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GENERAL INTRODUCTION 

ln recent years, considerable interest has been shown in the elastic 

stability and vibration characteristics of circular cylindrical shells because 

of the widespread use of this or simil<t_r type structures in air, space, and 

water craft. 

In general, in the determination of the modal characteristics of thin 

cylindrical shells, sixteen sets of homogeneous boundary conditions can be 

examined at each end of the shell. The present study is concerned with shells 

clamped at the base and with free, ring stiffened or simply-supported upper 

end i.e. structures typical of a chimney stack. In particular, the problem 

is to study wind -induced oscillations of tall chimneys. 

The problem in wind-induced swaying oscillations of tall chimneys and 

other similar cylindrical shell structures is now well documented and methods 

of prediction and prevention of such phenomena are believed to be well understood. 

The corresponding problem of wind-induced ovalling and breathing 

oscillations has occurred less frequently but certain incidents have been 

attributable to this cause: 

In 1964 during a typhoon, ovalling oscillations were observed of a 150 ft. 

high, lOft diameter steel chimney in Hongkong. The chimney material was 

mild steel of 5/16 inch thickness. The nature of the oscillations was of an 

ovalling (n = 2) mode at a frequency of about 1. 6 - 2. 4Hz. After some time 

the sole stiffening ring at the top end of the chimney broke away from the 

basic shell whereupon the amplitude of the vibrations increased violently 

prior to collapse. 

The present investigation was prompted by the above incident. The study 

was done in two different phases described in the form of Part A and Part B. 

Preliminary studies had been previously conducted at Loughborough into this 

problem and, already, significant advances had been made which had clarified 

some of the unknowns and highlighted the need for a more comprehensive 

investigation of which this study is the result. 



Part A is concerned with the theoretical part of the present investigation. 

A fairly general theoretical analysis for free vibration characteristics of clamped­

free and clamped ring stiffened circular cylindrical shells has been developed 

and programmed for digital computer solution. The treatment is comprehen-

sive in the sense that the Flugge's thin shell equations of motion have been 

used, three translational shell inertia components are included. Also 

included are the effects of stiffening ring geometry, eccentricity, mass and 

rotary inertia. 

The analysis is capable of handling vibration characteristics of cylindrical 

shells, in the swaying (cantilever mode, n = 1) as well as in the ovalling or 

breathing modes (n" 2, n is circumferential wave number) with arbitrary 

length -to -radius ratio and radius -to -thickness ratio. In the case of a shell 

with an end ring it also allows for variation in the non-dimensional ring 

characteristics e.g. ring breadth/shell radius, ring depth/shell radius. 

After the introductory chapter 1, chapter 2 of Part A deals with the 

analytical investigation. Here, by using Flugge 's thin shell equations 

expressions for strain and kinetic energies are derived. General expressions 

for ring strain and kinetic energies (including ring eccentricity and rotary 

inertia) are also derived. Various mode shapes are chosen e.g. polynomial 

function, trigonometric function, characteristic beam function etc. by . 
allowing variation in longitudinal mode functions. The frequency equations 

are then derived by using the Rayleigh-Ritz procedure and the degree of this 

equation depends upon the degrees of freedom in the choice of mode shapes. 

These equations are solved by using various numerical techniques. The effect 

of the assumption of zero hoop and shear strain is seen to reduce the degree 

of the frequency equation. 

Chapter 3 consists of a discussion of the analytical results. This is 

subdivided in two parts i) clamped-free shell and ii) clamped-ring stiffened 

shell. The effect of zero hoop and shear strain on the frequency spectrum is 

assessed in both the cases. The dependence of frequency on the number of 

axial waves and circumferential waves is also examined. In case (ii) the 



effects of ring mass, eccentricity and stiffness on the frequency spectrum 

are also discussed. 

In chapter 4, for a few typical shell geometrics of interest, the results 

of the present theory are compared with the results of exact and more 

complicated vibration analyses for thin cylindrical shells with clamped-free 

or clamped-ring stiffened ends. TI1e main points of the exact analysis are 

given in the Appendix V. 

Conclusions of the foregoing analysis are given in chapter 5. 

Appendix I gives pertinent details of a preliminary analysis concerning 

an investigation of the vibration characteristics of a vertical, cantilevered 

shell, with its lower edge restrained against displacement and its upper edge 

supported on a stiff reinforcing ring. 

Appendix II contains properties and tables of characteristic functions 

representing normal modes of vibration of a beam. Appendix III gives 

expressions for the integrals, involving characteristic beam functions and 

their derivatives, encountered in the analysis. 

Appendix IV contains the flow charts of the main computer programmes 

used along with the flowchart for the Regula-Falsi iteration procedure. 

Appendix V gives the summary of an exact analytical approach for clamped­

free and clamped-ring stiffened shells. The results of this theory are 

compared with the present theory. 

Part B contains mainly the results of the experime~tal programme 

carried out for the aforesaid problem. After an introductory chapter 1, vortex 

shedding phenomena are discussed in chapter 2 followed by a discussion on 

vortex -induced vibrations in chapter 3; 

Chapters 4 and 5 describe the construction of model shells, experimental 

rigs and instrumentation. General test procedures are given for the wind 

tunnel tests on model stacks and model excitation by electromechanical shaker. 

The comparisons of analytical and experimental vibration frequencies is 

given in chapter 6. The results by using a mechanical shaker as the excitation 

device are reported in the first part. In this part the structural damping 
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characteristics have been measured experimentally for various modes of 

vibration. In the second part of chapter 6 the test results of model stacks 

in the wind are compared with "predicted'' analytical results. Many model 

stacks have been tested for the purpose of correlation of analytical results 

with the experimental ones. 

Chapter 7 contains the main conclusions of the experimental programme. 

Appendix I contains the. observations made on a particular shell with 

helical strakes on upper one third of it. The effect of helical strakes is 

analysed. 

In the Appendix IT the results of measured structural damping are given 

in a table form for a particular shell with one or two layers of 0. 005" thick 

fablon. Fablon was used to increase the structural damping of the shell. 
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ABSTRACT 

A theoretical analysis for the free vibration of clamped/free and clamped/ 

ring stiffened cylindrical shells has been developed and programmed for digital 

computer solution. The analysis is capable of handling vibration characteristics 

of cylindrical shells, in the swaying (cantilever mode n=l) as well as in the ovalling 

or breathing modes (n ~ 2; n is circumferential wave number), with arbitrary 

length to radius ratio and radius to thickness ratio. In the case of a shell with 

an end ring it also allows for variation in the non -dimensional ring characteristics 

(ring breadth/shell radius, ring depth/shell radius). 

Three translational shell inertia components are included and the effects of 

ring eccentricity and mass and rotary inertia are examined. 

The paper examines the accuracy of various engineering approximations as 

compared with more exact solutions from Fliigge's thin shell equations and 

discusses the error in terms of a non-dimensional frequency parameter. 

It is interesting to note that for tall shells the assumption of zero hoop and 

shear strain leads to considerable simplification in the analysis without introducing 

any significant error in the minimum natural frequency. 

The problem is formulated using the energy method and the Rayleigh-Ritz 

technique is employed to obtain an approximate solution. The choice of the modal 

shape is varied and it includes a longitudinal modal component approximated 

alternately by polynomial, trigonometric or "exact" beam vibration functions 

chosen to satisfy prescribed end conditions. Specially for the shell clamped at 

the base and ring stiffened at the top, the combination of two beam vibrationl modes 

(clamped/free and clamped/simply supported) is taken for the longitudinal displace­

ment component •. 

Numerical results are found in each case and compared with one another 

and the choice of mode shape thus assessed. Results are also compared to the 

existing theories and experiments for the clamped/free cylindrical shell. The 

analyses are then substantiated later by comparing the results with the exact 

solution of Fliigge's equations of motion. 

' 
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NOTATION 

radius to shell midsurface .. 
elements of stiffness matrix in frequency equation 

area of the ring section 

th moment of area of ring section about skin median. 

generalized coordinates in displacement functions 

elements of mass matrix in frequency equation 

net breadth of ring section 

eigenvalue properties of beam (see appendix II) 

-
net depth of ring section 

Youngs modulus 

strains 

extensions; shear strain 

shell thickness 

rth moment of mass of ring per unit circumference at skin 
median, about skin median. 

integrals definedinAppendix Ill for longitudinal 
mode functions. 

changes of curvature 

twist· 

length of the cylinder 

axial mode para m et er; '1/L 

longitudinal mode number (see fig. 2) 

values of longitudinal beam vibration functions at a 
specific distance x = x. 

1 

values of derivatives of longitudinal beam vibration 
functions at a specific distance x = x. 

1 



NOTATION (contd) 

n circumferential mode number (see fig. 2). .. 
N1,N

2
,N

3
,N

4 
constants for rings defined in 

N
5

,N
6
,N

7
,N

8 
equation (38) 

pr' qr beam eigenvalues 

T kinetic energy (see eq. (12) and (16) ) 

t time 

U strain energy in shell and rings 

u, v, w longitudinal, circumferential, and radial (or normal) 
displacements, respectively of the shell mid-plane. 

x, e , z longitudinal, circumferential and radial coordinates (see fig. 1) 

x X/L 

cl>" (x), 1/!(x) 

<I> r(x), 1/J r(x) 

assumed longitudinal vibration modes for shell 

characteristic beam vibration functions in longitudinal direction 
for clamped -free and clamped -simply supported beam respectively. 

e . 

~ 
r 

V 

p 

w 

h
2
/12a

2 

p a 
r 

q a 
r 

Poisson 's ratio 

mass density 

natural frequency (circular) 
2 2 2 

Pu (1-v )w 
E 

frequency parameter, 

(1 (1 (1 

xx, xe, ee stresses 

Subscripts : 

s 

R 

refers to shell 

refers to ring 

A comma followed by subscripts denotes partial differentiation 
a u 

with respect to the subscripts, e.g. U, X denoteS ax and 

w d t a2w/'e 2. ' ee eno es a 

A dot(.) above a quantity denotes time derivative of the quantity; 
au 

e.g. u denotes '3t. 

A xi 



1. INTRODUCTION 

The problem of the determination of the in-vacuo dynamic characteristics 

of thin cylindrical shells has been studied extensively by many research workers. 

However only a few papers are devoted to the study of the vibration character­

istics of cylindrical shells with different boundary conditions at the two ends. 

Forsberg. [1] has made a detailed study of the effect of end boundary conditions 

on the modal characteristic of thin cylindrical shells. 

In this study we have dealt with the vibration characteristics of a cylindrical 

shell clamped at one end and either free or stiffened by an elastic ring at the other. 

In particular the problem is studied for shells, typical of slender welded steel 

chimneys, with lower edge fully restrained and the upper edge either free or 

supported on a stiff reinforcing ring. This investigation is prompted by the recent 

collapse of such a shell in the form of a tall slender chimney stack when subjected 

to a high sustained lateral wind. The stack was observed to oscillate in an ovalling 

mode of large amplitude prior to collapse. 

The problem of a clamped-free shell has received very little attention and that 

of clamped ring stiffened shell still less. Weingarten [2] has calculated the 

natural frequency for a particular shell with clamped-free end conditions using a 

Donnell-type equation. Watkins and Clary [3] give a comparison of results of an 

experimental investigation into the vibration characteristics of thin circular 

cylindrical shells with results obtained by using simple analytical methods. 

Similar work was done by Sewall & Naumann [4] who made ;omparisons of 

analytical and experimental frequencies and mode shapes of eccentrically stiffened 

and unstiffened cylindrical shells with various end support conditions. 

The major purpose of the present report is to show the dependence ofthe 

lower natural frequencies of such cylindrical shells on the geometrical and material 

properties of the shell, e.g. length/radius; thickness/radius, Young's modulus, 

density etc. The following are the phases of this problem which have been dealt 

with thoroughly: 

' 

(a) Choice of appropriate shell equations of motion. 

(b) Choice of modal f:lrms, influence of boundary conditions. 

(c) Rotary and In plane inertia effects. 

(d) The assumption of zero hoop and shear strain. 

tU. 



The equations of motion: developed by Flilgge [5] are used here. Fliigge 

derived equations for cylindrical shells which retain terms of higher order than the 

Timoshenko-Lovc theory, yet are computationally tractable. They have become 
' 

an accepted standard to which other theories are referred for accuracy. Many other 

investigators (Novozhilov, Vlasov and Koiter) have presented shell theories intended 

to remove all inconsistencies as compared to Love's first approximation. These 

theories increase the complexities of the problem but not necessarily the accuracy. 

Naghdi [6] has indicated that none of these is superior to Flugge's theory. In 

general one cay say that the wide variety in the resulting equations arises basically 

from small differences in the formulation of the strain displacement relationships, 

and the discrepancies occur only in terms which numerically have little significance. 

As long as the limitations of the thin shell theory are observed, the various formulat­

ions generally give identical numerical results within engineering accuracy. An 

excellent account of this fact is given by Warburton [ 7] v.h ere it is remarked that 

for a wide range of parameters the effect of various different shell theories on the 

natural frequencies are very small. 

·The modal deflection functions that have been assumed in the past satisfy part 

or all of the end boundary conditions. The different mode shapes correspond to 

differences in the functional dependence of the deflections on the axial coordinate x. 

These include polynomial expressions as taken by Johns and Allwood[9], trigonometric 

functions in x, as well as the case in which the longitudinal modal components are 

approximated by elementary beam vibration functions chosen to satisfy all the end 

conditions. 

Also the effect upon the frequency parameter of including transverse lh ear 

deformation and rotary inertia in the analysis are relatively small for the parameter 

studied in reference [8] but these effects increase rapidly for radius/thickness 

ratio < 20. Such effects are not included in the present study. Included in the 

present analysis are the radial, axial and circumferential inertia terms and the 

ring rotary inertia. 

The analysis by Johns and Allwood[9] considered that for tall shells the 

assumption of zero hoop and shear strain leads to considerable simplification 

without introducing any significant error in the minimum natural frequency. This 

is extended here to cover a wide range of cases and for short shells this assumption 

is thought to lead to error such that the frequencies may be increased considerably 
' 

A. 2. 



above the more exact results. Some valuable comments have been made by 

Warburton[7] on Ref. 9 which also indicate the errors involved in various 

approximations. ,· 

A further report is to follow which will deal more fully with the correlation 

of theoretical and experimental vibration data for circular shells and with the 

results of wind-tunnel studies into wind-excited oscillations of such shells. 

' 
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2. ANALYTICAL INVESTIGATION 

2.1 General .. 
Analytical shell frequencies presented in this paper were obtained by applic­

ation of the well known energy method employing the Rayleigh-Ritz procedure. 

The general approach of the method ·is outlined below. 

Firstly, the expressions for the kinetic and potential energies are written 

for a cylindrical shell and for a ring. For a clamped/ring stiffened shell these 

expressions are combined to give the total kinetic and potential energies. Next, 

mode shapes are assumed with undetermined coefficients, which satisfy the 

appropriate end conditions. These assumed displacement functions are then 

substituted into the energy expressions and application of Rayleigh-Ritz procedure 

yields frequency equations which on solution will give desired natural frequencies. 

2. 2 Analysis 

The energy expressions are written first in terms of strain, then strain­

displacement relations are used to give these expressions in terms of displacement 

of the middle surface of the shell. Included are the radial and in-plane inertia 

terms (axial and circumferential). Eccentricity effects due to the ring centroid 

being not coincident with shell median plane are explicitly taken into account. The 

rotary inertia of the shell is believed to be negligible but, however, rotary inertia 

is taken into account in the kinetic energy expressions for the rings •• 

2. 3 Strain Energies 

The coordinate system are notation used in the anlysis are defined in Fig. (1). 

A circular cylindrical shell of length L, mean radius a, and uniform thickness h 

is considered. Coordinate axes, x, e, z, correspond to the axial, circumferential 

and radial directions respectively. The strain displacement-relationships considered 

for a cylindrical shell with the coordinate system given in figs ( 1) are those 

derived by Flugge [sJ as 

e = u, zw, ·xx X XX 

e ea = v, a zw,ae w 
+ -- (1) a a(a + z) a+z 

u, a a+z (i + z ) ex a = + V - w,xe a+z a 'x a+z 

A. 4. 



where a comma before the variable used as a subscript denotes partial different­
au iation with respect to the variable (i.e. u, = - etc.). These relationships 

x ax 
are referred to as Fliigge's exact strain displa~ement relations, and assume 

that normals to the middle surface remain normal after straining and that all the 

displacements are very small i.e. that they are negligible compared with radius of 

curvature of tbe middle surface and that their first derivatives, the slopes, are 

negligible compared with unity. 

Although equations (1) may appear to be complicated it is quite easy to give 

them a mechanical interpretation. Equations (1) may also be cast into another form 

by introducing a set of quantities describing the deformation of an element of the 

middle surface. These are: 

the extensions: 

the shear strain: 

e = u, 
XX X 

= u,a 
-+ a 

V, 
X 

together with the changes of curvature k = w x 'xx 

1 
a 

(v, e + w) 

ka = + (w+w,ea) 
a 

and tbe twist k 
xe 

1 1 
= a (w, xe + 2a 

1 
u,e - 2 v, ) 

X 

The strain energy of the shell is calculated by considering a small element 

in a thin shell. Provided the shell is considered to be thin, it is assumed that the 

small element is in plane stress ( cr = 0, cr = cr
6 

z = 0). Thus Hookes zz xz 
Law in this case is: 

E 
(J = 

XX 2 
(1- V ) 

E 
2 

(1- \1 ) 

E 
2(l+v) 

(J = 
xe 

(e + ve ee) 
XX 

(eea + vexx) 

exe 

The incremental strain energy density is 

dU = cr de + cr 66 de e e + a · de 
xx xx xe xe 

Substituting (2) into (3) and integrating gives strain energy density· 

2 

(2) 

(3) 

u = + e ee ) + v exx eee + 4 e x e (4) !:_y_ 2 J 
t\.5. 



The total strain energy is foWld by integrating the above expression over the 

entire shell volume 

u = 
s Jv UdV 

E s 
= 

2 (l-v2) 
Jh/2 

-h/2 

J2" JL [e2xx + e2 ee + 2v exx e ee 

0 0 

+ (1-~) e
2
xe] (a+z) dxde dz (5) 

Here (a+z) dxd edz is a volume element and Es is the Young's modulus of the shell 

material. The strain displacement relations (1) can be used to give the strain 

energy in terms of the displacements u, v, w of the middle surface of the shell. 

Integrating over the shell thickness the potential energy of the cylindrical shell 

is written as 

u = 
s 

1 2 -z (w + v,e) 
a 

2v 1 
+ a u, x (v 'e + w) + 2a 2 (1 - v ) ( u, a 

2 + av, ) 
X 

{ 
2 2 

+6 aw,xx 
1 

+-2 
a 

2 
(w+w,ee ) - 2a u, w, 

X XX 

1 
+ 2 vW,XX (w, 66 -V, fi) + 2 

+3 
2 

V, 
X 

2 + 4 w, 
xe 

1 
(1-v)(-

2 
a 

2 
u, e 

- 6 v,x w,x 6)} J ctxde 

(6) 

The above expression (6) is a combination of the shell extensional and the shell 

b din E h b . th . 1 "ff d Esh
3 

b . th en g energy; _s _ emg e extenswna su ness an _ 
2 

emg e 

1- v2 12(1-v ) 

bending stiffness. 
h To arrive at the a1J9ve expression ( 6) the infinite series in -were truncated 
a 

by neglecting fifth and higher powers of h/ a e.g. 

' a+ h/2 h h3 
1n ~ + 

a - h/2 a 12a3 
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The potential energy expression for the rings will be developed assuming that 

these are uniform along their circumferential length and have an asymmetric cross­

section. Further, it is assumed that only circumferential strain is relevant for 

calculating the strain· energy in this case; also that the cross sectional planes 

do not warp. The compatibility requirements are ~asily satisfied by the assumption 

that the ring is integral with the shell at a single common line of attachment. This 

assumption is more easily justified if the ring is welded, bolted, riveted or 

integrally machined with the shell. Derivations for the ring energies are based 

on an analysis in Ref. [10] 

For a ring neglecting Cl cr and taking 0 ee = ER eee XX zz 

1 2 1f 

Jd 
2 

UR = 2 ER Jo bR e ee (a+z) de dz 

R 

where bR is breadth of the ring and dR the depth. Substitution for e ee from 

equation (1) gives on integrating over the ring depth, 

u = 
R 

2 
+w) + 

A (1) 2 2 
R (v, 9 - w - 2v, 6 w, 66 
a 

(7) 

(8) 

-2ww, 99 )+ ( )2 -w+w,ee 
A (3) 
__!L (w+w'lle 

3 a 

>2 + ... } d 6 

(9) 

where 

= Jd 
R 

area of the ring section. 

A~) = /d Zr bR dz .= rth moment of area of ring section about skin 

R median plane. 

The eccentricity effects are explicitly accounted for by taking these energies 

in terms involving the distance z. Thus for r odd, A~r) is to be taken negative 

when the ring is an internal one. In the case of a ring at the top of the shell (x=L) 

the expression (9) is 

u = 
R 

ER !2" { 2 AR (v, 6 +w) + 2a 
0 

- 2ww,ee ) + 
A~) 2 
-2- (w+w,ee) -

a 

A.7. 

A(3) 
H. 

3 (w+w,ee 
a 

>2 + .. ·1 de 
x=L 
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The total potential energy due to several rings at various positions of the shell 

is given by 

N ER 
L. UR = r 
i=1 2a 

- 2 ww,
68

) + 

211 ' 

J tAR. 
2 

(v' e +w) + 
0 1 

2 
(w + w, ee) -

A~1) . 2 2 
_1 (v, e - w - 2v, 6 w,ee 

a 

2 ) . 
(w+w,ee) + ... 5 de 

(11) 

where the total number of the rings is N and x1, x
2

, ... , xn are the distances of 

the ring stations from the clamped end of the shell. Quantities ER AR , A~1) ••• 
r r r 

etc. correspond to rth ring. 

In the case of many closely spaced rings these are not necessarily considered 

as discrete elements and a 'smeared' analysis similar to t11at of Mikulas and 

McElman [11] may be used. Because of the different end conditions and because 

of provision for the effects of in plane inertia terms and ring rotary inertia the 

present paper is broader in scope. For a 'smeared' stiffener analysis the 

summation sign in equation (11) is replaced by an integration over the entire length 

of the shell. An assessment of the validity of 'smeared' analyses compared with 

discrete stiffener analyses is given by Parthan and Johns [12] • 

2. 4. Kinetic Energies 

Neglecting the rotary inertia, the kinetic energy of the shell may be written 

as 
1 

T· =­s 2 
d ectx 

where dot above the variable denotes differentiation w. r. t. time, p is s 
the mass density of tlle shell material. Altllough rotary inertia of shell is 

negligible the rotary inertia of the stiffening rings may sufficiently affect tlle 

(12) 

natural frequencies of the stiffened shell as demonstrated by Parthan and Johns [12 J 
and Huffington and Schumacker [13] . Thus tlle kinetic energy of one ring is given by 

1 
T =­

R 2 

211 

J l (a+z) 
o dR 

{ 
• • 2 r . z • . 2 • 2) 

pRbR (u -zw,x> + (a V- a w,6 ) +w 5 dedz 

(13) 

where PR bR is mass of tlle ring per unit deptll and per unit circumference at a 
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radius = a+ z. Integrating over the ring depth the kinetic energy for a ring at 

the free end is given by 

2Tr 
. a J 

TR = 2 
0 

[ .2 .2 • 2 
LR (u +v +w )+ 

2I~)(v'2 • , - vw, 6 -auw, > 
X 

a 

I (2) 
R { 2 ·2 + 2 a w, 

a x 

where 

(14) 

a+z 
a dz is mass of the ring per unit circumference 

at the reference surface 

a+z 
a 

a+z 
a 

z dz 

2 
z dz 

If PR is taken as the ring density averaged over the entire ring section the above 

can be expressed using previously defined quantities (equation (9) ) as 

i5R {AR + 
1 

Ail) 1 mR ~ a 
(15) 

I (1) ~ i5 {A (1) 1 
Ai2)1 + R ~ R R a 

I (2) - p LA (2) + 1 
Ai3)} 

R - R R a 

The kinetic energy due to rings at various positions of the shell is given by 

N 2Tr 2I (1) 

TR L: 
a J t .2 .2 • 2 R. ..2 •• 

- auw, ) = 2 mR. (u +v +w )+ ___! (v - v w, 6 
i=1 0 1 a X 

I(2) (16) 

+ Ri ..( 2 . 2 • • 2} 

J a2 a w 'x+(v -w,e) de 

x =x. 
1 

The corresponding expression for the potential and kinetic energies used by Johns 

& Allwood [ 9] are given in the appendix (I) for comparison. 

' 
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2.5 Modal Ftmctions 

2.5.1 General 

The general expressions chosen'·£or the inplane and radial displace-

ments u, v and ware 

={ Al 
I I 

(x)} u ~ (x) + A2 1/J cos ne cos wt 

V = {B1 
~ (x) + B2 1/J .(x)} sin ne cos (I) t (17) 

w =£cl ~ (x) + C21/J (x)} cos ne cosw t 

I ., d~ I d 1/J I 
vh ere Hx) and 1/J (x) are axial mode ftmctions and ~ (x) = ~- and 1/J(x) = - -

p dx dx. 't-
Fig. 2 shows typical modal forms for a circular shell with identical botmdary conditions 

at each end. The modes are assumed in the present study to satisfy part or all of 

the botmdary condi~ions which are in general different at each end as is seen in 

Fig. 3. The following sets of axial mode ftmctions ~(x) and 1/J (x) have been 

incorporated in this present analysis. 

2. 5. 2 Johns and Allwood [9] chose a polynomial expression in x for the 

axial mode ftmctions for a clamped-free or clamped ring-stiffened shell viz. 

Hx) -2 - -= x (x - 3) , where x = x/L 

These correspond to an encastre and axially-clamped base and approximately to 

zero axial stress and edge moment at the ring stiffened, or free, upper end. 

(18) 

2.5.3 In the second case the modal dependence on the axial co-ordinate x 

is chosen (for the shell clamped at the base and free at the top) so that w, the 

radial deflection varies from zero with x up to a certain length !- (not predetermined) 

of the shell from the clamped end and then it becomes constant for the rest of the 

length of the shell. 

·_~>·t: 
cos 11 xfi 0 <x < r 

(19) 
.t <X < 1 

where 1/L = !1. 
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2.5.4 In the third case (again for clamped-free shells which are typical 

of unstiffened chimney stacks) the modal function is a beam vibration function chosen 

to satisfy the prescribed set of end conditions i.e. of clamped base and free upper 

end. In this case, 

<I> (x) = cosh p x - cos p x - c (sinh p x - sin p x) (20) 
r r r r r r 

·where p is given by the roots of the transcendental equation 
r 

and 

cosh p L cos p L + 1 = 0 
r r 

c = 
r 

sinh p L - sin p L 
r r 

cosh p L + cos p L 
r r 

(21) 

(22) 

2.5.5 In the last case (for the cylindrical shell clamped at the base and 

with an elastic ring at the upper end), the longitudinal modal component cannot be 

represented by the clamped free beam vibration function alone. Hence the combination 

of clamped-free . [given by equation (20) J and clamped-simply supported beam 

vibration functions has been taken to approximate the longitudinal modal component 

in this case. The clamped-simply supported beam vibration function is given by 

1/J (x) = cosh q x - cos q x - d (sinh q x - sin q x) 
r r r r r r 

where q is given by the transcendental equations 
r 

sin q L cosh q L - sinh q L cos q L = 0 
r 'T r r 

and 
d = cot q L = coth q L 
r r r 

The properties and numerical values of <I> , p , c and 1/J , q , d. are 
r r r r r r 

tabulated by Bishop & Johnson [14] . The choice of a beam mode functions for 

(23) 

(24) 

(25) 

<I> (x) and 1/J (x) allows some simplification in the analysis through the ortho-r r 
gonality properties .e.~ 

J
L 

0 

4> (x) <I> (x) dx 
r s 

o..r-L .t 1 mtl a-t- _fo.,... l/1. 

where " 1 
<I> (x) =-

r 2 

' 
pr 

L 

=f 
0 

iq. (x) 
r 

" 4> (x) · <j> " (x) dx = 0 r s 

u 
1/J (x) s = 

1 
2 
qs 

(r 'f s) (26) 

The detailed account of these functions and their properties is given in the appendix II. 
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2. 6 The Assumption of zero hoop and shear strain 

The assumption of zero hoop and shear strain directly simplifies the mode 

shapes and the subsequent analysis i.e. if 

v,e 

V, 
X 

+w = 0 

+ u, e 
- = 0 a 

the modal forms (17) are reduced to the following simplified form: 

a {cl <P' (x) c lji'(x) } u = ---z + cos ne COS Wt 
n 2 

1 {cl <P (x) c lJi (x)} sin ne cos wt V = + n 2 

w = {cl <P (x) + c2 1jJ (x)} cos ne COS Wt 

(27) 

(28) 

Thus it is easy to see that the number of amplitude functions is reduced to one-third 

from three to one for a clamped-free shell with A
2

, B
2

, c
2 

neglected; from six to 

two for a shell with A
2

, B
2

, c
2 

retained as well as A
1 

B
1 

c
1

• The resulting 

simplification in the various frequency equations and the effect of this on the final 

results is discussed in the following sections. 

2. 7 Frequency Equations 

2. 7.1 General 

Substituting an assumed set of modal forms into the expression 

for total strain energy (U) and total kinetic energy (T) and assuming the motion to be 

simple harmonic of frequency w, the equations of motion are obtained from 

relations of the following type: 

a 
[u (x,e) 

2 
e ) J a 

Tu(x, e ) 2 . J 
a A

1 
-"' T (x, = w T (x, e) = 0 aA

2 

a 
[u(x,e) - w

2 
T (x,e ) J a 

[ U (x, e) - w
2 

T (x,e ) J aB
1 

= aB = 0 
2 

a 
[ U (x,e) w

2 
T (x, e) J a 

[ U (x, e) w
2 

T (x, e ) J ac
1 

- = dC - = 0 
2 

A.12. 

(29) 



The operations represented by these equations lead to the familiar eigenvalue­

eigenvector formulation which may be expressed in different forms for different 

set of mode shapes for different kind of boundary conditions. 

General expressions for the integrals present in the energy expression are 

given in Appendix III. 

2. 7. 2. Clamped-Free shell 

In this case U and T are taken as the strain and kinetic energies of the 

shell alone. 

If the longitudinal modal function given by (19) is taken and the 

* energy expressions are those given in the appendix I , application of Rayleigh-Ritz 

procedure yields an expression for the natural frequency w • The assumption of zero 

hoop and shear strain gives the following as the simplified frequency equation 

fln
2 

[(n2 -1)2 2 2 2 J t, = + 
n (n -1) ( q - s) 

(30) 
2 2 -' 2 

n + 1 - 10 ~ + 12 .!-+ 11· r 

h2 
2 \) 2) 2 

p a (I - w 
where s s 

= t, = 
12a

2 E 
s 

The value of the constant i in equations (19) and (30) is determined to give the 

minimum value of the frequency w i is obtained from the solution of the quartic 

wher~ 

2 
~ 
q - s 

-2 .!-

e = a/L 

p = 

r = 

q = 

s = 

4 
e 

(" 2 ( 2 1) .n n + 
2 

2 e (1 - v) 

n 

2 
2e v 

2 

2 
1 - n 

- r 

2 
2. 4 p 11 

q - s 

4 
.2 pn r 

q - s = 0 

*' The approach of Johns and Allwood with various relevant expressions is given 
in the appendix I . 
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In another case the longitudinal modal function given by (20) is taken and the 

energy expressions given by (6) and (12). Applying the Rayleigh-Ritz procedure 

the resulting frequency equation in determinantal form is given by 

A 
2 + (1 + S) 

r 
(1 - V) 2 
-2- n 12 

A12 = A21 = - vn \ 11 - ! (1 - v) ~ >- r 12 

= 0 

A13 = A31 = -v \ 11 + S \ {- \
2 

+! (1 -v) n
2 

12} 

A22 = n
2
+!(1-v) \

2
1
2 

(1+ 3(3) 

A23 =A = 'n+ 32 
2 t 3 Sn \ v 11 + 2' (1 - V ) 12 } 

A33 = 1 + e { ~ 4 
2 2 2 2 ' 

v) n
2 

X 
2 

+ (n - 1) + 2 v \ n 11 + 2 (1 - r 

where A 
r 

I = 
1 

= pr 

1 
L 

1 
L 

a 

L 

f 
0 

121 

Explicit expressions for these integrals are derived from Appendix 11 and given 

in the appendix III . 

(32) 

The frequency equation (32) above is a cubic in fl , but often only the lowest 

value of A is of structural interest. 

The assumption of zero hoop and' shear strain in this case reduces the cubic 

frequency equation to a very simple linear equation in fl 

/l.14. 



4 22f,22 22 . 22] 422 
t:. = ~ + Sn \ trn +2vn (n -1)11 +2(1-v)(n -1) 12 +an (n -1) 

2 2 2 
. ~ 1

2 
+ n (n + 1) 

It should be noted that both equations (30) and (33) reduce for an infinitely long 

shell to give 

2 2 2 2 
A' = Bn (n -1) /(n + 1) . (34) 

This expression corresponds to a well-known ring formula for purely circumfer­

ential modes which is also derived in Appendix I. 

2. 7. 3. Clamped-Ring stiffened shell 

(33) 

For this case the axial mode function is taken using both equations (20) 

and (23) in equations (17). The strain and kinetic energies are given by 

U = Us + UR 

T = Ts + TR 
(35) 

where Us' UR and Ts, TR are given respectively by (6), (10) and (12), (14). In 

case of several discrete rings in in term ediat e axial positions the expressions for 

UR and T R are taken as given by equations (11) and (16) respectively. Finally 

substitution of equations (17) into equations (35) and application of the Rayleigh-Ritz 

variational procedure to this system yields the frequency equation which may be 

represented in the following determinantal form 

All A12 A13 A14 A15 A16 Bu B12 0 0 B15 B16 

A12 A22 A23 A24 A25 A26 B12 B22 0 0 B25 B26 

A13 A23 A33 A34 A3S A36 0 0 B33 B34 B35 B36 
-.b =0 

A14 A24 A34 A44 A4S A46 0 0 B34 B44 B45 B46 

A15 A25 A35 A45 Ass AS6 BlS B25 B3S B45 BS5 B56 

A16 A26 A36 A46 A 56 A66 Bl6 B26 B36 B46 B56 B66 

Stiffness matrix Mass matrix (36) 

' 
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where A .. and B .. (i = 1, 6 ; j = 1, 6) are given by 
lJ lJ 

' 

'2 
2 n (1-v) 

·11 + I (1 +B ) 
r 2 2 " 

2 . ~ 2 
n(1-v) r 

2 ""'"'2 I6 (1 + ~ 
t1 
r 

- v ~ I + !l ~ { - ,\ 2 + n 2 (1 - ) I 1 
r1 r ·r 2 v2 

2 

V \: I 
\.1 6 + 

r 

2 
( - A I + ~ (1 - V ) 

1 
L r 5 2 1.1 

r 

~ 2 ~2 
r n (1 - v) r 

-ll- Is + 2 -;2 I6 (1 + s > 
r 

\.12 

- n F+ + ! (1 - V) 
r 

-v lli+S)l (_ 
r 3 r L 

:1. ll I + 
r r 5 

2 
n 2 (1 - v ) I6} 

2 
\.1 + 
r 

2 
~ (1 -v ) I l 

2 4 5 
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' 

;~,3 
lln r 

2 )J 
r 

1+ a [ll:+<n2-d+2nz; { VJ3+~1-v)I4J] 

+ Mi {NI +N4 (2n2 -l)+(n2- 1)2 (N2- NS) 1 
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B66 
2 . 2 2 .2 

M2 (N7 + N8) = I+M2 (N3 + N6 + n N7 + n N
8

) + )1 

r 4 

Here 
A = P a ll = q a 
r r · r r 

I L 2 t J ~ r (x) dx} 2 1I = ! pr dx 
L 

0 

I L 
{ ~>x) 12 dx 12 = £ (37) 

L 
contd ••• 
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1 L 2 L JlJ!r(x) dxj2 dx !3 = J qr L 
0 

1 L 
{ lJ!>x)12 dx !4 = J ' L 

0 

Is 
1 L 

<I> (x) ljJ (x) dx = f L r r 

0 

1 L 
[{ pr J<l>r(x) dx 1_ { qr J lJ!r(x) dx 1] !6 = f dx 

L 

0 

In the above expressions use has been made of the orthogonality properties 

of characteristic functions of beam vibration as given by equation (26). All the 

explicit expressions for the above integrals are detailed in the Appendix III. 

Also for N discrete rings stationed at the points x1 , x2' 

M1 = 

M3 = 

N2 = 

N3 = 

N4 = 

= 

N N 

2: . .;. (x.) ' M2 = ~ r 1 
i = 1 

N 
.L V 

i = 1 

N 
2: 

i = 1 

N 
~-
i = 1 

N 

2:: 
i = 1 

N 

:L 
i = 1 

N 

r 
(x.) , 

1 M4 

E h L 
s 

= 

i = 1 

N 

L. 
i = 1 

ER. A (2) 
1 Ri (1 -V 

2) 

E a
2

h L 
s 

PR AR. 
i 1 

P h L 
s 

A (1) 
R. (1 2) 1 -v 

ljJ 
r 

w' 
r 

... '~ 

(x.) 
1 

(xi) 

(37) 

Ns I 
i = 1 (38) 

contd •• 
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N PR. 
A (1) 

R. 

N6 2:. 1 1 = p a h L i = 1 s 

p A (2} .. 
N R. R. 

N7 2: 
1 1 = 

i = 1 p a
2 

h L 
s 

N p 
R. 

A (3) 
R. 

~ 
1 1 

Ns = 
i = 1 PS a

3 
h L 

. (r} 
where p E AR. A are the density, Ypungs modulus, area 

Ri , Ri , 
1 

and Ri 

of cross section and rth moment of area of cross section about the skin median 

for the ring stationed at x = x. along the shell generator, 
1 

Frequency equation (36} is a sextic in the frequency par am ete:r---c;:- As is 

observed in the next section its solution involves obviously a more complicated 

analysis and more digital computer time. Moreover the sextic could not be solved 

exactly in the mathematical sense. So if in this case (especially when tall cylindrical 

shells are considered} the assumption of zero hoop and shear strain is made, the 

ensuing analysis is simplified and the sextic is reduced to a quadratic in ,c;:-, which 

in turn could be solved exactly. The procedure is as follows. 

The reduced form of the modal displacement function (28} is considered. 

This is substituted into the expressions for the strain and kinetic energies of the 

shell and the ring as given in the Appendix [rJ Then the Rayleigh-Ritz method 

is applied to yield the frequency equation 

=0 (39) 

where 

'4 2 2 (2 2 . 2 2 2 2} 
= ~r + B.n . \ + '\.? \ + 2 \) n (n - 1} r1 + 2 (1 - \)) (n - I) r

2 
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= >- 4 I 
r S 

2( 2 4 2 2 
+ en L n . \ Is + "(n - 1) n I6 

2 2 + 2 (1 -v )(n - 1) 

~~3) 
r 

4 2 2( 2 2 2 2 2 2 ) 
A22 = \lr + Sn \lr ln \lr + 2v n (n - 1) I3 + 2 (1 - v) (n - 1) I4 j 

+ n
4 

(n
2

- 1)
2 

( S+N2 Mff) 

2 2 2 
= n (n + 1) (1 + N

3 
M1 ) + 

= 

= 

" r ( ,_ 2 
1l r 

r 

The equation (39) was derived by using the energy expression for the ring and the 

shell as given by Johns and Allwood [9] . There the ring was symmetric and the rotary 

inertia of the ring was also not taken into account. To complete the solution the 

ring eccentricity and rotary inertia has been included. Also in allowing for the 

effect of zero hoop and shear strain for the ring stiffened shell the energy expressions 

derived in the previous section have been used. Again employing the variational 

technique by Rayleigh-Ritz a frequency equation similar to (39) results with 
I I I I I I 

different elements A
11 

, A12 , A22 , B
11 

, B12 · B
22 

· 

- lJ. =0 (40) 

I 2 ;>..4 n 4 (n2 - 1)2 2 
All = A11 +2n s. - NS Ml r 

I 

A12 + 2n 
2 4 4 2 2 

Al2 = e " Is - n (n - 1) Ns M1 M2 t 

I 2 '4 
- n 

4 
(n

2 
- 1)

2 
N M 

2 
A22 = A

22 
+ 2 n f! \l r s 2 
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= 

2 { 2 2 2 2 2) 
+ n M1 M2 \ (3 - n ) N6 + (n - 3) (n - 1) N7 + (n - 1) NB j 

·z 2 t 2 2 2 2 ) 
\lr M4 t(2n +1)N6 +n (n +2)N7 +n NBJ 

2 ( 2 2 2 2 21 + n M2 \. (3 - n ) N6 + (n - 3) (n - 1) N7 + (n - 1) NB 

It should be obvious of course that these analyses may also be applied to 

a clamped free shell by the simple expedient of putting ER , PR equal to zero. 

Such results are shown in Table 1. 

' 

' 

(l22. 



3. ANALYTICAL RESULTS 

3.1 General 

The major purpose of the present report is to show the dependence of the 

natural frequencies of cylindrical shells on the geometrical and material properties 

e.g. length-to-radius ratio (L/a), radius-to-thickness ratio (a/h), Youngs modulus (E), 

density (p) etc. 

As derived in the last section the algebraic equations solved here are of 

1st, 2nd, 3rd, 4th and 6th degree. Equations of first, second, third and fourth 

degree can be solved exactly, whereas an iteration procedure has been adopted to 

solve the sixth degree equation in ts given by equation (36). 

For the sextic, a specified set of shell geometries and ring characteristics, 

an assumed number of circumferential waves n, and a specified set of boundary 

conditions at each end, is selected. 'TIE effect of specified boundary conditions at 

each end is incorporated by choosing the data for the beam vibration functions, <!> lJ! • 
r r 

An iteration scheme is then used to compute 6 • Starting from some initial 

estimate for the frequency parameter ts , the determinant is evaluated for 

successive values of 6 until there is a change in its sign, indicating that a zero has 

been bracketed between two successive frequency parameter estimates. Regula 

falsi procedure is then employed to locate the zero to some preselected accuracy. 

The entire range of the problems of interest can be covered by varying the initial 

input to the determinant, i.e. by changing ajh, L/a, v , n, bR."a etc. The number 

of iterations required for convergence· is greatly reduced if dose initial estimates of 

the frequency parameter are available. Here the solutions developed for the 

clamped-free shell case have been used as initial estimates for the clamped-ring 

stiffened shell case. 

3. 2 Clamped -'Free Shell 

3. 2.1 General 

For any fixed values of n and axial wave number m (see Fig. 2) there 

are three natural frequencies corresponding to three different values of the 

amplitude ratios A
1 

; B
1 

; c
1

. In general, two of these three frequencies are 

several orders of magnitude higher than the minimum value and hence the lowest 

value of frequency corresponding to mainly radial motion, is of structural interest. 
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These higher frequencies will arise only if inplane as well as radial inertia terms 

are retained in the equations of motion. Although these higher frequencies are 

not to be studied here, all three inertia terms have been retained in developing 

the results presented herein. 

Also, for a fixed number of circumferential waves the frequency increases 

monotonically with an increasing number of axial half waves. This holds for 

entire range of shell parameters (a/h, L/a, v ) and for all boundary conditions. 

Because of this fact the Figs. 4 et seq. are all drawn for m = 1, i.e. for the. 

fundamental longitudinal mode shape. 

The behaviour is quite different when the number of circumferential waves n 

is varied as is indicated in Fig. 4. The value of n which corresponds to a mode 

shape having the minimum frequency depends strongly upon the length-to-radius 

ratio of the shell. This fact is obvious from the Figs. 4 et. seq. 

In order to direct attention to the significant findings of the present study, in 

many cases only the frequency envelopes are examined. Frequency envelope is 

lower bound to the frequency spectrum for a given value of a/h, and for m = 1 

andn ;;. 1. 

Figs. 4 - 5 which are based on the cubic equation (32) show the envelopes of 

frequency parameter curves for constant values of circumferential wave number n 

and length-to-radius ratio (L/a), indicated by heavy line in the graph. Fig. 4 

corresponds to a/h = 200 and Fig. 5 to ajh = 100. It is to be noted that for shells 

of large length-to-radius ratio (L/a) the minimum frequency will correspond to 

n = 1 i.e. to swaying oscillations. The values of L/a for which the change from 

n = 2 to n = 1 takes place depend upon a/h. For af\l. = 20, this occurs for 

L/a = 8 to 10, for a/h = sooo; it occurs for Jja > 100. 

Fig. 6 shows in more detail part of the frequency spectrum for n = 1 (or 

swaying modes only). It is obvious that except for very short shells the curve is 

independent of the radius-to-thickness ratio, which may be deduced from the 

governing equations easily. For swaying the long shell behaves more as a beam 

and membrane action predominates over bending action of the shell wall. 

The solid line represents the frequency spectrum for a clamped-free shell as 

found by the cubic frequency equation (32) and the dotted line is that due to the 

quadratic frequency equation (40) for which the assumption of zero hoop and shear 

strain ·nas taken. It is clear from Fig. 6 that for long shells this assumption 
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does not introduce any significant change in the frequency parameter but for short 

shells it raises the frequency· considerably. 

3. 2. 2. Effect of Zero hoop and shear ··· 

It is interesting to note that for tall shells the assumption of zero 

hoop and shear strain expressed by equation (27) leads to considerable simplification 

in the frequency equation as contemplated by Johns and Allwood [9] without intro­

ducing any significant error in the minimum natural frequency. The ovalling 

frequency (n = 2) for a particular shell geometry is given in Table 1 employing 

various sets of mode shapes determined by equations (18), (19), (20), (23) with or 

without zero hoop and shear strain. The order of the frequency equations in each 

of these cases is indicated and it is seen that with zero hoop and shear strain assumed, 

the cubic and sextic equations are reduced to linear and quadratic forms. In both 

these cases for this particular geometry the difference in the natural frequency is 

less than a few tenth of a percent. 

For different shell geometries of interest to the designer (as indicated in 

Ref. [15]) of steel chimney the influence of zero hoop and shear strain is seen by 

comparing Tables 2 and 3 for the sextic and quadratic frequency equations employing 

Fliigge theory. For n = 1 the difference is nearly 15 to 18% for all the shell 

geometries considered but for n = 2 the maximum difference is nearly 14% for short 

thin shells (e.g. L/a = 10, afh = 300) whereas it is negligible for long shells. 

In Fig. 7 the frequency envelopes for a clamped-free shell are drawn for 

different radius-to -thickness ratios (20, 100, 500, 5000). The continuous curves 

represent the envelopes corresponding to the cubic frequency equation (32) and the 

broken ones correspond to the quadratic frequency equation (40). As length-to- radius 

ratio increases the results agree closely with the quadratic frequency results 

(equation (40)) being slightly higher than those for the cubic (32). For the shells 

of small length-to-radius ratio the difference is more considerable. This increase 

in frequency parameter ( !::. ) of the quadratic (40) over the cubic (32) may be 

attributed mainly to the assumption of zero hoop and shear in the former analysis 

which, clearly, for short shells raises the frequency parameter considerably. 

The inclusion of the clamped-pinned characteristic beam function l)J in the 
r 

quadratic analysis has made no significant difference to the results obtained for the 

clamped-free shell as was seen previously in the results of Table 1. 
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3. 2. 3 Dependence of frequency on circumferential wave number 

Figs. 4 and 5 showed the variation of frequency factor /:; with L/a 
< 

for various values of nand at a given value of L/a the dependence on n is seen to 

be large. 

Fig. 8 shows this dependence of the frequency factor t:; on the circumferential 

wave number in an alternative way. The three different curves correspond to 

three different values of L/a, (1, ·10, 100) and for a/h = 100. It is clear that the 

lower the length-to-radius ratio of the shell the higher the value of n corresponding 

to the minimum frequency. For L/a = 1, the minimum frequency corresponds to 

a breathing mode with n = 6 v.hereas for L/a = 10 the ovalling frequency with n = 2 

is more critical and a value of L/a as 100 the sway frequency (n = 1) is the one which 

is critical. Here the dotted curve is due to the quadratic (40) and the continuous 

curve is due to the cubic (32). The difference in the results from these two equations 

is again more marked in case of low length-to-radius ratio than in case of high 

length-to-radius ratio. For high values of n the frequency parameter seems to be 

independent of L/a which is shown in the studies of Reference [1] • 

3. 2. 4. Dependence of frequency on axial wave number 

Further study indicates that as m increases the frequency increases 

with the lowest frequency spectrum being for m = 1. This is shown in Fig. 9. Also 

in this figure the predicted results of the present theory are compared with measured 

results of Ref [ 4 J The agreement appears to be quite satisfactory. 

The diminishing influence of higher axial wave number m, at the higher values 

of circumferential wave number n on the frequency parameter is clearly seen here. 

Fig. 10 also shows a comparison between the results from present theory and 
• 

measured frequency parameters from Ref. [3] • The agreement is again quite 

good .. The two curves for each cylinder tested correspond to m = 1, 2. 

3.2.5. Detailed Results 

The values of frequency parameters, for those shells which may be 

of interest to the designers of chimneys (as indicated in Reference [15 J ) are given 

in form of table 2 - 3. Table 1 showed that the results from sextic frequency 

equation (36) give the best approximation to the frequency parameter from all the 

a_nalyses considered in this paper at least for one geometry. Table 2 gives more 

detailed sextic results and the corresponding results due to cubic frequency 

equation (32). The approach in both these cases was based on Flugge theory. 
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The sextic results are lower than those of the cubic. 

For n = 1 the nurn erica! difference in the results of both analyses appears 

to diminish as length-to-radius ratio (L/a) increases but the proportional difference 

remains essentially constant. 

In the case of ovalling with n = 2 the agreement of both sets of results is 

better for all a/h considered and particularly for large values of L/ a. For example 

for L/a = 10 the difference between the two sets of results is less than a percent 

but for L/a = 50 the difference in the values is almost negligible. Thus for a 

clamped -free shell the inclusion of the mode '41 (x) (equation (23) ) which raises r . 
the order of the frequency equation from a cubic to a sextic has no major significant 

effect. 

T&ble 3 gives the frequency parameters for the clamped-free shells using 

identical mode shapes but the energy expression due to Fliigge theory in the one case 

and those due to Timoshenko-Love in the other case. Previous studies (refer­

ences [7 & 8]) have shown that for some modes of practical cylindrical shells the 

effect on frequency of using different energy expressions is very small. Comparing 

the frequencies obtained with the different energy expressions the percentage 
l 

difference between the extreme values of !::. 2 for the modes chosen was less than 

! percent for all geometries considered (involving a wider range of values of L/a 

and a/h than that shown in Tables 2 - 3) It is seen that this difference is even smaller 

for those geometries considered in Table 3; being detectable only for low values 

of L/a and afh i.e. only for the values a/h = 50, n = 1, L/a = 10, 15 and a/h = 100, 

n = 2, L/a = 10. Also shown in the Tables 2 - 3 are the values of frequency 

parameter for an infinitely long shell (L/a = oo ). For n = 2 the increase in· 

frequency parameter as L/a decreases is a measure of the constraint effect of the 

clamped base. Thus the error in calculating the ovalling frequency for a short 

shell from the simple ring formula of equation (34) may be considerable. 

3. 3 Cylindrical Shell with Ring Stiffened Upper End 

3. 3.1 General 

Figure 11 shows frequency envelopes for a clamped-free shell 

(indicated as a continuous curve) and for a shell with a clamped and a ring 

stiffened upper end (indicated as a broken curve). Two values of afh (= 100, 5000) 

are taken and the ring characteristics are bR/a = • 03 and dR/a = . 09 (i.e. a 

slender· ring). 
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Clearly the ring has had a significant effect in raising the frequencies for 

n :::. 2 as may also be seen by comparing Tables 2 and 4. For n = 1 effect is to 

slightly lower the frequencies. 
,· 

Reference [l6] noted that the behaviour of such a shell can be considered in 

the following three regions: 

Region I : where 0 <; n < n1, the attached rings simply add mass to the system 

and thus constitute more inertia than stiffness so that the natural frequency of the 

system is slightly lower than the corresponding frequency of unstiffened shell at least 

for the fundamental mode. Comparing the Tables 2 - 3 with Tables 4 - 8 it is clear 

that the frequency parameter for n = 1 is lowered by the addition of a stiffening ring. 

Region II : where n
1 

< n < n
2

, the attached ring contributes the dominant stiff­

ness, causing an abrupt upsweep in the frequency spectrum as compared to an un­

stiffened shell. For thinner shells this rise is higher than for thicker shells as is 

evident in Tables 4 - 7. For example in Tables 4 - 6 for eccentric ring for 

L/a = 10, n = 2 the frequency parameter goes on decreasing for a/h =50 - 200 

and then it starts increasing for a/h = 250, 300. 

Region III : where n > n
2 

the ring motion becomes so small, compared to inter 

ring panel motion, that the frequency of the system approaches asymptotically to 

that of a clamped-clamped panel, and the mode shape becomes predominantly one 

of panel vibration. In this region, the equivalent orthotropic analysis are 

evidently not applicable and the frequency curve may become flat and may have a 

second minimum resulting in numerous resonances in a narrow frequency band. 

3.3.2 Effect of zero hoop and shear strain 

The effect of zero hoop and shear strain in the case of a ring stiffened 

shell can be studied from the Tables 4 and 5 and Tables 6 and 7. Tables 4 and 6 

correspond to the sextic frequency equation (36) and Tables 5 and 7 correspond to 

the quadratic frequency equation (40). This quadratic is reduced from the sextic 

by assuming zero hoop and shear strain. 

It is observed that this assumption increases the value of frequency parameter. 

This increase is more marked for the shell of small length-to-radius ratio than for 

the shells of large length -to -radius ratio (radius -to -thickness ratio being held 

constant). From Tables 4 and 5 for the eccentric ring when a/h = 50 and n = 2, the 

increase in frequency is 3. 5% for L/a = 10 and 0.15% for L/a = 50. Secondly for 
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ajh = 300 and n = 2, the increase in frequency due to this assumption is nearly 

20% for L/a = 10 and 5% for.L/a =50 . 

. 3.3.3 Effect of Ring Mass 

As shown in Figure 12 omitting the ring mass increases the 

frequency parameter. This increase is considerable only for very short shells 

and decreases rapidly with increasing length -to -radius ratio (L/a). 

3. 3. 4 Effect of Ring Eccentricity 

This effect can directly be studied by observing Tables 4 - 5. Table 4 

gives the frequency parameter for sextic with eccentric ring (indicated by 'SFE') and 

sextic with symmetric ring (indicated by 'SFS'). Table 5 gives similar results for 

quadratic indicated 'QFE' and 'QFS' for eccentric and symmetric ring respectively. 

The effect of eccentricity with the smaller ring (I), shown in Table 4, 5 is highly 

significant in increasing the frequencies and should clearly be included in shell 

analyses. Its effect increases with a/hand decreases with L/a. For example when 

· L/a = 10, n = 2 and a/h = 300 the externally stiffened shell has a frequency almost 

30% higher than the symmetrically stiffened shell. 

The corresponding results for the larger ring (II) as in Tables 6, 7 show less 

beneficial effects of eccentricity in general. In particular eccentricity may be seen 

to lower the frequency as compared to symmetrically stiffened shell. 

The reasons for this have not yet been analysed in depth but it is believed that 

the stiffness of this larger ring has been more than sufficient' to cause the funda­

mental mode to approximate to that of a clamped-simply supported shell in which 

case the end ring then makes a larger contr!!Jution to the higher inertia than it does to the 

stiffness and clearly higher the inertia of the eccentric ring compared to the 

symmetric ring would then produce a lower shell frequency. 

Some further remarks about internal and external stiffening are given in 

References D-2, 17, 18 J . 
It is not unreasonable to expect a shell internally ring stiffened to respond 

differently from an externally stiffened shell. However it might be anticipated that 

the differences between the internal and external ring stiffening would be small as 

compared to their differences with a symmetrically placed ring stiffener if the 

~ccentricity is relatively small (less, say than 5% of the shell radius). 
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Although the wo:rk of Hu, Gormley and Lindholm !}6] indicates that there 

is very little effect oh the frequencies due to ring eccentricity, but the present 

analysis, the analyses due to Sewall and Naumann [4] Mikulas and McElman Q.1] 

Egle and Soder [17] and Forsberg [18] indicate that there is a definite effect of 

eccentricity. This problem needs to be examined further by the means of carefully 

carried out experiments with integral or welded ring shell construction. 

Table 9 shows the values of frequency parameters for clamped-simply 

supported shells. This may be compared with the values in Tables 6, 7 and 8 for the 

case of a stiffer ring. It is seen_ that in case of sextic (Table 6) the values of 

frequency parameter are slightly less than those of Table 9 for n = 2 case. 

Whereas Tables 7 - 8 give values of frequency parameter !I which are slightly 

higher than Table 9 in case of ovalling (n = 2). It may be concluded that sextic 

gives better results than other cases. For swaying mode (n = 1) the frequency 

is greatly increased in case of clamped -supported shell in contrast to slight 

decrease in frequency in case of clamped-ring stiffened shell as compared to the 

clamped -free shell. 

3. 3. 5 lhfluence of Ring Stiffness 

For a particular shell geometry described in Table 1 the effect of a 

ring on the minimum frequency has been studied and the results are given in Table 10. 

It is found for this particular shell that only a low value of ring stiffness is needed 

to bring the natural frequency close to that which a very stiff ring would produce. 

The maximum possible increase in natural frequency of this shell with a very stiff 

end ring over a shell with no ring is only about 25%. Observing the results in 

Table 10 it is seen that as the. ring stiffness increases the upper end amounts to 

a simply supported end. 

Figure 13 shows the frequency envelopes for a/h = 100, 5000. Continuous 

curves correspond to less stiff ring (bR/a = • 003, dR/a = • 009) whereas broken 

curves correspond to more stiff ring (bR/a = • 03, dR/a = • 09, 10 times of first 

ring characteristics). It is seen that for thick shells ( a/h = 100) a stiff ring has 

considerable gain in frequency parameter over a less stiff ring in the entire range 

of L/a · (except for n = 1), where ring has predominant inertia and not stiffness) but 

for thin shells (a/h = 5000) the frequency parameter is more or less the same in 

both cases. This disparity may again be attributed to the effect of ring mass. 
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Figure 14 shows the dependence of frequency parameter on circumferential wave 

number n with a particular rmg (bR/a = • 01, dR/a = • 03) and for shells of a/h = 100 

and L/a = 10; 100. The broken curve corresponds to sextic (36) and continuous 

curve to the quadratic highlighting again the effect of zero hoop and shear strain. 

A. 31. 



' 

4, COMPARISON WITH RESULTS FROM EXACT ANALYSIS 

4.1 General 

An exact solution approach for equations of motion has been 

developed by Forsberg ~® for the case of ring stiffened cylindrical shells. 

This approach is conceptually different from the one employed here. Brief 

descriptions for this theory are given in the Appendix V. 

In order to compare the results from the exact analysis and the 

variational solution the following shell geom etries and other parameters 

were selected: 

Radius -to -thickness ratio (a/h) has two values 250, 600, and for 

each a/h there are two length-to-radius ratios i.e. 9, 12. Axial wave number 

m takes values 1, 2, 3 and for each value of m circumferential wave number, 

n varies from 0 to 10 in steps of I. Poisson's ratio, v is .3. 

4 .1.1 CLAMPED-FREE SHELL: 

These boundary conditions are typical of an unstiffened 

chimney stack. A comparison of frequency parameters as computed by 

the two approaches is given in Tables 11 and 12. The agreement between 

the available results of these two theories is very satisfactory, especially 

for the minimum natural frequency parameter, which in the case of the 

present analysis is slightly lower, in all cases, than its counterpart 

by Forsberg's exact analysis. The difference between the two results is 

very low and in most cases it is only few tenths of a percent, e.g. for 

a/h = 600, L/a = 12, m = 3, n = 3 it is only 0. 2%. The maximum difference 

in the lowest natural frequency parameter is 2.5% for a/h = 250, L/a = 12, 

m= 2, n= 3. 

Differences between other frequency parameters than the 

minimum is also within 2% in most of the cases except the swaying frequency 

parameter. The difference seems to be more pronounced in this case for 

m ;:. 2 as can be seen from tables 11 and 12. 
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For the fundamental axi'll mode (m = 1) and n = 1, the 

difference between the two results is not very pronounced and it decreases 

with increasing L/a and afh. For a/h = 250, L/a = 9 the difference is 1.1% 

which is the same as for a/h = 600 and Lja = 9. For a/h = 250, L/a = 12 

the difference between the sway frequency parameters given by the exact 

approach and the present variational approach is only about 0.4% and for 

a/h ;, 600, L/a = 12 it is only 0. 35%. 

When m = 2 the difference between the two results is very 

pronounced in contrast to m = 1. For a/h = 250, L/a = 9 it is nearly 13% 

but for ajh = 250, L/a = 12 it is 7% showing that it decreases with increasing 

L/a. 

Figures 15 and 16 represent an alternative way of comparing 

the results of the two theories. 1\vo figures correspond to two different 

values of a/hi. e. Figure 15 corresponds to a/h = 250 and figure 16 

corresponds to a/h = 600. Here also it is obvious from the frequency curves 

from either sides of the minimum natural frequency that present variational 

technique gives low values of frequency parameters than the "exact" theory 

adopted by Forsberg ~@ . Also the overall agreement is quite good as 

seen in the figures 15 and 16. In case of m = 2 for axisymm etric and sway 

modes the difference in the frequency parameters is more pronounced but it 

decreases with increasing L/a. For higher values ot' n there is virtually 

no effect of a change in L/a or in the axial wave number m, also the two sets 

of results agree very closely in that region. 

·4.1.2. CLAMPED-RING STIFFENED SHELLS 

In case of the shell with clamped base and top stiffened by a 

stiff elastic rirg (breadth/shell radius = 0.1 and depth/shell radius = 0. 3) 

the results of the two theories are seen compared in figures 17 and 18 and 

in table 13. 

In the case of sway (n = 1) oscillations the solution of both 

theories agree very closely where the dominant ring inertia results in 

reducing the frequency parameter. The results due to a sextic frequency 
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equation in the author's theory are sligh~y higher than Forsberg's MJ 
results by a maximum of about 5% in the cases considered for swaying 

oscillations. 

In the case of the circumferential wave number n ~ 2 i.e. 

for ovalling and breathing, the frequency parameters given by the sextic 

frequency equation of present theory are lower than the corresponding 

results given by Forsberg's [):8] method. The frequency parameters 

given by the quadratic frequency equation (which is obtained by reducing the 

sextic due to the assumption of zero hoop and shear strain) is much closer 

to the results given by the Forsberg Q.iii method than those from the sextic 

frequency equation as can be seen in the figures 17 and 18. For ovalling 

oscillations (n = 2) Forsberg's results lie in between the sextic and quadratic 

frequency equations of the present theory. For n > 2 the results from the 

present theory are slightly lower than Forsberg {j$) method. This may be 

due to slight differences in the use of the particular ring theory, although 

the basic shell theory used in both the cases in that due to Flugge. For n > 5 

in the case if the given geom etries the results of both the theories agree 

very closely. 

It may be remarked, however, that the shell having one 

end stiffened by a very stiff elastic ring may be approximated as having a 

simply supported end. Thus the frequency parametets found for a clamped­

ring stiffened shell will be nearly equal to, but not greater than, the clamped­

simply supported shell·theoretically. The results of the sextic frequency 

equations of the present theory for clamped-ring stiffened shell are always 

lower than clamped -simply supported shell. But this is not true for the 

results of quadratic frequency equation of the present theory and 

Forsberg's method. This fact is observed by reading the table13where, for 

a clamped-ring stiffened shell (ring: bR/a =.1, dR/a = .3), the results from 

the sextic frequency equation of the present theory and Forsberg's theory Q.~ 

are compared with the results obtained for a clamped-simply supported shell 

from the cubic frequency equation of the present theory. . It is evident from 

(.\,-34-



table 13that the results of the sextic for a sufficiently stiff ring are very 
,· 

near to, but lower than, those for the clamped-simply supported case. 

Available results of Forsberg's theory are higher than those for the clamped­

simply supported case. 

For the shells with clamped base and with an elastic ring at 

the top and two intermediate rings of equal dimensions in case of L/a = 9 

and three intermediate equivalent rings in case of L/a =12, the curves are 

given in figures 17 and 18. It is seen that in region I the swaying frequency 

is lowered in both the cases. This is because the attached rings contribute 

more inertia effect than stiffness effect. In region II where 2..,;:n :!;'8 the 

attached rings contribute the dominant stiffness decreasing with n, so that 

the frequency parameter is much higher than that corresponding to the 

clamped-free or clamped-ring stiffened shell. In region III, where n> 8, 

the ring motion becomes so small compared to the inter-ring panel motion 

that the frequency of the system approaches asymptotically to that of clamped­

ring stiffened shell. 

Thus it is obvious that with many intermediate rings swaying 

becomes more critical but ovalling or breathing oscillations may be avoided. 

These results were obtained by using Forsberg analysis ~~ . 

The major disadvantage of the exact method by Forsberg [1![1 
is that it must rely on an iterative technique to find zeros of a determinant. 

When such a zero is bracketed, the eigenvalue can be accurately computed. 

However there is no assurance that all of the roots of the system will be 

located and if the eigenvalues are very closely spaced the technique employed 

may well miss many pairs of roots without giving any indication that eigen­

values have been missed. . This fact is obvious by looking at the tables 11, 

12, 13 where for this reason not all values of frequency parameters are 

given using Forsberg analysis particularly for m = 3. For tbe present 

analysis with a small finite number of degrees of freedom there are 

well defined mathematical techniques for finding all of the roots of the system 

within a specified interval. This fact is very much obvious if one looks at 

the tables 11,,· 12, 13. 
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Also, computer time involved in finding the exact solution 

is very great per eigenvalue in Forsberg's method. In the present analysis 

when solving the quadratic and cubic frequency equations this is negligible 

and a great number of frequency parameters can be calculated in seconds. 

Even if we use a sextic the run time is much less as compared to the exact 

solution because solutions corresponding to the quadratic frequency equations 

give really good initial estimates of frequencies. 

Thus for engineering applications and for determining the 

variables discussed here the present analysis 

to the exact solution outlined by Forsberg fj~ 

seems generally preferable 

Also the input data a/h, L/a 

and v, m, n, and the ring characteristics (bR/a, dR/a) can be handled with 

great ease and without any complication. It will be seen in a later section 

that the predicted frequency results of the present analysis very well agree 

with the test results. It must however be admitted that for the prediction 

of internal stress resultants in the shells, Forsberg's method would be 

more accurate than that of the present analyses. 
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5. CONCLUSIONS 

A theoretical analysis· for the free vibration of clamped-free and clamped­

ring stiffened shells has been developed and im'plemented for digital computer 

solution. Flow charts of the programs are given in the Appendix [IV] . The 

computer used was an I. C. L. 1905. The analysis is capable of handling cylindrical 

shells of arbitrary length -to -radius ratio (L/a) and radius-to -thickness ratio (a/h). 

In the case of the stiffening ring it caters for such arbitrary ring characteristics 

as ring breadth (bR) and ring depth (dR) and their arbitrary positioning on the shell. 

Thus a range of shell geometries with or without stiffening rings of desired size 

may be handled with convenience. Due consideration has been given to such effects 

as: 

(a) Choice of the appropriate shell equations of motion 

(b) Choice of modal forms, influence of boundary conditions 

(c) Rotary and in plane inertia effects 

(d) Effect of zero hoop and shear strain 

From the results of this study, the following conclusions appear to be valid. 

1. Elementary beam vibration functions are satisfactory approximations to the 

longitudinal components of the mode shapes of cylindrical shells involving clamped 

free ends or clamped -ring stiffened ends. 

2. The assumption of zero hoop and shear strain leads to considerable simplific­

ation in the analysis. In effect it lowers the degree of the frequency equation to be 

solved from cubic to linear or from sextic to quadratic depe;nding on the upper end 

boundary condition. The influence on the frequency of this assumption is small 

for tall shells, but for short shells it can increase the frequencies considerably. 

Thus for engineering applications for tall shells such as chimneys this assumption 

may be made so as to avoid undue complexity in the analysis without introducing 

any significant error in the frequency. 

3. For ring stiffened shells with a clamped base for modes involving swaying 

oscillations (n = 1), the ring stiffness has little influence on the frequency. The 

primary effect then is to add mass to the system and consequently to reduce the 

frequency of the shell. The eccentricity effects are also negligible for the swaying 

(n = 1) mode. 

For modes involving higher number of circumferential waves there is a 
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significant effect of the ring stiffness and the ring eccentricity also has a profound 

influence on the frequency spectrum. 

4. The ring rotary inertia, on the basis of the present study, appears to have 

negligible effect. 

5. 
.. 

The contributions of the more exact Flugge shell theory show very little 

effect on the frequency spectrum for the shells considered in this report. In the 

author's opinion these minor refinements only increase the complexity of the 

analysis with negligible increase in the accuracy in the results as compared with 

the Timoshenko-Love theory. 

6. Comparison with exact analysis shows that a few results of the present 

analysis are fractionally lower than exact results for the cases considered. The 

reason for this may be computational error incurred in evaluating the quantities 

involved e.g. the integrals involving characteristic beam functions etc. and 

overall computational error. Though, as one may see, the trend has not been 

for the worse. Also the exact analysis is not "exact" in the strictest sense of 

the term. 

The above discrepancy is more marked in the results for the clamped-ring 

stiffened shell. The difference here may be attributed partly to the error in 

computation and partly to the difference in the structural idealisation of ring 

adopted in the two approaches. However, the problem remains unresolved and 

will be studied later. 
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, APPENDDC I 

This appendix contains pertinent details of the analysis carried out by 

Johns and Allwood in reference [9] The problem concerns an investigation of the 

vibration characteristics of a vertical, cantilevered shell, with its lower edge 

restrained against displacement and its upper edge supported on a stiff reinforcing 

ring (Fig. 3). The investigation was prompted by the recent collapse of such a 

shell in the form of a tall, slender chimney stack when subjected to a high, sustained 

lateral wind. The stack was observed to oscillate in an ovalling mode of large 

amplitude prior to collapse. 

BASIC THEORY 

Expression for the strain energy (U ) and kinetic energy (T ) in a thin s s 
uniform shell are given by Timoshenko-Love theory as:-

2 11 L Eh 
{ u,; 

1 2 
us= J £ s 

(v •e -2 + 2 
+w) + 

0 0 2(1- V ) a 

!(1-v)(v, + 
1 2 h2 

[w.~+ 1 
(w,ee- v,e)2 - u'6 ) + rr X a 4 

a 

2V 
(w, ee - v, e> 2 (1- v) ( _ )2 J } + 2 

w, + 2 
W, V, adectx 

XX xe x a a 
(I.1) 

211 L 

Ts = J J 
0 0 

I c-2 .2 .2J 2 p h u + v + w a d ectx s (I. 2) 

where displacements u, v, ware denoted in Figure 3. 

The corresponding equations for UR and T R' for a uniform, circular ring 

at any position x = ~along the above shell are 

u = 
R 

2 
+w) 

~ 
+ 

[
·2 .2 .2J u +v +w 

~· 
a de 

tl,-41-

- v ,8 )~ J a de (I. 3) 

(I. 4) 



In the analyses which follow it is assumed that any stiffening ring is 

symmetrically disposed about the mid -plane of the shell and no effects due to ring 

eccentricity are introduced. 

Vibration of Shells Fully Clamped at One End and Ring Stiffened at the Other 

It is shown that 

(a) simplified eighth order equations in w of the Donnell type are not 

generally acceptable; 

(b) 

(c) 

the effects of axial constraints are important (ref. 1), 

the assumption (or not) of zero axial slope (w, = 0) at x = 0 will 
X 

introduce little error; 

(d) the assumption of zero hoop and shear strain for long shells can 

probably be justified, i.e. relations 

v,e + w = 0 

1 
0 V, + - u,e = 

X a 

may be assumed for tall shells, and these cause considerable 

simplification to eqns. (L 1) and (L 3). 

Assuming the above results and for a radial mode of the type 

w = C f(x)cosnesinwt, 

(I. 5) 

(I. 6) 

the following expressions can be obtained, by using equations (I. 5), for the axial 

and circumferential modes: 

u = _ Ca 
2 

n 

V = -
c 
n 

f
1 
(x) cos ne sin wt (I. 7) 

f (x) sin ne sin wt (I. 8) 

Substitution (I. 6 - I. 8) into equations (L I) and (I. 2) yields the following expressions 

for the strain and kinetic ene;rgies of the shell: 

u = s 

+ 

E "L 11
3 

(1-n
2

)
2 

{ 4 s e 
2 3 __:.2::;-;:-2 

2 4 (1 - v ) a (1-n ) 

2e2 v · } 
--,2,.... x4 + x3 ; 
(1-n ) 

(I. 9) 
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~ ah 
(1 + n2

) t 2 x2 + x3) T 
2 s 

L 
e 

(I. 10) " w 1T 
2 2 2 s 2 

n n (l+n ) 

' 
where 

1 
2 

x1 = £ ( f,-- ) dX 
XX 

1 2 
x2 = £ ( f,- ) . dX, 

X 

1 
f
2 

dX x3 = 
~ 

1 
f. f,-- dX x4 = 

~ 
and x = x/L, e = a/L 

XX 

The strain and kinetic energies of the ring, which is at the end of the shell 

corresponding to x = 1, are given by the following expressions assuming that the 

centroid of the ring lies on the mid -plane of the shell: 

T = 
R 

ER lRn 

2 a3 

w2 n ~R AR a 

2 

The function chosen for f (x) expressed in terms of x = x/L was 

(I.ll) 

(I.12) 

- -2 - --2 -2 
f = A .X (X - 3) + B X (X - 6) (!.13) 

which satisfies the following boundary conditions: 

X = o(x = 0) u = V = w = w, = V, " 0 
X X 

X = L <x = 1) u, = w, = 0 
X XX 

These correspond to an encastre and axially-clamped base and approximately to 

zero axial stress and edge moment at the ring-stiffened end. 

Forsberg [1] shows that for a shell supported at both ends the minimum 

natural frequency is always associated with an axial half -wave length equal to the 

length of the shell. The function given in equation (I. 13) allows the half -wave 
' 

length to take a value larger than the shell length. 

1\ -43-



The energies of the ring and shell given in equations (I. 9 - !.12) have 

been evaluated for the function (I.13) yielding an expression for the natural frequency 
'· 

w in terms ofthe constants A and B. The values of the constants have been 

determined to give the minimum value of frequency w and the result is given below 

in terms of a, where a = A.;TI + 2.5 ; 

2 2 2 [1 + 
d

1 
a

2 + b
1 

a + c
1 J {', 

a n (1 -n ) 
(I.l4) = 2 2 

l+n d2 Cl + b2 Cl + c2 

where a= h
2
/12a

2
, and 

- 2 4 
dl = 4 (R - R) + e (24 q + 6 s) + 12 e p, 

bl 
2 = e (2q +3s), 

3 2 9 4 
cl = e (q - s) + 5 

e p 7 

d2 4R. + 
33 24 e2 

= 35 + • 5 2 2 
n (l+n ) 

b2 
- 17 2 e2 

= 140 + 5 2 2 
n (l+n ) 

19 3 e2 
c2 = 2520 + 35 • 2 2 

n (l+n ) 

where 
e = a/L 

2 

R = 
12 ER IR (1 -v ) 

E L h3 
s 

R = PR AR 

p
5
hL • 

2(1-v) 1 
q = 2 2 2 

n 5n (l+n ) 

2v 
s = • 2 5 (1-n ) 

1 [ 12 a 
2 

+ 1 J p = 
(1-n2)2 n4 h2 
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and a is obtained from the solution of quadratic 

(!.15) 

In case of practical steel chimneys of L/a of 20 or more the radius-to-thickness 

ratio is commonly greater than 100 and the minimum frequency in ovalling is 

associated with n = 2. Chimneys have been observed ovalling in this mode when 

subject to steady wind conditions creating an exciting force by vortex shedding. 

If a shell of these proportions has no stiffening, equation (!.14) simplifies to 

{ 
2 2 } n2 (1~n2)2 t:. = 1 + 1. 24 e (1 + 10 e p) ll (1.16) 

(l+n2) 
4 

It may be seen that for values of the parameter R/e p greater than 200 the 

ring is sufficiently stiff to amount to a simple support and it may be shown generally 

that for this range of practical chimneys equation (!.14) then simplifies to 

t:. = t 1 + 240p} 

2 2 2 
n (1-n ) 

f3 ----;o--­

(1 + n2
) 

For very long shells eqns. 1.14, 1.16 and !.17 all yield 

t:.= 
2 2 2 2 

S n (n - 1) I (n + 1) 

which is the well-known formula for 'ring' circumferential vibration modes. 

(I. 17) 

(I. 18) 



APPENDIX II 

Tables of Characteristic Functions Representing Normal Modes of Vibration 

of a Beam. 

In the following are given characteristic functions of beam vibration which 

have been mainly used in the analyses. For each frequency there is a definite shape 

in which the beam will deflect while vibrating harmonically; this shape is called a 

normal mode of vibration of the beam. The mathematical expressions which define 

the normal modes are called characteristic functions. 

The purpose of this appendix is to provide tables of the characteristic 

functions for the type of end conditions which are used in the analysis i.e. 

(a) clamped -free (b) clamped -supported. Such tables are needed in obtaining 

complete munerical solutions of the problem. 

The detailed derivation, properties and numerical values of these characteristic 

functions are tabulated in the book by Bishop and Johnson [14] . Only the relevant 

data for these two types of boundary conditions will be presented in the following. 

It is shown in the above reference [14] that each of the functions for a given set of 

boundary conditions satisfies the differential equation 

= or <l>iv = 
r 

(II.1) 

It is also shown that the set of characteristic functions 4> (x), (r = 1, 2, 3, .... ) 
r 

satisfy the so-called orthogonality relations, e.g. 

I 
L 

L 

~ 4> (x) 4> (x) 
r s dx = 0 

rs 
(II. 2) 

where 0 is Kronecker delta. Consequently the set of function is orthogonal in 
rs 

the interval 0 ~ x ~ L 
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DATA FOR CLAMPED-FREE BEAM 

Characteristic function and its derivatives 

~ (x) = eo sh p x - eo s p x - c ( sinh p x - sin p x ) 
r r r r r r 

1 d~ 
r 

pr dx 
= ~~ (x) = sinhp x + sinp x - c (coshp x - cosp x) 

r r r r r r 

1 i~ 
r 

2 dx2 pr 
= ~·· (x) = coshp x + cosp x -c (sinhp x + sinp x) 

r r r r r r 

~ .. , (x) ~ sinhp x . 
r r - smp x - c (coshp x +cos p x) 

r r r r 

Boundary values 

~ (0) = ~- (0) = 0 
r r 

~·· (L) = ~,,, (L) = 0 
r r 

p and c are given by the transcendental equations 
r r . 

coshp L cosp L+ 1 = 0 
r r 

c = 
r 

sinhp L - sinp L 
r r 

coshp L+cosp L 
r r 

DATA FOR CLAMPED-SUPPORTED BEAM 

Characteristic Functions and its derivatives 

1 

qr 

1 

q 2 
r 

1 

q 3 
r 

1/1 (x) = r 

dl/1 
r 

dX = 

iljl 
r = 

ctx2 

iljl 
r 

dx3 = 

cosh q x - cosq x - d (sinhq x - sinq x) 
r r r r r 

1/1' (x) = sinhq x+ sinq x- d (coshq x- cos q x) 
r r r r r r 

,, 
1/1 (x) = coshq x + cosq x - d (sinhq x + sinq x) 

r r r r r r 

'• 1/1 (x) = sinhq x ~sin q x - d (coshq x + cosq x) 
r r r r r r 
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Bpundary Values 

>jl (0) = >Ji' (0) = 0 
r r 

'Ji (L) = >Ji'' (L) = 0 
r r 

q and d are given by the transcendental equations 
r r 

sinq Lcoshq L -sinhq Lcosq L = 0 
r r r r 

d = cot q L = coth q L 
r r r 

Values of p , c and q , d 
r r r r 

r p L c q L 
r r r 

1 1. 8751 041 0.7340 955 3.9266 023 

2 4.6940 9113 1. 0184 6644 7 .. 0685 8275 

3 7.8547 5743 0.9992 2450 10.2101 7613 

4 10.9955 4074 1. 0000 33553 13.3517 6878 

5 14.1371 6839 0. 9999 985501 16. 4933 6143 

For r > 5 

dr 

1. 0007 7730 

1. 0000 0144 

1. 00000000 

1.0000 0000 

1.0000 0000 

p L ~ (2 r - 1) n/2 
r 

<t: ""' 1. 0 

qrL <::< (4 r + 1) nj4 

d = 1.0 
r r 

Characteristic functions and their first derivatives are tabulated in the 

Tables II.1 - II. 5 for these two cases. 

' 
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TABLE II. 1 

CHARACTERISTIC FUNCTIONS AND DERIVATIVES 

X 

L 

0,00 
0,0'. 
0,04 
o.o& 
o.oa 
0,10 
0.17. 
0,14 
0.16 
0,18 

0,20 
0,22 
0,24 
0,26 
0,23 

0,)0 
0.)2 
0,)4 
0,)6 
0,)8 

0,40 
0,42 
0.44 
0,46 
0.48 

0.50 
0,52 
0.54 
0,56 
0,58 

0,60 
0,62 
0,64 
0,66 
0,68 

0,?0 
0,72 
0,?1. 
0,76 
0,7d 

0,80 
0,82 
0.84 
0,1!6 
0.86 

0,90 
0,92 
0.9/. 
0,96 
0.98 

1.00 

0,00000 
O,CXH.)9 
0,00$5~ 
0,0)/)l 
0.02l68 

0,0))55 
0.04784 
0,06/.49 
0,08)40 
0.10452 

0.12774 
0.15J01 
O.H~024 
0.209)6 
0,240)0 

0,27;>')7 
0,)07)0 
0,)4)22 
0,)8065 
0.41952 

0.45977 
0.50131 
0,54408 
0,58800 
0,6)301 

0.67905 
0,7260) 
0,77)92 
0,82262 
0,87209 

0.92:27 
0.97309 
1.02451 
] .0761.,6 
l.l~SS9 

1.181?5 
1.2:)'i("l() 
l.:::M'i? 
),,4:'47 
1. ]')660 

1.450%. 
),t..054Q 
1.56016 
1.61496 
1.66985" 

1. 721.20 
1. 7'1'980 
1.3J:,aJ 
l.SS900 
1.94494 

2,CIOCOO 

.First Mode 

0,00000 
0,07')97 
O.l458R 
0,21572 
0.28350 

0.)4921 
0.41286 
0.1.7446 
o. 5)400 
0.5911,8 

0,64692 
0.700)1 
0.75167 
0.80100 
0.848)2 

0,89)64 
0.9)696 
0.978)1 

.1.01771 
1.05516 

1,09070 
1.1?-4)5 
1.15617. 
1.18606 
1. 21418 

1.24052 
l.2Ml2 
1.2'8801 
1.30924 
l. 3:!884 

1,J46R5 
1,)6))4 
1.37834 
1,)9191 
1.40410 

1.414?7 
1.4245? 
1.4)302 
1.440)2 
1.44656 

1,451R2 
1.45617 
1.45C:6S 
1,46245 
1.46455 

1.1,6607 
1.46710 
1.4677) 
1.46805 
1.46817 

1.46819 
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0.00000 
o.oo60o 
0,0.2)).3 
0.05114 
0,088)4 

0,1)400 
O.l37l5 
0, 246R5 
0.)1?.14 
o. 3S208 

0.45574 
o. 5)?.21 
0.6105;-:: 
0.689')9 
0.76?53 

O.S485?. 
0.92601 
1,001?.9 
1,07363 
1.142)) 

1.20675 
!, ?60>6 
1. J:-!))7. 
1.J6S~1 
l./.100~ 

l..V.J.A6 
• 1.4n45 

1.1.9253 
1. 501.·35 
1. 509:?2 

1. 50550 
1.49Jo'l) 
1.473~7 

l.'.l,'i37 
l.J.()<)lJ 

1,)6~91 
1,)1)1) 
1.:!53:].', 
1.1-3741 
1.11418 

1.0)4;? 
0.91,.399 
0,35795 
0,7619~ 
0.66151 

0.55724 
0,44?74 
O,JJ96?. 
0.:.:!7.75~ 
0.11410 

0.00000 

0.00000 
0.15089 
!),289/J. 
0.1,.1566 
0,52955 

o,6Jll6 
0.72055 
o. 79778 
0.86296 
0.9162) 

0.95776 
0.98775 
1.0064) 
1.011.10 
1.01105 

0.99764 
0.971.27 
).94137 
0.8991.') 
O.SJ.£::'6 

0,790:9 
0.121 .. :1 
0.6513~ 
0.57??.6 
0.43755 

0.39794 
0.301.10 
0.<06?5 
0.10661 
0.004/JJ 

... o.~l'• 
- o. '?))).~ 
- o. )()7)6 
.. 0.1..1057 
.. 0.51~'4 

- 0.6111)7 
- o. 70~~ ... 
- 0,'~0117 
... O.PA99'l 
... ' 0,97/,'JO 

.. 1.057.70 

.. 1.1~55(> 

.. 1.19210 

.. 1.25137 
- 1.)0443 

- 1,)4?60 
.. 1. ;e6?J 
.. 1.1..1621 
- l.t."J72'1 
- 1.44996 

- 1.45420 



TABLE- II.2 

CHARACTERISTIC FUNCTIONS AND DERIVATIVES 
• 

Second Mode 

X <1>2 <l>' 1 d~2 1/J JP.' 1 dl/!2 
2=--- 2 2= ---L r2 dx q2 dx 

o.oo 0. ()((l({l 0.00)1)0 I o.ooooo 0.00000 
0.02 O,OClR~:l O.l7f79 0.01904 0.26276 
0.04 0.0)301 0.))%2 0.07241 0.4S557 
0,06 0.07174 0.4S253 0.151.1,6 0.66857 
o.os 0,12)()5 0.60754 0.25958 0,81207 

0,10 0,1.!\5'"6 o. 71475 0,)6223 0.91666 
0.12 0.256?0 0.804?8 0.51697 0,9SJ25 
O,l/, . o. 335'/3 0.87631 0.65851 1.01)10 
0.16 0,42070 0.93108 0,80176 1.00789 
0.18 0,51002 0.968?2 0.94192 0.90966 

0,20 0,6021.1 0.99020 1.07449 0,90088 
0.22 0.69~41. 0.99539 1.19534 0.801 .. ·;.1 
0,24 0.78857. 0.9~502 1.)0078 0.68)1,5 
0.26 0,8799;> 0.959?0 l.J$759 0.54152 
0,28 0.9(Jf\:?7 0,9201) 1.45:308 0.)8242 

O,:JO 1.0~·''7 0,8G707 1.49510 0.21017 
0,)2 ),))Ofo8 0,801)6 1.51208 o.o~e·v. 
0.)4 1.;'0?3(, o. 72389 1, 50:305 - 0.1570!. 
0,)6 1.2662(:. 0.6)565 1.46765 - o. 34150 
O.J$ 1. ):;'1/,l o.SJ7M 1.40611 - 0.52625 

0.40 LJ6694 0.430'14 1.3192) - 0.70122 
0.42 1.40:?0? o. )1665 1.208)9 - 0.86456 
0,44 1.42619 0.19593 1.07550 - 1.01?.70 
0.46 1.43R7l 0.06995 0.92292 - 1.1424) 
0,48 1.4)920 - 0.06012 0,75)48 - 1.25090 

o.so 1.427)) .. 0.19)07 0.570)5 - 1.))577 
0.52 1.402?9 .. 0,)2772 0.)7700 .. 1.)9515 
0.54 1. J65?n - 0.46291 0.17n5 - 1.42770 
0,56 1.)1600 - o. 59741l - 0.025)6 - 1. 4)265 
0.58 1.25)65 - o. 7:30)4 - 0,2:2061 - 1.40978 

0.60 1.17895 - 0,86040 - 0.42ZC8 - 1.)5944 
0.62 1.09222 .. o.9e667 - 0.6097) - 1.28256 
0.64 0.9938/~ - 1.10821 - o. 78411 -- 1.180;8 
0.66 O,e8431 ... 1.22416 - 0.9424-'• - 1.05549 
0,68 o. 76/.19 - 1.)))7) - 1.08158 - 0.9CN72 

0,70 0.6)410 - 1.43624 - 1,19882 - 0.71.61~ 
0.72 0.49475 - 1. 5Jll) .. 1.291S6 .. 0.567'93 
0.74 0.)4687 - 1.61791 - 1.)5888 .. O.J78v6 
0.?6 0,1912) - 1,69625 - 1,)')858 ... O.,l820:i 
0,78 0.02865 - 1. 76592 - 1.41019 0.01300 

o.eo - 0.11,007 - 1.~2682 - 1.)')351 0.21752 
0.82 - 0,)1/.0? - 1,8'1901 - 1. 34890 0.41256 
0,84 - 0.49261 - 1.92267 - 1.27726 0.599>3 
0.86 .. O,IJ?IJ'.I, - 1.95811, - 1.18004 o. 77J$) o.ss - 0,86004 - 1.98590 - 1.05919 0.9)2t8 

0,9() - 1.047~ - 2.00658 - 0.91715 1.0732) 
0.9::' - 1."36(.0 .. 2,07097 -0.75676 1.19203 
0.94 .. 1./,:'f·~O .. :!.OJ002 - 0.531Z2 1.~8706 
0.96 .. l.f1l?fo/0 .. ;J,O)I,fl) 

- 0.)'1/,.06 1.)56<? 
0.98 - l,&;.F.77 - ;!,0)666 - 0.19')02. 1.)')8)') 

1.00 - 2. ()C()O() ·- 2.0)69) 0.00000 1.41251 
. 

. . 
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TAilLE JI.3 

CHARACTERISTIC FUNCTIONS AND DERIVATIVES 

Third Mode 
... · 

X $3 I 1 d$3 1/!3 1/! '=..!.. dl/!3 
$ =---

dx L 3 p3 dx 3 q3 

0.-00 0.00000 o.ooooo 0.00000 O,OOOl)O 

0,02 0.02339 0.28953 o.oJe.r6 o.J&6n 
0.04 O,OC:8)') o. 52979 0.141,10 0.65020 
0.06 0.18727 0.72099 o . .nsn o.ss1n 
0,03 0.)12)8 0.86)67 Q,IJ-:f;,~(l 0.97168 

0.10 0.45614 0.958?9 0.690)7 1.01491 
0.12 0.61120 1.00785 0.81584 0.913593 
0,14 0.77049 1.01?91 1.0~857 0.89148 
0.16 0,92728 0.97665 1.25001, o. 74002 
0.18 1.075)5 0.902)7 1.)371•) 0.54152 

o,;,o 1.20901 o. 79394 1.1,7476 0,)0725 
0.22 1.)2324 0.~5580 1.5111,7 0.04'))9 

0.24 1.41)76 0.492A$ 1.491.19 .. 0,21C'l)/, 

0.26 1.47707 0.)1040 1.4?/.02 - 0,48616 
0.28 1.51056 0.11405 },:9(;;6? .. 0.7)864 

0,)0 1.5121,8 - 0.09041 l.l2212 - 0.96520 
0,)2 1.48203 - 0./9711 0.904•39 .. 1.15556 
0.)4 1.1,19)1 -0.50026 0.65)21. - 1.))107 
0.)6 1.)25)4 - 0.69422 o.:rnoJ - 1.)9512 
0,)8 1.20196 - 0,87)68 o.ogn? - 1.4))30 

0.40 l.051S5 - 1.0))74 - 0.20439 - 1.41)61, 
0.42 0,87841 .. 1.1?00) - 0.48616 ... 1.))665 
0,1.4 0.68568 - 1. 27881 - o. 74658 .. 1.205~5 
0.46 0.478;?2 - 1. )5704 ... 0.97504 - 1.0/1,?1 
0,48 0.2610) .. 1.40/47 .. 1.16::";> J ... 0,802)1 • 

0,50 0.03917 - 1.41)66 .. l.)OO'jO - 0.547>6 
0,52 - 0,181)0 - 1.)9004 - "1. )IJI,:'l - 0.;>6991. 
0.54 - 0.39555 - 1,)3188 - 1.41001 o.ovna 
0,56 - 0.59802 - 1.2/,tlXl .. 1-.37687 0,):>522 
0.58 - 0.78)59 - 1.1172) - 1.2e6~4 0.57929 

0.60 - 0.9475) - 0.965)) - 1.14194 0.8?.907 
0.62 .. 1.03556 .. o. 78797 - 0.95000 1.01.1.?.:> 
0.64 .. 1.19398 - 0.58908 - 0.718.;,4 1.21582 
0.66 - 1.26974 - 0,)7)10 - 0.4569) 1. .3~673 
0.68 - 1 • .31055 - 0.141,79 - 0.176~~ 1.40210 

0,70 - 1.)1485 0.0<)085 0.11174 1.40906 
0,72 .. 1.28Hi9 0.)2872 0.3?51'? 1.)5742 
0.74 - 1.21172 0.56)80 o.66n7 1.249)1 
0,?6 ... 1.10515 0.79124 0.901£~ •1.08974 
0,78 - 0.96)?5 1.00656 1.1040!. 0.88)87 

0,80 - 0.78975 1.20575 1.26o:l5 0.6.U75 
0.82 - 0.58194 1.)8540 1.)6/.)2 0,)1]91, 

0,84 - o. )556) 1.51,2,16 1.41160 o.oea60 
0.86 - 0.10245 1.67629 1.40025 - 0,1994) 
0,88 0.16974 1.78480 l,.JJOn .. 0.4'7918 

0.90 0.4570::!: 1.86854 1.20590 .. 0, ?J)OI, 

0.92 0.75558 1.92371 l.OJOC)~ - 0.96?-20 
0.91. 1.06189 1.96766 0.81.3:'.1 - 1.1571) 
0.96 1.)?287 1.9SS92 o. 5!..lf.~! - 1.:>9798 
0.98 1.68610 1.99721 o.~B£.eo - l,).q!,.90 

1.00 2,00000 1.99845 0.00000 - 1.41429 
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TAI3LE II. 4 

CHARACTERISTIC FUNCTIONS AND DERNATIVES 

Fourth Mode 

X 1 d<j> 4 
1/!4 

I 1 d ljJ4 
- \ q/=--- lJi=---
L 4 p4 dx 4 q4 dx 

- - ·-
0.00 0,(l(t"10 o.ooooo O,OOOOo 0.00000 
0,1)2 O.O.V/.? o. J')l!,7 0,06496 0.46278 
0,01, O,lr>'ilO 0.686/,'i 0,2)451 0.78)57 
0.06 o. J)974 o.P.A?oo 0.47104 0.96521 
o.os o. 5.~~01 0.9971S 0.7)820 1.01441 

0.10 0,77002 1.011?1, 1.00204 0 •. 94270 
0,1::? 0,9>~714 0.94'J')4 1,2)2)7 o.7U64 
0.11. l.lR2'i,-, 0.816)) },/,0407 0.50751 
0,16 1.)1,.1?7 0.6:?::?61, 1.49825 0.19041 
O,lg 1.45:?99 OS~?.JO l. 50)06 -.0.15704 

0,20 1. ~-07~:1 0.11017 1.414/.2 .. o. 5062/, 
o.n 1.~0027 - O,l?eOl 1.23502 - 0.8.('944 
0.24 1.421)?.8 - 0.4';624 0.975R2 - 1.1011,0 
0.26 1.?96)1, ... o. 7)395 0.65)24 - 1.)0107 
0.28 1.1061.,1 - 0.98164 0.28879 - 1.412'>5 

0,)0 0.'?.6'1'11. - 1.1$154 - 0.09274 - 1.!.2807 
0,)'. 0.59073 - 1.3>31) ... 0.46510 - l. )1.455 
0,)1, 0,288013 - },1.1)63 - 0.80250 .. 1.16772 
0,)6 - 0.026?1 - 1.1,))51 - 1.08150 - 0.9096) 
0.)-1 - o. 1J?.~·~ - }.)~tj:>~ - 1.28266 - (1.5882) 

0,40 - 0.~)112 - 1.27)76 - 1.39201 : 0.22602 
0,42 - 0.89))0 - 1,101?6 -1.40200 0.15152 
0.4/. - 1,11166 - 0.6763) - 1.)1209 0.51780 
0,46 .. 1.27592 - 0.61115 - 1,1.2877 0.84697 
0.48 - 1.)7~)6 - 0.)1690 - 0,8651) 1.115!:0 

0,50 - 1.1.1421, - 0.00819 - 0.5)')1),~ 1.~~30 
0.52 - l. )IJ,l<J<J 0.)0012 ... 0.1762?. 1.1.0210 
0.54 - 1.?~136 0.59)16 0.20000 1.399)7 
0,56 - 1.1?.)~7 0.85675 0,562/2 1.297)4 
0,58 - 0,9()96/, 1.07812 0.88466 1.10)26 

0.60 - 0.65299 1.2464) 1.11.1.1.5 0.8)092 
0.62 - 0.36594 1.)5))9 1.)2~17 0.49')6) 
0.64 - 0.06~61, 1.39)57 l..t.OPU 0.1)789 
0,66 0.24191 1.)6469 l. )9))0 - 0.2/,)29 
0,68 o. 5)258 1.26772 1.2797) - 0,60226 

0,70 o. 794?8 1.10676 1.07546 .. 0.918~.~ 
0,72 1.01518 0.88883 0.79497 - 1.16974 
0,74 1.18:??.f) 0.62)70 0.1,5814 - 1. ~)~02 
0,76 1.28688 0.)2290 0.0Rf!R4 - 1.41146 
0,78 1.32262 - 0,00039. - 0.2R676 - 1:)8486 

o.eo 1.2.:608 - 0.))228 - 0.64202 ... 1.26010 
0,82 1.176~7 - 0.65890 - 0.95176 - 1.04602 
0,84 0,99762 - 0.96717 - 1.19405 - o. 75779 
0,86 0,75)~8 - 1.24552 - 1.)5168 - 0.41585 
0.88 0.452?0 - 1.481,6) - 1.<1)51 - 0.0444) 

0.90 0.10407 - ).67£0? - 1.)751) o.JJ014 
0.92 - 0.2~17') - ),82294 - 1.2)928 0,631~0 
0.94 - 0,6")/,'XJ - ].9?.01?. .. 1.01558 0.98/.16 
0.96 - 1.1'.317 .. 1.97/.'2:2, .. 0.7l"..IB9 1.21?27 
0,92 - 1. 560)5 - 1.99672 - 0.)7)17 1.)61,09 

1,00 - 2.00000 - 2.00007 0.00000 1.41421 

fl.-52-



TAJ3LE II.S 

CHARACTERISTIC FUNCTIONS AND DE!UVATNES 

Fifth l'viode 

X ~5 , 1 ct <~>s 1/!5 
, 1 d ~'s 

~ =--- 1/J =---
L 5 Ps dx 5 qs dx 

o.oo 0,00000 o,ocooo o.coooo 0.0'~1(100 

0.02 0.07241 0,4SSS7 0.09685 0.55098 
0,04 0.~5958 0,81207 0.))974 o.earJO? 
0,06 0.51697 0,9837.5 0.65851 1.01)11 
0,08 0,80177 1.00789 0.98'/17 0.95000 

0,10 1.0741.9 0,9008? 1.26755 0.726>8 
0,12 1.)00713 0.68)46 1.45)08 O.)R24) 
o;14 1. 45309 o. )8?.1,) 1.51'00 - 0,0)271. 
0,16 1.51?09 0,0?.895 1.42950 - 0.46599 
0,18 1. l,h767 - 0.)4)48 1,20840 - 0,86454 

0.20 1. )19:?5 - o. ?0119 0.86819 - 1.18105 
0,22 1.0755) - l.Ol2G7 0.442)9 - 1,)7825 
0,24 0.75)'iJ - 1.,50e6 - (),02533 - 1.4)261 
0,26 0,)7706 - 1.)950') - 0.48616 - 1.))665 
0,?.8 - 0.025?9 - 1,4)257 - 0.89158 - 1.09954 

o. )() .. 0,1.2,·57 - l.J59)/, - 1.19872 - o. 74602 
0,)2 - 0,7Ul99 .. 1,18045 - 1.)7505 - 0.)1)60 
0,)4 - 1.08140 - 0.90954 - 1.40200 0.15152 
0,)6 ... 1,29162 - 0,56770 - 1.27698 0.59950 
0,)8 - 1.)9826 - 0.18174 . - 1.01)69 0.98227 

0.40 - 1,)9)10 0.21794 ·- 0.64067 1.25871 
0.42 - 1,2?670 0.59978 - 0.09828 1.)9912 
0.44 - 1.ose46 0.9))61 0.26570 1.)8846 
0,46 -0,75579 1.19)04 0.70119 1.22792 
0,48 - o. )')273 1. )5757 1.06118 0.9)487 

0,50 0,00170 1,411,21 1.)0682 0.5409) 
0,52 0,)')6)2 l. )58 55 . 1.41161 0,08261 
0.5.4 0.75976 1.19508 1.)642) - 0,)7))1 
0.56 1.06)17 0,9)686 1.16977 - 0.79500 
0.58 1.2825) 0,60450 o.84919 - 1.1)100 

0,60 l. 40051 0.22452 0.4)706 - 1.)4505 
0,62 1.40736 - 0.172?6 ... 0.02218 - 1.41408 
0,64 ], )0/.18 - 0.55561 - 0.47902 - 1.))06) 
0.66 l.09'nJ - 0.89337 - 0.82421 - 1.10)71 
0,68 0,805S2 .. 1.15S.:? - 1.19405 - o. 75779 

0,70 0.4SH6 .. 1.1)065 - 1.)751) - 0,))015 
0,72 0.06)~5 - l. )941.6 - 1.4079J 0,1J)(l8 I 0.74 ... 0.,)~6)4 ... l.JIJJ,g - 1.28892 0,58196 
0.76 .. 0.68626 - 1,18J6S - 1.0)091 t 0.96809 
0,78 ... 0.93631 - 0.92)52 - 0.66175 1.2498) 

0,80 - 1.20090 - 0.58289 .. 0.22123 1.)9680 
o.e2 - 1, 31066 .. 0.18651 0.21.)14 1.)9)15 
0,84 - 1.)0)78 0.2)72) 0.681)0 1.23928 
0,86 -1.17672. 0,65878 1.04600 0,95178 
0.88 - 0.9)411 1.05011 1.29790 0,56165 

0,90 - 0.58801 1.)87)6 1.40985 0,11096 
0,92 ... 0.156)) 1.65))2 1.36978 - 0,)5170 
0.94· 0,))9)7 1.83959 1.18201 .. O,T/61.4 

I 0.96 0.?.7658 1.94824 0.86678 ... 1.11745 
0,98 l,/,)'jOi' 1.99300 0.45809 - 1.))797 

1.00 2.00000 2.00000 0.00000 -1.41421 I 
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' \. 
APPENDJX III 

In applying the Rayleigh-Ritz method it becomes necessary to evaluate 

integrals containing the characteristic beam functions and their derivatives. This 

appendix gives the analytical expressions for the integrals, 1
1

, I
2

, 1
3

, 1
4

, 1
5

, 1
6 

(equation (37)) encountered in the analysis. The orthogonality properties of 

characteristic beam functions and other properties of the parameters involved in 

these functions given in Appendix II have been used to arrive at the following 

expressions: 

L l J ~ r(x) dx12 Il 
1 J p 2 dx = 
L r 

0 

1 
[<1+ c 

2
) sinh2p L 

2 sin 2 p L = 
4p L 

- (1 - c ) 
r r r r (III.1) r 

-2c (cosh2p L + cos2p L) + 4c (p Le +5) 
r r r r r r 

+ 4(1 + c
2 

) sinhp Lcosp L- 4 (1 
r r r - c 2 ) cosh p L sin p L J r r r 

1 
L 

{ ~~(x)} 2 
dx 12 = f L 

0 

1 
[ (1 + c 2 ) sinh 2 p L - (1 - c 

2 
) sin 2 p L = 

4p L r r r r 
r 

(III. 2) 

-2c (cosh2p L+cos2p L) + 4 c (p L c - 3) 
r r r r r r 

·2 
- 4(1+c

2
)sinhp Lcosp L J + 4 (1 - c ) coshp L sin p L 

r r r r r r 

1 
L 

2 
{fqJr(x)dx12 dx 13 = J qr L 

0 

= -4
1 

1 
[<I+ d 

2
) sinh 2q L - (1 - d 

2
) sin 2q L 

q r r r r 
r 

(11!. 3) 

- 2d (cosh2qL+cos2qL)+4d (q Ld +3}] 
r r r r r r 
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14 = 

= 

= 

1 L 

J { ~' (x)} 2. 
L r. dx 

0 
,. 

1 ~ 2 2 (1 + d ) sinh 2 q L - (1 - d ) sin 2 q L 
4q L r r r r 

r 

- 2d (cosh2q L+cos2q L)+4d (q Ld -1)] r r r r r r 

1 
T 

L 

~ 
~ (x) ~ (x) dx 

r r 

(Ill. 4) 

sinh(p +q )L+! 
r r 

1 - c d 
r r 

sinh (p - q ) L 
pr - qr r r 

sinhp L cos q L 
r r 

P +q c d 
r r r r 

-
2 

cosh q L sinp L -
2 r r 

q - p c d r r r r 

p2 + 2 
sinq L cos p L 

r r 
p +q 
r r 

1 - c d 
+ ! r r sin (p + q ) L + ! 

pr+qr r r 

c +d 
t r r I 
2 -- cosh (p + q ) L - 2 

p +q r r 
r r 

q c +p d 

r qr 

1 + c d 
_ _::_r..::.r sin (p - q ) L 
pr - qr r r 

c d r - r 
cosh 

pr- qr 
(p - q ) L 

r r 

' 
+ 

r r r r 
2 . 2 

sin p L sinh q L -
r r 

(coshq L cos p L - 1) r r 
pr +qr 

q. c + p d . p c - q d 
rr rr rr rr 

+ 
2 2 

sinh p L sin q L + 
2 2 

(coshp L cosq L - 1) 
r r + r r 

pr +qr pr qr 

c +d 
t r r + -· 
2 p +q 

r r 

c -d 
cos (p + q ) L + ! --=r:.._--=.r 

r r p -q 
r r 

{1, -55-

cos (p - q ) L J r r 
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= 

+ 

1 

L 

L 

! 
0 

1 
L [! 1 + c d 

r r 
sinh (p + q ) L ~·! r r · 

q - p c d 
r r r r 

2 2 
pr +qr 

1 + c d 

sinh p L cos q L -
r r 

cosh p L sinp L + 
r r 

1 - c d 
r r 

sinh (p - q ) L 
pr - qr r r 

cosh p L sin q L 
r r 

+ ! _ _.:;r...;r~ sin (p - q ) L - ! 
pr - qr r r 

1 - c d 
r r 

sin (p + q ) L 
r r 

+ 

c + d c -d 
1 r r 
2 + cosh 

pr qr 
(p+q)L+! r r 

r r pr - qr 
cosh (p - q ) L 

r r 

P c - q d 
r r r r 

2 2 
pr +qr 

sin p L sinh q L -
r r 

sinhp L sinq L -
r r 

q c +p d r r r r 
2 2 

(coshprLcosq L-1) 
p + r 

r qr 

c +d c -d 
1 r r 
2 p +q 

r r 
cos (p + q ) L +! r r cos (p - q ) L 

r r pr - qr r r 

2 (q c - p d) 
r r r r' 

J 
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APPENDIX IV 

FLOW CHART OF l'v1AIN COMPUTER PROGRAMME 

Read 
relevant 

beam data 

Compute 
Characteristic 

Integrals 

Read 
shell data & 
Properties 

Yes 

Read 
Ring data 

&Propertie 

Compute 
Ring 

Parameters 

Form Fre-

Yes 

Yes 

·Yes 

quency Deter- 1------+-----< 
minant f ( ll. ) 

No 

No 

Write ' 
1 

m. n, ll. 2 

• 

Regula-Falsi 
Method* 

to find ll. 

6 

1, 2, 3, 4 

* Flow Chart for Regula-Falsi Method is given on following page. 

A .-57-

Newton's or 
Exact Methods 
to find A 



standard 
sub routine 

U =O 
G = -1 
K= 6.. __ c 

R~ad 

FLOW CHART FOR REGULA-FALSI ITERATION PROCEDURE 

Set 

6=6.+S 

Set 
XA =X 
IG = 0 

et 
BK =FT 
XA = XB 

-1 

Set 
FT= D. 
XB =X 

cS 
A= DK 

1 

<0 Set 

IG = 1 

Set 
XB =X 
FT= D. 

•• 

>----+---l--(FT-BK)*XAf-----------1 
XB -XA 

<o 

<99 

Set 
XA =X 
BK = ~:>. 

Set 
·APR = 

IC = IC+ 1 

~ 99 

No Conver­
gence in 
99 iterations 

' . 

Compute 
l 
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' APPENDIX V 

EXACT ANALYSIS FOR VIDRATION CHARACTERLSTICS OF 

CIRCULAR CYLINDRICAL SHELLS. 

Following is the brief account of the exact analysis used by 

Forsberg [18] for solution of natural frequencies of ring-stiffened cylindrical 

shells. 

GENERAL COMMENTS - An analysis of the modal 

characteristi<'<> of 1 tandem series of cylinders has been developed. . Each of 

the component cylinders is assumed to have the same mean radius a, but 

each may be of different length, have a different thickness and may be made 

of a different material. Rings may be located at each of the juncture points 

between cylinders as well as at both ends of the tandem series. Each of these 

rings is assumed to have its own set of axially-symmetric section properties 

and may be eccentrically attached to the cylinder in the sense that the radius 

of the cylinder need not be equal to the radius of the centroid of the ring 

cross-section. Additionally, all rings must have a "compact cross-section" 

in which the shear centre and the centroid coincide an!i the product of inertia 

vanishes. 

EQUATIONS OF MOTION FOR SHELLS WITHOUT RINGS 

Consider a tandem series of cylinders joined directly (without 

rings at the junctions). For each cylinder the general solution for modal 

vibration can be written in the form 

tJ 8 
L: 
s=l 

e 
A X 

sn 

{1. 59. 

A cos n a 
sn . w t 

B sin ne I n (V.l) e 
sn 

c cos ne 
sn 



For modal motion it can be shown that each cylinder in the tandem series of 
'· 

shells must have the same circumferential wave number n. The equation 

used to describe the motion of the cylindrical shell segments are those given 

by Flilgge. These equations have constant coefficients and are of the form 

= E 
s 

(V. 2) 

where ~. are midsurface displacement components u, v, wand L .. represent 
J D 

linear differential operators in x and e • Substitution of expressions (V .1) into 

the equations of motion (V. 2) yields k matrix equations (one for each 

cylinder) of the form 

a sn 
e sn = 0 (V.3} 

1 

where 

a =A /C andB =B /C sn sn sn sn sn sn (V. 4} 

The elements a .. of the kth matrix are functions of the circumferential wave 
lJ 

number, n, frequency, w, and the elastic and geometric parameters of the 

kth cylinder. The solution to each of (V.3) will be non -trivial only if the 

determinant of the coefficients vanishes (i.e. , 1 aij 1 = 0 ). For each 

component cylinder this condition leads to an eighth-order polynomial 

equation in :\ : · sn 

+ g(O) = 0 
sn (V.S) 

The roots provide the permissible values of" to be used in(V.l} and once they 
sn 

are determined one can return to (V. 3) and obtain a and B . The 8k 
. · sn sn 

complex constants C are evaluated by solving a system of 8 k equations, 
sn 

of which 8 (k-1) represent compatibility of displacements, forces, and 

moments between adjoining cylinders. The remaining 8 equations arise 

from 4 specified boundary conditions at each end of the overall shell. 

There are sixteen possible sets of homogeneous boundary 

conditions which can be specified independently at each end of the shell. 
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These consist of all combinations of tbe following: . . 
w = 0 or sx = Q + (1/a) aM I ae =0 rv. 6a) 

.. X xe 

aw; a:x = 0 or M = 0 rv. 6b) 
X 

u = 0 or N = 0 rv. 6c) 
X 

V = 0 or T = .N - (1/a) M . = 0 rv. 6d) 
X xe xe 

The detailed statement of these compatibilities and boundary conditions leads 

directly to tbe matriX: 

1st cyl 

[4 X 8J 
[8x 8] 

0 

2nd cyl 

0 

ktb cyl 

[8 x 8] o 
[8 X 8] [8 X 8] 

0 [4 X 8] 

= 0 

rv. 7) 

For a non-trivial solution, tbe determinant of the coefficients must vanish. 

Since A in equation (v.l) depends upon the eigenvalues w of the determinant, 
sn 

it is not possible to express tbe equation in a standard form (e.g. 
2· 

(A - w S) Y = 0). Thus, at this point in the analy,sis a numerical 

evaluation of the solution is introduced. Although a num erica! solution is 

required to find the eigenvalues, the solution is exact in the same sense that 

a numerical solution of the transcendental frequency equation for a beam yields 

an exact solution. 

One now selects a specified set of shell geometries, as assumed 

number of circumferential waves n, and a specified set of boundary conditions 

at each end. An iteration scheme is then used to find the eigenvalues. The 

determinant is evaluated for successive values of the frequency until there is 

a change in its sign, indicating that a zero has been bracketed between two 

successive frequency estimates. Regula-falsi is employed to locate the 

eigenvalue to some preselected accuracy. This method has been used to 

1\,61. 



compute eigenvalues which are less than .1% apart. After the eigenvalue is 
,· 

determined the eigenvector is computed. The eigenvector is then substituted 

into the equation system to check that the equations are satisfied to the 

desired accuracy. If the eigenvectors do not check, computation is terminated. 

EQUATIONS OF MOTION OF TilE RING 

The equation of motion for the rings can be written in terms 

of four displacement quantities: w R' v R' uR and a R. The eccentricity and 

the finite width, bR, of the ring are included in the analysis. 

When two cylindrical shells are joined by a ring, the forces 

and moments between the shells can be replaced by an equivalent force couple 

system acting together with the ring inertia forces at the centroid of the 

. ring cross section. 

The displacements of the ring centroid and rotation of the 

ring cross -section can be related to the displacements at the ends of the 

adjoining shells by kinematic considerations. When the effect of the warping 

of the ring cross -section due to torsion is ignored, the cross -section rotates 

as a rigid body through the angle a 
R" 

When the ring centroid displacements are expressed in terms 

of shell displacements, the force and moment compatibility relations for shell­

ring-shell junction can be written in terms of the shel~ displacernents at this 

junction. Detailed analysis and explicit expression can be found in 

reference ~8] 

It is seen that if the rings are present at a junction between 

two cylinders, the elements of matrix of equation (V. 7) become more involved, 

but the size of the matrix is not expanded. 

A comparison of the frequencies as computed by the 

variational technique and exact approach is given in section 4 (pp. 32 -36). 
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TAJ3LE 1 

EFFECT OF ZERO HOOP AND SI-IEAR STRAIN ON FREQUENCY OF A CLAMPED-FREE SHELL 

(m= 1; n = 2) WITH VARIOUS MODES 

LENGTH = 150 ft. ' RADIUS = 5 ft.' THICKNESS = 5/16 in. a/h = 192 

L/a = 30 

YOUNGS MODULUS = 30x10
6

p.s.i. 

DENSITY 
-4 2 

POISSON'S = 7. 37 X 10 lb. -sec , RATIO = .3 

With hoop and Zero hoop and shear strain 
shear ·strain Reduced from ·cubic & sextic Other mode shapes 

FREQUENCY 

Cubic · Sextic Linear Quadratic Quadratic Quartfc 

(32)* (36)* (33)* (40)* (I.15, I.14)* (31)* 

t,! X 10 
2 

. 41179791 . 41101781 .41329154 .41328979 .41447447 .42488354 
- • 

w; 2 ,. 2.3103 2.3059 2.3187 2.3186 2.3253 2.3837 
(Hertz) 

* Refer to the number of equations in the text. 



_!_ 2 
TABLE 2, FREQUENCY PARAMETER /::; 2 (x 10 ) FOR CLAMPED-FREE SHELLS 

SF : Sextic (Flugge Theory), CF : Cuhic (Fll1ggc Theory) 

Length Radius -to -thickness ratio a/h 
-to- zoo 2SO 300 

radius ratio so 100 1SO 

L/a 'n = 1 n=2 ·n=1 n=2 n = 1 n=2 n = 1 n=2 n.= I n=2 n=I n=2 

IO SF 2.083S 1.7081 2.0834 1.03S1 2.0834 .8540 2.0834 • 7808 2.0834 • 744S 2.0834 .• 7240 
CF 2. 2042 I.7226 2.204I I. 06I9 2.204I . 8871 2.2040 . 8I7I 2.2040 • 7826 2.2040 .7632 

IS 
SF .9406 1.5867 .940S • 83SI . 9405 .600I .940S . 492I . 9405 .433I . 9405 .• 3973 

CF • 9984 I. 5892 . 9983 • 84I5 . 9983 . 6096 .9983 . S038 . . 9983 • 4464 • 9983 .4119 
. 

20 
SF .5320 I. S632 .5320 • 7953 .S320 .5450 .5320 .4238 .5320 .3S39 .S320 .309S 
CF .5655 1.5638 .5654 • 7973 .5654 .5482 .5654 .4281 .5654 .359I .5624 .3154 

25 
SF .34I4 I. 5560 .3414 • 7838 .34I4 .5288 .3414 . 4030 .3414 .3290 .3414 .2907 
CF .363I I. 5561 .3630 .7845 .3630 .5300 .3630 . 4048 .3630 .3311 .3630 .2832 

30 
SF .2374 I. 5531 . 2374 • 7794 .2374 .5227 • 2374 .3952 .2374 .3194 .2374 .2695 
CF .2526 I. 5531 . 2S26 .7797 .2526 • 5232 .2526 .3960 . 2526 .3204 .2526 .2706 

35 SF .I746 I. 55I7 .I746 . 7774 .I746 .5200 .I746 .3918 .I746 .3I52 .1746 .2645 
CF .I858 I. 5517 . 1858 • 7775 • 1858 .5202 .• I858 .3921 .1858 .31S6 .1858 .2650 

40 SF .I339 I. 5509 .. I339 • 7764 .1339 .5I86 .I339 .3900 • I339' .3I31 .I339 .2620 
CF .1423 1.5509 .I423 • 7764 .I423 . SI87 .I423 .3902 .I423 .3I33 .1423 .2623 

45 SF • I061 I.S504 .I061 •. 7758 . .1061 .5I79 .106I . 389I .I061 .3120 .I06I .2607 
CF .I125 I. 5504 .1125 • 7758 .1125 .5I79 .I125 . 389I .1125 .3i20 ·.1125 • 2608 

50 
SF .0863 I. 550I • 0862 .77S5 . 0862 .5174 .0862 . 3885 . 0862 .3113 .0862 .2599 
CF . 09I2 I. 550I . 09I2 • 7755 . 0912 .5174 . 0912 .3885 • 09I2 .• 3113 . 0912 .2599 

00 SF 0 I.5492 0 • 7746 0 ·.5164 0 .3873 0 .3098 0 . 2582 



"' (J1 

Length 
-to-

radius ratio 

L/a 

10 QF 
QT 

15 QF 
QT 

20 QF 
QT 

25 QF 
QT 

30 QF 
QT 

35 QF 
QT 

40 QF 
QT 

45 QF 
QT 

50 QF 
QT 

TABLE 3 •. FREQUENCY PARAMETER ~! (x 102) FOR CLAMPED-FREE SHELLS 

QF : Quadratic (F1tigge Theory), QT : Quadratic (Timoshenko-Love Theory) 

Radius -to -thickness ratio ajh 

50 lOO 150 . 200 250 300 

n = 1 n = 2 n = 1· n=2 n = 1 n=2 n = 1 · n=2 J1 = 1 n=2 n=1 n=2 

2.4579 1.7528 2.4578 1.1094 2.4578 . 9432 2.4578 . 8776 2.4578 . 8455 2.4578 . 8276 
2.4578 1. 7528 2.4578 1.1093 2.4578 .9432 2.4578 . 8776 2.4578 • 8455 2. 4578 ,8276 

1. 0994 1. 5958 1. 0993 . 8533 1. 0993 .6Z56 1. 0993 .5230 1. 0993 .4679 1.0993 .• 4351 
1. 0993 1.5958 1.0993 • 8533 1. 0993 .6256 1. 0993 .5230 1. 0993 .4679 1. 0993 .4-351 

. 6198 1.5660 .6198 .8013 .6198 .5539 .6198 .4353 .6198 .3677 .6198 .3251 
• 6198 1. 5660 . 6198 • 8013 .6198 .5539 .6198 .4353 • 6197 .3677 • 6917 .3251 

' 
.3971 1. 5570 .3971 .7861 .3971 .5324 . 3971 . 4079 .• 3971 .3349 .3971 .2876 
. 3971 1. 5570 . 3971 .7861 • 3971 .5324 .3971 .4079 . 3971 .3349 .3971 • 2876 

. 2759 1. 5535 . 2759 • 7805 . 2759 .5244 .2759 .3975 . 2759 .3223 • 2759 .2729 

.2759 1.5535 . 2759 • 7895 .2759 .5244 .2759 .3975 • 2759 .3223 • 2759 .2729 
' 

. 2028 1. 5519 .2028 . 7780 . 2028 .. 5209 .2028 .3929 . 2028 .3167 .2028 .2663 

. 2028 1. 5519 . 2028 • 7780 . 2028 .5209 .2028 .3929 .2028 .3167 . 2028 .2663 

.1553 1. 5510 .1553 .7767 .1553 .5191 .1553 .3907 .1553 . 3139 .1553 .2630 

.1553 1. 5510 .1553 • 7767 .1553 .5191 .1553 . 3907 .1553 .3139 .1553 .2630 

.1227 1. 5505 .1227 .7760 .1227 .5181 .1227 .3895 .1227 .3124 ;1227 . 2612 

.1227 1. 5505 .1227 .7760 .1227 .5181 .1227 .3895 .1227 .• 3124 .1227 .2612 

. 0994 1. 5501 . 0994 . 7756 . 0994 .5176 .:0994 . 3887 . 0994 .3116 • 0994 .2602 

. 0994 1. 5501 . 0994 • 7756 .. 0994 .5176 • 0994 .3887 . 0994 .3116 . 0994 .2602 



TAJ3LE 4. FREQUENCY PARAMETER .6.! (x 10
2

) FOR CLAMPED-RING STIFFENED SHELLS 

RING I (bR/a = . 01 , dR/a = • 03) 

SFE Sextic (F1ugge Theory) Eccentric Rings, SFS : Scxtic (F1uggc Theory) Symmetric Ring 

Length Radius -to -thickness ratio a/h 
-to-

radius ratio 50 100 150 200 250 300 

L/a n=1 n·= 2 n = 1 n=2 n=1 n=2 n = 1 n=2 n=1 n=2 n=1 n=2 

10 SFE 2. 0811 1. 7602 2.0786 1.1445 2.0761 l. 0148 2.0735 . 9851 2.0709 .9864 2.0683 . 9990 
SFS 2.0812 1.7116 2.0787 l. 0557 2.0762 • 8939 2.0737 • 8393 2. 0712 .• 8206 2.0686 • $167 

15 SFE .9399 l. 6274 . 9392 . 9316 .. 9385 . 7563 .9378 • 7020 . .9370 .6883 . 9363 .• 6904 
SFS .9399 l. 5895 • 9392 • 8528 . 9385 • 6388 .9378 .5540 • 9371 .5182 . 9364 .5047 

20 SFE • 5318 1.5935 • 5315 .8664 .5312 .6617 .5309 .5830 .5306 .5496 .5303 .5351 
SFS .5318 1. 5654 .5315 • 8093 .5312 .5765 .5309 .4763 .5306 • 4287 • 5303, . .4062 

25 SFE .3413 1. 5 783 . 3411 • 8325 .3410 .6068 .3408 .5087 .• 3407 .4587 .3405 .4307 
SFS .3413 1. 5578 . 3411 .7949 .3410 .5538 .3408 .4449 .3407 .3892 .3405 .3592 

30 SFE .2373 1. 5691 . 2373 . 8114 . 2372 .5721 .2371 .4614 . 2370 .4007 .2369 .3641 
SFS .2374 1. 5547 . 2373 .7885 .2372 .5426 .2371 . 4279 .2370 .3658 . 2369 .3296 . 

35 SFE • 1746 1. 5631 .1745 • 7982 .1744 .5512 .1744 . 4330 .1743 .3660 .1743 .3241 
SFS .1746 1.5530 .1745 • 7850 .1744 .5358 .1744 .4168 .1743 .3496 .1743 .3085 

40 SFE .1339 1. 5591 .1339 .7901 .1338 .5387 .1338 .,4164 .1338 .3456 .1337 .3003 
SFS .1339 1. 5521 .1339 • 7827 .1338 . 5311 .1338 . 4089 .1338 .3382 .1337 .2931 

45 SFE .1061 1.5563 .1061 • 7851 .1060 • 5312 .1060 . .4065 .• 1060 .3334 :1060 • 2861· 
SFS .1061 1. 5515 .1061 • 7811 .1060 .5276 .1060 .4032 .1060 .3303 .1060 .2830 

50 SFE .0862 1.5545 • 0862 .7820 . 0862 .5266 .0862 • 4004 . 0861 .3259 . 0861 .2772 
SFS .0862 1. 5511 .0862 • 7799 . 0862 .. 5250 • 0862 .3991 . 0862 .3248 .0861 .2762 



Length 
-to-

TABLE 5. FREQUENCY PARAMETER .6~ (x 102) FOR CLAMPED-RING STIFFENED SHELLS 

RING I (bR/a = . 01 , dR/a = . 03) 

QFE Quadratic (F1ugge Theory) Eccentric Ring , QFS : Quadratic (F1ugge Theory) Symmetric Ring 

Radius-to-thickness ratio a/h 

radius ratio 50 100 150 200 250 

L/a I n=1 n=2 n = 1 n=2 n=1 n=2 n=1 n=2 n·= 1 n=2 n=1 

10 QFE 2.4505 1.8217. 2.4431 1. 2534 2.4358 1.1535 2.4287 1. 1452 2.4218 1.1643 2.4145 
QFS 2.4507 1.7560 2.4434 1.1288 2.4363 . 9800 2.4292 .9310 2.4222 .9146 2.4152 

15 QFE 1. 0971 1. 6465 1. 0949 • 9765 I. 0927 • 8253 1. 0905 .7916 1. 0883 • 7958 1.0862 
QFS I. 0972 1. 5988 I. 0950 • 8725 1.0928 .6667 1.0907 .5879 1. 0885 .5563 1.0864 

20 QFE . 6188 1. 6039 .6179 • 8954 .6169 .7123 .6160 .6542 .6151 • 6391 .6142 
QFS . 6189 1.5684 .6179 • 8169 . 6170 . 5891 • 6161 .4937 . 6152 .4505 . 6143 

25 QFE .3966 1. 5860 .3961 . 8559 .3956 .6488 .3951 .5685 .3947 .5338 .3942 
QFS .3966 1. 5590 . 3961 .7989 .3956 .5614 . 3952 .4569 . 3947 .4057 .3942 

30 QFE . 2756 1. 5756 . 2753 • 8302 .2751 . 6047 . 2748 .5068 .2745 .4567 . 2742 
QFS .2756 1.5552 . 2753 .7910 . 2751 .5482 .2748 .4378 . 2745 .3806 • 2742 . 

. 8l23 35 QFE .2026 1.5684 . 2024- . 2022 .5743 • 2021 .4646 . 2019 .4048 .2017 
QFS .2026 1. 5533 . 2024 • 7868 . 2022 .. 5405 .2021 . 4256 .2019 .3635 .2017 

40 QFE .1552 1. 5632 .1550 .8000 .1549 .5545 .1548 . 4377 .1547 .3718 .1546 
QFS .1552 l. 5523 .1550 .7842 .1549 .5352 .1548 .4168 .1547 .3505 .1546 

45 QFE .1226 1.5595 .1225 .7920 .1225 .5419 .1224 .4209 .1223 .3512 .1222 
QFS .1226 1. 5516 .1225 • 7824 .1225 .5312 .1224 . 4099 .. 1223 .3403 .1222 

50 QFE • 0993 1. 5569 . 0993 .7868 . 0992 .5340 .0992 .4103 ·. 0991 .3382 .0990 
QFS .0993 1. 5512 . 0993 . 7810 • 0992 .5281 .0992 . 4045 . 0991 .3326 .0990 

300 

n=2 

L 1931 
• 9115 

• 8142 
.5457 

.6407 

.4319 

.5183 

.3803 

.4287 

.3494 

.3688 

.3272 

.3308 

.3099 

.3069 

.2964 

.2917 

.2863 



Length 
-to-

TABLE 6. FREQUENCY PARAMEI'ER A! (x 10
2
) FOR CLAMPED-RING STIFFENED SHELLS 

RING II (bR/a = .1 , dR/a = . 3) 

SFE : Sextic (Flugge Theory) Eccentric Ring , SFS : Sextic (Flugge Theory) Symmetric Ring 

Radius -to -thickness ratio a/h 

radius ratio 50 100 150 200 250 

L/a n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2 n·= 1 n=2 

10 
SFE 1. 7376 2. 9001 1. 4900 2.5847 1. 3210 2.5446 1. 1979 2.5421 1.1035 2.5471 
SFS 1. 7824 3.0667 1. 5486 2. 7915 1. 3833 2.7549 1. 2603 2.7478 1.1647 2.7467 

15 
SFE • 8365 1. 9282 .7457 1. 3741 . 6766 1.2531 . 6228 1. 2133 .5798 1.1978 
SFS . 8513 1.9664 . 7681 1. 4384 • 7024 1.3271 . 6501 1.2899 .6075 1. 2744 

20 
SFE • 4888 1. 6872 .4466 1. 0098 . 4119 .8290 .3836 . 7581 .3601 . 7247 
SFS .4952 1.6986 .4573 1. 0341 . 4250 • 8613 .3980 .7945 .3752 . 7630 

25 
SFE .3197 1.6110 .2971 • 8807 .2774 .6639 .2607 .5700 .2464 .5218 
SFS .3230 1. 6152 .3029 • 8909 .2849 .6762 .2692 .5889 .2556 .5429 

30 
SFE .2251 1.5815 • 2118 • 8285 .1996 .5927 .1889 . 4844 .1796 • 4255 

·SFS .2270 1. 5833 .2153 • 8333 • 2043 .6004 .1944 .4946 .1857 .4376 . 
35 SFE .1671 1. 5681 . 1586 • 8048 .1506 .5593 .1434 .4425 .1370 .n6.8 

SFS .1683 1. 5689 .1609 . 8072 .1537 .5634 .1471 .4483 .1411 .3838 

40 SFE .1290 1.5612 .1232 .7929 .1177 .5422 .1126 .4207 .1080 .3507 
SFS .1298 1.5617 .1248 .7942 .1199 .5445 .1153 :4241 .1110 .3549 

45 SFE .1026 1.5573 .0986 • 7864 .0946 .5328 • 0909 • .4086 . 0874 .3359 
SFS .1032 1. 5576 . 0997 .7872 .0961 .5342 • 0928 .4106 .• 0897 .3386 

50 
SFE . 0837 1.5550 • 0807 • 7826 .0777 .5274 .0749 • 4015 • 0723 .3273 
SFS . 0841 1.5552 . 0815 • 7831 . . 0789 '5283 • 0764 . 4028 • 0740 .3290 

300 

n = 1 n=2 

1. 0282 2.5531 
1. 0879 2.7469 

.5445 1.1916 

.5722 1. 4670 

.3403 • 7072 

.3558 . 7462 

• 23·h .4945 
.2437 .5168 

.1715 .3903 

.1779 • 4037 

.1313 .3359 

.1357 .3441 

.1039 • 3061 

.1071 .3112 

.• 0843 • 28>0 
• 0868 .2923 

• 0699 .2788 
• 0718 .2810 



TABLE 7. FREQUENCY PARAMETER A! (x 10
2

) FOR CLAMPED-RING STIFFENED SHELLS 

RING II (hR/a = .1, dR/a = .3) 

QFE :Quadratic (Flugge Theory) Eccentric Ring , QFS: Quadratic (Fiugge Theory) Symmetric Ring 

Length Radius -to -thickness ratio a/h 
-to-

radius ratio 50 100 150 200 250 

L/a n=1 n=2 n=1 n=2 n=1 n=2 n = 1 n=2 n=1 n=2 

10 QFE 1. 8874 3.7780 1. 5895 3. 5005 1. 3987 3. 4371 1. 2632 3.4068 1.1607 3.3861 
QFS 1. 9447 3. 7710 1. 6573 3.5094 1.4681 3.4568 1. 3315 3.4357 1. 2271 3.4236 

15 
QFE .9082 2.1963 .7913 1. 7177 . 7102 1. 6124 .6497 1.5729 .6024 1.5534 
QFS .9291 2.1963 . 8186 1. 7193 . 7399 1.6153 • 6801 1. 5770 .6328 1. 5586 

20 
QFE .5336 1. 7866 .4757 1.1629 • 4331 1. 0056 . 4003 .9442 .3739 .9142 
QFS .5635 1. 7869 • 4895 1.1635 .4488 1. 0064 . 4168 .9453 .3908 . 9155 

25 
QFE .3511 1.6543 .3181 .9548 .2929 • 7574 • 2729 .6747 .. 2564 .6327 
QFS .3565 1.6546 .3261 .9550 .3023 • 7577 .2830 .6751 .2670 .6332 

30 
.QFE .2485 1. 6030 .2280 • 8673 .2117 • 6447 .1985 .5457 .1875 .4932 
QFS .2518 1.6032 .2330 .8674 .2178 .6448 .2052 .5459 .1946 .4934 

35 
QFE .1851 1. 5799 .1715 • 8266 .1604 .5896 .. 1512 . 4797 .1435 . 4192 .. 
QFS .1873 1. 5800 • 8267 .1646 .5897 .1559 .4798 .1485 . 4193 

·\ 

.1749 

40 
QFE .1433 1. 5683 .1337 .8060 .1258 .5608 .1192 ,4440 .1135 .3780 
QFS .1448 1. 5683 .1361 • 8060 .1288 .5608 .1226 .4441 .1172 .3780 

45 
QFE .1142 1.5618 .1072 • 7947 .1014 .5447 . 0964 . . 4238 .• 0921 .3540 
QFS .1152 1. 5619 .1090 • 7947 .1036 .5448 . 0990 .4238 . 0949 .3541 

so 
QFE . 0931 1. 5580 • 0879 .7881 . 0835 .5353 • 0797 .4117 .0763 .3396 
QFS . 0939 1.5580 .0892 . 7881 -0852 :s354 • 0816 .4117 • 0785 .3396 

300 

n=1 n=2 

1. 0797 3.3693 
1.1439 3. 4150 

.5641 1.5420 

.5941 1. 5483 

.3521 .8973 

.3691 .8989 

. 2426 .6087 

.2534 .6092 

.1781 .4622 

.1855 .4624 

.1368 .3823 

.1420 .3824 

.1085 .3367 

.1124 .3368 

·. 0883 .3097 
. 0913 .3097 

.0733 .2931 

. 0757 .2931 



D ..., 
p 

TABLE 8. FREQUENCY PARAMETER 6..! (x 10
2

) FOR CLAJ.\1PED-RING STIFFENED SHELLS 

RING I (bR/a= .01, dR/a= .03), RING II (bR/a= .1, dR/a= .3) 

.Q.TRI: Quadratic (Timoshenko-Love Theory) Symmetric Ring I. QTRII :Quadratic (Timoshenko-Love Theorv) Symmetric Ring II 

Length Radius-to-thickness ratio a/h 
-to-

radius ratio 50 100 150 200 250 300 

L/a n = 1 n=2 n=1 n=2 n = 1 n=2 n=1 n=2 n=1 I n=2 n = 1 n=2 

10 QTRI 2. 4506 1.7559 2.4434 1.1288 2.4362 .9800 2.4292 .9310 2.4222 . 9146 2.4152 . 9115 
QTRII 1. 9448 3. 7714* 1. 6574 3. 5108* 1. 4682 3.4589* 1. 3316 3.4386* 1. 2272 3.4273* 1.1439 3. 4)94* 

15 
QTRI 1. 0971 1.5987 1. 0950 • 8725 1. 0928 .6667 1. 0907 .5879 1.0885 • 5563 1. 0864 .5457 
QTRII . 9290 2. 1963 • 8186 1. 7194 . 7399 1. 6156 . 6801 1. 5774* . 6328 1. 5591 * . 5941 1. 5489* 

20 QTRI . 6188 1.5684 .6179 .8169 .6170 .5891 . 6161 .4937 • 6152 • 4505 • 6143 • 4319 
QTRII .5435 1.7869 . 4895 1.1635 . 4488 1.0065 • 4168 • 9454 .3908 • 9156 .369~ • 8990* 

25 QTRI . 3966 1.5590 .3961 • 7989 .3956 .5614 .3952 . 4569 .• 3947 .4057 .3942 .3803 
QTRII .3565 1.6546 • 3261 • 9551 .3023 • 7577 . 2830 . 6751 .2670 .6332 .2534 .6093 

30 .QTRI .2756 1.5552 .2753 .7910 • 2751 .5482 .2748 . 4378 .2745 .3806 .2742 .3494 
QTRII .2518 1.6032 .2330 . 8674 .2178 .6448 .2052 .5459 .1946 .4934 .1854 .4624 .. 

35 QTRI . 2026 1. 5533 .2024 .7868 . 2022 .5405 • 2021 .4256 .2019 .3645 • 2017 .3272 
QTRII .1873 1. 5800 .1749 • 8267 .1646 .5897 .1559 .4798 .1485 .4193 .1420 .3824 

40 
QTRI .1552 1.5523 .1550 . 7842 .1549 .5352 .1548 ,4168 .1547 .3505 .1546 .3099 
QTRII .1448 1. 5683 .1361 . 8060 . .1288 .5608 .1226 .4441 .1172 .3780 .1124 .3368 

45 QTRI . 1226 1. 5516 . .1225 • 7824 .1225 .5312 .1224 . 4099 .• 1223 .3403 ·.1222 • 2964 
QTRII .1152 1. 5619 .1090 . 7947 .1036 .5448 .0990 .4238 . 0949 .3541 . 0913 .3097 

50 
QTRI • 0993 1.5512 .0993 . 7810 .0992 .5281 . 0992 .4045 • 0991 .3326 . 0990 .2863 
QTRII . 0939 1.5580 .0892 ; 7881 .0852 ;5354 . 0816 .4117 .0785 .3396 • 0757 .2931 

*Though the sway frequency is minimum, frequency for n = 3 is lower than n = 2. 



TABLE 9. FREQUENCY PARAMETER b.! (x 10
2

) FOR CLAMPED-SIMPLY SUPPORTED SHELLS 

Cubic Frequency Equation (F1tigge Theory) 

Length Radius-to-thickness ratio a/h 
-to-

radius ratio 50 100 150 200 250 300 

L/a n = 1 n=2 n = 1 n=2 n = 1 n=2 n=1 n=2 n=1 n=2 n·= 1 n=2 

10 7.8449 3.2440 7.8445 2.9275 7.8445 2.8650 7.8444 2.8428 7.8444 2.8325 7.8444 2.8269 

15 3.7910 2. 0300 .. 3. 7908 1.5011 3.7908 1. 3812 3.7908 1. 3367 3.7908 1. 3156 3.7908 1.3040 

20 2. 2050 1. 7243 2. 2049 1. 0659 2.2049 .8922 2.2049 • 8228 2. 2049 • 7886 2.2049 .7694 
.-

25 1. 4345 1. 6271 1. 4345 • 9077 1. 4345 .6973 1. 4345 .6067 1. 4345 .5598 1. 4345 .5326 

30 1. 0054 1. 5894 1. 0054 .8426 1. 0053 .6113 1.0053 .5059 1. 0053 • 4489 1. 0053 .4146 

35 • 7428 1.5724 • 7428. • 8128 .7428 .5701 • 7428 • 4556 • 7428 •. 3915 . 7428 .3517 

40 .5708 1. 5638 .5708 • 7977 .5708 .5487 .5708 . 4289 .5708 .3602 .5708 .3166 

45 .4522 1. 5589 .4522 • 7894 .4522 .5371 .4522 .4140 .4522 • 3423 .4522 .2961 

50 .3669 1.5561 .3669 • 7846 .3669 .5303 .36691 • 4051 .3669 .3316 .3669 .2838 



M. I. 
OF Ril'JG 

IR 

0.0 

.96 

1. 91 

3. 83 

7.622 

15.316 

6750.00 

TAilLE 10 

(Shcll·Gcometry is same as in Table 1) 

Clamped-Simply supported Shell 

t.! (x 1o2) = .51851219 

w /211 = 2. 91 Hertzs 

Clamped-Ring Stiffened Shell 
• 

Effect of Ring Stiffness on the Shell with various mode shapes 

m=l,n=2 

SEXTIC QUADRATIC RUADR.ATIC 

(36) * (39) * (I.l5) 

t.~ J_ 
!o/211 t;2 w/211 ll/2 11 

X 102 
(HERTZ) X 102 

(HERTZ) (HERTZ) 

• 41101781 2.3059 .41328963 2.3186 2.325 

. 48566582 2.72<17 .50009295 2.8056 2. 785 

• 48858661 2. 7411 .52660181 2.9544 2.944 

.49042674 2.7514 .54246953 3.0434 3.040 

. 49150295 2.7574 .55021507 3.0868 3.088 

' . 49228575 2.7618 • 55403181 3.1082 3.120 

.49402877 2.7716 .55760417 3.1283 ...... 
. . . .., .. . ... . . . ... . .. .. . . .. 3.135 

* REFER TO NUM!lER OF EQUATION il'J THE TEXT. 

A.n. 
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TABLE 11. Comparison of frequency parameter l:l.! (x 102) given by exact Forsberg Analysis with present theory 

CLAMPED-FREE SHELL 

a/h= L/a = 9 L/a = 12 250 

m = 1 m= 2 m = 3 m = 1 m= 2 m= 3 
n 

Present Forsberg Present Forsberg Present Forsberg Present Forsberg Present Forsberg Present Forsberg 

0 14. 1715 37.4263 57.7934 10.6286 28.0697 43.3451 

1 2.7001 2.6660 14.2590 12.4200 31.4284 1. 5465 1. 5530 8.6181 7.9980 20.5465 

2 .9382 .9510 5.2647 5.1780 13.7674 .5886 .5971 3.0220 3.0660 8.1987: 
I 

·< 

3 . 9761 2.6969 2.7510 7.0861 . 9105 . 9101 1. 6933 1. 7400 4.1538 

4 1. 7034 2.2632 2.2950 4.5125 1. 6891 1. 8944 1. 9080 2.9334 

5 2. 7281 2.9200 2.9260 3.9137 2. 7223 2.6936 2.7910 3. 1735 

6 3.9942 4.0849 4.0760 4.5137 3. 9905 4.0286 4.0790 4.1867 

7 5.4938 5. 5530 5.7680 5.4906 5.5187 5.5100 5.6034 

8 7.2251 7.2730 7.4051 7.2221 7.2467 7.3042 

9 9.1877 9.2310 9. 3283 9.1848 9.2080 9.2543 

10 11.3814 d. 4226 11.5039 11.3785 11.4011 11.4423 



TABLE 12. Comparison of frequency parameter A! (x 102) given by exact Forsberg Analysis with present theory 

CLAMPED-FREE SHELL 

a/h= 
L/a = 9 L/a = 12 

600 

m= 1 m= 2 m= 3 m = 1 m= 2 m= 3 
n 

Present Forsberg Preserit Forsberg Present Forsberg Present Forsberg Present Forsberg Present Forsberg 

0 14.1715 37.4262 57.7933 10.6286 28.0697 43.3450 

1 2.7001 2.6650 14.2589 12.2400 31.4283 1. 5465 1.5520 8.6180 20.5465 

2 . 8937 .9074 5.2556 5.1060 13.7629 .5157 .5258 3.0074 3.0170 8.1925 ' . 

3 . 5571 .5635 2.5658 2.5950 7.0315 .4358 .4384 1. 4839 1. 5240 4. 0675 

4 .7428 . 7434 1. 6353 1.6720 4.2132 • 7145 • 7143 1. 0915 1.1150 2.4732 

5 1.1455 1. 1320 1. 4938 1. 5130 2. 9581 1.1371 1. 2623 1. 2700 1. 9259 1. 9300 

6 1. 6672 1. 8068 1. 8130 2.5586 1. 6636 1. 7129 1. 7140 2.0016 

7 2.2903 2.3566 2.3560 2.7247 2.2881 2.3132 2.4448 . 
8 3.0110 3.0498 3.0460 3.2397 3.0094 3.0257 3.0940 

9 3. 8285 3. 8558 3.8500 3.9648 3. 8271 3.8397 3. 8811 

10 4.7424 4.7645 4.8352 4. 7411 4.7521 4. 7811 



TABLE 13. Comparison of frequency parameter o.! (x 10
2

) given by exact Forsberg Analysis with present theory 

CR: Clamped-ring stiffened shell (Ring: bR/a = .1, dR/a = . 3) ; CS: Clamped-Simply supported shell 
(Sextic) (Cubic) 

m= 1 a/h = 250 a/h = 600 

L/a = 9 L/a = 12 L/a = 9 L/a = 12 
n 

Present Forsberg Present Present Forsberg Present Present Forsberg Present Present Forsberg Present. 
CR CR CS CR CR CS CR CR CS CR CR CS 

.o 
1 1.3707 1. 3080 9.3866 0.8731 0.8406 5.6932 0.9554 0.9063 9. 3866 0.6217 0.5930 5.6932 

2 3.3519 3.6980 3.4596 1. 9419 2.2180 2.0022 3.3425 3.7540 3.4469 1. 9374 2.2640 1. 9811 
0 

3 1. 8573 2.2390 1. 8938 1. 2780 1.5010 1. 2974 1. 6809 2.2320 1. 7099 1. 0021 1.3550 1. 0163 

4 1.9440 2.1640 1.9574 1. 7726 1. 7783 1.1871 1. 5890 1. 2001 0. 8867 1.036 0.8925 

5 2.8031 2.8103 2.7496 2.7525 1. 2954 1. 4960 1. 3031 1.1883 1. 2650 1.1914 

6 4.0259 4.0326 4.0037 4.0065 1. 7204 1. 7273 1. 6817 1. 6846 

7 5.5109 5.5187 5.4991 5. 5024 2.3105 2.3184 2. 2954 2.2987 

8 7.2355 7.2452 7.2284 7. 2324 3.0177 3.0274 3.0121 3.0162 

9 9.1938 9.2058 9.1894 9.1945 3.8280 3.8400 3.8273 3. 8324 



¥" 
Nx 

FlG.1 

z ,. z 

COORDINATE SYSTEM A!>ID SHELL 
ELEMENT. 

A.76. 



n= 2 

CIRCUMFERENTIAL 

- --... _____ _ 
- -·-- -+--------.... 

...........:: -­
m=1 

, __ .,... 

----1--

m=2 

SIMPLY SUPPORTED 

-
_ .. --

----
CLNilPED - FREE 

-------

------m= 2 

AXIAL NODAL PATTERN 

t:'IG,2. 



u 
L 

~V 
w 

,. ..... ----------- ... ,.,. ', 

FIG.3 

CLAtv'lPED AT ~'\SE 

A 78. 

' 

I 
~.---h 

I 

Ring Detail 



"' ... 

1 

.5 

.2 

... <1 .1 
Cl: 
w ... 
w 
~ .05 
c:( 

" ~ 
.)o 

u 
2 .02 
w 
:l 
0 
w 
0: 
1&. .0 1 

.005 

.002 

' 

CI.Ar,1PED-F!<EE SHELL 

Cubic Frequency Equation (32> 

Fliiggo Theory_ 

. mr.'-!.·2---~--~------,~----+---..,A.---~·.,...,_--....,.:~o·-. . 5 1 2 5 10 20 ... 
LENGTH TO RADIUS RATIO. L/a • 

FIG:4 F R E Q U E I'J C V E l'J V E L 0 P E · • · · · 
' ... ·~ ' 

(4.79. 



N ... 
'""4 

c: 
11.1 ,_ 
LlJ 

:a 
et 
0! 
cl: 
D. 

> 
l) 
2 
LlJ 
::;) 

0 
LlJ 
c:: 
I!. 

·,• 

2 

.. ·· 

1 

. 5 

• 2 

. 1 

.o 5 

.02. CLAMPED-FR:!E SHELL 

m:1 ,'\):,3 ,a/h=100 

.01 • CUDIC FREQUENCY I:QUATIONC32> 

FIUgge Theory 

.005 

.ooz 

. .J;,..----....i~' . '-----1 
.;! .5 1 2 5 10 

LENGTU TO RADIUS RATIO; L/a 

--

\ 
~ \--~~ 

20 50 

FIG:5 FREQUE!IJCY ErJVELOPE. 
- ' ., :,. • 0 ,, • ~ " e ' '\ ' • 

~ :- .· ' .. ' . I '' •" • : 

• ' •• -. J 

A.so. 



N .. 
..... 4 

.5 

c~ .1 
ll.l ... 
Ul 
~ 

~-05 
<l; 
0. 

>-
0 

~ .02 
:> 
0 
llJ 
n:: 
1!...01 

• 

-005. 

-002 

'· \ 
\ •• 

\ 
\ 
\ 
' \ 

\ 
\ 
\ 
\ 

\ 

\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 

'. • . 
\ 

\ 
\ 

CLAMP EO- f-REE 

m=1,~:.3 

SHELL 
\ 

FREQUENCY EQUATIOI'JS 

--Cubic(32) 

--·---·-Quadratic (40) 

Fluuge Theory 

\ 
\ 
\ . 
• 

\ 
\ 
'. 

\ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ 
\ 
\ 

\ 
\ 
\ 

\ ., 
!.. 

.001t'~------~------~~----~~------~------~~~----~~~----~·2~ · .f .5 1 2 5 '10 2U 50 
LENGTH-TO- RADIUS RATIO· L/a 

' 
FIG: 6 Frequency Curves for sway mode n=1 

~. . ' ~ . 
. ~ ' : 

A.Sl. 



C\1 ... 
... <l 

4 

2 

1 

. 5 

.2 

ll! .1 
UJ ... 
Ul 

• 

~ 
<t .o 5 • 
ll! 

it 

. 005 

• \ 
' \ 

' • •• n~24-
'· '· '· .. , 

' :' 1'"' 
'· 0 

a/h=500 '·,., ., 
:':"\ 

alh=5000,.....' \ 
'· 
'· 13 '· .... _ 

'" CLAMPED-FREI:! SHELL '•., 
10 

.. 

., 
m=1 ,'\:1=.3 ·:-,. 

·,. 9 
S '· FREQUEr·JCY EQUATJQj'J .._ 

--Cubicl32) ···~~ . 
•••... Quudratic(lO) •.,7 

.002· . 

,001 <MAW 

:z 

., 
Flugge Theory :::-...,..6 ., 

\ 

·,~ 

'· '· ' 

L/a 

FIG:7· Frequency Envelope for Two Different.Mode Shapes 

.:·_· . --- ._ ..... ,- ... . ~ 

1\,82. 



N 
0 

~ 
Ill ... 
UJ 

50 

.02. 

. 01 
0 1 

LJa :100 

-· 

CLA.MPEO-FREC: SHELL 

m=1 , ~=·3 ,<l/h:100 

FREQUENCY EQUATIONS 

----Cubic C32> 
-- •• - Ouadrat icC40> 

FIUgge Theory 

. · .. -·- ·- -·· .. --

·I 
I 
I • .. 

...... 

-'• ._a,.~~ .z.!. -~J~\m, t ?'..:\'\.: f.; 
2 3 4 5 6 7 u 9 10 

CIRCUMFJ::RENTIAL WAVE NUMOER. n 
' 

'I. 

1 1 
~ aw:e::~ 

1 2 13 

FIG: 8 Frequency Distribution for Two OiHcrent Modes for Lla= 1, 10,100 

. . - .. ' •· ' ' ·' ·,. . . '1 c' ,, ,•, • ~: ; • • '••,. .--' ' 

A.s3. 



.... 
N 

:1: 

900 

800 

600 

.... 500 
>-
0 
c 
w 
;, 
r:r 
l!l '100 .. 

11. 

300. 

200 

100 

.. 

·Shell Geom~try 

L:24.G25in, a:9.!338in, h::::.0255in 

Theory 

Experimant 

~ m:1 
c m:2 
A m:3 

ll,,liCl&.,...,.,.==.,., ... ~ ..... .,.o~la•~·-···-------~~·---w~-.'L-,._,.__wa-= ~iw""" .... ~* .. "'"'""ww.--, .... -=zr.:o l.-

FIG: 9 

2 4 (j 8 10 12 14 

Number Of Circumferential Waves. n 
• 

Experimental and Analytical Frequencies of Clamped- Free 

Cylindrical Shell 

A.84. 

16 



, . 

. 36 Geometries: 

CYL 1 , L~42 in, a:14 in , h = .007 in 

.2 8 -

.24 

.o ~Ltc ... ~ q ~tUtU Lll-\ e• U 't'J I ... &.... 'W'mr.l•4tile 

6 8 10 12 14 16 

NUMBER OF CIRCUI\'IFERE~JTIAL WAVES. n 
• 

FIG.10 Experimental and Analytical Frequencies of 

Clamped- Free Shell 

ll.ss. 

x\ 
18 



~ 
.... ~ 

2 

1 

.5 

-2 

D! .1 
LLI .. 
Ill 
:E 
cl: ·0 5 
r~ 

cl: 
0. 

> 
0 
~ .02 
:J 
0 
w 
D! 
u. 

-01 

.. · 

• 

m: 1 , 

_cLAMPED-FREE SHELL 

Cubic ( 32) 
.005 

•••• CLAMPED·mrJG STIFFEfJ ED SHELt 1 

Quadratric (39) 

.oo 

• 0 01~· __ ...,.,,...: 
·2 ·5 

.FIG:11 Effect of a Particular Ring at the Top 

;., .• _. J ., ·''. ' 



C\1 ... .... 4 

0:: 
111 ... 
llJ 

4 

2 

1 

. 5 

.2 

. 1 

~ '.os 
n: 
<l: 
Q, 

> u 
z .o 2: 
llJ 
::> 
0 
111 
a: 
u. .o1 • 

·005-

.oo~ 

' ' 

alh=5000 

·• .. 16 
·-~ ... ~ 

.. -.. 

"·.13 
·····.~2 

''-11 
CLAM PED-RirJG STit=FErJ::D SHEL~\\ 

•,10 
m= 1 ,• '-) = .3 ··~9 

Quadratic Equation C39) 

RI~JG: bR/a:.01; dR/a:.03 

PR= 11S 

j1 = 0 
R 

.. 

.001~---t-
·2 ·5 -i --~--- da~ ;J~'~· --.-,z~'o-· --~~k_1'Unn . = 

LENGTH-TO -RADIUS RATIO. L/a 
• 

FJG:12 Effect of Ring Mass on Frequency Envelope 
. . ,· .·· 11-! _,_ 

• • ' J ~- • - •. 

(!t,87. 



' . 
. 2 

N .. 
.... <1 

0: 
UJ ... 
Ill 
~ 
et 
0: 

~ 
> 
0 
0! 
Lll 
:J 
() 
Lll 
n: 

1 

.5 

.2 

.1 

.05 

.02. 

u;. .01 

m=1 ,'il= ,3 

.005. CLAMPED-Rii'JG STIFFEtJED SHELL 

.002 

'"";···~----;':-~----~· - !.-~-' ~§·-i·'~-~ .r .!) 1 2 !) 10 20 
LENGTH-TO-RADIUS RATIO • L/a 

• 
FIG:13 Influence of I'Hng Stiffness on Frequency Spectrum 

· • .,, L ' 0:-, .; '.,. ,; '. -: •· ~. -:: . •·:.,. . :., ',,. 

~.88. 



.2 

L/a:100 

.1 

.os 

CLAMPF.D·RING STII=FEtJED SI-!ELL 

m= 1 ,\) = .3 , a/h:100 

1'11EQUErJCY EQUATIOfJS 

--Ouadrntic (40) 

••••• Sextic <36> 

. ' 

"011o~---~1--~2;-----~3-----~4:-----;~.--~6-----l7~-----~~---~9~-~10 
CIRCU!\H'ER:::tJTIAL WAVE NUMBER • n 

• 
I'IG:14 Frequency Spectrum due to a Particulnr Ring for Two Modo Shapes 

• • ,. • • ' •• ~ ~ # .-..... 

{-).89. 



-\"' 
<J 

0:: w 
f­
w 
2 
~ 
& 
>­u 
z 
~ 
@ 
0:: 
lL 

·5 

\ 

. \ 
\ \\ 

·2 \ ,, . 
\ \'· .• 

\ \· 
\ 

\ \' 
\ \\_/Tm=2 

·~/ 
-1 ,\ v·~ 

\ 
. . 
I ' 

\ 
\ \\ 

·05 • 

' ~\ 

\ " 
\ • 

-02 

·01 

·005 

Analyses ( a;h = 250) 

Forsberg ---- L/
0 

= g 
Present ........... . 

Forsberg- L/a = 12 
Present -------

-1 al-

l 
~--- -

L 

''1'1'1'1 

0 1 2 3 4 56 7 8 9 10 
CIRCUMFERENTIAL WAVE NUMBER n 

Figure 1s 

A9o. 



·5 Analyses (a/h = 600) 
'· 

Forsberg --- Lfa =9 
Present ····· .... ··-

Forsberg-
Lj

0 
=12 

·2 Present ------

·1 

~IN \ 
<J 

·05 \ 
0:: \ w 
1-

I \ 

I \ w I 

' \ L: ' 

\ ' 
~ \ -la!-• 
~ \ \ 

>- ·02 \ \ 
u \ '· z ' ....... ~ 
w 

\ 
~- --

:::> 
@ 
0:: ·01 U-

L 

·005 

F'/'/ I 'I 

0 1 2 3 4 5 6 7 8 9 10 
CIRCUMFERENTIAL _WAVE NUMBER n 

Figure 16 

tl ,91. 



·5 

·2 

·1 

·f'-1 

<l 

0:: 

\ w 
·05 1-

w 
~ \ <( 
0:: 

r1. 

>-u z ·02 w 
:J 

@ 
0:: 
LL 

·01 

·005 

0 1 

d 

~ 
I \ 

I D' 

"f 
I 
1/o: 12 

f o/h= 250 

[ I 

. ~~----.~~------
Analyses (a;h = 250) 

I Forsberg -·--

. resent dddd Quad L I -9 
· oooo Sextic la-

Forsberg --
Present rf rfr:tr:f Quad LJ = 1 

o o oo Sextic /a 

I 
L. - .. ... ---- ~ - :1 

I 

I 
2 

1'/trt' 

2 3 4 5 6 7 8 

CIRCUMFERENTIAL WAVE NUMBER n 

Figure 17 

?1.92. 

9 10 

l 
1 
L 



.5 

·2 

·1 

~1"1 

<l 
n:: 
w 
1-
w 
2 
<{ 
n:: ·02 
cl:. 

>-u z 
w 
:J ·01 @ 
n:: 
lL 

• 
·005 

0 1 

I~ 
I \ 

I \ 

[J 

2 3 

'· 

Fo 

1 
~ L~= 9 

I 
I I '1'1' I 

a;{; =600 

a I 
tr I 

I ,...A_n_a-ly_s_es._,.<JI..,..h_=_6_0_0 __ -; 

Forsberg --- LP 9 

4 

Present d6(Quad) oo(Sextic) 

Forsberg-
L/a12 

Present 11 o'(Quad) oa(Sextic) 

5 6 7 8 9 
CIRCUMFERENTIAL WAVE NUMBER n 

Figure 1s. 

(\ ,93. 

or-! 

1: 

L 

. I 

10 



.. 

· WIND-Th."fDUCED OSCILLATIONS OF CIRCULAR CYLINDRICAL SHELLS 

PART B 

AN EXPERIMENTAL INVESTIGATION 



ABSTRACT 

Present study discusses the wind induced oscillations of tall chimneys 

with the major concern being to study the vortex excited motion of tall 

circular cylindrical shell structures in either the swaying (bending) or the 

ovalling (breating) modes .. The possible relationships between these modal 

natural frequencies and the frequency spectrum of the aerodynamic input 

(in this case the frequency of shedding of a pair of vortices) has been discussed. 

A large number of model tests have been performed in the wind tunnel 

at Loughborough University of Technology, on the shells clamped at the base 

and free at the top. Model shells of different lengths and varying thickness 

and diameter have been taken. Also a mechanical shaker has been used as 

an excitation device. Measured frequencies are compared with those predicted 

by the relevant structural vibration analyses given in Part A of this study. In 

some cases the effect of a stiffening ring at the free end is assessed. An 

attempt has also been made to determine experimentally the structural 

damping characteristics for various modes of vibration in some cases. Also 

Fablon has been used to increase the structural damping, with some success, 

in a few cases. 
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1. INTRODUCTION .. 
The need to take winds into account in the design of civil engineering 

structures has long been recognised. But in the past decade a number of 

events in Britain have emphasised the destructive power of the wind. In 

February 1962 disastrous gales in Yorkshire caused widespread structural 

damage, particularly in the Sheffield area where nearly two thirds of the 

total dwellings were affected, some being damaged beyond repair. A similar 

catastrophe occurred in January 1968 in Glasgow causing widespread destruction. 

Also a subsequent gale in the Sheffield area in 1966 led to the collapse of 

Ferrybridge Cooling Towers. These have drawn attention to the limitations 

of the current knowledge on wind-induced instabilities. Even for such a 

simple structure as the circular cylindrical shell, the stability criteria are 

not completely defined for all types of wind loading. 

In recent years there has been an increasing awareness of the need to 

allow for the static and dynamic effects of wind on the design of civil 

engineering and aerospace structures and there has been a useful cross­

fertilisation of ideas and information feedback between these branches of 

engineering. This is particularly evident in the number and scope of major 

symposia, references [1, 2, 3] which have attracted meteorologists, 

architects, civil engineers, aerodynamicists and aerospace structural 

engineers. 

The main concern of the present study is that class of dynamic problems 

resulting from excitation due to vortex shedding in case of circular cylindrical 

shell structures. This study was prompted by the following recent full scale 

ovalling experience: 

In 1964 during a typhoon, ovalling os.cillations were observed on a 

150ft high and lOft diameter chimney. The chimney material was mild steel 

of gauge 5/16 in. thick. The nature of the oscillations as recorded on film 

was of an ovalling mode with n = 2 at a frequency of approximately 1. 6 - 2. 4Hz. 

After some time the sole stiffening ring at the free end of the chimney broke 



away from the basic shell whereupon the amplitude of the vibrations 

increased considerably prior to collapse. 

It may be remarked that for a particular structure a study ofwind 

effects requires a prior knowledge of the maximum wind speeds at the 

proposed site for the structure. Since it would be unusual for this precise 

knowledge to be available it is necessary to infer it from meteorological 

records often taken a considerable distance away. The designer must also 

take account of local topography, prevailing wind directions, the variation 

of wind speed with the height, the presence of other adjacent structures etc., 

and most importantly, the degree of turbulence in the wind. 

Because of uncertainties in these various parameters recourse is often 

had to wind-tunnel tests in which these parameters, especially wind profile 

and turbulence, and structural flexibility are all modelled. Some of such 

work is reported in references [1, 2 and 3] 

The present report is a complementary study of that published in 

reference [4] and given in greater detail in Part A. The purpose of this 

study is to report comparisons of experimental frequencies and mode shapes 

with corresponding analytical results of reference [4] for clamped-free and 

clamped ring stiffened circular cylindrical shells. 

The vortex shedding phenomenon and vortex induced oscillations 

are first discussed followed by a brief summary of the analytical procedure 

in [ 4]. · This then is followed by details of the experimental investi-

gations and comparisons of experimental and analytical results. 



2. VORTEX SHEDDING PHENOMENON 

2.1 VORTEX EXCITATION 

The most common cause of oscillations of bluff shaped (e. g. 

cylindrical) bodies in a fluid flow is vortex shedding. A simple idealised 

physical explanation of the excitation due to vortices is as follows (5] [6] 

As a vortex is shed, it induces a circulation round the cylinder 

in the opposite direction to that of the shed vortex, as shown in Figure 1. 

This temporarily increases the velocity on one part of the cylinder and 

decreases it on the other, both by an amount of v 
1

, and consequently a 

difference in the surface pressure on the cylinder is produced acting in a 

direction across that of the flow. As the vortex passes downstream, its 

effect on the cylinder is reduced and the resultant force decreases until 

another vortex is shed, from the other side of the cylinder, and a force is 

produced in the other direction. The cross flow force is therefore of the 

same frequency as that of the shedding of a pair of vortices. 

If the cylinder is flexible and free to oscillate, then large 

amplitude motion may occur across the direction of the flow when the 

frequency of shedding of a pair of vortices (N) is in resonance with its 

natural frequency ( n ). 

2.2 STROUHAL NUMBER vs REYNOLDS NUMBER 

Research into vortex streets behind a circular cylinder dates from 

the late 15th Century. ··m 1878 early experiments by Strouhal led to the 

empirical correlation of the vortex shedding frequency N, the cylinder 

diameter D, and the stream velocity V through the non-dimensional 

Strouhal number 

NO 
V 

(1) 

Many workers have discussed this parameter and its dependence 

on Reynolds number, and it appears that several distinct regions of Reynolds 
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number exist in which different phenomel)a occur. These various regions 

are not separated by clear boundaries but by transition zones which can be 

altered by individual experimental conditions. These regions are shown in 

Figure 2, as symmetric, regular, irregular and supercritical defining the 

nature of the vortex shedding phenomena. 

It is with the irregular (sub-critical) and supercritical Reynolds Number 

range (i.e. ~ >300) that this report is primarily concerned but the inter­

vening transition zone around the critical Reynolds number (2 x 105 < RN < 

2 x 106) will also be discussed. Much of the data available on the aerodynamic 

Strouhal number over the above Reynolds number range is shown in Figure 2. 

2.2.1 SUBCRITICAL REGIME 

In the subcritical Reynolds number region (300 < ~ < 2 x 105) 

the boundary layer is laminar, its separation from the surface is not 

appreciably affected by Reynolds number, and the Stouhal number in equation (1) 

remains at an almost constant value of 0. 2 for an infinite aspect ratio circular 

cylinder. 

Experiments have shown that one consequence of periodic 

vortex shedding has been the existence of a periodic force in a direction 

normal to the wind stream. The frequency of this force when the cylinder is 

stationary is given by a value of SN""' 0. 2 in equation (1) but it appears that 

for an oscillating cylinder there are certain ranges of wind speed for which 

the cylinder oscillations themsevles control the frequency. Thus Parkinson 

has shown (Paper 18 - Ref. 2) that onset of oscillations can occur (if the 

structural damping is sufficiently small) when the Strouhal frequency equals 

the natural frequency of the cylinder and the instability which persists over 

a range of wind speed (which also depends on the structural damping) will 

do so with a frequency dominated by the natural frequency ( n) and~ by the 

Strouhal frequency (N) corresponding to the particular wind speed. 

The assumed 1 to 1 relationship between successive bending oscillations 

at the natural frequency and the vortex shedding is given in Figure 3(a) but 
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Figure 3(b) presents alternatively a 3 to ~·relationship which could result in 

a lower critical wind speed. There is no experimental evidence for this 

known to the author although, as mentioned in (iii) below, higher harmonies 

of the Strouhal frequency are likely to be present which might produce an 

apparently lower critical wind speed than would correspond to a value of 

SN = 0. 2. 

As well as lateral bending oscillations, it is possible, with 

lightly damped plain cantilevers, for significant vibrations to develop in the 

direction of the flow. These have been reported to occur at a frequency 

twice that of the lateral oscillations and this suggests that the periodic forces 

associated with vortex shedding can have a significant streamwise component. 

This may be explained as follows (reference [6]): 

The force on a cylinder may be resolved into a mean (or time 

averaged) drag force in the direction of the flow and a periodically fluctuating 

force which does not act precisely across the direction of the flow but has 

drag and side force components (Figure 1). The fluctuating drag attains a 

maximum value every time an individual vortex is shed and hence has the 

same frequency as the shedding of single vortices. The crossflow force 

attains a maximum in one direction each time a vortex is shed from the other 

side, and therefore has the same frequency as the shedding of a pair of 

vortices, as shown in Figure l(b). Thus the fluctuating drag force has twice 

the frequency of the fluctuating side force. The largest amplitudes in flow 

direction occur when N = ! n 

From the available data for the sub-critical regime it is 

clear that the cylinder response to fluid dynamic forces from vortex shedding 

is not strictly speaking a resonance effect since the cylinder motion alters 

the flow field significantly.· The main conclusions for sub-critical flow are 

summarised in paper 37 of reference [2] • 

(i) cylinder motions increase the circulatory strength of developing 

vortices, 
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(ii) cylinder motions increase the two-dimcnsionality of the .. 
flow field, 

(iii) the dynamic lift contains higher harmonics of the Strouhal 

frequency, 

(iv) striking flow field modulations can occur when the ratio of the 

shell natural frequency to Strmilial frequency is between 0. 8 and 

1. 1 but not close to unity. 

2.2.2 SUPERCRITICAL REGIME 

Unfortunately most practical structures of interest operate 

at Reynolds numbers up to and into the supercritical regime and the data 

available for this region and the transition zone which precedes it have been 

rather inconclusive. 

· According to some research workers they have found a marked 

rise in SN above ~ = 2 x 105 such that a value of SN = 0. 46 occurred at 

~ = 1. 5 x 106 whereas others have shown completely contradictory results 

with values of SN < 0. 2. Typical results are given in Figure 2 taken from 

reference [ 7] where it is asserted that it is questionable whether periodicity 

if-vortex shedding still exists above ~ = 2 x 10
5 

and that only a wide frequency 

band turbulence occurs. The evidence presented in Figure 2 certainly 

indicates no discrete vortex shedding for 2 x 1 o5 
< ~ < 1. 5 x 106 but for 

1. 5 x 10
6 <~ < 3 x 106 one might deduce that there is progressive decrease 

in SN from 0. 46 to 0. 2. This would mean that a structure of bending 

frequency n could experience a corresponding progressive increase in 

V (since V = n D/SN) with V and a continual condition of resonance of 
er er 

increasing severity, due primarily to the consequent increase in dynamic 

pressure. This condition of increasing amplitude with speed and no pronounced 

single critical speed has been quoted elsewhere as evidence for the absence 

of a discrete vortex shedding frequency but from the above argument that is 

not necessarily proven. 

It is of interest that data has been presented by Chen [ 7] 
in Figure 2 for a value of SN " 0. 2 in the supercritical region although he 



proceeds to discount it based on his own .experimental results. 

The results of Fung [8] and Roshko [9] for a rigid 

cylinder have shown no discrete frequency in the broad turbulence spectrum 

for the transition range of Reynolds numbers although each spectrum in this 

range has a peak at a value of SN which decreases in this range from 0.17 to 

0. 05. These values imply a low effective forcing frequency in a broad 

frequency band and if significant vibrations are to occur as a result the 

dynamic pressures must be sufficiently great and the structural damping 

sufficiently low and the possibility referred to earlier might then apply with 

the effective Strouhal frequency lower than the natural frequency (i.e. N = t f2 ). 

Roshko has also shown that a discrete frequency peak can occur for 

~ > 3.5 x 106 corresponding to SN = 0.267. 

It is believed that the probable m a in causes for the dis­

agreements between various research workers are the differences in end 

effects and other three-dimensional effects and the fact that many of the 

cylinders tested have been rigid, 

When the cylinder is not held rigidly but can interact with 

the flow it would appear that the correlation length can increase markedly 

when the phase of the vortex shedding is locked into synchronism along the 

entire cylinder by the cylinder motion itself. 
' ·The results of some recent experiments at N. P, L. 

reference [10] showed that the presence of a free end can have significant 

effects as the flow is entrained over the free end of the cylinder to pass down 

the leeward face thereby causing a thickening of the wake and a consequent 

decrease in the local vortex shedding frequency. This gives a wider spectral 

peak to the overall oscillatory forces. The lower vortex shedding frequency 

yields a value of SN ~ .16. 
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3. VORTEX-INDUCED OSCILLATIONS 

Two types of wind-induced oscillations of chimneys have been 

experienced in practice viz "sway" or cantilever type and "ovalling" (or 

more appropriately "breathing" in case n > 2). These can both be caused 

by periodic shedding of discrete vortices from the shelL 

3.1 SWAYING OSCILLATIONS 

The wind forces on a cylinder may be resolved into a mean drag 

force in the direction of the flow and a periodically fluctuating force which does 

not act precisely across the direction of the flow but has drag and side force 

components (Figure 1). The fluctuating drag attains a maximtun value every 

time an individual vortex is shed and thus has the same frequency as the 

shedding of single vortices. The crossflow force attains a maximum in one 

direction each time a vortex is shed from the other side, and therefore has the 

same frequency as the shedding of a pair of vortices, as shown in the lower 

diagram in figure 1. Thus the fluctuating drag force has twice the periodic 

frequency of the fluctuating side force. Thus the streamwise vibrations are 

clearly caused by the stream -component of the vortex shedding periodic 

force at a frequency twice the lateral component. 

The swaying oscillation of the chimney as a cantilever beam 

occurs primarily in a direction transverse to that of the wind and at the 

natural frequency in bending of the structure, although under certain 

conditions it is possible with lightly damped, plain, cylindrical cantilevers 

for significant vibrations to develop in the direction of flow. Experiments 

have shown that the onset of transverse bending oscillations can occur at a 

wind speed (V) at which the.frequency (N) of the shedding of a pair of 

vortices, as determined by the expression SN = ND/y= • 2 equals the 

natural frequency in bending ( n) of the cantilever i.e. when v~ 5 n D. 

The instability persists for a range of wind speeds dependent on the amount 

of structural damping. The assumed 1 to 1 relationship between successive 
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bending oscillations and vortex shedding is given by Figure 3(a) but it should be 
< 

noted that Figure 3(b) presents a possible alternative whereby there is a 3 to 1 

relationship between the bending and vortex shedding frequencies resulting 

in a lower critical wind speed. 

3.2 OVALLING OSCILLATIONS 

Ovalling oscillations have also been experienced on various 

chimneys as reported by Scruton (Paper 24 of Ref. [1] ); Johns and Allwood 

(Paper 28 of Ref. [3] ). From such results it has been suggested by 

several workers that the ovalling occurs at a wind speed such that a 2 to 1 

relationship exists between the ovalling natural frequency and the vortex 

shedding frequency, see Fig. 4(a). However, this assumption has been 

questioned in paper 28 of Ref. [3] and Fig. 4(b) shows that a 4 to 1 relation­

ship is also possible, if the axes of ovalling do in fact remain orthogonal with 

the wind direction. Figs. 4(c), (d) show that a 1 to 1 or 3 to 1 relationship 

is possible if the axes of ovalling mode are oriented at 45° to the wind 

direction. Thus instead of the previous 2 to 1 relationship Fig. 4 shows a 

possible 1 to 1, 2 to 1, 3 to 1 or 4 to 1 relationship and even higher relation­

ships are possible from the same argument. If r is the value of this critical 

relationship and SN = 0. 2 or 0. 16 the critical wind speed is given by either 

V-= 5 no;r or V= 6 n D/r (2) 

where r = 1, 2, 3, 4, .... , signifying progressively lower critical ovalli.ng 

wind speeds. The lowest actual critical wind speed would depend upon the 

structural damping present and on some parameter such as the ratio of 

aerodynamic and structural stiffness. The results for the full scale chimney 

described in paper 28 of Ref. [3] indicate a value of r = 1 as being most 

likely rather than the value of r = 2 reported earlier. 

Figs. 4(c) and (d) are based on the possibility that the axes of 

ovalling mode are not orthogonal with the wind direction but are aligned with 

the axes of resultant periodic surface pressure distribution which are not 

necessarily orthogonal to the wind. 



Evidence for this latter possibility is given by the fact that 

significant streamwise swaying oscillations are possible at a frequency 

twice that of the lateral oscillations Ref. [6] and by the form of the 

measured pressure distribution shown in Paper 28 of Ref. [3] which is seen 

to have a resultant close to a line 135° from the stagnation line. 

As will be discussed later the tests in the wind tunnel on model 

stacks confirm the possibilty of various critical relationships as well as the 

orientation of the axes of the ovalling from the wind direction. 
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4 • WIND -TUNNEL TESTS 

Wind tunnel studies have been made at Loughborough University of 

Technology on model stacks of different geometries to study the frequency 

pattern critical wind speeds, the critical mode and its orientation to the wind 
' direction to determine the degree of correlation with theoretical predictions. 

4.1 DESCRIPTION OF THE WIND TUNNEL 

The tunnel is of open jet working section 42 in. long by 34 in. wide. 

Its maximum output in the effective range is a wind velocity of 102 ft. per sec. 

at atmospheric pressure. The photograph of the test section can be seen in 

the Figure 5. 

4. 2 CONSTRUCTION OF THE RIG AND MODELS 

A circular steel plate, with provision to take thin shells of diameter 

4. 8 in., Sin., 12in., was made. To ensure stability this was attached to a 

fixed steel base as shown in photograph in Figure 5. Removable thick steel 

rings were made to fix the bottom end of the shells of different diameters. 

To start with, the idea of attempting machining circular cylindrical 

shells from tubular stock material, was conceived. This method had the 

advantage of avoiding any seam discontinuity or joint in the shell. The 

disadvantages that led to the abandonment of this idea,, are that it is restricted 

to relatively small diameters; is very difficult to hold an acceptable tolerance 

on the wall thickness dimensions for thin shells, and above all it is quite 

expensive. 

Subsequently, a successful attempt was made in forming circular 

cylindrical shells from flat rolled sheet stock. The initial sheet stock can 

be obtained with very good tolerance on the thickness dimension. This sheet 

is then rolled into desired form and joined by one or two seams along a 

generatrix of the shell. The size or the diameter of the shell is not restricted 

as in case of machined shell. Complete shell models are relatively inex­

pensive. There are some discontinuity effects at each seam (as discussed 

later) but these are considered to be minimal. Some non-circularity effects 

are also present. Constructional technique is pictured in Fig. 14. 
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4.3 illSTRUMENTATION 

The detection and identification of vibratory modes in thin shells 

has been a problem for experimentalists for years. The contact type sensors 

very frequently influence the modal preference and for mobile probes can 

cause modal rotation. Surface strain measuring techniques have been 

affected by the large amplitude of vibrations which resulted in the breakage 

of the ordinary strain gauges. Special strain gauges were used to detect the 

signal of the oscillating chimney model in the tunnel. 

The electronic equipment used in the test is shown in Figure 5. 

A schematic representation of this type of instrumentation, as used in the 

present investigation is shown in Figure 6. 

The strain gauge output goes through a strain gauge bridge and 

operational amplifier, connected with a d. c. power supply unit (20 volts), 

and goes as input into the wave analyser and a double beam CRO. Wave analyser 

is used to measure the correct frequency in Hertz. 

Since there was no direct scale to measure the wind velocity, 

the equipment shown in Figure 7 was used for this purpose. The pitot­

static tube shown in Figure 5, with its end facing into the wind is connected 

with the manometer. The differential pressure in inches of water is noted 

here and the formula 

where 

l p v2 = p gh sin a 2 A w w 

P A is air density 

V is wind velocity 

p is density of water 
w 

g is acceleration due to gravity 

h is difference in the height of water level in two tubes 
w 

a is angle of inclination of manometer tubes. 

If h is in inches and PA = . 00238 slugs;tt
3

, P = 1. 94 slugs/ft
3

, w w 
g = 32.2 ft/sec2, a = 300 the formula (3) reduces to: 
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V = J 2184 ~ ft/sec (4) 

The control box on the right is provided to switch the wind tunnel 

on and off and to control the wind speed. The maximum wind speed which 

can be achieved in this tunnel is 70 miles/hour or 102ft/sec. 

4. 4 GENERAL TEST PROCEDURE 

The general test procedure was as follows: 

1. The wind speed was slowly increased until a maximum oscillatory 

signal was obtained from a strain gauge. 

2. Since the circumferential mode number n is of the order of 1 to 4 

in the case of tall shells, it was determined by visual observation. 

3. The model frequency was determined by using the wave analyser 

4. Wind speed was determined by noting the differential pressure 

in inches of water and using formula (4) 

5. Wind speed was again increased to find the other modes. 
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5. MODEL EXCITATION BY SHAKER 

5.1 RIG DESCRIPTION 

To start with the experimental rig shown in Figures 8 and 9 was 

designed. It has 3 thick steel rings of diameters 12", 8", 4. 8" fixed to the 

wooden base which can take shells of respective diameters. The motion 

sensing device is mounted on the screwed rod supported by the assembly of 

four vertical rods fitted at the centre of the rig. The circumferential and 

vertical traverse is made possible by the tlvo wheels shown in Figure 9 which 

are handled manually. The model stack is mounted on this rig with its lower 

endclamped onto the base ring with the help of another 3" wide steel ring 

which can be tightened as required to ensure a clamped end. 

5.2 EXCITATION SYSTEM 

The energy input device to the shell was originally an acoustic 

exciter since this type is non-contacting which was thought to have advantage. 

This was later replaced by an electromechanical shaker (seen sitting in 

Figure 9). The shaker was not attached to the shell but allowed to rest 

against it. In this configuration it was found that a more uniform vibration 

pattern was produced with all the antinodes vibrating at equal amplitude. 

The shaker is powered by an oscillator and amplifier. The oscillator is a 

precision decade oscillator (shown in Figure 10, Muirhead-Wigan type D-890-

A Decade Oscillator) which can be varied in 0.1 Hz steps making the detection 

of the resonances more accurate. The amplifier (see Figure 10) used has a 

50 watt output which directly powers the shaker. 

5,3 RESONANCE DETECTION SYSTEM 

In this case several motion sensing devices were tried and 

abandoned for one reason or the other. A few are stated as follows: 

For shell which is not circular the instrumentation system if 

non-contacting will have a variable gap circumferentially which implies 

tedious calibration problems. If the non -circularity is pronounced an 
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instrument to be traversed circumferentially has to have its minimum gap 
' 

where it most closely approaches the shell with a consequent large gap 

elsewhere. Apart from calibration problems -this large gap may cause 

non-linearity and considerable weakening of the signal. 

Thus the capacitance device suffers from its size or its small 

linear range, the pressure transducer responds too well to the acoustic 

excitation system initially used and thereby makes it difficult to distinguish 

the shell vibration modes. The mechanical. (contacting) excitation system 

has removed this last problem and so the pressure transducer was developed 

and used. 

A further alternative scheme considered and tried without success 

was the Doppler radar device, but this also suffered from the shell's non­

circularity and has been abandoned. 

For the present system the equipment used is shown in the 

Figure 10 and a schematic representation of this resonance detection system 

and excitation system is shown in Figure 11. The inside of the shell is scanned 

with a microphone (Acos MIC 43-3) mounted in a perspec holder. This 

microphone was used finally in preference to any other because of its small 

size, cheapness and availability. The inlet to the microphone of signals 

due to the shell wall vibration is via a one inch long, 1/8 inch diameter bore 

steel tube. This tube is to confine to a smaller area of the portion of the 

shell being monitored. The electric output from the microphone is fed to the 

input of a double beam CRO and a wave analyser (see Figure 10) via a screened 

cable. The wave analyser filters the input at the excitation frequency and by 

careful tuning the exact vibration frequency can be determined. The instrument 

is fitted with a pair of output terminals which monitor the filtered signal. 

The output goes through an amplifier to a chart recorder which gives the number 

of circumferential waves when the shell is scanned by travelling the microphone 

circumferentially. 

The attempt has been made to make all tests as definitive and 

sophisticated as possible, e.g. to perfect the instrumentation system so as 



to measure circumferential and axial modes of vibration botl1 under 
"' 

mechanical vibration and wind excitation. The observed results of the tests 
" 

ha\e been compared with the predicted results in later sections 

5. 4 GENERAL TEST PROCEDURE 

In this case also the general test procedure was as follows: 

1) The oscillator frequency was slowly increased until a maximum signal 

was obtained from the microphone. 

2) Longitudinal wave number, m, was obtained by traversing microphone 

vertically with the help of the wheel shown in the right of Figure 9. 

3) Number of circumferential waves, n, in tile case when it is small can 

actually be counted just by viewing tile top of the vibrating model stack. 

In tile case when n is large tile circumferential scanning is done by the 

microphone and the value of n is counted on the chart recorder. 

Alternatively voltage readings on the wave analyser scale can be 

taken while scanning circumferentially. Nodes and antinodes correspond 

to minimum and maximum scale readings, but one has to be very 

careful in this case because due to shell irregularities when tile signal 

is very weak the difference between two readings (i.e. maximum and 

minimum) is so small that it may be overlooked. 

4) The model frequency is determined by proper tuping of tile wave 

analyser. 

5) The measure of inherent structural damping is also obtained experi­

mentally by using the wave analyser which will be discussed later. 

6) The degree of clamping afforded by tile base rings (Figure 13) was 

checked several times during the test as it was known that less than 

a fully constrained base might give spurious results. 
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6. COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS: 

Table 1 shows the geometrical and structural properties of the models 

tested in the wind tunnel and by excitation with an electrodynamic shaker. 

A notation for the cylinders tested in the wind tunnel is recognised by putting 

letter 'T' before the number vJ1 ereas for the shells tested with the electro­

dynamic shaker the letter 'S' precedes the number of the shell. Most of 

the models tested were made out of aluminium alloy because of availability. 

Two model steel stacks were also tested, one in the wind tunnel and the other 

by exciting with electromechanical shaker. In the following sections discussion 

is given on the values of the frequency parameters and mode shapes for 

different models. 

6.1 MODEL SHELL EXCITATION BY SHAKER: RESULTS 

As described in section 5 the model stacks were mounted on the 

rig shown in figures 8 and 9 and excited by an electrodynamic shaker 

powered by an oscillator and amplifier. The frequencies corresponding to 

different mode shapes, i.e. axial wave number m and circumferential wave 

number n have been determined and they are correlated with the correspond­

ing results predicted by the present theory reference [ 4] • The first three 

fundamental axial modes i.e. m = 1, 2, 3 have been taken and associated 

with each of these are various values of circumferential wave number n, 

i.e. n = 0 (axisyrnmetric mode), n = 1 (swaying mode), n = 2 (ovalling mode) 

and n >2 (breathing modes). The calculated values of the frequencies are 

given for m = 1, 2, 3 and n varying from 0 to 10 for each m. The measured 

frequencies are given wherever possible. Experimental structural damping 

has also been measured. The procedure for the same is as follows: 
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6.1.1. MEASUREMENT OF EXPERIMENTAL STRUCTURAL 

DAMPING: 

The structural damping of the~ 

shell is measured as shown in the diagram 

given here. The relative deflection X 
max 

and frequency n are measured on the 

wave analyser with scales shown on the 

left and right respectively. The wave 

' ' i 
' I 

_-xmax 

.... --.. 
' I 
' I 
I 
I 

' I 

Ql 2 analyser is seen sitting on the top of 
frequency n 

double beam CRO in figure 10. Then the frequency is reduced to n 
1

, such 

that the net deflection now becomes - 1- x X . In the same way the 
,[2 max 

frequency then is increased from n to n 
2 

to give net deflection equal to 
1 X Then 1·f n n J2 x max" 2 1 

= l!.!l , the measure of structural damping, 

g = l!.n 1 n (5) 

This can also be given in terms of critical damping ratio I';= g/2. In the 

tables it is given in terms of percentage i.e. g x 100. 

6.1.2 MODEL SHELL ANALYSIS 

Model shell SI is considered in table 2. The calculated 

analytical frequency is compared with the measured frequency. Measured 

frequencies are the ones which could be found by exciting the shell. The 

agreement seems to be. quite good. The maximum difference in the calcu­

lated and measured frequencies is within 10%. The axisymmetric mode 

could not be excited because of its high frequency; neither could the sway 

mode i.e. bending oscillations. For higher values of n, the frequencies 

corresponding to axial wave numbers m = 1, 2, 3 interfere with each 

other and distinction becomes almost impossible. It was observed that for 

lower frequencies corresponding ton= 2, 3, 4 the amplitude was significant­

ly big but for higher values of n the amplitude was small as expected. The 

structural damping for all the cases corresponding to various m 'sand n's 
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is fairly uniform and its value (in terms of g) lies between 2% to 2. 5% as 
,· 

seen in table 2. Fig. 15 shows results for various modal frequencies. 

An attempt was made to increase the structural damping of 

this shell by spraying a 0. 005 in. thick coat of self applied polyvinyl plastic 

coating Vy coat CA 90. The corresponding results for this shell are given 

in table 2 marked with asterisks. It is seen that these results tend more to 

decrease the frequencies than to increase the structural damping coefficients. 

In other words this added "damping" probably does more harm than good by 

decreasing the frequency with a negligible increase in the structural damping. 

The decrease in frequency is caused probably by the added mass of the poly­

vinyl coat. To quote the advantages of this process, it was observed (which 

is obvious in table 2) that some interference between the various modes was 

stopped and it was possible to find a few more frequencies corresponding to 

higher values of n and m = 3 which were not possible for the original shell. 

Since the coating was black the reflections from the surface showed quite 

beautifully the number of axial and circumferential waves which could then 

be counted by looking at the shell. 

Table 3 shows the comparison of analytical and experimental 

frequencies of model shell SII. This is the shell which is shown in photographs 

in figures 8, 9 and 12. In this case it was possible to get quite a number of 

frequencies experimentally. The comparison here is'very good. The maximum 

difference is about 2%. In some cases the measured frequency is a little 

higher than the predicted one but the trend is fairly consistent. For m = 1, 

the frequencies corresponding to n = 2 - 6 could be traced, for m = 2 those 

corresponding to n = 3 - 7 and for m = 3 corresponding to n = 4 - 9 could be 

traced. Fig. 16 shows results for various modal frequencies. 

The circumferential nodal pattern for this shell is seen in the 

photographs of figures 17 and 18. Figure 17 shows the number of circum­

ferential waves to be 3 (or 6 half waves) whereas figure 18 shown= 4 (or 8 

circumferential halfwaves). Deflections are quite substantial as seen in these 

pictures and they decrease with n. The good agreement between theory and 
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experiment as is evident in table 3 over the entire test ranges of m and n 
,· 

value is perhaps due to the fact that shell Sll was very well constructed 

and probably much better than shell SI. In this case the interference 

between any two modal frequencies was not appreciable as in case of shell 

SI and that is tile reason why quite a few frequencies could be traced. These 

tests as in every oilier case were repeated three times and experimentally 

observed frequencies were identical in all tile cases. It was essential to 

ensure that the base of the model is perfectly clamped to ensure axial 

constraint which is a very irn portant boundary condition affecting the frequency. 

Table 4 is the table of values of frequencies and structural 

damping for the model shell Sill. As is seen on the table 4, not many 

frequencies were traceable but tile agreement otherwise appears to be 

satisfactory. The difference in tile analytical and measured values varies 

from 5 to 10 percent. It is seen that tile agreement becomes less good for 

the higher modes. 

This shell was also sprayed with polyvinyl coat (Vy coat CA90) 

for the purpose of increasing structural damping. The layer was 0. 01 in. 

thick. Again it was found as in the case of model SI that this process 

decreases frequency as much as 8% in some cases but tile structural damping 

is not very significantly increased. The coating also reduces the amplitude 

of vibration and due to this fact not many frequencies were traceable as is 

obvious in table 4. 

Shell model SIV is analysed in table 5. The agreement 

between tile predicted and measured values seems to be reasonable. The 

calculated minimum frequency for tile first fundamental axial mode (m = 1) 

corresponding to n = 2 is nearly 8% higher tllan the observed frequency. 

Otherwise, for all m i.e. m = 1, 2, 3 and associated n values the agreement 

is fairly satisfactory, the difference being only of the order of 5%. It was 

observed tllat as we increase the number of circumferential waves, n tile mode 

preferred is that due to higher axial wave number e.g. for m = 1, 2 and 

n = 4, tile amplitude was bigger for m = 2 than m = 1. Of .course tllis is a 
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case when two modal frequencies are notvery much different from each 
'· 

other. 

Model SV, which is made up of . 028 in. thick steel, can be 

compared to the similar aluminium model SIII where the thickness was 

. 030 in. The frequencies are more or less the same because the ratio P/E 

is nearly the same in both the cases, as seen in table 6. 

Here also the agreement is reasonable. The minimum 

frequency for m = 1 corresponding to n = 2. gives the worst agreement. 

The measured and analytical values differ by about 12%. The modes higher 

than n = 5 could not be detected in the present system. 

Based on the detailed results presented in these tables, it 

is possible to gain a more general insight into the vibration characteristics 

of clamped-free cylindrical shells. Frequencies corresponding to the 

a.xisymmetric case are generally very high in all cases. The swaying (n = 1) 

frequency is also high and it was not possible to excite this with the help of 

the electrodynamic shaker. Ovalling frequency (n = 2) for m= 1 is minimum 

for all shells except SI where the frequency associated with n = 3 is minimum. 

For the higher axial modes i.e. m = 2, 3 the number of circumferential 

waves n corresponding to the minimum frequency increases. For example 

for shell SI the minimum frequencies for the three axial modes m= 1,2 3 

correspond to the number of circumferential waves n " 3, 4,5 respectively 

and for shell SV for m = 1, 2, 3 minimum frequency corresponds to 

n = 2, 3, 4 respectively. 

6.2 MODEL TESTS IN TilE WIND-TUNNEL 

6. 2.1 GENERAL 

The most direct and reliable assessment of the wind-induced 

oscillations of tall chimney stacks is to be derived from model tests in wind 

tunnels. However it is seldom that a wind tunnel test can be devised in 

which all the relevant parameters can be correctly represented and this 

results in the uncertainties in the interpretation of the test results. 
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Some of the models use~_are oscillatory replicas of the full 

scale stacks with structural and dynamic properties correctly scaled so as 

to correspond to the full scale in the wind. In addition to model properties, 

the properties associated with the wind (Reynolds number, shear and 

turbulence) should also correctly be represented in the tunnel airstream. 

These similarity requirerri ents are too severe for all to be observed in 

practice and necessary relaxations introduce uncertainties in the results. 

Nevertheless, model tests .do provide useful indications, and 

while not always providing reliable quantitative predictions, they allow 

development work on the prevention of wind-induced oscillations with 

reasonable surety that a design which does not exhibit any form of instability in 

the wind tunnel will be satisfactory in the full scale. 

6. 2.2 WIND TUNNEL TESTS: MODEL ANALYSIS 

Wind tunnel model studies have been made in the 

Loughborough University Open Jet Wind-tunnel. The geometrical and 

structural properties of these shells are given in table 1 . The description 

of the tunnel and its associated equipment is given in the section 4. 

Based on the theoretical vibration results the models were 

designed to be excited in various modes according to equation (2). 

Model Stack TI (L/a = 8.3 ) was designed to be excited by 

the wind in the modes n = 2 and n = 3 because the frequencies for these two 

modes are approximately the same. It was observed oscillating in the 

mixed mode (n = 2, 3) with considerable amplitude as given in table 7 . A 

value of r""3 was obtained (cf. equation 2). 

Stack TII (L/a =IS) was designed only to vibrate in the 

ovalling mode (n = 2). As seen in table 8 the frequency of oscillation is 

very close to that predicted and a value of r.,. 3 was again obtained in this 

case. This ovalling mode persisted with increase in wind speed and it was 

not possible in this wind tunnel speed range to excite any other mode. 

Stack Till (L/a = 25) was designed in such a way that the 

swaying frequency and ovalling frequency were very close to each other 
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and it was expected that they might be excited simultaneously but table 9 

shows that ovalling commenced first at a wind speed of 39 fps with a value of 

r""3. Afterwards at a wind speed of 59 fps and value of r""2 the swaying 

mode (n = 1) is excited. At a wind speed of 64.5 fps then = 3 mode was 

excited with an approximate value of r<=:< 5. 

It is seen that the measured frequencies in the case of 

ovalling and breathing (n = 3) agree well with those predicted; the difference 

being of the order of 4-5 percent. The swaying mode predicted frequency 

is nearly equal to the measured value. Also the seam position affected the 

preferred mode orientation though not its frequency. This was apparent 

when after 3 tests the shell developed a crack near the seam due to fatigue 

and started ovalling with axes at 45° to the wind. The amplitude grew much 

larger and the frequency WflS reduced. This was true for then= 3 case also. 

The model stack TIV, when in the tunnel, behaved in a very 

interesting manner. The shell started ovalling at a wind speed .of 33.2 fps 

with axes of oscillation being 45° to the wind direction as shown in the 

photograph of figure 19. Table 10 analyses the behaviour of this model in 

the wind. As is obvious the first ovalling commenced at a value of r::::-3 

confirmed by figure 3(d). This was also observed by Jolms and All wood in 

paper no. 28 of reference [3] . The justification they gave was that the 

predicted orientation given in figures 3(c), (d), is suggested by some 

measurements taken at N.P. L., of the unsteady pressures acting on a 

circular cylinder durirlg vortex shedding. These show that the effective 

centre of pressure of the circumferential distribution acts on the leeward 

face of the cylinder close to a line 135° from the stagnation line. 

But as the wind speed was increased a gradual change in 

the direction of axes was observed. At a wind speed of about 66 fps the 

change was complete and the axes of oscillation were orthogonal to the wind 

direction as is evident from the photograph in figure 20. In this case the 

value of r:::.:2 is obtained as predicted in figure 3(a) when the axes are 

orthogonal. 
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In this case as seen in figure 20 the amplitude of oscillation 
' 

was considerably big. This perhaps caused the observed reduction in 

frequency by about 2 Hz from the previous case when ovalling axes were at 

45° to the wind. This was also observed by D. A. Evensen [ll] while 

dealing with the effect of non -linearity on the vibrations of infinitely long 

cylindrical shells. He remarks that in the case of both inextensional and 

extensional vibrations the vibration frequency should decrease with amplitude. 

The reduction in frequency may also be attributed to the 

following factor. In the 3rd test the shell started tearing down its length 

parallel to and near the seam. The split was about 6" - 8". This is 

evident in the photograph of figure 20 by a corner in the right if one faces 

the wind. After splitting the shell started ovalling with axes orthogonal 

to the wind at a comparatively lower windspeed of 60 fps and frequency 41 Hz. 

Part reduction in frequency may be due to the fact that the torn shell was 

less stiff. It can be remarked at this stage that the frequency reduction 

was probably due to the combined effects of non-linearity due to large 

amplitudes in the vibrations and of flexibility due to vertical split. 

At a wind speed of about 85 fps the swaying was observed 

but the amplitude was not very big. Swaying also commenced but not 

very clearly inbetween the two stages of ovalling described above. It is 

seen from the table 10 that the predicted and measured frequency compare 

quite well. The difference being of the order of 4 to 6 percent. 

To account for the effect of structural damping on the wind 

induced vibrations an attempt was made to increase the damping of model 

stack TIV by spraying on a .005" thick coat of polyvinyl (Vy coat CA 90). 

During the tunnel test this .coated stack started ovalling with axes at 45° to 

the wind at a slightly increased wind speed of 40 fps and reduced frequency 

of 40.8 Hz as compared to the plain stack TIV where the corresponding wind 

speed and frequency were 35 fps and 43 Hz respectively. At a wind speed of 

about 51 fps the amplitude grew quite big (about ~") and the frequency came 

down to 40.4 Hz. At a wind speed of 65 fps the ovalling amplitude became 
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quite small. As the wind speed was inc;-eased the shell began to oscillate 

in the sway mode (n = 1) with a fairly big amplitude of about • 8 in. contrary 

to its counterpart shell TIV which had then begun to oval again with axes 

orthogonal to the wind at a speed of about 66 fps. The sway frequency of 

this coated shell was measured as 31. 6 Hz as corn pared to 33 Hz of the plain 

shell. The amplitude of swaying grew quite large with increases in wind 

speed to 75 fps. At a wind speed of about 85 fps the amplitude started to 

decrease and the shell virtually stopped swaying at a wind speed of about 

92 fps. The shell was almost flattened on the windward side at a wind speed 

of 99 fps due to the high static pressure there. 

Summing up one can see that the coating has not been very 

effective in stopping the ovalling or swaying or even in bringing down the 

amplitude of the vibrations for that matter. However it has changed the way 

in which the shell behaved in the wind compared to the plain shell. 

In the second attempt to damp this shell.005" thick white 

Fablon was stuck over this pvc coated shell. This model then was mounted 

in the tunnel. As the wind speed was increased this shell did not oval (n = 2) 

at all and at a wind speed of about 78 fps swaying oscillations (n = 1) were 

observed with very much decreased amplitude of about . 25 in. compared to 

. 8 in. for the pvc coated shell. At the top speed of the tunnel of about 

100 fps the shell windward region distorted about 0. 5 'm. from a circular 

cross-section to an elliptic one. 

The natural frequency (ovalling) was found for this shell 

by storing its transient response on to a storage oscilloscope. This frequency 

was found to be z 38.1 Hz as compared to 40.8 Hz of pvc coated and 43Hz 

of plain shell TIV. 

In summing up it can be said that this fablon wrapped shell 

has completely eliminated the ovalling (n = 2) mode. Fablon has only added 

to the inertia and damping of the system but not to the stiffness, which can 

be inferred from the reduced natural frequency of 38.1 Hz. This has also 

decreased the amplitude of the swaying oscillations by about 75 percent. 
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The increased damping may be due to the viscous adhesive on the Fablon 

because painting with pvc did not make n:'iuch difference, either in stopping 

the ovalling or in reducing the amplitude of the oscillations. 

Table 11 gives the results of the tunnel tests compared with 

predicted results for the model stack TV. It was designed to oscillate in 

the modes n = 2 and 3. At the wind speed of 40.5 fps the shell oscillated 

in a breathing mode with n = 3 and at a wind speed of 56 fps the amplitude 

for this mode dies out. As the wind speed was increased the shell started 

ovalling at 60 fps wind. It was observed that r~5 (reference equation (2)) 

in both these cases. 

Model stack TVI analysed in table 12 was designed so as to 

have ovalling (n = 2) and breathing with n = 3 frequencies nearly the same, 

as can be seen from the predicted frequencies. It was expected that the 

shell would oscillate with mixed modes i.e. n = 2 and n = 3 at the same time. 

But in the test the breathing (n = 3) commenced first at about one fifth of the 

predicted critical wind speed (i.e. at r:::<'5). The wind speed was 38 fps. 

As the wind speed was increased the shell was trying to vibrate with n = 2 

and n = 3 at the same time and at 59 fps the stack ovalled at the value of 

r"" 3. As is obvious in table 12 the predicted and measured frequencies are 

very close to each other the difference being of the order of 2 to 3%. 

The effect of seam was also observed on this shell. This 

shell had two seams 180° apart. The above test was carried out when the 

two seams were in the,wind direction. In a second test seams were placed 

90° to the wind direction. This change in position did not affect the 

frequencies but there was a slight increase in critical wind speeds e.g. from 

38 to 44 for n = 3 mode and from 59 to 65 for n = 2 mode. This may be 

remarked that although ovalling (n=2) frequency was lower than then= 3 

mode the n = 3 mode was excited first and then = 2 mode next. 

Table 13 examines model stack TVII in the wind tunnel. The 

model was designed to oscillate first with the n = 2 mode and then with the 

n = 3 mode. At a wind speed of about 30 fps the shell started ovalling. 
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Ovalling persisted with increasing wind speed and the amplitude of the 
-

oscillation grew bigger and was maximum at a wind speed of about 36.4 fps 

causing a slight drop in frequency (from 23.2 to 22Hz) due to a non-linearity 

effect as in reference [qJ . A value of r <::<3 applies in this case. As the 

wind speed is increased the amplitude of ovalling decreases and at a wind 

speed of about 52 fps the n = 3 mode appears and the amplitude grew big 

reaching a maximum at a wind speed of about 60 fps causing again a drop in 

frequency of about 1 Hz. The shell was nearly flattened on the windward face 

and the strain gauge was broken at this point. In the case of ovalling the 

seam appeared to force a node at itself though not a preferred position. 

Model shell TVIII which is discussed in table 14 was designed 

to oscillate at various circumferential modes n = 2, 3, 4. At a wind speed 

of about 25 fps and r<:<5 the mode n = 3 was excited. At an increased 

wind speed of about 35 fps the shell started ovalling though the amplitude was 

not very big. The ovalling axes were orthogonal to the wind direction with 

r ~4 approximately. 

At a wind speed of about 38 fps the shell was oscillating with 

n = 4 and a value of r""5· Increasing wind speed caused a sudden change. 

At 45 fps wind the shell reverted back to a n = 3 mode, r '>'3, with amplitude 

considerabl)' large. The frequency of oscillation was decreased from 22.4 

to 19 Hz due perhaps to a non -linearity effect. The shell was nearly flattened 

at the windward face as the speed was increased. The predicted frequencies 

were very close to measured values as seen in the table 14. The maximum 

difference was of the order of 8%. 

The steel shell TIX, counterpart if the Al-shell TV is 

examined in table 15. This behaved quite differently. The oscillations in the 

n = 3 mode occurred at a considerably higher speed of 72 fps (r <>< 3) instead of 

40 fps (r"" 5) for the Al-shell. This then persisted for higher wind speeds and 

at 81 fps the amplitude grew bigger and there was a drop in frequency from 

58 to 56Hz. The ovalling mode could never be excited on this shell unlike 

the case of the A1-shell TV. This was perhaps due to differences in material 
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properties, especially the inherent structural damping. The frequency 

measured was very close to predicted frequency as seen in table 15. 

To study the effect of an elastic ring at the top end of the 

shell a ring of dimensions bR = • 125 and dR = • 125 was stuck on the top of 

the shell TIII. This resulted in eliminating ovalling oscillations. The 

swaying occurred at a slightly reduced frequency (49Hz from 50Hz) at a 

slightly higher wind speed of about 65 fps than the shell TIII. The breathing 

oscillations (n = 3) were observed at a wind speed of 72. 5 fps instead of 

64.5 fps and the frequency is increased from 119Hz to 124.6 Hz. Tims as 

predicted by putting an elastic ring lowers sway frequency because of the 

inertia of ring being predominant for the sway mode. But the frequency for 

breathing oscillations (n = 3) is increased because of predominant ring stiffness. 

6.2.3. WIND EFFECTS ON SHORT SHELLS 

An attempt was made to measure the frequencies excited by 

wind of short shells typical of storage tanks. Some tests were being performed 

on such shells under another research programme to examine their static 

stability in the wind. It was found that before buckling the shell oscillated 

with a very small amplitude of vibration. The frequencies of these shells 

were measured by strain gauge output as in case of the other models tested. 

However the output was recorded on magnetic tape and ,analysed to give the 

frequencies. For example two such shells are analysed below: 

Geometry of the first model was L = 15 in. , a = 7. 5 in. and 

h = 0. 01 in. At a wind speed of about 58 fps the measured frequency was 

102Hz whereas the corresponding calculated minimum frequency for this 

shell geometry was 108Hz for n = 7. The value of r is approximately of the 

order of 12 ~ 14 !'. Another frequency excited was 115Hz at a wind speed of 

74 fps and' the corresponding calculated frequency was 120Hz for n = 8. 

The value of r is then either 10 or 12. As is evident calculated values are 

only about 5% higher than measured ones. 

The second shell tested had a geometry defined by L = 18 in • 
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a = 7. 5 in. and h = 0. 01 in. This was excited at a wind speed of nearly 80 fps 
,· 

and at a frequency of 90Hz. The calculated minimum frequency in this case 

was 89Hz for n = 6 which is very close to the measured value. The value of r 

is then either 7 or 9 (approximately). At a wind speed of 85 fps the frequency 

recorded was 94Hz as compared to 95 Hz by calculations for n = 7. The value 

of r is about 7 or 9 in this case also. 

The above examples show that the present vibration theory 

is suitable for predicting the frequencies for. tall stacks and also for short 

shells representative of storage tanks. However the significance of the 

parameter r in the latter case is questionable and it may be argued that the 

vibrations experienced on the short shells were due to either free stream 

turbulence or unsteady pressures generated near to the free end of the short 

shell. It is noteworthy though that the excited frequency did appear to increase 

linearly with increase in wind speed suggesting a form of Strouhal Number 

relationship. Since these results for wind-excited oscillations are thus 

inconclusive the only conclusion to be fairly drawn is that the present vibration 

theory applies to shells of L/a > 2. 

6.3 PREVENTING INSTABILITY BY STRUCTURAL MEANS 

In a previous section it was shown how a fablon coated model 

stack reacted to the wind. This in fact resulted in COI'Jlpletely cutting down 

the ovalling and very significantly reducing the amplitudes in swaying 

oscillations. 

In general it may be remarked that if the critical wind speed in 

the lowest mode of oscillations can be increased above the wind speed likely 

to be encountered during the lifetime of the chimney stack, large amplitudes 

of oscillations will not occur. A design wind speed based on a short term 

gust speed may be an over -estimate of the maximum speed that a structure 

will respond to, since it takes a few cycles of oscillations for the amplitude 

to build up. Another way of increasing critical wind speed is to increase 

the frequency of stack by stiffening it with the help of many intermediate rings. 

The effect of such stiffening may be seen theoretically in the figures 17 and 18 



of reference rn . But increase in the ovalling (n = 2) and some breathing ... 
(n"' 3) ·frequencies is very significant as can be seen in these figures. 

It should be noted, however, that increasing the mass of the 

structure may not always be beneficial if it is subjected to vortex instability. 

Because inertia effect reduces the natural frequencies and consequently the 

critical wind speeds, thus making it possible that addition of mass may reduce 

the critical speed in a certain mode from a level outside the design wind speed 

range to a level within it. 

There are several methods by which the structural damping may 

be increased. Active mechanical dampers produce a force on the structure 

that opposes the aerodynamic force. A sensing device fitted to the structure 

activates the mechanical force. Such a system is likely to be complex and to 

need continual maintenance. "· ·. 

There are several types of simple passive dampers, which absorb 

energy rather than produce an opposing force. Tuned and direct viscous and 

friction dampers have been employed and are notable for durability and cheap­

ness. An interesting system consists of a chain, covered with rubber sleeve 

and suspended with freedom to impact against a vertical channel. This is 

fitted near an antinode of vibration of structure to have maximum effect. 

The addition of guys to a free standing structure may not only 

increase the natural frequencies but will usually increase the structural 

damping. 

It is often possible to design structures from the outset to have 

a high structural damping. The addition of gunnite lining, for example, to a 

steel stack increases its structural damping. In general, concrete, and 

particularly brick structures, have a higher structural damping than steel 

structures, and riveted or bolted construction has more damping than welded. 

The helical strake device has been applied successfully to many 

stacks. The most effective system consists of three thin, rectangular strakes 

with a pitch of one revolution in SDand height of 0.10 D to 0.13 D. It is 

usually sufficient to strake only the top one third of a stack to prevent 
- . 
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instability in the fundamental mode. It should be noted that fitting of a small 
,. 

external duct to the outside of a straked stack may impair the efficiency of the 

system. The addition of strakes sufficiently increases the drag 0f the cylinder 

at Reynolds number above the critical. Strakes have also been used to reduce 

the oscillations due to enhancement of vortex instability caused by buffet. 

An alternative· to the strake is provided by the fittirtg of a shroud . 

. This consists of a perforated cylindrical shell separated from the cylinder 

surface by a gap. A gap width of 0.12 D and an open area ratio of between 

20 and 36% have been shown to be effective. Shrouds, like strakes, need 

only be fitted at anti -nodes of the vibration mode. 

The devices were tried and have been patented by N.P. L. and 

more about them can be found in references [10, 12] . 
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7, CONCLUSIONS . 

The study covers the wind-tunnel studies and shaker excited vibration 

tests on model circular stacks. TI1e test results are compared with analytical 

·results calculated by using variational teclmique in Part A. The shell models 

were made of Al-alloy and a couple also out of steel. The structural damping 

of the model stacks has been measured experimentally. The attempt has been 

to increase the structural damping by spraying a thin coat of polyvynil paint 

on the model and also by using • 005" fablon wrapped round the shell. 

From the observations of this study following conclusions appear to 

be valid: 

1. Good agreement between theoretical and test frequencies has been 

observed. 

2. It has been observed from model tests that for swaying and 

particularly ovalling and breathing oscillations the measured critical 

wind speed is lower than predicted wind speed, V = 5 n D for full scale. 

In fact it is V= 5 ilD/r, r =I, 2, 3, •.•• It may be due to incompleteness 

in similarity requirements, such as structural damping, material 

difference, in the model tests and full scale experience. 

3. A change in the direction of axes of oscillation to the wind can occur 

as the wind speed is increased. In case of ovalling it has been 

observed for a particular shell. that first axes are at 45° to the wind 

at a value of r z 3 and then they change direction orthogonal to the 

windatr~2. 

4. An increase in amplitude causes a slight reduction in frequency 

because perhaps of non-linearity effects. 

5. The structural damping is not a function of mode shapes and was 

observed to be nearly the same for AI and steel stacks for measured 

range. Fablon coated model appeared to be significantly damped 

because it eliminated ovalling and reduced the amplitude in swaying 

by about 90% with a slight reduction in natural frequency due, perhaps, 

to the added mass. 
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6. AI elastic ring at the 'top controls ovalling (n = 2) but breathing 

oscillations (n = 3) did occur at a slightly raised wind speed and 

natural frequency. 

7. It was found by the test perfonned later that there was only a very 

small increase in the structural dam ping of the shell due to fablon 

but perhaps enough to stop ovalling and reduce amplitude of oscillation 

for other modes (n = 1, 3 etc.). It may, howeve·r, be remarked 

that the method of measuring the structural damping was not sensitive 

enough and an error of±: 30% is possible to be incurred. 
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1. Anon 

2. Anon 
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TABLE L Geometrical and Structural Properties of the Models Tested 

Cylinder Length (L) Radius (a) Thickness (h) Youngs Modulus Poisson's Mass density 
(E) 

Ratio (V) 
p 

Notation in in in 
psi lb-sec2 /in 4 

+SI 72 6 0.010 107 0.3 2. 59 X 10-4 

SII 69 6 0.023 107 0.3 2. 59 X 10-4 

SIII 69 6 0.030 107 0.3 2. 59 X 10-4 

SIV 69 6 0.036 107 0.3 2. 59 X 10-4 

sv 69 6 0.028 3 X 107 0.3 7.37 X 10-4 

*TI 20 2.4 0.01 107 0.3 2. 59 X 10-4 

TII 36 2.4 0.01 107 0.3 2. 59 X 10-4 

TIII· 60 2.4 0.01 107 0.3 2.59x10-4 

TIV 71 2.4 0.01 107 0.3 2.59 X 10-4 

TV 36 4 - 0.01 107 0.3 2.S9 X 10-4 

TVI 46 4 0.01 107 0.3 2. 59 X 10-4 

TVII 71 4 0.01 107 0. 3 2. 59 X 10-4 

TVIII 70 6 0.01 107 0.3 2.59 X 10-4 

TIX 36 4 0.01 3 X 107 0.3 7.37 x 10-4 

+ Letter 'S' preceding the no. indicates that electromechanical shaker is used as excitation device. 

* Letter 'T' indicates the models tested in the L. U. T. Wind-Tunnel. 

Material 

Al 

Al 

Al 

Al 

Steel 

Al 
'·. 

Al 

Al 

Al 

Al 

Al 

Al 

Al 

Steel 



TABLE 2 • Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SI) 

m 1 2 3 

n Calculated Measured Structural Calculated Measured Structural Calculated Measured Structural 
frequency frequency Damping frequency frequency Damping frequency frequency Damping 

Hz Hz g X 100 Hz Hz gx 100 Hz Hz g X 100. 

0 579 - - . 1530 - - 2360 - -
1 84.3 - - 470 - - l120 - -
2 28.1 26.3 2.28 164 - - 446 - -
3 23.7 21.0 2.1 80.9 76. 8, 72. 7* 2. 36, 2. 38* 222 - -
4 38.9 37.3, 36.6* 2. 4, 2. 46* 59.5 56.9* 2.46* 135 - -

'. 
5 62.0 60.6 2.0 68.8 69. 2, 61.3* 2. 4, 2.44* 105 99.8, 92.6* 2.5, 2.5* 

6 90.7 86. 9, 84. 8* 2.2, 2.4* 93.3 91, 86* 2. 4, 2.6* 109 105. 3, 100* 2.5, 2.6* 

7 125 121.2, l13. 7* 2.5, 2.5* 126 - - 133 125.8* 2.5* 

8 164 160.4 2.3 0 165 - - 169 157.1 * 2.6* 

9 . 209 - - 209 - - 211 - -
10 258 - - 260 - - 261 - -

* These values correspond to the shell SI coated with Vy coat CA 90. 
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TABLE 3. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SII) 

1 2 3 

Measured Structural Calculated Measured Structural Calculated Measured Structural 
frequency Damping frequency frequency Damping frequency frequency Damping 

Hz gx 100 Hz Hz gx 100 Hz Hz gx 100 

- - 1600 - - 2460 - -
- - 507 - - 1200 - -

31.6 2.26 179 - - 483 - -
46.4 2.37 97.2 95.0 2.32 244 - -
86.0 2.5 102 100.1 2.1 167 163.8 2.42 

,. 
144.0 2.27 147 147.8 2.22 171 170.4 2.19 

. 

208.5 2.26 210.7 208.6 2.21 221 217.8 2.17 

- - 288 284.0 2.27 294 294.6 2.27 

- - • 379 - - 382 389.0 2.0 

- - 481 - - 484 492.0 2.24 

- - 595 - - 598 - -



TABLE 4. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SIII) 

m 1 2 3 

Calculated Measured Structural Calculated Measured Structural Calculated Measured Structural 
n frequency frequency Damping frequency frequency Damping frequency frequency Damping 

Hz Hz gx 100 Hz Hz g X 100 Hz Hz gx 100 

0 604 - - 1600 - - 2460 - -
1 91.6 - - 507 - - 1200 - -
2 36.5 33. 6, 30.5* 2.12, 2.5* 179 - - 483 - -
3 61.5 59. 1, 55* 2. 06, 2.3* 105 101. 4, 92* 2.36, 2.5* 248 239.0 2.3 

4 115 110.6 2.3 126 119. 6, 114. 6* 2.1, 2.3* 184 173.0, 170* 2.3, 2.44* 
' . 

5 185 - - 190 183.0 2.3 210 192.5,190.3* 2. 28, 2. 36* 

6 272 - - 274 - - 283 267.8 2.32 

7 374 - - 376 - - 381 - -
8 492 

. 
494 497 - - - - - -

9 626 - - 627 - - 630 - -
10 775 - - 777 - - 780 - -

* These values correspond to shell SIII with • 01 in. thick coat of Vy coat CA 90. 



TABLE 5. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SIV) 

m 1 2 3 

Calculated Measured Structural Calculated Measured Structural Calculated Measured Structural 
n frequency frequency Damping frequency frequency Damping frequency frequency Damping 

Hz Hz gx 100 Hz Hz gx 100 Hz Hz gx 100 

0 604 - - 1600 - - 2460 - -
1 91.6 - - 507 - - 1200 - -
2 39.1 36.0 2.3 180 - - 484 - -
3 73.2 69.7 2.3 112 107 2.24 251 - -
4 138 132.5 2.27 148 140.6 2.35 200 187.6 2.33 

' . 

5 222 - - 226 217.5 2.36 245 . 240.8 2.41 

6 326 - - 329 - - 337 328 2.13 

7 449 - - 451 - - 456 - -
8 590 - - . 592 - - 596 - -
9 . 751 - - 753 - - 756 - -

10 930 - - 932 - - 935 - -



TABLE 6. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SV) 

m 1 2 3 

Calculated Measured Structural Calculated Measured Structural Calculated Measured Structural 
n frequency frequency Damping frequency frequency Damping frequency frequency Damping 

Hz Hz gx 100 Hz Hz g X 100 Hz Hz g X 100 

' 0 622 - - 1640 - - 2540 - -
1 94.3 - - 522 - - 1230 - -
2 36.7 32.3 2.4 184 - - 498 - -
3 59.3 54.2 2.4 106 100.8 2.3 254 - -
4 111 100.1 2.39 123 113.9 2.46 184 176.9 2.38 

' . 

5 178 167.5 2.27 183 179.6 2.4 205. 186.1 2.42 

6 261 - - 264 - - 273 - -
7 359 - - 361 - - 367 - -
8 473 - - . 474 - - 478 - -
9 601 - - 603 - - 606 - -

10 745 - - 746 - - 749 - -



TABLE 7. Wind Tunnel Tests on Model Stack TI. (L/a = 8.3 , a/h = 240) 

Circum- Predicted Critical Critical Measured Measured 
ferential Freq. n V= 500 V= 600 Frequency Wind 

Remarks 
Wave number Speed 

n (Hz) fps fps (Hz) fps 

1 410.4 820.8 984.0 This shell, fairly short was designed in 

2 142.1 284.2 342.0 138, 137 110 such a way on the basis of theoretical 

3 140.6 281.2 337.0 137,138 110 predictions that the minimum frequencies 

4 242.2 484.4 582.0 corresponding to n = 2, 3 are nearly 

5 387.3 774.6 930.0 identical, while testing the shell appeared 

6 567.0 1133.8 1609.0 to oscillate at two modes at the same 
' 

7 779.7 1559.4 1870.0 time. As can be· seen from the table 

8 1025 2051 2460.0 from predicted critical wind speeds and 

9 1304 2608 3130.0 measured wind speed the value of r in 
-

10 1615 3230 3875.0 equation (2) is nearly 3. 



TABLE 8 • Wind Tunnel Tests on Model Stack T II (L/a = 15, a/h = 240) 

Circum- Predicted Critical Critical Measured Measured 
ferential Freq. n V= SnD V= 600 Frequency Wind 

Wave number Speed 
Remarks 

n (Hz) fps fps (Hz) fps This shell was designed to excite only n = 2 

1 136.0 272.0 326.4 
mode in the L. U. T. wind tunnel. All other 

2 62.0 124.0 148.8 60.2 49.0 
frequencies are quite distinct from each 

3 126.3 252.6 303.1 
other. As can be seen in the table the only 

4 239.0 478.0 573.6 
excited mode was n = 2 and here also one 

5 386.0 772.0 926.4 
can see by comparison that the predicted 

6 566.0 1132.0 1358.4 
critical wind speed is nearly 3 times the 

" 

7 779.0 1558.0 1869.6 
measured wind speed thus re:. 3. Though 

8 1025.0 2049.0 2460.0 
the shell started oscillating at a wind speed 

9 1303.0 2606.0 3127.2 
of 40 f. p. s. as seen on the oscilloscope the 

. 
10 1614.0 3229.0 3873.6 

maximum deflection was achieved at a wind 

speed of 49 f. p. s. 



TABLE 9 • Wind Tunnel Tests on Model Stack TIII (L/a = 25, afh = 240) 

Circum- Predicted Critical Critical Measured Measured 
ferential Freq. !:l V =SoD V= 6nD Frequency Wind 

!wave number Speed Remarks 

n (Hz) fps fps (Hz) fps 

.1 49.5 99.0 118.8 50 59.2 
This shell was designed to be excited in 
3 modes n = 1, 2, 3, which it does as 

2 46.8 93.5 112.3 45 39.0 is evident here. 

3 124.7 249.3 299.3 119 64.5 Here the values of r are different for 
different n. For n = 1, r = 2, for n = 2, 

4 238.6 477.2 572.6 r "" 3 and for n = 3, r = 5. The seam was 
5 385.7 771.5 925.7 put af different directions to the wind and it 

6 565.8 1131.6 1358.0 
was found that although this does not affect 
the frequency it does affect the preferred ' . 

7 778.7 1557.4 1869.0 mode i.e. the angle which axes of vibration 
make with wind direction. This is because 

8 1024.4 2048.8 2458.6 during the 4th test there developed a vertical 

9 1303. 0 2606.0 3127.2 crack 4" long just near the seam. The 
. ovalling axes became 45° to the wind direction 

10 1614.2 3228.4 3874. 1 which appeared to be the preferred mode 
orientation. Also frequencies were reduced 
slightly after this- for n = 2, it reduced to 
44 from 45 and for n = 3 from 119 to 116. 



TABLE 10. Wind Tunnel Tests on Model Stack TIV. (L/a= 29.6, a/h = 240) 

Circum- Predicted Critical Critical Measured Measured 
Remarks ferential Freq.n V =5nD V= 6!:10 Frequency Wind 

Wave number Speed Tests on this shell brought out quite a few 
n (Hz) fps fps (Hz) fps interesting features. The shell started 

ovalling (n = 2) at a wind speed of 33.2 fps 

1 35.4 70.8 85.0 33 75.2 
with axes of oscillation being at 45° to wind 
direction seen in figure 19. As the wind speed 

2 45.4 90.9 109.0 43, 41 * 34.6, 66.1* was increased there was a gradual change in 

3 124.5 249.0 299.0 
direction of axes of oscillation. Finally at a 
wind speed of about 66 fps the change was 

4 238.5 477.0 572.4 complete and axes of ovalling were orthogonal 

5 385.7 771.4 925.7 
to the wind as seen in figure 20. In between 
these two stages there was also swaying (n = 1). 

6 565.8 1131.5 1358.0 
As can be seen at 1st stager= 3 and at the· 

7 778.7 1557.3 1869.0 second stage r"" 2 with a bigger amplitude and 

8 1024.4 2048.8 2458.6 
reduced frequency of 41 Hz from 43 at the 
first stage. In the 3rd test the shell started 

9 1303.0 2605.0 3127.2 tearing off down the length near the seam. . 
' " 

10 1614.2 3228.3 3874.1 
The split was about 6 -8". Afterwards shell 
vibrated more freely and with frequency and 
critical wind speeds slightly reduced. 

* Ovalling with axes orthogonal to wind direction at higher windspeed. 



TABLE 11. WindTunnelTestsonModelStack TV. (L/a=9, a/h=400) 

Circurn- Predicted Critical Critical Measured Measured 
ferential Freq.n V =5rlD V= 6nD Frequency Wind Remarks 

Wave number Speed 
n (Hz) fps fps (Hz) fps 

1 220.7 735.6 882.8 
This shell was designed to be excited in 

2 74.0 246.7 296.0 77.0 60.0 
wind for n = 2, 3 modes. At the wind speed 

3 56.6 188.6 226.4 54.0 40.5 
of 40. 5 fps it was oscillating with n = 3 and 

4 88.4 294.5 353.6 
at wind speed of 56 fps it was stopped and at 

5 139.7 465.7 558.8 
wind speed of 60 fps it started oscillating 

,. 6 204.2 680.5 816.8 
with n = 2 mode i.e. ovalling. 

7 280.7 935.6 1122. 8 
It is evident that the value of r ,5 in both 

8 369.1 1230.4 1476.4 
the cases as given by equation (2). 

9 469.4 1564.5 1877.6 
' 

10 581.4 1938.0 2325.6 



TABLE 12. Wind Tunnel Tests on Model Stack TVI (L/a = 11.5, a/h = 400) 

Circum- Predicted Critical Critical Measured Measured 
ferential Freq. n v = sno V= 6nD Frequency Wind Remarks 

Wave number Speed 
n (Hz) fps fps (Hz) fps Based on theoretical predictions this shell was 

designed to be excited with n = 2 and n = 3 
modes at the same time. In fact it first 

1 137.3 457.8 549.2 started oscillating with n = 3 at about one-
2 47.2 157.2 188.8 46.0 59.2 fifth of critical windspeed, i.e. with r"" 5. 

3 49.6 165.3 198.4 48.0 38.0 
As the windspeed was increased the shell was 
trying to vibrate with n = 2 and n = 3 at the 

4 86.7 289.5 346.8 same time. At a wind speed of about 59 fps 

464.1 556.8 
shell was ovalling with r=3. For this test 

5 139.2 the two seams were in the wind direction. 
'. 

6 204.0 679.7 816.0 In the second test when the seams were at 
7 280.5 935.1 1122.0 900 to the wind the frequency was not affected 

8 369.0 1230.0 1476.0 
but the critical speed was raised slightly, e.g. 
from 38 to 44 for n = 3 and from 59 to 65 for 

9 469.2 1564.0 1876. s. n = 2. 

10 581.2 1937.6 2324.8 Although the ovalling (n = 2) frequency was 
lower than the frequency for n = 3 the n = 3 -

mode was excited first and n = 2 mode next. 



TABLE 13. Wind Tunnel Tests on Model Stack TVII (L/a = 17. 75, a/h = 400) 

Circurn- Predicted Critical Critical Measured Measured 
ferential Freq. n v = sno V =6nD Frequency Wind Remarks 

Wave number Speed 
n (Hz) fps fps (Hz) fps 

This shell was designed to oscillate with 
1 58.5 195.1 234.0 n = 2 and then n = 3. ·As can be seen it 

2 24.5 81.7 98.0 23.2, 22* 30. 4, 36. 4* 
ovals at a wind speed of 30.4 fps and like 
all other shells this mode persists with 

3 45.7 152.3 182.8 43, 42* 52. 25, 60.1 * increasing wind speed and at a wind speed 

4 86.1 286.9 344.4 
of about 36. 4 fps when the amplitude is 
maximum frequency appears to drop (from 

5 139.0 463.1 556.0 23. 2 Hz to 22 Hz). In this case r""3. Seam 

6 203.7 679.1 814.8 
appeared to force a node there though not" . 
preferred. 

7 280.4 934.6 1121.6 
With increase in wind speed the n = 3 mode 

8 368.8 1239.4 1475.2 appears at a windspeed of about 52 fps. At 

9 469.1 1563.6 1876.4 
a wind speed of about 60 fps amplitude grows 
very big for n = 3 and frequency drops from 

10 581.2 1937.2 2324.8 43 Hz to 42 Hz. The shell was flattened on 
the windward face and strain gauge broke 
at this point. 



TABLE 14. Wind Tunnel Tests on Model Stack TVIII (L/a = 11. 67, a/h = 600) 

Circwn- Predicted Critical Critical Measured Measured 
ferential Freq. n v = 5no V= 611D Frequency Wind 

Remarks Wave nwnber Speed 
n (Hz) fps fps (Hz) fps 

This shell was designed to oscillate in 3 
1 89.0 445.1 534.0 different modes n = 2, 3,4 in the wind 

2 29.6 148.1 177.6 29.0 35.2 tunnel. At a wind speed of about 25 fps she!l 
oscillated with n = 3. At a wind speed of 

3 24.2 120.8 145.2 22.4, 19* 25.6, 45.5* about 33 fps mode n = 3 stopped and n = 2 was 

4 39.0 195.1 234.0 36.0 37.7 excited at a wind speed of about 35 fps though 
the amplitude was not very big. The ovalling 

5 62.0 310.0 372.0 axes were orthogonal to wind and r<:O 4 in 

6 90.7 453.3 544.2 this case. As the wind speed was increased 
the shell started oscillating with n = 4 at a" 

7 124.7 623.4 748.2 wind speed of about 3 8 fps. At a wind speed 

8 164.0 820.0 984.0 of about 45 fps the shell again reverted back 
to then= 3 mode. This time the frequency 

9 208.5 1042.7 1251.0 was reduced from 22.4 Hz to 19 Hz and the . 
amplitude was much bigger than in the 10 258.3 1291.7 1548.0 . 
previous n = 3 case. The shell was almost 
collapsed at the windward face. 

-
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TABLE 15. 

Predicted Critical 
Freq. n V= 5rlD 

(Hz) fps 

227.2 757.4 

76.2 254.0 

58.2 194.2 

91.0 303.3 

144.0 479.5 

210.2 700.7 

289.0 963.3 

380.0 1266.8 

483.2 1610.8 

598.6 1995.4 

Wind Tunnel Tests on Model Stack T IX (L/a = 9, a/h = 400) 

Critical Measured Measured 
V= 6nD Frequency Wind 

Speed Remarks 

fps (Hz) fps 

908.8 This steel shell behaved in the wind tunnel 

304.8 quite differently from its aluminium counter-

232.8 58, 56* 72, 81 * part shell T V. 

364.0 This started oscillating at a much higher 

576.0 speed of 72 fps in then= 3 mode and 

840.8 frequency 58Hz. This persisted for highe_r 

1156.0 wind speeds and at a wind speed of about 

1520.0 81 fps the amplitude grew bigger and the 

1932.8 frequency reduced from 58 Hz to 56 Hz. 
. 

2394.4 
Ovalling was not seen here at all in the given 
speed range contrary to its Al-counter part 
shell TV. 



Figure 1 , 

v,-v, 

Flow 

V 

Vortex 

v,: velocity induced 
round cylinder by 
shedding of vortex. 

The derivation of the vortex- induced fluctuating force. 

The motion of a cylinder free to oscillate across the direction 

of the flow when the velocity is such that N=.R,. The 

fluctuating drag has twice the frequency of the fluctuating 

side Cliftl force. 
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FIG. 5 A Pictorial View of a Model Stack in the Wind Tunnel & Instrumentation 
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FIG. 8 A model stacl< mounted on the shaker rig 
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FIG.9 Shaker Installation & Vertical & Angular Moving Devices for the Microphone 
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Cast Iron Base Ring 

Clamping Ring 

FIG. 13. Sketch showing dimensions of base ring and root clamping . 
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FIG. 14 Constructional Techniques for Shells: 

One or more joints type of shells. 
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FIG.17 Pictorial View of Model StackS][ 9scillating with Three 

Circumferential Full Waves ( n=3) 
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FIG.18 Pictorial View of Model Stack SII Oscillating with Four 

Circumferential Full Waves ( n=4) 



FlG.19 Photograph Showing Ovalling Oscillations of Model Stack TIV(Stage1) 



FIG.20 Photograph Showing Ovalling Oscillations of Model Stack TIV (Stage 2) 
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APPENDIX I (TT 7008) 

EFFECT OF HELICAL STRAKES ON THE CYLINDER TIV 

TESTED IN THE WIND 

This cylinder when tested in the wind tunnel showed quite a few 

interesting features which have been discussed briefly in Table 13 and shown 

in Figures 19 and 20. 

Helical strakes, • 25" wide and . 5" deep were put on this cylinder on 

upper one third height of the cylinder. This was first tried to make strakes 

out of one piece material . 25" wide and • 5" deep. It was rather difficult to 

bend these strakes to bring them to size where they will reasonably fit on the 

body of the cylinder so this method of making one -piece strakes was abandoned. 

The method which was successfully tried was that of glueing 9 strips, . 25" wide 

and . 052" thick, bent individually in the desired form of helical strakes. 

Wind-tunnel tests were made and observations recorded were as follows: 

There was hardly any movement observed for this cylinder with strakes 

at a wind speed of about 76f. p. s., unlike the plain model stack TIV which 

ovalled significantly at this wind speed. At about 50 f. p. s., wind speed, 

ovalling was seen to commence though with a very small amplitude ("" 0.1" of 

oscillation which rose to about 0.15" at a wind speed of about 66f.p. s. At about 

71 f. p. s., of wind, transverse sway again with very small amplitude ( ~ .1 "} 

was observed which in no way can be compared with swaying amplitude observed 

for the plain cylinder TIV which was of the order of 0.5" to 0. 7". This 

situation persisted with increasing wind speeds and amplitude grew to about 

.2" for a wind speed of 94f.p.s. 
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APPENDIX II 

Response of the Model Shell SI (PVC Coated) with One or Two 

Layers of 0 .005" 'rhick Fablon 

It has been remarked on page 35 that when shell TIV 

(with 0.005" pvc coat and 0.005" thick fablon layer over its sur­

face) was tested in the wind tunnel the ovalling was virtually 

stopped and S\vaying was observed with a very much reduced 

amplitude and with a slight decrease in frequency. This ·was 

attributed to the added structural damping due to the fablon 

layer. An attempt has been made since, to assess the changes in 

frequency and structural damping due to the addition of one or 

two layers of 0.005" thick fablon on a pvc coated model stack 

(SI) excited by an electromechanical shaker. 

It can be seen from table II 1 and from the previous 

results for shells (Table 5) that by adding a fablon layer there 

is only a marginal increase in the structural damping factor and 

an additional layer does not make any further~preciable difference 

in the results. Though the increase in damping over the shell 

with no added fablon is small, it is perhaps sufficient to 

decrease the amplitudes of oscillation and to stop the ovalling 

of shell TIV in the wind tunnel. As is indicated in Table II 1, 

the frequency of oscillation decreases due to added inertia 

of fablon layers although the effect appears to_be greater than 

would have been anticipated. 

It should be remarked however that the experimental tech­

nique involved in measuring the structural damping factor is 

not as sensitive as one would wish and an error of + 30% is 

possible in the quoted values. 
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TABLE IL 1 

1 2 3 

Measured Frequency(Hz) Measured Frequency (Hz) Measured Frequency 
Calculated (& damping) f::alculated (& damping) Calculate ( Hz) (& damping) 
frequency !Frequency frequency 
plain SI one layer two layers !Pl:ain SI one layer two layers plain SI one layer jtwo layers 

fablon fablon fablon fablon fa:blon fablon 

84.3 - - 470 - - 1120 - -
. 

28.1 21.2 20.21 (2.3) 164 - - 446 -
. ' . 

23.7 20.6 21.01 (2.45) 80.9 72.81 (2.4 64.61 (2.4). 222 - 64.5~2.3) 

38.9 36 - 59.5 50.7,(2.9 50. 5' ( 2. 5) 135 - 00.2,(2.2) 

' 
65 •. 2.,,(2.5. 62 58 - 68.8 - ·- . "' ····-- . .105 B?-2!.2·.5). n .A.C2... 5-'-

N.B.· The damping values are quoted as per cent critical and are given inside parenthesis. 




