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Abstract 

Laser Powder Fusion, has been used to explore the possibility of fabricating 3-

dimensional parts from Computer Aided Design (CAD) data, using the 

underlying philosophy of 'Rapid Prototyping' or 'Freeform fabrication' 

techniques. Such techniques have emerged in the past decade or so, as a 

revolutionary way of designing and realising products primarily for form, fit and 

functionality. Applications have evolved in the areas of automotive, aerospace, 
medicine to name a few. The Laser Powder Fusion technique, is characterised 

by the use of a heat source, like a laser or electron beam used for melting or 

fusing powder material like metal, polymers etc to the required geometry, by 

tracing and filling in (or rastering) 2-dimensional contours, line by line, layer 

upon layer, to obtain the 3D geometry. 

The motivation for the present work comes from the use of this technique for 
fabricating components with enhanced functionality, for applications in 

production and prototype tooling, engine parts etc. The future aim is to 

incorporate multiple materials fused under the heat of a laser beam. These 

materials could possibly be dispersed spatially in a graded manner, to aid the 

realisation of a concept called 'Functionally Graded Materials (FGM),. 

Tracks of fused beads, using Tool steel (H13) material, were processed to a 

length of 30mm on a substrate plate 40 x 40mm in size. ANd: YAG laser was 

used to deliver the required energy, at the focal zone. Process parameters were 

varied in accordance to data established from initial graphs, which indicated the 

range of input parameters for which Output could be achieved. Pulse 

parameters, pulse width, pulse frequency and energy were varied in conjunction 

with scanning speed in order to complete each individual scan. 

Every scan was repeated five times on a substrate plate, for one set of 

parameters. The entire set of experiments was undertaken for two levels of 

powder layer thickness, 1 mm and O.4mm respectively. Resultant beads were 

measured at various pOints for height, width and the resulting data plotted 

against variations in pulse parameters and speed. 

It was found that both height and the width of a bead varied with pulse 

parameters, pulse width (or pulse duration) and pulse frequency. At both layer 

thickness, values of bead width and bead height were generally found to 

increase along with increasing pulse width and frequency. Maximum values of 

bead width and height reduced at increasing speeds. The range of bead width 

and height remained similar for a set layer thickness, for variations in speed and 

also energy levels. 
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Chapter 1 Introduction 

1. Introduction 

Powder fusion of metallic materials, for producing functional parts has evolved 

as an outcome of recent developments in laser sintering, laser cladding and the 

field of Rapid Prototyping or Solid Freeform fabrication [1][2][3][4]. The past 

decade has witnessed growth in a number of processes, that use powder fusion of 

metallic components using a laser beam and quite a few of them have been 

reported to produce parts of near-full to full density by the melting process [1]. 

The parts produced nevertheless require post-processing operations, like 

machining, to be brought to final dimensions and accuracy. The techniques by 

and large have looked very promising in application areas for direct fabrication 

of injection moulding and die-casting tools and also for repair and overhaul of 

military, commercial aerospace and automobile components where expensive 

parts can be re-used and their life extended [5] [6] [7]. 

The techniques could also be promising for producing thermally efficient and 

better designed production tools in moulding applications. Fabricating Injection 

moulding tools having conformal cooling channels could lead to reduction in 

cycle times and has been a subject of recent exploration [8]. Materials like 

Copper have been incorporated in the core of the mould with the outer surface 

being fabricated of a material like tool steel [9]. Such bi-material compositions 

incorporated in a single component can be described as 'tailoring' of material 

properties for that particular component. Negative, undesirable effects due to the 

differences in physical, thermal and chemical properties that may affect service 

life due to cracking at the interfaces, delamination etc, can be avoided by grading 
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Chapter 1 Introduction 

the material interface. The result being that the material composition gradually 

changes in profile, across the component [10]. 

This work in the area of fully dense tool steel fabrication was expected to be an 

input to future work in exploring the possibility of fabricating materials with 

graded composition, 'Functionally Graded Materials' (FGM), by fusing 

multiple materials under the laser beam. 

Additive fabrication technologies have emerged in the past decade or so, and are 

jointly referred to as 'Rapid Prototyping (RP)' or 'Freeform fabrication 

techniques' [11][12][13]. The techniques are used to construct parts by 

processing materials into complex geometrical shapes directly with the aid of 3-

dimensional (3D) Computer Aided Design (CAD) model data. The process 

effectively involves splitting a solid 3D CAD model into thin 2-Dimensional 

cross-sectional layers. These layers are then physically realised using one of the 

many RP techniques, which carry out the task of building the 3D model as 

shown in Figure 1.1 

One of the well-known processes used to build parts in such fashion is the Laser 

Sintering (LS) process. In this process, a laser beam is used to selectively sinter 

materials that range from nylon to thermoplastic binder coated steel powder. The 

technique makes use of pre-placed powder material deposited or spread on a 

powder bed or substrate, which is then subsequently sintered or fused by a laser. 

The laser selectively traces the geometric contour of each layer (slice), which is 

then filled with hatch patterns to generate an equivalent 2D solid layer of finite 

thickness. Subsequent layers are deposited or spread and fused on top of the 

previous layer to realise a three dimensional object. 

2 
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Figure 1.1: Basic Rapid prototyping concept 
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Figure 1.2: Process Chain for the Rapid Prototyping process [14] 

3 



Chapter 1 Introduction 

The rapid prototyping process chain in highlighted in Figure 1.2 and an overview 

of Rapid Prototyping technology is represented in Figure 1.3, depicting four 

major aspects of the technology viz. the solid model input formats, range of 

materials, the various fields of applications including aspects of engineering and 

the methods and technologies used by various RP processes. 

The technique as mentioned before, can be used to generate metallic parts from 

materials such as tool steel where the powder melts and solidifies under the 

influence of a laser beam. It can be used to produce both direct and indirect 

tooling for small- scale production or prototyping. The ability to construct 

complex geometry, can effectively be combined with the ability of laser fusion 

techniques to produce multiple material parts with enhanced functionality. For 

example, an increase in thermal conductivity of moulds could reduce cycle times 

and result in less cooling channels being necessary. To achieve this, graded 

regions of multiple materials with compositionally or structurally varied 

functionality, within the same component or tool would be necessary. Rapid 

prototyping and Rapid Tooling are now a novel way of producing near-net shape 

tools, dies and inserts. Such tools with graded regions of multiple materials 

could have a high thermal conductivity material close to critical areas, which 

would effectively enhance the functionality and life of the tool. A similar 

concept would be true for engines e.g. near the walls of the cylinder. Hence, the 

idea of producing parts in production grade materials like tool steel in 

combination with a high thermal conductivity material would become an 

interesting possibility. 

4 



Chapter 1 Introduction 

This work undertook preliminary investigations into Nd:YAG laser fabrication 

of preliminary scan paths for a single material, H13 tool steel. It investigated the 

parameters that would produce a solidified metal structure (bead) and 

recommend further work towards the realisation of 3-D blocks (cubes) of the 

same material. 

Figure 1.3: The Rapid Prototyping Wheel depicting four major aspects of RP 

[1] 
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Chapter 2 Direct Metal Fabrication 

2. Direct Metal Fabrication 

The chapter covers the area of prototyping of metallic parts using Laser based 

techniques using direct and indirect methods of manufacture. Broadly the 

chapter focuses on processing by laser sintering and by laser cladding 

operations. 

2.1. Direct fabrication by laser sintering 

This section describes two techniques, commonly in use for the processing of 

metal parts using rapid prototyping principles, Laser Sintering (LS) and Laser 

Generating (LG). 

2.1.1. Pre-placed Powder techniques (Laser sintering) 

These techniques are available commercially in the form of Rapid prototyping 

machines, which generally use proprietary materials. The main processes are 

Laser Sintering (LS) offered by 3D Systems Inc. USA and Direct Metal Laser 

Sintering (DMLS) offered by EOS GmbH, Germany [15][16][6][17][18] 

A schematic diagram of the LS process is shown in Figure 2.1. 

6 



Chapter 2 Direct Metal Fabrication 

Powder Cartridge !=eeddlng/Colleotlng System 

Figure 2.1: Schematic drawing ofthe LS process [19] 

The 3D Systems' LS process involves the use ofa high power laser beam, which 

selectively melts and fuses powder material along a path governed by 3D CAD 

model data. The process begins with a very thin layer of heat fusible powder 

deposited by means of a mechanical roller on the work bed and heated to a 

temperature just below its melting point. The laser then traces the path of the 

component to be fabricated, raising the temperature of the powder to its sintering 

point, effecting bonding or consolidation. The table is then lowered through a 

distance corresponding to the layer thickness e.g. 0.1 mm, before the roller 

7 



Chapter 2 Direct Metal Fabrication 

spreads the next layer of powder onto the previously built layer and the cycle is 

continued till the component is complete. The powder remains loose in 

unsintered areas and acts to support the following layers of powder, sintered or 

loose. The entire process is carried out in an enclosed chamber of an inert gas 

(nitrogen) to prevent oxidation of the powder. After the fabrication is complete, 

the excess loose powder is shaken off to reveal the fused component [20]. 

A photograph of a commercial LS machine offered by 3D Systems is shown in 

Figure 2.2. 

Figure 2.2: The LS machine by 3D Systems Inc. 

Some of the materials used in the process are: Wax, engineering thermoplastics 

such as Polycarbonate and Nylon [21][22], glass filled nylon, polystyrene for 

investment casting patterns [23], metallic materials such as steel/copper matrix 

material with a thermoplastic binder. The binder coated metallic powder is used 

in the patented Rapid TooFM process (shown in Fig. 2.3) to create mould cavity 

and core inserts for prototype tooling [24]. 

The scan pattern and exposure parameters will be major factors in determining 

part properties [14] . The packing density of the powder is also a crucial factor in 

8 



Chapter 2 Direct Metal Fabrication 

determining the mechanical properties of the part after sintering. Particle packing 

densities of 50 to 62 percent are reported for commercial sintering process with 

uniform sized particles [14]. 

The advantage of sintering or sinter bonding with the aid of a thermoplastic 

binder over direct melting and fusing is the avoidance of the liquid phase, hence 

subsequently avoiding associated distortions caused by the flow of molten 

material. In the fusion of binder coated metallic powder, the binder is later burnt 

out leaving a porous metal part. The part is later infiltrated with a low melting 

point material like Copper to achieve a more dense component [14]. 

One other way of effecting greater density in parts is the use of the principle of 

Liquid Phase sintering as a means of enhancing the sintering behaviour of a 

powder material [25]. This could be achieved by using a Liquid Phase metal in a 

solid phase powder, such as Copper in Nickel. Densities up to 82 % have been 

achieved [26]. Sometimes the process when used to liquid phase sinter metal 

powder can be used in conjunction with Hot Isostatic Pressing (HIP) in order to 

produce a full or near full dense component [27][28] This has been carried at the 

University of Texas, Austin, where the LS process was first invented. 

Materials that were processed included Inconel 625, Stainless Steel, Titanium 

Ti-6Al-4V and Molybdenum. The LS machine was modified for atmosphere 

controls and laser systems (a Nd:Y AG laser) to process high temperature metals. 

The concept itself included producing an integral skin and core part, with the 

skin having almost full density and the core being about 70% dense. This was 

later subjected to the HIP process and fully dense structures were seen for 

9 
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Inconel single layers with some porosity for multiple layers. Stainless steel was 

seen to give a nearly fully dense microstructure [27]. 

l MOIdDUi ... 

:;011111,. 
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Figure 2.3: The Rapid ToolTM Process [29] 
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A preliminary study of laser sintering of pure metals has revealed that a copper 

block produced in a nitrogen atmosphere was consolidated to a density of 

52%[30]. 
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Chapter 2 Direct Metal Fabrication 

2.1.2. Laser Generating (deposition based) 

Laser generating (LG) is based on the laser cladding [33] technique. Here 

metallic powder is delivered into the focal zone of the laser beam as opposed to 

scanning the surface of a pre placed powder layer. The material melts or fuses 

due to the intense heat energy of the beam at the focal zone. Figure 2.4 shows 

the LG process at the focal zone. 

Prominent amongst commercial processes that offer this type of rapid 

prototyping of materials is the LENSTM (Laser Engineered Net Shaping) process 

[34]. 

The LENSTM process consists of a high-power Nd:YAG laser, a glove box with 

controlled atmosphere, a 3-axis CNC positioning system and a powder feeder 

unit. The powder feeder unit is composed of delivery nozzles (as seen in Figure 

2.5a and 2.5 b), which is designed to inject the powder stream directly into the 

focussed laser beam. The beam creates a weld pool on the substrate into which 

the powder particles are injected to build up each layer. The substrate moves 

beneath the laser beam, thus facilitating formation of the required geometry of 

the part, again from 3D CAD data, as in the case of other Rapid Prototyping 

technologies. After a single layer has been deposited, the powder delivery nozzle 

and the focussing lens assembly are incremented in the positive z-direction for 

generating the next layer. This process is repeated until the part is complete. 

Solid parts with complex internal and external features have been built to near

net-shape with this process and subsequently machined to final accuracy and 

surface fmish requirements [35]. Fully dense parts have been obtained using 

materials like Alloy 625, Alloy 690, 316 Stainless Steel powder [1]. 

11 



Chapter 2 Direct Metal Fabrication 

Applications include producing injection moulding and die-casting tools (Figure 

2.6) [35][36] , along with repair and overhaul of engine components [5]. 

Materials like H13 tool steel for injection moulding applications as shown in 

Figure 2.7, Inconel 625 (nickel based alloy) and Titanium alloy (Ti-6AI-4V) are 

reported to have been used for repair and overhaul of components like turbine 

blades [5] . 

Figure 2.4: The LG process at the focal zone 

Figure 2.5a: The LENS ™ process performing a single line build [31] 

12 
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Z-axis Positioning 
of Focusing Lens and 

Powder Delivery Nozzle 

Laser Beam 

Powder Delivery 
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" X-V Positioning Stages 

.. ~. 

Figure 2.5b: Schematic of a powder deposition process [32] 

Figure 2.6: H13 tool steel Die Casting Tool using LENS process [37] 
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Chapter 2 Direct Metal Fabrication 

Figure 2.7: Injection moulding tool by LENS process [37] 

Other processes have evolved which use a similar principle to LENSTM, also 

using Laser Powder Deposition techniques. These are: 

Directed Light Fabrication (DLF), invented at the Los Alamos National 

Laboratory, USA. In this process, metal powder is carried by an argon gas 

stream, which then enters into the focal zone of a laser beam, where it melts and 

forms a molten pool of material. The pool moves with the laser spot to create a 

solidified three-dimensional bead [38][39]. The system has powder feeders 

attached for co-deposition of multiple materials, to create alloys at the focal zone 

or form dissimilar metal joint combinations by changing powder composition 

from one material to another. Iron based materials as well as stainless steels are 

used in the process[ 40] 

Directed Metal Deposition (DMD) is a process developed at the University of 

Michigan, Ann Arbor and Stanford University. In DMD, a laser generates a melt 

pool on a substrate material while a second material is delivered into the melt 

pool either as powder or as a wire-feed that melts and forms a bond with the 

14 



Chapter 2 Direct Metal Fabrication 

substrate [41][42]. A schematic of the DMD process is shown in Figure 2.8a. 

The process is shown in its workillg condition in Figure 2.8b. The technology is 

now commercialised by the POM group. The process is claimed to be able to 

generate components like advanced tools with conformal cooling channels 

(Figure 2.8c) for thermal efficiency, by incorporating materials like Copper 

chromium at the core and tool steel at the surface [5]. The process is also 

reported to be used for depositing wear resistant and high temperature materials 

on to tool surfaces thereby increasing tool life and productivity. A number of 

cobalt based stellite and nickel based alloys have been used to fabricate bi-

metallic tools for elevated temperature applications [5] . 

ClJOlllli 
/fUf" 

Figure 2.8a: Schematic ofDMD [43] 
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Chapter 2 Direct Metal Fabrication 

Fig 2.8b: DMD in action [43] 

Fig 2.8e: Conformal cooling channels follow cavity ofthe tool [43] 

Controlled Metal Build Up is a technique, which uses laser generating and 

welding along with conventional 21 12 axis milling. This method is being 

developed at the Fraunhofer Institute in Germany [44]. 

A process known as " Laser consolidation (LC)" has demonstrated the 

possibility of producing fully dense metallic parts using Powder Deposition. 

This has been a result of work undertaken at National Research Council of 

Canada. Figure 2.9 a, band c shows some of the parts produced by this 

technique [45] . 
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In another method of fabrication, parts are built in a layer-by-layer fashion by 

feeding raw material in wire form into a melt pool maintained by an electron 

beam [46]. Electron beam Melting (EBM) has now been commercialised by 

Arcam AB. The materials used by the commercial process are HI3 tool steel. 

Porosities less than 0.5% are reported [47]. 

Other techniques have been reported where a combination of arc welding [48] 

and 5-axis CNC machining has been used to produce metal parts [49] 

Figure 2.9 a: LC In-738 airfoil built on cast IN-738 substrate [45] 

Figure 2.9 b: LC as-consolidated IN-625 samples [45] 
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Figure 2.9 c: A complex consolidated IN-625 shell [45] 

2.1.3. Other layer manufacturing routes for metals 

Exceptions to laser based generating techniques, are those such as Shape 

Deposition Manufacturing (SDM) developed at Stanford University [50]. A 

weld-based deposition process was used to deposit material to near-net shape. 

The part was then transferred to a shaping station where it was machined to net 

shape using a 5-axis milling machine [51]. Thus the process used sequential 

steps of material deposition and removal to form 3Dimensional structures. One 

of the unique features of this process was that it created variable layer thickness 

dictated by part geometry [52] . Layer thickness ranged, from a few thousands of 

an inch to the practicallirnits of deposition and shaping equipment. The adaptive 

layer (variable layer height) splitting technique reduces the build time by 

reducing the number of layers to a theoretical minimum. 
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Other techniques such as 3-D Welding have been reported to produce metallic 

parts of superior properties but with limited complexity that also required fmish 

machining operations [53]. 

3D printing is a process, which uses an ink-jet print head to deposit binder 

material on a layer of powder to selectively bind the material. Similar to how an 

inkjet printer achieves colour documents a 3D printer can use a print head with 

several jets to deposit binder and/or slurries of several materials and create 

controlled composition of the part, effectively realising the concept of FGM 

manufacture. This process was developed at the Massachussets Institute of 

Technology, USA [54] 

A process called metalprintingTM is in development, which uses the principle of 

high speed photocopiers viz. photo masking and electrostatic attraction to 

deposit and consolidate materials of iron powder [55]. 

2.2. Significance and applications of lasers in manufacturing 

Lasers are used in manufacturing today, for various applications including sheet 

metal cutting, drilling, spot welding, seam welding, surface modification of 

components and many other applications. They are used because of the 

tremendous advantages they have to offer. For example advantages in terms of 

their precision, low heat input c~pability, ability to be automated and precisely 

controlled by CNC programming, ability to produce very small heat affected 

zone producing low thermal distortion, ability to achieve high processing speeds, 

and of safety and their ease of operation. 
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The laser was first invented in the 1960's [56]. The acronym 'LASER' means 

Light Amplification by the Stimulated Emission of Radiation. It was found that 

certain materials like gases or crystals could be excited and be made to emit a 

particular light or a type of radiation. The first laser used a rod of ruby crystal as 

the material to be excited and since then a number of materials have been shown 

to 'lase' or produce laser light. 

The lasing action is produced by excitation of a material and raising its energy 

state from low to high energy levels. Materials in the excited state show a 

tendency to return to the lower or ground state. During this process they emit 

energy in the form of a photon, which consequently results in a particular 

wavelength of light being emitted. Such photons are known to be mobile and 

they collide with other excited electrons stimulating them to release identical 

photon(s). This is known in laser theory as 'stimulated emission'. Continuation 

of this process, results in the 'amplification' of light energy by simultaneous 

emission of a number of photons resulting from the collision with excited 

electrons. The light is known to have a relationship between the photons, which 

move in step or phase with each other [57]. This is 'coherence' that is exhibited 

by a laser source. In addition to laser light being coherent in nature, it is known 

to have low divergence (typically expressed in radians) which means that the 

beam does not spread out very much. Coherence gives the light beam its ability 

to be focussedlconcentrated to a very small spot size thus producing high heat 

energy to cut, weld or drill various materials. 

The output of laser light is monochromatic, consisting of one or a small number 

of well defmed wavelengths. These characteristics of laser light are considerably 
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different from an alternative heat source for example a light bulb, which would 

emit a highly divergent and incoherent light. 

The most common lasers used in processing materials are the Carbon Dioxide, 

Nd:YAG and the Excimer laser. Figure 2.10 gives a diagrammatic sketch ofa 

YAG laser. It consists of a cavity with the active medium Neodymium, Nd3
+ 

ions, in a Yttrium Aluminium Garnet (YAG) crystal rod which has polished 

circular end faces. There are two mirrors positioned on each side ofthe laser rod. 

The rear mirror is a total reflector and the front mirror is partially reflecting 

through which the output beam emerges. In the cavity is also mounted a krypton 

(flash) lamp, whose emission spectrum suits Nd3+. When an electric current 

passes through the flash lamp, pulses of white light are emitted. Some of the 

light, which is coupled into the laser rod, by the reflective pumping chamber is 

absorbed into the rod. Some of this absorbed light causes excitation of Nd3+ 

causing them to switch from a low energy to a high energy state. In the excited 

state the atoms are unstable and are accompanied by photon emission as they try 

to jump to lower energy states. A photon that passes near another excited Nd3+ 

would induce de-excitation with emission of another photon, hence called 

'Stimulated emission'. The stimulated photon is coherent with the stimulating 

photon with the same frequency, wavelength, phase, direction and polarisation 

[58]. 
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Figure 2.10: YAG laser (Working Principle) [58] 
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The emerging beam path is folded using two steering mirrors, one near the 

energy monitor and the other close to the Beam expanding telescope (BET). The 

former mirror is partially reflecting and allows for the beam energy to be 

monitored, while reflecting most of the beam towards the latter mirror. This 

mirror is a total reflector, which directs the beam via the BET and safety 

(Process) shutter, the purpose of which is to intercept the laser beam when 

output is not required and the flash lamps are energised. The beam is deflected 

into the beam dump, by the totally reflecting mirror. When the shutter is 'open' 

the BET has the role of increasing the beam diameter, because this has the effect 

of reducing the divergence and therefore spot-size at the workpiece [58]. A 

second function of the BET is to compensate for differences in the focal length 
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of the process lens for visible light and light at laser wavelength, thus making it 

possible that the laser beam focus becomes coincident to the visual focus, seen 

through viewing optics like a mounted camera. 

One of the principal differences in the nature of light radiated from different 

types of lasers, is that they exhibit different wavelengths. The wavelength of a 

Nd: YAG laser would fall in the near infrared region of the electromagnetic 

spectrum. Its value being 1.06 microns. The wavelength of light emitted by a 

C02 laser is in the far infrared region with a wavelength of 10.6 microns. 

Excimer wavelengths fall in the Ultra-Violet (UV) zone of the light spectrum. 

The ability of metallic materials to absorb light energy of lower wavelength 

makes Nd: Y AG (henceforth referred to as YAG) a suitable choice of laser for 

various cutting, drilling and welding applications. Y AG lasers can also provide 

pulsed output - which is emission of energy over a shorter period (typically 

milliseconds) - giving increased peak power for metal cutting [57]. Carbon 

dioxide lasers with higher wavelength are known to be absorbed to a lesser 

extent by metals though their high average power output is known to induce a 

coupling effect, which increases the temperature to induce melting. They are 

particularly absorbed well by some materials like titanium and non-metals [57]. 

Excimer lasers have a limitation of very short pulse durations in the range of a 

few nanoseconds which restricts their use to applications like surface treatment, 

ablation of raw materials for thin film deposition, annealing etc [57]. 
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2.3. Laser fusion of metal parts 

Laser sintering or melting of metallic particles has been used to produce 

functional parts for various applications as covered in Section 2.2. The 

technology promises new applications given its flexibility in accommodating a 

great variety of materials and also for producing novel material properties for 

specific applications. The subsequent paragraphs highlight this aspect of using 

Lasers for part manufacture using the intrinsic philosophy of Rapid Prototyping 

techniques along with their capability to produce tailored materials, commonly 

known as Functionally Graded Materials (FGM). 

2.3.1. Applications and possibilities 

Laser powder fusion is characterised as a welding process, which is uni

directional and enables highly localised areas of a component to be built up of a 

metal or alloy without overheating the substrate, on which the part is built [59]. 

The small heat affected zone provided by the focal spot of the laser beam is 

highly advantageous as compared to excessive temperatures offered by other 

welding processes such as Tungsten Inert gas (TIG), Plasma and Electron Beam 

Welding. 

Multi-material structures produced by Laser Powder Fusion and applied to areas 

in injection moulding and die-casting tools and Engine blocks could be an 

interesting possibility. It could be possible to construct materials like Copper that 

exhibit high thermal conductivity properties close to the cooling channels or 
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close to the walls of the cylinder thereby enhancing the heat transfer rate. A 

layered manufacturing process combined with metallic powder fusion would 

enable the construction of such components with multi-material properties 

whose composition, microstructure would be tailored to the desired 

functionality. An example of this has already been carried out using the Shape 

Deposition Manufacturing (SDM) process, wherein an injection moulding tool 

was constructed that transitioned from Invar in the centre to Stainless Steel on 

the outside of the tool. The resulting tool exhibited minimal distortion from 

thermal stresses and excellent exterior corrosion resistance [10]. Such tailoring 

of part for varying functionality over its cross-section has been defmed as a 

Functionally gradient structure, in material terms a Functionally graded material. 

This topic is further covered in the following chapter. 

2.3.2. The laser fusion process 

Laser instigated powder melt formation occurs in an area where the beam is 

focussed to a diameter typically 0.5mm or 500 microns. This gives a melt pool 

with a diameter typically of800 to 1000 microns [60]. It is this small diameter of 

localised heat input, which effectively distinguishes the laser powder fusion 

process or a laser welding process from other conventional welding techniques. 

Due to the small diameter of melt pool at the focal zone, the material is brought 

to its melting point in fractions of a second and also cools as fast. This results in 

a material that shows uniform distribution of elements in the microstructure 
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along with fine grains. Such material often has better strength than its equivalent 

solid parent material [57]. Hence the system could essentially be classified as a 

Rapid Solidification system where the laser illuminates small areas for defInition 

of the part geometry and where the dwell time per unit area is of the order of 

milliseconds. 

The thermal conductivity ofa powder metal in a powder bed is less than its solid 

equivalent [57]. The heat produced by the beam is hence 'contained' within the 

small heated zone produced at the focus, causing the material to drastically 

increase in temperature within a short time and also cool at very high rates. If a 

molten pool at the focal zone were to be imagined to be spherical, then it would 

be easy to understand the high solidifIcation (cooling) rates that are achieved at 

the spot. A sphere would in essence have a very large surface to volume ratio, 

one that is inversely proportional to the diameter of the sphere (the diameter 

being less than Imm e.g. 800 microns) [60]. Tiny spheres would conduct heat 

from the surface, which in effect would have a very large in area in comparison 

to the small volume of the sphere where the heat was stored, hence resulting in 

high solidifIcation rates. In reality, the molten pool is known to have a complex 

shape but is small nevertheless, with high solidification rates. SolidifIcation 

proceeds from the bottom of the molten pool to its surface. This is due to the 

high thermal conductivity of the solid substrate in contact with the bottom of the 

pool and the low thermal conductivity of the powder bed, which makes the 

cooling rate slower at and around the pool surface [3]. 
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Rapid solidification in itself imparts certain qualities to the metals and alloys that 

undergo such phenomenon. More uniform and size-refined solidification 

microstructures, largely eliminating the detrimental effects caused by 

segregation are formed [61]. Other literature on Rapid solidification processing 

suggests that it is a means of producing beneficial effects like chemical 

homogeneity, fine microstructures, extended solid solutions and metastable 

phase formation in metallic alloys [62]. 

To generate a three dimensional part by layerwise manufacturing, the process 

includes successive addition of layers on top of the previous, which in turn 

requires that sufficient adhesionlbonding be achieved to the substrate. It is also 

necessary that adjacent lines of solidified material, have a sufficient degree of 

overlap to ensure lack of porosity [3]. Dilution with the substrate or previously 

solidified layer can be kept very low as the beam can only act on the substrate 

through the powder, which has a low thermal conductivity and therefore melts 

fIrst [63]. 

Dilution would be more of a concern where the parent material is different from 

the base material as in a coating by the laser cladding process, where it may be 

inadvisable to mix the two materials due to undesirable property alterations at 

the interface. 
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2.3.3. Possibility of Functionally Graded Materials (FGM) 

manufacture 

The concept of Functionally Graded Material (FGM) generation is made more 

possible by the use of Laser Sintering and Laser Generating techniques. 

2.3.3.1.Definition 

A Functionally Graded Material has been defmed as a material exhibiting 

spatially inhomogeneous properties and microstructure [63]. These materials are 

produced by gradually varying the composition of two or more materials across 

the surface, interface or bulk of the material. The materials are consequently able 

to exhibit the characteristics and functionality of the individual materials plus 

additional functionality derived from the graded composition. 

2.3.3.2.Background 

Functionally graded materials in the form of graded multi-layers have been the 

focus of considerable interest owing to their use in diverse applications as 

thermal-barrier and wear resistant coatings, thin film stacks or patterned lines in 

microelectronics, optoelectronics and magnetic storage devices, and also 

laminated composites [64]. Many components are subjected to mechanical, 

thermal or chemical loads which are unevenly distributed across the section. As 

an example, a turbine blade during the course of its service life will have to 

withstand high non-stationary heat fluxes and centrifugal accelerations. An ideal 
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structure for this application would consist of a tough metal core and a corrosion 

resistant ceramic at the hot surface ofthe blade (Figure 2.11). Where the ceramic 

is to be directly bonded to the metal. spalling may occur during thermal cycling, 

as very high stresses occur at the interface. In such a case, a gradient material, 

which has a smooth transition from the ceramic surface to the metal core, can 

avoid thermo-mechanical stress concentration at the interface [65]. 

The concept ofFGM has also been applied to develop sintered hard materials for 

the metal cutting industry as opposed to the normally used cemented carbide and 

cermets. The aim here is to distribute the functionality of the material between 

the surface and the core and to use the thermal stresses actively to improve 

performance through grading the composition (Figure 2.12) [66]. 

FGM made using 3D printing techniques were investigated for wear resistance 

and increased strength of a mechanical part [67]. Variation of medicine 

placement within an FGM pill was used to optimally deliver drugs to a patient 

through controlled release over a period of time [68]. 

Most Laser Generating methods that have had been introduced earlier, have been 

reported for their potential to produce graded material or multiple material parts. 

There are other techniques that are used conventionally in order to generate a 

FGM, some of which are produced by the powder metallurgy route, thermal 

spraying route and various coating and infiltration techniques [69]. However, 

many of these techniques are unable to cost-effectively produce graded parts. 

Laser processing exemplifies those techniques that are capable of producing the 

thicker functionally graded regions. In combination with RP techniques, it 

promises to be an efficient method [70]. 
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A target for work at Loughborough University, aims at incorporating materials 

of high thermal conductivity properties, close to the cooling channels of 

injection moulding and die-cast tooling for faster heat removal, higher 

efficiencies and longer life. 

Figure 2.11: High Pressure Turbine Blade with Thermal barrier coatings [71] 
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Figure 2.12: FGM for wear and toughness combined [72] 
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Work with a single material using Laser Powder Fusion was undertaken as a part 

ofa European BRITE EURAM project [73]. The project named PROMET, was 

carried out during 1993-97 and showed that RIO tool steel powder could be 

successfully melted into a consolidated part of near-net shape resulting in 100% 

density using a high power Carbon Dioxide (C02) laser beam [74]. 

An example of this work was demonstrated by producing a forging tool of 

reasonably simple geometry (Figure 2.13). It was noted though, that it might be 

possible to use this process more efficiently or to better advantage if it could be 

used to produce components of multiple materials or graded materials. The use 

of high speed machining is better at fabricating single material tool steel shapes 

of reasonable size and complexity to a high geometric accuracy as compared to a 

Powder fusion process, which required post processing in addition to initial near

net shape fabrication. 

Generation of graded cross-sections using a powder-bed or pre placed powder 

technique for Laser Fusion would require a mechanism to deposit or pre place 

alloys or powder blends in a pre determined compositional profile on the powder 

bed. This would then be scanned by a laser beam, which would trace the path of 

the slice contour for a given cross-section of the part and follow it up with hatch 

patterns to fill or solidify the material within the contour. The pre placed 

method, could use a mUltiple hopper configuration that would deposit spatially 

controlled compositions on the powder bed. 
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Fig 2.13: HlO tool produced during PRO MET [73] 

Exploration into the possibility of fabricating such structures could also be 

begun using a manual discrete banding technique. This technique involves 

mixing powder blends with differing ratios of the two FGM materials and then 

manually laying the blends out in bands to create a gradual change in material 

composition [9]. 

It could also be possible to produce a vertical FGM in the feed cylinder of a 

Laser Sintering machine either manually with discrete layers or by using 

vibration to induce segregation of the powder particles, resulting in a continuous 

FGM. The change in composition is then effected only in the Z-direction. 
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2.3.3.3. FGM's and their types 

FGM's may be classified according to the size and position of graded regions 

leading to three main categories: 

1) Interface FGM- An interface FGM, is a layer of graded material situated at the 

interface between two materials with different properties [69]. 

2) Surface FGM- Surface FGM's whose progressive change in composition and 

structure eliminate the significant discontinuities in properties that occur across 

well defined interfaces, have been proposed as an alternative to conventional 

coating systems [69]. 

3) Bulk FGM- The aun of a bulk FGM is to give the different property 

requirements at the surface, over a reasonable volume beneath the surface and at 

the core of a component [69]. 

2.3.3.4. Techniques for producing FGM parts 

There are a variety of processing techniques currently practised. 

The conventional techniques being practised are: 

1) Powder processing using conventional sintering as in powder metallurgy. 

2) Thermal spray using a gun to spray molten metal onto a substrate. 

3) Vapour Deposition where a thick or a thin film coating is applied onto a 

substrate to form a gradient [69]. 

4) Thin sheets of materials bonded together usually mechanically to form the 

graded component 
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There are other non-conventional techniques like: 

5) Infiltration of a porous base material with the required filler to form the 

graded component 

6) Laser cladding techniques. 

7) Plasma spraying and laser processing [69]. 

Plasma spraying is similar to spray metal processing where the raw material 

passes through a plasma gun and turns molten and is deposited onto a substrate. 

8) Microwave sintering [75]. 
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3. Processing by laser fusion - Issues and considerations 

The following chapter focuses on processing and control issues while attempting 

to fabricate parts using laser fusion. The more material property specific issues, 

determining the process are considered in the subsequent sections. 

Direct laser sintering of metal parts is a complex metallurgical process, which 

can be influenced by several phenomena that are commonly found in laser 

welding and liquid phase sintering applications [76]. A number of aspects 

determine the nature of parts obtained from the use oflaser fusion. 

3.1. Processing aspects and issues for laser fusion of metallic material 

3.1.1. Importance of having a homogenous mixture 

One of the process issues is the mixing of metallic powders (alloys, alloy blends) 

for laser deposition e.g. in LG, or whether a homogenous material is formed 

during solidification [10]. 

The resulting material could be comprised of isolated islands of one material in 

the matrix of the other material and this may happen because of inadequate 

mixing or melting. This would result in material properties significantly different 

than that expected for a full alloy. It is said that deposits which transition from 

100% bronze to 100% stainless steel show visible segregation of the two 

materials into distinct bands and have significant cracking [10]. X-ray diffraction 
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of a Shape Deposition Manufacturing sample showed multiple phases present in 

the material. Such segregation was not seen as surprising, considering that 

copper and iron have very low solubility below 1400°C at any concentration 

indicating inadequate melting [10]. 

3.1.2. Surface tension 

If melting occurs, the process relies on surface tension driven melt displacement 

to distribute the molten volume and bond the nearest particles into a 

conglomerate that is near full-density or significantly less than full-density, 

depending upon the interaction parameters. Fusion based processes of this kind 

are very susceptible to unwanted thermal gradients which reduce the chance of 

wetting leading to balling phenomena and poor layer properties [77]. 

Liquid metal surface tension, which plays a part in influencing the wetting angle 

between the solid and liquid phases as the melt pool progresses, can disrupt 

bonding between rastered lines and individual layers [47]. Certain scanning and 

atmospheric conditions allow surface tension phenomena to dominate, causing 

the melt pool to solidify into a series of balls. 

It is also well known that surface tension forces play an important role In 

shaping the melt beads that are generated in direct LS of metals. Increasing the 

bed temperature to several hundred degrees celsius will increase wetting and 

melt ball beading will be reduced thereby allowing greater control over the part 

geometry [77]. 
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3.1.3. Vaporisation 

In Electron Beam melting the vaporisation from the surface of the melt pool is 

expected to be a major factor limiting the productivity of the process. Excessive 

vaporisation not only reduces the amount of thermal energy available in the melt 

pool for deposition, it also lowers the material yield. Furthermore, if any alloy 

constituents have very dissimilar vapour pressures, significant differences 

between the composition of feedstock material and the part may result. Damage 

to the equipment for electron-beam generation, vacuum production, wire feeding 

and part positioning may also occur. It is therefore of the utmost importance to 

be able to accurately predict the amount of vaporisation for various operating 

conditions [46]. VoIatalisation can lead to problems with alloy depletion and 

laser energy inconsistencies over long periods of time [7]. 

3.1.4. Porosity 

Porosity is still a major problem for metal building and a number of solutions 

have been proposed. These include infiltration with low melting point alloys or 

direct fusing with binary powder mixtures. Neither of these solutions allows one 

to build components without compromising part strength and functionality [77]. 

Generally, gas atomised powders are used as materials in processes like LS, LG 

etc. The atomisation can induce small pores within individual powder particles. 

These pores or voids are mostly produced by entrapment of atomising gases (e.g. 

argon) and could be present in different amounts depending upon the alloy 

37 



~-------------------------------------------------------------------

Chapter 3 Processing by laser fusion - Issues and considerations 

composition, particle size or atomisation conditions used by the producers [78]. 

Apart from gases contained within the powder, other sources could be from a 

contaminated surface, entrainment of turbulent impact of particles into the 

molten pool as in a powder-feed LG process, and also vaporization of alloy 

constituents. 

A study of the LENS powders and deposits showed that the voids within the 

powders and within deposits are generally spherical in shape [78][79]. Powders 

with large voids/particle size ratios may result in less deposit porosity. 

Regardless of the process parameters chosen, powders with lowest porosity were 

recommended, in order to minimise LENS deposit porosity. 

A fundamental problem arises with density of components in pre-placed powder 

processes, due to the inherent low density of the powder beds [80]. It is 

important that the powder is optimised for its shape and size distribution in order 

to increase the density of non-packed powder beds. This is decisive for the 

quality of the finished component [81]. The density of powder beds can be 

increased by optimising particle shape and surface state. Smooth particles can 

move easily, leading to higher density. Regular equiaxed particle shapes tend to 

arrange more efficiently. Therefore spherical grains are preferred. 

Energy input into the system by vibration of a powder bed can further increase 

density. Suitable powder size ratios including addition of fmes can increase 

density. 
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3.1.5. Marangoni forces 

Marangoni forces, which are recognised in laser Welding and which are a result 

of steep temperature gradients across the melt bead could also form a natural 

force leading to the modification of the melt bead shape. These forces generate 

surface tension gradients across the melt bead, which in turn generate convective 

mass transfer and local reciprocal stirring of the melt volume thus having a 

significant effect on the melt geometry [71]. Effects of Marangoni convective 

flow within the melt volume causes cylindrical shaping of the melt bead, 

resulting in areas of porosity between scan lines [80]. A flatter, wider profile of 

the melt bead is necessary so as to increase fmal part density. 

3.2. Control issues in laser fusion 

3.2.1. Laser Beam Quality 

In methods based on laser treatment, the "quality" (mode) ofthe laser beam is of 

high importance. Nd:YAG (wavelength= 1.06Jlm) laser sources provides beams 

with high absorptances on powders, but with lower beam quality because of loss 

in optical fibres. CO2 laser beams (wavelength= 10.6Jlm) have a better mode but 

the absorption of the radiation is lower [82]. 
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3.2.2. Laser Beam Absorption 

Absorption oflaser energy by the powder plays a key role not only in the process 

efficiency, but also in the part accuracy, since thermal gradients cause residual 

stresses in the part, and thermal diffusion can induce sintering of particles not 

situated directly under the beam [82]. 

3.2.3. Importance of Powder Properties 

Powder properties are also important. Powder particles must not be too fme, so 

that the powder still "flows" well under the delivery device; particle size also 

limits the minimal height of a layer, hence accuracy and surface roughness, 

especially in slanted planes [82]. 

Fine powder becomes difficult to spread on the working area and laser/powder 

interaction efficiency decreases when the particle diameter goes below the laser 

wavelength. 

Granulometry is an essential factor affecting roughness, together with parameter 

optirnisation. The preparation of a smooth and level powder layer may be 

hindered by electrostatic and magnetic properties of powders: meanwhile, such 

features could be exploited to compact the powder bed, for example [82]. 
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3.2.4. Control of thermal behaviour 

It is important to control the thermal behaviour as a means of controlling part 

fabrication. Geometric properties like accuracy, surface fmish, low warpage as 

well as materials properties e.g. strength and ductility, could be controlled with 

appropriate parameters. Each subsequent pass is known to have a reheating 

effect on its preceding passes. Initial laser passes, produced during the making of 

a H13 thin wall using the LENS process, have been seen to bear a region with 

different microstructure as compared to the regions produced by more recent 

laser passes [83]. Scanning speeds have been reported to have a direct effect on 

the hardness of materials like H13 tool steel. Higher speeds were reported to 

produce more hard material because at higher speeds preceding layers receive a 

temperature rise in a shorter time thus reducing ageing or tempering effects 

caused by the thermal cycling. 

A thermal gradient is known to exist across the molten pool and then 

subsequently in the bulk of material, in a process like LENS. To optimise 

mechanical properties, which are a function of microstructure, which in turn is a 

function of thermal history during solidification, an understanding of gradients 

by techniques such as thermal imaging is deemed to be useful [83]. 

3.2.5. Controlling the temperature profile to affect microstructure 

Simulation work done at Sandia National Laboratories on Laser Engineered Net 

Shaping (LENS) shows how grains of very different shapes and sizes form 
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within the same deposition line. It also shows that relatively minor changes in 

the dynamic temperature profile results in microstructures with very different 

characteristics. The implication of this work for LENSTM fabrication is that 

controlling the temperature profile is essential to tailoring the microstructure of a 

component to its application [84]. Some of the work on this process also 

suggests the role of thermodynamic enthalpy (heat) of the powder blend during 

the mixing and melting process at the focal zone, whose exothermic or 

endothermic characteristic would determine the homogeneity of the deposited 

alloy as well as the rate of solidification [85]. This would consequently affect the 

microstructure and properties of the deposit. 

3.2.6. Control of residual stresses 

Direct metal sintering relies on laser induced melting to couple powder particles 

together. Significant thermal gradients exist using this route unless the powder 

bed temperatures are controlled to a value just short of the powder melt 

temperature [77]. 

The knowledge of the magnitude and distribution of residual stresses is 

important for its effect on structural behaviour [83]. Thermal gradients during 

part fabrication (build up of layers) could lead to differential shrinkage [86]. This 

could induce residual stresses, which can be very high and cause warping, 

cracking and failure [87][86]. When a sintered part is exposed to relatively high 

temperatures, residual stresses are relaxed leading to geometrical deformations 
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and loss of tolerances. This can be a limiting factor for such processes/materials 

combinations that aim to produce products like tools for applications such as 

injection moulding, where structural and geometrical changes would occur at 

normal operating temperatures. Metal parts from the Direct Metal Laser 

Sintering (DMLS) process indicated an upper limit of 300°C existed for practical 

use [87]. 

Residual stress accumulation during material build up could cause layer 

delaminations in addition to part warping and cracking as mentioned before [88]. 

Such stresses arise from the contraction and expansion associated with layer 

deposition causing distortions. A few methods are known to lessen thermal 

distortions and cracking like use of powder-bed preheating, aimed at 

homogenising temperature distributions [89]. Laser sintering of stainless steel 

powder at room temperature indicated for single and multiple layers that short 

bead lengths of less than 15 and 12 mm respectively, significantly reduced 

warping and stress cracking [89]. 

3.2.7. Effect of Atmospheric control 

A study conducted on laser sintering of stainless steel 314S showed that the 

degree of oxygen present during the heating, melting and fusing of metal powder 

strongly limited the range of laser powers and scanning speeds for successful 

processing [89]. Reduced oxygen and oxidation levels lowered absorption of 

laser energy as well as balling and other detrimental surface phenomena. 
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Oxygen in general can be present in the surrounding atmosphere, contained 

within the porosity of the powder bed and in the form of a passive layer of oxide 

on the surface of particles prior to sintering [90]. However it is also possible that 

surface oxides can increase absorption of laser light when using a CO2 laser 

beam. Normal conditions would strongly reflect 10.6Jlm radiation. Experiments 

were carried out by Hauser et.al [90] by varying atmospheric conditions of air, 

air/argon mixture and argon. Changes in melt quantity and quality, oxidation and 

oxidation related phenomena were observed. Conditions for sintering successful 

single lines for stainless steel 314S with an air atmosphere were found to be 

limited. When increasing the net energy density (a function of both power and 

speed), small droplets (balls) of liquid metal were observed and these were 

covered by a surface oxide scale. Such balling and breakage was observed as 

being widespread for air sintering, presumably due to large melt volumes and the 

influence of the surface scale [90]. At low speeds less than 8 mmlsec and high 

powers (125 to 200W) with a CO2 beam, surface tension forces appeared less 

dominant and the melt pool began to flow more freely and continuously to form 

a solidified shape. 

In a pure argon atmosphere, a wider process map for successful scanning of 

flatter and well-bonded solidified layers existed, though porosity was seen to 

exist resulting in densities of 40-50%. Even with high energy densities e.g. 

185Wat Immlsec, full melting did not occur with air, air/argon sintering. 

High temperature oxidation of a resolidified powder layer is also known to 

reduce wetting and can prevent bonding between layers [80][91]. Laser Sintering 

of iron powder in an inert argon atmosphere with a 50 Watt CW, Nd: Y AG laser 
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indicated that satisfactory single layers were produced. Unfortunately, bonding 

between successive layers was still not complete. It was theorised that a period 

of oxidation growth during the cooling of the layer to room temperature could 

have affected sintering and wetting characteristics [91]. In a single layer, 

adjacent scans carried out relatively fast by the laser beam, were able to reduce 

the chance of oxide formation and hence were found satisfactory. Between 

layers where the material was allowed to return to room temperature, each layer 

ran through a temperature cycle that was conducive to oxide formation. Though 

the atmosphere itself was free of oxide, enough residual oxygen was present on 

the powder, to form an oxide layer on the upper surface and prevent good bonds 

between the layers [91]. Densities up to 35 % were produced. 

In a study of Direct metal laser sintering of cermet superalloy, it was found that 

oxygen present in the process caused balling, separation and tearing due to 

surface tension effects [7]. It was found that a high vacumn atmosphere resulted 

in relatively uniform surface features, no cracking, tearing or separation when 

experimentation was conducted within an acceptable window of parameters. It 

was also noted that preheating of the powder bed was beneficial due to 

outgassing of the powder that takes place, thus preventing further contamination 

[7]. It also improved the uniformity of flow and solidification of the molten 

materia~ thus enhancing the surface finish and uniformity of the component. 

Preheating to appropriate temperatures was also known to reduce hot-tearing, 

hot-cracking and balling of the molten material. Controlling energy density 

(power, spacing) and speed, were crucial to achieving the same end. 
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3.3. Material and property specific issues 

The use of laser fusion to process a wide variety of materials and also 

combinations of two or more materials brings with it a unique set of challenges 

that require the understanding of material and its interaction with laser light 

along with other issues that may arise due to material property based interactions 

itself. Some of the issues that could be faced during processing are highlighted in 

the following sections, most of which could generally be related to problems 

faced during conventional welding techniques. 

3.3.1. General issues 

Problems can result from sharp interfaces between dissimilar materials. Thermal 

stresses due to co-efficient of thermal expansion mismatches can result in 

de lamination and a sharp interface can act as an initiation site for fracture [10]. 

One of the most important properties with respect to bond formation is the co

efficient of thermal expansion (CTE) [9]. By combining materials severe stresses 

may build up because of the mismatch of the co-efficient of thermal expansion 

[63]. The mismatch in CTE's, normally present in a metal/ceramic bond lead to 

destructive thermal stresses during thermal cycling or shock loading. 

Metal/Ceramic bonds are frequently created at an elevated temperature and then 

cooled. The large CTE mismatch coupled with this large change in temperature 

will create a residual thermal stress in the component, which may weaken the 
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bond. An FGM component allows the CTE value to change gradually from a low 

value to a high value. This distribution of CTE values will tend to spread the 

thermal stresses out over a volume of material instead of concentrating them at 

the interface [9]. 

The importance of interfaces between dissimilar materials is connected primarily 

to their inherent inhomogeniety i.e. the fact that physical and chemical properties 

may change dramatically at or near the interface itself It should be realised that 

physical properties like elastic moduli, thermal expansion or electrical resistivity 

may differ near interfaces by orders of magnitude from the bulk regions. As a 

result these sharp gradients may change an isotropic bulk solid locally into a 

highly anisotropic medium [63]. 

Dissimilar metal welding essentially consists of joining two metal components 

having different (but individually specific) properties and rendering the 

weldment at least as strong as the weaker of the two metals, ensuring no failure 

at the weld [92]. 

This could be considered as similar to the issue of being able to laser-weld two 

dissimilar metal powders in-order to create a functionally gradient material 

rendering high thermal conductivity and hence heat-removal properties. 

Some ofthe important issues that need to be considered while trying to weld two 

such materials are covered in the following section. 
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3.3.2. Material property specific issues 

3.3.2.1. Melting point 

For successful joining the differences in melting points of the two materials 

should be low [92]. This is of prime importance while employing such welding 

processes as one of the metals may be in molten state long before the other. The 

joining of copper to steel is difficult as their melting points are 1080°C and 

1500°C respectively. But if welding by fusion between these is essential, then a 

process with high and concentrated heat input is advised which requires less 

joining time [92]. 

3.3.2.2. Solid-Solubility 

There should be a certain amount of solid solubility between the concerned 

metals at ambient as well as welding temperatures. Joining is difficult if there is 

little or no solubility. As an example, copper and steel are difficult to be welded 

due to poor solubility whereas joining of nickel and steel is easier as they have 

good solubility [92]. 

In the development of FGM's for metal-ceramic combinations by laser beam, 

solid solubilities of the two materials plays a very important role. Since metals 

and ceramics are quite different in their chemical properties, in addition to their 
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thermal and mechanical properties, the solid solubility of ceramic in metal or 

that of metal in ceramic is extremely limited [93]. So it may prove very difficult 

to obtain a well-graded metal-ceramic material using laser beam processing. 

3.3.2.3. Internnetallics 

When different metals are welded under certain conditions of composition and 

temperature they may form phases other than solid solutions, which are called 

intermediate phases or intermetallic compounds [93]. 

Intermetallics at the transition zone may have properties other than the base 

metals, thus causing a hindrance at the welding zone. It is therefore suggested 

that information should be obtained as to what intermetallics would be formed 

(from phase diagrams) [93]. Information on their ductility, crack sensitivity, 

corrosion susceptibility etc. as well, are helpful. 

For example the study of aluminium-iron phase diagram reveals the presence of 

a number of complex intermetallics, a few which are known to be brittle. This 

suggests that in general a weldment of aluminium and steel would be poor in 

quality [92]. 
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22Ti 40Zr 72Hf 90Th 
GroupB 

23V 41 Nb 73 Ta 91 Pa 

24C 42 Mo 74W 92 U 

25Mn 43Tc 75 Re 93Np 

26 Fe 44Ru 76 Os 94Pu 

27 Co 45 Rh 77Ir 95 Am 
Group A 

28 Ni 46Pd 78 Pt 96 Cm 

29Cu 47 Ag 79Au 97Bk 

Figure 3.1: Table illustrating formation of intermetallics for metal-metal 

combinations [94]. 

In Figure 3.1, the metals in group A will mix together forming perfect solid 

solutions and are thus readily weldable in combination. For the metals in group 

B, this is only partially the case. The group A metals form intermetallic phases 

with the group B metals and so they are not suitable for welding together [94]. 

This is also the case for combinations of group A or B metals with other metals 

not listed in either of the two groups such as aluminium, beryllium, magnesium 

etc. In this scheme, details of 46 of the most important metals together with the 

weldability of over 1000 potential material combinations, are stored in a 

computer database [94]. 
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3.3.2.4. Thermal expansion and Thermal conductivity 

Large internal stresses would be generated at a weldment during any change in 

temperature, if the differences in CTE are large, as in the case 0 f aluminium and 

mild steel which have a CTE of 23 and 12 respectively. This might lead to 

cracks. A similar thing may happen with stainless steel (whose CTE is twice that 

of mild steel) when it is to be welded to mild steel [92]. 

A high thermal expansion co-efficient is usually a disadvantage in design and 

other considerations being equal, a material with low thermal expansion co

efficient is preferred. Thermal expansion interacts with thermal conductivity and 

specific heat to generate thermal and residual stresses when a component is 

heated non-uniformly [95]. Also, one metal may transmit or conduct heat from 

the weld area much faster than the other. The thermal conductivity of copper: 

aluminium: steel: is 1.00:0.52:0.17 as can be seen in Figure 3.2. Thus the metal 

with higher thermal conductivity will require more heat to come to the welding 

temperature than the one with lower conductivity [92]. 

In developing metal/ceramic FGM's by laser beam processing problems might 

occur due to differences in thermal expansion co-efficient, the melting point and 

the thermal conductivities. Most metals have larger co-efficient of thermal 

expansion and thermal conductivities than ceramics [93]. Also most metals are 

ductile while most ceramics are very brittle. Due to rapid heating and cooling 

rates in laser materials processing cracks are formed more easily, not only in the 

metal-ceramic boundary region but even in the ceramic part during rapid cooling 

[93]. 
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Speclnc Thermal Dens/typ 
(glcm') heat (C) condud/rity A 

(Jlkg~rK) (Wlm per K) 

A1urrinilm 2.70 900 239 
A1uminiOOl alloys 2.46-2.93 88-201 

Copper 8.94 385 399 
Copper alloys 7.57-8.94 21~97 

MagnesiOOl 1.74 1050 167 
MagnesiOOl alloys 1.75-1.87 960-1050 7~146 

N"tClIel 8.89 456 74.9 
N"lCkeI 3Iloys - 7.85-9.22 373-544 9.1-21.7 . 

Trtanium 4.51 528 16 
Titanium anoys 4.42-4.86 4O(H310 4.8-16 

Zinc 7.13 389 113 
Zinc aUoys 5.<Hi.7 1~123 2~2B 

Steels 
Catbon steels 7.83-7.87 435-494 45.2-s5.3 
Low alloy 7.83-7.87 452-494 33.1-48.6 
Stainless 7.42-8.69 402-519 12.1-26.8 

Aluminas 3.45-3.99 730-1100 13.8-43.2 

BeryDias 2.8-2.93 1020-1090 270-300 

Titanias 3.5-4.~3 690 2.5-5 

Zirconias 3.5-5.9 450-750 0.~2 

PorceIains (oxide 1.8-3.8 850-1100 1.1-8.2 
ccrnpounds clay based) 

Porous oxide ceramcs 1.9-4.4 1100 O.~.7 

(electrical refractories) 

Silicon carbides 2.2-3.2 600-700 12.~200 

Boron nitrides 1.~2.1 780 1.5-250" 

Silicon nitrides 1.~.3 700-1100 7-43 

Sialons 3.3 600 21.3 

Cemented carbides 10-15.3 25-120 

Glass ceramics 2.4-2.6 500-900 1.3-3.6 

Carbons, graphites 1.~2.2 700-800 5-121b 

Glasses 2.18-2.50 710-830 1.1-1.2 

• Other ceramics have resistivity 109_10'7 nem. Plastics 106_10'8 nem. 
b Depending on cflfection 01 heat flow. 

Thermal 
Thermal 

expansion 
diffus/y/ty 

coeffICient (l./pper C) (1r1K) 

0.098 23.5 
16.5-25 

0.12 17.7 
1~21.2 

0.091 27 
2~27.3 

0.019 13.3 
7.!>-14.9 

0.0067 7.6 
6.7-9.8 

0.04 39.7 
27.4 

0.D15 10.~12.62 
0.010 10.55-12.8 
0.005 9.3-18 

0.008 4.5-8 

0.09 5-8 

0.001 5-8.5 

0.0005 7-9 

0.0013 1-1; 

0.0006 .{).05-7 

0.06 2.~.2 

0.OOO7-{).16b -2-!.t 

0.01 1.5-3.6 

0.01 1.5-1.7 

5-7 

0.0013 -{).25-9.7 

O.OQ3..{).OOb 1-8.3 

0.0006 '0.013-7.8 

Figure 3.2: Thermal properties of some important materials [95] 

Electrical 
resistiy/ty 
(pflcm) 

2.68 
3.5-8.6 

1.7 
7~ 

3.9 
5-14.3 

9.5 
51-139 

48.2 
70-170 

6 

12-19.7 
20-37 
48.~122 

lOS-10"· 

90-450 

to"-10'~ 
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3.3.2.5. Specific Heat 

In dissimilar metal welding, the knowledge of specific heat is very important as 

it provides an indication of the amount of heat required to raise any of the metals 

to its melting point [92]. 

For practical purposes it should be noted that a metal having low melting point 

(m.p.) and relatively high specific heat, like aluminium with m.p. 660°C and 

specific heat 900 J/kg per K may require as much or even a higher quantity of 

heat to reach the point of fusion as compared to another metal with higher m.p. 

and lower specific heat like, stainless steel with m.p. 1395°C and specific heat 

402 J/kg per K as shown in Figure 3.2 [92]. 

3.3.2.6. Chemical Stability 

A large separation of metals in the electrochemical series implies larger 

susceptibility to corrosion at the interface (more attack on the active metal) [92]. 

The galvanic series for some common weld-base metals and alloys are shown in 

Figure 3.3. Thus metals having large difference in their galvanic potentials and 

which are involved with service environments of strong electrolytes may have 

problems of localised corrosion at the joints. It is possible that two base metals, 

which may be compatible in one corrosive atmosphere may not be acceptable in 

a different corrosive atmosphere. Hence, a knowledge of the ultimate use of the 
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component is important to retain the chemical stability at the joints of the 

concerned materials [92]. 

Corroded End (Anodic or Least Noble) 

Magnesium and its alloys 

Zinc 

Aluminium 6053 

Aluminium 3003 

Aluminium 2024 

Aluminium 

Mild Steel 

Wrought Iron 

Cast Iron 

Ni-resist 

Lead 

Tin 

MuntzMetal 

Naval Brass 

Yellow Brass 

Admiralty Brass 

Aluminium Bronze 

Red Brass 

Copper 

Silicon Bronze 

70-30 cupronickel 

Nickel (passive) 

Inconel (passive) 

Monel 

18-8 Stainless type (304) 

18-8-3 Stainless type 316 (passive) 

Protected End (Cathodic or most noble) 

Figure 3.3 Galvanic series for some common metals and alloys [96] 
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3.3.2.7. Electrical Conductivity 

With dissimilar metals, the differing resistances to current flow results in a 

problem of unequal heating of the parts to be welded. This is true for resistance 

welding. For example the electrical conductivity of copper, aluminium and 

stainless steel are relatively 100%: 59%: 16% as seen in Figure 3.4 [92]. 

In resistance welding where the resistance of the metal to current flow is used to 

increase a small area of it to a high temperature, electrical conductivity is of 

special importance. 

Metal Relative Electrical Relative Thermal 

Conductivity Conductivity 

Silver 100 100 

Copper 96 94 

Gold 69.5 70 

Aluminium 59 57 

Magnesium 41 40 

Beryllium 40 40 

Tungsten 29 39 

Zinc 27 26.5 

Cadmium 22 22 

Nickel 23 21 

Iron 16 17 

Platinum 15 17 

Tin 12.5 15.5 

Lead 7.7 8.2 

Titanium 2.9 4.1 

Mercury 1.6 2.2 

Figure 3.4: Relative Electrical and Thermal conductivities of some metals [96] 
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The electrical and thermal conductivities of metals follow roughly the same 

order. This is to be expected since both the flow of electricity and heat depend 

upon the ability of electrons to move freely within the metallic structure [96]. 

Thermal conductivity goes hand in hand with electrical conductivity and is 

usually required in all conductors operating in the high ampere range [97]. 

3.4. Some Issues in welding with a high intensity beam 

3.4.1. The case of Electron Beam Welding 

Electron beam welding has found wide application in dissimilar welding because 

of its high density energy source and fast welding speed which easily overcomes 

the thennal conductivity difference of the metals. However, diffusion, 

percussion and laser beam welding processes are still widely used for making 

dissimilar joints in aerospace industries, joining of wires and welding of very 

thin sheets etc. [92]. 

Figure 3.5 gives the suitability of various combinations of materials for Electron 

beam welding [94]. 
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Solid lines = Suitable for welding 

together 

Broken lines= suitable for welding 

together under certain conditions 

No line= Not suitable for welding 

Material group 

1. Unalloyed and low alloyed 

low carbon steels, in 

particular structural steels, 

not free machining steels. 

2. High alloy steels, high 

carbon contents, in particular 

ledeburitic tool steels. 

3. High alloy very low carbon 

steels, in particular corrosion 

resistant steels. 

4. Cast irons with lamellar or 

spheroidal graphite, black 

tempered cast iron. 

5. Aluminium alloys with the 

exception ofthose 

containing zinc. 

6. Pure copper, low alloy 

copper. 

7. Copper alloys with the 

exception of those 

containing large amounts of 

zinc (brass, nickel silver) 

8. Nickel and nickel alloys 

9. Cobalt alloys with the 

exception of hard materials 

containing large amounts of 

carbides. 

10. Titanium and Titanium 

alloys 

Figure 3.5: Suitability of various material combinations for Electron beam 

welding [94] 
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3.4.2. Laser Welding 

Laser Welding is normally a liquid-phase welding process, which joins metals 

by melting their interfaces causing the mixing of the molten metal which in turn 

solidifies on removal of the laser heat source [98]. The most suitable metals for 

laser welding are those, which have the same or overlapping liquid temperature 

ranges and are soluble in one another, assuming that they are good absorbers of 

laser light [98]. Pure metals, which have one definite melting temperature, can 

usually be readily welded to themselves, but not always to a different pure metal. 

They will however usually weld to an alloy, which has the same base metal 

element. The Figures 3.6 and 3.7 show the weld suitability of various pure metal 

combinations. Figures 3.8 and 3.9 show the suitability of welding certain 

specific alloy materials. 

Aluminium 
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Beryllium 
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Iron 
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Figure 3.6: Fusion weldability of pure metal combinations [98] 
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Figure 3.7: Diagram of laser weldability of dissimilar metal combinations [98] 
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Material Comments 

Aluminium alloys Laser welds in aluminium alloys generally have poor quality and 

caution is necessary for applications where high reliability is 

required. 

Copper Only suitable for micro-spot welding applications. 

Cast Iron Nodular cast iron can be welded using a nickel filler wire to 

overcome weld cracking 

Nickel base and high nickel alloys Some of these alloys weld extremely, however those without a 

(C263, Hastelloy, Inconel, Incoloy, Kovar, number are available in different grades which produce quite 

Monel, Nimonic, PK33, Waspaloy) different weld qualities. Therefore the material manufucturer 

should be consulted with respect to weld properties, in case a filler 

material is required to improve them 

Steels: 

Low carbon and high strength low alloy Very good quality welds can be achieved provided sulphur and 

(HSLA) forming grades. phosphorous levels are kept low. 

Medium and high carbon Weldable, but special precautions are necessary to ensure 

acceptable weld properties. 

Alloy steels Satisfuctory laser welds have been made in numerous pipeline, 

shipbuilding and structural steels. High weld hardness can be a 

problem due to fust cooling rate. 

Stainless Steels 

Austenitic Very good quality welds can be achieved in most grades except 

free machining. 

Ferritic Grades with low carbon and chromium levels will weld best. Weld 

toughness is affected by grain coarsening. 

Martensitic Welds and their HAZs are hard and brittle due to the high carbon 

content 

Titanium and alloy 6Al-4V-Ti Good quality welds with fine grain structures can be achieved, but 

material cleaning just prior to welding and high quality weld pool 

gas shielding are essential. 

Figure 3.8: A guide to engineering materials which can be laser welded [98] 

Laser Weldin2 Characteristics of Different Alloy Steels 
Alloy Notes 

Al Alloys Problems with: l.Reflectivity - requires atleast lkW 2. Porosity 3. 
Excessive fluidity -leads to drop out 

Steels o.K. 
Heat resistant O.K. but: l. Weld is more brittle 2. Segregation problems, 3.Cracking 
alloys: e.g. Ineo 
718, Hastelloy 

Ti all<!)'s Better than slower processes due to less grain growth 
Iridium Alloys Problem with hot cracking 

Figure 3.9: Laser welding characteristics of various alloys [96] 
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3.4.3. Absorptivity and Reflectivity of metals 

This aspect may be important especially during laser sintering of a Metal-

Ceramic system to form a Functionally Graded Material. 

The absorptivity of a CO2 laser beam on metals is in the range of 5%-1 0%, while 

that on the ceramics exceeds 90%. Thus if the laser beam is irradiated on the 

metal-ceramic mixture simultaneously, the ceramic part can be evaporated while 

the metal part is not even melted due to their differences in absorptivity [93]. 

Figure 3.10 describes, some characteristics of absorptivity and reflectivity of 

metals when subjected to laser irradiation. 

100 

80 AI 

-s. ~ 
::f80 
0 

.?;>60 060 "> Steel ~ ::l 

3!40 ~ 40 Ni 
1i I:: 
0:: & 20 20 

Exc1mer YAG C -0 00.1 1 10 
0 1000 2000 3000 

Wavelength J.1ITl . Temperature K 

Figure 3.10: Diagram of reflectivity ofa number of metals as a function of 

temperature and wavelength of the laser [99] 
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Type Wavelength (J1m) 

Carbon Dioxide 10.6 

Carbon Monoxide 5.4 

Nd-YAG 1.06 

Nd-Glass 1.06 

Excimer(KrF) 0.249 

Figure 3.11: Wavelengths oflaser beam [99] 

From Figure 3.10 it is seen that reflectivity falls at shorter wavelengths. The 

wavelength for a Nd:YAG laser is 1.06J1m which is ten times less as compared 

to that for a CO2 laser whose wavelength is 10.6 J1m (Figure 3.11). Thus as seen 

in Figure 3.10, the curve for materials e.g. Nickel and Steel, shows lower 

reflectivity at Nd: YAG wavelength and higher reflectivity for CO2 wavelength. 

The reflectivity is not only a function of the material but also the surface shape, 

surface films (such as oxides), and plasmas [99]. 
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4. Experimental program and objective 

Based on the literature survey and work undertaken, the interesting possibility of 

using the Laser Fusion process to produce tooling with graded compositions was 

regarded as the main objective and was used for determining the program of 

experiments. The experiments were designed, based on the pre-placed powder or 

powder bed method of producing parts as opposed to the laser cladding 

technique. The pre-placed powder technique in addition to being able to 

construct multiple material geometry, will give the added advantage of being 

able to support overhanging geometry by virtue of the loose unprocessed powder 

from the previous layers. This would help in the creating aspects of a tool, like 

cooling channels, which could be made conformal to the cavity and also can be 

of any shape thus effecting faster heat removal. ANd: Y AG laser was chosen for 

the program of experiments which gave better or improved absorptivity for the 

metallic material and the powder bed as governed by its wavelength. H13 grade 

tool steel was chosen as the base material due to its well known application in 

injection moulding and die casting tools. 

Investigating the shape of a bead as a basic building block was considered an 

initial step in the experimental program. It was thus necessary to investigate how 

the cross section of the bead defmed by the width and height varied with the 

laser parameters. Other aspects including shape description of the cross-section 

and the surface profile could be measured. 

A 550W pulsed Nd:YAG laser from GSI Lumonics Ltd. was used to perform 

single line scans in pre-placed powder. Laser output from the Nd:YAG laser can 
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be controlled by controlling the width, height and shape of the pulse and by 

choosing the required frequency of output. This will consequently detennine the 

pulse energy and average (mean) power at the output. 

The laser allows variations in these input values to an extent that is limited by 

the flash lamps 'pump output limit' and the maximum 'laser power output limit'. 

According to machine specifications this has a maximum of 550W. It is thus 

possible to defme an area of laser output usage that could be used, to study the 

effects on the ability to generate fused beads. The combination of parameters 

able to achieve a bead of solidified material would be compared against bead 

geometry. 
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5. Experimental Set-up and Methodology 

5.1. Powder material 

The material chosen was H13 tool steel supplied by Osprey Metals Ltd., VK. 

This material was to be investigated, as the 'single' material composition, which 

could be later used as a base for FGM manufacture. The material is a hot-work 

tool steel, for applications that experience high temperature or heat loads. These 

are typically used for die-casting and injection moulding tools [100]. 

The material specifications and properties are shown in tables 5.1,5.2 and 5.3. 

Scanning Electron Microscope (SEM) images of the H13 powder Figures 5.1 

and 5.2 highlights the largely spherical shape of the individual granules with an 

average diameter of 145 to 150 f..1m. A general indication of the porosity for a 

single layer was given to be approximately 50 % of the density of H13, tap 

density as 66% of the bulk material. The oxidation level in the powder was 

indicated at 250ppm [101]. 

Component Weight percent 

Chromium (Cr) 4.9 
Molybdenum(Mo) 1.7 

Vanadium(V) 1.0 
Silicon(Si) 0.93 
Carbon(C) 0.38 

Manganese(Mn) 0.32 
lron(Fe) BALANCE (90.77) 

Table 5.1: Composition data for H13 tool steel [101] 
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Powder Sizing data 
Powder sized to -212 microns 

Particle size data 
+212 J!m 1.5% 

-212 J!m + 150J!m 13.2% 

-150Jlm + 106 Jlm 14.0% 

-106J!m + 75J!m 15.6% 

-75Jlm + 38J!m 26.5% 

-38J!m 29.2% 

Table 5.2: Powder sizing data for H13 tool steel [101] 

Physical Properties Metric Imperial Comments 

Density 7.8 glce 0.282 Ib/in3 

Thermal Properties 
CTE, linear 20°C 11 flmlm-oC 6.11 flinlin_of 25 - 95°C 

CTE, linear 250°C 11.5 flmlm-oC 6.39 flinlin-of 25 - 205°C 

CTE, linear 500°C 12.4 flmlm-oC 6.89 flinlin_of 25 - 540°C 

Heat Capacity 0.46 J/g_OC 0.11 BTU/lb-°f from O-lOO°C (32-
212°F) 

Thermal Conductivity 24.3 W/m-K 169 BTU-in/hr-iP_of at 215°C; 24.4 W/m-K 
at 350°C, 24.3 at 475°C, 

24.7 at 605°C 

Descriptive Properties 
850 - 870°C fOl 

Annealing Temperature 4 hoUI'~ furnace cool 20°C per hour max. 
Stress Relieving 

Temperature 600 - 650°C fOl cool in still air; to be stress relieved (always) 
2 hours (approx. before hardening. 

Table 5.3: Physical and thermal properties for AlSI type H13 tool steel [102] 
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Figure 5.1: SEM ofR13 powder at 200X magnification 

Figure 5.2: SEM ofR13 powder particle at 1000X magnification 
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5.2. Experimental equipment 

The set-up for the experiment consisted of a simple fabricated powder bed 

assembly, with a top plate having a number of slots, hand movable in the z

direction. The slots were to accommodate, small square substrate plates (40mm x 

40mm x Imm) in dimensions on which powder was spread and levelled to the 

required thickness. The substrate was intended as a base for eventual building of 

tooling and which would reduce distortion of the part. In case of single linear 

beads the plates were considered also to be useful for sectioning and handling of 

the beads. The top plate was movable on four tie-rods fitted to the rest of the 

fixed assembly as shown in Figure 5.3. The entire assembly was mounted on the 

machine translation bed, which could move in the X, Y axes and a 360
0 

rotational axis. 

The pulsed output of the laser beam, was focussed on to the surface of the metal 

powder by a focussing head which could move in the Z-direction. A camera 

fitted to the focusing head assembly, which housed the lens, was able to image 

the process as it happened and aided focussing of the beam. A sharp image of 

powder bed on a Black and White television screen mounted on the outside of 

the Laser Unit, indicated the beam was in focus. 

Experiments were divided into three stages: 

1) Establishing a set of laser output limit graphs. 

2) Using the output limit graphs to determine a set of parameter combinations, 

for producing single fused beads. 

3) Measuring the beads for their height and width. 
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Powder 

Bed with 

slots 

mounted 

on XY -

bed 

Figure 5.3: The Nd:YAG Processing station showing the laser 

5.3. Determining laser output limits 

Focussing 

head moves 

in the z-

axIS 

As a first stage, laser output from the Nd: Y AG was characterised into ' Output 

limit ' graphs, which demonstrated the range of parameter combinations for 

which a predetermined level of output (pulse energy) could be attained, using a 

combination of input parameters i.e. pulse width and frequency. 

The output limit graphs were determined as follows: 

The first step involved manually setting laser parameters, pulse frequency and 

pulse width. The pulse height was then adjusted to give as close an energy level 

as possible to the required energy level. The laser either produced energy output 

or it gave an error message due to the maximum specifications on the laser being 

reached as driven by a incompatible combination of parameters. 
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If the laser produced output then the energy level was noted. 

Plots of pulse width or duration of pulse (defined in milliseconds) versus 

Frequency (in Hertz) were plotted for pulse energy levels from 5J to 70J, with 70 

Joules being the maximum pulsed energy achievable on the laser. 

Pulse width variations had a upper limit specification of 20 milliseconds on the 

laser and frequency could be increased up to a maximum of 100Hz. 

Hence, for each of the Pulse Energy value 5,10, 20, 30 and 60 J a corresponding 

plot of pulse width versus frequency were made. The pulse width was set at 0.5, 

2, 6, 10, 14, 18 and 20 milliseconds and frequency was set at 5, 10, 30, 50, 70, 

90 and 100 Hz. 

5.4. Producing single beads 

The possible input parameter combinations were combined with varIOUS 

scanning speeds. Speeds were set at the following levels: Imm1sec, 5mm1sec, 

10mmlsec and 20mmlsec. Available literature for laser scanning using a 

focussed Y AG beam and other general laser welding related literature reported 

the use of similar speed levels [56]. Other fixed parameter values were inert gas 

flow rate, which was set at 15 litres/min and the focal length of the lens at 

80mm, giving a spot size ofO.8mm. 

Two values of powder layer thickness of 1 mm and 0.4 mm were chosen. A 1 mm 

layer height for tooling manufacture would result in a faster overall build rate. 

Also for building tooling using laser fusion, the surface finish would not be as 

important, since the part will be machined later to the required fmish. A layer 
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thickness of O.4mm will be the minimum feasible layer height to recoat with the 

existing powder size given that it is roughly twice the maximum particle size. 

This was also recommended during a preceding Britel Euram project 

(PRO MET) carried out in the years 1993-97 indicating the use of layer thickness 

1.2mm, 0.6mm, and O.4mm [103] . 

For each individual combination of pulse width, frequency, pulse energy and 

scan speed at any given thickness there were produced 5 equidistant beads. This 

was to account for repeatability and averaging the measurements of bead width 

and height. 

The beads were produced by running a laser beam on a layer of powder spread 

and levelled to the required thickness. The substrate plate 40 x 40 mm, is first 

dropped into the slots provided in the top plate of the powder bed assembly. The 

thickness gauge is then placed on the substrate plate following which the powder 

material is manually deposited and spread on the substrate and levelled to the 

gauge height (thickness) of Imm or O.4mm as the case may be. The levelling 

itself could be done manually using any plate material of the appropriate size. 

The focussing head is then positioned at a start point about 5mm and 8mm 

distance from the edges forming the corner of the substrate. The XY bed is 

programmed to impart linear motions at the required speed, to generate 5 

equidistant beads 5mm apart, each being scanned in the same direction. The 

program at the laser control module co-ordinates the XY bed with the shutter at 

the laser head, causing it to open and close at the beginning and end of each 

linear scan. Between scans the traverse of the table is rapid (approximately 1 to 2 

seconds) and there is a default dwell time of 1 second at the beginning of each 
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scan. Increasing the dwell time at the program end, will allow a level of delay 

between individual scans. In order to lessen overall experimental time, two or 

more substrate plates or parameter combinations were processed at a given time 

by making use of the multiple slots available on the top plate. 

5.5. Measurement of beads 

The 5 equidistant beads were subject to height and width measurement at fixed 

points. The height and width of the bead as indicated in Figure 5.4 provide a 

useful measure of describing the shape of the bead and bead quality. Ratios of 

height to width could be calculated to indicate the suitability of bead profile 

while building overlapping beads, horizontal and vertical layers. Also a flatter 

semi-circular bead indicated in Figure 5.4 would be preferable over a more 

cylindrical bead shape, due to less percentage overlap between adjacent beads 

being necessary and also to reduce the possibility of porosity formation due to 

the undercut at the point where the bead joins the substrate. 

Beads on a H13 substrate (H13 chosen to avoid dilution of the powder material) 

were kept at a length of 30mm. Width measurements were taken by a vernier at 

5 equidistant points 6mm, 12mm, 18mm, 24mm and 30mm from the start point 

of the beads. 

Height was measured at these points usmg a micrometer. The height was 

measured along with the plate. The thickness ofthe plate was later subtracted to 

give the bead height. The average of the width measurements at points on each 

track were further used to give an average of all 5 tracks on a single substrate 
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plate. These values were then plotted on graphs representing the average width 

or height of a single bead fused to the substrate, for varying parameter 

combinations. 

Top View of bead Cross-section 

Uniform bead at low energy, 
high frequency and moderate Bead width = O.77mm 

speed 

Parameters: O.4mm layer, 5J, IOmm/s, 

6ms, 50Hz 

Figure 5.4: Beads fused to substrate and their cross-section 
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6. Results and Observations 

6.1. Effect of variation of pulse parameters (energy, pulse width, 

frequency) on the laser power 'Output limits' 

Laser ' output limit' graphs for incremental pulse energy levels are as shown in 

Figures 6.1 to 6.5. The graphs show whether the laser was able to generate any 

output power whilst reaching the predetermined pulse energy levels. Ability to 

produce the sufficient maximum energy and its corresponding maximum average 

output power is denoted by a circle (0) symbol and cross (x) symbols indicate 

where it was not possible to generate any output power and/or where insufficient 

energy and its corresponding low average power is produced. Insufficient energy 

is produced normally at very low pulse widths (e.g. 0.5 , 2ms) and low 

frequencies (e.g. 5 and 10 Hz). Where no energy, power was generated at high 

frequency levels the laser automatically generated a fault condition statement 

'Laser Output over limit '. Where at sufficiently low frequency levels no output 

was generated the fault condition statement ' Calculated pump power limit' was 

generated. This was seen to occur at higher pulse width values (e.g. 18, 20ms). 

Reasons for the error statements occurring outside an acceptable envelope would 

be discussed in Chapter 7 in 'Discussions' . Figures 6.1 to 6.5 show a trend 

where, increase in pulse energy levels from 5J to 60J progressively reduces the 

number of parameter combinations (pulse width, frequency) capable of 

generating output and hence their availability to process. The area marked by the 

circular symbol (0) is progressively seen to reduce as the energy levels increase. 
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Figure 6.1: Laser output power limits at pulse energy SJ 

The graph indicates a decrease in high frequency output for increasing pulse 

widths. Also at a very low pulse width (O.S ms) and low frequency (S and 10Hz) 

the required output energy level (S1) was not achievable. 
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Figure 6.2: Laser output power limits at pulse energy 101 

Similar to the graph for energy of 51, the number of output combinations at 

higher frequency levels reduces, this time for the entire range of pulse widths. 

No sufficient output was possible at the low pulse width of 0.5 ms for low 

frequency. 
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Figure 6.3: Laser output power limits at pulse energy 20J 

At 20 J, the trend continues with no output combinations available at frequency 

levels at or above 30 Hz, for any given pulse width. There are no output options 

for very low pulse widths (O.Sms) for any frequency. 
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Figure 6.4: Laser output limits at pulse energy 30 J 

At 30J, the usable output area of the graph is reduced further. For the frequency 

levels chosen, an output of 30J is only possible at 10Hz or less. A pulse width of 

0.5 and 2ms does not give output at any frequency. 
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Laser output capability at 60J fixed energy level 
o output possible 

output not possible or ",sufficient 

120 

110 

100 ~ 

90 

80 

N 70 ~ ~ ~ ~ 
>-
u 
c: 60 
CII 

" CT 
~ 50 
u.. 

40 

30 ~ 

20 

10 ~ 

0 
0.5 2 6 10 14 18 20 

Pu lse width (m s ) 

Figure 6.5: Laser output power limits at pulse energy 60J 

At 60J, only the lowest frequency (5Hz) chosen, was able to generate output and 

pulse widths up to 2ms are excluded from the usable area of the graph. 

The graphs in Figures 6.1 to 6.5 thus show a decreasing range of available output 

parameter combinations with an increase in energy levels. 
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6.2. Producing the single beads 

The combination of parameters used in the production of beads, are shown in 

appendix A. A typical set of continuous beads are shown in Figure 6.6a 

Such beads, also shown in Figure 5.4 previously would have a defmed width and 

height. For example the continuous beads shown in Figure 6.6a was a result of a 

compatible set of parameters, which included the laser parameters and the 

scanning speed. Besides formation of such beads, it was very often found that 

the solidified mass of metal powder disintegrated into a discontinuous mass of 

ball like spherical structures when incompatible parameters were used, (e.g. a 

low energy level in combination with a relatively high scan speed). This 

constituted of a non-bead that was not measured for the analysis. Other non bead 

scenarios that occurred were, the formation of highly irregular beads where the 

dimensions could not be measured reliably, lack of bead formation because of 

the powder being blown away, beads that were partially discontinuous or had 

broken off due to loose bonding at the substrate for their great part, undercut 

formed at the substrate with no bead being formed. Such non-bead scenarios 

were discarded as they could not produce reliable measurements. Only beads 

that were continuous, fixed to the substrate plate and uniform were therefore 

chosen for measurement. A number of beads, which resulted from an 

incompatible set of parameters are covered in section 6.4.2. Figure 6.6 a to c, 

shows a typical set of cross sections resulting from different types of beads 

produced by different parameter sets. 

80 

-- ----------------------------------------------------------------~ 



Chapter 6 

Top view of beads 

a) Uniform bead at greater layer 
thickness 

Imm layer, 30J, 5mm/s, 14ms, 10Hz 

b) Flattened bead at high energy, low 
layer thickness (undesirable due to 
high heat generated at the substrate 
plate) 

0.4rrun layer, 30J, 5rrun/s, 14ms, 10Hz 

Imm layer, 10J, Imm/s, 14ms, 30 Hz 

Results and Observations 

Cross section 

Height = 0.866 mm 

Width = 1.246 mm 

Height = 0.33mm 

Width = 0.83 mm 

Height =1.364 mm 

Width = 1.762 mm 

Figure 6.6: Typical cross sections of different beads. 
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6.3. Dimensions of beads 

The following section presents the data that shows the effect of variation in 

process parameters pulse energy, pulse width or duration, pulse frequency and 

speed on the width and height of the bead. 

6.3.1. Effect of Pulse parameters (pulse energy, pulse width or pulse 

duration and frequency) and speed on average width of a bead 

6.3.1.1. Results of bead width for a layer height of Imm 

Graphs are plotted for an energy level of 51 at fIxed speeds in order to 

understand the effect of process parameters (pulse width and pulse frequency) on 

the average width for a single bead. The graphs are presented separately for 

speeds 1 mrnIs, 5mrn1s, 10mrnls, 15mm1s and 20 mrnIs. 

Figure 6.7 shows a graph at a speed of Immls, indicating an increase in average 

width for a single bead, with increase in pulse width (or duration of pulse) and 

also frequency of pulse. Thus pulse width and frequency, both affect the average 

bead width. At an increased speed of 5mrn1s, Figure 6.8 shows a similar rising 

trend in average bead width with an increase in pulse width (duration) and pulse 

frequency. An exception is the bead width at value lOrns at frequency 70 Hz, 

where the average width is seen to drop. Average widths greater than those for 

Immls are seen, presumably due to the high frequency, which would result in 

higher average power input. 
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Figure 6.7: Graph of pulse width versus average bead width (lmmls, 51) 

The effect of increase of pulse width in Figure 6.8 is seen to be somewhat 

proportional for frequency 30 and 50 Hz, indicating that factors may be acting 

independently for these frequency levels. Interactions seem to be present at 

higher frequency (70Hz) as indicated by the intersecting lines between 6 and 

10rns pulse duration. 
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Figure 6.8: Graph of pulse width versus average bead width (5mm1s, 51) 

In Figure 6.9, uniform increasing trends are not present and there is both an 

increase and decrease in average widths as a result of variation in pulse width. 

An increase in speed (to 10mmls) is also coupled with a decrease in number of 

beads possible for frequency 30Hz and less. This was due to the formation of 

bailing, which were found weakly fused to the substrate plate. No output is 

available at 18, 20ms for beyond 30Hz. Error bars overlap in areas of low pulse 

width (0.5, 2rns), indicating that the significance of effect of frequency (for those 

pulse widths) on the average bead width, is unclear. It is possible to use the 

lowest pulse width (0.5rns) at this speed (lOmmls) compared to lower speeds. At 

15 and 20 mm1s, Figure 6.10 and 6.11 indicate bead formation for very low 

pulse widths at high values of frequency. 
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Figure 6,9: Graph of pulse width versus average bead width (10mmls, 51) 
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Figure 6.10: Graph of pulse width versus average bead width (15 mm/s, 51) 
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Figure 6.11: Graph of pulse width versus average bead width (20 mrnIs, 51) 
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Figure 6.12: Graph of speed versus average bead width (51) 

86 



Chapter 6 Results and Observations 

In Figure 6.12, the graph shows some unclear variation as observed by the 

variation in highest and lowest, width values. It can be seen that highest and 

lowest values of bead width are seen at speeds 5 and 10mm/s. The number of 

observations (or beads), are highest for speeds 5 and 10mm/s. 
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Figure 6.13 : Graph of frequency versus average bead width (51) 

At 5J (Figure 6.13), frequencies 30, 50 and 70 Hz are observed to gIve a 

reasonably higher number of measurable beads also showing that the lowest 

value is greater for a higher frequency. 
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Figure 6.14: Graph of pulse width versus average width ofa bead (1mm1s, 101) 

As with the graphs at 51 energy, the graph (101) in Figure 6.14 shows an increase 

in the average width for a single bead with increase in pulse width for value 10 

Hz. For 5 Hz the trend is less clear and a decrease is seen at pulse widths for 6 to 

10 and 18 to 20 ms. There is only a single bead possible at a higher frequency 

level of 30 Hz, which shows a high average value. A comparison with graph 

(Figure 6.7 for 10Hz) at 51, shows a general increase in width measurements at 

10rns and above. Also more beads are seen possible at low frequency (5Hz) for 

101 (Figure 6.14) as compared to Figure 6.7. 
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An increase in speed to 5mm1s (Figure 6.15) shows increase in the average width 

values at pulse width levels up to 14ms (frequency 30Hz), after which the 

average width drops. Frequency too produces an increase in the average width. It 

can be seen that a frequency of 30 Hz gives more results as compared to the 

previous graph at Imm1s. Low frequencies 5Hz and 10 Hz yield very few results. 

This is also summarised in Figure 6.20. 

A further increase in scan speed (Figure 6.16) to 10mmls, gives an equal number 

of results as for 5mm1s. The average width is seen to increase with pulse width 

for frequency 30 and 50 Hz. In general, for both Figures 6.15 and 6.16, the lines 

for frequencies 30 and 50 Hz intersect at pulse widths 10ms, indicating that an 

increase in pulse widths may cause interactions at higher frequency levels. A 

similar effect is seen to occur at 5J, 5mm1s (Figure 6.8). At speeds 15 and 20 

mm/s, Figure 6.17 and 6.18 continuous beads are formed at high frequencies and 

also overall there are less number of beads formed. 

An analysis of all data obtained for an energy of 10 J at varying speeds (Figure 

6.19) indicates that average lowest widths tend to decrease with increase in 

speeds (up to 10mmls), which may be expected due to reduced line energy 

available to melt the powder. At higher speeds there are lesser beads. 
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The graph for 20J (Figure 6.21) shows no appreciable difference in 

characteristics from those at energy 10 J and 5J (Figures 6.7 and 6.14). There are 

increasing bead widths for increasing pulse widths and frequency too has an 

effect. There were no beads possible with low pulse widths at 0.5 and 2ms. At 

0.5ms the laser produces no output and at 2ms the substrate was seen to be burnt 

and the powder blown, presumably due to the relatively high energy level of 20J 

giving high peak power. 

Nevertheless, comparing Figures 6.21 and 6.14, it is evident that there is a 

general overall increase in average width of beads as can be expected due to an 

increase in energy. 

It is interesting to see a similar trend marking the gradual rise and fall of bead 

widths values in Figures 6.15 and 6.22, although at different frequency levels (30 

and 10Hz respectively). This indicates that choosing a different energy level 

could result in similar trends as would result by changing the frequency (at a 

different energy level), in terms of its effects on the metal powder. 

Higher speeds require higher frequency, in order to obtain similar bead widths. 

Comparing across energy levels Figure 6.23 and Figure 6.19 (20 and 10J 

respectively), the widths seem to fall within a similar range 0.8mm to 1.6mm. At 

20J, Figure 6.23 the number of beads progressively reduce, with increasing 

speed and beyond 10mm/s beads are not possible. It is clear, this is perhaps due 

to the lack of frequency levels greater than 10Hz available for 20J with most 

beads occurring at 10Hz (Figure 6.24). 
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The graph in Figure 6.25 shows an increasing trend common to other graphs at 

lower energy levels (51), at the same speed. Widths obtained are higher than 

those seen for energy level of 20J (Figure 6.21) and IOJ (Figure 6.14) for the 

same frequency and speed. 

An increase in scan speed to 5mm1s produces more beads (Figure 6.26) for a 

frequency of 10Hz than for 5Hz. As in most graphs the bead width generally 

increases with an increase in pulse width. 
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It is interesting to see in Figure 6.27 for a speed of 10mmls, that only one bead is 

seen produced at a low frequency at a pulse width of 14ms. This has a width 

higher than those produced at higher frequency. At a frequency of 5 Hz it is seen 

not possible to produce beads, due to balling presumably resulting from a 

combination of relatively lower average powers and high speeds. Generally 

width values are comparable to those produced at 201, 5mm/s at 10 Hz (Figure 

6.22) 

The graph (Figure 6.28) for 301 shows little change m bead widths from 

frequencies 5Hz to 10Hz. 
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A graph of scan speed versus average width (Figure 6.29) of a bead for 301, 

shows that it is possible to produce more beads at a higher speed e.g. 10mm/s, as 

compared to that for 201 (Figure 6.23). 

Figure 6.30 and Figure 6.31 , indicates few beads at pulse energy 601. 
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6.3.1.2. Results of bead width for a Layer height of O.4mm 

Figure 6.32 and Figure 6.33 shows no appreciable increase in average bead 

width with an increase in pulse width. Also frequency series lines are stacked in 

increasing order of frequencies (as for 1 mm layer in Figure 6.8) though much 

closer with error bars for 5 and 10Hz overlapping in Figure 6.32 and 30, 50 and 

70 Hz overlapping in Figure 6.33. This indicates no significant effect of 

frequency at those values. In general the increase in speed permits the use of 

greater frequency values to produce beads. Very low pulse widths (0.5ms and 

2rns) produce greater bead widths at high frequencies (90 and 100 Hz) and for 

these values the results are similar to those with a 1 mm layer. 
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At increasing speeds iOmmls, 15 mm1s and 20 mm1s (Figures 6.34, 6.35 and 

6.36 respectively) the average bead width values are generally seen to be similar. 

It is observed from a comparison of graphs, that speeds greater than iOmmls 

require frequencies starting at 30Hz in order to produce beads and low 

frequencies 5Hz and 10Hz are suitable for speed of 1 mm1s. 

Width values are generally seen to lie between 0.6 and Imm as evident in Figure 

6.33 . Figure 6.37 in comparison with Figure 6.12 (at Imm layer thickness) 

shows reduced widths with O.4mm layers. 
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Similar results are observed at a higher energy level of 10J as shown in Figures 

6.38, 6.39, 6.40,6.41,6.42 for speeds 1, 5, 10, 15 and 20mmls respectively. The 

range of average bead widths, are not changing with scan speed, as seen in 

Figure 6.43. 
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At Immls for 20J, Figure 6.44, there is noted relatively high variation in average 

width values. Figures 6.45 and 6.46 for 5mm1s and 10mmls respectively, show 

little variation in average widths with increasing pulse widths. 

There is a reduced number of beads (Figure 6.47) at higher speeds, with the 

highest being 10mmls. Figure 6.47 shows the decreasing value of maximum 

widths obtained at each level of increasing speed. Also there are comparatively 

fewer beads at Immls as compared to Figure 6.23 (20J, Immls, 1mm layer). 

It should be observed that a higher energy level, the choice of which limits high 

frequencies due to equipment limitations would result in lesser number of 

parameters and hence possible beads. This is seen comparing graph shown for 30 

J and 20J, Figure 6.52 and Figure 6.47.with graph for 10J (Figure 6.43) where 

greater number parameters result in greater number of beads. 
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At 301 a speed of Imm1s gave a large variation in average beads widths with 

increasing pulse widths (Figure 6.48). This is somewhat similar to the variation 

seen in Figure 6.44 at 201. There is also a peak for 5 and 10mmls at pulse widths 

of around 14ms (Figure 6.49, 6.50). With 301 and 15mm/s few results were 

achieved as shown in Figure 6.51 . Figure 6.52 shows similar results to those 

found for other energy levels. 
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Figure 6.53 shows that beads were only produced in a few instances at 601. 
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6.3.2. Effect of pulse parameters (pulse energy, duration and 

frequency) and speed on average height of a bead 

6.3.2.1. Results of bead height for a layer height of Imm 
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Figure 6.54: Graph of pulse width versus average height (lmm/s, 5J) 

In contrast with average bead widths showing an increase with increasing pulse 

widths, the graph for bead height in Figure 6.54 shows a decrease in average 

height with an increase in pulse width. The bead height itself is generally higher 

for a higher frequency. Also the heights are seen as higher than the layer height 

of Imrn For a speed of 5mm/s, the height increases with an increase in pulse 

width and frequency (Figure 6.55). Again bead height is generally greater than 

the layer height of 1 mm, the exception being at certain low pulse widths. 
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Figure 6.55: Graph of pulse width versus average height of bead [5mm/s, 51] 

At a speed of lOmm/s (Figure 6.56) a higher frequency is generally required for 

bead formation. Figure 6.55 shows that a frequency of 30 Hz gave most beads 

while Figure 6.56 shows most bead formation at 50 and 70 Hz. 

Pulse widths beyond 14ms did not produce beads. That was due to the beads 

being discontinuous and poorly bonded to the plate. 
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Comparing Figure 6.55 and 6.56, it is seen that bead heights are lower at low 

pulse widths and low frequencies for a higher speed of lOmm/s. The same is 

seen in the case of increasing speeds for Figure 6.57 and Figure 6.58 at 15mm/s 

and 20 mm/s respectively. This decreasing trend in bead height with increased 

speed is more clearly seen in Figure 6.59, which shows a progressive reduction 

in the maximum and minimum levels at each increasing speed, apart from a few 

results at 20mm/s. Balling is seen to occur beyond 2rns for Figure 6.58, 6.59. 

Many bead height values shown in Figure 6.59, exceed the layer height of 1 mm, 

by about 50 to 60 % whereas some values are lower by about 65 to 70%. Such 

low values are generally observed for speeds above 10mm/s. 
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At a higher energy level of 10 J at Imm1s (Figure. 6.60), the bead height 

in~reases with pulse width for a frequency of 10Hz. 

Error bars overlap in most cases between 6 and 18ms (Figure 6.60) and may 

indicate that changes in frequency may not significantly affect the average bead 

height. Increasing bead heights are seen for increasing pulse widths at other 

speed values (Figures 6.61 , 6.62, 6.63, 6.64). The number of beads formed, 

progressively reduce with higher speeds. 
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An increase in energy level to 201 at 1 rnmIs, shows a clearer trend of increasing 

bead height with an increase in pulse width and frequency (Figure 6.65). This 

can be compared to Figure 6.60, where the trend is less clear and the results are 

closer. At 5rnm1s in Figure 6.66, the result shows a similar increase though to a 

lesser extent, with increase in pulse widths. Also at this speed only a frequency 

of 10Hz generally produced beads at different pulse width settings. With 

10rnmls only one set of parameter combination produced beads (Figure 6.67). 
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Figure 6.68 at 30J Imm1s shows increasing frequencies produce an increase in 

average bead heights. For 5mm1s at 30J, too an increase in average bead height 

is observed at increasing pulse widths (Figure 6.69). Average height values are 

closer at 5mm1s, their error bars showing overlap. This could mean less 

significant effect of frequency change on average bead height. Most values 

remain below the powder layer thickness of 1 mm, indicating a flatter bead 

produced due to the high energies involved. The increase in energy to 30J 

produces beads at a lower frequency of 5Hz, which is not possible for an energy 

level of20 J at 5Hz, for the same speed levels (5mm/s) (Figure 6.66 and Figure 

6.69). This is due to an increase in average power at higher energy levels (for the 

same frequency) , which in the above cases are 150W for 30J and lOOW for 20l 

At 10mm/s beads could mainly be produced at a frequency of 10Hz (Figure 
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6.70). No bead was produced at a frequency of 5 Hz for a speed of 15 mm/s 

(Figure 6.71). This figure also shows only one bead produced at 10Hz. This is in 

contrast to the far higher number of beads produced at a lower energy level of 

51. This is observed in Figure 6.72 for 301 and Figure 6.59 for 51. In Figure 6.73 

for an energy of 601, the average bead height was constant with increasing pulse 

width. 
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6.3.2.2. Results of bead height for a layer height of 0.4 mm layer 
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Figure 6.74: Graph of pulse width versus average height of bead (lmmls, 51) 

The graph in Figure 6.74 for speed Immls, is indicative of an increasing trend in 

the average bead height, with increasing pulse widths. Figure 6.75 shows a 

general increase in bead height with increase in pulse widths and higher 

frequencies at a higher speed of 5mm1s. Also at 6ms, 10Hz maximum and 

minimum values are seen to randomly high. 
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At 10rnmls there is less increase in bead height with increasing pulse widths 

(Figure 6.76). Generally the average bead heights are seen to be higher than the 

layer thickness (O.4mm) for all three speeds. An increase in frequency also gives 

a higher average bead height for the same pulse width value. This is less clear 

for a speed of 15 rnmIs (Figure 6.77) where a low frequency (30 Hz) produces 

higher average bead height compared to frequency (50 Hz). At a speed of 20 

rnmIs (Figure 6.78) the bead height generally increases with increasing 

frequency. 
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At a energy level 10J, a linear increase in average bead height is observed for 

frequency 10Hz, Figure 6.79 .At a speed of 5mm1s the effect of frequency on the 

bead height is erratic. The lower frequency levels appear to produce greater 

average bead heights as noted in Figure 6.80. This erratic behaviour is also 

observed at IOmmls (Figure 6.81). At 15 mmls there is a general increase in 

average bead height with increasing pulse width and frequency (Figure 6.82). At 

20mmls the results are also erratic (Figure 6.83). Figure 6.84 shows little 

variation of bead height with scan speed. 
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At a 20J energy level the trends are unclear (Figures 6.85, 6.86, 6.87). 

Figure 6.88 shows that the number of beads produced at 20J are fewer than that 

produced at a lower energy setting 5J (Figure 6.75). 
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In Figure 6.87, the beads progress from spaced balling to joint of almost 

continuous appearance fused to plate from 14 to 20ms. 

At an energy level of 30 J and 60J there are very few results. Trends are unclear 

for Figures 6.89, 6.90, 6.91 , 6.92, 6.93 for 30J and Figure 6.94. 
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6.4. Physical observation of results at various processing parameters 

6.4.1. Effect of process parameter variation on the nature of 

variation in beads 

Comparisons are made between the physical appearances of beads and trends 

exhibited by the graphs in the previous section. 

(a) 5mm/s (b) lOmm/s 

Figure 6.95 (a,b) : Figure showing effect of variation of speed (1 mm layer 

height, 5J, 14ms and 50Hz) 

Figure 6.95 shows a clear variation in the width of the beads as the speed 

increased. Figure 6.8 and Figure 6.9 show similar differences. 
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(a) 5mm1s (b) 10mmls 

Figure 6.96 (a, b): Figure showing effect of speed increase (O.4mm layer height, 

51, 14ms, 50 Hz) 

The differences in widths, is not so apparent for 0.4 mm layer height. 

(a) 1 mm layer (b) O.4mm layer 

Figure 6.97: Effect of variation in layer height on the bead (101, 5mm1s, lOrns, 

30 Hz) 

Figure 6.97 shows a more regular and thinner bead with a smaller layer height 

(Figure 6.97 b) for the same parameters. 
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(a) Immls (b) 5mm1s (c) lOmm/s 

Figure 6.98 (a, b, c): Effect of variation of speed (l mm layer height, 20J, 6rns, 

10Hz) 

From 1 to 10mmls the beads vary in size, from being wide and irregular with 

additional fused metal powders, appearing like outgrowths (fin) along the bead, 

at Immls to a more regular bead at 5mm1s (also see Figure 6.21 & 6.22). At 

10mmls balling occurred. 

(a) Imm layer at 30J (b) O.4mm layer at 30J 

Figure 6.99 (a, b): Comparison of high energy beads at differing layer heights 

(l4ms, 10Hz, 5mm1s) 

The beads at O.4mm layer height are somewhat flatter than those produced with 

a Imm layer. 
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(a) At 14 InS (b) At 18 InS 

Figure 6.100: Effect of change in pulse widths (hum layer height, 30J, Imm1s, 

5Hz) 

At 14 ms the beads along their central part (excluding the bead that was scanned 

first) were pushed into plate surface, and were also visible on the other side of 

the plate, indicating penetration through the 1 mm thick substrate (Figure 6.100 

a). 

At 18ms the penetration through the plate was not present. The bead was more 

regular without the depression (Figure 6.1 00 b). This was due to a 20 second 

wait time given between each scan, allowing the substrate the cool down. The 

improvement in height of the bead or the lack of flattening of the bead onto the 

substrate is evident. 
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6.4.2. Effect of process parameter variation in producing 

undesirable bead quality 

These could be defined as problem areas in bead processing where the effect of 

certain parameter combinations produce results that may not be desirable. 
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Figure 6.101: Effect of low pulse width (2ms) and speed (lmmJs) [lmrn layer 

height, 101, 5Hz] 

Figure 6.101 show that no bead was formed. At this combination the powder 

was blown away due to low pulse widths, low speeds causing impact on the 

substrate and powder bed. 
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Figure 6.102: Linear irregularity or waviness (lmm layer height, 10J, Imm1s, 18 

ms and 10Hz) 

Figure 6.102 show the wavy nature of the bead with some metal powder fused as 

lateral outgrowths giving its rough nature. This could be due to the low speed 

involved. 

Figure 6.103 : Rough Irregular beads with lateral fused metal outgrowths (l mm 

layer height, 10J, Imm1s, 14ms, 30 Hz) 

The scans were performed at relatively high frequency, high pulse width and low 

speeds. 
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7. Discussion 

7.1. Effect of variation of pulse parameters (energy, pulse width, 

frequency) on the Laser Power 'Output Limits' 

The Power or Output Limit graphs established at various energy levels (Figure 

6.1 to 6.5) show the effective operating range of the laser set-up that was used. 

The limitations of the laser related to three factors: 

a) Maximum mean power output 

b) Frequency limits, which also reduced with increasing pulse width 

c) At low pulse durations and frequencies the sensors did not register an 

output due to insufficient power. 

As the energy levels increase the area of the graph where sufficient output is 

obtained reduced. The frequency options reduce with high energy levels. 

The Y AG laser used was known to have a maximum Mean Power output of near 

550W. It is known that Mean Power is a product of the energy and frequency 

thus expressed as: P = E x f (1) 

Where, P= Mean (average) power (Watts), E= Energy (1), f= frequency (Hz) 

Therefore, as frequency increases, the mean (average) power increases. Thus, 

assuming a maximum output of 550W at the energy levels shown for Figure.6.1 

to 6.5, the maximum frequencies possible reduce in accordance with the 

equation f = PIE. 
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Therefore at 550 W maximum output: f= 110 Hz for energy 5J, 55Hz for energy 

10J, 27.5 Hz for energy 20J, 18.33 Hz for energy 30J and 9.16 Hz for energy 

60J. 

The maximum values in the graphs Figure 6.1 (lOOHz), Figure 6.2 (50Hz) are 

close to the calculated values. 

Fault condition error statements highlighted in Section 6.1 were encountered 

when the Average output power also given by Equation 1 exceeded the 

maximum specification of 550W on the laser thus exhibiting the message 'Laser 

Output over limit'. The graphs Figure 6.1 for 5J and Figure 6.2 for 10J also 

indicate the maximum calculated frequencies 110Hz and 55Hz respectively are 

relevant only at certain low pulse widths e.g. 2,6, 10ms. The frequency options 

reduce as pulse widths increase and the higher pulse widths of 18 and 20ms, the 

possible maximum frequency even dips below the calculated value (e.g. 55Hz 

for 10J Figure 6.2). In this case the laser gives the error message as 'Calculated 

Pump Power Limit', indicated that there is a maximum equipment limit for 

obtaining output at high pulse width parameters. 

7.2. Effect of pulse parameters (pulse energy, pulse width and 

frequency) and speed on the beads. 

7.2.1. Effect on bead width 

It is seen from a general observation of the graphs in section 6.3.1.1 that there 

are certain clear trends especially at low to medium speeds Imrn1s (Figure 6.14 
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at 1 DJ) and 5mm1s (Figure 6.8 at 5J) where the average width of a bead is seen to 

increase with increasing pulse widths (duration of the pulse) and increasing 

frequency. At higher speeds (10mmls and beyond) the results are more random. 

The maximum number of beads were produced for 5 and 10 mm1s. 

Pulse duration or the pulse width in tandem with pulse height determines the 

area for a rectangular pulse, hence its energy. For a single energy level, 

frequency determines the amount of mean (average) power, which is available 

for processing as can be seen in Equation 1. 

It is well documented that short pulse durations are usually suited for operations 

such as cutting and drilling [58]. On a Imm substrate covered with a Imm 

powder layer, short pulse widths have the capacity to penetrate deeper into the 

surface of the powder bed and into the substrate, its extent depending on the 

energy level chosen. Its is therefore possible that packets of energy delivered 

within a shorter time as dictated by a low pulse width (duration) and a higher 

pulse height would distribute less heat to fuse the powder on the plate and 

produce a greater effect within the substrate. This would result in perhaps a 

smaller melt pool at the powder resulting in narrower beads. A higher pulse 

width (duration) would concentrate the heat on the surface and to the 

surrounding powder by conduction and less into the substrate, thus producing 

larger melt pools, fusing more powder and producing greater widths. This would 

account for the increase in average width (seen in section 6.3.1.1) with an 

increase in pulse duration (width) seen at various speed values. 

Similarly, frequency with its increasing effect on the mean power delivered will 

supply more energy (heat) to the powder layer perhaps creating a larger molten 
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pool, fusing more metal powder into the bead. This in turn would increase the 

average width of the beads. 

An increase in the slope ofthe lines seen in Figure 6.8 (5mm/s, 51) as compared 

to Figure 6.7 (lmm/s, 51) [at 1mm layer height] shows that an increase in speed 

increases the effect of pulse width (duration) on the bead width. 

An increasing energy produces a small increase in the average bead width. This 

is expected due to the increased energy levels producing greater heat. The 

general ranges of average bead widths are seen not to change much across all 

results. 

A reduction in layer height as observed in Section 6.3.1.2 is followed by a 

reduction in the general average widths of beads that are obtained. A possible 

reason could be due to the less mass of metal powder available on the substrate. 

The effect of the reduction in layer height can be seen in Figure 6.97. 

Trends in graphs for 0.4 mm layer beads are not so distinct as in the case of 1 mm 

layer heights with little increase in average bead width with increased pulse 

width. 

For beads produced with a layer height ofO.4mm, a greater number are generally 

seen possible for all speeds up to 20mm/s. Smaller layer thickness will tend to 

permeate more heat to the substrate thus effecting surface tension effects and 

reducing balling. Hence a flatter bead would dominate. The beads in general 

have a more uniform defmition as compared to those at 1mm layer height. This 

is seen in Figure 6.97. 

At higher energy levels, the number of beads possible reduced compared to 

lower energy levels. One reason is the limit on the frequencies available for high 
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energy levels. Also the available combinations at high energy levels e.g. 20J, 30J 

and 60J tend to produce high heat due to the higher peak powers causing burnt 

welds, plasma, and blown powder at low frequencies and low speeds. At high 

speeds e.g. 10, 15 mmls such energies tend to cause balling. 

7.2.2. Effect on bead height 

Bead height has a similar trend as bead width, seen in Section 6.3.2. Thus, an 

increase in pulse width generally produces an increase in average height as does 

an increase in frequency. High frequency parameters are also seen to produce 

beads of lower average height when utilising very low pulse widths like 2ms 

(Figure 6.55). This is seen as possibly an effect of the high average powers e.g. 

450W at 90Hz in combination with relatively high peak power at 2ms. The 

height is seen to increase for increasing pulse widths, hence reducing peak 

power. 

As with Imm layers, bead heights for 0.4 mm layer show an increasing trend of 

average height with an increase in pulse duration (pulse width) for certain values 

of frequency. 

7.3. On the nature of beads and bead processing 

The experiments show (see Appendix A) that out of a possible 400 parameter 

combinations that are possible for a single layer height, slightly greater than 35 

% produce beads that are measurable and fused to the suhstrate. The choice of a 
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parameter combination for fmal use would require the bead to have sound 

physical qualities, with continuous nature, fused to substrate. 

There could also be a greater heat affected zone (HAZ) causing burning or 

colouring of the zone adjacent to the bead (e.g. brownish colour). This mayor 

may not be acceptable. There could be a thin ' gutter' area adjacent to the bead 

where there is a lack of powder material for a following overlapping scan. This 

could go on to cause porosity. 

A classification ofthe effect of varying parameters are given as follows: 

A. Physical (bead) attributes: 

1. Formation of continuous bead 

2. Beads that have surface waviness but continuous 

3. Porous at the base where attached to the substrate (though appears 

continuous from above) 

4. Balling (fused to plate or loosely attached to substrate) 

5. Continuous or partially continuous bead loosely bonded to the 

substrate. 

6. Formation of undercut. 

7. Irregular bead shape following an unsteady molten pool. 

B. Processing (region) attributes that are seen include: 

• Excessive plasma formation at the interaction zone 

• Blowing away of powder 

• Wide heat affected zone 

• Unsteady molten pool 
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• Many fumes 

• Too much heat penetrating and affecting (burning) the substrate 

• Coolant temperature at the laser head increasing beyond 28° C 

(especially at high energies)- this could damage the shutter assembly. 

• Clean bead (without blown particles, no excessive heat fumes or 

plasma) 

Figures in Section 6.4.2 show examples of such bead qualities. 

The undesirable effects of incorrect scan parameters could be due to the 

combination of the following: 

1. Low pulse width, low speed (Figure 6.101) (blown powder with undercut 

along bead path) 

2. Low speed (Figure 6.102) (Surface waviness) 

3. High frequency, high pulse width and low speed (Figure 6.103) (Irregular 

bead) 

4. Low frequency, high speed (Regularly spaced balling fused to plate) 

5. High speed (Balling like bead appearance with intermittent 

discontinuities) 

6. Undercuts due to high energy and low layer height 

155 



Chapter 8 Conclusions 

8. Conclusions 

1. A general increase in bead width and bead height appears to be present 

due to an increase in pulse width and pulse frequency and with decrease 

in speed. 

2. There were more possible beads observed at lower layer thickness 

(OAmm) especially at higher speeds (15, 20 mmls) 

3. Effect of frequency variations, are less clearer for beads at low layer 

thickness. 

4. In general higher pulse widths result in smoother bead surface due to less 

tendency for the pulse to penetrate the plate (as could occur for a cutting, 

drilling process) 

5. The process produces beads, at relatively moderate frequencies (10Hz, 

30Hz), moderate pulse widths (10, 14ms), speeds of 5 and 10 mmls and 

low to moderate energy levels (5J, 101) 

6. High energy levels, in combination with low speeds and/or low pulse 

widths or high frequency may not be suitable for producing beads. This 

could depend on the material chosen and the thickness ofthe substrate. 

7. In general, speed was seen to have a greater effect on the bead formation 

(continuous, balling etc) than a change in frequency (hence average 

power) or energy levels. 

8. There are undesirable effects such as undercuts, blown powder, 

overheating of substrate, HAZ etc seen at extreme values of parameter 

choice. 
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9. For higher energy settings e.g. 30J, bead geometry was affected by 

heating up of the substrate and showed improvement when subjected to a 

time gap between individual scans. Hence at high energy levels a wait 

time between scans could improve bead geometry. 

10. In general a wide combination of pulse parameters are seen capable of 

producing continuous beads 
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9. Further Work 

1. A parameter combination capable of producing a continuous bead could 

be further analysed by observing the physical properties of the bead. 

2. A study of the stability and size of a moving molten material could be 

useful to determine the effect on the resulting bead geometry 

3. The effect of gas flow rate on the bead formation, and focal length 

variation on the process window could be investigated. 

4. The effect of varying hatch patterns and time delays between scans could 

be useful for producing beads of different shape. 

5. The work on individual beads could further be extended to a horizontal 

layer composed of successive overlapping beads and followed by vertical 

layers to form blocks. 

6. The effect of bead overlap for a single layer and the effect of substrate 

penetration for single layers could be studied for the effect on porosity. 

7. The building of layers could induce thermal gradients in the block and 

hence a study of stresses would become necessary. Preheating of the 

platform or substrate to reduce thermal gradients and improve wetting 

will be useful for multiple layers. Also cooling techniques could 

minimise heat accumulation during part build which may cause 

distortion. A study of their effect on surface finish and interlayer bonding 

could be useful 

8. A study of the microstructure and strength of the resultant part would be 

required to establish a possible usage for industrial applications. 
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Chapter 11 : Appendix A Result Tables for 1mm layer thickness 

ll.Appendix A: 

11.1. Result Tables: Imm layer 

For 5J Width in mm Height!n mm 

Vmmls widthms freq(Hz) Energy J 1 2 3 4 5 Avg. h1 h2 h3 h4 h5 Avg. 

1 0.5 30 5 
1 0.5 50 5 
1 0.5 70 5 
1 0.5 90 5 
1 0.5 100 5 
1 2 5 5 0.880 0.886 0.826 0.878 0.886 0.871 1.694 1.544 1.497 1.571 1.510 1.56 
1 2 10 5 1.080 1.142 1.048 1.058 1.086 1.083 1.567 1.604 1.593 1.637 1.682 1.61 
1 2 30 5 
1 2 50 5 
1 2 70 5 
1 2 90 5 
1 2 100 5 
1 6 5 5 0.904 0.910 0.874 0.854 0.866 0.882 1.330 1.333 1.309 1.279 1.317 1.314 
1 6 10 5 1.13 1.060 1.100 1.080 1.046 1.084 1.686 1.662 1.506 1.488 1.490 1.566 
1 6 30 5 
1 6 50 5 
1 6 70 5 
1 10 5 5 0.894 0.958 0.892 0.960 0.902 0.921 1.376 1.298 1.420 1.334 1.380 1.362 
1 10 10 5 1.140 1.044 1.096 1.206 1.136 1.124 1.523 1.468 1.432 1.464 1.518 1.481 
1 10 30 5 
1 10 50 5 
1 10 70 5 
1 14 5 5 
1 14 10 5 1.230 1.244 1.120 1.132 1.168 1.179 1.430 1.365 1.347 1.386 1.437 1.39 
1 14 30 5 
1 14 50 5 
1 18 5 5 
1 18 10 5 
1 18 30 5 
1 20 5 5 
1 20 10 5 1.164 1.240 1.234 1.292 1.082 1.202 1.394 1.364 1.370 1.389 1.335 1.37C 
1 20 30 5 
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For 5J Width in mm Height in mm 

~mm/s wldthms freq(Hz) Energy J 1 2 3 4 5 Avg. h1 h2 h3 h4 h5 Avg. 

5 0.5 30 5 
5 0.5 50 5 
5 0.5 70 5 
5 0.5 90 5 
5 0.5 100 5 
5 2 5 5 
5 2 10 5 0.653 0.690 0.688 0.668 0.792 0.698 0.678 0.621 0.636 0.685 0.711 0.666 
5 2 30 5 0.832 0.836 0.780 0.824 0.806 0.816 1.019 0.924 0.920 0.950 0.956 0.954 
5 2 50 5 1.050 1.044 0.996 1.068 0.990 1.030 1.380 1.242 1.314 1.331 1.366 1.327 
5 2 70 5 1.126 1.262 1.156 1.38C 1.374 1.260 1.137 0.873 0.922 1.040 0.997 0.994 
5 2 90 5 1.228 1.296 1.330 1.437 1.556 1.369 0.911 0.809 0.790 0.797 0.773 0.816 
5 2 100 5 1.312 1.484 1.418 1.462 1.368 1.409 1.000 0.962 1.057 0.996 1.029 1.009 
5 6 5 5 
5 6 10 5 
5 6 30 5 0.997 1.115 1.061 1.110 1.066 1.070 1.162 1.107 1.064 1.351 1.186 1.174 
5 6 50 5 1.270 1.342 1.330 1.385 1.372 1.340 1.456 1.570 1.536 1.495 1.509 1.513 
5 6 70 5 1.456 1.478 1.544 1.476 1.456 1.482 1.408 1.389 1.366 1.346 1.308 1.363 
5 10 5 5 
5 10 10 5 
5 10 30 5 1.262 1.156 1.230 1.262 1.236 1.229 1.23C 1.122 1.156 1.17E 1.179 1.173 
5 10 50 5 1.546 1.612 1.490 1.454 1.442 1.509 1.389 1.390 1.392 1.404 1.387 1.392 
5 10 70 5 1.360 1.360 1.442 1.434 1.346 1.388 1.288 1.301 1.311 1.321 1.373 1.319 
f 14 5 5 
5 14 10 5 
5 14 30 5 1.234 1.212 1.242 1.258 1.254 1.240 1.158 1.177 1.198 1.255 1.249 1.207 
5 14 50 5 1.646 1.528 1.496 1.528 1.502 1.540 1.475 1.435 1.449 1.438 1.452 1.450 
5 18 5 5 
5 18 10 5 
5 18 30 5 1.558 1.410 1.294 1.336 1.256 1.371 1.358 1.271 1.211 1.187 1.155 1.236 
5 20 5 5 
5 20 10 5 
5 20 30 5 1.440 1.322 1.284 1.324 1.324 1.335 1.252 1.226 1.268 1.229 1.225 1.240 
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For 5J Widthinmm Height in mm 

tvmm/s widthms freq(Hz) EnergyJ 1 2 3 4 5 Avg. h1 h2 h3 h4 h5 Avg. 
10 0.5 30 5 0.940 0.980 0.820 0.890 1.052 0.936 0.473 0.409 0.429 0.499 0.513 0.465 
10 0.5 50 5 1.134 1.110 0.952 0.954 1.014 1.033 0.547 0.555 0.580 0.632 0.607 0.584 
10 0.5 70 5 1.042 1.088 1.092 1.086 1.076 1.077 0.574 0.609 0.634 0.627 0.612 0.611 
10 0.5 90 5 1.052 1.086 1.154 1.030 0.952 1.055 0.784 0.770 0.814 0.879 0.864 0.822 
10 0.5 100 5 1.018 0.998 1.024 1.096 1.068 1.041 0.819 0.781 0.761 0.798 0.711 0.774 
10 2 5 5 
10 2 10 E 

10 2 30 5 0.860 0.808 0.794 0.766 0.808 0.807 0.693 0.636 0.653 0.659 0.654 0.659 
10 2 50 5 0.804 0.912 0.830 0.902 0.856 0.861 0.730 0.719 0.747 0.797 0.791 0.757 
10 2 70 5 1.038 1.060 1.110 1.064 1.064 1.067 1.285 1.175 0.921 0.906 0.924 1.042 
10 2 90 5 1.050 1.036 0.960 1.028 1.130 1.041 1.038 0.856 0.802 0.821 0.816 0.867 
10 2 100 5 1.252 1.372 1.304 1.380 1.428 1.347 1.076 0.982 0.946 0.942 0.966 0.982 
10 6 5 5 
10 6 10 5 
10 6 30 5 
10 6 50 5 1.158 1.120 1.196 1.184 1.174 1.166 1.233 1.104 1.116 1.067 1.068 1.118 
10 6 70 5 1.328 1.346 1.598 1.440 1.484 1.439 1.731 1.586 1.442 1.339 1.272 1.475 
10 10 5 5 
10 10 10 5 
10 10 30 5 
10 10 50 5 1.192 1.280 1.352 1.256 1.270 1.270 1.155 1.206 1.205 1.242 1.380 1.238 
10 10 70 5 1.304 1.328 1.264 1.292 1.330 1.304 1.218 1.146 1.126 1.091 1.106 1.137 
10 14 5 5 
10 14 10 5 
10 14 30 5 
10 14 50 5 1.160 1.186 1.152 1.138 1.210 1.169 1.085 1.046 1.058 1.105 1.130 1.085 
10 18 5 5 
10 18 10 5 
10 18 30 5 
10 20 5 5 
10 20 10 5 
10 20 30 5 
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For 5J Width Inmm Height in mm 

iVmm/s width ms freq(Hz) Energy J 1 2 3 4 5 Avg. h1 h2 h3 h4 h5 Avg. 

15 0.5 30 5 
15 0.5 50 5 0.896 1.122 1.108 1.042 1.044 1.042 0.435 0.426 0.472 0.443 0.620 0.479 
15 0.5 70 5 1.122 1.062 1.056 1.064 1.112 1.083 0.405 0.431 0.417 0.528 0.472 0.451 
15 0.5 90 5 0.972 0.988 1.162 1.076 1.056 1.051 0.689 0.702 0.747 0.712 0.720 0.714 
15 0.5 100 5 1.634 0.988 0.960 0.966 1.048 1.119 0.883 0.911 0.960 1.002 1.011 0.953 
15 2 5 5 
15 2 10 5 
15 2 30 5 
15 2 50 5 
15 2 70 5 
15 2 90 5 
15 2 100 5 1.006 0.852 0.900 0.962 0.885 0.921 1.092 1.039 1.027 1.041 0.932 1.026 
15 6 5 5 
15 6 10 5 
15 6 30 5 
15 6 50 5 
15 6 70 5 
15 10 5 5 
15 10 10 5 
15 10 30 5 
15 10 50 5 
15 10 70 5 
15 14 5 5 
15 14 10 5 
15 14 30 5 
15 14 50 5 
15 18 5 5 
15 18 10 5 
15 18 30 5 
15 20 5 5 
15 20 10 5 
15 20 30 5 
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For 5J Width in mm Height In mm 

!Vmmls width ms freq(Hz) Energy J 1 2 3 4 5 Avg. hl h2 h3 h4 h5 Avg. 

20 0.5 30 5 
20 0.5 50 5 1.084 1.098 1.128 1.102 0.968 1.076 0.329 0.448 0.434 0.443 0.429 0.417 
20 0.5 70 5 1.298 1.222 1.232 1.140 1.192 1.217 0.366 0.424 0.069 0.492 0.465 0.363 
20 0.5 90 5 0.986 1.014 1.044 1.070 0.970 1.017 0.656 0.788 0.749 0.809 0.734 0.747 
20 0.5 100 5 0.982 1.074 1.050 0.996 0.978 1.016 0.736 0.721 0.626 0.769 0.697 0.710 
20 2 5 5 
20 2 10 5 
20 2 30 5 
20 2 50 5 
20 2 70 5 1.120 1.058 0.992 0.970 0.937 1.015 1.338 1.173 1.229 1.210 1.115 1.213 
20 2 90 5 1.200 1.164 1.158 1.130 1.146 1.160 1.430 1.337 1.351 1.382 1.386 1.377 
20 2 100 5 1.152 1.210 1.100 1.160 1.166 1.158 1.419 1.385 1.377 1.346 1.472 1.400 
2C 6 5 5 
20 6 10 5 
20 6 30 5 
20 6 50 5 
20 6 70 5 
20 10 5 5 
20 10 10 5 
20 10 30 5 
20 10 50 5 
20 10 70 5 
20 14 5 5 
20 14 10 5 
20 14 30 5 
20 14 50 5 
20 18 5 5 
20 18 10 5 
20 18 30 5 
20 20 5 5 
20 20 10 5 
20 20 30 5 
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AT 10J Result (Width) in mm Height in mm 

Vmm/sec widthms freq(Hz) Energy(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

1 5 10 
1 10 10 0.982 0.938 0.894 0.980 1.026 0.964 0.640 0.725 0.648 0.728 0.632 0.675 
1 30 10 
1 50 10 
1 E 5 10 0.958 1.000 0.998 1.038 1.092 1.017 1.629 1.420 1.406 1.459 1.395 1.462 
1 E 10 10 1.128 1.111 1.134 1.138 1.224 1.147 1.373 1.266 1.427 1.476 1.432 1.395 
1 E 30 10 
1 E 50 10 
1 1C 5 10 0.988 0.990 0.966 0.946 1.000 0.978 1.370 1.381 1.370 1.270 1.410 1.360 
1 1C 10 10 1.326 1.316 1.318 1.258 1.300 1.304 1.513 1.434 1.494 1.436 1.410 1.458 
1 1C 30 10 
1 1C 50 10 
1 1~ 5 10 1.142 1.132 1.146 1.154 1.144 1.144 1.656 1.680 1.619 1.619 1.523 1.619 
1 1~ 10 10 1.204 1.278 1.248 1.382 1.344 1.291 1.564 1.474 1.549 1.582 1.556 1.545 
1 1~ 30 10 1.718 1.730 1.903 1.778 1.680 1.762 1.149 1.511 1.514 1.098 1.545 1.364 
1 1E 5 10 1.108 1.096 1.148 1.170 1.208 1.146 1.445 1.504 1.522 1.554 1.608 1.527 
1 1E 10 10 1.298 1.322 1.360 1.464 1.374 1.364 1.523 1.425 1.430 1.494 1.519 1.478 
1 1E 30 10 
1 2C 5 10 1.038 1.076 1.104 1.110 1.074 1.080 1.378 1.317 1.338 1.418 1.385 1.367 
1 2C 10 10 1.344 1.462 1.318 1.366 1.402 1.378 1.565 1.551 1.554 1.600 1.618 1.578 
1 2C 30 10 
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AT10J Result (V\Iidth) in mm Height in mm 

IV mm/sec widthms freq(Hz) Energy(J) 1 2 3 4 5AV hl h2 h3 h4 h5 AV 

5 5 10 0.487 0.536 0.493 0.571 0.592 0.536 
5 10 1e 0.884 0.900 0.872 0.784 0.900 0.868 0.534 0.652 0.534 0.631 0.644 0.599 
5 30 10 1.120 1.152 1.174 1.218 1.156 1.164 1.068 1.076 1.001 1.142 1.070 1.071 
5 ~ 50 10 1.322 1.374 1.436 1.350 1.438 1.384 1.501 1.485 1.275 1.202 1.142 1.321 
5 e 5 10 
5 -e 10 10 1.390 1.274 1.342 1.359 1.276 1.328 
5 -e 30 10 1.130 1.228 1.304 1.176 1.120 1.192 0.973 1.029 1.066 1.086 1.134 1.058 
5 e 50 10 1.416 1.498 1.414 1.510 1.476 1.463 1.364 1.339 1.323 1.399 1.415 1.368 
5 1e 5 10 
5 1e 10 10 1.408 1.300 1.283 1.333 1.378 1.340 
5 1e 30 10 1.366 1.378 1.384 1.450 1.352 1.386 1.304 1.273 1.306 1.396 0.955 1.247 
5 1C 50 10 1.430 1.502 1.488 1.434 1.504 1.472 1.258 1.302 1.324 1.281 1.290 1.291 
5 1~ 5 10 
5 1~ 10 10 
5 1< 30 10 1.670 1.498 1.556 1.606 1.492 1.564 1.242 1.185 1.203 1.213 1.231 1.215 
5 lE 5 10 
5 lE 10 10 
5 lE 30 10 1.622 1.602 1.482 1.524 1.544 1.555 1.481 1.396 1.431 1.370 1.372 1.406 
5 2( 5 10 
5 2( 10 10 
5 2( 30 10 1.300 1.352 1.330 1.346 1.358 1.337 1.186 1.161 1.206 1.175 1.219 1.190 
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AT10J Result (Width) in mm Height in mm 

Vmm/sec width ms freq(Hz) Energy(J) 1 2 3 4 5AV hl h2 h3 h4 h5 AV 

10 5 10 
10 10 10 0.824 0.714 0.714 0.766 0.788 0.761 0.608 0.615 0.657 0.564 0.548 0.598 
10 2 30 10 0.932 0.874 0.874 0.946 0.900 0.905 0.697 0.614 0.617 0.651 0.766 0.669 
10 2 50 10 0.918 1.040 1.058 1.054 1.012 1.016 1.038 0.900 0.785 0.917 0.857 0.899 
10 € 5 10 
10 e 10 10 
10 6 30 le 0.912 0.996 0.962 0.946 0.936 0.950 0.919 0.878 0.916 0.841 0.773 0.865 
10 e 50 10 1.126 1.202 1.214 1.236 1.218 1.199 0.902 0.888 0.898 0.930 1.013 0.926 
10 le 5 10 
10 le 10 10 
10 le 30 10 1.474 1.112 1.280 1.276 1.316 1.292 1.774 1.580 1.606 1.602 1.476 1.608 
10 le 50 10 1.254 1.286 1.252 1.382 1.276 1.290 1.126 1.128 1.102 1.212 1.134 1.141 
10 1~ 5 10 
10 1~ 10 10 
10 1~ 30 10 1.203 1.170 1.164 1.294 1.226 1.211 1.264 1.235 1.216 1.194 1.277 1.237 
10 lE 5 10 
10 lE 10 10 
10 lE 30 10 1.198 1.284 1.272 1.318 1.264 1.267 1.241 1.193 1.178 1.225 1.168 1.201 
10 2C 5 10 
10 20 10 10 
10 20 30 10 1.246 1.286 1.230 1.318 1.292 1.274 1.181 1.305 1.432 1.271 1.257 1.289 
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AT10J Result (Width) in mm Height in mm 

~mmlsec widthms freq(Hz) Energy(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

15 5 10 
15 10 10 
15 3C 10 0.926 0.812 0.952 0.984 1.022 0.939 0.593 0.557 0.485 0.520 0.454 0.522 
15 2 50 10 0.934 0.932 1.018 0.982 0.896 0.952 0.896 1.034 0.951 1.050 0.925 0.971 
15 e 5 10 
15 e 10 10 
15 e 30 10 
15 e 50 10 1.090 1.026 1.110 1.076 1.126 1.086 1.225 1.007 0.939 1.078 1.124 1.075 
15 1C 5 10 
15 10 10 10 
15 10 30 10 
15 10 50 10 1.212 1.142 1.258 1.150 1.260 1.204 1.303 1.296 1.172 1.345 1.454 1.314 
15 14 5 10 
15 14 10 10 
15 14 30 10 
15 1S 5 10 
15 1S 10 10 
15 1S 30 10 
15 20 5 10 
15 2C 10 10 
15 2C 30 10 
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AT10J Result (Width) In mm Height in mm 

~mmlsec wldthms freq(Hz) Energy(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

20 5 10 
20 10 10 
20 ~ 30 10 0.702 0.788 0.764 0.774 0.784 0.762 0.682 0.678 0.674 0.784 0.770 0.718 
20 50 10 0.974 0.91~ 0.868 0.822 0.976 0.911 0.667 0.777 0.761 0.764 0.764 0.747 
20 € 5 10 
20 € 10 10 
20 € 30 10 
20 € 50 10 1.332 1.288 1.218 1.128 1.188 1.231 1.387 1.324 1.293 1.369 1.522 1.379 
20 1C 5 10 
20 1C 10 10 
20 1C 30 10 
20 1C 50 10 
20 1~ 5 10 
20 1~ 10 10 
20 1~ 30 10 
20 1E 5 10 
20 1E 10 10 
20 1E 30 10 
20 2C 5 10 
20 2C 10 10 
20 2C 30 10 
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AT20J Result (Width) in mm Height in mm 

Vmmls width ms freq Hz Energy J 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

1 2 5 20 
1 2 10 20 
1 6 5 20 1.056 1.056 1.010 1.034 1.022 1.036 0.868 0.914 0.859 0.847 0.841 0.86E 
1 6 10 20 1.328 1.358 1.400 1.420 1.382 1.378 1.190 1.057 1.008 1.020 1.042 1.06 
1 10 5 20 1.074 1.086 1.062 1.068 1.180 1.094 1.111 1.083 1.168 1.100 1.183 1.129 
1 10 10 20 1.408 1.570 1.452 1.340 1.354 1.425 1.458 1.339 1.380 1.272 1.334 1.356 
1 14 5 20 1.110 1.142 1.122 1.180 1.050 1.121 1.240 1.149 1.222 1.303 1.249 1.23 
1 14 10 20 1.452 1.430 1.558 1.736 1.447 1.525 1.491 1.361 1.452 1.390 1.589 1.45 
1 18 5 20 1.294 1.256 1.206 1.254 1.232 1.248 1.814 1.466 1.330 1.465 1.397 1.454 
1 18 10 20 1.494 1.437 1.507 1.320 1.430 1.438 1.563 1.452 1.505 1.586 1.397 1.501 
1 20 5 20 1.246 1.242 1.282 1.310 1.324 1.281 1.381 1.310 1.497 1.506 1.521 1.44 
1 20 10 20 1.416 1.488 1.542 1.530 1.463 1.488 1.487 1.498 1.495 1.587 1.559 1.525 

AT20J Result (Width) in mm Height in mm 

Vmmls widthms freq Hz Energy J 1 2 3 4 5AV hl h2 h3 h4 h5 AV 

5 2 5 20 
5 2 10 20 
5 6 5 20 0.865 0.813 0.773 0.76C 0.825 0.80 
5 6 10 20 0.972 0.948 0.882 0.882 0.974 0.932 0.919 0.887 0.841 0.760 0.792 0.840 
5 10 5 20 
5 10 10 20 0.912 0.956 0.940 0.948 0.968 0.945 0.946 0.882 0.918 0.882 0.901 0.906 
5 14 5 20 
5 14 10 20 1.098 1.108 1.122 1.040 1.124 1.098 1.121 1.116 1.058 1.071 1.091 1.091 
5 18 5 20 
5 18 10 20 1.144 1.128 1.128 1.146 1.134 1.136 1.091 1.059 1.059 1.036 1.105 1.070 
5 20 5 20 
5 20 10 20 1.050 1.130 1.152 1.084 1.020 1.087 1.118 1.126 1.036 1.120 1.240 1.128 
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AT20J Result (Width) in mm Height in mm 

Vmm/s width ms freq hz Energy J 1 2 3 4 ~AV h1 h2 h3 h4 h5 AV 

10 2 5 20 
10 2 10 20 
10 6 5 20 
10 6 10 20 0.898 0.964 0.984 1.024 1.020 0.978 0.793 0.794 0.792 0.892 0.915 0.83 
10 10 5 20 

10 10 10 20 

10 14 5 20 

10 14 10 20 

10 18 5 20 
10 18 10 20 

10 20 5 20 
10 20 10 20 

AT20J Result (Width) in mm Height in mm 

Vmm/s width ms freq hz Energy J 1 ;.: 3 ~ ~AV h1 h2 h3 h4 h5 AV 

15 2 5 20 

15 2 10 20 
15 6 5 20 
15 6 10 20 
15 10 5 20 
15 10 10 20 

15 14 5 20 

15 14 10 20 

15 18 5 20 

15 18 10 20 

15 20 5 20 
15 20 10 20 
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~T20J Result (Width) In mm Height in mm 

Vmmls widlhms freq Hz Energy J 1 2 3 ~ 5AV h1 h2 h3 h4 h5 AV 

20 2 5 20 
20 2 10 20 
20 6 5 20 
20 6 10 20 
20 10 5 20 
20 10 10 20 
20 14 5 20 
20 14 10 20 
20 18 5 20 
20 18 10 20 
20 20 5 20 
20 20 10 20 
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AT30J Width In mm Height in mm 

V(mm/s) width ms freqHz Energy J 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

1 e 5 30 1.256 1.204 1.160 1.266 1.216 1.220 1.032 0.918 0.878 0.974 0.817 0.924 
1 e 10 30 1.360 1.264 1.328 1.353 1.363 1.334 
1 1C 5 30 1.172 1.282 1.166 1.172 1.250 1.208 1.222 1.275 1.292 1.271 1.309 1.274 
1 1C 10 30 1.562 1.393 1.382 1.469 1.366 1.434 
1 1~ 5 30 1.452 1.478 1.618 1.524 1.546 1.524 0.933 0.896 0.910 1.020 1.069 0.966 
1 1 10 30 
1 1E 5 30 1.374 1.318 1.352 1.342 1.368 1.351 1.115 1.054 1.025 1.067 1.068 1.066 
1 1E 10 30 1.842 1.996 1.966 1.864 1.808 1.895 1.530 1.456 1.339 1.347 1.430 1.420 
1 2C 5 30 1.450 1.420 1.408 1.426 1.364 1.414 1.453 1.402 1.316 1.251 1.268 1.338 
1 2C 1(J 30 

AT30J Width In mm Height in mm 

~(mmls) width ms freqHz Energy J 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

5 e E 30 0.888 0.956 0.902 0.984 1.018 0.950 0.773 0.729 0.758 0.814 0.819 0.779 
5 E 1C 30 1.064 1.044 1.136 1.112 1.050 1.081 0.6n 0.637 0.806 0.764 0.865 0.74~ 

5 1C E 30 0.872 1.016 1.050 1.030 1.028 0.999 0.735 0.713 0.692 0.734 0.776 0.73C 
5 1C 1C 30 1.232 1.294 1.320 1.274 1.294 1.283 0.955 0.865 0.869 0.843 0.819 0.87C 
5 1~ E 30 1.086 1.098 1.148 1.142 1.106 1.116 0.892 0.909 0.916 0.870 0.873 0.89 
5 1~ 1C 30 1.256 1.210 1.252 1.238 1.272 1.246 0.979 0.843 0.889 0.820 0.798 0.866 
5 H f 30 1.146 1.110 1.126 1.234 1.206 1.164 0.933 0.902 0.923 0.951 0.971 0.93E 
5 18 1C 30 1.162 1.228 1.246 1.326 1.256 1.244 0.959 0.918 0.875 0.929 0.905 0.917 
5 20 f 30 1.222 1.280 1.270 1.232 1.186 1.238 1.023 1.045 1.050 1.071 1.024 1.043 
5 20 1C 30 1.230 1.270 1.306 1.278 1.292 1.275 0.921 0.884 0.929 0.985 0.976 0.939 
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AT30J Width in mm Height In mm 

V(mmls) width ms freqHz Energy J 1 2 3 4 5AV hl h2 h3 h4 h5 AV 

10 e f 30 
10 e lC 30 0.890 0.926 0.948 0.890 0.924 0.916 0.686 0.643 0.637 0.682 0.675 0.665 
10 10 J 30 1.020 1.007 0.987 0.988 0.945 0.985 
10 10 lC 30 1.098 1.152 1.134 1.136 1.130 1.130 0.680 0.660 0.696 0.690 0.706 0.686 
10 14 f 30 1.272 1.130 1.244 1.238 1.224 1.222 0.896 0.901 0.865 0.949 0.971 0.916 
10 14 10 30 1.054 1.118 1.086 1.068 1.036 1.072 0.893 0.853 0.845 0.867 0.873 0.866 
10 le 5 30 
10 18 10 30 1.118 1.088 1.034 1.028 1.112 1.076 1.037 1.007 1.011 0.993 1.015 1.012 
10 20 5 30 
10 20 10 30 1.260 1.280 1.172 1.146 1.164 1.204 1.314 1.116 1.085 1.113 1.030 1.132 

AT30J Width in mm Height In mm 

~(mm!s) widthms freqHz EnergyJ 1 2 3 4 5f..v hl h2 h3 h4 h5 AV 

1f € 5 30 
15 € 10 30 
15 lC 5 30 
15 lC 10 30 0.823 0.831 0.915 0.879 0.865 0.863 
15 1~ 5 30 
15 1~ 1Q 30 
15 lE 5 30 
15 lE 10 30 
15 2C 5 30 
15 2C 10 30 
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AT30J Width In mm Height in mm 

V(mm/s) width ms freqHz EnergyJ 1 2 3 ~ 5AV h1 h2 h3 h4 h5 AV 

20 E S 30 

20 € 1C 30 

20 1C S 30 

20 1C 1C 30 

20 1~ S 30 

20 1~ 1C 30 

20 1£ E 30 

20 1£ 1C 30 

20 2C E 30 

20 2C 10 30 
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AT SO J Enerav width inmm heiahtin mm 

Vmm/sec width ms frea Hz EneravJ 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 
1 S 5 SO 

1 10 5 SO 

1 14 5 SO 2.470 2.384 2.4S0 2.542 2.4S6 2.4S4 

1 18 5 SO 

1 20 5 SO 

AT SO J Energy width in mm height in mm 

~mm/sec width ms frea Hz EneravJ 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 
5 S 5 SO 

5 10 5 SO 1.126 1.114 1.112 1.148 1.132 1.126 0.72S 0.798 0.705 0.7S6 0.7S2 0.751 

5 14 5 SO 1.172 1.250 1.222 1.202 1.172 1.204 0.777 0.775 0.826 0.883 0.915 0.835 

5 18 5 60 1.270 1.186 1.166 1.160 1.176 1.192 0.781 0.764 0.744 0.782 0.711 0.756 

5 20 5 SO 1.262 1.232 1.234 1.270 1.180 1.236 0.915 0.895 0.781 0.778 0.742 0.822 

AT SO J Energy width in mm height in mm 

Ivmm/sec width ms freqHz EnergyJ 1 2 3 4 E AV h1 h2 h3 h4 h5 AV 
10 S 5 60 

10 10 5 60 

10 14 5 60 

10 18 5 SO 

10 20 5 60 
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AT 60 J Energy width in mm height in mm 

r;mm/sec width ms freq Hz EnergyJ 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

15 6 5 60 

15 10 5 60 

15 14 5 60 

15 18 5 60 

15 20 5 60 

AT 60 J Energy width In mm height in mm 

IVmmlsec width ms freq hz EnergyJ 1 "- :3 4 5AV h1 h2 h3 h4 h5 AV 

20 6 5 60 

20 10 5 60 

20 14 5 60 

20 18 5 60 

20 20 5 60 
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11.2. Tables for 0.4 mm layer 

AT 5J Width (mm) Height (mm) 

r.tmm width Energy 
s ms freq(Hz) J 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

1 0.5 30 5 
1 0.5 50 5 
1 0.5 70 5 
1 0.5 90 5 
1 0.5 100 5 
1 2 5 5 0.698 0.680 0.726 0.712 0.718 0.707 0.616 0.611 0.672 0.680 0.733 0.662 
1 2 10 5 0.670 0.580 0.622 0.720 0.610 0.640 0.499 0.413 0.495 0.540 0.567 0.503 
1 2 30 5 
1 2 50 5 
1 2 70 5 
1 2 90 5 
1 2 100 5 
1 6 5 5 0.696 0.622 0.630 0.692 0.652 0.658 0.385 0.304 0.358 0.425 0.494 0.393 
1 6 10 5 0.644 0.760 0.726 0.794 0.770 0.779 0.620 0.572 0.528 0.646 0.877 0.649 
1 6 30 5 
1 6 50 5 
1 6 70 5 
1 10 5 5 0.886 0.740 0.742 0.762 0.754 0.777 0.734 0.644 0.678 0.717 0.683 0.691 
1 10 10 5 0.834 0.790 0.758 0.826 0.892 0.820 0.888 0.827 0.822 0.832 0.929 0.860 
1 10 30 5 
1 10 50 5 
1 10 70 5 
1 14 5 5 0.730 0.816 0.826 0.804 0.776 0.790 0.771 0.677 0.708 0.713 0.788 0.731 
1 14 10 5 0.916 0.866 0.826 0.902 0.882 0.878 0.958 0.888 0.847 0.891 0.927 0.902 
1 14 30 5 
1 14 50 5 
1 18 5 5 0.670 0.692 0.606 0.512 0.634 0.623 0.863 0.703 0.619 0.640 0.683 0.702 
1 18 10 5 0.640 0.600 0.614 0.680 0.716 0.650 0.877 0.860 0.841 0.908 0.927 0.883 
1 18 30 5 
1 20 5 5 0.736 0.740 0.746 0.606 0.680 0.702 0.906 0.728 0.691 0.700 0.758 0.757 
1 20 10 5 
1 20 30 5 
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AT 5J Width (mm) Height (mm) 

~mrn" width rro freq(Hl) Ene'llYJ 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

5 0.5 3C 5 
5 0.5 5C 5 0.820 0.776 0.864 0.840 0.806 0.821 0.282 0.201 0.193 0.201 0.251 0.226 
5 0.5 7e 5 0.904 0.970 0.944 0.997 0.917 0.946 0.541 0.489 0.464 0.427 0.313 0.447 
5 0.5 9C 5 
5 0.5 10C 5 0.990 1.116 1.162 1.296 1.356 1.184 0.553 0.452 0.528 0.676 0.844 0.611 
5 2 f 5 
5 2 1C 5 0.664 0.648 0.714 0.674 0.718 0.684 0.321 0.308 0.290 0.326 0.327 0.314 
5 2 3C 5 0.794 0.744 0.778 0.826 0.804 0.789 0.330 0.324 0.309 0.327 0.317 0.321 
5 2 5C 5 0.882 0.688 0.832 0.864 0.872 0.828 0.411 0.330 0.314 0.458 0.527 0.408 
5 2 7C 5 0.878 0.882 0.884 0.826 0.810 0.856 0.756 0.690 0.693 0.610 0.458 0.641 
5 2 9C 5 1.374 1.374 1.436 1.572 1.596 1.470 0.354 0.265 0.334 0.459 0.564 0.395 
5 2 10C 5 
5 6 E 5 
5 6 1C 5 0.632 0.624 0.598 0.682 0.666 0.640 0.697 0.636 0.673 0.684 0.693 0.677 
5 6 3C 5 0.754 0.760 0.842 0.848 0.826 0.806 0.573 0.817 0.625 0.615 0.699 0.626 
5 6 5C 5 0.920 0.924 0.854 0.896 0.836 0.886 0.809 0.706 0.725 0.702 0.744 0.737 
5 6 7C 5 0.888 0.976 1.002 1.008 0.956 0.966 0.797 0.707 0.657 0.679 0.692 0.706 
5 10 E 5 
5 10 10 5 0.730 0.718 0.640 0.734 0.706 0.850 0.981 0.988 0.640 0.939 0.880 
5 10 3C 5 0.810 0.818 0.836 0.874 0.826 0.833 0.525 0.437 0.488 0.427 0.542 0.484 
5 10 5C 5 0.914 0.932 0.894 0.888 0.910 0.908 0.600 0.538 0.545 0.649 0.697 0.606 
5 10 7C 5 0.884 0.828 0.838 0.854 0.926 0.866 0.685 0.640 0.845 0.649 0.743 0.672 
5 14 E 5 
5 14 1C 5 0.638 0.638 0.678 0.690 0.595 0.648 0.506 0.559 0.539 0.480 0.436 0.504 
5 14 3C 5 0.824 0.842 0.820 0.800 0.792 0.816 0.687 0.579 0.505 0.636 0.650 0.611 
5 14 5C 5 1.040 0.948 0.962 0.874 0.948 0.954 0.829 0.763 0.674 0.755 0.811 0.766 
5 18 E 5 
5 18 1C 5 0.630 0.562 0.592 0.600 0.637 0.604 0.597 0.505 0.536 0.562 0.663 0.573 
5 18 3C 5 0.758 0.736 0.814 0.862 0.850 0.804 0.729 0.665 0.744 0.781 0.813 0.746 
5 20 e 5 
5 20 1C 5 0.620 0.580 0.702 0.678 0.793 0.675 0.470 0.449 0.486 0.639 0.785 0.566 
5 20 30 5 0.683 0.619 0.575 0.630 0.581 0.618 
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AT 5J 
Width (mm) Height (mm) 

f,tmm's width 1111 freq(Hz) Energy J 1 2 3 4 5fW hl h2 h3 h4 h5 AV 

10 0.5 30 5 
10 0.5 50 5 
10 0.5 70 5 
10 0.5 90 5 
10 0.5 lOa 5 
10 2 5 5 
10 2 10 5 
10 2 30 5 0.662 0.660 0.602 0.586 0.610 0.624 
10 2 50 5 0.752 0.748 0.780 0.780 0.752 0.762 0.546 0.517 0.529 0.542 0.521 0.531 
10 2 j(j 5 0.866 0.822 0.840 0.842 O.77E 0.829 0.515 0.413 0.372 0.423 0.642 0.473 
10 2 90 5 0.802 0.862 0.864 0.894 0.844 0.853 0.451 0.448 0.465 0.522 0.506 0.478 
10 2 100 5 0.794 0.772 0.800 0.822 0.908 0.819 0.449 0.413 0.489 0.527 0.569 0.489 
10 6 5 5 
10 6 10 5 
10 6 3C 5 0.602 0.684 0.720 0.726 0.692 0.685 0.565 0.508 0.570 0.603 0.575 0.564 
10 6 5C 5 0.764 0.702 0.868 0.776 0.754 0.773 0.567 0.579 0.687 0.655 0.607 0.619 
10 6 7C 5 0.888 0.846 0.902 0.986 0.834 0.891 0.607 0.618 0.579 0.597 0.695 0.619 
10 10 E 5 
10 10 le 5 
10 10 3(: 5 0.754 0.750 0.788 0.732 0.748 0.754 0.674 0.601 0.654 0.689 0.723 0.668 
10 10 5C 5 0.970 0.932 0.870 0.920 0.834 0.905 0.735 0.651 0.641 0.661 0.680 0.674 
10 10 7C 5 0.834 0.868 0.882 0.912 0.938 0.887 0.675 0.697 0.680 0.772 0.818 0.728 
10 14 E 5 
10 14 lC 5 
10 14 3C 5 0.754 0.804 0.730 0.746 0.732 0.753 0.650 0.545 0.472 0.477 0.559 0.541 
10 14 5C 5 0.810 0.804 0.864 0.840 0.936 0.851 0.702 0.537 0.542 0.651 0.720 0.630 
10 18 E 5 
10 18 lC 5 
10 18 3t 5 0.710 0.762 0.774 0.848 0.865 0.792 0.477 0.530 0.714 0.777 0.811 0.662 
10 20 f 5 
10 20 1C 5 
10 20 3C 5 0.736 0.802 0.736 0.838 0.880 0.798 0.717 0.672 0.695 0.672 0.666 0.684 
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AT 5J Width (mm) Height (mm) 

Vmm's width ms freq(Hz) Energy J 1 2 3 4 5IAV h1 h2 h3 h4 h5 iAV 

15 0.5 3e 5 
15 0.5 5e 5 

15 0.5 7C 5 
15 0.5 9C 5 
15 0.5 10e 5 
15 2 5 5 
15 2 10 5 
15 2 30 5 0.740 0.770 0.704 0.674 0.722 0.722 0.263 0.256 0.267 0.371 0.367 0.305 

15 2 50 5 0.716 0.710 0.656 0.692 0.700 0.695 0.354 0.361 0.391 0.406 0.345 0.371 
15 2 70 5 0.720 0.690 0.702 0.790 0.758 0.732 0.417 0.394 Q.400 0.460 0.466 0.427 

15 2 90 5 0.662 0.596 0.704 0.686 0.724 0.674 0.332 0.286 0.366 0.421 0.520 0.385 

15 2 100 5 0.864 0.912 0.798 0.B48 0.804 0.845 0.540 0.582 0.499 0.497 0.563 0.536 
15 6 S 5 
15 6 10 5 
15 6 30 5 0.596 0.566 0.598 0.596 0.646 0.600 0.583 0.522 0.490 0.497 0.572 0.533 
15 6 50 5 0.784 0.740 0.658 0.740 0.724 0.729 0.643 0.561 0.382 0.400 0.548 0.507 
15 6 70 5 0.864 0.784 0.846 0.852 0.816 0.832 0.599 0.637 0.590 0.585 0.680 0.618 
15 10 S 5 
15 10 10 5 
15 10 3C 5 0.632 0.658 0.634 0.616 0.634 0.635 0.535 0.520 0.562 0.606 0.604 0.565 
15 10 5C 5 0.720 0.814 0.740 0.772 0.828 0.775 0.470 0.440 0.470 0.417 0.465 0.452 

15 10 7C 5 
15 14 E 5 
15 14 1C 5 
15 14 3e 5 0.628 0.744 0.548 0.716 0.660 0.659 0.875 0.735 0.581 0.631 0.681 0.701 
15 14 5e 5 0.818 0.812 0.79B 0.820 0.800 0.810 0.636 0.539 0.523 0.558 0.635 0.578 
15 1B _f 5 
15 18 1C 5 
15 18 3e 5 0.714 0.730 0.70B 0.634 0.712 0.700 0.661 0.623 0.612 0.497 0.448 0.568 
15 20 f 5 
15 20 1C 5 
15 20 30 5 0.638 0.754 0.712 0.694 0.652 0.690 
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Chapter 11 : Appendix A Result Tables for O.4mm layer thickness 

AT SJ Width (mm) Height (mm) 

Vml1'ls width"" freq(Hz) En.~J 
1 2 3 4 5lAV hl h2 h3 h4 h5 ~V 

20 0.5 3C 5 
20 0.5 50 5 
20 0.5 70 5 
20 0.5 90 5 
20 0.5 10C 5 
20 2 S 5 
20 2 lC 5 
20 2 30 5 0.622 0.562 0.536 0.726 0.636 0.616 0.289 0.272 0.316 0.356 0.437 0.334 
20 2 50 5 0.782 0.768 0.702 0.656 0.732 0.728 0.338 0.406 0.375 0.333 0.408 0.372 
20 2 70 5 0.666 0.698 0.632 0.760 0.732 0.698 0.391 0.348 0.327 0.308 0.302 0.335 
20 2 9C 5 0.722 0.670 0.672 0.722 0.716 0.700 0.412 0.363 0.387 0.421 0.526 0.422 
20 2 10C 5 0.660 0.766 0.776 0.752 0.762 0.743 0.467 0.390 0.308 0.385 0.396 0.389 
20 6 S 5 
20 6 lC 5 
20 6 3C 5 0.612 0.610 0.620 0.616 0.600 0.612 0.642 0.535 0.526 0.468 0.419 0.518 
20 6 5C 5 0.660 0.670 0.644 0.634 0.690 0.660 0.612 0.548 0.437 0.553 0.627 0.555 
20 6 7C 5 0.794 0.868 0.878 0.706 0.854 0.820 1.134 0.828 0.691 0.598 0.636 0.777 
20 10 S 5 
20 10 lC 5 
20 10 3C 5 
20 10 5e 5 0.758 0.744 0.694 0.75S 0.730 0.737 0.608 0.584 0.504 0.533 0.713 0.588 
20 10 7C 5 0.778 0.786 0.830 0.728 0.834 0.791 0.645 0.577 0.603 0.590 0.648 0.613 
20 14 S 5 
20 14 lC 5 
20 14 3C 5 
20 14 5C 5 0.700 0.662 0.730 0.788 0.820 0.740 0.641 0.597 0.716 0.755 0.841 0.710 
20 18 E 5 
20 18 lC 5 
20 18 3C 5 
20 20 E 5 
20 20 1C 5 
20 20 3( 5 
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Chapter 11 : Appendix A Result Tables for O.4mm layer thickness 

AT Energy 10J Width (mm) Height (mm) 

Vmm/sec width ms treq(Hl) Energy(J) w1 w2 w3 w4 w5 AV h1 h2 h3 h4 h5 AV 

1 2 5 10 

1 2 10 10 

1 2 30 10 

1 2 50 10 

1 6 5 10 0.716 0.666 0.688 0.700 0.752 0.704 0.352 0.287 0.294 0.418 0.448 0.360 

1 6 10 10 0.764 0.732 0.614 0.880 0.924 0.823 0.407 0.251 0.193 0.274 0.368 0.299 

1 6 30 10 

1 6 50 10 

1 10 5 10 0.848 0.680 0.664 0.658 0.746 0.719 0.624 0.405 0.305 0.304 0.573 0.442 

1 10 10 10 0.776 0.734 0.760 0.826 0.822 0.784 0.671 0.500 0.594 0.598 0.729 0.618 

1 10 30 10 

1 10 50 10 

1 14 5 10 0.862 0.812 0.868 0.902 0.930 0.875 0.870 0.811 0.911 1.063 1.140 0.959 

1 14 10 10 0.928 0.978 1.084 0.986 1.038 1.003 0.857 0.857 0.869 1.000 1.019 0.920 

1 14 30 10 

1 18 5 10 0.812 0.822 0.814 0.738 0.846 0.806 0.854 0.873 0.899 0.759 0.725 0.822 

1 18 10 10 

1 18 30 10 

1 20 5 10 0.742 0.796 0.930 0.814 0.830 0.822 0.751 0.699 0.736 0.940 0.934 0.812 

1 20 10 10 0.830 0.774 0.838 0.916 0.802 0.832 0.827 0.590 0.612 0.668 0.747 0.689 

1 20 30 10 
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Chapter 11 Appendix A Result Tables for OAmm layer thickness 

AT Energy 10J Width (mm) Height (mm) 

Vmm/sec width ms freq(Hl) Eno'1ly(J) w1 w2 w3 w4 w5 AV h1 h2 h3 h4 h5 AV 

5 2 5 10 

5 2 10 10 

5 2 30 10 0.980 1.072 1.120 1.166 0.940 1.056 0.358 0.282 0.291 0.337 0.343 0.322 

5 2 50 10 1.034 1.036 0.967 0.900 1.222 1.032 0.384 0.416 0.379 0.472 0.518 0.434 

5 6 5 10 

5 6 10 10 0.702 0.660 0.676 0.716 0.706 0.692 0.671 0.635 0.570 0.599 0.607 0.616 

5 6 30 10 0.932 0.904 1.040 0.976 0.918 0.954 0.674 0.695 0.671 0.816 0.793 0.730 

5 6 50 10 0.684 1.068 1.226 1.318 1.154 1.130 0.420 0.160 0.228 0.329 0.417 0.311 

5 10 5 10 

5 10 10 10 0.932 0.850 0.826 0.848 0.852 0.862 0.876 0.911 0.863 0.871 0.821 0.868 

5 10 30 10 0.816 0.876 0.840 0.868 0.850 0.850 0.594 0.512 0.432 0.524 0.487 0.510 

5 10 50 10 

5 14 5 10 

5 14 10 10 0.850 0.846 0.848 0.824 0.864 0.846 0.941 0.819 0.871 0.878 0.984 0.899 

5 14 30 10 0.996 0.994 0.958 1.074 1.000 1.004 

5 18 5 10 

5 18 10 10 0.704 0.770 0.660 0.712 0.690 0.707 0.516 0.510 0.474 0.425 0.486 0.482 

5 18 30 10 1.082 1.068 1.076 1.020 1.080 1.065 0.913 0.882 0.837 0.824 0.917 0.875 

5 20 5 10 

5 20 10 10 0.612 0.636 0.744 0.862 0.850 0.741 0.434 0.279 0.563 0.742 0.742 0.552 

5 20 30 10 0.838 0.860 0.798 0.822 0.886 0.837 0.584 0.506 0.558 0.572 0.585 0.561 
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Chapter 11 : Appendix A Result Tables for O.4mm layer· thickness 

AT Energy 10J Width (mm) Height (mm) 

Vmm/sec width !TB fToq(Hz) Energy(J) w1 w2 w3 w4 w5 AV h1 h2 h3 h4 h5 AV 

10 2 5 10 

10 2 10 10 

10 2 30 10 0.690 0.864 0.830 0.814 0.846 0.809 0.556 0.446 0.485 0.574 0.434 0.499 

10 2 50 10 0.972 0.996 0.970 0.896 0.916 0.950 0.512 0.547 0.582 0.727 0.649 0.603 

10 6 5 10 

10 6 10 10 

10 6 30 10 0.752 0.802 0.814 0.814 0.818 0.800 0.512 0.498 0.493 0.452 0.445 0.480 

10 6 50 10 0.856 0.874 0.894 0.858 0.854 0.867 0.546 0.604 0.505 0.380 0.463 0.500 

10 10 5 10 

10 10 10 10 

10 10 30 10 0.766 0.698 0.692 0.726 0.724 0.721 0.338 0.223 0.228 0.280 0.355 0.285 

10 10 50 10 0.930 0.820 0.770 0.852 0.888 0.852 0.558 0.458 0.418 0.414 0.441 0.458 

10 14 5 10 

10 14 10 10 

10 14 30 10 0.924 0.856 0.884 0.886 0.826 0.875 0.708 0.729 0.700 0.693 0.687 0.703 

10 18 5 10 

10 18 10 10 

10 18 30 10 0.734 0.798 0.832 0.852 0.862 0.816 0.473 0.457 0.567 0.667 0.674 0.568 

10 20 5 10 

10 20 10 10 

10 20 30 10 0.836 0.882 0.858 0.914 0.876 0.873 0.626 0.585 0.621 0.674 0.777 0.657 
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Chapter 11 Appendix A Result Tables for O.4mm layer thickness 

AT Energy 10J Width (mm) Height (mm) 

Vmm/sec width ms treq(Hl) Energy(J) w1 w2 w3 w4 w5 AV h1 h2 h3 h4 h5 AV 

15 2 5 10 

15 2 10 10 

15 2 30 10 0.790 0.838 0.688 0.804 0.774 0.779 0.260 0.239 0.296 0.369 0.448 0.322 

15 2 50 10 0.802 0.904 0.838 0.874 0.782 0.840 0.558 0.512 0.613 0.581 0.754 0.604 

15 6 5 10 

15 6 10 10 

15 6 30 10 0.746 0.774 0.702 0.698 0.718 0.728 0.417 0.213 0.230 0.299 0.307 0.293 

15 6 50 10 0.832 0.900 0.826 0.982 1.018 0.912 0.622 0.601 0.641 0.685 0.731 0.656 

15 10 5 10 

15 10 10 10 

15 10 30 10 0.832 0.652 0.848 0.814 0.628 0.835 

15 10 50 10 0.908 0.960 1.004 0.978 0.962 0.962 0.722 0.712 0.760 0.824 0.934 0.790 

15 14 5 10 

15 14 10 10 

15 14 30 10 0.602 0.644 0.676 0.738 0.726 0.677 0.403 0.478 0.390 0.419 0.601 0.458 

15 18 5 10 

15 18 10 10 

15 16 30 10 0.682 0.712 0.790 0.750 0.738 0.734 0.522 0.454 0.420 0.379 0.458 0.447 

15 20 5 10 

15 20 10 10 

15 20 30 10 0.688 0.692 0.640 0.596 0.614 0.646 0.495 0.439 0.446 0.267 0.317 0.393 
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Chapter 11 Appendix A Result Tables for OAmm layer thickness 

AT Energy 10J Width (mm) Height (mm) 

Vmm/sec wldthms freq(Hz) Energy(J) w1 w2 w3 w4 w5 AV h1 h2 h3 h4 h5 AV 

20 2 5 10 

20 2 10 10 

20 2 30 10 

20 2 50 10 0.652 0.726 0.586 0.730 0.748 0.688 0.540 0.451 0.447 0.406 0.389 0.447 

20 6 5 10 

20 6 10 10 

20 6 30 10 0.720 0.582 0.618 0.600 0.592 0.622 0.404 0.314 0.334 0.313 0.321 0.337 

20 6 50 10 0.764 0.748 0.794 0.794 0.738 0.768 0.637 0.562 0.574 0.540 0.523 0.567 

20 10 5 10 

20 10 10 10 

20 10 30 10 0.736 0.698 0.668 0.646 0.728 0.695 0.654 0.617 0.454 0.610 0.661 0.599 

20 10 50 10 0.732 0.764 0.762 0.840 0.754 0.770 0.665 0.670 0.626 0.660 0.657 0.656 

20 14 5 10 

20 14 10 10 

20 14 30 10 0.704 0.748 0.796 0.824 0.826 0.780 0.586 0.708 0.805 0.812 0.858 0.754 

20 18 5 10 

20 18 10 10 

20 18 30 10 0.914 0.746 0.652 0.714 0.762 0.758 0.000 0.471 0.412 0.405 0.370 0.332 

20 20 5 10 

20 20 10 10 

20 20 30 10 0.714 0.668 0.660 0.702 0.750 0.699 0.602 0.638 0.531 0.563 0.479 0.563 
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Chapter 11 : Appendix A Result Tables for OAmm layer thickness 

AT20J Width (mm) Height (mm) 

Vmrrls width ms freq hz Energy J 1 2 3 4 5AV h1 h2 h3 h4 h5 ~V 

1 ~ E 20 

1 2 10 20 

1 6 5 20 

1 6 10 20 

1 10 5 20 1.046 1.006 1.124 1.170 1.258 1.121 0.483 0.369 0.356 0.319 0.406 0.387 

1 10 10 20 1.466 1.510 1.510 1.572 1.550 1.522 0.472 0.482 0.447 0.449 0.451 0.460 

1 14 5 20 0.964 0.958 1.160 1.266 1.164 1.102 0.391 0.393 0.244 0.198 0.177 0.281 

1 14 10 20 

1 18 5 20 0.754 0.752 0.754 0.852 0.828 0.788 

1 18 10 20 

1 20 5 20 0.902 0.840 0.882 0.952 0.944 0.904 0.747 0.628 0.545 0.563 0.465 0.590 

1 20 10 20 

AT20J Width (mm) Height (mm) 

Vmrrls width ms freq hz Energy J 1 2 3 4 5~V h1 h2 h3 h4 h5 ~V 

5 2 5 20 

5 2 10 20 

5 6 5 20 0.676 0.786 0.826 0.778 0.718 0.757 0.423 0.393 0.399 0.370 0.355 0.388 

5 6 10 20 0.874 0.846 0.946 0.964 0.986 0.923 0.659 0.560 0.422 0.416 0.411 0.494 

5 10 5 20 0.780 0.724 0.854 0.816 0.828 0.800 0.431 0.368 0.306 0.311 0.276 0.338 

5 10 10 20 0.914 0.916 0.910 0.920 0.920 0.916 0.457 0.444 0.485 0.477 0.473 0.467 

5 14 5 20 0.842 0.75;.: 0.814 0.756 0.812 0.795 0.650 0.603 0.581 0.601 0.652 0.617 

5 14 10 20 0.874 0.808 0.800 0.844 0.800 0.825 0.575 0.483 0.402 0.397 0.479 0.467 

5 18 5 20 0.858 0.780 0.764 0.860 0.922 0.837 

5 18 10 20 0.824 0.924 0.856 0.830 0.830 0.853 

5 20 5 20 

5 20 10 20 0.908 0.890 0.732 0.820 0.778 0.826 0.754 0.655 0.625 0.579 0.518 0.626 
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Chapter 11 : Appendix A Result Tables for OAmm layer thickness 

AT 20J Width (mm) Height (mm) 

Vmm's width ms freqhz Energy J 1 2 3 4 *V h1 h2 h3 h4 h5 IAV 
10 2 5 20 

10 2 10 20 

10 6 5 20 

10 6 10 20 0.702 0.77~ 0.846 0.912 0.854 0.818 0.257 0.312 0.298 0.302 0.405 0.315 

10 10 5 20 

10 10 10 20 0.724 0.76C 0.742 0.754 0.682 0.732 0.540 0.499 0.421 0.498 0.536 0.499 

10 14 5 20 

10 14 10 20 

10 18 5 20 

10 18 10 20 0.682 0.726 0.760 0.736 0.732 0.727 

10 20 5 20 

10 20 10 20 0.86C 0.826 0.752 0.742 0.742 0.784 0.857 0.782 0.660 0.643 0.734 0.735 

AT20J Width (mm) Height (mm) 

Vmm's width ms freq hz Ene'llY J 1 2 3 4 *V h1 h2 h3 h4 h5 AV 

15 2 5 20 

15 2 10 20 

15 6 5 20 

15 6 10 20 

15 10 5 20 

15 10 10 20 

15 14 5 20 

15 14 10 20 

15 18 5 20 

15 18 10 20 

15 20 5 20 

15 20 10 20 

202 



Chapter 11 : Appendix A Result Tables for O.4mm layer thickness 

AT20J 
Width (mm) Height (mm) 

Vmm's wldthms freq hz Energy J 1 2 3 4 5AV h1 h2 h3 h4 h5 !AV 

20 2 5 20 
20 2 10 20 
2C 6 ~ 20 
2C 6 1C 20 
20 10 !: 20 
2C 10 10 20 
2C 14 5 20 
2C 14 1C 20 
20 18 5 20 
2C 18 1C 20 
2C 20 e 20 
20 20 10 20 
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Chapter 11 : Appendix A Result Tables for O.4mm layer thickness 

AT30J Width in mm Height in mm 

~(mm/sec width ms 
freq hz Energy(J) 1 2 3 4 SAV h1 h2 h3 h4 hS IAv 

1 6 5 30 

1 6 10 30 1.13 1.12 1.16 1.16 1.16 1.14 

1 10 5 30 

1 10 10 30 0.94 0.91 0.91 1.03 1.01 0.96 0.62 0.6 0.64 0.65 0.64 0.63 

1 14 5 30 

1 14 10 30 0.87 0.85 0.9 0.86 0.92 0.88 0.65 0.5 0.49 0.49 0.6 0.55 

1 18 5 30 

1 18 10 30 1.47 1.39 1.42 1.44 1.4 1.42 

1 20 5 30 

1 20 10 30 

AT30J Width in mm Height in mm 

~(mm/sec width ms 
freq hz Energy(J) 1 2 3 4 SAV h1 h2 h3 h4 hS AV 

5 6 5 30 0.94 1.12 1.05 1.15 1.02 1.05 

5 6 10 30 0.84 0.87 0.85 0.85 0.88 0.86 0.5 0.5 0.44 0.41 0.38 0.45 

5 10 5 30 1.14 1.25 1.14 1.09 1.06 1.13 0.34 0.2S 0.27 0.29 0.3" 0.3 

5 10 10 30 1.24 0.97 0.86 0.94 0.9 0.98 0.33 0.32 0.3 0.35 0.35 0.33 

5 14 5 30 1.27 1.3~ 1.36 1.35 1.31 1.32 0.26 0.2f 0.24 0.28 0.29 0.27 

5 14 10 30 0.84 0.8 0.83 0.87 0.8 0.83 

5 18 5 30 0.98 1.01 1.02 1.06 1.06 1.03 

5 18 10 30 0.84 0.82 0.91 0.84 0.84 0.85 

5 20 5 30 0.92 0.97 1.06 1 0.95 0.98 

5 20 10 30 
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Chapter 11 : Appendix A Result Tables for O.4mm layer thickness 

AT30J Widlhinmm Heighlinmm 

f./(mm/sec width ms 
freqhz Energy(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

1C 6 5 30 0.79 0.73 0.84 0.77 0.76 0.78 

1C 6 10 30 

1C 10 5 30 0.78 0.8 0.8 0.81 0.78 0.8 

10 10 10 30 

1C 14 5 30 1 1.13 1.1 0.99 1 1.04 0.34 0.3~ 0.27 0.34 0.41 0.34 

1C 14 10 30 

10 18 5 30 0.82 0.89 0.88 0.94 0.95 0.89 0.47 0.45 0.48 0.37 0.36 0.42 

10 18 10 30 

10 20 5 30 

10 20 10 30 

AT30J Widlhin mm Heighl in mm 

f./(mm/sec width ms 
freq hz Energy(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 ~V 

15 6 5 30 0.81 0.83 0.96 0.98 0.92 0.9 

15 6 10 30 

15 10 5 30 

15 10 10 30 

15 14 5 30 0.9 0.97 0.92 0.83 0.9/ 0.92 0.52 0.51 0.51 0.44 0.48 0.49 

15 14 10 30 

15 18 5 30 

15 18 10 30 

15 20 5 30 

15 20 10 30 
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Chapter 11 : Appendix A Result Tables for OAmm layer thickness 

AT30J WJdth in mm Height in mm 

~(mm/sec width ms 
freqhl Ene~(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 [Av 

2C 6 5 30 
20 6 10 30 
20 10 5 30 
20 10 10 30 
20 14 5 30 
2C 14 10 30 
20 18 5 30 
20 18 10 30 
20 20 5 30 
20 20 10 30 
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Chapter 11 : Appendix A Result Tables for O.4mm layer thickness 

AT 60J Width in mm Height in mm 

f/mm/sec width ... freq hz En.~(J) 
1 2 3 4 5IAv h1 h2 h3 h4 h5 AV 

1 6 5 60 
1 10 !: 60 
1 14 5 60 
1 18 5 60 
1 2C !: 60 

~T 60J Width in mm Height in mm 

~mm/sec width ms freq hz En.~(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 IAV 

5 6 5 60 
5 10 5 60 
5 14 5 60 1.04 1.1 !: 1.09 1.16 1.22 1.13 
5 18 5 60 1.21 1.3E 1.26 1.41 1.23 1.29 
5 20 5 60 

AT 60J Width in mm Height in mm 

f/mm/sec width ms freq hz En.~(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 IAV 

10 6 5 60 
10 10 5 60 
10 14 5 60 
1C 18 5 60 
10 20 5 60 
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Chapter 11 : Appendix A Result Tables for O.4mm layer thickness 

AT 60J Width in mm Height In mm 

Vmm/sec width ms fr9qhz Energy(J) 1 2 3 4 5AV h1 h2 h3 h4 h5 AV 

1E 6 5 60 

15 10 5 60 

1E 14 5 60 0.29 0.26 0.2S 0.27 0.37 0.3 

15 18 5 60 0.35 0.29 0.33 0.37 0.39 0.34 

15 20 5 60 

AT 60J Width in mm Height!n mm 

~mm/sec wldthms fr9q hz Energy(J) 1 2 3 4 SlAV h1 h2 h3 h4 h5 ~V 

20 6 5 60 

2C 10 5 60 

20 14 E 60 

20 18 5 60 

20 20 5 60 
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