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Abstract—Herein, we describe a custom-made bipedal robot 

that uses electromagnets for performing movements as 

opposed to conventional DC motors. The robot uses 

machine learning to stabilize its self by taking steps. The 

results of several machine learning techniques for step 

decision are described. The robot does not use electric 

motors as actuators. As a result, it makes imprecise 

movements and is inherently unstable. To maintain stability, 

it must take steps. Classifiers are required to learn from 

users about when and which leg to move to maintain 

stability and locomotion. Classifiers such as Decision tree, 

Linear/Quadratic Discriminant, Support Vector Machine, 

K-Nearest Neighbor, and Neural Networks are trained and 

compared. Their performance/accuracy is noted. 

 

Index Terms—Decision tree, Linear/Quadratic Discriminant, 

SVM, KNN, Neural Networks, Bipedal Robot, LSTM 

 

I. INTRODUCTION 

Bipedal robots have been studied for decades, starting 

with passive designs in the early 1980s [1], leading to the 

development of more power consuming models later [2]. 

Despite the 35 years of study, lower limb stability is still 

not fully defined in comparison with that of the upper 

part; arm manipulators are well defined owing to their 

extensive use in industry. In the current study, a novel 

bipedal robotic host is designed to be efficient, both 

electromechanically and computationally. 

Electromechanically, the robot consists of a pair of legs 

and a small torso that will, in the future, accommodate 

manipulators. In a recently accepted paper entitled, 

“Designing a novel bipedal Silent Agile Robust 

Autonomous Host (S.A.R.A.H),” the main design 
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This paper is an extend of the paper “Machine Learning Comparison 

for Step Decision Making of a Bipedal Robot” that was presented at 

International Conference on Control and Robotic Engineering 
(ICCRE2018). 

characteristics of the robot were described [3]. 

Computationally, the robot must be able to react quickly 

and accurately but not precisely. Additionally, it must 

have the ability to learn during operation to improve its 

performance. 

A. Bipedal Robot 

The robot S.A.R.A.H. (Safe Agile Robust Autonomous 

Host) combines gait pattern generators and a “brain” that 

will decide when to take a step. The robot’s design is 

inspired by the way in which flightless birds walk. In 

general, ostriches, consume less energy to walk than 

humans [4]. The structural characteristic of a central unit 

controlling gait pattern generators exists in humans and in 

animals [5], [6]. The actual decision-making process must 

be taught by humans, who have the experience of 

walking on two limbs. By transferring human knowledge 

to a bipedal robot, the robot can be enabled to move more 

naturally. To transfer that knowledge and capture useful 

information, a classifier must be selected or designed. 

Mechanically, this involves combining the patent 

pending “bang-bang” actuators developed by Motion 

Robotics LTD [7] with hydraulics. The actuators use 

power from electromagnets to generate the torque 

required to rotate the robot’s joints. The hydraulics is 

used for damping and braking. For control, five Atmel 

microchips [8] and two Raspberry Pi 3 (RPi3) units [9] 

are used hierarchically. One of the RPi3 units is 

responsible for controlling motion (written in C) and the 

other is responsible for learning and executing 

classifications (written in Python). 

B. Classifiers 

Classifiers are used to categorize data into different 

groups based on the available information. That 

classification can be achieved using cluster, decision tree, 

or more complex algorithms. The most common 

classifiers are as follows: 
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 Decision tree classifiers are simple and very fast, 

but they are inaccurate in terms of handling 

complex problems. They are to perform simple 

tasks such as obstacle avoidance in wheeled robots 

[10]. 

 Linear or Quadratic Discriminant classifiers are 

fast and accurate in solving simple problems. They 

can handle more complex problems than the 

decision tree technique, for example, fall detection 

in a bipedal robot [11]. 

 Support Vector Machine (SVM) classifier is more 

powerful in solving complex problems. However, 

the classifier can only process current data and 

does not remember previous states. An example 

that is similar to the current project is the 

classification of falling in the case of a simulated 

bipedal lower limb robot in the Open Dynamic 

Engine environment [12]. 

 K-Nearest Neighbor (KNN) classifier is more 

robust than SVM and can solve more complex 

problems by creating close-region clusters. 

Despite its flexibility, it is limited in the same way 

as SVM: it does not have memory and processes 

only current information. KNN has been used for 

selecting a walking path from a set of paths for 

walking over unknown gradients [13]. 

 Neural Network (NN) is a powerful multi-purpose 

tool. Simple configurations can be used to define a 

classifier that can have multiple inputs/outputs. 

NN offers the flexibility of “stacking” several 

NNs on top of each other, which means, the 

outputs of a classifier can be connected as inputs 

to a second NN for control. There are many 

examples of researchers extracting gaits of bipedal 

robots [14], [15] or combining them with pattern 

generation for control by using NNs [16]. 

 Long Short-Term Memory (LSTM) is an addition 

to NN to provide memory of the previous system 

states in the NN calculations. It offers all the 

benefits of a NN because inherently, it is a more 

sophisticated version of NN. LSTM can be used to 

learn features from tasks, such as a human’s gait 

[17] or behaviors/actions of a robot [18]. 

C. Locomotion 

Robot locomotion is different in comparison to that of 

typical humanoids because it is important to increase 

efficiency at the cost of dexterity. S.A.R.A.H. has 12 

Degrees of Freedom (DoFs), of which 6 are controllable 

and 6 are semi-controllable. Its locomotion is simple and 

can be described as the set of following actions in order 

(see Figure 2): (i) “knee” shortening, (ii) moving the leg 

in front by hip flexion, (iii) extending the “knee” to hit 

the floor, and (iv) moving the leg backward by extending 

the hip. The stability of the bipedal robot is based on an 

unstable system. The robot is stabilized when it moves in 

steps, not by controlling its upward position. Finally, the 

upper body is reserved for external modules that can be 

added in the future. The aim is to provide a generic host, 

flexible to meet the users’ needs, and one that is able to 

stand, walk, and recover from pushes. 

II. EXPERIMENTAL PROCEDURE 

S.A.R.A.H was designed with six controllable joints 

(three in each leg) and two semi-controllable joints (one 

in each foot). The controllable (Fig. 1, Green Dots) joints 

are controlled by two actuators that operate 

antagonistically and provide 6DoFs, one in each joint. In 

addition, the joints include one hydraulic mechanism that 

provides damping, spring force, and braking. The semi-

controllable (Fig. 1, Red Dots) joints do not use an 

actuator but an additional hydraulic mechanism. The 

controllability that the two hydraulic mechanisms can 

achieve is based on the combination of leg trajectory, 

gravity, and timing of power down. The semi-controllable 

joints provides 6DoFs, three in each foot. The hydraulic 

mechanisms can be locked when they are not powered; 

thus, the robot can maintain its posture without 

consuming energy. This reduces power consumption, 

especially in the standby mode, because only the “brain” 

remains operational. The configuration is inspired by 

ostriches, which are more efficient movers than humans 

[4], and is a big part of the novelty of S.A.R.A.H. 

The actuators are connected to microcontrollers that 

contain gait pattern generators. The inputs required by the 

microcontrollers to activate the actuators are when and 

which leg to move. The when/which information is 

provided by the RPI3, which runs the machine learning 

classifiers. The inputs of the classifiers are provided to a 

6 DoF inertial measurement unit (IMU), which is 

attached to the main body, and 8 sliding potentiometers, 

which are attached onto the hydraulics. 

The experimental procedure was started with a 

treadmill moving backward at a slow speed of around 0.5 

km/h (Fig. 2). Then, a user decided when and which leg 

of the robot must be moved. The experiments lasted 10–

15 min, and four users collected data to reduce the effect 

of bias of any one specific user. The captured data were 

the inputs to the 14 sensors and the user inputs (when and 

which leg must be moved). 

 

Figure 1. Skeleton of S.A.R.A.H. with degrees of freedom (DoF). 
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Figure 2. S.A.R.A.H. standing on a treadmill, supported by an elastic 
band. 

A. Data Captured 

The 14 inputs captured can be divided in two main 

groups, namely, high frequency (IMU data) and low 

frequency (sliders’ data in roll of angular measurements). 

The recorded data are raw values from the sensors, 

without filtering or bias correction. This was done to 

capture as much  information as possible. 

A sample of the acceleration and gyro rates of the IMU 

data is shown in Fig. 3. From the graphs, it can be clearly 

determined when a step was made. However, it is harder 

to determine with which leg the step was made. A sample 

of the low-frequency data is shown in Figure 4. In these 

data, it is clearer which leg is moving. However, in 

comparison with the IMU data, these data show a delay in 

response. This presents the need for both types of data to 

achieve effective classification of the user’s inputs. The 

last data that were captured were the user inputs, and a 

class was created with three labels, “Left Leg Key,” “No 

Key Pressed,” and “Right Leg Key.” 

 

Figure 3. High-frequency signals, IMU. 

 

Figure 4.Low-frequency signals, sliders. 

III. CLASSIFICATION 

The captured data were used to train a classifier that 

achieved the optimal performance without being too 

complex. The classifier required 14 inputs and a single, 

three-labeled, classification (user input). To make a 

prediction, the “Left Leg Key” and “Right Leg Key” 

labels were copied 10 times before the actual key was 

pressed. Each label was assigned a number: -1 to “Left 

Leg Key,” 0 to “No Key Pressed,” and 1 to “Right Leg 

Key.” 

After training, the classifier was used in an on-board 

processor to make decisions online alongside the user. 

The processor on the robot was a low-power Raspberry Pi 

3, which would take a long time to execute a complex 

classifier and make predictions. Additionally, the time 

between the predictions includes the time required for 

data capture, data forming, and data pre-processing, as 

may be required. To minimize the prediction time, the 

raw data from the sensors were preferable from the 

viewpoint of eliminating the pre-processing time. The 

prediction must be quicker than a human’s average 

reaction time, and ideally, it must be half that time. 

A total of 20 classifiers were analyzed: 

 Decision Tree classification was set up with three 

different settings. The models were Simple (4 

splits), Medium (20 splits), and Complex (100 

splits) (All with Gini’s diversity index, no 

surrogate decision splits). 

 The discriminant classifier was split into two, 

Linear and Quadratic (Both with Full covariance 

structure). 

 The SVM classifier was divided into six different 

models: Linear (Auto kernel scale), Quadratic 

(Auto kernel scale), Cubic (Auto kernel scale), 

Coarse Gaussian (kernel scale = 15), Medium 

Gaussian (kernel scale = 3:7), and Fine Gaussian 

381© 2018 Int. J. Mech. Eng. Rob. Res

International Journal of Mechanical Engineering and Robotics Research Vol. 7, No. 4, July 2018



(kernel scale = 0:94) (All with Box constraint 

level = 1). 

 The KNN classifier was divided into six different 

models: Weighted (10 neighbors, Euclidean 

distance, squared inverse weights), Cubic (10 

neighbors, Minkowski distance, equal weights), 

Cosine (10 Neighbors, cosine distance, equal 

weights), Coarse Gaussian (100 neighbors, 

Euclidean distance, equal weights), Medium 

Gaussian (10 neighbors, Euclidean distance, equal 

weights), and Fine Gaussian (1 neighbor, 

Euclidean distance, equal weights). 

 The NN was categorized into Small (3 layers, 50 

neurons each), Medium (3 layers, 100 neurons 

each), and Big (5 layers, 100 neurons each). The 

training was completed with 500 inner epochs 

(with no change in cost value) and 100 external 

epochs (with change in the cost value). The loss 

function was set to categorical cross entropy and 

the optimization method to Adam. 

 LSTM followed the same structure as that of NN, 

both in design and training, but every odd layer 

was replaced with an LSTM Layer with a time 

memory of 50. Thus, the categories were Small 

(LSTM-Normal-LSTM, 50 neurons each), 

Medium (LSTM-Normal-LSTM, 100 neurons 

each), Big (LSTM-Normal-LSTM-Normal-LSTM, 

50 neurons each), and Deep (LSTM-Normal-

LSTM-Normal-LSTM, 100 neurons each). 

IV. RESULTS 

Mechanically, the robot weighed 45 kg, of which the 

batteries, hydraulics, and actuators accounted for 50%; 

skeleton, 25%; and outer shell, 25%. The maximum stride 

rate of the robot was 140 steps/min, which is comparable 

to that of humans [6]. However, the total stride length 

was just 5 cm which made the robot run at around 0.5 

km/h. The speed can increase linearly with increasing 

stride length. 

Computationally, the classifiers were trained with all 

raw sensor data (14 inputs - 14 features) as inputs and one 

class as the output: classification. A few of the classifiers 

used principal component analysis (PCA) to reduce the 

dimensionality of the problem. The variances that were 

used for PCA were 90%, 95%, and 99%, which resulted 

in 6, 6, and 9 features, respectively. Those features were 

arbitrary and had no physical meaning. 

Additionally, with post-processing and human 

heuristics, a set of features with physical meaning was 

extracted, for example, left foot front, right foot front, and 

torso lean front or back. 

Each feature represented an individual discrete 

physical position. These features were used individually 

to train the same classifiers for predicting class. However, 

the accuracy of the results was at least 10% less than the 

ones obtained using the raw data; thus, they were omitted 

from the paper. 

Performance measurement was not straightforward 

because if the classifier classified everything as “No key 

pressed,” it achieved an accuracy of 81.9%. To eliminate 

this, after training, all models (except NN) were cross-

referenced in order to spread mislabeled data across all 

labels. The numerical results of classifiers’ accuracy are 

summarized in Table I. 

As can be inferred from Table I, the classifiers without 

memory could not achieve more than 93% accuracy. 

Because a continuous result of 0 will lead to an accuracy 

of 81.9%, the accuracy of 93% was actually 60%. The 

classifier had to predict the other 18% to achieve 100%, 

but the accuracy of 93% represented an improvement of 

11% compared to 18%. A dynamic problem, such as 

walking, cannot be described using models without 

memory, and this is confirmed from the results. In the 

case of NN, the simple stack of layers with neurons 

performed the worst because the pure postures could not 

be translated into predictions of leg steps. However, 

replacing a few NN layers with LSTM layers improved 

the results, and the resulting classifier outperformed the 

other classifiers. 

TABLE I. RESULTS OF CLASSIFIERS 

Classifiers 
PCA 
No 

PCA 
90% 

PCA 
95% 

PCA 
99% 

Decision Tree 

Simple 86.1% 82% 82% 85.5% 

Medium 85.1% 82.5% 82.5% 84.9% 

Complex 85.1% 82.5% 82.5% 84.4% 

Discriminant 
Linear 54.6% 81.8% 81.8% 84.3% 

Quadratic 64.8% 61.7% 61.7% 64.3% 

SVM 

Linear 85.3% 81.9% 81.9% 84.7% 

Quadratic 88% 81.9% 81.9% 85.5% 

Cubic 89.2% 76.8% 77.5% 87% 

Coarse 
Gaussian 

85.2% 81.9% 81.9% 84.9% 

Medium 

Gaussian 
87.9% 82.3% 82.3% 85.7% 

Fine 
Gaussian 

91.1% 85.2% 85.2% 88.7% 

KNN 

Weighted 92.8% 86.9% 86.9% 91.4% 

Cubic 91.1% 85.9% 85.9% 89.4% 

Cosine 90.8% 84.8% 84.8% 88.6% 

Coarse 

Gaussian 
86.6% 84.3% 84.3% 86.3% 

Medium 

Gaussian 
91.4% 85.7% 85.7% 89.5% 

Fine 
Gaussian 

92.1% 85.3% 85.3% 90.9% 

NN 

Small 81.9% - - - 

Medium 81.9% - - - 

Big 81.9% - - - 

LSTM 

Small 94.1% - - - 

Medium 97.7% - - - 

Big 94.2% - - - 

Deep 98.3% - - - 

 

The LTSM classifiers achieved an accuracy of 98.3%, 

which is an improvement of 16.4% out of 18.1%; 90.6% 

actual improvement relative to that achieved with a 

continuous 0 response. An analysis of the performance of 
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LSTM showed that better performance can be achieved 

by increasing the number of neurons and not by 

increasing the number of layers. The number of 

parameters that were trained was proportional to the 

increase in performance. The best model was the Deep 

LSTM, and it comprised 227,303 parameters, almost 

double of number of parameters in the second-best model 

(Medium LSTM), which had 136,803 parameters. Small 

LSTM and Big LSTM had 35,903 and 58,653 parameters, 

respectively. 

In terms of moving a step forward, the best classifier 

(LSTM) was implemented on one of the RPi3 units 

hosted in the robot. Then, the experiments were run again, 

but instead of capturing the data, live prediction of the 

movements was printed on a screen. The results were 

impressive, with the predictor being able to produce 20–

30 predictions per second (with the Medium model), 

which is faster than a human’s reaction time [19]–[21]. 

Additionally, the predictions were correct, and most of 

them were slightly faster than the user input. 

V. CONCLUSION 

In the current study, a comparison among various static 

and dynamic, classification methods of step decision was 

made for a custom novel, bipedal robot S.A.R.A.H. The 

robot combines a bioinspired mechanical design with 

pattern generators to maintain its stability. The robot is 

inherently unstable, and the classifiers serve as a novel 

alternative to the classical control theory. They are 

suitable for the two-stage on/off activation in the pattern 

generators. The classifiers must learn the decision of 

when and which leg to move in a bipedal robot by using 

humans’ experience. The algorithm must be run on-board 

on a RPi3, thus necessitating the use of classifiers with 

low computational complexity. The bipedal robot used 

herein is described in our previous conference paper  in 

UK’s Robotics and Autonomous Systems Conference [3]. 

Static classifiers did not perform well on this problem, 

with the weighted KNN model performing the best out of 

all, yielding a maximum accuracy of 92.8%, which 

represents an actual accuracy of 60% in real predictions. 

Moreover, humans cannot heuristically define features to 

improve the performance of the classifiers. Simple NNs 

did not perform well because postures cannot describe the 

time of leg movement, albeit they may provide 

information about which leg to move, which is 

inadequate. The treadmill did not operate at a constant 

speed, which increased the dynamicity of the problem 

with no measurable information, such as walking speed 

and acceleration. Extraction of this information requires 

the classifiers to have memory of past states. 

Dynamic classifiers have memory that changes with 

time. The tested dynamic classifier was a NN with LSTM 

layers. It was found that as the number of neurons in each 

layer, instead of the number of layers, increased, 

prediction performance increased. The highest accuracy 

achieved was 98.3% (90.6% actual accuracy) with the 

Deep model, but the running time on-board was 50% 

higher than that time of the Medium model, which 

yielded an accuracy of 97.7% (87.3% actual accuracy). 

Thus, the Medium model was preferred and implemented 

on-board, side by side with the user. The prediction rate 

achieved was 20–30 predictions per second; these 

predictions were correct and, sometimes, faster than the 

user. 

VI. FUTURE WORK 

The next steps are to let the classifier control the legs and 

walk at different speeds. To achieve this, a greater number 

of user sequences of 10–15 min must be used to train the 

networks to validate the classifier and make it more robust. 

Additionally, the dimensionality of the inputs will be 

reduced to improve execution time on the on-board 

computer without compromising accuracy. 
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