\ LOUGHBOROUGH

“ UNIVERSITY OF TECHNOLOGY
| LIBRARY

‘ AUTHOR/FILING TITLE

e e e e T A e = —— = ———— — - ——————— ———

I 188186/
' VOL. NO. CLASS MARK 7777

| ARcHwES
1 | Cably

FOR REFERENGE ONLy

SoMe New ResuLTs on MaJoriTy-Locic Copes

FOR CORRECTION OF PANDOM ERRORS.

BY

Davip Mc@QuiLton, R.Sc., M.Sc.

A Doctornal Thesis submitted in parntial fulfilment of
the nequirements fonr the award of Doctor of Philosophy o4
the Loughborough University of Technology.

September 1978,

Supervisor: Dr. M.E. Woodward,
Department of Electronics and
Electrical Engineering.

© by D. McQuilton. °

e »
Leughboreugh University

of Technoloay Library

e Jue 8O

Class

ae. |\ 5S1€6 /0
;.

IR

ACKNOWLEDGEMENTS

The author gratefully acknowledges the help and
advice of Dr. M.E. Woodward for supervising this work
and to the Electrical and Electronic Engineering

Department for making‘this project available.

The author would also like to express his appreciation
and gratitude to his wife, Mitra, and her family for their

help and patience.

Cratitude is also extended to the Science Research
Council without whose financial assistance this thesis

would not have been possible.

Finally thanks are expressed to Mrs. B. Wright whose

typing of this work can only be stated as excellent.

CONTENTS

Page
PART ONE - RANDOM ERROR-CORRECTING MAJORITY-LOGIC ,
BINARY BLOCK CODES. 6
CHAPTER ONE - INTRODUCTION. 7 |
1.1 - Merits of Majority-logic coding. 7
1.2 - Code Assessment. 9 |
|
1.3 - Project Resumé. 10 i
|
CHAPTER TWO - SURVEY OF MAJORITY-LOGIC CODING,
FOR BLOCK CODES. 12
2.1 - Initial Results. 12
2.2 - Finite-geometry Codes. .13
2.3 - Further Results. S 17
CHAPTER THREE - CODING THEORY. 21
3.1 - Linear Block Codes. 21
3.2 - The Generator Matrix. 22
3.3 - The Parity-check Matrix. 24
3.4 - The Error-correcting Capability. 26
3.5 - Decoding Cyclic Codes. 28
3.6 - Majority-logic Decoding. 33 |
3.7 - One-step M.L.D. : 34
3.8 -~ L-step M.L.D. ° 39
3.9 - The Least Average Probability of Error. 45 |
3.10 .-~ Non-orthogonal Check Sums. 47 ‘
3.11 - Pseudostep Orthogonalization. 48 |
3.12 - Generalised Threshold Decoding. 49
CHAPTER FOUR - A CLASS OF BINARY CODES. 52
4.1 - Introduction. : 52
4.2 - Orthogonal Check Sums from Circulants. 53

4,3 = The Existence of Circulants. 58

4.4 -~
4.5 -
4.6 -
4.7 -
4.8 -

CHAPTER FIVE -

CHAPTER SIX

6.1
6.2
6.3

CHAPTER SEVEN -

7.3 -

7.4 -
7.5 -

APPENDIX - A
APPENDIX - B
APPENDIX - C

REFERENCES.

Initial Code Construction.
Utilization of Redundancy.
Amount of Redundancy.

Minimum Distance of the Codes.

Encoding and Decoding.

CODES DERIVED FROM THE CLASS OF
BINARY CODES.
Introduction.

Codes without the Overall Parity-
check. ’

Extending the Generator Matrix.
NOTES ON THE MINIMUM DISTANCE OF
GROUPS OF BINARY k-TUPLES.

Introduction.

Tables of Minimum Distance.

.The Codes.

CONCLUSIONS AND DISCUSSIONS.

"Good" Codes.

Performance of the Class of Binary
Codes.

Performance of the Codes Derived from
the Class of Binary Codes.

The Weight Tables.

Further Work and Comments.

Page
72
77
85
90
97

99

99

99
104

115

115
115
124

130

130

132

136
139
140

142

147

149

152

PART TWO -~ RANDOM ERROR-CORRECTING MAJORITY-LOGIC
DECODABLE CONVOLUTIONAL CODES.

CHAPTER EIGHT - INTRODUCTION.

8.1 -
8.2 =

CHAPTER NINE - SURVEY OF MAJORITY-LOGIC CONVOLUTIONAL

9.1
9.2
9.3

CHAPTER TEN

10.1 -
10.2
10.3
10.4
10.5
10.6 -

Outstanding Problems.

Project Resumé .

CODES.

Non-self-orthogonal Codes.
Self-orthogonal Codes.
Further Results.

CONVOLUTIONAL CODING THEORY.

Basic Description.

General Decoding.

Decoding and Error Propagation.
Random Error-correcting Capability.
Decoding Methods.

Majority-logic Decoding.

CHAPTER ELEVEN - A CLASS OF CYCLICALLY DECODABLE

1.1 -
11.2 -

CONVOLUTIONAL CODES.

Introduction to Code Structure.

Existence of Arrays.

11.2.1 - - Introduction to Theory.
11.2.2 - The Array.

11.3. -

Cyclic Arrays.

11.3.1 - Introduction to Theory.
11.3.2 - The 'Cyclic' Array.

11.4 -
11.5 -

Non-cyclic Arrays.

Encoding and Decoding.

11.5.1 - 1Introductionm.
11.5.2 - Encoding.
11.5.3 - Decoding.

11.6 -

The Code Parameters.

Page

160

161

161
162

164

164
165
166

168

168
169
173
176
177
179

181

181 -
188
188
192
214
214

T 221

251
256
256
260
262
263

CHAPTER TWELVE - PERFORMANCE OF THE CODES.

'12.1 - Introduction.
12,2 - Effective Constraint Length.
12.3 - Unbounded Probabilities of a
Decoding Failure.
12,4 - Equal Rate and Error-correcting
Capability.
12,5 - Error Propagation.
12.5.1 = Introduction.
12.5.2 - Propagation in the 'Cyclic'
Codes.
12.5.3 - Propagation in the C.S.0.C's.

CHAPTER THIRTEEN - PSEUDOSTEP ORTHOGONALIZATION:
AN ALGORITHM FOR IMPROVING REED-
MASSEY THRESHOLD CODES.

CHAPTER FOURTEEN - CONCLUSIONS AND COMMENTS.

14.1 - Comparison with other C.S.0.C's.
14.2 - Performance of the Codes.
14.3 - Further Work.

APPENDIX - A

APPENDIX - B

REFERENCES.

267

267
269

275

286
288
288

290
292

295

296

296
303
311

314

317

319

ParT 1

RaNDOM ERROR-CORRECTING
MAJORITY-LOGIC DECODABLE

BinarY Brock Copes.

CHAPTER 1

1. INTRODUCTION.

1.1 Merits of Majority-logic Coding.

The main advantages of random error-correcting majority-logic
codes and majority-logic decoding in general are well known and
two-fold. Firstly, they offer a partial solution to a classical
coding theory problem, that of decoder complexity. Secondly, a
majority-logic decoder inherently corrects many more random error
patterns fhan the minimum distance of the code implies ié possible.

The solution to the decoder complexity is only a partial one
because there are circumstances under which a majority-logic decoder
is too complex and expensive to implement.

The optimum system is a one-step decoder (developed by Masseya)
fdr a cyclic code, which only requires one majority-logic gate to
decode all received digits in a block. If the code is non-cyclic a
one-step decoder requires one majority-logic gate for each information
digit in a block. Therefore if a non-cyclic code had a large number
of information digits the decoder may no longer be economic to
implement.

Some codes are majority-logic decodable in L-steps4 and this
requires the decoder to have L levels of majority-logic gates, each
level except the L'th having more than one majority-gate, to decode
a single received digit. Thus a decoder of this type could only be
viable economically if the code 1is cyclic,‘unless the number of
information digits is small. Also with L-step decoders, if the random

error-correcting capability of the code rises, the number of inputs

to each majority-gate rises and the number of gates on each level
rises too. Unfortunately as L rises the decoder complexity rises
exponentially so there are also economic limitations on L-step
decoding.

However L-step decoding is useful for two reasons, (a) one can
correctly decode, theoretically, in the presence of a larger number
of random errors, than is possible with one-step decoding, providing

of course one can find the code to do it, and (b) recent developmentsz’16

17,20 have lead to the discovery of large classes of good cyclic codes
that can be decoded using L-step decoding.

An alternative to L-step decoding has developed around results
presented by Rudolphg, Which is a one-step decoding method. Although
it is a one-step decoding method, the single majority-gate requires
a very large number of inputs. When used in place of L-step decoding
for an L-step decodable code, this one-step method corrects less
random errors and is as approximately as expensive as L-step decoding
also. The one-step method can be converted into a two-step method
and thereby correct as many random errors as L-step but with a iarge
increase in decoder complexity. Since Rudolph's9 one-step method
and L-step4 decoding are more complex than Massey's4 one-step method,
the search for codes thgt are Massey one-step decodable and can compete
with cyclic codes which aré not majority-logic decodable, is still a
useful area of research.

The second advantage of majority-logic codes is with regard to
their perform;ncé when more random errors occur than the code can
guarantee to decode. This is sometimes referred to as a codeb

unbounded performance. The number of random errors a code can

guarantee to decode is related to a parameter of the code called
minimum distance. It has been an established practice in coding
theory to compare codes on the basis of their minimum distance for

a given code length and effective rate of transmission. However it
is widely accepted that the minimum distance gives no information
regarding the unbounded performance of a code and as such is a

crude measure of the potential performance in the presence of random
efrors. This is particularly true of majority-logic codes since
they have an inherent ability to correctly decode on many occasions,

when more errors occur than the code can guarantee to decode.

1.2 Code Assessment.

One would intuitively feel that a useful measure of a codes
performance could be achieved by simulating the noise encountered on
a realistic transmission path, called a channel. That is,establish
a noise record of a standard realistic channel over which we could
subjectively assess any codes performance. Unfortunately no such
channel exists and the Engineer must resort to one of.two alternatives:?
‘Simulate the codes on the inary symmetric channel, or try to establish
a typical noise record of the realistic channel available, trying
different codes to find some 'best' code for‘that channel.

The former is uéually resorted to by coding theorists wﬁile the
latter is usually adopted by the industrial based Engineer.

There are difficulties encountered with both approaches$ that is,
i) there are many different codes one can try whose only(i;&mre;f

measure of performance is the minimum distance,

ii) there is usually more than one technique whereby one can

decode a given type of code, each with relative merit,

iii) many realistic channels are time-varying being different
from day to day depending on ambient temperature, weather or sunspots,

etc. Thus to obtain a realistic noise record may be difficult.

Therefore many coding theorists still compare codes on the basis of
length, rate aﬁd minimum distance, leaving the assessment on a
particular channel to the Engineer who is interested.

The éngineer‘or newcomer who encounters coding theory for the
first time, or.particular codes, may be bewildered or indeed put off
completely by the dazzling array of mathematical techniques and various
mathematical disciplines required of him in order to achieve some
understanding of the subject. This shows no sign of easing and the

author feels that there is a need for more literature which treats

the subject from an engineering viewpoint.

1.3 Project Resumé,

The codes developed in Chapters 4 and 5 are treated from an
engineering view in the sense that they are constructed in an
algorithmic fashion. The reader‘only requires a knowledge of the
basics of coding theory; in particular majority-logic decoding, and
this is presented in Chapter 3. |

Any further mathematical theory is presented when required.
Chapter 4 presents a method of developing codes which are shown
to be cyclically decodable in one-step usiﬁg simple shift-registers.
and a single majority-logic gate, with appropriate gating. They are

shown to be completely orthogonalizable and some assessment is made

11

of their properties for large length n.

In Chapter 5 further codes are simply developed from the codes
of Chapter 4 by shortening and extending the generator matrix.

Comprehensive examples of how to develop codes are given in
both chapters. Many codes are developed which meet the maximum
upper bound on minimum distance from Helgert and Stinaff4o.

The author feels that once one has grasped.the basic method of
construction one can join in the fun of constructing the codes for
oneself.

In Chapter 6 it is shown how to construct tables of minimum
distances for groups of.binary k-tuples. Codes can then be developed
for which, by reference to the table, one can find the minimum
distance by simple addition and see the weight spectrum of the code
words in tﬁe code. No method of decoding these is presented.

Finally in Chapter 7 an assessment is made of the codes developed
and they are compared with existing cyclic block codes on the basis

of rate, length, and error-correcting ability.

CHAPTER 2

2. SURVEY OF MAJORITY-LOGIC DECODABLE - BLOCK CODES.

2.1 Initial Results.

The first majority decoding algorithm was devised by Reed30,
in 1954, who developed the algorithm to decode a class of non-cyclic
codes developed by Muller31. In 1958 Yale32 and Zierler33 showéd
that the cyclic Maximum length sequence codes could be majority-
logic decoded and in 1961, Mitchell37 showed the same for the (15,7),

35,36 codes and the Hamming34 codes. In

(21,11) and (73,45) B.C.H.
1963, Massey4 unified the theory of majority-logic decoding and
introduced the terms, one-step and L-step decoding and type 1 and

type 2 decoding. He also showed that all B.C.H'.BS’36

codes of
length n £ 15 are majority-logic decodable. 1In the same yéar
Gallager38 introduced his Low density pariFy check codes, decoded
with a majority algorithm. Two new classes of majority-logic codes
were presented by'Weldon39 and Townsend and ngdon28 in 1966 and
1967 respectively. The former are a small class of Difference-set
cyclic codes and the latter a class of quasi-cyclic Self-orthogonal
codes. Other codes shown to be majority-logic decodable are graph
theoretic codes38. From all these initial results majority-logic
decodable codes were still not competitive with the powerful cyclic
codes such as B.C.H. codes.

Interestingly, following research into Finite geometry codes,
the Difference-set codes39 and Maximum length sequence codesBZ’33

. . . 1
were found to be special cases of Projective geometry codes . The

Reed30- Muller31 codes were also found to be special cases of

Euclidean geometry codesl. It was the advent of Finite geometry
codes that was to produce the big breakthrough, for majority—logic
codes, into the areas which would make them highly competitive

with the best cyclic codes.

2.2 Finite—geometry Codes.

In 1964, in his Masters Thesisaa, Rudolph considered the
application of finite—geometries to the construction of majority-
logic cyclic codeé. Among his results were constructions for two
large classes of majority—logic decodable-codes based upon Euclidean
and Projective geometries. However Rudolph did not show how to
obtain the generator polynomial or minimum distance of the codes

generally and this was done by Weldon45’46’2.

Also, in Rudolph's
44,9 . :

approach to the codes he proposed a decoding scheme based upon

the use of non-orthogonal check sums which he showed would decode

a large number of errors in one-step. But this method did not

decode all errors which the codes were capable of decoding.

Weldon45’46’2’

not only showed that the codes could . correct
‘more errors using the L-step Reed3o- Massey4 Algorithm but he also
showed47 that more errors could be corrected using Rudolph's
non-orthogonal algorithm if decoding was performed in 2-steps.

In terms of decoder complexity there is little: to choose between
2-step non—-orthogonal and L-step Reed30— Masseyh decoding. In the

same year, 1968, Kasami, Lin and Peterson48 along with Weldon46,

investigated generalisations of the original Reed30- Muller31

(R.M), codes after Kasami49 et al. had shown they were equivalent

to cyclic codes. They showed that while the cyclic equivalent

14

original R.M. codes were a special case of Euclidean Geometry

codes, both Euclidean Geometry (E.G.), codes and Projective

Geometry codes (P.G.), were special cases of Generalised R.M.
(G.R.M.), codes. Also in the same year Kasamiso et al. defined

a class of polynomial éodes which cbntained the G.R.M. codes

and B.C.H. codes as special cases. Lin51 also produced results

on this relationship to E.G. and P.G. codes. Chow61 examined

B.C.H. codes and found a class that could be decoded with non-
orthogonal parity checks in one—step though the number of errors
decoded was less than the code was capable of. He also showed

that some double error-correcting B.C.H. cédes could not be L-step
orthogonalized. Duc64 also obtained results on B.C.H. codes after
obtaining necessary conditions for linear codes to be L-step
decodable. In particular he showed that some triple error-correcting
B.C.H. codes, most binary quadratic residue codes5 and all B.C.H.
codes of length n = 127, except two, cannot be L-step orthogonalized.

In 1969 Delsarte52 propoged a new class of Generalised Finite
Geometry codes (G.F.G.), which included Generalised E.G. and
Generalised P.G. codes, (G.E.G.) and (G.P.G.) respectively. His
work was extended by Lin and Weldon53 and Hartmann and Rudolph54
and it was seen that the G.F.G. codes were more efficient than the
regular E.G. and P.G. codes. ‘

Although these geometry codes are majority-logic decodable,
nevertheless for large error-correcting capability, large L or
high order geometries the complexity of the decoder was still
prohibitive economically in many instances. Weldon47 originally

proposed techniques for reducing the number of steps in decoding

15

but this only applied to R.M. and E.G. codes. 1In an effort to

. . 5
improve on this Chen™ "’

proposed an algorithm which reduced the
number of decoding steps to decode E.G. and P.G. codes.

At the same time (1971) Kasami and.Lin26, following upon the
connection between polynomial codes and geometry codes, showed that
certain dual codes of primitive polynomial codes could be decoded
using majority-logic decoding. Their decoding method involved the
use of different decoding algorithms at different levels, béginning
with non-orthogonal check sums and finishing with orthogonal check
sums .

Various work due to Chen57, Lin58 and Chen and Warren59
ﬁroduced results on new codes obtained by shortening E.Gf and P.G.
codes. In particular Lin58 showed that an E.G. code is actually a
shortened P.G. code while Chen59 et al. developed'a procedure for
finding shortened P.G. and E.G. codes that are l-step decodable.
Chen57 shortened by deleting parity and information digits.

Following on from the work of ChenSS’56

on reducing decoder complexity,
Rudolph and HartmannGO proposed a new decoding method called

"Seqﬁential code reduction". The method permitted a significant

reduction in decoder complexity, for all cyclic codes, with a

modest increase in decoding time. They applied their results to

the decoding of E.G. and P.G. codes with the definite result that

all F.G. codes with length n € 2047 can be decoded by a restricted

sequential code reduction algorithm with one majority gate at each

of the L stages. Also majority sequential code reduction (S.C.R.)

retains the majority-logic decoding property of being able to correct

many error patterns of weight greater than the algorithm is designed

for.

16

In the $ame year, 1973, Lin17 published a new class of
G.E.G. codes which contains the E.G. and some other G.E.G. codes.
The decoding algorithm utilizes different decoding algorithms at
diffefent levels, notably, non—orthogonal then orthogonal check
sums. These "Multifold" codes, to be efficient, require an
inefficient base code on which to extend. A par;icular sub-class
of these codes were claimed as the most efficient majority-logic
decodable cyclic codes at that time. Hartmanan, et al. presented
new results also on the structure of G.E.G. and G.P.G. codes.
Hybrid decéding is the term used by Hartmann16, et al. to denote
the use of non-orthogonal and orthogonal check sums on differing
levels. Rﬁdolph's“’9 one-step non-orthogonal decoding algoritﬂm
is extended to an L-step algorithm and sequential code reduction
advised to reduce complexity, however hybrid decoding is in general
recommended. Further G.E.G. codes were presented by Linzo, in
1975, as impfoved “Multifold" codés and were more efficient.

Again hybrid decoding is used though some of the codes can be
decoded in one-step.

Warren and Chen11 introduced new very efficient codes derived
from the shortening of E.G., "Multifold" E.G. and G.E.G. codes.
The shortening technique developed around results obtained from
the shortening of generalised polynomial codes. A new class of
cyclic codes of even length were found. Though, in general, the
shortened codes were non-cyclic they could be decoded cyclically

using the encoder and decoder of the parent code.

17

2.3 Further Results.

The idea of decoding using a threshold other than that given
by the Reed30- Massey4 algorithm or the Rudolph9 algorithm was
first introduced by Massey4 who showed that ; more realistic
method was to weight each check sum according to the probability
that it would be in error given an error pattern. This resulted
in the decoding procedure having the least average ﬁrobability of
a decoding failure, or error. Massey4 called this A Posteriori
probability (A.P.P.) decoding.

In 1969 a spate of papers on generalised threshold decoding
appeared from Gore72’63; Townsend and Weldon28 and Rudolphs.
Rudolph8 showed that there existed a threshold decoder using
generalised parity checks and a sipgle threshold element though
he did not show how one could obtain the parity checks or how
many would be needed, for a code, generally. He did state that
decoding rules have been found for the two perfect Golay codes
using this procedure. Townsend28, et al. presented.a general
de&oding procedure in which a threshold element had a variable
threshold which was adjusted according to whether correct or
incorrect decodings occurred on a single digit. Many error
patterns of weight greater than the codes capacity could be
decoded but at the price of a large increase in decoding time.

Gore62 showed that any linear code could be decoded in less
than or equal to k levels of a generalised threshold decoder.
In the same year Gore63 examined the threshold decoding of Reed-
Solomon codes and showed that they are not L-step decodable

though they are threshold decodable.

18

The non-orthogonal decoding algorithm of Rudolph ;9 was
improved by Ng7 who showed that the algorithm could correct more
errors in certain circumstances if the identity (or zero) check
sum were allowed more than one vote.

In 1971, Duclg, proposed another new decoding algorithm which
advocated the use of mixed orthogonal and non-orthogonal check sums,
at the input to a single majority—logié gate. Duc justified his
algorithm by showing that some codes may be majority-logic decoded,
though they were known not to be Reed30- Massey4 algorithm or
Rudolph9 algorithm decodable.

In 1972, Rudolph and Robbins18 modified Rudolph's8 statement
regarding threshold decoding by showing that in principlekany binary
linear code could be one-step weighted-majority decoded by replacing
the threshold element of Rudolph g8 by a weighted-majo?ity element.

As an example Rudolph18 decoded the codé used as an example
by Duclg. The code was decoded in one-step using Duc's19 algorithm,
Ng's7 improvement and a weighted-majority scheme.

Also in 1971 Bobrow69'showed that certain cut-set graph
theoretic codes could be 2-step decoded. Then Kasami70 et al.
presented new majority-logic codes derived from combining existing
majofity-logic codes. The resulting codes are generally L-step
decodable.

Various results on the majority-logic decoding of product
codes have been obtained, initially, by Lin65 et al. and Gore66.
Lin65 et al, showed that é product code, formed from a one-step

majority-logic code with minimum distance d. and an L-step majority-

1

logic code with minimum distance d2, was L-step decodable with

19

minimum distance dl-dz. Gore66 showed that two codes, L -step

and L,-step decodable, formed a product code (Ll + L, - 1)-step

2 2
decodable. Later Duc67 et al. showed that two codes, one decodable
using non-orthogonal parity checks and one L-step decodable, formed
a product code L-step decodable with the first step non-orthogonal
and the remaining L-1 steps orthogonal. If both codes are non-
orthogonally decodable the product code is similarly decodable.
The following year, 1973, Duc68 improved the algorithm of Lin's65
et al. enabling correction of more errors in the product codes.

In the same year Chien and Liu71 presented a new class of
2-step decodable arithmetic codes and a new class of L-step
decodable extended arithmetic codes. For an introduction to
arithmetic codes see Peterson and Weldonz, chapter 15,

In 1974, Hashim15 et al. presented a new class of low rate
.majority—logid codes based upon Walsh functionms. Shiva13 et al.
showed that the subset code of a binary majority-logic code was
also majority-logic decodable. Examining binary cyelic codes
Riek12 et al. showed that certain cyclic codes are majority-logic
decodéble if their parity check polynomial falls into a certain
class. Hybrid decoding is used in general and sequentiai code
reduction advised to improve the algorithm.

Rudolph's original paper9 on projective geometry codes decoded
using non-orthogonal check sums also related the codes structure
to the combinatorial aspects of.Balanced incomplete block designs,
(B.I.B.D.). This aspect of majority-logic codes has been investigated

by other researchers such as Goethals71’73, Assmus and Mattson71’72’74,

75,76 73

and Rahman and Blake Assmus72’74 et al. and Goethals

independently devised a one-step majority-logic decoding algorithm

for the extended (24,12) Golay code and the (48,24) Quadratic
residue code. Rahman75 et al. showed that Ng's7 improvement on
' Rudolph's9 original algorithm could be further improved by generalising
the combinatorics. As an example he considered the number of errors
the 1st, 2nd and 3rd order Reed-Muller codes could correct compared
to Ng's algorithm. Rahméh76 et al. later examined the construction
of one-step decodable codes based upon supplementary difference
sets. An infinite famiiy of single and double error-correcting
codes was‘found. Evidence is given of an infinite family of triple
error-correcting codes.

Finally, interest has been shown in what is called "Soft
~ decision" decoding which is a decoding procedure in which
probabalistic information is used in, conjunction with error-
correcting codes in order to imﬁrove system performance. Sundberg77
soft decodes by using reliability information to tell him which
digit in a block is most likely to be in error. Then the next
most likely erronous digit and so on, all digits being one-step
majority-logic decoded. For a helpful discussion see also

Harrison?s.

Data

Stream
Additive
Noise
Y
Encoder Fﬂ\Lj p~ Decoder
Transmitted _Received
Code Words Code Words

with Noise

Estimated

Data

Stream

FIG. 3.1.1.

SIMPLE DATA-COMMUNICATION SYSTEM.

21

CHAPTER 3

3. CODING THEORY.

3.1 Linear Block Codes.l’29

To implement a code we, in general, require (a) an information
source, (b} an encoder‘which constructs and transmits a set of code
words related to the information source, (c) a channel, over which the
code words are transmitted, which introduces errors in the code words,
and (d) a receiver or decoder which, knowing all possible code words,
attempts to recognise a received code word and remove its errors.

A simple block diagram incorporating the above is shown in figure 3.1.1.
We will assume that the information is in the form of successive binary
digits. The encoder functions by sub-dividing the information stream
into blocks of k binary digits. To each block it assigns a unique

code word of length n > k binary digits, called a binary n-tuple. The
rules for assignment are determined by the code being used so that a
binary code is specified by a set of Zk distinct binary n-tuples from
the.set of 2" n-tuples.

At the receiver each received code word is treated independently,
without reference to any previously received data. The decoder attempts
to discover, which block of k binary digits determined the code word,
in the presence of errors. The independent treatment of the data,
block by block, defines a block code. 1In addition, to be a linear

code, the following definition on the 2k n-tuples is necessary.

Definition 3.1.1.1

A set of 2k binary n-tuples is called a linear code if and only

22

if it is a subspace of the vector space, called Vn’ of all binary
n-tuples.

This subspace is also referred to as the code space.

3.2 The Generator Matrix.

|
Although a linear block code can be specified by the list of !

Zk binary n-tuples, it is unrealistic to do this if k is large.

set of k basis n-tuples, ;i’ ;é,..., ;£ such than any n-tuple u € S
can be represented by a linear combination of the basis set.1

Let,
u=m Vl @ m, Vz ¢ I & mka 3.2.1.

Vs ;é,..., Vk are the basis n-tuples

m, € G.F.(2), forlcg<ic<k
© = summation over G.F.(2).

However, any k-dimensional subspace S, of Vn’ can be specified by a
If the k basis n—-tuples form the rows of a k X n matrix G, then
|

Vl Vll Vlz cesene Vln
. v Ve oossoes v
¢ = | : | = |.21 22 Zn 3.2.2.
i Vk_ _vkl sz sesvecse an—

Then equation 3.2.1. can be represented as,

U=m-+*G 3.2.3.

23

where

7 - |:m1, Byyeees]

can be the 1 x k row matrix representing the block of k information
digits. The rows of G generate a linear code and G is called the
generator matrix of the code.

If G and G' are the generator matrices of two codes, then if
by rearranging the columms of G we can obtain G', then the codes
are said to be "equivalent".29

If G' can be obtained from G by a combination of row and column
permutations, then G and G' are said to be 'combinatorially equivalent".29
Every generator matrix G is combinatorial}y equivalent to one G' . i
29 |

in echelon canonical form.

That is we can arrange G in the form,
G = [%k %] | 3.2.4.

T

where

k x k identity matrix

P

k x n-k matrix
by means of row and column permutations. However, it is not always
prudent to do this as the original structure of G may be required in
decoding. Codes whose generator matrix has the natural form of

. ' : " . n 1,29
equation 3.2.4. are called "Systematic Codes'.
The first k digits of every systematic code word are reproductions

of the k digits in the information block. The n-k digits generated

by P are called parity-check digits.
29

The following theorem is from Peterson and Weldon.

24

Theorem 3.2.1.

Every linear code is equivalent to a systematic code.
A code specified by a k x n generator matrix G is also referred

to as an (n, k) code and is said to have a code rate, R = k/n)
the ratio of Information content before and after coding,

[- ———— e —_——- -

3.3 The Parity-check Matrix.

If a = (al, CPPRRR an) and b = (bl’ bz,...,~bn) are two binary

n-tuples we can define their inner product as,

a+b=ab @ abq oo @a b 3.3.1.

and if 2 + b = 0 we say that a and b are orthogonal. If S1 is the
subspace of n-tuples of a code generated by G, then the set of all
n-tuples orthogonal to S1 is also a subspace, SZ’ called the null space

of the code.29

The parity-check matrix of a code, H, is an n-k x n
matrix whose rows are basis n-tuples of the null space of the space

generated by the generator matrix, G, of the code.

Let,
Fl ?11........111“
_'Hn_k_ _hn_k’l...... hn—k,n_
thén
i’ =0 ' 3.3.2.

where HT is the transpose matrix of H. 1In particular, u HT = 0, for

any u. € Sl'

The subspace generated by H is also a code space and is called the

dual code of that generated by G.

25

Let an (n,k) code have generator matrix G and parity-check
matrix H and let u be a code word transmitted over a noisy chanmel.
If e is a binary n-tuple representing the noise added to u during
transmission, it has digits of binary 1 in those positions where
errors occurred in u. Let r be the n-tuple received by the decoder,
then if errors have occurred,

T =ue ' 3.3.3.
therefore,

TH = G @ O

3.3.4.

it
®|
s
i
ul

where s is an n-k digit binary word called the syndrome. Obviouély
if e =0 then s = 0 and the decoder knows no errors were present.
Otherwise the decoder uses the information iﬁ the syndrome to find
the errors. Each digit S:» of s, is obtained by forming the inmer
product of T and Eﬁ from H.

If the generator matrix is in echelon canonical form, as in
equation 3.2.4., then H can be found quite simply using the following

theorem from Peterson and Weldon.29

Theorem 3.3.1.

If S is the code space of the generator matrix G = [?k %], where

Ik is a k x k identity matrix and P is a k x (n-k) matrix, then S is

the null space of H = [}PT In_é] , Where In— is an (n-k) x (n-k) identity

k

matrix.

26

3.4 The Error-correcting Capability.

If u and v are two code words of a linear code, then since the
code space is a subspace, u B V is also a code word. Therefore if
e has the form of a code word and ¥ = u 3D .E, then T is also a code
word and T HT =0 =s. so that the decoder cannot decode ‘e, furthermore
'if El’ ;2 are two different error words and v, u are two code words, ﬁheh

if '-51 ’:-B u = 22 D -1"_, we have

<
(]

r H =e1H=e2H=s 3.4.1.

and the decoder cannot identify El and e, uniquely. These situations
are examples of what happens when the number of errors exceeds the
capability of the code.

Consider the following definitions.

Definition 3.4.1.l

The Hamming weight of a binary n-tuple u, WH(E) , 1s the number of
binary omes in u, i.e. if u = (10010110001), w.(u) = 5.
We can now introduce the concept of distance between binary n-tuples,

which will lead to results on the error-correcting capability.

Definition 3.4.2. 1

The Hamming distance, dH(E, V), between two binary n-tuples, u and

v, is defined as the number of components (digits) in which they differ,

i.e. 1f,
u = 10010110001
¥ = 11001010101
then dH(E, v) = 5.

It is apparent that,

dH(E, v) = wH(E 2 V). ' 3.4.2.

27

Since u) v is another code word, say ;,"
’ dH(E, v) = wH(-y_).

The minimum value Of'dﬂ(-l;, V), obtained by forming all possible
sums of pairs of n-tuples, u and v, from a code space, is called the
minimum distance of the code, d . Let d = dH(-a', D) = WH(-; & b,
but a & b is another code word, so that the minimum distance is
equal to the minimum weight of the non-zero code words in a code.

. If the errors which occur affect each digit of a transmitted code
word, independently, they are called random errors and codes designed
for this type of error are called random—error-correcting codes.

If the errors which occur tend to be strung together in burs;s
the codes designed t'o combat these are called burst-error-correcting
codes.

We will confine the rest of the discussion to random—error-correcting
codes.

Let us assume that a generator matrix G specifies an (n, k) code
with minimum distance dm. Let u and r be the transmitted and received
n-tuples respectively and v any other code word. For maximum likelihood
decoding the decoder will identify r with that code word which has the

minimum Hamming distance between itself and r. Therefore if

dH(V, T) < dH(E,) ' 3.4.3.
the decoder will choose v and thereby incorrectly decode r. However,

since from LIN]f .

dH(V,) + dH(E, T 3 dH(V,) ' 3.4.4.

- = dm -1
if dH(u, r) € E_TE]

where Ex:l means the largest integer g { x .]

Then from equation 3.4.4,

. d -1
dH(V,?)adHG,E)-Em?_ E' ‘

and since the minimum dH(V, w = dm’

d +1
(¥, T z;E s E{ 3.4.6.
so that we always have,
4@, D < 4,&, D . 3.4.7.
Since from equation 3.3.3.
dg(u,) = w.(e) 3.4.8.

then providing,

_ d -1 ,
v, (@) s E = EI 3.4.9.
the decoder will correctly decode u in the presence of all error

n-tuples whose weight conforms to the inequality 3.4.9. Conventionally

we say, a (n,k) code with dm can correct any error pattern of

d -1
t g E a 5] errors, in a block of n digits. The error-correcting

capability of the code is then,
' dm -1
t = E 5 ﬁ 3.4.10.

errors, as a maximum.

3.5 Decoding Cyclic Codes.

Let u be a code word from the (n,k) code generated by G. 1If

the n-tuple code word, u, is given by,

29

u = (ul, Ugseeses un)
then the code is said to be cyclic if for every u,

| S
u = (u u Uygeeey U
(n’ 1° 2? ’

)

n-1
is also a code word.
We can consider the code words as polynomials over G.F.(2), such

that if u(x) is the polynomial representing u,

. L0 .2 n-1 '
u(x) =Uupt X F Uy X R U X .. +tu o x 3.5.1.

with u, € G.F.(2) l1<ign
It is known that the code word polynomials of a cyclic'code

can be represented as multiples of a unique polynomial, g(x), called
the generator polynomial. At the encoder the k-digit information
block is considered as a . polynomial, C(x), where,

_ n-k n-1 | :
C(x) = Cos1-k ¥ *ieeees to X 3.5.2.

The encoder divides C(x) by g(x) so that we can write,

C(x) = q(x) g(x) + r(x) deg(r(x)) < deg(g(x)) 3.5.3
so that |
C(x) + r(x) = q(x) gx) 3.5.4.
which is the transmitted code word.
The degree of the generator polynomial is n-k, so that
deg(r(x)) < n-k) 3.5.5.
and r(x) is called the parity-check polynomial.
At the decoder the process is repeated. The received messagé
and check-digits are separated and the message digits divided by g(i).
The resulting remainder r'"(x) is added to the received check-digits,

that is r'(x), to form the n-k digit syndrome, s(x).

30

Since,
s(x) = r'x) + r'"(x) ' 3.5.6.

if there are mno errors, r'(x) = r(x) and r"(x) = r(x), so that
s(x) = 0, due to G.F.(2) addition of coefficients.

Let er(x) be the (n-k)-digit polynomial representing errors in
the received check-digits and ek(x) be the (n-k)-digit polynomial
that is the remainder upon dividing the errors in the k-digit received
message block bybg(x), then

r'(x) = r(x) + er(x)

. 3.5.7'
r"(x) = rx) + ek(x)
From equations 3.5.6. and 3.5.7.
s(x) = er(x) + ek(x) 3.5.8.

in the presence of errors.
If there are no errors in the received message digits ek(x) = 0,

and

s(x) = er(x) 3.5.9.
and of course this is the actual error pattern in the received code
word. |

A most useful result for cyclic codes, from Peterson and ngdon2

P.p.230-232, is given by the following theorem.

Theorem 3.5.1.

Let s(x) denote the syndrome of an n—-tuple R(x). The syndrome
of a cyclic shift of R(x), say x R(x) mod (x~ + 1), is obtained by
shifting the syndrome generator of g(x), once, with initial contents

s(x). Therefore, for cyclic codes, if we can decode one received

digit, we can decode all received digits by syndrome shifting. Of

31

course how we use the syndrome bits to decode a digit depends upon |
the code structure, but there are procedures which are applicable
to any cyclic code.
. . . 3,22
One such procedure is called Error—-trapping Decoding (E.T.D.).

If a code has error-correcting capability t, when a code word is

received we form the syndrome and check its weight. If < t errors

have occurred and the errors are trapped in the check-digits, then

gives

wH(s(x)) gt 3.5.10.

|
from equation 3.5.9. the Hamming weight of s(x), written wH(s(x)),
and this error pattern is taken to be the received error pattern.

If, WH(S(X)) > t, the syndrome is shifted cycliéally.one digit
and wH(s(x)) checked again. 1If wH(s(x)) < t we know the errors have
been trapped in the check-digits of the code word that is a single
cyclic shift of the received code word. The decoded error pattern
.is then a shifted version of the received error pattern.

However, if wH(s(X)) > t again, the process is repeated. If we
always obtain wH(s(X)) > t we assume that the error pattern has weight
> t or that it is untrappable. Otherwise we assume a shifted version
of the error pattern has been decoded and compensate accordingly.

Many variations on E.T.D. have been devised, Kasam123, MacWiiliam324,
Omwrazs, but these seem to be limited to codes of relatively shoft |
length. }

|
E.T.D. is successful for all single error—correcting codes and

all burst error-correcting codes. For random error-correcting codes

with capability t, it can be shown5 that a necessary and sufficient

condition for all error patterns of weight < t to contain at least k

successive zero's is

c<% , R=X 3.5.11.

The search for useful decoding procedures for cyclic codes is an
active branch of research in the field of error-correcting codes. '
Before examining another approach to decoding we will clear up at

this point some definitions of various types of codes.

a). Pseudo-cyclic codes.5

The generator polynomial, g(x), of a cyeclic (n,k) code always
divides x™ + 1. A pseudo-cyclic code has code words generated by
g(x) which divides xn' + 1, for n' > n. Since g(x) generates a cyclic
code of length n', the pseudo~cyclic code is that éode whose code

words are taken from the cyclic code of length n' whose digits

‘a a
“n’ "n-1

seees @4_ are zero and are dropped.
b) Shortened-cyclic codes.5

Given an (n,k) cyclic code with generator matrix G, if we delete
the first i columns and rows of G, the resulting code is an (n-i, k-i)
shortened cyclic code.

Pseudo-cyclic and shortened cyclic codes are not truly cyeclic

since there is always some code word whose cyclic shifted version is

not in the code.

¢) Quasi-cyclic codes.5

If u(x) is a code word in a (n,k) quasi-cyclic code, then if
n
x ° u(x) mod (xn + 1) is another code word, the code is said -to be

quasi-cyclic of order n. Cyclic codes such that m divides n and k
i
are quasi-cyclic of order m, but there exist codes where

n,
i n .
x " u(x) mod (x + 1) for n, <n, is not a code word.

Feedback

‘r 1 > [J L 4 [] [J i r

Received X |
Code Words TN Syndrome Register) P
with Noise) % 5
Syndrome
Resetting

Error Estimator

‘ - Estimated
—» Received Word Buffer

Data.

FIG.‘3.6.1.

A GENERAL TYPE I DECODER.

The columns of the generator matrix can be considered as being

composed of circulant sets of k-tuples of order n_.

A circulant set of k-tuples, or generally a circulant, is defined
as, the set of k-tuples that are all cyclically shifted versions of
one k-tuple in the set. If a circulant has n distinct k-tuples in
its set, it is said to have order n. The generator matrix of a
quasi-cyclic code is composed of circulants, all of the same order.

3.6 Majority Logic Decoding.s’z’4

The idea of majority-loéic decoding, (M.L.D.), is based upon
the concept of "orthégonal* cﬁeck sums". A check sum or parity-check
sum is a linear equation, or sum, of error digits. From equation 3.3.4.
we see that each digit of s is a sum of error digits and is thus a
parity—-check sum. Also the adaition of digits from s form other check
sums. If a check sum s |

contains e s s is said to check e If we

1. 1
assemble all those check sums which check e s then they are "orthogonal"

on e& if they conform to the following definitionm.

Definition 3.6.1.6

1 Sgo+ves 83 is said to be "orthogonal"

on the error digit e if e is checked by each check sum s: in the set

A 'set of parity-check sums s

and no other error digit is checked by more than one sum.

There are two basic methods in which the check sums can be formed
by the decoder, referred to as Type 1. and Type 2. decodingé.
Figures 3.6.1. and 3.6.2. show typical Type 1. and Type 2. decoders

respectively.

* Orthogonal here is not the orthogonal defined in equation 3.3.1.

Received -
Code Words
with Noise

Gate 1

Gate 2

n-Stage Buffer Register

N Estimated
>

r Data

Error Estimator

FIG. 3.6.2.

A GENERAL TYPE II DECODER.

34

With Type 1. decoding we re-encode the message-digits,form the
syndrome and form orthogonal check sums from linear sums of syndrome
digits.

With Type 2. decoding we utilize a set of J n-tuples, from the
null space of tﬂe code that are orthogonal* on a received digit.

We then form the J inner products with the received word directly,
so that if E; is an n-tuple in the null spéce, we obtain the set of
check sums,

s.=e*b. for 1lgizgJd. 3.6.1.
1 1 .

Since a_syndrbme digit is a linear sum of error digits, that is a
check sum, then every linear codes' syndrome digits are a set of
check sums. The problem‘is to find codes whose syndrome digits (or
null space n-tuples), can be arranged into sets of orthogonal check

sums. .

3.7 One-step M.L.D.-

Consider the set of J orthogonal check sums below for an (n,k)

linear block code.

Sl = el N en
52 T &2 2 n
: | - 3.7.1.
s; = ey %) e

Let us assume that J is even and that t = J/2 errors have occurred.
If e is in error then only (J/2 - 1) errors can occur in the other

digits, so that there are always, at least, J - (J/2 - 1) =J/2 + 1,

* QOrthogonal as in equation 3.3.1.

check sums which give a correct estimate of e s that is, a majority.

If e is not in error, then the worst condition is that the J/2
errors affect J/2 check sums and an ;ven split of J/2 0's and 1's
occurs. If t < J/2 errors occur then the majority always favours e -
To obtain a correct estimate of e under the circumstances given
above, we require an electronic block whose function is to look at

the Sis and output an estimate e; of e s according to the following

rules.
a) If Z s; > J/2 e; =1
1
b) £ Lo 32 , e =0 3.7.2.
1 1 n
= ' =
c) 1f gsl J2 , el=0

An electronic unit which performs just such an operation is
available and is cailed a Majority-logic Géte (M.L.G.). For the code
above we require a J-input, single output M.L.G. to decode e . If
the code is non-cyclic, Qevwould require k such M.L.G.'s to decode
the errors in the k message-digits. However with a cyclic code, after
decoding e if we cyclically shift the syndrome register (Type 1.)
or buffer register (Type 2.) one digit, we will obtain an identical
set of check sums orthogonal on e -1 Then all n digits can be
decoded sequentially, by successive cyclic shifts. The Error Estimator
in figures 3.6.1. and)3.6.2. can then be replaced by k - M.L.G.'s or
1 - M.L.G. depending on the code. In both cases, it will be noted,
we have achieved an estimate of the errors By using one M.L.G.

Codes where this is possible are referred to as "One-step M.L.D.

codes'".

36

If we could obtain J orthogonal check sums without adding
syndrome digits (Type l.) or received digits (Type 2.), that is the
code has o?thogonal check sums inherent in its structure, it is
said to be a "Self-orthogonal M.L.D. code".
If the code has minimum distance, dm’ then if we can form J = dm -1

check sums on the errors, we can correct,

J dm-— 1
'2'=E—'—2——Ei =t . 3.7.3.

errors and the code is said to be "completely orthogonalizable'". 1In
the case where only J << (dm - 1) check sums are obtainable then M.L.D.
ﬁould be considered inefficient for that code.

The development of equationsl3.7.2. and 3.7.3. arose from the
form of equations 3.7.1., that is, the check sums are linear equations
in the errors only. One may alternatively be able to form check sums

directly on the message digits, but one then requires

J=2t+1
check sums to decode in the presence of t errors. This can be seen

from the check sums below.

s = Be B,

(2]
1}

~ ~ '
2 = my Vey De 3.7.4.

2]
1]

. o
3= m De, BDey

Assume one error, in position e,, and only 81 and s, are used.

1? 2

i) if m, = o , s, =1 s, = 0

and a split vots gives oy = 0 by majority.

ii) if m = 1, s, =0 , 5, = 1

and a split vote gives m

1 = 0 by majority.

37

The ambiguity arises because m, can assume both states, O and 1,
regardless of errors. If we include Sq5 then my is correctly decoded.
Generally with check sums of this form, we require J = 2t + 1
check sums, so that if t errors occur and affect t independent check
sums, there are.still t+i check sums in favour of the common message-

digit.

Since we have,

_ LJ=1
t = E 5 3 _ 3.7.5.

and from equation 3.4.10.

s

complete orthogonality occurs if J = dm’ with this form of check sum.

Example 3.7.1.

The quasi-cyclic code with n = 12, k = 6, dﬁ = 4 with circulant
generator5 7 has a generator matrix, G, below,

o ~ O O O O

= O O O +H
O O O = = =

(2]

n
O O © O O
O O O O - O
O O O +# O O
o O = O O O
= O O O O O
O O - = = O
O = = = O O
= = 2 O O O
= - 0O O O

After forming the syndrome, we have the following equations for

s., l<g1ige6.

n
H
(]
o
'_l
@&
1]
(o))
\‘l/}
[}
—
(@]
W
®
.—l
',—I

38

5= @ g B e B ey
s, = e,) e @e7@ eg
s, = e,] e, 4 eg B eq
sg = eg @ eg B ey & e

be the J =d_ - 1 = 3, check sums.

">
I

18512, @ e, O ef B ey

g
|

2 =5 D s3=e) J e3 B eg @ e

b
]

375 B 5, @ 557, @ e @ e I e Y g e
which are orthogenal on e
Furthermore if the syndrome is shifted cyclically

5,85 @ eg & ey B e

° .

sp=e, D ey ey
s,=ep D e @ e
s3'=e2@e6@e7
sh=e3®e6@e7@e8 '
ss=e4@ e, B ey & o

5
u

15178 @ ¢ & e

>
]

255 P s3=e @ o & e, & e

>
]

35 @ 5, @ sg=e3 @ ¢ € es & g @ e ® e

which are orthogonal on e

-

10°
* If the first column of G, generates the 11'th digit of the code

word i a i itt i
, which we assume is transmitted first, then ell’ elO’ eg, egs €

39

are the errors in‘the message-digits. Although the code is not cyclic
these message-digit errors can be decoded cyclically.

The code is therefore completely orthogonalizable and one-step
majority-logic decodable.

For exambles of one-step M.L.D. cyclic difference set codes and

maximum—length sequence codes see Shu Lin6, chapter 7.

3.8 L-step M.L.D.

"~ The definition of orthogonal check sums given in definition 3.5.1.
.can be seen to apply to one-step decodable codes but we can generalize

the definition as below.

Definition 3.8.1.6

A set of parity-check sums Sl’ 82""’ s. is said to be orthogonal

J
on a set of error digits E if and only if every error digit in E .is
checked by every s: and no other error digit is checked by more than
one sum.

Thus the set E can be correctly decoded in the presence of t < J/2
errors. Lf we can obtain El’ EZ"""EJ’ such that they are orthogonal
on another set F, then by usiné two levels of majority-logic, F can be
decoded with t £ J/2 errors. If by using L-1, levels of majority-logic
we can decode a set Nl’ NZ""’ NJ, which are orthogonal on a single
error digit, e s then with an L'th level of majority—logic, we can
decode, e’ in the presence of t ¢ J/2 errors. With a cyclic code
this is all that is necessary to decode all the received digits and

the code is said to be "L-step majority-logic decodable'.

Note that we require J orthogonal check sums on all Ei’ Fi,..., Ni

s € .

Feedback

Received e o e o e
Code Words \ \ A
. G =C[/\ > . Syndrome Register r—q?
w1?h r — .
Noise Syndrome
Resetting
L) o ° o
K X e d
].St LeVel \2'4/ Q{(. [] Y °
)
2nd Level . o s
L]
[]
[]
[)
L'th Level
4
> Buffer Register o >
Estimated
Data
m = Majority-Logic Date.
G = Gate.

Modulo 2 adder.

FIG. 3.8.1.

A GENERAL TYPE I L-STEP DECODER.

"In addition if J = dm - 1, the code is said to be "completely
orthogonalizable in L-steps'.
Type 1. or Type 2. decoding can be used for L-step codes.

Figure 3.8.1. shows a general Type I, L-step decoder and can be seen

has been replaced by L levels of majority-logic gates.
A general Type II, L-step decoder can be likewise obtained by
replacing the "error estimator" in Figure 3.6.2. by L levels of majority-

logic gates.

Example 3.8.1.

Consider the quasi-cyclic code of example 3.7.1. for which the

following syndrome equations are obtained using Type 1. decoding.

So " ¢ 3396’310@311

sp=e; B ey ® ey B e
572 © e @ ey @ ey
53=é3® eg B ey & o4
s4'=e4® é./.@es & eq

- D e @
S5 = e & eg @ ey & e
Orthogonal on e, 5] e;1» We have,

e

= = &
Ep=s;=e © e © e 11

sy A
e @ g & ey & e

o]
N
"
(%)
]

to be the same as that in Figure 3.6.1. except the "error estimator" |
|
|

Ey=s, @53 @ s, @ s

'=e2@e3@)e4@)e5®e7@e8@e D e

10 11

And F, = e, @ e

10

11

41

Orthogonal on ey <) e;;» We have

1
0
0
n

& &)
1751°¢ B e @ e B ey

t
N
i
7]
[

e D e o
g = B ey e e) ey
E,=s & S4 & 54, @ S5

= e @e3@e4@e5@e8@e9@e6@e11

o

And F, = e

27¢ B e

11’

Orthogonal on eg @ e ,» We have

Ej =5 @ s37e) & e3 & o5 © e

By=s, D sg=e, & 5 & e5 @ ¢

E37=9'1 @s,me; B e, @e e Hey ey B g Deyy
And F, = eg & e |

Since Fl’ F2’ F3 are orthogonal on e this can be decoded v;ith

11°

t = 1 error, by having a second level of majority-logic.

After a cyclic shift of the syndrome we obtain, after cancelling 110

= 0
Fi =&y W e
Fy = ey
Fy=e; W ey

After decoding and cancelling e. ., shifting the syndrome register

10

one digit, gives,
Fl=eg @ o

F=e9

F3=e6@ eg.

Iﬁ—’

Continuing the process we obtain,
F = e, @ eq
2 °8

F, = eq

and decode e8.

F3 = ey
and decode eq.

Fl =%

Fa =2

F3 = €.

So that the errors in the k_= 6, message~digits can be decoded cyclically
in 2-steps. If the process is repeated, providing all errors, €112 ©10°
e9, e8, e7, e¢s have been correctly decoded and céncelled, we should
obtain six zero outputs from the last level of majority-logic. If at
least one non—-zero output is obtained, we must assume an uncorrectable
error pattern of weight > t has occurred.

2 .
Peterson and Weldon have shown that for a given code one can

hope to correct roughly twice as many errors with L-step decoding as one

can with one-step decoding. In particular if the minimum distance of
the null space of an (n,k) code is Eﬁ and t1 and tL are the number of

errors one can correct using l-step and L-step decoding respectively,

then Peterson and Weldon2 showed,

43

t) < E——ﬁ-l—l——;l 3.8.1.
2(dh - 1)
B n 1 -
tL < -&_'- EEI dm even
n 3.8.2.

A

d odd.
m

This needs a little explaining. If we can form 2t check sums

orthogonal on a set of B error digits, then if the check sums are
n-tuples, in the null space of the code, with minimum distance Eﬁ,
each check sum must contain at least Eﬁ - B digits, not contained
in another check sum. Since there are only n — B digits to choose

from, the maximum number of check sums, J, is given by

J = e e— 308.3-

So the maximum number of correctable errors is given by,
£ = E____E‘ B E] 3.8.4.
2(dm - B)

Equations 3.8.3. and 3.8.4. assume every check sum has the same
weight and that this weight 1is Eﬁ. Let B = 1 and we have l-step

decoding giving,
tl = E—-;L:] 3.8.5.
2(dm -1)- .
So that equation 3.8.1. has equality when all check sums have weight
Eﬁ. If any check sum has weight > Eﬁ then equation 3.8.1. holds.

Equation 3.8.5. is given by the minimum value of B, but B has a

maximum value of d_/2 if d is even and (d_ - 1)/2 if d is odd.
m m m m

This must be since, if B > 36/2 or > (E; - 1)/2 in the respective
cases, then the sum of two check sums would have weight < EQ, which
is not possible since they are code words in the null space. Putting

B = 35/2 in equation 3.8.4. gives,

. no_ _]_.-
tL = E:— 2] . 3-8.6.

Again the equality holds since we are assuming all check sums have

weight Em. If B = '(Em - 1)/2

e = E-F-L - %:| 3.8.7.
(din + 1) -

As given by equality in equation 3.8.2., again due to all check
sums having the same weight of Eﬁ. Again, in equation 3.8.6. and 3.8.7.,
if any check sum has weight > Eﬁ then equations 3.8.2. hold.

These bounds ignore the structure of the coée so that it is not
always possible to obtain the ideal conditions of check sums of the
same weight Hﬁ. Even when a code is completely orthogonalizable it
is not necessarily optimum in the sense of equations 3.8.5, 3.8.6.
and 3.8.7. ‘

The case of the quasi-cyclic'code in examples 3.8.1. and 3.7.1.

is obviously sub-optimum since t, = trs also the check sums do not

1
all have the same weight. The idea of obtaining 'J check sums orthogonal
on a set of error digits B, such that each check sum is assigned equal

priority in the decoding scheme is referred to as the Reed-Massey4

algorithm.

45

3.9 The Least Average Probability of Error.

If we assume the code words of a majority-logic code are
transmitted over the binary symmetric channel with additive independent
noise, then is it possible to find a decoding rule which gives the
least probability of error?

Consider the two check sums below, from some code,

17 % @ ®n-t+l
3.9'1'
= © & e) .
s,=e, Qe e, @ e € ..nnnnn @ e

S1 will be in error only if e

error if any odd number of the set {el, e,s €

n-t+] 1S 1n error, while s, will be in

goeeens en-t} are in
error., With additive independent noise the probability that any digit
e, will be binary one is the same for any 1 < i < n. Thus the probability
that Sy will be in error.is greater than the probability that sy will
be in error, for a given error pattern. Therefore it seems obvious
that we can reduce the probability of a decoding error by taking account
of these check sum probabilities. Massey4 approached this probleﬁ and
devéloped the following decoding rule, which gives the least average
probability of a decoding error.
Rule for decoding.

Given a set of check sums, Ai, orthogonal on error digit e s then
if p; = 1- q; is the probability of an odd number of binary ones among

i
the error digits in check sum Ai’ excluding e s then we choose e = 1

if and only if

J

J
'Z A; 2 log (qi/pi) > .Z log (qi/pi) 3.9.2.
1=1 1=0

Massey4 called this "a posteriori probability" (A.P.P.) decoding

46

and although given in the context of one-step decoding, is also valid
for L-step decoding at each majority-logic gate on each level.

Let us assume that the probability of a single digit being in
error is

ple, = 1) =p

i 0 = 1 - q, 3.9.3.

and let us assume that a check sum Ai has €, digits excluding some
set of digits B.- Then we have,
t.!

1 X n-x

P; = L s t. -9 Po %
X 1

3.9.4.

where x is all odd numbers. However it is obvious that if L, = tj
then p; = Pj and in particular if ti is constant for ali check sums,
or equally, all check sums have the same weight,

log (qi/pi) = log (q/p)'= constant
and from 3.9.2. the decoding rule becomes,

J
] 1
i=0

N

J
) A, >
i=1 *t
3.9.5.
J
>-2-.
Thus the one-step and L-step decoding rules of sections 3.7. and 3.8.
minimise the average probability of error if and only if all check
sums have the same weight. This is the case for equations 3.7.1.
but not for the quasi-cyclic code of examples 3.7.1. and 3.8.1.
We can now define an optimum majority-logic decodable code, using
the Reed-Massey4 algorithm, where the code has optimum error-correcting
capability t and minimum average probability of error, in the following

way.

Definition 3.9.1.

A binary M.L.D. code is optimum if all check sums Ai have equal

47

weight, Eﬁ, such that they are orthogonal on a set of error digits

B, where

s if dm is even,

w
i
al | Al

|

-1
=—m-2-—, if d_ is odd,

where Eﬁ is the minimum distance of the null space code.

3.10 Non—-orthogonal Check-sums.

This algorithm was first introduced by Rudolph9 and is an
alternative to the Reed-—Massey4 algorithm. It is basically a one-step
majority-logic decoding algorithm using non-orthogonal check sums.

Consider the check SumS S;, Sy, S35 Sy, below.

S

172, 9e;0e, e

w
I

9 = e1'@ez@es"33’%
3.10.1.

72
)

376 @e;@e @y
S, = eaaes@%@em

They are uniform on e but every other digit appears twice so that
they are not orthogonal as specified in definition 3.6.1.
However if we assume a single error has occurred,

(a) if e is in error a majority vote of the s; will correctly decode e

(b) if some ei # e is in error it can only affect at most two cﬁeck
sums and since this represents a split vote e will be correctly decoded
as zero, using a conventional 4-input majority gate.

Providing each of the error digits, other than the digit to be

decoded, appear in A of the check sums then we can decode in the presence

of t errors, where,

40

o N ' |
]

and N = the number of check sums. So that we require N = 2tA check
sums and therefore a 2tA- input majority-logic gate.

The largest classes of codes for which the algorithm can be used
are the Euclidean and Projective geometry codes, see Peterson and

Weldonz. Here it is shown that for both classes of binary codes,

(28m -1
2°% - 1)
’ 3.10.3.
) E-]L (zsm - 1)
2 (zsr - 1) -

N =2

t
[

However both classes of codes can also be decoded using L-step
decoding and for long codes L-step decoding corrects more errors.

Nevertheless by decoding non-orthogonally in two steps we can
correct the same number qf errors as t—step so that it becomes a
matter of decoder complexity to decide which algorithm to use.

Type I or Type II decoding can be used with this algorithm also.

3.11 Pseudstep Orthogonalization.

In an attempt to increase the range of application of majority-
logic decoding Duc19 proposed a decoding algorithm which quiteAsimply
stated that it is possible to decode using a combination of orthogonal
and non-orthogonal check sums on a set of B digits.

The set below, as an example, will majority deche e in the

presence of t = 2 errors.

e ;e
m 1

%n65>82
ey @e, 3.11.1.
@ e, €
%n€9e3‘E9es
The algorithm has been successful in the majority-logic decoding
of codes previously thought not to be majority-logic decodable. This
has been the algorithmg primary use so far.
This algorithm is not to be confused-with the praétice, used for

the decoding of some L-step decodable codes, of using different algorithms

at different decoding levels.

3.12 Generalized Threshold Decoding.

A number of variations on the majority-logic decoding algorithms

so far presented exist and are outlined below.

(a) Weighted Majority Decoding.

In each of the majority-logic algorithms previously presented,
having obtained a set of check sums, each is given equal priority in
the ‘decoding scheme. We could say each is given a vote of one. In
Rudolphs9 paper, the non—-orthogonal check sums were obtained on received
&igits directly and he showed that we could obtain (2tA + 1) check
sums by utilizing an identity check sum on the digit to be decoded.
In terms of check sums on error digits, this identity check sum corresponds
to the zero check sum and Ng7 showed that the algorithm could be improved

by allowing the (identity) zero check sum A votes instead of only one.

For example consider the set of weighted check sums below.

s =0 2 votes
)
s, =0 & ezﬁ-}em 1 vote
' . 3.12.1.
5y = e, Q§e3 we 1 vote
= 3 &
S, el(? e;@e 1,vo§e

For the set s we have N = 3, A = 2, giving, from equation 3.10.2.

1,2,3,
t = E3/43 = 0., But with S, having A votes, we have,

i) e in error gives 3 to 2 vote in its favour

with so's votes.
So that now t = 1.
Giving S,9 A votes, does not always improve the error-correcting

18,8 followed up this idea and developed one-step

capability. Rudolph
weighted majority decoding, whereby, check sums other than the zero
check sum, are allowed more than one vote. He also showed that in

principle any decoding function for any code can be realised by properly

weighting the votes of generalized parity-check equations.

1
il) e i # m, in error gives 3 to 2 vote in favour of e = 0,
(b) Variable Threshold Decoding.28
Rather than decode with a majority-logic gate which has a fixed
threshold we set the threshold at (dm - 1), initially, and attempt to
decode each bit of a received word. At this initial stage error
correction ié effected only if all dm - 1 inputs agree. If attempts

to decode all n received bits are unsuccessful, the threshold is

lowered by one and the process is repeated. Except for the initial

stage, if any change (or correction) is made dﬁring an attempt to
decode with a given threshold, the syndrome is reset and the threshold
increased by one. Nevertheless after this if all n bits are not
decoded successfully the threshold is again lowered by one. This
continues until the threshold reaches the familiar figure of (dm -1/2
when the received word is deemed to be decoded. Although many error

patterns of weight > t can be corrected, this must be traded against

decoder complexity and time to decode.

52

CHAPTER 4

4. A CLASS OF BINARY CODES.

4.1 Introduction.

The class of binary block codes presented in this chapter are
not cyclic or quasi-cyclic in the sense of the strict definitions
given in Chapter 3. Whereas in a quasi-cyclic code the generator
matrix, G, is composed of k-tuple circulants of the same order, in
the codes presented in this chapter, this is relaxed to allow G to
be compose& of (k-1)-tuple circulants of differing orders, with an
overall parity-check, on every column of G, on the k'th digit. We
therefore design a given code by a choice of (k—l)—tﬁple circulants
and provided this permits the decoding of these (k-1) digits in the
presence of t errors, we ¢éan decode the k'th digit by special provisionm.

The codes are majority-logic decodable in one-step and are
cyclically decodable using a form of Type II decoding. The cyclic
decoding procedure only decodes the message digits, whose decoded
estimates are presented at the majority-logic gate output.

We also.show that the codes are completely orthogonalizable up
to their minimum distance. Initially it is shown how to obtain check
sums using circulants and then the éxistence of circulants of various
orders is examined. It is shown that this can be done by considering
the successive doubling of positive integers modulo (2k'-1), where
k' = k-1.

An initial code construction is proposed and then extended until
the most optimum code is obtained. This is done with the help of a
comprehensive example for k';6.

A simple encoding and decoding scheme is proposed.

53

4.2 Orthogonal Check Sums from Circulants.

The generator matrix, G, of a binary code of length n, is
composed of n columns of binary k-tuples, where k is the number of
information—digifs in the code.

Let T(x) be a polynomial représenting a code word of the code,

then
T(X) = ¢ + CX * veeeee + € xn-l
o] 1 n-1
where;
- , . o
c; =c; m @ c; m, D.ieer. @ c; m . 4,201,
1 2 k
m, = i'th digit of information, € GF(2).
ci' = j'th digit of the i'th column of G, € GF(2).
i
& = addition over GF(2).

Therefore each c; is a linear equation in the message~digits,
determined by the i'th column of the generator matrix, such that
c; € GF(2). The coefficients of T(x) are therefore binary and it is
the binary coefficients that the encoder transmits and the decoder
receives in the presence of noise. The noise which affects a code
word of length n, can be represented by a polynomial E(x), with binary
coefficiénts, such that, |

’ E(x) = e, + e x + tiee.. t e

If an error has occurred in the p'th digit ep r 1, otherwise e_ = O.

Let R(x) be the polynomial representing the received code word,

then

R(x)

T(x) + E(x)

}
a}
+
=
»
+
+
(a1

54

where

r. =c, @ e. 4,2.2.

In equation 3.7.5. we saw that if we wish to correctly decode
a message-digit, ms in the presence of errors, by obtaining orthogonal
check—-sums on mj itself, we require at least J = 2t+l check sums,
where t is the number of errors or coefficients of E(x) that are
binary 1.

Let c(i) represent the binary k-tuple in the i'th column of G
and let c(j) differ from c(i) only in the first digit, that is

c(i) é (ci > C; seees C), c¢(3) = (cj s C. 5000y C,)

1 2 k 1 J2 Ik
and

The two transmitted digits ¢, and cj are determined by these two
columns i and j of G, so that at the ‘receiver the two received digits

will be T, and 1:j where,

r.

i=¢ @ ¢

T, c. e, .
J J® J

However it is obvious that

= &

T, 3] o= & c & e, & e
and since c. O =0 but

Tk Ik

c. & c. =1 then

! 11

c; cJ = (ci & cj) m, = m, and

1 1
. = L e. & e, .2.3.
T, 3 Ty m & ey & e 4.2.3

25

and we obtain an orthogonal check sum on o, . The same two received
digits cannot be used to obtain another check sum on o, because the
errors associated with these received digits must remain unique to

this check sum, with respect to m If J = 2t+1 such pairs of columns

1
are contained in the generator matrix, for every message-digit, then
the code is majority-logic decodable in the presence of < t errors.

Based on the above we can give a set of simple, and rather sub-

optimum, codes in the following theorem.

Theorem 4.2.1.

If two complete sets of k—-tuples, one of weight b and one of
weight b+l, are used as columns of the generator matrix of a binary
code, then we can form J orthogonal check sums on every message-digit,

where,

(k-1):
bl (k-1-b)!

Proof:

For eéch k-tuple of weight b there is a k-tuple of weight b+l
that differs only in the i'th digit. From equation 4.2.1. we know
that the sum of the received digits generated by such a pair of
k-tuplesbgives an orthogonal check sum on mi.

The number of such pairs on digit i is equal to the number of
k-tuples from the set of weight (b+l) whose i'th digit is binary one
or the number of k-tuples in the set of weight b whose i'th digit is
binary O.]

In both cases this number, J, is the number of (k-1) tuples of

weight b, therefore,

_ (k-1)!
J =5 (k-1-b)!

Q.E.D.

56

Providing a full set of k—tuples of weight (b+l) is present
in G, one only need guarantee that there are m zero's in each column
of the set of weight b, to obtain m check sums. One way of guaranteeing

this is to use circulant sets of weight b.

Theorem 4.2.2.

If one can form a circulant set of order e, from a k-tuple of
weight b, then the number of zero's in each column of the circulant
set is given by,

e (k-b)
— -

J =

Proof:

If e = k, the columns are also cyclic versions of the generating
k-tuple and J = (k-b).

If e < k, then digit i = digit i+e so that the generating k-tuple
must be composed of k/e repeated e-digit sections. The i'th column
of the circulant set will be the digits i, i+l,...... , 1+e-l, from the
generating k~tuple. But this is precisely an e-digit repeating section
so thét the number of zero's per column is the number of zero's in a
repeating section, giving

(k-b)

J = /e -

Q.E.D.
So that we can shorten the codes of theorem 4.2.1. by using circulants
of weight b.

The following example illustrates the theorems 4.2.1. and 4.2.2.

Example 4.2.1. '

If we use the two sets of 5-tuples ofHérmxnﬁ‘g‘weight 4L and 3, below,

b+l = 4 b=3 as columns of the generator matrix, we have
0111l - oolll b+l = 4 and b = 3 so that from theorem 4.2.1.
11110 © 0Olllo
11101 11100 we can form,
11011 11001 ;. (5-1)! .
10111 10011 31(5-1-3)!
01011
10110 orthogonal check sums on all 5 digits by adding
01101 pairs of k-tuples. For example, if the rightmost
11010 column of all the k—tuples, represents message-
10101

digit m(l) we have,

(01111) & (01110) = 00001 = m(1l)
(11101) & (11100) = 00001 = m(l)
(11011) & (11010) = 00001 = m(1)
(10111) & (10110) = 00001 = m(1l)

This would represent a binary code, of length n = 15, k = 5, J

= 4,

with each k-tuple being a column of G. The results obtained on m(l)

can also be obtained on all m(2), m(3), m(4), m(5).

The set of k—~tuples with b = 3, can be split into two circulants

of order e = 5, as below.

00111 01011 From theorem 4.2.2. we have J = (5-3) =

01110 10110 '
zero's per column.
11100 . 01101
11001 11010
10011 10101

Using either of these, along with the set b+l = 4, to form the
of G, gives a code with, n = 10, k = 5, J = 2.

The usefulness of circulants leads us to an investigation
their existence. For example it would be helpful to know when

under what conditions circulants of a given order e exist, for

columns

of

and

various k.

58

This is answered in the following section.

4,3 The Existence of Circulants.

We wish to show that the existence of circulants can be examined
from the theory of successive doubling of positive integers modulo
(Zk—l). We begin by establishing results necessary to the general

proof.

Theorem 4.3.1.

If B(m(x)) is the decimal equivalent of the binary number
representation of the coefficients of the polynomial, m(x), over

G.F.(2), then

(1) B&P) = 2P

(ii) B(zP. @(x))) = 2P.B(m(x)).

Proof:
Let the polynomial,
i
n(x) = e, tegx F ...t c;X then
L +

a o
B(m(x)) = c02 + c12 . i

if ¢ =1, but ec.
p

1]
N
o
|
o~}
%
o]
N

B(m(x))

P

x° .m(x) p¥i

+1
X + .0 + C.X
1 1

c 2P & o 2P*l
o) 1

I
0
e

B(x".m(x)) pHi

+ vee. + cC.2
1

P i
2 .(co + c12 + oi... + ciz)

2P B(n(x)).

Q.E.D.

We can also restate this in equation form as,

B(xP.m(x) = B(xF).B(n(x)).

Lemma. 4.3.1.

If B(m(x)) is odd, and B(m(x)) = t, then B(m(x) ®D1) =t

Proof:

If B(m(x)) is odd and

i
mn(x) = c, + o c.X c; € GF(2)
then cé # 0, so that c, = 1 and
1+ m(x) = ¢, X + x2 + +c xi
1 ¢y reer T e
Q.E.D.
Lemma. 4.3.2.

If B(m(x)) is even, and B(m(x)) ='t, then B(m(x) @1) =

The proof follows from Lemma 4.3.1.

Lemma. 4.3.3.

If m(x) has degree (k-1), and B(m(x)) = t, then B(I;I(X) G—)xk) =

Proof:
Since m(x) has degree (k-1),

2l + ..., +C Zk

o
B(m(x)) = c02 + ¢y k=1 , S0 .that
k o 1 : k-1 k
B(m(x) + x) =c 2" + c12 + 00, * ck_lz + 2
=t o+ 2,
Q.E.D.

Lemma 4.3.4.

t, then B(m(x) ® xk)'

If m(x) has degree k, and B(m(x))

4.3.1.

- 1.

t + 1,

t + Zk.

=t - 2k.

The proof follows in a similar manner to Lemma 4.3.4.

The above lemma's enable us to prove the following theorem.

Theorem 4.3.2.

60
|

If B(m(x)) is the decimal equivalent of the binary number

degree (m(x)) < k
and 0 < B(m(x)) < 2k - 1, then

B(x.m(x) mod (xS + 1)) = 2.B(m(x)) mod(2¥ - 1).

Proof:
Let x.m{x) = r(x) mod(xk + 1), then
x.m(x) = q(x)(xk + 1) + r(x) deg(r(x)) < k.

‘here are two cases to considerg—

a) if deg(m(x)) < k-1 then deg(x.m(x)) < k therefore q(x) =0
and r(x) = x.m(x) giving
B(r(x)) = B(x.m(x)) < 2% - 1
and from theorem 4.3.1., B(x.m(x)) = 2.B(m(x))

2.B(m(x)) mod(2k-1).

i

thus B(r(x))

representation of the coeffiéients, € G.F.(2), of m(x), then if
b) if deg(m(x)) =k - 1, then deg(x.m(x)) = k this implies
‘ deg(q(x)) = 0 and so q(x) = 1 giving
x.m(x) = xk + 1 + r(x)
from theorem 4.3.1., let
B(x.m(x)) = 2.t t < 2k -1,

then from Lemma 4.3.2., since 2t is even.

B(x.m(x) + 1) = 2t + 1,

and from Lemma 4.3.4. since deg(x.m(x) + 1) = k

B(x.m(x) + 1 + xk) =2t + 1 - 2k,

61

therefore B(r(x)) =2t + 1 - Zk

2t = 2k -1 + B(r{x))

B(r(x)) mod(Zk-l)

and 2t

or B(r(x)) = 2.B(m(x)) mod(2X-1)

Q.E.D.
Since deg(r(x)) < k it follows that,
B(x.r(x) mod(x5+1)) = 2(2.B(m(x)) mod(2-1) 4.3.2.
and it follows by induction on theorem 4.3.2.
B(xP.m(x) mod(xk+1)) EZ?Bkm(x)) mod(Zk-l).' 4.3.3.

In theorem 4.3.2. above it was stipulated that O < B(m(x) < 2k—1
and this is because if
B(m(x)) = Zk-l , then
x.m(g) = m(x) mod(xk+1) , and if
B(m(x)) =0 , again)
x.m(x) = m(x) mod(xk+1).
The circulants generated by the numbers O and 2k—1, are trivial

circulants of order 1 which exist for all values of'k.

The following example illustrates the principles above.

Example 4.3.1.

Let m(x) = 1 + x + x2, be a polynomial modulo (x5+1), with

coefficients € G.F(2), then we have B(m(k)) =7,

x.m(x) = x + x2 + x3 mod(x5+1)
xz.m(x) = x2\+ x3 + x4 mod(x5+1)
x3.m(x) =1+ x3 ; x4 mod(x5+1)
xa.m(x).z 1 +x + x4 mod(x5+1)
xs.m(x) =1 +x + x2 mod(x5+1)

62
B(x + x> +x) =14 = 2.7 mod (31)
B(x2+ x3 + x4) = 28 = 22 7 mod (31)
B(1 + x3 + x4) =25 = 23.7 mod (31)
B(1 + x + x4)' =19 = 24.7 mod (31)
B(1 + x + xz) = 7 = 25.7 mod (31)

the above numbers put in binary form give the following circulant

set,
00111 N
01110 (14)
11100 (28)
11001 (25)

10011 (19) .

In the light ofltheorem 4.3.2. we can now determine some of the
properties of circulants of k-tuples by examining the properties of
integers, 0 < a < Zk-l, mod(Zk—l), when they are successively doubled.

In particular if‘B(m(x)) =a, 0<ac< 2%_1 then the order of
the circulant generated by the k-tuple, m(x), can be determined by
solving the congruence,

2Pa = a mod(2%-1) | 4.3.4.
whereby, if p is the smallest integer satisfying the congruence, then
the cifculant has order p.

We begin by showing what is intuitively obvious, that is,

Zka_E a mod(Zk-l), for all a < 2k~1.

Theorem 4.3.3.

The congruence,

Zka

a mod(Zk*l)

is true for all a ¢ 2k—1.

63

Proof:
Since a2k - a = a(2k-1),

a(2k-1) + a, and if a < Zk—l

N
[
]

=z a mod(2k-1)

N
[V
1l

Q.E.D.
As an immediate consequence of theorem 4.3.3. we have the following

‘corollary.

Corollary 4.3.1.

If p is the smallest positive integer such that,
2Pa = a mod(ZE-l) s ac< k-1
then p < k.
_With the help of the following theorem we can develop conditions

for which p = k is the only solution.

Theorem 4.3.4.41’42

Let (c,m) = d, and write m = mld and ¢ = cld, then if

ca = cb mod(m), then

azb mod‘(ml).
As a further corollary, we have,

Corollary 4.3.2.

If (c,m) = 1, and
ca = cb mod(m), then
a £ b mod(m).
Therefore, from equation 4.3.4. if (a, Zk—l) = 1, then from
corollary 4.3.2,
2P 2 1 mod(2-1)
and the only solution is, p = k. Note that this occurs whenever 2k-1

is prime. We can restate this result in another way with the following

theorem.

64

Theorem 4.3.5.

If p is the smallest positive integer such that,
2Pa = a mod(2%-1), a < 251
then if p < k,
(a, 2%-1) # 1.
We can obtain a useful result regarding the values p can assume,

when a and 2k-1 are not relatively prime, with the help of the following

theoren.

Theorem 4.3.6.41’42

e
a

1 mod(m), then

|3
a

If e is the smallest positive integer such that
1 mod(m) |
if and only if elk. }

. |
Let us assume that for some a, a circulant is generated of order

P < k. Then from theorem 4.3.5. we have (a, Zk—l) # 1. Assume,

(a, Zk-l) = d, and write

k '

2-1=d.b , a=a
then.from theorem 4.3.4.
2P = 1 mod(b) 4.3, |
However from theorem 4.3.3. | ;
2% = a mod (2%-1)
and since 2k-1 = db and a = a'd
from theorem 4.3.4. again,
2% = 1 mod(b) 4.3.6.

Therefore from theorem 4.3.6. the simultaneous congruences 4.3.5. and

4.3.6. can only be so if prk. We have proved the following theorem.

65

Theorem 4.3.7.

If p is the smallest positive integer such that,
2P5 = a mod(25-1), a < 251
then p < k, if and only if, p]k.
Therefore only circulants of orders which divide k are possible.

We also have the following corollary.

Corollary 4.3.3.

If p is the smallest positive integer such that,
2Pa = 2 mod(Zk-l), a < 21
then if k is a prime, p = k.
Since if k is prime it has no divisors except 1, the trivial

circulant order, and itself k. We also have the following Corollary.

Corollary 4.3.4.

If p is the smallest positive integer such that,
2Pa = 5 mod(Zk-l)
then if p < k, k is a composite integer with more than one factor.
Summarizing the results so far, we have;
(a) p =k, if
. k
(1) (a, 27-1) = 1 4.3.7.

(ii) k

a prime
(b) if p <k,
. k .
(i) (a, 27-1) #1
(ii) k = a composite. _ 4.3.8.
(iii) plk

There is one further useful result, which demonstrates a particular

case when b(i) and (ii) of equations 4.3.8. are satisfied but p = k.

66

This occurs when a = 2n-1, n < k. To show this requires some results
to be derived for numbers of the form 2k—1. Numbers of the form 2k—l
have been the subject of considerable research among mathematicians

and the following points are known.43

i) if 2k-1 is prime, k must be prime.
ii) if k is a prime, Zk-l may be composite.
iii) if k is composite, Zk—l is always compositg.
If k is prime 2k~1 is‘called a Mersenne number. There is no known
generalized method for finding the fac;ors of composite Mersenne
numbers and many such numbers have still not been successfully factored.
However to show that p = k when a = 2"-1 we begin with the followipg

theoren.

Tﬁéorem 4,3.8.

If p and k are positive integers such that (p,k) = 1, then

(2P-1, 251y = 1.

Proof:
Assume it is not true and

(2p—1, 2k-1) = t, then we have,

1 mod(t)

k

2 1 mod(t)

there are two cases to consider.

(a) 1let p < k and assume p is the smallest integer such that the
congruence holds, then from theorem 4.3.6. pfk and (p,k) = p.

Similarly if k < p and k is the smallest integer, k|p and (p,k) = k.

(b) 1if neither p nor k are the smallest integers satisfying the

congruence, then there exists some integer s, such that

67

s <p ‘and s < k and
s _
27 = 1 mod(t)

but then from theorem 4.3.6.

s|p and s|k and (p.k) = s.
If (p,k) = 1, both cases are impossible and so (2p-1, 2k-1) = 1.

Q.E.D.

Two corollaries follow.

Corollary 4.3.5.

If k is a positive prime, then for all p < k, (2p—1, Zk-l) = 1,

Corollary 4.3.6.

All Mersenne numbers are relatively prime to all other Mersenne

numbers.

We require two more results before the general proof is presented.

Theorem 4.3.9.

If e|k, then 2°-1|2%-1.

Proof:

Let k = en, then
08P - (%YL 4 @24 L+ 2%+ D)

Q.E.D.

Theorem 4.3.10.

If n and k are positive integers such that n < k and
(2°-1, 25-1) = d, then
d = 23—1,.where s £ n.
Proof:

Since d is a common divisor

68

n

2 1 mod(d)

k

2 1 mod(d)

there are two cases to consider.
. n k n
a) if n|k, then 2°-1[27-1 from theorem 4.3.9. and d = 2"-1.

b) if n)k, there exists some integer s, such that s|n and s|k and

25 = 1 mod(d). 4.3.9.

However, since s|n and k, from theorem 4.3.9. 28—1|2n—1 and
25—1[2k-1 therefore ZS—lld. But d|23-1'from equation 4.3.9., therefore
d = 2°-1. |

Q.E.D.

Corollary 4.3.7.

If n and k are positive integers such that, n < k,and (n,k) = s,

then
(a) (2"1, 2k~1) = 2%-1, and
®) 2"-1 251) .
28 ’)
-1 2°-1
Proof:

If (n,k) = s, then 25-1 is the greatest integer of this form

that divides 2™-1 and Zk—l. ASince the greatest common divisor must be
of the same form, from theorem 4.3.10, then 25-1 is the greatest
common divisor of 27-1 and 2k-1. |

If there existed some d > s such that Zd-l divided 2"-1 and 2k—1,
then this implies dln and dlk and (n,k) = d, which is not possible and
(a) is proved.

It follows from the definition of gréatest common divisor that (b)

is proved once (a) is proved.

Q.E.D.

Returning to equation 4.3.4., if a = 2n—1, n < k, we have,

2P2"-1) = (2™-1) mod(2k¥1), or

2P (2%-1) = q(2F-1) + 2%-1, 21 < 2541

where q is a positive integer. In terms of q we can write,

_ @P-p "1
(25-1)

q 4.3.10a

We can now show that if n < k, for q to be a positive integer, p = k

is the only value for p.

Theorem 4.3.11.

If q,p,n and k are positive integers such that n < k and p < k, if_

(2P-1) (2%-1).

q=
(2¥-1)

then p =k and q = 271,

Proof:

There are three cases to consider,

a) if (n,k) =1, (2n-l, Zk-l) =1 from theorem 4.3.8. therefore

2k—1 must wholly divide 2P-1 so that.p = k.

b) if (n,k) = n , let k = nb and from theorem 4.3.9. 2n-1|2k—1

and q can be written,
2P-1
(zn)b—2+

9= b1,

(2“) cees + 2n+1

but since p|k, let k = pc = nb and p = nb/c, and therefore

2nb/c_1

q*= - oy
(2n)b Ly (Zn)b 2, vee. #2041

70

But if q is to be an integer, we require

nb
'c—' > n(b 1)
b

or -c- > (b 1)

which can only be so if ¢ = 1.

Thus, k = pc = p.

c) if (n,k) = s, s|n and k, and from theorem 4.3.9. Zs-llzn-l and

2°-1. We can then write n = f.s , k =ts , then (f,t) =1 and

. = @2P-1) (25 0552,
((zs)t-l + (zs)t—Z +

.+ zs+1)
cese * zs+1)

But from theorem 4.3.10 and corollary 4.3.7.

2"-1 2*.1) 1
, -
25-1 251

so for q to be a positive integer, we require that 2k-1/25—1 wholly

divides 2P-1. Since k = pc =ts, p = st/c, and

‘- 25y (25« 552 4 L+ 2%
(@HFT + @552 4 L.+ 254
thus we require,
st
. > s(t-1)
t
z (t-1)

which is only possible if ¢ = 1.

Thus k = pc = p.
Q.E.D.

Therefore, if p = k,
1) (a, 2%1) =1

or 1ii) k = prime

71

or iii) a= 2n—1, n < k.,
And if p < k
i) plk

k
i) 2P = gD oy
a
for some q = 1,2,3,. 4040

In the following example we find all orders for all a < 26—1.

Example 4.3.2,

We find as an example, all circulants generated by integers
a < 26—1. We begin with unity.

(2.1, 241, 221, 23.1, 2.1, 25.1) = 11,2,4,8,16,32)
since 26.1 =1 mod(26—1) , P =06 as expected since (1,26-1) =
We proceed by taking the next lowest integer not contained in the
generated set above, which is 3; giving

(3,6,12,24,48,33} and p = 6, since 3 = (2°-1).
The next lowest integer is 5.

{5,10,20,40,17,34} and p =6, since (5,63) =1

{7,14,28,56,49,35} and p =6, since 7 = (23-1)

{9,18,36} and p =3,
{11,22,44,25,50,37} and p = 6, since (11,63) =1
{13,26,52,41,19,38} and p = 6, since (13,63) =1

- {15,30,60,57,51,39} and p = 6, since 15 = (24-1)
{21,42} and p = 2,
{23,46,29,58,53,43} and p = 6, since (23,63) =1

{27,54,45} and p = 3,
(31,62,61,59,55,47} and p = 6, since 31 = (2°-1)

and (31,63) = 1.

oy

72

Since a circulaqt consists of all cyclic shifted forms of the
generating k—-tuple, if we form the modulo 2 sum of two k~tuples from
different circulants to obtain a check sum, the modulo 2 sum of the
cylically shifted versions of the two k-tuples forms another check
sum on another digit. Mathematically we can say, let {a} be the éet
of integers generated by 2Pa mod(2k—1) for O é P § k, then if

ml(x) and mz(x) sum to form a check sum,

B(ml(X) + mz(x)) e {1} 4.3.6.
and

B(xp ml(x) mod(xk+1) + %P mz(x) mod(xk+l))

2° Blm, (x) + m,(x)) mod (25-1) € {1}

and this applies generally for,
m
B[) mi(x)J € {1} , 4.3.7.
i ,

where ml(x), mz(x),..., mm(x), sum to form a check sum.

4.4 Initial Code Construction.

By using the results of the previous sections we can build up

codes, whose generator matrix is composed of circulant k' = (k-1)-tuples
: circulent o

with an overall ' check on A; columnis. We know from theorem 4.2.2.

that providing the generatof matrix contains all k' = (k-1)-tuples of

weight (b+l), we can add circulants 6£ order p, weight b, and increase
the number of check sums by J = p(k'-b)/k' with each additional circulant.
Of course each time a circulant of order p is added, the code length, n,
increases by p. Since all check sums are formed by adding pairs of
received digits the overall parity-check cancels.

We can Eest consider the initial code construction by an example,

If we use the circulants of example 4.3.2. then k' = 6, and we construct

codes with k = 7 information digits. Table 4.4.1. below represents
each circulant by its generating number, a, and gives its order p,
binary weight b and the number of check sums it p;ovides,assuming,
for the moment, all (b+l), k'~tuple circulants are contained in the
generator matrix. For completeness the two trivial generators are

also given.

TABLE 4.4.1,

Genérating Order : Weight Check-sums
Number a, P b J = p(k'-b)/k'

63 1 6 0

31 6 5 1

27 3 4 1

15,23 6 4 2

21 2 3 1

7,11,13 6 3 3

9 ' 3 2 2

3,5 6 2 4

1 6 1 5

0 1 0 1
Note:

Although the check sums indicated are on the first k' information
digits, having decoded these, it is a simple matter to decode the k'th,
as we shall see later. |

A given code can therefore be represented by its generating
numbers. We begin by assuming the generator matrix contains 63, that
is, all the k'-tuples of weight 6. We then add our circulants and obtain

the set of codes given below, in Table 4.4.2.

74

TABLE 4.4.2.

Code length Check—-sums Generating numbers
n J a
7 1 63,31.
13 3 63,31,15.
13 3 63,31,23. i
10 2 63,31,27. |
16 4 63,31,15,27.
16 4 63,31,23,27.
19 5 63,31,15,23.
22 6 63,31,15,23,27.
28 9 ' 63,31,15,23,27,7.
28 9 63,31,15,23,27,11.
28 9 63,31,15,23,27,13.
24 7 63,31,15,23,27,21.
34 12 63,31,15,23,27,7,11.
34 12 n 7,13. '

Y 12 L 11,13.

30 10 " 7,21.
30 10 " 11,21.
30 10 " 13,21,
36 13 " 7,11,21.
36 13 " 7,13,21.
36 13 " 11,13,21.
40 15 L 7,11,13.
42 16 N " 7,11,13,21.
45 18 K 9.
48 20 " 3.
48 20 " 5.
51 22 L 9,3.
51 22 " 9,5.
54 24 " 3,5.
57 26 " 3,5,9.
63 31 " 3,5,9,1.
64 32 L 3,5,9,1,0.

75

These conditions are called "initial" because they are sub-
optimum. A slight improvement ii the constructions above is possible
in the following manner.

Consider the circulant generated by 27 of order p = 3. As a
binary 6—tup1e,A27 has the form 011011, of weight b = &, éo that it
will combine with 6~tuples of .weight b = 3 and b = 5 to form check sums.
Let {27} be the set of 6-tuples generated by 27, then by replacing each

single one in 011011, in turn, by a zero, we can see which weight 3,

'6-tup1es, 27 combines with.

001011 = 11 € {11}
010011 = 19 € {13}

0l1011 = '
: 011001 = 25 € {11}
011010 = 26 € {13}

Therefore any 6-tuple € {27} only combines with weight‘3, 6-tuples
€ {11} and {13}. The circulant {27} provides one check sum, from
theorem 4.2.2., when combined with the weight 5, 6-tuples so that in
codes whose generator matrix contains {27} but does not contain {11}
and {13}, if we remove {27} we will .reduce J by one and n by three.

This is done in the following codes;

28, J

1

i) =n 9, {63,31,15,23,27,7}

24, J

ii) =n 7, {63,31,15,23,27,21}

iii)- =n =30, J = 10, {63,31,15,23,27,21,7}
If we remove {27} we obtain

i)' n=25J3=8, {63,31,15,23,7}

ii)' n=121, J = 6, {63,31,15,23,11}

27, J

iii)' n 9, {63,31,15,23,7,11}.

76

Since {27} combines with {11} and {13} .we show this by writing,

{27} +—=—

{11}, {13}.

Examining all generators we dbtain:

{63} <= {31}

{31} << {15},{23},{27}

{15} <= {7} ,{11},{13}

since {31} is all 6-tuples of
weight 5 no alteration is applicable.
no new code.

remove {15} from codes containing {15}

and {21}.
n=18, J=5 .{63,31,23,27,21}
{23} <& {7} ,{11},{13},{21} . no new code.
{27} <= {11},{13} see above example.
{7} <= {3} ,{5} remove {7} from codes containing {7}
and {9}
n=39, J=15 {63,31,15,23,27,11,13,21,9}
{11} <= {3} ,{5} ;{9} no new code.
{13} += {3} {5} {9} no new code.
{21} < {5} | remove {21} from codes containing {21}
and {3} and {9}
n =46, J =19 {63,31,15,23,27,7;11,13,3}
n=43, J=17 (romowomowowomow g
n=49, J=21 romowomomowomowo3 g}
{3} < {1} no new code
{5} <= {1} moomoow
{9} <= {1} moomoon
{1} +— {0} no new code

The new codes are also sub-optimum since some improvement is still

possible.

77

4.5 Utilization of Redundancy.

In the previoQS section we presented a set of codes whose
generator matrix was composed of circulants of differing orders. The
total number of check sums possible, by adding pairs of colummns, (or
similarly'pairs of received digits) was equal to the sum of the number
of zero's in the columns of all the circulants present. That is the
number of zero's in a row of the generator matrix, except the row
- which is an overall parity-check. Because of this any k-tuple columm
not used to decode message-digit i, which is said to be redundant, must
have the i'th and k'th digit as binary one. The codes in the previous
section are sub-optimum because of the relatively high number of
redundant k-tuple columns for each message-digit. To demonstrate the
uses which can be made of redundancy is best illustrated by example.
The examples which follow illustrate the uses of redundancy for the
decoding of digit 1, but due to the cyclic property of circulants, can
also be achieved on all k' = k-1 message-digits.

Consider the code; n = 49, J = 21,

G = [63,31,15,23,27,7,11,13,3,9]

The following redundancy is found on message-~digit 1,

1000011 Adding all seven k-tuples modulo 2 we have 1111111.
1100001 Ignoring digit k, this is the circulant {63} of order
1100011

1101001 one. Thus 63 can be deleted from the generator matrix
1010101 giving a code with, n = 48, J = 21. This usage will
1001011 be denoted by deleting 63 and writing -I with the
1001001

generating numbers,
If we divide the above redundancy into two sections we obtain

the two forms A and B below.

78

1000011 (A) 1101001 (B)
1100001 1010101
1100011 1001011
1000001 1001001

0111110

Note that for the message-digits other than 1 we will obtain

1000010, 1000100, 1001000, 1010000, 1100000 for A and 0111101, 0111011,

0110111, 0101111, 001111 for B. We make use of A by adding the
circulant of order 1 generated by O with a parity-check on the k'th
message~digit, that is the k-tuple 1000000. We denote this in the
generating numbers by + O. This gives the code n = 50, J = 22,
{63,31,15,23,27,7,11,13,3,9#0}. We make use of (B) by adding the
circulant of order 1 generated by 63 but with no parity-check on the
k'th digit, that is the k-tuple 0111111l. We denote this in the
generating numbers by +I. This gives the code,’

n=51,J =23, . ' {63,31,15,23,27,7,11,13,3,9,+0,+I}.

Outlined below are the best codes which could be found ﬁtilizing

the redundancy in the codes given in section 4.4.

i) n=7, J=1 {63,31}.
1111101
1011111 giving the code
1ilioul n=8, J=2, {63,31,+0}.
1101111
1110111
1000001
ii) m=13, J=3 {63,31,15}.
1111011 1101111
1110011 1100111 .
. giving codes
1111001 1110111
1001111 1111111 n=12, J=3 {31,15,-1}
0111110 ' n=13, J=4 {31,15,-1,+I}

79

Note that since {31} and {15} both have order six, the code

n =12, J =3 is quasi-cyclic.

iii) n = 18, =5, {63,31,23,27,21}
1010101 1110101
1010111 1011101
1111101 1011011
1111111 1101101
1011111
1000001
giving codes
n =17, = 5. {31,23,27,21,-1}
n = 18, = 6. {31,23,27,21,-1,+0}
iv) n = 21, = 6. {63,31,15,23,21}
1110111 1110101 1100111
1001111 1010111 1110011
1111001 1011101 1010101
1000001 1111111 . 1000001
giving codes
n = 20, = 6. {31,15,23,21,~1}
n = 21, =7, {31,15,23,21,~1,+0}
n = 22, = 8. {31,15,23,21,-1,+0,+0}
v) n = 25, = 8. {63,31,15,23,7}
1000111 1100011 1110001
1110011 1110111 1010111
1110101 1101011 1100111
1000001 1111111 1000001
giving codes
n = 24, = 8. {31,15,23,7,-1}.

This code is also

80

quasi-cyclic, since all the circulants have order 6.

n=25 J=09, {31,15,23,7,~1,+0}
‘ n =26, J=10, ' {31,15,23,7,-I,+0,+0}

vi) n =27, J=09, {63,31,15,23,7,21}.
1010101 1000111 1010111
1110111 1110101 1100111
1100011 1110011 1110001
1000001 1000001 1000001

giving codes
n =28, J-=10, {63,31,15,23,7,21,+0}
n=29, J-=11, {63,31,15,23,7,21,+0,+0}
n=30, J=12, {63,31,15,23,7,21,+0,+0,+0}.

vii) n = 34, J =12, {63,31,15,23,27,7,11}
1110001 1000111 1011001 1001011
1011011 1100011 1100111 1110101
1101011 1100101 0111110 0111110
1000001 1000001

giving codes
n =23 J=13, {63,31,15,23,27,7,11,+0}
n=36, J-=14, {63,31,15,23,27,7,11, +0,+0}
n=37, J=15, {63,31,15,23,27,7,11, +0,+0,+I}
n =38, J =16,

{63,31,15,23,27,7,11, +0,+0,+I,+I} .

Alternatively we can rearrange the k—-tuples and use the following

sets.

1110001
1011011
1101011
1011001

1100111
1111111

1100101
1000001

1000111
1100011

1001011

1110101
0111110

ix)

giving codes

n =33, J=12,
n =3, J=13,
n =35 J= 14,

viii) n = 40, J = 15,

1001011 1100101
1011001 1101001
1010011 1001101

1000001 1000001

giving codes

~n =41, J =16,

n=42, J

17,

n =43, J =18,

n=43, J=17,

1101011 . 1101001

81

{31,15,23,27,7,11,-1}
{31,15,23,27,7,11,-1,+0}

{31,15,23,27,7,11,-1,+0,+1}

{63,31,15,23,27,7,11,13}

1000111
1100011
1110001

1101011
0111110

{63,31,15,23,27,7,11,13,+0}

{ " ’+0’+0}

-

-~

{ " ,+0,+0,+I}

' {63,31,15,23,27,7,11,13,9}

1001011
- 1001001 1110001 1001101
1100011 1011001 1000111
1000001 1000001 1000001

giving codes

X)

xi)

n=44, J =18,
n =45, J =19,
n =46, J = 20,

n =49, J=21,
See initial example.

n =54, J=24,

£§3,31,15,23,27,7,11,13,93+O}

{ " ,+0,+0}

LN—

v

{ " ,+0,+0,+0}

{63,31,15,23,27,7,11,13,21,3,5}

1000011 1100001

1010001 1000101
1010011 1100101
1000001 1000001

giving codes

n =55, J =25, 563,31,15,23,27,7,11,13,21,3,5,f0}

n =56, J

26, { " ,+0,+0}

In all constructions above the complete set of redundant k-tuples
is shown. Mﬁst of the optimum codes are derived ffom the use of
'redundancy shown- above. Generally any code where k' is a prime which
uses the -I redundancy property only is quasi-cyclic. But, as we saw
in the above constructions, quasi—cyclic codes can occur for composite
k', though they may not be optimum codes for that k'.

There is an aspect of the utilization of redundancy which is not
obvious in the examples presented. Of the three forms of redundancy
possible, that is 111e---111, 01111++-110 and 1000---001, the most
efficient form is 011l¢++<110. The form 1000001 requires the sum
of at least three redundant k'-tuples and the form 1111¢+++111l can only
be used once. However the form 0111+++<110 can be obtained by the

sum of two redundant k'-tuples in the most efficient case.

Example 4.5.1.

83

1

We set out below all those optimum codes developed using a < 2k -1,

for k' = 6,5,4,3,2. Quasi-cyclic codes are denoted q.c.

k' = 6.

Code length Check sums Generating numbers
n J a€eaG
7 1 63,31.
8 2 63,31,+0.

gec. 12 3 31,15,-1.
13 4 31,15,-1,+I.
17 5 31,23,27,21,-1.
18 6 31,23,27,27,-1,+0.
21 7 31,15,23,21,~I,+0.
22 8 31,15,23,21,-I,+0,+0.
25 9 31,15,23,7,-1,40.
26 10 31,15,23,7,-1,+0,+0.
29 11 63,31,15,23,7,21,+0,+0.
30 12 = K ,+0.
34 13 31,15,23,27,7,11,-1,+0.
35 14 - W L.
37 15 163,31,15,23,27,7,11,40,+0, 4L,
38 16 " ,+I.
42 17 163,31,15,23,27,7,11,13,+40,+0,
43 18 K ,+1.
45 19 163,31,15,23,27,7,11,13,9,+0, +0,
46 20 " ,+0.
48 21 31,15,23,27,7,11,13,3,9,-I.
50 22 163,31,15,23,27,7,11,13,3,9,+0,
51 23 “ +1.
54 24 63,31,15,23,27,7,11,13,21,3,5,
55 25 " ,+0.
56 26 " ,+0,+0.
63 31 63,31,27,15,23,21,7,11,13,9,3,5,1.
64 32 X ,0.

k' =5
Code length Check sums "Generating numbers
n J a€EG
6 1 31,15.
7 2 31,15,+I.
g.c. 10 3 15,7,-I.
11 4 15,7,+1,-1.
q.c.- 15 5 15,7,11,-1,
16 6 " ,+0.
q.c. 20 8 15,7,11,3.
22 9 31,15,7,11,3,+0,
23 10 " ,+L.
26 11 31,15,7,11,3,5,
27 12 " ,+I.
31 15 &31,1§¢7,11,3,5,1;
32 16 " ,+0.
k' = 4.
" n J a€G.
5 1 15,7.
6 2 15,7,+0.
9 3 15,7,3.
10 4 15,7,3,+0.
13 5 15,7,3,1.
14 6 15,7,3,1,+0.
15 7 15,7,3,5,1.
16 8 15,7,3,5,1,0.
k' = 3.
n J aeeG.
4 ‘1 7,3.
5 2 7,3,+0.
7 3 7,3,1.
8 4 7,3,1,0.
k' = 2.
n J a € G.
3 3,1.
4 2 3,1,0.

4.6 Amount of Redundancy.

Let Rd(b) be defined as the number of columns of the generator
matrix, or similarly the number of received digits, not used to decode
message-digit m(i), 1 € i € k', where b is the smallest binary weight
of the circulant sets used in G.

If the generator matrix comprises the complete séts of k'-tuples,
of weights k', k'-1, k'-2,....,b, then the redundancy occurs only in
the set of weight b. From theorem 4.2.1. we know that the number of
k'-tuples of weight b used to form check sums is equal to the number

of zero's in the column of b-weight k'—tuples. Therefore,

_ (k'-1):
J = b! (k'—l-b)! 4-6-1.
Since there are a total of Nb k'~tuples of weight b, where
_ k'.
Y T BT ()T

then the redundancy in this case is given by,

Rd(b)

Nb -J

k! k'-D)!
bt (k-b)! B! (k'-1-b)!

o (k-1
-1)7 (k-b)!

4.6.2.a.

which is equal to the number of binary ones in a column of the column
of b-weight k'-tuples. 1In example 4.2.1. the redundancy in the set

b =3, is

86

If the final set of k'~tuples used is.not complete, that is

circulant sets of ﬁeight b are used, we can write,
RA(b) = Rd(b+1) - C(b). 4.6.2.b.

Here Rd(b+l) is the redundancy when the final k'-tuple set has
weight (b+1l), and C(b) is the change brought about by adding an incomplete
set of weight b.

If the reduction, C(b), is effected by one circulant of order p,

then from theorem 4.2.2. it has Jp zero's per column, where,

_ p(k'-b)
. Jp k' 40603.
Thus, the number of binary one's per column, Ip, is given by,
- - _ p'-b)
L=p- =5
Therefore,
Ch) =3 -1
(b) > »
2p(k'-b]
p(k') b
2pb
.= p - -%%r | 4.6.4.
If there are o, circulants of order P;
ZPib
C(b) = g mi [pi - T] 4.6.5.
and generally,
- 2pib
Rd(b) = Rd(b+l) - g m, [pi - —] 4.6.6.

Example 4.6.1.

Consider the code whose generator matrix columns utilize k'-tuples

87

with k' = 17, down to b = 2. From equation 4.6.2.b.
Rd(2) = Rd(3) - C(2).

Since k' is a prime only circulants of order 17 are possible.

The number of weight 2,17-tuples is,

17!

Ny = grgr = 136
Therefore, let
_ 136 _
m=17 =8
P = 17
m., =0, fori>1.

Let 1 € m ¢ 8 then from equation 4.6.5.

2p..2
c(2) L]

- [Pl T 17
= m.13

and since, from equation 4.6.2.a

Rd(3) = ST 14T - 120
from equation 4.6.6.
Rd(2) = 120 - m.13. 1 <mg 38

and .we reduce the redundancy by 13 each time a circulant is added.
Before adding any circulants we will have a code with, length

17

Z kll
n= —-—,——,_._'—',— = 130,918
b=3 b! (k'-b)!

check sums,

«“
[}

= 65,399

1§ ('-1)!
] Ty T
oLy BT (k1)

RdA(3) = 120.

 Rd(b) and n. .

01~ -2 3 4 56 7 8 9 10 11 12 13 14 15
e o L N 1 B

e oo ... Rd(b) AND-n AS A FUNCTION OF b. - - oo -

88

Each time we add a circulant we increase n by 17, decrease
_ 17(17-2)

Rd(b) by 13 and increase J by Jp =7 = 15, giving the set
of codes below.
n J Rd(b) k
130,918 65,399 120 18
130,935 65,414 - 107 18
130,952 65,429 94 18
130,969 65,444 81 18
130,986 65,459 68 _ 18
131,003 65,474 55 18
131,020 65,489 42 - 18
131,037 65,504 29 18
131,054 65,519 16 18

We can extend our example and at the same time our investigation

of redundancy by examining how Rd(b).and the code length vary with b.

In fig. 4.6.1. we have plotted

(k'-1):
(b-1)! (k'-b):

Rd(b) =

and

k' K'!
n=) T
b b: (k'-b)!

for values of, k' =17, 0 £ b g 17, that is just codes where full
sets of k'-tuples of weight b are used. Since addition of extra
circulants increases or decreases‘Rd(b) linearly between these poiﬁts
and increases n linearly, the resultant curves apply to all codes with
k'

k' =17, n g 2

N

Let n(R) be that value of n when Rd(b) is at its maximum, then
it is apparent that the codes are more efficient when n > n(R), in

terms of redundancy. If k' is odd, Rd(b) will be a maximum when,

Rd(b)
max

n(r)

‘Rd(b)
max

- 0.4 40~ N s R T e e ——-
Rd (b) :

S “fa® -

R 10’:.‘»____-_ . . - 7 'V .__.. . '. e - ..._._.v.....<;_..,_.__:_, e e - e e
5 - 10 15
| FIG. 4.6.2.
PLOT OF Rd(b) /n(R) AGAINST k.

N SMAX e e e el e

89
(b-1)! = (k'-b)! that is when
b-1 =k'-b or
k'+1
b = 5 or
_k'-1 '
b-1 = - - 4.6.7.
Therefore,
. (k'-1)!
RAG) e = (woD], [R-1]
-2 : 2 :
. kl
k kl!
n(R) = Z T T T
kel B! (k'-b) !
2
k'-1

=2

If k' is even, Rd(b) is a maximum when

(b-1)! = (k'-btl)!
say b-1 = k'-b-1
? 1
and b =% , w1=%a1
_ (k'-1)!
Rd(b)max l(_'__ 1J| _IE' 1
2 2 4"
kl
_ k'!
a® = L STET
b=y

this value of b gives the largest value for n(R).

Figure 4.6.2. shows a plot of the ratio Rd(b)max/n(R)’ when k'
is various increasing odd values. Although this ratio decreases
exponentially, Rd(b)max is increasing exponentially as figure 4.6.2.

also shows. The length n is simply increasing faster than Rd(b).

N and J.

FIG. 4.6.3.

~~ INCREASING LENGTH N AND CHECK-SUMS. J FOR.INCREASING k, MESSAGE-LENGTH.

10 11 b

90

In figure 4.6.3. we show a family of curves for n increasing
with b, for various values of k'. If one curve is plotted for

some value of k', say n, then

kl
k'!
n, =) TrmresT 0<b gk
1 b b! (k'-b)!

then the curve for (k'-1l) is plotted for,

' .
o kZ L w-n:
2 g b (k"-1-b)!
But for the system using k',
'—
;. kZ L @-n!
b bl (k'-1-b)!
and therefore,
n, =J

for the system of k'.

4.7 Minimum Distance of the Codes.

It is a property of all codes that if ome can obtain J orthogonal
check sums on the message-digits, then to decode correctly in the presence
of t errors, one requi?es J = 2t+l. 1If, with this type of check sum,

J = dm, the minimum distance of the code, the code is said to be completelé
orthogonglizable up to its minimum distance.

Consider the codes developed in section 4.4. Since we have J
check sums we, at least, are sure that dm > J. The codes were developed
by ensuring that each row of the generator matrix, except the row which

forms an overall parity-check on the k'th digit, has J zero's. Thus the

91

linear combination of any of these rows with the overall parity-check
row wili produce a code word, in the code, whose binary weight is
equal to J. But if there exists a code word weight J, then J 3 dm
for this code. Since, J 3 dm z J, dﬁ = J.

So that the codes in section 4.4 are completely orthogonalizable
up to their minimum distances.

We merely have to show Fhat by utilizing redundancy, as in

section 4.5., we maintain the same relationship between J and dm.

We utilized redundancy in the following ways.

- k-digits
i) deleted the k-tuple “1111....111
ii) added the k-tuples 1000....000
'iii) added the k-tuples ol1l....111

a) From (i) the value of J remains the same, so that dm >J. 1In
the original code adding the i'th and k'th rows of G mod.2, gave a
code word of weight J, and since the mod 2 sum of the i'th and k'th
digit of 1111....111 is zero, after deleting this k-tuple thére still
exists a code word of weight J. Therefore,

Jzd =7J and J=4d_.
m m

b) From (ii) we increase J by one, so let the new J' = J+l, then
dm 2 J'. In the original code adding the i'th and k'th row of G

mod 2 gave a code word of weight J. Adding the k-tuple 1000....000,
to the generator matrix will produce a code word of weight J plus the
weight of the mod 2 sum of the i'th and k'th digits of the additional

k-tuple. This is always 1 so there exists a code word of weight

J' = J+1, and since J' 2 dm 2 J' , then dm = J'.

c) The argument for the k-tuple O1ll1ll....11l1l, is the same as above
for 1000....000.

So that the optimum set of codes developed in sectiomn 4.5. are
completely orthogénalizable also.

We can show in fact that

4 = D= Rd(D) 4.7.1.
m 2 .
Consider the length of those codes whose generator matrix is

composed of complete sets of k'—tuples, with overall parity-check,

down to b-weight k'-tuple sets.

k' LAY
n = Z (k)-
T T+ 1
eop b (k'-t)!
A N
T T+
| g=p E (k'-t)!
but
K'! _ ®'-D! &'-1)!
t! (k'-t)! t! (k'-1-t)! (e=1)! (k'-1-(t-1)):
and
| . | -
n=1+ kz . (k'-1): + 5 (e'-1): 4,7.2
& t! (k'-1-t)! L& (e-1)! (k'-1-(t-1)): theE
=b t=b
But since the number of check sums obtainable, ignoring redundancy,
is,
k'-1
(k'-1)!
J=) 4.7.3.
pp b (R'=1-t)e
then from equation 4.7.2.,
k'-1 t_1y 1
n=1+J+) ('-1): 4.7.4.

L EDY &

93

If we expand the final term, of equation 4.7.4.

- (k'-1) (k'-1) (k'~2)
= 17 + M + ieiisesneeann
k-1 (R'-2). ..., .. (k'-DH])
v N

Similarly if we expand J, equation 4.7.3.

LD -1 (R'-2)

=1 17 » STt e ceecseane
+ kK'-D)(k'-2).iiun... (k'~b)

ceses ‘)
So that
k'-1 » 1 1 1]

(k"-1)! -7 -1+ k'-D(k'-2)..... (k'-b+l)
t=b (t=1)! (k'-1-(t-1))! (b=1)!

N RS PR S D

(b-1)! (k'-b)!

therefore putting in eqﬁation 4.7.4.

_ (k'-1).
n=2J+ G-D! &by 4.7.5.
but,
J=4d
m
and .
- (k'-1):
RA®) = DT ()
‘therefore,
n = 2dm + Rd(b).) 4.7.6.

When incomplete sets of weight b are used, (that is circulants),

Rd(b) is the number of k'~tuples unused after forming all possible

check sums by adding pairs of k'-tuples. Therefore the above equation

for n holds provided the modified form of Rd(b) is used, from equation

4.6.6.
_ . 2pib
n = 2d_+ Rd(b+1) - g m, [pi - -—37—-]
When one utilizes redundancy this expression is modified slightly,

in the following ways.

a) Using -I.
The length is reduced by one and the minimum distance remains the

same, therefore, if n' is the new length,
- -
n de + Rd(b)-1.

~ b) Using +0.

The length and minimum distance are increased by one, but

\j

n 2(dm+1) + Rd(b) = n+2, so that

[

= 24! + Rd(b) - 1 = n+l,

where dé is the new minimum distance. If we add generally m,+0 k—-tuples,
the length increases by m, and dé = dm + m.

But

-
It
L]

2(dm+m) + Rd(b) n + 2m, so that

|
]
o]

= 2dé + Rd(b) - m + m.

¢) - Using +I.
The results are the same as for +0, generally adding m,+I k-tuples,
gives
n' = 24! + RA(H) - m.

Since for the codes listed in Example 4.5.1., J = dm’ we compare

them with dm from Hel .gert and Stinaffao, below, in Table 4.7.1.

95

Hel gert and Stinaff4o is a table of maximum minimum distances
for all codes of length n < 127 and information digits k < 127. It
effectively gives the maximum minimum distance possible, as specified

by all known upper bounds at that time, for a given n and k.

TABLE 4.7.1.
n K a . dm4°
7 1 1
8 ") 2
12 " 3 4
13 " 4 4
17 " 5 6
18 " 6 7
21 " 7 8
22 " 8 8
25 " 9 10
26 " 10 11
29 " 11 12"
30 n 12 12-13
34 " 13 14-16
35 . 14 15-16
37 L 15 16
38 " 16 16°
42 " 17 17-19
43 L 18 18-20
45 " 19 20"E
46 " 20 20-21
48 " 21 228
50 " 22 24
51 L 23 24
54 " 2 24-26
55 " 25 24-26
56 " 26 24-27

96

TABLE 4.7.1. (Contd)

n K a dméo
63 7 31 31t
64 " 32 32

6 6 1 1

7 u 2 2
10 " 3 3
11 " 4 4
15 " 5 6

16 L 6 6"
20 " 8 8
22 L 9 9¢
23 " 10 10
26 " 11 12
27 " 12 12
31 " 15 15T
32 " 16 16

5 5 1 1

6 " 2 2

9. " 3 3
10 n 4 4
13 " 5 5
14 " 6 6
15 " 7 7B
16 " 8 8

4 4 1 1

5 " 2 2

7° " 3 3t

8 n 4 4

3 3 1 1

4 " 2 2

The raised alphabetic indices refer to various bounds in the
tables of Helegert and Stinafe C.

15 8 4 4 (63,55,-1,+0)
14 8 3 4 (63,55,-I).

Count
to

Read only
memory

FIG. 4.8.1.

GENERAL ENCODER.

97

4.8 Encoding and Decoding.

Since it is not the purpose of this thesis to investigate the
hardware implementation of encoders and decoders for error-correcting

codes, a simple and informal method is offered.

4,8.1. Encoding.

Figure 4.8.1. offers an encoding method which has reasonable
storage. A read-only-memory is addressed by a binary counter which
counts up to n, the length of the code. For each value of n, the
read-only-memory outputs a k'-digit binary k'-tuple corresponding to
the n'th column of the generator matrix. Each digit of the k'~tuple
is weighted, by multiplication modulo 2, by the corresponding message-
digit. The k' weighted digits are summed and added to digit k, the
resultant being an encoded digit.

The total storage then being S,
= . !
S Ezlog2 (n) 3 k',

One advantage being that if k' is relatively large but the code
length short, then the storage is small, Read-only-memories exist at
present that can be addressed by 12 input lines, so that this is
limited to codes of length n < 212. The number of output lines is
not critical since:the output k'-tuple can be sub-divided among a number

of read-only-memories, each of which is addressed by the Elog2 n}

inputs.

4,8,2, Decoding.
In section 4.3, we saw that if a set of check sums can be obtained

on a digit, then a similar set can be obtained by cyclically shifting

‘¥4dd0d3a TVIANID

‘¢'8ty "DI1a

2

Register

‘

1 Register

e o 9 o

Register

m(i)

'cancel!

I

m(i)

98

all circulants one digit, with respect to themselves.

" In the decoder then we have a shift-register of length p,
corresponding to each circulant of order p, contained in the generator
matrix. Connections are made from the shift-registers to obtain J
check sums on the first message-digit. This is shown in figure 4.8.2.
only in a general way. Decoding is then performed in the following

way.

i) with gate G2 closed and Gl’ and G3 open, the received word

is fed in.

ii) digit m(l) is decoded, and its effect cancelled from the

shift-registers.’

iii) gate G, is closed, G,, and G, opened and the shift-registers

1 2° 3

clocked once.

iv) the second digit m(2) is decoded and cancelled.

v) continue iii) and iv) until k' = k-1, of the message-digits

have been decoded.

vi) at this point, provided t < (dm—l)/Z errors occurred, the
shift-registers contain approximately n estimates of the k'th digit,

in the presence of the t errors.

vii) with G1 closed, when the registers are clocked for the k'th
time, G3 is closed so that each adder sees only one input, and digit k

is decoded and cancelled.

viii) steps 1i) to vii) can be repeated to check for uncorrectable

error patterns.

99

CHAPTER 5

5. CODES DERIVED FROM THE CLASS OF BINARY CODES.

5.1 Introduction,

The most useful class derived below from the constructions in
Chapter 4 are those codes where k = k', and the overall parity-check
is removed. We show that it is possible to obtain a better code
sometimes with this method.

We also examine codes derived from extending the generator
matrix in various ways and obtain one class which is completely
‘orthogonalizable with n = 2 dm'

However some classes will be seen not to be cyclically decodable

and this puts a practical limitation on their use.

5.2 Codes without the Overall Parity-check.

The ‘codes developed in Chapter 4 assumed the generator matrix
contained an overall parity-check on the k'th message-digit. The
codes were developed using circulants such that J orthogonal check
sums could be guaranteed on the first k' message-digits and the k'th
message—-digit was decoded by cancelling the decoded estimates of the
first k' message-digits, from the received code word.

Consider the codes developed in section 4.4,.,, then, if the overall
parity-check is removed we will have a code in which we can guarantee
at least J check.sums on all k = k' message-digits. The code length

‘n, will be the same, but we are no longer sure of dm, based upon the
arguments in section 4.7. The redundancy is dete;mined by the circulants

and is therefore the same, but a more efficient use can be made of it now.

100

The uses of redundancy can now be outlined as below.

a) The k-tuple 111....111.
As before we remove the circulant generated by Zk-l, from the
generator matrix. The length is reduced by one and J remains the

same.

b) The k-tuple 1000....001.
Since the overall parity-check has been removed, this has the
form 000....001 and is a valid check sum requiring no increase in

length.

¢) The k-tuple 01l11....110.

Again this now appears as 111....110 and can be used by the
addition of the circulant generated by Zk—l.

Consider the codes developed in section 4.5., wé will now

re-examine the redundancy and develop codes, for k = 6,

i) n=7, J=1, {63,31}

111101
011111 thié is now a valid check sum and gives the code,
111011
101111
110111
000001

ii) n =13, J =3, {63,31,15}

In Chapter 4 we obtained 1111111 and 0111110. Deleting the k'th
digit gives 111111 and 111110, but from (a) and (b) above this would
imply deleting and adding the circulant generated by Zk-l, which is

pointless, so we use,

111011
110011
111001
001111
101111
100111
110111
000001

iii) n
010101
010111

111101
111111

iv) n

001111
111001
000001

v) n

. 000111
110011
- 110101
000001

110111

same order.

21, .

giving the code,

n=

110101
011101
011011
101101
011111
000001

J=6,

110101
010111
011101
111111

100011
1101%1
101011
111111

13, J =4,

{63,31,15}.

{63,31,23,27,21}

giving codes,

n=

100111
110011
" 010101
000001

110001
010111
100111
000001

17,

=6, {31,23,27,21}.
{63,31,15,23,21}

giving,

n=20, J=28, {31,15,23,21}.
{63,31,15,23,7}

giving,

n =24, J =10, {31,15,23,7}.

Note, this code is quasi-~cyeclic, since all circulants have the

vi) n=27, J =29,

ol0101
110111
100011
000001

vii) n = 34,

110001
011011
101011
000001

000111
110101
110011
000001

J =12,

000111
100011
100101
000001

giving codes,

n =3, J-=14,

n =35, J =15,

n=236, J-=16,
Without

.possible.

n =40, J =17,

n

41, J =18,

n =43, J = 20,

=]
1]

48, 'J = 22,

n =50, J-=23,

=]
n

54, J = 26,

010111
100111
110001
000001

011001
100111
111110

102

repeating section 4.5.

{63,31,15,23,7,21}
giving,
n=27, J=12,

' {63,31,15,23,7,21}.

{63,31,15,23,27,7,11}

001011
110101
111110

k§63,31,15,23,27,7,11}

-

,+1}

d

,+I1,+1}

-

the following codes are also

{63,31,15,23,27,7,11,13}

N J 41}
! 3 ,9}
d " ,3)
d " 53,9,+1}
{ " ,21,3,5}

Comparison with the optimum for k = 6, developed in Chapter &,

we can see that the codes above are never an improvement. Although

at the points where the performance is equal, the above codes are

easier to decode, since gating to decode the k'th digit is not required.

However sometimes these codes are better than those of Chapter 4's

optimum set.

To show this consider the code below, for k = 7.

103

n=29, J=17, {127,63,55,47,31}

from redundancy we surprisingly obtain

1011101 1010111 1110101 1111001 0111101
0110111 0111011 1011011 1100111 1110011
1101011 1101101 0101111 0011111 1001111
0000001 0000001 0000001 0000001 .0000001
givihg,

n=729, J=12, {127,63,55,47,31}.

Note, if the generating number 127, is deleted we obtain the quasi-

cyclic code.

n = 28, J =11, {63,55,47,31}.

The best codes from Chapter 4 for k = k'+1l = 7, were,
n=29, J=11, and n = 28, J = 10,

Obviously then; when choosing a code with given k and érror-correcting
capability t, both constructions should be cohsi&ered.

Encoding and decoding are implemented in the same manner as for
Chapter & withoﬁt special provision for the k'th digit, which is not
now necessary.

The codes developed above, for the sake of clarity, are given in
Table 5.2.1., below and compared with dm from Helegert and Stinaffho.

Another code is included in Table 5.2.1. which is better than
the construction in Chapter 4 that is n = 21, . k = 7, J = 8 compared
withn =21, k = 7, dm = 7 in Chapter 4.

In section 4.5. we saw that the most efficient form of redundancy
was the form 0111l....110. However with the overall parity-check removed
the most efficient form is that which.required no increase in length,

that is, the form 000....001.

TABLE 5.2.1.

n

13
17
20
2%
27
34
35
36
40
41
43
48
50
54
29
28
21
15
10
21

13

HS 2NN

oo o B~ N

10
12
14
15
16
17
18
20
22
23
26
12
11

[« T Ve AT o o]

40

00 N &N

10
12
16
16
16
18-19
19-20
20
22
24
26

12

12

5.3 Extending the Generator Matrix.

{63,55,47,-1}

With the codes developed in Chapter 4 one eventually utilizes

all circulants from the system of k'-tuples and obtains the (n, k = k'+1)

code, with J check sums and redundancy Rd(b), where,

k'

k! !
n=) e =2
bby BT (kb)!
k'-1
(k'-1)! k'-1
J=) Tt =2 5.3.1.
phy BT (R-1B)T : |
Rd(b) = RA(0) = O.)

Obviously this is a very efficient set of k-tuples and implies

all check sums can be obtained by adding pairs of received digits.

1
We will represent such sets of k-tuples, that is all 2k k'-tuples

1
.

plus overall parity-check, by the symbol Sk We will show constructions

1

where Sﬁ' is considered as the basic set present in the generator
matrix and other sets are added‘to the basic set, to extend the
generator matrix.

Let Sk' be the complete set of k'-tuples with no overall parity-
check. This set and others to be introduced are to be interpreted
as follows. If a set Si is used in the generator matrix of a code
with k digits of information, then each (d+l)-tuple € Si is considered

as a k-tuple whose k-d-1 other digits are zero's.

Consider the set of k-tuples, Sk, which can be written,

S =38 Us 5.3.2.

where U is set union.

For example,

S4 = 83 U 83
1
gives, Si U s3
11111111 00000000
S4 = 11101000 11101000

1

1
11010100 11010100
10110010 10110010

However from equation 5.3.2.,

S =8, "us
k=2 sk=3 Sk-3
1
Sk—(k-Z)- - si Y Sl

So that we can rewrite equation 5.3.2. in the following form.

k _ k-1 k=2 k=3 R 1
ST = S1 U S1 U S1 U sees U S1 U S

To extend the generator matrix, for the codes of this section,

T -
we begin with the set S? = S? 1, and extend by forming its union with
other sets Si—z, S§-3 etc., until we can extend no more, whereby Sk

is contained in G.
Consider a code whose generator matrix contains the set,

k' k'-1 k'-2 k'=i :
S"Sl Usl Usl UocnUSl . .

then, k = k'+1 and from equations 5.3.1.

' L.
Also, from S? we can obtain 2k 1 check sums on the first k' message-

digits, but, from equation 5.3.1.

1 T

from ST 1 s J =‘2k 2 on first k'-1 message-digits

1o |
from S? 2 , J = 2k 3 on first k'-2 message-digits

' | | B,
from S? t s J = 2k 1-1 on first k'-i message-digits.
Therefore,
| - " L L
J=2k 1+2k 2+2k 3+.....+2k -1 5.3.3.

only for the first k'-i message-digits. If the columns of the

: n—-DIGIT

BUFFER

S

k-1

1

w .
o B =
~ < & M
o O M
— ".'l r‘...r
|
|
E——— |
| —— |
-
-t
_ ¥
ol
||I||lrl..\l||,||l||_ i
o4
| _ <
*
T oo ==
= -
: —— — >
| ™~
— ¥
) gl | 9 e
.| B & o
— > | | A o
o -
—
ot | g
. m ° 4.
Sy | &
A s i g IR
B >
FIG. 5.3.1.

A GENERAL DECODER.

107

generator matrix are arranged such that the first k'-i digits of

the columns are . - . = circulants of k'-i, tuples, then the first
k'-i message-digits can be decoded cyclically. Once this is done
special provision must be made for decoding the remaining i+l message-
digits. Alternatively one may decode using k majority-logic gates,

and use the decoded estimates of the first k'-i digits to cancel their
effect before decoding the final i+l digits. A general decoder of

this type is shown in figure 5.3.1.

Once the effect of the first k'—i digits have been cancelled

. . k' . .
from the generator matrix, there remains 2 colummns, of G, with parity-

checks on each of the remaining i+l message-digits.:

1
Obviously there are 2k columns with a parity-check on digit k

. k! : k'-1 . k' .
in the subset S1 . There are 2 columns in subset S1 parity-

1. V.

‘checking digit k' and Zk 1 columms in subset S% 1 parity-checking
1

digit k', giving a total of Zk . Eventually, for digit k'-i-1, the

. . k'-1 k' Lk'-2
number of columns giving a parity-check are, 2 from S1 y 2
— T LI 123 1z
from S? 1 , Zk 3 from Sk 2, ceeee 2k ! from ST 1. This sums
k' K’

to 2 and the information is available to obtain the necessary J < 2
orthogonal check sums, of equation 5.3.3.after cancellat{bn.
We will call this construction 5.3.a. outlined as below.

- Construction 5.3.a.
k! k'-1 k'-1

S=Sl US]_ U""".Usl

' 1 1z
n=2k +2k 1+......-+ Zk .

| . | | I
NI L I S |
k = (k'+l) information digits.

108

Decode digits (1,2,..., k'-i), then (k-i+l,..., k). If we examine

message—~digit m(l) there are columns parity-checking this digit as

follows,.
L k! 1 _ L | I, |
2k ! from Sl’ Zk 2 from S? 1 , down to 2k i-1 from S? t.
Thus there exists a code word of binary weight, w(l), where
| . | - | S,
w(y = 25T KT e
and since,
w(l)admaJ , dm=J.
Therefore, n = 2dm for this construction.
Consider a code whose generator matrix contains the set,
1 1 %l V=1
s =85 ust Ty .. usiETE
1 1
*k'-i k'-i . .
where S1 is a subset of the set S1 , and which is a code for
s ' Ak '=-i
= L -
k = k'=i+l, Let mor_s and Jk'-i be the length of the subset S1 and
the number of check sums respectively, including redundancy, obtainable
. 113
on the first k'-i digits, from the subset Slk .
Then,
_ k! k'-1
n_2 +2) + sese e +nk""i
5.3.4
'— '_ L] L .
R L R T

k'-i

where again J is the total number of check sums obtainable on the first
k'-i message-digits. After decoding and cancelling their effect, there
are enough parity-checks on the remaining i+l digits to form J check sums.
Since the set,

s = sy sll""1 Ueereee U sll""i+1

has minimum distance

I R k'-i

d! 2 F oieeess + 2 5.3.5.
m .

109

then from equation 5.3.4. and 5.3.5.
= 4
J dm * g

but Jk'—i = dm,k' . and

ny_; =2, . +RAG) - m

and so

=]
|

= 2d4' + 2d
m m

J

dm * dm,k-i *

We call this construction 5.3.b. outlined below.

Construction 5.3.b.
k! k'-1 A T—=qi-

S =8 US . U.eeern US;

n=28 el e 24, g * RAG) - m
I A T A T k=i

k = (k'+1) information digits.

Decode digits (1,2,..., k'=i) then (k'-i+l,...., k).

A list of constructions is given in Table 5.3.1. and is preceeded
' - . k=1
by the notation (n,J) which denotes the code usgd as the subset Slk .

from section 4.5.

- Although construction 5.3.a. is a special case of 5.3.b. when

113 Vo
Slk b= S% - , they have been presented separately because construction

5.3.a. is a class of codes with zero redundancy which can be constructed
without reference to the constructions in Chapter 4.

From equations 5.3.1. we saw that if the complete set of k'~tuples

k' . .
S1 is used to form a code then we can obtain J check sums, where,

110
L.
P I F R
L BT Geb)T

Of course this only applies to the first k' message-digits, the k'th
message-digit is decoded specially. However if the overall parity-
check on message-digit m(k) is removed, we can still obtain J check
sums on the k' message-digits, The set of k'-tuples without overall
parity-check, Sk', therefore has J = 2k'_1. With this piece of

information we can propose another constructiomn.

Construction 5.3.c.

k. k-l k=2 Kk-i
S-ms Usl Usl U-...Usl
no=m2 e 2Kl L ok2 s ok
J=m 2Nl k2 k3, kit

k information digits.
Decode digits (1,2,..., k=i) then (k-i+l,..., k).
m=1,2,3’..ﬂﬂl..llﬂ.
In this way the generator matrix may be extended indefinitely.
Again, as in construction 5.3.a., there is a code word of weight
J, therefore J = d_ so that n = 2d .
m m
k-1 k-1

by S.- ,

One can generalize the construction by replacing S1 1

with results similar to construction 5.3.b.
For all constructions considered cyclic decoding is not too

difficult providing i+l is small.

111

TABLE 5.3.1.
Codes constructed using constructions 5.3.a. and b. are denoted

by the letters 'a' and 'b' respectively.

S = Si 0] Sis H k=17 3 Decode (1,2,444,5) —> (6,7)
(0,0) n = 64 d_ = 32 ra? d;T; 32
(6,1) 70 33 " 33F
(7,2) 71 34 B! 34
(11,3) 75 35 'y 35-36
(12,4) 76 36 B 36>
(15,5) 79 37 b? 36-38
(16, 6) 80 38 Y 36-39
(20,8) 84 40 p 40P
(22,9) 86 41 B 40-42
(23,10) 87 42 B 40-42
(26,11) 90 43 Bt 4344
(27,12) 91 4 b 44° :
(31,15) 95 47 pt 47
(32,16) 96 48 ra’ 48P
S = Sl U Si U Siﬁl€4 3 k=7 ; Decode (1,2,3,4) — (5,6,7) ‘
(0,0) 96 48 't 48P ‘
(5,1) 101 49 B 497
(6,2) 102 50 ! 50
(9,3) 105 51 B! 51-52
(10,4) 106 52 B! 52° i
(13,5) 109 53 B! 53-54
(14,6) 110 54 "B 54
(15,7) 111 55 B! 55
D

(16,8) 112 | 56 ra! 56

112

Decode (1,2,3) — (4,5,6,7)

'bv .

560

57F
58
597

60

Decode (1,2) —> (3,....,7)

_ b 5 4 *3 . _ .

S = S1 U S1 U S1 U S1 5 =7 H
(0,0) 112 56 'al
(4,1) 116 57 'p!
(5,2) 117 58
(7,3) 119 59 'b!
(8,4) 120 60 'a'

P B 4 3 *2 _)

S_- S1 V) S1 U S1 U Sl U S1 k=7 ;3
(0,0) 120 60 'a'
(3,1) 123 61 pt
(4,2) 124 62 g

b S b3 *2 L

S = S1 v S1 V) S1 v S1 v S1 U S1 s k=7 3
(0,0) 124 62 ral
2,D 126 63 'a'
This completes the codes for k = 7, n g

(0,0)
5,0
(6,2)
(9,3)
(10,4)
(13,5)
(14,6)
(15,7
(16,8)

32
37
38
41
42
45
46
47
48

60
62

620

Decode (1,2,3,....,7)

62D

63

Decode (1,2,3,4) — (5,6)

16 -
17
18
19
20
21
22
23
24

1.1

a
lbl
'b'
lbl
va
lb'
lbl
'b'

1.1

a

16
F

17
18
19-20
207
21-22
22

23

24D

113

W5 b *3
$ =85 US US ik
(0,0) - 48
(4,1) 52
(5,2) 53
(7,3) 55
(8,4) 56
- Y A B
5 =85 US US US, ;
(0,0) 56
(3,1) 59
(4,2) 60
R T S S . |
§=S] US US]US US;
(0,0) 60
(2,1) 62
IR RN B _
S=8 US, i k=5
(0,0) 16
(4,1) 20
(5,2) 21
(7,3) 23
(8,4) 24
b3 k2 ~
$=8S US US" 5 k=
(0,0) 24
(3,1) 27
(4,2) 28

24D

25F
26
27

28D

; Decode (1,2) — (3,...,6)

This completes the codes for k = 6, n £ 2 .

Decode (1,2,3) — (4,5)

10
11
12

12
13
14

'b'
'bt
lbl

28D
29

30°

Decode (1,2,...,6)

300

31

6 ; Decode (l,2,3)»——+ (4,5,6)
24 'a!
25 H!
26 'y!
27 'b!
28 'a'
k=6
28 'a'
29 'b!
30 'al
;3 k=6
30 'a'
31 'al

10
11
12

Decode (1,2) — (3,4,5)

120
13

140

S = Sl{ U Si U Si U Si’ ; k=5 ;3 Decode (1,2,3,4,5)
1ot D
(0,0) 28 14 a 14
(2,1) 30 15 'a' ' 15
This completes the codes for k = 5, n g 25.
3 *2
S = S1 (U] 1 ; k=14 ;3 Decode (1,2) — (3)
(0,0) 8 4 'a' 4
(3,1) 11 5 b s°
(4,2) 12 6 'a'
3 2 1
S = Sl- U S1 U S1 ; k=4 ;3 Decode (1,2,3,4)
(0,0) 12 6 'a' 6
(2,1) 14 7 'a' 7
This completes the codes for k = 4, n g 24.
2 1
S = S1 U Sl ; k=3 ;3 Decode (1,2,3) |
(0,0) 4 2 Py 2 f
2,1 6 3 'a' ‘ 3
And this completes the codes we can construct for k £ 7, n g Zk,
using constructions 5.3.a and 5.3.b.

115

CHAPTER b

6. NOTES ON THE MINIMUM DISTANCE OF GROUPS OF BINARY k-TUPLES.

6.1 Introduction{

We develop an expression for the minimum Hamming distance of a
complete set of k-tuples of weight x, 0 < x £ k. We thgn show how
to build up tables of minimum distances for binary k-tuple sets for
any k. For large k even, it is seen to be not too difficult a task.

The minimum distance of codes, whose generator matrix is composed
of complete sets of k—tuples>of various weights, can be found from
the tables. This introduces codes not seen in the previous sgctions
and for which the author has not been able to discover 'a decoding

procedure.

6.2 Tables of Minimum—~distance.

There are 2k distinct-.binary k~tuples which as a set, can be
divided into groups of binary weight x, 0 < x < k.

Consider the group of k-tuples of weight x arranged in a column.
This column can be considered as k single digit colummns so that each

of the k columns can be considered as an Ni—tuple, where

kK !
Nx T x! (kex)! :

Since all weight x k-tuples comprise the k columns, the binary
weight of a single column,lJ(Ni), is equal to the number of (k-1l)-tuples

whose binary weight is (x-1). .Therefore,

(k-1):

k
WD = DT (e

6.2.1.

If we consider all linear modulo 2 combinations of the k columns

as a code space, then each column will form a row in the generator

116

matrix of the code.
We can confine our attention for the moment to those code words

resulting from the linear combinations of '

a' rows of such a generator
matrix. In such a situation each k-tuple in the set can be divided
into an 'a'-tuple and (k-a)-tuple. Since the set of all x weight

k-tuples are present, each a-tuple of weight n must associate with

all (k-a)-tuples of weight (x-n). Since there are,

a a!l

Nn =y (a-n)!

a-tuples of weight n, then corresponding to each there are,

k-a _ (k-a)!

Nx-n " (x-n) (k-a-x+n) '

6.2.2.

(k-a)-tuples of weight x-n. However if n is even the a-tuple will
generate a code word digit of binary zero. Thus the binary weight of
an Ni-tuple which is the linear combination of ANY 'a' columms, Wz(a),

is given by,

‘ wi(a)=§l N: N<-d (Ll-é-ﬁ) , 6.2.3.
which is the number of odd-weight 'a'-tuples. Thus any code words
that are the linear combination of 'a' rows of the generator matrix,
have the same weight. We know that the minimum distance of a binary
code is equal to the minimum binary weight of its code words, and
therefore,

d_ = min (Wi(a), lsacgk.

Immediately we can see that, in equation 6.2.3.

jand
i) if x is oddAa =k, then n = x only, and
k _wk
| Wx(k) = Nx = dm(max).

117

and|
ii) if x is evenAa = k, then n = x only, but

Wi:(k) =0 -d.

Therefore if x is even,

d =0
m

and sets like this have no use as code spaces, when used alone.
Consider the codes whose generator matrix comprises the sets

of k-tuples of weights x and x-1, then

4 »min (F(a)) +min (@) lsack

a n
= min [Z N2 Nk a Sl_ﬁ_ll_l
ne] xR 2
' a n
o oweae QDD
“. "'n x~1l-n 2
n=1
a ' n
- min [;o2 {Nk'a + N2 }il—'—(:L)] 6.2.4.
Clge; m Uxm x-1-n 2
However,
Nk—a - Nk—a ’ (x-n)
x-1-n x-n = (k=-a-x+n+l)
therefore,
k~-a k-a _ _k-a (x-n)
Neen ¥ Me-1on ™ Mgen {1 ¥ %ma—x+n+l]
but
Nk-a - Nk+1-a (k+1-a-x+n)
Xx-n x-n (k+1-a)
therefore,
k-a k-a _ ,k+l-a |(k+l-a—-x+n X-1
Nx—n * Nx—l—n - Nx-n [k+l-a * k+l-a
- Nk+1-a
X~-n

and therefore, equation 6.2.4. becomes,

118

n
d = min [z Na ‘Nk+l—a _(_]:._.(Ll_)—l
m n n x-n 2

But this is the expression for the dm of the set of (k+l)-tuples
.of weight x, except that 1 £ a £ (k+1). Thus if 'a' < (k+l), for a
given 'a' the two systems generate code words of the same weight. If
X is even, the system of (k+l)-tuples has dm = 0, otherwise the two
systems have the same minimum distance, since

K, oy _ okl _
wx(k+1) = Nx = dm(max).

The above result has another significance, this being,
k ok _ k+l |
WE(a) + W (a) = W (a) _ 6.2.5.
for 1 £ a ¢ k.

Thus having constructed a table of weights for the k-tuple sets,

of weights x, for various values of 'a', one can construct the table
of weights for the (k+l)-tuple sets, of weights x, for the same values
1

of 'a', up to a = k, x = k. The table for the (k+l)-tuples is then

completed by the relationships,

Wk+1(a) = 0 if ' a

k‘l‘l = even.
= 1 if a = odd. ‘ 6.2.6.
Wy = 85! if x = odd.
X X
=0 if x = even.

Let the tables take the form below.

119
X
a 0 1 k
0 0 0 . 0
1 0
I NG
k 0

For 'a' > 0, let a row of the table be represented by Wk(a),

where,
_ ok k k
W(a) = (W5(a), Wila),.nn.s s W@)
and let,
k—-a k-a k-a k~a k-a
N = (0-n * Neq 2cceco No , N1 yeesesenas
k-a k-a k-a
..... s N N aqaeeeeees M]
but if, .
x<n, NN?% = 0 6.2.7.
x-n
x > k-a+n, Nk-a'= 0
X-n
therefore,
n (a-n)
k-a ‘ ~ o k-a k—-a k-a - ™
N = (0,0,...,0, Ny = 5 Ny ,eeve, Ny Ocennnnn 0-)

and the centre section can be seen to be the coefficients of the
. . . k-a . .
binomial expansion of (y+1) , where y is an arbitrary unknown.

Thus a row of the table can be represented by the expression below.

a n _ (azn) —(-1)?
wk(a) = 1 ,Ni {0’----,0, b-e-C-(Y+1)k % O""’o} = § -
n=1

6.2,8.

Where b.e.c. (y+l)k-a means, the binomial expansion coefficients

of (y+1)572,

Two examples of constructing the tables follow.

Example 6.2.1.

i)

ii)

Let k = 2, then

if a =1, from equation 6.2.8.

1

W) = N

[O, b.e.c.(y+1)k_1]'
=1 (09131) = (0,1’1)

which is the first row of the table.

if a = 2

2

w2 (2) = N2

[0, b.e.c.(y+1)°,0
=2 (0,1,0) = (0,2,0)

which is the second row of the table.

X

Example 6.2.2.

i)

Let k = 3, then

if a = 1, from equation 6.2.8.

W3(1) = Ni 0, b.e.c,(y+1)2J

1 (031’2’1) = (091’2’1)

121

ii) if a =2

W) = N [o, b.e.ci(y+1)1,0]
= 2'(0,1,1,0) = (0,2,2,0)
iii) if a = 3
W3(3).= Ni [O, b.é.c.(y+1)o,0,0] + Ng [0,0,0, b.e.c.(y+1)o]

= (0,3,0,0) + (0,0,0,1)

= (0,3,0,1).

giving the table

X
a 0 1 2 3

3 0O 3 o0 1

Using the information so far presented the tables up to k = 10,

have been constructed and are given as Table 6.2.1.

= 3 (0,1,0,0) + 1 (0,0,0,1)

122

TABLE 6.2.1.

a)

a)

X1

1

1

5 10 10 5

1

5
(a)}o

k
W

R

"

wn

a)

»

k = 6.

0 W N & F N WO I~
Ty N O O N — O o
L B] - N
< O O v W O O O In
N N ~ - N o)
o i O O W 1N O wn N
~ N = ~ ~ &N O M
~ W O N N O O O
N o o~ - o~
|
— - N M 1N W~ I~
o O 0O 00 0 0 O ~
~
) — N M N O~
e ~
= 2z
~~
[}
0 - O 4 O 4 O o
wn N N ™M T ~ O \O
< ‘'O ® W ® O O in
) —)
™ O N O ® o O O
— o~ e - d &
’ o~ N O O 0 N O wn
H]| —
-4 — N O 3 O W
o O O 0O 0 0 0O o
~~
[} N N Nt Ny WO
St
~ O
e 2 =

123
|
\
|

K =8
E
Wi(a) o 1 3 7 8
olo o o o o 0 o o0 o
1J0 1 7 21 35 35 21 7 1
2 o 2 12 30 4 30 12 2 o
3]0 3 15 31 35 25 13 5 1
a 4o 4 16 28 32 28 16 4 O
5o 5 15 25 35 31 13 3 1
6 |0 6 12 26 40 26 12 6 0
710 7 35 35 21 21 1 1
8lo 8 056 035 0 8 O
Ni 1 8 28 56 70 56 28 8 1
K =9
X .
wilo 1 3 8 9
olo o O 0 0 0 0 0 O
1o 1 8 28 56 70 56 28 8 1
2 10 2 14.42 70 70 42 14 2 0
3]0 3 18 46 66 60 38 18 6 1
a 410 4 20 4 60 60 44 20 4 O
5o 5 20 40 60 66 44 16 & 1
6 |0 6 18 38 66 66 38 18 6 O
710 7 14 42 70 s6 42 22 2 1
8 lo 8 56 S6 56 56 8 8 O
9lo 9 o0 8 0126 0 3 o0 1
N |1 9 3 84126126 8 36 9 1

124

Kk = 10.
E

wlo 1 3 4 5 6 7 8 9 10

oflo o o o 0o 0o 0o o 0o o o

110 1 9 36 8126126 8 36 9 1

20 2 16 56112140112 56 16 2 0

3]0 3 21 64110126 98 56 24 7 1

a 4|0 4 24 64104120 104 64 24 4 O

5|0 5 25 60100126 110 60 20 5 1

6 |0 6 24 56104132104 56 24 6 O

710 7 21 56112126 98 64 24 3 1

810 8 16 64 112 112 112 64 16 8 O

9|0 9 9 8 84126126 36 36 1 1

100 10 0120 0252 0120 0 10 O

Nio 1 10 45 120 210 252 210 120 45 10 1

6.3 The Codes.

From Table 6.2.1. we can form éodes by using the sets of weight x,
x = odd, as the k-tuple columns of a generator matrix. The table
column corresponding to k gives the different code word weights
"possible so that dm is the minimum figure in a columm. The table can
also be used to find the weight enumerators of the code. There are
k!/é! . (k-a)gcode words of binary weight Wi(a). One can also form
codes by combining the weights of different columns. If we combine

b columns, of weights X »XyyeeesX , We can specify the generator matrix

2°°

by the set (x) = (xl,x .,xb), so that the resulting column of weights

92

will be the values Wk (a) + Wk (a) + ... + Wk (a) for 1 ¢ a € k. For each
* * b
such value of resultant weight, there are again k!/a! (k-a)! code words,

of this weight.

Table 6.3.1. below lists those codes, from the Table 6.2.1l., for k = 7,

whose lengths, n, are the shortest for the given dm. Those codes marked

125

with an asterisk are quasi-cyclic. They are compared with dm from

Hel gert and Stinaff'Ao
TABLE 6.3.1. |
TABLE OF OPTIMUM CODES FOR k = 7
2 dn d::z (:;)
7 % 1 1 (1)
8 2 2 . 1,7
14 * 4 . 4 : (1,6)
21 * 6 8 (5)
28 % 7 12 (1,2)
29 8 12 (1,2,7)
28 * 12 12 (1,5 or (5,6)
35 % 14 15-16 (1,5,6)
35 % 15 15-16 (3)
36 16 167 (3,7
b2 x 17 17-19 (3,6)
43 18 18-20 (3,6,7)
49 * 22 23 (1,3,6)
50 23 24 (1,3,6,7)
56 % 24 24-27 (1,2,5,6)
56 % 26 © 24-27 (3,5)
63 % 28 31 (1,4,5)
63 * 31 31t (1,3,5)
64 32 32 (1,3,5,7)
70 % 33 33F (1,3,5,6)
71 34 34 (1,3,5,6,7)
77 % 35 36-37 (3,4,6)
77 36 - 36-37 (1,3,4)
84 * 37 40 (1,2,3,5)
85 38 40-41 (1,2,3,5,7)
8 % 40 40° (1,3,4,6)
98 % 42 48 (1,2,3,4)
91 % 44 A (3,4,5)
98 % 48 48 (3,4,5,6)
105 * 51 51-52 (1,3,4,5,6)
106 52 520 (1,3,4,5,6,7)
119" * 57 59 (1,2,3,4,5)
120 58 60 (1,2,3,4,5,7)
126 * 63 63 (1,2,3,4,5,6)

127 64 64 (1,2,3,4,5,6,7)

126

In theorem 4.3.3. we saw that when k is a prime the set of
all k-tuples can be organised as circulants of order k, except the
two trivial circulants which have order one.

We also know that a circulant set of k-tuples is comprised of
k-tuples of the same weight. Thus the x-weight groups can be organised
as sets of circulants.

Therefore the codes in this section, when k is a prime, are
quasi-cyclic of order k if (0), (k) & (x).

Hence the large number of quasi-cyclic codes of order 7-in
Table 6.3.1. |

The codes not given in Table 6.3.1. are,

i) (®)

(xl), X, = even and dm =0

ii) (x) = (Xl,(xl“l)), x; = odd, since a code of the
same length and dm exists with (k+l) message-digits.

If (1) € (x), then the codes can be arranged in systematic form.

An interesting point is that knowing the weight enumerators, we
know all code word ﬁeights, thus if an overall parity-check is added,
to each column of G, on a (k+l)'th digit we can find the resulting
minimum distance.

We simply require to know, (if G = (Xl)) max (Wi (a))
1
then we have,

d = Nk - max (Wk (a)) 6.3.1.
X X
1 1
But since,
We (k) = N = max (W (a))
1 1 1

when X is odd,

127

Also as seen earlier,

W) = 0 = d
Xl m

when %y is even. So that adding an overall parity-check on a (k+l)'th
digit is only useful if,

(%) = (xl,xz,...axb)
b >1 and all X, not odd.

Let, (x) = (xl,xz,...,xb), where b < k and the x; are not all

odd, and let max (w%x)(a)) be the maximum weight of any code word in

the code space generated by (x). Let d; and N%x) be the minimum distance

and length of any code word from the code space, respectively.

Then if an overall parity-check is added on all columns of the
generator matrix, on a (k+l)'th digit, the minimum distance d$+1 is
given by,

(ko K '
M;n [dm ’.N(x) - max (W(x)(a)))6.3.2.

The following example illustrates, this idea for the case
k=17, x = (3,4).

Also Table 6.3.2. gives codes with k = 8 developed from Tables
6.2.1. and 6.3.1., by adding an overall parity-check.

Only codes where-

k k k
N(x) - max (W(X)(a)) 2 (dm - 1)

are shown.

128

TABLE 6.3.2.
CODES WITH k = 8 (OVERALL PARITY-CHECK).
~ 40
n dm _ dm (%)
28 7 11-12 (1,2)
29 8 12 (1,2,7)
56 2 24-26 (1,2,5,6)
63 27 28-30 (1,4,5)
98 42 46-48 (1,2,3,4)
119 . . 56 56-58 (2,3,4,5,6)
126 62 62 (1,2,3,4,5,6)

Example 6.3.1.

Let (x) = (3,4) and k = 7., then from Tables 6.2.1.

W +W (1) = 15+2 = 35
7 7

W3(2)- + w4(2) = 20+ 20 = 40
7 7 .

W3(3) + W4(3) = 19 + 16 = 35
7 7

w3(4) + w4(4) = 16 + 16 = 32
7, 7

W.(5) +W,(5) = 15+ 20 = 35
3 4
7 7

w3(6) + W4(6) = 20+ 20 = 40
7 7 :

W3(7) + W4(7) = 35+ 0 = 35,

The code has length,

Y Y -
n =Ny +N, =35+35=70.

From the set of code word weights we have,

k= 32,
m

max (WZ3’4)(a)) = 40.

Therefore if we add an extra message-digit and an overall

parity-check, the minimum distance becomes,

since 30 < dk

0 32, from equation 6.3.2.

130

CHAPTER 7

7. CONCLUSIONS AND DISCUSSIONS.

7.1 "Good" Codes.

Before assessing the codes presented in the previous chapters
it is worth discussing what determines if a code is '"'good" or ndt.
There is, in effect, a theoretical form of assessment of ''good"
and a practical one, both of which are helpful in assessing the
usefulness of a class of codes.

The theoretical criteria for a '"good" code rests upon a
statement which says that, for a given n and k there always exists
an (n,k) code with minimum distance at least dé. A étatement of
this form is called a lower bound and the Varsharmov-Gilbert lower
bound is widely used as a criteria for "good" codes. Baéically

this lower bound states that it is possible to find an (n,k) code

with minimum distance at least dé for which the following inequality

holds,
! -2 " ‘
H|———21-R 7.1.1.
n -
where;
HEX) = -x 1og2(x) - (1-x) 1og2(1—x)
= the entropy function.
R =k/n

the code transmission rate.
An individual code then is classed as '"'good" if its parameters
(n,k,dm) satisfy inequality 7.1.1., since compared to the (n,k,dé)

code guaranteed by the bound, then dm P dé for the same n and k.

131

This criteria is used to form an assessment of the performance
of the codes in Chapter 4 for increasing k.

Though the Varsharmov-Gilbert lower bound can tell us if a
code is "good" it does not tell us how 'good" it is. Statements
that indicate the bes; that can be achieved with codes, under certain
assumptions, are called upper bounds. Typical upper bounds are the
Plotkin upper bound, Hamming upper bound and Elias upper bound. For
a simple discussion of their development, see Peterson and Weldonz,
Chapter 4.

A table of maximum minimum distances implied as possible, by all

upper bounds (known at the time), was published by Hel gert and Stinaff40

for all n 2 127 and k > 127.

fhis table was used for comparison of minimum distances, for the
codes developedvin the previous chapters, as shown in Tables 4.7.1.,
5.2.1., 5.3.1., 6.3.1. and 6.3.2.

Upper and lower bounds are very useful for indicating what is
and is not possible in coding theory. Also of course they are useful
for indicating how theoretically "good" a given class of codes is.
However bounds do not, in general, show how one should construct the
codes that they infer exist. Therefore, in practice many of the
theoretical codes are yet to be discovered, so that a given code,
though not as '"'good" as the upper bound, may be the best constructive
code with these parameters and is therefore 'good" from a practical
viewpoint. Also one must consider decoder complexity when assessing
how practically "good" a code or class of codes is. If a number of
codes exist with similar values of n,k and dm then the best code may

be that which is simplest to decode. Therefore a code may be "good"

132

because it is simple to decode compared with other codes of a
similar or better capability particularly if a slight degradation
of performance is acceptable on the basis of encoder-decoder
implementation economics. Of course as mentioned in Chapter 1
the minimum distance of a code is a crude measure of its performance
on a real channel. Nevertheless it is stili useful to compare codes
on the basis of rate, length, dm and decoder complexity.

This is done for the codes of tables 4.7.1., 5.2.1., 5.3.1.,
and 6.3.1., in the following sections. Once a decision has been
made regarding choice of decoding method, the best choice of practical

code can only be determined from performance tests on a channel.

7.2 Performance of the Class of Binary Codes.

The codes developed in Chapter 4 have been shown to be cyclically
decodable in one-step, with a single majority gate, sb that in terms
of decoder economics, they are very useful as a class. The codes
were also shown to be completely orthogonalizable up to their minimum
distapce so one can deduce that the decoding procedure is efficient.

Those codes constructed are presented in table 4.7.1. where
they are compared with the value of minimum distance which the tables
of Hel gert and Stinaff40 state are maximum values (known or predicted
Ey uppér bounds) for that value of n and k. It can be seen that for
these codes developed, with k £ 7, the minimum distance of each (n,k)
code is equal to, or slightly less than, the maximum given by the
tablesAO. In table 7.2.1, thg codes are compared directly with
existing codes, where the comparison codes are always shown in their

favourable light. The comparison codes are taken from Table 5.2.

TABLE 7.2.1..

133

Comparison of codes from Table 4.7.1. with other codes,

Codes from

Table 4.7.1. Codes. (n = odd)
n k dm n k dm
7 4 3 7 4 3
15 5 7 15 5 7
31 6 15 .31 6 15
27 6 12 27 6
.20 6 8 21 6
15 6 15 6
63 7 31 63 7 31
51 7 23 51 8. 24
48 7 21 49 7 7
45 7 19 45 7 15
35 7 14 35 7 14
26 -7 10 27 7
21 7 21 7 8
17 7 5 15 7 5
* These are also Euclidean Geometry codes but decodable in 2-steps,
with majority-logic.
Codes from Quasi-cyclic
Table 4.7.1. Codes.,
n k dm n k dm
8 4 4 8 4 4
10 5 4 10 5 4
11 6 4 12 6 4
13 7 & 14 7 4
15 8 4 16 8 5
Quasi-perfect
Codes.
n k dm n k t
9 5 3 9 5 1
10 5 4 10 1
11 6 4 11 1
14 8 3 14 8 1

Cyclic Polynomial

134

Quasi-perfect codes, Table 8.3. Quasi-cyclic codes and Appendix.D.
List of Binary cyclic codes of odd length n < 65, from Peterson

and Weldonz, pp.122, pp.259 and pp.493—534 respectively. On the
basis of these comparisons the codes appear to be very competitive
with other codes and this is certainly true for small k. However

we are also interested in how the codes perform for large k and

some insight can be obtained from figures 4.6.1. and 4.6.2. We can

" see from these figures that redundancy; for a given k', must be made
use of efficiently, if the code is to be useful, For small k' (and
therefore k) this is not too difficult, but from.figure 4.6.1., when

| I
n = Zk ’} = 65,536, we have Rd(9) = 12,870 binary 17-tuples to try
and combine into further check sums.

From Appendix A, equation A.l.,

b=t =22y

and x = k' - b + 1 =9, so that x ; b, and the optimum case results

in the 12870, k'tuples pairing off into 6,435 forms 011l...110.

This is obviously very efficient use of redundancy, but is rather

a special case. Generally, as Appendix A shows, most use of redundancy

is obtained from the form 1000...001, which is only efficient for

v [z,
when k' is large.

This shows that as k' increases the redundancy can only be used
efficiently for long codes wheﬁ b is small. Also as k' rises, we
see from figure 4.6.2. that Rd(b)max increases exponentially. Other
values of -Rd(b), (except Rd(1l) which is constant and Rd(2) which is

linear, with k' increasing) will have correspondingly non-linear

135

increases as k' increases.

In fact de3) and Rd(4) are close to Rd(b)max anyway, The
results from Appendix A,figures 4.6.2. and 4.6.1. imply that as k'’
rises good codes will only be obtained with large n relative to Zk'-l.
This is borne out by the Vérsharmov-Gilbert lower bound which is
shown for the codes with k¥ =7, 9 and 18, in figure 7.2.1. The
value of J used, ignores redundancy, but since each extra check sum
requires we add an extra column to G, thus increasing n by one,
utilization of redundancy will only give a slight improvement.

As an example, the code mentioned above has n = 65,536, J = 26,333,
Rd(9) = 12870, and from very efficient use of redundancy, we can
obtain a new code by increasing n and J by 6,435 giving the code,

n = 71971, J = 32768. But H(J/n) = H(32,768/41971) < 1-18/71971
and the code still does not qualify as "good".

It can be seen from figure 7.2.1. that for k = 7,

H(J/n) > (1-R) and the codes can be considered as 'good". However
when k = 9, H(J/n) is approximately equal to (1-R) initially, until,

as n approaches (28—1), the codes become '"good". When k = 18,

H(J/n) < (1-R) until n approaches (217—1) when the codes become "good".

Figure 7.2.1. shows that there are some '"good" codes to be

. ,
obtained of all lengths 0 < n £ 2k -1, up to k = 9, but when k > 9,

one is only going to obtain '"'good" codes when n approaches Zk'-l.
This is a result of the distribution of Rd(b) aé b increases, shown
in figure 4.6.1. and the fact that the use of redundancy to form
extra check sums ‘becomes less efficient as k' rises,bas Appendix A

shows. Nevertheless the codes are useful as a class, particularly

for low k.

136

7.3 Performance of the Codes derived from the Class of Binary Codes.

The codes derived by deleting the k'th digit and the overall
parity-check on all columns of G, in section 5.2., are cyclically
decodable in one-step of majority-logic using a single majority
gate and are therefore economic to decode. The actual codes
constructed iﬁ section 5.2., are shown in Table 5.2.1. where their
minimum distances are compared with dm from Hel: zert and Stinaffao.
In Table 7.3.1. they are also compared with other codes and from
these results are seen to compare reasonably well. As pointed out
in section 5.2. sometimes codes from this class are better than those
from Chapter 4.

For a given k, n and b, a code from section 5.2., ignoring
redundancy, has the same value of J as the code from Chapter 4 with
the same b, n and k+l.

Thus the curves for H(J/n) in figure 7.2.1. apply to both sets
of codes. However the curves of (1-R) for the codes of section 5.2.
are slightly different (since there is one less information digit)
though not significantly so and are not drawn. Nevertheless there
is one aspect of these codes which.is significantly different to
those of Chapter 4 and arises from use of redundancy.

The results ffom Appendix A and figures 4.6.1. and 4.6.2. apply
equally to the codes of section 5.2. but we do not need to increase
length n, to utilize one form of redundancy, that is, the form
000, ..001.

This may have the effect of raising H(J/n) so that more "good"
codes exist, Nevertheless efficient use of this form of redundancy

is still subject to the constraints given in Appendix A and as such

TABLE 7.3.1.

other codes.

Codes from

137

Codes from

Table 5.3.1.
n k d
m
14 4 7
30 5 15
24 5 12
21 5 10
62 6 31
48 6 24
45 6 21
n k d
m
11 4 5
n k d
m
48 6 24
n k d
m
6 3 3

13

Table 5.2.1.
n k J
48 6 22
43 6 20
35 .6 15
21 7 8
28 7 11
17 6
20 6
27 6 12
34 6 14
10 5 4
9 4

Comparison of codes from tables 5.2.1., and 5.3.1., with

Cyclic Polynomial
Codes (n = odd).

n k d

m
15 4 8
31 5 16
25 5 5
21 5 10
63 6 32
49 6 14
45 6 18
35 6 10
21 7 8
27 7 6
15 6 6
21 6 8
27 6 6
31 - 6 15
Quasi-perfect
Codes.

n k- t
11 4 2
.Euclidean Geometry58
Codes.

n k t

48 6 10

Quasi-cyclic

Codes.

n k dm
6 3 3
10 5 4
8 4 4
12 6 4

138

is limited to codes of long length for large k.
It was mentioned when developing the codes of Section 5.2,

that we are no longer sure if J = dm' In fact if we take the code,

n=42, J=16, {63,31,15,27,23,21,7,11,13}

Utilizing redundancy, we obtain the code,
n =42, J=18, - {63,31,15,27,23,21,7,11,13}

However this code has a generator matrix exactly the same as that
code constructed from Table 6.2.1. for k = 6 where, we have

n=42, 4 =20, C®) = (3,4,5,6)

so that it is not completely ortﬁogonalizable. Provided J equals
the maximum upper bound from Hel gert and Stinaffao, we can be
sure the codes are competitive with others. . Otherwise if

J < dm4o, we‘are not sure,

The codes presented in construction 5.3.a,b, and c, are not
simply decoded, though one has two alternatives. One can use k
majority gates and decode by cancellation as shown in the general
decoder of figure 5.3.1. Alternatively one can arrange the columms
of G as circulants of (k'-i)-tuples and decode the first (k'-i)
digits cyclically, making special provision for the remaining (i+l)
digits. | |

If k is small, general decoding may not be so costly though
it suffers from a form of error propagation. However provided a
correctable error pattern occurs, correct decoding always results.
For cyclically decoding the first (k'-i) digits, provided (i+l) or
i is small this is quite a useful procedure.

The codes of constructions 5.3.a and 5.3.c are classes of

139

"good" codes since with n = de, dm = n/2 and for large dm’

d -2 1
B 12| =g {_) = 1.0
n 2
Since rate, R > 0-0, then (1-R) < 10 and we always have,

dm-2
H - (1-R).

We can see from table 5.3.1. that constructions 5.3.a always meet
the maximum upper bound on minimum distance, for those shown.

The codes of construction 5.3.b are not so easy to assess as
they depend upon the amount of redundancy in the final set S:k'-i.
If i is small the redundancy could form a reasonable part of n,
whereas if i is large the redundancy will be only a small part of n.
Large i implies 1érge n so that again for large k' the best codes
will be obtained fof large n.

However as Table 5.3.1. shows, for small k' there are some good
codes to be obtainéd for all O < n g 2k—1, which are not too diffiéult
to decode.

In Table 7.3.1. some codes from construction 5.3.b are compared

with other codes.

7.4 The Weight Tables.

The tables of weights developed in Chapter 6 are useful in two
ways. They can be used to construct codes whose minimum distance and
weight spectrum can be obtained from the tables, and this is done.

The best codes are presented in Table 6.3.1. and their minimum distances
40

are compared with the maximum upper bound from Hel gert and Stinaff

It can be seen that some very useful codes resulted, some better

140

than the codes of Table 4.7.1l. but nore better than Table 5.3.1.,
though many are equal.

Secondly they can be used to obtain the minimum distance of
some of the codes developed in section 5.2., that is where

(x) = (Xl, xz""’}{b) and Xb = k’ x.b_i = k“l,..‘.’ Xl = k~b+1’

and this defines a consecutive set. This in turn can be used to
show that some codes from section 5.2. may not be completely
orthogonalizable, as we saw in section 7.3.

However for most of the best codes obtained in Table 6.3.1.
the set (x) is not a consecutive one. This implies that the
majority-logic procedure if applied would not utilize the full
capability of the code, as we saw in the example given in section

7.3.

7.5 TFurther Work and Comments.

We have developed a majority-logic decodingAprocedure which
involves check sums obtained from linear combinations of received
digits or columns of the génerator matrix. We then showed a number
of differént methods of choosing the columns of the generator matrix,
such that the necessary check sums could be obtained. We saw that,
ip general from Chapters &4 and 5, some "good" and useful codes
resulted for k up to about 9 but that for large k ''good" codes onl&
resulted for large n.

As a decoding procedure there is mo reason why it cannot be
applied to other codes and ghe following rate one half quasi-cyclic
codes (from Peterson and Weldon, Table 8.3. pp.259) have been found

-

to be majority-logic decodable in this way.

141

n k dm Generator of circulant
6 3 3 3

10 5 4 7

12 6 4 7

14 7 4 7

Appendix C shows each generator matrix for these codes and how
the check sums are formed. In this appendix it is seen that the'
two circulants are not of consecutive weights, that is generally we
have a circulant generated by a k-tuple of weight 3 and one of weight
1. Thus the decoding procedure is probably more widely applicable
and this may be worth further investigétion, perhaps in the decoding
of the codes developed from the weight tables of Chapter 6. The
codes developed from the weight tables in Chapter 6 may be worth
furthef.investigation, from the boint of view of a decoding procedure
and to obtain some bound on minimum distance for large k and n.

Most majority-logic codes either have length 2* or 2x-1, see
Linl., PP.176-177, Petersonz, Pp.326 and pp.332, Hartman%6, Lin20’17,
Warrenll, and Linl., pp.151-154.

The codes preseﬁted offer a wide range of lengths for a given k.

However the codes presented do not offer the solution to all
coding theory problems. They are simpie t§ decode and appear to
have good minimum distance properties for small k. Nevertheless they
are essentially low-rate codes, R ¢ 1/2, and as such do not compete
with the many good Euclidian and Projective Geometry codes, éf high

rate, which have appeared in the last decade.

APPENDIX A.

¢ = (2881, 2

From the code (n

-1, 2

6—1} plus overall

37,

k = 18+1)

the following uses of redundancy.

(k'+1)'th digit.
1001111
111

1

e e i
e i e e e
i e e

1

1

1
1

OO e e
H O =
e e B i
o O
o = O s e

1
1

1
1

1
1

11

’—l.
[

.—l
N - = T s T S R o =

R

fary
—

whose generator matrix is

parity-check, we obtain

I T T T o Y S S S Sy S Sy o S
O S = T T = Qe
T T = T T =R S
T T T T ™ R e
T - T R e
T
O H H B H H H O O
S T
e e T T T R S R

ey
-
foe
=
-
=
T
H
o

143

(e 1111111101111111111

(¢) . -1111111111011111111

(g) 1111111111111011111

(h) 1111111111111101111

The original code was;

n k d G

37 19 2ty 217, oty

w

and redundancy gives.

3 19 3 (2171, 2151, 13

{217 16

37 19 4 -1, 2°°%-1, -1, +0}.

Without overall parity-check we combine (a) and (b) to give

..... 001 and use (c) as well to give the code,
n k d . G
36 18 4 (211, 211, -1}

This is obviously not efficient, with or without parity-check.

144

An example of the most efficient use of redundancy for the

codes of Chapter 4 is shown below for k' 18. The redundancy is

assumed on the lst digit.

1000000000111111111
1111111111000000001

o0lil1111111111111110

If the lowest weight, k'-tuple, used in a'code is b, then a
b-weight k'-tuple has k'-b, zero's. Therefore it must be mod 2
added to a k'-tuple of weight x = k'-b+l, to form an efficient form
as above. Since x = k'-b+l, if x # b, then from the constructions
of Chapﬁers 4 and 5, we must be bounded by x = b, because we cannot

have redundant k'~tuples of widely differing weights.

In the example above, ignoring the k'+1'th digit, k' 18, b =9,
so that,
x=18~-9 +1 = 10.

Since we require x = b, in the optimum case x = b, giving

. 1
£=b = Ek2+1} A.l.

which is only possible if k' is odd.

Equation A.l. states that if two redundant k'~-tuples, k' odd,

sum mod 2. to give the form O11l....110, then if they have the same

k'+1
5 .

weight, this weight must be

This implies that given the complete set of redundant k'—-tuples
1
of weight'E—%ﬁ-, for every k'-tuple of this weight there is a
corresponding k'-tuple of this weight which seems .to give the form

0111....110, and the complete set can be paired off.

For example, let k' = 5, then the complete set of redundant

5-tuples of weighth—%l = 3, is given below paired off.

145

100111 110011 101011
111001 101101 110101

011110 011110 011110

Therefore this form of redundancy is only possible, using two

]
redundant k'-tuples, when b = k2+1 and is as such limited. Hence
k'+1
2 b4

the need for 10 x 18-tuples to obtain this form when b = 16 >>

in the initial example.
k'+1l
2 2

the next most efficient form, 1000....001. In its most efficient

the code must resort to the use of

For values of b #

construction it can be obtained with 3 redundant k'-tuples.
Since it is likely that the redundant k'-tuples will be

composed of one or two weights b1 and or b2, we will assume b2 > b1

and by =b, - 1, and these are the only weights present.

To be able to obtain the form 1000....001 by summing mod- 2,
three k'-tuples (Which is the most efficient form for the codes of
section 5.2.), we require the mod 2 sum of two k'~-tuples to have

weight b,-1 or b,~1 in order to combine with another, third k'~-tuple.

1 2
Let the two k'-tuples agree in y positions that are binary one, then
we require the following conditions to be satisfied.
i) both k'-tuples have weight b2'
(by-y) + (by=y) =Db,-1

or bl—l
giving
. b2+1 o 2b2-b1+1) b2+2
M) 2 2

respectively.

146

ii) both k'-tuples have weight bl'

(bl-y) + (bl-y) =b, - 1

or b2 -1
giving,
byl 2b=by*1 B,l
y=— o —73 — T 72—
respectively.

iii) the k'-tuples have different weights.

(by=y) + (by7y) = b, = 1

or b1 -1
giving,
o b1+1 b2+1
Y == or 5
respectively.

For all cases we must also satisfy

- - 1
(b, y) + (bj y) +y sk

If 1 =3,
. _
bi g Ek Zy - , and therefore
- b, +1
2k' + 1 . !
by < E_'é"—: Hy=—>
b
2K! 7] . 1
by ¢ ET 7 ify=35
2% + 1] . Byl
b2 < —3 ify= 5 >
- b,+2
2k' + 2 . 2
b2 3 E———g——-— ify = 5

From equation A.2. let i =1 and j = 2, then

b1 + b2 k' +y

A.2.

A.3.

147

b2+1
2b, + b, § 2k' + 1 if y = =5
b1+1
1 : =
2b, +b; g 2k' + 1 if y 5
Since b2 -1-= bl’ we obtain
b,+1
2k' + 3 . _ 2
bst__i_El Hy=—
: b, +1
2k' - 1 .1
blsE———;—E' ify=—
For all equations A.3. and A.4. if k' >> 1
b. £ 2k’ i=1o0r2
i* 3 i ’

is a reasonable approximation and implies that the use of
redundancy to obtain the form 1000....001 is inefficient for b
greater than this value, for both codes from Chapter 4 and

" section 5.2.

APPENDIX B.

A.4,

The equations for length, n, and check sums, J, for the codes

presented in Chapter 4 are;

k'-1

7= (k'-1)!
=b t! (k'-1-t)!

N S
b t! (k'-t)!

where b is the smallest weight of the complete sets of k'-tuples

used. Since

H(x) = -x 1og2(x) - (1-x) 1og2(1-x)

Let,

k' =17

e T R T e
O H N W B Uu o

O N W s Oy o WO

(o]

O = N W M UL o N T

n

18

154
834
3214
9402
21778
41226
65536
89846
109294
121670
127858
130238
130918
131054
131071
131072

37

93
163
219
247
255
256

dmfZ dmfZ dm—2 r
() -5 o)

17
137
697

2517

6885
14893
26333
39203
50643
58651
63019
64839
65399
65519
65535
65536

29
64
99
120
127
128

n-d +2
m

H(J/n)
0.3095434
0.50109
0.6444242
0.7543993
0.8381577
0.9001395
0.9437175
0.9719996
0.9882728
0.9961229
0.9990692
0.9998531
1.0004747
1.00019
0.999996
0.999999
0.999999

H(JI/n)

0.5032582

0.7531979
0.8952722
0.9177783
0.993357
0.9994205
0.9999889
1.0

Nlog(dm-Z)

|

\1og(n-dm+2)]

1 - (k/n)
0
0.8831168
0.9784172
0.9943995
0.998055
0.9991734

- 0.9995633

0.9997253
0.9997996
0.999835
0.999852
0.9998592
0.99986
0.99986
0.9998626

0.9998626

0.9998626

1 - (k/n)
0
0.7567567
0.9032258
0.9447852
0.9589041
0.9635627
0.9647058
0.9648437

149
k' =6
b o] J H(J/n) 1 - (k/n)
5 7 1 0.5916727 0
4 22 6 0.8453508 0.6818181
3 42 16 . 0.9587118 0.833333
2 57 26 0.9944422 0.8771929
1 63 31 . 0.9998181 0.88888
0 64 32 1.0 0.890625
APPENDIX C.

Majority-logic decoding of some of the quasi-cyclic codes from

Table 8.3. Peterson and WeldonS, pp-259.

(a) The code, (n, k, dm) (6, 3, 3) has generator matrix

011
1 01
11 0

(9]
1
O O =
o = O

Since this is two circulants, any check sums obtainable on one
message-digit, from linear sums of columns of the matrix, can also
be obtained on all message-digits. The following check sums on

' message—digit m(l) are obtained from the columns.

001 010 100
011 101
001 001

Thus J = dm = 3 and the code is completely orthogonalizable

in one-step.’

150

(b) The code, (10, 5, 4) has gemerator matrix

1 000 00 0111
01 00 01 0 0 1 1
G =]0 01 0 011 001
0O 001 00111 0O
LO 0 001 01 1 10
The following check sums, from sums of columns, are_possible
on m(1l).
‘00001 00010 01110 01000
0100 11100 10000
0111 10011 11001
00001 00001 00001
Again J = d_ = 4.
m
(¢) The code, (12, 6, 4), has generator matrix
1 00 000 0 O0 0111
o1 ooo0O0O10O0O0T11
_ 0-0.1 0 0 0.1 1 0 0 01
€=lo0 00100111000
0O 0001 0011 1 00O
"0 0 0 001 001 1 10O
The following check sums are obtained.
000001 000010 010000 001110
000100 100000 011100
000111 110001 111000
0000O01 0000O01 100011
—— —_— 001000
000001

]
o~

And J = d
m

(d)

The code, (14, 7, 4), has generator matrix

© O O OO ©o O =

The following check

00000O01

And J =d
m

.0

0 0000O0OOGOUO OO O 1
1 0000O0T1O0UO0TGO0O
01000011000
001 00 O01T1T1G00
0001000711010
0 0001000O0T1T1]71
000 0O0OT100UO0OT11
sums are obtained.
000010 0100000
0000100 1000000
0000111 1100001
0000001 0000001
0001000
0010000
0001110
0011100
0111000
1110000
1000011
0000001

2 O O O O =

©O O O O = =

10.

152

REFERENCES

LIN, S., "An Introduction to Error-Correcting Codes', 1970,
Prentice-Hall, Inc., Englewood Cliffs, N.J., pp.33-56.

PETERSON, W.W., and WELDON, E.J. Jnr., "Error-Correcting Codes",
2nd Ed. 1972, The M.I.T. Press, Cambridge,
Massachusetts., pp.310-356.

LIN, S., "An Introduction to Error-Correcting Codes", 1970,
Prentice-Hall, Inc., Englewood Cliffs, N.J., pp.87-109.

MASSEY, J.L., "Threshold Decoding'", 1963, The M.I.T. Press, Cambridge,

Massachusetts.,

PETERSON, W.W., and WELDON, E.J. Jnr., "Error-Correcting Codes",

2nd. Ed. 1972, The M.I.T. Press, Cambridge, Massachucetts.,
pp.237-261.

LIN, S., "An Introduction to Error-Correcting Codes, 1970,
Prentice-Hall, Inc., Englewood Cliffs. N.J. pp.l40-181.

NG, S.W., "On Rudolph's Majority-Logic Decoding Algorithm",
Sept. 1970, I.E.E.E. Trans. Information Theory, Corresp.,
Vol. IT-16, pp.651-652.

RUDOLPH, L.D. "Threshold Decoding of Cyclic Codes", May 1969, I.E.E.E.
Trans. Information Theory, Vol. IT-15, pp.414-418.

RUDOLPH, L.D. "A Class of Majority-Logic Decodable Codes", April 1967,
I.E.E.E. Trans. Information Theory, Corresp., Vol. IT-13,

~ pp.305-307.

CHEN, C.L., PETERSON, W.W. and WELDON, E.J. Jnr., "Some Results on

Quasi~Cyclic Codes", 1969, Information and Control,
Vol. 15, pp.407-423,

11.

12.

13.

14.

15.

16.

17.

18.

19.

153

WARREN, W.T. and CHEN, C.L. "On Efficient Majority-Logic
Decodable Codes", Nov. 1976, I.E.E.E. Tranms.
Information Theory, Vol. I1IT-22, pp.737-745.

RIEK, R.J., HARTMANN, C.R.P. and RUDOLPH, L.D. ™Majority
Decoding of Some Classes of Binary Cyclic Codes",

Sept. 1974, I.E.E.E. Trans. Information Theory,
Vol. IT-20, pp.637-643.

SHIVA, S.G.S. and TAVARES, S.E. '"On Binary Majority-Logic
Decodable Codes", Jan. 1974, I.E.E.E. Trans.
Information Theory, Corresp., Vol. IT-20, pp.131-132.

LAFERRIERE, C. and SHIVA, S.G.E. "On l-Step Majority-Logic
Decoding", June 1977, Proceedings of I.E.E., Vol. 124,
pp.527-528.

HASHIM, A.A. and CONSTANTINIDES, A.G. '"Class of Linear Binary
Codes", July 1974, Proceedings of I.E.E., Vol. 121,
pp.555-558.

HARTMANN, C.R.P., DUCEY, J.B. and RUDOLPH, L.D. "On the Structure
of Generalised Finite-Geometry Codes'", Mar. 1974,
I.E.E.E. Trans. Information Theory, Vol. IT-20, |
pp.240-252.

LIN, S. "Multifold Euclidean Geometry Codes", July 1973, |
I.E.E.E. Trans. Information Theory, Vol. IT-19,
pp.537-548.

RUDOLPH, L.D. and ROBBINS, W.E. '"One-Step Weighted-Majority
Decoding", May 1972, I.E.E.E. Trans. Information Theory,
Corresp., Vol. IT?18, Pp.446-448.

DUC, N.Q. "Pseudostep Orthogonalisation: A New Threshold-
Decoding Algorithm", Nov. 1971, I.E.E.E. Trams.
Information Theory, Corresp. Vol. IT-17, pp.766-767.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

154

LIN, S., and YIU, K-P. "An Improvement to Multifold Euclidean
Geometry Codes", 1975, Information and Control,
IC-28, pp.221-265.

CHEN, C.L. "On Majority-Logic Decoding of Finite-Geometry Codes",
May 1971, I.E.E.E. Trans. Information Theory, Vol. IT-17,
pp-332-336.

RUDOLPH, L.D., and MITCHELL, M.E. "Implementation of Decoders

for Cyclic Codes", 1964, I.E.E.E. Trans. Information
Theory, Vol. IT-10, pp.259-260.

KASAMI, T. "A Decoding Procedure for Multiple Error—Correcting
Cyclic Codes", 1964, I.E.E.E. Trans. Information
Theory, Vol. IT-10, pp.134-139.

MacWILLIAMS, J. '"Permutation Decoding of Systematic Codes", 1964,
Bell Syst. Tech. Jnl. 43, pp.485-505.

OMURA, J.K. "A Probabilistic Decoding Algorithm for Binary Group
Codes", 1969, S.R.I. Technical Repprt,iProject
664531-226.

KASAMI, T. and LIN, S. "On Majority-Logic Decoding for the Duals of
Primitive Polynomial Codes", 1971, I.E.E.E. Tranms.
Information Theory, Vol. IT-17, pp.322-331.

_KARLIN, M. "New Binary Coding Results by Circulants", 1969,

I.E.E.E. Trans. Information Theory, Vol. IT-15,
pp.81-92.

TOWNSEND, R.L., and WELDON, E.J. Jnr. '"Self-orthogonal Quasi-cyclic
Codes'", 1967, I.E.E.E. Trans. Inf. Th., Vol. IT-13,
pp.183-195.

PETERSON, W.N. and WELDON, E.J. Jnr. "Error—Correcting Codes',
. 2nd. Ed. 1972, The M.I.T. Press, Cambridge, Mass.,
pp.40-47.

30.

31,

32,

33.

34,

35.

36.

37.

38.

39.

40.

155

REED, I.S. "A Class of Multiple~Error-Correcting Codes and the
Decoding Scheme", 1954, I.R.E. Trans., PGIT-4,
pp.38-49.

MULLER, D.E. "Application of Boolean Algebra to Switching Circuit
Design and Error Detection", 1954, I.R.E. Trans., EC-3,
pPp.6-12.

YALE, R.B. "Error-Correcting Codes and Linear Recurring Sequences",
1958, Lincoln Lab. Report 34-77, Lincoln Lab., M.I.T.

ZIERLER, N. "On a Variation of the First Order Reed-Muller Codes",
1958, Lincoln Lab. Report 34-80, Lexington, Mass., M.I.T.

HAMMING, R.W. "Error Detecting and Error-Correcting Codes", 1950,
Bell Syst. Tech. Jnl. 29, pp.l47-160.

BOSE, R.C. and RAY-CHAUDHURI, D.K. '"On a Class of Error-Correcting
' Binary Group Codes", 1960, Information and Control,
Vol. IC-3, pp.68-79.

HOCQUENGHEM, A. '"Codes Correcteurs D'Erreurs", 1959, Chiffres, 2,

MITCHELL, M.E. et al. "Coding and Decoding Operations Research",
1961, U.S.A.F. Cambridge Research Centre, Contract
AF 19(604)-6183.

PETERSON, W.W. and WELDON, E.J. Jnr. "Error-Correcting Codes",
2nd E4d. 1972, The M.I.T. Press, Camb, Mass. Chapter 5.

WELDON, E.J. Jnr. 'Difference-Set Cyclic Codes'", 1966, Bell Syst.
Tech. Jnl. 45, pp.l045-1055.

HELGERT, J.H. and STINAFF, R.D. '"Minimum-Distance Bounds for Binary
Linear Codes'", 1973, I.E.E.E. Trans. Inf. Thry.
Vol. IT-19, pp.344-356,

41.

42.

43.

b4,

45.

46.

47.

48,

49.

50.

156

LeVEQUE, J.W. "Topics in Number Theory'", 1958, Addison-Wesley
Pub. o. Inc., Chapters 3,4 and 5.

McCOY, N.H. "The Theory of Numbers', 1965, The Macmillan
Co. N.Y., Chapters 1,2 and 3.

BEILER, A.H. '"Recreations in the Theory of Numbers: The
Queen of Mathematics Entertains', 1966, Dover
Pub. Inc. N.Y..

RUDOLPH, L.D. "Geometric Configurations and Majority-Logic
Decodable Codes", 1964, M.E.E. Thesis, University
of Oklahoma. ‘

WELDON, E.J. Jnr. "Euclidean Geometry Cyclic ébdes", 1967,

Proceedings of Symp. of Combinat. Maths., Univ. of
North Carolina, Chapel Hill, N.C.

WELDON, E.J. Jnr. '"New Generalizations of the Reed-Muller
Codes - Part II: Non-Primitive Codes', 1968,
I.E.E.E. Trans. Inf. Th., Vol. IT-14, pp.199-206.

WELDON, E.J. Jnr. '"Some Results on Majority-Logic Decoding', 1968,
"Error~-correcting Codes", H.B. Mann, John Wiley

& Sons Inc.

KASAMI, T., LIN, S. and PETERSON, W.N. "New Generalizations
of the Reed Muller Codes - Part I: Primitive Codes",
1968, I.E.E.E. Trans. Inf. Thry., Vol. IT-14,
pp.189-199. '

KASAMI, T., et al. '"Some Results on Cyclic Codes which are
invariant under the affine Group", 1966, U.S.A.F.

Cambridge Research Lab. Report.

KASAMI, T., et al. "Polynomial Codes'", 1968, I.E.E.E. Trans.
Inf. Thry., Vol.IT-14, pp.807-814.

157

51. LIN, S. "On a Class of Cyclic Codes", 1968, '"Error-
Correcting Codes", Ed. H.B. Mann, John Wiley and

Sons Inc., N.Y.

52. DELSARTE, P. "A Geometric Approach to a Class of Cyclic Codes",
1969, Journal of Combin. Thry. 6, pp.340-359.

53. LIN, S. and WELDON, E.J. Jnr. 'New Efficient Majority-Logic
Decodable Cyclic Codes", 1972, I.E.E.E. Int. Symp.

on Inf. Th., Asilomar, Calif.

54. HARTMANN, C.R.P. and RUDOLPH, L.D. '"Generalised Finite Geometry
Codes", 1972, Proc. 10'th Ann. Conf. on Cct. and
Syst. Th., Univ. Illinois, Urbania, I11.

55. CHEN, C.L. "Note on Majority Logic Decoding of Finite Geometry
Codes", 1972, I.E.E.E. Trans. Inf. Thy., Vol IT-18,
PP.446-448.,

56. CHEN, C.L. "On Majority-Logic Decoding of Finite Geometry

Codes", 1971, I.E.E.E. Trans. Inf. Thy., Vol. IT-17,
pp.332-336. |

57. CHEN, C.L. "On Shortened Finite Geometry Codes', 1972,
Information and Control, Vol.20, pp.216-221.

58. LIN, S. "Shortened Finite Geometry Codes", 1972, I.E.E.E.
Trans. Inf. Thy., Vol. IT-18, pp.692-696.

59. CHEN, C.L. and WARREN, W.T. "A Note on One-step Majority-Logic
Decodable Codes™", 1973, I.E.E.E. Trans. Inf. Thy.,
Vol. IT-19, pp.135-137.

60. RUDOLPH, L.D. and HARTMANN, C.R.P. 'Decoding by Sequential Code
Reduction", 1973, I.E.E.E. Trans. Inf. Thy., Vol. IT-18,
PP.549-555.

61.

62.

63.

64.

© 65.

66.

67.

68.

69.

70.

CHOW, D.K.

GORE, W.C.

GORE, W.C.

DUC, N.Q.

158

"On Threshold Decoding of Cyclic Codes", 1968,
Inf. and Control, Vol. 13, pp.471-483.

"Generalised Threshold Decoding of Linear Codes",
1969, I.E.E.E. Trans. Inf. Thy., Vol. IT-15,
pp.590-592.

"Generalised Threshold Decoding and the Reed-Solomon
Codes", 1969, I.E.E.E. Trans. Inf. Thy., Vol. IT-15,
pp.78-81.

"On a Necessary Condition for L-step Orthogonalisation
of Linear Codes and its Applications'", 1973, Inf.
and Cont., Vol. 22, pp.123-131.

LIN, S and WELDON, E.J. Jnr. '"Further Results on Cyclic Product

GORE, W.C.

DUC, N.Q. and

DUC, N.Q.

BOBROW, L.S.

Codes", 1970, I.E.E.E. Trans. Inf. Thy., Vol. IT-16,
Pp.452-459.

"Further Results on Product Codes". 1970, I.E.E.E.
Trans. Inf. Thy., Vol. IT-16, pp.446-451.

SKATTERBOL, L.V. "Further Results on Majority-Logic
Decoding of Product Codes", 1972, I.E.E.E. Trans. Inf.
Thy., Vol. LT-18, pp.308-310.

"On the Lin-Weldon Majority-Logic Decoding Algorithm
for Product Codes", 1973, I.E.E.E. Trans. Inf. Thy.,
Vol. IT-19, pp.581-583.

"Decoding Augmented Cut-Set Codes', 1971, I.E.E.E.
Trans. Inf. Thy., Vol. IT-17,. pp.218-220.

KASAMI, T. and LIN, S. "On the Construction of a Class of Majority-

Logic Decodable Codes", 1971, I.E.E.E. Trans. Inf. Thy.
Vol. IT-17, pp.600-610.

71.

72.

73.

74.

75.

76.

77.

78.

159

ASSMUS, E.F. Jnr. GOETHALS, J.M. and MATTSON, H.F. Jnr.
"Generalised t-Designs and Majority-Logic Decoding
of Linear Codes', 1976, Inf. and Contr., Vol. 32,
pp.43-60. '

ASSMUS, E.F. and MATTSON, H.F. '"t-Design Decoding and the (48, 24)
Binary Q.R Code'", 1}70, G.T.E. Sylvania, Rep.
AFCRL-71-0013. |

GOETHALS, J.M. '"On t-Design and Threshold Decoding", 1970, Inst.

Statist., Univ. North Carolina, Mimeo Series 600.29.

. ASSMUS, E.F. and MATTSON, H.F. "Majority. Decoding of the (24, 12)

Binary Golay Code", 1969, G.T.E. Sylvania, Rep.
Contract F-19628-69-C-0068.

RAHMAN, M. and BLAKE, I.F. '"Majority-Logic Decoding Using
Combinatorial Designs", 1975, I.E.E.E. Tranms. Inf.
Thy., Vol. IT-21, pp.585-587.

RAHMAN, M. and BLAKE, I.F. '"Combinatorial Aspects of Orthogonal
Parity Checks'", 1976, I.E.E.E. Trans. Inf. Thy.,
Vol. IT-22, pp.759-762.

SUNDBERG, C. "One-step Majority—-Logic Decoding with Symbol
Reliability Information', 1975, I.E.E.E. Trans. Inf.
Thy., Vol. IT-21, pp.236-242,

HARRISON, C.N. "Application of Soft Decision Techniques to Block
Codes", 1977, I.E.R.E. Conf. on Digital Process, Univ.
of Loughborough, Leics., England.

160

Part 11

RanDoM ERROR-CORRECTING

MAJORITY-LOGIC DECODABLE

ConvoLuTIONAL CODES,

161

CHAPTER 8

8. INTRODUCTION.

8.1 OQutstanding Problems.

It would be fair to say that the state of the art, with regard
to random error-correcting majority-logic decodable convolutional
codes, is still in its infancy. Particularly so compared to block
codes. Very little has been achieved towards dévising large
constructive classes of majority-logic codes énd one of the
outstanding problems still awaiting a solution is the development -
of a coﬁstructive class of orthogonalizable codes. Those convolutional
orthogonalizable'codes which are known have been developed, using
trial and error methods or hybrid use of block codes, are
relatively small claéses or of low trangmiésion rate.

0f those majority-logic codes that have so far been devised,
namely, orthogonalizable and self-orthogonal, the orthogonalizable
have exhibited far better minimum distances, dm, for a given length
and réte, than the self-orthogonal. However, when decoded in the
feedback mode the orthoéonalizable'codes have no inherent protection
against propagated errors due to decoding failures in previous blocks.
This is a problem encountered in all other known types of convolutional
codes too, except self-orthogogal codes which are the only known type
of convolutional code that have an inherent ability to automatically
recover from error propagation.

However, regardless of which type of majority-logic convolutional
code we consider there has, up to this time, been another limiting

factor in their design. We saw in Part I that when a majofity-logic

162

block code is cyclic we can decode with a single majority-logic

gate. There is nothing analagous to a cyclic code with convolutional
codes*so that to decode a block of digits containing ko information
digits we always require ko majority-logic gates. This has 1ead’

to the development of codes with small ko (in fgct for many existing
codes ko £5). 1If ko is small then the transmission rate cannot be
very high, so that there is no constructive class of majority—logic
decodable convolutional codes that are multiple error-correcting and

very high rate.

8.2 Project Resumé.

The ‘codes presented in Chapter 11 offer a solution to this
second problem, their properties including,

i) k° the number of messagefdigits in a sub-block can be '
very high, in particular if pa , a=1,2,,..... 1is a power of

an odd prime, k_ = p%- 1.

ii) the codes are cyclically encodable and decodable with a
consequent reduction in the number of majority-logic gates. In
particular if kd = p-1, p an odd prime, and if the rate, R = 1/2,
only one majority-gate is required and all ko digits can be decoded .

cyclically.

iii) the codes are self-orthogonal and therefore majority-logic

decodable in one-step.

iv) the codes are high rate with R 3 1/2. 1In particular it

is shown that a single error-correcting code exists for every

* Majority-logic codes that is.

163

positive integer m, with rate

R = ko/k°+2 = (m-1)/(m+l).

v) since the codes are self-orthogonal they have the abiiity
to automatically recover from error propagation. In particular it
is shbwn that the codes have the ability to recover from multiple
efror propagation;

The codes are compared with existing majority-logic codes on
the basis of minimum distance, rate and length. An examination of
their unbounded performance, when the number of errors exceeds the
codes capability, is shown in Chapter 12, and this is compared with
the unbounded performance of another well known class of self-
orthogonal éodes7.

The idea of error-propagation efficiency is introduced to enable
éubjective comparison of different codes.

In Chapter 13 a pseudostep orthogonalization algorithm is
introduced, which, though it may be applied to Reed - Masseyl
algorithm majority-logic codes, is applied to a well known élass of
orthpgonalizable convolutional codes1 with a consequent improvement
in their unboundéd performance.

Finally in Chapter 14 an assessment of the original work presented

in Part II is conducted.

164

CuAaPTER 9

9. SURVEY OF MAJORITY-LOGIC CONVOLUTIONAL CODES.

9.1 Non-Self-orthogonal Codes.

Massey1 was the first to show that convolutional codes could
be majority-logic decoded and he presented three classes of non-

self-orthogonal codes. These three classes were,

1) Trial and Error, a large class constructed, as the name

implies, by trial, with low rate £ 1/2,
2) Uniform, a class of low rate 1/no,
3) '"Reed-Muller" like, another class of low rate 1/no codes.

In 1968, Reddy and R.obinson9 showed that Massey's Reed-Muller
like codes1 can be constructed directly from Reed—ﬂuller block godes.
They also showed that any linear Uniform code can be constructed
using a MacDonald block code. Several algorithms were presénted
for constructing convolutional codes from block codes and resulted
in long low rate codes. In the same year Reddy10 presented new
algorithms for constructing convolutional short high rate codes
from block codes.

In another paper, in the same year, Reddy.and Robinson11
presented decoding algorithms for the codes presented previously.

If the block code is one-step majority-logic decodable then the
resulting convolutional code is one-step decodable also. In general
the decoder construction is closely related to the decoder of the
block coﬁe. In the general decoder a number of block decoders are

required before processing and making a majority decision. It is

165

also shown that the codes can decode with limited error propagation
provided a reduction in capability can be tolerated. 1In 1972

Reddy and Robinson20 presented further results on orthogonalisable
convolutional codes, this time constructed from majority-logic
decodable self-orthogonal convolutional codes, into which are
imbedded block codes. Two constructions are presented giving low
and high rate codes with decoders related to the block code decoders.
The low rate construction has limited error propagation provided

a reduction in capability can be tolerated whilst the position fof

the high rate construction is stated as being '"nmot clearly understood'.

9.2 Self-orthogonal Codes.

Again Massey1 first presented a small class of rate 1/2 self-
orthogonal codes and he noteq that the large difference between
actual and effective constraint lengths made the encoder and decoder
larger than necessary. |

In 1967, Rdbinson and Bernstein7 presented a class of self-
orthogonal codes whose conétruction was based upon difference
triangles. More importantly, they showed that any convolutional
self-orthogonal code, C.S.0.C., could recover automatically from
erro% propégation when decoded in the feedback mode. 1In a later
paper Robinson12 showed that a code could recover from error
propagation within a limited number of bits, using Feedback Decoding,
if and only if that same code can be decoded using Definite Decoding.
Significantly self-orthogonal codes remain the only known class of
convolutional codes with this property inherent in their structure.

This class of codes started by R.obinson7 et al. was later extended

166

22’23’24. In Wu's

by Klieber14 and virtually completed by Wu
first paper22 he tabulated new C.S.0.C)s of rates 2/3 up to 13/14
and in addition presented three examples of C.S.0.C.'s used in
commercial satallite systems. For one example a significant result
of an extensive evaluation including B.C.H. codes, cyclic difference
set codes and both Viterbi and Sequential Decoding pointed to a

raﬁe 7/8 C.S.O.C.. In a later paper Wu-23 extended the tabulation

of high rate C.S.O.C,'s from rate 14/15 up to 49/50. He introduced
a unified construction algorithm and extended Massey's work on

A Posteriqri (APP) aecoding to C.S5.0.C.'s.

In another paper, in 1976, Wu24 tabulated further rate 1/2
C.S5.0.C.'s and examined the concatenation of C.S.0.C.'s generally.
Wu states that éne of the problems of concatenation is that the
inner codes' decoder, such as Réed—Solomon, B.C.H. or Viterbi;
produces extra and bursty errors at its output when confronted with
error patterns whose weight exceeds the capability of the code at
its input.. Wu found24 that C.S.0.C. decoders exhibit properties

which suppress both of these undesirable properties and make them

attractive as inmner concatenated codes.

9.3 Further Reéults.

Other results in the field of majority-logic decodable
convolutional codes include results on burst error—correcting codes
which can also correct random errors, from Tong]'5 and then Ferguson18
Tong's15 codes are high rate C.S.0.C.'s while Ferguson's18 are
rate 1/2 orthogonalizable.

Tong's15 approach was to set up a coarse design and finalize

167

it with a trial and error iterative procedure. This was done
by designing a burst error-correcting convolutional code and
then modifying it to correct random errors too.

Rudolph13 showed that any linear convolutional code can be
maximum—-likelihood decoded, with respect to the decoding constraint
length, by a one-step threshold decoder. The decoder utilized
an exponentiation operator and threshold element fsr binary codes.
In a later paper Rﬁdolph and Robbins21 éhowed that the correct
statement for binary codes was to replace the exponentiation
operator and tﬁreshold element by a weighted-majority element.

Goodman and Ngzs recently presented results An soft-decision
threshold decoding of convolutional codes. A random error and
diffuse decoding scheme are proposed and an expected improvement
over a hard deciéion decoder claimed. The ability to soft—-decision
decode majority-logic convolutional codes makes them highly competitive

with other decoding methods such as Viterbi8 and Sequential2 decoding.

168

CHapTER 10

10. CONVOLUTIONAL CODING THEORY.

10.1 Basic Description.17

With.binary block codes, we saw in Chapter 3 that each block
of n, binary digits was uniquely determined by a block of ko <n
binary digits, called the information block. Thus tﬁe check~digits
of-anyvno-digit block contain information regarding the ko message
(information)-digits which determined the block and no other message—
digits; With a convolutional code this restriction is lifted and
convolutional codes can be considered as a generalization of block
codes. That is, we allow information, fegarding the ko binary digits
‘of a message block, to be present in the check-digits of N different
nd-digit blocks called sub-blocks, with n > ko.

The parameters N and noN are called the coﬁstraint length of
the code, in units of blocks andibinary digits respectively.

The encoder functions by sub-dividing the incoming information
stream, m, into blocks of length ko and stores N of these blocks.
Having done this the encoder can then form the ﬁo—ko check-digits
of some sub-block, say the e'th, to form an no-digit sub~block E;.
Each binary digit of Eé can be represented by the following equations,

which assume a systematic code,

ce(i)_= me(i), i-= 1,2,...,ko 10.1.1.
k k
(o} (o]
e, (k +j) = 121 m (i) g_(i,3) @_izl m,_; (1) g (1,)) @
Ceeeeneans @i_l m, a1 (1) 8y (151D 10.1.2.

for j = 1,2,...,n0-ko,

m(i)

m(i)

g1 (1> 1)

g, (i,1)

g]t\l-l(i’no-k)

Oe

° ° . . e ’ ’ gO(i’no—ko

FIG. 10.1.1.

A GENERAL CONVOLUTIONAL ENCODER.

C(1)

C(no-ko)

169

where;

c (b) = b'th digit of Ee € GF (2)

i

m (b) = b'th digit of Ee € GF (2)

gx(i,j) = 1 or O, depending upon whether we do or
do not respectively require me_x(i) to be present in the check-digit

ce(k+j). Therefore the encoder must store sub-blocks

m m
e?

m e_z,.-- ’me-N+l

> to form the encoded n -digit sub-block c .
e-1 o] e

Let
g(i,j) = (go(i,j), gl(i,j),...,gN_l(i,j)).

There are ko(no;ké)’ N-digit binary vectors g(i,j) and from
equations 10.1.1. and 10.1.2. it can be seen that these vectors
determine the no-digit sub-blocks. They therefore specify the code
and are called the "sub-generators'" of the code. Equations 10.1.1.
and 10.1.2. specify a systematic code, but if the.code is non-
systematic we incorporate equation 10.1.1. into 10.1.2. and then require
ko.no sub-generators g(i,j), i = 1,2,...,k0, j= 1,2,...,no.

The encoder must also store the ko.(no—ko) sub-generators of the
code. A general encoder for a convolutional code is shown in figure
10.1.1. where the blocks containing each gx(i,j) perform modulo 2
multiplication, the adders sum modulo 2 and the blocks containing D
are simple delays to enable the storing of the N, ko-digit message
blocks.

10.2 General Decoding.17

We consider all data sequences as semi-infinite. This is because

one cannot take out a section of data and say this is independent of

170

any other data in the sequence, because any block is always related

to the following N-1 sub-blocks. Also it is semi~infinite because

at some time transmission must Stész. Therefore we represent the'.

generator and parity-check matrices by the symbols G, and H respecgi;ely.
Therefore we have,

G_ - HE = 0. 10.2.1.

Let ¢ be a semi-infinite transmitted code sequence, and m a
semi-infinite information sequence, then
| c=m-G_.
Let T and e be semi-infinite received and noise sequences,
respectively, then
T=c@®e.
The syndrome is the semi-infinite sequence, s, obtained by

multiplying T by H:,

s=7 HZ
- CQH.
=c - H _@e - HZ
=% - H 10.2.2.

If we assume the first received sub-block of r is the O'th

block, we can represent E'by,

S = (so(l), 30(2),....,so(no-ko), sl(l),....,sl(no-ko),
ceessany se(l),....,se(n-k), e)

where, se(l),se(Z),....,se(no-ko) is the syndrome of the e'th

block.

171

Therefore in order to obtain all the relevant information
required to decode a single sub-block, the decoder must form and
store the (no-ko)Qdigit syndromes of the N blocks, whose check-digits
‘contain information digits from the block to be decoded.

Let ;; be the received no~digit sub~block Eé plus errors.

Then from equations 10.1.1. and 10.1.2. we can write,

re(i) ce(i)(@.ee(i) 10.2.3.

re(ko+3) ce(ko+3) + ee(ko+3) 10.2.4.
1= 1,2,...,ko 3 j= 1,2,...,n0-ko,

where,
ce(ko+j) is given by equation 10.1.2.
ee(ko+j) is the single check-digit error acquired

during transmission.

At the decoder re(i), the received message-digit section, is re-

encoded into the (no—ko)—digit section r;(k°+j),'where,

k .
o ..
ri(k +3) = c (k_+3) @izl e (1) g, (i,)) @
o o
izl e, (1) g (L, ®.... @izl e ey (D) g (sd)

10.2.5.

i=1,2,0.00k 5 §=1,2,...,n k.

The decoder then forms the syndrome of block e, E;, by adding
mod 2 the digits of equations 10.2.4. and 10.2.5. so that for each

digit, se(j), of E;, we obtain

o

172

s.(3) =t (k +3) Dr!(k_+)
k k
o o

=e (k+D@] e (1) g (L,HN®D] e _ (1) g,
i=1 i=1
kO

R B N R CIRY C S-Sy € 5.) ~ 10.2.6.
i=1

where i and j are as in equation 10.2.5.

Of course the decoder performs this operation N times before
it is ready to decode a block. Let us.assume we are about to deqode
block 0, then to decode we require N,(no-ko)-digit,syndromes
so(j),...,sN_l(j) and the equations relating to these syndromes are
shown in equation 10.2.7. It can be seen that the errors in the

message-digits of block O are present in all N syndromes.

k
- (o]
s () = e_(k_+j) @izl e (1) g (i,3)
k k
[s] . o]
;) = ey (k +) @izl e, (1) g (1,1 ®i§1 e (1) g;(i,3)
: 10.2.7.
k_ |
suo1 () = e (k4D ©) -1 (D) 8, (LD ®........
i=1 .
k
[o]
RN ®.z eo(i) 8N__1(iaj)

i=1

j= 1,2,....,no-ko.

If we assume the O'th block is correctly decoded and the errors in

block O are cancelled from the syndromes, then we obtain the set

of syndrome equations below.

General
Received Encoder
Message
Bits.

Syndrome F.B. cancellation.

Received i

Message
Bits.

Y ¥

g, (i,1)

R [S Y +D
E

. ®
C Syndrome
E Bits. Py
I
V. [[)
E Y ®
D X S.F.B.C.
¢ I 1 b
H
E
g gN-l(]"no-k) gl(l’no-ko)

(R W o B v]

+ D F ..o..____.,,_gfﬁ;D

Syndrome
Bits

Decoding Logic Circuits.

!

FIG. 10.2.1.

A GENERAL CONVOLUTIONAL DECODER WITH FEEDBACK.

173

so(j) = 0
k
o]
s5.(3) = e (k +)) @.izl e, (1) g (1,1)
k k
o (o]
s5,() = e+ @ [o)) g (L, @ 1 e () g (i,d)
i=1 i=1
. 10.2.8.
X k
o o
sg(= eyk +i) ®i§1 ey g (L, & © 1 o gy (b

So that we can decode the errors in block 1 using si(j),...,sN(j)
since they are identical in form, on block 1, as w ere so(j),...,sN_l(j),
on block 0, previously.

Once one has chosen the rules for encoding the ko message-digits
of a certain sub-block (which is the same as choosing the sub-generators),
the same encoding rules apply to the ko message?digits of every sub-
block.

Also, thérefore, if one can formulate rules for decoding a given
sub-block, the same rules will decode every sub-block. However equations
10.2.8. were obtained assuming we cancelled the effects of the errors
in block 0. This process is called syndrome éancellation and the
procedure generally called feedback decoding. Figure 10.2.1. shows a
general decoder for a convolutional code, éecoded in the feedback mode.

10.3 Decoding and Error Propagation.12’7’17

The assumption in section 10.2 that the previous block was

successfully decoded was useful to illustrate the general decoding

procedure. However, in practice, this cannot be guaranteed and when

174

a decoding failure occurs, due to the practice of syndrome cancelling
the decoding failure magifests itself as errors in the syndromes
of the following N-1 blocks. This property of convolutional codes,
when decoded using syndrome cancellation,is referred to as error
propagation. p

It is possible for propagated errors to cause further decoding
failures even in the absence of natural errors and is therefore an
undesirable quality. Several methods for controlling the effect of
propagation are known and also one (though perhaps obvious) method

of eliminating it.

Periodic Resynchronization.1

Since a propagated efror affects the decoding of the following
N-1 blocks, if we can arrange periodically to guarantee to correctly
decode a successive set of N-1 blocks, then propagation Qill be
terminated. This is done by periodically encoding a set of ko(N-l)
known.digits (usually the all zero sequence). The price paid is a
reduction in the transmission rate R to some figure R'. 1In particular
if the known message—-digits are encoded after every L blocks,
kOL

R' =
Lno + (N 1)n0

- [L_Tlﬁ_-—l] R | 10.3.1.
Assuming a worst case situation, that is a propagated error

occurs in the decoding of tﬁe L'th block, since the following N-1

blocks, which the propagated error affects, are known, all errors in

the N-1 blocks can be corrected and this must include the propagated

error from block L.

175

Error Counting.17

This method involves counting the number of errors the decoder
has estimated to have occurred, over a specified number of digits.
If the count exceeds the error-correcting capability of the code, a
retransmission is requested, on the basis that there is too much
noise present at that time. Again the transmission rate will fall
but not as much as with periodic resynchronization, provided the code
is chosen sensibly and the’chénnel noise is not too high compéred to

the error-correcting capability of the code.

Automatic Recovery.lz’7

This involves the design of codes and decoders which have the
ability to recover from error propagation without any external assistance.
It is assumed that there are occasions, during which a long enough error
free_transmission period occurs, which allows the system to recover
automatically. It has been shown’ that self—-orthogonal majority-logic
decodable convolutional codes have the property oflautomatic recovery
from error propagation.

’
It has also been shown19 that if a code has the property that

syndrome cancellation always acts to reduce the weight of the syndrome,

then error propagation cannot occur.

Definite Decoding.”’12

Obviously if one does not use syndrome cancellation there is no
feedback and error propagation cannot occur. This is called definite
decoding and the price paid for this is a reduction in the error-
correcting capability of the code. It has been shownlzthat self-
orthogonal codes can be decoded in the definite decoding mode, simply

by disconnecting the feedback connection.

176

Apart from the reduction in error-correcting capability, it
has been shown16 that on a binary symmetric channel (B.S.C.) with

crossover probability P, that

1
PFD<PDD for 0<P<7

where PFD and PDD are the probabilities of a decoding error using

feedback decoding and definite decoding respeCtlvely)
and the decoder is a maxlmum llkellhood decoder .

10.4 Random Error-correcting Capability.17

We begin by defining the minimum distance of a convolutional

code.

Definition 10.4.1.

The minimum distance dm of an (noN, koN) eonvolutional code is
equal to the smallest Hamming distance d(u,v) between two initial
n N—dlglt code sequences which disagree in the 0'th block.

An initial noN-dlglt code sequence is one of the Zk ¥ possible
sequences due to the N blocks of message digits in the constraint
length of noN digits. Let z = u@vV, then z is an initial code
sequence whoee message blocks, other than the O'th, are zero ender
modulo 2 addition since u and v only disagree in the O'th block.
Thus the minimum distance of a convolutional code is equal to the
minimum weight, w(z), of an initial noN-digit code sequence, z,

whose 0'th block is non-zero, written,

dm(E) =d . (U,v) = w2 10.4.1.

We can show that any error sequence, with non-zero O0'th block, cannot

prevent the correct decoding of the O'th block providing its weight, t,

177

is such that,
dm -1
cf =]
That is, provided there are £ t errors in a span of nON digits, we
can decode the O0'th block correctly.
To show this let El and EZ be two error sequences, of length

noN digits, that disagree in the O'th block. Then if both error

sequences have weight E(dm - 1)/23 their syndromes must be distinct,

since if
- - T — _— _T
sl—ele-sz—eZHm
- =\ T
then, (el@ez) H_=0. 10.4.2.

But this implies (—e-l @Ez) is a code sequence with non-zero 0'th
block and therefore by the definition of a code sequence must have
weight,

w(e.1 ® ez) 2 dm.

This is impossible by definition of the two sequences.

Thus a convolutional code with minimum distance dm can correctly
decode the O'th block of a set of N blocks, provided there are
t < E(dm - 1)/2;' errors in the span of noN digits, including the

0'th block itself.

10.5 Decoding Methods.
An outline is given of two decoding procedures which can be
applied to any convolutional code and which are alternatives to the

general decoding of section 10.2.

178

Viterbi—decoding.s’19

This is a systematic search algorithm which successively generates

ko R Begnents - e
all 2 code’:v/‘”'and compares each of these with the received
code !segments .

The decoder then assumes the O'th block of the decoded sequence
is equal tqmghelo'thiblock of the code word that is closest to the

approximaﬁe}ywko‘
received word. Sincehe ¢Ncalculations are required to decode an
no-digit section the algorithm is limited to codes of small length
n N and low rate k /n .
o o o' o

The advantages are that it is a maximum—likelihood decoding
procedure and performs definite decoding, thus eliminating the problem
of error propagation.

Without going too deeply into Viterbi8 decoding, which is an
active branch of research on its own, it is worth noting that a
parameter of interest is the "free distance" of a convolutional code.
The decoding constraint length of a Viterbi decoder, nOM, is several

. times larger than the encoding constraint length, noN. And the free

distance is given by,

d = lim d
free M > o noM

where dn M.is the minimum distance of the code with extended decoding
constraint length. The probability of error is strongly dependent
on dfree' Viterbi decoders can be used for longer codes than the

simple systematic procedure outlined initially, although it is still.

limited to codes of moderate length.

179

Sequential Decoding.

Sequential decoding is an alternative to Viterbi decoding in
as much as it operates on the principle that many of the ZkON code
words, T e *:f:;z*;'are highly improbable
anyway, given the received code word. If it is possible to avoid
considering highly improbable code words then the amount of computation
may be manageable even for long codes.

Sequential decoding was introduced by Wozencraft.2 and his
ideas have been extended by other researchers. For a basic introduction
see Peterson and Weldon]'9 Pp.412-425.

1,20,7
10.6 Majority-logic-Decoding. >’

The majority-logic decoding algorithms in Chapter 3, are readily
applicable to convolutional c&des, except L-step decoding which
Massey1 showed could not be used. Also to this date no codes have
been developed which utilize non-orthogonal check-sums or pseudostep
orthogonalization, éhough there is no known restriction to their use.
In a later chapter pseudostep orthogonalization is used to improve
a class of codes usually decoded with the Reed—Masseyl one-step
decoding algorithm.

It is one-step decoding using the Reed-Massey algorithm which

most known majority-logic convolutional codes utilize.

One-step Decoding.
The decoder of a convolutional code must store N.(no—ko)
syndrome digits to decode the O'th block. Provided an error pattern

e with < t errors in a span of noN digits occurs, the O'th block can

180

be one~step majority—-logic decoded, if 2t orthogonal check—sums
can be found on each error digit in the O'th block.

Of course the 2t check sums can be formed by any linear
combinations of the N.(no-ké) syndrome digits. Also there is no
need to correct the check-digit errors of the block being decoded,
indeed from equation 10.2.4. it is difficult to see how it could
be done even if one wished to do so.

There is no 'majority=logic . equivalent of a cyclic code in
the strict sense of the definition given for block codes. Thus all
majority~logic codes so far devised require ko majority-logic gates

to decode a sub-block of ko message-digits.

181

CHAPTER 11

11. A CLASS OF CYCLICALLY DECODABLE CONVOLUTIONAL CODES.

11.1 Introduction to Code Structure.

It was shown in Chapter 10 that a convolutional code can be
completely specified by the coefficients of its sub-generators. It
is the purpose of this introduction to show that a code, which is a
member of the class of codes to be introduced, can be completely
specified by an array of positive integers.

The codes to be presented are systematic so that the check-digits
of an e'th sub-block can be represented by equation 10.1.2. given

again below,

k k
o o
c (ki) = 121' m_(1) go(i,j)®izl m_, (1) g (i,)) ©......
k
o

cereens @ m ey D) gN;l(i’j) 11.1.1.
i=1

for j = 1,2,...,no—ko,

where Ce(b)’ me(b) and gx(i,j) are as given in equation 10.1.2.

We impose the following conditions upon equation 11.1.1.

0 for i # a.
g, (1,3) =]
1 for 1 = a,
. J
: 11.1.2.
: 0 for i # nj
(1,3
gN 1 1 for i = nj

and, 1 g aj, bj,...,hj,....,nj < ko, are positive integers

182

representing the numbers of the message-digits concerned.

We can thus rewrite equation 11.1.1. in the following form,
ce(k°+J) = me(aj) E}me_l(bj) ©...... @ m g (02) 11.1.3.

where, me_x(hj) implies gx(hj,j) = 1.

For example,
¢ (k +1) = m (4) C-I;)me_l(l) ®...... @‘me-le-l(E’)

shows that the first check-digit of block e contains the A'th message-—
digit from block e, the 1'st message-digit from block e-1l,........,

the 6'th message-digit from block e-N+l, so that, a, = 4, bi = Lyeeee,
n, = 6.

Consider the array below;

Array 1
Col's !

TOows 0 1 v e et !

1 a1 b1 c1 . . . h1 . . . n1

2 a, b2 cy . h2 .« e n2

3 a3 b3 c3 . . . h3 . . . n3

i a b C. o o« & h . n

i i i i i
15" an -k bn x n -k : hn -k ° oy -k
o o o o o o o o o o

183

We can see that row i shows the numbers of the message~digits
involved in check-digit ce(ko+i), from equation 11.1.3. More
specifically, from rew i, the integer in column x gives the number
of the message-digit from block e-x present in check-digit ce(ko+i).

For the purposes of encoding, we can see from the array what
form the encoding equations will take for the check-digits of the
encoded current block in time.

From equati&n 11.1.3., if we vary the reference block suffix e

we obtain the set of equations below.

ce_3(ko+j) = me_3(aj) Gﬁme_A(bj) D...... GBH%—N-Z(nj)
ce_z(ko+j):=’me_2(aj) E)me_3(bj) oy AU @Qme_N_l(nj)

: 11.1.4.
Casx—3 (K ti) = me+x—3(aj) D.... &?me_3(hj) &.... E)me+x-N-2(?j)

Coun—s (K Fi) = me+N-4(aj) G>H%+N-5(bj) ®.... &Qmé_3(nj)

If one traces the distribution of the message-digits from block e-3
through the equations 11.1.4. above, the following statement becomes
meaningful, assuming block e-3 is the current block.

"Column x of Array 1, shows the distribution of the message-digits
from the current block e-3 in the check-digits of bloék e=3+x."

So the array not only gives the form of the encoding equations

for the check-digits of some arbitrary present block in time, it also

184

shows how the message-digits of that block are distributed in the
check-digits of itself and the N-1 blocks that will follow in time.
In section 10.2, Chapter 10, we saw that at the decoder we
form the syndrome by effectively reélacing a given message-digit,
in the check-digit equations, by the error in that digit. This
‘resulted in a general syndrome equation 10.2.6. which if we impose

the restrictions of equations 11.1.2., becomes,

se(j)- - ee(k°+j) &) ee(aj) ® ée_l(bj) @...... @ee-N-i-l(nj)
11.1.5.
Ignoring the check-digit error ee(k°+j), this equation is given
by row j of the same array of integers, bearing in mind of course,
that the integers now represent errors in the message-digits.
If we consider block e is to be decoded we require the syndromes

of the following N-1 blocks also, as below.

se(j) = ee(ko+j) @ee(aj) @ee_l(bj) & @',ee-N+1(nj)

i) = j & S...... % .
Se+1(_]) ee+1(ko+3) @ee+l(aj) dee(bj) £3) @ee_N+2(nJ)

11.1.6.

.
.

s (i) =_ee+x(ko+j) 6ee+x(aj) ®ee+x-l(bj) ®..... @ee(hj) F oeees

e+x
LDe

.) e+x-N+1 (nj)

Sea-103) = eouy-1 (Kt D) ey (2 De y-2(by) CREREEE Ee (@)

But if feedback decoding is used, then all errors @y’ where

(e=x) < e, have been cancelled. Therefore to decode some error,

say ee(p), l1<pcs ko, we locate the integer p in each colummn of

the array. Since e =0 for (e-x) < e, from equations 1l.1.6.,
the set of integers to the left of each integer p, gives the errors
from other message-digit positions which interfere with these check

sums on ee(p).

Example 11.1.1.

Consider the code specified by the array of integers below;

2
4
1
3

S~ W -
N S~ =W
o W

When we encode a general block e, from equation 11.1.3. we obtain

the following check-digit equations, from the rows of the array,

e (kD) = m, (1) O, () @m_,(3) Om_3(4)
ce(ko+2) = me(2) @me_l(l;) @me_z(l) @me_3(3)
| ‘ 11.1.7.
c,(k +3) =m (3) Gun _, (1) Dn_,4) Bm_,(2)
ce(ko+4) = me(4)'@’me_l(3) @me_z(Z) @me_3(1)

Since there are only four distinct integers in the array, there
are only four message-digits per sub-block, so that kd = 4. Also
since there aré four rows in the array there are four check-digits
per sub-block, so that no-ko = 4, and n, = 8. This is therefore a
rate 1/2 code. Only 3 other blocks are involved as well as block e,
so that the constraint length of the code, in blocks, is N = 4.

From equations 11.1.4., if we increase the suffix's in equations

11.1.7., we obtain sets of check-digit equations for the other 3 blocks.

186

If we collect those equations involving me(l) we obtain the

following,

c (1) = m (1) @u,_; (D) @u_,(3) Bu__,(4)

ce+2(ko+2) = me+2(2) @ me+1(4) e me(l) ® me-1(3)

11.1.8.
oy (k#3) =m) @n (1) @n_,(4) Bn_,(2)
Copg (K *4) =m o(4) Bm) @m ,(2) &m (1)

At the decoder these check-digits are changed to syndrome digits,
the message-digits become errors from those message—~digits and
assuming feedback decoding, we obtain the set of equations below for

the syndromes.

se(l) = ee(i) . & ee(k0+l)

. Se42(2) = ée+2(2) Degy (B Pe (D De ypky*2)
Se+1(3 = ée+1(3) Qe @ e k")
Saq3(®) = e 3(8) De ,3) Oe_,(2) Pe (1) De (k +4)

Under Definitioﬁ 3.6.1., these are orthogonal cheqk sums on error
T digit ee(l). Note that if we locate the integer 1 in each column

of the array, the leftwise sequence determines a check sum. For

the check-sums to be orthogonal for all integers, we require the
leftwise sequences to be unique, where this implies each element of

a sequence is distinct from the corresponding element in another
sequence.

The leftwise sequences for ee(l) are;

187

1 Note the columns are unique
1 .
as defined.

1
1 3 4

Being leftwise unique guarantees that some error from another
block, will not appear more than once. Being leftwise unique also
guarantees that the orthogonal check sums are inherent in the structure

of the code, and as such the code is self-orthogonal. The sequences

for the other message-digits are;

Since we can obtain J = 4, orthogonal estimates of each error
in the current block e, we éan decode in the presence of t < 2, errors
in a span of noN = 32, digits.

In the work which follows it will be shown that this array can

' information digits
be arranged in a 'cyclic'’ form'such that the four ﬁ\, from a
sub-block can be decoded cyclically with one majority-logic gate.

Néte that if we guarantee unique leffwise sequences for some
integer p, we also guarantee unique rightwise sequences, under our
definition of unique. Therefore the s§ndrome equations obtained
from equations 11.1.8. would still be self-orthogonal on ee(l) even
if we did not use feedback decoding and used definite decoding instead.
This is a property of all self-orthogonal codes.12

Before leaving this section, it is important that the reader

understands exactly the information imparted by the array of integers

which specifies the code. To this end the following statements

188

directly describe the arrays' properties.

(a) 1If we are examining block e, then the integer in row i and
column x represents both,
(i) the number of the message-digit or message-digit error

from block e in check-digit i of block e + x.

(ii) the number of the message-digit or message digit error
- from block e -— x in check-digit i of block e.

Note that if x = O both (i) and (ii) are identical.

11.2 Existence of Arrays.

11.2.1. ~Introduction to the theory.A’S’27

It is assumed that the reader has a knowledge of the basic
properties of congruence relations. To that extent, the following

brief resumé is given without proofs.

Definition 11.2.1.1.

Any two positive integers a,b whose remainder, r, upon division
by some positive integer m, is the same, are said to be congruent or

equivalent and can be written,

a = b modulo (m) : 11.2.1.1

or a=b = r modulo (m).

11.2.1.(a)

If a = b modulo (m), then for any positive integer d,
d *m+ a = b modulo (m) 11.2.1.2
a+dz=b + d modulo (m) 11.2.1.3
a+dz=b e+ d modulo (m) 11.2.1.4

11.2.1.(b)

189

If a = b modulo (m), and also with ¢ and d positive integers

¢ = d modulo (m)
a+c
a-c

ac

11.2.1.(c)

, then,

= b + d modulo (m) 11.2.1.5
= b - d modulo (m) 11.2.1.6
= bd modulo (m) ' . 11.2.1.7

If ¢ is a positive integer such that, ca = cb modulo (m), then

if H.C.F. (a,b),

means the highest common factor of a and b,

H.C.F. (c,m) = d and m = mld, then

a = b modulo (ml),

and in particular, if

H.C.F. (c,m) =1, m=m and

azb

modulo (m).

In text books, the remainder is conventionally referred to as

a "residue" and

the set of all positive integers which have the same

residue modulo (m) is called a "Residue Class".

Let Ea represent the residue class containing all positive

integers whose residue is r modulo (m).

We can represent the complete set of residue classes by R , where

®l

Definition 11.2.

(@ @ @ .60

1.2.

A set of B

positive integers is a complete residue system, if

and only if, both of the following conditions are satisfied:

(1) B has

m elements,

(ii) if a and b are contained in B, written

o

190

a,b € B, and a = b modulo (m)

then a =b.

That is the set B contains one integer from each of the m residue
classes contained in Eﬂ.

In particular we are interested in what are known as ''Reduced
Residue Systems'. But before we define what a reduced residue system
is, we must define a function used widely in number theory and known

as Eulers ¢-function.

Definition 11.2.1.3.

For every positivé integer m, the number of integers less than

m and relatively prime to m, is ¢(m), where

¢(m) =m I [p—_-l-]
pjm VP

where the notation indicates a product over all the distinct primes

p > 1 which divide m.

For example;

if m=p , ¢(m) = p-1

, -1

if m=p", ¢@ =p" (p-1)
) %) Or

if m= Py Py cerees P

expanding ¢(m), generally

al—l a2—2 ar-l

$(m) = p,; P,” eeees B (7D (D) enlnl (271

Note.that;

¢(2m) = ¢(m).

191

Definition 11.2.1.4.

A set of S positive integers is a reduced residue system,
modulo (m), if and only if, the following conditions are satisfied:
(i) S has ¢(m) elements. - |
(ii) H.C.F. (a,m) = 1 for each a € S
(iii) if a,b € S and a = b modulo (m)
then a = b.
If two integers a,b are relatively prime, we will write,
(a,b) = 1.
As a complete residue system, we could choose the set B, to be

all m integers less than m, i.e.

B = {0,1,2,...., m1}.

A reduced residue system could then be all ¢(m) integers € B
above, that are relatively prime to m, and thus € S. But in general
any ¢(m) integers whose residues are distinct and relatively prime
to.m, is a reduced residue system, as our definition implies.

The following theorems will be found useful, in 1éter work.

Theorem 11.2.1.1.

If there exist positive integers a,b and m, such that
a = b modulo (m)

then if (a,m) = 1, then (b,m) = 1 also.

If we assume the contrary, then there exists a positive integer
s > 1, such that, (b,m) = s, (where from now on H.C.F.(a,b) = (a,b),
unless specified otherwise) |

m=ms , b = gs,

192

but since a = &m + b, then this implies

|

a (2m1 + q)s,
and implies s is a divisor of a, which is not possible since

(a,m) = 1,ands > 1, therefore (b,m) = 1.

Q.E.D.
Thus if an integer's residue is relatively prime to m, then
|

the integer itself is also relatively prime to m. Therefore any
residue class, represented by Eﬂ, with (a,m) = 1, contains a set

of positive integers, which can be represented, from equation 11.2.1.2,

by
[a] - {(d-m +a), d=0,1,2,... };

and ((dm + a), m) =1 for d =0,1,2,c 000 .

Theorem 11.2.1.2.

If_mi5 (i =1,2,....,r) are positive integers, then

a = b modulo (mi) 1=1,2,..., T ,

if and only if,

a £ b modulo (L.C.M. {ml,ma,...., mr}),

where, L.C.M. {a,b,...,r} means the Lowest Common Multiple of .

a,b,...,r.

11.2.2, The Array.

In section 11.1. we showed that a code could be specified by
an array of positive integers representing the numbers of message-
digits or message-digit errors. We also saw that the array must
be structured so that the leftwise sequences of any integer must

form a unique set in order that orthogonal check sums exist for

o

193

that integer. This condition must hold for every distinct integer
in the array if a code is to be specified by the array.

In this éection we develop bounds and conditions on the form
of the array which guarantees unique leftwise sequences for all
distinct integers. TheAfollowing theorem determines the form of

a single row of an array.

Theorem 11.2.2.1.%8

If there exists positive integers a,m such that (a,m) = 1, then
the quantities
a, 2a, 3a,....., (m1)a
have (m-1) distinct residues modulo (m).
Since for any integer m, there are ¢(m) integers s,
1i=1,2,...,6(m)), with (ai,m) = 1, we can obtain ¢(m) sets, Si’
where

S, = {a. mod(m), 2a, mod(m),...,(m~1)a. mod(m)}
i i i i

' A general array (A) is defined as the set of sets,

Si’ i=1,2,..., ¢(m), where

(s

Ay =1 . ' 11.2.2.1.

L %),

and gach Si constitutes a row of the array which therefore has ¢(m)
rows, (m1) columns and (m-1) - ¢km) elements. -

It will be seen later that it is possible to construct arrays
with S < ¢(m) rows provided S divides ¢(m), written S|¢(m). Howe?er

a row of any array always contains the complete set of elements

194

1,2,...,(m~1), though in different arrangements or permutations.

From section 11.1. we saw that to obtain self-orthogonal
estimates on a particular error-digit, we require the leftwise
éequences of that integer representing the error, to be unique. See
Example 11.1.1. and equations 11.1.6.

Consider the example below.

Example 11.2.2.1.

The array below is generated mod (8) by the two integers 5 and
7, reiatively prime to 8.

5274163
7654321

All leftwise sequences, for all integers except 3, are unique
"as defined. For 3 we obtain,

3614725
345617

Assuming we are considering errors in the current block as

block O, the syndrome equations from example 11.1.1. are,

(1) = e (8) @ey(3) @e1(6) e, (1) De,y(4)

De, (1) Seg(2) @ e (5)
5,(2) = ¢,(9) @ ey(3) @e; (4) Gre,(5) Bey(6)

@ 34(7) s

and these are orthogonal on,
e5(3)) e4(7) .
The situation in example 11.2.2.1. above must be avoided if we

are to decode all digits and we can gain some insight into how this

195

can be done by considering what conditions caused the results in’
the above ekample.

Let, a1 =5 and a, = 7 then the two equations s6(1) and
34(2) are determined by the following equations from the array of
integers,

7 + 4:(5) = 3 mod (8)
from the row generated by a,.
7 + 4+(7) = 3 mod (8)
from the row generated by a,e
So that 7 and 3 are separated by 4 multiples of é and a,. We can

1 2

represent this situation generally by the equations below.

v mod (m)

x + n(al)
11.2.2.2.

v mod (m)

X + n(az)

Obviously n must be an integer and from these equations,

[

X -V =gqm- n(al)

X -V =Trem - n(az)

so that, assuming a, >a;, , r>g

m(r - q) = n(a2 - al)
n =%§:—:—§l) 11.2.2.3.
1
where n must be an integer. When this equation is satisfied we will
call the condition "Array row equivalence" (or A.R.E.). We can obtain
a maximum for n by considering x to be in the first and second columns
of the array, with v in the next to last and last columns respectively.
That is, if x is in the first column of row one, x = a, and

1

also since v, in row one, is in the next to last column, giving

196

(m - Z)a1 = v mod (m)

therefore, from equation 11.2.2.2. with x = a,

a, + nra; = (m—2) a;

and n = (m-3). 11.2.2.4.
max

The same result is derived frém the second row also. We can
also deterﬁine éome useful condi;ion on (r - q)max in the following
way.

From equation 11.2.2.3,

n(a
(r-q) =-

2~ 8

m
and since (a2—a1) and m are fixed, (r-q) is determined by n. Thus,

nmax(az-al)

(r-q)max - m
) (m.—3)(a2—a1
m
Therefore,
(r=q)_., < (3,73;) ' 11.2.2.5."
and if n < Doy ? (r-q) < (r-q)max .for all n.

We are now in a position to prove the following theorem.

Theorem 11.2.2.2.

Any array generated mod (m), by a set of relative primes a;,
where (ai,m) =1, a; < m, is free from A.R.E., if all positive

differences (aj-ai), aj > a;, , are also relatively prime to m.

Proof.

From equation 11.2.2.3., if A.R.E. occurs

197

_ m(r-q)
(a.=a.)
i

]
must be an integer.
But from inequality 11.2.2.5.,
(r-q) < (aj-ai)

for all n, and since ((aj-ai),m) = 1, for n to be an integer (aj—ai)
must wholly divide (r—q), which is not possible.
| Q.E.D.

In example 11.1.1. the array was generated by the set of integers
1,2,3 and 4, mod (5), and any difference is also relatively prime
to 5. |

In example 11;2.2.1. the array was generated by the integers
5 and 7, mod (8), but their difference, (7-5) = 2, is not relatively
prime to 8 and thus A.R.E. occurs.

1f (aj—ai) is not relatively prime to m, then, if o, is the
greatest common divisor,

((aj-ai),m) =m

and the following theorem shows that column duplication occurs under

these circumstances.

Theorem 11.2.2.3.

If any array is generated mod (m), by two integers aj and as
such that,

(aj,m) =1 , (ai,m) =1 and

(aj-ai) = bm1 , aj > a,

where b is an arbitrary positive integer and my is some divisor of m,

then column duplication will occur in the array.

198

Proof.

Assume that at the h'th column of the array, we have,

h a, = qm+ r' r' <m
h aj = q,m *+ r" ’ ' <m
then, subtracting,
h(aj—ai) = m(ql-qz) + r' - " 11.2.2.6(a)

but if (aj—ai) =b oy

hb m = m(ql-qz) + ' - " ' 11.2.2.6(b)

since h can assume any value between 1 and its maximum (m-3), if

dm . .
h = o= d=1,2,..., g < oy
1 .
.. m 2m
.='ﬁ'1' ,;E-,....,;gl-ni<m
1. 1 1
then equation 11.2.2.6., becomeé,
D = - B 1
dbm m(q1 qz) +r by
but since
r' <m and " <m
then (r'-r") < m and therefore
r! =r"
and column h has the same integer values at all h = %E s causiﬁg
. 1
column duplication.
Q.E.D.

Two results are now immediately obvious;
i) if m > 2, column duplication must occur in more than one

column. It is also obvious that column duplication in more than one

199

column causes A.R.E. This eliminates pairs of relative primes

with this property.

ii) if mi = 2, then since d < m, column duplication can only

occur in one column

that is the centre column. However this can only occur if m is an
even integer and is impossible if m is an odd intgger. This will
be examined in more detail later.

We can now prove that whether or not column duplication occurs,
all other columns contain distinct integers.

From equation 11.2.2.6(a) and theorem 11.2.2.3., if two rows
of an array contain the same integer, in columm h, 1 s h s w1,

r' = r'" and

h(aj—ai) = m(q;~4,) |
m(q,-4,)
There are two cases to consider;
i) if ((aj-ai),m) = 1, this cannot occur for any integer value

of h and all columns contain distinct integers.
ii) if ((aj-ai),m) =m, then (aj-ai) = bm1

(ql-qz)

=0
h = m b

1
but since (b,m) = 1, for h to be an integer b must wholly divide
(q;-4,) -

Let (ql-qz) =cb , c=1,2,3,......

200

Regardless of the value of c, h will be a multiple of m/ml,
which is a column where duplication is knmown to occur. Thus all

other columns contain distinct integers.

Example 11.2.2.2.

Let m = 9, then ﬁhe set of relative primes is;
{1, 2, 4, 5, 7, 8.
Let‘aj = 8 and ai = 2, then
(aj~ai) = (8-2) =6 =2-3
therefore my = 3 and b = 2 and column duplication should occur

in columns that are multiples of,

that is in columns,

h

1]
(oW
.
(%)
-
[« W
1]
Pt
-
[\
-
.
.
-
(n4
A
w

3 and 6.

The two rows of the array are,

24681357
87654321

and column duplication in columns 3 and 6 verified.

Therefore when decoding digit 3, of say block 0, we will obtain
two syndrome equations orthogonal on e0(3)1f}e3(6), see example 11.1.1.
Note, all other columns contain distinct integers.

However this does not mean that the type of A.R.E. indicated
in example 11.2.2.1. does not occur when column duplication occurs,
it can occur simultaneously with column duplication.

In fact A.R.E. also occurs for digits 1 and 5 as we can see from

the leftwise sequences for these,

201

18 6 4 2

1 2 3 4 56 7 8
5 6 7 8

5318 6 & 2

And the above sequences represent syndrome equations orthogonal
on e, (1) Bey(4) and e (5) Pe,(8) respectively.

Before examining the cases when m is odd and even, the following
theorem establishes an upper bound on the number of relative primes
one can utilize, to be sure that their differenées are also relatively

prime to m.

Theorem 11.2.2.4.

Given any integer m,
a; O a
m =P Py +eer P

r
r

pi smallest prime factor > 1.
Then, the maximum number of relative primes a; < m, one can choose,

such that their differences, (aj—ai), are also relatively prime to m,

is upper bounded by (pl-l).

Proof.
Any difference, not relatively prime satisfies
(a;-a;) = bpy
for some P;» divisor of m.
Then aj = bpi +a,

or a.
J

a; mod (pi).

To guarantee this does not occur we require
a. a. mod .
5 % a; mod (p,)

for any divisor Ps of m. That is the set must have distinct residues

202

modulo any divisor of m. Since Py is the smallest divisor of m,
the set cannot exceed (pl-l) in number otherwise, reducing mod (pl)
will produce equal residues for some numbers.
Q.E.D.

Almost as important as the upper bound and of great use later
is the fact that the proof of theorem 11.2.2.4. shows that we can
determine if a set of relative primes has relatively prime differences
by determining if the sét has distinct residues modulo (any divisor
of m).

We can now examine how the preceding theorems affect arrays when

m is odd and even.

m = ODD.
When m is an odd integer then its smallest divisor must be 3 3.
From theorem 11.2.2.3, if an array generated mod (m), has rows generated

by relative primes a; < m, such that (ai-aj) = bm,, then column

1

duplication will occur in columns,

h =%“i , d=1,2,0, g <m
1

but since m is odd, m, 2 3, we will have

1

9 ctec e

and columm duplication will always occur in at least two columms.
An example follows, with m = 21, which is more illustrative than

that of example 11.2.2.2. when m = 9.

Example 11.2.2.3.

Let m = 37 = 21, then the set of relative primes, A, is

A=1{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

203

Let, aj = 8, az = 11, ai =4
from (az—as) =11 - 8 = 3.
b1 =1, m, =:g
and %2 = %l s %2 =7, 14,
1 _

duplication between rows 8 and 11 occurs- in columns 7 and lé4.

from (az-al) =11 - 4 =

by=1, m =7

and —=

3, 6, 9, 12, 15, 18,

and duplication between rows 11 and 4. oceurs-in six- columns,
3, 6, 9, 12, 15, 18.

The array produced is

8 16 3 11 19 6 14 1 9 17 4 12 20 7 15 2 10 18 5 13
11 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 20 10

4 8 12 16 20 3 7 11 15 19 2 6 10 14 18 1 5 9 13 17

Duplication also occurs between rows generate& by the following pairs

of relative primes.
a,4,@2,5),(,8),(8,11),(2,8),(1,8),(4,10),(1,10),(10,13),(4,13),
(1,13),(10,16),(13,16),(4,16),(2,16),(1,16),(11,17),(10,17),(8,17),(5,17)
(2,17),(16,19),(13,19),(10,19),(5,19), (4,19),(1,19),(17,20),(13,20),(11,20),
(8,20),(5,20),(2,20).

Note, all other columns contain distinct infegers.

We have shown that if m is an odd integer, any array generated

mod (m), which contains two rows, generated mod (m), by two relative

204

rimes a. and a,, such that,
P i i
((aj-ai) ,m) #1

is an array with A.R.E. between these rows.

This along with theorem 11.2.2.2. proves the following theorem.

Theorem 11.2.2.5.

If m is an odd positive integer, then any array generated mod (m),
by a set of relative primes {ai}, such that a; <m, (ai,m) = 1 for
each i,»is free from A.R.E., if and only if, all differences (aj-ai)
are also relatively prime to m, where aj > a,.

Therefore the upper bound imposed on arrays generated by relative

primes of an odd integer, is given completely by theorem 11.2.2.4.

As an Example of an array free from A.R.E. consider the following.

Example 11.2.2.4,

Let m = 7, then the set of relative primes is,
{1, 2, 3, 4, 5, 6}°
and all differences, from this set, are also relatively prime to 7,

and we obtain

[« 3NN, B - B VU S
v W = &N
o Y T S B ©) S VS
w o NN =
[[CR - e N S)
- N W & o

Six self-orthogonal equations (or unique leftwise sequences)

are obtainable on all six distinct integers. Thus the array specifies

a convolutional code, with

205

k =6
o

n =12
o

N =6
t =3.

We will show later how to arrange this array in a 'cyclic' form
so that all six digits can be decoded cyclically with one majority-
logic gate.

Since all differendes are relatively prime all columns contain

distinct integers.

m = EVEN.

All relative primes of an even integer are odd and therefore
any difference (aj—ai) is divisible by 2 and cannot be relatively
prime to m. This follows from theorgm 11.2.2.4,. We know from
theorem 11.2.2.2, if

(aj-ai) = bm1 s my > 2

then column duplication occurs in more than one column and so A.R.E.
exists. |

We can therefore restrict our enquiries to subsets of rélative
primes, where, |

(aj-ai) = b2 , where {b, %ﬂ= 1.

If A.R.E. occurs under these conditions, then, from equation

11.2.2.3.,

n = -“lé—’f;—‘l) 11.2.2.7.

and since [b,%ﬂ =1, b mist wholly divide (r-q) if n is an integer.
That is, (r=q) = cb, c =1,2,.....
but if ¢ > 2 , n > m which is impossible,

if e =2, n =mwhich is impossible,

206

and therefore, ¢ =1, (r-q) =b and n = m/2 is the only value
for which A.R.E. can occur. We know from theorem 11.2.2.3. that
column duplication will occur in the centre column, but this alone
will not cause A.R.E. on the duplicated integer. However from
example 11.2.2.1., in which column duplication occurred only in the
centre column, A.R.E. still occurred. We must determine under what
conditions it occurs and if there are any conditions under which
the array can be free from A.R.E.

Returning to the original equations under which A.R.E. was

" established we have,

X + nai v-mod (m)

v mod (m)

31}

X + na,
J

But these equations take no account of the columns the two x's

R . W
occur in. Let us assume that the x in the row generated by a, occurs
in column g, and the x in the row generated by aj occurs in column f,

then we have, |

ga. = x mod (m)

t 11.2.2.8.

fa.
J

We can obtain a maximum value for g, since we know for A.R.E.

x mod (m)

to occur n must equal m/2. Let us write,

ga, + na, = (m-2) a,
* 1 * 11.2.2.9.
fa. + na. = (m-1) a.
J J J
so that, g < £, giving
(g+n) = (m~2) , and
=pg-2 -1
gmax m=-2 2
=2-2. 11.2.2.10.

207

Also from equation 11.2.2.9.,

(fn) = (m1) , so that
=m-1-1
fmax =m-1 2
=2-1 11.2.2.11.

2

That is both x's must be located left of the centre column,
where duplication occurs. To the left (or right) of the centre column
there are (m/2) = 1 columns and the following theorem shows that if
two x's exist left of centre, then two v's always exist m/2 columns

away from both x's, right of centre causing A.R.E. .

Theorem 11.2.2.6.

If m.is an even positive integer and an array is generated mod (m)
by a set of relative primes ass such that any difference (aj-ai) = 2:+b,
with (b,m) = 1, then A.R.E. will occur, if and only if, there is an

integer X, such that, with g < £

ga, = x mod (m) ,
t 11.2.2.12(a)
faj = x mod (m)
with both,
m m
gs-f-Z and fsi"l
Proof.

Let us assume there exists an integer r' in column g of row a;
. wos m m
and an integer r" in columm f of row aj, where g < 5 2, f g 7 1

then,

ga. = r' mod (m) , r' <m

1

1t

faj r'" mod (m) |, " <m

and if £ > g

208

1

- = - "no_
faj ga; m(q2 ql) +r r

but if (aj-ai) 2b, then

a.

2b + a. and
] i

]

- = - "o
f(2b+ai) ga, m(q2 ql) +r r
2bf + a (f-g) = mlgymq)) *+ 1" - 1’ | 11.2.2.12(b)

If we move n = % colums down the array, then we will have,

(g+3) a; =qmm+p' ,p <m

11.2.2.13.
@4%%=qp+f,p"ﬂn
where,
r' + 5123 a, = p' mod (m)
'+ % aj =z p" mod (m)
Subtracting equations 11.2.2.13.,
faj - ga; + %i(aj-ai) = m(q;'q3) +p" - p'
and since (aj—ai) = 2b
fa, - ga; = m(q,~q4-b) + p" - p'
2bf + a, (£-8) = m(q,~q4"b) + p" - p’ .11.2.2.14.
Comparing equations 11.2.2.12(b) and 11.2.2.14,
m(qy-qy) + " = ' = m(qmqyb) + p" - P!
and since (r" - r') and (p" - p') are less than m, we must have,

(q,-9;) = (q,7q5~b) , and

let r' = x and p' = v, then if

" =r' =x, we also have,

209

p" =p' =v and A.R.E. occurs.

However this assumes g and f are less than their maximums, given

in equations 11.2.2.10. and 11.2.2.11. respectively.

m—

5 1, then

If we assume, f >
(£ +3 > (@)

and since there are only (m-1) columns in the array, v, cannot exist
in the row generated by a; and A.R.E. cannot occur.
Also if g > %»— 2, then this also implies £ > %-- 1 and again

A.R.E. cannot occur.

Q.E.D.

Therefore to prevent A.R.E. we require all integers left of the
centre column to be distinct and this obviously places a limitation

on the size of the array.

The following example illustrates the results of theorem 11.2.2.6.

Example 11.2.2.5.

Let m = 25 = 10, then the set of ¢(10) = 4, relative primes are

A=1{1, 3, 7, 9}.
Let a; = 1, a, = 3, from equation 11.2.2.12(§)
therefore 2°1 = 2 mod (10)
4+3 = 2 mod (10)

thus g = 2, f =4, g %-— 2, % - 1 respectively.

A.R.E. occurs when n = %1-= 5._
2 + 5+1 = 7 mod (10)
-2 4+ 53 = 7 mod (10)

210

The full array is shown below.

1 2
3 6
7 4
9 38

~N -~ W W

A.R.E. occurs between rows (1,3), (1,7), (3,9), (7,9).

5
5
5
5

(oA W o - T (S I S
S~ N O
w O =

N O B~

= W N

Note that

no A.R.E. occurs between rows (3,7) and (1,9) since all integers

to the left of centre column are distinct.

let a, = 3, a, =7,

1 2

6°*3 = 8 mod

4+7 = 8 mod

thus g =4 > 2-.2-=
2

and f =6 > % -1-=

and (g + -;—1)

and

(10)
(10)
g

max

£
max

9, (f '+£;i)' =11

but colum 11 does not exist.

Alternatively,
8+3 £ 4 mod
27 2 4 mod
thus g=2<§-2=
and £=8>%-1-=

(10)
(10)
g

max

£
max

11.2.2.15.

11.2.2.16.

but though (g+n) = 7, we have (f+n) = 13, and column 13 does not exist.

In equations 11.2.2.15 both g and f exceed their maximums, but

in equations 11.2.2.16. only f exceeds its maximum. Yet A.R.E. does

not occur in both cases.

From the construction of an array we know that each row contains

(m-1) distinct integers, of which (m/2)-1 are left of centre, and if

211

we assume the array has S rows, then to the left of centre we require
m
S QE 1)
distinct integers. Since there are only (m-1) distinct integers
in the whole array this limits S to 2, or, (m-2) distinct integers
left (and right) of the centre column which contains the (m-1)'th

duplicated integer.

Consider the following theorem.

Theorem 11.2.2.7.

If m is an even positive integer, any array generated mod (m)

by two relative primes a; and aj, is free from A.R.E. if (ai+aj) = m.

Proof.

Since, for A.R.E. to occur,

ga; z'x mod (m) '
_ 11.2.2.17
faj = x mod (m)
where
m
g7 2
and o
fsi—l

then from equations 11.2.2.17.

faj mod (m)

ga; =
ga. = km + fa,
i "3
but if a. + a, = mnm, then
k| i
a, =m - a, and
b i

ga; = km + f(mrai)

m(f+k) = ai(g+f)

212

and since (ai,m) =1, m must be a factor of (g+f).
Let, (g+f) = cm c=1,2,000.c.s

if cx1 , (i)gorfare>921

or (ii) g = £ = %

1 2 3 &4 5 6 7 8 9 1o 11 12 13
3 6 9 12 1 4 7 10 13 2 5 8 11
510 1 6 11 2 7 12 3 8 13 4 9
9 4 13 8 3 12 7

11 8 5 2 13 10 7

7

13 12 11 10 9 8

2 11 6 1 10 5
4 1 12 9 6 3
6 5 4 3 2 1

and in both cases at least one of them exceeds their maximum and
A.R.E. cannot occur.
Q.E.D.
It will be seen later that a 'cyclic' array always exists
generated by aj and a; such that (aj+ai) = m.
The following example gives a general solution, when m = 14.
Example 11.2.2.4.
Let m = 27 = 14, then the set of ¢(l4) = 6, relative primes are,
A={1, 3, 5,9, 11, 13}
Let‘ai =1, a, = 3, from equation 11.2.2.12(a)
41 = 4 mod (14) .
6+3 = 4 mod (14)
. m m .
thus g=4, £ =06, £35 - 2, 5 1, respectively.
A.R.E. occurs when n = %-= 7,
4 + 71 = 11 mod (14)
4 + 7-3 = 11 mod (14)
The full array is shown below.
|
\

213

Many more equivalences occur, other than those shown, but
A.R.E. cannot be present between rows (1,13), (3,11) and (5,9),

since (1 + 13) = (3 +11) = (5 + 9) = 14 = m.

From rows a; = 5, a, = 9,
10+ (5) = 8 mod (14)
4+(9) = 8 mod (14)
thus | g=14c< % - 2, but
= m_
f =10 > 5 1
and (g + %) =11, (f + -IZE)' =17

and column 17 does not exist. The arrays generated by the pairs
1,13 or 3,11 have a similar result and are free from A.R.E.

To summarize the results of this section, we have shown.

i) if m is an odd integer, its relative primes a;, <m, generate
an array free from A.R.E., if and only if, all differences (aj-ap)

are relatively prime to m.

ii) if m is an odd integer, the number of rows in an array free
from A.R.E., generated by relative primes a; <m, is upper bounded

by (pl-l), where Py is the smallest prime divisor of m.

iii) the set of A = {al,az,—--,ap _1} integers relatively prime to m,
1 R

m = odd, generate an array free from A.R.E., if and only if, the set

A has distinct residues modulo (any divisor of m).

iv) if m is an even integer, an array free from A.R.E., has a
maximum number of 2 rows and is generated by any pair of relative

i .,a., if (a.+a.) = m.
primes al,aJ, if (al aJ) m

214

11.3 Existence of 'Cyclic' Arrays.

11.3.1. Introduction to the theory.z"s’27

We introduced in the previous section the concept of reduced
residue systems. We then examined the arrays they produced and
developed some fundamental properties, which guaranteed the arrays
are free from array row equivalence (A.R.E.).

We will now continue our study of reduced residue systems and
. the followihg theorems immediately are illuminating. The bulk of

"the material in this section can be found in references .4 and 5.

Theorem 11.3.1.1. (Eulers Theorem)

If (a,m) = 1, then
a¢(m) = 1 modulo (m).
Thié does not imply that ¢(ﬁ) is the only power of a, which gives
a residue of one, it merely states that any relative prime.raised

to the power ¢(m), has a residue of one, modulo (m).

Definition 11.3.1.1.

If (a,m) = 1, the smallest positive integer S, such that,

aS = 1 modulo (m),

is called "the order of a modulo (m)".

Since every integer a, has ¢(m) as a power with a residue of
one, then since S is the smallest integer which satisfies ouf definition
above, then

Ordm a g ¢(m)

where the notation means, -the order of a, modulo (m), is less than

or equal to ¢(m).

215

We also have;

Theorem 11.3.1.2.

If the order of a is S mod (m) then S divides ¢(m).

Theorem 11.3.1.3.

If the order of a is S modulo (m), and k is a positive integer,
then
k _
a = 1 modulo (m)
if and only if, S divides k, written Slk.

Thus no power of a relative prime.can give a residue of ome,

uless it is a multiple of the order of the relative prime.

Theorem 11.3.1.4.

b modulo (m), then for any positive integer k,

ak = bk modulo (m).

If a

If in the above théorem a has order S modulo (m), then
aS = bS = 1 modulo (m)

and we have;

Theorem 11.3.1.5.

If a = b modulo (m), then a and b have the same order modulo (m).
.Therefore, for all positive integers that are members of the same
residue class, since any two of them say x and y, are related by
X = y modulo (m),

then they all have the same order modulo (m).

Theorem 11.3.1.6.

1f.(a,m) = 1, and Ordm a = S, then the set of elements,

2
{a, a", a3,...., aS}

216

have distinct residues modulo (m) and are said to be "incongruent
modulo (m)".

So, amazingly, if one raises a relative prime to all positive
powers less than and equal to its order, one immediately obtains a
set of integers from distinct residue classes. This leads to the

following theorem.

. Theorem 11.3.1.7.

If (a,m) = 1, and Ordm a = ¢(m), then the set of elements,

is a reduced residue system, modulo (m).
This follows from Theorem 11.3.1.6. and our definition of a
reduced residue system. We wish at this point to introduce a

definition of our own.

Definition 11.3.1.2.

1f (a,m) = 1, and Ordm a = §, then the set of elements,

3,.....;, S}

Aa, a2, a
will be called a 'cyclic' set of order S modulo (m).

This follows from the fact that since
s

a” = 1 modulo (m), then
aS+1 = a mod (m)

where mod (m) = modulo (m), and
aS+2 = a mod (m) , until
aZS = 1 mod (m)

Therefore the set {aS+l, aS+2,...., aZS} is also a 'cyclic'set of order S,

and

Ord a = 0Ord as+l = S,
m m

217

Any relative prime, a, that has order ¢(m) mod (m) is given a

special name, defined below.

Definition 11.3.1.3.

If (a,m) = 1, and Ordm a = ¢(m), then a is called a primitive
root of m.
It will be perhaps helpful if at this point we illustrate the

preceding theorems with an example.

Example 11.3.1.1.

Let m = 11, then the set of relative primes, less than m, which
represent its residue classes is,
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
We omit the integer zero since it represents the residue of
integers that are multiples of m, and are therefore not felatively
prime.

We then have the following 'cyclic' sets reduced mod (11).

1) 12 21 md 1) , Ord;; 1 =1
ii) {2, 4, 8, 5, 10, 9, 7, 3, 6, 1}
and 2'% = 1wmed (1), ord, 2 = 10
iii) {3, 9, 5, 4, 1}
5 _)
and 3~ = 1 mod (11), Ord11 3 =5.
iv) {4, 5, 9, 3, 1}
and 45 = 1 mod (11), Ord11 4 =5,
v) {5, 3, 4, 9, 1}
5

and 5 = 1 mod (11), Ord11 5 =75,

218

iv) {6, 3,7, 9, 10, 5, 8, 4, 2, 1}.
10 _ "
and 6 = 1 mod (11), Ord11 6 = 10.
vii) {7, 5, 2, 3, 10, 4, 6, 9, 8, 1}
.10 _
and 7 = 1 mod (11), Ord11 7 = 10.
viii) {8, 9, 6, 4, 10, 3, 2, 5, 7, 1}
' 10 _
and 8 =1 mod (11), Ord11 8 = 10.
ix) {9, 4, 3, 5, 1}.
5 _ : -
and 9~ = 1 mod (11), Ord11 9 =35,

x) {10, 1}.

and 102 = 1 mod (11), Ord11 10 = 2.

Sq we have a set of orders,
{1, 2, 5, 10}.
From definition 11.2.1.3.
¢(m) = 10,
and theorems 11,3.1.1., 11.3.1.2., 11.3.1.6., 11.3.1.7. can be seen
to be satisfied.
In particular, the elements 2, 6, 5, and 8 are primitive roots
of 11.
. We can now clarify Theorem 11.3.1.5.
If
Ordm a= Ordm b , this does not imply that
a =b mod (m),
otherwise any positive integer would only have at most one primitive

root, which is not so, as the following theorem shows.

219

Theorem 11.3.1.8.

If there exists a primitive root modulo (m), then there are

pfecisely
$ (¢ (m))

primitive roots mod (m), which are incongruent mod (m).

From the above example there are four primitive roots and
$(¢(m)) = ¢(10) = 4.

The preceding theorem began "If there exists a primitive root",
and this is because, not all positive integers have primitive roots.

Which integers do have primitive roots is well established and

given in the following theorem.

Theorem 11.3.1.9.

A positive integer m > 1, has a primitive root, if and only if,
m is one of the following

k k
2, 4, p, 2p

where p is any odd prime and k any positive integer.

From theorem 11.3.1.7. and our example 11.3.1.1. above we can
see that there is a direct equivalence between each integer, less
than and relatively prime to m, and éach integer, which is a power
of a primitive root.

The particular power of the primitive root relative to the

relative prime, is given a special name defined below.

Definition 11.3.1.4.

If (a,m) = 1, and g is a primitive root mod (m), then the least
non-negative integer i, such that

a = g1 mod (m)

220

is called the index of a (relative to the primitive root g) and
is written

indg(a).

But from theorem 11.3.1.8. we know that there are ¢(¢(m)) primitive
roots, so which do we use to determine ind(a), since ind(a) will be
different for each primitive roo;? Some text books stipulate that
the smaliest primitive root is used and others write indg(a), to
indicate which primitive root is concerned. We will use the latter

convention.

Theorem 11.3.1.10.

Let m be a positive integer with a primitive root g, then,
ind (a) = ind (b)
g g
if and only if,
a = b mod (m).

Therefore relative to a given primitive root, the index of an

integer, which is a member of a reduced residue system, is unique.

There is a connection between index and order, as we now show.

Theorem 11.3.1.11.

If ord a = S, then
m

n_ S
Ordma _(n,S)
where (n,S) = H.C.F. (n,S).

If g is a primitive root mod (m), then
Ord g = ¢ (m)

therefore from Theorem 11.3.1.11.

n _ ¢ (m)
ord g" = ooy 11.3.1.1.

221

but if indg(a) = n, then 11.3.1.2.

az gn mod (m)
and from Theorem 11.3.1.5.

. n .
Ordm(a) = Ordmg 11.3.1.3.

From equations 11.3.1.1,2,3 above, then

- o (m) _
Ordma = (indg(a), s@) 11.3.1.4.

Since for all a < m, indg(a) can take any value between 1 and
$(m), then (indg(a),m)_will assume all values that are divisors of m.

We have proved the following theorem.

Theorem 11.3.1.12,

If m has a primitive root there exists a 'cyclic' set for every
order S which divides ¢(m).

Note, from equation 11.3.1.4., that a is a primitive root if
and only if indg(a) and ¢(m) are relatively prime, hence from

Theorem 11.3.1.8., there are ¢(¢(m)) primitive roots of m.

11.3.2. The 'Cyclic' Array.

We are interested in this section in assessing the results of
section 11.2 in the light of the theory just presented in section
11.3.1. That is, is it possible to find 'cyclic' sets of relative

primes mod (m), which generate arrays mod (m), free from A.R.E.?

A) m = EVEN.
Tt was shown in section 11.2 that when m is even an array is

limited to two rows in order to be free from A.R.E.

Theorems 11.2.2.6. and_11.2.2.7. showed that one solution was

222

to use two relative primes aj,ai such that (aj+ai) = m. And
Theorem 11.2.2.2. stated that,
((aj—ai),m) =2
was another condition.
To reconcile the two conditions let us assume aj = (m~1) and
a, = 1, then certainly (aj+ai) = m, but does (aj—ai) = m~2 have
((m-2),m) = 2 ?
The answer is yes because all even integers m, can be formed
from the equation,

mé =2 «x , x=1,2,3,.....

Since x alternates from odd to even, two adjacent even numbers

‘ m.e and o (whose difference is 2) will have x odd and x even.
1 2
Let x1 = odd and x2

are relatively prime when adjacent (a difference of 1) we haég,

= even, then since an odd and an even integer

(mel, mez) = (2%}, 2x)) =2,

since - (xl, xz) = (xz-l, xz) =1
and therefore,
m ,m)=(m -2, m) =2.
e;’ ey e, e,
It is only necessary now to show that (m-1) and 1 can be arranged
in 'cyclic' form. To do this we must show that one of them has order
2 mod (m). The integer 1 certainly hasn't but,

(m.-l)2 m2 - 2m + 1

o(m1l) + 1

1 mod (m).
Therefore, Ordm(mrl) = 2.

Consider the following example.

223

Example 11.3.2.1.

Let m = 10, then we use a; = 9 and a, = 1 and the array is
8 7 & 3 2 1
1 2 3 5 7 8 9
Now, (9-1) = 8 and as expected
92 = 1 mod (10).

Note that all integers left of the duplicated centre column
-(and right of it) are distinct.

We have proved the following theorem.

Theorem 11.3.2.1.

If m is an even positive integer, there exists a cyclic set of
order 2 mod (m), generated by (m-1), which generates an array mod (m),
free from A.R.E.

This completes the case when m is even.

B) m = ODD.
In this section we will show that we can use 'cyclic' sets to

generate arrays of the form below;

[a 2a 38 cieee.. (m=1l)a)
a2 2a2 3a2 RN (m.-l)a2
3 3 3 2
a) = a 2a 387 oeen .. (m=1)a mod (m) 11.3.2.1.
L aS ZaS Y- R . (m.--l)aS J

where, (a,m) =1

Ordma =S and S|é¢(m).

224

But this implies and requires that the positive difference of
any two elements from the 'cyelic' set, (ai—aj), is relatively prime
to m. From Theorem 11.2.2.4. this can only be guaranteed if the
'eyclice' set is incongruent mod (any divisor of m). We know it is
incongruent mod (m) from Theorem 11.3.1.6., but to guarantee it is
incongruent mod (any divisor of m), it must exist as a 'cyclic' set
of order S mod (any divisor of m).

In (A) we must also constr;in S to be less than Py the smallest

prime divisor of m, due to the upper bound of Theorem 11.2.2.4.

Definition 11.3.2.1.

A 'cyclic' array is an array gemerated by a 'cyclice' set of
order S mod (m), and is free from A.R.E., if and only if, the
following conditions hold.

i) S < (pl-l), where Py is the smallest prime divisor of m.

ii) Ordxa = §, where x > 1, is any &ivisor of m, and a is the
generator of the 'cyclic' set.

This definition is binding for all odd integers m and defines

a 'cyclic' array used in the convolutional codes presented. Conditions

i and ii of the above definition must be shown to hold for the
different forms of m, that is;

a) m=p , an odd prime,

b) m = pa » P an odd prime and o an arbitrary positive

integer.

1 %2 ®r
c) m= Py Py cecec P s D

. (i=1,2,....,r) odd

primes and a; (i=1,2,...,r) arbitrary positive integers.

225

B.1) m = p, an odd prime.

The smallest prime divisor of m is then, p itself, so that
any 'cyclic' set of order S g (p-1), will satisfy the first condition
of definition 11.3.2.1.

From Theorem 11.3.1.9., m has primitive roots, so that there

always exists an element, a; < m, such that

ag(m) = 1 mod (m)
and Ordmai = ¢(m).

Also from Theorem 11.3.1.12., we kﬁow that 'cyclic' sets exist,
of all orders S, which divide ¢(m). Therefore, if m is an odd prime,
any 'cyclic' set satisfies condition (i) of definition 11.3.2.1.

Since p is divisible only by itself and unity, there are no
other divisors of m, thus if aj generates a 'cyclic' set, with
Ordm aj = S, then this satisfies condition (ii) of definition 11.3.2.1.,’
since m is the only divisor of m, greater than one.

The following example illustrates how to construct 'cyclie' arrays

for the case, m = 11.

Example 11.3.2.1.

Let m = 11, an odd prime, then ¢(m) = 10, and the set of relative
primes, are ail non-zero integers less than 11, giving,
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
The integer 2 is a primitive root of 11 and gives the following

'eyelic' set.

'eyclic' set

2, 4, 8, 5, 10, 9, 7, 3, 6, 1
1,2, 3,4, 5, 6,7, 8,9, 10

index.

226

From equation 11.3.14.

Ord,, a = —T—_lg——-_ giving,
11 (1nd2a, 10)
order , integer
2 10, |
5 4, 5, 9, 3,
10 2, 8, 7, 6,
1 1

To generate an array we only require the 'eyelic' set generated
by one element of a given order. Using 2 as an element of order 10

gives the following array.

O T T T S

o] o w [V 'Y [} m‘] 9-\‘ QJ
| wow w wm o wwow ww
a = 2 4 6 81 1 3 5 7 9
a2 = 4 8 1 5 9 2 6 10 3
a2 = 8 5 210 7 4 1 9 6 3
2 = 5 10 4 9 3 8 2 7 1 6
> =10 9 8 7 6 5 4 3 2 1
2 = 9 7 5 3 110 8 6 4 2 mod (m
al/ = 7 310 6 2 9 5 1 8 &
2 = 3 6 9 1 4 710 2 5 8
22 = 6 1 7 2 8 3 9 4 10 5
a® = 1 2 3 4 5 6 7 8 9 10

It can now be seen that the effect of ordering the rows of the
array, according to the 'cyclic' set of a primitive root, is to proﬁuce
an array whose columns are 'cyclic' shifts of the original 'cyelic' set,
which is the left-most column.

Choosing 5 as the element of order 5, we obtain the 'eyelic' set.

227

'eyclic' set 5 3 4 9, 1
index 3

Which gives the following 'cyclie' array.

5 10 4 9 3 8 2 1 6
36 9 1 & 10 2 5 8
4 8 1 5 9 10 3 7
9 7 5 3 1 10 4 2
‘1 2 3 4 5 6 7 8 9 10

Using a 'cyclic' set of order S < ¢(m) produces an array whose
columns are 'cyclic' shifts of (m-1)/S distinct colummns. In this case

the distinct columns are;

{5, 3, 4, 9, 1} & {10, 6, 8, 7, 2}
From the element of order 2, we obtain the array;
10 9 8 7 6 5 4 3 2 1
1. 2 3 4 5 6 -7 8 9 10.
And the columms are 'cyclic' shifts of

m-1 _ 10 _
< =7 =

distinct columns. The distinct columns being;

{1, 10},'{2, 9}, {3, 8}, {4, 7}, {5, 6}.

We have proved the following theorem.

Theorem 11.3.2.2.

If m = p, an odd prime, there exist ‘'cyclic' sets, for all orders,
which divide (p-1). The 'cyclic' arrays generated modulo (m) by all
'cyclic' sets, are free from Array Row Equivalence.

This concludes the results for m an odd prime.

228

B.2) m=p , p an-odd prime and o any positive integer < 1.
Since the smallest prime is p, we are interested in 'cyclic'

sets of order S £ (p-1), that divide ¢(m). From definition 11.2.1.3.;
a-1
¢$(m) = p (p-1). 11.3.2.2.

Since m has primitive roots (from Theorem 11.3.1.9.) then
'eyclic' sets exist for all divisors of ¢(m) from Theorem 11.3.1.12.
Thus 'cyclic' sets of order S = (p~1) exist and since if Sl(ﬁ-l),
then Sl¢(m), 'eyclic' sets exist of all orders that divide (p-1).

A general divisor of ¢(m) can be expressed as, d¢(m0’ where,

dymy =S P » S| and S (-1), x=0,1,2,...,(-1),

\J

and 'cyclic' sets exist for all d¢(m)' But if x > 0, > (p~1),

% (m)
therefore condition (i) of definition 11.3.2.1. is only satisfied by
'cyclic' sets whose order S di;ides (p-1).

To satisfy gondition (i1) of definition 11.3.2.1. we require to
know if a 'cyclic' set of order S s'(p—l), mod (pa), exists as a
'eyclic' set of order S mod (any divisor of pa). Any divisor of pa

must be of the form pc, where ¢ ¢ . Consider the following theorem

from Le Vequea.

Theorem 11.3.2.3.

If p is an odd prime, and an integer a exists such that,
Ordp a =S and pz divides (aS-l) but pz+1 does not divide (aS-l)

~ then,

pmax(O,n-z)

where,

0 if (n-2) < O

5
"
~
o
e}

1
N
~
\]

n-z if (n-z) 2 O

229

That is, if aS

S
a

1 mod (p), then

1 mod (pn)

for all n ¢ z. From the point of view of 'cyclic' arrays, if we
find a 'cyclic' set of order S g (p-1), mod (pa), then from
Theorem 11.3.2.3., if the 'cyclic' set is generated by a,

.-pmax(O,a—z) =3
therefore,

gt pmax(O,a--z) < (p-1)

max(0,a=2) _

which is only possible if p 1, therefore S' = S and

a £ 2.
Since,
Ord a =S8 s o £z
a v
|
then
Orxd I S ’ for any s < «
p

and the 'cyclic' set exists as a 'cyclic' set of order S mod (any
divisor of pa). Therefore any 'cyclic' set of order S 5 (p-1),

satisfies the condition (ii) of definition 11.3.2.1.

Theorem 11.3.2.4.

If m= pa, p an odd prime and o any positive integer, any 'cyclic'
set of order S < (p-1) mod (m) generates a 'cyclic' array free from
A.R.E.

The following example is given for m = (7)2.

Example 11.3.2.3.

Let m = 72 = 49, then

¢(72) = 7.6 = 42 , and the list of all possible

divisors of ¢(m) is, simply

230

{2, 3, 6, 7, 14, 21, 42}.

This gives the orders of possible 'cyclic' sets, but since we
are constrained to orders, S £ (p~1) = 6, we can only use {2, 3, 6}
as orders. To find which integers a'< 49 have the orders we require,
we generate the complete set,

a, a2 mod (m), a3 mod (M), ceveney a¢(?) mod (m)

. P : 2 . e e
where a is a primitive root., Form = 7, 3 is a primitive root.

‘eyelic' set { 3, 9, 27, 32, 47, 43, 31, 44, 34, 4, 12, 36, 10, 30,

indices of 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3
41, 25, 26, 29, 38, 16, 48, 46, 40, 22, 17, 2, 6, 18,

15 16 17 18 19 20 21 22 23 24 25 26 27 28

5, 15, 45, 37, 13, 39, 19, 8, 24, 23, 20, 11, 31, 1

29 30 31 32 33 34 35 36 37 38 39 40 41 42

Putting equation 11.3.1.4. in the form required we obtain

42

0rd,q a = (ind; a, 52)

49

Using this equation, each integer a in the 'cyclic' set above
. 2
along with its index, gives its order S mod (77).

e.g. if a = 48, 1ind, 48 = 21

3
4 _ a2
Ord\g 48 = G135y = 70 2,
2 _
and 48° = 1 mod (49).

For the complete 'cyclic' set we obtain the following sets of

orders and associated elements of that order.

231

Order Integers of
- S order S
2 48
3 30, 18
6 31, 19
7 43, 36, 29, 22, 15, 8
14 27, 34, 41, 6, 13, 20
21 » 9, 32, 44, &4, 25, 16, 46, 2, 37, 39, 23, 11
42 24, 33, 3, 47, 12, 10, 26, 38, 40, 17, 5, 45.

There are two 'cyclic' sets of order 6 possible, generated by
31 and 19. However we only require one 'cyclic' set and we use that
generated by 19.

1 mod (72)

Let a =19 , then a6
: 2 3 4 5 6
a a a a a a
{19 18 48 30 31 1} mod (7%)
To verify Theorem 11.3.2.3., we reduce the 'cyclic' set mod (7),

since 7 is the only divisor of 72. This gives,
{5, 4, 6, 2, 3, 1} mod (7)

therefore a6 = 1 mod (7). We also find that 73‘(a6-1) but 74 + (a6—1),
meaning 74Vdoes not divide (a6—1), therefore from Theorem 11.3.2.3.,ﬂ
z = 3. Thus a =19 will generate a 'cyclic' set of order 6 mod (73),
that is m = 343, and since S < (p-1) and.the set is incongruent
mod (72) and mod (7), it will generate an array free from A.R.E.
mod (343).

For m = 49, a = 19 generates the 'cyclic' array below, of which

the first 19 columns are given.

- 232

19 38 8 27 46 16 35 5 24 43 13 32 2 21
18 36 5 23 41 10 28 46 15 33 2 20 38 7
48 47 46 45 44 43 42 41 40 39 38 37 36 35
30 11 41 22 3 33 14 44 25 6 36 17 47 28
31 13 44 26 8 39 21 3 34 16 47 29 11 42

40 10 29 48 18 30
25 43 12 30 48 31
34 33 32 31 30...... 1

9 39 20 1 31...... 19
24 6 37 19 1...... 18
15 16 17 18 19 48

When the order of the 'cyclic' set, S, is less than ¢(m), we
obtain codes with rate R > 1/2. Since there are 48 distinct integers

in the array, k_ = 48, and since the order S = 6, n, - ko = 6,

(o]
thus nd =6 + 48 = 54 and the rate is, R = 48/54 = 0.88888.

There are 6 orthogonal estimates of each of the 48 message-digits
therefore the error-correcting capability, t = §/2 = 3.

There are two 'cyclic' sets of order 3 possible, generated by
30 and 18. Only one can be ﬁsed and we will use that generated by 18.

3

Let a =18, then a 1 mod (72)

{18 30 1} mod (77)
also

{ 4 2 1} mod (7)

Again 73|(a3-1) but 74 1 (a3—1) so that from Theorem 11.3.2.3.,
z = 3 and therefore
a3 = 1 mod (73)

and a = 18 generates a 'cyclic' set of order 3 < (p-1), mod (73)

233

which is incongruent mod (72) and mod (7) and therefore generates
a 'cyclic' array free from A.R.E.
For m = 49, a = 18 generates the 'cyclic' array below, of

which the first 19 columns are given.

18 36 5 23 41 10 28 46 15 33 2 20 38
30 11 41 22 3 33 14 44 25 6 36 17 47
1T 2 3 4 5 6 7 8 9°10 11 12 13

7 25 43 12 30 48 31
286 9 39 20 1 31 19
14 15 16 17 18 19 48.

This gives a code with,

51, d_=4
(o] m

k =48, n -k =3, n
o] (o] o

Rate = 48/51 = 0.941.
Finally, there is only one 'cyclic' set of order 2 possible
generated by 48.
' : 2 _ 2
Let a = 48, then a” =1 mod (7))
2
a a

{48 13} mod (79

also
{ 6 1} mod (7)

But 72|(a2-l) but 73 + (a2-1) so that from Theorem 11.3.2.3.,

z = 2, so that for m = 73,

ord , 48 = 2.pX(03B g
7

= 2-7
and 48 has order 14 mod (73). Since 14 > (p~1), this is of no use,

as A.R.E. will occur.

234

For m = 49, a = 48 generates the 'cyclic' array below.

48 47 46 45 3 2 1
1 2 3 4bb &7 48

This gives a code with,

Rate = 48/50 = 0.96.
This concludes example 11.3.2.3. and the section on m = pa.

0.1 02 6]

: r
B.3) m= Py Py -+e+ P

r
In this case we specify, o 2 0 for all i, but . # 0 for all i.

Also we assume that is the smallest prime factor in m, and
Py P

p1 < P, Ceesesees< D

From Theorem 11.3.1.9. it can be seen that integers of this form
do not have primitive roots so that Theorem 11.3.1.12;_does not hold
and equation 11.3.1.4. cannot be used to find the orders of different
integers éince index is relative to some primitive root. We are not
sure if 'cyclic' sets exist, however we can deduce from Theorem 11.3.1.1.
that any integer a, such that (a,m) = 1, must generate a 'cyclic' set,
since,

a¢(E0 z 1 mod (m)
and ¢(m) cannot be the smallest integer which satisfies this congruence,
or else a would be a primitive root which is not possible.. Thus some
S < ¢(m) with S|¢(m) must exist, such that,
as z 1 mod (m).
From Definition 11.2.1.3.,

a.—1 a2-1 a -1

$@ = p by e ot

r '(p1—1)°(p2-1) ceee(pm1)

235

so that, devisors of ¢(m) which are < (pl-l), are possible, as
orders for 'ecyclic' sets.

The following theorem, known as the Chinese remainder theorem,
will be found useful and is given with its proof, as the proof is
useful also.

Throughout the following, unless stated otherwise, we assume

(x,m) = 1.

Theorem 11.3.2.5.

If the positive integers m, i=1,2,....,r are relatively
prime in pairs and if a;s i=1,2,....,r are any given integers,
then the r congruences

X = a; mod (mi) i=1,2,....,r,

have a common solution which is unique modulo (ml.m2mr).

Proof.
Let m = my My eeeeld, and write m = o, Mi’ then (mi’Mi) =1,

for each i, and from Euler's Theorem,

$(m;)

1

M

1 mod (mi)
but Mj includes m, as a factor so that

Mj z 0 mod (mi).

If we write,

r ¢(m,)
X = Z a, M, ©
0
r ¢ (m,)
xz) a, M, Y mod (m.)
i=1 J
$(n,)

but M. = 0 mod (mj) for i # j

236

therefore,
¢(m.) ,
x=a. M. 3 mod (m,)
J 3]]
= aj mod (mj) , .3 =1,2,...,r.
¢(m,)

(since M. 3 21 mod (m.)),
h| R .
so that x is a common solution to all congruences. If there is

another solution, say z, - then,

N
(]
ta
It

E aj mod (mj) for all j

b1 my + X

N
n

zZ = b2 m2 + X

and from Theorem 11.2.1.2.,

z = x mod (L.C.M. {ml, Myseeses mr})

but since ' (ml, Ml) = 1, then

H.C.F. (m1, o, m3,...,mr) =1

thus L.C.M. (ml, mz,...,mr) = WM. Sem

and - z = x mod (m)
and x is unique mod (m).

Q.E.D.
_ a; Gy o, .
Since m = Py <Py ceer Py if we write

m=p, P. , then (p,P.) =p;

and a unique solution to the congruences
x = a., mod (p. i=1,2,...,T
i (Pl) 9y ’

cannot be guaranteed. However, if we write

ke
m

that is, we have

X

From Theorems

Ord

P

a; mod (pi

x = Ord a.
a. . 1

a.
i
, then (pi ,P

)

1

and we can find a unique common solution to the congruences,

i=1.2,,..,r

11.3.1.4. and 11.3.1.5., we also have,

i=1,2,...

But what is the order of x mod (m)?

The following theorem shows that the only solution useful to the

Ord

P

for all 1 =

Theorem 11.3.2.6.

If x is a common solution to the

then if Ord

x = Ord a.
0. 0., 1

1,2,...,T.

- i
a; mod (pi)

construction of arrays for codes, is that

S

congruences,

1,2,...,r

i =1,2,...,° -

then

11.3.2.4.

d = L.C.M. (8),5,,55,.++,5.)

Proof.
Since
Si oy _
a,” = 1 mod (pi.), i=1,2,000,T
we have
S o
x ' =1 mod (pll)
S o
X 2 = 1 mod (p22)
S * o
x T =1 mod (prr)
b _ 3 1
Let us assume x = 1 mod (m) then for any divisor 17 of m
we have,
b %
X = 1 mod (p1)
o
xb = 1 mod (p22)
. a
b = 1 mod (p r)
x T

So, from Theorem 11.3.1.3.,

Silb for all i = 1,2,...,r.

Since b must be divisible by all orders Si’ then

b 2 L.C.M. (Sl,Sz,...,Sr)
> d.
=C.d, CZ].

Q.E.D.

239

Thus if x has order S and the a; have different orders, then
the 'cyclic' set generated by x will not have the same order mod
(any divisor of m) and A.R.E. will occur. We therefore require
the orders of the a; to be the same, as specified by equation 11.3.2.5.

Equation 11.3.2.6. requires,
| % |
Si|¢(pi) i=1,2,....,r
but equation 11.3.2.5., requires,
s| hi
¢(p;)

for all i = 1,2,...,r.

., :
. . i
So that one requirement is that the ¢(pi) must have common
o
.. . . i . .
divisors. Since, for each P:s 'eyclic' sets exist for all orders

o. o, 4
that divide ¢(pil), if the ¢(pi1) have common divisors then there

will exist a set of a; with order equal to the common divisor.

Of course the common divisors can only be used if they are
less éhan or equal to (pl-l);_that is, from definition 11.3.2.1.
we must constrain S g (pl-l).

If we assume a set.of ai's have been obtained with same order

o,
S for all pil then in Theorem 11.3.2.6., we have,

and , : .

Theorem 11.3.2.7.

If x is a common solution to the congruences,

240
- i .
X = a; mod (pi), i=1,2,00.,T
then if, Ord a. 3 T S, 1=1,2,...,T
i
P
a [0 Qa
. L T2 T
and m =Py Py seeeD. , then
Oord_ x = S.
m
Proof.
Since,
S %4
" x” 2 1 mod (pi), . 11.3.2.7.
for all i = 1,2,...,r, then
*1 S
P; | (x"-1) for all i.
‘ a; o
But, (pi , ij) =1 for i#]
a, a a
. R T T
so that if m = Py +Py re-er Py

m | (xS-l) and

xS = 1 mod (m).
If ¢ < S exists such that

x* 2 1 mod (m)

o
then since pi1 divides m for all i

o.
% = 1 mod (pil)

which is not possible since S is the smallest integer for which

equation 11.3.2.7. holds.

Therefore, Ordm x = S.

Q.E.D.

So far the procedure is as follows;

241

i) find a set of integers a;s such that

Ord e, 3 " S for all i

. i
i
Pi
. ' es
where S|¢(pi) for all i,
and S g (Pl-l).

ii) Use the Chinese remainder theorem to obtain a unique

solution x, to the congruences,
%5

. mod .
a; ;")

X

for all i. Then Ordm x = S and x generates a 'cyclic' set of
: .
order S mod (m) and mod (any divisor of the form pil), for all 1i.
However, to fully satisfy the second condition of definition

11.3.2.1., the 'cyclic' set generated by x must have order S mod

(any divisdr of m).

Since,
Oxd x = Ord a., for all i
a. .
i i
P Py
then Ord « X< S, for all i,
i
Pj
therefore, from Theorem 11.3.2.3.,
Ord x =385
s
Pj
for any s ¢ e, and all i.
In particular, then
Ordp X =8, for all i. 11.3.2.8.
i A

Consequently, if there existed some integer c < S, such that,

x° = 1 mod (some divisor of m)

242

then this implies that

¥ = 1 mod (some divisorApi)

since some prime P must always be a divisor of m. But this contradicts
equation 11.3.2.8., therefore ¢ = S, and x will generate a 'cyclic!
set of order S mod (any divisor of m).

These results are put into the theorem form for brevity as follows.

Theorem 11.3.2.8.

1 %2 %r
Ifm-= Py P REREY where each p is an odd prime, and

Py < Py Seve< P Then if a set of integers a, i=1,2,...,r,
exist such that
0ord a. = 8§ for all 1
. oy
where Sl¢(pi) for all i and

S s (p;71)

then an integer, X, can be found as a unique solution to the

congruences,
%5

a. mod .
i (pl)

X

and x will generate a 'cyclic' set of order S mod (any divisor of m).

Two examples follow, one with

m = pl.pz.pj = 5.13-37,
and one with
m = pi.p% = 52'132.

Example 11.3.2.4.

Let m = 5+13-37 = 2405, then

243

$(5) =4 = 2-2
¢$(13) =12 = 2-2-3
=36 = 2+2+3-3

$(37)

and S = 4 and S < (pl—l) for both.

(a) Let, S = 4 then by procedures described in section B.l. we
find elements of order 4 mod (each pi),\since a, = 1, for all 1i.

We obtain,

[\
11

= 1 mod (5)

wn
"

= 1 mod (13)

w
-
11

z 1 mod (37)

and therefore, we require a solution to the congruences,

i

x £ 2 mod (5)

t

x = 5 mod (13)

x = 31 mod (37)

One can use the solution indicated in the proof of Theorem

'11.3.2.5., that is,

3 $(p.)
x=) a M ' 11.3.2.9.

r=1 i

2(13-31% + 5¢5-31)1% + 31(5-13)°°

The set of common divisors is limited to two values, S = 2
of course this is reduced mod (5+13-37) to find x, but it still
involves a lot of work. The author found a solution by trial and ‘
error, using a short-cut, in the following way. We saw in part 4 i
that |

2
(n-1)° = 1 mod (m)
for any m. Therefore if x has order 4, then,

x2 = (m~1) mod (m).

244

This produced the solution,
X = 512 mod (2405)

and it is seen that,

512 = 2 mod (5)
512 = 5 mod (13)
512 = 31 mod (37)

Generating the 'cyclic' set of 512, .

let a =512, (512% =1 mod (5:13-37)
’ 2 3 4
a a a a
{512 2404 1893 1} mod (2405).

To check that this exists as a 'cyclic' set of order 4 mod

(any divisor of m), we can reduce the set as below.

{ 2 4 3 1} mod (5
s 12 8 1} mod (13)
{ 31 36 6 1} mod (37)
{ 57 64 8 1} mod (5-13)
{142 184 43 1} mod (5-37)
{ 31 480 450 1} mod (13-37)

Thus the array generated mod (2405), by the 'cyclic' set generated
by x = 512 mod (2405), will specify a code with,
k = 2404, n-k =4, =n_=2408, d_ =5
o A o o o m

Rate = 2404/2408 = 0.9983.

(b) Let S = 2, then we find integers of order 2 mod (each pi), which

results in the following,

42 = 1 mod (5)
122 = 1 mod (13)
36% = 1 mod (37)

245

and therefore we require a solution to the congruences,

x = 4 mod (5)
x = 12 mod (13)
x = 36 mod (37).

Using equation 11.3.2.9. above,

x = 613-3D)% + 12¢5:30 2 + 36(5-13)°

But of course, we know,

(m.—l)2
2
or (2404)
and in fact

2404 =

2404 =

2404 = 36 mod (37)

1 mod (m)

1 mod (2405)

4 mod (5)

12 mod (13)

therefore X = 2404 mod (2405) and we have the 'cfclic'

set below.
Let a = 2404,
a

{2404

1

}

mod

1 mod (m)

(2405).

Modulo (any divisor of m), we have,

{ &
{12
{ 36
{ 64
{184

{480

1

1

1

}
}

}

mod

mod

mod

mod

mod

mod

Thus the array generated mod

(5)
(13)
(37)
(5-13)
(5-37).
(13-37)

(2405) by the 'cyclic' set generated

by x = 2404 mod (2405), will specify a code,

246

k = 2404, n -k =2, =n_ = 2406, d_
o o o o m

"
w

Rate = 2404/2406 = 0°99916.
In the following example a slightly different approach is used,

which may be quicker.

Example 11.3.2.5.

Let m = 52-13% = 4225,
then,
2. .
$(5%) = 20 = 2+2¢5
$(13%) = 156 = 2:2:313

Common divisors = {2, 4}. /
(a) Let S = 4, then we find, using trail and error,
(268)4 = 1 mod (4225)
but we must check that the residues of 268 mod (any &ivisor of 4225)
gene;ate"cyclic' sets of order 4.
In particular,

268 = 18 mod (5%) -

268

n

99 mod (132) and we obtain the 'cyclic' sets
{18, 24, 7, 1} mod (59
{99, 168, 70, 1} mod (13%)
Since 18 & 99 have érder 4, we know that 268 has order 4 also.
Checking all divisors we have
268 = 3 mod (5) and
{3, 4,.2, 1} mod (5), 3 has order 4 mod (5)
268 = 8 mod (13) .and

{.8, 12, 5, 1} mod (13)

and 8 has order 4 mod (13)

247

268 = 8 mod (5+13) and
{8, 64, 57, 1} mod (5:13)
and 8 has order 4 mod (5-13).
268 = 268 mod (52+13) and
{268, 324, 57, 1} mod (52-13)
and 268 has order & ﬁod (52'13).
268 = 268 mod (5°13%) and
(268, 844, 577, 1} mod (5-13°
and 268 has order 4 mod (5-132)
Therefore the 'cyclic' set,
{268, 4224, 3957, 1} mod (4225)

exists as a 'cyclic' set of order 4, modulo any divisor of 4225.

(b) Let SA= 2. then we find,
| (4226)% = 1 mod (4225)

again we must check that the residues of 4224 mod (any divisor of 4225)
generate 'qyclic' sets of order 4.

In particular,

4224 = 24 mod (52) and
(24, 1} mod (5)
and 24 has order 2 mod (52).

4224 = 168 mod (132) and

i

{168, 1} mod (13%)
and 168 has order 2 mod (132). Therefore we know that 4224 has
order 2 mod (4225).
Checking all divisors,
4224 = 4 mod (5)
{4, 1}

and 4 has order 2.

248

4224 = 12 mod (13)
{12, 1}
and 12 has order 2.
4224 = 64 mod (5-13)
{64, 1}
and 64 has order 2.
4224 = 324 mod (52-13)
{324, 1}
and 324 has order 2.
4224 = 844 mod (13-5)
{844, 1}
and 844 has order 2.
Therefore the cyclic set,
{4224, 1} mod (4225)
exists as a 'cyclic' set of order 2, modulo any divisor of 4225.
There are no other common divisors g (pl-l) and the example
is concluded. ’
Before leaving this section; dealing with composite integers,
it may be worth mentioning that it is possible to choose composite
integers so that a 'cyclic' set of maximum order exists.

Let pi = bi(pl-l) + 1, i=1,2,...,r,

and we choose the bi so that 17 is an odd prime, with of course 1]

an odd prime also. When bi =1, P, = Py
Then since,
¢(p;) = p;71 = bi(pl-l)
and : o ai-l
. a.-1

"
g
o
e
~
el
-
|
'-J
~

249

.
we have (pl-l) always as a common divisor of the ¢(pi1) for all i.

This way, we can guarantee a set of ai's exist for order (pl-l)
a

mod (pil), from which to find x.

The following example demonstrates the idea.

Example 11.3.2.6.

Let pi = 5, then an associated set of primes which can be used
to form composite integers, from which 'cyclic' sets of order (pl—l) =4

mod (the composite) are obtainable, is given by;

pi = bi(pl-l) + 1, p; an odd prime

bp=1 p = L(5D+1 =5

by,=3 p,= 3(1)+1 = 13
by=4 py= 4 (5D +1 = 17
b, =7 p,= 7 (1) +1 = 29
'b5 =9 pg= 9 (5-1) + 1 = 737
by =10 p, =10 (5-1) +1 = 41
b, =13 p, =13 (5-1) +1 = 53
by =15 pg =15 (51) +1 = 6l
By =18 pg =18 (1) +1 = 73

Any integer formed by a composite product of these primes or
powers of these primes, with p; = 5, can be used to find 'cyclic' sets
of order 4 mod (ﬁhe composite), which exist as 'ecyclic' sets mod
(any divisor of the composite).

This idea can be extended in the following way. Suppose one
wishes to construct a code with error-correcting capability 10. Then

this can be accomplished with a code whose array is generated by a

'cyclic' set of order S = 20.

Let m = P; < 41, an odd prime. |
Then from section B.l.
$(41) = 40
which has divisors, {2,4,5,10,20,40}.
Using a 'cyclic' set of order 20, gives a code with rate,
R = 40/60 = 2/3.
What if we require a rate greater than this?
Let m = (41)2, then from section B.2.:
$(41%) = 4140
which has divisors, less than or equal to (pl-l) of,
' {2,4,5,10,20,40}.
Using a 'cyclic' set of order 20 gives a code of rate,
R = 1680/1700 = 84/85.
However we can slightly improve the rate without using m = (41)3.
- Let m = 4161,
then from example 11.3.26,

41

2(20) + 1

61

3(20) + 1
here we are implying 20 = pl-l, but this means pi = 21 which is not
prime.

By choosing p; as a non-prime we can construct composities from
which 'cyclic' sets can be obtained of orders less than the actual
(pl—l) used, since here P = 41, but we cannot obtain a cyclic set
of order 40 mod (41-61).

202+2+5

$(41)
$(61)

222345
the set of common divisors is,

{2,4,5,10,20}

251

Using a set of orxrder 20 mod (41+61) gives a code of rate,
R = 2500/2520 = 125/126.
We can generalize our results in the following way.
If one wishes to form a code whose 'cyclic' array is generated

by a 'cyclic' set of order S mod (m), then if,

(1) m = P;

P e O

(ii) m'= p¢

‘e * % %y
(iii) m =P Py eeeeP

the primes P; used must be of the form,

p, =b.(8) + 1
b, = 1,2,.0... . , 5 s (p,-1).

Letm=p and S = 2t, then any t: - error—correcting code can
be constructed from any p, where
P = bi(ZD) + 1 = a prime.
Since the code will have k0 =m-1= bi(Zt) message-digits and

tng - ko = 2t check-digits the codes will have rate,

bif(Zt) bi

R: =
. (2t .
bl(2) + (2t) bl + 1

11.4 Non-cyclic Arrays.

The Array generated by a 'eyclic' set, has in effect, each of
its rows generated by an element of the 'cyclic' set. The distinct
leftwise sequences of the array will not be disrupted if the rows of
the array are permutated. This corresponds to permutating the elements
of the 'cyclic' set. For example the array generated by the set

{1,2,3,4} mod (5), in example 11.1.1. is a permutation on the 'cyclic'

252

array generated by the 'cyclic' set {2,4,3,1} mod (5). One can

also use sﬁb—arrays generated by subsets of the elements in the cyclic
set. For example we could use the set {1,2,3} with safety since

we know the leftwise sequences are distinct.

The sub-arrays described (as distinct from sub-'cyclic' arrays,
using sub;'cyclic' sets) and the permutated arrays are examples of
non-'cyclic' arrays. They suffer from the disadvantage that they
require ko majority gates to decode. Otherwise we can devise non-
'cyclic' arrays with an error—-correcting capability not achiev able
with 'cyelice' array'codesi Thus non-'cyclic' arrays must be limited

to codes with small ko, to keep decoder complexity down.

Example 11.4.1.

Consider the array below, generated by the 'cyclic' set of

3 mod (7)

mod (7)

- S~ N W
CR ST T ST N
W - U NN
HN N W o= W
v & N W e
oMW o U

We can obtain sub-'cyclic' arrays by using the sub-'cyclic' sets

{2 4 1} and {6 1}. But we can also use the non-'cyclic' sets,
{123}, {1234}, {12345} mod (7)

which generate non-'cyclic' sub-arrays. The non-'cyclic' set

{1 2 3 4} gives a code,

Rate = 6/10 = 3/5
which is not attainable with a 'cyclic' array having ko = 6 distinct

integers.

253

We now obtain some non-'cyclic' results.

Theorem 11.4.1.

If an integer m, is expressed as a product of its primes,
) a
M= Py Py ececeeP

r
r

with p; < p, <.....<p_

then the integers below, with b g (pl-l)

(1,2,3,....,b) = X

a) are relatively prime to m, and
b) are the largest set of consecutive integers relatively prime

to m, when b = (pl-l).

Proof.

Since Py is the smallest prime factor, no x < Py is divisible
by any P;> prime factor of m and part (a) is trivial.

Part (b) is satisfied by proving that ahy set of 1 consecutive
integers contains atvleast one integer divisible by P;-

Let a general sequence of 1] integers be,

Xy X+, X+2,0000000ey x+pi-1

i) if x is divisible by Pss then it is trivial.
ii) if x is not divisible by Pss then x can be expressed as,
x=kp, +1r r < D.
P ’ Pl
then since r < Py X + p; - T must be contained in the sequence and

X +p;, -r= kp, + p; = (k+1)pi .

Since is the smallest prime factor in m, any sequence of
P; y sed P

or more consecutive integers contains at least one divisible by P;-

254

Since X is a relatively prime set with b ¢ (pl-l) elements
it must be a maximum set, when b = (pl-l).
Q.E.D.
No£e that this theorem is true for m even or odd, but when m
'is even pl-l = 1, thus it is effectively confined to m being odd.
iThe fdllowing theorem shows that the set defined in Theorem

11.4.1. generates an array free from A.R.E.

Theorem 11.4.2.

Any array generated modulo (m) by a set of consecutive relative

primes, with b < (pl-l)

where Py is the smallest prime factor of m, is free from array row

equivalence.

Proof.

We require to show that any difference,
.=a. .a. €X
(a1 aJ), alaJ €EX,

is also relatively prime to m.
From Theorem 11.4.1. we know every a; € X is relatively prime
- to m, and since any difference,

(ai—aj) € X, also, then every difference gives,

((ai-aj),m) = 1.
Q.E.D.
The array generated in example 11.1.1. is an example of the
array specified in Theorem 11.4.2. but the following two theorems

give another set of ai's which generate non—-'cyclic' arrays.

255

Theorem 11.4.3.

If an integer m, is expressed as a product of its primes,

with Py < P, Ceneeas< P.
then the set of integers, with b < (pl-l)

a., 2a., 38.y cveess ba.
i? i’ i? ’ i

where a; <m and (ai,m) =1, is a set of b distinct integers,

relatively prime to m, when reduced modulo (m).

fheorem 11.4.1, shows that any member of the set, 1,2,....,p1-1
is relatively prime to m, and since (ai,m) = 1, and the product of
two relative primes, is also relatively prime, any member of the
set a., Zai,...,bai is relatively prime to m.

It remains to be shown that the residues are distinct, and from
Theoremili.2.2.1. it can be seen that the set is a subset of the set,

2, Zai, 3ai,.....,(m.--1)ai

which has incongruent residues mod (m) if (ai,m) =1,
Q.E.D.
We must now show that the array generated by the above set of

relative primes, is free from A.R.E.

Theorem 11.4.4.

The array generated modulo (m) by a set of relative primes,
with b g (pl-l),

a., 23.544..., ba,
i? i’ ’ i

where Py is the smallest prime factor of m, is free from A.R.E.

256

We must show that any difference is also relatively prime.
Let, (hai - dai) = ca,, h>d
= (h--d)ai
since h,é € {1,2,.004, (p1~1)} =X
then th-d) € X.
From Theorem 11.4.1., any x € X is relatively prime to m,
therefore,
(h-d),m) =1
Q.E.D.

Therefore either of the two sets

{1,2,....,b} , b s (p-1)

{ai, Zai,..., bai}, b g (pl—l), (ai{m) =1

can be used to construct non—-'cyclic' arrays. Provided ko is small,

the resulting codes may be practical to implement.

11.5 Encoding and Decoding.

11.5.1. Introduction.
If one considers the first column of a cyclic array, it can
be arranged in the following form.
{a, az, a3,...., aS} mod (m).
If a>is a primitive root of m, every integer, -l £ x % (m-1),
can be expressed as a power of a, such that if

x = a° mod (m)

then we say r = inda(x).

257

Therefore when we wish to form column x, of our array, we
obtain the set below,
2
{ax, a"x, a3x,...., asx} mod (m).

T
a mod (m), the set becomes,

But since x

{ r+l r+2 r+3 r+S
a- ", a “,a8 “,ie00, 3 "} mod m,

and since,

as+1 Z a mod (m)
the x'th column is a cyclic shift of the first columm by inda(x)
positions.

However if,

Ordma =S < ¢(m) |
then a is not a primitive root of m and every integer, 1 ¢ x g (m-1),
cannot be expressed as a power of a. The integer a now organizes a

subset of the set of all relative primes to m, into a subgroup under

the operation of multiplication mod (m).

Let A ='{a1, az, a3,..., as}, S < ¢(m), be the 'cyclic' set

generated by a, mod (m) then if x € A, column x is a 'cyclic' shift
of A, written (A)1 where

x = a- mod (m) or i= inda(x).

If, x $ A then column x is a coset of the subgroup generated by

a, mod (m), and is written xA, where

xA = {xa, xaz, xaB,....,an} mod (m).

If, vy ¢ A, but y € xA, then let y xa® mod (m), at € A so that
column y is given by the coset,
yA = xa*A = x(a)’

and column y is a ‘cyclic' shift of the coset column generated by xA.

258

Therefore in an array of order S, there will be (m-1)/S basic
cosets as columns (including the 'cyclic' set A considered as the
coset 1+A) and all other columns are 'cyclic' shifts of these.

However before we consider methods of encoding and decoding,
we must mention that the form of the arrays, as discussed so far,
is not the final form used explicity for the implementation of the
codes. The arrays are modified by the following mappings,

(a) if Ord a = S =¢(m),
then for each element x of the array we apply the mapping,

x — ind_(x) : 11.5.1.1.

(b) if Ordma =S < ¢(m),
then for each element x of the 'cyclic' generating set and its
'cyeclic' shifts, we apply the mapping,

x —+ ind_(x) . ' ' 11.5.1.2.

A, x

For the co‘sets\x2 3A,...,x(m_l)/sA, we apply the mappings,

XA — {S+1, S+2,....,2S} = B

x,A —> {2S+1, 2S+2,....,38} = B

3
11.5.1.3

A — {m-1-S, m-S,...,m1} =

X(m-1)/5 Bm-1)/s

i i .
» Eor the columns, sz ""’x(m—l)/SA we use the mappings,

i i
sz — B2
i i
x3A —_— B3
. 11.5.1.4.

i i
Xm-1)/8® T B(a-1)/s

259

This results in an array whose rows retain their leftwise

sequence properties but whose columns are now 'cyclic' shifts of

sets of consecutive integers.

The examples below demonstrate both cases for S = ¢(m) and

S < ¢(m).

Example 11.5.1.1.

Consider the array generated by the cyclic set generated by 3,

mod (7).

Since Ord53 = 6 = ¢(m) we apply the mappings from 11.5.1.2.

X —> ind3(x); that is

3=

2 =
6 =
4 =
5=
1=

Applying

= U DD W

these mappings gives

S b W

N W Ut B~

mod
mod
mod
mbd
mod

mod

N = O W

w = U &~ 0 N

)
)
)
)
(7
(7

(el =) S V) SRR S B VS

o U SR Y I B V) |

S W N oy

v &~ O D W=

Ut B W N O

AN W UL B

1— 6

the array,

11.5.1.5.

W N = o i B

B R N [

FIG. 11.5.1.1.

ENCODING ARRAY FOR (72,36) CODE.-+

3 2 5 6 4
4 3 6 1 5
Y
5 4 1 2 6
b -]
‘ s
6 5 2 3 1)
- [
Y
1 6 3 4 2
Vertical
2 1 4 5 3 Shift
+
Horizontal
Shift

260

And this form is used to encode and decode.
Consider the array generatedAthe 'cyelic' set generated by 2,

mod (7)

2
.Since 0rd72 = 3 < ¢(m), the array will have .(m-1)/S = 6/3 = 2
distinct cosets and all columns are 'cyclic' shifts of these basic

columns. For the 'cyclic' set we use the mapping I1.5.1.2,

2z 2l mod (0 2 — 1
4=
1:22% mod (7) 1 — 3
Since XZA = {65 3}, frém 11.5.1.3.
6 —- S+1 = 4
5 —8+2 =5
3 —> S+3 = 6

This gives the modified array,

1 4 3
2 3 1
3 6 2 5

|
|
|
2 ' .
2" mod (7) 4 — 2 o
which is used for encoding and decoding.

11.5.2. Encoding.

The eﬁcoding scheme presented in this section is only one method
by which the encoding can be achieved. Nevertheless it illustrates
the idea and demonstrates a serial 'cyclie' or parallel encodihg
method.

Consider the array 11.5.1.5. in example 11.5.1.1. and the 6 x 6

array of storage elements in figure 11.5.1.1. If we associate one

storage element with one integer of the array then the encoding is

performed, using a serial input stream, in the following way.
(a) The first message-digit is put into the storage elements

corresponding to integer 1. (Connections as shown in figure 11.5.1.1.)

(b) The array of storage elements is clocked once vertically
and the second message-digit is pﬁt into the storage elements, which

now can be thought to correspond to the integer 2. ‘
The elements in the top rows being returned to the bottom row.

(c) The process is continued until the array of storage elements
has been clocked 6 times, when it will contain message-digits 1 to 6

in the distribution shown by the array of integers.

(d) The array of storage elements is then clocked once to the

»

léft, horizontally.

(e) The process is continued by repeating (a) to (d) for the
|
six message-digits of the second sub-block to be encoded and all _
|

subsequent sub-blocks of message-digits.

The array of storage elements is used to form the encoded check-
digits which can be obtained in the following ways.
i) Serially, from the output of the storage element corresponding

to integer 1 in the first column, when it is clocked vertically, or

ii) In parallel, from the horizontal outputs of all storage
elements in the first column when (d) is performed in the operationms.
Encoding using a parallel message-digit input is performed simply
as follows.
iii) All six message-digits from the first sub-block are loaded
simultaneously into their positions in the storage element array

corresponding to the integers in array 11.5.1.5.

Syndrome i/p

3 2 S 6 4
4 3 6 1 5
‘ e
Horizontal

5 4 1 2 6 Shift
6 5 2 3 1

1 6 3 4 2

2 1 4 5 3

¥ Y Y Y ; Y

X\\: Majority.Gate 4//7

>

FIG. 11.5.3.1.

DECODING ARRAY FOR (72,36) CODE.

Vertical
Shift

262

iv) The storage array is clocked once leftwise horizontally
for parallel output or vertically 6 times for serial output from

the storage element in column one corresponding to integer 1.
v) Repeat (iii) and (iv) for each sub-block of message-digits.

If the integer array has (m-1)/S coset columns then the message-
digit sub-block must be sub-divided into (m-1)/S sub-sub-blocks and
each sub-sub-block is simultaneously serially loaded into the encoding
storage array. Otherwise the process is the same and can be done

serially or in parallel.

11.5.3. Decoding.

Tﬁe folloﬁing decoding method is one way in which 'cyclic' decoding
may ﬁe performed and is shown for the code specified by array 11.5.1.5.
Figure 11.5.3.i. shows the form of the.decoding storage array
and associated majority-logic unit only. Figure 11.5.3.2. shows a

block diagram of the complete decoder.

As each sub-block of received message-digits arrives, it is
re—-encoded and added to its corresponding received check-digits to
form the syndrome for that block. All the convolutional relationships
of the code are inherent in the syndrome digits so that the storage
array in figure 11.5.3;1. is really a modified buffer. To fill the
buffer serially we input the syndrome digits of a sub-block at the
point shown and clock vertically 6 times. Then clock horizontally
leftwards and serially input the next set of syndrome digits from the
following sub-block. Alternatively when the syndrome digits are
obtained in parallel, they are put into the storage elements of the

righthand column of figure 11.5.3.1. and the array of storage elements

Cyelic Received E
- Array Message
Received Encoder Bits.
Message
Bits
y Cyclic
S
Fé) > Array <
Received Syndrome .| Syndrome
Check Bits. Decoder. : Cancellation.
Bits.
Majority
Gate
Output.

FIG. 11.5.3.2.

A GENERAL 'CYCLIC' DECODER.

263

is clocked 1leftwise horizontally once before accepting the next
set of syndrome digits. |

Nevertheless by the time the syndrome digits of some general
block e reach the leftmost column, the estimates of the errors in
the.messége—digits of block e are located at those points indicated
by superimposing the integer array on the storage array, as shown
in figure 11.5.3.1. We obtain the 6 self-orthogonal estimates of
the first errof as shown and clock the array vertically 6 times to
sequentially decode all 6 errors. Thus the necessity for having
columns of consecutive integers using the mappings indicated in
section 11.5.1. Also we can now see that if the array contains
- (m-1)/S cosets as columns, we will have (m-1)/S sets of distinct
integers and therefore we require (m~1)/S majority-logic gates to

decode cyclically.

11.6 The Code Parameters.

The parameters of interest in a random error—correcting
convolutional code are;
(i) dm, minimum distance.
(ii) n_, sub-block length.
(iii) ko, nugber of sub-block information digits.
(iv) N, block constraint length.

(v) R, information rate of transmission.

Since we are defining the parameters of codes that can be decoded

cyclically, we restrict the parameters to codes developed from odd
integers only.
i) Minimum distance, dm'

From section 10.4. we know that the minimum distance of a

264

random error—correcting code is equal to the minimum weight of an
initial nJ~-digit code sequence whose O'th block is non-zero.
Because no two message-digits from block O are ever in the same
check~digit, the minimum weight code sequence whose O'th block is
non-zero, is that whose O'th message block has weight one.

Thus the minimum distance of the codes is simply equal to the
number of times a single message-digit appears in a constraint length
"~ of noN digits.

Since each row of an array contains a permutation on the set
of integers 1,2,....,(m~1), if there are S rows then the code contains
S+1 appearances of all message-digits from a given block over a
constraint length of noN digits.

Thus the minimum distance is given by;

d =S+1=n -k +1,
o o

ii) Sub~block length n_.
The number of check-digits in a sub-block is equal to S the
number of rows in an array. Therefore,

n =k + 8.
o o

iii) Sub-block information digits, ko'
This is equal to the number of distinct integers in the array
and is determined by the chosen integer m, for the array reduced

mod (m), so that,

k =m-1.
o

iv) Block constraint length, N.

This is given by the number of colummns in an array and is equal

to the number of integers in the rows, which is m~1l. Therefore,

265

v) Transmission rate, R.
This is given by the ratio,
k k

R=_o= o =- m=-1
n ko + S 'm-1+S§

[o}

The rate therefore is a minimum when S = ko and a maximum when

S = 2. Therefore

We noted in earlier sections that given an array with S rows
we éould obtain J = S, self-orthogonal estimates of every message-
digit in a current block. Therefore dm = J + 1 and the codes are
self-orthogonal up to their minimum distange and are one-step
cyclically majoritﬁ-logic decodable, using El-gl-majority gates.

We can now formally define the codes as follows.

Definition 11.6.1.

Let m be any odd positive integer which can be factored into

its primes,

where, -

0 < Gys Gpseseees , 0 <, butm#1

and let S be any positive integer such that,

S < (pl-l)
and

%1
slep,)

for all 1 <1 < r.

266

Then there exists a self-orthogonal one-step majority-logic

decodable convolutional code with the parameters,

n =k + 8§
o o

d =S +1
m

N =m-1

k =m-1
o

which can be cyclically decoded with (m-1)/S majority-logic dates..

267

CHAPTER 12

12. PERFORMANCE OF THE CODES.

12.1 Introduction.

In this section we examine some aspects éf the codes which
gi&e insight into their performance and enable comparison with
othgr codes in ways other than minimum distance, rate and constraint
length nON. |

A parameter of interest which will be found useful in other
sections is effective constraint length, n,. In section 12.2, we
‘ develop expressions for n, which enable its calculation quite simply
from the 'cyclic' set which generateé the array.

Peterson and‘Weldonygf.IOA—IOS showed that on the binary
symmetric channel, B.S.C., if we assume that unlimited or catastrophic
error propagation never occurs then the probability of incorrectly
decoding some e'th block can be approximated quite closely by the
probability of incorrectly decoding the first block transmitted.

For the 'cyclic' codes we assume in section 12.3 that an error

pattern of weight (t+x) > t has occurred and calculate the probability
of incorrectly decoding one digit from the sub-block. Assuming a
B.S.C. means each error pattern of weight (t+x) is equally likely

and we only need to know how many patterns; from all possible,

cause incorrect decoding to find the probability of incorrectly
decoding that digit.

Being self-orthogonal the codes are naturally free from unlimited
or catastrophic error propagation so that a close approximation can

be made by considering the probability of erronously decoding the

268

first block transmitted. Considering the first block transmitted
is another way of saying we can consider any block provided error
free decoding occurred in all previous N-1 blocks; that is, there
is no error-propagation. Assuming that all previous blocks have
been correctly decoded means that the only digits involved in the
decoding of a digit are those in the effective constraint'length
n,. It will be seen that n, is strongly related to the probability
of incorrectly decodiﬁg a digit, under these assumptions.

| In section 12.3 we calculate tﬁe probabilities for a 'cyclic'
code and compare these calculations with others for two self-
orthogopal codes from the class of Robinson and Bernsteiny.

In general, where the 'cyclic' codes can be compared with those
ovaobidéon and Birnstein, for a given t, the 'cyclic' codes
constraint lengthvnoN is longer, although its effective constraint
length n, is shorter or equal. 1In section 12.4 we ask the question,
is the"cyclic' codes' increased length noN justified in terms of
the reduction in the probability of an incorrect decoding?

Although the 'cyglic! codes are longer than those of Robinson
and.Berstein7 they are shorter than many of the very high rate codes

presented by Wu.22,23,24

Finally in section 12. we consider the problem of error.
propagation.

We define the autonomous case, assumed in our definition of
propagation length L, and introduce the concept of propagation
efficiency. We then calculate L for the ‘cyclic' codes and compare
these values with values of L calculated for Robinson and Bernstein's

codes, under the same assumptions.

269

12.2 Effective Constraint Length.

Effective constraint length was first considered by Massey1
who defined it as;

"The maximum numbér of bits which can influence the threshold
decoding of any one meésage-bit in the first ko message-bits of a |
sub~block". o i
| In the following we will show that any code specified by an
array, generétéd by a 'cyclic' set

A= (a,az,aB,....,aS) mod (m),

with cosets,

X.,A = (xza,x az,....,x as) mod (m)

2

2 2

=) 2 S
xm-l/SA = (xm-l/Sa’ Xm-l/Sa go e ’xm-l/Sa) mod (m)

has effective constraint length, n,» where

‘n_=max (n_ ,0_ ,....,0) 12.2.1.
€ 1 %2 ®m-1/s
and
S .
n =1+ Z x. aJ mod (m) . 12.2.2.
e, . i
i j=1
where;
xi = any integer contained in the i'th coset,

XiA’ though usually the smallest.

. m1
i=1,2,...., <

The specification of x, arises from the closure properties of 4
the 'cyclic' set and its cosets, developed in section 1l.4.1.

That is we take an array, before performing the mappings in

section 11.4, and add up the elements in each of the m-1/S distinct

270

cosets, then add one to give E%ldistinct coset sums. Then né is
equal to the maximum coset sum.

To show this let us assume we wish to discover the effective
constraint length involved in the decoding of some integer (message-
digi; error) b which is present in some coset xiA. The coset xiA
and its cyclic shifts will form columns y of the array, where
vy € xiA, so that the integer b will be in those columns y &€ xiA.

If b is in column y then there are (y-1) integers to the left
of b, which are message-digit errors from other blocks, in that
check sum on b..

Since b occurs in columns x;a mod (m), xia2 mod (m) etc., the
total number of message-digit errors from other blocké, which

can influence all S check sums on b is

S R -
Z (xiaJ mod(m) - 1)
j=1

If we consider the S check-digits containing the check sums

on b, plus of course b itself, then

n, =1+8+] (x.,a mod(m) - 1) 12.2.3.

And equations 12.2.2. and 12.2.3. are identical.

If S = ¢(m), then

x1 = x2 = x3 = ee = xm_1/S = 1
n =n =n“"-oo._n =n
€1 %2 3 Cn-1/8 e
and
S .
n, = 1 + z al mod (m) 12.2.4.

j=1

271

The equations above assume, with feedback decoding, that
all previous decodings were correct or, equivalently, no error
propagation has occurred.

The following example illustrates these results.

Example 12.2.1.

Let m = 7 and consider the code specified by the array generated
by the 'eyclic' set,

A= (3, 3%, 33, 3%, 32, 3% moa (7)

reduced mod (7), this becomes the set,

(3, 2, 6, 4, 5, 1).

6 = ¢(m) so that from equation 12.2.4.,
6 .

n =1+) 33 mod (7)

=1

For this code, S

=1+ @B3+2+6+4+5+1)

Consider the code specified by the array generated by the
cyclic set,
A= (2, 2%, 2%) moa (7).

Since S < ¢(m), we require all x; up to i =m1/S = 2. TFrom

équation 12.2.2., let Xy

= 1, then

3.
. =1+ 1 2 md (D)
1 J=1

n

L+ (2+4+1)=38

Since there are only two cosets, we know that the other coset

contains the integers 3,5 and 6, and since 3 € X2A, is the

272

smallest integer in sz, from equation 12.2.2.,

3,
1+ ¥ 3.2 mod (7)

n, =
2 j=1
=1+ (6+5+3) =15
Therefore,
n =max (n_ , n_)
e e’ e,
= max (8, 15)
- 15
Finally, if
A = (6, 6%) mod (7)
then we have,
2 .
n, =1+] 6 mod (D)
1 j=1
=1+ (6+1) =28
since in this case XZ =2,

2 : |
n =1+) 263 mod (7)
2 j=1

=1+ (5+2)=38

and x, = 3,

2 .

n =1+) 3-6) mod (7)

e, s
3 j=1

=1+ (4+3) =28
And therefore, né =8.
Table 12.2.1., shows the effective constraint lengths of cyclic

codes of various rates and error-correcting capability, compared with

other codes.

273

TABLE 12.2.1.

Effective constraint lengths n,-

J n, 'Cyclic’ n, C.S.O.C.I n, C.S.O.C.;‘5 Rate
2 4 4 4 1/2
4 11 11 11 1/2
6 22 . 22 22 .
8 37 37 .
10 56 56 56

12 79 79 .

14 106

16 137 137

18 172 172

20 211

22 254 254

24 301 .

26 .

28 406 1/2.
2 6 7 2/3
4 20 20 . .
6 40 41 41 .
8 69 70 72

10 111 .

12 - 152

14 204 218 .
16 .
18 334 2/3
2 8 10 3/4
4 27 31 32 .
6 58 66 63 .
8 105 .
10 156 181 .
12 223 3/4

274

J n_ 'Cyclic' n C.S.O.C.7 n_C.S.0.C. Rate
e e 1 e 2
2 10 13 4/5
4 35 39 40 T
6 83 .
8 161 .
10 206 4/5
J n_ 'Cyclic’ n C.S.O.C.Zz’23 Rate
e e 3
26 690 743 2/3
3 75 82 12/13
184 209 12/13
6 238 339 13/14

275

12.3 Unbounded Probabilities of a Decoding Failure.

We wish to be able to calculate the probability that the
decoder will fail to correctly decode a message-digit assuming
an error pattérn of weight (t+x) has occurred. We do this by
calculating the number of error patterns which cause 2 J/2 check
sums to be in error, with equality when the digit to be decoded
is in error also. If we assume each error pattern is equally
likely then we can express the probability of error in the

decoding of some digit from the coset XiA’ as

N(e,)
_ i’ t+x
Py alE¥X) = 5 , 12.3.1.
i N ©
t+x
where; © oy
noN' ~ noN.
.= T - o T
Nt+x (t+x). (hoN t-x)!

is the number of possibie patterns of weight t+x, and

N(ei) "~ = the number of error patterns of weight
t+x

t+x which cause a decoding failure on the digit from the coset XiA
under consideration.
The maximum number of digits from the constraint length noN

which affect the decoding of a digit is the effective constraint

.

length n,.. However the number of digits involved in the decoding

of some digit from the coset XiA is n,. given in equation 12.2.2.
i
When t+l errors occur they must affect t+l check sums, to cause
a decoding failure, and must therefore occur within the n, . digits
i
which compose the check sums. However if t+x errors occur, for

every t+x-i, 1 < x, errors within the n, digits there are i errors
i

276

within the (nON -n,) digits, not concerned in the check sums,
i
to consider as erronous patterms.

Let N'(e.) be the number of error patterns of weight
t+x-i

t+x~i which affect the check sums, then,

- 1
(noN ne.).

: x-1 ,
N(e,) =NW'(e,) +)} = el N (e,) 12.3.2.
Lotax Yeex j=1 J'(noN nei 1) t+x-j
When x = 1,
N(e.) = N'(e.) .
el Lol
When x = 2,
- '
(noN nei).
N(e.) = N'(e.) + = — — N'(e,)
e e | 1.(noN nei 1): S

Obviously n, is an important parameter as it also affects
i
the value of N'(e.) . However it is the distribution of the n,
o t+x i

digits among the check sums; rather than the value of n, which

. i
determines the value of N'(ei) . Therefore we must resort to

t+x)

specific examples to examine how the probability varies with x.

Nevertheless two general statements can be made.

i) If n >>n
e. e.
i h|

- N'(e)) > N' (e.)
t+x t+x

(ne.)! 12.3.3.

1

ii) N'(ei)
t+x

< (t+x) ! (ne.~ t-x)!

277

- . - =T
- - B —_— =

L == 7> = The probability of erronous decoding is
different then for digits from different cosets. However from
the development of equation 12.2.3. we know that, not only is o,
the same for every digi; in a coset but the form of the check *
sums (number of digits in each sum) is the same fér every digit

in a coset. Thus N'(ei)t+x is the same for every digit and therefore

so is N(e.) and the probability p_ , (t+x).
1 X.A
t+x 1

However in example 12.3.1. which follows, S = ¢(m) so that
ne',‘the distribution of the n, digits in the check sums, and
chrefore the prébability of anlerronous decoding, are the same
for every i and therefore every digit in a sub-block. Two specimen

calculations are given for (t+l) and (t+2) errors and the other

results are presented up to (t+6) errors.

Example 12.3.1.

The code chosen is;
t =3, nON = 72, Rate = 1/2.

The 'cyclic' array has the following form;

= PN W
powWw- o
w = U &~ 0 N
H oD W oHE O,
L &~ O N W -
N W B

The leftwise sequences or check sums for digit one are;

278

To find the number of error patterns

which cause decoding failure we only

1
1 4
1 3 5

need the distribution of the check sums
1 6 4 2
1 5 2 6 3 ‘and this equivalent form is given here.
1 2 3 4 5 6

Since for this code S = ¢(m) the

i ent form. . 1
Equival rm equivalent form is the same for the

check sums of every message-digit in a

sub-block. The number of digits involved

in the check sums is given by the effective

|
|
|
- l - - -
l
|

-l- - - - constraint length n,.
4 4
decoded other
digit digits
The value of N(e.) is of course influenced by the value
t+x . ‘

of n,s but it-is also influenced by the equivalent form of the
check sums or their distribution.

To calculate N(ei) we proceed in three stages,
' t+x

i) calculate the number of erronous patterns occurring in
the message-digit errors only. We include the decoded digit and

denote this calculation by the symbol, (Mt+x)'

ii) calculate the number of erronous patterns in the check~

digit errors only, denoting this by the symbol (Ct+x)'

iii) calculate the number of erronous patterns occurring
in combinations of message-digit errors and check-digit errors.
This is denoted by the symbol, (Ci Mt+x—i) for i = 1,2,...,(t+x-1),
ﬁhere this implies that i and t+x—-i errors are present in the

respective digits.

279

A) (t+1) errors.

a) (t+1) errors in the message-digit errors only (M4)°

a.l) the decoded digit is not in error.

In this case the 4 errors must be among the interfering

i
message-digit. errors and constrained to one error per check-sum
or row of the equivalent form. If there are N(x) other digits in
row X of the equivaient form, then with four errors in say rows
t,u,v and w, the number of erronous patterns is given by,

= N(t) -N(u) -N(v) -N(w).
All combinations of four products from the 5 rows will give the
total for a.l.

1-2+3+4 = 24

1«2.+.35 = 30

1+2+4+5 = 40

1+<«3+4-+5 = 60

2+3-4+5 =120

274

a.2) the decoded digit is in error.

In this case one of the four errors is the decoded digit
itself and the other three errors, constrained to one per row,
cause it to be decoded as zero. The number of patterns is given
by all possible products of the three N(x)'s.

123 = 6 1+3+4 = 12
1«24 = 8 13+«<5 = 15
1-2+5 = 10 2«4 +5 = 40
2«34 = 24 1«45 = 20
2.3+5 = 30 87
3«4 +«5 = 60

138

=138 + 87 = 225

280

b) (t+1) errors in the check-digit errors only. (CA)
There are only 6 check-digits used so that the number of
erronous patterns possible are,
. 6!
= grar - B

c) (t+1) errors in the message-digits and check-digits.
c.l) One check-digit error and 3 message-digit errors. (Cl M3)

c.1.1.) (C1 M3, decoded digit not in error)

The messagefdigit errors will assume all patﬁerns found in
a.2. Each individual pattern occﬁpies three rows so that the single
"check-digit errorican be in any of the remaining 3 rows. Thus the
number of erronous patterns

=3 x 225 = 775

———
e ——

c.1.2.) (c " decoded digit in error)

1 M3

Since one error is fixed in the decoded digit this leaves

2 errors to distribute among the interfering message-digit errors.
The total number of patterns due to message errors is given by all

products of two N(x)'s.

1.2 = 2 2:3 = 6 34 = 12 45 = 20
1.3 = 3 2.4 = 8 3.5 = 15 |
14 = 4 2:5 =10 21
15 =5 =

14

=14 + 24 + 27 + 20 = 85

And for each of these patterns the check-digit error can be

in any of the four unused rows, giving a total of

c.2) Combinations of C2 M2.

c.2.1.) (C2 MZ’ decoded digit not in error.)
There are 85 patterns of two errors in the message—digit
errors and for each pattern there are all combinations of 2 check- |

digit errors from the 4 unused check sums giving

s

A=—.-85'=&

N
N

c.2.2.) (C2 MZ’ decoded digit in error.)
This leaves one message-digit error to be present in the
other messége-digit errors and for each such pattern, 2 check errors

from 5 unused check sums giving,

c.3) Combinations of C3 Ml'

c.3.1.) (C3 Ml’ decoded digit not in error.)
The approach should now be clear!

.
= 725, -+ 15 = 150

3.3.2.) (C3 Ml’ decoded digit in error.)

6!
T3 = 20

There are no other patterns possible, and we have the total

as;

N'(ei) = 274 + 225 + 15 + 775 + 340 + 510 + 150 + 150 + 20
t+l

282

Since x = 1,

N(e.) | = N'(ei) = 2459
sl £+l
and,

72. 72 _ 72!
t+l - 4 41 68!

= 1,028,790
and therefore,
p(®) = To33-750
= | 4

23:9.10

B) (t+2) errors.

Comment; If two errors occur in one row of the equivalent form
they cancel leaving t errors which can be correctly decoded. We
therefore only consider patterns which can affect 4 or 5 distinct

YOows.

a) (t+2) errors in message—digit errors only (MS)'

a.l.) decoded digit is not in error.
There are only 5 distinct rows of interfering digits, thus,

"= 1.2434.5 = 120

a.2.) decoded digit in error.

This leaves 4 errors in other digits so that from section

(1,) a.l.

283

b) 5 errors in 6 check-digits (C5)

c) (t+2) errors (Ci M)

t+x-1
c.l.) Cbmbinations (C1 M4)

c.1.1.) (C1 M4, decoded digit not in error.)

2'
= 17.&. - 274 = 548

c.1.2.) (C1 MA’ decoded digit in error) from (M4) a.2.

e T

c.2.) 'Combinations (C2 M3)

c.2.1.) (C2 M3, decoded digit not in error)

= o5 - 225 = 175

¢ -

c.2.2.) (C2 M3, decoded digit in error) from (Cl M3) c.1.2.,
there are 85 patterns of two errors in all interfering message-~

digit errors.

=~
.

= . 8 = 510

N
-
N
.-

c.3.) Combinations (C3 Mz)

c.3.1.) (C3 Mé, decoded digit not in error)

4!
3T

- 8 = 340

c.3.2.) (CB‘MZ, decoded digit in error)

9, }
.-

= 3T ot 15 = 150

N

Combinations (C

-

[=)}

l.—

N

n, digits and -

From equation 12.3.2, if x

284

decoded digit not in error)

75

(C4 Ml’ decoded digit in error)

There are no other patterns of weight 5 possible within the

=120+ 274 + 6 + 548 + 775 + 775 + 510 + 340 + 150 + 75 + 15

= 2,

- 1
(noN ne).

1! (n N=n -1)!
o e

(72-22):

11(72-22-1)!

Nl

and therefore,

13,991,544

90-44 10

It is obvious that when x > 1,

. 1
(noN ne.).

—n =37
(noN n, 1)

13,991,544

t+x—j

> > N'(ei)

285

and this is used to calculate estimates of the probability for
x > 4.

The calculations were performed on the following codes; _

A
i

a) 1/2, t =3, néN = 72, 'cyclic'

b) R=1/2, t=3, n¥-=36, €.S.0.C.

¢c) R=1/2, ¢t =24, noN = 72, C.S.0.C.

d) R=2/3, t=04, noN = 384, 'ecyclic'

e) R=2/3, t=4, nN=26l, C.5.0.C. h
£) R = 2/3, t =5, n N = 393, C.S.0.C.

TABLE 12.3.1.

'Cyclic’
t+x t

2439 10

9- 10
20+6- 10
36-9-10
56+9-10
79+6°10

O 00 ~N o B

'Cyclic'

t = 4, n N =

10-2-10

67+8-10
131+6°10

W K N oY W
W
o
'.—l
O

= 3, n’N =

-3
-3
-3
-3
-3
-3

-5
=5
-5
-5
-5

Rate

Rate =

=1/2.

C.S.0.C.
= 3, n_ N =

41-7-10
100-8-10
159-10
210-7-10
249+5-10
'265°10 .

2/3

-3
-3
-3
-3
-3
-3

c.$.0.C.
=4, n N =

19-3-10
88+3-10
237910
491+8+10
863+10"

5
5
-5
5
5

The results are given in Table 12.3.1.

36

261

Probability of a decoding failure when t+x errors occur.

Cc.5.0.C.
4, n N =72
o

0

624102
21-3-107°
42+9-1073
68+7-10°
95+710">

C.s.0.cC.
5, n N = 393
o

0
2043:10°
12-9-107°
395-107°
90+2+107°

P(t+x) x 100

C.5.0.8. t=4

'Cyclic' t=3

-3 4 "‘7'::".;;'_'7: = 5}"":' S 6 ’:‘ 7 8 9 i 10 | t+x
T T T T T 6. 124341, B

- ==ooooo+ - COMPARISON OF THE UNBOUNDED ERROR CORRECTION CAPABILITY OF THE CODES:

LILoUI. L 'CYCLIC'. . R =1/2, nN =72, . t=3

... cs.0.c. R=1/2, naN=72, t=4

i}
(98]
N

.
t

1}

w

T TTTELS.00CT T RE 12 n N =36

286

The rate half results are drawn in graph form in figure 12.3.1,

For the 'cyclic' rate 2/3 code, the figures given are for the
digits in the coset containing digit 1. The C.S.0.C. rate 2/3
figures are on digits 1 and 2 of a éub-block, for the t = 5 and

t = 4 codes respectively.

12.4 Equal Rate and Error-correcting Capability.

;n section 12.3. Qe examined how px.A(t+x) changed with
inéreasing (t+x). We also saw in example 12.3.1. that the equivalent
form of the check'sums on some.digit was sufficient to calculate
the quantities N'(e)t+x and therefore the probabilities too.

However what was not shown is that the equivalent forms for
the digits in the 'cyclice' t = 3 code and the C.S.0.C. t = 3 code

are identical, so that,
' -
N (e)t+1 2459

for bofh codes. Of coursé all N'(e)t+x are equal in value for

these two codes, so that the differing probabilities in Table 12.3.1.
arise purely due to the different constraint lengths of the two _
codes. 'Since the C.S.0.C. has, noN = 36, and the 'cyclic', nON = 72,
we could ask, is the increase in constraint length noN, justified

in terms of the reduction in the probability of a decoding failure?
Also, is there some optimum constraint length noN beyond which the
reduction in probability is not justified? Both questions are
answered by considering a "flexible" code whose rate, error pattern
weight t+x, error-correcting capability t, check sum equivalent

form and therefore effective constraint length, are held constant

while noN is increased.

PROBABILITY OF A DECODING
ERROR o a

U P(t+x) x 100 o
) : t+3 errors

- t+2 errorsi. -

t4lierrors yo o\ o\

Length nc;N e

oo 10 . 2030. .. 40 . .50 6070

. Fe.12.41.

 COMPARISON OF THE C.5.0.C. n N = 36 AND 'CYCLIC' n N = 72 CODES

— FOR EQUAI;, R_= 1/2.AN1)_.£ ;, 3.v LU U OO - J— U S

287

In figure 12.4.1. we show three curves of probability against
nON, for (t+l), (t+2) and (t+3) errors, for the digits of a code

whose check sum equivalent form is given by;

I
|
- I - -
|
I
l

4 +
.. decoded other
digit. digits.

The t = 3, C.S.0.C. and t = 3 'cyclic' codes can be compared
by locating them on each curve, using the values from Table 12.3.1.

The curves were plotted using the equations below;

24594 (noN—A)!

p(t#l)' B n N!

o

o5t ~Ey T

(32 = N(e)t+2 5! (no 5)!

P n N!

"0

oot LAY !
(3 = N(e)t+3 6! (noN 6)!

n N!
o

where N(e)t+x is given by equation 12.3.2. 1In figure 12.4.2. we
also plot probabilities for the rate 2/3 C.5.0.C. t = 4, and rate
2/3; 'cyelice' t = 4 codes. In this case the check sum equivalent
forms are not the same for both codes so that two curves are shown
for each (t+x).-

That is for the 'cyclic' code,

e P_X.A(t+x)>< 100
- . l
el |- - .- -
-Cons traint
Length n N
700 °
BTG 12402y e e
ToTEIT T .'"”‘"“" — — “COMPARISON OF THEV’C.S.O.Q." /noN = 261 AND ‘CYCLIC' -~

~erimme— oo oo N-@= 384 CODES FOR EQUAL R = 2/3 AND t = 4. ~ -~ -~

288

1,378,161+5! (n N-5)!

n N!
o

p(t+l)

but for the C.S5.0.C.,

1,869,925+5! (n N-5)!

n N!
o

P (t+1)

12.5 Error Propagation.

12.5.1. Introductiom.

Error propagatibnvoccurs only in convolutional codes which
are decoded in the feedback mode. It can occur in two ways,

(a) an error in some message-digit is decoded as binary zero,
so that using feedback ;yndrome cancellation, (F.S.C.) does not

eliminate its effects from the check-digits of following blocks.

(b) n§ error in some message-digit is decoded as binary one,
so thét F.S.C. adds an error in the check-digits of the following
blocks where the message-digit error resided.

This éan have the effect of causing a further decoding error
in a subsequent block which would normally have been correctly
decdded. That is some digit from a subsequent Elock may have 't
check sums in error, from t errors over its constraint length noN,
but a (t+1)'th check sum can be put in error by a propagated error
from a previous block.

>*"that if a convolutional code has the

7

It has been shown
property that F.S.C. reduces the binary weight of the N(no-ko)-digit

syndrome then the code can recover from error propagation automatically

providing a sufficiently long error free period occurs. It was also

shown that self-orthogonal codes have this property; so that the

289

'cyclic' codes have this property too. Having stated that
convolutional self-orthogonal codes, C.S.0.C.'s, can recover
automatically, we may ask, how soon can a code recover. Having
said this we must first dicuss what is meant by recover. If we
assume the decoding failure occurred due to an error pattern of
weight t+l, then it is possible that this error pattern plus the
propagated error, will cause a further decoding failure in one of
the (N-1) b;ocks following the block in which the original decoding
failure occurred. If this situation occurs then the code has not
recovered from the original propagated error and we would then
concern ourselves with how soon it could recover from the second
propagated error. For this reason we make our first assumption,
that is, we assume the N;l biocks following a decoding failure are
correctly decodable in the presence of the error paﬁtern and
propagated error. This is referred to as ;he autonomous case.

We then fequire to know how soon the code can be subjected to t

or 1e§s errors again, without upsetting the autonomous case. 1In
‘other words without a further decoding failure occurring due to

the propagated error, which must be in one of the N~1 blocks following
the original decoding failure.

If we can develoﬁ conditions which guarantee the autonomous
case we have developed coﬁditions under which the code is guaranteed
to recover from error propagation. This is because, since the code
has constraint length N blocks long a propagated error cannot affect
the decoding of the (N+1)'th block. Therefore if the N-1 blocks
following the decoding failure can be successfully decoded the N'th

block, (N+1)'th block overall, and all subsequent blocks must be

free from the propagated error,

The number of digits the code requires to recover from a

propagated error is. called the propagation length and is given

the symbol, L.

A more precise definition of L assuming the autonomous case

is given below.

Definition 12.5.1.1.

The propagation length, L, is a multiple of the sub-block
length no,'and is defined as the least number of bits, including
the last bit incorrectly decoded, which must follow a decoding error
and beyond which the code can be subjectéd to t or less errors again
without further decoding errors occurring due to the propagated

error.

Robinsonlzdeveloped an upper bound for L as,

Lso2mN-n 12.5.1.1.
(e} (o]

and to enable comparison of L for different codes we introduce

the concept of propagation efficiency,

E= 1 o2 . 12.5.1.2.

" 7nN-n
o)
 The smaller L, the more efficient is the code.

12.5.2. Propagation in the 'cyclic' codes.

The definition 12.5.l. assumes a single propagated error and
this will be assumed throughout unless stated otherwise. From
the discussion in the introduction to this section it is apparent
that the actual value of L is not too easy to calculate and in

fact it will be many different values depending upon the different

291

error patterns which caused the propagated error. In the following
results it is assumed that a propagated error has occurred due to
an error patﬁern of weight t+l and we consider rate R = 1/2 codes
only. After F.S.C. we develop conditions which indicate a maximum

value for L and we proceed in the following manner.

(a) We assume a particular digit has been decoded in error
causing propagation. Due to the cyclic nature of the code, any
conditions develoﬁed on one digit will also hold for other digits
of the same sub-block. The sub-block from which the error is

propagated is considered as block 1.

(b) We then assume the N-2 blocks following block 1 are
successfully decoded and the N'th block is about to be decoded in

the presence of the propagated error.

(c) Odly one digit in block N can be interfered with by the"
propagated erfor, so that provided the next t+l check sums on that
digit are free from error (this assumes the worst case, that is
that the digit in block N, interfered by the propagated error,_is
in error itself) it can be successfully decoded. This sets an
initia1>va1ue for L at (N+t+1)n°, since this assumes qohfurther
errors can occur in the t+l blocks that follow block N.

Having set this initial value for L, aﬁy blocks whose 2t check
sums are within the (N+t+1)n0 digits will be decoded successfully,
assuming the conditions for the autonomous case. That is, successful

decoding of block x is assured, providing

no(x+n—1) < no(N+t+1)

X < t+2. 12.5.2.1.

CODE.

=

AN=72, =3 P=l3

bb~

Th

B 3] : 2 & t S =
; i < £
T T T + fid >
L =t - = T
- i =
T =5 :
) t: =
£
:
T
= = i T I
tassn
n T T ¥ A, I + T T
Yty :
Yy = i
it
L ¢ ou 11T T £
™I L +
=
K 4 ~ T T
SHA T
AHN
A
RO :
N Y 3¢ ¥y T
Sne ¢ % + T
I a T] taie a1} T i
- :
= = = T t
et Bl Taih ;
¥ n.s .l Y t T
ahand 53 Y T L
oty B35 o :
A =N : :
t ROEL Y O e :
RO \
= e L :
1. t ¥4 >4 H T e
[74} : ! :
EHS - ! T
F{3ieea) GIped
by 4 & N h 4 }
L MILA, R ’s) T
U]
s : : it
FeIra Tt I o
B4 810% 4 W 4 1 —~ L
SAIHAVETA TS i
TS T T
S e AN
4] :
3
P T oy =
SET L i
W
s
== T T g
A1 D
it Al
T 1 T
Yo et it #
) Xt
¥ A . ¥ AL 7
e P e I Ee A VA o ;i
I oo ; =
g7
Ry AiEA ; t
HY U AY
TTI% " "3 S il ~ 3 A]
Fita A T
) ek g w30 F it T
Tk . + £
N T ¥ *
s o oy ost Seut ? Y= 2
ity L T =} t T
SRR S P A X e X L
eresr: i
4 U0 ; 3t W ; .
)] : :
s &
Ty E e
g2 3 b ISha, 2 1+
ST i S
P! T : .
aih i T : =
e o) 3_
. = § { P 1 T +
.y u ¥ 8 i 1
B RO QU 3 : LRt :
o i 7 -
s YAy t
I ¥ - frases
JH T :
: = : .
EEAIREM : £
PN ; T
- e Iz
hepin g ve T - T T .
RS E +
GO S t iEast:]
POy bt T > Fit : T
o o -
i s E SIS : ;
U . t
2 : T
F $r- 1 bal 7 L
R0 A st g 1 Fas : :
EE : e
A o ; :
e A ! T : 2=2 W
5 rhrreeeet] : - = T
Ui : : :
Lo it : + '
= : :
5 ! .
SEgEd i
3 B8 ; :
¢ " v yam i =
LTI T T
fEI7 1 T
FA }
LFHY) T
3
5 if P
] U
i
velal ;
{7 ; 7 oz
s
' 1
TS
st ;
" 3ears tase ¥ "
A T =i i £
f t
ot s T
il
iy L : T
S ;
e 3/ T !
Ty b 4 1 T
. h Y T 1 L
2 R
=t T
T
POt 1 :
E T T
h % T L
<o
LEETTRY B :
fadl
Y L 1
t :
5 : m i
x ; 1
it
T :
: St
T e T T T t . -
Y : i =
} +
3 T

292

(d) We then move backwards and consider the decoding of
block N-1, only if N-1 > t+2. We try to determine conditions which
would require that L be greater than (N+t+l)n0 in order that all
digits from block N-1 can be decoded successfully under our

‘assumptions.

(e) We reéeat (d) until block y < t+2, when we stop. The
value of L is the maximum obtained for all blocks y > t+2, but
y § N,

As an example consider figure 12.5.2.1., which shows the
2Nno - n_ syndrome digits of the noN =72, t=3, R=1/2 code,
assuming an error is propagated by digit 1 from some block 1.

From (c) our initial value for L is (N+t+1)n¢ =‘(6+3+1)-12 = 120.
However N-1 = 5 = t+2 so that from (e) we can stop and this initial
value of L is the final value.

12.5.3 "Propagétion in the C.8.0.C.'s’.

The search procedure applied to the 'cyclice' codes was also
applied to the C.5.0.C.'s’, with rate, R = 1/2.

The results can be shown numerically and a specimen is given

for the noN =172, t =6, R =1/2 code, below.

Example 12.5.3.1.

The generator sequence for the ndN =172, t =6, R=1/2,
c.s.0.C. isl7;
i, 3, 7, 25, 30, 41, 44, 56, 69, 76, 77, 86).
We assume that error propagation has occurred for some block 1

and was in part due to errors in the message-digits of blocks

74, 77 and 86. These errors affected check sums 76, 77 and 86

293

of block 1. However when we wish to decode block 74, it has its

check sums in blocks;
(74, 76, 80, 98, 103, 114, 117, 129, 142, 149, 150, 159)

The check sum in block 76 is in error from the propagated
error, but if one examines those blocks containing the errors' in

blocks 77 and 86 we have;

(77, 79, 83, 101, 106, 117, 120, 132, 145, 152, 153, 162)

(86, 88, 92, 110, 115, 126, 129, 141, 154, 161, 162, 171)

We can see that although F.S.C. will cancel these errors in
blocks 77 and 86, they will be present in blocks 117 and 129 which
both contain check sums for the message—digit in block 74. Therefore
of those twelve éheck sums 74, 117 and 129 are in error, from
propagation and e#isting errors. To decode this digit successfully
we require at least 7 error-free check sums, since 74 is in error
itself. This required then that no further errors must occur in

any block y s 149, giving
L=n_ - 149 = 298,
o .

Table 12.5.1. compared the figures calculated for the 'cyclic'
and C.5.0.C. codes.

The values given are the maximum that could be found. The

table also compares the propagation efficiency of the two codes.

TABLE 12.5.1.

Error propagation length L, in the rate 1/2 C.S.0.C's and

'cyelic' C.S.0.C's.

L E
t noN 2n0N-no 'eyelic! C.S.0.C.
3 72 132 120 0.091
4 72 142 132 0.0705
vs‘ 200 380' 320 - 0.1579
6 172 342 298 0.128

6 288 552 456 . 0.174
7 256 510 452 0.1138
8 512 992 800 - 0.1936
9 434 866 | 702 0.1894
9 648 1260 1008 0.2

10 568 1134 932 0.1782
11 968 1892 1496 0.2094

12 852 1702 1358 0.2022

295

CHapTER 13

Chapter 13 is a reprint of an article,
"Pseudostep Orthogonalization: An Algorithm
for improving Reed-Massey threshold codes"
published in Electronics Lettefs 8th June

1978, Vol. 1l4., No.l2. pp.355-357.

readily be added by'means of a second full-wave rectifier
biased to operate at the voltage corresponding to the outer
significant condition.

delay
o——y——] o1} .
single , >——’—° 1,0,-1
response T W)

Fig. 3 Single response to 1, 0, —1 processor

" The block diagram of the complete timing recovery circuit
.is shown in Fig. 1 and a stylised illustration of the waveforms
~at several points in the circuit when it is presented with an

undistorted (1, 0, —1) eye pattern-is given in Fig. 2. The

-timing signal component present in a 1V peak-to-peak

_processed signal (Fig. 2d) was measured to be 006 V r.m.s. at
- optimum démodulating carrier phase. It was only about 4 dB
less when transmitting via a channel with such severe slope and
sag group-delay distortion that the (1, 0, —1) eye pattern was
barely recognisable. The level of the timing signal component
varied less than § dB with demodulating carrier phase under
any " of the conditions ivsted. With pseudorandom data
" modulation at 60 kbaud si.d no added noise, the peak-to-peak
- jitter at the output of the second-order phasedocked loop,
which had a double-sided - bandwidth of 100 Hz, varied

" between 2% and 4% under the same test conditions. No .

complete theoretical explanation or analysis of the operation
- of the circuit can be given at present, but it is reasonable to

- deduce that the strong timing-signal component obtained

: ‘arises from- the constraints imposed by the (1,70, —I)
< processing on the - oceurrence and® polarity of lhe srgn.rl
transitsons. As a corolliny (o this, it may be inferred that the

phase of the recovered timing signal is determined mainly by

*the predominant (1, 0, —1) signal componcnts, i.e. those at

half"the Nyquist frequency.,

*The circuit is being used successfully in an experimental
modem for transmission over group-band channels at rates
in the range 48-72 kbit/s according to CCITT Recommenda-
tion V36. It has also been established that the same principle
can ‘be applied to extract a timing signal with the same
valuable properties from the correspondmg segments of a
multilevel (1,0, —1) signal.

Finally it is worth noting that- the circuit can be used for
timing-signal recovery in single-response data modems by
driving it from the bandlimited received baseband signal via
a linear (1, 0, —1) processor such as that shown in Fig. 3
(T is the data unit interval). If a sample-and-hold delay
element is used for this purpose, additional band limiting will

‘be required between the processor and the timing recovery

circuit.

Acknowledgment: The permission of the Director of Research
of the British Post Office to publish this letter is
acknowledged :

P. N. RIDOUT

Post Office Research Department
Martlesham Heath

Ipswich, IPS 7RE

England

4th May 1978

References v _— .

1 RIDOUT, P. N., and RIDOUT, 1. B.: *Adaptive multiple response
reception and waveform _correction for data - transmission via

- channels in the fdm network’, paper presented at IEEE Inter- -
“mtional seminar on digital communications, Zurich, 12-15 Match
1974

2 RRETZMER, L R.: ‘Generallzation of a technique for binury duts
communication’, IEEE Trans., 1966, COM-14, pp. 67-68

0013-5194/78/1111-0354 $1.50/0

-PSEUDOSTEP ORTHOGONALISATION:
AN ALGORITHM FOR IMPROVING
~ REED-MASSEY THRESHOLD CODES

" Indexing term.: Error coirection codes

An algorithm s -presented’ which can .be applicd to- Reed- '

Massey algorithm codes and utilises orthogonal and non-
orthogonal check sums with a resulting impraved performance.
The algorithm is applied to a well-known class of convolutional
threshold codes with a subsequent lmprov»mcnt in the non-
bounded error-correcting capability. i

Introductron.

it was not untrl 1963 that a unified theory emerged, developed
by Massey.? The Reed-Massey algorithm basically proposed
obtaining J = (d — 1) orthogonal check sums, where d is the
minimum distance of the codes. Each check sum is assigned
.equal priority in the decoding scheme and providing ¢t <J/2
etrors occur, they can be corrected. Many useful classes of
codes have been based upon this algorithm,”
In recent years attention has been focused on Rudolph’s
- algorithm® which proposes obtaining 2¢A nonorthogonal check
sums, where A is the number of clieck sums in which each
" digit, except the decoded digit, appears, Ng* later showed that
this algorithm could bé improved by assigning the zero parity
check more than one vote. In 4 more recent correspondénce
Puc® proposed a new algorithni, called pseudostep ortho-
_gonalisation, where the decoder utilises a combination of
orthogonal and nonorthogonal check sums.
The main application of the above algorithms®™$ has been
“the decoding of codes previously known not to be decodable

with the Reed-Massey algorithm. The pseudostep algorithm -
presented in the next section can also be applied to Reed-

Massey algorithm codes, with a resulting improvement in
performance. :

The algonthm The algorithm combmes the ideas of Reed-

Masséy’s algorithm, Duc’s algorithm and Ng and can be .
'ELECTRONICS LETTERS 8th Jurie 1978 Vol. 14 No. 12

In 1954, Reed' first proposed a threshold '
- decoding scheme for a class of codes developed by Muller, but -

* outlined in the following manner:

(a) S check sums are obtained

(b) (S 2) check sums are orthogonal nnd are asslgned 3 votes.

.each

" (€) 2 check sums are nonorthogonal and are assngned 2 votes
-each :

Y

~*(d) the zero pztrity check is assigned 3 votes

The total vote becomes
Sr= 3(Sf-_2)_'l- 4+3=35+1

Let J be the number of orthogonal check sums of a code
which is threshold decodable using the Reed- Massey algorithm,

- () If d is odd, J = (d l)==2t ‘and we set S = J+lgiving

Sr=6t+4.

(n) If d is even, J (d l) 2t+l, and we set S= J+l
giving Sr= 6¢ + 7

That is, we find an extra check sum nonorthogonal onone of .
the original orthogonal check sums.
When S = 6t + 4 we decode all error patterns of welght t

 plus many patterns of weight (¢ + 1) which would have caused
- a decoding failure with J = 2¢,

When Sy = 6t + 7 we decode all error patterns of weight t
and all patterns of weight (¢ + 1) except those which include - .
the digit common to the nonorthogonal check sums. However, =

the majorlty of these patterns are also correctly decoded, . -

‘Applicarlon of the algorithm: The algorithm has been applied ,

to Massey's trial and error (t.e.c.)convolutional codes? and, in
addition, a small set of rate } 3 codes were developed. The

resulting constructions are given in Table 1, where the

following poinits apply:
(a) The notation for generator sequences and check sum rules

" is the same as used by Massey.?

(b) While developing the codes some Reed-Massey algorithnr =
o ' o 355

Comments: The code,n=4,5=10,N=5 » Was\examined to
discover the number of patterns of errors of weight -§ which
caused a decoding failure. Of the 15,504 error patterns of
weight five, 3,876 include the common digit in the non-

codes were found which are shorter than Massey's t.e,.c;s and
are given for completeness in Table 2. ' o

() Sub-bloék length = n, constraint length =’N, rate’= l/n,

Table 1 IMPROVED MASSEY T.E.C. CODES -

356

n . : S ‘ le Cenerator sequences . Rules for forming check ‘sumsv -
3 s 3 01, Y)Y (1) * 22y
R | (0, 1y? N

3. 7 s 01,23)OO)22y

S - (0,1,37 | SGHEey .

3 9 8 (0,1,2,3,6,7)". ©)(0) (1) * 2% (123%)

o ©,2,39: - (3'14)(6'67) (7' 7Y *
. . ('43s%sh -
-3 1 12 (0,1,9.11)' Y)Y ey

o ‘ 0,1,2,3,5,8,9) (324%)(3'575%) (8' 8y (11') *

“ S L ol (1P4Y6'6Y) (7297 10%)
3 B 01517 00 (1 17) (4} (5 (15Y
By : (0,4,5.6,7,9,12,13,16) ¢2'6’)(7’.1o‘1|’11')(9’3'5')

. . (4'10"12'16Y) * (6'8'122) (171) *
' » . (1337'y9tg22237) '

4 5 2 oy . e
Sk o (0, 1) (0 ()) (1) *(1y*.

4 7 3 (0,12 (0" (0} () (1) * (1) *-

. o (0,1) Q2 :
4 10 5.0 (01,2, 20O (O (1) T (12 1) (2 23y
(0,1,4) (2h(3'3) 4y g
| . - 0,2,4)) 43y
4 T 6 {01,230 OO Y (1Y (121 2ty
' (0,1.4,5)? (2N *(3'4")(5") (42324Y)
0,2,5" (5'5%3%) * '
4 13 8 (0.1,2,3.7)" (0') (0 (0Y) (1" (17 17) (2' 2%
' (0,1,4,5) (2)(3'4")y (2234 (5
(0,2,5,6,7) (5%6'3%) * (627 *
: . (4I7l72, E
4 I5 h (0.1,2,3,7,9) 00) (1" (1} 1Y) (2'2Y
(0,1,4.5,9, 10y} (2(3'4 (32424 (5% »
(0,2,5,7,8) (7'6%8') * (52326
o L 18%6'8")(5'7'73)
, , (9'9?9°10%)
4 14 9 (0,1,2,3.7)! (0 (0% (0% (1') (2'2%) (29
' (0,1,4,5,8) (3'4") (324243 (5Y) *
(0,2.5,7)° (7678") * (7' 7%) (1713
:) ; . » (523,\65 (82 6383)
5 7 2. O (0 (0) (0% (0% (1) * (13 *
T (0, 1) (1314
0.1)°
, (0)* ;
5 9 3 (,1,2)! (0')(0%)(0%) (0% (1) * (111 *
(0, 1) (rHe'yey
o, 1y \ :
e (0t2)4 .
5- 1 4. (0,1,2,3) (0) (0% (0% (0%) (1) * (1) * (1°1%)
C(0,1,3) (29 (2'29)(3'2%) (3239 :
(0, 1)
(0,2)*

ELECTRON!

Table 1 IMPROVED MASSEY T.E.C. CODES ~continued

n S N Generator sequences ‘Rules for forming check sums
5 13 6 (12 (09 (0%) (09 (0% (4°4% *
L = 0,1,3)*. (3'3)(3) (4?39 (2'2%)
(0,3,5) @2H0')P 1HEH
. - (0,2,3,9°
5 - 15 7 ©,1,2)! (0% (0% (0% (0% (1' 13 (121 -
: ‘ ©,1,3)* (2'2%) (2%2% (3'3%) (4%39)
- (0,3,5,6) BH @4 *(5)*
. (0,2.3,4,6)* v (526%6% (4'5'6%5%)
5 17 9 0.1,2,4,5,7)" - (0" (0% (0% (0%) (4°4% (3' 3%
0,1,3,8) (3943 (2" 2 2y (11
(0,3 (121 (4' 6%) (5 5%5%)
(0.2,3,4,) (7'635%) * (7462 7%
’ B (828%)*
5 19 1 0.1,2,4.4,5,7)" (o)(o')(o’)(o‘)(4’4‘)(3'3*) -
(0,1.3,9) BH@*3H2'2H 229 ('Y
(0, 3, 10)° (P @'eh(s'stshy

- (0.2,3,4.7.8, 9)*

7l 62 J) » (7462 72) (9393)
(9‘7J 6') (10% *

. The asterisks in the above tableé indicate the nu'_nunhogollul check sums

. Table 2 SHORTENED REED-MASSEY ALGORITHM CODES '

.‘n' _'.1 ‘N - Generator sequences Rules for forming check sm‘nsk
o4 a4 00,2, (01 (0 (09 (1) (119
- S) (O,l)’ (2122)(23)(31313))_
; '(0,2)’ o
5 6. 5 (0.1, - (0)(02)(0’)(04)(4‘45
- . 0,1,3)% @' 3’)(3’)(4’3‘)(2'2’) o
S 0.3 (2"‘")(I 1’)(1*1‘)
: ‘ "(0)¢-13 4)‘ :
5 8 8 7 (0,1,2,4,5,7)" ‘above rules plus
(0,1, 3)? - (4 6% (5'5%5% .
, ©3 . (1'6°5%) (16273 .
(0,2,3.4,7)* PRI
5 9 10 0,1,2,4,5,7) . above rules plus
- 0,1,3,9¢ L 9*71*6h)(9%9%)
; (0234789)‘.“ :
3 4 7 (0.!.-.3.6)' - OY©0) (1H(2H (1?3

, (61 62) (3!41) (21 425! 52) '

orthogonal check sums. Of lhese 3,876, the code fails to - -
o " M.E. WOODWARD

" Department of Electronic and Electrfcal Enginéerlng)

.decode in |083 cases.,

Conclusiam A pscudoslep orthogonalisation -algorithm’ has
been presented which can. be: applied to Reed- -Massey
algorithim codes to improve their performance. -

_ The algorithm was applied to Massey’s t.e.c. convolutional
codes resulting in an impraved’ performance, with no increase
in length in most cases.

One criticism of t.e.c. convolutional codes which are

" decoded in the feedback mode is that they do not have the

automatic recovery properties of self-orthogonal codes in the

presence of error propagation.® However, the improved t.e.c.

codes presented, having a better unbounded error correction -

capability, are less likely to have errors propagated than the
“standard t.e.c. codes.

The advantage of the t.e.c. codes is that; for a given error-
correcting capability,” they ‘are much - shorter than self.
orthogonal convolutlonal codes.>? ,

' ELECTRONICS LETTERS 8th June 1978 Vol. 14 ' No. 12

w001 3-5 1 94/ 78/111 6-0355 $1. 50/0

D. McQUILTON -

8th May 1978

University of Technology -
Loughbarough, Leics. LEI] 3TU
England 5

References S
1 REED, I S.: ‘A class of multiple-euor cortecung codel and the

decoding scheme', JRE Trans., 1954, IT-G. pp. 38-49
2 MASSEY, J. L. ‘Threlhold decodlns (MIT Press, 1963)
3 RUDOLPH, L. D.: *A class of majority-ogic decodable codes’,
IEEE Trans.; 1967, 1T-13, pp. 305-307 - ,
4 NG, §. N.! 'On Rudolph’s majotity-!ogic decoding llgomhm.
ibid., 1970, 1T-16, pp. 651-652
5 DUC N. Q.: *Pseudostep orthogonalization: Anew threshold-decod- :
ing algorithm’, ibid., 1971, IT-17, pp. 766-768 ‘
6 ROBINSON, J. P., and BERNSTEIN, A. I.: ‘A class of binary
: recurresnt codes with limited error propagation’, ibid., 1967, IT-13,
pp. 106~§13
7 REDDY, S. M., and ROBINSON J. P.: ‘Hybrid block-selfo o
orthogonal convolutlonal codes’, ibid., 1972, IT-18, pp 185- l9l

,_3:5'7'” :

296

14. CONCLUSIONS AND COMMENTS.

14.1 Comparison with other C.S.0.C.'s.

The usefulness and application of convolutional self-orthogonal
codes has been shown by Wu22 who listed their advantages as:

a) simple implementation.

'b), freedom from error propagation.

'¢) guaranteed correction capability beyond the minimum
distance, dm.

d) capability of operating at very high speed.

e) a large number of codes. |

In a later paper Wu.'s24 results showed that C.S.0.C.'s exhibited
the further property that they.did not produce additional and bursty
errors at Ehe decoder output when the codeg capability was exceeded.
This he concluded makes these codes superior to Reed~Solomon codes,
B.C.H. and Viterbi decoders when used as the inner code of a.
concatenated code.. Also, one of the examples Wu22 gave for the .
DITEC digital television system, a C.5.0.C. was chosen in preference
to B.C.H. codes, difference-set cyclic codes, Viterbi and sequential
decoding after an extensive evaluation.

However W’u's22 statement that one of the C.S5.0.C.'s advantages
is ‘that there aie a large number of codes throws light on the state
of the art at that time since combining all C.S.0.C.'s from Robinson7

et al., Klieber14 and Wuzz’23

there were only 143 codes with rate
greater than one half. Also the C.S.0.C.'s did not-exist at certain

23 . .
rates and, as Wu ~ stated, tend to be single error—correcting for very

high rates. These results are in sharp constrast to the class of

297

'eyclic' C.S.0.C.'s presented in Chapter 11 where, if we consider
only primes p, then if there exists some integer x such that x[(p-l)

there exists a code with;

;=) N = () (x+1) (3)2
x .
Rate = m R

Since the number of primes is infinite, for ANY x, there are
theoretically an infinite number of codes of error-correcting capability
greater than one. Nevertheless where possible the ‘cyclic' codes
have been coﬁpared with the C;S.O.C.'s and these results are presented
in Table 14.1. For a given rate and J we compare actual constraint.
lengths n

The actual constraint length n, is important from the

A’ A

point of view of decoder complexity and economics, the larger n, the

A
more expensive the decoder. As can be seen from the Table 14.1. the
'cyclic' codes teﬁd,to be éhorter for rate 3 5/6 and in fact for all
codes of rate 3 17/18 there are no C.S.0.C.'s shorter than the 'eyelic!
codes.

Wu23 also mentioned that a computer was needed to specify the

€.S.0.C.'s at high rates. However in example 11.3.24 it was shown,

with a moderate amount of hand calculation, how to comstruct two

5, ‘Rate

codes; (a) dm 601/602.

(®) ¢ =3, Rate = 1202/1203

both having extremely high rates. However within the range of values
that the C.S5.0.C.'s and 'cyclic' C.S.0.C.'s can be compared there are
many points (values of J and Rate) where the C.S.0.C.'s exist and the

'eyelice' C.S.0.C.'s don't, and vice-versa, so that within this range

the two classes of codes can be considered as complementing each other.

298

We can consider decoder complexity by comsidering two codes

of the same J, n, and Rate ;

(a) 'Cyclic' J =6, n, = 6552 , R = 13/14
(b) cC.s.0.C. J =6, n, = 6552 , R = 13/14.
There is one other code in Table 14.1 where J = 3, n, = 11,988,

R = 36/37 for both 'cyclic' and C.S.0.C.

For the C.S.0.C., from Wuzz, the rate 13/14 C.S.0.C. has

o)

Al

logic gates, plus of course a re-encoder.

-The 'cyclic' code has ko = 78, n = 84 and since we have

Sﬂgl) = Zg = 13 cosets we also require 13 majority-logic gates,

buffer storage 6552 plus re-encoder. Thus in terms of equipment
required‘there is perhaps little to cheose between fhese two codes.
In general both classes of codes require x majoritj—logic gates to
decode a rate x/(xfl) code. Wu22 presented a system for replacing
the x majority gates by a single gate plus a combinational gating
circuit ana this idea carries over to the 'cyclic' codes also. The
gating circuit changes connections once for each coset to decode
all ko‘digits of a sub-block. Of course this would require the
'eyclic' array being clocked vertically ko times and the decoding

time is increased as it would also be with the C.S.0.C.'s.

k =13, n = 14 and requires buffer storage of 6552 and 13 majority-

TABLE 14.1.

Comparison of 'cyclic' and C.S5.0.C. codes.

e

299

J n, 'Cyclic' n, Cc.S.0.C. R.
8 6 R
32 14 . R
72 36 R
10 ~ 200 112 . R
12 288 172 R
16 512 360 . R
18 648 434 1/2 R
22 968 718 R
28 1568 1460 .
30 1800 1682 .
42 3698 3414 .
60 7200 6962 .
72 10368 10082
82 13448 13124
2 24 9 R
3 54 24 . R
5 150 69 . R
6 216 120 R
8 384 237 . R
9 486 306 . R
11 - 726 507 2/3 R
14 1176 867 . R
15 1350 1011 R
20 2400 2217
23 3174 2499
26 4056 3696
35 7350 6933
50 15000

14271

S U W N

10

11 -

13
16

11

168
378
1050
1512
4200
5082
7098
10752

896
2016

1800
8712

49
140
539
882

4550
5152
7546
11032

384
1176

1368
9531

6/7
6/7

7/8
7/8

8/9

* % * ¥ R R R R

301

\ : t
J n, Cyclic n, C.5.0.C. . R.
3 990 715 .
4 1760 1529 .
6 3960 4235 10/11 *
7 5390 5797 ' . *

10 ' 11000 12078 . *

302

n, "Cyclic! n, C.S.0.C. R.
8370 . 9727 30/31
10710 13860 34/35
11988 11988 36/37
42 /43

15750 19823

Indicates 'cyclic' code is shorter.

Indicates 'cyclic' code is equal.

From the class of codes by Klieber14

From the class of codes by R.obinson7

22,23,24

All other codes from Wu

et al.

14.2 Performance of the Codes.

In section 12.2. we presented equations for calculating
effective constraint length n,. Comparative figures were presented

in Table 12.2.1. where the 'cyclic' codes n, are compared with n,

for other C.S.0.C.'s. It can be seen that for rates > 1/2 the 'cyclic'

codes appear to have shorter n,s the difference increasing as rate
and J increases. Some insight into this can be obtained from the
lower bounds developed in Appendix A. The lower bound on n, for

C.S.0.C.'s is given by:

n > 1 [x.]2 +J + x + 1] 14.2.1.
e 2
c.5.0.C.

and for the cyclic C.S.0.C.'s:

1 (.2
n, 3 % [xJ +J + 2} 14.2.2.

'eyelic!

for codes of rate x/(x+l), with J check sums per digit of a sub-block.
The values of n, in Table 12.2.1. are compared with their bounds in
Table 14.2.1,

The following results, from Table 14.2.1. are apparent;

(a) the 'cyclic' codes n, is optimum with the ‘'cyclic' lower

‘bound for the majority of the codes shown.

(b) the €.S.0.C. codes n, moves away from the C.S5.0.C. lower

bound as rate and J increase.

(c¢) from inequalities 14.2.1. and 14.2.2. it is seen that the
'cyelic' bound is tighter than the C.S$.0.C., the C.S.0.C. being

greater by [E%lJ and therefore increasing with rate.

The property (c) accounts for the 'cyclic' codes effective

304

constraint length n, becoming increasingly smaller as rate increases.

The property (b) shows that as a construction technique the
C.S5.0.C. codes ratio dm/ne deteriorates more than it should and
implies tighter constructions are possible.

The fact that the 'cyclic' C.S.0.C.'s appear to hold to the
lower bound on n, is, the author believes, due to the highly symmetric
cyclic structure of the codes. This results in all nn',lfor the
coset;, being close to. the mean, E;, and in those results presented
in Table 14.2.1. only two codes have n ot exactly on the mean E;.

In the C.S.0.C.'s however the x(J-i) check sums in the check-
digits of blocks other than block (0) are not symmetric and appear
to have n which deviate about the C.S5.0.C. mean. This deviation
appears tolbe more pronounced for high rate, high error-correcting
C.S.0.C.'s. |

For both inequalities 14.2.1. and 14.2.2. for rate 1/2 codes,

x = 1 and

2

1 1
n 2-2-.] +§-J+l

e
and equality gives the optimum n, for rate 1/2 C.S.0.C.'s as shown

by Masseyl. Massey1 also showed that the effectiveness of the threshold
decoding of C.S.0.C.'s was rela£ed to the ratio J/2ne compared to the
ratio (d-1)/2 noN guaranteed by the Gilbert Bound. Since for a

given J, n, 'cyelie' < n, C.S.0.C. at high rates the 'cyclic' codes

are closer to the Gilbert Bound than the C.S.0.C.'s.

305

TABLE 14.2.1.
Table of n, compared to lower bounds in Appendix A, for
C.5.0.C.'s and 'cyclic' C.S.0.C.'s.
J n, 'Cyclic! n, 2 ne.C.S.O.C. n, . Rate.
2 4 4 4 4 1/2
4 11 11 11 11 .
6 22 . 22 22 22
8 37 37
10 56 56 56 56 .
12 79 79 79 79
14 106 106
. 16 137 137 137 137 .
18 172 172 172 172 .
20 211 211 .
22 254 254 254 254
24 301 301 .
- 26
28 407 407 1/2
2 6 6 7 7 2/3
4 20 20 .
6 40 40 41 41
8 69 69 70 70 .
10 111 107
12 152 152 .
14 204 204 218 205 .
16
18 334 334 2/3
2 8 8 10 9 3/4
4 27 27 31 28
6 58 58 66 59
8 105 102 .
10 156 156 181 157 .
12 223 223 3/4

306

J n, 'Cyclic! n, > 4ne.C.S.0.C... .ne_a . Rate.
2 10 10 13 12 4/5
4 35 35 39 37 .
6 83 78
8 161 135 .
10 206 206 4/5
26 690 690 743 691 2/3
75 56" 82 62 12/13
18 - 154 209 159 12/13

238 238 339 244 13/14

The upper bound on P(t+l) developed in Appendix B. is not a

tight bound if:

n
N e
NT(e) g << [t+x]

although B.6. is tiéhter than B.7. However it does indipate the
importance of the ratio ne/noN for (t+l) errors.

When (t+x) > (t+1) the second term in equation 12.3.2. becomes
more dominant, however tightening of inequality 12.3.3.(ii) is
necessary to make an extended bound tighter.

A comparison of the figures in Table 12.3.1, with upper bound
B.6., is given in Tabie 14.2.2.

The underlying result which emerges from this examination of
the unbounded performance of the codes is that,-for a given rate and
length noN, if one increases the bounded error—-correcting capability,

and thus the ratio ne/noN, the unbounded performance deteriorates.

307

TABLE 14.2.2.

Comparisbn of calculated P(t+1l) with,

t+l
ne -t
PO < o
o
calculated upper bound
'Cyclic!) -3 -3
n =22, t=3, nN =72 2739-10 5.74+10
C.5.0.C _3 3
n, = 22, t=3, n N = 36~ 41+7+10 109-89-10
C.Ss.0.C. -3 -3
n, = 37, t=4, n N =72 6+4-10 26-91-10
'Cyclic' . .5 ' -5
n, = 69, t=4, noN = 384 210 14+6+10
- C.s.0.C. -5 -5
n, = 70, t=4, noN = 261 19-3-10 111-7-10
c.s.0.C. -5 -5
n, = 111, t=5, nON = 393 2:43-10 4242410

This result is reflected in figures 12.4.1. and 12.4.2. where
by increasing noN, with n, constant, we see the probability decrease.

It is the author's conjecture that this result extends to block codes

also and underlies the price one pays for increased bounded error-
correcting capability.
Shannon showed that probability of error was intimately connected
.) 26 '
with a codes length n, such that™ ",

Ple) < e-nE(R)

where E(R) is a function of rate R. The curves in figures 12.4.2.

and 12;4.1. illustrate this inequality and also highlight the fact

that the length of a code is a significant factor in determining

the probability of error at the decoder output. Since this is so

one could expect a reasonable performance from a 'code' whose no-ko
redundant digits are all zero's, provided noN is long enough.

However this is wasting space and can be simulated by time multiplexing
many information independent blocks of digits.

For example if we time multiplex 5 blocks

(« no—ko for block B.1. ——)

B.5. B.4. B.3. B.2. B.1.

of ko—digits_per block, each block being unrelated to any other, from
an information content view, then considering only one block, say
B.1l., the 5-ko digits can be thought of as a (n = Sko, ko) code with
bounded error-correcting capabilitylt = 0. Cereainly a good unbounded
performance would be expected and points out the power of time
multiplexing in the context of error-correctien.

| If we express equation 12.3.1. as a percentage, then from Table
12.3.1., we see that the t = 3, noN = 72 'cyclic' C.S.0.C. is still
correetly decoding more than 927 of all error patterns of weight 9.
By putting this figure into context we can see further evidence of
~ the importance of code length noN.
Since we can permit up to 3 errors affecting the n, digits in the

check sums, then the number of patterns of errors of weight 9 which

cannot possibly cause error is given by:

- 1 1
3 (noN ne). n!

= . e
- izo (9-i): (noN-ne—9+i)! i!(ne - 1)!

And for the t = 3, noN = 72 cyclic code this gives the figure:

= 6.1785.1010

This is in fact 72.597 of all patterns of weight 9 and is due to
the fact that n N >> n; or that ne/noN is small. Thus-‘the actuai
code structure is only correctly decoding approximately 207 of the
patterns, the codes length does the rest of thé work.

Some interesting results were presented by Mr. K. Tsigiroglou,
in a report entitled "Performance evaluation of a new class of
Convolutional codes'", for his M.Sc. Thesis at Loughborough University
of Technology in September 1978. Three codes were simulated on the

University's computer namely,

Rate = 1/2, noN =72, t=25 Massey.
Rate = 1/2, n N = 72, t =4 Robinson/Bernstein.
Rate = 1/2, - noN =72, t=3 "Cyclic'.

From the curves developed it can be seen that the computer

simulations bear out the calculated results obtained in section 12.3.
Also, the Massey code, though of the largest bounded error-
correcting capability, has by far the worst overall unbounded
performance. There are two main reasons for this, (a) the high ratio
ne/noN increases the probability of a decoding failure when t+x > t
errors occur. Being an orthogonalizable code ne/noN is close to

unity, (b) being orthogonalizable the code suffers from error

310

propagation and tends to generate more errors when a decoding
failure occurs.
Although it is known that self-orthogonal convolutional codes

’ 2, to actually calculate

automatically limit error propagation
L is not a simple matter. The most interesting result from the
figures in Table 12.5.1. are that both C.S.0.C.'s appear to become
more efficient as t increases. The figures shown are the largest
that could be found, but are in no way claimed as being the maximum
possible since L is different for practically every error pattern
which causes propagation. The procedure given in section 12.6.2.
was used for both 'cyclic' and C.S.0.C. and can be considered a:
general procedure for any type of C.S5.0.C.

For both the high rate C.S.0.C.'s, decoded with ko majority |
gates, and the high rate 'eyeclie' C.S.0.C.'s, decoded with Egl
majority gétes, simultaneous feedback syndrome cancellation of
these digits before the next decoding operation can cause multiple
error propagation if more than one digit is decoded in error. That
bis, for both codes, with rate §§T , X digits are decoded simultaneously
in one time instant.

For the rate 1/2 'eyclic' C.S.0.C.'s J = ko and a sét of check
sums on digit b, from say block O, cannot contain digit b from any
other block as this would imply that a row of the 'cyclic' array
contains two identical integers which is not possible by definition
of the array. Thus if t+l errors occur in the ko message-digits of
block 1, they can only occur simultaneously in the check sums of t-1

digits from block O. This causes t-1 errors to propagate simultaneously.

However t-1 propagated errors will not cause any digit from block 1

311

or any other block to decode in error providing no more errors
occur until beyond block N+t. Therefore, the codes can recover
from the multiple propagation of t-1 errors, caused by

ko!/(t+1)! (ko-t-l)! error patterns of weight t+l, with propagation
length:

L= no(N+t).

The ability of the“cyclic' rate 1/2 codes to do this, again,
is primarily due to the symmétry of the codes' structure. Note
that the value Qf L given above is less than the figures given in
Table 12.5.1. for propagation of a single error, this being due to

the choice of a particular pattern of errors.

14.3 Further Work.

The rich algebraic structure of this class of cyclically
decodable C.S.0.C.'s indicates that a deeper mathematical examination
of their structure coul& bear further fruit. There ﬁay be soﬁe
relationship between the C.S.0.C.'s and 'ecyclic' C.S.0.C.'s,

particularly those of Wu,22’23,24

which woula shed further light on
C.S.0.C.'s in general. The sharing of different values of J,‘for
a given rate, by Wu's C.S.0.C.'s and the 'cyclic' C.S.0.C.'s seems
significant. |

The pseudostep algorithm presented in Chapter 13 can also be
applied to the 'cyclic' C.S.0.C.'s. The problem revolves around
the imbedding, into the array, of a set of m~1l/s columns which
satisfy the algorithm, without disturbing the cyélic property of

the code. Specific results have been obtained on a few low rate

codes, § 5/6, in which an extra non-orthogonal check sum on every

312

message;digit has been imbedded without altering the code length

or 'cyclic' property. Generalizing‘this idea to one of imbedding
further orthogonal check sums has occurred to the author but remains
a subject for further study. The specific results men£ioned above
produced codes that are Self-Pseudostep Orthogonai and will therefore
recover from error propagation.

The author feels sure that the work begun in the Appendices

can be extended upon, particularly B, - .. From the results
Mr. T. Sigiréoglou's report -
presented in 'A‘ it is conjectured by the author that the

great difference in performance between the C.S5.0.C.'s and Massey's
orthogonalizable code is primarily due to the differences in their
ne/nA ratio's and the fact that Massey's code cannot recovervfrom
error propagation is secondary. This is a conjecture that certainly
needs examination and far more work is required in this direétion

to obtain meaningful conélusioqs. If it can be shown that error
propagation has insignificant effects providing a code} ne/nA ratio
is below some threshold, regardless of whether or not the code has
automatic recovery properties, then this would be a uééfulrﬂf"Ar'
contribution to convolutional coding theory.

Another avenue perhaps worth pursuing is that of discovering
if the distribution of all n about the mean Eﬁ has a bearing on
code performance. Since a dizit from a sub-block has probability
of error closely related to its own effective constraint length o,
and therefore no then the distribution of the probabilities of
error of the ko 3igits from a sub-block will presﬁmably be connected
with the distribution of n about the mean E;.

As stated previously t;e values N'(e)t+x are usually much less

313

n
than [——El and further work is necessary to find a tighter

t+x |

|

approximation. ' |
: |

In conclusion, there still remains a great deal of work to |

be done in assessing the impact and general performance of this

indicate that as a class they exhibit many favourable qualities.

|
class of 'cyclic' C.S.0.C.'s, however the results so far obtained
|
\
|
\

314

ApPENDIX A

A lower bound on n, for €.S.0.C.'s and 'cyclic' C.S.0.C.'s.

(a) Lower bound on C.S.0.C.'s.
For C.S.0.C.'s the check-digit of the current block to be

decoded, as a syndrome digit, has the equation:

s = eo(l) E)eo(Z) @.... ﬁﬁeo(ko) &Qeo(ko+1). A.1l.

(o}

This single syndrome digit provides one check sum for»every

message-digit error from block O. The remaining J-1 check sums,
for each digit, are in the check-digits of the other N-1 blocks.
Considering one digit from block O let its effective constraint

length be given by:

n, = [nn + (J—l)] + 1+ (x=1) + 1 | A.2.

Since ku = x for a rate x/x+1 C.S.0.C., from equation A.l. we
obtain the

1+ (x-1) +1

digits of n,. That is, the digit itself, the (x-1) digits from
its own messagevblock and its own blocks' check-digit.
. Therefore n is the total number of digits from other message
blocks contained in n,.
Letn ,n ,..., . be the values of n_ for the x digits
n,’ m, n n
in the current block to be decoded, then it is quite simple to |

show that:

}Z{n=2i A.3. \

and we can propose a mean value,

315

xJ-1
]oi A.4.
X

=3
u
"

From A.3., if any n <n, then there must be some n, >n,.
i j
Thus, since n, is a maximum figure,

n E; +J+ 1+ (x=1)

e
1 xJ-1
2o |l i +I+ls (D)
X
1) ‘_
2 E-(xs +J+x + 1), A.5.
Equality is satisfied if n = EQ for all i = 1,2,...,X.

Example 2.1.

For the code t = 2, R = 2/3, nN = 42 the generator sequences
are:
(0, 8, 9, 12) on digit 1.
(0, 6, 11, 13) on digit 2.
Analysis shéws that the number of digits in the check sum, contained
in the check-digit of block x (represented by the integer x in the
generator sequences), excluding the digit itself, is equal to the

-number of integers less than x in the generator sequences.

Therefore,
n =3+4+6)+4+1+1=n +6=19
e n —_—
1 1
n =2+5+7)+4+1+1=n +6=20
e) n -_—
2 2 —_
so that

]
[\~
o

n = max(n n
e (e.’” e)

Note that,

n +n_ =13+ 14 =27=) 1,
R T 2

From the lower bound A.5.,

n_ 2 195 2 20 .
e

So that this code is optimum in the sense that n_ cannot be lower.

(b) Lower bound on 'cyclic' C.S.0.C.'s.
From equation 12.2.2. the effective constraint length is:

S
L+] % a mod (m) A.6.
i j=1

=]
]

Let,

S .
]
n_ Z X, a mod (m) A.7.

i j=1

. ’ m-
since the —gl = x cosets contain all positive integers from

1 tom1l =x8§

i=1 M i=1
Since S = J,
xJ'
E'=-1—Zi} A.8.
n x
1
Therefore, as before and from A.6. and 7
n 21+n
e n
xJ
1
,1+§§1
51 +‘l {xJ(xJ+1)]
X 2
2%-(xJ2+J+2) A.9.
with equality when n = ;a for all i = 1,2,...,X .

1

317

APPENDIX B

An upper bound on P_ A(t+x).
' i

From inequality 12.3.3.(ii),

(ne.)!
< i
X (t+x)! (ne.- t-x)!
i

N"(ei)t+

and therefore from equation 12.3.2.,
nN=-n n
. o e

+
N(ei)t+x) .Z

h a - a.
where b BT (a=b) "

So that from equation 12.3.1.,

N(e.)
_ i’ t+x
Px.A(t+x) = ON———— , or from B.2.
]
n [n N-n n
e. x-1 o .
if i i
P (t+x) < t+x j=1] t+x—]
A
1 n N
o
Since n, is the maximum n, s
i

[n] x-1 {n N-n][n }
e + z (o] e e
P(t+x) < t+x j=1 3 t+x—-j
n N
o]

applies to all digits in a sub-block.

Let x = 1, then

318

n_)
e
P(t+l) < t+1\-
n N
o
-t+1J
) (ne el = I .. (ne)
A N-t)...... (a N)
t+l t+1
n, - t n,
although TN < t < rei
o o
usually
e
N' (e) <<
t+x £+x
therefore we can say,
n_ - ¢ t+l
P(etD) < |gx—¢
. 0 -
and if n >t |, n N>t
e o}
t+l
n
£
n N

B.S‘

B.6.

To develop a tighter bound it is necessary to tighten inequality

B.1.

10.

319 ‘
|
|

REFERENCES

MASSEY, J.L. "Threshold Decoding", 1963, The M.I.T. Press, i
|

Cambridge, Massachusetts.
John Wiley & Sons Inc., N.Y.

ELIAS, P. "Coding for Noisy Channels", 1955, I.R.E. Convention
Record, Part 4, pp.37-47.

LeVEQUE, W.J. "Topics in Number Theory'", 1956, Addison-Wesley

Pub. Co. Inc., Massachusetts.

. 'McCOY, N.H. '"The Theory of Numbers", 1965, The Macmillan Co., N.Y.

'BIELER, A.H. "Recreations in the Theory of Numbers: The Queen

of Mathematics Entertains', 1966, Dover Publications

Ine., N.Y,

ROBINSON, J.P. and BERNSTEIN, A.J. "A Class of Recurrent Codes

with Limited Error Propagation', 1967, I.E.E.E. Trans.
Inf. Thy., Vol. IT-13, pp.l06-113,

WOZENCRAFT, J.M. and REIFFEN, B. '"Sequential-Decoding", 1961,

VITERBI, A.J. "Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm', 1967,
I.E.E.E. Trans. Inf. Thy., Vol. IT-13, pp.260-269.

REDDY, S.M. and ROBINSON, J.P. "A Construction for Convolutional
Codes using Block Codes", 1968, Inf. and Cont., Vol. 12,
pp.55-70.

REDDY, S.M. "Further Results on Convolutiomal Codes Derived from

Block Codes", 1968, Inf. and Cont., Vol. 13, pp;357-362.

11.

12.

13.

14.

15.

16.

17.

18.

19.

320

REDDY, S.M. and ROBINSON, J.P. "A Decoding Algorithm for some

Convolutional Codes Constructed from Block Codes",

1968, Inf. and Cont., Vol. 13, pp.492-507.

ROBINSON, J.P.

RUDOLPH, L.D.

KLEIBER, E.

TONG, S.Y.

"Error Propagation and Definite Decoding of
Convolutional Codes", 1968, I.E.E.E. Trans. Inf. Thy.,
Vol. IT-14, pp.121-128.

"Generalised Threshold Decoding of Convolutional
Codes", 1970, I.E.E.E. Trans. Inf. Thy., Vol. IT-16,
PP.739-745.

"Some Difference Triangles for Constructing
Self-orthogonal Codes", 1970, I.E.E.E. Trans. Inf.
Thy., Vol. IT~16, pp.237-238.

"Systematic Construction of Self-orthogonal Diffuse
Codes", 1970, I.E.E.E. Trans. Inf. Thy., Vol. IT-16,
PP.594-604.

MORRISSEY, T.N. Jnr. '"Analysis of Decoders for Convolutional

 LIN, S.

FERGUSON, M,J.

PETERSON, W.W.

Codes by Stochastic Sequential Machine Methods",
1970, I.E.E.E. Trans. Inf. Thy., Vol. IT-16, pp.460-469.

"An Introduction to Error-Correcting Codes", 1970,
Prentice-Hall Inc., Englewood Cliffs, N.J.
Chapters 10 and 11.

"Diffuse Threshold Decodable Rate 1/2 Convolutional
Codes", 1971, I.E.E.E. Trams. Inf. Thy., Vol. IT-17,
pp.171-180. ' |

and WELDON, E.J. Jnr. "Error-Correcting Codes",
1972, The M.I.T. Press, Cambridge, Mass., Chapter 13.

321

20. REDDY, S.M. and ROBINSON, J.P. '"Hybrid Block-Self-Orthogonal
Convolutional Codes'", 1972, I.E.E.E. Trans. Inf.
Thy., Vol. IT-18, pp.185-191.

21. RUDOLPH, L.D. and ROBBINS, W.E. "One-step Weighted-Majority"
Decoding", 1972, I.E.E.E. Trans. Inf. Thy., Vol. IT-18,
pp.446-448.

22. WU, W.W. "New Convolutional Codes - Part I'", 1975, I.E.E.E.
Trans. Communic., Vol. Com—-23, pp.942-955.

23. WU, W.W. "New Convolutional Codes - Part II", 1976, I.E.E.E.
' Trans. Communic., Vol. Com—24, pp.19-33.

24, WU, W.W. "New Convolutional Codes - Part III", 1976, I.E.E.E.
Trans. Communic., Vol. Com—-24, pp.946-955.

25. GOODMAN, R.M.F. "Soft-Decision Threshold Decoding of Convolutional
Codes", 1977, I.E.R.E. Conf. on Digital Process.,

Univ. of Loughborough, Leics., England.

26, LIN, S. "An Introduction. to Error-Correcting Codes", 1970,
| Prentice-Hall Inc., Englewood Cliffs, N.J. Chapter 1.

27. PALEY, H. and WEICHSEL, P.M. "Element of Abstract and Linear
Algebra'", 1972, Holt, Rinehart and Winston, Inc., N.Y.

28. HALL, H.S. and KNIGHT, S.R. '"Higher Algebra. A Sequel to Elementary
Algebra for Schools", 1964, page 350, Macmillan and
Co. Ltd., London.

