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a b s t r a c t 

The development of reliable mathematical models for crystallization processes may be very challenging 

due the complexity of the underlying phenomena, the inherent Population Balance Models (PBMs) and 

the large number of parameters that need to be identified from experimental data. Due to the poor in- 

formation content of the experiments, the structure of the model itself and correlation between model 

parameters, the mathematical model may contain more parameters than can be accurately and reliably 

identified from the available experimental data. A novel framework for parameter estimability for guar- 

anteed optimal model reliability is proposed then validated by a complex crystallization process. The 

latter is described by a differential algebraic system which involves a multi-dimensional population bal- 

ance model that accounts for the combined effects of different crystal growth modifiers/impurities on the 

crystal size and shape distribution of needle-like crystals. Two estimability methods were combined: the 

first is based on a sequential orthogonalization of the local sensitivity matrix and the second is Sobol, a 

variance-based global sensitivities technic. The framework provides a systematic way to assess the qual- 

ity of two nominal sets of parameters: one obtained from prior knowledge and the second obtained by 

simultaneous identification using global optimization. A cut-off value was identified from an incremental 

least square optimization procedure for both estimability methods, providing the required optimal subset 

of model parameters. The implemented methodology showed that, although noisy aspect ratio data were 

used, the 8 most influential and least correlated parameters could be reliably identified out of twenty- 

three, leading to a crystallization model with enhanced prediction capability. 

Crown Copyright © 2018 Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Crystallization is an important separation process, extensively

sed in most chemical industries, either as a method of produc-

ion or as a method of purification or recovery of solids. Many

ubstances of scientific, technological, and commercial importance

re crystalline, ranging from large-tonnage commodity materials

o high-value specialty chemicals, such as active pharmaceutical

ngredients (APIs). The pharmaceutical industry relies heavily on

rystallization as 70% of all the pharmaceuticals formulation and

0% of APIs involve at least one crystallization step during the

anufacturing process ( Pena et al., 2015; Alvarez and Myerson,

010 ). Besides, crystallization is one of the key steps in the produc-
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098-1354/Crown Copyright © 2018 Published by Elsevier Ltd. This is an open access arti
ion of pharmaceutical tablets which are the most popular dosage

orm. Hence, the crystallization step has a considerable impact on

uning the critical quality attributes (CQA), such as crystal size and

hape distribution (CSSD), purity and polymorphic form, which im-

act the final product quality performance indicators and inherent

nd-use properties (e.g. bioavailability, tablet stability, dissolution,

osage form etc.), along with the downstream processability (e.g.

ltration, drying etc.). As such, an effective control and design of

he crystallization processes can lead to more robust and efficient

anufacturing processes and consequently to higher product qual-

ty ( Nagy et al., 2013; Rawlings et al., 1993 ). 

With the recent advances in online process analytical technol-

gy (PAT) tools, more reliable and real-time data can be made

vailable for process understanding and manipulation ( Nagy et al.,

013; Yu, 2004 ). Therefore, high fidelity models and model-based

pproaches received considerable attention in many different areas,
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Nomenclature 

A Inverse covariance matrix 

a i, i Area of the crystal per unit, [m 

2 ] 

B p Primary nucleation, [#/s] 

C Concentration of KDP crystals in the solution, 

[g/g solvent] 

C CGM, j Concentration of the j th crystal growth mod- 

ifier, [g/g solvent] 

C sat Saturation concentration of KDP crystals in 

solution, [g/g solvent] 

d( N − p, a d / 2 ) t-distribution, [–] 

E p Kinetic energy of primary nucleation, 

[kJ/mol] 

g Aggregate vector of the variables 

�G ads, i, j, k Adsorption energy, [kJ/mol] 

�G des, i, j, k Desorption energy, [kJ/mol] 

g i Exponent of growth kinetic equitation of the 

i th characteristic facet, [–] 

G i Crystal growth rate of the i th characteristic 

facet, [m/s] 

G min, i Specific growth rate when distribution does 

not occur, [m/s] 

J ( p ) Minimum sum of squared errors, [–] 

k B Boltzmann factor, [m 

2 kg s −2 K 

−1 ] 

K d, i, j Distribution coefficient, [–] 

k ads , 0, i, j, k - Adsorption rate constant of the j th crys- 

tal growth modifier on the k th type site at i th 

characteristic crystal facet, [–] 

k des , 0, i, j, k - Desorption rate constant of the j th crys- 

tal growth modifier on the k th type site at 

i th characteristic crystal facet, [–] 

k e Kinetic constant of Primary nucleation, [–] 

K e, j Thermodynamic distribution coefficient, [–] 

k gi Growth kinetic constant, [m/s] 

K i, j, k Langmuir constant of j th CGM on the k th ac- 

tive site on i th characteristic facet 

k m, i, j Mass transfer coefficient with crystal growth 

[m/s] 

k m 0 Mass transfer coefficient without crystal 

growth [ m/s ] 

k p , 0 Coefficient of primary nucleation [ m 

−3 s −1 ] 

L i, k Average distance between k th type of sites 

[ m ] 

M CGM, j Molecular weight of CGM [ g/mol ] 

M c Molecular weight of KDP [ g ] 

n Size and shape distribution [#/ m 

2 ] 

P imp, i Impurity factor of the growth rate of i th 

characteristic facet 

N p Number of the model parameters [#] 

Ny Number of measured outputs [#] 

Nm Number of measurements of sampling times 

[#] 

Ne Number of measurements [#] 

p Vector of the input parameters (estimated 

parameters) 

p 1 −ad Vector of confidence domain boundaries 

R Ideal gas constant [ Pa m 

3 mol −1 K 

−1 ] 

r i Orthogonal projection of Z , [–] 

s i First – order sensitivity index, [–] 

s t Total – order sensitivity index, [–] 

s ij Second – order sensitivity index, [–] 

S ij Sensitivity coefficients, [–] 
H  
T Temperature, [ K ] 

t Time, [ s ] 

t ij j th sampling time of the i th output, [ s ] 

V i Variance, [–] 

x Vector of the differential state variables 

ˆ y i j Vector of numerically calculated aspect ratio 

at k th point in time, [–] 

y ij Vector of measured aspect ratio at k th point 

in time, [–] 

z Vector of the algebraic state variables 

Z Sensitivity Matrix, [–] 

Greek letters 

αi, k Effectiveness factor of the adsorption on the k th site 

on i th characteristic facet, [–] 

β i, k Constant of the effectiveness factor, [ m/K ] 

γ i Edge free energy on the i th crystal face per unit 

length, [ J/m ] 

ɛ ij Stochastic measurement error, [–] 

ηij Time spent by a particle in the presence of impuri- 

ties, [ s ] 

θ Angle between {101} and {100} surfaces, [ rad ] 

λ Cut-off value, [–] 

μm, r m, r order joint moment 

σ Relative supersaturation [–] 

σ ij 
2 Variance [–] 

ρc Density of the KDP crystals, 2.338 [ kg/m 

3 ] 

τ i, j, k Adsorption time constant [ s ] 

χ c, j Mole fraction of the CGM in the crystal phase 


κ Sample Space 


sz Size Space 

uch as process design, control, real time optimization and Quality-

y-Design ( Su et al., 2015; Nagy, 2009; Mascia et al., 2013; Lak-

rveld et al., 2013; Aamir et al., 2009; Benyahia et al., 2012; Ramin

t al., 2018; Benyahia 2018 ). A prerequisite to apply model-based

ontrol strategies is the availability of a predictable mathematical

odel. The most fundamental approach for modelling particulate

rocesses, such as crystallization, is the population balance model

PBM) framework coupled with kinetic expressions, mass and en-

rgy balances, which yields a set of nonlinear integro-partial dif-

erential equations. The set provides a rigorous approach to model

he dynamic evolution of the dispersed phase system’s properties,

uch as CSSD ( Majumder et al., 2012; Sato et al., 2008; Borsos

nd Lakatos, 2014; Kumar et al., 2008 ). Although the PBM frame-

ork is based on first principles, a general theoretical mathemat-

cal expression for the determination of the crystallization kinet-

cs doesn’t exist and hence, empirical or semi-empirical expres-

ions (e.g. power law etc.) are used, that in most of the cases

ccount the supersaturation as the key variable ( Rawlings et al.,

993; Cao et al., 2012 ). 

Although the benefits of the mathematical models are widely

ccepted, setting a unified rigorous framework for building reli-

ble and predictable models is still an open subject, particularly for

harmaceutical processes. In order to obtain accurate model pre-

ictions, identification of the unknown model parameters is often

equired. However, in many cases, first-principles models comprise

 large number of parameters which often cannot be estimated re-

iably from the available experimental data. In addition, the quality

nd the information content of the available experimental data can

e affected by many factors such as noisy measurements, limited

umber of data points, poor design of experiments (DoE) and lim-

ted range of operating conditions ( Benyahia et al., 2013; Chu and

ahn, 2011 ). Furthermore, strong influence of a parameter on one
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r more of the measured responses, high correlation between the

arameters’ effects and/or the effects of a parameter on model pre-

ictions can also lead to unreliable and inaccurate identification of

he unknown parameter values, which in turn degrades the pre-

iction capability of the mathematical model ( Kravaris et al., 2013

enyahia et al., 2013; Eghtesadi and McAuley, 2014 ). Of course,

ismatch could also arise from the model structure itself, since

everal assumptions are commonly made in order to simplify the

umerical representations of the system and reduce its complexity

ith the risk of neglecting some of the key underlying phenom-

na and consequently reducing the prediction capabilities of the

odel. 

Several approaches have been developed to cope with some of

hese problems, such as modifying the model structure, incorporat-

ng additional measured outputs (e.g. using different PAT) and im-

roving the information content of the experimental data by utiliz-

ng DoE approaches. However, before deciding whether the math-

matical equations should be modified, or supplementary exper-

ments should be designed and performed, one key step is to in-

estigate whether the available experimental data contain enough

nformation to identify uniquely and reliably the overall model pa-

ameters, or alternatively, the subset of the model parameters that

ould be identified reliably and lead to the most predictable math-

matical model. This could be achieved by evaluating the structural

dentifiability and estimability (i.e. practical identifiability) of the

odel parameters ( McLean and McAuley, 2011; Sin et al., 2010 ).

he structural identifiability approach evaluates whether the

arameters are locally or globally identifiable based utterly on

he model structure, while the estimability appraises whether the

arameters can be identified uniquely by using the available exper-

mental data or data from a proposed set of experiments ( McLean

nd McAuley, 2011; Walter and Pronzato, 1997 ). The estimability

r practical identifiability methodology depends on the domain

f variability of model parameters and experimental conditions

hereas the structural identifiability is totally independent from

oth. The objective of the estimability analysis is to identify how

any of the model parameters can be estimated accurately from

he available data, while the ones with low estimability potential

an be set to certain nominal values without degrading the predic-

ion capability of the model ( Benyahia et al., 2013; Chu and Hahn,

011 ). Consequently, the estimability potential can be defined as a

easure of the effects of parameters on the experimental outputs

nd/or correlation among the model parameters. In this work, only

he estimability of the model parameters is evaluated. 

Different approaches have been developed and proposed to

elp identify the most appropriate subset of parameters for es-

imation based on the estimability approach. Degenring et al.,

2004) proposed a method for parameter selection based on prin-

ipal component analysis (PCA), which is a statistical procedure

hat converts a set of observations of possibly correlated vari-

bles into a set of values of linearly uncorrelated variables. A pa-

ameter selection was obtained by using different PCA methods

 Jolliffe, 1972 ), which provided different parameter ranking out-

omes. The PCA-based approach was applied in more recent in-

estigations ( Schittkowski, 2007; Quaiser and Mönnigmann, 2009 )

nd was proven to be less robust compared to the orthogonal-

zation and the eigenvalue method discussed below. The eigen-

alue method, introduced by Vajda et al., (1989) and was im-

roved independently by other researchers ( Schittkowski, 2007;

uaiser and Mönnigmann, 2009 ), determines the most estimable

ubset of parameters based on the eigenvector and eigenvalues of

he fisher information matrix (FIM). Although, the method shown

etter accuracy compared to other methods, it becomes chal-

enging sometimes to match eigenvalues with specific parame-

ers ( McLean and McAuley, 2011 ). The singular value decompo-

ition ( Velez-Reyes and Verghese, 1995 ) and the correlation and
ollinearity methods ( Brun et al., 2002; Sin et al., 2010 ) were also

roposed for the estimability analysis. The main drawback of the

orrelation and collinearity techniques is the fact that only the

irections of the sensitivity vectors are considered without tak-

ng into account the magnitude of the sensitivities ( McLean and

cAuley, 2011 ). This limitation led Brun and coauthors (2002) to

ropose a robust approach that combined a method based on a

calar measure of the FIM and the collinearity method. A more

obust approach for performing the estimability analysis is based

n the orthogonalization of the sensitivity matrix which was ini-

ially introduced by Yao et al., (2003) then improved by Lund and

oss (2008) and Thomson et al. (2009) . The method ranks the pa-

ameters according to both their individual effect on the measured

esponses and the correlation between the parameters. Due to the

fficiency of this forward-selection method, it has been employed

idely in complex chemical and biochemical systems ( Benyahia

t al., 2013; Surisetty et al., 2010; Thomson et al., 2009; Jayasankar

t al., 2009; Onyemelukwe et al., 2018 ). 

Despite the popularity of the estimability analysis in numerous

cientific areas, such as polymer science, environmental engineer-

ng and biology, this class of methods is still novel in the area of

rystallization and its inherent benefits are not well understood,

s only very limited number of studies have been reported in the

iterature. Chen et al. (2004) presented a model-discrimination

or model-based design by using the D -optimal criterion for the

arameter set selection. However, only four parameters were

onsidered making the benefits of the method unclear. Some of

he benefits of the parameters selection methods were discussed

y Czapla et al. (2009) who used an approach proposed by

run et al. (2002) to select the most sensitive model parameters

f a preferential batch crystallization of enantiomers. However,

oth studies utilized an arbitrary cut-off value for the parameter

election. A more comprehensive study was presented by Samad

t al. (2013a,b ) where two global sensitivity analysis techniques,

orris screening and the standardized coefficients, were uti-

ized to identify the most significant parameters. Although, these

echniques may be useful for the classification of the param-

ters in terms of sensitivity, the correlation of the parameters

as not considered during the ranking procedure but estimated

fterwards. 

Considering all the challenges inherent to parameter selection

nd identification discussed above and with the scope of improv-

ng the current methodology for parameter identification for crys-

allization processes, a new framework ( Fig. 1 – see next section)

s proposed for a systematic and optimal selection of the param-

ter subset with the highest estimability potential for guaranteed

odel reliability. As a case study, a batch cooling crystallization

rocess is considered under the presence of multiple impurities,

ore specifically crystal growth modifiers (CGM), which can affect,

esides product purity, the growth and potentially the nucleation

inetics and hence the size and shape distribution of the final crys-

als. A novel morphological multi-dimensional population balance

odel that incorporates mechanisms for multisite competitive ad-

orption of the impurities on the crystal faces, coupled with mass

alance equations is used ( Borsos et al., 2016 ). 

To the best of our knowledge, it is the first time that the mod-

fied Gram Schmidt orthogonalization algorithm and Sobol anal-

sis are combined and applied in the area of crystallization and

qually the first time that the estimability analysis in general is

eing applied to assess the model reliability of a PBM that takes

nto consideration the presence of impurities. The complexity of

he case study provides an opportunity to show the capabilities

f the methodology with the scope of building more reliable and

igh-fidelity models for the pharmaceutical industry for process

esign, optimization and advanced control that would enhance the

mplementation of model-based Quality-by-Design (QbD). 
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Fig. 1. Schematic of the parameter identification and estimability analysis framework. 
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2. Method 

The proposed methodology ( Fig. 1 ) combines a sequential or-

thogonalization method, which takes into account the overall mag-

nitude of the local sensitivities and the correlation between the pa-

rameters, with a variance-based global sensitivity ranking method

(Sobol). In both cases, a rigorous approach is used to identify

the cut-off values based on the minimization of the maximum

likelihood criterion. To assess the consistency and quality of the

methodology, the correlation coefficients are calculated and the pa-

rameter estimates are assessed against their confidence domains.

The proposed methodology enables a more robust classification of

the model parameters based on the estimability potential, and pro-

vides a key tool to analyze the information content of the exper-

imental data and consequently the quality of the measurements

and the employed sensors (PAT). As such, the method helps iden-

tify the parameters that could be estimated accurately from the

available data and informs whether additional data are required to

identify a specific model parameter (e.g. new experiments or addi-

tional data from another sensor). 

The estimability approach aims at identifying more reliably the

model parameters from the existing data and requires an initial

nominal vector of model parameters, commonly obtained from

prior knowledge of the process. In the case of lack of prior knowl-

edge or uncertain model parameters (extremely poor estimates or

broad confidence intervals), the estimability framework described

in the paper provides a methodology to help identify the set of

the nominal parameters. Although a variety of different approaches

has been applied to estimate model parameters of complex and

highly nonlinear chemical processes, nonlinear optimization algo-

rithms has been widely adopted due to their accuracy and effi-

ciency ( Rawlings et al., 1993 ). In this paper, a hybrid global op-

timization technique that combines a genetic algorithm and lo-

cal deterministic method (sequential quadratic programming) was

used to identify the unknown parameters. 
To maximize the benefits of the methodology, the estimability

pproach was implemented in both cases: the case where the ini-

ial nominal vector of parameters exists form prior process knowl-

dge and the case where all parameters of the nominal vector

hould be identified globally and simultaneously by minimizing

he weighted least square error. Both estimability approaches, the

equential orthogonalization and Sobol (variance-based method),

ank the model parameters by order of importance. The ultimate

bjective of the estimability approach is then to find the optimal

ubset of model parameters that guarantee maximum model relia-

ility. As a consequence, an estimability threshold or cut-off value

s required to identify the subset of parameters that should be sub-

ect to re-estimation, to maximize model accuracy, and the subset

f parameters that should be kept at nominal values, without de-

rading the prediction capability of the model. An optimal subset

f parameters can be obtained by running a sequential parameter

stimation procedure by identifying the top i th parameters (where

 = 1, 2, …) each time and calculating the corresponding objective

unction value. The cut-off value can be obtained when the im-

rovement in the objective function due to an additional param-

ter becomes insignificant. If the model prediction capability with

he optimal parameter subset is unsatisfactory, the method suggest

o run additional experiments, redesign the experiments (e.g. op-

imal experimental designs) or/and select additional or alternative

AT tools with the scope of increasing the information content of

he data. 

.1. Process model 

The Multi-Impurity Adsorption Model (MIAM) was developed

y Borsos et al. (2016) as a novel mathematical model for crys-

allization processes considering multi-impurity adsorption mech-

nisms with the purpose of process design, optimization and con-

rol. The model was built to predict the dynamic evolution of size

nd shape distribution during crystallization under the presence of



D. Fysikopoulos et al. / Computers and Chemical Engineering 122 (2019) 275–292 279 

Table 1 

Complete set of differential-algebraic equations (DAEs) that represent the Multi-Impurity Adsorption Model (MIAM). 

General form of the moment − based PBEs 
∂ μ0 , 0 

∂t 
= B p 

∂ μm,r 

∂t 
= m G 1 μm −1 ,r + r G 2 μm,r−1 , m, r = 0 , 1 , 2 , . . . 

Component Mass Balance − Solute Concentration Component Mass Balance − Impurities Concentration 
dC(t) 

dt 
= −ρc 

d μ1 , 2 

dt 

d C CGM, j 

dt 
= 

χc, j 

1 −∑ 

j χc, j 

M CGM, j 

M C 

dC 
dt 

Primary nucleation rate Crystal growth kinetic rate 

B p = k p, 0 exp ( − E p 
RT 

) exp( −k e l n −2 ( C 
C sat 

) ) G i = k g,i ( 
C−C sat 

C sat 
) g i { 1 − ( a i,i 

K i,CGMi,i C i,CGMi,i 

1+ K i,CGMi,i C i,CGMi,i 
) } 

Mole fraction of the j th CGM Thermodynamic distribution coefficient of the j th CGM 

χc, j = 

∑ 

i 

K d,i, j 
C CGM, j 

M CGM, j 
( C 

M c 
+ 

∑ 

j 

C CGM, j 

M CGM, j 
) −1 K d,i, j = 1 − ( 1 − K e, j ) 

√ 

G min,i k m,i, j 

G i k min,i, j 

Langmuir constant of the j th CGM on the k th site on i th characteristic face 

K i, j,k = 

k ads,i, j,k 

k des,i, j,k 
= 

k ads, 0 ,i, j,k 

k des, 0 ,i, j,k 
exp( 

�G des,i, j,k −�G ads,i, j,k 

RT 
) 

Absorption effectiveness factor of the k th site on the i th characteristic face 

a i,k = 

γi 

k B T ( 
C−C sat 

C sat 
) L i,k 

= 

βi 

T ( 
C−C sat 

C sat 
) 

Mass transfer coefficient when impurity distribution does and does NOT occur, respectively 

k m,i, j = G i [ 1 − exp( − G i 
k m 0 , j 

) ] −1 k min,i, j = G min,i [ 1 − exp( − G min,i 

k m 0 , j 
) ] −1 

Unknown Parameters for Primary Nulceation & Crystal Growth in each characteristic face 

p = [ k ads, 0 ,CGM1 , k des, 0 ,CGM1 , β1 , G min, 1 , k m, 0 ,CGM1 , K e,CGM1 , �G des, 1 , �G ads, 1 · · ·
k ads, 0 ,CGM2 , k des, 0 ,CGM2 , β2 , G min, 2 , k m, 0 ,CGM2 , K e,CGM2 , �G des, 2 , �G ads, 2 · · ·

g 1 , k g1 , g 2 , k g2 , k p, 0 , E p , k e ] ;

{ }  

{ }

Fig. 2. Graphical representation of the morphology of the KDP crystal. 
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mpurities. The effect of the crystal growth modifiers was moni-

ored in real time by using an in-situ video imaging probe: Lasen-

ec Particle Vision and Measurement V819 (PVM). Images were au-

omatically obtained with a frequency equal to six images per sec-

nd and analyzed by Lasentec’s image and stat acquisition soft-

are, where blob analysis was utilized to monitor the aspect ra-

io. In more detail, the cooling crystallization of pure potassium

ihydrogen phosphate (KDP) in deionized water was investigated

nder the presence of aluminum sulfate (Crystal Growth Modifier:

GM1) and sodium hexametaphosphate (CGM2) and aspect ratio

AR) measurements were obtained as experimental outputs. As it

as presented by Borsos et al. (2016) , divalent and trivalent metal

ons preferably adsorb onto the {100} KDP crystal facet hindering

he crystal growth in that facet, while anionic growth modifiers

refer to adsorb onto the {101} KDP crystal facet inhibiting the

rystal growth of the corresponding length. Hence, CGM1 is likely

o adsorb onto {100} facet leading to more needle-like shaped

rystals, while CGM2 tends to adsorb onto the {101} facet causing

n opposite effect by generating crystals with lower aspect ratio.

hus, the CGMs considered in this case have competing effects. 

Multidimensional population balance equations (PBEs) with two

haracteristic lengths x l = { x 1 , x 2 } were considered to model the

volution of the crystal shape distribution, ( Fig. 2 ). To integrate

solve the PBM model, the concentrations of the solute and the

mpurities are also required, which are calculated by coupling the

orresponding mass balances. The overall model is summarized in

able 1 and it consists of a set of differential-algebraic equations

DAEs) combined with algebraic equations that describe the kinet-

cs and thermodynamics. 
The mathematical model requires 23 parameters and can be

epresented, for notational expediency, by the following general

orm of differential-algebraic equations (DAEs): 

˙  = f ( x ( t ) , z ( t ) , p, t ) , x ( t = 0 ) = x 0 , z ( t ) = g ( x ( t ) , z ( t ) , p, t ) 

(1) 

here x is the vector of the differential state variables, z is the vec-

or of the algebraic state variables, and p is the vector of the pa-

ameters. 

A multi-variate nonlinear dynamic regression model can be

onsidered for the mathematical illustration of the interaction be-

ween the model prediction and measured output: 

 i j = ˆ y i j 

(
p, t i j 

)
+ ε i j (2) 

here y ij is the j th measurement of the i th experimental output,

ˆ  i j is the corresponding model prediction, t ij is the j th sampling

ime of the i th output and ɛ ij is the measurement error assumed

o be uncorrelated, Gaussian distributed, with zero mean. 

.2. Estimability analysis 

In the current study, the estimability analysis consists of three

ain steps. In the first step, the relative effect of each model pa-

ameter on the measured outputs is determined through local sen-

itivity analysis of the dynamic system. The Sensitivity analysis is

 fundamental study that can determine how the variations of the

utputs could be related to certain variations of the input variables.

he second step is to apply the orthogonalization algorithm with

he scope of ranking the parameters in descending order, in terms

f impact on the outputs and minimum correlation between the

arameters. Finally, a parameter estimation procedure is performed

ncrementally and sequentially in order to identify the threshold

cut-off value) on the objective function, which in turn helps select

f the optimum most estimable subset. These steps are thoroughly

escribed and discussed below. 

.2.1. Ranking the model parameters - orthogonalization method 

The development of an effective solution to the parameter se-

ection problem requires the quantification of the influence of

ach parameter on the measured outputs. This approach indicates

hich parameters are the most important and most likely to affect

he model predictions. The first step of the estimability analysis

ethod is the evaluation of the sensitivity coefficients which can

e calculated analytically or numerically. The numerical approach
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Table 2 

Orthogonalization algorithm for the estimability analysis ( Benyahia et al., 2013 ). 

Z i : sensitivity vector corresponding to the parameter ; p i : λ : cut − off value ;
r i : orthogonal projection of Z i ; P j : set of estimable parameters; 

X j : the matrix of the selected parameters vectors at the j th stage; 

1. Select the parameter with the highest effect: find the index k such that: 

k = arg ma x i ( Z i ) 
T Z i , i ∈ I 0 = { 1 , . . . , n p } 

i f ( Z k ) 
T Z k ≥ λ set P 1 = { p k } and X 1 = Z k 

otherwise stop 

2. Orthogonalization: Compute the orthogonal projection of the matrix Z : 

R j = ( I − X j ( X j 
T X j ) 

−1 
X j 

T ) Z

3. Select the next parameter with the highest effect: 

l = arg ma x i ( r 
j 
i 
) T r i , i ∈ I j = ( I j−1 − { k, . . . } ) 

i f ( r j 
l 
) T r j 

l 
≥ λ set P j = { P j−1 , p l } and X j+1 = { X j , Z l } 

Return to step 2 

Otherwise Stop 
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consists in applying a perturbation to the nominal values of the

parameters according to the backward finite differences method as

follows 

s i j = 

∂ ̂  y i 
∂ p j 

≈
ˆ y i 
(
t, p j 

)
− ˆ y i 

(
t, p j − �p j 

)
�p j 

, j = 1 , 2 , . . . , N p (3)

where N p is the number of the parameters. 

It should be mentioned that the relative perturbation applied

to the nominal values of the parameters was equal to −2% (i.e.

�p j / p j ). As such the local sensitivity can be calculated for each

sampling or measurement time. As the model parameters and out-

puts have different units and numerical values that could span sev-

eral orders of magnitude, a normalization of the local sensitivities

is often applied with respect to the parameters’ nominal values

and corresponding model output in order to make a more reli-

able comparison between the inherent effects of the parameters.

The normalized sensitivity coefficients are given by the following

equation: 

s i j 

∣∣
t= t k = 

p j 

y i | t= t k 

∂ ̂  y i 
∂ p j 

≈ p j 

y i | t= t k 

ˆ y i 
(
t, p j 

)
− ˆ y i 

(
t, p j − �p j 

)
�p j 

(4)

where p j is the nominal value of the j th parameter, y i | t= t k is the

model prediction of the i th output, evaluated at a sampling time

t k using the nominal vector of parameters p j and j = 1 , 2 , . . . , N p . 

After the sensitivity coefficients have been calculated, a sensi-

tivity matrix Z is constructed as follows : 

Z = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

s 11 | t= t 1 . . . s 1 N p 
∣∣

t= t 1 
. . . 

. . . 
. . . 

s N y 1 
∣∣

t= t 1 . . . s N y N p 
∣∣

t= t 1 
s 11 | t= t 2 . . . s 1 N p 

∣∣
t= t 2 

. . . 
. . . 

. . . 

s N y 1 
∣∣

t= t N m . . . s N y N p 
∣∣

t= t N m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(5)

The sensitivity matrix has a dimension N y × ( N p × N m 

), where

N y is the number of the measured outputs, N m 

is the number of

the measurements or sampling times, while N p is the number of

model parameters. Hence, each column represents the sensitivity

coefficients with respect to one particular parameter, while each

row captures the sensitivities of a specific output to the whole set

of parameters at a particular sampling time. 

The orthogonalization method provides an efficient forward-

selection method that has been applied extensively for parameter

ranking and selection. The technique is relatively simple to imple-

ment and most importantly it ranks the parameters more reliably,

as both the magnitude of the effect of each model parameter on

the outputs and the correlations between the effects of different

parameters are considered simultaneously. This is paramount since

both phenomena are critical for the parameter selection and dis-

crimination, and consequently, to the prediction capabilities of the

mathematical model. If a perturbation of a model parameter has

minor effect on the outputs, then the parameter cannot be iden-

tified accurately from the data. This can be mathematically deter-

mined by calculating the norm of the sensitivity vectors (the norm

of the columns Z i ). Conversely, large magnitudes/norms indicate

significant effects on the outputs. At the same time, if a distur-

bance of two or more model parameters have similar trends/effects

on the outputs, and then the parameters are highly correlated. As

a result, the impact of one parameter overlaps with the impact

of the other, and hence these parameters cannot be reliably and

uniquely identified from the data ( Benyahia et al., 2013 ). It should

be noted that the orthogonalization method selects sequentially

the least correlated and most influential parameters. The correla-

tion can also be evaluated using the FIM (e.g. linear dependency
f the sensitivity vectors) as described later. In this work, a modi-

ed Gram-Schmidt orthogonalization algorithm ( Yao et al., 2003 ) is

sed to help rank sequentially the model parameters according to

he magnitude of the sensitivities and the least correlation effect.

he sequential orthogonalization algorithm is presented in Table 2 .

he first parameter is selected then all vectors of the scaled sen-

itivity matrix are sequentially projected onto an orthogonal basis

the sensitivity vectors with the highest magnitude). 

The orthogonalization method makes it possible to rank the pa-

ameters according to their estimability potential. However, the de-

elopment of a reliable and rebut methodology for the selection of

he optimal subset of parameters remains an open subject in the

iterature, since arbitrary cut-off values are applied in most cases.

n this work, an optimization based approach is utilized for the

ptimum parameter selection based on the maximum likelihood

pproach: 

 ( p ) = min 

p 

{ 

N y ∑ 

i =1 

N e • ln 

( 

N e ∑ 

j=1 

[ (
y i j ( p, t ) − ˆ y i j ( p, t ) 

)2 
] ) } 

(6)

 . t . ˙ x = f ( x ( t ) , z ( t ) , p, t ) , x ( t = 0 ) = x 0 , g ( x ( t ) , z ( t ) , p, t ) 

= ˆ y i j ( t ) 

here y ij (p, t) is the experimental measurement; N y is the number

f outputs and N e is the number of the experiments. 

The maximum likelihood criterion was also used in the param-

ter estimation problem to identify the initial set of model param-

ters (i.e. nominal set). 

.2.2. Global Sensitivity Analysis (GSA) 

The sensitivity analysis has been extensively applied as a tech-

ique for model simplification, model calibration and process un-

erstanding through computer-aided design ( Varma et al., 2005;

altelli et al., 2004 ). The LSA are widely accepted by the research

ommunity due to the low computational cost. However, the LSA

echniques can only determine the sensitivity of each input sepa-

ately, without taking into account the overall contributions of the

nput variables to the output predictions. In GSA methods, a si-

ultaneous perturbation of all parameters (inputs) is performed

ithin specific bounds, as opposed to LSA techniques where the

arameters inputs are varied once at a time. Hence, the GSA ap-

roaches are capable of measuring not only the relative impact of

ach input variable, but also the interactions between them. The

ariance-based global sensitivity techniques, which are used here,

epend on the calculation of the following ratio: 

V a r p 
[
E 
(
y i j ( p, t ) | p 

)]
V ar 

(
y i j ( p, t ) 

) (7)

here E ( y ij ( p , t )| p ) denotes the expectation of the output y on a

xed value, and the variance is calculated over all possible values
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f the inputs. In our case the inputs are the vector of the unknown

arameters p . 

Many GSA techniques have been developed with the most well

stablished being the method of Sobol ′ (2001) . The Sobol method

ecomposes the output function y ( p 1 , . . . , p k ) into terms of in-

reasing degrees of interactions between the model inputs as fol-

ows: 

ˆ 
 

(
p 1 , . . . , p N p 

)
= 

ˆ y 0 + 

N p ∑ 

i =1 

ˆ y i ( p i ) + 

N p −1 ∑ 

i =1 

N p ∑ 

j= i +1 

ˆ y i j 

(
p i , p j 

)
+ . . . + 

ˆ y 1 , 2 , ... , N p 
(

p 1 , p 2 , . . . , p N p 
)

(8) 

In general, there are infinite ways to decompose the function

ˆ  ( p 1 , . . . , p N p ) . However, for independent factors, the decomposi-

ion based on orthogonal terms becomes unique ( Sobol ′ , 2001 ) and

he functions can be calculated through multidimensional integrals

s follows: 

f 0 = E ( y ) = 

∫ 

k 

f ( p ) dp (9) 

f i = E ( y | p i ) − E ( y ) = − f 0 + 

∫ 1 

0 

. . . 

∫ 1 

0 

f ( p ) d p ∼i (10)

f i j = E 
(
y | p i , p j 

)
−E ( y | p i ) −E ( y ) = 

∫ 1 

0 

. . . 

∫ 1 

0 

f ( p ) d p ∼i j − f 0 − f i 

(11) 

here dp ∼ i and dp ∼ ij denote the integration over all variables

xcept p i and p j respectively, 
k is the sampling space. Sobol’s

ethod employs Monte Carlo approximations to calculate the inte-

rals described in Eqs. (9 )–(11) ( Sobol ′ , 20 01; Saltelli et al., 20 05 ). 

Similarly, Eq. (8) can be re-written as a variance ( Eq. (12) ) and

ensitivity ( Eq. (13) ) respectively: 

 ( y ) = 

∑ k 

i =1 
V i + 

∑ 

1 ≤i ≤ j≤k 
V i j + . . . + V 1 , 2 , ... ,k (12) 

 k 

i =1 
s i + 

∑ 

1 ≤i ≤ j≤k 
s i j + . . . + s 1 , 2 , ... ,k = 1 (13) 

here V i is the contribution of the parameter p i to the total vari-

nce V ( y ), while V ij is the contribution inherent to the interactions

etween two parameters p i and p j . 

Hence, these contributions (i.e. partial variances) can be used

o calculate the first-order sensitivity index for the parameter p i 
hich evaluates the main effects of p i on the output (i.e. partial

ariance of p i to the total variance): 

 i = 

V i 

V ( y ) 
(14) 

In a similar way, the second-order s ij and the total order sensi-

ivity indices s Ti can be determined from: 

 i j = 

V i j 

V ( y ) 
(15) 

 T i = 1 − V ∼ j 

V ( y ) 
(16) 

The total sensitivity index s Ti determines the total contribu-

ion of the parameter p i considering both direct and indirect ef-

ects. Hence, the difference between s Ti and s i indicates the de-

ree of interaction. More information regarding the method of

obol and other variance-based method techniques can be found

n Saltelli et al. (2008) . 
. Results and discussions 

Here, a rigorous selection procedure of the optimal subset of

arameters, based on the estimability approach, is developed and

mplemented to the MIAM. The method combines two estimabil-

ty methods: the first associates local sensitivities to a sequential

rthogonalization procedure and the second uses a variance-based

lobal sensitivity selection. Only the optimal subset or parameters

equire identification (the rest of the parameters can be set to their

ominal values) with a guaranteed minimum model mismatch (i.e.

igh prediction capability). 

It should be emphasized that the parameters of the novel

ulti-Impurity PBM model were previously identified by Borsos

nd co-authors (2016) using a sequential identification methodol-

gy and attempted to identify decoupled kinetic parameters while

aking several parameters from literature. For instance, the pa-

ameters associated with the primary nucleation and the crystal

rowth of the two different facets were obtained from the lit-

rature, while the kinetic parameters inherent to the two crys-

al growth modifiers (i.e. impurities) were estimated from on-line

mage analysis data. However, the addition of additives/impurities

ight affect the kinetics of nucleation and growth ( Epstein, 1982;

ubota, 2001 ), and hence the nominal parameter vector might not

e reliable enough. 

Commonly, the estimability approach requires a set of nominal

arameter values which represent a reasonable initial guess, usu-

lly obtained from literature or prior process knowledge. To guar-

ntee a generic robust framework for parameter estimation and

xtend the discussions above, the estimability approach is devel-

ped for two case scenarios: the nominal parameter values were

btained by Borsos and coauthors (2016), in conjunction with the

iterature, and the case where no prior knowledge of the model

arameters is available. In the latter case, a simultaneous identifi-

ation approach, based on a hybrid global optimization approach

hat combines a genetic algorithm and a local deterministic ap-

roach was used to identify the nominal parameter values pre-

ented in Table 3 . In both cases the estimability approach will

elp identify the best parameter estimates of the optimal subset

hat guarantees maximum prediction capability, given the avail-

ble experimental data. It is worth mentioning that this forward

stimability method can also be used for the optimum design of

xperiments for improved parameter estimation ( Benyahia, 2009;

enyahia et al., 2011 ). 

One crucial step after the identification of the 23 unknown pa-

ameters is the evaluation of the uncertainty of the model esti-

ates, since it could provide information regarding the robustness

nd the predictive capability of the model. One way of assessing

hese uncertainties is through confidence domains. In this study, a

ethod based on the FIM is used to estimate the 95% confidence

ntervals of the model-parameters. The mean values of the identi-

ed model parameters for the simultaneous approach and the cor-

esponding confidence intervals are presented in Table 3 . 

Although the confidence interval associated with some of the

ominal parameter estimates are reasonably narrow, most of the

odel parameters as highlighted in red present broad confidence

ntervals. Statistically speaking, this indicates that the parameters

re unidentifiable and consequently the parameter estimates are

ot reliable. Hence, a good fit should be combined with the es-

imation of confidence regions and the corresponding correlation

atrix. In this way, the reliability of the estimated unknown pa-

ameters can be assessed ( Table 3 ). In most of the cases, the cause

f these broad confidence domains is associated with the existence

f strong correlations amongst the parameters. The correlation ef-

ects will be thoroughly discussed in conjunction with the estima-

ility analysis in the next sections. 
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Table 3 

Nominal vector of the model parameters and their confidence intervals (C.I.). 

Parameter Nominal value from Borsos et al. (2016 ) Estimated nominal values Current work Value ± C.I. Units Corresponding Number 

k ads , 0, CGM 1 27.3 6.131 ± 5.56 - 1 

k des , 0, CGM 1 0.56562 0.630 ± 0.62 - 2 

β1 4.6 10.626 ± 9.30 m/K 3 

G min , 1 4.5 ×10 −4 2.812 ×10 −4 ± 0.0 0 0281 μm/s 4 

k m , 0, CGM 1 389.348 19.135 ± 0.0 0 0268 m/s 5 

K e, CGM 1 0.999 1.669 ± 1.114 - 6 

�G des , 1 2.436 ×10 +3 1.578 ×10 +3 ± 35.35 kJ/mol 7 

�G ads , 1 2.2994 ×10 +4 2.17 ×10 +4 ± 514.29 kJ/mol 8 

k ads , 0, CGM 2 11.24 4.046 ± 3.51 - 9 

k des , 0, CGM 2 0.49127 0.4566 ± 0.45 - 10 

β2 5.15 5.1164 ± 4.45 m/K 11 

G min , 2 246.952 487.034 ± 1.12 μm/s 12 

k m , 0, CGM 2 61.1286 79.096 ± 0.78 m/s 13 

K e, CGM 2 0.994 0.997 ± 0.99 - 14 

�G des , 2 5.301 ×10 +3 6.386 ×10 +3 ± 69.6074 kJ/mol 15 

�G ads , 2 2.4181 ×10 +4 2.709 ×10 +4 ± 238.392 kJ/mol 16 

g 1 1.4776 1.553 ± 1.55 - 17 

k g 1 12.2063 21.028 ± 15.58 μm/s 18 

g 2 1.692 1.692 ± 1.67 - 19 

k g 2 1.7412 98.109 ± 23.69 μm/s 20 

k p , 0 100.751 334.331 ± 1.17 m 

−3 s −1 21 

E p 2.814 ×10 +3 0.001 ± 0.000643 kJ/mol 22 

k e 1.576 ×10 −3 4.895 ± 0.11 - 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

t  

j  

k  

c

 

w  

g  

t  

c  

h  

a  

a  

�  

K  

t  

b  

t  

t  

m  

r  

m  

o  

s  

w  

f  

r  

u  

p  

f  

t  

t

 

i  

t  

t  

s  

o  

r  

n  

h  
3.1. Local estimability analysis: Local sensitivity analysis (LSA) and 

orthogonalization algorithm 

Although the estimability aims in essence at improving the pa-

rameter estimates in order to enhance the model prediction capa-

bility, the initial parameter estimates, used as nominal values, can

play a crucial role in the quality of the sensitivity analysis, both

LSA and GSA, and consequently may determine the outcomes of

the estimability analysis. Poor nominal model parameters would

potentially lead to inaccurate parameter ranking that may lead to a

degradation of the predictive capability of the mathematical model

( Benyahia, 2009 ). The investigation of the estimability analysis is

carried out, as explained before, in three steps: a local sensitivity

analysis is performed in order to evaluate the relative effect of the

parameters on the process outputs, then the model parameters are

ranked in descending order, in terms of sensitivity magnitude and

correlation, by using the orthogonalization algorithm ( Table 2 ). Fi-

nally, an incremental optimization approach that consists in a se-

quential identification of the top i th parameters (where i = 1,2,…)

is utilized to determine the threshold or cut-off value and identify

the optimal subset of model parameters . 

In Fig. 3 , the variation of the dynamic sensitivity of some model

parameters is presented. The first selected parameter ( Fig. 3 (a)), g 1 ,

which is the exponent of the growth kinetic equation in the x 1 
dimension (i.e. along the length of the crystal), shows very high

sensitivities at all times. This means that g 1 , has a strong effect

on the model predictions (outputs) and consequently its estima-

bility potential may be very high depending the concurrent cor-

relation effects. The same stands for the second selected parame-

ter ( Fig. 3 (b)), k e, CGM 2 , which describes the thermodynamic mass

distribution coefficient for the CGM2 (i.e. sodium hexametaphos-

phate). These two parameters are likely to be ranked high in terms

of estimability potential meaning that the information obtained

from the measurements in the considered time window will be

adequate for their accurate estimation. On the other hand, k p , 0 
and k m , 0, CGM 1 show very week sensitivities at all times. For in-

stance, the sensitivities associated with k m , 0, CGM 1 are always be-

low 6 × 10 −7 which indicates that these model parameters are

likely to be practically unidentifiable or inestimable. 

Besides the relative effect of the parameters on the outputs, the

sensitivity analysis can give a very good indication of the existence
f correlations between the parameters. Similar sensitivity trajec-

ories indicate strong correlation as seen in the sensitivity tra-

ectories of k ads , 0, CGM 1 and k des , 0, CGM 1 ( Fig. 4 (a)) and �G des , 1 and

 ads , 0, CGM 2 ( Fig. 4 (b)). These outcomes are also consistent with the

orrelogram (correlation matrix) depicted in Fig. 6 . 

Similar results could be drawn from Fig. 5 , where the

hole parameter set is presented in a box plot. This dia-

ram illustrates the variation of the estimated model parame-

ers. The parameters may be classified in three different dis-

rete subgroups according to their contribution to the output:

igh, moderate and low. As such, some of the parameters such

s { k e, CGM 2 , �G ads , 2 , �G des , 2 , g 1 , k g 1 , g 2 , �G des , 1 } may be classified

s parameters with high impact. { k ads , 0, CGM 1 , k des , 0, CGM 1 , β1 ,

G ads , 1 , k ads , 0, CGM 2 , k des , 0, CGM 2 , β2 , k g 2 } and { G min , 1 , k m , 0, CGM 1 ,

 e, CGM 1 , G min , 2 , k m , 0, CGM 2 , k p , 0 , E p , k e }, on the other hand, seem

o present moderate and low sensitivity to the imposed pertur-

ation respectively. Hence a considerable number of the parame-

ers showed low sensitivity values. This lack of sensitivity suggests

hat the model is over-parametrized ( Saltelli et al., 2008 ). However,

odel discrimination is beyond the scope of this paper and all pa-

ameters are considered essential for other physical aspects of the

odel performance and may be set to their nominal values with-

ut degrading the prediction capabilities of the model. These ob-

ervations advocate that the vector of the model parameters, as a

hole, is practically unidentifiable (from the available data) and

urther analysis should be done to select an optimal subset of pa-

ameters. It should be highlighted that this classification is based

tterly on observation of the variation of the sensitivities and is

resented as a preliminary qualitative analysis of the results. The

ormal implementation of the estimability approach and identifica-

ion of the cut-off value will be discussed in the subsequent sec-

ions. 

A robust approach for ranking the model parameters accord-

ng to their estimability potential is based on the orthogonaliza-

ion algorithm ( Table 2 ), which takes into account both the sensi-

ivity magnitude (i.e. Euclidean norm) and correlation during the

equential selection of the most estimable parameter. The results

btained based on modified Gram-Schmidt orthogonalization algo-

ithm are presented in Table 4 . The exponents of the growth ki-

etic equations in the { x 1 , x 2 } dimensions (i.e. g 1 and g 2 ) indicate

igh estimability potential. This was expected since these parame-
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Fig. 3. Comparison of the dynamic sensitivity of selected model parameters: (a) g 1 (b) K e, CGM 2 (c) k p , 0 (d) k m , 0, CGM 1, . 

Fig. 4. Comparison of the sensitivity profiles of selected model parameters: (a) p 1 : k ads, 0 ,CGM1 & p 2 : k des, 0 ,CGM1 and (b) p 7 : �G des, 1 & p 9 : k ads, 0 ,CGM2 . 

Fig. 5. Box plot illustrating the variation of the estimated model parameters. 
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Table 4 

Ranking of parameters with the highest estimability potential. 

Method Parameter ranking 

Orthogonalization 

algorithm 

g 1 , k e, CGM 2 , �G ads , 1 , g 2 , �G ads , 2 , k g 1 , β1 , �G des , 2 , k ads , 0, CGM 1 , k des , 0, CGM 1 , k g 2 , �G des , 1 , β2 , k des , 0, CGM 2 , k ads , 0, CGM 2 , k e , 

K e, CGM 1 , k p , 0 , k m , 0, CGM 2 , G min , 1 , E p , G min , 2 , k m , 0, CGM 1 
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ters represent the exponential factors of the crystal growth rates

used in the model algebraic equations (i.e. empirical power law

expressions). The absorption energy of the impurities (i.e. �G ads , 1 

and �G ads , 2 ) also appear to have a significant impact on the out-

puts since they are highly ranked on the list illustrating high es-

timability potential. It is also evident, that the kinetic parame-

ters corresponding to the nucleation mechanism are ranked quite

low { k p, o , E p , k e } because of their weak sensitivity coefficients at the

sampling times. This reveals how critical is the incorporation of the

estimability analysis in the development of the design of experi-

ment and consequently in mathematical modelling. Moreover, it is

known that the AR measurements can provide negligible informa-

tion regarding the nucleation phenomena. This limitation maybe

overcome by incorporating additional PAT to measure the concen-

tration and number of counts (focussed beam reflectance (FBRM))
p

Fig. 6. Correlation matrix for the est
nd considering these two variables as process outputs in the es-

imability framework. 

The estimability analysis revealed that the data are not ade-

uate to estimate accurately the nucleation kinetics. This is key,

specially in systems utilizing different sensors. As such, the infor-

ation content of each sensor may be assessed and consequently

he number of parameters that can be estimated from each indi-

idual PAT or from their combination (e.g. sensors providing dif-

erent outputs) may be determined. This may also be employed

or the evaluation of the accuracy of the measuring method with

he scope of collecting more accurate measurements. Hence, the

stimability analysis can be utilized for the selection of the appro-

riate PAT and consequently the most efficient strategy to collect

he experimental data to improve the accuracy of the model pa-

ameters, which in turns enhances the model reliability in key ap-

lications such as process design and control. 
imated nominal parameter set. 
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The sequential orthogonalization approach helps select the pa-

ameters with the highest sensitivity and least correlation. To pro-

ide a more rigorous insight into the correlation effects, a cor-

elation matrix, can be computed by using the Pearson method

 Kendall et al., 1977 ). The 23 × 23 correlation matrix obtained

rom the covariance matrix (inverse of the FIM) is presented in

ig. 6 . As shown, strong positive or negative correlations exist be-

ween some parameters. For instance, the parameters p 20 and p 23 

resent very strong negative correlation. Hence, any change that

ccurs in p 20 can be compensated by an inverse change in p 23 . Sim-

lar interaction patterns do occur between the kinetics describing

he nucleation phenomenon (i.e. p 21 , p 22 , p 23 ), which present strong

ositive and negative correlation. In general, the presence of high

orrelations, especially if it involves many parameters, can make

he identification process difficult and inaccurate (not unique). 

In order to identify the optimal subset of parameters that max-

mize model reliability, a cut-off value should be set as a boundary

etween the parameters with high estimability potential, that can

e identified reliably, and the remaining parameters that are poorly

dentifiable and should be set to their nominal value without de-

rading the prediction capability of the model. As such, the cut-off

alue is critical as it affects both the cost and quality of the es-

imability approach and consequently the prediction capability of

he model. 

To identify the cut-off value and consequently the optimal sub-

et of parameters, an iterative approach is performed. It consists

n identifying incrementally the subsets of model parameters, from

he experimental data, according to their estimability potential

 Table 4 ) staring with the top ranked parameter, then the top

wo parameters and so forth. This approach will help identify the

ptimal objective function threshold (i.e. cut-off value), beyond

hich all improvements are significant, and consequently the op-

imum identifiable subset of parameters. The results of the itera-

ive incremental approach are depicted in Fig. 7 . Typically, when

 mean square error approach is considered, the objective func-

ion, J ( p ), decreases until a plateau is reached. The initial point of

he plateau can be considered as the cut-off value as no significant

mprovement can be achieved from that point onwards, which con-

equently sets the limit of the optimal identifiable parameter set.

ig. 7 (a) indicates that the top 7 ranked parameters, in the case

f the nominal values obtained from Borsos et al. (2016) , and the

op 8 ranked parameters, in the case of the simultaneous optimiza-

ion approach, are sufficient to capture the information contained

n the experimental data. Despite the fact that using more param-

ters may lead to a slight decrease in the objective function, as

epicted in Fig. 7 , the estimability approach guarantees the best

rade-off between model reliability and minimum set of param-

ters to be identified. Fig. 7 also confirms that different nominal

arameter values, as clearly shown in Fig. 7 (a) and (b), lead to dif-

erent threshold values (340 in case a and 290 in case b). In this

articular case, the estimability approach implemented with the

ominal vector inherent to a simultaneous identification approach

ut forms the quality of the one carried out with Borsos and co-

uthors’ nominal value obtained sequentially. It should be noted

hat the objective functions show non-smoothness in both cases

hich is likely due to the high nonlinearity and stiffness of the set

f ODEs and the increased correlation between the parameters as

ore parameters are being added. This non-smooth behaviour may

lso indicate that the local solver got stuck in local optima. 

.2. Global sensitivity analysis 

The global sensitivity analysis (GSA) is utilized here in order to

ssess the performance of the model itself and to cross-validate the

ocal estimability analysis approach discussed earlier. The method

rovides another alternative to rank the model parameters and
dentify the optimal set of parameters that could be estimated

rom the experimental data. In this case, the total order sensi-

ivity index will be used to rank the parameters, followed by an

ncremental optimization-based selection approach whose perfor-

ances will be compared against the previously described estima-

ility approach, associated with the local sensitivities. 

The Sobol analysis is performed as follows. Firstly, a nominal

et of model parameters is defined followed by the definition of

he probability distributions for each individual parameter. In this

ork, a Gaussian distribution was assigned for every parameter

y considering 2 % variance. Narrow limits are applied since the

opulation balance models for crystallization processes present, in

eneral, high stiffness, which might have a considerable effect on

he computational burden. Random combinations of the parame-

er values are generated from the assigned probability distribution

unctions. Thus, the output of the model is evaluated for differ-

nt parameter sets along with the uncertainties. Consequently, the

ensitivity indices are calculated in order to assess the effect of the

arameters and rank them accordingly. 

The global sensitivity analysis is performed here by taking into

ccount two different scenarios. In the first scenario, the effects

f the parameters are analyzed considering only the model pre-

icted outputs inherent to the set of the DAEs representing the

tudied system. Hence, the impact of the parameters on the joint

oments and on the concentration of the solution and impurities

s investigated based exclusively on simulations (i.e. without con-

idering the sampling times). The second scenario considers the

ean AR measurements. Hence, Sobol analysis is applied for the

ecomposition of the variance which is associated with the differ-

nce between experimental and simulation data (i.e. global estima-

ility analysis). In more detail, the computation of the root mean

quare error can provide information with the scope of parameter

anking and model selection (cut-off value determination). The 23

nknown model parameters estimated in this work and defined in

able 3 are used as inputs for the sensitivity and estimability anal-

sis. 

It was demonstrated that a tradeoff between computational ac-

uracy and efficiency of the first and total order sensitivity in-

ices can be achieved at a cost of ( N p + 2 ) N model evaluations

 Saltelli et al., 2005 ), where N is the number of samples that should

e between 5 × 10 2 and 1 × 10 3 and N p is the number of parame-

ers (23 in our case). In this analysis, a conservative approach is

dopted by considering N = 1 × 10 3 and the total number of eval-

ations as 25 × 10 3 for both scenarios. The results were validated

sing different numbers of samples ( N ) to ensure consistency and

obustness. 

The results are summarized in Figs. 8 and 9 , where the first

nd total order Sobol sensitivity indices are presented in descend-

ng order for the two scenarios. Fig. 8 (a) and (b) indicate that both

rst and total order Sobol sensitivity indices yield the same order

f priority for the first scenario which illustrates that certain pa-

ameters have a considerable impact on the output variable (i.e.

R) both directly (relative impact of each input variable) and indi-

ectly (interaction among the input parameters). In a similar way

o the discussion above, the effect of randomly generated subsets

f parameters on the mean square error between the measured

nd predicted mean AR is analyzed for the second scenario. 

The greater the sensitivity indices are, the more critical the pa-

ameters are for the model. Figs. 8 and 9 show that the parameters

 1 and g 2 , which are the exponents of the growth kinetic equations

n the x 1 and x 2 dimension respectively, possess the highest total

ensitivity indexes. This was expected since a growth dominated

hysical system is under investigation. The analysis also demon-

trates that �G ads , 2 , �G des , 2 and K e, CGM 2 , which represent the ad-

orption, desorption kinetics and the thermodynamic mass distri-

ution coefficient for CGM2 respectively, can be reliably identified.
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(a) 

(b) 

Fig. 7. Maximum likelihood error vs the number of selected parameters for: (a) nominal set of parameters estimated by Borsos et al., (2016) – sequential approach and (b) 

nominal set of parameters estimated in this work – simultaneous approach. 

(a) (b) 
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Fig. 8. Sobol analysis for the 1st case scenario: (a) first order sensitivity indices of the 23 parameters in descending order (b) total order sensitivity indices in descending 

order. 
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This can be anticipated as well since it was experimentally proven

( Borsos et al., 2016 ) that the CGM2 (i.e. sodium hexametaphos-

phate) has a more prominent effect compared to CGM1 (i.e. alu-

minum sulfate). When both growth modifiers are present in the

system, the AR decreases which is caused by CGM2, even when

lower amounts of CGM2 are used. The nucleation kinetics present

low sensitivity values, which is consistent with the outcomes of
he estimability analysis based on local sensitivities. By compar-

ng the two scenarios, the majority of the parameters show signifi-

ant lack of sensitivity. However, in both scenarios interesting pat-

erns emerge. Sensitive parameters (high s i values) affect the output

hrough both direct and indirect effects (high s t values). Thus, the

arameters with moderate and low sensitivity values cannot affect

he system even indirectly (i.e. through interactions) from a sensi-
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(b) (a)  

 

,   
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,

Fig. 9. Sobol analysis for the 2nd case scenario: (a) first order sensitivity indices of the 23 parameters in descending order (b) total order indices in descending order. 

Fig. 10. Maximum likelihood error vs the number of selected parameters for both Sobol scenarios. 
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ivity point of view. Overall, the Sobol analysis demonstrates that a

arge number of parameters can be set to nominal values without

egrading the model prediction capabilities. 

The total order indices, presented in Figs. 8 (b) and 9 (b), are

sed to identify the cut-off value for the selection of the optimal

ubset of model parameters. As it can be seen, the values of the to-

al order indices are reduced until a plateau is reached. The initial

oint of the plateau can be considered as the cut-off value since

he addition of more parameters, from that point onwards, does

ot improve the prediction capability of the model 

The Sobol analysis indicates that a cut-off value can be identi-

ed directly from the total order indices and accordingly the top

 and 8 parameters are sufficient to build a reliable model for the

st and 2nd scenarios respectively. However, for the sake of con-

istency and in order to enable a reliable comparison between the

wo estimability methods, the cut-off value will be identified from

he profile of the objective function associated with the parame-

er identification problem (minimization of the error between the

odel predictions and the experimental data). The profile of the

bjective functions for the two scenarios, obtained by an incre-

ental iterative approach as described above for the case of LS-

ased estimability, are depicted in Fig. 10 . As noticed in the pre-

ious case, the objective function decreases significantly with the

ntroduction of the top few parameters. The diagram confirms that

he selection of the top 8 parameters can be sufficient enough to

aximize the prediction capabilities of the model. Despite these
onsistent outcomes, the selection process through an incremental

terative parameter estimation procedure is highly advised as it is

ore reliable compared to the selection based on the magnitudes

f the total order sensitivity index. Fig. 10 also shows non-smooth

ehavior similar to Fig. 7 . 

To make a reliable and effective comparison between the two

ethods described in the paper (the estimability method based on

S and Sobol method with two scenarios), the parameter ranking

nd optimal parameter sets are summarized in Table 5 . Although,

ach method yields a different classification. As expected, some

onsistency was achieved as the same four parameters, highlighted

n red, which were identified by both methods as the ones with

he most prominent effects. The inconsistencies can be explained

y the fact that the methods use essentially different approaches,

S and GL, besides, the quality of the nominal vector of parameters

an play a key role in both cases. Although, both technics can be

sed separately, the outcomes of the analysis show that their com-

ination can provide a more systematic and robust selection of the

ubset of parameters that provide guaranteed optimal model pre-

iction capabilities, based on the available data. In addition, the

ethodology can provide a basis to assess the quality and quan-

ity of the experimental data or alternatively inform or help design

he required experiments and/or measurements (DoE) that could

mprove the estimability potential of a specific parameter, which

n turn helps improve the prediction capabilities of the mathemat-

cal model, particularly in the case of multi-dimensional popula-
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Table 5 

Summary of the parameter ranking based on Orthogonalization algorithm and the Sobol analysis. 

Orthogonalization (LSA) Sobol Analysis (GSA) Estimated nominal vector of parameters 

Nominal parameters from Borsos et al., 2016 Estimated nominal vector of parameters 1st Scenario 2nd Scenario 

S i S t S i S t 

g 1 (p 17 ) g 1 (p 17 ) g 2 ( p 19 ) g 2 (p 19 ) g 2 (p 19 ) g 2 (p 19 ) 

k e , CGM 2 (p 14 ) k e, CGM 2 (p 14 ) �G ads , 2 ( p 16 ) �G ads , 2 (p 16 ) g 1 (p 17 ) �G ads , 2 (p 16 ) 

g 2 (p 19 ) �G ads , 1 (p 8 ) k e, CGM 2 ( p 14 ) k e, CGM 2 (p 14 ) k e, CGM 2 (p 14 ) g 1 (p 17 ) 

�G ads , 1 (p 8 ) g 2 (p 19 ) g 1 ( p 17 ) g 1 (p 17 ) k g 2 (p 20 ) k e, CGM 2 (p 14 ) 

�G ads , 2 (p 16 ) �G ads , 2 (p 16 ) �G des , 2 ( p 15 ) �G des , 2 (p 15 ) �G ads , 2 (p 16 ) �G des , 2 (p 15 ) 

k g 1 (p 18 ) k g 1 (p 18 ) k g 2 ( p 20 ) k g 2 (p 20 ) �G des , 2 (p 15 ) k g 2 (p 20 ) 

β1 (p 3 ) β1 (p 3 ) k g 1 ( p 18 ) β2 (p 11 ) k ads , 0, CGM 2 (p 9 ) β2 (p 11 ) 

k g 2 (p 20 ) �G des , 2 (p 15 ) β2 ( p 11 ) k g 1 (p 18 ) k g 1 (p 18 ) k g 1 (p 18 ) 

�G des , 2 (p 15 ) k ads , 0, CGM 1 (p 1 ) k e ( p 23 ) k des , 0, CGM 2 (p 10 ) k des , 0, CGM 2 (p 10 ) k ads , 0, CGM 2 (p 9 ) 

β2 (p 11 ) k des , 0, CGM 1 (p 2 ) k des , 0, CGM 2 ( p 10 ) k ads , 0, CGM 2 (p 9 ) k p , 0 (p 21 ) k des , 0, CGM 2 (p 10 ) 

k ads , 0, CGM 1 (p 1 ) k g 2 (p 20 ) k ads , 0, CGM 2 ( p 9 ) k e (p 23 ) E p (p 22 ) k e (p 23 ) 

k des , 0, CGM 1 (p 2 ) �G des , 1 (p 7 ) E p ( p 22 ) k m , 0, CGM 2 (p 13 ) G min , 2 (p 12 ) k m , 0, CGM 2 (p 13 ) 

�G des , 1 (p 7 ) β2 (p 11 ) G min , 2 ( p 12 ) k p , 0 (p 21 ) k m , 0, CGM 1 (p 5 ) k p , 0 (p 21 ) 

k des , 0, CGM 2 (p 10 ) k des , 0, CGM 2 (p 10 ) G min , 1 ( p 4 ) E p (p 22 ) K e, CGM 1 (p 6 ) E p (p 22 ) 

k ads , 0, CGM 2 (p 9 ) k ads , 0, CGM 2 (p 9 ) �G ads , 1 ( p 8 ) G min , 2 (p 12 ) k des , 0, CGM 1 (p 2 ) G min , 2 (p 12 ) 

k p , 0 (p 21 ) k e (p 23 ) β1 ( p 3 ) β1 (p 3 ) �G des , 1 (p 7 ) k m , 0, CGM 1 (p 5 ) 

k e (p 23 ) K e, CGM 1 (p 6 ) �G des , 1 ( p 7 ) k ads , 0, CGM 1 (p 1 ) β1 (p 3 ) k ads , 0, CGM 1 (p 1 ) 

K e , CGM 1 (p 6 ) k p , 0 (p 21 ) K e, CGM 1 ( p 6 ) k des , 0, CGM 1 (p 2 ) G min , 1 (p 4 ) �G ads , 1 (p 8 ) 

k m , 0, CGM 2 (p 13 ) k m , 0, CGM 2 (p 13 ) k ads , 0, CGM 1 ( p 1 ) K e, CGM 1 (p 6 ) �G ads , 1 (p 8 ) β1 (p 3 ) 

E p (p 22 ) G min , 1 (p 4 ) k des , 0, CGM 1 ( p 2 ) �G ads , 1 (p 8 ) k ads , 0, CGM 1 (p 1 ) G min , 1 (p 4 ) 

G min , 2 (p 12 ) E p (p 22 ) k m , 0, CGM 1 ( p 5 ) G min , 1 (p 4 ) k m , 0, CGM 2 (p 13 ) k des , 0, CGM 1 (p 2 ) 

G min , 1 (p 4 ) G min , 2 (p 12 ) k p , 0 ( p 21 ) �G des , 1 (p 7 ) β2 (p 11 ) K e, CGM 1 (p 6 ) 

k m , 0, CGM 1 ( p 5 ) k m , 0, CGM 1 ( p 5 ) k m , 0, CGM 2 ( p 13 ) k m , 0, CGM 1 ( p 5 ) k e (p 23 ) �G des , 1 (p 7 ) 
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tion balance models. Although Sobol analysis provides one of the

most accurate methods for calculating the sensitivities of the pa-

rameters, the method doesn’t consider the correlation between the

parameters systematically during the ranking process as opposed

the local estimability which addresses quite effectively the corre-

lations issue, as the sequential orthogonalization approach is used

precisely to exclude the parameters showing high correlations from

being selected amongst the optimal top ranked set. 

Finally, to further demonstrate the benefits of the estimably

analysis and appraise the prediction capability of the model built

with the optimal subset of parameters, the model predictions are

compared against the experimental data as well as the predictions

of the model built without the estimability approach ( Borsos et al.,

2016 ). Three different experiments associated with mean AR mea-

surements are used, as shown in Fig. 11 . It should be noted that

obtaining accurate AR data is very challenging. The PVM is cur-

rently the main technique available to measure real time the AR

despite the inherent noisy and non-smooth data, as clearly seen in

Fig. 11 , which is commonly associated with most of image moni-

toring tools. 

Although both model seem to provide a good fitting, Fig. 11 (a)

and (b) show that the mathematical model with estimability ap-

proach demonstrates better prediction capability. This outcome is

consistent with the incremental objective function analysis ( Fig. 7 ).

The results show that the model build by identifying the 8 most

estimable parameters outperforms the one build by identifying all

parameters sequentially, as can be seen also in Fig. 12 . It becomes

clear that the estimability approach makes the identification pro-

cess more accurate and less laborious, as a reduced set of parame-

ters is identified while the rest of the parameters are kept to their

nominal values without compromising the prediction capability of

the mathematical model. 

4. Conclusions 

Parameter estimability is essential to assess whether the model

parameters can be reliably identified from existing data, which

consequently provides a key step towards more predictable and

robust mathematical models. Within this perspective, a novel es-
imability framework that combines a sequential orthogonalization

f the local sensitivity matrix and Sobol, a variance-based global

ensitivities technic, was proposed. The estimability analysis re-

uires an initial or nominal vector of model parameters. When ei-

her of the two situations occurs: a nominal vector of parameters

s not available or the initial parameter estimates are considered as

ighly uncertain, the framework suggests a simultaneously identi-

cation of the whole set of parameters using a hybrid global op-

imization approach. The estimability procedure can be then con-

ucted using the nominal vector of parameters in conjunction with

he available experimental data. The systematic combination of

wo different estimability methods guarantees a robust selection

f the optimal subset of parameters; the set that can be identi-

ed more reliably with a guaranteed maximum model prediction

apability. As such, both parameters significance and correlations

hould be considered to rank the model parameters. The frame-

ork suggests a systematic methodology, based on the parameter

dentification objective function, to identify the cut-off value which

ndicates the boundary between the parameters that can be reli-

bly identified (the optimal subset) and those who should be set

o their nominal value. When the resulting model prediction ca-

ability is not satisfactory or/and very limited number of parame-

ers can be identified reliably, the method suggests extracting ad-

itional experimental data that can be based on appropriate design

f experiments. 

As a validation step, the methodology was implemented to a

omplex multi-dimensional morphological population balance for

atch crystallization processes, which combines the effects of dif-

erent crystal growth modifiers/ impurities on the crystal size and

hape distribution of the population of needle-like crystals. Ini-

ially, two situations were considered regarding the nominal vector

f parameters: parameters obtained from literature and those iden-

ified using a simultaneous global optimization. The first evaluation

f the quality of the nominal vector of parameters revealed that

ost of the nominal parameters are inherently uncertain, based on

he confidence domains, which justifies the need for the estimabil-

ty analysis. The 23 model parameters were ranked accordingly in

erms of highest local sensitivity magnitude and least correlation,

n the case of the sequential orthogonalization method, and total
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Fig. 11. Comparison between the experimental and simulated mean AR dynamic evolution: (a) Experiment 1 (400 g H 2 O; 150 gr KDP; 12.5 ppm CGM1; 0.0 ppm CGM2), (b) 

experiment 2 (400 g H 2 O; 150 gr KDP; 12.5 ppm CGM1; 7.5 ppm CGM2) and (c) experiment 3 (400 g H 2 O; 150 gr KDP; 0.0 ppm CGM1; 5.0 ppm CGM2). 
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rder sensitivity indices, in the case of Sobol. The correlation pat-

erns confirmed the existence of strong correlation between some

arameters, which helped explain the resulting parameter rank-

ng. The least square incremental parameter identification proce-

ure helped determine the cut-off value and consequently the op-

imal subset of parameters which turned out to be 8 parameters

sing both methods. Despite some slight parameter ranking dif-

erences, the two different estimability methods managed to cap-

ure consistently the most significant parameters. However, it is

ighly recommended to run both methods to maximize the ben-

fits of the estimability approach and minimize the least square

alue at the cut off value, which guarantees maximum model pre-

iction capability. The case study showed that although noisy AR

ata with low information content were used, a set of the most

nfluential and the least correlated parameters could be identified,

roviding enhanced prediction capabilities of the dynamic model

f the studied crystallization process. As a consequence, the frame-

i  
ork can be extremely valuable in complex model systems when

 large number of parameters needs be identified from low infor-

ation content data, which is commonly encountered in real sys-

ems. The proposed framework can also embed an optimization of

he experimental campaign to maximize the information content

nd reduce the cost inherent to redundant experimental informa-

ion. In the case of systems utilizing different sensors, the informa-

ion content of each sensor can be assessed and consequently the

umber of parameters that can be estimated from each individ-

al PAT or from their combination (e.g. sensors providing different

utputs) can be determined, which helps select the most appro-

riate PAT depending on the targeted level of prediction capability

nd application (e.g. process control). 
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Fig. 12. Comparison between the experimental and simulated mean AR dynamic evolution: Experiment 1 (400 g H 2 O; 150 gr KDP; 12.5 ppm CGM1; 0.0 ppm CGM2) and 

experiment 2 (400 g H 2 O; 150 gr KDP; 12.5 ppm CGM1; 7.5 ppm CGM2) by considering 8 and 23 parameters. 
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Appendix A. Multidimensional PBM model with multi-impurity 

adsorption model (MIAM) 

To describe the dynamic evolution of the crystal shape distribu-

tion, a multidimensional population balance equation (PBEs) with

two characteristic lengths x l = { x 1 , x 2 } was considered that can be

written as: 

∂n ( t, x ) 

∂t 
+ 

∂n [ G 1 n ( t, x ) ] 

∂ x 1 
+ 

∂n [ G 2 n ( t, x ) ] 

∂ x 2 
= B p δ( x 1 − x 1 , 0 ) δ( x 2 − x 2 , 0 ) (A.1)

where n ( t, x ) is the number density function, δ( x − x 0 ) is the delta

distribution that characterizes the formation of the nuclei, B p is the

primary nucleation rate and G i is the crystal growth rate of the

i th characteristic crystal facet. The initial and boundary conditions

of the PBE are respectively: 

n ( x l , t = 0 ) = n 0 ( x l ) (A.2)

G i n ( x l , t ) = 0 , x l ∈ ∂ 
sz (A.3)

where ∂
sz is the space boundary of the particle size. 

The model can be reduced from a partial differential equation

(PDE) to a set of ordinary differential equations (ODEs) by us-

ing the standard method of moments (SMOM). Since only aver-

age properties are needed for the determination of the mean crys-

tal AR, the SMOM method can provide an efficient and accurate

method for the estimation of the key characteristics of the crystal

population. 

The joint moments of internal variables can be calculated as: 
k,m 

( t ) = 

∫ ∞ 

0 

∫ ∞ 

0 

x 1 
k x 2 

m n ( x 1 , x 2 , t ) d x 1 d x 2 , m, k = 0 , 1 , 2 . . . 

(A.4)

Hence, by applying the moment transformation rule to the PBE

 Eq. (A.1) ), considering the initial ( Eq. (A.2) ) and boundary condi-

ions ( Eq. (A.3) ), a finite set of ODEs can be acquired: 

∂ μ0 , 0 

∂t 
= B p ; ∂ μm,r 

∂t 
= m G 1 μm −1 ,r + r G 2 μm,r −1 , m, r = 0 , 1 , 2 , . . . 

(A.5)

This set of ODEs coupled with the component mass balances,

or the solute and impurities, describes a comprehensive moment-

ased model for crystallization processes under the presence of

ne or multiple impurities/ additives. The interpretation of the

ost critical joint moments is as follows: μ0, 0 is the total num-

er of crystals ( # / m 

3 ) and μ2, 1 represents the crystal volume in

 unit volume of suspension ( m 

3 / m 

3 ). However, although these are

he only joint moments that have a physical meaning, other ones

an be used to determine other key properties of the crystal pop-

lation. Furthermore, the moments can be utilized to determine

he mean crystal sizes ( Eqs. (A.6) and (A.7) ) of the total popula-

ion of each characteristic length, while the mean AR of the crys-

als ( Eq. (A.8) ) can be estimated by the division of the mean sizes

s illustrated below: 

 1 = 

μ0 , 1 

μ0 , 0 

(A.6)

 2 = 

μ1 , 0 

μ0 , 0 

(A.7)

R = 

x 1 
x 2 

(A.8)

It should be noted the model is based on several assumptions

ainly: 

• All the new formed crystals have a nominal size L x 1 ,n ≈ L x 2 ,n ≥
0 . Hence, it can be considered that the initial nuclei size

http://dx.doi.org/10.13039/501100000781
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is L n ≈ 0 (in most of the modelling studies, describing crystal-

lization processes, the initial nucleus size is set to zero for prac-

tical purposes). 
• The process operates under well-mixed conditions, so it could

be assumed that the system is perfectly mixed. Hence a lumped

parameter model is developed since the dependent variable

does not change with spatial location (e.g. the density function,

the concentration of the different chemical compounds and the

moments are functions of time and not space). 
• Only primary nucleation and crystal growth is considered since

only these phenomena were detected experimentally. Thus, ag-

glomeration and breakage can be neglected. 
• Size-independent growth rates are assumed for the two charac-

teristic faces since the SMOM is applied for the identification of

the parameters 
• Two different impurities and two different active sites are taken

into account, which are located on two different crystal facets. 
• There is no interaction between the active sites. 
• Impurity effect on the nucleation is insignificant and hence it is

considered negligible. 

Equilibrium adsorption model is considered. 
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