

Phased Mission Analysis
Using the Cause-Consequence Diagram

Method

by

Gintare Vyzaite

Master's Thesis

Submitted in partial fulfilment

of the requirements for the award of

Master of Philosophy

of Loughborough University

September 2007

©Gintare Vyzaite 2007

V Loughborough
; Ulli\'crsitv

,.,;:J~ , ...

Pilkiu!;wn Library

Date AUG 'CA

Class T
Ace

040%04G~D No.

ABSTRACT

Most reliability analysis techniques and tools assume that a system used for a

mission consists of a single phase. However, multiple phases are natural in many

missions. A system that can be modelled as a mission consisting of a sequence of

phases is called a phased mission system. In this case, for successful completion

of each phase the system may have to meet different requirements. System failure

during any phase will result in mission failure. Fault tree analysis, binary decision

diagrams and Markov techniques have been used to model phased missions.

The cause-consequence diagram method is an alternative technique capable of

modelling all system outcomes (success and failure) in one logic diagram. The

structure of the diagram has been shown to have advantageous features in both its

representation of the system failure logic and its subsequent quantification; which

can be applied to phased mission analysis.

The work developed outlines the use of the cause-consequence diagram method

for systems undergoing non-repairable phased missions. Methods for the construction

of the cause-consequence diagram for such systems are considered. The disjoint

nature of the resulting diagram structure can be utilised in the later quantification

process. The similarity with the Binary Decision Diagram method enables the

use of efficient and accurate solution routines. The method is illustrated with

the application of an example of the cause-consequence diagram method to a non­

repairable phased mission system. The system considered is an aircraft flight. The

technique is computationally efficient and the work presented here shows that it is

superior to the binary decision diagram. The work is extended to systems that can

have multiple faults (i.e, minor, which would allow the system to progress to the

next phase, and major, which would cause system failure).

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Sarah Dunnett and my director of

research Pro£. John Andrews for their guidance over these years. Their input was

invaluable.

I would also like to thank the colleagues and academics at the department of

Aeronautical and Automotive Engineering for their help, advice and support in my

project.

My deepest thanks go to my family, without whose support and encouragement

during my studies I wouldn't be here today. Thank you for believing in me.

Finally, the greatest thank you I would like to say to Carlo, who was always next

to me.

11

1. Introduction.

2. Fault Tree Analysis .

2.1 Introduction ..

CONTENTS

..............................

2.2 Construction Of a Fault Tree

2.3 Qualitative Analysis

2.3.1 Rules Of Boolean Algebra

2.4 Fault Tree Quantification.

2.4.1 Top event probability. . .

2.4.2 Shannon's decomposition formula

2.4.3 Inclusion-Exclusion Formula ...

2.4.4 Upper and lower bounds for system unavailability

2.4.5 Minimal cut set upper bound

3

6

6

6

8

9

10

10

12

12

13

13

2.4.6 Top event frequency 14

2.4.7 Approximation of the system unconditional failure intensity 15

2.4.8 Expected number of system failures 15

2.5 Example....... 16

2.6 Importance measures 18

2.6.1 Deterministic measures.

2.6.1.1 Structural measure of importance.

2.6.2 Probabilistic measures (System Availability)

2.6.2.1 Birnbaum's measure of importance

2.6.2.2 Criticality measure of importance .

2.6.2.3 Fussell-Vesely measure of importance.

18

18

18

18

19

19

2.6.2.4 Fussell-Vesely measure of minimal cut set importance 20

2.6.3 Probabilistic measures (Systems reliability) 20

2.6.3.1 Barlow-Proschan measure of initiator importance 20

2.6.3.2 Sequential contributory measure of enabler importance 21

2.6.3.3 Barlow-Proschan measure of minimal cut set importance 21

2.7 Summary 21

3. Binary Decision Diagrams

3.1 Introduction.....

3.2 Description of the BDD

3.3 Construction of the BDD .

22

22

22

24

3.3.1 Construction of the BDD using structure function 24

3.3.2 Construction Of the BDD Using If-Then-Else Approach. 26

3.4 Qualitative Analysis Of the BDD . 29

3.4.1 Minimisation

3.5 Quantitative Analysis Of the BDD

3.6 Summary

4. Cause-Consequence Diagrams

4.1 Introduction.......

4.2 Cause-Consequence Diagram Method

4.3 Symbols for the cause-consequence diagram

4.4 Construction rules

4.4.1 The cause diagram method.

4.4.2 The consequence diagram method .

4.4.3 Rules for dependent failure events .

4.4.3.1 Common failure events . .

29

32

33

34

34

35

36

39

39

40

41

42

4.4.3.2 Inconsistent failure events 42

4.5 Quantitative analysis 46

4.5.1 Quantitative analysis of a system containing independent

failure events . 46

4.5.2 Quantitative analysis of a system containing dependent failure

events

4.6 Example...

4.6.1 System quantification.

4.7 Applications of Cause-Consequence Diagram Method

4.8 Summary

iv

47

52

54

60

61

5.

6.

Component ordering strategies . .. 62

62

62

62

64

64

G4

65

66

67

67

69

70

72

73

5.1 Introduction

5.2 Structural Ordering Schemes .

5.2.1 Top-Down Ordering. .

5.2.2 Modified Top-Down Ordering

5.2.3 Depth-First Ordering

5.2.4 Modified Depth-First, Ordering

5.2.5 Modified Priority Depth-First Ordering.

5.2.6 Depth-first, with Number of Leaves

5.3 Weighted Ordering Schemes
5.3.1 Non-Dynamic Top-Down Weights.

5.3.2 Dynamic Top-Down Weighted Ordering.

5.3.3 Bottom-Up Weights.

5.3.4 Event Criticality

5.4 Summary

Review of Phased Mission Analysis Methods 74

74

74

76

76

6.1

6.2

6.3

Introduction

Analysis of phased mission systems

Methods for the phased mission analysis

6.3.1 Nonrepairable systems
6.3.1.1 Basic event transformation and cut set cancellation 76

6.3.1.2 Approximate methods for mission unreliability . 80

6.3.1.3 Expected number of failures 81

6.3.1.4 Reliability of periodic, coherent, binary systems 83

6.3.1.4.1 Lower bound systems and periodic systems 84

6.3.1.4.2 Reliability bounds for periodic systems . . 85

6.3.1.5 Generalized intersection and union concept 85

6.3.1.5.1 Generalized intersection and union concept 86

6.3.1.5.2 Inclusion-exclusion principle 86

6.3.1.5.3 Methodology of mission unreliability calculation 87

6.3.1.6 Method of Lee and Hong. 87

6.3.1.7 Phased mission system analysis using boolean algebraic

methods 89

v

6.3.1.7.1 Phase algebra

6.3.1.7.2 Example

6.3.1.7.3 Sum of disjoint products and its phased-

89

90

extension 92

6.3.1.8 A BDD-based algorithm for reliability analysis of

phased mission systems 93

6.3.1.8.1 BDD algorithm for phased mission system 94

6.3.1.9 Imperfect coverage 95

6.3.1.10 Other methods 98

6.3.2 Repairable systems . . . 99

6.3.2.1 Markov approach for reliability evaluation . 100

6.3.2.1.1 Deterministic mission phase change time . 100

6.3.2.1.2 Random mission phase change time . . . 104

6.3.2.2 A non-homogeneous Markov model 105

6.3.2.3 Discrete-state continuous-time Markov model . 107

6.3.2.4

6.4 Summary ..

Fault tree approach. · 110

· 115

7. Phased Mission Analysis using the Cause-Consequence Diagram Method . 117

7.1 Cause-Consequence Analysis. 117

7.2 Phased Mission Analysis Using Cause-Consequence Diagram . 117

7.3 Cause-Consequence Diagram Construction Methods. . 119

7.3.1 Method 1 119

7.3.2 Qualitative Analysis . 122

7.3.3 Quantitative Analysis. . 123

7.3.4 Method 2 .. . 125

7.4 Program description . 131

7.5 The use of ordering schemes in construction of CCD and BDD . 132

7.6 Analysis of phased mission system with multiple faults . 138

7.6.1 Example................. . 139

7.6.2 Quantitative and Quantitative analysis . 147

7.7 Discussion.................... · 147

8. Modelling Aircraft Flight using the Cause-Consequence Analysis. . 148

8.1 Introduction · 148

Vl

8.2 Aircraft flight system

8.2.1 Phase 1

8.2.2 Phase 2

8.2.3 Phase 3

8.2.4 Phase 4

8.2.5 Phase 5

8.2.6 Phase 6

8.3 Construction of the Cause-Consequence Diagram

8.4 Analysis of the Cause-Consequence Diagram

8.4.1 Qualitative analysis .

8.4.2 Quantitative analysis

8.5 Conclusions

9. Modularisation of Phased Mission Systems .

9.1 Introduction.........

· 148

· 155

· 155

· 156

· 157

· 158

· 158

· 160

· 161

· 161

· 164

· 164

· 166

· 166

9.2 The Linear-Time Algorithm . 166

9.3 Modularisation for Phased Mission Systems . 169

9.3.1 Modularisation of Each Phase of a Phased Mission System . 169

9.3.2 Modularisation of a Phased Mission System as a Whole . . 177

9.3.2.1 Qualitative and Quantitative Analysis . 178

9.4 Discussion . . · 181

10. Conclusions and Future Work .183

10.1 Conclusions · 183

10.2 Recommendations for future work . · 185

vii

Ei (t)

ENF(to, ti)

F (t)

f (t)

Gi (q (t))
IfJP

z

lEP
e

If?M
z

If'V
z

P(T)

Pij

Q

Qsys (t)

q (t)

R

U

W (O,t)

WT(t)

-- -- ------

NOMENCLATURE

Existence of a minimal cut set i

Event that component Ck works the phase k, given that

it was functioning through all previous phases

Expected number of times system enters state i

Expected number of failure in time interval to to tl

Cumulative failure distribution

Failure probability density function

Criticality function for component i

Barlow-Proschan measure of initiator importance

Barlow-Proschan measure of enabler importance

Criticality measure of importance

Fussell-Vesely measure of component importance

Fussell-Vesely measure of minimal cut set importance

Structural measure of importance

Event probability

Component i availability in phase j

Phased mission system unreliability

System unavailability function

Minimal cut set unavailability

Component unavailability

Weight of basic event i

System reliability i

Performance state indicator

Expected number of system failures in time t

Rate of failure

1

Ws (t)

A (t)

J-Li (t)

cP (x)

p(x)
()

T

System failure intensity

Binary indicator variable for component states

Component failure rate

Component detection/repair rate

System structure function

Binary indicator function for each minimal cut set

Inspection interval

Occurrence of minimal cut set i

Mean time to repair

2

1. INTRODUCTION

Many systems perform a mission, which can be divided into consecutive time

periods - phases. In each phase, the system needs to perform a specific task. The

system configuration, the phase duration, and the failure rates of components often

vary from phase to phase. Burdick et al [1] describe a phased mission as a task

to be performed by a system during execution of which the system is altered such

that the logic model changes at specified times. Thus, during a phased mission,

time periods (phases) occur in which either the system configuration, system failure

characteristics, or both are distinct from those of any immediately succeeding phase.

The most important aim of phased mission analysis is to calculate the exact, or

obtain bounds for: mission unreliability. This is defined as the probability that the

system fails to function successfully in at least one phase. Estimating the mission

unreliability by the product of the phase unreliabilities results in inaccuracies, since

basic events are shared among logic models of the various phases which are not

then independent. Esary and Ziehms [2] used a fault tree method for the analysis

of the phased missions for non-repairable systems. They introduced basic event

transformation and cut set cancellation techniques. But the method proposed by

Esary and Ziehms was unable to calculate the probability of failure of each phase

due to cut set cancellation, only of the whole mission. La Band and Andrews [3]

introduced a new method based on non-coherent fault trees that determines the

probability of failure of each phase in addition to the whole mission unreliability.

The method combines the causes of success of previous phases with the causes of

failure for the phase being considered to allow both qualitative and quantitative

analysis of both phase failure and mission failure.

Zang, Sun and Trivedi [4] proposed an algorithm for analysis of phased mission

systems based on binary decision diagrams (BDDs). Such diagrams give a

representation of the system failure logic which is in a format more effective for

analysis than that of a fault tree. As such, BDDs offer efficient mathematical

3

1. Introduction

manipulation, but are difficult to construct directly from the system definition and

hence are generally obtained by converting from a fault tree. The method proposed

by [4] only determines the unreliability of the whole mission. A BDD methodology

was also applied by La Band and Andrews [3] to evaluate the probability of failure

of each phase in the mission.

As both of these methods have their own drawbacks, another method for

system reliability /unreliability was introduced Nielsen [5]. The cause-consequence

diagram method was developed at RISO Laboratories, Denmark, as a graphical tool

for analysing relevant accidents in a complex nuclear power plant. The method

presents logical connections between causes of an undesired (critical) event and

the consequences of such an event, if one or more mitigating provisions fail. As

all consequence sequences are investigated, the method can assist in identifying

system outcomes, which may not have been investigated at the design stage. Ridley

and Andrews [6] notice that, for some types of system, the final cause-consequence

diagram has an identical structure to that of the BDD. They noted, however that

the cause-consequence diagram was more concise due to the automatic extraction

of common independent sub-modules. As the cause-consequence diagram can be

obtained directly from the system description, there was no need to develop and

convert from a fault tree to BDD. They also noted that as the BDD is a more efficient

tool than the fault tree method then the cause-consequence diagram formulation can

be advantageous. The cause-consequence diagram also has the capability to model

the failure of each phase in addition to the whole mission in one diagram.

In this work cause-consequence analysis is applied to phased missions. The fault

tree analysis is reviewed in Chapter 2 and some approximation techniques used

to evaluate system reliability /unreliability and importance measures are described.

Chapter 3 reviews binary decision diagrams. The binary decision diagram method

can suffer if t.he onler in which component.s are consillerell is not well chosen and

this results in an increase in the size of the resulting diagram. This decreases the

efficiency of the method and hence many schemes have been devised to obtain the

most efficient order of components. Some of the possible ordering schemes are

discussed in Chapter 5. In Chapter 4 the cause-consequence diagram method is

described and reviewed. Phased mission systems are described in Chapter 6. This

chapter outlines the different methods available for evaluating a phased mission

system. The purpose of this work was to apply the cause-consequence diagram

1. Introduction 5

method to the phased mission systems and this is presented in Chapter 7. Two

methods for constructing a cause-consequence diagram for phased mission system

are presented. The following chapter gives the construction and analysis of the cause

consequence diagram of a specific phased mission system - an aircraft flight. It is a

very complex system for the capacity of this theses therefore a simplified version of

the system was used. Chapter 9 goes on to describe a modularisation technique that

can be applied to the cause-consequence diagrams. The conclusions of the work and

some suggestions for the future work are given in Chapter 10.

2. FAULT TREE ANALYSIS

2.1 Introduction

There are two main types of modelling tools used for reliability analysis. They are

inductive, or forward, analysis, and deductive, or backward, analysis. An inductive

analysis starts at component level and proceeds forward identifying the possible

consequences. Fault tree analysis is an example of deductive analysis, where the

process starts at a possible consequence and goes backwards trying to identify all

possible causes. It provides a diagrammatic description of system failure in terms

of the failure of its components.

2.2 Construction Of a Fault Tree

The first step in the construction of a fault tree is to determine a system failure

mode. The system failure mode is termed the 'top event' and the fault tree is

developed in branches below this event showing its causes. It is important that the

definition of the top event is not too broad or too narrow to produce the results

required. If the system has more than one failure mode, multiple fault trees would

be constructed to represent each mode.

There are two basic elements used in fault tree construction - 'gates' and 'events'.

Events can be dassified as intermeciiate or basic:. Intermediate events can be

developed further and are represented by rectangles in the fault tree diagram.

Basic events are represented by circles and cannot be developed any further. Basic

events usually are component failures or human errors. These symbols are shown in

Table 2.l.

The gates either allow or inhibit the passage of fault logic up through the tree and

show the relationships between the 'events' needed for occurrence of a higher event.

The development of a fault tree involves use of Boolean expressions represented by

logical operations 'Or', 'And', 'Not'. These expressions are represented by gates

6

2. Fault Tree Analysis 7

Symhol Meaning

Intermediate event further developed

0 hya gate. It indicates that the event is
capahle ofheing hroken down. This is
the only symbol that will have a logic
j!ate and input events below it.

6
Basic event. These symhols are found
at the hottom of fault trees and require
no further development or
hreakdown.

Table 2.1: Event symbols

'Or', 'And' and 'Not' in a fault tree, respectively. Another gate used in fault tree

construction is a 'k out of N' gate, also called 'Vote' gate, which can be expressed

as a combination of 'Or' and 'And' gates. This gate allows the flow of logic through

the tree if at least k out of N inputs occur. The symbols used to represent these

gates are shown in Table 2.2. There are other gates but the ones shown are those

most commonly adopted. Before analysis can be performed on any fault tree all

gates must be expressed in terms of the 'And', 'Or' and 'Not' gates.

Symhol Name Relation

Q OR
Output event occurs if at least
one of the input event~ occurs

Q AND
Output event occurs if all
input events occur

~
Output event occurs if at least

VOTE k out of N possihle input~
occur

~ NOT
Output event occurs if the
input event doesn't

Table 2.2: Gate symbols

Once a top event has been determined, it is developed by asking 'what could

C,lllse this?'. Hence t.he immeciiate, necessary awl sllffieient. causes for its occurrence

are determined. In this way, events in the tree are continually redefined in terms of

lower resolution events. This process is terminated when basic events are reached.

2. Fault nee Analysis 8

A system where failure modes are expressed only in terms of component failures

is referred to as a 'coherent' system. A coherent fault tree will have only 'Or' and

'And' gates. If failure modes in the system are expressed in terms of component

failures and successes, the system is called 'non-coherent'. Non-coherent fault trees

also have 'Not' gates.

There can be two types of analysis which can be performed once the fault tree

is constructed:

• Qualitative analysis

• Quantitative analysis

2.3 Qualitative Analysis

Qualitative analysis involves the identification of combinations of component

states, which cause the system to fail. For coherent fault trees these combinations

are called cut sets or minimal cut sets and just involve component failures [7]. In

the case of non-coherent fault trees (when 'Not' logic is involved), the combinations

of basic events that would cause system failure are called implicants. The minimal

sets of implicants are called prime implicants.

The definition of a cut set is:

A cut set is a collection of basic events whose presence will cause the top

event to occur.

System failure, however, does not necessarily need the failure of all the

components in a cut set, but for any system the largest cut set will consist of all

component failures. Generally only lists of component failures which are necessary

and sufficient to cause system failure are looked at. Hence the importance of the

minimal cut sets.

A cut set is said to be minimal if it cannot be further minimized but still

insures the occurrence of the top event.

Minimal cut sets are sometimes called the minimal failure modes of a

system.

2. Fault Tree Analysis 9

Two fault trees are logically equivalent if they have the same minimal cut sets.

The order of a minimal cut set is the number of components within the set. The

lowest order minimal cut sets contribute most to system failure, as fewer component

failures are needed to cause system failure.

In order to determine the minimal cut sets from a fault tree, Boolean logic

expressions for the top event must be transformed to a sum-of-products form.

This can be achieved using a top-down or bottom-up approach. The top down

approach would start with the top event and then gradually substitutes gates with

their inputs using Boolean expressions until the expression for the top event consists

only of basic events. The bottom-up approach begins at the bottom of the fault tree

and works upwards to the top event. Both of these methods are straightforward

to apply and involve the expansion of Boolean expressions. The (liiference bet.ween

these two approaches is in which end of the fault tree is used to initiate the expansion

process. The following laws of Boolean algebra are used to simplify and to remove

redundancies in the expressions obtained. In Boolean algebra, '.' is used to represent

'And' and '+' represents 'Or'.

1. Commutative laws

A+B=B+A

A·B=B·A

2. Associative laws

2.3.1 Rules Of Boolean Algebra

(A + B) + C = A + (B + C)

(A . B) . C = A . (B . C)

3. Distributive laws

A + (B· C) = (A + B) . (A + C)

A . (B + C) = A . B + A . C

4. Identities

A+O=A

A+l=l

A·O=O

A·l = 1

2. Fault 'ITee Analysis 10

5. Idempotent law

A+A=A

A·A=A

6. Absorption law

A+A·B=A

A· (A+B) =A

7. Complementation

A+A=l

A·A=O

(A) = A

8. De Morgan's laws

(A+B)=A·B

(A·B)=A+B

Laws 5 and 6 enable the removal of redundancies in expressions: law 5 removes

repeated cut sets and repeated events within each cut set and law 6 removes non­

minimal cut sets.

2.4 Fault Tree Quantification

Quantitative analysis of the fault tree allows the calculation of a number of

parameters, which are used to assess the system. The top event probability and

frequency are used together with the expected number of occurrences of the top

event and event importance measures to gain a full understanding of the system.

Quantitative analysis is based on a probabilistic method known as 'Kinetic Tree

Theory' introduced by Vesely [8]. The underlying assumption of the Kinetic Tree

Theory is that all basic events in the tree structure occur independently of one

another.

2.4.1 Top event probability

Each system is assumed to exist in one of two states - working or failed. The

state of the system will be a function of the state of each component in the system.

2. Fault Tree Analysis 11

Each component is also assumed to exist in one of two states - working or failed.

For the ith component the binary indicator variable Xi is define(l to he:

{
1 if component i is failed

Xi = 0 if component i is working

where i = 1,2, ... ,n, and n is the number of components in the system.

The system structure function is defined as:

Ne {1 if system is failed
4> (x) = 1- P:'=l (1- Pi (X)) = 0 . if system is working

(2.1)

where Pi (X) is the binary indicator function for each minimal cut set Ci, i

I. .. Nc:

() IT {
1 if cut set Ci exists

Pi X = Xj =
jECi 0 if cut set Ci does not exist

(2.2)

The probability of the top event is given by the expected value of the system

structure function:

Qsys (t) = E [4> (x)] (2.3)

If each minimal cut set is independent (there are no common events between any

cut sets), then:

4> [E(x)] = E[4>(x)] (2.4)

Hence the expected value of the structure function for a fault tree without

repeated events would be calculated by substituting the probability of failure of

each component in the structure function.

However minimal cut sets are not usually independent, and in this case the full

expansion of the structure function is needed. For example, if there are two minimal

cut sets: Cl = {Xl, X 2}, C2 = {X2' X 3 }, then the structure function is given by:

4> (x) 1 - (1 - Xl . X2) (1 - X2 . X3)

1 - (1 - Xl . X2 - X2 . X3 + Xl • X2 . X2 . X3) (2.5)

After reduction of the indicator variables (i.e. Xi = Xf) the following result is

obtained:

(2.6)

2. Fault Tree Analysis 12

The probability of the top event T for the fault tree with 2 minimal cut sets given

earlier is described by the expected value of the expanded and reduced structure

function:

(2.7)

An alternative, more efficient way to deal with repeated events is to use Shannon's

decomposition formula.

2.4.2 Shannon's decomposition formula

According to Shannon's formula, a Boolean function f (~), where ~ -

(Xl, ... ,Xn) , can be expressed as:

(2.8)

where f (li'~) represents f (~) with component Xi failed and f (Oi'~) represents

f (~) with component Xi working. f (li'~) and f (Oi'~) are known as the residues

of f (~) with respect to Xi .

The structure function is pivoted around the most repeated variable using

Shannon's formula. This is continued until no repeated events are left in the residues.

Applying Shannon's formula to the structure function given in (2.5) and pivoting

around variable X2 gives:

<fJ (x) X2 [1 - (1 - Xl) (1 - X3)] + (1 - X2) [0]

X2 [1 - (1 - xr) (1 - X3)]

The probability of the top event is then given by:

Qsys (t) = E [<fJ (x)] = P (X2) [1- (1 - P (Xl)) (1 - P (X3))] (2.9)

An alternative approach to the structure function method to obtain the top event

probability is to use the inclusion-exclusion formula.

2.4.3 Inclusion-Exclusion Formula

This approach is suitable whether basic events are repeated or not. The top event

T occurs if at least one cut set exists. This gives the following Boolean expression

2. Fault 'ITee Analysis 13

for T:

Ne

T = Cl + C 2 + ... + CNe = U C i

i=l

Expanding this expression gives the inclusion-exclusion expansion:

Ne Ne i-I

P(T) = LP(Ci) - LLP(Ci n Cj) + ... + (_l)Ne-l P (Cl n C 2 n ... n CNe)
i=l i=2 j=l

(2.10)

If the number of minimal cut sets, Ni , is large the expression (2.10) becomes

tedious and time consuming to calculate. In simulations its calculation may be

impractical and hence approximations are used.

2.4.4 Upper and lower bounds for system unavailability

Taking the first two terms of the inclusion-exclusion expansion gives the

following:

Ne Ne i-I Ne
L: P (Ci) - L: L: P (Ci n Cj) ::; Qsys (t) :::; L: P(Ci)
i=l i=2j=1 i=l

lower bound exact upper bound

The upper bound of the top event probability is known as the rare

approximation since it is accurate if the component failure events are rare.

2.4.5 Minimal cut set upper bound

A more accurate upper bound is the minimal cut set upper bound.

Qsys (t)

As

P (system failure) = P (at least 1 minimal cut set occurs)

- 1 - P (no minimal cut set occurs)

Ne

(2.11)

event

P (no minimal cut set occurs) > IT P (minimum cut set i does not occur) ,
i=l

2. Fault Tree Analysis 14

the following is correct:

Ne

Qsys (t):::; 1- IT (1- P(Cd) (2.12)
i=l

It can be shown that
Ne Ne

Qsys (t) :::; 1 - IT (1 - P (Ci)) :::; L- P (Ci)
i=l i=l

exact minimal cut set rare event

upper bound approximation

2.4.6 Top event frequency

The top event frequency or the system failure intensity Ws (t) is defined as the

probability that the top event occurs at t per unit time. Therefore Ws (t) dt is the

probability that the top event occurs in the time interval [t, t + dt).

For the top event to occur between t and t + dt all the minimal cut sets must

not exist at t and then one or more minimal cut sets occur during t to t + dt. It is

assumed that dt is so small that only one component fails in this time. More than

one minimal cut set can occur in a small time element dt since component failure

events can be common to more than one minimal cut set. This can be expressed as:

(2.13)

Ne
where A is the event that all minimal cut sets do not exist at time t and U (}i is the

i=l
event that one or more minimal cut sets occurs in time t to t + dt.

As P (A) = 1- P (A), equation 2.13 can be written as:

~OO.=P~Q~=P~~-P~Q~
where A means that at least one minimal cut set exists at t.

(2.14)

The first term of the equation 2.14 is the contribution from the occurrence of

at least one minimal cut set in the small time element dt and the second term is

a correction term representing the contribution of minimal cut sets occurring while

other minimal cut sets already exist (Le. system is already failed). Denoting these

terms by wil) (t) dt and W~2) (t) dt respectively gives the following:

Ws (t) dt = w~I) (t) dt - W~2) (t) dt (2.15)

2. Fault Tree Analysis 15

Terms on the right side of the equation 2.14 can be expanded using the inclusion­

exclusion principle, but as this is computationally intensive approximations may be

used.

2.4.7 Approximation of the system unconditional failure intensity

From equation 2.15

Ws (t) dt ~ w! (t) dt (2.16)

and hence there is an upper bound WSMAX (t) for Ws (t):

WSMAX (t) = w! (t) (2.17)

If the component failures are rare events then the minimal cut set failures will

also be rare events. The second term of equation 2.15, wi2) (t) dt, requires minimal

cut sets to exist and occur at the same time. When component failures are rare this

occurrence rate is also very small and hence Ws (t) -:::= W SMAX (t).

As
Ne

w~l) (t) dt = UP (Oi) (2.18)
i=l

results in a series expansion, it can be truncated after the first term to give the rare

event approximation:

Ne

WSMAXdt < LP(Oi)
i=l

Ne

< Lwoi (t) dt
i=l

(2.19)

where P (Oi) is the probability of the occurrence of minimal cut set i; wO i is the

unconditional failure intensity of minimal cut set i.

2.4.8 Expected number of system failures

The expected number of system failures in time t, W (0, t), is given by the integral

of the system failure intensity in the interval [0, t):

W (0, t) = lt Ws (u) du (2.20)

2. Fault Tree Analysis 16

The expected number of system failures is an upper bound for system

unreliability:

F(t) < W(O,t)

U nreliability Expected number of system failures

If system failure is rare, this upper bound is a close approximation.

2.5 Example

To illustrate the use of fault tree analysis consider the example shown in Figure

2.1. The top-down approach is demonstrated using this example fault tree.

Figure 2.1: Example fault tree

In the top-down approach the starting point is the top event. Then it is expanded

by substituting each gate in the expression by events appearing lower down in the

fault tree and simplifying the expression until it has only basic component failures.

The top event in Figure 2.1 has an 'Or' gate with two inputs:

Top = Gate1 + Gate2

2. Fault Tree Analysis

Gate 1 is an 'And' gate with two input events, A and B:

Gate1

Top

A·B

A· B + Gate2

Gate 2 is an 'Or' gate with two inputs, C and Gate3:

Gate2

Top

C + Gate3

A· B + C + Gate3

Gate 3 is an 'And' gate with two input events, Band D:

. Gate3 = B· D

Hence, the following expression for the Top event is obtained:

Top = A· B + C + B . D

17

This is the minimal disjunctive form of the logic equation, each term of which is

a minimal cut set. This fault tree therefore has three minimal cut sets, one of order

one and two of order two: {C}, {A, B}, {B, D}.

The probability of the top event using the inclusion-exclusion would be calculated

as follows:

P (Top) P(A· B) +P(C) +P(B· D)

- P (A . B . C) - P (A . B . D) - P (C . B . D)

+P (A· B· C· D)

Minimal cut set bound (see equation 2.12) for this system would be:

P (Top) ~ 1- (1- P(C))(l- P (A· B))(l- P (B· D))

The rare event approximation (equation 2.11) is:

P(Top) ~ P(C)+P(A·B)+P(B·D)

2. Fault 'nee Analysis 18

2.6 Importance measures

An importance analysis is a sensitivity analysis which identifies weak areas of

the system and can be very valuable at the design stage. For each component its

importance measure signifies the role that it plays in either causing or contributing

to the occurrence of the top event. This allows components or cut sets to be ranked

according to the extent of their contribution to the occurrence of the top event.

Importance measures can be categorised as deterministic or probabilistic.

Probabilistic measures can also be categorised into those dealing with system

availability assessment and those concerned with system reliability assessment.

2.6.1 Deterministic measures

Deterministic measures assess the importance of a component to the system

operation without considering the component's probability of occurrence. One such

measure is the structural measure of importance.

2.6.1.1 Structural measure of importance

The structural measure of importance for a component i is defined by equation

2.21:

J?T = number of critical system states for component i
~ total number of states for the (n - 1) remaining components

(2.21)

A system state for component i will be described as a critical state if failure of

component i causes the system to go from a working to a failed state.

2.6.2 Probabilistic measures (System Availability)

Probabilistic measures are generally of more use than deterministic measures in

reliability problems as they take into account the component's probability of failure.

2.6.2.1 Birnbaum's measure of importance

Birnbaum's measure of importance is also known as the criticality function. The

criticality function for a component i, Gi (q (t)), is defined as t,he probabilit.y t.hat,

the system is in a critical system state for component i.

The two expressions for the criticality function are:

1.

2.

2. Fault Tree Analysis 19

Gi (q (t)) = Q (li' q (t)) - Q (Oi, q (t)) (2.22)

where Q (t) is the probability that the system fails, (li' q) = (ql,"" qi-l, 1, qi+l,' .. , qn),

(Oi, q) = (ql,"" qi-l, 0, qi+l,· .. , qn).

This expression gives the probability that the system. fails with component i

failed minus the probability that the system fails with component i working.

So, this gives the probability that the system fails only if component i fails.

(2.23)

This defines the critica1ity function as a partial derivative which is the same

as the first expression 2.22 as:

8Q (q) Q (li' q (t)) - Q (Oi, q (t))
8qi 1 - 0

(2.24)

2.6.2.2 Criticality measure of importance

The criticality measure of importance is defined as the probability that the

system is in a critical state for component i, and i has failed (weighted by the

system unavailability Qsys):

I~M = Gi (q(t))qi (t)
1 Qsys (q (t))

(2.25)

2.6.2.3 Fussell-Vesely measure of importance

This measure of importance is defined as the probability of union of the minimal

cut sets containing component i given that the system has failed:

(2.26)

The importance rankings by Fussell-Vesely method are very similar to those

produced by the criticality measure of importance (2.25).

2. Fault 'free Analysis 20

2.6.2.4 Fussell-Vesely measure of minimal cut set importance

This measure provides a similar function to the previously defined importance

measures for components except that the minimal cut sets are themselves ranked.

The importance measure is defined as the probability of occurrence of cut set i given

that the system has failed:

(2.27)

2.6.3 Probabilistic measures (Systems reliability)

Probabilistic measures for system reliability are appropriate for systems where

the interval reliability is being assessed and the sequence in which components fail

matters. The sequence of failure can be described with the use of enabling and

initiating events. This is of particular use when analysing safety protection systems.

For example, if a hazardous event occurs after the protection system failed, this

would result in a dangerous system failure. However, if the protection system was

working when the hazardous event occurred, but failed later, then it would shutdown

the system and a dangerous situation would be avoided. So, in this example, the

hazardous event is an initiator, as it would result in a system failure only if the

enabling event has already occurred. If the initiating event occurs first, then the

safety system would respond as required and danger would be avoided. Initiating

and enabling events are defined as follows:

Initiating events perturb system variables and place a demand on

control/protective systems to respond.

Enabling events are inactive control/protective systems which permit

initiating events to cause the top event.

All probabilistic measures for system reliability are weighted according to the

expected number of system failures, W (0, t).

2.6.3.1 Barlow-Proschan measure of initiator importance

The Barlow-Proschan measure of initiator importance is the probability that

the initiating event i causes the system failure over the interval [0, t). It is defined

2. Fault Tree Analysis 21

in terms of the criticality function and the unconditional failure intensity of the

component:

rt {Q (li' q (t)) - Q (Oi, q (t))) Wi (t) dt
lBP ~l~na ____________ ~~ __________ __

i - W (0, t) (2.28)

2.6.3.2 Sequential contributory measure of enabler importance

The sequential contributory measure of enabler importance is the probability

that enabling event i permits an initiating event to cause system failure over the

interval [0, t). The failure of the enabler i is only a factor when it is contained in

the same minimal cut set as the initiating event j:

L
j

iofj
i and jECk

lBP = for some k
e W (0, t)

This expression is only an approximation.

2.6.3.3 Barlow-Proscllan measure of minimal cut set importance

(2.29)

This measure of cut set importance is the probability that a minimal cut set i

causes the system failure in interval [0, t) given that the system has failed:

L t [1 - Q (OJ, li-{j}, q (t'))] IT qk (t') Wj (t') dt'
jEi la ki'j

kEi
~=------------------~~--~~-----------W (O,t)

(2.30)

j is each initiating event in the minimal cut set {i}.

2.7 Summary

Fault tree analysis is very important and frequently used to quantify system

performance. It gives a diagrammatic representation of the system failure causes,

and also provides a means for system quantification. Performing analysis upon

large fault trees (quantitative or qualitative) may be computationally intensive and

hence approximations are needed for some parameters and that will lead to loss of

accuracy.

3. BINARY DECISION DIAGRAMS

3.1 Introduction

Fault trees described in the previous chapter are a good way to represent the logic

of the system. However, if the fault tree is large, then performing analysis on it can

be computationally expensive. Approximations are needed for many parameters and

that would result in loss of accuracy. A more accurate and efficient way to perform

these calculations is to use the Binary Decision Diagram technique.

Binary Decision Diagrams (BDDs) were introduced by Lee [9] who used them to

represent switching circuits. They were further studied by Akers [10] who defined

a digital function in terms of a diagram, which told the user the output value of

the function by examining the values of its inputs. The BDDs were first applied

to reliability and, more specifically, to fault tree analysis, in 1980's by Schneeweiss

[11]. Further development of the use of BDDs in reliability analysis was developed

by Rauzy [12], who suggested that they could provide an alternative technique for

performing fault tree analysis.

The BDD method first converts a fault tree to a binary decision diagram which

can then be used for analysis. In order to do this, an order in which components

are considered must be taken. The BDD represents the Boolean equation for the

top event, which is much easier to analyse than a fault tree. The method allows for

quantitative and qualitative analysis of the fault tree. The advantage of this method

compared to fault tree analysis is that exact solutions can be calculated efficiently

without the need for approximations.

3.2 Description of the BDD

A BDD is a directed acyclic graph. According to Rauzy[12]' BDDs have two

important features:

22

3. Binary Decision Diagrams 23

• the graphs are compacted by sharing equivalent subgraphs;

• the results of operations performed on BDD are memorised and thus a job is

never performed twice.

A BDD is composed of terminal and non-terminal nodes (vertices), connected

by branches. The non-terminal nodes encode basic events and the terminal nodes

correspond to the final state of the system. The example of a BDD is shown in

Figure 3.1.

Non-terminal
vertex

Tenninal vertex Terminal vertex

Figure 3.1: Example of Binary Decision Diagram

A non-terminal node of a BDD has two outgoing branches: if the basic event

represented by the non-terminal node occurs, then the diagram is further developed

following the left-hand side branch ('1' branch), and ifthe basic event doesn't occur

the diagram is developed on the right hand side branch ('0' branch). In the following

work, all left branches of a BDD will represent '1' branches and all right branches

will represent '0' branches. The size of the BDD is usually measured by the number

of non-terminal nodes. Terminal nodes have the value 1 if the top event occurs (i.e.

system fails) or 0 if the top event doesn't occur (i.e. system doesn't fail).

All paths through the diagram start at the root vertex, the top node, and proceed

to a terminal node marking the end of the path. A path terminating in node '1'

gives a cut set of the fault tree. Only nodes lying on the '1' branches of the path

are included in the cut set.

3. Binary Decision Diagrams 24

3.3 Construction of the BDD

3.3.1 Construction of the BDD using structure function

One method to construct a BDD from a fault tree is to use the structure function

ljJ (~) of the system. An order in which components will be considered in the

construction process is important as it can significantly influence the size of BDD.

Once an order of components is determined, values of 1 and 0 are substituted for

each component in the structure function according to the chosen ordering. To

illustrate the process a fault tree shown in Figure 3.2 is used.

Figure 3.2: Fault Tree Example

This fault tree has four minimal cut sets:

1. {A, C}

2. {A, D}

3. {B,C}

4. {B,D}

which gives the following structure function:

Using top-down, left-right ordering scheme (simply ordering the variables as they

are encountered on a top-down, left-right traversal of the fault tree) the component

order would be:

3. Binary Decision Diagrams 25

l-(l-xA ·xc)(l-xA ·xD)(l-xB ·xC)(l-XB .XD)

FI

l-(l-xC)(l-xD)(l-xB ·xc)(l-xB· XD)

F2

Figure 3.3: Binary Decision Diagram for Fault Tree shown in Figure 3.2

This means that basic event A is considered first, then basic event B, then C and

finally basic event D. The first node (root vertex) represents basic event A. The result

of the left-hand branch is obtained by substituting the value 1 into the structure

function for each XA and the result for the right-hand side branch is obtained by

substituting value 0 for A:

XA = 1:

XA =0:

</J(:J2) = 1- (1- xc) (1- XD) (1- XB· xc) (1- XB· XD) (3.2)

</J (:J2) = 1 - (1 - XB . xc) (1 - XB . XD)

Other basic events are considered in the same way until the terminal nodes are

reached. The resulting BDD is shown in Figure 3.3.

The resulting BDD is not in its most efficient form and although it will generate

cut sets, these are not minimal. A BDD can be made more efficient by applying

collapsing operations. These can be applied to equivalent nodes where, from

Friedman and Supowit [13], two nodes of a BDD are equivalent if they both are:

• terminal nodes with the same value, or

• non-terminal nodes having the same label and their left sons are equivalent

and their right sons are equivalent.

3. Binary Decision Diagrams 26

The son of a node is the node to which either the '1' or '0' branch leads.

The following 'collapsing' operations can be used to reduce the size of a BDD:

1. If two sons of node A are equivalent, then delete node A and direct all of its

incoming branches to its left son.

2. If nodes A and B are equivalent, then delete node B and direct all of its

incoming branches to A.

The above operations can be used to reduce the BDD shown in Figure 3.3.

Operation 1 can be applied to node F2 as both its sons are equivalent. This results

in the incoming branch from node F1 being directed to the left son of F2, node

F4. Therefore, nodes F2, F5 and F8 are deleted. Then operation 2 can be applied

to equivalent nodes F4 and F6. Following the rule, node F6 is deleted and the

incoming branch from node F3 is directed to node F4. The resulting BDD is shown

in Figure 3.4.

Figure 3.4: Reduced BDD from Figure 3.3

The reduced BDD is much smaller than the original. It has four non-terminal

nodes compared with nine in the original. It must be noted, that this reduction

does not change the logic of the BDD.

3.3.2 Construction Of the BDD Using If-Then-Else Approach

The if-then-else (ite) method for constructing BDD's was developed by Rauzy [12].

It is derived from Shannon's formula given in equation 2.8:

(3.3)

3. Binary Decision Diagrams 27

where !I represents I (~) with Xl = 1 and 12 represents I (~) with Xl = O. Functions

!I and 12 are one order less than I (~).
Each non-terminal node in the BDD has an ite structure ofthe form ite (Xl, /I, h)

where Xl is a Boolean variable and !I and 12 are logic functions. This means: if

Xl fails then consider 11 else consider h. In the BDD structure 11 would be at the

end of the '1' branch of the node Xl and 12 would be at the end of '0' branch. The

structure is represented in Figure 3.5.

~
1

1 0

It h

Figure 3.5: ite structure for component Xl

Variable ordering must be chosen before construction of the BDD. Then each

basic event Xi is assigned the ite structure ite (Xi, 1, 0) . The following rules are then

used for manipulation of ite structures:

If J = ite (x, 11, h) and H = ite (y, gl, g2), then

1. X < Y (x appears before y in the variable ordering)

J * H = ite (x, !I * H, 12 * H) (3.4)

2. x=y

J * H = ite (x,!I * gl, 12 * g2) (3.5)

where * corresponds to a Boolean operation 'And' or 'Or'.

To simplify the results the following properties are also used:

1+H=1 1·H=H (3.6)

O+H=H O·H=O

To illustrate the method the fault tree shown in Figure 3.6 is considered.

3. Binary Decision Diagrams 28

Figure 3.6: Fault Tree Example

Using the top-down left-right ordering strategy the variable order is C < A < B.

The ite structures for each basic event are:

A=ite(A,l,O)

B=ite(B,l,O)

C=ite(C,l,O)

Gate G1 can be expressed (using rule 1 in (3.4) and (3.6)) as :

G1 - A· B = ite (A, 1,0) . ite (B, 1,0) =

ite (A, ite (B, 1,0) ,0)

The ite structure for the event Top is given (using rule 1 (3.4) and (3.6)) by:

Top C + G1 = ite (C, 1,0) + ite (A, ite (B, 1,0) ,0) =

ite (C, 1, ite (A, ite (B, 1,0),0)) (3.7)

To construct the BDD from 3.7 '1' and '0' branches are considered for each

variable in turn. For example, C is the first basic event in the variable ordering and

it is encoded in the root node of the BDD structure. At the end of '1' branch is a

terminal node 1 and the structure ite (A, ite (B, 1,0) ,0) is at the end of '0' branch.

Basic event A is considered next and is encoded in the node at the end of the right­

hand branch ('0' branch). Its left-hand branch ('1' branch) will end in the structure

ite (B, 1, 0), while its right-hand side ('0') branch will terminate in a terminal node

O. The process is repeated once more for the basic event B. The resulting BDD is

shown in Figure 3.7.

3. Binary Decision Diagrams 29

Figure 3.7: Binary Decision Diagram for Fault Tree shown in Figure 3.6

3.4 Qualitative Analysis Of the BDD

Each path from the root node of a BDD to a terminal node '1' defines a solution

of the Boolean function j (22) [12]. Only nodes lying on the '1' branches of the path

are included in the cut set. For the BDD shown in Figure 3.7 the cut sets are:

1. {Cl

2. {A, B}

These are also minimal cut sets. But the BDD does not always produce a list of

minimal cut sets. To obtain minimal cut sets the BDD can be minimised or the list

of cut sets can be reduced using Boolean algebra rules.

3.4.1 Minimisation

Only if a BDD is in its minimal form will the cut sets produced from it be

minimal. A minimisation process for a BDD, developed by Rauzy [12], is applied to

its ite form awl creates CL new I3DD which defines all miuimal cut sets of the fault

tree. All shared nodes must be expanded before minimisation.

Let j be a Boolean function of the BDD. If (J" is a solution of j, then a path

exists from the root of the BDD to terminal node '1' which defines a solution 8 of j

such that 8 is included in (J".

Consider any node in the BDD, the output of which is represented by the function

F where:

F=ite(x,G,H)

3. Binary Decision Diagrams 30

If J is a minimal solution of G, then the intersection of {J} n x is a solution of F.

In addition, if <5 is not a minimal solution of H, then a solution of F smaller than

{is} n x does not exist and {is} n x is minimal. The set of all minimal solutions of F

will also include minimal solutions of H:

SOlmin (F) = {O'}

0' = [{ is} n xl U [SOlmin (H) 1

Pi

Figure 3.8: Example BDD for minimisation

(3.8)

(3.9)

This algorithm can be applied to the BDD in Figure 3.8. This BDD would

produce these cut sets:

1. {A,B,C}

2. {A, C}

3. {A,B,D}

3. Binary Decision Diagrams 31

As this BDD is not minimal, it does not generate minimal cut sets. The first

cut set is redundant as it contains the second cut set as a subset. To minimize the

BDD, each node is considered in turn:

F1 = ite (A, F2, 0) - F2 does not contain any paths that are included in '0' branch,

as this leads to terminal vertex.

F2 = ite (B, F3, F4) - Event 'C' is included in a path on both the '1' branch (F3)

and the '0' branch (F4). Therefore, 'C' is removed from the

'1' branch as this will be a non-terminal son of F2. This is

done by replacing the terminal '1' vertex with a terminal '0'

vertex.

F3 = ite (C, 1, F5) - F5 does not contain any paths that are included in the '1'

branch as it leads to the terminal vertex.

F4 = ite (C, 1,0) - Both the '1' and '0' branches are terminal.

F4 = ite (D, 1,0) - Both the '1' and '0' branches are terminal.

The minimised BDD is shown in Figure 3.9.

This BDD produces the following minimal cut sets:

1. {A, C}

2. {A,B,D}

The minimised BDD didn't produce the redundant minimal cut set {A, B, C}.

This technique can only be used to obtain the minimal cut sets as it destroys

the structure function form of the BDD and hence the minimised BDD must not be

used for quantification.

3. Binary Decision Diagrams 32

Figure 3.9: The minimised BDD

3.5 Quantitative Analysis Of the BDD

The probability of the root event can be expressed by the BDD as the sum of

probabilities of the paths that lead from the root node to any terminal node '1' as

these paths will give minimal cut sets. For quantitative analysis nodes lying on the

'0' branches of the path are included as well. For the component i that lies on '0'

branch the probability of occurrence is described as qi' qi = 1 - qi. For the BDD

shown in Figure 3.7 the paths to consider would be

l.G

2. GAB

Therefore the probability of top event occurrence would be:

3. Binary Decision Diagrams 33

3.6 Summary

The BDD technique is useful to identify the minimal cut sets of a fault tree and to

calculate the exact probability of the top event. The difficulty with the technique is

the conversion of a fault tree to a BDD as variable ordering can significantly influence

the size of the resulting BDD. However, for large systems the BDD method allows

more accurate analysis than is possible to achieve using traditional methods, i.e.

fault tree analysis.

4. CAUSE-CONSEQUENCE DIAGRAMS

4.1 Introduction

The purpose of risk analysis is to assess probabilities of accidents and evaluate

their consequences. Techniques adopted (such as fault tree analysis, Markov

analysis, etc.) are incapable of identifying all possible causes and consequences

of a critical event.

The cause-consequence diagram method, which was developed at RISO Labora­

tories, Denmark, by Nielsen [5] in 1971, is a method which presents logical

connections between causes of an undesired (critical) event and the consequences

of such an event, if one or more preventing/limiting provisions fail [14, 15]. It

was initially developed as a graphical tool for analysing relevant accidents in a

complex nuclear power plant. It has subsequently been applied to various industrial

systems [16]. EDF (Electricite de France) also applied the method to the reliability

study of safety-related systems in nuclear power plants and the method was found

to be advantageous to other methods previously adopted, essentially for certain

mechanical systems [17].

In developing the methods Nielsen noticed that a given accident may be

characterised by a 'cause', a sequence of events where the time between the

occurrence of the single event can be an important parameter, and finally by the

consequences of the accident, when the method should be able to determine all

possible causes and consequences that some critical event may lead to if one or more

limiting provisions fail. Nielsen [5] states that the method should also provide a

basis for determination of the probabilities of any single consequence.

The principle difference between fault trees and cause-consequence diagrams is

that the cause-consequence diagram retains information about the order in which

the components in the system are called upon [18] and is able to model not only

causes of system failure, but also consequences. Event trees are usually used to map

34

4. Cause-Consequence Diagrams 35

the developments from the initiating event to the set of all possible outcomes, but

not to determine causes of the failure. By combining both causes and consequences

of the critical event, the cause-consequence diagrams also provide the way for easy

quantification as the logic is very similar to binary decision diagrams. Nielsen and

others [19] noted, that compared with the event trees the cause-consequence diagram

gives a better representation of event sequences and the conditions under which these

events can take place. The cause-consequence diagram has a benefit of the lIRe of

simple, comprehensible symbols that facilitate the communication between different

people in the development and commissioning of the system.

4.2 Cause-Consequence Diagram Method

The main principle of the cause-consequence diagram technique is based on the

occurrence of a critical event, which for example may be an event involving the failure

of components or subsystems, that is likely to produce undesired consequences.

Once a critical event has been identified, all relevant causes of it and its potential

consequences are developed using two conventional reliability analysis methods -

fault tree analysis and event tree analysis [6].

The 'cause' part of the diagram (cause searching) is a fault tree. Fault tree

analysis is used to describe the causes of an undesired event. The construction of

the tree begins with the definition of the top event (the critical event). Then the

causes are indicated and connected with the top event using logical gates 'And' and

'Or' and this procedure is iterated until all causes are fully developed.

The 'consequence' part of the diagram (consequence searching) is an event tree

(event-sequential diagram) showing the consequences that a critical event may lead

to if one or more preventing/limiting systems do not function as supposed. The

event tree method is used to identify the various paths that the system could take,

following the critical event, depending on whether certain subsystems or components

function correctly or not.

With a combination of fault tree, representing causes of the critical event, and

event tree, listing all possible consequences, the logical connection between the

causes of a critical event and its consequences can be established. Compared

with fault tree analysis, the cause-consequence diagram method gives a simpler

representation of event sequences and the conditions under which these events can

4. Cause-Consequence Diagrams 36

take place [19].

The relationship between the two reliability methods is shown in Figure 4.1.

Figure 4.1: Cause-consequence diagram structure

4.3 Symbols for the cause-consequence diagram

The symbols for construction of the cause-consequence diagram are listed in

Table 4.1. The symbols for the cause part are the same as those used for the fault

tree method. For the consequence part new symbols were developed [5, 17, 6].

The main symbol used in the construction of the consequence diagram is the

decision box. The decision box was proposed by Nielsen and is an identical

representation of 'YES - NO' branches of an event tree structure. The c~nnection

point between the cause and consequence diagrams is the NO branch of the decision

boxes as the failure causes of the system, represented by a decision box, are developed

using fault tree analysis. Nielsen notes the importance of the delay symbol. The

delay symbol is used in constructing consequence diagrams for systems where time

delay is important as the knowledge of this may help the analyst to differentiate the

different outcomes of the system.

To illustrate a typical cause-consequence diagram the simple system for lighting

a lamp can be used (Figure 4.2) [17, 22]. A cause-consequence diagram for this

system is represented in Figure 4.3. The initiating (critical) event is 'operator

depresses button'. The causes why the bulb is not alight can be that the battery

fails to produce power (BAT), the bulb has blown (B) or the fuse is broken (F). '!\vo

consequences are considered: there is no light (NL) or the bulb is alight (L).

4. Cause-Consequence Diagrams

Table 4.1: Symbols used for the cause-consequence diagram

Symbols for the cause diagram

Symbols for the consequence diagram

qj

Ft! YES

Ftle:::;>

V"
+
Y

Q l-Q

o

AND gate allows the causality to pass up the tree if at any
time all inputs to the gate occur

OR gate allows causality to pass up through the tree if at
any time at least one input to the gate occurs

The decision box represents the functionality of a
component/system. The NO box represents failure to
perfonn correctly, the probability of which is obtained via

a fault tree or single component probability ql

Fault tree arrow represents the number of the fault tree
structure that corresponds to the decision box

The initiator triangle represents the initiating event for a
sequence where A. indicates the rate of occurrence

Time delay indicates that the time starts from the time at
which the delay symbol is entered and continues up to the
end of the time interval in the delay symbol

OR gate symbol is used to simplify the cause-consequence
diagram when more than one decision box enters the same
decision box or consequence box

The existence box represents a component existing in a
certain state

The consequence box represents the outcome event due to
a particular sequence of events

37

4. Cause-Consequence Diagrams

BATTERY

FUSE

PUSH BUTION
--1-

Figure 4.2: Simple light circuit

Current through
circuit

Ft1

Figure 4.3: Cause-consequence diagram for the light circuit

38

The light switch circuit functions when an operator depresses the push button,

which sends power to the bulb. Once the critical event is identified, the next stage

in the construction process is to identify all possible consequences. Following the

initiating event the circuit should close causing a current to be applied to the bulb.

The cause-consequence diagram is completed by considering the functionality of

the components that control the closure of the circuit and the current through the

circuit.

The causes of the circuit failing to close is that the push button fails to close the

circuit. Therefore a single probability that the push button fails to close, QPE, is

attached to the XO outlet branch of the first decision box. The causes of the circuit

4. Cause-Consequence Diagrams 39

No current

Figure 4.4: Fault tree FT1 for the cause-consequence diagram shown in figure 4.3

failing are that the battery fails to produce power (BAT), the bulb has blown (B),

or the fuse is broken (F). These failure causes are shown in Figure 4.4.

Quantification of the cause-consequence diagram, for a system containing only

independent failures, can be evaluated by multiplying probabilities of each outlet

branch leading to a consequence. The overall probability for any particular

consequence is obtained by summing all sequence probabilities that lead to that

particular consequence. For example, the probability of light failure, 'NL', in Figure

4.3 is equal to QpB + (1- QPB)QFtl, where QFtl is the probability that there is no

current through circuit.

4.4 Construction rules

Nielsen [5] gives descriptions of the rules for constructing the cause-consequence

diagram. This method can be divided into two main groups that may be called:

1. The cause diagram method (cause searching)

2. The consequence diagram method (consequence searching)

4.4.1 The cause diagram method

The cause diagram is a fault tree relating events and conditions to a particular

undesired event which might be, for instance, a relevant system failure. Only events

4. Cause-Consequence Diagrams 40

that might contribute to the undesired event should be considered.

The method is characterized by the following points [5, 6]:

1. Identification of the top event. The construction of a cause diagram (fault tree)

begins with the exact definition of the critical event. Nielsen describes a critical

event [15] as an unintended function of a component that controls or effects

main energy or mass balance, which can lead to significant consequences. He

suggests that it may be expedient to choose a radical abnormal change of

a process parameter (e.g. feed water flow stops) or a process variable that

exceeds a safety limit (e.g. pressure exceeds trip pressure). The description of

the critical event may vary depending on the system considered.

2. Cause diagram development. Using a deductive process, the causes of the

undesired event are discovered and connected by means of logical gates. The

procedure is repeated until all events have been fully developed, i.e. the

branches terminate in basic events.

3. Validation of the diagram. For each gate used in the diagram the input events

lIlUSt. always be bot.h necessary and sufficient., in the context of the gate, to

produce the output event.

Generally, at the development of a cause diagram, special attention should be

directed towards identification of common mode failures, i.e. simultaneous failures

of two or more functionally independent system parts from a common cause [5].

4.4.2 The consequence diagram method

The consequence diagram is a graphical method showing the consequences that

the critical event may result in. This method can also be useful for the determination

of the probability of each consequence. The construction of the consequence

diagram starts with definition of the critical event and following sequences of events,

consequences are determined.

The principle of the method is that the starting point is the definition of a

critical event, and the objective is to describe how all possible consequences may

occur depending on how other systems respond to the critical event.

The consequence diagram method is then constructed by the following methodology:

4. Cause-Consequence Diagrams 41

1. Component ordering. The first step of the consequence diagram construction

is deciding on the order in which component functioning/failure events are to

be taken. To ensure a logical development of the causes of the system failure

mode, it was decided that the ordering should follow the temporal action of

the system, for example the system activation for the function required given

an initial critical event.

2. Consequence diagram development. The second stage involves the actual

construction of the diagram. Starting from the initiating component,

the functionality of each component or subsystem is investigated and the

consequences of these sequences determined. If the decision box is governed

by a subsystem, then the probability of failure will be obtained via a fault tree

diagram.

3. Reduction. If any decision boxes are deemed irrelevant, for example the boxes

attached to the NO and YES branches are identical and their outcomes and

consequences are the same, then these should be removed and the diagram

reduced to a minimal form. Removal of these boxes will in no way affect the

end result.

An example of the construction of the cause-consequence diagram is given in

Section 4.6.

Devised rules for the correct construction of the cause-consequence diagram for

a static system are given by Andrews and Ridley [23].

4.4.3 Rules for dependent failure events

The procedure for analysis of an independent system! modelled using a cause­

consequence diagram begins with the assignment of probabilities to each outlet

branch stemming from a decision box. Following this, the probability of anyone

sequence is obtained by multiplication of the probabilities associated with each

decision box [18]. The probability of any particular consequence is then obtained by

the summation of probability of each sequence that terminates in that consequence.

This procedure cannot be employed unless the failures of each decision box in

a sequence are independent. Dependencies may exist in the cause-consequence

1 Independent system is a system where all components perform independently

4. Cause-Consequence Diagrams 42

diagram, and these must be dealt with before the quantification of the diagram.

Andrews and Ridley [6] give the guidelines on how to deal with dependent failure

events (common failure and inconsistent failure events).

4.4.3.1 Common failure events

Andrews and Ridley [6] noticed that the first type of dependency that may arise

is that the same failure event exists in more than one fault tree structure on the

same path in the cause-consequence diagram. In order to deal with the common

failure event, the event is extracted from the fault tree structure and placed in a

new decision box preceding the first decision box that contains the common failure

event. The original cause-consequence diagram is then duplicated on each outlet

branch stemming from the new decision box. Following the NO outlet branch of

the new decision box, the failure event is set to TRUE in any fault tree structure

in which it is found. Similarly, following the YES outlet branch, the probability of

failure of the common failure event is set to FALSE in any fault tree structure in

which it is present.

4.4.3.2 Inconsistent failure events

As Andrews and Ridley [6] note, in certain systems components are required

to perform different functions which, if successfully accomplished, result in the

components residing in different states at different times. For example, initially

a relay may be required to be closed and later in the sequence be open.

The simple cause-consequence diagram section shown in Figure 4.5 can be used

with corresponding fault trees depicted in Figure 4.6. K2 is a relay that can fail

closed (K2FC) or open (K2FO). To start the motor relay K2 is required to close. It

may fail open because of relay failure or some operational failure PI. If K2 closes as

required, motor should start. Motor will fail to start if there is some problem with

the motor or some other operational problems (P3). Once the motor starts relay K2

is required to open. If K2 is failed closed or there is some operational failure (P2),

it will fail to open. If K2 contacts do not open, then system fails. If K2 contacts

open, the system starts to operate.

For systems that are not in continuous operation, certain component failures

could occur between operations. For example, the relay could fail between

4. Cause-Consequence Diagrams

K2 contact,;
close 1

Ftl c::::::> NO YES

Motor starts
2

Ft3 c=:::>
NS: No Start
S : Start
F : Failure

Figure 4.5: Example cause-consequence diagram

43

operations, which would be the cause of the relay being closed at the start of the

next sequence, and later in the sequence it would be unable to open. Andrews and

Ridley [6] give an algorithm on how to deal with such events.

Figure 4.6: Fault trees for the example cause-consequence diagram shown in Figure

4.5

In t.he example fihown in fignrefi 4.5 and 4.u the relay K2 is required first.ly to

close (decision box 1) and, later in the sequence, to open (decision box 3). In order

to model this type of failure accurately, the cause-consequence diagram requires

modification before quantification. A basic event labelling convention in a fault tree

structure can be helpful in identifying an inconsistent failure event. If two labels are

the same apart from the last character, then they are deemed as inconsistent failure

events. This can be seen for the cause-consequence diagram in Figure 4.5, where

4. Cause-Consequence Diagrams 44

Ftl contains basic event K2CO, the first failure mode, and Ft3 contains the basic

event K2CC, the second failure mode.

Following the identification of an inconsistent failure event, the second failure

mode is inspected and, depending on whether the second failure mode is an

unrevealed or revealed failure event, the cause-consequence diagram is different.

Qncc

K2 contacts
close 1

o c:::::> NO YES ~ 1

Motor starts

Ft2 c:::::>

NS: No Start
S : Start
F : Failure

2

K2 contacts
5

Ft5 c:::::>

Motor starts
6

Ft6 c:::::>

Figure 4.7: Modified cause-consequence diagram for inconsistent failure modes

If the second failure mode is a revealed failure, then it cannot fail between

operations and remain undetected. Therefore, the time to failure of the second

failure mode is set equal to the time it takes the system to travel from t.he first.

failure event to the second failure event. This time will be predicted by the analyst.

If, on the other hand, the second failure mode is unrevealed, then it can occur

between operations and be undetected. When this situation occurs, the second

failure mode is extracted and placed in an existence decision box preceding the first

failure event. The cause-consequence diagram is then duplicated on both outlet

branches and, following the YES outlet branch of the existence box, the decision

box containing the first failure mode is governed by the failure of the second failure

mode. The second failure mode probability is set to 1 in all decision boxes beneath

the existence decision box, and the first failure mode is set equal to O. Following

4. Cause-Consequence Diagrams 45

the NO outlet branch of the existence decision box results in the same scenario as

if the failure had in fact been a revealed failure.

Motor start'>
2

Ft2 c=::!> NO

NS: No Start
S :Start
F : Failure

K2 contact'>
close 5

Ft4 c=::!> NO YES

Motor starts
6

Ft6 c=::!>

Figure 4.8: Reduced cause-consequence diagram for inconsistent failure modes

Figure 4.9: Fault trees for the example cause-consequence diagram shown in Figure

4.8

Assuming that K2CC is an unrevealed failure event, the cause-consequence

diagram shown in Figure 4.7 would be created and reduced to the form shown

in Figure 4.8 with corresponding fault trees shown in Figure 4.9.

Following the inspection of each sequence path in the cause-consequence

diagram, and modification due to any identified dependent failure events, the cause-

4. Cause-Consequence Diagrams 46

consequence diagram can be quantified by multiplying the probabilities associated

with each decision box in each sequence. The probability of any consequence is then

obtained via the summation of the probability of any sequence that terminates in

that consequence.

4.5 Quantitative analysis

Besides being a tool for analysis of the consequences of critical event the

method serves as a basis from which the probability of occurrence of the individual

consequence may be evaluated. The cause-consequence analysis can be used as a

basis for probability analysis of large complex systems as well as of small, notes

Nielsen [5]. Nielsen uses an example of a standby pump system to illustrate how a

probability analysis may be carried out. Fault tree analysis was used for the cause

part of the diagram. He noted, that special attention should be paid to identify

common mode failures. The use of the delay symbol was illustrated - some sequences

included integration of the probability distribution function where a failure could

occur in a certain time intervaL Two different types of events should be considered

while evaluating probability of certain consequence: independent and dependent

failure events.

4.5.1 Quantitative analysis of a system containing independent failure events

If all events in the system are independent, first of all probabilities are assigned

to each outlet branch of the decision box. Then, the probability of every sequence is

obtained by multiplying probabilities associated with each decision in that sequence.

The final probability of the consequence is obtained by summing probabilities of all

sequences ending in that consequence.

To illustrate, the example shown in Section 4.3 can be used. The probability

of the event 'No light' will be equal to sum of probabilities of sequences ending in

'NL' (see Figure 4.3). There are two sequences ending in this consequence: one is

that the circuit doesn't close and other one is that the circuit closes but there are

no current through the filament.

It was said that the circuit will fail to close if the push button fails to close the

circuit and probability QpB was assigned to the NO outlet branch of the decision

box 'Circuit closes'. In that case the probability of the first sequence is equal to

4. Cause-Consequence Diagrams 47

QPE. The probability that circuit will close is equal to 1- QpE and the probability

that. t.here are no current. t hrongh the filament is Q Ftl. Then the probability of

the second sequence is QFt1(1 - QpB). The probability of no current through the

filament can be obtained using fault tree analysis and it would be equal to 1 - (1 -

QF)(1 - QBAT)(1 - QB). Therefore the probability of the consequence 'No light'

will be

P(No light) = QpB + (1- (1- Qp)(l - QBAT)(l- QB))(l- QPE)

4.5.2 Quantitative analysis of a system containing dependent failure events

Nielsen and Runge [14] gave a procedure to deal with dependent failures,

analysing a 2-unit standby system with repair and imperfect switching. A system

consists of an operative unit, a switch and a standby unit. The operating unit

performs the required system function; when it fails the standby unit is switched

into service. It was assumed that switching is done by a human operator.

A consequence diagram shows all relevant events sequentially. In the non-repair

situation the diagram is finite because the problem involves only one switchover to

the standby. The cause-consequence diagram is shown in Figure 4.10. Element B is

a standby element that is switched on if A fails. Therefore, A has to fail before B.

If B is unavailable at the time when A fails, the operation ends. The critical event

for the cause-consequence diagram A fails in time tl doesn't have a cause diagram

attached to it to describe its failure causes. This is because the critical event can

only be caused by A failing.

To find the probability that the operation stops during time interval 0 to T,

peT), probabilities of sequences 1, 2 and 3 must be determined:

poeT), the probability of sequence 1 (that A fails at tl AND operator fails to

switch over to standby at tl) is:

where K is the probability that operator fails to switch over to standby and FA is

a cumulative failure distribution for the unit A.

4. Cause-Consequence Diagrams

Operator action

Sequence 1

Sequence 2

SO - end of operation
CO - continued operation

Sequence 3

Figure 4.10: Cause-consequence diagram for standby system

48

The probability of the sequence 2 (A fails at tl AND correct operator action at

tl AND B unavailable at time tr), Ps(T)) is equal to:

where f< is the probability that the operator performs switching action correctly,

fA(t) - the probability density function for time to failure of component A, SB(t) -

the cumulative failure distribution for the standby unit B.

The probability of the sequence 3 (A fails at tl AND correct operator action at

tl AND B available at time tl AND B fails during tl to T), Pf(T) is described in

the same way:

where BB(t) is the cumulative distribution that standby unit does not fail during

time interval 0 to tl, FB - a cumulative failure distribution for the unit B.

The dependent failure was modelled assuming a certain order in which the events

occur - component B must be working before it can fail in operation. Cumulative

density function FB(T-tr) indicates that component B fails in time interval between

tl and T.

4. Cause-Consequence Diagrams 49

Nielsen and Runge [14] considered the repairable case for the same system as

well. Only an approximate result was given as the analysis of the system became too

complex for an exact solution. The given model did not account for the importance

of the time delays in the system. The model was giving the same failure probability

whether the operator doing the switching takes one minute or one hour. The

consequences in the last case were said to be usually as severe as for no switching

at all.

A different technique is given by Hickling [18]. It was noted that cause­

consequence diagrams bear many similarities to flowcharts, which also model various

courses of events through a series of decisions. Hickling notes that cause-consequence

diagrams could be used to model processes that extend over a period of time using

feedback loops: the exit paths from a decision box option are allowed to connect to

decision boxes that have already been 'visited'. Each of the feedback loops represent

a state of the system. The decision boxes that form that loop each have one option

with an exit path that continues around the loop, and another with an exit path

that leaves the loop, corresponding to the occurrence of an event which represents

a change in the state of the system.

The method was used to model an example system in which the order of

failures is important. The cause-consequence diagram for the system is shown in

Figure 4.11. The plant consists of two components, a containment system and a leak

detection/isolation system which is tested periodically. If the containment system

fails first, the isolation system shuts down the plant.. Any failure of the isolation

system after this is irrelevant. If the isolation system fails first, then until the fault

is detected and repair is made, the plant is in a dangerous state in which any failure

of the containment system causes total failure.

Hickling states, that because cause-consequence diagrams with feedback loops

are no longer representations of a simple Boolean equation, it is not possible to

apply the same quantification techniques to them as were described earlier. This is

because the input to a decision box is dependent on the output from that box and

the output also depends on the input. In this case decision boxes in the loop are

associated with failure rates instead of probabilities.

The probabilities of being in the normal and dangerous states at t, PN(t) and

4. Cause-Consequence Diagrams

System
commences
operation

_"*-
System Containment

system fails? operates ~
y I N

normally ...
Isolation

system fails?

r y I N t--

~
System
operates

dangerously'

1

Containment
system fails?

Isolation y I N ~

4
system repaired?

,iF y N r-

SD

SD: System shut down
EA: Escape to atmosphere occurs

Figure 4.11: Cause-consequence diagram using feedback loop

PD(t), can be expressed as:

PN(t) = 1 - PD(t) - Es(t) - EE(t)

PD(t) = 1 - PN(t) - Es(t) - EE(t)

50

where Es(t) is the probability that the system reaches the shut down outcome by t,

EE(t) - the probability that system reaches escape to atmosphere outcome by time

t.

The rates at which the system enters the states are expressed as:

rN(t) = PD(t)J.li(t)

rD(t) = PN(t)>"i(t)

rs(t) = PN(t)>"c(t)

rE(t) = PD(t)>"c(t)

4. Cause-Consequence Diagrams 51

where J1i(t) is the detection/repair rate of the isolation system, Ai(t) - failure rate

of the isolation system, Ac(t) - failure rate of the containment system and rN(t)

represents normal operation, rD(t) - dangerous operation, rs(t) - shut down, rE(t)

- escape to atmosphere.

The expected number of times that a system enters a certain state by time t is

given by:

EN(t) = lot PN(U)Pi(U)du

Ev(t) = lot PN(U)Ai(U)du

Es(t) = lot PN(U)Ac(u)du

EE(t) = lot Pv(u)Ac(u)du

where EN(t) is the expected number of times by t that the system enters the normal

state of operation, ED(t) - expected number of times by t that the system enters the

dangerous state of operation, Es(t) - expected number of times by t that shut down

occurs, Es(t) - expected number of times by t that escape to atmosphere occurs.

Hickling notes that this approach can be used with diagrams that have loops with

constant exit rates, and where the measures of interest are the relative probabilities

of reaching each outcome. In this case the probability of ending in the dangerous

state is given by:

which can be solved to give

More usefully, the probabilities of the system ending in the state where escape

to atmosphere occurs or the system is shut down, are:

Es(oo) = Ac + J1i
Ac + Ai + J1i

ED(OO) = Ai
Ac + Ai + Pi

Hickling states that this approach holds much in common with Markov based

techniques.

4. Cause-Consequence Diagrams 52

For certain types of systems (particularly those operating sequentially), models

can be expressed in a more explicit and transparent way with CCD than with

other techniques, states Hickling. With feedback loops, the approach enables the

construction of a wider variety of models than would otherwise be possible. The

algorithm for the quantification of standard CCD is simpler than that for fault trees,

and can be extended directly to CCD with feedback loops.

4.6 Example

For better understanding of the CCA method, the example of the pressure tank

system [6] can be used (Figure 4.12). The components individual functions and

failure modes are given in Table 4.2. The system contains a start-up, shutdown

sequence in addition to its operational phase.

SWITCH SI

I

I
~~

P
R
E
S
S
U
R
E

T
A
N
K

Figure 4.12: Pressure tank system

OUTLET VALVE

It is considered that initially the system is de-energized (it is not working).

Switch SI and relay contacts Kl and K2 are all open when the system is in the

dormant state, and the timer and pressure switch contacts are closed. Depressing

switch SI provides power to the coil of Kl which results in the closure of the Kl

contacts. Relay Kl self-latches when SI opens when released, and power is also

supplied to K2, resulting in K2 contacts closing, which starts the pump motor. It

is assumed that the tank takes 30 minutes to fill, and once the pressure threshold

4. Cause-Consequence Diagrams 53

is reached the pressure switch contacts open, de-energizing K2, which results in

the removal of power from the pump motor. The motor also has a fuse to prevent

the power surge, which, if broken, will not allow motor to operate. If the pressure

switch fails to open, the timer TIM should time out and the timer contacts open.

After a period of time the tank becomes empty and the pressure switch closes, which

energizes K2. The pump restarts and the filling process commences again. The tank

is filled t.wice Cl day awl t.he system is illspect.ed at. (j mont.hly intervals for dormant

failures.

Component

Switch SI

Relay Kl

Relay K2

Timer relay (TIM)

Table 4.2: Component functions and failure modes

Function Failure modes Effect on system Failure

type

To apply power to coil of SIC: Switch failed closed

relay Kl

Circuit remains energized Unrevealed

but can be broken by K2

S10: Switch failed open No power to energize circuit Revealed

Electrically self-latched, KID: Relay fails de- No power to circuit Revealed

applying power to relay K2 energized

KICC: Contact fails closed Circuit remains energized Unrevealed

but can be broken by K2

KICO: Contact fails open No power to circuit Revealed

Delivers power to the motor K2D: Relay fails de- No power to motor

energized

Revealed

K2CC: Contact fails closed Continuous power to motor Revealed

K2CO:Contact fails open No power to motor Revealed

Provides emergency TIMCC: Timer contact fails Circuit energized

shutdown in event of closed PRSW can open

pressure switch failing

TIMCO: Timer contact No power to motor

fails open

but Revealed

Revealed

Pressure switch De-energizes coil of K2 when PSWC: Fails closed Continuous power to motor Revealed

(PRSW) tank is full

PWSO: Fails open No power to motor Revealed

Power supplies 1 Supplies power to relays and PSI, PS2: No power No power to motor Revealed

and 2 motor

I\Iotor Pumps fluid into tank M: Fails broken No power to motor Revealed

4. Cause-Consequence Diagrams 54

Three steps are considered by Andrews and Ridley [6]:

Step1 Component failure event ordering. The ordering of the components for the

construction of the cause-consequence diagram is selected by considering the

temporal patterns of the system. For the pressure tank system, switch 81 is

depressed, followed by its opening. Relay Kl energizes and powers K2 which

powers the pump. Following 30 minutes of operation, the pressure switch

should open. In the event that the pressure switch fails to open, the timer

should time out and the timer contacts open. Given that the pressure switch

opens, K2 contacts should de-energize, removing power from the pump. Where

the timer is required to break the circuit containing Kl, Kl contacts should de­

energize, removing power from K2, which results in the removal of the power

supply to the pump. The ordering was therefore chosen to be

81, Kl, K2, pressure switch, timer relay, Kl, K2

It can be seen that the components Kl and K2 both occur twice in the ordering

sequence. This is the result of the system containing two different phases, and

hence some components perform different actions in each different phase. The

components Kl and K2 are both required to be closed in the startup sequence

and open in the shutdown sequence.

Steps 2 and 3 Cause-consequence diagram construction and reduction. The cause­

conseqllence cliagram was const.rueted by collsiclering the effect of each

component in the chosen order on the system performance. In order to

highlight relevant features, only one filling sequence is investigated, the cause­

consequence diagram of which is given in Figure 4.13. The corresponding fault

trees are illustrated in Figure 4.14.

4.6.1 System quantification

Prior to multiplying the probabilities associated with each decision box in each

sequence, the cause-consequence diagram was checked for any dependent failure

events [6]. The following dependent failure events were identified.

4. Cause-Consequence Diagrams

SI closes
1

Ftl ~ NO YES

K2 contact'!
close 3

Ft3 ~ NO YES

Ft4~

SI opens
2

Ft2 ~ NO YES

Motor starts
4

E-Empty
o - Overpressurized
S - Safe
N -Normal

Kl contacts
close 7

Ft7 ~ NO

K2 contacts
8

Ft8 ~ YES

Ft9 ~

Motor starts
9

opens

FtlO~ NO

Timer contact'!
opens 11

Ft11~ YES

Figure 4.13: Cause-consequence diagram for the pressure tank system

55

1. Inconsistent failure event present in Ft1 and Ft2 as the switch is required

to close, represented by decision box 1, and then open, represented by

decision box 2. The second failure event, SlFC, is an unrevealed failure event

(Table 4.2) and is therefore extracted and placed in an existence decision box

preceding decision box 1. The cause-consequence diagram is modified using

4. Cause-Consequence Diagrams

where:
Ft13 =Ft14=Ft6
Ft8 = Ft3
Ft9 = Ft4
FtlO = Ft5

Figure 4.14: Fault trees for the pressure tank cause-consequence diagram

the procedure detailed in the Section 4.4.3.2.

56

2. Inconsistent failure event present in Ft3 and Ft5 as the pressure switch is

required to be closed and then open. The second failure event, PSWC, is a

revealed failure event (Table 4.2) and the time to failure of PSWC is set equal

to 30 minutes (the filling time).

3. Inconsistent failure event present in Ft3 and Ft6 as K2 contacts are required

to close and, following the tank being full, open. The second failure event,

K2CC, is a revealed failure event (Table 4.2) and the time to failure of K2CC

is set. equal t.o 30 miuut.es (t.he filling t.ime).

4. Common failure event present in Ft7 and Ft8, PSI is extracted and placed in

a new decision box preceding decision box 7. The cause-consequence diagram

is modified following the procedure detailed in Section 4.4.3.1.

5. Inconsistent failure event present in Ft7 and Ft12 as Kl contacts are required

to close and then open. The second failure event, KICC, is an unrevealed

failure event (Table 4.2) and is therefore extracted and placed in an existence

4. Cause-Consequence Diagrams 57

decision box. The cause consequence diagram is modified using the procedure

detailed in Section 4.4.3.2.

6. Inconsistent failure event present in Ft7 and Ftll as the timer contacts are

closed and may be required to open later in the sequence. The second failure

event, TIMCC, is an unrevealed failure event (Table 4.2) and is therefore

extracted and placed in an existence decision box. The cause-consequence

diagTam is modified using the procedure detailed in Section 4.4.3.2.

Following the appropriate modification owing to the dependent failure events

identified, the final cause-consequence diagram was developed and is shown in

Figures 4.16 and 4.17, with corresponding fault trees given in Figure 4.15.

Ft3

Ft4

Figure 4.15: Fault tree structures for Figures 4.16 and 4.17

The system functions twice daily and therefore the time between operations is

12h. The probability of failure for revealed failures between operations was hence

obtained using equation (4.1) with t = 12h. For unrevealed failures the probability

of the failure was obtained using (J and T, given in Table 4.3, and equation (4.2) (A

is conditional failure rate):

Q = 1- eAt

()
QAV = A(2 + T)

(4.1)

(4.2)

K2contact.
close 2

Ftl ~ NO YES

5

4. Cause-Consequence Diagrams

SlFC~

Ftl

K2contact.
14

SI closes
11

SlFC ~ NO YES

E-Empty
0- Overpressuri7.ed
S-Safe
N -Normal

58

Figure 4.16: First page of the final cause-consequence diagram for the pressure tank

system

Ft3

K2 contacl~
26

K1CC =::>

4. Cause-Consequence Diagrams

K2contact~

c1o~ 36

Ft3 =::> NO YES

39

PSWC

46

53

Ft3 =::>

Ft2

50

PSWC=::>

Timer contact.~
52

YES

59

NO

58

Figure 4.17: Second page of the final cause-consequence diagram for the pressure

tank system

4. Cause-Consequence Diagrams 60

The probability of each fault tree was calculated using the inclusion-exclusion

method, and the probability of overpressure was obtained by summing the

probabilities of any sequence that terminated in the consequence '0'. There existed

12 such paths. In addition to obtaining the probability of overpressure, the

probability of the tank being empty, a safe operation and normal operation was

also calculated.

Table 4.3: Component functions and failure modes

Component Failure rate Inspection interval, 0 Mean time to repair, T

Switch SI SIFC: 1 X 10-6 4368.0 36.0

SIFO: 8.698 x 10-4 NA NA

Relay Kl KID: 0.23 x 10-6 NA NA

KICC: 0.23 X 10-6 4368.0 36.0

KICO: 0.23 X 10-6 NA NA

Relay K2 K2D: 0.23 x 10-6 NA NA

K2CC: 0.23 X 10-6 NA NA

K2CO: 0.23 X 10-6 NA NA

Timer relay TIMCC: 1 x 10-4 4368.0 36.0

TIMCO: 1 x 10-4 NA NA

Pressure switch PSWC: 1 X 10-4 NA NA

PSWO: 1 X 10-4 NA NA

Fuse F: 1 X 10-5 NA NA

Power supplies 1 and 2 PSI: 1 x 10-6 NA NA

PS2: 1 x 10-6 NA NA

Motor M: 1 x 10-6 NA NA

4.7 Applications of Cause-Consequence Diagram Method

Several authors have applied the method to various systems. In 1976, Burdick

and Fussell [16] made a first step in adapting CCA to standardised use in the

US nuclear power industry. They also stated, that the cause-consequence analysis

should be combined with other new methods of analysis, such as phased mission

4. Cause-Consequence Diagrams 61

analysis. The application of CCD for a 2-unit standby system with repair and

imperfect switching was carried out by Nielsen and Runge in 1974 [14]. They

investigated both repairable and non-repairable cases. For the repairable case,

analysis of the system was more complex and only an approximate probability

of failure was given. In 1975 Nielsen, Platz and Runge [19] used CCD method

to analyse a redundant protection system. The protection system analysed was a

core spray system in a nuclear boiling water reactor and it was used to prevent

the fuel core from overheating given a loss of primary coolant. Reliability of a

proposed instrument air system for a complex system of fertilizer plants was studied

by Nielsen, Platz and Kongso [24] (1977). Using the CCD method they pointed out

inadequate system designs and identified useful design changes to improve reliability

of the system. The CCD method was also applied to design inter locks (arrangements

of switching components designed to prevent operating signals being sent to plant

components in dangerous circumstances) by Tailor [25] in 1976. More recently,

Andrews and Ridley [6, 23] applied the CCD method to sequential systems as well

as to static systems.

4.8 Summary

Following Nielsen [5], the cause-consequence diagram method should be regarded

as a tool by which problems are defined and presented and it could also serve as a

basis from which the probability of occurrence of the individual consequences may

be evaluated. Since the early work the method has been extended and adopted to

model various industrial systems.

One of the advantages of the cause-consequence diagram is that it identifies the

complete set of system responses to any given initiating event. This can be achieved

using event trees as well, but the cause-consequence diagram is able to model more

complex events, i.e. dependent events. Unlike fault trees, the cause-consequence

diagram method retains failure logic for the system and it is possible to develop the

diagram from system logic.

5. COMPONENT ORDERING STRATEGIES

5.1 Introduction

Before a BDD is constructed, basic events in the fault tree need to be ordered.

Depending on the chosen ordering, the size of BDD and complexity of the

calculations required for its construction can change dramatically. Previous research

outlined different ordering strategies for basic events in the fault tree.

In this chapter two main groups of ordering schemes are discussed - structural

and weighted ordering techniques. Structural ordering schemes involve ordering the

variables via a structured traversal of the fault tree and they have a tendency to

keep close in the ordering scheme those variables that appear close together in the

fault tree. The most common ordering technique is the top-down scheme, which

is described first. Other structural ordering techniques include modified top-down,

depth-first, modified depth-first, modified priority depth-first and depth-first with

number of leaves.

\Veighted ordering techniques work slightly differently by allocating weights to

the variables and then determining their position in the ordering. These schemes

can be divided into topological schemes, which assign weights according to the

position of the variable in the fault tree, and the ones based on importance measures

(event criticality was used an example). Non-dynamic top-down weights, dynamic

top-down weights and bottom-up weights represent topological weighted ordering

schemes.

5.2 Structural Ordering Schemes

5.2.1 Top-Down Ordering

The top-down scheme orders variables as they appear in a fault tree following

top-down, left-right traversal of the fault tree structure. Therefore basic events

62

5. Component ordering strategies 63

Levell

Level 2

Level 3

Level 4

Level 5

Figure 5.1: Example fault tree used for ordering

appearing on the higher levels of fault tree will be placed earlier in the ordering

than those appearing lower down the fault tree.

To illustrate how this works, the scheme can be applied to the fault tree shown

in Figure 5.1. Each level is considered in turn, from the top of fault tree going

downwards, and the basic events are ordered from left to right on each level. Each

event is placed in the ordering the first time it is encountered in the fault tree and

subsequent occurrences of the particular basic event are ignored.

Following the top-down approach the ordering of the basic events for the fault

tree shown in Figure 5.1 is:

A<B<C<F<E<D<H<G

This scheme is highly dependent on the way the fault tree is structured. For

example, if gates G1 and G2 where swapped around, or the order of basic events

as inputs to the gates was changed, then the order in which basic events are placed

would change as well, although the logic function of the fault tree remained the

same. These dumges could affed the size of t.he result.illg binary decision diagram

or cause-consequence diagram.

5. Component ordering strategies 64

5.2.2 Modified Top-Dowll Orderillg

Using the modified top-down ordering scheme the fault tree is scanned in the

same way as in top-down approach - the basic events appearing on higher levels are

placed in the ordering before the basic events appearing on the lower levels of the

fault tree. The basic events appearing on the same level of the fault tree are ordered

not in just left-right order, but also according to their total number of occurrences

throughout fault tree: the basic events appearing more often will be placed in the

ordering first. If there are two or more basic events that appear the same number

of times in the fault tree, they are ordered from left to right as they occur on that

level. Each variable is placed in the ordering scheme as it is first encountered on the

fault tree and any subsequent appearances are ignored.

For the example fault tree in Figure 5.1 the modified top-down ordering is:

A<B<F<C<E<D<H<G

5.2.3 Depth-First Orderillg

The depth-first ordering scheme considers the fault tree to be made up of

many smaller subtrees, and each subtree is ordered in top-down, left-right manner.

Starting from the top of the fault tree, basic event inputs are placed in the ordering

as they appear from left to right, before considering any gate inputs. The gate inputs

are considered from left to right and each of them is then considered as the top event

and ordered the same way, such that the lower levels of the most-left subtree are

placed in the ordering before higher levels of the other subtrees.

For the example fault tree in Figure 5.1 the depth-first ordering is:

A<B<C<H<G<F<E<D

5.2.4 Modified Deptll-First Ordering

The modified depth first ordering scheme considers the gate inputs to any gate in

a left-right manner, the same way as the depth-first ordering scheme, such that the

subtree of a left-most gate is completely explored before considering the remaining

gate inputs and any basic event inputs to a gate are considered before the gate

inputs. The difference is that basic events on the same level of a subtree are ordered

according to the number of their appearances in the fault tree. The events with the

5. Component ordering strategies 65

higher number of appearances are placed in the ordering first, but if there are two

or more events that appear in the fault tree the same number of times, then they

are ordered as they appear from left to right in the gate.

For the example fault tree in Figure 5.1 the depth-first ordering is:

A<B<C<H<G<F<E<D

5.2.5 Modified Priority Deptll-Fil'st Ordering

This ordering scheme is an extension of the modified depth-first ordering, where

rather than simply considering the gate inputs from left to right, any gates, which

themselves have only basic events as inputs, are considered first. Basic events are

ordered as in the modified depth-first ordering scheme, such that the most repeated

events are given priority and, if there is a tie, then they are ordered from left to

right as they appear in the list of inputs. Basic events continue to be considered

before any gate inputs.

Level!

Level 2

Level 3

Level 4

LevelS

Figure 5.2: Example fault tree used for ordering

To illustrate this ordering scheme consider the example fault tree shown in

Figure 5.2. The top event has three inputs - gates 'Gl' and 'G2' and basic event

5. Component ordering strategies 66

'A'. Basic event 'A' is placed in the ordering first. Gate 'Gl' has two inputs - gates

'G3' and 'G4'. Inputs to gate 'G2' are basic event 'B' and gate 'F5'. These gates

are investigated from left to right. Inputs to gate 'G3' are basic event 'C' and

gate 'G6' and to gate 'G4' - basic events 'F', 'B' and 'E'. As gate 'G4' has only

basic events as its inputs, it is considered first. Basic event 'F' occurs twice in the

fault tree, 'B' - three times, and basic event 'E' appears only once in the fault tree.

Therefore, the next basic event placed in the ordering is 'B' and it is followed by

basic events 'F' and 'E'. This gives partial ordering A < B < F < E. Gate 'G3' has

one basic event and one gate as its inputs. Basic event 'C' is placed in the ordering

first. Following this, basic events from gate :G6' are considered. Basic event 'H' is

repeated twice in the fault tree, and basic event 'G' appears once. Therefore, basic

event 'H' is placed in the ordering before basic event 'G'. This gives the partial

ordering A < B < F < E < C < H < G. Next gate to consider is 'G2'. It has basic

event 'B' as an input, but it has already been placed in the ordering. Inputs to gate

'G5' are gate 'G7' and basic event 'D'. Basic event 'D' is placed in the ordering first

and then inputs to gate 'G7' are considered. In this case, all three basic events of

gate 'GT have already been placed in the ordering. This gives t.he final ordering:

A<B<F<E<C<H<G<D

5.2.6 Deptll-first, with Number of Leaves

This is another ordering scheme that is an extension to the modified depth-first

ordering. It uses a different method than the modified priority depth-first ordering to

choose the order in which gate inputs are explored. In this case gates are considered

according to the number of 'leaves' beneath the gate itself. The number of leaves of

a gate is the total number of basic events occurring at any level beneath that gate.

The gate inputs with the least number of leaves that have not been ordered are

considered first. In the case of a tie, the gate with fewest ordered leaves is chosen.

If an order still can't be established, then they are placed in the ordering as they

appear from left to right in the fault tree. The basic events are ordered the same

way as in modified depth-first ordering, so the most repeated events are chosen first.

In the case of a tie, they are ordered as they appear from left to right. Basic events

are placed in the ordering before any gates.

For the example fault tree in Figure 5.1 the number of leaves for each gate is

5. Component ordering strategies 67

shown in Table 5.1.

Gate G1 G2 G3 G4 G5 G6 G7

N umber of leaves 4 7 3 3 4 2 3

Table 5.1: Number of leaves of each gate in Figure 5.1

To illustrate how this ordering works, start with top event. The top event has

three inputs - basic event 'A' and gates G1 and G2. Basic event 'A' is placed

in the ordering first as it has fewer leaves than either G1 or G2, then gate G1 is

considered first as it has fewer leaves (4) than G2 (7). This gives partial ordering

A < B < C < H < G. Basic events within the gate are ordered simply as they

appear from left to right. After gate G1, gate G2 is considered next and it has two

gate inputs - G4 and G5. Gates G4 and G5 both have two un ordered leaves, but

because gate G4 has only one ordered leave ('B') while gate G5 has two ordered

leaves CB' and 'H'), it is processed first. The partial ordering at this point is

A < B < C < H < G < F < E. Gate G5 has input 'D' which is placed in the

ordering next. As all basic events are already placed in the ordering, gate G7 has

nothing further to add to the list. The final ordering is:

A<B<C<H<G<F<E<D

5.3 Weighted Ordering Schemes

5.3.1 Non-Dynamic Top-Down Weights

Non-dynamic top-down weights ordering scheme places basic events in the order

of decreasing weight. Weights are calculated for each event according to the following

steps:

• A weight of 1.0 is assigned to the top event and is propagated through the

fault tree towards the basic events.

• At each gate, the weight is equally distributed between its inputs.

• Each basic event will then be assigned a weight. Repeated events have their

corresponding weights added together.

5. Component ordering strategies 68

• The highest order is given to the basic event with the largest weight.

For events with equal weights their average level of appearance in the fault tree is

calculated. It is obtained by summing the levels on which events occur and dividing

this by the number of occurrences. The basic event that appears, on average, highest

in the tree is placed earlier in the ordering. If basic events still tie for position then

the most repeated event is chosen and if a tie still exists then they are simply ordered

as they appear in the modified top-down ordering.

1

12

24
1

24
1 1 1

36 36 36

Levell

Level 2

Level 3

Level 4

Level 5

Figure 5.3: Fault tree from Figure 5.1 after assigning weights

To illustrate how this ordering scheme works, it is applied to a fault tree shown

in Figure 5.1. The fault tree after weights have been assigned is shown in Figure 5.3.

5. Component ordering strategies 69

Next, the weights of each basic event are calculated:

A
1
-
3

B
1 1 1 1
6" + 18 + 36 = 4

C
1

-
12

D
1

12

E
1
18

F
1 1 1

18 + 36 = 12

G
1

24

H
1 1 5

24 + 36 = 72

After the weights are calculated, the first basic event to be placed in ordering is

'A' and then it is 'B'. Basic events 'C', 'D'and 'F' have the same weight. Events

'C' and 'D' appear on the same level (Level 4), and 'F' appears on levels 4 and 5,

therefore basic events 'C' and 'D' are placed in the ordering first. As they have the

same weight and appear on the same level, they are placed as they appear in the

fault tree from left to right, so basic event 'c' is placed first. The final ordering is:

A<B<C<D<F<H<E<G

5.3.2 Dynamic Top-Down Weighted Ordering

Dynamic top-down weighted ordering calculates weights of the basic events the

same way as the non-dynamic version, but only the event with the highest weight

is placed in the ordering. Once an event has been placed in the ordering, it is then

removed from the fault tree by deleting all its occurrences. Using the modified fault

tree weights are reassigned. This allows another basic event to be placed in the

ordering and the process continues until all events have been ordered.

From the example in Figure 5.3, the first event to place in the ordering is event

'A'. Then this basic event is removed from the fault tree and the resulting fault tree

is shown in Figure 5.4.

Now the basic event that has the largest weight is 'B'. Therefore it is placed in

the ordering and removed from fault tree. The procedure is repeated until all basic

1

8

5. Component ordering strategies

]6 Hj 24 24 24

Figure 5.4: Modified fault tree from Figure 5.3

events are placed in the ordering. The final ordering is:

A<B<C<H<G<F<E<D

5.3.3 Bottom-Up Weights

70

Level!

Level 2

Level 3

Level 4

LevelS

Bottom-up weighted ordering starts from the bottom of the tree, rather than the

top and in effect calculates weights for the gates, which are then used to determine

the ordering in which they are considered within a depth-first exploration. The main

features are:

• a weight of 1/2 is assigned to each basic event and propagated towards the

top event.

• at each gate, the weights of the inputs are combined as probabilities according

5. Component ordering strategies 71

to:

n

'AND' gate: P (gate)
i=l

n

'OR' gates: P (gate) = 1 - IT (1 - qwJ
i=l

where n is the number of inputs to the gate and qWi is the weight of basic event

i.

• Once each of the inputs to the top event has been assigned weights, the tree is

explored in a dept.h-fir~t. manner, eom;iciering brancheR with the largest weight

first.

Once the weight values of the the gates have been established, the method

proeeedR as in the modified clepth-firRt method, exeept that the gates are explored

according to which has the highest weight rather than simply from left to right.

However, if gates do have the same weight then they are considered according to the

percentage of repeated events below that gate. This is calculated by adding up the

number of repeated events below the gate and dividing by the total number of events

below that gate. The gate with the highest number of repeated events is considered

first, but if there is a tie, then they are considered from left to right as they appear

in the input list. The basic events of each gate are ordered before the gate inputs are

explored and are chosen according to the highest number of occurrences in the fault

tree. If events have the same number of occurrences then they are simply chosen

from left to right as they appear in the input list.

To illustrate how this scheme works weights are assigned to basic events of the

fault tree in Figure 5.1 and the new fault tree is shown in Figure 5.5. As basic events

ate ordered before gate inputs, basic event 'A' is placed in the ordering first. Gate

G2 is considered next as it has larger weight than gate Gl. There are two inputs

to gate G2 - G4 awl G5. Gnt.e G5 is investignt.ecl firRt as it. has larger weight. Next

basic event placed in the ordering is 'D' and then basic events 'B', 'H' and 'F'. The

final ordering is:

A<D<B<H<F<E<C<G

I

2

1

2

5. Component ordering strategies

1

2
1

2
1

2
1

2

Level!

Leve12

Leve13

Level 4

LevelS

Figure 5.5: Fault tree from Figure 5.1 after assigning weights

5.3.4 Event Criticality ..

72

This final ordering scheme to be considered is an extension of the one that applies

the principle of Birnbaum's structural importance measure directly to the tree. The

contribution of each basic event to the top event is calculated according to:

The selected basic event therefore assumes the failure probabilities of one and zero

on two consecutive computations of the top event probability, with the remaining

components given failure probabilities of 1/2. The result of the second run (with

failure probability zero) is subtracted from the first run (with failure probability

one) to give the contribution of that basic event to occurrence of the top event.

The basic events are ordered such that those with a greater contribution to the

occurrence of the top event are ordered before these with smaller contributions. If

two events have the same calculated contribution, then the event with the highest

average level of occurrence is selected first. If the events are still tied then the most

5. Component ordering strategies 73

repeated event is selected and if the events are still indistinguishable, then they are

simply onlered as t.hey appear in t.he uHHlifiec} t.op-clown ordering.

For then example fault tree in Figure 5.1 the ordering following this method

would be:

A<D<B<C<F<H<E<G

5.4 Summary

The ordering schemes described above will be used to investi~ate the infilleIlee of

the order of the failure events to the size of the cause-consequence diagram. Previous

research showed that the order of basic events can have a big influence to the size

of binary decision diagrams.

It has to be noticed, that variable orderings, produced by each of the schemes, are

very sensitive to the way the fault tree is written. The structure of fault tree can vary

significantly without any difference in the structure function. Also, fault trees often

are not written in minimal form, which would affect both the ordering of the basic

events, and the size of the resulting binary decision diagram or cause-consequence

diagram.

6. REVIEW OF PHASED MISSION ANALYSIS METHODS

6.1 Introduction

One of the most important problems in system unreliability is the phased mission

problem [27]. Most reliability analysis techniques and tools assume that a system is

used for a mission consisting of a single phase [28, 29]. However, multiple phases are

natural in many missions. With increasing complexity and automation associated

with the systems encountered in the nuclear, aerospace, chemical, electronic, and

other industries, phased mission analysis is being recognized as the appropriate

reliability analysis method for a large number of problems [l].

Many systems perform a mission which can be divided into consecutive time

periods - phases. The phase duration may be fixed or random. In each phase, the

system needs to accomplish a specific task. The system configuration (the logic

model), the phase duration, and the failure rates of the components often vary from

phase to phase [28].

The following is a description of a phased mission [1]:

A phased mission is a task to be performed by a system during the execution of

which the system is altered such that the logic model changes at specified times.

Thus, during a phased mission, time periods (phases) occur in which either the

system configuration, system failure characteristics, or both, are distinct from

those of any immediately succeeding phase.

A classic example of a phased mission system is an aircraft flight which involves

take-off, ascent, level flight, descent and landing phases.

6.2 Analysis of phased mission systems

Different types of phased mission systems occur and each of them has its

own phased mission analysis problems [1]. The components of the system may

74

6. Review of Phased Mission Analysis Methods 75

fail independently of each other or have interdependent failure properties. The

COlI1pOIH-mts lIlay be repairable, wit.h spedfied repair t.imes, or they may be

nonrepairable. Often a system undergoing a phased mission will contain both

repairable and nonrepairable components. In a mission such as an intercontinental

ballistic missile, all components will be nonrepairable. During a manned space flight,

however, it may be possible for an astronaut to replace or repair a malfunctioning

item [27].

The most important phased mission analysis problem is to calculate exact or,

obtain bounds for, mission unreliability, where mission unreliability is defined as the

probability that the system fails to function successfully in at least one phase [1, 27].

Estimating the mission reliability by the product of the phases usually results in an

appreciable overprediction in system reliability, since basic events are shared among

the logic models of the various phases.

An example of this is given by Esary and Ziehms [2]. A system with two

independent components, Cl and C2 , is designed for a two-phased mission. In order

for the system to perform the required tasks at least one component has to function

through phase 1 and both components have to function through phase 2. The block

diagrams for this are shown in Figure 6.1.

Phase 1 Phase 2

Figure 6.1: Block diagram for two-phased mission

The probabilities of the components are as follows: PH - probability that

component Cl functions through phase 1; P21 - probability that component C2

functions through phase 1; P12 - probability that component Cl functions through

phase 2, given that it has functioned through the phase 1; P22 - probability that

component C2 functions through phase 2, given that it has functioned through phase

1.

6. Review of Phased Mission Analysis Methods 76

The system reliability for the phase 1 RI is given by

and system reliability for phase 2, R2 , given that both components have functioned

through phase 1, is

Multiplying these together would lead to the mission reliability

This is greater than the correct mission reliability, which is

since mission success is achieved if, and only if, both components function through

both phases.

6.3 Methods for the phased mission analysis

6.3.1 Nonrepairable systems

6.3.1.1 Basic event transformation and cut set cancellation

Esary and Ziehms [2] present a method to transform and reduce a phased mission

system into an equivalent single phase mission, allowing existing techniques to be

applied to obtain mission reliability. In multi-phased mission, the performance of

a component in each phase depends on its performance in previous phases. A

component will only be working in a phase if it works successfully through all

previous phases.

Therefore, a component c in phase j can be replaced by a series system of

components which would represent the performance of component c in all phases

up to and including the phase j, CI,C2, ••• , Cj . If using fault tree analysis, the single

event input of the failure of component c is replaced by an OR combination of the

failure of component c in any phase up to and including phase j.

To illustrate the method the following phased mission is considered [3]. The

system consists of three non-repairable components A, B and C. The reliability

network for this system is given in Figure 6.2.

6. Review of Phased Mission Analysis Methods 77

Phase 1 Phase 2 Phase 3

Figure 6.2: Reliability network for the example phased mission system

To accomplish the mission the system must work through all three phases. To

accomplish phase 1 all components must work through the phase. If phase 1 is

completed successfully, the system enters phase 2, to accomplish this successfully

component A, and at least one of the components Band C, must work through the

phase. To accomplish phase 3 at least one of the components (A, B or C) must

work through the phase.

The fault trees for each phase are represented in Figure 6.3.

Figure 6.3: Fault tree representation of individual phase failures

Component failure in each phase i is represented by Ai, Bi, Ci . In order to

transform the multi-phase mission problem into single-phase mission, all failure

events (A, B, C) are replaced by an OR combination of failure events for that and

all preceding phases. For example, failure event A in phase 2 will be replaced by OR

combination of Al (failure of component A in phase 1) and A2 (failure of component

A in phase 2, given that it was functioning through the phase 1). The fault tree for

the transformed multi-phase mission problem into a single-phase mission is shown

in Figure 6.4.

6. Review of Phased Mission Analysis Methods

Figure 6.4: Equivalent single-phase mission

The system reliabilities are given by

Phase 1 RI

Phase 2 R2

Phase 3 R3

where PCj is the conditional reliability of component c in phase j:

78

(6.1)

In order to determine the overall system reliability accurately Esary and

Ziehms [2] introduced the concept of cut set cancellation. The rule says, that if

the minimal cut sets of an earlier phase contain any minimal cut sets from a later

phases, they may be removed from the earlier phase. This can be done as mission

failure is the only consideration, and there is no need to repeat such events as

later phases take into account the failure of the components in all phases up to the

inspected phase.

6. Review of Phased Mission Analysis Methods 79

For the example described earlier (Figure 6.2), the minimal cut sets for each

phase are as follow:

Phase 1

A

B

C

Phase 2

A

BC

Phase 3

ABC

If component A fails in phase 1 then it will be failed in phase 2. Therefore, cut

set A can be removed from the phase 1 as it is a minimal cut set for the later phase

as well. In that case the cut sets for the multi-phase mission are as follow:

Phase 1

B

C

Phase 2

A

BC

Phase 3

ABC

Figure 6.5: Equivalent single-phase mission after cut set cancellation

The method proposed by Esary nd Ziehms is capable of transforming a multi­

phase mission into an equivalent single phase mission to allow the use of existing

6. Review of Phased Mission Analysis Methods 80

reliability techniques. The cut set cancellation presents a more simple way to

transform the system. However, if the cut set cancellation is applied before

transformation of the multi-phase mission to the single-phase mission, the fault

tree represented in Figure 6.4 would look slightly different (see Figure 6.5). But

if cut sets are removed to produce single-phase mission, it becomes impossible to

calculate individual phase failure probabilities which may be desirable, note La Band

and Andrews [3].

6.3.1.2 Approximate methods for mission unreliability

An important problem of phased mission analysis is to calculate exact or obtain

bound for mission unreliability. The work by Esary and Ziehms [2] was reviewed by

Burdick at el [1] to suggest methods for obtaining approximate results for mission

reliability.

The method suggested by Esary and Ziehms can be applied to the original fault

tree of a phased mission system, but the transformation of each basic event C in

phase j into a series of events, Cl,"" Cj leads to a large increase in the number

of minimal cut sets of the mission. Therefore, it is difficult to calculate the exact

mission unreliability. As a solution to this, there are methods developed to estimate

the system unreliability without using basic event transformation.

Inclusion-exclusion expansion of phase unreliabilities

The minimal cut sets are obtained for each phase of the original system. The

unreliability of phase j, Qj, is calculated using the inclusion-exclusion equation 2.10

for the minimal cut sets of phase j. The conditional basic event C reliability PCj

was obtained in equation 6.1, and the unconditional basic event C reliability PCj is

derived from this in equation:

j

PCj=P[xc(tj)=O]= ITPci' forj=l, ... ,n
i=i

(6.2)

An approximation for mission unreliability QIN-EX can be expressed as a

product of the individual phase reliabilities:

n

QIN-EX = IT Rj

j=i

(6.3)

In practice, the usual approximation used for mission unreliability is obtained

6. Review of Phased Mission Analysis Methods

by the sum of individual phase unreliabilities:

n

QIN-EX ~ :L Qj

j-I

81

(6.4)

The approximation can also be applied after cut set cancellation to give another

approximation for mission unreliability, QIN-EX(CC). This bound will usually give

a result smaller than the one without cut set cancellation due to the fact that there

would be fewer cut sets in each phase.

Minimal cut set bound

The minimal cut sets are obtained for each phase from the original logic model.

The probability of failure of cut set Ci in phase j is given by

N Cij

qC;j = IT P(Cl) (6.5)
l=i

where Cl is occurrence of basic event C in cut set Ci of phase j, Nc;j is the number

of basic events in minimal cut set Ci of phase j.

The reliability of phase j is then estimated using minimal bound:

Nmcsj

Rj = IT PCij

i=i

(6.6)

where Nmcsj is number of minimal cut sets in phase j, PC;j is the probability of

success of cut set Ci in phase j.

The approximation for the reliability of the mission using minimal cut bound

QMCB is obtained the same way as in equation 6.3. This method also can be used

after applying the cut set cancellation technique to give approximation of the mission

reliability QMCB(CC).

The approximate methods described above do not account for the outcome

of previous phases, therefore these bounds are only estimates. However, such

techniques can be useful in finding estimations for systems containing a large number

of components where an exact solution would be difficult to calculate or costly.

6.3.1.3 Expected number of failures

A method for calculating the expected number of system failures for a phased

mission was developed by Montague and Fussell [30]. They state, that the system

6. Review of Phased Mission Analysis Methods 82

expected number of failures is a valuable system reliability characteristic when the

system is repairable or non-repairable. According to Montague and Fussell, an

expected number of failures much less than unity is desired during the mission

for most systems. The proposed method is applicable to both repairable and

nonrepairable systems.

The standard method for obtaining top event frequency for a single-phase mission

is given in equation 2.14. This is the contribution from the occurrence of at least

one minimal cut set minus the contribution of the occurrence of minimal cut sets

when the system has already failed. The expected number of system failures is

then obtained by the integral of this parameter over a specified time interval in

equation 2.20.

This principle is adapted by Montague and Fussell and the expected number of

. failures for a phased mission with n phases is given by

EN F{io, in) ~ ~ 14

, WT { i)di + ~ boundary contribution (6.7)

The first term in the equation (6.7) is the sum of the expected number of failures

occurring during each phase of the mission. The integral term is separated into n

phases because the integrand becomes a new function with each new phase. The

second term accounts for the TOP event occurring as a phase boundary is crossed.

This boundary contribution is needed since it is possible for a combination of basic

events to exist at the end of one phase without resulting in the TOP event, but

which will cause the occurrence of the TOP in the next phase.

To evaluate this boundary jump, let fl.t be an arbitrarily small length of time

spanning across the i'th phase boundary. Thus, the expected value of the number

of system failures in this tlt time interval

ENF(i) = (0 failures in ~t)· P [s (ti - ~t) n S (ti + ~t)]

+(1 failure in tlt) . P [s (ti - ~t) n S (ti + ~t)]
+higher order terms, (6.8)

where S (ti - ~t) - top event does not exist at time ti, S (ti + ~t) - top event exists

at time t i •

The higher order terms account for the system failing more than one time

during the tlt time interval. The failure logic models used to determine

6. Review of Pl18sed Mission Analysis Methods 83

S (ti - ~t) and S (ti + ~t) are from phase i and phase i + 1 respectively. Taking

the limit of equation (6.8) as /).t approaches zero, it becomes

(6.9)

where S(ti-) - top event does not exist at the instant before the transition, S(ti+) -

top event exists at the instant after the transition.

Equation (6.9) is the contribution to the mission expected number of failures due

only to the logic model changing. Because the transition between phases is assumed

to be instantaneous, the state of a basic event does not change during the transition

from one phase to the next. Thus, equation (6.9) does not express a basic event

changing states that contributes to the TOP event changing states.

With (6.9), the expected number of failures of the TOP event can be expressed

as

n ti n-l

ENF(to, tn) = L 1 WT(t)dt + LP [S(ti-) n S(ti+)]
i=l ti-l i=l

(6.10)

Calculation of the boundary contribution in (6.10), P [S(ti-) n S(tH)] , requires

using the minimal path sets of the failure logic model of one phase and the minimal

cut sets of the failure logic model of the next consecutive phase. Using Boolean

algebra, an expression for the TOP event not existing at the end of one phase and

existing at the beginning of the next can be written in terms of the basic events

included in these minimal cut sets and path sets. The method was applied to an

emergency core cooling system for a boiling water reactor (see [30]).

6.3.1.4 Reliability of periodic, coherent, binary systems

Veatch [33] considers a periodic system without repair for phased mission

analysis. In the work it is stated that the single-phase system is useful for

approximating the reliability and mean life of the periodic system and it is much

more simple to analyze than exact transformations to a single-phase system.

The concept of a binary system is extended to phased missions by considering

a separate structure function for each phase of a mission. For s-coherent systems

without repair, the system cannot return to a working state from a failed state

within a phase. A system is s-coherent if:

6. Review of Phased Mission Analysis Methods 84

1. a component failure cannot cause the system to transmit from failed to

working;

2. at least one component is relevant to the state of the system.

Hence, the event that the system functions during phase j can be expressed

as {<pj (X (tj)) = I}, where <Pj (X) is a system structure function in phase j. The

event that the system functions throughout the mission can be expressed as

{<pj(X(tj)) = 1, ... ,<Pm(X(tm)) = I}.

Approximate techniques reviewed by Burdick et al [1] treat the successful

completion of each phase as s-independent events and system reliability is given by

multiplying reliability number for each phase. Esary and Ziehms [2] show that using

the component reliabilities for phase j gives a lower bound for system reliability and

using conditional phase reliabilities gives an upper bound. When cut set cancellation

or phase cancellation is applied to these approximations, their accuracy is improved.

6.3.1.4.1 Lower bound systems and periodic systems

Another technique [33] that can be used to approximate phased-mission

reliability is to construct a lower bound single-phased system, defined by:

() {
I, if <Pj(X) = 1, for j = 1, ... , m

<PLB X =
0, otherwise.

(6.11)

Algebraically, <PLB can be computed as
m

<PLB(X) = IT <pj(X). (6.12)
j=l

The block diagram for the lower bound system is constructed by placing the

block diagram for each phase in series. The concept of cut set cancellation can be

used. However, for the lower bound system, cancellation can be done in earlier or

later phases[33]. Hence, a cut set that contains a cut set from any other phase can

be cancelled regardless of sequences.

The lower bound system is particularly valuable in analyzing the performance of

a system that repeatedly performs the same mission without repair. If the structure

function is viewed as a function of time, it is periodic with period L = tm for each

system state X. Such a system will be called periodic. The results which follow can

easily be extended to periodic systems with continuously varying structure functions,

instead of discrete phases, states [33].

6. Review of Phased Mission Analysis Methods 85

6.3.1.4.2 Reliability bounds for periodic systems

The reliability of a s-coherent periodic system with period L is related to that

of the lower bound system by:

(6.13)

where T is system life (time at which system fails), TLB - life of the lower bound

system.

The usefulness of (6.13) for establishing reliability bounds is shown by [33] and

is given in (6.14) and (6.15).

(6.14)

The lower bound may be useful after one mission (t = L). Both bounds are

restrictive for a large number of missions without repair, notices [33]. The mean life

of a periodic coherent system can be bounded by the mean life of the lower bound

system:

(6.15)

The bounds in (6.15) are tight if E[T] »L. For complex systems, mean life

often must be computed using numerical integration of the reliability function. In

this case, using RLB instead of R becomes particularly important computationally.

6.3.1.5 Generalized intersection and union concept

Dm,o;hi and XiamdlOng /34/ propose a different method t.o obt.ain estimates of

system unreliabilities in different phases as well as mission unreliability. The method

does not need basic event transformation. In the paper they present a generalized

intersection and union concept that could be used to investigate the advantages and

limits of various approximation techniques and indicate ways of improvement. The

assumptions of the proposed method are as follow:

1. Logic model contains non-repairable basic events.

2. Logic model is coherent.

3. Basic events are statistically independent (s-independent) in a failure.

6. Review of Phased Mission Analysis Methods 86

4. 'fransition time between any two successive phases is instantaneous.

Aj is used to denote that component A failed in phase j and worked in all

previous phases and A(j) is used to denote that component A is failed in phase j:

the component A is failed in phase j if it failed in phase j or any of the previous

j -1 phases.

6.3.1.5.1 Generalized intersection and union concept

Boolean algebra is used as the foundation of fault tree analysis. But for phased

mission problems the initial condition of each phase and the relationship of the

basic events in different phases should be taken into account. In [34] in the fault

tree for phase j, the basic event A (j) is transformed to a series logic of j basic events,

A l + A 2 + ... + Aj.

Suppose that j ~ k ~ 1. Then

k j j

A(j) = A1UA2U ... UAj=UAi U Ai=A(k) U Ai
i=l i=k+l i=k+l

A (k) n (A (k) i~~l Ai) = A (k) i~~l (A (k) Ai) = A (k) (6.16)

A(k) U A(j) = A(k) U (A(k) U Ai) = A(k) U Ai = A(j)
i=k+l i=k+l

(6.17)

Here the intersection and the union concept is extended to events in different

phases.

In [34] equations (6.16) and (6.17) are added to the list of Boolean algebra

principles to consider the time-dependent effect between cut sets in different phases.

The same basic event in different phases is considered to be a different event.

6.3.1.5.2 Inclusion-exclusion principle

The inclusion-exclusion principle is a method that provides successive upper and

lower bounds on system unreliability and converge to the exact unreliability by

considering terms to account for intersections of cut-sets.

n

LP(Ci) - LP(Ci n Cj) + L P(Ci n Cj n Ck)
i=l i=lj ii'Hk

- ... (-It-1 P(C1 n ... n Cn) (6.18)

6. Review of Phased Mission Analysis Methods 87

Ci , 1 ~ i ~ n can be a basic event or a minimal cut set.

By corporation of the generalized intersection and union concept discussed above,

the inclusion-exclusion principle can be used directly to solve the phased mission

problem. For a phased mission problem, Cl, C2 , ••• , Cn in equation (6.18) may be

basic events or minimal cut sets for different phases.

6.3.1.5.3 Methodology of mission unreliability calculation

In a phased mission problem, the system is failed in phase n if it has failed in

phase n or any of the previous n - 1 phases. This can be expressed as

(6.19)

where x(n) is the event that the system is failed in phase n. Xi is the event that

the system fails for the first time in phase i.

The system mission unreliability Q s can be calculated by

(6.20)

mi

where X(i) = U C?), C?) is a minimal cut set for Xi, mi is the number of minimal
j=l

cut sets in phase i, and n is the number of phases.

When generalized union concept is used in equation (6.20), the mission cut sets

cancellation can be realized automatically [34].

6.3.1.6 Method of Lee and Hong

Lee and Hong [35] note that methods based on minimal cut set analysis are not

velY efficient. As the number of phases increases, they require a very complicated

and time consuming procedure. Hence, the calculation of the exact unreliability

of a mission is usually expensive. Lee and Hong give a closed form mathematical

expression of a phased mission system reliability. They consider a system where the

failure rate of a component and the number of added redundancies change during

the mission. The mission consists of N time phases. In phase k the probability of

component failure and number of redundancy added at the beginning of the phase

are given as qk and Xk respectively. All components in redundancy are assumed to

operate whenever possible.

6. Review of Phased Mission Analysis Methods 88

Assume that at the beginning of phase k there are rk components. rk consists of

two parts: one comes from survival components of previous phases, and the other

from added redundancy, Xk of current phase. rk can have any value between 1 + Xk
k-1

and 1+ LXi+Xk'
i=1

Let rk be the number of components remaining at the end of phasek. Then

the transition probability that there are j component at the end of phase k starting

from i components at the beginning of the phase k is given by

The transition probability matrix Ak of the number of components in phase k

can be given as

Ak (~~j)' where 1 + Xk :::; i :::; 1 + ak, 0:::; j :::; 1 + ak
k

O'.k = LXi
i=1

The phased mission reliability can be expressed as follows

Rs = 1- {P[fail in phase 1] + P[OK in phase 1 and fail in phase 2] + ...
+P[OK in phases 1 to N - 1 and fail in phase Nj}

Each term of the above equation can be obtained by multiplication of transition

probabilities.

P[fail in phase 1] - pi+X1,O = F1
1+<"1

P[OK in phase 1 and fail in phase 2] L pi+X1,i1 Pi~+X2'O = F2
it

P[OK in phases 1 to N - 1 and fail in phase N]
1+<>N-1 1+<>21+<>1

L "'L L Pi+X1,it pl+x2.i2··· Pi~_l+XN'O

r---------------------------- -

6. Review of Phased Mission Analysis Methods 89

Finally,

6.3.1.7 Phased mission system analysis using boolean algebraic methods

Somani and Trivedi [29] describe a technique for phased mission system reliability

analysis based on Boolean algebraic methods. They develop a phase algebra (see

section 6.3.1.7.1) to account for the effects of variable configurations and success

criteria from phase to phase. They do not create a single-phase mission, but handle

one phase at a time and compute the overall unreliability of the entire mission.

Somani and Trivedi give four possible cases which may occur at the time of a

phase transition from phase i to phase i + 1:

1. A combination of component failures does not lead to system failure in both

phases i and i + 1.

2. A combination of component failures leads to system failure in both phases i

and i + 1.

3. A combination of component failures does not imply system failure in phase i

but is treated as system failure in phase i + 1.

4. A combination of failures implies system failure in phase i but does not imply

system failure in phase i + 1.

6.3.1.7.1 Phase algebra

Using the technique described by [29] the example shown in Figure 6.2 earlier

has been considered in detail.

Let A = 1 mean that component A has failed. Then A = 0 says that component

A has failed and A = 1 means that component A is operational. Using this

notation for the example of phased mission system depicted in the Figure 6.2 (see

6. Review of Phased Mission Analysis Methods 90

section 6.3.1.1), the following Boolean expression describe the failure combinations

for phases 1, 2 and 3.

El A+B+C

E2 A+BC

E3 ABC

Let A denote the event that component A is operational during the interval from

the start of the mission until the end of the phase i. This automatically implies that

the component is operational during earlier phases as well.

Let i and j be two phases and let i < j. The rules in Table 6.1, given by Somani

and Trivedi [29], should be used to simplify the logic expressions.

Table 6.1: Combining rules

AiAj -+ Aj

AiAj -+ A
AiAj -+ 0

k+A·-+k Z J Z

Ai + Aj -+ Aj

Ai + Aj -+ 1

The first combination in Table 6.1 (AiAj) means that component A was working

until the end of phase i and until the end of phase j which is equivalent to component

A working until the end of phase j as this automatically implies that component

was operational during earlier phases.

AiAj and Ai + Aj cannot be simplified any further. What the first combination

(AiAj) means is that component A is operational until the end of phase i and then

fails sometime between the end of phase i and the end of phase j. The second term

has no physical meaning. Also, it is not possible for a component fails during a

phase and then b~ operational during a later phase (AAj). Hence AiAj -+ o.

6.3.1.7.2 Example

For the example considered the system has three components and there are three

phases: all components must work through the phase 1 for it to be successful. If

phase 1 is accomplished the system enters phase 2, to complete this component A

and component B or C must work, to complete phase 3 all components A, Band

6. Review of Phased Mission Analysis Methods 91

C must not fail. The failure combinations of phases 1, 2 and 3 are defined by El,

E2 and E3 , respectively.

Then phase failure combinations for the phase i (P FCi) , which are treated as

success combinations for all subsequent phases are given by

In the above expression, only those combinations are included which are failure

combinations in phase i but are not failure combinations in any of subsequent

phases [29]. This expression can be simplified as

Then for the phase 1 we have

(El' E 2)· E3

((AI + Bl + Cl) . (A2 + B2C2) . (A3B3C3)

A3B2Cl + A3B l C2 + A2B3C1 + A2Bl C3

And for the phase 2 (PFC2):

E2 ·E3

(A2 + B2C2) . (A3B3C3)

A3B2C2 + A2B 3 + A2C3

General formula for system unreliability is

p-l

Qsys = P(En) + LP(PFCi),

i=l

where P(En) is the probability of failure of the last phase (phase n), P(PFCi) is

the probability of phase failure combinations for phase i.

Then the system unreliability for this example is given by [29]

P(E3) in the equation above is

------------------- - ---------

6. Review of Phased Mission Analysis Methods

The other two terms, P FC1 and P FC2 , are computed as follows [29]:

P(PFC1) P(A3B2C1 + A3B1 C2 + A2B3C1 + A2B1 C3)

P(A3B2Cr) + P((A3BIC2 + A2B3C1 + A2B1C3) (A3 B2Cr))

P(A3B3C1) + P((A3B1C2 + A2B3C1 + A2B1C3)(A3 + B2 + Cl))

- P(A3B3Cl) + P(A3BIC2 + A2A3B3Cl + A2B1C3)

P(A3B3C1) + P(A3B1 C2)

+P((A2A3B3C1 + A2B1C3)(A3 + B1 + C2))

P(A3B3Cr) + P(A2A3B3C1 + A2A3B1C3)

92

P(A3B3C1) + P(A2A3B3C1) + P((A2A3B1C3)(A2 + A3 + B3 + Cr)

P(A3B3Cr) + P(A2A3B3C1) + P((A2A3B1C3)

P(A3B2C2 + A2B 3 + A2C3)

P(A3B2C2) + P((A2B3 + A2C3)(A3 + B2 + C2))

P(A3B2C2) + P(A2B 3 + A2C3)

P(A3B2C2) + P(A2B 3) + P(A2C3(A2 + B3)

P(A3B2C2) + P(A2B 3) + P(A2B3C3)

So, the system unreliability is equal to

Qsys P(A3B3C3) + P(A3 B3C1) + P(A2A3B3Cr) +

+ P((A2A3BIC3) + P(A3B2C2) + P(A2B3) + P(A2B3C3).

6.3.1.7.3 Sum of disjoint products and its phased-extension

Ma and Trivedi [28] introduce the sum of disjoint phase products (SDPP), which

is a phased-extension of the sum of disjoint products (SDP) formula.

The sum of disjoint products formula is one of the techniques that is used to

compute the probability of a union of a set of events in a single-phased system [28].

Let Ei be the event that all the components in the minimal cut set MCi fail:

the event Ei is a Boolean expression describing a single minimal cut set MCi. The

SDP formula for calculating the unreliability of the system is:

6. Review of Phased Mission Analysis Methods 93

where n is the total number of minimal cut sets. Define the constituent CSI = El

and in general, CSi = EIE2 ... Ei-IEi, where 1 ~ i ~ n. Since the constituents CSi

in equation (6.21) are disjoint from each other, the final SDP formula for calculating

the unreliability of the system is:
n

Qs = LP(CSi) (6.22)
i=l

The most important thing of the SDP formula is to obtain the disjoint constituent

CSi, for i > 1.

To calculate the unreliability of the phased mission system, the sum of disjoint

products formula was extended into the sum of disjoint phased products (SDPP)

formula, [28].

Let P El be the event that a phase mission system is failed in phase i. The SDPP

formula for the unreliability of the phased mission system is:

PPMS~P [~PEil (6.23)

=Pf!> El U(PEIPE2)U(PEIPE2P E3)U" .U(PEIPE2 ... P Ep-IP Ep)]

where p is the total number of phases for the phased mission system. In equation

(6.21) event Ei represents one single minimal cut set. In equation (6.23) event PEi
represents a set of minimal cut sets, in which the minimal cut sets are generally

non-disjoint [28]. The complement of P Ei is normally a set of non-disjoint phase

products as well. Define the phase constituent PCI = P El and, in general, PCi =

P EIP E2 ... P Ei-IP Ei , where 1 < i ~ p. Generally, the phase products in each PCi
are non-disjoint. If the phase products in a PCi are mutually disjoint, the PCi is

defined as a disjoint phase constituent: denoted by DPCi . One of the challenges in

using the SDPP formula is to change the PCi into DPCi , see [28]. Once the DPCi

are found, the final SDPP formula for calculating the unreliability of the phased

mission system is:

P

PPAfS = L P(DPCi). (6.24)
i=l

6.3.1.8 A BDD-based algorithm for reliability analysis of phased mission systems

Zan/S, Sun and 'frivedi 141 prOI)()sed a clifferenl al/Soritlllu hased on binary decision

diagrams (BDD) to analyse reliability of phased mission systems. The algorithm uses

6. Review of Phased Mission Analysis Methods 94

phase algebra (see section 6.3.1.7.1) to deal with the dependencies across the phases.

The theory of binary decision diagrams for single-phased systems is described in

Chapter 3.

The relations in the phase algebra in Table 6.1 are different from the ordinary

logic relations. A special BDD operation, phase-dependent operation, is derived for

these relations. Because BDD structures depend strongly on the order of variables,

there are two classes of phase-dependent operation (PDO) [4]:

1. Forward PDO: the order of variables is the same as the phase order - Cl, C2,

•.. , Cn,.

2. Backward PDO: the order of variables is the reverse of the phase order - Cn"

Let i < j, and let component C be used in both phases i and j. Using ite format,

Ei and Ej, when expanded with regard to Ci and Cj, respectively, can be written as:

Ei ite[Ci, (Edci=l' (Ei)Ci=O] = ite[Ci, Gl , G2]

Ej ite[cj, (Ej)Cj=l, (Ej)cj=o] = ite[cj, HI, H2]

Zang et al [4] give two lemmas.

Lemma 1: For the forward PDO,

(6.25)

Lemma 2: For the backward PDO,

(6.26)

6.3.1.8.1 BDD algorithm for phased mission system

The main procedure of reliability analysis of phased mission system using BDD

is as follows [4]:

1. To obtain the failure function for each variable use:

6. Review of Phased Mission Analysis Methods 95

the time t is measured from the beginning of phase j so that 0 ~ t ~ Tj , Pc;

is the failure function of mini component Ci, 1i - duration of phase i. The

first term in the above expression represents the probability that component

C has already failed in the previous phases. The second term represents the

probability distribution of lifetime of the component in phase j.

2. Order components and their corresponding variables using the following

heuristics: Weights with a value of 1 are assigned to each leaf of the fault

tree. The weight of each gate is obtained by adding the weights of its inputs.

Men the weights are known in the whole tree, a depth-fir-st tmversal of the

tree is made, choosing at each level the sons of a gate by order of increasing

weights. During this traversal, the variables are put in the ordered list as soon

as they are encountered.

3. Generate the BDD for each phase using ordinary logical operations.

4. Use the phase algebra and the corresponding backward PDO to combine these

BDD to obtain the final BDD from the BDD of each phase. 'When backward

phase-dependent operations are used to generate a BDD for phased mission

systems, the cancellation of common components can be done automatically

during the generation of the BDD without any additional operations.

5. Calculate the unreliability of phased mission system from the filIal I3DD. The

calculation of the system unreIiability from the final BDD is easy and fast as

the BDD is based on Shannon decomposition.

To illustrate the method consider example shown in Figure 6.3. The equivalent

system for the mission (single phase) is shown in Figure 6.4. The final I3DD for

this example is shown in Figure 6.6. The ite structure for mission failure could be

expressed as:

MISSION FAILURE = ite(A3,ite(A2, 1, ite(B3, ite(B1 , 1,ite(C3,1,0)),

= ite(C1 , 1, 0)), ite(B2 , ite(Bl' 1, iteC2 , 1,0), ite(C1 , 1,0))

6.3.1.9 Imperfect coverage

Xing and Dugan [36] consider the problem of analysing generalized phased

mission systems which have combinatorial phase requirements and imperfect

6. Review of Phased Mission Analysis Methods 96

Figure 6.6: BDD representation for the fault tree shown in Figure 6.4

coverage l . They note that the phased mission systems are mostly designed for

OR-ed phases, which means that if the system fails during anyone phase,. it fails to

achieve the mission. Thus, the reliability of conventional phase-OR phased mission

system is the probability that the mission successfully achieves the objectives in all

phases. Xing and Dugan notice that there are phased mission systems that have

combinatorial phase requirements, which means that a phased mission system could

have a failure criterion as any logical combination of the phase failures in terms of

phase-AND2 , phase-K/M3 , and phase-OR4 • In addition, there exists systems that

have more than just binary (success or failure) outcome. Xing and Dugan propose

a generalized phased mission system analysis that can incorporate combinatorial

phase requirements, multiple grade-level performance criteria and imperfect coverage

together. The methodology integrates several methodologies for separate analysis

lImperfect coverage means that single-point failure(uncovered failure) can bring down the

entire system despite the presence of fault-tolerance mechanisms
2The mission has successfully achieve objectives in all phases - if the system fails during any

one phase, it fails to achieve the mission
3The mission has successfully achieve objectives in M-K out of M phases - if the system fails

during K phases, it fails to achieve the mission
4The mission has successfully achieve objectives in at least one phase - if the system fails during

all phases, it fails to achieve the mission

6. Review of Phased Mission Analysis Methods 97

of phased missions and imperfect coverage.

The algorithm of Zang, Sun and Trivedi [4] (see section 6.3.1.8) is used by Xing

and Dugan to incorporate imperfect coverage as the generalized phased mission

systems considered by Xing and Dugan involve imperfect coverage. The basic event

transformation (see section 6.3.1.1) deals with the s-dependence across the phases

and makes the approach of Zang, Sun and Trivedi possible . To use the algorithm

by Zang, Sun awl Trivedi first of all bask evellt t.ransformat.ions have to be applied

to the system.

Xing and Dugan consider the phased mission systems that have: specified

combinatorial phase requirements, imperfect coverage, and/or multiple grade-level

performance criteria. These phased missions are generalized phased mission systems.

The conventional phase-OR phased mission system is a special case.

The problem assumed by Xing and Dugan is to derive an exact analytic

approach to evaluating the reliability and/or performance (multilevel reliability)

of a generalized phased mission system, given as inputs:

a) the combinatorial phase requirements and/or mission performance criteria

b) the duration of phase i: 1i

c) failure distribution for component CAin phase i: for Cai , which is conditioned

on success of Cai _ 1

d) coverage parameter: Tai' Cai and Sai for each component in each phase

e) failure criteria for each phase

f) mission time.

Imperfect coverage modelling. Computer-based systems usually exhibit

multiple failure modes: covered and uncovered failures. In addition, different failure

modes have distinct effects on the system failure.

• 'Covered failure' is local to the affected component, it might or might not lead

to system failure - depending on the remaining redundancy .

• 'Uncovered failure' is globally malicious, causing immediate system failure.

6. Review of Phased Mission Analysis Methods

Fault s occur.
in a component ..

(transient or permanent)

....
~

ExitR
Tmnsient Restoration

Covered transient fault does
not lead to component failure

Coverage
..

ExitC

Model Permanent Coverage

Fault leads to covered
failure of oomponent

ExitS
Single-Point Failure

Fault leads to uncovered
fallure of component, and
hence to system failure

Figure 6.7: General structure of a coverage model

98

The general structure of imperfect coverage is shown in Figure 6.7. The entry

point to the model signifies the occurrence of the fault, and the three exits represent

three possible outcomes. If the offending fault is transient, and can be handled

without discarding any component, then the transient restoration exit (labelled

R) is taken. The permanent coverage exit (labelled C) denotes the determination

of the permanent nature of the fault, and the successful isolation and removal of

the faulty component. If the permanent coverage exit is reached, then a covered

component failure occurs. When a single fault (by itself) causes the system to crash,

the single-point failure exit (labelled S) is reached, then an uncovered component

failure occurs.

6.3.1.10 Other methods

There are many more methods suggested for the analysis of non-repairable phased

mission systems. Some of the methods not mentioned above are based on Markov

analysis. There are two possible approaches to the multi-phased system using

Markov methods - either to treat each phase individually, or analyse the entire

mission with the single model. If the phases of the mission are treated separately,

each individual Markov model must be solved separately and then all of them have

to be linked by a state probability vector. The alternative approach involves solving

a single model for the mission with state space at least equal to the size of the sum of

the components in each individual phase model. The problem of constructing a single

Markov model for a phase mission system is considered by Dugan [41]. However,

the Markov model does suffer from a st.ate explosion problem as the number of

components and phases in the mission increases.

6. Review of Phased Mission Analysis Methods 99

Some missions are required to achieve more than one objective. This is

investigated by Pedar and Sarma [31] as they consider a transport aircraft with

mission objectives as 1) fuel efficiency: 2) no diversion, and 3) no fatalities. The

method involves obtaining minimal cut sets for each objective. The probabilities

for 5 levels (i.e., low fuel consumption, diversion, no fatalities) of accomplishment

of phased mission are calculated.

Burdick et al [1, 27] applied method proposed Esary and Ziehms [2] to a typical

phased mission problem that may arise in the nuclear power industry. The technique

was· applied to an emergency core cooling system for a boiling water reactor. The

system consisted of 8 subsystems which where considered as components for the

analysis. One mission of the emergency core cooling system is to prevent excessive

heating of the fuel rods within the reactor vessel as soon as possible after large

loss of coolant accident and then keep water circulating to and from the reactor

vessel until the rods are cool. After loss of coolant accident has occurred, three

phases for the emergency core cooling system were considered: initial core cooling,

suppression pool cooling and residual heat removal. Both exact and approximate

mission unreliability were calculated. The approximate methods used in the example

produced results that were very close to the exact one (difference of 0.2%).

6.3.2 Repairable systems

Clarotti et al [37] state that if a system is composed of repairable components,

then only an upper bound can be found using the fault tree approach. They notice

that in order to find an exact solution to the problem the Markov approach can be

successfully used. Clarotti et al note that fault tree technique gives an exact result

only if a complete independence among system components can be assumed.

Each phase can be identified by: phase number, time interval, system

configuration, parameter of interest (reliability, availability), maintainability policy

(single, double, ... , multiple).

If no maintenance is provided, and common failures are not considered, then

complete independence holds in each phase and the approach based on fault tree

technique leads to the exact problem solution. This case was intensively treated by

Esary and Ziehms [2].

If reliability with maintenance is of interest, independence cannot be assumed,

in the sense that any component may be repaired or not depending upon the system

6. Review of Phased Mission Analysis Methods 100

state. Is such cases, methods based on combinatorial reliability cannot be used to

find an exact solut.ion; this is the ease of the fault tree <1na1ysis.[37]

In order to find an exact solution, the method which is not constrained by the

independence assumption is needed, such as the analytical Markov approach, state

Clarotti et al.

Approach for solving repairable phased missions using analytical Markov method

where the mission phase change times are deterministic was discussed by Clarotti et

al [37] and by Alam and AI-Saggaf [38]. Alam and AI-Saggaf extend the method for

the case where mission phase change times are stochastic and present two possible

solutions. Smotherman [39, 40] suggests non-homogeneous Markov model saying

that it greatly increases modelling flexibility and scope of practical application.

Dugan [41] propose discrete-state continuous time Markov model, where all the

phases are combined into one model.

6.3.2.1 Markovapproach for reliability evaluation

6.3.2.1.1 Deterministic mission phase change time

To illustrate the Markov approach a 3-phase mission is considered, the whole

mission profile is shown in Table 6.2 [38].

Table 6.2: Mission profile

Phase Time System configuration System Parameter Maintenance
No. interval (Block diagram) task of interest policy

1 (O,t.) it x Reliability Multiple

2 (tl'tJ V y Reliability Multiple

3 (t2 ,t3) --0-®-@}-- z Reliability Multiple

That the mission reliability cannot be obtained by simply multiplying the system

reliabilities of the various phases was noted by Esary and Ziehms [2]. This is due to

6. Review of Phased Mission Analysis Methods 101

the fact that at times at which the system changes its configuration, it must occupy

a state which is successful for both the phases involved. So, the system evolution

must be such that: during each phase the system can evolve through all the states

allowed for that phase. At any phase change time the system must occupy one of the

states that are good for both phases, starting from which it begins the evolution in

the following phase with the same constraints. The states of the phases are depicted

in Table 6.3. State 81 in Table 6.3 means that all three components are working (1)

and it is a success situation for all tree phases. State 85 means that components A

and B are working, but C is failed. This is a success state for phase 1 and phase 2,

but a failure state for phase 3. <Pi is the structure vector for phase i.

Table 6.3: Phases states description

Phases

State A B C <PI <P2 <P3

81 1 1 1 1 1 1

82 0 1 1 1 0 0

83 1 0 1 1 1 0

84 0 0 1 1 0 0

85 1 1 0 1 1 0

86 0 1 0 1 0 0

87 1 0 0 1 0 0

88 0 0 0 0 0 0

From [37] considering the three phases:

a) First phase: from 0 to t l . In order to have success during the first phase, the

system has not to pass through state 88' In addition, at the phase change time

tl, it has to occupy one of the states 81, 83 or 85 which are success states for

phases 1 and 2.

The state transition rate matrix Al for phase 1 can be easily obtained using

Table 6.3 where state 88 is an absorbing state and the repair starts as soon as

6. Review of Phased Mission Analysis Methods 102

a component fails [38]

- I;1 /LA /-tB 0 /Le 0 0 0

AA -I;2 0 /LB 0 /Le 0 0

AB 0 -2::3 /LA 0 0 /Le 0

0 AB AA -2::4 0 0 0 0
Al =

Ae 0 0 0 -2::5 /LA /-tB 0
(6.27)

0 Ae 0 0 AA -I;6 0 0

0 0 Ae 0 AB 0 -2::7 0

0 0 0 Ae 0 AB AA 0

where Ai is failure rate, /Li - repair rate, I;i - sum of the entries of the i-th

column.

Therefore,

(6.28)

with initial conditions

P(O) = [1 0 0 0 0 0 0 oy (6.29)

where P(t) is a state probability vector for phase 1.

The system is ready to start the second phase only if at time tl it is in one

of the states 81, 83, 85' These events have probabilities g(tl), P3(tl), P5(tt}

respectively. Then the probability that the system has success in the first

phase and it is able to start second one is:

(6.30)

These probabilities can be added because the states 81, 83, 85 are mutually

exclusive. [38]

b) Second phase: from tl to t 2 • The system is successful during the second phase

if it starts in one of the states SI, 83, 85 and evolves only through these states.

In order to consider the whole mission as a success, the system at t2 has to

occupy state 81, the only state suitable for both the second and the third

phase.

6. Review of Phased Mission Analysis Methods 103

The transition rate matrix for phase 2 can be obtained as before using

Table 6.3:

-L:l 0 /lB 0 /le 0 0 0

AA -L:2 0 0 0 0 0 0

AB 0 -L:3 0 0 0 0 0

0 AB AA -L:4 0 0 0 0
(6.31) A2 =

Aa 0 0 0 -L:5 0 0 0

0 Aa 0 0 AA -L:6 0 0

0 0 Aa 0 AB 0 -L:7 0

0 0 0 Aa 0 AB AA 0

The equation for the above evolution is

q(t) = A2q(t) (6.32)

where q(t) is a state probability vector for phase 2.

In order for the second phase to follow the first phase, the initial condition has

to take into account the first phase. Therefore,

P {1st phase success AND 2nd phase success}

P {2nd phase success lIst phase success} P {1st phase success}

I:: P{2nd phase success I system in Si at tl} X P{ system in Si at td
S;ES 1,2

where Si,j is a set of success states for both phases i and j.

Thus, the initial condition for (6.32) is:

(6.33)

The system is now able to start the third phase, having successfully completed

the first two phases with a probability:

(6.34)

c) Third phase: from t2 to t3. In this phase the problem to solve is

(6.35)

6. Review of Phased Mission Analysis Methods 104

where Z(t) is a state probability vector for phase 3.

with initial condition

Z(O) = [ql(t2 - t l) 000000 of (6.36)

-~l 0 0 0 0 0 0 0

AA -~2 0 0 0 0 0 0

AB 0 -~3 0 0 0 0 0

A3 =
0 AB AA -~4 0 0 0 0

Aa 0 0 0 -~5 0 0 0
(6.37)

0 Aa 0 0 AA -~6 0 0

0 0 Aa 0 AB 0 -~7 0

0 0 0 Aa 0 AB AA 0

The probability of success of the phased mission system is

P{success of the phased mission system} = Zl(t3 - t2)' (6.38)

6.3.2.1.2 Random mission phase change time

Many systems such as real-time control for aircraft and space vehicles in which

the computing system is required to execute different sets of computational tasks

during different phases of a control process, the duration of a phase is more

realistically modelled by a random variable. Thus the modelling of a particular

phase can be tailored not only to the computational demands of each phase but

also to the relevant properties of the system that influence performance during that

phase.

Alam and AI-Saggaf [38] consider that the phase-change times can be random.

They propose two approaches to determine an appropriate description of the

marginal distributions of the mission phase change times.

The first approach investigates a general formula for the joint probability density

function of the mission phase change times which may be statistically dependent.

The second approach models the mission phase change times as order statistics of

a continuous random variable. The solution for probabilistic mission phase change

times is similar to the case of deterministic approach except for initial conditions,

state [38].

6. Review of Phased Mission Analysis Methods 105

6.3.2.2 A non-homogeneous Markov model

Smotherman [39, 40] note that in the approach proposed by [38] the individual

phase models are limited in coupling by the use of expected values for the

components of the transformed probability vectors. Such models continue to make

the assumptions that phase changes are state-independent and instantaneous. It is

noted [39, 40] that any time-homogeneous Markov model is limited to the implicit

assumption that state holding times, e.g. component failure times and repair times

are exponentially distributed.

The modelling of a phased mission system by a single nonhomogeneous Markov

model removes the major limitations of the traditional phased mission approach and

greatly increases modelling flexibility and scope of practical application [40]. The

model proposed by [40] provides for non-exponential component failure behaviour.

If {X(t)lt ~ O} is a finite state stochastic process with state probabilities Pi(t) =

P[X(t) = iJ, then by use of a Markov model the following differential equations can

be derived [40]

p~(t) = Lpj(t)aij(t)
j

(6.39)

where aij(t) is the transition rate from state i into state j, aii(t) is the negative row
n-l

sum of row i, - L aij(t). The system of equations can be rewritten as
j=O,#i

P'(t) = P(t)A(t) (6.40)

where P(t) = (PO(t),Pl(t), ... ,Pn-l(t)) is the row vector of state probabilities and

A(T) = [aij(t)]nxn is the transition rate matrix.

The time-homogeneous Markov model is the special case in which all transition

rates are independent of time, i.e. A(t) = A. The approach to phased mission

analysis is based on t.wo important. moclificat.ions of t.he llonhomogeneous Markov

model [39]:

1. The concept of a state transition is generalized to include phase changes, as

well as failures and repairs.

2. Reward measures are incorporated into the model to provide more information

for system effectiveness evaluation.

6. Review of Phased Mission Analysis Methods 106

In this approach, different phases are represented as different subsets of states in

the single model, and phase changes are represented by time-varying transitions

among these subsets. Because of the single model framework, phase change

transitions out of the different states in a given phase subset can have different

rates or impulse functions. Thus, phase changes are state dependent.

The system of differential equations was solved by adapting the fifth order Runge­

Knt.t,a mdhod, see \40\. The solver was p.xtewled t,o handle fixed-time phase changes

and efficiently recompute the time-dependent transition rates needed by the ordinary

differential equations (ODE) solver when performing derivative evaluations.

The major change to the Runge-Kutta method was the use of an event queue

driver [40]. Phase changes are inserted as events and include information on the type

of change, the existing state, the entry state(s), and the branching probabilities for

multiple-entry states. A step-size control adjusts the next step in the solution so as

to not overstep the next event. Multiple events are allowed at the same time.

Fixed-time phase changes do not affect the transition-rate matrix but cause an

instantaneous transfer of probability from the existing state into the entry state(s).

Phase change times having uniform distributions have beginning and ending events.

The beginning event inserts an entry into a recalculation list of time-dependent

transition rates, which is processed upon each derivative evaluation. Ending events

remove the corresponding entry.

To bound the local error of each step in the solution, the adaptive step-size

control of Runge-Kutta method was used. This is in addition to the event step size

control mentioned above. Minimum and maximum step sizes are specified, and a

fixed time phase change transition is performed near the ending time of a uniform

distribution if the value of the associated transition rate grows too large. This is

an instantaneous transfer of the residual probability of the existing state into the

entry state(s) and it is used by the adaptive step size control whenever the step size

required to meet the local error tolerance is smaller than a minimum specified step

size. Using the error tolerance and minimum step size parameters, the accuracy of

the solution can be increased at the expense of efficiency.

Repairs are not generally modelled by nonhomogeneous Markov systems [39].

This restriction is necessary since a repair is assumed to return the failure process

of a component to time t = O. It is noted [39] that for time-homogeneous Markov

models this assumption does not present a difficulty since each transaction erases

6. Review of Phased Mission Analysis Methods 108

The model proposed by [41] considers the problem in terms of the construction

of the continuous-time discrete-state Markov model and uses a standard Markov­

chain solution technique that is adapted to phased missions. The resulting state

space is the union of the states in each independent phase, rather than sum. The

technique combines all the phases into one model, and uses a fault tree to specify

the reliability model of the system. The resulting Markov model can be used to

calculate measures such as the probability of successfully completing a mission, the

time dependent probability of failure, or the mean time between failures.

The approach is especially useful where several phases are repeated many times

because each phase needs to be described only once. This approach applies where the

transition rates (failure and repair rates) are constant, and where the phase change

times are deterministic. If any of these criteria are not met and if the system is not

very large, then the approach proposed by Smotherman (see 6.3.2.2) is appropriate.

To explain the method, the example depicted in Figure 6.8 is considered. The

corresponding fault trees are shown in Figure 6.9. If each of fault trees were

converted to Markov chains separately, the chains shown in Figure 6.10 would result.

In Figure 6.10 for phase 1 all possible states for the system are shown. From state

111 (all components are working) system can go to states 011, 101 or 110 (one of the

components is failed), but they are all successive states. Only one component can

fail at a time. To reach the failure state (F), all components must fail. To reach the

failure state components may fail in different order (111 -t 011 -t 001 -t F,

111 -t 101 -t 001 -t F, etc.). In phase 2 if component A fails, the system

fails (111 -t F). In phase 3 failure of any component will lead to system failure

(111 -t F).

Phase 1 Phase 2 Phase 3

Figure 6.8: Example system

To combine all models into one, a multiplicative factor can be appended to each

transition that will label it by the phase to which it belongs. That is, the transitions

6. Review of Phased Mission Analysis Methods 109

Figure 6.9: Fault trees for the example system

Phase 1 Phase 2 Phase 3

Figure 6.10: Markov model for each phase of the example system

in the model for phase i, every transition is multiplied by Fi. A combined Markov

chain is formed whose state space is the union of the state spaces of the models of the

separate phases, and whose transitions are the sum of the corresponding transitions

of the models of the separate phases. The combined model for the example system

is shown in Figure 6.11 where Fi labels the transitions that pertain to phase i.

Once generated the model can be solved using a standard numerical technique,

with the following change. For the solution times that belong to phase i (11-1 ~ t ~

Ti), Fi is set to one, and all other Fj , j of: i, are set to zero. This assignment filters

out any transition that does not belong to the current phase. Using this method,

the state space does not change, and so the state probabilities need not undergo any

6. Review of Phased Mission Analysis Methods 110

Figure 6.11: Combined Markov model for all phases of the example system

transformation, but rather the transitions themselves are changing with the phase

changes. The resulting model is still Markov, but it is no longer homogeneous since

the transition values depend on global time. However, most standard numerical

techniques apply to non-homogeneous Markov models.

In general, separate models are not generated for each phase; rather the combined

model is generated from the start.

6.3.2.4 Fault tree approach

A repairable multiphase system cannot be reduced to an equivalent single phase

system, states Clarotti et al [37]. This is due to the fact that logical operations used

for nonrepairable systems cannot be carried out if repair is foreseen. Considering

the missioll with the profile (lescribed in Table ().4, the solution of the problem of

evaluating the unreliability of the system is straight forward using the Monte Carlo

simulation technique, see [37].

When using asynchronous simulation technique, the fault tree of the system

whose reliability has to be calculated, is checked every time a failure occurs. Let

ti be the phase change time between phases i and (i + 1). Suppose that when

6. Review of Phased Mission Analysis Methods

Phase Time
No. interval

1

2

3

Table u.4: l\iiflsion profile

System configuration
(Block dia ram)

System
task

x

y

z

Parameter
of interest

Reliability

Reliability

Reliability

Multiple

Multiple

Multiple

generating the failure times tA, tB and to the following situation occurs:

tA < tl

t2 < tB < t3

to> t3

111

The fault tree of the system ill t.he first phase is dteeked and t.he system is found

to be functioning. The repair time TA of component A is generated and suppose

that is it tl < tA + TA < tB' This situation corresponds to a system failure at t1,

due to A being in a failed state at the phase change. A normal Monte Carlo code

would ignore this failure as the system is checked only when failure occurs. In order

to avoid this situation, a check of system state is performed at the beginning of each

phase, in order to verify if a system failure occurs at that time due to the change in

configuration. [37]

In general, fault tree techniques can be used to find an analytical upper bound to

6. Review of Phased Mission Analysis Methods 112

system reliability, [37]. For highly reliable systems, for example systems of interest

in the nudear field, t.he expededlllnuber of failures is a dose approximation for the

unreliability [37].

Assumptions made by Clarotti et al are:

- a multiple repair policy (one repairman per item) is assumed in any case; this

fact does not appreciably affect the result due to the large difference between

times to failure and to repair;

- the upper bound is found by stopping the expected number of failures

expansion to the first order terms.

Let x(i, j) indicate the event that minimal cut set i, 1 S i S n, occurs for the

first t.ime in phase j, 1 S j S n. x(i,j) is a null (impossible) event, if the i-th

minimal cut set does not appear in the j-th phase.

The system unreliability at the mission time T is given by:

Then, according to the above assumption:

R.(T) ,,; ~p {~X(i,j)}
As the x(i, j) are mutually exclusive with respect to j, for any i:

where

p {~X(i,j)} ~ p{x(i,j))} + p{x(i,j,)lx(i,j,)} p{x(i,j,)}

+p {x(i, j3)lx(i, jdx(i, j2)} p {x(i, jl)x(i,j2)}

+ ...

(6.42)

(6.43)

(6.44)

p {x(i, jr)} is the probability that the i-th minimal cut set first occurs in phase

jr is the r-th phase in which the considered minimal cut set appears;

6. Review of Phased Mission Analysis Methods 113

p{x(i,jr)lx(i,jl), ... ,x(i,jr-d} is the conditional probability of the i-th

minimal cut. set. that. first, OC(:urs in it.s r-th possible phase, given that it did

not occur in the previous r - 1 possible phases;

P {x(i, jl), ... ,x(i, jr-l)} is the probability that the i-th minimal cut set never

oc(:nrred in its first. r - 1 phases.

When evaluating the terms of equation (6.44), the following three cases are

considered:

a) none of the components of the i-th minimal cut set appears in the phases in

which that minimal cut set does not appear, i.e. those components work only

in the phases in which all of them give rise to the i-th minimal cut set. In this

case it is possible that the i-th minimal cut set occurs at a phase change time

due to a change in configuration. Then equation (6.44) reduces to:

(6.45)

b) all components of the i-th minimal cut set appear, i.e. working, in some other

minimal cut set in phases in which i-th minimal cut set does not appear. In

this case let the jr-th pha.<;e he t.he first. one in which t.he minimal ent set.

appears again after a certain number of phases in which it did not appear, but

its components all worked belonging to other minimal cut set. In this case

the term p{x(i,jr)x(i,jr-d, ... ,X(i,jl)} may be split in to the sum of two

mutually exclusive events, such as:

P {x(i,jr,)x(i,jr-l), ... , x(i,jI)} = p {xb(i,jr), ... , x(i,jd}

+p {xd(i, jr), xb(i, jr), x(i, jr-l), ... , x(i, jl)} (6.46)

where the subscripts b and d mean respectively at the beginning and during

the possible jr-th phase of i-th minimal cut set. The cut set may occur at the

beginning of the phase due to the change of configuration.

p {xb(i, jr), x(i, jr-l), ... , x(i, jl)} =

= p {xb(i, jr) Ix(i, jr-d, ... ,x(i, jl)} . p {x(i, jr-l), ... ,x(i, jl)} (6.47)

6. Review of Phased Mission Analysis Methods 114

The conditional probability in the above expression is upper bounded by the

unavailability of the i-th minimal cut set at the beginning of the possible jr-th

phase, taking into account the previous evolution of the components.

Furthermore,

jr-1

p{x(i,jr-d,··· ,X(i,jl)} = IT Rx(ij) (6.48)
h=j1

and

p {Xd(i, jr), Xb(i, jr), x(i, jr-r) , ... , x(i, jl)} =

= p {Xd(i, jr)!Xb(i, jr), x(i, jr-I), ... , x(i, jl)} .

·p{xb(i,jr)!x(i,jr-I), ... ,X(i,jl)} . (6.49)

. p {x(i, jr-I), ... ,x(i, jr)}

The first factor in equation (6.49) is the unreliability of the i-th minimal cut

set during its jr-th phase. The second factor is upper bounded by 1. The third

factor is given by equation (6.48).

c) some of the components of the i-th minimal cut set appear in some other

minimal cut sets in the phases in which i-th minimal cut set does not appear.

It is the intermediate case. If, among the components which do not work in

phases between jr-I-th and the jr-th, at least one has a mean time to repair

much shorter than the time interval between the end of the former and the

beginning of the latter, the probability of failure at the jr-th phase change

time is zero.

Case c) can be handled like case a), see [37].

With the hypothesis of exponentially distributed time to failure and time to

repair, the unreliability RX(i,j) is:

RX(i,j) ~ t Ah jtj [1 - qh(t)] IT qs(t)dt
h=1 0-1 s=h

where hand s indicate generic component ofthe i-th minimal cut set and qr(t) is the

unavailability of the r-th component calculated taking into account the fact that, if

the component worked previously in some other phase, its initial unavailability qs is

different from zero.

6. Review of Phased Mission Analysis Methods 115

6.4 Summary

According to Burdick et alone of the most important problems in systems

unreliability analysis is the phased mission problem. Most reliability techniques

consider only systems undergoing a single phase, but multiple phases are very

common in many systems. Phased mission analysis is recognised as the appropriate

reliability analysis method for large number of problems, including systems in

nuclear, aerospace, chemical, electronical and other industries. Analysis of a phased

mission system encounters difficulties which are not present with a single-phase

systems as system configuration, phase duration, failure rates of components may

vary from phase to phase.

Esary and Ziehms [2] consider a multi phase system with nonrepairable components.

They transform the original problem to a single phase mission using basic event

transformation and cut set cancellation. Using this method the reliability of the

system during each phase cannot be calculated as the components may be removed

from earlier phases if they are met in minimal cut sets of later phases. Pedar

and Sarma [31] extended the method for multiobjective phased mission systems.

The method proposed by Esary and Ziehms was also used by Xing and Dugan

[36] for a generalized phased mission system analysis methodology. They were

considering phased mission systems which have combinatorial phase requirements

and imperfect coverage and integrated several techniques (BDD-based algorithm for

system reliability analysis, basic event transformation).

A different method was proposed by Dazhi and Xiaozhong [34]. They don't use

basic event transformation, but introduce generalized intersection and union concept

and add them to the list of Boolean algebra principles to consider the time-dependent

effect between cut sets in different phases.

A phased mission reliability technique based on Boolean algebraic methods was

proposed by Somani and Trivedi [29]. One phase is handled at a time and then

the unreliability of the entire mission is calculated. Phase algebra is developed to

account for the effects of variable configurations and success criteria from phase to

phase. According to Somani and Trivedi, the technique can be very useful for a large

class of the systems where the system behaviour can be described using fault trees.

Later the method was extended by Ma and Trivedi [28] introducing an algorithm

based on the sum of disjoint phase products to analyze the system unreliability.

6. Review of Phased Mission Analysis Methods 116

For repairable systems two methods are considered: fault tree methods and

Markov methods. Clarotti et al [37] note, that a fault tree approach gives an exact

result only if a complete independence between systems components can be assumed.

If the system is repairable, then only an upper bound can be found using the fault

tree approach. According to Clarotti et al [37], the exact solution of the problem can

be found using a Markov approach. The solution for the case when the phase change

times are deterministic was proposed by Clarotti et al and for the stochastic phase

change times method was proposed by Alam and AI-Saggaf [38]. Other approaches

to Markov method were proposed by Smotherman [39, 40] and Dugan [41].

7. PHASED MISSION ANALYSIS USING THE

CAUSE-CONSEQUENCE DIAGRAM METHOD

7.1 Cause-Consequence Analysis

The objective of a cause-consequence diagram is to evaluate the likelihood or

frequency of each outcome that can result from the critical event. As discussed in

Chapter 4, when the probabilities of the decision boxes of the cause-consequence

diagram are independent the quantification can be done in the following steps:

1. Assign probabilities to each outlet branch stemming from the decision box

(possibly by quantifying the relevant fault tree).

2. The probability of any sequence is obtained by multiplying the relevant

probabilities associated with each decision box exit path in that sequence.

3. The probability of any consequence is obtained by summing the probabilities

of each sequence terminating in that consequence.

However, this procedure cannot be used if the failures in each decision box are

not independent. Dependencies can exist in cause-consequence diagrams due to

repeated or inconsistent events and these must be dealt with before quantification.

In the case of repeated events the same failure event exists in more than one

fault tree structure on the same path of a cause-consequence diagram. To deal with

a common event failure the following algorithm is suggested, Andrews and Ridley

[6, 23].

7.2 Phased Mission Analysis Using Cause-Consequence Diagram

To illustrate phased mission analysis using the cause-consequence diagram

method, consider the example of the non-repairable system shown in Figure 7.1.

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 118

Phase 1 Phase 2 Phase 3 Phase 4

Figure 7.1: Simple phased mission system

In this example, the system is required to work successfully through all four

phases to complete the mission. In phase 1 component A along with B or Dare

required to work. Failure of component A or components Band D would lead to

mission failure. If phase 1 is completed successfully, the system enters phase 2, etc.

To complete the mission successfully, the system requirements must be satisfied for

each phase.

Considering the phases separately, the fault trees representing individual phase

failures are shown in Figure 7.2.

Failure in Phase 3 1 Failure in Phase 41

Figure 7.2: Fault tree representation of individual phase failures

If a cause-consequence analysis is to be performed the challenge is to develop

the diagram in an efficient way. The entry point of the diagram is the start of the

mission. Consequence events are the failure during each of the phases or mission

success.

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 119

7.3 Cause-Consequence Diagram Construction Methods

Tho methods have been developed in order to generate the cause-consequence

diagram efficiently and analysis has been performed.

disadvantages of each method are discussed below.

7.3.1 Method 1

The advantages and

One way of constructing the cause-consequence diagram is to assume a certain

order in which the component failure events will be considered. For this example

assume the following order:

Al < Bl < Dl < Cl < B2 < A2 < C2 < D2 < B3 < C3 < D3 < A3 < A4 < C4,

where Al means component A fails in phase 1, etc., A2 - component A fails in phase

2 having worked successfully through phase 1, etc.

Following the order of component failures given, each component failure event

is added to the diagram as a decision box. Therefore, considering component A in

phase 1: if component A fails, then from the fault tree for phase 1 it can be seen that

the system fails in that phase, hence the mission is failed. The CCD is constructed

by inserting a decision box asking 'A fails in phase 1'. The YES branch represents

system failure and therefore a consequence is added. Following the NO branch as

component A is functioning throughout phase 1, from the ordering component B

in phase 1 is considered. If component B fails, then component D in phase 1 is

considered. If D fails in phase 1, then mission is failed in phase 1. If component

D does not fail in phase 1, the mission progresses to phase 2, however since B is

failed in phase 1 the system fails immediately on entering phase 2, see fault tree

for phase 2 in Figure 7.2. If component B works throughout phase 1, component

D is considered. The successful functioning of component D throughout phase 1

following the success of components A and B means the mission progresses to phase

2. Components are again considered one after the other until the conditions are

met for phase 2 failure or progression to phase 3. The complete cause-consequence

diagram is shown in Figures 7.3 - 7.4. In the diagram, consequences Fl, F2, F3 and

F4 mean mission failure due to system failure in phase 1, 2, 3 and 4 respectively, C

represents mission success.

:'l

I'Tj ~ ()q
C
'"1

§;
(1)

(1)

0...
-.J
~ ~
0

0
>l' t:l
C rn
(1)

~
I

(")
t:l

0
I»

::; ~
rn
(1)

[Jj
[jj •

.n
C

>::
(1)

[Jj

::; s·
(")
(1)

at<
<"f-
0-

0.. (1)
>l' aq ~
'"1
>l'
S

>::
[Jj

0'
\')l

'"1

g
t:l

rn
'--<:

[Jj

rn
(1)

M-

..0

(1)

>::

S
§
(')
(1)

rn
~

~
tl

::;
I»

.......
~

::; s
I'Tj ~ aq <"f-
C 0-
'"1
(1)

0
0-

:--J
f-'

.....
t-,:)
Cl

~--

'"Tj o:q.
~

~ I-j
('1)

--l ~ ;.:..
~

(1 (1)

Q.. 0

i
::;
M-

S·
~

0 ('1)
::I P.
~

(1 ::I
Il' ~

~ ~
Ul '" ('1) [jj.

I
C":l >:: 0 '" ::; S· Ul
('1) Oq
.0 "..,..

~ :::r-
('1) (1)
::;

Q C":l
('1)

>:: p.
'" cp Il'

oq 9 I-j

Il' ::I
S '" (1)

0' ..0
>::

I-j

~ Ul (') « (1)
Ul
M- o ('1) s ~

Ul ~
P"' ~

S ~ ::; ~ s·
0-

'"Tj 0
Q.. aq.

~
I-j
('1)

10-..

:--l I\:l
f-' 10-..

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 122

7.3.2 Qualitative Analysis

The qualitative analysis of the cause-consequence diagram will produce the list

of causes for each outcome condition. Conditions causing any outcome event are

established by investigating each decision box on the path to the outcome and listing

the component failure or success in the phase as indicated by the exit path from

the decision box. In the example considered here there are 47 failure outcomes,

numbered 1 - 47 in Figure 7.3 - 7.4. The component conditions for each of these

outcomes was determined, as an example the failure outcomes resulting in mission

failure in phases 1 and 2 are listed below.

Fl - Mission failure in Phase 1

1. Al

2. Al/\ Bl/\ Dl

F2 - Mission failure in Phase 2

3. Al/\ Bl/\ Dl

4. Al/\ Bl/\ Dl/\ Cl/\ B2

5. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2

7. Al/\ Bl/\ Dl/\ Cl/\ B2

8. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2 /\ C2

17. Al/\ Bl/\ Dl/\ Cl/\ B2

18. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2

24. Al/\ Bl/\ Dl/\ Cl/\ B2

25. Al/\ Bl/\ Dl/\ Cl/\ B2 /\ A2 /\ C2

Each failure mode in the list contains a progression of states for the same

component. For example, outcome 4 has component B working throughout phase

1, Bl, and then failing in phase 2, B2. The list can therefore be simplified. When

there is a situation where a component is working throughout phase, but fails in a

later phase, it is unnecessary to include the working state in the list as the failure

in later phase implies that it was working before. This is the situation in several

outcomes lifited above. The fiimplified list of missioll failures in phase 1 and 2 is

listed below:

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 123

Fl - Mission failure in Phase 1

1. Al

2. Al A Bl A Dl

F2 - Mission failure in Phase 2

3. Al A Bl A Dl

4. Al A Dl A Cl A B2

5. Bl A Dl A Cl A B2 A A2

7. Al A Dl A Cl A B2

8. Bl A Dl A B2 A A2 A C2

17. Al A Dl A Cl A B2

18. Bl A Dl A Cl A B2 A A2

24. Al A Dl A Cl A B2

25. Bl A Dl A B2 A A2 A C2

7.3.3 Quantitative Analysis

The reduced or simplified lists of component conditions leading to each outcome

are in an appropriate form for quantification. This is because each of the outcome

event sequences are mutually disjoint. Under these conditions the probability of

achieving any particular phase failure outcome is the sum of the probabilities leading

to that outcome.

Quantification of the diagram starts with the calculation of the probabilities

for each event X failing in phase i having worked throughout the previous phases,

P(Xi). The probabilities are evaluated over the relevant phase period by integrating

the component failure density function Ix (t). Therefore if phase i is from t i- 1 to ti

ti

P (Xi) = J Ix (t) dt (7.1)

ti-l

.When a component is working in two (or more) consecutive phases, for example

'component A works through phase l' and 'component A works through phase 2',

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 124

probability that 'A' works through both phases is calculated as:

P (AI /\ A2) = 1 - P (AI) - P (A2)

Therefore, for the example considered, the probability of mission failure would

be given by:

where

P (mission failure) = P (Fl) + P (F2) + P (F3) + P (F4)

P(Fl) - P(Al)+P(Al)P(Bl)P(Dl)

P (F2) P (AI) P (Bl) P (Dl) + P (AI) P (Dl) P (Cl) P (B2) +

+ (1 - P (Bl) - P (B2)) P (Dl) P (Cl) P (A2) +

+P (AI) P (Dl) P (Cl) P (B2) +

+ (1 - P (Bl) - P (B2)) P (Dl) P (A2) P (C2) +

+P(Al)P(Dl)P(Cl)P(B2) +
+ (1 - P (Bl) - P (B2)) P (Dl) P (Cl) P (A2) +

+P (AI) P (Dl) P (Cl) P (B2) +

+ (1 - P (Bl) - P (B2)) P (N) P (A2) P (C2) =

P (AI) P (Bl) P (Dl) + P (AI) P (B2) +

+ (1 - P (Bl) - P (B2)) P (Cl) P (A2) +

+ (1 - P (Bl) - P (B2)) P (A2) P (C2)

Expressions were also determined for P (F3) and P (F3) and then the probability

of mission failure determined.

The result obtained was found to be the same as that using the fault tree method

and BDD analysis proposed by La Band and Andrews [3].

The method presented allows straight forward construction of the cause­

consequence diagram. In the example presented the size of the problem was not

obstructing to follow every branch through. With bigger systems it can get more

difficult to construct the cause-consequence diagram manually and the aid of a

computer may be needed.

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 125

7.3.4 ~Method 2

It can be seen that the quantification of the cause-consequence analysis diagram

for phased missions is efficient and straight forward. The difficulty is in initially

obtaining the cause-consequence diagram in the first place. For the simple system

shown in Figure 7.1 it was straight forward, but as the size and complexity of the

system increases so does the cause-consequence diagram. An alternative method

is suggested below, which could be automated to ease the construction of larger

cause-consequence diagrams.

The alternative method is based on the fact that the whole cause-consequence

diagram contains events which are both repeated and inconsistent for each

component.

The first step of the second method of cause-consequence diagram construction

is shown in Figure 7.5 with corresponding fault trees shown in Figure 7.6. The

diagram is at this stage at a high level of abstraction and just considers phase

failure. The first decision box contains the failure event 'Phase 1 fails', if it is

true, then mission fails in phase 1 (failure F1). If the system works successfully

throughout phase 1, it progresses to phase 2. If the system fails in phase 2, then

the cause-consequence diagram terminates with failure event 'Mission fails in phase

2' (F2). This is repeated for phases 3 and 4. If the system does not fail in phase 4,

then the mission is completed successfully. Phase failure causes are developed using

fault tree analysis and the relevant fault trees are attached to the YES branches of

the decision box.

The fault trees in Figure 7.6 are obtained using the basic event transformation

introduced by Esary and Ziehms [2] as described in Section 6.3.1.1.

As the cause-consequence diagram contains both repeated and inconsistent

failure events, these must be extracted one by one following the normal cause­

consequence analysis procedure described earlier. An order must be assumed in

which the component failure events are to be considered for extraction. For this

example a different order of component failure events is assumed than for Method

1:

Al < B1 < B2 < A2 < Cl < C2 < B3 < C3 < D1 < D2 < D3 < A3 < A4 < C4

Then following the normal cause-consequence analysis process the event 'A fails

in phase l' (AI), as it is both a repeated and an inconsistent event, can be extracted

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 126

FI - mission fails in Phase I
F2 - mission fails in Phase 2
F3 - mission fails in Phase 3
F4 - mission fails in Phase 4
C - mission completed

FG ~ '--T--""'---~"""

Ft4 ~ '--"T--...L..--=r-.....J

Figure 7.5: Construction of cause-consequence diagram - step 1

Figure 7.6: Fault trees for the cause-consequence diagram shown in Fig.7.5

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 127

A fails in Phase 1

y N

Phase 1 fails

1-. Y N

Phase 2 fails

N

Phase 4 fails

Ft - mission fails in Phase 1
F2 - mission fails in Phase 2
F3 - mission fails in Phase 3
F4 - mission fails in Phase 4
C - mission completed

Figure 7.7: Construction of cause-consequence diagram - step 2

Figure 7.8: Fault trees for the cause-consequence diagram shown in Fig.7.7

---------------- - -------------

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 128

N

Phase 1 fails

Ft5~ ~~~N~:::L_--.
Phase 2 fails

Ft6 ~ L...--1O---L---,NT---'

Fl - mission fails in Phase 1
F2 - mission fails in Phase 2
F3 - mission fails in Phase 3
F4 - mission fails in Phase 4
C - mission completed

Phase 3 fails

Ft7 ~ L...--.---'-_N..----'

Phase 4 fails

Figure 7.9: Construction of cause-consequence diagram - step 2 (reduced)

from fault tree structures and placed in a new decision box preceding the first

decision box that contains it (,Phase 1 fails'). Then the diagram is duplicated

on both outlet branches and following the YES branch all occurrences of the event

are set to TRUE, and following the NO branch all occurrences of this event are set

to be FALSE. The cause-consequence diagram for this step is shown in Figure 7.7

and the fault trees in Figure 7.8. As the probability of event 'Phase 1 fails' on the

YES branch ofthe decision box 'A fails in phase l' is 1, the diagram can be reduced

(Figure 7.9).

Following the order of component failure events given the process is repeated

and events are extracted from fault tree structures and placed in new decision

boxes. The diagram is developed using normal cause-consequence analysis process.

The final cause-consequence diagram obtained following this procedure is shown in

Figure 7.10.

Once the cause-consequence diagram is obtained the same procedures for

qualitative and quantitative analysis as for Method 1 should be followed. The cause­

consequence diagram obtained using Method 2 gives the same result for the mission

failure probability as the one obtained using Method 1.

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 129

From these two different methods it can be noticed that component ordering is

import,ant, a.s different. variable orderings will pn)(luce (lifferent size diagrams. Both

methods will give the same quantitative results, but they might produce different

cause-consequence diagrams, as is also the case for binary decision diagrams. For

example, using a different order of component failure events in Method 2 gives only

32 system outcome events compared with <:17 in Method 1. The efficiency of the

met-ho(l will be very lI111ch inflllew:ed by the ordering chosen as this will influence

the size of he cause-consequence diagram. The smaller the size of the diagram, the

faster computing time would be to obtain the reliabiIity/unreliabiIity of the system.

~--~--~~~~~~~~~~-----

;"l

~
~
(1)
Q..

~ C/).

~ C/)

aq' o·
.: i:l
"1 ~ CD i:l
-J ~

....... ~
0 tIi

C;j'

~ ;:::

5'
C/) s·

Il' - Oq

n
.,...

Il' 0-
.: (!)

Ul Q CD
I
n ;:::
0 C/)

::;:l <p
Ul
CD ~ .0 .: i:l

C/)
CD (!)
::;:l .c
n ;:::
CD §
p. (')
~

(!)

t:J "1

S
t:;;.
~
~

S

~ .,...
0-
0
Q..

~

CI.:l
Cl

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 131

7.4 Program description

To assist with the cause-consequence diagram construction and analysis for

phased mission systems a computer program was written. Method 1 was chosen

for this code implementation.

The program consists of the following sections:

• Data input. The inputs are read from text files, which contain the following

information about the phased mission:

- number of phases;

- list of text files with phase fault trees;

- a text file with component failure probabilities.

The fault tree text files are organised in the following way:

- gate name;

- gate type: 1 for 'And', 0 for 'Or';

- number of basic events connected to the gate;

- number of gates connected to the gate;

- list of basic events;

- list of gates.

• Basic event transformation. In this procedure basic events in all phases are

replaced by an 'Or' combination of failure events for that and all preceding

phases. For the phase 1 the new 'Or' gate would have only 1 event and therefore

is simplified to omit the unnecessary gate.

• Cause-consequence diagram construction. To construct the cause-consequence

diagram an order in which the basic events will be considered needs to be

chosen. The options given are either to consider basic events in the same

order as they are read from the input files or to enter a different ordering.

Once the ordering has been chosen, the program places basic events in the

decision boxes and depending if the top event of the phase fault tree occurs or

not, they are attached to the relevant outcome of the previous decision box.

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 132

• Cause-consequence diagram minimisation. Once the cause-consequence

diagram is constructed there could be redundant decision boxes where the

phase failure would occur regardless whether the basic event fails or not. These

boxes are removed.

• Cause-consequence diagram analysis. Once the final cause-consequence

diagram is obtained, the probabilities are assigned to the decision boxes and

the probabilities of outcomes are calculated. The probabilities are read from a

text file which lists all basic events in the phase and the corresponding failure

probabilities. The results are printed on screen and are also saved in a text

file for ease of reference.

7.5 The use of ordering schemes in construction of CCD and BDD

Eight of the ordering schemes described in Chapter 5 were used to analyze the

importance of variable ordering for construction of CCD and BDD. The schemes

are:

• Modified top-down

• ~10dified depth-first

• Modified priority depth-first

• Depth-first: with number of leaves

• Non-dynamic top-down weights

• Dynamic top-down weights

• Bottom-up weights

• Event criticality

For cause-consequence diagrams the performances of the schemes were assessed

in two ways:

• Component failures are ordered in each phase separately. In this case basic

event transformation is applied to fault trees of each phase separately and then

ordering schemes used to produce an order in which component failures should

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 133

be considered. This enables the exact phase failure probability to be obtained

as well as mission failure and mission success probabilities.

• Component failures are ordered for the whole mission. Basic event transformation

is applied to fault trees at each phase as before, but before ordering the failures,

all phases are joined in one fault tree under an 'OR' gate. This enables the

mission failure and mission success probabilities to be calculated, but it does

not give the probabilities of phase failure.

In each case the number of consequence boxes and total number of boxes (decision

boxes + consequence boxes) was recorded.

For the construction of binary decision diagrams the failures were ordered

separately for each phase.

The performance results of ordering schemes is shown in tables 7.1 - 7.3 below.

As can be noticed from the tables below, structural importance measure, described

in Section 2.6.1.1 was applied to component ordering for just a few examples at is

quite computationally intensive. For the examples to which it was applied it did not

produce the best results.

The examples used to compare the efficiency of the ordering schemes are as

follow:

Example 1 Three phases, three components. Phase 1 - one gate, phase 2 - two gates,

phase 3 - one gate

Example 2 Three phases, five components. Phase 1 - two gate, phase 2 - three gates,

phase 3 - two gates

Example 3 Four phases, four components. Phase 1 - two gates, phase 2 - two gates, phase

3 - two gates, phase 4 - one gate

Example 4 Four phases, four components. Phase 1 - two gates, phase 2 - two gates, phase

3 - two gates, phase 4 - one gate. The difference between this example and

the one above is that all gates have been inverted - gate 'AND' was changed

to gate 'OR' and gate 'OR' to gate 'AND'

Example 5 Four phases, five components. Phase 1 - two gate, phase 2 - three gates, phase

3 - two gates, phase 4 - three gates

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 134

Example 6 Four phases, five components. Phase 1 - one gate, phase 2 - four gates, phase

3 - one gate, phase 4 - two gates

Example 7 Five phases, five components. Phase 1 - two gate, phase 2 - three gates, phase

3 - two gates, phase 4 - three gates, phase 5 - one gate

Example 8 Five phases, five components. Phase 1 - one gate, phase 2 - four gates, phase

3 - one gate, phase 4 - two gates, phase 5 - two gates

Example 9 Four phases, fourteen components. Phase 1 - one gate, phase 2 - five gates,

phase 3 - five gates, phase 4 - six gates

Example 10 Five phases, fourteen components. Phase 1 - one gate, plia..'ie 2 - five gates,

phase 3 - five gates, phase 4 - six gates, phase 5 - two gates

Example 11 Three phases, nine components. Phase 1 - three gate, phase 2 - six gates,

phase 3 - three gates

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 135

~
~ U)

Cl> ~:l
-+-

4-<
bO

oc

~
U) 0 -+"

~==
Cl> bO

~ ..0 ~ ~
-+- s ::: Cl> '" -+" J; ;::::l 0

,...... u
~

00

Cl Z Cl ~ 00 ~ l-o -+" ctl ::: I ::: ..== ~ >. ..== 0.. -+"
0 li -+" ~

0 bO >,
Cl ~ Cl ~ ~

0
I -+" ::: I 0..

0.. 0.. ~ u 0.. ;.> ctl S
~

Cl>
...... ·s ~

u -+" >-<
Cl I=-. 00 0..

-+" ctl ~ ctl u ""d ""d l5 ~ ~ I U
Cl> Cl> >. S ;::::l

q::l q::l :E li ""d S -+"

~
......

-+" I m 0 ~ u
""d "e -+" 0.. ~ ~ -+" ~

;::::l
0 0

~
Cl> 0 >, 0

~ ~ Cl Z Cl o::l ~
-+"
UJ

1 2 3 4 5 6 7 8 9

Example 1 14 16 14 14 14 14 14 14 14

Example 2 99 150 99 150 99 99 150 99 111

Example 3 64 76 64 76 64 64 64 64 67

Example 4 119 151 119 151 119 119 151 119

Example 5 472 506 472 506 472 472 506 472 484

Example 6 202 445 202 445 202 202 202 202

Example 7 995 989 955 989 955 955 989 955 967

Example 8 575 889 575 889 575 575 575 575

Example 9 456 1681 365 1681 456 456 461 456

Example 10 669 2191 600 2191 669 669 669 669

Example 11 3532 4862 4044 4862 3532 3562 4746 3532

Table 7.1: CCD: ordering phases separately - number of decision boxes

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 136

~
~ UJ
Q) +>

....:I ~
4-'

4-t
bO

UJ

~
UJ 0 +>
~ ~

Q) bO
~ .D ~ ~ +" 8 ::: Q)

+> 0- ;:1 0 u UJ Q)

Z Cl ~ UJ ~::l Cl +> Cil
~ ~ >, ~ 6- ::: ..c +>

~
0 . ~ >.

CS ~ +> +> Cl 0
,Q) .-= .!. +> ::: I

~ - A
0.. 0 u 0- Cil 8 .-

~
Q)

~
u +> 8

Cl P-o UJ 0-
+> -.... Cil ~ 'i=: Cil .- "'d "'d

....... u
l5 ~ ~ I U

Q) Q) >. 8 8 ;:1
q:::1 q:::1 q:::1 ~ "'d -+'> +> I Cil 0 ~ u .- "'d "'d ~ +> ;:1 0.. ~ +> Q)

~
0 0 Q) 0 >. 0 >

::::g ::::g -+'>
Cl Z Cl CO ~ r:J)

1 2 3 4 5 6 7 8 9

Example 1 14 16 14 14 14 14 15 14 14

Example 2 91 150 99 99 92 114 197 91 91

Example 3 59 76 64 60 53 47 54 46 67

Example 4 89 151 119 107 87 79 20 54

Example 5 469 506 472 472 472 480 290 378 477

Example 6 198 445 202 202 201 203 135 193

Example 7 953 989 955 878 876 886 729 887 867

Example 8 258 889 575 750 159 266 103 148

Example 9 336 1681 365 365 453 412 1208 357

Example 10 298 2191 600 600 393 981 1413 248

Example 11 1057 4862 4944 4044 675 1149 2695 400

Table 7.2: CCD: ordering all mission - number of decision boxes

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 137

~
~ 00
Q) +'>

.....:l ...c::
+'> '+-<

bO
00

~
00

~ 0 j:;
~ ~ ...-

I Q) bO
...c:: ..D i=l

~, S ~ 0..,
Q) ;:::l 0

..... 00
Q Z Q i=l 00 ~,

~
...... 6.. ~ ~ >, ...c:: ...c::

0 bO
Q ~ ~ .+-J ~ Cl >,

~ ~, ~ ~ I 6- 0.. 0 u 0.. :> ~
Q) ~ +"

.
~

U

~ Cl 0.. 00 S P.. ~
~ cO ~ ..,...,

"'Cl "'d
..... u ·C

a:; ~ i=l ·s S 0 Q) Q) >,
~ ~ ~ 1: "'d 0, ..,..., :.cl :.a,

~
Q, i=l

0 0 P.. i=l,
~ ~

Q) 0 >, 0
:::E ~ Cl Z Cl CO t:il

1 2 3 4 5 6 7 8

Example 1 86 97 86 97 86 86 86 86

Example 2 189 247 189 247 189 189 247 189

Example 3 467 455 467 455 467 467 467 467

Example 4 238 625 238 625 238 238 625 238

Example 5 4545 7734 4545 7734 4545 4545 7731 4545

Example 6 3483 5491 3483 5491 3483 3483 3483 3482

Example 7 120947 211047 120947 211047 120947 120947 211047 120947

Example 8 25152 50157 25152 50157 25152 25152 25152 25152

Example 9 8694 43647 8642 43647 8694 8694 15311 8694

Example 10 209314 - 206270 - 209314 209314 209314 209314

Example 11 4692 15231 9438 15231 4692 4692 5488 4692

Table 7.3: BDD: ordering phases separately - number of non-terminal nodes

It can be seen that there is no ordering scheme that is best overall. For example,

the worst ordering scheme for one example will be the best for another (see Bottom­

up weights ordering scheme in Table 7.1: it produces one of the worst results for

Example 2, but one of the best results for Example 8). But, as it can be noticed

from the tables above, the size of cause-consequence diagram is considerable smaller

that that of binary decision diagram. This can be seen comparing Tables 7.1 and

7.3 (i.e., Example 9, using modified top-down ordering scheme has 456 decision

boxes in cause-consequence diagram, while using the BDD it has 8694 non-terminal

nodes). In a few cases the binary decision diagram could not be produced as there

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 138

was not enough computational capacity. This was for Example 10, which is a five

phase system with fourteen components. The cause-consequence diagrams produced

for those examples where considerably smaller. So, it can be concluded, that for

the same phased mission systems, the cause-consequence diagram method is more

efficient in terms of the size of diagram. Therefore the use of cause-consequence

diagram method would help to reduce the computational resources needed for

analysis of the phased mission systems. As for the best performing ordering scheme

based on the few example used, on average, the event criticality performed well in

both ordering components in each phase separately and ordering components for all

mission at once. The second best one was non-dynamic top-down weights followed

by modified top-down approach.

7.6 Analysis of phased mission system with multiple faults

For many systems a mission may be performed where multiple faults are possible.

The outcomes will be different depending on the failure. An example of such a

system would be an aircraft flight, where faults could be classified as minor, major

or catastrophic. A minor fault would allow the flight to continue to the designated

destination, a major fault would cause an emergency landing and a catastrophic

fault would lead to loss of the aircraft.

This section considered an example of phased mission system with multiple faults.

It is shown that phased missions with multiple faults can be analysed using cause­

consequence diagrams, although it is more computationally intensive than in the

single fault case.

Basic rules for creating a cause-consequence diagram for a phased mission system

with multiple faults are outlined below:

1. Basic event transformation is applied to fault trees for the phase as for single

fault case. Each fault needs to be represented by a different fault tree.

2. Separate cause-consequence diagrams are constructed for each fault in each

phase. The same ordering scheme is used for each phase.

3. All failures for the same phase are combined into one cause-consequence

diagram. This can be done by attaching the CCD for the next failure to each

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 139

outcome of the previous failure and removing repeated/inconsistent events.

The consequences for each failure are noted in the consequence box.

4. Once the cause-consequence diagrams are obtained for each phase, they can

be combined into one diagram for the whole mission. Each consequence box

contains consequences for all failures within each phase. Again, this is done by

attaching the CCD for next phase to each consequence of the previous phase

(unless all failures considered occur in the previous phase) and then removing

repeated/inconsistent events.

5. Quantification is performed using the standard quantification technique of

cause-consequence analysis for phased mission systems. At this point, the cut

sets and probabilities can be calculated for each fault separately.

7.6.1 Example

An example is used to illustrate a cause-consequence analysis method for phased

missions when there are multiple failures possible in each phase. The example shown

is of a three phased mission. The system is made up of three components and there

are two faults to consider - minor and major. For example, in phase 1 if 'A' or 'B'

fail then a minor failure occurs, but if in addition to 'A' or 'B' failing also fail 'C'

or 'D', then a major failure occurs, such as loss of aircraft, etc. The fault trees for

each failure in each phase are shown in Figure 7.11.

Phase 1 Phase 2 Phase 3

A i\ H A H C A A n

Figure 7.11: Fault trees for the mission

The first step of the algorithm reqUIres basic event transformation to be

performed to account for possible failures of the component in previous phases.

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 140

The next step is to construct cause-consequence diagrams for each failure in the

phase. As this example is illustrating a three phased mission, this step will need to

be repeated for each phase. In each following phase cause-consequence diagrams will

get bigger as the number of basic events increases. The order in which components

are considered is:

Cause-consequence diagrams for each failure in the phases are shown in Figures 7.12

to 7.15.

Minor Major

Figure 7.12: Phase 1 - cause-consequence diagrams for each failure

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 141

Minor Major

Figure 7.13: Phase 2 - cause-consequence diagrams for each failure

Minor

Figure 7.14: Phase 3 - cause-consequence diagrams for minor failure

Major

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 143

To obtain a combined cause-consequence diagram for the first phase, the cause­

consequence diagrams for each failure need to be joined together. This is done

by connecting the cause-consequence diagram for second fault to each outcome

of the cause-consequence diagram for the first fault. In this example, the cause­

consequence diagram for minor fault is attached to cause-consequence diagram

for major fault. The outcome of this procedure is shown in Figure 7.16. The

consequence boxes now show whether major or minor fault occurred or system

succeeded in this phase.

Figure 7.16: Phase 1 - combined cause-consequence diagram

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 144

In the same way the cause-consequence diagrams for each failure for phases 2

and 3 are combined into one diagram for each phase. These are shown in Figure 7.17

for phase 2 and Figure 7.18 for phase 3.

Once the cause-consequence diagrams are obtained for each phase, they can be

combined in one diagram for the complete mission. The resulting cause-consequence

diagram for this mission is shown in Figure 7.19. The final diagram is obtained

by attaching the cause-consequence diagram for the following phase instead of the

consequence boxes that state either system success in the particular phase or minor

failure. Then the repeated and inconsistent events are removed from the diagram

(for example, event 'A fails in phase l' would be repeated in all three phases, but

only one occurrence of this event is left in each path).

Figure 7.17: Phase 2 - combined cause-consequence diagram

~

~
~
(1) '"Tj
0..

~
()'q
~
'"1
Cl)

..... -.J e
~ l:l
00

~
l:l ~ ~

~ ::r"
tIi III
ti). (Il

Cl)

.::
CIJ

~

s·
()q (")

.... 0
0-g. (1)

Q
......
::I
(1)

.::
CIJ

0-

i> (")

~ §
l:l

(Il
Cl)

CIJ
(1)

I

.0
(")

0
::I .::

§ (Il

(")
Cl)

..0
(1) ~

t:::l Cl)

1
::I
(")
Cl)

0-......
III

~
()'q
'"1
III S b-

e
0..

......

""" Cl1

~
~
""1 ~
('1)

;---1 .-. ~
~ a;

(t>

Q 0...
0
S ~ 0'"
::l
('1)

0
::::l

0..
(") >
>l'
~

::::l

rn
>l;

('1)
~ ,

(")

CIi
C;j'

0
::l

i:::

rn
('1)

CIl

.0
S·

o-q
~
('1) "'"
::l

:::r-
(t>

(")
('1)

0..
Q
i:::

>l'
Q'q

CIl

""1
l'

S
g
::::l
CIl

0'
""1

(t>
..Q
i:::

>l' §
S (')

(t>
rn
rn tJ
0
::l

.....
>l;

~
rn ::r ~
~ ~ ::l .,...

(Jq :::r-
e. 0

0... -;' -~ '-'
""1
('1)
[Jl

H::..
~

7. Phased Mission Analysis using the Cause-Consequence Diagram Method 147

7.6.2 Quantitative and Quantitative analysis

Qualitative analysis in case of multiple faults is performed the same way as

described in Section 7.3.2, just in this case instead of determining list of causes for

phase failures, these lists can be obtained for each fault in each phase. The lists are

simplified in the same way as before.

The quantitative analysis is performed the same way as in Section 7.3.3, but

instead of calculating the probability of each phase, the result can be obtained for

each fault in different phases.

7.7 Discussion

As it has been shown in this section, cause-consequence diagram method can be

successfully implemented for the analysis of phased mission systems. This method

is superior over binary decision diagrams as it can represent a whole system in one

diagram without loosing valuable information about phase failures. Also, as the

diagram is easy to follow and contains descriptions of components states, it can be

presented to those without much prior knowledge in risk analysis.

It has also been shown here that in the same way as with the binary decision

diagrams, the ordering of the components can influence the size of the diagram

hugely and the selection of an effective variable ordering scheme can produce a very

efficient cause-consequence diagram for the phased mission problem.

Two methods were presented for the construction of the cause-consequence

diagram for phased mission. For this project, method 1 as presented earlier was

implemented as a computer code for extraction of the results.

Although the methods shown above offer different ways of constructing the cause­

consequence diagram: the quantification procedure is the same for both methods. It

has also been shown that as the cause-consequence diagram does not loose system

state information when moving on to the next phase, it can be used to model not

only single fault systems, but also those, which can fail in different ways.

8. MODELLING AIRCRAFT FLIGHT USING THE

CAUSE-CONSEQUENCE ANALYSIS

8.1 Introduction

This chapter presents an example of the application of the cause-consequence

diagram method to a non-repairable phased mission system. The system considered

is an aircraft flight consisting of six phases: take off, climb, cruise, descent, approach

and landing. Each phase uses differing functional elements of the system and so the

call~es offailnre in each phase are different. Using an aut.omated approach developed

previously to construct and quantify the cause-consequence diagram the causes of

mission failure are identified and investigated.

8.2 Aircraft Bight system

To illustrate the use of the CCD method for complex systems an aircraft flight

has been considerecL The flight considered will consist. of ti phases: take off, climb,

cruise, descent, approach and landing. A diagram of the flight is shown in Figure 8.l.

Each phase of the flight may utilise different systems within the aircraft. For

example, the landing gear is required only in the climb and landing phases. The

aircraft systems that were used in this model are:

• Propulsion system, which consists of:

- Gas turbine engine. A 2 engine aircraft is considered.

- Thrust. The control of engine thrust is achieved by altering the fuel flow

to the combust.ion chamber of t.he engine. If t.he fuel flow is increased, the

resulting gas temperature is higher. The higher temperature means that

more thermal energy conversion can take place at the turbines resulting in

an increase in speed. As the turbines are directly linked to their relative

r------------------------------- - - -- - - -- - - - - ------

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 149

Phase 1 Pha~e 2 Phase 3 1 Phase 4 Phase 5 Pha~e (

I
l::: 1 .c: Ob

I " 0 Climb Cruise Descent '" " " e ;;:;
..>< Q. " " Q. " f- I < ...J

/ 1\ I

12000 ft 1/ I \

.. !
-----o 17 45 425 453 455 460

Time in minutes ---+

Figure 8.1: Aircraft Flight Diagram

compressors, an increase in compressor speed occurs with a resultant

increase in the engine mass flow and hence thrust.

• Flight control system. This can be considered as 2 subsystems.

- Primary flight control. The aim of primary flight control is to control

manoeuvre of the aircraft about each of its axes.

- Secondary flight control. The secondary flight control is used intermittently

to change the value of lift and drag generated by the aircraft surfaces,

but not affect the trajectory.

• Fuel system. The aim of the fuel system is to provide an effective means

of replenishment, storage and fuel feed to the engines under all anticipated

operating conditions. It can be considered as 2 subsystems:

- Fuel feed which provides a flow of fuel to the engines under all anticipated

flight conditions.

- Fuel transfer which provides a means of fuel transfer between tanks and

via external sources in flight and during h'TOllIl<i sibmtions.

• Pneumatic supply. To enable main engine starting from a variety of supply

air sources an integrated pneumatic system is incorporated into the aircraft

design. This system not only facilitates starting, but also supplies low pressure

air for other aircraft services such as anti-icing and water tank pressurisation

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 150

• Hydraulic system. Many of the aircraft services are powered by hydraulic

power inchuling flight control systems, flaps, ret.rad.ahle nndercarriages and

wheel brakes. It has the advantage of transmitting high forces rapidly and

accurately along the lightweight pipes of any size, shape and length.

• Environmental control system. The environmental control systems overall

aims are to minimise the risk to the safe operation of the aircraft in all

anticipated weather and operational conditions and to ensure the safety and

comfort of the people on aboard. It can be considered to be made up of the 2

subsystems:

- Anti-icing system. The anti-icing system consists of ice sensing and ice

removal. Most severe icing occurs when a cold aircraft descends from

high altitude through rain or cloud which is already below zero ambient

temperatures. The effects of ke may include increase in mass, loss of lift

(small accretion can reduce lift by 30%), increase in drag (ice formation

can increase drag by 200%), jammed controls, obscured vision, loss of

engine power (intake restriction), etc.

- Cabin control. At an altitude of about 9000m, typical of an aircraft

cruising altitude, ambient air pressure is 300.9 millibars and temperature

-44.44°C. Humans feel comfortable with air pressure at 1013.2 millibars

and temperature 20°C. To reproduce these conditions at high altitude

would necessitate an extremely strong and heavy structure. As a

compromise 2348m is the recognised maximum normal internal cabin

altitude for air transport aircraft. This altitude would provide safe

and comfortable levels of oxygen and require a lighter structure than

the one of sea level as the maximum differential would be only 451.8

millibars compared with the one of sea level (712.3 millibars). The

cabin conditioning system has also to compensate for the low ambient

temperature and bring the internal cabin temperature into a range that is

comfortable for humans. In summary the subsystem has to provide safe

oxygen levels, ensure comfortable cabin temperature, control humidity

and provide freshness.

• Landing gear. Landing gear is defined as those components necessary to enable

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 151

take-off and landing to be carried out safely. It excludes thrust reversal and

control surfaces. '!\vo failure modes have been considered:

- Retraction - up

- Retraction - down

• Flight navigation system. This is made up of 4 subsystems:

- INS. An inertial navigation system which measures the position and

altitude of a vehicle by measuring the accelerations and rotations applied

to the system's inertial frame. The system is aligned to start up with

known coordinates. It is widely used because it refers to no real-world

item beyond itself. It is therefore immune to jamming and deception.

- GPS. Global Positioning System (GPS) is an accurate means of providing

continuous worldwide navigation information using a system of satellites.

The system consists of three main components: control, space and user.

GPS provides highly accurate positional, velocity and time data.

- VOR/ ADF /DME. VOR (VHF Omni-Range) is an internationally recognised

short-range navigation aid. The usable VOR range varies with aircraft

altitude but is effective up to about 300 miles. The principle of

operation is based on a ground-based transmitter providing radial signal

output, this is received by equipment on the aircraft to provide bearing

information to an iclentified beacon. Automatk Diredion Finding (ADF)

function identifies bearing to a beacon to which the aircraft receiver is

tuned. Distance Measuring Equipment (DME) is often integrated with

VOR to provide range and bearing information. Initially the aircraft

transmits a signal to the ground receiver which then responds sending a

f;ignal to the aircraft.. The lapsecl time clifferelH:e from trallf;mission to

reception provides the data to calculate the slant range from aircraft to

ground station.

- ILS/MLS. Instrument Landing System (ILS)/Microwave Landing System

(MLS) is a landing aid providing both lateral and vertical guidance.

Lateral guidance is provided by a VHF localiser aerial and vertical

(descent slope) by a UHF glideslope aerial. The development and

adoption of the MLS provides improvement in the quality of guidance

8. Modelling Aircraft Flight using the Cause-:Consequence Analysis 152

over ILS. The system has a wider scope of view and higher scanning

rates. This provides increased data with which to control the aircraft.

• Electrical system. The primary function of an aircraft electrical system is to

generate, regulate and distribute electrical power throughout the aircraft. The

aircraft electrical power system is used to supply power for services including

lighting, avionics, fuel system booster pumps and valves, control of hydraulic

system components, in-flight entertainment, flight control systems and aircraft

environmental control. Essential power is power that the aircraft needs to be

able to continue safe operation.

The aircraft flight chosen was taken to be one that included flying over the ocean

(i.e. London to New York). Also, for modelling purposes it was decided to consider

a twin-engine aircraft (i.e. Boeing 777). Redundancy is not taken into account

in this example, except for the engines. It was assumed that all components are

non-repairable whilst in flight.

The failure modes considered and notation adopted are shown in Table 8.1. The

failures considered in this example would be catastrophic. The failure frequencies

used in this example are only for modelling purposes and may not necessarily

represent the real system.

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 153

System Subsystem Failure mode Notation Failures

description /million

hours

Propulsion Engine Failure of engine 1 El 0.999

Failure of engine 2 E2 0.999

Thrust Failure of thrust to T1 0.295

engine 1

Failure of thrust to T2 0.295

engine 2

Failure of thrust TR 0.467

reverser

Flight control Primary Failure of primary PFCF 0.147

system flight control flight control

Secondary Failure of secondary SFCF 0.139

flight control fight control

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 154

Fuel system Fuel feed Failure of fuel feed FFF 0.393

Fuel transfer Failure of fuel FTF 0.393

transfer

System Subsystem Failure mode Notation Failures

description /mhours

Pneumatic Pneumatic Failure of pneumatic P 0.288

supply supply supply

Hydraulic Hydraulic Failure of hydraulic HS 0.446

system system system

Environmental Anti-icing Failure of ice sensing AIS 0.086

control system system

Failure of ice AIR 0.131

removal

Cabin control Failure of pressure CCPC 0.139

system control

Failure of CCTC 0.148

temperature control

Landing gear Landing gear Failure of landing LGU 0.205

gear retraction up

Failure of landing LGD 0.205

gear retraction down

Flight Flight Failure of INS INS 0.0257

navigation navigation

system system

Failure of GPS GPS 0.237

Failure of VOR 0.309

VOR/ ADF /DME

Failure of ILS/MLS ILS 0.0026

Electrical Electrical Failure of power ESP 0.0676

system system

Table 8.1: Failure rates for the subsystems

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 155

8.2.1 Phase 1

Phase 1, the take off phase, will be completed successfully: if all systems required

in this phase operate successfully. These systems are: propulsion system (both

engines have to function properly), flight control, fuel feed, pneumatic supply,

hydraulic system and anti-icing system. The fault tree for failure in phase 1 is

shown in Figure 8.2 which has minimal cut sets shown in Table 8.2.

Figure 8.2: Fault Tree for Phase 1

SFCF E2 FFF P

AIR El T2 PFCF

AIS HS T1

Table 8.2: Minimal cut sets for Phase 1

8.2.2 Phase 2

For phase 2, the climb phase, propulsion, hydraulic and pneumatic systems are

required to work as in phase 1. Also required are: fuel transfer, primary flight

control, environmental control, the flight navigation systems GPS, VOR/ ADF /DME

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 156

and landing gear. The fault tree for failure in phase 2 is shown in Figure 8.3 which

has minimal cut sets shown in Table 8.3.

Figure 8.3: Fault Tree for Phase 2

AIR El Tl

AIS HS T2

E2 FTF P

LGU VOR
PFCF CCPC

GPS CCTC

Table 8.3: Minimal cut sets for Phase 2

8.2.3 Phase 3

During cruise, propulsion system failure will be caused by the failure of both

engines which will lead to aircraft failure. The thrust wouldn't cause critical failure

in this phase. Fuel feed, flight contraIl hydraulic system and pneumatic supply are

required to work the same way as in phase 2.

Anti-icing system failure wouldn't be critical during cruise, but cabin control

failure would as it is necessary to keep cabin pressure and temperature within a

comfortable range. Failure of the navigation systems GPS or INS would lead to

failure in this phase as would electrical system failure (power failure). The fault tree

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 157

for failure in phase 3 is shown in Figure 8.4 which has minimal cut sets shown in

Table 8.4.

Figure 8.4: Fault Tree for Phase 3

HS P El· E2 GPS

FTF PFCF ESP INS

CCTC

CCPC

Table 8.4: Minimal cut sets for Phase 3

8.2.4 Phase 4

Failure in phase 4, the descent phase, has causes similar to failure in the climb

phase, phase 2, as shown in the fault tree in Figure 8.5. Failure will occur if the

pnellluat.ic, hydraulic, fuel, flight control awl environment.al control systems fail in

the same way as in phase 2. The propulsion system failure will be caused by the

failure of both engines which will lead to aircraft failure. The thrust wouldn't cause

critical failure in this phase. The failure of the GPS navigation system will also lead

to phase failure. The minimal cut sets for this phase are shown in Table 8.5.

AIR

AIS

HS El· E2

FTF PFCF

P

CCTC

CCPC

GPS

Table 8.5: Minimal cut sets for Phase 4

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 158

8.2.5 Phase 5

During approach, phase 5, the propulsion system, pneumatic supply and

hydraulic system are required to work as in the previous phase. For environmental

control - only the anti-icing system failure would be critical. Flight control

system will again depend on both primary and secondary flight controls - failure

of any of them would be critical. During descent flight navigation needs GPS,

VOR/ ADF /DME and ILS/MLS and hence failure of any of them will lead to phase

failure. The fault tree for failure in phase 5 is shown in Figure 8.6 which has minimal

cut sets shown in Table 8.6.

SFCF AIS El· E2 P GPS

AIR HS PFCF ILS VOR

Table 8.6: Minimal cut sets for Phase 5

8.2.6 Phase 6

Failure will occur in the landing phase if the hydraulic system and flight control

system fail. Also failure of the flight navigation system ILS /MLS and the landing

gear is critical. In addition, the electrical system and propulsion system (both

engines and thrust reverser) are required to work. See the fault tree in Figure 8.7

Figure 8.5: Fault Tree for Phase 4

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 159

Figure 8.6: Fault Tree for Phase 5

with minimal cut sets given in Table 8.7.

Figure 8.7: Fault Tree for Phase 6

,-----------------~-- - --

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 160

SFCF PFCF El· E2 ESP

LGD HS ILS TR

Table 8.7: Minimal cut sets for Phase 6

8.3 Construction of the Cause-Consequence Diagram

In order to construct the cause-consequence diagram it is necessary to assume

a certain order in which the component failure events will be considered. For this

example we assume the following order:

FFFI < PI < HSI < TI < T21 < Ell < E21 < PFCFI < SFCFl < AIS1 <
AIR1 < LGU1 < LGU2 < FTF1 < FTF2 < PFCF2 < P2 < HS2 < El2 < E22 <
CCTC1 < CCTC2 < CCPCl < CCPC2 < AIS2 < AIR2 < GPS1 < PS2 <
VORl < VOR2 < ESPl < ESP2 < ESP3 < FTF3 < PFCF3 < HS3 < P3 <
E13 < E23 < CCTC3 < CCPC3 < GPS3 < INSl < INS2 < INS3 < P4 <
HS4 < FTF4 < GPS4 < E14 < E24 < CCTC4 < AIS3 < AIS4 < AIR3 <
AIR4 < P5 < HS5 < E15 < E25 < AIS5 < AIR5 < PFCF5 < SFCF2 <
SFCF3 < SFCF4 < SFCF5 < GPS5 < VOR3 < VOR5 < ILS1 < ILS2 <
ILS3 < ILS4 < ILS5 < ESP4 < ESP5 < ESP6 < ILS6 < LGDl < LGD2 <
LGD3 < LGD4 < LGD5 < LGD6 < HS6 < TRl < TR2 < TR3 < TR4 < TR5 <
TR6 < E16 < E26 < PFCF6 < SFCF6

Where the subscripts refer to the phase in which the failure occurs. The program

allows the order to be entered manually, or to automatically generate it from the

fault trees. The order of events shown above is automatically generated by the

program, where the components are considered in the order as they appear in fault

tree data files.

Following the order of component failures given, each component failure event is

added to the diagram as a decision box one by one, as described in cause-consequence

diagram construction method 1 (see Section 7.3.1). For this example, consequences

Fl, F2, F3, F4, F5 and F6 mean mission failure due to system failure in phase 1, 2,

3, 4, 5 or 6 respectively, C represents mission success.

The resulting diagram output by the program is represented in a list form. Each

decision/consequence box is assigned a number and the program lists the numbers

of the decision/consequence boxes it is pointing to on the YES and NO branches.

For each box, the program also gives the number of the previous box in the branch.

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 161

8.4 Analysis of the Cause-Consequence Diagram

. In order to quantify the resulting cause-consequence diagram and obtain the

probability of mission failure it is necessary to input data for the subsystems.

No real data for the system was obtained, and data has been generated which

was believed to be realistic for the subsystems considered. The data is included in

Table 1.

The durations for the phases were taken to be those of a London (Heathrow) -

New York (J.F. Kennedy) flight and are shown in Table 8.8.

Phase 1 17 min

Phase 2 28 min

Phase 3 380 min

Phase 4 28 min

Phase 5 2 min

Phase 6 5 min

Table 8.8: Phase duration times

8.4.1 Qualitative analysis

Conditions causing any outcome event (implicants) are established by investigating

each decision box on the path to the outcome and listing the component failure or

success in the phase as indicated by the exit path from the decision box. In the

example considered there are 375 failure outcomes. The component conditions for

each of these outcomes were determined and some of them are listed below. The

notation used for the events is that given in Table 8.1. Numbers in front of the

implicant indicate the number of the consequence box in the cause-consequence

diagram.

F1 - Mission failure in Phase 1

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 162

12. Ell A T2l A Tl A HSl A HA FFFl

14. E2l A Ell A T2l A Tl A HSl A PI A FFFl

16. PFCFl A E2l A Ell A T2l A Tl A HSl A HA FFFl

18. SFCFl A PFCFl A E2l A Ell A T2l A Tl A HSl A PI A FFFl

20. AISl A SFCFl A PFCFl A E2l A Ell A T2l A Tl A HSl A PI A FFFl

22. AIRl AAISl ASFCFl A PFCFl A E2l AE1l AT2l ATl A HSl AH A FFFl

Implicants for the later phases contain more events due to consideration of the

earlier phases. For example, one implicant for phase 2 is:

F2 - Mission failure in Phase 2

25. LGU2 A LGU1 A AIRl A AISl A SFCFl A PFCH A E2l A Ell AT2l A Tl A

HSl AH A FFFl

Each failure mode in the list contains a progression of states for the same

component. For example, outcome 25 has component LGU working throughout

phase 1 and then failing in phase 2. After simplification outcome 25 would be:

Considering just the failed states for the systems which lead to mission failure

gives minimal cut sets. Some of the minimal cut sets leading to phase failures are

shown in Table 8.9. The notation used for the events is that given in Table 8.l.

These minimal cut sets are obtained after basic event approximation was applied to

fault trees of each phase. The minimal cut sets in Table 8.2 to Table 8.7 list minimal

cut sets before basic event transformation is applied to fault trees.

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 163

Phase 1 Phase 2 Phase 3

AIRI AIR2 CCPS3
AISI AIS2 CCTC3

Ell CCPCI E13/\ E23

E21 CCPC2 ESPt

FFFI CCTCI ESP2
HSI CCTC2 ESP3

PI E12 FTF3

PFCFI E22 GPS3
SFCFI FTFI HS3

Tll FTF2 INSI

T22 GPSI INS2
GPS2 INS3
HS2 P3

LGUI PFCF3
LGU2
P2

PFCF2

VORI

VOR2

Table 8.9: Minimal cut sets

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 164

Consequence Probability Probability Difference

(exact) (coherent

approximation)

Failed in phase 1 0.00028335 0.00028336 -0.00000001

Failed in phase 2 0.00050429 0.00050447 -0.00000018

Failed in phase 3 0.00087139 0.00087238 -0.00000099

Failed in phase 4 0.00015541 0.00015566 -0.00000025

Failed in phase 5 0.00022142 0.00022183 -0.00000041

Failed in phase 6 0.00040186 0.00040272 -0.00000086

Completed 0.99756235 0.99755957 0.00000278

Table 8.10: Mission results

8.4.2 Quantitative analysis

The results for the probability of mission failure and success have been obtained

using the developed program for phased mission analysis and are shown in

Table 8.10.

As the system investigated is very reliable, the coherent approximation results

are very close to exact results with the difference starting in the 6th decimal place.

For the generated data the probability of the aircraft completing flight

successfully was found to be 0.997562. As no real life data or result were obtained,

it is not possible to compare the result of the modelling with the real life.

8.5 Conclusions

In this chapter an example of aircraft flight was presented. Although the system

in reality is much more complex, it gives an overview of the capability of the cause­

consequence diagram and demonstrates that cause-consequence diagram methods

can be applied to real life non-repairable systems.

In this example fault trees were constructed for each phase to illustrate system

behaviour. The computer code implementing method 1 for the construction of the

cause-consequence diagram was used to obtain the results. The results obtained

could not be compared with the real life results as no real data was available for

the system and also because of the simplified approach to the example. Exact and

8. Modelling Aircraft Flight using the Cause-Consequence Analysis 165

coherent approximate quantification techniques were used on the cause-consequence

diagram, both of them producing very close results. This was not surprising for

this example as coherent approximation usually produce results close to the exact

calculation for very reliable systems.

9. MODULARISATION OF PHASED MISSION SYSTEMS

9.1 Introduction

In order to reduce the complexity of a fault tree, modularisation techniques can

be applied. One such technique identifies independent subtrees within the fault tree,

which are called modules. A module is an independent section of a fault tree with

no inputs that appear anywhere else in the tree and no outputs to the rest of fault

tree except from its output event. The advantage of the modularisation is that each

module can be regarded as an individual fault tree and analysed independently.

There are several modularisation techniques available for recognising fault tree

modules. The modularisation technique introduced in this work is the linear-time

algorithm [26]. It is later applied to the cause consequence diagrams for phased

mission systems to see if it would be beneficial for reducing complexity of the larger

systems.

9.2 The Linear-Time Algorithm

The modules of the fault tree are identified after two depth-first traversals of it.

The first traversal records numbers of step-by-step visits for each gate and event: the

step number at the first, second and final visits to that node. The second traversal

through the fault tree fiwls the maxim11lIl of the last visit,s awl the minimum of the

first visits to the descendants of each gate.

To illustrate the procedure, the fault tree in the Figure 9.1 is used.

Starting at the top event the depth-first traversal visits each gate and event and

the order in which they are visited is shown in Table 9.1. Each gate is visited at

least, twiee: first time on the way down the fault tree and Oll<:e more on the way

back up the fault tree. If the gate is visited once already, then on the second visit

to the gate its inputs are not visited. This can be noticed in step 23 in Table 9.1

where gate 'G3' is visited for the second time, but its descendants are not re-visited.

9. Modularisation of Phased Mission Systems 167

Figure 9.1: Example fault tree to demonstrate the linear-time algorithm

Step number 1 2 3 4 5 6 7 8 9 10 11 12

Node Top G1 A G4 G5 A F G5 G6 G H G6

Step number 13 14 15 16 17 18 19 20 21 22 23 24

Node G4 G1 G2 B G3 C D E G3 G2 G3 Top

Table 9.1: First traversal through the fault tree

Gate Top G1 G2 G3 G4 G5 G6

First visit 1 2 15 17 4 5 9

Second visit 24 14 22 21 13 8 12

Last visit 24 14 22 23 13 8 12

Max 23 13 23 20 12 7 11

Min 2 3 16 18 3 3 10

Table 9.2: Step numbers for gates

9. Modularisation of Phased Mission Systems 168

Table 9.2 and Table 9.3 show step numbers for the first, second and last visits

to each gate and event respectively.

Gate A B C D E F G H

First visit 3 16 18 19 20 7 10 11

Second visit 6 16 18 19 20 7 10 11

Last visit 6 16 18 19 20 7 10 11

Table 9.3: Step numbers for events

The second traversal through the fault tree determines the maximum of the last

visits (max) and minimum of the first visits to the descendants (min) of each gate.

These results are shown in Table 9.2. If any descendants of the gat.e have a first. visit.

step number smaller than the first visit step number of the gate, then it must have

occurred beneath some other gate and therefore this gate cannot be a module. In

the same way, if the last visit to the any descendant of the gate occurred later than

the second visit to the gate, then this descendant must occur somewhere else in the

fault t.ree and t.he gat.e again cannot, be ident.ified as a IIlodule. Therefore, the gate

can be identified as a module if and only if it satisfies both conditions:

1. The first visit to each descendant is after the first visit to the gate.

2. The last visit to each descendant is before the second visit to the gate.

This ensures that none of the descendants of a particular gate can appear

anywhere else in the fault tree, except beneath another occurrence of the same

gate.

From Table 9.2 can be noticed, that gates 'G2', 'G4' and 'G5' cannot be modules.

Gate 'G2' does not satisfy the second condition as the maximum of last visits to

each descendant is greater than the step number of second visit to the gate. Gates

'G4' and 'G5' do not satisfy the first condition as the minimum of first visits to each

descendant is smaller than the step number of the first visit to the gates.

The gates 'Top', :Gl', 'G3' and 'G6' can be identified as modules. The top event

of the fault tree will always be a module.

Each of the modules can be replaced by modular events in the fault tree structure.

Gate 'Gl' is replaced by event 'Ml', gate 'G3' - by event 'M3' and gate 'G6' is

9. Modularisation of Phased Mission Systems 169

replaced by event 'M2'. Therefore the fault tree shown in Figure 9.1 can be replaced

by separate fault trees shown in Figure 9.2.

7?7?
~~

Figure 9.2: Modularised fault tree and modules

9.3 Modularisation for Phased Mission Systems

Cause-consequence diagrams for phased mission systems can be very big and

complicated as failure of each component needs to be considered in each phase, not

only in the phases that it is used in. Therefore modularisation has been investigated

to reduce the size and complexity of the diagrams and ease the analysis.

'!\vo cases of modularisation for phased mission systems were considered:

1. when failures of each phase are important;

2. when only failure of a mission is of interest.

9.3.1 Modularisation of Each Phase of a Phased Mission System

For the first case, when failures of each phase need to be determined,

lIlodlllarisation doesn't offer a hrreat improvement.. This is because fault trees for

each phase contain basic events that are repeated through out the whole mission

and also are inconsistent. For example, the same event 'component A fails in phase

l' might be repeated through all fault trees of the phased mission system.

Consider example shown in Figure 9.3. If Rauzy's algorithm was applied to these

fault trees, there would be one module common to both phases (gate 'G1'). The

fault trees representing this are shown in Figure 9.4.

9. Modularisation of Phased Mission Systems 170

Figure 9.3: 'I\vo phase example

Figure 9.4: 'I\vo phase example: fault trees after modularisation

The next step is to apply basic event transformation, so that failures of the

components in different phases would be accounted for. Fault trees after basic event

transformation are shown in Figure 9.5.

As can be seen from Figure 9.5, although modules 'MI I' and 'MI 2' are

independent for each phase, it is not true for the whole mission. Failure event

'AI' is an input in gate 'MI_I' for Phase I and in gate 'MI_2' for Phase 2. The

same is true for failure event Bl.

Once modules are determined, the cause-consequence diagram can be constructed.

The ordering chosen for this example is:

Mll > Xl > DI > Mb > YI > Y2 > D2

9. Modularisation of Phased Mission Systems 171

Figure 9.5: Two phase example: fault trees after basic event transformation

The cause-consequence diagram for this phased mission after modularisation is

shown in Figure 9.6 with cause-consequence diagrams for the independent modules

shown in Figure 9.7.

The quantification of the cause-consequence diagram shown in Figure 9.6 is not

straight forward. The quantification technique used for cause-consequence diagrams

without modularisation cannot be applied in this case, because there are repeated

and inconsistent events throughout the cause-consequence diagram within different

modules. For example, basic event 'AI' appears in module 'MI_I' and then again

in module 'MI_2'. Also, if failure of component A occurs while the system is in

Phase 1, failure of the same component cannot occur in Phase 2, which has basic

event event 'A2' (module 'M1_2'). Therefore, to be able to perform quantification

on this cause-consequence diagram, it needs to be expanded to its full size and

repeated and inconsistent events have to be removed. First step in this would be to

9. Modularisation of Phased Mission Systems 172

Figure 9.6: Cause-consequence diagram after modularisation

substitute a decision box of each module with the cause-consequence diagram for it.

The expanded cause-consequence diagram is shown in Figure 9.8 and Figure 9.9. In

these cause-consequence diagrams repeated events are crossed out with solid line.

Events crossed out with a dashed line are removed because they are on the redundant

branch of the repeated decision box.

After removing irrelevant events the diagram is shown in Figure 9.lD. At this

point the previously described quantification technique can be used.

The resulting cause-consequence diagram is the same size as if the diagram was

constructed using construction Method 1 as described in Section 7.3.1. Therefore,

modularisation did not offer any benefit in this example for reducing size or

complexity of the resulting cause-consequence diagram. However, if the system

contains a subsystem which needs to function only for one phase of the mission, the

modularisation could be beneficial.

9. Modularisation of Phased Mission Systems 173

Figure 9.7: Cause-consequence diagrams for modules

9. Modularisation of Phased Mission Systems 174

Figure 9.8: Expanding cause-consequence diagram

------------------ -

9. Modularisation of Phased Mission Systems 175

Figure 9.9: (continued) Expanding cause-consequence diagram

9. Modularisation of Phased Mission Systems 176

Figure 9.10: Minimized cause-consequence diagram

9. Modularisation of Phased Mission Systems 177

9.3.2 Modularisation of a Pl1ased Mission System as a Whole

Some phased mission systems may have common modules between the phases

which are independent from the rest of of the system at any phase. An example

of this could be a specific subsystem that is required to work in all or some of

the phases, and which inputs are not used in any other way. In this case, such a

subsystem could be quantified separately from the rest of the system, but only if

failure or success probability of the phase is not important.

To illustrate this case, the example shown in Figure 9.3 is used. Gate 'G l' is an

independent module that appears in both phases, therefore it can be replaced by

modular event M1. The modified fault trees are shown in Figure 9.4.

Before constructing the cause-consequence diagram, basic event transformation

needs to be performed to take into account component failures in diff"erent phases.

As failures of separate phases are not investigated, the basic event transformation

is not applied to the modular event itself, but to the module. For the module

component failures are considered up to the latest phase in which modular event

representing the particular module occurs. For example, if it is a 5-phase system

and a modular event is occurring in phases 1, 2 and 4, then the basic events in the

module would be replaced by an OR combination of failure events for phases 1 to

4. The fault trees after basic event transformation are shown in Figure 9.11.

Figure 9.11: Modularised fault trees after basic event transformation

After basic event transformation is applied, the cause-consequence diagram can

be constructed. The ordering used for this example is:

M1 > Xl > D1 > Y1 > Y2 > D2

9. Modularisation of Phased Mission Systems 178

Figure 9.12: Cause-consequence diagram after modularisation

The cause consequence diagram for the phased mission when the phase failures

are not investigated is shown in Figure 9.12. The quantification can be performed on

this cause-consequence diagram using the same procedure as for cause-consequence

diagram without modularisation. The cause-consequence diagram can also be

constructed for the module and is shown in Figure 9.13.

9.3.2.1 Qualitative and Quantitative Analysis

Once the cause-consequence diagram is constructed, qualitative and quantitative

analysis can be performed. In the case when failures of the phases are not considered,

there are two possible outcomes: mission failure (F) or mission success (C).

The qualitative analysis of the cause-consequence diagram will produce the list

of causes for mission success or failure. Conditions causing an outcome event to

occur are established by investigating each decision box on the path to the outcome

and listing the component failure or success as indicated by the exit path from the

decision box. The failure conditions for the system shown in Figure 9.3 are listed

below:

1. .M1

2. M11\X1

9. Modularisation of Phased Mission Systems 179

M-6

Figure 9.13: Cause-consequence diagram for module

3. M1 /\ Xl /\ D1

6. M1 /\ Xl /\ D1 /\ Y1 /\ Y2 /\ D2

This list can be simplified as there are some outcomes, that contain a progression

of states of the same component. For example, outcome 5 has component Y working

in phase 1 and then failing in phase 2. In this case, the event that component Y is

working in phase 1 can be removed as its failure in the later phase implies that it

was working before. The simplified list of mission failures is listed below:

1. Ml

2. M1/\X1

3. M1 /\ Xl /\ Dl

9. Modularisation of Phased Mission Systems 180

The reduced, or simplified, list of the component conditions leading to each

outcome are in an appropriate form for quantification. The probabilities of each

outcome in the list are listed below:

1. P (M1)

2. (1 - P (Ml)) . Xl

3. (1- P(Ml))· (1- P(Xl))· Dl

4. (1 - P (Ml)) . (1- P (Xl)) . (1- P (Dl)) . Yl

5. (1- P (Ml)) . (1- P (Xl)) . (1- P (Dl)) . Y2

6. (1 - P (M1)) . (1- P (Xl))· (1- P (Yl) - P (Y2))· D2

The sum of all these probabilities would give the exact probability for mission

failure.

Probability for the modular event 'Ml' is not known and needs to be obtained

using fault tree analysis or other reliability analysis tool. It can be obtained using

cause-consequence diagram and this will be shown below. The cause-consequence

diagram for modular event is shown in Figure 9.13.

Following the same rules as before, the list of component condition for each

outcome are listed below:

M-I. Al

M-2. Al/\ A2

M-3. A1/\ A2 /\ Bl/\ Cl

M-5. Al/\ A2 /\ Bl/\ B2 /\ Cl

The reduced (simplified) list would be as follows:

9. Modularisation of Phased Mission Systems 181

M-I. A1

M-2. A2

M-3. A1/\ A2 /\ B1/\ Cl

M-4. A1/\ A2 /\ B1/\ C2

M-5. A1/\ A2 /\ B2 /\ Cl

M-6. A1/\ A2 /\ B2 /\ C2

Probabilities for all the outcomes of the cause-consequence diagram of modular

event are listed below and the probability of the failure of modular event would be

obtained by summing the probabilities of these outcome events.

M-I. P (A1)

M-2. P (A2)

M-3. (1-P(A1) -P(A2)) ·P(B1) ·P(C1)

M-4. (1 - P (A1) - P (A2)) . P (B1) . P (C2)

M-5. (1 - P (A1) - P (A2)) . P (B2) . P (Cl)

M-6. (1 - P (A1) - P (A2)) . P (B2) . P (C2)

9.4 Discussion

If modularisation is applied to fault trees before the construction of the cause­

consequence diagram, there are two different cases to be considered. If the failures

in phases need to be investigated, then modularisation doesn't reduce the size of

the final cause-consequence diagram significantly, as modules in different phases

need to be substituted back into the main diagram before quantification. The time

consumed could increase as first the modules in the fault trees need to identified,

then the cause-consequence diagram constructed and modules need to be substituted

back in the cause-consequence diagram before performing qualitative or quantitative

assessment.

9. Modularisation of Phased Mission Systems 182

Another case is if the failures of each phase are not being investigated. In

this ease lIlodularisatiou eau help t,o rednce the si~e of the final cause-consequence

diagram produced and separate modules can be quantified separately. This could be

especially useful when there are subsystems in the mission that work independently

from the rest.

10. CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

The aim of this research was to develop a method for phased mission analysis

using cause-consequence diagrams. Cause-consequence diagram method has been

successfully implemented for the analysis of phased mission systems.

This method is superior over fault tree analysis as:

• It can represent a whole system in one diagram without missing out valuable

information about phase failures.

• The cause-consequence diagram method provides an easy and efficient way

to perform quantitative and qualitative analysis on phased missions avoiding

approximations that could result in inaccuracies.

• The diagram is easy to follow and contains descriptions of components states

and as such can be presented to those without much prior knowledge in risk

analysis.

In addition to these conclusions, the cause-consequence diagram method is

superior over binary decision diagrams as:

• It can represent a whole system in one diagram without missing out valuable

information about phase failures. The binary decision diagrams can be used

to obtain mission failure probability, but if the phase failure probabilities are

of interest, separate binary decision diagrams would have to be constructed

for each phase. When using cause-consequence diagram method, phase failure

probability is calculated in addition to mission failure probability.

• The diagram is easy to follow and contains descriptions of components states.

Therefore it can be presented to those without much prior knowledge in risk

analysis.

-----1
10. Conclusions and Future Work 184

The size of the diagram is greatly dependent on the ordering of the components,

just like with the binary decision diagrams, and the selection of an effeetive variable

ordering scheme can influence the efficiency of the cause-consequence diagram for

the phased mission problem and therefore the computational resources necessary

to calculate the result. As has been shown in this work for the same phased

mission system, the cause-consequence diagram method is more efficient than a

binary decision diagram in terms of size.

Modularisation is widely used in fault tree analysis, where it effectively reduces

the size of the problem. The advantage of this technique is that each module can

be regarded as an individual fault tree and analysed independently. The same

principle was applied to cause-consequence diagrams to investigate its effectiveness

in this context .

• When phase failures are of interest, modularisation does not reduce the

size of the final cause-consequence diagram significantly, because modules in

different phases need to be substituted back into the main diagram before

quantification. The time consumed could even increase because initially the

modules in the fault trees would have to be identified, then the corresponding

cause-consequence diagrams constructed for the modules and the main fault

tree, and finally those modules need to be substituted back in the main cause­

consequence diagram before performing qualitative or quantitative assessment.

• The alternative case is when the failure of each phase is not being

investigated, as only the overall mission success or failure is of interest.

In this situation, modularisation can help to reduce the size of the final

cause-consequence diagram produced, because the separate modules can be

quantified individually. This advantage is particularly evident when there are

subsystems in the mission working independently from the rest.

The work presented in this thesis has been applied to an aircraft flight. The

system was simplified for the scope of this thesis. The results obtained could not

be compared with the real life results as no real data was available for the system

and also because of the simplified approach to the example. Exact and coherent

approximate qnflllt.ifieat.ion t.edmiqnes were nsed on t.he eanse-consequence diagram,

both of them producing very close results.

10. Conclusions and Future Work 185

10.2 Recommendations for future work

The current methods for construction CCD are based on the principle of

converting fault trees into CCD. This process is not very intuitive and requires the

use of trained personnel. If CCD could be constructed directly from the description

of the system, a significant saving could be achieved as a result of omitting the

construction of system fault trees.

The component ordering schemes for single-phased mission binary decision

diagram have been widely researched. As logics of cause-consequence diagrams

and binary decision diagrams are very similar, the same ordering principle can be

applied for both. Therefore, it would be useful to be able to obtain an optimal event

ordering scheme for phased mission system that would result in the most efficient

cause-consequence diagram for phased mission.

The work could be extended to include phased missions with one or more

repairable states. This may involve combining different methods available for phased

mission analysis, such as Markov analysis and simulation techniques.

The example of an aircraft flight presented in the thesis was simplified and only

main sub-systems were included. This could be reviewed to expand the sub-systems

to the following levels and to represent a more realistic system to test the approach.

Also, as the data used for the calculations was randomly generated, it would be useful

to obtain the data from industry for the component failures and to compare the

results obtained using cause-consequence diagram with the real life situation. Also,

more real-life examples should be used to illustrate the benefits of the method, such

as applications in automotive industry, space applications and military operations

(ballistic missile).

As only method 1 was coded for this work, it would be useful to provide a code

for method 2, so that the methods proposed in the thesis could be compared for

their efficiency.

BIBLIOGRAPHY

[1] Burdick GR, Fussell JB, Rasmuson DM, Wilson JR. Phased

Mission Analysis: A Review of New Developments and An

Application. IEEE Transaction on Reliability, Vol.R-26, No.1,

1997, pp 43-49

[2] Esary JD, Ziehms H. Reliability analysis of phased missions.

Reliability and Fault Tree Analysis: Theoretical and Applied

Aspects of system, Reliability and Safety Assessment,

Philadelphia, 1975, pp 213-236

[3] La Band R.A., Andrews J.D., Phased Mission Modelling Using

Fault Tree Analysis, Proc Instn Mech Engrs Part E: Journal of

Process Mechanical Engineering, 218[2] 83-91 (2004)

[4] Zang X, Sun H, Trivedi KS. A BDD-Based Algorithm

for Reliability Analysis of Phased-Mission Systems. IEEE

Transactions on Reliability, Vo1.48 , No.1, 1999, pp 50-60

[5] Nielsen DS. The Cause/Consequence Diagram Method as a

Basis for Quantitative Accident analysis. Danish Atomic Energy

Commission, 1971 RISO-M-1374

[6] Andrews JD, Ridley LM. Reliability of sequential systems using

the cause-consequence diagram method. IMechEProceedings Part

E, 2001, pp 207-220

[7] Dhillon BS, Singh C. Engineering Reliability: New Techniques and

Applications. New York, Chichester, Wiley, 1981

[8] Vesely, WE. A Time Dependent Methodology for Fault Tree

Evaluation. Nuclear Design and engineering, 13, pp337-360, 1970

Bibliography 187

[9] Lee CY. Representation of Switching Circuits by Binary-Decision

Programs. The Bell Technical Journal, 38, pp985-999, July 1959

[10] Akers SB. Binary Decision Diagrams. EEE Transactions on

Computers, 27, No.6, pp509-516, June 1978

[11] Schneeweiss WG. Fault-Tree Analysis Using a Binary Decision

Tree. IEEE Transactions on Reliability, 34, No.5, pp453-457, 1985

[12] Rauzy A. New algorithms for fault trees analysis. Reliability

Engineering and system Safety, 40, pp203-211, 1993

[13] Friedman SJ, Supowit KJ. inding the Optimal Variable Ordering

for Binary Decision Diagrams. IEEE Transactions on Computers,

39, No.5, pp710-713, May 1990

[14] Nielsen DS, Runge B. Unreliability of a Standby System with

Repair and Imperfect Switching. IEEE Transactions on Reliability,

1974, VoLR-23, pp 17-24

[15] Nielsen DS. Use of Cause-Consequence Charts in Practical

Systems Analysis. Reliability and Fault Tree Analysis:

Theoretical and Applied Aspects of system, Reliability and

Safety Assessment, Philadelphia, 1975, pp 849-880

[16] Burdick GR, Fussell JB. On the Adaptation of Cause-Consequence

Analysis to U.S. Nuclear Power systems Reliability and Risk

Assessment. A Collection of Methods for Reliability and Safety

Engineering, Report V, Idaho National Engineering Laboratory,

1976, ANCR-1273

[17] Villemeur A. Reliability, Availability, Maintainability and Safety

Assessment. Volume 1, Willey, Chichester, 1991

[18] Hickling P. The use of cause-consequence diagrams for the

reliability analysis of sequentially operating systems. British Gas

Report, 1980

Bibliography 188

[19] Nielsen DS, Platz 0, Runge B. A Cause-Consequence Chart of a

Redundant Protection System. IEEE Transactions on Reliability,

1975 Vol.R-24, No.l, pp 8-13

[20] Andrews JD, Moss TR. Reliability and Risk Assessment.

Professional Engineering Pub., London, 2002

[21] Evans RA. Fault-Trees and Cause-Consequence Charts. IEEE

Transactions on Reliability, 1974, Vol.R-23, No.l, pp 1

[22] Ridley LM. Dependency Modelling Using Fault Tree and Cause­

Consequence Diagram. Thesis, Loughborough University, 2000

[23] Andrews JD, Ridley LM. Application of cause-consequence

diagram method to static systems. Reliability Engineering and

System Safety, 2002, Vo1.75. pp 47-58

[24] Nielsen DS, Platz 0, Kongso HE. Reliability Analysis of Proposed

Instrument Air System. Danish Atomic Energy Commission,

1977, RISO-M-1903

[25] Taylor JR. Interlock Design Using Fault Tree and Cause

Consequence Analysis. Danish Atomic Energy Commission, 1976,

RISO-M-1890

[26] Dutuit Y, Rauzy A. A Linear-Time Algorithm to Find Modules

of Fault Tree. IEEE 'fransactions on Reliability, 45, No.3, 1996

[27] Burdick GR, Fussell JB, Rasmuson DM, Wilson JR. The

Implementation of Phased Mission Techniques To Nuclear

Systems Analysis. A Collection of Methods for Reliability and

Safety Engineering, Report V, Idaho National Engineering

Laboratory, 1976, ANCR-1273

[28] Ma Y, 'frivedi K S An Algorithm for Reliability Analysis of

Phased-Mission Systems, Reliability Engineering and Systems

Safety 66 (1999) 157-170

Bibliography 189

[29] Somani AK, Trivedi KS. Phased-Mission System Analysis Using

Boolean Algebraic Methods. ACM SYETRICS Performance

Evaluation Review, Vol.22, Issue 1, 1994, pp 98-107

[30] Montague DF, Fussell JB. A Methodology for Calculating the

expected Number of Failures of a System Undergoing a Phased

Mission. Nuclear Science and engineering, Vol.74, 1980, pp 199-

209

[31] Pedar A, Sarma VVS. Phased-Mission Analysis for Evaluating

the Effectiveness of Aerospace Computing-Systems. IEEE

Transactions on Reliability, Vol.R-30, No.5, 1981, pp 429-436

[32] Langberg N, Proschan F, Quinzi AJ. Converting Dependent

Models into Independent Ones, with Applications in Reliability.

The Theory and Applications of Reliability, Volume 1, Academic

Press, London, New York, 1977

[33] Veatch MH. Reliability of Periodic, Coherent, Binary Systems.

IEEE Transactions on Reliability, Vol.R-35, No.5, 1986, pp 504-

507

[34] Dazhi X, Xiaozhong W. A Practical Approach for Phased Mission

Analysis. Reliability Engineering and System Safety, Vol.25, 1989,

pp 333-347

[35] Lee KW, Hong JS. Reliability Evaluation of a Phased mission

System with Time Varying Redundancy and Failure Probability.

Microelectronics and Reliability, Vol.31, No.5, 1991, pp 955-961

[36] Xing L, Dugan JB. Analysis of Generalized Phased-Mission

System Reliability, Performance, and Sensitivity. IEEE

Transactions on Reliability, Vol.51, No.2, 2002, pp 199-211

[37] Clarotti CA, Contini S, Somma R. Repairable Multiphase Systems

- Markov and Fault-Tree Approaches for Reliability Evaluation.

Synthesis and Analysis methods for Safety and Reliability Studies,

1980, pp 45-58

Bibliography 190

[38] Alam M, AI-Saggaf UM. Quantitative Reliability Evaluation

of Repairable Phased-Mission Systems Using Markov Approach.

IEEE 'fransactions on Reliability, Vol.R-35, No.5, 1986, pp 498-

503

[39] Smotherman MK, Geist RM. Phased Mi8sion (dJcd'i.vmes8 using (J,

Nonhomogeneous Markov Reward Model. Reliability and System

Safety, Vo1.27, 1990, pp 241-255

[40] Smotherman M, Zemoudeh K. A Non-Homogeneous Markov

Model for Phased-Mission Reliability Analysis. IEEE 'fransactions

on Reliability, Vo1.38, No.5, 1989, pp 585-590

[41] Dugan JB. Automated analysis of Phased-Mission Reliability.

IEEE 'fransactions on Reliability, Vo1.40, No.1, 1991, pp 45-52

