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Currently, manufacturing companies are heavily investing into the automation of manufacturing
processes. The push to improve productivity and efficiency is increasing the demand for more flexible and
adaptable solutions than the currently common dedicated automation systems. In this paper, the
planning problem for mobile robots in large structure assembly was addressed. Despite near-optimal
results, the previously developed hybrid agent behaviour model was found to lack responsiveness and
scalability. For that reason, an alternative, fully decentralised agent behaviour model was developed and
compared to the hybrid one. Through simulated experiments, it was found that the decentralised agent
behaviour model achieved much higher responsiveness; however, it required additional spare capacity to
compensate for its decision-making imperfections.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

Manufacturing companies are heavily investing into the
automation of assembly processes. Efforts are aimed at increasing
the utilisation of automated systems to improve the return of
investment and save space on the shop floor. In the aerospace
industry, this trend is particularly impacting the drilling and filling
tasks because they account for 60% of the airframe assembly costs,
80% of work related injuries and 80% of product defects'. Currently
deployed manufacturing systems tend to occupy large spaces on
the shop floor yet lack use. Therefore, it is understandable that
demand has been increasing for more flexible and versatile
systems that can be shared between workstations.

In large structure assembly, there is typically a low throughput of
products with large working contents [1]. Products are generally large
enough to fit multiple manufacturing resources, such as robots,
around them, which could increase the work rate. The main challenge
in these systems is that products are completed in time. Therefore, the
accurate scheduling of jobs is critical for these systems.

A group of European frontrunners, in academia and industry
(EUROP), have compiled a Strategic Research Agenda (SRA) [2] for
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the next few decades. It highlights the need for system
components to use distributed control as opposed to the
hierarchical control structures that have previously been
employed. This is in agreement with the Industrie 4.0 initiative
[3], where there is an intention to convert factories into smart
environments by means of, and interlinking with, cyber-physical
systems.

Another critical challenge for large structure assembly is how to
deal with the product flow across the system. While conveyor belt
systems are suitable for the transportation of bulk material for
short to mid distances [4], the products in large structure assembly
are usually very large, heavy and awkward to handle. For this
reason, they cannot be transported via a conveyor belt system and,
as such, these products are commonly transported by crane
systems. One way of reducing the reliance on the crane system
could be deploying a dynamic manufacturing system, comprised of
mobile robots. In such a system, the machines move to the
products instead of products to machines and the need to transport
products around a shop floor can be reduced.

The fundamental differences between fixed automation sys-
tems and dynamic systems (consisting of mobile robots) in large
structure assembly have already been assessed in [1]. It was
concluded that mobile systems could overcome many limitations
of fixed automation systems. In addition, given sufficient space,
mobile systems could also increase the production rates of selected
products by adding more resources to them. Therefore, if applied
with appropriate scheduling models and assuming suitable
physical capabilities, mobile systems should be better able to
deliver products on time. Furthermore, mobile robots should also
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respond more effectively to various disruptions, that would
otherwise strongly affect a manufacturing system’s productivity
and business opportunities [5]. Examples of typical disruptions for
production schedules include machine breakdowns, rush orders,
order cancellations, scrap, rework and changes in due dates and
times. The conclusions of [1] firstly highlighted the need to further
advance mobile robot technologies to achieve higher positioning
accuracy and structural stiffness, which will be critical for their
wider implementation. Secondly, if the named advances are made,
one would require the means to organise mobile robots in a
complex and agile environment. From an operational perspective,
one of the key challenges will be to maximise the resource
utilisation and resilience benefits provided by dynamic mobile
systems. This is addressed by distributed decision-making
systems, which provide inherent responsiveness, adaptability
and scalability.

This paper compares two fundamental agent behaviour models,
which enable self-organisation of mobile robots within the context
of large structure assembly. The emerging behaviour of a
decentralised model is compared to that of the hybrid model’s
approach from [6]. In both models, all manufacturing resources
and products are represented as separate agents. The behaviour
models are required to allocate a number of mobile manufacturing
resources to products, so as to get the jobs done by their due times.
The objective is to characterise how effectively both models
minimise the total weighted tardiness (TWT) of the system, which
is the penalty imposed from missing the due times, as discussed
in [7].

The structure of the paper is as follows: in Section 2, literature
relating to this work is reviewed. In Section 3, the scheduling
problem is formulated. The decentralised model is presented in
Section 4 and compared to the already developed hybrid model in
Section 5. The results of the work are discussed in Section 6 and the
paper is concluded in Section 7.

2. Literature review

To deal with complex distributed systems, the concept of self-
organisation has recently gained much interest in various fields.
Examples include studies of tissue regeneration in biomaterials
[8], magnetisation of ferromagnetic nanowires in nanotechnology
[9] and individual pedestrian velocities within crowds in statistical
mechanics [10]. In manufacturing, the emphasis has been on how
systems can autonomously arrange themselves, to deliver man-
ufactured products on time. Frei and Serugendo reviewed existing
literature on self-organising assembly systems and provided a
framework for the future of such systems [11]. They concluded
that, although the research in this field was still in its early stages,
the approach had great potential. The common aspect found across
all the different fields where self-organisation is occurring, is that
independent system ‘particles’ work together to bring about some
form of order in the system as a whole.

While there are multiple sources for self-organisation models,
only the hybrid model presented in [6] addresses the challenges of
mobile robots in large structure assembly. This model uses a
central Blackboard Agent (BA) to receive and process information
about all other agents on the shop floor. It notifies Product Agents
(PAs) if it predicts that any of them will be tardy (i.e. late in
delivery). In those circumstances, the PAs negotiate with one-
another with an overall aim of reducing TWT. Therefore, this model
is partially centralised because the BA only processes information
and does not make decisions for the PAs.

A multi-agent system for mobile robots was published by
Giordani, et al. [12]. They presented a model where Task Agents
send resource requests to a Task Coordination Agent. The mobile
robots are then allocated to tasks by the Coordination Agent in a

way that minimises the movement distances of the mobile robots.
It is a hybrid system, because there is a central element (the
Coordinator Agent) and decentralised elements (the tasks and
mobile robots). They consider only the minimisation of movement
distances in order to minimise the makespan. However, sometimes
a critical element for such systems is meeting the due times of
individual products. This is of particular interest where final
products are assembled out of subcomponents.

The application of mobile robots in the automotive industry has
been researched by Michalos et al. [13,14]. In [14], they proposed a
method for mobile robots to enable autonomous reconfiguration of
production lines. In [13], they assessed the performance of
production systems with mobile robots. They concluded that
mobile robots reduce the time required to respond to a machine
breakdown, as they require a shorter time for reconfiguring the
workstation. As a result, the downtime of a mobile robot system is
reduced and overall utilisation is increased. The disadvantages of
mobile robots, as described in [14], are the challenges associated
with accuracy and structural stiffness due to them not being fixed
into the ground. Bundles of additional tooling and reinforcements
are often required to carry out drilling and filling tasks (see the
Kuka MRP in Fig. 1 or Electrolmpact’s mobile robot [15]), to deal
with the high standards of both automotive and aircraft assembly.

An analogy to this has been found in Autonomously Guided
Vehicle (AGV) scheduling, where the emphasis is generally on
material handling operations. For example, in [16], the effects of
different pickup and dispatching rules on the performance of
multiple-load AGVs were studied. Also, in [17], the authors applied
the Ant Colony Algorithm for scheduling the transportation of jobs
between machines. While not directly applicable, such approaches
have proven and reiterated the responsiveness of distributed
systems. Responsiveness is of paramount importance in environ-
ments of frequent changes and disruptions.

It can also be argued that there are some similar applications in
swarm robotics. However, the field of swarm robotics is described
as the study of how to coordinate large groups of relatively simple
robots through the use of simple rules [18]. They are generally
successful in covering a geographical area (i.e [19].), or combining
into various formations (i.e [20].). However, they lack the level of
sophistication necessary for solving work flow problems with
objective functions.

The problem of centralised scheduling approaches is their
inherent rigidity. This means that reconfiguration and other
hardware changes usually require considerable modifications in
the software. In addition to that, a single scheduling disruption
may sometimes cause the whole manufacturing system to come to
a halt due to high computational overheads [21]. Agent-based
systems provide a natural solution to these by reducing the
processing load on the central entity in hybrid systems, or by
removing it completely in fully decentralised systems. Other
reasons for adopting such a solution are: the heterogeneous
environment, the need for versatility and scalability, the general
trend of decentralisation via cyber-physical systems within the
scope of Industrie 4.0 [3], the need to enable plug-and-produce
(PNP) concepts [22] and elimination of the need to reprogram on a
shop floor with potentially frequent perturbations.

The paradigm of multi-agent systems has not only been shown
to work, but also to enable code reuse and to support the assembly
of a variety of products with different requirements simultaneous-
ly. Effectively, a multi-agent system does not “feel” any change-
overs of the shop floor [23], unlike the currently common rigid
arrangements.

In the field of multi-agent systems, the notion of product
intelligence has been gaining increasing interest in the past couple
of decades. In the industrial context, it has been used to describe
the linking of an order or product to the information and rules
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Fig. 1. Mobile Robotic Platform and multifunction robot end effector are used for drilling and fastening wing assemblies (Courtesy of Kuka Systems Aerospace).

governing the way that it is intended to be produced, stored or
transported [24]. A notable experience in implementing product
intelligence has been published in [25]. There, washing machine
assemblies were carried on pallets. Each pallet was represented as
a product agent (PA) and equipped with an RFID tag, which
provided information to a communication module. The PA then
successfully communicated with its surrounding agents (most
importantly, the resource agents (RAs)) for allocation and
execution of necessary operations. This work has provided the
basic agent types required for any such system, as can be seen
in [26].

It is generally accepted that centralised structures can achieve
near-optimal schedules, given enough computational resource.
However, these have a weak response to changes on the shop floor
[27], which is characterised by high computational overheads. In
[28], it is shown that even with a single machine, the scheduling
problem with the objective of minimising tardiness and earliness is
an NP-hard problem. This means that from an algorithmic
perspective, problems of this type would most likely result in a
polynomial increase in computational overheads when the input
size (i.e. number of agents, time steps, etc.) is increased.
Conversely, decentralised systems respond much better to changes
and disturbances. However, this is due to only having partial
knowledge of the environment. As a result, their decisions may not
be optimal for the manufacturing system as a whole [29].

Clearly, there is no doubt about the importance of self-
organisation and distributed systems in the manufacturing
context. However, there is a lack of studies that consider which
agent behaviour models would be best suited to control large
mobile robot systems. The hybrid model presented in [6] achieves
very good schedules, however it lacks responsiveness to dis-
ruptions and adaptability to new requirements. There is the
potential that alternative agent behaviour models can overcome
these disadvantages. Therefore, there is scope for two knowledge
contributions in this context. Firstly, to develop an alternative

decentralised model for the same scheduling problem, and
secondly, to assess its performance in relation to the hybrid
model, given a set of relevant industrial scenarios.

3. Problem formulation

In order to formulate the problem being considered within this
paper, a representative shop floor and scenario was developed.
Additionally, the hybrid self-organisation model, which has
already been proposed, needed to be defined. This section
provides: a listing of the notations used for describing the
problem, the key performance indicators, the presentation of a
typical scenario on the shop floor, the expression of the constraints
for the problem and a brief description of the hybrid self-
organisation model [6] that was used for the comparison study.

3.1. Notation

The following notations were used throughout this paper

bj - bank roll, the amount of credits in the bank of the PA that is
responsible for job J;

Cj - completion time of job J;

C,, j - tardiness cost of job J;

C. - current contract

d - the distance between an RA that was offered credits and the
offering PA’s location

Gp - bid gap

i — a workstation WS’ column index

Igp — bid gap increment

J1.n — a set of jobs (represented by PAs)

Lj - time required to load job J; on any workstation WS; 1>

lj - start of loading of a product J; to a workstation WS; 1

1j’ - end of loading of a product J; to a workstation WS; . 1>

M1 _m - set of mobile resources

m - number of mobile resources
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n - number of products

pj — processing time of job J;

P, - moving penalty factor

Sj — start time of processing job J;

te, j — completion time of job J;

tg, j — due time of job J;

ti, j — launch time of job J;

Uj - time required to unload job J; from any workstation
WS 12

uj - start time of removal of job J; from a workstation WS; 1>

uj’ - end time of removal of job J; from a workstation WS; 12

TWT - total weighted tardiness

V, - value of credit offering

W(j - working content of job J;. This is a measure of how much
work must be processed in job J; by mobile robots. Each working RA
processes one unit of WC; per time step

WS; .12 - a workstation with column index i and a row index
of 1 or 2

3.2. Key performance indicators

In addition to presenting the decentralised self-organisation
model, the aim of this work was to compare and assess two
fundamentally different behaviour models for mobile robots. The
purpose was to establish which models provide ideal solutions for
scheduling in different scenarios. To achieve a conclusion, two key
performance indicators were used that reflect the needs of such a
system:

1) The total weighted tardiness (TWT): This is a measure of how
efficiently a model plans its processing of products with respect
to due times and tardiness costs. Generally, there are negative
consequences when a product is completed later than its due
time. In this work, each product has been allocated a tardiness
cost. This counts as a penalty for every unit of time that the

completion of the product has gone past the due time.
Therefore, the TWT is a sum of all weighted tardiness costs
and is calculated as follows:

TWT = Z(Ct‘j*(tc,j = taj)) M

2) Computational effort for rescheduling. When any change or
disruption occurs on the shop floor, the self-organisation
models should respond with the best possible solution in the
shortest possible time. As described in [29], the two funda-
mentally different behaviour models are expected to perform
very differently in such circumstances. For the hybrid model, it
is measured in seconds taken to compile a schedule. For the
decentralised model, a baseline is defined as the time taken (in
seconds) for the longest time step in the simulation. This is
because, instead of planning forward, the decentralised model
makes decisions through sealed-bid auctions at each time step.
Therefore, a disruption can only have an effect on a single
negotiation round, where each agent makes its typical decisions
just like in any other round. To link the computational effort to
the TWT calculations, the time step term had to be defined.
Thus, a time step is a second in the schedule of the hybrid model
and as a round of bidding in the decentralised model. Firstly, the
interest in this comparison is the validation of a negligible
negative impact on the decentralised model. Secondly, it is in
determining how much the delay affects the performance of the
hybrid model with respect to the objective function of
minimising TWT.

3.3. Job shop model

To formulate the problem and its complexity, it is important to
establish a typical scenario for large structure assembly. Fig. 2
depicts a typical aerospace shop floor enhanced with mobile
robots. Similar to many outputs from established literature, the

Waiting Area

Fig. 2. The principal shop floor layout for the mobile automation system.
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jobs in this paper are also represented by PAs and manufacturing
resources by RAs. Both of these agent types can be thought of as
embedded processing and communicating modules, which work
with their own sets of objectives.

Based on this scenario, the elements of the system and their
expected relations can be clearly defined. Products J;_,, from the set
Jn, with working content WG; of several hours of single-machine
processing, are loaded to workstations WS; . 1. Once loaded,
mobile resources M;_,, may move to them and start processing the
products. The completion time C; establishes the time the
processing finishes. The products are then unloaded from the
system.

The mobile robots can move freely to any required workstation
WS; .. 12 at any time. Due to the sizes of the products, several
mobile robots can fit next to each other, which can increase the
work rate on any given product. To simplify the current problem, a
maximum of four mobile resources were allowed work on any
product. However, it is also important to note that the assumption
of more than one resource being able to work on any product
would normally increase the probability of blockages due to
negotiation conflicts. This problem can arise when too many RAs
agree to process the same PA(s). However, the PAs in the models
initially only accept as many RAs as they require to be completed
on time. Priority is given to the RAs that are closest. Where there is
an equal distance, a first-come-first-served policy is used. These
policies prevent negotiation conflict bottlenecks, as the PAs are
always able to make the final decision.

It has been assumed that the challenges of localisation and
structural stiffness will not have any impact in these scenarios.
Therefore the mobile robots are assumed to be able to reliably carry
out the tasks. Additionally, loading or unloading a job J; is considered
to take the same time for any workstation WS; ;> on the shop
floor. There are two reasons for this: Firstly, the loading time for the
fastening and vertical movement of products, performed by the
crane system, would be much greater than the horizontal move-
ments. The only difference in real scenarios is the horizontal
distance between workstations. All products must be lifted to the
same height to be transported and then lowered to a suitable height
and accurately fastened to their jigs. Thus, given that the vertical
movement is expected to take the majority of time and the
horizontal variance is more case specific, one can argue that
neglecting horizontal movement is a fair assumption. Secondly, the
focus of this paper is on the behaviour of the mobile manufacturing
system, not on the product supply mechanism. Thus, the perfor-
mance of the crane system is not critical for the purpose of this work.
The final assumption is to consider the mobile robots’ moving times
as instantaneous. This is supported by [1] where the same scenario
showed that the moving times of mobile robots are very small in
relation to the time taken to process the products and should
therefore be included in the spare capacity.

The following constraints apply to the model:

Si>0,>0,uj >0, >0,y >0,tl,j>0Vje] (1)
|Gl minl =t j+Li+pjVje] (2)
Si>li'vje] (3)
CG=Sj+pjvje] (4)
uy>Cvje] (5)

Mj max = m=4 (6)
") =1y’ (1, =+l [V j €] (7)
(wou”) =131 (uj,ug’) =]ujaq,uj [V €] (8)

The first constraint (1) ensures that no activity (S;.l;, u;, ', uj’, &, ;)
can take place before the simulation begins. The second constraint
(2) specifies that the earliest possible completion time of any job C;,
min, 1S the sum of the time taken to load (L;) and process (p;) a job J;
after it was launched at t; ;. The unloading time is not considered
for the TWT calculations, as that is dependent on the crane
system’s availability. The due time for RAs, tg j is set without
considering the unloading as well. Constraint (3) defines that a job
can only start being processed at time S; after it has finished
loading to a workstation at time [;. The completion time C; in
constraint (4) is the sum of the starting time S; added to the
processing time p; for each agent. Under constraint (5), for each job,
unloading may only be started at time u; when the processing on
that product has been finished at time C;. Constraint (6) ensures
that the maximum number of resources m; mq that can be
allocated to processing a single job, in the scenario presented, is 4.
The crane system’s availability is defined under constraint (7). It
establishes that between the start I; and finish I;’ of loading job j,
there can be no unloading (uj, u;’) or loading of other jobs (Ij.4, lj+1")
and vice-versa under constraint (8).

This section has provided an overview of the expected
operation of a system and has established its boundary conditions.
However, it does not establish how one can plan for such an
environment. The next sections present the behaviour models that
were designed to do that.

3.4. Hybrid self-organisation model

The hybrid self-organisation model considered for this work is
the one presented in [6]. It is based on the exponential priority
aging policy (PAP). An overview of the model is presented in Fig. 3.
It establishes that the product agents (PAs) must send their details
(location, due time, tardiness cost and working content) to the
blackboard agent (BA), at the start of each simulation and after
each disruption. By applying the PAP, the BA knows the priority
ranking order of all PAs at all times.

Because the PAs order RAs based on their priority ranks, the BA
can predict how many RAs each PA will occupy at any moment,
hence establishing their predicted completion times. Whenever a
PA is predicted to be tardy by the sole application of the PAP, the BA
sends a notifying message to the respective PA. That PA then seeks
to exchange resources with other PAs, in such a way that would
result in the lowest TWT.

In the most common representation, agents are considered to be
individual entities that work in their own interests. This approach is
most popular in fully decentralised architectures and e-commerce
applications (i.e.[30,31],). However, in manufacturing, the emphasis
has been on cooperative behaviour in the interests of global
objectives. This is most evident in holonic manufacturing systems
(i.e. [29,32],). Thus, PAs in this model are cooperative, like in [12].

4. Decentralised self-organisation model

In aerospace manufacturing applications, drilling and filling
tasks commonly require manipulators to act from both sides of the
work piece. This means that mobile resources are required to work
in pairs to complete the task, and are consequently modelled as
such in the self-organisation models. Similarly, in the hybrid
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Solve Conflicts

Fig. 3. The overview of the hybrid model's structure.

model, a mobile resource is represented by a single resource agent
(RA) that can communicate with other agents.

Also, each product agent (PA) represents the actual product on
the shop floor. PAs are launched into the system when the
represented product has been loaded onto a workstation WS; ;..
The overview of this model’s structure is shown in Fig. 4.

In the decentralised model, there is no central unit for
coordination. As opposed to the cooperative nature in the hybrid

y

“ “Acceptance, rejection, availabi

self-organisation model, each agent in this model is strictly
following their own interests. The general flowchart for the self-
organisation behaviour of this model is shown in Fig. 5.

An important consideration to avoid bottlenecks is that agents
do not wait indefinitely for answers to messages. The agent
behaviours, therefore, include timeouts in case a message has
failed to reach its addressee, or it is taking too long to receive.
Additionally, to keep track of the decision times a timing agent (TA)

Fig. 4. The overview of the decentralised model's structure.
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Fig. 5. The general flowchart for the self-organisation behaviour in the decentralised model.

is proposed, which is notified by all agents when negotiations are
finished (each round). Once the TA has received the notifications
from all agents, or it has waited for the timeout duration of 650 ms,
it signals that the time has moved on one time step (bidding round)
and negotiation may start again. In the test runs it was determined
that the shown times were sufficient for the purposes.

When a PA is launched, it is given credits based on Eq. (2). The
initial bank roll b; of a job J; is the product of multiplying its working
content W(; and tardiness cost C;;. This way, the bargaining power
of each PA is linearly proportional to their penalty of being tardy in
a real manufacturing environment.

bj = WCjx C (2)

At each bidding round, each PA calculates how many credits it is
offering to RAs per time step based on Eq. 3. The fraction of bank
roll b; divided by the working content W(; is the maximum possible
credit offering that the PA can make per unit of its working content.
The bid gap G, is a spending strategy variable for lowering the
credit offerings. This was designed with the intention to save
credits for the later stages of production. With any success of
attracting RAs with high bid gaps, the maximum possible offer
becomes higher in the later stages, subsequently making the PA
more competitive. As seen in the concept, which is explained and
justified in [6], this enables products to start low credit offerings
and gradually increase them over time. It was shown that such a
method is effective because the most time-pressured PAs bid most
aggressively. This is because it is required to increase the chances of
attracting the necessary RAs to be completed on time.

_ b
WG

Co #(1 = Gp) 3)

The bid gap variable defines the spending strategies of PAs. It
starts with a pre-set value and remains unchanged if the PA has
sufficient RAs assigned to it. However, when the PA has insufficient
RAs, it reduces the bid gap by the bid gap increment Ig, at each
round of bidding. Thus, each product starts by offering credits
that are lowered by the bid gap and gradually increase them if
necessary.

The bid gap increment Ig, is calculated as shown in Eq. (4). The
increment is designed to gradually increase the credit offerings of
PAs if they have insufficient resources. In this model it was
designed to reduce the bid gap to 0 by the point when there is 20%
of time left to due time if the PA has not received sufficient RAs at
any instance. This threshold value was deemed to be a good
starting point for testing the expected behaviour of PAs. Even in the
most pessimistic of scenarios, each PA would still achieve the
maximum credit offerings before its due time. While the proposed
value enables the intended behaviour for this study, one could
define a set of experiments to determine the most appropriate
threshold value. However, this was outside the scope of this work,
as the chosen threshold was sufficient to establish the trend in the
behaviour.

_ Gp
gb = (td] — tlj) * 08 (4)

When a PA has sufficient RAs assigned to it, it continues
requesting for RAs. However, the credit offering is only 0.1 of the
normal value. This was introduced to ensure that free RAs are
utilised and jobs get completed before due time where possible.

The behaviour of RAs is straightforward. They actively listen to
all offers and compare them to their current contracts. The offered
value of a contract is calculated by deducting the movement
penalty from the offered credit amount as established in Eq. (5).
When the offered value of a contract V, is higher than the current
contract C,, the offer is accepted.

Vo= Cc — (d«Py) (5)

The factors that vary in the decentralised model are the
spending strategy of the PAs and the moving penalty factors of RAs.
The behaviours of the RAs and PAs reflect the individual interests of
both agents. PAs aim to get processed by spending as few credits as
possible, while RAs aim to earn as much as possible.

Inorder to understand the impact of different spending strategies,
one should vary the starting bid gaps. Therefore, three bid gaps were
used to test different spending strategies in the representative
scenarios. One aggressive bid gap with little leeway at the end; one
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Mobile robot waiting
area (90;-40)

WS1, 1 (0;0) WS2, 1 (60;0)

WS3, 1 (120;0) WS4, 1 (180;0)

WS1, 2 (0; 60) WS2, 2 (60; 60)

WS3, 2 (120:60) WS4, 2 (180:60)

Fig. 6. The workstation layout for the experiments.

conservative bid gap with more leeway; and one balanced bid gap
with a pre-defined value between them were used.

Similarly tothe three spending strategies for PAs, there were three
moving penalty factors considered for the mobile system. These
factors were also intended to have low, balanced and high values.
Effectively, these penalties dampen the ease of outbidding competi-
tive PAs and reduce the amount of movement by the mobile robots.

4.1. Experiments and results

In experiment 1, the decentralised model at different spending
strategies and moving penalty factors is compared to the hybrid
modelinthe assessmentof minimising TWT in different scenarios. In
experiment 2, the computational overheads of the models are
compared. As discussed under the decentralised model’s section, the
varied factors are the spending strategy of the PAs and the moving
penalty factors of RAs. The hybrid model needed no adjustments,
because it was shown in [6] that it was optimised already.

The experiments were carried out on a computer with an i3-
5020U processor (dual core, 2.2 GHz), 64bit Windows 10 OS and in
the JADE agent development environment (version 4.5.0). JADE
was configured to use 2048MB of heap memory.

To show how the models apply to multiple machines, a small
number of four RAs (equivalent to 8 mobile robots) were deployed
to process PAs. There were 8 workstations (2 per resource). Each RA
worked at a rate of 1 unit of working content per second, i.e. if all
four RAs processed the same product for 1,000s, then there would
be 4,000 of work done.

The system configuration, which is typical for large structure
assembly, introduces a limitation on the launch time, as this depends
on the availability of the crane system (CS). The CS uses first-come-
first-served logic to load products on each of the 8 workstations.
When there are no available workstations to load products on, the CS
unloads a randomly chosen workstation with a completed product.
In order to prevent the CS from being a supply bottleneck in the
system, the time to load and unload products was set to 4,000 s each.
This way, the 4 RAs need 10,000 s on average to process any product
and the CS need 8,000 s to load and unload any product. As a result,
the CS canalways supply products faster than they can get processed.

The workstations were laid out as shown in Fig. 6. The distances
between workstations were scaled to represent those that would
typically be seen in large structure assembly. Currently, one of the
largest manufactured products that need a great amount of drilling
and filling is the Airbus $3807 aircraft. Judging by its shape and size,
the wing panels are approximated as 40 m long. The RAs consider

2 Airbus. 2018. Technology. [ONLINE| Available at: https://www.airbus.com/
aircraft/passenger-aircraft/a380-family/technology.html. [Accessed 13 July 2018]

the distances between workstations in a straight line and therefore
they accommodate for turns and traffic. The gap between adjacent
workstations was set to be 60 m. Certainly, the layout might affect
the results, as it clearly has an effect on the moving distances of
mobile robots. However, investigating that was not the purpose of
this work. Moreover, based on the conclusions of [1], the effect was
considered negligible.

To ensure a supply bottleneck at the start was not observed and
to establish a scenario with some work-in-progress, it is assumed
that half of all workstations WS; ;. are loaded. The crane system
CS then loads new products to available workstations WS; . ;> and
unloads completed products. The production will stop when the
last product J; is completed.

The different factors of the decentralised model are denomi-
nated by DXXYY, where XX stands for the initial bid gap G, and YY
for the moving penalty P,,. I.e. DO810 has an initial bid gap of 0.8
and a moving penalty of 1.0.

4.1.1. Experiment 1

This experiment consisted of four sub-experiments, each one
representing a specific scenario. In each one there were 20
products with a working content of 40,000s each. They were
launched in a predetermined order and had predetermined
properties (working content, due time and tardiness cost). This
setup reflects the order in which products are usually launched in
the aircraft manufacturing industry, as there are long-standing
orders that can be estimated to a good extent in advance. Problems
with such an approach can occur when there has been a disruption
of any kind. That can result in the reduction of available resources,
new due times and changes in priority of certain products.

Scenarios with abundant then sufficient resources with
various other complicated conditions were created for both
self-organisation models. The general specifications for this
experiment are shown in Table 1 and more detailed settings
are presented in the Appendix. Sub-experiment 1a was designed
to test whether both models, including every variation, could
finish the products without tardiness. The reason for this was to
confirm the findings in [1], that with sufficient spare capacity, any

Table 1
The matrix of the first experiments descriptions.

Sub- Spare Additional Challenging Factors

experiment Capacity

la 5% None

1b 0% None

1c 0% Every other PA’s tardiness cost is halved

1d 0% Irregular intervals between product launch and due

times. Impossible to have TWT=0.



https://www.airbus.com/aircraft/passenger-aircraft/a380-family/technology.html
https://www.airbus.com/aircraft/passenger-aircraft/a380-family/technology.html

S. Ljasenko et al./ Computers in Industry 104 (2019) 141-154 149

sensibly designed agent behaviour model can achieve a TWT=0
in the given problem. The flow of products was steady in the sense
that every next product was launched with a later due time than
the previous ones.

Sub-experiment 1b had the same flow of products, however
with no spare capacity. It was designed so that mathematically any
deviation or error would cause tardiness of a product. The reason
for this sub-experiment was twofold; to confirm that the hybrid
model achieved optimal results and to assess how the sub-optimal
variations of the decentralised model compared to one-another.

In sub-experiment 1c, all the settings of 1b, other than the
tardiness costs, remained the same. Every other PA’s tardiness cost
was halved. The interest in this sub-experiment was to test the
hybrid model’s optimisation. Additionally, it was used to assess
how the variations of the decentralised model could handle the
differences in tardiness costs.

In the final sub-experiment, 1d, all settings from sub-experi-
ment 1b, other than the due times, remained the same. In this case,
some products with very rushed due times were designed to be
launched so that they would disrupt the natural order of product
completions. It was also designed in such a way that mathemati-
cally it would be impossible to complete all products on time.

The results for this experiment are shown in Fig. 7. In every sub-
experiment the hybrid model achieved optimal results, as
expected. The decentralised model’s results in sub-experiment
1la confirm the expectations that, despite sub-optimality, the
decentralised model achieved TWT=0 at all its behaviour
variations when there is 5% spare capacity.

From sub-experiment 1b onwards, the decentralised model
gained some TWTat all variations. The results show that the results
consistently worsen when the moving penalty factor and initial bid
gap are increased. In order to investigate the combinations of
moving penalty factors and spending strategies on the TWT in the
given sub-experiments, the results were plotted in 3D bar charts
below. On these charts, the spending strategy became more
aggressive when moving towards the right, ergo, decreasing the
variable. The moving penalty factor increases when moving
backwards and the TWT increases upwards.

The results of the decentralised model at different settings in
sub-experiment 1b are compared in Fig. 8. The increasing moving
penalty factor steadily increases the TWT at the two conservative
spending strategies (0.8 and 0.5). However, at the aggressive
spending strategy (0.2), the highest TWT is gained at the lowest
moving penalty factor. More conservative spending strategies
lower the resultant TWT. The TWT gained by the most aggressive
spending strategy is significantly higher than at the more
conservative settings. Lowering the starting bid gaps seems to
cause an exponential increase in the resultant TWT. The results
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Fig. 7. The results for experiment 1.
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Fig. 8. The decentralised model’s results in sub-experiment 1b.

show that when there is no spare capacity, then aggressively
spending credits at early stages is clearly not in the interest of PAs.

The same graph plotted for sub-experiment 1c is shown in
Fig. 9. Similar trends to 1b are produced; however there is a much
smaller spread in the results. The most aggressive spending
strategy (0.2) only adds a small proportion of TWT on top of the
balanced (0.5) spending strategy. The effects of the moving penalty
factor are less clear in this sub-experiment and are generally
smaller than the effects of changing the spending strategy.

The bar chart for the final sub-experiment is shown in Fig. 10.
The results are very similar to those achieved in sub-experiment
1b: small increase in TWT with increasing moving penalty factors;
and a sudden increase of TWT for the most aggressive spending
strategy. There is a clear increase of TWT as the starting bid gap of
the spending strategy decreases and moving penalty increases.

Throughoutexperiment 1, the spending strategy of the PAs clearly
had a much greater effect on TWT than the moving penalty factor,
with a clear relationship showing the increase. The results at more
conservative spending strategies (0.8) in each sub-experiment were
almost always the best out of the 3 challenging sub-experiments. The
TWT was consistently highest at the most aggressive one (0.2).
Varying the moving penalty factor, however, was not as predictable.
Increasing it usually increased the TWT, but not as consistently as
making the spending strategy more aggressive.

Out of the challenging sub-experiments, 1¢ had the smallest
spread in results. This is because the challenge of large differences
in tardiness costs between PAs is very difficult to handle for the
decentralised model. The PAs with lower tardiness costs and
consequently lower credits in the bank, got squeezed out by the
wealthier PAs with higher tardiness costs. Therefore, there was
very little that the model’s parameters could improve.

0.5
Spending Strategy 0.2

Fig. 9. The decentralised model’s results in sub-experiment 1c.
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Fig. 10. The decentralised model’s results in sub-experiment 1d.

Conversely, sub-experiments 1b and 1d allowed for better
results from models with conservative spending strategies. In
these sub-experiments, each PA had the same tardiness cost.
Clearly, aggressively spending in the early stages was counterpro-
ductive for PAs, because that left them with low credits at the later
stages where there was a significantly higher TWT.

The variance was restricted in this work, because the model was
designed to be executed in a synchronous turn base manner. There
was also no noise in the experimental setup. Thus, all decisions were
taken at the exact same time and processing the same parameters.
Therefore, it was sufficient to run each experiment only once.

Experiment 2 links to experiment 1 by measuring the rescheduling
computational effort for both models. The time taken to reschedule is
then included in the schedule as a penalty to simulate the effect of a
disruption. Thus, the responsiveness of both models is included in
assessing their performance with relation to minimising TWT.

4.1.2. Experiment 2

In this experiment, the rescheduling computational effort of
both models was measured. The purpose of this experiment was to
highlight the penalty of the hybrid model due to the rescheduling
effort in relation to the decentralised model. The hybrid model
would be much less effective without planning forward, because
the BA would not know whether to notify PAs about predicted
tardiness. Therefore, the hybrid model’s performance in relation to
the objective function of minimising TWT is dependent on its
responsiveness to disruptions.

On the contrary, the decentralised model is a very versatile self-
organisation model where agents take fast and straightforward
decisions at each round of bidding. By design, the decentralised
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model is not affected by increasing the frequency of disruptions
that may arise in the manufacturing process. This is because the
agents in this model do exactly the same at each round of bidding.
Thus, its’ response time was considered as the baseline for the
comparison against that of the hybrid model’s.

The assessment of this is important because it becomes possible
to estimate the total computational effort and its effect in a real
manufacturing system. This can be especially useful if the
frequency of disruptions can be estimated.

This experiment was designed to assess the responsiveness of
both models. It consisted of two sub-experiments: In sub-experi-
ment 23, the effect of varying the working content of products was
assessed and in sub-experiment 2b, the effect of varying the number
of products was assessed. These are the two variables that affect the
size of the schedules and consequently the time it takes to process
them. Other variables, such as tardiness costs, launch times and due
times were of no interest in this experiment, because they would not
affect the processing time. It must be noted, however, that there was
no time pressure for the PAs to be completed. Therefore, the hybrid
model did not need to trigger the swapping negotiations to then
reschedule with swapped resources.

As per the first experiment, there were four mobile resources
deployed. Itis recognised that, in a realistic environment with frequent
disruptions, the computational overheads would increase each time
there was a disruption of any type. However, in this experiment, the
scenarios were limited to a single hypothetical disruption.

Before carrying out this sub-experiment, testing was done to
determine the limitations of the specified hardware and heap
memory. Based on that, the experiment was bound at a maximum
of 90 products and working contents of 40,000 s each. Thus, sub-
experiment 2a was carried out with 90 products and sub-
experiment 2b was carried out with a working content of
40,0005 per job. The results are shown in Fig. 11. For the hybrid
model, a change in the working content was linearly proportional
to the required computational effort when rescheduling. Whereas,
an increase in the number of products resulted in an exponentially
proportional increase in the computational overheads.

To establish a comparison, the decentralised model was run
through this sub-experiment as well. The longest round of bidding
took 1.5 s to process. As such, this value provided a baseline for the
model’s rescheduling computational effort. This is because it
performs the same actions at each round of bidding and is thus
unaffected by disruptions on the shop floor.

These results reveal the key characteristics of the behaviour
models. For the hybrid model, increasing the planning horizon
increases the computational overheads linearly. Whereas increasing
the number of products increases the computational overheads
exponentially. In both cases, the decentralised model responds in the
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Fig. 11. The results for sub-experiments 2a (left) and 2b (right).
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same manner regardless of altering the abovementioned variables.
Thus, the feasibility of the hybrid model is strictly dependent on
those variables and on the frequency of disruptions.

At the equivalent setting of the first experiment (n=20, WC; . .
j=40,000), the hybrid model required approximately 13s to
process the schedule. Hypothetically, if the production process
was halted for that duration, then the results for the hybrid model
in the first experiment would look as represented by “Hyb*” in
Fig.12. It represents a very extreme case of a hypothetical scenario,
where the disruption occurred shortly after the initial schedule
was compiled. This way, the rescheduling proportion of the
schedule is highest and the highest number of products is affected
by it. It is shown that, with 5% spare capacity, it still does not result
in any TWT. With 0% spare capacity; a negligible amount of TWT is
generated in relation to the decentralised model. Thus, the
advantage of the decentralised model’s responsiveness is not of
substantial value in the given scenarios with a single disruption.

5. Discussion

The hybrid model consistently achieved the best and optimal
results in the given simulations in relation to minimising TWT. This
result was expected, because the model is optimised for that
purpose. The performance is achieved due to having a single entity
(BA) in the system that receives global knowledge of the whole
environment. However, for the same reason, it must process a large
amount of information and notify PAs of tardiness when necessary.
As shown in experiment 2, this can be very computationally
demanding to do. Furthermore, if the supplied schedule is not
optimal and PAs signal that they have agreed to swap resources, the
time required increases further. The hybrid model’s computational
overheads reached approximately 233s when processing 90
products with working contents of 40,000 units each.

The processing time for compiling the specific schedule may be
dramatically decreased by using a more powerful computer or
cloud computing services instead of the specified computer.
However, the scenarios considered as part of this work are only a
single stage of the assembly process. With added complexity in the
scheduling problem, the computational effort for the hybrid model
would increase further along the trend lines.

An argument in favour of the hybrid model is that the system may
not necessarily need to stop after a disruption has occurred. In some
cases it may even be better to proceed with a sub-optimal schedule for
the duration. This would result in higher utilisation and lower TWT
than completely halting the system. Such an approach could be
suitable for environments with a low frequency of disruptions.
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Fig. 12. The results for the first experiments with added tardiness due to
computational overheads.

However, if disruptions are frequent, it is possible that new disruptions
occur during the time when the hybrid model is still responding to the
previous one. As a result, there would be little to no sense in using the
hybrid model at all. Thus, in addition to the challenges of extending the
planning horizon and increasing the number of entities, the hybrid
model is also limited by the frequency of disruptions.

Unavoidable problems for the hybrid model would occur if the
manufacturing system was scaled up excessively or the code
needed frequent and significant changes. With excessive upscaling,
the required computational effort would eventually become too
large for efficient operation.

The other issue with the hybrid model would be the coding
challenge. It is accepted that behaviour models with centralised
architectures have a greater volume and complexity of code than
those with fully decentralised architectures. Therefore, expanding
the hybrid model’s code further is demanding in two ways: the
software engineering effort and the hardware that processes it.

The decentralised model achieved sub-optimal results in
situations where there was no spare capacity designed into the
product flow. Where there was 5% spare capacity, the model
handled the experiment at every setting without gaining any TWT.
Considering that in the North American automotive industry,
machines typically operate at efficiency levels of 60-70% [33], the
setup in sub-experiment 1a was not too optimistic.

Further in the first experiment, the models were given tight due
times (0% spare capacity) in various scenarios. As opposed to the
hybrid model, the decentralised model did not achieve optimal
results in these. Arelatively regular pattern could be identified in the
results. The model consistently performed better when the PAs were
initially set to offer smaller credits at their bidding rounds. Thus, the
PAs saved credits for the later stages at the expense of having lower
odds of attracting RAs at the start. This worked well for two reasons:
Firstly, PAs had high bargaining power when close to their due times,
and secondly, newly launched PAs could not compete with the ones
close to finishing a job. Conversely, PAs that offered high amounts of
credits from early stages onwards were much less competitive nearer
the due time when new PAs were already being launched. This
finding is in agreement with the work that the hybrid model was
based onin[6]. Furthermore, competing PAs were further obstructed
by the moving penalty factor that the RAs had to consider before
moving from one PA to another. Very large proportions of TWT for the
decentralised model, with aggressive spending strategies, resulted
from when PAs had already missed their due times and could not
outbid other PAs for the remaining few resources.

The presented decentralised model is only one out of a vast range
of possible models that could be developed for the given purpose. It
was also tested at only 9 different setups, meaning that it is unlikely
thatit performed to its best ability in the given scenarios. The results,
however, confirmed a very important point from [1]: In steady
situations with sufficient spare manufacturing capacity, the self-
organisation models needn’t be complicated at all. Without spare
capacity, the decentralised model gained some TWT at every setting
and scenario. This indicates that the given model must have some
spare capacity in the system to compensate for imperfections. In the
future, it would be interesting to determine the exact amount at
which the model started gaining TWT.

The power of the decentralised architecture would be amplified
in a larger and perhaps more realistic manufacturing system. Such a
system caninclude different stages of assembly and different kinds of
skills for mobile robots. The illustration in Fig. 12 represents a
possible shop floor layout for such a system. In a more complex
variant of this problem, a mix of products with different skill and
tooling requirements would be launched in designated areas on the
shop floor. Firstly, this layout adds optimisation complexity, because
now the individual skills of RAs and their requirements for PAs will
have to be considered. Secondly, the larger job shop layout would
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have more agents on it. In such a layout, it would be possible to vary
the local spare capacities and eliminate bottlenecks in the areas by
transferring resources between them (Fig. 13).

Knowing that the computational effort is exponentially propor-
tional to the increase in the number of agents, the rescheduling time
for the hybrid model in this case would further increase by a large
amount. From the experiments in this paper, it is difficult to estimate
how significant it would be for any specific system, as there can be
many sizes and variations to it. Nevertheless, despite the sub-
optimality of the decision-making, the decentralised model would
continue with its normal behaviour and high responsiveness. The only
things that could make the decentralised model respond slower would
be the additional code and messaging required for negotiations. The
messaging could be reduced by introducing more localised messaging,
so that very distant (and therefore highly penalised) RAs would not
evenreceive messages. Based on the decentralised model’s results, it is
fair to assume that adding agents would cause a negligible reductionin
responsiveness. Therefore, the decentralised system has a natural
advantage over the hybrid model in terms of computational effort,
dealing with complexity and time required to respond to changes.

Because the processing times in large structure assembly are very
long in comparison to the computational efforts shown in this paper,
the models can also take a pre-negotiating approach (similar to [34]).
The advantage would be the fact that, at each instance, the agents
have either already negotiated or are currently negotiating on the
next step(s), in effect eliminating the wait between predictable
events. However, in such a setup, both models would not have an
immediate response for an unpredictable event and would still need
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to negotiate/schedule as was done in this paper. Furthermore, the
high computational effort of the hybrid model could potentially
make this infeasible due to the necessary time and hardware costs.

6. Conclusions

In this paper, a novel decentralised self-organisation behaviour
model for mobile robots in large structure assembly was
presented. The model was then compared to the previously
developed hybrid model in a range of experiments.

The experiments confirmed the natural advantages and
disadvantages of both model architectures. The hybrid model
achieved optimal scheduling results at the expense of higher
computational effort. The decentralised model, on the other hand,
did not achieve the optimal results in challenging scenarios.
However, it achieved 0 TWT with 5% spare capacity at all behaviour
settings. It also showed that it constantly experiences low
computational loads regardless of the environment. Such behav-
iours are typical for these types of systems. Therefore, the work in
this paper confirms existing theory from this field.

The decentralised model is a very versatile and adaptable model
that does not get impeded by computational effort. It is well-suited
forenvironments where there are frequent modifications and scaling
on the shop floor. Its weakness is the sub-optimality, which requires
additional capital investment in order to have some spare capacity in
the system to make up for the lower efficiency of resource utilisation.

Therefore, it can be concluded that if a mobile manufacturing
system is not large enough to cause computational issues, nor will it
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Fig. 13. A sample expanded job shop layout.
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need many changes in its lifetime, the hybrid model is the better
option. This is due to a more efficient utilisation of existing resources.
However, if the system is very large or is expected to grow, then it
could be worth using the decentralised model. Whilst the
decentralised model may require a small proportion of additional
capital investment in the beginning, it is highly likely to overcome
many problems later in the manufacturing system’s life cycle.

For further work, it is proposed that the decentralised model is
tested with moving times included in the simulation. It would be
interesting to investigate the impact of moving time regardless of its
small proportion. Depending on the results, it could then be reasonable
to set high moving penalty factors to discourage excessive moving.

Also, it is inconclusive how much spare capacity would be the
minimum for the decentralised model to achieve TWT=0 in the
given scenarios. As 5% was clearly more than enough and 0% was
insufficient, it would be important to evaluate this more rigorously
and to find a better estimation.

Furthermore, it will make sense to analyse how the models
perform in noisy environments. Noise can be added in the form of
asynchronous messaging or randomised experimental variables,
for example. Such an analysis would require a much higher sample
size for experiments. Knowing the results would enable the
prediction of the behaviour factors that achieve the best results for
the decentralised model.

Finally, a case study from a representative manufacturing
environment should be put together and used for testing the models.
Eventually, the scenarios should expand to a multi-stage manufactur-
ing shop floor that could have thousands of agents on it with different
skills and requirements. The interest would firstly be in determining at
which complexity the hybrid model would become unusable.
Secondly, it would be in identifying whether the decentralised model
would continue performing to the same standards.
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Appendix A.

Tables A1-A4

Table A1
The experimental settings for sub-experiment 1a.

Table A2

The experimental settings for sub-experiment 1b.
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Product number Due time Tardiness Cost Working Content (s)
1 40,000 1000 40,000
2 40,000 1000 40,000
3 40,000 1000 40,000
4 40,000 1000 40,000
5 50,000 1000 40,000
6 60,000 1000 40,000
7 70,000 1000 40,000
8 80,000 1000 40,000
9 90,000 1000 40,000
10 100,000 1000 40,000
11 110,000 1000 40,000
12 120,000 1000 40,000
13 130,000 1000 40,000
14 140,000 1000 40,000
15 150,000 1000 40,000
16 160,000 1000 40,000
17 170,000 1000 40,000
18 180,000 1000 40,000
19 190,000 1000 40,000
20 200,000 1000 40,000
Table A3

The experimental settings for sub-experiment 1c.

Product number Due time Tardiness Cost Working Content (s)
1 40,000 1000 40,000
2 40,000 500 40,000
3 40,000 1000 40,000
4 40,000 500 40,000
5 50,000 1000 40,000
6 60,000 500 40,000
7 70,000 1000 40,000
8 80,000 500 40,000
9 90,000 1000 40,000
10 100,000 500 40,000
11 110,000 1000 40,000
12 120,000 500 40,000
13 130,000 1000 40,000
14 140,000 500 40,000
15 150,000 1000 40,000
16 160,000 500 40,000
17 170,000 1000 40,000
18 180,000 500 40,000
19 190,000 1000 40,000
20 200,000 500 40,000
Table A4

The experimental settings for sub-experiment 1d.

Product Number Due time Tardiness Cost Working Content (s) Product number Due time Tardiness Cost Working Content (s)
1 40,000 1000 40,000 1 40,000 1000 40,000
2 40,000 1000 40,000 2 40,000 1000 40,000
3 40,000 1000 40,000 3 39,000 1000 40,000
4 50,000 1000 40,000 4 40,000 1000 40,000
5 60,000 1000 40,000 5 50,000 1000 40,000
6 70,000 1000 40,000 6 60,000 1000 40,000
7 80,000 1000 40,000 7 90,000 1000 40,000
8 90,000 1000 40,000 8 95,000 1000 40,000
9 100,000 1000 40,000 9 80,000 1000 40,000
10 110,000 1000 40,000 10 100,000 1000 40,000
1 120,000 1000 40,000 1 120,000 1000 40,000
12 130,000 1000 40,000 12 120,000 1000 40,000
13 140,000 1000 40,000 13 110,000 1000 40,000
14 150,000 1000 40,000 14 150,000 1000 40,000
15 160,000 1000 40,000 15 140,000 1000 40,000
16 170,000 1000 40,000 16 160,000 1000 40,000
17 180,000 1000 40,000 17 180,000 1000 40,000
18 190,000 1000 40,000 18 170,000 1000 40,000
19 200,000 1000 40,000 19 190,000 1000 40,000
20 210,000 1000 40,000 20 200,000 1000 40,000
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