u Loughborough
| . University
- University Library |

3 ) v - |
~ Author/Filing Title ... k, k.‘\V@rC\A/ ...... OL\“\‘V‘ ..........
e ————
IR o

R —

Class Mark .ooeeeiieneimscssmnseess

Please note that fines are charged on ALL
overdue items.

0403177154

(LT







Investigations of StTRuO; and Sr,RuOy

by

Ozhan Unverdi

A Doctoral Thesis
Submitted in partial fulfilment of the requirements
for the award of

Doctor of Philosophy of Loughborough University

October 2005

‘© by 0.Unverdi, 2005




H Loughborough
University
Pilkington Library

[pate Jaed 200¢
Class “T

Acc

No. OLFO3\_T—'H5/+' ‘

o




Abstract

Abstract

The structural and magnetic properties of perovskites SrRuOj;, CaRuO;3, St CaxRuO;
(x= 0.5, 0.75) and the layered perovskite Sr,RuO;4 have been investigated using X-ray
diffraction, neutron scattering and SQUID measurements. StRuOs is ferromagnetic with a
transition temperature of Tc=162K. It remains orthorhombic up to 450K. CaRuO;s is
paramagnetic down to 2K and shows no structural phase transition between 2K and
300K. Sr,RuQy is neither magnetically ordered nor does it changes its crystallographic
structure between 2K and 450K. The nature of the magnetism in SrRuOj; has been found
to originate from itinerant 4d band electrons. CaRuOj; possesses a narrower 4d band
compared to StRuOs3. The width of the 44 band in CaRuO; does not allow any magnetic
order. The unit cell differences between SrRuOj; and CaRuOs are also due to the band
structure. Paramagnetic neutron scattering also supports the notion of itinerant 4d band

magnetism in these ruthenates.
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Chapter 1
Introduction

1.1 General Introduction

Transition metal oxides exhibit a variety of physical properties. The discovery of high-T¢
cuprate superconductors [1] has drawn much attention to transport in metal oxides,
particularly to those which have perovskite-related structures. Among those, the series of
ruthenium oxides have very interesting structural, electrical, and magnetic properties [2].
The crystallographic structure and magnetic structure of the layered ruthenates
Sry+1RUxO3e+1 (StRuO3 when x= o0 and Sr.RuO4 when x=1) and SrxCa;RuO; (x=0, 0.5,
0.75) have been investigated using X-ray diffraction, neutron scattering and SQUID

measurements to determine the electron correlations in Ru-based oxides.

The n = 1 compound Sr,RuQy is the first example of an unconventional noncuprate
layered perovskite superconductor at low temperatures (7¢ =0.93K) [3, 4]. Magnetically

it is a paramagnetic metal.

Since the observation of superconductivity in Las..BaiCuOs; (LBCO) [1], several
superconducting copper oxides have been discovered, forming a new class of
superconductors with remarkably high transition temperatures, namely high-temperature
superconductors (HTSCs). The most peculiar feature commonly seen in HTSCs is that all
of them have a layered perovskite crystal structure containing a planar CuO; network. It
has been well recognized that, in the CuO, planes, significant and large hybridisation
between the Cu d(x’°) and O po states is a crucial factor in describing the electronic
structure as well as the strong correlation on the Cu site. A number of efforts have been
made for some years to find a layered perovskite superconductor without copper but no
one has succeeded until very recently. Maeno et al. [3,5] discovered superconductivity at

0.93 K in the non-copper-oxide Sr,RuO4 with the same crystal structure as LBCO [5].

The crystal structure of Sr,RuQy is of the K;NiF4 [6] structure type which is realized for a
considerable number of compounds with the general composition 4,BX; [7, 8]. The
structure can be built up theoretically by perovskite monolayers stacked along the c-axis
where the layers 1 and 3 are 4BX; perovskite cells centred with atoms of type 4, while

layer 2 is centred with B atoms.
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The n = oo compounds SrRuQOs;, CaRuO; and Srg.CaRuO; have also a layered
perovskite structure with a similar crystallographic structure. In despite of the similarity

in crystallographic structure, the magnetic properties show quite different behaviour [9,

10].

Perovskite SrRuO; has been known for quite some time [11]. However, it has become
the subject of considerable attention lately, both because of its relationship with the
unconventional superconductor SroRuQO4 and because of its unusual position as a 4d
metallic perovskite oxide ferromagnet. The Curie temperature is high, Tc~165K, and the
magnetisation of 1.61+0.4 ppRu [4, 12] is significant. The octahedral crystalline electric
field of O atoms splits the fivefold degeneracy of the Ru 4d” configuration into a triplet
(t2g) ground state, two-third occupied, and a doublet (ey) excited state, which is

unoccupied [13].

SrRuOj3 occurs in a distorted perovskite structure, specifically, of the GdFeOs type, with
orthorhombic Pnma symmetry as is typical in perovskite with an A-site cation that is too
small relative to the B-site. The distortions consist of rotations of the oxygen octahedra

with very little change in Ru-O bond lengths [14, 15].

In addition SrRuOj3 exhibits a structural phase transition at high temperatures. At room
temperatures it has an orthorhombic structure (a=bc, where a=5.5304(1) A, 5=7.8446(2)
A and ¢=5.5670(1) A [14]). At 823 K it changes to a tetragonal structure (a=b=c, where
a=b=5.5784(2) A and ¢=7.9078(78) A) and at 973 K it becomes cubic (a=h=c=13.9557(1)

A) [16].

CaRuOs has the same crystal structure and symmetry as SrRuOs3, with the exception that
the octahedral rotations are approximately twice as large, reflecting the smaller size of the
Ca®* jon relative to St** [13]. Although initially reported as antiferromagnetic [17], it is
now established to be a paramagnetic metal down to low temperatures [15, 18]. The ,
LSDA (Local Spin Density Approximation) calculations for CaRuO; but using the crystal

structure of SrRuQ; yield magnetic properties that are practically the same as those of
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SrRuQ;. The difference between CaRuO; and SrRuQ; is therefore clearly structural in
origin [4, 17].

In the literature it is claimed that the CaRuO; has a cubic structure with a=b=c=3.910(1)

A [19]. However, no cubic structure has been observed in any scattering experiment.

Ca dopped SrRuQ; compounds, Sr.xCa,RuO; compounds have similar crystallographic
structure and symmetry compared to SrRuO;. The unit cell volume decreases with
increasing x and the magnetisation vanishes for x>0.7 [13]. Here, again the diameter

differences between Sr*" and Ca® plays an important role for the altering of the

crystallographic structure.

1.2 Main Objectives of the Research

Ruthenium oxides exhibited a wide variety of physical properties. StrRuO3; and CaRuQ;
show metallic properties at room temperature. The outstanding difference in magnetic
properties of SrRuO; and CaRuOs render solid solutions of Sri.xCaRuOs quite
interesting. StRuQ; is ferromagnetic below T¢=160K, whereas CaRuQs follows a Curie-
Weiss law at high temperatures with a negative Curie-Weiss constant. On the other hand
Sr,RuO4 is an unconventional superconductor at low temperature (7¢=1.2K). All this

variety arises from the magnetic and electronic structure of Ruthenium oxides.

The magnetic and electronic structure can be understood by magnetic measurements and
polarized neutron scattering experiments. In addition to this, the differences in
crystallographic structure also play an important role for their physical properties. With

the aid of neutron scattering and X-ray diffraction the crystallographic structure can be

obtained.

Details of the electronic correlations as seen in the magnetic behaviour can be
investigated using spin polarised neutron scattering. Such an experimental method will
focus on the electrons close to the Fermi level, which are also the most relevant for

determining the thermodynamic properties of these compounds.
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To start the investigation first a detailed crystallographic structure determination is
carried out and presented. Secondly, the magnetic properties of some compounds are
investigated. Finally, a polarised neutron scattering experiment is performed in order to

determine the details of the magnetic behaviour on an atomic scale.

1.3 Structure of the Thesis

The thesis is divided into four chapters.

Chapter one is a general introduction to the research which has been carried out. It
points out the aims and gives a short introduction to various aspects of physics which
have been relevant for this thesis. It also gives a brief introduction to the properties of

compounds and the path that has followed during the research.

Chapter two covers the background of the theory of X-ray scattering, neutron scattering,
magnetism and refinements. It also gives a description of crystal field theory as applied to

Ruthenium oxides.

Chapter three presents all the experimental results which have been obtained. Detailed
information and results of X-ray diffraction experiments, neutron scattering experiments

and magnetic measurements are presented in this section.

Chapter four is a discussion of the experimental results. It also contains the conclusion of

the whole thesis.
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2.1 X-rays

2.1.1 Introduction

X-rays are electromagnetic radiation of short wavelength, and can be produced by the
sudden deceleration of rapidly moving electrons inside a target material. If an electron
falls through a potential difference of ¥ volt, it acquires energy of eV electron-volt (eV),
where e is the charge of an electron. This energy may be expressed as quanta of X-rays of

wavelength A, where each quantum is given by

he
A=— 2.1.1
eV ( )

h being Plank’s constant and ¢ the speed of light in vacuum. Substitution of numerical

values into (2.1.1) leads to:
2.
A =ll—,i [A] (2.1.2)

where ¥ is measured in kilovolt and A is given in Angstrom. The wavelength range of X-
rays is approximately 0.1-100 A. For the purposes of practical X-ray crystallography, the
range used is approximately 0.6-3.0 A [1].

X-rays are produced through the impact of electrons on a metal target (anode). The most
widely used source of X-rays is the sealed hot-cathode tube. In such a device, electrons
emitted from a heated tungsten filament (cathode) are accelerated by a high voltage (40
kV or more) towards a water cooled target anode, usually made of copper or
molybdenum. A large proportion of the energy reaching the target is dissipated as heat on
account of multiple collisions within the target material, but about 10% of the energy is
converted to X-rays. As a consequence, the device can be operated with a higher current

density resulting in a more powerful source. If the energy eV is not too high, there will be
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a continuous distribution of X-ray wavelengths, or white radiation. As the accelerating

voltage V is increased, the intensity of the radiation increases.

At a certain higher value of ¥}, the impinging electrons begin to excite inner electrons in
the target atoms. Then, other electrons from higher energy levels fall back to the inner
levels. This transition is accompanied by the emission of X-rays, characteristic for the
material of the target. In this case, the X-ray wavelength depends on the energies of the

two levels involved, E; and E;, such that

he

A=
|E2‘E1|

2.1.3)

Relative Intensity Axis

o

0.4 0.8 1.2 1.6
Lambda Axis [A]

Figure 2.1.1: Characteristic K spectrum from an X-ray tube, superimposed upon the white radiation
(continuous spectrum)

Figure 2.1.1. illustrates the curve of radiation intensity against X-ray wavelength, when
the accelerating voltage is sufficient to excite the K spectrum of the target metal. The K

spectrum consist of the K, and K wavelengths, which are always produced together, and
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correspond to electrons falling back from the L and M levels, respectively to the K-shell.
Two slightly different L energy levels exist, so that the important K, spectrum consist of
two components of closely similar wavelength, K, and K. The wavelength of K
radiation for a target material of copper are Kz=1.3926 A, K,;=1.54056 A and
K,2=1.54437 A respectively. The mean value for X, is obtained by averaging the K,; and
K> wavelength in their intensity ratio of 2:1, thus giving the average value of 1.54183 for

K.; the oy- oy doublet is resolved when the scattering angle is large, that is, at high values

of the Bragg angle 6 [1, 2].

2.2.2 Bragg Law

When X-rays of wavelength A are directed onto a correctly oriented single crystal at an
angle 6, diffraction will occur which arises due to parallel atomic planes of separation d.
The amplitude of the diffracted X-ray beam will be maximal when the path difference
between rays reflected from successive planes is equal to an integer multiple of the
wavelengths (n4). The relation which describes this phenomenon is called Bragg’s law.

Bragg’s law is a consequence of the periodicity of the lattice. (Fig.2.1.2)

nA=2dsind (2.1.4)

<

dsin® dsin8
Figure 2.1.2: lllustration of Bragg’s Law

10




Chapter 2
Theoretical Background

2.2 Neutron Diffraction

2.2.1 Introduction

The neutron is a chargeless, elementary particle of mass m,=1.675x10” kg spin Y and it
possesses an intrinsic magnetic dipole moment ;z,,=1.042x10'3 g [6]. On account of these
properties, the neutron is subjected to scattering of magnetic as well as nuclear origin and
therefore permits the experimental investigation of both nuclear and magnetic solid state

phenomena on an atomic scale. Its intrinsic properties are as follows:

e The mass of the neutron results in the de Broglie wavelength of thermal neutrons
being of the order 1 — 3 A. This is of the same order of magnitude as the
interatomic distances in solids. The interference effects that consequently occur
yield information on both the nuclear and magnetic structure of the scattering
System.

e The neutron is a neutral particle and thus it can penetrate deeply into the target
and close to the nuclei without having to overcome a Coulomb barrier due to
electrostatic forces. |

e The neutron has an intrinsic magnetic moment, which interacts with the unpaired
electrons in magnetic atoms.

o The energy of thermal neutrons is of the same order as that of many excitations in
condensed matter. Thus, the analysis of the energy of the inelastically scattered
neutrons gives information on the dynamic processes occurring in solids due to

the coherent motion of the nuclei (phonons) or that of the magnetic moments

(magnons).

The energy E of a neutron with a wave vector £ is

212
E= f;}’; 2.2.1)

11
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where m is the neutron mass. It is sometimes useful to rewrite the energy relation

(eq.2.2.1) in terms of the neutron wavelength A or alternatively the inverse relation

2
P 22.2)

can be used.

Low energy neutron beams (high wavelengths) are often described as being cold,

thermal, and hot or epithermal.

In an actually scattering experiment the key variables are the change in the neutron
energy and the concomitant change in wave vector. If i@ and & is the transfer of energy

and wave vector to the target sample, thus,

ha)=E-—E’=-2;z;-(k2 ~ k) (223)

where E, kis the initial and E’,k’, are the final states. The scattering vector is then

written
R=k—k' (2.2.4)

The spectrum of the scattered neutrons is a function of & and not some other function of

kand &' [5].

It is evident from (2.2.3) and (2.2.4) that @ and x are related. The relation imposes
kinematical constrains on the scattering experiments. For example not all of (w,x) is
accessible in a neutron scattering experiment. The kinematically allowed region is a
function of the incident neutron energy E and lies between the (@ x) corresponding to

forward and backward scattering.

12
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2.2.2 Definitions of cross sections

kl

Scattered neutron beam

o I’
-
-

Incident neutron beam

Figure 2.2.1.: Geometry of scattering experiment and cross section

Various types of measurement can be made on the neutrons after they have interacted
with the scattering system. The result in each case can be expressed in terms of a quantity

known as a cross section.

To specify the geometry of the scattering process polar coordinates are used (fig.2.2.1).
If the directions of scattering neutrons are & and ¢ then the double cross section is

defined by

Number of neutrons scattered per second into
the solid angle dQ in direction (4, #) with
d%c energy between E'and E' + dE'

OQOFE' OdQdE’

(2.2.5)

13
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where @ is the flux of the incident neutrons and E’is the energy of the scattered

neutrons. The dimension of the double differential scattering cross section is [area].
If only the scattered neutrons into a solid angle d€2in the direction § ¢ are analysed, not
the energy, the cross section corresponding to this measurement is known as the

differential cross section, and it is defined by

(Number of neutrons scattered per second into)
oo

the solid angle dQ in the direction (&, ¢) (2.2.6)
Q- ddQ
The total scattering cross section is defined by the equation
. = (Total number of neutr;)ns scattered per second) 22.7)

The total numbers means the total number of neutrons scattered in any direction.

From their definitions the three cross section are related by the following equations

Ly (A 2238
2\ dQdE’ (2.2.8)
do
o, = || —dQ
" J( - ) (2.2.9)

If the scattering is axially symmetric, i.e. if do/d(2 depends only on 6 and not on 4, eq.

2.2.9 becomes

“do., .
Oy = j—£2ﬂsm9d6 (2.2.10)

0

14




Chapter 2
Theoretical Background

2.2.3 Nuclear Scattering

2.2.3.1 Scattering of neutrons by a single fixed nucleus

Plane wave of neutrons are described by a wave-function of the form [6]

Ve =€ 2.2.11)

where k = 27/ A is the wave-number, is incident on a nucleus. The scattered wave will be

spherically symmetric of the form
w=——e (2.2.12)

where r is the distance of the point of measurement from the origin to which the nucleus
is considered to be rigidly fixed. The quantity &, which has the dimension of length, is

defined as the scattering length and is a complex quantity

b=a+if 2.2.13)

However, the imaginary component only becomes important for nuclei which have a high
absorption coefficient, such as cadmium or boron. If the scattering length is real, the

resultant neutron wave will be given by

. b .
y=e" ——e" (2.2.14)
r

The definition of the scattering cross section (eq. 2.2.7)

o = (Total number of neutrons scattered per second)
tot
D

ikr ]2
= 4W2VM (2.2.15)

2

vleikzl

= 4nb*
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where v is the neutron velocity [6, 7].

The neutron interacts only very weakly with matter, and does so without disturbing the
intrinsic properties of the target sample. The amplitude of a wave scattered from one
nucleus is very small at the position of neighbouring nuclei. This condition allows the

total scattering amplitude for an array of nuclei to be treated as the coherent sum of those

for the individual nuclei.

2.2.3.2 Scattering from an assembly of nuclei
If the target sample has no internal structure, then clearly the energy of the scattered
neutron is identical to that of the incident neutron. To calculate the differential cross

section for this the probability of a transition from the plane-wave state should be known.
The transition is from % to &’ and the energy is E = A2k? /2m for both. This probability

is given by Fermi’s Golden rule, namely [5]:
2z .5 2
Wesk ='}1—|IdFV/E'V‘//;I P (E) (2.2.16)

Here V is the interaction potential that causes the transition, in this case the interaction is

between the incident neutron and the target sample, and p,,(E) is the density of final

scattering states per unit energy range.

One can obtain an expression using the standard device in quantum mechanics, known as
box normalisation, for the density of final scattering states p,, (E). This is achieved by
confining the neutron and target system to a large box of volume >, such that only those
neutron states with a de Broglie wavelength periodic with respect to the box are allowed.

Doing so, one obtains for the density of final states

LY mk

16
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To obtain the cross section the incident flux of the neutrons should be determine. This is:

velocity of incident neutrons hk
(velocity of - )=mL3 (2.2.18)

Hence from eq.2.2.16, eq.2.2.17 and eq.2.2.18

do = Wi
D
v L (2.2.19)
=L6(2ﬂh2) IIdFV’E'VWE| dQ .
and
27’;2 [are®7Pe™ = (k'[P|k) (2.2.20)
Z—g = (E]Vl /E) ’ (2.2.21)

gives the desired result for the cross section.

These results might be used for calculating the partial differential cross section that
includes inelastic scattering events. For such an event the neutron energy is changed by

ho. A state of the target is labelled by the index A and the corresponding eigenstate is

|ﬂ) . If the response of the target sample to the neutron interaction is to change from the

state labelled Ato the A', in that case conservation of energy requires

ho=E, -E, (2.2.22)

If this is taken into account the associated cross section is readily shown to be

17
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(%):%Kk‘wwpa)r (22.23)

where the factor (k/k') arises from the density of final neutron states divided by the

incident neutron flux.

The partial differential cross section is obtained from eq.2.2.23 by incorporating the

energy conservation eq.2.2.22. This is accomplished with the aid of a delta function

S(E+E,—E —E,)=6(ho+E,-E,) (2.2.24)

so as the partial differential cross section is

(dg;) - LlEpiEa) st £, - 5,) (2225)
.

The interaction potential ¥ at a position 7 is selected on the basis that, when inserted, it
gives the required results of isotropic scattering for a single nucleus. It turns out that in

using the Born approximation, the only form of ¥'(¥) to do so is a delta function and is

defined, for a nucleus at position R, by

27h?
m

V(7) = bS(F - R) (2.2.26)

This result is known as the Fermi pseudo-potential. If eq.2.2.26 is substituted into

eq.2.2.20 and R is set to R=0, in case of an elastic scattering event (1 =A4' and

[F1= 1D

P1%) = (2,’;2 )27:?—2” fareF 76" =5 (2227)

18
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From eq.2.2.21
iﬂ:ﬁf (2.2.28)
dQ
hence the total cross section is
o = 4zfp[’ (2.2.29)

2.2.3.3 Coherent and incoherent scattering

In practice, a scattering system will consist of isotopic nuclei of varying abundance and
spin. Because the scattering length is dependant on both the individual isotope, and the
relative orientation of the neutron and nuclear spin (if present), it will not take a single
value throughout the assembly. If the scattering length b in an elemental target system
varied from one nucleus to another as a result of nuclear spin or the presence of isotopes,

then each nucleus type & can be assigned a scattering length b which occurs with a

concentration cg. The average value of b for the system is then

b= Z::cﬁbé (2.2.30)
and the average of 5% is

b= ;cgbﬁ 2.231)

If it is assumed that no correlations exist between the scattering lengths of any nuclei (j
and ;') and that we have a large number of scattering systems of which the positions and

motions of the nuclei are identical but the distribution of &’s among the nuclei differs
such that every possible distribution is represented once, then the measured cross section
will approximately be the cross section averaged over all the systems provided that each

system contains a large number of nuclei. This is given by

19




Chapter 2
Theoretical Background

d’c K -
an;s' = Z b,b; [/ e dt (2.2.32)
Ji

where the delta function for energy of eq.2.2.24 has been expressed as an integral with

respect to time and

(j,J)= <e"“'§f O, "’) (2.2.33)

The assumption that the scattering length of different nuclei are not correlated means that

the following conditions apply

bb, =), j'#j
- (2.2.34)

so that it can be shown [6]

dZO' _ , ( ) ZJ‘ ex —iot dt
JOdE & 27zh JJ)exp
(2.2.35)

I

"75._71 ()}Zj], exp™™ dt

It is in the above expression that two types of scattering can be distinguished. The first

term in eq.2.2.35 represents what is known as coherent scattering which can be written

d20- O.on k 1 °°< _i,a'al(O) iEﬁ,(l)> (-iox)
co. i dt
(deE’th 4 k 27 ;i e e e (2.2:36)

and the second term represents the incoherent scattering for which the double differential

cross section is given by

dQOdE' 4 ? 2

-0

( d’c ] T( —xﬂ,<0)ef:aﬁ,<r>>xe<-w>dt (2.2.37)
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where

o, =4r(®)’, o, =4n{b? - (5)} (2.2.38)

From eq.2.2.36 and 2.2.37 it can be inferred that coherent and incoherent scattering are of
vastly different nature. The coherent scattering is a result of strong interference between
the waves scattered from different nuclei. It arises due to the correlation between the
positions of different nuclei. Indeed strict geometric conditions must be satisfied for the
interference to be strong enough to produce this type of scattering. On the other hand, the
incoherent scattering is dependant only on the self correlation of one nucleus at different

times. For this reason, it does not yield any interference. The cross section is isotropic.

2.2.4 Magnetic Scattering

The elements of the second transition series which includes Ru have incomplete 4d
shells. The arrangements of the 4d and 5s shells of some free atoms and ions give some
unpaired electrons. These unpaired electrons give rise to a resultant magnetic moment.
Interaction of this with the magnetic moment of the neutron, which has a spin quantum
number of % and a magnetic moment of 1.9 nuclear magnetons [8], produces neutron
scattering which is additional to that produced by the nucleus. The determination of the
magnetic structures of such materials is a task which can be achieved only by fnaking

neutrons scattering measurements.

The magnetic moment of a neutron is defined in terms of a vector of Pauli matrices G;

the spin operator is then proportional to (6'/ 2). Denoting the nuclear Bohr magneton by

eh . .
HN ( Hy = 5 J the magnetic moment for a neutron is
m

14

A=y (2.2.39)

where the gyromagnetic ratio =-1.91. In addition to this the magnetic moment operator

of an electron is given by
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Q=248 (2.2.40)

2.2.4.1 The partial cross section

The eq.2.2.27 gives the cross section for a specific transition 4 -—> A’ due to an
interaction ¥ between the neutron and the scattering system. This expression is correct for
nuclear scattering of unpolarised neutrons. The spin state of the neutron does not appear;
the dependence of the interaction on the spin state of the nucleus-neutron system is
allowed for in the value of the scattering length. However, the magnetic potential
contains the spin operator & explicitly, and it is therefore necessary to specify not only
wave vector & of the neutron but also its spin state o. In the description of the magnetic
scattering process the spin state o too must be specified such that a process in which the

system changes from state A4 to A’ and the neutron changes from state £,o to k',o" the

partial cross section is given by

do ) _E( m )
dQdE' ), k\ 20

where V is the magnetic interaction potential between the neutron and the constituent

(Fowlplkor)| s+ E, - E,) 2.2.41)

electrons of the system. If one considers the interaction between the neutron and the
magnetic field Bdue to a single moving electron then it ma)} be shown [5] that the
corresponding interaction potential can be expressed as the sum of two terms arising from

the spin and the orbital motion of the electron respectively.

SxR e | . 6xR &xR .
- D, 13 + 13 *P.
K |7

V ==y, 6 B{2u,6 - curl (2.2.42)

|1§|3 2m,c
where m, is the mass of electron, p, is the momentum operator of the electron given by
p, =—ihV, and R is the distance from the electron to the point at which the field is

measured.
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Substituting eq. 2.2.42 into eq.2.2.41 and using the following identities
R _ =1
—=-V|= (2.2.43)
7R
and
1 1 | G
= d "—e'q'R
IRI 272 I 9 7 (2.2.44)

where g is a wave vector. It can be shown that the partial differential cross section

representing a magnetic interaction for unpaired electron is given by

d’ 2 K Al A J A
OdE :,;, =(m,) ;; (A0 4) (2|0, ) (heo+ E, - E,.) (2.2.45)

2
where ry known as the classical radius of the electron and equal to ¢ > -
m,c

e

The operator Q . , related to the magnetisation of the target system, is defined in terms of

a spin and orbit contribution as

A ikF ) o~ A~ i ~ ~
0, =Y " Rx({x &)~ =K% b, (2.2.46)
: gl
where X represents the unit vector in the direction of the scattering vector « (eq.2.2.4).
For unpolarised neutrons the Kronecker delta function is

2.Po{7162559) =5 @247

which can be incorporated into the following identity
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0r-0, =36, -R.%,) 010, (2.2.48)

ap

this gives us an alternative expression for eq.2.2.45

d*oc K o~
i (}”’0)2 _Z(éaﬂ _Kalcﬁ)
dOdE e (2.2.49)

x 2 Pa(A0:|4) ¥ |05 ) (ho+ E, - E )

where the operator Q is related by Ql = E(Qx;?) In terms of the magnetisation, the
operator O(x) is effectively the Fourier transform of the magnetisation operator MF).

That is

0®)= 05(%)+ 0, (%)
1 rl=\, KT

o IM (r)e dr

1

(2.2.50)

M(%)

where subscripts S and L indicate spin and orbital contributions respectively.

2.2.4.2 Elastic magnetic scattering

The magnetic cross section for a Bravais crystal can be defined [6]:
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0o _ ) K yit o)y 2R "l
0Q0E  2ah kN{ng(’f)} ;(50,/, Kalfﬂ)Ze

2.2.51)

x [(e™@ema0) x5 (0)5 (0)et

-0

where i, (f) is the displacement of nucleus from its equilibrium position and I is the

lattice vector of the nucleus.

For a Bravais crystal with localised electrons the elastic cross sections is obtained from

eq.2.2.51 by replacing the matrix elements by their limiting values as #—>c. As t—0

(S(‘," 0)S? (t)) becomes independent of time. Thus

lim(S¢ (0)S? ©)) = (5 (S7) (2.2.52)

Substituting eq.2.2.52 in 2.2.51 and integrating with respect to E’ gives the elastic cross

section

0 2 ! Y e - 1 iRl [ qa
(é)el =(}’I’0) N{igF(K)} e %(5%5 —KaKﬂ)XZe (SO ><Slﬂ> (2.2.53)

where [ is vector in crystal lattice, e™” is the Debye-Waller factor and F(K)is the

magnetic form factor.

In the absence of an external magnetic field a ferromagnetic crystal is composed of small
regions called domains, in each of which the electron spins tend to align in the same

direction. If the z-axis is the quantisation axis, then the mean direction of the spins will

be;

25



Chapter 2
Theoretical Background

(sr)=(s7)=0 (2.2.54)
and because the z-direction is independent of the site position /,
(s:)=(s7) (2.2.55)

From eq.2.2.53, €q.2.2.54 and eq.2.2.55 the elastic scattering cross section for a single

domain is

(Zg) =(rn) N eF (D e (1- )(S) e (22.56)

The latter term on 2.2.51 can be written:

ied (2ﬂ')3 .
> e = - > 5(E~7) (2.2.57)
! 0 H
When
k=%, R, =t (2.2.58)

where 7 is a unit vector in the direction of 7, 77 is a unit vector in the mean direction of

the spins and vy is the volume of the unit-cell the in the crystal lattice. Thus the cross

section for a sample with many domains is

@) X gp(f)}ze-zwx{1_(f.ﬁ);}§(z—f) (2.2.59)
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The quantity (S” ) is the mean value of the component of the spin in the direction of 7

for each domain.

From eq.2.2.59 it can be seen that for a ferromagnetic crystal the magnetic Bragg peaks
occur at the same points in reciprocal space as the nuclear Bragg peaks. Both

contributions can be distinguished by their dependency on temperature. The magnetic

. 2 ..
scattering cross section is proportional to <S”> , it is very temperature dependent and
falls to zero at the Curie temperature. The nuclear scattering varies a little with
temperature; the only term in the cross section that is temperature dependent is the

Debye-Waller factor. In addition, the magnetic form factor F (f) falls rapidly with the
increasing lfl This is because the form factor is the Fourier transform of the magnetic

potential, and the latter has a long range. The nuclear potential on the other hand is very

short range, and its Fourier transform is independent of l%’l . For a Bravais crystal the only

term that causes the intensity of the nuclear peaks to vary with 7 is again the Debye-

Waller factor.

2.2.4.3 Paramagnetic scattering

The technique of using spin polarised neutron scattering and spin polarisation analysis to
separate the paramagnet and ordered state scattering from all other scattering
contributions has been described by Moon et al. [9] and Schirpf & Capellmann [10]. This
technique exploits the dependence of the scattering cross sections on the scattering vector

% and the quantisation axis z. The scattering process depends on some rules and they can

be summarized as follows [11]:

¢ Only those parts of the vector component of the nuclear interaction potential that
are perpendicular to quantisation axis, z, give rise to nuclear scattering with flip of

the neutron spin in the scattering process.
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e Only the component of the magnetic interaction potential that is perpendicular to

scattering vector, K, can give rise to magnetic scattering.

o The component of the magnetic interaction potential parallel to z gives rise to

non-spin flip magnetic scattering whereas the component perpendicular to z

results in neutron spin flip scattering.

As such, both the coherent scattering and isotopic incoherent scattering contributions are
entirely non-spin flip scattering contributions. The nuclear spin incoherent scattering

gives contributions to both the spin flip and non-spin flip measured cross sections.

Schérpf and Capellmann [10] have given a complete description of the x-y-z difference
method with polarized neutrons and how this may be used to separate the coherent, spin
incoherent and magnetic scattering cross sections in a multi detector instrument, such'as

D7 at the ILL. Here, the main results of their paper will be described and related to the

measurements that will be presented in chapter 3.

The neutron energy transfer during the scattering process is given by eq.2.2.22 and the

different types of scattering cross section that contribute to the total observed cross

sections are defined by:

aaz—g‘;;-”a’—;’ - %%(%JZFZ(I—E)M(E, ) (2.2.60)
%:%stm (%, ») (2.2.61)
%Z;—p = % (172 -52 ) S, (&, w) (2.2.62)
65;22 =%,|I7IZSCO,, (%, ) (2.2.63)
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where M(k,w) is the Fourier transform of the spatial magnetisation density and B is the

dipole magnetic field of the neutron.

The equations above represent the magnetic scattering, the nuclear spin incoherent
scattering, the isotope incoherent scattering and the coherent scattering respectively.
Implicit in the derivation of these results is that there are no correlations between the
nuclear spin and the electron magnetic moments, there is no nuclear polarisation, no

nuclear magnetic interference term and only an on site correlation between nuclear spins

[10].

For a spectrometer such as D7 for which the scattering vector is defined to lie in the x-y
plane, Schérpf and Capellmann [10] show that for a powder sample, the measurement of
the spin flip (sf) and non-spin flip (nsf) scattering with the incident neutron spin

polarisation alternatively in the x-y-z directions yields the following experimental cross

sections:

>
x

Figure 2.2.2; Scattering geometry of D7
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‘?/ spin
d’c =_1_80'p,,,,, (1+0052 a)-i———azo-':”
Q0w 2 Q0w 3 Q0w
s spin
O’ =160'pa,,, (1+sin2 a)+2___620',.,fc
Q0w ) 2 0Q0w 3 0Qow
5 = inc

sf .
20_ J B 1 ao-para . 2 aZO_Spm

000w 20Q0w 3 0Qd0w
: (2.2.64)

nsf ; 2 2_i
( 620' J _ | ao-Para 2 1820-1::‘1’:” + 0 O con +a o-i,:g’op

=————sin“a+—
0Q0w) 2000w 30000 0Q0w Q0w
620' " 1 ao—para 2 1 azo-;ﬁi" 82O-cah azo-ii;zmp
=— cos" a+— + +
0Qdw), 2 0Q0w 30000 0Qdw Q0w
o%c )7 _190,, L1 o N 8%, N d*oler
0Qow) 20000 3000w Q0w Q3w

x

Figure 2.2.2 presents the scattering geometry of the instrument D7 at the ILL. o presents
the angle between the scattering vector ¥ and the x direction. By combining these
measured cross sections it is possible to separate the different scattering contributions
from one another. It may be easily verified from eq.2.2.64 that the following combination

of measured cross sections gives directly the paramagnetic or ordered state scattering

cross section,

S P
0C e | _ 5 o )’ N 0% )’ s 0% )’ (2.2.65)
0Qow 0Qow ), \0Q0w ), 0Qow ), o
and similarly
2 nsf 2\ 2\ nsf
0’ para |y 2o ) (&) _ oo 2.2.66)
0Qow Q0w ), 0Qow ), 0Qow ), -

Furthermore, one can obtain the nuclear spin incoherent scattering cross section by
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o’ 3 3 oo sf_ d’c Sf_ oo )’ 2267
Q0w 2| \8Q0w), \0Qow) \0Qow), o

and subtracting the cross section obtained in this way in eq. 2.2.65 and 2.2.66 from the

. nf
measured cross section [ 9o | gives
0Qow ),

~| a0vw 2 800w 3 0Qdw

d*oc,, +620',f;‘,';”"" ([ &*c " 10°0,, _18%07" (2.2.68)
Q0w  0Q0w , o

It is not possible to distinguish the coherent scattering from the isotope incoherent
scattering. It is stressed that x-y-z difference technique allows the unambiguous

separation of the individual contributions to the total scattering. o, and o, are

obtained solely by combination of the observed scattering cross sections as shown in

equations 2.60, 2.61, 2.62, and, 2.63.
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2.3 Magnetism

2.3.1 The Origin of Atomic Moments

a) Spin and orbit states of electrons

The elementary quantum-mechanical treatment of isolated atoms by means of the
Schrédinger equation has led to information on the energy levels that can be occupied by
the electrons. The states are characterized by four quantum numbers. These are principal
quantum number, n, orbital angular quantum momentum number, I, magnetic quantum
number, my, and, spin quantum number, m;. The principal quantum number, can take the
values from 1 to o, / can take the values from 0 to n-1 and m; may alter between -/ and
+1. The spin quantum number has only two values for each electron and it is either +% or

—% which are refers to spin up and spin down.

L8

According to Pauli’s principle it is not possible for two electrons to occupy the same
state. That is, the states of two electrons are characterised by different sets of quantum

numbers n, I, m; and m,. The maximum number of electrons occupying a given shell is

therefore

n-1

2y (2 +1)=2n" (23.1)

For a given value of /, the angular momentum of an electron due to its orbital motion
equals 7A.JI(I +1) . For instance, for a d electronic like in ruthenium the permissible values
of the angular momentum along a field direction are 2#,4,0,—h,-2% (fig 2.3.1). On the

other hand the allowed values of spin quantum number, m; are +//2, where plus stands

for spin us states and minus for spin down states.
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m

]

Figure 2.3.1 Vector model of the atom applied to the situation I=2 and nonzero external field.

The moving electron can basically be considered as a current flowing along the electron «

orbit. An electron with an orbital angular momentum #/has an associated magnetic

moment
By =——hl =—pgl (2.3.2)

where g is the Bohr magneton. The absolute value of the magnetic moment is given by
|| = w10 +1) (2.3.3)
Its projection onto the direction of the applied field is

My =~y g 2.3.4)

The situation is different for the spin angular momentum. In this case, the associated

magnetic moment is
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, le . - B,
H, =-g,—hs=-g, tzs (2.3.5)
2m

where g, =[2.002| is the spectroscopic splitting factor (or the g-factor for the free

electron). The component in field direction is

-

:u.\‘z = _gemsluB (2.3.6)

The energy of a magnetic moment Z in a magnetic field H is given by the Hamiltonian

-

H=pj-H=j-B 2.3.7)

is the

- [
where Bis the flux density or the magnetic induction and g, =47 x107 Hm’
permeability of vacuum. The lowest energy Ej, the ground-state energy, is reached for

Jand H parallel. Using (2.3.6) and m,=-1/2, one finds for one single electron
Ey=—pofi,H =+g.m pr, H=—38 thoptz (2.3.8)

b) Vector model of atoms

The orbital and spin motions of the electrons and interactions between them have to be

considered when describing the atomic origin of magnetism. The total orbital angular

momentum of a given atom is defined as

L= Z 7: (2.3.9)
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where the summation extends over all electrons. The summation over a complete shell is
zero, the only contributions coming from incomplete shells. The same arguments apply to

the total spin angular momentum, defined as:

§=35 (2.3.10)

The resultants S and L thus formed are coupled through the spin-orbit interaction to

form the resultant total angular momentum J.
J=L+S (2.3.11)

This type of coupling is referred to as Russell-Saunders coupling. It has been proven to
be applicable to most heavy magnetic atoms. J can assume values ranginé from J=(L-S),
(L-S+1), to (L+S-1), (L+S). Such a group of levels is called a multiplet. The level lowest
in energy is called ground-state multiplet level. The splitting into different kinds of
multiplet levels occurs because the angular momenta L and § interact with each other
via the spin-orbit interaction with interaction energy AL-S (M is the spin-orbit coupling
constant). Owing to this interaction, the vector L and Sexert a torque on each other
which causes them to precess around the constant vector.J . This leads to a situation as
shown the figure 2.3.2, where the dipole moments z, =—u,L and Hg =—ge,uB§ ,
corresponding to the orbital and spin momentum, also precess around the total
momentum i, = fi, + i, which is not collinear with J but is tilted towards the spin

owing to its larger gyromagnetic ratio. It may be seen from figure 2.3.2 that the vector

fi,,, makes an angle O with Jand also precesses around J . The precession frequency is

usually quite high so that only the components of f,, along J is observed, while the

other components average to zero. The magnetic properties are therefore determined by

the quantity
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(2.3.12)
Figure 2.3.2: Spin-orbit interaction between the angular momenta S and L
It can be shown that [12, 13]
JIT+D+SES+D)—-L(L+1
g, =1+ CADADICAD G (2.3.13)

2J(J +1)

This factor is called the Landé spectroscopic g-factor and has the value 2 when L=0 and 1
when §=0.

For a given atom, one usually knows the ionisation state i.e. the number of electrons
residing on an incomplete electron shell, the latter being specified by its quantum

numbers. Then Hund’s rules [12, 14] predict the values of Z, S and J for the free atom in

its ground-state.
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2.3.2 Magnetic Ordering

2.3.2.1 Paramagnetism of free ions

a) The Brillouin function
Once the vector model and Hund’s rules have been applied to find the quantum numbers
J, L and S of the ground-state multiplet of a given type of atom, the magnetic properties

of a system of such atoms can be described based on these quantum numbers and the

number of atoms N contained in the system.

If the quantization axis is chosen in the z-direction the z-component m of J for each atom
may adopt 2J+1 values ranging from m=-J to m=+J. When a magnetic field By is applied,
the energy depends on the occupation of the (2J+1) sub-levels, all of which differ in their

my value. The magnetic energy of a noninteracting magnetic atom is given by eq.2.3.8.

Most of the magnetic properties of different types of materials depend on how this level
scheme is occupied under various experimental conditions. At zero temperature, the
situation is comparatively simple because for any of the N participating atoms only the

lowest level will be occupied. In this case, the magnetisation of the system is:

M =-Ng,mu, = Ng,Ju, (2.3.14)
However, at finite temperatures, higher lying levels will become occupied. The extent to
which this happens depends on the temperature but also the energy separation between
the ground-state level and the excited levels, that is, on the magnetic field strength.
The relative population of the levels at a given temperature 7" and given field strength H

can be determined by assuming a Boltzmann distribution for which the probability p; of

finding an atom in a state with energy E; is given by
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o ~EM
p= S (2.3.15)

i

The magnetisation M of the system can be found from the statistical average ( /lz> of the
magnetic moment g,=-g; mup. This statistical average is obtained by weighing the
magnetic moment z of each state by the probability that this state is occupied and

summing over all states:

j ngIuBe-gJ'"ﬂo/‘BH/kT
M=N{u,)=N==— (2.3.16)

Z e'gj”‘llo.”BH/kT

m=-J

By substituting x=-g;/seH/kT and using the relations din(x) =x" and de™=me™ dx,

d J
M = Ngu, E(ln Ze”"‘) (2.3.17)

m==J

Since there will not be any confusion with g, henceforth the subscript J will be dropped
from g.

From the standard expression for the sum of a geometric series,

e@/Hx _q

J
Ze”’x=e""(l+e"+e2x+...+e2j")=e'J’ P
e —

m==J

(2.3.18)

Substitution of this result into eq 2.3.17
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(J+)x ~(J+=)x
d e(J+l)x _e—./x d e 2 —e 2
M =Ngﬂa—(ln—;—— = Ngpy —| In——7——
dx e’ -1 dx e; _ e-ix

Sincesinhx =(e* —e™*)/2,

4 sinh(J + %)x
M =Ngu, —| In——————

dx sinhLx
2

After carrying out the differentiation

M ='Ngu,JB,(y)

with By(»), the so-called Brillouin function, being given by

2J'+1coth @2J +1)y ——l—cothl-

B (V)=
== 2 27 2
with

y= glup i H
kT
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(2.3.19)

(2.3.20)

(2.321)

(2.3.22)

(2.3.23)

In this expression H is the field responsible for the level splitting of the 2J+1 fold

degenerate ground-state manifold. In most cases H is an external field. Expression 2.3.21

makes it possible to calculate the magnetisation for a system of N non-interacting atoms

with quantum number J at various combinations of applied field and temperature.
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b) The Curie law
Expression (2.3.21) becomes much simpler in the paramagnetic phase under the condition

of small y. The paramagnetic susceptibility is related to the initial slope of the Brillouin

function.

When p((1, it is justified to use only the first term of the series expansion of B,() for

small values of y

J+1 J+1)?2+J(J +1
B,(y)= 37 y—[( )90J3 I( )y3+... (2.3.24)

From this follows, keeping only the first term,

2 2 !
J+1 JguppH _ Nppg™J(J+Dup H 2.3.25)
3J kT 3T

M = NguyJB,(y) = NgppJ -

The magnetic susceptibility is defined as ¥ = M/H . Using equation (2.3.25) the magnetic

susceptibility can be derived as

_ Mg’ I+ _C

== 2.3.26
3kT T ( )
The Curie constant C is given by
Nu,g*J(J + 1)
c=2th8 3(k D5 (23.27)

The relationship in eq.2.3.26 is known as the Curie law. Curie’s law states that if the
reciprocal values of the magnetic susceptibility, measured at various temperatures, are

plotted versus the corresponding temperatures, a line which passed through the origin will

40




Chapter 2
Theoretical Background

be found. From the slope of this line the Curie constant C can be obtained and hence a

value for the effective moment.

tog = gI (T + Dty (2.3.28)

In general, it may be stated that the Curie law y=C/T, as expressed in eq.2.3.26, is a
consequence of the fact that the thermal average calculating eq.2.3.15 involves only the
2J+1 equally spacedb levels originating from the effect of the applied field on one
multiplet level. When more than 2J+1 levels are involved, or when these levels are no
longer equally spaced deviations from Curie behaviour can occur. The latter situation
occurs when electrostatic fields in the solid, the crystal field, come into play. It will be
shown in section 2.3.4 how crystal fields can also lift the degeneracy of the 2J+1 ground-
state manifold, The combined action of crystal fields and magnetic fields generally leads
to a splitting of this manifold such that the 2J+1 sublevels are no longer equally spaced,

or to a spitting where the level with m=-J is not the lowest level in moderate magnetic

fields.

2.3.2.2 The magnetically ordered state

a) The Heisenberg exchange interaction and the Weiss field

All of the atomic moments of a system with N atoms will become aligned parallel if the
conditions of temperature and applied field are such that for all of the participating
magnetic atoms only the lowest is occupied. The magnetisation of the system is then said

to be saturated, no higher value being possible than
Mg =Ngup,J (2.3.29)

The parallel alignment of moments is reached only in very high applied fields and at

fairly low temperatures. A substance, for which a high magnetisation is observed without

the application of a magnetic field is called ferromagnetic and it is characterised by a
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spontaneous magnetisation. This spontaneous magnetisation vanishes at temperatures

higher than the Curie temperature, Tc. Below I, the material is said to be

ferromagnetically ordered.

On the basis of the understanding of the magnetisation in terms of the level splitting and
level population (Eq 2.3.15), the occurrence of a spontaneous magnetisation would be
compatible with the presence of a huge internal magnetic field, Hy,. This internal field
should be able to produce a level splitting of sufficient magnitude so that practically only
the lowest level m=-J is populated. In 1928, Heisenberg [13] has shown that such an
internal field may arise as the result of a quantum mechanical exchange interactions

between atomic spins. The Heisenberg exchange Hamiltonian is usually written in the

form

Hepon = —Z JyS; - S, (2.3.30)

where the summation extends over all spin pairs in the crystal lattice. The exchange

constant Jj; depends, amongst other things, on the distance between the two atoms 7 and ;.

In most cases, it is sufficient to consider only the exchange interaction between spins on

nearest neighbour atoms. If there are Z magnetic nearest neighbour atoms surrounding a

given magnetic atom,

H,=-2),5,(5,) (2.3.31)

with <§> the average spin of the nearest neighbour atoms. Relation 2.3.31 can be

rewritten by using S =(g-1)J, which follows from the relation gJ =L+ 28 and

J=L+S:
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H. .

exch

=-27,,(g -7 (J) (2.3.32)

Since the atomic moment is related to the angular momentum by f=-g, ,qu (eq

2.3.12)
-2, (g-D)i-{a .
Haxch 2 2 < )=_1u01u Hm (2.3.33)
8 Hp
where
. =ZJ (g-D¥u
g =P 0E) (2.3.34)

m

g u;

can be regarded as an effective internal field, the so-called molecular field, produced by

the average moment ( ,Zi) of the Z nearest-neighbour atoms.
Since M =N ( ,ZZ) , it follows that ﬁm is proportional to the magnetization

H =N,M (2.3.35)

The constant N is called molecular-field constant or the Weiss-field constant.

The exchange interaction between two neighbouring spin moments introduced in eq.
2.3.31 has the same origin as the exchange interaction between two electrons on the same
atom, where it can lead to parallel and antiparallel spin states, the exchange interaction
between two neighbouring spin moments arises as a consequence of the overlap between

the electronic orbitals of two adjacent atoms.
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b) Ferromagnetism

A ferromagnetic sample is usually divided up into domains that are spontaneously
magnetised. Applied magnetic fields can change the direction of the magnetisation within
the domains. Except in certain circumstances, the domains make little difference to the
magnitude of the atomic magnetisation. The magnetisation within the domain is called
the intrinsic magnetisation and its value in zero field is the spontaneous magnetisation.

The saturation magnetisation is the value of the spontaneous magnetisation at zero

temperature.

A basic explanation of the occurrence of the spontaneous magnetisation was derived from
the postulate put forward by Weiss that an intense internal or molecular field (also called
Weiss field) exists within the ferromagnetic solid. The magnitude of this field was found
to be of the order of 100 T.

The total field experienced by the magnetic moments comprises the applied field  and
the molecular field or Weiss field Hy:

]

-
Hlol =

+H =H+N,M (2.3.36)

Firstly, the effect of the presence of the Weiss field NywM on the magnetic behaviour of a
magnetic material above T¢ will be investigated. The high-temperature approximation eq.

2.3.25 may be used.
C
M=—H (2.3.37)
T
It has to be born in mind, however, that the splitting of the (2/4+1)-manifold used to

calculate the statistical average <,u,) is larger owing to the presence of the Weiss field.

For a ferromagnet above T¢ Hiyt has to be used instead of A when going through all the
steps from eq.2.3.15 to eq.2.3.25. This means that eq.2.3.25 should be written in the form
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M=%(H+NWM) (2.3.38)

Introducing the magnetic susceptibility x=M/H,

Above their Curie temperature, ferromagnetics become paramagnetic and their
susceptibility depends on temperature. The reciprocal of the susceptibility varies with
temperature with an intercept on the positive temperature axis at the paramagnetic Curie
temperature 6, which is usually close to Tc , though the two quantities are rarely exactly

equal. This dependence of susceptibility on temperature is of the form [12, 13]:

R
T-N,C T-6,

x (2.3.39)

where 6, is called the asymptotic or paramagnetic Curie temperature.

Relation 2.3.39 is known as the Curie-Weiss law. It describes the temperature dependence
of the magnetic susceptibility for temperatures above Tc. When plotted as a function of T
versus the reciprocal susceptibility it is again a straight line. However, this time it does
not pass through the origin (as it did for the Curie law) but it intersects the temperature

axis at 7=6,. Plots of v versus T for an ideal Curie paramagnet (x=C/T) and a
ferromagnet material above T¢ (x=C/(T-6,)) are compared with each other in fig 2.3.2.

At T=6,, the susceptibility diverges which implies that one may have nonzero
magnetisation in zero applied field. This exactly corresponds to the definition of the
Curie temperature, being the upper limit for having a spontaneous magnetisation.

Therefore, for a ferromagnet, it could be written

Ny Nuyg*J(J +Dup
3k

(2.3.40)

0,=T,=N,C=
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1

®

Figure 2.3.3: Temperature depencence of the magnetisation M and the inverse magnetic

susceptibility 1/y a) Ferromagnetism, b) Ideal paramagnetism

This relation offers the, possibility to determine the magnitude of the Weiss constant Nw
from the experimental value of T or 6, obtained by plotting the spontaneous

magnetisation versus 7 or plotting the reciprocal susceptibility versus 7.

2.3.3 SQUID

A Superconducting Quantum Interference Device, SQUID for short, was used to measure
the magnetic properties of StRuO;, SrzRuO4 and Srx)CaxRuOs. This device is widely
accepted as the most accurate method of measuring magnetic moments. The resolution of
10® e.m.u. (10 JT) allows accurate measurements of samples with small magnetic
moments. This highly sensitive method was appropriate for investigating the magnetic
properties of SrRuO;. With the data obtained from SQUID measurements and using
Arrott plots the spontaneous magnetisation, Curie temperature and the paramagnetic

effective Bohr magneton number can be obtained.

The SQUID is a sophisticated analytical instrument configured specifically for the
investigation of the magnetic properties of small experimental samples over a broad

range of temperature and magnetic fields. The magnetometer consists of a

superconducting solenoid, a SQUID detector system, a sample transport mechanism, a
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liquid helium Dewar, a temperature control module and an electronic control console
which is connected to the computer with the control system software. The
superconducting solenoid includes a superconducting magnet, which consists of a
multifilament superconducting wire. This magnet provides a reversible field operating to
plus or minus 5.5 Tesla using an oscillatory technique to minimize magnet drift
immediately following field changes. Together with the temperature control system the
whole device provides an actively regulated, precision thermal environment over a

temperature range of 1.7K to 400K and an external magnetic field range of -5.5T to 5.5T

Sensing pick-up loops, also consisting of a superconducting wire, are mounted in the
solenoid and connected to a signal coil in the SQUID detector system below the solenoid.
The SQUID ring is a superconducting wire with a small insulating layer, the “weak link”.
The flux induced in the signal coil and passing through the ring is quantised once the ring
has gone superconducting but the “weak link” forces the flux trapped in the ring to
change only by discrete amounts [7]. Quantized changes in the flux occur as a result of
tunnelling by electrons through a Josephson junction in the SQUID ring [8, 9]. These

quantised changes are used by the instrument to calculate the magnetic moment of the

sample.

For measurements of the magnetic moment the sample was placed below the detection
loops with the transport set at its lower limit of travel. The sample then rose through the

sensing loops while measuring the output of the SQUID detector. The moment was then

measured by repeatedly moving the sample upwards in small steps and reading the
voltage from the SQUID detector at each position (figure 2.3.4). The final average

voltage data is plotted as a function of the sample position as a figure.
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Figure 2.3.4.: Cross section of SQUID device [15]
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2.3.3.1 Arrott plots

The basis of Arrott plots is a Landau description of the magnetisation using an expansion
of the free energy in powers of the magnetic order parameter, the ferrofnagnetic moment
for a ferromagnet and the sfaggered magnetisation for an antiferromagnet. The magnetic

behaviour may be described using a small number of, possibly temperature dependent,

coefficients.

The free energy as a function of the order parameter M and normalised to one magnetic

atom is given by

F=F, +%AM2 +%CM“ - BM (2.3.41)

Here A and C are expansion coefficients. All contributions, which do not depend on the

magnetisation, are contained in the term F;, which will be omitted from all further

formulae.

The magnetic moment is obtained by minimisation of the free energy expansion with

respect to M.

oF
0=——=AM+CM>-B
BYY; (2.3.42)
If eq.2.3.42 is rearranged, one can obtain

MP=———= (23.43)

The coefficient C is taken to be temperature independent. It is related to the third order

susceptibility. B is the external field and the coefficient 4 is assumed to be temperature

dependent and it is given by
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ks

A=3 (T-6,) (2.3.44)

J(J +1)

and & is the paramagnetic Curie temperature.

Equation eq.2.3.43 resembles the equation of a straight line. Plotting the magnetisation
for a given temperature as a function of field and ~using units of ratio of applied field
divided by observed magnetisation on the x-axis and the square of the magnetisation on
the y-axes will yield straight lines with 1/C as a slope and —4/C as the intersection point
with the M axis. The intersection point with the x-axis is given by the coefficient 4 and
is directly related to the inverse susceptibility in zero field as can be seen in eq.2.3.44. As
discussed above coefficient A is proportional to the temperature and C is temperature
independent. As temperature is varied, the lines of the Arrott plots are displaced parallel
to each other. The temperature of the isotherm which intersects the origin of the Arrott
plot is the ferromagnetic transition temperature Tc=0p. For temperatures that are smaller
than T¢ the straight line cuts the M axis at positive values and gives the value of the
spontaneous magnetisation in the absence of a magnetic field. Thus Arrott plots are a
more physically transparent and useful tool for the analysis and description of magnetic

materials.

2.3.4 Crystal fields
Crystal field (CF) theory is the name given to the model which describes how transition
metal ions with d" configuration are perturbed by their chemical environment. The basic

idea is shown in Fig 2.3.5 [16]
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pred T: 74
e A
®) = T~_ l
~—e t2g
Spherical Octahedral
symmetry field

Figure 2.3.5: The d orbitals of a transition metal ion located at a site with octahedral symmetry, showing
(a) the different orientation of the e, and ty sets, and (b) the resulting orbital energies with the crystal field
splitting.

For a transition metal ion like Ru in the Sr(1.x)CaxRuO3 or Sr,RuO4 compounds with the

octahedral coordination, the five d orbitals are seen to divide into two sets (figure 2.3.5-
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b): two orbitals have lobes of maximum probability pointing directly at the near
neighbour oxygens, whereas the other three have nodal planes in these directions. These
distinct sets of orbitals are conventionally denoted e, and #,, respectively, according to

their symmetry. Figure 2.3.5-b also shows how the octahedral environment gives rise to a

crystal field splitting (A) between lower lying £, and higher energy e, orbitals.

@ ' ®

Figure 2.3.6: View of the a )cubic, b) distorted cubic structure of
Srp.yCaRuOs illustrating the RuOjs octahedra (17, 18]

The electron configurations for ions on octahedral sites are obtained using a CF model by
arranging the electrons in the #;, and e, orbitals in accordance with the Pauli Exclusion
Principle. The ground state of the free ion satisfies Hund’s first rule: i.e. the electrostatic
repulsion between electrons is minimised by placing them, as far as possible, with
parallel spins into different orbitals. In crystal fields, different possibilities can often arise
according to the relative magnitude of the splitting, A, and the exchange energy: if the
former is large the lowest energy is obtained by complete filling of orbitals from the
bottom up, whereas more favourable exchange energies are found with single filling of
orbitals so that spins can be parallel. The resulting alternative low- and high-spin
configurations are shown in table 2.3.1. This table shows the term symbol giving the spin
and overall symmetry behaviour of the ground state, and the crystal field stabilisation
energy (CFSE) appropriate to the configuration. The CFSE values represent the
stabilisation expected for the particular configuration in the units of the splitting, A, and

assigned an energy -3/2A to the t;; and +3/2A to the e, orbitals.
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High spin Low spin

n Configuration State CFSE/A Configuration State CFSE/A
1| by, ’T,, s |- ] ]

2 |ty *Tie 4/ : - .
3|t 4y 6/5 - ] .

4 [tle; °E, 3/5 try T, 8/5
s | toel S4y 0 te T, 2

6 | t,el Ty 2/5 the ‘4, 12/5
7 | tel T 4/ toeh ’E, 95

8 | el Ay, 6/5 - . -

9 | tee ’E, 3/5 - - -

10 | tseh "4, 0 - - -

Table 2.3.1: High- and low-spin states for d" ions on octahedral sites.

n=4in a low spin state represents the value of Ru*

Certain electron configurations have a notable tendency to occupy distorted
environments. d* (high spin) and @° ions in non-metallic solids invariably seem to give a
tetragonal distortion of an otherwise octahedral site, with two lengthened M-O bonds, or
occasionally a square planar coordination. The distortion is often regarded as a
consequence of the Jahn-Teller theorem, according to which a non-linear molecule in an
electronic state with orbital degeneracy will distort so as to lower its symmetry and

remove the degeneracy.

There are two types of Jahn-Teller effects. The spontaneous Jahn-Teller effect is the
spontaneous distortion of the lattice geometry (fig 2.3.6-b) in an electronically excited
state which results when levels are split to reduce the energy of the overall system. The
other Jahn-Teller effect is the static Jahn-Teller effect. The static Jahn-Teller effect
occurs if the lowest energy level is degenerate, in which case the lattice will distort

spontaneously so as remove the degeneracy and make one energy level more stable

comparing to the other [19].
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3.1 Sample Preparation and Characterisation using X-rays

a) Preparation

Ruthenium (IV) Oxide (RuQ,), Strontium Carbonate (SrCOs3) and Calcium Carbonate
(CaCO3) were the starting material for the compounds which have been investigated for
this thesis. Samples of StRuO3, Sr,RuO4, CaRu03, SrpsCagsRuO; and Srg75Cag sRuO;
have been prepared. SrCO; (strontianite or strontium carbonate), CaCO; (calcium
carbonate) and RuO, (ruthenium (IV) oxide, hydrate) were bought from Alfa Aesar,
Johnsons Matthey PLC, Ochard Road, Royston, Herts., England. All the materials and
compounds were stored in evacuated glass containers. All glass containers were

mechanically cleaned before preparation.

All SrRu03;, Sr,Ru0,, CaRu0s, SrgsCagsRuOs3, Srp75Cap2sRuO3 compounds have been
prepared in the Department of Physics at Loughborough University. A characterisation of
the atomic structure and sample quality is necessary before starting a more detailed
investigation. These investigations have been done by X-ray diffraction experiments in

Loughborough University and neutron scattering experiments at the ILL, Grenoble,

France.

b) Characterisation

In order to obtain the crystallographic properties, the diffraction patterns are analysed
using FullProf [5], a computer program for structure profile refinement. This program

refines a calculated diffraction pattern and fits it to the observed spectrum. The refined

parameters included:

e Zero point offset

e Overall scale factor
o Lattice parameters
e Atomic positions

e Occupation numbers
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e Peak shape parameters, half width parameters for the determination of the width

of peaks.

The process of refinement is an iterative one and is done over a number of cycles as
defined by the user. The level of agreement between the observed and calculated patterns

is evaluate at every point of the powder pattern and expressed by means of a difference

plot and by the following agreement factors:

Z |10, -1, |

R, . =-‘—=—— (3.1.1)
Bragg Z[m

Z|)’o, "J’b,|
R, =100x*ouor—— 3.1.2
P x ZyO, ( )

> wi(vo, = ¥e,)’ %
R, =100x |- _ (.13)
Wi Yo,

b/
N-P-C (3.1.4)

Ry =100X| =——
ZWiJ’o,
i

These are printed at the end of each cycle. In these expressions, indices o stands for
observed value, ¢ stands for calculated value, and, 7 is the number of data points. NV is the
number of independent observations, P is the number of refined parameters, C is the
number of constraints, y; is the intensity at angular position &, I is the Bragg intensity and
w is the statistical weight. Rprge is the agreement factor based upon observed and

calculated integrated Bragg intensities, R, is the profile agreement factor, Rw is the
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weighted profile agreement factor and the R expressed theoretical agreement expected
from counting statistics alone. The ratio Rw/Rg yields the statistical quantity “chi (¥)”, a
value close to 1 indicates perfect agreement of model calculation and observation. In
practise some systematic deviations of the calculated and observed pattern occur.
Therefore the ° will be larger. For observed patterns and depending on the complexity of

the structure and the number of parameters a ° < 10 can be considered very satisfactory.

3.1.1 Preparation and Characterisation of Starting Materials using

X-ray Diffraction

SrCO;, CaCO; and RuO; were the starting materials for the preparation of the
compounds SrRuOj3, CaRuO3, Sr1.xCaRuO; and Sr;Ru0Os.

The RuO, obtained commercially was quoted as being Ruthenium Oxide-hydrate. This
indicates that it does contain some water. No precise value of the water content was
given. Thus, before any further measurements could be made the water had to be
removed. For a Ruthenium content of 54%, the water content corresponds to 3xH,O [1].

Figure 3.1.2 shows the X-ray diffraction pattern of Ruthenium Oxide-hydrate in the

“purchased” form.

In order to remove the water, the sample was heated in air for 1h at 200°C, then for 24h
to 600°C and was subsequently cooled to 100°C within 1 hour. This heat treatment is

believed to give rise to the following chemical reaction
RuO,(H,0), —=“— RuO, + X(H,0)

After heating it is observed that the weight loss was approximately 30%. The dried RuO,
was checked using X-ray diffraction. A refined pattern of RuQO, at room temperature is
shown in figure 3.1.3. The structure agrees with the one proposed in the literature [2].

This agreement can bee seen in figure 3.1.3 and table 3.1.1
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The investigations of SrCO; and CaCOj; indicated that these compounds did not have any
appreciable amount of water in it. The diffraction pattern and the subsequent refinements

are shown in figure 3.1.5 and table 3.1.3 for SrCO; and figure 3.1.7 and table 3.1.4 for
CaCO3.

In addition an aluminium (Al) holder was used to hold the powders for the X-ray
experiments. In order to identify possible contributions arising from the aluminium
holder in the X-ray diffraction pattern of the materials investigated, a scan of the empty
sample holder was performed. A comparison of sample holder peaks in figure 3.1.1 and
diffraction patterns of samples indicates that there are no observed aluminium peaks in

the X-ray patterns of any of the samples.

Al Holder
120000 [t T T T T T T T T T[T Tt
- |
Iy AlHolderfaat |
8 : ]
& 100000 -
g ] ]
3
=
8000 |- -
60000 = =
40000 |- ..
20000 [~ .
o 1 A JL_ 1 - L
15 25 35 a5 55 65 75 85

20 (9

Figure 3.1.1: X-ray diffraction pattern of the Aluminium sample holder
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a) RuO,

RuO, belongs to the tetragonal structure type. Its space group is reported to be P4,/mnm
(space group No. 136, [3]), [2, 4]. An X-ray investigation of RuO, has been carried out
before (figure 3.1.2) and after heat treatment (figure 3.1.3). Table 3.1.1 shows the
crystallographic data of reference [2] and the refined data.

830 ———T———r——f T T T T T T T T T T T T T T T

730

o RuC2.dat

670

5390

-

510

Intenstly (o)

430

350

270

NN IR NN SN BN G IR SRR

150

15 25 35 45 55 65 5 85

26(°)

Figure 3.1.2: RuO, before heat treatment
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Figure 3.1.3: X-ray observations and fit of RuQ, after heat treatment
;‘d g Atomic positions for the tetragonal Atomic positions for the tetragonal structure of
Atom % b= structure of RuO, using space group RuO; using space group P4y/mnm after refinement
>‘ -
B 2 P4ymnm [2]. using FullProf [5]
X y x(2) y () z(y)
Ru 2a 0 0 0 0 0
0 Af 0.305(2) 0.305 (2) 0.307 (4) 0.307 (4) 0
Lattice Parameters Lattice Parameters
a(A) b(4) c(d) a(A) b(A) c(A)
4.4919 (8) 4.4919 (8) 3.1066 (7) 4487 (1) 4.487 (1) 3.1044 (6)
r=138 =2.02

Table 3.1.1: Refined parameters of RuO,
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Figure 3.14: The crystallographic structure plot of RuO;

Table 3.1.1 shows the final refined crystallographic data of RuO,. The refined model
parameters and literature data agree well, with the refinement having a small y° value of

2.02. All the parameters agree within the error bars. This is also an indication for the

success of the heat treatment.

b) SrCO;

SrCO; is also called strontianite or strontium carbonate. It has a perovskite structure, with
general formula ABO; [6, 7, 8, 9]. It belongs to the orthorhombic structure type of
aragonite [10]. The strontianite that was used had a purity 0f 99.99%. In the literature the

space group of SrCOs is reported to be Pmen [9, 10]. This is an unconventional setting
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which is converted to the space group Pnma (space group No. 62 of the International

Tables of Crystallography [3]) (table 3.1.2).

No. of Space Schoenflies Standard full
group symbeol symbola b ¢ abe bea
2,2,2
62 D.Ll,z = V,,1 6 J Pnma Pmcn
nma

Table 3.1.2: Three dimensional space-group symbols for various settings [11 ']

After the conversion, the lattice parameters change as follows:

a—b

b—oc

The positions of atoms are changed accordingly:

X —=>y

y 2z

c—a
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Figure 3.1.5: Observation and fit of the X-ray pattern of SrCO;
o Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom —;? § structure of SrCO; using space group Pmcn SrCO; using space group Pnma after conversion
el
2z 9] and refined with FullProf [5]
X y z x(2) y (%) z(y)
Sr 4c Y 0.4160 (1) 0.7569 (3) 0.7562 (5) Ya 0.4161 (2)
C 4c Ya 0.760 (1) -0.086 (2) -0.082 (3) Ya 0.728 (2)
01 4c Ya 0.9119 (9) -0.95 (2) -0.91 (2) Va 0912 (1)
02 8d 0.4694 (5) 0.6821 (8) -0.84 (1) -0.90 (1) 0.4689 (3) 0.6821 (9)
Lattice Parameters Lattice Parameters
a(A) b(A) c(d) a(c) (A) b(a) (A) c(®@)
5.090 (2) 8.358 (2) 5.997 (4) 6.0251 (5) 5.1039 (5) 8.4158 (7)
¥=18 ¥=11.6

Table 3.1.3: Atomic positions and lattice parameters from the model and refined parameters of SrCOj3 in

the space group Pmcn and in Pnma (afier conversion from Pmen to Pmna)
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The refined data (figure 3.1.5 and table 3.1.3) are fairly close to the literature data. The ¢
value of the refinement of 11.6 is larger than the literature +* value. Most of the deviation
of the literature model and the refined model parameters are within one error bar, but all
values are within 3 times the error bars of the quoted values given. There are no

additional peaks observed in the plot. The crystallographic structure can be seen in figure
3.1.6.

Figure 3.1.6: The crystallographic structure of SrCOs

¢) CaCO;

Two different structures are reported for CaCOj;. One is the tetragonal structure with
space group Pnma similar to SrCO; [9, 10] and the other is a trigonal-rhombohedral
structure with space group R-3c [9, 24, 25]. Both structures were used to model the X-ray

diffraction observed for CaCOs. While the tetragonal structure does not represent the data




Chapter 3
Experimental Investigations

well the rhombohedral structure is a good model. Thus, the investigation of the structure

of CaCO; is focused on the rhombohedral structure.

A heat treatment was applied to CaCOj;. The weight loss was approximately 44% which
indicates that this weight loss is due to a loss of CO> gas rather than water. This can be
taken as confirmation that the compound is free of water. As a result, the unheated

CaCOj; had been used for the preparation of all Ca containing compounds.
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Figure 3.1.7: Observed and refined X-ray pattern of CaCOs
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o Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom -% ':E structure of CaCO; using space group R-3¢ CaCO; using space group R-3c after refinement
52 [25] with FullProf [5]
X y z x(2) y () z(y)
Ca 6b 0 0 0 0 0 0
C 6a 0 0 Ya 0 0 Ya
o 18¢ | 0.2570(1) 0 Ya 0.2576 (8) 0 Y
Lattice Parameters and Angles Lattice Parameters (A) and Angles (°)

a(A) b (A) c(A) a(A) b(A) c(A)
4.9887 (1) 4.9887 (1) 17.0529 (8) 4.9895 (6) 4.9895 (6) 17.0661 (7)
a(®) 1Y) 7 a(® 1) 7()

90 90 120 90 90 120
¥=3.62 ¥=6.03

Table 3.1.4: Atomic positions and lattice parameters of the model and refined parameters of CaCO; using

space group R-3c

Figure 3.1.8: The crystallographic structure plot of CaCO;

The refined model and crystallographic data of CaRuOj3 can be seen in figure 3.1.7 and

table 3.1.4. The deviation of the model and the deviation of the refined parameters are
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within the error bars and quite close to each other with a value of 3°=6.03. The

rhombohedral shape of the CaCO; unit cell is shown in figure 3.8. The angles have not

been refined and are kept constant at a=3=90° and y=120°.

3.1.2 Preparation of SrRuQs, CaRuOs3, Sr(1.4Ca;Ru0; and Sr;RuQ;

The dried Ruthenium (IV) Oxide (RuO,) was mixed with the correct stoichiometric
quantity of Strontium Carbonate (SrCOs3) for strontium compounds SrRuO; and Sr,RuQg,
mixed with calcium carBonate (CaCO:s) for the calcium containing compound CaRuO;
and the strontianite dopped with Calcium Carbonate to obtain SrysCagsRuO; and
Sro.75Cagz sRuOs. The formulae for the chemical reactions of these compounds are given
below. The homogeneous powder mixtures were compressed into pellets to ensure that all
grains are tightly packed. The pellets were fired in air at 800°C for 20h and then at
1100°C for 72h. After cooling the pellets were reground for an X-ray diffraction
investigation in order to check the composition of the final product [12, 13, 14, 15, 16].

This process was repeated 3 times and includes the following reactions:

SrCO; + RuO, — SrRuO, + CO,

28rCO; + RuO, — Sr,RuO, +2CO0,

CaCO, + RuO, — CaRuO, +CO,

18rCO, ++4CaCO, + Ru0O, —> Sr,;Ca,sRu0O; + CO,
38rCO;, +%CaCO, + RuO, —> 8t,,5Ca, s RuO; + CO,

3.1.3 Structural Characterisation using X-rays

3.1.3.1 Structural characterisation of SrRuQO; using X-ray diffraction

The SrRuOj; has an orthorhombic structure at room temperature. It is similar to the
structure of many ABOj3; perovskite compounds. In the literature its space group has been
reported as Pbnm [12, 13}, while in other publications it is quoted as Prma [18, 19, 20]
(space group No. 62 of the International Tables of Crystallography [3]). Pbnm is a

Hermann-Mauguin symbol for various settings of the same unit cell of Pnma. Thus,
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Pbnm can be converted to the space group Pnma [11] in a similar manner as has been

done for SrCO;. This is explained in detail in appendix 1.

In the quoted papers the main difference arises from the coordinates chosen for the Ru
atom. A Ru atom might be placed in one of three different positions: These are 4a (0, 0,
0), 4b (0, 0, 0.5) or 4c (0, 0.25, 0). The positions of other atoms (Sr, O1 and 02) are
changing in accordance with the chosen position of Ru. Thus, not the size of the unit cell
but the coordinates of atoms in the unit cell vary according to the different choices made
by various authors. The conventional space group setting of Pnma has been chosen for

this refinement with the Ru position at 45 (0, 0, 0.5). The refined data and plots are
shown in figure 3.1.9 and table 3.1.5
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Figure 3.1.9: The observed and refined X-ray diffraction pattern of SrRuQO;
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o L. . Atomic position for orthorhombic structure of
%5 § | Atomic position for orthorhombic structure .
Atom | ¥ § SrRuO; using space group Prnma after refinement
> o | of StRuQO; using space group Prma [13,20] .
=z with FullProf [11]
X y z x(2) y(®) z(y)
Sr 4c 0.0157(4) Vi -0.0027(3) 0.0176 (8) Y -0.007 (1)
Ru 4b 0 0 ) 0 0 %
01 4c 0.4966(5) Ya 0.0532(4) 0.522 (6) Ve 0.078 (7)
02 8d 0.2764(2) 0.0278(2) 0.7248(2) 0.226 (8) 0.03(7) 0.785 (6)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(d) a(A) b(A) c(A)
5.5304 (1) 7.8446 (2) 55670 (1) 5.552(1) 7.843(2) 5.560 (1)
=157 ¥=1.63

Table 3.1.5: Atomic positions and lattice parameters of SrRuO; using space group Pnma

The calculated X-ray diffraction agrees well with the observed pattern. This is reflected
in the value of *=1.63 obtained for this fit. The model parameters agree well with those .
of references [13, 20]. All refined values deviate slightly from the values given in [13,
20]. There is no evidence of any additional phases or unidentified peaks within the

pattern. Figure 3.1.10 and 3.1.11 show the crystallographic structure of SrRu0Q;.
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Figure 3.1.10: The crystallographic structure of SrRuOs
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@9

Figure 3.1.11-d

Figure 3.1.11-c

Figilre 3.1.11: The crystallographic structure plots from different planes of SrRuOs. a) b-a plane (001), b)
b-c plane (100), c) bonds between the atoms, d) c-a plane (010)




Chapter 3
Experimental Investigations

It is claimed in the literatures [12, 20, 26] that SrRuO; has a cubic structure with the
space group of Pm-3 (#200. [11]) at high temperatures. This cubic structure has also been
included in the refinement at room temperature. However no cubic component was
observed even as a second phase. The SrRuO; sample has been found to be in the
distorted cubic structure which is deformed to an orthorhombic crystal as reported in [13,
20]. As a consequence, SrRuQj is a tilted perovskite with an orthorhombic structure. This

tilted perovskite can be easily seen with the three dimensional structure plots of StRuO;

especially in figure 3.1.11c.

3.1.3.2 Structural characterisation of Sr,RuOs wusing X-ray
diffraction
The crystal structure of Sr;RuQys is of the K;NiF, type with space group I4/mmm (#139 in

the International Tables for Crystallography [3]) [21]. The atom positions and lattice

parameters have been refined using FullProf [5] and using the model of reference [22] as

a starting point.

3500 T— T T T T T T T T T T T

sr2ruo4_bov.prt:

3000
° Yobs
2500 —_  Ycale
—  Yobs-Ycalc

2000 ] Bragy_position

1500

Intenstty (a..)

1000

500

NS IERE NN ENEUE NN NG RN

et xS

-500

(=2
|||||||qu||1Trl|r||||un(r|l|||||||||||

.........

F
:
:
g
r
:
F

-1000
25 35 45 55 63 75 85

-
v

Figure 3.1.12: Observed and refined X-ray diffraction pattern of Sr,RuQ,
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oo . . Atomic position for tetragonal structure of
S 8| Atomic position for tetragonal structure of
Atom | % & . Sr,Ru0, using space group [4/mmm after
> 5| Sr,RuO,using space group I4/mmm [25]
2 Z refinement using FullProf
X y z x(2) y (x) z(y)
Sr 4e 0 0 0.14684 (2) 0 0 0.1465 (4
Ru 2b 0 Y 0 0 Y
0ol 4c 0 Y 0 0 b 0
02 4e 0 0 0.3381 (1) 0 0 0.339(2)
Lattice Parameters Lattice Parameters
a(A) b(A) c(A) a(d) b(A) c(A)
3.8603 (1) 3.8603 (1) 12.729 (2) 3.8703 (6) 3.8703 (6) 12.730 (2)
¥*=1.96 r=2.12

Table 3.1.6: Model and refined parameters of SraRu0,

As seen in figure 3.1.12 and table 3.1.6, there is excellent agreement between the
parameters of reference [22] and the values obtained in the refinement. The sample is of
high quality with no additional phases or impurities. Figure 3.1.13 and 3.1.14 illustrate
the crystallographic structure of Sr,RuQOs.
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Figure 3.1.13: The crystallographic structure of Sr;RuO;
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Figure 3.1.14-b

Figure 3.1.14-¢ Figure 3.1.14-d

Figure 3.1.14: The crystallographic structure plots for different planes of Sr;RuO,. a) c-b plane (100), b)
c-a plane (010), ¢) Bonds between the atoms d) b-a plane (001)
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As mentioned above, Sr,RuOj crystallizes in the KoNiF4 type structure which is realized
for a considerable number of compounds with general composition A;BX,. The structure
of Sr,RuO4 can be built up theoretically by three perovskite monolayers stacked along the
resulting ¢ axis where layers 1 and 3 are AXB; perovskite cells centred on B atoms [27].

Similar to the structure of SrRuQ; in figure 3.1.11, the three dimensional perovskite

structure of Sr,RuQ4 can be appreciated from figure 3.1.13.

3.1.3.3 Structural characterisation of CaRuQO; using X-ray diffraction

The perovskite CaRuOs3 has similar crystallographic properties compared to SrRuOsj.
However, they show different electrical and magnetic properties. CaRuO; crystallises in
the same space group as SrRuO; namely Pnma. Results in [19] indicate that CaRuO; has

a smaller unit cell volume compared to SrRuQs.
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Figure 3.1.15: Observed and refined X-ray diffraction pattern of CaRuO;
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o . Atomic position for orthorhombic structure of
& § 1 Atomic position for orthorhombic structure .
Atom | %8 . CaRuO; using space group Pnma after refinement
> B | of CaRuO; using space group Prnma [13,20]
B Z with FullProf [11]
X y z x(2) y() z(y)
Ca 4c 0.0552 (4) Ya -0.0139 (2) 0.0583 () Ya -0.015 (1)
Ru 4b 0 0 7] 0 0 Y
o1 4c 0.4742 (5) Va 0.0920 (4) 0.484 (3) Ya 0.095 (2)
02 8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 0.292 (2) 0.052 (2) 0.700 (2)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(A) a(A) b(A) c(A)
5.5304 (1) 7.8446 (2) 5.5670 (1) 5.552(2) 7.843(2) 5.560 (1)
=22 £=2.04

Table 3.1.7: Model and refined parameters of CaRuQ;

Figure 3.1.16: The crystallographic structure plot of CaRuO;
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Figure 3.1.17-d

Figure 3.1.17: The crystallographic structure plots for different planes of CaRuOs. a) b-a plane (001), b) b-
¢ plane (100), ¢c)Bonds between the atoms, d) c-a plane (01 1))
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All the values which are refined using FullProf [5] are shown to be similar to the
parameter of model [13, 20], with a value of x*=2.04 (figure 3.1.15, table 3.1.7). Similar
to SrRuQs, CaRuO; also has a distorted cubic structure. The orthorhombic structure is
due to this distortion. The Ru atom is surrounded by 6 O atoms. These O atoms are tilted

due to the presence of Ca or Sr atoms. This is clearly shown in figures 3.1.17-c and

3.1.11-c.

3.1.3.5 Structural characterisation of Srg.,Ca,RuO; with X-ray

diffraction
Two different calcium doped strontium ruthenates (Sr(.CaxRuO;, x= 0.75, 0.5) have
been prepared to obtain more detailed information about the magnetic structure of
ruthenates. As reported before, the calcium doped ruthenates crystallise in the same space
group (Pnma, #62) as SrRuOj [20, 28, 29]. The graphs of the X-ray diffraction pattern

and crystal structures can be seen below.

a) Sry75Ca925sRuO;
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Figure 3.1.18: Observed and refined X-ray diffraction pattern of Srp.75Cap 2sRuO;3
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o Atomic position for orthorhombic structure Atomic position for orthorhombic structure of
Atom -% é of Srg 75Cag2sRUO; using space group Pnma Sro.75Cag 2sRuQ0; using space group Pnma after
=2 [20] refinement with FullProf [11]
X y z x(2) y () z(y)
Sr 4c 0.0400 (5) 0.25000 -0.009 (1) 0.025 (1) 0.25000 -0.001 (4)
Ca 4c 0.0400 (5) 0.25000 -0.009 (1) 0.025 (1) 0.25000 -0.001 (4)
Ru 4b 0 0 Y2 0 0 Y2
01 4c 0.480 (3) 0.25000 0.079 (4) 0.533 (8) 0.25000 0.08 (1)
02 8d 0.296 (2) 0.0427 (9) 0.705 (9) 0.208 (6) 0.023 (6) 0.75 (D)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(A) a(A) b(A) c(A)
5.5127 (9) 7.7392 (3) 5444 (2) 5.553(7) 7.8486 (6) 5:524 (1)
=59 =172

Table 3.1.8: Model and refined parameters of Srg 75Cag sRuO;

The parameters obtained for Sro15Cag2sRuO; (Fig 3.1.18, table 3.1.8) are similar to the

model ones of [20]. The refinement yields x> =17.2. No additional phases or impurities

have been detected.

b) Sry5CagsRuO;

While analysing the SrysCap sRuO; data a model which only uses one phase does not give

the best fit. Thus, a second phase, CaRuOj3 has been added to the model in order to obtain

a better fit. Results are shown below in figure 3.1.19 and tables 3.1.9, 3.10.

o . .. . Atomic position for orthorhombic structure of
5 8| Atomic position for orthorhombic structure .
Atom | ¥ & i SresCag sRuO; in space group Pnma after
> o | of SrysCagsRuO; in space group Pnma [20]
2 Z refinement with FullProf [11]
x y z x (@) Y@ Z®)
Sr 4c 0.0337 (7) 0.25000 -0.006 (2) 0.014 (2) 0.25000 0.1 (D)
Ca 4c 0.0337 (7) 0.25000 -0.006 (2) 0.014 (2) 0.25000 0.1(1)
Ru 4b 0 0 Y 0 0 7]
01 4c 0.488 (4) 0.25000 0.084 (9) 0.527 (1) 0.25000 0.48 (6)
02 8d 0.294 (3) 0.031 (4) 0.711 (5) 0.215 (8) 0.022 (5) 0.73 (2)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(A) a(A) b(A) c(A)
5.5136(4) 7.7921(6) 5.4932(4) 5.556 (1) 7.858(2) 5.513(2)
£=59 2=6.67

Table 3.1.9: Model and refined parameters of the first phase of SrysCaysRuO;
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o Atomic position for orthorhombic structure of
%5 & | Atomic position for orthorhombic structure .
Atom | % g . CaRuO;s using space group Pnma after refinement
> 5 | of CaRuO; using space group Pnma [13,20] .
2z with FullProf [11]
X y z x(2) y ®) z(y)
Ca 4c 0.0552 (4) Va -0.0139(2) 0.039 (3) Ya 0.003 (7)
Ru 4b 0 0 Y 0 0 Y
0)| 4c 0.4742 (5) Ya 0.0920 (4) 0.48 (1) Ya 0.067 (8)
02 8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 0.294 (8) 0.0748 (4) 0.703 (7)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(A) a(d) b(A) c(A)
5.5304 (1) 7.8446 (2) 5.5670 (1) 5.531(3) 7.7119 (3) 5.406 (2)
¥=2.2 1 =6.67
Table 3.1.10: Model and refined parameters.of the second phase of SrysCap sRuQ;
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Figure 3.1.19: Observed and refined X-ray diffraction pattern of SrysCay sRuQ;

Despite Srg75Cag2sRuO; being single phase, SrosCagsRuO; possesses a second phases of
CaRuO; (figure 3.1.19 and tables 3.1.9 and 3.1.10). The ratio between Sry sCagsRuO3 and
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CaRuO; has been calculated using the scale factors and the ratio of SrgsCagsRuQOj; /

CaRu0; and a value of 0.7504 has been found. After adding the second phase to the

model, y’=6.67 was obtained. A more detailed investigation of the crystallographic

characterisation has been carried out using neutron diffraction.




Chapter 3
Experimental Investigations

3.2 Structural Characterisation using Neutrons

To further characterise the samples SrRuOs, Srg.gCaRuO; and CaRuO; neutron
diffraction experiments have been performed on D2B and D20 at the ILL. Neutrons can
penetrate much more deeply than X-rays into the crystals. As a result, more detailed

information of structure and the magnetic state can be obtained using neutron diffraction.

The neutron diffraction experiments were carried out at various temperatures.
Temperature variations help to identify the intensity of magnetic peaks and to calculate
the ordered magnetic moment in Bohr magneton per ruthenium atom. It also enables to

plot a graph of the temperature scan of the lattice constants and helps in determinating the

thermal expansion of the sample.

The models and references for the neutron diffraction investigations are the same as the
1
ones used for X-ray diffraction. Thus, only graphs, refined data and brief comments are

given as written in this section.

a) Structural characterisation of SrRuQOj; using neutron diffraction

A polycrystalline StrRuO3 neutron diffraction experiment has been carried out on D2B at
2K and 200K. SrRuO3 shows ferromagnetism below 160K. Using the program FullProf
[5] the ordered moment measured in Bohr magneton per ruthenium atom is calculated

and obtained with a value of 0.6600(x0.0001) ug/Ru at 2K for SrRuO;.
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Figure 3.2.1: Intensity differences (Iox—Iox) for SrRuO;

Figure 3.2.1 illustrates the intensity difference between 2K and 200K for SrRuOj;. The

change in intensity at low angles around Bragg peaks is due to magnetic alignment at low

temperature. Magnetically ordered moments cause a change in the intensity and this is

reflected in the intensity of Bragg peaks at low angles. The changes in high angles reveal

the change in unit cell lattice parameters as a result of the thermal expansion or shrinking.
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Figure 3.2.2: Refined neutron diffraction pattern of SrRuQ; at 2K. The second phase presents the magnetic

refinement,

o Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom -% % structure of SrRuQ; using space group SrRuQ; at 2K using space group Pnma after
; 2 Prnma [13,20] refinement using FullProf [11]
X y z x(2) y () z(y)
Sr 4c 0.0157 (4) Va -0.0027 (3) 0.0188 (4) Ya -0.0014 (5)
Ru 4b 0 0 ) 0 0 Y
01 4c 0.4966 (5) Va 0.0532 (4) 0.4948 (5) Ya 0.0543 (5)
02 8d 0.2764 (2) 0.0278 (2) 0.7248 (2) 0.2793 (3) 0.0285 (2) 0.7218 (3)
Lattice Parameters (13,20} Lattice Parameters
a(A) b(A) c(d) a(A) b(A) c(Ad)
5.5304 (1) 7.8446 (2) 5.5670 (1) 5.5302 (1) 7.8439 (1) 5.5652 (1)
=157 r=6.6
Magnetic Moment: 0.72(1) us/Ru Magnetic Moment: 0.66(1) z/Ru

Table 3.2.1: Observed and refined neutron parameters of SrRuQO; at 2K
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The refined patterns of StRuO; for T=2K and 200K are shown in figure 3.2.2, figure
3.2.3 and table 3.2.1, table 3.2.2 respectively. At 200K the model has only taken into

account nuclear scattering.
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Figure 3.2.3: Observed and refined neutron diffraction pattern of SrRuQOj; at 200K

. . o . Atomic position in orthorhombic structure of
‘5 8| Atomic position in orthorhombic structure
Atom | ¥ 5§ . SrRuO; at 200K in the space group Pnma after
> o | of StRuO; in the space group Pnma [13,20]
BZ refinement using FullProf [11]
X y z x(2) y () z(y)
Sr 4c 0.0157 (4) Va -0.0027 (3) 0.0172 (4) Y -0.0016 (5)
Ru 4b 0 0 Y2 0 0 iz
01 4c 0.4966 (5) Ve 0.0532 (4) 0.4962 (5) Ya 0.0539 (%)
02 8d 0.2764 (2) 0.0278 (2) 0.7248 (2) 0.2786 (3) 0.0277 (2) 0.7228 (3)
Lattice Parameters [13,20] Lattice Parameters
a(d) b(A) c(Ad) a(d) b(A) c(d)
5.5304 (1) 7.8446 (2) 5.5670 (1) 5.5315(9) 7.8462 (1) 5.5685(9)
=157 ©=6.1

Table 3.2.2: Model and Refined neutron parameters of SrRuO; at 200K
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As seen in the graphs and tables (figure 3.2.2, 3.2.3 and table 3.2.1, 3.2.2) the refined
parameters agree well with the model proposed in [13, 20]. This indicates that the sample
preparing procedure was successful and both neutron diffraction and X-ray diffraction
experiments are consistent. The unit cell volume for SrRuO; is 241.411424(116) A? at 2K
and, 241.680166(193) A3 at 200K. A larger cell volume at high temperatures is

meaningful from a physical point of view due to thermal expansion. However, the

magnitude of the expansion is small.

b) Structural Characterisation of Sr,RuO, using Neutron Diffraction

The experimental data for SroRuO4 was collected at two different temperatures (2K and
300K) using the instrument D20 at the ILL, Grenoble, France. The compound SrRuO4
becomes superconducting at ~1K [31]. While decreasing the temperature from 300K to
2K the cooling data have also been recorded. This temperature scan helps to see the

thermal expansion of the unit cell (figure 3.2.6).
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Figure 3.2.4: Observed and refined neutron diffraction pattern of Sr,Ru0O, at 2K
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oo Atomic positions for the tetragonal Atomic position for tetragonal structure of
Atom -% § structure of Sr,RuQ, using space group Sr,RuQ; at 2K using space group I4/mmm after
>
=2 14/mmm [25] refinement with FullProf[5]
X z x(2) y () z(y)
Sr de 0 0.14684 (2) 0 0 0.1466 (3)
Ru 2b 0 0 ) 0 0 )
01 4c 0 ) 0 0 Y2 0
02 de 0 0 0.3381 (3) 0 0 0.3378 (3)
Lattice Parameters Lattice Parameters
a(A) b(4) c(d) a(d) b(A) c(A)
3.8603 (1) 3.8603 (1) 12.729 (2) 3.8267 (2) 3.8267(2) 12.6017 (9)
=196 =530
Table 3.2.3: Refined structural parameters of SroRuQO, at 2K
4
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Figure 3.2.5: Observed and refined neutron diffraction pattern of Sr,RuQy at 300K
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o Atomic Position for tetragonal structure of
< E | Atomic Position for tetragonal structure of .
Atom | % 'B . Sr,Ru0; at 300K using space group I4/mmm after
>%5 | Sr,RuO, using space group /4/mmm [25] .
=z refined with FullProf [S]
X y z x(2) y(x) z(y)
Sr 4e 0 0.14684 (2) 0 0 0.1461 (3)
Ru 2b 0 0 ) 0 0 Y
01 4c 0 Y 0 0 Y 0
02 de 0 0 0.3381 (3) 0 0 0.3380 (4)
Lattice Parameters Lattice Parameters
a(d) b(A) c(d) a(A) b(A) c(A)
3.8603 (1) 3.8603 (1) 12.729(2) 3.8363 (2) 3.8363 (2) 12.619 (1)
r'=1.96 ¥=1180

Table 3.2.4: Refined neutron data of Sr,RuO, at 300K

The refined data (table 3.2.3 and table 3.2.4) and plots (figure 3.2.4 and figure 3.2.5) of
Sr,RuO4 at 2K and 300K agree well with references [25, 27]. The ¥* value is large for
both temperatures. The reason for this is due to the huge number of neutrons. The 2* is
related to the number of independent observations and intensities at angular position §; as
described in the characterisation section in this chapter and also in the reference number
[32]. In practise due to systematic variations and the low statistical error (high count
numbers) the systematic errors are more prominent in this analysis than the statistical
errors due to counting statistic. As a result, the x> values are high. These are not fully
taken into account by the simplified model implemented here. The goodness of fit is

believed to be very satisfactory despite the high y* value.

The temperature scans (figure 3.2.6) show the thermal expansion of the lattice parameters
and the unit cell of Sr,RuOs. The values of a, b and ¢ increase with increasing
temperature as expected. This increase is reflected in the volume of Sr,RuQOy as shown in

figure 3.2.6-c. The temperature variation of the unit cell agrees with [27].
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¢) Structural Characterisation of CaRuO; with Neutron Diffraction

Neutron data for CaRuOs has been collected at 2K and 200K at the ILL using the
instrument D20. The temperature scans were carried out between 200K and 2K. The
same references apply and the same crystallographic models have been used for neutron

diffraction refinements as for the X-ray refinements. The results are shown below.
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Figure 3.2.7: Observed and refined neutron diffraction patterns of CaRuQO; at 2K

oo Atomic positions for the orthorhombic Atomic positions the orthorhombic structure of
Atom -% :,% structure of CaRuQj; using space group CaRuQ; at 2K using space group Pnma after
52 Prma [1320] refinement with FullProf [11]
x y z x@ Y6 z()
Ca 4c 0.0552 (4) Ve -0.0139 (2) 0.0570 (3) Va -0.0154 (6)
Ru 4b 0 0 Y 0 0 V2
o1 4c 0.4742 (5) Y 0.0920 (4) 0.4728 (3) Ya 0.0947 (3)
02 8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 0.2981 (2) 0.0479 (2) 0.6973 (2)
Lattice Parameters [13,20] Lattice Parameters
a(A) b (A) c(d) a(d) b(4) c(d)
5.5304 (1) 7.8446 (2) 5.5670 (1) 5.4878 (3) 7.5962 (5) 5.3082 (3)
=22 =103

Table 3.2.5: Model and refined neutron parameters of CaRuQO; at 2K
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Figure 3.2.8: Observed and refined neutron diffvaction patterns of CaRuO; at 200K
o Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom %,04 ‘3 structure of CaRuQ; using space group CaRuO; at 2K using space group Prnma after
>\ s
22 Prma [13,20] refinement with FullProf [11]
X y z x(z) y(® z(y)
Ca 4c 0.0552 (4) Y -0.0139 (2) 0.0553 (3) Ya -0.0148 (5)
Ru 4b 0 0 V2 0 0 Y
01 4c 0.4742 (5) Va 0.0920 (4) 0.4730 (3) Ya 0.0935 3)
02 8d 0.2979 (2) 0.0482(2) 0.6973 (2) 0.2979 (2) 0.0475 (2) 0.6979 (2)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(A) a(4) b(A) c(d)
5.5304 (1) 7.8446 (2) 5.5670 (1) 5.4847 (3) 7.6008 (4) 5.3150(3)
=22 =140

Table 3.2.6: Model and refined neutron parameters of CaRuQ; at 200K
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Although the model and the refined parameters (figures 3.2.7, 3.2.8 and tables 3.2.5,
3.2.6) look quite reasonable and the deviations are within the error bars, the obtained ¥’ is
large. Systematic errors and the huge counting numbers of observed neutrons affect the

value of x*. However, the crystallographic data agree well with the model of references

[13, 20].

Temperature scans of CaRuOj3 were performed between 2K and 200K. The graphs below

(figure 3.2.9) show the change of the unit cell parameters against temperature.

5.48804 7604 -

5.4875
N 7.602

5.4870
T 54865 T 600
g
é‘, 5.4860
o 548554 i
3 " '

- ] —
T T 1
150 200

b axis [Angstrom]
~ ~
g 2
1

~
o
@
o

7.594

T T T T 1
[] 50 100 o 50 100 150 200

T T
Figure 3.2.9-a Figure 3.2.9-b
5.3151 2218+
5.316 4
218
E‘ 53144 -
E
%’ 53124 %
2 2 14
g 53104 / E
© saedfl l L §
212 g
5.306 4
5.304 T T T ] T T T ¥
0 50 100 150 200 o 50 100 150 200
TIK TIKI
Figure 3.2.9-c Figure 3.2.9-d

Figure 3.2.9: Temperature variations of the unit cell parameters a) a-axis, b} b-axis, ¢) c-axis, and d)

volume of the CaRuO;.

As shown in the figure 3.2.9 the length of the g-axis is decreasing while the length of b
and c-axes are increasing (figure 3.2.9-b and 3.2.9-c). Figure 3.2.9-d represents the
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change in volume as a function of temperature. These results agree well with those of
reference [19]. In the entire temperature range, CaRuO; has the same crystalline
structure, and no discontinuity or anomaly was observed. No evidence has been found for

magnetic ordering in these temperature scans.

d) Structural Characterisation of Sr,Ca;RuO; using Neutron
Diffraction

The compounds SrxCag.xRuO3; with x=0.5 and 0.75 have been investigated using the

instrument D20 at the ILL within the temperature of 2K to 200K. The thermal expansion

of the unit cells of both compounds can be seen in the figures 3.2.12 and 3.1.15. There

was no second phase in Srg7sCag2sRuQ3;. However, CaRuO; has been detected as. a

second phase in the compound SrosCagsRuOs. The same crystallographic model was

used as for the X-ray refinements. Results are as shown below.

i) Srg75Cag2sRuQO3

2000000 S B2 N Bt AR S 00 0 o o e o o e 0 B e

1700000 sr75ca2Sruol,pre:
. Yobs

— Ycale

1400000 ——  Yobs-Ycalc

[ Bragg_position
1100000
I

800000

(30

3
200000

200000

coc B TEEEEE ER e T T THEE

-100000

IR ELERELE RRREA R LR R R e I )
L Ll b g0y et b)) by a gty 11y a1

-400000

12 25 38 51 64 K 90 103 116 129 142

Figure 3.2.10: Observed and refined neutron diffraction pattern of Srp.75CapsRuO; at 2K.

95




Chapter 3

Experimental Investigations

o Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom -;_3, :E; structure of Srp75Cag25RuO; using space Sro75Cag,sRuO; at 2K using space group Pnma
§ 2 group Prma [20] after refinement with FullProf [11]
x y z x@ ) zO)
Sr 4c 0.0400 (5) 0.25000 -0.009 (1) 0.03 (1) 0.25000 -0.002 (4)
Ca 4c 0.0400 (5) 0.25000 -0.009 (1) 0.03 (1) 0.25000 -0.002 (4)
Ru 4b 0 0 % 0 0 Ya
01 4c 0.480(3) 0.25000 0.0790 (4) 0.488 (2) 0.25000 0.082(3)
02 8d 0.296 (2) 0.043 (2) 0.7050 (9) 0.288 (3) 0.023 (1) 0.726 (5)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(A) a(A) b(A) c(A)
5.5128 (2) 7.7392 (3) 5.4444 (2) 5.495 (1) 7.769 (2) 5.485 (2)
»=22 ¥*=800

Table 3.2.7: Refined parameters of Srg75CagsRuQ; at 2K

The refined parameters (table 3.2.7) and fit (figure 3.2.10) agree well with the model of
reference [20]. Although the % looks high with a value of 806, the Bragg R-Factor and
the RF-Factor is quite small with the values of 2.75 and 2.029 respectively. The obtained
magnetisation with FullProf is 0.086(x0.254) up/Ru. The value of the deviation (0.254) is
about 3 times higher than the observed value of 0.086. In this case, it is not possible to
talk about magnetic ordering for the Srg75Cag25sRuOs at 2K. A detailed investigation will
be performed in the magnetic investigation section to see whether there is magnetic

ordering or not.
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Figure 3.2.11: Observed and refined neutron diffraction pattern of Sro ;5Cap sRuO; at 200K

o Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom % § structure of Srq75C2y2sRuQ; using space Sro75Ca2sRu0; at 200K using space group
§ 2 group Pnma {20] Prma after refinement with FullProf [11]
X y z x(2) Yy z(y)
Sr 4c 0.0400 (5) 0.25000 -0.009 (1) 0.014 (1) 0.25000 0.029(3)
Ca 4c 0.0400 (5) 0.25000 -0.009 (1) 0.014 (1) 0.25000 0.029 (3)
Ru 4b 0 0 Y2 0 0 Y2
01 4c 0.480 (3) 0.25000 0.079 (4) 0.476 (2) 0.25000 0.028 (4)
02 8d 0.296 (2) 0.043 (2) 0.705 (9) 0.297 (1) 0.0394 (7) 0.734 (3)
Lattice Parameters [13,20] _ Lattice Parameters
a(d) b(A) c(d) a(A) b(A) c(A)
5.5128 (2) 7.7392 (3) 54444 (2) 5.497(2) 7.765(2) 5.4951 (3)
Y'=59 =470

Table 3.2.8: Refined neutron parameters of Sry 75Cag2sRuOs at 200K

97




Chapter 3
Experimental Investigations

As seen above, figure 3.2.11 represents a good fit and the refined model (table 3.2.8) is
very close to the model proposed in the literature [20]. The +* value is a large number,
namely 470. However the Brag R-Factor and the RF-Factor are reasonable. No ordered
magnetic moment has been found at 200K. This is consistent with magnetisation

measurements.

Temperature scan results can be seen below in figure 3.2.12. The temperature dependence

of the unit cell parameters shows the thermal expansion of Srp75Cag2sRuOs.
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Figure 3.2.13: Observed and refined neutron diffraction patterns of SrosCagsRuO; at 2K.
oo Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom % % structure of Sry sCay sRuO; at 2K using Sry5Cap sRUO; at 2K using space group Pnma
>‘ -
B Zo space group Pnma [20] after refinement with FuliProf
X y z x(2) y () z(y)
Sr 4c 0.0337(7) 0.25000 -0.006 (2) -0.006 (2) 0.25000 -0.003 (3)
Ca 4c 0.0337(7) 0.25000 -0.006 (2) -0.006 (2) 0.25000 -0.003 (3)
Ru 4b 0 0 Va 0 0 Y
(o]} 4c 0.488 (4) 0.25000 0.084 (9) 0.510 (2) 0.25000 0.114 (4)
02 8d 0.294 (3) 0.031 (4) 0.711 (5) 0.2994 (8) 0.0317 (5) 0.792 (3)
Lattice Parameters [13,20] Lattice Parameters [11]
a(A) b(A) c(A) a(d) b(4) c(A)
5.5136 (4) 7.7921 (6) 54932 (4) 5.4947 (7) 7.770 (1) 5.485 (2)
=59 ¥=418

Table 3.2.9: Refined neutron parameters of the first phase of Sry;5CaysRuQ; at 2K
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. Atomic position for the orthorhombic Atomic position for the orthorhombic structure of
Atom % é structure of CaRuQ; at 2K using space CaRuO; using space group Pama after refinement
52 group Pnma [20] with FullProf [11]
X y z x(2) y(®) z(y)
Ca 4c 0.0552 (4) 7 -0.0139 (2) 0.055 (1) Va -0.003 (2)
Ru 4b 0 0 Y 0 0 Ya
01 4c 0.4742 (5) Ya 0.0920 (4) 0.467 (2) Y4 0.081 (2)
02 8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 0.294 (8) 0.0504 (6) 0.6979 (8)
Lattice Parameters [13,20] Lattice Parameters
a(A) b (A) c(Ad) a(A) b(A) c(A)
5.5304 (1) 7.8446 (2) 5.5670 (1) 5.481 (1) 7.644 (2) 5.356 (1)
=59 x*=418

Table 3.2.10: Refined neutron parameters of the second phase of Sry75Cay2sRuO; at 2K
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Fig
ure 3.2.14: Observed and refined neutron diffraction pattern of SrysCapsRuO; at 200K
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. Atomic positions for the orthorhombic Atomic positions for the orthorhombic structure of
Atom -;? ::;3 structure of Sry sCay sRuO; at 200K using Sry5CapsRuQ; at 200K using space group Pnma
5 2 space group Pnma [20] after refinement with FullProf (11}
X y z x(2) y(®) z(y)
Sr 4c 0.0337 (7) 0.25000 -0.006 (2) -0.019 (2) 0.25000 -0.007 (2)
Ca 4c 0.0337(7) 0.25000 -0.006 (2) -0.019 (2) 0.25000 -0.007 (2)
Ru 4b 0 0 % 0 0 Y4
01 4c 0.488 (4) 0.25000 0.084 (9) 0.513 (2) 0.25000 0.073 (3)
02 8d 0.294 (3) 0.031 (4) 0.711 (5) 0.2980 (8) 0.0343 (6) 0.743 (3)
Lattice Parameters [13,20] Lattice Parameters
a(A) b(A) c(d) a(d) b(A) c(Ad)
5.5136(4) 7.7921(6) 5.4932(4) 5.5073 (8) 7.791 (1) 5.446 (2)
=59 x*=743

Table 3.2.11: Refined neutron parameters of the first phase of Sry;5CaysRuQ;s at 200K

o Atomic position for the orthorhombic Atomic position for the orthc;rhombic structure of
Atom % § structure of CaRu0O; at 200K using space CaRuO; at 200K using space group Pnma after
; 2 group Pnma [13,20] refinement with FullProf [11]
X y z x(2) y (%) z(y)
Ca 4c 0.0552 (4) YV -0.0139 (2) 0.045 (2) Ya -0.011 (3)
Ru 4b 0 0 7] 0 0 Y
01 4c 0.4742 (5) Va 0.0920 (4) 0.466 (2) Ya 0.086 (2)
02 8d 0.2979 (2) 0.0482 (2) 0.6973 (2) 0.298 (1) 0.0469 (9) 0.695 (1)
Lattice Parameters [13,20] Lattice Parameters
a(d) b(A) c(Ad) a(A) b(A) c(A)
5.5304(1) 7.8446 (2) 5.5670 (1) 5.478 (1) 7.659 (2) 5.365(3)
=59 =743

Table 3.2.12: Refined neutron parameters of the second phase of Sry;5CapsRuO; at 2K

The correct crystallographic structure parameters were not obtained with a single phase

refinement for Sry5CagsRuQ;. Due to the problems of refinement different models have

been tried to find the best fit. The best fit and best result was obtained when two phases

(Srp75Cag2sRuO; and CaRuOs;) were applied to the refinement of the neutron data.

According this model, there is a second phase present of composition CaRuOj;

accompanying SrosCagsRuQO;. The refined data and fitted plots can be seen in figures
3.2.13, 3.2.14 and tables 3.2.9, 3.2.10, 3.2.11, 3.2.12. The ratio of the compounds
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St sCag.sRuO3 / CaRuO; is 0.867. This ratio is close to the one which was obtained using
X-ray diffraction. The reason for the impurity might be due to insufficient mixing of the
compound when sintering, not enough heat treatment or not applying the right pressure

when making pellets.

Although the x> value obtained is high for 2K and 200K (418, 743 respectively) the
neutron diffraction patterns give better results than the X-ray diffraction patterns. When
the magnetic part is refined, the value of x? starts fluctuating and does not become stable.
The reason is the second phase. The space group of second phase compound CaRuQj; and
Srp.75Cag.7sRuQ;3 are the same as the ones mentioned in X-ray diffraction section and it is
Pnma (#62). The lattice parameters of the two compounds are close enough for overlap.

Thus the two phases render the data not refineable with the magnetic phase.

«

The figure 3.2.15 below shows the thermal expansion of the unit cell of SrysCapsRuOs.

The data of the temperature scan has been collected between 2K and 200K.
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Figure 3.2.15: Thermal expansion of the unit cells of SrosCag sRuQ; a) a-axis, b) b-axis, ¢) c-axis and

d) unit cell volume of SrysCapsRuOs

Figure 3.2.15 clearly exhibits the thermal expansion of the unit cell and volume of the

Sro.5Cag sRuO3 compound.
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3.3 Magnetic Investigation

A superconducting Quantum Interface Device, SQUID for short, was used to measure the
magnetic properties of the Sr(1.xCaRuO3 and SroRuO4 compounds. The device is widely
accepted as the most accurate method of measuring magnetic moments. The resolution of
10® e.m.u. (10 JT'I) allows accurate measurements of samples with small magnetic
moments. This highly sensitive method was sufficient to investigate the magnetic

properties of the Ruthenates.

A small piece of the ruthenate compounds (table 3.3.1) was placed inside a gelatine
capsule with a very small amount of cotton wool for fixing the sample into position. The
capsule was then placed in a plastic tube and connected to the sample transport

mechanism. All samples were cooled down to 5K in zero field.

Samples Weight [g] Relative atomic mass Number of Mole
[g/mol] [mole]
SrRuO; 0.0020040.00001 236.87 (8.4434+0.0001) 10°
CaRuQ; 0.01610+0.00001 189.15 (8.5118+0.0001) 10°®
Srg75Cap2sRUO; 0.00900+0.00001 224.80 (4.0036+0.0001) 107
SrosCag sRuO; 0.00795+0.00001 212.92 (3.7338+0.0001) 107
Sr,Ru0, 0.0103140.00001 308.31 (3.3440+0.0001) 107

Table 3.3.1: Weight, relative atomic mass and number of mole of samples used

The magnetisation measurements for the polycrystalline samples were carried out in two
different ways. First of all the magnetisation was measured as a function of temperature
in various constant external fields. Secondly, the magnetisation was measured as a
function of applied field at constant temperature. From the latter measurements Arrott
plots were created for different temperatures. The MPMS-SQUID system created a data

file including temperature values in Kelvin, applied magnetic field in Gauss, magnetic
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moment in e.m.u. and magnetic susceptibility in e.m.u./gauss. These data were converted

into SI-units and normalized to the mass of the sample.

3.3.1. SrRuO;

A magnetic measurement in various constant applied magnetic fields of 0.1, 1.25, 2, 5

Tesla has been carried out over the temperature range from 5K to 360K. The results are

shown in figure 3.3.1
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Figure 3.3.1: Magnetisation of SrRuO; as a function of temperature at an applied magnetic fields of
0.1,1.25, 2, 5 Tesla.

The low field (0.1 and 1.25 Tesla) magnetisation measurements clearly indicate that the
SrRuO; compound is ferromagnetic (figure 3.3.1). The transition temperature for StRuO;
is 162K as might be seen in the inset figure of figure 3.3.1. In general, the magnetisation

increases with increasing magnetic field.

The magnetisation of SrRuO; was measured as a function of applied field for various

temperatures (figure 3.3.2). The ordered magnetic moment is increasing with decreasing
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temperature. The magnetisation measurements which are below the Curie temperature

have an intersection with the positive y-axis (M).

M [J/kg/T]

Graph 3.3.2: Magnetisation of SrRuQ; as a function of applied magnetic field at various temperatures.

Arrott plots are more useful for investigating the magnetic properties. Using the data of

the magnetic measurements Arrott plots are plotted for various isothermal measurements

and the results are represented in ﬁgures 3.3.3,334,33.5

In figure 3.3.3 Arrott plots of SrRuOj; clearly represent the magnetic phase transition.
SrRuQ; shows ferromagnetic behaviour for the temperatures which intersect the y-axis
(M) and it shows paramagnetic behaviour for the temperatures which intersect with the
x-axis (H/M). A zoomed view of the Arrott plots can be seen in the figure 3.3.5. In graph
3.3.5, the intersection with the x-axis (H/M axis) yields values of the inverse magnetic

susceptibility extrapolated to zero applied magnetic fields.

In the figure 3.3.6 the inverse susceptibility is shown as a function of temperature. For
temperatures above the transition point of 162 Kelvin the inverse susceptibility versus

temperature is in excellent agreement with the Curie Weiss law as shown in graph 3.3.6.
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Figure 3.3.3: Arrott plots of SrRuQs. The inset figure shows the Arrott plots for which the linear
extrapolations intersect with the x-axis.
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Figure 3.3.4: Zoomed view of Arrott plots of SrRuO;

107




Chapter 3
Experimental Investigations

o
‘D
=<
‘5 —8— 160K
NE @ 165K
—m—- 175K
—— 200K
-~ 250K
@ 300K
e
v — ¥ "

O4—T T T T T T T T i
00 02 04 06 08 1.0 1.2 14 16 18 20

HM [J'T’kg]

S R ML I
22 24 26 28 30

L
Figure 3.3.5: A more detailed view of the paramagnetic region containing the linear fit of Arrott plots for

SrRuQj;. All values are interpolated to the x or y axes.

2.5

x ' Tkg]

2.04

1.5

1.0

0.5

T— T 1 T
220 240 260

T

0.0

' 360
TIK

T T T T
140 160 180 200 280

Figure 3.3.6: Inverse mass susceptibility as a function of temperature of SrRuQs. This graph is obtained

Jrom Arrott plots.




Chapter 3
Experimental Investigations

The intersection point with the x-axis indicates that the paramagnetic Curie temperature

for StRuQ; is 162K.

As described in the theory section 2.3.2, the paramagnetic effective Bohr magneton
number per Ru-atom could be calculated from the slope of the inverse susceptibility.
According to the calculations the value of paramagnetic effective Bohr magneton number |
has been found experimentally as 3.17(x0.12) up per Ruthenium. The paramagnetic
effective Bohr magneton number for SrRuO; is calculated 2.81(x0.09) us/Ru in low spin
state (s=1) in reference [29]. The obtained value by experiment is slightly higher than the

reference value.

3.2.2. CaRuO;

For the compound CaRuO; magnetisation measurements have been carried out as a
function of temperature over a range of 2K to 280K at a field of 0.1 Tesla. The curve

obtained is shown in figure 3.3.7 |
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Figure 3.3.7: Magnetisation as a function of temperature at an applied magnetic field of 0.1 Tesla for
CaRuO;s
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As seen in the figure 3.3.7 there is no magnetic anomaly within this temperature range,
The magnetisation increases with decreasing temperature in a low field 0.1 Tesla and

reaches its maximum value of 0.13 JT kg™ at 2K.

Magnetic isotherms of CaRuO; were measured for various temperatures (figure 3.3.8).
All the graphs indicate a linear dependence of the magnetisation on the applied field and
all go through the origin of the graph. Again, no magnetic phase transition has been

observed over the whole temperature range.
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Figure 3.3.8: Magnetisation of CaRuOs as a function of applied magnetic field at various temperatures

Arrott plots have been obtained for a more detailed magnetic investigation (figure 3.3.9).
There is no intersection with the y-axis (M axis) for any temperature. All the fitted
values (figure 3.3.10) of Arrott plots intersect with the x-axis (H/M axis). It is pointed out

that the compound CaRuOj is paramagnetic within the whole temperature range of 2K to

300K.




M [IT kg™

M2 T kg™

—a— 2K
6 - —e— 5K
" —&— 10K
1 —v—20K
—&~ 30K
54 A — e 50K
» 75K
T —o— 100K
4 —k— 125K
—a— 150K
J Jrl T —a— 175K
——+— 200K
3] I‘ l T T —— 225K
_! —%— 250K
] ® ~— 300
2 -. I f
TEER RS
1 [4 74 ¢« =2 ¥ 20
» | g % €9
TA Yl 8 *x2% ¢
: »ivYs < *x o
0 ‘ A‘ 4 ? 2 t f . _,-: d P "
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 40 45 50 55 6.0 65 7.0 7.5 8.0 85
HM [J'Tkg]

Chapter 3

Experimental Investigations

Figure 3.3.9: Arrott plots of CaRuQ; at various temperatures
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Figure 3.3.10: Zoomed view of Arrott plots of CaRuQ;.
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Figure 3.3.11: Linear fit of Arrott plots of CaRuOs. All values intersect the x-axis (H/M axis)

Arrott plots are used to obtain values for the magnetic susceptibility by the fitting of
linear lines. The temperature dependence of the inverse susceptibility is plotted in figure

3.3.12.
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Figure 3.3.12: Inverse magnetic susceptibility as a function of temperature of CaRuO;.
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The inverse magnetic susceptibility against temperature graph is in good agreemént with
the model of a Curie-Weiss law. From figure 3.3.12 it can be seen that the paramagnetic
Curie temperature for CaRuOj; is -126(x£1.8) K. The slope of this graph yields a
paramagnetic effective Bohr magneton value for the paramagnetic moment of CaRuO; of
2.867(+0.12) pp/Ru atom. In reference [29] the paramagnetic effective Bohr magneton is
found as 2.66 up/Ru atom. The obtained paramagnetic effective Bohr magneton from

SQUID measurements is quite close the one given in reference [29].

3.3.3. Sr,RuQ;,

It is well known that Sr;RuQ; is the first noncuprate layered perovskite compound [16,
31]. Magnetisation against temperature has been measured for SroRuO4 in an applied
field of 0.1 Tesla (figure 3.3.13). In the literature [16, 31] it is claimed that the compound
does not order magnetically down to 1K but shows superconductivity around ~1.2K. The
small magnitude of the magnetisation in figure 3.3.13 arises from an impurity phase
SrRuOj;. The amount of Sr,RuO4 used for this investigation was 3.21x107 grams and the
amount of SrRuOs has been calculated to be of the order of 107 grams which is about one
per cent compared to the mass of Sr,RuQ,. This impurity is so small that it cannot be
detected in X-ray diffraction or neutron scattering, on the other hand, it is sufficiently
large for causing an effect in magnetic measurements. There is no magnetic phase

transition or magnetic ordering detected within the measured temperature range.
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Figure 3.3.13: Magnetisation as a function of temperature at an
applied magnetic field of 0.1 Tesla for Sr,RuO,
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Figure 3.3.14: Inverse mass susceptibility as a function of temperature of Sr,RuO,. This graph is obtained

from magnetisation against temperature graph.
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The inverse mass susceptibility of Sr,RuQ; can be seen in graph 3.3.14. However, again,

the impurity phase, StRuO3, plays a role in this graph and due to its presence the graph

does not go through the origin and shows a phase transition at 7c = 162 K.

3.34. Sl'(l.x)calelO;:,

a) Sry75Cag25sRuO3

A magnetic measurement in a constant applied magnetic field of 0.1 Tesla has been

carried out over the temperature range from 5K to 350K. For Sro75Cap2sRuOs the results

are shown in figure 3.3.15
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Figure 3.3.15: Magnetisation as a function of temperature at an
applied magnetic field of 0.1 Tesla for Srp75Cag 2sRuOs

This magnetisation measurement in an applied field of 0.1 Tesla (figure 3.3.15) clearly

indicates that Srg75Cag2sRuQO; is ferromagnetic. The inset figure in figure 3.3.15 shows

the transition temperature for Sro7sCap2sRuO; and the magnetic phase transition
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temperature for this compound is 166(x1.6)K. This value should be smaller than the

value of inverse susceptibility of StRuOs.

The magnetisation of Srg7s5Cap2sRuO3 was measured for various temperatures (figure
3.3.16). The magnetisation increases with increasing field and decreasing temperature.
For measurements which are below the transition temperatures (7¢) the extrapolations to
low fields intersect with the y-axis (M). For measurements at temperatures above the

transition temperatures, the graphs pass through the origin.

M [T kg™

Figure 3.3.16: Magnetisation of Sr75Cap 2sRuOs as a function of applied magnetic field at various
temperatures

Again here, Arrott plots have been used for investigating the magnetic properties and also
to help to plot the inverse susceptibility against temperature. Using the data of the
a magnetic isotherm measurements Arrott plots were plotted for various temperatures and

the results are represented in figure 3.3.17.
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Figure 3.3.17: Arrott plots of Sry.75Cay 2sRuO; for various temperatures. Inset figure shows the zoomed

view near the transition temperature.

In figure 3.3.17 the Arrott plots of Srg75Cag2sRuOs are represented. It can be seen that
from the inset figure of figure 3.3.17 the plots for Tc<160K intersect the x-axis. These
plots will be used to obtain a graph of the inverse magnetic susceptibility and a more

precise magnetic phase transition temperature for Srg75Cag2sRu0Os.

In figure 3.3.18 the inverse magnetic susceptibility is shown as a function of temperature.
An analysis of this plot has been carried out using a linear regression and the data points
lie on a straight line. This graph identifies the Curie temperature for Sro75Cap2sRuO; as
148K (£1.2). The Curie temperature for SrosCao2Ru0s is quoted as 147K in reference

[29]. This value agrees well with the one observed in SQUID measurements. This is a

more reliable value comparing to one which was obtained from temperature scans at a
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finite value of the applied magnetic field. The presence of Ca in the compound should

decrease the T¢ value compared to the one of SrRuO; [29].
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Figure 3.3.18: Inverse magnetic susceptibility as a function of temperature of Sro 75Cap. 25RuQ;3, The data
points are obtained from Arrott plots.

Further calculation yield a value for the number of the magnetisation per ruthenium atom
and the value 2.3(x0.4)5/Ru has been found according to this calculation. The value for
paramagnetic effective Bohr magneton in reference [29] is 2.80 up/Ru. The calculated T¢

and magnetisation per ruthenium atom from SQUID data agree well with literature values

[29].
b) Sry5CaosRuO;

A small piece of SrosCagsRuOs has been measured using the SQUID magnetometer. The
magnetisation as a function of temperature is measured at a field of 0.1 Tesla and in the

temperature range between 2K and 350K. Figure 3.3.19 represents the results of this

measurement.
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Figure 3.3.19: Magnetisation as a function of temperature at an
applied magnetic field of 0.1 Tesla for SrysCay sRuO;.

The low field (0.1 Tesla) magnetisation measurement shows that the SrpsCapsRu0;s is a
ferromagnetic compound like the other compounds of the SrqxCaxRuO; family. The
transition temperature for SrosCagsRuOj is 163(2)K. However, with Arrott plots and
inverse suscepﬁbility measurement the Curie temperature will be determined exactly for
this compound. The variations below 140(x2)K are caused by the impurity phase CaRuOs3

which is mentioned in the section 3.2.4.

The magnetisation of SrosCapsRuO3 was measured for various temperatures (figure

3.3.20). The temperatures above the transition temperature intersect the positive x-axis.
The results satisfy the previous works done by 1. Felner, ef al [29]. The variation which

has been observed in magnetisation versus temperature graph does not exist here.
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Figure 3.3.20: Magnetisation of Sry sCay sRuO; as a function of applied magnetic field at various

! temperatures
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Figure 3.3.21: Arrott plots of SrysCapsRuOs
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In graphs 3.3.20 and 3.3.21 Arrott plots of SrosCagsRuO3 clearly represent the magnetic
phase transition. Sro.sCagsRuO; shows ferromagnetic behaviour in the temperatures lines
which intersect the y-axis (M) and it shows paramagnetic behaviour for temperatures
lines which intersect with the x-axis (H/M). Intersections with the x-axis (H/M axis) yield

values of the inverse susceptibility extrapolated to zero magnetic fields.

Further calculation yield a value for the number of the magnetisation per ruthenium atom

and the value 2.3(x0.2) s/Ru has been found according to this calculation.

In the figure 3.3.22 the inverse susceptibility is shown as a function of temperature. For
temperatures above the transition point of 128@2)K the inverse susceptibility versus
temperature is in excellent agreement with the Curie-Weiss law as shown in figure

3.3.22. The calculation of the values of T¢ and magnetisation per ruthenium atom shows

good agreement with the literature values [29].
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Figure 3.3.22: Inverse susceptibility as a function of temperature of SrysCao sRuO;. This graph is obtained
from Arrott plots.

From the inverse susceptibility versus temperature graph, the effective paramagnetic

Bohr mégneton has been calculated and a value of py= 0.98(20.08) up/Ru has been

found.
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3.4 Paramagnetic Neutron Scattering

3.4.1 Instrumentation
Paramagnetic neutron scattering experiments have been carried out at the ILL, Grenoble,

France using the Diffuse Scattering Spectrometer, D7.

D7 is designed to study diffuse scattering arising from disorder phenomena in solids. The
diffuse scattering intensity appears between Bragg reflections. It is usually weak and may
contain both elastic and inelastic contributions. D7 uses a unique combination of full 3-

directional XYZ-polarisation analysis using a multi detector setup.

Full 3-directional polarisation analysis enables the experimental separation of nuclear-
spin-incoherent, nuclear and magnetic components. Combined with the flexibility of the
instrument and the fact that data is collected simultaneously in 64 detectors, this makes

D7 a unique instrument. A schematic diagram of D7 can be seen in figure 3.4.1 [33].
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Figure 3.4.1: A schematic diagram of the diffuse scattering instrument D7 [33].
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The operation details of D7 instrument have been described in detail in the users manual
[33]. The neutron polarizer and analysers can be removed if desired to facilitate
conventional neutron diffraction measurements. The inclusion of a neutron disk chopper
enables energy analysis of the scattered neutrons by the time-of-flight method. Neutrons
from the H15 cold neutron source at the ILL are monochromated by a focusing graphite
monochromator crystal array. The take-off angle from the monochromator crystal
defines the incident neutron wavelength. The three (nominal) wavelengths available on
D7 are 3.1A, 4.8A or 5.9A. For > 3.1A the neutrons pass through a beryllium filter
which removes higher orders of the incident wavelength 2/n where n =2, 3, .... etc. The
neutrons are then polarized by a supermirror bender polarizer and pass through a Mezei
n-spin-flipper which is turned on when measuring the Spin-Flip (SF) cross-section and
turned off when measuring the Non-Spin-Flip (NSF) cross-section. The neutron
polarization, which is in the z-direction, is maintained by a neutron guide field of around
ImT. The neutrons pass through the sample which is placed at the centre of 3 orthogonal
coils, known as the spin turn coils. These coils rotate the initial neutron polarization by
7/2 from the z-direction onto the x or y directions before hitting the sample, and then they

rotate the scattered neutrons back by -n/2. This allows the sequential measurement of the

SF and NSF cross-sections in each direction.

The neutrons then enter the detector banks, each of which consists of a neutron guide
field, 8 removable supermirror analysers and 16 *He detector tubes (figure 3.4.2). With
the supermirror analysers in place only 8 detectors are used in each bank. The 8 detectors
are placed 6 degrees apart, each bank subtending an angle of 45 degrees. With four
identical banks, there are in total over 5000 supermirrors on D7. The banks can be placed

on either side of the instrument and can cover scattering angles from 26=7° to 160°,
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3.4.2 Data Reduction for Polarisation Analysis
The data reduction for polarisation analysis is described in the D7 manual [33].
According to this manual in order to obtain the absolute cross-section from the raw

number of neutron counts, the following corrections must be applied.

e The relative detector efficiency correction

e The spin-dependent analyser transmission correction
e The background scattering correction

o The sample self-attenuation correction

e The absolute scale of cross-section

e Multiple scattering corrections.

All these corrections have been done using the LAMP program [33]. Lamp is a computer
programs which is written in IDL (Interactive Data Language) and is developed at the
ILL. This program helps to reduce and analyse the data which has been obtained from
any instrument at the ILL with the help of user supplied macros in IDL. The desired
- instrument can be chosen via the user friendly interface of Lamp. In this case D7 has been
chosen from a drop-down menu. After choosing the instrument and the path for data files
the macros should be written. Different macros must be applied for different corrections
and than a macro has to be used to reduce an XYZ to an omega scan. All the macros

which are used and brief explanations about these macros have been collected in the

appendix.

3.4.3 Calculating the Correlation Length from the Polarised Neutron

Scattering

The magnetic correlation length can be calculated with the aid of spin polarised neutron

scattering and the spin-spin correlation function.
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Using the susceptibility data in section 3.3 the expected magnetic scattering at 0=0 can

be determined by virtue of the relationship between the spin-spin correlation function and

the uniform susceptibility:

>(5,-5,) =3ka2T 3.3.1)

Z=2(3,8, )y ) S (3:32)

where rgyis equal to 0.54x10™ cm and fiis the form factor which is unity at 0=0. A more,
detailed explanation of the relationship between the spin-spin correlation function and the

uniform susceptibility is given in the appendix.

3.4.4 Experiments

The investigations were carried out on the instrument D7 at the ILL using a 18.1101g
powder sample of StRuO; and a 9.5181g powder sample of Sr,RuO4 using a neutron
wavelength of 5.9A. The data were collected at 170K, 300K and 535K for SrRuQO3 and
2K, 20K, 50K and 450K for Sr,RuOs. For all measurements the specimen was contained
in a thin walled, aluminium cylinder under a helium atmosphere, located in an orange
cryostat. Having optimised the flipper and correction coil current for maximum spin
flipper efficiency, calibration measurements were performed. Normalisation to the
scattering of a vanadium standard permitted all subsequent sample data to be placed on

an absolute scale. The results obtained are as follows:

a) SrRuQO;
Lamp [33, 34] has been used for analysing and plotting the graphs for the paramagnetic

neutron scattering. When the graphs were extrapolated to the value of the inverse
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susceptibility at 0=0, the full width of the maximum yields the correlation length.
Figures 3.4.3, 3.4.4 and 3.4.5 give the paramagnetic scattering of the Ruthenium spins in
SrRuO; for various temperatures. The correlation lengths, as obtained from a fit to the

peak centred at =0, are given table 3.4.1.

Uniform Mag. Sus.
Temperature [K] FWFM [27t/A] Corr. Length [A]
[barn/sterad]
170 10.50 0.075 (5) 83.73 (5)
300 1.05 0.083 (4) 75.66 (4)
535 0.68 0.085 (4) 73.88 (4)

Table 3.4.1: Correlation lengths obtained from a fit to the peak centred at Q=0
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Figure 3.4.3: Paramagnetic neutron scattering of SrRuQO; at 170K.
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Figure 3.4.4: Paramagnetic neutron scattering of SrRuQjs at 300K
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Figure 3.4.5: Paramagnetic neutron scattering of SrRuO; at 535K
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The paramagnetic scattering measured at low temperature is shown in figure 3.4.3 for
T=170K. The figures 3.4.4 and 3.4.5 present the paramagnetic scattering at sufficiently
high temperatures (300K and 535K respectively) in the paramagnetic regime. From these
figures it may be seen that at all temperatures there is a distinguishable scattering at small
wave vectors which is strongly enhanced. It is interpreted as evidence for the presence for
ferromagnetic correlations. As the temperature decreased the paramagnetic scattering at
small wave vectors sharpens. This is due to the magnetic ordering which exists at low
temperatures. On increasing the temperature above the transition temperature, strong
ferromagnetic correlations persist into the paramagnetic temperature range. For all three
figures scattering at large wave vectors does not appear to change as a function of

temperature, but rather it remains at the level as observed at low temperatures.

For SrRuOj3 the magnetic correlation length at various temperatures for SrRuO3 has been
calculated using the forward peak in figures 3.4.3, 3.4.4 and 3.4.5. Near the
ferromagnetically ordered region (at 170K, figure 3.4.3) the value of correlation length
has been calculated as 83.73A. With increasing temperature the ferromagnetism vanishes
and the correlation length decreases to 71.36A at 300K. The correlation length at 535K is
72.34A and it is essentially unchanged compared to the value at 300K.

The reason of why no enhancement of Bragg reflections is observed at higher wave
vectors is due to the rapid decrease of the magnetic form factor. The delocalisation of
electrons on the ruthenium cause this rapid decrease. Hence no magnetic short range

order is seen around Bragg peak positions the correlation length being of the order of ten

unit cells.

b) Sr,RuOy4

Due to the ferromagnetic StTRuO; impurity in the Sr2RuO4 compound which was prepared
for magnetic measurements, the correct inverse susceptibility could not be determined.
Hence, the lack of inverse susceptibility does not allow the calculation of the magnetic
correlation length. The experiment has been done at 2K, 20K, 50K, 450K. The graphs can
bee seen in figures 3.4.6, 3.4.7. 3.4.8 and 3.4.9.
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Figure 3.4.6: Paramagnetic neutron scattering of Sr,RuO, at 2K

0.40
0.35 -
0.30 -
0.25 -
0.20 —

0.15

do/dQ [barn/sterad]

0.10 4

0.05 -

0.00

-0.05

] ©

Q [Angstrom“]

Figure 3.4.7: Paramagnetic neutron scattering of Sr:RuO, at 20K
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Figure 3.4.8: paramagnetic neutron scattering of Sr.RuQ, at 50K
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Figure 3.4.9: paramagnetic neutron scattering at 450K for Sr,RuO,
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Although it is well known that Sr,RuQ; is not magnetically ordered even at low
temperatures, there is a distinguishable peak at small wave vectors. As mentioned in
detail in the magnetisation measurements section (section 3.3.3) there is an impurity
phase of SrRuO; less then 1%. This impurity is the reason for this sharp peak. This sharp
peak arises from the ferromagnetic nature of SrRuQO;. As expected and described in the

previous section (section 3.3.4.a) no Bragg peaks have been observed due to the rapid

decrease of form factor.
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4.1 Crystallographic Structures
The observed crystallographic structures according to X-ray diffractions and neutron

scattering experiments have been shown in chapter three. All results agree with previous

works.

SrRuOs occurs in a distorted perovskite structure at room temperature, specifically, it
crystallises in the GdFeOs; structure type with orthorhombic Pnma symmetry. This is
typical for perovskites with an A-site cation that is too small relative to the B-site. The
distortion consists of rotations of the oxygen octahedra with very little change in Ru-O
bond lengths. CaRuOj has the same structure and space group as SrRuQj;, but, oxygen
octahedral are tilted more and they are distorted further than SrRuQs, because the ionic
radius of Ca (0.99A) is even less ideal for perovskite formation than Sr (1.18A). As a

result the CaRuQO; compound has a smaller unit cell size compared to its analogue

compound SrRuO:;.

All Srg.xCaRuO3 (x=0.5 and 0.75) compounds possess the same symmetry and
crystallographic properties as StRuQ;. With increasing concentration of Ca ions, the unit

cell shrinks and thus the unit cell volume decreases. The tilting in Ru-O bond directions

is also rising.

The impurity phase of CaRuOs in SrgsCagsRuO; compound has made the refinement
difficult. This impurity phase has not affected the crystallographic structure of

SrosCapsRuO3 and all the values which are obtained exhibit good agreement with

published works.

The X-ray and neutron scattering experiments show that, Sr,RuQy crystallises in the
K;,NiF, structure type with the J4/mmm space group which is realised for a considerable
number of compounds with the general composition A>BXy. The structure of Sr,RuQ4 can
be built up by three perovskite monolayers stacked along the resulting c-axis where layer

1 and 3 are ABXj; perovskite cells centred with B atoms. Removing two BX; layers leads

to the K;NiF, structure.
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4.2 Magnetic Investigations and Magnetic Structures

For investigating the magnetic properties and structures of StRuQOs3;, CaRuOs, Sr;RuQO4
and Srg.xCaxRuO; SQUID measurements have been undertaken. For a more detailed
magnetic investigation of SrRuO; and Sr,RuOs paramagnetic neutron scattering
experiments have been performed. For Sr;RuO, the magnetic investigations have been
obstructed due to the impurity phase SrRuOs;. As a consequence, the magnetic

investigation for this compound is not reliable.

The experiments show that perovskite StRuOs is ferromagnetic with Tc= 162K and the
paramagnetic effective Bohr magneton number has been calculated as 3.17(x0.1) us/Ru
in the low spin state (s=1). On the other hand, CaRuO3 was not ordered magnetically
down to 2K. The inverse magnetic susceptibility measurements show that the
paramagnetic Curie temperature for CaRuOs is -126K. When moved to Srg-xCaxRuO3
compounds it can be seen that thé ferromagnetic ordering is getting weaker with

increasing Ca concentration and vanishes when x=1.

While both SrRuO; and CaRuOs; have the same number of d-electrons, SrRuQOj; is
ferromagnetic and CaRuOj3 is paramagnetic. This is obtained using SQUID and neutron
diffraction experiments at low temperatures (2K). It showed that no additional magnetic
neutron scattering peaks exist, indicating that CaRuQj is paramagnetic. The peaks which
emerge in low temperature neutron scattering spectra of SrRuO; provide experimental

proof that this compound has a ferromagnetic ground state.

While discussing bonding qualitatively, some authors proposed that the Ru-O ¢, bands
are narrower in CaRuQj; than in SrRuO; because of the ionic radius of Ca. This research
supports this argument by X-ray diffraction and neutron scattering experiments. For
structure determination experiments showed that CaRuQjs is more distorted than SrRuOs,
which is very close to cubic. This should also decrease the Ru-O overlap and thereby
reduce the width of n-bands. Furthermore, the unit cell volume of CaRuQ3 is smaller than

that of SrRuQj. This factor will act to increase the Ru-O interaction.
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The stark contrast between SrRuQj; and CaRuQs arises because of the closed shell s-like
characters of Sr and Ca do not contribute to the densify of states at the Fermi surface and
therefore should not be the origin for the different magnetic ground states of these two
compounds. One common structural feature of the two compounds is that they are
composed of an array of corner-sharing RuOg octahedra. It is assumed that the degree of
tilting and rotation of these octahedra within their ideal cubic-perovskite structure
governs the observed differences in the magnetic ground states. A narrow itinerant 44
band is formed through hybridisation of Ru #;, and O 2p orbitals. The octahedral
crystalline electric field of O atoms splits the fivefold degeneracy of the Ru
4d’configuration into a triplet (#2,) ground state, two-thirds occupied, and a doublet (e,)
excited state, unoccupied. The magnetism of SrRuOs; and related ruthenates are
influenced heavily by the covalent coupling of the Ru d shell to the O 2p electrons. It is
believed that CaRuQOj3 has a narrower itinerant 4d bandwidth than SrRuO; which is too
narrow for long range magnetic order but not too narrow as to cause CaRuQj; to be non-
metallic. The bandwidth has been calculated and published [1]. This supports the
magnetic measurements, which have been done for this research project. CaRuQj is on
the edge of magnetic ordering and tends towards an ordered phase. With increasing Ca
concentration in Sr(.xCaRuO; compounds the bandwidth gets narrower and with

sufficient Ca ions (x>0.3) the compound starts to exhibits ferromagnetic ordering.

The paramagnetic neutron scattering experiments clearly indicate that the investigated
ruthenate compounds have itinerant electrons rather than localised electrons as claimed in
the literature. The itinerant electrons cause a drop of the form factor and hence no

magnetic Bragg peaks or magnetic short range order close to nuclear Bragg reflections

could be observed.

This research showed that the ruthenium oxides, which are transition metal oxides with a
perovskite structure exhibit a variety of physical properties ranging from ferromagnetism
(SrRuO;) to paramagnetism (CaRuOj3), from a cubic structure (at high temperature) to
orthorhombic, from metallic to insulating. Moreover, Srq.)CaRuO; shows a rapid

decrease in 7¢ with increasing Ca content. On the other hand the layered compound
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Sr,RuQy is the first copper free low temperature superconductor. The origin of the
magnetism in SrRuO; is still not clear and the reason for the occurrence of
superconductivity in Sr;RuQj is still being discussed. In the future more detailed work

has to be carried out on single crystals in order to clarify the structural, electrical and

magnetic properties of these ruthenates.
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Appendix

1.1 Macros for analysing the Paramagnetic Neutron Scattering
The following macros have been applied to StrRuQs at 170K data. The macros are similar
for other compounds at various temperatures. Only the data file names need to be

changed.

a) Quartz Correction
The incident beam polarizer and the analysers before the detectors are not perfect. A
small number of neutrons with the wrong spin state always manage to pass through. To
correct for this, a run is performed with an amorphous silicate (quartz) sample. Quartz is
a perfect nuclear-incoherent scatterer with nuclei which do not possess a nuclear spin.
Any signal picked up in the spin-flip channel must therefore arise from non-ideal

polarization. The following macro has been applied for extracting the flipping ratios:

squartz

wl= rdsum(73992, 73994) ;quartz (up to 74995)
w2= normalise (wl, /monitor)

w3= rdsum (73996, 73999)
wd= normalise (w3, /monitor) ;quartz empty

w5= background (sample = w2, empty = w4, T = 0.9)

w6= quartz(wb)

The numbers from 773992 to 73994 represent the data file name for quartz and from
73996 1073999 data file name represent the quartz holder. The line w5 corrects for the
background and line w6 calls a macro quartz.pro which takes the background-corrected
data file w5, calculates the flipping ratios, puts the result into w6 and writes the flipping
ratios to a file quartz_73994.dat. This file is then used later in the analysis to make the

flipping ratio correction.

b) Vanadium Correction
Vanadium is a purely nuclear spin-incoherent scatterer and nuclear spin-incoherent

scattering is by definition isotropic. This helps to correct for the detector efficiency. Each

detector has a different efficiency. The intensity seen in each detector is a measurement
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of the apparent detector efficiency and also the analyser transmission. The following

macro has been applied for vanadium corrections:

; vanadium

wl = rdsum(74068,74069) ;vanadium measurement
w2 = normalise(wl, /monitor)

w3 = rdsum(74063,74065) ;empty measurement
w4 = normalise (w3, /monitor)

w5 = rdsum(74066,74067) ; cadmium measurement
w6 = normalise (w5, /monitor)

w5 = background(sample = w2, empty = w4, cadmium = w6, T = 0.7825)
w6 = vanadium(w5)

The line w6 calls a macro vanadium.pro. This macro adds the non-spin-flip and spin-flip

scattering together and puts the total intensities into w6. It also writes them to a file

vanadium_74069.dat. This file is used later in the analysis.

¢) Macro for XYZ Method of Polarisation Analysis

The XYZ difference technique has been used to separate the magnetic scattering from all

other types of scattering. The macro for this technique is as follows:

;SrRu03 170K _new 5.7Ang

wl= rdsum(74012,74020) ;sample
w8=normalise(wl, /monitor)

wl= rdsum(74063,74065) ;empty
w7=normalise(wl, /monitor)
wl=rdsum(74066,74067)

wé=normalise (wl, /monitor) ;cadmium

wl7 = background(sample = w8, empty = w7, cadmium = w6, T = 0,969222)
w18=zero_detectors(w17,[58])

w9 = corr_xyz(wl8, filenum= 73994) ;flipping ratio corr.
wl0 = norm van(w9, filenum = 74069, S_Mass=18.1101,Fwt=236.535, V_masé=
9.0755) ;vanadium normalisation

wll = components(wl0)
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theta_scan(wll, /all)

wl2 =

wl3 = phi2qg(wl2)

wld = wl3(*,0) & y _tit(14) = y_tit(13)

w_tit(l4) = '"Total '+ STRTRIM(w_tit(13))

wl5 = wl3(*,1) & y_tit(15) =y tit(13)

w_tit(15) = 'Spin-Incoherent '+ STRTRIM(w_tit(13))
wlée = wl3(*,2) & y_tit(16) =y tit(13)

w_tit(16) = 'Nuclear '+ STRTRIM(w_tit(13))

wl7 = wl3(*,3) & y_tit(17) = y_tit(13)

w_tit(17) = 'Magnetic '+ STRTRIM(w_tit{13))

;wl5= bing(wl5, dQ=0.05)

;w20= total(w15(2:30))/26*1000,sqrt(total(e15(5:30)*e15(5:30)))/27/1000
;output, w20, file='denemeO3.dat'

;output, wl4, file='srruo3_170_total woc.dat'

;output, wl5, file='srruo3 170 spin-inc_woc.dat'

;output, wlé, file='srruo3_170_nuclear_woc.dat’

;output, wl7, file='srruo3_170 magnetic_woc.dat'’

The zero_detectors macro in the line w18 zeroes bad detectors. In line w9 the corr_xyz
macro file has been applied. This makes the flipping ratio correction with the aid of the
vanadium file. Line w10 calls the macro norm_van which helps to correct detector
efficiency and also provides an absolute normalisation, the data is then normalised to an
absolute scale in units of barn/steradian. The components macro which is in the line wil,
provides a macro for extracting the various contributions such as incoherent, coherent,
magnetic, etc scattering. The theta_scan macro in line w12 rearranges the data in
ascending order of the magnitude of the scattering angle and phi2q in line w13 transforms

the x-scale from scattering angle in degrees to wave vector Q A™h.

1.2 The Magnetic Correlation Function
If relativistic effects are unimportant and spin is conserved the observed scattering will

extrapolate to the cross section at 0=0 given by the uniform susceptibility y i.e. the @=0

susceptibility. Thus as Q—0 the spectrometer D7 is able to integrate over all scattering

for all temperatures used in the study. The spin-spin correlation function <§q -§_q> at

0=0 is given by Zj<§, -8 j> =3k xT which is related to the partial differential cross
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w«

section by 4 = Zj%(g, .S j>(roy)2 f* where roy is equal to 0.54x10" cm and £ is the

form factor which is unity at 0=0.

The magnetic correlation function
S@G )= [de Y™ " (5,()-5, () A.D)
o i

is related to the imaginary part of the dynamic susceptibility via

$(G,0)=——=1"G.0) (A2)

l_e kT

For a system of local magnetic moments a sum rule for the scattering can then be defined
Y [das@G,0)= [doY, [de x > "5 (0)-5,0)) (A3)
9 - —e 9 - iJ :

which yields
N(Ss?) = NS(S+1) (A.4)

Typically the sum rule is obtained by integrating the scattering up to some finite energy,
which for a system in an ordered ground state usually is the maximum spin wave energy
~kpTc. At finite temperatures the moments become directionally disordered but their
magnitudes remain fixed. Thus the paramagnetic phase is characterised by disordered
local moments. If the integration is carried out over the whole range of ¢ and w the sum
rule is obtained. In the paramagnetic phase the response is diffusive and centred on w=0

with a width Aw which increases from zero at g=0 to its maximum value at the zone

boundary_.
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