	13	6	- 38	-44	3	10	8	87	-03	+ 	15	10	30 3/	יניי ריכ	· · ·	4 7	5.	1	45	46
3 23	4	32	-37		3	14	6	58	-77	3	14	8	40	1.0	-4	16	10	12	-52	· •	14 1.	4 C	(7	62	60
3 24	4	193	-1116		3	15	4	06	93	3	15	8	26	-33	-4	1	а О	77	- 22		4	2	ז ד	34	- 37
													• •	· -	*	•	-	1 . J	07		4	<u><u></u></u>	1	149	170

:

÷			. '									· · · · ·	·						÷.,			`
																	•					
							1.1.1													÷ .		
	H ·	K I	L FC) <u>F</u> C	· H	К	I. F.	F.C	H	K L	. F0	FC	n s ¹ n H	K	· L	FO	F C	'.	H	K L	. FO	FC
-	4	7 7	7 70	-71	- 4	23	6 . 6	4 60	-4	74	22	-22	_/	10	7	77	70					
-	4	8 7	7 50	43	- 4	24	6 3	3. 26.	4	8 4	131	126	-4 -4	20	. <u>7</u> .	. 07	07	-	4	2 1	48	
-	4	0 7	7 31	5	- 4	25	6 54	4 51	-4 1	0 4	57	53	-4	-21	- J - Z	100	400	- (4	5 7	. 537	-446
-	4 1	0 7	7 80	-69	-4	26	5 40	5 5 1 .	-4 1	1 4	68	-48	-4	22	र	74	60	-	4. / 1		410	351
	4 1	1 7	60	-14	- 4	27	6 47	-52	-4 1	2 4	248	-229	-4	23	3	72	-72		4 .) (242	213
	4.1	2 7	46	-37	-4	1 .	5 12	5 -123	-4 1	3 4	191	168	-4	24	3	32	-37		• •) 7 1	205	304
	4 1	5 1	r (4 r 00	66	-4	. 2 .	5 .68	5 73	-4-1	4 4	100	86	- 4	25	3	101	-98	-1		> 1	212	-202
-	4 1	4 / E	· 99		-4	5	5 / 2	-66	-4 1	5 4	156	124	-4	26	3	54	-55	-1	1.	1	90	105
-	4 1	ן ה ג ז	Y 90	67	- 4	4	2 150 5 (C	-158	-4 1	6 4	64	. 54	- 4	27	3.	25	26	- 1	11	1	190	207
/ _	41	0 1 7 7		'÷{} ∵7 ⊑	-4	0 7	<u>ר הי</u>		-4 1	7 4	66	-55	-4	28	3	61	67	· · · · - 4	12	> 1	133	-137
	/ 1 / 1	י י פ 7	40 1 X7	57 52	-4	। भ	ר <u>144</u> ג מא	- 135 05	-4 1	8 4	155	-148	-4	29	3	76	-80	- 4	13	5 1	129	131
	1. 2	4 7	07. 1 55	56	-4	0 0	5 4/0	93	-4 2	0 4	98	08	4	0	2	159	167	- 4	14	. 1	158	-166
_	4 2	27	27	24	-4	10	5 455	141	-4.2	1 4	33	-36	-4	1	2	358	-364	- 4	15	1	306	-303
_	4 2	L 47	64	8.8	-4	4 1	5 77	· · · · · · · · · · · · · · · · · · ·	-4 2	· 4	20	25	-4	2	2	55	11	-4	17	' 1	35	42
_	4 2	5 7	۵4 ۲. 4. ۲	-/.8		12	5 84	71	-4 2.	5 4	132.	-158	- 4	3	2	113	135	- 4	18	1	60	-52
-	4	0 6	51	-64	-4	13	5 64	60	-4 24	4 5 /	. <u>88</u> ≏ no	-95	-4	4	2	55	-65	- 4	10	1	. 29	26
	4	1 6	37	44	-4	14	5 139	121	-6 20	5 4 5 1	62	-24	-4	2	Z	574	613	- 4	20	1	47	48
-	4	2 6	93	-92	-4	15	5 58	-56	-4 20	7 1.	- <u>0</u> 2		-4	(2	229	-224	- 4	21	1	189	-191
~	4	36	60	65	-4	10	5 62	-53	-4 21	4 \ \	20	20	-4	. 8	Z	94	-83	-4	22	1	127	127
	4	4 6	31	-18	-4	17	5 152	-130	-4 51	/ 4+ - て	20	- 10	-4	10	2	179	-161	-4	23	1	78	85
-	4	5 6	121	118	-4	19	5 29	-18	-4 2	, J , J	231	-230		11	2	185	1/1	-4	25	1	107	107
-	4	66	36	32	-4	20	5 46	45	-4 7	. र	221	72.30	-4	12	2	51	15	-4	26	1	38	42
	h	76	92	83.	-4	21	5 54	-49	-4 4	3	137	145		45	2	270		-4	27	1	46	-54
	4 ;	B 6	06	35	-4	22	5 92	-91	-4 5	3	178	-190	_/.	47	יג ס	4.74	-72	~4	28	1	21	24
(4 (5 6	68	-62	-4	23 (5 57	-57	-4 6	5 3	89	-114	-4	18	2	121	130	-4	29	1	64	73
- 4	4 ₀ 11	n 6	87	76	-4	25 '	5 94	97	-4 7	3	256	-270	-4	19	2	172	.171	-4	20	1	00	-71
- 1	4 1	16	37	-24	-4	20 1	s <u>2</u> 3	1 25	-५ अ	3	277	-293	-4	20	2	43	~ / 7	-4	27	1	54	41
· - 4	4 1	2 6	67	58	-4	27	5 32	34	-4 9	3	143	136	-4	21	2	91	97	4	()	0	25	-49
	4 1	3 6	61	-53	-4 ;	28 5	5 32	- 37	-4 10	3	238	233	-4	23	2	181	196	4	ר ו	- 0	105	-106
· •• •	4 14	4.6	33	23	-4	0 :	4 249	-229	-4 11	- 3	255	-236	-4	25	2 .	90	-88	. 4	~ ~ ~	0 0	271	- 2(14
· - /	4 1:	\mathbf{r}	122	-110	-4	2 -	4 164	168	-4 12	3	78	-66	-4	26	2	38	-37	4	.)	۰ ۸	97 70	10 -01
- !	+](-31	-4	د د	4 122	-118	-4 13	3	123	-114	-4	27	Ž	23	26	4	6	a a	230	-42
- (⊾ 1∂ / 4/	5. 6	36	-29	-4	4 1	4 104	116	-4 14	. 3	118	-113	-4	28	2	51	-55	1.	- 7	ň	61.	- 6 1
- 1	• 70 • •	/ Ó	59	36	-4	<u>ז</u> ג	558	-252	-4 15	3	267	25 7	- 4	29	2	46	47	4	Â	- 0	68	0U 68
- (- 6.6	<u> </u>	47	-44	-4	0	· 240	-246	-4 16	3	164	163	-4	31	2	87 -	-105	4	ö	Ő	47	-69
			-																	Ŭ	.,	
								•														

											,		-																•	
																										÷				
	:										-	4							-											4
		H	K	L	FO	F C		H	K	1	FO	, F C		H	к	ંદ	FO	FC	1	H	K	L	FO	FC		H	K	L	FO	FC
-		4 1	0	0	130	139		4	17	1	55	61		. 4	1	3	203	219		4	11	4	262	261		4	8	6	71	78
		4 1	1	0	104	104		- 4	18	1	29	-33		. 4	2	3	274	-275		4	12	4	29	-30		4	10	6	41	41
	÷.	4 1	2	0	232	233		4	19	1.	.99	-106		4	3	. 3	35	-34		4	13	4	62	-62		4	11	6	184	-187
	ł	4 1	3	0	142	-142		4	2.0	1	47	54		4	4	-3	36	30		4	14	4	75	76		4	12	6	57	-60
	j	4 1	4	0	129	-133		4	22	1	138	148		4	: 5	3	65	62		4	15	- 4	103	100		4	14	6	51	52
		4 1	5	0	117	-115		4	23	1	44	47		4	- 6	3	129	-120		4	16	4	39	-37		4	15	6	72	-75
		4 1	6	0	85	-33		- 4	24	11	56	57	17	4.	8	3	127	-121		4	17	4	175	163		.4	17	6	114	-112
	1	4 .1	7	0	41	51		4	25	1	9,0	-92		4	9	3	243	-228		4	18	4	100	-95		4	18	6	61)	-67
	. 4	4 1	8	0	43	-46		- 4	26	1.	34	37		. 4	10	3	179	178		4	19	4	127	126		4	19	6	85	90
		4 1	Q	0	54	-55		4	29	1	46	51		4	11	- 3	44	-51		4	21	4	66	-66		4	20	6	-35	38
	1	4 2	0	0	160	-174	· 5- ·	4	30	1	54	-63		4	12	3	69	- 65		4	22	4	23	-27		4	21	6	47	48
		4 2	1	0	50	-28		4	0	Z	370	385		4	13	3.	79	70		4	23	4	32	32		4	1	7	83	- 88
· 1	1	4 2	3	0	89	105		4	1	2	101	101		4	14	3	46	42		4	24	4	30	-31		.4	2	7	95	107
	1	4.2	4	0	78	្ឋា		4	2	2	172	1/1		4	15		90	-79		4	25	4	100	-109		4	4	7	50	-53
		4 2	5	0	25	-24		4	5	· 2	76	79		4	16	3	178	168		4	56	4	56	67		4	6	7	43	43
	į.	4 2	1	0	32	- 55		4	4	2	20	. 17		4	17	- 3	73	72		4	1	5	218	-235		4	8	7	84	90
	· •	4 2	8	0	-87	91		4	07	- Z	40	24		4	18	3	67	-59		4	3	5	178	186	:	4	Q	7	131	-137
		4 2	9	0		50		4	· · ·	<u> </u>	. 50	22		4	19	5	142	143		4	4	5	29	29		4	10	7	82	-85
	1	45	0	0	- 46	- 5 6		4	o d	2	255	-221		4	20	- 5	. 89	-95		4	5	5	110	-119		4	11	7	41	-38
		4 S ,		0	29	. = 5 5		4	· · ·	<u></u>	10			4	21	- 5	42	-47		4	6	5		35		4	16	7	69	-76
	-	4	1	1	100	- 12		4	10	4	770	-1/6		4	22	- 5	120	34		4	9	5	327	336		4	17	7	46	53
		4	<i>.</i>	1	104	101		4	11	2	104			4	24	5	120	-120		4	11	2	45	-45		4	19	7 1	67	80
	1	4	5	1.	210			4	15	2	. 92 	-92		4	25	5	20	24.		4	13	2	44	-48		4	20	7	34	47
	-	14 1	5	4	21	214			45	· 2	/ 5	- 52		4	20	2	41	-40		4	17	2	11/	120		4	- <u>(</u>) -	8	93	99
	1	н 7	,, 6	1	- 34 70	29		4	16	2	40	9 I 7 1		4	2 í 7 0	2 7	57	-84		4	17) E	765	-101		4	3	8	46	-46
			7	4	20	-16		4	17	<u>د</u>	34	- 97		4	20	7	20	01		4	19) E	112	~120		4	5	ð A	29	-31
	-	1.	2	4	27	77		7	18	2	457	455		4	2.7	د ۱	472	- 33		4	27	ר ר	5 5 7	89		4	7.	8	24	-18
			0	1	28	36		4	19	· 7	73	-21		4	1	4	102	-1/0		4	23	5	75	- 59		4	- X - A	8	57	-67
	-	4 1	0	1	26	-26		4	20	2	78	-21		4	5	4	34	-200		4 1.	<u>4</u>	ר ג	105	100		4	10	Ö .o	20	-58
		6 1	1	1	71	57		4	21	2	110	117		1	د. ح	7	128-	- 1 30		~ /	4	ن د	472	457		4	4.7	0. 	28	.50
		4 1	2	1	217	-213		4	53	2	3	- 32		1.	ŝ	1	60	~ 1.37		44 7.	· 	0 4	145	172		4	4.7	0	28	62
		4 1	3	1		-65		4	26	2	39	-95		4	ر م	4	77	-69		→ /.	r: Z	6	70	47		4	17	0	25	50
		4 1	4	1	186	-185		4	27	5	55	75		4	7	4	282	-202) 	Ä	· 70	74 74	•	4	<u>د</u>	7	24	-20
		4 1	5	1	35	41		4	28	2	46	-54		4	à	4	155	157		4	4 6 /	6	97	~97		4	भ	9	44 27	-26
		4 1	6	1	48	- 54		4	29	2	= 3	-60		4	1.0	4	80	81	-	Ĺ	7	6	103	196			1.1	ó.	19 19	- 29 21
																				•	•		· · J	1 / - 4					1.7	6.1

. . .

	•				
and the second	· · · · · · · · · ·	n bar di seri seri seri seri seri seri seri ser	An	an a	
H K L FO	FC HKI	FO FC H K	L FO FC H K L	FO FC H K L FO FC	C
	· · · ·				-
4 11 9 29	35 -5 4 7	78 -73 -5 21	6 58 -53 -5 8 4	170 -169 -5 16 3 32 20	0
-5 0 11 22	35 -5 5 7	42 43 -5 22	6 97 -94 -5 9 4	152 136 -5 17 3 58 67	ζ
-5 1 11 32	-46 -5 6 7	127 123 -5 25	6 53 54 -5 10 4	118 122 -5 18 3 94 98	8
-5 2 11 43	-60 -5 7 7	115 112 -5 26	6 47 55 -5 11 4	215 -204 -5 19 3 112 -109	5
-5 6 11 46	58 -5 8 7	31 -22 -5 27	6 26 38 -5 12 4	71 62 -5 20 3 88 96	5
-5 7 11 39	-43 -5 11 7	65 -57 -5 0	5 288 -311 -5 13 4	107 -89 -5 21 3 54 51	1
-5 3 10 29	-35 -5 12 7	145 125 -5 1	5 111 106 -5 14 4	45 -36 -5 22 3 39 -40	י ח
-5 4 10 42	-52 -5 14 7	34 -28 -5 2	5 139 137 -5 15 4	278 230 -5 23 3 109 114	ј. 6
-5 5 10 32	33 -5 15 7	103 -81 -5 3	5 113 -118 -5 16 4	154 138 -5 25 3 55 -52	2
-5 6 10 47	-505 10 7	72 -61 -5 4	5 130 143 -5 17 4	75 -29 -5 26 7 24 -26	- l
-5 9 10 32	-36 -5 17 7	35 - 26 - 5 5	5 272 -278 -5 19 4		+ . 2
-5 11 10 31	34 -5 18 7	54 60 -5 6	5 235 -233 -5 20 4		2
-5 14 10 59	67 -5 19 7	65 59 -5 7	5 43 39 -5 21 4	150 149 -5 20 3 20 31	1
-5 15 10 30	-39 -5 20 7	49 - 42 - 5 8	5 149 136 -5 22 4	-36 -36	1 5
-5 0 9 46	55 -5 22 7	39 -40 -5 10	5 137 140 -5 23 4	83 -87 -5 2 7 7 /s). 5
-5 2 9 37	41 -5 23 7	38 43 -5 12	5 183 -160 -5 24 4	-35 - 27 - 57 - 27 - 57 - 77 - 67 - 67 - 67 - 67 - 67 - 6) . Z
-5 5 9 52	-57 -5 24 7	49 56 -5 13	5 190 176 -5 25 /) · ·
-5 8 9 69	-71 -5 25 7	51 60 -5 14	5 Q1 78 _5 36 /		
-5 10 9 36	-30 -5 1 6	80 -96 -5 15	5 101 85 -5 27 4		} ∌'
-5 12 9 36	-36 -5 2 6	181 187 -5 16	5 69 52 <u>-5 28 6</u>		
-5 13 9 36	34 -5 3 6	64 -64 -5 18	5 188 -171 -5 20 4	-37 - 415 - 7 - 2 - 59 - 5954 -	1 · · ·
-5 16 9 58	56 -5 4 6	192 -185 -5 10	5 - 58 - 54 - 5 - 7 - 4)
-5 18 9 24	25 -5 6 6	27 32 5 2A			\$ · ·
-5 1 8 67	69 -5 7 6	90 83 -5 24	5 67 -43 5 3 7		1
-5 6 8 64	65 - 5 8 6	218 210 5 22		145 150 -5 11 2 86 88) . · ·
-5 6 8 66			5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	94 114 -5 12 2 224 -221	
-5 7 8 30	-38 -5 10 6	-203 - 182 - 523		21 -13 -5 13 2 55 56	<i>*</i> '
-5 9 8 107	-90 -5 11 4			319 547 -5 14 2 131 -142	•
-5 1/ 8 80			04 67 -5 6 5	38 -35 -5 15 2 119 -127	
			5 50 56 -5 7 5	122 - 128 - 5 16 2 32 - 36))
		42 42 -5 1 0	25 13 -5 8 3	71 -82 -5 18 2 91 -92	
		152 159 -5 2 4	222 - 234 -5 10 3	170 -171 -5 10 2 43 42	
-> 42 8 20	25 -2 12 6	51 -42 -5 3 4	313 352 -5 11 3	139 131 -5 20 2 88 94	
		153 -128 -5 4 4	31 30 -5 12 3	78 -63 -5 21 2 88 -91	x
	37 -> 1/ 6	94 -83 -5 5 4	155 -155 -5 13 3	295 - 264 - 5 22 2 143 144	
	-33 -5 19 6	51 -44 -5 6 4	81 -95 -5 14 3	68 58 -5 23 2 23 21	
-> 5 -1 65	63 - 5 20 6	5 06 -5 7 0	185 - 194 - 5 15 3	71 -67 -5 25 2 74 70	í.

				· · · *,																			
НКІ	. Fo ≓c	H K T EO EC	H K I	E0 66																			
		_		FU - FG	H K L FO FC	H K L FO EC																	
-5 26 2	2 60 65 70 -64	5 11 0 119 119	5 24 1	86 86	5 5 3 129 122	5 0 5 133 -132																	
-5 2 1	207 - 202	5 13 0 57 10	5 25 1	41 38	5 6 3 98 -84	5 1 5 121 125																	
-5 4 1	41 - 38	5100-32 -31	5 26 1	102 -107	5 7 3 353 -340	5 3 5 93 98																	
-5 6 1	58 61	5 10 0 163 -172	0 E 29 4	42 58	5 8 3 56 55	5 6 5 40 -42																	
-5 7 1	41 - 59	5 17 0 41 38	5 29 1	40 -51 55 -60	5 10 3 85 76	5 7 5 129 128																	
-5 8 1	140 141	5 19 0 109 -111	5 30 1	29 37		5 8 5 98 106																	
-3 0 1	55 62	5 20 0 144 149	5 1 2	235 253	5 13 3 49 47	5 10 5 67 67																	
-5 10 1	230 237	5 22 0 22 13	5 2 2	230 -241	5 14 3 36 27	5 11 5 128 -121																	
-5 11 1	64 -58	5 23 0 48 98	5 3 2	154 -159	5 15 3 136 129	5 13 5 57 _co																	
	79 84 55 37	5 24 0 83 82	5 4 ?	158 152	5 17 3 187 175	5 14 5 55 54																	
	79 - 12		5 5 2	95 85	5 18 3 69 -61	5 15 5 38 -36																	
-5 15 1	58 50		5 6 2	144 -129	5 19 3 165 -162	5 16 5 47 -39																	
-5 17 1	43 - 30	5 28 0 51 70	5 7 2	37 -28	5 21 3 57 -49	5 17 5 104 -91																	
-5 18 1	125 -131	5 29 0 64 68	5 0 2	197 -192	5 23 3 23 26	5 18 5 67 -68																	
-5 19 1	46 -40	5 30 0 44 -46	5 10 2	344 - 344	5 24 5 42 -40	5 19 5 46 49																	
-5 20 1	125 -130	5 1 1 101 91	5 13 2	57 57	5 25 5 137 -142	5 20 5 26 24																	
-5 21 1	70 70	5 2 1 55 40	5 14 2	81 -63	5 28 3 40 52	5 21 5 63 65																	
-5 22 1	38 44	5 3 1 168 149	5 15 2	116 -100	5 1 6 206 212	5 22 5 32 -32																	
-5 23 1	31 33	5 4 1 73 -76	5 16 2	196 187	5 2 4 50 -42	5 1 6 12																	
-5 25 1	22 -18	5 5 1 <u>28</u> 51	5 17 2	162 161	5 3 4 167 167	5 7 6 74 74																	
-5 26 1	34 37	5 6 1 102 193	5 18 2	25 -17	5 5 4 98 -102	5 7 6 7 2 20																	
-5 28 1	107 107		5 10 2	139 138	5 6 4 31 -28	5 4 6 39 43																	
-5 20 1	39 - 70		5 20 2	100 -103	5 8 4 34 -27	5 5 6 30 -25																	
-5 30 1	17 18	5 10 1 542 516	5 21 2	84 -81	5 9 4 324 323	5 6 6 57 55																	
5 1 0	95 -38			oz 58	5 11 4 28 14	5 8 6 55 55																	
5 2 0	354 375	5 12 1 148 145	7 43 2 5 24 2	35 34 77 74	5 13 4 50 -48	5 9 6 89 -87																	
5 3 0	148 -150	5 13 1 84 -74	5 26 2	62 - 64	5 15. 4 100 102 5 14 4 7 7 7 7	5 10 6 73 -73																	
540	47 20	5 14 1 165 -146	5 27 2	118 -173	5 17 / 169 457	5 11 6 48 -51																	
5 5 0	20 13	5 15 1 42 -36	5 28 2	53 62	5 18 / 24 70	5 14 6 58 -62																	
5 6 0	118 127	5 17 1 107 -116	5 0 3	87 - 27	5 19 4 122 -122																		
5 8 0	179 182	5 18 1 278 231	5 1 3	264 -276	5 21 4 81 75	5 20 A 40 22																	
5 9 0	57 56	5 19 1 46 4()	5 3 3	103 -113	5 23 4 52 -51	5 0 7 20 74																	
7 10 0	171 -174	5 21 1 204 112	5 4 3	70 63	5 24 4 43 -44	5 7 74 73																	
					`																		
	-								•														
-----------------	--------------	----------	------	----	-----	------------	---------	-----------------	-----	---------------------------------------	--------	-----	------------------	----	----	----------	------	-------	--------	--------	------------	--------------------------	------
						•		5															
																			а				
- - H	K L	FO	F C	H	к	:	۶0 1	FČ	н	ĸ	L L	FO	F C	H	K	L	FO	FC	- H	ĸ	L	FO	FC
		_				•	· · · ·										-	· · ·	•				
5	3 7	31	-33	-6	12	10	23	-28	-6	1	7	69	-80	-6	22	6	32	36	-6	12	4	74	-66
5	6 7	66	-67	-6	1		- 25	86		· · · · · · · · · · · · · · · · · · ·	. 7	71	-77	-0	22	0 6	.5	- 59	-0	15	4	0 C 6 A	-45
5	Q 7	50	-55	-6	2	0	44	-46		L	7	127	-130	-6	25	Ä	17	- 50		19	- <u>7</u>	90	01
5	11 7	26	23	-6	3	9.	42	-43	-6	. 6	7	38	27	-6	26	6	42	49	-6	20	4	116	124
5	12 7	53	-52	-6	4	Q.	65	69	-6	7	7	71	68	-6	2	5	88	-92		21	4	-24	26
5	13 7	31	30	-6	5	9	37	36	-6	8	7	183	186	-6	3	5	136	141	-6	22	4	. 46	-49
5	14 7	- 31	29	-6	8	9	56	-60	-6	9	7	53	48	-6	4	5	49	-51	-6	23	4	30	32
5	1.6 7	: 37	39	-6	. 9	0	124	-123	-6	10	7	164	-151	-6	5	5	116	-114	-6	28	4	94	-104
5	17 7	3,0	.35	6	10	9	50	37	-6	11	7	78	70	-6	6	5	70	-72	-6	1	3	- 17	-18
5	18 7	20.	. 27	-6	14	0	· 70·	-63	-6	14	7	103	86	-6	7	5	79	-79	-6	2	3	175	179
· 5	3 8	57	38		15	9	.50	- 51	-6	15	1	59	-51	-6	8	5	85	-81	- 4	3	3	127	139
ר ר	4 8	109	-116	-5	10	0	20	23	-6	16	7	105	-132	-6	9	5	59	· 48	- 4	. 4	5	153	162
ר 5	n 0 7 8	23	- 25	-6	10	0	20	37	-0	17	7	57	- 50	-0	10	ר ק	4/9	423	- 73	2	` 	20	=/
5	8 8	21	18	-6	0	8.	130	155	-6	20	7	91	30	-0	17	5	190	416	-0	7	כ ד	9 9 3 0	- 76
5	0 8	38	43	-6	1	R	63	73		21	7	25	-70	-6	12	5	16.5	77		2	7	100	- 10
5	10 8	30	-30	-6	2	9	36	-93	-6	22	7	69	-71	-0	14	5	31	29	-6	0 0	. 3	62	57
5	12 8	30	30	-6	3	8	59	56	-6	23	7	21	18	-6	15	5	150	126	-6	10	3	75	-73
5 '	3 8	25	-23	-6	4	R	бà	-72 ,	-6	n	6	225	-246	-6	16	5	94	82	- 6	11	3	89	-71
5 '	4 8	59	65	-6	5	8	29	33	-6	1	6	77	59	-6	18	5	63	56	-6	12	3	207	-179
5	1 9	47	52	-6	6	3	163	143	-6	3	6	89	-107	-6	19	5	36	35	-6	14	3	48	-47
5	2 9	44	-48	-6	7	я	01	90	-6	4	6	65	72	-6	20	5	110	-106	-6	15	3	28	23
5	4 9	22	-23	-6	8	8	-67	-62	-6	5	6	197	-191	-6	21	5	85	86	- 5	16	3	71	-76
5	5 9	. 47	-58	-6	10	3	. 53	-56	-6	- ń	6	130	-125	-6	22	5	46	-47	-6	17	3	57	-57
	6 4	45 20	52	-0	17	- 3 - 3	117	-75	6	0	6	41	<u>58</u> 107	-6	23	5	57	-58	- 6	13	3	58	-59
- 4	1 11	10	-21	-0	14	. 0 . a	57	-/7		ი 10	0 4	110	475	-0	27) c	60	- 24	- ^	14	·	51	25
-6	4 11 K 11	30		-6	15	8.		-47	-6	11	6	141		-0	20	ר ג	272	-01	~n 	211	2	110	120
-6	1 10	32	-40	-6	16	R	54	-45	-6	12	6	102	-39	-6	2	4	141	153	· -0	22	े र	92	01
-6	2 10	27	25	-6	17	3	51	-51	- 6	13	6	185	167	-6	3	4	36	34	-6	23	3	70	-71
-6	3 10	29	-32	-6	18	3	87	85	-6	14	6	47	38	-6	5	4	92	108	-6	25	3	23	25
-6	6 10	27	-20	-6	19	Ŗ	41	39	-6	15	6	42	40	-6	6	4	57	-57	-6	26	3	79	79
-6	7 10	55	-50	6	20	3	.3	-44	-6	18	6	134	-124	-6	8	4	65	-73	-6	20	3	33	-35
-6	8 10	31	- 11	-0	21	2	, Ū	21	-6	19	6	57	51	-6	10	4	207	-201	-6	0	2	300	-315
-6 1	1 10-	40	42	-6	22	3	זר	-2 ⁸	K	21	6	69	?	-6	11	1.	35	28	- 6	4	2	51	-54

							- 																	· • •			
											. •																
						-									and a				<u></u>	i i i	an an The State and State						1. A. A. A.
н	ĸ	Ľ	FO	F C	, H	K.	I.	F0	FC	1	ŧ.	ΚL	- '	FO	FC	· .	H	K	L	FO	FC		H	K	Ļ	FO	FC
-6	2	2	98	-100	-6	14	1	76	-77		5 2	25 0)	85	86		6	11_	2.	253	234		6	7	4	27	25
-6	3	2	80	83.	-6	15	.1 .	48	-56	1	5 2	6 0) (1. 1. 1.	85	-90	: .`	6	14	2		-36		6	8	4	90	88
-6	4	2	44	60	-6	16	1	243	251		5 2	28 0)	50	-53		6	15	2	128	118		6	9	4	76	75
-6	5	2	149	142	-6	17	1	35	-37	_. . (5 2	<u>20 j</u> ()	52	-56		6.	16	2	81	68		. 6	11	4	30	-27
-6	6	2	94	-04	-6	19	1	93	-91		5	1 31	1 - I	236	238		6	17	2	135	127		° 6	12	- 4 -	35	30
-6	7	2	78	-68-	-6	20	1	152	-160		5	2 1	1	200	-199		- 6	19	. Z	120	-121		6	13	4	70	-67
-6	8	2	309	250	-6	21	1	29	-24		5	3 1		183	-168		6	21	2	45	-41	e i e i e Li e	6	16	4	92	-86
- 6	Q	2	58	61	-6	2.2	· 1	66	52	· . · . · . ·	5	4 1		178	167		6.	22	2	68	67		6.	17	. 4.	26	-50
-6	-10	2	238	236	-6	23	- 1	- 54	53	<u> </u>	5	5 1	1.	108	108		-6	24	2.2 C	- 25	51	· ' ·	6.	18	. 4	. 21.	50
6	12	2	- 70	-64	-6	24	1.	70	-71		6	.6 1	1	49	-30		6	25	2	106	-105		- 6	21	4.	67	10
6	13	2	172	-184	-6	2.6	1	96	-103	!	6	8 1	1	150	-162		<u>0</u> .	26	2	29	-28		6	66	4	4 3	-40
- 6	14	2	41	47	-6	27	1.	- 40	41		Б.,	9 1	1	555	- 352		0	28	2	400	470		<u>,</u>	24	4 E	51	17
-6	15	2	25	24	-6	28	1	79	82		6 1	10.1	1	166	161		, Ó	. 1	5	180	-179		<u>,</u>	2	2	21	41
-6	18	2	209	-208	-6	29	1	4.9	-53	1	61		1	53	- 33		6	2	5	75	-74		2	4 5	25	10/	-1/3
~ ó	10	2	58	- 59		U	0	542	542		bi A] •	· 24 • 27	120		0	2	2 7	20	20		2	2	5	. 40	-42
-6	20	2	73	-63		· · 2	0	12	-64		5	4	1	124	-120		0	4	.) 7.	69	-22)	0	ך ב	. 01	- 77
-6	21	2	93	98	6	3	0		90		6]	5	1 •	19	-87		6	6	5	102	-00		<u>,</u>	3	2	42	- 31
-6	22	2	43.	39	. 6	4	0	160	-154		6]	16 1	1	120	119		0	(2) 7	20	22)	10	2	40	46
-6	23	2	42	40	6	6	0 -	291	295		6 1		1	187	191		0	8		21	-21		0	11	2. E	4.2	-44
- 6	24	2	53	-54	6	(0	184	198	1	6 1			124	128		0	4.0	2	251	231		2	12	2 5	100	-105
-6	25	2	38	-43	<u>,</u>	8	<u>0</u> .	225	-200		<u>,</u>	20	! •				0	10	- D. - 7	~~~	74		2.	14	5	109	
-6	26	Z	57	62	0	10	0	188	-191		р (, , ,		1	04 74	-01		• • • • • •	4	2. 7	74	27		0 4	10	5	52	-20 58
-6	27	2	48	46	. 0	11	0	1/3	-1/2		0.0	22 -	1 · ·	71	- 16		0 ∡	17	·) 4 4	51		0 4	24	ŝ	24	10
-6	28	Z	78	33	0	12	U .	146	240		n (2.3 7 E /	1	- E 3 - Z /			6	17	 7	· 97	-80		- <u>6</u> -	27	5	65	75
-6	1	1.	86	-05	0	1.2	0	171	- 22				1	54			4	10	्र २	6.3 7.2	- 60		۰ ۸	2.7	5	75 75	- 40
-6	2	1	317	-550	0	14	0	117	-123		n 4 4 1	20 77 ·	1	116	-122		. 6	10	े र	111	-104		- 7	25	6	37	-44
-0	.5	1	00	-36		1	0	75	- 70		а 2	-1	4	79.	12		4	2/	7	74	-81		4	2	Ă	107	107
-6	4]	164	169	 ∠	10	() 0	100	105		∩ / ∠	4 1	ו כ	225	43		- A	26	י ד	17	17		6	<u> </u>	6	68	65
-6	5	1	170	86 177	0 ∡	11	. U	240	-103		n 4		2 2	<u>د ۲ ۲</u> ۲۸	-232		- K	r.υ Λ	, L	75	-73			÷.	6	140	-144
-6	6	 ▲	172	শ ১১ ০০	2 2	10	- 0 - 0	02	0.1		6 6	α · τ	2	177	-178		Å	1	4	26	27		6	11	6	26	27
- 6		1	>() >==) () 7 / 7	0 2	17		12	_ /. Q		4	י נ י ג	2	50	- 1.50 - 2.1		А	2		50	- 65		Ä	12	6	114	-119
	8 0	1	25/	-25/	0 4	21	0 A	42	~40		0 6	5	2	46	46		6	ζ	4	77	78		6	14	6	73	73
~ ^ ^	4.0	4	74	2.1	ن د	· · ·	A A	. 1.1.	-43		., .,		2	70	-67		6	Ĺ	4	28	- 35		6	15	6	47	-41
- ^	- 19 - 14	4	644 0∡	200 1 3 9		22	<u>،</u>				 А	7	2	280	-264		6	5	4	72	72		6	16	6	54	57
	12	- 1	5.8	67	6	24	- a	113	117		6	8	2	39	-41		6	6	4	46	48		6	17	6	19	25
- 0	- IC		20	- 7 44		• •	,		· •					-			2										-

1

×

			_						1			-			•									·	•
				-																		~			
													•												
	Ħ	K	L	FO	FC	H	ĸ	: I.	F O	FC	H_	ĸ	L	FO	F C	Н	K	L	FO	FC	Н	к	L	FO	FC
	****	18 20 2 3 4 5 6 7 8 9	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20 71 33 79 136 45 39 38 36 46 48	-15 34 30 61 -141 -43 -44 -30 71 40 -51	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	3 6 8 9 12 13 19 20 22 0	6 6 6 6 6 6 6 6 6 5	26 129 86 39 45 131 60 72 77 141	-22 -124 -80 -35 -38 118 49 37 -70 -77 146	7 -7 -7 -7 -7 -7 -7 -7 -7 -7	8 9 10 11 12 13 15 16 17 19 20	444444444444444444444444444444444444444	148 81 115 134 110 43 136 53 31	143 79 -114 -125 -100 -37 133 -129 -46 21 110	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	24 25 26 27 28 1 2 3 4 5 6	3333222222	84 19 74 25 55 74 281 77 226 31 101	-89 -22 80 22 63 -92 -307 -70 213 34 -80	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	6 7 8 10 11 12 13 14 15 16 7	1 1 1 1 1 1 1 1 1 1 1	217 208 92 129 181 126 27 57 141 53 71	228 -209 -97 -125 182 139 -64 145 -57 76
	0565666 6666	10 11 12 13 14 15 16	7777778	48 51 38 52 90 47 31 65	-52 -52 -53 -53 -53 -56 -37 -72	-7 -7 -7 -7 -7 -7 -7 -7	0 1 2 5 6 7 8 9		69 118 07 28 36 101 27	65 117 -88 -44 89 -95 -30	-7 -7 -7 -7 -7 -7	21 23 26 27 0 1 2	4 4 4 3 3 3	77 74 69 24 331 31 59	78 -76 73 27 -331 -33 53	-7 -7 -7 -7 -7 -7 -7	7 8 9 10 11 12 13	2222222	90 256 124 247 106 52 53	81 -251 122 242 111 46 54	-7 -7 -7 -7 -7 -7 -7	18 19 20 22 23 24 25	1 1 1 1 1	121 91 46 68 51 80 82	127 -97 -40 -66 -51 82 -85
	6 6 -7 -7 -7 -7 -7	2 3 21 0 2 3	8 8 8 7 7 7	58 31 92 21 135 45 48	-58 -32 -00 -27 -139 -53 -57	-7 -7 -7 -7 -7 -7	10 11 12 13 14 17 18	5 5 5 5 5 5 5	164 55 51 103 60 51	-153 -52 -51 100 52 -46 96	-7 -7 -7 -7 -7 -7	3 4 5 6 7 8 10	333333	63 82 185 203 81 227 196	62 92 202 -207 -74 219 131	-7 -7 -7 -7 -7 -7 -7	14 15 16 17 19 20 21	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	125 57 191 93 59 145 45	-127 -58 195 -96 -60 -151 -45	-7 -7 -7 7 7 7	26 27 28 1 2 3 4	1 1 0 0 0 0	37 26 40 271 61 85 104	-37 25 -41 243 -52 -78 101
	-7 -7 -7 -7 -7 -7 -7 -7 -7	5 8 9 10 13 18 20 21 27	777777777	87 78 44 127 70 82 30 55 20	-35 70 -43 111 -80 -32 -38 -32	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7	19 20 22 23 25 1 23 5	59554444	50 105- 25 41 75 160 177 1315	47 103 -33 -40 42 -33 164 189 -140	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	11 12 13 14 15 17 18 19 21 22	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	37 186 205 85 54 29 202 41 55 202	29 -167 -196 87 -45 25 -202 -45 -45 -27	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	22 24 25 26 27 28 0 1 2	22222111	105 46 42 79 45 67 242 158 95	-51 -52 -82 50 77 226 -154 -95 -148	77777777777777777777777777777777777777	7 7 9 10 12 13 14 15		53 65 70 92 294 51 29 33 79 41	-303 -303 -51 -25 -26 -92 -37
•	-7 -7	1. 2	6 • 6	37 65	-71	-7 -7	7	4. 4.	97	-95	-7	23	3	46 79	57 1. 81	-7	" 5	1	43	-46	, 7 、	15	Ŏ	2×	30

			•' ·		• • • •		•		•	· · .				•	•	•		- 1	·				,		en e	
1 7	н	K.	L	FO	F C		H	K	t	¢0	FC		Н	K	ĻĻ	FO	۲C	H	к	t.	FO	FC	нк	L	FO	FC
	7.1	7	0	130	137		7	2	?	49	-56		7	22	3	59	-58	7	4	6	121	-128	-9 12	8	34	45
	7 1	8	0	34	36		7	5	2	123	-113	, e	7	23	3 7	22	25	7	5 -	6 6	50	-52	-9 15	8 7	63	-84
	77	20	0	88	- 66		7	· 5	· 2·	5 72	70		. 7	25	ं द	26	-27	7	7	6	65	-66	-9 1	7	51	84
	7 2	24	n.	26	-18		7	6		133	-120		7	2	-4	67	-74	7	8	6	51	55	-9 3	7	30	-31
-	7 2	22	Ŏ.	36	37		7	7	>	57	5 0		. 7	3	4	38	40	7	10	6	46	-45	-9 5	7	123	-164
	7 2	23	0	61	57		7	11	2	63	69			4	4	243	248	7	1.1	6.	82	-85	-9 6	7	35	29
	7 2	4	0	52	56		.7	13	2	162	47		. 7	6	- 4	67	70	7	12	6	44	42	-9 7	7	57	75
	7 2	25	0	40	-43		.7.	- 14	2	91	86		7.	8	4	64	-65	7	13	:6	29	-27	-9 8	7	63	-61
	7 2	26	0	54	-40		. (15	- 2	62	-54		7	10	4	107	100. 75	7	14	6	97	106	-9 10	- 1	5 <u>8</u> 79	-65
	7 2	: /	- 1) - 4	- 0() - 67	54		7	48	· 2.	50	- 57		7	- 12 - 17	4	21 30	-45	7	10	6	25	- 31	-9 13	7	106	126
1	, 7	4	1	94	-36		7	19	2	75	-64		7	14	4	191	-129	7	1	.7	52	53	-9 15	7	28	25
	7	2	1	30	41		7	21	2	56	-51		7	15	4	35	27	7	2	7	33	-36	-9 17	7	30	-46
2	7	3	1	110	-106		7	22	2	41	-33		7	16	4	62	59	7	3	7	34	-35	-9 18	7	. 34	51
;	7	4	1	37	42		7	23	5 <u>2</u>	37	35		7	17	4	35	-34	7	5.	7	89	-96	-9 19	7	29	51
j.	7	5	1	98	-87		7	24	2	03	-95		. 7	SU	4	43	-42	7	6	7	31	34	-9 2	6	81	112
	7	6	1	42	-34		7	26	2	22	28		7	22	4	106	121	7	7	. 7	55	29	-9 3	6	109	141
1	7.	7	1	122	-117		7	0	- 3	34	. 26	•	7	-23-	-4	25	-28		8	4	21	25	-9 4	6	67 73	-/8
	7	8	1	114	-113		7	1	5 7	40	- 47			0	ר ק	- 27	26	7	12	7	52	50 97	-9 5	- 0 - 6	5.5 3.6	- 77
1	7 1		1	53	<u>2 0</u> 		7	3	د ج	7.00	41		7	2	5	149	155	7	י ג ז	8	43	-52	_9 7	6	111	-116
: : : :	7 1	17	1	34	36		7	4	े - 7	76	-72		7	्र	5	31	24	9	2	9	23	-48	-9 3	6	. 97	94
:	7 1	15	1	67	56		7	5	3	105	104		7	4	5	75	78	-9	5	9	36	55	-9 10	6	80	-93
	7 1	16	1	114	116		7	ó	7,	152	150	. ,	- 7	5	5	6.0	66	-9	. 6	9	40	63	-9 11	6	81	-86-
	7 1	17	1	62	59		7	7	3	71	-66		7	· 6	5	186	-138	-9	10	9	Su	31	-9 13	6	38	-46
	7 1	18	1	33	37		7	8	3	45	49		7	R -	5	25	2.0	-9	12	9	37	57	-9 15	6	68	85
	7.1	10	1	48	-47		7	11	ζ.	51	41		7	11	5	20	31	-9	13	0	32	-50	-9 16	6	67	-81
: .		20	1	27	-11		[7	32	5	104	102		~	12	5	104	-164	-9	14	9 2	20	- 50	-9 20	0	5 č 7 č	40
	2 2	21.	4	42			.7	3 D 4 L) 2	121	- 121		, .,	15	י ב		-67		1 7	о я	76		_0 22	6	49	-76
7	, (7 1	57. 27	1	りつ ノフ	-63.¥ -⇒∴7		7	15	י ז) 	- 21		7	14	, ς	89	2.8	_0	ر ۸	Я	70 <u>7</u> 7		-9 0	5	87	-114
1	7 2	24	1		- 37		7	16	, z	119	-106		7	13	Ś	43	-47	_9	5	8	42	69	-9 2	5	27	38
	7 2	25	1	45	-50		7	19	-	56	-57		7	24	5	79	01	-9	7	8	56	69	-9 3	5	50	57
	7 2	26	1	64.	- r, A		?	> 0	2	~ 7	-65		7	?	, is	49	66	-9	0	8	57	-74	-9 L	5	34	40
	7	1	2	43	- 2 S	/	7	5 J	?	52	57		7	~ *	6	. 11)3	103	-9	11	Q,	63	72	-0 5	5	114	129

1

.

																										* .+
									:	وبي																
·		·			سر سر				- 0			•	_	2												
	. H	ĸ	L,	F0	₽ C	ł	1 K	1	9 9	E C	н	K.	્રા	F 0	FC	H	K	L	FO	FC	н	K	Ĺ	FO	F C	
	0		~	07	0.0	r		-	. 7	. F A										1			_			
	-0	6	2 E	47	-975		10	, ,	50 	-28	-0	19	. 1	105	-100	9	11	1	122	110	9	12	3	75	-67	
	- Q	6	.) F	48	49		1 22	্ ন	51	-00.	~0	20	1	54	32	9	12	1	208	181	9	13	3	102	-95	
	-4	ð) ·	48			(<u>/</u>)		/0	-11		21	1	27	27	- 9	14	1.	92	-82	9	16	3	71	56	
		10	5	48	45	_ ,	2	2	20	-117	**0	22	1	41	38	9	16	1	94	-85	9	17	3	35	-29	
	-9	12	2	65	-63		2 3	2	170	150	-0	23	1	82	76	9	17	1	73	65	Q	19	3	18	-11	
•	-9	1.7) F	20		>	/ 4 } =		<u>~ ~</u>	-01	ب) س د	24	1	54	- 51	9	18	1	49	40	9	20	3	23	22	
•		14 4 r	2	0.5	···-	4	/)	- 2	57	-30		1	0	111	28	. 9	19	1	65	-53	9	1	4	78	77	21
		13.	2 5	71	- / /		<u> </u>			-111	9		0	23	<i>i</i> . 5.	9	20	1	116	-101	9	- 3	4	45	43	
		10	.)) E	27			, , , ,	- <u> </u>	· · ·	-09	9		0	189	-120	9	21	1	30-	-26	9	6.	4	34	-56	
¥.	-0	18	2	48	- 34	- Y	0 0	,' ~	42	- 51	Ç	4	0	230	-203	9	22	1	37	-31	Q	7	4	52	-44	
	-9	20	5	26	55			2	43	49	0	5	0	97	85	ò	1	2	48	-49	9	9	4	78	-70	
•		4.5	2	01	30			1	53	52	0	6	0	95	-58	9	- 2	2	103	-90	0	11	4	74	-58	
		1	4	81	- ⁽)	- 4	13	2	50	-57	, Q	7	0	56	53	9	3	<u> </u>	41	-38	Q	14	4	24	22	
	-0	्र	4	51	- 35	-9	14	2		66	9	8	Õ	56	52	- 9	4	2	187	172	0	15	4	25	18	
		4	4	50	55		1. 15	- 2	131	123	G	Q	0	164	-162	9	5	2	2.8	26	9	17	4	-30	28	
	-0	6	4	43	60	Q	16	2	1.08	93	9	10	0	57	-57	9	6	2	61	52	: Q	1	5	73	-67	
		7	4	63	20		18	2	43	-41	Q	11	0	.83	67	9	7	2	31	30	9	3	5	60	-58	
	-0	<u>Q</u>	4	52	57	 Q	21	5	84	83	, U	12	0	130	115	9	8	2	93	-76	0	5	5	25	-23	
	-0	13	4	53	53	-9	23	2	??	-23	, 0	13	0	65	53	9	9	2	78	64	9	7	5	77	-71	
	<u>-</u> G.,	14	-4	30	-26	-9	24	- 2	82	-80	Q	14	0	168	154	9	10	2	101	83	9	10	5	24	-27	
	- Q	16	4	37	18	- a	0	1	193	94	0	15	0	131	-131	9	11	2	75	66	9	11	5	74	66	
	4 0	17	4	94	-90	-9	1	1	147	-158	9	17	0	78	73	9	12	2	59	-54	0	13	5	22	18	
	-0	20	4	22	-16	_9	2	1	112	99	9	10	0	46	39	- 9	14	2	167	-141	· 9	14	5	30	28	
	-9	21	4	35	- 34	-9	3	1	47	46	Ú.	29	. 0	25	21	9	16	2	57	48	Ģ	1	6	80	-83	·
	-9	2?	4	27	27	_ 9	4	1	4.9	39	9	21	0	98	-36	9	19	2	71	-60	9	2	6	38	-42	
	-9	23	4	36	- 35	-9	5	1	185	187	0	22	0	103	-04	9	20	S	37	-33	9	3	6	35	36	
	-0	3	3	4.6	° −43	-9	Ú	1	56	-60	n	23	0	50	42	9	21	S	24	-19	- 8	0	8	45	-55	
	- Q	5	3	105	-163	-9	7	. 1	すえの	-156	Q	24	n	45	-42	ò	22	2	98	91	-8	2	8	61	-69	
	-0	8	3	81	30	-9	8	1	102	-106	G.	1	1	97	-29	9	0	3	45	-48	- 2	6	8	40	53	
	-0	Q	3	56	44	-9	10	1	53	-45	Ú,	2	1	164	-156	9	2	3	70	73	-8	10	8	69	71	
	-9.	10	3	38	र ९	-9	11	1	: 07	108	0	3	1	29	-19	9	3	3	64	64	- 8	12	8	51	69	
	-0	12	3	30	-43	_ 9	12	1	.;4	-81	0	4	1	108	-98	9	4	3	31	30	- 8	14	8	40	- 40	4 j. +
	-Q	13	3	32	4.6	-9	13	1	301	-179	9	5	1	52	4.2	9	5	3	101	89	- 8	17	8	31	32	 2
	⊷ Q	14	3	40	÷ 1	-0	10	1	102	96	9	ń	1	218	137	.0	6	7,	8.6	-76	-8	19	8	20	-74	
	_ 0	15	3	98	• 7	_0	17	1	65	26	•)	7	1	87	-78	- Q	7	ξ	20	15	-2	20	à	47	-61	
	-9	16	3	78	-66	^ ^	4 X	1	¹¹ 67	53	C;	10	1	35	32	9	11	3	41	-40		1	7	20	61	
	#		-												-		• •	•	, ,			•	•	<u>ر</u>	-+ 11	

																					· -				
																									•
							:	•.	· • •															$c_{i,j}(t) \in \mathbb{Z}_{+}$	·
								_ ^				•	0-0			<u>ы</u> 2		50	50	£1	· ·		FO	50	
H	K	.L	FÓ	FC	H	K.	-	- EO	FC	, H	. K	L	F.0	ΨU		πικ	Ľ	F 11	F U	r:	<u>م</u>	. L e	1.0	r u	
		·			0					0	2	7	455	-171		8 72	- ว	70	-73	R	21	٥	28	-43	
- 8	3	<u> </u>	78	-96		07	2	51	05.	-8	2	.) 7	1))	-1/4	·	0 7.5 8 26	5	4.2	49	, R	22	Ő	66	66	
- 2	- 4	7.	89	-141	~0	· ·	2	410	-114 - 77	-0		ר ד	4/3		_	8 25	2	54	-62	g	23	õ	66	-70	
<u>– 8</u>	5	7	61	52	-8	ð	່ ງ	150	122		4	ر ح	140	4.7.4		0 22	2	4.0	46		2/	ñ	21	- 29	
. – 8	6	7	41	-45	-8	9	5	71	74	- 8	^/·	3 7	47/	141	· · ·	0 (D 9 D		46	78		24	ň	60	-72	
- 2	7	7	49	51	- 7	10	2	1/5	-119	_ - A	0		490	457		0 <u>2</u> 9 7	1	77	- 69		1	1	49	45	
- <mark>- 8</mark>	9	7	73	-68	-3	11	5	152	-1.50	A	4.0) 7	474	1 T T	-	0) 0 /	4	10	-57	g		1	25	-14	
; - 9	11	7	50	45	-0	14	5	51	-51		10	27	47	140		0 4 0 4	4	108	-110	с. Э	२ - २ ।ंद	1	197	-189	
_ - 2	12	7	89	30	-8	15	5	47	- (4	-8.	13	ר. ד	27	- 77		00 07	. 1	45	-76	, R		1	198	-185	
: - 8	13	7	33	34	- 8	15	<u>ר</u>	344	127	- *	47	2	61	-22		2 0	1	51	-53	بر	,	1	119	106	
	14	7	66	5 1 -	-8	10	. 5	113	-107		15	 	4)	241		0 14	4	. 1	-/8	تر	, , }	1	100	-105	
- - 8	115	7	85	-72	- 3	20	5.	74	. 30	-*	14) 7	2/	-00		0 II 9 17	1. 1	61	-40	· 5	2 7	1	65	62	
) – 3	17	7	25	25	-3	21	5	107	-109	·	15	7	4 00	140		0 12 9 17	- 1	21	6	, S	, , 	1	20	26	
: - 8	2-18	- 7	37	37	-8	22	5	20	-29	- K	10) 7	109	07	-	0 14	4	28	30	S	ι () ε ()	1	71	-72	
(- 8	3 20	7	37	- 41	. - 8	25	<u>ን</u> .	ጉረ		· •×	17) 7	10	-74		8 16	1	36	38	تر	10	1	61	-61	
- ~ 8	× 21	7	38	-43	8	24		20) (7 (2.0	2 7	,)C			0 10 9 17	4	75	78		11	. 1	32	40	
- 5	° 22	7.	48	- ~ 1	-8	25	5	(1 	- 50	- 15	20	2	0 () 7 D	-00	-	0 17	4	57	-63	. • \$	2 1 2	1	- 37	34	
- /	R 0	6	104	125	-8	U	4	255	-/31		21	3	- 34	00 - 00 -		8 10	1	70	-05	، ز	2 12	1	175	165	
8	२ 1	6	102	106		1	4	23	-20		22	.) 7	20 24	7.9		0 17	4	/5	40 74		2 15	1	133	-131	
 {	3	6	20	- 39	- ð	2	4	- 50	· 72,		25	.)	50	- 30 - 27	-	9 21	1.	4 J 8 A	- 25	, S	2 17	1	56	58	
· }	3 5	6	177	-169	-a	5	4	13	100	-8	27	3 7	50	-54	_	9 25	1	55	-58	, ,	1 1 A	1	32	-25	
7	8 7	' 6	135	130	- ~	4	4	190	107	· ≁∩	20	י ר	20	- / 1		8 26	1	23	24	, Ş	2 21	1	83	-84	
- 1	<u> </u>	6	85	-76	− ∂ 2) ∠	4	300	100	- M - S		. 7	59	-41	-	0 20 R 0	0	56	54	ş	22	1	78	-81	
· •• !	8 10) 6	101	-0.4	-0-0	O U	4	80 60/	- 107	-0	4 E	2	113	-08 -08		9 1	ŏ	63	61		2 23	1	67	62	
- 3	8.11	6	93		-0	4.6	44 1	124	474	-0	2	2	95	01		8 2	Ô	61	60	s	3 74	1	71	-72	
	13	5 6	185	, -, 1 	-0	10	4	474	4.20		() 	2	152	-1/9		2 Z	Ô	57	-59	۔ ز	2 2 6	1	18	26	
	3 17	6	69	- 55	-0		4	- 10 	421	∩	ó	2	26	- 147		8 5	Ő	155	-158	ŝ	3 0	ż	53	57	
	18	5 0	0.8				<i>.</i> ,	110			10	2	55	-57		8 6	ő	37	-46	\$	3 1	2	101	-109	
-	8 19	, 6	(3		-0	4	4	07	60) (0)		19	с. Э	57	55		8 7	Ő	65	62	5	2 2	2	182	-185	
-	R 20) ()	40	42	-0	1 2	4	ر ب د ر ب	175	-0	10	2	57	5.2		8 9	Ô.	90	-105	;	R 4	2	104	-99	·
-	8 21	6	23		- 7	16	/s	104	-155	-^	47	د د	30	-37		8 11	ñ	4.8	-49		२ २	2	92	86	
-	8 Z3	5 6	69	- / 5	-0	20	4	4 f 50	4.9 		14	2	10/	108		8 13	0	113	130		а <u>к</u>	2	220	214	
-	<u>ч</u>		40		- 73	イムウス	4 1	29	27 9 N	-0	· 1.2 1.4	2	87	-9A		8 14	0	53	-62	;	3 7	Ž	123	-121	
-	2 2	2 2	170	154	- 0 0	10	· 4	20	4.6		1 7	, ว	29			8 16	ő	113	116			2	32	30	
-	R 5	5	láu 14u	200	- A 0	24 14	4	2014 E /	-00 - AG		10	2	<u> </u>	<u>بر</u> ۲۸.		8 18	0	60	61		× 11	2	60	57	
	8 1	4 5	47,		-0	20	(,)		4/3		3 2	2	4.3	-50		8 10	0	47	47	ļ	a 12	2	207	201	
-	8 6	ר ר	106	-11/	- 3	1	* 1	· · •	- (4)	- 3	*	1	·•.)	• • •			• ?								

											• •				•							•		
										•				•										
							:							• • •	sh an				· · · · · · · · ·					
н	ĸ	1.	FO	50	Н	ĸ.	ι.	۶O	FC	н	ĸ	L	FO	F C.	ţ	t≓ κ	L	FO	FC		н к	L	FO	FC
		-																• •	_					
-1	?	3	135 -	144	- 1	11	2	60	58		19	1	67	-76		13	0	35	-30		1 18	1	114	-110
-1	3	3	15	-21	-1	12	2	135	121	-1	20	1	24	-15		14	0	67	-44		1 19	1	117	-107
-1	4	د ۲	174	44	-1	12	2	00	-77	_1	23	1	52	-49		1.15	0	187	19.1		1 22	1	69	- 69
, -,		े र	170	100	-1	15	2	137	-138	-1	24	1	86	38		1 18	0	32	36		1 23	1	104	-107
· - /	7	3	341 -	375	-1	16	2	385	374	-1	25	1	35	-37		19	Ö	29	30		1 25	1	85	-85
-1	8	3	292	205	-1	17	2	50	43	1	26	1	147	-144		20	0	191	-183		1 26	1	31	-29
- 1	10	3	340	327	-1	18	S	26	-35	-1	27	1	66	69		21	ŋ	43	-39	. •	1 27	1	42	44
- 1	11	3	248	226	1	19	?	78	80	-1	28	1	93	-102		1 22	0	42	-40		1 28	1	109	120
1	12	3	88	-36	-1	20	2	263	-249	1	29	1	22	-20		23	0	53	64	· ,	1 31	1	21	26
-1	13	3	178 -	140	-1	21	2	73	-73	-1	14	10	49	-63		1 24	0	20	-24		1 52	1 2	52 35	-40
; - 1	14	5	97	34	- 1	23	2	49	0.4 0.4	- 1	() 	9	. 44	74		1 - ムフ 1 - ウム	0	1/0	- 100		4	2	17	-47
1	15	5	56 40 r	55	- 1	24	- <u>/</u>	21	. ∽Y∩ ∡2	- 1	1	ŏ	85			1 20	0	140	-78		1 G	2	303	-269
-1	10	ר ז	- 195 -	270	-1	26	2	156	-153	-1	ू द	9	46			28	Ő.	48	5.3		1 4	2	72	66
	10	ר ד	100 -	103	-1	27	2	48	-51	-1	7	10	26	27		29	Ő	18	22		1 5	2	81	96
1	21	्र र	21	17	-1	28	2	112	120	-1	, 9	10	95	-107		30	Ő	72	76		1 7	2	356	341
-1	23	ž	46	50	-1	30	2	29	29	-1	11	10	24	26		31	0	52	-58		1 8	2	61	64
-1	24	3	66	-64	- 1	31	2	25	- 28	- 1	12	10	30	-37	<u> </u>	0	1.	164	-181		1 9	2	85	77
-1	26	3	110	111	-1	0	1	661	744	· - 1	13	10	23	19		1	1	102	-167		1 10	2	43	39
-1	27	- 3	27	27	-1	1	1	36	-109	1	1	10	57	65	•	2	1	20	17		1 11	2	336	336
-1	28	3	96	103	-1	2	1	42	-47	-1	3	10	70	-82		3	1	40	-22		1 12	2	172	-165
-1	29	3	56	64	-1	5	1	90	-112	-1	- 4 - E	10	68	(5		} 4 • E	1	27	98		1 15	2	04 54	47 79
-1	50	5	55	- 5 5	- 1	4 5	1	152	-122	, - 1 A	2	10		45			1	57			1 16	2	162	-168
-1	51	10	41		-1	5	1 1	774	- 30	_1	ຸດ 3 ຄ	10	50	53		1 7	1	270	-279		1 17	2	87	- 84
1	. 1	2	100	105	-1	7	1	159	-125	-1	32	1	32	-37		1 8	1	136	108		1 18	2	135	-134
-1	2	Ž	516 -	-537	- 1	8	1	395	-362	1	2	0	247	-221		9	1	21	- 22		1 19	2	104	-98
-1	3	2	207 -	-2:4	-1	9	1	123	88	1	5	0	57	60		1.10	1	236	227		1 20	2	103	104
-1	4	2	25	10	-1	10	1	446	-403	1	6	0	178	-181		1 11	1	72	73		1 21	2	136	-131
-1	5	2	22	-20	-1	11	1	- 97	83	1	7	0	111	-110		1 12	1	82	-67		1 22	2	48	49
-1	Ģ	2	213 -	-189	- 1	12	1	- 73	179	1	8-	0	207	-203		1 13	1	149	132		1 23	Z	46	38
-1	7	2	98	146	- 1	13	1	21	28	1	0	0	257	-263		1 14	1	107	-107		1 24	2	78	-81
1	-8	2	396 -	-4.71	-1	14	1	145	-145	1	10	0	220	245		1 15	1	259	<51 20		1 25	2	() 5 /	/) E E
-1	Q 4 A	2	180 -	-174	-1	17	1	.54 726	200	. 1 	17	i) N	124	174		1 10	1	う4 てら	-20 - 41		1 27	2	24	22
-1	10	· 2	217.	4 7 11		· 0	•	1111		1	16	17	156	· • • • •		, ,,	,	· .)			1 6 7	<u>د</u>	<u> </u>	. .

, ; ; ; - ; ; *				 									-												
н	ĸ	L	FO	FC		. H	K	in di la	FÜ	FC			L	FO	÷ C	H	· K	L.	FO	FC	. Н.	Ķ	L	FO	FC
8	13	2	112	-98		8	19	3	27	-28	я	8	. 5	36	37	6	7	8	44	51	-7	11	9	47	-45
8	14	2	00	-35		8	20	3	53	-54	8	11	5	78	-84	6	1	0	206	189	-7	12	9	87.	76
. 3	16	2	121	-118		8	22 -	.3	107	118	. <u>р</u>	14	5	71	77	-7	1	10	63	73	-7	13	9	31	-34
R	17	2	49	51		8	°C	4 .	72	-79	8	15	5	59	65	-7	5	10	55	-61	-7	14	9	46	- 41
	18	2	33	32		8.	1	4	56	-30		3	6	47	-55	-7	3	10-	34	-37	-7	15	9	28	-30
	19	2	74	-74		8	2	- 4	113	118	. 8	5	- 6	68	-71	-7	4	10	51	56	-7	17	9	28	-34
8	20.	2	98	-98		8	3	4	35	38	8	11	6	21	22	-7	5	10	24	25	-7	1.8	9	60	69
N A	22	. 2	50	-51		8	4	4	- 67-	- 77	. ദ	- 13	6	53	- 64	-7	. 8	10	56	-57	-7	1	8	30	-33
	23	2	20	31		8	5		75	83	ភ	1	- 7	46	- 59	-7	- 9	10	89	-95	-7	2	8	51	99
8- 0-	24	2	78	35		8	6	<i>i</i> 4	138	-143	8	7	- 7	24	30	-7	10	10	52	52	-7	4	8	44	-47
. ×	_1	5	45	-46		8	12	4	149	-144	- 8	- 3	2	94	-9Z	-7	0	9	114	127	-7	Ş	8	44	43
<u>х</u>	2	5	98	-101		8	13	4	03	-95	0	17	9	37	49	-7	19	8	47	-55	-7	6	8	39	44
8	4	5	245	248		8	14	4	50	53	n	13	10	34	-41	-7	2.0	8	62	68	-7	7	8	90	40
8	6	5	14	/1		8	16	4	75	25	. 5	0	1	362	370	-7	1.	0	39	45	-7	0	8	38	33
· *	8	5	109	-108	¥.	8	18	4	40	-41	-7	3	1	122	-123	-7	- 3	9	50	61	-7	10	8	108	-100
×	4	5	62	67		8	20.	4	56	67	-7	1	11	52	-66	-7	4	9	37	-46	-7	11	8	72	62
X A	10	.5	114	108		ð	21	4	41	47	3.	11	6	21	22	-7	. 5	9	30	331	-7	12	8	32	-28
X - 	12	5	101	-96		3	- 5 -	5	89	97	2	8	10	37	-48	-7	6	9	95	95	-7	16	8	30	27
	14	5	143	-137		ି ଓ	4	5	43	-64	-?	0	4	49 8	-499	-7	7	Q.	53	53	-7	15	8	41	-41
X O	16	3	:67	69		8	5	5	44	-48	र	12	9	47	. 58	-7	8	9	60	-63	-7	16	8	94	-85
. 8.	17	5	25	-29		8	6	5	36	-37	4	5	0	244	267	-7	10	Ģ	50	-57	-7	Z	8	51	-50
8	18.	3	21	- 30		8	7	5	58	-65	6	6	8	53	59									-	

.

. ني .