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ABSTRACT 

Most reliability analysis techniques and tools assume that a system used for a 

mission consists of a single phase. However, multiple phases are natural in many 

missions. A system that can be modelled as a mission consisting of a sequence of 

phases is called a phased mission system. In this case, for successful completion 

of each phase the system may have to meet different requirements. System failure 

during any phase will result in mission failure. Fault tree analysis, binary decision 

diagrams and Markov techniques have been used to model phased missions. 

The cause-consequence diagram method is an alternative technique capable of 

modelling all system outcomes (success and failure) in one logic diagram. The 

structure of the diagram has been shown to have advantageous features in both its 

representation of the system failure logic and its subsequent quantification; which 

can be applied to phased mission analysis. 

The work developed outlines the use of the cause-consequence diagram method 

for systems undergoing non-repairable phased missions. Methods for the construction 

of the cause-consequence diagram for such systems are considered. The disjoint 

nature of the resulting diagram structure can be utilised in the later quantification 

process. The similarity with the Binary Decision Diagram method enables the 

use of efficient and accurate solution routines. The method is illustrated with 

the application of an example of the cause-consequence diagram method to a non­

repairable phased mission system. The system considered is an aircraft flight. The 

technique is computationally efficient and the work presented here shows that it is 

superior to the binary decision diagram. The work is extended to systems that can 

have multiple faults (i.e, minor, which would allow the system to progress to the 

next phase, and major, which would cause system failure). 
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NOMENCLATURE 
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Event that component Ck works the phase k, given that 

it was functioning through all previous phases 

Expected number of times system enters state i 
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Cumulative failure distribution 

Failure probability density function 

Criticality function for component i 

Barlow-Proschan measure of initiator importance 
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1. INTRODUCTION 

Many systems perform a mission, which can be divided into consecutive time 

periods - phases. In each phase, the system needs to perform a specific task. The 

system configuration, the phase duration, and the failure rates of components often 

vary from phase to phase. Burdick et al [1] describe a phased mission as a task 

to be performed by a system during execution of which the system is altered such 

that the logic model changes at specified times. Thus, during a phased mission, 

time periods (phases) occur in which either the system configuration, system failure 

characteristics, or both are distinct from those of any immediately succeeding phase. 

The most important aim of phased mission analysis is to calculate the exact, or 

obtain bounds for: mission unreliability. This is defined as the probability that the 

system fails to function successfully in at least one phase. Estimating the mission 

unreliability by the product of the phase unreliabilities results in inaccuracies, since 

basic events are shared among logic models of the various phases which are not 

then independent. Esary and Ziehms [2] used a fault tree method for the analysis 

of the phased missions for non-repairable systems. They introduced basic event 

transformation and cut set cancellation techniques. But the method proposed by 

Esary and Ziehms was unable to calculate the probability of failure of each phase 

due to cut set cancellation, only of the whole mission. La Band and Andrews [3] 

introduced a new method based on non-coherent fault trees that determines the 

probability of failure of each phase in addition to the whole mission unreliability. 

The method combines the causes of success of previous phases with the causes of 

failure for the phase being considered to allow both qualitative and quantitative 

analysis of both phase failure and mission failure. 

Zang, Sun and Trivedi [4] proposed an algorithm for analysis of phased mission 

systems based on binary decision diagrams (BDDs). Such diagrams give a 

representation of the system failure logic which is in a format more effective for 

analysis than that of a fault tree. As such, BDDs offer efficient mathematical 

3 



1. Introduction 

manipulation, but are difficult to construct directly from the system definition and 

hence are generally obtained by converting from a fault tree. The method proposed 

by [4] only determines the unreliability of the whole mission. A BDD methodology 

was also applied by La Band and Andrews [3] to evaluate the probability of failure 

of each phase in the mission. 

As both of these methods have their own drawbacks, another method for 

system reliability /unreliability was introduced Nielsen [5]. The cause-consequence 

diagram method was developed at RISO Laboratories, Denmark, as a graphical tool 

for analysing relevant accidents in a complex nuclear power plant. The method 

presents logical connections between causes of an undesired (critical) event and 

the consequences of such an event, if one or more mitigating provisions fail. As 

all consequence sequences are investigated, the method can assist in identifying 

system outcomes, which may not have been investigated at the design stage. Ridley 

and Andrews [6] notice that, for some types of system, the final cause-consequence 

diagram has an identical structure to that of the BDD. They noted, however that 

the cause-consequence diagram was more concise due to the automatic extraction 

of common independent sub-modules. As the cause-consequence diagram can be 

obtained directly from the system description, there was no need to develop and 

convert from a fault tree to BDD. They also noted that as the BDD is a more efficient 

tool than the fault tree method then the cause-consequence diagram formulation can 

be advantageous. The cause-consequence diagram also has the capability to model 

the failure of each phase in addition to the whole mission in one diagram. 

In this work cause-consequence analysis is applied to phased missions. The fault 

tree analysis is reviewed in Chapter 2 and some approximation techniques used 

to evaluate system reliability /unreliability and importance measures are described. 

Chapter 3 reviews binary decision diagrams. The binary decision diagram method 

can suffer if t.he onler in which component.s are consillerell is not well chosen and 

this results in an increase in the size of the resulting diagram. This decreases the 

efficiency of the method and hence many schemes have been devised to obtain the 

most efficient order of components. Some of the possible ordering schemes are 

discussed in Chapter 5. In Chapter 4 the cause-consequence diagram method is 

described and reviewed. Phased mission systems are described in Chapter 6. This 

chapter outlines the different methods available for evaluating a phased mission 

system. The purpose of this work was to apply the cause-consequence diagram 
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method to the phased mission systems and this is presented in Chapter 7. Two 

methods for constructing a cause-consequence diagram for phased mission system 

are presented. The following chapter gives the construction and analysis of the cause 

consequence diagram of a specific phased mission system - an aircraft flight. It is a 

very complex system for the capacity of this theses therefore a simplified version of 

the system was used. Chapter 9 goes on to describe a modularisation technique that 

can be applied to the cause-consequence diagrams. The conclusions of the work and 

some suggestions for the future work are given in Chapter 10. 



2. FAULT TREE ANALYSIS 

2.1 Introduction 

There are two main types of modelling tools used for reliability analysis. They are 

inductive, or forward, analysis, and deductive, or backward, analysis. An inductive 

analysis starts at component level and proceeds forward identifying the possible 

consequences. Fault tree analysis is an example of deductive analysis, where the 

process starts at a possible consequence and goes backwards trying to identify all 

possible causes. It provides a diagrammatic description of system failure in terms 

of the failure of its components. 

2.2 Construction Of a Fault Tree 

The first step in the construction of a fault tree is to determine a system failure 

mode. The system failure mode is termed the 'top event' and the fault tree is 

developed in branches below this event showing its causes. It is important that the 

definition of the top event is not too broad or too narrow to produce the results 

required. If the system has more than one failure mode, multiple fault trees would 

be constructed to represent each mode. 

There are two basic elements used in fault tree construction - 'gates' and 'events'. 

Events can be dassified as intermeciiate or basic:. Intermediate events can be 

developed further and are represented by rectangles in the fault tree diagram. 

Basic events are represented by circles and cannot be developed any further. Basic 

events usually are component failures or human errors. These symbols are shown in 

Table 2.l. 

The gates either allow or inhibit the passage of fault logic up through the tree and 

show the relationships between the 'events' needed for occurrence of a higher event. 

The development of a fault tree involves use of Boolean expressions represented by 

logical operations 'Or', 'And', 'Not'. These expressions are represented by gates 

6 



2. Fault Tree Analysis 7 

Symhol Meaning 

Intermediate event further developed 

0 hya gate. It indicates that the event is 
capahle ofheing hroken down. This is 
the only symbol that will have a logic 
j!ate and input events below it. 

6 
Basic event. These symhols are found 
at the hottom of fault trees and require 
no further development or 
hreakdown. 

Table 2.1: Event symbols 

'Or', 'And' and 'Not' in a fault tree, respectively. Another gate used in fault tree 

construction is a 'k out of N' gate, also called 'Vote' gate, which can be expressed 

as a combination of 'Or' and 'And' gates. This gate allows the flow of logic through 

the tree if at least k out of N inputs occur. The symbols used to represent these 

gates are shown in Table 2.2. There are other gates but the ones shown are those 

most commonly adopted. Before analysis can be performed on any fault tree all 

gates must be expressed in terms of the 'And', 'Or' and 'Not' gates. 

Symhol Name Relation 

Q OR 
Output event occurs if at least 
one of the input event~ occurs 

Q AND 
Output event occurs if all 
input events occur 

~ 
Output event occurs if at least 

VOTE k out of N possihle input~ 
occur 

~ NOT 
Output event occurs if the 
input event doesn't 

Table 2.2: Gate symbols 

Once a top event has been determined, it is developed by asking 'what could 

C,lllse this?'. Hence t.he immeciiate, necessary awl sllffieient. causes for its occurrence 

are determined. In this way, events in the tree are continually redefined in terms of 

lower resolution events. This process is terminated when basic events are reached. 
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A system where failure modes are expressed only in terms of component failures 

is referred to as a 'coherent' system. A coherent fault tree will have only 'Or' and 

'And' gates. If failure modes in the system are expressed in terms of component 

failures and successes, the system is called 'non-coherent'. Non-coherent fault trees 

also have 'Not' gates. 

There can be two types of analysis which can be performed once the fault tree 

is constructed: 

• Qualitative analysis 

• Quantitative analysis 

2.3 Qualitative Analysis 

Qualitative analysis involves the identification of combinations of component 

states, which cause the system to fail. For coherent fault trees these combinations 

are called cut sets or minimal cut sets and just involve component failures [7]. In 

the case of non-coherent fault trees (when 'Not' logic is involved), the combinations 

of basic events that would cause system failure are called implicants. The minimal 

sets of implicants are called prime implicants. 

The definition of a cut set is: 

A cut set is a collection of basic events whose presence will cause the top 

event to occur. 

System failure, however, does not necessarily need the failure of all the 

components in a cut set, but for any system the largest cut set will consist of all 

component failures. Generally only lists of component failures which are necessary 

and sufficient to cause system failure are looked at. Hence the importance of the 

minimal cut sets. 

A cut set is said to be minimal if it cannot be further minimized but still 

insures the occurrence of the top event. 

Minimal cut sets are sometimes called the minimal failure modes of a 

system. 
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Two fault trees are logically equivalent if they have the same minimal cut sets. 

The order of a minimal cut set is the number of components within the set. The 

lowest order minimal cut sets contribute most to system failure, as fewer component 

failures are needed to cause system failure. 

In order to determine the minimal cut sets from a fault tree, Boolean logic 

expressions for the top event must be transformed to a sum-of-products form. 

This can be achieved using a top-down or bottom-up approach. The top down 

approach would start with the top event and then gradually substitutes gates with 

their inputs using Boolean expressions until the expression for the top event consists 

only of basic events. The bottom-up approach begins at the bottom of the fault tree 

and works upwards to the top event. Both of these methods are straightforward 

to apply and involve the expansion of Boolean expressions. The (liiference bet.ween 

these two approaches is in which end of the fault tree is used to initiate the expansion 

process. The following laws of Boolean algebra are used to simplify and to remove 

redundancies in the expressions obtained. In Boolean algebra, '.' is used to represent 

'And' and '+' represents 'Or'. 

1. Commutative laws 

A+B=B+A 

A·B=B·A 

2. Associative laws 

2.3.1 Rules Of Boolean Algebra 

(A + B) + C = A + (B + C) 

(A . B) . C = A . (B . C) 

3. Distributive laws 

A + (B· C) = (A + B) . (A + C) 

A . (B + C) = A . B + A . C 

4. Identities 

A+O=A 

A+l=l 

A·O=O 

A·l = 1 
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5. Idempotent law 

A+A=A 

A·A=A 

6. Absorption law 

A+A·B=A 

A· (A+B) =A 

7. Complementation 

A+A=l 

A·A=O 

(A) = A 

8. De Morgan's laws 

(A+B)=A·B 

(A·B)=A+B 

Laws 5 and 6 enable the removal of redundancies in expressions: law 5 removes 

repeated cut sets and repeated events within each cut set and law 6 removes non­

minimal cut sets. 

2.4 Fault Tree Quantification 

Quantitative analysis of the fault tree allows the calculation of a number of 

parameters, which are used to assess the system. The top event probability and 

frequency are used together with the expected number of occurrences of the top 

event and event importance measures to gain a full understanding of the system. 

Quantitative analysis is based on a probabilistic method known as 'Kinetic Tree 

Theory' introduced by Vesely [8]. The underlying assumption of the Kinetic Tree 

Theory is that all basic events in the tree structure occur independently of one 

another. 

2.4.1 Top event probability 

Each system is assumed to exist in one of two states - working or failed. The 

state of the system will be a function of the state of each component in the system. 
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Each component is also assumed to exist in one of two states - working or failed. 

For the ith component the binary indicator variable Xi is define(l to he: 

{ 
1 if component i is failed 

Xi = 0 if component i is working 

where i = 1,2, ... ,n, and n is the number of components in the system. 

The system structure function is defined as: 

Ne {1 if system is failed 
4> (x) = 1- P:'=l (1- Pi (X)) = 0 . if system is working 

(2.1) 

where Pi (X) is the binary indicator function for each minimal cut set Ci, i 

I. .. Nc: 

() IT { 
1 if cut set Ci exists 

Pi X = Xj = 
jECi 0 if cut set Ci does not exist 

(2.2) 

The probability of the top event is given by the expected value of the system 

structure function: 

Qsys (t) = E [4> (x)] (2.3) 

If each minimal cut set is independent (there are no common events between any 

cut sets), then: 

4> [E(x)] = E[4>(x)] (2.4) 

Hence the expected value of the structure function for a fault tree without 

repeated events would be calculated by substituting the probability of failure of 

each component in the structure function. 

However minimal cut sets are not usually independent, and in this case the full 

expansion of the structure function is needed. For example, if there are two minimal 

cut sets: Cl = {Xl, X 2}, C2 = {X2' X 3 }, then the structure function is given by: 

4> (x) 1 - (1 - Xl . X2) (1 - X2 . X3) 

1 - (1 - Xl . X2 - X2 . X3 + Xl • X2 . X2 . X3) (2.5) 

After reduction of the indicator variables (i.e. Xi = Xf) the following result is 

obtained: 

(2.6) 
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The probability of the top event T for the fault tree with 2 minimal cut sets given 

earlier is described by the expected value of the expanded and reduced structure 

function: 

(2.7) 

An alternative, more efficient way to deal with repeated events is to use Shannon's 

decomposition formula. 

2.4.2 Shannon's decomposition formula 

According to Shannon's formula, a Boolean function f (~), where ~ -

(Xl, ... ,Xn ) , can be expressed as: 

(2.8) 

where f (li'~) represents f (~) with component Xi failed and f (Oi'~) represents 

f (~) with component Xi working. f (li'~) and f (Oi'~) are known as the residues 

of f (~) with respect to Xi . 

The structure function is pivoted around the most repeated variable using 

Shannon's formula. This is continued until no repeated events are left in the residues. 

Applying Shannon's formula to the structure function given in (2.5) and pivoting 

around variable X2 gives: 

<fJ (x) X2 [1 - (1 - Xl) (1 - X3)] + (1 - X2) [0] 

X2 [1 - (1 - xr) (1 - X3)] 

The probability of the top event is then given by: 

Qsys (t) = E [<fJ (x)] = P (X2 ) [1- (1 - P (Xl)) (1 - P (X3 ))] (2.9) 

An alternative approach to the structure function method to obtain the top event 

probability is to use the inclusion-exclusion formula. 

2.4.3 Inclusion-Exclusion Formula 

This approach is suitable whether basic events are repeated or not. The top event 

T occurs if at least one cut set exists. This gives the following Boolean expression 
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for T: 

Ne 

T = Cl + C 2 + ... + CNe = U C i 

i=l 

Expanding this expression gives the inclusion-exclusion expansion: 

Ne Ne i-I 

P(T) = LP(Ci) - LLP(Ci n Cj ) + ... + (_l)Ne-l P (Cl n C 2 n ... n CNe) 
i=l i=2 j=l 

(2.10) 

If the number of minimal cut sets, Ni , is large the expression (2.10) becomes 

tedious and time consuming to calculate. In simulations its calculation may be 

impractical and hence approximations are used. 

2.4.4 Upper and lower bounds for system unavailability 

Taking the first two terms of the inclusion-exclusion expansion gives the 

following: 

Ne Ne i-I Ne 
L: P (Ci) - L: L: P (Ci n Cj ) ::; Qsys (t) :::; L: P(Ci) 
i=l i=2j=1 i=l 

lower bound exact upper bound 

The upper bound of the top event probability is known as the rare 

approximation since it is accurate if the component failure events are rare. 

2.4.5 Minimal cut set upper bound 

A more accurate upper bound is the minimal cut set upper bound. 

Qsys (t) 

As 

P (system failure) = P (at least 1 minimal cut set occurs) 

- 1 - P (no minimal cut set occurs) 

Ne 

(2.11) 

event 

P (no minimal cut set occurs) > IT P (minimum cut set i does not occur) , 
i=l 
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the following is correct: 

Ne 

Qsys (t):::; 1- IT (1- P(Cd) (2.12) 
i=l 

It can be shown that 
Ne Ne 

Qsys (t) :::; 1 - IT (1 - P (Ci )) :::; L- P (Ci ) 
i=l i=l 

exact minimal cut set rare event 

upper bound approximation 

2.4.6 Top event frequency 

The top event frequency or the system failure intensity Ws (t) is defined as the 

probability that the top event occurs at t per unit time. Therefore Ws (t) dt is the 

probability that the top event occurs in the time interval [t, t + dt). 

For the top event to occur between t and t + dt all the minimal cut sets must 

not exist at t and then one or more minimal cut sets occur during t to t + dt. It is 

assumed that dt is so small that only one component fails in this time. More than 

one minimal cut set can occur in a small time element dt since component failure 

events can be common to more than one minimal cut set. This can be expressed as: 

(2.13) 

Ne 
where A is the event that all minimal cut sets do not exist at time t and U (}i is the 

i=l 
event that one or more minimal cut sets occurs in time t to t + dt. 

As P (A) = 1- P (A), equation 2.13 can be written as: 

~OO.=P~Q~=P~~-P~Q~ 
where A means that at least one minimal cut set exists at t. 

(2.14) 

The first term of the equation 2.14 is the contribution from the occurrence of 

at least one minimal cut set in the small time element dt and the second term is 

a correction term representing the contribution of minimal cut sets occurring while 

other minimal cut sets already exist (Le. system is already failed). Denoting these 

terms by wil) (t) dt and W~2) (t) dt respectively gives the following: 

Ws (t) dt = w~I) (t) dt - W~2) (t) dt (2.15) 
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Terms on the right side of the equation 2.14 can be expanded using the inclusion­

exclusion principle, but as this is computationally intensive approximations may be 

used. 

2.4.7 Approximation of the system unconditional failure intensity 

From equation 2.15 

Ws (t) dt ~ w! (t) dt (2.16) 

and hence there is an upper bound WSMAX (t) for Ws (t): 

WSMAX (t) = w! (t) (2.17) 

If the component failures are rare events then the minimal cut set failures will 

also be rare events. The second term of equation 2.15, wi2) (t) dt, requires minimal 

cut sets to exist and occur at the same time. When component failures are rare this 

occurrence rate is also very small and hence Ws (t) -:::= W SMAX (t). 

As 
Ne 

w~l) (t) dt = UP (Oi) (2.18) 
i=l 

results in a series expansion, it can be truncated after the first term to give the rare 

event approximation: 

Ne 

WSMAXdt < LP(Oi) 
i=l 

Ne 

< Lwoi (t) dt 
i=l 

(2.19) 

where P (Oi) is the probability of the occurrence of minimal cut set i; wO i is the 

unconditional failure intensity of minimal cut set i. 

2.4.8 Expected number of system failures 

The expected number of system failures in time t, W (0, t), is given by the integral 

of the system failure intensity in the interval [0, t): 

W (0, t) = lt Ws (u) du (2.20) 
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The expected number of system failures is an upper bound for system 

unreliability: 

F(t) < W(O,t) 

U nreliability Expected number of system failures 

If system failure is rare, this upper bound is a close approximation. 

2.5 Example 

To illustrate the use of fault tree analysis consider the example shown in Figure 

2.1. The top-down approach is demonstrated using this example fault tree. 

Figure 2.1: Example fault tree 

In the top-down approach the starting point is the top event. Then it is expanded 

by substituting each gate in the expression by events appearing lower down in the 

fault tree and simplifying the expression until it has only basic component failures. 

The top event in Figure 2.1 has an 'Or' gate with two inputs: 

Top = Gate1 + Gate2 
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Gate 1 is an 'And' gate with two input events, A and B: 

Gate1 

Top 

A·B 

A· B + Gate2 

Gate 2 is an 'Or' gate with two inputs, C and Gate3: 

Gate2 

Top 

C + Gate3 

A· B + C + Gate3 

Gate 3 is an 'And' gate with two input events, Band D: 

. Gate3 = B· D 

Hence, the following expression for the Top event is obtained: 

Top = A· B + C + B . D 

17 

This is the minimal disjunctive form of the logic equation, each term of which is 

a minimal cut set. This fault tree therefore has three minimal cut sets, one of order 

one and two of order two: {C}, {A, B}, {B, D}. 

The probability of the top event using the inclusion-exclusion would be calculated 

as follows: 

P (Top) P(A· B) +P(C) +P(B· D) 

- P (A . B . C) - P (A . B . D) - P (C . B . D) 

+P (A· B· C· D) 

Minimal cut set bound (see equation 2.12) for this system would be: 

P (Top) ~ 1- (1- P(C))(l- P (A· B))(l- P (B· D)) 

The rare event approximation (equation 2.11) is: 

P(Top) ~ P(C)+P(A·B)+P(B·D) 
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2.6 Importance measures 

An importance analysis is a sensitivity analysis which identifies weak areas of 

the system and can be very valuable at the design stage. For each component its 

importance measure signifies the role that it plays in either causing or contributing 

to the occurrence of the top event. This allows components or cut sets to be ranked 

according to the extent of their contribution to the occurrence of the top event. 

Importance measures can be categorised as deterministic or probabilistic. 

Probabilistic measures can also be categorised into those dealing with system 

availability assessment and those concerned with system reliability assessment. 

2.6.1 Deterministic measures 

Deterministic measures assess the importance of a component to the system 

operation without considering the component's probability of occurrence. One such 

measure is the structural measure of importance. 

2.6.1.1 Structural measure of importance 

The structural measure of importance for a component i is defined by equation 

2.21: 

J?T = number of critical system states for component i 
~ total number of states for the (n - 1) remaining components 

(2.21) 

A system state for component i will be described as a critical state if failure of 

component i causes the system to go from a working to a failed state. 

2.6.2 Probabilistic measures (System Availability) 

Probabilistic measures are generally of more use than deterministic measures in 

reliability problems as they take into account the component's probability of failure. 

2.6.2.1 Birnbaum's measure of importance 

Birnbaum's measure of importance is also known as the criticality function. The 

criticality function for a component i, Gi (q (t)), is defined as t,he probabilit.y t.hat, 

the system is in a critical system state for component i. 

The two expressions for the criticality function are: 



1. 

2. 
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Gi (q (t)) = Q (li' q (t)) - Q (Oi, q (t)) (2.22) 

where Q (t) is the probability that the system fails, (li' q) = (ql,"" qi-l, 1, qi+l,' .. , qn), 

(Oi, q) = (ql,"" qi-l, 0, qi+l,· .. , qn). 

This expression gives the probability that the system. fails with component i 

failed minus the probability that the system fails with component i working. 

So, this gives the probability that the system fails only if component i fails. 

(2.23) 

This defines the critica1ity function as a partial derivative which is the same 

as the first expression 2.22 as: 

8Q (q) Q (li' q (t)) - Q (Oi, q (t)) 
8qi 1 - 0 

(2.24) 

2.6.2.2 Criticality measure of importance 

The criticality measure of importance is defined as the probability that the 

system is in a critical state for component i, and i has failed (weighted by the 

system unavailability Qsys): 

I~M = Gi (q(t))qi (t) 
1 Qsys (q (t)) 

(2.25) 

2.6.2.3 Fussell-Vesely measure of importance 

This measure of importance is defined as the probability of union of the minimal 

cut sets containing component i given that the system has failed: 

(2.26) 

The importance rankings by Fussell-Vesely method are very similar to those 

produced by the criticality measure of importance (2.25). 
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2.6.2.4 Fussell-Vesely measure of minimal cut set importance 

This measure provides a similar function to the previously defined importance 

measures for components except that the minimal cut sets are themselves ranked. 

The importance measure is defined as the probability of occurrence of cut set i given 

that the system has failed: 

(2.27) 

2.6.3 Probabilistic measures (Systems reliability) 

Probabilistic measures for system reliability are appropriate for systems where 

the interval reliability is being assessed and the sequence in which components fail 

matters. The sequence of failure can be described with the use of enabling and 

initiating events. This is of particular use when analysing safety protection systems. 

For example, if a hazardous event occurs after the protection system failed, this 

would result in a dangerous system failure. However, if the protection system was 

working when the hazardous event occurred, but failed later, then it would shutdown 

the system and a dangerous situation would be avoided. So, in this example, the 

hazardous event is an initiator, as it would result in a system failure only if the 

enabling event has already occurred. If the initiating event occurs first, then the 

safety system would respond as required and danger would be avoided. Initiating 

and enabling events are defined as follows: 

Initiating events perturb system variables and place a demand on 

control/protective systems to respond. 

Enabling events are inactive control/protective systems which permit 

initiating events to cause the top event. 

All probabilistic measures for system reliability are weighted according to the 

expected number of system failures, W (0, t). 

2.6.3.1 Barlow-Proschan measure of initiator importance 

The Barlow-Proschan measure of initiator importance is the probability that 

the initiating event i causes the system failure over the interval [0, t). It is defined 
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in terms of the criticality function and the unconditional failure intensity of the 

component: 

rt {Q (li' q (t)) - Q (Oi, q (t))) Wi (t) dt 
lBP ~l~na ____________ ~~ __________ __ 

i - W (0, t) (2.28) 

2.6.3.2 Sequential contributory measure of enabler importance 

The sequential contributory measure of enabler importance is the probability 

that enabling event i permits an initiating event to cause system failure over the 

interval [0, t). The failure of the enabler i is only a factor when it is contained in 

the same minimal cut set as the initiating event j: 

L 
j 

iofj 
i and jECk 

lBP = for some k 
e W (0, t) 

This expression is only an approximation. 

2.6.3.3 Barlow-Proscllan measure of minimal cut set importance 

(2.29) 

This measure of cut set importance is the probability that a minimal cut set i 

causes the system failure in interval [0, t) given that the system has failed: 

L t [1 - Q (OJ, li-{j}, q (t'))] IT qk (t') Wj (t') dt' 
jEi la ki'j 

kEi 
~=------------------~~--~~-----------W (O,t) 

(2.30) 

j is each initiating event in the minimal cut set {i}. 

2.7 Summary 

Fault tree analysis is very important and frequently used to quantify system 

performance. It gives a diagrammatic representation of the system failure causes, 

and also provides a means for system quantification. Performing analysis upon 

large fault trees (quantitative or qualitative) may be computationally intensive and 

hence approximations are needed for some parameters and that will lead to loss of 

accuracy. 



3. BINARY DECISION DIAGRAMS 

3.1 Introduction 

Fault trees described in the previous chapter are a good way to represent the logic 

of the system. However, if the fault tree is large, then performing analysis on it can 

be computationally expensive. Approximations are needed for many parameters and 

that would result in loss of accuracy. A more accurate and efficient way to perform 

these calculations is to use the Binary Decision Diagram technique. 

Binary Decision Diagrams (BDDs) were introduced by Lee [9] who used them to 

represent switching circuits. They were further studied by Akers [10] who defined 

a digital function in terms of a diagram, which told the user the output value of 

the function by examining the values of its inputs. The BDDs were first applied 

to reliability and, more specifically, to fault tree analysis, in 1980's by Schneeweiss 

[11]. Further development of the use of BDDs in reliability analysis was developed 

by Rauzy [12], who suggested that they could provide an alternative technique for 

performing fault tree analysis. 

The BDD method first converts a fault tree to a binary decision diagram which 

can then be used for analysis. In order to do this, an order in which components 

are considered must be taken. The BDD represents the Boolean equation for the 

top event, which is much easier to analyse than a fault tree. The method allows for 

quantitative and qualitative analysis of the fault tree. The advantage of this method 

compared to fault tree analysis is that exact solutions can be calculated efficiently 

without the need for approximations. 

3.2 Description of the BDD 

A BDD is a directed acyclic graph. According to Rauzy[12]' BDDs have two 

important features: 

22 
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• the graphs are compacted by sharing equivalent subgraphs; 

• the results of operations performed on BDD are memorised and thus a job is 

never performed twice. 

A BDD is composed of terminal and non-terminal nodes (vertices), connected 

by branches. The non-terminal nodes encode basic events and the terminal nodes 

correspond to the final state of the system. The example of a BDD is shown in 

Figure 3.1. 

Non-terminal 
vertex 

Tenninal vertex Terminal vertex 

Figure 3.1: Example of Binary Decision Diagram 

A non-terminal node of a BDD has two outgoing branches: if the basic event 

represented by the non-terminal node occurs, then the diagram is further developed 

following the left-hand side branch ('1' branch), and ifthe basic event doesn't occur 

the diagram is developed on the right hand side branch ('0' branch). In the following 

work, all left branches of a BDD will represent '1' branches and all right branches 

will represent '0' branches. The size of the BDD is usually measured by the number 

of non-terminal nodes. Terminal nodes have the value 1 if the top event occurs (i.e. 

system fails) or 0 if the top event doesn't occur (i.e. system doesn't fail). 

All paths through the diagram start at the root vertex, the top node, and proceed 

to a terminal node marking the end of the path. A path terminating in node '1' 

gives a cut set of the fault tree. Only nodes lying on the '1' branches of the path 

are included in the cut set. 
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3.3 Construction of the BDD 

3.3.1 Construction of the BDD using structure function 

One method to construct a BDD from a fault tree is to use the structure function 

ljJ (~) of the system. An order in which components will be considered in the 

construction process is important as it can significantly influence the size of BDD. 

Once an order of components is determined, values of 1 and 0 are substituted for 

each component in the structure function according to the chosen ordering. To 

illustrate the process a fault tree shown in Figure 3.2 is used. 

Figure 3.2: Fault Tree Example 

This fault tree has four minimal cut sets: 

1. {A, C} 

2. {A, D} 

3. {B,C} 

4. {B,D} 

which gives the following structure function: 

Using top-down, left-right ordering scheme (simply ordering the variables as they 

are encountered on a top-down, left-right traversal of the fault tree) the component 

order would be: 
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l-(l-xA ·xc)(l-xA ·xD)(l-xB ·xC)(l-XB .XD) 

FI 

l-(l-xC )(l-xD)(l-xB ·xc )(l-xB· XD) 

F2 

Figure 3.3: Binary Decision Diagram for Fault Tree shown in Figure 3.2 

This means that basic event A is considered first, then basic event B, then C and 

finally basic event D. The first node (root vertex) represents basic event A. The result 

of the left-hand branch is obtained by substituting the value 1 into the structure 

function for each XA and the result for the right-hand side branch is obtained by 

substituting value 0 for A: 

XA = 1: 

XA =0: 

</J(:J2) = 1- (1- xc) (1- XD) (1- XB· xc) (1- XB· XD) (3.2) 

</J (:J2) = 1 - (1 - XB . xc) (1 - XB . XD) 

Other basic events are considered in the same way until the terminal nodes are 

reached. The resulting BDD is shown in Figure 3.3. 

The resulting BDD is not in its most efficient form and although it will generate 

cut sets, these are not minimal. A BDD can be made more efficient by applying 

collapsing operations. These can be applied to equivalent nodes where, from 

Friedman and Supowit [13], two nodes of a BDD are equivalent if they both are: 

• terminal nodes with the same value, or 

• non-terminal nodes having the same label and their left sons are equivalent 

and their right sons are equivalent. 
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The son of a node is the node to which either the '1' or '0' branch leads. 

The following 'collapsing' operations can be used to reduce the size of a BDD: 

1. If two sons of node A are equivalent, then delete node A and direct all of its 

incoming branches to its left son. 

2. If nodes A and B are equivalent, then delete node B and direct all of its 

incoming branches to A. 

The above operations can be used to reduce the BDD shown in Figure 3.3. 

Operation 1 can be applied to node F2 as both its sons are equivalent. This results 

in the incoming branch from node F1 being directed to the left son of F2, node 

F4. Therefore, nodes F2, F5 and F8 are deleted. Then operation 2 can be applied 

to equivalent nodes F4 and F6. Following the rule, node F6 is deleted and the 

incoming branch from node F3 is directed to node F4. The resulting BDD is shown 

in Figure 3.4. 

Figure 3.4: Reduced BDD from Figure 3.3 

The reduced BDD is much smaller than the original. It has four non-terminal 

nodes compared with nine in the original. It must be noted, that this reduction 

does not change the logic of the BDD. 

3.3.2 Construction Of the BDD Using If-Then-Else Approach 

The if-then-else (ite) method for constructing BDD's was developed by Rauzy [12]. 

It is derived from Shannon's formula given in equation 2.8: 

(3.3) 
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where !I represents I (~) with Xl = 1 and 12 represents I (~) with Xl = O. Functions 

!I and 12 are one order less than I (~). 
Each non-terminal node in the BDD has an ite structure ofthe form ite (Xl, /I, h) 

where Xl is a Boolean variable and !I and 12 are logic functions. This means: if 

Xl fails then consider 11 else consider h. In the BDD structure 11 would be at the 

end of the '1' branch of the node Xl and 12 would be at the end of '0' branch. The 

structure is represented in Figure 3.5. 

~
1 

1 0 

It h 

Figure 3.5: ite structure for component Xl 

Variable ordering must be chosen before construction of the BDD. Then each 

basic event Xi is assigned the ite structure ite (Xi, 1, 0) . The following rules are then 

used for manipulation of ite structures: 

If J = ite (x, 11, h) and H = ite (y, gl, g2), then 

1. X < Y (x appears before y in the variable ordering) 

J * H = ite (x, !I * H, 12 * H) (3.4) 

2. x=y 

J * H = ite (x,!I * gl, 12 * g2) (3.5) 

where * corresponds to a Boolean operation 'And' or 'Or'. 

To simplify the results the following properties are also used: 

1+H=1 1·H=H (3.6) 

O+H=H O·H=O 

To illustrate the method the fault tree shown in Figure 3.6 is considered. 
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Figure 3.6: Fault Tree Example 

Using the top-down left-right ordering strategy the variable order is C < A < B. 

The ite structures for each basic event are: 

A=ite(A,l,O) 

B=ite(B,l,O) 

C=ite(C,l,O) 

Gate G1 can be expressed (using rule 1 in ( 3.4) and ( 3.6)) as : 

G1 - A· B = ite (A, 1,0) . ite (B, 1,0) = 

ite (A, ite (B, 1,0) ,0) 

The ite structure for the event Top is given (using rule 1 ( 3.4) and ( 3.6)) by: 

Top C + G1 = ite (C, 1,0) + ite (A, ite (B, 1,0) ,0) = 

ite (C, 1, ite (A, ite (B, 1,0),0)) (3.7) 

To construct the BDD from 3.7 '1' and '0' branches are considered for each 

variable in turn. For example, C is the first basic event in the variable ordering and 

it is encoded in the root node of the BDD structure. At the end of '1' branch is a 

terminal node 1 and the structure ite (A, ite (B, 1,0) ,0) is at the end of '0' branch. 

Basic event A is considered next and is encoded in the node at the end of the right­

hand branch ('0' branch). Its left-hand branch ('1' branch) will end in the structure 

ite (B, 1, 0), while its right-hand side ('0') branch will terminate in a terminal node 

O. The process is repeated once more for the basic event B. The resulting BDD is 

shown in Figure 3.7. 
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Figure 3.7: Binary Decision Diagram for Fault Tree shown in Figure 3.6 

3.4 Qualitative Analysis Of the BDD 

Each path from the root node of a BDD to a terminal node '1' defines a solution 

of the Boolean function j (22) [12]. Only nodes lying on the '1' branches of the path 

are included in the cut set. For the BDD shown in Figure 3.7 the cut sets are: 

1. {Cl 

2. {A, B} 

These are also minimal cut sets. But the BDD does not always produce a list of 

minimal cut sets. To obtain minimal cut sets the BDD can be minimised or the list 

of cut sets can be reduced using Boolean algebra rules. 

3.4.1 Minimisation 

Only if a BDD is in its minimal form will the cut sets produced from it be 

minimal. A minimisation process for a BDD, developed by Rauzy [12], is applied to 

its ite form awl creates CL new I3DD which defines all miuimal cut sets of the fault 

tree. All shared nodes must be expanded before minimisation. 

Let j be a Boolean function of the BDD. If (J" is a solution of j, then a path 

exists from the root of the BDD to terminal node '1' which defines a solution 8 of j 

such that 8 is included in (J". 

Consider any node in the BDD, the output of which is represented by the function 

F where: 

F=ite(x,G,H) 
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If J is a minimal solution of G, then the intersection of {J} n x is a solution of F. 

In addition, if <5 is not a minimal solution of H, then a solution of F smaller than 

{is} n x does not exist and {is} n x is minimal. The set of all minimal solutions of F 

will also include minimal solutions of H: 

SOlmin (F) = {O'} 

0' = [{ is} n xl U [SOlmin (H) 1 

Pi 

Figure 3.8: Example BDD for minimisation 

(3.8) 

(3.9) 

This algorithm can be applied to the BDD in Figure 3.8. This BDD would 

produce these cut sets: 

1. {A,B,C} 

2. {A, C} 

3. {A,B,D} 
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As this BDD is not minimal, it does not generate minimal cut sets. The first 

cut set is redundant as it contains the second cut set as a subset. To minimize the 

BDD, each node is considered in turn: 

F1 = ite (A, F2, 0) - F2 does not contain any paths that are included in '0' branch, 

as this leads to terminal vertex. 

F2 = ite (B, F3, F4) - Event 'C' is included in a path on both the '1' branch (F3) 

and the '0' branch (F4). Therefore, 'C' is removed from the 

'1' branch as this will be a non-terminal son of F2. This is 

done by replacing the terminal '1' vertex with a terminal '0' 

vertex. 

F3 = ite (C, 1, F5) - F5 does not contain any paths that are included in the '1' 

branch as it leads to the terminal vertex. 

F4 = ite (C, 1,0) - Both the '1' and '0' branches are terminal. 

F4 = ite (D, 1,0) - Both the '1' and '0' branches are terminal. 

The minimised BDD is shown in Figure 3.9. 

This BDD produces the following minimal cut sets: 

1. {A, C} 

2. {A,B,D} 

The minimised BDD didn't produce the redundant minimal cut set {A, B, C}. 

This technique can only be used to obtain the minimal cut sets as it destroys 

the structure function form of the BDD and hence the minimised BDD must not be 

used for quantification. 
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Figure 3.9: The minimised BDD 

3.5 Quantitative Analysis Of the BDD 

The probability of the root event can be expressed by the BDD as the sum of 

probabilities of the paths that lead from the root node to any terminal node '1' as 

these paths will give minimal cut sets. For quantitative analysis nodes lying on the 

'0' branches of the path are included as well. For the component i that lies on '0' 

branch the probability of occurrence is described as qi' qi = 1 - qi. For the BDD 

shown in Figure 3.7 the paths to consider would be 

l.G 

2. GAB 

Therefore the probability of top event occurrence would be: 
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3.6 Summary 

The BDD technique is useful to identify the minimal cut sets of a fault tree and to 

calculate the exact probability of the top event. The difficulty with the technique is 

the conversion of a fault tree to a BDD as variable ordering can significantly influence 

the size of the resulting BDD. However, for large systems the BDD method allows 

more accurate analysis than is possible to achieve using traditional methods, i.e. 

fault tree analysis. 



4. CAUSE-CONSEQUENCE DIAGRAMS 

4.1 Introduction 

The purpose of risk analysis is to assess probabilities of accidents and evaluate 

their consequences. Techniques adopted (such as fault tree analysis, Markov 

analysis, etc.) are incapable of identifying all possible causes and consequences 

of a critical event. 

The cause-consequence diagram method, which was developed at RISO Labora­

tories, Denmark, by Nielsen [5] in 1971, is a method which presents logical 

connections between causes of an undesired (critical) event and the consequences 

of such an event, if one or more preventing/limiting provisions fail [14, 15]. It 

was initially developed as a graphical tool for analysing relevant accidents in a 

complex nuclear power plant. It has subsequently been applied to various industrial 

systems [16]. EDF (Electricite de France) also applied the method to the reliability 

study of safety-related systems in nuclear power plants and the method was found 

to be advantageous to other methods previously adopted, essentially for certain 

mechanical systems [17]. 

In developing the methods Nielsen noticed that a given accident may be 

characterised by a 'cause', a sequence of events where the time between the 

occurrence of the single event can be an important parameter, and finally by the 

consequences of the accident, when the method should be able to determine all 

possible causes and consequences that some critical event may lead to if one or more 

limiting provisions fail. Nielsen [5] states that the method should also provide a 

basis for determination of the probabilities of any single consequence. 

The principle difference between fault trees and cause-consequence diagrams is 

that the cause-consequence diagram retains information about the order in which 

the components in the system are called upon [18] and is able to model not only 

causes of system failure, but also consequences. Event trees are usually used to map 

34 
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the developments from the initiating event to the set of all possible outcomes, but 

not to determine causes of the failure. By combining both causes and consequences 

of the critical event, the cause-consequence diagrams also provide the way for easy 

quantification as the logic is very similar to binary decision diagrams. Nielsen and 

others [19] noted, that compared with the event trees the cause-consequence diagram 

gives a better representation of event sequences and the conditions under which these 

events can take place. The cause-consequence diagram has a benefit of the lIRe of 

simple, comprehensible symbols that facilitate the communication between different 

people in the development and commissioning of the system. 

4.2 Cause-Consequence Diagram Method 

The main principle of the cause-consequence diagram technique is based on the 

occurrence of a critical event, which for example may be an event involving the failure 

of components or subsystems, that is likely to produce undesired consequences. 

Once a critical event has been identified, all relevant causes of it and its potential 

consequences are developed using two conventional reliability analysis methods -

fault tree analysis and event tree analysis [6]. 

The 'cause' part of the diagram (cause searching) is a fault tree. Fault tree 

analysis is used to describe the causes of an undesired event. The construction of 

the tree begins with the definition of the top event (the critical event). Then the 

causes are indicated and connected with the top event using logical gates 'And' and 

'Or' and this procedure is iterated until all causes are fully developed. 

The 'consequence' part of the diagram (consequence searching) is an event tree 

(event-sequential diagram) showing the consequences that a critical event may lead 

to if one or more preventing/limiting systems do not function as supposed. The 

event tree method is used to identify the various paths that the system could take, 

following the critical event, depending on whether certain subsystems or components 

function correctly or not. 

With a combination of fault tree, representing causes of the critical event, and 

event tree, listing all possible consequences, the logical connection between the 

causes of a critical event and its consequences can be established. Compared 

with fault tree analysis, the cause-consequence diagram method gives a simpler 

representation of event sequences and the conditions under which these events can 
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take place [19]. 

The relationship between the two reliability methods is shown in Figure 4.1. 

Figure 4.1: Cause-consequence diagram structure 

4.3 Symbols for the cause-consequence diagram 

The symbols for construction of the cause-consequence diagram are listed in 

Table 4.1. The symbols for the cause part are the same as those used for the fault 

tree method. For the consequence part new symbols were developed [5, 17, 6]. 

The main symbol used in the construction of the consequence diagram is the 

decision box. The decision box was proposed by Nielsen and is an identical 

representation of 'YES - NO' branches of an event tree structure. The c~nnection 

point between the cause and consequence diagrams is the NO branch of the decision 

boxes as the failure causes of the system, represented by a decision box, are developed 

using fault tree analysis. Nielsen notes the importance of the delay symbol. The 

delay symbol is used in constructing consequence diagrams for systems where time 

delay is important as the knowledge of this may help the analyst to differentiate the 

different outcomes of the system. 

To illustrate a typical cause-consequence diagram the simple system for lighting 

a lamp can be used (Figure 4.2) [17, 22]. A cause-consequence diagram for this 

system is represented in Figure 4.3. The initiating (critical) event is 'operator 

depresses button'. The causes why the bulb is not alight can be that the battery 

fails to produce power (BAT), the bulb has blown (B) or the fuse is broken (F). '!\vo 

consequences are considered: there is no light (NL) or the bulb is alight (L). 
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Table 4.1: Symbols used for the cause-consequence diagram 

Symbols for the cause diagram 

Symbols for the consequence diagram 

qj 

Ft! YES 

Ftle:::;> 

V" 
+ 
Y 

Q l-Q 

o 

AND gate allows the causality to pass up the tree if at any 
time all inputs to the gate occur 

OR gate allows causality to pass up through the tree if at 
any time at least one input to the gate occurs 

The decision box represents the functionality of a 
component/system. The NO box represents failure to 
perfonn correctly, the probability of which is obtained via 

a fault tree or single component probability ql 

Fault tree arrow represents the number of the fault tree 
structure that corresponds to the decision box 

The initiator triangle represents the initiating event for a 
sequence where A. indicates the rate of occurrence 

Time delay indicates that the time starts from the time at 
which the delay symbol is entered and continues up to the 
end of the time interval in the delay symbol 

OR gate symbol is used to simplify the cause-consequence 
diagram when more than one decision box enters the same 
decision box or consequence box 

The existence box represents a component existing in a 
certain state 

The consequence box represents the outcome event due to 
a particular sequence of events 

37 



4. Cause-Consequence Diagrams 

BATTERY 

FUSE 

PUSH BUTION 
--1-

Figure 4.2: Simple light circuit 

Current through 
circuit 

Ft1 

Figure 4.3: Cause-consequence diagram for the light circuit 
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The light switch circuit functions when an operator depresses the push button, 

which sends power to the bulb. Once the critical event is identified, the next stage 

in the construction process is to identify all possible consequences. Following the 

initiating event the circuit should close causing a current to be applied to the bulb. 

The cause-consequence diagram is completed by considering the functionality of 

the components that control the closure of the circuit and the current through the 

circuit. 

The causes of the circuit failing to close is that the push button fails to close the 

circuit. Therefore a single probability that the push button fails to close, QPE, is 

attached to the XO outlet branch of the first decision box. The causes of the circuit 



4. Cause-Consequence Diagrams 39 

No current 

Figure 4.4: Fault tree FT1 for the cause-consequence diagram shown in figure 4.3 

failing are that the battery fails to produce power (BAT), the bulb has blown (B), 

or the fuse is broken (F). These failure causes are shown in Figure 4.4. 

Quantification of the cause-consequence diagram, for a system containing only 

independent failures, can be evaluated by multiplying probabilities of each outlet 

branch leading to a consequence. The overall probability for any particular 

consequence is obtained by summing all sequence probabilities that lead to that 

particular consequence. For example, the probability of light failure, 'NL', in Figure 

4.3 is equal to QpB + (1- QPB)QFtl, where QFtl is the probability that there is no 

current through circuit. 

4.4 Construction rules 

Nielsen [5] gives descriptions of the rules for constructing the cause-consequence 

diagram. This method can be divided into two main groups that may be called: 

1. The cause diagram method (cause searching) 

2. The consequence diagram method (consequence searching) 

4.4.1 The cause diagram method 

The cause diagram is a fault tree relating events and conditions to a particular 

undesired event which might be, for instance, a relevant system failure. Only events 
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that might contribute to the undesired event should be considered. 

The method is characterized by the following points [5, 6]: 

1. Identification of the top event. The construction of a cause diagram (fault tree) 

begins with the exact definition of the critical event. Nielsen describes a critical 

event [15] as an unintended function of a component that controls or effects 

main energy or mass balance, which can lead to significant consequences. He 

suggests that it may be expedient to choose a radical abnormal change of 

a process parameter (e.g. feed water flow stops) or a process variable that 

exceeds a safety limit (e.g. pressure exceeds trip pressure). The description of 

the critical event may vary depending on the system considered. 

2. Cause diagram development. Using a deductive process, the causes of the 

undesired event are discovered and connected by means of logical gates. The 

procedure is repeated until all events have been fully developed, i.e. the 

branches terminate in basic events. 

3. Validation of the diagram. For each gate used in the diagram the input events 

lIlUSt. always be bot.h necessary and sufficient., in the context of the gate, to 

produce the output event. 

Generally, at the development of a cause diagram, special attention should be 

directed towards identification of common mode failures, i.e. simultaneous failures 

of two or more functionally independent system parts from a common cause [5]. 

4.4.2 The consequence diagram method 

The consequence diagram is a graphical method showing the consequences that 

the critical event may result in. This method can also be useful for the determination 

of the probability of each consequence. The construction of the consequence 

diagram starts with definition of the critical event and following sequences of events, 

consequences are determined. 

The principle of the method is that the starting point is the definition of a 

critical event, and the objective is to describe how all possible consequences may 

occur depending on how other systems respond to the critical event. 

The consequence diagram method is then constructed by the following methodology: 
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1. Component ordering. The first step of the consequence diagram construction 

is deciding on the order in which component functioning/failure events are to 

be taken. To ensure a logical development of the causes of the system failure 

mode, it was decided that the ordering should follow the temporal action of 

the system, for example the system activation for the function required given 

an initial critical event. 

2. Consequence diagram development. The second stage involves the actual 

construction of the diagram. Starting from the initiating component, 

the functionality of each component or subsystem is investigated and the 

consequences of these sequences determined. If the decision box is governed 

by a subsystem, then the probability of failure will be obtained via a fault tree 

diagram. 

3. Reduction. If any decision boxes are deemed irrelevant, for example the boxes 

attached to the NO and YES branches are identical and their outcomes and 

consequences are the same, then these should be removed and the diagram 

reduced to a minimal form. Removal of these boxes will in no way affect the 

end result. 

An example of the construction of the cause-consequence diagram is given in 

Section 4.6. 

Devised rules for the correct construction of the cause-consequence diagram for 

a static system are given by Andrews and Ridley [23]. 

4.4.3 Rules for dependent failure events 

The procedure for analysis of an independent system! modelled using a cause­

consequence diagram begins with the assignment of probabilities to each outlet 

branch stemming from a decision box. Following this, the probability of anyone 

sequence is obtained by multiplication of the probabilities associated with each 

decision box [18]. The probability of any particular consequence is then obtained by 

the summation of probability of each sequence that terminates in that consequence. 

This procedure cannot be employed unless the failures of each decision box in 

a sequence are independent. Dependencies may exist in the cause-consequence 

1 Independent system is a system where all components perform independently 
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diagram, and these must be dealt with before the quantification of the diagram. 

Andrews and Ridley [6] give the guidelines on how to deal with dependent failure 

events (common failure and inconsistent failure events). 

4.4.3.1 Common failure events 

Andrews and Ridley [6] noticed that the first type of dependency that may arise 

is that the same failure event exists in more than one fault tree structure on the 

same path in the cause-consequence diagram. In order to deal with the common 

failure event, the event is extracted from the fault tree structure and placed in a 

new decision box preceding the first decision box that contains the common failure 

event. The original cause-consequence diagram is then duplicated on each outlet 

branch stemming from the new decision box. Following the NO outlet branch of 

the new decision box, the failure event is set to TRUE in any fault tree structure 

in which it is found. Similarly, following the YES outlet branch, the probability of 

failure of the common failure event is set to FALSE in any fault tree structure in 

which it is present. 

4.4.3.2 Inconsistent failure events 

As Andrews and Ridley [6] note, in certain systems components are required 

to perform different functions which, if successfully accomplished, result in the 

components residing in different states at different times. For example, initially 

a relay may be required to be closed and later in the sequence be open. 

The simple cause-consequence diagram section shown in Figure 4.5 can be used 

with corresponding fault trees depicted in Figure 4.6. K2 is a relay that can fail 

closed (K2FC) or open (K2FO). To start the motor relay K2 is required to close. It 

may fail open because of relay failure or some operational failure PI. If K2 closes as 

required, motor should start. Motor will fail to start if there is some problem with 

the motor or some other operational problems (P3). Once the motor starts relay K2 

is required to open. If K2 is failed closed or there is some operational failure (P2), 

it will fail to open. If K2 contacts do not open, then system fails. If K2 contacts 

open, the system starts to operate. 

For systems that are not in continuous operation, certain component failures 

could occur between operations. For example, the relay could fail between 
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K2 contact,; 
close 1 

Ftl c::::::> NO YES 

Motor starts 
2 

Ft3 c=:::> 
NS: No Start 
S : Start 
F : Failure 

Figure 4.5: Example cause-consequence diagram 
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operations, which would be the cause of the relay being closed at the start of the 

next sequence, and later in the sequence it would be unable to open. Andrews and 

Ridley [6] give an algorithm on how to deal with such events. 

Figure 4.6: Fault trees for the example cause-consequence diagram shown in Figure 

4.5 

In t.he example fihown in fignrefi 4.5 and 4.u the relay K2 is required first.ly to 

close (decision box 1) and, later in the sequence, to open (decision box 3). In order 

to model this type of failure accurately, the cause-consequence diagram requires 

modification before quantification. A basic event labelling convention in a fault tree 

structure can be helpful in identifying an inconsistent failure event. If two labels are 

the same apart from the last character, then they are deemed as inconsistent failure 

events. This can be seen for the cause-consequence diagram in Figure 4.5, where 
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Ftl contains basic event K2CO, the first failure mode, and Ft3 contains the basic 

event K2CC, the second failure mode. 

Following the identification of an inconsistent failure event, the second failure 

mode is inspected and, depending on whether the second failure mode is an 

unrevealed or revealed failure event, the cause-consequence diagram is different. 

Qncc 

K2 contacts 
close 1 

o c:::::> NO YES ~ 1 

Motor starts 

Ft2 c:::::> 

NS: No Start 
S : Start 
F : Failure 

2 

K2 contacts 
5 

Ft5 c:::::> 

Motor starts 
6 

Ft6 c:::::> 

Figure 4.7: Modified cause-consequence diagram for inconsistent failure modes 

If the second failure mode is a revealed failure, then it cannot fail between 

operations and remain undetected. Therefore, the time to failure of the second 

failure mode is set equal to the time it takes the system to travel from t.he first. 

failure event to the second failure event. This time will be predicted by the analyst. 

If, on the other hand, the second failure mode is unrevealed, then it can occur 

between operations and be undetected. When this situation occurs, the second 

failure mode is extracted and placed in an existence decision box preceding the first 

failure event. The cause-consequence diagram is then duplicated on both outlet 

branches and, following the YES outlet branch of the existence box, the decision 

box containing the first failure mode is governed by the failure of the second failure 

mode. The second failure mode probability is set to 1 in all decision boxes beneath 

the existence decision box, and the first failure mode is set equal to O. Following 
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the NO outlet branch of the existence decision box results in the same scenario as 

if the failure had in fact been a revealed failure. 

Motor start'> 
2 

Ft2 c=::!> NO 

NS: No Start 
S :Start 
F : Failure 

K2 contact'> 
close 5 

Ft4 c=::!> NO YES 

Motor starts 
6 

Ft6 c=::!> 

Figure 4.8: Reduced cause-consequence diagram for inconsistent failure modes 

Figure 4.9: Fault trees for the example cause-consequence diagram shown in Figure 

4.8 

Assuming that K2CC is an unrevealed failure event, the cause-consequence 

diagram shown in Figure 4.7 would be created and reduced to the form shown 

in Figure 4.8 with corresponding fault trees shown in Figure 4.9. 

Following the inspection of each sequence path in the cause-consequence 

diagram, and modification due to any identified dependent failure events, the cause-
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consequence diagram can be quantified by multiplying the probabilities associated 

with each decision box in each sequence. The probability of any consequence is then 

obtained via the summation of the probability of any sequence that terminates in 

that consequence. 

4.5 Quantitative analysis 

Besides being a tool for analysis of the consequences of critical event the 

method serves as a basis from which the probability of occurrence of the individual 

consequence may be evaluated. The cause-consequence analysis can be used as a 

basis for probability analysis of large complex systems as well as of small, notes 

Nielsen [5]. Nielsen uses an example of a standby pump system to illustrate how a 

probability analysis may be carried out. Fault tree analysis was used for the cause 

part of the diagram. He noted, that special attention should be paid to identify 

common mode failures. The use of the delay symbol was illustrated - some sequences 

included integration of the probability distribution function where a failure could 

occur in a certain time intervaL Two different types of events should be considered 

while evaluating probability of certain consequence: independent and dependent 

failure events. 

4.5.1 Quantitative analysis of a system containing independent failure events 

If all events in the system are independent, first of all probabilities are assigned 

to each outlet branch of the decision box. Then, the probability of every sequence is 

obtained by multiplying probabilities associated with each decision in that sequence. 

The final probability of the consequence is obtained by summing probabilities of all 

sequences ending in that consequence. 

To illustrate, the example shown in Section 4.3 can be used. The probability 

of the event 'No light' will be equal to sum of probabilities of sequences ending in 

'NL' (see Figure 4.3). There are two sequences ending in this consequence: one is 

that the circuit doesn't close and other one is that the circuit closes but there are 

no current through the filament. 

It was said that the circuit will fail to close if the push button fails to close the 

circuit and probability QpB was assigned to the NO outlet branch of the decision 

box 'Circuit closes'. In that case the probability of the first sequence is equal to 
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QPE. The probability that circuit will close is equal to 1- QpE and the probability 

that. t.here are no current. t hrongh the filament is Q Ftl. Then the probability of 

the second sequence is QFt1(1 - QpB). The probability of no current through the 

filament can be obtained using fault tree analysis and it would be equal to 1 - (1 -

QF)(1 - QBAT)(1 - QB). Therefore the probability of the consequence 'No light' 

will be 

P(No light) = QpB + (1- (1- Qp)(l - QBAT)(l- QB))(l- QPE) 

4.5.2 Quantitative analysis of a system containing dependent failure events 

Nielsen and Runge [14] gave a procedure to deal with dependent failures, 

analysing a 2-unit standby system with repair and imperfect switching. A system 

consists of an operative unit, a switch and a standby unit. The operating unit 

performs the required system function; when it fails the standby unit is switched 

into service. It was assumed that switching is done by a human operator. 

A consequence diagram shows all relevant events sequentially. In the non-repair 

situation the diagram is finite because the problem involves only one switchover to 

the standby. The cause-consequence diagram is shown in Figure 4.10. Element B is 

a standby element that is switched on if A fails. Therefore, A has to fail before B. 

If B is unavailable at the time when A fails, the operation ends. The critical event 

for the cause-consequence diagram A fails in time tl doesn't have a cause diagram 

attached to it to describe its failure causes. This is because the critical event can 

only be caused by A failing. 

To find the probability that the operation stops during time interval 0 to T, 

peT), probabilities of sequences 1, 2 and 3 must be determined: 

poeT), the probability of sequence 1 (that A fails at tl AND operator fails to 

switch over to standby at tl) is: 

where K is the probability that operator fails to switch over to standby and FA is 

a cumulative failure distribution for the unit A. 
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Operator action 

Sequence 1 

Sequence 2 

SO - end of operation 
CO - continued operation 

Sequence 3 

Figure 4.10: Cause-consequence diagram for standby system 
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The probability of the sequence 2 (A fails at tl AND correct operator action at 

tl AND B unavailable at time tr), Ps(T)) is equal to: 

where f< is the probability that the operator performs switching action correctly, 

fA(t) - the probability density function for time to failure of component A, SB(t) -

the cumulative failure distribution for the standby unit B. 

The probability of the sequence 3 (A fails at tl AND correct operator action at 

tl AND B available at time tl AND B fails during tl to T), Pf(T) is described in 

the same way: 

where BB(t) is the cumulative distribution that standby unit does not fail during 

time interval 0 to tl, FB - a cumulative failure distribution for the unit B. 

The dependent failure was modelled assuming a certain order in which the events 

occur - component B must be working before it can fail in operation. Cumulative 

density function FB(T-tr) indicates that component B fails in time interval between 

tl and T. 
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Nielsen and Runge [14] considered the repairable case for the same system as 

well. Only an approximate result was given as the analysis of the system became too 

complex for an exact solution. The given model did not account for the importance 

of the time delays in the system. The model was giving the same failure probability 

whether the operator doing the switching takes one minute or one hour. The 

consequences in the last case were said to be usually as severe as for no switching 

at all. 

A different technique is given by Hickling [18]. It was noted that cause­

consequence diagrams bear many similarities to flowcharts, which also model various 

courses of events through a series of decisions. Hickling notes that cause-consequence 

diagrams could be used to model processes that extend over a period of time using 

feedback loops: the exit paths from a decision box option are allowed to connect to 

decision boxes that have already been 'visited'. Each of the feedback loops represent 

a state of the system. The decision boxes that form that loop each have one option 

with an exit path that continues around the loop, and another with an exit path 

that leaves the loop, corresponding to the occurrence of an event which represents 

a change in the state of the system. 

The method was used to model an example system in which the order of 

failures is important. The cause-consequence diagram for the system is shown in 

Figure 4.11. The plant consists of two components, a containment system and a leak 

detection/isolation system which is tested periodically. If the containment system 

fails first, the isolation system shuts down the plant.. Any failure of the isolation 

system after this is irrelevant. If the isolation system fails first, then until the fault 

is detected and repair is made, the plant is in a dangerous state in which any failure 

of the containment system causes total failure. 

Hickling states, that because cause-consequence diagrams with feedback loops 

are no longer representations of a simple Boolean equation, it is not possible to 

apply the same quantification techniques to them as were described earlier. This is 

because the input to a decision box is dependent on the output from that box and 

the output also depends on the input. In this case decision boxes in the loop are 

associated with failure rates instead of probabilities. 

The probabilities of being in the normal and dangerous states at t, PN(t) and 
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Figure 4.11: Cause-consequence diagram using feedback loop 

PD(t), can be expressed as: 

PN(t) = 1 - PD(t) - Es(t) - EE(t) 

PD(t) = 1 - PN(t) - Es(t) - EE(t) 

50 

where Es(t) is the probability that the system reaches the shut down outcome by t, 

EE(t) - the probability that system reaches escape to atmosphere outcome by time 

t. 

The rates at which the system enters the states are expressed as: 

rN(t) = PD(t)J.li(t) 

rD(t) = PN(t)>"i(t) 

rs(t) = PN(t)>"c(t) 

rE(t) = PD(t)>"c(t) 
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where J1i(t) is the detection/repair rate of the isolation system, Ai(t) - failure rate 

of the isolation system, Ac(t) - failure rate of the containment system and rN(t) 

represents normal operation, rD(t) - dangerous operation, rs(t) - shut down, rE(t) 

- escape to atmosphere. 

The expected number of times that a system enters a certain state by time t is 

given by: 

EN(t) = lot PN(U)Pi(U)du 

Ev(t) = lot PN(U)Ai(U)du 

Es(t) = lot PN(U)Ac(u)du 

EE(t) = lot Pv(u)Ac(u)du 

where EN(t) is the expected number of times by t that the system enters the normal 

state of operation, ED(t) - expected number of times by t that the system enters the 

dangerous state of operation, Es(t) - expected number of times by t that shut down 

occurs, Es(t) - expected number of times by t that escape to atmosphere occurs. 

Hickling notes that this approach can be used with diagrams that have loops with 

constant exit rates, and where the measures of interest are the relative probabilities 

of reaching each outcome. In this case the probability of ending in the dangerous 

state is given by: 

which can be solved to give 

More usefully, the probabilities of the system ending in the state where escape 

to atmosphere occurs or the system is shut down, are: 

Es(oo) = Ac + J1i 
Ac + Ai + J1i 

ED(OO) = Ai 
Ac + Ai + Pi 

Hickling states that this approach holds much in common with Markov based 

techniques. 
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For certain types of systems (particularly those operating sequentially), models 

can be expressed in a more explicit and transparent way with CCD than with 

other techniques, states Hickling. With feedback loops, the approach enables the 

construction of a wider variety of models than would otherwise be possible. The 

algorithm for the quantification of standard CCD is simpler than that for fault trees, 

and can be extended directly to CCD with feedback loops. 

4.6 Example 

For better understanding of the CCA method, the example of the pressure tank 

system [6] can be used (Figure 4.12). The components individual functions and 

failure modes are given in Table 4.2. The system contains a start-up, shutdown 

sequence in addition to its operational phase. 

SWITCH SI 

I 

I 
~~ 

P 
R 
E 
S 
S 
U 
R 
E 

T 
A 
N 
K 

Figure 4.12: Pressure tank system 

OUTLET VALVE 

It is considered that initially the system is de-energized (it is not working). 

Switch SI and relay contacts Kl and K2 are all open when the system is in the 

dormant state, and the timer and pressure switch contacts are closed. Depressing 

switch SI provides power to the coil of Kl which results in the closure of the Kl 

contacts. Relay Kl self-latches when SI opens when released, and power is also 

supplied to K2, resulting in K2 contacts closing, which starts the pump motor. It 

is assumed that the tank takes 30 minutes to fill, and once the pressure threshold 
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is reached the pressure switch contacts open, de-energizing K2, which results in 

the removal of power from the pump motor. The motor also has a fuse to prevent 

the power surge, which, if broken, will not allow motor to operate. If the pressure 

switch fails to open, the timer TIM should time out and the timer contacts open. 

After a period of time the tank becomes empty and the pressure switch closes, which 

energizes K2. The pump restarts and the filling process commences again. The tank 

is filled t.wice Cl day awl t.he system is illspect.ed at. (j mont.hly intervals for dormant 

failures. 

Component 

Switch SI 

Relay Kl 

Relay K2 

Timer relay (TIM) 

Table 4.2: Component functions and failure modes 

Function Failure modes Effect on system Failure 

type 

To apply power to coil of SIC: Switch failed closed 

relay Kl 

Circuit remains energized Unrevealed 

but can be broken by K2 

S10: Switch failed open No power to energize circuit Revealed 

Electrically self-latched, KID: Relay fails de- No power to circuit Revealed 

applying power to relay K2 energized 

KICC: Contact fails closed Circuit remains energized Unrevealed 

but can be broken by K2 

KICO: Contact fails open No power to circuit Revealed 

Delivers power to the motor K2D: Relay fails de- No power to motor 

energized 

Revealed 

K2CC: Contact fails closed Continuous power to motor Revealed 

K2CO:Contact fails open No power to motor Revealed 

Provides emergency TIMCC: Timer contact fails Circuit energized 

shutdown in event of closed PRSW can open 

pressure switch failing 

TIMCO: Timer contact No power to motor 

fails open 

but Revealed 

Revealed 

Pressure switch De-energizes coil of K2 when PSWC: Fails closed Continuous power to motor Revealed 

(PRSW) tank is full 

PWSO: Fails open No power to motor Revealed 

Power supplies 1 Supplies power to relays and PSI, PS2: No power No power to motor Revealed 

and 2 motor 

I\Iotor Pumps fluid into tank M: Fails broken No power to motor Revealed 
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Three steps are considered by Andrews and Ridley [6]: 

Step1 Component failure event ordering. The ordering of the components for the 

construction of the cause-consequence diagram is selected by considering the 

temporal patterns of the system. For the pressure tank system, switch 81 is 

depressed, followed by its opening. Relay Kl energizes and powers K2 which 

powers the pump. Following 30 minutes of operation, the pressure switch 

should open. In the event that the pressure switch fails to open, the timer 

should time out and the timer contacts open. Given that the pressure switch 

opens, K2 contacts should de-energize, removing power from the pump. Where 

the timer is required to break the circuit containing Kl, Kl contacts should de­

energize, removing power from K2, which results in the removal of the power 

supply to the pump. The ordering was therefore chosen to be 

81, Kl, K2, pressure switch, timer relay, Kl, K2 

It can be seen that the components Kl and K2 both occur twice in the ordering 

sequence. This is the result of the system containing two different phases, and 

hence some components perform different actions in each different phase. The 

components Kl and K2 are both required to be closed in the startup sequence 

and open in the shutdown sequence. 

Steps 2 and 3 Cause-consequence diagram construction and reduction. The cause­

conseqllence cliagram was const.rueted by collsiclering the effect of each 

component in the chosen order on the system performance. In order to 

highlight relevant features, only one filling sequence is investigated, the cause­

consequence diagram of which is given in Figure 4.13. The corresponding fault 

trees are illustrated in Figure 4.14. 

4.6.1 System quantification 

Prior to multiplying the probabilities associated with each decision box in each 

sequence, the cause-consequence diagram was checked for any dependent failure 

events [6]. The following dependent failure events were identified. 
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SI closes 
1 

Ftl ~ NO YES 

K2 contact'! 
close 3 

Ft3 ~ NO YES 

Ft4~ 

SI opens 
2 

Ft2 ~ NO YES 

Motor starts 
4 

E-Empty 
o - Overpressurized 
S - Safe 
N -Normal 

Kl contacts 
close 7 

Ft7 ~ NO 

K2 contacts 
8 

Ft8 ~ YES 

Ft9 ~ 

Motor starts 
9 

opens 

FtlO~ NO 

Timer contact'! 
opens 11 

Ft11~ YES 

Figure 4.13: Cause-consequence diagram for the pressure tank system 
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1. Inconsistent failure event present in Ft1 and Ft2 as the switch is required 

to close, represented by decision box 1, and then open, represented by 

decision box 2. The second failure event, SlFC, is an unrevealed failure event 

(Table 4.2) and is therefore extracted and placed in an existence decision box 

preceding decision box 1. The cause-consequence diagram is modified using 
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where: 
Ft13 =Ft14=Ft6 
Ft8 = Ft3 
Ft9 = Ft4 
FtlO = Ft5 

Figure 4.14: Fault trees for the pressure tank cause-consequence diagram 

the procedure detailed in the Section 4.4.3.2. 
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2. Inconsistent failure event present in Ft3 and Ft5 as the pressure switch is 

required to be closed and then open. The second failure event, PSWC, is a 

revealed failure event (Table 4.2) and the time to failure of PSWC is set equal 

to 30 minutes (the filling time). 

3. Inconsistent failure event present in Ft3 and Ft6 as K2 contacts are required 

to close and, following the tank being full, open. The second failure event, 

K2CC, is a revealed failure event (Table 4.2) and the time to failure of K2CC 

is set. equal t.o 30 miuut.es (t.he filling t.ime). 

4. Common failure event present in Ft7 and Ft8, PSI is extracted and placed in 

a new decision box preceding decision box 7. The cause-consequence diagram 

is modified following the procedure detailed in Section 4.4.3.1. 

5. Inconsistent failure event present in Ft7 and Ft12 as Kl contacts are required 

to close and then open. The second failure event, KICC, is an unrevealed 

failure event (Table 4.2) and is therefore extracted and placed in an existence 
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decision box. The cause consequence diagram is modified using the procedure 

detailed in Section 4.4.3.2. 

6. Inconsistent failure event present in Ft7 and Ftll as the timer contacts are 

closed and may be required to open later in the sequence. The second failure 

event, TIMCC, is an unrevealed failure event (Table 4.2) and is therefore 

extracted and placed in an existence decision box. The cause-consequence 

diagTam is modified using the procedure detailed in Section 4.4.3.2. 

Following the appropriate modification owing to the dependent failure events 

identified, the final cause-consequence diagram was developed and is shown in 

Figures 4.16 and 4.17, with corresponding fault trees given in Figure 4.15. 

Ft3 

Ft4 

Figure 4.15: Fault tree structures for Figures 4.16 and 4.17 

The system functions twice daily and therefore the time between operations is 

12h. The probability of failure for revealed failures between operations was hence 

obtained using equation (4.1) with t = 12h. For unrevealed failures the probability 

of the failure was obtained using (J and T, given in Table 4.3, and equation (4.2) (A 

is conditional failure rate): 

Q = 1- eAt 

() 
QAV = A(2 + T) 

(4.1) 

( 4.2) 
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SlFC~ 

Ftl 

K2contact. 
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SI closes 
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Figure 4.16: First page of the final cause-consequence diagram for the pressure tank 

system 
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K2contact~ 

c1o~ 36 

Ft3 =::> NO YES 
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PSWC 

46 
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Ft3 =::> 

Ft2 

50 

PSWC=::> 

Timer contact.~ 
52 

YES 

59 

NO 

58 

Figure 4.17: Second page of the final cause-consequence diagram for the pressure 

tank system 
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The probability of each fault tree was calculated using the inclusion-exclusion 

method, and the probability of overpressure was obtained by summing the 

probabilities of any sequence that terminated in the consequence '0'. There existed 

12 such paths. In addition to obtaining the probability of overpressure, the 

probability of the tank being empty, a safe operation and normal operation was 

also calculated. 

Table 4.3: Component functions and failure modes 

Component Failure rate Inspection interval, 0 Mean time to repair, T 

Switch SI SIFC: 1 X 10-6 4368.0 36.0 

SIFO: 8.698 x 10-4 NA NA 

Relay Kl KID: 0.23 x 10-6 NA NA 

KICC: 0.23 X 10-6 4368.0 36.0 

KICO: 0.23 X 10-6 NA NA 

Relay K2 K2D: 0.23 x 10-6 NA NA 

K2CC: 0.23 X 10-6 NA NA 

K2CO: 0.23 X 10-6 NA NA 

Timer relay TIMCC: 1 x 10-4 4368.0 36.0 

TIMCO: 1 x 10-4 NA NA 

Pressure switch PSWC: 1 X 10-4 NA NA 

PSWO: 1 X 10-4 NA NA 

Fuse F: 1 X 10-5 NA NA 

Power supplies 1 and 2 PSI: 1 x 10-6 NA NA 

PS2: 1 x 10-6 NA NA 

Motor M: 1 x 10-6 NA NA 

4.7 Applications of Cause-Consequence Diagram Method 

Several authors have applied the method to various systems. In 1976, Burdick 

and Fussell [16] made a first step in adapting CCA to standardised use in the 

US nuclear power industry. They also stated, that the cause-consequence analysis 

should be combined with other new methods of analysis, such as phased mission 
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analysis. The application of CCD for a 2-unit standby system with repair and 

imperfect switching was carried out by Nielsen and Runge in 1974 [14]. They 

investigated both repairable and non-repairable cases. For the repairable case, 

analysis of the system was more complex and only an approximate probability 

of failure was given. In 1975 Nielsen, Platz and Runge [19] used CCD method 

to analyse a redundant protection system. The protection system analysed was a 

core spray system in a nuclear boiling water reactor and it was used to prevent 

the fuel core from overheating given a loss of primary coolant. Reliability of a 

proposed instrument air system for a complex system of fertilizer plants was studied 

by Nielsen, Platz and Kongso [24] (1977). Using the CCD method they pointed out 

inadequate system designs and identified useful design changes to improve reliability 

of the system. The CCD method was also applied to design inter locks (arrangements 

of switching components designed to prevent operating signals being sent to plant 

components in dangerous circumstances) by Tailor [25] in 1976. More recently, 

Andrews and Ridley [6, 23] applied the CCD method to sequential systems as well 

as to static systems. 

4.8 Summary 

Following Nielsen [5], the cause-consequence diagram method should be regarded 

as a tool by which problems are defined and presented and it could also serve as a 

basis from which the probability of occurrence of the individual consequences may 

be evaluated. Since the early work the method has been extended and adopted to 

model various industrial systems. 

One of the advantages of the cause-consequence diagram is that it identifies the 

complete set of system responses to any given initiating event. This can be achieved 

using event trees as well, but the cause-consequence diagram is able to model more 

complex events, i.e. dependent events. Unlike fault trees, the cause-consequence 

diagram method retains failure logic for the system and it is possible to develop the 

diagram from system logic. 



5. COMPONENT ORDERING STRATEGIES 

5.1 Introduction 

Before a BDD is constructed, basic events in the fault tree need to be ordered. 

Depending on the chosen ordering, the size of BDD and complexity of the 

calculations required for its construction can change dramatically. Previous research 

outlined different ordering strategies for basic events in the fault tree. 

In this chapter two main groups of ordering schemes are discussed - structural 

and weighted ordering techniques. Structural ordering schemes involve ordering the 

variables via a structured traversal of the fault tree and they have a tendency to 

keep close in the ordering scheme those variables that appear close together in the 

fault tree. The most common ordering technique is the top-down scheme, which 

is described first. Other structural ordering techniques include modified top-down, 

depth-first, modified depth-first, modified priority depth-first and depth-first with 

number of leaves. 

\Veighted ordering techniques work slightly differently by allocating weights to 

the variables and then determining their position in the ordering. These schemes 

can be divided into topological schemes, which assign weights according to the 

position of the variable in the fault tree, and the ones based on importance measures 

(event criticality was used an example). Non-dynamic top-down weights, dynamic 

top-down weights and bottom-up weights represent topological weighted ordering 

schemes. 

5.2 Structural Ordering Schemes 

5.2.1 Top-Down Ordering 

The top-down scheme orders variables as they appear in a fault tree following 

top-down, left-right traversal of the fault tree structure. Therefore basic events 

62 
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Levell 

Level 2 

Level 3 

Level 4 

Level 5 

Figure 5.1: Example fault tree used for ordering 

appearing on the higher levels of fault tree will be placed earlier in the ordering 

than those appearing lower down the fault tree. 

To illustrate how this works, the scheme can be applied to the fault tree shown 

in Figure 5.1. Each level is considered in turn, from the top of fault tree going 

downwards, and the basic events are ordered from left to right on each level. Each 

event is placed in the ordering the first time it is encountered in the fault tree and 

subsequent occurrences of the particular basic event are ignored. 

Following the top-down approach the ordering of the basic events for the fault 

tree shown in Figure 5.1 is: 

A<B<C<F<E<D<H<G 

This scheme is highly dependent on the way the fault tree is structured. For 

example, if gates G1 and G2 where swapped around, or the order of basic events 

as inputs to the gates was changed, then the order in which basic events are placed 

would change as well, although the logic function of the fault tree remained the 

same. These dumges could affed the size of t.he result.illg binary decision diagram 

or cause-consequence diagram. 
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5.2.2 Modified Top-Dowll Orderillg 

Using the modified top-down ordering scheme the fault tree is scanned in the 

same way as in top-down approach - the basic events appearing on higher levels are 

placed in the ordering before the basic events appearing on the lower levels of the 

fault tree. The basic events appearing on the same level of the fault tree are ordered 

not in just left-right order, but also according to their total number of occurrences 

throughout fault tree: the basic events appearing more often will be placed in the 

ordering first. If there are two or more basic events that appear the same number 

of times in the fault tree, they are ordered from left to right as they occur on that 

level. Each variable is placed in the ordering scheme as it is first encountered on the 

fault tree and any subsequent appearances are ignored. 

For the example fault tree in Figure 5.1 the modified top-down ordering is: 

A<B<F<C<E<D<H<G 

5.2.3 Depth-First Orderillg 

The depth-first ordering scheme considers the fault tree to be made up of 

many smaller subtrees, and each subtree is ordered in top-down, left-right manner. 

Starting from the top of the fault tree, basic event inputs are placed in the ordering 

as they appear from left to right, before considering any gate inputs. The gate inputs 

are considered from left to right and each of them is then considered as the top event 

and ordered the same way, such that the lower levels of the most-left subtree are 

placed in the ordering before higher levels of the other subtrees. 

For the example fault tree in Figure 5.1 the depth-first ordering is: 

A<B<C<H<G<F<E<D 

5.2.4 Modified Deptll-First Ordering 

The modified depth first ordering scheme considers the gate inputs to any gate in 

a left-right manner, the same way as the depth-first ordering scheme, such that the 

subtree of a left-most gate is completely explored before considering the remaining 

gate inputs and any basic event inputs to a gate are considered before the gate 

inputs. The difference is that basic events on the same level of a subtree are ordered 

according to the number of their appearances in the fault tree. The events with the 
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higher number of appearances are placed in the ordering first, but if there are two 

or more events that appear in the fault tree the same number of times, then they 

are ordered as they appear from left to right in the gate. 

For the example fault tree in Figure 5.1 the depth-first ordering is: 

A<B<C<H<G<F<E<D 

5.2.5 Modified Priority Deptll-Fil'st Ordering 

This ordering scheme is an extension of the modified depth-first ordering, where 

rather than simply considering the gate inputs from left to right, any gates, which 

themselves have only basic events as inputs, are considered first. Basic events are 

ordered as in the modified depth-first ordering scheme, such that the most repeated 

events are given priority and, if there is a tie, then they are ordered from left to 

right as they appear in the list of inputs. Basic events continue to be considered 

before any gate inputs. 

Level! 

Level 2 

Level 3 

Level 4 

LevelS 

Figure 5.2: Example fault tree used for ordering 

To illustrate this ordering scheme consider the example fault tree shown in 

Figure 5.2. The top event has three inputs - gates 'Gl' and 'G2' and basic event 
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'A'. Basic event 'A' is placed in the ordering first. Gate 'Gl' has two inputs - gates 

'G3' and 'G4'. Inputs to gate 'G2' are basic event 'B' and gate 'F5'. These gates 

are investigated from left to right. Inputs to gate 'G3' are basic event 'C' and 

gate 'G6' and to gate 'G4' - basic events 'F', 'B' and 'E'. As gate 'G4' has only 

basic events as its inputs, it is considered first. Basic event 'F' occurs twice in the 

fault tree, 'B' - three times, and basic event 'E' appears only once in the fault tree. 

Therefore, the next basic event placed in the ordering is 'B' and it is followed by 

basic events 'F' and 'E'. This gives partial ordering A < B < F < E. Gate 'G3' has 

one basic event and one gate as its inputs. Basic event 'C' is placed in the ordering 

first. Following this, basic events from gate :G6' are considered. Basic event 'H' is 

repeated twice in the fault tree, and basic event 'G' appears once. Therefore, basic 

event 'H' is placed in the ordering before basic event 'G'. This gives the partial 

ordering A < B < F < E < C < H < G. Next gate to consider is 'G2'. It has basic 

event 'B' as an input, but it has already been placed in the ordering. Inputs to gate 

'G5' are gate 'G7' and basic event 'D'. Basic event 'D' is placed in the ordering first 

and then inputs to gate 'G7' are considered. In this case, all three basic events of 

gate 'GT have already been placed in the ordering. This gives t.he final ordering: 

A<B<F<E<C<H<G<D 

5.2.6 Deptll-first, with Number of Leaves 

This is another ordering scheme that is an extension to the modified depth-first 

ordering. It uses a different method than the modified priority depth-first ordering to 

choose the order in which gate inputs are explored. In this case gates are considered 

according to the number of 'leaves' beneath the gate itself. The number of leaves of 

a gate is the total number of basic events occurring at any level beneath that gate. 

The gate inputs with the least number of leaves that have not been ordered are 

considered first. In the case of a tie, the gate with fewest ordered leaves is chosen. 

If an order still can't be established, then they are placed in the ordering as they 

appear from left to right in the fault tree. The basic events are ordered the same 

way as in modified depth-first ordering, so the most repeated events are chosen first. 

In the case of a tie, they are ordered as they appear from left to right. Basic events 

are placed in the ordering before any gates. 

For the example fault tree in Figure 5.1 the number of leaves for each gate is 
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shown in Table 5.1. 

Gate G1 G2 G3 G4 G5 G6 G7 

N umber of leaves 4 7 3 3 4 2 3 

Table 5.1: Number of leaves of each gate in Figure 5.1 

To illustrate how this ordering works, start with top event. The top event has 

three inputs - basic event 'A' and gates G1 and G2. Basic event 'A' is placed 

in the ordering first as it has fewer leaves than either G1 or G2, then gate G1 is 

considered first as it has fewer leaves (4) than G2 (7). This gives partial ordering 

A < B < C < H < G. Basic events within the gate are ordered simply as they 

appear from left to right. After gate G1, gate G2 is considered next and it has two 

gate inputs - G4 and G5. Gates G4 and G5 both have two un ordered leaves, but 

because gate G4 has only one ordered leave ('B') while gate G5 has two ordered 

leaves CB' and 'H'), it is processed first. The partial ordering at this point is 

A < B < C < H < G < F < E. Gate G5 has input 'D' which is placed in the 

ordering next. As all basic events are already placed in the ordering, gate G7 has 

nothing further to add to the list. The final ordering is: 

A<B<C<H<G<F<E<D 

5.3 Weighted Ordering Schemes 

5.3.1 Non-Dynamic Top-Down Weights 

Non-dynamic top-down weights ordering scheme places basic events in the order 

of decreasing weight. Weights are calculated for each event according to the following 

steps: 

• A weight of 1.0 is assigned to the top event and is propagated through the 

fault tree towards the basic events. 

• At each gate, the weight is equally distributed between its inputs. 

• Each basic event will then be assigned a weight. Repeated events have their 

corresponding weights added together. 
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• The highest order is given to the basic event with the largest weight. 

For events with equal weights their average level of appearance in the fault tree is 

calculated. It is obtained by summing the levels on which events occur and dividing 

this by the number of occurrences. The basic event that appears, on average, highest 

in the tree is placed earlier in the ordering. If basic events still tie for position then 

the most repeated event is chosen and if a tie still exists then they are simply ordered 

as they appear in the modified top-down ordering. 

1 

12 

24 
1 

24 
1 1 1 

36 36 36 
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Level 2 

Level 3 

Level 4 

Level 5 

Figure 5.3: Fault tree from Figure 5.1 after assigning weights 

To illustrate how this ordering scheme works, it is applied to a fault tree shown 

in Figure 5.1. The fault tree after weights have been assigned is shown in Figure 5.3. 
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Next, the weights of each basic event are calculated: 

A 
1 
-
3 

B 
1 1 1 1 
6" + 18 + 36 = 4 

C 
1 

-
12 

D 
1 

12 

E 
1 
18 

F 
1 1 1 

18 + 36 = 12 

G 
1 

24 

H 
1 1 5 

24 + 36 = 72 

After the weights are calculated, the first basic event to be placed in ordering is 

'A' and then it is 'B'. Basic events 'C', 'D'and 'F' have the same weight. Events 

'C' and 'D' appear on the same level (Level 4), and 'F' appears on levels 4 and 5, 

therefore basic events 'C' and 'D' are placed in the ordering first. As they have the 

same weight and appear on the same level, they are placed as they appear in the 

fault tree from left to right, so basic event 'c' is placed first. The final ordering is: 

A<B<C<D<F<H<E<G 

5.3.2 Dynamic Top-Down Weighted Ordering 

Dynamic top-down weighted ordering calculates weights of the basic events the 

same way as the non-dynamic version, but only the event with the highest weight 

is placed in the ordering. Once an event has been placed in the ordering, it is then 

removed from the fault tree by deleting all its occurrences. Using the modified fault 

tree weights are reassigned. This allows another basic event to be placed in the 

ordering and the process continues until all events have been ordered. 

From the example in Figure 5.3, the first event to place in the ordering is event 

'A'. Then this basic event is removed from the fault tree and the resulting fault tree 

is shown in Figure 5.4. 

Now the basic event that has the largest weight is 'B'. Therefore it is placed in 

the ordering and removed from fault tree. The procedure is repeated until all basic 
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]6 Hj 24 24 24 

Figure 5.4: Modified fault tree from Figure 5.3 

events are placed in the ordering. The final ordering is: 

A<B<C<H<G<F<E<D 

5.3.3 Bottom-Up Weights 

70 

Level! 

Level 2 

Level 3 

Level 4 

LevelS 

Bottom-up weighted ordering starts from the bottom of the tree, rather than the 

top and in effect calculates weights for the gates, which are then used to determine 

the ordering in which they are considered within a depth-first exploration. The main 

features are: 

• a weight of 1/2 is assigned to each basic event and propagated towards the 

top event. 

• at each gate, the weights of the inputs are combined as probabilities according 
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to: 

n 

'AND' gate: P (gate) 
i=l 

n 

'OR' gates: P (gate) = 1 - IT (1 - qwJ 
i=l 

where n is the number of inputs to the gate and qWi is the weight of basic event 

i. 

• Once each of the inputs to the top event has been assigned weights, the tree is 

explored in a dept.h-fir~t. manner, eom;iciering brancheR with the largest weight 

first. 

Once the weight values of the the gates have been established, the method 

proeeedR as in the modified clepth-firRt method, exeept that the gates are explored 

according to which has the highest weight rather than simply from left to right. 

However, if gates do have the same weight then they are considered according to the 

percentage of repeated events below that gate. This is calculated by adding up the 

number of repeated events below the gate and dividing by the total number of events 

below that gate. The gate with the highest number of repeated events is considered 

first, but if there is a tie, then they are considered from left to right as they appear 

in the input list. The basic events of each gate are ordered before the gate inputs are 

explored and are chosen according to the highest number of occurrences in the fault 

tree. If events have the same number of occurrences then they are simply chosen 

from left to right as they appear in the input list. 

To illustrate how this scheme works weights are assigned to basic events of the 

fault tree in Figure 5.1 and the new fault tree is shown in Figure 5.5. As basic events 

ate ordered before gate inputs, basic event 'A' is placed in the ordering first. Gate 

G2 is considered next as it has larger weight than gate Gl. There are two inputs 

to gate G2 - G4 awl G5. Gnt.e G5 is investignt.ecl firRt as it. has larger weight. Next 

basic event placed in the ordering is 'D' and then basic events 'B', 'H' and 'F'. The 

final ordering is: 

A<D<B<H<F<E<C<G 

I 
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Figure 5.5: Fault tree from Figure 5.1 after assigning weights 

5.3.4 Event Criticality .. 

72 

This final ordering scheme to be considered is an extension of the one that applies 

the principle of Birnbaum's structural importance measure directly to the tree. The 

contribution of each basic event to the top event is calculated according to: 

The selected basic event therefore assumes the failure probabilities of one and zero 

on two consecutive computations of the top event probability, with the remaining 

components given failure probabilities of 1/2. The result of the second run (with 

failure probability zero) is subtracted from the first run (with failure probability 

one) to give the contribution of that basic event to occurrence of the top event. 

The basic events are ordered such that those with a greater contribution to the 

occurrence of the top event are ordered before these with smaller contributions. If 

two events have the same calculated contribution, then the event with the highest 

average level of occurrence is selected first. If the events are still tied then the most 
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repeated event is selected and if the events are still indistinguishable, then they are 

simply onlered as t.hey appear in t.he uHHlifiec} t.op-clown ordering. 

For then example fault tree in Figure 5.1 the ordering following this method 

would be: 

A<D<B<C<F<H<E<G 

5.4 Summary 

The ordering schemes described above will be used to investi~ate the infilleIlee of 

the order of the failure events to the size of the cause-consequence diagram. Previous 

research showed that the order of basic events can have a big influence to the size 

of binary decision diagrams. 

It has to be noticed, that variable orderings, produced by each of the schemes, are 

very sensitive to the way the fault tree is written. The structure of fault tree can vary 

significantly without any difference in the structure function. Also, fault trees often 

are not written in minimal form, which would affect both the ordering of the basic 

events, and the size of the resulting binary decision diagram or cause-consequence 

diagram. 



6. REVIEW OF PHASED MISSION ANALYSIS METHODS 

6.1 Introduction 

One of the most important problems in system unreliability is the phased mission 

problem [27]. Most reliability analysis techniques and tools assume that a system is 

used for a mission consisting of a single phase [28, 29]. However, multiple phases are 

natural in many missions. With increasing complexity and automation associated 

with the systems encountered in the nuclear, aerospace, chemical, electronic, and 

other industries, phased mission analysis is being recognized as the appropriate 

reliability analysis method for a large number of problems [l]. 

Many systems perform a mission which can be divided into consecutive time 

periods - phases. The phase duration may be fixed or random. In each phase, the 

system needs to accomplish a specific task. The system configuration (the logic 

model), the phase duration, and the failure rates of the components often vary from 

phase to phase [28]. 

The following is a description of a phased mission [1]: 

A phased mission is a task to be performed by a system during the execution of 

which the system is altered such that the logic model changes at specified times. 

Thus, during a phased mission, time periods (phases) occur in which either the 

system configuration, system failure characteristics, or both, are distinct from 

those of any immediately succeeding phase. 

A classic example of a phased mission system is an aircraft flight which involves 

take-off, ascent, level flight, descent and landing phases. 

6.2 Analysis of phased mission systems 

Different types of phased mission systems occur and each of them has its 

own phased mission analysis problems [1]. The components of the system may 

74 
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fail independently of each other or have interdependent failure properties. The 

COlI1pOIH-mts lIlay be repairable, wit.h spedfied repair t.imes, or they may be 

nonrepairable. Often a system undergoing a phased mission will contain both 

repairable and nonrepairable components. In a mission such as an intercontinental 

ballistic missile, all components will be nonrepairable. During a manned space flight, 

however, it may be possible for an astronaut to replace or repair a malfunctioning 

item [27]. 

The most important phased mission analysis problem is to calculate exact or, 

obtain bounds for, mission unreliability, where mission unreliability is defined as the 

probability that the system fails to function successfully in at least one phase [1, 27]. 

Estimating the mission reliability by the product of the phases usually results in an 

appreciable overprediction in system reliability, since basic events are shared among 

the logic models of the various phases. 

An example of this is given by Esary and Ziehms [2]. A system with two 

independent components, Cl and C2 , is designed for a two-phased mission. In order 

for the system to perform the required tasks at least one component has to function 

through phase 1 and both components have to function through phase 2. The block 

diagrams for this are shown in Figure 6.1. 

Phase 1 Phase 2 

Figure 6.1: Block diagram for two-phased mission 

The probabilities of the components are as follows: PH - probability that 

component Cl functions through phase 1; P21 - probability that component C2 

functions through phase 1; P12 - probability that component Cl functions through 

phase 2, given that it has functioned through the phase 1; P22 - probability that 

component C2 functions through phase 2, given that it has functioned through phase 

1. 
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The system reliability for the phase 1 RI is given by 

and system reliability for phase 2, R2 , given that both components have functioned 

through phase 1, is 

Multiplying these together would lead to the mission reliability 

This is greater than the correct mission reliability, which is 

since mission success is achieved if, and only if, both components function through 

both phases. 

6.3 Methods for the phased mission analysis 

6.3.1 Nonrepairable systems 

6.3.1.1 Basic event transformation and cut set cancellation 

Esary and Ziehms [2] present a method to transform and reduce a phased mission 

system into an equivalent single phase mission, allowing existing techniques to be 

applied to obtain mission reliability. In multi-phased mission, the performance of 

a component in each phase depends on its performance in previous phases. A 

component will only be working in a phase if it works successfully through all 

previous phases. 

Therefore, a component c in phase j can be replaced by a series system of 

components which would represent the performance of component c in all phases 

up to and including the phase j, CI,C2, ••• , Cj . If using fault tree analysis, the single 

event input of the failure of component c is replaced by an OR combination of the 

failure of component c in any phase up to and including phase j. 

To illustrate the method the following phased mission is considered [3]. The 

system consists of three non-repairable components A, B and C. The reliability 

network for this system is given in Figure 6.2. 
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Phase 1 Phase 2 Phase 3 

Figure 6.2: Reliability network for the example phased mission system 

To accomplish the mission the system must work through all three phases. To 

accomplish phase 1 all components must work through the phase. If phase 1 is 

completed successfully, the system enters phase 2, to accomplish this successfully 

component A, and at least one of the components Band C, must work through the 

phase. To accomplish phase 3 at least one of the components (A, B or C) must 

work through the phase. 

The fault trees for each phase are represented in Figure 6.3. 

Figure 6.3: Fault tree representation of individual phase failures 

Component failure in each phase i is represented by Ai, Bi, Ci . In order to 

transform the multi-phase mission problem into single-phase mission, all failure 

events (A, B, C) are replaced by an OR combination of failure events for that and 

all preceding phases. For example, failure event A in phase 2 will be replaced by OR 

combination of Al (failure of component A in phase 1) and A2 (failure of component 

A in phase 2, given that it was functioning through the phase 1). The fault tree for 

the transformed multi-phase mission problem into a single-phase mission is shown 

in Figure 6.4. 
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Figure 6.4: Equivalent single-phase mission 

The system reliabilities are given by 

Phase 1 RI 

Phase 2 R2 

Phase 3 R3 

where PCj is the conditional reliability of component c in phase j: 
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(6.1) 

In order to determine the overall system reliability accurately Esary and 

Ziehms [2] introduced the concept of cut set cancellation. The rule says, that if 

the minimal cut sets of an earlier phase contain any minimal cut sets from a later 

phases, they may be removed from the earlier phase. This can be done as mission 

failure is the only consideration, and there is no need to repeat such events as 

later phases take into account the failure of the components in all phases up to the 

inspected phase. 
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For the example described earlier (Figure 6.2), the minimal cut sets for each 

phase are as follow: 

Phase 1 

A 

B 

C 

Phase 2 

A 

BC 

Phase 3 

ABC 

If component A fails in phase 1 then it will be failed in phase 2. Therefore, cut 

set A can be removed from the phase 1 as it is a minimal cut set for the later phase 

as well. In that case the cut sets for the multi-phase mission are as follow: 

Phase 1 

B 

C 

Phase 2 

A 

BC 

Phase 3 

ABC 

Figure 6.5: Equivalent single-phase mission after cut set cancellation 

The method proposed by Esary nd Ziehms is capable of transforming a multi­

phase mission into an equivalent single phase mission to allow the use of existing 
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reliability techniques. The cut set cancellation presents a more simple way to 

transform the system. However, if the cut set cancellation is applied before 

transformation of the multi-phase mission to the single-phase mission, the fault 

tree represented in Figure 6.4 would look slightly different (see Figure 6.5). But 

if cut sets are removed to produce single-phase mission, it becomes impossible to 

calculate individual phase failure probabilities which may be desirable, note La Band 

and Andrews [3]. 

6.3.1.2 Approximate methods for mission unreliability 

An important problem of phased mission analysis is to calculate exact or obtain 

bound for mission unreliability. The work by Esary and Ziehms [2] was reviewed by 

Burdick at el [1] to suggest methods for obtaining approximate results for mission 

reliability. 

The method suggested by Esary and Ziehms can be applied to the original fault 

tree of a phased mission system, but the transformation of each basic event C in 

phase j into a series of events, Cl,"" Cj leads to a large increase in the number 

of minimal cut sets of the mission. Therefore, it is difficult to calculate the exact 

mission unreliability. As a solution to this, there are methods developed to estimate 

the system unreliability without using basic event transformation. 

Inclusion-exclusion expansion of phase unreliabilities 

The minimal cut sets are obtained for each phase of the original system. The 

unreliability of phase j, Qj, is calculated using the inclusion-exclusion equation 2.10 

for the minimal cut sets of phase j. The conditional basic event C reliability PCj 

was obtained in equation 6.1, and the unconditional basic event C reliability PCj is 

derived from this in equation: 

j 

PCj=P[xc(tj)=O]= ITPci' forj=l, ... ,n 
i=i 

(6.2) 

An approximation for mission unreliability QIN-EX can be expressed as a 

product of the individual phase reliabilities: 

n 

QIN-EX = IT Rj 

j=i 

(6.3) 

In practice, the usual approximation used for mission unreliability is obtained 
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by the sum of individual phase unreliabilities: 

n 

QIN-EX ~ :L Qj 

j-I 
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(6.4) 

The approximation can also be applied after cut set cancellation to give another 

approximation for mission unreliability, QIN-EX(CC). This bound will usually give 

a result smaller than the one without cut set cancellation due to the fact that there 

would be fewer cut sets in each phase. 

Minimal cut set bound 

The minimal cut sets are obtained for each phase from the original logic model. 

The probability of failure of cut set Ci in phase j is given by 

N Cij 

qC;j = IT P( Cl) (6.5) 
l=i 

where Cl is occurrence of basic event C in cut set Ci of phase j, Nc;j is the number 

of basic events in minimal cut set Ci of phase j. 

The reliability of phase j is then estimated using minimal bound: 

Nmcsj 

Rj = IT PCij 

i=i 

(6.6) 

where Nmcsj is number of minimal cut sets in phase j, PC;j is the probability of 

success of cut set Ci in phase j. 

The approximation for the reliability of the mission using minimal cut bound 

QMCB is obtained the same way as in equation 6.3. This method also can be used 

after applying the cut set cancellation technique to give approximation of the mission 

reliability QMCB(CC). 

The approximate methods described above do not account for the outcome 

of previous phases, therefore these bounds are only estimates. However, such 

techniques can be useful in finding estimations for systems containing a large number 

of components where an exact solution would be difficult to calculate or costly. 

6.3.1.3 Expected number of failures 

A method for calculating the expected number of system failures for a phased 

mission was developed by Montague and Fussell [30]. They state, that the system 
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expected number of failures is a valuable system reliability characteristic when the 

system is repairable or non-repairable. According to Montague and Fussell, an 

expected number of failures much less than unity is desired during the mission 

for most systems. The proposed method is applicable to both repairable and 

nonrepairable systems. 

The standard method for obtaining top event frequency for a single-phase mission 

is given in equation 2.14. This is the contribution from the occurrence of at least 

one minimal cut set minus the contribution of the occurrence of minimal cut sets 

when the system has already failed. The expected number of system failures is 

then obtained by the integral of this parameter over a specified time interval in 

equation 2.20. 

This principle is adapted by Montague and Fussell and the expected number of 

. failures for a phased mission with n phases is given by 

EN F{io, in) ~ ~ 14

, WT { i)di + ~ boundary contribution (6.7) 

The first term in the equation (6.7) is the sum of the expected number of failures 

occurring during each phase of the mission. The integral term is separated into n 

phases because the integrand becomes a new function with each new phase. The 

second term accounts for the TOP event occurring as a phase boundary is crossed. 

This boundary contribution is needed since it is possible for a combination of basic 

events to exist at the end of one phase without resulting in the TOP event, but 

which will cause the occurrence of the TOP in the next phase. 

To evaluate this boundary jump, let fl.t be an arbitrarily small length of time 

spanning across the i'th phase boundary. Thus, the expected value of the number 

of system failures in this tlt time interval 

ENF(i) = (0 failures in ~t)· P [s (ti - ~t) n S (ti + ~t)] 

+(1 failure in tlt) . P [s (ti - ~t) n S (ti + ~t)] 
+higher order terms, (6.8) 

where S (ti - ~t) - top event does not exist at time ti, S (ti + ~t) - top event exists 

at time t i • 

The higher order terms account for the system failing more than one time 

during the tlt time interval. The failure logic models used to determine 
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S (ti - ~t) and S (ti + ~t) are from phase i and phase i + 1 respectively. Taking 

the limit of equation (6.8) as /).t approaches zero, it becomes 

(6.9) 

where S(ti-) - top event does not exist at the instant before the transition, S(ti+) -

top event exists at the instant after the transition. 

Equation (6.9) is the contribution to the mission expected number of failures due 

only to the logic model changing. Because the transition between phases is assumed 

to be instantaneous, the state of a basic event does not change during the transition 

from one phase to the next. Thus, equation (6.9) does not express a basic event 

changing states that contributes to the TOP event changing states. 

With (6.9), the expected number of failures of the TOP event can be expressed 

as 

n ti n-l 

ENF(to, tn) = L 1 WT(t)dt + LP [S(ti-) n S(ti+)] 
i=l ti-l i=l 

(6.10) 

Calculation of the boundary contribution in (6.10), P [S(ti-) n S(tH)] , requires 

using the minimal path sets of the failure logic model of one phase and the minimal 

cut sets of the failure logic model of the next consecutive phase. Using Boolean 

algebra, an expression for the TOP event not existing at the end of one phase and 

existing at the beginning of the next can be written in terms of the basic events 

included in these minimal cut sets and path sets. The method was applied to an 

emergency core cooling system for a boiling water reactor (see [30]). 

6.3.1.4 Reliability of periodic, coherent, binary systems 

Veatch [33] considers a periodic system without repair for phased mission 

analysis. In the work it is stated that the single-phase system is useful for 

approximating the reliability and mean life of the periodic system and it is much 

more simple to analyze than exact transformations to a single-phase system. 

The concept of a binary system is extended to phased missions by considering 

a separate structure function for each phase of a mission. For s-coherent systems 

without repair, the system cannot return to a working state from a failed state 

within a phase. A system is s-coherent if: 
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1. a component failure cannot cause the system to transmit from failed to 

working; 

2. at least one component is relevant to the state of the system. 

Hence, the event that the system functions during phase j can be expressed 

as {<pj (X (tj)) = I}, where <Pj (X) is a system structure function in phase j. The 

event that the system functions throughout the mission can be expressed as 

{<pj(X(tj)) = 1, ... ,<Pm(X(tm)) = I}. 

Approximate techniques reviewed by Burdick et al [1] treat the successful 

completion of each phase as s-independent events and system reliability is given by 

multiplying reliability number for each phase. Esary and Ziehms [2] show that using 

the component reliabilities for phase j gives a lower bound for system reliability and 

using conditional phase reliabilities gives an upper bound. When cut set cancellation 

or phase cancellation is applied to these approximations, their accuracy is improved. 

6.3.1.4.1 Lower bound systems and periodic systems 

Another technique [33] that can be used to approximate phased-mission 

reliability is to construct a lower bound single-phased system, defined by: 

() {
I, if <Pj(X) = 1, for j = 1, ... , m 

<PLB X = 
0, otherwise. 

(6.11) 

Algebraically, <PLB can be computed as 
m 

<PLB(X) = IT <pj(X). (6.12) 
j=l 

The block diagram for the lower bound system is constructed by placing the 

block diagram for each phase in series. The concept of cut set cancellation can be 

used. However, for the lower bound system, cancellation can be done in earlier or 

later phases[33]. Hence, a cut set that contains a cut set from any other phase can 

be cancelled regardless of sequences. 

The lower bound system is particularly valuable in analyzing the performance of 

a system that repeatedly performs the same mission without repair. If the structure 

function is viewed as a function of time, it is periodic with period L = tm for each 

system state X. Such a system will be called periodic. The results which follow can 

easily be extended to periodic systems with continuously varying structure functions, 

instead of discrete phases, states [33]. 



6. Review of Phased Mission Analysis Methods 85 

6.3.1.4.2 Reliability bounds for periodic systems 

The reliability of a s-coherent periodic system with period L is related to that 

of the lower bound system by: 

(6.13) 

where T is system life (time at which system fails), TLB - life of the lower bound 

system. 

The usefulness of (6.13) for establishing reliability bounds is shown by [33] and 

is given in (6.14) and (6.15). 

(6.14) 

The lower bound may be useful after one mission (t = L). Both bounds are 

restrictive for a large number of missions without repair, notices [33]. The mean life 

of a periodic coherent system can be bounded by the mean life of the lower bound 

system: 

(6.15) 

The bounds in (6.15) are tight if E[T] »L. For complex systems, mean life 

often must be computed using numerical integration of the reliability function. In 

this case, using RLB instead of R becomes particularly important computationally. 

6.3.1.5 Generalized intersection and union concept 

Dm,o;hi and XiamdlOng /34/ propose a different method t.o obt.ain estimates of 

system unreliabilities in different phases as well as mission unreliability. The method 

does not need basic event transformation. In the paper they present a generalized 

intersection and union concept that could be used to investigate the advantages and 

limits of various approximation techniques and indicate ways of improvement. The 

assumptions of the proposed method are as follow: 

1. Logic model contains non-repairable basic events. 

2. Logic model is coherent. 

3. Basic events are statistically independent (s-independent) in a failure. 
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4. 'fransition time between any two successive phases is instantaneous. 

Aj is used to denote that component A failed in phase j and worked in all 

previous phases and A(j) is used to denote that component A is failed in phase j: 

the component A is failed in phase j if it failed in phase j or any of the previous 

j -1 phases. 

6.3.1.5.1 Generalized intersection and union concept 

Boolean algebra is used as the foundation of fault tree analysis. But for phased 

mission problems the initial condition of each phase and the relationship of the 

basic events in different phases should be taken into account. In [34] in the fault 

tree for phase j, the basic event A (j) is transformed to a series logic of j basic events, 

A l + A 2 + ... + Aj. 

Suppose that j ~ k ~ 1. Then 

k j j 

A(j) = A1UA2U ... UAj=UAi U Ai=A(k) U Ai 
i=l i=k+l i=k+l 

A (k) n ( A (k) i~~l Ai) = A (k) i~~l (A (k) Ai) = A (k) (6.16) 

A(k) U A(j) = A(k) U (A(k) U Ai) = A(k) U Ai = A(j) 
i=k+l i=k+l 

(6.17) 

Here the intersection and the union concept is extended to events in different 

phases. 

In [34] equations (6.16) and (6.17) are added to the list of Boolean algebra 

principles to consider the time-dependent effect between cut sets in different phases. 

The same basic event in different phases is considered to be a different event. 

6.3.1.5.2 Inclusion-exclusion principle 

The inclusion-exclusion principle is a method that provides successive upper and 

lower bounds on system unreliability and converge to the exact unreliability by 

considering terms to account for intersections of cut-sets. 

n 

LP(Ci ) - LP(Ci n Cj ) + L P(Ci n Cj n Ck) 
i=l i=lj ii'Hk 

- ... (-It-1 P(C1 n ... n Cn) (6.18) 
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Ci , 1 ~ i ~ n can be a basic event or a minimal cut set. 

By corporation of the generalized intersection and union concept discussed above, 

the inclusion-exclusion principle can be used directly to solve the phased mission 

problem. For a phased mission problem, Cl, C2 , ••• , Cn in equation (6.18) may be 

basic events or minimal cut sets for different phases. 

6.3.1.5.3 Methodology of mission unreliability calculation 

In a phased mission problem, the system is failed in phase n if it has failed in 

phase n or any of the previous n - 1 phases. This can be expressed as 

(6.19) 

where x(n) is the event that the system is failed in phase n. Xi is the event that 

the system fails for the first time in phase i. 

The system mission unreliability Q s can be calculated by 

(6.20) 

mi 

where X(i) = U C?), C?) is a minimal cut set for Xi, mi is the number of minimal 
j=l 

cut sets in phase i, and n is the number of phases. 

When generalized union concept is used in equation (6.20), the mission cut sets 

cancellation can be realized automatically [34]. 

6.3.1.6 Method of Lee and Hong 

Lee and Hong [35] note that methods based on minimal cut set analysis are not 

velY efficient. As the number of phases increases, they require a very complicated 

and time consuming procedure. Hence, the calculation of the exact unreliability 

of a mission is usually expensive. Lee and Hong give a closed form mathematical 

expression of a phased mission system reliability. They consider a system where the 

failure rate of a component and the number of added redundancies change during 

the mission. The mission consists of N time phases. In phase k the probability of 

component failure and number of redundancy added at the beginning of the phase 

are given as qk and Xk respectively. All components in redundancy are assumed to 

operate whenever possible. 
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Assume that at the beginning of phase k there are rk components. rk consists of 

two parts: one comes from survival components of previous phases, and the other 

from added redundancy, Xk of current phase. rk can have any value between 1 + Xk 
k-1 

and 1+ LXi+Xk' 
i=1 

Let rk be the number of components remaining at the end of phasek. Then 

the transition probability that there are j component at the end of phase k starting 

from i components at the beginning of the phase k is given by 

The transition probability matrix Ak of the number of components in phase k 

can be given as 

Ak (~~j)' where 1 + Xk :::; i :::; 1 + ak, 0:::; j :::; 1 + ak 
k 

O'.k = LXi 
i=1 

The phased mission reliability can be expressed as follows 

Rs = 1- {P[fail in phase 1] + P[OK in phase 1 and fail in phase 2] + ... 
+P[OK in phases 1 to N - 1 and fail in phase Nj} 

Each term of the above equation can be obtained by multiplication of transition 

probabilities. 

P[fail in phase 1] - pi+X1,O = F1 
1+<"1 

P[OK in phase 1 and fail in phase 2] L pi+X1,i1 Pi~+X2'O = F2 
it 

P[OK in phases 1 to N - 1 and fail in phase N] 
1+<>N-1 1+<>21+<>1 

L "'L L Pi+X1,it pl+x2.i2··· Pi~_l+XN'O 
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Finally, 

6.3.1.7 Phased mission system analysis using boolean algebraic methods 

Somani and Trivedi [29] describe a technique for phased mission system reliability 

analysis based on Boolean algebraic methods. They develop a phase algebra (see 

section 6.3.1.7.1) to account for the effects of variable configurations and success 

criteria from phase to phase. They do not create a single-phase mission, but handle 

one phase at a time and compute the overall unreliability of the entire mission. 

Somani and Trivedi give four possible cases which may occur at the time of a 

phase transition from phase i to phase i + 1: 

1. A combination of component failures does not lead to system failure in both 

phases i and i + 1. 

2. A combination of component failures leads to system failure in both phases i 

and i + 1. 

3. A combination of component failures does not imply system failure in phase i 

but is treated as system failure in phase i + 1. 

4. A combination of failures implies system failure in phase i but does not imply 

system failure in phase i + 1. 

6.3.1.7.1 Phase algebra 

Using the technique described by [29] the example shown in Figure 6.2 earlier 

has been considered in detail. 

Let A = 1 mean that component A has failed. Then A = 0 says that component 

A has failed and A = 1 means that component A is operational. Using this 

notation for the example of phased mission system depicted in the Figure 6.2 (see 
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section 6.3.1.1), the following Boolean expression describe the failure combinations 

for phases 1, 2 and 3. 

El A+B+C 

E2 A+BC 

E3 ABC 

Let A denote the event that component A is operational during the interval from 

the start of the mission until the end of the phase i. This automatically implies that 

the component is operational during earlier phases as well. 

Let i and j be two phases and let i < j. The rules in Table 6.1, given by Somani 

and Trivedi [29], should be used to simplify the logic expressions. 

Table 6.1: Combining rules 

AiAj -+ Aj 

AiAj -+ A 
AiAj -+ 0 

k+A·-+k Z J Z 

Ai + Aj -+ Aj 

Ai + Aj -+ 1 

The first combination in Table 6.1 (AiAj) means that component A was working 

until the end of phase i and until the end of phase j which is equivalent to component 

A working until the end of phase j as this automatically implies that component 

was operational during earlier phases. 

AiAj and Ai + Aj cannot be simplified any further. What the first combination 

(AiAj) means is that component A is operational until the end of phase i and then 

fails sometime between the end of phase i and the end of phase j. The second term 

has no physical meaning. Also, it is not possible for a component fails during a 

phase and then b~ operational during a later phase (AAj ). Hence AiAj -+ o. 

6.3.1.7.2 Example 

For the example considered the system has three components and there are three 

phases: all components must work through the phase 1 for it to be successful. If 

phase 1 is accomplished the system enters phase 2, to complete this component A 

and component B or C must work, to complete phase 3 all components A, Band 
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C must not fail. The failure combinations of phases 1, 2 and 3 are defined by El, 

E2 and E3 , respectively. 

Then phase failure combinations for the phase i (P FCi ) , which are treated as 

success combinations for all subsequent phases are given by 

In the above expression, only those combinations are included which are failure 

combinations in phase i but are not failure combinations in any of subsequent 

phases [29]. This expression can be simplified as 

Then for the phase 1 we have 

(El' E 2 )· E3 

((AI + Bl + Cl) . (A2 + B2C2) . (A3B3C3) 

A3B2Cl + A3B l C2 + A2B3C1 + A2Bl C3 

And for the phase 2 (PFC2): 

E2 ·E3 

(A2 + B2C2) . (A3B3C3) 

A3B2C2 + A2B 3 + A2C3 

General formula for system unreliability is 

p-l 

Qsys = P(En) + LP(PFCi ), 

i=l 

where P(En) is the probability of failure of the last phase (phase n), P(PFCi ) is 

the probability of phase failure combinations for phase i. 

Then the system unreliability for this example is given by [29] 

P(E3) in the equation above is 
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The other two terms, P FC1 and P FC2 , are computed as follows [29]: 

P(PFC1) P(A3B2C1 + A3B1 C2 + A2B3C1 + A2B1 C3) 

P(A3B2Cr) + P((A3BIC2 + A2B3C1 + A2B1C3) (A3 B2Cr)) 

P(A3B3C1) + P((A3B1C2 + A2B3C1 + A2B1C3)(A3 + B2 + Cl)) 

- P(A3B3Cl) + P(A3BIC2 + A2A3B3Cl + A2B1C3) 

P(A3B3C1) + P(A3B1 C2) 

+P((A2A3B3C1 + A2B1C3)(A3 + B1 + C2)) 

P(A3B3Cr) + P(A2A3B3C1 + A2A3B1C3) 
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P(A3B3C1 ) + P(A2A3B3C1 ) + P((A2A3B1C3)(A2 + A3 + B3 + Cr) 

P(A3B3Cr) + P(A2A3B3C1) + P((A2A3B1C3) 

P(A3B2C2 + A2B 3 + A2C3) 

P(A3B2C2) + P((A2B3 + A2C3)(A3 + B2 + C2)) 

P(A3B2C2) + P(A2B 3 + A2C3) 

P(A3B2C2) + P(A2B 3) + P(A2C3(A2 + B3) 

P(A3B2C2) + P(A2B 3) + P(A2B3C3) 

So, the system unreliability is equal to 

Qsys P(A3B3C3) + P(A3 B3C1) + P(A2A3B3Cr) + 

+ P((A2A3BIC3) + P(A3B2C2) + P(A2B3) + P(A2B3C3). 

6.3.1.7.3 Sum of disjoint products and its phased-extension 

Ma and Trivedi [28] introduce the sum of disjoint phase products (SDPP), which 

is a phased-extension of the sum of disjoint products (SDP) formula. 

The sum of disjoint products formula is one of the techniques that is used to 

compute the probability of a union of a set of events in a single-phased system [28]. 

Let Ei be the event that all the components in the minimal cut set MCi fail: 

the event Ei is a Boolean expression describing a single minimal cut set MCi. The 

SDP formula for calculating the unreliability of the system is: 
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where n is the total number of minimal cut sets. Define the constituent CSI = El 

and in general, CSi = EIE2 ... Ei-IEi, where 1 ~ i ~ n. Since the constituents CSi 

in equation (6.21) are disjoint from each other, the final SDP formula for calculating 

the unreliability of the system is: 
n 

Qs = LP(CSi) (6.22) 
i=l 

The most important thing of the SDP formula is to obtain the disjoint constituent 

CSi, for i > 1. 

To calculate the unreliability of the phased mission system, the sum of disjoint 

products formula was extended into the sum of disjoint phased products (SDPP) 

formula, [28]. 

Let P El be the event that a phase mission system is failed in phase i. The SDPP 

formula for the unreliability of the phased mission system is: 

PPMS~P [~PEil (6.23) 

=Pf!> El U(PEIPE2)U(PEIPE2P E3)U" .U(PEIPE2 ... P Ep-IP Ep)] 

where p is the total number of phases for the phased mission system. In equation 

(6.21) event Ei represents one single minimal cut set. In equation (6.23) event PEi 
represents a set of minimal cut sets, in which the minimal cut sets are generally 

non-disjoint [28]. The complement of P Ei is normally a set of non-disjoint phase 

products as well. Define the phase constituent PCI = P El and, in general, PCi = 

P EIP E2 ... P Ei-IP Ei , where 1 < i ~ p. Generally, the phase products in each PCi 
are non-disjoint. If the phase products in a PCi are mutually disjoint, the PCi is 

defined as a disjoint phase constituent: denoted by DPCi . One of the challenges in 

using the SDPP formula is to change the PCi into DPCi , see [28]. Once the DPCi 

are found, the final SDPP formula for calculating the unreliability of the phased 

mission system is: 

P 

PPAfS = L P(DPCi ). (6.24) 
i=l 

6.3.1.8 A BDD-based algorithm for reliability analysis of phased mission systems 

Zan/S, Sun and 'frivedi 141 prOI)()sed a clifferenl al/Soritlllu hased on binary decision 

diagrams (BDD) to analyse reliability of phased mission systems. The algorithm uses 
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phase algebra (see section 6.3.1.7.1) to deal with the dependencies across the phases. 

The theory of binary decision diagrams for single-phased systems is described in 

Chapter 3. 

The relations in the phase algebra in Table 6.1 are different from the ordinary 

logic relations. A special BDD operation, phase-dependent operation, is derived for 

these relations. Because BDD structures depend strongly on the order of variables, 

there are two classes of phase-dependent operation (PDO) [4]: 

1. Forward PDO: the order of variables is the same as the phase order - Cl, C2, 

•.. , Cn,. 

2. Backward PDO: the order of variables is the reverse of the phase order - Cn" 

Let i < j, and let component C be used in both phases i and j. Using ite format, 

Ei and Ej, when expanded with regard to Ci and Cj, respectively, can be written as: 

Ei ite[Ci, (Edci=l' (Ei)Ci=O] = ite[Ci, Gl , G2] 

Ej ite[cj, (Ej)Cj=l, (Ej)cj=o] = ite[cj, HI, H2] 

Zang et al [4] give two lemmas. 

Lemma 1: For the forward PDO, 

(6.25) 

Lemma 2: For the backward PDO, 

(6.26) 

6.3.1.8.1 BDD algorithm for phased mission system 

The main procedure of reliability analysis of phased mission system using BDD 

is as follows [4]: 

1. To obtain the failure function for each variable use: 
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the time t is measured from the beginning of phase j so that 0 ~ t ~ Tj , Pc; 

is the failure function of mini component Ci, 1i - duration of phase i. The 

first term in the above expression represents the probability that component 

C has already failed in the previous phases. The second term represents the 

probability distribution of lifetime of the component in phase j. 

2. Order components and their corresponding variables using the following 

heuristics: Weights with a value of 1 are assigned to each leaf of the fault 

tree. The weight of each gate is obtained by adding the weights of its inputs. 

Men the weights are known in the whole tree, a depth-fir-st tmversal of the 

tree is made, choosing at each level the sons of a gate by order of increasing 

weights. During this traversal, the variables are put in the ordered list as soon 

as they are encountered. 

3. Generate the BDD for each phase using ordinary logical operations. 

4. Use the phase algebra and the corresponding backward PDO to combine these 

BDD to obtain the final BDD from the BDD of each phase. 'When backward 

phase-dependent operations are used to generate a BDD for phased mission 

systems, the cancellation of common components can be done automatically 

during the generation of the BDD without any additional operations. 

5. Calculate the unreliability of phased mission system from the filIal I3DD. The 

calculation of the system unreIiability from the final BDD is easy and fast as 

the BDD is based on Shannon decomposition. 

To illustrate the method consider example shown in Figure 6.3. The equivalent 

system for the mission (single phase) is shown in Figure 6.4. The final I3DD for 

this example is shown in Figure 6.6. The ite structure for mission failure could be 

expressed as: 

MISSION FAILURE = ite(A3,ite(A2, 1, ite(B3, ite(B1 , 1,ite(C3,1,0)), 

= ite(C1 , 1, 0)), ite(B2 , ite(Bl' 1, iteC2 , 1,0), ite(C1 , 1,0)) 

6.3.1.9 Imperfect coverage 

Xing and Dugan [36] consider the problem of analysing generalized phased 

mission systems which have combinatorial phase requirements and imperfect 
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Figure 6.6: BDD representation for the fault tree shown in Figure 6.4 

coverage l . They note that the phased mission systems are mostly designed for 

OR-ed phases, which means that if the system fails during anyone phase,. it fails to 

achieve the mission. Thus, the reliability of conventional phase-OR phased mission 

system is the probability that the mission successfully achieves the objectives in all 

phases. Xing and Dugan notice that there are phased mission systems that have 

combinatorial phase requirements, which means that a phased mission system could 

have a failure criterion as any logical combination of the phase failures in terms of 

phase-AND2 , phase-K/M3 , and phase-OR4 • In addition, there exists systems that 

have more than just binary (success or failure) outcome. Xing and Dugan propose 

a generalized phased mission system analysis that can incorporate combinatorial 

phase requirements, multiple grade-level performance criteria and imperfect coverage 

together. The methodology integrates several methodologies for separate analysis 

lImperfect coverage means that single-point failure(uncovered failure) can bring down the 

entire system despite the presence of fault-tolerance mechanisms 
2The mission has successfully achieve objectives in all phases - if the system fails during any 

one phase, it fails to achieve the mission 
3The mission has successfully achieve objectives in M-K out of M phases - if the system fails 

during K phases, it fails to achieve the mission 
4The mission has successfully achieve objectives in at least one phase - if the system fails during 

all phases, it fails to achieve the mission 
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of phased missions and imperfect coverage. 

The algorithm of Zang, Sun and Trivedi [4] (see section 6.3.1.8) is used by Xing 

and Dugan to incorporate imperfect coverage as the generalized phased mission 

systems considered by Xing and Dugan involve imperfect coverage. The basic event 

transformation (see section 6.3.1.1) deals with the s-dependence across the phases 

and makes the approach of Zang, Sun and Trivedi possible . To use the algorithm 

by Zang, Sun awl Trivedi first of all bask evellt t.ransformat.ions have to be applied 

to the system. 

Xing and Dugan consider the phased mission systems that have: specified 

combinatorial phase requirements, imperfect coverage, and/or multiple grade-level 

performance criteria. These phased missions are generalized phased mission systems. 

The conventional phase-OR phased mission system is a special case. 

The problem assumed by Xing and Dugan is to derive an exact analytic 

approach to evaluating the reliability and/or performance (multilevel reliability) 

of a generalized phased mission system, given as inputs: 

a) the combinatorial phase requirements and/or mission performance criteria 

b) the duration of phase i: 1i 

c) failure distribution for component CAin phase i: for Cai , which is conditioned 

on success of Cai _ 1 

d) coverage parameter: Tai' Cai and Sai for each component in each phase 

e) failure criteria for each phase 

f) mission time. 

Imperfect coverage modelling. Computer-based systems usually exhibit 

multiple failure modes: covered and uncovered failures. In addition, different failure 

modes have distinct effects on the system failure. 

• 'Covered failure' is local to the affected component, it might or might not lead 

to system failure - depending on the remaining redundancy . 

• 'Uncovered failure' is globally malicious, causing immediate system failure. 
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Figure 6.7: General structure of a coverage model 
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The general structure of imperfect coverage is shown in Figure 6.7. The entry 

point to the model signifies the occurrence of the fault, and the three exits represent 

three possible outcomes. If the offending fault is transient, and can be handled 

without discarding any component, then the transient restoration exit (labelled 

R) is taken. The permanent coverage exit (labelled C) denotes the determination 

of the permanent nature of the fault, and the successful isolation and removal of 

the faulty component. If the permanent coverage exit is reached, then a covered 

component failure occurs. When a single fault (by itself) causes the system to crash, 

the single-point failure exit (labelled S) is reached, then an uncovered component 

failure occurs. 

6.3.1.10 Other methods 

There are many more methods suggested for the analysis of non-repairable phased 

mission systems. Some of the methods not mentioned above are based on Markov 

analysis. There are two possible approaches to the multi-phased system using 

Markov methods - either to treat each phase individually, or analyse the entire 

mission with the single model. If the phases of the mission are treated separately, 

each individual Markov model must be solved separately and then all of them have 

to be linked by a state probability vector. The alternative approach involves solving 

a single model for the mission with state space at least equal to the size of the sum of 

the components in each individual phase model. The problem of constructing a single 

Markov model for a phase mission system is considered by Dugan [41]. However, 

the Markov model does suffer from a st.ate explosion problem as the number of 

components and phases in the mission increases. 
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Some missions are required to achieve more than one objective. This is 

investigated by Pedar and Sarma [31] as they consider a transport aircraft with 

mission objectives as 1) fuel efficiency: 2) no diversion, and 3) no fatalities. The 

method involves obtaining minimal cut sets for each objective. The probabilities 

for 5 levels (i.e., low fuel consumption, diversion, no fatalities) of accomplishment 

of phased mission are calculated. 

Burdick et al [1, 27] applied method proposed Esary and Ziehms [2] to a typical 

phased mission problem that may arise in the nuclear power industry. The technique 

was· applied to an emergency core cooling system for a boiling water reactor. The 

system consisted of 8 subsystems which where considered as components for the 

analysis. One mission of the emergency core cooling system is to prevent excessive 

heating of the fuel rods within the reactor vessel as soon as possible after large 

loss of coolant accident and then keep water circulating to and from the reactor 

vessel until the rods are cool. After loss of coolant accident has occurred, three 

phases for the emergency core cooling system were considered: initial core cooling, 

suppression pool cooling and residual heat removal. Both exact and approximate 

mission unreliability were calculated. The approximate methods used in the example 

produced results that were very close to the exact one (difference of 0.2%). 

6.3.2 Repairable systems 

Clarotti et al [37] state that if a system is composed of repairable components, 

then only an upper bound can be found using the fault tree approach. They notice 

that in order to find an exact solution to the problem the Markov approach can be 

successfully used. Clarotti et al note that fault tree technique gives an exact result 

only if a complete independence among system components can be assumed. 

Each phase can be identified by: phase number, time interval, system 

configuration, parameter of interest (reliability, availability), maintainability policy 

(single, double, ... , multiple). 

If no maintenance is provided, and common failures are not considered, then 

complete independence holds in each phase and the approach based on fault tree 

technique leads to the exact problem solution. This case was intensively treated by 

Esary and Ziehms [2]. 

If reliability with maintenance is of interest, independence cannot be assumed, 

in the sense that any component may be repaired or not depending upon the system 



6. Review of Phased Mission Analysis Methods 100 

state. Is such cases, methods based on combinatorial reliability cannot be used to 

find an exact solut.ion; this is the ease of the fault tree <1na1ysis.[37] 

In order to find an exact solution, the method which is not constrained by the 

independence assumption is needed, such as the analytical Markov approach, state 

Clarotti et al. 

Approach for solving repairable phased missions using analytical Markov method 

where the mission phase change times are deterministic was discussed by Clarotti et 

al [37] and by Alam and AI-Saggaf [38]. Alam and AI-Saggaf extend the method for 

the case where mission phase change times are stochastic and present two possible 

solutions. Smotherman [39, 40] suggests non-homogeneous Markov model saying 

that it greatly increases modelling flexibility and scope of practical application. 

Dugan [41] propose discrete-state continuous time Markov model, where all the 

phases are combined into one model. 

6.3.2.1 Markovapproach for reliability evaluation 

6.3.2.1.1 Deterministic mission phase change time 

To illustrate the Markov approach a 3-phase mission is considered, the whole 

mission profile is shown in Table 6.2 [38]. 

Table 6.2: Mission profile 

Phase Time System configuration System Parameter Maintenance 
No. interval (Block diagram) task of interest policy 

1 (O,t. ) it x Reliability Multiple 

2 (tl'tJ V y Reliability Multiple 

3 (t2 ,t3 ) --0-®-@}-- z Reliability Multiple 

That the mission reliability cannot be obtained by simply multiplying the system 

reliabilities of the various phases was noted by Esary and Ziehms [2]. This is due to 
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the fact that at times at which the system changes its configuration, it must occupy 

a state which is successful for both the phases involved. So, the system evolution 

must be such that: during each phase the system can evolve through all the states 

allowed for that phase. At any phase change time the system must occupy one of the 

states that are good for both phases, starting from which it begins the evolution in 

the following phase with the same constraints. The states of the phases are depicted 

in Table 6.3. State 81 in Table 6.3 means that all three components are working (1) 

and it is a success situation for all tree phases. State 85 means that components A 

and B are working, but C is failed. This is a success state for phase 1 and phase 2, 

but a failure state for phase 3. <Pi is the structure vector for phase i. 

Table 6.3: Phases states description 

Phases 

State A B C <PI <P2 <P3 

81 1 1 1 1 1 1 

82 0 1 1 1 0 0 

83 1 0 1 1 1 0 

84 0 0 1 1 0 0 

85 1 1 0 1 1 0 

86 0 1 0 1 0 0 

87 1 0 0 1 0 0 

88 0 0 0 0 0 0 

From [37] considering the three phases: 

a) First phase: from 0 to t l . In order to have success during the first phase, the 

system has not to pass through state 88' In addition, at the phase change time 

tl, it has to occupy one of the states 81, 83 or 85 which are success states for 

phases 1 and 2. 

The state transition rate matrix Al for phase 1 can be easily obtained using 

Table 6.3 where state 88 is an absorbing state and the repair starts as soon as 
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a component fails [38] 

- I;1 /LA /-tB 0 /Le 0 0 0 

AA -I;2 0 /LB 0 /Le 0 0 

AB 0 -2::3 /LA 0 0 /Le 0 

0 AB AA -2::4 0 0 0 0 
Al = 

Ae 0 0 0 -2::5 /LA /-tB 0 
(6.27) 

0 Ae 0 0 AA -I;6 0 0 

0 0 Ae 0 AB 0 -2::7 0 

0 0 0 Ae 0 AB AA 0 

where Ai is failure rate, /Li - repair rate, I;i - sum of the entries of the i-th 

column. 

Therefore, 

(6.28) 

with initial conditions 

P(O) = [1 0 0 0 0 0 0 oy (6.29) 

where P(t) is a state probability vector for phase 1. 

The system is ready to start the second phase only if at time tl it is in one 

of the states 81, 83, 85' These events have probabilities g(tl ), P3(tl), P5(tt} 

respectively. Then the probability that the system has success in the first 

phase and it is able to start second one is: 

(6.30) 

These probabilities can be added because the states 81, 83, 85 are mutually 

exclusive. [38] 

b) Second phase: from tl to t 2 • The system is successful during the second phase 

if it starts in one of the states SI, 83, 85 and evolves only through these states. 

In order to consider the whole mission as a success, the system at t2 has to 

occupy state 81, the only state suitable for both the second and the third 

phase. 
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The transition rate matrix for phase 2 can be obtained as before using 

Table 6.3: 

-L:l 0 /lB 0 /le 0 0 0 

AA -L:2 0 0 0 0 0 0 

AB 0 -L:3 0 0 0 0 0 

0 AB AA -L:4 0 0 0 0 
(6.31) A2 = 

Aa 0 0 0 -L:5 0 0 0 

0 Aa 0 0 AA -L:6 0 0 

0 0 Aa 0 AB 0 -L:7 0 

0 0 0 Aa 0 AB AA 0 

The equation for the above evolution is 

q(t) = A2q(t) (6.32) 

where q(t) is a state probability vector for phase 2. 

In order for the second phase to follow the first phase, the initial condition has 

to take into account the first phase. Therefore, 

P {1st phase success AND 2nd phase success} 

P {2nd phase success lIst phase success} P {1st phase success} 

I:: P{2nd phase success I system in Si at tl} X P{ system in Si at td 
S;ES 1,2 

where Si,j is a set of success states for both phases i and j. 

Thus, the initial condition for (6.32) is: 

(6.33) 

The system is now able to start the third phase, having successfully completed 

the first two phases with a probability: 

(6.34) 

c) Third phase: from t2 to t3. In this phase the problem to solve is 

(6.35) 
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where Z(t) is a state probability vector for phase 3. 

with initial condition 

Z(O) = [ql(t2 - t l ) 000000 of (6.36) 

-~l 0 0 0 0 0 0 0 

AA -~2 0 0 0 0 0 0 

AB 0 -~3 0 0 0 0 0 

A3 = 
0 AB AA -~4 0 0 0 0 

Aa 0 0 0 -~5 0 0 0 
(6.37) 

0 Aa 0 0 AA -~6 0 0 

0 0 Aa 0 AB 0 -~7 0 

0 0 0 Aa 0 AB AA 0 

The probability of success of the phased mission system is 

P{success of the phased mission system} = Zl(t3 - t2)' (6.38) 

6.3.2.1.2 Random mission phase change time 

Many systems such as real-time control for aircraft and space vehicles in which 

the computing system is required to execute different sets of computational tasks 

during different phases of a control process, the duration of a phase is more 

realistically modelled by a random variable. Thus the modelling of a particular 

phase can be tailored not only to the computational demands of each phase but 

also to the relevant properties of the system that influence performance during that 

phase. 

Alam and AI-Saggaf [38] consider that the phase-change times can be random. 

They propose two approaches to determine an appropriate description of the 

marginal distributions of the mission phase change times. 

The first approach investigates a general formula for the joint probability density 

function of the mission phase change times which may be statistically dependent. 

The second approach models the mission phase change times as order statistics of 

a continuous random variable. The solution for probabilistic mission phase change 

times is similar to the case of deterministic approach except for initial conditions, 

state [38]. 
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6.3.2.2 A non-homogeneous Markov model 

Smotherman [39, 40] note that in the approach proposed by [38] the individual 

phase models are limited in coupling by the use of expected values for the 

components of the transformed probability vectors. Such models continue to make 

the assumptions that phase changes are state-independent and instantaneous. It is 

noted [39, 40] that any time-homogeneous Markov model is limited to the implicit 

assumption that state holding times, e.g. component failure times and repair times 

are exponentially distributed. 

The modelling of a phased mission system by a single nonhomogeneous Markov 

model removes the major limitations of the traditional phased mission approach and 

greatly increases modelling flexibility and scope of practical application [40]. The 

model proposed by [40] provides for non-exponential component failure behaviour. 

If {X(t)lt ~ O} is a finite state stochastic process with state probabilities Pi(t) = 

P[X(t) = iJ, then by use of a Markov model the following differential equations can 

be derived [40] 

p~(t) = Lpj(t)aij(t) 
j 

(6.39) 

where aij(t) is the transition rate from state i into state j, aii(t) is the negative row 
n-l 

sum of row i, - L aij(t). The system of equations can be rewritten as 
j=O,#i 

P'(t) = P(t)A(t) (6.40) 

where P(t) = (PO(t),Pl(t), ... ,Pn-l(t)) is the row vector of state probabilities and 

A(T) = [aij(t)]nxn is the transition rate matrix. 

The time-homogeneous Markov model is the special case in which all transition 

rates are independent of time, i.e. A(t) = A. The approach to phased mission 

analysis is based on t.wo important. moclificat.ions of t.he llonhomogeneous Markov 

model [39]: 

1. The concept of a state transition is generalized to include phase changes, as 

well as failures and repairs. 

2. Reward measures are incorporated into the model to provide more information 

for system effectiveness evaluation. 
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In this approach, different phases are represented as different subsets of states in 

the single model, and phase changes are represented by time-varying transitions 

among these subsets. Because of the single model framework, phase change 

transitions out of the different states in a given phase subset can have different 

rates or impulse functions. Thus, phase changes are state dependent. 

The system of differential equations was solved by adapting the fifth order Runge­

Knt.t,a mdhod, see \40\. The solver was p.xtewled t,o handle fixed-time phase changes 

and efficiently recompute the time-dependent transition rates needed by the ordinary 

differential equations (ODE) solver when performing derivative evaluations. 

The major change to the Runge-Kutta method was the use of an event queue 

driver [40]. Phase changes are inserted as events and include information on the type 

of change, the existing state, the entry state(s), and the branching probabilities for 

multiple-entry states. A step-size control adjusts the next step in the solution so as 

to not overstep the next event. Multiple events are allowed at the same time. 

Fixed-time phase changes do not affect the transition-rate matrix but cause an 

instantaneous transfer of probability from the existing state into the entry state(s). 

Phase change times having uniform distributions have beginning and ending events. 

The beginning event inserts an entry into a recalculation list of time-dependent 

transition rates, which is processed upon each derivative evaluation. Ending events 

remove the corresponding entry. 

To bound the local error of each step in the solution, the adaptive step-size 

control of Runge-Kutta method was used. This is in addition to the event step size 

control mentioned above. Minimum and maximum step sizes are specified, and a 

fixed time phase change transition is performed near the ending time of a uniform 

distribution if the value of the associated transition rate grows too large. This is 

an instantaneous transfer of the residual probability of the existing state into the 

entry state(s) and it is used by the adaptive step size control whenever the step size 

required to meet the local error tolerance is smaller than a minimum specified step 

size. Using the error tolerance and minimum step size parameters, the accuracy of 

the solution can be increased at the expense of efficiency. 

Repairs are not generally modelled by nonhomogeneous Markov systems [39]. 

This restriction is necessary since a repair is assumed to return the failure process 

of a component to time t = O. It is noted [39] that for time-homogeneous Markov 

models this assumption does not present a difficulty since each transaction erases 
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The model proposed by [41] considers the problem in terms of the construction 

of the continuous-time discrete-state Markov model and uses a standard Markov­

chain solution technique that is adapted to phased missions. The resulting state 

space is the union of the states in each independent phase, rather than sum. The 

technique combines all the phases into one model, and uses a fault tree to specify 

the reliability model of the system. The resulting Markov model can be used to 

calculate measures such as the probability of successfully completing a mission, the 

time dependent probability of failure, or the mean time between failures. 

The approach is especially useful where several phases are repeated many times 

because each phase needs to be described only once. This approach applies where the 

transition rates (failure and repair rates) are constant, and where the phase change 

times are deterministic. If any of these criteria are not met and if the system is not 

very large, then the approach proposed by Smotherman (see 6.3.2.2) is appropriate. 

To explain the method, the example depicted in Figure 6.8 is considered. The 

corresponding fault trees are shown in Figure 6.9. If each of fault trees were 

converted to Markov chains separately, the chains shown in Figure 6.10 would result. 

In Figure 6.10 for phase 1 all possible states for the system are shown. From state 

111 (all components are working) system can go to states 011, 101 or 110 (one of the 

components is failed), but they are all successive states. Only one component can 

fail at a time. To reach the failure state (F), all components must fail. To reach the 

failure state components may fail in different order ( 111 -t 011 -t 001 -t F, 

111 -t 101 -t 001 -t F, etc.). In phase 2 if component A fails, the system 

fails (111 -t F). In phase 3 failure of any component will lead to system failure 

(111 -t F). 

Phase 1 Phase 2 Phase 3 

Figure 6.8: Example system 

To combine all models into one, a multiplicative factor can be appended to each 

transition that will label it by the phase to which it belongs. That is, the transitions 
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Figure 6.9: Fault trees for the example system 

Phase 1 Phase 2 Phase 3 

Figure 6.10: Markov model for each phase of the example system 

in the model for phase i, every transition is multiplied by Fi. A combined Markov 

chain is formed whose state space is the union of the state spaces of the models of the 

separate phases, and whose transitions are the sum of the corresponding transitions 

of the models of the separate phases. The combined model for the example system 

is shown in Figure 6.11 where Fi labels the transitions that pertain to phase i. 

Once generated the model can be solved using a standard numerical technique, 

with the following change. For the solution times that belong to phase i (11-1 ~ t ~ 

Ti), Fi is set to one, and all other Fj , j of: i, are set to zero. This assignment filters 

out any transition that does not belong to the current phase. Using this method, 

the state space does not change, and so the state probabilities need not undergo any 
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Figure 6.11: Combined Markov model for all phases of the example system 

transformation, but rather the transitions themselves are changing with the phase 

changes. The resulting model is still Markov, but it is no longer homogeneous since 

the transition values depend on global time. However, most standard numerical 

techniques apply to non-homogeneous Markov models. 

In general, separate models are not generated for each phase; rather the combined 

model is generated from the start. 

6.3.2.4 Fault tree approach 

A repairable multiphase system cannot be reduced to an equivalent single phase 

system, states Clarotti et al [37]. This is due to the fact that logical operations used 

for nonrepairable systems cannot be carried out if repair is foreseen. Considering 

the missioll with the profile (lescribed in Table ().4, the solution of the problem of 

evaluating the unreliability of the system is straight forward using the Monte Carlo 

simulation technique, see [37]. 

When using asynchronous simulation technique, the fault tree of the system 

whose reliability has to be calculated, is checked every time a failure occurs. Let 

ti be the phase change time between phases i and (i + 1). Suppose that when 
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Phase Time 
No. interval 

1 

2 

3 

Table u.4: l\iiflsion profile 

System configuration 
(Block dia ram) 

System 
task 

x 

y 

z 

Parameter 
of interest 

Reliability 

Reliability 

Reliability 

Multiple 

Multiple 

Multiple 

generating the failure times tA, tB and to the following situation occurs: 

tA < tl 

t2 < tB < t3 

to> t3 

111 

The fault tree of the system ill t.he first phase is dteeked and t.he system is found 

to be functioning. The repair time TA of component A is generated and suppose 

that is it tl < tA + TA < tB' This situation corresponds to a system failure at t1, 

due to A being in a failed state at the phase change. A normal Monte Carlo code 

would ignore this failure as the system is checked only when failure occurs. In order 

to avoid this situation, a check of system state is performed at the beginning of each 

phase, in order to verify if a system failure occurs at that time due to the change in 

configuration. [37] 

In general, fault tree techniques can be used to find an analytical upper bound to 
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system reliability, [37]. For highly reliable systems, for example systems of interest 

in the nudear field, t.he expededlllnuber of failures is a dose approximation for the 

unreliability [37]. 

Assumptions made by Clarotti et al are: 

- a multiple repair policy (one repairman per item) is assumed in any case; this 

fact does not appreciably affect the result due to the large difference between 

times to failure and to repair; 

- the upper bound is found by stopping the expected number of failures 

expansion to the first order terms. 

Let x( i, j) indicate the event that minimal cut set i, 1 S i S n, occurs for the 

first t.ime in phase j, 1 S j S n. x(i,j) is a null (impossible) event, if the i-th 

minimal cut set does not appear in the j-th phase. 

The system unreliability at the mission time T is given by: 

Then, according to the above assumption: 

R.(T) ,,; ~p {~X(i,j)} 
As the x( i, j) are mutually exclusive with respect to j, for any i: 

where 

p {~X(i,j)} ~ p{x(i,j))} + p{x(i,j,)lx(i,j,)} p{x(i,j,)} 

+p {x(i, j3)lx(i, jdx(i, j2)} p {x(i, jl)x(i,j2)} 

+ ... 

(6.42) 

(6.43) 

(6.44) 

p {x( i, jr)} is the probability that the i-th minimal cut set first occurs in phase 

jr is the r-th phase in which the considered minimal cut set appears; 
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p{x(i,jr)lx(i,jl), ... ,x(i,jr-d} is the conditional probability of the i-th 

minimal cut. set. that. first, OC(:urs in it.s r-th possible phase, given that it did 

not occur in the previous r - 1 possible phases; 

P {x(i, jl), ... ,x(i, jr-l)} is the probability that the i-th minimal cut set never 

oc(:nrred in its first. r - 1 phases. 

When evaluating the terms of equation (6.44), the following three cases are 

considered: 

a) none of the components of the i-th minimal cut set appears in the phases in 

which that minimal cut set does not appear, i.e. those components work only 

in the phases in which all of them give rise to the i-th minimal cut set. In this 

case it is possible that the i-th minimal cut set occurs at a phase change time 

due to a change in configuration. Then equation (6.44) reduces to: 

(6.45) 

b) all components of the i-th minimal cut set appear, i.e. working, in some other 

minimal cut set in phases in which i-th minimal cut set does not appear. In 

this case let the jr-th pha.<;e he t.he first. one in which t.he minimal ent set. 

appears again after a certain number of phases in which it did not appear, but 

its components all worked belonging to other minimal cut set. In this case 

the term p{x(i,jr)x(i,jr-d, ... ,X(i,jl)} may be split in to the sum of two 

mutually exclusive events, such as: 

P {x(i,jr, )x(i,jr-l), ... , x(i,jI)} = p {xb(i,jr), ... , x(i,jd} 

+p {xd(i, jr), xb(i, jr), x( i, jr-l), ... , x( i, jl)} (6.46) 

where the subscripts b and d mean respectively at the beginning and during 

the possible jr-th phase of i-th minimal cut set. The cut set may occur at the 

beginning of the phase due to the change of configuration. 

p {xb(i, jr), x(i, jr-l), ... , x(i, jl)} = 

= p {xb(i, jr) Ix( i, jr-d, ... ,x(i, jl)} . p {x( i, jr-l), ... ,x(i, jl)} (6.47) 
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The conditional probability in the above expression is upper bounded by the 

unavailability of the i-th minimal cut set at the beginning of the possible jr-th 

phase, taking into account the previous evolution of the components. 

Furthermore, 

jr-1 

p{x(i,jr-d,··· ,X(i,jl)} = IT Rx(ij) (6.48) 
h=j1 

and 

p {Xd( i, jr), Xb( i, jr), x( i, jr-r) , ... , x( i, jl)} = 

= p {Xd( i, jr )!Xb( i, jr), x( i, jr-I), ... , x( i, jl)} . 

·p{xb(i,jr)!x(i,jr-I), ... ,X(i,jl)} . (6.49) 

. p {x(i, jr-I), ... ,x(i, jr)} 

The first factor in equation (6.49) is the unreliability of the i-th minimal cut 

set during its jr-th phase. The second factor is upper bounded by 1. The third 

factor is given by equation (6.48). 

c) some of the components of the i-th minimal cut set appear in some other 

minimal cut sets in the phases in which i-th minimal cut set does not appear. 

It is the intermediate case. If, among the components which do not work in 

phases between jr-I-th and the jr-th, at least one has a mean time to repair 

much shorter than the time interval between the end of the former and the 

beginning of the latter, the probability of failure at the jr-th phase change 

time is zero. 

Case c) can be handled like case a), see [37]. 

With the hypothesis of exponentially distributed time to failure and time to 

repair, the unreliability RX(i,j) is: 

RX(i,j) ~ t Ah jtj [1 - qh(t)] IT qs(t)dt 
h=1 0-1 s=h 

where hand s indicate generic component ofthe i-th minimal cut set and qr(t) is the 

unavailability of the r-th component calculated taking into account the fact that, if 

the component worked previously in some other phase, its initial unavailability qs is 

different from zero. 
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6.4 Summary 

According to Burdick et alone of the most important problems in systems 

unreliability analysis is the phased mission problem. Most reliability techniques 

consider only systems undergoing a single phase, but multiple phases are very 

common in many systems. Phased mission analysis is recognised as the appropriate 

reliability analysis method for large number of problems, including systems in 

nuclear, aerospace, chemical, electronical and other industries. Analysis of a phased 

mission system encounters difficulties which are not present with a single-phase 

systems as system configuration, phase duration, failure rates of components may 

vary from phase to phase. 

Esary and Ziehms [2] consider a multi phase system with nonrepairable components. 

They transform the original problem to a single phase mission using basic event 

transformation and cut set cancellation. Using this method the reliability of the 

system during each phase cannot be calculated as the components may be removed 

from earlier phases if they are met in minimal cut sets of later phases. Pedar 

and Sarma [31] extended the method for multiobjective phased mission systems. 

The method proposed by Esary and Ziehms was also used by Xing and Dugan 

[36] for a generalized phased mission system analysis methodology. They were 

considering phased mission systems which have combinatorial phase requirements 

and imperfect coverage and integrated several techniques (BDD-based algorithm for 

system reliability analysis, basic event transformation). 

A different method was proposed by Dazhi and Xiaozhong [34]. They don't use 

basic event transformation, but introduce generalized intersection and union concept 

and add them to the list of Boolean algebra principles to consider the time-dependent 

effect between cut sets in different phases. 

A phased mission reliability technique based on Boolean algebraic methods was 

proposed by Somani and Trivedi [29]. One phase is handled at a time and then 

the unreliability of the entire mission is calculated. Phase algebra is developed to 

account for the effects of variable configurations and success criteria from phase to 

phase. According to Somani and Trivedi, the technique can be very useful for a large 

class of the systems where the system behaviour can be described using fault trees. 

Later the method was extended by Ma and Trivedi [28] introducing an algorithm 

based on the sum of disjoint phase products to analyze the system unreliability. 
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For repairable systems two methods are considered: fault tree methods and 

Markov methods. Clarotti et al [37] note, that a fault tree approach gives an exact 

result only if a complete independence between systems components can be assumed. 

If the system is repairable, then only an upper bound can be found using the fault 

tree approach. According to Clarotti et al [37], the exact solution of the problem can 

be found using a Markov approach. The solution for the case when the phase change 

times are deterministic was proposed by Clarotti et al and for the stochastic phase 

change times method was proposed by Alam and AI-Saggaf [38]. Other approaches 

to Markov method were proposed by Smotherman [39, 40] and Dugan [41]. 



7. PHASED MISSION ANALYSIS USING THE 

CAUSE-CONSEQUENCE DIAGRAM METHOD 

7.1 Cause-Consequence Analysis 

The objective of a cause-consequence diagram is to evaluate the likelihood or 

frequency of each outcome that can result from the critical event. As discussed in 

Chapter 4, when the probabilities of the decision boxes of the cause-consequence 

diagram are independent the quantification can be done in the following steps: 

1. Assign probabilities to each outlet branch stemming from the decision box 

(possibly by quantifying the relevant fault tree). 

2. The probability of any sequence is obtained by multiplying the relevant 

probabilities associated with each decision box exit path in that sequence. 

3. The probability of any consequence is obtained by summing the probabilities 

of each sequence terminating in that consequence. 

However, this procedure cannot be used if the failures in each decision box are 

not independent. Dependencies can exist in cause-consequence diagrams due to 

repeated or inconsistent events and these must be dealt with before quantification. 

In the case of repeated events the same failure event exists in more than one 

fault tree structure on the same path of a cause-consequence diagram. To deal with 

a common event failure the following algorithm is suggested, Andrews and Ridley 

[6, 23]. 

7.2 Phased Mission Analysis Using Cause-Consequence Diagram 

To illustrate phased mission analysis using the cause-consequence diagram 

method, consider the example of the non-repairable system shown in Figure 7.1. 
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Phase 1 Phase 2 Phase 3 Phase 4 

Figure 7.1: Simple phased mission system 

In this example, the system is required to work successfully through all four 

phases to complete the mission. In phase 1 component A along with B or Dare 

required to work. Failure of component A or components Band D would lead to 

mission failure. If phase 1 is completed successfully, the system enters phase 2, etc. 

To complete the mission successfully, the system requirements must be satisfied for 

each phase. 

Considering the phases separately, the fault trees representing individual phase 

failures are shown in Figure 7.2. 

Failure in Phase 3 1 Failure in Phase 41 

Figure 7.2: Fault tree representation of individual phase failures 

If a cause-consequence analysis is to be performed the challenge is to develop 

the diagram in an efficient way. The entry point of the diagram is the start of the 

mission. Consequence events are the failure during each of the phases or mission 

success. 
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7.3 Cause-Consequence Diagram Construction Methods 

Tho methods have been developed in order to generate the cause-consequence 

diagram efficiently and analysis has been performed. 

disadvantages of each method are discussed below. 

7.3.1 Method 1 

The advantages and 

One way of constructing the cause-consequence diagram is to assume a certain 

order in which the component failure events will be considered. For this example 

assume the following order: 

Al < Bl < Dl < Cl < B2 < A2 < C2 < D2 < B3 < C3 < D3 < A3 < A4 < C4, 

where Al means component A fails in phase 1, etc., A2 - component A fails in phase 

2 having worked successfully through phase 1, etc. 

Following the order of component failures given, each component failure event 

is added to the diagram as a decision box. Therefore, considering component A in 

phase 1: if component A fails, then from the fault tree for phase 1 it can be seen that 

the system fails in that phase, hence the mission is failed. The CCD is constructed 

by inserting a decision box asking 'A fails in phase 1'. The YES branch represents 

system failure and therefore a consequence is added. Following the NO branch as 

component A is functioning throughout phase 1, from the ordering component B 

in phase 1 is considered. If component B fails, then component D in phase 1 is 

considered. If D fails in phase 1, then mission is failed in phase 1. If component 

D does not fail in phase 1, the mission progresses to phase 2, however since B is 

failed in phase 1 the system fails immediately on entering phase 2, see fault tree 

for phase 2 in Figure 7.2. If component B works throughout phase 1, component 

D is considered. The successful functioning of component D throughout phase 1 

following the success of components A and B means the mission progresses to phase 

2. Components are again considered one after the other until the conditions are 

met for phase 2 failure or progression to phase 3. The complete cause-consequence 

diagram is shown in Figures 7.3 - 7.4. In the diagram, consequences Fl, F2, F3 and 

F4 mean mission failure due to system failure in phase 1, 2, 3 and 4 respectively, C 

represents mission success. 
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7.3.2 Qualitative Analysis 

The qualitative analysis of the cause-consequence diagram will produce the list 

of causes for each outcome condition. Conditions causing any outcome event are 

established by investigating each decision box on the path to the outcome and listing 

the component failure or success in the phase as indicated by the exit path from 

the decision box. In the example considered here there are 47 failure outcomes, 

numbered 1 - 47 in Figure 7.3 - 7.4. The component conditions for each of these 

outcomes was determined, as an example the failure outcomes resulting in mission 

failure in phases 1 and 2 are listed below. 

Fl - Mission failure in Phase 1 

1. Al 

2. Al/\ Bl/\ Dl 

F2 - Mission failure in Phase 2 

3. Al/\ Bl/\ Dl 

4. Al/\ Bl/\ Dl/\ Cl/\ B2 

5. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2 

7. Al/\ Bl/\ Dl/\ Cl/\ B2 

8. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2 /\ C2 

17. Al/\ Bl/\ Dl/\ Cl/\ B2 

18. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2 

24. Al/\ Bl/\ Dl/\ Cl/\ B2 

25. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2 /\ C2 

Each failure mode in the list contains a progression of states for the same 

component. For example, outcome 4 has component B working throughout phase 

1, Bl, and then failing in phase 2, B2. The list can therefore be simplified. When 

there is a situation where a component is working throughout phase, but fails in a 

later phase, it is unnecessary to include the working state in the list as the failure 

in later phase implies that it was working before. This is the situation in several 

outcomes lifited above. The fiimplified list of missioll failures in phase 1 and 2 is 

listed below: 
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Fl - Mission failure in Phase 1 

1. Al 

2. Al A Bl A Dl 

F2 - Mission failure in Phase 2 

3. Al A Bl A Dl 

4. Al A Dl A Cl A B2 

5. Bl A Dl A Cl A B2 A A2 

7. Al A Dl A Cl A B2 

8. Bl A Dl A B2 A A2 A C2 

17. Al A Dl A Cl A B2 

18. Bl A Dl A Cl A B2 A A2 

24. Al A Dl A Cl A B2 

25. Bl A Dl A B2 A A2 A C2 

7.3.3 Quantitative Analysis 

The reduced or simplified lists of component conditions leading to each outcome 

are in an appropriate form for quantification. This is because each of the outcome 

event sequences are mutually disjoint. Under these conditions the probability of 

achieving any particular phase failure outcome is the sum of the probabilities leading 

to that outcome. 

Quantification of the diagram starts with the calculation of the probabilities 

for each event X failing in phase i having worked throughout the previous phases, 

P(Xi). The probabilities are evaluated over the relevant phase period by integrating 

the component failure density function Ix (t). Therefore if phase i is from t i- 1 to ti 

ti 

P (Xi) = J Ix (t) dt (7.1) 

ti-l 

.When a component is working in two (or more) consecutive phases, for example 

'component A works through phase l' and 'component A works through phase 2', 
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probability that 'A' works through both phases is calculated as: 

P (AI /\ A2) = 1 - P (AI) - P (A2) 

Therefore, for the example considered, the probability of mission failure would 

be given by: 

where 

P (mission failure) = P (Fl) + P (F2) + P (F3) + P (F4) 

P(Fl) - P(Al)+P(Al)P(Bl)P(Dl) 

P (F2) P (AI) P (Bl) P (Dl) + P (AI) P (Dl) P (Cl) P (B2) + 

+ (1 - P (Bl) - P (B2)) P (Dl) P (Cl) P (A2) + 

+P (AI) P (Dl) P (Cl) P (B2) + 

+ (1 - P (Bl) - P (B2)) P (Dl) P (A2) P (C2) + 

+P(Al)P(Dl)P(Cl)P(B2) + 
+ (1 - P (Bl) - P (B2)) P (Dl) P (Cl) P (A2) + 

+P (AI) P (Dl) P (Cl) P (B2) + 

+ (1 - P (Bl) - P (B2)) P (N) P (A2) P (C2) = 

P (AI) P (Bl) P (Dl) + P (AI) P (B2) + 

+ (1 - P (Bl) - P (B2)) P (Cl) P (A2) + 

+ (1 - P (Bl) - P (B2)) P (A2) P (C2) 

Expressions were also determined for P (F3) and P (F3) and then the probability 

of mission failure determined. 

The result obtained was found to be the same as that using the fault tree method 

and BDD analysis proposed by La Band and Andrews [3]. 

The method presented allows straight forward construction of the cause­

consequence diagram. In the example presented the size of the problem was not 

obstructing to follow every branch through. With bigger systems it can get more 

difficult to construct the cause-consequence diagram manually and the aid of a 

computer may be needed. 
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7.3.4 ~Method 2 

It can be seen that the quantification of the cause-consequence analysis diagram 

for phased missions is efficient and straight forward. The difficulty is in initially 

obtaining the cause-consequence diagram in the first place. For the simple system 

shown in Figure 7.1 it was straight forward, but as the size and complexity of the 

system increases so does the cause-consequence diagram. An alternative method 

is suggested below, which could be automated to ease the construction of larger 

cause-consequence diagrams. 

The alternative method is based on the fact that the whole cause-consequence 

diagram contains events which are both repeated and inconsistent for each 

component. 

The first step of the second method of cause-consequence diagram construction 

is shown in Figure 7.5 with corresponding fault trees shown in Figure 7.6. The 

diagram is at this stage at a high level of abstraction and just considers phase 

failure. The first decision box contains the failure event 'Phase 1 fails', if it is 

true, then mission fails in phase 1 (failure F1). If the system works successfully 

throughout phase 1, it progresses to phase 2. If the system fails in phase 2, then 

the cause-consequence diagram terminates with failure event 'Mission fails in phase 

2' (F2). This is repeated for phases 3 and 4. If the system does not fail in phase 4, 

then the mission is completed successfully. Phase failure causes are developed using 

fault tree analysis and the relevant fault trees are attached to the YES branches of 

the decision box. 

The fault trees in Figure 7.6 are obtained using the basic event transformation 

introduced by Esary and Ziehms [2] as described in Section 6.3.1.1. 

As the cause-consequence diagram contains both repeated and inconsistent 

failure events, these must be extracted one by one following the normal cause­

consequence analysis procedure described earlier. An order must be assumed in 

which the component failure events are to be considered for extraction. For this 

example a different order of component failure events is assumed than for Method 

1: 

Al < B1 < B2 < A2 < Cl < C2 < B3 < C3 < D1 < D2 < D3 < A3 < A4 < C4 

Then following the normal cause-consequence analysis process the event 'A fails 

in phase l' (AI), as it is both a repeated and an inconsistent event, can be extracted 
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FI - mission fails in Phase I 
F2 - mission fails in Phase 2 
F3 - mission fails in Phase 3 
F4 - mission fails in Phase 4 
C - mission completed 

FG ~ '--T--""'---~""" 

Ft4 ~ '--"T--...L..--=r-.....J 

Figure 7.5: Construction of cause-consequence diagram - step 1 

Figure 7.6: Fault trees for the cause-consequence diagram shown in Fig.7.5 
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A fails in Phase 1 

y N 

Phase 1 fails 

1-. Y N 

Phase 2 fails 

N 

Phase 4 fails 

Ft - mission fails in Phase 1 
F2 - mission fails in Phase 2 
F3 - mission fails in Phase 3 
F4 - mission fails in Phase 4 
C - mission completed 

Figure 7.7: Construction of cause-consequence diagram - step 2 

Figure 7.8: Fault trees for the cause-consequence diagram shown in Fig.7.7 
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N 

Phase 1 fails 

Ft5~ ~~~N~:::L_--. 
Phase 2 fails 

Ft6 ~ L...--1O---L---,NT---' 

Fl - mission fails in Phase 1 
F2 - mission fails in Phase 2 
F3 - mission fails in Phase 3 
F4 - mission fails in Phase 4 
C - mission completed 

Phase 3 fails 

Ft7 ~ L...--.---'-_N..----' 

Phase 4 fails 

Figure 7.9: Construction of cause-consequence diagram - step 2 (reduced) 

from fault tree structures and placed in a new decision box preceding the first 

decision box that contains it (,Phase 1 fails'). Then the diagram is duplicated 

on both outlet branches and following the YES branch all occurrences of the event 

are set to TRUE, and following the NO branch all occurrences of this event are set 

to be FALSE. The cause-consequence diagram for this step is shown in Figure 7.7 

and the fault trees in Figure 7.8. As the probability of event 'Phase 1 fails' on the 

YES branch ofthe decision box 'A fails in phase l' is 1, the diagram can be reduced 

(Figure 7.9). 

Following the order of component failure events given the process is repeated 

and events are extracted from fault tree structures and placed in new decision 

boxes. The diagram is developed using normal cause-consequence analysis process. 

The final cause-consequence diagram obtained following this procedure is shown in 

Figure 7.10. 

Once the cause-consequence diagram is obtained the same procedures for 

qualitative and quantitative analysis as for Method 1 should be followed. The cause­

consequence diagram obtained using Method 2 gives the same result for the mission 

failure probability as the one obtained using Method 1. 
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From these two different methods it can be noticed that component ordering is 

import,ant, a.s different. variable orderings will pn)(luce (lifferent size diagrams. Both 

methods will give the same quantitative results, but they might produce different 

cause-consequence diagrams, as is also the case for binary decision diagrams. For 

example, using a different order of component failure events in Method 2 gives only 

32 system outcome events compared with <:17 in Method 1. The efficiency of the 

met-ho(l will be very lI111ch inflllew:ed by the ordering chosen as this will influence 

the size of he cause-consequence diagram. The smaller the size of the diagram, the 

faster computing time would be to obtain the reliabiIity/unreliabiIity of the system. 
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7.4 Program description 

To assist with the cause-consequence diagram construction and analysis for 

phased mission systems a computer program was written. Method 1 was chosen 

for this code implementation. 

The program consists of the following sections: 

• Data input. The inputs are read from text files, which contain the following 

information about the phased mission: 

- number of phases; 

- list of text files with phase fault trees; 

- a text file with component failure probabilities. 

The fault tree text files are organised in the following way: 

- gate name; 

- gate type: 1 for 'And', 0 for 'Or'; 

- number of basic events connected to the gate; 

- number of gates connected to the gate; 

- list of basic events; 

- list of gates. 

• Basic event transformation. In this procedure basic events in all phases are 

replaced by an 'Or' combination of failure events for that and all preceding 

phases. For the phase 1 the new 'Or' gate would have only 1 event and therefore 

is simplified to omit the unnecessary gate. 

• Cause-consequence diagram construction. To construct the cause-consequence 

diagram an order in which the basic events will be considered needs to be 

chosen. The options given are either to consider basic events in the same 

order as they are read from the input files or to enter a different ordering. 

Once the ordering has been chosen, the program places basic events in the 

decision boxes and depending if the top event of the phase fault tree occurs or 

not, they are attached to the relevant outcome of the previous decision box. 
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• Cause-consequence diagram minimisation. Once the cause-consequence 

diagram is constructed there could be redundant decision boxes where the 

phase failure would occur regardless whether the basic event fails or not. These 

boxes are removed. 

• Cause-consequence diagram analysis. Once the final cause-consequence 

diagram is obtained, the probabilities are assigned to the decision boxes and 

the probabilities of outcomes are calculated. The probabilities are read from a 

text file which lists all basic events in the phase and the corresponding failure 

probabilities. The results are printed on screen and are also saved in a text 

file for ease of reference. 

7.5 The use of ordering schemes in construction of CCD and BDD 

Eight of the ordering schemes described in Chapter 5 were used to analyze the 

importance of variable ordering for construction of CCD and BDD. The schemes 

are: 

• Modified top-down 

• ~10dified depth-first 

• Modified priority depth-first 

• Depth-first: with number of leaves 

• Non-dynamic top-down weights 

• Dynamic top-down weights 

• Bottom-up weights 

• Event criticality 

For cause-consequence diagrams the performances of the schemes were assessed 

in two ways: 

• Component failures are ordered in each phase separately. In this case basic 

event transformation is applied to fault trees of each phase separately and then 

ordering schemes used to produce an order in which component failures should 
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be considered. This enables the exact phase failure probability to be obtained 

as well as mission failure and mission success probabilities. 

• Component failures are ordered for the whole mission. Basic event transformation 

is applied to fault trees at each phase as before, but before ordering the failures, 

all phases are joined in one fault tree under an 'OR' gate. This enables the 

mission failure and mission success probabilities to be calculated, but it does 

not give the probabilities of phase failure. 

In each case the number of consequence boxes and total number of boxes (decision 

boxes + consequence boxes) was recorded. 

For the construction of binary decision diagrams the failures were ordered 

separately for each phase. 

The performance results of ordering schemes is shown in tables 7.1 - 7.3 below. 

As can be noticed from the tables below, structural importance measure, described 

in Section 2.6.1.1 was applied to component ordering for just a few examples at is 

quite computationally intensive. For the examples to which it was applied it did not 

produce the best results. 

The examples used to compare the efficiency of the ordering schemes are as 

follow: 

Example 1 Three phases, three components. Phase 1 - one gate, phase 2 - two gates, 

phase 3 - one gate 

Example 2 Three phases, five components. Phase 1 - two gate, phase 2 - three gates, 

phase 3 - two gates 

Example 3 Four phases, four components. Phase 1 - two gates, phase 2 - two gates, phase 

3 - two gates, phase 4 - one gate 

Example 4 Four phases, four components. Phase 1 - two gates, phase 2 - two gates, phase 

3 - two gates, phase 4 - one gate. The difference between this example and 

the one above is that all gates have been inverted - gate 'AND' was changed 

to gate 'OR' and gate 'OR' to gate 'AND' 

Example 5 Four phases, five components. Phase 1 - two gate, phase 2 - three gates, phase 

3 - two gates, phase 4 - three gates 
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Example 6 Four phases, five components. Phase 1 - one gate, phase 2 - four gates, phase 

3 - one gate, phase 4 - two gates 

Example 7 Five phases, five components. Phase 1 - two gate, phase 2 - three gates, phase 

3 - two gates, phase 4 - three gates, phase 5 - one gate 

Example 8 Five phases, five components. Phase 1 - one gate, phase 2 - four gates, phase 

3 - one gate, phase 4 - two gates, phase 5 - two gates 

Example 9 Four phases, fourteen components. Phase 1 - one gate, phase 2 - five gates, 

phase 3 - five gates, phase 4 - six gates 

Example 10 Five phases, fourteen components. Phase 1 - one gate, plia..'ie 2 - five gates, 

phase 3 - five gates, phase 4 - six gates, phase 5 - two gates 

Example 11 Three phases, nine components. Phase 1 - three gate, phase 2 - six gates, 

phase 3 - three gates 
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Example 1 14 16 14 14 14 14 14 14 14 

Example 2 99 150 99 150 99 99 150 99 111 

Example 3 64 76 64 76 64 64 64 64 67 

Example 4 119 151 119 151 119 119 151 119 

Example 5 472 506 472 506 472 472 506 472 484 

Example 6 202 445 202 445 202 202 202 202 

Example 7 995 989 955 989 955 955 989 955 967 

Example 8 575 889 575 889 575 575 575 575 

Example 9 456 1681 365 1681 456 456 461 456 

Example 10 669 2191 600 2191 669 669 669 669 

Example 11 3532 4862 4044 4862 3532 3562 4746 3532 

Table 7.1: CCD: ordering phases separately - number of decision boxes 
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Example 2 91 150 99 99 92 114 197 91 91 

Example 3 59 76 64 60 53 47 54 46 67 

Example 4 89 151 119 107 87 79 20 54 

Example 5 469 506 472 472 472 480 290 378 477 

Example 6 198 445 202 202 201 203 135 193 

Example 7 953 989 955 878 876 886 729 887 867 

Example 8 258 889 575 750 159 266 103 148 

Example 9 336 1681 365 365 453 412 1208 357 

Example 10 298 2191 600 600 393 981 1413 248 

Example 11 1057 4862 4944 4044 675 1149 2695 400 

Table 7.2: CCD: ordering all mission - number of decision boxes 
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Example 4 238 625 238 625 238 238 625 238 

Example 5 4545 7734 4545 7734 4545 4545 7731 4545 

Example 6 3483 5491 3483 5491 3483 3483 3483 3482 

Example 7 120947 211047 120947 211047 120947 120947 211047 120947 

Example 8 25152 50157 25152 50157 25152 25152 25152 25152 

Example 9 8694 43647 8642 43647 8694 8694 15311 8694 

Example 10 209314 - 206270 - 209314 209314 209314 209314 

Example 11 4692 15231 9438 15231 4692 4692 5488 4692 

Table 7.3: BDD: ordering phases separately - number of non-terminal nodes 

It can be seen that there is no ordering scheme that is best overall. For example, 

the worst ordering scheme for one example will be the best for another (see Bottom­

up weights ordering scheme in Table 7.1: it produces one of the worst results for 

Example 2, but one of the best results for Example 8). But, as it can be noticed 

from the tables above, the size of cause-consequence diagram is considerable smaller 

that that of binary decision diagram. This can be seen comparing Tables 7.1 and 

7.3 (i.e., Example 9, using modified top-down ordering scheme has 456 decision 

boxes in cause-consequence diagram, while using the BDD it has 8694 non-terminal 

nodes). In a few cases the binary decision diagram could not be produced as there 
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was not enough computational capacity. This was for Example 10, which is a five 

phase system with fourteen components. The cause-consequence diagrams produced 

for those examples where considerably smaller. So, it can be concluded, that for 

the same phased mission systems, the cause-consequence diagram method is more 

efficient in terms of the size of diagram. Therefore the use of cause-consequence 

diagram method would help to reduce the computational resources needed for 

analysis of the phased mission systems. As for the best performing ordering scheme 

based on the few example used, on average, the event criticality performed well in 

both ordering components in each phase separately and ordering components for all 

mission at once. The second best one was non-dynamic top-down weights followed 

by modified top-down approach. 

7.6 Analysis of phased mission system with multiple faults 

For many systems a mission may be performed where multiple faults are possible. 

The outcomes will be different depending on the failure. An example of such a 

system would be an aircraft flight, where faults could be classified as minor, major 

or catastrophic. A minor fault would allow the flight to continue to the designated 

destination, a major fault would cause an emergency landing and a catastrophic 

fault would lead to loss of the aircraft. 

This section considered an example of phased mission system with multiple faults. 

It is shown that phased missions with multiple faults can be analysed using cause­

consequence diagrams, although it is more computationally intensive than in the 

single fault case. 

Basic rules for creating a cause-consequence diagram for a phased mission system 

with multiple faults are outlined below: 

1. Basic event transformation is applied to fault trees for the phase as for single 

fault case. Each fault needs to be represented by a different fault tree. 

2. Separate cause-consequence diagrams are constructed for each fault in each 

phase. The same ordering scheme is used for each phase. 

3. All failures for the same phase are combined into one cause-consequence 

diagram. This can be done by attaching the CCD for the next failure to each 
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outcome of the previous failure and removing repeated/inconsistent events. 

The consequences for each failure are noted in the consequence box. 

4. Once the cause-consequence diagrams are obtained for each phase, they can 

be combined into one diagram for the whole mission. Each consequence box 

contains consequences for all failures within each phase. Again, this is done by 

attaching the CCD for next phase to each consequence of the previous phase 

(unless all failures considered occur in the previous phase) and then removing 

repeated/inconsistent events. 

5. Quantification is performed using the standard quantification technique of 

cause-consequence analysis for phased mission systems. At this point, the cut 

sets and probabilities can be calculated for each fault separately. 

7.6.1 Example 

An example is used to illustrate a cause-consequence analysis method for phased 

missions when there are multiple failures possible in each phase. The example shown 

is of a three phased mission. The system is made up of three components and there 

are two faults to consider - minor and major. For example, in phase 1 if 'A' or 'B' 

fail then a minor failure occurs, but if in addition to 'A' or 'B' failing also fail 'C' 

or 'D', then a major failure occurs, such as loss of aircraft, etc. The fault trees for 

each failure in each phase are shown in Figure 7.11. 

Phase 1 Phase 2 Phase 3 

A i\ H A H C A A n 

Figure 7.11: Fault trees for the mission 

The first step of the algorithm reqUIres basic event transformation to be 

performed to account for possible failures of the component in previous phases. 
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The next step is to construct cause-consequence diagrams for each failure in the 

phase. As this example is illustrating a three phased mission, this step will need to 

be repeated for each phase. In each following phase cause-consequence diagrams will 

get bigger as the number of basic events increases. The order in which components 

are considered is: 

Cause-consequence diagrams for each failure in the phases are shown in Figures 7.12 

to 7.15. 

Minor Major 

Figure 7.12: Phase 1 - cause-consequence diagrams for each failure 
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Minor Major 

Figure 7.13: Phase 2 - cause-consequence diagrams for each failure 

Minor 

Figure 7.14: Phase 3 - cause-consequence diagrams for minor failure 



Major 
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To obtain a combined cause-consequence diagram for the first phase, the cause­

consequence diagrams for each failure need to be joined together. This is done 

by connecting the cause-consequence diagram for second fault to each outcome 

of the cause-consequence diagram for the first fault. In this example, the cause­

consequence diagram for minor fault is attached to cause-consequence diagram 

for major fault. The outcome of this procedure is shown in Figure 7.16. The 

consequence boxes now show whether major or minor fault occurred or system 

succeeded in this phase. 

Figure 7.16: Phase 1 - combined cause-consequence diagram 
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In the same way the cause-consequence diagrams for each failure for phases 2 

and 3 are combined into one diagram for each phase. These are shown in Figure 7.17 

for phase 2 and Figure 7.18 for phase 3. 

Once the cause-consequence diagrams are obtained for each phase, they can be 

combined in one diagram for the complete mission. The resulting cause-consequence 

diagram for this mission is shown in Figure 7.19. The final diagram is obtained 

by attaching the cause-consequence diagram for the following phase instead of the 

consequence boxes that state either system success in the particular phase or minor 

failure. Then the repeated and inconsistent events are removed from the diagram 

(for example, event 'A fails in phase l' would be repeated in all three phases, but 

only one occurrence of this event is left in each path). 

Figure 7.17: Phase 2 - combined cause-consequence diagram 
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7.6.2 Quantitative and Quantitative analysis 

Qualitative analysis in case of multiple faults is performed the same way as 

described in Section 7.3.2, just in this case instead of determining list of causes for 

phase failures, these lists can be obtained for each fault in each phase. The lists are 

simplified in the same way as before. 

The quantitative analysis is performed the same way as in Section 7.3.3, but 

instead of calculating the probability of each phase, the result can be obtained for 

each fault in different phases. 

7.7 Discussion 

As it has been shown in this section, cause-consequence diagram method can be 

successfully implemented for the analysis of phased mission systems. This method 

is superior over binary decision diagrams as it can represent a whole system in one 

diagram without loosing valuable information about phase failures. Also, as the 

diagram is easy to follow and contains descriptions of components states, it can be 

presented to those without much prior knowledge in risk analysis. 

It has also been shown here that in the same way as with the binary decision 

diagrams, the ordering of the components can influence the size of the diagram 

hugely and the selection of an effective variable ordering scheme can produce a very 

efficient cause-consequence diagram for the phased mission problem. 

Two methods were presented for the construction of the cause-consequence 

diagram for phased mission. For this project, method 1 as presented earlier was 

implemented as a computer code for extraction of the results. 

Although the methods shown above offer different ways of constructing the cause­

consequence diagram: the quantification procedure is the same for both methods. It 

has also been shown that as the cause-consequence diagram does not loose system 

state information when moving on to the next phase, it can be used to model not 

only single fault systems, but also those, which can fail in different ways. 



8. MODELLING AIRCRAFT FLIGHT USING THE 

CAUSE-CONSEQUENCE ANALYSIS 

8.1 Introduction 

This chapter presents an example of the application of the cause-consequence 

diagram method to a non-repairable phased mission system. The system considered 

is an aircraft flight consisting of six phases: take off, climb, cruise, descent, approach 

and landing. Each phase uses differing functional elements of the system and so the 

call~es offailnre in each phase are different. Using an aut.omated approach developed 

previously to construct and quantify the cause-consequence diagram the causes of 

mission failure are identified and investigated. 

8.2 Aircraft Bight system 

To illustrate the use of the CCD method for complex systems an aircraft flight 

has been considerecL The flight considered will consist. of ti phases: take off, climb, 

cruise, descent, approach and landing. A diagram of the flight is shown in Figure 8.l. 

Each phase of the flight may utilise different systems within the aircraft. For 

example, the landing gear is required only in the climb and landing phases. The 

aircraft systems that were used in this model are: 

• Propulsion system, which consists of: 

- Gas turbine engine. A 2 engine aircraft is considered. 

- Thrust. The control of engine thrust is achieved by altering the fuel flow 

to the combust.ion chamber of t.he engine. If t.he fuel flow is increased, the 

resulting gas temperature is higher. The higher temperature means that 

more thermal energy conversion can take place at the turbines resulting in 

an increase in speed. As the turbines are directly linked to their relative 
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Figure 8.1: Aircraft Flight Diagram 

compressors, an increase in compressor speed occurs with a resultant 

increase in the engine mass flow and hence thrust. 

• Flight control system. This can be considered as 2 subsystems. 

- Primary flight control. The aim of primary flight control is to control 

manoeuvre of the aircraft about each of its axes. 

- Secondary flight control. The secondary flight control is used intermittently 

to change the value of lift and drag generated by the aircraft surfaces, 

but not affect the trajectory. 

• Fuel system. The aim of the fuel system is to provide an effective means 

of replenishment, storage and fuel feed to the engines under all anticipated 

operating conditions. It can be considered as 2 subsystems: 

- Fuel feed which provides a flow of fuel to the engines under all anticipated 

flight conditions. 

- Fuel transfer which provides a means of fuel transfer between tanks and 

via external sources in flight and during h'TOllIl<i sibmtions. 

• Pneumatic supply. To enable main engine starting from a variety of supply 

air sources an integrated pneumatic system is incorporated into the aircraft 

design. This system not only facilitates starting, but also supplies low pressure 

air for other aircraft services such as anti-icing and water tank pressurisation 
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• Hydraulic system. Many of the aircraft services are powered by hydraulic 

power inchuling flight control systems, flaps, ret.rad.ahle nndercarriages and 

wheel brakes. It has the advantage of transmitting high forces rapidly and 

accurately along the lightweight pipes of any size, shape and length. 

• Environmental control system. The environmental control systems overall 

aims are to minimise the risk to the safe operation of the aircraft in all 

anticipated weather and operational conditions and to ensure the safety and 

comfort of the people on aboard. It can be considered to be made up of the 2 

subsystems: 

- Anti-icing system. The anti-icing system consists of ice sensing and ice 

removal. Most severe icing occurs when a cold aircraft descends from 

high altitude through rain or cloud which is already below zero ambient 

temperatures. The effects of ke may include increase in mass, loss of lift 

(small accretion can reduce lift by 30%), increase in drag (ice formation 

can increase drag by 200%), jammed controls, obscured vision, loss of 

engine power (intake restriction), etc. 

- Cabin control. At an altitude of about 9000m, typical of an aircraft 

cruising altitude, ambient air pressure is 300.9 millibars and temperature 

-44.44°C. Humans feel comfortable with air pressure at 1013.2 millibars 

and temperature 20°C. To reproduce these conditions at high altitude 

would necessitate an extremely strong and heavy structure. As a 

compromise 2348m is the recognised maximum normal internal cabin 

altitude for air transport aircraft. This altitude would provide safe 

and comfortable levels of oxygen and require a lighter structure than 

the one of sea level as the maximum differential would be only 451.8 

millibars compared with the one of sea level (712.3 millibars). The 

cabin conditioning system has also to compensate for the low ambient 

temperature and bring the internal cabin temperature into a range that is 

comfortable for humans. In summary the subsystem has to provide safe 

oxygen levels, ensure comfortable cabin temperature, control humidity 

and provide freshness. 

• Landing gear. Landing gear is defined as those components necessary to enable 
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take-off and landing to be carried out safely. It excludes thrust reversal and 

control surfaces. '!\vo failure modes have been considered: 

- Retraction - up 

- Retraction - down 

• Flight navigation system. This is made up of 4 subsystems: 

- INS. An inertial navigation system which measures the position and 

altitude of a vehicle by measuring the accelerations and rotations applied 

to the system's inertial frame. The system is aligned to start up with 

known coordinates. It is widely used because it refers to no real-world 

item beyond itself. It is therefore immune to jamming and deception. 

- GPS. Global Positioning System (GPS) is an accurate means of providing 

continuous worldwide navigation information using a system of satellites. 

The system consists of three main components: control, space and user. 

GPS provides highly accurate positional, velocity and time data. 

- VOR/ ADF /DME. VOR (VHF Omni-Range) is an internationally recognised 

short-range navigation aid. The usable VOR range varies with aircraft 

altitude but is effective up to about 300 miles. The principle of 

operation is based on a ground-based transmitter providing radial signal 

output, this is received by equipment on the aircraft to provide bearing 

information to an iclentified beacon. Automatk Diredion Finding (ADF) 

function identifies bearing to a beacon to which the aircraft receiver is 

tuned. Distance Measuring Equipment (DME) is often integrated with 

VOR to provide range and bearing information. Initially the aircraft 

transmits a signal to the ground receiver which then responds sending a 

f;ignal to the aircraft.. The lapsecl time clifferelH:e from trallf;mission to 

reception provides the data to calculate the slant range from aircraft to 

ground station. 

- ILS/MLS. Instrument Landing System (ILS)/Microwave Landing System 

(MLS) is a landing aid providing both lateral and vertical guidance. 

Lateral guidance is provided by a VHF localiser aerial and vertical 

(descent slope) by a UHF glideslope aerial. The development and 

adoption of the MLS provides improvement in the quality of guidance 
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over ILS. The system has a wider scope of view and higher scanning 

rates. This provides increased data with which to control the aircraft. 

• Electrical system. The primary function of an aircraft electrical system is to 

generate, regulate and distribute electrical power throughout the aircraft. The 

aircraft electrical power system is used to supply power for services including 

lighting, avionics, fuel system booster pumps and valves, control of hydraulic 

system components, in-flight entertainment, flight control systems and aircraft 

environmental control. Essential power is power that the aircraft needs to be 

able to continue safe operation. 

The aircraft flight chosen was taken to be one that included flying over the ocean 

(i.e. London to New York). Also, for modelling purposes it was decided to consider 

a twin-engine aircraft (i.e. Boeing 777). Redundancy is not taken into account 

in this example, except for the engines. It was assumed that all components are 

non-repairable whilst in flight. 

The failure modes considered and notation adopted are shown in Table 8.1. The 

failures considered in this example would be catastrophic. The failure frequencies 

used in this example are only for modelling purposes and may not necessarily 

represent the real system. 
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System Subsystem Failure mode Notation Failures 

description /million 

hours 

Propulsion Engine Failure of engine 1 El 0.999 

Failure of engine 2 E2 0.999 

Thrust Failure of thrust to T1 0.295 

engine 1 

Failure of thrust to T2 0.295 

engine 2 

Failure of thrust TR 0.467 

reverser 

Flight control Primary Failure of primary PFCF 0.147 

system flight control flight control 

Secondary Failure of secondary SFCF 0.139 

flight control fight control 
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Fuel system Fuel feed Failure of fuel feed FFF 0.393 

Fuel transfer Failure of fuel FTF 0.393 

transfer 

System Subsystem Failure mode Notation Failures 

description /mhours 

Pneumatic Pneumatic Failure of pneumatic P 0.288 

supply supply supply 

Hydraulic Hydraulic Failure of hydraulic HS 0.446 

system system system 

Environmental Anti-icing Failure of ice sensing AIS 0.086 

control system system 

Failure of ice AIR 0.131 

removal 

Cabin control Failure of pressure CCPC 0.139 

system control 

Failure of CCTC 0.148 

temperature control 

Landing gear Landing gear Failure of landing LGU 0.205 

gear retraction up 

Failure of landing LGD 0.205 

gear retraction down 

Flight Flight Failure of INS INS 0.0257 

navigation navigation 

system system 

Failure of GPS GPS 0.237 

Failure of VOR 0.309 

VOR/ ADF /DME 

Failure of ILS/MLS ILS 0.0026 

Electrical Electrical Failure of power ESP 0.0676 

system system 

Table 8.1: Failure rates for the subsystems 
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8.2.1 Phase 1 

Phase 1, the take off phase, will be completed successfully: if all systems required 

in this phase operate successfully. These systems are: propulsion system (both 

engines have to function properly), flight control, fuel feed, pneumatic supply, 

hydraulic system and anti-icing system. The fault tree for failure in phase 1 is 

shown in Figure 8.2 which has minimal cut sets shown in Table 8.2. 

Figure 8.2: Fault Tree for Phase 1 

SFCF E2 FFF P 

AIR El T2 PFCF 

AIS HS T1 

Table 8.2: Minimal cut sets for Phase 1 

8.2.2 Phase 2 

For phase 2, the climb phase, propulsion, hydraulic and pneumatic systems are 

required to work as in phase 1. Also required are: fuel transfer, primary flight 

control, environmental control, the flight navigation systems GPS, VOR/ ADF /DME 
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and landing gear. The fault tree for failure in phase 2 is shown in Figure 8.3 which 

has minimal cut sets shown in Table 8.3. 

Figure 8.3: Fault Tree for Phase 2 

AIR El Tl 

AIS HS T2 

E2 FTF P 

LGU VOR 
PFCF CCPC 

GPS CCTC 

Table 8.3: Minimal cut sets for Phase 2 

8.2.3 Phase 3 

During cruise, propulsion system failure will be caused by the failure of both 

engines which will lead to aircraft failure. The thrust wouldn't cause critical failure 

in this phase. Fuel feed, flight contraIl hydraulic system and pneumatic supply are 

required to work the same way as in phase 2. 

Anti-icing system failure wouldn't be critical during cruise, but cabin control 

failure would as it is necessary to keep cabin pressure and temperature within a 

comfortable range. Failure of the navigation systems GPS or INS would lead to 

failure in this phase as would electrical system failure (power failure). The fault tree 
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for failure in phase 3 is shown in Figure 8.4 which has minimal cut sets shown in 

Table 8.4. 

Figure 8.4: Fault Tree for Phase 3 

HS P El· E2 GPS 

FTF PFCF ESP INS 

CCTC 

CCPC 

Table 8.4: Minimal cut sets for Phase 3 

8.2.4 Phase 4 

Failure in phase 4, the descent phase, has causes similar to failure in the climb 

phase, phase 2, as shown in the fault tree in Figure 8.5. Failure will occur if the 

pnellluat.ic, hydraulic, fuel, flight control awl environment.al control systems fail in 

the same way as in phase 2. The propulsion system failure will be caused by the 

failure of both engines which will lead to aircraft failure. The thrust wouldn't cause 

critical failure in this phase. The failure of the GPS navigation system will also lead 

to phase failure. The minimal cut sets for this phase are shown in Table 8.5. 

AIR 

AIS 

HS El· E2 

FTF PFCF 

P 

CCTC 

CCPC 

GPS 

Table 8.5: Minimal cut sets for Phase 4 
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8.2.5 Phase 5 

During approach, phase 5, the propulsion system, pneumatic supply and 

hydraulic system are required to work as in the previous phase. For environmental 

control - only the anti-icing system failure would be critical. Flight control 

system will again depend on both primary and secondary flight controls - failure 

of any of them would be critical. During descent flight navigation needs GPS, 

VOR/ ADF /DME and ILS/MLS and hence failure of any of them will lead to phase 

failure. The fault tree for failure in phase 5 is shown in Figure 8.6 which has minimal 

cut sets shown in Table 8.6. 

SFCF AIS El· E2 P GPS 

AIR HS PFCF ILS VOR 

Table 8.6: Minimal cut sets for Phase 5 

8.2.6 Phase 6 

Failure will occur in the landing phase if the hydraulic system and flight control 

system fail. Also failure of the flight navigation system ILS /MLS and the landing 

gear is critical. In addition, the electrical system and propulsion system (both 

engines and thrust reverser) are required to work. See the fault tree in Figure 8.7 

Figure 8.5: Fault Tree for Phase 4 
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Figure 8.6: Fault Tree for Phase 5 

with minimal cut sets given in Table 8.7. 

Figure 8.7: Fault Tree for Phase 6 



,-----------------~-- - --
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SFCF PFCF El· E2 ESP 

LGD HS ILS TR 

Table 8.7: Minimal cut sets for Phase 6 

8.3 Construction of the Cause-Consequence Diagram 

In order to construct the cause-consequence diagram it is necessary to assume 

a certain order in which the component failure events will be considered. For this 

example we assume the following order: 

FFFI < PI < HSI < TI < T21 < Ell < E21 < PFCFI < SFCFl < AIS1 < 
AIR1 < LGU1 < LGU2 < FTF1 < FTF2 < PFCF2 < P2 < HS2 < El2 < E22 < 
CCTC1 < CCTC2 < CCPCl < CCPC2 < AIS2 < AIR2 < GPS1 < PS2 < 
VORl < VOR2 < ESPl < ESP2 < ESP3 < FTF3 < PFCF3 < HS3 < P3 < 
E13 < E23 < CCTC3 < CCPC3 < GPS3 < INSl < INS2 < INS3 < P4 < 
HS4 < FTF4 < GPS4 < E14 < E24 < CCTC4 < AIS3 < AIS4 < AIR3 < 
AIR4 < P5 < HS5 < E15 < E25 < AIS5 < AIR5 < PFCF5 < SFCF2 < 
SFCF3 < SFCF4 < SFCF5 < GPS5 < VOR3 < VOR5 < ILS1 < ILS2 < 
ILS3 < ILS4 < ILS5 < ESP4 < ESP5 < ESP6 < ILS6 < LGDl < LGD2 < 
LGD3 < LGD4 < LGD5 < LGD6 < HS6 < TRl < TR2 < TR3 < TR4 < TR5 < 
TR6 < E16 < E26 < PFCF6 < SFCF6 

Where the subscripts refer to the phase in which the failure occurs. The program 

allows the order to be entered manually, or to automatically generate it from the 

fault trees. The order of events shown above is automatically generated by the 

program, where the components are considered in the order as they appear in fault 

tree data files. 

Following the order of component failures given, each component failure event is 

added to the diagram as a decision box one by one, as described in cause-consequence 

diagram construction method 1 (see Section 7.3.1). For this example, consequences 

Fl, F2, F3, F4, F5 and F6 mean mission failure due to system failure in phase 1, 2, 

3, 4, 5 or 6 respectively, C represents mission success. 

The resulting diagram output by the program is represented in a list form. Each 

decision/consequence box is assigned a number and the program lists the numbers 

of the decision/consequence boxes it is pointing to on the YES and NO branches. 

For each box, the program also gives the number of the previous box in the branch. 
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8.4 Analysis of the Cause-Consequence Diagram 

. In order to quantify the resulting cause-consequence diagram and obtain the 

probability of mission failure it is necessary to input data for the subsystems. 

No real data for the system was obtained, and data has been generated which 

was believed to be realistic for the subsystems considered. The data is included in 

Table 1. 

The durations for the phases were taken to be those of a London (Heathrow) -

New York (J.F. Kennedy) flight and are shown in Table 8.8. 

Phase 1 17 min 

Phase 2 28 min 

Phase 3 380 min 

Phase 4 28 min 

Phase 5 2 min 

Phase 6 5 min 

Table 8.8: Phase duration times 

8.4.1 Qualitative analysis 

Conditions causing any outcome event (implicants) are established by investigating 

each decision box on the path to the outcome and listing the component failure or 

success in the phase as indicated by the exit path from the decision box. In the 

example considered there are 375 failure outcomes. The component conditions for 

each of these outcomes were determined and some of them are listed below. The 

notation used for the events is that given in Table 8.1. Numbers in front of the 

implicant indicate the number of the consequence box in the cause-consequence 

diagram. 

F1 - Mission failure in Phase 1 
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12. Ell A T2l A Tl A HSl A HA FFFl 

14. E2l A Ell A T2l A Tl A HSl A PI A FFFl 

16. PFCFl A E2l A Ell A T2l A Tl A HSl A HA FFFl 

18. SFCFl A PFCFl A E2l A Ell A T2l A Tl A HSl A PI A FFFl 

20. AISl A SFCFl A PFCFl A E2l A Ell A T2l A Tl A HSl A PI A FFFl 

22. AIRl AAISl ASFCFl A PFCFl A E2l AE1l AT2l ATl A HSl AH A FFFl 

Implicants for the later phases contain more events due to consideration of the 

earlier phases. For example, one implicant for phase 2 is: 

F2 - Mission failure in Phase 2 

25. LGU2 A LGU1 A AIRl A AISl A SFCFl A PFCH A E2l A Ell AT2l A Tl A 

HSl AH A FFFl 

Each failure mode in the list contains a progression of states for the same 

component. For example, outcome 25 has component LGU working throughout 

phase 1 and then failing in phase 2. After simplification outcome 25 would be: 

Considering just the failed states for the systems which lead to mission failure 

gives minimal cut sets. Some of the minimal cut sets leading to phase failures are 

shown in Table 8.9. The notation used for the events is that given in Table 8.l. 

These minimal cut sets are obtained after basic event approximation was applied to 

fault trees of each phase. The minimal cut sets in Table 8.2 to Table 8.7 list minimal 

cut sets before basic event transformation is applied to fault trees. 
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Phase 1 Phase 2 Phase 3 

AIRI AIR2 CCPS3 
AISI AIS2 CCTC3 

Ell CCPCI E13/\ E23 

E21 CCPC2 ESPt 

FFFI CCTCI ESP2 
HSI CCTC2 ESP3 

PI E12 FTF3 

PFCFI E22 GPS3 
SFCFI FTFI HS3 

Tll FTF2 INSI 

T22 GPSI INS2 
GPS2 INS3 
HS2 P3 

LGUI PFCF3 
LGU2 
P2 

PFCF2 

VORI 

VOR2 

Table 8.9: Minimal cut sets 
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Consequence Probability Probability Difference 

(exact) (coherent 

approximation) 

Failed in phase 1 0.00028335 0.00028336 -0.00000001 

Failed in phase 2 0.00050429 0.00050447 -0.00000018 

Failed in phase 3 0.00087139 0.00087238 -0.00000099 

Failed in phase 4 0.00015541 0.00015566 -0.00000025 

Failed in phase 5 0.00022142 0.00022183 -0.00000041 

Failed in phase 6 0.00040186 0.00040272 -0.00000086 

Completed 0.99756235 0.99755957 0.00000278 

Table 8.10: Mission results 

8.4.2 Quantitative analysis 

The results for the probability of mission failure and success have been obtained 

using the developed program for phased mission analysis and are shown in 

Table 8.10. 

As the system investigated is very reliable, the coherent approximation results 

are very close to exact results with the difference starting in the 6th decimal place. 

For the generated data the probability of the aircraft completing flight 

successfully was found to be 0.997562. As no real life data or result were obtained, 

it is not possible to compare the result of the modelling with the real life. 

8.5 Conclusions 

In this chapter an example of aircraft flight was presented. Although the system 

in reality is much more complex, it gives an overview of the capability of the cause­

consequence diagram and demonstrates that cause-consequence diagram methods 

can be applied to real life non-repairable systems. 

In this example fault trees were constructed for each phase to illustrate system 

behaviour. The computer code implementing method 1 for the construction of the 

cause-consequence diagram was used to obtain the results. The results obtained 

could not be compared with the real life results as no real data was available for 

the system and also because of the simplified approach to the example. Exact and 
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coherent approximate quantification techniques were used on the cause-consequence 

diagram, both of them producing very close results. This was not surprising for 

this example as coherent approximation usually produce results close to the exact 

calculation for very reliable systems. 



9. MODULARISATION OF PHASED MISSION SYSTEMS 

9.1 Introduction 

In order to reduce the complexity of a fault tree, modularisation techniques can 

be applied. One such technique identifies independent subtrees within the fault tree, 

which are called modules. A module is an independent section of a fault tree with 

no inputs that appear anywhere else in the tree and no outputs to the rest of fault 

tree except from its output event. The advantage of the modularisation is that each 

module can be regarded as an individual fault tree and analysed independently. 

There are several modularisation techniques available for recognising fault tree 

modules. The modularisation technique introduced in this work is the linear-time 

algorithm [26]. It is later applied to the cause consequence diagrams for phased 

mission systems to see if it would be beneficial for reducing complexity of the larger 

systems. 

9.2 The Linear-Time Algorithm 

The modules of the fault tree are identified after two depth-first traversals of it. 

The first traversal records numbers of step-by-step visits for each gate and event: the 

step number at the first, second and final visits to that node. The second traversal 

through the fault tree fiwls the maxim11lIl of the last visit,s awl the minimum of the 

first visits to the descendants of each gate. 

To illustrate the procedure, the fault tree in the Figure 9.1 is used. 

Starting at the top event the depth-first traversal visits each gate and event and 

the order in which they are visited is shown in Table 9.1. Each gate is visited at 

least, twiee: first time on the way down the fault tree and Oll<:e more on the way 

back up the fault tree. If the gate is visited once already, then on the second visit 

to the gate its inputs are not visited. This can be noticed in step 23 in Table 9.1 

where gate 'G3' is visited for the second time, but its descendants are not re-visited. 
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Figure 9.1: Example fault tree to demonstrate the linear-time algorithm 

Step number 1 2 3 4 5 6 7 8 9 10 11 12 

Node Top G1 A G4 G5 A F G5 G6 G H G6 

Step number 13 14 15 16 17 18 19 20 21 22 23 24 

Node G4 G1 G2 B G3 C D E G3 G2 G3 Top 

Table 9.1: First traversal through the fault tree 

Gate Top G1 G2 G3 G4 G5 G6 

First visit 1 2 15 17 4 5 9 

Second visit 24 14 22 21 13 8 12 

Last visit 24 14 22 23 13 8 12 

Max 23 13 23 20 12 7 11 

Min 2 3 16 18 3 3 10 

Table 9.2: Step numbers for gates 
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Table 9.2 and Table 9.3 show step numbers for the first, second and last visits 

to each gate and event respectively. 

Gate A B C D E F G H 

First visit 3 16 18 19 20 7 10 11 

Second visit 6 16 18 19 20 7 10 11 

Last visit 6 16 18 19 20 7 10 11 

Table 9.3: Step numbers for events 

The second traversal through the fault tree determines the maximum of the last 

visits (max) and minimum of the first visits to the descendants (min) of each gate. 

These results are shown in Table 9.2. If any descendants of the gat.e have a first. visit. 

step number smaller than the first visit step number of the gate, then it must have 

occurred beneath some other gate and therefore this gate cannot be a module. In 

the same way, if the last visit to the any descendant of the gate occurred later than 

the second visit to the gate, then this descendant must occur somewhere else in the 

fault t.ree and t.he gat.e again cannot, be ident.ified as a IIlodule. Therefore, the gate 

can be identified as a module if and only if it satisfies both conditions: 

1. The first visit to each descendant is after the first visit to the gate. 

2. The last visit to each descendant is before the second visit to the gate. 

This ensures that none of the descendants of a particular gate can appear 

anywhere else in the fault tree, except beneath another occurrence of the same 

gate. 

From Table 9.2 can be noticed, that gates 'G2', 'G4' and 'G5' cannot be modules. 

Gate 'G2' does not satisfy the second condition as the maximum of last visits to 

each descendant is greater than the step number of second visit to the gate. Gates 

'G4' and 'G5' do not satisfy the first condition as the minimum of first visits to each 

descendant is smaller than the step number of the first visit to the gates. 

The gates 'Top', :Gl', 'G3' and 'G6' can be identified as modules. The top event 

of the fault tree will always be a module. 

Each of the modules can be replaced by modular events in the fault tree structure. 

Gate 'Gl' is replaced by event 'Ml', gate 'G3' - by event 'M3' and gate 'G6' is 
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replaced by event 'M2'. Therefore the fault tree shown in Figure 9.1 can be replaced 

by separate fault trees shown in Figure 9.2. 

7?7? 
~~ 

Figure 9.2: Modularised fault tree and modules 

9.3 Modularisation for Phased Mission Systems 

Cause-consequence diagrams for phased mission systems can be very big and 

complicated as failure of each component needs to be considered in each phase, not 

only in the phases that it is used in. Therefore modularisation has been investigated 

to reduce the size and complexity of the diagrams and ease the analysis. 

'!\vo cases of modularisation for phased mission systems were considered: 

1. when failures of each phase are important; 

2. when only failure of a mission is of interest. 

9.3.1 Modularisation of Each Phase of a Phased Mission System 

For the first case, when failures of each phase need to be determined, 

lIlodlllarisation doesn't offer a hrreat improvement.. This is because fault trees for 

each phase contain basic events that are repeated through out the whole mission 

and also are inconsistent. For example, the same event 'component A fails in phase 

l' might be repeated through all fault trees of the phased mission system. 

Consider example shown in Figure 9.3. If Rauzy's algorithm was applied to these 

fault trees, there would be one module common to both phases (gate 'G1'). The 

fault trees representing this are shown in Figure 9.4. 
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Figure 9.3: 'I\vo phase example 

Figure 9.4: 'I\vo phase example: fault trees after modularisation 

The next step is to apply basic event transformation, so that failures of the 

components in different phases would be accounted for. Fault trees after basic event 

transformation are shown in Figure 9.5. 

As can be seen from Figure 9.5, although modules 'MI I' and 'MI 2' are 

independent for each phase, it is not true for the whole mission. Failure event 

'AI' is an input in gate 'MI_I' for Phase I and in gate 'MI_2' for Phase 2. The 

same is true for failure event Bl. 

Once modules are determined, the cause-consequence diagram can be constructed. 

The ordering chosen for this example is: 

Mll > Xl > DI > Mb > YI > Y2 > D2 
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Figure 9.5: Two phase example: fault trees after basic event transformation 

The cause-consequence diagram for this phased mission after modularisation is 

shown in Figure 9.6 with cause-consequence diagrams for the independent modules 

shown in Figure 9.7. 

The quantification of the cause-consequence diagram shown in Figure 9.6 is not 

straight forward. The quantification technique used for cause-consequence diagrams 

without modularisation cannot be applied in this case, because there are repeated 

and inconsistent events throughout the cause-consequence diagram within different 

modules. For example, basic event 'AI' appears in module 'MI_I' and then again 

in module 'MI_2'. Also, if failure of component A occurs while the system is in 

Phase 1, failure of the same component cannot occur in Phase 2, which has basic 

event event 'A2' (module 'M1_2'). Therefore, to be able to perform quantification 

on this cause-consequence diagram, it needs to be expanded to its full size and 

repeated and inconsistent events have to be removed. First step in this would be to 
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Figure 9.6: Cause-consequence diagram after modularisation 

substitute a decision box of each module with the cause-consequence diagram for it. 

The expanded cause-consequence diagram is shown in Figure 9.8 and Figure 9.9. In 

these cause-consequence diagrams repeated events are crossed out with solid line. 

Events crossed out with a dashed line are removed because they are on the redundant 

branch of the repeated decision box. 

After removing irrelevant events the diagram is shown in Figure 9.lD. At this 

point the previously described quantification technique can be used. 

The resulting cause-consequence diagram is the same size as if the diagram was 

constructed using construction Method 1 as described in Section 7.3.1. Therefore, 

modularisation did not offer any benefit in this example for reducing size or 

complexity of the resulting cause-consequence diagram. However, if the system 

contains a subsystem which needs to function only for one phase of the mission, the 

modularisation could be beneficial. 
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Figure 9.7: Cause-consequence diagrams for modules 
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Figure 9.8: Expanding cause-consequence diagram 



------------------ -
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Figure 9.9: (continued) Expanding cause-consequence diagram 
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Figure 9.10: Minimized cause-consequence diagram 
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9.3.2 Modularisation of a Pl1ased Mission System as a Whole 

Some phased mission systems may have common modules between the phases 

which are independent from the rest of of the system at any phase. An example 

of this could be a specific subsystem that is required to work in all or some of 

the phases, and which inputs are not used in any other way. In this case, such a 

subsystem could be quantified separately from the rest of the system, but only if 

failure or success probability of the phase is not important. 

To illustrate this case, the example shown in Figure 9.3 is used. Gate 'G l' is an 

independent module that appears in both phases, therefore it can be replaced by 

modular event M1. The modified fault trees are shown in Figure 9.4. 

Before constructing the cause-consequence diagram, basic event transformation 

needs to be performed to take into account component failures in diff"erent phases. 

As failures of separate phases are not investigated, the basic event transformation 

is not applied to the modular event itself, but to the module. For the module 

component failures are considered up to the latest phase in which modular event 

representing the particular module occurs. For example, if it is a 5-phase system 

and a modular event is occurring in phases 1, 2 and 4, then the basic events in the 

module would be replaced by an OR combination of failure events for phases 1 to 

4. The fault trees after basic event transformation are shown in Figure 9.11. 

Figure 9.11: Modularised fault trees after basic event transformation 

After basic event transformation is applied, the cause-consequence diagram can 

be constructed. The ordering used for this example is: 

M1 > Xl > D1 > Y1 > Y2 > D2 
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Figure 9.12: Cause-consequence diagram after modularisation 

The cause consequence diagram for the phased mission when the phase failures 

are not investigated is shown in Figure 9.12. The quantification can be performed on 

this cause-consequence diagram using the same procedure as for cause-consequence 

diagram without modularisation. The cause-consequence diagram can also be 

constructed for the module and is shown in Figure 9.13. 

9.3.2.1 Qualitative and Quantitative Analysis 

Once the cause-consequence diagram is constructed, qualitative and quantitative 

analysis can be performed. In the case when failures of the phases are not considered, 

there are two possible outcomes: mission failure (F) or mission success (C). 

The qualitative analysis of the cause-consequence diagram will produce the list 

of causes for mission success or failure. Conditions causing an outcome event to 

occur are established by investigating each decision box on the path to the outcome 

and listing the component failure or success as indicated by the exit path from the 

decision box. The failure conditions for the system shown in Figure 9.3 are listed 

below: 

1. .M1 

2. M11\X1 
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M-6 

Figure 9.13: Cause-consequence diagram for module 

3. M1 /\ Xl /\ D1 

6. M1 /\ Xl /\ D1 /\ Y1 /\ Y2 /\ D2 

This list can be simplified as there are some outcomes, that contain a progression 

of states of the same component. For example, outcome 5 has component Y working 

in phase 1 and then failing in phase 2. In this case, the event that component Y is 

working in phase 1 can be removed as its failure in the later phase implies that it 

was working before. The simplified list of mission failures is listed below: 

1. Ml 

2. M1/\X1 

3. M1 /\ Xl /\ Dl 
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The reduced, or simplified, list of the component conditions leading to each 

outcome are in an appropriate form for quantification. The probabilities of each 

outcome in the list are listed below: 

1. P (M1) 

2. (1 - P (Ml)) . Xl 

3. (1- P(Ml))· (1- P(Xl))· Dl 

4. (1 - P (Ml)) . (1- P (Xl)) . (1- P (Dl)) . Yl 

5. (1- P (Ml)) . (1- P (Xl)) . (1- P (Dl)) . Y2 

6. (1 - P (M1)) . (1- P (Xl))· (1- P (Yl) - P (Y2))· D2 

The sum of all these probabilities would give the exact probability for mission 

failure. 

Probability for the modular event 'Ml' is not known and needs to be obtained 

using fault tree analysis or other reliability analysis tool. It can be obtained using 

cause-consequence diagram and this will be shown below. The cause-consequence 

diagram for modular event is shown in Figure 9.13. 

Following the same rules as before, the list of component condition for each 

outcome are listed below: 

M-I. Al 

M-2. Al/\ A2 

M-3. A1/\ A2 /\ Bl/\ Cl 

M-5. Al/\ A2 /\ Bl/\ B2 /\ Cl 

The reduced (simplified) list would be as follows: 
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M-I. A1 

M-2. A2 

M-3. A1/\ A2 /\ B1/\ Cl 

M-4. A1/\ A2 /\ B1/\ C2 

M-5. A1/\ A2 /\ B2 /\ Cl 

M-6. A1/\ A2 /\ B2 /\ C2 

Probabilities for all the outcomes of the cause-consequence diagram of modular 

event are listed below and the probability of the failure of modular event would be 

obtained by summing the probabilities of these outcome events. 

M-I. P (A1) 

M-2. P (A2) 

M-3. (1-P(A1) -P(A2)) ·P(B1) ·P(C1) 

M-4. (1 - P (A1) - P (A2)) . P (B1) . P (C2) 

M-5. (1 - P (A1) - P (A2)) . P (B2) . P (Cl) 

M-6. (1 - P (A1) - P (A2)) . P (B2) . P (C2) 

9.4 Discussion 

If modularisation is applied to fault trees before the construction of the cause­

consequence diagram, there are two different cases to be considered. If the failures 

in phases need to be investigated, then modularisation doesn't reduce the size of 

the final cause-consequence diagram significantly, as modules in different phases 

need to be substituted back into the main diagram before quantification. The time 

consumed could increase as first the modules in the fault trees need to identified, 

then the cause-consequence diagram constructed and modules need to be substituted 

back in the cause-consequence diagram before performing qualitative or quantitative 

assessment. 
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Another case is if the failures of each phase are not being investigated. In 

this ease lIlodularisatiou eau help t,o rednce the si~e of the final cause-consequence 

diagram produced and separate modules can be quantified separately. This could be 

especially useful when there are subsystems in the mission that work independently 

from the rest. 



10. CONCLUSIONS AND FUTURE WORK 

10.1 Conclusions 

The aim of this research was to develop a method for phased mission analysis 

using cause-consequence diagrams. Cause-consequence diagram method has been 

successfully implemented for the analysis of phased mission systems. 

This method is superior over fault tree analysis as: 

• It can represent a whole system in one diagram without missing out valuable 

information about phase failures. 

• The cause-consequence diagram method provides an easy and efficient way 

to perform quantitative and qualitative analysis on phased missions avoiding 

approximations that could result in inaccuracies. 

• The diagram is easy to follow and contains descriptions of components states 

and as such can be presented to those without much prior knowledge in risk 

analysis. 

In addition to these conclusions, the cause-consequence diagram method is 

superior over binary decision diagrams as: 

• It can represent a whole system in one diagram without missing out valuable 

information about phase failures. The binary decision diagrams can be used 

to obtain mission failure probability, but if the phase failure probabilities are 

of interest, separate binary decision diagrams would have to be constructed 

for each phase. When using cause-consequence diagram method, phase failure 

probability is calculated in addition to mission failure probability. 

• The diagram is easy to follow and contains descriptions of components states. 

Therefore it can be presented to those without much prior knowledge in risk 

analysis. 
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The size of the diagram is greatly dependent on the ordering of the components, 

just like with the binary decision diagrams, and the selection of an effeetive variable 

ordering scheme can influence the efficiency of the cause-consequence diagram for 

the phased mission problem and therefore the computational resources necessary 

to calculate the result. As has been shown in this work for the same phased 

mission system, the cause-consequence diagram method is more efficient than a 

binary decision diagram in terms of size. 

Modularisation is widely used in fault tree analysis, where it effectively reduces 

the size of the problem. The advantage of this technique is that each module can 

be regarded as an individual fault tree and analysed independently. The same 

principle was applied to cause-consequence diagrams to investigate its effectiveness 

in this context . 

• When phase failures are of interest, modularisation does not reduce the 

size of the final cause-consequence diagram significantly, because modules in 

different phases need to be substituted back into the main diagram before 

quantification. The time consumed could even increase because initially the 

modules in the fault trees would have to be identified, then the corresponding 

cause-consequence diagrams constructed for the modules and the main fault 

tree, and finally those modules need to be substituted back in the main cause­

consequence diagram before performing qualitative or quantitative assessment. 

• The alternative case is when the failure of each phase is not being 

investigated, as only the overall mission success or failure is of interest. 

In this situation, modularisation can help to reduce the size of the final 

cause-consequence diagram produced, because the separate modules can be 

quantified individually. This advantage is particularly evident when there are 

subsystems in the mission working independently from the rest. 

The work presented in this thesis has been applied to an aircraft flight. The 

system was simplified for the scope of this thesis. The results obtained could not 

be compared with the real life results as no real data was available for the system 

and also because of the simplified approach to the example. Exact and coherent 

approximate qnflllt.ifieat.ion t.edmiqnes were nsed on t.he eanse-consequence diagram, 

both of them producing very close results. 
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10.2 Recommendations for future work 

The current methods for construction CCD are based on the principle of 

converting fault trees into CCD. This process is not very intuitive and requires the 

use of trained personnel. If CCD could be constructed directly from the description 

of the system, a significant saving could be achieved as a result of omitting the 

construction of system fault trees. 

The component ordering schemes for single-phased mission binary decision 

diagram have been widely researched. As logics of cause-consequence diagrams 

and binary decision diagrams are very similar, the same ordering principle can be 

applied for both. Therefore, it would be useful to be able to obtain an optimal event 

ordering scheme for phased mission system that would result in the most efficient 

cause-consequence diagram for phased mission. 

The work could be extended to include phased missions with one or more 

repairable states. This may involve combining different methods available for phased 

mission analysis, such as Markov analysis and simulation techniques. 

The example of an aircraft flight presented in the thesis was simplified and only 

main sub-systems were included. This could be reviewed to expand the sub-systems 

to the following levels and to represent a more realistic system to test the approach. 

Also, as the data used for the calculations was randomly generated, it would be useful 

to obtain the data from industry for the component failures and to compare the 

results obtained using cause-consequence diagram with the real life situation. Also, 

more real-life examples should be used to illustrate the benefits of the method, such 

as applications in automotive industry, space applications and military operations 

(ballistic missile). 

As only method 1 was coded for this work, it would be useful to provide a code 

for method 2, so that the methods proposed in the thesis could be compared for 

their efficiency. 
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