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ABSTRACT 

This study was undertaken to explore 18 time domain (TD) and 

time-frequency domain (TFD) feature configurations to determine 

the most discriminative feature sets for classification. Features 

were extracted from the surface electromyography (sEMG) signal 

of 17 hand and wrist movements and used to perform a series of 

classification trials with the random forest classifier. Movement 

datasets for 11 intact subjects and 9 amputees from the NinaPro 

online database repository were used. The aim was to identify any 

optimum configurations that combined features from both domains 

and whether there was consistency across subject type for any 

standout features. This work built on our previous research to 

incorporate the TFD, using a Discrete Wavelet Transform with a 

Daubechies wavelet. Findings report configurations containing the 

same features combined from both domains perform best across 

subject type (TD: root mean square (RMS), waveform length, and 

slope sign changes; TFD: RMS, standard deviation, and energy). 

These mixed-domain configurations can yield optimal performance 

(intact subjects: 90.98%; amputee subjects: 75.16%), but with only 

limited improvement on single-domain configurations. This 

suggests there is limited scope in attempting to build a single 

absolute feature configuration and more focus should be put on 

enhancing the classification methodology for adaptivity and 

robustness under actual operating conditions.  
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1. INTRODUCTION 
For several decades, myoelectric control systems have been 

endorsed for transradial amputees to regain a satisfactory daily life 

experience. They provide an affordable, amenable means of 

operation using surface electromyography (sEMG) to capture the 

electrical activity from muscle innervation. Despite great advances 

in commercial prostheses there remains a gap with the control 

strategies put forward to drive them [18]. The majority are 

sequential by nature (i.e. one full movement followed by another), 

often using a coactivation switch to cycle through a series of 

available mechanical actions [6]. Pattern recognition systems are 

slowly making their way onto the market 

(http://www.coaptengineering.com), exploiting machine learning 

techniques to perform specific movements. However, both 

approaches currently do not provide intuitive control and accurate, 

reliable operation. 

Considering pattern recognition, the extraction of appropriate 

features concentrates on deriving pertinent structural characteristics 

from the EMG signal. This is distinctly important, aiming for the 

best separation between physical gestures [14]. The cogency of this 

assertion is seen in the considerable influence feature choice has on 

classification results [10]. EMG features are divided into three 

categories: time domain (TD), frequency domain (FD) and time-

frequency domain (TFD). TD features provide low-cost 

measurements, evaluating the EMG signal amplitude. FD features 

rely on an initial remodelling process, using a Fourier Transform to 

describe signal components, or to ascertain its power spectral 

density. Both domains suffer from deficiencies. The TD does not 

account for the non-stationarity of the EMG signal, thus missing 

important statistical information. The FD may misrepresent the 

signal through leakage or fail to capture changes in signal content 

over time. TFD features can overcome these shortfalls, combining 

the time element with a frequency transform to specify the energy 

concentration for each frequency present at a particular time instant 

[13]. Using wavelet analysis, a signal is represented as a series of 

oscillatory functions of finite duration (wavelets) by decomposing 

it using a wavelet transform. It can therefore be expressed as a 

linear combination of these functions with wavelet coefficients 

giving a compact representation of the signal’s energy [12]. 

Significant work has been done in recent decades, to elucidate ideal 

feature choice [14], [15], [16]. Wavelet analysis has also been 

explored, incorporated into a neural network to maximise feature 

extraction and learning when using a limited number of EMG 

sensors [5], combined with principal component analysis to 

improve grasp recognition for rehabilitation [10], and compared 

with FFT for muscle fatigue prediction [4]. This paper expands on 

our previous work that investigated 7 TD feature configurations 

against a series of online datasets, examining TFD potential with 
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17 human hand and wrist movements, using a discrete wavelet 

transform (DWT) to decompose the sEMG signal. For this reason, 

features extracted using this process are referred to as DWT 

features. Classification trials using a random forest (RF) classifier 

are performed on both intact and amputee subject data over 4 

experiments. In all, comparisons of 18 feature configurations are 

made: TD-only, DWT-only and TD combined with DWT. 

2. METHOD 

2.1 Preprocessing and Windowing 
The experimental procedure followed the same protocol detailed 

previously [17]. It is summarised here for convenience and depicted 

in Fig. 1. Intact and amputee data were downloaded from the 

NinaPro project (http://ninapro.hevs.ch), and Exercise B’s 17 hand 

and wrist movements were chosen. The first 11 datasets for healthy, 

intact subjects from Database 2 and 9 amputee subject datasets 

from Database 3 were used. 12 Delsys Trigno wireless electrodes 

(Delsys, Inc, www.delsys.com) were used to acquire the sEMG 

data. Eight electrodes were attached around the right forearm, at a 

fixed distance from the radio-humeral joint, two were fixed to the 

main activity spots of the anterior and posterior of the forearm, and 

two more placed on the biceps brachii and triceps brachii. All 

movements were repeated 6 times consecutively, each lasting 

approximately 5 seconds, plus a 3-second rest period where a rest 

posture was assumed. Data was acquired at a 2 KHz sampling rate, 

cleaned and relabelled suitably 

before being made available online. A thorough account of the 

NinaPro experiment is available here [3].  

An in-house MATLAB program separated movement repetitions 

into a matrix of time-ordered sEMG voltage data from the 12 

electrodes. Each movement’s data was split such that repetitions 1, 

3, 4, and 6 were allocated to a training set and repetitions 2 and 5 

to a test set. All data were normalised to have zero mean and unit 

standard deviation [3]. A 256ms sliding window was employed, as 

per our previous work, to segment the data. The increment was set 

at 10 ms to ensure a densely packed array of windows but a moving 

average was applied to the process to prevent unmanageable file 

sizes. 

2.2 Wavelet Analysis 
This undertaking focused on producing DWT features. Prior to 

feature extraction, a discrete wavelet transform (DWT) was 

performed on the sEMG signal. Data was processed through 

multiple levels using a filter-bank of low-pass and highpass filters 

that decomposed the signal into approximation and detail subbands, 

respectively (Fig. 2). At each level, approximation coefficients 

corresponding to the low frequency signal components were 

generated, using a set of discretised wavelet functions, based on a 

mother wavelet ψ (t):  
 

 𝝍𝒋.𝒌(𝐭)  =  
𝟏

√𝒔𝟎
𝒋
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𝒋
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where s0 is a fixed scale parameter, τ0 is a translation factor, j is 

used to adjust the scale, k controls the translation and t refers to 

time. To provide dyadic scaling and translation and the required 

discretisation, s0 is set to 2 and τ0 to 1. Additionally, a set of scaling 

functions – stretched and translated versions of a base scaling 

function φ(t), using the same method as (1) – were used to generate 

detail coefficients representing the signal’s high frequency 

components. The current approximation subband was used to yield 

the next level of approximation and detail subbands until the 

desired level was reached. Corresponding subband coefficients 

were generated as follows: 
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where cj and dj are the approximation and detail coefficients 

respectively, for the current level, specified by n. This repeated 

process removes redundancy in the coefficient data, making the 

DWT more efficient and faster than a continuous wavelet transform 

(CWT) [9], hence its choice here. 

It is imperative the most relevant wavelet is chosen for the DWT, 

to maximise the transform. The Daubechies db7 wavelet was 

selected based on related DWT usage with EMG [3] and 

comparison with the signal characteristics of the EMG datasets in 

use. For decomposition, 3 and 4 levels are common, cited as 

optimum [3] [12]. Four levels were selected, implying four detail 

subbands, and a corresponding 4th level approximation subband. 

The DWT was executed using built-in MATLAB functions and 

returned a vector of wavelet coefficients for each subband (an 

example of 4 levels of detail subband coefficient data is given in 

Fig. 3). 

2.3 Feature Extraction 
Features were chosen according to previous research [17] [8] [10]. 

TD features were extracted from each time window and DWT 

features from the transformed time window’s subband coefficient 

data. 

2.3.1 Configurations C1 to C4 (Table 2) 
A feature vector vt of extracted DWT features for all 12 electrodes 

E was created, giving a 300-value feature vector for one time 

window t: 

 

𝐯𝐭  =  {𝑓1,1
1 , 𝑓1,2

1 , . . . , 𝑓2,1
1 , 𝑓2,2

1 , . . . , 𝑓1,1
2 , . . . , 𝑓𝑏,ℎ

𝑒  }, 

           =  {𝑓𝑏,ℎ
𝑒 |𝑏 = 1, … , 𝐵, 𝐵 = 5; ℎ = 1, … , 𝐻, 𝐻 = 5; 

                               𝑒 = 1, . . . , 𝐸, 𝐸 = 12} ( 4 ) 
 

Figure 1. Experiment process flow using DWT features. 
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Table 1. Construction of DWT Features. 

Feature Equation 

Root Mean Square of coeffs RMSCO =  √
1

𝑁
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2
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Standard Dev of coeffs STDCO =  √
1

𝑁
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2
𝑁
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Mean Abs Value of coeffs MAVCO =  
1

𝑁
∑ |𝑥𝑖|

𝑁
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Mean Power of coeffs MEANPWR =  ∑ 𝑥𝑖
2

𝑁

𝑖=1
 

where N is number of coefficients and x indicates c and d 

 

where t refers to one time window, e is an electrode, f is the hth 

feature value at subband b and electrode index e, B is the total 

subbands, and H is the number of DWT features per subband. For 

all windows, a time-ordered feature vector matrix composed [17]. 

 

The feature selection tool in the WEKA software application, 

version 3.8 (http://www.cs.waikato.ac.nz/ml/weka) was used to 

evaluate and rank the features with an attribute evaluator and 

associated search method. This determined their suitability in 

relation to each class label and from the results, four feature 

configurations were derived, C1 to C4 (Table 2). 

2.3.2 Configurations C5 to C11 (Table 4) 
For amputees, both TD and DWT experiments were undertaken. 

TD and DWT feature configurations are outlined in Table 4. The 

same DWT settings and process were applied in this experiment, as 

above. 

2.3.3 Configurations C12 to C18 (Table 5) 
Two further experiments were performed, one on the 11 intact 

subjects, another using the 9 amputee subjects. Both combined 

specific TD and DWT features, attempting to optimise 

configurations, producing an updated version of the feature vector 

in (4) to include TD features for each electrode: 

 

𝐯𝐭  =  {𝑓1
1, 𝑓𝑖

𝑒 , . . . , 𝑓1,1
1 , . . . , 𝑓𝑏,ℎ

𝑒  }, 

                                  =  {𝑓𝑖
𝑒| 𝑖 = 1, … , 𝐼, 𝐼 = 4} ( 5 ) 

 

where i is a single TD feature value and I is the total number of TD 

features. 

A feature selection process was undertaken to find the most 

relevant features (Table 3). Information Gain and Correlation 

(using Pearson’s correlation coefficient) evaluation types used the 

Ranker search method while Decision Tree, Random Forest and 

Logistic Regression were selected under the WrapperSubsetEval 

learner method and were tested using cross validation and a Best 

First search. Results were ranked according to feature efficacy in 

relation to the classes. Using these results and the performance of 

features in previous experiments, 3 feature configurations were 

created for intact subjects and 4 amputees, each consisting of 

between 4 and 6 features (Table 5). 

2.4 Classification 
A series of classification models were created using WEKA with a 

between-subject strategy, using all subjects’ training data, then 

performing evaluation with each individual subject’s test data, 

collating results accordingly. The random forest classifier was 

chosen, having previously performed best among support vector 

machine, multilayer perceptron and k-nearest neighbour [17]. A 10-

fold cross validation was used to provide estimated performance 

and produce the final models for each experiment. 

3. Results and Discussion 
Classification rate (CR) was used to evaluate classifier 

performance, calculated by dividing the number of correctly 

classified instances over the total instances, producing an accuracy 

value to indicate correctly identified hand movements: 

 

 
𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔

𝑻𝒐𝒕𝒂𝒍𝑵𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔
 × 𝟏𝟎𝟎%  ( 6 ) 

3.1.1 Experiment 1 
For the 11 intact subjects DWT experiment, configuration C1 

produced the best average accuracy, garnering 90.59%. However, 

Table 2. DWT Features and configurations used in experiment 

1 (11 intact subjects). 

Feature C1 C2 C3 C4 

Root Mean Square (RMSCO) ✓ ✓ ✓ ✓ 

Standard Dev. (STDCO) ✓ ✓ ✓  

Energy (ENGCO) ✓    

Mean Abs. Value (MAVCO)  ✓  ✓ 

Mean Power (MEANPWR)    ✓ 

 

Figure 3. Coefficient data for detail subbands to four levels, 

generated as a result of performing a DWT on one window of 

sEMG data, in this case the third repetition of movement 2. 

 

Figure 2. Example of a 2-level DWT decomposition process. 



the four configurations produced very similar results. This suggests 

that choice of feature combination, at least from the chosen set, had 

limited bearing on final classification accuracy. The chart in Fig. 4 

shows classification results for each subject, for all configurations, 

and provides the most interesting detail. Specifically, it varied as to 

which feature configuration produced the best results for each 

subject, there was no one outstanding configuration. The intact data 

might be quite ideal among subjects and the sample size of 11 

subjects is small, so there may be lack of sufficient data variation 

for effective analysis. 

 

3.1.2 Experiment 2 
Initial trials with all 11 amputee subjects in Database 3, from the 

NinaPro repository, produced difficulties in experiment procedure, 

due to 2 subjects using fewer electrodes than the standard 12 used 

by all other amputees [3]. For this reason, only the 9 amputee 

subjects with sEMG data for 12 electrodes were used in this 

research. Classification accuracy results for amputee TD and DWT 

configurations are presented in Table 4. The best TD configuration 

was C5 with 73.45% (composed of WL, RMS and SSC features), 

notable due to high performance in our previous work [17], 

producing a consistent performance across subject type. It was 

1.18% better than the next best configuration, C7 with 72.27%, 

interestingly only containing two features (RMS and WL) and 

outperforming the 71.90% of the three-featured C6 configuration. 

This reinforced previous research of RMS and WL feature selection 

for sEMG pattern recognition [16] [2]. DWT configurations 

produced higher accuracy results than their TD counterparts by an 

average of 1.75%. The C8 configuration, consisting of RMS, 

STDCO and ENGCO features, performed best with 74.37%. This 

was 0.30% better than C9, which substituted the ENGCO feature 

with MAVCO. There was little variability between results again, 

although more than with intact subjects’ DWT results. For 

amputees, best and worst TD configurations gave a difference of 

1.55% in accuracy and 1.47% for best and worst DWT 

configurations. Results here imply feature choice isn’t as important, 

but more the set-up and application of the DWT transform process. 

It could be that feature choice was approaching optimum but further 

investigation would be needed to verify this and it seems unlikely. 

Fig. 5 shows individual subject results for all 4 configurations. This 

time we see a slight preference for C8, although not for 3 of the 

subjects, which equates to a third of the group. Although this test 

population is small, it would be interesting to see if such 

percentages carried through to larger groups, suggesting again that 

no one feature configuration is ideal for every end user of a system. 

3.1.3 Experiments 3 and 4 
Table 5 shows the results of combining domain features for intact 

and amputee subjects. The best performance for intact subjects 

came from configuration C14 (RMS, WL, SSC from TD, and 

STDCO, ENGCO from DWT), achieving 90.98%. But the 

difference between all 3 mixed-domain configurations only varied 

by 0.32%. It is also better than both previous best-performing TD 

and DWT single-domain configurations (90.57% and 90.59%, 

respectively), but then so are C12 and C13. This shows that 

combining TD and DWT features increases overall classification 

Table 3. WEKA attribute selection methods and features for 

configurations C12 to C18 (TD and DWT features for intact and 

amputee subjects). Features identified in footnote1 

Intact Subjects 

Evaluator Ranked Attribute 

Information Gain 2, 1, 4, 3, 6, 7, 5, 8, 9 

Correlation 2, 5, 6, 8, 1, 4, 3, 9, 7 

Decision Tree 3, 2, 1, 4, 6, 7, 5, 9, 8 

Random Forest 3, 2, 1, 8, 4, 9, 7, 6, 5 

Logistic Regression 5, 4, 7, 2, 1, 3, 6, 9, 8 

Amputee Subjects 

Evaluator Ranked Attribute 

Information Gain 2, 5, 6, 7, 8, 1, 4, 3, 9 

Correlation 7, 9, 3, 6, 5, 8, 2, 4, 1 

Decision Tree 2, 4, 6, 5, 3, 1, 7, 8, 9 

Random Forest 2, 1, 3, 4, 6, 9, 5, 8, 7 

Logistic Regression 9, 1, 7, 6, 5, 2, 3, 4, 8 

11: RMS, 2: WL, 3: SSC, 4: MAV, 5: RMSCO, 6: STDCO,  

7: ENGCO, 8: MAVCO, 9: MEANPWR 

 

Figure 3. Average classification accuracy results for DWT 

configurations C1 to C4 (Table 2) for 11 intact subjects, as 

part of experiment 1. 

Figure 2. Average classification accuracy results for 

configurations C8 to C11 (Table 4) for 9 amputee subjects, 

as part of experiment 2. 



accuracy, but not by any great amount, at least for intact subjects. 

For amputee subjects, C17 achieved 75.16% accuracy, consisting 

of the same features as C14. However, the difference between the 

second and third best configurations is even more negligible than it 

was for intact subjects (= 0.04% for C15 and = 0.08% for C18). 

 

It can be suggested that the reason C6 is worse than other 

configurations is due to having fewer features (4 as oppose to 6 for 

C15, and 5 for C7 and C18). There is definite improvement for all 

mixed-domain configurations when measured against the best 

performing single-domain ones (TD=73.45% and DWT=73.47%), 

more so than for intact subjects (1.59% on average, compared to 

TD and 0.67% on average for DWT). This improvement could be 

considered negligible though plainly visible in Fig. 6. It indicates 

only a slight enhancement for amputee subjects when applying the 

additional wavelet transform process. 

Combining TD and DWT features has improved classification 

accuracy for both intact and amputee subjects, with more benefit in 

the amputee data. The addition of a DWT process and subsequent 

STDCO and ENGCO features to the WL, RMS and SSC features 

has bolstered achieved accuracy, if not increased it significantly. 

This may question the validity of including the DWT, and whether 

the marginal gains outweigh the extra computation requirements. 

However, the small sample size here means the experiment may not 

be representative enough to say what are the best feature 

configurations and how good they are. Table 6 lists comparable 

work and shows a mixed outcome regarding the effectiveness of 

our best performing intact and amputee configurations against 

others’ results. Differences in number of movements and subjects 

should certainly be accounted for when making an observation, 

indicating larger datasets prove challenging and provide more 

rigour during experiments. 

4. Conclusion 
This work continued a line of investigation into suitable sEMG 

feature configurations to accurately identify 17 human hand and 

wrist movements, using datasets from the NinaPro online 

repository. The focus was to build on previous TD work by 

incorporating features extracted from a DWT performed to 4 levels, 

using the Daubechies db7 wavelet, and to include testing with 

amputee data. Eighteen configurations were built of varying size, 

using features from the TD, the DWT, or a combination of both. 

Data from 11 intact and 9 amputee subjects were used for 

classification trials using a random forest classifier. Results show 

combining features from both domains increases classification 

accuracy for both subject types, with greater benefit evident in 

amputee data. A configuration consisting of RMS, WL, and SSC 

TD features and STDCO and ENGCO DWT features performed 

Table 4. Feature configurations for TD (C5 to C7) and DWT (C8 

to C11) used in experiment 2 (9 amputee subjects) and their 

average classification accuracy results. 

TD Feature C5 C6 C7  

Root Mean Square (RMS) ✓ ✓ ✓  

Waveform Length (WL) ✓ ✓ ✓  

Slope Sign Changes (SSC) ✓    

Mean Abs. Value (MAV)  ✓   

Accuracy (%) 73.45 71.90 72.27  

DWT Feature C8 C9 C10 C11 

Root Mean Square (RMSCO)  ✓ ✓ ✓ ✓ 

Standard Dev (STDCO) ✓ ✓ ✓  

Energy (ENGCO) ✓    

Mean Abs. Value (MAVCO)  ✓  ✓ 

Mean Power (MEANPWR)    ✓ 

Accuracy (%) 74.37 74.07 74.00 72.90 

 Table 5. Combined TD and DWT feature configurations (C12 to 

C18) used in experiments 3 and 4 (11 intact and 9 amputee 

subjects) and their average classification accuracies. 

TD Feature C12 C13 C14  

Root Mean Square (RMS) ✓ ✓ ✓  

Waveform Length (WL) ✓ ✓ ✓  

Slope Sign Changes (SSC) ✓  ✓  

Standard Dev. (STDCO) ✓ ✓ ✓  

Energy (ENGCO) ✓ ✓ ✓  

RMS of coeffs (RMSCO) ✓    

Accuracy (%) 90.87 90.66 90.98  

DWT Feature C15 C16 C17 C18 

Root Mean Square (RMS) ✓ ✓ ✓ ✓ 

Waveform Length (WL) ✓ ✓ ✓  

Slope Sign Changes (SSC) ✓  ✓  

Mean Abs. Value (MAV)    ✓ 

Standard Dev. (STDCO) ✓ ✓ ✓ ✓ 

Energy (ENGCO) ✓ ✓ ✓ ✓ 

RMS of coeffs (RMSCO) ✓   ✓ 

Accuracy (%) 75.11 74.82 75.16 75.08 

 

Figure 4. Average classification accuracy results for 

configurations C12 to C18 (Table 5) for 11 intact and 9 

amputee subjects, alongside best performing TD and DWT 

configurations from previous experiments (intact: C7 from 

[17] and C1, respectively; amputee: C5 and C8, respectively), 

as part of experiments 3 and 4. 



best (intact: 90.98%, amputee: 75.16%). The accuracy 

improvement over single domain configurations is only minor 

however, and a lack of any one dominant mixed-domain 

configuration (intact: 0.026% variance, amputee: 0.034% variance) 

suggests attempting to find an optimum set of features has limited 

scope in the current capacity. In terms of use for human-robot 

systems such as myoelectric control, it would be more apt to start 

with a solid base set of features and focus effort on improving or 

enhancing the machine learning method. This would require 

adapting to subject variation and the constant change in operating 

conditions. Our future work will investigate this sensitivity in 

sEMG-based systems, aiming to provide a solution with a suitable 

methodology that can adapt in real-time to subject needs and 

changes in operating environment. 
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Table 6. Comparison of configurations utilizing DWT feature extraction for both intact (Int) and amputee (Amp) subjects. 

Reference Moves Chans 
Subjects 

(Int, Amp) 
Features 

Wavelet 

& Levels 

Acc. (%) 

(Int, Amp) 

Al Omari et al. [1] 8 4 10, 0 Energy of DWT coeffs sym4, 5 95.00, NA 

Khezri & Jahed [11] 6 2 4, 0 MAV, SSC, AR coeffs, ZC of DWT coeffs bior3.5, 9 92.00, NA 

Duan et al. [5] 6 3 6, 2 MAV of DWT coeffs coif5, 3 94.67, 85.17 

Gijsberts et al. [7] 40 12 40, 0 
RMS, HIST, mDWT, (Mean from 

Accelerometers) 
db7, 3 82.49, NA 

Atzori et al. [3] 50 12 40, 11 RMS, TD, HIST, mDWT db7, 3 75.27, 46.27 

This work 17 12 11, 9 RMS, WL, SSC, ENGCO, STDCO db7, 4 90.98, 71.15 
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