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Abstract 

Abstract 

The structural and magnetic properties of perovskites SrRu03, CaRU03. Sr(1_x)CaxRu03 

(x= 0.5, 0.75) and the layered perovskite Sr2Ru04 have been investigated using X-ray 

diffraction, neutron scattering and SQUID measurements. SrRu03 is ferromagnetic with a 

transition temperature of Tc=162K. It remains orthorhombic up to 450K. CaRu03 is 

paramagnetic down to 2K and shows no structural phase transition between 2K and 

300K. Sr2Ru04 is neither magnetically ordered nor does it changes its crystallographic 

structure between 2K and 450K. The nature of the magnetism in SrRu03 has been found 

to originate from itinerant 4d band electrons.CaRu03 possesses a narrower 4d band 

compared to SrRu03. The width of the 4d band in CaRu03 does not allow any magnetic 

order. The unit cell differences between SrRu03 and CaRu03 are also due to the band 

structure. Paramagnetic neutron scattering also supports the notion of itinerant 4d band 

magnetism in these ruthenates. 
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1.1 General Introduction 

Chapter 1 
Introduction 

Transition metal oxides exhibit a variety of physical properties. The discovery ofhigh-Te 

cup rate superconductors [1] has drawn much attention to transport in metal oxides, 

particularly to those which have perovskite-related structures. Among those, the series of 

ruthenium oxides have very interesting structural, electrical, and magnetic properties [2]. 

The crystallographic structure and magnetic structure of the layered ruthenates 

Srx+lRux03x+I (SrRu03 when x= 00 and Sr2Ru04 when x=l) and SrxCal_xRu03 (x= 0, 0.5, 

0.75) have been investigated using X-ray diffraction, neutron scattering and SQUID 

measurements to determine the electron correlations in Ru-based oxides. 

The n = 1 compound Sr2Ru04 is the first example of an unconventional noncuprate 

layered perovskite superconductor at low temperatures (Te =0.93K) [3, 4]. Magnetically 

it is a paramagnetic metal. 

Since the observation of superconductivity in La2_xBaxCu04 (LBCO) [1], several 

superconducting copper oxides have been discovered, forming a new class of 

superconductors with remarkably high transition temperatures, namely high-temperature 

superconductors (HTSCs). The most peculiar feature commonly seen in HTSCs is that all 

of them have a layered perovskite crystal structure containing a planar CU02 network. It 

has been well recognized that, in the CU02 planes, significant and large hybridisation 

between the Cu d(x2-lJ and 0 pO' states is a crucial factor in describing the electronic 

structure as well as the strong correlation on the Cu site. A number of efforts have been 

made for some years to find a layered perovskite superconductor without copper .but no 

one has succeeded until very recently. Maeno et al. [3,5] discovered superconductivity at 

0.93 K in the non-copper-oxide Sr2Ru04 with the same crystal structure as LBCO [5]. 

The crystal structure of Sr2Ru04 is of the K2NiF 4 [6] structure type which is real ized for a 

considerable number of compounds with the general composition A2BX4 [7, 8]. The 

structure can be built up theoretically by perovskite mono layers stacked along the c-axis 

where the layers 1 and 3 are ABX3 perovskite cells centred with atoms of type A, while 

layer 2 is centred with B atoms. 

2 



Chapter 1 
Introduction 

The n = CX) compounds SrRu03, CaRU03 and Sr(1_x)CaxRu03 have also a layered 

perovskite structure with a similar crystallographic structure. In despite of the similarity 

in crystallographic structure, the magnetic properties show quite different behaviour [9, 

10]. 

Perovskite SrRu03 has been known for quite some time [11]. However, it has become 

the subject of considerable attention lately, both because of its relationship with the 

unconventional superconductor Sr2Ru04 and because of its unusual position as a 4d 

metallic perovskite oxide ferromagnet. The Curie temperature is high, T~165K, and the 

magnetisation of 1.6±OA J.1B/Ru [4, 12] is significant. The octahedral crystalline electric 

field of 0 atoms splits the fivefold degeneracy of the Ru 4£1 configuration into a triplet 

(t2g) ground state, two-third occupied, and a doublet (eg) excited state, which is 

unoccupied [13]. 

SrRu03 occurs in a distorted perovskite structure, specifically, of the GdFe03 type, with 

orthorhombic Pnma symmetry as is typical in perovskite with an A-site cation that is too 

small relative to the B-site. The distortions consist of rotations of the oxygen octahedra 

with very little change in Ru-O bond lengths [14, 15]. 

In addition SrRu03 exhibits a structural phase transition at high temperatures. At room 

temperatures it has an orthorhombic structure (a:,rb;rc, where a=5.5304(1) A, b=7.8446(2) 

A and c=5.5670(1) A [14]). At 823 K it changes to a tetragonal structure (a=b;rc, where 

a=b=:5.5784(2) A and c=7.9078(78) A) and at 973 K it becomes cubic (a=b=c=3.9557(1) 

A) [16]. 

CaRu03 has the same crystal structure and symmetry as SrRu03, with the exception that 

the octahedral rotations are approximately twice as large, reflecting the smaller size of the 

Ca2
+ ion relative to Sr2+ [13]. Although initially reported as antiferromagnetic [17], it is 

now established to be a paramagnetic metal down to low temperatures [15, 18]. The 

LSDA (Local Spin Density Approximation) calculations for CaRu03 but using the crystal 

structure of SrRu03 yield magnetic properties that are practically the same as those of 
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SrRu03. The difference between CaRu03 and SrRu03 is therefore clearly structural in 

origin [4, 17] .. 

In the literature it is claimed that the CaRu03 has a cubic structure with a=b=e=3.91O(1) 

A [19]. However, no cubic structure has been observed in any scattering experiment. 

Ca dopped SrRuO] compounds, Sr(1-x)CaxRU03 compounds have similar crystallographic 

structure and symmetry compared to SrRu03. The unit cell volume decreases with 

increasing x and the magnetisation vanishes for x?O.7 [13]. Here, again the diameter 

differences between Sr2+ and Ca2+ plays an important role for the altering of the 

crystallographic structure. 

1.2 Main Objectives of the Research 

Ruthenium oxides exhibited a wide variety of physical properties. SrRu03 and CaRU03 

show metallic properties at room temperature. The outstanding difference in magnetic 

properties of SrRu03 and CaRu03 render solid solutions of Sr(1-x)CaxRU03 quite 

interesting. SrRu03 is ferromagnetic below Tc=160K, whereas CaRu03 follows a Curie

Weiss law at high temperatures with a negative Curie-Weiss constant. On the other hand 

Sr2Ru04 is an unconventional superconductor at Iow temperature (Tc=1.2K). All this 

variety arises from the magnetic and electronic structure of Ruthenium oxides. 

The magnetic and electronic structure can be understood by magnetic measurements and 

polarized neutron scattering experiments. In addition to this, the differences in 

crystallographic structure also play an important role for their physical properties. With 

the aid of neutron scattering and X-ray diffraction the crystallographic structure can be 

obtained. 

Details of the electronic correlations as seen in the magnetic behaviour can be 

investigated using spin polarised neutron scattering. Such an experimental method will 

focus on the electrons close to the Fermi level, which are also the most relevant for 

determining the thermodynamic properties ofthese compounds. 
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To start the investigation first a detailed crystallographic structure determination is 

carried out and presented. Secondly, the magnetic properties of some compounds are 

investigated. Finally, a polarised neutron scattering experiment is performed in order to 

determine the details of the magnetic behaviour on an atomic scale. 

1.3 Structure of the Thesis 

The thesis is divided into four chapters. 

Chapter one is a general introduction to the research which has been carried out. It 

points out the aims and gives a short introduction to various aspects of physics which 

have been relevant for'this thesis. It also gives a brief introduction to the properties of 

compounds and the path that has followed during the research. 

Chapter two covers the background of the theory of X-ray scattering, neutron scattering, 

magnetism and refinements. It also gives a description of crystal field theory as applied to 

Ruthenium oxides. 

Chapter three presents all the experimental results which have been obtained. Detailed 

information and results of X-ray diffraction experiments, neutron scattering experiments 

and magnetic measurements are presented in this section. 

Chapter four is a discussion of the experimental results. It also contains the conclusion of 

the whole thesis. 

5 
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2.1 X-rays 

2.1.1 Introduction 

Chapter 2 
Theoretical Background 

X-rays are electromagnetic radiation of short wavelength, and can be produced by the 

sudden deceleration of rapidly moving electrons inside a target material. If an electron 

falls through a potential difference of V volt, it acquires energy of e V electron-volt (e V), 

where e is the charge of an electron. This energy may be expressed as quanta of X-rays of 

wavelength A., where each quantum is given by 

A=~ 
eV 

(2.1.1) 

h being Plank's constant and c the speed of light in vacuum. Substitution of numerical 

values into (2.1.1) leads to: 

A = 12.4 [A] 
V 

(2.1.2) 

where V is measured in kilovolt and A. is given in Angstrom. The wavelength range of X

rays is approximately 0.1-100 A. For the purposes of practical X-ray crystallography, the 

range used is approximately 0.6-3.0 A [1]. 

X-rays are produced through the impact of electrons on a metal target (anode). The most 

widely used source of X-rays is the sealed hot-cathode tube. In such a device, electrons 

emitted from a heated tungsten filament (cathode) are accelerated by a high voltage (40 

kV or more) towards a water cooled target anode, usually made of copper or 

molybdenum. A large proportion of the energy reaching the target is dissipated as heat on 

account of multiple collisions within the target material, but about 10% of the energy is 

converted to X-rays. As a consequence, the device can be operated with a higher current 

density resulting in a more powerful source. If the energy e V is not too high, there will be 
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Chapter 2 
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a continuous distribution of X-ray wavelengths, or white radiation. As the accelerating 

voltage Vis increased, the intensity of the radiation increases. 

At a certain higher value of Vm the impinging electrons begin to excite inner electrons in 

the target atoms. Then, other electrons from higher energy levels fall back to the inner 

levels. This transition is accompanied by the emission of X-rays, characteristic for the 

material of the target. In this case, the X-ray wavelength depends on the energies of the 

two levels involved, El and E2, such that 

(2.1.3) 

4 KC! 

0.4 0.8 1.2 1.6 

LambdaAxis [A] 

Figure 2.1.1: Characteristic K spectrum/rom an X-ray tube, superimposed upon the white radiation 
(continuous spectrum) 

Figure 2.1.1. illustrates the curve of radiation intensity against X-ray wavelength, when 

the accelerating voltage is sufficient to excite the K spectrum of the target metal. The K 

spectrum consist of the Ka and Kp wavelengths, which are always produced together, and 
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correspond to electrons falling back from the L and M levels, respectively to the K-shell. 

Two slightly different L energy levels exist, so that the important Ka spectrum consist of 

two components of closely similar wavelength, Ko.I and K0.2. The wavelength of K 

radiation for a target material of copper are Kp=1.3926 A, Ko.I=1.54056 A and 

K0.2=1.54437 A respectively. The mean value for Ko. is obtained by averaging the Ko.I and 

K0.2 wavelength in their intensity ratio of2:1, thus giving the average value of 1.54183 for 

Ko.; the Ill- 112 doublet is resolved when the scattering angle is large, that is, at high values 

ofthe Bragg angle B [1,2]. 

2.2.2 Bragg Law 

When X-rays of wavelength')... are directed onto a correctly oriented single crystal at an 

angle B, diffraction will occur which arises due to parallel atomic planes of separation d. 

The amplitude of the diffracted X-ray beam will be maximal when the path difference 

between rays reflected from successive planes is equal to an integer multiple of the 

wavelengths (n2). The relation which describes this phenomenon is called Bragg's law. 

Bragg's law is a consequence ofthe periodicity of the lattice. (Fig.2.1.2) 

n2 = 2dsinB (2.1.4) 

d 

dsin9 dsin9 
Figure 2.1.2: Illustration ofBragg's Law 
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2.2 Neutron Diffraction 
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Chapter 2 
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The neutron is a chargeless, elementary particle of mass mn=1.675xlO-27 kg spin ~ and it 

possesses an intrinsic magnetic dipole moment Jln= l.042x 10-3 JIB [6]. On account of these 

properties, the neutron is subjected to scattering of magnetic as well as nuclear origin and 

therefore permits the experimental investigation of both nuclear and magnetic solid state 

phenomena on an atomic scale. Its intrinsic properties are as follows: 

• The mass of the neutron results in the de Broglie wavelength of thermal neutrons 

being of the order 1 ~ 3 A. This is of the same order of magnitude as the 

interatomic distances in solids. The interference effects that consequently occur 

yield information on both the nuclear and magnetic structure of the scattering 

system. 

• The neutron is a neutral particle and thus it can penetrate deeply into the target 

and close to the nuclei without having to overcome a Coulomb barrier due to 

electrostatic forces. 

• The neutron has an intrinsic magnetic moment, which interacts with the unpaired 

electrons in magnetic atoms. 

• The energy of thermal neutrons is of the same order as that of many excitations in 

condensed matter. Thus, the analysis of the energy of the inelastically scattered 

neutrons gives information on the dynamic processes occurring in solids due to 

the coherent motion of the nuclei (phonons) or that of the magnetic moments 

(magnons). 

The energy E of a neutron with a wave vector k is 

(2.2.1) 
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where m is the neutron mass. It is sometimes useful to rewrite the energy relation 

(eq.2.2.l) in terms of the neutron wavelength A. or alternatively the inverse relation 

(2.2.2) 

can be used. 

Low energy neutron beams (high wavelengths) are often described as being cold, 

thermal, and hot or epithermal. 

In an actually scattering experiment the key variables are the change in the neutron 

energy and the concomitant change in wave vector. If fUll and K is the transfer of energy 

and wave vector to the target sample, thus, 

(2.2.3) 

where E, k is the initial and E', k', are the final states. The scattering vector is then 

written 

(2.2.4) 

The spectrum of the scattered neutrons is a function of K and not some other function of 

k and k' [5]. 

It is evident from (2.2.3) and (2.2.4) that m and K are related. The relation imposes 

kinematical constrains on the scattering experiments. For example not all of (m,K) is 

accessible in a neutron scattering experiment. The kinematically allowed region is a 

function of the incident neutron energy E and lies between the (m, K) corresponding to 

forward and backward scattering. 

12 
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\ \ 
\ \ Scattered neutron beam 

x 

\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 

--- ---------- \ \ dQ 

k 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

Incident neutron beam 

y 

Figure 2.2.1.: Geometry of scattering experiment and cross section 

Various types of measurement can be made on the neutrons after they have interacted 

with the scattering system. The result in each case can be expressed in terms of a quantity 

known as a cross section. 

To specify the geometry of the scattering process polar coordinates are used (fig.2.2.1). 

If the directions of scattering neutrons are f) and r/> then the double cross section is 

defined by 

[

Number of neutrons scattered per second intO] 

the solid angle dQ in direction (f), r/» with 

a2 a energy between E' and E' + dE' 

anaE' C!>dndE' 

(2.2.5) 
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where <l> is the flux of the incident neutrons and E'is the energy of the scattered 

neutrons. The dimension of the double differential scattering cross section is [area]. 

If only the scattered neutrons into a solid angle dn in the direction B, rp are analysed, not 

the energy, the cross section corresponding to this measurement is known as the 

differential cross section, and it is defined by 

(
Number of neutrons scattered per second into] 

aa the solid angle dQ in the direction (B, rp) -=-'-------------------:... 
aQ <l>dQ 

The total scattering cross section is defined by the equation 

(Total number of neutrons scattered per second) 
a tot = <l> 

(2.2.6) 

(2.2.7) 

The total numbers means the total number of neutrons scattered in any direction. 

From their definitions the three cross section are related by the following equations 

atot = s(da dO.) 
n dO. 

(2.2.8) 

(2.2.9) 

If the scattering is axially symmetric, i.e. if da/dn depends only on B and not on rp, eq. 

2.2.9 becomes 

(2.2.10) 
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2.2.3.1 Scattering of neutrons by a single fixed nucleus 

Plane wave of neutrons are described by a wave-function of the form [6] 

ikz 
'f/inc = e (2.2.11) 

where k = 27r / I/, is the wave-number, is incident on a nucleus. The scattered wave will be 

spherically symmetric of the form 

b 'kr 
'f/ =--e' 

r 
(2.2.12) 

where r is the distance of the point of measurement from the origin to which the nucleus 

is considered to be rigidly fixed. The quantity b, which has the dimension of length, is 

defined as the scattering length and is a complex quantity 

b == a+ip (2.2.13) 

However, the imaginary component only becomes important for nuclei which have a high 

absorption coefficient, such as cadmium or boron. If the scattering length is real, the 

resultant neutron wave will be given by 

, b 'kr 'f/=e'liZ --e' (2.2.14) 
r 

The definition ofthe scattering cross section (eq. 2.2.7) 

_ (Total number of neutrons scattered per second) 
(jtat - <l> 

2 l(bI r)eikr l2 

= 4nr v"----'--
vle ikz l

2 

(2.2.15) 

=4JZb 2 
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The neutron interacts only very weakly with matter, and does so without disturbing the 

intrinsic properties of the target sample. The amplitude of a wave scattered from one 

nucleus is very small at the position of neighbouring nuclei. This condition allows the 

total scattering amplitude for an array of nuclei to be treated as the coherent sum of those 

for the individual nuclei. 

2.2.3.2 Scattering from an assembly of nuclei 

If the target sample has no internal structure, then clearly the energy of the scattered 

neutron is identical to that of the incident neutron. To calculate the differential cross 

section for this the probability of a transition from the plane-wave state should be known. 

The transition is from k to k' and the energy is E = tz 2e 12m for both. This probability 

is given by Fermi's Golden rule, namely [5]: 

(2.2.16) 

Here V is the interaction potential that causes the transition, in this case the interaction is 

between the incident neutron and the target sample, and Pi' (E) is the density of final 

scattering states per unit energy range. 

One can obtain an expression using the standard device in quantum mechanics, known as 

box normalisation, for the density of final scattering states Pi' (E). This is achieved by 

confining the neutron and target system to a large box of volume L3
, such that only those 

neutron states with a de Broglie wavelength periodic with respect to the box are allowed. 

Doing so, one obtains for the density of final states 

Pi' (E) = - m 2 dO. ( L)3 k' 

27r tz 
(2.2.17) 
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To obtain the cross section the incident flux of the neutrons should be determine. This is: 

(velocity of incident neutrons) tzk 
L3 = mL3 (2.2.18) 

Hence from eq.2.2.l6, eq.2.2.17 and eq.2.2.l8 

(2.2.19) 

and 

(2.2.20) 

(2.2.21) 

gives the desired result for the cross section. 

These results might be used for calculating the partial differential cross section that 

includes inelastic scattering events. For such an event the neutron energy is changed by 

tzm. A state of the target is labelled by the index A and the corresponding eigenstate is 

lA). If the response of the target sample to the neutron interaction is to change from the 

state labelled A to the A' , in that case conservation of energy requires 

(2.2.22) 

If this is taken into account the associated cross section is readily shown to be 
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(2.2.23) 

where the factor (k / k') arises from the density of final neutron states divided by the 

incident neutron flux. 

The partial differential cross section is obtained from eq.2.2.23 by incorporating the 

energy conservation eq.2.2.22. This is accomplished with the aid ofa delta function 

(2.2.24) 

so as the partial differential cross section is 

(2.2.25) 

The interaction potential Vat a position r is selected on the basis that, when inserted, it 

gives the required results of isotropic scattering for a single nucleus. It turns out that in 

using the Born approximation, the only form of VCr) to do so is a delta function and is 

defined, for a nucleus at position R, by 

VCr) = 27tli2 bo(r - R) (2.2.26) 
m 

This result is known as the Fermi pseudo-potential. If eq.2.2.26 is substituted into 

eq.2.2.20 and R is set to R = 0, in case of an elastic scattering event (A. = A.' and 

(2.2.27) 

18 



From eq.2.2.21 

hence the total cross section is 

2.2.3.3 Coherent and incoherent scattering 
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(2.2.28) 

(2.2.29) 

In practice, a scattering system will consist of isotopic nuclei of varying abundance and 

spin. Because the scattering length is dependant on both the individual isotope, and the 

relative orientation of the neutron and nuclear spin (if present), it will not take a single 

value throughout the assembly. If the scattering length b in an elemental target system 

varied from one nucleus to another as a result of nuclear spin or the presence of isotopes, 

then each nucleus type S can be assigned a scattering length b~ which occurs with a 

concentration C~. The average value of b for the system is then 

(2.2.30) 

and the average of b2 is 

(2.2.31) 

If it is assumed that no correlations exist between the scattering lengths of any nuclei (j 

and j') and that we have a large number of scattering systems of which the positions and 

motions of the nuclei are identical but the distribution of b's among the nuclei differs 
, 

such that every possible distribution is represented once, then the measured cross section 

will approximately be the cross section averaged over all the systems provided that each 

system contains a large number of nuclei. This is given by 
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(2.2.32) 

where the delta function for energy of eq.2.2.24 has been expressed as an integral with 

respect to time and 

(2.2.33) 

The assumption that the scattering length of different nuclei are not correlated means that 

the following conditions apply 

(2.2.34) 

so that it can be shown [6] 

d
2 
a = k' _1_ (h)2" f(" .) ex -icot dt 

dfJ.dE' k 27di ~ J, ] P 
JJ 

+ k'_I_p -(hi t fU,j)exp-icot dt 
k 2;rn j 

(2.2.35) 

It is in the above expression that two types of scattering can be distinguished. The first 

term in eq.2.2.35 represents what is known as coherent scattering which can be written 

( 
d2a J a coh k' 1 ,,1( -i;<Rj(O) i;<R/(t») (-icot)d =----L..J J e e xe t 

dfJ.dE' coh 4;r k 27di jj' _"> 

(2.2.36) 

and the second term represents the incoherent scattering for which the double differential 

cross section is given by 

(2.2.37) 
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(2.2.38) 

From eq.2.2.36 and 2.2.37 it can be inferred that coherent and incoherent scattering are of 

vastly different nature. The coherent scattering is a result of strong interference between 

the waves scattered from different nuclei. It arises due to the correlation between the 

positions of different nuclei. Indeed strict geometric conditions must be satisfied for the 

interference to be strong enough to produce this type of scattering. On the other hand, the 

incoherent scattering is dependant only on the self correlation of one nucleus at different 

times. For this reason, it does not yield any interference. The cross section is isotropic. 

2.2.4 Magnetic Scattering 

The elements of the second transition series which includes Ru have incomplete 4d 

shells. The arrangements of the 4d and 5s shells of some free atoms and ions give some 

unpaired electrons. These unpaired electrons give rise to a resultant magnetic moment. 

Interaction of this with the magnetic moment of the neutron, which has a spin quantum 

number of Y:z and a magnetic moment of 1.9 nuclear magnetons [8], produces neutron 

scattering which is additional to that produced by the nucleus. The determination of the 

magnetic structures of such materials is a task which can be achieved only by making 

neutrons scattering measurements. 

The magnetic moment of a neutron is defined in terms of a vector of Pauli matrices 0-; 

the spin operator is then proportional to (0-/2). Denoting the nuclear Bohr magneton by 

JlN (JlN = ~J the magnetic moment for a neutron is 
2mp 

(2.2.39) 

where the gyromagnetic ratio ,=-1.91. In addition to this the magnetic moment operator 

of an electron is given by 
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(2.2.40) 

The eq.2.2.27 gives the cross section for a specific transition A ~ A' due to an 

interaction V between the neutron and the scattering system. This expression is correct for 

nuclear scattering of un polarised neutrons. The spin state of the neutron does not appear; 

the dependence of the interaction on the spin state of the nucleus-neutron system is 

allowed for in the value of the scattering length. However, the magnetic potential 

contains the spin operator a explicitly, and it is therefore necessary to specify not only 

wave vector k of the neutron but also its spin state a; In the description of the magnetic 

scattering process the spin state 0' too must be specified such that a process in which the 

system changes from state A to A.' and the neutron changes from state k,O' to ft,O" the 

partial cross section is given by 

(2.2.41) 

where V is the magnetic interaction potential between the neutron and the constituent 

electrons of the system. If one considers the interaction between the neutron and the 

magnetic field jj due to a single moving electron then it may be shown [5] that the 

corresponding interaction potential can be expressed as the sum of two terms arising from 

the spin and the orbital motion ofthe electron respectively. 

V ~ B-{2 ~ Z[SXR 1-- e [~ axR axR ~]} = -YPNO'· PE 0' • cur IRI3 ( 2meC Pe· IRI3 + IRI3 . Pe (2.2.42) 

where me is the mass of electron, Pe is the momentum operator of the electron given by 

Pe = -iffY' e and R is the distance from the electron to the point at which the field is 

measured. 
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Substituting eq. 2.2.42 into eq.2.2.41 and using the following identities 

R -[ 1 J IRI3 =-'1 IRI (2.2.43) 

and 

1 1 fd- 1 iq-I? -=-- q-e 
IRI 27r

2 
q2 

(2.2.44) 

where q is a wave vector. It can be shown that the partial differential cross section 

representing a magnetic interaction for unpaired electron is given by 

2 

where ro known as the classical radius of the electron and equal to ~. 
mec 

(2.2.45) 

A 

The operator Ql.' related to the magnetisation of the target system, is defined in terms of 

a spin and orbit contribution as 

(2.2.46) 

where K represents the unit vector in the direction ofthe scattering vector K (eq.2.2.4). 

For unpolarised neutrons the Kronecker delta function is 

LPa(alo-ao-pla) = Oa,p (2.2.47) 
a 

which can be incorporated into the following identity 
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this gives us an alternative expression for eq.2.2.45 
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(2.2.48) 

(2.2.49) 

where the operator Q is related by Q.L = K(Q x K). In terms of the magnetisation, the 

operator Q(K) is effectively the Fourier transform of the magnetisation operator M{r'). 

That is 

Q(R) = Qs(R)+ QL (R) 

= __ 1_ fM(r)eiK-r err 
2PB 

= __ I_M(R) 
2PB 

where subscripts Sand L indicate spin and orbital contributions respectively. 

2.2.4.2 Elastic magnetic scattering 

The magnetic cross section for a Bravais crystal can be defined [6]: 

(2.2.50) 

24 



a
2

(J" = (p-O)2 !::...N{l. F(R)}2"(a -K K )~ eiiCoi 
anaE 2n!i k 2 g .;p ~ ap a p ~ 

00 

X f( e-liCoUo(O)eliC-il,(t») X (S~ (O)Sf (t) )e<-'o>I)dt 
-00 

Chapter 2 
Theoretical Background 

(2.2.51) 

where U, (t) is the displacement of nucleus from its equilibrium position and I is the 

lattice vector of the nucleus. 

For a Bravais crystal with localised electrons the elastic cross sections is obtained from 

eq.2.2.51 by replacing the matrix elements by their limiting values as t-+oo. As t-+oo 

(S~ (O)Sf (t)) becomes independent oftime. Thus 

~~~(S~ (O)Sf (t)) = (s~)(Sf) (2.2.52) 

Substituting eq.2.2.52 in 2.2.51 and integrating with respect to E' gives the elastic cross 

section 

(2.2.53) 

where lis vector in crystal lattice, e-2W is the Debye-Waller factor and F(R) is the 

magnetic form factor. 

In the absence of an external magnetic field a ferromagnetic crystal is composed of small 

regions called domains, in each of which the electron spins tend to align in the same 

direction. If the z-axis is the quantisation axis, then the mean direction of the spins will 

be; 
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(s:) = (Sf) = 0 

and because the z-direction is independent of the site position I, 
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(2.2.54) 

(2.2.55) 

From eq.2.2.53, eq.2.2.54 and eq.2.2.55 the elastic scattering cross section for a single 

domain is 

(2.2.56) 

The latter term on 2.2.51 can be written: 

'" iK-i (2;r y '" s:(- -) L..Je = L..Ju K-1:' 
I Vo f 

(2.2.57) 

When 

K=i, (2.2.58) 

where i is a unit vector in the direction of i, fj is a unit vector in the mean direction of 

the spins and Vo is the volume of the unit-cell the in the crystal lattice. Thus the cross 

section for a sample with many domains is 

(2.2.59) 
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The quantity (STf) is the mean value of the component of the spin in the direction of ij 

for each domain. 

From eq.2.2.59 it can be seen that for a ferromagnetic crystal the magnetic Br~gg peaks 

occur at the same points in reciprocal space as the nuclear Bragg peaks. Both 

contributions can be distinguished by their dependency on temperature. The magnetic 

scattering cross section is proportional to (STf) 2 
, it is very temperature dependent and 

falls to zero at the Curie temperature. The nuclear scattering varies a little with 

temperature; the only term in the cross section that is temperature dependent is the 

Debye-WaIler factor. In addition, the magnetic form factor F(f) falls rapidly with the 

increasing If I· This is because the form factor is the Fourier transform of the magnetic 

potential, and the latter has a long range. The nuclear potential on the other hand is very 
. I 

short range, and its Fourier transform is independent of If I· For a Bravais crystal the only 

term that causes the intensity of the nuclear peaks to vary with f is again the Debye

Waller factor. 

2.2.4.3 Paramagnetic scattering 

The technique of using spin polarised neutron scattering and spin polarisation analysis to 

separate the paramagnet and ordered state scattering from all other scattering 

contributions has been described by Moon et al. [9] and Scharpf & CapeUmann [10]. This 

technique exploits the dependence of the scattering cross sections on the scattering vector 

K and the quantisation axis z. The scattering process depends on some rules and they can 

be summarized as follows [11]: 

• Only those parts of the vector component of the nuclear interaction potential that 

are perpendicular to quantisation axis, z, give rise to nuclear scattering with flip of 

the neutron spin in the scattering process. 
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• Only the component of the magnetic interaction potential that is perpendicular to 

scattering vector, R, can give rise to magnetic scattering. 

• The component of the magnetic interaction potential parallel to z gives rise to 

non-spin flip magnetic scattering whereas the component perpendicular to z 

results in neutron spin flip scattering. 

As such, both the coherent scattering and isotopic incoherent scattering contributions are 

entirely non-spin flip scattering contributions. The nuclear spin incoherent scattering 

gives contributions to both the spin flip and non-spin flip measured cross sections. 

Scharpf and Capellmann [10] have given a complete description of the x-y-z difference 

method with polarized neutrons and how this may be used to separate the coherent, spin 

incoherent and magnetic scattering cross sections in a multi detector instrument, such j as 

D7 at the ILL. Here, the main results of their paper will be described and related to the 

measurements that will be presented in chapter 3. 

The neutron energy transfer during the scattering process is given by eq.2.2.22 and the 

different types of scattering cross section that contribute to the total observed cross 

sections are defined by: 

_.!-pa_,a = __ ;Wo F2(R)M(R m) 8
2

(J" k' 2( )2 
8Q8m k 3 2 ' 

(2.2.60) 

(2.2.61) 

82 
is%p k' (b2 ) 

(J"ine = _ b2 _b2 s. (R m) 
8Q8{]) k me , 

(2.2.62) 

(2.2.63) 
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where M{K,OJ} is the Fourier transform of the spatial magnetisation density and B is the 

dipole magnetic field of the neutron. 

The equations above represent the magnetic scattering, the nuclear spin incoherent 

scattering, the isotope incoherent scattering and the coherent scattering respectively. 

Implicit in the derivation of these results is that there are no correlations between the 

nuclear spin and the electron magnetic moments, there is no nuclear polarisation, no 

nuclear magnetic interference term and only an on site correlation between nuclear spins 

[10]. 

For a spectrometer such as D7 for which the scattering vector is defined to lie in the x-y 

plane, Scharpf and Capellmann [10] show that for a powder sample, the measurement of 

the spin flip (st) and non-spin flip (nst) scattering with the incident neutron spin 

polarisation alternatively in the x-y-z directions yields the following experimental cross 

sections: 

y 

x 

Figure 2.2.2: Scattering geometry of D7 
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(2.2.64) 

Figure 2.2.2 presents the scattering geometry of the instrument D7 at the ILL. a presents 

the angle between the scattering vector j( and the x direction. By combining these 

measured cross sections it is possible to separate the different scattering contributions 

from one another. It may be easily verified from eq.2.2.64 that the following combination 

of measured cross sections gives directly the paramagnetic or ordered state scattering 

cross section, 

(2.2.65) 

and similarly 

(
a2 Jnsf [( 2 )n5

f 
( 2 )n5

f 

( 2 )n5
f

] upara -2 2 ~ _ ~ _ a (J" 

anam a0.am z a0.am x anam y 
(2.2.66) 

Furthermore, one can obtain the nuclear spin incoherent scattering cross section by 
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(2.2.67) 

and subtracting the cross section obtained in this way in eq. 2.2.65 and 2.2.66 from the 

measured cross section ( a2
a )"sf gives 

anaOJ 
z 

3 anaOJ 
(2.2.68) 

It is not possible to distinguish the coherent scattering from the isotope incoherent 

scattering. It is stressed that x-y-z difference technique allows the unambiguous 

separation of the individual contributions to the total scattering. (J" para' (J"::::n and (J"coh are 

obtained solely by combination of the observed scattering cross sections as shown in 

equations 2.60, 2.61, 2.62, and, 2.63. 
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2.3 Magnetism 

2.3.1 The Origin of Atomic Moments 

a) Spin and orbit states of electrons 
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The elementary quantum-mechanical treatment of isolated atoms by means of the 

Schrodinger equation has led to information on the energy levels that can be occupied by 

the electrons. The states are characterized by four quantum numbers. These are principal 

quantum number, n, orbital angular quantum momentum number, I, magnetic quantum 

number, mr, and, spin quantum number, ms. The principal quantum number, can take the 

values from 1 to 00, I can take the values from 0 to n-I and mr may alter between -I and 

+1. The spin quantum number has only two values for each electron and it is either +Yl or 

-Yl which are refers to spin up and spin down. 

According to Pauli's principle it is not possible for two electrons to occupy the same 

state. That is, the states of two electrons are characterised by different sets of quantum 

numbers n, I, mr and ms. The maximum number of electrons occupying a given shell is 

therefore 

n-l 

2 L (21 + I) = 2n 2 
(2.3.1) 

1=0 

For a given value of I, the angular momentum of an electron due to its orbital motion 

equals n.JI(l + I) . For instance, for a d electronic like in ruthenium the permissible values 

of the angular momentum along a field direction are2n,n,O,-n,-2n (fig 2.3.1). On the 

other hand the allowed values of spin quantum number, ms are ± n / 2, where plus stands 

for spin us states and minus for spin down states. 
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Figure 2.3.1 Vector model o/the atom applied to the situation 1=2 and nonzero externalfield 

The moving electron can basically be considered as a current flowing along the electron ( 

orbit. An electron with an orbital angular momentum hI has an associated magnetic 

moment 

(2.3.2) 

where /1B is the Bohr magneton. The absolute value ofthe magnetic moment is given by 

(2.3.3) 

Its projection onto the direction ofthe applied field is 

(2.3.4) 

The situation is different for the spin angular momentum. In this case, the associated 

magnetic moment is 
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(2.3.5) 

where ge = 12.0021 is the spectroscopic splitting factor (or the g-factor for the free 

electron). The component in field direction is 

(2.3.6) 

The energy of a magnetic moment j1 in a magnetic field fI is given by the Hamiltonian 

H = floP' fI = P . jj (2.3.7) 

- ' where B is the flux density or the magnetic induction and flo = 41r xl 0-7 Hm-I is the 

permeability of vacuum. The lowest energy Eo, the ground-state energy, is reached for 

j1 and fI parallel. Using (2.3.6) and ms=-1I2, one finds for one single electron 

(2.3.8) 

b) Vector model of atoms 

The orbital and spin motions of the electrons and interactions between them have to be 

considered when describing the atomic origin of magnetism. The total orbital angular 

momentum of a given atom is defined as 

(2.3.9) 
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where the summation extends over all electrons. The summation over a complete shell is 

zero, the only contributions coming from incomplete shells. The same arguments apply to 

the total spin angular momentum, defined as: 

(2.3.10) 

The resultants S and I thus formed are coupled through the spin-orbit interaction to 

form the resultant total angular momentum] . 

(2.3.11) 

This type of coupling is referred to as Russell-Saunders coupling. It has been proven to 
• be applicable to most heavy magnetic atoms. J can assume values ranging from J=(L-S), 

(L-S+ 1), to (L+S-1), (L+S). Such a group oflevels is called a multiplet. The level lowest 

in energy is called ground-state multiplet level. The splitting into different kinds of 

multi pi et levels occurs because the angular momenta I and S interact with each other 

via the spin-orbit interaction with interaction energy AI· S (A. is the spin-orbit coupling 

constant). Owing to this interaction, the vector 1 and S exert a torque on each other 

which causes them to precess around the constant vector]. This leads to a situation as 

shown the figure 2.3.2, where the dipole moments JiL = -PBl and Jis = -gePBS , 

corresponding to the orbital and spin momentum, also precess around the total 

momentum Jilol = PL + Ps which is not collinear with ] but is tilted towards the spin 

owing to its larger gyromagnetic ratio. It may be seen from figure 2.3.2 that the vector 

PIoI makes an angle e with ] and also precesses around]. The precession frequency is 

usually quite high so that only the components of PIOI along ] is observed, while the 

other components average to zero. The magnetic properties are therefore determined by 

the quantity 
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(2.3.12) 

Figure 2.3.2: Spin-orbit interaction between the angular momenta Sand i 

It can be shown that [12, 13] 

= 1 + J(J + 1) + S(S + 1) - L(L + 1) 
gJ 2J(J +1) 

(2.3.13) 

This factor is called the Lande spectroscopic g-factor and has the value 2 when L=O and 1 

whenS=O. 

For a given atom, one usually knows the ionisation state i.e. the number of electrons 

residing on an incomplete electron shell, the latter being specified by its quantum 

numbers. Then Hund's rules [12, 14] predict the values of L, Sand J for the free atom in 

its ground-state. 
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2.3.2 Magnetic Ordering 

2.3.2.1 Paramagnetism of free ions 

a) The Brillouin function 
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Once the vector model and Hund's rules have been applied to find the quantum numbers 

J, L and S of the ground-state multiplet of a given type of atom, the magnetic properties 

of a system of such atoms can be described based on these quantum numbers and the 

number of atoms N contained in the system. 

If the quantization axis is chosen in the z-direction the z-component m of J for each atom 

may adopt 21+ 1 values ranging from m=-J to m=+ J. When a magnetic field Bo is applied, 

the energy depends on the occupation of the (21+1) sub-levels, all of which differ in their 

rnJ value. The magnetic energy of a noninteracting magnetic atom is given by eq.2.3.8. 

Most of the magnetic properties of different types of materials depend on how this level 

scheme is occupied under various experimental conditions. At zero temperature, the 

situation is comparatively simple because for any of the N participating atoms only the 

lowest level will be occupied. In this case, the magnetisation of the system is: 

(2.3.14) 

However, at finite temperatures, higher lying levels will become occupied. The extent to 

which this happens depends on the temperature but also the energy separation between 

the ground-state level and the excited levels, that is, on the magnetic field strength. 

The relative population of the levels at a given temperature T and given field strength H 

can be determined by assuming a Boltzmann distribution for which the probability Pi of 

finding an atom in a state with energy Ei is given by 
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(2.3.15) 

The magnetisation M of the system can be found from the statistical average (pz) of the 

magnetic moment f.1z=-g] mpB. This statistical average is obtained by weighing the 

magnetic moment f.1z of each state by the probability that this state is occupied and 

summing over all states: 

J 
L gJmPBe-gJmPOPBHlkT 

M -= N(pz) = N.!!!.:m-=-J-J:-----
Le -gJmPOPBH I kT 

m=-J 

(2.3.16) 

By substituting x=-&PBPoHlkTand using the relations dln(x)=x-1 
and de11lX=me11lXdx, 

M = NgPB ~(ln ±e
mx

) 
dx m=-J 

(2.3.17) 

Since there will not be any confusion with ge henceforth the SUbscript J will be dropped 

fromg]. 

From the standard expression for the sum of a geometric series, 

(2.3.18) 

Substitution of this result into eq 2.3.17 
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( 
(J 1) -J J (J?)X -(J?)x J d e + x_e x d e 2 -e 2 

M = NgPB - In x = NgPB - In 1 1 
dx e - 1 dx -x-x 

e 2 -e 2 

(2.3.19) 

Since sinh x = (eX -e-X)/2, 

d 
M=NgPB

dx 

Sinh(J +~)x 
In 1 

sinh-x 
2 

After carrying out the differentiation 

with BJ(Y), the so-called Brillouinfunction, being given by 

B ( ) = 2J +1 coth (2J +1)y _1 cothL 
J y 2J 2J 2J 2J 

with 

gJ P B Po H 
y= kT 

(2.3.20) 

(2.3.21) 

(2.3.22) 

(2.3.23) 

In this expression H is the field responsible for the level splitting of the 21+1 fold 

degenerate ground-state manifold. In most cases H is an external field. Expression 2.3.21 

makes it possible to calculate the magnetisation for a system of N non-interacting atoms 

with quantum number J at various combinations of applied field and temperature. 
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b) The Curie law 
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Expression (2.3.21) becomes much simpler in the paramagnetic phase under the condition 

of small y. The paramagnetic susceptibility is related to the initial slope of the Brillouin 

function. 

When y«l, it is justified to use only the first term of the series expansion of BJ(y) for 

small values of y 

(2.3.24) 

From this follows, keeping only the first term, 

(2.3.25) 

The magnetic susceptibility is defined as X = M/H. Using equation (2.3.25) the magnetic 

susceptibility can be derived as 

The Curie constant C is given by 

C = NPog2 J(J + l)p~ 
3k 

(2.3.26) 

(2.3.27) 

The relationship in eq.2.3.26 is known as the Curie law. Curie's law states that if the 

reciprocal values of the magnetic susceptibility, measured at various temperatures, are 

plotted versus the corresponding temperatures, a line which passed through the origin will 
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be found. From the slope of this line the Curie constant C can be obtained and hence a 

value for the effective moment. 

(2.3.28) 

In general, it may be stated that the Curie law X=CIT, as expressed in eq.2.3.26, is a 

consequence of the fact that the thermal average calculating eq.2.3.l5 involves only the 

21+ 1 equally spaced levels originating from the effect of the applied field on one 

multiplet level. When more than 21+ 1 levels are involved, or when these levels are no 

longer equally spaced deviations from Curie behaviour can occur. The latter situation 

occurs when electrostatic fields in the solid, the crystal field, come into play. It will be 

shown in section 2.3.4 how crystal fields can also lift the degeneracy of the 21+ 1 ground

state manifold. The combined action of crystal fields and magnetic fields generally leads 
• 

to a splitting of this manifold such that the 21+ 1 sublevels are no longer equally spaced, 

or to a spitting where the level with m=-J is not the lowest level in moderate magnetic 

fields. 

2.3.2.2 The magnetically ordered state 

a) The Heisenberg exchange interaction and the Weiss field 

All of the atomic moments of a system with N atoms will become aligned parallel if the 

conditions of temperature and applied field are such that for all of the participating 

magnetic atoms only the lowest is occupied. The magnetisation ofthe system is then said 

to be saturated, no higher value being possible than 

(2.3.29) 

The parallel alignment of moments is reached only in very high applied fields and at 

fairly low temperatures. A substance, for which a high magnetisation is observed without 

the application of a magnetic field is called ferromagnetic and it is characterised by a 
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spontaneous magnetisation. This spontaneous magnetisation vanishes at temperatures 

higher than the Curie temperature, Te. Below Te, the material is said to be 

ferromagnetically ordered. 

On the basis of the understanding of the magnetisation in terms of the level splitting and 

level population (Eq 2.3.15), the occurrence of a spontaneous magnetisation would be 

compatible with the presence of a huge internal magnetic field, Hm. This internal field 

should be able to produce a level splitting of sufficient magnitude so that practically only 

the lowest level m=-J is populated. In 1928, Heisenberg [13] has shown that such an 

internal field may arise as the result of a quantum mechanical exchange interactions 

between atomic spins. The Heisenberg exchange Hamiltonian is usually written in the 

form 

Hexch =-"IJijS; .Sj 
;,j 

(2.3.30) 

where the summation extends over all spin pairs in the crystal lattice. The exchange 

constant Jij depends, amongst other things, on the distance between the two atoms i and j. 

In most cases, it is sufficient to consider only the exchange interaction between spins on 

nearest neighbour atoms. If there are Z magnetic nearest neighbour atoms surrounding a 

given magnetic atom, 

(2.3.31) 

with (S) the average spin of the nearest neighbour atoms. Relation 2.3.31 can be 

rewritten by using 8 = (g -1)], which follows from the relation g] = l + 28 and 

]=l+8: 
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(2.3.32) 

Since the atomic moment is related to the angular momentum by it = -gJJlB] (eq 

2.3.12) 

(2.3.33) 

where 

(2.3.34) 

can be regarded as an effective internal field, the so-called molecular field, produced by 

the average moment (it) ofthe Z nearest-neighbour atoms. 

Since M = N(it) , it follows that fI m is proportional to the magnetization 

(2.3.35) 

The constant Nw is called molecular-field constant or the Weiss-field constant. 

The exchange interaction between two neighbouring spin moments introduced in eq. 

2.3.31 has the same origin as the exchange interaction between two electrons on the same 

atom, where it can lead to parallel and antiparallel spin states, the exchange interaction 

between two neighbouring spin moments arises as a consequence of the overlap between 

the electronic orbitals of two adjacent atoms. 
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A ferromagnetic sample is usually divided up into domains that are spontaneously 

magnetised. Applied magnetic fields can change the direction of the magnetisation within 

the domains. Except in certain circumstances, the domains make little difference to the 

magnitude of the atomic magnetisation. The magnetisation within the domain is called 

the intrinsic magnetisation and its value in zero field is the spontaneous magnetisation. 

The saturation magnetisation is the value of the spontaneous magnetisation at zero 

temperature. 

A basic explanation of the occurrence of the spontaneous magnetisation was derived from 

the postulate put forward by Weiss that an intense internal or molecular field (also called 

Weiss field) exists within the ferromagnetic solid. The magnitude of this field was found 

to be of the order of 100 T. 

The total field experienced by the magnetic moments comprises the applied field Hand 

the molecular field or Weiss field Hm: 

(2.3.36) 

Firstly, the effect of the presence of the Weiss field N wM on the magnetic behaviour of a 

magnetic material above Te will be investigated. The high-temperature approximation eq. 

2.3.25 may be used. 

C M=-H 
T 

(2.3.37) 

It has to be born in mind, however, that the splitting of the (21+1 )-manifold used to 

calculate the statistical average (pz) is larger owing to the presence of the Weiss field. 

For a ferromagnet above Te Htot has to be used instead of H when going through all the 

steps from eq.2.3.l5 to eq.2.3.25. This means that eq.2.3.25 should be written in the form 
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Introducing the magnetic susceptibility X=MIH, 
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(2.3.38) 

Above their Curie temperature, ferromagnetics become paramagnetic and their 

susceptibility depends on temperature. The reciprocal of the susceptibility varies with 

temperature with an intercept on the positive temperature axis at the paramagnetic Curie 

temperature Bp, which is usually close to Te , though the two quantities are rarely exactly 

equal. This dependence of susceptibility on temperature is of the form [12, 13]: 

C C 
0/- -
./1,- -

T-N C T-B w p 

(2.3.39) 

where Bp is called the asymptotic or paramagnetic Curie temperature. 

Relation 2.3.39 is known as the Curie-Weiss law. It describes the temperature dependence 

of the magnetic susceptibility for temperatures above Te. When plotted as a function ofT 

versus the reciprocal susceptibility it is again a straight line. However, this time it does 

not pass through the origin (as it did for the Curie law) but it intersects the temperature 

axis at T=Bp. Plots of X· I versus T for an ideal Curie paramagnet (X=C/1) and a 

ferromagnet material above Te (X=C/(T-Bp) are compared with each other in fig 2.3.2. 

At T=Bp , the susceptibility diverges which implies that one may have nonzero 

magnetisation in zero applied field. This exactly corresponds to the definition of the 

Curie temperature, being the upper limit for having a spontaneous magnetisation. 

Therefore, for a ferromagnet, it could be written 

(2.3.40) 
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(b) 

Figure 2.3.3: Temperature depencence of the magnetisation M and the inverse magnetic 

susceptibility J1X a) Ferromagnetism, b) Ideal paramagnetism 

This relation offers th~ possibility to determine the magnitude of the Weiss constant Nw 

from the experimental value of Te or ~, obtained by plotting the spontaneous 

magnetisation versus T or plotting the reciprocal susceptibility versus T. 

2.3.3 SQUID 

A Superconducting Quantum Interference Device, SQUID for short, was used to measure 

the magnetic properties of SrRu03, Sr2Ru04 and Sr{l-x)CaxRu03. This device is widely 

accepted as the most accurate method of measuring magnetic moments. The resolution of 

10-8 e.m.u. (10-11 JTl) allows accurate measurements of samples with small magnetic 

moments. This highly sensitive method was appropriate for investigating the magnetic 

properties of SrRu03. With the data obtained from SQUID measurements and using 

Arrott plots the spontaneous magnetisation, Curie temperature and the paramagnetic 

effective Bohr magneton number can be obtained. 

The SQUID is a sophisticated analytical instrument configured specifically for the 

investigation of the magnetic properties of small experimental samples over a broad 

range of temperature and magnetic fields. The magnetometer consists of a 

superconducting solenoid, a SQUID detector system, a sample transport mechanism, a 
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liquid helium Dewar, a temperature control module and an electronic control console 

which is connected to the computer with the control system software. The 

superconducting solenoid includes a superconducting magnet, which consists of a 

multi filament superconducting wire. This magnet provides a reversible field operating to 

plus or minus 5.5 Tesla using an oscillatory technique to minimize magnet drift 

immediately following field changes. Together with the temperature control system the 

whole device provides an actively regulated, precision thermal environment over a 

temperature range of 1.7K to 400K and an external magnetic field range of -5.5T to 5.5T 

Sensing pick-up loops, also consisting of a superconducting wire, are mounted in the 

solenoid and connected to a signal coil in the SQUID detector system below the solenoid. 

The SQUID ring is a superconducting wire with a small insulating layer, the "weak link". 

The flux induced in the signal coil and passing through the ring is quantised once the ring 

has gone superconducting but the ''weak link" forces the flux trapped in the ring to 

change only by discrete amounts [7]. Quantized changes in the flux occur as a result of 

tunnelling by electrons through a Josephson junction in the SQUID ring [8, 9]. These 

quanti sed changes are used by the instrument to calculate the magnetic moment of the 

sample. 

For measurements of the magnetic moment the sample was placed below the detection 

loops with the transport set at its lower limit of travel. The sample then rose through the 

sensing loops while measuring the output of the SQUID detector. The moment was then 

measured by repeatedly moving the sample upwards in small steps and reading the 

voltage from the SQUID detector at each position (figure 2.3.4). The final average 

voltage data is plotted as a function of the sample position as a figure. 
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Figure 2.3.4.: Cross section of SQUID device [J 5} 
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The basis of Arrott plots is a Landau description of the magnetisation using an expansion 

of the free energy in powers of the magnetic order parameter, the ferromagnetic moment 

for a ferromagnet and the staggered magnetisation for an antiferromagnet. The magnetic 

behaviour may be described using a small number of, possibly temperature dependent, 

coefficients. 

The free energy as a function of the order parameter M and normalised to one magnetic 

atom is given by 

1 2 1 4 
F=Fo +-AM +-CM -BM 

2 4 
(2.3.41) 

Here A and C are expansion coefficients. All contributions, which do not depend on the 

magnetisation, are contained in the term Fo which will be omitted from all further 

formulae. 

The magnetic moment is obtained by minimisation of the free energy expansion with 

respect to M. 

(2.3.42) 

If eq.2.3.42 is rearranged, one can obtain 

(2.3.43) 

The coefficient C is taken to be temperature independent. It is related to the third order 

susceptibility. B is the external field and the coefficient A is assumed to be temperature 

dependent and it is given by 
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and {}p is the paramagnetic Curie temperature. 
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(2.3.44) 

Equation eq.2.3.43 resembles the equation of a straight line. Plotting the magnetisation 

for a given temperature as a function of field and using units of ratio of applied field 

divided by observed magnetisation on the x-axis and the square of the magnetisation on 

the y-axes will yield straight lines with llC as a slope and -AlC as the intersection point 

with the M2 axis. The intersection point with the x-axis is given by the coefficient A and 

is directly related to the inverse susceptibility in zero field as can be seen in eq.2.3.44. As 

discussed above coefficient A is proportional to the temperature and C is temperature 

independent. As temperature is varied, the lines of the Arrott plots are displaced parallel 

to each other. The temperature of the isotherm which intersects the origin of the Arrott 

plot is the ferromagnetic transition temperature Tc={}p. For temperatures that are smaller 

than Tc the straight line cuts the M2 axis at positive values and gives the value of the 

spontaneous magnetisation in the absence of a magnetic field. Thus Arrott plots are a 

more physically transparent and useful tool for the analysis and description of magnetic 

materials. 

2.3.4 Crystal fields 

Crystal field (CF) theory is the name given to the model which describes how transition 

metal ions with d n configuration are perturbed by their chemical environment. The basic 

idea is shown in Fig 2.3.5 [16] 
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Figure 2.3.5: The d orbitals of a transition metal ion located at a site with octahedral symmetry, showing 
(a) the different orientation of the eg and t2g sets, and (b) the resulting orbital energies with the crystal field 
splitting. 

For a transition metal ion like Ru in the Sr(1-x)CaxRu03 or Sr2Ru04 compounds with the 

octahedral coordination, the five d orbitals are seen to divide into two sets (figure 2.3.5-
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b): two orbitals have lobes of maximum probability pointing directly at the near 

neighbour oxygens, whereas the other three have nodal planes in these directions. These 

distinct sets of orbitals are conventionally denoted eg and t2g respectively, according to 

their symmetry. Figure 2.3.5-b also shows how the octahedral environment gives rise to a 

crystal field splitting (~) between lower lying t2g and higher energy eg orbitals. 

(b) 

Figure 2.3.6: View of the a )cubic, b) distorted cubic structure of 
Sr(l_x)CaxRu03 illustrating the RU06 octahedra [17, 18J 

The electron configurations for ions on octahedral sites are obtained using a CF model by 

arranging the electrons in the t2g and eg orbitals in accordance with the Pauli Exclusion 

Principle. The ground state of the free ion satisfies Hund's first rule: i.e. the electrostatic 

repulsion between electrons is minimised by placing them, as far as possible, with 

parallel spins into different orbitals. In crystal fields, different possibilities can often arise 

according to the relative magnitude of the splitting, ~, and the exchange energy: if the 

former is large the lowest energy is obtained by complete filling of orbitals from the 

bottom up, whereas more favourable exchange energies are found with single filling of 

orbitals so that spins can be parallel. The resulting alternative low- and high-spin 

configurations are shown in table 2.3.1. This table shows the term symbol giving the spin 

and overall symmetry behaviour of the ground state, and the crystal field stabilisation 

energy (CFSE) appropriate to the configuration. The CFSE values represent the 

stabilisation expected for the particular configuration in the units of the splitting, ~, and 

assigned an energy -3/2~ to the t2g and +3/2~ to the eg orbitals. 
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Low~in 
Configuration State CFSE/Ll Configuration State CFSElLl 

t 1 
2g 

t 2 
2g 

t 3 
2g 

3 1 t2g e g 

3 2 t2g e g 

4 2 t2g e g 

S 2 t2g e g 

6 2 t2ge g 

6 3 t2g e g 

6 4 t2ge g 

21;g 2/5 - -
3~g 4/5 - -
4A

2g 6/5 - -
SE 3/5 

4 3~g g t2g 

6A
1g 0 

S t2g 
2T

2g 

ST
2g 2/5 

6 t2g 
lA

1g 

4~g 4/5 6 1 2E t2ge g g 

3 A
2g 6/5 - -

2E 3/5 - -g 

lA
1g 0 - -

Table 2.3.1: Hlgh- and low-spm states for dn IOns on octahedral sItes. 

n=4 in a low spin state represents the value ofRu4 

-
-
-

8/5 

2 

12/5 

9/5 

-
-
-

Certain electron configurations have a notable tendency to occupy distorted 

environments. d4 (high spin) and d9 ions in non-metallic solids invariably seem to give a 

tetragonal distortion of an otherwise octahedral site, with two lengthened M-O bonds, or 

occasionally a square planar coordination. The distortion is often regarded as a 

consequence of the Jahn-Teller theorem, according to which a non-linear molecule in an 

electronic state with orbital degeneracy will distort so as to lower its symmetry and 

remove the degeneracy. 

There are two types of lahn-Teller effects. The spontaneous lahn-Teller effect is the 

spontaneous distortion of the lattice geometry (fig 2.3.6-b) in an electronically excited 

state which results when levels are split to reduce the energy of the overall system. The 

other lahn-Teller effect is the static lahn-Teller effect. The static lahn-Teller effect 

occurs if the lowest energy level is degenerate, in which case the lattice will distort 

spontaneously so as remove the degeneracy and make one energy level more stable 

comparing to the other [19]. 
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3.1 Sample Preparation and Characterisation using X-rays 

a) Preparation 

Ruthenium (IV) Oxide (RU02), Strontium Carbonate (SrC03) and Calcium Carbonate 

(CaC03) were the starting material for the compounds which have been investigated for 

this thesis. Samples of SrRu03, Sr2Ru04, CaRU03, Sro.sCao.5RU03 and SrO.7sCao2.5Ru03 

have been prepared. SrC03 (strontianite or strontium carbonate), CaC03 (calcium 

carbonate) and RU02 (ruthenium (IV) oxide, hydrate) were bought from Alfa Aesar, 

10hnsons Matthey PLC, Ochard Road, Royston, Herts., England. All the materials and 

compounds were stored in evacuated glass containers. All glass containers were 

mechanically cleaned before preparation. 

All SrRu03, Sr2Ru04, CaRU03, Sro.sCao.5RU03, SrO.7sCao.2SRu03 compounds have been 

prepared in the Department of Physics at Loughborough University. A characterisation of 

the atomic structure and sample quality is necessary before starting a more detailed 

investigation. These investigations have been done by X-ray diffraction experiments in 

Loughborough University and neutron scattering experiments at the ILL, Grenoble, 

France. 

b) Characterisation 

In order to obtain the crystallographic properties, the diffraction patterns are analysed 

using FullProf [5], a computer program for structure profile refinement. This program 

refines a calculated diffraction pattern and fits it to the observed spectrum. The refined 

parameters included: 

• Zero point offset 

• Overall scale factor 

• Lattice parameters 

• Atomic positions 

• Occupation numbers 
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• Peak shape parameters, half width parameters for the determination of the width 

of peaks. 

The process of refinement is an iterative one and is done over a number of cycles as 

defined by the user. The level of agreement between the observed and calculated patterns 

is evaluate at every point of the powder pattern and expressed by means of a difference 

plot and by the following agreement factors: 

(3.1.1) 

Llyo, -Ye, I 
Rp=100x-'~·~~---

LYo, 
(3.1.2) 

i 

(3.1.3) 

(3.1.4) 

These are printed at the end of each cycle. In these expressions, indices 0 stands for 

observed value, c stands for calculated value, and, i is the number of data points. N is the 

number of independent observations, P is the number of refined parameters, C is the 

number of constraints, Yi is the intensity at angular position Bi, I is the Bragg intensity and 

w is the statistical weight. RBragg is the agreement factor based upon observed and 

calculated integrated Bragg intensities, Rp is the profile agreement factor, Rw is the 
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weighted profile agreement factor and the RE expressed theoretical agreement expected 

from counting statistics alone. The ratio RWIRE yields the statistical quantity "chi (x)", a 

value close to 1 indicates perfect agreement of model calculation and observation. In 

practise some systematic deviations of the calculated and observed pattern occur. 

Therefore the I will be larger. For observed patterns and depending on the complexity of 

the structure and the number of parameters a I ~ 10 can be considered very satisfactory. 

3.1.1 Preparation and Characterisation of Starting Materials using 

X-ray Diffraction 

SrC03, CaC03 and RuOz were the starting materials for the preparation of the 

compounds SrRu03, CaRu03, Sr(l_x)CaxRu03 and SrZRu04. 

The RuOz obtained commercially was quoted as being Ruthenium Oxide-hydrate. This 

indicates that it does contain some water. No precise value of the water content was 

given. Thus, before any further measurements could be made the water had to be 

removed. For a Ruthenium content of 54%, the water content corresponds to 3xH20 [1]. 

Figure 3.1.2 shows the X-ray diffraction pattern of Ruthenium Oxide-hydrate in the 

"purchased" form. 

In order to remove the water, the sample was heated in air for Ih at 200°C, then for 24h 

to 600°C and was subsequently cooled to 100°C within 1 hour. This heat treatment is 

believed to give rise to the following chemical reaction 

After heating it is observed that the weight loss was approximately 30%. The dried RU02 

was checked using X-ray diffraction. A refined pattern of RuOz at room temperature is 

shown in figure 3.1.3. The structure agrees with the one proposed in the literature [2]. 

This agreement can bee seen in figure 3.1.3 and table 3.1.1 
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The investigations of SrC03 and CaC03 indicated that these compounds did not have any 

appreciable amount of water in it. The diffraction pattern and the subsequent refinements 

are shown in figure 3.1.5 and table 3.1.3 for SrC03 and figure 3.1.7 and table 3.1.4 for 

CaC0 3. 

In addition an aluminium (AI) holder was used to hold the powders for the X-ray 

experiments. In order to identify possible contributions arising from the aluminium 

holder in the X-ray diffraction pattern of the materials investigated, a scan of the empty 

sample holder was performed. A comparison of sample holder peaks in figure 3.1.1 and 

diffraction patterns of samples indicates that there are no observed aluminium peaks in 

the X-ray patterns of any of the samples. 

Al Holder 

A1-Holdc:fdll 

. 

. 

o __________ ~~.~~ ____ ~ ____ ~~ __ ~_u __ ~ 

IS 3S 4S SS 7S ss 

2e (j 

Figure 3.1.1: X-ray diffraction pattern of the Aluminium sample holder 
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RU02 belongs to the tetragonal structure type. Its space group is reported to be P42/mnm 

(space group No. 136, [3]), [2, 4]. An X-ray investigation of RU02 has been carried out 

before (figure 3.1.2) and after heat treatment (figure 3.1.3). Table 3.1.1 shows the 

crystallographic data of reference [2] and the refined data. 
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Figure 3.1.2: RU02 before heat treatment 
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Yobs-Tcalc 

" 1 " 1 

64 71 78 

Figure 3.1.3: X-ray observations andfit of Ru02 after heat treatment 

Atomic positions for the tetragonal Atomic positions for the tetragonal structure of 

structure ofRu02 using space group RU02 using space group P4y'mnm after refinement 

P4y'mnm [2]. using FullProf [5] 

x y z x(z) y(x) z (y) 

0 0 0 0 0 0 

0.305 (2) 0.305 (2) 0 0.307 (4) 0.307 (4) 0 

Lattice Parameters Lattice Parameters 

b(A) c(A) a (A) b(A) c(A) 

4.4919 (8) 3.1066 (7) 4.487 (1) 4.487 (1) 3.1044 (6) 

t=1.8 t~2.02 

Table 3.1.1: Refinedparameters ofRu02 
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~a 
Figure 3.14: The crystal! ographic structure plot of Ru02 

Table 3.1.1 shows the final refined crystallographic data of RU02. The refined model 

parameters and literature data agree well, with the refinement having a small/ value of 

2.02. All the parameters agree within the error bars. This is also an indication for the 

success of the heat treatment. 

b) SrC03 

SrC03 is also called strontianite or strontium carbonate. It has a perovskite structure, with 

general formula AB03 [6, 7, 8, 9]. It belongs to the orthorhombic structure type of 

aragonite [10]. The strontianite that was used had a purity of 99.99%. In the literature the 

space group of SrC03 is reported to be Pmcn [9, 10]. This is an unconventional setting 
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which is converted to the space group Pnma (space group No. 62 of the International 

Tables ofCrystallography [3]) (table 3.1.2). 

No. of Space Schoenflies Standard full 
group symbol symbol a be abc bca 

62 D'6 - V'6 2, 2, 2, Pnma Pmcn 
2h - h p---

n m a 

Table 3.1.2: Three dimensional space-group symbols/or various settings [J 1J 

After the conversion, the lattice parameters change as follows: 

a~b c~a 

The positions of atoms are changed accordingly: 

X -7y y -7Z Z -7X 
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Yobs-Tesle 

75 85 

Figure 3.1.5: Observation andfit of the X-ray pattern ofSrCOj 

Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of 

structure ofSrC03 using space group Pmcn SrC03 using space group Pnma after conversion 

[9] and refined with FullProf [5] 

x y z x(z) y(x) z(y) 

Y. 0.4160 (1) 0.7569 (3) 0.7562 (5) Y. 0.4161 (2) 

Y. 0.760 (1) -0.086 (2) -0.082 (3) Y. 0.728 (2) 

Y. 0.9119 (9) -0.95 (2) -0.91 (2) Y. 0.912 (1) 

0.4694 (5) 0.6821 (8) -0.84 (1) -0.90 (1) 0.4689 (3) 0.6821 (9) 

Lattice Parameters Lattice Parameters 

b(A) c(A) a (c) (A) b (a) (A) c (b) (A) 

8.358 (2) 5.997 (4) 6.0251 (5) 5.1039 (5) 8.4158 (7) 

t= 1.8 t= 11.6 

Table 3.1.3: Atomic positions and lattice parameters from the model and refined parameters ofSrCOj in 

the space group Pmcn and in Pnma (after conversion from Pmcn to Pmna) 
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The refined data (figure 3.1.5 and table 3.1.3) are fairly close to the literature data. The t 
value ofthe refinement of 11.6 is larger than the literature t value. Most of the deviation 

of the literature model and the refined model parameters are within one error bar, but all 

values are within 3 times the error bars of the quoted values given. There are no 

additional peaks observed in the plot. The crystallographic structure can be seen in figure 

3.1.6. 

:.0 b 

~ 
! 

:_s a 

Figure 3.1.6: The crystal/ographic structure ofSrC03 

c) CaC03 

Two different structures are reported for CaC03. One is the tetragonal structure with 

space group Pnma similar to SrC03 [9, 10] and the other is a trigonal-rhombohedral 

structure with space group R-3c [9, 24, 25]. Both structures were used to model the X-ray 

diffraction observed for CaC03. While the tetragonal structure does not represent the data 
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well the rhombohedral structure is a good model. Thus, the investigation of the structure 

of CaC03 is focused on the rhombohedral structure. 

A heat treatment was applied to CaC03. The weight loss was approximately 44% which 

indicates that this weight loss is due to a loss of C02 gas rather than water. This can be 

taken as confirmation that the compound is free of water. As a result, the unheated 

CaC03 had been used for the preparation of all Ca containing compounds. 
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Figure 3.1.7: Observed and refined X-ray pattern of CaC03 
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Atomic positions for the orthorhombic 

Atom ~·2 structure of CaC03 using space group R-3c 
C,) '" ;.., .... :::z [25] 

x y z 

Ca 6b 0 0 0 

C 6a 0 0 y. 

0 18e 0.2570(1) 0 Y. 

Lattice Parameters and Angles 

a (A) b (A) c (A) 

4.9887 (1) 4.9887 (1) 17.0529 (8) 

ne) P (0) re) 
90 90 120 

t~3.62 
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Atomic positions for the orthorhombic structure of 

CaC03 using space group R-3c after refinement 

with FullProf[5] 

x(z) y(x) z (y) 

0 0 0 

0 0 y. 

0.2576 (8) 0 Y. 

Lattice Parameters (A) and Angles e) 
a (A) b(A) c(A) 

4.9895 (6) 4.9895 (6) 17.0661 (7) 

ne) pe) y (0) 

90 90 120 

t~6.03 

.. 
Table 3.1.4: AtomIC POSItiOns and lattice parameters of the model and refined parameters ofCaC03 using 

space group R-3c 

Figure 3.1.8: The crystal/ographic structure plot ofCaC03 

The refined model and crystallographic data of CaRu03 can be seen in figure 3.1.7 and 

table 3.1.4. The deviation of the model and the deviation of the refined parameters are 
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within the error bars and quite close to each other with a value of X2=6.03. The 

rhombohedral shape of the CaC03 unit cell is shown in figure 3.8. The angles have not 

been refined and are kept constant at a=~=90° and y=120°. 

3.1.2 Preparation of SrRu03, CaRu03, Sr(l_x)CaxRu03 and Sr2Ru04 

The dried Ruthenium (IV) Oxide (RU02) was mixed with the correct stoichiometric 

quantity of Strontium Carbonate (SrC03) for strontium compounds SrRu03 and Sr2Ru04, 

mixed with calcium carbonate (CaC03) for the calcium containing compound CaRu03 

and the strontianite dopped with Calcium Carbonate to obtain Sro.sCao.SRU03 and 

SrO.7sCao2.SRU03. The formulae for the chemical reactions of these compounds are given 

below. The homogeneous powder mixtures were compressed into pellets to ensure that all 

grains are tightly packed. The pellets were fired in air at 800°C for 20h and then at 

1100°C for 72h. After cooling the pellets were reground for an X-ray diffraction 

investigation in order to check the composition of the final product [12, 13, 14, 15, 16]. 

This process was repeated 3 times and includes the following reactions: 

SrC03 + Ru02 ~ SrRu03 + CO2 
2SrC03 + Ru02 ~ Sr2Ru04 + 2C02 
CaC03 + Ru02 ~ c;aRu03 + CO2 

t SrC03 +tCaC03 + Ru02 ~Sro.sCaO.sRu03 + CO2 

-t SrC03 +iCaC03 + Ru02 ~ SrO.7SCaO.2SRu03 + CO2 

3.1.3 Structural Characterisation using X-rays 

3.1.3.1 Structural characterisation of SrRu03 using X-ray diffraction 

The SrRu03 has an orthorhombic structure at room temperature. It is similar to the 

structure of many AB03 perovskite compounds. In the literature its space group has been 

reported as Pbnm [12, 13], while in other publications it is quoted as Pnma [18, 19,20] 

(space group No. 62 of the International Tables of Crystallography [3]). Pbnm is a 

Hermann-Mauguin symbol for various settings of the same unit cell of Pnma. Thus, 
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Pbnm can be converted to the space group Pnma [11] in a similar manner as has been 

done for SrC03. This is explained in detail in appendix 1. 

In the quoted papers the main difference arises from the coordinates chosen for the Ru 

atom. A Ru atom might be placed in one of three different positions: These are 4a (0, 0, 

0), 4b (0, 0, 0.5) or 4c (0, 0.25, 0). The positions of other atoms (Sr, 01 and 02) are 

changing in accordance with the chosen position ofRu. Thus, not the size of the unit cell 

but the coordinates of atoms in the unit cell vary according to the different choices made 

by various authors. The conventional space group setting of Pnma has been chosen for 

this refinement with the Ru position at 4b (0, 0, 0.5). The refined data and plots are 

shown in figure 3.1.9 and table 3.1.5 
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Figure 3.1.9: The observed and refined X-ray diffraction pattern of SrRuOj 
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Atom ~.g Atomic position for orthorhombic structure 
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Atomic position for orthorhombic structure of 

SrRu03 using space group Pnma after refinement u ~ »- ofSrRu03 using space groupPnma [13,20] 
~~ with FullProf[11] 

x y z x(z) y(x) z(y) 

Sr 4c 0.0157(4) V. -0.0027(3) 0.0176 (8) V. -0.007 (1) 

Ru 4b 0 0 Y2 0 0 Y2 

01 4c 0.4966(5) V. 0.0532(4) 0.522 (6) V. 0.078 (7) 

02 8d 0.2764(2) 0.0278(2) 0.7248(2) 0.226 (8) 0.03 (7) 0.785 (6) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5304 (1) 7.8446 (2) 5.5670 (1) 5.552 (1) 7.843 (2) 5.560 (1) 

XZ =1.57 t~1.63 

.. Table 3.1.5: AtomIc POSItiOns and lattice parameters ojSrRu03 usmg space group Pnma 

The calculated X-ray diffraction agrees well with the observed pattern. This is reflected 

in the value of /=1.63 obtained for this fit. The model parameters agree well with those I 

of references [13, 20]. All refined values deviate slightly from the values given in [13, 

20]. There is no evidence of any additional phases or unidentified peaks within the 

pattern. Figure 3.1.10 and 3.Lll show the crystaUographic structure ofSrRu03. 
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Figure 3.1./0: The crystal/agraphic structure ojSrRu03 
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L . 

-
Figure 3.1.II-b 

L. 

Figure 3.1.II-d 

Figure 3.1.11: The crystal/ographic structure plots from difforent planes of SrRu03· a) b-a plane (001), b) 

b-c plane (100), c) bonds between the atoms, d) c-a plane (010) 

72 



Chapter 3 
Experimental Investigations 

It is claimed in the literatures [12, 20, 26] that SrRu03 has a cubic structure with the 

space group of Pm-3 (#200. [11]) at high temperatures. This cubic structure has also been 

included in the refinement at room temperature. However no cubic component was 

observed even as a second phase. The SrRu03 sample has been found to be in the 

distorted cubic structure which is deformed to an orthorhombic crystal as reported in [13, 

20]. As a consequence, SrRu03 is a tilted perovskite with an orthorhombic structure. This 

tilted perovskite can be easily seen with the three dimensional structure plots of SrRu03 

especially in figure 3.1.11c. 

3.1.3.2 Structural characterisation of Sr2Ru04 using X-ray 

diffraction 

The crystal structure of Sr2Ru04 is of the K2NiF4 type with space group I4lmmm (#139 in 

the International Tables for Crystallography [3]) [21]. The atom positions and lattice 

parameters have been refined using FullProf [5] and using the model of reference [22] as 

a starting point. 
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Figure 3.1.12: Observed and refined X-ray diffraction pattern ojSr2Ru04 
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Atom ~·B 

() Cl! 
;.-.-

~~ 

Sr 4e 

Ru 2b 

01 4c 

02 4e 

a (A) 

3.8603 (1) 

Atomic position for tetragonal structure of 

Sr2Ru04 using space group Ulmmm [25] 

x y z 

0 0 0.14684 (2) 

0 0 y, 

0 Y, 0 

0 0 0.3381 (1) 

Lattice Parameters 

b(A) c(A) a (A) 
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Atomic position for tetragonal structure of 

Sr2Ru04 using space group 14lmmm after 

refinement using FullProf 

x(z) y(x) z (y) 

0 0 0.1465 (4) 

0 0 y, 

0 y, 0 

0 0 0.339 (2) 

Lattice Parameters 

b(A) c(A) 

3.8603 (1) 12.729 (2) 3.8703 (6) 3.8703 (6) 12.730 (2) 

X~=1.96 t=2.12 

Table 3.1.6: Model and refined parameters ojSr]Ru04 

As seen in figure 3.1.12 and table 3.1.6, there is excellent agreement between the 

parameters of reference [22] and the values obtained in the refinement. The sample is of 

high quality with no additional phases or impurities. Figure 3.1.13 and 3.1.14 illustrate 

the crystaUographic structure of Sr2Ru04. 
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Figure 3.1.13: The crystallographic strocture ojSr2Ru04 

75 



o 

L. 
E 

. Figure 3.1.14-a 
( 

Figure 3. 1. 14-c 

Chapter 3 
Experimental Investigations 

• 

L. 
Eo 
Q 

SI" 

Figure 3.1.14-b 

Figure 3.1.14-d 

L. 
~ 
tJ 

Figure 3.1.14: The crystallographic structure plotsfor different planes ofSr2Ru04' a) c-b plane (lOO), b) 

c-a plane (010), c) Bonds between the atoms d) b-a plane (001) 

76 



Chapter 3 
Experimental Investigations 

As mentioned above, Sr2Ru04 crystallizes in the K2NiF 4 type structure which is realized 

for a considerable number of compounds with general composition A2BX4. The structure 

of Sr2Ru04 can be built up theoretically by three perovskite mono layers stacked along the 

resulting c axis where layers 1 and 3 are AXE 3 perovskite cells centred on B atoms [27]. 

Similar to the structure of SrRu03 in figure 3.1.11, the three dimensional perovskite 

structure of Sr2Ru04 can be appreciated from figure 3.1.13. 

3.1.3.3 Structural characterisation of CaRu03 using X-ray diffraction 

The perovskite CaRu03 has similar crystallographic properties compared to SrRu03. 

However, they show different electrical and magnetic properties. CaRU03 crystallises in 

the same space group as SrRu03 namely Pnma. Results in [19] indicate that CaRu03 has 

a smaller unit cell volume compared to SrRu03. 
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Figure 3. I. 15: Observed and refined X-ray diffraction pattern of CaRu03 
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1::: I': Atomic position for orthorhombic structure 
Atom ].g 

<> Of ;:...- of CaRU03 using space group Pnma [13,20] 
~~ 

x y z 

Ca 4c 0.0552 (4) Y. -0.0139 (2) 

Ru 4b 0 0 Y2 

01 4c 0.4742 (5) Y. 0.0920 (4) 

02 8d 0.2979 (2) 0.0482(2) 0.6973 (2) 
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Atomic position for orthorhombic structure of 

CaRU03 using space group Pnma after refinement 

with FuIlProf[ll] 

x(z) y(x) z (y) 

0.0583 (7) Y. -0.015 (1) 

0 0 Y2 

0.484 (3) Y. 0.095 (2) 

0.292 (2) 0.052 (2) 0.700 (2) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) cCA) a (A) b(A) c(A) 

5.5304 (1) 7.8446 (2) 5.5670 (1) 5.552 (2) 7.843 (2) 5.560 (1) 

t=2.2 t=2.04 

Table 3.1.7: Model and refined parameters of CaRu03 

Figure 3.1.16: The crystal/ographic structure plot ofCaRu03 
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Figure 3. 1. 17-c Figure 3. 1. 17-d 

Figure 3.1.17: The crystallographic structure plots for different planes ofCaRuOJ' a) b-a plane (001), b) b

c plane (lOO), c)Bonds between the atoms, d) c-a plane (OlD) 
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All the values which are refined using FullProf [5] are shown to be similar to the 

parameter of model [13,20], with a value ofX2=2.04 (figure 3.1.15, table 3.1.7). Similar 

to SrRu03, CaRu03 also has a distorted cubic structure. The orthorhombic structure is 

due to this distortion. The Ru atom is surrounded by 6 0 atoms. These 0 atoms are tilted 

due to the presence of Ca or Sr atoms. This is clearly shown in figures 3.1.17-c and 

3.1.11-c. 

3.1.3.5 Structural characterisation of Sr(1_x)CaxRu03 with X-ray 

diffraction 

Two different calcium doped strontium ruthenates (Sr(1_x)CaxRu03, x= 0.75, 0.5) have 

been prepared to obtain more detailed information about the magnetic structure of 

ruthenates. As reported before, the calcium doped ruthenates crystallise in the same space 

group (Pnma, #62) as SrRu03 [20, 28, 29]. The graphs of the X-ray diffraction pattern 

and crystal structures can be seen below. 
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Figure 3.1.18: Observed and refined X-ray diffraction pattern ojSrO.7SCaO.2SRu03 
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l::: ~ Atomic position for orthorhombic structure Atomic position for orthorhombic structure of 

Atom 
0.9 
~~ of Sro.7sC30.2sRu03 using space group Pnma Sro.7sC30.2sRu03 using space group Pnma after 
;:...-::=z [20] refinement with FullProf[11] 

x y z x(z) y(x) z(y) 

Sr 4c 0.0400 (5) 0.25000 -0.009 (1) 0.025 (1) 0.25000 -0.001 (4) 

Ca 4c 0.0400 (5) 0.25000 -0.009 (1) 0.025 (1) 0.25000 -0.001 (4) 

Ru 4b 0 0 Y2 0 0 Y:z 

Ol 4c 0.480 (3) 0.25000 0.079 (4) 0.533 (8) 0.25000 0.08 (1) 

02 8d 0.296 (2) 0.0427 (9) 0.705 (9) 0.208 (6) 0.023 (6) 0.75 (1) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5127 (9) 7.7392 (3) 5.444 (2) 5.553 (7) 7.8486 (6) 5.524 (1) 

"/..'=5.9 ~~17.2 

Table 3.1.8: Model and refined parameters ojSrO.7SCaO.2SRuOJ 

The parameters obtained for SrO.7sCao.2SRu03 (Fig 3.1.18, table 3.1.8) are similar to the 

model ones of [20]. The refinement yields '"I: =17.2. No additional phases or impurities 

have been detected. 

b) Sro.sCaO.SRu03 

While analysing the Sro.sCao.SRU03 data a model which only uses one phase does not give 

the best fit. Thus, a second phase, CaRU03 has been added to the model in order to obtain 

a better fit. Results are shown below in figure 3.1.19 and tables 3.1.9, 3.10. 

l::: ~ Atomic position for orthorhombic structure 
Atomic position for orthorhombic structure of 

Atom 
0.9 

Sro.sC30.sRu03 in space group Pnma after ~5 
~Z of Sro.sC30.sRu03 in space group Pnma [20] 

refinement with FullProf [11] 

x y z x(z) y(x) z (y) 

Sr 4c 0.0337 (7) 0.25000 -0.006 (2) 0.014 (2) 0.25000 0.1 (1) 

Ca 4c 0.0337 (7) 0.25000 -0.006 (2) 0.014 (2) 0.25000 0.1 (1) 

Ru 4b 0 0 Y2 0 0 Y:z 

Ol 4c 0.488 (4) 0.25000 0.084 (9) 0.527 (1) 0.25000 0.48 (6) 

02 8d 0.294 (3) 0.031 (4) 0.711 (5) 0.215 (8) 0.022 (5) 0.73 (2) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5136(4) 7.7921(6) 5.4932(4) 5.556 (1) 7.858 (2) 5.513 (2) 

"/..2=5.9 i=6.67 

Table 3.1.9: Model and refined parameters ojtheftrst phase ojSro.sCao.sRuOJ 
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Atom 

Ca 

Ru 

01 

02 

].~ Atomic position for orthorhombic structure 
o oS 
~ ~ of CaRU03 using space group Pnma [13,20] 

x y z 

4c 0.0552 (4) y. -0.0139 (2) 

4b o o Y:z 

4c 0.4742 (5) y. 0.0920 (4) 

8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 

Lattice Parameters [13,20] 

a (A) b(A) c(A) 
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Atomic position for orthorhombic structure of 

CaRU03 using space group Pnma after refinement 

with FullProf [11] 

x(z) y(x) z(y) 

0.039 (3) 0.003 (7) 

o o 
0.48 (1) 0.067 (8) 

0.294 (8) 0.0748 (4) 0.703 (7) 

Lattice Parameters 

a (A) b(A) c(A) 

5.5304 (1) 7.8446 (2) 5.5670 (1) 5.531 (3) 7.719 (3) 5.406 (2) 

-£=2.2 -£=6.67 

Table 3.1.10: Model and refined parameters of the second phase of Sro.sCaO.sRu03 
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Figure 3.1.19: Observed and refined X-ray diffraction pattern ofSro.sCao.sRu03 

Despite SrO.7sCao.2SRu03 being single phase, Sro.sCao.SRU03 possesses a second phases of 

CaRu03 (figure 3.1.19 and tables 3.1.9 and 3.1.10). The ratio between Sro.sCao.sRU03 and 
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CaRu03 has been calculated using the scale factors and the ratio of Sro.sCaO.SRu03 / 

CaRu03 and a value of 0.7504 has been found. After adding the second phase to the 

model, X:=6.67 was obtained. A more detailed investigation of the crystaIlographic 

characterisation has been carried out using neutron diffraction. 
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To further characterise the samples SrRu03, Sr(1.x)CaxRU03 and CaRu03 neutron 

diffraction experiments have been performed on D2B and D20 at the ILL. Neutrons can 

penetrate much more deeply than X-rays into the crystals. As a result, more detailed 

information of structure and the magnetic state can be obtained using neutron diffraction. 

The neutron diffraction experiments were carried out at various temperatures. 

Temperature variations help to identify the intensity of magnetic peaks and to calculate 

the ordered magnetic moment in Bohr magneton per ruthenium atom. It also enables to 

plot a graph of the temperature scan of the lattice constants and helps in determinating the 

thermal expansion of the sample. 

The models and references for the neutron diffraction investigations are the same as the 
I 

ones used for X-ray diffraction. Thus, only graphs, refined data and brief comments are 

given as written in this section. 

a) Structural characterisation of SrRu03 using neutron diffraction 

A polycrystalline SrRu03 neutron diffraction experiment has been carried out on D2B at 

2K and 200K. SrRu03 shows ferromagnetism below 160K. Using the program FuIlProf 

[5] the ordered moment measured in Bohr magneton per ruthenium atom is calculated 

and obtained with a value ofO.6600(±O.OOOl) flBiRu at 2K for SrRu03. 
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150 170 

Figure 3.2.1: Intensity differences (I2K-I200IO for SrRuOJ 

Figure 3.2.1 illustrates the intensity difference between 2K and 200K for SrRu03. The 

change in intensity at low angles around Bragg peaks is due to magnetic alignment at low 

temperature. Magnetically ordered moments cause a change in the intensity and this is 

reflected in the intensity of Bragg peaks at low angles. The changes in high angles reveal 

the change in unit cell lattice parameters as a result ofthe thermal expansion or shrinking. 
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Figure 3.2.2: Refined neutron diffraction pattern ojSrRu03 at 2K The second phase presents the magnetic 

refinement. 

Atom 

Sr 4c 

Ru 4b 

01 4c 

02 8d 

a (A) 

5.5304 (1) 

Atomic positions for the orthorhombic 

structure ofSrRu03 using space group 

Pnma [13,20] 

x y z 

0.0157 (4) -0.0027 (3) 

o o 
0.4966 (5) 0.0532 (4) 

0.2764 (2) 0.0278 (2) 0.7248 (2) 

Lattice Parameters [13,20] 

b(A) c(A) 

7.8446 (2) 5.5670 (1) 

t=1.57 

Magnetic Moment: 0.72(1) I'IIRu 

Atomic positions for the orthorhombic structure of 

SrRu03 at 2K using space group Pnma after 

refmement using FullProf [11] 

x(z) y(x) z (y) 

0.0188 (4) -0.0014 (5) 

o o 
0.4948 (5) 0.0543 (5) 

0.2793 (3) 0.0285 (2) 0.7218 (3) 

Lattice Parameters 

a (A) b(A) c(A) 

5.5302 (1) 7.8439 (1) 5.5652 (1) 

t=6·6 

Magnetic Moment: 0.66(1) I'IIRu 

Table 3.2.1: Observed and refined neutron parameters ojSrRu03 at 2K 
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The refined patterns of SrRu03 for T;;;2K and 200K are shown in figure 3.2.2, figure 

3.2.3 and table 3.2.1, table 3.2.2 respectively. At 200K the model has only taken into 

account nuclear scattering. 

2400 

0 

2100 ~rruo3_b1:!!1o.pr::t1 

0 Tobs 

1800 Tesle 

Tobs-Tesle 

~ 1500 Bragg_pos1tion 

S 
;€-

~ 
1200 

.!S 900 

600 

300 

0 

-300 

-600 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 

20r) 

Figure 3.2.3: Observed and refined neutron diffraction pattern of SrRuOJ at 200K 

~ ~ Atomic position in orthorhombic structure 
Atomic position in orthorhombic structure of 

Atom 
0.9 

SrRu03 at 200K in the space group Pnma after ~g ;Z ofSrRu03 in the space group Pnma [13,20] 
refmement using FullProf[ll] 

x y z x(z) y(x) z (y) 

Sr 4c 0.0157 (4) \4 -0.0027 (3) 0.0172 (4) \4 -0.0016 (5) 

Ru 4b 0 0 Y2 0 0 Y2 

01 4c 0.4966 (5) \4 0.0532 (4) 0.4962 (5) \4 0.0539 (4) 

02 8d 0.2764 (2) 0.0278 (2) 0.7248 (2) 0.2786 (3) 0.0277 (2) 0.7228 (3) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5304 (I) 7.8446 (2) 5.5670 (I) 5.5315 (9) 7.8462 (I) 5.5685 (9) 

X'-1.57 r=6.1 

Table 3.2.2: Model and Refined neutron parameters of SrRuOJ at 200K 
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As seen in the graphs and tables (figure 3.2.2, 3.2.3 and table 3.2.1, 3.2.2) the refined 

parameters agree well with the model proposed in [13,20]. This indicates that the sample 

preparing procedure was successful and both neutron diffraction and X-ray diffraction 

experiments are consistent. The unit cell volume for SrRu03 is 241.411424(116) A3 
at 2K 

and, 241.680166(193) A3 at 200K. A larger cell volume at high temperatures is 

meaningful from a physical point of view due to thermal expansion. However, the 

magnitude of the expansion is small. 

b) Structural Characterisation of Sr2Ru04 using Neutron Diffraction 

The experimental data for Sr2Ru04 was collected at two different temperatures (2K and 

300K) using the instrument D20 at the ILL, Grenoble, France. The compound Sr2Ru04 

becomes superconducting at -IK [31]. While decreasing the temperature from 300K to 

2K the cooling data have ;11so been recorded. This temperature scan helps to see the 

thermal expansion of the unit cell (figure 3.2.6). 
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Figure 3.2.4: Observed and refined neutron diffraction pattern ojSr]Ru04 at 2K 
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Atomic position for tetragonal structure of 

SrlRu04 at 2K using space group 14lmmm after 

refinement with FullProf[5] 

x(z) y(x) z (y) 

0 0 0.1466 (3) 

0 0 Yl 

0 Yl 0 

0 0 0.3378 (3) 

Lattice Parameters 

a (A) b(A) c(A) 

3.8603 (1) 12.729 (2) 3.8267 (2) 3.8267 (2) 12.6017 (9) 

:(=1.96 :(=530 

Table 3.2.3: Refined structural parameters ojSr:;Ru04 at 2K 
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Figure 3.2.5: Observed and refined neutron diffraction pattern ojSr:;Ru04 at 300K 
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Atomic Position for tetragonal structure of 

Sr2Ru04 at 300K using space group /4lmmm after 

refined with FullProf[5] 

x (z) y(x) z (y) 

0 0 0.1461 (3) 

0 0 Y2 

0 Y2 0 

0 0 0.3380 (4) 

Lattice Parameters 

a (A) b(A) c(A) 

3.8603 (1) 12.729 (2) 3.8363 (2) 3.8363 (2) 12.619 (I) 

t~1.96 t~1180 

Table 3.2.4: Refined neutron data ojSr]Ru04 at 300K 

The refined data (table 3.2.3 and table 3.2.4) and plots (figure 3.2.4 and figure 3.2.5) of 

Sr2Ru04 at 2K and 300K agree well with references [25, 27]. The X2 value is large for 

both temperatures. The reason for this is due to the huge number of neutrons. The X2 is 

related to the number of independent observations and intensities at angular position (J; as 

described in the characterisation section in this chapter and also in the reference number 

[32]. In practise due to systematic variations and the low statistical error (high count 

numbers) the systematic errors are more prominent in this analysis than the statistical 

errors due to counting statistic. As a result, the X2 values are high. These are not fully 

taken into account by the simplified model implemented here. The goodness of fit is 

believed to be very satisfactory despite the high X2 value. 

The temperature scans (figure 3.2.6) show the thermal expansion of the lattice parameters 

and the unit cell of Sr2Ru04. The values of a, band c increase with increasing 

temperature as expected. This increase is reflected in the volume of Sr2Ru04 as shown in 

figure 3.2.6-c. The temperature variation ofthe unit cell agrees with [27]. 
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.... ................ . .... 
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T[K[ 

Figure 3.2.6-b 

Figure 3.2.6: Temperature 
'variations of the unit cell 
parameters a) a, b, and b) 
c axes and c) volume of the 
Sr]Ru04. 

c) Structural Characterisation of CaRu03 with Neutron Diffraction 

Neutron data for CaRu03 has been collected at 2K and 200K at the ILL using the 

instrument D20. The temperature scans were carried out between 200K and 2K. The 

same references apply and the same crystallographic models have been used for neutron 

diffraction refinements as for the X-ray refinements. The results are shown below. 
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Figure 3.2.7: Observed and refined neutron diffraction patterns ojCaRuOJ at 2K 

~ s:: Atomic positions for the orthorhombic Atomic positions the orthorhombic structure of 

Atom 
o .9 

structure of CaRU03 using space group CaRU03 at 2K using space group Pnma after ~~ » ..... 
~~ Pnma [13,20] refinement with FullProf [11] 

x y z x(z) y(x) z (y) 

Ca 4c 0.0552 (4) Y4 ·0.0139 (2) 0.0570 (3) Y4 ·0.0154 (6) 

Ru 4b 0 0 y, 0 0 y, 

01 4c 0.4742 (5) Y4 0.0920 (4) 0.4728 (3) Y. 0.0947 (3) 

02 8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 0.2981 (2) 0.0479(2) 0.6973 (2) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b (A) c(A) a (A) b(A) c(A) 

5.5304 (1) 7.8446 (2) 5.5670 (1) 5.4878 (3) 7.5962 (5) 5.3082 (3) 

t-2.2 t~103 

Table 3.2.5: Model and refined neutron parameters ojCaRuOJ at 2K 
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Figure 3.2.8: Observed and refined neutron diffraction patterns ofCaRuOJ at 200K 

!::: s::: Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of 

Atom ].g structure of CaRU03 using space group CaRU03 at 2K using space group Pnma after o <IS 

~~ Pnma [13,20] refinement with FullProf [1 1] 

x y z x(z) y(x) z (y) 

Ca 4c 0.0552 (4) Y4 -0.0139 (2) 0.0553 (3) Y4 -0.0148 (5) 

Ru 4b 0 0 Y2 0 0 Y2 

Ol 4c 0.4742 (5) Y4 0.0920 (4) 0.4730 (3) Y4 0.0935 (3) 

02 8d 0.2979 (2) 0.0482(2) 0.6973 (2) 0.2979(2) 0.0475 (2) 0.6979 (2) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5304 (1) 7.8446 (2) 5.5670 (1) 5.4847 (3) 7.6008 (4) 5.3 150 (3) 

t=2.2 t=140 

Table 3.2.6: Model and refined neutron parameters ofCaRuOJ at 200K 
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Although the model and the refined parameters (figures 3.2.7, 3.2.8 and tables 3.2.5, 

3.2.6) look quite reasonable and the deviations are within the error bars, the obtained X
2 

is 

large. Systematic errors and the huge counting numbers of observed neutrons affect the 

value of i. However, the crystallographic data agree well with the model of references 

[13,20]. 

Temperature scans of CaRu03 were performed between 2K and 200K. The graphs below 

(figure 3.2.9) show the change of the unit cell parameters against temperature. 
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Figure 3.2.9: Temperature variations of the unit cell parameters a) a-axis, b) b-axis, c) c-axis, and cl) 

volume of the CaRuOJ' 

As shown in the figure 3.2.9 the length of the a-axis is decreasing while the length of b 

and c-axes are increasing (figure 3.2.9-b and 3.2.9-c). Figure 3.2.9-d represents the 
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change in volume as a function of temperature. These results agree well with those of 

reference [19]. In the entire temperature range, CaRu03 has the same crystalline 

structure, and no discontinuity or anomaly was observed. No evidence has been found for 

magnetic ordering in these temperature scans. 

d) Structural Characterisation of 
Diffraction 

The compounds SrxCa(l-x)RU03 with x=O.5 and 0.75 have been investigated using the 

instrument D20 at the ILL within the temperature of 2K to 200K. The thermal expansion 

of the unit cells of both compounds can be seen in the figures 3.2.12 and 3.1.15. There 

was no second phase in SrO.7sCao.2SRu03. However, CaRU03 has been detected as. a 

second phase in the compound Sro.sCao.sRU03. The same crystallographic model was 

used as for the {C.-ray refinements. Results are as shown below. 
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Figure 3.2.10: Observed and refined neutron diffraction pattern ojSrO.7SCaO.2SRu03 at 2K 
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~ c:: Atomic positions for the orthorhombic 

Atom 
o .9 

structure ofSro.7sClIo.2sRu03 using space ~d .......... 
~Z group Pnma [20] 

x y z 

Sr 4c 0.0400 (5) 0.25000 -0.009 (1) 

Ca 4c 0.0400 (5) 0.25000 -0.009 (1) 

Ru 4b 0 0 Y:! 

01 4c 0.480 (3) 0.25000 0.0790 (4) 

02 8d 0.296(2) 0.043 (2) 0.7050 (9) 

Lattice Parameters [13,20] 

a (A) b(A) c(A) 

5.5128 (2) 7.7392 (3) 5.4444 (2) 

t=2.2 

Chapter 3 
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Atomic positions for the orthorhombic structure of 

Sro.7sClIo.2sRu03 at 2K using space group Pnma 

after refinement with FuIlProf [11] 

x(z) y(x) z (y) 

0.03 (1) 0.25000 -0.002 (4) 

0.03 (1) 0.25000 -0.002 (4) 

0 0 Y:! 

0.488 (2) 0.25000 0.082 (3) 

0.288 (3) 0.023 (1) 0.726 (5) 

Lattice Parameters 

a (A) b(A) c(A) 

5.495 (1) 7.769(2) 5.485 (2) 

t=800 

Table 3.2.7: Refinedparameters ojSrO.7SCaO.2SRuOJ at 2K 

The refined parameters (table 3.2.7) and fit (figure 3.2.10) agree well with the model of 

reference [20]. Although the X2 looks high with a value of 800, the Bragg R-Factor and 

the RF-Factor is quite small with the values of 2.75 and 2.029 respectively. The obtained 

magnetisation with FullProf is 0.086(±0.254) flIlRu. The value of the deviation (0.254) is 

about 3 times higher than the observed value of 0.086. In this case, it is not possible to 

talk about magnetic ordering for the SrO.7sCao.2SRu03 at 2K. A detailed investigation will 

be performed in the magnetic investigation section to see whether there is magnetic 

ordering or not. 
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Figure 3.2.1 I: Observed and refined neutron diffraction pattern ofSro.7sCao.2sRu03 at 200K 

!t:: I"i 
Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of 

Atom 
o .g 

structure ofSro.7SCIIo.2sRu03 using space Sro.7sCIIo.2sRu03 at 200K using space group ~.a 
>'0 ::::z group Pnma [20] Pnma after refmement with FullProf [I 1] 

x y z x(z) y(x) z(y) 

Sr 4c 0.0400 (5) 0.25000 -0.009 (1) 0.014 (1) 0.25000 0.029(3) 

Ca 4c 0.0400 (5) 0.25000 -0.009 (1) 0.014 (1) 0.25000 0.029 (3) 

Ru 4b 0 0 Y2 0 0 YJ 

01 4c 0.480 (3) 0.25000 0.079 (4) 0.476 (2) 0.25000 0.028 (4) 

02 8d 0.296 (2) 0.043 (2) 0.705 (9) 0.297 (1) 0.0394 (7) 0.734 (3) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5128 (2) 7.7392 (3) 5.4444 (2) 5.497 (2) 7.765 (2) 5.4951 (3) 

t'-5.9 t=470 

Table 3.2.8: Refined neutron parameters of SrO.7sCao.2sRu03 at 200K 
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As seen above, figure 3.2.11 represents a good fit and the refined model (table 3.2.8) is 

very close to the model proposed in the literature [20]. The X2 value is a large number, 

namely 470. However the Brag R-Factor and the RP-Factor are reasonable. No ordered 

magnetic moment has been found at 200K. This is consistent with magnetisation 

measurements. 

Temperature scan results can be seen below in figure 3.2.12. The temperature dependence 

of the unit cell parameters shows the thermal expansion ofSro.7sCao.2sRu03. 
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Figure 3.2.13: Observed and refined neutron diffraction patterns ofSro.sCa025Ru03 at 2K. 

!::: 101 
Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of 

Atom 
].g 

structure ofSro.sCao.sRu03 at 2K using Sro.sCao.sRU03 at 2K using space group Pnma 
o '" >, ..... 

~Z space group Pnma [20] after refinement with FuIlProf 

x y z x(z) y(x) z (y) 

Sr 4c 0.0337 (7) 0.25000 -0.006 (2) -0.006 (2) 0.25000 -0.003 (3) 

Ca 4c 0.0337 (7) 0.25000 -0.006 (2) -0.006 (2) 0.25000 -0.003 (3) 

Ru 4b 0 0 Y2 0 0 Y2 

01 4c 0.488 (4) 0.25000 0.084 (9) 0.510 (2) 0.25000 0.114(4) 

02 8d 0.294 (3) 0.031 (4) 0.711 (5) 0.2994 (8) 0.0317 (5) 0.792 (3) 

Lattice Parameters [13,20] Lattice Parameters [11] 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5136 (4) 7.7921 (6) 5.4932 (4) 5.4947 (7) 7.770 (1) 5.485 (2) 

r=5.9 i=418 

Table 3.2.9: Refined neutron parameters of the first phase of Sro.7sCao.2sRu03 at 2K 
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Atomic position for the orthorhombic structure of 

Atom 
o .s;! 
~E structure ofCaRu03 at 2K using space CaRU03 using space group Pnma after refinement 

~Z group Pnma [20] with FullProf[1l] 

x y z x(z) y(x) z (y) 

Ca 4c 0.0552 (4) Y. -0.0139 (2) 0.055 (1) Y. -0.003 (2) 

Ru 4b 0 0 Y2 0 0 Y2 

01 4c 0.4742 (5) Y. 0.0920 (4) 0.467 (2) Y. 0.081 (2) 

02 8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 0.294 (8) 0.0504 (6) 0.6979 (8) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5304 (1) 7.8446 (2) 5.5670 (1) 5.481 (1) 7.644 (2) 5.356 (1) 

(=5.9 t=4I8 

Table 3.2.10: Refined neutron parameters of the second phase of SrO.7sCao.1sRuOJ at 2K 
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Fig 

ure 3.2.14: Observed and refined neutron diffraction pattern of Sro.sCao2sRuOJ at 200K 
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Atomic positions for the orthorhombic structure of 

Atom ].g 
<> '" 

structure ofSrO.5Cao.5Ru~ at 200K using Sro.sCao.SRU03 at 200K using space group Pnma 
>,-

::::£ space group Pnma [20] after refinement with FuIlProf[ll] 

x y z x(z) y(x) z (y) 

Sr 4c 0.0337 (7) 0.25000 -0.006 (2) -0.019 (2) 0.25000 -0.007 (2) 

Ca 4c 0.0337 (7) 0.25000 -0.006 (2) -0.019 (2) 0.25000 -0.007 (2) 

Ru 4b 0 0 !4 0 0 !4 

01 4c 0.488 (4) 0.25000 0.084 (9) 0.513 (2) 0.25000 0.073 (3) 

02 8d 0.294 (3) 0.031 (4) 0.711 (5) 0.2980 (8) 0.0343 (6) 0.743 (3) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5136(4) 7.7921(6) 5.4932(4) 5.5073 (8) 7.791 (1) 5.446 (2) 

t~5.9 t~743 

Table 3.2.11: Refined neutron parameters of the first phase of Sro.7sCao.2sRuOj at 200K 

~ s::: Atomic position for the orthorhombic Atomic position for the orthorhombic structure of 

Atom 
o .g 

structure of CaRU03 at 200K using space CaRU03 at 200K using space group Pnma after ~S 
>'0 :::z group Pnma [13,20] refinement with FullProf [11] 

x Y z x(z) y(x) z(y) 

Ca 4c 0.0552 (4) Y4 -0.0139 (2) 0.045 (2) Y4 -0.011 (3) 

Ru 4b 0 0 Y2 0 0 Y2 

01 4c 0.4742 (5) Y4 0.0920 (4) 0.466 (2) Y4 0.086 (2) 

02 8d 0.2979 (2) 0.0482(2) 0.6973 (2) 0.298 (1) 0.0469 (9) 0.695 (1) 

Lattice Parameters [13,20] Lattice Parameters 

a (A) b(A) c(A) a (A) b(A) c(A) 

5.5304 (1) 7.8446 (2) 5.5670 (1) 5.478 (1) 7.659 (2) 5.365 (3) 

"/."1.=5.9 i=743 

Table 3.2.12: Refined neutron parameters of the second phase of Sro.7sCao.2sRuOj at 2K 

The correct crystallographic structure parameters were not obtained with a single phase 

refinement for Sro.sCao.SRU03. Due to the problems of refinement different models have 

been tried to find the best fit. The best fit and best result was obtained when two phases 

(Sro.7sCao.2SRu03 and CaRU03) were applied to the refinement of the neutron data. 

According this model, there is a second phase present of composition CaRu03 

accompanying Sro.sCao.sRU03. The refined data and fitted plots can be seen in figures 

3.2.13, 3.2.14 and tables 3.2.9, 3.2.10, 3.2.11, 3.2.12. The ratio of the compounds 
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Sro.sCao.sRU03 / CaRu03 is 0.867. This ratio is close to the one which was obtained using 

X-ray diffraction. The reason for the impurity might be due to insufficient mixing of the 

compound when sintering, not enough heat treatment or not applying the right pressure 

when making pellets. 

Although the -l value obtained is high for 2K and 200K (418, 743 respectively) the 

neutron diffraction patterns give better results than the X-ray diffraction patterns. When 

the magnetic part is refined, the value of X2 starts fluctuating and does not become stable. 

The reason is the second phase. The space group of second phase compound CaRu03 and 

SrO.7sCao.7SRu03 are the same as the ones mentioned in X-ray diffraction section and it is 

Pnma (#62). The lattice parameters of the two compounds are close enough for overlap. 

Thus the two phases render the data not refineable with the magnetic phase. 

The figure 3.2.15 below shows the thermal expansion of the unit cell of Sro.sCaO.sRu03. 

The data of the temperature scan has been collected between 2K and 200K. 
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Figure 3.2.15: Thermal expansion o/the unit cells o/Sro.sCaO.SRu03 a) a-axis, b) b-axis, c) c-axis and 

d) unit cell volume o/Sro.sCaO.SRu03 

Figure 3.2.15 clearly exhibits the thermal expansion of the unit cell and volume of the 

Sro.sCao.sRU03 compound. 
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A superconducting Quantum Interface Device, SQUID for short, was used to measure the 

magnetic properties of the Sr(1-x)CaxRu03 and Sr2Ru04 compounds. The device is widely 

accepted as the most accurate method of measuring magnetic moments. The resolution of 

10-8 e.m.u. (10-11 Jrl) allows accurate measurements of samples with small magnetic 

moments. This highly sensitive method was sufficient to investigate the magnetic 

properties of the Ruthenates. 

A small piece of the ruthenate compounds (table 3.3.1) was placed inside a gelatine 

capsule with a very small amount of cotton wool for fixing the sample into position. The 

capsule was then placed in a plastic tube and connected to the sample transport 

mechanism. All samples were cooled down to 5K in zero field. 

Samples Weight [g] Relative atomic mass Number of Mole 
[g/mol] rmolel 

SrRu03 0.00200±O.00001 236.87 (8,4434±0.0001) 10-6 

CaRu03 0.0 1610±O.OOOOI 189.15 (8.5118±0.000 1) 10-5 

Sro.7sCa02sRu03 0.00900±O.OOOOI 224.80 (4.0036±0.000l) 10-5 

SrosCaosRU03 0.00795±O.OOOOI 212.92 (3.7338±0.0001) 10-5 

Sr2Ru04 0.OI031±O.00001 308.31 (3.3440±O.0001) 10-5 

Table 3.3.1,' WeIght, relatIve atomIC mass and number of mole of samples used 

The magnetisation measurements for the polycrystalline samples were carried out in two 

different ways. First of all the magnetisation was measured as a function of temperature 

in various constant external fields. Secondly, the magnetisation was measured as a 

function of applied field at constant temperature. From the latter measurements Arrott 

plots were created for different temperatures. The MPMS-SQUID system created a data 

file including temperature values in Kelvin, applied magnetic field in Gauss, magnetic 
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moment in e.m.u. and magnetic susceptibility in e.m.u.lgauss. These data were converted 

into SI-units and normalized to the mass of the sample. 

3.3.1. SrRu03 

A magnetic measurement in various constant applied magnetic fields of 0.1, 1.25, 2, 5 

Tesla has been carried out over the temperature range from 5K to 360K. The results are 

shown in figure 3.3.1 

o 50 100 150 200 250 300 350 400 

T[K] 

Figure 3.3.1: Magnetisation of SrRu03 as afunction of temperature at an applied magnetic fields of 

0.1,1.25,2,5 Tesla. 

The low field (0.1 and 1.25 Tesla) magnetisation measurements clearly indicate that the 

SrRu03 compound is ferromagnetic (figure 3.3.1). The transition temperature for SrRu03 

is 162K as might be seen in the inset figure of figure 3.3.1. In general, the magnetisation 

increases with increasing magnetic field. 

The magnetisation of SrRu03 was measured as a function of applied field for various 

temperatures (figure 3.3.2). The ordered magnetic moment is increasing with decreasing 
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temperature. The magnetisation measurements which are below the Curie temperature 

have an intersection with the positive y-axis CM). 

B[T] 

Graph 3.3.2: Magnetisation o/SrRuOJ as a/unction 0/ applied magnetic field at various temperatures. 

Arrott plots are more useful for investigating the magnetic properties. Using the data of 

the magnetic measurements Arrott plots are plotted for various isothermal measurements 

and the results are represented in figures 3.3.3, 3.3.4, 3.3.5 

In figure 3.3.3 Arrott plots of SrRu03 clearly represent the magnetic phase transition. 

SrRu03 shows ferromagnetic behaviour for the temperatures which intersect the y-axis 

(M) and it shows paramagnetic behaviour for the temperatures which intersect with the 

x-axis (HIM). A zoomed view ofthe Arrott plots can be seen in the figure 3.3.5. In graph 

3.3.5, the intersection with the x-axis (HIM axis) yields values of the inverse magnetic 

susceptibility extrapolated to zero applied magnetic fields. 

In the figure 3.3.6 the inverse susceptibility is shown as a function of temperature. For 

temperatures above the transition point of 162 Kelvin the inverse susceptibility versus 

temperature is in excellent agreement with the Curie Weiss law as shown in graph 3.3.6. 
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Figure 3.3.3: Arrott plots of SrRu03' The inset figure shows the Arrott plots for which the linear 
extrapolations intersect with the x-axis. 
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Figure 3.3.4: Zoomed view of Arrott plots of SrRu03 
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Figure 3.3.5: A more detailed view of the paramagnetic region containing the linear fit of Arrott plotsfor 

SrRuO]. All values are interpolated to the x or y axes. 
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Figure 3.3.6: Inverse mass susceptibility as afunction of temperature ofSrRuO]. This graph is obtained 

from Arrott plots. 
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The intersection point with the x-axis indicates that the paramagnetic Curie temperature 

for SrRu03 is 162K. 

As described in the theory section 2.3.2, the paramagnetic effective Bohr magneton 

number per Ru-atom could be calculated from the slope of the inverse susceptibility. 

According to the calculations the value of paramagnetic effective Bohr magneton number 

has been found experimentally as 3.17(±0.I2) PB per Ruthenium. The paramagnetic 

effective Bohr magneton number for SrRu03 is calculated 2.8 1 (±0.09) pyRu in low spin 

state (s=I) in reference [29]. The obtained value by experiment is slightly higher than the 

reference value. 

3.2.2. CaRu03 

For the compound CaRu03 magnetisation measurements have been carried out as a 

function of temperature over a range of 2K to 280K at a field of 0.1 Tesla. The curve 

obtained is shown in figure 3.3.7 
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Figure 3.3.7: Magnetisation as a function of temperature at an applied magnetic field of 0.1 Tesla for 

CaRu03 
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As seen in the figure 3.3.7 there is no magnetic anomaly within this temperature range. 

The magnetisation increases with decreasing temperature in a low field 0.1 Tesla and 

reaches its maximum value of 0.13 JTikg-i at 2K. 

Magnetic isotherms of CaRu03 were measured for various temperatures (figure 3.3.8). 

All'the graphs indicate a linear dependence of the magnetisation on the applied field and 

all go through the origin of the graph. Again, no magnetic phase transition has been 

observed over the whole temperature range . 

........ 
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Figure 3.3.8: Magnetisation ofCaRuOJ as afunction of applied magnetic field at various temperatures 

Arrott plots have been obtained for a more detailed magnetic investigation (figure 3.3.9). 

There is no intersection with the y-axis (M axis) for any temperature. All the fitted 

values (figure 3.3.10) of Arrott plots intersect with the x-axis (HIM axis). It is pointed out 

that the compound CaRu03 is paramagnetic within the whole temperature range of 2K to 

300K. 
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Figure 3.3.9: Arrott plots ofCaRuOJ at various temperatures 
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Figure 3.3.10: Zoomed view of Arrott plots of CaRuOJ' 
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Figure 3.3.11: Linear fit of Arrott plots ofCaRu03. All values intersect the x-axis (HIM axis) 

Arrott plots are used to obtain values for the magnetic susceptibility by the fitting of 

linear lines. The temperature dependence of the inverse susceptibility is plotted in figure 

3.3.12. 
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Figure 3.3.12: Inverse magnetic susceptibility as afunction o/temperature ofCaRu03. 
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The inverse magnetic susceptibility against temperature graph is in good agreement with 

the model ofa Curie-Weiss law. From figure 3.3.12 it can be seen that the paramagnetic 

Curie temperature for CaRu03 is -126(±1.8) K. The slope of this graph yields a 

paramagnetic effective Bohr magneton value for the paramagnetic moment of CaRu03 of 

2.867(±0.12) JlslRu atom. In reference [29] the paramagnetic effective Bohr magneton is 

found as 2.66 JlslRu atom. The obtained paramagnetic effective Bohr magneton from 

SQUID measurements is quite close the one given in reference [29]. 

It is well known that Sr2Ru04 is the first noncuprate layered perovskite compound [16, 

31]. Magnetisation against temperature has been measured for Sr2Ru04 in an applied 

field of 0.1 Tesla (figure 3.3.13). In the literature [16, 31] it is claimed that the compound 

does not order magnetically down to lK but shows superconductivity around -1.2K. The 

small magnitude of the magnetisation in figure 3.3.13 arises from an impurity phase 

SrRu03. The amount of Sr2Ru04 used for this investigation was 3.21xlO-3 grams and the 

amount of SrRu03 has been calculated to be of the order of 10.5 grams which is about one 

per cent compared to the mass of Sr2Ru04. This impurity is so small that it cannot be 

detected in X-ray diffraction or neutron scattering, on the other hand, it is sufficiently 

large for causing an effect in magnetic measurements. There is no magnetic phase 

transition or magnetic ordering detected within the measured temperature range. 
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Figure 3.3.13: Magnetisation as afunction of temperature at an 

applied magneticfield of 0.1 TesTafor Sr2Ru04 
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Figure 3.3.14: Inverse mass susceptibility as afunction of temperature ofSr]Ru04' This graph is obtained 

from magnetisation against temperature graph. 
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The inverse mass susceptibility ofSr2Ru04 can be seen in graph 3.3.14. However, again, 

the impurity phase, SrRu03, plays a role in this graph and due to its presence the graph 

does not go through the origin and shows a phase transition at Te = 162 K. 

A magnetic measurement in a constant applied magnetic field of 0.1 Tesla has been 

carried out over the temperature range from 5K to 350K. For SrO.7sCao.2SRu03 the results 

are shown in figure 3.3.15 
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Figure 3.3.15: Magnetisation as afunction of temperature at an 
applied magnetic field of 0.1 Tesla for SrO.7SCaO.2SRuOJ 
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This magnetisation measurement in an applied field of 0.1 Tesla (figure 3.3.15) clearly 

indicates that SrO.7sCao.2SRu03 is ferromagnetic. The inset figure in figure 3.3.15 shows 

the transition temperature for SrO.7sCao.2SRu03 and the magnetic phase transition 
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temperature for this compound is 166(±1.6)K. This value should be smaller than the 

value of inverse susceptibility of SrRu03. 

The magnetisation of SrO.7sCao.2SRu03 was measured for various temperatures (figure 

3.3.16). The magnetisation increases with increasing field and decreasing temperature. 

For measurements which are below the transition temperatures (Te) the extrapolations to 

low fields intersect with the y-axis (A!). For measurements at temperatures above the 

transition temperatures, the graphs pass through the origin. 
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Figure 3.3.16: Magnetisation ojSrO.7SCaO.2SRu03 as afunction of applied magnetic field at various 
temperatures 

Again here, Arrott plots have been used for investigating the magnetic properties and also 

to help to plot the inverse susceptibility against temperature. Using the data of the 

magnetic isotherm measurements Arrott plots were plotted for various temperatures and 

the results are represented in figure 3.3 .17. 
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Figure 3.3.17: Arrott plots o!SrO.7SCaO.2SRu03!or various temperatures. Insetfigure shows the zoomed 

view near the transition temperature. 

In figure 3.3.17 the Arrott plots of SrO.7sCao.2SRu03 are represented. It can be seen that 

from the inset figure of figure 3.3.17 the plots for Tc<160K intersect the x-axis. These 

plots will be used to obtain a graph of the inverse magnetic susceptibility and a more 

precise magnetic phase transition temperature for SrO.7sCao.2SRu03. 

In figure 3.3.18 the inverse magnetic susceptibility is shown as a function of temperature. 

An analysis of this plot has been carried out using a linear regression and the data points 

lie on a straight line. This graph identifies the Curie temperature for SrO.7SCaO.2SRu03 as 

148K (±L2). The Curie temperature for Sro.SCao.2Ru03 is quoted as 147K in reference 

[29]. This value agrees well with the one observed in SQUID measurements. This is a 

more reliable value comparing to one which was obtained from temperature scans at a 
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finite value of the applied magnetic field. The presence of Ca in the compound should 

decrease the Tc value compared to the one ofSrRu03 [29]. 
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Figure 3.3.18: Inverse magnetic susceptibility as afunction o/temperature o/SrO.7SCaO.2SRuOJ' The data 
points are obtained/rom Arrott plots. 

Further calculation yield a value for the number of the magnetisation per ruthenium atom 

and the value 2.3(±OA)pslRu has been found according to this calculation. The value for 

paramagnetic effective Bohr magneton in reference [29] is 2.80 pslRu. The calculated Tc 

and magnetisation per ruthenium atom from SQUID data agree well with literature values 

[29]. 

b) Sro.sCaO.SRu03 

A small piece of Sro.sCao.sRU03 has been measured using the SQUID magneto meter. The 

magnetisation as a function of temperature is measured at a field of 0.1 Tesla and in the 

temperature range between 2K and 350K. Figure 3.3.19 represents the results of this 

measurement. 
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Figure 3.3.19: Magnetisation as afunction of temperature at an 
applied magnetic field of 0.1 Tesla for Sro.sCaO.SRu03' 

The Iow field (0.1 Tesla) magnetisation measurement shows that the Sro.sCao.SRU03 is a 

ferromagnetic compound like the other compounds of the Sr(1-x)CaxRu03 family. The 

transition temperature for Sro.sCao.sRU03 is 163(±2)K. However, with Arrott plots and 

inverse susceptibility measurement the Curie temperature will be determined exactly for 

this compound. The variations below 140(±2)K are caused by the impurity phase CaRu03 

which is mentioned in the section 3.2.4. 

The magnetisation of Sro.sCao.SRU03 was measured for various temperatures (figure 

3.3.20). The temperatures above the transition temperature intersect the positive x-axis. 

The results satisfy the previous works done by I. Felner, et al [29]. The variation which 

has been observed in magnetisation versus temperature graph does not exist here. 
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Figure 3.3.20: Magnetisation ofSro.sCao.sRu03 as afunction of applied magnetic field at various 
temperatures 
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In graphs 3.3.20 and 3.3.21 Arrott plots of Sro.sCao.sRU03 clearly represent the magnetic 

phase transition. Sro.sCao.sRU03 shows ferromagnetic behaviour in the temperatures lines 

which intersect the y-axis (M) and it shows paramagnetic behaviour for temperatures 

lines which intersect with the x-axis (HlM). Intersections with the x-axis (HIM axis) yield 

values of the inverse susceptibility extrapolated to zero magnetic fields. 

Further calculation yield a value for the number of the magnetisation per ruthenium atom 

and the value 2.3(±0.2) J1s1Ru has been found according to this calculation. 

In the figure 3.3.22 the inverse susceptibility is shown as a function of temperature. For 

temperatures above the transition point of 128(±2)K the inverse susceptibility versus 

temperature is in excellent agreement with the Curie-Weiss law as shown in figure 

3.3.22. The calculation of the values of Tc and magnetisation per ruthenium atom shows 

good agreement with the literature values [29]. 
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Figure 3.3.22: Inverse susceptibility as a function of temperature ofSro.sCao.sRuOJ' This graph is obtained 

from Arrott plots. 

From the inverse susceptibility versus temperature graph, the effective paramagnetic 

Bohr magneton has been calculated and a value of pejJ = 0.98(±0.08) /AslRu has been 

found. 
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3.4 Paramagnetic Neutron Scattering 

3.4.1 Instrumentation 

Paramagnetic neutron scattering experiments have been carried out at the ILL, Grenoble, 

France using the Diffuse Scattering Spectrometer, D7. 

D7 is designed to study diffuse scattering arising from disorder phenomena in solids. The 

diffuse scattering intensity appears between Bragg reflections. It is usually weak and may 

contain both elastic and inelastic contributions. D7 uses a unique combination of full 3-

directional XYZ-polarisation analysis using a multi detector setup. 

Full 3-directional polarisation analysis enables the experimental separation of nuclear

spin-incoherept, nuclear and magnetic components. Combined with the flexibility of the 

instrument and the fact that data is collected simultaneously in 64 detectors, this makes 

D7 a unique instrument. A schematic diagram ofD7 can be seen in figure 3.4.1 [33]. 
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Figure 3.4.1: A schematic diagram of the diffuse scattering instrument D7 [33}. 
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The operation details of D7 instrument have been described in detail in the users manual 

[33]. The neutron polarizer and analysers can be removed if desired to facilitate 

conventional neutron diffraction measurements. The inclusion of a neutron disk chopper 

enables energy analysis of the scattered neutrons by the time-of-flight method. Neutrons 

from the HIS cold neutron source at the ILL are monochromated by a focusing graphite 

monochromator crystal array. The take-off angle from the monochromator crystal 

defines the incident neutron wavelength. The three (nominal) wavelengths available on 

D7 are 3.IA, 4.8A or 5.9A. For> 3.IA the neutrons pass through a beryllium filter 

which removes higher orders of the incident wavelength IJn where n = 2,3, .... etc. The 

neutrons are then polarized by a supermirror bender polarizer and pass through a Mezei 

1t-spin-flipper which is turned on when measuring the Spin-Flip (SF) cross-section and 

turned off when measuring the Non-Spin-Flip (NSF) cross-section. The neutron 

polarization, which is in the z-direction, is maintained by a neutron guide field of around 

ImT. The neutrons pass through the sample which is placed ~t the centre of 3 orthogonal 

coils, known as the spin turn coils. These coils rotate the initial neutron polarization by 

1t12 from the z-direction onto the x or y directions before hitting the sample, and then they 

rotate the scattered neutrons back by -1tI2. This allows the sequential measurement of the 

SF and NSF cross-sections in each direction. 

The neutrons then enter the detector banks, each of which consists of a neutron guide 

field, 8 removable supermirror analysers and 16 3He detector tubes (figure 3.4.2). With 

the supermirror analysers in place only 8 detectors are used in each bank. The 8 detectors 

are placed 6 degrees apart, each bank subtending an angle of 45 degrees. With four 

identical banks, there are in total over 5000 supermirrors on D7. The banks can be placed 

on either side of the instrument and can cover scattering angles from 2B=7° to 160°. 
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The data reduction for polarisation analysis is described III the D7 manual [33]. 

According to this manual in order to obtain the absolute cross-section from the raw 

number of neutron counts, the following corrections must be applied. 

• The relative detector efficiency correction 

• The spin-dependent analyser transmission correction 

• The background scattering correction 

• The sample self-attenuation correction 

• The absolute scale of cross-section 

• Multiple scattering corrections. 

All these corrections have been done usi~g the LAMP program [33]. Lamp is a computer 

programs which is written in IDL (Interactive Data Language) and is developed at the 

ILL. This program helps to reduce and analyse the data which has been obtained from 

any instrument at the ILL with the help of user supplied macros in IDL. The desired 

instrument can be chosen via the user friendly interface of Lamp. In this case D7 has been 

chosen from a drop-down menu. After choosing the instrument and the path for data files 

the macros should be written. Different macros must be applied for different corrections 

and than a macro has to be used to reduce an XYZ to an omega scan. All the macros 

which are used and brief explanations about these macros have been collected in the 

appendix. 

3.4.3 Calculating the Correlation Length from the Polarised Neutron 

Scattering 

The magnetic correlation length can be calculated with the aid of spin polarised neutron 

scattering and the spin-spin correlation function. 
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Using the susceptibility data in section 3.3 the expected magnetic scattering at Q=O can 

be determined by virtue ofthe relationship between the spin-spin correlation function and 

the uniform susceptibility: 

L(S/ .S}) =3kBZT (3.3.1) 
} 

which in turn is related to the partial differential cross-section by 

dO" 2 ( - -)( )2 2 -=- S/·S) roy f 
dO. 3 

(3.3.2) 

where royis equal to 0.54xlO-J3 cm and/is the form factor which is unity at Q=O. A more. 

detailed explanation of the relationship between the spin-spin correlation function and the 

uniform susceptibility is given in the appendix. 

3.4.4 Experiments 

The investigations were carried out on the instrument D7 at the ILL using a 18.1l01g 

powder sample of SrRu03 and a 9.5181g powder sample of Sr2Ru04 using a neutron 

wavelength of 5.9A. The data were collected at 170K, 300K and 535K for SrRu03 and 

2K, 20K, 50K and 450K for Sr2Ru04. For all measurements the specimen was contained 

in a thin walled, aluminium cylinder under a helium atmosphere, located in an orange 

cryostat. Having optimised the flipper and correction coil current for maximum spin 

flipper efficiency, calibration measurements were performed. Normalisation to the 

scattering of a vanadium standard permitted all subsequent sample data to be placed on 

an absolute scale. The results obtained are as follows: 

a) SrRu03 

Lamp [33, 34] has been used for analysing and plotting the graphs for the paramagnetic 

neutron scattering. When the graphs were extrapolated to the value of the inverse 
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susceptibility at Q=O, the full width of the maximum yields the correlation length. 

Figures 3.4.3, 3.4.4 and 3.4.5 give the paramagnetic scattering of the Ruthenium spins in 

SrRu03 for various temperatures. The correlation lengths, as obtained from a fit to the 

peak centred at Q=O, are given table 3.4.1. 

Temperature [K] 
Uniform Mag. Sus. 

FWFM [21tfA] Corr. Length [A] 
[barn/sterad] 

170 10.50 0.075 (5) 83.73 (5) 

300 1.05 0.083 (4) 75.66 (4) 

535 0.68 0.085 (4) 73.88 (4) 

Table 3.4.1,' Correlation lengths obtamed from a fit to the peak centred at Q=O 
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Figure 3.4.3: Paramagnetic neutron scattering ofSrRu03 at 170K. 
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Figure 3.4.4: Paramagnetic neutron scattering ojSrRu03 at 300K 
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Figure 3.4.5: Paramagnetic neutron scattering ojSrRu03 at 535K 

128 



Chapter 3 
Experimental Investigations 

The paramagnetic scattering measured at Iow temperature is shown in figure 3.4.3 for 

T=170K. The figures 3.4.4 and 3.4.5 present the paramagnetic scattering at sufficiently 

high temperatures (300K and 535K respectively) in the paramagnetic regime. From these 

figures it may be seen that at all temperatures there is a distinguishable scattering at small 

wave vectors which is strongly enhanced. It is interpreted as evidence for the presence for 

ferromagnetic correlations. As the temperature decreased the paramagnetic scattering at 

small wave vectors sharpens. This is due to the magnetic ordering which exists at Iow 

temperatures. On increasing the temperature above the transition temperature, strong 

ferromagnetic correlations persist into the paramagnetic temperature range. For all three 

figures scattering at large wave vectors does not appear to change as a function of 

temperature, but rather it remains at the level as observed at Iow temperatures. 

For SrRu03 the magnetic correlation length at various temperatures for SrRu03 has been 

calculated using the forward peak in figures 3.4.3, 3.4.4 and 3.4.5. Near the 

ferromagnetically ordered region (at 170K, figure 3.4.3) the value of correlation length 

has been calculated as 83.73A. With increasing temperature the ferromagnetism vanishes 

and the correlation length decreases to 71.36A at 300K. The correlation length at 535K is 

72.34A and it is essentially unchanged compared to the value at 300K. 

The reason of why no enhancement of Bragg reflections is observed at higher wave 

vectors is due to the rapid decrease of the magnetic form factor. The delocaIisation of 

electrons on the ruthenium cause this rapid decrease. Hence no magnetic short range 

order is seen around Bragg peak positions the correlation length being of the order of ten 

unit cells. 

b) Sr2Ru04 

Due to the ferromagnetic SrRu03 impurity in the Sr2Ru04 compound which was prepared 

for magnetic measurements, the correct inverse susceptibility could not be determined. 

Hence, the lack of inverse susceptibility does not allow the calculation of the magnetic 

correlation length. The experiment has been done at 2K, 20K, 50K, 450K. The graphs can 

bee seen in figures 3.4.6, 3.4.7. 3.4.8 and 3.4.9. 
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Figure 3.4.6: Paramagnetic neutron scattering ojSr2Ru04 at 2K 
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Figure 3.4.7: Paramagnetic neutron scattering oj Sr2Ru04 at 20K 
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Figure 3.4.8: paramagnetic neutron scattering ojSr]Ru04 at 50K 
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Figure 3.4.9: paramagnetic neutron scattering at 450Kjor Sr]Ru04 
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Although it is well known that Sr2Ru04 is not magnetically ordered even at low 

temperatures, there is a distinguishable peak at small wave vectors. As mentioned in 

detail in the magnetisation measurements section (section 3.3.3) there is an impurity 

phase of SrRu03 less then 1 %. This impurity is the reason for this sharp peak. This sharp 

peak arises from the ferromagnetic nature of SrRu03. As expected and described in the 

previous section (section 3.3.4.a) no Bragg peaks have been observed due to the rapid 

decrease of form factor. 
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The observed crystallographic structures according to X-ray diffractions and neutron 

scattering experiments have been shown in chapter three. All results agree with previous 

works. 

SrRu03 occurs in a distorted perovskite structure at room temperature, specifically, it 

crystallises in the GdFe03 structure type with orthorhombic Pnma symmetry. This is 

typical for perovskites with an A-site cation that is too small relative to the B-site. The 

distortion consists of rotations of the oxygen octahedra with very little change in Ru-O 

bond lengths. CaRu03 has the same structure and space group as SrRu03, but, oxygen 

octahedral are tilted more and they are distorted further than SrRu03, because the ionic 

radius of Ca (0.99A) is even less ideal for perovskite formation than Sr (l.18A). As a 

result the CaRu03 compound has a smaller unit cell size compared to its analogue 

compound SrRu03. 

All Sr(l-x)CaxRu03 (x=0.5 and 0.75) compounds possess the same symmetry and 

crystallographic properties as SrRu03. With increasing concentration of Ca ions, the unit 

cell shrinks and thus the unit cell volume decreases. The tilting in Ru-O bond directions 

is also rising. 

The impurity phase of CaRu03 in Sro.sCao.sRU03 compound has made the refinement 

difficult. This impurity phase has not affected the crystallographic structure of 

Sro.sCao.SRU03 and all the values which are obtained exhibit good agreement with 

published works. 

The X-ray and neutron scattering experiments show that, Sr2Ru04 crystallises in the 

K2NiF4 structure type with the 14/mmm space group which is realised for a considerable 

number of compounds with the general composition A2BX4. The structure of Sr2Ru04 can 

be built up by three perovskite mono layers stacked along the resulting c-axis where layer 

1 and 3 are ABX3 perovskite cells centred with B atoms. Removing two BX2 layers leads 

to the K2NiF 4 structure. 
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For investigating the magnetic properties and structures of SrRu03, CaRu03, Sr2Ru04 

and Sr{l_x)CaxRu03 SQUID measurements have been undertaken. For a more detailed 

magnetic investigation of SrRu03 and Sr2Ru04 paramagnetic neutron scattering 

experiments have been performed. For Sr2Ru04 the magnetic investigations have been 

obstructed due to the impurity phase SrRu03. As a consequence, the magnetic 

investigation for this compound is not reliable. 

The experiments show that perovskite SrRu03 is ferromagnetic with Tc= 162K and the 

paramagnetic effective Bohr magneton number has been calculated as 3. 17(±0.1) f1wRu 

in the low spin state (s=I). On the other hand, CaRu03 was not ordered magnetically 

down to 2K. The inverse magnetic susceptibility measurements show that the 

paramagnetic Curie temperature for CaRu03 is -126K. When moved to Sr(I-x)CaxRu03 

compounds it can be seen that the ferromagnetic ordering is getting weaker with 

increasing Ca concentration and vanishes when x= 1. 

While both SrRu03 and CaRu03 have the same number of d-electrons, SrRu03 is 

ferromagnetic and CaRu03 is paramagnetic. This is obtained using SQUID and neutron 

diffraction experiments at low temperatures (2K). It showed that no additional magnetic 

neutron scattering peaks exist, indicating that CaRu03 is paramagnetic. The peaks which 

emerge in low temperature neutron scattering spectra of SrRu03 provide experimental 

proofthat this compound has a ferromagnetic ground state. 

While discussing bonding qualitatively, some authors proposed that the Ru-O t2g bands 

are narrower in CaRu03 than in SrRu03 because of the ionic radius of Ca. This research 

supports this argument by X-ray diffraction and neutron scattering experiments. For 

structure determination experiments showed that CaRu03 is more distorted than SrRu03, 

which is very close to cubic. This should also decrease the Ru-O overlap and thereby 

reduce the width of 7t-bands. Furthermore, the unit cell volume of CaRU03 is smaller than 

that of SrRu03. This factor will act to increase the Ru-O interaction. 
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The stark contrast between SrRu03 and CaRu03 arises because of the closed shell s-like 

characters of Sr and Ca do not contribute to the density of states at the Fermi surface and 

therefore should not be the origin for the different magnetic ground states of these two 

compounds. One common structural feature of the two compounds is that they are 

composed of an array of corner-sharing RU06 octahedra. It is assumed that the degree of 

tilting and rotation of these octahedra within their ideal cubic-perovskite structure 

governs the observed differences in the magnetic ground states. A narrow itinerant 4d 

band is formed through hybridisation of Ru t2g and 0 2p orbitals. The octahedral 

crystalline electric field of 0 atoms splits the fivefold degeneracy of the Ru 

4tfconfiguration into a triplet (t2g) ground state, two-thirds occupied, and a doublet (eg) 

excited state, unoccupied. The magnetism of SrRu03 and related ruthenates are 

influenced heavily by the covalent coupling of the Ru d shell to the 0 2p electrons. It is 

believed that CaRU03 has a narrower itinerant 4d bandwidth than SrRu03 which is too 

narrow for long range magnetic order but not too narrow as to cause CaRu03 to be non

metallic. The bandwidth has been calculated and published [1]. This supports the 

magnetic measurements, which have been done for this research project. CaRu03 is on 

the edge of magnetic ordering and tends towards an ordered phase. With increasing Ca 

concentration in Sr(l_x)CaxRU03 compounds the bandwidth gets narrower and with 

sufficient Ca ions (x>O.3) the compound starts to exhibits ferromagnetic ordering. 

The paramagnetic neutron scattering experiments clearly indicate that the investigated 

ruthenate compounds have itinerant electrons rather than localised electrons as claimed in 

the literature. The itinerant electrons cause a drop of the form factor and hence no 

magnetic Bragg peaks or magnetic short range order close to nuclear Bragg reflections 

could be observed. 

This research showed that the ruthenium oxides, which are transition metal oxides with a 

perovskite structure exhibit a variety of physical properties ranging from ferromagnetism 

(SrRu03) to paramagnetism (CaRu03), from a cubic structure (at high temperature) to 

orthorhombic, from metallic to insulating. Moreover, Sr(l_x)CaxRu03 shows a rapid 

decrease in Te with increasing Ca content. On the other hand the layered compound 
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Sr2Ru04 is the first copper free Iow temperature superconductor. The origin of the 

magnetism in SrRu03 is still not clear and the reason for the occurrence of 

superconductivity in Sr2Ru04 is still being discussed. In the future more detailed work 

has to be carried out on single crystals in order to clarify the structural, electrical and 

magnetic properties of these ruthenates. 
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1.1 Macros for analysing the Paramagnetic Neutron Scattering 

The following macros have been applied to SrRu03 at 170K data. The macros are similar 

for other compounds at various temperatures. Only the data file names need to be 

changed. 

a) Quartz Correction 

The incident beam polarizer and the analysers before the detectors are not perfect. A 

small number of neutrons with the wrong spin state always manage to pass through. To 

correct for this, a run is performed with an amorphous silicate (quartz) sample. Quartz is 

a perfect nuclear-incoherent scatterer with nuclei which do not possess a nuclear spin. 

Any signal picked up in the spin-flip channel must therefore arise from non-ideal 

polarization. The following macro has been applied for extracting the flipping ratios: 

;quartz 

wI= rdsum(73992, 73994) 
w2= normalise (wI, /monitor) 

w3= rdsum (73996, 73999) 
w4= normalise (w3, /monitor) 

;quartz (up to 74995) 

;quartz empty 

w5= background (sample = w2, empty = w4, T = 0.9) 
w6= quartz (w5) 

The numbers from 773992 to 73994 represent the data file name for quartz and from 

73996 t073999 data file name represent the quartz holder. The line w5 corrects for the 

background and line w6 calls a macro quartz.pro which takes the background-corrected 

data file w5, calculates the flipping ratios, puts the result into w6 and writes the flipping 

ratios to a file quartz_73994.dat. This file is then used later in the analysis to make the 

flipping ratio correction. 

b) Vanadium Correction 

Vanadium is a purely nuclear spin-incoherent scatterer and nuclear spin-incoherent 

scattering is by definition isotropic. This helps to correct for the detector efficiency. Each 

detector has a different efficiency. The intensity seen in each detector is a measurement 
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of the apparent detector efficiency and also the analyser transmission. The following 

macro has been applied for vanadium corrections: 

; vanadium 

wl rdsum(74068,74069) ;vanadium measurement 

w2 normalise (wl, /monitor) 

w3 rdsum(74063,74065) ;empty measurement 
w4 normalise (w3,/monitor) 

w5 rdsum(74066,74067) ;cadmium measurement 
w6 normalise (w5,/monitor) 

w5 background (sample = w2, empty w4, cadmium w6, T 0.7825) 

w6 vanadium (w5) 

The line w6 calls a macro vanadium.pro. This macro adds the non-spin-flip and spin-flip 

scattering together and puts the total intensities into w6. It also writes them to a file 

vanadium _74069 .dat. This file is used later in the analysis. 

c) Macro for XYZ Method of Polarisation Analysis 

The XYZ difference technique has been used to separate the magnetic scattering from all 

other types of scattering. The macro for this technique is as follows: 

;SrRu03 170K_new 5.7Ang 

wl= rdsum(74012,74020) 
w8=normalise(wl,/monitor) 

; sample 

;------------------------------------------------------------
wl= rdsum(74063,74065) 
w7=normalise(wl,/monitor) 

; empty 

;------------------------------------------------------------
wl=rdsum(74066,74067) 
w6=normalise(wl,/monitor) ; cadmium 
;============================================================ 
w17 = background(sample = w8, empty = w7, cadmium = w6, T = 0.969222) 
w18=zero_detectors(w17, [58]) 

w9 = corr_xyz(w18, filenum= 73994) ;flipping ratio corr. 
wlO = norm_van (w9, filenum = 74069, S_Mass=18.1101,Fwt=236.535, V mass= 
9.0755) ;vanadium normalisation 

wll = components(wlO) 
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w12 = theta_scan(w11, lall) 
w13 = phi2q(w12) 

w14 = w13(*,0) & y_tit(14) = y_tit(13) 
w tit(14) = 'Total '+ STRTRIM(w tit(13)) 
w15 = w13(*,1) & y tit(15) = y tit(13) 
w tit(15) = 'Spin-Incoherent ,+ STRTRIM(w tit(13)) 
w16 = w13(*,2) & y tit(16) = y tit(13) -
w tit(16) = 'Nuclear '+ STRTRIM(W tit(13)) 
w17 = w13(*,3) & y_tit(17) = y_tit(13) 
w_tit(17) = 'Magnetic '+ STRTRIM(w_tit(13)) 

Appendix 

;w15= binq(w15, dQ=0.05) 
;w20= total(w15(2:30))/26*1000,sqrt(total(e15(5:30)*e15(5:30 )))/27/1000 
; output, w20, file='deneme03.dat' 

; output, w14, file='srruo3 170 total woc.dat' 
; output, w15, file='srruo3_170_spin-inc_woc.dat' 
; output, w16, file='srruo3 170 nuclear woc.dat' 
; output, w17, file='srruo3_170_magnetic_woc.dat' 

The zero_detectors macro in the line w 18 zeroes bad detectors. In line w9 the corr _xyz 

macro file has been applied. This makes the flipping ratio correction with the aid of the 

vanadium file. Line w 10 calls the macro norm_van which helps to correct detector 

efficiency and also provides an absolute normalisation, the data is then normalised to an 

absolute scale in units ofbarnlsteradian. The components macro which is in the line wI1, 

provides a macro for extracting the various contributions such as incoherent, coherent, 

magnetic, etc scattering. The theta_scan macro in line w12 rearranges the data in 

ascending order of the magnitude of the scattering angle and phi2q in line w13 transforms 

the x-scale from scattering angle in degrees to wave vector Q (A-I). 

1.2 The Magnetic Correlation Function 

If relativistic effects are unimportant and spin is conserved the observed scattering will 

extrapolate to the cross section at Q=O given by the uniform susceptibility X i.e. the 00=0 

susceptibility. Thus as Q-O the spectrometer D7 is able to integrate over all scattering 

for all temperatures used in the study. The spin-spin correlation function (Sq. S_q) at 

Q=O is given by Lj(S;. Sj) = 3kBXT which is related to the partial differential cross 
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section by ~ = Ljt(SI·Sj)(rorY /2 where roris equal to 0.54xlO-
13 

cm and/is the 

form factor which is unity at Q=O. 

The magnetic correlation function 

00 

S(q,co) = Idte-11lJ1 L/q(R1-Rj) (SI (t)· Sj(O)) 
_00 I,J 

(A.!) 

is related to the imaginary part ofthe dynamic susceptibility via 

S(q, co) = I hm X"(q, co) 
I-ekr 

(A.2) 

For a system oflocal magnetic moments a sum rule for the scattering can then be defined 

L jdlUS'(q,co) = jdcoL jdte-11lJ1 x Lelq(R1-Rj)(SI(t).Sj(O)) 
q -00 -00 q -00 I,j 

(A.3) 

which yields 

(A.4) 

Typically the sum rule is obtained by integrating the scattering up to some finite energy, 

which for a system in an ordered ground state usually is the maximum spin wave energy 

~kBTc. At finite temperatures the moments become directionally disordered but their 

magnitudes remain fixed. Thus the paramagnetic phase is characterised by disordered 

local moments. If the integration is carried out over the whole range of q and w the sum 

rule is obtained. In the paramagnetic phase the response is diffusive and centred on w=O 

with a width L\w which increases from zero at q=O to its maximum value at the zone 

boundary. 

145 




