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SUMMARY 

This thesis presents static equilibrium and stability analy.ses 

of cylindrical shells subjected to non-uniform external pressures. 

This problem is of practical importance in the design of l,aunch 

vehicles, oil storage tanks, cooling towers subjected to wind 

loads and other engineering structures submerged in flowing 

water.. The non-uniform pressure distributions considered are 
I 

due to - a) Wind at high Reynold's numbers 

b) Flow of water on sUbmerged cylinders. 

In the static equilibrium analysfs for the pre-buck1ed state both 

Donne1l and F1ugge shell theories are employed. The results of 

pre-buck1e deformations and stress resu1tants, when compared 

with results obtained using beam or semi-membrane theories show 

that the beam theory is inadequate and unsafe, whereas the semi

membrane theory is conservative and safe for wind loaded structures. 

Stability analyses are carried out using both continuum and finite 

element approaches. The stagnation critical pressures are 

obtained for various shell geometries and end conditions. The 

criterion used for determining the buckling pressures is the 

vanishing of the second variation of total potential energy. 

The second variation of energy is expressed in terms of the pre-

buckling (equilibrium) membrane strains and the assumed buckling 

virtual displacement components. Non-linear strain displacement 

relations are employed in the buckling analysis. The finite 

element method is generalised to take into account the effect of 

axial variation in shell thickness and the influence of addition-

a1 ring stiffeners. 

11 -



An experimental study o.f the problem is also reported. A series 

of experiments are conducted on model cylindrical shells in both 

a low speed wind tunnel facili t:)'. _ and a low speed water tunnel. 

Based on the theoretica~ and experimental results obtained, the 

existing codes for the design of oil storage tanks subjected to 

wind loads are examined and are found to be conservative. Rec

ommendations are made regarding the codes and the use of empir

ical relations 'for the stagnation buckling pressures in terms 

of shell parameters. 
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1.1. General Remarks 

CHAPTER 1 

INTRODUCTION 

The problem of static and stability analysis of shells 

subjected to non-uniform lateral pressure loads finds 

extensive application in many branches of Engineering. 

The collapse of cooling towers at Ferrybridge in 1965 

and the collapse of oil storage tanks which were under 

construction at Haydock in 1967 have generated 

considerable interest in analysing this problem. The 

oil storage tanks at Haydock after collapse are shown 

in Figure 1.1. (The collapse mode of a model cylinder 

is shown in Fig.l.la.) 

Cooling towers, oil storage tanks, silos used for grain 

storage are all subjected to the action of wind loads 

and are a few examples of cylindrical shells under 

non-uniform lateral pressure. Off shore structures 

and marine structures under hydrodynamic loading ~nd 

launch vehicles under ground winds are some further 

examples which come under this class of problems. All 

of these structures can be idealised as cylindrical 

shells with specified boundary conditions at the ends. 

The external pressure on the shell in general varies 

both in the axial and circumferential directions. The 

loads imposed on the external surface of the shell either 

due to wind or fluid flow are typical examples of the 

1. 
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non-uniform external pressure. 

1.2. Review of Literature' 

Many aspects of static buckling of shells are 

discussed in the literaturel ,2,3, although these 

references are essentially for the uniform pressure 

loads. The buckling pressures obtained by using the 

infinitesimal deformation theory are called the Euler 

critical loads. The theoretical buckling pressures show 

,a reasonably good agreement with experiments for long 

shells. However, for ~he case of short cylinders the 

agreement is not satisfactory due to the snap-through 

action. It is observed that the shell can be in a weak 

equilibrium state at 1qads which are lower than the 

Euler critical loads and due to finite disturbances 

it will jump into a neighbouring equilibrium state, 

causing a considerable change in the geometry of the 

shell during the process. The load at which, the shell 

tends to jump to another equilibrium configuration is 

called the snap-through critical load. The Euler 

critical load and the snap-through load can be 

represented on the pressure-deflection 'diagram as in 

Fig. 1.2. ' 

FiG - 1.2 

I 

/ 
/ 

A / 

P B 

c 

o __ w 
Pressure-deflection Diaqram 
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OA is the prim~ry equilibrium path and the load at 

point A is the" Euler critical load. AC is the 

unstable secondary equilibrium path. CD is the stable 

secondary equilibrium path. At the point B the shell 

may jump from state B to state £ and the load at B is 

3. 

the snap-through load. The determination" of complete 

pressure-deflectiori diag"ram is very involved and in the 

literature only Euler critical loads are generally reported. 

In the literature very few works are reported on the 

stability analysis of cylindrical shells under non

uniform loads. The work due to Almroth(4) seems to be 

the first one in which a general theory and its application 

for s~ability" analysis for a simple non-uniform pressure 

is presented. All other published literature related to 

this aspect is concerned mainly with the stability 

analysis of shells under wind loads. However the \-lind" 

loading is only an example of the general non-uniform 

loading on the shell varying both axially and 

circumferentially. Hence the stability analysis 

developed for this particular problem can be very easily 

adapted to the general non-uniform load by suitably 

altering the load parameters. Different approaches 

have been employed for this particular problem • 
. (5) 

Rish has conducted experiments in the wind tunnel 

on shells made out of paper to obtain the buckling 

pressures and has compared these results with theoretical 

results obtained by a simple strain energy consideration. 



Langhaar and Miller (6 ) have given a theoretical 

solution for estimation of buckling pressures based 

on the differential geometry of surfaces in which 

considerable simplifications are made to obtain the 

numerical results. 

Realising the difficulties of the theoretical 

investigation, Holownia (7 ) has conducted a series of 

experiments on the closed ended shells. Based on these 

experiments empirical results have been developed for 

quick calculation-of the buckling pressures which are 

convenient for design purposes. 

Experimental investigation. on the hyperbolic cooling 

tower models is reported by Der and Fidler (8 ) in which 

the effects of imperfections are studied. 

After observing that the deformations in the shell are 

large even prior to buckling, Brave-Boy(9) attempted to 

analyse the problem by a large deflection analysis 

ab initio, starting with the non-linear differential 

equations and employing a Galerkin type of approximation 

to solve them. 

Alnajafi ClO ) has also attempted a similar analysis by 

the finite element technique using a load increment and 

iteration procedure. These methods in Ref. (9) and Cl0) 

have not apparently yielded useful results. 

Ewing Cll ) has used a simple Rayleigh type of method for 

determining the buckling loads. 

Billington and wang (12 ) have re-investigated the problem 

by utilising the theory given by Langhaar and Miller(6) 

4. 



and have point~d our certain " discrepancies noted in 

the Ref. (6) 

Chtan and Firmin(13) have used the finite element method 

to carry out a large deflection analysis of cooling 

towers under wind load. The buckling loads are 

obtained in this method by noting the deflection in 

each harmonic; and if at any load level, the deflection 

in one particular harmonic tends to be large that is 

considered to be critical load. 

1.3. Scope of Present Work " 

In the present investigation the cylindrical shells are 

considered to be homogenous and isotropic. As the 

stabi1.ity of .such shells under lateral pressure .loading is 

not considered to be imperfection sensitive, the 

material and geometric imperfections in the shell are 

ignored. The thickness variation in the axial direction 

as well as the variation of the pressure load both in 

circumferential and axial directions are considered in 

the analysis. 

The aims of the present work are: 

a) To estimate the stresses in the circular cylindrical 

shells based on continuum and finite element methods. 

In the continuum analysis linear thin shell theories 

Vlz. semi-membrane"" Donne11 and F1ugge' theories 

are employed. Relative merits of these theories 

are studied. A higher order cylindrical shell 

element is ~eve1oped to estimate the stresses by 

the Finite Element method. 

5. 



b) . To develop a satisfactory theoretical method based 

on energy considerations by both the continuum 

and Finite Element methods to determine the 

critical buckling pressures under the action of 

non-uniform loads, such as due to wind, for various 

edge boundary conditions of the shell. The 

second variation of the total potential energy 

forms the basis "for the criterion for the 

estimation of critical loads. The Finite Element 

method is employed to analyse variable thickness 

shells, and ring stiffened shells. 

c) To determine the buckling pressures experimentally 

by testing model cylindrical shells in the wind 

tunnel and to compare theoretical and experimental 

results. 

d) To examine the current codes of practice for the 

design of wind loaded structures and indicate 

their validity in the light of the present 

investigation. 

e) It should be emphasised that the principal assumption 

made in (a) and (b) relates to the linearity of the 

pre-buckle deflection behaviour followed by a 

bifurcation buckling analysis. 

6. 



CHAPTER. 2. 

STATIC ANALYSIS CONTINUUM THEORY 

2.~ Introduction 

Stress analyses of cylindrical shells have been carried 

out by many research workers using different shell theories 

in Re£. (14) to (32). 

Martin et al have presented a series of papers(14 to 16) 

on stress analyses of cooling· towers. Membrane theory 

is used in Refs. (14) and (1S) where as in Ref. (16) a 

more general theory is employed. Becau·se of the 

simplicity of the membrane theory this has been applied 

for cylindrical shells under wind loads in Ref. (21). 

Due to the limitations of the membrane theory other 

approximate versions of the general shell theory have 

also been developed in the literature; these approximate 

theories have the advantage of simple explicit forms 

of solution that are convenient in the preliminary 

design stage. In fact even the elementary beam theory 

is sometimes used for this purpose. 

Vlasov's(17) semi-membrane theory is well known in the 

b 1 f . t th· K···· ( 18 ) a ove c ass 0 .approx1ma e eor1es. raJ1c1nov1c 

and Rish(19) have used Vlasov's theory for analysis of 

cantilever cylindrical shells under wind load. 

Wang and Billington(20) have presented a slightly 

different version of the semi-membrane theory. 

Among the general theories of shells, Donnell's(22) theory 

has been extensively used. 

7. 
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In Refs. (23)~(25) the different shell theories 

including that of Donnell have been compared with one 

another on the basis of the roots of the characteristic 

equation. 

The accuracy of the Donnell" , theory has been studied by 
"-

(26) (27) (23) 
Hoff Kempner and Moe . • 

Hoff(26) has calculated the error in th~ characteristic 

roots of Donnell's equations as compared with the roots 

given by Flugge's equations. 

Kempner(27) has reduced Flugge's shell equations to a 

form analogous to Donnell's equations and has shown the 

error to be small except for thick cylindrical shells 

under loads represented by lower harmonics. 

The analysis given by Hoff(28) using the Donnell 

equations seems to be very convenient for the problem 

of wind loaded shells, and therefore the accuracy of the 

Donnell' _-: equations as applied to this problem will be 

studied in detail. 

The Fluggel~ shell theory(29) is considered to be 

accurate and this theory will be used for comparison 

purpose in the present analysis. In recent years there 

have been further improvements in the first order linear 

thin shell theories such as due to Morley(30), Koiter(3l) 

and Sanders(32). However these will not be considered 

in the present investigation. 

In this Chapter the equilibrium stress analysis of the 

shells under the action of external pressure loads by the 

semi-membrane, Donnell and Flugge theooes is presented. 

8. 
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The validity of the semi-me~rane theory is studied 
. 

as applied to these problems. The shell is 

'. 
considered to be ~hin, isotropic and homogenous. 

The loading considered on the shells is only an ~xternal 

pressure acting on the curved surface, typical of that 

due to wind. 

2.2. Representation of Lateral Pressure Loads 

The representation of pressure distribution around a two 

dimensional circular cylindrical shell due to an 

external potential flow is qui te- simple an·alytically. 

However, the pressure distribution is modified by vortex 

shedding and by the presence of real fluid (viscous) 

effects. It is also very much dependent on height to 

diam. ratio of the shell (i.e. three dimensional 

effects)tapproach velocity profile as a function of the 

height, natural turbulence in the free stream, Reynold's 

number, etc. As it is not possible to consider all 

these effects analytically, the pressure distribution 

has to be determined only by experiments. Such 

experimental dataare reported by Roshko(33), GoUld(34) 

Cow~rey and O'N~il(35) and purdy(36) and coworkers. 

The data given by Roshko and Gould is for long 

cylinders at high Reynolds numbers whereas the data 

given by Purdy is for short closed ended shells. 

Cowdrey and O'Neil have given the data for cooling towers 

of hyperbolic shape. 

In general the pressure distribution will vary both in 

9. 

the axial and circumferential direction', The experimentally 
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measured pressure distribution can be represented by 
. 

an equation of the form 

»1, Yl. ::x:'Yl'\ 
? Po E~ bmn ~ ')1 f) 

:::. (2.1) 
)y'I;,O \');::0 

--

where the variation in the axial direction is represented 

by polynomials and the variation in the circumferential 

direction is represented by the Fourier series. 

The data from Ref.(37) for the closed ended cylindrical 

shells tested in water tunnels has been reduced to the 

double series form as given by Eqn.(2.l) in the present 

analysis. The least square method is used to evaluate 

the arbitrary constants, h~n , in the double series. 

The pressure represented in this form differs from the 

experimentally measured pressure distribution by a 

maximum of 5j1o. The least square method of evaluating 

the constants is given in Appendix 1. 

In many cases the variation in the axial direction is 

very insignificant. As a consequence, the static ·and 

stability analyses can be slightly simplified if the 

axial variation of pressure is completely neglected. 

Making such a simplification, the data giv~n in Ref. 

(33 35) h· b t d b R" h(19) - as een represen e y ~s as 

(, 
bt1 Cos Yl fi) p= Po L. (2.2) 

\1-;:'0 

The values of the constants bn obtained by Rish are 

hO = -"0.387 b l = 0.338 b 2 = 0.533 b3 = 0.471 
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b4 = 0.166 bs = 0.066 b6 = 0.055 

The values of the coefficients for harmonics above six 

are very small and hence they are neglected. 

When the cylinder is open ended it is also noted that 

the internal surface of the cylinder is under the 

action of a uniform suction load of magnitude 0.607 Po. 

When this effect is taken into account .the value of 

the first coefficient 60 changes to 0.22. 

The pressure data either in the form of Eqn.(2.1) or 

Eqn.(2.2) are used in the appropriate analyses presented 

in the subsequent sections of this chapter. 

2.3: Basic Eguations 

The geometry of the shell and the coordinate axes with the 

corresponding displacements of the shell are shown in Fig. 

2.1. The shell is considered to be thin, isotropic and 

homogenous. For static stress analysis purpose the 

deflections are considered to be small in comparison with 

thickness, and only first order linear thin shell theories 

will be used. 

Assuming that the material of the shell obeys Hooke's 

law, the stress-strain relations can be written as: 

cr;.-

E (t6 -+ Y t.x.) 
, - )'l- (2.3) 

-- .... 
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The stress resultants and the moment resultants acting 

on a differential shell element are shown in Fig. 2.2 • 

Considering the equilibrium of the forces and moments 

acting on the element in the three coordinate directions, 

one arrives at the equations of equilibrium: (Ref. 29). 

~ N)(. + ~ N"e -i- 0.. pz. ::. 0 
q. x.. '0 e 

~ Nex + "0 N() Qe + (), Pe;:: 0 
at)(. "0 e 

'0 Q", + ,'0 Qe -+ NB+ a Pz 0 

o~ as (2.4) 

() M;>:. + 'OMxe a. Q.,x. ::0 

a x.. 
.-oG 

"Me + '0 Mex _ 0.. Qe -= 0 

oS OX 

a... N O;x.. + M e:x. =0 

These equations are to be solved in conjunction with the 

strain-displacement relations and stress-strain relations, 

to determine the state of stress in the shell. However, 

by making certain assumptions regarding the state of 

stress or strain the solution of these equations can be 

simplified. 

2.4. Semi-membrane Theory 

The additional assumptions made in semi-membrane analys.i:s 

are: 

12. 
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1. The bending moments Mxand M14Sare small 

compared ~ith '~G except for a small region near 

the fixed edges of the shell. Hence these moments 

are neglected. 

2. The circumferential strain and the shear strain are 

neglected in comparison with axial strain. 

Hence E & = (. ";)l..' e == 0 

By the first assumption, and by assuming that N-x..s = Nex 
and Mxe= M&x , the equations of equilibrium can be 

reduced to: 

() Nx + oNxe + CL. Px ==0 
0;:)7. de 

oNe + ~ Nex _.!..:oMe + ~Pe::. 0 
()G o~ o..?J(J 

(2.5) 

J 0').. Me + ·N e + 0.. P:z.. 0 
, ;;'0 9 1 

Eliminat;u:iNa and Nxo from the above set ,one gets: 

where 

The strain-displacement relations considered are: 

(2.7) 

13. 
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Because of the second assumption, one obtains 

. 
,. e 

()9 
(2.8) 

To satisfy the condition ~~Et 0, the displacements 

Uand ~ are selected as 

(2.9 ) 

where ~ is an arbitrary function. 

The remaining stress resu1tants can be expressed in 

terms of the function ~ as 

(2.10) 

Ma 
~ 

- E.h ke 
- 1'2.(1-'1)..) 

= - Eh
3 

J ()~ (cj>+"d"l-rjJ)' 
12. CI--y·~Ja. () e 1.. a el-

substituting the expressions in Eqn.(2.10) into Eqn.(2.6) 

the governing differential equation reduces to: 

(2.11) 

The solution of this equation for the case of a shell 

under non-uniform load is given in Appendix IT. 

14 • 
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2.5. Donne11's Shell Theory 

.. 

Donnell's shell theory given in Ref. (22) has been 

. extensively applied for analysis of 

cylindrical shells. In this theory the shell is 

considered to be shallow and as a result the strain 

pattern in the shell is considered to be analagous to 

that of thin plate~ It is also assumed that MX8 = IVJ t):x. 

and NX{9 = N ex- • 

The mid-surface (Neutral) strains and curvatures are 

related to the displac~ments of the mid-surface as: 

(2.12) 

The stress resultants and moment resultants at any point 

in the shell are given as: 

3 
M x. = Eh ()<x -t-vk 8) 

12- (1_;11-)· . 

3 

Me = £. h (Ko+ v kx.) 
12 (t-)l.2) . 

N· -==' ~ C E e +)J f;c.) e 1_11-. 

(2.13) 

15. 
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In the equations of equilibrium (2.~~,neg1ecting Qe 
term and the last equation of equilibrium, the 

remaining equations can be reduced to: 

() N~ -+ "0 N.xG + a. PJe::: 0 
OXoe 

.?Ji..ea -+ a N (-) -4- a P t9 :=. 0 
(} x oe 

(2.14) 

substituting for the stress resu1tants from Eqns. (2.13) 

and (2.12), one has the eqUations:~qUi1ibrium in terms 

of the'disp1acements as: 

( ,_y))'),U _0 49 +0. Pe 
'2- ~ x.2- '0 e = 0 

D 
--.(2.15) 

o 

where 

The general solution of these equations for any set of 

boundary conditions and external loading is given in 

Appendix I1I~ and applied in Refs. (38) and (39) 

16. 



2.6. Flugge's Shell Theory 

The Flugge' ·shell theory for the analysis of circular 

cylindrical shells, given in Ref. (29 ), is considered 

to be accurate. No simplifications of the equations of 

equilibrium of Eqn.(2.4) are made. Starting f~om the 

basic assumptions, as in the engineers theory of bending 

the stress and moment resultants are obtained in terms 

of the displacements as: 

])[~ +-y(OlP_ L8-)] + N ',)t :::: ~ dt '3 e 

.Ne 

N ~X = D(I--vJ (~ + ~ ) + ,k C.-y) (]>l,l - "b'),.iAJ ) 
2.. of) ()}L . ~a. (}e· oal.3c9 

17. 

. '. ~ 

N _1)('-YJ(~-+~)+k('-J')(~_OC~) 
:x. e - - '2- {} e '0;1.. -z:a., \ ox. oX '0$ 

= k ( . "bl.b..9 -t- y a'),. CA9 _ 0 u. _ y '0 19 ) 
0.. QX,.2 o~z. ox. 09 

Me ::= RI w> + ?J"C...9 +1' o'l-{,-!} .) ,-I o:-L . '0 e2. () :x.1-
- (2.16) 

').. 

t"1 ~ e:::: R (I - i J ( [) C-.9 - :0 U ) 
CL . ~x -00 0 x.. 

- R ( 1-iJ [ 0"1- c,;9 + J.. ( 7> u. - ~ )] 
Ci:" o:>(.oe 2- oe oX 

where 



Substituting these in the equations of equilibrium 

(2.4) one obtains the. governing equations of the shell 

as: 

18. 
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The solution of these equations for the case of cylindrical 

shells under non-uniform load is developed in Appendix IV. 

2.7. Results and Discussions 

The different shell theories discussed here have been 

appli2d to the following problems • 

. , a) To analyse the cantilever cylindrical shell under 

. d 1 d d b K "". . (18 ) W1n oa assume Y raJ~Clnov~c • 

b) To calculate the characteristic roots of Flugge's 

shell theory for different shell geometries. 

c) To compare the shell theories due to Flugge and 

Donnellfor different shell geometries and end 

condi tions". 
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d) To calculate the displacements and stresses due 

to each of the harmonics for two typical shell 

geometries • 

e) To represent the complete displacement, stress 

and moment distribution for a typical shell. 

Krajicinovic has applied the semi-membrane theory for 

wind load of the form: 

Pz Pz , + 1='z.2-

where 'J - P C-u5 2.9 -TT ~ gL. 17/4 2,- -
it 

- 0 elsewhere -' 
P~.2- }:I C.oS 2e 0 :se 6 2-17 

.~ 

The results given by Krajicinovic are incorrect as 

indicated in Appendix 11. The correct solution for the 

problem are also. presented in this appendix. This 

problem is analysed by both Donnellsand Flugge~theories 

also. The maximum stresses at the root of the 

windward and leeward generators are calculated and are 

plotted in Fig. 2.3 and 2.4 for various shell geometries. 

The circumferential variation of the axial stress at the 

root for two typical shell geometries is plotted in 

19. 

Fig. 2.5. in which the solution by the beam theory is also 

giyen. These results show that the beam theory is 

inadequate in preliminary estimation of stresses and 

also it misrepresents the state of stress at the leeward 

generator. From the results presented in Fig. 2.3 and 

,2 .. 4, it can also be concluded that the semi-membrane 



theory over estimates the axial stresses for all 

shell geometries. , The error in the semi-membrane 

theory is large for short thin shells but the error is 

small for long thick shells. The design based on the 

semi-membrane theory is considered to be conservative. 

The accuracy of the Donnell shell theory for determining 

stresses in shells is examined next. The characteristic 

roots of the Donnell', equations for various shell 
28 

thicknesses and harmonics are given by Hoff. The 

corresponding roots by Plugge's theory are given in 

20. 

P " 2 6 d P" 2 7 From these and Ref. 28, it may be ~g. •• an ~g. •• 

seen, for n~2 th~ characteristic roots of Donnell's 

theory differ from those of Plugge's theory by a 

maxim~m of 51ofor shells of thickness ratio considered 

here ( /00 ~ of/) ~500 ). Next the stresses are 

calculated by both the theories under the action of 

idealised harmonic loading as well as wind loading, of 

Section 2.1, for various shell geometries and end 

conditions. The geometries of shells considered are 

1 ~ L/a~ 5" and Various 

combinations of end conditions such as clamped-free, 

clamped-s.s., etc. have been considered. A few 

typical results obtained for different harmonic loadings 

suCh as maximum deflections, maximum stresses and 

maximum moments are given in Tables 2.1 to 2.$. As the 

Donnell theory is suspected to give results with large 

error for the lower harmonics, only the results 

obtained for harmonics 1 and 2 are presented in these 

tables. The stresses .given by Donnel~theory differ 



by a maximum of 1% as compared with Flugge's theory. 

For higher harmonics the difference is still smaller. 

The distribution of deflections, stresses and moments 

for a typical cantilever shell ( L/o..:::: I) ~/h::= 100 ) 

along three generators and along five meridian circles 

are plotted in Fig. 2.8. - 2.13. under the action 

21. 

of the wind loads given by Eqn.(2.2.) •. From these figures 

it can be seen that the root of the windward generato~ 

is under maximum stress and the stress- at the leeward 

generator is quite small. 

The analysis for any other type of loading on the shell 

can be easily performed by suitably summing the stresses 

and deflections for each harmonic provided the solution 

for each harmonic is already known. As an example for 

two typical shell geometries, the maximum radial 

displacement and the : maximum stresses are 

calculated. The variation of these quantities in the 

axial direction for each of the harmonics is given in 

Figs. 2.14. - 2.19. Clearly since these have been. 

obtained from a linear elastic analysis, they may be 

quite simply added in proportion to the Fourier 

harmonic in loading, provided that the str.esses caused 

by combined loading are still in the linear elastic 
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CHAPTER 3 

STABILITY ANALYSIS - CONTINUUM THEORY· 

3.1. Introduction 

The stability analysis of circular cylindrical shells 

subjected to uniform external pressure has been 

t . 1 t d· d· th l·t t 2,29,40,41,42,43 ex enSlve y s u le In e l era ure • 

Most of the problems considered are for the case of 

simply supported shells, the types of loading considered 

being hydrostatic pressure or a band load. The 

problem of stability of shells subjected to non-uniform 

load is much more involved than that of the uniform 

pressure because of the coupling between harmonics 

in the assumed mode caused by the non-linear terms. 

The first paper presenting an appropriate energy theory 

for shells under circumferentially varying pressure 

is apparently due to Almroth4, who .has considered a 

1 d · f th f "'D;:::. "Po ( bo + b, Cos e) pressure oa lng 0 e orm' ~ 

on simply supported shells. 

44 Maderspach and co-workers have followed Almroth's 

approach for their investigation on simply supported 

.shells subjected to wind loading given in Ref(36). 

45 Bushnell has developed a computer code called BOSOR4 

22. 

that can be applied for buckling analysis ofaxisymmetric 

structures. Recently his work has been extended to 

non-uniform lateral pressures by Sheinmann and Tene4~ 

Ewingl1has used a simplified energy theory for the 

estimation of buckling loads of the cooling towers. 

I 
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Langhaar and Miller have used a semi-membrane theory 

for the problem of cylindrical shells under wind loads. 

Their analysis is extended further by Wang and Billingtonl2 

as the original analysis has given inconsistent results. 
"9 Brave-Boy and Johns' have attempted tQ,integrate the 

non-linear large deflection equations of equilibrium by the 

Galarkin method. In Ref(47) the analysis of cantilever 

cylindrical shells ~nder wind load is presented. 

In the present chapter the stability analysis of 

cylindrical shells under the action of non-uniform loads, 

such as due to wind, by ~he energy theory is presented. 

The infinitesimal energy theory of buckling, that gives 

the 'Euler buckling loads' as defined by Langhaar
3
is 

employed. Complete non-linear analysis and snap through 

actions are not considered. Dynamic effects and shell 

imperfections are ignored. The shell is considered to 

be uniform, isotropic and homogeneous. The prebuckling 

deformations are considered to be small and as a result 

the change in the shape of shell due to these 

deformations is neglected. As the shell under the 

action of lateral pressure is not imperfection 

sensitiv~, the classical bucki.ing theory is considered 
, 

to be adequate. Only static instability due to a known 

non-uniform pressure is investigated in the present 

analysis. The convergence of the buckling pressures 

with the number of terms in virtual displacements is 

studied. Numerical results for buckling pressures of 

cantilever cylindrical shells under wind load for 



various shell geometries are presented. The influence 

of constraint 'and relaxation o~ edge conditions 

and the influence of form of pressure distribution on 

the buckling loads is examined. 

3.2. Second Variation Principle 

The buckling analysis is based on the energy theory 

given in Ref (3). The advantages of this theory as 

compared with other theories of buckling are 

discussed by Langhaar and Boresi2 • The theory is based 

on the principle that for a conservative mechanical 

system to be in stable equilibrium, the total 

potential energy.shou1d be a minimum. For any elastic 

syste~ one can write the potential energy as: 

where 

u

"" 

v== u- w 

strain energy stored in the system 

work done by the external loads 

To study the nature of potential energy in any 

(3.1.) 

equilibrium state, variational calculus is employed. 

Change in potential energy during a small load increment 

or due to a virtual displacement state around the 

~qui1ibrium position is: 

6\1= bU-L\W 
(3.2.) 

The increments in strain energy and work done can be 

written as: (Rd 3) I '1- 3 
AV==- 'bU..-t-- S u+J.. & u-+-----

2..! 31 

24. 

".. • 3 
/l W = ~ W + ~ 1> lv + -L 0 VI -+ - - ~ - - (3 '3) 

. . 2-~ :3' 
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where l> Y) U and ~ 'tJ are nth var ia tion of U and W .. 
respectively. Hence the change in potential energy can 

be written as: ) C'c:." ~"V) ~ 
A V = (5 U - .S w + ~ ,oU - 0 hi 4-~ (S u -s?>w) -t . . . 

(3.4.) 

From the principle of virtual work, fo~ an elastic 

system to be in equilibrium,the first variation of 

potential energy should be equal to zero. 

i.e. 

Sy &u- 5w:::-O 
(3.5.) 

Thus the nature of ~ V in an equilibrium position is 

~ "'v (-- <!,,"VV - c:. Yw ) determined by ~ 0 Cl If AVis to 

be a relative minimum one·gets that 

(3.6.) 

vfuen the condition (3.6.) is satisfied one can conclude 

that the equilibrium state is stable. The equilibrium 
').-

will not be stable if ~ V becomes negative for any of 

the possible virtual displacement states. 

Hence the criterion used for determining the b~ing 

loads is that the sign of the second variation of the 

total potential energy changes from positive definite 

.character to an indefinite character at the critical 

loads. 

3.3. Potential Energy - Second Variation 

The potential energy of the cylindrical shell can be 

wri tten as: (R.e-f JtJ 

'\I == U-m -+- U b - 'W 
(3.7a.) 

", 
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where 

Um = 

--

Ub = 

membrane strain energy of the shell 

y ~ /',. rt[-rT '"-~ -t- G ~ +;ZY Go<- ee + s:Y t;.;:;eJ 
'J- Lt-vt))) 'L 

o 0 '., d x dO 
of shell bending strain energy 

--
-:2. • Ljo.. 'l-rr 

E h~ if . 
2y CH~) 0 0 [k;" 

- (3. 7b.) 

-\- .k~() + 2- Y I<;}:'K I<e e 

+ 2 (I-v) l<~e] d?L d e and 

YJ = the work done by the external loads 

~ 3 (AJa. 2- T1 . '-- 0 t..9 'l.-' . 

-2-.
0 
~ J -p [ c,9-±- f IA9 + 2. [g ~el&:; + u;i}dK'!O. 

In the buckling analysis recognising the importance of 

the non-linear terms in the strain displacement relations
J 

which represent the rotation component of the strain, 

these are selected as: (Re.f'4) 
_ _ 2-

u.J~+i. v.9/~ 
. "2-

((9 -iJ)+J.c.l9+lA.9/(9) 
,I e :2-

(tile + 19,O}(.) + W,;}<.( t9+c:9.1e) (3.8a.) 

where the bars are used over the quantities to indicate 

that these are the total quantities consisting of both 

the equilibrium state and the virtual displacement state. 

~he suffixes for the displacements indicate differentiation. 

The expressions for curvatures are identical to those 

used in linear analysis. 

i.e. J<.::r.::x.. === t:9,:x.~ 



u.9 + WJ ee 

k !A9''"V9 <:t-e - J'- . (3.8b. ) 

The components of the displacements in the equilibrium 

state be denoted by Lt.. 1 19 CVY\cl CA.9 • .The corresponding 

components of displacements in the virtual displacements 

be t; J 1 c:t~ C;. The total displacements can be 

written as: 

u - u+~· 

19::: (J -I- 1J. 

CA9 - W+-r; 
(3.9.) 

Substituting these displacement components in equation 

(3.8) one gets: 

I -r 2-
U,:>C- + ~/X +2: Y/X 

\ 19.1 e - (,.9 ) -+- ("1 ) e - Z;) . + ~ (~+ Y le) 1-

(UJ e + L9, ~) + ("&) e -\- "'1, :x ) -+ r;,.x ( 1 + ~ le)' 

k ):. J(. W I 7>:x. + r; I -;x, ::I:-

kG G -:;:::. U-9 + ~.J G e + 7f -+ Z;" e e 
(3.10.) 

27. 



In these expressions the prebuck1ing rotations have been 

neglected as they are small except .possib1y at the free 

edges. Substituting (3.10.) in (3.7.) and calculating 

28. 

-(3.11.) 

The underlined quantities in the above expression· are the 

prebuck1ing membrane strains. It can also be seen that 

the second variation is quadratic in virtual disp1acements 

with the. load appearing as a parameter. 

The critical buckling pressures are calculated from 

~this quadratic expression by forming the Hessian 
v 

determinant. ~ V is positive definite if the Hessian 

determinant is positive. 

It can be noted that in Eqn.(3.11.) the first part of 

the integral, which does not contain the prebuck1ing 

membrane strains, ~s identical tofue linear strain' 



energy of the shell and it is always positive. Hence 

only the second part of the integral containing both 

the prebuckling strains and the virtual displacements 
,.... 

is reponsible for changing the nature of V V. Thus 

it is clear that the prebuckling membrane strains are 

very important in the buckling analysis and therefore 

are to be determined accurately. (see Section 3.7) 

3.4. Virtual Displacements 

The virtual displacements chosen should s~tisfy the 

geometric constraint 9n the shell and they should be 

continuous with continuous first· derivatives in the 

region of the shell. Depending on the boundary 

conditions at the ends. one can choose beam functions 

29. 

or Fourier series. Beam functions can satisfy ~uJo~aJ~ 

certain end conditions, but they are mathematically 

difficult to handle. The selection of polynomials in 

the axial direction has certain advantages as these can 

be manipulated to satisfy any geometric constraint at 

the circular ends. Selection of Fourier harmonic·s to 

represent the virtual displacements in the circumferential 

direction is very well suited. Thus the virtual 

displacements for the case of cantilever cylindrical 

shells are represented as: 
11\, "'1-

AmYl 
", 

C(')$ ne ~ - 2:"L :x, 

"WI ::.J n :1", 
m 

Si'.., 11 e Bmn !)C.. t'L1-qz 
1n: 1 'r\~ r'1 . (3.12) 

~ ~/t" m 
Cos ne lj - C)n)'l '::£ -

"""=' ".:: 'Y'I 
These satisfy the requirements that rf .:::.'1(=~::Yi.:Oat ::x.::=0, 

representing the fixed edge. At~=Lf~he free edge, they are 

not constrained. 



The advantages of polynomials will be evident, if 

one wants to consider the case of clamped-simply 

supported shells. Instead of starting from a 

completely new set of functions, the virtual 

displacements can be written as: 
: 

Yh" 1=. C 1'Yt11 JC. 1')") CoS ne 
'\1: Y\, 

where 

These satisfy the end conditions: 

~ = ~:: <f::: <f,'"X. -== 0 at:t.= 0 " the fixed edge 

Cl.J ~= 1/a... the simply supported edge 

It can also be seen that by setting e:: 0 in 

equation (3.13.) the virtual displacements for a 

cantilever shell are recovered. This serves as a check 

in the numerical work in the problem. Any other set 

of boundary conditions on the shell can be taken care 

of either by suitably defining a new set of virtual 

displacements or by retaining the virtual displacements 

in equation (3.12.) and suitably modifying them to 

satisfy the edge condition. 

30. 
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3.5. Stability Det~rminant 

Substituting the assumed functions for ~ J ~ and 

.<f of equation (3.12) in the expression for the 

second variation equation (3.11.) and carrying out the 

integration, the resulting expression is found to be 

a quadratic in the arbitrary coefficients A 'h')'Y'I" 5')')'\1"1 
and C-mn. To study the positive definite character 

of this a1gebr~jc quadratic function, it is differentiated 

with respect to each of the coefficients AmY' J Bmn 
and C~n in succession and the resulting equation in 

each case is set to zero. This results in a system of 

linear homogenous equations of the form: 

31. 

~ ~ F-fJ< 1+). <PI<I ) A",,, + (11<2- + ). cf>to-) Bm n 

+ ( f/<.3 +).. 4'1<.3) CJ ~ 0 
where k == JJ 2. ~",d.3: A = ~b ~~)!) _ (3'14) 

The functions fc:j and CPc:.J' are given in Appendix V. 

The coefficient matrix of these equations is the 

stability determinant (Hessian determinant). 

The lowest value of }\ which makes the stability 

determinant singular is denoted as A c, n.+ and this 

corresponds to the lowest buckling pressure of the shell. 

The value of A G~;~ is determined in the present 

analysis by determinant search method. In this 

method the value of stability determinant is evaluated 

'- for successively increasing values of /\ until a change 

in the sign of the stability determinant is noted. Then 

by the process of iteration, within the last two values of 



A , the value of ~ c.. n; ~ is obtained to a desired 

degree of accuracy. 

If the expressionsin Eqn.(3.l3) are used for the 
. , 

clamped-simply suppOrted shell, the stability 

determinant will have a few additional terms.: These 

additional terms are given in Appendix VI. 

3.6. Effect of Boundary Condition on Buckling Pressures 

The boundary conditions at the circular ends of the 

shell influence to a considerable degree the buckling 

pressures, especially when the shell is short. 

In Ref. 47. the discrepancy between the theoretical 

and experimental results for buckling of shells 

32. 

subjected to wind loads is attributed to the laCk, of, proper 

fixed edge conditions. The influence of boundary 

conditions on the stability of simply supported 

cylinders under uniform pressure has been discussed by 
48 49 . . 50 Sobel ,Gallatly and Bart ,Slnger and Rosen and 

Heyman5l • The effects of boundary conditions on the 

buckling pressures is studied in this section by imposing 

additional constraints or by relaxing the existing 

constraints. 

The application of the Lagrangian mul tiplii!t1s technique 

to impose addition~l constraints is well known. 

Budiansky and Pai52 have applied this method to obtain 

the bounds to the critical stresses of plates. Using 

this method the critical buckling pressures of cantilever 

shells fixed at the base (i.e. at X = 0> with different 

tip boundary conditions (i.e. at X; = Llt9are obtained by 



imposing the r~quired additional constrain~s on 

the virtual displacements. 

As an example let the edge ::x: -::: L/o.. be fixed~ 

The additional constraints to be imposed are: 

f 0:, J -;: '{ (i:)::: y (L}::: -r, ~ (4 ::: 0 

c.u"J,./i!1'l e. 1:. ~ 1-/0.. 

(3.15) 

These conditions are to be satisfied by each harmonic 

in the virtual displacements and hence one has: 

~n lI.) = A }Yl~ 
- 'W\. 

0 2: 1- --
Wl 

-W1 

"1 11 (I) :::. 2: B )'Y\ n L == 0 
111 
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(3.l5b.) 

~ \)'Y)+J) (WIn l'W) == 0 
W' 

This set of (4"1 n ) additional equations are incorporated 

into the buckling determinant by introducing a set of 

Lagrangian mul tipliers ~ I< as follows: 

'l--_ 

8 v-- (3.16~) 

where C! .... -
o V - the second variation with constraints. 

dk - Lagrangian multipliers. 

4t~\L) - the constraint conditions in Eqn. (3.l5b.) 
l! 1-_ 

To obtain the stability determinant 0 V is differentiated 

not only with respect to the arbitrary coefficient A~~ 

etc. but also with respect to the unknown multipliers ~k. 
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This in turn increases the size of the stability 

determinant by ( k:::.· '-I- 1- 11 ). 

For any other additional constraint at the 'free top' 

only the appropriate geometric constraints are imposed. 

For example if the end is simply supported the 

constraint conditions are '>? CL) ::: . <i LI) == 0 and 

this adds only ( 2- t< Y\ ) additional equations. The 

other additional conditions considered at the top in the 

analysis are: 

Pinned condition ~ l L):; ~ lL J ;;:. <f (L) :: 0 

-t). (I) -_ -r CL] ::: -r. I ",' (i:) =:. D and clamped-sliding condition i.e. \ v ~ y ~~ 

In all these cases, when using the Lagrangian multipliers 

in buckling analysis, ·the prebuckling membrane strains . . 

are to be determined with the appropriate boundary 

conditions taken into account. 

3.6.1. Effect of Base Stiffness 

As shown in Ref.(47), the buckling pressure·will be 

drastically reduced if the fixed edge conditions are 

not properly realised during experiments. The influence of 

axial stiffness and the rotational stiffness at the base 

of a cantilever cylindrical shell on the buckling 

pressure are studied theoretically. The shell is 

considered to be resting on two springs one giving 

only axial stiffness and the other imparting only 

rotational stiffness. The boundary conditions 

corresponding to this representation is chosen, as 

explained in Appendix Ill, as: 
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NJ.. (0) + k, LtlC) ~ 0 

M)l\O) + K2 ', uJ/~lO)=O, 
(3.17.) 

By suitably altering the values of the spring constants 

1<, and kl. one can obtain .either a clamped edge 

condition or a simply. support edge condition as shown 

in Appendix Ill. 

When the axial displacement and rotation at the base are 

not fully prevented, the corresponding virtual 

displacements. -s: J ~ in eqn. (3.l2) are modified as 

-m, YI.,.. 
Xrr) 7f ~ ~' Cm~ CQ .. ne . ,) 

m:::.' Y1 ~)1, 

'11\,-' "(h. 

A mY' :x. yY\ Cos 11 e 
(3.18.) 

~ - :z r -
m;:.O 'Y\:: Yl/ 

As the spring constants k, and Kl- are finite, their 

contribution to the second variation of potential energy 

in the form of strain energy of;the support springs is 

to be added. The addition to the second variation is: 

:- IT k, ~(O) 4- k. c;:(O)] d e 
() 

3.7. Results and Discussions 

The buckling analysis presented in this chapter has 

been applied to the following problems: 

a) cantilever cylindrical shell under wind loading. 

b) . submerged cylindrical shell under flow of water. 
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Numerical results for· cantilever cylindrical shells are 

presented for the following shell geometries: 

\ ~ Ljo.. ~ 5 ) 100.:=S 0.-/1, ~ 500 

To ascertain the adequacy of the polynomials for the 

virtual displacements, the analysis is first 

employed to obtain the critical buckling pressures of 

~antilever cylindrical shells under uniform radial 

compression. The results for this problem are given by 

Billington and wang 12 using a semi-inextensional theory, 

and by Cole
53 

by a finite element analysis. The number of 

polynomial terms representing the axial mode in the 

present analysis is selected as five. For this problem 

as there is no coupling between the harmonics, only one 

harmonic is needed in virtual displacements. As a 

result the buckling determinant is of order (15 xIS). 

The buckling pressure for each successive harmonic 

selected is computed and the minimum of these is chosen 

as the critical buckling pressure. The results obtained 

are compared with those in Ref.( 12) and (53 ) in 

Table 3.1. These show that the critical buckling 

pressures obtained by the present analysis are more 

accura te as they are lower. 

For analysis of shell under non-uniform pressure due 

to wind, the harmonics selected should correspond to 

those representing the buckled pattern of the shell. 

Considering the number of polynomial terms as.five, 

to find the significant harmonics, the buckling 

pressures are calculated by selecting successive 
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harmonics, only one at a time in the virtual 

~isplacements for va~ious shell geometries. The 

results obtained, given in ~able 3.2~ show that the 

buckling pressures are one order lower for a certain 

range of harmonics as compared with others. The 

range containing the significant harmonics, for the 

shell geometries considered in most cases is about 5. 

When the number of polynomial terms and the harmonics 

is five each, the buckling determinant is of the order 

75x75. The buckling pressures are computed for 

different shell geometries with various lower limit 

of the harmonics. These results are given in ~able~ 

3.3. and for.a few shell geometries are' plotted in 

Fig. '3.1. and 3.2. The minimum buckling pressures 

from these tables are considered to be the critical 

buckling pressures. 

To confirm the present method of selection of harmonics, 

the following three other methods of selecting 

harmonics have been studied. 

a) only five odd harmonics 

b) only five even harmonics 

c) one set of random combination 

-The buckling pressures obtained by these methods of 

combinations are compared with the previous results 

in Table 3.4.; these indicate that selecting five 

successive harmonics yields lower buckling pressures. 

Next a convergence study of the buckling pressures 

with the number of terms selected is carried out. 

First to study the converg~nce with the number of 
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terms in axial direction, the number of harmonics 

is considered.to be fixed at five in the significant 

harmonic range. The number of polynomial terms is 

varied from 2 to 5 in the virtual displacernents and 
1l.)\Q. 

the buckling pressures~obtained for a few typical 

shell geometries. These results r are given 

in Table 3.5. 

Next to study the convergence with number of terms in 

the circumferential direction, the number of 

polynomial terms is considered to be fixed at five: 

starting from the lower limit of the significant 

harmonic range, the number of harmonics selected in 

the virtual displacements is su~cessively increased 

up to 5. The buckling pressures are calculated for 

each case. The results obtained for a few typical 

shell geometries are given in Table 3.6. and Fig. 3.3. 

These results confirm that five terms in axial 

direction and five terms in circumferential· direction 

(i.e. a total of 25 terms for each virtual displacement 

component) are sufficient to get satisfactory results 

for buckling pressures. The final critical buckling 

pressures obtained for the case of cantilever 

~cylindrical shells under wind load are plotted in 

Fig. 3.4. for various shell geometries. 

Using the Lagrangian multiplier method given in 

Section 3.6., the buckling pressures obtained for a 

few shell geomet ries with different tip constraints 

are presented in Tables 3.7. and 3.8. The variation 
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of buckling pressure versus thickness ratio is 

plotted for free, s.s. and clamped tip conditions in 

Fig. 3.5. Comparing the clamped and pinned conditions 

in Table 3.8., it can be seen that the rotation of the 

tip has negligili1e influence on the critical buckling 

pressures • 

. The results obtained by relaxing the fixed edge 

condition at the base, as described in Section 3.6.1. 

are given in Table 3.9. and Fig. 3.6. The results in 

Table 3.9. are obtained when only the moment constraint 

is relaxed. The resuits in Fig. 3.6. indicate the 

variation of buckling pressure with the axial stiffness 

~l the base. These results confirm that the rotation 

at the ends does not significantly influence the 

buckling pressures whereas the relaxation of the axial 

stiffness at the base can reduce the buckling pressure 

considerably. Similar qualitative c::onc1usions have been 

d b E · 11 rawn y wJ.ng • 

Next the influence of the pressure distribution on 

buckling pressure is studied. First the influence of 

the negative suction peak on the buckling pressure has 

been considered. The magnitude of the suction peak has 

-been altered arbitrarily and the corresponding buckling 

pressures obtained. The results obtained are shown 

in Fig. 3.8. and it can be seen that the buckling 

pressures are not very sensitive to the magnitude of 

the suction peak. The pressure distribution measured 

by Gou1d
34 

is; considered next to study this aspect. 
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These pressure distributions and the corresponding 

buckling press~res obtained are shown in Fig.3.7. 

The Fourier pressure coefficients for the three 

pressure forms are given in Table 3.10. These 

results' indicate that the axisymmetric component of 

the pressure distribution (i.e. ho) has more:inf1uence 

on the buckling pressures than the magnitude of the 

suction peak. To study the influence of the axisymmetric 

component of the pressure distribution, the magnitude 

of bois varied in steps and the buckling pressure is 

calculated. These results are presented in Fig. 3.9. 

The present analysis is also used to obtain the critical 

buckling pressure for the shell submerged under a flow 

of water. As these results are used to compare with 

experimental results, these are given in Chapter 5. 

During this analysis it is noted that the variation of 

pressure in the axia1'direction has very little 

influence on the buckling pressure. Thus the simplifying 

assumption that the pressure does not vary in the ~ 

direction used in the other examples seems to be 

justified. Through numerical examples it has also been 

found that the set of virtual displacements in Eqn.(3.13) 

even though more appropriate for the clamped-simply 

'supported shell, the buckling pressures obtained by 

using the set in Eqn.(3.12) with Lagrangian multipliers 

for this problem, are as accurate as those obtained by 

using Eqn.(3.13.). Thus we can conclude that the 

Lagrangian multiplier method can be applied to any type 

of boundary conditions in the problem. 
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The influence of prebuckling deformations on the 

buckling pressure has been discussed in Ref. (54) 

and (55). In the present analysis, this aspect has. 

been examined numerically. The buckling pressures 

obtained by neglecting any of the prebuckling membrane 

strains were unduly large. When semi-membrane theory 

is used to obtain the prebuckling strains, the buckling 

pressures obtained are at least 10 times higher than the 

values obtained by the present analysis. 

A satisfactory method.of estimating the buckling 

pressures of cylindrical shells under non-uniform 

pressure loads is developed. It should also be noted 

that the major factor .influencing the stability of 

shell is the magnitude and the extent of the positive 

pressure near the windward generator of the shell. 

Refs. (56) and (57) present some of the results of 

the present analyses on converg~nc~, edge boundary 

effects, etc. 

41. 

. I 



CHAPTER 4. 

STATIC AND ,STABILITY ANALYSES - FINITE ELEMENT THEORY 

4.1 Introduction: 

J 

The application of finite element method for the analysis 

of shells is reported extensively in the literature. The 

58 • 59 work reported by Grafton and Strome ,Kl1en ,Percy, 

Pian and Navaratn·~60 are some of the earlier papers on 

this topic. These papers have shown that the finite 

element method can be used successfully for static analysis 

of shells of revolution. The stability analysis by the 

finite elements is treated by some authors as a large 

deflection problem. 

The derivation of stiffness matrices for large deflection 

and stability analysis is given by Martin61 , Mallett and 

Marcel 62 • These matrices are also called the incremental 

stiffness matrices. 

The application of finite element analysis for stability 

analYS~S of shells is presented by Gallaghar63 and Gallaghar 

and Mau64 • 

Treating the additional terms arising due to the ~arge 

. deflection strain-displacement relations as extra load

ings on the shell, Striklin65 and co-workers have analysed 

the problem of stability of shells by load increment and· 

iteration using finite elements. The numerical solution 

procedures for these problems are discussed in Ref.(66). 

This method has been adopted by Alnajafi10 for the prob-

lem of cylindrical shells under lateral pressure loading 

and apparently no useful numerical results could be 

obtained. 
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Ch' an and Fir'tftitl 13 have also attempted a large deflec-

tion stability analysis onfue basis of the geometric 

stiffness approach given by Argyris6? and obtained 

approximate buckling pressures for cylindrical shells. 

In the present analysis the second variation principle 

of total potential energy is used for studying the 

stability of cylindrical shells under non-uniform loads 

in the finite element formulation. The theoretical 

basis of this method is given in sections 3.2 and 3.3. 

The prebuckling equilibrium strains are determined by 

using a cylindrical shell element that retains contin

uity of strains at the inter element boundaries. In 

the buckling analysis a simpler form of element.repre

sentation is used which ret'ains only the continuity of 

displacements. The buckling analysis is used to study 
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the influence of variable wall thickness ((68»)and the influ

ence of stiffening ring on buckling pressures. The 

problem of optimum location of axial supports for a 

simply supported shell under wind load is examined. 

4.2 Equilibrium state of stresses: 

The equilibrium state of stresses in the shell at any 

given load level is determined by a linear theory. 

The cylindrical shell is idealised into a series of 

~ cylindrical finite elements as shown in Fig. 4.1. By 

this representation the problem of assembly of the 

elements into the shell is reduced to a one dimensional 

problem. This results in considerable saving in 

computer storage and time. The stiffness matrices 

.for the elements are deriv~d based on energy considerations. 
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As shown in Chapter 3. the prebuckling strains can 

influence the critical buckling press~res to a consider-

able extent. Hence to determine these strains accur-

ately without any discontinuity across the inter-element 

boundaries the nodal displacements selected include the 

displacements and their derivatives that appear in the 

prebuckling strains. Thus the nodal displacements 

considered are 

J I, 0.1 I 0" J L 91J J ::: L u. ,(A; l..O 19 v9 lAJ V'-7..J ( 4. 1 ) 

where primes denote differentiation w.r.t.x. 

In the present analysis as we are mainly concerned with 

loads that are represented by Fourier harmonics in the 

circumferential direction (as given in eqn. 2.2), the 

resulting displacements by a linear analysis can also 

be written as 

lA, .- ~ U'V\ COS ne 
')"\ 

19 ~ ~ \.9y1 Sin ne 
l" (4.2) 

vJ ~ 2 Wn Co.s -n e 
.Yl 

where ~, L0'Y) and (.-....9n are functions of X- only. 

44. 

n varies over the same range as the applied loads. For any 

jth element these functions are written in terms of the 

element nodal coordinates as 

(4.3) 



The matrix [B] is the matrix of interpolation functions 

an~ its derivation is given in Appendix VII. 

'I In the linear analysis the strain displacement relations 

considered are 

ou. ",. 

E-:x., - r< ::. 0 (..J) 
1l/l. --'' 

01<- o~".. 

G0 ::: .~ t9 -lA9 \('e e - fA9 -+ ?l~k9 - -
09 '0 e'l-- (4.4) 

C:x..e= ou,+o,Y 1<::x. e :;: ?J'V v..9 

oe o~ o?t () e 

The expression for the strain energy of the shell 

element is 

u 

substituting for strains in terms of the nodal displace-

ments from eqns. (4.2) to (4.4), the strain energy for 

any harmonic can be written as 

(4.6) 

where {9V-'n- is the column vector of the nodal displace

ments of the shell element 

and [ k].,.,- stiffness matrix for the n~ harmonic. 

The matrix R is of the form 
?l 9./a, 

k." "'- to a." h 11 [Bi l [ f[])J d .• J [B I] (4.7) 

I-v"1.- 0 
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The matrices [B~ and [DJ are given in Appendix VII 

and VIII respectively. 

4.2.1 Generalised loads: 

The generalised load vector corresponding to the nodal 

parameters selected is obtained by the consideration of 

the work done. 

i.e. de 

(4.8) 
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·3 . Vo. 
n : Po b-n LAJj[cjdx 

and 

VV,» -

substituting for LA J from Appendix VII 0 ", J I/o.. 
V~Yl::: o..~Tl Po 6n LcyJy, [51J [cJ dJ{ (4.9) 

2-
This can be written as 0 

W n -=- t L Cjd." {"1 (4.10) 

where [)\'I1J - column matrix of generalised loads for 

the element o.nd -r 1/0., 
:: Cl?> 11 Po bY) [/3 / ] J [ c] cl X (4.11) 

o 

The elements of the matrix Le J are 

o 

LoOOO! 0 
• 

O 00,', "V ~ 45,/ ::It oX, X. J ::>t x-1 

. knowing the element stiffness and load matrices these 

two matrices are assembled to form the equilibrium 

·equations for a particular harmonic as 

(4.12) 

where Lk]"" assembled stiffness matrix of the complete 
., shell. 

assembled load vector of the shell. 

the unknown generalised nodal displacements 
of the shell. 



Solving the set of equations in (4.12) for the nodal 

displacements and substituting in equations (4.1) to 

I (4.4) the prebuckling strains throughout the shell 

"I are determined. By repeating the analysis for each 

harmonic in the loading, the complete stress state of 

the shell is determined. 

The analysis for the case ofaxisymmetric compression 

(i.e. n = 0) needs special mention while using the 

above equations. For this type of loading, as it is 

known before hand that ~~ 0, the corresponding terms 

in all the equations (4.1) to (4.12) are deleted. This 

ensures that stiffness matrix does not become singular 

and also it reduces the number of equations to be solved 

in the final set of equations (4.12). 

4.3 Stability Analysis: 

The second variation principle explained in section 3.2 

is used in this .section to derive the stiffness matrices 

for stability analysis. The theoretical basis of the 
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investigation of stability by examining the positive 

definite nature of the second variation of total potential 

- energy is explained in section 3.2. The shell is again 

considered to be subdivided into a series of short 

cylindrical shell elements referred to as "ring" ele

ments as shown in Fig. 4.1. But their number need. not . 

necessarily be equal to the number considered in pre

buckling analysis. The second variation of the total 

potential energy of the shell is now obtained as a 

summation over all the elements. In the stability 

investigations as the main interest is only the energy, 
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a simple element description is believed to be adequate. 

The selection of a simpler e~ement reduces to a consider-
. 

able extent the size of the stability determinant. 

With these considerations the nodal parameters selected 

are 

(4.13) 

where {'i- )jC01Umn vector of j th nodal dlsplacements 

The notation used in the Chapter 3. for the virtual dis-

placements is still continued here. 

These virtual displacements are again considered to be 

represented as a summation of Fourier harmonics in the 

circumferential direction as 
)'\1,-

q;::=. r ~~ LOS 11 e 
Yl-=')"\ , 

'Yl - t~ 111 Sir) i1 e -
(4.1-4 ) 

')1;"Y'I, 

Cos ne 

< -The shape func tions ~n' "Y(l'\ and 4=".,., are reI ated 

to the nodal displacements as 

t;Y) [B] {-~J 
Y\ 

(4.15) 'l~1 

where the matrix [f; ] - [Flot) ] [BI] -
The matrices[Fl~J and[BI] are given in Appendix VII. 

The matrix [5J is the matrix of interpolation functions 

. connecting the shap~ functions and the nodal displacements~ 



Having selected the shape function these are to be 

substituted in the expression for the second variation 

of total potential energy and its value evaluated. For 

the sake of convenience this process is carried out in 

two steps. As already explained in Section 3.4 the 

second variation of total potential energy consists of 

two distinct parts: one that is dependent entirely on 

the virtual displacements and another that is dependent 

both on the equilibrium strains and the virtual displace-

ments. The two parts are evaluated separately as 

S')...y::. 2>1- VD.. + <fJ'l--Vb 

substituting for the virtual displacements from (4.14) 

it will be noticed that this quantity can be evaluated 

separately for each harmonic. Subs~uting for the 

shape fUnctions and carrying out the integration this 

quantity can be written for each element as 
vh.... v 

~1-V 0..- = 2: ~ V"-n 
'Y1 ~ -rl, 

c"\ I = E 0..'; h " Tf 
o V'ln ------

~ (/_).1"\.0) 

substituting fc:>rLAJfrom Eqn. CAVII.9) we get 

(4.17) 
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51-Yan =- Eo.'"h TT t<j."J[Bl][:Dn][BIJ[ '}"J (4.19) 
2C~V~ . 

where 4V
n 

are the nodal displacements of the jth element 

for the harmonic n. 

The matrix[B,] is given in Appendix. " VII. 

The detailed elements of the matrix[DnJare given in . 

Appendix ,.VIII.b. Comparing the equation (4.19) wi th 

equation (4.7) and noting its close resemblance we can 

write this equation as 

(4.20 ) 

= stiffness .'. ;. : matrix for the 

j th element and for harmonic n. 

Now we can evaluate the second part that is dependent 

on both the virtual displacements and load and the equi-

substituting for the membrane strains and the virtual 

displacements and carrying out the integration the 

resulting expression is a quadratic algebraic expression. 
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This can be represented for the j th element as 
. , 

. 

S'Vb ~ E tl~ >-L't:.J [1«; J {it.} 
~ C,I-VJ 

(4.22) 

where [kG] is the geometric stiffness 

)\ = load parameter 

. matrix 

= J}(~) 
E h 

It has to be noted that the elements of the matrix 

L kG] are dependent on all the harmonics of the equi

librium strains and also on all the nodal displacements 
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for different harmonics. It should also be noted that this 

:is not so for the matrix Kc:n(eqn. 4.20). 

The detailed derivation of the matri~ [1<6J is gi ven in 

Appendix IX. 

The second variation of total potential energy can 

now be written for each element as 

( {V].::: E o.2-J, [il- 6.J [kG nJ { 'k J 
J Z(I~v'1 ",~, +). L "J [kG] {'it}] 

(4.23) 

~ssernbling for all the elements this quantity can be 

~written for the complete shell as 

(4.24) 

where {Q] is the column vectors of all the nodal displace

ments of the shell for each of the harmonics considered 

in virtual displacements 
-

ie L Q J ~ L Q711 61')11+ 1 

. { Q1J - column vector of the nodal displacements for 

the nth harmonics 



[1<£}The diagonal stiffness-= matrix of the shell 

for all the harmonics considered with the stiffness of the 

shell for each harmoni~ as a diagonal element • 

• i i.e. [1< E] = kr;n, 

I<c; '"' + I 
., 

" 

kG.nz... 

1<5 - The geometric stiffness 1 matrix 

for the shell. This will be a fully populated matrix 

indicating the influence of each harmonic. 

Thus it can be seen that the final size of the stability 

matrix is dependent on (a) the number of elements chosen 

(b) the number of degrees of freedom 'at each node and 

(c) tre number of harmonics selected in the virtual 

displacements. In the linear analysis the harmonics 

are uncoupled. 

4.4 Stability determinant: 

Having obtained the expression for the second variation 

of the total potential energy as in eqn. (4.24), the pos-

itive definite character of this quan.tity is to be exam-

ined as explained in section 3.6. However, the process 

is very much simplified because of the representation ,in 

matrix language and the stability determinant is simply 

(4.25) 

The lowest value of A which satisfies this condition is . 
the critical buckling pressure ( A crit). 

To find the value of ). crit from (4.25) the determin'C1Ln~ 
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search method is employed. In this method the value 

of the stability determinant .is evaluated for succes

sively increasi~g values of A until a change in the 

sign of the stability determinant is noted. Then the 

value of ~crit is obtained by iteration to a desired 

degree of accuracy. 

4.5 Ring stiffened shells: 

The advantage oi the finite element analysis is its 

adaptability to complex situations for which continuum 

solutions are not practicable. One such problem is to 

find the buckling pressures for ring stiffened shells. 

For analysing the problem one needs to take into account 

the stiffening effects of rings both in the prebuckling 

stres~ cakulations and inthe buckling analysis. The 

rings are considered to be attached to the shell at a 

nodal circle, so that compatibility of displacements 

between ring and shell can be easily maintained. 
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In the prebuckling analysis, the stiffness elements of the 

ring are added to the corresponding stiffness elements 

of the shell in eqn. (4.12) and the resulting equations 

are solved for equilibrium stresses. To evaluate the 

influence of a ring in buckling analysis one needs to 

calculate the contribution of the ring to the buckling 

determinant apart from the stiffness matrix. The 

details of these matrices which are taken from Ref. (69) 

are given in Appendix X. After adding these contribu-

tions to the corresponding nodal displacements in the 

buckling determinant, the critical buckling pressures 

·can be calculated as explained in section 4.4. 
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I 4.6 Results and Discussions: 

The finite elem~nt analysis developed in this Chapter 

is first applied to a ·few cases, for which the resul ts 

are known, to assess its accuracy. The convergence of 

the results is also examined. Next the method is used 

for analysing (a) ring stiffened shells, (b) variable 

thickness shells and (c) to find optimum axial location 

of supports in a simply-supported uniform shell. 

The accuracy of the stresses obtained by the present 

method is first examined. In the prebuckling analysis, 

the maximum radial displacement ( La) and the maximum 

stresses obtained by the Finite element analysis are 

compared with those obtained by using Donnell's theory 

by co~sidering only orie harmonic at a time in the load-
-

ing. The results obtained are presented in ~ables 4.1 

to 4.3 for a few typical shell geometries considered. 

The number of'ring/elements considered for this analysis 

is ten. From these resul ts it can be seen .tha t the 

displacements, the axial stress and the circumferential 

stress are estimated accurately, the maximum error being 

only 5%; whereas the error in the shearing stress is of 

the order of 10%. Hence it is assumed that the stresses 

obtained by considering ten elements in the prebuckling· 

analysis are satisfactory. 

To study the convergence of buckling pressures with the 

number of elements selected, the problem of a simply 

supported shell under hydrostatic loading is considered; 

the results for which are given by Flugge29 • For a few 

-shell geometries the tesults ~btained are plotted in 
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Fig. 4.2. It is seen from these graphs that the 

improvement in buckling pressure beyond five elements 

is negligible compare~ to the extra .computer time 

required. Hence five elements to represent the shell 

in buckling analysis are considered to be adequate. 

The buckling pressures obtained by considering only 

five elements for this problem are given in Table 4.4. 

The maximum error in buckling pressures is seen to be 

about 10%. 

To study the convergence of the results with number of 
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. effective harmonics, the problem of the cantilever cylin

drical shell under wind loading is considered, the results 

for which are given in Chapter 3 by continuum analysis. 

The buckling pressures obtained for successively increas-

ing number of harmonics for a few shell geometries 

are plotted in Fig. 4.3. These results again confirm 

that the selection of five effective harmonics gives 

sufficiently converged results for buckling pressures 

under non-uniform loads. 

When the number of elements selected is five and the 

-number of harmonics selected is also five, the resulting 

buckling determinant is of the order (100 x 100). With 

this stability determinant the buckling pressures are 

obtained for the following two problems: (a) simply 

supported shell under non-uniform pressure assumed by 

Almroth4: The results obtained are compared with those 

given by Almroth in Table 4.5 for a few shells, (b) canti-

lever cylindrical shells under wind load. The results 

.obtained are compared with those obtained by continuum 

theory in Fig. 4.4. These results indicate that the 



buckling pressures obtained by the Finite Element Method 

differ from those obtained in Chapter 3 by a maximum of 

10% 

Ha~ing . studied ..• the accuracy of the method, the 

analysis is used for determining the critical buckling 

pressures for the case of cantilever cylindrical shell 

with a ring stiffener at the free top. The results 

obtained for few shells are given in Fig. 4.5. Compari

son of these results with those in Fig. 3.5 indicate~that 

when the ring dimensions are large compared to thickness 

, the tip boundary conditions are close to a clamped end. 

When the ring dimensions are reduced the critical buck

ling pressures are also reduced. For a few cases when 

. the ring is thin, the results obtained correspond to the 

case of clamped-simply sUpported shell~ It is also 

observed that in the limiting case when the ring'dimen

sions are zero,the critical buckling pressures correspond

ing to toe cantilever shell are obtained. 

The present method has also been used to obtain the 

critical buckling pressures for variable thickness canti-

lever shells, such as the ones used for oil storage in 

the petroleum industry, under wind load. The results 

obtained' for certain shell geometries . typica"l of such 

shells are given in Table 4.6. 

The third problem for which the present analysis is 

applied is to find the optimum axial location of supports 

for a simply supported uniform shell under wind load. 

This problem is often encountered in the design of 

.Radomes. For analysis purpose, the supports are 
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considered to be placed symmetrically. <See Fig. 4.6). 

The stress and stability analysis of the shell are carried 

out for different support locations. The variation of 

the maximum radial displacement, the maximum axial and 

shearing stresses, for each of the harmonics in the 

loading, are calculated for different support locations. 

These results for the case of shell with L/a = 2, 
~ 

a/h = 500 are presented in Fig. 4.6 to 4.8. The 

corresponding results for a shell with L/a = 6, a/h = 400 

are plotted in Fig. 4.9 - 4.11. The variation of critical 

buckling pressures for. these two shells for different 

support locations are presented in Fig. 4.12. These 

results indicate that the deflections and stresses are 

minimum and the buckli~g pressure is a maximum when the 

supports are located at 0.22L from the ends of the shell. 

The finite element analysis presented is seen to be a 

very convenient tool for analysing problems for which 

continuum solutions are impracticable. 

) 



CHAPTER 5 

EXPERIMENTAL INVESTIGATION 

5.1 Introduction 

In the field of stability of shells, in general, there 

are significant differences between theoretical and 

experimental results. Even for simple problems such 

as that of shell under uniform axial compression or 

uniform lateral pressure, all the available theories 

do not agree qualitatively and considerable scatter is 

observed in experimental results. It is difficult to 

simulate exact boundary conditions assumed in the 

theory and imperfections in the shell can also influence 

the b~ckling pressures. Since the theoretical buckling 

results are invariably non-conservative, an assessment 

of their usefulness in design can only be made by 
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comparing those values with experimental results. Therefore 

an experimental study of buckling of shells under non

uniform pressure is undertaken here. 

The theoretical analysis assumes that the loading is 

gradually applied and that the dynamic effects are 

absent. However the lateral loadings considered in the 

experimental work viz: 

a) pressure loading due to a steady wind simulated in 

the wind tunnel and 

b) pressure due to flow of water in the water tunnel 

are such that the shells are not completely free of the 

dynamic effects. The main reason for choosing these 



loadings despite this deficiency is that they represent 

realistic prob~ems of practical interest. 

5.2 Wind Tunnel Testing 

Testing of cylindrical shells in the wind tunnel enables 
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to determine the critical buckling pressures under the 

action of wind pressures on the lateral surface of the shell. 

It is possible .tovary the type of flow in the wind tunnel 

and simulate various wind conditions. The pressure 

distribution on the shell is dependent on the type of 

flow. The influence of various parameters on the pressure 

distribution such as the surface roughness, Reyno1ds 

numbers and gus~ effects have been studied by Scheubel 70 

and Niemann
7l • Neimann has shown that the form of the 

pressure distribution can be determined accurately by 

knowing the magnitude of the suction peak for circular 

cylindrical shells. Extensive experiments are carried 

out to measure pressure distribution on rigid cylindrical 

shells and to check the uniformity of flow in the wind 

tunnel by Brave-Boy9 and the pressure distribution is 

shown to be in good agreement with that given by Rishl9 • 

Experiments on buckling of cantilever cylindrical shells 

have been reported in Ref S \ 5)to \8) and in( 51). 

Rish
5 

used model cylindrical shells made of paper as these 

shells buckle at very low wind speed. Langhaar and 

Miller
6 

also used similar models in the qualitative study 

of the nature of buckling. Der and Fidler8 conducted 

experiments on hyperbolic cooling towers to study the 

effect of base uplift and other possible structural 

damages on the buckling pressures. Heyman5l has 



presented some more experimental data and a theoretical 

study of these effects. Crol172 has shown that the 

flexibility at the base has influence on buckling 

pressures only when the external pressure is 

distributed on the surface of shell based on an 

experimental investigation. Ho1ownia 7 ha,s reported the 

experimental buckling pressures for both open ended 

and closed ended shells under' wind loading. 

'5.2.1 Wind Tunnel 

The wind tunnel used for conducting the tests is an open 

jet return circuit type. The test section dimensions are 

3f' x 2f' rectangle. The maximum velocity of flow 

attainable at the test section is 90 ft/sec. The 

velocity distribution across the test section is fairly 

constant. The jet velocity is controlled by means of 

two biased switches. By operating these switches, the 

velocity can be varied in steps. A schematic diagram of 

the wind tunnel is shown in Fig. 5.1. 

5.2.2 Selection of Geometry of Models 

The selection of sizes of the shells for testing in the 

60. 

wind tunnel has been based on the following considerations: 

a) The maximum dynamic pressure attainable in the wind 

, tunnel and 

b) the blockage effects due to the presence of model 

in the test 'section. 

The shells are to be such that they collapse within the 

maximum dynamic pressure attainable in the wind tunnel. 

This can be ensured either by choosing very thin shells 
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or by using materials of low elastic moduli for the 

shell. By these considerations Flovic/Darvic plastic 

sheets are used for fabricating the" shells. The 

thickness of the sheets used are; 0.25 m.m. (0.01") 

0.5 m.m. (0.02") and 0.75 m.m. (0.03"). 

The flovic material has certain other advantages as 

compared with metal sheets for forming the shells. It 

is easier to form and joining the edges of the shell 

presentS no difficulty. Unlike the metal shells that 

undergo permanent plastic deformations after buckling, 

the Flovic shells return to their original position and 

recover almost entirely the circular shape with only a 

small amount of permanent set (creasing) at the fixed 

edge of the windward generator. The flovic shells can 

therefore be tested in a different orientation. By 

removing the small region that may have a permanent set, 

it is also possible to obtain a shorter shell on which 

further tests can be conducted. 
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The blockage effects in the test section determine to a 

considerable extent the length and the diarreer of the 

shells. The height at the test section is about 30 inches. 

If the height of the model is well'wi thin this height '" 

the shell will be in a completely submerged flow and the 

internal suction in the shell will be'ensured. Therefore 

the height of the shell is restricted to a maximum of 

about 24 inches. The maximum diameter of the shell is 

·to be chosen such that the frontal area of the shell 

does.not exceed the maximum permitted blockage area of 



the tunnel, which is 20% of the area of the test section. 

If the diamete~ exceeds 'this limit blockage correction 

needs to be applied to the results obtained. However 

it has not been possible to strictly adhere to this 

rule in all the cases tested. The maximum frontal area 

of the shells in a few cases has been 22% of t-he test 

section area. As a result of this some spillage of 

flow has been noticed in these cases. The corrections 

required for these cases are nevertheless quite small as 

the. wind tunnel is open jet type. 

5.2.3 Construction of the Shell 

:The shells are made out of Flovic/Darvic plastic sheets. 

The shells are formed by rolling sheets and joining the 
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ends ~y a buttweld (or a joint). This results in a seam 

along one generator. To avoid excessive stiffness along this 

generator the thickness of overlapping parts of the ends are 

reduced by sand papering. In the initial experiments on 

clamped free shells the models have been mounted on a base 

ring which holds the shell in the interior and an outer 

ring has been used to clamp the shell at the base •. This 

method of fixing is shown in Fig. 5.2a. This arrangement 

has been later discarded as it has been suspected that 

fixed edge conditions may not have been co'mpletely 

realised because of the possible movement of the shell 

in the axial direction. In the later experiments the 

base of the shell is set in an epoxy resin after placing the, 

shell in the grooves made in the base plate. After setting the 

resin provides a good fixity for the shell as shown in Fig. 

S.2.b. 



To simulate the stiffening effect of the rings, the 

shell is stiffened at the free end by a perspex ring 

which fits snugly inside the shell. The ring and the 

shell are bonded by an araldite glue. The arrangement 

is shown in Fig. 5.2.b. 

To construct shells of variable thickness, sheets of 

different thickness are first bonded in an appropriate 

manner. The composite sheet is rolled to obtain shells 

with varying thickness in the axial direction. A 

schematic diagram of the variable thickness shells is 

shown in Fig. 5.3. 

5.2.4 Determination of Material Properties 

The Young~ modulus for the Flovic/Darvic plastic is given 

by the, manufacturers as 0.45 x 105 lbs/in. 2 • However the 

properties of plastic change quite considerably with 

time and temperature. Also as the material used for 

some of the models was stored for considerable time, it 

has been regarded as appropriate to check the Youngs 
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modulus, as this is very important in assessing the 

experimental results. The following two methods have been 

used to determine the Young~ modulus. 

In the first method a rectangular specimen is prepared, out of 

the sheet and a bending test is carried out. The specimen 

is supported at two points and two equal loads applied 

symmetrically. The central deflection in the beam is 

measured by a capacitance transducer. Knowing the central 

deflection and the cross sectional dimensions the Young's 

modulus is determined. 



In the second method a standard tension specimen is 

prepared and it is tested in a strain rate controlled 

universal testing machine which is specially designed 

to test plastics. The stress-strain curve is 

automatically plotted during the test. The slope of 

the stress-strain curve directly gives the required 
, I· 

Youngs modulus. The values of .the Youngs modulus 

obtained by both the methods differ very little from the 

value given by the manufacturers. Hence the value of 

Young~ modulus for all the further tests has been 

assumed as 0.45 x 105 lbs/in2. 

5.2.5 Test Technique 
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After a shell is mounted in the test section, the velocity 

of flow in the wind tun~el is gradually increased by 

means of the biased switches till the shell collapses. 

During this process the behaviour of the shell is carefully 

observed. The dynamic pressure of the free stream just 

before the front surface of the shell collapses is noted 

on the manometer. This is taken as the critical buckling 

pressure of the shell. 

5.2.6 Experimental Observations 

.While conducting the buckling tests on cylindrical shells 

in the wind tunnel it has been noted that: 

1. T~e long shells ( LIt\.. ~ 4- ) tend to vibrate very 

violently. The vibrations are initiated in the 

wake region of the shell at a dynamic pressure 

which is much lower than the critical pressure. 

These oscillations gradually build up as the 

.. 
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velocity of flow is increased and they are transmitted 

to the front surface of the shell. The amplitude 

of vibration is sometimes as large as 3 0 times the 

thickness of the shell. The number of waves in the 

circumferential direction is between 3 and 7, 

depending on the thickness of the shell. The 

amplitude of vibrations is maximum just before the 

collapse. 

2. For certain shell geometries it has been noted that 

the windward generator of the shell tends to move 

in the direction of the upstream just before final 

collapse. Similar observation has been reported 
51 by Heyman and this is called the formation of 

cusp. 

These observations are considered to be due to the 

unsteady nature of the pressure distribution due to 

vortex shedding. Attempts to study this nature of pressure 

distribution is reported in Ref. (34). It is also reported 

in the above reference that the long shells ( ljo...~ 8 ) 

do not collapse in the wind as do the short shells.' The 

dynamic effect seems to be influencing the buckling 

pressures for shell of.intermediate length ratio. 

5.3 Testing in the Water Tunnel 

Experiments have been conducted on cylindrical shells 

submerged in water at N.P.L. by Maybrey: ~ O-nd~ 8"yeJj37 # 

A schematic diagram of the arrangement used for testing 

the shell is shown in Fig. 5.4. The base of the shell 

is fixed to the tunnel wall and the top of the shell is 
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closed by a diaphragm. The diaphragm is connected by a 

rod to the outside pressure compensating chamber which 

balances the pressure" acting on the diaphragm. This 

arrangement is used to eliminate any axial load on the 

shell due to presence of different pressures on either 

side of the end diaphragm. This also enables to maintain 

any desired internal pressure inside the shell without 

developing any axial load. 

The model shell is made out of a solid plastic bar by 

removing the core material and making it hollow till a 

"uniform thin shell is obtained. The following two different 

shell geometries are tested: 

1. l(a = 1.827 = 

2. LID- = 4.728 = . --
Only the following two velocit;~of flow are considered 

for analysis, i.e. 52 in/sec and 73 in/sec. In the 

water tunnel the following three different flow conditions 

are simulated. 

a) smooth flow without grids. 

b) only turbulent flow. 

c) turbulent shear flow. 

The distribution of pressure is different from one another 

in all these cases. 

5.3.1 Test Technique 

The tests on the model shells are conducted in two stages. 

In the first part of the test, the pressure measurements 

on a rigid cylindrical shell are obtained. The pressure 

is measured at seven points along one generator on a 



67. 

manometer. This generator is aligned at different angles 

with respect to the flow by 'rotating the cylinder and 

at each settingJthe pressures are noted at all the 

points on this generator to obtain the complete pressure 

distribution on the shell. This process is repeated for 

the three different flow conditions and for the two 

velocities on the two shell geometries. 

In the second part the buckling tests are carried out 

on the flexible shells. The shell is mounted in the 

test section and one of the possible velocities of flow 

is maintained steadily. The internal pressure is gradually 

reduced till the shell starts to collapse. As the 

internal pressure is reduced still further the number of 

lobes in the circumfe.!ntial direction into which the shell .' 
~ 

The value of the internal suction pressuref 

at each stage of the collapse is noted. The pressure 

measurements and the buckling pressures are given in 

Ref. 37 and this data is used here for theoretical analysis 

and comparison. ( 5ee To.b1e..s 5':3 ~ 5'4) 

The two shells are tested under internal pressure' only 

-without any external pressure due to flow. The critical 

buckling pressures are also given in Ref.(37). 'C,Se.e.To..bleS.2..) 

5.4 Results and Discussions 

In the first stage of the exp e rimental work on cantilever 

cylindrical shells, the arrangement shown in Fig. 5.2a is 

used. The experimental results obtained by such a fixity 

.are compared with theoretical results obtained by the 

continuum theory in Fig. 5.5. The error in the experi

mental results is, in a few cases about,50%. The 



discrepancy has been attributed to improper edge 

conditions at ~he base. The' buckling pressures 

obtained by using the arrangement in Fig. 5.2b are 

compared with the theoretical results in Fig. 5.6. The 

theoretical results obtained by the continuum theory is 

chosen for all comparisons with experiments. The 

maximum difference in experimental and theoretical 
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results is now only about 15% for the case of short shells 

( '-la.. ~ I ); and it is a hout 30% for the long shells 

( 1../0- C!.. 5 ). 

During the experiments. it has been observed that the 

short shells are almost steady during the test and the 

buckling occurs more or less suddenly in a snap through 

action: in the case of long shells quite violent 

oscillations of the she11'are first noticed before the 

final collapse takes place. Whether or not these or any 

dynamic/static interaction influencing the collapse requires 

further study. 

In the subsequent test conducted to evaluate the repeat

ability of the experimental data, the base of the shell has 

been always embedded in the epoxy resin. At least four 

shells have been tested for each shel1·geometry. The 

experimental results obtained for the clamped free she11"s 

are shown in Fig. 5.7 to 5.9 along with theoretical results 

for three thickness ratios. 

Experiments have also been conducted on clamped-free shells 

with a stiffening ring at the free top. For comparison 

purpose .the ring is considered to act as a simply 

supported end. The test results are compared with theory 
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in Fig. 5.10 to 5.12 for three thickness ratios. In a 

. few cases the difference between the two results is only 

about 10%. Hence it is considered that the ring acts more 

like a ciamped end than as a simply supported end. 

A few tests have also been conducted on cantilever 

cylindrical shells with variable thickness. The 

theoretical results for these cases have·been obtained by 

the Finite Element analysis. These results are given 

in Table 5.1. The maximum error between the two results 

is about 30%. Noting that F.E. method gives buckling 

pressures which are about 10% higher than the continuum 

results for similar geometries,the results are considered 

to be satisfactory. 

The experimental results obtained by tests in the water tunne1._ 

are analysed by using the theory given in earlier chapters. 

The following methods have been employed to obtain the 

theoretical results: 

a) Considering the shell to be clamped - s.s., and 

using the virtual disp1acements in Eqn.(3.13) by 

employing the continuum method. 

b) By using the virtual displacements in Eqn. (3.12) 

in conjunction with the Lagrangian multipliers to . 

get s.s. condition at the end • 

c) By employing the Finite Element method for the 

problem. 

While using the first two methods, the external loading is 

"represented a~ in Eqn.(2.l.) to consider the variation 

of pressure in the axial direction. For a few shell 



geometries the simplified pressure distribution in 

the form of Eqn.(2.2.) is also used for obtaining the 

buckling pressure. It is found that the axial variation 

of pressure has~· very little influence on the 

buckling pressures. Hence the simplified pressure form 

is used in method (c). The results obtained by the 

three methods have been reasonably close.. The results 

obtained by using the finite element method are generally 

higher than those obtained by the other two methods. 

The -theoretical and experimental results for the case of 

axisymroetric compression (i.e. for the zero velocity of 

flow) are given in Table 5.2. The results for other 

flow conditions for the two shell geometries are given 

in Tables 5.3 and 5.4. In these tables the results in 

Column (a) are the theoretical bucklin-g pressure obtained 

by the above methods. 

From the results in Table 5~2, ignoring the scatter in 

experimental data, the theoretical results are seen to be 
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much higher. To make certain that the present theoretical 

results are of right order, the circular cylindrical shell 

-of similar geoemtry subjected to suction loading but simply 

supported at_both ends is considered. The results-for this 
29 problam is given by Flugge for the two shells as 0.373 

and 0.3,3. By clamping one end of the shell the buckling 

pressures will be higher, and hence it is considered that 

present results arein the correct trend. The discrepancy 

between the th~oretical results in c ~J,umn (a) and the 

experimental results is considered to be due to: 
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(i) Imperfections in the shell and the boundary 

conditions. 

(ii) The end cap may be exerting some axial force 

on the shell. 

To investigate the second possibility the internal 

suction load acting on the end cap is assumed to be 

transmitted to the shell as an axial compression. 

The buckling pressures obtained by this assumption 

are given in Column (b). This gives a closer 

agreement between theory and experiment for the z~ro 

velocity case. 

It should be noted from the experimental data presented 

in Table 5.3 that the number of lobes increases initially 

and then decreases as the internal suction pressure P~r 

is increased. We believe that the highest value of 

p. is the best approximation to the critical pressure 
cr 

determined theoretically. 



CHAPTER 6 

DESIGN ASPECTS 

6.1 Introduction: 

The static and the stability analyses of cylindrical 

shells presented in the previous chapters have important 

application in the design of oil storage tanks, radomes 

and other engineering structures. However, because of 

the complexity of the analyses, it is not practicable 

to use these exact theoretical methods for all stress 

and stability problems. As an alternative empirical 

equations are often used for rapid estimation of buck-

ling pressures. Even though the empirical equations are 

approximate and have limited range of applicability, 

they are considered to be convenient for design purposes. 

W· :t 7 3 h t d . f .. I ~engar on as presen e .a ser~es 0 emp~r~ca equa-

tions for cylindrical shells under different types of 

loading. In Ref. (7 to 9) similar equations have been 

developed for the case of cylindrical shells under vlind 

loads based on the experimental results obtained for 

the above problem. In Ref. (47) similar attempts have 

been made based on the theoretical results. In Ref~ (74) 

these empirical equations are discussed and a theoretical 

basis for the derivation of these is discu~sed. In all 

. the above works, the empirical equations are developed 

based either only on experimental results or only on 

the theoretical results. Hence, it is considered, they 

may have only a limited applicability. 

In this chapter certain design considerations for oil 

storage tanks are discussed. Existing codes and empirical 
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equations used in the design are examined and their 

deficiencies are pointed out. New empirical equations 

I based on the results obtained in the earlier chapters 

will be presented. 

6.2 Critical pressures: 

For a given shell geometry, material properties and 

boundary conditions, the value of ~ at which the shell 

buckles will be termed of the stagnation critical 

pressure (~n). This is to be distinguished from the 

gas critical pressures obtained for the case of uniform 

external pressure. 

Numerical results have shown that the stagnation criti-

cal pressures are always greater than the gas pressures. 

As an example the results for a clamped-free shell are 

plotted in Fig. 6.1 in which the experimental results 

are also shown. As compared with experimental results, 

the gas critical pressures are lower i.e., conservative. 

On the other hand the stagnation critical press~res are 

higher. It is therefore necessary to reduce the present 

theoretical resu1 ts by an appropriate ·factor (If) to 

approximate the experimental results. This fact has 

44 not been considered by Maderspach • .; .. 

6.3 Empirical criterion: 

By plotting the numerical results on log-log graph 

sheets and following the general theoretical basis 

given in Ref. (74), it has been found that all the 

results for cylindrical shells under wind loads regard-

less of boundary conditions can be fitted satisfactorily 
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by an equation of the form 

(6.1'> 

As an example the log-log plots of the theoretical buck-

ling pressures for clamped-free shells are shown in 

Fig. 6.2 and 6.3. The values of the indices 0( and f3 
as mea~ured by the slopes of these graphs, differ very 

slightly from (-1) and (-2.5) respectively. For all 

practical purposes they can be considered as -1 and 

-2.5. Hence the equation can be written as 

.-- 2·5 

The value of A depends on the boundary conditions at 

the ends. For certain combinations of clamped, simply 

supported and free conditions, the values of A are 

given in Table 6.1. The values of ~ are ob~ained by 

assuming that the value of Y found for clamped-free 

case is valid for other cases as well. 

It is convenient to re-write the equation (6.1) in 

another form. For a given design wind ·speed, shell 

geometry and boundary conditions, the maximum permissi

ble height, Hp, can be obtained as 

(6.2) 

As an example if we consider a simply-supported steel 

shell under a wind which produces a dynamic pressure of 

, 
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0.25 r.S.~ we have 

1Jc,,:= 0·25 Psi, j " £. ;:: ?J 0 X 10
6 p. s. i 

-
~::: '·1 

(6.3) 

6.4 Current standards: 

As applied to oil storage tanks certain empirical equa-

tions have been recommended by the American Petrolium 

Institute Ref. (76) and the British Standards Institu-

tion Ref. (75). For open top tanks, a primary stiffen-

ing ring is to be used at or near the top end. No men-

tion has been made regarding the boundary conditions at 

either ends, but simple supported conditions are implied. 

It is considered that a more realistic base condition 

is that of a clamped edge. However, the value of A 
for this case is only marginally higher than the simply 

supported base, with the top being supported, as sho ... m 

"in Table 6.1. Therefore, the lower value is preferred. 

For the maximum permissible height of Itunstiffened" 

shells, the formula recommended by API is 

bOo 1-, J (.!~.~) 3 (6.4) 

where Hp and ~ are in feet and" h" in inches. 

Here the design wind speed implie~ is 100 mph, which 

. :""'-
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. 
gives a dynamic pressure of 0.1776 PS" • This wind 

velocity is increased by 20% for gust allO\o,]ance, etc., 

• 
m~king the total dynamic pressure as 0.25 P sc.,. Equa-

tion (6.4) in a non-dimensional form becomes 

'( n ]2.5 (1#)::::. Cj'O'1-IO 0.. . 
(6.5) 

The British Standard Institution recommends the follow-

ing formula for the corresponding height as 

k1J h5"J" 3 
/~ CA] 

(6.6) 

where Hp and a.. are in metres and h in millimetres 

and J(, , is a constant obtained as 

- 15 oc 0 
1<1'= 3· 5b~ y~ + 5"80 y,,-

Y'trl - design wind speed in m/sec. 

V()..- vacuum for design of girders in m bars. 

For a design wind speed of 100 mph. (="45 m/sec.) and 

taking the value of Ya.. = 5 m bars, Equation (6.6) in 

a non-dimensional form becomes 

~p -
.., h 2-'~ 

q·O '><.10 (0:- ) 
(6.7) 

- Th~s agrees with the API specifications. The BSI form-

ula clearly applies for design at various wind spe~ds. 
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Comparing Equations (6.7 and (6.5) with (6.3), it can 

be considered that the current standards are conserva-

tive. 

In the £oregoing discussion, the shells are considered 

to be o£ constant thickness. However, the shells may 

also be made up o£ a number o£ courses of different 

thickness. In this situation it is recommended to 

consider the height of an equivalent shell of ~verage 

thickness by API. Let l-l n be the height of ")') I1i course 

of thickness h·x ., and let h 0.... be the average thick

ness, the reduced height HR is defined as 

(~ ) (6.8) 

where 

This reduced height Hp.. is to be compared against the 

maximum permissible height Hp in which ha. is no'w the 

average uni£orm thickness o£ shell. In the B.S.I. 

recommendations the reduced heights are calculated 

based on the minimum thickness instead of the average 

thickness. 

In.~ig. 6.4 is plotted in non-dimensional form, the 

maximum permissible height £or a given thickness ratio 

of the shell wit~ simply supported ends. These are 

obtained using (1) the theoretical stagnation pressures 
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(2) the empirical equation proposed here i.e. Equation 

(6.3); (3) the theoetical gas pressures and (4) the 
je,.. 

equations recommended by standards:",Equations (6.4) and 

(6.6). Apparently the standards are based on the gas 

pressures with a factor of safety of about 1.25. 

Assuming the same factor of safety on the present theor-

etical critical stagnation pressures we arrive coinci-. 

dentally at the values given by the proposed empirical 

Equations (6.1) and (6.3). As stated earlier, the 

experimental values of buckling pressures are never 

less than the values given by Equation (6.1). Hence, 

this equation can be considered to be more appropriate 

for design purposes than the formulae given in standards. 

6.5 Secondary wind girders: 

Whenever the actual height of the shell (or the reduced 

heightin the case of shells of variable thickness) 

exceeds the maximum permissible height Hp, a secondary 

wind girder will be required to stiffen the shell. For 

typical Appendix A-type tanks of API (Ref. 76), wh~ch 

are of constant thickness the maximum permissible 

heights are computed using Equations (6.3), (6.5) and 

(6·.7). The results are shown in Table 6.2 in columns 

(S) and (4) respectively. It can be seen that none of 

these tanks require any secondary girder • 

. -For some typical Appendix K-type ~o."KS of Ref. (76 ), 

the corresponding results are shown in Table 6.3. It 

can be seen that many of these tanks require a secondary 

wind girder if the design is based ·on the current 

- .. . 
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standards; where as most of the shells do not need 

secondary girders if the present formula in Equations 

(6.3) and (G.8) is used. 

Free height of shells: 

While the shells are under construction, the top of the 

shell is not supported and hence it has to be treated. 

as free edge in the analysis. Assuming the base to be 

clamped, the maximum height up to which the shell may 

he constructed without the risk of the shell buckling 

due to wind, at· the maximum speed expected, can be 

calculated from Equation (G.1) as 

whereH+is the maximum permitted free height. 

Assuming 1JC.h = '0· 25 p. s. i. we have 

Ni= 2-'{,4 E Cl(£r'5 
(E ,.., p.s.i.) 

(G.9) 

If the boundary condition at the base is not a perfect 

clamped end, appropriate value of .A has to be selected. 

For some typical Appendix A-type tanks )Ref. (1 b ), the 

value of H+ are sho\tffi in column (G) of Table G.2, 

assuming clamped-free end conditions. Should the base 

condition be clamped-sliding due to deficiency in design 

or construction,' the low value of ~ (=0.22) for this 

case would reduce the values of H+ to one third of 
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those given in column (6), Table 6.2. In these cases 

the shell becomes very susceptible to collapse at the 

maximum expected winds and remedial action will be 

required. 

Similar results for the Appendix D and Appendix G-type 

tanks are given in Table 6.4 and 6.5. For a few cases 

in Table 6.5, the ratio of reduced height to the maxi

mum permitted spacing is some times more than two. In 

these cases two intermediate girders will be required 

if the current standards are employedj Whereas the 

. present formulae in these cases still suggests only one 

intermediate girder. 

6.6 Discussion: 

An empirical criterion based on the results obtained in 

the previous chapte~is presented for the stability 

design of cylindrical shells under wind loads. The 

existing codes are valid only for the case of simply 

supported ends ,whereas the present equation can be 

used for any boundary condition. As compared wi~ the 

current standard, the difference between the maximum 

. free height and the maximum permitted ring spacing is 

clearly brought out in the current analysis. The 

current standards are considered to be conservative. 

As has been discussed in Refs. (77) and (78). 

80. 

• 



81. 

CHAPTER 7 

CONCLUSIONS & RECOMMENDATIONS 

7.1" Conclusions: 

\ 

The problem of cylindrical shells under non-uniform 

lateral pressure has been analysed using both continuum 

and finite elements methods. From the theoretical 

results it can be concluded that: 

1. The beam theory is inadequate for estimation of 

stresses in shells and the stress may even be 

misrepresented as only the first harmonic compo

nent of loading is considered in this theory. 

~. The semi-membrane theory over-estimates stresses 

and in the preliminary design it is convenient but 

conservative. 

3." The stress analysis of the shells can be carried 

out with sufficient accuracy using the Donnell's 

'shell theory which is simpler than the Flugge's 

theory. 

4. The second variation principle applied here provides a 

convenient tool for stability analysis of shells 

subjected to lateral non-uniform pressures • 

..5. ~he buckling mode of a shell under non-uniform 

pressure will consist of a range of significant 

harmonics. The range of significant harmonics 

increases for thinner shells and decreases for 

longer shells. The buckling pressure is a minimum 

only when the assumed displacement mode includes 

all the significant harmonics. The number of 

"effective harmonics required is generally five or 

more. 
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6. The buckling mode of the shell in the axial direc

tion can be satisfactorily represented by polynomial 

terms. Five polynomials terms are considered to be 

adequate. 

7. The variation of pressure distribution in the axial 

direction due to boundary lay~r, end effects due to 

82. 

three dimensional flow effects, etc., do not influence 

the buckling pressure to any significant extent. 

8~ The buckling of cylindrical shells under wind 

loading is influenced mainly by the positive pressure 

area on the windward generator. The suction peak 

has a negligible influence on the buckling loads. 

9. The relaxation or constraint of the edge rotation 

of the shell does not significantly alter the buck-

ling pressures, whereas the relaxation or constraint 
• 

of the axial displacement can alter the buckling 

pressures enormously. 

~O. By stiffening the free top edge of a cantilever 

:shell, the buckling pressures can be increased 

considerably. 

~1. The current engineering practice for estimation 

of buckling pressures of shells is conservative. 

~~he second variation principle yields critical 

pressures that are higher than the exp~rimental 

valUes. The empirical equations developed here 

yield results which are closer to the experimental 

buckling pressures. 

-7.2 Suggestions for further work: 

~. An improvement inthe continuum analysis may be 

., 
. . ',. 



possible by looking for means to reduce the size 

of the stability determinant for a selected range 

of harmonics. One such avenue seems to be to 

relate the arbitrary constants in the virtual dis-

placements before using them in the expression for 

the second variation of total potential energy by 

noting that these virtual displacements are required 

to satisfy the equilibrium equations. For ·the case 

of cantilever cylindrical shells no useful simplifi-

·cation was achieved by this process. 

2. On the other hand by selecting a wider range of 

harmonics lower buckling pressures could be obtained: 

however, this will further increase the size of the 

stability determinant which necessitates a larger 

computer storage and time. 

3. The method can be easily extended to the case of 

orthotropic shells which finds direct application in 

analysing stiffened shells with closely spaced 

reinforcements. 

4. The method can be extended by including the 

~ynamic effects to analyse the dynamic ~nstability 

·of long shells (~!,A~4) under oscillatory loads 

~uch as due to wind considering the flow separation 

~ffects. 

Ref •. (79). 

An outline procedure for this is given in 

. . 
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APPENDIX ,'I 

Least square method for representation of experimental data. 

The application of least square method for analytical 

representation of experimental data is given in this appendix. 

The pressure data from Ref. (37 ) is represented by a double 

series consisting of polynomials in the axial direction and 

harmonics in the circumferential direction by this method. 

The coefficients in the double series are evaluated by 'the 

condition that the square of the total error in analytical 
. 

representation of data 'over the complete surface of shell is 

minimum • The results obtained by this method for one part-

. icular set of data are also presented. 

Let us consider that the pressure measurements are made 

at regular intervals both in the axial and circumferential 

'direction$;such that the points at which the measurements are 

made forms a regular grid on the surface of the shell. Let 

Pij be the measured pressure at a discrete point (i,) j ) : 
• 

--where Iv being the counter for the point in the axial direction, 

• 
andJ being the counter for the point in circumferential direct-

ion" i.e. the pressure is measured at a total of ( (.xj ). points. 

~o represent the pressure in analytical form, we choose the 

double series as: 

-p=- ~:z:. 
"W'\ t'\ 

~where 1':::: pressure at any point on the surface of 

-shell 

b
ln

,,- arbitrary constants to be evaluated. 

The error in the representation of pressure by equn. (A1.1) 

• • at the discrete point ('jJ ) is 

eij· = [P;;J" - 1> c.l.JjJ] - (AI·2) 
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The square of the total error in the pressure represent-

ation over the complete 
']... 

shell is obtained as ' l.. ' 

~ ~ [p~j - 'I: l: bh1"n x,'tr'c.oS n G] -(AI· 3 

that 

'4 ~ e~j ::: 
(, J 

The coefficients 
~ j' l)'\Yl. 

b are evaluated by the condition 
)r\n 

. "'" 
square of the total error L )Ie'J"given in equn.(AI.3) is 

minimum. This condition is achieved by minimising the above 
. , 

'expression 'w:r.t. each coefficient as: 

J (~~ e~. ) = 0 -(AI' Lt) 
a b'WW\ c.. " 

This results in 'a'set of linear algebra.ic.. equations of 

the form '-£ L 2: ~ '2:" L b7r\ 7'\ X -m +" ~S '11/7J c..os s eJ • 
\, j mY)") S -"l'1"\ 

~ i: ~ 1: ~ Pc: J' '~t: uS 11 {3J' - (Ar.s) 
i., jmtl 

The indices nand 5 vary over the same range as mand n 

respectively. 

The indices h1 and h should be such that 
, . 

mL<"-JYl~J, 

As an example the pressure distribution measured on 

a shell with L/o.-==' ~.728 pih = 11,'-0 in turbulent shear flow 

at a velocity of V = 52.5 in/sec. is considered. These 

data I).)]e given in table - AI-l; The measurements are made at 

7 points in the axial direction and 24 points in the circum-

:ferential direction. The indices "m and 11 are considered to 
. 

vary between 0 to 3. and the indices ~ andJ are considered to 

vary between 0 to 6. In~able AI-2 pressure coefficients 

obtained by the above procedures are presented. 

~his method can be very easily simplified for obtaining 

the pressure coefficients from experimental dat~, in which 

the axial variation is neglected. In this particular case 

• a1.1 the terms containing X and the corresponding summations in 

equations (AI.1) to (AI.5) are neglected •. 

• 



TABLE AI-l 

PRESSURE DATA 
, 

Hole; 
No.At: 1 2 ' 3 4 5 6 • 

,,1 
0.1815 0.341 0.50 0.660 0.82 -, j 0.022 e ' . 

o I 0.045 0.055 0.072 0.080 0.089 0.094 

10 0.037 0.050 0.063 0.070 0.081 0.087 

20 0.021 0.030 0.038 0.045 0.052 0 0 059

1 
30 0.000 0.001 0.003 0.011 0.011 0.015 

40 -0.023 -0.033 -0.036 -0.033 -0.034 -0.036 1 
50 -0.049 -0.062 -0.068 -0.070 -0.074 -0.080 , 

60 -0.072 -0.085 -0.092 -0.099 -0.105 -0.114 

70 -0.087 -0.099 -0.102 -0.110 -0.118 -0.127 

75 -0.089 -0.100 -0.102 -0.107 -0.118 -0.124 

- 80 -0.089 -0.099 -0.100 -0.102 -0 •. 112 -0.114 : 

85 -0.088 -0.097 -0.098 -0.098 -0.107 -0.1091 

90 -0.087 -0.094 -0.096 -0.094 -0.103 -0.105 

95 -0.086 -0.091 -0.090 -0.091 -0.099 -0.100 
100 -0.080 -0.087 -0.087 -0.088 -0.096 -0.099 
105 -0.078 -0.084 -0.085 -0.087 -0.094 -0.096 
110 -0.077 -0.081 -0.083 -0.085 -0.091 -0.094 
115 -0.076 -0.080 -0.080 -0.084 -0.090 -0.092 
120 -0.074 -0.078 -0.078 -0.083 -0.089 -0.091 
130 -0.072 -0.076 -0.077 -0.080 -0.088 -0.089 
140 -0.070 -0.074 -0.076 -0.079 -0.087 -0.089 
150 -0.069 -0.073 -0.074 -0.077 -0.085 -0.089 
160 -0.069 -0.072 -0.074 -0.077 -0.085 -0.091 
170 -0.069 -0.072 -0.074 -0.076 -0.085 -0.091 I 
180 -0.069 -0.072 -0.074 -0.074 -0.085 -0.091 1 

I 
I I 

TABLE AI-2 
h,..,. 
~;~ 0 1 2 3 4 5 

0 -0.0477 0.0445 0.0476 0.0278 0.0087 ~0~0018 
1 -0.0101 -0.0033 0.0066 0.0064 0.0026 ',0.0006 

2 -0~;OO16 0.0071 0.000 -0.008 0.0009 0.0002 

3 -0.0002 -0.0014 -0.0003 -0.0004 -0.00041-0.0001 
j 

'The coefficients bmh for the above data 

7 

0.978 

0.054 

0.047 

0.023 

-0.008 

-0.047 

-0.088 

-0.120 

-0.133 

"-0.133 

-0.131 

-0.127 

-0.120 

-0.113 

-0.105 

-0.100 

-0.097 

-0.094 

-0.092 

-0.091 

-0.089 

-0.089 

-.0.091 

-0.092 

-0.095 

6 

-0.0017 

-0.0040 

+0.0016 

-0.0002 
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APPENDIX - II 

Application of Semi-membrane theory for Cantilever cylindrical 

shells: 
, " 

The analysis of cantilever cylindrical shells under 

non-uniform loads such as due to wind using the semi-membrane 

theory is presented here. The analysis is presented by 

Krajicinovie'B: But as his analysis contains an error, the 

results given are not correct. The corrected analysis is 

presented here. 

The external loading considered on the shell is 

P.x. ~ Pe::: 0 a.)\d Pz- =. PZ
1 
+ Pzz - 01.11 ") 

whel1e P.z.J = -p Los 2 e -J1 ~ e ::s= nil., 
t.I 

-::: 0 e..lse cvheJl e 
PztZ.:::: % U~2 G 0 .:s; e L.217 

This loading can be represented in the form 

b _ P 2:. bn LllS i1 [) - (AIi · 2 ) 
fz. t1 

~he values of the coefficients b~ are 

b - I bJ = ;lJi b,2,. :: 3/4 
b :. .2.J2.. 

o - .in ---- 3 5/T '3 iT 

...L b ~ ~J2. 0 

95. 

bq :: bb :::: b7 = -2~ 
31f '5- 2.41f 451T ...{AIf.3) 

b~ -= -~J2. 610 b - -I =-0 b 1/.- - :z.Tl-. 'S - ISiT 77TT IJ7 n 
Only the first eight harmonics are considered in the 

analysis as the coefficients for the higher harmonics are 

~omparatively small. 

The governing equ2.tion (2.11) given in section 2.4 is 

to be solved subjected to the boundary conditions 

When the loading is represented by Fourier harmonies 

as in "equl). AII. 2 the solution for cb is also assumed as , 

I 

1 
1 

I 
I 
I 
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With this representation the governing equation and 
, . 

the boundary conditions reduce to 

are no stresses due to axisymmetric loading. 

The solution for the case h~1 can be easily written 

as 

- (AIL'7) . 

This can be easily identified to be the solution given 

by beam theory. For example the max.stress at the root is 

'obtained as N;)t..1'rH-")C =- - b, L!-J-x.:-bwhich is the same as that 
~ 

~iven by beam theory. 

4J:'he solution for all other harmonics (y) -;;:::2.) can be 

developed in the form 

-.q:,n = A I Ccsh r.x CcS/.A.x. -+ A2. Cosh f\ C)C Si'n fL::L + 

1 
l 
i 
I 

J 

j 
i 

I 
j 
l 

I 
I 

~ i 
1 
j 

A:3 S,·n h foX. C,vs r:x. + A", Sinh r x 6"n r;x, + G 11 

GI"Mt. /"-=- 4 h"'-hI;CI-n'-j"- 6" . (,-.r)nkb" -(flJl'8J 
I..( 8~ ~ If Eh fLit 

~J AI, A2" A.3o.hdA4are arbitrary constants ef integratio~. 

For the case· of a cantilever shell, with the B.C. as in equh. 

(AIl.6), these ~an be evaluated to be 

At == - On 

- . . 



[ 
Cosh"l-rL - CoS'l- rL] 
~ sh 20 flL + Co..s 2. fA- L 

In the analysis presented by Krajicinovic 'S ,the 

expression for AJj contains' an error. Hence the results 

pr~sented are invalid. 

Knowing the function q)~ for each harmonic, the stresses 

can be calculated by using equn.(2.10) after summing over all 

the harmonics. 

.. 
• . 
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APPENDIX - III 

Solution of Donnell's equations "for non-uniform loads: 

The solution of the Donnell shell equations for a 

cantilever cylindrical shell under non-uniform load is 

presented in this appendix. 
28 

Following the general solution 

procedure given by Hoff , the problem has been analysed in 

Ref. (38 ). The external loading on the shell considered is 

P;e.= p& =-0 and R =- 'Po L bl1 Cos 11 f) • ~ (A1il. J) 
Z- t') " " 

~lhen the external loading on the shell is reP1?esented 

by Fourier harmonics, the displacements can also be selected 

in a similar form as 

Lt - L (L., COS ne - r\ (f.) 111 . 2.) 
19 - i: U'\1 Sin he -- n 

(,t.9 ~ ~n c:...cs ne 
" 

By this representation, the displacements Un and l.9n 

can be connected to (,J)n by the equn. 2.15. 

The boundary conditions for the cantilever cylindrical 

98. 

shell are; at":: 0, the fixed edge conditions U:: 19:=. U9 == -(~E.:~) 

dv.9::0 and 0} x: L'a, the free edge conditionsU")C. = ox..a= M~= Q"t; U 
~~" ~ . ~ 

The solution for axisymmetric component of loading is 

rleveloped first as it is quite simple: 

"The differential equation reduces to {. -h,h )1.:: 0 J 

d tLo _ ~ U9
0 

=- 0 

.dx it 
_ (I-/) Wo - ( R J d CA90 

3) d ~4 
Theboundary.conditions become 

:0 
dx. 

d2.tao = d3 
Wo 

d :t.,"l.- d ~?J 

• . " .. 
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The solution can be easily written down as 

. tso = Po b, ['- c.osh ~ ~ ~s ft 3( + . 
, 'D (I-)'~ A, [s,nh ~J( (..,os~;x. - c.oShfiAiK sInf'-x.) 

+ 142- Sinh r)( sin ft x ] - ({.llII· 51 

'1 ~ ()_y'J..) 

h'l-
whe.ne 

A, '::: s,'nh rL G:.sk,l + Sin rL COS f'L 
2. - ')... '-: 

c..osh rL -+ ~S j'AL 

'The solution for other harmonics ( t1?-1 ): The 

particular solution can be developed for the displacements as: 

Up::: 0 

().9 p =- l: v.9 Pn 45 11 e - (AlII' (,) 

iAJhene 19 Pn ':. >. ''2. (1- y'l-) bn 
)15 

tA9 ~n = A 12 (I-l''l-J bY) 

'~he homogeneous part of the solution is developed as in 
( 28 

Hoff ' s analys is. The character is tic roots _ are 

,I 
- J 

I 
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. I 2- n "'01, S, M, ::. r. 
-(-01-"1 'Lr~+-~-, 'J.,--) l-

M 2- = '(\2.- (0(:- J3:) _ ~ +1)) M;:::.2 n), ~f32-
(cl~ + p:)l.. . lolt -+ p;) 2-

~sing the equn.(2.12), (2.3) and (2.13), and making 

use of certain properties of roots given by Hoff, the required 

stresses and moments can be written as 

\ 

101. 
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. ~ .. , 
. j 

1 
~ 
i 
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1 
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I 
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-+- p...3 ( ~2- ~s p:z,:X - '-l'!. siJ1 Il d(.) e -~~ 
-r- Ai< ( "¥; cos P .. :x. + 4'.,. sin J3 .. :x.) e-cl .. JI. 

+ f15l~, Cas J3, :x + \.1'/ SI" ]3,:x.) e. cl, x 

+ 11 b (I.p,' Cos p'.:L- 4', Sin]3, x) eo{':X 

A 
I . cl a:. 

-I- 7 l "1'" Co s J3~ oX. + 'JI" S ,. n J3.:z.:x. J e 2-

102. 

+ As L \pi c-osp.,.:x.";" "P.,. Sin !1JL) eci,.x 

. ..r ~ ,. n'- "'" 1'1)] C.oS 'l1 e .. . - {IWf, 'I c.. J 

Q~eft' == (-~) ~ [AI C - 6,c"sf', 1+ e: 5in p,:x.; e- cl, 'X 

, + Ad - ei Ccs??- - e, S,'rr p,~) e-o(' x 

+ A~ (-G .. Cos p:z.:x..+ e~ sin P2-:x.J e~"Jl. 
+ At, (- e:. Co:) p:z.:x. - e ... Sin ~2.JtJ eoW< 

1\ ( I. cI:x. + rl5 9, Co.s~::l. -+ e, 5, n f3,;x.J e I 

--+ Ab ( ~,' cosp,:x - S, Sin A xJ eel,X 
. . I 

A' - ~x + /-17 ( 9:;, e,."s P:L x -+ ()3, 5 l'rJ ?z.:x.) e :l-

-+ AB ( e: Co:>!i:x. - e:z. SI'n f3:z.:x.) ecJ".j4s >19 

-(Am· 9cl) 

_, 'l.. _1 'V 'l.. ' \jI,::: J "Y\ - Q(, + P, '-V, == z.. ~i 13, 

1[12. -;:.. ")J }\2-_ ~; + r: '-/Ji::: ~~ ~ 
e, == c{l'3 - "3 al, /3,"L-_ ol~ n 1.. (~- ~) 
'l :3 1.- ) vB e, = 13, -..3 0<, 13, +t2-r' Yl r, 

92- =- ol~ - 3 ol .. 13;- - p.-v) ')11- 0/2-

9: :::: p; -3 oil' P 2:+ (;. - y) '(1'1- F2. 

-
• . • 



Using these equations the required eight equations for 

. determining the eight con-stants A, to AB are obtained. These 

constants are evaluated for each harmonics; Adding these 

solutions to that of the uniform component the total solution 

·is obtained from which the complete stress pattern can be 

determined. 

To consider other possible boundary conditions and the 

case of supports which behave like springs, the following 

procedure is adopted in numerical work. The boundary condi-

tions at the two ends of the shell are ~ritten as 

·CII U(o) + 

C2-1 \.9 (0) + 

C:3. U9 {oJ + 

C'2. Nx.(o)· -= 0 

C22 N?\G to) .= 0 

(..32. Q.,:.(O); 0 

103. 

Ci41 ~(o)-+ (42. M~toJ .::. 0 
~~ 

_ (flJIl · 10) 

tvi tL) + C!j2- l)t\9(L) ;; 0 
Cs I ,"It(. o?l 

£.61 &~ lLJ + (·62- VS(i:J.:: 0 

N~ LE) + (;,2, Lt tLJ; 0 

N:x.e (L) + C.32. 19cLJ ~ () 

By this representation~to obtain the 

-shell" the constants C,j are selected as ' 

case of cantilever 

·for the case of a simply supported shell, the coefficients 

are C.~I :::: . ~~I = C 51 = C71 :::: C, 2. == C. 41- = t:..62. = C32. :'/'0 

and C" -= (,41 ::: C61 = C 81 == C 22 = C.a2::: C52 = C7.2 ;: 0.0 

.. 
. . 

_ (f\JJI. '12 ) 

i 

I 
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Similarly by suitably choosing the values of coeffici-

, ents all other possible boundary conditions can be represented. 

~hen the shell is considered to be supported on the 

springs at the ends the values of the coefficients C~jwill be 

'between 0 and l' 

When the cantilever cylindrical shell is considered to 

be supported at the base, which imparts both axial and rotation-

al stiffness~3these conditions are written as 

(~II ) U-{o) + N:e (0) .::::. 0 
, ~J2-

2U9to) + M.x.toJ -== 0 
O~ 

regarded as the spring constants. By this representation,i f 

<..e.,!c/z) andlC4,ICq2-)~ 0, one has the case of simply supported 

-end: and if(C,,/C,2,) and (C41/~2..)'-+'OO one ha; the case of 

..fixed edge. This representation of, end conditions is made 

use of not only in determining the stresses but also in. buckling, 

analysis. 

.. 
. . 

.~ 
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APPENDIX - IV 

Solution of Flugge's shell equations for a cantilever shell 

under non-uniform load:-

The solution of the Flugge's shell equations for a cantilever 

cylindrincal shell given in equation (2.17) wil.l be developed 

for the case of non-uniform load. The external loading .on the 

shell is again considered as 

Fx. ::: Pa:;::"O and 
(A IV.1) 

f:z: :::: ~o L bYl ~s 11 9 

As a result the displacements can be selected as 

Lt ~ u.1'1 Cos nG -
19 L 19Y) si" ne 

(A IV.2) 

l.A!):;::.. :2 Wn Cos ne 

VOen the displacements are represented ~y Fourier harmonics, 

the governing differential equations (2.17) reduce to a set of 

ordinary differential equations for each harmonic as 

(A IV.3) 

105. 



For the case of cantilever cylindrical shell, these equations 

are to be solved, subjected to the boundary conditions 

and 

L.l(o).:::-<l 

19 (0) :::. 0 

t8 to) :::- 0 

a l.S(o) -:::- 0 

(} It 

at ~:::. 0 

- 0 -L:: J-/a... N?- lL-) =- a t :x,.. ::: 

M·?st tfJ ; 0 . _ 

,(\ (f J + t3 M IX. e (t) = 0 
~at. . 0 e 
N ae lL) - /Y1?tB g:) ;::. 0 

0-

. , 

(A IV.4) 

As the solution of these equations for the case ofaxisymmetric 

. component of load ( ho ) and for the case Yl =- I are of different 

Torm, as compared with other harmonics, they will be developed 

.first. 

Solution for the axisymmetric loading ()1 =-0) : 

For this case 19; 0 and the equations (A IY ~.3) reduce to 
~ 3 

·d U(OJ +)1 d ~o _ t< d 6.90 :::: 0 
cl- x.~ a dt. d ~:3 :(A IV.S) 

. :3 4 
_1 d u.o 1.0 + T [- d U O cl (,..90 
y + 1A70 +-t 

d 'X- d:£:5 d::l.il 

Eliminating Uc,. this becomes 

\ 



where 
/4 

and C'J,. -== 

The solution for UJo can be written as 

UJ 0:::: Pt I Cos h 0( I ;)t C 0-5 f3,.:x:.. + Ib .. " LO s h 01/ 'X. si t1 r-;.::r... ,-t 

A'3 sinh ol,~ Cos J3, x.. -I- A4 s/nhOl. ~ Sin Pi x + G 
- (A IV.7) 

where ~I ) 

""Po "() '"Y b 0 

~L \ --y:r-}iJ 
and G -

The constants of integration A, to A'-1 are. evaluated by the 

conditions t8 0 (0) = d b.9lo)= 0 at ~c.::: 0 
d-x. 

..... 
and 1"1.:lt.. {L..J =- ~a.eP~):: 0 

Solutions for the harmonic fy)::: , : 

".The governing differential equation for this case can be 

written, after eliminating U, and (9" as 

"d 4 [d4 W '2.. "1- J ~ b " . ' _ :7- [2.. - 11 J d iA9, + , -)J VS,::. , 
d -y..4 cl (1..11 d .){'l.- t<. R 

The displacement U, and ~, can be related to U9. as 

Lt" 3 --V u,::::. -~ d W, 
d ~?J 

d [.,9, 

cJx 

- . . 

(A IV.B) 

(A IV.9) 
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w, 

The particular solution for these equations can be written as 

U9'p - A R b, :;t:..4 - - -:2-

-U,I P - _ ~ ~ b, [12. (2+1') ~' + 2 7(.3 ] - (A IV.l0) 

19, P - -.A k b, [ \2-(1 +2.") '+ b ~)(.~ - ~It ] 

The homogeneous part of the solution is written as 

Lt.,.:::: p. 1 X I + (J.~, X:l. + A 2l x.3 + A",- X L./ + A 5 + 

f-l b -x. -I- A7 ::>t
P + As cx. 3 . 

'l9, - 13, x, + B.2 X2. + B,3 x'" + B4 X-I.J + B5-1-

-'-where 

. 

B (;, :x- + B7 :x. 2.. + B;3.x.3 
(A IV.ll) 

w, == C,)<., -I- _ Cl- X,2.. + C:?) X~ + CL! Xl, + C.s + 

C" x + C7 ::>c."), + Ca .::c3 

c.osh ~,;x.. Los P, x 
Co..s h cl, x. S /·11 13, 'X -

Si}1 h cl, ':)(.., Cos P, :x. _ 

S\n h 0(, X. siJ') [3, ~c.. 

108. 

- (z-v). 
p, :::. 

z.. 
"The constants A, to Aa. and 5.' to B8 are related to the 

constants C, to Ca by the equations of equilibrium (A IV.9). 

The constants C, to Ca are evaluated by using the boundary' 

'condi tions in equation (A IV. 4) • 

. ' 
. . ' . 



Solution for other harmonics (Yl4 2 ): 

The solution of Flugge's set of differential equations is > 

developed in a general form as sum of compl~mentary function 

and particular~ Integral. 

The particular Integrals for the loading considered are 

u'p"t1 = 0 

_ 12. (1_")1"') ~ b-n 
(A IV.12) 

The complimentary functions for the homogeneous part of the 

. ·equations (A IV.3) can be written after calculating the 

characteristic roots and adding this to the particular solu-

-tion;we have the total solution as 

109. 

U." ==- A,l'l ')(111 + 112-)') X.2.n+A.3n)(3n+ A'-In "XLJn+{J.5nX/n + 
"I 1 1\ I 
.Hbn )<2.n + A7n X.3n -f. H3n X411 -+- Upn 

\9')')::. Bn1 X\Y) + B2 » X2.)'1 + B3n 'i-.3n + B4n )(Lfn+ B~n )(~h + 

1A9 rl = 

. where 

I I I· 

B6n X2.n + B7 )1 X.=,n + 83n "K4n + Wp n 

C1n )(Il" -t- C2" X2.n + C.3J1 X3 n + C4n X'Lfn+ Cs n X: n + 
, I 

C6)') 'X..2..n + eT" X~n + C8n X;n + lA9p n 

")(m'= Cosh oll,},\·X ~s Pt,., ~ 
')(-2.n ==- Cv.5 h ol,)'1 'X. :si t1 An x 

'><?In:='' Sinh ~,,,,)l eo.:) ~nX . 
')(411 =- ~"h h cllY\x 5\)1 J3rn X 

~ ; n ::::. Go 5 h oi2. n ~l Cos f3.2.1') ac. 

)(~n = Cc s h d2t1 ::l. sin ~'t1 'J:. 

,- (A IV.13) 

.,. 



~in J3 X 
2.1'\ 

J 

.o(\Y\' . f! YI ' cl1-n and ]3,l.Y\ are the real and imaginary parts of the 

two sets of complex conjugate roots of the characteristic equa-

tion. 

The coefficients A,Yl to Asn, B,l"l toB'3n and C~'Y\ to Can 

are related to each other by.the equations of equilibrium 

(A IV.3) and this yields sixteen equations. Eight further 

equations are written down by the boundary conditions (A IV.4). 

Solving these twenty four equations, the arbitrary constants 

Ai.h' BC:n and Cc.'n (i=',8) are evaluated,. and thus the 

displacements are determined. Knowing the displacements, the 

stress resultants are calculated from equation (2.16) for the 

particular harmonic considered. The total stresses in the shell 

are obtained by summing over all the harmonics. 

General form of the oarticular solution: , 

When the external loading on the shell is represented as in 

equation (2.1), it will be very convenient to write the parti-

·cular solution for each term. 

-For the case ofaxisymmetric loading ( YJ = 0 ) the loading can be 

written as 

:The particular solution from equation CA IV.6) is 

110. 
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For all other harmopics the particular solution is written as 

Up :::. ~ 12 (, I_Y'l.) 2: l: bb\ll X J COS 719 
. 'tr\ n 

CA IV.1S) 
19 p ;;. A 12 (/-<./,) 2 ): bm~ X:z. 5\Yt )'lG 

m )1 

12- (I-),~) r E brnn X.3 c..os YJ e 
17'\ n 

The functions ~, 'X.z and X.3 are of different form for the 

harmonic one, and hence they are given in a seperate table 

below. 

! X, . " ~2' 
< X.3 m 

0 11- 'Jc, (,2 -t- y) -+ 2-;(lJ , L. C'l- +V) + b "'1-:1-" _ :£4 JC.'-* 
. '- -2- "2---- .. -. . - --. - ~ ... _._._._-_ .. _. -- ------.- - -- - -- -- . ---.------.--~-~-.------ .-------- ---.---

1 '2. 0>+2. Y) + b::t?'[2-tY) 1.2-~ (1-+ 2.1J - 2-'1:J} -x-!) 

-t ::L4 
_ -::l-5 10 
to ~ -- -- :- . 

24 ~C.3 +:l-Y)-+4~b-+Y) Lt B(I-t -y) -r12-c'X?'C'-t-2Y) fo 
2- :x. 

5 -r-yx4_~ -+ 'X75 ~O 

- .-----
72 (4+3 v)-t 3b~(.3+.2J!J 48:1«1 +1J +12-:x.\'-t-2~) ';)(.. -, 

3 -+ 3:x.4(?+yj+ ::x..~ +..:2 y ;L5 _ ~7 70 
to 5 70 

1?articular integrals for harmonic 'l1 = , 

The functions in the particular solution for all other 

harmonics (n~2) is written as 

~ t 
~ o..":x. 
i::::o • 

~I= 

~ a..l2- xc.. (A IV.16) 
C:: 0 

• 

~ 0... '.3 :)C. '-

,=0 
The constants . CLC:j are evaluated in terms of bm ),\ and these 

are given in the table below. 

- . . 
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where 

o 

.-1- (I + ~ -.1"') .b:l-~ 

L \ + ~) YI 'Y ( "(\),- J) -v 

_ (1+ ~ Vl~) Cl..2-3 + 
- )1'\--( l-r~) 

.~. 1 
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APPENDIX V 

FUNCTIONS IN STABILITY DETERMINANT 

The functions appearing in the stability determinant are 

given here in detail for the case of.a clamped-free shell 

using the virtual displacement in Equation (3.12). 

'f 11 -

cP.
J 

cp, 2. = 0 

. . 
f,'3 - -:2. TT 2J1'\j i y (~) ')')1+ (, + J 

\. ')Y) -(- c:. -+ ,) . . 

{I-V) j h1 

(1'1\ -+ <-) ] 

cP,,:)::: U-""J l'WI+,-il (~)'l- (~) 1n+L+l; «L (Y\) j) 
\ ')'Y'\ 4- (. -t , ) 

f z 2- .:::. TT 8nj (1:..) om t L-I [ =2. ;,~ L1- + 1I-" J '}?') c.. .] 
. 0... ?'11 -H,,-+ , 7YI + c: - , 

+ 

f23 - -2n S-n~ j (~J-m+6+1-
m+<...+'2.- ~ 

41?J ~:2c (I-V') (RI (-f f"-+L+2- h (Zs( n)j) 
'W\+C:~l-

113. 

~y 'h .ss ('m+t.1-J/ 'l1, j) _ ~n TS("M-+C+ 2,'l1,j)-r 

U-y)t-m+J) U.s ("m-f- c,,+' I -n"j) + 

.2. n ~l\j "r1 CI--/) G4- ( ')n+ c.. +2..) 
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If - 111--J Cl - j ') ( l.). '\'y\ + t. + ~ . (') ( . :1-) L -m -t c: + , 
0.. + ~ m m -t J , -J (_) 

("'1'\+(+3) . 0.. + . lm -+(+1) 

?- (H) \ '>n+Jj ( l + I) ~j C~ ) ')?H c:+ I ..J

\1n -+ i + I) 

.~ i- (t-tJ (l-n1-)(~J~~i+' J.+:l na llj . 
. 'h'\ + <." 4 , . - 'l'YI + L+.3 

et:> ~ J - <J- Ll -v). ) l~) 'l- (L-Io..) 'h1-tt:+ 3 RC L Yl,j ) 

where 

'nl-t:t.4-:3 

'J.- -I1'\j SS (m-+ c: -t-!J ... Yl/j) -t 2. (m-t t)(l-t J) se L1YI-H.:+ 1.)1'\ ,J J 

+ 2. nj T S ( n1 + i + .3) '11 J j) + J- Y ("1''YI + I) ( t' + /) W 5 L"YYI + L + 1 J 'l'1.1 j ) 

(1-») llYl+ i) j Us ('h"I+ L+ '2- J JI1, j) 

- ((-)1) L 1-+ L) n us l 1-11+ L+21 j J Y\) 

2(I- V't-)TfS')'\j G4 (m+C:+~J 

.2- rr 

R 5 C 1'1, j) f 0 bn f Co.=, II 9 sin j e s Iv> 11 e cl () 

o . 
. 2..Tr 

RC Cn,jj:=: Li;o bjC05)] 9- ~sj e Cos 'l'\ e d Cl 

o 
. b L/o... "rr 

ss (;'If" ')1 ,j) = ~ f F,n (:>.) x""'-I d 0<. f Cos ll& sin V)/} Sli,j e cl ~ 
o 0 

. . 
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(, L/ 0.. . 

~ ~ J f,~(x-) 'W\ -I j'l-rt 
-::f.- 'd7C COS he 

o 
o 

r 

. ')'nO" J' 'l.tT 
::L dqt c.os"ne sin Y) C7 sin j () cl $ 

o 

6 (, Lf c.. .2-11 

VJ 5 C'\'YI, 11, jJ:= ~. I J r;.~l"'-)::L';" -I d X} C<Js " 9 

o ()-

, ,-/0.. )..ff"" " 

~ J' F3~(:X) ')L-m~/dxjS .. n"'ll e u,s.)1 ~ 
)H I " 

o 0 . ",. 

use m I l'l,j) = 

oS in ne cl e 

where 

, F,,,.J F~h.l F~h are the expressions in the pre-buckling 

membrane strains (E.~) Ge..J 67-9 respectively) due to the non-

uniform loading components i.e. 

6 -p:=. Po E bn Cos )1 e 
"l'J.::: I 

6 

E - u.., __ " 
~- "- L F, tJ Co S ,., t; 

,., :. I 

t F2.11 Los h e 
'rP' 

.. 



-------------------------------------------------.-----

and 

,,4 (m) :x.. "rtl-I J X. 

, . 

o 
. where V9 is displacement due to b the axisymmetric component 

o· 

Here 

. 
C and J vary over the same range as ~ and n • 

The function S1'j is defined as 

&"j - fo~ ¥l~J 

-fc,n • 
0 11 ;:PJ .--

The other elements of the stability determinant can be 

written down by symmetry of matrix as these are obtained from 

a quadratic expression. 

.. 
. . 
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APPENDIX VI 

The additional terms in the stability determinant due to 

the modification of the virtual displacements as in Equation 

(3.13) are given below for each term. 

f" , cp,,) c:p 11. I tP:z..1 - No additional terms 

f' 2. Y bnj"~ 11 lL/Cl) m+ i + l-
")'Yl +. i + :L 

£ 2- IT 5nj j lLI )<)yl +t+7J r :l- e _ <1-- L ] 
7:;..3 - 70...· Lc.."n'\-tC:-f. 2) l-m+i+4) 

f-'3 - -4 en S~j [-k(£ f{<. m+l} (.(+I) (-mi ;In+i) (i-/o..j'7tl+i 

'Wl -t t 

) C . ')..) (1-/ 0...) 'l'YI + (. + t., "}.... 'm efl+. 
-+ (1-11 '\. r ~..) \. +~ (1- Y'I '\,) (J-tc') t Ljo..) 

l~+c.+4) 

+ \1 ~n "'") (I -j 1-) t I.../~) m + c: + ~- -r 
F. • ___ 

'"m ~ C. -t-!::> 

.. ' 



. + 'Y (1- n ~) (i. + J) ( t + l-) l t-/o..) '">ll + c: + _ 3 + 
. . 

.y (m + l] ('n1 + 2-) (1- j 1--) U-I CA..) '>n -+ c:. + 3 ~ .+ 
~+C:+~ 

~ (1-1') 'r\; (?T\ + ').) (, l +?-) -( L/ ,,) m.+ c:. -I- ~ ) 
. . ~~t+3 

-I- lL/o..)"'" +.~ -t 5 . ] . 

""n1+c..+S- . 
. , 
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4>'3 - - {' (1-11->-J( ~f RC. ( 'Yl,j) Cm +:2-- i) (Lj a.. f7l+t:+l-

')y') + c: -+ 2. 

+ 2 CI- v'l''J(,2 t R5 ('rl,j) (L/o..) m+ c: +2-

m+t'+2-

-(1-""") ~ n &l1i G4 (m+C:-t'l-) J 
-+ f'l- [ 2- i 5 S ( '111-+ ~ -t 2> J '>1, j) + 2 T S (YJl+(.+"> YI,j) 

+ 2. (1_)1'1.-)(-£) ').. RS(I1,j) lL/~) 'h1+i+.3 

?')'\ + c.: + :3 

-:( 1- _/1,) :z..11 Bnj G 4 Cm + c: + ~) J 
cfl.3 - -.2 f' E:l-V y) ss (m+L+ 3) 1'l ,j) -:1- n TS ( '>tl+ t' + 3, y) ,j) 

-t- 2. (1- v~) ')') iT l>')'\j G4 ( m-t L + Zl) 

_~ (I - » ~') n (: J '2- I< 5 (Yl' j J LLI ~) 'hi + t + .3 

??1 + c.: -+.3 

-\- V;,.") (2- '" + 2» U 5 (111 + c: + 2. > 'YI, j) J 
\ 
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-t f"- fz 1>11 ssc "I'fI+t-+l" '\'>,j) -:2. >1 T 5 C 'n'I+t+ 1." "J,j) 

+ 7.. (/- v""j If D'YIj Y) (54 ( 'W'I-f c: -+ y) 

'V) h '\, . ILl Ji?1+t~LJ 
- 2 (/- y (_) n Rs(n,i) " CL 

~. . 
. m-t c..+Lj 

+(I-v J(m+~) Us C m+ i+3
J 
-n,j)] . 

0/,33 - -1..e [1..-h!j SS Cm +i+l,> 'l1,j) + :2.nj T 5 (?:n+i .... 4, -n,j) 

-t (z.m~4 3m+3(.+L,) s(..(m+i+2.,Yl,j) 

. \ 

, 

-t '2 (/--l-) (-!2-) '1- R C ( 'YIJj) (Lj 0..) 'm + t.+ 4 

"h1 + C: 4- Lt 

+ l!-:i!) 11 (2- i +- 3) USe 17) -I- i + ?> I j In) 

- 2- (1- )I') 11 bnj!1j G 4 C -m + t+ t.,)] 
;- e2- [1..v -nj ss C 'I1l .... i+ 5,11,j J+ 2.nj T .5(171 ... c:+5', n,j) 

+2. ('>11+)..) L c: + 2-) se (1'YI+C+.3 I Yl, j) 

+ (0 J j \m + '2.-) .2 V 5 ( 'h1 + i+4 , n J j ) 
l'2-
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The other additional terms can be again written down by noting 

-the symmetry of the stability determinant. 

The functions RC1Rs,l US, \VS etc. are as defined in 
, , 

Appendix V. 

The terms in ,.I,.. . which are dependent only on the inter-
"<<.-

nal suction load (i.e. bo ) are given here seperately for conven-

ience of analysing the problem in Section 5.3. The virtual 

displacements in Equation (3.13) are employed to obtain these 

expres.sions. 

'-

p,~ ~ It-~~ )(~J1--rrS1\j[('>n+J-tj (L/~J ">n+i+1 

-~J~{ (2(0..) m+i+l 

\'l11~ c.: + ') 

., 

"l'YI + c: + , 

. 
• 
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~~:::: ~ (1- ")1'-) TT ,., S",j [ C. N ("lYl +t+2) - 2f' C. N ("lYl + i+ 3) 

Where c: N (mJ 

'l..- . 

+ (' . C N C m + i + 4) 
r 

(Lj tl) 17'\ + i+ 3 

'l11 -l- c: + '?) 

-\- f '2.-. lL/ ()..) 'WI, -+ t-t '-I ] ] 
'l'n -l- (. 1- Lr . 

-

'>YI -t ,; + ~ 

and (;90 ex...) - is the displacement at any point 

due to unit internal suction pressure. 

The other terms can again be written by symmetry. 

• 



APPENDIX VII - Interpolation functions 

AVII.a The Interoolation functions for higher order element 

In the equilibrium stress analysis the nodal displacements at· 

j~node selected are given in equation (~.1) 

(A •. VII.l) 

The interpolation function selected can have 

4 arbitrary constants in II 

4 11 in 19 

6 " in 1.49 

corresponding to the number of degrees of freedom of the 

element. The conditions which the functions selected should 

satisfy are discussed in Ref. ( 51 ) 
.Subjected to these conditions the polynomials are selected for 

the shape functions as 

U
l1 

- It, + Cl2,.X + ct,3 X 'l-+ Q4 JC3 (A VII.2) 

. 'l- 3 
(9)1 = as + ab ~ + Q 7 :r.. + 0..8 .:x. 

~ 3 A 4 S W
11 

= a..CJ + a,o :x. + a...,:x. -t- Ct/2-.:x. + ~13 X. + Q /4 JC 

~hese can be written in the m~trix form asl 
"'" 3 t 

':)C.. ::L ::c I 'l,. 

I I :x. ..x.3 x.
3 

dll. 

CA VII.3) 

122. 

, .: ." 



where [F(~)] is the matrix of polynomial terms 

tAJ column matrix of the arbitrary constants. 

equation (AVII·~) The arbitrary constants 0-, to a. ILt in can be 

related to the nodal displacements of the elements in (A VII. 1). 

These relations can be written in the form: 
-J 

(A VII.4) 

.. 
The matrix [51] is given in Figure A VII.l. Substituting for 

{AJ in equation (A VII.3) we have 

- (A VII. 5) -
t.Jhere [ B] -

.is the matrix of interpolation function referred to in equation 

(4.3). 
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1

2
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GVJ i I 0 0
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a...\O 0 I o I , '. 

I 
! 
i· , 

. . I 19j+t 
Q.,\I 0 0 Yl- I ! 

i 
. 0, 

1--- , - I'- --
I -'Ill- -3/,..1! I -4/p'-- ~l 0...2, I "'ii~ 10/f.3 

lA9Ji"1 I· 
! 
i 

a.~ 15/14 -clf?) 3/~ti 1-\5/1'3 . 7/1'?J -YI). I 
I ! 

(..,9 J'-t"1 I ! 

-o/f" -%1~ I. 
t 

a.\4 -'/1-5 .\ ,/[5 -: ?:In'-t Xp 11 

I I v.9 .If-I i I 
I " I 

I... ~ 
t ..... - .,.!. . . - • i-.. .-- . ~ .. .. 
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A VII.b Interpolation functions for simpler element 
r 

representation 

To represent the virtual displacement state the nodal variables 

selected at S I]) node are 

(A VII. 6.) 

125. 

The shape functions selected' consistent with 'the number of degrees of 

freedom of the element are 

(A VII.7) 

These are written in the matrix notation as 

~'r) -x. I, 

~)) - \ I ~ -
I "). 

x.3 
!f~ I I 'X. x-

I 

,. - - -

(A VII.B) 
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. 
where [f\1~- is the matrix of polynomial terms 

IA1'\] is column matrix of arbitrary constants. 

Considering each displacement, the arbitrary constants can be 
r 

related to the nodal displacements of the element as 

(A VII.9) 

The matrix [t3J] is given in Figure AVII.2. 

SUbstituting for Al'I we have 

This is the equation referred to in e<j.II\1'I C. 4· ) 5) 

\ 0 

-Yl 0 

0 :1 YI 
---- ---

0 0 0 

0 --Ill. 
.. I 

_0_. ______ 

0 

0 '/i 
-·----r J -:;' ~/ a. 

o 

1-0/;:- -2ff 

I 
12-/13 .IjP-j 

-*r -YI 

-1../13 

I 
, . 



APPENDIX VIII 

STIFFNESS MATRICES 

The elements of the stiffness matrices obtained from 
" 

considering the strain energy are given in this Appendix. 

-A VIII.a Equilibrium stress analysis: 

'Starting from, the strain energy expression in Equation 

(4.5) and substituting for the. strains and curvatures from 

Equations(4.4) and (4.2) while making use of the interpolation 

functions of Equation CA VII.2), we obtain the strain energy 

for any harmonic as 

-rhe matrix [1J] is obtained from [F(':t)] • The matrix[])] 

is written as 

h'" 
- -;2:0.") 

where "D. -is that part of the matrix corresponding to the 

membrane strains, and is of order (14 x 14) 

""D~- is obtained from the bending constribution of the 

shell, and is of order C6 x 6). 

The matrices D" and D2,.. are given in Tables CA VIII.1) and 

(A VIII.2) • 

\ 
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...- • -TABLE A VIII 1 
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1.=:.">' Y1" 7'.:z.. 
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TABLE - A VIII. 2 ,... 
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APPENDIX .. IX 

DERIVATION OF GEOMETRIC STIFFNESS MATRIX 

To obtain this matrix starting from the expression in 

Equation (4.21), we need the prebuckling membrane strains. 

These are determined for each harmonic separately as described 

in Section 4.2 and these are represented here as 

(~ --
--

~e --
--

Urx + .y l (91 e -~ J 

i As» Cos 1'\ B 
'r\::. 0 

ll9'e-l$) +)1 Lt/.X. 

G L C S n Cos Yl (1 
'VI ~() 

/' ' u.., t::. + (9, i( 
t::. ~e - V' 

--

. -where ASn 

~ Sn 

S Sf') 

S S S \'Y\ 1) (f 
1'1 

:= ~,?'- + 1 L 'Y\ 197'1- VS,,) 

- (11 (9l\ - ~'YI ) + Y Un, ';( -

- - -Yl LLr> + 19n I '){ 

.. 

(A IX.l) 

Substituting these quantities into the Equation (4.21) 

we get for an element 

\ . 
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132. 

(A IX.2) 

substituting for the virtual displacements from Equations 

(4.14) and (4.15) one encounters .. the following type of inte-

grals in evaluating the above quantity. 

')..11 

c.CC ('Y\,c,j) = J COS n 11 Cos i. e . 
de Ce>s J e 

0 
I ,.rr 

css(l1/i,jJ - J <:'vs 11 e S,'n c: e si')') je d(t 
0 f,n ... 6 

LOS C 9 .3)Y\ j e de 5 cS ('l1,L,J);:. S ll1 n () 
0 yo.. 

F I (Y\, m] J As" 
'm-I d (A -IX. 3) 

.:x:. x 
~ jijo. 'h\-' 

F.2- C:Y\ , -n') ) - . CS-n :x. d ()t. -
f 

, (¥'t 1")') - , 

d:x. F?l (, 1'), 'YY\ J ) SS)? .:x:.. -
,0 



. where n -vCl;ries between 0-6 (the No. of harmonics in the 

load) 

• • (.. and J vary over the same range o....s the No. of 

harmonics in virtual displacements. 

With this notation carrying out the integration in 

Equation A IX .2 one gets the typical value of the matrix~ 

for the element)for the harmonic..lnjselected. This matrix 

is given in Figure A IX.1.By Summation of all such matrices for 

the element over the complete range of the harmonics in the load, 

the matrix [kG] in Equation (4.2 2) is obtained. 
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APPENDIX ,X 

stiffness Matrices of the Ring 
r 

The basic geometry of the ring and its attachment to the shell 

is shown in Figure A -.g .• 1. The ring is considered to be 

attached to the shell at one of the nodes. Then the displace-

ments of the ring are connected to the displacements of.the 

shell at the node as 

u.-,~ p 

19" - OLn 19 _ e.'?J vg --a.. 0... -09 

CA X.: 1) 

The suffix 17 refers to the ring. 

With these four parameters as the degrees of freedom for the 

~ing, the stiffness 'matrix for linear analysis is obtained by 
l,1 

Alnajafi • This ma tr ix is given in Figure A..z·. 2 and ,i t 

is made use of in obtaining the equilibrium stresses for a 

ring stiffened shell for each harmonic • 

. Consideration of ring in the bu::.klina analysis: 

-Here we adopt the same notation as in chapters 3 and 4 and 

differentiate the corresponding quantitites for the ring by 

the subscript ~. Hence the strain displacement relations for 

the ring during buckling are 
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The total displacements are written as the sum of equilibrium 

displacements (Un, 19>J and v..9-~) and the virtual displacements 

~ >t 1 1l.n and t;. n so tha t 

U}"J:::: U-t, + (» 

19,n - ~ TJ -I- '1» (A.~. 3·) 

The virtual displacements of the ring are connected to the 

virtual displacements of the shell by similar relations as in 

(A$.l). 

The strain energy of the ring is given by 

Un Etl 0..3 J~£In 1.- "l.--- 1<,., ;iC..~ -t An een -
.2. (I-te) 

0 

~ 

] + :rx~·~e~ + L (;,,, J] k: olO de -(A,2S..4) 

_~-te)V £}J 

where ~, I zz ' .:r ,Fn ,Gl) are the cross-sectional parameters 

and the material constants of the ring. 

Assuming the virtual displacements of the ring to be represented 

136. 
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by a summation of Fourier harmonics, substituting (A X. V and 

CA X.3)into equation (A ~ .4) and then calculating the second 

variation, one 

"" S U)) -=-

gets 
. 3 
En CL IT 

:2. (I+e) 

~ 

+ J. ~l?t 
U-t eJ'l--

.+ §.J C-
Cn 

r 

lz z (C; "71, X. - n'l- ~ >In 

, -+ e 

2fT 

C SS (1\, i.J) := f G05 11 e. Sil1 c: e SI')"! j e d (} 
o 

cl:t'\d 

-~~ is the equilibrium state of strain in the ring for 
"'717\ 

the harmonic 1'). 

The expression for the second variation of the ring can again 

be identified to consist of the two distinct parts. The first 

part that is dependent only on the virtual displacements can 

be evaluated to be 

-(A X.G) 

The elements of the matrix k>l~ are identical to those given 

in Figure A X. 2 •. 

-
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sr.ftYleS5 D 
These additional~terms are to be added to the matrix kB]at the 

appropriate nodes in the buckling analysis. 
. 

The second part of the equation CA ~.5) that is dependent both 

on prebuckling strains and the virtual displacement is 

--
(A X.7) 

" 0 0 0 

where [ SK6 l1J - .. 
·0 . -J/'l, 

. •• 
0 -~/], GJ 0 

0 0 Cl 0 

and nodal displacements of the nth ... 
harmonic at junction. 

Again it has to be noted that the summation of [Skq " 1 over 

all the harmonics in the load gives the geometric stiffness 

-matrix [kG"] of the ring. 
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J. I moment of inertia on .x.~ and :z:.z. axes. 
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Fig. 1.1 Collapse mode of full size structure 
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COMPARISON OF DISPLACEMENTS BY DONNELL AND FLUGGE THEORIES 

.... 
Shell Boundary Max. u.. Max. 19 Max. vs 
Geometry Conditions Loading on Displacement by Displacement by Displacement by 

the Shell 
Root Donnell F1ugge Donnell Flugge Donnell F1ug·ge 

P= 1,0=1 -5 -5 0 0 -5 -5 1 500 C F 0.112x10 0.115xlO 0.4x10 0.399x10 

P= Cos e -5 -5 -5 . -5 -4 -4 
0.181x10 0.181x10 0.624x10 0.624x10 0.102x10 0.102x10 

P:: Cos2.G 0.379x10 -5 . -5 
0.379x10 0.154x10 -4 0·.154x10 -4 -4 0.3490x10 -4 0.3489x10 

1 300 C F P=l 
.. -4 

O.lllxlO 0.109x10 -4 0 0 0.111x10 -4 0.110xlO -4 

P= c,,!I G 0.490x10 -5 0.5Q5x10 -5 0.171x10 -4 . -4 
0.173xlO 0.320xlO -4 0.288x10 -4 

P= Cos 2. e . -4 
0.1046x1O 0.1056x10 -4 0.428x10 -4 0.429xlO -4 0.967xlO -4 . -4 

0.973x10 

1 100 C C P=l - - 0 0 0.104xlO -3 0.104xlO -3 

P= Co:> e 0.104x10 -5 0.105x10 -5 0.314xlO -4 -4 0.314x10 . 0.122x10 -3 0.122xlO -3 

P= 'Cos 2-9 0.164xlO -5 0.164x10 -5 0.639x10 -4 0.640x10 -4 0.214xlO -3 ·-3 0.214x10 

1 100 C 5.S. P=l 0 0 -3 • -3 - - 0.106x10 0.106x10 
P= cos9 0~167x10-4 0.168x10 -4 0.298xlO -4 0.298xlO -4 0.l25x10 -3 0.125xlO -3 

P= Cos Ze 0.449xlO -4 . 0.448x10 -4 0.664x10 
.;..4 

0.665xlO -4 '-3 0.217x10 0.217x10 -3 
... 

5 500 C F P=l 0.6x10 -4 0.595x10 -4 0 0 . -4 
0.4xlO 0.399x10-4 

P= Cc..'} e 0.891x10 -4 0.891x10 -4 -3 0.456x10 . 0.456x10-3 0.46xlO -3 0.46x1O -3 

P= CoS 2-9 0.336x10 -3 . -3 
0.337x10 0.269x10 -2 0.270xlO -3 0.554x10 -2 0.555x10 -2 
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COMPARtSON OF'DISPLACEMENTS BY DONNELL AND FLUGGE,CCont::J 
THEORIES 

Shell Boundary Max. U Max. C9 Max. ().3 
Geometry Conditions Loading on Displacement by Displacement by Displacement by 

the Shell 
Root Donnell Flugge Donnell Flugge Donnell Flugge 

1.0 10.0 C F P=l -2 0.997xlO' 0.925xlO -2 0 0 0.102xlO -1 0.103xlO -1 

P= C05 e 0.363xlO -2 ' -2 
0.365xlO 0.135xlO -1 0.136xlO- l 0.249xlO -1 0.248xlO -1 

P= (.05 ze 0.679x10 -2 ' -2 
0.702x10 O.268xlO -1 ' -1 

0.278xlO 0.665x10 -1 0.678x10 -1 

1 100 C F P=l 
. -3 

0.10xlO 0.967xlO -4 0 0 0.999x10 -4 0.999xlO -4 

P= c..o.s e 0.437x10 -4 0.437xlO -4 0.153x10 -3 0.i53x10-3 0.254x10 -3 0.254xlO -3 

P= l::.os 2.9 
. 4 

O.920x10-
" -4 

0.920x10 0.378xlO -3 0.378x10 -3 0.859x10 -3 O.858xlO -3 

100 C F P=';' bn Cos 110 ' -3 ' -3 -3 -3 ' -2 -2 1 
"'.:0, 

0.179x10 0.178x10 0.666x10, 0.668x10 0.158x10 0.157x10 

(wind 'load) 
: 

, . 
: 

. • . 

. , 
! . 

.. 

':' 



Shell Boundary 
Geometry Conditions 

Root 

1 500 C F 

1 300 C F 

• 1 100 C C 

1 100 C 5.S. 

. 
5 500 C F 

e' 

---------1 

COMPARISON OF STRESS RESULTANTS BY DONNELL AND FLUGGE ,THEORIES 1 

I 

fv1ax. N::lt-
-' -

Loading on " , 

the Shell 
Donnell Flugge 

P= bo=1 0 0, 

P= Cos 9 0.18lxlO -5 ' -5 0.18lxlO 
P= C;os 2..e 0.726xlO -5 - -5 0.726xlO 

P=l 0 0 
p= Cos e . -5 

0.503xlO -5 0.505xlO, 
p= Co,!!,:2.9 . -4 

0.201xlO 
., -4 

0.202xlO 

P=l 0 0 
p= CO,5,G ' -4' 

0.268xlO 0.268xlO -4 

P= Cos .2.9 0.373xlO -4 0.373xlO 
~4 

P=l o " 0 
P= Ccs e 0.125xlO -4 0.125xlO -4 

P=Cos 2e 0.429xlO -4 0.429xlO -4 

P=l 0 0 ' . 
p= Cos e 0.454xlO -4 0.454xlO -4 

P= CoS 2G 0.180xlO -3 0.18lxlO -3 

Max. Ne 
" 

Donnell Flugge 

0.378xlO -5 0.378xlO -5 

0.380xlO -5 ' -5 0.380xlO 

0.367xlO -5 ' -5 0.367xlO 

O.lOlxlO -4 O.lOOlxlO -4 

0.119xlO -4 ' -4 0.104xlO 

0.102xlO -4 0.106xlO -4 

-4 0.949xlO ' 0.~49xlO 
-4 

0.946xlO -4 0.946xlO -4 

0.946xlO -4 0.946xlO -4 

0.968xlO -4 0.968xlO -4 

0.967xlO -4 0.967xlO-4 

0.963xlO -4 0.963xlO -4 

0.364xlO -5 - -5 0.364xlO 

0.136xlO -4 0.136xlO -4 

0.542xlO -4 0.543xlO -4 

Max. N~-e 

Donnell 

0 

0.348xlO -5 

0.688xlO -5 

0 

0.947xlO -5 

0.184xlO -4 

0 

0.384xlO -4 

0.746xlO -4 

0 

0.443xlO -4 

0.81.8xlO ... 4 

0 

0.175xlO -4 

0.346xlO-4 

" 

Flugge 

0 

0.348xlO -5 

' -5 0.688xlO 

0 
-5 0.956xlO, 

0.185xlO -4 

0 

0.385xlO 
~4 

0.746xlO -4 

• 
0 

-4 0.443xlO . 

0.819xlO . 
0" 

0.175xlO 

0.346xlO 

-4 

-4 

-4 

N 
o 
o 



Shell Boundary 
Geometry Conditions 

Root 

1 10 C F 

1 100 C F 

1 100 C F 

l 

. 

COMPARISON OF STRESS RESULTANTS BY DONNELL AND FLUGGE· (coni:.) 
THEORIES 

Max. Nx. Max. Ne Max. N:K9 .. 
Loading on 
the Shell 

Donnell Flugge Donnell Flugge Donnell 

P=l 0 0 O.931xlO -2 . -2 
-O.938x10 0 

P= COS G O.408x10 -2 O.412x10-2 O.104x10 -1 -1 O.102x10· 0.602xlO -2 

p= Cos 2e O.128xlO -1 . -1 
O.134xlO -1 O.117x10. 0.109x10 -1 0.92xlO -2 

P=l 0 0 O.909xlO -4 -O.909xlO -4 0 
p= Co':) e . '-4 

O.451x10 -4 O.451xlO· . O.917x10 -4 O~915x10-4 . '-4 
O.822x10 

P= Co,!;, 2. G 
. . -3 
O.179xlO 

. -3 
O.179xlO O.967xlO -4 . -4 

O.967x10 O.159xlO -3 

p=f. b Cos tle -3 -3 -3 . -3 0.25lxlO-3 
",:0 YJ . 

O.35lx10 0.352x10 O.105xlO , 0.105x10 

(wind load) 

\ 

, . 

. 
~ 

" 

. 

Flugge 

0 

O'.605xlO -2 

0.966xlO -2 

-
0 

O.822xlO -4 

O.159xlO -3 

0.252xlO -3 

: 

• 

• 

'\ 



Shell Boundary 
Geometry Conditions 

Root 

1 5'00 C F 

1 300 C F 

" 
1 100 C C 

1 100 C 5.5. 

. 

5 500 C F 
., 

• 

COMPARISON OF MOMENT RESULTANTS BY DONNELL AND FLUGGE THEORIES 

Max. IV} x Max. Jvl e Max. M:xe , , " -
Loading on - " 

the Shell 
Donnell Flugge Donnell Flugge Donne11 

p= /'0 =1 -2 -0.660x10' 0.660x10 -2 -0.198x10 -2 0.198x10 -2 
0 

p= COS 9 -0.811x10 -2 -0.811x10 -2 -0.243x10 -2 ' -2 
-0.243x10 0.51x10 -4 

p= Cos 2G -0.126xlO -2 ' -2 
-0.126x10 -0.378x10 -2 . -2 

-0.378x10 0.17x10 -3 

p= I 
. -2 

-0.110x10 -0.110x10 -2 -0.330x10 -2 -O.330x1O -2 0 

p= C.O.s e -0.209x10 -1 . -1 -0.137x10 0.627x10 -2 ' -2 
0.413x1O -0.2x10 -3 

p= cos 2.e . -1 
:-O~222x1O -0.219x10 -1 O.662x10 -2 O.659x10 -2 0.485x1O -3 

p= J 
. -1 

~0.330x10 -0.330x10 -1 -0.991x10 -2 -O.991x10 -2 0 

p= Co.5 e 0.388x1O -1 0.337x10 -1 0.101x10 -1 O.101x10 -1 0.596x10 -3 

p='CcsZ9 O.435x10 -1 0.435x10 -1 0.130x10 -1 O.130x10 -1 O.164x10 -2 

p= I ' -1 
-0.330x10 -0.330xlO -1 -0.991x10 -2 -0.991x10 -2 0 

p= Coos e 0.350x10 -1 0.350x10 -1 0.105x10 -1 0.105x10 -1 0.960xlO-3 

p= ~S 2-G 0.435x10 -1 0.435x10 -1 0.130x10 -1 O.130x10 -1 '-2 
0.225x10 

P=1 1-0.660x10 -2 0.660x10 -2 -0.198x10 -2 . -2 
-0.198x10 0 

p= COSe 
. -1 

0.340x1O 0.340x10 -1 -1 P.102x10 . 0.102x10 
:"1 

0.394x10 -4 

p= (.o..s 2e 0.116 0.116 -1 -1 0.347x10 0.348x10 -

" 

Flugge 

0 

0.457x10 -4 

0.161x10 -3 

0 

0.122x10 -3 

0.46xlO -3 

0 

0.540x10-3 

. -2 
0.173xlO 

: 

0 

0.909x10-3 

0.236x10 -2 
... 

o '\ 
0.263x10 -4 

-

I\J 
o· 
I\J 
• 
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Shell Boundary 
Geometry Conditions 

Root 

1 10 C F 

1 100 C F 

1 100 C F 

. 

COMPARISON OF MOMENT RESULTANTS BY DONNELL AND FLUGGE.(c6nt.) 

THEORIES 

Max. M:x:. Max. Me Max. M~e 
Loading on - .' -
the Shell 

Donnell Flugge Donnell Flugge Donnell 

P=l -0.330 -0.330 -0.991x10 -1 -0.99xlO -1 0 

P= Cos e 0.527 0.513 0.512 0.512 . -1 
0.316x10 

p=~.s 2S 0.950 0.934 0.268 0;.276 0.128 

P=l 
. -1 

-0.330x10 
. -1 

-0.330xlO -0.991x10 -2 -0.991x10 -2 0 

P= CoS e . 0.435xlO-1 0.434xlO -1 0.130xlO -1 0;'130x10-1 0.782xlO -3 

P= CoS 2 e 0.754xlO-1 . -1 
0.743xlO 0.222x10 -1 O.222x10 -1 0.293x10 -2 

6 b we'YlG 0.127 P=J;: " ;J 0.124 0.374x10 
)'):.0 

-1 0.373x10 -1 0.696x10 -2 

(wind-load) 

r 

. 
, 

. 
~ 

Flugge 

0 

0.22x10 -1 

0.115 

0 

0.657x10 -3 

0.267xl"Q-2 

0.670x10 

: 

: 

• 

'\ 

-2 

I\) 

o 
VJ 

. 
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TABLE 3.1 

L/o., 
critical buckling pressure ~-P'-nJE) x 30.,O~ 

present Wang and Billington 
analysis Cole 

1 169 174 

2 83.7 84.2 86.1 

3 54.4 54.9 
"' 

4 44.3 45.5 

5 31.5 32.1 35.2 
, 

6 26.9 27.2 

7 24.8 24.9 

8 23.7 23.8 

9 20.2 20.9 

10 16.1 16.6 21.2 
-

Comparison of critical buckling pressures 
for clamped-free cylindrical shell (under 
uniform radial load, cA.jh::. 100 ). 

.. , 

, 
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L/o.- o../h 

1 200 
300 
400 
500 

2 200 
300 
400 
500 

·3 200 
300 
400 
500 

4 100 
200 
300 
400 
500 

5 100 
200 
300 
400 
500 

.. 

TABLE 3.2 

Variation of Buckling p~essure Pc" wi th the single harmonic 
selected for the virtual displacement 

The harmonic selected n 
3 4 5 6 7 8 9 

3599.0 1125. 385.9 187.0 132.2 125.4 138.1 
2278.0 736.5 241.0 103.0 59.59 46.84 45.90 
1672.0 549.1 176.5 71.60 37.2 25.47 22.3 
1321.0 437.9 139.6 55.18 26.98 16.80 13.35 

525.2 130.4 66.23 63.32 76.82 97.31 122.2 
321.7 76.65 30.02 22.19 23.92 29.16 36.16 
227.5 54.78 18.87 11.48 10.93 12.64 15.38 
174.5 42.82 13.76 7.29 6.16 6.72 7.89 

142.7 48.72 44.22 56.81 75.57 98.31 124.4 
83.18 22.57 14.95 17.09 22.1 28.59 36.2 
57.55 14.34 7.52 7.54 9.35 11.97 15.11 
43.55 10.51 4.68 4.11 4·.86 6.13 ·7.07 

202.9 219.3 320.5 456.1 618.6 789.7 1024.2 
58~96 33.32 41.13 56.92 76.80 99.99 126.3 
32.22 12.52 12.59 16.69 22.38 29.19 36.98 
21.59 6.84 5.61 7.03 9.32 12.12 15.38. 
16.01 4.53 3.11 3.63 4.73 6.14 7.77 

141.8 204.6 313.3 451.5 608.1 857.7 971.5 
32.59 28.68 40.29 50.07 77.30 100.72 127.4 
16.31 9.65 12.09 16.81 22.72 29.61 37~40 
10.49 4.72 5.18 . 7.03 9.47 12.35 15.65 

7.57 2.84 2.72 3.58 4.78 6.24 7.92 

10 

157.0 
49.04 
22.23 
12.40 

150.5 
43.91 
18.43 
9.45 

154.9 
45.0 
18.67 

9.45 

1259.6 
158.2 
46.07 
19.18 

9.69 

1260.2 
150.8 

46.12 
19.50 

9.88 

11 

1036. 
362.q 
164.4 
91.86 

664. (, 
226.2-

. 106.4 
60.03 

564. '-I 
180.1 
83. I, 
45.71., 

7045. 
1436. 
166.0 

71.4 t 
38.50 

6504. 
1179. 
185.0 
71.0~ 
35.48 

N 
o 
U1 
• 
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TABLE 3.3 

Variation of buckling pressures with 11, ('rh:: ')1, -+4) 

L/O- e>- l Pc.. 17/ E )( 3()X 10 6 {o " 11, = 
..0.---

h 2 3 4 5 6 7 8 

1.0 100 414.2 268.4 211.1 190.4 1~5.4 224.5 292.7 

200 130.9 68.9 46.1 36.2 32.4 32.9 40.0 

300 76.0 35.4 21.14 15.1 12.4 11.68 13.41 

400 53.9 23.4 12.89 8.54 6.56 5.86 8.61 

500 42.0 17.5 9.09 5.67 4.13 3.54 4.93 

2.0 100 139.2 112.5 108.0 124.8 159.0 204.3 277.4 

200 29.0 20.8 17.8 17.6 20.3 25.3 34.17 

300 12.66 8.30 6.63 6.09 6.45 7.67 10.21 

400 7.39 4.5 3.39, 2.96 2.95 3.36 4.38 

500 5.03 2.86 2.05 1.72 1.64 1.78 2.29 

3.0 100 89.95 - 80.61 89.86 119.4 158.2 

200 16.0 12.9 12.4 14.55 18.67 23.9 32.5 

300 6.26 4.72 4.24 4.52 5.54 7.05 9.57 

400 3.31 2.38 2.04 2.02 2.39 3.0 4.07 

500 2.06 1.42 1.18 1.14 1.26 1.56 2.04 

4.0 100 67.47 64.34 81.13 108.5 134.7 159.9 

200 -11.21 9.49 10.01 12.77 1· .14 19.6 25.9 

300 - 4.18 3.34 3.23 3.89 4.98 6.08 8.13 

400 2.1 1.64 1.51 1.70 2.04 2.67 3.60 

500 1.28 0.962 0.866 0.957 1.04 1.39 1.97 

5.0 100 52.4 51.9 67.79 83.39 96.9 111.0 14'''-.0 

200 8.31 7.28 8.27 10.29 12.06 13.82 17.48 

300 3.08 2.53 2.62 3.24 3.89 4.5 5.85 

400 1.55 1.23 1.22 1.48 1.94 2.02 2.7 

500 0.923 0.713 0.676 0.908 0.98 1.04 1.81 

. , 



'1-/ (). 
1 

2 

,3 

5 

6 

7 

1.0 

10 

10 

TABLE 3.3(b) 

Variation of ""Pc.)7 wi th n, 

Owln l J>c.n/E J . .?JOX[O (, fon 
1, 0 2 3' 

200 368.1 130.9 68.9 

300 29.5 12.'66 8.30 

100 127.7 89.9 80.6 

300 4.6 3.08 2.53 

50 330.0 308 315 
,-

200 4.97 4.60 

100 21.32 18.21 19.21 

50 169.6 160.1 170.0 

20 2998 3239 4443' 

"207. 

Yl/ = 
4 

46.1 

6.63 

89.86 
. 

2-.62 

5.36 

22.74 

• I 

-. 
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TABLE 3.4 

Influence of various combination of harmonics on 
buckling pressure ( Pc l.:J 

';''',30)1.10 
e 

L/o.. 0-/11 
The buckling pressure when the harmonics selected are -

Five consecutive 1,3,5,7 and 9 2,4,6,8 and 10 2,3,7,8 and 9 
ones t! 11, ~,.,,.) 

300.0 11.68 (7-11) 22.93 19.79 17.66 

1.0 400.0 5.86 (7-11) 12.48 10.24 9.54 

500.0 3.54 (7-11) 8.03 6.29 6.17 

300.0 6.09 (S-9) 9.98 9.60 10.0 

2.0 400.0 2.95 (6-10) 4.88 4.57 4.43 

500.0 1.64 (6-10) 2.81 2.60 2.40 

300.0 4.24 (4-8) 6.78 6.94 9.30 

3.0 400.0 2.02 ( 5-9) 3.18 3.23 
, 

3.95 

500.0 1.14 ( 5-9) 1.803 1.90 2.02 

. ' 

N, 
o 
ex> 
• 



TABLE 3.5 

shell -.:,..- Llc. =1 L/IJ..=2 '-la.. = 5 
geometry «-1f1 =100 o..b1=200 ~h=100 

No. of terms Buckling pressures, tp,tl/c. ) )(.:30r.IOCt 

2 212.6 18.99 56.71 

3 193.9 17.77 53.40 

4 192.3 17.73 52.22 

5 190.4 . 17.69 51:93' 

Convergence of buckling oressures with no. of terms in 
axial direction 

TABLE 3.6 

shell --=>-- Lld =1 L/a.=1 1../el =5 L/~=5 l./fA =5 
geometry o,/h =100 olh =500 a/h =100 aih =200 o/h =500 

No. of terms Buckling pressures eRn/ lE J.?:J OXl ob 

1 1037.5 26.98 141.8 32.5 2.84 

2 514.1 12.70 91.5 16.3 1.54 

3 305'.0 6.63 65.4 10.9 1.03 

4 224.1 4.37 55.6 8.3 0.781 

5 190.4 3.54 51.9 7.3 0.676 

Convergence of buckling pressures with number of terms in 
circumferential direction 

209. 



a/h 

B.C. -F s.s 

5 17.6 33.06 -
6 20.3 29.64 

71 25.3 30.21 
! 

8 

., 

3! 7.28 13.98 
I -

4' 8.27 12.72 

5 10.29 13.97 

61 
I 

12.06 17.74 
, 
I , 

TABLE 3.7 Ca) 

VARIATION OF Per WITH . N1 o.",d tip B.C. 

L/a = 2-

200 300 

P c.s C F s.s P 

41.5 36.07 6.09 14.07 18.87 -
35.36 31.95 35.94 6.45 11.?3 14.61 

34.3 32.08 34.78 7.67 10.85 13.10 -
40.26 12.34 

L/a = 5 

17.23 15.9 17.27 2.541 5.41 

14.81 14.09 14.81 2.63 4.58 5.54 

15.11 14.84 15.12 3.24 4.58 5.08 - -
3.87 5.08 5.63 

C.S. 

15.80 

12.75 

11.81 

13.24 

5.24 

5.04 -
'5.46 

C 

14.77 

13.20 

14.42 

6.99 

5.57 

5.22 

5.46 

IV 
~ 
o 
• 
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TABLE 3.7 (b) 

VARIATION OF Per WITH N1 o..ne\ IT? B.C. 

L/a = 2 

N1 
a/h 400 500 

B.C. F s.s P C.S. C F s.s P C.S. C 

5 2.96 1.72 

6 2.95 6.19 8.25 7.04 8.34 1.64 3.94 5.49 4.60 5.57 - -
7 3.36 5.51 6.99 6.17 7.05 1.78 3.36 4.44 3.86 4.50 - - -
8 4.38 6.02 7.40 6.68 7.46 2.29 3.57 4.60 4.06 4.65 

L/a - 5 

3 1.23 2.84 3.80 0.71 1.6 2.54 

4 1.22 2.28 2.58 2.68 2.85 0.67 1.36 1.73 1.638 1.75 -
5 1.48 2.07 2.53 2.43 2.54 0.908 1.23 1.48 1.42 1.48 

6 1.94 2.35 2.56 2.53 2.57 0.98 1.908 1.64 :1.61 1.49 
, 



L-/o. 

2.0 

5.0 

TABLE 3.8 

Buckling pressures for different tip B.C. 
with base clamped 

( 'Pc..1"I • 30x10C, ) 
e 

~/h 
Tip Boundary condition 

Free Simply Pinned Clamped-
supported sliding 

200.0 17.6 29.64 34.3 31.95 

300.0 6.09 10.85 13.10 11.81 

400.0 2.95 ·5.51 6.99 6.17 

500.0 1.64 3.36 4.44 3.86 

200.0 7.28 12.72 14.81 14.09 

300.0 2.53 4.58 5.22 5.04 . 

400.0 1.22 2.07 2.51 2.43 

500.0 0.676 1.23 1.44 1.42 

212. 

Clamped 

34.78 

13.20 

7.05 

4.50 

14.81 

5.22 

2.53 

1.44 



Shell 

LjOw 

1 

1 

3 

4 

213. 

TABLE 3.9 

_I~n;.;.;;f..;;;;l,..;.u..;;.e..;;.;n..;;.c_e_o_f--"b_a..;;.s_e_n_o_t_a_t_i_o_n_o_n_b_u_c_k_l_i_n...;g;...-..o;;p..;;;r...;;.e..;;;s..;;;s...;..u..;;;r-..e ( Pc". ~O )( 10 ') 

E. 

geometry Buckling pressure when 

n}h 
Base notation Base is clamped 

is relaxed ( (,.91" to) ;: 0) 
(pinned condition) 

. 
100 188.68 190.4 

500 3.50 3.54 

300 4.22 4.24 

300 3.24 3.22 



TABLE 3.10 

- _ Fourier coefficients for the pressure data 

.. , 

bo 0.233 0.586 0.609 

hi 0.491 0.329 0.340 

bl-
, 

0.913 0.846 0.766 

h.,3 0.425 0.538 0.476 

·blt -0.049 -0.043 -0.053 

b5 -0.161 -0.092 -0.086 

b{, 0.0891 0.0158 0.0283 

Fourier pressure coeffients (for the pressure· 
distribution in Figure 3.7). 

'. 

.. 
I 



TABLE 4.
0

1 

. 
The loading harmonic selected for compariso.n 

Quan-
tity Theory 
com- used .1 2 3 4 5 6 
pared 

, 

Donnell 2.54 8.59 23.0 48.86 73.5 71.7 

U9~ 
.-

-
0... 

F.E. 2.54 8.59 23.0 49.10 74~8 73.2 

Donriell 0.451 1.79 3.93 6.33 7.34 58.9 
o 0 ')(.~ 
E 

F.~ • 0.437 1.74 3.88 6.31 7.41 59.8 . 

Donnell 0.917 0.953 -1.06 1.90 2.20 1.77 
+1.17 

oOe Tf\C).J)t 

£ 
. 

F.E. 0.915 0.947 +1.17 1.91 2.22 1.785 
-1.04 

. . 

Donnell 0.825 1.59 2.32 2.83 2.80 
_ . 
. 

(he tyfO-i-.--
E 

F.E. 0.872 1.69 2.54 3.12 3.12 -

Comparison of Results by FINITE ELEMENT ANALYSIS with 
• • CONTINUUM ANALYSIS 

For a cantilever shell of L/a = 1 and a/h = 100 

The loading is. p~a = 1 

'r; h 

215·. 

01 



TABLE 4.2 

. 
The loading harmonic selected for comparison 

Quan-
tity Theory 
com- used 1 2 3 4 5 
pared 

Donnell 2.56 8.74 23.9 55.3 111.4 

u.9 mo..)' -0.. 

F.E. 2.56 8.72 23.8 . 55.3 111.7 

Donnell 0.453 1.82 4.07 7.20 11.05 

er:x. 7)'\oyt. 

£ 

F.E. 0.409 1.73 3.98 7.05 10.78 

Donnell 0.95 0.962 0.95 1.05 1.29 
Cfe ')7\0.." 
-,--

E 
" . 

F.E. 0.948 0.948 0.945 1.035 1.27 

Donnell 0.87 1.72 2.47 3.41 4.19 

cr;e~1' -
E-

F.E. 0.961 1.86 2.72 3.59 4.46 

Comparison of Results by FINITE ELEMENT ANALYSIS with 
• • CONTINUUM ANALYSIS 

For a cantilever 

The 

shell ~f L/~ = 1 and a/h 

loadin~ is i ( Yh) :: 1 " 

= 500 

. 

,'_ .• I 

216 

6 

198 

. 

197 

15.2 

14.9 

1.81 

1.75 

", 
.0 -

-

'0
0 
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TABLE 4.3 

. . 
The loading harmonic selected for comparison 

Quan-
tity Theory 

, 

com- used 1 2 3 4 5 
pared 

Donnell 115.0 1383.0 5890 8940 5440 
- ".:- . 

{,0t'TfllJ'f -
lA. 

F.E. 114.8 1385.0 5970 9540 5850 

Donnell 11.35 45.2 91.7 90.0 55.6 

'cJx. mN< -
[; 

F.E. 11.4 45.4 93.6 95.4 58.4 

Donnell 0.938 27.7' 27.10 16.73 
+13.4 

<J.G 'Y"IVA~ -'E 

F.E. 0.940 28.1 28.6 17.50 
+13.65 

Donnell 0.438 8.0 11.35 7.71 6.25 

o;a 7'tVJ'o.~ - £ 

F.E. 0.440 8.80 10.98 9.08 7.20 

Comparison of Results by FINITE ELEMENT ANALYSIS WITH 
, CONTINUUM ANALYSIS 

For a cantilever shell of L/a = 5 and a/h = 500 

The loading is B a... == I 
E. ' h ' . " 

6 

2470 

2620 

38.4 

39.4 

11.52 

, 

11.84 

. 
-. 

-
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TABLE 4.4 

Shell geometry buckling pressure by 
p~" Ps,-

L/a a/h F.E.Method Flugge 

2 100 148.4 142.0 

200 26.09 24.8 

4 100 75.73 72.50 . , 
200 12.95 11.6 

COMPARISON OF BUCKLING PRESSURES WITH FLUGGE'S RESULTS 

(for the case ofaxisymmetric radial compression) 

TABLE 4.5 

Shell geometry buckling pressures bYR . 
c" p.,. 

L/a a/h F.E.Method Almroth 

11/2 100 221.5· .216~0 

11 200 19.39 18.0 

211 200 10.53 10.45 

2if 400 1.84 1.69 

COMPARISON OF BUCKLING PRESSURES WITH ALMROTH'S RESULTS 

(for the case of non-uniform pressure of the type 

Y:: 1'0 ( b o+ b,.Cos e) . 

":·218 

·1 
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TABLE 4.6 

Shell geometry Buckling 
pressure 

No. of for successive courses from base 
courses L/a a/h Pc..}J, '30')(10' 

C 

5 0.2 for each 100, 200, 300, 6.19 
400 and 500 

. 
4 0.2, 0.2, 0.2 100, 200, 300 5.37 

and 0.4 and 500 

5 0.1 for each 1055, 1405, 0.111 
1898, 2918 
and 3075 

5 0.066 for each 1115, 1312, 0.125 
1990, 3058, 
3740 

3 0.2, 0.2 100, 200 4.72 
and 0.6 and 500 

2 0.2 and 0.8 100 and 500 4.20 

2 1.66 and 2.5 150 and 300 4.0 

3 0.84, 1.66 150, 200 4.1 
and 1.66 and 300 

2 '1.33 and 2.0 150 and.300 5.17 

2 1.66 and 1.66 200 and 300 5.28 

£UCKLING PRESSURE FOR VARIABLE THICKNESS SHELLS UNDER 

WIND LOADS 

'219. 
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TABLE 5.1 

Shell Geometry Buckling Pressure by , 
J"?(..n/t;: J. 30xIO 

-
For Each Course 

L/a No. of Experiments F.E. Method 
Courses Va a/h 

4.16 2 1.66 150 3.10 4.0 

2.5 300 
, 

4.16 3 0.84 150 3.33 4.10 

1.66 200 

1.66 300 

3.33 2 1.33 150 3.94 5.17 

2.0 300 

3.33 2 1.66 200 3.98 5.28 

1.66 300 

COMPARISON OF BUCKLING PRESSURES 

FOR VARIABLE THICKNESS SHELLS 

" -, 

220. 



Shell Geometry Buckling Pressure By 
c. ""Pr .. 

Type of Theory Flow 
L/a a/h Experiment 

(a) (b) 

Smooth Flow 0.286 

1.833 214.0 Turbulent Flow 0.288 0.433 0.278 

Turbulent Shear 0.281 
Flow 

Smooth Flow 0.238 

4.728 149.0 Turbulent Flow 0.250 0.422 0.37 

TUrbulent Shear 0.240 
.. Flow 

, 

COMPARISON OF BUCKLING PRESSURES FOR AXISYMMETRIC COMPRESSION 

(VELOCITY V = 0) 

p..,t) 

, 

I\) 
I\) 

~ . 
• 



Velocity Buckling Pressure 

Type of 

of Flow Experiments: when the Number of Lobes is 

Flow In/Sec 
1 3 5 7 8 

Smooth 73.0 0.189 0.306 0.526 0.460 0.460 
Flow 52.2 0.245 0.294 0.396 0.387 0.387 

Turbulent 73.0 0.187 0.335 0.491 0.491 0.476 
Flow 52.2 0.262 0.305 0.395 0.408 0.408 

Turbulent 73.0 0.226 0.330 0.458 0.442 0.442 
Shear 52.2 0.267 0.296 0.374 0.374 0.374 
Flow 

I 

COMPARISON OF BUCKLING PRESSURES 

(For the Shell with L/a = 1.833 and a/h = 214) 

By 
(Pt.h 

(a) 

0.443 
0.434 

0.435 
0.472 

I 

0.443 
0.47 

P.,s. ~ ) 

Theory 

(b) 

0.264 
0.286 

0.325 
, 0.325 

0.326 
0.352 

, 

, 

I 

I\) 
I\) I 
I\) , 

• 
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Buckling Pressures 
C 'Pc." p·s. c.) 

Type - Velocity Experiments 
Of Of 
Flow Flow When the No. of Lobes is 

In/Sec 

1 2,3,4 and 5 (a) 

Smooth Flow 73.0 0.112 0.365 
52.2 0.183 0.30 0.516 

0.465 

Turbulent Flow 73.0 0.117 0.405 0.49 52.2 0.195 0.331 0.49 

Turbulent 77.8 0.147 0.360 0.478 
Shear Flow 54.3 0.20 0.307 0.466 

-

., 

COMPARISON OF BUCKLING PRESSURES 

(For the Shell with L/ a = 4.728' and a/ h :: 149 .0) 

By 

Theory 

(b) 

0.37 
0.442 

I 

0.38 
0.427 

0.402 
0.43 

~ 

, . 
. I 

1\). 
I\) 

w 
• 



---------------_ ... -

224. 
I 

TABLE -6.1 

-
VALUES OF A FOR DIFFERENT END BOUNDARY CONDITIONS 

TOP FREE SIMPLE FREE CLAMPED FREE 
SUPPORT 

BASE CLAMPED SIMPLE CLAMPED- CLAMPED ELASTIC 
SUPPORT SLIDING SUPPORT 

- . 
A 0.66 1.1 0.22 1.3 Ref.Fig. 

(6.5) 

TABLE 6.2 

TYP ICAL TANK WIDTH 96 IN BUTT WELD COURSES (APPENDIX A TYPE TANKS) 

"" -

1 2 3 4 5 6 

TAN K SHELL TANK (MAX PERMISSIBLE HEIGHT) MAX FREE 
RA DIUS THICKNESS HEIGHT STANDARDS PRESENT HEIGHT 

. ANALYSIS CLAMPED-FREE 

50.0 0.34 24.0 40.44 50.45 30.27 
50.0 0.46 32.0 86.11 107.41 64.45 
50.0 0.57 40.0 147.18 183.59 110.15 
50.0 0.69 48.0 237.29 296.00 177.60 
60.0 0.41 24.0 _ 49.13 61.28 36.77 
60.0 0.55 32.0 102.40 127.73 76.64 
60.0 0.60 40.0· 127.28 158.77 95.26 
60.0 0.83 48.0 286.47 357.35 214.41 
70.0 0.47 24.0 54.85 68.43 41.06 
70.0 0.64 32.0 118.69 148.06 88.83 
70.0 0.80 40.0 207.34 258.64 155.19 
70.0 0.96 48.0 327.07 407.99 244.80 
80.0 ' 0.54 24.0 63.53 79.24 47.55 
80.0 0.73 32.0 134.98 168.38 101.03 
80.0 0.91 40.0 234.19 292.14 175.28 
80.0 1.00 .. 48.0 296.46 369.82 221.89 
90.0 0.61 24.0 72.20 90.07 54.04 
90.0 0.82 32.0 151.28 188.71 113.23 
90.0 1.03 40.0 267.51 333.70 200.22 
90.0 1.24 48.0 425.40 530.65 318.39 

1 00.0 0.67 24.0 77.95 97.23 58.34 
1 00.'0 0.91 32.0 167.58 209.04 125.42 
1 00.0 1.14 40.0 294.35 367.18 220.31 
1 00.0 1.37 48.0 466.02 581.33 348.80 

s ~ell thickness in inches, other dimensions in feet. 



TABLE 6.3 

TYPICAL API TANKS BASED ON APPENDIX K METHOD 

TANK TANK NUMBER REDUCED MAX PERMISSIBLE HEIGHT 
DIAM HEIGHT OF HEIGHT STANDARD PRESENT 

COURSES ANALYSIS 
1 I 2 3 4 5 6 

160 40 77.38 66.03 82.36 
180 40 85.15 70.15 87.51 
200 40 94.24 74.28 92.65 
220 40 5 87.92 ' 84.29 105.15 
240 40 97.39 90.54 ,112.94 
260 40 107.70 96.40 120.25 
280 40 118.76 101.83 127.03 

140 48 97.74 87.68 109.38 
160 48 113.08 94.45 117.82 
180 48 125.77 101.67 126.83 
200 48 6 143.38 111.50 139.09 
220 48 132.59 124.83 155.72 
227 48 137.46 128.05 159.73 

120 56 111.02 109.73 136.88 
140 56 135.30 118.75 148.14 
160 56 7, 157.70 129.89 162.03 
180 56 180.84 145.29 181.24 
189 56 190.38 149.91 187.00 

120 64 147.01 143.15 178.57 
140 64 180.67 157.54 196.51 
160 64 8 213.19 173.98 217.03 . 
165 64 217.68 176.96 220.74 -

all dimensions in"feet 

INTERMEDIATE 
GIRDER 
API 

7 

YES 
YES 
YES 
YES 
YES 
YES 
YES 

YES 
YES 
YES 
YES 
YES 
YES 

YES ~ 

YES 
YES 
YES 
YES 

YES 
YES 
YES -YES 

PRESENT 
ANALYSIS 

8 

NO 
NO 
YES 
NO 
NO 
NO 
NO 

NO 
NO 
NO 
YES 
NO -
NO 

NO 
NO 
NO 
NO 
YES 

NO 
NO 
NO 
NO 

,-

I\) 
I\) 
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• 



TANK 
DIAM 

1 

200 
220 
240 
260 
280 
300 
320 
340 
360 
380 

180 
200 
220 
240 
260 
280 
298 

160 
180 
200 
220 
240 
247 

160 
180 
200 
212 

TABLE 6.4 

TYPICAL APPENDIX D TANKS BASED ON APPENDIX K METHOD 

TANK NUMBER REDUCED MAX PERMISSIBLE HEIGHT INTERMEDIATE 
HEIGHT OF HEIGHT STANDARD PRESENT GIRDER 

COURSES ANALYSIS API 

2 3 4 5 6 7 

, -
40 75.39 43.26 53.96 YES 
40 67.41 49.25 61.43 YES 
40 75.66 51.08 63.72 YES 
40 5 82.00 54.29 67.72 YES 
40 88.28 . 57.51 71.74 YES 
40 94.98 60.51 75.48 YES 
40 102.25 63.32 78.98 YES 
40 110.42 66.25 82.65 YES 
40 118.12 68.44 85.38 YES 
40 126.55 70.73 88.23 YES 
48 96.93 59.18 73.82 YES 
48 110.35 61.99 77.32 YES 
48 99.17 70.84 88.37 YES 
48 6' 113.01 74.82 93.34 YES 
48 123.01 79.60 99.29 YES 
48 132.48 84.30 105.16 YES 
48 141.61 88.30 110.15 YES '. 
56 115.24 75.53 94.22 YES 
56 134.07 80.46 100.37 YES 
56 155.90 86.43 107.82 YES 
56 7 139.47 98.03 122.29 YES 
56 159.57 104.09 129.85 . YES 
56 165.69 106.28 132.57 YES 

, 
64 152.88 98.77 123.20 YES 
64 180.66 106.28 132.57 YES 
64 8 211.99 116.42 145.22 YES 
64 . 178.14 127.35 158.85 YES 

all dimensions in feet 

PRESENT 
ANALYSIS 

8 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

'" '" m 
• 



TABLE 6.5 

TYPICAL APPENDIX G TANKS BASED ON APPENDIX K METHOD 

TANK TANK NUMBER REDUCED MAX PERMISSIBLE HEIGHT INTERMEDIATE 
DIAM HEIGHT OF HEIGHT STANDARD PRESENT GIRDER 

COURSES ANALYSIS API 

1 .2 3 4 5 6 7 

240 40 56.06 31.41 39.18 YES 
260 40 60.13 31.82 39.69 YES 
280 40 65.93 32.95 41.10 YES 
300 40 5 74.93 35.57 44.38 YES 
320 40 79.25 35.10 43.79 YES 
340 . 40 83.59 36.60 45.66 YES 
360 40 88.08 38.08 47.50 YES 

220 48 73.52 41.85 52.20 YES 
240 48 79.74 43.27 53.98 YES 
260 48 87.86 45.30 56.50 YES 
280 48 6 96.83 47.26 58.95 YES 
300 ,48 106.77 49.16 61.33 YES 
320 48 117.50 51.00 63.62' YES 
340 48 124.62 53.14 66.29 YES 
360 48 131.15 55.32 69.01 YES 

200 56 109.29 48.96 61.08 YES 
220 56 100.03 55.56 69.30 YES 
240 56 110.58 58.73 73.26 YES 
260 56 122.28 61.80 77.10 . YES 
280 56 7 135.50 64.88 80.93 YES 
300 56 149.69 67.73 84.49 YES .. 
320 56 165.18 70.55 88.01 . YES 
328 , 56 169.42 71.75 89.50 YES 

~ 

200 64 144.86 63.92 . 79.73 YES 
220 64 133.17 72.78 90.79 YES 
240 64 147.76 77.37 96.52 YES 
260 64 8 164.03 81.73 101.96 YES 
280 64 . 1R?OS 86.1? 107 43 YES . . all d~mens~ons ~n feet 

PRESENT 
ANALYSIS 

8 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

YES 
YES 
YES 
YES 
YES 

l\) 
l\) 
-.J 
• 



· . 

COMPUTER PROGRAMS 
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JOB BS01,B,KSP1650 
JOBCORE 4SK 
LUFORTRAN 
RUN f' 6000 

**** DOCUMENT SOURCE 
LIBRARY' (ED,SUBGRUUPNAGF> 
PROGRAM (B501) 
EXTENDl:iJ DATA 
INPUT 1 = CiW 
OUTPUT i. = LPO 
TRACE 1 
END 

228. 

.. 
MASTER PRABHU 

C 'COMPUTATiON OF CRITICAL SUCKLING PRESSURES OF CYLINDRICAL SHE~LS 
C . UNDER WIND LOADS 8Y cb~TINUUM ANALYSIS 

REAL MU . 
DOUBLE PRECISION UK1 ,UK,WM,ALF1 ,BET1 ,ALF2dlET2,AM1 ,AMl,SM1 ,BM2, 

1 H ~11 , H M 1 P , H t-1 ~ , H M 2 11 , H N 1, H N 1 P , H N 2 , H N 2 p , S 1 , S 2 , S 1 P , S Z p , T E H 1 , Tt H 1 P , T e H 2 , 
2TEH2p,C81 ,CI$2,SB1 ,SB2,HYP1 ,MYp2,H1 ,H2,V1 ,V2,C1 ,C2,QS1 ,001 ,QS2,QD2, 
3HA,rlB,ATUK,BTUK,CTUK,DTUK,ETUK 

o J ME N S I ON B l 7) , Z (() 4 ) , E ( 8) , Y { l.S ) , G 1 (6 , 1 5 ) , G l ( 6 , 1 5 ) , G.5 ( 6 , 1 ) , F 1 (21 ) 
1,F2(21),F3(~1)'F-l21),G4(15)tEC(6,6,6)'ES(6,6,6)'RC(6,6)'~S~6,6), 
2 D E ( 20 , t! iJ) , se ( 1 ~ r 0 , 6) , SS ( 1 5, h, 6) , T S ( 1 ~ , 6, 6) , US ( 1 5 , 6 , 6) , W ~ ( , 5 , 6, 6) , 
3 A A ( 8~, 8) rB B ( d ) , B C < Y 5 , 9 5 ) , C MD 1 (8) • C M I) 2 (8) , Z Z( 9 5 ) , X XX (2 0 ) , D D ( 2 0 ) 
4,CN(1S) 

Pl=3.141592 6:'3 
MU=O.3 

C ,GEOH~TRIC PARAMETtRS OF THE SHELL 
C I AL = LENGTH ,. RADIUS AND AH = RADIUS I.THICKNESS 

AL=4.0 
AH=300.(J 
RO:;~./AL 

C I ASSUMED WINO LOAD COEFFICIENTS 
B(1}=O.~2 
8(2)=0 •. 538 
S(3}=O,)33 
S(4)=O,I.71 
lHS>=O,166 
8(6)= ... 0,066 
8(7)= .. 0,055 
MA=5 
MAA;;HA +·1 

~11 =,'*MA+3+2 
Mf·1=3 H 1A '-MA 

C I PREBUCKLiNG ANALyStS BY DONNELL'S THEORY 
U1=S(.~~1 (2.7.5) 

C 'ANALYSIS FOR THE CASE OF AXISSYMETRIC LOADING 
U=SQRT(1l1*AN) 

C ITHE EDGE X=L IS S.S, 

._~ _______ ...... ~~. _~_. ____ ._ . ..-' _______ '_' _______ .-..... __ .l._._--_._-.• -._ . .:. .. _ ....... ~ __ - ... - . ' 
- ... ' ......... -~- "-.---.-~.--: i 



c 

VEOAL*U 
X1:::COSlV)/EXP(V> 
X2=SIN(Vl/EXP(V) 

X3=COS(V)*EXPCV) 
X4=SIN(V)*EAPCV> 

.-. .....- . 

'THE EDGE X=O IS CLAMPED AND THE EDGE X=L IS SIMPLY SUPPORTED 
Z(1)=1. 
Z(2)=-1, 
Z(3)=X1 
Z(4)::-X1-X2 
Z(5)=0 
Z(6)=1. 
Z(7)=X2 
Z(8)=-X2+X1 
Z(9)=1. 

Z(1 0 )=1. 
Z(11)=;{3 
Z(12)=%3·X 4 

Z(13)::0 
Z(14)=1, 
Z<1S)=X4 
Z(16)=X3+X4 
Z(4) =Xl 
Z(B)=-X 1 . 
Z(12-?=-X4 
Z(16)=X.s 
En)= ... 1, 
E(Z)=O. 
E(3):: ... 1. 
E(4j=O, 
DO 1371:::1,4 
00137J=1,4 

. . 

137 DECl,J)=Z(I+4*(J-l» 
DO 1"s6 1=1,4 

OEn ,3):DE(I ,3)/EXP(V) 
138 DE(l,4)=DE(l ,4)/EJf..P(V> 

41 

CALL F04AEF (DE,~U,E,8,4,1,Y'8,BBfAA,8,DD'20,IFAIL) 
Y(3)=Y(3)/EXP(V J 

y(4)=y(4)/EJf..P(V) 
00 41 MJ=1,l1 
X= 01 J -, ~ * A L /lO , 
V=U*X 
F4(HJ):1+(Y(1>*CUS(V)+Y(Z)*SIN(V»/EXP(V)+(Y(3)*COS(V)+ 

1y(4)*SIN(V)J*EXP{V) 
F4CHJ)=F4(MJ)·8(1)/(AH*AH) 
CONTINUE 
00 442 11:1, M1 
G4(M)=F~(21)*AL**M/AL 
Q=4. 
DO 43 MJ=2,lO 

I . ~I I 

229.' ! 
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X=({MJ-1)*AL/20,J**(M-1) 
G4(M)=G4(M)+F4(MJ)*X*Q 

43 Q=6 .... U 
G4(M):G4(M)*AL/6U, 

442 COlnl rJUF. 
UK1=OSQ~T(2.73) 
UK=OSQln (IJI('·AH) 

C 'ANALVSIS FOR THE ~ASE OF OTHER HARMONIC LOADING 
DO 1 N=', 6 
ANUK=1·*N 
ATU(=AN~K*.4. 
BTUK=(UK**4.>/4, 
CTUK::ATuK+BTUK 
D T U K = () S t( R T ( C T U K ) 
ETu~=nTUK-UK.UK/l. 
WM=OSQRT(ETUK) 
ALF1=(Wt1+UK+N*N/WM)/2. 
BET,=(WM-UK-N*Ni WM )/2. 
ALF2=(WM-UK+N*N/WM)/l. 
BET~=(WM+UK-N*N/WM)/2. 
A ~I 1 = ( A u: 1 *.l - BET" ... a E T 1 ) 
AM2=(ALF2**l-BETl·*2) 
BM1=(ALf1·*~+BET1**2) 
BM2=(ALF2.*2+BETl**Z) 
HH1=N*N*AM1/BM1**~-(2+MU) 
HM1P=N*N*2*ALF1*~ET1/BM1**2 
HM2=N*~*AM2/6M2**l~(2+MU) 
HM2P=N*N"'2*ALF2*ij~T2/BM~**2 
HN1=(N*N/BM1+MU)*ALF1 
HN1P=(NlN/BM1-MU)*BET1 
HN2=(N*N/BM2+MU)*ALF2 
HN2P:(N-N/BM2-MU)*SET2 
S1 ="AH' i'MU*N*N 
S2=-AM,"'MU*N*N 
s1 p:::2. *ALF1 *BET1 
S2P=2.*ALF2*BET2 
TEH1=ALt1.*J-3.*ALF1*BET1**Z-ALF1*N*N*<2-MU> 
TEH~=ALF2**3.-3.*ALF2 *8ET2~*2.-AlF2*N*N*(2-MU) 
TEH'P=BET1.*3-3.*BET1*AlF'*~l+BET1*N*N*(2-MU) 
TEH2P=6ET2**3.-3.*BET2*ALF2*·2.~8ET2*N*N·(2-MU) 
CB1=DCOS(BET1*AL) 
CB2=OCO~(8ET2*AL) 
sa1::;DSI:j(BET1*AU 
S82=DSIN(BETZ*AL) 
flyP\=DEAP{ALF1*AL) 
HYP2=DEXP(ALF2*AL) 

C I THE COEFFICIENT MATRIX FOR THt CLAMPED FREE SHELL 
Z(1)=-HN1P 
Z<Z)=HM1P 
z(3)=1, 

230. 
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l(4)=-ALF1 
Z(5)=(S1*CS'-S1P*SB1)/HY P1 
2(6)=(-TEH1-CB1. TEH1P*S&1)/HYP1 
Z(7)=(S~1)/HYP1 
Z(8)=-(8ET1*CB1-A~F1*SB1)/Hyp1 

Z(9)=fi N1 

Z(10)=-HM1 
2(11):0. 
Z(12)=BET1 
Z(1J)::(S1 p*C61+s1*SB1 )/HYP1 
Z(14)=(-TE~1P*CB1-TEH1*Sa1)/HVp1 
Z ( 1 5 ) :: - C B 1 /li Y P 1 
Z(16)="tALF1*CB1+~ET1*SB1)/Hyp1 

Z (1 n ="HN2p 
Z ( 1 g ) = H ~12 P 
Z(19)::1. 
Z(ZO)=-ALF2 . 
Z<2')=(~2*CB2~S2P*S~2)./HYP2 
Z(22)=(~TEH~*CB2+TEH2P*SB2)/HVP2 
Z(2~S)=SB2/Hyp2 
Z(24)=-(BET~*CB2-ALF2*SB2)/Hvp2 
Z'(2S>=HN2 
Z(26)=-I1M2 
Z(27)=0, 
Z(28)=Bf.T2 
Z(29)=(S2p*Ca2+S~*Sa2)/Hyp2 
Z(3Q)=(-TEHlP*CB~~TEH2*SB2)/HVP2 
Z(31):"CB2/HYP2 
Z(32)=-~ALF~*Ca2+8ET2*SB2)/HYP2 
Z(33)=HN1P/HVP1 
Z ( j 4 ) = H ~11 P I H Y P 1 
Z(35)=1,/HyP1 
Z(36)=ALF1/HYP1 
Z(37)=(S1*CB1+S1P*SB1) 
Z(38)=(TEH1*CB1+T~H1P*SB1) 
Z(39)::-5B1 
Z(40)=(BET1*Ca1+ALf1*SS1) 
Z(4i)=-i1N1/HYp1 
Z(42)=-HM1IHYP1 
Z(43)::U. 
Z(44)=-BET1/HVP1 
Z(45)c(S1P*CB1-S1*SB1) 
Z(46)=(TEH1P*CB1-TEH1*SB1) 
Z<47>=-Ca1 
Z(48)=(ALF1*CB1-BET1*S61) 
Z(49)=HN2P/HVP2 . 
Z(50)=HfvI2p/HVP2 
Z(S1 )=1./HVP2 
Z(52)=ALF2/HYPZ 
Z(S3)=(S2*CB2+S2P*SBZ) 

" 
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Z(54)=(rEHZ*CB2+ TE H2P*SB2) 
Z(55)=-582 
Z(56)=lBET2*CB2. AL F2*SB2) 
Z(57)=''HN21~YP2 
Z(5~)=-nM2/r1YP2 
Z(5Y)=O, 
Z(60)=·UET2/HVP2 
Z(61)=(S2P.CB2-S~*SB2) 

. Z(62)=(TEH2P*C82"TEH2*SB2) 
Z(63)=-CB2 
Z(64)=lALF2*CB2-a~T2*SB2) 
E(1)=O. 
E(2)=-'2.*(1-MU*MU)*B(N+1)*2*UK~UK~N**6 '. 
E(3)=-12.*(1-MU*MU>*BCN+1)/N**4 
E(4)=O. . 
E ( 5 > = - M lJ ... 1 2'" ( 1 ... MU * t>1 U ) * B ( N + 1 > I N ,H 2 
E(6)=O.0 
E(7)=O. 
ECS)=O, 
00 544 ~1J=1t8 

CHp1(Jl)=1. 
C ~1 0 2 (.l I ) = U • 0 

544 Y(Jl)=O, 
C I THE CONS1RAINTS AT THE FREE TiP ARE cON~IOERED BELOW 

PO 3511=1,64 
35 ZZ(II)=V,O 

C THE CONDITION W'(L)=Q 
ZZ(5)=-{AL~1*CB1+~ET1*SB1)/Hyp1 
ZZ(13)=~-ALF1*SB1+8ET1*CB1)/HYP1 
ZZ(2')=~-ALFl*CB~-BF.T2"'SB2)/HYP2 
ZZ(29)=~-ALF2*SB~+6ET2*CB2)/HYP2 
ZZ(37)=ALF1*CB1-6ET1*SB1 
ZZ(45)=ALF1*SB1+ijET1*CB1 
Zl(53)=ALF2*CB2-~~T2*SB2 
ZZ(61)=ALF2*SB2+8ET2*CSl 

C THE CON~JTION W(LJ=O 
ZZ(6):::CU1/HYP1 
ZZ(14)=~B1/HYP1 
ZZ(22)=CB('/HVP2 
ZZ(30)=SB2/I1VP2 
Z2(38)=CB1 
ZZ(46)=-SB1 
ZZ(S4)=CB2 

ZZ(62)::;-SB2 
C THE CONDITION utL)=O 

ZZ(7)=·(HNP1*CB1+H~1*S61)/HYP1 
ZZ(15)=\HN1~CB1-HN1P*S61)/HVP1 
ZZ(23)=-(HN,P*CB£+HN2*SB2)/HYP2 
ZZ(31)='HN2*CB2~riN2P*SB~)/HYP2 
ZZ(39)=HN1P*CB1- I1 N1*SB1 

232. 
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ZZ(41)=-(HN1*CB1+HN1P*SS1) 
ZZ(5S)=HN2p*CB2- HNZ*SB2 
ZZ(03)=-(HN2*CB2+HN2P*SB2) 

C THE CONDITJON V(L)=O ' 
ZZ(B)=+(HM1 P*CB1+ HM1*SB1)/Hy P 1 
ZZ(16)={-HM1*CB1+HM1P*SS1)/Hrp1 
ZZ(24):tHH2P*C8Z+HM2*SBl)/Hy P2 
ZZ(32)~\-HM2*C82+HM2P*SB~)/HYp2 
ZZ(40)=hM1p*CB1·HM1*SS1 
Zl(48)=-(HM1*CB1+HM1P*SB1) 
Zl(56)=HM2p*CB2- HM2*SB2 
ZZ(~4)=-(HM~*C82+HM2P*SB2) 
y(4)=E(;) f. 

V(6)=E(3) 
V(8)=E(Z) \ 

233. 

C I AS THE EDGE X=L IS 5 1 S, THE CORRESPnNDtNG BIC, AT X:L ARE ALTERED I 

CMD1 (6) ,CMOl (8):U.O 
CMD2(6),CMDt!(8P=1.0 
DO 36 KJ=1,d 
DO 36 Kl=1,tS . 
11= KI+(KJ-1)*8 
E(Kl)=CMD1(KI)*E'KI)+CM02(KI>*Y(KI) 

36 Z(lI)=CM01 (Kt)*Z'lI)+CMD2(KI)*ZZ(II) 
DO 543 lJK=1,8 

543 y(lH~)=O.O 
NN=8 
NA=64 
NB=8 

279 FOR r1 AT (/ , dE 1 4 • b) 

WRITE (2,279) (2(1),J=1,64) 
WRlTf:(2,27Y) (~(l> rI=1 ,8) 

DO 37 t=1,N~~ 
DO 37 J::1,NN 

37 DE(I,J)=Z(l+NN*(J~'» 
CALL F04AEF (OE,GO,E,NB,NN,1,Y,NB'RB,AA,NN,DD,20,IFAIL) 

620 FORMAT (4E2U,10) 
WRITE (2,620) (y(1),I=1,8) 
DO 2 MJ=1,21 
X=01J .. 1 >*AL/20, 
C1=DCOS(BET1*X) 
C2=OCOS(BET.:!*X) 
V1=i)SIN<BET1*X) 
V2=DSIN·BETZ*X) 
H1=DEXP~ALF1*X) 
H2=,)EXP(ALF'*X) 
HA=DEXP~ALF1*(X~AL» 
HB=DEXP~ALF(*(X-AL» 
QS1=HN1*ALF1+HN1~*BET1 
QD1=HN1~*ALF1-HN1·8ET1 

QS2=HNl*ALF~+HN2~*BET2 



QD2=HN2p*ALF2-HNl*BET2 
F = Cc 1 .. Q D 1 +V 1 * Q S 1 ) * Y (, ) I H 1.+ (- C 1 Hj S 1 + V, ... Q D 1 ) * Y (2) / H 1 + 

CCC2*QD2+V2*QS2)*Y(J)/H2+(-CZ*QS2+v2*QD2)*VC 4 )/Hl + 
CCC1*Q01+V1*l-QS1))*Y(S>-HA+(-C1*QS1- V1*Q01)*V<6)*HA + 
C(C2*QDl-V2*QSl)*Y<7)*HB+(-t2*QS2-V2*Q02>*V(8)*HB 

F1(MJ)=F/(2.*UK*UK) 
F2(MJ)=lC1*HM1P+V1*HM1>*V(1)/H1-(C1*HM1-V1*HM1P'*VCZ)/H1+ 

CCC2*HM2 P +V2*HM2)*y(5)/H2-(C2*HM2-v2*HM2P)*V(4)/H2 • 
C(C1*HM'~-V1*rlM1 ,*Y(S)*HA-(CI*HM1.V1*HM1P)*V(6)*hA + 
C(C2*HM2P"V2-HM2)*Y(7)*HB-(C,*HM2+V2*HM2P)*V(8)*HB 

F2(MJ)=F2{MJ)*N-N/(2.*UK*UK) 
F2(MJ)=~2(MJ)-(Yll}*C1+Y(2)~V1)iH1-(YC3)*C2+VC4)*v2)/H2 

C-CV(5)*C1-Vl6)*Vl)*HA-(Y(7)-C2-Y(8)*V2)*HB '. 
F3CMJ)=-V(1).(BET1*CB1-ALF1~Sa1)/H1-V(2)*(ALF1*CB1+BET1*SB1)/H1 

C-V(3)*(BET2*CB2·AL~2*SBl)/H2-V(4)*(ALF2*CB?+BET2*SB2)1HZ 
C+V(5)*(GET1*CB1+ALF1*SB1)*HA+Y(6>*(ALF1*CB1-BET1*SB1>*HA 
C+V(7)*(BET2*CB2+A~~2*SBl)*HB+V(8)*{ALF2*CB2-BET2*SB2)*HB 

F3(MJ)=2.*(1-MU)*N*F3tMJ)/(l.*UK*UK) 
F 3 ( 11 J ) :: F 3 ( M J ) * 1 • j / 0 • 7 

2 CONTINUE 
DO 3 M=1,M1 
IF (1)1 .. 1) 97,97,98 

97 G1 (t~,M)=F1 C1 )+F1 (l1 > 
G2(N,M)=F2(1)+F2tl1) 
G3C~:M)=F3(1)+F5(l1) 
GO TO Y6 

9 8 G 1 (N , ~1 ) :: F 1 (21 ) * A L '* * ( M .. 1 ) 
GZ(N,M)=F2(l1)*AL**(M-1) 
G3(N,M)=F3C21)*AL**(M-1) 

96 Q=4. 
D04 MJ=(;,20 
X=«(MJ-1.)*AL/2Q.)**(M-1> 
G 1 ( N , ~I ) = G 1 (N , M ) + f 1 (f~ J ) '* X ... Q 
G2(N,MJ=G2(N,M)+Fl(MJ)*X*Q 
G3CN,M)::G3(N,M)+F5(MJ)*X*Q 
Q=6-Q 

4 CONTI NllE 
G1 (tJ,M)=G1 (N,M)*AL/60. 
G2(N,M)=G2(N,M)*AL/60. 
G3(N,M):G](N,M)*AL/60 • 

. 3 CONT I NUE 
1 CONTI ~UE 

C I THE BUCKLING ANALYSIS STARTS FROM H~RE 
DO 5 N=1,20 
DO 5 J=1,20 
IF (N .. J) 7,6,7 

6 DE(N,J)=1. 
GO TO B 

7 DECN,J)=O. 
8 CONTINUe 

, 
... -- ----.-- .. - ..... 



5 
C 
C 

. J 

CONTINUE 
, THE RANGE OF HARMUNICS SELECT~D ARE· NL TO NU 
, THE BUCK~ING PRESSURES ARE CALCULATED FOR DIFFERENT VALUES OF 

DO 777 NL=4,6 
NU=tJL+4 
MA1::NU-NL+1 

NLL=NL-1 
C" , THE CIRCUMFE~eNTIAL INTEGRATION FUNCTIONS 

DO 9 JR=1,6 

11 

10 

12 
9 

14 
13 

DO 9 N=NLL,NU 
00 9 J=NLL,NU 
NN=N-NL+2 
JJ;;J .. NL+2 

IF(N"J) 10,1.1,10 
NT=N+J 
EC(JR,NN,JJ)=DE(NT,JR)*PI/2. 
eS(JR,NN,JJ)=-DElNT,JR)+PI/2. 
GO TO 12 
NJ=JASS(N-J) 
NT=rJ+J 
ES(JR,N~,JJ)=(-DElNT,JR)+DE(NJ,JR»)*PI/2. 
EC(JR,NN,JJ)=(DElNT,JR)+DE(NJ,JR»*PI/2. 
CONTINUE 
CONTINUE 
DO ,~ M=1,Ml 
[)O 13 N=2,MAA 
DO 13 J=2,MAA 
RC(N,J)=S(1>*DEc N,J) 
RC(N,J)=RC(N,J)*~I 
RS(N,J)=B(1)*DE(N,J) 
RS(N,J)=RSC~,J)*Pl 
ss(r1,N,J)=O. 
S C 0-1 , N , J ) = 0 • 
TS(H,N,J)=O. 
US ( r\ , N , J ) = 0 • 
WS(M,N,J)=O. 
DO 14 JR=1,o 
RSCN,J)=RS(N,J)+B(JR+1>*ES(JR,N,J) 
RC(N,J)=RC(N,J)+S(JR+1>*EC(JR,N,J) 
SC(M,N,J)=SC(M,N,J)+G1 (JR,MJ*EC(JR,N,J) 
SS(M,N,J)=SS(M,N,J)+G1(JR,MJ*eS(JR,N,J) 
TS(M,N,J)=TS(M,N,J)+G2(JR,MJ*ES{JR,N,J) 
WS(M,N,J)=wS(M,N,J)+G2(JR,M)*eC(JR,N,J) 
us ( t\ , N , J ) = U S (t4 , ~ , J ) + G 3 ( .) R , M ) * E 5 ( N , J R , J ) 
CONTINUE 
CONtINUE 
n1N;;;O 
00 21 KX=1, 20 
00 143 1=1,95 
00 143 J="YS 

. " 

.' I" 

235." 

NL r 

. ,"~. 



c 

143 BCCI,J)=O.O 
JF C LMN ) l02,2Ut,40 
JFCKX_l) 38,39,40 

3R XXX(1)=.}.O 
GO TO 42 

39 XXX(2):::5.0 
·202 XXX(I(X>=(KX·' ),I·'.u 

XXX<KX)=(KX-1)·C~UO./AL>*(10u./AH)~*2.5 
GO TO 42 

236. 

40 XXX~KX)=(XXX(KX-~>*DD(KX-1) 
CDDCKX-2)/(OD(KX-1) 

-XXX(I(X"1)· 
r·DDCKX-2) ) 

42 XX=XXX(KX) 
PR::XX .. 

X=PR*AH**3/(30 .• 10.**6) 
, GENERATION OF THE ELEMENTS OF THE BUCKLING DETERMINANT 

DO 20 III=1,MA 
00 20 J=~L,NU 

DO 20 MI'IM=1, MA 
DO 20 N=rn, NU 
J :; 1 I I 
M='·HIM 
K=N.NL+1+(M-1>*MA 1 
L=J-NL+1+(I-1>*MA 1 
LL=t+f-1A*MA1 
KK=~~I"A"MA 1 
L l L:; I. + ~ -r. M A". r·l A 1 
KKK=K+~~MA*""A 1 
AI4=H+I"1 
BM=t1+ I 
NN=N-NL>+-2 
JJ=J-NL·2 
DDL~=(2*M*t*AL~*(M+1-1)*DE(N'J)*PI)/(AM)+N*J*(1"MU)*AL*~(M·I 

C+1)*OE(N,J)*PI/C M+I+1) 
DDL~K=(2.*MU*1*N*AL.*(M+l)*OE(N,J)/(BM)-(1-MU)*J*M*AL**<M+I>· 

CDE(N,J)/(B~»*PI 
DDlLK:(i.*MU*M*J+lMU-1)*N*I>*AL**<M+I>.DE(N,J).Pl/(BM) 

. DDLLKK =2,*N*J*AL**(M+I+')*PI*DE(N,J)/(M+I+1)+2.*(1-MU)*~*I*P1* 
CAl.*(M+l~1)*DE(N,J>/(2.*AM) 

ELK::O. 
ELKK=O. 
ELLK=O. 
ME=M+I+1 . 
. ELLKK=~.*MU*SS(Mt,NN,JJ)+2.*(1RMU*MU)*AH*AL**(M.I+1)*RS(NN,JJ)/«M 

C+l+1)*Arl**3)+l.*TS(ME,NN,JJ) 
C" ( 1 - r-w· ~1 u ) * i * PI. 0 l ( N , J ) * G 401 E ) 
.DDlKKK =~~,*MU*IwAL**(M+I+1)*DE(N,J)*Pl/(M+I+1) 

. DDLLKKK=-2.*J*AL**(M+I+Z).Pl*OE{N,J}/(M+l+2> 
ELKKK= ('~MU.MU)·AH*Al*w(M+I+')~(M~I+1)*RC(NN,JJ)/«M+I+1)*AH 

C ... 3) 
ME=M+I+1 



c 

237. 

MEE=M+I+2 
ELlKKK =-Z.*MU.N.SS(MEE,NN'JJ)~2.*(1-MU*MU)*AH*N.AL*.(M+I+2)*RS( 

CNN,JJ)/(M.l+2).AH.-3> 
C~2*N*TS(MEE,NN'JJ)+(1-MU)*(M+1)*US(ME,NN,JJ) 

C+2.*(1-MU*MU)*Pl*DE(N,J'*G4(MEE)*N 
ODLLlK =~~*MUwM*DE(N,J)*Pl*AL**(M+I+1)/(M+I+1) 
DDLLLKK =-2*N*~1·DE(N,J)*AL**(M+t+2)/(M+I·2) 
ELLLK =((1.MU.MU» *AH*A~**(M+I+1)*RC(NN,JJ)*(~M+t+1)/«M+t+1). 

CAH**3) 
M E=t·i+ I + 1 
MEE::fHI'I'2 
ELLLKK=-Z.*MU*J*SS(MEE,NN,JJ>-2.*C1- MU *MU)*AH*J*RS(NN 

C,JJ>*AL·.(M+l+2)/«M+l+Z)*AH**3) '. 

.' 

C-2*J*TS~MEE,NN,JJ)+(1-MU)*(I+I)·US(ME,JJ,NN) 
C+(1-MU*MU)*Pl*2*Dt(N,J)*G4(MEE)*J 
DDLLLKK~ =2 •• PI*DE(N,J)*AL*.(M+r+3)/(M+I+3)+(M*I*(M+1)*(J+1)~ 
CAL**(M+I-1>/(AM).~1~N*N)*(1-J*J~.AL**(M+I+3)/(M+l+3)+Mu*M*(M+1) 
C*(1-J*JJ*AL**(M+I+1)/(.M+I+1)+MU*I*(I+1>*{1-N*N)*AL**(M+I+1)/(M+l+' 
C)+2,*(1-MU>*<1+MJ*(1+I)*N*J-AL**(M+I+1'/(M+l+1»*Pt*OE(N,J)/(6, 
C*AH*AH) 

ME =1-1+ 1 + 1 
~1EE::f1+I"'2 
MEA:M+I+3 
ELLLKKK =2.*MU*J*N*SS(MEA,NN.JJ)+2.*(1-MU~MU)*AH*RC(NN'JJ)*AL~*( 
CM.I~~)/<{H.I+3)*AH**3)+2.*(rl+1)*(I+1)*~C(ME'NN,JJ) 
C+2.*N*J~TS(MEA,NN,JJ)+2.*MU*(M+l)*CI+1)*WS(ME.NN,JJ) 
C~(1-MU)~(M+1)*J*US(MEE,NN,JJ)-('-MU)*(1+I)*N*US~MEE,JJ,NN) 
C. 2 * ( 1 - toW * I~ U ) * P J * D t ( N , J ) * G 4 01 EA) .., N * J 

r HODIFICAiION TO THE VIRTUAL U1SPLACENENTS 
DDLKK=DDLKK~RO*Pl*OE(N,J)*AL**(H+t+1)*(O.6*I*N-O.7*J*(M+1»/(M+l+1 , ) 
DDLL~=DDLLK-RO*Pl*DE(N,J)*Al**(M+J+1)*{.6*J*M-.7*N.(I+1»/CM+I+') 
DDLKKK=[JOLKKK+RO*O.6*PI*DE(N'J)*t*AL**(M+1+2)/CM+I+2) 
DDLLLK=JDLLLK+RO*U,6*PI*DE(N,J).M.AL**(M+l+2)/CM+I+2) 
DDLLKK=JDLLKK+2.*PJ*DE(N,J)*(RO*(-2.*N*J*AL**(M+I+2)/<M·I+l)-O.3S~ 
1(2*M*I+M+J'*AL*+lM+J)/<M+I»+RO~RO*CN*J*AL*.(M+I+3)/(M+I+3>.O.J)*( 

. 2 M + 1 j * ( 1 +1 ) .. A L * * ( r1 + I + 1 ) I (M + I + I ) ) ) 
DDLLKKK~DDLLKKK+~.*RO*2*Pl*Dc(N,J)+J*AL**(M+I+3)/(M+I+3J-RD*RO*2. 

1*PI.DE(~,J)*J*AL**(M+l+4)/(M+J+4) 
DDlLlKK=DDLLLKK+~.*RO*Pl*DE(N,J)*N*AL**(M+t+3)*(2.-RO*AL*(M+I+3)/( 

, M + 1 + 4 ) ) I 01 + 1 + 3 ) 
DDLLLKK~=DDLLLK~K-4.*RO*Pl*DE{N,J)*(AL**(M+I+4)/(M+l+4>+~, .i(12.*A 

1H*AH»*\(M+1)*(t+1)*(M*I+M+l)*AL**CM+I)/CM+I)+(1-N*N)*(1-~*J)*AL 
l**(H+I+~)/(M+I+4)+~.3*('+M).*2*(1-J*J)*AL**'M+I+2)/~M+I·~)+O.7*N*J 
3*(2~M*I+3*(M+I)+4)*AL**(M+I+t)/(M+t+2»)+HO*RO*~ •• PI*DE(N,J)*(AL 
4.*(M+I+5'/(H+I+5'+«M+1)*(M.l)*{t+')*(I+~).AL**'M+l.1)/\M+1·1)· 
5(1~N.N)*(1"J*J)*AL**(M+l+5)/tM+t+5'+O.3.(M+1)*(M+2)*(l-J·J)*AL**(~ 
6+I+3)/<M+J+S)+1 ,4*N*J*(M+2)*'t+2)*AL**<M+I+3)/CM+t+]»/(ll*AH*AH» 
DDLLLKKK=DOLLLK~~+(2.*RO*Pl.VE(N.J>*O.3*('-N*N)*(-2.*( 1~1)**2/( 

1M+I+2)+RO*CJ+1)*(1+2)*AL/(M+I+3l)*AL**CM+l+Z) )/(12.*AH*AH) 



238. 

ELKKK=ELKKK-RO*O.Y1*RC(NN,JJ)*(~+2-I)*Al**(M+I+2)/«M+l+~).AH*AH) 
ELLLK=ELLLK-RO*O.Y1*RC(~~,JJ)*{1+2-M)*AL**C~+1+2)/«M+1.~)*AH*AH) 
ElLKK=ELLKK-2.*RU*(O.6*SS(M.l+2,NN,JJ)+2.*TS(~+I+2,NN,JJ).1 .82*RS 
1(NN,JJ)*Al**(M.I+l)/«M+I~2)*A~*AH)-O.91.2*PI*OE(~,J)*G4(M+I+2»)+ 
2RO*kO*(O.6*SSCM+l+3,NN,JJ)+2.*TS(M+I+3,NN'JJ)+1.82*kS<NN'JJj*Al**( 
3M+I+3)/«M+l+3)·AH*AH)-1.82*PI*~E(N,J)*G4(M·I+3» 
ELLKKK=ELlK~K-2.*RO*(-O.6*N*SS(M+I+3,NN,JJ)-2.*N*TS(M+,+j,NN,JJ)+ 

11.82*N*PI*DE(N,J)*G4(M+I+3)~1.82*N.RS(NN,JJ)*AL**(M+I +3)/«M+l+3) 
2*AH*AH).O.3S*(2*M+3)*US(M+I+~,NN,JJ»+RO*RO*(-O.6*N*SSCM+I+4,NN,J 
3J)-2.*N*TS(M+l+4,NN,JJ)+1 .8l*PI~DE(N,J)*G4(M+l.4)*N-1 .82*N*HS(~N, 
4JJ)*AL**(M+I+4)/\(M+}+4)*AH*AH)·O.7*(2+M)*US(M+l+],NN,JJ) ) 
ElLLKK=ELLL~K-2.*RO*(-Or6*J*SSC~'+J+3,NN,JJ)-2.*J*TS(M+I+j,NN,JJ)+ 
11.82*J*PI.DE(N,J)*G4~M+l+3)R'.82.J.RS(NN,JJ)*AL**(M+1+3)/{(M·l+5 
2)*AH*AH:+O,55*(2.*I+3)*US(M.J+2,JJ,NN»+RO*HO.(-O.6-J*SS(M+I+4,NN 
3,JJ,-2*J*rS(M+J+4,NN,JJ,+1.8l*Pl*J*DECN,J)*G4(M+I+4j-1.8~*JwRS( 
4NN,JJ)*AL*.(M+!+4)/«(M+l+4}*AH*AH)+O.7*(2+11*US(M+1+5,JJ'NN) ) 
ELLLKKK=ELLLKKK"~ •• RO*(U.6*N*J.5S(M+I+4,NN,JJ)+' .8~.RC(NN,JJ)~AL** 

1(M+l+4)/«M+}+4)*AH*AH)+(2*M*I+3*M+3*1+4)*(SC(M+I+2,NN,JJ)+O,3*WS 
2(M+I+2,NN,JJ»+2*N*J*TS(M+I+4,N~,JJ)-.35*J*(2*M+3).US(M+l+3,NN,JJ) 
3w1.82*N*J*Pl·DE(N'J)*G4<M+I+4»+R0*RO*(2.*~*J*(SS(M+1+5,NN,JJ)*O.3+ 
4+TS(M+I·S,NN,JJ»+1.82*RC{NN,JJ)*AL**(M+l+5)/«M+I+S)*AHkAH)+2.*( 
4M+2)*(1·2)*(SC(.1+1.5,NN,JJ)~U.3*W~(M+J+3,NN,JJ»"O.7*J*(M+2)*US< 
5M+I+4,NN,JJ)-1.8~*N*J*Pl*DE(N,J)·G4(M+l+5» 

ElLLKKK=F.LLLKKK+U.7*RO*N*«2.*I+3).US(M+J+3,JJ,NN)-RO.CI+2).U$(M+I+ 
1 + 4 , J;J , N f; ) ) 

BC(L,K)=ODLK+X*ELK 
BCCL,KK)=DDLKK+X*ELKK 
BCCL,KKK)=DDLKKK+X*ElKKK 
BC(LL,K)=D~LL~+X*ELLK 
eC(LL,KK)=oDLLKK+X*ELLKK 

BC(LL,KKK)=ODlLKKK+X*ELLKKK 
BCClLL,K)=ODlLLK+X*ElllK 
RC(LlL,KK)=DDLlLKK+X*ElLLKK 
BC(LLL,~KK)=ODLLLKKK+X*fLlLKKK 

20 CONTINUe 
M A S = 3 * M A '* ~1 A 1 
o 0 2 7 1 = 1 , r~ A S 

0027 J=1,MAS 
27 BC(1,J)=BC(1,J)/(l.**(CAt-2>*3.» 

lfAIl=1 
CA~L F03AAF (BC,y),MAS,D,Zz,lFAIL) 
WRITE (,,100) IFAIL 

100 FOR tl A T \ 1 0 X I 13) 
WRITE (2,22) AL,AH,PR,D 

2 2 FOR tl A T { 4 E 2 U I 1 0 ) 
OO(I(X)=!) 
IF (lHN.GT.O) GO TO 45 
IF (0) 201,176,21 

201 LHN=1 
IF (KX~l) 21,21,45 



239. 

45 QRS=ABS«XXX<KX)-XXXCKX-1»/XXX(KX,) 
IF < QRS ,LE,O.01 ) ,GO TO 776 

21 CONiJ NUE 
776 ~RliE (l,2S) (NL,AL,AH,PR) 

25 FORMAT ( /1,3X,3UHTHE LOWEST HORMONIC SELECTED =,12,1,3X,23rlLENGTH 
C TO k AD 11) S ~ A T 10 =; F 4 • 1 , I ,3 X , ~ 4 H RADIUS TO THICK RATIO =, f 5 ,1 , I , .s X , 
C 19H BUCKLING pRESSURE=,F10.5 ) 

777 CONTINUE 
555 CONTINUE 

**** 
**** 

STOP 
END 
FINISH . , 

••• v _ • __ " _ -~ .- - .--~-------.-. 



240. 

~, A S T ERR I N GEL H 
C 'LENIAR SHELL ANALYSIS BY A HIGHER 0RnER RING ELEMENT' 

D I 1·1 ENS ION W l. C ( 7 ) , C ( 1 4 ) , S Q ( 1 4) , e ( 1 4 , 1 4 ) , B T (1 4 r1 4) , 0 ( 1 4 r1 4 ) , S I< ( 1 4 , 1 
1) , Z (14,14) , Q ( 77), B K (1 00,100) ,01 (77) , G (5, 7) , W K S P (100) 
2,AS(11"CS(11),SS(11),F1(S,6,7>,F2(S,6,7);F3(S,6,7),AH1(10), AH 2(S) 
3,$G(8,3),C5$(6,5 ,5 ),CCC(6,5 ,5 ',XXX(20),DO(20' ,CS1 (5,6,5) 
4,G1(10,7),SG1<8,B) ,RK1(7,7),RK2(4,4) ,ETR(?) ,GRK(4,4) 
·c 011110 NIB L 0 C K I R B I R 0 , RE, RA, R I X , RI Z , R J 

C 'GEO'IETRY OF THESHELL' 
pI=3,141592653 
AI.=3.0 
Al.=2.0 
Al.::1 0 • 
DO 3 1=1,5 
11=1+5 

3 AH1(l),AH1(lI),AH2(I>::500.0 
AL=O.333 
Ali1 (1) ,AH1 (2) ,AII2(' )=1115 
A ti 1 ( 3) , A H 1 ( 4) , A H 2 ( 2) :: 1 31 2 
AH1 (5) ,AH1 (6),AHZ(3)=1990 
AH1 (7) ,AH1 (8) ,AY2(4)=3058 
A!11 (9) ,AH1 (10) ,AH2(S)=3740 
AL=5.0 
A If 1~( 1> , A H 1 (2) , A 112 ( , ) = 1 00.0 
AH1 (3) ,AH1 (4) ,AH2(l)=200.0 
AH1 (5) ,,'H1 (6) ,AH2(3)=~OO'O 
AH1 (7) ,AH1 (8) ,AH2(4)::400.0 
Afi1 (9) , A H 1 (1 0) , A Ii 2 ( 5 ) = 5 00 , 0 

C I GEOI1ETRIC PARANETF.RS OF THE RING • 
AH=AH1 <1 ) 
RB=20./AH 
R(l:2100./AH 
RU:;5.0/AH 
Rtl=15.0/AH 
RE=RP/2. 
RA=RB*RD 
RIX=R[l~RD*.3/12. 
RIZ:;RD*RB**3/12. 
RJ=4.*RIZ 

100 FORI1AT (/,6E20.10) 
101 FOR:l,\T (/,7E1 7 • a) 
102 FOR~AT (/'10 E12. 4 ) 
103 fURI1AT (1X,4E20.10) 
1 I) 4 FUR I1 A T (1 0 E 1 2 • 4 ) 

c; I THE ASS un E 0 \H N 0 LOA D C 0 E F F I C I ENT S 
WLC(1)=O.22 
WLC(2)=O.336 
wLC(3)=O.533 
W~C(4)=O.471 
wl.C(S)=O.166 

.. 



~------....,.....,..--------------:-:-::--------------c----~~-;-:-:-::;-~----

"'Le (6) ;;"0.066· 
~Il.C (7) ="'0.055 
0011=1,14 
C(I)==O.O 
SlHI>=O.O 
DO 1 J=1,14 
B ( I , J ) =0.0 

·BT(I,J):;O.1) 
O(l,J)::O.O 
SK{I,J);:;O.O 

1 Z(I,J)=O.O 
NE=10 
NE9=5 
ELL::AL/NE 
ELI.R=1.0/ELL 

C 'ANtUVSlS FOR AXISVt1METRIC CASE' N=O. 
C 'GENERATE THE DISPLACEMENT TRASFORMATION MATRIX' 

CALL DlSTRAN CS,BT,ELLR) 
DO 231 1=1,1 4 
DO 231 J::1,3 

231 B(I,J+9)=UCI,J+11) 
DO 2321=1,14 
DO 232 J=1,B 

232 B (I" J + 2) == El Cl , J + 4) 
DO 233 1=1,6 
DO 233 J=1,10 

233 BCI+4,J)=B(I+B,J) 
DO 234 1=1,10 
DO ~34 J=1,10 

234 nT{I,J)=lB(J,I) 
C 'THE ELEHENT LOAD VECTOR 

DO 22 1 =1 ,6 
22 C(8+!)=ELL**I/I 

DO 10321=1,10 
1032 C(I)=C(1+4) 

CALL MATHUlT (14,14,1,14,1,14,10,10,1,BT,C,SQ) 
0033 rH =1 , tJ E . . . 
ALP=1./(12.*AH1 (MI>*",2) 
CALL ELSTIF (N,ALP,ELL;D) 
CALL MATMULT (14,14,14,14,14,14,10,10,10,BT,D,Z> 
C ALL /., A T 11lJ L T (1 4, 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 0 ' 1 0 ' 1 0 ' Z , B , S K ) 

C 'ASSE~IBLE THE ELF.r1Ern STIFFNESS AN~ LOAD ~1ATRICES 
DO 33 1:;1,10 
J 1 = ( t~ I ... 1 ) * 5 + I 
Q(II)=QCIl)+SQ(I) 
DO 33 J:;1,10 
JJ=(Mt .. 1>*5+J 

C 'DUE TO VARIATION OF THICKNRSS 
sK(I ,J):;SK(l ,J) ... AH1 (1 )/AH1 (HI> 

33 e I( Cl I , J J ) = R K ( I I ,J J ) + S K ( I , J ) 

241. 
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c 
Nl=5*NE+5 

, THE SHE L LIS C L A f1 P D EAT THE B A SEA N D R ItJ G S T 1 I F FEN E 0 A T THE TOP 
0034I:;1,~1 
BK(1,I),BK(I,1),BK(3,I),BK(I,3),BK(4,I),SK(I,4)=O.O 

34 cO~n I flUE 
Q(1),Q(]),Q(4)=O.O 
BK(1,1) ,BK(3r3) ,6K(4, 4)=1. 0 

C 'WITH A RING AT THE TOP OF THE SHELL I 

CALL RlSTIF (RK1,RK2,N,AH) 
BK(53,~3)=BK(53r53)+RK2(3,3) 
BK(54,54)~BK(54r54)+RK2(4,4) 
CALL F04AAF (BK,1 00 ,Q, 77,Nl,1,DI, 77,WKSP,IFAtL),. 
WRITE (2,100) (DI(15,1~1,NI) 
00 36 1::;1,'H 

3 6 D 1 Cl ) = \~ L C (1 ) * 0 I (l ) 
ETR(1 )=-Dl (53) 
DO 128 K=1,NEB 
DO 128 11=1,7 
IF (1'~1) 129,129,130 

129 G(K,H)~(ELL/3,)*(Dl(K*10~7)+4.*DI(K*10~2)+DI(K*10+3» 
GO TO 128 

130 G(K,M)~(ELL/3.)*(4~*Dt(K*10-2)*ELL**(M-1)+OI(K.10+3)*(2.*ELL) 
1**(!\"'1» 

17.8 COrnlNlJl.: 
WRITE (2,101> «G(K,M),K=1,5),M=1,?) 

C 'THE ABOVE FUNCTION IS FOR N=O ' 
C 'ANALYSIS FOR ANY HORMONIC LOADING' 

CALL DlSTRAN (S,UT,ELLR) 
c , THE ELEMENT LOAD VECTOR 

DO 14 1=1,14 
14 C(I>=O.O 

DO 15 1~1,6 
15 C(1+8)~ELL**I/I 

C ALl. r~ A T M IJ L T (1 4 , 1 4 , 1 4 , 1 , 1 4 , 1 , 1 4 , 1 4\, 1 , R T , C , 5 Q ) 

DO 13 N;:;1,6 
DO 2 1=1,77 
Q(t)=O.O 
DO 2 J=1,77 

2 BK(l,J>=O.O 
C 'GE~ERATI0N OF ELEMENT STIFFNESS MATRIX' (IN ELEMENT COORDINATES) 

DO 23tH = 1 , N E 
ALP=1. '(12.*AH1 Ull)**2) 
CALL ELSTIF (N,ALP,ELL,D) 
CALL HATMULT (14,14,14,14,14,14,14,1 4 ,14,BT,D,Z> 
CALL MATMULT (1~"4,14'14'14'14'14,14'14,Z,B,SK) 
00.23 1=1,14 
11=(1-11,,1 )*7+1 
Q(II)=Q(II)+SQ(I) 
DO 23 J=1,11. 
JJ=(MI~1)*7+J 
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c , DUE TO VARIATION OF THICKNRSS 
5 K ( I , J ) :; S K ( I , J ) *' A H 1 (1 ) / A H 1 (M 1> 

23 BK(II,JJ)=RK(II,JJ)+SK(I,J) 
NI=71t(NE+1) 

.. 
243. 
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DO 24 I:;1,NI 
eK(1,1),BKCI,1),8K(3,I),BK(I,3),BKCS,I),a K(J,S),BK(6,I),BK(I,6)=O 

24 COIHItItJf. 
Q(1),Q(3),Q(S),q(6)=O.O 
SK(1,1>,BK(3,3),8K(S,5),OK(6,6)=1.0 

C'THE RING IS LOCATED AT TOP OF THE SHELL' 
CALL RtSTIF (R~1,RK2,N,A") 
DO 4 1=1,7 
00 4 J=1,7 

4 BK(70+{,70+J)=BK(70+I,70+J)+RK1 (I,J) 
CALL F04AAF (8K,100,Q, 77,Nl,1,DI, 77,WKSP,lFAIL) 
WI{ITf; (2,140) ~ " 

140 FORMAT (/,3X,'THE 'DISPLACEMENT VECTOR FOR THE HARMONIC =',12,/) 
WRITE (2,100) (0I<!),I=1,NI) 
01) 37 1;:;1,NI 

37 D I ( I ) :: l~ Le ( "I + 1 ) ." D I ( I ) . 
C I COMPUTE PRE-RUCKLE STRAINS OF THe RING' 

ETR(N+1 )=N*OI ("7:0-01 (75) . 
C 'TO COMPUTE THE PREBUCKLE STRAINS' ANO DISPLACEMENTS 

NE E"::;NE+1 
DO 26 1==1,NEE 
11=7*(1..," 
AS(I)=DI(2+II)+O.3*(DI(3+II)*N~DI(5+II» 
CS ( 1 ) :: N * D I (3'" 1 I ) - 0 I (5'" I I ) ... 0 • 3 * 0 I (2'" I I ) 

26 SS(I)=~N*Dl(1+II)+DI(4"'Il) 
~, RI'!' [ (2, 1 4 1 ) 

141 FORflAT (/,3X,'THE AXIAL ST~ESS DISTRIaUTtON 'rI) 
WRlTE (2,100) (ASCI),I=1,11) 
~IRITE (2,142) 

142 FORtlAT (/,JX,'THE CIRcur·1FERENTIAL STRESS DISTRIBUTION ',1) 
W~ITE (2,100) (CS(!),I=1,11) 
WRITE (2,143) 

143 rORIIAT (I ,3X, 'TrlE SHEAR STRESS DISTRIBUTION' ,I) 
WRITE (2,100) (SS<1),,=·1,11) 

C 'CALCULATION O~ FUNCTIONS INVOLVING THE PREBUCKE STRAINS' 
DU 137 K=1,NER 
DO 1 37 tl = 1 , 7 
IF CM-1) 1J8,13R,'39 

1 38 F1 (K, ,~ ,r 1> = ( E L LI :s • ) * ( A S ( 2 * K -1 ) + 4 • * A ~ ( 2 *11: ) + A S ( 2 ... K + 1 ) ) 
F2(K,N,rl)=(ELL/3.)*(C~(2*K~1)+4.*CS(2*K).CS(2*K+1» 
F 3 ( K, tJ , ',1 ) :: ( ELL I 3 • ) ... ( s S ( 2. K"'l 1 ) + 4 • * s s ( 2 * K) .. S S ( 2 * K'" 1 ) ) 
GO TO 137 

1 39 F 1 (K, ~J of1) = ( E L Ll3 • ) * (4. * AS C 2 * K ) * ELL * * (M-1 ) + A S ( 2 * K'" 1 ) * 
1 (ELL*2. )· ... 01 .. 1» 

F2(K,N,rl)=(ELL/3>*C4*CS(2*K)*(ELL )**(M~1)+Cs(2.~+1)* 
1(ELL*2.).*(H-1» 

.1 



F3<K,N,tl)=(EL(/3.)*(4.*SS(2*K)*ELL**(M-1)+SS(2*K+1). 
1 (€ t. L" 2 • ) .. * ( f1 -1 ) ) 

137 CONTINUE 
C 'THE ~BOVE FUNCTIONS ARE FOR DIFFERENT HORMONICS AND ELEMENTS' 

c 
c 

13 CO"IT I 'WE 
I E tI D 0 F PR E" B U C K Ll t~ G A N A LV SI 5 
, STABILITV ANALYSIS STARTS FROM HERE 

NEB=5 
ELL=AL/NEB 
SEl.=AL/NEB 
BELR=1./BEL 
CALL RUDITR (B,BT,SELR) 
DO 47 K=1,~EB 
DO 4 7 ~1~1, 7 
G < K , 11 ) = G ( K , t I) * 0 • 9 1 .. A H 1 (1 ) I A H 2 ( 10 
DO 47 14::;1,6 
F1 (K,N,H)=F1 (K,N,~l) 
F 2 O~ , tJ , 1 1) = 1= 2 ( K , N , M ) 

47 F3(K,N,r1)=F3{K,N,~1) 
DO 777 NL=11 ,12 

NlJ=NL+4 

*O.91*AH1 (1 )/AH2(K) 
*O.91*AIi1 (1)/AH2{K) 
.O.91*AH1 (1)/AH2(K) 

C 'f.lHCUIIFFHENTIAL INTEGRATION' 
DO .:. 8 ~J::; 1 ,6 
DO ~{+8 I:;NL,NU 
I1=I-Nl+1 
00 48 J:;NL,NU 
J1=J-tJL+1 
C SS (N, 11 , J 1 ) , CC C (N ,11 , J 1 ) =0.0 
IPJ::l+J 
IF (N-IPJ) 49,50,49 

50 CS S (tj , 11 , J 1 ) = .. P 112 
CC C ( tl , 11 , J 1 ) = P II 2 

49 IF (I ... J) 51,48,51 
51 tI-lJ::llltiS(I-J) 

IF (N-IHJ) 48,52,48 
'S 2 CS S ( N , I 1 , J 1 ) , CC C ( N , I 1 , J 1 ) :: PI/ 2 
4B CONTINUE 

00 53 l::NL,fHJ 
11=I .. ~·jL+1 
OOS3NR1,6 
DO 53 J:;NL,NU 
J1=J-NL+1 
CS 1 ( I 1 ,tj , J 1 ) :: 0 • 0 
NPJ=N+J 
IF (t-NPJ) 54,55,54 

55 CS1(I1,N,J1)= .. PI/2 
54 IF (N-J) 56,53,56 
56 rltlJ=IIIBS{N .. J) 

I F (I - ~~ r I J) 5 3 , 5"? , 5 :s 
57 CS1CI1,N,J1)::PI/2 

.. 

•. i 

244. 
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53 Cvrn I rwe 
I tH(:; 4 ... ( NE B) * 01 U .. N L + 1 ) 

C 'CALCULATION OF CRITICAL LOAD BY DETERMI~ENT SEARCH METHOD' 
LHN=O 

DO '75 KX=1,20 
DO ';4 I~1 ,100 
00 74 J;:;1 r1 00 

740KCI,J):;O.O 
IF CLIIN) 204,20 1+170. 

204 XXX(KX):(KX-1)*«200./AL)*C100/AH) •• 2.S)· 
XXXCKX):;(Kx-1)*<200./AL).(100./AH1(10»*.2,5 

XXX(KX)=XXX(KX)*4.0 . 
GO TO '73 ' 

70 IF (KX"2) 71,'71,·(2 
71 xXX(2)=5,O 

GO TO 73 

« • . , 

72 XXX(KX):(XXX(KX-2)*OO(KX-1)-XXX(KX .. 1>*DD(KX-2»/(DO(KX-1>-ODCKX 
1 .. 2) ) 

73 PR=XXX(KX) 
X=PR*AH1 (1)/(30.*10.**6) 

C 'CALCULATION OF THE ELEMENTS OF GEOMETRIC STIFFNESS' 
C 'THE FOLLOWING ARE THE ELEMENTS OF'SG'MATRIX 

DO 60 I:;NL,IJU 
I1::<I"'NL+1 
DO 60 J;:;NL,NU 
J 1 =J .. ~J L + 1 
DO 60 K=1, ~JEa 
CALL GEIISTIF (I ,J ,K,SG,WLClELL,G,F1,F2,F3,CCC,CSS,CS1,I1,J1) 
CALL HATHULT (14,14,8,8,14,14,B,8,B,BT,SG,Z) 
CALL MATMULT (14,1',14,14,8,8,R,8,R,Z,R,SG) 
IF (K-1) 66,66,67 

66 DO 68 11=1,4 
00 68 JJ=1,4 
I11=II+20"'<I-NL) 
JJJ=JJ"'20*U .. I.JL> 

68 BK(III,JJJ)~nK(III,JJJ)+X*SGCII+4,JJ+4) 
GO TO 601 

61 00 6511=1,8 
DO ()5 JJ=1,8 
IJI=11+20*(1-NL)+«(-2)*4 
JJJ=JJ+20*(J-NLl+«(-Z)*4 

65 B~(III.JJJ)=8K(Il1,JJJ)+X*SG(II,JJ' 
C 'ADD THE ~EOMETRIC STIFFNESS CONTRIBUTION DUE TO RING' 

601 CONT 1 NUE 
IF (NEr. -K ) 60,61,60 

61 CALL RIGEH ( I,J,ETR,CSS,AHiGRK,I1,J1) 
006211=1,4 
DO 62 JJ=1,4 
III=(I-NL).20+16+11 
JJJ~(J~NL).20+16+JJ 



62 BK(III,JJJ)=SK(III,JJJ)+X*GRK(II,JJ) 
60 CONT I rJllE 

C 'GENERATION OF ELASTIC STtFFNESS M~TRIC FOR SUCKLING I 

C 'THE ELEMENT STl~FNESS MATRIC IS OF BxB' 
C !THIS IS TO BE ASSEtlBLED FOR ALL ELEI-1ENTS AND HARMANJCS' 

DO 150 tI=NL,NU 
DO 150 K= 1 , NE B 
ALP=1./(1?.*AH2<K>**2) 
CALL nUCELsTIF (N,SK,B,D,ST,Z,ALP,BEL) 
IF (1(-1> 151,151,152 

151 [)() 153 1=1.4 
DO 153 J=1,4 «. 

II=1+(N-NL)*20 
JJ=J+(N",NL) *20 

153 BK(II,JJ)=BK(Il,JJ)+PI*SK(I+4,J+4)*AH1(1)/AH2(K) 
GO TO 1501 

152 DO 154 1=1,8 
DO 154 J=1,o 
Il=!+20*(N-NL)+(K-2)*4 
JJ=J+20*(N-NL)+(K-2)*4 

1540K(11,JJ)=Il K(11,JJ)+PI*SK(1,J)*A H1{1)/ AH 2(K) 
C 'ADD ELASTIC STIFFNLSS OF RING TO THE BUCKLING DETERMINANT' 

1501 CnNTINUE 
IF "CtlER""K) 150,1154,150 

1154 CALL RISTIF (RK1,RK2,N,AH) 
DO ,551=1,4 
(JO 155 J=1,4 
11 = I+(N·NL)*20+16 
JJ :: J+CN-NL)*20+16, 

155 BK(II,JJ)=eKCII,JJ)+PI*RK2(1,J) 
150 CONT I :JUE 

CALL F03AAF (RK,'OO,IRK,OET,WKSP,I~AIL) 
WRITE (2,202) (AL,AH,PR,DET) 

202 FORtlAT (4E20.1 0) 
ODCKX)=D ET 
t F (L t-1 N • G T • 0) GoT 0 76 
IF ( DET ) 1205,77,75 

1 20 5 Lt! ~ :: 1 
IF (KX"2) 75,75,76 

76 QRS=ABS «XXX(KX)~XXX(KX~1»/XXX(KX» 
IF (QRS .LE. 0,01) GO TO 77 

75 cOIn I tJU E 

- I' 
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77 WRITE (2,203) (NL,AL,AH,PR) 
203 FORf'II\T (l/,3X,'THELnWF.ST HARr·lONtc SELE CTEO ='rI2,1,3X,'LENGTH Te 

1 RADIOS RATIO = ',F4.1,1,3X"RADIO~ TO THICKNESS RATIO =',f6,2,1, 
23X, 'nUCKLING PRESSURE = ',F10.5,/) 

777 CONT PWE 
555 CCJ"ITtNUE 

STOp 
END 
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SUBROUTINE GEMSTIF (I,J,K,SGiWLC,ELL,G,F1,F2,F3,CCC,CSs,CS1,I1,J1 
DIMENSION SG<8,&),WLC(7),G(S,7),F1 <S,6,7),F2(S,6,7),F3(5,6,7) 

1,CCC(6, 5, 5),C5S(6, 5,· 5) ,CS1(S,6,5) 
PI=3.141592653 
006311=1,8 
DO 63 JJ=1,8 

63 SG(II,JJ)=O.O 
IF (I-J) 21,20,21 

20 SG(1,6)=O.91*WLC(1)*ELL 
SG(2,S)=-SG(1,6) 
SG(1 ,7):;SG(1 ,6)*~LL 
SG{',~):;SG(1,7)*ELL c, 

SG(2,7)=56(1,8)/3, 
SG(2~8):;SG(1,8)*ELL/2. 
SG(3,3)MSG(1,6)-O,91*G(K,1) 
SG(3,4),SG(4,3)=SG(1 ,7)/2.~O.91*G(K,2) 
SG(3,S),SG(S,3)=-I* sr,(3,3) 
sGC3,6),SG(6,3) ,SG(4,5),SG(S,4)=-J*SG(3,4) 
S6(4,4)=-O.91*G(K,3)+SG(2,7) 
sG(3,7),SG(7,3),SG(4,6),SGC6,4)=·J*SG(4,4) 
SGC3,3),SG(4,7),SG(7,4)~.I*(2.*SG(~,8)-O.91*G(K,4» 
5G(S,3)::;SG(3,8) 
SG(4,R):;-I*O.91*(WLC(1)*ELL**S/5.-G(K,S» 
S G (<3 , I. ) :; S G (4 , 8 ) 
SG(5,5):;O.91*(~I*J*GCK,')+WLC(1)*ELL) 

SG(S,6),SG(6,S)=O,91*(-I*J*GCK,Z)+wLCC1).ELL**2/2.) 
SG(S,7),SGC7,S),SG(6,6)=O.91*C-l*J*G(K,3)+WLC<1)*ELL**3/3.) 
SG(5,R),SG(o,5),SG(6'1),SG(7'6)=O.Q1*(~1*J*G(K,4)+WLC(1)*ELL**4 / 4 

1> 
SG(6,R),SG(8,~),SG(7,1)~O.91*(-I*J*G(K,5)+WLC(1)"ELL**5/5.) 
SG(Y,8),SG(8,7)=O.91"C-I*J*GCK.6)+WLC(1)*ELL**6/6.) 
SG(8,8)~O.91*(-1.J*G(K,7)+WLC(1)*ELL**7/7.) 
DO 323 11=1,8 
DO 323 JJ=1,a 

323 SG(II,JJ)=SG(II,JJ)*PI 
21 00 324 N=1,6 

SG(1,6):;SG(1,6)+O,91*CCC(N,I1,J1)*w(CCN+1)*ELL 
S G (1 , ., ) =: S G (1 , 7 ) + 0 , 91 .. C C. C ( N , I 1 , J1 ) * 'J L C ( N + 1 > * ELL" * 2 
SG(1,R)~SG(1 ,8)+O.91*CCC(N,I1,J1)*WLC(N+1>*ELL**3 
S<.!C2,5)=SGC1,6) 
SG(2,5)~SGC2,5)*(-1) 
sG(2,~);::O. 

sG(2,7)~SG(1,8)/3. 
S G ( 2 , ~) =; S GC 2, 8) + 0, Q 1 * C C C ( N, 11 , J1 ) * ~J L C ( N+ 1 ) * E I. L" * 4/2. 
SG(3,3):;SG(3,3)+CSSCN,J1,J1)*(O.91.WLCCN+1)*ELL+F2(K,N,1» 
SG(3,4),SGC4,3)=SG(3,4)+CSS(N,I1,J1>*(O.91*WLC(N+1)*ELL**2/2 

1+F2(I<,N,Z» 
sGC3,S)=;-J .. SG(3,3) 
Sij(5,3);-J.SGC3,J) 
SG(3,6),SG(4,S)=-J*SG(3,4) 
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SG(6,3)~-J*SG(3,4)+O,7*CS1(11,N,J1>*F3(K,N,1) 
SG<4,4)~SG(4,4)+CSS(N,I1,J1)*(O.91*WLC(N+1)*ELL**3/3+F2(K,N,3» 
SG(3,7),SG(4,6)=-J*SG(4,4) . 
SG(7,3)~-1*SG{4,4)+1 .4*CS1 (11,N,J1>*F3(K,N,2) 
SG(6,4)=-1*SG{4,4)+O.7*CS1 (11 ,N,J1)*F3{K,N,2) 
SG{S,4)~~I*SG(3/4) 
SG(3,a),SG(4,7)=SG(3,R)~J*CSS(N,J1,J1)*(O.91*WLC(N+1)*ELL**4/4. 

1+F2(K,N,4» 
SG(8,3)~SG(8,3)+(O.91*WLC(N+1)*ELL.*4/4.+F2(K,N,4»*(-1)*CSS(N,t1, 

1J1 )+2.1*CS1 (11 ,tj,J1 )*r:3(!<,N,3) 
SG(7,4)=SG(7'4)-I*CSS(~'11,J1)*(O.Q1*WLC{N+1)*ELL**4/4.+F2(K,N,4» 

2+'.4*CS1(I1,N,J1)*F3(K,N,3) '. , 
SG(4,R>~SG(4,8)-J*(O.Q1*WLC(N+1)*ELL"'*5/5.+F2(K,N,5»*CS S (N,I1,J1> 
SG(8,4)~SG(6,4>-I*CSS(N,I1 ,J1>.(O.Q1*WLCc N+1>*ELL**5/5.+F2(K,N,S» 

1+2.1*CS1 (11 ,N,J1 )*F3(K,N,4) 
SG(5,5)~SG(5,5>.U.91*CCC(N,I1'J1>*WLC(N+1)*ELL+I*J*CSS~N'I1,J1)~ 

1F2(K"H,1> 
SG(5,6)~SG(5,6)+O.91*CCC(N,I1,J1)*WLC(N+1)*ELL*.2/2.+1.J 

1 * C S S ( 1~ , I 1 , J 1 ) * F ;,: ( K , N , 2 ) 
SG(5,7)=SG(5,7)~O.91*CCC(N,I1'J1)*WLC(N+1)*ELL**3/3.+1*J 

1.CSS(N,11,J1)*F2(K,N,3) 
Sr,(5,8)~SG(5,8)+O~91*CCC(N,!1,J1)*WLC(N+1)*ELL**4/4.+I.J 

1 '" C S S ( N , 11 , J 1 ) * F 2 ( K , 1/ , 4 ) 
S (j (~6 , 5 ) ;:; 5 G ( 5 , 6 ) ... 0 • 7 ... ( - J ) ... C S 1 ( I 1 , N , J 1 ) * F 3 ( K , N , 1 ) 
SG(7,S)=SG(S,7)-1 ,4*J*CS1 <11 ,N,J1 )*F3(K,N,Z) 
SG(8,S)=SG(5,8)-2.1*J*CS1 CI1,N,J1>.F3(K,N,3) 
SG(6,6)~SG(5,7)+CCC(N,11,J1)*F1 (K,~,1)-O.7·J*CS1(I1,N'J1)*F3(K,N, 

1) 
SG(6,7)~SG(5,8)+CCC(N,J1,J1).F1 (K,N,2)*2.-0.7*J*Cs1 (I1,N,J1)·F3(K, 

1N,3) . 
S G ( 7 ,6) :; S G ( 5 ,8) + 2 • * CC C ( N , 11 I J 1 ) * F 1 ( K , N , 2) -1 • 4 * J * CS 1 ( I 1 , N", J 1 ) * F 3 ( K 

1N,3) 
SG(6,8)~SG(6,8)+(O.91*WLC(N+1)*ElL**5/S.+3.*F1 (K,N,3».CCCCN,J1,J1 

1)+1*J*CSS(N,11 ,J1)*F2(K,N,S)-O.7*J.CS1 (11,N,J1)*F3(K,N,4) 
SG(8,6)~SG(H,6)+(O.91*WLC(N+1)*ELL**5/5.+3.*F1 (K,N,3».CCCCN,11,J1 

1 ) ... 1 • J ... C S S ( N , 11 , J 1 ) • F 2 C K , N , 5) - 2 . 1 ... J • C S 1 ( 11 , N , J 1 > ... F 3 (.f( , N ,4) 
SG(7,7)=SG(7,7)+(O.91*WLC(N+1).ElL**5/S.+4.*F1 (K,N,3»*CCC(~,11 ,J1 

1 ) + I "" J * C 5 S ( N d 1 "I 1 ) * F 2 ( K , N , 5 ) -1 . 4'" J * C S 1 Cl 1 , N , J 1 ) * F 3 ( K , N , 4 ) 
SG(7,B)=SG(7,8)+(O.91*WLC(N+1)*ELL**6/6.+6.*F1CK,N,4».CCC(N,11,J 

1)+!*J*CSS(N,I1,J1)*F2(K,N,6)-, .4*J*CS1(11,N,J1>*F3CK,N,5) 
SG(8,7)=SG(8,7)+(O.91*WLC(N+1)*ELL*.6/6.+6.""F1(K,N,4».~CC(N,11,J 

1 ) + I ... J * .: S S ( N , I 1 , J 1 ) • F 2 ( K , N , 6 ) - 2 • 1 * J * C S 1 ( 1 1 , N , J 1 ) • F :3 ( K , ~ , 5 ) 
324 SG{8,8)~SG(d,B).(O.91*WLC(N+1)*ELL**7/7 •• 9.*F1(K,~,5»*CCC(N,I1,J 

1)+I*J*CSS(N,11,J1)*F2(K,N,1>-2.1.J*CS1(11,N,J1>*F3(K,N,6) 
RETURN 
eND 

\ 



1"""""'-----------------------------

SUliROIJTINE DISTRAN (B,BT,ELLR) 
o I t1 ENS 1 () "l B ( 1 4 , 1 4) , B T ( 1 4 , 1 4) 
DO 1 1=1114 
DO 1J=1,14 
BT(l,J)=;O. 

1 O(I,J)::O.O 
a(1,1),B(2,2),B(S,3),R(6,4),B(9,S),B(10,6)=1.0 
B(3,9),B(7,11)=-ELLR ' 
B(11,7):;0.5 
B(12,14)=O.5*ELLR 
B(12,7)=~1.5*ELLR 
B(3,2) rI3C7,4)="Z.*ELLR. '. 
B(4,2),S(4,9),8(13,14)=ELLR**2 
8(13,14)=-9(13,14) 
n(12,6)=-b.*ELlR**2 
O(12,13)=-4.*ELLR**2 
B ( 1 3 , 7) ;:: 1 • 5 * ELL f< * ... ·2 
B(8, 4) ,B(8,11)=ELLR**2 
B(3,1),8(7,3)=-3.*ELlR**2 
B(3,8),B(7,1U)=3.*ELLR**2 
B(4,1),B(8,3)=2.*Et.LR**3. 
B(4,8),S(3,10)=-2.*ElLR**3 
B(12,5)~-10,*(LLR**3 
B ( 11~ , 1 2 ) = 1 0 .... ELL R * • 3 
B<13,~)=B.*ELLR**3 

B(13,13)=7.*EllK**3 
B(14,7):;-O.5*ELLR*·3 
n<14,S)=-6.*ELLR**5 
S(14,14)=O.5*ELL~**3 
BC13,S>=1S.*ELLR."'4 
B(13,12)=-15,*ELLR**4 
SC14,6),B(14,13)=-3.*eLLR**4 
B(14,12)=6.*ELLR**S 
DO 2 1=1,14 
00 2 J::1, 14 

.2 eT(l,J)=B(J,I) 
R ETUR ~l 
EN[) 

249. 



~--- : 
I 

s U {3 R 0 lJ TIN EEL 5 T 1 F ( '41 ALP , ELL , [) ) 
DIMENSION 0(14,1 4 ) 
DU 1 1=1,14 
DO 1 J::1,14 

1 o<I,J)=O.O 
DO 4 J=2,.4 
DO 4 1~2,J 

4 D(I,J)=(I~1).(J-1)*ELL**(I+J~3)/CI+J-3)+DCI,J) 
DO 5 J=1,4 
DO 5 1=1,4 

5 D(J+4,I+4)=N**2*ELL*.(I+J-1)/CI+J~1)+n(J+4,I+4) 
DO 6 J=1,6 
DO 6 I~1,4 

6 D(I+4,J+8)=D(t+4,J+3)-N.ELL**(t+J-1)/(I+J-1) 
Do 7 J=1,6 
DO 7 I=1,J 

7 D(I+B,J+8)=D(I+8,J+8)+ELL**(I+J-1>/(I+J-1) 
DO 8 1=2,4 
DO 3 J=1,4 

.. 

8 D(I,J+4)=[)(I,J+4)+N*(I~1)*ELL**(I+J-2)/(I+J-2)*CO.3) 
DO 9 1=2,4 
DO 9 J=1,6 

9 D(I,J+8)=O(I,J+d)-(I-1>· ELL**(I+J~2>/(I+J-2)* (0.3) 
DO ~10 J-=1,4 
DO 10 1;;1,J 

10 D(I,J)=D(I ,J)+O.35*N*N*ELL**(J+J-1>/CI+J.1) 
DO 11 1;:;1,4 
DO 11 J;::;2,4 

11 D(I,J+4)=O(I,J+4)"O.35*N*(J-1)*ELL**(1+J-2)/(I+J-2) 
DO 12 J;;2,4 
DO 12 lii2,J 

250. 

12 D(I+4,J+4)=D(I+4,J+4)+(0.35*ELL**(I+J-3)/(J+J-3»*C(I-1)*(J-1» 
DO 13 J;:;1,4 
DO 13 I;1,J 

13 0(I+10,J+10)=D(I+10,J+10)+ALP*(I+1 )*I*(J+1 )*J*ELL**(I+J-' )/<I+J-' 
00 14J-=1,6 
00 14 I;:;1,J 

14 oCl+8,J+8)=D(I+d,J+8)+ALP*(1-N*N)**2*ELL**(I+J-1)/(1+J-1) 
DO 15 J;::;2,6 
D0 15 1:;2,J 

15 D(I+8,J+8)=D(I+a,J+8)+(2,*N*N*O.7*ALP*ELL**(I+J~3)/(1+J~3»* 
1«I"1>*(J-1» 

00 16 J;;1,4 
IK=O 
00 18 K;1, J 

18 IK=IK+K 
00 17 1;:;1,2 

17 0(1+8,J+10)=O(I.a,J+10)+O.3*ALP*(1-N*N)*2.*IK*ELL**(1+J-'>/(I+J-1 
DO 19 1;::;1,4 
KI=O,O 

• ~ . ....--.-.- .• .0:-. , .. , 



~ ________________________________________________________________ ~ ________ l 

DO 20 K:;1,I 
20 KI=I<I+K 

251. ' 

19 0(!+10,J+10)=OC!+10,J+10)+O.6*ALP*C1-N*N)*(IK+KI)*ELl*.(I+J+1)/ 
1 (1+J+1> 

16 CONTItWE 
00 21 1~1,14 
00 21 J;;1,I 

21 O(I,J)=D(J,I) 
JF ( N ) 22,23,22 

23 CONTI tHJE 
00 1030 1="14 
DO 1030 J=1,6 '. 

1030 D(I,J+4)=O(I,J+J) 
DO 1031 I=1,c) 
00 1031 J=1,10 

1031 D(I+4,J)=D(1+B,J) 

\ 

22 COr~TI NUE 
RETURN 
eND 



su~ ROUTINE SUCELSTIF (N,SK,B,D,BT,Z'ALP,ELL) 
o I t1 ENS ION B ( 1 4 , 1 4) , B T ( 1 4 , 1 4) , 0 ( 1 4 , 1 4) , Z ( 1 4 , 1 4 ) , S K ( 1 4 , 1 4 ) 
DO 11=1,8 
DU 1 J=1,B 
Sr<(I,J):O.O 

1 o(l,J)=u.O 
0(1 ,1 ) = 0 .35 * Ih N * ELL 
0(1,2)=0,35*~*N+ELL**2/2. 
0(1,4)=-0.35*N*ELL . 
O(2,2)=ELL +O.35*N*N*ELL.*3/3. 
O(2,3)=0.3*N *ELL 
O(2,4)=N*(wO.OS)*ELL**2/2. 
DC) 3 I~1,4 -
0(2,4+ 1)=~O.3*ELL** I1 I 
0(3,4+ l)=~N*ELL** 11 I 

3 0(4,4+ I)=~N*ELL**( 1+1)/( 1+1) 
O(4,4)=O.35*ELL+~~fl*ELL**3/3. 
0(3,3)=N*N*ELL . 
D(3,4)=N*~*ELL·*2/2. 
BE=(1-N*N)**2+1./ALP 
O(S,S)=8E*ELL 
D(5,6)=6E*ELL**2/l. 

. . 

0(5,7)=BE*ELL**313.+0.6*(1~N*N)*ELL 
O(~,8)=BE*EL~**4/4.+1.8*(1~N*N}*ELL**2/2. 
D(6,6)=BE*ELL**J/3.+1.4*N*N*ELL 
0(6,7)=6E*f.LL**4/4.+0.6*('~N*N)*ELL*.2/2,+2.8*N*N*ELl**2/2. 

252 •. 

O(6,B)=BE*eLl**5/5.+, .8*(1~N*N)*ELL**3/3. +4.2*N*N*ELL**513. 
oC7,·7)=BE*ELL**5/5.+4.*ELL+(1.2*(1-N*N)+5.6*N*N)*ELL**3/5. 
Di7,8)=SE*ELL**h/6.+6.*ELL**2+(2.4*(1-N*N)+8.4*N*~)*EL L**4/4, 
0(8,8)=BE*ELL**7/7,+36.*ELL**3/3+(3.6*(1wN*N)+12.6*N*N)*ELL**5/5, 
0 0 41=1,8 
DO 4 J::1rI 

4 DCI,J)=DeJ,l> 
DO 12 I~5,8 

DO 12 J=5,8 
j2 O(I,J)=ALP*D(I,J) 

CALL MATMULT (14,14,14,14,14,14,8,R,8,BT,D,Z) 
CALL MATMULT (14,'4,14~14,14,14,8,8,8,Z,B,SK) 

RETURtl 
E·\jD 



SUBROUTINE BUDITR (S,RT,ELLR) 
DIM~NSION R(14,14),BT(14,14) 
00 1 1=1,8 
DO 1 J=1,8 
O<I,J)=O.O 

1 aT(I,J}=O.O 
B(',1) ,,3(3,2)=1.0 
B(2,5),B(4,6)~ELLR 
B(2,1),6(4,2),a~7,8)=-ELlR 
B(5,3),B(6,4):1, . 
B(7,4)=-2.*ELLR 
B(8,4),B(8,8>=ELLR**2 
a(7,3):-3.*ELLR**Z 
S(7,7)= 3.*ELLR**Z 
B(B,3)=2.*ELLR**3 
9(8,7)= .. 6(8,3) 
DO 2 1:;1,8 
DO 2 J=1,8 

2 BT(l,J);:B(J,x) 
RETURN 
END 

. , 

·' 
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\ 

SUBROUTI~E HATMULT (II,JJ,KK,LL,MM,NN,K,L,M,AA,BB,CC ) 
o Itl E tl S ION A A ( I 1 , J J ) , ~ B ( K K, L L) , CC(/'-1 M , N N ) 
DO 1 1=1, t~M 
00 1 J::1,NN 

1 CC(I,J)=O.O 
DO 2 l=1tK 
00 2 tJ :: 1 , 11 
DO 2 J=1,L 

2 CC(I,N)~CC(1,N)+AA(I,J)*6B(J,N) 
R ETUR tJ 
E'~ D .. 

254. 



sUaROUTINE RISTIF (RK1,RK2,N,AH) 
OIrlENSION RK1(."n,RK2(4,4) 
COMHON/BLOCK/RB,RO'RE,RA,RIX~RIZ,RJ 
DO 1 I ::;1,., 
DO 1 J ;:;1,., 

1 RK1(J,J)=O.O 
DO 2 1 = 1,4 
00 2 J:: 1,4 

2 RK.7.(l,J)::O.O . 
R ~ 1 ( 1 , 1 > , R K 2 (1 , 1 ) = ( NI ( 1 + RE) ) * * 2 '" ( tJ * ~J * R 1 Z + R J 12 • 6 ) 

255. 

R K1 (1 ,6) = (N '" tJ I n + RE» '" (R I Z * (R E '" N * N 1 (1 + RE) "'1 ) - R J 1 (2,6 * (1 + RE) ) ) 
R~1 (6,1) ,RK2(1 ,4) ,RK2(4,1>=RK1 (116) " 
RK.1(3,3),RKZ(2,?')=RA*(N*(1+RE»**? 
RK1(3,5) ,RK1(S,3>,RK2(2,3),RK2(3,2)=-RA*N*(1+RE)*(1+N*N*RE) 
RK1 (5,S),RK2(3,3)=RIX*(1-N*N)**2!(1+ RE)**2+RA*<1+N*N*RE)**2 
RK1 (6,6),RK2(4,4)=RIZ*(1-RE*N*N/(1+RE»**2+RJ*(N/(1+RE»**2/2.6 
0031=1,7 " 
00 3 J=1," 

3 RK1 (I, J)=RK1 <I ,JH,O.91*AHI (1+RE) 
0 0 41=1,4 
Ol) 4 J=1,4 

4 RK2(I,J)=RK2(I,J>*O.91*AH/(1+RE) 
RE TUR t~ 
E'~ 0. 



SU8ROUTINE RIGEH (!,J,ETR,CSS,AH,GQK,J1,J1) 
DIMENSION ETR(7),CSS(6,S,S),GRK(4,4) 
C 011; 1 \) NIB lO C K I Ra, R D , RE, ~ fH R 1 X , R I Z , R J 
Pl=3. 1/.1592653 
Of) 1 II~1,4 

0'.) 1 JJ~1,4 
1 G~I('lI,JJ)=O.O 

IF (I-J> 2,3,2 
3 GRK(2,2)=PI*ETR(1) 
G~K(2,3),GRK(3,2)=-PI*ET~(1)*I/2. 
G~K(3,3)=PI*ETR<1)*l.J 

2 0 () 4 ~J :; 1 , 6 
GRK(Z,Z)=GRK(2,2)+ETR(N+1)*CSSCN,J1,J1) 
G~K(2,~)=GRK(2,3)+ETR(N+1).CSSCN;J1 ,J1)*(-J/2.> 
G~K(3,2)=GRK(3,2)+ETR(N+1).CSS(N,I1 ,J1)*(-1/2.) 
G~K(3,])=GRK(3,3)+ETR(N+1).CSS(N,I1,J1)*J*J 

4 Cu~TIrJlJE 
D'j 511;:;1,4 
DO 5 JJ:;1,4 

5 G~I(II,JJ)=GRK(IJ,JJ)*O.91*AH*RA 
RETURtJ 
e t~ D 

256'. 
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