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CHAPTER 1 

1. INTRODUCTION. 

1.1 Merits of Majority-logic Coding. 

The main advantages of random error-correcting majority-logic 

codes and majority-logic decoding in general are well known and 

two-fold. Firstly, they offer a partial solution to a classical 

coding theory problem, that of decoder complexity. Secondly, a 

majority-logic decoder inherently corrects many more random error 

patterns than the minimum distance of the code implies is possible. 

The solution to the decoder complexity is only a partial one 

because there are circumstances under which a majority-logic decoder 

is too complex and expensive to implement. 

4 
The optimum system is a one-step decoder (developed by Massey ) 

fQr a cyclic code, which only requires one majority-logic gate to 

decode all received digits in a block. If the code is non-cyclic a 

one-step decoder requires one majority-logic gate for each information 

digit in a block. Therefore if a non-cyclic code had a large number 

of information digits the decoder may no longer be economic to 

implement. 
4 . 

Some codes are majority-logic decodab1e in L-steps and this 

requires the decoder to have L levels of majority-logic gates, each 

level except the L'th having more than one majority-gate, to decode 

a single received digit. Thus a decoder of this type could only be 

viable economically if the code is cyclic, unless the number of 

information digits is small. Also with L-step decoders, if the random 

error-correcting capability of the code rises, the number of inputs 



8 

to each majority-gate rises and the number of gates on each level 

rises too. Unfortunately as L rises the decoder complexity rises 

exponentia11y so there are also economic limitations on L-step 

decoding. 

However L-step decoding is useful for two reasons, (a) one can 

correctly decode, theoretically, in the presence of a larger number 

of random errors, than'is possible with one-step decoding, providing 

2 16 of course one can find the code to do it, and (b) recent developments ' 

17 20 , have lead to the discovery of large classes of good. cyclic codes 

that can be decoded using L-step decoding. 

An alternative to L-step decoding has developed around results 

9 presented by Rudo1ph , which is a one-step decoding method. Although 

it is a one-step decoding method, the single majority-gate requires 

a very large number of inputs. When used in place of L-step decoding 

for an L-step decodab1e code, this one-step method corrects less 

random errors and is as approximately as expensive as L-step decoding 

also. The one-step method can be converted into a two-step method 

and thereby correct as many random errors as L-step but with a large 

increase in decoder complexity. Since Rudo1ph's 9 one-step method 

and L-step 4 decoding complex than Massey's 4 one-step method, are more 

the search for codes that are Massey one-step decodab1e and can compete 

with cyclic codes which are not majority-logic decodab1e, is still a 

useful area of research. 

The second advantage of majority-logic codes is with regard to 

their performance when more random errors occur than the code can 

guarantee to decode. This is sometimes referred to as a cod~s 

unbounded performance. The number of random errors a code can 
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guarantee to decode is related to a parameter of the code called 

minimum distance. It has been an established practice in coding 

theory to compare codes on the basis of their minimum distance for 

a given code length and effective rate of transmission. However it 

is widely accepted that the minimum distance gives no information 

regarding the unbounded performance of a code and as such is a 

crude measure of the potential performance in the presence of random 

errors. This is particularly true of majority-logic codes since 

they have an inherent ability to correctly decode on many occasions, 

when more errors occur than the code can guarantee to decode. 

i.2 Code Assessment. 

One would intuitively feel that a useful measure of a codes 

performance could be achieved by simulating the noise encountered on 

a realistic transmission path, called a channel. That isJestablish 

a noise record of a standard realistic channel over which we could 

subjectively assess any codes performance. Unfortunately no such 

channel exists and the Engineer must ,resort to one of. two alternatives: 

Simulate the codes on theinary symmetric channel, or try to establish 

a typical noise record of the realistic channel available, trying 

different codes to find some 'best' code for that channel. 

The former is usually resorted to by coding theorists while the 

latter is usually adopted by the industrial based Engineer. 

There are difficulties encountered with both approaches; that is, 

i) there are many different codes one can try whose onlYj apparent 

measure of performance is the minimum distance, 
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ii) there is usually more than one technique whereby one can 

decode a given type of code, each with relative merit, 

iii) many realistic channels are time-varying being different 

from day to day depending on ambient temperature, weather or sunspots, 

etc. Thus to obtain a realistic noise record may be difficult. 

Therefore many coding theorists still compare codes on the basis of 

length, rate and minimum distance, leaving the assessment on a 

particular channel to the Engineer who is interested. 

The engineer or newcomer who encounters coding theory for the 

first time, or particular codes, may be bewildered or indeed put off 

completely by the dazzling array of mathematical techniques and various 

mathematical disciplines required of him in order to achieve some 
, 

understanding of the subject. This shows no sign of easing and the 

author feels that there is a need for more literature which treats 

the subject from an engineering viewpoint. 

1.3 Project Resume. 

The codes developed in Chapters 4 and 5 are treated from an 

engineering view in the sense that they are constructed in an 

algorithmic fashion. The reader only requires a knowledge of the 

basics of coding theory, in particular majority-logic decoding, and 

this is presented in Chapter 3. 

Any further mathematical theory is presented when required. 

Chapter 4 presents a method of developing codes which are shown 

to be cyclically decodable in one-step using simple shift-registers 

and a single majority-logic gate, with appropriate gating. They are 

shown to be completely orthogonalizable and some assessment is made 
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of their properties for large length n. 

In Chapter 5 further codes are simply developed from the codes 

of Chapter 4 by shortening and .extending the generator matrix. 

Comprehensive examples of how to develop codes are given in 

both chapters. Many codes are developed which meet the maximum 

upper bound on minimum distance from Helgert and Stinaff40 • 

The author feels that once one has grasped the basic method of 

construction one can join in the fun of constructing the codes for 

oneself. 

In Chapter 6 it is shown how to construct tables of minimum 

distances for groups of binary k-tuples. Codes can then be developed 

for which, by reference to the table, one can find the minimum 

distance by simple addition and see the weight spectrum of the code 

words in .the code. No method of decoding these is presented. 

Finally in Chapter 7 an assessment is. made of the codes developed 

and they are compared with existing cyclic block codes on the basis 

of rate, length, and error-correcting ability. 
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CHAPTER 2 

2. SURVEY OF MAJORITY-LOGIC DECODAl3LE _ BLOCK CODES. 

2.1 Initial Results. 

30 The first majority decoding algorithm was devised by Reed , 

in 1954, who developed the algorithm to decode a class of non-cyclic 

31 32 33' codes developed by Muller • In 1958 Yale and Zierler showed 

that the cyclic Maximum length sequence codes could be majority-

logic decoded and in 1961, Mitchel137 

35 36 (21,11) and (73,45) B.C.H. ' codes 

showed the same for the (15,7), 

d h . 34 d an t e Ha~ng co es. In 

1963, Massey4 unified the theory of majority-logic decoding and 

introduced the terms, one-step and L-step decoding and type 1 and 

type 2 decoding. He also showed that all B.C.H. 35 ,36 codes of 

length n ~ 15 are majority-logic decodable. In the same year 

. . 38 
Gallager introduced his Low density parity check codes, decoded 

with a majority algorithm. Two new classes of majority-logic codes 

were presented by Weldon39 and Townsend and Weldon
28 

in 1966 and 

1967 respectively. The former are a small class of Difference-set 

cyclic codes and the latter a class of quasi-cyclic Self-orthogonal 

codes. Other codes shown to be majority-logic decodable are graph 

theoretic codes 38• From all these initial results majority-logic 

decodable codes were still not competitive with the powerful cyclic 

codes such as B.C.H. codes. 

Interestingly, following research into Finite geometry codes, 

39 32 33 the Difference-set codes and Maximum length sequence codes ' 

1 were found t9 be special cases of Projective geometry codes. The 

30 31 Reed - Muller codes were also found to be special cases of 
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1 Euclideangeometry codes. It was the advent of Finite geometry 

codes that was to produce the big breakthrough, for majority-logic 

cod~s, into the areas which would make them highly competitive 

with the best cyclic codes. 

2.2 Finite-geometry Codes. 

In 1964, in his Masters Thesis44, Rudolph considered the 

application of finite-geometries to the construction of majority-

logic cyclic codes. Among his results were constructions for two 

large classes of majority-logic decodable codes based upon Euclidean, 

and Projective geometries. However Rudolph did not show how to 

obtain the generator polynomial or minimum distance·of the codes 

11 d h o d b W Id 45,46,2 Al ° R d 1 h' genera y an t ~s was one y e on • so, 1n u 0 p s 

44 9 
approach to the codes ' he proposed a decoding scheme based upon 

the use of non-orthogonal check sums which he showed would decode 

a large number of errors in one-step. But this method did not 

decode all errors which the codes were capable of decoding. 

45 46 2 
Weldon ' " not only showed that the codes could correct 

30 4 more errors using the L-step Reed - Massey Algorithm but he also 

showed47 that more errors could be corrected using Rudolph's 

non-orthogonal algorithm if decoding was performed in 2-stepsO 

In terms of decoder complexity there is little ~ to choose between 

2-step non-orthogonal and L-step Reed30- Massey4 decoding. In the 

48 ° 46 same year, 1968, Kasami, Lin and Peterson along w1th Weldon , 

investigated generalisations of the original Reed30- Muller3l 

(R.M), codes after Kasami
49 

et al. had shown they were equivalent 

to cyclic codes. They showed that while the cyclic equivalent 
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original R.M. codes were a special case of Euclidean Geometry 

codes, both Euclidean Geometry (E.G.), codes and Projective 

Geometry codes (P.G.), were special cases of Generalised R.M. 

(G.R.M.), codes. Also in the same year Kasami50 et al. defined 

a class of polynomial codes which contained the G.R.M. codes 

and B.C.H. codes as special cases. Lin5l also produced results 

on this relationship to E.G. and P.G. codes. Chow6l e~amined 

B.C.H. codes and found a class that could be decoded with non-

orthogonal parity checks in one-step though the number of errors 

decoded was less than the code was capable of. He also showed 

that some double error-correcting B.C.H. codes could not be L-step 

orthogonalized. Duc64 also obtained results on B.C.H. codes after 

obtaining necessary conditions for linear codes to be L-step 

decodable. In particular he showed that some triple error-correcting 

B.C.H. codes, most binary quadratic residue codes5 and all B.C.H. 

codes of length n = 127, except two, cannot be L-step orthogonalized. 

In 1969 Delsarte52 proposed a new class of Generalised Finite 

Geometry codes (G.F.G.), which included Generalised E.G. and 

Generalised P.G. codes, (G.E.G.) and (G.P.G.) respectively. His 

. 53 54 work was extended by L~n and Weldon and Hartmann and Rudolph 

and it was seen that the G.F.G. codes were more efficient than the 

regular E.G. and P.G. codes. 

Although these geometry codes are majority-logic decodable, 

nevertheless for large error-correcting capability, large L or 

high order geometries the complexity of the decoder was still 

prohibitive economically in many instances. Weldon47 originally 

proposed techniques for reducing the number of steps in decoding 
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but this only applied to R.M. and E.G. codes. In an effort to 

. h· Ch 55,56 d 1· h h· h d d h lmprove on t lS en propose an a gorlt m w lC re uce t e 

number of decoding steps to decode E.G. and P.G. codes. 

At the same time (1971) Kasami and Lin26 , following upon the 

connection between polynomial codes and geometry codes, showed that 

certain dual codes of primitive polynomial codes could be decoded 

using majority-logic decoding. Their decoding method involved the 

use of different decoding algorithms at different levels, beginning 

with non-orthogonal check sums and finishing with orthogonal check 

sums • 

Various work due to Chen57 , Lin58 and Chen and Warren59 

produced results on new codes obtained by shortening E.G. and P.G. 

codes. In particular Lin58 showed that an E.G. code is actually a 

shortened P.G. code while Chen
59 

et al. developed' a procedure for 

finding shortened P.G. and E.G. codes that are I-step decodable. 

57 Chen shortened by deleting parity and information digits. 

. 55 56 Followlng on from the work of Chen ' on reducing decoder complexity, 

60 Rudolph and Hartmann proposed a new decoding method called 

"Sequential code reduction". The method permitted a significant 

reduction in decoder complexity, for all cyclic codes, with a 

modest increase in decoding time. They applied their results to 

the decoding of E.G. and P.G. codes with the definite result that 

all F.G. codes with length n ~ 2047 can be decoded by a restricted 

sequential code reduction algorithm with one majority gate at each 

of the L stages. Also majority sequential code reduction (S.C.R.) 

retains the majority-logic decoding property of being able to correct 

many error patterns of weight greater than the algorithm is designed 

for. 
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In the same year, 1973, Lin17 published a new class of 

G.E.G. codes which con~ains.the E.G. and some other G.E.G. codes. 

The decoding algorithm utilizes different decoding algorithms at 

different levels, notably, non-orthogonal then orthogonal check 

sums. These "Multifold" codes, to be efficient, require an 

inefficient base code on which to extend. A particular sub-class 

of these codes were claimed as the most efficient majority-logic 

decodable cyclic codes at that time. 16 Hartmann ,et al. presented 

new results also on the structure of G.E.G. and G.P.G. codes. 

Hybrid decoding is the term used by Hartmann16 , et al. to denote 

the use of non-orthogonal and orthogonal check sums on differing 

levels. R~dolphts44,9 one-step non-orthogonal decoding algorithm 

is extended to an L-step algorithm and sequential code reduction 

advised to reduce complexity, however hybrid decoding is in general 

recommended. Further G.E.G. codes were presented by Lin20 , in 

1975, as improved "Multifold" codes and were more efficient. 

Again hybrid decoding is used though some of the codes can be 

decoded in one-step. 

Warren and Chenll introduced new very efficient codes derived 

from the shortening of E.G., "Multifold" E.G. and G.E.G. codes. 

The shortening technique developed around results obtained from 

the shortening of generalised polynomial codes. A new class of 

cyclic codes of even length were found. Though, in general, the 

shortened codes were non-cyclic they could be decoded cyclically 

using the encoder and decoder of the parent code. 
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2.3 Further Results. 

The idea of decoding using a threshold other than that given 

by the Reed30_ Massey4 algorithm or the Rudolph9 algorithm was 

4 first introduced by Massey who showed that a more realistic 

method was to weight each check sum according to the probability 

that it would be in error given an error pattern. This resulted 

in the decoding procedure having the least average probability of 

4 
a decoding failure, or error. Massey called this A Posteriori 

probability (A.P.P.) decoding. 

In 1969 a spate of papers on generalised threshold decoding 

72 63 28 8 appeared from Gore ' ; Townsend and We1don and Rudo1ph • 

8 Rudo1ph showed that there existed a threshold decoder using 

generalised parity checks and a single threshold element though 

he did not show how one could obtain the parity checks or how 

many would be needed, for a code, generally. He did state that 

decoding rules have been found for the two perfect Go1ay codes 

using this procedure. 28 Towns end ,et al. presented a general 

decoding procedure in which a threshold element had a variable 

threshold which was adjusted according to whether correct or 

incorrect decodings occurred on a single digit. Many error 

patterns of weight greater than the codes capacity could be 

decoded but at the price of a large increase in decoding time. 

62 Gore showed that any linear code could be decoded in less 

than or equal to k levels of a generalised threshold decoder. 

In the same year Gore63 examined the threshold decoding of Reed-

Solomon codes and showed that they are not L-step decodable 

though they are threshold decodable. 
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was The non-orthogonal decoding algorithm of Rudolph 9 

improved by Ng7 who showed that the algorithm could correct more 

errors in certain circumstances if the identity (or zero) check 

sum were allowed more than one vote. 

In 1971, Duc19 , proposed another new decoding algorithm which 

advocated the use of mixed orthogonal and non-orthogonal check sums, 

at the input to a single majority-logic gate. Due justified his 

algorithm by showing that some codes may be majority-logic decoded, 

though they were known not to be Reed30_ Massey4 algorithm or 

Rudolph9 algorithm decodable. 

In 1972, Rudolph and Robbins 18 modified Rudolph's8 statement 

reg~rding threshold decoding by showing that in principle any binary 

linear code could be one-step weighted-majority decoded by replacing 

the threshold element of Rudolph 8 by a weighted-majority element. 

18 As an example Rudolph decoded the code used as an example 

by Duc19 . The code was decoded in one-step using Duc's19 algorithm, 

Ng's7 improvement and a weighted-majority scheme. 

Also in 1971 Bobrow69. showed that certain cut-set graph 

theoretic codes could be 2-step decoded. Then Kasami 70 et al. 

presented new majority-logic codes derived from combining existing 

majority-logic codes. The resulting codes are generally L-step 

decodable. 

Various results on the majority-logic decoding of product 

codes have been obtained, initially, by Lin65 et al. and Gore66 • 

Lin
65 

et al. showed that a product code, formed from a one-step 

majority-logic code with minimum distance dl and an L-step majority­

logic code with minimum distance d2, was L-step decodable with 
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66 
Gore showed that two codes, Ll-step 

and L2-step decodable, formed a product code (Ll + L2 - I)-step 

decodable. Later Duc67 et al. showed that two codes, one decodable 

using non-orthogonal parity checks and one L-step decodable, formed 

a product code L-step decodable with the first step non-orthogonal 

and the remaining L-l steps orthogonal. If both codes are non-

orthogonally decodable the product code is similarly decodable. 

The following year, 1973, Duc68 improved the algorithm of Lin's65 

et al. enabling correction of more errors in the product codes. 

I h Ch " d L" 71 d 1 f n t e same year ~en an ~u presente a new c ass 0 

2-step decodable arithmetic codes and a new class of L-step 

decodable extended arithmetic codes. For an introduction to 

2 arithmetic codes see Peterson and Weldon , chapter 15. 

In 1974, Hashim15 et al. presented a new class of low rate 

majority-logic codes based upon Walsh functions. Shiva13 et al. 

showed that the subset code of a binary majority-logic code was 

also majority-logic decodable. Examining binary cyclic codes 

R~ek12 et al. showed that t· 1· d " "t 1 " L cer a~n cyc ~c co es are maJor~ y- og~c 

decodable if their parity check polynomial falls into a certain 

class. Hybrid decoding is used in general and sequential code 

reduction advised to improve the algorithm. 

Rudolph's original paper9 on projective geometry codes decoded 

using non~orthogonal check sums also related the codes structure 

to the combinatorial aspects of Balanced incomplete block designs, 

(B.I.B.D.). This aspect of majority-logic codes has been investigated 

71 73 71 72 74 by other researchers such as Goethals ' ,Assmus and Mattson ' , , 

75 76 72 74 73 and Rahman and Blake ' • Assmus ' et al. and Goethals 
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independently devised a one-step majority-logic decoding algorithm 

for the extended (24,12) Golay code and the (48,24) Quadratic 

residue code. Rahman75 et al. showed that Ng's7 improvement on 

9 Rudolph's original algorithm could be further improved by generalising 

the c6mbinatorics. As an example he considered the number of errors 

the 1st, 2nd and 3rd order Reed-Muller codes could correct compared 

to Ng's algorithm. Rahman76 et al. later examined the construction 

of one-step decodable codes based upon supplementary difference 

sets. An infinite family of single and double error-correcting 

codes was found. Evidence is given of an infinite family of triple 

error-correcting codes. 

Finally, interest has been shown in what is called "Soft 

decision" decoding which is a decoding procedure in which 

probabalistic information is used i~ conjunction with error-

correcting codes in order to improve system performance. 77 Sundberg 

soft decodes. by using reliability information to tell him which 

digit in a block is most likely to be in error. Then the next 

most likely erronous digit and so on, all digits being one-step 

majority-logic decoded. For a helpful discussion see also 

. 78 
Harr~son • 
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CHAPTER 3 

3. CODING THEORY. 

3.1 Linear Block Codes. 1 ,29 

To implement a code we, in general, require (a) an information 

source, (b) an encoder which constructs and transmits a set of code 

words related to the information source, (c) a channel, over which the 

code words are transmitted, which introduces errors in the code words, 

and (d) a receiver or decoder which, knowing all possible code words, 

attempts to recognise a received code word and remove its errors. 

A simple block diagram incorporating the above is shown in figure 3.1.1. 

We will assume that the information is in the form of successive binary 

digits. The encoder functions by sub-dividing the information stream 

into blocks of k binary digits. To each block it assigns a unique 

code word of length n > k binary digits, called a binary n-tuple. The 

rules for assignment are determined by the code being used so that a 

binary code is specified by a set of Zk distinct binary n-tuples from 

n the set of Z n-tup1es. 

At the receiver each received code word is treated independently, 

without reference to any previously received data. The decoder attempts 

to discover, which block of k binary digits determined the code word, 

in the presence of errors. The independent treatment of the data, 

block by block, defines a block code. In addition, to be a linear 

code, the following definition on the 2k n-tup1es is necessary. 

Definition 3.1.1. 1 

A set of 2k binary n-tuples is called a linear code if and only 
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if it is a subspace of the vector space, called V , of all binary 
n 

n-tuples. 

This subspace is also referred to as the code space. 

3.2 The Generator Matrix. 

Although a linear block code can be specified by the list of 

2k binary n-tuples, it is unrealistic to do this if k is large. 

However, any k-dimensiona1 subspace S, of V , can be specified by a 
n . 

set of k basis n-tup1es, v1 ' v2 ' ••• , vk such than any n-tup1e u E S 

can be represented by a linear combination of the basis set. 1 

Let, 

where 

v1 ' v2 ' ••• , vk are the basis n-tup1es 

m. E G.F. (2), 
~ 

for 1 ~ i.~ k 

(£) = sUImnation over G. F • (2) • 

If the k basis n-tup1es form the rows of a k x n matrix G, then 

G = = 

Then equation 3.2.1. can be represented as, 

u=moG 

3.2.1. 

3.2.2. 

3.2.3. 
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where 

can be the 1 x k row matrix representing the block of k information 

digits. The rows of G generate a linear code and G is called the 

generator matrix of the code. 

If G and G' are the generator matrices of two codes, then if 

by rearranging the columns of G we can obtain G', then the codes 

are said to be "equivalent".29 

If G' can be obtained from G by a combination of row and column 

permutations, then G and G' are said to be "combinatorially equivalent".29 

Every generator matrix G is combinatorially equivalent to one G' 

in echelon canonical form. 29 

That is we can arrange G in the form, 

where 

Ik = k x k identity matrix 

P = k x n-k matrix 

3.2.4. 

by means of row and column permutations. However, it is not always 

prudent to do this as the original structure of G may be required in 

decoding. Codes whose generator matrix has the natural form of 

equation 3.2.4. are called "Systematic Codes".l,29 

The first k digits of every systematic code word are reproductions 

of the k digits in the information block. The n-k digits generated 

by P are called parity-check digits. 

The following theorem is from Peterson and Weldon. 29 
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Theorem 3.2.1. 

Every linear code is equivalent to a systematic code. 

A code specified by a k x n generator matrix G is also referred 

to as an (n, k) code and is said to have a code rate, R = kin) 
the ratio of Information content before and after cOding. 

3.3 The Parity-check Matrix. 

If a = (a1 , a2, ••• , an) and b = (b1 , b2 , .•• ,·bn) are two binary 

n-tup1es we can define their inner product as, 

•••• ~ a b ..... n n 3.3.1. 

and if a . b = ° we say that a and bare orthogona1. If Sl is the 

subspace of n-tup1es of a code generated by G, then the set of all 

n-tup1es orthogona1 to Sl is also a subspace, S2' called the null space 

of the code. 29 The parity-check matrix of a code, H, is an n-k x n 

matrix whose rows are basis n-tup1es of the null space of the space 

generated by the generator matrix, G, of the code. 

Let, 

H = 

h n-k 

then 

= 

h k 1······ n- , h n-k,n 

3.3.2. 

T . - T 
where H is the transpose matrix of H. In particular, u H = 0, for 

any U E S1. 

The subspace generated by H ~s also a code space and is called the 

dual code of that generated by G. 
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Let an (n,k) code have generator matrixG and parity-check 

matrix H and let ~ be a code word transmitted over a noisy channel. 

If e is a binary n-tuple representing the noise added to ~ during 

transmission, it has digits of binary 1 in those positions where 

errors occurred in~. Let r be the n-tuple received by the decoder, 

then if errors have occurred, 

therefore, 

r HT = (~ @ -e) HT 

= ~ HT e e HT 

- T, = e H = s 

3.3.3. 

3.3.4. 

where 5 is an n-k digit binary word called the syndrome. Obviously 

if e = 0 then 5 = 0 and the decoder knows no errors were present. 

Otherwise the decoder uses the information in the syndrome to find 

the errors. Each digit si' of s, is obtained by forming the inner 

product of rand h. from H. 
~ 

If the generator matrix is in echelon canonical form, as in 

equation 3.2.4., then H can be found quite simply using the following 

theorem from Peterson and Weldon. 29 

Theorem 3.3.1. 

If S is the code space of the generator matrix G = [Ik p], where 

Ik is a k x k identity matrix and P is a 

the null space o'f H = [_pT I n- k] , where 

matrix. 

k x (n-k) matrix, then S is 

I k is an (n-k) x (n-k) identity n-
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3.4 The Error-correcting Capability. 

If u and v are two code words of a' linear code, then since the 

code space is a subspace, ~ ~ v is also a code word. Therefore if 

e has the form of a code word and r = u .w e, then r is also a code 

word and r HT = 0 = s. SO that the decoder cannot decode e, furthermore 

if el' e2 are two different error words and v, U are two code words, then 

ifel . ~·3 u = e2 ~ v = r, we have 

-rHT = HT-HT e
l 

= e
2 

= s 3.4.1. 

and the decoder cannot identifyel and e2 uniquely. These situations 

are examples of what happens when the number of errors exceeds the 

capability of the code. 

Consider the following definitions. 

Definition 3.4.1. 1 

The Hamming weight of a binary n-tup1e u, wH(U) , is the number of 

binary ones in ~, i. e. if u = (10010110001), .wH (u) = 5. 

We can now introduce the concept of distance between binary n-tup1es, 

which will lead to results on the error-correcting capability. 

Definition 3.4.2. 1 

The Hamming distance, dH(u, v), between two binary n-tup1es, u and 

v, is defined as the number of components (digits) in which they differ, 

i.e. if, 

u = 10010110001 

v = 11001010101 

then dH(u, v) = 5. 

It is apparent that, 

dH(U, v) = w (u 
H 

. J-.:) v) • 3.4.2. 



27 

Since u 0 v is another code word, say y, 

The minimum value of.~(u, v), obtained by forming all possible 

sums of pairs of n-tuples, u and V, from a code space, is called the 

minimum distance of the code, dm• Let dm = dH(8:", b) = wH(a a> b), 

but a e b is another code word, so that the minimum distance is 

equal to the minimum weight of the non-zero code words in a code. 

If the errors which occur affect each digit of a transmitted code 

word, independently, they are called random errors and codes designed 

for this type of error are called random-error-correcting codes. 

If the errors which occur tend to be strung together in bursts 

the codes designed to combat these are called burst-error-correcting 

codes. 

We will confine the rest of the discussion to random-error-correcting 

codes. 

Let us assume that a generator matrix G specifies an (n, k) code 

with minimum distance d. Let u and r be the transmitted and received 
m 

n-tuples respectively and v any other code word. For maximum likelihood 

decoding the decoder will identify r with that code word which has the , 

minimum Hamming distance between itself and r. Therefore if 

~ (v, r) < ~ (u, r) 3. 4 • 3 • 

the decoder will choose v and thereby incorrectly decode r. However, 

1 since from LIN. , 

3.4.4. 

if (- - ~ [dm -2 l_J dH u, r) - [ ] 
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where t x. j means the largest integer ~ ( x. ). 

Then from equation 3.4.4. 

and since the minimum ~(v, u) = d , 
m 

[d + lJ 
~(v, r) ~: [ m 2 ] 

so that we always have, 

Since from equation 3.3.3. 

then providing, 

3.4.6. 

3.4.7. 

3.4.8. 

3.4.9. 

the decoder will correctly decode u in the presence of all error 

n-tuples whose weight conforms to the inequality 3.4.9. Conventionally· 

we say, a (n,k) code with d can correct any error pattern of 
m 

[d - 1 J 
t ~ [ m 2 ] errors, in a block of n digits. The error-correcting 

capability of the code is then, 

3.4.10. 

errors, as a maximum. 

3.5 Decoding Cyclic Codes. 

Let u be a code word from the (n,k) code generated by G. If 

the n-tuple code word, u, is given by, 
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U = (ul ' u2'····, un) 

then the code is said to be cyclic if for every u, 

is also a code word. 

We can consider the code words as polynomials over G.F.(2), such 

that if u(x) is the polynomial representing u, 

with u. E G.F.(2) 
~ 

+ •••••• + U 

1 ~ i ~ n 

n 
n-l x 3.5.1. 

It is known that the code word polynomials of a cyclic code 

can be represented as mUltiples of a unique polynomial, g(x), called 

the generator polynomial. At the encoder the k-digit information 

block is considered as a polynomial, C(x), where, 

n-k 
C(x) = cn+l - k x + + c n 

n-l x 

The encoder divides C(x) by g(x) so that we can write, 

C(x} = q(x) g(x) + r(x) deg(r(x» < deg(g(x» 

so that 

C(x) + r(x) = q(x) g(x) 

which is the transmitted code word. 

The degree of the generator polynomial is n-k, so that 

deg(r(x» < n-k 

and r(x) is called the parity-check polynomial. 

3.5.2. 

3.5.3 

3.5.4. 

3.5.5. 

At the decoder the process is repeated. The received message 

and check-digits are separated and the message digits divided by g(x). 

The resulting remainder r"(x) is added to the received check-digits, 

that is r'(x), to form the n-k digit syndrome, sex). 
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Since, 

s (x) = r' (x) + r" (x) 3.5.6. 

if there are no errors, r'(x) = r(x) and r"(x) = r(x), so that 

sex) = 0, due to G.F.(2) addition of coefficients. 

Let e (x) be the (n-k)-digit polynomial representing errors in 
r 

the received check-digits and ek(x) be t~e (n-k)-digit polynomial 

that is the remainder upon dividing the errors in the k-digit received 

message block by g(x), then 

r' (x) = r(x) + e (x) 
r 

r"(x) = r(x) + ek(x) 

From equations 3.5.6. and 3.5.7. 

in the presence of errors. 

3.5.7. 

3.5.8. 

If there are no errors in the received message digits ek(x) = 0, 

and 

s (x) = e (x) 
r 

3.5.9. 

and of course this is the actual error pattern in the received code 

word. 

2 A most useful result for cyclic codes, from Peterson and Weldon 

p.p.230-232, is given by the following theorem. 

Theorem 3.5.1. 

Let sex) denote the syndrome of an n-tuple R(x). The syndrome 
. n 

of a cyclic shift of R(x) , say x R(x) mod(x + 1), is obtained by 

shifting the syndrome generator of g(x), once, with initial contents 

sex). Therefore, for cyclic codes, if we can decode one received 

digit, we can decode all received digits by syndrome shifting. Of 
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course how we use the syndrome bits to decode a digit depends upon 

the code structure, but there are procedures which are applicable 

to any cyclic code. 

O h d . 11 dE' D d' 3,22 ( ) ne suc proce ure ~s ca e rror-trapp~ng eco ~ng E.T.D •• 

If a code has error-correcting capability t, when a code word is 

received we form the syndrome and check its weight. If ~ terrors 

have occurred and the errors are trapped in the check-digits, then 

from equation 3.5.9. the Hamming weight of s(x), written wH(s(x)), 

gives 

3.5.10. 

and this error pattern is taken to be the received error pattern. 

If, wH(s(x)) > t, the syndrome is shifted cyclically one digit 

and wH(s(x)) checked again. If wH(s(x)) ~ t we know the errors have 

been trapped in the check-digits of the code word that is a single 

cyclic shift of the received code word. The decoded error pattern 

,is then a shifted version of the received error pattern. 

However, if wH(s(x)) > t again, the process is repeated. If we 

always obtain wH(s(x)) > t we assume that the error pattern has weight 

> t or that it is untrappab1e. Otherwise we assume a shifted version 

of the error pattern has been decoded and compensate accordingly. 

M .. E T D h b d' d K .23 W"I'l' 24 any var~at~ons on • •• ave een ev~se, asam~ ,Mac ~ ~ams , 

Omwra25 , but these seem to be limited to codes of relatively short 

length. 

E.T.D. is successful'for all single error-correcting codes and 

all burst error-correcting codes. For random error-correcting codes 

with capability t, it can be shown5 that a necessary and sufficient 

condition for all error patterns of weight ~ t to contain at least k 
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1 
t < -

R 
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k R=­
n 

3.5.11. 

The search for useful decoding procedures for ~yclic codes is an 

active branch of research in the field of error-correcting codes. 

Before examining another approach to decoding we will clear up at 

this point some definitions of various types of codes. 

a) . 
5 Pseudo-cyclic codes. 

The generator polynomial, g(x), of a cyclic (n,k) code always 

d ' 'd n 1 ~v~ es x + • A pseudo-cyclic code has code words generated by 

n' 
g(x) which divides x + 1, for n' > n. Since g(x) generates a cyclic 

code of length n', the pseudo-cyclic code is that code whose code 

words are taken from the cyclic code of' length n' whose digits 

~n' a 1"'" a , 1 are zero and are dropped. n- n -

b) 
. 5 

Shortened-cyclic codes. 

Given an (n,k) cyclic code with generator matrix G, if we delete 

the first i columns and rows of G, the resulting code ~s an (n-i, k-i) 

shortened cyclic code. 

Pseudo-cyclic and shortened .cyclic codes are not truly cyclic 

since there is always some code word whose cyclic shifted version is 

not in the code'. 

c) 
5 Quasi-cyclic codes. 

If u(x) is a code word in a (n,k) quasi-cyclic code, then if 
n 

x 0 u(x) mod (xn + 1) is another code word, the code is said.to be 

quasi-cyclic' of order n • 
o 

Cyclic codes such that m divides nand k 
\ 

are quasi-cyclic of order m, but there exist codes where 
n, 

x ~ u(x) mod (xn + 1) for n, < n , is not a code word. 
~ 0 
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The columns of the generator matrix can be considered as being 

composed of circulant sets of k-tuples of order n • 
o 

A circu1ant set of k-tup1es, or generally a circu1ant, is defined 

as, the set of k-tup1es that are all cyclically shifted versions of 

one k-tup1e in the set. If a circu1ant has n distinct k-tup1es in 
o 

its set, it is said to have order n. The generator matrix of a 
o 

quasi-cyclic code is composed of circu1ants, all of the same order. 

3.6 Majority Logic Decoding. 6 ,2,4 

The idea of majority-logic decoding, (M.L.D.), is based upon 

. * the concept of "orthogonal check sums". A check sum or parity-check 

sum is a linear equation, or sum, of error digtts. From equation 3.3.4. 

we see that each digit of s is a sum of error digits and is thus a 

parity-check sum. Also the addition of digits from s' form other check 

sums. If a check sum sl contains em' sl is said to check em' If we 

assemble all those check sums which check e , then they are "orthogona1" 
m 

on e if they conform to the following definition. m 
. 6 

Definition 3.6.1. 

A set of parity-check sums sl' s2"'" s J is said to be "orthogonal" 

on the error digit e if e fs checked by each check sum s. in the set 
m m 1 

and no other error digit is checked by more than one sum. 

There are two basic methods in which the check sums can be formed 

by the decoder, referred to as Type 1. and Type 2. decoding4. 

Figures 3.6.1. and 3.6.2. show typical Type 1. and Type 2.· decoders 

respectively. 

* Orthogonal here 1S not the orthogona1 defined in equation 3.3.1. 
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With Type 1. decoding we re-encode the message-digits) form the 

syndrome and form orthogonal check sums from linear sums of syndrome 

digits. 

With Type 2. decoding we utilize a set of J n-tuples, from the 

* null space of the code that are orthogonal on a received digit. 

We then form the J inner products with the received word directly, 

so that if b. is an n-tuple in the null space, we obtain the set of 
L 

check sums, 

s. = e • b. for 3.6.1. 
L L 

Since a syndrome digit is a linear sum of error digits, that is a 

check sum, then every linear codes' syndrome digits are a set of 

check sums. The problem is to find codes whose syndrome digits (or 

null space n-tuples), can be arranged into sets of orthogonal check 

sums. 

3.7 One-step M.L.D. 

Consider the set of J orthogonal check sums below for an (n,k) 

linear block code. 

= 

= 

3.7.1. 

Let us assume that J is even and that t = J/2 errors have occurred. 

If e is in error then only (J/2 - 1) errors can occur in the other 
n 

digits, so that there are always, at least, J - (J/2 - 1) = J/2 + 1, 

* Orthogona1 as in equation 3.3.1. 
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check sums which give a correct estimate of e , that is, a majority. 
n 

If e is not in error, then the worst condition is that the J/2 
n 

errors affect J/2 check sums and an even split of J/2 O's and l's 

occurs. If t < J/2 errors occur then the majority always favours e . 
n 

To obtain a correct estimate of e under the circumstances given 
n 

above, we require an electronic block whose function is to look at 

the s., and output an estimate e' of e , according to the following 
~ n n 

rules. 

a) If I s. > J/2 , 
= 1 e 

i ~ n 

< b) If I J/2 e' 0 3.7.2. s. = i ~ n 

c) If I s. = J/2 e' = 0 
i ~ n 

An electronic unit which performs just such an operation is 

available and is called a Majority-logic Gate (M.L. G.) • For the code 

above we require a J-input, single output M.L.G. to decode e. If 
n 

the code is non-cyclic, we would require k such M.L.G.'s to decode 

the errors in the k message-digits. However with a cyclic code, after 

decoding e , if we cyclically shift the syndrome register (Type 1.) 
n 

or buffer register (Type 2.) one digit, we will obtain an identical 

set of check sums orthogonal on en-I. Then all n digits can be 

decoded sequentially, by successive cyclic shifts. The Error Estimator 

in figures 3.6.1. and 3.6.2. can then be replaced by k - M.L.G.'s or 

1 - M.L.G. depending on the code. In both cases, it will be noted, 

we have achieved an estimate of the errors by using one M.L.G. 

Codes where this is possible are referred to as "One-step M.L.D. 

codes". 
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If we could obtain J orthogonal check sums without adding 

syndrome digits (Type 1.) or received digits (Type 2.), that is the 

code has orthogonal check sums inherent in its structure, it is 

said to be a "Sel£-orthogonal M.L.D. code". 

If the code has minimum distance, d , then if we can form J = d - 1 m m 

check'sums on the errors, we can correct, 

J = [dm ,- 1] = 
2 ,[ 2 ] t 3.7.3. 

errors and the code is said to be "completely orthogonalizable". In 

the case where only J « (d - 1) check sums are obtainable then M.L.D. m 

would be considered inefficient for that code. 

The deve10pment"of equations 3.7.2. and 3.7.3. arose from the 

form of equations 3.7.1., that is, the check sums are linear equations 

in the errors only. One may alternatively be able to form check sums 

directly on the message digits, but one then requires 

J = 2t + 1 

check sums to decode in the presence of t errors. This can be seen 

from the check sums below. 

3.7.4. 

Assume one error, in position el' and only sl and s2 are used. 

i) if m = 0 1 sl = 1 s2 = 0 

and a split vots gives ~ = 0 by majority. 

ii) if ml = 1 sl = 0 s2 = 1 

and a split vote gives ml = 0 by majority. 
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The ambiguity arises because m1 can assume both states, a and 1, 

regardless of errors. If we include s3' then ml is correctly decoded. 

Generally with check sums of this form, we require J = 2t + 1 

check sums, so that if t errors occur and affect t independent check 

sums, there are still t+1 check sums in favour of the common message-

digit. 

Since we have, 

and from equation 3.4.10. 

complete orthogona1ity occurs if J 

Example 3.7.1. 

3.7.5. 

= d , with this form of check sum. 
m 

The quasi-cyclic code with n = 12, k = 6, d = 4 with circu1ant 
m 

generator 5 7 has a generator matrix, G, below, 

1 a a 0 a a a a a 1 1 1 

a 1 a a a a 1 a a a 1 1 

a a 1 0 a a 1 1 a a 0 1 

G = a 0 a 1 a a 1 1 1 a 0 0 

a a a 0 1 a a 1 1 1 0 a 

a a a 0 a 1 a a 1 1 1 a 

After forming the syndrome, we have the following equations for 

s. , 
1 

1 ~ i ~ 6. 

S = e {) eg (j} e1a ~ ell 0 0 

SI = e1 ~ e6 
:jl\ 
.~ ela 

'~ ell 

.. 

• 
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s2 = e2 e e6 
,~ e7 {~ ell 

s3 = e3 
+ ,-':J e6 a e7 e ea 

s4 = e4 (~ e7 
;+" 
~'" ea ,J) e9 

Ss = e 
5 f$ ea e e

9 \:P elO 

Let AI' A2 , A3 be the j = d - 1 = 3, check sums. m 

Al = sI = e a e6 G elO G ell 1 

A2 = s2 i3 s3 = e2 G e3 ~ ea ~ ell 

A3 = s ~ s4 @ Ss = e G e4 ;& eS JJ e7 ~ e9 ~ ell '-
0 0 

which are orthogonal on ell· 

Furthermore if the syndrome is shifted cyclically 

s = eS G ea e e
9 e elO 0 

SI = e J> e
9 

;j elO 0 

s2 = el ~ e6 
!.1J 
'\0;. elO 

s3 = e2 G e6 G e7 

s4 = e3 e e6 
.;t; .' e7 G ea 

Ss = e4 G e7 ~ ea ~l e9 ". 

Al = SI = e @ e9 @ e lO 0 

A2 = s2 ,~ s3 = el e e2 G e7 
(t,l elO 

A3 = s e 54 0 Ss =. e G e4 <t~ es 
(£; e6 0 ea @ elO 0 3 

which are orthogonal on elO • 
... 

. If the first column of G, generates the ll'th digit of the code 

word, which we assume is transmitted first, then ell' elO ' e9 , ea' e7 
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are the errors in the message-digits. Although the code is not cyclic 

these message-digit errors can be decoded cyclically. 

The code is therefore completely orthogonalizable and one-step 

majority-logic decodable. 

For examples of one-step M.L.D. cyclic difference set codes and 

. 1 h d Shu L~n6, h 7 max~mumr engt sequence co es see • c apter • 

3.8 L-step M.L.D. 

The definition of orthogonal check sums given in definition 3.5.1. 

-can be seen to apply to one-step decodable codes but we can generalize 

the definition as below. 

6 Definition 3.8.1. 

A set of parity-check sums sI' sZ, ••• , sJ is said to be orthogonal 

on a set of error digits E if and only if every error digit tn E .is 

checked by every s. and no other error digit is checked by more than 
~ 

one sum. 

Thus the set E can be correctly decoded in the presence of t ~ J/Z 

errors. If we can obtain El' EZ"'" EJ , such that they are orthogonal 

on another set F, then by using two levels of majority-logic, F can be 

decoded with t ~ J/Z errors. If by using L-l, levels of majority-logic 

we can decode a set NI' NZ"'" NJ , which are orthogonal on a single 

error digit, e , then with an L'th level of majority-logic, we can 
m 

decode, e , in the presence of t ~ J/Z errors. 
m With a cyclic code 

this is all that is necessary to decode all the received digits and 

the code is said to be ilL-step majority-logic decodable". 

Note that we require J orthogonal check sums on all E., F., ••• , N., e • 
~ ~ ~ m 
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In addition if J = d - 1, the code is said to be "completely 
m 

orthogonalizable in L-steps". 

Type 1. or Type 2. decoding can be used for L-step codes. 

Figure 3.S.l. shows a general Type I, L-step decoder and can be seen 

to be the same as that in Figure 3.6.1. except the "error estimator" 

has been replaced by L levels of majority-logic gates. 

A general Type 11, L-step decoder can be likewise obtained by 

replacing the "error estimator" in Figure 3.6.2. by L levels of majority-

logic gates. 

Example 3. S.l. 

Consider the quasi-cyclic code of example 3.7.1. for which the 

following syndrome equations are obtained using Type 1. decoding. 

s = e 9 eg G; e10 G ell 0 0 

sI = e l 
~. J1 e6 ~) elO G ell 

s2 = e2 e e6 e e7 
(# ell 

s3 = e3 
@ e6 

.~ e7 ~; es 

s4 = e4 G e7 ro es \~ eg 

Ss = e 5 e es ~ eg ~ elO 

Orthogona1 on elO G ell' we have, 

El = SI = e l ~ e6 ~ elO 
,~" ~ ell 

E = s = e ($ eg ® elO 
@; ell 2 0 0 

E = 3 s2 (i) s3 e.D s4 e Ss 

= e2 ce e3 ~ e4 
@) e5 G e7 G eS ~ e10 ~ ell 

And Fl = elO ~. ell 
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Orthogonal on e6 ® ell' we have 

El = sl = el 
(i) e lO e e6 e ell 

E2 = s2 = e ,.,~ 

e.., 9 e6 ~ ell 2 ~,> 

Orthogonal on eS (j) ell' we have 

El = s2 e s3 = e2 (f) e3 
if) eS e ell 

E2 = s @. s5 = e e e
5 e ~S e ell 0 0 

E3 = sl @ s4 = e (~ e4 e e6 
€) e7 (±) eg G elO G es' ID' ell 1 

And F = 3 e s e ell· 

Since Fl , F2 , F3 are orthogonal on ell' this can be decoded with 

t = 1 error, by having a second level of majority-logic. 

After a cyclic shift of the syndrome we obtain, after cancelling ell' 

After decoding and cancelling e lO ' shifting the syndrome register 

one digit, gives, 
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Continuing the process we obtain, 

Fl = e7 e ea 

F2 = ea 

F = 3 ea 

and decode ea' 

Fl = e6 ~ e7 

F2 = e7 

and decode e7 •. 

So that the errors in the k,= 6, message-digits can be decoded cyclically 

in 2-steps. If the process is repeated, providing all errors, ell' e lO ' 

e9, ea' e7, e6 , have been correctly decoded and cancelled, we should 

obtain six zero outputs from the last level of majority-logic. If at 

least one non-zero output is obtained, we must assume an uncorrectable 

error pattern of weight > t has occurred. 

Peterson and Weldon2 have shown that for a given code one can 

hope to correct roughly twice as many errors with L-step decoding as one 

can with one-step decoding. In particular if the minimum distance of 

the null space of an (n,k) code is dm and tl and tL are the number of 

errors one can correct using l-step and L-step decoding respectively, 

2 then Peterson and Weldon showed, 
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3.8.1. 

tL ~ t n - ~j d even m d -m 
3.8.2. 

t~ + 
1 -t:1 d odd. ~ 

d + 1 m 
m 

This needs a little explaining. If we can form 2t check sums 

orthogona1 on a set of B error digits, then if the check sums are 

n-tup1es, in the null space of the code, with minimum distance d , 
m 

each check sum must contain at least d - B digits, not contained 
m 

in another check sum. Since there are only n - B digits to choose 

from, the maximum number of check sums, J, is given by 

J = n - B 

d - B 
m 

So the maximum number of correctable errors is given by, 

[ n - B ] 
t = [2(d _ B) ] 

m 

3.8.3. 

3.8.4. 

Equations 3.8.3. and 3.8.4. assume every check sum has the same 

weight and that this weight is cl. Let B = 1 and we have I-step 
m 

decoding giving, 

3.8.5. 

So that equation 3.8.1. has equality when all check sums have weight 

d. If any check sum has weight> cl then equation 3.8.1. holds. m m 

Equation 3.8.5. is given by the minimum value of B, but B has a 

maximum value of d /2 if cl is even and (cl - 1)/2 if cl is odd. m m m m 
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This must be since, if B > d /2 or > (d m m 
1)/2 in the respective 

cases, then the sum of two check sums would have weight < d , which m 

is not possible since they are code words in the null space. Putting 

B = cl /2 in equation 3.8.4. gives, m 

3.8.6. 

Again the equality holds since we are assuming all check sums have 

weight cl. If B = '(d - 1) /2 
m m 

3.8.7. 

As given by equality in equation 3.8.2., again due to all check 

sums having the same weight of d. Again, in equation 3.8.6. and 3.8.7., 
m 

if any check sum has weight> d then equations 3.8.2. hold. 
m 

These bounds ignore the structure of the code so that it is not 

always possible to obtain the ideal conditions of check sums of the 

same weight cl. Even when a code is completely orthogona1izab1e it 
m 

is not necessarily optimum in the sense of equations 3.8.5, 3.8.6. 

and 3.8.7. 

The case of the quasi-cyclic code in examples 3.8.1. and 3.7.1. 

is obviously sUb-optimum since t1 = t L, also the check sums do not 

all have the same weight. The idea of obtainingJ check sums orthogona1 

on a set of error digits B, such that each check sum is assigned equal 

4 priority in the decoding scheme is referred to as the Reed-Massey 

algorithm. 
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3.9 The Least Average Probability of Error. 

If we assume the code words of a majority-logic code are 

transmitted over the binary symmetric channel with additive independent 

noise, then is it possible to find a decoding rule which gives the 

least probability of error? 

Consider the two check sums below, from some code, 

SI = e (£) e n n-t+l 
3.9.1. 

s2 = e (i) el 
@ e2 e e'

3 0- ........ e e n n-t 

SI will be in error only if en- t +l is in error, while s2 will be in 

error if any odd number of the set {el' e2 , e
3

, •••• , en- t } are in 

error. With additive independent noise the probability that any digit 

e. will be binary one is the same for any 1 ~ i ~ n. Thus the probability 
~ 

that s2 will be in error·is greater than the probability that SI will 

be in error, for a given error pattern. Therefore it seems obvious 

that we can reduce the probability of a decoding error by taking account 

4 of these check sum probabilities. Massey approached this problem and 

developed the following decoding rule, which gives the least average 

probability of a decoding error. 

Rule for decoding. 

Given a set of check sums, A., orthogonal on error digit e , then 
~ m 

if p. = 1 - q. is the probability of an odd number of binary ones among 
~ ~ 

the error digits in check sum A., excluding e , then we choose e = 1 
~ m m 

if and only if 

J 

r A. 
i=l ~ 

2 log (q./p.) > 
~ ~ 

J 

r 
i=O 

log (q./p.) 
~ ~ 

3.9.2. 

4 
Massey called this "a posteriori probability" (A.P.P.) decoding 
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and although given in the context of one-step decoding, is also valid 

for L-step decoding at each majority-logic gate on each level. 

Let us assume that the probability of a single digit being in 

error is 

p(e. = 1) = p = 1 - q 
~ 0 0 

3.9.3. 

and let us assume that a check sum A. has t. digits excluding some 
~ ~ 

set of digits B.· Then we have, 

" t .• 
I ~ x n-x 3.9.4. p. = Po qo ~ x! (t. - x)! x ~ 

where x is all odd numbers. However it is obvious that if t. = t. 
~ J 

then p. = p. and in particular if t. is constant for all check sums, 
~ J l 

or equally, all check sums have the same weight, 

log (q./p.) = log (q/p) = constant 
~ ~ . 

and from 3.9.2. the decoding rule becomes, 

~ 1. ~ 1 L. A. > 2 L. 
i=l l i=O 

J 
>2' 

3.9.5. 

Thus the one-step and L-step decoding rules of sections 3.7. and 3.8. 

minimise the average probability of error if and only if all check 

sums have the same weight. This is the case for equations 3.7.1. 

but not for the quasi-cyclic code of examples 3.7.1. and 3.8.1. 

We can now define an optimum majority-logic decodable code, using 

4 the Reed-Massey algorithm, where the code has optimum error-correcting 

capability t and minimum average probability of error, in the following 

way. 

Definition 3.9.1. 

A binary M.L.D. code is optimum if all check sums A. have equal 
l 



47 

weight, d , such that they are orthogona1 on a set of error digits 
m 

B, where 
d 

m 
B =2 

d - 1 
= ....;;;m;.,,-_ 

2 

if d is even, 
m 

if d is odd, 
m 

where d is the minimum distance of the null space code. 
m 

3.10 Non-orthogona1 Check-sums. 

9 
This algorithm was first introduced by Rudo1ph and is an 

4 alternative to the Reed-Massey algorithm. It is basically a one-step 

majority-logic decoding algorithm using non-orthogona1 check sums. 

Consider the check sums sl' s2' s3' s4' below. 

sl = e1 0 e3 $e4 ®em 

s2 = e1 {t) e2 e es 0 em 

3.10.1. 
s3 = e2 e e3 ® e6 e em 

s4 = e4 e eS e e6 e em 

They are uniform on e but every other digit appears twice so that m 

they are not orthogona1 as specified in definition 3.6.1. 

(a) 

(b) 

However if we assume a single error has occurred, 

if e is in error a majority vote of the s. will correctly decode e • 
m ~ m 

if some e. 1 e is in error it can only affect at most two check 
~ m 

sums and since this represents a split vote e will be correctly decoded 
m 

as zero, us~ng a conventional 4-input majority gate. 

Providing each of the error digits, other than the digit to be 

decoded, appear in A of the check sums then we can decode in the presence 

of t errors, where, 
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t = t 2~ j 3.10.2. 

and N = the number of check sums. So that we require N = 2tA check 

sums and therefore a 2tA- input majority-logic gate. 

The largest classes of codes for which the algorithm can be used 

are the Euc1idean and Projective geometry codes, see Peterson and 

2 Weldon. Here it is shown that for both classes of binary codes, 

(2sm - 1) N = A ..:...---~ 
(2

sr - 1) 

t = [1. (2
sm 

- 1) l 
[2 (2sr _ 1) ] 

3.10.3. 

However both classes of codes can also be decoded using L-step 

decoding and for long codes L-step decoding corrects more errors. 

Nevertheless by decoding non-orthogona11y in two steps we can 

correct the same number of errors as L-step so that it becomes a 

matter of decoder complexity to decide which algorithm to use. 

Type I or Type 11 decoding can be used with this algorithm also. 

3.11 Pseudstep Orthogona1ization. 

In an attempt to increase the range of application of majority-

19 logic decoding Duc proposed a decoding algorithm which quite simply 

stated that it is possible to decode using a combination of orthogona1 

and non-orthogona1 check sums on a set of B digits. 

The se-t below, as an example, will majority decode e in the 
m 

presence of t = 2 errors. 



3.11.1. 

The algorithm has been successful in the majority-logic decoding 

of codes previously thought not to be majority-logic decodab1e. This 

has been the a1gorith~s primary use so far. 

This algorithm is not to be confused with the practice, used for 

the decoding of some L-step decodab1e codes, of using different algorithms 

at different decoding levels. 

3.12 Generalized Threshold Decoding. 

A number of variations on the majority-logic decoding algorithms 

so far presented exist and are outlined below. 

(a) Weighted Majority Decoding. 

In each of the majority-~ogic algorithms previously presented, 

having obtained a set of check sums, each is given equal priority in 

the decoding scheme. We could say each is given a vote of one. In 

9 Rudo1phs paper, the non-orthogona1 check sums were obtained on received 

digits directly and he showed that we could obtain (2tA + 1) check 

sums by utilizing an identity check sum on the digit to be decoded. 

In terms of check sums on error digits, this identity check sum corresponds 

7 to the zero check sum and Ng showed that the algorithm could be improved 

by allowing the (identity) zero check sum A vote-s instead of--on1y one. 



For example consider the set of weighted check sums below. 

s = ° 2 votes 
0 

sI = el ('£, e2 9 em 1 vote 

3.12.1. 

s2 = e2 IDe3 ~em 
1 vote 

s3 = e
l 

(f) e
3 

@e
m 

1 .vote 

For the set sI 2 3 we have N = 3, A , , , = 2, giving, from equation 3.10.2. 

t = 

i) 

= 0. But with s having A votes, we have, 
o 

e in error gives 3 to 2 vote in its favour 
m 

ii) e., i ~ m, in error gives 3 to 2 vote in favour of e = 0, 
~ m 

with s 's votes. 
o 

So that now t = 1. 

Giving s , A votes, does not always improve the error-correcting 
o 

capability. RudolphlS,S followed up this idea and developed one-step 

weighted majority decoding, whereby, check sums other than the zero 

check sum, are allowed more than one vote. He also showed that in 

principle any decoding function for any code can be realised by properly 

weighting the votes of generalized parity-check equations. 

(b) Variable Threshold Decoding. 2S 

Rather than decode with a majority-logic gate which has a fixed 

threshold we set the threshold at (d - 1), initially, and attempt to 
m 

decode each bit of a received word. At this initial stage error 

correction is effected only if all d - 1 inputs agree. If attempts m 

to decode all n received bits are unsuccessful, the threshold is 

lowered by one and the process is repeated. Except for the initial 
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stage, if any change (or correction) is made during an attempt to 

decode with a given threshold, the syndrome is reset and the threshold 

increased by one. Nevertheless after this if all n bits are not 

decoded successfully the threshold is again lowered by one. This 

continues until the threshold reaches the familiar figure of (d - 1)/2 
m 

when the received word is deemed to be decoded. Although many error 

patterns of weight > t can be corrected, this must be traded against 

decoder complexity and time to decode. 
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CHAPTER 4 

4. A CLASS OF BINARY CODES. 

4.1 Introduction. 

The class of binary block codes presented in this chapter are 

not cyclic or quasi-cyclic in the sense of the strict definitions 

given in Chapter 3. Whereas in a quasi-cyclic code the generator 

matrix, G, is composed of k-tuple circulants of the same order, in 

the codes presented in this chapter, this is relaxed to allow G to 

be composed of (k-l)-tuple circulants of differing orders, with an 

overall parity-check, on every column of G, on the k'th digit. We 

therefore design a given code by a choice of (k-l)-tuple circulants 

and provided this permits the decoding of these (k-l) digits in the 

presence of t errors, we can. decode the k'th digit by special provision. 

The codes are majority-logic decodable in one-step and are 

cyclically decodable using a form of Type 11 decoding. The cyclic 

decoding procedure only decodes the message digits, whose decoded 

estimates are presented at the majority-logic gate output. 

We also show that the codes are completely orthogonalizable up 

to their minimum distance. Initially it is shown how to obtain check 

sums using circulants and then the existence of circulants of various 

orders is examined. It is shown that this can be done by considering 

the successive doubling of positive integers modulo (Zk'-l), where 

k' = k-l. 

An initial code construction is proposed and then extended until 

the most optimum code is obtained. This is done with the help of a 

comprehensive example for k'=6. 

A simple encoding and decoding scheme is proposed. 
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4.2 Orthogonal Check Sums from Circulants. 

The generator matrix, G, of a binary code of length n, is 

composed of n columns of binary k-tuples, where k is the number of 

information-digits in the code. 

Let T(x) be a polynomial representing a code word of the code, 

then 

T(x) = 

where; 

c. = c. ml W c. m2 tt) .....• ~ c. ~ 4.2.l. 
~ ~l ~2 ~k 

m. = i'th digit of information, E GF(2). 
~ 

c. = j'th digit 
~. 

of the i' th column of G, E GF(2). 
J 

.-, 
addition over GF(2). ~ = 

Therefore each c. is a linear equation in the message-digits, 
~ 

determined by the i'th column of the generator matrix, such that 

c. E GF(2). The 'coefficients of T(x) are therefore binary and it is 
~ 

the binary coefficients that the encoder transmits and the decoder 

receives in the presence of noise. The noise which affects a code 

word of length n, can be represented by a polynomial E(x), with binary 

coefficients, such that, 

then 

n-l 
+ •••••• + e IX • n-

If an error has occurred in the pIth digit e = 1, otherwise e = o. 
P-I P-I 

Let R(x) be the polynomial representing the received code word, 

R(x) = T(x) + E(x) 

n-l 
+ r IX n-
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where 

r. = c. €> e. 
~ ~ ~ 

4.2.2. 

In equation 3.7.5. we saw that if we wish to correctly decode 

a message-digit, mj' in the presence of errors, by obtaining orthogona1 

check-sums on m. itself, we require at least J = 2t+1 check sums, 
J 

where t is the number of erro~or coefficients of E(x) that are 

binary 1. 

Let c(i) represent the binary k-tup1e in the i'th column of G 

and let c(j) differ from c(i) only in the first digit, that is 

c(i) 

and 

c. 
~k 

c. 
~1 

= 

:f 

= (c. , 
~1 

c. 
Jk 

c. 
J 1 

c. , •.. , 
~2 

c. ), c (j) = (c. , 
~k J 1 

c. , ... , 
J 2 

for k > 1 

The two transmitted digits c. and c. are determined by these two 
~ J 

columns i and j of G, so that at the 'receiver the two received digits 

will be r. and r. where, 
~ J 

r. = c. e e. 
~ ~ ~ 

r. = c. e e. 
J J J 

However it is obvious that 

r. e r. = c. G c. (£, e. ~; e. 
~ J ~ J ~ J 

and since c. 0 c. = 0 but 
~ Jk 

c. 0 c. = 1 then 
~1 J1 

c. .~ c. = (c. @ c. ) m1 = m1 , and 
~ J ~1 J 1 

@ \$I W' 4.2.3. r. r. =m e. I© e. 
~ J 1 J ~ 



and we obtain an orthogona1 check sum on m1 • The same two received 

digits cannot be used to obtain another check sum on ~ because the 

errors associated with these received digits must remain unique to 

this check sum, with respect to m1. If J = 2t+1 such pairs of columns 

are contained in the generator matrix, for every message-digit, then 

the code is majori.ty-1ogic decodab1e in the presence of ~ terrors. 

Based on the above we can give a set of simple, and rather sub-

optimum, codes in the following theorem. 

Theorem 4.2.1. 

If two complete sets of k-tup1es, one of weight b and one of 

weight b+1, are used as columns of the generator matrix of a binary 

code, then we can form J orthogona1 check sums on every message-digit, 

where, 

J = (k-1)! 
b! (k-1-b)! 

Proof: 

For each k-tup1e of weight b there is a k-tup1e of weight b+1 

that differs only in the i'th digit. From equation 4.2.1. we know 

that the sum of the received digits generated by such a pair of 

k-tup1es gives an orthogona1 check sum on m .• 
1. 

The number of such pairs on digit i is equal to the number of 

k-tup1es from the set of weight (b+l) whose i'th digit is binary one 

or the number of k-tup1es in the set of weight b whose i'th digit is 

binary o. 

In both cases this number, J, is the number of (k-1) tup1es of 

weight b, therefore, 

(k-1)! 
J = b!(k-1-b)! 

Q.E.D. 
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Providing a full set of k-iup1es of weight (b+1) is present 

in G, one only need guarantee that there are m zero's in each column 

of the set of weight b, to obtain m check sums. One way of guaranteeing 

this is to use circu1ant sets of weight b. 

Theorem 4.2.2. 

If one can form a circu1ant set of order e, from a k-tup1e of 

weight b, then the number of zero's in each column of the circulant 

set is given by, 

Proof: 

J = e(k-b) 
k 

If e = k, the columns are also cyclic versions of the generating 

k-tup1e and J = (k-b). 

If e < k, then digit i = digit i+e so that the generating k-tup1e 

must be composed of k/e repeated e-digit sections. The i'th column 

of the circu1ant set will be the digits i, i+1, •••••• , i+e-1, from the 

generating k-tup1e. But this is precisely an e-digit repeating section 

so that the number of zero's per column is the number of zero's in a 

repeating section, giving 

J = (k-b) 
k/e 

Q.E.D. 

So that we can shorten the codes of theorem 4.2.1. by using circu1ants 

of weight b. 

The following example illustrates the theorems 4.2.1. and 4:2.2. 

Example 4.2.1. 

If we use the two sets of 5-tup1es of Hamming weight 4 and 3, below, 



b+l = 4 

01111 

11110 

11101 

11011 

10111 
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b = 3 as columns of the generator matrix, we have 

00111 b+l = 4 and b = 3 so that from theorem 4.2.1. 
01110 

11100 we can form, 

11001 

10011 
(5-l)! J = --,-..;.;....---:;-..,...,.. 

3!(5-l-3)! = 4 

01011 

10110 orthogonal check Sum5 on all 5 digits by adding 

01101 pairs of k-tuples. For example, if the rightmost 

11010 column of all the k-tuples, represents message-
10101 

digit m(l) we have, 

(01111) W (01110) = 00001 = m(l) 

(11101) ~ {I 1100) = 00001 = m(l) 

(11011) \£I (11010) = 00001 = in(l) 

(10111) ~ (10110) = 00001 = m(l) 

This would represent a binary code, of length n = 15, k = 5, J = 4, 

with each k-tuple being a column of G. The results obtained on m(l) 

can also be obtained on all m(2), m(3), m(4), m(5). 

The set of k-tuples with b = 3, can be split into two circulants 

of order e = 5, as below. 

00111 01011 From theorem 4.2.2. we have J = (5-3) = 2, 

01110 10110 zero's per column. 
11100 01101 

11001 11010 

10011 10101 

Using either of these, along with the set b+l = 4, to form the columns 

of G, gives a code with, n = la, k = 5, J = 2. 

The usefulness of circulants leads us to an investigation of 

their existence. For example it would be helpful to know when and 

under what conditions circulants of a given order e exist, for various k. 
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This is answered in the following section. 

4.3 The Existence of Circu1ants. 

We wish to show that the existence of circu1ants can be examined 

from the theory of successive doubling of positive integers modu10 

(2k-1). We begin by establishing results necessary to the general 

proof. 

Theorem 4.3.1. 

If B(m(x» is the decimal equivalent of the binary number 

representation of the coefficients of the polynomial, m(x) , over 

G.F. (2), then 

(i) B(xP), = 2P 

(ii) B (xp • (m(x»)' = Zp. B (m(x» • 

Proof: 

Let the polynomial, 

+ •••• + c.x 
~ 

i 
m(x) = Co + c1x 

B(m(x» = c 20 
o 

1 + c
1

2 + •••• + 

if c = 1 p , but Cj~p = 0 

B(m(x» = 2P = B(xP) 

xp.m(x) c xP p+1 = + c x + .... 0 1 

~ c.2 
~ 

then 

+ c.x 
p+i 

~ 

B(xP.m(x» = c 2P + c 2P+1 + 
o 1 . . . . + c . 2P+i 

~ 

= 2P.B(m(x». 

Q.E.D. 
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We can also restate this in equation form as, 

4.3.1. 

Lemma. 4.3.1. 

If B(m(x» is odd, and B(m(x» = t, then B(m(x) 01) = t - 1. 

Proof: 

If B(m(x» is odd and 

m(x) =c +cx+ 
o 1 

+ c.x 
1. 

t~en c . I 0, so that c = 1 
o 0 

. 2 
1 + m(x) = c1x + c2x + •••• 

Lemma. 4.3.2. 

i 

and 

+ c.x 
l. 

i 

c. E GF(2) 
1. 

Q.E.D. 

If B(m(x» is even, and B(m(x» =t, then B('m(x) @ 1) = t + 1. 

The proof follows from Lemma 4.3.1. 

Lemma. 4.3.3. 

If m(x) has degree (k-1), and B(m(x» 
. k k 

= t, then B(m(x) @ x ) = t + 2 . 

Proof: 

Since m(x) has degree (k-1), 

B(m(x» = c020 + c121 + k-1 + ck_12 ,so .that 

k 0 1 k-1 k B(m(x) + x ) = c
o
2 + c12 . + •.•. + ~_12 + 2 

= t + 2k 

Q.E.D. 

Lemma 4.3.4. 

If m(x) has degree k, and B(m(x» = t, then B(m(x) (±) xk) k = t - 2 . 
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The proof follows in a similar manner to Lemma 4.3.4. 

The above lemma's enable us to prove the following theorem. 

Theorem 4.3.Z. 

If B(m(x» is the decimal equivalent of the binary number 

representation of the coefficients, E G.F.(Z), of m(x) , then if 

degree (m(x» < k 

and 0 < B(m(x» < Zk - 1, then 

B(x.m(x) mod(xk 
+ 1» = Z.B(m(x» mod(Zk - 1). 

Proof: 

Let x.m(x) = r(x) mod(xk 
+ 1), then 

x.m(x) = q(x)(xk 
+ 1) + r(x) deg(r(x» < k. 

-rhere are two cases to consider:-

a) if deg(m(x» < k-l then deg(x.m(x» < k therefore q(x) = 0 

and r(x) = x.m(x) giving 

k B(r(x» = B(x.m(x» < Z - 1 

and from theorem 4.3.1., B(x.m(x» = Z.B(m(x» 

thus B(r(x» = Z.B(m(x» mod(Zk-1). 

b) if deg(m(x» = k - 1, then deg(x.m(x» = k this implies 

deg(q(x» = 0 and so q(x) = 1 giving 

x.m(x) = xk + 1 + r(x) 

from theorem 4.3.1., let 

B(x.m(x» = 2.t t < Zk - 1, 

then from Lemma 4.3.Z., since Zt is even. 

B(x.m(x) + 1) = Zt + 1, 

and from Lemma 4.3.4. since deg(x.m(x) + 1) = k 

k k B(x.m(x) + 1 + x ) = 2t + 1 - Z , 
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therefore B(r(x» = 2t + 1 - 2k 

2t = 2k - 1 + B(r(x» 

and 2t - B(r(x» mod(2k-l) 

or B(r(x» _ 2.B(m(x» mod(2k-l) 

Since deg(r(x» < k it follows that, 

B(x.r(x) mod(xk+l» :: 2(2.B(m(x» mod(2k-l) 

and it follows by induction on theorem 4.3.2. 

B(xP .m(x) mod (xk+l) ) ::2~B!(m(x» mod(2k-l) .. 

Q.E.D. 

4.3.2. 

4.3.3. 

k 
In theorem 4.3.2. above it was stipulated that 0 < B(m(x) < 2 -1 

and this is because if 

, B(m(x» = 2k_l then 

. k 
x.m(x) :: m(x) mod(x +1) , and if 

B(m(x» = 0 again 

x.m(x) :: m(x) mod(xk+l). 

k The circulants generated by the numbers 0 and 2 -1, are trivial 

circulants of order 1 which exist for all values of k. 

The following example illustrates the principles above. 

Example 4.3.1. 

Let m(x) = ,1 + x + x2, be a polynomial modulo (x5+l), with 

coefficients E G.F(2), then we have B(m(x» = 7. 

2 3 5 x.m(x) _ x + x + x mod(x +1) 

2 2 3 4 5 x .m(x) - x + x + x mod(x +1) 

3 1 345 x .m(x) - + x + x mod(x +1) 

4 4 5 
x .m(x) - 1 + x + x mod(x +1) 

5 1 2 5 x .m(x) - + x + x mod(x +1) 
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B(x + 
2 x3) 14 2.7 mod (31) x + = -

2 3 x4) 28 22.7 mod (31) B(x + x + = -

B(l 3 4· 25 23. 7 mod (31) + x + x ) = -

B(l 4 19 24.7 mod (31) + x + x ) = -

B(l 
2 

7 5 (31) + x + x ) = - 2 .7 mod 

the above numbers put in binary form give the following circu1ant 

set, 

00111 (7) 

01110 (14) 

11100 (28) 

11001 (25) 

10011 (19) . 
In the light of theorem 4.3.2. we can now determine some of the 

properties of circulants of k-tuples by examining the properties of 

k k integers, 0 < a < 2 -1, mod(2 -1), when they are successively doubled. 

In particular if B(ci(x)) = a, 0 < a < 2k_l then the order of ... 

the circulant generated by the k-tuple, m(x) , can be determined by 

solving the congruence, 

2Pa = a mod(2k-l) 4.3.4. 

whereby, if p is the smallest integer satisfying the congruence, then 

the circulant has order p. 

We begin by showing what is intuitively obvious, that is, 

k k k 2 a= a mod(2 -1) , for all a < 2 -1. 

Theorem 4.3.3. 

The congruence, 

2ka _ a mod(2k~1) 

is true for all a ~ 2k-l. 
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Proof: 

k . ( k Since a2 - a = a 2 -1), 

2ka = a(2k-l) + a, and if a < 2k_l 

2ka _ a mod(2k-l) 

Q.E.D. 

As an immediate'consequence of theorem 4.3.3. we have the following 

corollary. 

Corollary 4.3.1. 

If P is the smallest positive integer such that, 

a < 

then p ~ k. 

With the help of the following theorem we can develop conditions 

for which p = k is the only solution. 

41,42 Theorem 4.3.4. 

Let (c,m) = d, and write ni = m1d and c = cId, then if 

ca - cb modem); then 

As a further corollary, we have, 

Corollary 4.3.2. 

If (c,m) = 1, and 

ca - cb mod (m) , then 

a - b modem). 

Therefore, from equation 4.3.4. if (a, 2k-1) = 1, then from 

corollary 4.3.2. 

2P :: 1 mod(2k-1) 

and the only solution is, p = k. Note that this occurs whenever 2k_1 

is prime. We can restate this result in another way with the following 

theorem. 
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Theorem 4.3.5. 

If P is the smallest positive integer such that, 

a < 

then if p < k, 

k 
(a, Z -1) f 1. 

We can obtain a useful result regarding the values p can assume, 
k . 

when a and Z -1 are not relatively prime, with the help of the following 

theorem. 

Theorem 4.3.6. 41 ,4Z 

If e is the smallest positive integer such that 

ae _ 1 mod (m) , then 

ak _ 1 mod(m) 

if and only if e~k. 

Let us assume that for some a, a circulant is generated of order 

p < k. Then from theorem 4.3.5. we have (a, Zk_n f 1. Assume, 

k (a, Z -1) = d, and write 

k Z -1 = d.h a = a'.d 

then from theorem 4.3.4. 

Zp = 1 mod (b) 

However from theorem 4.3.3. 

Zka = a mod(Zk- l ) 

and since Zk_l = db and a = aId 

from theorem 4.3.4. again, 

Zk = 1 mod (b) 

4.3.5. 

4.3.6. 

Therefore from theorem 4.3.6. the simultaneous congruences 4.3.5. and 

4.3.6. can only be so if prk. We have proved the following theorem. 
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Theorem 4.3.7. 

If P is the smallest positive integer such that, 

k a < 2 -1 

then p < k, if and only if, plk. 

Therefore only circu1ants of orders which divide k are possible. 

We also have the following corollary. 

Corollary 4.3.3. 

If p is the smallest positive integer such that, 

k 
a < 2 -1 

then if k is a prime, p = k. 

Since if k is prime it has no divisors except 1, the trivial 

circulant order, and itself k. We also have the following Corollary. 

Corollary 4.3.4. 

If P is the smallest positive integer such that, 
k . 

2Pa = a mod(2 -1) 

then if p < k; k is a composite integer with more than one factor. 

Summarizing the results so far, we have; 

(a) p = k, if 

(i) (a, 2k-l) = 1 4.3.7. 

(H) k = a prime 

(b) ifp < k, 

(i) (a, 2k-l) "f 1 

(H) k = a composite. 4.3.8. 

(Hi) plk 

There is one further useful result, which demonstrates a particular 

case when b(i) and (ii) of equations 4.3.8. are satisfied but p = k. 
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This occurs when a = 2n_l, n < k. To show this requires some results 

to be derived for numbers of the form 2k-l. Numbers of the form 2k_l 

have been the subject of considerable research among mathematicians 

43 
and the following points are known. 

i) if 2k_l is prime, k must be prime. 

ii) if k is a prime, 
k 2 -1 may be composite. 

iii) if k is composite, 2k_l is always composite. 

If k is prime 2k_l is called a Mersenne number. There is no known 

generalized method for finding the factors of composite Mersenne 

numbers and many such numbers have still not been successfully factored. 

However to show that p = k when a = 2n_l we begin with the following 

theorem. 

Theorem 4.3.8. 

If P and k are positive integers such that (p,k) = 1, then 

(2P-l, 2k-1) = 1. 

Proof: 

Assume it is not true and 

(2P-1, 2k_1) = t, then we have, 

2P - 1 mod(t) 

2k _ 1 mod(t) 

there are two cases to consider. 

(a) let p < k and assume p is the smallest integer such that the 

congruence holds, then from theorem 4.3.6. prk and (p,k) = p. 

Similarly if k < p arid k is the smallest integer, kip and (p,k) = k. 

(b) if neither p nor k are the smallest integers satisfying the 

congruence, then there exists some integer s, such that 
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s < p and s < k and 

2
s = 1 mod(t) 

but then from theorem 4.3.6. 

sip and slk and (p.k) = s. 

If (p,k) = 1, both cases are impossible and so (2P-l, 2
k
_l) = 1. 

Q.E.D. 

Two corollaries follow. 

Corollary 4.3.5. 

If k is a positive prime, then for all p < k, (2P-l, 2
k
_l) = 1. 

Corollary 4.3.6. 

All Mersenne numbers are relatively prime to all other Mersenne 

numbers. 

We require two more results before the general proof is presented. 

Theorem 4.3.9. 

f Ik h 2e_112k_1. I e ,t en 

Proof: 

Let k = en, then 

2en_1 = (2e_1) «2e)n-1 + (2e)n-2 + •••• + 2e + 1) 

Q.E.D. 

Theorem 4.3.10. 

If nand k are positive integers such that n < k and 

(2n-l, 2k-l) = d, then 

s d = 2 -1,. where s ~ n. 

Proof: 

Since d is a common divisor 



2n _ 1 mod (d) 

2k _ 1 mod (d) 
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there are two cases to consider. 

a) if nlk, then 2n-112k_l from theorem 4.3.9. and d = 2n-l. 

b) if n¥k, there exists some integer s, such that sin and slk and 

2s :: 1 mod(d). 4.3.9. 

However, since sin and k, from theorem 4.3.9. 2s-lI2
n
-l and 

2s-lI2k-l therefore 2s-lld. But dI2s-l' from equation 4.3.9., therefore 

s 
d = 2 -1. 

Q.E.D. 

Corollary 4.3.7. 

If nand k are positive integers such that, n < k and (n,k) = s, 

then 

(a) 
n k s (2 -1, 2 -1) = 2 -1, and 

(b) 

Proof: 

If (n,k) = s, then 2s_l is the greatest integer of this form 

that divides 2n_l and 2k_l. Since the greatest common divisor must be 

of the same form, from theorem 4.3.10, then 2s_l is the greatest 

common divisor of 2n-1 and 2k-l. 

If there existed some d > 5 such that 2d-l divided 2n_l and 2k_l, 

then this implies din and dlk and (n,k) = d, which is not possible and 

(a) is proved. 

It follows from the definition of greatest common divisor that (b) 

is proved once (a) is proved. 

Q.E.D. 
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Returning to equation 4.3.4., if a = 2n-1, n < k, we have, 

n k' 
- (2 -1) mod(2 -1), or 

k n n k = q(2 -1) + 2 -~, 2 -1 < 2 -1 

where q is a positive integer. In terms of qwe can write, 

= (2P-1)(2
n
-1) q k 4.3.lOa 

(2 -1) 

We can now show that if n < k, for q to be a positive. integer, p = k 

is the only value for p. 

Theorem 4.3.11. 

If q,p,n and k are positive integers such that n < k and p ~ k, 

q = 
(2P-1) (2n_1)_ 

(2k_1) 

then p = k and q = 2
n
-1. 

Proof: 

There are three cases to consider, 

a) if (n,k) = 1, (2n-1, 2k-1) = 1 from theorem 4.3.8. therefore 

2k_1 must wholly divide 2P-1 so that.p = k. 

n I k b) if (n,k) = n , let k = nb and from theorem 4.3.9. 2 -1 2 -1 

and q can be written, 

but since plk, let k = pc = nb and p = nb/c, and therefore 

if 
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But if q is to be an integer, we require 

or 

nb 
c 

b 
c 

> n(b-1) 

> (b-l) 

which can only be so if c = 1. 

Thus, k = pc = p. 

c) if (n,k) = s, sin and k, and from theorem 4.3.9. zS-llzn-l and 

ik-l. We can then write n = f.s, k = ts, then (f,t) = 1 and 

But from theorem 4.3.10 and corollary 4.3.7. 

[2n_l 2k_l] = 
ZS-l ZS_l 

so for q to be a positive integer, 

divides ZP-1- Since k = pc = ts 

thus we require, 

st 
c 

t 
c 

> s(t-l) 

> (t-l) 

which is only possible if c = 1. 

Thus k = pc = p. 

Therefore, if p = k, 

i) (a, Zk_l ) = 1 

or ii) k = prime 

, 

1 

we require 

p = stlc, 

that k s Z -1/Z -1 wholly 

and 

Q.E.D. 
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or Hi) 2n_1 a = , n < k. 

And if p < k 

i) 

H) 

for some q 

k 
2P = q (2 -1) + 1 

a 

= 1,2,3, ...... . 

6 
In the following example we find all orders for all a < 2 -1. 

Example 4.3.2. 

We find as an example, all circu1ants generated by integers 

a < 26-1, We begin with unity. 

o 1 2 345 {2 .1, 2 .1, 2 .1, 2 .1, 2 .1, 2 .1} = {l,2,4,8,16,32} 

since 26. 1 = 1 mod(26-1) p = 6 as expected since (1,2
6
-1) = 1. 

We proceed by taking the next lowest integer not contained in the 

generated set above, which is 3, giving 

{3,6,12,24,48,33} and p = 6, since 3 = (22_1). 

The next lowest integer is 5. 

{5,10,20,40,17,34} and p = 6, since (5,63) = 1 

{7,14,28,56,49,35} and p = 6, since 7 = (23_1) 

{9,18,36} and p = 3, 

{11,22,44,25,50,37} and p = 6, since (11,63) = 1 

{13,26,52,41,19,38} and P = 6, since (13,63) = 1 

{15,30,60,57,51,39} and p = 6, since 15 = (24_1) 

{21,42} and p = 2, 

{23,46,29,58,53,43} and P = 6, since (23,63) = 1 

{27,54,45} and P = 3, 

{31,62,61,59,55,47} and p = 6, since 31 = (25_1) 

and (31,63) = 1. 



72 

Since a circulant consists of all cyclic shifted forms of the 

generating k-tuple, if we form the modulo 2 sum of two k-tup1es from 

different circu1ants to obtain a check sum, the modu10 2 sum of the 

cylical1y shifted versions of the two k-tuples forms another check 

sum on another digit. Mathematically we can say, let {a} be the set 

of integers generated by 2Pa mod(2k-l) fo~ 0 ~ p ~ k, then if 

m1(x) and m2 (x) sum to form a check sum, 

4.3.6. 

and 

B(xP m1 (x) mod(xk+l) + xP m
2

(x) mod(xk+1» 

p k . 
- 2 B(m1 (x) + m2 (x» mod(2 -1) E {1} 

and this applies generally for, 

B(! mi(x») E {I} 
~ 

4.3.7. 

where ~(x), m2(x), ••• , mm(x), sum to form a check sum. 

4.4 Initial Code Construction. 

By using the results of the previous sections we can build up 

codes, whose generator matrix is composed of circu1ant k' = (k-l)-tuples 
_L- ~-"_, 

circulent 
with an overall check on "columns. We know from theorem 4.2.2. 

that providing the generator ma~rix contains all k' = (k-l)-tup1es of 

weight (b+1) , we can add 'circulants of order p, weight b, and increase 

the number of check sums by J = p(k'-b)/k' with each additional circu1ant. 

Of course each time a circulant of order p is added, the code length, n, 

increases by p. Since all check sums are formed by adding pairs of 

received digits the overall parity-cneck cancels·. 

We can best consider the initial code construction by an example. 

If we use the circu1ants of example 4.3.2. then k' = 6, and we construct 
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codes with k = 7 information digits. Table 4.4.1. below represents 

each circulant by its generating number, a, and gives its order p, 

binary weight b and the number of check sums it provides ,assuming, 

for the moment, all (b+1), k'-tup1e circu1ants are contained in the 

generator matrix. For completeness the two trivial generators are 

also given. 

TABLE 4.4.1. 

Generating Order Weight Check-sums 
Number a. p b J = p(k'-b)/k' 

63 1 6 0 

31 6 5 1 

27 3 4 1 

15,23 6 4 2 

21 2 3 1 

7,11,13 6 3 3 

9 3 2 2 

3,5 6 2 4 

1 6 1 5 

0 1 0 1 

Note: 

Although the check sums indicated are on the first k' information 

digits, having decoded these, it is a simple matter to decode the k'th, 

as we shall see later. 

A given code can therefore be represented by its generating 

numbers. We begin by assuming the generator matrix contains 63, that 

is, all the k'-tuples of weight 6. We then add our circulants and obtain 

the set of codes given below, in Table 4.4.2. 
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TABLE 4. 4 . 2 • 

Code length Check-sums Generating numbers 
n J a 

7 1 63,31-

13 3 63,31,15. 

13. 3 63,31,23. 

10 2 63,31,27. 

16 4 63,31,15,27. 

16 4 63,31,23,27. 

19 5 63,31,15,23. 

22 6 63,31,15,23,27. 

28 9 63,31,15,23,27,7. 

28 9 63,31,15,23,27,11. 

28 9 63,31,15,23,27,~3. 

24 7 63,31,15,23,27,21. 

34 12 ,63,31,15,23,27,7,11. . 
34 12 " 7,13. 

34 12 " 11,13. 

30 10 " 7,21-

30 10 " 11,2l. 

30 10 " 13,2l. 

36 13 " 7,11,2l. 

36 13 " 7,13,21-

36 13 " 11,13,2l. 

40 15 " 7,11,l3. 

42 16 " 7,11,l3,21,-
" 

45 18 " 9. 

48 20 " 3. 

48 20 " 5. 

51 22 " 9,3. 

51 22 " 9,5. 

54 24 " 3,5. 

57 26 " 3,5,9. 

63 31 " 3,5,9,l. 

64 32 " 3,5,9,1,0. 
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These conditions are called "initial" because they are sub-

?ptimum. A slight improvement in the constructions above is possible 

in the following manner. 

Consider the circulant generated by 27 of order p = 3. As a 

binary6-tuple, 27 has the form 011011, of weight b = 4, so that it 

will combine with 6-tuples of·weight h = 3 and b = 5 to form check sums. 

Let {27} be the set of 6-tuples generated by 27, then by replacing each 

single one in 011011, in turn, by a zero, we can see which weight 3, 

6-tuples, 27 combines with. 

011011 => 

001011 = 11 E {ll} 

010011 . = 19 E {13} 

011001 . = 25 E {ll} 

011010 = 26 E {13} 

Therefore any 6-tuple E' {27} only combines with weight 3, 6-tuples 

E {ll} and {13}. The circulant {27} provides one check sum, from 

theorem 4.2.2., when combined with the weight 5, 6-tuples so that in 

codes whose generator matrix contains {27} but does not contain {ll} 

and {13} , if we remove {27} we will reduce J by one and n by three. 

This is done in the following codes; 

i) n = 28, J = 9, {63,31,15,23,27,7} 

H) n = 24, J = 7, {63,3l,15,23,27,21} 

Hi) . n = 30, J = 10, {63,31,15,23,27,21,7} 

If we remove {27} we obtain 

i) , n = 25, J = 8, {63,3l,15,23,7} 

ii) , n = 21, J = 6, {63,3l,15,23,1l} 

Hi) , n = 27, J = 9, {63,3l,15,23,7,11}. 
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Since {27} combines with {ll} and {13}.we show this by writing, 

c {I I} , {13}. 

Examining all generators we obtain: 

{3l} ~ {lS},{23},{27} 

{IS} ~ {7} ,{11},{13} 

since {3l} is all 6-tuples of 

weight S no alteration ~s applicable. 

no new code. 

remove {IS} from codes containing {IS} 

and {2l}. 

n = 18, J = S , {63,3l,23,27,2l} 

{23} ~ {7} ,{11},{13},{2l} 

{27} ~. {I I} , {13'} 

{7} ~ {3} ,{S} 

no new code. 

see above example. 

remove {7} from codes containing {7} 

and {9} 

n = 39, J = 15 {63,31,15,23,27,11,13,21,9} 

n = 

n = 

n = 

. {II} ~ {3} ,{S} ,{9} 

{13} ~ {3} {S} {9} 

{2I} .-r {S} 

no new code. 

no new code. 

remove {2l} from codes containing {21} 

and {3} and {9} 

46, J = 19 {63,31,lS,23,27,7,ll,13,3} 

43, J = 17 {" 11 11 " " 11 " 11 9} 

49, J = 21 {" 11 11 " 11 " " 11 3,9} 

{3} c {I} .-r no new code 

{S} c {I} ~ 
11 11 " 

{9} ~ {U' " " " 

{l} ~ {a} no new code 

The new codes are also sUb-optimum since some improvement is still 

possible. 
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4.5 Utilization of Redundancy. 

In the previous section we presented a set of codes whose 

generator matrix was composed of circulants of differing orders. The 

total number of check sums possible, by adding pairs of columns, (or 

similarly pairs of received digits) was equal to the sum of the number 

of zero's in the columns of all the circulants present. That is the 

number of zero's in a row of the generator matrix, except the row 

which is an overall parity-check. Because of this any k-tup1e column 

not used to decode message-digit i, which is said to be redundant, must 

have the i'th and kIth digit as binary one. The codes in the previous 

section are SUb-optimum because of the relatively high number of 

redundant k-tuple columns for each message-digit. To demonstrate the 

uses which can be made of redundancy is best illustrated by example. 

The examples which follow illustrate the uses of redundancy for the 

decoding of digit 1, but due to the cyclic property of circulants, .can 

also be achieved on all k' = k-l message-digits. 

Consider the tode; n = 49, J = 21, 

G = [63,3l,15,23,27,7,11,13,3,9J 

The following redundancy 1S found on message-digit 1. 

1000011 

1100001 

1100011 

1101001 

1010101 

1001011 

1001001 

Adding all seven k-tuples modulo 2 we have 1111111. 

Ignoring digit k, this is the circulant {63} of order 

one. Thus 63 can be deleted from the generator matrix 

giving a code with, n = 48, J = 21. This usage will 

be denoted by deleting 63 and writing -I with the 

generating numbers. 

If we divide the above redundancy into two sections we obtain 

the two forms A and B below. 



1000011 

1100001 

1100011 

1000001 

(A) 
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1101001 

1010101 

1001011 

1001001 

0111110 

(B) 

Note that for the message-digits other than 1 we will obtain 

1000010, 1000100, 1001000, 1010000, 1100000 for A and 0111101, 0111011, 

0110111, 0101111, 001111 for B. We make use of A by adding the 

circu1ant of order 1 generated by 0 with a parity-check on the k'th 

message-digit, that is the k-tup1e 1000000. We denote this in the 

generating numbers by + o. This gives the code n = 50, J = 22, 

{63,31,15,23,27,7,11,13,3,9tO}. We make use of (B) by adding the 

circu1ant of order 1 generated by 63 but with no parity-check on the 

k'th digit, that is the k-tup1e 0111111. We denote this in the 

generating numbers by +1. This gives the code,· 

n = 51, J = 23, - {63,31,15,23,27,7,11,13,3,9,+0,+1}. 

Outlined below are the best codes which could be found utilizing 

the redundancy in the codes given in section 4.4. 

i) n = 7, J = 1 

1111101 

1011111 

1111011 

1101111 

1110111 

1000001 

ii) n = 13, J = 3 

1111011 

1110011 

1111001 

1001111 

0111110 

{63,31}. 

giving the code 

n = 8, J = 2, {63,31,+0}. 

{63, 31, IS}. 

1101111 

llOO111 giving codes 
1110111 

n = 12, J = 3 {31,15,-Il 
1111111 

n = 13, J = 4 {31,15,-1,+1} 
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Note that since {31} and {IS} both have order six, the code 

n = 12, J = 3 is quasi-cyclic. 

iii) n = 18, J = S. {63,31,23,27,21} 

1010101 1110101 

1010111 1011101 

1111101 1011011 

1111111 1101101 

1011111 

1000001 

giving codes 

n = 17, J = S. {31,23,27,21,-I} 

n = 18, J = 6. {31,23,27,21,-I,+0} 

iv) n = 21, J = 6. {63,31,lS,23,21} 

1110111 1110101 1100111 

1001111 1010111 1110011 

1111001 1011101 1010101 

1000001 1111111 1000001 

giving codes 

n = 20, J = 6. {31,lS,23,21,-I} 

n = 21, J = 7. {31,lS,23,21,-I,+0} 

n = 22, J = 8. {31,lS,23,21,-I,+0,+0} 

v) n = 2S, J = 8. {63,31,lS,23,7} 

1000111 1100011 1110001 

1110011 1110111 1010111 

1110101 1101011 1100111 

1000001 1111111 1000001 

giving codes 

n = 24, J = 8. {31,15,23,7,-I}. 
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This code is also quasi-cyclic, since all the circu1ants have order 6. 

n = 25, J = 9, {31,15,23,7,-I,+0} 

n = 26, J = 10, {31,15,23,7,-I,+0,+0} 

vi) n = 27, J = 9, {63,31,15,23,7,21}. 

1010101 1000111 1010111 

1110111 1110101 1100111 

1100011 1110011 1110001 

1000001 1000001 1000001 

giving codes 

n = 28, J = 10, {63,31,15,23,7,21,+0} 

n = 29, J = 11, {63,31,15,23,7,21,+0,+0} 

n = 30, J = 12, {63,31,15,23,7,21,+0,+0,+O}. 

vii) n = 34, J = 12, {63,31,15,23,27,7,11} 

1110001 1000111 1011001 1001011 

1011011 1100011 1100111 1110101 

1101011 1100101 0111110 0111110 

1000001 1000001 

giving codes 

n = 23, J = 13, {63,31,15,23,27,7,11,+0} 

n = 36, J = 14, {63,31,15,23,27,7,11, +O,+O} 

n = 37, J = 15, {63,31,15,23,27,7,11, +O,+O,+I} 

n = 38, J = 16, {63,31,15,23,27,7,11, +O,+O,+I,+I} 

Alternatively we can rearrange the k-tup1es and use the following 

sets. 

1110001 1000111 1001011 

1011011 1100011 1110101 

1101011 1100101 0111110 

1011001 1000001 

1100111 

1111111 
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giving codes 

n = 33, J = 12, {31,15,23,27,7,11,-I} 

n = 34, J = 13, {31,15,23,27,7,11,-I,+0} 

n = 35, J = 14, {31,15,23,27,7,11,-I,+0,+I} 

viii) n = 40, J = IS, {63,31,15,23,27,7,11,13} 

1001011 1100101 1000111 

1011001 1101001 1100011 

1010011 1001101 1110001 

1000001 1000001 1101011 

0111110 

giving codes 

n = 41, J = 16, {63,31,lS,23,27,7,11,13,+0} , 

n = 42, J = 17, { " ,+O,+O} , 

n = 43, J = 18, { " ,+O,+O,+I} 

ix) n = 43, J = 17, {63,31,lS,23,27,7,11,13,9} 

1101011 1101001 1001011 

. 1001001 1110001 1001101 

1100011 1011001 1000111 

1000001 1000001 1000001 

giving codes 

n = 44, J = 18, {63,31,lS,23,27,7,11,13,9,+0} 
'- , 

n = 4S, J = 19, { " ,+O,+O} , 

n = 46, J = 20, { " ,+O,+O,+O} 

x) n = 49, J = 21. 

See initial example. 

xi) n = S4, J = 24, {63,31,lS,23,27,7,11,13,21,3,S} , , 
T 
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1000011 1100001 

1010001 1000101 

1010011 1100101 

1000001 1000001 

giving codes 

n = 55, J = 25, {63,31,15,23,27,7,ll,13,21,3,5,+0} 
... " 

n = 56, J = 26, { " ,+O,+O} 

In all constructions above the complete set of redundant k-tuples 

is shown. Most of the optimum codes are derived from the use of 

redundancy shown· above. Generally any code where k' is a prime which 

uses the -I redundancy property only is quasi-cyclic. But, as we saw 

in the above constructions, quasi-cyclic codes can occur for composite 

k', though they may not be optimum codes for that k'. 

There is an aspect of the utilization of redundancy which is not 

obvious in the examples presented. Of the three forms of redundancy 

possible, that is Ill··· ·111, 01111·· ·110 and 1000·· ·001, the mo'st 

efficient form is 0111····110. The form 1000···001 requires the sum 

of at least three redundant k'-tup1es and the form 1111····111 can only 

be used once. However the form 0111····110 can be obtained by the 

sum of two redundant k'-tuples in the most efficient case. 
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Example 4.5.1. 

We set out below all those optimum codes developed using a < 2k '-1, 

for k' = 6,5,4,3,2. Quasi-cyclic codes are denoted q.c. 

k' = 6. 

Code length Check sums Generating numbers 
n J aEG 

7 1 63,31. 

8 2 63,31,+0. 

q.c. 12 3 31,15,-1. 

13 4 31,15,-I,+1. 

17 5 31,23,27,21,-I. 

18 6 31,23,27,27,-I,+0. 

21 7 31,15,23,21,-I,+0. 

22 8 31,15,23,21,-I,+0,+0. 

25 9 31,15,23,7,-I,+0. 

26 10 31,15,23,7,-I,+0,+0. 

29 11 63,31,15,23,7,21,+0,+0. 
" • 

, 

30 12 " ,+0. 

34 13 31,15,23,27,7,11,-I,+0. , . 
35 14 " ,+I. 

37 15 63,31,15,23,27,7,11,+0,+0,+I. , . 
38 16 " ,+I. 

42 17 63,31,15,23,27,7,11,13,+0,+0. , . 
43 18 " ,+1. 

45 19 63,31,15,23,27,7,11,13,9,+0,+0. , . 
46 20 " ,+0. 

48 21 31,15,23,27,7,11,13,3,9,-I. 

50 22 63,31,15,23,27,7,11,13,3,9,+0. 
"- 't' ' 

51 23 " ,+1. 

54 24 63,31,15,23,27,7,11,13,21,3,5. 
'- T ' 

55 25 " ,+0. 

56 26 " ,+0,+0. 

63 31 63,31,27,15,23,21,7,11,13,9,3,5,1. 
'. .J 

64 32 " ,0. 
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k' = 5. 

Code length Check sums Generating numbers 
n J aEG 

6 1 31,15. 

7 2 31,15,+I. 

q.c. 10 3 15,7,-I. 

11 4 15,7,+1,-I. 

q. c. 15 5 ,15,7,11,-1! 
"T 

16 6 " ,+0. 

q. c. 20 8 15,7,11,3. 

22 9 ,31,15,7,11,3,+0; 
"T 

23 10 " ,+I. 

26 11 ,31,15,7,11,3,5; 
"T 

27 12 " ,+I. 

31" 15 ,31 215,7,11,3,5,1: 
T 

32 16 " ,+0. 

k' = 4. 

n J a E G. 

5 1 15,7. 

6 2 15,7,+0. 

9 3 15,7,3. 

10 4 15,7,3,+0. 

13 5 15,7,3,l. 

14 6 15,7,3,1,+0. 

15 7 15,7,3,5,l. 

16 8 15,7,3,5,1,0. 

k' = 3. 

n J a E G. 

4 "I 7,3. 

5 2 7,3,+0. 

7 3 7,3,l. 

8 4 7,3,1,0. 

k' = 2. 

n J a E G. 

3 1 3,l. 

4 2 3,1,0. 
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4.6 Amount of Redundancy. 

Let Rd(b) be defined as the number of columns of the generator 

matrix, or similarly the number of received digits, not used to decode 

message-digit m(i), 1 ~ i ~ k', where b is the smallest binary weight 

of the circulant sets used in G. 

If the generator matrix comprises the complete sets of k'-tuples, 

of weights k', k'-l, k'-2, •••• ,b, then the redundancy occurs only in 

the set of weight b. From theorem 4.2.1. we know that the number of 

k'-tuples of weight b used to form check sums is equal to the number 

of zero's in the column of b-weight k'-tuples. Therefore, 

(k' -1)! 
J = :-;---:-:~-=-~ ...... b! (k'-l-b)! 4.6.1. 

Since there are a total of Nb k'-tuples of weight b, where 

k' ! 
Nb = b! (k-b)! 

then the redundancy in this case is given by, 

Rd(b) = Nb - J 

k! 
= ':'""b"T"! --;":( k--":'"b'") ! 

(k'-l)! 
b! (k' -I-b) ! 

(k'-l)! 
= ~(b:---=l~) T"""! -;(+-k-"'"":'b~)"'! 4.6.2.a. 

which is equal to the number of binary ones 1n a column of the column 

of b-weight k'-tuples. In example 4.2.1. the redundancy in the set 

b = 3, is 

= 

= 10 - 4 = 6. 
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If the final set of k'-tuples used is.not complete, that is 

circulant sets of weight b are used, we can write, 

Rd(b) = Rd(b+l) - C(b). 4.6.2.b. 

Here Rd(b+l) is the redundancy when the final k'-tuple set has 

weight (b+l), and C(b) is the change brought about by adding an incomplete 

set of weight b. 

If the reduction, C(b), is effected by one circulant of order p, 

then from theorem 4.2.2. it has J zero's per column, where, 
p 

J 
p 

= p(k'-b) 
k' 

Thus, the number of binary one's per column, I , is given by, 
p 

I = p _ p(k'-b) 
p k' 

Therefore; 

C(b) = J - I 
P P 

= 2p(k'-b) - p k' 

= 
2pb 

p - k' 

If there are m. circulants of order p. 
11 

and generally, 

Rd(b) 

Example 4.6.1. 

( 
2p.b ) 

C(b) = ? mi Pi -~ 
1 

= Rd(b+l) - l: 
i 

4.6.3. 

4.6.4. 

4.6.5. 

4.6.6. 

Consider the code whose generator matrix columns utilize k'-tuples 
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with k' = 17, down to b = 2. From equation 4.6.2.b. 

Rd(2) = Rd(3) - C(2). 

Since k' is a prime only circu1ants of order 17 are possible. 

The number of weight 2,17-tup1es is, 

Therefore, let 

17! 
2! 18! 

136 
m1 = 17 = 

p = 17 1 

m. = 0, for i > 1. 
~ 

= 136. 

8 

Let 1 ~ m ~ 8 then from equation 4.6.5. 

= m.13 

and since, from equation 4.6.2.a 

Rd(3) = 

from equation 4.6.6. 

16! 
2! 14! = 120 

Rd(2) = 120 - m.13. 

and we reduce the redundancy by 13 each time a circu1ant ~s added. 

Before adding any circu1ants we will have a code with, length 

check sums, 

17 k'! 
n - \ = 130,918 

- l.. b! (k'-b)! 
b=3 

J = 1~ (k'-l)! 
l.. b! (k'-l-b)! 

b=3 

Rd(3) = 120. 

= 65,399 
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Each time we add a circu1ant we increase n by 17, decrease 

Rd(b) by 13 and increase J by J = 17(17-2) = 15, giving the set p 17 

of codes below. 

n J Rd(b) k 

130,918 65,399 120 18 

130,935 65,414 107 18 

130,952 65,429 94 18 

130,969 65,444 81 18 

130,986 65,459 68 18 

131,003 65,474 55 18 

131,020 65,489 42 . 18 

131,037 65,504 29 18 

131,054 65,519 16 18 

We can extend our example and at the same time our investigation 

of redundancy by examining how Rd(b),and the code length vary with b. 

In fig. 4.6.1. we have. plotted 

(k'-l)! Rd (b) = -:--~.;;,;-~.;..,....,....­(b-1)! (k'-b)! 

and 
k' 

n = L 
b 

for values of, k' = 17, 

k' ! 
b! (k '-b)! 

° ~ b ~ 17, that is just codes where full 

sets of k'-tup1es of weight b are used. Since addition of extra 

circu1ants increases or decreases Rd(b) linearly between these points 

and increases n linearly, the resultant curves apply to all codes with 

k' k' = 17, n ~ 2 • 

Let n(R) be that value of n when Rd(b) is at its maximum, then 

it is apparent that the codes are more efficient when n > n(R), in 

terms of redundancy. If k' is odd, Rd(b) will be a maximum when, 



Rd(b) 
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n(r) 

:Rd(b) 
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(b-l)! '= (k'-b) ! that is when 

b-l = k'-b or 

b k'+l 
=-2- or 

b-l 
k'-l 

=--
2 

Therefore, 

Rd(b) . 
max 

= (k'-l)! 

(~';l] ! [k';l) 

k' 
k' ! 

n (R) =' ~b ':""", -=-:---,--,,--:-l. (k'-b)! k'+l . 
b=-

2 

If k' is even, Rd(b) is a maximum when 

say 

and 

(b-l)! = (k'-b±l)! 

b-l = k'-b-l 

b 
k' 

="2 

Rd(b) 
max 

= 

k' 
n(R) = I 

. k' b-2 

k' , 
b-l = "2 - I 

(k'-l)! 

(~'- I]! (r]! 

k' ! 
b! (k'-b)! 

this value of b gives the largest value for n(R). 

4.6.7. 

Figure 4.6.2. shows a plot of the ratio Rd(b) /n(R), when k' max 

is various increasing odd values. Although this ratio decreases 

exponentially, Rd(b) is increasing exponentially as figure 4.6.2. 
max 

also shows. The length n is simply increasing faster than Rd(b). 
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In figure 4.6.3. we show a family of curves for n increasing 

with b, for various values of k'. If one curve is plotted for 

some value of k', say n1 , then 

k' ! 
b! (k '-b)! 

then the curve for (k'-l) is plotted for, 

k'-l 
I 
b 

(k '-1) ! 
b! (k'-l-b)! 

But for the system using k' , 

'and therefore, 

k'-l 
J = I 

b 

n = J 
2 

for the system of k'. 

(k'-l)! 
(k'-l-b)! 

4.7 Minimum Distance of the Codes. 

o ~ b ::; k' 

It is a property of all codes that if one can obtain J orthogona1 

check sums on the message-digits, then to decode correctly in the presence 

of t errors, one requi~es J = 2t+1. If, with this type of check sum, 

J = d , the minimum distance of the code, the code is said to be comp1ete1¥ 
m 

orthogona1izab1e up to its minimum distance. 

Consider the codes developed in section 4.4. Since we have J 

check sums we, at least, are sure that d 3 J. The codes were developed 
m 

by ensuring that each row of the generator matrix, except the row which 

forms an overall parity-check on the k'th digit, has J zero's. Thus the 
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linear combination of any of these rows with the overall parity-check 

row will produce a code word, in the code, whose binary weight is 

equal to J. But if there exists a code word weight J, then 

for this code. Since, J 3 d 3 J, 
m 

d = J. 
m 

J 3 d 
m 

So that the codes in section 4.4 are completely orthogona1izab1e 

up to their minimum distances. 

We merely have to show that by utilizing redundancy, as ~n 

section 4.5., we maintain the same relationship between J and d • 
m 

a) 

We utilized redundancy in the following ways. 

k-digits . 
i) deleted the k-tuple 1111 •••• 111 

ii) added the k-tuples 1000 ••.• 000 

Hi) added the k-tuples 0111 •••• 111 

From (i) the value of J remains the same, so that d ~ J. In 
m 

the original code adding the i'th and k'th rows of G mod 2, gave a 

code word of weight J, and since the mod 2 sum of the i'th and k'th 

digit of 1111 •••• 111 is zero, after deleting this k-tuple there still 

exists a code word of weight J. Therefore, 

and J = d • 
m 

b) From (ii) we increase J by one, so let the new J' = J+1, then 

d ~ J'. In the original code adding the i'th and k'th row of G 
m 

mod 2 gave a code word of weight J. Adding the k-tup1e 1000 ••.• 000, 

to the generator matrix will produce a code word of weight J plus the 

weight of the mod 2 sum of the i'th and k'th digits of the additional 

k-tup1e. This is always 1 so there exists a code word of weight 

J' = J+1, and since J' ~ d 3 J' , then d = J' • m m 
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c) The argument for the k-tup1e 0111 •••• 111, is the same as above 

for 1000 •••. 000. 

So that the optimum set of codes developed in section 4.5. are 

completely orthogonalizable also. 

We can show in fact that 

d 
m = n - Rd(b) 

2 
4.7.1. 

Consider the length of those codes whose generator matrix is 

composed of complete sets of k'-tuples, with overall parity-check, 

down to b-weight k'-tup1e sets. 

but 

k' ! 

(k') ! k' 
n = ~ 

L. t! 
t=b 

(k'-t)! 

k' ! k'-l 
= 1 + L 

t=b 
t! (k'-t)! 

(k'-l)! (k'-l)! 
= t! (k'-t)! t! (k' -l-t) ! + (t-1)! (k'-l-(t-1»! 

and 

k'-l 
n = 1 + L 

t=b 

(k'-l)! 
t! (k' -l-t) ! 

k'-l 
+ L 

t=b 

(k' -1) ! 
(t-1)! (k'-l-(t-1»! 

4.7.2. 

But since the number of check sums obtainable, ignoring redundancy, 

is, 
k'-l 

J = L 
t=b 

(k'-l)! 
t! (k'-l-t)! 

then from equation 4.7.2., 

(k'-l)! k'-l 
n = 1 + J + L 

t=b 
(t-l)! (k'-1-(t-1»! 

4.7.3. 

4.7.4. 
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If we expand the final term, of equation 4.7.4. 

(k'-l) = + 1! 

• • • • •• + 

(k'-l) (k'-2) 
2! + 

(k'-l) (k'-2) ..••.... (k'-b+1) 
(b-1) ! 

Similarly if we expand J, equation 4.7.3. 

= 1 + (k~~l) + (k'-1~~k'-2) + ...•.•..•.•... 

+ (k'-l) (k'-2) •.•..•.. (k'-b) 
b! 

So that 

k'-l r 
t=b 

(k'-l)! 
(t-l)! (k'-1-(t-1»! 

= J - 1 + (k'-1)(k'-2) ...•• (k'-b+1) 
(b-1) ! 

(k' -1) ! 
= J - 1 + (b-1)! (k'-b)! 

therefore putting in equation 4.7.4. 

but, 

and 

therefore, 

(k'-l)! 
n = 2J + (b-l)! (k'-b)! 

J = d 
m 

(k'-l) ! Rd (b) = -:--~~~~-:­(b-l)! (k'-b)! 

n = 2d + Rd(b). 
m 

4.7.5. 

4.7.6. 

When incomplete sets of weight b are used, (that is circu1ants), 

Rd(b) is the number of k'-tuples unused after forming all possible 
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check sums by adding pairs of k'-tup1es. Therefore the above equation 

for n holds provided the modified form of Rd(b) is used, from equation 

4.6.6. 

n = 2d ~ Rd(b+1) - L m. [po -
m . ~ ~ 

~ 

2p.b 
~ 

k' ) 
When one utilizes redundancy this expression is modified slightly, 

in the following ways. 

a) Using-1. 

The length is reduced by one and the minimum distance remains the 

same, therefore, if n' is the new length, 

n' = 2d + Rd(b)-l. 
m 

b) Using +0. 

The length and minimum distance are increased by one, but 

n' = 2(d +1) + Rd(b} = n+2, so that 
m 

n' = 2d' + Rd(b) - 1 = n+1, m 

where d' is the new minimum distance. If we add generally m,+O k-tup1es, 
m 

the length increases by m, and d' = d + m. m m 

But 

n' = 2(d +m) + Rd(b) = n + 2m, so that 
m 

n' = 2d' + Rd(b) - m = n + m. 
m 

c) . Using +1. 

gives 

The results are the same as for +0, generally adding m,+I k-tup1es, 

n' = 2d' + Rd(b) - m. 
m 

Since for the codes listed in Example 4.5.1., J = d , we compare 
m 

them with d from Hel·gert and Stinaff40 , below, in Table 4.7.l. 
m 
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He1 gert and Stinaff40 is a table of maximum minimum distances 

for all codes of length n ~ 127 and information digits k ~ 127. It 

effectively gives the maximum minimum distance possible, as specified 

by all known upper bounds at that time, for a given nand k. 

TABLE 4.7.l. 

n k d d 40 
m m 

7 7 1 1 

8 " 2 2 

12 " 3 4 

13 " 4 4 

17 " 5 6 

18 " 6 7 

21 " 7 8 

22 " 8 8 

25 " 9 10 

26 " 10 11 

29 " 11 12E 

30 " 12 12-13 

34 " 13 14-16 

35 " 14 15-16 

37 " 15 16 

38 " 16 16
E 

42 " 17 17-19 

43 " 18 18-20 

45 " 19 20AE 

46 " 20 20-21 

48 " 21 22E 

50 " 22 24 

51 " 23 24 

54 " 24 24-26 

55 " 25 24-26 

56 " 26 24-27 
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TABLE 4.7.1- (Contd) 

n k d d 40 
m m 

63 7 31 311 

64 " 32 32 

6 6 1 1 

7 " 2 2 

10 " 3 3 

11 " 4 4 

15 " 5 6 

16 " 6 6E 

20 " 8 8 

22 " 9 9
G 

23 " 10 10 

26 " 11 12 

27 " 12 12 

31 " 15 151 

32 " 16 16 

5 5 1 1 

6 " 2 2 

9 " 3 3 

10 " 4 4 

13 " 5 5 

14 " 6 6 

15 " 7 7B 

16 " 8 8 

4 4 1 1 

5 " 2 2 

7 " 3 31 

8 " 4 4 

3 3 1 1 

4 " 2 2 

The raised alphabetic indices refer to various bounds in the 

tables of He1egert and . ff40 
St~na . 

15 8 4 4 (63,55,-1,+0) 

14 8 3 4 (63,55,-1). 
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4.8 Encoding and Decoding. 

Since it is not the purpose of this the~IS to investigate the 

hardware implementation of encoders and decoders for error-correcting 

codes, a simple and informal method is offered. 

4.8.1. Encoding. 

Figure 4.8.1. offers an encoding method which has reasonable 

storage. A read-only-memory is addressed by a binary counter which 

counts up to n, the length of the code. For each value of n, the 

read-only-memory outputs a k'-digit binary k'-tuple corresponding to 

the n'th colu~ of the generator matrix. Each digit of the k'-tuple 

is weighted, by mUltiplication modulo 2, by the corresponding message-

digit. The k' weighted digits are summed and added to digit k, the 

resultant being an encoded digit. 

The total storage then being S, 

S = t 2log2 (n) j . k' • 

One advantage being that if k' is relatively large but the code 

length short, then the storage is small. Read-only-memories exist at 

present that can be addressed by 12 input lines, so that this is 

12 limited to codes of length n ~ 2 • The number of output lines 1S 

not critical since the output k'-tuple can be sub-divided among a number 

of read-only-memories, each of which is addressed by the t 10g2 n j 
inputs. 

4.8.2. Decoding. 

In section 4.3. we saw that if a set of check sums can be obtained 

on a digit, then a similar set can be obtained by cyclically shifting 
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all circulants one digit, with respect to themselves. 

In the decoder then we'have a shift-register of length p, 

corresponding to each circulant of order p, contained in the generator 

matrix. Connections are made from the shift-registers to obtain J 

check sums on the first message-digit. This is shown in figure 4.8.2. 

only in a general way. Decoding is then performed in the following 

i) with gate G2 closed and Gl , and G3 open, the received word 

is fed in. 

ii) digit m(l) is decoded, and its effect cancelled from the 

shift-registers •. 

iii) gate G
l 

is closed, G2, and G
3 

opened and the shift-registers 

clocked once. 

iv) the second digit m(2) is decoded and cancelled. 

v) continue- iii) and iv) until k' = k-l, of the message-digits 

have been decoded. 

vi) at this point, provided t ~ (d -1)/2 errors occurred, the m 

shift-registers contain approximately n estimates of the k'th digit, 

in the presence of the terrors. 

vii) with G
l 

closed, when the registers are clocked for the k'th 

time, G3 is closed so that each adder sees only one input, and digit k 

is decoded and cancelled. 

viii) steps ii) to vii) can be repeated to_ check for uncorrectable 

error patterns. 
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CHAPTER 5 

5. CODES DERIVED FROM THE CLASS OF BINARY CODES. 

5.1 Introduction. 

The most useful class derived below from the constructions in 

Chapter 4 are those codes where k = k', and the overall parity-check 

is removed. We show that it is possible to obtain a better code 

sometimes with this method. 

We also examine codes derived from extending the generator 

matrix in various ways and obtain one class which is completely 

orthogonalizable with n = 2 d • 
m 

However some classes will be seen not to be cyclically decodable 

and this puts a practical limitation on their use. 

5.2 Codes without the Overall Parity-check. 

The codes developed in Chapter 4 assumed the generator matrix 

contained an overall parity-check on the k'th message-digit. The 

codes were developed using circulants such that J orthogonal check 

sums could be guaranteed on the first k' message-digits and the k'th 

message-digit was decoded by cancelling the decoded estimates of the 

first k' message-digits, from the received code word. 

Consider the codes developed in section 4.4., then, if the overall 

parity-check is removed we will have a code in which we can guarantee 

at least J check sums on all k = k' message-digits. The code length 

. n, will be the same, but we are no longer sure of d , based upon the 
m 

arguments in section 4.7. The redundancy is determined by the circulants 

and is therefore the same, but a more efficient use can be made of it now. 
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The uses of redundancy can now be outlined as below. 

a) The k-tup1e 111 •••• 111. 

As before we remove the circu1ant generated by 2k_1, from the 

generator matrix. The length is reduced by one and J remains the 

same. 

b) The k-tup1e1000 •••• 001. 

Since the overall parity-check has been removed, this has the 

form 000 •••• 001 and is a valid check sum requiring no increase in 

length. 

c) The k-tup1e 0111 •••• 110. 

Again this now appears as 111 •••• 110 and can be used by the 

addition of the circu1ant generated by 2k_1. 

Consider the codes developed in section 4.5., we will now 

re-examine the redundancy and develop codes, for k = 6. 

i) n = 7, J =. 1, {63,31} 

111101 

011111 

111011 

101111 

110111 

000001 

this is now a valid check sum and gives the code, 

n = 7, J = 2. 

ii) n = 13, J = 3, {63,31,15} 

In Chapter 4 we obtained 1111111 and 0111110. Deleting the k'th 

digit gives 111111 and 111110, but from (a) and (b) above this would 

imply deleting and adding the circu1ant generated by 2k_1, which is 

pointless, so we use, 



101 

111011 

110011 

111001 

001111 

101111 

100111 

110111 

000001 

iii) n 

010101 

010111 

111101 

111111 

= 

iv) n = 

110111 

001111 

111001 

000001 

v) n = 

000111 

110011 

110101 

000001 

giving the code, 

n = 13, J = 4, 

18, J = 5, 

110101 

011101 giving 

011011 n = 17, 
101101 

011111 

000001 

21, . J = 6, 

110101 100111 

010111 110011 

011101 - 010101 

111111 000001 

25, J = 8 

100011 110001 

110111 010111 . 
101011 100111 

111111 000001 

{63,31,15L 

{63,31~23,27,21} 

codes, 

J = 6, {31 ,23 ,27,21 L 

{63,31,15,23,21} 

giving, 

n = 20, J = 8, {31,15,23,21L 

{63,31,15,23,71 

giving, 

n = 24, J = 10, {31,15,23,71. 

Note, this code is quasi-cyclic, since all circu1ants have the 

same order. 
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vi) n = 27, J = 9, {63,31,15,23,7,21} 

010101 000111 010111 

110111 110101 100111 giving, 

100011 110011 110001 n = 27, J 12, {63,31,15,23,7,21}. = 
000001 000001 000001 

vii) n = 34, J = 12, {63,31,15,23,27,7,11} 

110001 000111 011001 001011 

011011 100011 100111 110101 

101011 100101 111110 111110 

000001 000001 

giving codes, 

n = 34, J = 14, {63,31,15,23,27,7,11} 
... 'f ' 

n = 35, J = 15, { 11 ,,+I} 

n = 36, J = 16, { 11 ,+I,+I} , 

Without repeating section 4.5. the following codes are also 

possible. 

n = 40, J = 17, {63,31,15,23,27,7,11,13} 
" 't ' 

n = 41, J = 18, J 11 , ,+I} . 
n = 43, J = 20, 

{ 11 ',9 } . 
n = 48, J = 22, { 11 ,3} 

'-
, 

n = 50, J = 23, { 11 ,3,9,+I} , 

n = 54, J = 26, { 11 ,21,3,5} 

Comparison with the optimum for k = 6, developed in Chapter 4, 

we can see that the codes above are never an improvement. Although 

at the points where the performance is equal, the above codes are 

easier to decode, since gating to decode the k'th digit is not required. 

However sometimes these codes are better than those of Chapter 4's 

optimum set. To show this consider the code below, for k = 7. 
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n = 29, J = 7, {127,63,55,47,31} 

from redundancy we surprisingly obtain 

1011101 

0110111 

1101011 

0000001 

giving, 

1010111 

0111011 

1101101 

0000001 

1110101 

1011011 

0101111 

0000001 

1111001 

1100111 

0011111 

0000001 

0111101 

1110011 

1001111 

.0000001 

n = 29, J = 12, {127,63,55,47,31}. 

Note, if the generating number 127, is deleted we obtain the quasi-

cyclic code. 

n = 28, J = 11, {63;55,47,31}. 

The best codes from Chapter 4 for k = k'+l = 7, were, 

n = 29, .J = 11, and n = 28, J = 10. 

Obviously then, when choosing a code with given k and error-correcting 

capability t, both constructions should be considered. 

Encoding and decoding are implemented in the same manner as for 

Chapter 4 without special provision for the k'th digit, which ~s not 

now necessary. 

The codes developed above, for the sake of clarity, are given in 

Table 5.2.1. below and compared with dm from Helegert and Stinaff40 • 

Another code is included in Table 5.2.1. which is better than 

the construction in Chapter 4 that is n = 21" k = 7, J = 8 compared 

with n = 21, k = 7, d = 7 in Chapter 4. 
m 

In section 4.5. we saw that the most efficient form of redundancy 

was the form 0111 •••• 110. However with the overall parity-check removed 

the most efficient form is that which required no increase in length, 

that is, the form 000 •••• 001. 
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TABLE 5. 2 • 1. 

n k J d 40 
m 

7 6 2 2 

13 6 4 4 

17 6 7 

20 8 8 

24 10 10E 

27 12 12 

34 14 16 

35 15 16 

36 16 16 

40 17 18-19 

41 18 19-20 

43 20 20 

48 22 22 

50 23 24 

54 26 26 

29 7 12 12E 

28 7 11 12 

21 7 8 8 {63,55,47,-I} 

15 5 6 7 

10 5 4 4 

21 5 9 10 

9 4 4 4 

13 4 6 6 

5.3 Extending the Generator Matrix. 

With the codes developed in Chapter 4 one eventually utilizes 

all circu1ants from the system of k'-tuples and obtains the (n, k = k'+l) 

code, with J check sums and redundancy Rd(b), where, 
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k' k' ! k' n = I b! (k-b) ! = 2 . 
b=O 

k'-l (k'-l)! k'-l 
J = I b! (kt-I-b) ! = 2 5.3.1. 

b=O 

Rd(b) = Rd(O) = O. 

Obviously this is a very efficient set of k-tup1es and implies 

all check sums can be obtained by adding pairs of received digits. 

k' We will represent such sets of k-tup1es, that is all 2 k'-tup1es 

k' plus overall parity-check, by the symbol SI. We will show constructions 

k' 
where SI is considered as the basic set present in the generator 

matrix and other sets are added to the basic set, to extend the 

generator matrix. 

Let Sk' be the complete set of k'-tuples with no overall parity-

check. This set and others to be introduced are to be interpreted 

as follows. If a set S~ is used in the generator matrix of a code 

d with k digits of information, then each (d+1)-tup1e E SI is considered 

as a k-tuple whose k-d-l other digits are zero's. 

Consider the set of k-tup1es, sk, which can be written, 

where U is set union. 

For example, 

gives, 

S4 = S3 U S3 
1 

S3 U S3 
1 

11111 1 1 1 0 0 0 0 0 0 0 0 

S4 = 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 

110 101 0 0 1 101 0 1 0 0 

101 100 1 0 1 0 1 100 1 0 

5.3.2. 
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However from equation 5.3.2., 

5k-l k-2 k-2 
= 51 U 5 

So that we can rewrite equation 5.3.2. in the following form. 

To extend the generator matrix, for the codes of this section, 

we begin with the set 

k-2 k-3 
other sets 51 ,51 

k' k-l 
51 = 51 ,and extend by forming its union with 

k 
etc. until we can extend no more, whereby 5 

is. contained in G. 

Consider a code whose generator matrix contains the set, 

k' k'-l k'-2 k'-i 
5 = 51 U 51 U 51 U ••• U 51 

then, k = k'+l and from equations 5.3.1. 

k' k'-l k'-2 k'-i n = 2 + 2 + 2 + •••• + 2 . 

k' k'-l Also, from 51 we can obtain 2 check sums on the first k' message-

digits, but, from 

from 
k'-l 

51 , 

from 
k'-2 

51 

from 

Therefore, 

equation 5.3.1. 

J = ·2k '-2 on first k'-l message-digits 

J = k'-3 first k'-2 message-digits 2 on 

k'-i-1 
J = 2 on first k'-i message-digits. 

k'-l k'-2 k'-3 k'-i-l 
J = 2 + 2 + 2 + ••••• + 2 

only for the first k'-i message-digits. If the columns of the 

5.3.3. 
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generator matrix are arranged such that the first k'-i digits of 

the columns are , ~ circulants of k'-i, tuples, then the first 

k'-i message-digits can be decoded cyclically. Once this ~s done 

special provision must be made for decoding the remaining i+l message-

digits. Alternatively one may decode using k majority-logic gates, 

and use the decoded estimates of the first k'-i digits to cancel their 

effect before decoding the final i+l digits. A general decoder of 

this type is shown in figure 5.3.1. 

Once the effect of the first k'-i digits have been cancelled 

k' 
from the generator matrix, there remains 2 columns, of G, with parity-

checks on each of the remaining i+l message-digits., 

k' 
Obviously there are 2 columns with a parity-check on digit k 

k' k'-l 
in the subset SI. There are 2 columns in k' 

subset SI parity-

k'-l 'checking digit k' and 2 columns in subset k'-l 
SI parity-checking 

k' 
digit k', giving a total of 2 • Eventually, for digit k'-i-l, the 

k'-l k' k'-2 
number of columns giving a parity-check are, 2 from SI ' 2 

k'-l k'-3 k'-2 k'-i k'-i 
from SI 2 from S, , 2 from SI • This sums 

k' k' 
to 2 and the information is available to obtain the necessary J < 2 

orthogonal check sums, of equation 5.3.3.Sfter cancellation. 

We will call this construction 5.3.a. outlined as below. 

Construction 5.3.a. 

k' k'-l k'-i 
S = SI U SI U ••••• ~ U SI 

k' k'-l k'''':i 
n = 2 + 2 + •••••• -+ 2 

2k'-1 k'-2 
J = + 2 + • • • •• + 2 

k'-i-l 

k = (k'+l) information digits. 
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Decode digits (1,2, ••• , k'-i), then (k-i+1, ••• , k). If we examine 

message-digit m(l) there are columns parity-checking this digit as 

follows, 

k'-l k' k'-2 k'-l k'-i-1 k'-i 
2 from SI' 2 from SI ' down to 2 from SI • 

Thus there exists a code word of binary weight, w(l), where 

and since, 

k'-l k'-2 k'-i-l w(l) = 2 + 2 + ••••• + 2 = J 

w(l) ~ d ~ J 
m 

d = J. 
m 

Therefore, n = 2d for this construction. 
m 

Consider a code whose generator matrix contains the set, 

S = k' k'-l *k'-i 
Sl u Sl U ........ U Sl ' 

where *k'-i is a subset of the k'-i and which is a code for Sl set Sl , 

k = k'-i+h *k'-i Let ~, . and J k , . be the length of the subset Sl and 
1< -1. -1. 

the number of check sums respectively, including redundancy, obtainable 

*k'-i on the first k'-i digits, from the subset Sl 

Then, 

k' k'-l n = 2 + 2 + ...... +~, . -1. 

k'-l k'-2 5.3.4. 
J = 2 + 2 + .... + J k , . 

-1. 

where again J is the total number of check sums obtainable on the first 

k'-i message-digits. After decoding and cancelling their effect, there 

are enough parity-checks on the remaining i+l digits to form J check sums. 

Since the set, 

= sk' k'-l 
S 1 U Sl 

has minimum distance 

u ...... U 
k'-i+l 

Sl 

d ' = 2k '-1 + 2k '-2 2k '-i + •••••• + 
m 5.3.5. 
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then from equation 5.3.4. and 5.3.5. 

J = d' + J
k

, . m -1 

but J k , . = d k' . -1 m,-1 
and 

~'-i = 2d k . + Rd(b) - m m, -1 

and so 

n = 2d' + 2d k' . + Rd(b) - m m m,-l 

J = d + d k . m m,-1 

We call this construction 5.3.b. outlined below. 

Construction 5.3.b. 

k' k'-l 
S = SI U SI' U •• •• •• 

2
k' k'-l n = + 2 + 

*k '-i· 
U SI 

+ 2d k' . + Rd(b) - m m, -1 

k'-l k'-2 
J = 2 + 2 + •••• + d k' . m, -l 

. 
k = (k'+l) information digits. 

Decode digits (1,2, ••• , k'-i) then (1<.'-i+1, •••• , k). 

A list of constructions is given in Table 5.3.1. and is preceeded 

*k-i 
by the notation (n,J) which denotes the code used as the subset SI 

from section 4.5. 

Although construction 5.3.a. is a special case of 5.3.b. when 

*k'-i k'-i SI = SI ,they have been presented separately because construction 

5.3.a. is a class of codes with zero redundancy which can be constructed 

without reference to the constructions in Chapter 4. 

From equations 5.3.1. we saw that if the complete set of k'-tup1es 

k' S1 is used to form a code then we can obtain J check sums, where, 



k'-l 
J = r 

b=O 

110 

(k~-l) ! 
b! (k-b)!' = 

k'-l 
2 

Of course this only applies to the first k' message-digits, the k'th 

message-digit is decoded specially. However if the overall parity-

check on message-digit m(k} is removed, we can still obtain J check 

sums on the k' message-digits, The set of k'-tuples without overall 

k' k'-l parity-check, S , therefore has J = 2 • With this piece of 

information we can propose another construction. 

Construction 5.3.c. 

S = mSk U S~-l U s~-2 U 

2k 2k-l + 2k-2 + n = m. + 

k information digits. 

• • •• + 
k-i 

2 

k-i-l 
+ 2 

Decode digits (1,2,~ •• , k-i) then (k-i+l, ••• , k). 

m = 1,2,3, ••••••••••• 

In this way the generator matrix may be extended indefinitely. 

Again, as in construction 5.3.a., there is a code word of weight 

J, therefore J = d so that n = 2d • m m 
k-i *k-i 

One can generalize the construction by replacing SI by SI' , 

with results similar to construction 5.3.b. 

For all constructions considered cyclic decoding ~s not too 

difficult providing i+l is small. 
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TABLE 5. 3. 1-

Codes constructed using constructions 5.3.a. and h. are denoted 

hy the letters ' a' and 'h' respectively. 

S 6 *5 
k = 7 Decode (1,2, ••• ,5) --+ (6,7) = SI U Sl 

40 
(0,0) n = 64 d = 32 'a' d = 32 

ID ID 

33F (6,1) 70 33 'h' 

(7,2) 71 34 'h' 34 

(11,3) 75 35 'h' 35~36 

(12,4) 76 36 'h' 36
D 

(15,5) 79 37 'h' 36-38 

(16,6) 80 38 'h' 36-39 

(20,8) 84 40 'h' '40D 

(22,9) 86 41 'h' 40-42 

(23,10) 87 42 'h' 40-42 

(26,11) 90 43 'h' 43-44 

(27,12) 91 44 . 'h' 44
C 

(31,15) 95 47 'h' 47 

(32,16) 96 48 'a' 48D 

S 6 5 *4 
k 7 Decode (1,2,3,4) --+ (5,6,7) = SI U Sl U SI = 

(0,0) 96 48 ' a' 48D 

(5,1) 101 49 'h' 49F 

(6,2) 102 50 'h' 50 

(9,3) 10-5 51 'h' 51-52 

(10,4) 106 52 'h' 52D 

(13 ,5) 109 53 'h' 53-54 

(14,6) 110 54 'h' 54 

(15,7) 111 55 'h r 55 

(16,8) 112 56 r a r 56D 
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s = S6 U S5 U S4 U S*3 k = 7 Decode (1,2,3) ~ (4,5,6,7) 1 1 1 1 

(0,0) 112 56 ' a' 56D 

(4,1) 116 57 'b' 57F 

(5,2) 117 58 'b' 58 

(7,3) 119 59 'b' 59F 

(8,4) 120 60 'a' 60 

s = S6 u's5 U S4 U S3 U S*2 k = 11111 7 Decode (1,2) ~ (3, .... ,7) 

(0,0) 120 60 ' a' 60 

(3,1) 123 61 'b' . 62 

(4,2) 124 62 ' a' 62D 

s = S6 U sS U S4 U s3 U S*2 U SI 
1 111 1 1 k = 7 Decode (1,2,3, •... ,7) 

(0,0) 124 62 'a' 62D 

(2,1) 126 63 ' a' 63 

This completes the codes for k = 7, ,n ~ 27. 

s = sS U S*4 k = 6 Decode (1,2,3,4) ~ (5,6) 1 1 

(0,0) 32 16 ' , a' 16 

(5,1) 37 17 'b' 17F 

(6,2) 38 18 'b' 18 

(9,3) 41 19 'b' 19-20 

(10,4) 42 20 'b' 20D 

(13,5) 45 21 tb' 21-22 

(14,6) 46 22 tb' 22 

(15,7) 47 23 'b' 23 

(16,8) 48 24 ' a' 24D 
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S 
5 4 *3 

= SI U SI U SI k = 6 Decode (1,2,3) - (4,5,6) 

(0,0) 48 24 'a' 24D 

(4,1) 52 25 'b' 25F 

(5,2) 53 26 'b' 26 

(7,3) 55 27 'b' 27 

(8,4) 56 28 'a' 28D 

S = S5 U S4 U S3 U S*2 
111 1 

k = 6 Decode (1,2) - (3, ••. ,6) 

(0,0) 56 28 'a' 28D 

(3,1) 59 29 'b' 29 

(4~2) 60 30 'a' 30D 

S = S5 U S4 U s3· U S2 U SI k = 6 Decode (1,2, •.• ,6) 
1 1 1 1 1 

(0,0) 60 30 'a' 30D 

(2,1) 62 31 ' a' 31 

This completes the codes for k = 6, n ~ 26. 

S = S4 U S*3 k = 5 Decode (1,2,3) - (4,5) 
1 1 

(0,0) 16 8 'a' 8 

(4,1) 20 9 'b' 9F 

(5,2) 21 10 'b' 10 

(7,3) 23 11 tb' 11 

(8,4) 24 12 ' a' 12D 

S 
4 3 *2 k = 5 Decode (1,2) (3,4,5) = SI U SI U SI -
(0,0) 24 12 'a' 12D 

(3,1) 27 13 tb' 13 

(4,2) 28 14 ' a' 14D 
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s = S4 U S3 U S2 U Sl k = 5 Decode (1,2,3,4,5) 1 1 1 1 

(0,0) 28 14 'a' 14D 

(2,1) 30 15 'a' 15 

This completes the codes for k 5, 5 
= n ~ 2 • 

S = S3 U S*2 k = 4 Decode (1,2) -l- (3) 1 1 

(0,0) 8 4 'a' 4 

(3,1) 11 5 'b' 5B 

(4,2) 12 6 'a' 6 

S = S3. U S2 U Sl k = 4 Decode (1,2,3,4) 111 

(0,0) 12 6 'a' 6 

(2,1) 14 7 'a' 7 

This completes the codes for k 4, 4 
= n ~ 2 . 

s = S2 U Sl k = 3 Decode (1,2,3) 1 1 

(0,0) 4 2 ' a' 2 

(2,1) 6 3 'a' 3 

And this completes the codes we can construct for k ~ 7, n ~ 2k , 

using constructions 5.3.a and 5.3.b. 
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CHAPTER 6 

6. NOTES ON THE MINIMUM DISTANCE OF GROUPS OF BINARY k-TUPLES. 

6.1 Introduction. 

We develop an expression for the minimum Hamming distance of a 

complete set of k-tuples of weight x, 0 ~ x ~ k. We then show how 

to build up tables of minimum distances for binary k-tuple sets for 

any k. For large k even, it is seen to be not too difficult a task. 

The minimum distance of codes, whose generator matrix is composed 

of complete sets of k-tuples of various weights, can be found from 

the tables. This introduces codes not seen in the previous sections 

and for which the author has not been able to discover 'a decoding 

procedure. 

6.2 Tables of Minimum~distance. 

Th '2k d·· b . k 1 h· h b ere are ~st~nct· ~nary -tup es w ~c as a set, can e 

divided into groups of binary weight x, 0 ~ x ~ k. 

Consider the group of k~tuples of weight x arranged in a column. 

This column can be considered as k single digit columns so that each 

k of the k columns can be considered as an N -tuple, where x 

k k '. N = --:-......,.,,-....-:-
X x! (k7"x)! 

Since all weight x k-tuples cOmprise the k columns, the binary 

weight of a single column,~(Nk), is equal to the number of (k-l)-tuples 
. x 

whose binary weight is (x-I). Therefore, 

k (k-l)! W (N ) = -:--~~,...;...---:--=-
X (x-I)! (k-x)! 6.2.1. 

If we consider all linear modulo 2 combinations of the k columns 

as a code space, then each column will form a row in the generator 
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matrix of the code. 

We can confine our attention for the moment to those code words 

resulting from the linear combinations of 'a' rows of such a generator 

matrix. In such a situation each k-tup1e in the set can be divided 

into an 'a'-tup1e and (k-a)-tup1e. Since the set of all x weight 

k-tup1es are present, each a-tup1e of weight n must associate with 

all (k-a)-tup1es of weight (x-n). Since there are, 

a a! 
N = --:---:"~-:-..,.. 

n n! (a-n)! 

a-tup1es of weight n, then corresponding to each there are, 

Nk-a = -:----"....;(~k_-_a~) .;..,.' -....-:­
x-n (x-n) (k-a-x+n)! 6.2.2. 

(k-a)-tup1es of weight x-no However if n is even the a-tup1e will 

generate a code word digit of binary zero. Thus the binary weight of 

k k an N -tup1e which is the linear combination of ANY 'a' columns, W (a), x x 

is given by," 

a 

I 
n=l 

k-a N . 
x-n , 6.2.3. 

n 
(1 - (-1) ) 

2 

which is the number of odd-we"ight 'a' -tup1es. Thus any code words 

that are the linear combination of 'a' rows of the generator matrix, 

have the same weight. We know that the minimum distance of a binary 

code is equal to the minimum binary weight of its code words, and 

therefore, 

d = min (~(a), m x 1 ~ a ~ k). 

Immediately we can see that, in equation 6.2.3. 

iMd 
I 

i) if x is oddA, a = k, then n = x only, and 

Wk(k) = Nk = d (max). 
x x m 
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andl 
ii) if x ~s even", a = k, then n = x only, but 

r.i-(k) = 0 = d • x m 

Therefore if x is even, 

d = 0 
m 

and sets like this have no use as code spaces, when used alone. 

Consider the codes whose generator matrix comprises the sets 

of k-tup1es of weights x and x-I, then 

dm~ min O.f(a) ) + min k 
(Wx- 1 (a)) 1 ~ a ~ k 

However, 

x 

C~l 
n 

= min Na Nk- a (1-(-1) ) 
n x-n 2 

a 
Na Nk- a + I n x-1-n n=1 

Lf1 
= min Na 

{N
k

-
a + Nk- a } 

n x-n x-1-n 

k-a (x-n) 
N x-1-n 

= Nk- a 
x-n . (k-a-x+n+1) 

therefore, 

n (1-(-1) ) 
2 

n (1-(-1) ) 
2 

Nk-a k-a 
+ N x-n x-1-n 

= Nk- a 
x-n 

(x-n) ) 
k-a-x+n+1 

but 

Nk-a = Nk+1-a • (k+1-a-x+n) 
x-n x-n (k+ I-a) 

therefore, 

) 

) 

Nk-a k-a 
+ N x-n x-1-n 

= Nk+1-a [k+1-a-x+n + x-n ) 
x-n k+1-a k+1-a 

= Nk+1- a 
x-n 

and therefore, equation 6.2.4. becomes, 

6.2.4. 
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m 

1 ~ a ~ k. 
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But this is the expression for the d of the set of (k+l)-tuples 
m 

of weight x, except that 1 ~ a ~ (k+l). Thus if 'a' < (k+l), for a 

given 'a' the two systems generate code words of the same weight. If 

x is even, the system of (k+l)-tuples has d = 0, otherwise the two 
m 

systems have the same minimum distance, since 

k k+l 
W (k+l) = N = d ( ). x x. mmax 

The above result has another significance, this being, 

6.2.5. 

for 1 ~ a ~ k. 

Thus having constructed a table of weights for the k-tuple sets, 

of weights x, for various values of 'a', one can construct the table 

of weights for the (k+l)-tuple sets, of weights x, for the same values 

of 'a', up to a = k, x = k. The table for the (k+l)-tuples is then 

completed by the relationships, 

~+l 
k+l (a) = 0 if a = even. 

= 1 if a = odd. 6.2.6 .• 

Wk+l (k+l) = Nk+l 
if x = odd. 

x x 

= 0 if x = even. 

Let the tab les take the form below. 
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x 
a ° 1 •. k 

° ° ° . . ° 
1 ° 

J«a) x 

k ° 
For 'a' > 0, let a row of the table be represented by J«a), 

where, 

and let, 

k-a (Nk-a k-a k-a k-a 
N = O-n' N l-n , •...• , NO ' Nl ' ••.••.••. 

..... , 

but if, 

k-a 
N k-a' 

k-a 
Nk l' ...... , -a+ 

x < n , k-a 
N x-n = ° 6.2.7. 

k-a-
x > k-a+n, N = ° x-n 

therefore, 
n (a-n) 

k-a' • 'k-a 
N = (0,0, •.. ,0, NO 

k-a k-a" , 
N 1 ' •••• , Nk _ a' 0 •••••••• ° -) 

and the centre section can be seen to be the coefficients of the 

binomial expansion of (y+l)k-a, where y is an arbitrary unknown. 

Thus a row of the table can be represented by the expression below. 

k a {a {' n. , k-a , (a:-n)~} (l-(-l)n} 
W (a) = n~l . Nn 0, ..•. ,0, b.e.c.(y+l) ,0, ••• ,0 2 

6.2.8. 

Where b.e.c. (y+l)k-a means, the binomial expansion coefficients 
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Two examples of constructing the tables follow. 

Example 6.2.1. 

Let k = 2, then 

i) if a :1, from equation 6.2.8. 

W2(1) = Ni(o, b.e.c.(y+l)k-1 ) 

= 1 (0,1,1) = (0,1,1) 

which is the first row of the table. 

ii) if a = 2 

W
2

(2) = Ni(o, b • e . c. (y+ 1) 0 , ° ) 
= 2 (0,1,0) = (0,2,0) 

which is the second row of the table. 

x 
a ° 1 2 

° ° ° ° 
1 ° 1 1 

2 ° 2 ° 

Example 6.2.2. 

Let k = 3, then 

i) if a = 1, from equation 6.2.8. 

W
3

(1) = Ni (0, b.e.c.(Y+1)2) 

= 1 (0,1,2,1) = (0,1,2,1) 
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ii) if a = 2 

3 2 ( 1 ) W (2) = NI 0, b.e.c~(y+l) ,0 

= 2 (0,1,1,0) = (0,2,2,0) 

iii) if a = 3 

3 3 ( . 0) 3 ( 0) W (3) = NI 0, b.e.c.(y+1) ,0,0 + N3 0,0,0, b.e.c.(y+1) 

= 3 (0,1,0,0) + 1 (0,0,0,1) 

(0,3,0,0) + (0,0,0,1) 

= (0,3,0,1). 

giving the table 

x 

a ° 1 

° ° ° 
101 

2 ° 2 

3 ° 3 

2 3 

° ° 
2 1 

2 ° 
° 1 

Using the information so far presented the tables up to k = 10, 

have been constructed and are given as Table 6.2.1. 



TABLE 6. 2 • 1. 

k = 2. 
x 

Wk(a) 0 1 2 
x.;.......;..-f------

a) 

o 0 

1 0 

o 0 

1 1 

2 0 2 0 

N
2 

1 2 1 
x. 

k = 4. 
x 

Wk(a) 0 1 2 3 4 x __ ~ ____________ __ 

a) 

k = 6. 

o 0 0 0 0 0 

1 0 1 3 3 1 

202 4 2 0 

3 0 3 3 1 1 

4 0 

4 6 

x 

4 0 

4 1 
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~(a) 0 1 2 3 4 5 6 x __ ~ __________________ __ 

000 0 0 0 0 0 

1 0 1 5 10 10 5 1 

2 0 2 8 12 8 2 0 

a) 3 0 3 9 10 6 3 1 

404 888 4 0 

5 0 5 5 10 10 1 1 

6 0 6 0 20 0 6 0 

N6 1 6 15 20 15 6 1 x 

a) 

k = 3. 
x 

wk(a) 0 1 2 3 
x---r----------
000 

101 

2 0 

3 0 

o 
2 

o 
1 

N3 1 

220 

301 

3 3 1 
x 

k = 5. 
x 

Wk(a) 0 1 2 3 4 5 
x __ ~-----------
0000000 

1 0 1 4 641 

a) 2 0 2 6 6 2 0 

303 642 1 

4 0 

5 0 

N5 1 

4 444 0 

5 0 10 0 1 

5 10 10 5 1 
x 

k = 7. 
x 

Wk(a) 0 1 2 3 4 5 6 7 x--+--------------o 0 0 0 0 0 00· 0 

1 0 1 6 15 20 15 6 1 

2 0 2 10 20 20 10 2 0 

a) 3 0 3 12 19 16 9 4 1 

4 0 4 12 16 16 12 4 0 

5 0 5 10 15 20 11 2 1 

6 0 6 6 20 20 6 6 0 

7 0 7 0 35 0 21 0 1 

N7 1 7 21 35 35 21 7 1 
x 
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k = 8. 
x -

~(a) 0 1 2 3 4 5 6 7 8 
x 

0 0 0 0 0 0 0 0 0 0 

1 0 1 7 21 35 35 21 7 1 

2 0 2 12 30 40 30 12 2 0 

3 0 3 15 31 35 25 13 5 1 

a 4 0 4 16 28 32 28 16 4 0 
-

5 0 5 15 25 35 31 13 3 1 

6 0 6 12 26 40 26 12 6 0 

7 0 7 7 35 35 21 21 1 1 

8 0 8 0 56 0 56 0 8 0 

N
8 

1 8 28 56 70 56 28 8 1 
x 

k = 9. 
x -

W 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 8 28 56 70 56 28 8 1 

2 0 2 14 .42 70 70 42 14 2 0 

3 0 3 18· 46 66 60 38 18 6 1 

a 4 0 4 20 44 60 60 44 20 4 0 -
5 0 5 20 40 60 66 44 16 4 1 

6 0 6 18 38 66 66 38 18 6 0 

7 0 7 14 42 70 56 42 22 2 1 

8 0 8 8 56 56 56 56 8 8 0 

9 0 9 0 84 o 126 0 36 0 1 

N9 1 9 36 84 126 126 84 36 9 1 
x 
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k = 10. 
x -

W 0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 '9 36 84 126 126 84 36 9 1 

2 0 2 16 56 112 140 112 56 16 2 0 

3 0 3 21 64 110 126 98 56 24 7 1 

a 4 0 4 24 64 104 120 104 64 24 4 0 -
5 0 5 25 60 100 126 110 60 20 5 1 

6 0 6 24 56 104 132 104 56 24 6 0 

7 0 7 21 56 112 126 98 64 24 3 1 

·8 0 8 16 64 112 112 112 64 16 8 0 

9 0 9 9 84 84 126 126 36 36 1 1 

10 0 10 0 120 o 252 0 120 0 10 0 

N10 1 10 45 120 210 252 210 120 45 10 1 x 

6.3 The Codes. 

From Table 6.2.1. we can form codes by using the sets of weight x, 

x = odd, as the k-tup1e columns of a generator matrix. The table 

column corresponding to x gives the different code word weights .... 

possible so that d is the minimum figure in a column. The table can 
m 

also be used to find the weight enumerators of the code. There are 

k!/~! . (k-a)Jcode words of binary weight w~(a). One can also form 

codes by combining the weights of different columns. If we combine 

b columns, of weights xl,x2""'~' we can specify the generator matrix 

by the set (x) = (x1,x2""'~)' so that 

will be the values Wk (a) + Wk (a) + ••• 
xl x2 

the resulting column of weights 

k 
+ W (a) for 1 ~ a ~ k. For each 
~ 

such value of resultant weight, there are again k!/a! (k-a)! code words, 

of this weight. 

Table 6.3.1. below lists those codes, from the Table 6.2.1., for k = 7, 

whose lengths, n, are the shortest for the given d. Those codes marked 
m 
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with an asterisk are quasi-cyclic. They are compared with d from m 

He1 gert and Stinaff. 4O 

TABLE 6.3.l. 
TABLE OF OPT1HUM CODES FOR k = 7 

n d d40 
(x) m m1 

7 * 1 1 (1) 

8 2 2 (1,7) 

14 * 4 4 (1,6) 

21 * 6 8 (5) 

28 * 7 12 (1,2) 

29 8 12 (1,2,7) 

28 * 12 12 (1,5) or (5,6) 

35 * 14 15-16 (1,5,6) 

35 * 15 15-16 (3) 

36 16 16D (3,7) 

42 * 17 17-19 (3,6) 

43 18 18-20 (3,6,7) 

49 * 22 23 (1,3,6) 

50 23 24 (1,3,6,7) 

56 * 24 24-27 (1,2,5,6) 

56 * 26 24-27 (3,5) 

63 * 28 31 (1,4,5) 

63 * 31 311 (1,3,5) 

64 32 32 (1,3,5,7) 

70 * 33 3l (1,3,5,6) 

71 34 34 (1,3,5,6,7) 

77 * 35 36-37 (3,4,6) 

77 * 36 36-37 (1,3,4) 

84 * 37 40 (1,2,3,5) 

85 38 40-41 (1,2,3,5,7) 

84 * 40 40D (1,3,4,6) 

98 * 42 48 (1,2,3,4) 

91 * 44 44C (3,4,5) 

98 * 48 48 (3,4,5,6) 

105 * 51 51-52 (1,3,4,5,6) 

106 52 52D (1,3,4,5,6,7) 

119 . * 57 59 U,2,3,4,5) 

120 58 60 (1,2,3,4,5,7) 

126 * 63 63 (1,2,3,4,5,6) 

127 64 64 (1,2,3,4,5,6,7) 
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In theorem 4.3.3. we saw that when k is a prime the set of 

all k-tuples can be organised as circulants of order k, except the 

two trivial circulants which have order one. 

We also know that a circulant set of k-tuples is comprised of 

k-tuples of the same weight. Thus the x-weight groups can be organised 

as sets of circulants. 

Therefore the codes in this section, when k is a prime, are 

quasi-cyclic of order k if (0), (k) ~ (x). 

Hence the large number of quasi-cyclic codes of order 7 in 

Table 6.3.1. 

The codes not given in Table 6.3.1. are, 

i) 

ii) 

(x) 

(x) 

= (xl)' 

= (xl,(xl-l», 

xl = even and d = 0 
m 

xl = odd, since a code of the 

same length and d exists with (k+l) message-digits. 
m 

If (1) E (x), then the codes can be arranged in systematic form. 

An interesting point is that knowing the weight enumerators, we 

know all code word weights, thus if an overall parity-check is added, 

to each column of G, on a (k+l)'th digit we can find the resulting 

minimum distance. 

We simply require to know, (if G 

then we have, 

But since, 

when Xl is odd, 

dk+l = o. 
m 

- max 

= max 

= (Xl» max (W
k 

(a» 
Xl 

6.3.1. 



Also as seen earlier, 

127 

= 0 = d m 

when xl is even. So that adding an overall parity-check on a (k+l)'th 

digit is only useful if, 

. (x) = (xl ,xz' ..• ,.~) 

b > 1 and all x. not odd. 
~ 

Let, (x) = (x1,x2'···'~)' where b ~ k and the x. are not all 
~ 

odd, and k 
let max (w(x)(a)) be the maximum weight of any code word in 

the code space generated by (x). k k be the minimum distance Let d and N( ) . m x 

and length of any code word from the code space, respectively. 

Then if an overall parity-check is added on all columns of the 

generator matrix, on a (k+1)'th digit, the minimum distance dk+l is 
m 

given by, . 
Min (d~ , N~x) - max (W~X)(a))) 6.3.2. 

The following example illustrates, this idea for the case 

k = 7, x = (3,4). 

Also Table 6.3.2. gives codes with k = 8 developed from Tables 

6.2.1. and 6.3.1., by adding an overall parity-check. 

Only codes where 

k 
- max (W (x) (a)) ?; (d

k 
- 1) 

m 

are shown. 
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TABLE 6. 3 • 2 • 

CODES WITH k = 8 (OVERALL PARITY-CHECK). 

n d d40 
(x) 

m m 

28 7 11-12 (1,2) 

29 8 12 (1,2,7) 

56 24 24-26 (1,2,5,6) 

63 27 28-30 (1,4,5) 

98 42 46-48 (1,2,3,4) 

119 56 56-58 (2,3,4,5,6) 

126 62 62 (1,2,3,4,5,6) 

Example 6.3.1. 

Let (x) = (3,4) and k = 7. , then from Tables 6.2.1. 

w~ (1) + w~ (1) = 15 + 20 = 35 

W~(2). + Wr(2) = 20 + 20 = 40 

W~(3) + Wr(3) = 19 + 16 = 35 

W~(4) + Wr(4) = 16 + 16 = 32 

W~(5) + Wr(5) = 15 + 20 = 35 

W~(6) + Wr(6) = 20 + 20 = 40 

W~(7) + wr (7) = 35 + 0 = 35 

The code has length, 

7 7 
+ 35 = 70. n = N + N = 35 3 4 

From the set of code word weights we have, 

dk = 32 m ' 

7 = 40. max (W(3,4) (a» 
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Therefore if we add an extra message-digit and an overall 

parity-check, the minimum distance becomes, 

dk+1 = 70 40 = 30 
m 

" 30 < dk = 32, from equation 6.3.2. s~nce m 
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CHAPTER 7 , 

7. CONCLUSIONS AND DISCUSSIONS. 

7.1 "Good" Codes. 

Before assessing the codes presented in the previous chapters 

it is worth discussing what determines if a code is "good" or not. 

There is, in effect, a theoretical form of assessment of "good" 

and a practical one, both of which are helpful in assessing the 

usefulness of a class of codes. 

The theoretical criteria for a "good" code rests upon a 

statement which says that, for a given nand k there always exists 

an (n,k) code with minimum distance at least d'. A statement of 
m 

this form is called a lower bound and the Varsharmov-Gilbert lower 
. 

bound is widely used as a criteria for "good" codes. Basically 

this lower bound states that it is possible to find an (n,k) code 

with minimum distance at least d' for which the following inequality m 

holds, 

H [d~ -n 2J 3 1 - R 7.1.1. 

where; 

H(x) = -x log2(x) - (I-x) log2(1-x) 

= the entropy function. 

R = kin 

= the code transmission rate. 

An individual code then is classed as "good" if its parameters 

(n,k,d) satisfy inequality 7.1.1., since compared to the (n,k,d') m m 

code guaranteed by the bound, then d 3 d' for the same nand k. m m 
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This criteria is used to form an assessment of the performance 

of the codes in Chapter 4 for increasing k. 

Though the Varsharmov-Gi1bert lower bound can tell us if a 

code is "good" it does not tell us how "good" it is. Statements 

that indicate the best that can be achieved with codes, under certain 

assumptions, are called upper bounds. Typical upper bounds are the 

P10tkin upper bound, Hamming upper bound and E1ias upper bound. For 

a simple discussion of their development, see Peterson and We1don2, 

Chapter 4. 

A table of maximum minimum distances implied as possible, by all 

upper bounds (known at the time), was published by He1 gert and Stinaff40 

for all n ~ 127 and k ~ 127. 

This table was used for comparison of minimum distances, for the 

codes developed in the previous chapters, as shown in Tables 4.,7.1., 

5.2.1., 5.3.1., 6.3.1. and 6.3.2. 

Upper and lower bounds are very useful for indicating what is 

and is not possible in coding theory. Also of course they are useful 

for indicating how theoretically "good" a given class of codes is. 

However bounds do not, in general, show how one should construct the 

codes that they infer exist. Therefore, in practice many of the 

theoretical codes are yet to be discovered, so that a given code, 

though not as "good" as the upper bound, may be the best constructive 

code with these parameters and is therefore "good" from a practical 

viewpoint. Also one must consider decoder complexity when assessing 

how practically "good" a code or class of codes is. If a number of 

codes exist with similar values of n,k and d then the best code may 
m 

be that which is simplest to decode. Therefore a code may be "good" 
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because it is simple to decode compared with other codes of a 

similar or better capability particularly if a slight degradation 

of performance is acceptable on the basis of encoder-decoder 

implementation economics. Of course as mentioned in Chapter 1 

the minimum distance of a code is a crude measure of its performance 

on a real channel. Nevertheless it is still useful to compare codes 

on the basis of rate, length, d and decoder complexity. 
m 

This is done for the codes of tables 4.7.1., 5.2.1., 5.3.1., 

and 6.3.1., in the following sections. Once a decision has been 

made regarding choice of decoding method, t.he b.est choice of practical 

code can only be determined from performance tests on a channel. 

7.2 Performance of the Class of Binary Codes. 

The codes developed in Chapter 4 have been shown to be cyclically 

decodable in one-step, with a single majority gate, so that in terms 

of decoder economics, they are very useful as a class. The codes 

were also shown to be completely orthogona1izable up to their minimum 

distance so one can deduce that the decoding procedure is efficient. 

Those codes constructed are presented in table 4.7.1. where 

they are compared with the value of minimum distance which the tables 

of Hel gert and Stinaff40 state are maximum values (known or predicted 

by upper bounds) for that value of nand k. It can be seen that for 

these codes developed, with k ~ 7, the minimum distance of each (n,k) 

code is equal to, or slightly less than, the maximum given by ,the 

40 tables • In table 7.2.1. the codes are compared directly with 

existing codes, where the comparison codes are always shown in their 

favourable light. The comparison codes are taken from Table 5.2. 
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TABLE 7. 2 • 1. , 

Comparison of codes from Table 4.7.1. with other codes. 

Codes from Cyclic Polynomial 
Table 4.7.1. Codes. (n = odd) 

n k d n k d 
m m 

7 4 3 7 4 3 * 
15 5 7 15 5 7 * 
31 6 15 31 6 15 * 
27 6 12 27 6 6 

20 6 8 21 6 8 

15 6 5 15 6 6 

63 7 31 63 7 31 * 
51 7 23 51 8 24 

48 7 21 49 7 7 

45 7 19 45 7 15 

35 7 14 35 7 14 

26 7 10 27 7 6 

21 7 7 21 7 8 

17 7 5 15 7 5 

* These are also Euc1idean Geometry codes but decodab1e in 2-steps, 

with majority-logic. 

Codes from Quasi-cyclic 
Table 4.7.1. Codes. 

n k d n k d 
m m 

8 4 4 8 4 4 

10 5 4 10 5 4 

11 6 4 12 6 4 

13 7 4 14 7 4 

15 8 4 16 8 5 

Quasi-perfect 
Codes. 

n k d n k t 
" m 

9 5 3 9 5 1 

la 5 4 10 5 1 

11 6 4 11 6 1 

14 8 3 14 8 1 
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Quasi-perfect codes, Table 8.3. Quasi-cyclic codes and Appendix.D. 

List of Binary cyclic codes of odd length n ~ 65, from Peterson 

2 
and We1don , pp.122, pp.259 and pp.493-534 respectively. On the 

basis of these comparisons the codes appear to be very competitive 

with other codes and this is certainly true for small k. However 

we are also interested in how the codes perform for large k and 

some insight can be obtained from figures 4.6.1. and 4.6.2. We can 

. see from these figures that redundancy, for a given kt, must be made 

use of efficiently, if the code is to be useful. For small k' (and 

therefore k) this is not too difficult, but from figure 4.6.1., when 

k'-l n = 2 .. = 65,536, we have Rd(9) =12,870 binary 17-tuples to try 

and combine into further check sums. 

From Appendix A, equation A.l., 

b k'+l 17+1 9 
=-2-=-2-= 

and x = k' - b + 1 = 9, so that x = b, and the optimum case results 

in the 12870, k'tuples pairing off into 6,435 forms 0111 ••• 110. 

This is obviously very efficient use of redundancy, bu~ is rather 

a special case. Generally, as Appendix A shows, most use of redundancy 

is obtained from the form 1000 ••• 001, which is only efficient for 

when k' is large. 

This shows that as k' increases the redundancy can only be used 

efficiently for long codes when b is small. Also as k' rises, we 

see from figure 4.6.2. that Rd(b) increases exponentially. Other 
max 

values of·Rd(b), (except Rd(l) which is constant and Rd(2) which is 

linear, with k' increasing) will have correspondingly non-linear 
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increases as k' increases. 

In fact Rd(3) and Rd(4) are close to Rd(b) anyway. The max 

results from Appendix A,figures 4.6.2. and 4.6.1. imply that as k' 

k'-l rises good codes will only be obtained with large n relative to 2 • 

This is borne out by the Varsharmov-Gilbert lower bound which is 

shown for the codes with k = 7, 9 and 18, in figure 7.2.1. The 

value of J used, ignores redundancy, but since each extra check sum 

requires we add an extra column to G, thus increasing n by one, 

utilization of redundancy will only give a slight improvement. 

As an example, the code mentioned above has n = 65,536, J = 26,333, 

Rd(9) = 12870, and from very efficient use of redundancy, we can 

obtain a new code by increasing nand J by 6,435 giving the code, 

n = 71971, J =·32768. But H(J/n) = H(32,768/4l97l) < 1-18/71971 

and the code still does not qualify as "good". 

It can be seen from figure 7.2.1. that for k = 7, 

H(J/n) > (l-R) and the codes can be considered as "good". However 

when k = 9, H(J/n) is approximately equal to (l-R) initially, until, 

8 as n approaches (2 -1), the codes become "good". lofuen k = 18, 

17 H(J/n) < (l-R) until n approaches (2 -1) when the codes become "good". 

Figure 7.2.1. shows that there are some "good" codes to be 

k' obtained of all lengths 0 < n ~ 2 -1, up to k = 9, but when k > 9, 

k' one is only going to obtain "good" codes when n approaches 2 -1. 

This is a result of the distribution of Rd(b) as b increases, shown 

in figure 4.6.1. and the fact that the use of redundancy to form 

extra check sums -becomes less efficient as k' rises, as Appendix A 

shows. Nevertheless the codes are useful as a class, particularly 

for low k. 
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7.3 Performance of the Codes derived from the Class of Binary Codes. 

The codes derived by deleting the kIth digit and the overall 

parity-check on all columns of G, in section 5.2., are cyclically 

decodable in one-step of majority-logic using a single majority 

gate and are therefore economic to decode. The actual codes 

constructed in section 5.2., are shown in Table 5.2.1. where their 

minimum distances are compared with d from HeI: e;ert and Stinaff40 • 
m 

In Table 7.3.1. they are also compared with other codes and from 

these results are seen to compare reasonably well. As pointed out 

in section 5.2. sometimes codes from this class are better than those 

from Chapter 4. 

For a given k, n and b, a code from section 5.2., ignoring 

redundancy, has the same value of J as the code from Chapter 4 with 

the same b, nand k+l. 

Thus the curves for H(J/n) in figure 7.2.1. apply to both sets 

of codes. However the curves of (l-R) for the codes of section 5.2. 

are slightly different (since there is one less information digit) 

though not significantly so and are not drawn. Nevertheless there 

is one aspect of these codes which is significantly different to 

those of Chapter 4 and arises from use of redundancy. 

The results from Appendix A and figures 4.6.1. and 4.6.2. apply 

equally to the codes of section 5.2. but we do not need to increase 

length n, to utilize one form of redundancy, that is, the form 

000 ••• 001. 

This may have the effect of raising H(J/n) so that more "good" 

codes exist. Nevertheless efficient use of this form of redundancy 

is still subject to the constraints given in Appendix A and as such 
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TABLE 7. 3 • l. 

Comparison of codes from tables 5.2.L, and 5.3.1., with 

other codes. 

Codes from Codes from Cyclic Polynomial 
Table 5.3.l. Table 5.2.l. Codes (n = odd). 

n k d n k J n k d 
m m 

14 4 7 15 4 8 

30 5 15 31 5 16 

24 5 12 25 5 5 

21 5 10 21 5 10 

62 6 31 63 6 32 

48 6 24 48 6 22 49 6 14 

45 6 21 43 6 20 45 6 18 

35 6 15 35 6 10 

21 7 8 21 7 8 

28 7 11 27 7 6 

17 6 6 15 6 6 

20 6 8 21 6 8 

27 6 12 27 6 6 

34 6 14 31 6 15 

Quasi-perfect 
Codes. 

n k d n k t 
m 

11. 4 5 11 4 2 

Euc1idean Geometry 58 

Codes. 

n k d n k t 
m 

48 6 24 48 6 10 

Quasi-cyclic 
Codes. 

n k d n k d 
m m 

6 3 3 6 3 3 

10 5 4 10 5 4 

9 4 4 8 4 4 

13 6 4 12 6 4 
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is limited to codes of long length for large k. 

It was mentioned when developing the codes of Section 5.2. 

that we are no longer sure if J = d. In fact if we take the code, 
m 

n = 42, J = 16, {63,31,15,27,23,21,7,11,13} 

Utilizing redundancy, we obtain the code, 

n = 42, J = 18, {63,31,15,27,23,21,7,11,13} 

However this code has a generator matrix exactly .the same as that 

code constructed from Table 6.2.1. for k = 6 where, we have 

n = 42, d = 20 
m ' 

(x) = (3,4,5,6) 

so that it is not completely orthogona1izab1e. Provided J equals 

the maximum upper bound from He1'gert and Stinaff40 , we can be 

sure the codes are competitive with others. 

40 
J < d , we are not sure. 

m 

Otherwise if 

The codes presented in construction 5 •. 3. a, b, and c, are not 

simply decoded, though one has two alternatives. One can use k 

majority gates and decode by cancellation as shown in the general 

decoder of figure 5.3.1. Alternatively one can arrange the columns 

of G as circulants of (k'-i)-tup1es and decode the first (k'-i) 

digits cyclically, making special provision for the remaining (i+1) 

digits. 

If k is s~a11, general decoding may not be so costly though 

it suffers from a form of error propagation. However provided a 

correctable error pattern occurs, correct decoding always results. 

For cyclically decoding the first (k'-i) digits, provided (i+1) or 

i is small this is quite a useful procedure. 

The codes of constructions 5.3.a and 5.3.c are classes of 
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2d , 
m 

= 1·0 

d = n/2 
m 

and for large d , 
m 

Since rate, R > 0·0, then (l-R) < 1·0 and we always have, 

H [
dmn-2] > (l-R). 

We can see from table 5.3.1. that constructions 5.3.a always meet 

the maximum upper bound on minimum distance, for those shown. 

The codes of construction S.3.b are not so easy to assess as 

*k'-i they depend upon the amount of redundancy in the final set SI • 

If i is small the redundancy could form a reasonable part of n, 

whereas if i is large the redundancy will be only a small part of n. 

Large i implies large n so that again for large k' the best codes 

will be obtained for large n. 

However as Table 5.3.1. shows, for small k' there are some good 

codes to be obtained for alIa < n ~ 2k_l, which are not too difficult 

to decode. 

In Table 7.3.1. some codes from construction 5.3.b are compared 

with other codes. 

7.4 The Weight Tables. 

The tables of weights developed in Chapter 6 are useful in two 

ways. They can be u~ed to construct codes whose minimum distance and 

weight spectrum can be obtained from the tables, and this is done. 

The best codes are presented in Table 6.3.1. and their minimum distances 

are compared with the maximum upper bound from HeI gert and Stinaff40 • 

It can be seen that some very useful codes resulted, some better 
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than the codes of Table 4.7.1. but no~better than Table 5.3.1., 

though many are equal. 

Secondly they can be used to obtain the minimum distance of 

some of the codes developed in section 5.2., that is where 

(x) = (xl' x2'···'~) and ~ = k, ~-i = k-l, •••• , xl ~ k-b+l, 

and this defines a consecutive set. This in turn can be used to 

show that some codes from section 5.2. may not be completely 

orthogonalizable, as we saw in section 7.3. 

However for most of the best codes obtained in Table 6.3.1. 

the set (x) is not a consecutive one. This implies that the 

majority-logic procedure if applied would not utilize the full 

capability of the code, as we saw in the example given in section 

7.3. 

7.5 Further Work and Comments. 

We have developed a majority-logic decoding procedure which 

involves check sums obtained from linear combinations of received 

digits or columns of the generator matrix. We then showed a number 

of different methods of choosing the columns of the generator matrix, 

such that the necessary check sums could be obtained. We saw that, 

in general from Chapters 4 and 5, some "good" and useful codes 

resulted for k up to about 9 but that for large k "good" codes only 

resulted for large n. 

As a decoding procedure there is no reason why it cannot be 

applied to other codes and the following rate one half quasi-cyclic 

codes (from Peterson and Weldon, Table 8.3. pp.259) have been found 

to be majority-logic decodable in this way. 
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n k d Generator of circulant m 

6 3 3 3 

10 5 4 7 

12 6 4 7 

14 7 4 7 

Appendix C shows each generator matrix for these codes and how 

the check sums are formed. In this appendix it is seen that the 

two circulants are not of consecutive weights, that is generally we 

have a circulant generated by a k-tuple of weight 3 and one of weight 

1. Thus the decoding procedure is probably more widely applicable 

and this may be worth further investigation, perhaps in the decoding 

of the codes developed from the weight tables of Chapter 6. The 

codes developed from the weight tables in Chapter 6 may be worth 

further investigation, from the point of view of a decoding procedure 

and to obtain some bound on minimum distance for large k and n. 

Most majority-logic codes either have lerigth 2x or 2x-l, see 

Linl., pp.176-l77, Peterson2, pp.326 and pp.332, HartmanA6, Lin20,17, 

11 1 Warren ,and Lin ., pp.15l-l54. 

The codes presented offer a wide range of lengths for a given k. 

However the codes presented do not offer the solution to all 

coding theory problems. They are simple to decode and appear to 

have good minimum distance properties for small k. Nevertheless they 

are essentially low-rate codes, R ~ 1/2, and as such do not compete 

with the many good Euclidian and Projective Geometry codes, of high 

rate, which have appeared in the last decade. 
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APPENDIX A. 

From the code (n = 37, k = 18+1) whose generator matrix is 

G = {21B_1, 217_1, 216_1} plus overall parity-check, we obtain 

the following uses of redundancy. 

(a) 

(b) 

(k'+l)'th digit. 

100 1 111 111 1 1 1 1 1 1 111 

1 1 1 1 111 1 1 1 1 1 1 1 1 100 1 

1 111 111 111 1 1 1 1 100 1 1 

111 111 1 1 1 1 1 1 100 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 001 1 1 1 1 1 

1 1 1 1 111 1 100 1 1 1 1 1 1 1 1 

1 11111 100 1 1 11 1 1 1 1 1 1 

1 111 100 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 100 1 1 1 1 1 1 1 1 111 1 1 1 

1 1 111 111 111 1 1 1 1 1 0 1 1 

0 1 1 1 1 111 111 1 1 1 1 1 110 

1 1 101 1 1 1 111 111 1 1 111 

1 101 1 1 1 1 1 1 1 1 1 1 1 111 1 

1 100 1 1 1 1 1 1 1 1 1 1 1 111 1 

1"1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 111 

(c) 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 100 1 1 1 1 1 1 1 111 111 

(d) 

11111 1 1 111 111 111 111 

111 1 1 1 101 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 110 1 1 1 1 1 1 1 1 1 1 1 1 

111 1 1 1 0 0 1 1 111 1 1 1 1 1 1 

1 1 1 1 111 111 1 1 1 1 111 1 1 
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1 1 111 1 1 1 101 111 1 1 1 1 1 

(e) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 100 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 111 1 1 111 

1 1 1 1 1 1 1 111 101 1 1 1 1 1 1 

(f) . 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 100 1 1 1 1 1 1 1 

1 1 1 1 111 111 1 1 1 1 1 111 1 

1 1 1 1 1 1 1 1 1 1 1 101 1 1 1 1 1 

(g) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

11111 1 1 1 1 1 1 1 001 111 1 

1 111 1 111 1 1 1 1 111 1 111 

1 1 1 1 1 111 111 1 1 110 1 1 1 

(h) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

1 111 1 1 1 1 1 1 1 1 1 100 1 1 1 

1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 

The original code was; 

n k d G 

37 19 3 . {218_1, 217_1 , 216_11 

and redundancy gives 

36 19 3 {217_1, 216_1, -I} 

37 19 4 {217_1, 216_1 , -I, +O}. 

Without overall parity-check we combine (a) and (b) 

00 •.•... 001 and use (c) as well to give the code, 

n k d G 

36 18 4 {217_1, 216_1 , -I} 

to give 

This 1S obviously not efficient, with or without parity-check. 
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An example of the most efficient use of redundancy for the 

codes of Chapter 4 is shown below for k' = 18. The redundancy is 

assumed on the 1st digit. 

1 0 000 0 0 0 0 0 1 1 1 111 111 

1 1 111 111 1 1 0 0 0 0 0 0 001 

o 1 1 1 1 1 1 1 1 1 111 111 110 

If the lowest weight, k'-tup1e, used in a code is b, then a 

b-weight k'-tup1e has k'-b, zero's. Therefore it must be mod 2 

added to a k'-tup1e of weight x = k'-b+1, to form an efficient form 

as above. Since x = k'-b+1, if x ~ b, then from the constructions 

of Chapters 4 and 5, we must be bounded by x ~ b, because we cannot 

have redundant k'-tup1es of widely 'differing weights. 

In the example above, ignoring the k'+l'th digit, k' = 18, b = 9, 

so that, 

x = 18 - 9 + 1 = 10. 

Since we require x = b, in the optimum case x = b, giving 

x = b = t k' + 1 j 
2 

A.I. 

which is only possible if k' is odd. 

Equation A.1. states that if two redundant k'-tup1es, k' odd, 

sum mod 2. to give the form 0111 •••• 110, then if they have the same 

. h h' . h b k'+l we~g t, t ~s we~g t must e --2--

This implies that given the complete set of redundant k'-tup1es 

of weight .k';l , for every k'-tup1e of this weight there is a 

corresponding k'-tup1e of this weight which seems .to give the form 

0111 •••. 110, and the complete set can be paired off. 

For example, let k' = 5, then the complete set of redundant 

5-tup1es of weight k';l = 3, is given below paired off. 
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1 110 0 1 

o 1 1 1 1 0 
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1 100 1 1 

101 101 

011 1 1 0 

1 0 101 1 

110 1 0 1 

o 1 1 1 1 0 

Therefore this form of redundancy is only possible, using two 

k'+l . 
redundant k'-tup1es, when b ~ ---2-- and 1S as such limited. Hence 

k'+l the need for 10 x 18-tup1es to obtain this form when b = 16 » ---2-- , 

in the initial example. 

- k'+l 
For values of b 1 ---2--- , the code must resort to the use of 

the next most efficient form, 1000 .••• 001. In its most efficient 

construction it can be obtained with 3 redundant k'-tuples. 

Since it is likely ~hat the redundant k'-tuples will be 

composed of one or two weights bl and or b2, we will assume b2 > bl 

and bl = b2 - 1, and these are the only weights present. 

To be able to obtain the form 1000 •••• 001 by summing mod-2, 

three k'-tuples (which is the most efficient form for the codes of 

section 5.2.), we require the mod 2 sum of two k'-tuples to have 

weight bl-l or b2-l in order to combine with another, third k'-tuple. 

Let the two k'-tuples agree in y positions that are binary one, then 

we require the following conditions to be satisfied. 

i) both k'-tuples have weight b
2

. 

(b
2
-y) + (b

2
-y) = b2-1 

or b1-l 

giving 

respectively. 
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ii) both k'-tup1es have weight b1. 

(bl-y) + (bl-y) = b -
1 

1 

or b -Z 1 

giving, 
b

1
+l Zb

l
-bZ+1 b -1 1?1 Z 

Y =-Z- or = -Z- = 
Z 2 

respectively. 

Hi) the k'-tup1es have different weights. 

(bl-y) + (bZ-Y) = b -Z 1 

or b -1 
1 

giving, 

b1+1 b
2

+1 
y =-2- or -2-

respectively. 

For all cases we must also satisfy 

(b .-y) + (b.-y) + y ~ k' A. Z. 
~ J 

If i = J, 

b. ~ t k' + y ~ and therefore 
~ 2 

b1 ~ 
t Zk' 3+ 1 ~ if 

b1+l .. 
1 y =-2- ~ = 

b1 ~ t 2~' ~ if 
b1 i 1 y =r = 

A.3. 

bZ ~ 
t 2k' 3+ 1 ~ if y 

b
2

+1 
i 2 =-- = 2 

b2 :s t 2k' 3+ 2 j if y 
b2+2 

i 2 =-- = 
2 

From equation A.2. let ~ = 1 and j = 2, then 

bI + b2 :s k' + y 
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b2 - 1 = b1, we obtain 

b
2

+1 
if y = -2-

b1+1 
if y = -2-

For all equations A.3. and A.4. if k' » 1 

, i = 1 or 2. 

is a reasonable approximation and implies that the use of 

redundancy to obtain the form 1000 •••• 001 is inefficient for b 

greater than this value, for both codes from Chapter 4 and 

section 5.2. 

APPENDIX B. 

A.4. 

The equations for length, n, and check sums, J, for the codes 

presented in Chapter 4 are; 

k'-l 
J = I 

t=b 

(k '-1)! 
t! (k' -l-t) : 

k' 
n = I 

t=b 

k' ! 
t! (k'-t)! 

where b is the smallest weight of the complete sets of k'-tup1es 

used. Since 

H(x) = -x log2(x) - (l-x) log2(1-x) 
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k' = 8 

b n J H(J/n) 1 - (kIn) 

7 9 1 0.5032582 0 

6 37 8 0.7531979 0.7567567 

5 93 29 0.8952722 0.9032258 

4 163 64 0.9l77783 0.9447852 

3 219 99 0.993357 0.9589041 

2 247 120 0.9994205 0.9635627 

1 255 127 0.9999889 0.9647058 

0 256 128 1.0 0.9648437 
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k' = 6 

b n J H(J/n) 1 - (kin) 

5 7 1 0.5916727 0 

4 22 6 0.8453508 0.6818181 

3 42 16 0.9587118 0.833333 

2 57 26 0.9944422 0.8771929 

1 63 31 0.9998181 0.88888 

0 64 32 1.0 0.890625 

APPENDIX C. 

Majority-logic decoding of some of the quasi-cyclic codes from 

5 Table 8.3. Peterson and We1don , pp.259. 

(a) The code, (n, k, d ) = (6, 3, 3) has generator matrix 
m 

100 0 1 1 

G = 0 1 0 1 0 1 

001 1 1 0 

Since this is two circu1ants, any check sums obtainable on one 

message-digit, from linear sums of columns of the matrix, can also 

be obtained on all message-digits. The following check sums on 

message-digit m(l) are obtained from the columns. 

001 010 1 o 0 

o 1 1 1 0 1 

001 o 0 1 

Thus J = d = 3 and the code is completely orthogona1izab1e 
m 

in one-step. 
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(b) The code, (10, 5, 4) has generator matrix 

1 0 0 0 0 0 0 1 1 1 

0 1 0 0 0 1 0 0 1 1 

G = 0 0 1 0 0 1 1 0 0 1 

0 0 0 1 0 1 1 1 0 0 

0 0 0 0 1 0 1 1 1 0 

The following check sums, from sums of columns, are possible 

on m(l). 

(c) 

o 0 0 0 1 00010 0 1 1 1 0 

o 0 1 0 0 1 1 100 

00111 10011 

000 0 1 00001 

Again J = d = 4. 
m 

The code, (12, 6, 4) , has generator matrix 

1 0 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 1 0 0 0 

0 ·0 1 0 0 0 1 1 0 0 
G = 0 0 0 1 0 0 1 1 1 0 

0 0 0 0 1 0 ·0 1 1 1 

0 0 0 0 0 1 0 0 1 1 

The following check sums are obtained. 

o 0 0 001 

And J = d = 4. 
m 

o 0 0 0 1 0 

000 1 o 0 

000 111 

o 0 0 0 0 1 

o 100 0 0 

1 000 0 0 

1 100 0 1 

o 0 0 001 

0 100 0 

-1 000 0 

1 lOO 1 

o 000 1 

1 1 

1 1 

0 1 

0 0 

0 0 

1 0 

o 0 1 110 

0 1 1 100 

1 1 1 000 

1 00011 

o 0 lOO 0 

o 0 0 0 0 1 
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The code, (14, 7, 4), has generator matrix 

1 0 0 0 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 1 1 0 0 0 

G = 0 0 0 1 0 0 0 1 1 1 0 0 

0 0 0 0 1 0 0 0 1 1 1 0 

0 0 0 0 0 1 0 0 0 1 1 1 

0 0 0 0 0 0 1 0 0 0 1 1 

The following check sums are obtained. 

000 000 1 

And J = d = 4. 
m 

'. 
0000010 

000 0 100 

o 000 111 

o 0 0 0 001 

'0 0 0 1 0 0 0 

o 0 1 000 0 

000 1 110 

o 0 1 1 100 

011 100 0 

1 1 1 0 000 

1 000 0 1 1 

o 000 0 0 1 

o 1 000 0 0 

1 000 0 0 0 

1 1 000 0 1 

000 0 0 0 1 

1 1 

1 1 

0 1 

0 0 

0 0 

0 0 

1 0 
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CHAPTER 8 

8. INTRODUCTION. 

8.1 Outstanding Problems. 

It would be fair to say that the state of the art, with regard 

to random error-correcting majority-logic decodab1e convolutional 

codes, is still in its infancy. Particularly so compared to block 

codes. Very little has been achieved towards d~vising large 

constructive classes of majority-logic codes and one of the 

outstanding problems still awaiting a solution is the development 

of a constructive class of orthogonalizable codes. Those convolutional 

orthogonalizable codes which are known have been developed, using 

trial and error methods or hybrid use of block codes, are 

relatively small classes or of low transmission rate. 

Of those majority-logic codes that have so far been devised, 

namely, orthogonalizable and self-orthogonal, the orthogonalizable 

have exhibited far better minimum distances, d , for a given length m 

and rate, than the self-orthogonal. However, when decoded in the 

feedback mode the orthogonalizable codes have no inherent protection 

against propagated errors due to decoding failures in previous blocks. 

This is a problem encountered in all other known types of convolutional 

cod~too, except self-orthogo~al codes which are the only known type 

of convolutional code that have an inherent ability to automatically 

recover from error propagation. 

However, regardless of which type of majority-logic convolutional 

code we consider there has, up to this time, been another limiting 

factor in their design. We saw in Part I that when a majority-logic 
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block code is cyclic we can decode with a single majority-logic 

gate. There is nothing analagous to a cyclic code with convolutional 

* codes so that to decode a block of digits containing k information 
o 

digits we always require k majority-logic gates. This has lead 
o 

to the development of codes with small k (in fact for many existing 
o '. 

codes k ~ 5). If k is small then the transmission rate cannot be 
o 0 

very high, so that there is no constructive class of majority-logic 

decodable convolutional codes that are mUltiple error-correcting and 

very high rate. 

8.2 Project Resum~. 

The codes presented in Chapter 11 offer a solution to this 

second problem, their properties. including, 

i) k the number of message-digits in a sub-block can be 
o . 

Cl very high, in particular if p 

an odd prime, Cl 
k =p-l. 

o 

, a = 1,2, ..... . is a power of 

ii) the codes are cyclically encodable and decodable with a 

consequent reduction in the number of majority-logic gates. In 

particular if ko = p-l, p an odd prime, and if the rate, R = 1/2, 

only one majority-gate is required and all k digits can be decoded. 
o 

cyclically. 

iii) the codes are self-orthogonal and therefore majority-logic 

decodable in one-step. 

iv) the codes are high rate with R 3 1/2. In particular it 

is shown that a single error-correcting code exists for every 

* Majority-logic codes that is. 
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positive integer m, with rate 

R = k /k +2 = (m-l)/(m+l). 
o 0 

v) since the codes are self-orthogonal they have the ability 

to automatically recover from error propagation. In particular it 

is shown that the codes have the ability to recover from mUltiple 

error pro~agation. 

The codes are compared with existing majority-logic codes on 

the basis of minimum distance, rate and length. An examination of 

their unbounded performance, when the number of errors exceeds the 

codes capability, is shown in Chapter 12, and this is compared with 

the unbounded performance of another well known class of self­
. . 7 

orthogonal codes • 

The idea of error-propagation efficiency is introduced to enable 

subjective comparison of different codes. 

In Chapter 13 a pseudostep orthogonalization algorithm is 

introduced, which, though it may be applied to Reed - Massey1 

algorithm majority-logic codes, is applied to a well known class of 

orthogona1izab1e convolutional codes1 with a consequent improvement 

~n their unbounded performance. 

Finally in Chapter 14 an assessment of the original work presented 

in Part 11 is conducted. 

l 
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CHAPTER 9 

9. SURVEY OF MAJORITY-LOGIC CONVOLUTIONAL CODES. 

9.1 Non-Self-orthogonal Codes. 

I Massey was the first to show that convolutional codes could 

be majority-logic decoded and he presented three classes of non-

self-orthogonal codes. These three classes were, 

1) Trial and Error, a large class constructed, as the name 

implies, by trial, with low rate ~ 1/2, 

2) 

3) 

Uniform, a class of low rate lln , 
o 

"Reed-Muller" like, another class of low rate lln codes. 
o 

In 1968, Reddy and Robinson9 showed that Massey's Reed-Muller 

like codesl can be constructed directly from Reed-Muller block codes. 

They also showed that any linear Uniform code can be constructed 

using a MacDonald block code. Several algorithms were presented 

for constructing convolutional codes from block codes and resulted 

in long low rate codes. In the same year ReddylO presented new 

algorithms for constructing convolutional short high rate codes 

from block codes. 

In another paper, in the same year, Reddy and Robinsonll 

presented decoding algorithms for the codes presented previously. 

If the block code is one-step majority-logic decodable then the 

resulting convolutional code is one-step decodable also. In general 

the decoder construction is closely related to the decoder of the 

block code. In the general decoder a number of block decoders are 

required before processing and making a majority decision. It is 
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also shown that the codes can decode with limited error propagation 

provided a reduction in capability can be tolerated. In 1972 

Reddy and Robinson20 presented further results on orthogonalisable 

convolutional codes, this time constructed from majority-logic 

decodable self-orthogonal convolutional codes, into which are 

imbedded block codes. Two constructions are presented giving low 

~nd high rate codes with decoders related to the block code decoders. 

The low rate construction has limited error propagation provided 

a reduction in capability can be tolerated whilst the position for 

the high rate construction is stated as being "not clearly understood". 

9.2 Self-orthogonal Codes. 

Again Masseyl first presented a small class of rate 1/2 self-

orthogonal codes and he noted that the large difference between 

actual and effective constraint lengths made the encoder and decoder 

larger than necessary. 

In 1967, Robinson and Bernstein7 presented a class of self-

orthogonal codes whose construction was based upon difference 

triangles. More importantly, they showed that any convolutional 

self-orthogonal code, C.S.O.C., could recover automatically from 

error propagation when decoded in the feedback mode. In a later 

paper Robinson12 showed that a code could recover from error 

propagation within a limited number of bits, using Feedback Decoding, 

if and only if that same code can be decoded using Definite Decoding. 

Significantly self-orthogonal codes remain the only known class of 

convolutional codes with this property inherent in their structure. 

Th · 1 f d d b b· 7 lId d 1S C ass 0 co es starte y Ro 1nson et a • was ater exten e 
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1 0 14 dOll 1 d b W 22,23,24 by K leber an vlrtua y comp ete y u • In Wu's 

22 first paper he tabulated new C. S .0. c.'.s of rates 2/3 up to 13/14 

and in addition presented three examples of C.S.O.C.'s used ln 

commercial sata11ite systems. For one example a significant result 

of an extensive evaluation including B.C.H. codes, cyclic difference 

set codes and both Viterbi and Sequential Decoding pointed to a 

23 rate 7/8 C.S.O.C. In a later paper Wu extended the tabulation 

of high rate C.S.O.C. 's from rate 14/15 up to 49/50. He introduced 

a unified construction algorithm and extended Massey's work on 

A Posteriori (APP) decoding to C.S.O.C.'s. 

In another paper, in 1976, Wu
24 

tabulated further rate 1/2 

C.S.O.C.'s and examined the concatenation of C.S.O.C.'s generally. 

Wu states that one of the problems of concatenation is that the 

inner codes' decoder, such as Reed-Solomon, B.C.H. or Viterbi, 

produces extra and bursty errors at its output when confronted with 

error patterns whose weight exceeds the capability of the code at 

its input •. Wu found24 that C.S.O.C. decoders exhibit properties 

which suppress both of these undesirable properties and make them 

attractive as inner concatenated codes. 

9.3 Further Results. 

Other results in the field of majority-logic decodable 

convolutional codes include results on burst error-correcting codes 

15 18 which can also correct random errors, from Tong and then Ferguson • 

15 18 Tong's codes are high rate C.S.O.C.'s while Ferguson's are 

rate 1/2 orthogonalizable. 

15 Tong's approach was to set up a coarse design and finalize 
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it with a trial and error iterative procedure. This was done 

by designing a burst error-correcting convolutional code and 

then modifying'it to correct random errors too. 

13 Rudolph showed that any linear convolutional code can be 

maximum-likelihood decoded, with respect to the decoding constraint 

length, by a one-step threshold decoder. The decoder utilized 

an exponentiation operator and threshold element for binary codes. 

In a later paper Rudolph and Robbins2l ~howed that the correct 

statement for binary codes was to replace the exponentiation 

operator and threshold element by a weighted-majority element. 

Goodman and Ng25 recently presented results on soft-decision 

threshold decoding of convolutional codes. A random error and 

diffuse decoding scheme are proposed and an expected improvement 

over a hard decision decoder claimed. ·The ability to soft-decision 

decode majority-logic convolutional codes makes them highly competitive 

with other decoding methods such as Viterbi8 and Sequentia12 decoding. 
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CHAPTER 10 

10. CONVOLUTIONAL CODING THEORY. 

10 1 B • D .. 17 • as~c escr~pt~on. 

With binary block codes, we saw in Chapter 3 that each block 

of n binary digits was uniquely determined by a block of k < n 
000 

binary digits, called the information block. Thus the check-digits 

of any n -digit block contain information regarding the k message o 0 

(information)-digits which determined the block and no other message-

digits. With a convolutional code this restriction is lifted and 

convolutional codes can be considered as a generalization of block 

codes. That is, we allow information, r"egarding the k binary digits 
o 

of a message block, to be present in the check-digits of N different 

n-digit blocks called sub-blocks, with n > k • o 0 0 

The parameters Nand n N are called the constraint length of 
o 

the code, in units of blocks and binary digits respectively. 

The encoder functions by sub-dividing the incoming information 

stream, rn, into blocks of length k and stores N of these blocks. 
o 

Having done this the encoder can then form the n -k check-digits o 0 

of some sub-block, say the e'th, to form an n -digit sub-block c . o e 

Each binary digit of c can be represented by the following equations, e 

which assume a systematic code, 

c (i) = m (i), e e 
i = 1,2, ••• ,k 

o 
k o 

c (k +j) = L m (i) 
e 0 i=l e 

k 
o 

k o 
g (i,j) eLm _l(i) 

o . 1 e 1= 

•••....... @ L me- N+l (i) ~-l (i,j) 
i=l 

for J = 1,2, •• ~,n -k , o 0 

10.1.1. 

10.1.2. 



m(i) 

gN-l (i,l) 
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• 
• 

• 
• 

o o • • o 

• . • • 
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FIG. 10.1.1. 
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A GENERAL CONVOLUTIONAL ENCODER. 
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where; 

c (b) = b'th digit of c E GF (2) e . e 

m (b) = b'th digit of m E GF (2) e e 

gx(i,j) = 1 or 0, depending upon whether we do or 

do not respectively require me_x(i) to be present in the check-digit 

c (k+j). Therefore the encoder must store sub-blocks 
e 

me' me- l , me-2,···,me-N+l to form the encoded no-digit sub-block ce 

Let 

g(i,j) = (go(i,j), gl(i,j)'···'~-l (i,j». 

There are k (n -k'), N-digit binary vectors g(i,j) and from 
000 

equations 10.1.1. and 10.1.2. it can be seen that these vectors 

determine the n -digit sub-blocks. They therefore specify the code 
o 

and are called the "sub-generators" 0:1; the code. Equations 10.1.1. 

and 10.1.2. specify a systematic code, but if the code is non-

systematic we incorporate equation 10.1.1. into 10.1.2. and then require 

k.n sub-generators g(i,j), i = 1,2, •.• ,k, j = 1,2, ••• ,n • 
o 0 0 0 

The encoder must also store the k .(n -k ) sub-generators of the 
000 

code. A general encoder for a convolutional code is shown in figure 

10.1.1. where the blocks containing' each g (i,j) perform modulo 2 
x 

multiplication, the adders sum modulo 2 and the blocks containing D 

are simple delays to enable the storing of the N, k -digit message 
o 

blocks. 

10.2 General Decoding.17 

We consider all data sequences as semi-infinite. This is because 

one cannot take out a section of data and say this is independent of 
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any other data in the sequence, because any block is always related 

to the following N-1 sub-blocks. Also it is semi-infinite because 

at some time transmission must Bt~_t'. Therefore we represent the' 

generator and parity-check matrices by the symbols G and H respectively. 
00 co 

Therefore we have, 

G 
T 

• H = o. 
co 00 

Let c be a semi-infinite transmitted code sequence, and ID a 

semi-infinite information sequence, then 

c = m • G 
co 

Let rand e be semi-infinite received and noise sequences, 

respectively, then 

r = c9-e. 
The syndrome is the semi-infinite sequence, s, obtained by 

multiplying r by HT, 
00 

s = r • HT 
co 

= c • 

= e 

T tr't.­
H ~e 

00 

If we assume the first received sub-block of r is the O'th 

block, we can represent s by, 

10.2.1. 

10.2.2. 

s = (s (1), s (2), •.•• ,s (n -k ), sl(l), •••• 'sl(no-ko), o 0 000 

••••••• , S (1), .... ,5 (n-k), ........... ) 
e e 

where, s (l),s (2), .••• ,s (n -k ) is the syndrome of the e'th e e e 0 0 

block. 
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Therefore in order to obtain all the relevant information 

required to decode a single sub-block, the decoder must form and 

store the (n -k )-digit syndromes of the N blocks, whose check-digits 
o 0 

contain information digits from the block to be decoded. 

Let r be the received n -digit sub-block c plus errors. e 0 e 

Then from equations 10.1.1. and 10.1.2. we can write, 

where, 

r (i) 
e 

= c (i) (t. e (i) 
e e 

r (k +j) = c (k +j) + e (k +j) 
e 0 e 0 e 0 

i=1,2, ••• ,k; o J = 1,2, •.• ,n -k , 
o 0 

c (k +j) is given by equation 10.1.2. 
e 0 

e (k +j) is the single check-digit error acquired e 0 

during transmission. 

At the decoder r (i), the received message-digit section, is re­
e 

encoded into the (n -k )-digit section rICk +j), where, 
o 0 e 0 

r' (k +j) 
e 0 

k 
o 

l: 
i=l 

k 
o 

= c (k +j) $ l: ee(i) go(i,j) e 
eo. i=l 

e l(i) e-

k 
o 

gl (i, j) Eo) •••• @ l: 
i=l 

i=1,2, ••• ,k; 
o 

j = 1,2, ••• ,n -k . 
o 0 

10.2.3. 

10.2.4. 

10.2.5. 

The decoder then forms the syndrome of block e, s , by adding e 

mod 2 the digits of equations 10.2.4. and 10.2.5. so that for each 

digit, s (j), of s , we obtain 
e e 
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s (j) = r (k +j) er' (k +j) e e 0 e 0 

k 
o k 

o 
= e (k +j) 9 I e (i) 
eo. 1 e 

].= 

g (i,j) ~ I 
o i=l 

ee-l (i) gl (i,j) 

k o 
e ........ ~ I ee-N+l (i) ~-l (i,j) 

i=l 

where i and j are as in equation 10.2.5. 

10.2.6. 

Of course the decoder performs this operation N times before 

it is ready to decode a block. Let us assume we are about to decode 

block 0, then to decode we require N,(n -k )-digit,syndromes 
o 0 

so(j), ••• ,SN_1(j) and the equations relating to these syndromes are 

sho~ in equation 10.2.7. It can be seen that the errors in the 

message-digits of block 0 are present in all N syndromes. 

k 

s (j) = e (k +j) 
000 

o 
EJ I 

i=l 

k 
o 

e (i) g (i,j) 
o 0 

k 
o 

sl (j) = e
1

(k +j) e I e
1

(i) 
0'1 ].= 

g (i,j) <aJ I eo(i) gl(i,j) 
o . 1 ].= 

SN-1(j) = 

j = 

k 
o 

® I 
i=l 

k o 
e I 

i=l 

1,2, .••• ,n -k • 
o 0 

10.2.7. 

~ ....... . 

If we assume the O'th block is correctly decoded and the errors in 

block 0 are cancelled from the syndromes, then we obtain the set 

of syndrome equations below. 
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s (j) = 0 
0 

k 
0 

sI (j) = el(ko+j) (t) I 
i=l 

k 
0 

s2 (j) = e
2

(k +j) (f) L o . 1 l.= 

= 
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e
l 

(i) 

e2 (i) 

go(i,j) 

k 
0 

go(i,j) e L 
i=l 

el (i) gl (i ,j) 

k 
o 

10.2.8. 

go (i,j) <£,~ •••••• et> i~l el (i) ~-l (i,j). 

So that we can decode the errors in block 1 using sI (j) , ... , sN (j) 

since they are identical in form, on block 1, as w.ere so(j), •.• ,sN_l(j), 

on block 0, previously. 

Once one has chosen the rules for encoding the k message-digits 
o 

of a certain sub-block (which is the same as choosing the sub-generators), 

the same encoding rules apply to the k message-digits of every sub­
o 

block. 

Also, therefore, if one can formulate rules for decoding a given 

sub-block, the same rules will decode every sub-block. However equations 

10.2.8. were obtained assuming we cancelled the effects of the errors 

in block O. This process is called syndrome cancellation and the 

procedure generally called feedback decoding. Figure 10.2.1. shows a 

general decoder for a convolutional code, decoded in the feedback mode. 

10.3 
. 12 7 17 Decoding and Error Propagatl.on. " 

The assumption in section 10.2 that the previous block was 

successfully decoded was useful to illustrate the general decoding 

procedure. However, in practice, this cannot be guaranteed and when 
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a decoding failure occurs, due to the practice of syndrome cancelling 

the decoding failure manifests itself as errors in the syndromes 

of the following N-l blocks. This property of convolutional codes, 

when decoded using syndrome cancellation,is referred to as error 

propagation. 

It is possible for propagated errors to cause further decoding 

failures even in the absence of natural errors and ~s therefore an 

undesirable quality. Several methods for controlling the effect of 

propagation are known and also one (though perhaps obvious) method 

of eliminating it. 

, d' h" 17 Per~o ~c Resync ron~zat~on. 

Since a propagated error affects the decoding of the following 

N-l blocks, if we can arrange periodically to guarantee to correctly 

decode a successive set 'of N-l blocks, then propagation will be 

terminated. This is done by periodically encoding a set of k (N-l) o 

known digits (usually the all zero sequence). The price paid is a 

reduction in the transmission rate R to some figure RI. In particular 

if the known message-digits are encoded after every L blocks, 

k L 
RI = ~ __ ~o~~~_ 

Ln + (N-l)n 
o 0 

10.3.1. 

Assuming a worst case situation, that is a propagated error 

occurs in the decoding of the Llth block, since the following N-l 

blocks, which the propagated error affects, are known, all errors in 

the N-l blocks can be corrected and this must include the propagated 

error from block L. 
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C . 17 Error ount1ng. 

This method involves counting the number of errors the decoder 

has estimated to have occurred, over a specified number of digits. 

If the count exceeds the error-correcting capability of the code, a 

retransmission is requested, on the basis that there is too much 

noise present at that time. Again the transmission rate will fall 

but not as much as with ~eriodic resynchronization, provided the code 

is chosen sensibly and the channel noise is not too high compared to 

the error-correcting capability of the code. 

12 7 Automatic Recovery. ' 

This involves the design of codes and decoders which have the 

ability to recover from error propagation without any external assistance. 

It is assumed that there are occasions, during which a long enough error 

free transmission period occurs, which allows the system to recover 

automatically. It has been shown7 that self-orthogonal majority-logic 

decodable convolutional codes have the property of automatic recovery 

from error propagation. 

It has also been shown19 that if a code has the property that 

syndrome cancellation always acts to reduce the weight of the syndrome, 

then error propagation cannot occur. 

Definite Decoding.17 ,12 

Obviously if one does not use syndrome cancellation there is no 

feedback and error propagation cannot occur. This is called definite 

decoding and the price paid for this is a reduction in the error­

correcting capability of the code. It has been shown12 that self-

orthogonal codes can be decoded in the definite decoding mode, simply 

by disconnecting the feedback connection. 
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Apart from the reduction in error-correcting capability, it 

has been shown16 that on a binary symmetric channel (B.S.C.) with 

crossover probability P, that 

for 
1 

<-
2 o < P 

where PFD and PDD are the probabilities of a decoding error using 

feedback decoding and definit~ decoding resp~stively) 
and the decoder is a maximum likelihood decoder. 

10.4 Random Error-correcting Capability.17 

We begin by defining the minimum distance of a convolutional 

code. 

Definition 10.4.1. 

The minimum distance d of an (n N, k N) convolutional code is moo 

equal to the smallest Hamming distance d(u,v) between two initial 

n N-digit code sequences which disagree in the O'th block. 
o k N 

An initial n N-digit code sequence is one of the 2 0 possible 
o 

sequences due to the N blocks of message digits in the constraint 

length of n N digits. Let z = u av, then z is an initial code o 

sequence whose message blocks, other than the O'th, are zero under 

modulo 2 addition since u and v only disagree in the O'th block. 

Thus the minimum distance of a convolutional code is equal to the 

minimum weight, w(z) , of an initial n N-digit code sequence, Z, 
o 

whose O'th block is non-zero, written, 

d (z) = d . (u,v) = w(z) m mln 10.4.1. 

We can show that any error sequence, with non-zero O'th block, cannot 

prevent the correct decoding of the O'th block providing its weight, t, 
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is such that, 

That is, provided there are ~ t errors in a span of n N digits, we o 

can decode the O'th block correctly. 

To show this let el and e2 be two error sequences, of length 

n N digits, that disagree in-the O'th block. Then if both error 
o 

sequences have weight t (dm - 1) /2 j their syndromes must be distinct, 

since if 

then, 

S - e HT = 1 - 1 cc 

- T 
S = e H 2 2 cc 

10.4.2. 

But this implies (el @e2) is a code sequence with non-zero 0' th 

block and therefore by the definition of a code sequence must have 

weight, 

This is impossible by definition of the two sequences. 

Thus a convolutional code with minimum distance d can correctly 
m 

decode the O'th block of a set of N blocks, provided there are 

t ~ t (dm - 1) /2 j errors in the span of noN digits, including the 

O'th block itself. 

10.5 Decoding Methods. 

An outline is given of two decoding procedures which can be 

applied to any convolutional code and which are alternatives to the 

general decoding of section 10.2. 
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all 

This is a systematic search algorithm which successively generates 
ko . segnient~' 

2 code-: A-~-and compares each of these with the received 

code !segtl1entfJ .• 

The decoder then assumes the O'th block of the decoded sequence 

is equal tQ_~he O'th block of the code word that is closest to the 
approximately,k . 

received wo-id. Since~ ~ N calculations are required to decode an 

n -digit section the algorithm is limited to codes of small length 
o 

n N and low rate k In . 
000 

The advantages are that it is a maximum-likelihood decoding 

I 

procedure and performs definite decoding, thus eliminating the problem 

of error propagation. 

Without going too deeply into Viterbi8 decoding, which is an 

active branch of research on its own, it is worth noting that a 

parameter of inter~st is the "free distance" of a convolutional code. 

The decoding constraint length of a Viterbi decoder, n M, is several 
o 

times larger than the encoding constraint length, n N. And the free o 

distance is given by, 

d free = lim 
M+CXl 

where dn M is the minimum distance of the code with extended decoding 
o 

constraint length. The probability of error is strongly dependent 

on d
f 

• Viterbi decoders can be used for longer codes than the ree 

simple systematic procedure outlined initially, although it is still. 

limited to codes of moderate length. 
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Sequential Decoding. 

Sequential decoding is an alternative to Viterbi decoding in 
kN 

as much as it operates on the principle that many of the 2 0 code 

words,are highly improbable 

anyway, given the received code word. If it is possible to avoid 

considering highly improbable code words then the amount of computation 

may be manageable even for long codes. 

2 
Sequential decoding was introduced by Wozencraft. and his 

ideas have been extended by other researchers. For a basic introduction 

19 
see Peterson and We1don pp.412-425. 

10.6 . . 1· d· 1,20,7 
MaJor~ty- og~c-Deco ~ng. 

The majority-logic decoding algorithms in Chapter 3, are readily 

applicable to convolutional code"s, except L-step decoding which 

1 
Massey showed could not be used. Also to this date no codes have 

been developed which utilize non-orthogonal check-sums or pseudostep 

orthogonalization, though there is no known restriction to their use. 

In a later chapter pseudostep orthogonalization is used to improve 

1 
a class of codes usually decoded with the Reed-Massey one-step 

decoding algorithm. 

It is one-step decoding using the Reed-Massey algorithm which 

most known majority-logic convolutional codes utilize. 

One-step Decoding. 

The decoder of a convolutional code must store N.(n -k ) 
o 0 

syndrome digits to decode the O'th block. Provided an error pattern 

e with ~ t errors in a span of n N digits occurs, the O'th block can 
o 
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be one-step majority-logic decoded, if 2t orthogonal check-sums 

can be found on each error digit in the O'th block. 

Of course the 2t check sums can be formed by any linear 

combinations of the N.(n -k") syndrome digits. Also there is no o 0 

need to correct the check-digit errors of the block being decoded, 

indeed from equation 10.2.4. it is difficult to see how it could 

be done even if one wished to do so. 

There is no"majo:dty~logic equivalent of a cyclic code in 

the strict sense of the definition given for block codes. Thus all 

majority-logic codes so far devised require k majority-logic gates 
o 

to decode a sub-block of k message-digits. o 
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CHAPTER 11 

11. A CLASS OF CYCLICALLY DECODABLE CONVOLUTIONAL CODES. 

11.1 Introduction to Code Structure. 

It was shown in Chapter 10 that a convolutional code can be 

completely specified by the coefficients of its sub-generators. It 

is the purpose of this introduction to show that a code, which is a 

member of the class of codes to be introduced, can be completely 

specified by an array of positive integers. 

The codes to be presented are systematic so that the check-digits 

of an e'th sub-block can be represented by equation 10.1.2. given 

again below, 

c (k +j) = e 0 

k 
o 

I . 
i=l 

k 
o 

m (i) 
e 

k 
o 

g (i,j) E> I 
o . 1 

~= 

....... 0. i~l me- N+l (i) ~:'l (i,j) 

for j = 1,2, .•. ,n -k , 
o 0 

where c (b), m (b) and g (i,j) are as given in equation 10.1.2. 
e e x 

We impose the following conditiqns upon equation 11.1.1. 

for i -f a. 
go(i,j) J 

for i = a. 
= 

J 

for i -f n. 
~_l(i,j) J 

for i = n. 
= 

J 

and, 1 ~ a., b., ••• ,h., .... ,n. ~ k, are positive integers 
J J J J 0 

11.1.1. 

11.1. 2. 
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representing the numbers of the message-digits concerned. 

We can thus rewrite equation 11.1.1. in the following form, 

c (k +j) = m (a.) em l(b.) ~ ...... ,.;l;\m N l(n.) e 0 e J e- J ""': ~ e- + J 
11.1.3. 

where, m (h . ) imp lies g (h. .) = 1. 
e-x J x J,J 

For example, 

shows that the first check-digit of block e contains the 4'th message-

digit from block e, the l'st message-digit from block e-l, •••••••• , 

the 6' th message-digit from block e-N+l, so that, a1 = 4, bl = 1, •••• , 

n
l 

= 6. 

Consider the array below; 

1 

2 

3 

1. 

n -k o 0 

0 

a1 

a2 

a3 

a. 
1. 

b 

1 

b1 

b2 

b3 

b. 
1. 

n -k 
o 0 

Array 1 

2 . . x · . . . . · N-1 

cl . . . . . h1 · · nl 

c2 h2 · · n2 

c3 h3 · n3 

c. . .... h ....... n. 

c 

1. 1. 1. 

n -k 
o 0 

.h k' n -o 0 

.n k n -o 0 
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We can see that row i shows the numbers of the message-digits 

involved in check-digit c (k +i), from equation 11.1.3. More 
e 0 

specifically, from row i, the integer in column x gives the number 

of the message-digit from block e-x present in check-digit c (k +i). 
e 0 

For the purposes of encoding, we can see from the array what 

form the encoding equations will take for the check-digits of the 

encoded current block in time. 

From equation 11.1.3., if we vary the reference block suffix e 

we obtain the set of equations below. 

c 3(k +j) e- 0 
= m 3 (a .) E,1 m 4 (b .) (t)...... e m N 2 (n • ) e- J e- J e- - J 

ce_2(ko+j)· = m 2(a.) em 3(b.) ~ .••••• ~m N l(n.) e- J e- J ~ ~~ e- - J 

11.1.4. 

ce+x- 3(ko+j) = m + 3(a.) 4' ..•• 9m 3(h.) ~ •••• (£)m N 2(n.) e x- J ~ e- J e+x- - J 

If one traces the distribution of the message-digits from block e-3 

through the equations 11.1.4. above, the following statement becomes 

meaningful, assuming block e-3 is the current block. 

"Column x of Array 1, shows the distribution of the message-digits 

from the current block e-3 in the check-digits of block e-3+x." 

So the array not only gives the form of the encoding equations 

for the check-digits of some arbitrary present block in time, it also 
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shows how the message-digits of that block are distributed in the 

check-digits of itself and the N-l blocks that will follow in time. 

In section 10.2, Chapter 10, we saw that at the decoder we 

form the syndrome by effectively replacing a given message-digit, 

in the check-digit equations, by the error in that digit. This 

resulted in a general syndrome equation 10.2.6. which if we impose 

the restrictions of equations 11.1.2., becomes, 

s (j) = e (k +j) @ e (a.) (f) e l(b.) G:) •••••• (De N l(n.) e e 0 e] .e-] ~ e- + ] 

11.1. 5. 

Ignoring the check-digit error e (k +j), this equation is given e 0 

by row j of the same array of integers, bearing in mind of course, 

that the integers now repres~nt errors in the message-digits. 

If we consider block e is to be decoded we require the syndromes 

of the following N-l blocks also, as below. 

s (j) = e (k +j) E)e (a.) €)e l(b.) 0 ...... ~e N l(n.) e e 0 e] e-] e- + J 

se+l(j) = e +l(k +j) 0e +l(a.) 0e (b.) (£) •••••• ctJe N+2(n.) e 0 e] e] e-] 

11.1.6. 

se+x(j) = e + (k + j) E> e + (a.) E) e + 1 (b .) E> • • • •. ~ e (h.) + .... exo ex] ex-] e] 

.. ~~ e + N+l(n.) .' e x- ] 

se+N-l(j) = e +N l(k +j) r+~e +N l(a.) ~'e N 2(b.) ($)1 •••••• (foe (n.) e - 0 ~ e - ] ~ e+ - J - - e ] 

But if feedback decoding is used, then all errors e ,where . e-x 

(e-x) < e, have been cancelled. Therefore to decode some error, 
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sayee(p), 

the array. 

1 ~ p ~ k, we locate the integer p in each column of 
o 

Since e = 0 for (e-x) < e, from equations 11.1.6., e-x 

the set of integers to the left of each integer p, gives the errors 

from other message-digit positions which interfere with these check 

sums on e (p). 
e 

Example 11.1.1. 

Consider the code specified by the array of integers below; 

1 

2 

3 

4 

2 

4 

1 

3 

3 

1 

4 

2 

4 

3 

2 

1 

When we encode a general block e, from equation 11.1.3. we obtain 

the following check-digit equations, from the rows of the array, 

11.1.7. 

c (k +3) = m (3) Gm 1(1) tt}m 2(4) ~ m 3(2) e 0 e e- e- - e-

c (k +4) = m (4) ~'m 1(3) ~m 2(2) ~ m 3(1) e 0 e e- e- e-

Since there are only four distinct integers in the array, there 

are only four message-digits per sub-block, so that k = 4. Also o 

since there are four rows in the array there are'four check-digits 

per sub-block, so that n -k = 4, and n = 8. This is therefore a o 0 0 

rate 1/2 code. Only 3 other blocks are involved as well as block e, 

so that the constraint length of the code, in blocks, is N = 4. 

From equations 11.1.4., if we increase the suffix's in equations 

11.1.7., we obtain sets of check-digit equations for the other 3 blocks. 
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If we collect those equations involving m (1) we obtain the 
e 

following, 

c (k +1) = m (1) (Dm 1(2) ~m 2(3) @m 3(4) e 0 e e- ~ e- e-

11.1.8. 

At the decoder t4ese check-digits are changed to syndrome digits, 

the message-digits become errors from those message-digits and 

assuming feedback decoding, we obtain the set of equations below for 

the syndromes. 

s (1) = e (1) 
e e 

(-il' e (k +1) - e 0 

t~ e 2(k +2) 
lol. e+ 0 

~ e l(k +3) e+ 0 

Under Definition 3.6.1. these are orthogonal check sums on error 

digit e (1). 
e 

Note that if we locate the integer 1 in each column 

of the array, the leftwise sequence determines a check sum. For 

the check-sums to be orthogonal for all integers, we require the 

leftwise sequences to be unique, where this implies each element of 

a sequence is distinct from the corresponding element in another 

sequence. 

The leftwise sequences for e (1) are; 
e 
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1 Note the columns are unique 

1 3 as defined. 
1 4 2 

1 2 3 4 

Being leftwise unique guarantees that some error from another 

block, will not appear more than once. Being leftwise unique also 

guarantees that the-orthogonal check sums are inherent in the structure 

of the code, and as such the code is self-orthogonal. The sequences 

for the other message-digits are; 

2 

2 

2 

2 

1 

3 

4 

4 

1 3 

3 

3 

3 

3 

4 

2 

1 

1 

4 2 

4 

4 

4 

4 

2 

1 

3 

3 

2 1 

Since we can obtain J = 4, orthogonalestimates of each error 

in the current block e, we can decode in the presence of t ~ 2, errors 

in a span of n N = 32, digits. 
o 

In the work which follows it will be shown that this array can 
information digits 

be arranged in a 'cyclic' form such that the four ~. from a 

sub-block can be decoded cyclically with one majority-logic gate. 

Note that if we guarantee unique leftwise sequences for some 

integer p, we also guarantee unique rightwise sequences, under our 

definition of unique. Therefore the syndrome equations obtained 

from equations 11.1.8. would still be self-orthogonal on e (1) even 
e 

if we did not use feedback decoding and used definite decoding instead. 

12 
This is a property of all self-orthogonal codes. 

Before leaving this section, it is important that the reader 

understands exactly the information imparted by the array of integers 

which specifies the code. To this end the fOllowing statements 
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directly describe the arrays' properties. 

(a) If we are examining block e, then the integer in row i and 

column x represents both, 

(i) the number of the message-digit or message-digit error 

from block e in check-digit i of block e + x. 

(ii) the number of the message-digit or message digit error 

from block e - x in check-digit i of block e. 

Note that if x = 0 both Ci) and (ii) are identical. 

11.2 

11. 2.1. 

Existence of Arrays. 

4 5 27 Introduction to the theory. ' , 

It is assumed that the reader has a knowledge of the basic 

properties of ·congruence relations. To that extent, the following 

brief resum~ is given without proofs. 

Definition 11.2.1.1. 

Any two positive integers a,b whose remainder, r, upon division 

by some positive integer m, is the same, are said to be congruent or 

equivalent and can be written, 

a - b modu10 (m) 11.2.1.1 

or a _ b = r modulo (m). 

11.2.1. (a) 

If a _ b modulo (m), then for any positive integer d, 

d • m + a _ b modu10 (m) 11.2.1.2 

a + d _ b + d modulo (m) 11.2.1.3 

d modulo (m) 11.2.1.4 

" 
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11. 2.1. (b) 

If a = b modulo (m), and also with c and d positive integers 

c _ d modulo (m)., then, 

1l.2.1.(c) 

a + c _ b + d modulo (m) 

a - c - b 

ac _ bd 

d modulo (m) 

modulo (m) 

11.2.1.5 

11.2.1.6 

11.2.1. 7 

If c is a positive integer such that, ca = cb modulo (m), then 

if H.C.F. (a,b), means the highest common factor of a and b, 

H.C.F. (c,m) = d and m = ~d, then 

a = b modulo (~), 

and in particular, if 

H • C • F. ( c , m) = 1, m = ~ and 

a = b modulo (m). 

In text books, the remainder is conventionally referred to as 

a "residue" and the set of all positive integers which have the same 

residue modulo (m) is called a "Residue Class". 

Let [~ represent the residue class containing all positive 

integers whose residue is r modulo (m). 

We can represent the complete set of residue classes by R, where 

[R] = { [oJ, DJ, [2], ...... , [m-J] } 

Definition 11.2.1.2. 

A set of B positive integers is a complete residue system, if 

and only if, both of the following conditions are satisfied: 

(i) B has m elements, 

(ii) if a and b are contained in B, written 
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a,b E B., and a _ b modulo (m) 

then a = b. 

That is the set B contains one integer from each of the m residue 

classes contained in [~. 

In particular we are interested in what are known as "Reduced 

Residue Systems". But before we define what a reduced residue system 

is, we must define a function used widely in number theory and known 

as Eulers ~-function. 

Definition 11.2.1.3. 

For every positive integer m, the number of integers less than 

m and relatively prime to m, is ~(m), where 

(~-plJ ~(m) = m IT 
p\m 

where the notation indicates a product over all the distinct primes 

p > 1 which divide m. 

For example; 

if m = p ~(m) = p-l 

if 0. Hm) 
0.-1 

m = p = p (p-l) 

0.1 0.2 0. 
if 

r 
m = Pl' P2 ...... Pr 

expanding ~(m), generally 

~(m) 

Note that; 

~(2m) = ~(m). 

0. -2 2 
P2 
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Definition 11.2.1.4. 

A set of S positive integers is a reduced residue system, 

modulo (m), if and only if, the following conditions are satisfied: 

(i) S has ~(m) elements. 

(ii) H.C.F. (a,m) = 1 for each a E S 

(iii) if a,b E S and a = b modulo (m) 

then a = b. 

If two integers a,b are relatively prime, we will write, 

(a,b) = 1. 

As a complete residue system, we could choose the set B, to be 

all m integers less than m, i.e. 

B = {O,1,2, •••• , m-l}. 

A reduced residue system could then be all ~(m) integers E B 

above, that are relatively prime to m, and thus E S. But in general 

any ~(m) integers whose residues are distinct and relatively prime 

to m, is a reduced residue system, as our definition implies. 

The following theorems will be found useful, in later work. 

Theorem 11.2.1.1. 

If there exist positive integers a,b and.m, such that 

a = b modulo (m) 

then if (a,m) = 1, then (b,m) = 1 also. 

Proof. 

If we assume the contrary, then there exists a positive integer 

s > 1, such that, (b,m) = s, (where from now on H.C.F. (a,b) = (a,b), 

unless specified otherwise) 

m = ~s b = qs, 
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but since a = ~m + b, then this implies 

a = (~m1 + q)s, 

and implies s is a divisor of a, which is not possible since 

(a,m) = 1, ands >1, therefore (b,m) = 1. 
Q.E.D. 

Thus if an integer's residue is relatively prime to m, then 

the integer itself is also relatively prime to m. Therefore any 

residue class, represented by [~, with (a,m) = 1, contains a set 

of positive integers, which can be represented, from equation 11.2.1.2, 

by 

[~ = {( d om + a), d = 0,1,2,... } ~ 

and «dm + a), m) = 1 for d = 0,1,2, ••••• 

Theorem 11.2.1.2. 

If m., (i = 1,2, ••.• ,r) are positive integers, then 
~ 

if and only if, 

a = b modu10 (m.) 
~ 

i = 1,2, ••• , r , 

a = b modu10 (L.C.M. {m1 ,m , •••• , m}), a r 

where, L.C.M. {a,b, ••• ,r} means the Lowest Common Multiple of 

a,b, ... ,re 

11.2.2. The Array. 

In section 11.1. we showed that a code could be specified by 

an array of positive integers representing the numbers of message-

digits or message-digit errors. We also saw that the array must 

be structured so that the 1eftwise sequences of any integer must 

£orm a unique set in order that orthogona1 check sums exist for 
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that integer. This condition must hold for every distinct integer 

in the array if a code is to be specified by the array. 

In this section we develop bounds and conditions on the form 

of the array which guarantees unique leftwise sequences for all 

distinct integers. The following theorem determines the form of 

a single row of an array. 

28 Theorem 11.2.2.1. 

If there exists positive integers a,m such that (a,m) = 1, then 

the quantities 

a, 2a, 3a, ••••• , (m-l)a 

have (m-I) distinct residues modulo (m). 

Since for any integer m, there are ~(m) integers a., 
~ 

(i = 1,2, ••• ,~(m)), with (a.,m) = 1, we can obtain ~(m) sets, S., 
~ ~ 

where 

Si = {ai mod(m), 2ai mod(m), ••• ,(m-l)ai mOd(m)} 

A general array (A) is defined as the set of sets, 

S. , i = 1,2, ••• , ~ (m), where 
~ 

(A) = 

S~(m) 

11.2.2.1. 

and each S. constitutes a row of the array which therefore has ~(m) 
~ 

rows, (m-l) columns and (m-I) • ~'(m) elements. -

It will be seen later that it is possible to construct arrays 

with S < ~(m) rows provided S divides ~(m), written SI~(m). However 

a row of any array always contains the complete set of elements 



194 

1,2, ••• ,(m-1), though in different arrangements or permutations. 

From section 11.1. we saw that to obtain se1f-orthogona1 

estimates on a particular error-digit, we require the 1eftwise 

sequences of that integer representing the error, to be unique. See 

Example 11.1.1. and equations 11.1.6. 

Consider the example below. 

Example 11.2.2.1. 

The array below is generated mod (8) by the two integers 5 and 

7, relatively prime to 8. 

5 2 741 6 3 

7654321 

All 1eftwise·sequences, for all integers except 3, are unique 

as defined. For 3 we obtain, 

3 6 1 4 7 2 5 

3 4 5 6 7· 

Assuming we are considering errors in the current block as 

block 0, the syndrome equations from example 11.1.1. are, 

s6(1) = e6(8) e)eO(3) ~e1(6) ~e2(1) ~e3(4) 

e> e
4 

(7) a e
5 

(2) e e
6 

(5) 

S4 (2) = e4 (9) 9 eo(3) @ e1 (4) !ti: e2 (5) ~e3(6) 

El e4 (7) 

and these are orthogona1 on, 

The situation in example 11.2.2.1. above must be avoided if we 

are to decode all digits and we can gain some insight into how this 
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can be done by considering what conditions caused the results in 

the above example. 

Let, a
l 

:: 5 and a :: 7 
2 t~en the two equations s6(1) and 

s4(2) are determined by the following equations from the array of 

integers, 

7 + 4·(5) = 3 mod (8) 

from the row ge~erated by al. 

7 + 4·(7) = 3 mod (8) 

from the row generated by a2• 

So that 7 and 3 are separated by 4 multiples of a
1 

and a
2

. We can 

represent this situation generally by the equations below. 

x+ n(al ) - v mod (m) 
11.2.2.2. 

x + n(a2) = v mod (m) 

Obviously n must be an integer and from these equations, 

so that, assuming a2 > ai r > q 

11.2.2.3. 

where n must be an integer. When this equation is satisfied we will 

call the condition "Array row equivalence" (or A.R.E.). We can obtain 

a maximum for n by considering x to be in the first and second columns 

of the array, with v in the next to last and last columns respectively. 

That is, if x is in the first column of row one, x :: a1 and 

also since v, in row one, is in the next to last column, giving 
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(m - 2)a1 - v mod (m) 

therefore, from equation 11.2.2.2. with x = a1 

and n = (m-3). 
max 

11.2.2.4. 

The same result is derived from the second row also. We can 

also determine some useful condition on (r - q) in the following max 

way. 

From equation 11.2.2.3, 

and since (a
2
-a

1
) and m are fixed, (r-q) is determined by n. Thus, 

(r-q) 
. max 

Therefore, 

n (a
2
-a

1
) 

= .-.;;;m;.;;a;;.;x_..;..-~_ 
m 

= m 

and if n < n max 
(r-q) < (r-q) for all n. 

max 

We are now in a position to prove the following theorem. 

Theorem 11.2.2.2. 

11.2.2.5 •. 

Any array generated mod (m), by a set of relative primes a., 
1 

where (a. ,m) = 1, a. < m, is free from A.R.E., if all positive 
1 1 

differences (a.-a.), a. > a. , are also relatively prime to m. 
J 1 J 1 

Proof. 

From equation 11.2.2.3., if A.R.E. occurs 



n = m(r-q) 
(a.-a.) 

J ~ 

must be an integer. 
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But from inequality 11.2.2.5., 

(r-q) < (a.-a.) 
J ~ 

for all n, and since «a.-a.),m) = 1, for n to be an integer (a.-a.) 
J ~ J ~ 

must wholly divide (r-q), which is not possible. 

Q.E.D. 

In example 11.1.1. the array was generated by the set of integers 

1,2,3 and 4, mod (5), and any difference is also relatively prime 

to 5. 

In example 11.2.2.1. the array was generated by the integers 

5 and 7, mod (8), but their difference, (7-5) = 2, is not relatively 

prime to 8 and thus A.R.E. occurs. 

If (a.-a.) is not relatively prime to m, then, if ml is the 
J ~ 

greatest common divisor, 

«a.-a.) ,m) = m.. 
J 1. 1 

and the following theorem shows that column duplication occurs under 

these circumstances. 

Theorem 11.2.2.3. 

If any array is generated mod (m), by two integers a. and a., 
J 1. 

such that, 

(a. ,m) =1 
J 

(a.-a.) = bm.. 
J 1. 1 

(a. ,m) = 1 
1. 

a. > a. 
J 1. 

and 

where b is an arbitrary positive integer and m1 1.S some divisor of m, 

then column duplication will occur in the array. 
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Proof. 

Assume that at the h'th column of the array, we have, 

r' < m 

. ha. = q m + r" 
J 2 

r" < m 

then, subtracting, 

1l.2.2.6(a) 

but if (a.-a.) = b DL 
J 1 1 

11. 2 • 2. 6 (b) 

since h can assume any value between 1 and its maximum (m-3), if 

dm 
h = 

m = -

d = 1,2, •.. , g < ml 

then equation 11.2.2.6., becomes, 

but since 

r' < m and r" < m 

then (r'-r") < m and therefore 

r' = r" 
dm 

and column h has the same integer values at all h = m
l 

column duplication. 

causing 

Q.E.D. 

Two results are now immediately obvious; 

i) if m
l 

> 2, column duplication must occur 1n more than one 

column. It is also obvious that column duplication in more than one 
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column causes A.R.E. This eliminates pairs of relative primes 

with this property. 

ii) if m
l 

= 2, then since d < ml , column duplication can only 

occur in one coiumn 

h m m 
=m

l 
='2' 

that is the centre column. However this can only occur if m is an 

even integer and is impossible if m is an odd integer. This will 

be examined in more detail later. 

We can now. prove that whether or not column duplication occurs, 

all other columns contain distinct integers. 

From equation 11.2.2.6(a) and theorem 11.2.2.3., if two rows 

of an array contain the same integer, in column h, 1 ~ h ~ mrl , 

r' = r" and 

h(a.-a.) = m(q -q ) 
J 1· 1 2 

h = 
m(ql-q2) 

(a.-a. ) 
J 1 

There are two cases to consider; 

i) if «a.-a.),m) = 1, this cannot occur for any integer value 
J 1 

of h and all columns contain distinct integers. 

ii) if «a.-a.),m) = m-, then (a.-a.) = bml J 1 1 J 1 

but since (b,m) = 1, for h. to be an integer b must wholly divide 

(ql-q2)· 

Let (ql-q2) = cb c = 1,2,3, •••••• 
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Regardless of the value of c, h will be a multiple of m/~, 

which is a column where duplication is known to occur. Thus all 

other columns contain distinct integers. 

Example 11.2.2.2. 

Let ID = 9, then the set of relative primes is; 

. {I, 2, 4, 5, 7, a}. 

Let a. = 8 and a. = 2, then 
J 1. 

(a.-a.) = (8 - 2) = 6 = 2'3 
J 1. 

therefore ml = 3 and b = 2 and column duplication should occur 

in columns that are mUltiples of, 

that 1.S in columns, 

h = d'3 d = 1,2, ••• , t < 3 

= 3 and 6. 

The two rows of the array are, 

24681 3 5 7 

a 7 654 321 

and column duplication in columns 3 and 6 verified. 

Therefore when decoding digit 3, of say block 0, we will obtain 

two syndrome equations orthogona1 on eO (3) @ e/6), see example 11.1.1. 

Note, all other columns contain distinct integers. 

However this does not mean that the type of A.R.E. indicated 

in example 11.2.2.1. does not occur when column duplication occurs, 

it can occur simultaneously with column duplication. 

In fact A.R.E. also occurs for digits 1 and 5 as we can see from 

the 1eftwise sequences for these, 
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1 8 6 4 2 

1 2 3 4 5 6 7 8 

5 6 7 8 

5 3 1 8 6 4 2 

And the above sequences represent syndrome equations orthogonal 

Before examining the cases when m is odd and even, the following 

theorem establishes an upper bound on the number of relative primes 

one can utilize, to be sure that their differences are also relatively 

prime to m. 

Theorem 11.2.2.4. 

Given any integer m, 

Pl = smallest prime factor> 1. 

Then, the maximum number of relative primes a. < m, one can choose, 
1. 

such that their differences, (a.-a.), are also relatively prime to m, 
J 1. 

is upper bounded by (Pl-l). 

Proof. 

Any difference, not relatively prime satisfies 

(a.-a.) = bp. 
J.1. 1. 

for some p., divisor of m. 
1. 

Then a. = bp. + a. 
J 1. 1. 

a. - a. mod (p.). 
J 1. 1. 

or 

To guarantee this does not occur we require 

a. $ a. mod (p. ) 
J 1. 1. 

for any divisor p. of m. That is the set must 
1. 

have distinct residues 
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modu10 any divisor of m. Since PI is the smallest divisor of m, 

the set cannot exceed (P1-l) in number otherwise, reducing mod (Pl) 

will produce equal residues for some numbers. 

Q.E.D. 

Almost as important as the upper bound and of great use later 

is the fact that the proof of theorem 11.2.2.4. shows that we can 

determine if a set of relative primes has relatively prime differences 

by determining if the set has distinct residues modu10 (any divisor 

of m). 

We can now examine how,the preceding theorems affect arrays when 

m is odd and even. 

m = ODD. 

When m is an odd integer then its smallest divisor must be ~ 3. 

From theorem 11.2.2.3, if an array generated mod (m), has rows generated 

by relative primes a. < m, such that (a.-a.) = bm
1

, then column 
1 1 J 

duplication will occur in columns, 

h =_dm d = 1,2, •••• , g < m1 m
1 

but since m is odd, m1 ~ 3, we will have 

, ...... . 
and column duplication will always occur in at least two columns. 

An example follows, with m = 21, which is more illustrative than 

that of example 11.2.2.2. when m = 9. 

Example 11.2.2.3. 

Let m = 3'7 = 21, then the set of relative pr1mes, A, is 

A =' {I, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20} 
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Let, a3 = 8, a2 = 11, a1 = 4 

from (a2-a3) = 11 - 8 = 3. 

b1 = 1, m1 = 3 

and 
42 3" = 7, 14, 

duplication between rows 8 and 11 occurs in columns 7 and 14. 

from 

and 

11-4=7 

63 
7' 

84 7 ' ...... . 

= 3, 6, 9, 12, 15, 18, 

and duplication between rows 11 and 4. occurs· in six columns, 

3, 6, 9, 12, 15, 18. 

The array produced is 

8 163 11 19 6 14 1 9 17 4 12 20 7 15 2 10 18 5 13 

11 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 20 10 

4 8 12 16 20 3 7 11 15 19 2 6 10 14 18 1 5 9 13 17 

Duplication also occurs between rows generated by the following pairs 

of relative primes. 

(1,4),(2,5),(5,8),(8,11),(2,8),(1,8),(4,10),(1,10),(10,13),(4,13), 

(1,13),(10,16),(13,16),(4,16),(2,16),(1,16),(11,17),(10,17),(8,17),(5,17) 

(2,17),(16,19),(13,19),(10,19),(5,19),(4,19),(1,19),(17,20),(13,20),(11,20), 

(8,20),(5,20),(2,20). 

Note, all other columns contain distinct integers. 

We have shown that if m is an odd integer, any array generated 

mod (m), which contains two rows, generated mod (m), by two relative 
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primes a. and a., s'uch that, 
J ~ 

«a.-a.) ,m) f:. 1 
J ~ 

is an array with A.R.E. between these rows. 

This along with theorem 11.2.2.2. proves the following theorem. 

Theorem 11.2.2.5. 

If m is an odd positive integer, then any array generated mod (m), 

by a set of relative primes {a.}, such that a. < m, (a. ,m) = 1 for 
~ ~ ~ 

each i, is free from A.R.E., if and only if, all differences (a.-a.) J ~ 

are also relatively prime to m, where a. > a .• 
J ~ 

Therefore the upper bound imposed on arrays generated by relative 

primes of an odd integer, is given completely by theorem 11.2.2.4. 

As an Example of an array free from A.R.E. consider the following. 

Example 11.2.2.4. 

Let m = 7, then the set of relative primes is, 

{I, 2, 3, 4, 5, 6} , 

and all differences, from this set, are also relatively prime to 7, 

and we obtain 

1 2 3 4 5 6 

2 4 6 1 3 5 

3 6 2 5 1 4 

4 1 5 2 6 3 

5 3 1 6 4 2 

6 5 4 3 2 1 

Six self-orthogonal equations (or unique leftwise sequences) 

are obtainable on all six distinct integers. Thus the array specifies 

a convolutional code, with 
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k = 6 
0 

n = 12 
0 

N = 6 

t = 3 

We will show later how to arrange this array in a 'cyclic' form 

so that all six digits can be decoded cyclically with one majority-

logic gate. 

Since all differences are relatively prime all columns contain 

distinct integers. 

m = EVEN. 

All relative primes of an even integer are odd and therefore 

any difference (a.-a.) is divisible by 2 and cannot be relatively 
J ~ 

prime to m. This follows from theorem 11.2.2.4. We know from 

theorem 11.2.2.2. if 

(a.-a.) = bml J ~ 

then column duplication occurs in more than one column and so A.R.E. 

exists. 

We can therefore restrict our enquiries to subsets of relative 

primes, where, 

(a.-a.) = bo2 
J ~ 

, where (b, ~) = 1 . 

If A.R.E. occurs under these conditions, then, from equation 

11.2.2.3., 

n = m(r-q) 
20 b 11.2.2.7. 

and since (b,~) = 1, b must wholly divide (r-q) if n is an integer. 

That is, (r-q) = cb, c = 1,2, ••.•• 

but if c > 2 n > m which is impossible, 

if c = 2 n = m which is impossible, 
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and therefore, c = 1, (r-q) = band n = m/2 is the only value 

for which A.R.E. can occur. We know from theorem 11.2.2.3. that 

column duplication will occur in the centre column, but this alone 

will not cause A.R.E. on the duplicated integer. However from 

example 11.2.2.1., in which column duplication occurred only in the 

centre column, A.R.E. still occurred. We must determine under what 

conditions it occurs and if there are any conditions under which 

the array can be free from A.R.E. 

Returning to the original equations under which A.R.E. was 

established we have, 

x + na. = v mod (m) 
l.. 

x + na. = v mod (m) 
J 

But these equations take no account of the columns the two x's 

occur in. Let us assume that the x in the row generated by a. occurs 
l. 

in column g, and the x in the row generated by a. occurs in column f, 
J 

then we have, 

ga. - x mod (m) } l. 11.2.2.8. 
fa. - x mod (m) 

J 

We can obtain a maximum value for g, since we know for A.R.E. 

to occur n must equal m/2. Let us write, 

ga. + na. = (m-2) 
ail l. l. 

fa. + na. = (m-1) a. 
J J J 

11.2.2.9. 

so that, g < f, giving 

(g+n) = (m-2) and 

= m - 2 m - -2 

m = '2 - 2 • 11.2.2.10. 
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Also from equation 11.2.2.9., 

(f+n) = (m-l) , so that 

f 1 m = m - -2" max 

m 1 = --2 11.2.2.11. 

That is both x's must be located left of the centre column, 

where duplication occurs. To the left (or right) of the centre column 

there are (m/2) - 1 columns and the following theorem shows that if 

two x's exist left of centre, then two v's always exist m/2 columns 

away from both x's, right of centre causing A.R.E •. 

Theorem 11.2.2.6. 

If m.is an even positive integer and an array is generated mod (m) 

by a set of relative primes a., such that any difference (a.-a.) = 2·b, 
1 J 1 

with (b,m) = 1, then A.R.E. will occur, if and only if, there is an 

integer x, such that, with g < f 

with both, 

Proof. 

ga. _ x mod (m) 
1 

fa. - x mod (m) 
J 

and 

l1.2.2.l2(a) 

Let us assume there exists an integer r' in column g of row a. 
1 

and an integer r" in column f of row aj , where g ~ ~ - 2, f ~ ~ - 1 

then, 

ga. - r' mod (m) r' < m 
1 

fa. - r" mod (m) r" < m 
J 

and if f > g 



but if (a.-a.) = 2b, then 
J 1 

a. = 2b + a. 
J 1 

f(2b+a. ) 
1 

- ga. 
1 

2bf + a. (f-g) 
1 
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and 

= m(q -q ) 2 1 
+ r" - r' 

= m(q -q ) 2 1 
+ r" - r' 11.2.2.12(b) 

If we move n = I columns down the array, then we will have, 

where, 

m 
(g + 2) a. 

1 

(f+ ~) a. 
J 

m 
r'+ 2 a i -

r " m + 2 a j -

=""q m + 
3 

p' 

= q4m + p" 

p' mod (m) 

p" mod (m) 

Subtracting equations 11.2.2.13;, 

p' < m 

, p" < m 

faj - gai + ~ (aj-ai ) = m(q4-q3) + p" - p' 

and since (a.-a.) = 2b 
J 1 

Comparing equations 11.2.2.12(b) and 11.2.2.14, 

m(q -q ) + r" - r' = m(q -q -b) + p" - p' 
2 1 4 3 

11.2.2.13. 

11.2.2.14. 

and since (r" - r') and (p" - p') are less than m, we must have, 

r" - r' = p" - p'. 

Let r' = x and p' = v, then if 

r" = r' = x, we also have, 
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pI! = pt = V and A.R.E. occurs. 

However this assumes g and f are less than their maximums, given 

in eq~ations 11.2.2.10. and 11.2.2.11. respectively. 

. m 
If we assume, f > 2 - 1, then 

(f + ~) > (m-1) 

and since there are only (m-1) columns in the array, v, cannot exist 

ln the row generated by a. and A.R.E. cannot occur. 
1 

Also if g > ~ - 2, then this also implies f > ~ - 1 and again 

A.R.E. cannot occur. 

Q.E.D. 

Therefore to prevent A.R.E. we require all integers left of the 

centre column to be distinct and this obviously places a limitation 

on the size of the array. 

The following example illustrates the results of theorem 11.2.2.6. 

Example 11.2.2.5. 

Let m = 2·5 = 10, then the set of ~(10) = 4, relative primes are 

A = {1, 3, 7, 9}. 

Let a
1 

= 1, a
2 

= 3, from equation 11.2.2.12(a) 

therefore 

thus g = 2, 

2'1 _ 2 mod (10) 

4'3 _ 2 mod (10) 

m 
f = 4, ~ 2' - 2, 

m 
2 

1 respectively. 

m 
A.R.E. occurs when n = 2= 5-

2 + 5·1 _ 7 mod (10) 

2 + 5"3 - 7 mod (10) 
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The full array is shown below. 

1 2 3 4 5 6 7 8 9 

3 6 9 2 5 8 1 4 7 

7 4 1 8 5 2 9 6 3 

9 8 7 6 5 4 3 2 1 

A.R.E. occurs between rows (1,3), (1,7) , (3,9), (7,9). Note that 

no A.R.E. occurs between rows (3,7) and (1,9) since all integers 

to the left of centre column are distinct. 

Let a1 
= 3, a2 = 7, and 

6-3 - 8 mod (10) 

} 4-7 - 8 mod (10) 
11.2.2.15. 

thus 4 m 2 g = >-- = gmax 2 

and f 6 m 1 f = >-- = 
2 max 

and 
m 

= 9, (f + ~) 11 (g + 2') = 

but column 11 does not exist. 

Alternatively, 

8-3 - 4 mod (10) } 
2-7 - 4 mod (10) 

11.2.2.16. 

thus 2 m 2 g = <-- = gmax 2 

and f = 8 m 1 = f >--
2 max 

but though (g+n) = 7, we have (f+n) = 13, and column 13 does not exist. 

In equations 11.2.2.15 both g and f exceed their maximums, but 

in equations 11.2.2.16. only f exceeds its maximum. Yet A.R.E. does 

not occur in both cases. 

From the construction of an array we know that each row contains 

(m-1) distinct integers, of which (m/2)-1 are left of centre, and if 
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we assume the array has S rows, then to the left of centre we require 

m 
S (- - 1) 

2 

distinct integers. Since there are only (m-l) distinct integers 

in the whole array this limits S to 2, or, (m-2) distinct integers 

left (and right) of the centre column which contains the (m-l)'th 

duplicated integer. 

Consider the following theorem. 

Theorem 11.2.2.7. 

If m is an even positive integer, any array generated mod (m) 

by two relative primes a. and a., is free from A.R.E. if (a.+a.) = m. 
1. J 1. J 

Proof. 

Since, 

where 

and 

for A.R.E. to occur, 

ga. - x mod 
1. 

fa. - 'x mod 
J 

m 
g < - - 2 .. 2 

(m) 

(m) 

then from equations 11.2.2.17. 

but if 

ga. _ fa. mod (m) 
1. J 

ga. = km + fa. 
1. -J 

then a. + a. = m, 
J 1. 

a. = m-a. and 
J 1. 

ga. = km + f(m-a.) 
1. 1. 

m(f+k) = a. (g+f) 
1. 

11.2.2.17 
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(a. ,m) = 1, m must be 
~ 

(g+f) = cm 

c ~ 1 (i) g 

or (ii) g 
m 

= f ="2 

a factor of (g+f). 

c = 1,2, ...... 

m 
or fare > 2' 

and in both cases at least one of them exceeds their maximum and 

A.R.E: cannot occur. 

Q.E.D. 

It will be seen later that a 'cyclic' array always exists 

generated by a. and a. such that (a.+a.) = m. 
J ~ J ~ 

The following example gives a general solution, when m = 14. 

Example 11.2.2.4. 

Let m = 2'7 = 14, then the set of <p(14) = 6, relative primes 

A = {l, 3, 5, 9, 11, l3} 

Let 'a
l = 1, a2 = 3, from equation 11.2.2.12(a) 

4-1 - 4 mod (14) 

6-3 - 4 mod (14) 

thus 4, f = 6, ,::::.!!!- 2, m 1, respectively_ g = - -.. 2 2 

A.R.E. 
m 

occurs when n = - = 2 7, 

4 + 7-1 - 11 mod (14) 

4 + 7-3 - 11 mod (14) 

The full array is shown below. 

1 2 3 4 5 6 7 8 9 10 11 l2 l3 

3 6 9 12 1 4 7 10 l3 2 5 8 11 

5 10 1 6 11 2 7 12 3 8 l3 4 9 

9 4 13 8 3 12 7 2 11 6 1 10 5 

11 8 5 2 13 10 7 4 1 12 9 6 3 

l3 12 11 10 9 8 7 6 5 4 3 2 1 

are, 
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Many more equivalences occur, other than those shown, but 

A.R.E. cannot be present between rows (1,13), (3,11) and (5,9), 

since (1 + 13) = (3 + 11) = (5 + 9) = 14 = m. 

From rows a l = 5, a2 = 9, 

thus 

and 

10-(5) - 8 mod (14) 

4-(9) - 8 mod (14) 

m 
g = 4 < 2 - 2, but 

f = 10 > ~ - 1 
2 

(g + ~) = 11, (f + ~) = 17 

and column 17 does not exist. The arrays generated by the pairs 

1,13 or 3,11 have a similar result and are free from A.R.E. 

i) 

To summarize the results of this section, we have shown. 

if m is an odd integer, its relative primes a. < m, generate 
~ 

an array free from A.R.E., if and only if, all differences (a.-a) 
J p 

are relatively prime to m. 

ii) if m is an odd integer, the number of rows in an array free 

from A.R.E., generated by relative primes a. < m, is upper bounded 
.~ 

by (PI-I), where PI is the smallest prime divisor of m. 

iii) the set of A = {al,a2,---,apl-l} integers relatively prime to m, 

m = odd, generate an array free from A.R.E., if and only if, the set 

A has distinct residues modulo (any divisor of m). 

iv) if m is an even integer, an array free from A.R.E., has a 

maximum number of 2 rows and is generated by any pair of relative 

primes a.,a., if (a.+a.) = m. 
~ J ~ J 
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11.3 Existence of 'Cyclic' Arrays. 
, 

11.3.1. Introduction to the theory.4,5,27 

We introduced in the previous section the concept of reduced 

residue systems. We then examined the arrays they produced and 

developed some fundamental properties, which guaranteed the arrays 

are free from array row equivalence (A.R.E.). 

We will now continue our study of reduced residue systems and 

the following theorems immediately are illuminating. The bulk of 

. the material in this section can be found in references .4 and 5. 

Theorem 11.3.1.1. (Eulers Theorem) 

If (a,m) = 1, then 

a~(m) = 1 modulo (m). 

This does not imply that ~(m) is the only power of a, which gives 

a residue of one, it merely states that any relative prime raised 

to the power ~(m), has a residue of one, modulo (m). 

Definition 11.3.1.1. 

If (a,m) = 1, the smallest positive integer S, such that, 

as = 1 modulo (m), 

is called "the order of a modulo (m)". 

Since every integer a, has ~(m) as a power with a residue of 

one, then since S is the smallest integer which satisfies our definition 

above, then 

Ord a ~ Hm) 
m 

where the notation means, the order of a, modulo (m), is less than 

or equal to ~(m). 
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We also have; 

Theorem 11. 3.1. 2. 

If the order of a is S mod (m) then S divides ~(m). 

Theorem 11.3.1.3. 

If the order of a is S modu10 (m), and k is a positive integer, 

then 

k 
a = 1 modulo (m) 

if and only if, S divides k, written Slk. 

Thus no power of a relative prime. can give a residue of one, 

uless it is a mUltiple of the order of the relative prime. 

Theorem 11.3.1.4. 

If a = b modulo (m), then for any positive integer k, 

k k 
a = b modulo (m). 

If in the above theorem a has order S modulo (m), then 

as = bS = 1 modulo (m) 

and we have; 

Theorem 11.3.1.5. 

If a = b modulo (m), then a and b have the same order modu1o (m). 

Therefore, for all positive integers that are members of the same 

residue class, since any two of them say x and y, are related by 

x = y modulo (m), 

then they all have the same order modulo (m). 

Theorem 11.3.1.6. 

If.(a,m) = 1, and Ord a = S, then the set of elements, 
m 

2 3 S {a, a , a , •••• , a } 
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have distinct residues modulo (m) and are said to be "incongruent 

modulo (m)". 

So, amazingly, if one raises a relative prime to all positive 
. 

powers less than and equal to its order, one immediately obtains a 

set of integers from distinct residue classes. This leads to the 

following theorem. 

Theorem 11.3.1.7. 

If (a,m) = 1, and Ord a = ~(m), then the set of elements, 
m 

. 2 3 et> (m) {a, a a, •••••• , a } 

is a reduced residue system, modu10 (m). 

This follows from Theorem 11.3.1.6. and our definition of a 

reduced residue system. We wish at this point to introduce a 

definition of our own. 

Definition 11.3.1.2. 

If (a,m) = 1, and Ord a = S, then the set of elements, 
m 

. {a, 2 
a , 

3 S a , ...... , a } 

will be called a 'cyclic' set of order S modu10 (m). 

This follows from the fact that since 

S a-I modu10 (m), then 

as+l :: a mod (m) 

where mod (m) = modulo (m), and 

as+2 _ a2 mod (m) until 

a2S _ 1 mod (m) 

{ S+l S+2 a2S} , Therefore the set a ,a , •••• , is also a cyclic'set of order S, 

and 

Ord a = Ord m m 
S+l 

a = s. 
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Any relative prime, a, that has order ~(m) mod (m) is given a 

special name, defined below. 

Definition 11.3.1.3. 

If (a,m) = 1, and Ord a = ~(m), then a is called a primitive 
m 

root of m. 

It will be perhaps helpful if at this point we illustrate the 

preceding theorems with an example. 

Example 11.3.1.1. 

Let m = 11, then the set of relative primes, less than m, which 

represent its residue classes is, 

{l, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

We omit the integer zero since it represents the residue of 

integers that are multiples of m, and are therefore not relatively 

prime. 

We then have the following 'cyclic' sets reduced mod (11). 

i) 12 :: 1 mod (11) , Ordl1 1 = 1 

ii) {2, 4, 8, 5, 10, 9, 7, 3, 6, 1} 

and 210 :: 1 mod (li), Ordll 2 = 10. 

iii) 0, 9, 5, 4, 1} 

and 35 :: 1 mod (11), Ordn :3 = 5. 

iv) {4, 5, 9, 3, I} 

and 5 4 :: 1 mod (11) , Ordn 4 = 5. 

v) {5, 3, 4, 9, 1} 

and 5 5 :: 1 mod (11), Ordn 5 = 5. 
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iv) {6, 3, 7, 9, 10, 5, 8, 4, 2, 1}. 

and 610 
- 1 mod (11), Ord

11 
6 = 10. 

vii) {7, 5, 2, 3, 10, 4, 6, 9, 8, 1} 

and 710 - 1 mod (11) , Ord11 7 = 10. 

viii) {8, 9, 6, 4, 10, 3, 2, 5, 7, 1} 

and 810 - 1 mod (11) , Ord11 8 = 10. 

ix) {9, 4, 3, 5, 1}. 

and 95 :: 1 mod (11) , Ord11 9 = 5. 

x) {l0, H. 

and 102 :: 1 mod (11) , Ord1l 10 = 2. 

So we have a set of orders, 

{ 1 , 2, 5, -10}. 

From definition 11.2.1.3. 

<p(m) = 10, 

and theorems 11,3.1.1.,11.3.1.2.,11.3.1.6., 11.3.1.7. can be seen 

to be satisfied. 

In particular, the elements 2, 6, 7, and 8 are primitive roots 

of 11 • 

. We can now clarify Theorem 11.3.1.5. 

If 

Ord a = Ord b, this does not imply that 
m m 

a :: b mod (m), 

otherwise any positive integer would only have at most one primitive 

root, which is not so, as the following theorem shows. 
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Theorem 11.3.1.8. 

If there exists a primitive root modulo (m), then there are 

precisely 

<jl(<jl(m) ) 

primitive roots mod (m), which are incongruent mod (m). 

From the above example there are four primitive roots and 

~(~(m» = ~(lO) = 4. 

The preceding theorem began "If there exists a primitive root", 

and this is because, not all positive integers have primitive roots. 

l~ich integers do have primitive roots is well established and 

given in the following theorem. 

Theorem 11.3.1.9. 

A positive integer m > 1, has a primitive root, if and only if, 

m is one of the following 

k k 
2, 4, p , 2p 

where p is any odd prime and k any positive integer. 

From theorem 11.3.1.7. and our example 11.3.1.1. above we can 

see that there is a direct equivalence between each integer, less 

than and relatively prime to m, and each integer, which is a power 

of a primitive root. 

The particular power of the primitive root relative to the 

relative prime, is given a special name defined below. 

Definition 11.3.1.4. 

If (a,m) = 1, and g is a primitive root mod (m), then the least 

non-negative integer i, such that 

a :: gi mod (m) 
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is called the index of a (relative to the primitive root g) and 

is written 

ind (a). 
g 

But from theorem 11.3.1.8. we know that there are ~(~(m)) primitive 

roots, so which do we use to determine ind(a), since ind(a) will be 

different for each primitive root? Some text books stipulate that 

the smallest primitive root is used and others write ind (a), to g 

indicate which primitive root is concerned. We will use the latter 

convention. 

Theorem 11.3.1.10. 

Let m be a positive integer with a primitive root g, then, 

ind (a) = ind (b) g g 

if and only if, 

a = b mod (m). 

Therefore relative to a given primitive root, the index of an 

integer, which is a member of a reduced residue system, is unique. 

There is a connection between index and order, as we now show. 

Theorem 11.3.1.11. 

If ord a = S, then 
m 

n Ord a 
m 

where (n,S) = H.C.F. (n,S). 

If g is a primitive root mod (m), then 

Ord g = ~(m) 
m 

therefore from Theorem 11.3.1.11. 

11.3.1.1. 

• I 

I 



but if ind (a) = n, then 
g 

a = gn mod (m) 

and from Theorem 11.3.1.5. 
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n 
Ord (a) = Ord g 

m m 

From equations 11.3.1.1,2,3 above, then 

Ord a m 
= ~(m) 

(ind (a), ~(m» g 

11.3.1.2. 

11.3.1.3. 

11.3.1.4. 

Since for all a < m, ind (a) can take any value between 1 and 
g 

~(m), then (ind (a),m) will assume all values that are divisors of m. 
~ g. 

We have proved the following theorem. 

Theorem 11.3.1.12. 

If m has a primitive root there exists a 'cyclic' set for every 

order S which divides ~(m). 

Note, from equation 11.3.1.4., that a is a primitive root if 

and only if ind (a) and ~(m) are relatively prime, hence from 
g 

Theorem 11.3.1.8., there are ~(~(m» primitive roots of m. 

11.3.2. The 'Cyclic' Array. 

We are interested in this section in assessing the results of 

section 11.2 in the light of the theory just presented ~n section 

11.3.1. That is, is it possible to find 'cyclic' sets of relative 

primes mod (m), which generate arrays mod (m), free from A.R.E.? 

A) m = EVEN. 

It was shown in section 11.2 that when m is even an array is 

limited to two rows in order to be free from A.R.E. 

Theorems 11.2.2.6. and 11.2.2.7. showed that one solution was 
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to use two relative primes a.,a. such that (a.+a.) = m. And 
J ~ J ~ 

Theorem 11.2.2.2. stated that, 

«a.-a.),m) = 2 
J ~ 

was another condition. 

To reconcile the two conditions let us assume a. = (~l) and 
J 

a. = 1, then certainly (a.+a.) = m, but does (a.-a.) = m-2 have 
~ J ~ J ~ 

«m-2) ,m) = 2 ? 

The answer is yes because all even integers m can be formed e 

from the equation, 

m = 2 • x 
e 

x = 1,2,3, ••••• 

Since x alternates from odd to even, two adjacent even numbers 

m and m (whose difference is 2) will have x odd and x even. 
el e2 

Let xl = odd and x
2 

= even, then since an odd and an even integer 

are relatively prime when adjacent (a difference of 1) we have, 

since' 

and therefore, 

(m ,m ) = (2xl , 2x2) = 2 , 
el e2 

(m ,m ) = (m -2, m ) = 2 • 
el e2 e2 e2 

It is only necessary now to show that (m-I) and 1 can be arranged 

in 'cyclic' form. To do this we must show that one of them has order 

2 mod (m). The integer 1 certainly hasn't but, 

(~1)2 = m2 - 2m + 1 

= m(~l) + 1 

_ 1 mod (m). 

Therefore, Ord (~l) = 2. 
m 

Consider the following example. 
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Example 11.3.2.1. 

Let m = 10, then we use a1 = 9 and a2 = 1 and the array is 

9 

1 

8 

2 

7 

3 

6 

4 

Now, (9-1) = 8 and as expected 

-(8,10) = 2 also 

92 _ 1 mod (10). 

5 

5 

4 

6 

3 

7 

2 

8 

1 

9 

Note that all integers left of the duplicated centre column 

-(and right of it) are distinct. 

We have proved the following theorem. 

Theorem 11.3.2.1. 

If m is an even positive integer, there exists a cyclic set of 

order 2 mod (m), generated by (~l), which generates an array mod (m), 

free from A.R.E. 

This completes the case when m is even. 

B) m = ODD. 

In this section we will show that we can use 'cyclic' sets to 

generate arrays of the form below; 

(A) = 

where, (a,m) = 1 

a 

2 
a 

3 a 

S a 

Ord a = S 
m 

and 

(m-I) a 

2 (m-I) a 

2 
(m-l) a 

3a
S (S • . • . • •• m-I) a 

si cj>(m) • 

mod (m) 11.3.2.1. 
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But this implies and requires that the positive difference of 

any two elements from the 'cyclic' set, (ai-aj
), is relatively prime 

to m. From Theorem 11.2.2.4. this can only be guaranteed if the 

'cyclic' set is incongruent mod (any divisor of m). We know it is 

incongruent mod (m) from Theorem 11.3.1.6., but to guarantee it is 

incongruent mod (any divisor of m), it must exist as' ~ 'cyclic' set 

of order S mod (any divisor of m). 

In (A) we must also constrain S to be less than PI the smallest 

prime divisor of m, due to the upper bound of Theorem 11.2.2.4. 

Definition 11.3.2.1. 

A 'cyclic' array is an array generated by a 'cyclic' set of 

order S mod (m), and is free from A.R.E., if and only if, the 

following conditions hold. 

i) 

ii) 

S ~ (PI-I), where PI is the smallest prime divisor of m. 

Ord a = S, where x > 1, is any divisor of m, and a is the 
x 

generator of the 'cyclic' set. 

This definition is binding for all odd integers m and defines 

a 'cyclic' array used in the convolutional codes presented. Conditions 

~ and ii of the above definition must be shown to hold for the 

different forms of m, that is; 

a) m = p an odd prime, 

b) Cl p, an odd prime and Cl an arbitrary positive m = p 

integer. 
Cl l Cl2 Cl 

c) r 
(i = 1,2, •••• ,r) m = PI P2 Pr p. 

~ 

primes and Cl. (i = 1,2, ••• ,r) arbitrary positive integers. 
~ 

odd 
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B.1) m = p, an odd prime. 

The smallest prime divisor of m is then, p itse1f,so that 

any 'cyclic' set of order S ~ (p-1) , will satisfy the first condition 

of definition 11.3.2.1. 

From Theorem 11.3.1.9., m has primitive roots, so that there 

always exists an element, a. < m, such that 
1. 

a~(m) _ 1 mod (m) 
1. 

and Ord a. = ~(m). 
m 1. 

Also from Theorem 11.3.1.12., we know that 'cyclic' sets exist, 

of all orders S, which divide ~(m). Therefore, if m is an odd prime, 

any 'cyclic' set satisfies condition (i) of definition 11.3.2.1. 

Since p is divisible only by itself and unity, there are no 

other divisors of m, thus if a. generates a 'cyclic' set, with 
J 

Ord a. = S, then this satisfies condition (ii) of definition 11.3.2.1., 
m J 

since m is the only divisor of m,greater than one. 

The following example illustrates how to construct 'cyclic' arrays 

for the case, m = 11. 

Example 11.3.2.1. 

Let m = 11, an odd prime, then ~(m) = 10, and the set of relative 

primes, are all non-zero integers less than 11, giving, 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

The integer 2 is a primitive root of 11 and gives the following 

'cyclic' set. 

'cyclic' sett' 4, 8, 5, 10, 9, 7, 3, 6, 

index. 1, 2, 3, 4, 5, 6, 7, 8, 9, 
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From equation 11.3.14. 

Ord
ll 

a = 
10 giving, 

(ind2a, 10) 

order integer 

2 10, 

5 4, 5, 9, 3, 

10 2, 8, 7, 6, 

1 1 

To generate an array we only require the ' cyclic' set generated 

by one element of a given order. Using 2 as an element of order 10 

gives the following array. 
..... 

..... N W ~ \JI 0\ --.J co 1.0 0 . . . . . . . • . . 
III III III III III III III III III III 

III III III III III III III III III III 

a - 2 4 6 8 10 1 3 5 7 9 

2 
4 8 1 5 9 2 6 10 3 7 a -

3 8 5 2 10 7 4 1 9 6 3 a -
4 

5 10 4 9 3 8 2 7 1 6 a -

5 10 9 8 7 6 5 4 3 2 1 a -
6 

9 7 5 3 1 10 8 6 4 2 mod (m) a -
7 

7 3 10 6 2 9 5 1 8 4 a -

8 3 6 9 1 4 7 10 2 5 8 a -
9 6 1 7 2 8 3 9 4 10 5 a -
10 1 2 3 4 5 6 7 8 9 10 a -

It can now be seen that the effect of ordering the rows of the 

array, according to the 'cyclic' set of a primitive root, 1.5 to produce 

an array whose columns are 'cyclic' shifts of the original 'cyclic' set, 

which is the left-most column. 

Choosing 5 as the element of order 5, we obtain the ' cyclic' set. 



, cyclic' 

index 

227 

Which gives the following 'cyclic' array. 

5 10 4 9 3 8 2 7 1 6 

3 6 9 1 4 7 10 2 5 8 

4 8 1 5 9 2 6 10 3 7 

9 7 5 3 1 10 8 6 4 2 

1 2 ·3 4 5 6 7 8 9 10 

Using a 'cyclic' set of order S < </l(m) produces an 

columns are 'cyclic' shifts of (m-D)/S distinct colunms. 

the distinct colunms are; 

, {5, 3, 4, 9, I} & {10, 6, 8, 7, 2} 

From the element of order 2, we obtain the array; 

10 

1 

9 

2 

8 

3 

7 

4 

6 

5 

5 4 

6 ·7 

And the columns are 'cyclic' shifts of 

m-:l, 
S 

10 
= 2 = 5 

3 

8 

distinct columns. The distinct columns being; 

2 1 

9 10. 

11, l~, {2, 9}, {3, 8}, {4, 7}, {5, 6}. 

We have proved the following theorem. 

Theorem 11.3.2.2. 

array whose 

In this case 

If m = p, an odd prime, there exist 'cyclic' sets, for all orders, 

which divide (p-l). The 'cyclic' arrays generated modulo (m) by all 

'cyclic' sets, are free from Array Row Equivalence. 

This concludes the results for m an odd prime. 
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p an odd prime and a any positive integer < 1. 

Since the smallest prime is p, we are interested in 'cyclic' 

sets of order S ~ (p-l), that divide ~(m). From definition 11.2.1.3.; 

a-I 
~ (m) = p (p-l). 11. 3. 2. 2. 

Since m has primitive roots (from Theorem 11.3.1.9.) then 

'cyclic' sets exist for all divisors of ~(m) from Theorem 11.3.1.12. 

Thus 'cyclic' sets of order S = (p-l) exist and since if SI(p-l), 

then SI~(m), 'cyclic' sets exist of all orders that divide (p-l). 

A general divisor of ~(m) can be expressed as, d~(m)' where, 

x 
dHm) = S P si (p-l) and S ~ (p-l), x = 0,1,2, ••• ,(0.-1), 

and 'cyclic' sets exist for all d~(m). But if x > 0, d~(m) > (p-l), 

therefore condition (i) of definition 11.3.2.1. is only satisfied by 

'cyclic' sets whose order S divides (p-l). 

To satisfy condition (ii) of definition 11.3.2.1. we require to 

know if a 'cyclic' set of order S ~ (p-l), mod (pa), exists as a 

'cyclic' set of order S mod (any divisor of pa.). Any divisor of p~ 

c must be of the form p , where c S a.. Consider the following theorem 

4 . from Le Veque -

Theorem 11.3.2.3. 

If P is an odd prime, and an integer a exists such that, 

Ord a = Sand pZ divides (as-I) but pz+l does not divide (as-I) 
p 

then, 

where, 

Ord a = S pmax(o,n-z) 
n 

p 

max (O,n-z) = ° if (n-z) ~ ° 
= n-z if (n-z) ~ ° 
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Th ' 1'f as at 1S, _ 1 mod (p), then 

for all n .~ z. From the point of view of 'cyc1 ic' arrays, if we 

find a 'cyclic' set of order S ~ (p-1), mod (pa), then from 

Theorem 11. 3.2. 3., if the 'cyclic' set is generated by a, 

Ord S' max(O,a-z) = S a a = '. p 
p 

therefore, 

S' pmax(o,a-z) ~ (p-l) 

which is only possible if pmax(O,a-,z) = 1, therefore S' = S and 

a ~ z. 

Since, 

Ord a = S a a ~ z 
p 

then 

Ord a = S c' 
for any s < a 

p 

and the 'cyclic' set exists as a 'cyclic' set of order S mod (any 

divisor of pa). Therefore any 'cyclic' set of order S ~ (p-l), 

satisfies the condition (ii) of definition 11.3.2.1. 

Theorem 11.3.2.4. 

a If m = p , p an odd prime and a any positive integer, any 'cyclic' 

set of order S ~ (p-l) mod (m) generates a 'cyclic' array free from 

A.R.E. 

The following example is given for m = (7)2. 

Example 11.3.2.3. 

Let m = 72 = 49, then 

4> (72) = 7· 6 = 42 and the list of all possible 

divisors of 4>(m) is, simply 
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{2, 3, 6, 7, 14, 21, 42}. 

This gives the orders of possible 'cyclic' sets, but since we 

are constrained to orders, S ~ (p-1) = 6, we can only use {2, 3, 6} 

as orders. To find which integers a < 49 have the orders we require, 

we generate the complete set, 

2 3 q, (m) 
a, a mod (m); a mod (m), •..•.• , a , mod (m) 

where a is a primitive root. For m = 72, 3 is a primitive root. 

'cyclic' set 9, 27, 32, 47, 43, 31, 44, 34, 4, 12, 36, 10, 30, 

indices of 2 3 4 5 6 7 8 9 la 11 12 13 14 

3 

41, 25, 26, 29, 38, 16, 48, 46, 40, 22, 17, 2, 6, 18, 

15 16 17 18 19 20 21 22 23 .24 25 26 27 28 

5, 15, 45, 37, 13, 39, 19, 8, 24, 23, 20, 11, 31, 

29 30 31 32 33 34 35 36 37 38 39 40 41 , 

Putting equation 11.3.1.4. in the form required we obtain 

. 42 
Ord49 a = (ind

3 
a, 42) 

Using this equation, each integer a in the 'cyclic' set above 

along with its index, gives its order S mod (7
2
). 

e.g. if a = 48, ind3 48 = 21 

42 
Or d

4 
9 4 8 = "'7::"::----:--=7" (21, 42) 

and 48
2 = 1 mod (49). 

42 = = n 2, 

For the complete 'cyclic' set we obtain the following sets of 

orders and associated elements of that order. 

1 } 
42 
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Order Integers of 
S order S 

2 48 

3 30, 18 

6 31, 19 

7 43, 36, 29, 22, 15, 8 

14 27, 34, 41, 6, 13, 20 

21 9, 32, 44, 4, 25, 16, 46, 2, 37, 39, 23, 11 

42 24, 33, 3, 47, 12, 10, 26, 38, 40, 

There are two 'cyclic' sets of order 6 possible, generated by 

31 and 19. However we only require one 'cyclic' set and we use that 

generated by 19. 

Let a = 19 

a 

{19 

2 
a 

18 

3 a 

48 

4 
a 

30 

5 a 

31 

-6 
a 

2 mod (7 ) 

To verify Theorem 11.3.2.3., we reduce the 'cyclic' set mod (7), 

° 7 ° h 1 dO ° ° f 72 
S1nce 1S t e on y 1V1sor 0 • This gives, 

{5, 4, 6, 2, 3, 1} mod (7) 

17, 5, 45. 

therefore a6 = 1 mod (7). We also find that 7
3

1 (a
6
-1) but 7

4 t (a
6
-1), 

meaning 74 does not divide (a6-1), therefore from Theorem 11.3.2.3., 

z = 3. Thus a = 19 will generate a 'cyclic' set of order 6 mod (7
3
), 

that is m = 343, and since S ~ (p-1) and the set is incongruent 

mod (7 2) and mod (7), it will generate an array free from A.R.E. 

mod (343). 

For m = 49, a = 19 generates the 'cyclic' array below, of which 

the first 19 columns are given. 
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19 38 8 27 46 16 35 5 24 43 13 32 2 21 

18 36 5 23 41 10 28 46 15 33 2 20 38 7 

48 47 46 45 44 43 42 41 40 39 38 37 36 35 

30 11 41 22 3 33 14 44 25 6 36 17 47 28 

31 13 44 26 8 39 21 3 34 16 47 29 11 42 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

40 10 29 48 18 30 

25 43 12 30 48 • . . . . . 31 

34 33 32 31 30 . 1 

9 39 20 1 31 19 

24 6 37 19 1 . 18 

15 16 17 18 19 . 48 

When the order of the 'cyclic' set, S, is less than ~(m), we 

obtain codes with rate R > 1/2. Since there are 48 distinct integers 

in the array, k = 48, and since the order S = 6, n - k = 6, 
0 0 0 

thus n = 6 + 48 = 54 and the rate is, R = 48/54 = 0.88888. 
0 

There are 6 orthogona1 estimates of each of the 48 message-digits 

therefore the error-correcting capability, t = S/2 = 3. 

There are two 'cyclic' sets of order 3 possible, generated by 

30 and 18. Only one can be used and we will use that generated by 18. 

Let 18, then 
3 _ 2 

a = a = 1 mod (7 ) 

2 3 a a a 

{ 18 30 1 } 2 mod (7 ) 

also 

{ 4 2 1 } mod (7) 

Again 73 \ (a3-1) but 74 t (a3-1) so that from Theorem 11.3.2.3., 

z = 3 and therefore 

and a 
3 = 18 generates a 'cyclic' set of order 3 < (p-1) , mod (7 ) 
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which is incongruent mod (7 2) and mod (7) and therefore generates 

a 'cyclic' array free from A.R.E. 

For m = 49, a = 18 generates the 'cyclic' array below, of 

which the first 19 columns are given. 

18 36 5 23 

30 11 41 22 

.1 2 3 4 

7 25 

28 9 

14 15 

43 12 

39 20 

16 17 

41 10 28 46 

3 33 14 44 

5 6 7 8 

30 48 

1 31 

18 19. • 

This gives a code with, 

k = 48, n - k = 3, 
000 

Rate = 48/51 = 0.941. 

15 33 

25 6 

9 10 

n = 51, 
o 

2 20 

36 17 

11 12 

31 

19 

48 . 

d = 4 
m 

38 

47 

13 

Finally, there is only one 'cyclic' set of order 2 possible 

generated by 48. 

Let a = 48, then 

a 

{ 48 

also 

{ 6 

But 7
2

1 (a
2
-1) but 

z = 2, so that for ni = 

Ord 3 48 
7 

2 I} mod (7 ) 

I} mod (7) 

73 t (a2-1) h f Tb 11 3 2 3 so t at rom eorem .••• , 

73 , 
= 2.pmax(0,3-2) p = 7 

= 2·7 

and 48 has order 14 mod (73). Since 14 > (p-1), this is of no use, 

as A.R.E. will occur. 
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For ID = 49, a = 48 generates the 'cyclic' array below. 

48 47 46 45 . 3 2 1 

1 2 3 4 46 47 48 

This gives a code with, 

k . = 48 n -k = 2, n = 50, d = 3 o ' 0 0 0 m 

Rate = 48/50 = 0.96. 

This concludes example 11.3.2.3. and the section on m 

B.3) 

CL = p • 

In this case we specify, CL. 3 0 for all i, but CL. # 0 for all i. 
~ ~ 

Also we assume that P1 is the smallest prime factor in m, and 

< •••••••• < 

From Theorem 11.3.1.9. it can be seen that integers of this form 

do not have primitive roots so that Theorem 11.3.1.12. does not hold 

and equation 11.3.1.4. cannot be used to find the orders of different 

integers since index is relative to some primitive root. We are not 

sure if 'cyclic' sets exist, however we can deduce from Theorem 11.3;1.1. 

that any integer a, such that (a,m) = 1, must generate a 'cyclic' set, 

since, 

a~(m) = 1 mod (m) 

and ~(m) cannot be the smallest integer which satisfies this congruence, 

or else a would be a primitive root which is not possible. Thus some 

s < ~(m) with Sl~(m) must exist, such that, 

as = 1 mod (m). 

From Definition 11.2.1.3., 
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so that, devisors of ~(m) which are ~ (Pl-l), are possible, as 

orders for 'cyclic' sets. 

The following theorem, known as the Chinese remainder theorem, 

will be found useful and is given with its proof, as the proof is 

useful also. 

Throughout the following, unless stated otherwise, we assume 

(x,m) = 1. 

Theorem 11.3.2.5. 

If the positive integers m., i = 1,2, ••.• ,r are relatively 
~ 

prime in pairs and if a., i = 1,2, •••• ,r are any given integers, 
~ 

then the r congruences 

x :: a. mod (m.) 
~ ~ 

i=1,2, .... ,r, 

have a common solution which is unique modulo (ml ·m2 ••••••• mr )· 

Proof. 

Let m = m
l 

m2 •.••• mr , and write m 

for each ~, and from Euler's Theorem, 

= m. M., then (m. ,M.) = 1, 
~ ~ ~ ~ 

~(m. ) 
M. ~ _ 1 mod (m.) 
~ ~ 

but M. includes m. as a factor so that 
J ~ 

M. :: 0 mod (m.) • 
J ~ 

If we write, 

r Hm.) 
x = I a. M. ~ 

i=l ~ ~ 

r ~(m. ) 
x - I a. M. ~ mod (m.) 

i=l ~ ~ J 

Hm.) 
but M. ~ - o mod (m.) for i :f j 

~ J 
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therefore, 
<f>{m. ) 

x _ a. M. J mod (m.) 
J J J 

_ a. mod (m.) 
J J 

j = 1,2, ••. ,r. 

~(m.) 
(since M. J = 1 mod (m.)), 

J J 

so that x is a common solution to all congruences. If there is 

another solution, say z, then, 

z - x - a. mod (m.) 
J J 

z = b1 m1 + x 

z = b2 m2 + x 

z = b m + x 
r r 

and from"Theorem 11.2.1.2., 

but since (~, M1) = 1, then 

for all J 

H.C.F. (~, m2, m3, ... ,mr ) = 1 

thus 

and z = x mod (m) 

and x is unique mod (m). 

m = p. P. 
~ ~ 

then (p '_, p .) = p. 
1: ~ ~ 

and a unique solution to the congruences 

x = a. mod (p.) 
~ ~ 

i = 1,2, ... ,r 

cannot be guaranteed. However, if we write 

Q.E.D. 
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, then 
a. 
~ 

(p. ,P. ) = 1 
~ ~ 

and we can find a unique common solution to the congruences, 

ai 
x-a. mod (p. ) 

~ ~ 

that is, we have 
0.1 

x = b1 Pi + a1 
0.2 

. x = b2 P2 + a2 

+ a 
r 

i = 1.2" •• ,r 

From Theorems 11.3.1.4. and 11.3.1.5., we also have, 

Ord x = Ord a. a. a.. ~ 
i=1,2, ... ,r. 

~ ~ 

Pi Pi 

But what is the order of x mod (m)? 

11.3.2.3. 

11.3.2.4. 

The following theorem shows that the only solution useful to the 

construction of arrays for codes, is that 

Ord x = Ord a. = S a. a. ~ 
~ ~ 

p. 
~ 

p. 
~ 

for all ~ = 1,2, •.• ,r. 

Theorem 11.3.2.6. 

If x is a common solution to the congruences, 

then if 

and 

a. 
~ x_a. mod (p. ) 

~ ~ 

Ord a. = S. a. ~ ~ 
~ 

Pi 

~ = 1,2, ••• ,r 

~ = 1,2, ... ,r . 

, then 

11.3.2.5. 

11.3.2.6. 



where 

Ord x = c·d 
m 
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c ~ 1 

Proof. 

Since 
S. (1. 
~ 1 mod ~ i 1,2, ••• ,r a. - (p .. ) , = 

~ ~ 

we have 
Sl 

1 mod 
(11 

x - (P1 ) 

S2 
1 mod 

(12 
x - (P2 ) 

S (1r 
x r _ 1 mod (Pr ) 

b Let us assume x 

(1. 
~ 

_ 1 mod (m) then for any divisor p. of m 
~ 

we have, 

b 1 
(11 

x - mod (P1 ) 

b 1 mod 
(12 

x - (P2 ) 

(1r 
b :: 1 d ( ) x mo Pr 

So, from Theorem 11.3.1.3., 

S. jb for all i = 1,2, ••• ,r. 
~ 

Since b must be divisible by all orders S. ,then 
~ 

~ d. 

= c.d c ~ 1. 

Q.E.D. 
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Thus if x has order S and the a. have different orders, then 
~ 

the 'cyclic' set generated by x will not have the same order mod 

(any divisor of m) and A.R.E. will occur. We therefore require 

the orders of the a. to be the same, as specified by equation 11.3.2.5. 
~ 

Equation 11.3.2.6. requires, 

~ = 1,2, •••• ,r 

but equation 11.3.2.5., requires, 

for all i = 1,2, ••• ,r. 
a. 
~ 

So that one requirement is that the ~(Pi ) must have common 
a· 

Since, for each p.~, 'cyclic' sets exist for all orders 
~ 

divisors. 
a. 

that divide ~(p.~), if 
~ 

a. 
the ~(p.~) have common divisors then there 

~ 

will exist a set of a. with order equal to the common divisor. 
~ 

Of course the common divisors can only be used if they are 

less than or equal to (PI-I); . that is, from definition 11.3.2.1. 

we must constrain S ~ (PI-I). 

If we assume a set of a.'s have been obtained with same order 
~ 

a. 
~ S for all p. then in Theorem 11.3.2.6., we have, 

~ 

and 

b ~ S. 

The following theorem shows that in fact 

b = S. 

Theorem 11.3.2.7. 

If x is a common solution to the congruences, 
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and 

Proof. 

Since, 
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i 
x - a i mod (Pi ), 

Ord a. = a. l. 
l. 

p. 
1. 

0.1 0.2 
m = P1 ,P2 

Ord x = S. m 

S, 

••••• p 

i = 1,2, ••• ,r 

i = 1,2, ••• ,r 

Cl r then , 
r 

a. 
xS = 1 mod (Pi1.) , 11.3.2.7. 

But, 

for all i = 1,2, ••• ,r, then 

a. 
1. 

p. 
1. 

(xS-1) for all i. 

a. Cl. 

(p.l., p.J) = 1 for i ~ j 
1. J 

0.1 0.2 
so that if m = P1 ·P2 

m I (xS-1) and 

xS = 1 mod (m). 

If c < S exists such that 

XC _ 1 mod (m) 
a. 

then since p.l. divides m for all i 
1. 

a. 
c 1. x _ 1 mod (p. ) 

1. 

which is not possible since S is the smallest integer for which 

equation 11.3.2.7. holds. 

Therefore, Ord x = s. 
m 

So far the procedure 1.5 as follows; 

Q.E.D. 
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where 
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find a set of integers a., such that 
~ 

Ord a. = S for all i 
CL ~ 
~ 

Pi 

for all i, 

ii) Use the Chinese remainder theorem to obtain a unique 

solution x, to the congruences, 
11. 
~ x-a. mod (p. ) 

~ ~ 

for all i. Then Ord x = S and x generates a 'cyclic' set of 
m 

11. 
~ order S mod (m) and mod (any divisor of the form p. ), for all i. 

~ 

However, to fully satisfy the second condition of definition 

11.3.2.1., the ,'cyclic' set generated by x must have order S mod 

(any divisor of m). 

Since, 

Ord x = Ord a. , 
11. 11. ~ 
~ ~ p. 

~ 
p. 
~ 

then Ord x = S, a. 
~ p. 

~ 

therefore, from Theorem 11.3.2.3., 

Ord x = S s 
Pi 

for any s 

In particular, then 

~ a., 
~ 

Ord x = S, 
Pi 

and all i. 

for all i 

for all i, 

for all ~. 11.3.2.8. 

Consequently, if there existed some integer c ~ S, such that, 

XC 1 mod (some divisor of m) 
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then this implies that 

XC _ 1 mod (some divisor p.) 
~ 

since some prime p. must always be a divisor of m. But this contradicts 
1. 

equation 11.3.2.8., therefore c = S, and x will generate a 'cyclic' 

set of order S mod (any divisor of m). 

These results are put into the theorem form for brevity as follows. 

Theorem 11.3.2.8. 

CL
1 

CL2 CLr 
If m = PI .P2 ••••• Pr ' where each p is an odd prime, and 

Then if a set of integers 

exist such that 

Ord a. = S for all i 
CL. 1. 

1. 
p. 

1. 

CL. 

where S I Hp .1.) 
1. 

for all 1. and 

a. , 
1. 

i = 1,2, ••• ,r, 

then an integer, x, can be found as a unique solution to the 

congruences, 
CL. 

1. 
X = a. mod (p. ) 

1. 1. 

and x will generate a 'cyclic' set of order S mod (any divisor of m). 

Two examples follow, one with 

and one with 

Example 11.3.2.4. 

Let m = 5·13·37 = 2405, then 
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<1>(5) = 4 = 2·2 

</>(13) = 12 = 2·2·3 

</>(37) = 36 = 2·2·3·3 

The set of common divisors is limited to two values, S = 2 

and S = 4 and S ~ (PI-I) for both. 

(a) Let, S = 4 then by procedures described in section B.1. we 

find elements of order 4 mod (each p.), ,since a. = 1, for all i. 
~ ~ 

We obtain, 

24 - 1 mod (5) 

54 - 1 mod (13) 

31
4 

- 1 mod (37) 

and therefore, we require a solution to the congruences, 

x - 2 mod (5) 

x _ 5 mod (13) 

x _ 31 mod (37) 

One can use the solution indicated in the proof of Theorem 

11.3.2.5., that is, 

3 
x = L 

r=l 

= 2(13.37)4 + 5(5.37)12 + 31(5.13)36 

11.3.2.9. 

of course this is reduced mod (5·13·37) to find x, but it still 

involves ·a lot of work. The author found a solution by trial and 

error, using a short-cut, in the following way. We saw in part (A) 

that 

2 
(m-I) = 1 mod (m) 

for any m. Therefore if x has order 4, then, 

x2 = (m-I) mod (m). 
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This produced the solution, 

x == 512 mod (2405) 

and it is seen that, 

512 - 2 mod (5) 

,512 - 5 mod (13) 

512 - 31 mod (37) 

Generating the ' cyclic' set of 512, 

let a = 512, (512) 4 - 1 mod (5·13·37) 

2 3 4 
a a a a 

{512 2404 1893 1} mod (2405). 

To check that this exists as a 'cyclic' set of order 4 mod 

(any divisor of m), we can reduce the set as below. 

{ 2 4 3 1 } mod (5) 

{ 5 12 8 1 } mod (13) 

{ 31 36 6 1 } mod (37) 

{ 57 64 8 1 } mod (5·13) 

{142 184 43 1 } mod (5·37) 

{ 31 480 450 1 } mod (13· 37) 

Thus the array generated mod (2405),by the 'cyclic' set generated 

by x == 512 mod (2405), will specify a code with, 

(b) 

k = 2404, 
o 

n -k = 4, n = 2408, 
o 0 0 

Rate = 2404/2408 = 0·9983. 

d = 5 
m 

Let S = 2, then we find integers of order 2 mod (each p.), which 
~ 

results in the following, 

42 _ 1 mod (5) 

122 _ 1 mod (13) 

362 _ 1 mod (37) 
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and therefore we require a solution to the congruences, 

x:: 4 mod (5) 

x :: 12 mod (13) 

x :: 36 mod (37). 

Using equation 11.3.2.9. above, 

x = 4(13'37)4 + 12(5'37)12 + 36(5'13)36 

But of course, we know, 

or 

(mr1)2 _ 1 mod (m) 

(2404)2 _ 1 mod (2405) 

and in fact 

2404 - 4 mod (5) 

2404 - 12 mod (13) 

2404 - 36 mod (37) 

therefore x - 2404 mod (2405) and we have the 

set below. 

Let a = 2404, 
2 a - 1 mod (m) 

2 
a a 

. {2404 1} mod (2405). 

Modu10 (any divisor of m), we have, 

{ 4 1 } mod (5) 

{ 12 1 } mod (13) 

{ 36 1 } mod (37) 

{ 64 1 } mod (5·13) 

{l84 1 } mod (5·37). 

{480 1 } mod (13·37) 

'cyclic' 

Thus the array generated mod (2405) by the 'cyclic' set generated 

by x :: 2404 mod (2405), will specify a code, 
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n -k . = 2, 
o 0 

n = 2406, 
o 

Rate = 2404/2406 = 0'99916. 

d = 3 m 

In the following example a slightly different approach is used, 

which may be quicker. 

Example 11.3.2.5. 

Let m = 52
'132 = 4225, 

then, 

<1>(5
2

) = 20 = 2·2'5 

~ (13
2

) = 156 = 2·2'3·13 

Common divisors = {2, 4}. 

(a) Let S = 4, then we find, using trail and error, 

(268)4 = 1 mod (4225) 

but we must check that the residues of 268 mod (any divisor of 4225) 

generate -'cyclic' sets of order 4. 

In particular, 

268 - 18 mod (52) . 

268 - 99 mod (132) and we obtain the 'cyclic' sets 

{l8, 24, 7, 1} mod (52) 

{99, 168, 70, 1} mod (132) 

Since 18 & 99 have order 4, we know that 268 has order 4 also. 

Checking all divisors we have 

268 = 3 mod (5) and 

{3, 4, 2, I} mod (5), 3 has order 4 mod (5) 

268 _ 8 mod (13) .and 

{:,.8, 12, 5, 1} mod (13) 

and 8 has order 4 mod (13) 
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268 = 8 mod (5·13) and 

{8, 64, 57, 1} mod (5·13) 

and 8 has order 4 mod (5·13). 

268 ='268 mod (5
2

'13) and 

2 
{268, 324, 57, 1} mod (5 '13) 

and 268 has order 4 mod (5
2

'13). 

268 = 268 mod (5'13
2

) and 

{268, 844, 577, 1} mod (5'13
2 

and 268 has order 4 mod (5'13
2

) 

Therefore the 'cyclic' set, 

. {268, 4224, 3957, 1} mod (4225) 

exists as a 'cyclic' set of order 4, modu10 any divisor of 4225. 

(b) Let S = 2. then we find, 

(4224)2 = 1 mod (4225) 

again we must check that the residues of 4224 mod (any divisor of 4225) 

generate 'cyclic' sets of order 4. 

In particular, 

4224 _ 24 mod (52) and 

{24, 1} 
2 

mod (5 ) 

and 24 has order 
2 2 mod (5 ). 

4224 - 168 
2 

mod (13 ) 

{168, 1} 
2 

mod (13 ) 

and 168 has order 
. 2 
2 mod (13 ). 

order 2 mod (4225). 

Checking all divisors, 

4224 = 4 mod (5) 

{4, 1} 

and 4 has order 2. 

and 

Therefore we know that 4224 has 
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4224 = 12 mod (13) 

{12, 1} 

and 12 has order 2. 

4224 = 64 mod (5·13) 

{64, 1} 

and 64 has order 2. 

4224 324 
2 

- mod (5 -13) 

{324, 1} 

and 324 has order 2. 

4224 = 844 mod (132'5) 

{844, I} 

and 844 has order 2. 

Therefore the cyclic set, 

{4224, I} mod (4225) 

exists as a 'cyclic' set of order 2, modulo any divisor of 4225. 

There are no other common divisors ~ (PI-I) and the example 

is concluded. 

Before leaving this section; dealing with composite integers, 

it may be worth mentioning that it is possible to choose composite 

integers so that a 'cyclic' set of maximum order exists. 

Let p. = b.(Pl-l) + 1, 
~ ~ 

i = 1,2, ..• ,r, 

and we choose the b
i 

so that Pi is an odd prime, with of course PI 

an odd prime also. 

Then since, 

and 

When b. = 1, 
~ 

= p.-l = b.(Pl-l) 
~ ~ 

0..-1 
~ = p. (p.-I) 

~ ~ 
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CL. 

we have (PI-I)' always as a common divisor of the q,(Pi~) for all i. 

This way, we can guarantee a set of a.'s exist for order (PI-I) 
CL. ~ 

mod (p.~), from which to find x. 
~ 

The following example demonstrates the idea. 

Example 11.3.2.6. 

Let PI = 5, then an associated set of primes which can be used 

to form composite integers, from which 'cyclic' sets of order (PI-I) = 4 

mod (the composite) are obtainable, is given by; 

hI = 1 

b'2 = 3 

h3 = 4 

b.4 = 7 

b,5 = 9 

h6 = 10 

h7 = 13 

h8 = 15 

h9 = 18 

p. = b.(Pl-l) + 1, 
~ ~ 

p = 1 (5-1) + 1 = 5 
1 

p. an odd prime 
~ 

p = 3 (5-1) + 1 = 13 
2 

P = 4 (5-1) + 1 = 17 
3 

p = 7 (5-1) + 1 = 29 
4 

p = 9 (5-1) + 1 = 37 
5 

P6 = 10 (5-1) + 1 = 41 

P7 = 13 (5-1) + 1 = 53 

P8 = 15 (5-1) + 1 = 61 

P9 = 18 (5-1) + 1 = 73 

Any integer formed by a composite product of these primes or 

powers of these primes, with PI = 5, can be used to find 'cyclic' sets 

of order 4 mod (the composite), which exist as 'cyclic' sets mod 

(any divisor of the composite). 

This idea can be extended in the following way. Suppose one 

wishes to construct a code with error-correcting capability 10. Then 

this can be accomplished with a code whose array is' generated by a 

'cyclic' set of order S = 20. 
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Let m = PI = 41, an odd prime. 

Then from section B.1. 

<1><41) = 40 

which h~s divisors, {2,4,5,10,20,40}. 

Using a 'cyclic' set of order 20, gives a code with rate, 

R = 40/60 = 2/3. 

What if we require a rate greater than this? 

Let m = 2 (41) , then from section B.2.· 

<1><412) = 41·40 

which has divisors, less than or equal to (PI-I) of, 

. {2,4,S,10,20,40}. 

Using a '.cyc1ic' set of order 20 gives a code of rate, 

R = 1680/1700 = 84/85. 

However we can slightly improve the rate without using m = (41)3. 

Let m = 41'61, 

then from example 11.3.26, 

41 = 2(20) + 1 

61 = 3(20) + 1 

here we are implying 20 = PI-I, but this means PI = 21 which is not 

prime. 

By choosing PI as a non-prime we can construct composities from 
. 

which 'cyclic' sets can be obtained of orders less than the actual 

(PI-I) used, since here PI = 41, but we cannot obtain a cyclic set 

of order 40 mod (41'61). 

<1><41) = 2·2·2·S 

<1><61) = 2·2·3·S 

the set of common divisors is, 

{2,4,S,10,20} 
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Using a set of order 20 mod (41·61) gives a code of rate, 

R = 2500/2520 = 125/126. 

We can generalize our results in the following way. 

If one wishes to form a code whose 'cyclic' array is generated 

by a 'cyclic' set of order S mod (m), then if,. 

(i) m = p. 
~ 

(H) m'= pC: 
~ 

CLl CL 2 CL 

(Hi) r m = PI P2 •••• p r 

the primes p. used must be of the form, 
~ 

p. = b. (S) + 1 
~ ~ 

b. = 1,2, •••••• 
~ 

Let m = p and S = 2t, then any t - error-correcting code can 

be constructed from any p, where 

p = b.(2b) + 1 = a prime. 
~ 

Since the code will have k = m-I = b.(2t) message-digits and 
o ~ 

: n - k = 2b check-digits the codes will have rate, 
o 0 

b. ·(2t) 
~. 

R = ~~~--~~~ b. (2t) + (2t) 
~ 

11.4 Non-cyclic Arrays. 

= 
b. 
~ 

b. + 1 
~ 

The array generated by a 'cyclic' set, has in effect, each of 

its rows generated by an element of the 'cyclic' set. The distinct 

leftwise sequences of the array will not be disrupted if the rows of 

the array are permutated. This corresponds to permutating the elements 

of the 'cyclic' set. For example the array generated by the set 

{1,2,3,4} mod (5), in example 11.1.1. is a permutation on the 'cyclic' 
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array generated by the 'cyclic' set {2,4,3,1} mod (5). One can 

also use sub-arrays generated by subsets of the elements in the cyclic 

set. For example we could use the set {1,2,3} with safety since 

we know the leftwise sequences are distinct. 

The sub-arrays described (as distinct from sub-'cyclic' arrays, 

using sub-' cyclic' sets) and the permutated arrays are examples of 

non-' cyclic' arrays. They suffer from the disadvantage that they 

require k majority gates to decode. Otherwise we can devise non­
o 

'cyclic' arrays with an error-correcting capability not achiev.able 

with 'cyclic' array codes. Thus non-'cyclic' arrays must be limited 

to codes with small k , to keep decoder complexity down. 
o 

ExamEle 11. 4.1. 

Consider the array below, generated by the 'cyclic' set of 

3 mod (7) 

3 6 2 5 1 4 

2 4 6 1 3 5 

6 5 4 3 2 1 mod (7) 

4 1 5 2 6 3 

5 4 1 6 4 2 

1 2 3 4 5 6 

W·e can obtain sub-' cyclic' arrays by using the sub-' cyclic' sets 

{2 4 l} and {6 l}. But we can also use the non-'cyclic' sets, 

{l 2 3}, {l 2 3 4}, {l 2 3 4 5} mod (7) 

which generate non-' cyclic' sub-arrays. The non-'cyclic' set 

. {l 2 3 4} gives a code, 

k = 6, o 
n - k = 4, 

o 0 

Rate = 6/10 = 3/5 

n = 10, 
·0 

d = 5 
m 

which is not attainable with a 'cyclic' array having k = 6 distinct 
o 

integers. 
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We now obtain some non-'cyclic' results. 

Theorem 11. 4. 1. 

If an integer m, 1S expressed as a product of its primes, 

with PI < P2 < ••••• < Pr 

then the integers below, with b ~ (PI-I) 

(1,2,3, •••• ,b) = X 

a) are relatively prime to m, and 

b) are the largest set of consecutive integers relatively prime 

to m, when b = (PI-I). 

Proof. 

Since Pl is the smallest prime factor, no x < Pl 1S 

by any p., prime factor of m and part (a) is trivial. 
1 

Part (b) is satisfied by proving that any set of p. 
1 

integers contains at least one integer divisible by p .• 
1 

i) 

Let a general sequence of p. integers be, 
1 

x, x+l, x+2, •••••••• , x+p.-l 
1 

if x is divisible by p., then it is trivial. 
1 

divisible 

consecutive 

ii) if x is not divisible by p., then x can be expressed as, 
1 

x = kp. + r, 
1 

r < p. 
1 

then since r < p., x + p. - r must be contained in the sequence and 
1 1 

x + p. - r = kp. + p. = (k+l)p .. 
111 1 

Since PI is the smallest prime factor in m, any sequence of PI 

or more consecutive integers contains at least one divisible by PI. 
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Since X is a relatively prime set with b ~ (Pl-l) elements 

it must be a maximum set, when b = (P1-l). 

Q.E.D. 

Note that this theorem is true for m even or odd, but when m 

is even P1-l = 1, thus it is effectively confined to m being odd. 

The following theorem shows that the set defined in Theorem 

11.4.1. generates an array free from A.R.E. 

Theorem 11.4.2. 

Any array generated modu10 (m) by a set of consecutive relative 

primes, with b ~ (P1-l) 

{l,2,3, •••••• ,b} = X 

where Pl is the smallest prime factor of rn, is free from array row 

eq~i valence. 

Proof. 

We require to show that any difference, 

(a.-a.), 
~ J 

a.a. EX, 
~ J 

is also relatively prime to m. 

From Theorem 11.4.1. we know every a. E X is relatively prime 
~ 

to m, and since any difference, 

(a.-a.) E X, also, then every difference gives, 
~ J 

«a.-a.),m) = 1. 
~ J 

Q.E.D. 

The array generated in example 11.1.1. is an example of the 

array specified in Theorem 11.4.2. but the following two theorems 

give another set of a.'s which generate non-'cyc1ic' arrays. 
~ 



255 

Theorem 11.4.3. 

If an integer m, is expressed as a product of its primes, 

with PI < P2 < •••••• < p 
r 

then the set of integers, with b ~ (PI-I) 

a., 2a., 3a., •••••. , ba. 
~ ~ ~ ~ 

where a. < m and (a.,m) = 1, is a set of b distinct integers, 
~ ~ 

relatively prime to m, when reduced modulo (m). 

Proof. 

Theorem 11.4.1. shows that any member of the set, 1,2, •.•• 'P1-1 

is relatively prime to m, and since (a.,m) = 1, and the product of 
~ 

two relative primes, is also relatively prime, any member of the 

set a., 2a., ••• ,ba. is relatively prime to m. 
~ ~ ~ 

It remains to be shown that the residues are distinct, and from 

Theorem 11.2.2.1. it can be seen that the set is a subset of the set, 

a., 2a., 3a., ..••. , (m-I) a. 
~ ~ ~ ~ 

which has incongruent residues mod (m) if (a.,m) = 1. 
~ 

Q.E.D. 

We must now show that the array generated by the above set of 

relative primes, is free from A.R.E. 

Theorem 11.4.4. 

The array generated modulo (m) by a set of relative primes, 

a., 2a.,.~ ••. , ba. 
~ ~ ~ 

where PI is the smallest prime factor of m, is free from A.R.E. 
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Proof. 

We must show that any difference is also relatively prime. 

Let, 

since 

then 

(ha. - da.) = ca., 
~ ~ ~ 

= (h-d)a. 
~ 

h > d 

h,d E {1,2, ••.• , (P1-1)} = X 

(h-d) E X. 

From Theorem 11.4.1., any x E X is relatively prime to m, 

therefore, 

«(h-d) ,m) = 1 

Q.E.D. 

Therefore either of the two sets 

. {1,2, •••• ,b} b E (P1-1) 

{a., 2a., ... , ba.}, b E (P1-1), (a.:,m) = 1 
~ ~ ~ .... 

can be used to construct non-'cyc1ic' arrays. Provided k is small, 
o 

the resulting codes may be practical to implement. 

11.5 Encoding and Decoding. 

11.5.1. Introduction. 

If one considers the first column of a cyclic array, it can 

be arranged in the following form. 

{a, 
2 3 S a,a, ••.• ,a} mod (m). 

If a is a primitive root of m, every integer, 1 E x E (m-1), 

can be expressed as a power of a, such that if 

x :: ar mod (m) 

then we say r = ind (x). a 
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Therefore when we wish to form column x,of our array, we 

obtain the set below, 

{ax, 2 a x, 3 S a x, .... , a x} mod (m). 

But since r x = a mod (m), the set becomes, 

{ r+1 r+2 r+3 r+S} a ,a ,a , •••• ,a mod m, 

and sin~e, 

S+l 
a = a mod (m) 

the x'th column is a cyclic shift of the first column by ind (x) 
a 

positions. 

However if, 

Ord a ,; S < <j>(m) 
m 

then a ~s not a primitive root of m and every integer, 1 ~ x ~ (m-1) , 

cannot be expressed as a power of a. The integer a now organizes a 

subset of the set of all relative primes to m, into a subgroup under 

the operation of multiplication mod (m). 

123 S Let A = {a , a , a, ••• , a}, S < <j>(m), be the. 'cyclic' set 

generated by a, mod (m) then if x E A, column x is a 'cyclic' shift 

of A, written (A)i where 

x == a~ mod (m) or i = ind (x). 
a 

If, x f A then column x is a coset of the subgroup generated by 

a, mod (m), and is written xA, where 

2 3 S xA = {xa, xa , xa , •••• ,xa} mod (m). 

If, y ~ A, but yE xA, then let y = xai mod (m), 

column y is given by the coset, 

~ yA = xa A 

i a E A so that 

and column y is a 'cyclic' shift of the coset column generated by xA. 
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Therefore in an array of order S, there will be (m-l)!S basic 

cosets as columns (including the 'cyclic' set A considered as the 

coset l·A) and all other columns are 'cyclic' shifts of these. 

However before we consider methods of encoding and decoding, 

we must mention that the form of the arrays, as discussed so far, 

is not the final form used explicity for the implementation of the 

codes. 

(a) 

The arrays are modified by the following mappings, 

if Ord a = S = ~(m), m 

then for each element x of the array we apply the mapping, 

(b) 

x ~ ind (x) 
a 

if Ord a = S < ~(m), 
m 

then for each element x of the 'cyclic' generating set and its 

'cyclic' shifts, we apply the mapping, 

x ~ ind (x) 
a 

11.5.1.1. . 

11.5.1.2. 

For the cosets x2A, x3A, ••. ,x(m_l)!SA, we apply the mappings, 

x2A ~{S+l, S+2, •••• ,2S} = B2 

x3A ~ {2S+l, 2S+2, •••• ,3S} = B3 

11.5.1.3 

x(m_l)!SA ~ {m-l-S, m-S, ••• ,m-l} = B(m-l)!S 

i i 
For the columns, x2A , ••. ,x(m_l)!SA we use the mappings, 

i i 
x2A ~ B2 

11.5.1.4. 
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This results in an array whose rows retain their 1eftwise 

sequence properties but whose columns are now 'cyclic' shifts of 

sets of consecutive integers. 

The examples below demonstrate both cases for S = ~(m) and 

S < ~(m). 

Example 11.5.1.1. 

Consider the array generated by the cyclic set generated by 3, 

mod (7) • 

3 6 2 5 1 4 

2 4 6 1 3 5 

6 5 4 3 2 1 

4 - 1 5 2 6 3 

5 3 1 6 4 2 

1 2 3 4 5 6 

Since Ord73 = 6 = ~(m) we apply the mappings from 11.5.1.2. 

x~ ind3(x)~ that is 

3 - 3
1 mod (7) 3 ~ 1 

2 - 32 mod (7) 2~ 2 

6 - 33 mod (7) 6~ 3 

4 - 3
4 mod (7) 4~4 

5 - 35 mod (7) 5 ~5 

1 - 36 mod (7) 1 ~6 

Applying these mappings gives the array, 

1 3 2 5 6 4 

2 4 3 6 1 5 

3 5 4 1 2 6 11.5.1.5. 

4 6 5 2 3 1 

5 1 6 3 4 2 

6 2 1 4 5 3 
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And this form is used to encode and decode. 

~ 
Consider the array generatedAthe 'cyclic' set generated by 2, 

mod (7) 

2 4 6 1 3 5 

4 1 5 2 6 3 

1 2 3 4 5 6 

.Since ord72 = 3 < cp(m) , the array will have .(m-l)/S = 6/3 = 2 

distinct cosets and all columns are ~cyclic' shifts of these basic 

columns. For the 'cyclic' set we use the mapping n.5.1.2, 

2 - 21 mod (7) 2 ~ 1 

4 - 22 mod (7) 4 ~ 2 

1 - 23 mod (7) 1 ~ 3 

Since x2A = {6 5 3} , from 11.5.1.3. 

6 ~·S+l = 4 

5 ~ S+2 = 5 

3 ---+ S+3 = 6 

This gives the modified array, 

1 2 4 3 6 5 

2 3 5 1 4 6 

3 1 6 2 5 4 

which is used for encoding and decoding. 

11.5.2. Encoding. 

The encoding scheme presented in this section is only one method 

by which the encoding can be achieved. Nevertheless it illustrates 

the idea and demonstrates a serial 'cyclic' or parallel encoding 

method. 

Consider the array 11.5.1.5. in example 11.5.1.1. and the 6 x 6 

array of storage elements in figure ll.S.l.l. If we associate one 
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storage element with one integer of the array then the encoding ~s 

performed, using a serial input stream, in the following way. 

(a) The first message-digit is put into the storage elements 

corresponding to integer 1. (Connections as shown in figure 11.5.1.1.) 

(b) The array of storage elements is clocked once vertically 

and the second message-digit is put into the storage elements, which 

now can be thought to correspond to the integer 2. 
The element~- in. ~~e' top rows being' returned to the bottom r().1!~l 

(c) The process is continued until the array of storage elements 

has been clocked 6 times, when it will contain message-digits 1 to 6 

in the distribution shown by the array of integers. 

(d) The array of storage elements is then clocked once to the 

left, horizontally. 

(e) The process is continued by repeating (a) to (d) for the 

six message-digits of the second sub-block to be encoded and all 

subsequent sub-blocks of message-digits. 

The array of storage elements is used to form the encoded check-

digits which can be obtained in the following ways. 

i) Serially, from the output of the storage element corresponding 

to integer 1 in the first column, when it is clocked vertically, or 

ii) In parallel, from the horizontal outputs of all storage 

elements in the first column when (d) is performed in the operations. 

Encoding using a parallel message-digit input is performed simply 

as follows. 

iii) All six message-digits from the first sub-block are loaded 

simultaneously into their positions in the storage element array 

corresponding to the integers in array 11.5.1.5. 
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iv) The storage array is clocked once 1eftwise horizontally 

for parallel output or vertically 6 times for serial output from 

the storage element in column one corresponding to intege~ 1. 

v) Repeat (iii) and (iv) for each sub-block of message-digits. 

If the integer array has (m-1)/S coset columns then the message­

digit sub-block must be sub-d'ivided into (m-1) Is sub-sub-b10cks and 

each sub-sub-b10ck is simultaneously serially loaded into the encoding 

storage array. Otherwise the process is the same and can be done 

serially or in parallel. 

11.5.3. Decoding. 

The following decoding method is one way in which 'cyclic' decoding 

may be performed and is shown for the'code specified by array 11.5.1.5. 

Figure 11.5.3.1. shows the form of the decoding storage array 

and associated majority-logic unit only. Figure 11.5.3.2. shows a ' 

block diagram of the complete decoder. 

As each sub-block of received message-digits arrives, it is 

re-encoded and added to its corresponding received check-digits to 

form the syndrome for that block. All the convolutional relationships 

of the code are inherent in the syndrome digits so that the storage 

array in figure 11.5.3.1. is really a modified buffer. To fill the 

buffer serially we input the syndrome digits of a sub-block at the 

point shown and clock vertically 6 times. Then clock horizontally 

leftwards and serially input the next set of syndrome digits from the 

following sub-block. Alternatively when the syndrome digits are 

obtained in parallel, they are put into the storage elements of the 

righthand column of figure 11.5.3.1. and the array of storage elements 
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is clocked 1eftwise horizontally once before accepting the next 

set of syndrome digits. 

Nevertheless by the time the syndrome digits of some general 

block e reach the 1eftmost column, the estimates of the errors in 

the message-digits of block e are located at those points indicated 

by superimposing the integer array on the storage array, as shown 

in figure 11.5.3.1. We obtain the 6 se1f-orthogona1 estimates of 

the first error as shown and clock the array vertically 6 times to 

sequentia11y decode all 6 errors. Thus the necessity for having 

columns of'consecutive integers using the mappings indicated in 

section 11.5.1. Also we can now see that if the array contains 

(m-1)/S co sets as columns, we will have (m-1)/S sets of distinct 

integers and therefore we require (m-1)/S majority-logic gates to 

decode cyclically. 

11.6 The Code Parameters. 

The parameters of interest in a random error-correcting 

convolutional code are; 

(i) d , minimum distance. m 

(ii) n , sub-block length. 
0 

(Hi) k , number of sub-block information digits. 
0 

(iv) N, block constraint length. 

(v) R, information rate of transmission. 

Since we are defining the parameters of codes that can be decoded 

cyclically, we restrict the parameters to codes developed from odd 

integers only. 

i) Minimum distance, d • 
m 

From section 10.4. we know that the minimum distance of a 
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random error-correcting code is equal to the minimum weight of an 

initia1ntr-digit code sequence whose Q'th block is non-zero. 

Because no two message-digits from block Q are ever in the same 

check-digit, the minimum weight code sequence whose Q'th block is 

non-zero, is that whose Q'th message block has weight one. 

Thus the minimum distance of the codes is simply equal to the 

number of times a single message-digit appears in a constraint length 

. of n N digits. 
o 

Since each row of an array contains a permutation on the set 

of integers 1,2, •••• ,(m-1), if there are S rows then the code contains 

S+l appearances of all message-digits from a given block over a 

constraint 1ength.of noN digits. 

ii) 

Thus the minimum distance is given by; 

d = S + 1 = n - k + 1 moo 

Sub-block length n • o 

The number of check-~igits in a sub-block is equal to S the 

number of rows in an array. Therefore, 

iii) 

n = k + S. o 0 

Sub-block information digits, k • 
o 

This is equal to the number of distinct integers in the array 

and is determined by the chosen integer m, for the array reduced 

mod (m), so that, 

k·=m-l. 
o 

iv) Block constraint length, N. 

This is given by the number of columns in an array and is equal 

to the number of integers in the rows, which is m-1. Therefore, 

N=m-l. 

= 
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v) Transmission rate, R. 

This is given by the ratio, 

k k 1 
R 

0 0 m-
=- = = n k + S ·m - 1 + S 

0 0 

The rate therefore is a minimum when S = k and a maximum when 
o 

S = 2. Therefore 

R max 
m - 1 =.:::....-.::. 
m + 1 

We noted in earlier sections that given an array with S rows 

we could obtain J = S, se1f-ortho~ona1 estimates of every message-

digit in a current block. Therefore d = J + 1 and the codes are 
m 

se1f-orthogona1 up to their minimum distance and are one-step 

cyclically majority-logic decodab1e, using m;l majority gates. 

We can now formally define the codes as follows. 

Definition 11.6.1. 

Let m be any odd positive integer which can be factored into 

its primes, 

where, . 

< ••••••• < p 
r 

but m '" 1 

and let S be any positive integer such that, 

and 

for all 1 ~ ~ ~ r. 
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Then there exists a self-orthogonal one-step majority-logic 

decodable convolutional code with the parameters, 

n = k + S 
0 0 

d = S + 1 m 

N = m- 1 

k = m- 1 
0 

which can be cyclically decoded with (m-l)/S majority-logic dates. 
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CHAPTER 12 

12. PERFORMANCE OF THE CODES. 

12.1 Introduction. 

In this section we examine some aspects of the codes which 

give insight into their performance and enable comparison with 

other codes in ways other than minimum distance, rate and constraint 

length n N. 
o 

A parameter of interest which will be found useful in other 

sections is effective constraint length, n. In section 12.2, we 
e 

develop expressions for n which enable its calculation quite simply 
e 

from the 'cyclic' set which generates the array. 

19· Peters on and Weldon pp.104-l05 showed that on the binary 

symmetric channel, B.S.C., if we assume that unlimited or catastrophic 

error propagation never occurs then 'the probability of incorrectly 

decoding some e'th block can be approximated quite closely by the 

probability of incorrectly decoding the first block transmitted. 

For the 'cyclic' codes we assume in section 12.3 that an error 

pattern of weight (t+x) > t has occurred and calculate the probability 

of incorrectly decoding one digit from the sub-block. Assuming a 

B.S.C. means each error pattern of weight (t+x) is equally likely 

and we only need to know how many patterns, from all possible, 

cause incorrect decoding to find the probability of incorrectly 

decoding that digit. 

Being self-orthogonal the codes are naturally free from unlimited 

or catastrophic error propagation so that a close approximation can 

be made by considering the probability of erronously decoding the 
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first block transmitted. Considering the first block transmitted 

is another way of saying we can consider any block provided error 

free decoding occurred in all previous N-l blocks; that is, there 

is no error-propagation. Assuming that all previous blocks have 

been correctly decoded means that the only digits involved in the 

decoding of a digit are those in the effective constraint length 

n. It will be seen that n is strongly related to the probability 
e e 

of incorrectly decoding a digit, under these assumptions. 

In section 12.3 we calculate the probabilities for a 'cyclic' 

code and compare these calculations with others for two self­

orthogonal codes from the class of Robinson and Bernstein7• 

In general, where the 'cyclic' codes can be compared with those 

of Robinson and Bernstein, for a given t, the 'cyclic' codes 
'\ 

constraint length n N is longer, although its effective constraint 
o 

length n is shorter or equal. In section 12.4 we ask the question, 
e 

is the 'cyclic' codes' increased length n N justified in terms of 
o 

the reduction in the probability of an incorrect decoding? 

Although the 'cyclic' codes are longer than those of ~obinson 

dB .7 h h h ~ h . . an erste~n t ey are sorter t an many or t e very h~gh rate codes 

d by Wu. ~2,23,24 presente 

Finally in section 12. we consider the problem of error 

propagation. 

We define the autonomous case, assumed in our definition of 

propagation length L, and introduce the concept of propagation 

efficiency. We then calculate L for the 'cyclic' codes and compare 

these values with values of L calculated for Robinson and Bernstein's 

codes, under the same assumptions. 
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12.2 Effective Constraint Length. 

1 Effective constraint length was first considered by Massey 

who defined it as; 

"The maximum number of bits which can influence the threshold 

decoding of anyone message-bit in the first k message-bits of a 
o 

sub-block". 

In the following we will show that any code specified by an 

array, generated by a 'cyclic' set 

2 3 S A = (a,a ,a , •••• ,a ) mod (m), 

with cosets, 

2 S 
= (xm_l/Sa, x~l/Sa , •••• 'x~l/Sa ) mod (m) 

has effective constraint length, n , where 
e 

and 

where; 

n = max (n ,n , •••• ,n ) 
e el e2 e~l/S 

n e. 
~ 

= 1 + 
S 

L 
j=l 

x. aj mod (m) 
~ 

x. = any integer contained in the i'th coset, 
~ 

x.A, though usually the smallest. 
~ 

~1 
i = 1,2, •••• , S 

12.2.1. 

12.2.2. 

The specification of x. arises from the closure properties of 
~ 

the 'cyclic' set and its cosets, developed in section 11.4.1. 

That is we take an array, before performing the mappings in 

section 11.4, and add up the elements in each of the ~l/S distinct 
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h dd . m-l d . . Th' cosets, t en a one to g1ve S 1st1nct coset sums. en ne 1S 

equal to the maximum coset sum. 

To show this let us assume we wish to discover the effective 

constraint length involved in the decoding of some integer (message-

digit error) b which is present in some coset x.A. The coset x.A 
1 1 

and its cyclic shifts will form columns y of the array, where 

Y E x.A, so that the integer b will be in those columns y E x.A. 
1 . 1 

If b is in column y then there are (y-l) integers to the left 

of b, which are message-digit errors from other blocks, in that 

check sum on b. 

2 
Since b occurs in columns x.a mod (m), x.a mod (m) etc., the 

1 1 

total number of message-digit errors from other blocks, which 

can influence all S check sums on b is 

S 

L 
j=l 

(x.a
j 

mod(m) - 1) 
1 

If we consider the S check-digits containing the check sums 

on b,'plus of course b itself, then 

S . 
n = 1 + S + L (x.aJ mod(m) - 1) 

e i j=l 1 

And equations 12.2.2. and 12.2.3. are identical. 

If S = ~(m), then 

and 

Xl 

n 
e1 

n 
e 

= x2 
= x3 

= n = n 
e 2 e3 

S 
= 1 + L 

j=l 

= = xm-l/S = 

= = n = 
e m-l/s 

aJ mod (m) 

12.2.3. 

1 

n e 

12.2.4. 
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The equations above assume, with feedback decoding, that 

a11 previous decodings were correct or, equivalently, no error 

propagation has occurred. 

The following example illustrates these results. 

Example 12.2.1. 

Let m = 7 and consider the code specified by the array generated 

by the 'cyclic' set, 

reduced mod (7), this becomes the set, 

(3, 2, 6, 4, 5, 1) . 

For this code, S = 6 = Hm) so that fr9m equation 12.2.4., 

6 
n = 1 + ~ 3J mod (7) 

e j=l 

= 1 + (3 + 2 + 6 + 4 + 5 + 1) 

= 22 

Consider the code specified by the array generated by the 

cyclic set, 

Since S < ~(m), we require all x. up to i = ~l/S = 2. From 
1 

equation 12.2.2. , let Xl = 1, then 

3 
2j n = 1 + ~ mod (7) 

e l j=l 

= 1 + (2 + 4 + I) = ! 

Since there are only two cosets, we know that the other coset 

contains the integers 3,5 and 6', and since 3 E x2A, is the 
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smallest integer in x2A, from equation 12.2.2., 

3 . 
n = 1 + L 3·2J mod (7) 

e2 j=l 

= 1 + (6 + 5 + 3) = 15 

Therefore, 

n = max (n , n ) 
e e1 e2 

= max (8, 15) 

= 15 

Finally, if 

A (6, 
2 

(7) = 6 ) mod 

then we have, 
2 

6j 
n = 1 + L mod (7) 

e1 j=l 

= 1 + (6 + 1) = 8 

since in this case x = 2 2, 

n = 1 + 
e2 

= 1 + 

and x3 = 3, 

n = 1 + 
e3 

= 1 + 

And therefore, n . = 8 • 
e = 

2 
I 2·6J mod (7) 

j=l 

(5 + 2) = 8 

2 
L 3·6J mod (7) 

j=l 

(4 + 3) = 8 

Table 12.2.1., shows the effective constraint lengths of cyclic 

codes of various rates and error-correcting capability, compared with 

other codes. 
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TABLE 12. 2 . 1. 

Effective constraint lengths n . 
e 

, Cyclic' 7 15 
J n n C.S.0.C· 1 n C.S.0.C· 2 Rate e e e 

2 4 4 4 1/2 

4 11 11 11 1/2 

6 22 22 22 

8 37 37 

10 56 56 56 

12 79 79 

14 106 

16 137 137 

18 172 172 

20 211 

22 254 254 

24 301 

26 

28 406 1/2 . 

2 6 7 2/3 

4 20 20 

6 40 41 41 

8 69 70 72 

10 111 

'12 ·152 

14 204 218 

16 

18 334 2/3 

2 8 10 3/4 

4 27 31 32 

6 58 66 63 

8 105 

10 156 181 

12 223 3/4 
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'Cyclic' 
7 15 Rate J n n c.s.a,c· l n c.s.a,c· 2 e e e 

2 10 13 4/5 

4 35 39 40 

6 83 

8 161 

10 206 4/5 

J n ' Cyclic' n c.s.a.c.;2,23 Rate 
e e 

26 690 743 2/3 

3 75 82 12/13 

5 184 209 12/13 

6 238 339 13/14 
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12.3 Unbounded Probabilities of a Decoding Failure. 

We wish to be able to calculate the probability that the 

decoder will fail to correctly decode a message-digit assuming 

an error pattern of weight (t+x) has occurred. We do this by 

calculating t~e number of error patterns which cause ~ J/2 check 

sums to be in error, with equality when the digit to be decoded 

is in error also. If we assume each error pattern is equally 

likely then we can express the probability of error in the 

decoding of some digit from the coset x.A, as 
1. 

where; 

Px.A(t+x) = 
1. 

N(ei)t+x 
n N 

N 0 

n N· 
o 

Nt +x 

t+x 

n N! 
= ~ __ ~~o~~ ____ ~~ 

(t+x)! (n N - t-x)! 
o 

is the number of possible patterns of weight t+x, and 

12.3.1. 

N(e.) . = the number of error patterns of weight 
1. t+x 

t+x which cause a decoding failure on the digit from the coset x.A 
1. 

under consideration. 

The maximum number of digits from the constraint length n N 
o 

which affect the decoding of a digit is the effective constraint 

length n. However the number of digits involved in the decoding 
e 

of some digit from the coset x.A is n given in equation 12.2.2. 
1. e. 

1. 

When t+1 errors occur they must affect t+1 check sums, to cause 

a decoding failure, and must therefore occur within the n digits e. 
1. 

which compose the check sums. However if t+x errors occur, for 

every t+x-i, i < x, errors within the n digits there are i errors e. 
1. 
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within the (n N - n ) digits, not concerned in the check sums, 
o e. 

~ 

to consider as erronous patterns. 

Let N'(e.) be the number of error patterns of weight 
~ t+x-i 

t+x-i which affect the check sums, then, 

N(e.) . = 
~ t+x 

When. x = 1, 

(n N - n )! x-l . 0 e. 
N'(e.) + I j!(n N - n ~j)! N'(ei ) . 

~ t+x j=l 0 e. t+X-J 
~ 

N(e. ) 
~ t+1 

=N'(e.) 
~ t+1 

When x = 2, 

N(e.) . = 
~ t+2 

(n N - n )! 
o e. 

N' (e.) + ~ N' (e.) l!(n N - n - l)! ~ ~ t+2 0 e. t+1 
~ 

Obviously n is an important parameter as it also affects 
e. 
~ 

12.3.2. 

the value of N'(e.) • 
~ '.. t+x 

However it is the distribution of the n e. 
~ 

digits among the check sums; rather than the value of n , which e. 
~ 

determines the value of N'(e.) • Therefore we must resort to 
~ t+x 

specific examples to examine how the probability varies with x. 

Nevertheless two general statements can be made. 

i) 

ii) 

Ifn 
e. 
~ 

» n 
e. 

J 

N'(e.) >N'(e.) 
~ t+x J t+x 

(n )! 
e. 
~ 

N' (e. ) < (t +x)! (n - t-x)! 
1 t+x e. 

~ 

- -:: ~;.--- --

,..--.---- ~ --
~;...;...; 

12.3.3. 
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The probability of erronous decoding is 

different then for digits from different cosets. However from 

the development of equation 12.2.3. we know that, not only is n e. 
1 

the same for every digit in a coset but the form of the check 

sums (number of digits in each sum) is the same for every digit 

in a coset. Thus N'(e.) is the same for every digit and therefore 
1 t+x 

so is N(e.) and the probability p A(t+x). 
1 t+x Xi 

However in example 12.3.1. which follows, S = ~(m) so that 

n , the distribution of the n digits in the check sums, and e. e. 
1 1 

therefore the probability of an erronous decoding, are the same 

for every i and therefore every digit in a sub-block. Two specimen 

calculations are given for (t+1) and (t+2) errors and the other 

results are presented up to (t+6) errors. 

Example 12.3'.1. 

The code chosen is; 

t = 3, n N = 72, Rate = 1/2. 
0 

The 'cyclic' array has the following form; 

3 6 2 5 1 4 

2 4 6 1 3 5 

6 5 4 3 2 1 

4 1 5 2 6 3 

5 3 1 6 4 2 

1 2 3 4 5 6 

The 1eftwise sequences or check sums for digit one are; 



1 

1 4 

1 3 5 

1 6 4 2 

1 5 2 6 

1 2 3 4 

Equivalent 

- I 
I 
I 

- I -
- I -
- I -+ 
decoded 
digit 

3 

5 6 

form. 

+ 
other 
digits 

278 

To find the number of error patterns 

which cause decoding failure we only 

need the distribution of the check sums 

and this equivalent form is given here. 

Since for this code S = Hm) the 

equivalent form is the same for the 

check sums of every message-digit in a 

sub-block. The number ?f digits involved 

in the check sums is given by the effective 

constraint length n • e 

The value of N(e.) is of course influenced by the value 
~ t+x 

of n , but it is also influenced by the equivalent form of the 
e 

check sums or. their distribution. 

To calculate N(e.) we proceed in three stages, 
~ t+x 

i) calculate the number of erronous patterns occurring in 

the message-digit errors only. We include the decoded digit and 

denote this calculation by the symbol, (Mt +x)' 

ii) calculate the number of erronous patterns in the check-

digit errors only, denoting this by the symbol (C t +x)' 

iii) calculate the number of erronous patterns occurring 

in combinations of message-digit errors and check-digit errors. 

This is denoted by the symbol, (C. M .) for i = 1,2, ••• ,(t+x-l), 
~ t+x-~ 

where this implies that i and t+x-i errors are present in the 

respective digits. 



279 

A) (t+l) errors. 

a) (t+l) errors in the message-digit errors only (M4). 

a.l) the decoded digit is not in error. 

In this case the 4 errors must be among the interfering 

message-digit. errors and constrained to one error per check-sum 

or row of the equivalent form. If there are N(x) other digits in 

row x of the equivalent form, then with four errors in say rows 

t,u,v and w, the number of erronous patterns is given by, 

= N(t)·N(u)·N(v)·N(w). 

All combinations of four products from the 5 rows will give the 

total for a.l. 

1 · 2 · 3 · 4· = 24 

1 · 2 · 3 • 5 ::: 30 

1 · 2 · 4 · 5 = 40 

1 · 3 · 4 · 5 = 60 

2 · 3 · 4 · 5 = 120 
274 

a.2) the decoded digit is in error. 

In this case one of the four errors is the decoded digit 

itself and the other three errors, constrained to one per row, 

cause it to be decoded as zero. The number of patterns is given 

by all possible products of the three N(x)'s. 

1 · 2 · 3 = 6 1 · 3 · 4 = 12 

1 · 2 · 4 = 8 1 · 3 · 5 = 15 

1 · 2· • 5 = 10 2 · 4 · 5 = 40 

2 · 3 · 4 = 24 1 · 4 · 5 = 20 

2 · 3 · 5 30 
87 

::: 

3 · 4 · 5 = 60 
138 

= 138 + 87 = 225 
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b) (t+l) errors in the check-digit errors only. (C4) 

There are only 6 check-digits used so that the number of 

erronous patterns possible are, 

6! = 15 = 4: 2: 

c) (t+l) errors in the message-digits and check-digits. 

c.l) One check-digit error and 3 message-digit errors. (Cl M3) 

c.LL) (Cl M
3

, decoded digit not in error) 

The message~digit errors will assume all patterns found in 

a.2. Each individual pattern occupies three rows so that the single 

'check-digit error can be in any of the remaining 3 rows. Thus the 

number of erronous patterns 

= 3 x 225 = 775 

c.l.2.) (Cl M
3

, decoded digit in error) 

Since one error is fixed in the decoded digit this leaves 

2 errors to distribute among the interfering message-digit errors. 

The total number of patterns due to message errors is given by all 

products of two N(x)'s. 

1·2 = 2 2·3 = 6 3·4 = 12 4·5 = 20 

1·3 = 3 2·4 . = 8 3·5 = 15 

1·4 4 2·5 la 
27 

= = 
1·5 5 

24 
= 

14 

= 14 + 24 + 27 + 20 = 85 

And for each of these patterns the check-digit error can be 

in any of the four unused rows, giving a total of 

= 4 x 85 = 340 
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c.2) Combinations of C2 M2• 

c.2.l.) (CZ M2, decoded digit not in error.) 

There are 85 patterns of two errors in the message-digit 

errors and for each pattern there are all combinations of 2 check-

digit errors from the 4 unused check sums giving 

4: = Z~: . 85 = 510 

c.2.2.) (C2 M2, decoded digit in error.) 

This leaves one message-digit error to be present in the 

other message-digit errors and for each such pattern, 2 check errors 

from 5 unused check sums giving, 

5: - 15 = 150 - 2!3!· . 

c.3) Combinations of C3 M1 • 

c.3.!.) (C3 M1 , decoded digit not in error. ) 

The approach should now be clear! 

5: 15 150 = 
3~: 

. = 

3.3.2.) (C
3 

M1, decoded digit in error.) 

= 20 

There are no other patterns possible, and we have the total 

as; 

N'(e.) = 274 + 225 + 15 + 775 + 340 + 510 + 150 + 150 + 20 
1. t+1 

= 2459 
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Since x = 1, 

and, 

N(e.) = N'(e.) = 2459 
~ t+l ~ t+1 

72 . = N72 = 
Nt +1 4 

= 

72! 
4! 68! 

1,028,790 

and therefore, 

2459 p(4) = ..,--.:;..,;..;..:~ 
1,028,790 

= -4 23·9,10 

B) (t+2) errors. 

Comment; If two errors occur in one row of the equivalent form . 

they cancel leaving t errors which can be correctly decoded. We 

therefore only consider patterns which can affect 4 or 5 distinct 

rows. 

a) (t+2) errors in message-digit errors only (MS). 

a.1.) decoded digit is not in error. 

There are only 5 distinct rows of interfering digits, thus, 

= 1·2·3·4·5 . = 120 

a.i.) decoded digit in error. 

This leaves 4 errors in other digits so that from section 

= 274 
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b) 5 errors in 6 check-digits (CS) 

6! 
= 5T1! 

= 6 

c) (t+Z) errors (C. M .) 
~ t+x-~ 

c.l. ) 

c.1.1.) (Cl M
4

, decoded digit not in error.) 

2! 
= 1T1! • 274 =548 

c.l.2.) (Cl M
4

, decoded digit in error) from (M4) a.2. 

3' 
::i 1! i! . Z25 = 775 

c.2.1.) (C
2 

M
3

, decoded digit not in error) 

3! 
= 2T1! • 225 = 775 

c.2.Z.) (C
Z 

M
3

, decoded digit in error) from (Cl M
3

) c.1.2., 

there are 85 patterns of two errors in all interfering message~ 

digit errors. 

4! - 85 = 510 - 2!2! . 

c.3.) Combinations (C3 MZ) 

c.3.1.) (C
3 

MZ' decoded digit not in error) 

c.3.Z.) 

4! 
= 3!l! • 85 = 340 

(C
3

MZ' decoded digit in error) 

5! 
= 3!2! • 15 = 150 
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c.4.) Combinations (C4 M1) 

c.4.1.) (C
4 

M
1

, decoded digit not in error) 

c.4.2.) 

5! 
= 4T1! • 15 = 75 

(C
4 

M1 , decoded digit in error) 

6! 
= 4!2! = 15 

There are no other patterns of weight 5 possible within the 

n digits and 
e 

N'(e.) = 120+ 274 + 6 + 548 + 775 + 775 + 510 + 340 + 150 + 75 + 15 
~ t+2 

and 

then 

=3588 

From equation 12.3.2. if x = 2, 

(n N - n )! 
N(e.) - = N' (e.) 

~ t+2 ~ t+2 
+ 0 e 

I! (n N-n -I)! 
o e 

(72-22) ! 
= 3588 + I! (72-22-1)! . 2459 

= 126,538 

therefore, since 

72- n! 13,991,544 N5 = = 5! 67! 

p(5) = 126,538 
13,991,544 

= 90.44 10-4 

It is obvious that when x > 1, 

X
-I (n N-n )! o e. 

. N'(e.) 
~ t+1 

\' -:-...... , ...,(,.....--,---=-~ --:.,.,-)...-, 
L J n N-n -J . -J. =1 . 

• N'(e.) > > N' (e.) 
o e. 

~ 

~ . t+x-J ~ t+x 12.3.4. 
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and this is used to calculate estimates of the probability for 

x > 4. 

The calculations were performed on the following codes; 
/' " 

a) R = 1/2, t = 3, n N =, 72, 'cyclic' 
0 

b) R = 1/2, t = 3, n N = 36, C.s.o.C. 
0 

c) R = 1/2, t = 4, nN = 72, C.s.o.C. 
0 

d) R = 2/3, t = 4, nN = 384, 'cyclic' 
0 

e) R = 2/3, t = 4, n N = 261, C. s.o. C. 
0 

f) R = 2/3, t = 5, nN = 393., C.S.o.C. 
0 " 

The results are given in Table 12.3.1. 

TABLE 12. 3 .1. 

t+x 

4 

5 

6 

7 

8 

9 

5 

6 

7 

8 

9 

Probability of a decoding failure when t+x errors occur. 

Rate 

, Cyclic' 

t = 3, nN = 72 
0 

2·39·10 -3 

9-10-3 

20-6-10 -3 

36-9'10 -3 

56'9-10 -3 

79'6-10 
-3 

Rate 

'Cyclic' 

t = 4 n N = , 0 384 

2'10- 5 

10-2-10 
-5 

30-10-5 

67·8·10 -5 

131·6·10 -5 

= 1/2. 

C.S.O.C. 

t = 3 n N = 
' 0 

41·7·10 -3 

100·8·10 -3 

159-10-3 

210-7-10 -3 

249'5-10 
-3 

265-10~3 

= 2/3 

C.S.o.C. 

t = 4 n N = 
' 0 

19-3·10 -5 

88'3-10 
-5 

237'9-10 -5 

491-8·10 -5 

863·10",:,5 

36 

261 

C.S.o.C. 

t = 4, n N = 72 
o 

o 
-3 6·4'10 
-3 21'3·10 
-3 42·9·10 
-3 68·7·10 
-3 95·7·10 

C.s.o.C. 

t = 5, n N = 393 
o 

o 
-5 a·43·10 
-5 

12'9·10 
-5 

39·5·10 
-5 90·2·10 



p(t+x) x 100 

10 t=3 

C.S.O.S. t=4 

9 

, Cyclic' t=3 
-- -8 

._-- 6 

--- -.---~-~-~.--------. , . 

3 4 :.: 5 6 7 8 9 10 t+x 

FIG. 12.3.1. 

COMPARISON OF THE UNBOUNDED ERROR CORRECTION CAPABILITY OF THE CODES: 

~---. -- -- ----- 'CYCLIC' R = 1/2, n N = 72, t = 3. 
0 

--------------.----- ----
C.S.O.C. R = 1/2, n N = 72, t = 4. 

0 

-- '-"- C. S. O~ C'.--' R-: 1/2;' - .. 
N 36, 3. n = t = 

0 
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The rate half results are drawn in graph form in figure 12.3.1. 

For the 'cyclic' rate 2/3 code, the figures given are for the 

digits in the coset containing digit 1. The C.S.O.C. rate 2/3 

figures are on digits 1 and 2 of a sub-block, for the t = 5 and 

t = 4 codes respectively. 

12.4 Equal Rate and Error-correcting Capability. 

In section 12.3. we examined how p A(t+x) changed with x. 
~ 

increasing (t+x). We also saw in example 12.3.1. that the equivalent 

form of the check sums on some digit was sufficient to calculate 

the quantities N'(e) and therefore the probabilities too. t+x 

However what was not shown is that the equivalent forms for 

the digits in the 'cyclic' t = 3 code and the C.S.O.C. t = 3 code 

are identical, so that, 

N' (e) t+l = 2459 

for both codes. Of course all N'(e)t+x are equal in value for 

these two codes, so that the differing probabilities in Table 12.3.1. 

arise purely due to the different constraint lengths of the two 

codes. Since the C.S.O.C. has, n N = 36, and the 'cyclic', n N = 72, 
o 0 

we could ask, is the increase in constraint length n N, justified 
o 

in terms of the reduction in the probability of a decoding failure? 

Also, is there some optimum constraint length n N beyond which the 
o 

reduction in probability is not justified? Both questions are 

answered by considering a "flexible" code whose rate, error pattern 

weight t+x, error-correcting capability t, check sum equivalent 

form and therefore effective constraint length, are held constant 

while n N is increased. 
o 
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In figure 12.4.1. we show three curves of probability against 

n N, for (t+1), (t+2) and (t+3) errors, for the digits of a code 
o 

whose check sum equivalent form is given by; 

- I 
- I -

I 
- 1--
- I -
- I -
t 

. decoded 
digit. 

t 
other 
digits. 

The t = 3, C.S.D.C. and t = 3 'cyclic' codes can be compared 

by locating them on each curve, using the values from Table 12.3.1. 

The curves were plotted using the equations below; 

p(t+1) = 

p(t+2) = 

p(t+3) = 

24S9·4! (n N-4)! 
o 

n N! 
o 

N(e)t+2· S! (no-S)! 

n N! 
--.0 

N(e)t+3· 6! (noN-6)! 

n N! 
o 

where N(e) is given by equation 12.3.2. In figure 12.4.2. we 
t+x 

also plot probabilities for the rate 2/3 C.S.D.C. t = 4, and rate 

2/3, 'cyclic' t = 4 codes. In this case the check sum equivalent 

forms are not the same for both codes so that two curves are shown 

for· each (t+x).· 

That is for the 'cyclic' code, 



).1 . 

. 09 

.08 

" .07 

-'.06 

.. ~04 

-,.03 

".01 

p_x.A(t+x)x 100 
1. 

C.S.O.C, 

- .. -------------.- - --' -. ~:- -.-~-' -' -'-. ~'-. --.-'-.:----.-,----:-:--------.. -...:..:.........--~--.---..:-.--- -_ .. _-----

-,.- . -- ... - .. ---.-.---------. 

... _-, .... _---_._----,---' 

Constraint 
~~ ______________________________ ~::~====~~~~~ __________ _Length n N 

o 100 200, 300 400 500 600 700 

... --.-,-__ --.- FIG. --12.4.2. 
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p (t+l) 
1,378,161 o S! (n N-S)! 

o 
= 

but for the c.s.a.c., 

n N! 
o 

p (t+l) 
l,869,925 o S! (n N-5)! 

o 
= 

12.5 Error Propagation. 

12.5.1. Introduction. 

n N! 
o 

Error propagation occurs only in convolutional codes which 

are decoded in the feedback mode. It can occur in two ways, 

(a) an error in some message-digit is decoded as binary zero, 

so that using feedback syndrome cancellation, (F.S.C.) does not 

eliminate its effects from the check-digits of following blocks. 

(b) no error in some message-digit is decoded as binary one, 

so that F.S.C. adds an error in the check-digits of the following 

blocks where the message-digit error resided. 

This can have the effect of causing a further decoding error 

in a subsequent block which would normally have been correctly 

decoded. That is some digit from a subsequent block may have-t 

check sums in error, from t errors over its constraint length n N, 
o 

but a (t+1)'th check sum can be put in error by a propagated error 

from a previous block. 

7,12 
It has been shown that if a convolutional code has the 

property that F.S.C. reduces the" binary weight of the N(n -k )-digit 
o 0 

syndrome then the code can recover from error propagation automatically 

providing a sufficiently long err<?r free period occurs. It was also 

shown that self-orthogonal codes have this property, so that the 
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'cyclic' codes have this property too. Having stated that 

convolutional self-orthogonal codes, C.S.D.C.'s, can recover 

automatically, we may ask, how soon can a code recover. 

said this we must first dicuss what is meant by recover. 

Having 

If we 

assume the decoding failure occurred due to an error pattern of 

weight t+l, then it is possible that this error pattern plus the 

propagated error, will cause a further decoding failure in one of 

the (N-l) blocks following the block in which the original decoding 

failure occurred. If this situation occurs then the code has not 

recovered from the original propagated error and we would then 

concern ourselves with how soon it could recover from the second 

propagated error. For this reason we make our first assumption, 

that is, we assume the N-I blocks following a decoding failure are 

correctly decodable in the presence of the error pattern and 

propagated error. This is referred to as the autonomous case. 

We then require to know how soon the code can be subjected to t 

or less errors again, without upsetting the autonomous case. In 

other words without a further decoding failure occurring due to 

the propagated error, which must be in one of the N-l blocks following 

the original decoding failure. 

If we can develop conditions which guarantee the autonomous 

case we have developed conditions under which the code is guaranteed 

to recover from error propagation. This is because, since the code 

has constraint length N blocks long a propagated error cannot affect 

the decoding of the (N+l)'th block. Therefore if the N-I blocks 

following the decoding failure can be successfully decoded the N'th 

block, (N+I)'th block overall, and all subsequent blocks must be 

free from the propagated error. 
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The number of digits the code requires to recover from a 

propagated error is, called the propagation length and is given 

the symbol, L. 

A more precise definition of L assuming the autonomous case 

is given below. 

Definition 12.5.1.1. 

The propagation length, L, is a multiple of the sub-block 

length n ,'and is defined as the least number of bits, including 
o 

the last bit incorrectly decoded, which must follow a decoding error 

and beyond which the code can be subjected to t or less errors again 

without further decoding errors occurring due to the propagated 

error. 

Robinson12 developed an upper bound for L as, 

L ~ 2n N - n o 0 
12.5.1.1. 

and to enable comparison of L for different codes we introduce 

the concept of propagation efficiency, 

E -
L 

1 - 2n N - n 
12.5.1.2. 

o 0 

The smaller L, the more efficient is the code. 

12.5.2. Propagation in the 'cyclic' codes. 

The definition 12.5.1. assumes a single propagated error and 

this will be assumed throughout unless stated otherwise. From 

the discussion in the introduction to this section it is apparent 

that the actual value of L is not too easy to calculate and in 

fact it will be many different values depending upon the different 
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error patterns which caused the propagated error. In the following 

results it is assumed that a propagated error has occurred due to 

an error pattern of weight t+l and we consider rate R = 1/2 codes 

only. After F.S.C. we develop conditions which indicate a maximum 

value for L and we proceed in the following manner. 

(a) We assume a particular digit has been decoded in error 

causing propagation. Due to the cyclic nature of the code, any 

conditions developed on one digit will also hold for other digits 

of the same sub-block. The sub-block from which the error is 

propagated is considered as block 1. 

(b) We then assume the N-2 blocks following block 1 are 

successfully decoded and the N'th block is about to be decoded in 

the presence of the propagated. error. 

(c) Only one digit in block N can be interfered'with by the 

propagated error, so that provided the next t+l check sums on that 

digit are free from error (this assumes the worst case, that is 

that the digit in block N, interfered by the propagated error, is 

in error itself) it can be successfully decoded. This sets an 

initial value for L at (N+t+l)n , since this assumes no further 
o 

errors can occur in the t+l blocks that follow block N. 

Having set this initial value for L, any blocks whose 2t check 

sums are within the (N+t+l)n digits will be decoded successfully, 
o 

assuming the conditions for the autonomous case. That is, successful 

decoding of block x is assured, providing 

n (x+n-l) ~ n (N+t+l) 
o 0 

x ~ t+2. 12.5.2.1. 
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(d) We then move backwards and consider the decoding of 

block N-l, only if N-l > t+2. We try to determin~ conditions which 

would require that L be greater than (N+t+1)n in order that all 
o 

digits from block N-1 can be decoded successfully under our 

. assumptions. 

(e) We repeat (d) until block y ~ t+2, when we stop. The 

value of L is the maximum obtained for all blocks y > t+2, but 

y ~ N. 

As an example consider figure 12.5.2.1., which shows the 

2Nn - n syndrome digits of the n N = 72, t = 3, R = 1/2 code, o 0 0 

assuming an error is propagated by digit 1 from some block 1. 

From (c) our initial value for L is (N+t+1)n = (6+3+1).12 = 120. 
o 

However N-l = 5 = t+2 so that from (e) we can stop and this initial 

value of L is the final value. 

12.5.3' 'Propagation in the C.S.D.C. '/. 

The search procedure applied to the 'cyclic' codes was also 

applied to theC.S.D.C.'s7, with rate, R = 1/2. 

The results can be shown numerically and a specimen is given 

for the n N = 172, t = 6, R = 1/2 code, below. 
o 

Example 12.5.3.1. 

The generator sequence for the nN = 172, t = 6, R = 1/2, 
o 

C.S.D.C. is17; 

(1, 3, 7, 25, 30, 41, 44, 56, 69, 76, 77, 86). 

We assume that error propagation has occurred for some block 1 

and was in part due to errors in the message-digits of blocks 

74, 77 and 86. These errors affected check sums ;6, 77 and 86. 
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of block 1. However when we wish to decode block 74, it has its 

check sums in blocks; 

(74, 76, 80, 98, 103, 114, 117, 129, 142, 149, 150, 159) 

The check sum in block 76 is in error from the propagated 

error, but if one examines those blocks containing the errors· in 

blocks 77 and 86 we have; 

(77, 79, 83, 101, 106, 117, 120, 132, 145, 152, 153, 162) 

(86, 88, 92, 110, 115, 126, 129, 141, 154, 161, 162, 171) 

We can see that although F.S.C. will cancel these errors in 

blocks 77 and 86, they will be present in blocks 117 and 129 which 

both contain check sums for the message-digit in block 74. Therefore 

of those twelve check sums 74, 117 and 129 are in error, from 

propagation and existing errors. To decode this digit successfully 

we require at least 7 error-free check sums, since 74 is in error 

itself. This required then that no further errors must occur in 

any block y ~ 149, giving 

t = n • 149 = 298. 
o 

Table 12.5.1. compared the figures calculated for the 'cyclic' 

and C.S.O.C. codes. 

The values given are the maximum that could be found. The 

table also compares the propagation efficiency of the two codes. 
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TABLE 12.5. 1. 

Error propagation length L, in the rate 1/2 C.S.O.C's and 

'cyclic' C.S.O.C's. 

L E 
t n N 2n N-n ' cyclic' C.S.O.C. 

0 0 0 

3 72 132 120 0.091 

4 72 142 132 0.0705 

5 200 380 320 0.1579 

6 172 342 298 0.128 

6 288 552 456 0.174 

7 256 510 452 0.1138 

8 512 992 800 0.1936 

9 434 866 702 0.1894 

9 648 1260 1008 0.2 

10 568 1134 932 0.1782 

11 968 1892 1496 0.2094 

12 852 1702 1358 0.2022 
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CHAPTER 13 

Chapter 13 is a reprint of an article, 

"Pseudostep Orthogonalization: An Algorithm 

for improving Reed-~assey threshold codes" 

published in Electronics Letters 8th June 

1978, Vol. 14., No.12. pp.355-357. 



readily be added by means of a second full-wave rectifier 
biased to operate at the voltage corresponding to the outer 
significant condition_ 

delay 

o 1:E1 J>". single _ -+---00 1,0,-1 
response· I!!illl 
Fig_ 3 Sillgle respollse to J. O. - J processor 

The block diagram of the complete timing recovery circuit 
is shown in Fig. I and a stylised iIIuslration of the waveforms 

'at several points in the circuit when it is presented, with an 
undistorted 0, 0, -1) eye pattern is given in Fig. 2_ The 

,timing signal component present in a 1 V peak-to-peak 
, processed signal (Fig. 2d) was measured to be 0·06 V r.m.s. at 
optimum demodulating carrier phase. It was only about 4 dB 
less when transmitting via a channel with such severe slope and 
sag group-delay distortion that the (1,0, -1) eye pattern was 
barely recognisable. The level of the timing signal component 
varied less than 5 dB with lbnodulating carrier phase under 
any' of the conditions k,ted. With pseudorandolll data 
modulation at 60 kbaud 'lI.d no added noise, the peak-t.o·peak 
jitter at the output of tile second-order phase-hkkeJ loop, 
which had a double'~h:led bandwidth of lOO Hz. varied 
between 2% and 4% under the same test conditions. No 
complete theoretical explanation or analysis of the operation 
of the circuit can be given at present, but it is reasonable to 
deduce that the strong timing-signal component obtained 
arises from the constraints imposed by the (I; 0, -I) 
1Ir&"'~'ssiI1R nn Ihe' ocCUrrence a 1111 , polarity uf Ihe signal 
II .. n~IIIIII1S. As :1 cOIull:IlY lu Ihis. 11 may he: infcnt'1I Iltill Ihe 
phase of the recovered timing signal is determined mainly by 
the predominant (I, 0, -I) signal components, i.e. those at 
half the Nyquist frequency; , 

PSEUDOSTEP ORTHOGONALISATION: 
AN ALGORITHM FOR IMPROVING 
REED-MASSEY THRESHOLD CODES 

, Indexing term: l:'rror correction codes 

An algorithm Is 'jUOIettted' which can be applied to Reed­
Massey algorithm codes and utilises orthogonal and rion­
orthollonlll check sums with a resulting improved performance. 
The algorithm is applied to a well-kno\\l1 class of convolutional 
threshold codes \\ilh a suhsequent improvement in the non-
bounded error-correcting capability. ' 

Introduction: In 1954, Reed I first proposed a threshold 
decoding scheme for a class of codes developed by Muller, but 
it was noluntil 1963 that a unified theory emerged, developed 
by Massey.2 The Reed·Massey algorithm basically proposed 
obtaining J = (d - I) orthogonal check sums; where d is lhe 
minimum distance of the codes. Each check' sum is assigned 

,equal priority in the decoding scheme and provid ing t ~ J /2 
errors occur, they can be corrected. Many useful classes of 
codes have been based upon this algorithm. 

In'recent years attention has been focused on Rudolph's 
algorithmJ which proposes obtaining 2t~ nonorthogonal check 
sums, where X is the number of check sums in which each 
digit, except the decoded digit, appears, Ng4 later showed that 
this algorithm could be improved by assigning the zero parity 
check more than one vote. In a more recent correspondence 
nues proposed a new algorithni, called pseudostep ortho-

,gonalisation, where the decoder utilises a combination of 
orthogonal and nonorthogonal check Sums. 

The main application of the above algorithms3- s has been 
. the decoding of codes previously known not to be decodable 
with the Reed·Massey algorithm, The pseudostep algorithm 
presented in the next section can also be applied to Reed· 
Massey algorithm codes, with a resulting improvement in 
performance. 

Thealgoritlrm: The algoritlun combines the ideas of Reed­
Massey's algorithm, Duc's algorithm and Ng and can be 

EUCTRONICSLETrERS 8thJurls 1978 Vol. 14 No. 12 

'The circuit is being used successfully in an experimental 
modem for transmission over group-band channels lit rates 
ID the range 48-72 kbit/s' according to CCITf Recommenda· 
tion V36. It has also been established that the slime principle 
can 'be applied to extract a timing signal with the same 
valuable properties from t!le corresponding segments of a 
multilevel (I, 0, -1) signal., " 

Finally it is worth noting that the circuit can be used for 
timing-signal recovery in single-response data modems by 
driving it from the bandJimited received base band signal via 
a linear (I, 0, -1) processor such as that shown in Fig. 3 
(T is ,the data unit interval). If a sample-and-hold delay 
element is used for this purpose, additional band limiting will 
'be required between the processor and the timing recovery 
circuit. 
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outlined in the follOWing manner: 
(a) S check sums are obtained 

(b) (S - 2) check sums are orthogonal and are assigned 3 votes. 
, each 

. (c) 2 check sums are nonorthogonal and are assigned 2 votes 
, each 

, (cl) the zero parity check is assigned 3 votes 

The total vote becomes 

Sr = 3(S -:- 2) + 4 + 3 = 3S + 1 

Let J be the number of orthogonal check sums of a code 
which is threshold decodable using the Reed~Massey algorithm. 

(i) If d is odd, J = (d -1)= 2t, and we set S =1 + I, giving 
Sr = 6t + 4. 

(H) If d is even, J = (d - 1) = 2t + 1; and we set S = 1 + 1. 
givingSr= 6t + 7. 

That is, we find an extra check sum nonorthogonal on one of 
the original orthogonaJ check Sums. 

When Sr = 6t + 4 we decode all error patterns of weight t 
plus many patterns of weight (t + 1) \\(hich would have caused 
a decoding failure with J = 2t. 

When Sr = 6t + 7 we decode all error patterns of weight t 
and all patt,erns of weight (t + 1) except those which include 
the digit common to the nonorthogonal check sums. However, 
the majority of these patterns are also correctly decoded. 

Application of the algorithm: The algorithm has been applied 
to Massey's trial and error (t.e.c.) convolutional codes2 and, in 
addition, a small set of rate 1 codes were developed. The 
resulting constructions arc given in, Table I, where the 
foJlowing polots apply: 

(a) The notation fot generator sequences and check sum ruics 
is the same as used by Massey,2 

(b) While developing the codes some Reed·Massey algorithm 
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codes were found which are shorter than Massey's t.e.c.s and 
are given for completeness in Table 2. 

(c) Sub·block length = n. constraint length .. N, rate~ l/n. 

Table I IMPROVED MASSEY T.E.C. CODES' 

n. S N Generator sequences 

3 -S 3 (0, 1,2)' 
(0,1 )2 

3 7 5 (0.1,2,3)' 
(0, 1,3)2 

3, 9 8' (0, 1,2.3, 6,7)' ~ 
(0.2,3)2 • 

3 11 12 (0.1,9. 11)' 
(0.1.2.3.5,R.9)2 . ' 

3 13 18 (0. 1,15,17)' 
(0,4.5.6.7,9.12,13.16)2 

4 5 2 (0. I)' -
(0, 1)2 
(0)" 

4 7 3 (0.1.2)' 
(0, 1)2 
(0.2)·1 

4 " , 10 5 . (0, I. 2. 3J' 
(0. 1,4)2 
(0.2,4)·1 

4 11 6 
J 

(0.1.2.3)' 
(0. I. 4.5)2 
(0. 2~ 5 ).1 

4 13 (0.1,2.3.7)' 
(0.),4.5f 
(0,2.5,6.7)3 

'. 
4 15 11 (0. 1.2, J. 7. I,,' 

(0. 1.4.5.9, 10)1 
(0,2.5.7.H)J 

4 14 9 (0,1,2.'3.7)' 
(0.1.4.5.8)2 
(0,2.5.7)3 

5 7 2. (0. I)' 
(0, 1)2 
(0. 1)3 
(0)4 

5 9 3 (0, 1,2)' 
(0, 1)2 
(0, )3 

(0.2)4 

5 IJ 4 (0,1,2,3)' 
(0.1,3)2 
(0, 1)3 

(0,2)4 

356 

Comments: The code, n = 4, S = J 0, N = 5 I wa~examlned to 
discover the number of patterns of, errors of weight 5 which 
caused a decoding failure. Of the 15,504 error patterns of 
weight five, 3,876 Include the common digit In the non. 

Rules for forming check sums 

(0') (02
) (I') * (12) • (2' 22) 

(0')(02) (1'). (12). (2'2 2) 

(3 2)(314') 

(0') (02
) (1') • (22) (12 3J) 

(3'4')(6' 62)(7'72) '" 
(2'4252~1) , 

(0') (02) (I') (2'22) (9') 
(3242) (315 152) (8' R2) (Ill)'. 
'f.12416162) (729 2 102). 
, . 
(01)(02)(1112)(42)(52)(15') 
f2(62) (72)02)12)11) (92 3' 5') 

(411011.~1162). (6IRI122)(17') * 
(132711)t'1{22232) 

(0') (02) (0.1) (11). (t2). 

(01)(02)(0))(1') * (12). 
I.:!' 22)(.2') 

(()IH01)(0·1)(I') '" 0 2 1.1)(2' 22) 

(2.1) (3' 32) '" (42) 
, (4'~3)41) 

COl, (02) (O'~ (I', (1 21) (2'2 2) 
(2), of< (3' 4') (51) H2 324) 
(5'5 2 34

) '" 

(0' )(02) (ol)( I') (12 I J) (2' 22) 
(2 3) (3 1 4') (2 3 24 34) (5.1) 
(5 26' 3.1) '" (62 73, '" 

(4'7'7 2, 

(0') (02) (0.1) (1')( 12 p) (2122, 
(~') p' 4') (324~4·1) (sj) It 
(7.1(,28 1, '" (5 2 32 (,1) 

(s26"gJ)(5'7'7 2) 

(9'9 29 3 102) 

(0 1
, (02) (03) (I') (2 12") (2 3) 

(3'41)(324243)( 53) • 
(7362 81) '" (715' 72) (12)3) 

(523.16')(826J8l) . I • 

(0') (02) (03) (04) (11) '" w) ., 
(I3 14) 

(0')(02)(03)(04)(11) ... (12)* 
(1.114) (2122) (24) 

(0') (02) (03) (04) (I') '" W, '" (1314) 
(24) (2' 22) (3'2 3) (3 23.1) 

- , 



Table 1 IMPROVED MASSEY T.E.C. CODES~ontinued 

n s 

5 13 

5 15 

5 17 

5 )9 

N 

6 

7 

9 

)1 

Generator sequences 

, (0,1,2)1 
(0, 1,3)2 
(0,3,5)' 
(0,2,3,4)4 

(0, I, ~)' 
(0, 1,3)1 
(0,3,5,6)' 
(0,2.3,4,6)4 

(0, 1.2,4,5,7)' 
(0, 1,3,8)1 
(0,3)' , 
(0. :!, J. 4, 7)" 

(0. I. 2. 4. 4,5,7)1 
(0, 1.3.9)2 
(0.3. 10)3 
(0,2,3,4,7.8,9)4 ' 

Tht! IIsieril;ksin Ih~ ab"w tabl\! indic-J'~ ,he nonorthogonal dlctk sums 

Table 1 SHORTENED REED·MASSEY ALGORITtIM CODES 

n I 

4 4 

5 6 

5 

5 9 

3 4 

N 

4 

5 

8 

10 

7 

Generator ~elluences 

(0, 1,2,3)' 
(0, 1)2 
(0,2)J 

" (0; 1,2)1 
(0, 1,3)1. ' 
(0.3)3 

. (0,2,3,4)4 

(0, 1,2,4,5,7)1 
(0,1,3)1 
(0,3)·1 
(0,2,3.4.7)4 

(0. I"i, 4, 5,7)1 
(0. 1,3,9)2 
(0,3)3 
(0,2,3.4,7,8,9)4 

(0, 1,2,3,6)1 
(0,2,3)1 . 

'Rules for forming check sums 

(01) (O~ (O~ (04) (Ill~ (1214) 
(2121) (2'2~ (3131) (41 34) , 

(3~ (43
4

4
) • (5~ • 

(5 26 2 64)(41 5 '63 54) 

(0') (01) (O~ (O~ (434~ (3'31
) 

(3~ (41 34
) (2'22) (2 3 24

) (13 1') 
(1214) (4'64) (5' 5451) 

(7'6'5~. (74617~ 
(818~ • 

(0') (O~ (03) (04) (4344)(~'3~ 
(3;(4234) (2' 21) (2324) (l'l ~ 
(11)4) (4'64) (5 154 52) 

(7' 61 5J
) • (7462 71) (929~ 

(9"7'6') (10; * 

Rules for forming check su~s 

(0 1) (02) (O~ (1') (121~ 
(2122) (23) (J132 3; 

(0 1) (02) (O~ (04) (444~ 
(3 132) (]3) (423~ (2'2~ 
(2l24)(IIIJ)(1114)' '. 

'above rules pIllS 
W 64) (51 52 54) 

(7'6353) (746272), 

above rules plus 
(94 73 6') (919; 

(01)(01) (11)(22) (1231) 

(61 61
) (314') (2'41 51 5~ 

orthogonal check sums. Of these 3,876, the code fails to , '. D. McQUILTON 8th May 1978 
decode in 1,083 cases. M. E. WOODWARD 

. bepllrttnent of Hluironfc and £ltcirlclIl Eilginttrln, ;. , 
Unil'erslty of Ttcltnology , 

COl/elusions: A pseudostep drthogonalisation .aigorltlun has /.(1Itghborough. Lelcl. UN/ JTU 
been presented which can be applied toReed.Ma~sey I;'ngland 
algorithm codes to improve their performance. References 

The algorithm was applied 10 Massey's te;c. cnrtvolutional I REED, I. S.: 'A class of multlple-cu-or cortectlnl Code. and the 
codes resulting in an improved' performance, with no increase dec:odlnlllchemo~,IRE Twm •. , 1954, IT ... , pp. 38 ... 9 
in length in mllSl cases. '2 MASSEY. J. L.: 'Threshold decodlliJ'(MIT Proll, 1963) 

One criticism of t.e.c. convolutional codes whl'ch are 3 RUDOLPIf, L. D.: 'A class of majorlty-logic decodablo code,', 
11:'££ Trans .• 1967, IT-I 3, pp. 305-307 

decoded in the feedback mode is that they du not have the 4 NG, S. N.: 'On Rudolph's majority-logic decoding algorithm', 
automatic recovery properties of self-orthcigonal codes in Ihe ibid., 1970,-1T-16, pp. 65Hi52 . . 
presence of error propagation.6 However, the improved t.e.c. 5 DUe, N. Q.: 'Pseudostep orthogonallzation:A new threshold-decod' 

d d h · b b d d . ing algorithm', Ibid., 1971, 1T-17, pp. 766-768 
co es presente, avtng a elter un oun e error correction 6 ROBINSON. J. P., and BERNSTEIN, A. J.: 'A class of binary 
capability, are less likely to have errors propagated than the recurrenl code. with Umlted error propagation', Ibid., 1967, IT-U, :,"1 

. standard t.e.c. codes. ' pp. 106-113 ' 
The advantage of the t.e.c. codes Is that; fora given error. 7 REDDY, S. M., and ROBINSON, J. P.:'Hybrld block-selr. 

correcting capability, they are much shorter than self- orthogonal convolutional codes', IbM., 1972, IT-IB, pp. 185-191 
orthogonal convolutional code$.2,7 ,,0013-5194/78/1116-0355 $1.50/0 

. El.EctFioN/c$ LETTERS 8th June 1978 Vol. 14 No. 12 357 
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14. CONCLUSIONS AND COMMENTS. 

14.1 Comparison with other C.S.O.C.'s. 

The usefulness and application of convolutional se1f-orthogona1 

22 codes has been shown by Wu who listed their advantages as: 

a) simple implementation. 

b) freedom from error propagation. 

c) guaranteed correction capability beyond the minimum 

distance, d • 
m 

d) capability of operating at very high speed. 

e) a large number of codes. 

24 In a later paper Wu's results showed that C.S.O.C.'s exhibited 

the further property that they did not produce additional and bursty 

errors at the decoder output when the codJs capability was exceeded. 

This he concluded makes these code's superior to Reed~Solomon codes, 
r 

B.C.H. and Viterbi decoders when used as the inner code of a. 

concatenated code. 
22 Also, one of the examples Wu gave for the 

DITEC digital te~evision system, a C.S.O.C. was chosen in preference 

to B.C.H. codes, qifference-set cyclic code~, Viterbi and sequential 

decoding after an extensive evaluation. 

22 However Wu's statement that one of the C.S.O.C.'s advantages 

is that there are a large number of codes throws light on the state 

of the art at that time since combining all C.S.O.C.'s from Robinson7 

1 K1 ' b 14 d W 22,23 h 1 143 d 'h et a., 1e er an u t ere were on y co e~ W1t rate 

greater than one half. Also the C.S.O.C.'s did not· exist at certain 

23 rates and, as Wu stated, tend to be single error-correcting for very 

high rates. These results are in sharp constrast to the class of 



297 

'cyclic' C.S.O.C.'s presented in Chapter 11 where, if we consider 

only primes p, then if there exists some integer x such that xl (p-l) 

there exists a code with; 

J = (p-l) 
x 

x 
Rate = --1 • x+ 

nN = (x)(x+l)(J)2 

Since the number of primes is infinite, for ANY x, there are 

theoretically an infinite number of codes of error-correcting capability 

greater than one. Nevertheless where possible the 'cyclic' codes 

have been compared with the C.S.O.C.'s and these results are presented 

in Table 14.1. For a given rate and J we compare actual constraint. 

lengths nA• The actual constraint length nA is important from the 

point of view of decoder complexity and economics, the larger nA.the 

more expensive the decoder. As can be seen from the Table 14.1. the 

'cyclic' codes tend .to be shorter for rate ~ 5/6 and in fact for all 

codes of rate ~ 17/18 there are no C.S.O.C.'s shorter than the 'cyclic' 

codes. 

Wu23 also mentioned that a computer was needed to specify the 

C.S.O.C.'s at high rates. However in example 11.3.24 it was shown, 

with a moderate amount of hand calculation, how to construct two 

codes; (a) d = 5, 
m 

(b) d = 3, 
m 

Rate = 601/602. 

Rate = 1202/1203 

both having extremely high rates. However within the range of values 

that the C.S.O.C.'s and 'cyclic' C.S.O.C. 's can be compared there are 

many points (values of J and Rate) where the C.S.O.C.'s exist and the 

'cyclic' C.S.O.C.'s don't, and vice-versa, so that within this range 

the two classes of codes can be considered as complementing each other. 
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We can consider decoder complexity by considering two codes 

of the same J, nA and Rate . , . 
(a) 'Cyclic' J = 6 nA = 6552 R = 13/14 

(b) C.S.D.C. J = 6 nA = 6552 R = 13/14. 

There is one other code in Table 14.1 where J = 3, nA = 11,988, 

R = 36/37 for both 'cyclic' and C.S.D.C. 

22 For the C.S.D.C., from Wu , the rate 13/14 C.S.D.C. has 

k = 13, n = 14 and requires buffer storage of 6552 and· 13 majority-
o 0 

logic gates, plus of course a re-encoder. 

The 'cyclic' code has k = 78, n = 84 and since we have o 0 

(m-1) . 78 
---s- = 15 = 13 cosets we also require 13 majority-logic gates, 

buffer storage 6552 plus re-encoder. Thus in terms of equipment 

required there is perhaps little to choose between these two codes. 

In general both classes of codes require x majority-logic gates to 

22 decode a rate x/(x+1) code. Wu presented a system for replacing 

the x majority gates by a single gate plus a combinational gating 

circuit and this idea carries over to the 'cyclic' codes also. The 

gating circuit changes connections once for each coset to decode 

all k digits of a sub-block. Df course this would require the 
o 

'cyclic' array being clocked vertically k times and the decoding o 

time is increased as it would also be with the C.S.D.C.'s. 
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TABLE 14.1. 

Comparison of 'cyclic' and C.S.O.C. codes. 

J nA 
'Cyclic' nA C.S.O.C. R. 

2 8 6 R 

4 32 14 R 

6 72 36 R 

10 200 112 R 

12 288 172 R 

16 512 360 R 

18 648 434 1/2 R 

22 968 718 R 

28 1568 1460 

30 1800 1682 

42 3698 3414 

60 7200 6962 

72 10368 10082 

82 13448 13124 

2 24 9 R 

3 54 24 R 

5 150 69 R 

6 216 120 R 

8 384 237 R· 

9 486 306 R 

11 : 726 507 2/3 R 

14 1176 867 R 

15 1350 1011 R 

20 2400 2217 

23 3174 2499 

26 4056 3696 

35 7350 6933 

50 15000 14271 



J 

2 

4 

6 

10 

12 

3 

4 

7 

9 

13 

18 

22 

2 

6 

14 

2 

3 

5 

6 

10 

11 

13 

16 

4 

6 

5 

11 

n 'Cyclic' 
A 

48 

192 

432 

1200 

1728 

180 

320 

980 

1620 

3380 

6480 

9680 

120 

1080 

5880 

168 

378 

1050 

1512 

4200 

5082 

7098 

10752 

896 

2016 

1800 

8712 

300 

nAC.S.O.C •. 

16 

80 

248 

812 

1620 

65 

135 

615 

1445 

3165 

6310 

9445 

36 

630 

5934 

49 

140 

539 

882 

4550 

.5152 

7546 

11032 

384 

1176 

1368 

9531 

R. 

3/4 

4/5 

4/5 

4/5 

5/6 

6/7 

6/7 

7/8 

7/8 

8/9 

R 

R 

R 

R 

R 

R 

R 

K 

K 

* 

K 

K 

K 

K 

* 
* 
* 
* 

K 

K 

* 



J 

3 

4 

6 

7 

10 

3 

5 

6 

8 

6 

3 

8 

3 

6 

6 

4 

5 

3 

3 

4 

4 

n 'Cyclic' 
A 

990 

1760 

3960 

5390 

11000 

1404 

3900 

5616 

9984 

6552 

1890 

13440 

2448 

9792 

11016 

5472 

10500 

4554 

5400 

9600 

12992 

301 

nA C.S.O.C. 

715 

1529 

4235 

5797 

12078 

1664 

4290 

5512 

13158 

6552 

1425 

16335 

2006 

11594 

14832 

5947 

13335 

5750 

6750 

9925 

16462 

R. 

10/11 

12/13 

12/13 

13/14 

14/15 

14/15 

16/17 

16/17 

17/18 

18/19 

. 20/21 

22/23 

24/25 

24/25 

28/29 

* 
* 
* 

* 
* 

* 

E 

* 

* 

* 

* 

* 

* 

* 
* 

* 



J 

3 

3 

3 

3 

* 
E 

K 

R 

n 'Cyclic' 
A 

8370 

10710 

11988 

15750 

Indicates 'cyclic' 

Indicates 'cyclic' 

From the class of 

From the class of 

302 

n
A 

C.S.O.C. 

9727 

13860 

11988 

19823 

code is shorter. 

code is equal. 

codes by Klieber 14 

codes by Robinson 7 

. 22 23 24 
All other codes from Wu ' , • 

~. - -

R. 

30/31 * 

34/35 * 

36/37 E 

42/43 * 

et al. 
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14.2 Performance of the Codes. 

In section 12.2. we presented equations for calculating 

effective constraint length n. Comparative figures were presented 
e 

in Table 12.2.1. where the 'cyclic' codes n are compared with n 
e e 

for other C.S.C.C.'s. It can be seen that for rates> 1/2 the 'cyclic' 

codes appear to have shorter n , the difference increasing as rate 
e 

and J increases. Some insight into this can be obtained from the 

lower bounds developed in Appendix A. The lower bound on n for 
e 

C.S.c.C.'s is given by: 

ne ~ ~ (XJ2 
+ J + x + 1) 

c.s.c.c. 

and for the cyclic C.S.C.C.'s: 

ne ~ ~ (XJ2 
+ J + 2) 

'cyclic' 

14.2.1. 

14.2.2. 

for codes of rate x/(x+1), with J check sums per digit of a sub-block. 

The values of n in Table 12.2.1. are compared with their bounds in e 

Table 14.2.1. 

The following results, from Table 14.2.1. are apparent; 

(a) the 'cyclic' codes n is optimum with the 'cyclic' lower 
e 

bound for the majority of the codes shown. 

~) the C.S.C.C. codes n moves away from the C.S.C.C. lower 
e 

bound as rate and J increase. 

(c) from inequalities 14.2.1. and 14.2.2. it is seen that the 

'cyclic' bound is tighter than the C.S.C.C., the C.S.C.C. being 

[X-I) greater by ~ and therefore increasing with rate. 

The property (c) accounts for the 'cyclic' codes effective 
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constraint length n becoming increasingly smaller as rate increases. 
e 

The property (b) shows that as a construction technique the 

C.S.O.C. codes ratio d /n deteriorates more than it should and m e 

implies tighter constructions are possible. 

The fact that the 'cyclic' C.S.O.C.'s appear to hold to the 

lower bound on n is, the author believes, due to the highly symmetric 
e 

cyclic structure of the codes. This results in all n ,for the n. 
~ 

cosets, being close to the mean, n , and in those results presented 
n 

in Table 14.2.1. only two codes have n not exactly on the mean nn' n. 
~ 

In the C.S.O.C.'s however the x(J-1) check sums in the check-

digits of blocks other than block (0) are not symmetric and appear 

to have n which deviate about the C.S.O.C. mean. This deviation n. 
~ 

appears to be more pronounced for high rate, high error-correcting 

C.S.O.C.'s. 

For both inequalities 14.2.1. and 14.2.2. for rate 1/2 codes, 

x = 1 and 

n > 1 J2 + l J + 1 
e ~ 2 2 

and equality gives the optimum n for rate 1/2 C.S.O.C.'s as shown 
e 

by Masseyl. Massey1 also showed that the effectiveness of the threshold 

decoding of C.S.O.C.'s was related to the ratio J/2n compared to the 
e 

ratio (d-1)/2 noN guaranteed by the Gilbert Bound. Since for.a 

given J, n 'cyclic' < n C.S.D.C. at high rates the 'cyclic' codes 
e e 

are closer to the Gilbert Bound than the C.S.O.C.'s. 
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TABLE 14.2.1. 

Table of n compared to lower bounds in Appendix A, for 
e 

C.S.O.C.'s and 'cyclic' C.S.O.C.'s. 

J 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

2 

4 

6 

8 

10 

12 

14 

16 

18 

2 

4 

6 

8 

10 

12 

n 'Cyclic' 
e 

4 

11 

22 . 

56 

79 

137 

172 

254 

407 

6 

40 

69 

204 

334 

8 

27 

58 

156 

223 

n ?: e 

4 

11 

22 

56 

79 

137 

172 

254 

407 

6 

40 

69 

204 

334 

8 

27 

58 

156 

223 

n C.S.O.C. 
e 

4 

11 

22 

37 

56 

79 

106 

137 

172 

211 

254 

301 

7 

20 

41 

70 

111 

152 

218 

10 

31 

66 

105 

181 

n ~ e 

4 

11 

22 

37 

56 

79 

106 

137 

172 

211 

254 

301 

7 

20 

41 

70 

107 

152 

205 

9 

28 

59 

102 

157 

Rate. 

1/2 

1/2 

2/3 

2/3 

3/4 

3/4 
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J n 'Cyclic' n 3 .n C.S.O.C. .n 3 Rate. 
e e e e 

2 10 10 13 12 4/5 

4 35 35 39 37 

6 83 78 

8 161 135 

10 206 206 4/5 

26 690 690 743 691 2/3 

3 75 56 82 62 12/13 

5 184 154 209 159 12/13 

6 238 238 339 244 13/14 

The upper bound on P(t+1) developed in Appendix B. is not a 

tight bound if: 

N' (e) « t+x [t:~l 
/ 

although B.6. is tighter than B.7. However it does indicate the 

importance of the ratio n In N for (t+1) errors. 
e 0 

When (t+x) > (t+1) the second term in equation 12.3.2. becomes 

more dominant, however tightening of inequality 12.3.3.(ii) is 

necessary to make an extended bound tighter. 

A comparison of the figures in Table 12.3.1, with upper bound 

B.6., is given in Table 14.2.2. 

The underlying result which emerges from this examination of 

the unbounded performance of the codes is that, for a given rate and 

length n N, if one increases the bounded error-correcting capability, 
o 

and thus the ratio n In N, the unbounded performance deteriorates. 
e 0 
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TABLE 14.2.2. 

Comparison of calculated P(t+1) with, 

[ ] 

t+1 
n - t 

P(t+1) < n:N-t 

calculated upper bound 
, Cyclic' 

2:39.10-3 -3 
n = 22, t=3, n N = 72 5·74·10 

e 0 

C.S.O.C. -3 -3 
n = 22, t=3, n N = 36 ---- 41·7·10 109·89·10 

e 0 

C.S.O.C. ' -3 -3 
n = 37, t=4, nN = 72 6·4·10 26·91·10 

e 0 

'Cyclic' 
2.io-5 -5 

n = 69, t=4, n N = 384 14·6·10 
e 0 

C.S.O.C. -5 -5 
n = 70, t=4, nN = 261 19·3·10 111·7·10 

e 0 

C.S.o.C. -5 -5 
n = 111, t=5, nN = 393 2·43·10 42·2·10 

e 0 

This result is reflected in figures 12.4.1. and 12.4.2. where 

by increasing noN, with ne constant, we, see the probability decrease. 

It is the author's conjecture that this result extends to block codes 

also and underlies the price one pays for increased bounded error-

correcting capability. 

Shannon showed that probability of error was intimately connected 

1 26 with a codes length n, such that , 

P(e) ~ e-nE(R) 



308 

where E(R) is a function of rate R. The curves in figures 12.4.2. 

and 12.4.1. illustrate this inequality and also highlight the fact 

that the length of a code is a significant factor in determining 

the probability of error at the decoder output. Since this is so 

one could expect a reasonable performance from a 'code' whose n -k 
o 0 

redundant digits are all zero's, provided n N is long enough. 
o 

However this is wasting space and can be simulated by time mu1tip1exing 

many information independent blocks of digits. 

For example if we time mUltiplex S blocks 

( +(----- n -k for block B.1. 
o 0 

B.S. B.4. B.3. 

--+) ) 

B.2. .B .1. 

of ko-digits. per block, each block being unrelated to any other, from 

an information content view, then considering only one block, say 

B.1., the S·k digits can be thought of as a (n = Sk , k ) code with 
000 

bounded error-correcting capability t = o. Certainly a good unbounded 

performance would be expected and points out the power of time 

mu1tiplexing in the context of error-correction. 

If we express equation 12.3.1. as a percentage, then from Table 

12.3.1., we see that the t = 3, n N = 72 'cyclic' C.S.O.C. is still 
o 

correctly decoding more than 92% of all error patterns of weight 9. 

By putting this figure into context we can see further evidence of 

the importance of code length n N. 
o 

Since we can permit up to 3 errors affecting the n digits in the 
e 

check sums, then the number of patterns of errors of weight 9 which 

cannot possibly cause error is given by: 
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3 
= I 

i=O 

(n N - n )! 
o e 

(9-i)! (n N-n -9+i)! 
o e 

n ! 
e 

i!(n - i)! 
e 

And for the t = 3, n N = 72 cyclic code this gives the figure: o 

This is in fact 72.59% of all patterns of weight 9 and is due to 

the fact that n N »n~ or that n /n N is small. Thus·the actual 
o e e 0 

code structure is only correctly decoding approximately 20% of the 

patterns, the codes length does the rest of the work. 

Some interesting results were presented by Mr. K. Tsigirog1ou, 

in a report entitled "Performance evaluation of a new class of 

Convolutional codes", for his M.Sc. Thesis at Loughborough University 

of Technology in September 1978. Three codes were simulated on the 

University's computer namely, 

Rate = 1/2, n N = 72, t = 5 Massey. 
0 

Rate = 1/2, nN = 72, t = 4 Robinson/Bernstein. 
0 

Rate = 1/2, . n N = 72, t = 3 'Cyclic' • 
0 

From the curves developed it can be seen that the computer 

simu1ations bear out the calculated results obtained in section 12.3. 

Also, the Massey code, though of the largest bounded error-

correcting capability, has by far the worst overall unbounded 

performance. There are two main reasons for this, (a) the high ratio 

n /n N increases the probability of a decoding failure when t+x > t e 0 

errors occur. Being an orthogona1izab1e code n /n N is close to 
e 0 

unity, (b) being orthogona1izab1e the code suffers from error 
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propagation and tends to generate more errors when a decoding 

failure occurs. 

Although it is known that self-orthogonal convolutional codes 

. 11 ll.·~~t . 7,12 11 1 1 automatl.ca y ~ error propagatl.on ,to actua y ca cu ate 

L is not a simple matter. The most interesting result from the 

figures in Table 12.5.1. are that both C.S.O.C.'s appear to become 

more efficient as t incr~ases. The figures shown are the largest 

that could be found, but are in no way claimed as being the maximum 

possible since L is different for practically every error pattern 

which causes propagation. The procedure given in section 12.6.2. 

was used for both 'cyclic' and C.S.O.C. and can be considered a 

general procedure for any type of C.S.O.C. 

For both the high rate C.S.O.C.'s, decoded with k majority 
o 

gates, and the high rate 'cyclic' C.S.O.C.'s, decoded with m~l 

majority gates, simultaneous feedback syndrome cancellation of 

these digits before the next decoding operation can cause mUltiple 

error propagation if more than one digit is decoded in error. That 

is, for both codes, with rate x~l ' x digits are decoded· simultaneously 

in one time instant. 

For the rate 1/2 'cyclic' C.S.O.C.'s J = k and a set of check o 

sums on digit b, from say block 0, cannot contain digit b from any 

other block as this would imply that a row of the 'cyclic' array 

contains two identical integers which is not possible by definition 

of the array. Thus if t+l errors occur in the k message-digits of 
o 

block 1, they can only occur simultaneously in the check sums of t-l 

digits from block O. This causes t-l errors to propagate simultaneously. 

However t-l propagated errors will not cause any digit from block 1 
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or any other block to decode in error providing no more errors 

occur until beyond block N+t. Therefore, the codes can recover 

from the multiple propagation of t-1 errors, caused by 

k !/(t+l)! (k -t-1)! error patterns of weight t+1, with propagation 
o 0 

length: 

L = n (N+t). 
o 

The ability of the 'cyclic' rate 1/2 codes to do this, again, 

is primarily due to the symmetry of the codes' structure. Note 

that the value of L given above is less than the figures given in 

Table 12.5.1. for propagation of a single error, this being due to 

the choice of a particular pattern of erro'rs. 

14.3 Further Work. 

The rich algebraic structure of this class of cyclically 

decodab1e C.S.C.C.'s indicates that a deeper mathematical examination 

of their structure could bear further fruit. There may be some 

relationship between the C.S.C.C.'s and 'cyclic' C.S.C.C.'s, 

particularly those of Wu,22,23,24 which would shed further light on 

C.S.C.C.'s in general. The sharing of different values of J, for 

a given rate, by Wu's C.S.C.C.'s and the 'cyclic' C.S.C.C.'s seems 

significant. 

The pseudostep algorithm presented in Chapter 13 can also be 

applied to the 'cyclic' C.S.C.C.'s. The problem revolves around 

the imbedding, into the array, of a set of m-lIs columns which 

satisfy the algorithm, without disturbing the cyclic property of 

the code. Specific results have been obtained on a few low rate 

codes, ~ 5/6, in which an extra non-orthogona1 check sum on every 
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message-digit has been imbedded without altering the code length 

or 'cyclic' property. Generalizing this idea to one of imbedding 

further orthogonal check sums has occurred to the author but remains 

a subject for further study. The specific results mentioned above 

produced codes that ate Self-Pseudostep Orthogonal and will therefore 

recover from error propagation. 

The author feels sure that the work begun in the Appendices 

can be extended upon, particularly B. From the res.ults 
Ml'. T. Sigir6glou' s report ' 

presented in . . ",-- it is conjectured by the author that the 

great difference in performance between the C.S.O.C.'s and Massey's 

orthogonalizable code is primarily due to the differences in their 

ne/nA ratio's and the fact that Massey's code cannot recover from 

error propagation is secondary. This is a conjecture that certainly 

needs examination and far more work is required in this direction 

to obtain meaningful conclusio~s. If it can be shown that error 

) 
propagation has insignificant effects providing a codes ne/nA ratio 

is below some threshold, regardless of whether or not the code has 

automatic recovery properties, then this would be a useful 

contribution to convolutional coding theory. 

Another avenue perhaps worth pursuing is that of discovering 

if the distri'bution of all n about the mean n has a bearing on n. n 
1. 

code performance. Since a digit from a sub-block has probability 

of error closely related to its own effective constraint length n 

and therefore n ,then the distribution of the probabilities of n. 
l. 

e. 
1. 

error of the k digits from a sub-block will presumably be connected 
o 

with the distribution of n about the mean n • n. n 
l. 

As stated previously the values N'Ce) are usually much less t+x 
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than [t:i] and further work is necessary to find a tighter 

approximation. 

In conclusion, there still remains a great deal of work to 

be done in assessing the impact and general performance of this 

class of 'cyclic' C.S.O.C.'s, however the results so far obtained 

indicate that as a class they exhibit many favourable qualities. 
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ApPENDIX A 

A lower bound on n for C.S.O.C. 's and 'cyclic' C.S.O.C.'s. 
e 

(a) Lower bound on C.S.O.C.'s. 

For C.S.O.C.'s the check-digit of the current block to be 

decoded, as a syndrome digit, has the equation: 

s = e (1) ~ e (2) G.. .. €f e (k ) () e (k + 1). • 
00 0 '0000 

A.1. 

This single syndrome digit provides one check sum for every 

message-digit error from block O. The remaining J-1 check sums, 

for each digit, are in the check-digits of the other N-1 blocks. 

Considering one digit from block 0 let its effective constraint 

length be given by: 

ne = (nn + (J-1)) + 1 + (x-1) + 1 

Since k = x for a rate x/x+1 C.S.O.C., from equation A.1. we 
\) 

obtain the 

1 + (x-1) + 1 

A.2. 

digits of n. That is, the digit itself, the (x-1) digits from 
e . 

its own message block and its own blocks' check-digit. 

Therefore n is the total number of digits from other message 
n 

blocks contained in n • 
e 

Let n ,n , ••• , n be the values of n for the x digits 
n1 n 2 nx n 

in the current block to be decoded, then it is quite simple to 

show that: 

x 
L 

i=l 
n 
n. 

1. 

xJ-l 
= L 1. 

x 

and we can propose a mean value, 

A.3. 
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From A.3., if any n < n , then there must be some n > n • n. n n. n 
~ J 

Thus, since n is a maximum figure, 
e 

n ~ n + J + 1 + (x-I) 
e n 

~ xl [Xx~-l ~l ~ L'" + J + 1 + (x-I) 

~ ~(x~~ + J + x + 1). 
e. 

Equality is satisfied if n = n for all i = 1,2, ••• ,x. n. n 
~ 

Example 2.1. 

A.4. 

A.S. 

For the code t = 2, R = 2/3, nN = 42 the generator sequences 

are: 

(0, 8, 9, 12) on digit 1. 

(0, 6, 11, 13) on digit 2. 

Analysis shows that the number of digits in the check sum, contained 

in the check-digit of block x (represented by the integer x in the 

generator sequences), excluding the digit itself, is equal to the 

number of integers less than x in the generator sequences. 

Therefore, 

= (3 + 4 + 6) + 4 + 1 + 1 = + 6 = 19 

= (2 + 5 + 7) + 4 + 1 + 1 = + 6 = 20 

so that 

n = max(n , n ) = 20 
e e l e2 
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that, 

n + n = 13 + 14 
nl n2 

the lower bound A.s. , 

n ~ 19-5 ~ 20 . 
e 

7 
= 27 = L i 

2 

So that this code is optimum in the sense that n cannot be lower. 
e 

(b) Lower bound on 'cyclic' C.S.O.C.'s. 

From equation 12.2.2. the effective constraint length is: 

Let, 

n 
e. 
~ 

n n. 
~ 

S 
= 1 + L 

j=l 
x. aJ mod (m) 
~ 

S 
= L 

j=l 
x. a j mod (m) 
~ 

. . m-I 
s~nce the --S- = x cosets contain all positive integers from 

1 to m-I = x S 

m-lIs 
L 

i=l 
n n. 

~ 

xS 
= L i 

i=l 

Since S = J, 

Therefore, as before and from A.6. and 7 

n ~ I + n e n 

~ I +! [r i] x 

~ 1 +! (XJ(~J+1) J 
x 

1 2 
~ 2 (xJ + J + 2) 

with equality when n = n for all i = 1,2, ••• ,x • n. n 
~ 

A.6. 

A.7. 

A.S. 

A.9. 
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ApPENDIX B 

An upper bound on P A(t+x). x. 
. 1 

From inequality l2.3.3.(ii), 

(n )! e. 
1 

N' (e i) t+x < ""'::('-'t-+-x")'! --:-( n.....;;;...-----:t---x~)..,! 
e. 

1 

and therefore from equation 12.3.2., 

where ( : ) = 
a! 

b! (a-b)! 

So that from equation 12.3.1., 

px.A(t+x) = 
1 

N(ei)t+x 

~~:) 
or from B.2. 

px.A(t+x) 
1 

n 
e. 

1 

t+x 

Since n 1S the maximum n , 
e e. 

1 

p(t+x) < 
[::x 

x-I n N -
0 

+ L 
j=l j 

x-I n N -
+ L 0 

j=l J 

[ n N 
t~x 1 

applies to all digits in a sub-block. 

n n e. e. 
1 1 

t+x-j 

n n e e 

t+x-j 

B.1. 

B.2. 

B.3. 

B.4. 
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Let x = 1, then 

P(t+1) < ~ 
[noN] 
t+1 

(n - t) ....... e 
< (n N - t) •.•••• 

0 

although re -\f+l [::N] t+1 < n N 
0 

usually 

N' (e) «[ne 1 
t+x t+x 

therefore we can say, 

and if 

[

n - t ] t+1 
P(t+1) < .n:N- t 

n »t 
e 

n N » t 
o 

(n ) e 
(n N) 

0 

B.S. 

B.6. 

B.7. 

To develop a tighter bound it is necessary to tighten inequality 

B.l. 
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