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ABSTRACT To manage and enable service customization among multiple internet service providers (ISPs)
sharing the common physical infrastructure and network capacity in virtualized Wi-Fi networks, this paper
models and optimizes access point-station (STA) association via airtime usage control. More specifically,
an optimization problem is formulated on the STAs’ transmission probabilities to maximize the overall
network throughput, while providing airtime usage guarantees for the ISPs. As the proposed optimization
problem is inherently non-convex, an algorithm to reach the optimal solution is developed by applying
monomial approximation and geometric programming iteratively. Based on the proposed 3-D Markov-chain
model of the enhanced distributed channel access protocol, the detailed implementation of the optimal trans-
mission probability of each STA is also discussed by manipulating medium access control parameters. The
performance of the developed association and airtime control scheme is evaluated through numerical results.
For both homogeneous and non-homogeneous STA distributions, numerical results reveal performance gains
of the proposed algorithm in improving the throughput and keeping airtime usage guarantees.

INDEX TERMS Wireless local area networks (WLANs), IEEE 802.11 standard, AP-STA association,
airtime control, throughput, Markov chain, geometric programming, virtualized wireless networks.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
To support the growing demand for mobile data traffic,
the idea of heterogeneous networks (HetNets) has ensued,
aiming to improve the network capacity and coverage. Such
improvement can be enabled in HetNets by offloading traffic
from the existing macro-cellular network to short-range small
cells. To deploy such small-cells, WiFi offloading appears
to be a promising candidate due to WiFi’s success and its
low-cost deployment [1]. However, especially in congested
scenarios, IEEE 802.11-based WiFi networks struggle with
guaranteeing connectivity and quality-of-service (QoS) pro-
visioning because of inevitable collisions occurring in its
contention-based medium access control (MAC). [2].

Recently, software-defined wireless networking (SDWN),
along with wireless vitualization, has emerged as an archi-
tectural choice for wireless networks [3]–[5]. The principle in
this architecture is the separation of control and data planes in
the network. This separation provides the capacity to abstract
and share resources from the infrastructure level as well as to

deploy centralized control, in which all transmission param-
eters and connections can be actively manipulated based on
requested services, user conditions, and available resources.

To overcome the challenges in 802.11 networks, wireless
virtualization and delegation of management rights to a
centralized controller can be useful to guarantee connec-
tivity, support customized services with finer control over
QoS, and balance the traffic load among different access
points (APs). There have been several works in the literature
proposing network architectures and designs to enable WiFi
virtualization (e.g., [2], [6], [7]).

In virtualized 802.11-basedWiFi networks, where physical
infrastructure and wireless resources are shared by differ-
ent internet service providers (ISPs), one key issue is to
provide isolation among virtual networks run by different
ISPs. Using a random access protocol, i.e., carrier sense
multiple access (CSMA), unavoidable collisions act to couple
the transmissions of different virtual WLANs (V-WLANs).
Moreover, since the network capacity is shared yet con-
strained, the increase of traffic in one V-WLAN may reduce
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TABLE 1. Summary of abbreviations.

the available network capacity to another [8]. Thus, an effi-
cient resource allocation among V-WLANs is essential to
manage the MAC-layer couplings.

In multi-cell or multi-tier wireless networks, before a STA
can access the network, a decision needs to be made about
whichAP to associate with. Such STA-AP association control
could create an opportunity to provide fairness guarantees
among different ISPs in V-WLANs. In addition to STA-AP
association, the airtime among STAs associated to the same
AP can optimally be adjusted. Controlling airtime usage of
the STAs provides the opportunity to optimize the V-WLAN
performance (e.g., improving throughput by exploitingmulti-
user diversity) as well as another degree of freedom to guar-
antee fairness among the ISPs.

To overcome MAC-layer couplings and balance the load,
in this paper,1 we propose a network-originated association
control algorithm in virtualized multi-cell WiFi networks.
In the context of resource management for virtualized WiFi
networks, there are a few works addressing only airtime con-
trol in the literature [8], [10], [11]. But, in this context, to the
best of our knowledge, the association control in virtualized
multi-cell 802.11 networks has not been studied, which we
show in this paper can provide another degree of freedom for
finer service customization.

More specifically, in this work, AP-STA association and
airtime control are jointly explored to provide fairness and
throughput guarantees for different V-WLANs. Taking into
account STA transmission rates and ISP airtime reservations,

1Parts of this paper have been presented in [9]

an optimization problem is formulated to adjust the transmis-
sion probability of each STA at each AP. The objective is
to maximize the overall network throughput, while keeping
a total airtime guarantee for each ISP. To solve the formu-
lated problem which is non-convex and thus computationally
intractable, an iterative algorithm is developed through suc-
cessive geometric programming. This algorithm can achieve
an optimal solution with an affordable complexity.

Furthermore, to implement the optimal transmission prob-
abilities, we model the EDCA protocol with a three-
dimensional Markov chain and establish the relationship
between the transmission probability of a STA and the EDCA
parameters. Based on this relationship, we developed a con-
trol algorithm to approach the optimal transmission prob-
ability by jointly manipulating the EDCA parameters such
as contention window (CW) size and arbitration inter-frame
space (AIFS). Finally, through numerical results, we verify
the performance enhancement provided by the developed
AP-STA association and airtime control approach in terms
of throughput and airtime usage guarantees.

B. RELATED WORKS
1) AP-STA ASSOCIATION AND AIRTIME CONTROL
There exists a large body of work on the resource alloca-
tion (e.g., [12], [13]) and user association problem in wire-
less networks, with applications to WLAN, V-WLAN, and
multi-cell/multi-tier cellular networks, including radio access
technology (RAT) selection and association in the offloading
scenario. Reference [14] presents a survey of user association
techniques in cellular networks, specifically towards fifth
generation network technologies such as HetNet, multiple-
input multiple-output (MIMO), and millimeter wave. Many
works take a distributed approach, wherein each STA
determines which AP to associated with, for example,
reference [15] dealing with multi-RAT HetNets, [16]
addressing user association in HetNet for outage and QoS
guarantees, reference [17] and [18] which focus onmm-wave.
In 802.11WiFi, the focus of this work, due to the probabilistic
nature of themultiple access mechanism, namely CSMA/CA,
different techniques to exploit user association for load bal-
ancing and fairness are required.

In most current vendor implementations, 802.11 STAs
choose the AP with the highest received signal-to-noise
ratio (SNR) to connect with. Since the STA density is often
uneven in the network [19], [20], the Max-SNR approach can
lead to an unbalanced distribution of STAs among APs, caus-
ing unfairness. In order to balance the load of APs, several
AP-STA association algorithms have been presented in the
literature, mostly by maximizing the minimum throughput of
all STAs [21]–[24]. Nevertheless, in a basic service set (BSS)
including an AP and its associated multi-rate STAs, it is
shown that the throughput is limited by the STAwith the low-
est data rate. This phenomenon is also to as the performance
anomaly problem [25]. Thus, comparing with the Max-SNR
approach, these load-balancing approaches improve the
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max-min fairness among STAs at the cost of decreasing the
aggregate throughput.

To address the performance anomaly and balance the
trade-off between aggregate throughput and fairness, propor-
tional fair throughput allocation has widely been considered
in multi-rate 802.11 WLANs [26]–[30]. In [26], proportional
fairness is studied in a single BSS. It is shown that pro-
portional fairness leads to an airtime-fairness, where equal
airtime usage is provided to all STAs. Moreover, in a multi-
AP WLAN, [28], [29] study AP-STA association problem
with an objective to maximize the proportional fairness.More
precisely, association control is implemented in the form of
airtime allocation, where the transmission time of STAs at
different APs are jointly optimized [28], [29].

Precise control of the STA airtime usage in a 802.11
contention-based WLAN is difficult due to the distributed
and random nature of the CSMA-based MAC protocol.
Nevertheless, the airtime control algorithms have been pro-
posed in the literature by manipulating the MAC parame-
ters [31]–[34]. These discussions are limited to heuristically
adjusting the parameters separately and thus can only find
a suboptimal solution in a subset of the feasibility region.
In this work, we develop an airtime control algorithm by
jointly manipulating the EDCA parameters.

In a virtualized WLAN serving multiple ISPs, AP-STA
association and airtime control become more challenging.
The reason is that fairness guarantees and service customiza-
tion are required for each ISP while there are unavoidable
couplings among the STA transmissions of different ISPs
in the network. There are a few works addressing only
airtime control in the literature. Considering a virtualized
single-cell WLAN, in [10], a heuristic airtime control algo-
rithm is proposed to achieve the target airtime usage for
each ISP by controlling the minimum CW of each STA.
Similarly, [11] addresses optimizing CWusing control theory
however, as the discussion is limited to controlling minimum
CW, the optimality of the result might be sacrificed. In a
multi-cell WLAN, [8] presents an analysis on the feasibility
region of ISP airtimes and characterizes the ISP airtimes at the
rate region boundary. Furthermore, a distributed algorithm
is developed to allocate airtime slices among ISPs and flow
rates within each slice in a max-min fair manner. Since max-
min fairness is used as an objective for rate allocation among
the flows in each ISP, the optimality of the achieved total
throughput may not be guaranteed in a multi-rate WLAN.
In addition, the association control is not discussed in [8].

2) EDCA MODELING AND OPTIMIZATION
To implement the optimal AP-STA association and airtime
allocation, it is desirable to control the transmission proba-
bility of each STA. However, in a CSMA/CA-based WLAN,
the only controllable parameters are the MAC layer parame-
ters. Thus, it is essential to mathematically model the effects
of such parameters on the transmission probabilities of STAs.

The EDCA modeling has received considerable attention
in the literature. There are several studies, such as [35], [36],

that only focus on numerically solving the stationary state,
i.e., transmission probability of each STA, given the network
configuration. Another group of works, e.g., [37]–[44], pro-
vide models for the EDCA protocol with the help of aMarkov
chain, inspired by the classical work of Bianchi [45]. Using
such Markov chain models, it is possible to optimize the
network by tuning the EDCA parameters. However, due to
the complexity of the proposed EDCA models, it is hard to
establish an explicit relationship between the transmission
probabilities and the controllable EDCA parameters. Thus,
these works mostly provide a numerical, e.g., [37]–[40], or an
approximate analytical, e.g., [41]–[44], solution in terms of
MAC parameters. Moreover, none of these works has jointly
controlled the EDCA parameters.

The proposed Markov chain model is based on [46], with
which an explicit relationship between the transmission prob-
ability and EDCA MAC parameters can be established. One
limitation of the EDCA model proposed in [46] is the accu-
racy of AIFS differentiation. Unlike in DCF, the time duration
each STA has to wait before its backoff process (i.e. AIFS)
is different in EDCA. This can lead to the result that the
number of contending STAs is not time-homogeneous [36].
Therefore, the collision probability that each STA faces is
also not time-homogeneous. But, as pointed out in [42],
time-homogeneity assumption greatly simplifies the model-
ing complexity, and thus, the steady state performance can
be characterized as explicit functions of backoff parameters.
Furthermore, the accuracy of such model can be effectively
improved by setting a relatively large initial CW.

C. STRUCTURE
The rest of this paper is organized as follows. Section II
presents an overview of the system configuration and mod-
eling. In Section III, we first analyze the feasibility region of
the transmission probabilities based on the proposed Markov
chain model for IEEE EDCA. Then, we formulate the trans-
mission probability optimization problem, which maximizes
the system throughput and guarantees customized airtime
usage for each ISP. In Section IV, the implementation details
of MAC parameter control are discussed in order to achieve
the optimal transmission probability. Illustrative results are
provided in Section V to evaluate the performance of the
developed algorithms. Section VI provides some concluding
remarks.

II. SYSTEM CONFIGURATION AND MODELING
We consider an IEEE 802.11-based WLAN that consists of
a large number of APs. APs operate on non-overlapping fre-
quency channels. LetA be the set of APs andNa = |A| be the
total number of APs. Each AP has a limited coverage area and
all STAs are randomly distributed in the field. The network
carries traffic belonging to a number of different ISPs (also
referred to as V-WLANs). Let K be the set of ISPs using
the network. Furthermore, let Sk be the set of STAs of ISP
k ∈ K and Nk = |Sk | be the number of STAs belong to ISP k .
Furthermore, let S be the set of all STAs and Ns =

∑
k∈K Nk
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FIGURE 1. Layered system model.

FIGURE 2. System model.

be the total number of STAs in the network. The network
is administratively virtualized, i.e., each AP will broadcast
multiple different SSIDs, one for each ISP. Figure 1 and 2
illustrate an example of the network architecture with four
physical APs and two ISPs.

A. ENHANCED DISTRIBUTED CHANNEL ACCESS (EDCA)
To access the channel, the STAs are assumed to follow
the EDCA MAC protocol of 802.11e standard. EDCA pro-
tocol is designed to enhance the basic MAC mechanism,
i.e., distributed coordination function (DCF), aiming to sup-
port service differentiation. Similar to DCF, EDCA is also a
contention-based access scheme, based on CSMA/CA using
binary exponential backoff rules to manage retransmission of
collided packets. However, in contrast to DCF, EDCA pro-
vides service differentiation by tuning contention parameters
to impact probability of accessing the channel [45], [47], [48].

In DCF, STAs wait until the channel has been sensed idle
for a DCF inter-frame space (DIFS) and then back off from
the channel for a random number of slots selected from the
range [0,Wi] where Wi represents the contention window of
STA i ∈ S [45]. Initially, at backoff stage mi = 0, Wi is set
equal to the minimum contention window size Wmin,i. Then,
after each unsuccessful transmission, STA imoves to the next
backoff stage andWi is doubled. When the maximum backoff
stage mi is reached, Wi is no longer increased and stays at
2miWmin,i. If the STA experiences a collision at the maximum

TABLE 2. Summary of notations and variables.

backoff stage, it will retry transmission for at most hi times.
If the data frame is successfully received, the AP waits for a
period of time called short inter-frame space (SIFS) and then
sends an acknowledgement (ACK).

To support service differentiation, EDCA defines access
categories with different service level priorities. Each access
category has different inter-frame space waiting times, called
arbitration inter-frame spaces (AIFS), and contention param-
eters, i.e., minimum contention windowWmin and maximum
backoff stage mi, which impact the maximum contention
window size. Combined, these differing parameters impact
the probability of successful transmission. Further, for each
transmission opportunity (TXOP) in EDCA a STA can trans-
mit multiple back-to-back packets for a fixed period of
time. Figure 3 illustrates an example of the channel-access
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FIGURE 3. 802.11e EDCA channel access procedure.

procedure of two STAs using EDCA [47], [48]. Let TTXOP be
the duration of a transmission opportunity. Then, the duration
of a successful EDCA transmission becomes

Ts = TTXOP + SIFS+ γ + ACK+ γ + AIFS (1)

where γ denotes the propagation delay. Similarly, the
duration of a collision can be calculated as

Tc = TTXOP + γ + AIFS. (2)

Note that when the colliding STAs use different AIFS values,
the AIFS value in (2) should take the value of the largest
AIFS. But, since the fixed transmission duration TTXOP
(in the order of ms) is much larger than AIFS (in the order
of µs), the difference between the AIFS can be ignored here.

B. ASSOCIATION CONTROL VIA
TRANSMISSION PROBABILITIES
In a WLAN with APs densely deployed, STAs need to deter-
mine which APs to connect with. We aim to generalize the
association control problem by adjusting the transmission
probability of each STA at any AP, which can be controlled
by configuration of MAC parameters. Thus, we define τ ai
(0 ≤ τ ai ≤ 1) as the probability that STA i attempts
to transmit at AP a in a general time-slot.2 Consequently,
the stationary probability that a time-slot is idle in the BSS
including AP a is

Paidle =
∏

i∈S
(1− τ ai ). (3)

In a given BSS, transmitted packets will be received suc-
cessfully, if exactly one STA transmits on the channel. Thus,
the stationary probability of a successful transmission initi-
ated by STA i becomes

Pasucc,i = τ
a
i

∏
i′∈S,i′ 6=i

(1− τ ai′ ). (4)

Since ACK, SIFS, and also γ are significantly smaller
(in the order of µs) than the fixed transmission duration
TTXOP (in the order of ms), we approximate Ts and Tc to
be of the same size and denote them by T . In particular,
the propagation delay (the time for wireless signals to travel
from transmitter to receiver) is negligible here since it is typ-
ically less than one µs as compared to TTXOP. Consequently,
the expected length of a general time-slot becomes

E{Tg} = δPaidle + (1− Paidle)T (5)

2We focus on the uplink scenario. For downlink transmission, the AP acts
as a STA and accesses the channel in the same manner, thus the solution
developed for the uplink can be directly applied to the AP.

where δ is the duration of an idle time-slot. Furthermore,
the expected information (in bits) transmitted by STA i to AP
a in a general time-slot can be derived as

E{Ig} = Pasucc,ir
a
i TTXOP (6)

where rai represents the transmission data rate of the link
between STA i and AP a. As defined in [45], based on the (5)
and (6), the throughput of STA i at AP a becomes

T ai =
E{Ig}
E{Tg}

=
Pasucc,ir

a
i TTXOP

Paidleδ + (1− Paidle)T
. (7)

Let define a new variable xai =
τ ai

1−τ ai
(xai ≥ 0), which

represents the expected number of consecutive transmission
attempts by STA i at AP a as [8] and [26]. Consequently, Paidle
and Pasucc,i will be transformed into

Paidle =
1∏

i∈S (1+ x
a
i )
, (8)

Pasucc,i =
xai∏

i′∈S (1+ x
a
i′ )
= xai P

a
idle. (9)

Subsequently, from (8) and (9), T ai can be represented in
terms of xai as

T ai =
xai P

a
idler

a
i TTXOP

T − (T − δ)Paidle
=

xai r
a
i t∏

i′∈S (1+ x
a
i′ )− t

′
(10)

where t = TTXOP
T and t ′ = T−δ

T .
In addition to the throughput of each STA, the fraction of

time that each STA spends for transmission could be consid-
ered as another performance metric, specifically in order to
measure and preserve service customization among different
STAs or ISPs. The total access airtime for STA i, including
both successful transmissions and collisions, becomes

T aair,i =
Pacoll,iT + P

a
succ,iT

Paidleδ + (1− Paidle)T
, (11)

where

Pacoll,i = τ
a
i

[
1−

∏
i′∈S,i′ 6=i

(1− τ ai′ )
]

is the stationary probability that STA i attempts to transmit
at the same time as another STA in a general time-slot and a
collision occurs, as defined in [26]. Consequently,

T aair,i =
τ ai

1− Paidlet
′
=
xai
∏

i′∈S,i′ 6=i(1+ x
a
i′ )∏

i′∈S (1+ x
a
i′ )− t

′
. (12)

In this work, we aim to maximize the overall network
throughput, while guaranteeing a minimum requirement on
the aggregate airtime of each ISP. To this end, the transmis-
sion probability of STAs (τ ai ) needs to be adaptively opti-
mized by maximizing the aggregate throughput of all STAs
at all APs, i.e.,

∑
i∈S,a ∈A T ai . Furthermore, for each ISP

(e.g., ISP k), a constraint needs to be set in order to keep the
total airtime of all STAs belonging to ISP k larger than a min-
imum requirement. More specifically,

∑
i∈Sk ,a ∈A T aair,i ≥ ηk

where ηk denotes the target share of the airtime for ISP k .
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Accordingly, to formulate such optimization problem,
the feasibility region of τ ai (or xai ) is required. Thus, we study
the behavior of a single STA, which is using EDCA, with
a three-dimensional Markov chain. With the aid of the pro-
posed Markov model, we can learn how to implement or con-
trol τ ai in terms of EDCAparameters. As a result, based on the
established relationship between τ ai and EDCA parameters,
we would be able to analyze its feasibility region and also
design an algorithm to control EDCA parameters to approach
the optimal τ ai .

III. OPTIMIZATION PROBLEM
In this section, we present the AP-STA association and air-
time control optimization problem based on the systemmodel
introduced in Section II.We first use aMarkov chain tomodel
the EDCA protocol. With this model, we can analyze the
feasibility region of τ ai for each STA. Then, the optimization
problem is formed and solved by applying monomial approx-
imation and geometric programming.

A. MARKOV CHAIN MODEL FOR EDCA
To study the feasibility region of τ ai and its implementation
in the EDCA MAC protocol, we use a three-dimensional
Markov chain. Such model enables us to estimate the trans-
mission probability of the STAs in a WLAN employing the
EDCA protocol. Different from the previous works, which
discuss a single parameter in the EDCA protocol (e.g., [32]),
we aim at developing a general mathematical model that
can show the influences of all the EDCA parameters on the
transmission probability.

Figure 4 shows the three-dimensional Markov chain model
to describe the behavior of a single STA, which uses the
EDCA MAC protocol. Since STA transmissions are only
coupled within a BSS, we consider a single BSS where an
AP and its associated STAs reside in. Thus, in this sub-
section without loss of generality, we remove the index
of a (e.g., τ ai is replaced by τi) to keep the notation
simple.

Our proposed three-dimensional Markov chain model is
an extension to the presented model in [46]. To be able to
further control the competition among STAs, and thus the
collision probability in a BSS, we introduce two new MAC
parameters qi and Li for each STA. Similar to [49], after
a successful transmission or a packet drop, the STA has to
flip a biased coin with successful probability qi to enter
the backoff process. Whenever the STA fails to enter the
backoff process, it needs to wait for a period of long inter-
frame space of Li time-slots before another try. This flip-
coin process helps to better control the contention in the
system. These two variables are incorporated in the proposed
Markov chain.

It should be noted that time in this Markov chain is slotted
and the interval between any two adjacent states is a general
time-slot. Here, a general time-slot can be an idle time-
slot δ, a successful transmission duration (Ts) or a collision
duration (Tc). In this Markov chain, the triple {s(t), b(t), v(t)}

FIGURE 4. Three dimensional Markov chain model for one STA.

denotes the state of the STA at time t . More specifically, s(t)
represents the backoff/retransmission stage of STA, where
−2 ≤ s(t) ≤ mi+ hi (s(t) = −2,−1 will be explained later).
Furthermore, b(t) denotes the backoff counter, which takes
a value between 0 and the CW of the current backoff stage.
Furthermore, v(t) represents the remaining time of a frozen
period or the waiting time to the next trial when the STA
already failed to enter the backoff process. More specifically,
for the latter case, v(t) is set to Li−1 once the flip coin process
fails (with probability 1 − qi) to impose extra waiting time
until another trial.

The detailed transition probabilities between states of the
Markov chain and the stationary condition of the Markov
chain can be found in theAppendix.With such stationary con-
ditions, the transmission probability τ of each STA is derived
as function of the detailed EDCA parameters as in (13), as
shown at the top of the next page, where pi is the conditional
collision probability faced by STA i if a packet were to be
transmitted by STA i as defined in (26).

B. FEASIBILITY REGION ANALYSIS
In this subsection, we study the feasibility region of τ ai
in order to complete the optimization problem formulation.
Based on (13), the adjustable variables to tune τ ai are mai ,
hai , L

a
i , q

a
i , A

a
i , and W

a
j,i where 0 ≤ j ≤ mai + hai . Recall

that 0 ≤ qai ≤ 1, 0 ≤ Lai , and 0 ≤ W a
j,i. Further-

more, suppose that AIFS[STA i] denotes the AIFS of STA i.
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τi =

mi+hi∑
j=0

bj,0,0 =
1− pmi+hi+1i

1− pi

[
Li
1− qi
qi
+

1+ piN
pi

1− (1− pi)Ai+1

(1− pi)Ai+1
+

1− pmi+hi+1i

1− pi

+
1+ Npi

2(1− pi)Ai

(
Wmin,i

[
1− (2pi)mi+1

1− 2pi
+

2mipmi+1i (1− phii )

1− pi

]
−

1− pmi+hi+1i

1− pi

)]−1
(13)

Since Ai = AIFS[STA i] − 1, and AIFS > SIFS in EDCA,
we have Ai ≥ SIFS. Assuming that SIFS is equal to one time-
slot, we have Aai ≥ 1 without loss of generality.

1) LOWER BOUND OF τa
i

Let τ ai be the lower bound of τ ai . From (13), it is clear that
τ ai → 0 when Lai → ∞, or qai → 0, or Aai → ∞.
Consequently,

τ ai = 0. (14)

2) UPPER BOUND OF τa
i

Let τ̄ ai be the upper bound of τ ai . To calculate τ̄ ai , we need
to make the denominator of τ ai in (13) as small as possible.
Thus, we set Lai = 0 (or qai = 1) and W a

min,i = 0, which
make the first and fourth terms in the denominator zero. Then,
by setting Ai to its lower bound, i.e., Aai = 1, we canminimize
the second term in the denominator of τ ai . Consequently,
at Lai = 0,W a

min,i = 0, and Aai = 1,

τ ai =

[
1+

(1+ pai N )(2− pai )

(1− pai )(1− (pai )
mi+hi+1)

]−1
. (15)

From (15), it is clear that the upper bound of τ ai can be
achieved when mai + h

a
i →∞. Thus, τ̄ ai can be written as

τ̄ ai =

[
1+

(1+ pai N )(2− pai )

1− pai

]−1
. (16)

C. OPTIMIZATION PROBLEM
Taking into account the feasibility region of τ ai derived in
Section III-B, here, we can mathematically present the trans-
mission probability optimization problem. The objective is
to maximize the overall network throughput, while distribut-
ing access airtime among different ISPs according to their
reservations. More specifically, the optimization can be for-
mulated as

max
X ,PX ,PX ,P

∑
i∈S,a∈A

xai r
a
i t∏

i′∈S (1+ x
a
i′ )− t

′
, (17a)

subject to,
∑

i∈Sk ,a ∈A

xai
∏

i′∈S,i′ 6=i(1+ x
a
i′ )∏

i′∈S (1+ x
a
i′ )− t

′
≥ ηk ,

∀k ∈ K (17b)
xai

1+ xai
≤ τ̄ ai ,

∀i ∈ S, a ∈ A (17c)

τ̄ ai

(
1+

(1+ pai N )(2− pai )

1− pai

)
= 1,

∀i ∈ S, a ∈ A (17d)

pai = 1−
∏

i′∈S,i′ 6=i
1−

xai′
1+ xai′

,

∀i ∈ S, a ∈ A. (17e)

where XXX = [xai ] (x
a
i ≥ 0) and PPP = [pai ] (0 ≤ pai ≤ 1). Let us

recall that xai =
τ ai

1−τ ai
and pai = 1−

∏
i′ 6=i (1− τ

a
i′ ). It should

be noted that the optimization problem is alternatively for-
mulated with respect to xai instead of τ ai , since it will prove
useful to solve the problem.

In the preceding optimization problem, the objective func-
tion in (17a) represents the overall network throughput,
i.e.,

∑
i∈S,a ∈A T ai , based on (10). Furthermore, constraints

in (17b) guarantee the minimum airtime reservations for all
ISPs, i.e.,

∑
i∈Sk ,a ∈A T aair,i ≥ ηk , based on (12). This set

of constraints enables controlling ISPs’ share of access air-
time regardless of their number of STAs. To guarantee that
the provided solution fits into the feasibility region, in con-
straint (17c), τ ai is limited to its upper bound. Then, the equal-
ity constraint (17d) establishes the relationship between the
upper bound τ̄ ai and p

a
i based on (16). Finally, constraint (17e)

establishes the relationship between pai and all xai′ , ∀i
′
∈

S, i′ 6= i according to (26).
Due to the non-convex objective function and ISP air-

time constraints as well as non-linear equality constraints,
the formulated problem is non-convex and thus intractable to
solve. However, it potentially looks like an extension of Geo-
metric Programming (GP) (defined in Section VI-B). Thus,
by applying successive transformation strategies, we will try
to convert the original problem into a series of standard GP
problems that can be solved to reach an optimal solution.
First, we introduce three auxiliary variables, ya =

∏
i′∈S (1+

xai′ ) − t ′, ∀a ∈ A, uai = 1 − pai , ∀i ∈ S,∀a ∈ A, and
tai = 1+xai , ∀i ∈ S,∀a ∈ A. Then, the optimization problem
in (17) can be transformed into

min
XXX ,TTT ,UUU ,PPP,YYY

∑
i∈S,a∈A

−
xai r

a
i t

ya
, (18a)

subject to,

∏
i∈S (1+ x

a
i )

t ′ + ya
= 1, ∀a ∈ A (18b)

ηk + 1

1+
∑

i∈Sk ,a ∈A
xai
∏
i′ 6=i t

a
i

ya

≤ 1, ∀k ∈ K

(18c)
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xai
1+ xai

≤
1

1+
(1+pai N )(2−pai )

1−pai

, ∀i ∈ S, a ∈ A

(18d)

uai
∏

i′∈S,i′ 6=i
tai′ = 1, ∀i ∈ S, a ∈ A (18e)

tai
1+ xai

= 1, ∀i ∈ S, a ∈ A (18f)

uai + p
a
i = 1, ∀i ∈ S, a ∈ A (18g)

where TTT = [tai ] (t
a
i ≥ 1), UUU = [uai ] (0 ≤ uai ≤ 1), YYY = [ya]

(ya > 0). Nevertheless, the transformed problem is still not
in a GP form. One reason is that the objective function (18b)
is not a posynomial because of negative multiplicative coeffi-
cients. To deal with such problem, first, we equivalently sub-
stitute the objective function by

∑
i∈S,a∈A−x

a
i r

a
i t (y

a)−1+M
where M is a sufficiently large positive constant. Adding
M makes sure that the objective function is always positive.
Then, we introduce an additional auxiliary variable x0 ≥ 0.
By minimizing x0 and guaranteeing constraint C11 in (19),
we can effectively minimize the objective function in (18b).
Consequently,

min
XXX ,TTT ,UUU ,PPP,YYY ,x0

x0,

subject to, C11 :
M

x0 +
∑

i∈S,a∈A

(
xai r

a
i t

ya

) ≤ 1

C12 :

∏
i∈S (1+ x

a
i )

t ′ + ya
= 1, ∀a ∈ A

C13 :
ηk + 1

1+
∑

i∈Sk ,a ∈A
xai
∏
i′∈S,i′ 6=i t

a
i′

ya

≤ 1,

∀k ∈ K

C14 :
uai x

a
i + (1+ N )xai

uai + N (uai )
2xai

≤ 1,

∀i ∈ S, a ∈ A
C15 : uai

∏
i′∈S,i′ 6=i

tai′ = 1, ∀i ∈ S, a ∈ A

C16 :
tai

1+ xai
= 1, ∀i ∈ S, a ∈ A (19)

In the preceding optimization problem, pai is replaced by
1−uai based on constraint in (18g). The optimization problem
in (19) belongs to the class of complementary GP problems
that allow upper bound constraints on the ratio between two
posynomials and equality constraints on the ratio between
a monomial and a posynomial [50], [51]. By approximat-
ing the posynomials in the denominator of such constraints,
a complementary GP can be turned into a standard form of
GP. Consequently, the optimal solution can be achieved by
iteratively applying monomial approximations and solving
a series of GPs. The arithmetic-geometric mean inequality
can be used to approximate a posynomial with a monomial.
The details of such monomial approximation are provided
in Section VI-B.

Accordingly, we propose an iterative algorithm to reach to
an optimal solution of the transmission probability optimiza-
tion problem. In each iteration, monomial approximations
are applied to the denominator of C11, C12, C13, C14, and
C16. Then, the resulting GP can be solved for instance by
using a standard interior-point algorithm. More specifically,
Algorithm 1 presents the steps needed to be performed until
convergence.

Algorithm 1 GP-Based Association Control Algorithm
Initialize xai , t

a
i , p

a
i , u

a
i , for all i ∈ S, a ∈ A, ya for all

a ∈ A, x0;
Record the current system state as ZZZ =

(X ,T ,U ,P,YX ,T ,U ,P,YX ,T ,U ,P,Y , x0);
repeat
Compute the ratio α of each monomial term in the
denominator of C11, C12, C13, C14, and C16 according
to (30), at the current system state ZZZ ;
Apply monomial approximation to the denominators
mentioned above according to (29);
Solve the resulting GP problem using cvx;
Update the current system state ZZZ =

(X ,T ,U ,P,YX ,T ,U ,P,YX ,T ,U ,P,Y , x0);
until all xai converge.

Compute the optimal transmission probabilities τ ∗ai =
x∗ai

1+x∗ai

It should be noted that the optimal solution achieved
by Algorithm 1 might require multiple associations for
an STA to different APs. Since the APs operate on non-
overlapping channels, connection to multiple APs can be
implemented through dynamic channel bonding/aggregation
techniques (proposed for IEEE 802.11ax [52]) with only one
transceiver required at each STA. Moreover, for scenarios
that the multiple association is not feasible, each STA can
only associate with the AP with the largest transmission
probability, i.e., argmaxax

∗a
i .

D. ASYMPTOTIC COMPLEXITY ANALYSIS
In this subsection, we study the asymptotic complexity and
scalability of Algorithm 1 in terms of the number of STAs,
i.e., Ns, and the number of APs, i.e., Na.
In Algorithm 1, for each iteration, the computational com-

plexity is incurred by applying monomial approximations
and solving the resulting GP problem. Suppose CMA and
CGP denote the required computing efforts for monomial
approximations and solving GP problem in each iteration.

More specifically, first in each iteration, the denominators
of constraints C11, C12, C13, C14, and C16 need to be
approximated according to (29). The required computational
complexity for these monomial approximations is propor-
tional to the number of monomial terms in the denominators
of constraints C11, C12, C13, C14 and C16. Consequently,
the complexity of monomial approximations totals to

CMA = O(NaNs)+O(NaNs)+O(NaN 2
s )

+ O(NaNs)+O(NaNs) = O(NaN 2
s ) (20)
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Subsequently, the resulting GP problem needs to be solved
by transforming it to a convex problem. It is reported
in [53] that the worst-case computational complexity of this
approach isO(pn3), where n is the number of variables, and p
is the total number of terms in all monomials and posynomials
in the objective function and constraints. The number of
variables of the optimization problem in (19) is

n = 4NaNs + 2Na + 1 = O(NaNs) (21)

Furthermore, the total number of terms in all monomials and
posynomials can be counted as

p = 1+ (4NaNs + 1)+ Na(Ns + 2)

+

∑
k

(1+ NkNa(Ns + 1))

+ 7NaNs + NaN 2
s + 2NaNs

= O(NaN 2
s ) (22)

where each term in (22) is respectively the number of terms in
all the monomials and posynomials in the objective function
and constraints C11-C16. Based on (21) and (22), to solve the
GP problem, the complexity is

CGP = O(pn3) = O(N 4
aN

5
s ) (23)

Thus, based on (20) and (23), per-iteration asymptotic com-
plexity of Algorithm 1 becomes

CAlg1−iteration = CMA + CGP = O(N 4
aN

5
s ) (24)

We now turn to studying the number of iterations (denoted
by1) required for Algorithm 1 to converge. Figures 5a and 5b
illustrate numerical results on1 versus Na and average num-
ber of STAs per AP, i.e., λmean, respectively. The simulation
setup used in these figures is the same as the one presented in
Section V. In Figure 5a, λmean is set to 10

Na
, so that the expected

total number of STAs in the WLAN stays fixed. Figure 5a
shows that 1 increases with Na when Na is small, and then,
it becomes steady for a larger range of Na. In Figure 5b, Na
is fixed equal to 4 and λmean is varying. Figure 5b shows that
1 grows linearly over a typical range of λmean. It should be
noted that the fluctuations in1 are caused by the randomness
in the number of STAs per AP, which follows a Poisson
distribution with mean of λmean.

Therefore, based on (24) and the numerical results
in Figures 5a and 5b, it is shown that the overall complexity
of the proposed algorithm only grows polynomially with the
number of STAs and APs, which is a considerable improve-
ment over direct search methods since the user association
problem is combinatorial, and the complexity of a direct
search is therefore exponential.

In this sense, Algorithm 1 scales well and implementation
in large scale networks will depend on both the considered
network size and the frequency with which the algorithm will
need to be run. To be as adaptive as possible to the system,
Algorithm 1 can be run as frequent as any change happens
in the network status. However, the frequency on which the

FIGURE 5. Number of iterations required for Algorithm 1 to converge.
(a) Number of iterations vs. number of APs (Na). (b) Number of
iterations vs. STA density (λmean).

proposed algorithm would be run can be decided considering
the network dynamics and feasibility issues. Ideally, the pro-
posed algorithm would be run every coherence time in the
system.

IV. IMPLEMENTATION DETAILS
The optimal transmission probability of STA i at AP a,
i.e., τ ∗ai , can be obtained from Algorithm 1. But, in the
EDCA protocol, the transmission probabilities of STAs are
not directly controllable. Instead, what we can control are
the MAC-layer parameters (e.g., Wmin and AIFS) to achieve
the optimal transmission probability. In this section, we first
verify the accuracy of the relationship between τ ai and the
EDCAparameters provided in (13) and also the validity of the
Markov chainmodel. Then, we develop an algorithm to adjust
EDCA parameters aiming to implement the optimal values of
τ ai obtained from Algorithm 1 in the EDCA protocol.
We first investigate the achievable accuracy by control-

ling different EDCA parameters through an example. In this
example, we consider one BSS with 6 STAs. The transmis-
sion probabilities of STA 2 to STA 6 are fixed (e.g., τ2 = τ3 =
τ4 = τ5 = τ6 = 0.005), while the transmission probability
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FIGURE 6. Accuracy of controlling different parameters.

of STA 1, i.e., τ1, is varied from 0.005 to 0.1. Figure 6 com-
pares the throughput of STA 1 analytically derived from (10)
and numerically measured using an EDCA simulator. In the
numerical results, different EDCA parameters are separately
adjusted to tune τ1 to the desired value according to (13).
Figure 6 demonstrates that controlling a single parameter
might not be adequately effective to adjust τi to a desired
value. To achieve a broader feasible range of τi, we need to
jointly adjust these parameters.

Thus, we develop a control algorithm for MAC parameters
that can adjust all the 5 parameters to achieve the optimal
transmission probability obtained from Algorithm 1 solving
the optimization problem (19) in Section III. Algorithm 2
details how we use the derived optimal probabilities τ ∗i ,
and (13) to determine the required, and implementable, MAC
parameters. In other words, Algorithm 2 is to compute the
EDCA parameters for a given STA to realize the optimal
transmission probabilities obtained from Algorithm 1 based
on (13).

In Section III-B, the feasibility region of transmission
probability is calculated assuming that all the MAC param-
eters, i.e., Wmin, A, q or L, m, h, can be freely varied in their
feasible ranges. Considering the feasibility regions and the
fact that some MAC parameters must be set to integer values,
a search algorithm is required to find a feasible solution
of (13) to achieve the optimal transmission probability. Here,
we propose an effective heuristic search Algorithm 2 (with
affordable complexity) where EDCA parameters are first
initialized and then adjusted one-by-one, taking into account
the achievable accuracy by controlling different parameters.
This algorithm tunes all MAC parameters in a descending
order of their effectiveness.

More specifically, for a given STA at a given AP, we ini-
tially set values for the parameters to be the largest pos-
sible. Then, we start tuning Wmin, i.e., the best single
parameter to be controlled, by solving (13). To compute
Wmin based on (13), the optimal transmission probability is
obtained from Algorithm 1 and other MAC parameters are
fixed to their initial values. If the derived Wmin is feasible,
the algorithm stops and the EDCA parameters to achieve the

Algorithm 2 MAC Parameter Control Algorithm
For each AP-STA pair (i, a):
pai =

∏
i′∈S,i′ 6=i(1− τ

∗a
i′ )

Initialization:
Set Aai = 6, Lai = 100, mai = 6, hai = 6, qai = 0.5;
ComputeW a

min,i from (13), while other variables are fixed;
Round W a

min,i to an integer;
if W a

min,i < 0 then
Set W a

min,i = 0; Compute Lai from (13), while other
variables are fixed;
if Lai < 0 then
Set Lai = 0; Compute Aai from (13), while other
variables are fixed; Round Aai to an integer;
if Aai < 1 then

Set Aai = 1; Compute mai from (13), while other
variables are fixed; Round mai to an integer;
if mai < 0 then
Set mai = 0; Compute hai from (13), while other
variables are fixed; Round hai to an integer;
if hai < 0 then
Set hai =0;

Start transmission using EDCA protocol with parameters
{W a

min,i, A
a
i , q

a
i , L

a
i , m

a
i , h

a
i }.

optimal transmission probability are obtained. Otherwise, if
the output for Wmin is negative, we set Wmin to zero (which
is the smallest value possible) to move on to tune L to reach
the optimal transmission probability based on (13). This pro-
cedure similarly continues with tuning A and m, and finishes
with h.

The achievable throughput for STA 1 in Algorithm 2 is
plotted in Figure 6. As expected, it is shown that Algorithm 2
can approach the desired throughput closely for the total
range of τ1, i.e., the upper bound τ1 computed from (16).
Thus, Algorithm 2 can improve the control accuracy com-
pared with controlling the parameters separately.

Since Algorithm 2 examines each AP-STA pair to deter-
mine the required MAC parameters independently for each
STA, the time complexity of the algorithm is O(Ns), i.e,
is linear in the number of STAs in the system. Figure 7 com-
pares the average simulation time of Algorithm 2 versus the
number of STAs. Without loss generality, for a fixed number
of STAs, we examined the complexity of the algorithm while
the transmission probability of STA 1, τ1, was varied from
0.01 to 0.1. For the remaining STAs, τi′ , i′ ∈ S, i′ 6= 1 were
fixed at 0.005 and the average simulation time over 1000 trials
for each value of τ1 is presented.

V. NUMERICAL RESULTS
In this section, we present numerical results to evaluate
the performance of the proposed STA-AP association and
airtime control algorithm, and also the MAC parameter
control algorithm. More specifically, the performance of our
GP-based association scheme is compared with the
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FIGURE 7. Complexity of Algorithm 2.

Max-SNR scheme in terms of throughput and fairness
assuming equal airtime share for different ISPs. We imple-
mented a simulator for EDCA (including access probability
q and inter-frame space L described in Section VI-A) in
Matlab to measure the achieved throughput numerically.
Furthermore, we used CVX to solve the GP problems in the
association algorithm.

We consider a network in which 4 APs are deployed in a
10× 10 m2 area. More specifically, the APs are placed at the
centers of four different 5 × 5 m2 grids to provide seamless
coverage. To eliminate interference between the transmis-
sion of different APs, non-overlapping 20 MHz channels are
assigned to each of the four APs. The STAs are distributed
in the entire area according to the two-dimensional Poisson
point process (PPP).

The wireless channel model includes path loss and small-
scale fading. Generally, the channel gain can be expressed as
h = Ah′d−α/2, where d is the distance between a STA and an
AP, α ≥ 2 is the path loss exponent, A is a constant dependent
on the frequency and transmitter/receiver antenna gain, and h′

represents the small scale fading component. In the numerical
results, we set α = 3 and A = 1. Furthermore, h′ is randomly
generated according to the Rayleigh distribution assuming
E{|h′|2} = 1. The received SNR at STA i is equal to

Pgai
σ 2

where P is the transmission power, gai = |h
a
i |
2 is the channel

power gain from STA i to AP a, and σ 2 is the power of
noise. In all the numerical results, P/σ 2 is assumed fixed and
set to 10dB.

To determine the transmission rate of each STA-AP pair,
the 802.11a physical layer model is used. More specifi-
cally, to guarantee a maximum packet error rate, adaptive
modulation and coding is used based on the received SNR.
Table 3 shows the achievable transmission rates and adap-
tive modulation and coding schemes standardized in IEEE
802.11a and the SNR range for each scheme used in the
simulations.

The MAC layer parameters used in our simulations are
summarized in Table 4. Moreover, the target airtime share

TABLE 3. 802.11a adaptive modulation and coding scheme and the SNR
ranges used in the numerical results.

TABLE 4. 802.11e MAC parameters used in the numerical results.

for each ISP k , i.e., ηk , is set equal to the number of APs
divided by the number of ISPs. In other words, we assume
that the ISPs have the same minimum airtime reservation and
share the total airtime in a fair manner. In the Markov chain,
the average frozen time N is approximated by TTXOP/δ.

A. EFFECTS OF STA DISTRIBUTION
Here, we investigate the impact of STA distribution on the
fairness and throughput achieved by the two association algo-
rithms. More specifically, we set up two examples consider-
ing homogeneous and non-homogeneous STA distributions.
In both examples, the STAs are randomly associated to the
two ISPs with equal probabilities.

1) HOMOGENEOUS DISTRIBUTION
In this example, the STAs are distributed in the square
space according to a homogeneous two-dimensional PPP.
Accordingly, the number of STAs in each grid (where an
AP is centered) follows a Poisson distribution with mean
λmean, which represents the average number of STAs per AP.
Figure 8 shows that GP-based association scheme improves
both fairness and total throughput compared with Max-SNR
scheme.

2) NON-HOMOGENEOUS DISTRIBUTION
Let consider that STAs are distributed according to a non-
homogeneous PPP. More specifically, the number of STAs
in a grid (where AP a centred at) follows a Poisson dis-
tribution with mean λa. Here, λa is randomly generated
between 0 and λmean. With such STA distribution, Figure 9
shows the achieved throughput of two ISPs versus λmean.
As expected, the performance gap is significantly larger
with non-homogeneous distribution compared to the homo-
geneous case. Max-SNR can hardly guarantee the fairness
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FIGURE 8. Throughput vs. STA density, homogeneous distribution.

FIGURE 9. Throughput vs. STA density, non-homogeneous distribution.

between different ISPs. While for the same distribution,
GP-based STA-AP association can manage to keep the bal-
ance between two ISPs. Furthermore, it can offer improve-
ment over Max-SNR in terms of the total throughput due to
the load-balancing among APs.

B. EFFECTS OF STA DENSITY AND ISP LOAD
Let define ρ1 (also referred to as ISP 1 load) as the ratio of
number of STAs serving by ISP 1 to the total number of STAs
in the network. Here, the performance of the two association
approaches are compared under different STA density and
ISP load.

Assuming a homogeneous STA distribution with
λmean = 3, Figure 10 depicts the achieved throughput of two
ISPs versus different values of ρ1 for both GP-based and
Max-SNR association schemes. By Max-SNR association,
it is shown that throughput of ISP 1 grows linearly with ρ1,
while the achieved throughput of ISP 2 is decreasing. But,
GP-based association can fairly distribute the airtime between
ISPs regardless of their ISP loads and thus maintain a balance
between the achieved throughput of the two ISPs.

Figure 11 shows the total throughput achieved by the two
association algorithms versus λmean for a homogeneous STA
distribution. For a fixed ρ1, the total throughput by both

FIGURE 10. Throughput vs. ISP 1 load.

FIGURE 11. Total throughput vs. STA density for different ρ1.

FIGURE 12. Fairness vs. STA density for different ρ1

algorithms increases with the STA density, i.e., λmean. But,
the throughput increase rate is decreasing with λmean. This
is because the wireless channel is underutilized when the
STA density is low. Thus, the increase in the STA density
will improve the total throughput. But, when the STA density
is large, increasing the STA density further will result in a
higher collision probability, and hence, slow down the total
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throughput improvement. For any fixed ρ1, it is shown that
GP-based association significantly improves the total
throughput compared with the Max-SNR association.

Figure 12 shows the fairness by employing the Jain’s
fairness index as

F =
(
∑

k∈K Tk )2

|K|
∑

k∈K T 2
k

(25)

where Tk =
∑

i∈Sk ,a∈A T
a
i is the achieved throughput for

all the STAs of ISP k . From Figure 12, it is clear that the
proposed GP-based association approach can always guar-
antee perfect fairness between the ISPs regardless of the
STA density or ρ1. The achieved fairness level by Max-SNR
association is always worse than GP-based, especially when
the STA load is highly unbalanced between ISPs, i.e., ρ1 is
not close to 0.5.

VI. CONCLUSION
This paper considers the STA-AP association and airtime
control in virtualized 802.11 networks aiming to provide
fairness guarantees among ISPs despite the number of STAs
per ISP. First, a three-dimensional Markov chain is developed
to model a generalized 802.11e EDCA protocol. This model
establishes the relationship between the transmission proba-
bility of each STA and the detailed parameters in the MAC
protocol. Based on this relationship, the feasibility region
of the transmission probabilities are derived. Subsequently,
an optimization problem is formulated which can maxi-
mize the network throughput, while guaranteeing the fairness
between different ISPs. The implementation of the optimal
transmission probabilities obtained by successive geometric
programming is discussed by controlling the MAC param-
eters. Extensive numerical results confirm that the Markov
chain can accurately describe the MAC protocol. Further-
more, it is verified that the proposed association algorithm
can improve the throughput and provide fairness guarantees
in virtualized 802.11 WLANs.

APPENDIX
A. MARKOV CHAIN MODEL
Here, we detail the Markov chain model for EDCA intro-
duced in Section III-A. Firstly, the transition rules among the
states of the Markov chain are given according to the EDCA
protocol. Then, the transition probability between any two
adjacent states are summarized. Finally, by solving the sta-
tionary point of the Markov chain, the relationship between
transmission probability and the detailed EDCA parameters
are derived.

1) TRANSITION RULES
First, we describe the transitions among the states in the
proposed Markov chain according to the EDCA protocol.
As shown in Figure 4, after a successful transmission or a
packet drop, the STA will flip a biased coin with successful
probability qi. If the coin appears to be tail (with probability
1 − qi), the STA will go to the state {−2, 0,Li − 1}, and try

again after Li time-slots. Otherwise, if the coin is head (with
probability qi), the STA will move to the state {−1, 0,Ai},
where Ai = AIFS[STA i] − 1. If the channel stays idle in
the following Ai + 1 time-slots, the STA will move on to the
backoff/retransmission stage 0 and uniformly pick a random
backoff time from [0,W0,i].

Otherwise, if the STA senses the channel busy in a state
{−1, 0, d} where 0 ≤ d ≤ Ai, it will freeze and move to the
state {−1, 0,N+Ai}, whereN is the average frozen time (The
frozen time is equal to either Ts or Tc and thus N can be
approximated to T as discussed before). Afterwards, it will
wait until channel becomes idle again, by counting down v(t)
from N+Ai to Ai. When the STA gets to the state {−1, 0,Ai},
it has to keep repeating the explained process until it enters
the backoff process. Let denote pi the probability of collision
conditioned on the STA i having counted down to 0 and being
to transmit with probability 1, which is equal to the probabil-
ity of the channel being observed busy (from the point of view
of STA i) in the timeslot in which the transmission is initiated.
Given the transmission probabilities of all STAs, i.e., τi, in the
BSS, we have

pi = 1−
∏
i′ 6=i

(1− τi′ ). (26)

For the backoff process, we use Figure 13 to explain the pos-
sible transitions at the backoff/retransmission stage j. When
STA i reaches the state {j−1, 0, 0}, it will start a transmission
with probability one. Then, if other STAs happen to access the
channel at the same time, STA i will experience a collision.
The probability that STA i encounters a collision is equal
to pi. In a case of collision, the STA will enter the next
backoff/retransmission stage, i.e., j, pick a random backoff
counter b between 0 and Wj,i, and go to the state {j, b, 0}.
When the STA reaches the state {j, b, 0}, it will count down to
{j, b− 1, 0} if the channel is idle. Otherwise, if the channel is
sensed busy, i.e., other STAs are transmitting in the channel,
STA i will freeze its backoff counter and move to the state
{j, b,N + Ai}. In the frozen period, the STA will count down
v(t) by 1 each time-slot until it gets to the state {j, b,Ai}.
Then, if the channel is still idle (with probability (1 − pi)),
the STA will continue counting down to {j, b, 1} and then go
to state {j, b− 1, 0}. Otherwise, if the channel becomes busy
when STA i is in the state {j, b, d} where 1 ≤ d ≤ Ai, it has
to freeze its backoff counter again and go back to the state
{j, b,N + Ai}.

Finally, for states {j, 0, 0}, 0 ≤ j ≤ mi + hi, the STA will
initiate a transmission. If no other STA transmits at the same
time (with probability (1−pi)), the STAwill have a successful
transmission of duration Ts. Otherwise, if any other STA
simultaneously starts a transmission (with probability pi),
STA i will experience a collision of duration Tc. After the
collision, if 0 ≤ j ≤ mi + hi − 1, the STA will go to
the next backoff/retransmission stage. But, if j = mi + hi
(whichmeans that themaximum backoff/retransmission limit
is reached), the STA has to drop this packet. Then, for a
new packet transmission, it has to flip a biased coin and start
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FIGURE 13. Detailed transition for one backoff stage.

over from the state {−2, 0,Li − 1} or {−1, 0,Ai} accord-
ing to the result of the coin toss. The mathematical rep-
resentations of the transition probabilities are summarized
in Section VI-A.2.

2) TRANSITION PROBABILITIES OF THE MARKOV CHAIN
Given the transition rule between the states described in
above, we have the following transition probabilities.
1) For states {−2, 0, d}, 0 ≤ d ≤ Li − 1, i.e., after getting a
tail in a coin toss,


P{(−2, 0, d − 1)|(−2, 0, d)} = 1, 1 ≤ d ≤ Li − 1
P{(−2, 0,Li − 1)|(−2, 0, 0)} = 1− qi
P{(−1, 0,Ai)|(−2, 0, 0)} = qi

2) For states {−1, 0, d}, 0 ≤ d ≤ N+Ai, i.e., before entering
the backoff process,



P{(−1, 0, d−1)|(−1, 0, d)}=1, Ai+1≤d≤N+Ai
P{(−1, 0, d−1)|(−1, 0, d)}=1−pi, 1≤d≤Ai
P{(−1, 0,N + Ai)|(−1, 0, d)} = pi, 0 ≤ d ≤ Ai

P{(0, b, 0)|(−1, 0, 0)} =
1− pi
W0,i + 1

, 0 ≤ b ≤ W0,i

3) For states {j, b, d}, 0 ≤ j ≤ mi + hi, i.e., in the backoff
process,

a) If b = 0, d = 0, i.e., before a successful transmis-
sion or a collision,

P{(−1, 0,Ai)|(j, 0, 0)} = (1− pi)qi,
0 ≤ j ≤ mi + hi − 1

P{(−2, 0,Li − 1)|(j, 0, 0)} = (1− pi)(1− qi),
0 ≤ j ≤ mi + hi − 1

P{(j+ 1, b, 0)|(j, 0, 0)} = pi
1

Wj+1,i + 1
,

0 ≤ j ≤ mi + hi − 1, 0 ≤ b ≤ Wj+1,i

P{(−2, 0,Li − 1)|(mi + hi, 0, 0)} = 1− qi
P{(−1, 0,Ai)|(mi + hi, 0, 0)} = qi

b) If d = 0, 1 ≤ b ≤ Wj,i, i.e, in the count down process,{
P{(j, b− 1, 0)|(j, b, 0)} = 1− pi, 1 ≤ b ≤ Wj,i

P{(j, b,N + Ai)|(j, b, 0)} = pi, 1 ≤ b ≤ Wj,i

4) If 1 ≤ d ≤ N + Ai, 1 ≤ b ≤ Wj,i, i.e., during a frozen
period or the AIFS after it,
P{(j, b, d − 1)|(j, b, d)} = 1, Ai + 1 ≤ d ≤ N + Ai
P{(j, b,N + Ai)|(j, b, d)} = pi, 1 ≤ d ≤ Ai
P{(j, b, d − 1)|(j, b, d)} = 1− pi, 2 ≤ d ≤ Ai
P{(j, b− 1, 0)|(j, b, 1)} = 1− pi

3) STATIONARY CONDITION OF THE MARKOV CHAIN
Based on the transition rule above and the structure of the
Markov chain, as in [46] and [45], we have,

bj,0,0 = pjib0,0,0, 0 ≤ j ≤ mi + hi

bj,b,0 =
Wj,i+1−b
Wj,i+1

bj,0,0, 0 ≤ j≤mi+hi, 1 ≤ b ≤ Wj,i
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1 =
Li−1∑
d=0

b−2,0,d +
N+Ai∑
d=0

b−1,0,d +
mi+hi∑
j=0

b0,0,0 +
mi+hi∑
j=0

Wj,i∑
b=1

N+Ai∑
d=0

bj,b,d

=

Li 1− qiqi
+

1+ piN
pi

1− (1− pi)Ai+1

(1− pi)Ai+1
+

1− pmi+hi+1i

1− pi
+

1+ Npi
2(1− pi)Ai

mi+hi∑
j=0

Wj,ip
j
i

 b0,0,0 (27)

By exploiting the transition structure within a frozen process
and the post AIFS, i.e., the states {j, b, d}, 0 ≤ d ≤ N + Ai,
we have,

bj,b,d =
pi

(1−pi)d
bj,b,0, 0≤ j≤mi+hi−1, 1≤d≤Ai−1

bj,b,d =
pi

(1−pi)Ai
bj,b,0, 0≤ j≤mi+hi, Ai≤d≤N+Ai

For states {−2, 0, d}, by looking at the incoming and outgo-
ing probability, we can have

b−2,0,d =
1− qi
qi

b0,0,0, 0 ≤ d ≤ Li − 1

For states {−1, 0, d}, by analyzing the structure of transition
between the states {−1, 0, d}, 0 ≤ d ≤ N + Ai and the state
{0, 0, 0}, we can have

b−1,0,d =
1

(1− pi)d+1
b0,0,0, 0 ≤ d ≤ Ai

b−1,0,d =
1− (1− pi)Ai+1

(1− pi)Ai+1
b0,0,0, Ai + 1 ≤ d ≤ N + Ai

To this point, all the stationary probabilities in the Markov
chain are represented in terms of b0,0,0. Then, b0,0,0 can be
derived from the normalization condition in (27), as shown
at the top of this page. Consequently, having all stationary
probabilities bj,b,d , the transmission probability of STA i
can be calculated as in (13). To derive (13), the contention
window Wj,i is set equal to

Wj,i =

{
Wmin,i2j, 0 ≤ j ≤ mi
Wmin,i2mi , mi + 1 ≤ j ≤ mi + hi

according to the exponential backoff rules in 802.11e. From
the definition of transmission probability, τi can be calculated
by summing all the stationary probabilities of the states in
which the STA will initiate a transmission, i.e., bj,0,0, ∀j ∈
{0, 1, ...,mi+hi}. The expression in (13) establishes the rela-
tionship between τi and all the detailed parameters for STA i
in the EDCA protocol, which will be useful to characterize
the feasibility region of τ ai in the optimization and design
an algorithm to control the transmission probabilities of the
STAs.

B. GEOMETRIC PROGRAMMING AND
MONOMIAL APPROXIMATION
An optimization problem is called geometric programming if
it follows the following form,

min
xxx

f0(xxx),

subject to fi(xxx) ≤ 1, i = 1, . . . , n1
gi(xxx) = 1, i = 1, . . . , n2

where f0, . . . , fn1 are posynomials and g1, . . . , gn2 are mono-
mials. In the context of geometric programming, a monomial
function f of xxx = (x1, x2, . . . , xn) is defined as,

f (xxx) = cxa11 x
a2
2 . . . xann

where c > 0 and ai ∈ R. Furthermore, a posynomial is
defined as the summation of multiple monomials, i.e.,

g(xxx) =
∑K

k=1
fk (xxx)

The basic idea of monomial approximation is as follows:
consider a posynomial function g(xxx) =

∑
k fk (xxx) with fk (xxx)

being the monomial terms. By the arithmetic-geometric mean
inequality, we have

g(xxx) ≥ ĝ(xxx) =
∏
k

(
fk (xxx)
αk (xxx0)

)αk (xxx0)
(29)

where the parameters αk (xxx0) can be obtained by computing

αk (xxx0) =
fk (xxx0)
g(xxx0)

, ∀k (30)

where xxx0 > 0 is a fixed point (e.g., the optimal solu-
tion from the last round of optimization). It is proved
that ĝ(xxx) is the best local monomial approximation of g(xxx)
near xxx0 [54].
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