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ABSTRACT 
Secondary crashes (SCs) or crashes that occur within the boundaries of the impact area of prior, primary crashes 
are one of the incident types that frequently affect highway traffic operations and safety. Existing studies have 
made great efforts to explore the underlying mechanisms of SCs and relevant methodologies have been evolving 
over the last two decades concerning the identification, modeling, and prevention of these crashes. So far there is 
a lack of a detailed examination on the progress, lessons, and potential opportunities regarding existing 
achievements in SC-related studies. This paper provides a comprehensive investigation of the state-of-the-art 
approaches, examines their strengths and weaknesses, and provides guidance in exploiting new directions in SC-
related research aiming to support researchers and practitioners in understanding well-established approaches so 
as to further explore the frontiers. Published research focused on SCs since 1997 has been identified, reviewed, 
and summarized. Key issues concentrated on the following aspects are discussed: (i) static/dynamic approaches 
to identify SCs; (ii) parametric/non-parametric models to analyze SC risk, and (iii) deployable countermeasures 
to prevent SCs. Based on the examined issues, needs, and challenges, this paper further provides insights into 
potential opportunities such as: (a) fusing data from multiple sources for SC identification, (b) using advanced 
learning algorithms for real-time SC analysis, and (c) deploying connected vehicles for SC prevention in future 
research. This paper contributes to the research community by providing a one-stop reference for research on 
secondary crashes. 
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1. INTRODUCTION 
Traffic crashes are the most frequent incidents on highways and the ones with the most severe consequences. 
Statistically, about 6.3 million highway crashes are reported annually only in the United States, among which 
more than 32,000 are fatal crashes (NHTSA 2016). These incidents often pose challenging problems in traffic 
operations and safety. Both transportation agencies and the general public are concerned about their notable direct 
and indirect impacts. It has been estimated that these highway crashes resulted in almost $1 trillion in economic 
loss and societal harm in 2010 (Blincoe 2015). The hazardous traffic conditions that are formed due to traffic 
crashes are often exposing non-involved vehicles and incident responders to a risk of additional crashes: the so-
called secondary crashes (SCs). SCs are typically defined as crashes that occur within the spatial and temporal 
boundaries of the impact area that is formed due to earlier primary crashes (PCs) (Owens et al. 2010). This should 
be distinguished from the “secondary collisions” defined in Xie et al. (2018) that are described as different phases 
of a single crash event. It has been reported that SCs can account for as high as 20% of all crashes and 18% of all 
fatalities on the United States’ freeways (Owens 2010). Considering the significant economic and social costs as 
well as the potential preventability, SC mitigation has become a priority for transportation agencies around the 
world.  

In fact, many transportation agencies are using SCs as an important indicator to monitor the safety 
performance of their systems. The frequency of SCs is used as a key factor in assessing a number of safety 
programs of the Federal Highway Administration (FHWA) and many state/local agencies consider the 
determination and reduction of SCs in allocating funding for the development of their traffic incident management 
(TIM) programs (Yang et al. 2017b). For example, Arizona Department of Public Safety (AZPDS) used SCs in 
the agency’s strategic plan and launched a specific program for the prevention of SCs (TIM 2017). In addition, 
the prevention of SCs has been taken into consideration in the planning of the freeway service patrol (FSP) 
programs in Florida, California, etc. (Lou et al. 2011). The success of these programs greatly relies on the 
knowledge of the inherent mechanisms of when, where and how SCs occur.  

SCs have been identified as a serious issue in early Road Safety literature (e.g. Owens (1978)) but during 
the last two decades tremendous efforts have been made to investigate their characteristics and prevention methods. 
Researchers developed a variety of methodological approaches and ideas that attempt to address the three 
fundamental questions regarding SCs: (a) identification; (b) modeling; and (c) prevention leading to substantial 
progress in the current understanding of these events. This largely supported the exploration of directions for 
policies and countermeasures that ultimately aim to reduce the risk of SCs. However, there lacks a comprehensive 
review of the state-of-the-art regarding the progress and lessons learned from existing SC-related research. A 
thorough investigation on the methodological evolution of identifying, modeling, and preventing SCs can timely 
support practitioners and researchers in deploying, improving, and extending many of current achievements. 

This paper aims to provide a detailed review of contemporary thinking on the SC-related issues and to 
show how methodological approaches have evolved over time in order to address the problems and explore 
promising future research directions. To fulfill such goals, this paper starts with the investigation of the state-of-
the-art practices regarding the identification, prediction, and prevention of SCs. Following there is a critical 
synthesis of issues, needs, and challenges regarding current approaches, including suggestions on potential 
opportunities and future research directions.  

 
2. STATE OF THE ART 
This state-of-the-art review examines the existing literature on SCs focusing on work published during the last 
two decades. The databases and search engines used include: Google Scholar, Scopus, Web of Science, and 
Transportation Research Board’s Transport Research International Documentation (TRID), the largest online 
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bibliographic database of transportation research. The keywords used were “Secondary Crash”, “Secondary 
Incident”, “Secondary Accident”, and “Secondary Collision” and only reports in English were included. A number 
of early studies refer to SCs providing statistics about the frequency of their occurrence; for instance Owens (1978) 
suggested that in their on-the-spot study on a motorway section in the UK 13 out of 40 (32.5%) crashes were 
found to have occurred as a result of the traffic conditions caused by primary incidents. Fontaine (1995) in an 
analysis on pedestrian crashes proposes potential mechanisms that may lead to SCs. However, studies that perform 
more in-depth examinations on SCs start emerging from 1997 onwards and that is why this literature review 
focuses on this period. Thirty-five relevant references reported in recent two decades have been selected and 
examined in this paper. The three main thematic areas of this review are the identification of SCs (34 references), 
modeling and predicting SC risk (19 references), and prevention of SCs (6 references), as presented in Sects. 2.1, 
2.2, and 2.3, respectively. 
2.1. Methodologies for SC Identification 
In order to prevent SCs effectively it is necessary to be aware of the frequency of their occurrence. Although crash 
reports include a number of attributes to describe crashes, in most of the crash reporting systems crashes are not 
classified as primary or secondary. This could be because this characterization is not always straightforward for 
police officers who typically complete these documents and may arrive quite a few minutes after a crash 
occurrence. As a result, SCs need to be identified by research teams by post processing crash and traffic data that 
show the evolution of the impact (or influence) areas caused by primary crashes. Providing that accurate spatial 
and temporal crash information is available, if a crash is found to have happened within the influence area of 
another crash then it is characterized as secondary. A summary of current studies on the identification of SCs is 
presented in Table 1. Information about authors, major types of data, data facts, identification approaches, and 
identification criteria are provided. Existing approaches can be grouped into four main categories: (a) static 
spatial-temporal range-based; (b) queuing theory-based; (c) speed contour map-based; and (d) shockwave-based 
approaches. Each category is discussed below. 
2.1.1. Static spatial-temporal range-based approaches 
The most classical static approach for the identification of SCs defines fixed spatial-temporal thresholds to identify 
the pairs of PCs and SCs. Given the position and occurrence time ( , )p pt s  of a PC, a crash C is examined using 

the following criteria:  
1, [ ( , )]&[ ( , )]
0,

c p p c p pif t t t t s s s s
SC

others
∈ + ∆ ∈ + ∆

= 


 (1) 

where, ( , )c ct s  denotes the position and occurrence time of the crash C  that needs to be examined; t∆  and 

s∆   denote the temporal and spatial impact area (IA) of the PC, respectively; and value 1 means crash C  is 
identified as a SC and 0 if not. The performance of such a static approach mainly relies on the threshold values 
and their suitability for the study area. The original idea was introduced by Raub (1997), in which a SC has to be  
located no more than one mile upstream of a PC and has to occur within a period no longer than the PC clearance 
time + 15 minutes. This serves as the foundation for many subsequent studies that adopted some variations of 
spatial and temporal threshold values (Karlaftis et al. 1999; Latoski et al. 1999; Hirunyanitiwattana and Mattingly 
2006; Zhan et al. 2008; Khattak et al. 2009; Jalayer et al. 2015; Tian et al. 2016). For example, Tian et al. (2016) 
introduced three types of spatial-temporal criteria to identify SCs on interstate highways of Florida: (a) 2 miles, 2 
hours; (b) 2miles, clearance time + 15 minutes; and (c) 2 miles, clearance time + 30 minutes. Their identification 
results varied with different threshold values. It was found that the use of criteria (b) and (c) only identified less 
than half of SCs compared to (a). 

As discussed in Sarker et al. (2015), depending on the facility type, traffic conditions, type and characteristics 
of an incident, rubbernecking has a great potential of inducing SCs not only upstream but also in the opposite 
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direction of a PC. Thus, SCs on the opposite direction were examined by some studies (Chang and Rochon 2009; 
Kopitch and Saphores 2011; Green et al. 2012; Sarker et al. 2015). For example, Chang and Rochon (2009) 
considered an IA of 2 hours and 2 miles to examine SCs in the same direction of traffic flow, whereas a 0.5-hour 
and 0.5-mile spatiotemporal range was considered in the opposite direction. Sarker et al. (2015) examined SCs 
occurred in both the upstream and downstream opposite direction of the PC. They have also conducted a 
sensitivity analysis of different temporal thresholds (30 min. to 300 min.) and spatial thresholds (0.5 mile to 5 
miles) on the identification results and confirmed that the static approach can lead to both underestimation and 
overestimation, depending whether the selected thresholds are conservative.  

Overall, static thresholds could be effective for a rough estimation of SCs in a specific study area due to their 
simplicity, however they are inelastic and thus error prone. Primary crash impact areas may vary significantly 
depending on weather, traffic conditions or time of the day so the likelihood of misidentification of SCs is 
significant. Moreover, their transferability is questionable; when static thresholds proposed by Raub (1997) and 
Moore et al. (2004) have been applied to a different study area the false positives (crashes that were characterized 
as SCs mistakenly) reached 75% and false negatives (SCs that were characterized as primary) were over 40% 
(Imprialou et al. 2014).  
2.1.2. Queuing model-based approaches 
To better capture the impact areas of PCs, queuing models have been developed (Sun and Chilukuri 2007; Zhan 
et al. 2009; Sun and Chilukuri 2010; Vlahogianni et al. 2010; Zhang and Khattak 2010; Vlahogianni et al. 2012; 
Imprialou et al. 2014). Fundamentally, these studies established statistical (quantitative) models to relate a set of 
variables to the queue length ( , )t sQ  that approximates the IA of a PC: 

( , ) ( )t sQ f= X   (2) 

where, 1{ ,..., }nx x=X  denotes the vector of contributing factors that affect the queue length, for example, traffic 
arrival rate, departure rate, capacity of lanes, incident duration, speed information, to name but a few; and f  is 

the mapping function that can be in either simple linear form or more advanced model structures. Given the 
estimated queue length, crashes located in the estimated boundary of queue will be identified as SCs. For example, 
Zhan et al. (2009) proposed a simple linear equation that used arrival rate, diversion rate, highway capacity 
adjustment factor, number of lanes, full capacity, and departure rate to calculate the maximum queue length and 
queue dissipation time. Similarly, Zhang and Khattak (2010) calculated the influence area based on the 
deterministic queuing models. Later, Sun and Chilukuri (2010) proposed to use the third order polynomial 
equation to dynamically calculate the incident progression curve based on the time after PC occurrence. 
Occasionally, given the accessibility of dense traffic surveillance cameras, the queue measurements were directly 
observed to facilitate the identification of SCs in some studies such as Vlahogianni et al. (2010). Although queue-
based approaches may offer a more accurate and dynamic representation of impact areas they largely depend on 
the number and quality of the available predictors. Considering that the factors affecting queue formation and 
dissipation may vary from case to case, it is likely that the impact areas predicted by these approaches might be 
inaccurate. 
2.1.3. Speed contour map-based approaches 
Empowered by various sensor technologies, several studies have developed the speed contour map-based 
approaches to dynamically identify SCs (Chung 2013; Yang et al. 2013b; Yang et al. 2014b; Dougald et al. 2016; 
Park and Haghani 2016a; b; Goodall 2017; Park et al. 2017). The main idea behind these approaches is to establish 
the speed contour (heat) map based on the speed measurements from various sensor measurements. The time-
space diagram is split into grid cells based on certain time intervals (e.g., 5 min., 15 min, etc.) and milepost of 
sensor stations. In general, each cell is determined to be congested or not based on a criterion similar to this shown 
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below: 
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where, ( , )t sV  represents its current speed; ( , ) 1b
t sV =  means that the cell is congested; ( , ) 0b

t sV =  suggests that the 
cell is not congested; and ( , )

r
t sV depicts its reference speed obtained from historical data. Thus, the IA of a PC can 

be depicted using the congested cells following the occurrence of the PC. If another crash occurs within the 
congested cells area will be identified to be a SC. The key premise is the selection of the reference speed, ( , )

r
t sV  

and for that various approaches have been proposed based on historical sensor measurements. For example, Yang 
et al. (2013a) compared the user-defined percentile speed of historical speed measurements with current speed 
data from loop detectors to obtain the incident-induced impact area. This approach took recurrent congestion into 
account and introduced a user defined weighting coefficient to facilitate both conservative and aggressive mapping 
of the impact area. The binary speed contour plot was then drawn to help identify the pairs of PCs and SCs locating 
in the impact area. Likewise, many others (Chung 2013; Xu et al. 2016) used similar approaches to detect SCs., 
Dougald et al. (2016) and Goodall (2017) adopted the proposed approach in Yang et al. (2013a) by using an 
adjusted assumption on the continuity of the impact area shown on the binary speed contour map. Meanwhile, 
other studies (Park and Haghani 2016a; b; Park et al. 2017) assumed that speed measurements and coefficients of 
variation are related to features corresponding to the Gaussian distributed traffic pattern, and introduced the 
Bayesian structure equation model to capture the congested IA of a PC using the INRIX dataset.  
2.1.4. Shockwave-based approaches  
Recently, traffic flow theory has been employed for the identification of SCs in several recent studies (Zheng et 
al. 2014; Mishra et al. 2016; Wang et al. 2016; Sarker et al. 2017). In general, the IA of a PC is assumed to be a 
triangular shape in a spatial and temporal speed contour constituted by the backward forming and discharging 
shockwaves associated with the occurrence and clearance of the PC. The propagation speeds 

fω  and 
dω  of 

these two shockwaves are calculated based on the changes of traffic flow and density caused by the PC:  

nor p
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where, norq , pq , and satq  respectively denote the normal flow before a PC occurs, the flow when a PC occurs, 
and the flow under road saturation, nork , pk , and satk  represent the density, accordingly. The IA of a PC is 
defined using the triangular area constituted by three vertexes: ( , )p ps t  , ( , )p p durations t t+  , and 1 1( , )s t  , where 
( , )p ps t  represents the starting milepost and time of the PC, durationt  is the PC duration time, and 1 1( , )s t denotes 

the milepost and time of the intersection point of the backward forming and discharging shockwaves. For example, 
Zheng et al. (2014) introduced the simple shockwave model with the queuing line and discharging line to describe 
the IA of a PC. Their model relied on several key assumptions, including that the monthly average hourly traffic 
volume can represent the traffic flow condition when a PC occurred; and queuing process is stable and constant. 
Later, with more enhanced assumptions, modified shockwave-based approaches have been proposed. For example, 
Vlahogianni et al. (2012) used the automatic tracking of moving traffic jams model (ASDA) that extracted both 
traffic information and incident information to define the shockwave-based IA. Sarker et al. (2015), Mishra et al. 
(2016), and Sarker et al. (2017) collected the clearance time that depends on crash type and severity, number of 
vehicles involved, number of lanes, availability of shoulder area, and others, to better estimate the density-flow 
curve of the simple shockwave model for single and bi-directional traffic. To account for the effect when incident 
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response crews arrive at the PC site, Wang et al. (2016) introduced the intermediate speed turning point, and thus 
generated two-piece back-of-queue shockwave lines to re-estimate the IA.  

To further improve the identification performance, in a recent work by Yang et al. (2017b), a data-driven 
analysis framework for the identification of SCs was developed. Clustering methods were firstly introduced to 
automatically classify unlabeled data archived from probe vehicles, and then intelligent approaches including 
multi-stage approximation algorithm, genetic algorithm, and ant colony algorithm were developed to estimate the 
boundary of the IA of a PC to further support the automatic identification of SCs. 
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Table 1. Summary of Studies on Identification of SCs 
Authors Major data needs  Data facts (Total/PC/SC; period; location) Method Identification criteria 
(Karlaftis et al. 1999) Incident 741/ 257/ 257; 1992-1995; Borman Expressway, INDOT Static 1.5km;15min+clearance  
(Hirunyanitiwattana and Mattingly 2006) Incident 354,161/ 15,442/ 15,442; 1999-2000; California highway Static 2 mile; 1 hour 
(Latoski et al. 1999) Incident 8,986/ 689/ 689; 1996; Borman Expressway, INDOT Static 3 mile; 15min+clearance 

(Moore et al. 2004) Incident + loop detector 84,684/ 192/197;1999; Los Angeles Freeway, California  Static 2 mile; 2 hour  

(Sun and Chilukuri 2007; 2010) Incident  5,514/ 397/ 397; 2003; I-70 and I-270 in Missouri Dynamic Incident progression curves 

(Zhan et al. 2008) Crash data 7,903/ 352/ 413; 2005-2007; Florida I95, I75, and I595 Static 2mile; 15min+clearance 
(Zhan et al. 2009) Crash data+ SMART data 7,903/ 221/ 255; 2005-2007; Florida I95, I75, and I595 Dynamic Cumulative arrival; departure traffic delay 
(Khattak et al. 2009) Incident 38,086/ 736/ 764; 2006; Hampton road, Virginia  Static 1 mile, duration of PC (+15 min if lane blocked) 
(Vlahogianni et al. 2010) Incident + monitor + sensor data 1746/ 279/ 279; 2007-2008; Attica Tollway, Greece Dynamic Maximum queue length and queue duration 
(Chou and Miller-Hooks 2009) Incident + simulated traffic data 693/ 27/ 27; 2007; I-693,New York Dynamic Simulated speed contour map 

(Chang and Rochon 2009) Incident 19,309/ 702/ 702; 2010; CHART Static 2 hours + 2 miles; 0.5 hour +0.5 mile for opposite direction 

(Kopitch and Saphores 2011) Incident 9,549/ 528/ 528; 2008; Orange county, CA    Static 2 miles upstream and 2 hours 
(Green et al. 2012) Crash data 9,330/ 362/ 362; 2009-2010; Kentucky’s highway Static 80 minutes; 6,000 ft upstream and 1,000 ft downstream 

(Khattak et al. 2012) Incident 37,934/ 736/ 764; 2006; Hampton road, Virginia Dynamic Segment code; 1 mile, PC duration (+15 min if lane blocked) 
(Vlahogianni et al. 2012) Incident + monitor + sensor data 1,465/ 51/ 51; 2007-2010; Attica Tollway, Greece Dynamic Dynamic threshold by upstream loop detector using ASDA 

(Chung 2013) Crash + sensor data 6,200/ 182/ 212; 2001-2002; Orange county, California Dynamic Dynamic crash impact area using speed contour map 

(Yang et al. 2013b; Yang et al. 2014a; Yang et al. 2014b) Crash + sensor data/virtual sensor data 1,118/ 71/ 100; 2011; 27-mile highway, New Jersey 2011 Dynamic Representative speed contour map 

(Zheng et al. 2014) Crash + hourly volume data + detailed network 7,034/ 67/ 79; 2010; 1,500-mile freeways in Wisconsin Dynamic Shockwave model 

(Imprialou et al. 2014) Incident + monitor + sensor data 1,287/ 126/ 17~68; 2007-2009; Attica Tollway, Greece  Dynamic ASDA, Real influence area method 

(Jalayer et al. 2015) Crash data NA/ NA/ NA; 2010-2013; CARE in Alabama Static 2 miles; 2 hours  

(Mishra et al. 2016; Sarker et al. 2017) Crash data + lane specific traffic sensor data 91,325/ 528/ 570; 2010-2012; Shelby county, Tennessee Dynamic Dynamic simple shockwave  

(Wang et al. 2016) Detailed crash data + loop data 49,753/ 204/ 209; 2010-2012; interstate freeway, California    Dynamic Spatio-temporal shockwave with 1 speed turning point 

(Tian et al. 2016) Incident + crash data NA/ NA/ 326; 2010; Interstate highways, Florida Static 2 miles; 2 hours or 15/30 minutes + clearance 

(Park and Haghani 2016a; b; Park et al. 2017) Incident + INRIX data 1,150/ 125/ 125; 2012-2013; INRIX data along I-695 corridor Dynamic Binary speed contour plot map 

(Xu et al. 2016) Crash + PEMS data 8978/ 97/ 113; 2006-2010; I880 freeway, California Dynamic Speed contour plot map 

(Yang et al. 2017b; Yang et al. 2018) Crash + probe vehicle data Simulated incidents and probe vehicle data Dynamic Clustered trajectories and optimized boundary of impact area  

(Goodall 2017) Incident + RITIS data 2,466/ 340/ 340; 2014; RITIS on I-66 Dynamic Speed contour plot with incident timeline 

Note: CARE: crash analysis reporting environment; CHART: coordinated highways action response team; RITIS: Regional Integrated Transportation Information System; INDOT: Indiana Department of Transportation.
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2.2. Modeling and Predicting SC Risk 
A few studies have examined the underlying relationship between SC occurrences and different contributing 
factors. In general, both parametric and non-parametric models were sought to model the association of SCs with 
external conditions. With the modeled association, it is expected to provide transportation agencies more insightful 
information when developing countermeasures to mitigate SC risks. A summary of the modeling practices is 
provided in Table 2. Information regarding the authors, methods, considered variables, data used, and SC 
identification methods in each study were presented.  
2.2.1. Parametric Approaches 
Existing studies have used several statistical models to analyze the risk of SC occurrence. Among these studies, 
the majority of them (e.g., Karlaftis et al. (1999); Zhan et al. (2008)) have adopted logistic regression models to 
characterize the dichotomous nature of secondary crash occurrence given the presence of a primary crash: occur 
or not occur. In general, the risk of having a SC with respect to a set of contributing factors can be represented as 
follows: 

( )

( ) ( )

1( 1 | )
1 1

eP Y
e e

α β

α β α β

+

+ − += = =
+ +

X

X XX  (5) 

where, 1Y =   denotes that a SC occurs; X   represents the potential contributing factors; β   depicts the 

corresponding vector of coefficients; and α   is the intercept parameter. By estimating and evaluating the 
coefficients, the impact of each contributing factor on the SC risk can be determined. For example, Karlaftis et al. 
(1999) reported that the clearance time of PC, season, type of vehicle involved, and lateral location of PC were 
the most influential variables with regard to SC occurrence. Zhan et al. (2008) analyzed SCs that occurred on 
three corridors in Florida and found that incident visibility and lane blockage durations of PC also significantly 
affected SC risk. Likewise, a variety of potential contributing factors such as weather information, AADT, traffic 
flow information, and road geometry information were also considered as the input of logistic regression models 
in recent studies (Zhan et al. 2009; Kopitch and Saphores 2011; Wang et al. 2016; Goodall 2017). 

Several studies also extended conventional logistic regression models to analyze SC risk. Khattak et al. 
(2009; 2012) proposed a two-level hierarchical prediction approach to account for the issue of measurement error 
of incident duration information. Incident duration was first estimated using an ordinary least square regression 
model and then with a logistic regression model based on the estimated duration time and other factors such as 
weather, road information, and AADT. Second, regarding the infrequent nature of SCs, Yang et al. (2014b) 
introduced the rare-event logistic regression model to account for the bias of estimated coefficients associated 
with the contributing factors. Finally, in order to account for the heterogeneity caused by unobserved factors, Xu 
et al. (2016) developed a random effects logit model to link the likelihood of SC occurrence with the real-time 
traffic flow conditions, primary crash characteristics, environmental conditions, and geometric features. 

Despite the simplicity of logistic regression models, they are incapable of modeling multiple SCs induced 
by an individual PC. In order to understand the mechanism of multiple occurrence of SCs, multinomial logit 
models and other generalized linear models were proposed. For example, Mishra et al. (2016) proposed the 
multinomial logit model as follows: 

1

( )
m

k

V

M
V

k

eP m
e

=

=

∑
 (6) 

where, mV  denotes the utility of event m . The relationship between the probability of one SC, two SCs and 

contributing factors were examined based on the dataset from the Tennessee Department of Transportation 
(TDOT). Later, Sarker et al. (2017) examined the same dataset using a Poisson model, negative binomial (NB) 
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model, NB model with heterogeneous dispersion, and NB model with heterogeneous dispersion and unobserved 
heterogeneity to predict the frequency of SCs (0 SC, 1 SC, 2 SCs, 3 SCs, and 4 or more SCs). Factors, including 
AADT, traffic composition, land use, number of lanes, right side shoulder width, posted speed limits, and ramp 
indicator, were found to be key variables effecting SC occurrences.  

Other than the aforementioned studies, the proportional test and probit models were also used to examine 
the likelihood of SCs. For example, Hirunyanitiwattana and Mattingly (2006) identified the time of day and 
roadway classification to be the contributing factors of SC occurrence through the proportion test on a dataset 
collected from California highways. Instead of using the logit link function, Khattak et al. (2009) proposed three 
binary probit models to examine the interdependence between PC duration and SC occurrence. Specifically, these 
models considered three scenarios: (a) model with observed duration; (b) model with observed duration but no 
closure time; and (c) model with the estimated incident duration. Their findings showed that PC duration, AADT, 
and number of involved vehicles positively affect the likelihood of SCs. 
2.2.2. Nonparametric Approaches 
Several studies also used nonparametric models such as artificial neural networks and decision trees to model SC 
risk. On the one hand, Vlahogianni et al. (2010) developed a Bayesian neural network (BNN) and reported that 
queuing conditions and primary crash duration observed through the close-circuit television camera system 
(CCTV) were the most significant determinants. Later, Vlahogianni et al. (2012) developed a multi-layer 
perceptron neural network models to analyze contributing variables that affect SC likelihood. Regarding the issues 
of such “black-box” models, mutual information and partial derivatives were used to identify potential risk factors. 
Changes in speed and volume, number of blocked lanes, and percentage of trucks were found to be significant 
factors whereas rainfall intensity was found to be less influential. On the other hand, decision tree was developed 
to explore contributing factors based on the prediction results of artificial neural networks. For example, by 
identifying SCs based on the binary speed contour plot map using probe vehicles data, Park and his colleagues 
(Park and Haghani 2016a; Park et al. 2017) proposed the BNN approach and extracted rules to generate gradient 
based decision trees. The main effects of the factors that account for SC occurrences were shown based on the 
decision trees. 

 
2.3. Research on SC Prevention 
Other than the identification and modeling of SCs, very few studies focused on the prevention of SC occurrences. 
The primary countermeasures explored in existing studies include the deployment of the active traffic 
management using changeable or variable message signs (CMS or VMS) variable speed limit control (VSL) and 
connected vehicles (CVs). For example, Kopitch and Saphores (2011) verified the effectiveness of 11 CMS that 
provided real-time traffic information about incidents, work zones, congestion, speed limits ahead, and alerts in 
reducing SC risk. It was found that the effectiveness of CMS increased between 2 and 11.15 miles and decreased 
between 11.15 and 22.3 miles. Li et al. (2014) introduced the strategy of implementing variable speed limit with 
both weather and traffic flow information to mitigate SC risk. Two surrogate safety measures, including time 
exposed time-to-collision (TET) and time integrated time-to-collision (TIT), were found to be reduced by 40 to 
50 percentage in a case study on I-880 in California during heavy rain conditions. Lately, Yang et al. (2017a) 
examined the impact of connected vehicles on improving the situational awareness of drivers to mitigate SC 
occurrences. SC risk, measured by the number of simulated conflicts, was found to be significantly reduced if the 
market penetration rate of CVs on a highway was relatively high in dense traffic conditions. 
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Table 2. Summary of Existing Studies on Modeling Secondary Crash Risk 
Reference Method Considered variable (significant ones in Italic and bold) Data facts (Total/PC/SC; period; & location) 

(Karlaftis et al. 1999) LR Clearance time, season, type of vehicle involved, lateral location, ramp/median, weekday, winter 741/257/257;1992-1995; Borman Expressway, INDOT 

(Hirunyanitiwattana and Mattingly 2006) Proportional test time of day, roadway classification, primary collision factors, severity level, and type of accident 354,161/15,442/15,442;1999-2000; California highway 

(Zhan et al. 2008) LR number of vehicles; number of lanes; PC duration; time-of-day of PC; vehicle rollover; lane closure; environment 7,903/352/413;2005-2007; Florida I95, I75, and I595 

(Zhan et al. 2009) LR primary incident type; primary incident lane blockage duration; time of day; roadway direction; vehicle type, environment 7,903/221/255;2005-2007; Florida I95, I75, and I595 

(Khattak et al. 2009) Probit models Duration; Detection source; Incident type; Response vehicles; AADT; ramp; peak hours; vehicles involved;  38,086/736/764; 2006; Hampton road, Virginia  

(Vlahogianni et al. 2010) BNN maximum queue length; duration of queue; PC duration; Peak time; number of vehicles; distance; vehicle type involved; location of crash;  1746/279/279;2007-2008; Attica Tollway, Greece 

(Kopitch and Saphores 2011) LR Number of vehicles; number of trucks; CMS; road work project; visibility; precipitation; distance; time of the day; day of the week; 9549/528/528;2008; Orange county, CA    

(Khattak et al. 2012) LR (hierarchal) Incident duration; number of vehicles; AADT; peak; lane closure; right shoulder; ramp; bad weather; detection type; location; emergency medical 

services 

37,934/736/764;2006; Hampton road, Virginia 

(Vlahogianni et al. 2012) MLP heavy vehicles involved; travel speed; hourly volume; rainfall; number of blocked lanes; upstream/downstream geometry; duration; collision 

type; number of vehicles; alignment;  

1465/51/51;2007-2010; Attica Tollway, Greece 

(Yang et al. 2013b; Yang et al. 2014b) LR (rare event) duration; winter; rear rend; Time period; severity; work zone; weekend; lane closure; truck involved 1,118/71/100; 2011; 27-mile highway, New Jersey 2011 

(Mishra et al. 2016; Sarker et al. 2017) Linear probability model, LR, ML, and 

GORP 

right shoulder width; Speed limit; AADT; type of median; segment length; truck traffic; single unit truck; multi-unit truck; PM peak; AM peak; 

urban land use 

91,325/528/570;2010-2012; Shelby county, Tennessee 

(Wang et al. 2016) LR shockwave 1,2, and 3 speed; accident process duration; unsafe speed; Crash severity; violation category; weather; tow away; road surface; 

lighting; parties involved; volume; duration 

49,753/204/209;2010-2012; interstate freeway, California    

(Park and Haghani 2016a; Park et al. 

2017) 

BNN, GBDT; logit model location area; incident type; time of day; Number of lanes; traffic operation center; number of vehicles; truck involvement; response delay type; 

severity (guardrail/ramp/normal); require firefighter 

1,150/125/125;2012-2013; INRIX data along I-695 corridor 

(Xu et al. 2016) LR (random effect)  Severity; Collison type; occurrence date; sideswipe; mean/std/cov of speed, occupancy, and count; difference between adjacent lanes on 

speed/occupancy/count; peak; weather; lighting; road surface; lane; width; median width; curve 

8978/97/113;2006-2010; I880 freeway, California 

(Goodall 2017) LR Congestion; incident duration; number of vehicles encounters the incident or its queue 2,466/340/340;2014; RITIS, I-66 

Note: LR: Logistic regression; ML: multinomial logit model; GORP: generalized response probit framework; BNN: Bayesian neural network; MLP: Multiple layer perceptron network; GBDT: gradient based decision 

tree; RITIS: Regional Integrated Transportation Information System 
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Other than the aforementioned countermeasures, some studies also examined the benefits of service 
patrol programs in reducing SCs. For example, Karlaftis et al. (1999) examined the effect of the Hoosier Helper 
service patrol program on the Broman Expressway in Indiana. It was found that the program may help reduce SC 
likelihood by 18.5 percent in winter and by 36.3 percent in other seasons per crash assisted. The delay savings 
and crash cost savings from secondary crash reduction was $568,080 in 1995 that  was 1.38 times of the service 
patrol program cost. Although there was no quantitative assessment, some other studies also mention the use of 
service patrol programs as a helpful countermeasure to reduce SC risk. For example, Khattak et al. (2012) 
suggested the improvement of  coverage of service patrols and towing service on highway chokepoints that have 
higher SC occurrence probability.  

Mitigation of post-crash impacts of SCs rather than prevention of SCs, has also been discussed by some 
researchers. Compared with previous studies that only used PC information, Park et al. (2016) considered the 
evolution of PCs and SCs over time to identify an appropriate location for emergency response units. Linear 
programming approach with relaxed integrality constraint for integer variables was verified to be valid in reducing 
the expected total delay of crashes in a numerical study with data collected on the highway I-695.  

 
3. SYNTHESIS OF ISSUES, NEEDS AND CHALLENGES 
3.1. Identification of Secondary Crashes 
Effective identification is the foundation of all studies on SCs. Its key component is the analysis of the IA of PCs. 
Despite the progress in existing studies, the depiction of an appropriate IA remains a challenging task that has 
direct impact to the quality of outputs. Figure 1 demonstrates a hypothetical primary crash A, a secondary crash 
B and an non-secondary crash (NSC) C and three potential IAs for crash A ( ,a at s∆ ∆ , ,b bt s∆ ∆ , and ,c ct s∆ ∆ ). The 

first and the latter IAs could lead to the underestimation or overestimation of SCs but so far it is unclear whether 
this misidentification is always avoidable. Many research efforts have explored the possible solutions, however, 
there still exist several challenging issues associated with current approaches that are discussed below.  

 

Figure 1. Conceptual demonstration of a PC, SC, and NSC.  
Theoretically, secondary crashes do not only occur on highways, but also on arterials and other types of 

roadways. Existing studies are mainly focused on SCs occurred highways. This is mainly due to the fact that 
relevant data for traffic state estimation are often difficult to obtain from arterials. In addition, an objective 
defitintion of a crash IA on arterials is more complex because of the cofounded effects associated with the queue 
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caused by intersections and traffic controls. 
 

3.1.1. Quantifying issues regarding the impact area of PCs 
The review of existing research has shown that there is no consistent criterion on how to define the spatio-temporal 
threshold values used in the static approaches. These threshold values are critical in representing the IA of a PC. 
However, current selections can significantly affect the identification results and are often too subjective. For 
example, according to Tian et al. (2016), less than 50% of actual SCs would be detected by just reducing the 
temporal threshold. Consequently, a fixed spatio-temporal threshold applied to all scenarios with various traffic 
conditions, roadway geometry, weather, etc. is highly prone to two issues as shown in Figure 1: (a) overestimation 
– the thresholds in the green box are too large and the independent crash C is incorrectly identified to be a SC; 
and (b) underestimation – the thresholds in the purple box are too small to correctly include crash B as a SC.  

Regarding the queuing model-based approaches that intend to dynamically estimate the IA, the major 
issues are the models’ reliability and simplified assumptions. Firstly, current assumptions are often too simple to 
reflect actual traffic conditions. For example, Zhang and Khattak (2010) assumed that the spatial impact of a PC 
only exists within its incident duration period. This assumption can be easily violated if the arrival rate of upstream 
traffic exceeds the downstream departure rate after the clearance of the PC. Meanwhile, each crash scenario is 
subject to a unique queueing process in equation (2) because of different traffic patterns, road geometry, incident 
characteristics, etc. The reliability of the selected queuing model f  is critical. Using an unsuitable queuing 

model can fail to capture the actual IA of a PC. For example, the purple triangle area in Figure 2 cannot identify 
crash B as a SC. Existing studies have developed a number of queuing models, but it is difficult to argue one is 
better than the others because most of their model practices are limited by the available data. In addition, it is 
impractical to build many queuing models for each segment.  

 

Figure 2. Illustration of current modeling issues. 
  
On the other hand, the reference speed is the key premise of speed contour map-based approaches but 

there still remains gaps in appropriately defining it. Some research proposed to use the speed reduction factor to 
classify congestion pattern and non-congestion pattern, but the fixed factor cannot be easily transferred to different 
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time periods and highway segments. A small reduction factor suggests an aggressive threshold to define 
congestion, however, there lacks the examination of its impact on the identification performance. As shown in 
Figure 2, the darker cells represent the congested area. Since no lighter cells exist between crash A and C 
(indicating a significant speed increase between the two events), crash C is incorrectly identified to be a SC. 
Besides, more complex models such as the GMM have been proposed to estimate the reference speed, but the 
computational complexity is too high. Finally, there might exist blank cells due to the incomplete (or insufficient) 
sensor station data and thus greatly affects the identification performance. As an improvement, Yang et al. (2014a) 
introduced virtual sensors to collect crowdsourcing data from third parties such as the Bing map. Nevertheless, 
extensive comparison between the actual sensor stations and the virtual sensors is necessary. Also, the large-scale 
deployment of the virtual sensors requires time-consuming labeling work and is subject to the license agreement 
with the data providers.   

Last but not least, the shockwave-based approaches can dynamically estimate the impact area of a PC 
given the changes of traffic flow and density. Existing studies all used simplified models similar to equation (4) 
to compute the shockwaves due to the PC but the simple triangular area enclosed by the two shockwaves cannot 
well depict the dynamic progression of the traffic states. As shown in Figure 2, the deterministic blue triangle area 
is drawn based on the back-of-queue and front-of-queue propagation waves. Constant shockwave propagation 
speeds were assumed in references (Mishra et al. 2016; Wang et al. 2016; Sarker et al. 2017) other than additional 
unrealistic assumptions such as constant arrival and discharging volumes. In fact, many factors such as the 
proportion of trucks, road geometry, weather, and the non-uniform arrival and discharging flow rates can result in 
non-constant shockwave propagation speeds and form a non-triangular IA (e.g., the area enclosed by green curves 
in Figure 2). Meanwhile, current approaches only examined PCs that induced a queue, and thus the scenario that 
a PC occurs within an existing queue cannot be easily tackled. As the density of the traffic is often difficult to be 
measured, it also requires the analysts to first estimate the density in order to estimate the shockwaves. This would 
accumulate errors in implementing the shockwave-based approaches. 

To further illustrate the limitations of current studies on identifying SCs in actual transportation scenarios, 
the speed heat map based on actual sensor stations were shown. The case study of crashes occurred on the 
Interstate highway I-50 in California is shown in Figure 3. Each cell depicts the speed information of sensor 
stations in 5-min intervals. It should be noted that sensors are not uniformly distributed (66 sensors distributed 
along the 44.7-mile highway section on the westbound, with an average interval of 0.68 mile; and 67 sensors 
distributed with an average interval of 0.67 mile on the eastbound). A yellow or red cell denotes a short segment 
with the relatively low speed and implies potential congestion, whereas a green cell represents high-speed 
conditions. The blue dots represent the spatio-temporal position of the crashes and the cyan lines show the 
corresponding incident duration. Since no correct label was provided, two crashes located in the same congested 
region are denoted as the pairs of PCs and SCs by simply checking their relative positions. There are several 
notable issues. First, the missing data led to the large empty area shown in Figure 3(a). The availability and 
accessibility of sensor station data cannot be easily warranted. In addition, the gaps between sensor stations are 
not uniformly and densely distributed. For example, adjacent sensor stations (e.g., the upper part of Figure 3(b)) 
can have a large gap of about 5 miles that will result in incorrect representation of the speed variation along the 
segment between the two sensor stations. Second, another issue is that the IA of a PC is irregular and cannot be 
simply approximated by using the triangular shape obtained through the shockwave based approach or the 
queueing based approach as shown in Figure 3(a). Third, multiple SCs induced by one individual PC need to be 
examined as shown in Figure 3(b). Last but not least, some cells inside the IA are green while its surroundings are 
yellow or red cells. This requires additional imputation to exclude errors associated with the speed contour map 
caused by missing data or incorrect measurements. In summary, more research endeavor is expected to improve 
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current approaches for identifying SCs with a high performance in practices.  

 

Figure 3. Case study on the identification of SCs on the highway I-50. 
3.1.2. Data related issues and challenges in identification  
Data related issues also significantly affect the performance of SC identification. The major data related issues 
can be grouped into the following categories: (a)crash and/or incident data issues; and (b) traffic data issues 
associated with sensors and/or probe vehicles. 

Incident related data have been frequently used in identifying SCs (Zhan et al. 2009; Sun and Chilukuri 
2010; Vlahogianni et al. 2010; Zhang and Khattak 2010; Vlahogianni et al. 2012). It should be noted that both 
crash and incident data are prone to issues such as measurement error and difficulty in real-time archiving. Critical 
information such as incident duration and severity is often difficult to be timely and accurately obtained. As shown 
in Figure 3, measurements such as  incident duration, number of lanes, and reduced capacity are often needed to 
estimate the incident induced queues. Additionally, crash occurrence time and location are two of the most 
frequently misreported attributes in crash databases (Imprialou and Quddus 2017). If any of these measurements 
is not available or accurate, the estimated IA can be biased, resulting in incorrect identification of SCs. Likewise, 
incident information will also affect the estimation of shockwaves that need to consider the responses of rescue 
crews, the evolution of lane closures, etc. Thus, precise and real-time incident data restricts the use of many 
existing approaches.  
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Table 3.  Incident data in queuing models 

Authors Data Model 

Sun and Chilukuri (2010) Time after PC occurrence Three-order 
polynomial equation 

Zhan et al. (2009) HCM factor, reduced capacity, full capacity, number 
of lanes, arrival rate, departure rate, duration 

Linear equation 

Zhang and Khattak (2010) Arrival rate, departure rate, reduced capacity, normal 
capacity 

Linear equation 

Vlahogianni et al. (2010) CCTV observation, arrival rate, departure rate Observation 

 
Other than crash and incident data, sensor data have also been frequently applied in many recent studies 

(Yang et al. 2013b; Dougald et al. 2016; Park et al. 2017) but are also restricted to their availability, accessibility, 
and precision. First, not all highway sections are instrumented with traffic sensors and/or continually archive 
sensor measurements. However, the performance of speed contour map-based approach greatly relies on the 
reference speed for classifying congested and non-congested periods of each segment. This requires large amounts 
of historical traffic data to obtain reliable reference speed and deal with recurrent congestion scenarios. The lack 
of historical data can significantly limit the application of the speed contour map-based approach for identifying 
SCs. On the other hand, many of current highways only have sparse-distributed sensors due to the high costs 
associated with the installation and maintenance. As shown in Figure 2, the gap between sensor stations 1 and 2 
can be very large and using the speed measurement from either sensor may not accurately capture the speed when 
crash A occurs at the middle of the segment. Similarly, accurate estimation of the propagation of shockwaves 
requires very sensitive measurements of the traffic state changes in terms of flow and density that cannot be easily 
acquired reliably in current sensor deployment practices. The high-density (e.g. 0.1-mile space) installation of 
sensor stations on all highways is impractical.  

Compared with sensor stations, probe vehicle data (measured by devices that use GPS, Wi-Fi, and or 
Bluetooth) can provide more detailed and spatiotemporally disaggregated information of individual vehicles but 
low penetration rate remains an issue. As shown in Figure 2, the blue lines represent the trajectory of probe 
vehicles and the grey lines denote the trajectory of ordinary vehicles (that are often unobservable). Few studies 
experimentally studied the probe vehicle data from INRIX that were aggregated by highway segments (Park and 
Haghani 2016a; b; Park et al. 2017). However, such measurements cannot perfectly capture the prevailing traffic 
conditions, especially when the PC (e.g., A) occurs in the middle of the link 1L  or 2L  (see example in Figure 
2). The real-time probe data of individual vehicles can significantly improve the estimation performance of 
shockwave as well as speed contour map-based approaches. Nevertheless, it takes time to accumulate an 
acceptable market penetration rate and such solutions are also subject to the relatively high cost of data acquisition 
and processing. 
3.1.3. Verification of SCs 
As it has been discussed in section 2.1, there are different approaches that can be used for SCs identification. A 
key issue is also the further verification of the identified SCs. Up to date, there are no well-established approaches 
in the literature for the verification of the identification performance. Nonetheless, two viable methods can be 
considered: (a) manual verification by reviewing police reports; and (b) reviewing surveillance camera recordings. 
There are still challenges in widely implementing these approaches firstly due to limited data availability. 
Additionally, even police reports and video recordings exist they are often difficult to be obtained due to privacy 
concerns and/or restrictions. Moreover, manually reviewing of police reports and/or video recordings can be time 
consuming. Although the police narrative is an important resource for verifying SCs, it should be also mentioned 
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that many crash databases do not contain it nor do transportation agencies’ guidelines require the inclusion of 
them in crash database (Montella et al. 2013). The unavailability of the electronically documented narratives in a 
crash database creates additional challenges in reviewing, i.e., it might be difficult to read and interpret illegible 
handwriting. In literature, based on the detailed police reports, Zheng et al. (2015) have attempted to use police 
narratives to verify the identified SCs. Text was extracted from police narratives based on optical character 
recognition and then relationship keywords and event keywords were collected to assess the likelihood of a 
secondary crash. However, the success of the proposed automatic text mining procedure relies on an appropriate 
threshold to eliminate false negatives while minimizing false positivesthus, more sophisticated language 
processing techniques for complex police narratives were proposed for future studies. 

An early study by Fries et al. (2007) has demonstrated the benefits and costs of traffic camera recordings 
in  incident detection and verification. Theoretically, if the studied roadway is under constant surveillance 
through cameras, one can playback the archived videos in verifying secondary crashes. With the videos, and the 
time and location as well as the queuing process of the crashes can be accurately extracted (Vlahogianni et al. 
2010). However, to link two crashes as a pair of primary and secondary crashes, still requires analysts to 
subjectively determine whether the later crash was related to the interrupted traffic caused by the earlier crash. 
The level of interruption is often difficult to be distinguished visually, especially when there was no severe 
congestion. Additionally, it could be difficult to track the relationship between a pair of  crashes that occurred 
far away from each other, in particular when no continuous video coverage along the road section was available. 
 
3.2. Modeling and Analysis of SC Risk 
Existing research on modeling SC risk have been conducted since 1999 and the major problems associated with 
the modeling practices are discussed below. 
3.2.1. Model specification issues 
Despite the simplicity, many parametric models cannot be used to predict multiple secondary crashes occurred in 
the presence of a PC. Existing practices mainly assumed that each PC can be paired with only one SC when 
assembling the data set for modeling. Naturally, models such as the logistic regression can be used to work with 
the assumed dichotomous outcomes. However, it has been frequently reported in literature that some PCs can 
induce more than one SC (e.g., Khattak et al. (2009); Mishra et al. (2016); Sarker et al. (2017)). Thus, the sequence 
of these SCs cannot be easily depicted in these parametric models. Although ordered and/or multinomial 
logit/probit models can be an alternative, they require modelers to define at least three categories of the outcomes, 
for example, no SC, one SC, and two or more SCs. In addition, users should be aware of the imbalance issue of 
these defined categorical outcomes. In particular, the higher-order category is expected to have a considerably 
small proportion in regard to the total number of crashes. Moreover, many PCs do not cause any SC. Therefore, 
any candidate model should take into account such imbalance issue and excessive none-event scenarios.  

Another major issue is that current parametric modeling practices lack the validation component. 
Existing practices mainly focused on the explanation of risk factors contributing to SC occurrences. Most of them 
have made great efforts in calibrating the predictive models but few have specifically validated the developed 
models. The key findings regarding the contributing factors were only limited to specific datasets and may not 
have good transferability. In addition, there exists the risk of overfitting the models with the individual dataset. 
As a result, despite that some common factors such as longer incident durations were found to significantly affect 
SC occurrences (Hirunyanitiwattana and Mattingly 2006; Yang et al. 2014b), inconsistent findings frequently 
occurred among studies. For example, incident visibility was found to be the critical factor in Zhan et al. (2008), 
whereas it was not significant in Kopitch and Saphores (2011). Thus, it is strongly suggested that more validation 
tests should be sought to examine the predictive performance of the proposed models.    
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On the other hand, nonparametric models such as BNN have better predictive performance but the flip 
side of this is the somewhat limited explanatory capability of the contributing factors (Vlahogianni et al. 2010; 
Vlahogianni et al. 2012). These contributing factors are subject to model structures of black-box character. Due 
to the complex and nonlinear transfer and activation functions, no solid and theoretical interpretation of the 
relationships between the input risk factors and SC occurrences is available. Alternatively, several techniques 
including mutual information, partial derivatives, and decision tree have been used to enhance the capability to 
determine the contributing factors (Vlahogianni et al. 2010). Nevertheless, it should be noted that current 
nonparametric approaches are also subject to many of the issues associated with parametric approaches, for 
example, exclusion of multi-SC scenarios, imbalance of events and event-free scenarios, limited validation tests, 
etc. In addition, they often employ more complex model structures and the parameter calibration is 
computationally expensive. Currently, there lacks guidance on the selection of the model hyper-parameters such 
as the number of hidden layers, hidden units, and their initial weighting values. This means that the end user must 
design a suitable model tuning strategy by a costly trial-and-error analysis. Therefore, it is difficult to use them in 
real-time prediction of SC occurrences. The balance between the computational complexity and the prediction 
accuracy needs to be carefully addressed to facilitate the implementation of these models in practice.    

Finally, model variable selection was not well considered in current SC modeling practices. Although 
many contributing factors can be considered as the input variables, simply including all factors may lead to multi-
collinearity issues and can result in counterintuitive findings. Currently, only few studies have conducted the 
variable selection but the performance need to be further investigated. For example, Zhan et al. (2009) proposed 
a forward conditional criterion to add one best-fit variable at a time during the regression process. Nevertheless, 
correlations between the independent factors may still exist. In addition, since some key factors may not be 
available, latent variables should be considered in the modeling structures. For example, random effect models 
can be used to address the impact of unobserved variables and result in improved prediction performance 
compared with standard logit models (Xu et al. 2016). However, the model calibration is complex and cannot be 
easily transferred to other datasets. Guidance on the adoption and estimation of different variables in SC prediction 
models would be particularly useful for future analyses.  
3.2.2. Data related issues and challenges in modeling 
Despite of the aforementioned model specification issues, data related issues also significantly impedes the 
development of reliable models for predicting SC risks. The major data related issues can be grouped into the 
following categories: (a) offline data issues; (b) real-time data issues; and (c) obtaining and incorporating 
contributing risk factors. 

Contributing risk factors derived from offline data sources such as police crash reports are prone to issues 
such as imprecision, measurement error, and missing data. Firstly, the spatial and temporal scales of many modeled 
variables were too abstract to reflect the actual conditions in the presence of a PC. For example, the frequently 
used AADT in models (e.g., Khattak et al. (2009); Mishra et al. (2016)) only represents traffic flow conditions at 
an aggregated level and cannot exactly reveal the traffic conditions in each crash scenario. Secondly, risk factors 
like incident duration time are subject to measurement errors due to inaccurate reports on incident time, delayed 
information communication, etc. Although some studies (e.g., Khattak et al. (2012)) have proposed estimation 
algorithms to approximate incident durations, they cannot warrant the performance due to their own model issues 
(e.g., simplified model structures and assumptions). Finally, not all risk factors such as accurate incident location 
and detailed road geometric characteristics are fully available in each modeled dataset. This forces analysts to 
only consider the available variables while excluding some more important ones in modeling. A detailed offline 
data selection and acquisition plan, thus, is expected to guide analysts to acquire the necessary data for developing 
more reliable prediction models.  
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On the other hand, some studies used real-time traffic data in models. However, the accessibility remains 
an issue. Real time traffic monitoring systems are not always available in different regions and time periods. Thus, 
not all crash scenarios can be linked with the prevalent traffic flow data. For example, Vlahogianni et al. (2010) 
reported that more than 50 percent of the crashes cannot be linked to the avaiable hourly lane volume and travel 
speed information from the dense closed-circuit television camera system on the Attica Tollway in Greece.  

Meanwhile, real-time information archived from data sources such as loop detectors and probe vehicles 
(e.g., INRIX data) are also often not precise enough to match the conditions of a PC. As shown in Figure 4, one 
PC occurred at 9:32 and the orange box denotes its impact area. In case of the loop detector scenario (Figure 4(a)), 
it is unclear which loop detector should be considered for extracting the traffic flow data for modeling (e.g., flow, 
speed, and/or occupancy). The downstream sensor station 1, the upstream sensor station 2, or the others? Also, 
should the measurements of one lane or multiple lanes be used in the models? Likewise, the measurements of 
which period should be considered? For example, Xu et al. (2016) used the traffic data collected between 5 and 
10 minutes prior to the PC occurrence to count for the potential inaccuracies in reported crash time, whereas 
Vlahogianni et al. (2012) extracted traffic information measured 10 minutes after the PC occurred to better capture 
post incident traffic conditions. It is not known which application is more effective. Thus, there should be a clear 
guidance on the use of the traffic measurements. In case of the probe vehicle scenario (Figure 4(b)), similar 
problems also present. Current studies used the link-level traffic measurements aggregated from probe vehicle 
data (e.g., INRIX data) in modeling SC occurrences (Park and Haghani 2016a; Park et al. 2017). Should the 
measurement of 1L  or 2L  be used? Which period should be considered? In fact, none of the link measurements 
can perfectly represent the traffic conditions under the PC scenario, especially when the number of probe vehicles 
is small and a PC occurred in the middle of a long link. Not only the traffic conditions at the onset of a PC affect 
the risk of SCs, but also the incoming traffic post the occurrence of PC. In other words, the upstream varying 
traffic (e.g., the ones approaching link 4L  in Figure 4(b)) will also dynamically change the SC risk. However, 
the inclusion of these traffic information in the prediction model will be difficult as the arrival traffic changes 
spatio-temporally. 

 

Figure 4. Collecting real-time traffic measurements: (a) sensor stations; and (b) probe vehicles. 
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Another major issue involves the use of limited risk factors to predict SC occurrences. The inconsistent 
use of different variables in current modeling practices implies that it is impossible to collect and incorporate all 
possible factors in the model. As shown in Figure 5, despite the agreement on certain factors such as incident 
duration, many factors were found to have inconsistent impacts on SC risk. Based on the existing papers, the most 
frequently used risk factor is time of the day, but only half of the studies reported it to be significantly related to 
SC occurrences. Likewise, the number of lanes was found to be negatively related to SC occurrences in two 
references whereas it was identified to be insignificant in the other three references. Most studies find that longer 
incident duration leads to higher risk of SCs (Vlahogianni et al. 2012; Yang et al. 2014b; Wang et al. 2016; Park 
et al. 2018). It should be noted that some factors such as visibility have been rarely used in current studies and 
should be considered in future studies. In summary, the selection of candidate risk factors regarding the prediction 
of SC risk need to be carefully considered as no clear guidance is available. 

 
Figure 5. Significance of contributing risk factors in existing studies. 

 
3.3. Development of Countermeasures for Reducing SC Risk  
Based on the identification and modeling of SC occurrences, few countermeasures for mitigating SC risk have 
been investigated. Existing studies mainly explored the potentials of the advanced warning, traffic control, and 
effective incident management in reducing SC risk: (a) by taking advantage of real-time traffic and incident 
information, advanced warning aims to provide drivers a more informed driving environment upstream; (b) 
empowered by the ITS solutions, active traffic control can help reduce the fluctuation of traffic flow operations; 
and (c) responsive traffic incident management programs help minimize the impact of incidents post their 
occurrence. Although the potential benefits of these countermeasures are perceivable, there are still many 
challenges to make them more readily deployable. 

One major challenge is where, when, and how should the information of the PC be transmitted to alert 
drivers. Firstly, the effect of the incident information will decrease with the increase in its propagating distance 
along a roadway. For example, Kopitch and Saphores (2011) found that the impact of the CMS decreased after 
11.15 miles. Nevertheless, defining the range of information sharing will be difficult because each PC may have 
a different spatio-temporal impact on traffic. For example, given a PC in Figure 6, should the crash information 
be posted on the nearest CMS or all the upstream CMSs? Should the CMS be supplemented with radio information 
to alert drivers about the incidents and to provide them ample time to react to downstream traffic changes? How 
long should the message last? If out-of-date information was frequently provided, drivers may disregard CMS 
information. Similarly, the implementation of the VSL under incident condition also needs to resolve the spatio-
temporal coverage issues. When connected vehicles are used as the medium to share incident information, an 
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immediate question to ask is its effectiveness under low penetration condition. For example, Figure 6 shows that 
only a limited number of CVs are present and their impacts on the overall traffic flow may not be notable.  

 

Figure 6. Possible countermeasures to prevent secondary crashes. 
 
In fact, most of existing highways only have a limited number of CMS and VSL. CMS and VSL are often 

sparsely distributed along the highways. In addition, not all vehicles and roadways are equipped with sufficient 
sensor devices or roadside units to facilitate information sharing. Adding additional infrastructure and hardware 
is also subject to high cost. These issues together largely restrict the widely use of existing countermeasures for 
reducing SC risk.  

Obviously, quickly clearing a PC from the roadway will minimize its impact on traffic flow. However, 
this requires an effective highway service patrol and incident response program. Two approaches, including 
installing closed circuit televisions system in Karlaftis et al. (1999) and allocating emergency response with 
optimized distributions in Park et al. (2016), have been examined. The implementation of such countermeasures 
is challenging due to the limited resources available (e.g., patrol vehicles, personnel, traffic surveillance systems, 
etc.). The allocation of these resources should be well investigated. In addition, each PC may occur at different 
condition and consequently result in different impact. Any fixed incident response program may not work 
effectively. For example, a patrol vehicle in Figure 6 may get stuck in a long queue and delay the process of crash 
clearance. Thus, research on the preparedness of incident management deserves more efforts.     

 
4. POTENTIAL OPPORTUNITIES AND FUTURE RESEARCH DIRECTIONS 
Based on the knowledge gaps with respect to the identification, modeling, and prevention of SCs in existing 
literature, this paper also examined some potential opportunities and research directions that deserve more 
investigations in future work. 
4.1. Fusing data from different sources for SC identification 
With the development of intelligent transportation systems (ITS), more and more data sources are becoming 
available. This provides many opportunities to revisit the estimation of the IA associated with PCs. As shown in 
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Figure 7(a), other than the conventional sensor stations, probe vehicles and CVs are emerging as the new sources 
for obtaining high-resolution traffic measurements to estimate the IA of PCs. If additional traffic measurements 
were available for the part between two spaced inductive loops, it would be very useful for the characterization 
of the evolution of traffic states. As discussed earlier, it is often impractical to install additional sensors to bridge 
the large gap between existing sensor stations, for example, stations 1 and 2 in Figure 7(a). Alternatively, the 
virtual sensor stations introduced by Yang et al. (2014a) can be considered to provide traffic speed estimation for 
the highway section divided into shorter segments. Rather than relying on map information, probe vehicles and/or 
CVs that collect valuable information from in-vehicle devices such as smartphones, GPS, Wi-Fi receivers, and 
Bluetooth can be integrated with traditional sensor measurements. For example, the original two sections 1L  and 

2L  in Figure 7(a) covered by sensor stations 1, 2 and 3 can be divided into five short segments associated with 
six blue virtual sensors shown as the triangular markers. The speed of each segment can be re-estimated based on 
the fusion of data from both sensor stations, probe vehicles, and/or CVs. For instance, the blue dots in Figure 7(b) 
represent the sampled trajectory points with speed measurements. Integrating these measurements with archived 
sensor data can obtain enhanced speed estimation for each cell between two virtual sensors shown in Figure 7(c). 
For example, the speed information of virtual sensors 2 and 3 can be estimated based on traffic information of 
sensors 1 and 2 and all probe points located on the road segment. Various approaches such as linear, nonlinear 
interpolation, and shockwave based can be considered. Thus, the IA of the PC can be better estimated with the 
smaller cells constructed by the virtual sensors. Nevertheless, an immediate task that deserves attention is to 
investigate the appropriate data fusion algorithms that facilitate the aggregation of the measurements from 
different sources. 

Although there are already some actual CV datasets available, their usability requires further exploration. 
For example, the Safety Pilot Model Deployment (SPMD) program1  collected connected vehicle data from 
approximately 3,000 onboard vehicle equipment and 30 roadside equipment (RSE) in Michigan (Xie et al. 2017). 
However, no studies have examined their potentials in SC identification. The problems such as the necessary 
market penetration rates of CVs deserves specific investigation in the context SC analysis. Also the problem of 
missing data because some segments may not have any measurement from probe or CVs in some extreme 
conditions needs to be also addressed. How to impute the speed for these measurements also needs more attention. 
It is expected that an efficient and valid solution to these issues can leverage the value of these emerging data 
sources and significantly increase the performance of SC identification and risk prediction.  

                                                           
1 https://www.its.dot.gov/factsheets/safetypilot_modeldeployment.htm 
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Figure 7．Data integration: (a) road system with multiple data sources; (b) actual sensor 

stations; and (c) virtual sensor stations. 
 

4.2. Using advanced learning algorithms for real-time SC analysis 
Advanced learning algorithms have drawn increased attention to many researchers in transportation field (Halim 
et al. 2016). Many approaches such as genetic algorithms (GA), supervised learning, dimensionality reduction, 
reinforcement learning, and deep learning have been explored. They have been used for addressing problems 
associated with driving safety, vehicle crash prediction, etc. With the increasing possibility of acquiring massive 
high-resolution sensor data, many learning algorithms are promising in capturing the nonlinear relationship 
between SC risk and limited contributing factors.  

The performance of some approaches such as the BNN has already been examined and were found to 
outperform those simple parametric algorithms (Vlahogianni et al. 2012). However, the use of advanced learning 
algorithms for real-time analysis is not yet entirely solved yet. Firstly, the selection of the advanced learning 
algorithms needs to be carefully conducted. For example, should convolutional neural network (CNN) or support 
vector machine (SVM) be selected under datasets with different sizes? Secondly, the computational complexity 
of each algorithm needs to be alleviated while maintaining the performance for real-time SC analysis. Thirdly, the 
scope of the real-time analysis needs to be defined. A spatio-temporal window has to be applied to extract 
necessary data as the input for advanced learning approaches. However, it is obscure to choose the appropriate 
window size and analysis duration. For example, should the traffic flow information be updated every five minutes? 
A small time interval such as 30 seconds for data collection and processing may be too frequent and result in 
unnecessary computation burden, whereas a large time interval may not provide satisfied performance in capturing 
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the changes of traffic states. If these issues can be resolved, some other approaches such as survival analysis can 
also be considered to model the risk of SCs. In other words, there exist potentials for adapting advanced learning 
approaches for real-time SC analyses but special attentions should be made in deploying them appropriately and 
efficiently. 
 
4.3. Deploying CVs for SC prevention 
Compared with CMS and VSL signs, the emerging CV technologies that use wireless short-range communication 
offer real-time information sharing channels. Thus, CVs not only provide valuable data sources for SC 
identification and prediction, but also grant promising solutions to prevent SCs by timely sharing safety messages 
with approaching vehicles. CVs with a reasonably high penetration rate facilitate the construction of a high-
resolution  speed contour map. Given a sufficient number of CVs, even the precise impact boundary (e.g., the 
yellow boundary) shown in Figure 7 (c) can be approximated. More importantly, CVs enable the real-time 
information to alert incoming traffic and maintain a more stable traffic flow. For example, TIM agencies can 
adaptively reduce the speed limit upstream of the PC and transmit such information to remind target drivers as 
shown in Figure 8. The benefit of using CVs to mitigate SC risk has been lately examined in Yang et al. (2017a). 
PC information can be shared with CVs through safety message, thus drivers can optimize their driving behavior 
such as car following and lane changing for safety. Meanwhile, drivers with conventional vehicles can passively 
interact with surrounding vehicles, and assess information such as CMS and VSL to adjust their behavior. It was 
shown that CVs can help drivers make more informed driving responses to reduce SCs risk even with a relative 
low market penetration. However, it should be noticed that the impact of CVs in low volume conditions with an 
extremely low penetration rate (such as 1%) might be too trivial to prevent SC occurrences. Thus, there will be a 
transition period that information dissemination will mainly rely on other media (e.g., CMS) to support mixed 
traffic environment with few CVs.  

 
Figure 8 . Deploying CVs for SC prevention. 

 
Despite the potential of CVs for preventing SCs, there still exists issues such as possible communication 

delays and information package loss that need to be further addressed. It needs to be noted that these issues will 
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be more severe in heterogeneous CV networks. When dedicated short-range communication (DSRC) or road side 
units (RSUs) are assumed to be the major techniques for transmitting information about PCs, communication 
techniques such as Wi-Fi and WiMAX can also be implemented to construct the heterogeneous communication 
network to support more CVs. Since it is impractical to examine countermeasures such as dynamic CMS and VSL 
information in actual crash conditions, simulation software such as SUMO, Paramics, and Vissim can be used 
with communication simulators (e.g., NS3) to conduct simulation and validation tests for both communication 
mechanism and traffic interaction mechanism. Driving simulation can be used to train drivers to respond to the 
information from CVs, CMS, and VSL appropriately. It is expected to help researchers address the impact of 
issues such as handoff delay and assess the deployment of CVs for SC prevention. 

 
5. CONCLUSIONS 
As indicated in the preceding discussion, while a substantial amount of research efforts have been invested in SC- 
related studies, there still exists several formidable problems in terms of SC identification, prediction, and 
prevention. In the past two decades, the advances in SC identification techniques can now enable analysts to 
dynamically estimate the impact area based on crash and traffic information. Despite the increasingly attention to 
the identification of SCs, their verification is still challenging as no practical solutions are available for large-scale 
analysis. Meanwhile, other than the frequently used parametric approaches, innovative non-parametric approaches 
have also been introduced to improve the performance of predicting SC occurrence. Their predictive performance 
and model transferability were not well testified. Moreover, the investigations on the prevention of SCs have been 
inherently limited by the available data, expensive cost, and thus still need continuous endeavor.  

The anticipated availability of high-quality real-time data emerging from probe vehicles sourcing data 
from GPS, Wi-Fi, Bluetooth, and/or connected vehicles holds considerable promise for the future development of 
methods for SC analysis. Combined with the intelligent learning approaches, the real-time identification, 
prediction, and prevention of SCs will be possible. One can expect that the refinements of advanced algorithms 
and data fusion approaches can provide new insights into the mechanism of SC occurrences as well as their 
prevention. 
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