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PREFACE

This thesis is a report of research carried out part-time
at the Department of Electronic and Electrical Engineering
of the.University of Technoiogy, Loughborough, and at the
Royal Air Force Collegé. Cranwéll from September 1968 to
August 1972,

It is believed to represent the first attempt to apply
the methods of optimal control theory to the problem of
'controlling an internal combustion engine with an associated
transmission system., The major part of the thesis is the
independent work of the author : the work of others has been
indicated at the appropriate points in the text.

The author acknowledges with gratitude the assistance of
a number of pebple dﬁring the period of thié worke “iIﬁ
particular he wishes to express his gratitude fo Dr. G.K.
Creighton for supervising the research; +to Professor J.E.
Griffiths for his encouragement, to Commander L.J. Stacey,
R.N., and to Wg.Cdr. B. Dickinson, RAF(Ret'd) for their
support and supervision at RAF Cranwell, Special thanks
are due to Air Commodore C.E.P. Suttle, RAF, of the RAF
Education Branch for support and encouragemént. Finally;
thanks are due to Mr, N. Slater, Chief Technician of the
Department at Loughborough, for his patient instruction in
the rudiments of building practice, elementary plumbing‘and

fundamental concreting.
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SUMMARY

The control of an internal-combustion engine such that
it will produce its required output, with a minimum consump-
tion of fuel, even in the presence of random load disturbances,
has become.a necessary requirement for future prime-movér
and vehicular applications. This thesis is concerned with
an attempt to produce a practical scheme to meet that require-
ment from a study of several methods of achieving optimal
engine regulation and a method of obtaining optimal start-up.

An attempt was mﬁde first to identify the response of the
engine~transmission-~-load combination with a mafhematical
model obtained by the use of computers. The servo-mechanism
associated with the throttle was identified also, and then
a complete state-variable description of the system wés
obtained., Next an automatic gear-changing scheme was
designed and implemented. With the availability of this
practical system an optimal control function was generated
then to implement optimal start-up. The opfimal function
was calculated by solving the associated multi-point boundary
value problem by means of technique of quasilinearisation.
To subject the system to random loads an artificial road was
simulated, and a scheme was devised to vary the dynamometer
loading in response to this 'road®' signal.

The remainder of the thesis is concerned with a study of

several different methods of obtaining optimal or sub-optimal
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schemes of regulation and with comparisons of experimental
results and the results from associated theoretical computer
studies.

Many suggestions for further investigations are contained

in the final chapter.
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CHAPTER ONE = INTRODUCTION

In the discipline of control engineering a besetting
problem of current concern is the growing separation between
practice and theory. The substantial growth in the body of
theory, known generically as modern control theory, has
occurred over a relatively short period, and the number of
applications of this theory reporﬁed in}the technical litera-
ture over the same period is confined principally to fhe ﬂ
aerospace or to the processvindustries.

At .the same time there is a common awareness of the over-
whelming need to cbnserve the known energy resources of the
earth in the face of increasing rates of depletion. Since
much of the control theory developed so recently is concerned
wholly with the determination of control schemes which will
either minimize energy use or alternatively will maximize
the return from fhat use, it was considered worthwhile to
attempt to use this new theory to solve a problem concerned
with energy expenditure. In so doing some of the difficul-
ties of applyiﬁg the theory Qould be considered, and it was
hoped that some solutions would be obtained which would
contribute partially to a reduction of the gap.

It was decided therefore to design, to build, and to
apply an optimal controller to an internal combustion engine
and its associated transmission system so that the system
would ﬁse as little fuel as possible to perform some defined

task,




An engine and gearbox, surplus to the requirements of the
Department, were available for the experimenf. The
coupling used between the engine and the transmission system
was a fluid flywheel, a hydrokinetic drive which is charac-
terized by having no torque multiplication (GILES [1963] and
ANSDALE [1964]). This fact suggested the possibility of
designing an automatic gear-changing scheme énd finding an
optimal start-up procedure that would drive the load up to
its desired speed; here an optimal regulator would become
effective to hold the engine at this speed even in the presence
of disturbances. In this way it was hopéd that fgel'
expenditure would be at least less than for manual control
of the same task.

The work reported hereafter was carried out independentiy
by the author in an attempt to solve the problem. It is
believed to be thé first attempt to control an internal-
combustion engine together with its associatgg transmission
system using the methéds associated with modern control theor&.
The attempt inevitably has involved considerable use of
computers : both analogue and digital.

In chapter 2 an account is given of the}work undertaken
to establish several mathematical models from measured
experimental data. Because of the nature of the load which
had to be used, the system was non-linear. A non-linear model
suitable for use with the optimal regulation study was
devised, as well as afmore detailed model agsociated with
the performance of the system during gear changes.,

For comparison, and for subsequent ease of synthesis, an




optimal linear model was also established. |

Chapter 3 is concerned with detailing the design and
implementation of the automatic gear-changing scheme used
in this research.

To subject the engine-transmission system to the same kind
of random disturbances to which it may be subjected if
installéd in some industrial or vehicular application, a
7 simple simulated road was manufactured. The signal derived
‘from this device contfolled the engiﬁe loading. A descrip-
tion of the device, together with the details of the
statistical properties of the road, is given in chapter 4
which also contains a brief account of the ON/OFF servomech-
anism used to control the load.

In chapter 5 the problem of providing optimal start-up is
congidered. Becausé of the non-linear model, which it is
necessary to use when gear changing is required, a solution
to the problem had to be determined iteratively on a digital
computer using the method of quasilinearisation. An account
of the program development, its characteristics and its
limitations is given together with the results obtained from
an analogue computer simulation study. A practical start-up
generator for fixed time-interval changes is also described
and some experimental results are given.

The problems of engine regulation are described in chapter
6. Several different methods of obtaining numerical solutions
are considered and a comparison of their relative effective-
ness 1is made, Computer study results are presented before
the resulfs of practical experimental runs are shown and
discussed, In an effort to account for known defects in the

linear system model, alternative control schemes are considered




in chapter 7. These schemes were supposed to provide minimal

sensitivity i.e. the regulation would be optimal and little
affected by a slightly inaccurate'model. To simplify the
computation involved a model-following scheme was also con-
sidered and the results of the study are presented and compared
with earlier results,

In chépter 8 further regulation schemes are presented
which took into specific account the non-linear nature of the
system, The computational aspects of these schemes are
presented together with the resulting experimental data
obtained from subsequent investigations., A

Many proposals fér further investigations, both theoretical
and practical, are contained in the final chapter in which tﬂe

results of the work are reconsidered and compared.
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CHAPTER TWO ~  MATHEMATICAL MODELS OF THE ENGINE,
TRANSMISSION SYSTEM AND LOAD

2.1. . The Engine and its Load

The internal combustion engine used as the driving
member of the plant to be controlled was a 6-cylinder, o.h.v.
vADaimler engine of 2@33 CeCo capacity. Associated with this
engine was a Lh-gspeed* Daimler/MWilson pre-selector gearbox

with the ratios listed in table 2;1

GEAR 1 2 3 L

RATIO | 3.8411 | 2.21:1 | teb7:1| 111

Table 2,1 -~ Gear Ratios

To absorb the energy delivered by the engine via
the transmission system a dynamometer was used : the arrange-~

ment is shown as a schematic diagram in figure 2.1

0, P
Engine A Gearbox a Dynamometer
4/[7 4;7
(o = engine shaft speed (rad/s)
wf = output shaft speed (rad/s)

Figure 2,1 -~ Gearbox, Dynamometer Schematic

* A reverse gear is also provided but was not used in this study.




The maximum quoted* power available from thevengine at
4400 rev/min was 74,57 kW, However the maximum quoted*
torque was developed at 2500 rev/min and equalled 176 Nm.

If the gearbox was to be fully employed in any control scheme,
the maximum torque which the dynamometer would be required to
match would be approximately 700 Nm at a shaft speed of 650
rev/min, when 1st gear had been selected. Such a figure is
beyond the range of the usual type of engine dynamometer
‘available, In addition, the location of the engine at its
particular site inhibited the employment of dynamometer types
other than a fan because of the limited water and electricél
supply facilities at that site.. Thé‘dynamometer éélected
for use in this research was therefore a fan type and the
energ& delivered from the engine system was dissipated in
the surrounding airs; this choice of dynamometer met the
physical requirements of the site. However, if ist gear
were selected, control action to regulate the speed was not
required because only an insignificant speed‘change could

be produced by this dynamometer load when it was driven at

a nominal speed of 650 rev/min, Consequently it was necessary
t0 restrict the selection of gears to 2nd, 3rd or 4th,

The standard engine ignition system wasvused with engine
timing controlled by a conventional diaphragm advance-retard

control mechanism. Engine cooling was effected by controlling

¥These figures were obtained from the Engine Specifications
contained in the Owner's Manual for the Daimler Conquest

saloon (1952) from which the engine and gearbox were obtained,




water flow through the engine block, A continuous flow was
maintained with the heated water being discharged to an
external drain., The sensitivity of the performance of any
internal combustion engine to changes in operating temperature
is well knovm (RICARDO [19537]), but because it was the intent-
ion to provide a control system resulting in optimal, or near
optimal, performance even with widely varying engine parameters,
and because it was possible to contrql manually the excursions
of temperature to within a range of 315°F, the water-flow was
controlled by a maﬁually-Operated valve. Although the
dynamics of this manual control system were not considered in
subsequent analysis it wasvassumed that changes in ferformanqe
due to this effect would be of less significance than larger
changeé due to variations in the load (see section 2.3).

Engine and output shaft (dynamometer) speeds were measured
by means.of tachometers for étatic performance checks., When
recordings were taken the speeds were taken as the output
voltages from two d.c. ‘tachogenerators driven‘directly from
the engine rig. -The sensitivity of both tachogenerators
was 20 v/1000 rev/min but the drive for the dynamometer-
associated tachogenerator was obtained from a pick-off point
that was geared down by 6:1 so that the efféctive sensitivity
of the output shaft tachogenerator was 20 v/6000 rev/min,
The output signals from both tachogenerators were contaminated
heavily with noise which arose from two principal causes

(1) +the ripple voltage associated with the |
comnutator of any d.c. tachogenerator
(i1) an oscillation due to mechanical resonance

of the experimental rig.




Engine Speed, rev/min

Engine Speed,rev/min
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d is the fan displacement
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| | l l
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] | ] ]
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Figure 2.2 - Tachogenerator Speed Curves




The second component was the most significant and occurred
because of the mounting arrangement for the engine and gear-
boxe To reduce engine vibration to manageable levels rubber
mounts were used to attach the engine and gearbox to the
engine bed., That the oscillations superimposed on the output
from the_tachogenerator were due to this mounting arrangement
may be inferred from observing that in the responses shown as
figure 2,2 the amplitude of the superimposed oscillation
changed with engine speed which is a.measure of the forcing
frequency. It was decided therefore to use a simple 1st
order filter network with a time constant short enough to
ensure that the dynamics associated with the filters would
not jeopardise later regulation schemes, but with a time
constént of sufficient duration to provide adequate attenua-
tion of the noise components, The simple filter used for

each signal is shown in figure 2.3.

MO

| (L)l——o< —7-6

.Figure 2.3 = Tachogenerator Filter

Graphs of engiﬁe povier and torqué vs. engine speed are
shown in figure 2.4, From that figure it can be seen that
the engine delivered greater power at the highest water
temperature for the same engine speed. It will be noted
also that the engine did not develop the quoted maximum
power : from figure 2,1la it can be determined by extrapolation'
that there was no value of fan displacement for which the

engine could deliver 74,6 kW at a speed of L4400 rev/min.,
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The maximum torque, developed at a speed of 2000 rev/min, is
not defined sharply. The torque did remain above the value
of 90% of maximum, however, up'to an engine speed of 2600
rev/min, From studies of performance curves published for
other engines* it is reasonable to expect that the engine
torque would have fallen off below 2000 rev/min and would have

fallen to about 90% of the maximum value at approximately

1500 rev/min, It was taken that the torque would remain
approximately constant over the rangé of 1000 rev/min when
the engine was running at an equilibrium speed of 2000 rev/min.
The significance of this assumption is emphasised by figure
2.5 which represents graphs of ordinary and specific fuel
consunmption. From that figure it is evident that the consuﬁp-
tion of fuel increased with engine speed. The specific fuel
consumption (s.f.c.) however waé almost constant and at a
minimum, for the quoted distributor setting, over a symmetrical
range of 1000 rev/min centred on a speed of 2000 rev/min.
By retarding the ignition of the spark a higher fuel consumption
resulted and a sharper s.f.c, cur&e was obtained. This latter
curve is characterised by a more clearly defined minimum at
a speed of 2100 rev/min, All subsequent measurements and
experiments were conducted with distributor setting 4
(34° B.T.D.C.). |

In all the experimentai work the engine speed was set by
adusting the throttle opening via a d.c. servomechanism, a
schematic representation of which is presented in figure 2.6,
Because of the electrical characteristics of the available

servomotor, a thermionic valve amplifier was used. Some

¥and from similar experimental runs carried out at R.A.F.
Cranwell on a l..cylinder, o.h.v., Vauxhall Viva engine of
capacity 1000 c.c.




All resistor values in ohms;

v All capacitor values in pf.
' Py o8 O +350v,.
(O +2hv,
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Input Y Y ~ S JT o
: (@] (s © Q
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o 2 1| O] > R
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Figure 2.6 - Schematic Diagram of Throttle Servomechanism
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Throttle 209

Valve
Position,
degrees 0 1 !
: 0 005 1.0 Time,s
Throttle
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Throttle

10}
Valve
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0 005 1.0 Time.s

Figure 2.7 - Throttle Valve Response
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d represents fan displacement

b5 162 ——Torque

15,24cm,

o))
i

——.—.—- Power

37-+5 135
=7,62cm,

4= 15.2kcm,

//d = 7.62cm.

d = Ocm,

) Torque,er

0 20 Lo 60
Throttle opening, degrees

Figure 2.8 - Power and Torque Vs. Throttle Angle




typical responses of the throttle valve to demands for new

gspeeds are shown in figure 2.7 From data obtained from
these curves the servomechanism was described by a linear
differential equation 3
0+abdbo = cV. (2.1)
where a, b, and ¢ are constants.
0 is.the throttle valve opening, in radians, and vin

represents the command voltage, in volts. The description

by (2.1) ignores some small, but obéervable, non-linearities
in the response of the servomechanism. From the data
obtained from figure 2.7 the servomechanism was identified*
and the following Qalues were assigned to the constant

coefficients

a = 16
b = 130 ‘ (2.2)
c = 43,3
Letting X, = 0
) ° (2.3)
and x3 = dg = 6
dt

then (2.1) may be re-expressed, using (2.2) and (2.3), as 1

X2

*3
- (2.4)
Xy = -130x2-16x3+43.3vin

A simulation of the throttle servomechanism is shown in
figure 2.10. (For an explanation of the symbols used in
that diagram see Appendix A.2). Note the use of the variable
diode function generator (v.d.f.g.) to simulate the measured
characteristics of thé engine throttle systém, showﬁ in

figures 2.8 and 2.9. In the simulation the torque characteristic

#*DPhe method by which the engine was identified is discussed

later in this section.,
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was placed ahead of the engine for convenience. The actual
simulated torque characteristic output from the v.d.f.g. is
shown in figure 2.11 whiéh should be compared to figure 2.8.
Potentiometer Pllwas adjusted to scale the torque character-
istics for different dynamometer settings. The appropriate
settings are shown in the small table inset in figure 2.10.
The simuiated servo response is shown in figure 2,12, Note
that the inclusion of the static torque characteristic had a
destabilising effect; +this can be cénfirmed from observing
that the overshoot of the simulated response vwas greater
than the overshoot gxhibited by the throttle servomechanism,

To identify the response of the engine and the fhrottle
servomechanism under load¥*, sets of experimental data were
obtaiﬁed and were-used as the inputs for the digital computer
program BEARDM20. (See Appendix A.3)e The program was used
to identify any system which can be described by the vector
differential equation : _

x = Ax'+ Bu _ ' (245)

In this research,- the state vector x was of dimension 3 and
compfised the following elements

Xy ‘the engine speed (rac./s)

2 the throttle position (rad)

| the rate of change of throttle

position (rad/s)

The input to the throttle servomechanism, in volts, was taken
to be u, The program is based upon the work of YORE and
TAKAHASHT (1967). It was written to produce the elements of

#th gear was selected, Hence engine and output shaft

speeds were identical in the steady state.
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the coefficient matrix A. An extension of the program to
provide an estimate of the driving matrix B can be done only
in Very special and limited cases. In this study it was
not possible to estimate the matrix by use of the program
because B was a rectangular matrix and an inversion of the
matrix was required within the body of the program to effect

this particular identification.¥® The program may be used

for this purpose if u(t) was always a well-defined input,
such as a step function, for then the state equation could
be augmented by including the input as an additional state
variable, Xy, 0 For this research work an alternafivg method
of assessing a value for B was chosen : u(t) was known to be
a step function and the matrix B was known to be of the forﬁ
[o o b3]'. It was easy therefore to identify b3 and
hence fhe matrix, B, from steady-state measurements.
Prov;déd that the state vector x was measurable, free
from noise, ahd was not constant over any small interval of
time it was possible sometimes tp identify fhe matrix, A,
by use of the program. The matrix, A, produced by the
computer, was obtained from successive iteration of the

equation
AE*L = 2K 4 pak (2.6)

k+1

The integer k denotes the appropriate iteration. ‘Ac was

the estimated coefficient matrix at iteration k+1, whereas

Ag was the coefficient matrix evaluated previously at the
kth iteration,

#*Later work involved such inversion and a brief summary of
matrix formulae associated with this is given in Appendix A.5.3.
However unique matching was not possible, Therefore as '
stated in the text an alternative scheme was used here.
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(DA)k was a special matrix denoting the normalised estimation
error and was obtained from a sequence of error vectors

formed thus :
F(5) = x(3) - 259 (2.7)
| j = 1,2)3000000000000

x(j) was the state vector, measured from the recorded respon-

ses at some instant of time, j, and then used as the input to

Th set of data. zg(j) was the computer-

th

the program as the
estimated vector fof the same instant, j, on the k iteration.
A square matrix, E, was formed then by using the error

vectors, gk(j). as its columns 1

EX = [e"(5),eX(§+1),e5(5+2)] (2.8)

Another square matrix, X y was formed by reading in

A orig
as columns of the matrix the vectors x(j) thus :

X = [x(3),x(3+1),x(§+2)] (2.9)

orig

The matrix, X » was composed of data from actual

orig
measurements; it did not change therefore from iteration
to iteration. The matrix, Ek, however, was calculated by the
computer and did change from iteration to iferation until
eventually it was zero, or until an estimate of sufficient
accuracy had been achieved. The normalised error matrix

k

DA™ could then be obtained. It was defined as

pak = o-lgk[x . 71 (2.10)

orig

where T was the constant interval of time between

measurements and was a scalar.




Provided that the state variables changed between
intervals,the elements of Xorig were different and it was

non-singular, (2.5) was re-expressed as

k+1 1 k i
A, +i§3L DA (2.11)

e
i

in which Aé was an initial matrix the elements of which were
assigned by the program user as an initial guess. The
vectors 5c(j) were obtained from a sub-routine which solved

the equation

k _ ,k
3Q = A X, + Bu (2.12)

BELLMAN [19607 has shown that the solution of (2.12) is

given by 1

4 _
Eg(t) = exp(Ag(t-tQ))zc(to) + tJr exp(Ag(tTT))BuCt)dT

o
(2,13)
The sub-routine evaluated the quantities
k t X
exp(Ac(t-to) and /ﬁ exp(Ac(t-T)BdT
' t
0
The iterations in the program were terminated when
k _
E < € (2.14)

where € was a small positive number assigned by the user

as an acceptable degree of accuracy. In this research a

value of 0,001 was used.
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The vector norm used in this work was the Euclidean norm.

The corresponding matrix norm was

[)‘max(E'kEk)J%

In use it was found that the program had several limita-

tions which are indicated below :

(a) Sensitivity to Choice of T

T had to be small enough to éatisfy the requirements
of the sampling theorem due to SHANNON [19487]., Failure to
meet these requirements meant that the program would not
converge, To ensure convergence Yore and Takahashi proposed

the use of the criterion

aijmax xT <« logez
n

(2.15)

The inﬁegér. n, represented the order of the system and

aijmax is the value of . the largest element of the matrix, A,
which has yet to be identified. The practical solution to

the problem of choosing T was empirical. An initial guess

was made; if cdnvergence was achieved T was increased and
another run was‘méde. If convergence was obtained again

the pfocedure was repeated until a minimum successful value of ~

T was found. If, at the first guess, convergence was not

achieved T was reduced, Only a few runs were needed to obtain
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a satisfactory choice of T, However, every alteration of T
requires a new get of data from the recordings at every
changed value,

(b) Vectors x(j) Must Differ

Identification of the autonomous linear systems with
large rates of changes proved to be very easy when the program
was being validated. Slow or small changes in system response

resulted in unsatisfactory solutions and frequently poor

convergence, This characteristic can affect the estimated
matrix, Ay obtained for the same equation but for different
sets of data derived from the same response. For exgmple,’

the matrix, Ac,'evaluated upon the basis of the wvector set,

say,
X =[ x(187),x(19T),x(20T) ] (2.16)

orig
could bear little resemblance to the matrix evaluated for
the earlier vector set .
orig =L 2(0),x(T),x(21) ] (2417)

This phenomenon resulted because the later data gset was

i ’ X

measured when the rateé of change in the system responsés
were nearly zero i.e. the system was almost at its steady-state.
(c) Noise

The presence of noise on the recorded response can
affect seriously the convergence of the program because all )
the input data hww;been perturbed randomly and there is no
correlation with future values. Provision was made in the
program to prevent the excessive computing times associated
with convergence failure, 7

(d) Non-linearities in the System

It was claimed by Yore and Takahashi that the method
would work for a limited class of non-linearities; that class
" allows the identification only of a linear equation for small

excursions about some operating point., Such a limited
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.description was inappropriate when the data sets for the full
combination were used with the program, Convergence was
infrequent; on the occasions when convergence did occur it
was found that the estimated matrix, A,, was unrealistic,
because it was determined that it had positive eigenvalues
although the experimental data had been taken from bounded,
and hence.stable* output responses. To check the validity of
the Ac matrices produced from the program two methods were used :

-(i) the eigenvalues were evaluated and

checked for sign

(ii) the matrix, A_, was input to a program

c
BEARDM34 (see Appendix A.3) and the
response x,(t) was evaluated. This
was compared to the original responses,
end if too great a discrepancy was

- evident an incorrect matrix, A+ had
been obtained.

By this technique the matrix, A, describing the servo-

mechanism was obtéined and thence the values of a and b

quoted in (2.2). The coefficient, ¢, was evaluated fromv

steady-state considerations, The A matrices for the entire
engine arrangement were totally unsatisfactory and closer
examination of the response showed that‘they exhibited non-
linear behaviour. (See section AB of figure 2.,13). The
responses were not from very nearly linear systems as had

been supposed initially. Therefore the responses were

atypical of other transient responses published for other

*The assumption of stability from observing a bounded response
is possible only because the technique of the program is

based upon linear systems theory.




engines. (See for example MONK and COMFORT (1971)).
Attention was directed therefore to the dynamics associated
with the dynamometer since other published responses were
obtained from engines using dynamometers different from the

fan type used in this work.

2.2 The Dynamometer

The power absorbed by the fan dynamometer used in
this research was a function of shaft speed cubed. Calibra-
tion curves for the dynamometer are shown in figure 2,14,
Figure 2,15 is derived from figure 2,14, A graph, derived
from figure 244, showing the relationship between torque
and fan’displacement for constant shaft speeds is given in
figure 2.15b. From this graph it was inferred that if the
control scheme could maintain the engine speed approximately
constant the load torque on the éngine could be taken as a
linear function of fan displacement ovef the range 2.5 cm,-10 cm,
approximately.

It was decided'to study the dynamometer dynamics by means
of analogue simulation. To check the resulting mathematical
model in the steady-state the results of the simulation which
is shown in figure 2,16 were compared with those values
obtained from figure 2.15Db. In the simulation amplitude

scaling was employed :

1 volt = 30.4 rev/min (2.18)
which implied that
1 volt = 13,56 Nm (2.19)

The quality of the simulation may be assessed from the

torque vs speed curves : compare figures 2,1i4b and 2.17.
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The acceleration equation describing the dynamometer dynamics
was ‘determined to be 3 )

b = =333 + 3.33u (2.20)
in which k is a coefficient. It is a function of fan
displacement; w, is the shaft speed in rad/s and u is the
torque in Nm,

From éomparison of the responses obtained from the engine
and load system with the responses obtained from the simula-
tion for theAfan settiﬁg range from 2.5 cm, to 10 cm, it was
observed that they were very similar, By inference it was
concluded that for some conditions* of sysfém operation the
dynamic‘response of the engine was determined entirely by the
charactéristic of the dynamometer, When this is the condi-
tion the engine may then be regarded,for analytical purposes,
as a simple device which converté fuel flow into torque,with
a characteristié corresponding to figufe 2.18,in a negligible
time compared to the response time of the engine-dynamometer
combination, |

For some part 6f the research, therefore, (2.20) was regarded
as the equation describing the dynamics of the complete engine-
load system, But for the attempt to secure optimal engine
regulation a linear model was needed,because its availability
permitted significaht simplification of the associated analysié,
and of the resulting synthesis of the controller. A possibie
method of obtaining this model was to expand the non-linear
term in (2.20) by means of a Taylor series,and by then consid-
ering only the linear terms in that expansion. By assuming

an incremental change of speed,[&mf, about some equilibrium

*These conditions pertain when the engine is operating with
fourth gear and the torque load is an approximately linear

function of engine speed.,
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value,), the incremental variation of (2.20) could be given as

d(Aw,)
a—;c-——-f— + 6,66 = 3BAU (2,21)

whereA u is the incremental change in torque needed to produce
the speed incrementzgu%. For a step increment inAu the
resulting variation in speed was given by

AW (V) = LU (1_exp(~6,6611t)) (2.22)

To describe completely the engine response to changes of

torque would require an entire family of these linear equations

corresponding to every possible steady speed,Q.* 'From this
basic consideration it was evident that a linear model could
be obtained.but that it would be subjected to some constraints
upon its validity. Since such a model could be obtained it
was logical tc attempt to establish the optimum linear model.

2,3 Optimal Linearisation

- The method of optimal linearisation selected was to

match (2.20) with the linear model equation (2.24) i.e.

given
. ”
W = -
£ cwf + blu (2.23)
and assuming
W o= . oy '
£ = =Awp + byu (2.24)

choose ; in some optimal way yet to be described.
The gain of the linear systen, b2 s had to be adjusted also
to ensure that the steady-state speeds of the linear model
and the dynamometer were identical for the same value of
input, Ue BLACQUIERE EPSE]proposed that in such an approach A

should be chosen to minimise the integral of error-squared,

*This technique has been applied to a boiler problem by
BANHAM and SMITH ﬁ%@. The boiler used a fan as a forced

air blower,

Q_—‘_——__.




where the error,€,was defined as 3
€ Out) = ~\p(t) + cwl(t) + (by=bylult)  (2425)

An alternative optimal model was available if the Ritz |

method, detailed in CUNNINGHAM (1959), was employed. In

that method the criterion which had to be minimised was ¢
- d/C(t)qb(t)dt (2.26)
where qb(t) was a function of time agsociated with the model

and where € (t) was the residual which resulted from substitu-

ting an assumed solution in the original non-linear equation

and which, in general, it did not satisfy.

2.3.1 The Integral of Error~Sauared Method

The squared error was obtained from (2.25)

efut) = %%ui(t) - 2c)p?(t + c(”f(t) + (b,- 1)2u2(t)

(2.27)
The condition for optimality was that
2 [e(t)at =0 (2.28)
)\ : . ,
Hence, : .
2)02(¢) ~ 2692 (%) = 0 (2.29)
where
ob
SE(t) = /wz(t)dt (2.30)
£ A
and where
o0
“3(t) ,/[ ?(t)dt (2.31)
From (2.99) it followed that '
£\ 0 = cwf(t)/ af(t) (2.32)
The evaluation of A€ required the evaluation of the

integrals defined in (2.30) and (2.31). Such an evaluation

would require a solution for wptt). For constant input, u(t),




the solution of (2.23) was found as follows

y _ 2
We = -c(wf-b1u>
c (2433)
thence ~ ;
We t
f a = -c/ dp (2.34)
°  (A%-byu) °
c
where A, and p are dummy variables.
The solution of (2.34) is given by -
/¢ " loge (wf' b1u - b1u
§Jb u c ¢ = -ct

1

("wf blu - biu (2.35)
o -

From (2.35) it can be derived that

: mfj"izﬁ' - | ]
-1 ¢ c = - /bluc t (2.36)

tanh
~-b1u
e
Then, 4 ’
“We * | £ = ~tanh ([bjuc’t) (2.37)
b, u :
1
and thus :
. s blu
Wp = — tanh ( uc t) (2.38)%
' ' c

#When the forcing function is absent from (2.23) the solution

is given by - wf(t) = wf(O)
wfioict+1 (2.38a)

Physically mf(o) cannot be negative; however, in a computer
simulation, if wf(O) is negative, theresponse of the simulation

will be unbounded at t = mf(o)

c
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Attempts to solve (2.32) by substitution of (2.38) in the
intégrais (2,30) and (2.31) lead to analytical difficulties.
The problem was circumvented by using an analogue computer
to simulate both (2.23) and (2.24). The outputs of these
simulations were subtracted,-the remaining difference was
squared in an accurate multiplier and its output was integra-
ted over a period of time of sufficient length to approximate
to the upper 1limit of the integral of the performance criterion.
The integrator output was reduced to a minimum by adjustment
of the parameter,A, in the linear model.,  Before the adjust-
ment of A for optimality a preiiminary run was made to adjust
the gain of the linear model simulation to reduce the error,
€{®), to zero. The diagram of the analogue computegéimula-
tion ié shown in figure 2.18 and.the results obtained are
quoted_in table 2.2, The overall accuracy of the computer
used® was 0.:1%. The tests which provided the results of
table 2.2 were completed immediately folloWing acceptance
trials for the computér. Part of the acceptance waé a
stringent test of machine and component accuracy to ensure
that the computer performance was better than the specified

overall accuracy of 0.,1% .

*The analogue computer was a REDIFON-ASTRODATA Ci -~ 175,
with a 100 volts machine unit and a maximum iteration

frequency of 1kHz,.




. Potentiometer Settings A01

Serial Dynamometer

Number Displacement ' igg Al5

P10 | P20 | P31 |P32
01 15,20 1148 | 3333 | 1034 | 5144 | 5880 | 0010
02 " 0600 | * | 0677 {7079 |Lk251 | 0074
03 " 0100 | * | 0258 172§3 1736 | 0000
ol 10.16 1200 | 2888 | 0960 | 5374 | 6456 | 0130
05 " 0600 | " | 0657 | 7608 |4565 | 0070
06 " 0100 | * |o2u1 1é5§S 1877 | ook
07 7.62 | 1000 | 2388 { 0794 | 6475 |6483 | 0755
08 " 0600 | * | 0600 | 8356 |5029 | 0105
09 v 0100 | " | 0226 | 2039 | 2064 | 0003
10 5,08 . | 0600 | 1845 | 0532 | 9510 |s5712 | 0167
11 | " 1 0100 n {0197 23353 2335 | 0003
12 2. 54 0615 | 1350 | 5293 109§i 6761 | 0031
o]

13 “ | otoo | v |19k2 |2716 {2736 | 0023
14 1.77 0500 | 0925 348{ 164%2 6593 | o415
15 " 0100 | " | 1576 | 3281 |3303 | 0288
16 0 0200 | 0360 | 1517 35253 7896 | 1384
17 " o100 | " |o0980 525{& 5286 | 0908

Lo

© Indicates that gain of A29 was reduced to unity.
A Indicates that gain of A32 was increased to X1i0.

P02 set at 3333 throughout experiment.

Table 2,2




Input Steady Output A b
Serial No Torque Speed Z
N-m (rev/min) (sec'l) (xg=1
m"z)
01 156 1765 1,034 5.13
02 82.5 1292 0,667 b,72
03 13. 56 526 0,258 b,bs
ol 164 1960 0,960 5.16
05 82,5 1390 0.657 5.06
06 13.56 570" 0.241 bos
07 164 1965' 0.794 5415
08 82.5 1530 0,60 5.0
09 13.56 628 0,226 | 4.6
10 82.5 1746 0.532 5405
11‘ 13.56 710 0.197 L.6
12 82.5 2060 0.529 5.8
13 13,56 830 0,194 | 5.12
14 54 2000 0,349 5.69
15 13.56 1040 0,158 5415
‘16 30.4 2400 0.152 5.32
17 13.56 1610 0,098 5415

L




Whe A15 is recorded in table 2.2 as reading 0031 (serial
no. 12) it means that the voltage recorded across the output
terminals of the amplifier (A15) on a digital voltmeter on
its 100-volts range was 00.31 volt, or 310 mv, The column
headed A15 in table 2,2 repreéents the minimum value of I.S.E.
If X\ is thimal I.S.E., and consequently the output of Alj5,
should be zero. From inspection it is apparent that for all
fan displacements greater than 1.77 cm. the linear models
obtained were optimal, For example, at maximum level of
torque input, at a fan displacement of 7.5 ﬁm. the value of
I.S.E. represents over the interval of measurement, an error*
of 0.2% approximately. The interval of measurement was taken
tb be 120 seconds; in every case the transient responses of
the simﬁlations had long ceased fé.be significant before the
upper limit of the 120 second period was reached.

In téble 2.3 the valueé of A° and b2 are given to corres-
pond to the data presented in table 2.2 These results are
summarised in graphical form in figures 2.19 and 2.20 where
some additional results were used to complete the graphs.

The time constants and the gains of the linear models are seen
to depend upon the load and equilibrium speed. If these

varied with time thep the linear model would have to be regarded
as time-varying., Because the intention was to change the

load dynamically the non-linear system could then be represented
by a linear time-varying equation, The suggestion that this
kind of linear representation of non-linear systems would result
was made first,as far as can be determined by this author,

by PEARSON (1962).

#Phis was an average error figure.
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2.3.2 Ritz Nlethod

In this approach the assumed solution for (2.23) was 1

wf(t) - 6}(1 ~ exp(~ht)) (2.39)
where A 1/2
we = {(biu/c)} | (2.40)
The residual was given thenby @
€(t) = (M, - 2b,(exp(-M) + (byu)exp(~2Mt)

(2.41)
From (2.39) the function, ®(t), associated with the assumed

model was
® (t) = (1-exp(-At)) (2.02)

In this method also A was chosen to minimise the performance

index i.ee A _
%%/?;-exp(-kt)){‘(wa—Zbiu)exp(-lt) + (blu)exp(-zxtz}dt =0

° _ (2.43)
 Fronm (2.43)
5b1u\ o
A
5 = 0./2 : (2.44)
| Pr ) |
from which, using the substitution forw, defined in (2.40)

o] A
A = 2

- 5(Cb1u) : (2‘45)

3
Substitution of (2.45) in (2.39) gave the optimal linear

equation A 1/2
W (t) = W,J)1 =~ expks (cb,u) %)
3 L
In figure 2.20 for I.S.E., Ritz, and the Taylor models* the
o ~1

variation of (A) with fan displacement are shown together

for the purpose of comparison, In figure 2.21 for a fan

*The Taylor model was obtained from the engine responses by
treating them as truly exponential curves, which they were not;
and by determining the settling time (to within 1% of final
value). This provided more easily a linear model which was

much cruder than the I.S.E. or the Ritz.
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displacement of 7.6 cm. the recording of filtered engine speed
and the responses recorded from the suitably scaled simulated
I.S«E. and Ritz models  are shown for comparison.

From figure 2.21 it was decided that, provided that changes
of torque were not too large, the linear model for the engine
combination was acceptable for later use in this research.

For small'changes of torque, of say 15 Nm. over a large range
of equilibrium gpeeds the choice of

| b, = 5.0 kg™l m? | (2.47)
was obtained from table 2.3 However the changes in 2% and

b2 which occurred due to alteration of speed énd/br load
condition meant that special care had to be addressed to the
problem of devising regulation control laws, From figure 2.21
it is plain that, for most operating conditions, a reasonable

. o
choice for A~ was

vC = 1.0 o © (2.48)
Therefore, the model egquation, which the engine system will
be controlled to brovide throughout sﬁbsequent regulation tests,
was ‘taken to be ]

(!)f ==

2.4  CGear Changing

£ + 5.01). (2.“‘9)

2.4,1 Effects of Gear Ratios on System Equation

Up to this point the identification of the engine
system dynamics had depended upgn data derived from experi-
mental records acquired from engine runs for which.fdurth gear
was selected. To examine how the describing equations would
be altered if an alternative gear was selected required an
extension of the analysis. The extension was based upon the
schematic diagram of figure 2.22 in which the symbols have

the following meanings 1
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n is the appropriate gear ratio

Qe is torque developed by the engine (Nm)
Qc is slip torque of fluid flywheel (Nm)
Qp is load torque applied by fan (Nm)

J is inertia of engine (kg mz)

Jp is inertia of fan (kg mz)

J  are inertias of fluid flywheel
coupling (kg )

k is damping coefficient of fan
Q 1is speed of engine (rad/s)
we is dynamometer shaft speed (rad/s)
F, is engine friction (Nm s)
The specific valueof k depended upon the displacement of the
fan, as before; the engine friction Was assumed to be due

wholly to viscous friction. The engine static friction

was negligible. From figure 2.22 then

2
Jaé
e” e . a -
552 + Fo_e ¥ Q, = Q (2.50)
at
in which
Q, = Q
c f (2.51)
n .
‘and ee is the angular displacement of the engine shaft.*
= 0 .
But 0, o/ (2052)
and 26- . 2
Qf = Jf a £ + k(d £ ) (2.53)
2
| at at
From these equations (2.50) was re-expressed as i
2 2
J_ d°6 + J =
e tOF 4% I $% 4 x(a8)? 7%
at? at n®  at? n dt
(2454)

3% . :
8¢ is the angular displacement of the fan.

.



Figure 2,23 =~ Block Diagram of Engine, Load and Gearbox

In the figure

. dzee
dat
W ae ce .
= _° (2.56)
at ‘
0 ae '
£ - ——i ] (2057)

The symbol p has its usual meaning in a control engineering

context: it represents the Heaviside operator, i.e.
= d ’
P 'a%' . (2'58)

Substitution of (2.5?) in (2.54) provided

2 _
Eig) B Qe

3 (3%
(2.59)

Je + Jf d

n? | at?

20 4+ F a6+
e e e

k
at n



If J_ and Fe were negligible (or could be assumed to be so0)

(2.59) reduced to

. 2 ‘
We = =~k W, + nQ
T = f - e : (2060) :
Jf Jf
. 2,
(J.)f = "C(i)f‘ + biu (2. 61)

From a comparison of (2.61) with (2.23) it was evident that

b1‘= nb1 (2462)

The inverse time constant, A, of the quasi-linear equation can

be derived from (2.61), and the work of section 2.3 ,and was

(o)

hyo=amghy (2.63)

where j = 4,3, or 2.

The values of j depended upon tbe gear selected; for example
if bth gear was used then j would equal 40 The ratio
appropriate to whichever gear was selected was nj; the values

of nj were obtained from table 2.1y From (2.63) and (2.45)

1/2

o _ .
A = 5(001unj)

J
: 3

where j and nj had the same meanings as before.

(2.64)

2.,4,2 Dynamic Response to a Gearchange

In figure 2.24 the responses were obtained from.
the engine rig with fixed throttle setting and fixed fan

displacement, From inspection of these recordings two features

were noted : ,
(1) some responses exhibit overshoots whilst

others for exactly the same conditions except the direct-

jon of the gearchange, failed to exhibit such overshoots.
(ii) the period of the oscillation associated

with the overshoot exceeded the duration of the response
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from the old to the new equilibrium speed, (see figure 2.2bc |
for example). |

Any overshoot must occur because there is some form of
energy exchange within the system. Consequently the order
of the system must increase from one. This increase in
system o:der could be accounted for only by the action of the
fluid flywheel used with the gearbox. The existence, or lack,
of overshoot for some up/down¥® gearshifts in figure 2.2 was
because of the non-linear nature of the load-transmission
system : the nature of the response depended upon the equili~
brium speed. The overshoots cannot be accounted for by the
use of linear system theory to characterlqe <the system benaV1-
our because the measured duration of the overshoots was rnuch
greate} than half the total response time and that phenomehon
cannot occur in any 1ineér system, . |

As a consequence of these observations the model of the
gearchanging system already developed was modified further to
include the dynamics agsociated with the fluld flywheel,

From figure 2.25+

Q, = (J01 + Je)Qe + F O, + Q (2.65)
where

Qé =7V(Qe -me) (2.66)
is the coupling coefficient in Nm s.

w, = N (2.67)

Q, =7, - N, ) (2.68)

#Direction of change is implied in the statement UP/DOWN.
Tt means changing from higher numbered gear to lower numbered

gear, e.g. 4 to 3, or 3 to 2. DOVWN/UP means shifting up a gear.
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Figure 2,25 - Block Diagram of Engine, Transmission and Ino ad




and

e 01
(2.69)
but 2. » . 2
nQ_ = chn we T I + ko (270)
ie€o
2
Q. - we) = Joq, " 2
e T con We + mef + kwf
(2.71)
Therefore
f.le = -(F 0 W, - Q
e “e + £ + e (2.72)
(Jci + Je) (Jcl+:Je)(Jc1+ Je) ,
. 2 2 SR
wp = = CHI. ¢ 7; g 4 o ny»———z Qe
" (T n®+TL) (J. n“4Jd,) J n+J..)
02 f Cz f Cz f .
| (2.73)
i.e. v o= £(x,Q,) (2.74)
where

Q. o -
v = Lﬂﬂ : ' (2.75)

A block diagram representation of (2.72) and_(2°73) ig given
in figure 2.25.

2.4.3 Qualitative Account of Gearshift Overshoot

-

In this section a qualitative description of how
the overshoot occurred on a gearshift is presented.' The
account developed an approach contained in EVERSHED (1966)
for an application involving a dry friction clutech and an
electric motor driving a linear load.

Considered first was the effect upon the speed of
the fan of a sudden application of engine torque via the

fluid coupling.
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_ 2 [ ] [ ] 2 A
ch = chn wp + waf + kmf | (2.70)
i.e.
* 2
0} = -k ()] + n Q (2076)
(chn + Jf) (chn + Jf)

The solution of this differential equation was found, from
(2.38), to be

wf(t) = 39_9 tanh nch t (2.77)

k 2

(Jc n“+J

)
> £
The applied torque, Qc, is assumed to be constant.

Suppose that just prior to applyiﬁg this fan torque the engine
had been running at some equilibrium speed
Q = Qe

© — | (2.78)

Fe

With this sudden torque the enginevwould be loaded and its
speed would fall, The kinetic energy associated with the
inertia of the engine-.-could be transferred partially to the
dynamometer during this short period of acceleration. When
the fluid flywheel stopped "slipping" the engine could return
to steady-state speed. The engine speed was changed, there-
forg, by a component of speed, due to Qc, given by (2.77).
Figure 2.26 shows how the engine speed varies with this
application of load torque. During this interval of slipping
the engine speed increased towards a new steady value. The
dashed line in figure 2.26 shows a fan acceleration character-
“istic, modified as apﬁropriate by nj. From the graph it is
seen that at some time, ts, the engine and fan speeds were

identical again. At this time the "slipping" had stopped
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and Qc was ZzZero. In figure 2.25 the negative feedback
path, = corresponding to the signal, Qc, was open~circuited,
The engine and fan foilowed the same acceleration curve to
the new equilibrium speed,

2.4,5 Simulation of the Engine, Transmission, and Load
System
Figure 2,25 was the basis of the analogue simula-

tion shown in figure 2,27, The arrangements for displaying
and recording the outputs of the simulation are shown in
figure 2.27 also, together with the analogue portion of the
automatic gear-changing scheme, The associated logic diagram
is given in figure 2,270, A simplification of this logic |
arrangemnent would be possible on a machine in which more than
eight digital-to-analogue (D/A) switches were provided. The
logic iﬁverters, N2, N25 and N26, shown in figure 2.27b, |
would be required no longer. These inverters were used to
control the logic ﬁhichvdetermined the integrator mode : the
integrators (AL3, ALS5, AL7) were patched as logic~controlled
summers (see Appendix Ai)-in lieu of D/A switches. The
potentiometer settings, and their corresvonding function
representations, have been set down in table 2.4, An explan~
ation of the analogue switch functions.is furnished in table 2.5,
The simulation was used to determine the engine and trans-
mission system parameters by matching simulated and experimental
responses. The static engine torque characteristic has been
moved ahead of the engine simulation to become the block
following the servomechanism : this was done for computational
convenience and has been discussed earlier in section 2.1.

From figure 2.8 it is seen that there was a substantially
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Figure 2.27a - Analogue Simulation Diagram
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POTENTIOMETER
SYSTEM FUNCTION ADDRESS SETTING
0.L. DEMAND TORQUE, Q POO 1200
TORQUE DISTURBANCE, Q, PO1 0600
ENGINE FRICTION, F, PO2 1567
C.L. DEMAND TORQUE, Qg PO3 1200
(ENGINE & FLYWHEEL INERTIA)™! POk 1894
FLYWHEEL COUPLING COEFFICIENT PO6 4730
THROTTLE SERVO GAIN (OPEN-LOOP) | . P08 4330
THROTTLE SERVO PARAMETER P09 1600
DYNAMOMETER COEFFICIENT P10 | . 3333,2888,2385

(depends on fan setting)
THROTTLE SERVO GAIN (C.L.)
MANUAL GEARSHIFT (3/4)

INPUT PLOTTER TIME-BASE

NO 2 GEAR SELECTION VALUE(DOWN)
NO 3 GEAR SELECTIdN VALUE(UP)
2ND GEAR RATIO

3RD GEAR RATIO

LTH GEAR RATIO

NO 3 GEAR SELECTION VALUE(DOWN)
NO 4 GEAR SELECTION VALUE(UP)

P12
P16
P20
P22
P23
P24
P25
P26
P27
P28

1845,1350,0925
4330
3300
0100
2600
2700
2210
1470
9999
4300
4400

Table 2.4 s POTENTIOMETER SETTINGS FOR ANALOGUE COMPUTER

SIMULATION OF ENGINE, FLUID FLYWHEEL, GEARBOX AND

DYNAMOMETER (refers to figure 2.27a)




_POTENTIOMETER

SYSTEM FUNCTION

ADDRESS SETTING

THROTTLE SERVO PARAMETER P29 1300
CONTROLLER GAIN, d, 1 e300 see Chap 6
DYNAMOMETER COEFFICIENT P31 same as P10
CONTROLLER GAIN, d, P32 see Chap 6
CONTROLLER GAIN, d, P33 see Chap 6
SCALING FACTOR (U.V. RECORDER) PhO 9999
STATIC TORQUE GAIN Ph1 see Chap 6
2ND GEAR RATIO | P70 2210
3RD GEAR RATIO ' ©P7i 1470
WTH GEAR RATIO P72 1000
(de,my% + 3070 P73 1275
(chnz2 + Jf)'1 ‘ P74 1980
(J02n32 + Jf)'1 | - P75 2500

Table 2.4 : (continued from Page 61)




' SWITCH
ADDRESS POSTITION FUNCTION
U OPEN LOOP - COMMAND INPUT
AS1 C —~—
D CLOSED LOOP COMIZAND INPUT
U FIXED TORQUE DISTURBANCE (+)
AS2 C ——-
D FIXED TORQUE DISTURBANCE (-)
U - GEAR 3 SELECTED
AS3 C GEAR 4 "
D AUTOMATIC GEARCHANGE
U X-Y PLOTTER DISPLAY
AsSh C —~——
D C:R,0, DISPLAY
U FAN ADJUSTMENT - MANUAL
ASS c . ————
D RANDOM INPUT FAN ADJUSTMENT
U- X-TIME BASE FOR PLOTTER
AS6 c - NO TIME BASE
D ”" " 1"

TABLE 2,5 ~ SWITCH LEGEND FOR SIMULATION DIAGRAM
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linear regime and in that regime torque was related to.thrbttie
opening by (2.79) viz. |
Q, = Ko . (2.79)

Some typical responses from the simulation are shown in
figure 2,28, Note that the inclusion of the fluid flywheel
dynamics.in the simulation has resulted in the characteristic
overshoot on UP/DOWN shifts, On curve (a) the overshoot is
very slight because the equilibrium speed (corresponding to
that torque input) has been reached aimost ekactly at the
time éf the‘gearshift. For curve (b) with less available
torque, note that in uth gear a lower final steady speed wés
achieved. Selection of third gear provided the neééssary
increased torque to raise the final steady-state speed. In
this situafion when the load and the available torque were
within a particular range}of values there was likely to be
some difficulty with any automatic gear-changing scheme,
(See chapter 3, section 1).

2,5 DMathematical ilodel of Engine, Transmission, znd Load’

The values of the parameters of the engine and trans-
mission system obtained from the simulation are listed in
table 2.5 below, ‘

80 Nm/rad

K, =
F. = 0,0213 Nm s

€ 2
(0. + J_.) = 04715 kg m

© ¢4 2 |

J = 0.1108 kg m

)
Jo = 0.4122 ke n>

~
i

0, 6“’13 Nm s

Table 2,5 ~ Estimated Parameters of Engine System
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Figure 2,28 - Typical Simulated Gearchange Responses
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The model of the engine, transmission and load system was

obtained from (2.72) and (2.73) and table 2.5, It is given by 1

'Vi = -O.925v1 * avz + 1089“’11 (2.80) (

. _ _ 2

v, = vdvl - cv, kbv; (2.81)
wheré, as before,

v‘1 = ﬂe

Vo = Wg (2.82)

u = Qe

The value of the coefficients a,b,c and d depended upon the
gear selected, The values corresponding to particular gears

are listed in table 2.6

.Gear a b c d
2 1,98 | 1.275 | 2.9% | 1.33
3 1,315 | 1.98 2,02 | 1.372
- 0.894 | 2.5 1,165 | 1.165

Table 2.6 - Coefficients Used in Mathematical lModel -

The value of k, the damping coefficient of the dynamometer,

is taken from figure 2.15.

The mathematical model of (2.80) and (2.81) is used in

conmmection with the study of optimal start-up of the engine

presented in chapter Se

To provide a pseudo~linear model of the-system for use

with the regulation studies presented in chapter 6 the

equations (2.49), (2.78), and (2.4) were combined to form

(2.5) in which the coefficient matrix A was defined as 1
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0 -130 -16
L —
And driving matrix, B, was defined as ,
B = [0 | 0 43.3] (2.84)*

The state vector, X, and the control input, u, were defined
in (2.5).

In the study of the regulation properties of the piant a
non-linear model was used also; it was found from (2.78),

(2.4) and (2.20), It was

x, = '-3.33kx12 + 267x,
;(2 = x3 (2-85)
5:3_ = -130:;2-163:3. v W3V

The X5 in (2.85) were the components of the state vector

defined for (2.5).

#The system is controllable s the matrix, H, had rank 3.

That is,

H = (BIABIA®B) = |0 0 17320 |erank 3
0 43,3  -6928 |




CHAPTER 3 - A SYSTEM FOR CHANGING GEAR

3.1 Introduction

In the preceding chapter the effect of gearchanging
upon the dynamic response of the system was considered. In
this present chapter the physical procedure by which gear-
changing was effécted is described, A specially devised
scheme for automatic gearchanging is presented togefher with
an account of its performance. |

Much of the detail in this chapter relates to the
- "hardware" implementation of the scheme devised : by the
nature of experimental work the actual implementation could
be improved greatly now and the inter-unit wiriné could be
much simplifiéd by using compatible logic and electronic
circuits.,*®

Where sub-syé%ems have been introduced solely to assist
the engineering implementation, but which, in principle, are
not required ,will be pointed out in.the text at the appropri-
ate point; the reason for the inclusion of the element will
be given also,

3,2 Gearchanginz Logic Schemes

It was explained in section 2.1 why first gear could not
be used : the gears employed were 2nd, 3rd, and 4th, Physic~

ally gears are changed on a Daimler/Wilson geafbox by
\

*By using in the experimental rig elements and components which
were avallable immediately (for convenience and cheapness) a
large number of different power supplies were needed. Compatible
elements would reduce this number to one or two,

A

Y
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pre-selecting the gear required and then, when the change is
required, by depressing the gear-selector lever, (See figure
3.15. The engine torque is transmitted to the gearbox through
the fluid flywheel, In this research the gears were selected
by selecting a solenoid which actuated the toggle arm in the
gearbox to pre-select the reqﬁired gears vBy switching a
solenoid-operated air valve a pneumatic, linear actuator moved
the gear-selector lever and the gear change was effected. A
circuit diagram of the manual gearchange scheme is given in
figure 3.2. The time for a gear to be changed from the instant
of switching the solenoid of the air valve %o selection of néw
gear is 1.2 seconds , approximateiy . The response of engine
speed during such a change was discussed and modelled in chapter
24 The modelling was based upon a com puter simulation and

the logic scheme to change gearé;automatically was developed

on the analogue computer. The logic diagram is shown in figure.
3.3, From figure 2.4 it was noted that the engine delivered
its maximum torque at'a speed of 2000 rev/min. This speed

also corresponded’ to minimum specific fuel consumption. (see
figure 2.5). Consequently the gearchange programme was
designed such that at some starting time, say tys gear 2 was
selected®* and the engine was accelerated from its idling speed
of about 400 rev/min., At the first reference speed, W 531

the first change of gear (from 2nd to 3rd) occurred. The
second change (from 3rd to 4th) occurred at the second refer-
ence speed, w§34. These reference speeds were chosen such

that the engine speed was 2000 rev/min when the change was

started. These speeds were therefore
Wepy = 95 rad/s (3.1)
e | W5 rad/s (3.2)

1]

#This agsumption pre-supposed that the progression through the

4L¥§S§£§ (2-3-lt) would be the sequence for the optimal solution,
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‘From the account of the automatic gearchange system
given later in this chapter it may be seen that in any auto-
matic system the UP and DOWN changes would be initiated at
slightly different values qf Wro3 and Wrgye

When the dynamometer shaft speed was greater than the
reference speed, (. (set on P22 of figure 3.3) the comparator,
Cl’ changed state. Gear 2 had been selected previously (by
virtue of the initial logic states) and now, becaﬁse of the
comparator sﬁitch actioh, gearv3 was selected until the dynamo-
meter speed exceeded ®, at which point comparator, 02’ changed
state and gear 4 was selected. With this écheme included in
the engine simulation then on gearchange, for certain load -
conditions, the feedback loop opened and the upper gear was
selected again. Because‘of the load the engine speed fell
again, and consequently the dynémbmeter speed fell until it
again reachéd the reference speed ahd the lower gear was
selected, This sequence was repeated and an oscillation was
set up. Figure 3.4 illustrates this phenomenon (see curves
k and 5). Such»ﬁunting is a feature of all automatic trans-
missions and a recognised and conventional cure is to provide
the means whereby UP changes are effected at slightly higher
reference speeds than DOWN changes. By introducing this
threshold into the switching the hunting was limited. However,
if the changeover limit was kept narrow, as it had to be if‘
the automatic transmission was to be efficient, hunting could

still occur under extreme conditions of load., In commercial
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autonatic transmissions the solution is torprovide LOCK, or
manual override, facilities by means of which the operator
may hold a lower gear until the desired engine speed has been
achieved, or the load condition has improved. In figure
3.4 it can be seen that the hﬁnting occurs only for a very
restricted load and final speed combination. In the computer
simulation, figure 2.,2%, it was possible to select either 3rd
or Lth geaf manually by means of the analogue switch AS3,

(See table 2.5), In the automatic gearchange scheme used,
as‘soon as the change had been effected, the'reference speed
was altered to a slightly lower value, To alter the reference
speed twé relays and adéitional pofentiometers were used,

(See figure 3.3). The truth table corresponding to the

arrangement of figure 3.3 is givénﬁin table 3.1

Speed Condition c 01 02 C2 N12
(wp + wy)>0 1 0 1 0 0
(wp + wg)<0 | 0 | 1 1 0 1
(wf + m2)<0 0 1 0 1 0
Table 3,1 -~ Truth Table for Gear Logic

In figure 3.5 the additions necessary to effect gearchanges on
the engine simulation are shown. The component addresses
refer to the engine simulation shown in figure 2.27. In
figure 3.3 the gearchange scheme simply actuated the gear; in
the engine system itself the logic signal,at the gear terminal
(:),actuated a solenoid., Another signal had to be generated
from the logic to actuate the linear pneumatic actuator to

move the gear selector lever on the gearbox, (Sce figure 3.1).
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3¢3 Practical Gearchance Unit

The logic for gear selection was based firmly upon
figure 3.3, Certain practical considerations however dictated
the final implementation of the design, First, the actuation
- for the gear selector lever Was ON/OFF ~ controlled by a sole~
noid air valve which worked from a 24v, dec. supply and had a
resistance of 16Q. The air pressure required for the pneuma-
tic system was 41l kilopascals. The solenoids which actuated
the gear toggle arm required a 12v..d.c. supply and had
resistance of 6Q. The air valve and the solenoids were not
continuously rated at the required respective standing currents
of 1.5 and 2A, Conseéuently the logic unit had to provide a
iogic sequence viz., gear preselected by a solenoid, pneumatic
actuatdr switched on, gear-selecfpr.levér moved, gearchange
effected, actuator switched off and returned to neutral position,
Agéar pré-selector solenoid switched off., With this sequence
the duty cycle of the electrical components was restricted
sufficiently to permit'their use in this application, The
logic elements, however, could not provide sufficient power
to drive either the air valve or the solenoids. A solid~
state driving unit had to be provided therefore. Because the
logic (defined in Appendix A2) was negative true, and because
the electrical system of the engine was positive earth it was
convenient to use npn transistors to drive the solenoids and
air valve, The logic scheme devised initially used MINILOG
elements (produced by Elliot Ltd.) 1 the arrangement is
shown in figure 3.6. The inputs to this unit were acquired
from the comparators and the outputs were used as the inputs

to the drive unit (not shown). = The logic signals in the




four channels viz. 2,3,4% and SELECT were processed into long
vpulses by the appropriate delay units., To ensure that the
gear selector would be actuated only on a change of comparator
state 1.2, only when a gearchange is necessary, the logic
signals for the SELECT channél were differentiated and hence
the actuator would switch off after a delay determined by C6
(see figure 3.6). The delay had to be sufficient for the
actuator to travel its‘full length and select the gear. | 1
second was chosen as the delay. The scheme worked in labora-
tory tests but proved to be totally unreliable in service
because of the second~hand nature of the elements¥ Further
experimental use of tﬂis unit was abandoned because of the
detrimental effects of abusive gearchanges which resulted

with cémponent failure and malfﬁnction.v An alternative gear
switching unit was designed usiné'System 11 logic elements
(Texas.Instruments). These units were positive true logic
devices which required a different supply voltage from the
MINILOG elements.  The same drive unit was employed with the
new switching unite. However the logic signals for the input .
to the drive unit were incorrect in polarity and level. A
logic conversion unit had to be designed and constructed
therefore, The overall gearchaﬁging arrangements are shown
in sclematic form in figure 3,7. Each block in that figure
has a unit annotation and a corresponding figure reference.

A description of each block of figure 3.7 follows.,.

*These units were available at R.A.F. CRANWELL but they had

been used in some other apparatus previously.
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Ficure 3.7 - Automatic Gear System

~3
O




15012
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Figure 3.8 - Circuit Diagram of the Comparator Unit
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3¢3.1 Comparator Unit

These units were designed to produce the following

logic conditions :

Analogue Input Output
Condition ' Logic
<
(wp + ©y)<0 1
(wp + wg)>0 0
Logic 1 = +bv. Logic 0 = Ov.

Table 3.2 -~ Comvarator Logic Definition

The circuit used is shown in figure 3.8. Commercial
operatﬁonal amplifieré were used; the amplifiers chosen
were the low cost, low performance types PF85AU*, It was
found on test that the loading of these amplifiers by the
logic elements which they had to drive was too great.
Buffer.amplifiers had to be devised therefore and were inter-
poséd between the operational amplifiers and the inputs of
the associated logic elements. The circuit diagram is shown
in figure 3.9. The output voltage levels available from
either comparator of figure 3.8 were Ov, and ~4vj the buffer
amplifier (figure 3.9 below) was an inverter so that at its

output the desired logic levels were obtained,

— +’+V.
2. 2 e -Ll’V.
o 2.2k //4
rom Comparator . BSY4s
Output ﬁ)
— —o Output
L7k P
All resistor values . 470
in ohms 2.2k
o Common

Figure 3.9 -~ Comparator Buffer Amnlifier

*Manufactured by Philbrick Ltd.




N.B. Ov, was not quite obtained for logic O. When the
buffer amplifiers were.connected to the logic elements the
voltages measured at the output terminals of the buffer
amplifiers for logic 0 were below the maximum voltage level

defined for this logilc staterfor these elementse.

3¢3.2 Reference Sveed Units

Reference speeds were derived as voltages on the
potentiometers used in this unit. (See figure 3.10). The
relays which selected the reference volﬁages were housed in
the actuator unit for convenience. These. voltages were

corinected from the actuator unit to the inputs of the compara-

tors.,
! B% "10Vo
P1 P2 P3 Pl
10k 10 10k 30
BY c
resistor | ' y Ado ommon
values in ————K_O Ref, pot.&
ohms _ 35 Ref. Pot.3
' Azo Ref. pot.2
Al

o Ref, pot.1

Figure 3,10 - Reference Speed Unit

#*
Reference voltaze settings were derived as follows :-

Design speed for 2/3 gearshift = 905 rev/min  (3.3)

Design speed for 3/L gearshift = 1365 rev/min (3.4)
The sensitivity of the output shaft tachogenerator was given
in chapter 2 as 3.33v./1000'rev/hin. The maximum reference
voltage available from the reference speed unit was ~10 volts.
Hence the reference voltage for‘shift 2/3.———>3.02 volts.

for shift 3/4 —U,55 volts.

# Earlier these settings were quoled in rad/s, but they are

. given here in rev/min for analytical convenience.
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The appropriate potentiometer settings were therefore as given

in table 3.3

Potentiometer Address P1 P2 P3 Pu
Setting 2900 3020 Lh30 | L4550
Shift Direction Down Up Down Up

Table 3.3 = Refersnce Potentiometer Settings

3¢343 Reference Speed and Gear Solenoid Selection Unit

The logic signals required to drive the relays which
select the correct reference speed and also to dri#e the
appropriate gear-selector solenoid were generated in this unit
the logic diagram for which is given in figure 3.11. Encircled
numbers in this diagram refer to terminal pins. For clarity
the function associated with each pin is annotated nearby.
Logic inputs to the unit are shown coming from the left of the
diagram; logic outputs are at the right. Element addresses
refer to individual commonents e.g. AL refers to INVERTER No.lL
in QUAD INVERTER element A. Again for clarity the pin numbers
associated with the elements are shown., The truth table for

this unit is shown in table 3.4,

Inputs Relays Gears¥*

1 2 A B 2 3 i
1 1 0 1 0 0
0 1 1 0 0 1 0
0 0 1 1 0 0 1

*In any gear logic 1 will persist only for as long as
the gate input signal is logic 1 also.

Table 3.4 - Truth Table for Gear Selection Unit

The gate input was received from a microswitch actuated by

the gear-selector lever. (See figure 3.1). |




3.3.4 Gear Actuation Logic Unit

The logic signal,which controls the air valve, and
hence the gear-selector lever via the pneumatic actuator,
was generated in this unit the diagram for which is shown as
figure 3.12, Where two invérters appear in this figure in
cascade indicates that there was a need +to buffer one logic
unit from some critical loading condition. The pulse steer-
ing unit, shown in detail in figure 3.13, ensured that a
pulse of the correct polarity arrived at the input of the
monostable circuitoffigure 3.14 every time:a comparator

changed state.

Riuge STELRING

CiReurT z

ARVAWE
oSoEno 80<\" %l DERAY ONIT goq b

Figure 3,12 =~ Gear Actuation Logic Unit

The delay of the monostable was variable and an external
control (10kQ) variable resistor) was provided to change the
value of the periodiof the delay to allow the actuator to
deploy fully. The input stages®* to figure 3.12, which are
shown separately in figure 3.15, definelthe outputgoef Q, as

shown in table 3.5.

*A NOR gate was used in this circuit, The element used was

a Motorola MC 724P which required a supply voltage of 3.6v,




All resistor values
in ohms

0.0I,I.F

oo

O A

Figure 3.13 - Pulse Steering Circuit

All resistor
values in ohms

Lo

B3upf

Figure 3.14 - Delay Circuit

Figure 3.15 - Input Circuit
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Figure 3.16 - Logic Conversion Circuit .
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A B c
1 1 1
0 1 0
0 0 1

Table 3,5 -~ Truth Table for Input Circuit

3¢3.5 Iogic Conversion Unit

Because the drive unit required input logic shgnals
of Ov. and -10v., and because the logic signals provided by
the logic units were Ov. and +4v., nominally, the circuit of
figure 3.16 was devised and manufactured to provide the

) ' ' [Tow
necessary conversion. The logic 1 input was permitted to be as
as+2.8v, and the logic 0 signal was allowed to have a value
as great as+0.3v. . The output logic was nominally logic 1

equalled -12v, This unit provided six identical channels to

accommodate signals for:

gear-selection solenoids - 3
reference speed relays. - 2
air valve solenoid ~ 1

3.3.6 Actuator and Relay Drive Unit

This unit switched the gear selection solenoids and
the air valve to EARTH when the inputs were excited by a ~12v.
signal from the Logic Conversion Unit. The unit also contained
the changeover relays which selected the potentiometers in the
reference speed unit. (See figure 3.10). The circuit is
shown in figure 3.17.

3.4 Gear Changing Performance

Using the simulation of figure 2.27 a number of computer
runs were made to validate the mathematical model of the gear-
changing system, Figure 3.18 shows the simulated engine

\speed and dynamometer speed for a constant speed demand at
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Figure 3.18 - Simulated Engine and Output Shaft Response to a Gearshift
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Figure 3.19 -~ Simulated Gearchange Responses
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Figure 3.20 = Simulated Gearchange Responses
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the input of the throttle servomechanism for a variety of

load conditions. Note that for the least load, when the
dynamometer setting is 1.27 cm., the‘engine system proceeded
through the selection of all gears and the dynamometer was
accelerating still after 12 seconds. For the greatest load,
a dynamometer setting of 15.24 cm., the engine system did

not change up to 4th gear and a lower final speed was obtained.
In figure 3.20 the load was fixed but a wide variety of deman-
ded speeds were input to the throttle servomechanism. In
some cases 4th gear was not selected; in one case shown,

(1), 3rd gear was not selected; and in two cases (4 and 5)*
hunting was observed. The period of the huﬁting was'differ-
ent in each case t for case 4 the period was 4,0 seconds,
whereas fdr case 5 it was 5.375 seconds. The threshold due
to different reference speeds for UP/DOWN changes can be
observed on curves 4 and 5 at those parts of the responses
where huﬁting occurs. By increasing the demanded final

speed by a small amount (curve 6) the hunting.could be removed.
Equally effective in removing the hunting was to reduce the
demanded final spéed. Note that the overshoot due to gear-
shifting was observed on curves 4, 5 and 6., To evaluate

the time required to reach a gearshift condition from rest in
resﬁonse to various demanded final speeds for a variety of
load conditions, several computer runs were made, From the
recordings (which were similar to figure 3.20) the graphs of
figure 3,21 were obtained showing the time to gearshift, 7, as
a function of throttle'opening,e. Both time and throttle
opening have been plotted on a logarithmic (base 10) scale:
time,7, has the units of seconds, and throttle opening, 9, is

given in degrees, The functional relationship between7 and 6was
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Figure 3.21a - Time-to-Gearshift vs. Throttle Opening




Gearshift 3/4 o | . Curve | Symbol |Fan Displacement

1.5 Che
’ ° 15024

10.16
5,08
1.27

a0 o M
B>rE x

0.5 ' u :
1.6 1.7 _ 1.
logy 0/ »

oo~

Figure 3.21b —‘Time-to-Gearshift VS Throttle Opening
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derived from the gfaphé as

tT' = uev (305)

The values of p and v depended upon whether the shift was

from 2/3 or 3/4. The associated values are quoted in table 3.6.

Gearshift ggg%?gg?Z;f) " v
15,24 10.96x107 b2
. 10,16 8.91x107 b2
2/3 5,08 7.41x107 4,2
1,27 6.17x107 | 4.2
15,24 5,75x101% | _s5.5
10,16 2.95x100 5.5
3/4 5,08 2.24x1010 | -s,5
1,27 “t.48x1010 | o5,

Table 3.6 - Gearshift Time Parameters

The effectiveness of the circuits described in this
chapter is illustrated by the recordings of the output shaft
response to gearcﬁanges. These are shown in figures 3,22
and 3623, Figure 3,22 shows the response to gear upshifts,
These gearchanges were effected by the automatic gearchanging
system, The throttle demand had to be reduced at the instant
of gearchange to avoid the possible onset of hunting.

Figure 3,23 shows the response to dowvnshifts which were
effected By the manual gear-shifting system.,

The experimental work on optimal start-up used the system
developed in this chapter and an account of the work is given
in chapter five. The relationship of (3.5), and the
associated figures, 3.21a and 3.21b, were used also in

chapter five to establish the appropriate duration of gear-

change intervals,
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CHAPTER 4 -  DYNAMIC LOADING OF THE ENGINE

k,1 Introduction

It is usually difficult to load an engine on a test bed

in any way corresponding closely to the kind of dynamic load-
ing to which that engine would be subjected when it was
installed in some.vehicle which it drove, The analysis and
simulation of diesel engine performance'by EYMAN (1967) speci-
fied the use of a fixed load, The work of MONK and COMFORT
(1970) which attempted, by the.use of pseudo-random binary
sequence test-signals and direct computation of the reSulting ]
cross-correlation functions, to identify on-line the linear
differential equation which described adequately the_responsé"
of an i.c. engine also specified a fixed load. Such static
loading is employed because it is not simple to provide
adequate dynamic loading with the kinds of dynamometers which.
are used in work of this kind,

For the kind of optimal scheme that was envisaged for use
with this study, however, it was considered to be desirable
to provide a form of dynamic loading which was as simple
and as realistic as possible. The Daimler.engine was
deéigned for use in a passenger saloon car; it was approp-
riate that any changes of the engine load should correspond :
as nearly as possible to the kind of changes experienced
by the vehicle when travelling on the road. The enginé

loading which occurs due to the forces on the vehicle
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Figure 4.1 - Variation of Road Height with Time
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during turning manoeuvres and/or braking periods were consid-
ered to be too complicated to simulate with the facilities
available, As a first step to provide the required solution
only changes with time in the gradient of the road vere

congidered,

L,2 The Simulated Road
To provide large changes in road height over a fixed
period of time a study of Ordnance Survey maps of the United
Kingdom was made to find a section of road with the twin
properties of straightness and hilliness.  From this study
it was decided that the best sections were :
(a) the B;b381 road from MARTON to WELSHPOOLS
in Wales. |
(b) the A,702 road from ST. JOHN'S TOWN of DALRY
to HONIAIVE in Kirkcudbrightshire, Scotland.
Neither road is free entirely of curves but over the.disfances
of about 6 and 10 miles* (9.6 and 16 km.).respectively the
bends were considered to be of less significance than the
changes of road gradient. Road (a) was chosen finally
because its gradients were greater over a shorter distance.
By using the Ordnance Survey sheet no. SJ 20, which has 25 ft,
(8m.) contours, it was possible to draw up a graph showing
the variation of road height with distance.  This graph is

shown as figure L.1. The total length of the simulated road

*Heights and road distances are quoted in feet, yards, or
miles in this section, because the scales upon the maps
used these units, The S.I. equivalent unit has been given
throughout in brackets and immediately following the

Imperial quantities.
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Gear Assembly
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- ] 5 Stylus
| ‘”
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Figure 4.2 - Simulated Road Generator
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was 10350yds. (9460m.§ approximately, but, because the final
section, of length 1350 yds. (1234m.), wag almost straight

and level it was not shown in figure 4.1; 1its effect upon
the statistical properties of the road was taken into account
however, The same level distance was also included in the
contour disc used in the simulated road generator. The

curve in figure 4.1 was cut as groove on a plastic sleeﬁe
mounted on a wooden mandrel of diameter 15 cme and of width
ko5 cm.  The disc assembly was mounted to the shaft of a
synchronous electric motor which rotated at a constant speed
of 1/15 rev/min. In the groove on the surface of the disc

a stylus, connected to the armature of a potentiometer, was
free to move to follow the contour. The potehtiometer was
excited with the mains voltage (230 volts,. 50 hz.) and formeda
part of the error-sensing bridge circuit used in the;servo—
mechanigm which positioned.the fan dynamometer by thé.required
amount, The simple scheme is illustrated in figure 4.2,

The potentiometer is actually connected as a‘variable resistor
whose resistance varies as a.linear function of the contour. ,
Because of the very slow rotation of the disc and because

the slowest speed on any available chart recorder was 1.25
cm./sec. the recording of the variation of resistance with

time is not shown. (Any segment of the récording would look
very much like a straight line with an imperceptible slope).

The merit of such a simple scheme of generating a simulated

road, apart from its cheapness and reliability, is the great
flexibility it can provide; different roads may be cut on
separate discs which may be changed as required.

-The constant speed rotation meant that any run over this
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simulated road was carried out at an average road speed of
23 m.p.h. (37 kKep.h.) approximately. The times correspond-
ing to road distance, for this speed, are shown also on

figure 4.1. If the disc was driven by a rate servomechanismn,

rather than a synchronous motor different road speeds could
be used.

L,3 The Statistical Properties of the Simulated Road

The probability density function, p(h), of the road

contour, h(t), is given by :

p(h;)dn = P(h<h<h,+dh) (4.1)
= lim 2;52
T—e T (Le2)
gh~0

where hl,h,dh;T, and At are all defined in figure 4.3.

T |

o S x
Figure L,3 - Statistical Parameters

The fraction of the time that h(t) is greater than some
value, h, say, is given by :

P(hgn) = 1im2ATT (4.3)

MT-ves

where AT is defined in figure 4.3 also.
To determine the probability distribution of the road,
*
the mean height, and the variance were determined from the

equations given as (4.4) and (4.5) and from figure (4.1) :

*The mean height is denoted by M.

#%*Phe variance is denoted bycT?
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N
4! =.z X. ‘
i=171 where x; is the height (4.4)
N of the road at the $Th
N
2 2 ([gample and N is the
and g = -g;(X--u) P
i=1'\"1 (4.5)
total number of samples.
N

gis the standard deviation.of the contour. Because 0.S. sheet,
No. S.J.20, had 25 ft. (8m.) contours, the contour of the road
‘was sampled at helght intervals of 25 ft. (8m,)s In this way
any errors involved in the procedure were restricted to those
due to measurement from the O.S.bsheet and not to interpolation
between the points ‘read off to prgduce a smooth curve. Tﬁe
following results were obtained :

mean height, p = 59%.2 ft.4(181m.) (4.6)

2
variance, 9

2 3 2
= 10.875x10 £t (10.1x10m )  (4.7)
standard deviation, O = 330 ft. (008m.) (4.8)
By using (4.2) and figure L, 1 the probability density function
was evaluated for the same 25 ft. (8m.) height intervals. A

graph of the probability densityifunction versus height is

shovn in figure 4.4,

uniform density

- L} . function .

f road density

S 31 ' function

¥ ,

-

= 2}

5 ANV

-11 t 2 \/ \*\ |

k™= "N

0 2 1 1 1 l.
0 - 200 400 600 800 1000 1200 height,

Figure 4,4 - probability density function
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Although it seems that there is a great deal of variation
displayed in the road density function it should be noted

that the value of the.function is never large. Consequently
small numerical inaccuracies gave rise to proportionately
large differences in p(h). The distribution was NOT Gaussian
which was what had been expected a priori; the distribution
was reasénably approximated however by a uniform, or rectang-
ular distribution. From CRAMER (1946), if a random function

has a uniform distribution, then the'following properties

pertain :
p(h) = | 1/k, p-k/2<h<ptk/2 -
o, h>p+k/2, h<u—k/2
[ptman = 1.0 (4.10)
“00
E(h-p) = ¥ |
N = (L"oig)
12
where E denotes the expected value, .
' For the distribution shown in figure 4.4
po= 600 (b.13)
1/k = 0.8x10 2 (4, 18)
i.e. k = 1200 (appx.)
Therefore,
‘ 2 2 b
E(x-p) =0 = 12x10 (4,15)

From the numerical data/obtainedvfrom figure (L4.1)

,‘ Sp(h)ah = 1.03 C (4.16)
These results (4.6), (&.7), (L.8), and (4.16), which were
all obtained from the numerical data extracted from figure
L,1, are compared in table 4.1 with the results (4.10), (4.11)

and (4.12) which were obtained analytically under the

distribution,
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I 1T
: From Numerical From Uniform
Statistical Quantity Data Distribution
lMean Value, p 59,2 600
2 L L
Variance, & 10,875x10 12x10
Standard Deviation,d| 330 345
o .
/t(h)dh ‘ 1,03 1,00

Table 4,1 - Comparison of Data

From table 4.1 it is evident that if a stétistical model of
. the simulated road was chosen to be one with a uniform
distribution the characteristics of which were definedrby
the parameters of column II of table 4.1 that model would
be acceptable for énalytical puUrposes, Further corrobora-
tion of the validity of this assumption was sought by
evaluating (4.3) from the numerical data obtained ffom figure
Q.i directly. The graph showing the variation of P(h1<h)
with h, is shown in figure L.5. The theoretical variation
of P(h.<h) with h, assuming a uniform distributio“ with the
parameters of colunn II of table 4.1, has been drawn on the

same graph for comparison.

t.0)

THeoreTicAL

0 . It i
o 200 4oo tos =TS 1200 et LD

(om) (61w (1224 (1339 (zua.) (Bosa)  (B66n) (427w1)
Figure 4,5 = P(hkﬁh) Vse. h
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It can be shown (LANNiNG and BATTIN (1956)) that by passing
a uniform stationary random signal through a low-pass filter
the resulting amplitude distribution of the output signal tends
to be Gaussian., The frequency response characteristic of
the dynamometer servomechanism approximated to the character-
istic associated with a linear second order system even though
the differential equation describing the behaviour of the
servomechanism was non-linear. Hence it was assumed that in
the appropriate range of dynamometer fan setting (see section
L,5) the load disturbance on the engine due to the simulated
road was approximately Gaussian.

L,4t  The Dynamometer Servomechanism

Because of the physical size of the dynambmeter and its
open-air siting the fan had to be positioned by means of‘an |
extended shaft driven from the output gear train of ?he-servo-
mechanism which was located inside the building whichﬁhéused
the experimental engine rig. The frictional forces associated
with the fan, together with the mass to be positioned, requiréd
the use of a 250w, electric motor.

No servomotor
of that size was avallable therefore a 250w., d.c. shunt motor
surplus to the requirements of the Department, was used. It
had an armature resistance of 25 ohms and réquired a supply of
220v, d.cC. Such armature voltage and current levels precluded
the possibility of designing a linear driving amplifier; it
was decided therefore to design an ON/OFF servomechanism.
The practical difficulties associated with the use of electro-

mechanical relays to switch currents of 10A at 220v. d.c. are




All resistor values in ohms.

7 TAG-10

CV?OZ?%; igi: 600R : ‘ CV7029
| -

Ok

o~
ol cvi7029

Lxcv
L $ 7029

230v. 820 C1N1693

SOHZ. 1 >
N o 1671 3 ‘4

(\D | |
.= = R
— ' cV7029

1.5M
SMANUAL

cV7029

2.5k

Lt ™
N7
o

SRG

SR

Armature ]§ é}z
&/ s

Cv702 600R

20k

-~

Figure 4,6 - Dynamometer Sérvomechahism Circuit Diagram

b0t




119

vell-known to be formidable if correctly designed relays are
not available. These difficulties were circumvented by
employing thyristors to switch the current through the motor.
The circuit diagram of the servomechanism is shovn in figure
L,6, Its design was based on that given by GUTZWILLER (1967).
A dead-zone width control was provided (the 2.5 k{)variable
resistor) to prevent the motor armature winding from dféwing
heavy current at standstill and thus burning out the winding.
The existence of the dead-zone meant that there were small
changes in road gradient to which there was no response;
however, because of the nature of the simulated road these
small dwell periodé were not of primary significance in the
overall system performance.

It was ﬁecessary to drive the fan of the dynamometer and
the fan position potentiometer through gear trainsf . A
schematic representation of the servomechanism gear";hit which
performed this function is shovn in figure 4.7.

L,5 Dynamic Loading of the Engine

Because the lowest chart speed on the available recording
apparatus was too high to permit an adequate recording of
the simulated road it was not easy to seé from recordings of
engine response to fan loading (equilibrium speed of 2000
rev/min, lLth gear selected, and throttle seitting fixed) that
the correspondencs of engine loading and simulated road signal
was inexact. This was due to .the non-linear relationship
between fan opening and torque, From figure 2.12 it was
seen that within the range of fan setting of 2.5 to 10cm.the
relationship was very nearly linear, For the road speed

chosen the bandwidth of the dynamometer servomechanism was
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adequate., If a different route, or higher road speed vias
used it might then be necessary to take into account in the
systen equations the dynamics of the fan servomechanism.

If improved servomechanism response was needed the motor
would have to be replaced and an alteration of the gear train

ratios weuld be necesgsary also.
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CHAPTER 5 -~ OPTIMAL STARTUP

5.1 Introduction

There are many applications for which optimal start-up
of an engine may be réquired and it is the application that
determines the appropriate definition of optimality. For
some cases the shortest possible time to raise the engine
speed from idling to equilibrium speed will be the proper
criterion of performance, whilst for others it may be more
/ important that the.load should be brought to the desired speed
~without exceeding some stipulated limit of engine accelera-
tion, Invthis presented work it‘was regarded as optimal to
drive the load from idling up to a reference speed with the
1eaét expenditure of fuel. The problem was regarded;aé a
member of the class of fuel optimal control problems. For
convenience the control signal, u, was the throttle position
which had to be as small as possible during the interval of
start-up. |

If the time to achieve the reference speed was left to be
infinite obviously there could be no admissible solution to
the optimal control problem because the fuel consumed in that
time would be infinite also, Time has a pronounced effect
upon the perfofmance of any optimal system. From (2.38) it
is seen that the time for the load to respond to any change
of applied torque was infinite, theoretically. It was decided

therefore to incorporate, if possible, in the subsequent
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analysis some method by which the length of time spent in
each successive gear during the start-up interval could be
determined as well as the necessary history of the control
function durihg that period.

A formal statement of the problem was to determine the

optimal Qontrol function, uo(t), which would minimise the
performance index t oo |
J =lgL(§,u,t)dt (5.1)
subjected to the coné%raint of the engine equation;
x = Llxowt) - (5.2)
‘where u is the control function,
and x was the staue vector of the system, of dlmens1on 3
The Hamiltonian of the system see e.g. ATHANS and FALB
(1966a), BR?SON and HC (1969) and KIRK (1970) was given by :
Ho= Vilxout) + Lizwt) (5.3)
where gfwas the adjoint vector, of dimension 3o |

The system was regarded as time invariant and therefore (5.3)

~ was then re- etpressvole as

H = L(x,u) + (pi gt ¢/2 , * IPS 3
(5.4)

The optimal control function was then determined from :

24 = 0
ou°

Thus the optimal control function was influenced considerably

(5.5)

by the choice of the cost functional; L, From ATHANS and

FALB (1966b) it was noted that if L contained a term linearly
proportional to u the resulting optimal control, u°, would be
a "bang-bang" function. 1f, however, L involved |ulthen the

resultant optimal control involved a'iead~zone" function.
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Instantaneous ON/OFF throttle action could not be achieved on

an internal combustion engine and therefore the cost function-
als mentioned were not of practical value for this reasearch.

To obtain linear continuous control action required that

there was a quadratic term in u contained in L.  ATHANS (1971).
Consequently it was decided to choose as the performance index

to be minimised for optimal start-up 1

T 2
J = O.5J/”gu dt (5.6)*
where g was a weighting f;ctor and T represented the interval
over which start-up wés to take place. |
By forming the canonical optimal equations, from the
application of the Principle of Maximum due to Pontryagin,
the COntrol.fuﬁction was determined in terms of the adjoint
vector, Y. (ATHANS and FALR (1966c), SAGE (1968)).  The
resultant continuous control function was to be synthésised,
approximately, in a function generator (see section 5.7) the
output of which provided the command signal to the throttle
servomechanism. This arrangement maintained compatibility
with the optimal regulation schemes described in later chapters.
At the outset of the research the interval over which start-up
was to be achieved was unknovn. Its determination was one
asbect of the experimental investigations of this research.,
The optimal start-up function was applied over the complete
interval of T seconds, during which the engine shifted from
2nd to 3rd and from 3rd to 4th gear until the output shaft
(and engine) speed Was at 2000 rev/min. The requirement to
determine each segment of the start-up trajectory was compli-~

cated by the need to ensure that a number of prescribed

*It is obvious that this performance index would be a minimum
zero control

for /\ if no constraint was placed on the optimal trajectory.

ja specified.
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conditions in some of the state variables occurred at each
gearchange. A1l these conditions at internal points in
the trajectory, when added to the knovm boundary conditions
at the start and the finish of the optimal run-up, establi-
shed this problem as a member of the class of variational
problems known as multi-point boundary value problems
(referred to hereafter as M.P.BuV.Po),

5.2 Conversion to a Fixed-End Time Problem

In the preceding section it was stated that the interval,
T, over which the optimal control function was to be evaluated
was unknown. The problem was regarded, then, as a ffee—end
time pfoblem. Apﬁlication of the technique proposed by
LONG (1965) transformed the problem to a fixed-end time problem
with a resultant gaih in computational convenience.
For start-up there were two segments upon which the

boundaries occurred :

UP DOWN
gearshift 243 3+2
3ol} Ly3

The transformation consisted of letting
t = aT (5.7)
where T was a new independent variable and a was a constant,
still to be determined,
If the end~times of each segment of start-ub were taken

as (fixed) values of 0, 1.0, 2.0, and 3.0,

t = aT C 0<T =1 (5.8)
and : v

t = a + b(7T-1),1<T=<2 (5.9)
and , -

t = a + b + c(T-2L),2<T=3 (5.10)

where b and c were additional constants to be determined

for the appropriate. segment.




‘The boundary times were now

T = 0.1,2,3
ti = a
'tz = a 4 b (5.11)
tB = a + b + ¢
From (5.1), for 0£7T=1
at = a B (5.12)
a7
and from (5.9), for 1<7=2
dt = b : (5.13)
aT : . .
Also from (5.10), for 2<T<=3
at = ¢ \ (5.10)
aT |
Hence in the first interval the differential equation .
x(£) = L{x(t),u(t} | (5.15)
becane ’ o
x(T) = a.i:{z(af)u(a’r)} . X5.16)
and in the 2nd interval
x'(T) = bi{z(a + bT),ula + b77} (5.17)
and in the 3rd interval
x' (1) = ci{z(a + b + cT),u(a + b + 017}
(5.18)

where, in this context, the prime (*) denoted differentiation
with respect to the independent variable, . The constants
a, b, and ¢ were treated as additional staté variables in

the apprbpriaﬁe segment of the state trajectory, i.e.

X1 = O (5.19)
Xn41(0) = a

En+1(1)

1l
o’

(5.20)

*nt1(2)

I
o




118

Thus in each segment of the optimal start-up trajectory the
system state equation was represented as

= xn+1£{§(m7ﬁ,u(@7?} (5.21)

X' =

al o
x\Fiv

where the parameter ¢ depended upon the segment,

Because of limited computer facilities this technique was

used only with a2 single stage.

5.3 Corner Conditions

With internal boundary conditions on the>optimal

trajectory to be satisfied there existed some specific
- discontinuvities in the adjoint variables which occurred at

the inétant of gearchange. It was possible to evaluate fhese
" junmp" éonditions by the analytical methods proposed by
BRYSON and HO (196§b) and VINCENT and MASON (1967), However,
by adopting the method of quasilinearisation (sectlon p.h)
as the basis of the computational method *or determlnlqg The
optimal start-up function it was possible to circumvent the
additional complexity associated with the analysis when such -
"jump" conditions were included; sufficient boundary.condi~
tions were available from the problem stafemént to allow-a
solution to be found by using quasilinearisation.

5.4 Quasilinearisation

The method of quasilinearisation (Q.L. method) has
been used widely heretofore in modern engineering studies
{BELLMAN and KALABA (1965), LEE (1967), SAGE (1968b), BELTRAMI
(1969), FALB and de JONG (1969), DYER.and McREYNOLDS (1970),
GREENSITE (1970), SPEEDY, GOODWIN and BROWN (1970), and
RADBILL and MNeCUE (1970).) As a method it depends upon the

formulation of the problem in the manner indicated in (5.1)
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and (5.2). If the optimal control function, uo, defined
in (5.5), was substituted for u in (5.2) and in the associ-
ated equation for the adjoint vector, 4& the equations
‘which resulted provided the canonical equations of the

optimal system., These equations were ccnsidered to form

a single, new vector equatibn given by
R = K (R) (5.22)

where R was the new vector, of dimension 2n, defined as

R =[x
_ M (5.23)

For the problem stated in this way the associated boundary
conditions took the  form
Ry(t3) = dyy (5.24)
) where j = 1,2;ooooozn
and ti = 0, or T

To appl& the Q.L. method‘to the system of (5.21) it Was
necessary to starf'by finding some‘nominal solutiog which
satisfied.the boundary conditions, (5.24) but.which did not,
in general, satisfy (éoZi). Then(5.21) was linearised about
the nominal trajectory which was termed (for the purposes of

this account) §¥ The next trajectory which was evaluated

]
was then 3£+1 and this satisfied the linearised equation :
R o= k| k¥ S| & -E9 (5.25)
R Bk
i.e. L]
K+l _ k1 k
BT =sp | BT+ (K Sg R) (5.26)
I k k
R{‘ R R

where S, was the Jacobian matrix, of order 2n x 2n, the ijth

component of which was given by oKy

oR.
J
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The general solution of (5.26) has been shown (by the refer-

 ences given earlier in this section) to be of the form

BE*L(6) = 0 (6,5 )R (6) + B(E)  _ (5.27)
where*@(t,to) was theltransition matrix of the linearised
system, of order 2n x 2n, and P(t) is the particular integral
- solution of (5.26) and is a vector of,dimension, 2n.,
© Following the work of SPINGARN (1970), the transition

"matrix was evaluated by integrating (5.28)

D(t,ty) = SpA(t,ty) L (s
.where BV ' ;
re P(tyty) = I | . (5429)
The particular integral waé determined from
B(t). = SpR(t) + (< - S.EN) C (5.30)
with ' - ' : L

| The right hand side of (5.27) was equated to the given
boundary conditions which resulted in 2n linear, simﬁltaneous,
algebraic equations, the solution of which pfovided the
unknown vector RETL(L,). -
Thus - - |

@, (55 5)Ry (£g) + P3(t;) = 4y (5.32)
. where ‘ ‘j = i,2;.;5.éo;}}oo.i.. C

2 = 1,25000000000000000
k+1 ’ :

Once R(t,) was found it was used in (5.27) to determine
Ek+1(t). The iterative process was continued then restarting
with (5.26). The sequence of trajectorieé might converge to

the solution of (5.21)« If convergence was achieved then it

Has been shown|[BELLUAN and KALABA {1969), KENNETH and McGILL
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(1967) and FALB and de JONG (19693 that convergence wag
qﬁadratié*o

The Q.L. method formed the basis of the optimal start-up
program which was developed for this research (BEA&DMBiEP -
see Appendix A.3). It was also used in modified form for
an investigation of a specific optima} control régulator for

the engine system. - (See chapter 8).

5Q5 The Avplication of Quasilinearisation to the Optimal

- 8tart-Up Program

The solutions of such non-linear boundary value problems
"as the start-up problem have been solved,usually,byrsecond
variétion methods employing Riccati transférmationsJERYSON
and HO (1969b), DYER and McREYNOLDS'(19?Oz} Recent work by
.Tapley énd Williamson [?APLEY and}WILLIAMSON (1971) and
WILLIAMSON and TAPLEY (197#] has'demonsfrated that the ihtegra-
" tion of these Riccati equations is ‘frequently difficult_beéause '
of instability of their solutions. The same work indiééted
éhe general superiority of linegr_eguation meﬁhods; of which
one example is»the Q.L. method., It was suggested by LEE
(1968) and by SAGE and MELSA (19715 that the Q.L. method
migh{ be useful for the solution.of_a M.P.,B.V.P. However,
tﬁé earliest treatment of such a problem by the method was
that presented by VAN SCHfEREEN and KWAKERNAAK (1970) who
solved- a state-constrained optimal céntrol problem, By
employing’the Q.L. method there seemed to be a better chance
_of obtaining more easily numerically-integrated equafions,
with the prospect of rapid convergehce.and fewer boundary

conditions to be matched,than by alternative techniques.

*in & rceent bock ROBERTS and SHIPIIAN (1972a) showed that

the converconce of the Q.L. method could be inferred from

o rm a4
=

ihe prooi of the Newton-Raphson-Kantorovich method.
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5¢561 Preliminary Avnproach

To develop the program for the engine system the
simple scalar non-linear mnodel defined in (2.20) was consid-
ered as the plant. The problem solved was the determination
of the torque function which would drive the dynamometer up
to equilibrium speed and would minimise the performence index,
which was chosen to ve - |

J = 0.§/zgu2 + q(x - XF)Z}dt (5.33)
where Xn vas the desiredofinal speed up to which the
dynamometer was to be driven,.

X was the instantaneous speed of the dynamometer,

~u was the applied torque,

and g was a wéighﬁing factor applied to fhe confrol? - The
constant, q, placed a weighting on the state error of the
system. When g = 0 the performahée index (5.6) was .ebtained.

The upper limit of the integration, T, was left freé at
this point of the developmeht; in the results to be quoted
later the effect upon W (%) of varying T will De indicated.
The effect of the values assigned to g and to g upon the
optimal choice of T will also be discussed.

For the performance indeX (5.33)

H = guz + q(x2 + xg - 2XXF)+IP(~GX2 + bu) (5.34)
2 Z _ ' :

aﬂo = gu® + b4/= 0 (5435)

A |

o
o.o u —’EKP (5‘36)
Now % = -cx° - 224/ (5.37)
, z .

= ~qX + qXp + ZCXHD (5.38)

.Lp /7
Let R =[x Y]’ (5.39)

#The weighting factor, g, was included to permit flexibility
i the problem. A value of unity was used subsequently.
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Thence, the Jacobian matrix, SR' was found to be

— - N
-2¢cX -22
g
(2cy/ - q) 2cx
and L’ -
| cx?
K - SgeR = (5.41)
- R= -2cxyb+ ax
O x(0) = 4y _
: (5.42)%
®1lx(9) + @12 (0) = d2 - Pl(T)
where N - | . '
d, = Xp . (5.43)

The upper limit, T, of the integration remained to be determined.
One possible procedure was to select a value for T, fihd the
'optimal control function, and then evaluate (5.33) fof

specified q and g The procedure would then be repeated with

a different value of T, and so on, until a sufficient number

of values Jmin had been obtained to permit a graph to be

plotted of J . Vs Te Such a procedure is particularly
expen51ve in computer time, especially with higher order

systems. To av01d such a time expenditure the transformatlon
proposed by LONG, and outlined briefly in section 5.2, was

employed and the scaled canonical equations were

x' = —acx? -g§E¢j (5.44)
' g

at = 0 : (5.45)

¢/' = -qax + qaxp + 2acxyb (5.46)

*dy and d, are the elements of the matrix, d, defined in (5.24).
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The associated Jacobian matrix was
B )
-2aex (~cx2 - QE¢0 ~ab®
g g
Sg = 0 o 0 (5.47)
L_(-qa + 2ad¢0 (~ax + qxp *+ 2¢x¢0 2acex
K- Sg:R = 2acx? + ab?
- g
0 (5-“’8)
Lgax - 4acx¢/

The boundary conditions which corresvonded to the introduction
of the additional state variable was obtained from the value

of the ﬁamiltonian at f =1 viz !

H(1) = - EEZLLL + g{xz(l) + Xg - 2x(1)xF}

~exP (1) = 0. (5.49)
From (5.49) it was possible to calculateyb(i); however the
boundary condition of (5.49) was non-linear and the determin-
ation of?ﬁi) was avoided by applying the Long transformation
before applying tﬁe maximum principle of Pontryagin. In the
simple first order case considered here the gain was insignifi-
cant but for the full equations which were to follow the non-
linear boundary condition was more involved and the benefit
of pre~transformatidh as described here was realised. In

that case the performance index to be minimised became :

4
J# = %][{guz(aT) + Q[%(aT) - x%]z}.adT' (5450)
= ;},;a/'{guz(a’r) + q[x(aTl) - xﬂz} aT (5.51)
H(T) = gau?(T) + 02x°(T) + gﬁf«z - qaxgx(T)
2 2 2

-caXZGTﬁHVT) + abutfﬂH (1) (5452)




Hence

Thus

By
1

%}_{_ = gauo('r) + ab\l/'(’r) = 0 (5.53)

u .

wo(T) = —'hgb'(’f) (5.54)
g ,

...ab2 2 T (5055)
25
x! = -aaxZCT) ;gggg@*) : (5456)
g
at =0 o (5.57)
Y = aax(r) ez + Zaex(T)Yr) (5.58)

2 ' 2
-g_>2£_<¢> - g+ ax(n) tex? (T, (1) +g_231/i_m
, , g

| (5.59)
The Jacobian matrix, Sp. (now of order 4 x L) became :
. ~ o2 2 2 )
~2cax(T) {-CX“CT) ~b 4&}71} -ab 0
0 o o T %0 0
Sp = : | |
{-qa+zcal (T H-ax(T)+axgraextr Ny (7 )}{2'¢ax (r)} o
L{—qx(')‘)+qu+ZCX(’r)\I/1(T)} 0 {cx2(7>+2@1(7>} 0
B _ (5.60)
2cax2(7') +~ab2§pi('r)
g
. O -
~ S..Rs (5.61)

R7) qax(T) - uacx(T)‘Jfl(’r)

Qﬁ(f)-gz;f;.—\}/ﬂf_l?_‘?: —2c,x2(T)\lJ1('r)
| 2 2 28 |

The boundary conditions were obtained from :

x(0) and x(1) ~  Dboth known
1Pé(0) and\bl(l) -  both zero*.

#gee, for example, SAGE 1968b.

\
\ o



Note that the non-linear boundary conditions which, in the
Q.L. method, had to be solved at the end of each iteration
before the next could proceed, was avoided at the expense

of increasing by one the dimension of the vector space. This

fact has some importance when computer time is at a premium,

A program, BEARDM31F (see Appendix A,3), was written to
obtain-séme idea of the optimal duration of the dynamometer
start-up sequence: the program used the equations (5.47),
(5.48) and (5.49). Anbther program, BEARDM31G, was written ,
using the equations (5.60) and (5.61).

Because the same results were obtained with the use of
either ﬁrbgram only BEARDMBiF was used extensively in view of
its shorfer execution time, and reduced storage requirement.
A program, BEARDM31E, was written to evaluate the optimal
start~up control when the intervai of start-up was specified.
This program was run many times with different values of T to
confirm, for the single case of ¢ = 1.0 and ‘g = 1.0 with
k = 8x10'3, corresponding to a fan displacemént_of 7.62 cm.,
that the minimum Qalue of time, T, corresponded to the value
‘obtained from BEARDMBiF. The results of that series of
numerical experiments are shown in figure 5.1; +the result
obtained from BEARDM31F was 9.284 seconds, A series of
further experiments were conducted with BEARDM31F to check
upon the effects on T of selecting different values for g.
The results are shown in figure 5.2: the obvious physical
fact that if there was a large penalty on the use of the
throttle (i.e., that g was large) the time to reach final speéd
would increase is illustrated clearly. As a compromise a

value for g of unity was used subsequently.
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5¢502 Optimal Start-Up of Eneine and Transmigsion Systen

In the course of the development of the optimal start-
u? program certain 1limitations upon what could be achieved
with the computational facilities available at R.A.F. Cranwell
became apparent. These limitations resulted in the deliber-

ate decision to neglect from any further consideration in the

start-up problem the dynamics associated with the throttle
servomechanism in order that the problem could be solved, even
if only approximately, on the available computers. From the
work presented in éhapter 2 it ig plain that the assumption

was unlikely to lead to gross inaccuracies because the setfling
time of the servomechanism in response to any suddén throttlg
demand was 0.65 sec. (see figure 2,12) whereas the total time
to start-ﬁp the engine was unlikely to be less than 6.5 secorids
(see Tigures 3.21a and 3;21b, table 3.6 and equatioh 3.5)

The equations used as the mathematical model of the system

-

for start-up were those of (2.¢0) and (2.8)) which are repeated

here for convenience :

Xq = —0,925x4 + ax, + 1.894u (5.62)
- _ L ohew 2
X, = dx, cx, - b¥x> (5.63)
where x; = Qe' engine speed in rad/s » (5.64)
X, = mf,‘output shaft speed in rad/s (5.65)
u = Qg engine torgue in Nm (5.66)

the coefficients a,b,c and d were listed in table 2.6,

The damping coefficient of the fan, in Nms, was denoted by
#* . :

kqand devended upon the fan displaccnment.

The performance index to be minimised was chosen to be

. T
J = {:—/l_lzd't (5.67)

%Earlier in this thesis this coefficient was denoted as k. In

order that the symbol, k, may be used to represent an iteration
.L.method, the damping coefficient is denoted here as Kqe




and the Hamiltonian for the system was written as

=

Tuffy (-0.925%, + ax, 1.89%u) +,(dxy ~ox,

O . —
%&0: u® + 1,89y = 0

therefore, w° =—1.89Mﬁ4

Also, . '

o4

5%, " R/ 0,925 + ays,

I ’

”;%2 = -Yp = —ay, + aly - 2ol
Consequently,

Xy = —00925:{1 + ax, -3.587#&

® . "2
x2 = dx1 1‘cx2 - bh?z

Wy = 0,925 - s,
! ='—d¢& +_°¢é + Zb%gépz
R= [%1 Xg\piybg} '

the quasilinearisation equation became :

. K+
k+ o -
R o= s%}k B4 Gﬁiﬁk - bg‘}k.gk)

By letting
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2
‘bla‘"z)

(5.68)
(5.69)

(5.70)
(5.71)

(2.72).

(5.73)

(5.74)

(5.75)
- (5.76)

(5.77)

(5.78)

where S%_k wa& the Jacobian matrix, of order 4 x L, given by :
. e Rl
N
~0.925 a ~3,587 0
1
a ~(c + 2bkx,) 0 0
12
S 1 -
4 p;- -
- 0 v 0 0.925 ~-d
X %
0 2bk - Y%
i bj':{’z a (c + Zb._fzcz)

(5.79)
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= | (5.,80)

| koK
-2b%§2¢4

e -—

The boundary conditions for the quasilinearisation system

for the segment were :

2/32(0) = xi(o).xz(O),xl(tl).xz(?l)] v (5.81)
5/hg(t1) =[§3x2(t1),Xz(tl),xl(thixz(tz)]. ' (5.82)
| 4/t2g(t2) =‘}?<t2>,x2<t2>,xl(m.xz('r)] ' (5.83)

5,6  Computational Difficulties and Solutions

For each iteratioh of the quasilincarisation program
There were three seﬁarate integré%ions which had to be carried
out over the'segmeﬁt interval, The following were integrated :
(1) a. matrix differential equation to obtain the
matrix,®, of order 4 x 4
(ii) = vecfor differential eguation to obtain the
particular integral solution, P
(iii) a vector differential equation to obtain the
next trajectory.
In the early stages of developing the program to find the
optimal solution, a fourth order Runge-Xutta routine with
fixed step length was used for integration. However, accuracy
became a problem which manifested itself when solving the
linear, simultaneous, algebraic equations at each iteration :
it was a problem of "ill-condivtioning". Both BELLMAN and

KATABA(1969) and LEE (1968) have shown, by example, how the




method of complementary functions could fail to work., In
their examples, each concerned with unstable differential
equations, the integration procedure used was also Runge~
Kutta with a fixed step length of 0.01 second. The same
problems were solved using the integration routine and the
same routine for solving linear simultaneous equations as had
been used in the early Q.L. program. In this fashion it
was intended to validate the method and the routines for
achieving it. Near identical results to those quoted by
Bellman and Kalaba were obtained, Some @ifference from the
results quoted by Lee was found. The results are shown in

tables 5.1 and 5.2.

Bellman & Kalaba McLean
xl(l)' xz(l)" xl(i) ' xz(i)

h,  |1.95694x10° | 5.87083x101% | 1.956x10% | s5.867x101°
y, 3.26157x10% | 9.78472x10% | 3.259x10% | 9.778x10°

Table 501 *®

Lee McLean

x1(1)- xz(i) xi(i) xz(i)

b 6

h, ~0.978575x10%| -0.39146x10° | ~0.1038096| ~33.913006
hy, 0.367115x1013| 0.146846x1013] 3.671x1012| 0.1468x1015|

Table én 2 *

*The symbols h3 and hu were used here to represent solutions of
the homogeneous differential equations. These symbols, hi'
were used by thc quoted authors, and maintenance of the
convention permits easier comparicen with the original papers.

A
[




In each case the matrix which had to be inverted to solve
the ‘simultaneous linear eguations was near-singular
Becauée only single precision arithmetic was available on
the Elliott 4120 computer when the matrix package was used,
the results obtained by this author, by using thaf machine,
were less accurate than the quoted results of the other
authors*-who both employed double precision arithmetic.
Nevertheless, despite the exceedingly small pivot ratio of
the example of Bellmanland Kalaba, the solution for the unknown

initial conditions being sought for in the example was found

to be
' x,(0) = 2,0791844 | (5.84)
and x,(0) = 12,475106 (5.85)
The knovn analytical values were '
x,(0) = 2.0 __ (5.86)
x,(0) = 12,0 | C(5.87)

The results obtained with the developed programs, although
gomewhat inaccurate, were superior to the results finally
obtained by B. and K3 *which they quoted as 1

x,(0) .= 0.609136x107% (5.88)

1 (5.89)

To improve such results B. and K. and CONTE (1966) suggested

and x,(0) = 0.365481x10"

the use of a Gram-Schmidt orthonormalisation procedure in
the integration routine to improve the step to step accuracy.
They reported that such a technique had yielded substantial
improvement in the results they had obtained. A similér

routine, based upon ROSENBROCK and STOREY (1971), was prepared

#Some further remarks are made about Lee's regsults later.

##Bellman and Kalaba.
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and is available as BEARDM37 (see Appendix A.3). Its use
did improve accuracy as had been claimed; it also lengthened
markedly the execution time of the integration routine, and,
of course, of the entire program, Consequently an improved
integration routine, which wbuld improve accuracy and if
possible speed, was sought. Before discussing this develop~-
ment it should be noted that the results for h3,quoted 5y Lee,
differ significantly from those obtained by the present author
(see table 5.2). It is suggested that this must be an error
in the book by Lee.* All other examples produced correct
answers,

TheAimproved integfation procedure used was the algorithm
proposed by HAMMING (1959) and is summarised below 1

Hamming suggested the use of'g predictor-corrector method
which, in common with all numerical methods of this type, was
not seif-starting. If the first fhree steps in the integra-~
tion process (which were derived from some alternative
integration process =" in this work, Runge-~Kutta) were stable
the remainder of the procedure was stable. At the start of
the integration, when 1 = 0 say, the only known value was §°.
Using Runge-Kutta,gi, 32, and 33 were evaluated and subse-~
quent values were determined from the Hamming formulae 3

Predictor formula

Bl+1 - _:sk'B - l_&(zél " 29‘51.4-2 - _')51-4-1) (5.90)
3
where l = U,S.....-........-.'.n

h was the step length.n represented total number of steps.
Modification formula

: |
mtt = pt L oatapl - D) (591)
121

2 L2

* In a private communication wi
. by him that the results might

\

th Lee (1972)3% was acknowledged
b

e in error.
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't = gt 41t (5.92)

1 represented the value of t at the (1+1)th interval.

t
Corrector formula

e = 0,125 [931 - 2% 4+ o™t - M. Zil{} (5.93)

Final value formula »
xl+1 = 21"'1 + E%I(pl‘i'i - -c-l‘l'i) (5.94)

RALSTON (1960) noted that if the first three steps were computed

with the same or less accuracy than the Hamming integration
process to be employed, the most suitable choice for (33 - 93)
was Zero. This choice wag used and consequently in the program
n' = pt (5.95)
The procedure was written as a program, BEARDMYO (see Appendix
A.3),and it solved either vector or matrix differential
equations. The examples of B, énd Ke, and of Lee, were solved
’by the Hamming procedure by considering them to be 1
(a) vector differential equations,in which thé initial
vector wag either [(3 0 1 O_]'En:- E)‘O 0 1]'.
°T (b) matrix differéntial equations,in which the initial
matrix was the identity matrix.
For both examples the results obtained, using either vector

or matrix formulation, were identical., The results are

presented in tables 5.3 and 5.4,

Bellman & Kalaba McLean (Hamming).
xi(i) x2(1) x4 (1) x2(1)
hy 1.95694x10% | 5.87083x10%0 | 1,958x107 | 5.783x101°

hy, 3,26157x108 | 9.78472x10° | 3.263x10% | 9.785x10°

Table 5 ® 2
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Lee - McLean (Hamming)
h3 -0.97875x104 -0.39146){10615 0.2#648%%9 -19.90137314
by, 0.367115x1013 0.,146846x107-|3.68x10 1.472x10
Table 5.4

The accuracy of the Hamming procedure was better than
that of the Runge-Kutta methodﬁgﬁt there was an increase in
execution time plus an increase in progrgmming complexity*,
It should be noted however, that use of the Hamming procedure
to‘solfe the matrix differential equation by taking a column
at a time (i.e. solﬁing it as a vector differential equation
in which the vector is the appropriate column of the matrix)
was slower by a factor of two fﬁan by solving the matrix
differential equation as a matrix equation. Consequently
this procedure was extremely useful for application in the
Q.L. program because in that the transition matrix was evalua-
ted using the matrix differential equation and then the
particular integral was solved as a vector differential
equation. Then, when the boundéry conditions had been solved,
the trajectory was determined next by solving a vector differ-
ential equation again. The use of the Hamming routine
removed most of the numerical difficulties associated with
the program,

One difficulty which remained was making an initial guess

for the first trajectory. BELTRAMI (1967) suggested that

the initial trajectory should be chosen to satisfy the boundary

#See later remarks however.
**#It was faster than using the Runge-Kuita method with
orthonormalisation.,
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conditions and should be a linear fit between these points.
This technique was followed because experiment with other
attempted guesses proved less successful, However, the
linear fit method did not always produce a converging program,
No definite statement about the choice of initial trajectory
can be made; only numerical experiment provides an answer.
This unéatisfactory feature of the Q.L. method had already
been observed by FALB and de JONG (1969). Some indication
of the likely success éf the initial guess can always be found
by printing out the solved initial conditions at the first
iteration. If they are very large, and they most frequently
will bé, then the nexf iteration is unlikely to converge.
Another choice of initial trajéctory should be made and the
procedure repeated. When convergence does occur it is very
rapid. It was noticed that somefimes the program would fail
to converge.due to overflow in the machine solutiont. Some
results are presented in figure 5.4 of optimal start-up
trajectories for gear 3, and a fan setting of 7.62 cm., and
different start-up pericds. When the interval was greater
than 9 seconds the program always failed to converge and
always in the same fashion. In the case quoted above, vwhen
the length of the segment was selected to be 10 seconds, the
program had not coﬁverged after 7 iterations (i.e. a running
time of 55 minutes). The symptom of this failure was that
x(T) did not equal the read-in values by amounts which

increased with each iteration.

- #Both these features of convergence failure were also noted

by ROBERTS and SHIPMAN (1972b.)
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accuraéy of the solution.

start-up trajectory to fixed interval,

the state vector was increased by two,.

program to converge with these adjustments.

. The results for optimal start-up were weakened by a

If the Long trans-

formation was used in this part of the work the dimension of

in increased program time which was already very long.

gome indication of how program execution time was affected
ted with the simple 3-state program,BEARDM31F, which used the
tion. It should be appreciated that the execution time
depended upon the integration step length and the stopping
condition, both of which were associated with the achieved

Attémpts to accept less accurate

ping condition,were nullified usually by the failure of the

—

Serial | Step ,Stopping* No. of Execution
Np. Length Value Iterations Time
1 0.01 0,001 2 14m, 315.
2 0,01 1x10~7 7 4om, 12s.
3 0.1 . 0,001 L" 3mo 1450
L" 0,01 0.001 L” 28m. 21s.
5 0.1 0.001 10 Tme 578

Table 5.5

The use of the Hamming procedure,usually for the same

time by about a half; +the time per iteration was increased

1hg

deliberate decision to limit the determination of the optimal

This increase resulted

consider table 5.5, which was derived from the results associa-

Runge~Kutta integration scheme as well as the Long transforma-

solutions,by lengthening the step or by opening out the stop~

stopping condition,resulted in a reduction of total execution

*Norm of difference between current and previous trajectories,
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but fewer iterations were required. Serial nos. 1 and 4
and ‘3 and 5 in table 5.5 vhich represent two pairs of compara-
tive runs in which the step length and the stopping condition
weré maintained identical for each run, had different results.
This was due to different initial trajectories being used.

The needAfor an accurate guess for the initial trajectory has
already been described as critical. A further adscititious
consideration, which supported the decision to work in fixed
intervals, was that the difficulty of synthesising the optimal
control function would be lessened considerably. The partice-
ular choice of fixed interval was baged upon examination of a
series éf curves for fhe different gears and the table 3.6. In
some instances it was evident that too short an interval would
result in the control function rgquiring levels of engine
torque in excess of the capacity.of the engine to deliver

such tdrque-values. Even with the choice of 5.0 seconds for
éach interval, which produced for d = 1,27 cm. a smooth,
almost continuous trajectory for the dynamometer shaft speed
with relatively easily synthesised control signals (see figure
5.5), there resulted for moderate loads (d = 5.08 cm.) a
control function which exceeded the engine torque limit (see
figure 5.6). Even this moderate torgque limiting did not
affect seriously the start-up 6f the engine system other

than to result in the dynamometer shaft speed being less

than the specified 200 rad/sec at t = 15 seconds, (See
figure 5.8).,* If the torque had been maintained at maximum

for a few more seconds then the desired final speed could

*Gearshifts occur later than specified chiefly due to the

finite duration of travel of the gear selector lever,

(See chapter 3).
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have been reached. Thus the torgque limiting may be regarded
as being analogous to the introduction of a finite time delay

in the optimal control function. This idea is strengthened

if the case for full fan displacement ,i.es maximum loading,

is considered : see figure 5.7. Note that the final segment
of the optimal control function was limited for almost half
the intefval and that the maximum throttle position attainable
was only 60% of the computed value. The result of this
limiting was to have iﬁtroduced effectively a pronounced time
delay in the control action which resulted in violent oscill-
ation between 3rd and 4th gears in the rec&rded optimal start-up ~
sequencé shown in figﬁre 549 which was obtained from the engine
rig using that control function of figure 5.7, | The time axis
in figure 5.9 has been labelled from 0 to 14 seconds; the

origin corresponds to the start of the oscillations. By
maintaihing.the throttle at the fully open position the oscill-
ation was maintained beyond 15 seconds. From figure 5.9 it

is seen that as tj.me progresses the huntingwas becoming unstable.
The recording could not be continued beyond this point because

of the certainty of severe damage to the gearbox and engine

with such conditions prevailing. A modest reduction of the
load, the dynamometer displacement was altered to 12.7 cm.,,
resulted, with the éame optimal start-up program, in an accept-
able start-up trajectory. Because the start-up program for

d = 15.24 cm, was used with the reduced load setting the
gearshifts occurred a fraction earlier than at the specified
times., A description of how the control functions were

synthesised is given in the final section of this chapter.
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5,7 Synthesig of Optimal Start-Up Function Generator

Only analogue devices were available to synthesise
the optimal control functiongs, The resulting generated
function was an approximation therefore, the nature of which

s 1llustrated in figure 5.10

| 2aid

Thrott1e4Position,

20 | Approximation

890m

()]

a

&

< 0 :

0 5 10
Time,s

Figure 5,10 -~ Control Function Approximation

The‘approximatiqn consisted of representing the optimal
control function by a sum of singularity functions, which is
an estéblished practice in engineering énalysis. (See
deRUSSO, ROY, and CLOSE (1964)), The chief singularity function
used was the ramp and consequently the active devices in the
generator were integrators. Because the slope of the ramps
were event-dependent logic=controlled integrators were used,
Comparators provided the necessary event switching. A
gschematic diagram of the generator is shown in figure 5.11,
The time generator was a simple unity gain integrator (Ai)»
composed of a 100k S} input resistor, a louf feedback capacitor
and a Burr-Brown operational amplifier (model no, 331?/14)
with a voltage swing of 4 1l5v. The output amplifier (A2)
was the same type of operational amplifier with input resistors

of 100kfand a feedback resistor of 100kSL. The two comparators
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were Burr-Brown c;mparator units (model nos. h032/12C). The
logic elements were a dual input Nand gate and a quad inverter,
(Texas Instrument model nos.SN74H20andSN74HOOrespectively).

The three logic-controlled integrators were Analog Devices 1654,
The appropriate logic diagrams are given in the tables\5.6

and 5.7..

Input . Cy 51 c, 52
t ¢ 5 0 0 0 1
5<%t <10 1 0 0 1
10 <t < 15 |1 0 1 0

Table 5. 6 -~ Comparator Logic Table

" A3 A5 ' A7
| H| R H| R H | R
t <45 1] 1 1| o 1 {0
5¢t <10 1{ 0 1] 1 1 | o0
10¢t 4 15 1| 0 1| o 1 |1

Table 5.7/ = Lozic Table for Three Mode Integrators

The switch S1 gtarted the time generator and switches A1l
from HOLD +to COMPUTE. The meus is 10 volts. Scaling of
the output voltage, u°(t), was necessary to match the sensiti-
vity of the throttle servomechanism; P01 was set to 2000,

At t = 15 seconds Al overloads (indicated by a lamp circuit)

and S1 was used to reset the generator.




CHAPTER 6 - OPTIMAL ENGINE REGULATION - LINEAR MODEL
AND QUADRATIC PERFORMANCE INDEX

6.1 Introduction

It was outlined in chapter 2 how ‘the engine system
could be described by a linear model, the most appropriate
definition of which was given in equations (2.5), (2.82) and
(2.83).  Also the effect upon the form of any resulting
optimal control for a particular choice of performance index
was discussed in chapter 5. In this chapter it is intended
to diséuss the design of controilers which resulted in contin-
uous regulation of the engine aboﬁt some equilibrium speed.

By the work of chapter'slthe engine was arranged to have
reached this desired equilibrium speed with least expenditure
of fuel; it was essential to further maintain the cost of
fuel at a minimum over a lengthy period of time by controlling
optimally the performance of the engine. Consequently an
integral cost criterion was chosen and to ensure continuous
control a quadratic form was used again. Prom figure 2.5 it
may be noted that the equilibrium speed was 2000 rev/min.

The controllers developed by the methods of this and subsequent
chapters were deéigned to ensure that the engine speed was
maintained as close to the equilibrium as possible, otherwise
gpecific fuel consumption would have been raised and the

resulting performance would not have been optimal., By
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choosing to penalize the use of the throttle it was intended
to secure tight regulation and lowest s.f.c.

The work presented in this chapter was concerned with
deriving, synthesising, and using linear optimal control
laws which were applied to the.engine system under the assump-
tion that it was linear, Several different methods of
obtainiﬁg the optimal control law were considered and a
comparison of the efficiency of the associated computational
schemes is here presenfed; The practical effects and limit-
ations of providing linear control* for a non-linear system
.are represented also, ‘

6.2 thimal Regglatbr

The work of this section ig essentially that of KALMAN
(1960). It is outlined briefly. for two reasons i
(i) it represents the foﬁﬁdation of other methods
to be discussed in later séctions
(ii) it provides the basis for some of the programs
which vere devised to synthesise the controller,
The engine and load system*zas assumed to bé described by 1
x = Ax + Bu (641)
where x was the state vector, of dimension 3, which represents
the deviations from the reference, or equilibrium, state, and.
where u represented‘the command input to the throttle

servomechanism,

# derived under the assumption of system linearity.

#% In this and all subsequent chapters it is assumed that
Lth gear was selected, The methods would remain applicable
if other gears were used t only the coefficient matrix, A,

would be altered.,
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The performance index wag selected to be

J = % /{;*@; + guz}dt | (6.2)
In (6.2) Q was positiveadefinite‘and.of order, 3 x 3;
- g was a weighting factor on the control, The factor 0.5 was
included for analytical convenience., Because the period of
time over which the engine system would run was lengthy, when
- compared to the time constants associated with this systen,
the regulation interval (i.e. T) was taken to be %nfinite.
The analytical (and more important, fhe practical) convenience
which resulted from this choice in some measure counterbalanced

"the errors which would result from short time engine operation.

From (6.%1) and (6.2)

H(x, Uu) = 3x'0x + 3gu® +U* (Ax + Bu) (6.3)
M. =g + B Y=o (6.4)
o v - |
- % = Ax + Bu j C(6.5)
- W == Aty ax (6.6)
0xX ’
where ) ' ' .
W) =0 (647)
The solution to (6.6) was |
YU(t) = Kx(t) | (6.8)

The matrix, K, was positive definite and the steady-state

solution to the matrix equation 1

K =-KA -A'K -Q +KB g~ 1Bk | (649)
For (6.8) and (6.4)
W = -g'iB'Kg = Dx (6.10)

#*The choice avoided the difficulty associated with attempts
to synthesise a controller with time-varying gains; such

gaing result if the upper limit of (6.2) is finite,
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D was a rectangular matrix, of order 1 x 3.
To determine D required the solution of the matrix Riccati
equation (6.9).

6.3 Numerical Solution of the Optimal Control Iaw

6.3.1 Approximate Integration

To solve the matrix Riccati equation a program,
BEARDM11, (see Appendix A.3) was written baged on the
algorithm proposed by ATHANS and FALB (1966d) viz

K(t4At) - K(t) = -KA-A'K-Q+KB g~ 1K (6.11)
4 : )
K(ttﬁ%) = K(t) ﬁgx{}KA-A'K-Q+KB g‘in} (6.12)
with K(w) =0 . | o o (6.13)

This simple Euler integration formula wag evaluated backwards
in timg by choosing the integration step length,At, to be a
small negative value, Although easy to program it was nof
an accurate method and the choice ofiAt was critical.. With
the matrices, A and B, of (2,83) and (2+84) the program
"blew-up" although it had performed satisfactprily, if slowly,
with a simple benchmafk program*, . To counteract this effect;
| due to accumulated and uncontrollable round-off error (only
single precision arithmetic was available at the computing
facility of R.A.F. Cranwell) the suggestion proposed by
KAIMAN and ENGLAR (1966) was adopted, viz. at every step the
matrix XK was symmefrisised by replacing it with

K(t) = K(t) + K'(t)
2
This palliative proved to be ineffective and it was evident

(6.14)

some transformation was needed to enable the program to solve
the equation (6.9) both quickly and accurately. It should
be noted here that only the steady-state solution was required

although this program solved from ® (actually some guessed,

*The problem was Q7.3.6 on po275 of SCHULTZ and MELSA (1967).
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time) to O, Consequently a large amount of unrequired data
was generated.The program was used later with transformed equations

6.3.2 Transformation of State Variableg

Tt was decided to use the transformation
z was the transformed state vector of the same dimension,

3,and T was a constant, non-singular matrix, of order 3 x 3.

If é = Ax + Bu (6.16)
‘then é = Té = ATz + :?Bu. (6.17)
hence é

or é = Ez + Fu : | ~ (6.19)

= p~arz + 1~ 1Bu (6.18)
To ensure that T was non-singular it was taken to be diagonal,

i.e. ) Y
T = diag(tyitystsy) (6420)
Hence i1 = aiag(+:1,43%,43h) (6.21)
1 1% %3 |
If -
444 a2 ar;1
A= a5y 852 as3 " (6.22)
331 332 233
B! = [§ 0 biﬂ (6.23)
then _
a1 a4,y 245t |
ty t,
E = asq%4 252 255%4 (6.24)
i) ta
a..t a..t. a
3171 32°2 33
% %
3 3 _
F = 0 0

33_1_] (6.25)
37




For this research,

from equation (2.83),
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-1 Loo 0
0 ~130 -16 |
Obviously 2g3 = 8y = 8p agy = (6.27)
hence 43 = €py T €y = €5y = (6.28)
-1 | a12t2 0
K2
E = 0 0 a23t3 (6.29)
t2 »
0 a32t2 -16
L *3 .
For good conditioning, it was decided that
k00t, _ 59 (6.30)
21
t
3 =< 20 (6.31)
T2
130t, _ 10 (6.32)
t
3
b
31 < 5.0 (6.33)
t
3
The choice of t3 = 10.0 (6.34)
yielded Pﬂ-_ - 4.33 (6'35)
t
3
and 33 0= 13 (6.36)
tz
t, o
"1 = koo (6.37)
13
and A ag,t, = 1040 (6.38)
t
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Thus T = diag {37.69237,0.769237.10.0} (6.39)
-1 = diag {9.0265306.1.29999.0-1} (6.40)
-1 10 0
E=] 0 0 13 (6.41)
0 -10 -16
L o,
F = [0 0 4.33] (6.42)

The optimal control law was determined in terms of the original
gtate vector and was given by

W = bz = prlx (6.43)

6.3.3 Integration of Pransformed Ricecati Equation

To obtain an accurate evaluation of the opfimal
control law the equation (6.9), with gsubstitution of (6.41) t
for A, and (6,42) for B, was integrated using a specially
written program, BEARDMLO (see Appendix A.3) which used the
Hamming algorithm. BEARDMLO was described in section 6 of
chapter 5. Only the sub-routine which generated the Riccati
equation had to be al%eréd from the program description of
the earlier chapter. It ought to be remembered, when
comparing the performance of the various programs, that the
first three steps of the Hamming routine were generated in
BEARDM4O by a fixed step, 4th order Runge-Kutta routine.

6.3.4 Dynamic Programming

Since the problem to be solved was a Linear Quadratic
Problem (the L.Q.P. of MAYNE (1970)) a closed form solution
could be obtained by the method of dynamic programming.
From the algorithm of NICHOLSON (1964), outlined briefly in

Appendix A.5.2, it was evident that the recursion formula
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involved only speedy algebraic operations once the transition
matrix,D, and the driving matrixgﬁ, had been determined. A
prdgram, BEARDM15, (see Appendix A.3) was written and results

therefrom are presented in table 6.1,

6¢3.5 Solution of the Steady-State Matrix Equation

(a) The iterative method proposed by KLEINMAN (1968) was
used to solve the steady-state matrix Riccati equation 1
“1pix | (6. 44)

This algorithm required a procedufe for obtaining a

A'K + KA + Q = KB g

solution, say P, to the Lyapunov matrix equation
A'P + PA =-Q : . (6.45)

where A and Q are given. A Special program baged on the
work of DAVISON and MAN (1968) was written to solve (6.45).
This wés incorporated then ag a sub-routine in BEARDM33 (see
Appendix A.3) the program writteh using the Kleinman élgorithm.
The program required® that a starting guess for the matrix, D,
had to ensure that the coefficient matrix of the closed-loop
systen, (A + BD) was a stability matrix i.e.

' Re(hi) <0 } ' | (6.46)
where the hi were the eigenvalues associated with (A + BD).
If a poor choice of D was made the program failed to converge.
Comparative results obtained from this program are quoted in
table 6.1, The initial starting guess was chosed to be a null
matrix since it had been determined earlier that the eigenvalues
of the matrix A (hence E) ﬁere all negative or had negative

real parts.

#A later note by Kleinman (1970) provided a modification to

remove the need to guess at a starting value of matrix D.




(b) Eigenvector Solution

From (6.4) it was easily shown that

W = -g iyl (6.47)
hencé (6.5) could be re-expressed as 1 %
oz e=al -3l (6.48)
Combining (6.48) and (6.6) yielded ‘
io A -Bg'iB' 59
(6.49)

xLo = Q AT %io
An eigenvector solution of (6.49) was availabie. MARSHALL
and NICHOLSON (1970) showed that the optimal control law derived
from such an eigenanalysis was 1 |
W = -glBlu,,Ulix  (6450)
U11 and Uzi represénted sub-matrices of the modei matrix, U,
the -columns of which were formed from the~éigenvectors of the
coefficiént matrix, 1, of the canonical system, viz. -
A -Bg~1pe
(6.51)

M = Q ZAY

To produce the solution (6.50) required s

(i) +the determination of the 3 eigenvectors agsociated
with the 3 eigenvalues (of the associated system matrix, M)
which had negative real parts.*®

(ii) the inversion of the.matrix. U11, which was complex.
A numerical procedure which provided the eigenvalues and
eigenvectors of any real matrix, up to order 20 x 20, was

available at R.A.F. Cranwell. This procedure, EIGEN, was

#Phis choice follows from the knowledge that the optimal

gystem should be stable,



158

written in Fortran IV, a computing language used irregularly |
at Cranwell. Consequently both the eigenvalues and eigenvect-
ors were evaluated separately before being used as input data

for BEARDM36 (see Appendix A.3) the program written to produce

the optimal control law. Within the program there is contained
a procedure* for the inversion of complex matrices, based on

the method proposed by LANCZ0S (1957), viz

letting 2 be a complex matrix of order n x n it was denoted

also by :

which allowed Z to be represented by an equivalent matrix, X,

of order 2n x 2n, where X was defined as

R =8 ‘
- |s R| .
The inversion of the real matrix X provided
| ‘N P
| X-1= -P N . (6.54)
thence 27l = n -jP . (6.55)_

(6.53) and (6.54)'were the basis of the algorithm upon which
the routine was established. Because only algebraic operations

were involved the method was intended to be fagt and accurate.

%*The program as written is limited to problems in which the
state dimension does not exceed ten, because the real matrix
inversion routine used was limited to matrices of order,

20 x 20, The restriction does not affect the work of this
research but, because the program was written for general use,
the restriction must be remembered. If larger systems are
to be dealt with in some other application, another procedure

for the inversion of complex matrices should be written based

on the algorithm proposed by CROSSLEY and PORTER (1971)
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Comparison of Methods

The weighting matrix used for comparison was
= diag {4.156,1,1}

and the weighting factor, g, was chosen to be

= 1.0

159

The results obtained by each of the methods outlined in this

section are quoted below in table 6.1,

1

ariraLsl HAMMING!| DYN.PROG | KLEINMAN | MARNICH
3; -2,6964178 | -2,69641778 -2,365828 -2.8487640 -2o69§3U68
3} -343198137 | =3,31981373 |-2.9983304|=3,506573 | =3.3197205
35 ~2,1860360 | =2,18603605 |=2,029744 |-2,334205 | ~2.185967
) 2 2 3 L 5
TIME {14m 38s 7m 15s im 28s Om 20s Om 15s
Table 6.1 Comparison of Methods of Obtaining Optimal
Control Laws '
NOTES 3+ (1) Both procedurés "blew=-up" with a choice for

step~length of 0.1 second.

Quoted results

were obtained for a 0,01 second step-length.

(2)

wag integrated was 5.0 seconds,.

The interval of time over which the equation

From the

printout it was evident that K g had been

obtained by 1.25 seconds,

Thug these figures

could be reduced by approximately 0,75 i.e.

for ATHFALB a time of 4 minutes (approx.) and

for HAMMING a time of 1m 45s would be representa-

tive,

However the value of any reasonable

approximation to infinite time is not known a

priori.

*Kgg means the steady-state value of the Riccati matrix,
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(3) The accuracy of the method could be improved
by the inclusion in the ma’crix@ » and hence /\,of
further terms in the exponential series
expansion used to evaluate this transition
matrixe The increase in computing time would
be insubgtantial,

(4) The accuracy of KLEINMAN could be improved
further by a reduction of the value of the
stopping condition.in the routine for solving
the Lyapunov matrix equation (6.45). There
would then be an increase of computing time 1
appro%imately double for each order reduction.

- (5) This figure was approximate; 7 seconds were
needed to evaluate the eigenvectors with EIGEN,

8 seconds weré required by BEARDM36,

For speed‘and accuracy the method proposed by Marshall'and
Nicholson* should be used, However, because the eigenvectors
had to be processed separately at-R.A.F. Cranwell and then

had to be used as input to the main program this method was
used only infrequently in the research. The eigenanalysis
program could be run only when the computing laboratory used
the FORTRAN compiler. The major portion of the computing
work at Cranwell was carried out in ALGOL and therefore -the
day-to~day delays in processing such dual-language programs
were such that the bulk of the computation for the optimal

regulator was carried out using BEARDM33, which was the next

*The technique had been developed implicitly, before Marshall
and Nicholson, by MacFarlane (1963). Independently, in the
U.S.A., POTTER (1966) proposed a similar method.
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most efficient method (KLEINMAN). ILater algorithms proposed
by FATH (1969) and MAKI (1972) for use with single-input

systems were also studied but, although both were found to be

effective, their use did not provide any real improvement
upoﬁ the choice of methods already indicateds Indeed the
method proposed by Fath was just a slight extension of the
method used in BEARDM36. |

6.4 Fixed Structure Optimal Feedback Controller

From section 2 of this chapter the optimal control law

had the form
o

wW = Dx (6.56)
A techﬁique, prépoéed by PURI (1966), of determining a set
of fixed feedback gains was investigated such that the set
of evaluated gains would provide D without the need to solve
the matrix Riccati equation.,

The model of the engine system could be transforméd into

the required'phase-variable form either by using the transform~
ation proposed by WONHAM and JOHNSON (1964), or by representing
the system in block diagram form and deriving from the diagram
the overall transfer function which can bekmanipulated into
phase-variable form easily. With the system description in
the phase-variable form the derived feedback gains operéted
upon the system output and its derivatives. The requirement
to produce for the feedback control law the acceleration of
the output shaft would result in some severe practical difficul-
tiess To avoid these a post transformation from phase to

state variables* was employed to obtain the results in state

*¥It is known, from KALMAN (1963), that the state variables
ought to be regarded as abstract variables. In this research
the particular choice of variables was colourcd by the know-
ledge that the variables were easy to measure and to transduce.
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feedback form. The block diagram of the system was represented

in figure 6.1

Servomechanism ' Engine & Load
Command Shaft
mrottle” Lo | S,
Vinzsi g2 + 16s + 130 e(s) | (1 + s) u¥s

Figure 6.1 = Block Diagram of System

I+ was simple to obtain from figure 6.1, by the rules of
block diagram algebra (d'AZ2Z0 and HOUPIS 1966), the overall

trangfer function

17320 -
ole - | (6457)
. vin%s) &3 + 17s% + 1h6s + 130
Letting N |
W=y, , . ) - (6.58)
o= = ¥, -  (6459)
Se= V= s (6.60)
then - 7 |
- - - )
yq ° ' IR o
v,| =| o 0 1 v | v |00
L?%. t:130 ~146 -17__ B I3 L{_
. o (6461)
e ¥ = cy +30 (6.62)

where C was the companion matrix of (6.61) and the matrix Bj

was represented by

B, o o 4 : (6.63)

N«Be u = 17320\/;" (6.6“’)
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The performance index to be minimised was chosen to be

5 = o.g/”{ vay + &) at (6.65)
By using the method of éhe calculﬁs of variations with
undetermined Lagrange multipliers, the performance index
(6,65) was augmented viz
J= o.5[w{x'3;x + g32+z§xj(t)fj(x.ﬁ,t)} it (6.66)

where kj(t) were the lagrange multipliers. The index J
was minimised subjéct to the constraint
£(y,u,t) = 0 o (6.67)
The variational equations required for the solution were
defined in terms of the integrand of (6.66) viz 1
F =.!2.{x'ay + gh?)+ ATy o+ AE, o+ AT, o . (6.68)
They were given by the Euler-lLagrange equations i

F = 4 |2E_ | |

dy;  dt |0 .y = 1.2,3\

OF = g__az,} &

ohy 4T | OA; j=1,2,3 (6.69)

d
at

™
i
T
o/
ol".lj
| S
N——

)
=

The complete augmented set of equations for the variational
system was obtained from (6.62) and (6469) &+ it was
Y VA .
= ©® (6.70)*
A A
where ® was a coefficient matrix, of order 6 x 6, and its

characteristic determinant was given by 1

Als) = |s1 - @I | (6.71)

¥(6.70) is not given in detail - an alternative,simpler

equation to evaluate the optimal control law is developed.

The derivation of 6.70 is given in Appendix A.5.4,
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If[ﬁl(s) wag defined as a polynomial with all its roots in
L.H. of s-plane then |
| A (s) =Al(s)Al(-s) : (6.72)
and if u was determined correctly[li(s) would be the
characteristic determinant of the optimised closed-1loop
system.
The system represented in figure 6.1 was represented by

a transfer function
Gi(s) = Ni(s)

D, (s)

(6.73)

The optlmal feedback controller was chosen a priori to be a
dynanic controller operating only upon the system output, ila.es

the optimal feedback controller was chosen to be 3

Gy(s) = =3 k;8 . {6a7H)

= =]
[AVI 13V
—
nj n
~r
§
™~

where ki represented the controller gains which had to be
chosen for specific qﬁ.and g such that (6.65) was minimised.
From (6.73) and (6.74) the characteristic function of the
optimised closed~loop system was 3 o

Ay(s) = Dy()Dy(s) + Ny(s)N,(s) (6.75)

However Puri had shown that
A(s) = Dy (s)D,(s) = Dy(s)Dy(~8)g + N { (s)Ny ( s)x

. (6.76)
For this engine system it was supposed that

AN 1(s) = go +’azs2 + a8+ ag (6.77)
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It was derived then from (6.76), (6.57), that

N(g) = (-36 - 354 - 1689632 + 16900)g + (ql-q232+qjsu) = 0

(6,78)
Further when it was taken that
g = 1' qll = 100
| 4y = 10 (6479)
433 = 10
then A (s) = -56 + 7su - 1690632 + 17000 = O
A | | (6.80)
However, from (6.,76) and (6.77)
N(s) = -36 + (ag -25;11)&';1+ -(ai - 2aoa2)s2 + ag (6.81)

Comparison of the coefficients of (6.80) and (6.81) yielded 1

a% -2, =7
a? - zaoaz = 16906 | ;Z;(s.eé)
a2 = 17000
Hence, a, = 139.4 -(6583)'
and ag - 1ha§ + 1043.2a, - 67575 = 0 (6.84)

Use of Bairstow's procedure to evaluate the zeros of the
polynomial (BECKETT and HUNT 1967) showed that the largest
positive root of (6.84) was 17.312% which was the value taken
for a2J Therefore |

a, = 146,355 (6485)




The closed~loop system was represented as

R(s)=0 + a(s) 4 Y(s)
(;) (33 + 1782 + 1l6s + 130 -

2 <——
k1 + kZS + kBS

Figure 6,2 - Block Diagram of Closed Loop System

For this system the characteristic equation was found to be 1
87 + (17 + k;)s% + (146 + ky)s + (130 + k;) = 0 (6.86)

Thus, (cf,(6.81))

ay = 17 + kg = 17,3124
hence ks =.0,3124 - (6.87)
Also a, = 146 + k, = 146.355
and ky = 0,355 - (6.88)
Finally a = 130 + k, = 130.4 '
yielded ky = 0.4 (6.89)
Therefore,  u® = =[0.4 0.355 0.3124] (6.90)

Some convenient transformation from phase to state variables
was required to provide a state feedback law. It was

decided to let
x = Ty (6.91)

where x was the state vector, of dimension 3
y was the phase vector, of dimension 3
and T was a non-singuiar transformation matrix, of order 3 x 3.
From GREENSITE (1970) the transformation matrix was defined as
- T = RS : (6.92)

where R = [%:AB:AZé] # (6.93)
and where A and B were the matrices in (6.1),the characteristic

equation aggociated with which was 1

¥This transformation method works for A and B matrices of

orders, [n x n] and [n x m] respectively.




det BI - {]

The matrix S was formed from (6,94) thus -

167

Ew A=t o= o (6.9%)

=t

—

1 |
1 0 (6.95)
0

For the éngihe system being considered 1@

0
0

| 433 -692.8  5455.8

0 ©17320.0]
43,3 -692,8 (6.96)

—

1+ was established earlier-in this chapter that the system ‘

characteristic equétion was given by

3 + 178 + 1b6s + 130 = 0 o (6.97)
therefore | Wy .=, =130 | |
W, = =146 (6.98)
Wy = -17 -
Thus . '
11% 17 1 i
S= | 17 1 0 ' (6499)
|1 0 o | | o
a.nd‘I.‘=RS=_i.7320 0 0 |
4343 b3,3 0 (6.100)
0 43,3 - 43.3 |
Therefore o -1 -
Yy = T7% (6.101)
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where 1 0 0

el 4 -1 100 0 (6,102)
17320

~400 Loo
L.i

The validity of the calculated matrix, T, was confirmed by

checking that

B, = r~1p (6.103)
and that ¢ = 7 liap (6104)
From the relationship

A
=V, = 17320 4 = KT 1x (6.105)
‘where _ -
1 0 0
"
1= |-1 w0 o . (6.106)
|1 -~koo 400|

From (6.90) and (6.106)

u = [k 3574 17.0 128, 9%1
' (6,107)

It will be noted, from comparison with the'results presented
in section 6 of this chapter, that the gain operating upon

the rate of change of throttle position is very much greater
in (6.107) than in any other result. This stemmed from the
choice of weighting matrix (6.79). To compare the optimal
control law found by this method with that found by any other
method requires that the same performance index should be
minimised. For the Puri algorithm the phase variables were
weighted : if a comparison with state variables is reguired

the weighting matrix should be modified so that the performance

index would become

J = 0. 3/[ v(r1iq(rtyx + guz} dt
= 0, 5/[ 'Qx ¥ guz} dt - (6.108)
in which Q=

(r=1ysq(r1) (6.109)
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In this case

o ey

210 -8000 4000

Q=__1 _, |-8000 32x10° -16x10°|  (6.110)*%
(17520) " s
Looo -16x10 16x10

Ugse of this matrix and g set at unity in BEARDN33 produced
the following control law ‘

W = -[0.3459 16,924 125.10@;_; (6.111)
The method therefore wasgs equivalent to those presented
already but it suffered from the disadvantage of requiring

phase variable representation which meant that there was no
~ immediate relationship with the state weighting matrix

elements. Another disadvantageous fact was the need to
evaluate numerically the coefficients (prior to the determina-
tion of the largest positive root) which was sometimes
difficult, particulafly so if approximatiohs were made for
analytical convenience for then the root value mightj%e
affected and consequently the values of the gain factors.

It proved to be a useful method when computational facilities
were not available., Because a range of optimal control

laws were provided already from the earlier work of this
chapter the method was not proceeded with but the work of
transformation of phase to state variables was employed

later in chapter 7.

¥The off-diagonal terms in the Q matrix do not influence
the resulting control lawe A proof of this statement is
to be found in KAIMAN and ENGIAR (1966). |
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6.5 Some Cbmpufational Results

The results obtained for a range of choices for Q'and

g are shown in table 6.2.

Serial
No. Q € dl d 3

o1 1,1,1, [1.0 | -0,01874392 | -1.4029931 | ~0.07935012
02 [10,1,1, |1.0 | -0,07932972 | -4.6306788 | -0,23642939
03 |10,1,1 |10.0 | -0,01896485 | -1,2137097 | -0.06943526

2 a

oy |(1,1,0 10,0 ~0,00376475 | -0,26755704| ~0,01636467
05 |10,1,0 |20.0 | -0.0215821 | ~0.782717 -0.,04697808
06 |10,100,0{ 1.0 -0.,06613816 | -13.759723 —0.53168752
07 |[10,10,0 1.0 -0+07206332 | ~5.6007329 |-0.26280872
08 10,1,0; iOQ.O -0,00378037 -0;2443h472 -0,01496975

Table 6.2 =~ Optimal Control Gaing

It was noted in the course of numerical experiments*%hat
'there was a well-defined relationship between the value of
the gains and the control weighting factor. The relation-
ship is shown graphically in figure 6.3, The control gain
was not transformed and only the gain corfesponding to Xy

was plotted; same slope wag obtained for other gains d, and d3.

Q = diag. {10,1,0}

W
L]
o

N

-*
o
T

Control gain, d1

1 10 weighting factor,g
Figure 6.3 =~ Variation of Control Gain with g
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Figure 6.3 was most useful for it reduced substantially
the computational load; only two runs, for widely different
values of g,for any diagonal Q matrix were required. A straight

line graph could then be drawn on a log-log scale and the

values of gainvcorresponding to intermediate values of weight-~
ing factor were available immediately without further computa-
tion., From these numerical studies it may be stated that
increasing the elements of the Q matrix resulted in increased
control gains and consequently reducéd deviations from the
equilibrium of the state variables. On the other hand an
-increase of g reduced the control used and hence the sfate
deviations were larger, A compromise choice was necessary.
Although the disturbances in this regulation'weré statisti-
cal in nature no atfemptwas made to develop a stoéhastic
controller; First, the disturbance was not stationapy but
was obviously periodic, by nature of the method of ifs‘éenera-
tion; this was contrary to some of the assumptions necessary
to design an optimal stochastic controller by using the
Separation Theorem of LEE (1964),which permits the synfhesis
of the controller by cascading an optimal estimator with a
deterministic optimum controller., Such a scheme requires
that the estimator, which has its own dynamics, is synthesised
as well as the controller, In the second place the noise due
to the engine vibration,which was present on the transducer
signals,was of prime importance, but was also periodic in
natures. The filtration of such unwanted signals has been
dealt with already in chapter 2, It was decided to be guided
by the heuristic principle, enunciated by WONHAM and CASHMAN

(1969), that an apparently crude approximation to the optimal
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stochastic control may, if properly chosen, yield near-optimal
results, The effects of the load changes were regarded as
causing changes in some of the parameters of the system and
in the next chapter attention is given to obtaining some
controller which would provide optimal control and would be
minimally sensitive to such parameter changes.
6,6 Controller Synthesis and Experimental Results

To confirm experimentally the validity of the regulator
gains listed in table 6.2 a study was undertaken first on the
‘analogue computer, Figure 6.4 shows the diagram of the
" simulation of the linear model. Points T and S corréspond
%o the input and oﬁtput points indicated on figure 2.27a,
the full engiﬁe, transmission, and load simulation. Point T
was driven from the output of the simulation of the throttle
servomechanism shown in figure 2,10, P20 and P22 were
changed to alter fan setting} Figure 6.5 is a diagrém of
the simulated regulator with gains suitably adjusted to take
into account the appropriate analogue scaling.

In figure 6.4 the point marked Disturbance was used to
inject external load disturbances into the ehgine/load systems
to test the effectiveness of the regulation property of the
derived control law. A random signal generator was designed
(see Appendix A.4) for use as a disturbance source and its
signal was injected into the simulation at the point mentioned.
All the control laws derived were found to be fully effective.
The simulation of figure 6.4 was next replaced by the full
simulation‘of figure 2.27a; the load disturbances were again
injected into the terminal D at the input of A24. AS3 was‘

switched to ensure that 4th gear was selected. The effects
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Fixed Throttle Demand
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Figure 6,6 - Steady -state Regulation




Note: final values of speed separated deliberately

for purpose of illustration.
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Figure 6.7 - Simulation Responses for L.Q.P. Regulator
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upon the steady-state speed of the engine of changing the fan
setting for open and élosed-loop operation are shovwn in

figure 6.6 which corresponds to case 03 of table 6.2, - The
resulting change of output speed due to a dynamometer setting
change of 7.62 cne (frdm 2,54 cme to 10,16 cm.) in closed-loop
operation was 300 rev/min compared to a change of 830 rev/min
opeh-loop.' The effectiveness of the controller was checked
also for the situation where a random signal was injected into
A24, The effectiveness of the regulation is evident from
figure 6.7. From this evidence it was clear that the regulator
- scheme should be effective when applied to the experiﬁental
engine.rig. A controller was synthesised using operational
amplifiers (Burr-Brown model no. 3317/1l); the schematic

diagram is shown below in figure 6.8.

Throttle Position o L

Signal
Shaft Speed

Regulator
Output

Signal

Throttle Rate
O 1
Signal

Figure 6,8 - Optimal Regulator Controller

The gains required scaling before application to the experi-
mental rig because of the sensitivity of the tachogenerator
and potentiometer transducer associated with the engine and

servomechanism, The results of using the controller are
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shovn in figure 6.9 a and b, In figure 6.,9b and subsequent
figures the engine noise has been removed by filtration for
eagse of illustration. It was noted that use of control law
no. 05 resulted in hunting (see figure 6.9a) when the dynamo-
meter fan setting was changed from 7.62 cm, to 1.27 cm. (The
fixed throttle demand signal was also reduced to ensure that
the operating speed was also approximately the same)., ~For

the same control law (serial no. 03) and the same fan setting
(d = 10,16 cm.) figure 6.9b illustrates an unexpected phenomenon
associated with this experimental work : the response was less
stable for "step-downs” in equilibrium speeds. Furthér
experiﬁental inves{igations merely confirmed this observafion
for all settings of the dynamometer. | Figure 6.10 illustrates
some typicél results s control law (serial no. O4) was employed
and different steady speeds were used. For responses a and b
the demanded speed was stepped from 1750 to 185O rev/ﬁih and
from 1900 to 1600 rev/min respectively. For the upward step
the response was stable and settled in 11 s. For the dovn-
wards step the response was much more oscillatory and settled
in 14 s+ In case a the period of the osciliation was 5 Se

in case b it was about 4 s, in the early part of the response
and lengthened to 5 s. as the speed settleds Similar results
were obtained for responses ¢ and ds However for c¢ the
response had settled in 5 s. and for d the period of oscillation
had been reduced to 3.5 s. There had been no evidence from
the analogue computer studies to indicate the existence of

such results, Although the effects of the filter in the

shaft gspeed signal channel had not been considered in the

early studies its inclusion in the simulation did not alter
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the computed results in any observable way., The different
engine responses exhibited for higher or lower demanded
steady speeds indicate that the phenomenon is non=linear

in nature : there appeared to be a failure to satigfy the

homogeneity property which characterises the linear system.
A further series of tests, with the load being varied in
responsé to the simulated road signal, generated as outlined
in chapter 4, did not reveal such pscillatory response,
With the throttle demand set for a speed of 2000 rev/min,
with the fan set at 7.62 cm, and the simulated road at the

- centre of its height contour, the engine énd load speéds were
held rélatively constant; a section of the response is shown
in figﬁre 6.11, No evidence of hunting was found, The
earlier results muét have resulted therefore froﬁ the changes’
of reference speed and from interaction befween the internal
loops of the engine/load system and those added by thé addit-
ion of the controller to the rigs The failure to reproduce
hunting of any kind from the simulation indicates that the
models derived in chapter 2 require refinement, |

It was not possible, with the fuel-measuring techniques

being used, to obtain acceptable quantitative evidence of
improved fuel-consumption. The fuel used over a complete
run of the simulated road, using manual speed control, could
not be measured accurately because the operator was necessar-
ily occupied in monitoring engine speed and making the
agssociated throttle adjustments and was unable to record
visually the fuel consumed per unit time., To obtain a quali-

tative assessment of the performance a measured amount of

fuel was placed in the fuel tank and the run was made with
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.
manual and with closed-loop control. In the event the closed-

loop control run covered about 250 yards further along the
simulated road. Actually the engine ceased to run about
250 yards beforé the end of the road for the manual case;
The run had been completed in the closed-loop case before
engine shut-down.

This Qualitative result is not wholly conclusive however,
because the performance index included a speed term in addition
to the throttle term. It is conceivable that the speed may
have been regulated better manually than automatically, but
with greater throttle useage. Nevertheless it was evident
that a reduced fuel expenditure was possible; less satisfactory
speed regulation might be acceptable in many circumsfances if

fuel savings were assured.
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CHAPTER SEVEN = OPTIMAL ENGINE REGULATION-LINEAR MODEL,
QUADRATIC PERFORMANCE INDEX, AND MINIMAL SENSITIVITY

7.1 Introduction

The increase in the complexity of the overall control
system, which would have resulted if an attempt to produce a
stochastic controller had been made, suggested the need to
~look at alternative schemes which could achieve optimal-in-~
the-mean performance with simple controllers.* It is even
a matter of some doubt[ﬁONHAM (1969ﬂ whether the control
system, which would result from taking into direct accbunt
the gtochastic signals, would be significantly superior to
any system designed on the assumption that there weréiép
stochastic signals present. Additionally, if the random
disturbances cannot be considered to be Gaussian the stochas-
tic control problem cannot be solved analytically.  MORTENSEN
(1968) indicated also, that ifthe plant was not linear (or
could not be treated as linear) there would be great difficulty
in handling white noise signals because it turned out that
it was possible to have as solutions to the same non-linear
stochastic, differential equation two different answers depend-~
ing upon whether the Ito or the Stratonovich integral had been

employed in the analysis. To avoid these difficulties an

*
| Simple in the special gense of being easy to synthesise,
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approach first suggested by LUH and CROSS (1967) was tried,

viz. 1 the problem was regarded as being a minimal trajectory
sensitivity problem. Such a procedure is appropriate only

if the dynamic system can accommodateitself to relatively

slow variations in its parameters. From the work of chapter

2, sectiqn 3 it is clear that the parameters of the linear
model of the engine/load system did change slowly with fime

when the engine was subjected to dynamic loading. Consequently
the approach seemed to be justified,

The minimal sensitivity problem is discussed in detail
below but the controller provided system performance which,
although less sensitive to parameter variations than other
controllers used, was not optimal.

T2 Mihimal Sensitivity Systems

7.2.1 Problem Statement

The engine and load described by (2.5) was
re-éxpressed as |
x = A(t,p)x(t) + B(t,p)u(t) (7.1)
where x and u had the usual meanings and dimensions. p was
a gcalar parameter of the engine and load combination and was
regarded as a constant i.e, it was assumed that the variation
of p from its nominal value was very slow. This assumption
was weakened when the interval of the integral in the perform-
ance index was consgidered to be semi- finite, Both A and B
were assumed to be continuous in time and differentiable in p.
Although the state vector x was an implicit function of p, é
still denoted differentiation with respect to time because p

was taken as a constant,




The perﬁgrmance index to be minimised was .
g = o.g//{gv(t)agct) + gud(t) + 8" (£)Vs(t)] at (7.2)
where Q and g had the same meanings and restrictions as in
section 6.2 and where s(t) was the trajectory sensitivity
vector defined here as 3

s(tp) = 2=l (7.3)

The sensitivity weighting matrix was V, of order 3 x 3, and
it was chosen to be positive definite.

The differential equation describihg the trajectory
sensitivity was expressed as 1 |

Yx(ton) = s(tyn) = 2ACt,w)x(t,p) + A(t,)dx(tw)
) o ou o

+ DB(t,u) u(t) + B(t,p)oult) (7.4)
OB o

By inference it was established that parameter variations

would not affect g at t = 03 therefore

s(o,p) =0 (7+5)
Because the control function, u, to be determined, waé not
considered to be a function of the parametér; p, the result

of differentiating u with respect to p was zero. A further
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gimplifying assumption was made LAMONT and KAHNE (1967), DOMPE

and DORF (1967) and KREINDLER (1968a) viz. that changes in
the driving matrix, B, due to changes in p were negligible.
Hence

oB(t,n)

= 0 ~ (7.6)
oun

This assumption was not altogether reasonable however.

BARNETT and STOREY (1966) had shown that for an optimal
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system (7.1) with performance index (7.2) in which the

matrix V was null, the system was more sensitive to changes

in B than in changes in A. Although B will vary the assumpt=-
jon of (7.6) was followed briefly but the consequences of

that assumption will be dealt with later in this sections

With these simplifications (7.4) became 3

S(t,n) = DACt,p) x(t,u)+ At,u)s(t,p) (7.7)
ou
Combining (7.1) and (7.7) yielcded
I N B r -] ]
Z‘.(toll) A(t,u) 0 x(t,n) B
| = +* u(t)
g(t,m) IA(t, ) A(t,n)|| s(t,n) 0 (7.8)
L - - on JL _ - L S
Let . : '
' §(tr ) :
Z(t,n) = [i(t’] : (7.9)
H(t,0) = | Altw) O 5
| (7.10)
gAft,gz A(t,p)
L —
N(%) = B |
{ } - (7.11)
0 .
Therefore, 2 = HY+ Nu ! (7¢12)
Equation (7.2) was re-written as 3
J = 0.5/{1'27_’ + guz} at | (7.13)
where .
Q 0
7 = (7+14)
0 \'s

By minimising (743), subject to the constraint of (7.12), the
minimal sensitivity.control was found to be

uo(Zv'b) = D*(‘t,u)_X_(t.u) (7015)
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in which D*(t,p) = -& N' (+)K(u) (7416)
The matrix K(p) was the solution of the matrix Riccati
equation 1 _

k(N (£)g" 1N (6)K () = K(uIH(E,p) = H* (60K (5,0)-2 (7.18)
The solutlon wag partitioned thus 3 =0
. K11(U) Klz(u)
K(p) = (7417)

| Kpq (0) Kopp(w)

From (7+11), (7+15), (7.16) and (7.17) the optimal control law
was expressed 3 . _
WO () = -2~ 18%Ky1 (L)x(t,n) = &7 B'K 5 (n)slt,p)
(7419)
7+2 Lack of Optimality

Dompe and Dorf considered as-an example a simple second-
order system and noted that the control derived from (7.19)
did not result in optimality i.e. they noted that other valués
for gains in the control law resulted in a lower value of
performance indexs |

The example they chosge was

0 1 0

' X+ u (7.20)
-0.5 "'p. 1

14 o
i

Nominal values of p'was 2,0 and for definiteness

&= 0.1 (7.21)
B - |
Q= ! ° (7.22)
_ 1 0 |
and V= 0 . (7.23)

Using this data in BEARDM33 (see Chapter 6) the optimal

control law was obtained; some discrepancies between the




-X

1T Aso
Y =Y
B> 3
X =X 'Al+9
10 Y~
: l B;—u
S ©2 L,_
o N * T
P o | TN N %
v O
9 o e
da Pio l D_J [
16 ‘ % A bormrv nebworic
d(“ :l’ll Sy 4' —5 " 1 requiced -
T TEN A8
fo /I.T
SETTiNGS ‘ » 1/ {};'
Por & | Doke  |MCLean JPo5
Poo 1615 1951
Por | 2702 2702
Fo2 ZooDp 2050 ! T G X -X As2
fo3 joob | lovo fob ™ ,
- by =
?: :w° i?D o Performance index being
(*] o000 D0 v . . .
Po8 | 2500 | 25w minimised 3
o9 Jooo | 2ovo I = { 2 2 o 2 ZZdb
Po 6196 bo19 » 0. 5/X1+0. 25x2+0. 1u +Sl+sz
Pu 6821 | 6673 o .
PoS 2000| 2000 g

Figure 7.1 = Minimal Sensitivity System Simulation




\ 190

results of the present author and those of the paper by

Dompe and Dorf occurred. These can be seen in table 7.1.

I II
DOMPE & DORF McLEAN
d1 ~2,70156 -2,701525
d2 -1.62524 -1.9505566
d3 +0.68214 +0.6672860
dy, ' +0,61964 +0,6019240
Table 7.1 - Comparison of Regults

An analogue computer simulation, shown in figure 7.1, was
set up to test both sets of results. From this simulation
it was observed the use of the Dompe and Dorf values did

d

result in non-optimal performance., For example, with ds

3
and d, set at the values given by DOMPE and DORF the value

of d2 which resulted in a minimum value of J was -1.95 not
-1,62524, However, when the values shown in column II of
table 7.1 were employed optimality was achieved : +the lowest
value of J was achieved using the computed gains., It was
observed that widely varying values of the sensitivity control
" coefficient did not affect significantly the value of the |
performance index, which remained at the minimum value,
provided that the feedback gains, d1 and dz, were at their
correct values., In this sense then, optimality has not been
achieved s the values of d3 and db were not critical, The

simulation experiments were carried out as indicated above,

but for every test the parameter, p, was
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not changed. This lack of optimality is discussed in the

next-section but attention is drawn here to a secondary disad-
vantage of the approach., The control law is a function not
only of the state but of the sensitivity vector also. In
general, the sensitivity vector is not available from the system
and it has to be simulated by an analogue models Thisg is

an additional complexity in synthesis of the same magnitude as
the provision of an estimator for a stochastic controller : the
problem it was intended to avoid.

7.3 Clogsed-Loop Sensitivity

The method of the previous section contained some flaw
in its development becauge optimality had not been achieved.

- This flaw stemmed basically from a confusion by earlier workers

between
g & ox (7.24)
| on
which was the sensitivity vector of the open-loop trajectory
and
ou

the sensitivity vector of the closed-loop system of which x,

was the state vector, The distinction between these two
vectors had been emphasised by KREINDLER (1968b,1969) who
further suggested thét the problem of closed~loop minimal
gsensitivity would require an approximate solution.. Because a
sensitivity model was required to provide the sensitivity vector,
and because this model required as its input the system state
vector, the only available state vector was that from the closed-

loop system and was a function of the control signal which was,

of course, a feedback signal. Consequently it was inappropriate




to employ the sensitivity vector, s and an amended analysis
embloying g is outlined below. First, however, it should be
mentioned that in the papers by Tamont and Kahne, and Dompe
and Dorf it was proposed that the reasoﬁ for the non-optimal
solution was the neglect of the 3B term, The correct reasons
have been given aboﬁe. * /

The form of the optimal control law for minimal closed-lo0p

gensitivity was assumed a priori to have an identical form to -

that obtained from the earlier analysis viz 3

u = DyXg DO . : (7.26)
Consequently _ '
x = Ax, + BD, X, + BD 0 (7.27)
and hd
g = dAx_ + BD,g + AJ + BD,30 (7.28)
oL © 1 25
oB

3L terms were ignored. If only small variations in parameter
were considered then, to a first order approximation, (7.28)

could be expressed as

. g = %3. Xa + (A"'BDl)Q (7.29)
Letting T ‘Ec
= (7.30)
g

then the minimal sensitivity, closed-loop optimal control

system was described by the following differential equation 1

T = |(A+3BD;)  BD, T (7.31)
3A (A + BD,) |
on

or more appropriately for the optimal control problem,

7 .| a 0 a o+ (B,

- 3A (A + BD 0 (7.32)
ol 1

)

T T + Wu (7.33)



From (7.33) and (7.32) it was apparent that the coefficient
matrix,ES, was a function of the control gain matrix, Dl'
which had yet to be determined. It can be shown (NEWMANN
(1979)) that this problem may not be solved by simply solving
the matrix Riccatiequation, és in the deterministic case.
Some iterative method is required : a not unexpected result
gince it had been predicted earlier by KREINDLER (1968b).
Wﬁile trying to establish some jterative method it was also
worthwhile trying to find a means whereby the need to provide
in the controller at least a measure of the sensitivity vector
could be avoided.

The method propqsed by HENDRICKS and d'ANGELO (1967) provides
minimal sensitivity optimal control. It has the desirable
featuré that there is a constraiqt applied to the feedback
signal so that it must be a lineaf function of the system
state ohly.r. There is then no need to provide a sensitivity
model in the synthesis of the optimal controller, Use of
guch a fixed structure controller also provides performance
which is optimal in the mean in the sense of PROPOI and
TSYPKIN (1968).

Letting u = D'x, (7.3%)
then  x = (A +BDVx, = A%, (7.35)

The sensitivity equation with respect tO/M,for (735) was

given by f
g = 3% x; + A%D (7236)
Hl 17 7
=c A% 0 X,
= (737)
G| jpar A%
- € I




The performance index (7.2) was then re-written as

J = 0.5/{3!_0'(62 + gDD')x, + g_'Vg} dt (7.38)
Using (7.30), (7.37) and (7.38) were expressed thus
T = iT (7+39)
and ‘ J = 0.5/{1’_'@1‘}% (7.40)
where e 0
e
¢ =[(q + cD') 0 ;  (7.42)
0 v

The minimisation of (7.40) was achieved by some optimal choice
of D*. The evaluation of D' was carried out iteratively
using the algorithm proposed by Hendricks and d'Angelo viz 1

pi*t = {pI} “Hxd 4TV} (7.43)
where the matrices P,K, and T are defined later.

(7.43) was terminated when

[pi*t - pi|<e (7.44)
€ was a small positive number. At each step in the iteration

two algebraic equations, of order 2n, had to be solved 1

KH+HL+® = 0 (7.45)
ﬁv+m+ﬁﬁg ﬂ = 0 (7.46)
0 0 '

where the matrices H and f hadrthe property of positive
definiteness. They were of order 2n x 2n, were symmetric

and were partitioned thus 1

H = |H H,
' (7.47)
HY Hy
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A . A A
Ho= }:2 (7.48)
Hé H3
= K (7.49)
A A [ 4
K = (H1H1 + H2H2)B (7.50)
Ay A
T = (H}H, + HH,)B (7.51)

(7.45) and (7.46) were not matrix Riccati equations because X
- depended upon D which had yet to be evaluated. But (7.45) was
a Lyapunov matrix equation and (7.46) was the same type of

equation which may be seen by making the simple substitution

y = %' . (7.52)

Then (7;46) beomes

A A T —O
HY + Y H + |x.x, 0| =

| (7.53)

| 0o . o0
Some methbd of solving the Lyapunév matrix equation had to be
found which was fast and éccurate because the unknown matrices
H and ﬁ needed to be found at each step of the iteration.
The methods outlined in the study by ROTHSCHILD and JAMESON
(1970)* were considered, However, of the four methods outlined

in that paper the most efficient required the use of triple

#A more recent survey by PACE and BARNETT (1972) established
that for low order systems i.e. the dimension of the system
state space less than 10, the direct methods were superior,
However the order of improvement over a method using the
infinite series expansion was only/a factor of two; Davison

and Man's method was used still therefore.
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precision arithmetic to achieve satisfactory numerical accuracy.
Consequently the algorithm of DAVISON and MAN, used in the
program BEARDM33 (discussed in section 6.3) was again employed

although it needed an initial guess for the matrix D to ensure

‘that X was a stability matrix.®
The algorithm for the solution of the Lyapunov matrix

equation viaz.

KA + AK = -Q ~ (7.54)
was given by 1 .

T ', - (7.55)
where . L f ’ﬂJZngak +K (7.56)

k = 0,132,3’0000090

end where K, = hq (7457)

T = (I -hA + n2a%)~1(1 + hA +h242) (7.58)

2 12 2 12

and h—0 . | (7.59)

The choice 6f h was not critical; the algorithm was numeric-
ally stable for any positive value of h, In this research
h was chosen to be 0.001,

The choice of .9 did not affect the optimal sensitivity
control gains so that any convenient choice of X, was used in
the program BEARDM28 (see Appendix A.3) which was written
based on this algorithm.

7.4 Computational Results

A wide variety of conditions were studied using the
program BEARDM28, To assist the presentation of results the
various different elements of the problem are listed and coded

first, before listing the corresponding control laws.

#¥ necessary and sufficient condition for A to be a stability

matrix wag that ki + kj # 0 where the A,;were the eigenvalues.
ey
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(a) The matrix sA*
. op
In the program this always had the form

Qqq d 12 0
A% = 0 0 0 (7.60)
ou ) '
0 0 0

because it was cons1dered that only the parameters associated
with the engine and load descrlptlon would vary. From chapter
2 section 3 it is obvious that,depending upon speed and dyna-
mometer setting,the linear model coefficients may be in error.

This could be regarded as a slow parameter changee.

CODE L11 d 12
Al . -0.2 0

A2 0.4 0
A3 | 6.6 0
AL 0.8 0
A5 - | 1.0 0
I 0 -9.0
A7 0 9.0
A8 -0k -2.0
A9 | -0.4 2.0
A10 -0k 540

Table 7.2 -dA*matrices elements
o
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(b) The Sensitivity Weighting Matrix, V

V was chosen to be a diagonal matrix. 3 values were used

v, = diag [10‘4,10'4,10'4] ‘ (7.61)
v, = diag [1073,1073,107%] (7.62)
Vy = diag [10’7,10'7,10’7] (7.63)

(¢) The State Weighting Matrix, Q

This matrix was chosen to be a diagonal matrix thus 1

CODE Qqq doo q33
Q1 10 1 0
Q2 7 2 0
Q3 10 10 1
Q4 .10 1 1
Q5 100 1 i
Qé 1000 i 1
Table 7.3 - State Weighting Matrix Elements

(d) Initial Condition Vector x.
It was determined after extensive numerical experimentation
‘that different x did not affect the final control laws.,

Consequently the value of x_ was the same for each entry and

0
for the results presented in table 7.3 was given by 3

x = [10,0.1,-0.01] (7.6k)

(e) The Optimal Control Laws

Using the program BEARDM28 the optimal control laws
presented in table 7.4 were obtained. The starting guess for

the D matrix was taken as

D' = ["100, "100' -1-0] (7065)

in every case.
\
\




199

Serial Control Gain Matrix
No, Q A% |V ~dy =4 -5
g QL [ A1 [ V1 | 2.7553691 | 3.3663570 | 2.14428L47
2 QL | A2 | V1 | 247553691 3.3663571 2.1442847
3 QL | A3 | V1 | 2.7553693 3.3663572 2.1442854
L Q1L | Ak | V1 | 2.7553695 3.3663574 2.1442848
5 QL [ A5 | V1 | 2.7553693 343663576 2. 1442849
6 Qh | A6 | V2 | 2,7603464 | 3.4140693 | 2.2855068
. ol | A6 | va | 2.7600352 | 3.4183392 | 2.28470u1| *
8 Qb | A6 | v2 | 2.7599202 | 3.4138702 | 2.2846u71| **
9 Q| A10] V2 | 2.7592566 | 3.4135186 | 2.2842961
10 Q2 | A9 | V3 | 2.2448397 | 2.9538hK5 | 1,9225799
11 Ql | A8 | V1 | 2.7553690 7| 3.3663582 | 2.1442846
12 Q3 | A7 | v2 | 2.7152722 | K.3395876 | 2.7541167
13 Q5 | Ato] V2 |10.223866 | 10.019123 5.1973698
14 Q5 | A10| V2 |10.223347 | 10.019496 5.1981884| **
15 Q6 | A10| V2 diverged
Table 7.4 - Optimal Control Gaing for Minimal Sensgitivity

System

Using the same data as serial no., 7 and the formulation of
(7.12) and (7.13) [the method of Dompe and Dorf] the optimal

control law was obtained, derived from BEARDNM33, viz 3

u = [-2,76200447,~3,4166854,~2,2874913,+0.00624766,+0,0002929,

+o.000188h]F5] (7.66)
S

=

*¥Element, b31, of driving matrix was 5,33 in this case.

#*Element, b31. of driving matrix was 6.35 in this case.
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The gains which operate on the system states were véry nearly
the same as those obtained from the fixed structure controller.
It is interesting to note that the small sensitivity gains were
positive. They always ﬁere when this Dompe and Dorf method was
- used., Even though the changevin ap of the transformed coeffic-~
ient matrix was as great as -90% of the nominal value the
sensitivity gains remained very/small. It should be noted
that the gains shown in table 7.4 were not greatly affected by
changes in the system parameters; +this was the very desirable
property of minimal sensitivity. Noté also that when Q6 was
used the program divergéd;' It is worth emphasising that the
restrictién of +the strucfure in the way outlined resulted in a
deterministic optimal regulator which, for some specific weight-
ing matrix, and range of parameter changes, was minimally
sensitive, The lack of sensitivif& to parameter changes is of
courge one of the principal properties ofAfeedback control.
Becauséx%he gstructure of this controller no special or additional
engineering is needed on the engine rigs. The gains were set
on and results much similar to those obtained already in chapter
6 were obtained ; good regulation of speed errors due to
external load disturbances, and marked destabilisation with

changes of reference speed.

7.5 Model-Following System

7¢5:1 Theory of Model-Following

As an alternative approach to providing minimal
gengitivity the technique was considered of determining some
optimal control law to control the engine gystem so that its

output variables would follow faithfully the output variables
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of gome gpecified model., That model could have been a part

of the control scheme and could have been placed ahead of the
engine system asa pre-filter (TYIER (1964)). An alternative
view of the same method was that the engine system must follow

" a desirable responsé to command inputs to the model (KREINDLER
(1969). This kind of model-following is referred to as
"explicit model-following”. Several authors* however, ASSEO
(1968), ERZBERGER (1968), WILKIE and PERKINS (1969) and MARKLAND
(1970), considered the use of a "conceptual“ model which appears,
not in the physical systemn, but only in the performance index
in the mathematical statement of the problem.s This type is
referred to as "implicit model-following".

One of the principal results of the analysis of explicit
model—foilowing gystems was that,‘ih addifion 1o the feedback
gains, feedforward gains, operatihé upon the model-gtates, must
be determined. Generaliy, for these feedforward gains,the
derivatives of the system inputs have _to be generated to
implement the model-foliowing control., Because deﬁivatives
were not eagily synthesised, only the implicit model-following
technique was considered for research,

The method used wasg that proposed by Erzberger which, because
it was algebraic, was fast, efficient and direct in its method.
An alternative method, due to Tyler, could be used with BEARDM33, .
the only modification required being a slight precomputation
of the matrix input data to the program. The work of Asseo
was an extension of the earlier work by Tyler and was concerned

principally with the conditions to be satisfied for perfect

*including Tyler (1964),
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model-following., That method required a congiderable increase
in the'program working space because the state vector was
augmented (with a consequent increase in the order of the
asgociated matrices). Because Erzberger's method did not
requife state augmentation, provided a means to check the
conditions for pérfect matching, and was purely algebraic, it
was the method preferred. A check for perfect matching was
incorporated in BEARDM26 (see Appendix A3) the program written
to determine the model-followiﬁg control law, The algebraic
method presented by MARKLAND is discussed also in this chapter
and is shovn to be very similar to the method proposed by
Erzberger which is outlined next.

The solution was required to result in a perfect match
between the controlled system and;fﬁe modél equation; in other

words, the model equation

Yy = Ly (7.67)
where y represented the‘system output vector, was required to

result when the control, ug forced the engine system, i.e.

y = Cx = CAx + CBu® (7.68)
where the system output vector was related to the state
vector by |

| Y = Cx (7.69)
Thus w = [c8] T(1c -cA)x (7.70)

where [CBJ* meant the pseudo-inverse* of the matrix product

[cB]e From (7.70) and (7.68)
[[CB][CB]+ -1 -ca)x = 0 (7.71)

*A brief statement on some methods of evaluating the pseudo-

inverse of a matrix is given in Appendix A.k4,




Consequently, if

[ECB][CB]‘* -1 | -ca) = o0 | " (7.72)
perfect matching was achieved. If perfect matching was not
achieved by the method the feedback matrix which did result
was guaranteed, by the properties of the pseudo=-inverse of
a matrix, to yield a weighted least squares match between the
response of the engine system and the model,

Markland proposed a‘scheme to minimise a weighted least

squared errbr criterion viz

R = g'Q | . - (7.73)

where Q was a symmetric, positive definite matrix and where

e = (IC - CA)x - CBu (7.74)
Now R =<ae)(_a_3_>
35 ERWIE
2u ANG - - (7.75)
3R = Qg + Q'e = 2Qg S ’ (7.76)
oe
%2 = _cB (7.77)
3u
1/
3R =-2BCQ\:(LC‘- CA)x -CB% ' (7.78)
ou ) ‘
If
Q_E = 0 (7079)
ou
then
(I = CA)x =CBu = O (7.80)
nence u® = [cB]T(1¢ - CA)x (7.81)

which was identical, of course, to (7.70).

In the paper by Markland he defined

3R = e'(Q + Q') - (7.82)
oe
3R = e'2Q , (7.83)%
oe

%g-is a row vector.

*Q was symmetric.
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and 3R = (x'[CA - IC]' + uB'C')2QCB = 0 (7.84)
ou .

whence 2x'[CA - LC]'QCB + 2uB'C'QCB = 0 (7.85)

thus u = -(B'C'QCcB)~1B'CrQ[CcA - LoTx (7.86)

It shold be noted that the transpose of (7.83) equals (7.76) i.e.

. !
3R _ 3RY| -
Slowe = Eloew (7.87)

It may be concluded therefore that
[cB]* = (B'cracB)~iBiciq (7.88)
and that the work of Markland was similar to that of Erzberger.
The control law of (7.86) required that (B'C'QCB) be non-
.singular Which implied ﬁhat CB must not be zefo in the research
work, However, for the engine system C was of order i x 3,
and from (2,84) B was of order 3 x 1 “the product, CB, was a
scalar, | From (2.84).it can be oﬁgerved that B had some zero
rows; care had to be exercised in.fhe choice of_an appropriate
C matrix else (7.,86) would have been invalidated. The same
property of the B matrix gave some trouble with the Erzberger
method; care wags taken with the choice of matrix, G, therefore.
It should be noted that with the Erzberger method it was
possible to admit to the class of admissible control functions
impulse-gains,. Such controls were arrived at in a solution
only when the engine system was required to match the response
of a modél system of érder lower than the engine system,
Such a situation is pathological from the mathematical point
of view; it is a natural requirement in engineering practice.

In this research the model order was taken as three, thus
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agsuming that no impulse-gains would need to be synthesised.

7¢5.2 Some Numerical Results

With engine system equations (2.83) and (2.84) an
attempt was made to obtain the control law using as a model

one of several choices of the form

A 400 0
L = 0 0 l ] (7-89)
0 -150 " =25

in which xmwés taken as =045, =1e0, or ~2.0 respectively.

It was assumed that the output vector and the state vector
were identical; in other words the output.matrix, C, was
chosen to be the identity matrix. From Appendix A.4 it is
clear that if the pseudo-inverse of some matrix, say, W, of
order n x m, has to be determined, then, if n > m the pseudo-
inverse would be given by ¢ &

) wh & )" tee | ~ (7.90)
Although the program BEARDM26 has been written for general
use (i.e. it will determine the pseudo-inverse of matrix, W,

even if n< m) it was the case for this research that n = 3

and m = 1, Thus the pseudo~inverse of CB was simply

[cBT" = [o 0 (b3)"l] (7.91)
Therefore
W= 0 ()@ -mz (7.92)

The simplicity of (7.92) resulted from the nature of the
driving matrix and the choice of the output matrix; there
was no necessity to use BEARDM26 for tﬁe research., But

the program contained useful checks for perfect matching and
because all the operations were algebraic it was extremely

fagt,. It was used therefore for all the work of this section.




To confirm the program the optimal control laws were determined
for a series of model matrices which corresponded to the
coefficient matrices of the closed-loop system when the control

laws of table 6.2 were used. . Obviously the same control laws

should have resulted - this was the situation that pertained.

As a further check the companion matrix form was used by
employing the transformation matrix of (6.100) and specifying
the model equation as a 3rd order homogeneous differential
equation. Control laws, identical to those of table 6.2 were
obtained, after post-transformation, The'ﬁrogram confirmation
emphasised the confidence which could be placed upon the results
obtained by this very fast procedures A series of further

. numerical experiments were conducted to investigate the effects
on the resulting optimal control laws when parameter variations*
were present. The modgl inverse time constant AM was assﬁmed
to vary about ' its nominal value (see (7.89)). The control

laws corresponding to the three cases are shown in table 7.5,

Control Gains

M dyq d, dy
2045 +0,005125 | <0.8.83 | =0.1933

~-1.,0 0 -0.8776 -0.2079

~2.0 ~0.00936 -1.479 -0,231

Engine inverse time constant, A = 1.o-seé'1

- Table 7.5 = Model-Following Gaing*#

*It was not time-varying parameters which were considered here
but the cases where parameter values were different from their
nominal values by some specified, fixed amount.

##*These gains were evaluated by transforming the system and
model-equations to phase-variable form and then applying a
post-transformation to the results of processing the phase~

" variables.
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*
It is of interest to note that a zero gain resulted when the

engine parameter was identical to the model parameter viz.

A= Note also that when Mp-1.0 (this corresponded to the

M*
situation when the fan setting was 2.5 cme. Or less t see

3

figure 2.20) the resulting gain was positive, because the

model-following control gain was required to effectively

- destabilise the systems’ The gains, d, and d3s which resulted with
khé-ico-were required to match the servo response to the model

servo response of (7.89). For a change of parameter in the
engine gain then all the control gains were affected equally,
see (7.92). The variations of control gains dy, d,, and d4
with change of engine parameter,d, for a model equation of
(7.,89) with hmé-l.o are shovn in figure 7.2. It is to be
noted fhat a linear. variation of.ﬁhe gains occurred in the
circumstances. The absolute values of the gain changes for
such very large changes ih plant parameters were not very
great, and the resulting closed-loop system matrix was not
greatly different.from the specified model matrixe. When the
elements of the companion matrix,representing the model,are
more +than the corresponding elements of the companion matrix
of the plant then positive feedback results. Because »did
not exceed-1.0 (see figure 2,20) this situation did not occur
in the engine work. A disadvantage of the method was that
it was difficult to relate the specified model matrix to any
cost function although the requisite dynamic response was
easlily assured.

In this work the method was used in conjunction with the

work of chapter 6. For a given performance index the optimal

control law for the nominal plant parameters was obtained from

¥ The gain is dl'

\
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BEARDM33., The optimal closed-loop system matrix was used
then as the model matrix for BEARDM26 and the effects of
altered plant parameters upon the derived control gains were

then assessed swiftly by the use of the methods of this section.
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CHAPTER EIGHT -  OPTIMAL ENGINE REGULATION - NON~LINEAR
MODEL AND QUADRATIC PERFORMANCE INDEX

8.1 Introduction

In chapter 6 optimal engine regulation was considered
for the engine system using a linear model to describe the
engine system dynamics. Several differept schenmes were
congidered to take account of the random changes of engine
paraneters and also the limitations imposed by the need for
ease of synthesis of the resulting optimal controllers These
schemes assumed that the regulation was effective and that
any deviations from the equilibrium speed were never large.
Subsequent experiment confirmed substantially these assunmp-
tions. Nevertheless some features of the resulting control
suggested that there was an inadequacy in the engine mathemat-
ical model and that some further investigation was required,
The nature of the system response when there were present some
pargmeter deviations was investigated therefore,and.from the
ugse of optimal sensitivity studies,it was established in
chapter 7 that the deterministic control laws found in chapter
6 also provided inherently desirable minimal sensitivity
prOpertieé. But with such similar control laws.tne features
of concern in the experimental investigation still remained.

In this chapter therefore consideration is given to the

problem of providing optimal regulation but specifically

taking into account the non-linear nafure of the engine and
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load systems There has been keen interest in recent years
in this kind of control problem typified by the papers of
such writers as SIMS and MELSA (1968), BURGHART (1969a,b),
GARRARD (1969), GUSTAFSON and HARDWOOD (1969), LUKES (1969),
SALMON and KOKOTOVIC (1969) and FOOTE (1972).

In the papers oy Burghart, Garrard, and Salmon and
Kokotovic the optimal controls which resulted from their
analyses were sub-optimal and the gain matrix obtained in
each case was an infinite Taylor's series expanded about some
nominal value of the state. The methods of Burghart depended
upon the availability of a linear model of the plant élthough
the feedback gains operated upon non-linear functions of the’
.stateal. Foote assumed a priori a truncated power series for
‘which the necessary_valueswof.the»coefficientsmwere determined
for optimal control.s In this scheme Foote admitted explicit
functions of time as control functions. For all practical
synthesis the Taylor series was truncated necessarily. It
was this feature of the work which resulted in sub-optimality.
The enfire approaéh of these papers was dealt with rigorously
in the paper by Lukes.

A novel method of using additional states to represent
approximately tﬁe non-linearities of the system was proposed
by Gustafson and Harwood and this scheme was considered first.
In common with all the methods presented in the quoted
references (except the paper by Sims and Melsa) the synthesis

of the controller required the use of either multipliers*or

#It should be noted that control laws of similar form

(ise. non-linear functions of the output state) are obtained

when dealing with linear plants and non-quadratic performance

criteria., (e.g. see ASSEO (19692)
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function generators to produce the required non-linear function
of the state.

8.2 Controller Derived Usgsing Auxiliary State Variables

For this method the non-linear engine and load system
~was described by a linear state equation which had been
avugmented by the addition of auxiliary state variables to
represent, in a way outlined briefly below, the residual non-
linearity. Once the engine and load system were described
in this fashion the optimal control problem was identical %o
that outlined in chapter 6. The authors of the reference
suggested that dynamic prog%ﬁming‘should be used to)obtain a
golution, Any of the methods of chapter 6, section 3 could.
also be used as effectively.

The“resﬁlts presented in this section were}obtained by
using the method of dynamic programming (BEARDM15) described
in 6;3:%. Once the feedback gains were determined the resid-
ual non-linearity was recreated_from measured'values of the
other state variables. 'The re-established non-linearity wasl
multiplied then by the appropriate coefficient and processed
with the oiher signals to produce the control signal. Thus
the closed4loop control system depended upon the system non-
linearity even though the controller was derived from a problem
formulated on the basis of plant linearity.

The method of handling the non-linearity was to represent
it as the sum of two components : a linear term and a component
of residual non-linearity. In this work the non-linearity

was egsentially a squared function i.ee.



z(t) = é%(t{_

Figure 8,1 - Non-linear Function Representation

The squared function was linearised about the equilibrium

value of output speed, viz :

A A

We(t) = wp(t) - Qp + Oy (8.1)
Therefore, i A

A 9

2(t) = 20,0.(8) + (@5(8) - 200, (t)) (8.2)

The linear component, p, of z(t) was given by
A

0pwe(t) = : (8.3)
The non-linear residue was given then by .

A A

03(t) - 20pup(t) = ¥ (8.4)

The linéariSed squared function was represented therefore by

g (%)

IR

Figure 8,2 = Representation of Linearised

Squared Function

The term, ¥, was regarded as a d.c., or bias, offset. If ¥
was a constant offset then the most convenieht method of
including its effect in the system was to designate ¥ as an
extra state variable. | In the optimal controller this addit-
ional bias state was multiplied by the appropriate feedback
gain to cancel out its effect in the steady-state. If V¢

changed more quickly than the linear component, p, then that
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cancellation would not be effected, and severe stability problems
sometimes ensued,
The equation'of the non-linear engine and load system given
in (2.,20) was considered viz.,
B = -3.33k55 + 3.33u (8.5)
Linearisation of the equation about the equilibrium speed of

QE = 210 rad/sec resulted in the non-linearity's being replaced

by

™ 210

z(t)

B (t)

= 210

Figure 8,3 - ILinearised Engine/Load System

(8.6) was represented by the new block diagram of the pseudo-
linear engine/load system, given as figure 8.4,

By = 3.33w - 13986k, - 3.33kY (8.6)

-l

. N
u 13,33 i
T + -
i
y=0 E: e 3k
Figure 8.4 - Block Diagram of the Pseudo-Engine/

Load Systen
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Thus the pseudo-engine/load system was represented by the
linear state equation 1

Op| |1398.6k =333k | | dp| |D

. 1= + u (807)

¥ 0 0 Y 0

A . . ,
where Wy Was thedeviation from equilibrium speed, in rad/s

¥ was the auxiliary state variable in rad/s?

u was the torque in N m
By addition of the equations associated with fhe throttle
servo-mechanism, (2.4) and (2.79), to (8+7), with the meaning
of the wvariable, u,.taken now to mean vin' the command signal

to the servomechanism, the gtate equation became 1’

- _ , - 1 ~ A
xi 1398, 6k Loo 0 ~-3.33k Xy 0

?2 _ 0 } 0‘ '1 _ 0 X, . 0 "
?3 0 ( ~-130 =16 0 X4 L3.3
Xy 1 0 0 0 0 x), 0

S N ’ L a9 e

(8.8)
For a nominal setting of the fan displacement of 7.62 cm.
the control laws'which resulted, and which corresponded to

the indicated weighting matrices and factors, are qucted in

table 80 1.
CASE dy - dz dq dy,
I f0.16102113 ~-8.2961903 -0.37098617 +0.00022597
I1I 10.16050978 j8£2751289 -043703255 -0,00022555
IIT ~0,12356413 ~6.7071729 -0,32080342 -0,00019388
Case I @ = diag(lOO,l0,0) g = 0.1
" Cage II Q = diag(l00,1,0) g = 1.0
Case III Q = diag(10,1,0) g = 10.0
Table 8.1 -~ Optimal Gains for Augmented Engine Systien




The gains, du. were qll to0 small to permit satisfactory
synthesis of the non-linear terms, Their omission from the
experimental arrangements did not affect perceptibly the
system performance., On the analogue computer simulation
their inclusion did not result in any significant improvement
over the performance of the system when they were omitted¥*.
The gains dl, d2 and d3 almost exactly correspond to the
values found by the methods of chapter 6.3 for the same
Weightings. Thus it was demonstrated that the linear optimal
control law derived from an L.Q.P. formulation has a strong
tolerance to unaccounted-for plant non-linearity. ’ From this
conclusion it was taken as logical to attempt to fiﬁd the |
optima} linear control law when the engine/load system was
described-as accurately as possible., Such an approach reéuired
the technique of specifid optimal control. |

8.3 Specific Optimai Control

8¢3.1 Introduction

Specific'optimal control (s.o0.c.) is a method of
determining a linear control law to regulate a non-linear
systems It was proposed first by EISENBERG and SAGE (1966)
and its distinctive feature is the requirement for a priori
. gpecification of the feedback control structure. The optimal
values of the seleéted controller are detefmined by using
the technique of quasilinearisation, an account of which was

given in section 4 of chapter 5.

*The evaluation of the performance index with and without
the non-linear terms was identical when it was carried out

on the analogue computer.
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The engine/load system may be described by the usual vector

differential equation, viz :

x = £(x.,u) (8.9)
in which the vector x(0) = X, (8.10)
The problem is to find then a specific optimal control law

W = Kx (8.,11)
in whiéh fﬁe vector{lg, represents the parameters kl' kz,
and k3 which have to bg chosen to minimise the integral (8.12)

J =§cp(>_c,u)dt _ | (8.12)
The method of obtainié% a solution is started by adding the
unknown parameters ki’ kz and k3 to the state vector, thus

raugmenting it

X, = k = 0
X6 = k3 = 0

The problem then is treated thereaftér as a TPBVP to be solved
by the Q.L. method.. The boundary conditions associated with
this TPBVP ére composed -of -the given initial state vector, X,
the boundary values of the adjoint variables associated with
the augmenting vector,:K and the final values of the adjoint
variables associated with the first three states :
Uy, (0) = §,(0) = yg(0) = 0 | (8.14)
(1) = Uy (1) = Y5(0) = Uy (P) = (T) = () = 0
This set of boundary conditions resulted because neither
K(0) nor K(T) was fixed. [CITRON (1969)].
8¢3.2 The S.0.C. of the Dynamometer

It was decided initially to develop the necessary
program by finding a feedback control law to regulate the

speed of the dynamometer only. (The throttle servomechanism




and the engine dynamics were not taken into account at

this stage). VWhat was attempted was to determine a value
for the feedback gain, k, such that in restoring the devia-
ted speed of the dynamometer, x(0) = 10.0, to equilibrium

the performance index of (8.15) was.minimised.

J = 0, 5~/f (x% + u)dt (8.15)
The system equation (from (2.20)) was expressed as
é = -cx? +bu (8416)

‘where ¢ depended upon the fan setting and b = 3.33¢

Without invalidating the solution it proved convenient to
consider b as unity : the reasons for this convenience are;~
discussed later. The problen became that of finding some

l SOOQCO law

oW = kx | (8.17)
where the gain, k, had %o be chosen to minimise J(k), i.e.
2
3 = 05 [ (1 + xP)xa (8.18)

The unknown gain was represented as an additional state

variable; S :
k = 0 | (8.19)

Thereforé, the Hamiltonian was
H = 0.5%° + 0.5k%%% + (mox? + kx) (8.20)
from which were obtained the canonical equations 3

2

x = =cx? + kx x(0) = 10.0 (8.21)
k=0 ‘ ¥,(0) = 0 (8.22)
.1= -x -kzx + 2ex Yy - ki Py(2) =0 (8.23)
by = -kx® <fyx g (2) =0  (8.24)

(8,21) to (8.24) were combined into a single vector equation

z = £(z) (8.25)




where z =[x"]

(8.26)

£(z) was given by the r.h.s. of the equations (8.21) to
(8.24). " From (8.25) the Q.L. equation was formed as

gi‘i'l = i(&l) + J iz_f_(&l) (Z‘_l-'-l"&l) (8.27)
2 , ‘
where J ; was the Jacobian matrix defined as 8f . Thence
2 . . oz
21+1 - Agi+1 + v (8.28)
where' A =J ;£(z) ) (8.29)
. z _
and v = i(gi) -J ii(&i)éi - (8.30)
. . -Z- .
(8.29) was shown to be
(-Zcxi +1t) xt 0. 0
A = 0 0 0 0
(-l-[kl}épwi)(-Zlei- wi)(20x1-ki)0
(-adxtagh) -hE 0 (8.31)
similarly (8.30) was evaluated as
“c(xi)z R ]
0

I<
u

: oox s . s (8.32)
2(kl)2xl+kl$% -Zcxlwi

2t ()2 + wixi

—
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The program BEARDIM31, described in section 5 of chapter 5,
was modified and the problem was solved for ¢ = 8 x ].O'3
which corresponded to a fan setting of 7.62 cm. The solution
was

ky =-~0.7054% lo* (8.33)*
The‘solution was obtained in 4 iterations using a Runge-Kutta
fourth order integration routine with a step length of 0.05s
from an initial guess of k =-1.0. This guess présupposed
negative feedback, The stopping condition was when the
latest value of k differed from previous value by less than
0,001, Figure 8.5 shows the trajectory of the dynamometef‘

speed ﬁn response to s.0.Ce
1

X
rad/s = -0,7054 x 10>

= -2-”’236

~
1

0 _ 1,0 2.0
Time,s

Figure 8,5 - 5.,0.C. - Optimal Trajectory

To use the progran successfully required a good initial
guess for the unknown gain, k. Depending upon the quality
of the guess and aiso upon the value chosen for the stopping.
value, the number of iterations and, as a consequence, the
execution time of the program varied considerably. A series
of runs were carried out to investigate thiscomputational
problem (using ¢ = 1.0 for convenience). The results obtained

are presented in table 8.2,

*Phe subscript 1 was used merecly to identify this value of

8.0+Ce gain which will be discussed later.




Serial |Initial{Final S.0.C.|Integration|Stopping |No.of|Execution
No., Guess Value Step Length|Condition|Iter, Time
1 -0,1 -0.11657259 0.01 0,001 2 14m 31s
2 -0.1 |-0.10392092 0,01 10~7 7 |bom 12s
3 | -0.1 |-0.11505328 | 0.1 0,001 | & | 3m 14
L -1,0 -0,10433740 0.01 0.001 L 28m 21s
5 -1.0 |=~0,11332862 0.1 0.001 10 m 57s

Table 8,2 -~ Program Parameters

It may be deduced from these results that
(a) the number of iterations required for,cohvergehce
increases as the trial guess gets worse
(b) the execution time increases markedly with the
lrequirement for increased accuracy (i.e; with a
reduced stopping value) |
(c) the éxecution time inéreases with reduced step

length

It should be noted however that the choice of step length
does affect whether the program converges at all : any choice
of step length depends upon the problem being solved. This
considefation Will be dealt with later in this chapter.

In the basic dynamometer problem it was stated that it was
advantageous to consider b to be unity, If b had a non-unity

value (8.,31) and (8.32) would have become 3

— i . . —
(-2cx™+bkt) bx* 0 0
0 0 0 0
A= s s C e . ..
-1~ (k") “+2cyy -2Kx-bly  2ext bt 0
-2kt -bly -(x)?% ot 0
| (8.34)
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0

I<
i

| 20h) 2t ot ytoexty] | (8.35)

21t (xH) 2 +b¢ix1

e . —

Use of these equations in the program provided a final s.o.c.
gain of :

k, = -2,4236 (8.36)

2
The trajectory of x(t) returning to equilibrium was identical
to that obtained for k; (see (8.33))s If it turned out
(as it did) that |

k, = bk, » (8.37).
then the dynamic equation would be identical for each case,

viz

x = -cx® -kx o (8.38)

where,in case’ 1,k was substituted for k and,in case 2,Dbk,
wasg subsﬁituted for ke 1In figure'8.6 it displayed the value
of k2 obtainéd by the program at the end of each iteration.
The progrém wag stopped after 38 iterations because there was.
a time 1limit of 1 hour for any prdgram run at R.A.F. Cranwell.
The osci%latory pattern observed was a feature of this program
when non-unity values of b were used, Figure 8.7 shows the
feature for the same problem but with the upper limit of
integration increased to 3.0, Also shown in figure 8.7 is
the convergence curve for a different initial guess for the
value of k. Note that the solution for a starting value of
k2 = -1,0 converged sooner although it started off initially
in the wrong direction. It has always been the experience

of the author with this program that: when the coefficient

of the single input control is non-unity oscillatory convergencé
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occurred with the associated large number of iterations and
the increased execution time, It is to avoid, or at least
to minimise the effects of this feature that b should always
be taken as unity and some appropriate adjustment made to
the final computed value, k. |

For the dynamometer the required control law (case 2) was

u = Qf = Qe = -2.“236{1)f - (8'39)*

The production of torque from a speed deviation signal is
shown in a schematic in figure 8.8 in which the dynamics of

the throttle servomechanism have 5een ignored, N
ENGINE

TACHOGENERATOR AMPLIFIER. SERVOMECHANISM
® - v Vin 6 Qe
Figure 8,8 -~ Control Signal Transduction
From figure 8.8 it can be derived that '
Qe = O.83952KA(1)f (8.40)

Therefore, from a comparison of (8,39) and»(8.h0) the value

of the gain of the feedback amplifier was found to be

*This assumes that. 4th gear was selected.
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8¢3.3 S.0.C. of Engine and Dynamometer

The engine/load system equation was given in (2.85).

The performance index chosen for minimisation was 3

= 0. 5./f (x + Vin)dt (8.42)

where Vin = kx; (8.43)
] T

Hence 3(k) = 0.5/([K" + 1x5)at (8.44)

The additional state variable, X} Was defined to be k and

'therefore ‘the Hamlltonlan was found to be 1

= 0, 5(k + l)xl +¢l(-cxl + 267%,) + Yo% 3 +¢3( -130x, 16x3

+43.3xlk)¥
(8.45)
The canonical equations were 3 ‘
gy = -ox 4 267x, (8.46)
Xp =k | o (8)
?3 = =130x, -16x3 + 43.3kxl (8.48)
x, =0 | _ (8.49)
By = (L)% + 2oxply 433Ky (8.50) -
?2 = =267y, + 13°¢3 (8.51).
¢3 = -y, +'1611:3 (8.52)
i, = -1 - 43.5%1% (8.53)
Application_of the Q.L. method to these eqﬁations produced 3
2 = Az g (8.54)
where
' =[x % X3 % Uy ¥y U5 U] (855)

and the matrix A was given by 3




nn
“l

[ 202, 267 0 0 0 0 0 0
0 0 1 0 0 0 0 0
43.3z4 -130 -16 43;321 0 0 0 0
0 0 0 0 0 0 0 0
A q-zf+1)rzez, 0 0 -(22,2,#43.32,) 203, 0 -43.3z ©
0 . 0 0 0 ~267 ‘0 130 0
0o o0 0 0 0 -1 16 0
2 g
.ETZZ@Zi-hB.BZ?) 00 23 0 0 -43.3z ?J
| (8.56)
and B . ] »
22
19
. "“’3032421
0 ma
y = 2zizﬁ¥zczlz5+43.324z7 (8.57)
0
0
a2
2z1z4+#3.3zlz7
The associated boundary conditions were selected to be
€' (0) = [2.00000000]* (8458)

For the same state equations and performance index it is
possible to use a different control law., E.g. consider

\'

1

in kyxq + kK X, + k3x3 (8;59)‘

%The selection of the boundary conditions is restricted to
the initial states; +the final . values of the adjoint

variables were fixed by the problem. Therefore the boundary

conditions were1

2 =51 (00155000, x3 00,000, (20,5, (1) 20y ()
L - ) - ’ :




228

thus
% = (43.3k,-130)x, + (#3.3k5-16)x5 + 43.3Kp%) | (8.60)
and B
J = 0.5 (k§x§+k§x§+k§x§+2klk2x1x2+zklk3xlx3+2k2k3x2x3+x§)dt
| - (8.61)
The canonical equations become then 1
;l = -cxi +* 267X2 ' (8.62)
;2 = xg (8.63)
?3 = (43.3k2-130)X2 +(43.3k3-16)x3 +43.3klxl (8.60)
XL" =0 ’ : . (8.6“’)
,}5 =0 | (8.65)
X6 =0 ’ (8.66)
. 2 ' : X N
?1 ="1xl'klk2X2'k1k3x3'x1+zcxl¢l'43'3kl¢3 . (8.67)
by =-kCx,mky K%y =Kk x3-2670 #13005-43 3kl (8.68)
. -' 2 )
Us =ik Ky =l X,y 16U =434 3k 40 (8.69)
S 2 4.
Yy —-klxl-klexz-k3x1x3-43.3xlw3 | (8,70)
. _ 2 . :
¢5 —-kzxz-klxlxz-k3x2x3-43.3x2w3v (8.71)
oy LR
v mé —-k3x3-klxlx3-k2xzx3-43.3x3$3 (8.72)

Thus thé canonical vector is of dimension 12, The A matrix
is given as figure 8.9 and the vector, v is 3
— 5 —
czq
0
: -43.3(zlzu+zzz5+z3z6)
0

0 (8.73)
0

i<
1

Zzlzi+2zzzuz5+2z3zu26-Zczlz7+43.BZuzg
2z2z§+2212425+223z526+43.32529
ZZ3Z%+2212426+2z2z526+43.3z6z9
2z§zu+221z2z5+2z1z326+h3.321z9
2z§z5+2zlz224+2z223z6+43.322z9

2
2057 427 22 420 ,%1 236322
3e4TeA1 430429176 379
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-207, 267 0 0 0 0 0 0 0 0 0 0

0 0 | 1l 0 0] .0 » FOA 0 0 . 0 0 0
43.32.“_ (43.'32,5-130)(43.3Z6-16) 43.321 43.3.‘2.2 43.3z3 0‘ 0 | 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
o o 0 0 0 0 0 o0 0 0 0
0 0 0 0 o o o 0o 0 0 0 0
(2027-l;z§)-zuz5 ~zuz6(-2zlzu-zzz5~z3z6-43;3z9)-z2zu 232, 2czy 0 ~43.32), 0 0 0
~z)2 ~2% ~zg2 2175 (—2z2z5-z326-zlzu-43.iz9)_-z325 ~267 0 (130-43.3z5) O 0 0
~2),2¢ ~Zs%g -z% ~212¢ %504 (—2z3z6~zlzu-z225-43.3z9 0 -1 (16-43.326) 0 0 0
(-2zlz4-z2z5-23z6-43.3z9) ~21% ~21%4 -zi ~21%2, -zlzé 0 0 ~b3.32, 0 0 0
~2,2), (-22225-z1z4—2326-b3.329) 2,26 =212 ~z§ ~Zy%q 0 0 -h3;322 0 0 0
-Z42) ~24%5 ('22326'2124"2225'u3‘3Z9) 2424 ~Z,24 ~z§ 0 ' 0 —43.3z3 0 o 0

I

Fig ure 8.9 - SoOoCo A Ma‘t;j_._gt_
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N
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Because of its size this problem could not be run on the

computing facilities at R.A.F. Cranwell. The problem out-

lined in (8.42)-(8,58) was solved however, for a fan setting
of 7.62 cnm,

The results are summarised in table 8.3 and in

figure 8.10 which shows the output shaft speed trajectory.

Serial | g | Imitlal —\Bxecution rierations| 5.0.0.
No. o Time Value
1 1.5 | -0.03 53m 03s 5 ~0,01930167
2 3.0 | -0,03 58m Olhs 5 -9,01277é91
3 1.0 | -0.019 21m 39s 2 -0.03296742
L 3.0 | -0.012 60m 38s 5 -0.01332018

. Mable 8,3 - $.0.C. Results for Engine/Load Systen
It must.be emphasispdAthat when the program was attempted
with the Runge-Kutta routine it did not appear to éonverge.
There were several occasions however when it was impossibie
to state that the program was not converging; on those
occasions onlyia single iteration had been completed by the
time the maximum allowable computing period had expired.
The program was modified to use the Hamming integration

routine described in section 6 of chapter 5 to improve +the

convergence time. Even with this procedure however it should

be noted that when an integration step length of 0.1 second
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was utilised the program (see serial nos. 1 and 2 of table
8.3) had not converged in 60 minutes. In serial nos. 3 and
L the program diverged and computation ceased because of

~ floating point overflows. For serial nos. 2 and L the
step length was 0.05 second, and for serial nos. 1 and 3 the

step length was reduced ©to 0,025 second. From the results

shown in table 8.3 it is plain that
(1) when the initial guess was good (i.e. "close"
to the final s.0.cC. vélue) convergence was
rapid.

(i1) the ghdrter the period over which the perfofm-
ance index was evaluated, and conseqﬁently
the shorter the time available to restore the
system to equilibrium, the greater was the
8.0.C. vValue.

(iii) when the initial guess was below the s.o.cC.
’value (but was close enough to ensure converg-

ence) the convergence was most rapid.¥*

Another feature of ensuring convergence lies in the interplay
between the given initial conditions and the guessed initial
trajectory, In every case considered the initial solution
was chosen to be a ramp function descending from some speci-
fied initial deviétion of output shaft speed to zero value at
the terminal time. With this choice it was essential that
the value of the initial deviation of shaft speed had been

chosen with care ¢ for all cases considered xl(O) was taken

#This appears to be the case on almost every occasion with
Q.L, techniques : values below the optimum give rise to
smaller deviations and hence the Taylor's series approxima-

tion still retains its validity.




2.0
) @ K = -0.01930167
. .
rad/s (2) x = -0.01277291
(:) k = =0,03296742
1.0 |
0 .' '
0 1 2 3
Time,s

(4%

Fisure 8,10 - S.0.C, Trajectories
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as 2,0, VWhen xl(O) was selected to be 10.0 the program
diverged. Attempts to improve the solution by reducing
the step length in half, and by using as initial values the
5.,0.C, Values already obtained, were thwarted because such
changes resulted in the available storage of the 4120 compu-.
ter being exceeded; +the program was not then processed.
However, the values obtained for the s.o.c. of the dynamometer
alone were used to provide the jnitial guesses for the s.0.C.
of the engine/load systen with the throttle servomechanisme
The influence upon the S.0.c. gain of the choice of final
time, T, is shown iﬁ figure 8410, |

When the galns of table 8.3 were tried on the experimental *
- rig, using the controller of Tigure 6.6, the trajectories
which resulted are shown in figure 8,11. The sanme phenomenon
of destablllsed response with change of reference speed vas
again observed. A run over the simulated road with this
S¢0sCe resulted in good response with no evidence of the
destabilisation. It was not possible to demonstrate on the
engine rig the suﬁ-optimailty of this scheme in comparison

with the optimal schemes derived in chapter 6.
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S.0.C. Gain for every case = ~0,131
Filtered Recordings
Change of Reference Speed
2500
2200 L
| ] | | |
0 2 L 6 8 10
A (a) Time,s
Switch from open- to closed-loop
2200 _/\/
2050 ~ |
P | l | |
0 2 L 6 8 10
(b) Time,s
: Change of Reference Speed
2200
1500
! i | —1
0 2 Ly 6 8 10
(e) Time,s

Figure 8.11 - Engine System Responses with S.0.C.

Regulation
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CHAPTER NINE =~ CONCLUSIONS

9.1 Concluding Summary and Discussion

The work undertaken in the conduct of this pesearch
involved extensive experimental testing and analogue simula-
tion studies to develop adequate mathematical models of the
éngine, load and transmission system. In particular in
chapter 2 three mafhematical models were established :

(a) a pseudo-linear model which was used in. the
regulation studies considered in the research; andAwhich
assumgd the engine transmission system was operating in
fourth gear

(p) a non—lineér model which was used in the
regulation studieé and which assumed the engine transmission
system was operating in fourth gear

(c) a non-linéar model which accouﬂted for the
behaviour of the ‘engine and load during gear changes.

This non-linear model was used exclusively in the consider-~
ation of the problem of optimal start-up. All the mathemat-
jcal models were obtained from matching siﬁulation results
with data obtained from experimental studies on the engine
rig. The pseudo-linear model was established in an optimal
sense in that it minimized the ISE which existed.between the =
linear and non-linear model of the load.

The non-linear gear-changing model was used successfully
to establish, by means of the method of quasilinearisation,

an optimal start-up control function. A considerable
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amount of work was carried out in.developing suitable programs
to determine this optimal start-up control function. Many
of the difficulties associated with obtaining solutions were
associated with the computational facilities availlable to the
author at the time of the research, The optimal control
function was synthesised and some of the experimental results
obtained were presented in chapter five, The implementation
of this optimal start-up scheme required the development and
construction of an automatic gear-changing scheme the details
of which were presehted in chapter three together with some
computer results used to confirm the validity of the gear-.
changing scheme,

In order to provide as realistic a method of loading the
.engine‘as fhe facilities available would permit,a scheme for
generating a simulated 'rbad' function was developed}and an
account of its impiemehtation, and of the statistical prop-
erties of the generated function, was given in chapter five.

The optimal regulatioﬁ of the engine in the presence of
load disturbances was considered extensively in chapter six.
Five methods of computing the optimal control gains, assuming
that the problem could be considered as a linear quadratic
problem, were studied and corresponding digital computer
programs were deveioped. These programs were compared from
the standpoints of accuracy, execution time and ease of
programming. The most effective method was found to be that
developed by Marshall and Nicholson from earlier work by
MacFarlane, Because all the computational work for this
research was programmed in Algol 60 and because the eigen-

analysis program available to the author was written in
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Fortran IV, and required therefore separate processing, it
proved too inconvenient to perform by this method at RAF
Cranwell the bulk of}the numerical experiments, Consequently
the next most effective method, that due fo Kleinman, was
employed extensively in determining the control laws for this
part of the work. An analytical method which required little
computation was considered also : control laws similar to
those found already were obtained but the method was judged
to be cumbersome and is not recommended therefore for further
use. Analogue computer studies and experimental engine runs
were undertaken using the control laws already determined i*
both the corresponding simﬁlation and experimental rig resul@s
showed that good regulation was obtained. The tolerance of
the feedback control laws to the»presence of unaccounted~for
non-linearities was demonstrated, - However, study of the
responses obtained from the engine rig did show the existence
of limit cycling and an associated destabilisation whenever
the reference speed was changed from the desién figure by too
great an amount. . All the schemes of regulation presented in
chapter six were suecessful in the presence of load variations,
They were less effective when the reference speed was changed.
The study of.minimal sensitivity optimal.control schenme,
reported in chapter seven, revealed that earlier studies of
this problem which were presented in the literature of +the
" subject were erroneous, A satisfactory engineering method
of designing a controller, the structure of which was defined
a priori, was used, The results obtained indicated that the
optimal control gains were not affected greatly by changes in

the value of the parameters of the system or by the initial
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conditions assumed, This is the property of minimal sensi-
tivity. However, with control laws similar to those found
earlier the results obtained from experimental engine runs
using these gains wére essentially the same as those obtained
with the control laws of chapter six; destabilised response
with changed reference speed. The method of model~following
was used.next to produce control laws to ensure the correct
dynamic response; the study showed that zero sensitivity
_could not be obtained but that specified dynamic response
could be achieved. = The results from the engine rig with these
control laws were similar to the results obtained already
using other methods; The method did not in any way predict
existence of a_limit cycle. However, the cumulative evidenée
- of all these approaches, allied to analogue computer studies,
supporf the view that the limit éycle or associated destabil-
isation of the response, was not dﬁe to incorrect parameter
values in the pseudo linear models (which'could be regarded

as a paraﬁeter variation). In chapter igﬁl therefore, an
attempt was made to take into accoﬁnt specifically the true,
non-linear nature of the load by using the non-linear regula;
tion model established in chapter two. A novel schene,
proposed by Gustafson and Harwood, was essayed first but the
resulting non-linear controller did not prove satisfactory
the associated analogue computer study showed no benefit ffom
including the non-linear term and the value of non-linear
control gain was so small that the difficulty of implementing
the controller physically was acute, By modifying extensively
the programs of chapter five the method of specific optimal

control was considered next. A linear controller was derived
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but, becauge of the computational complexity associated with
the method of quasilinearisation, only a single gain controller
could be determined, >>Because it was necessary to'include

load effects the control gain chosen was that operating on

the load speed, Satisfactory results were obtained from

this scheme but the same desﬁabilising effect due to change

of referénce speed was again observed. Extensive investiga-
tion using the. computer model of figure 2,27 did not produce
this limit cyclihg when using any of-the controllers established
by the methods of chapters six, seven and eight. The inclu-
sion in the simulation of simple first order terms in the
feedback lines or‘between throttle position and engine torque
(to represent the time delay due to the combustion process of
neglecfed time lags in the @gasurement paths) did not produce
the effect. It is then an effect due to the non-linear

nature of the load and to the dynamics of the engine, The
practical regulation schemes all worked in the way intended.
However, it is evident that the same control laws do not

permit satisfactory operation as servomechanisms ¢ for the LQP

there is no resulting change of feedback gains if the reference
is changed. For a non-linear system this is not true gener-
ally; consequently further study'is needed'to develop the
necegsary feedforward control law necessary to ensure that

the scheme will work also as a servomechanism,

9.2 Suggestions for Further Research

9.2.1 Refinement of Models

Further studies are required to produce a more
detailed model of the engine to take into account the slow

dynamics associated with changes of engine timing and to
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account for the dynamics associated with the combustion process.
Such studies will require the development of a more robust
program for system identification. However, if the suggest~
ions of 9.2.3 in respect of the dynamometer are adopted the
program BEARDM20 would be more effective but should be modified

so that the program will select on the basis of the input data

the sampling interval to be used. This modification will
improve the convergence, speed and accuracy of the problem.

9,2.,2 Computational Methods

(a) Quasilinearisation

Because of the length of time required to obtain é~

solution using the programs as developed it is sugéésted that

~an investigation should be undertaken to employ the method of
particﬁlar'solutions proposed recently by MIELE and IYER and
their co-workers ( 1970 a,b , 1971) at Rice University of
Houston, Texas, This method appears to offer significant
improvements in the associated convergence properties and in
lack of sensitivity tJ the initial trial solu%ion which were
both severe problems with the method of quasilinearisation.
Such an investigation will pefmit the optimal start-up problem
to be considered exclusively from the point of view of provid-
ing minimal time gear-changing which could ﬁot be done in this
research because of the\restricted computational facilities.
Also the investigations using specific optimal control could
be completed,

(b) Specific Optimal Control

The investigation carried out so far could be extended

usefully to include consideration of dynamic controllers.

0f particular interest would be a study to determine the
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effectiveness of using the traditional three~term controller,
with optimal gains; there is no analytical justification in
modern control theoryvfor an integral term although its use
is almost always required in practice.* |

(c) 1QP and Model-~Following

An extensive investigation relating the control

gains to:the elements of the weighting matrices should be
undertaken in conjunction with corresponding engine runs to
determine the global relationship of fuel consumption to
weighting matrices for a step load change. (This can be
accomplished only if the recommendation of section 9.2.3 is.
implemented)., Thié would permit the development of explicit
relationships between the parameters of the performance

index and the pharacteristics of the optimal closed-loop
system; With the use of the model-following program studies
could beimade to develop a relatiohship between desirable
closed-loop response and resulting fuel consumption performance.

.

9.2:3 Improvements to the Engine Rig

For further work it woﬁld be helpful to replace the
present fan dynamometer with an electric dynamometer. Engine
loading would then be linear with a consequent reduction in
computational difficulties. Control of enginé loading would
also be greatly simplified. However, because of power output
from the engine a 100 KW generator would be required; this

would require a new site for the engine rig.

% In the studies presented in this thesis it was present
in that some crude filter was already in use to remove

engine vibration noise from the tach signal.
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For the refinement of engine models (proposed in section
9,2,1) it will be necessary to design, construct and install
a new electronic ignition system to replace the present
electro-mechanical system, To model the manifold dynamics
requires only a pressure transducer (in the range 0 -~ 450
kilopascals with a d.c. electrical output voltage) to be
connectéd to the manifold., (On the existing rig there is a
pressure meter already fitted : the pressure line to that
"instrument can be used as the input-to the electrical pressure
transducer). The output from this device, when recorded in
response to throttle action, would provide sufficient dété-
to allow an attempt at identifying the dynamics., .Since itt
is known that a pure time delay (although small) exists it
wouldybe preferable possibly to attempt the identification by
means of frequency respohse analysis in which the phase contri-
bution of the time delay is most easily detected.

An unsatisfactory feature of the present work has been the
crude measurement of Tuel consumption. .Turﬁulent flow of
the petroleum does occur with demands for large values of
engine acceleration. This turbulence makes measurement
difficult and this accounts for the uncertainty in the fuel
‘consumption data used in this worke. It ié recommended that
for future work a flowmeter with an electrical output should
be designed and developed for use with the rig i+ if the flow-.
meter output is either a pulse rate or a d.c. voltage proporté
ional to fuel flow rate, then the fuel consumed in any given
period can be determined by integrating, in an integrating
amplifier, the flowmeter output.

The air consumed by the engine was not measured in the
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present work since the mechanical efficiency of the engine
cannot be improved by external controlle:s without modifying
the engine, the air breathing system or the manifold arrange-
ment. It is believed, however, that for future work the
provision of some arrangement to measure air consumption would

provide additional information for refinement of the mathemat-

ical models, particularly in respect of the attempt to identify
the manifold dynamics.

9.3 Conclusions

From the nature of the results obtained from many of
the optimisation programs it is evident that future engineér—
ing applications will require, for the successful implementa~
tion of the control schemes, digital controllers rather than
the logic-controlled analogue cqntrollers used in this work.
It should be stressed too that mathematical modelling must be
regarded now as an essential part of any control system design :
the successful application of control theory depends almost
entirely upon the adeduacy of the model of tﬁe physical systen
to be controlled.. In this work the tﬂree major branches of
control engineering have been involved viz :

mathematical modelling
optimisation |
computation
It has been shown that the applicatién éf the results of
ahalysis does permit the practical solution of one engineering
problem in ways that could not be arrived at properly by

other methods,
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APPENDIX A.1,

NOTATION*

»

ij

o o

0

ij

¥ MM & 2 &

i'j,k

l,m,n

H L a 3

ct 0

& W ==

constant, coefficient

element of system coefficient matrix, A

constant, coefficient

element of system driving matrix, B
constant, coefficient

fan displacement, in cm,.

optimal regulator control gains
boundary values in Q.L. method
control input weighting factor

road-height, in ft.(m.)

integers

fan damping coefficient

controller gain

integers

order of system, gear ratio

constant

element of state weighting matrix, Q
constant

Laplace variable
time

command input, torque input
polynomial coefficient

element of state vector

element of phase variable vector
element of augmented Q.L. vector
augmented cost function

engine viscous friction, N m s
Hamiltonian function

performance index, inertia (kg mz)

#¥A11l vector quantities are underlined




Eps

X

> > o m
3
=
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A 9 s < '
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cost functional

torque delivered by engine, N m

slip torque of coupling, N m

load forque applied by fan, N m
performance index

time interval, sampling period

throttle servomechanism command voltage
A small positive number

coupling coefficient, N m s

a small positive number

throttle position, rad

inverse time constant, s-} XM refers to model

Lagrange multipliers

scélar parameter, mean value, slope
a positive number

dummy variable, coefficient
gtandard deviation

time to gearshift

costate variable _

speed of gearbox input shaft, rad/s
speed of dynamometer shaft, rad/s
non-linear residue

increment e.ge« AU

equilidbrium speed, rad/s

engine shaft speed, rad/s

expected value operator

plant transfer function

controller transfer function



Nl(s)' NZ(S)’
Dy(s), Dy(s) |
p(e) probability function

} polynomials in s

A(s) characteristic polynomial

Al(s).Al(-s) components of characteristic polynomial

€(t) an error function

o(t) model function

dez () dead-zone function
sen(”*) gignum function

ALK A%A o,

.B,C,DA,D,D¥, matrices

E,F,H,H,HA,AH,K,M,N,P,Q,S,

T.VQW'Z'S ,X ’@’AOGS’L

orig

e error vector

£ vector function

s ‘sensitivity vector

v engine system vector, Q.L. véctor

W white noise veétor

X state vector

X, measured state vector

Xo ) estimated state vector, closed-loop vector -
N4 phase variable vector, Model state vector
z augmented Q.L. vector

R an augmented state vector

‘_7: an augmented state vector

K augmented state vector function

E model state vector

¥ ad joint vector

T closed-loop,minimum-sensitivity vector

(e} sensitivity vector
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APPENDIX A.2 - SOME SYMBOLS USED WITH ITERATIVE ANALOGUE
COMPUTER DIAGRAIMS (INCLUDING APPROPRIATE LOGIC DEFINITIONS)

The elements described in this appendix are defined for

the Redifon-Astrodata analogue computer, ci-175.

lo' NAND ga'te

Symbol 3 ,
: Nx

INRST { 2 ouTPLUT
3

Logic definition 1

Input Condition Output State

Every input = logic 1 logic O

Any input = logic 0 - logic 1

2, COMPARATOR

Symbol v |
i
v | CoLF Ca
2

=Note 1 complementary logic output provided.

Logic definition

(Analogue) Input Condition Output State
(V1A+ Vz) >0 logic 1
(v +v,) <0 logic O
3e DIGITAL - TO - ANALOGUE SWITCH
Symbol 3
Vi v

Note 1 Axx is a normal analogue inverting amplifier.

SJ meang SUMMING JUNCTION
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‘Definition of Operation 1

Input Logic(S) State Analogue Output(Vo)
logic 1 0
logic O , --V1
L,  REIAY
Symbol |
l NO Ommay A A V—" No
<:) ! _— ~—~——
| NC o—A A__o NC
R4
Logic l Analogue
Logic Definition
Logic Input Relay Switch State
0 Rl switched to NC
1 1. Rl switched to NO
5 LOGIC - CCNTROLLED INTEGRATOR
Symbol 3 KR

Definition of Ovperation 1

Logic Input Signals Integrator
H R Mode
1 0 RESET#*
0 1 HOLD
1 1 COMPUTE

*Reset mode algo obtained with H = R = 0.

6. LOGIC - CONTROLLED SULMING AMPLIFIER

Symbol H R
' Vi FQ\L\ Yo

| A




24Mh

Nofe t this element is actually a logic-controlled intégrator

patched as a summing amplifier.

*
Definition of Operation

Logic Input Signals Analogue Output
H R Vo
i -0 ‘ 0
1 1 -V1

*This operation is identical to that of the D/A switch.
This configuration is used to supplement fhe limited

number of D/A switches (8) available on the Ci-175.




APPENDIX A.3 - COMPUTER PROGRAMS

A feature of this ;esearch was the extensive use of
digital computation. Many programs were written to perform
the necessary computations involved in the work. All the
computing was carried out at R.A.F. Cranwell on the Elliott
4120 computer with a 16k store for which each ADD instruction
took 12 micro seconds and each MULTIPLY instruction took |
about 68 micro séconds. The programming language used for
the programs was ALGOL 60 and extensive use was made of the
matrix package provided by the computer manufacturer.

The complete set of programs (print-up, example problem
print-out, and data input format explanation) is held at the
Department of Electrical Engineering, University of Technology,
- Loughborough. To identify each program the»Cranwellzjbb
number identifier was used. A list of these programé:‘with
identifier and simplified flow-chart where appropriate, is

given below.

Identifier Program Name Program Function
BEARDM11 ATHFALB Solution of matrix Riccati eqn.
BEARDM15 DYNPROG Solution of L.Q.?.
BEARDM20 LINAUTOIDENT Identification of Lin. Syst.
BEARDM26 MODELFOLLOW -Erzberger's Model Scheme
BEARDM28 MINSENSOPT Optimal Control with Minimum

. A Sensitivity f
BEARDM31EP  0SU .~ Fixed Interval 0.S.U. %
BEARDM31F DYNOSU(LONG) Dynamometer O.S.U.-Tf unknown

BEARDM33 KLEINMAN Solution of Matrix Riccati egn.




2hRA

BEARDM3L4 STATRAN Solution of State Transition eqn.
BEARDM36 MARNICH Solution of L.Q.P. - Eigenvalues
BEARDM37 ORTONORI1 Orthonormalisation Procedure
BEARDMAO HAMMING Hamming Integration Procedure
BEARDM60 S.0.C. Specific Optimal Control
BEARDM98 LYAMAT Solution of Lyapunov Matrix egn.
BEARDHO8 RUNKUT Runge-Kutta Integration Procedure
For completeness a brief explanation of the statements

associated with the matrix package is given below. These
procedures are called by listing them by name after the
program call "LIBRARY" which appears with the initial declara-
tions in each program. The statements may be used then as‘

required subsequently within the body of the program.

STATEMENT MEANING

MXSUM(A,B,C) A becomes (B+C)
MXDIFF(A,B,C) A becomes (B=C)
MXCOPY(A,B) A becomes B
MXNEG(A,B) A becomes =B
MXPROD(A,B,C) A becomes B*C
MXTRANS (A,B) A becomes A'

MXQUOT(B,A,C,) Solves equation AB =C with results in B.

A and C are preserved.

SCPROD(A,t) A becomés tA. t is a scalar.

FORMMX (A,x,I,J) a.. becomes X. (x is a real variable)

ij
READMX (A) 2 5 read in by rows from data tape

" PRINTMX(A) aij printed out in rows and columns
INVIMX(A)* A becomes A"l(Note t A must be real, square,

~ and non-singular)
#In this package A must be a matrix of order not less than 2x2.




DAT

'In several programs the possibility occurs of the matrix
A being of order 1x1 (i.e. a scalar). To maintain the
generality of these programs provision has been made to handle
this special situation b& means of a switch statement which,
when A is a scalar, avoids the use of the procedure INVMX '
and instead assigns
A= 1/A;

If A is rectangular the inverse of ‘the matrix does not

exist, although its pseudo-inverse nay. The pseudo-inverse

i1g found from the technique outlined in Appendix A}5.3.




FLOW DTAGRAM OF BEARDM1S

READ q & MATRICES,
A,B,Q and G
y

FORM Kq) = 0

Y
FORM TRANSITION MATRIX ®(T)

FORM DRIVING MATRIX A(T)

r=r+1

R= (0+0Kg -~ ¢ + 1)

v

Qr-l

= R'Q,_,R + Kqa - r+l) g Kg-r+1) + Q )

04
Ho= (A'Q_q A% &)

v
I{q-r) = -HAQI‘—:]. @

S
NO

268

r 2> q
?

PRINT Ko

!

" END




FLOW DIAGRAM OF BEARDM20

"READ T, H, -
x(3)ex(3+1),x(j42) seecsoes

X = [x(3),x(3+1)2G+2)]

269

. NO
YES 3
1 READ A01
FORM Ac™ = [0]
k = 1 ,
EVALUATE
k,. _ _
x, (J+1) = VRS K=k +1
3
X, - . K, .
e () = x(3) -x,(J)
c AcK* = ack+[pal®
Y
, FORM
X = [e5(5), 255+, " (j+2)
FORM
- ak _ y-1k -1
[DA]™ = (1) "E™(Xpp1g)

4 NO
_\

YES

PRINT
Ac

END
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FLOW DIAGRAM OF BEARDM26

READ MATRICES
A,B,L

OUTPUT MATRI

NO—
AN IDENTITY
FORM
R READ C
z
FORM CB
e FORM |
— +
PSEUDO-INVERSION M = cB+cAB{1-[cB] [cB]
oF [CB] | 1
y PSEUDO-INVERSION
p = [cB]"(1c-CA) OF
M
~— $ ‘
s x = Mt(1c - ca)
([cB][CcB]" - I(LC-CAr

= 0?
DOES
mit - 1](1c-CA) =
?

'PRINT D

NO

PRINT

PRINT
"NO MATCH"




FLOW DIAGRAM OF BEARDM28

- READ MATRICES

A.B,Q,S,A*,B*,Do,z(ol/z

Y
x(0)*x(0) 0
F = 0 0
5=0
v
=3 +1

C = A + B'DJ

C* = (A% + B*'D;)

|
v

\w =[EQ + D' Ipd)
0

]

!

SOLVE LYAPUNOV MATRIX

EQUATION
T‘H1 + HiT = W

‘

SOLVE
H,T' + TH, = -F

— * —
H, = Py Hgal)

PHiop  Fly3)

_ v
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FLOW DIAGRAM OF BEARDM31 SERIES

K READ x(0), x(7) /

¥

FORM INITIAL TRAJECTORY R (t)

FORM S
R Bk
3
FORM
vV = K| =S RE
RF TR

SOLVE HOMOGENEOUS
EQUATION

& = Spf

A

SOLVE PARTICULAR ,
" INTEGRAL
P(t) :

SOLVE FOR BOUNDARY
CONDITIONS R(t )

.
INTEGRATE

B o s B




PRINT R

END

This flow diagram essentially governs

BEARDM60 also.




FLOW DIAGRAM OF BEARDM34

CAICULATE

o(8r) = I + OTA +(6T2'2A2 +eooee
2

L

 CALCUILATE

A(ST) ={I€>T + A(g?ﬁ + A%(81)2 +....}5

34

n=1

Y

n=n+1

<t

R : z
O(ndT) = = (ndT)
) 2

Anar) = [I +®§ngT2]A(n6T)
2

NO

k=0 =

x(k + 1) = &x(k) +Aulk)

PRINT x(k + 1)
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FLOW DIAGRAM OF BEARDM36

READ MATRICES

By, Gy Ugqs Upy

Y
INVERT COMPLEX MATRIX

Usg
1
FORM D = G

Y
PRINT D

:

END

-1 1

B'UpqUqq

FLOW DIAGRAM OF BEARDM33

. READ :

A,B,Q,G and D1

Y
k=20

Y
ks =k + 1

|
CALCUILATE

Y = (A - BD¥)
F = (Q + DF'aD

v
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¥
CALCULATE
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» FORM p = O

!

j=j+1

k

CALCUIATE
NORM

kAl

CALCULATE INNER
PRODUCT

q =<y ¥y

v

¥y =X

T

y

PRINT y
1
—

'

q = qxj

CALCULATE NORM
ve=|x - 2|
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APPENDIX A.4 -  RANDOM SIGNAL GENERATOR

A random signal generator was constructed for use with
the simulation studies. Bagsed upon a proprietary binary
noigse device (Burr-Brown model no. %006/25) the signal
generatof produced a random telegraph wave derived from a
clock signal of lhz. The clock pulses were in turn derived

from a crystal oscillator within the instrument. Provision

was made to provide internal filtering of the noise signal
by either an active low-pass 1st order filter, with a corner
frequency of 0.05hz;, or by a low-pass Butterworth filter |
with an approximate bandwidth of 1.5hz. The maximum output‘
voltage from any of the signal sources was * 12 volts wnich
could ﬁe reduced continuously by-means of a 10-turn potentio-
meter. ’The block diagram of the generator is given in
figure A.1; the circuit diagram of the filter and output

*

stages is given as figure A.2.

1% oroee L.P

FiLrer
.F. CRYSTA RANDOM 1 !
L Y T;% | TELEGRARH WAVE 2 2 ouTPUT™
c > ¢
oS 'LLA(,,{Z) GENERATER s.ar: 3, sk STAGE
BuTTERWDLRTH _j
FILTER

Figure A.1 - Block Diagram of Random Signal Generator
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Figure A.2 -~ Circuit Diagram of Filters and Output Stage
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The theoretical probability of the positive and negative

" levels of the random telegraph wave is 0.5. From a record-

ing of the output over 5 seconds the measured value of
probability for the positive level was 0.47826; the value
measured for the negative level was 0.5131. With a longer
duration recording these figures would approach more closely

the theoretical value. The average output voltage was zero.




APPENDIX A.5 -~  SPECIAL ELEMENTS OF THEORY (associated

with particular programs)

A.5.1 TRANSITION AND DELTA MATRICES

Transition and delta matrices are used in BEARDM3k,
BEARDM15, and BEARDM20.
The solution to the equation

x = Ax + Bu : (Ae5.1)
has been shown (BELLMAN (1960)) to be -

x(t) = @(t- t, )x(t ) +}/®(t-T)Bu(T)dT (As5.2)

where
®(t-t,) is the TRANSITION matrix.
+ - The délta matrix is defined as 1
A(T) -Jfé(T-T)BdT ‘ (A.5,3)

If the system is regarded as discrete and if the forcing

function, u(t), is taken to be piecewise constant the (A+¢5.2)

may be ré-expressed as , '
x (k + )T = O(T)x(xT) + A(T)u(kT) (A.5.1)
or, when T is known and fixed,
x(k + 1) = 0x(k) + Au(x) (Ae5.5)
The transition matrix may be represented by a series
expansion, viz.

O(T) = exp(AT) = I+ AT+ A%T24 373 +A4T H (A5.6)
2' 3. ®

The size of the elements of A, and the choice of T, can
affect the confergence of the matrix series. To guarantee
convergence in a limited number of iterations a very small.
step size, 8T, is used to find first ®(8T). Repeated
squaring of ®(4T) will result in the desired @(T) because

B(ndT) = &*(nd1/2) (A45.7)
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For a discrete interval of 0.1 second the choice of
T = 0,00078125 second | (Ae5.8)
will ensure that & (0.1l) is determined in 7 iterations. The
accuracy to which @& (0.l) is determined can be controlled by
means of setting in a round-off error bound in the program.
(MANKIN J.B. and J.C. HUNG (1969).

If A is non-singular then

A-l [exp(A [T-TJ )] EB (A0509)

A" Y@ -1)B (Ae5.10)

Alternatively, as a series expansion, with the reduced step

A(T)

ll

size 4T, then

A(T). = A(nST) = I+3(ndT/2)A(ndT/2) (Ae5.11)
Consequently A is determined from Q. The algorithms used to
evaluate both ® and A in each prdgram were .

Q(8T) = I + AST + (AST)(AST/2) + (A%61%/2)(A81/3)+

(A.5.12)

and ' o ' .

A(8T) ={I8T + 5T (AST/2) + (A8T2/2) (AST/3) + - )8

- (Ae5413)
A.5¢2 Dynamic Program

In this procedure, due to NICHOLSON (196%), it is
assumed that the linear process will be restored to equilibrium
in say, q sampling jeriods. The state trajectory is traversed
backwards in time from the final state to the equilibrium
state to determine the optimum discrete input sequence. The
performance ihdex to be minimised is taken as the discrete

version of (6,2), namely

J -_-..3% e ezt + gu? (x-1)} (Ao S5.14)
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The discrete equation is

x(q) =9 x(q-1) + Au(q-1) (Ae5+15)

J° = min { [@ x(q-1)+ Au(q-l)] 'Q[‘I’ g(q-l)+ Au(q-lj’* guz(q-l)}

* ule-1) (A.5.16)
Now;
0 ' |
8 dy ={[¢> _}g(q-l)ﬁ-Au(q-l)] QA*+A'Q [@? x(q-1) +Au(C1~1)J
aulq-l5 _ ‘ .
+ 2gu(q~1)} (Ae5417)

For optimality (As5,17) must be zero, and the only control

which will satigfy this condition is 1

w0(q-1) = - (A'QA +g)"1A'Qgx(q-1) C O (A.5.18)
A | = Kq_l?_C_(CI-l) | (A95019)

where - |
Kg-1 = -(8704 +g)"1arQ . (A45420)

By continuing thus for every successive backwards sampling

interval the general result was established that

o - o ,
u .(Q'r) = Kq_rE(Q.'r) (A.S.Zl)
where
_ -1
Kg-r = (A'Q, A + &) 8Q,. 12 | (Ae5.22)
and
Q) = (®+AKq-f+l)'Qr-2(®+ Aanr+l)+ K'an 188qr1? W

(A.SO 23)
As q - ® the entire control sequenceféains vize Kq-l’
o
Kq-2 q
will also converge to a value J%  (A.5.21), (A.5.22) and

Kq_3,..... converges to some limiting value K%, J

(A.5.23) form the basic algorithm used in the program, BEARDM15.
In BEARDM15 the matrices ® and A are computed using the
expansions (Av5.11) and (A.5.12).
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A.5.3 Pseudo-Inversion of a Matrix

It is well known that the inverse of a rectangular

matrix does not exist; eo.ges the system of equations

Ax = X (Ae502k)
where y is a vector of dimension, m
and x is a vector of dimension, n
does NOT have a unique solution

x = Ay | (A.5.25)
However, the system of equations (A.S;z@) does have solutionse.
A solution is |

'z = Ay | (Ae5026)
where AT is the matrix pseudo~inverse. If A is a,matrix of

order m X n, and of rank »0, a factorisation of A exists

such éhatv .

A = BC ' . (Ae5.27)
where B is a matrix of order m x r

C is a matrix of order r x n

and the rank of both B and C is r. '
The pseudo-inverse of a matrix is.defined by PENROSE (1955),
from (A.5.27), as

AY = cr(cc) i(zre)~tae (Ae5.28)
The pseudo~inverse is required also to satisfy the
definition of a generalised inverse 1+ it is defined (DEUTSCH
(1969)) as the matrix, A%*, of rank r, such that :

A = AA¥A (Ae5429)
From (Ae5.27), (A¢5.28) and (A+5.29) it may be shown that

the pseudo-inverse does meet the requirement of being also

a generalised inverse.




Thus
" o= acrcen) et a
= meer(ce)"lpB)"1B'BC = BC = A (A.5.30)
(A.5.28) is used in the program BEARDM26.,
When mdn then C is an identity matrix and ‘
At o= @i (A.5.31)

A.5.4 ‘Derivation of Equation (6,70)

Equation (6.68) was re-expressed as @
2 2 A
F =0,5 {qll y? + oo Yo + q33 y3 + guz}

oA Ty ok Ay Tt Ay Ty | (A+5.32)

From (6.61) it is apparent that :

fp = V=¥ =0
fp = Ypm¥y =0 (A.5.33)
| f3 = V3 + 130y, + 1u6y2 + 17y3 -u = 0 ‘

However, it is known a priori that the control law will be

constrained to have the form -
A

un = —ki y1 - kz y2 - k3 y3 ' (Ao503“')
This equation is imbedded into the problem so that
f3 = y3*t (130 + ki)yl + (146 + kz)yz + (17 + k3)y3 =0

(Ae5.35)
From the variational equations,quoted as (6.69), it may be

shown that :-

Yy = Yo

yz = y3

YB = -(130 + kl)y1 - (146 + kz)y2 - (17 + k3)y3

g = Qqq ¥q o+ (130 Ky )
iz = Qop Y - gt (146 + kz)x3

|

d33 V3 = hp + (17 + k3004

(A.5.36)
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(A.5.36) is identical to (6.70), where the matrix, (i), is

defined as -

0 1 0 0 0 0-

0 0 1 0 0 0
| -(13o+k1) - (146+k2) -(;7+k3) 0 0 0 )
oagy ) 0 0 0 (130+k, )

0 dpo 0 -1 0 (146+k,)

0 0 - g3 0 . -1 (1?+k3)

(A+5.37)







