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GENERAL INTRODUCTION

In recent years, considerable interest has been shown in the elastic
stability and vibration characteristics of circular cylindrical shells because -
of the widespread use of this or similz_g_: type structures in air, space, and
watex craft.

In general, in the determination 0; the modél characteristics of thin
cylindrical shells, sixteen sets of homogeneous boundary conditions can be
examined at each end of the shell. The present study is concerned with shells
clamped at the base and with free, ring stiffened or simply-supported upper
end i.e. structures typical of a chimney stack. In particular, the ﬁroblem
is to study wind-induced oscillations of tall chimneys.

The problem in wind-induced swaying oscillations of tall chimneys and
other similar cylindrical shell structures is now well documented a.n:d methods
of prediction and prevention of such phenomena are believed to be well understood.

The corresponding problem of wind-induced ovalling and breathing
oscillations has occurred less frequently but certain incidents have been
attributable to this cause:

In 1964 during a ty'phoon, ovalling oscillatiohs were observed of a 150 ft.
high, 10ft diameter steel chimney in Hongkong. The chimney material was
mild steel of 5/16 inch thickness. The nature of the oscillations was of an
ovalling (n = 2) mode at a frequency of about 1.6 - 2.4 Hz. After some time
the sole stiffening ring at the top end of the chimney broke away from the
basic shell whereupon the amplitude of the vibrations increased violently
prior to collapse. . |

The present investigation was prompted by the above incident. The study
was done in two different phases described in the form of Part A and Part B.
Preliminary studies had been previously conducted at Loughborough into this
problem and, already, significant advances had been made which had clarified
some of the unknowns and highlighted the need for a more comprehensive

investigation of which this study is the result,



Part A is concerned with the theoretical part of the present investigation.
A fairly general theoretical analysis for free vibration characteristics of clamped-
free and clamped ring stiffened circular cylindrical shells has been developed
and programm ed for digital computer solution. The treatimment is comprehen-
sive in the sense that the Flugge's thin shell equations of motion have been
used, three translational sﬁell inertia components are included. Also
included are the effects of stiffening ring geometry, eccentricity, mass and
rotary inertia. |

The analysis is capable of handling vibration characteristics of cylindrical
shells, in the swaying (cantilever mode, n = 1) as well as in the ovalling or
breathing modes (n % 2, n is circumferential wave number) with arbitrary
length-to-radius ratio and radius-to -thickness ratio. In the case‘of a shell
with an end ring it also allows for variation in the non-dimensional ring
characteristics e.g. ring breadth/shell radius, ring depth/shell radius.

After the introductory chapter 1, chapter 2 of Part A deals with the
analytical investigation. Here, by using Flugge’'s thin shell equations
expressions for strain and kinetic energies are derived. General exp'ressions
for ring strain and kinetic energies (including ring eccentricity and rotary
inertia) are also derived. Various mode shapes are chosen e.g. polynomial
functidn, trigonometric function, characteristic beam function etc. by
allowing variation in longitudinal moede functions. The'frequency equations
are then derived by using the Rayleigh-Ritz procedure and the degree of this
equation depends upon the degrees of freedom in the choice of mode shapes.
These equétions are solved by using various numerical techniques. The effect
of the assumption of zero hoop and shear strain is seen to reduce the degree
of the frequency equation.

Chapter 3 consists of a discussion of the analytical results. This is
subdivided in two parts i) clamped-free shell and ii) clamped-ring stiffened
shell. The effect of zero hoop and shear strain on the freqﬁency spectrum is
assessed in both the cases. The dependence of frequency on the number of

axial waves and circumferential waves is also examined. In case (ii) the



effects of ring mass, eccentricity and stiffness on the frequency spectrum
are also discussed. .

In chapter 4, for a few typical shell geometrics of interest, the results
of the present theory are compared with the results of exact and more
complicated vibration analyses for thin cylindrical shells with clamped-free
or clamped-ring stiffened ends. The main points of the exact analyéis are
given in the Appendix V.

Conclusions of the foregoing analysis are given in chapter 5.

Appendix I gives pertinent details of a preliminary analysis concerning
an investigation of the vibration characteristics of a vertical, cantilevered
shell, with its lower edge restrained against displacement and its upper edge
supported on a stiff reinforcing ring.

Appendix II contains properties and tables of characteristic functions |
representing normal modes of vibration of a beam. Appendix III gives
expressions for the integrals, involving characteristic beam functions and
their derivatives, encountered in the analysis.

Appendix IV contains the flow charts of the main computer programmes
used along with the flowchart for the Regula-Falsi iteration procedure.

Appendix V gives the summary of an exact analytical approach for clamped-
free and clamped-ring stiffened shells. The results of this theory are
compared with the present theory.

Part B contains mainly the results of the experim e'ntal programme
carried out for the aforesaid problem. After an introductory chapter 1, vortex
shedding phenomena are discussed in chapter 2 followed by a discussion on
vortex -induced vibrations in chapter 3.

Chapters 4 and 5 describe the construction of model shells, experimental
rigs and instrumentation. General test procedures are given for the wind
tunnel tests on model stacks and model excitation by electromechanical shaker.

‘The comparisons of analytical and experimental vibration frequencies is
given in chapter 6. The results by using a mechanical shaker as the excitation

device are reported in the first part. In this part the structural dampi ng



characteristics have been measured experimentally for various modes of
vibration. In the second part of chapter 6 the test results of model stacks
in the wind are compared with ”predicted‘;' analytical results. Many model
stacks have been tested for the purpose of correlation of analytical results
with the experimental ones.

Chapter 7 contains the main conclusions of the .experim ental programme.

Appendix I contains the observations made on a particular shell with
helical strakes on upper one third of it. The effect of helical strakes is
analysed,

In the Appendix II the results of measuréd structural damping are given
in a table form for a particular shell with one or two layers of 0.005" thick

fablon. Fablon was used to increase the structural damping of the shell.



WIND-INDUCED OSCILLATIONS OF CIRCULAR CYLIN.DRICAL SHELLS
PART A

A THEORETICAL ANALYSIS
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ABSTRACT

A theoretical analysié for the free vibration of clamped/free and clamped/
ring stiffened cylindrical shells has been develoiied and programm'ed for digital
computer solution. The analysis is capable of handling vibration characteristics
of cylindrical shells, in the swaying (cantilever mode n=1) as well as in the ovalling
or breathing modes (n > 2; n is circumferential wave number), with arbitrary
length to radius ratio and radius to thickness ratio. In the case of a shell with
an end ring it also allows for variation in the non-dimensional ring characteristics
(ring breadth/shell radius, ring depth/shell radius).

Three translational shell inertia componenfs are included and the effects of
ring eccentricity and mass and rotary inertia are examined.

The paper examines Vthe accuracy of various engineering approximations as
compared with more exact solutions from Fliigge's thin shell equations and
discusses the error in terms of a non-dimensional frequency parameter.

It is interesting to note that for tall shells the assumption of zero hoop and
shear strain leads to comsiderable simplification in the analysis without introducing
any significant erroxr in the minimum natural frequency.

The problem is formulated using the energy method and the Rayleigh-Ritz
technique is employed to obtain an approximate solution. The choice of the modal
shape is varied and it includes a longitudinal modal component approximated
alternately by polynomial, trigonometric or "exact” beam vibration functions
chosen to satisfy prescribed end conditions. Specially for the shell clamped at
the base and ring stiffened at the top, the combination of two beam vibrationl modes
(cla.mped/ffee and clamped/simply supported) is taken for the longitudinal displace-
ment component.

ﬁNum erical results are found in each case and compared with one another
and the choice of mode shape thus assessed. Results are also compared to the
existing theories and experim ents for the clamped/free cylindrical shell. The
analyses are then substantiated later by comparing the results with the exact

solution of Fliigge's equations of motion.
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NOTATION

a radius to shell midsurface

elements of stiffness matrix in frequency equation

AR | area of the ring section
A(]I:{) th moment of area of ring section about skin median.
B P B2 y ) generalized coordinates in displacement functions
)
Cl’ C 5 3 )
Bij elements of mass matrix in frequency equation
bR - net breadth of ring section
. Cr’ dr : eigenvalue properties of beam (see appendix II)
dR net depth of ring section
E ' Youngs modulus
exx’ €pg? exel_. strains
g ,€5g:€ extensions; shear strain
pod x9
h shell thickness
I(r) rth moment of mass of ring per unit circumference at skin
. R . ; .
median, about skin median.
Il’ 12, 13 integrals defined inAppendix II for longitudinal
I. L. 1 mode functions.
475" 6
'kx' ke changés of curvature
k twist
X0 _
L length of the cylinder
) axial mode parameter; YL
m longitudinal mode number (see fig. 2)
Ml’ M2 values of longitudinal beam vibration functions at a
specific distance x = X,
M3, M 4 - values of derivatives of longitudinal beam vibration
. functions at a specific distance x = X,

Ax



NOTATION (contd)

n circumferential mode number (s_ee fig. 2).
N yN N3,N 4 constants for rings defined in )
5’N6’N N equation (38)
P a4, beam eigenvalues
T kinetic energy (see eq. (12) and (16} )
t time
U strain energSr in shell and rings
u,v,w longitudinal, circumferential, and radial (or normal)
displacements, respectively of the shell mid-plane.
x, 0,z longitudinal, circumferential and radial coordinates (sece fig. 1)
x x/L
& (x), up.(x) assumed longitudinal vibration modes for shell

¢r(x), P 1_(:s:) characteristic beam vibration functions in longitudinal direction

for clamped-free and clamped- sxmply supported beam respectively.

B . h2/12a°
‘A
T pa
‘ Hr qra
v Poisson's ratio
p mass density
w natural frequency {circular)
-V
4 frequency parameter, Pu (1 D ) v
g o] g
xx, x¢, 00 stresses
Subscripts :
s refers to shell
R refers to ring

A comma followed by subscripts denotes partial differentiation
]
with respect to the subscripts, e.g. u, denotes 5__151( and
W, gg denotes 3 2W/ 38 2.
A dot (.) above a quantity denotes time derivative of the quantity;

. du
e.g. U denotes e



1. INTRODUCTION

The pfoblem of the det’ermj_n;ation of the in-vacuo dynamic characteristics
of thin cylindrical shells has been studied extensively by many research workers.

However only a few papers are devoted to the study of the vibration character-
istics of cylindrical shells with different boundaxry conditions at the two ends.
Forsberg {1] has made a detailed study of the effect of end boupdary conditions
on the modal characteristic of thin cylindrical shells.

In this study we have dealt with the vibration characteristics of a cylindrical
shell clamped at one end and either free or stiffened by an elastic ring at the other.
In particular the problem is studied for shells, typical of slender welded steel
chimneys, with lower édge fully restrained and the upper edge either free or
supported on a stiff reinforcing ring. This investigation ié proempted by the recent
collapse of such a shell in the form of a tall slendér chimney stack when subjected
to a high sustained lateral wind. The stack was observed to oscillate in an ovalling
mode of large amplitude prior to collapse.

_ The problem of a clamped-~free shell has received very little attention and that
of clamped ring stiffened shell still less. Weingarten [2] has calculated the
natural frequency for a particular shell with clamped-free end conditions using a
Donnell -type equation. Watkins and Clary[3] give a comparison of results of an
experimental investigation-into the vibration characteristics of thin circular
cylindrical shells with results obtained by using simple analytical methods.

Similar work was done by Sewall & Naumann [ 4] who made comparisons of
analytical and experimental frequencies and mode shapes of eccentrically stiffened
and unstiffened cylindrical shells with various end support conditions.

The major purpose of the present report is to show the dependence of the

lower natural frequencies of such cylindrical shells on the geometrical and material
properties of the shell, e.g. length/radius; thickness/radius, Young's modulus,
density etc. The following are the phases of this problem which have been dealt
with thoroughly: |

(a) Choice of appropriate shell equations of motion.

(b) Choice of modal focrms, influence of boundary conditions.

(c) Rotary and Inplane inertia effects.

(d) The assumption of zero hoop and shear strain.

Al



The equations of motion: developed by Fligge [5] are used here. Fliigge
derived equations for cylindrical shells which retain terms of higher order than the
Timoshenko-Love theory, yet are computationa}ly tractable. They have become
an accepted standard to which other theories are referred for accuracy. Many other
investigators (Novozhilov, Vlasov and Koiter) have presented shell theories intended
to remove all inconsistencies as compared to Love's first approximation. These
theories increase the complexities of the problem but not necessarily the accuracy.
Naghdi [6] has indicated that none of these is superior to Flugge's theory. In
general one cay say that the wide variety in the resulting equations arises basically
from small differences in the formulation of the strain displacement relationships,

* and the discrepancies occur only in terms which numerically have little significance.
As long as the limitations of the thin shell theory are observed, the various formulat-
jons generally give identical numerical results within engineering accuracy. An
excellent account of this fact is given by Warburton [7] where it is remarked that

for a wide range of parameters the effect of various different shell theories on the
natural frequencies are very small, |

' "The modal deflection functions that have been assum ed in the past satisfy part
or all of the end boundary conditions. The different mode shapes correspond to
differences in the functional dependence of the deflections on the axial coordinate x.
These include polynomial expressions as taken by Johns and Allwood[9], trigonometric
functions in x, as well as the case in which the longitudinal modal components are
approximated by elementary beam vibration functions chogen to satisfy all the end
conditions. . . ’

Also the effect upon the frequency parameter of including transverse s ear
deformation and rotary inertia in the analysis are relatively small for the parameter
studied in reference [8] but these effects increase rapidly for radius/ thickness
ratio < 20. Such effects are not included in the present study. Included in the
present analysis are the radial, axial and circumferential inertia terms and the
ring rotary inertia.

The analysis by Johns and Allwood[ 9| considered that for tall shells the \
assumption of zero hoop and shear strain leads to considerable simplification
without introducing any significant error in the minimum natural frequency. This
is extended here to cover a wide range of cases and for short shells this assumption

is thought to lead to error such that the frequencies may be increased considerably

A. 2.



above fhe more exact results. Some valuable comments have been made by
Warburton[ 7} on Ref. 9 which also indicate the errors involved in various
approximations. o

A further report is to follow which will deal more fully with the correlation
of theoretical and experimental vibration data for circular shells and with the

results of wind-tunnel studies into wind-excited oscillations of such shells.

A 3.



2. ANALYTICAL INVESTIGATION

2.1 General

. Analytical shell frequencies presented in this paper were obtained by applic-
ation of the well known energy method employing the Rayleigh-Ritz procedure.
The general approach of the method 'is outlined below. |

Firétly, the expressions for the kinetic and potential energies are written
for a cylindrical shell and for a ring. For a clamped/ring stiffened shell these
expressions are combined to give the total kinetic and potential energies. Next,
mode shapes are assumed with undetermined coefficients, which satisfy the
appropriate end conditions. These assumed displacement functions are then
substituted into the energy expressions and application of Rayleigh-Ritz procedure

yields frequency equations which on solution will give desired natural frequencies.
2.2 Analysis

The energy expressions are written first in terms of strain, then strain-
displacement relations are used to give these expressions in terms of displacement
of the middle surface of the shell. Included are the radial and in-plane inertia
terms (axial and circumferential). Eccentricity effects due to the ring centroid
being not coincident with shell median plane are explicitly taken into account. The
rotary inértia of the shell is believed to be negligible but, however, rotary inertia
is taken into account in the kinetic energy expressions for the rings,.

I

2.3 Strain Energies

The coordinate system are notation used in the anlysis are defined in Fig. (1).
A circular cylindrical shell of length L, mean radius a, and uniform thickness h
is considered. Coordinate axes, X, 9§, z, correspond to the axial, circumferential
and radial directions respectively. The strain displacement-relationships considered
for a cylindrical shell with the coordinate system given in figs (1) are those

derived by Flugge [ SJ as

e = u, - zZwW,
xx X XX
2 ZwW,
€g9 - __e. - ._......6_9_ + v (1)
a a(a+z) a+tz .
" ,
“ e - ‘9 + at+zv - (_z_ + z ) w
x0 a+z a 'x a a+z 'x0

A 4.



wherc a comma before the variable used as a subscript denotes partial different-
3u

iation with respect to the val;iable (i.e. Wy = X etc.). These relationships
are referred to as Flugge's exact strain displacement relations, and assume
that normals to the middle surface remain normal after straining and that all the
displacements are very small i.e. that they are negligible compared with radius of
curvature of the middle surface and that their first derivatives, the slopes, are
negligible compared with unity.

Although equations (1) may appear to be complicated it is quite easy to give
them a mechanical interpretation. Equations (1) may also be cast into another form
by introducing a set of quantities describing the deformation of an element of the

middle surface. These are:

\ - - 1 E
the extensions: &g = u,x » €9 = ST (v,g + W)
) - u,,
the shear strain: e = 1
X6 -+ v,
a X
) o _ N | .
together W1th the changes of curvature kx = Wy ke = -aT (W+W’66)
and the twist k =1 (w +-l- u,, - L v, )
X6 a "x0 22 '@ 2 ’x

The strain energy of the shell is calcul ated by considering a small element

in a thin shell. Provided the shell is considered to be thin, it is assumed that the

small element is in planestress (¢ = 0, ¢ = 0o, = 0). Thus Hookes
ZZ Xz 0z
Law in this case is: !
| E
Oy = > ,(exx+ \)eee)
a-v7)
E
g -
g = 3 (e og T vexx) (2)
d-v")
E
g = —_— :
x0 vy xe
The incremental strain energy density is
- = @ o o
dU %% dexx + 65 de 88 + Uxe dexe (3)

Substituting (2) into (3) and integrating gives strain energy density -

- _E 1,2 2 | 1- 2
U = -2 [-2- (exx+eee)+ \.rexxeee + ; ](4)

-V
ASs.



The total strain energy is found by integrating the above expression over the

entire shell volume

u = [ U ¢
s Uy |
= ES he o ez + 2 +2ve
T 2a-v9 xx € 00 xx © 60
-h/2 o 0
i-v) 2
—+ ' .4 (atz) dxdedz (5)

Here (atz) dxd édz is a volume element and ES is the Young's modulus of the shell
material. The strain displacement relations (1) can be used to give the strain
energy in terms of the displacements u, v, w of the middle surface of the shell.
Integrating over the shell thickness the potential energy of the cylindrical shell

is written as
Esah 2n L

f [u,zx + -—12- (w+v,e)2

1

0]

s

20-v7) a

2y 1 2
+ - l.l,x (V,e +w) + ';-:2-* (l-v) (u,e + av,x)

-2au, w,
X

2 2 1 2
+s{a W,xx +a—2 (W+W'BB )

1 12
+ 2 \)W,XX(W,Be 'V’8)+5 (1-\))(?- U, g

2 2 2 ‘
+ 3 V’x + 4w, Xq + Py u,ew,Xe -6v,xw,xa)}] dxde
()]

' 3
where g = h2/ 12a2. Hence Esh _ Esh 9. 2
. T2 BT -
(1'v2) 12 1~y a

The above expression {6) is a combination of the shell extensional and the shell

3
bending energy; Esh being the extensional stiffness and Egh being the

1~ 2 12(-47)
bending stiffness.

To arrive at the above expression {6) the infinite series in 3 were truncated

by neglecting fifth and higher powers of h/a e.g.

) h/2 3
a+/,vh+ h

n R =
a -h/2 a 12613

A.6.



The potential energy expression fo'r the rings will be developed assuming that

these are unifoxrm along their circumferential length and have an asymmetric cross-
section. Further, it is assumed that only circumferential strain is relevant for
calculating the strain- energy in this case; also that the cross sectional planes

do not warp. The compatibility requirements are easily satisfied by the assumption
that the ring is integral with the shell at a single common line of attachment. This
assumption is more easily justified if the ring is welded, bolted, riveted or
integrally machined with the shell, Derivations for the ring energies are based

on an analysis in Ref. [107] |

For a ring neglecting ¢ _ , o and tal;ing %99 = Ep €qg (7
1 2T 2 ,
Up = 7 B f J by €7gp (atz) dedz 8
. 0 dr

' where b, is breadth of the ring and d, the depth. Substitution for egg from

R R
equation (1) gives on integrating over the ring depth,

E 25 BNX
: R 2 A 2 2 .
_UR = oPe I {AR(V,G +w) + _R (v, g~ W '2V’BW’66
0 a
(2) (3)
- 2ww,ee )+ AR (W-i—W,ea )2 - AR (W+W’ee )2 +} deg
' 2
a | a® ©
'where

AR = fd bR dz = area of the ring section. :

R -

Ag) = ./; 7" bR dz = rth moment of area of ring section about skin
R median plane. '

The eccentricity effects are explicitly accounted for by taking these energies
in terms inv'olving the distance z. Thus for r odd, A}({r) isl to be taken negative
when the ring is an internal one. In the case of a ring at the top of the shell (x=L)

the expression (9) is
| e

E 2% :
' _ R 2 R 2 2
UR = = ‘(f: {AR (v,e +w) + 3 (v, g~ W 2v,e w,ae
A(2) A(3) (10)
- 2ww )+ ——— (wtw )2- l(w+‘w "')2+ }d
. 90 o2 * 99 a3 09 P

x=L_

A.7.



The total potential energy due to several rings at various positions of the shell

is given by _
. N E 27 s AL
R : ‘
UR = 3 I f {AR- v, g +w)2 + __1 (v,%j - w? - 2V,9 Wypg
i=1 928 0 1 , a .
(11)
A® AD ) _
.._ZWW,ee)'[' _zR_'i (w_l_w,ee)z___};_i(W'!'W,ee) +-.-} ds

a . a -

where the total number of the rings is N and xl, Xoeyoos , xn are the distances of

2!
the ring stations from the clamped end of the shell. Quantities Ep Ay , AI{I). ..
T r T

etc. correspond to x ring.

In the case of many closely spaced rings these are not necessarily considered
as discrete elements and a 'smeared' analysis similar to that of Mikulas and
McEIman Ll 1] may be used., Because of the different end conditions and because
of provision for the effects of inplane inertia terms and ring rotary inertia the
present paper is broader in scope. For a 'smeared’ stiffener analysis the
summation sign in equation (11) is replaced by an integration over the entire length

of the shell. An assessment of the validity of 'smeared’ analyses compared with

discrete stiffener analyses is given by Parthan and Johns [12] .

2.4. Kinetic Energies

Neglecting the rotary inertia, the kinetic energy of the shell may be written
* 1 2n L 2 .2 .2 '
T.= + p_ ah (W) + @)+ (w) d adx
S 2 s
(12)
o "o
where dot above the variable denotes differentiation w.r.t. time, p 5 is
the mass density of the shell material. Although rotary inertia of shell is
negligible the rotary inertia of the stiffening rings may sufficiently affect the
natural frequencies of the stiffened shell as demonstrated by Parthan and Johns [12:\
and Huffington and Schumacker [13] . Thus the kinetic energy of one ring is given by
2 '
- 1 { » . 2 r . Z . . 2 .2
TRFZ f f (a+z) prR (u zw,x) +(EV'ZW’9 ) +w}dedz
o) dR
(13)

where pR bR is mass of the ring per unit depth and per unit circumference at a

A.S.



radius = a 4+ z. Integrating over the ring depth the kinetic energy for a ring at

the free end is given by

2 ()
a .2 -2 .2 21 u2 . . L]
2o R - -
To=5J EnR (0 + VW) + (" -V, -auw, )
o a
1.{2) ' (14)
’J;—Ii-{azvz,z + (@ =vg 1P} | a |
. a2 !x X 0
x=L
where
m = J . b atz dz is mass of the ring per unit circumference
R d R™R a '

R
at the reference surface

O S oy 2tz L

R ¢ R°R T2
@ atz 2
b= J;R PRPR 2 % ¥

It "R is taken as the ring density averaged over the entire ring section the above

can be expressed using previously defined quantities (equation (9) ) as

P 1 (1)
~ P —
mee R{%* 3 Ak } |

(15)
1 __ 5 { .1 ,@
R7= ri%° T3 ™ }
2) o (2) 1 3)
R =R {_AR 7 R }
The kinetic energy due to rings at various positions of the shell is given by
' (1)
: N 2T 21
a 2 42 .2 R, 2 .. .
TR = .Z 5 - EnR. (WHv +w)+ 1 (7 -vw, -auw,x)
i=1l o i a
| If@ | (16)
+ -Tl{azwz,xﬂ\}-w,e)z} ] de
a X=X,

The corresponding expression for the potential and kinetic energies used by Johns

& Allwood [9] are given in the appendix (I) for comparison.

-
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2.5 Modal Functions

2.5.1 General
The general expressions cho sen for the inplane and radial displace-

ments u, v and w are

u ={A1 ¢'(x) + A2 q,' (x)} cosng coswt

v _={_B1 ¢ (x) + B2 ] ‘(x)} sin n cosw-t 17

w:{c1 ¢ x) + Cyv (x)} cosn® coswt

vh ere ¢(x) and ¢ (x) are axial mode functions aﬁd ¢'(x) = ..;-_’\-%% and qf(x) = g;w —LI—/
Fig. 2 shows typical modal forms for a circular shell with identical boundary conditions
at each end. The modes are assumed in the present study to satisfy part or all of

the boundary conditions which are in general different at each end as is seen in

Fig. 3. The following sets of axial mode functions ¢(x) and ¥ (x) have been

incorporated in this present analysis.

2.5.2 Johns and Allwood [9] chose a polynomial expression in x for the
axial mode functions for a clamped-free or clamped ring-stiffened shell viz.

¢(x) = 52 (X - 3) , where x = x/L

' (18)
V) = X @ -6)

These correspond to an encastre and axially-clamped base and approximately to

zero axial stress and edge moment at the ring stiffened, or free, upper end.

2.5.3 In the second case the modal dependence on the axial co-ordinate x
is chosen (for the shell clambed at the base and free at the top) so that w, the
radial deflection varies from zero with x up to a certain length & (not predetermined)
of the shell from the clamped end and then it becomes constant for the rest of the
length of the shell.

1—cosrr:'c/§ 0 <X <1
¢ ()= - : (19)
2 L <x <1

where 2/L = 3
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2.5.4 In the third case {(again for clamped-free shells which are typical
of unstiffened chimney stacks) the modal function is a beam vibration function chosen
to satisfy the prescribed set of end conditions i.e. of clamped base and free upper

end. In this case,
= ‘ - - i - gi 2
¢r (x) cosh P_X cos p_x c. (sinh p.x -sinp_ x) (20)
‘where pr'is given by the roots of the transcendental equation
-cosh prL cos prL + 1=0 (21)

and . :
¢ = s1nhpr L - sin P, L
r

cosh prL + cos prL (22)
2.5.5 In the last case (for the cylindrical shell clamped at the base and
with an elastic ring at the upper end), the longitudinal modal component cannot be
represented by the clamped free beam vibration function alone. Hence the combination
of clamped-free . [given by equation (20)] and clamped-simply supported beam
vibration functions has been taken to approximate the longitudinal modal component

in this case. The clamped-simply supportéd beam vibration function is given by

q:r (x) = cosh q.X - €08 q_X - dr (sinh q X - sin qrx) (23)
where 9. is given by the transcendental equations

sin qu cosh qu - sinh qu cos qu =0 | (24)

and _
dr = cot qu = coth qu (25)
ti i ;
The properties and numerical values of ¢r’ pr, cr and Ibr, qr, dr are
tabulated by Bishop & Johnson [14] . The choice of a beam mode functions for

¢r (x) and lpr (x) allows some simplification in the analysis through the ortho-

gonality properties e’,_B

L : L
J; 0 () ¢ (x) dx = ‘fo 800 05 0 &=0 ( +s) 26)
and. stmilgr- -’-01'— Y, 2 9
o1 e, Lo e
where (x) = , . bV (x) = — — etc
r 2 ol ST 2 &l

N r S
The detailed account of these functions and their properties is given in the appendix II.
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2.6 The Assumption of zero hoop and shear strain

The assumption of zero hoop and shear strain directly simplifies the mode

‘shapes and the subsequent analysis i.e. if

V,é +w =0

(27)

u,

V’x + -n-u?—n = 0
a

the modal forms (17) are reduced to the following simplified form:
-2 {c ! C v W
u ==y JL 1 d}(x) '+ 9 d)(x)} cosnf cos
vV = -'flf {cl ¢ (x) + C2 !JJ(X)} sinné cos wt (28)

w = {Cl o) + 02 P (x)} coS n§ cos wt

Thus it is easy to see that the number of amplitude functions is reduced to one-third
from three to one for a clamped-free shell with Az, BZ’ C 9 neglected; from six to
two for a shell with Az, Bz, 02 retained as well as Al Bl Cl. The resulting
simplification in the various frequency equations and the effect of this on the final

results is discussed in the following sections.

2.7 Frequency Equations

2.7.1 General
Substituting an assumed set of modal forms into the expression
for total strain energy (U) and total kinetic energy (T) and assuming the motion to be

simple harmonic of frequency g, the equations of motion are obtained from

relations of the following type:

= luge) - T 1 - 2 lue, . 2T ,0) = 0
3, e Teo ] - g Ue o) - 8 T o) |-

= Jume) - PT@e) | = r— [U@e)-w T =0 (9
Bl i ] s | = ’a"B_z i X, (xse)

] 3 2 ] |

T, (Ve - Pre] = g [Ue o) - FTwe) =0
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The operations represented by these equations lead to the familiar eigenvalue-
eigenvector formulation which may be expressed in different forms for different
set of mode shapes for different kind of boundar;jf conditions.

General expressions for the integrals present in the energy expression are

given in Appendix III.

2.7.2. Clamped-Free shell

In this case U and T are taken as the strain and kinetic energies of the
shell alone.

If the longitudinal modal function given by (19) is taken and the
energy expressions are those given in the appendix I* ,» application of Rayleigh-Ritz
procedure yields an expression for the natural frequency w. The assumption of zero

hoop and shear strain gives the following as the simplified frequency ecuation

2 2,2 .2
102 +12 84 v

n +1
2 2. 2
hz Psa (1"\)) ]
where B = 5 , A= 5
12a s

The value of the constant & in equations (19) and (30) is determined to give the

minimum value of the frequency w . & is obtained from the solution of the quartic

2 2 4
< 4 =3 pT 72 2.4pr” - 2 prm
g - 8% 2 B = - T T =
+ q-s Q-5 % g% 0 (31)
where e = a/L,

e4 - 1
P =5 {” ‘“4"'}
(n” -1) gn

_i;:;'lz (n2+1)
2
2e” (1 - v)
q 3 T
n
g = 2e” v
l-n2

** The approach of Johns and Allwood with various relevant expressions is given
in the appendix I .
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In another case the longitudinal modal function given by (20) is taken and the
energy expressions given by (6) and (12). Applying the Rayleigh-Ritz procedure

the resulting frequency equation in determinantal form is given hy

Ay - 8 Apg Ajs
A91 Agp =8 Ay = 0 (32)
Azl | Asy Agg - 8
Here A, = ;\r2 + (1 + B) (1-—-72-2) n? L,
Ajg = 8y 7 'anrll'il"(l"’)“irlz
Apg=Ag = =V T+ 82 { lrz +% (1 -v)nZ 12}
Ay, = n2+%(1 -v) Arz I, (1+38)

. o 2 3
A23 -—A32 = "n+ Bn lr IL\)II+ 5 (!l v)Iz}
_ 4 2 .2 22 . 2. 2
Ay -1+B{J\r @ =D 42y A T L 2 W0t A 12}
A

r r

I, = ’11': fL r"r2 {'ﬁr(")d")}z ax
0

. L '
1 ’ 2
L = T f {(pr(x)} dx
' 0

Explicit expressions for these integrals are derived from Appendix II and given

where = p_a

in the appendix II .

The frequency equation (32) above is a cubic in A , but often only the lowest
value of A is of structural interest,
The assumption of zero hoop and shear strain in this case reduces the cubic

frequency equation to a very simple linear equation in A

A.l4.

¥



A= }4 + an Krz [)\f2n2+2vn2 (r12-1)Il +2 (I-v) (112-1)2 12]-!- 3114 (nz-l)2
' 2 2,2 (33)
‘ ?\r I2 +n (n +1)

. It should be noted that both equations (30) and (33) reduce for an infinitely long

shell to give
&= an (nz-l)z/(n2+ 1) -(34)

This expression corresponds to a well -known ring formula for purely circumfer-

ential modes which is also de'rived in Appendix 1.

2.7.3. Clamped~Ring stiffened shell

For this case the axial mode function is taken using both equations (20}

and (23) in equations (17). The strain and kinetic energies are given by

U= U +U
s

R (35)
T = Ts + TR :
where Us’ UR and Ts’ TR are given respectively by (6), (10) and (12}, (14). In

case of several discrete rings in intermediat e axial positions the expressions for
UR and TR are taken as given by equations (1) and (16) respectively. Finally
substitution of equations (17) into equations (35) and application of the Rayleigh-Ritz
variational procedure to this system yields the frequency equation which may be

represented in the following determinantal form

Ay Ay A Ay A5 Al [P P2 O O By Bg ]

Alg Bz Baz Byg A5 By (Bl By 9 0 By By

b3 A3 Mas e fas Aes| | O O Byg By Bgs Byl o

Ay Bay By By By By “lo o Bys Byy Bys By

Ajs Ay Bgs Ay Agg Ag | By By Byo By Byo Bgg

Ale Mg f36 P46 Pse Pes | |Pis Pas Bas Bas Bss Bes
Stiffness matrix . Mass matrix (36)
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where Aij and Bij i=1,6; j=1, .6) are given by

-2
1-
2, (-v)

'3 2
A 2
. r n{l-v) é\r
Ay, = . I + 5 — I L+ g
r H
i
_ Lo
Ay = -mA {v11+ L v)Iz}
n e
r
2
Ajg = =VA_L+BA {- ¢! \,)12}
2
2
. vk g A2 {-A PN § }
A16 = T I, + g r15+ (1-v) M 16
T Ir
A3 2(1 ) 12 .
_ n(-v T
Ay, = Lot Ty Ty L (L+8)
r r ..
2 3
A = \,“r 1 1 i.x.'....}
93 = -n{ T+ 5 (1.-v) 16
Ir T
= - u -
A,, n r{v13+2(1 u)141
2 N 2
- .v_I . B noa
Bos X, TRz r et 3@ ")16}
2 -n2
= - u - -~
Ao vt Bu { et 3. a "”A
— 2 2 a2 1 - )‘.2
Ay = 1m0 (N +N) M + 5 (1-v) AT L (1+38)
3
A, = n’1 +n2MM(N+N)+i1~v '3—1(1+3)
3¢ - ol 12142()“r6 8
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i

n

2 3 2 2
Bn {v = -
n+bn " Il,+ 5 (1 v)Iz} +n M, (Nl +n N4)

3
I

n15+nM M (Nl-!-n N4)+ sn{

& LFC,;

2. 2.2 . 9
n"+n” M, (N FNJHEA-v) DT (1438)

3
. Bn Ar 2
nlg + 7 Ig 3-v) +n MM, (N, +0°N,)

2 1, 2 oy 2
‘n+Bn i \’I3+ 2(1 v)I4 +n M, (Nl—!—n N4)

4.2 2.2 ,2
1+ s[lr + @ -1)"+20° X {v I+ - ) 12)’]
M {N1+N4 @n = 1)+’ - 17 (N, -Ns)}

G 3 33

4 2 2} 2 ( r 1') 2 r
“x. - L I -
IS + B + (" -1) I5 +v n I5 m : +2n" o~ (1 \J)I5

-!-MM {N +N (2n —l)+(n -1) (N 5)}

}+ 8 [“:+(n2-1)2+2n2 ]f {v13+(1-v)14}:|

o+ M2 {N1+N4 @2n% - 1)+ @ - 1) N, -NS)}

2

) M,

12 +(N3+N6
S .
—.—2 I6+(N3+N6)M3M

4
1‘ .

2
- A
MS T (N6 + N7)

'“ 34(N-i-N)
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Here

22

26
33
34
5
36
44
45
46
35
56

66

25

I

Hi

2
1+ M, (Ny+3N

2
14 + (N3+N6) M4'

"MM

3 4(N6+N7) Y

2
_u
rM4 (N6+N7)

+ 3N, +N

2
L+ M ¢ T 3N, +Ng)

(N; + 3N

+3N, +N

I +MM 6 7 8)_

5 1 2(N3+3N

an

L (Ng+2N,+N

7 8)

+N

anMZ (N6+2N7 8)

6+3N7+N8)

n M1M2 (N6+ 2N, + NS)

7

2
an (N6+2N7+N8)

2 2 2 2 2

1+M1 1 (N3_+N6+n N7+n N8)+ J\r M3 (N7+N8)
. s 9
A

IS+M1M (N3+N6)+(N7+N8)( rUrM3M4+n MIMZ)

2 - 2 2 2 2 .
1+M2 (N3+N6+n N7+n N8)+ ur M4 (N7+N8)
= U =

IDra_ ' T qra

{f‘f’ (x)dx} dx
1 f {1} e

A.18.
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(ol Ry

ol R

ol Lo

L
L

L

[ Q. ifwr(x) dx}zdx
0 .
L {q;' 7 }2 W

x)y ax
s

F 0w Y @ ax

37

]

fj l:{?r R dx}. {qr [* e dx}:l &

In the above expressions use has been made of the orthogonality properties

of characteristic functions of beam vibration as given by equation (26). All the

'explicit expressions for the above integrals are detailed in the Appendix IiI.

Also for N discrete rings stationed at the points x

M

1

RS EE ’XN
N N
- = P
E ) o) M, i%l r &)
N , N ,
2 ¢ ), M, = %
j=1 T 4 =1 T &)
N E. A 2
i=1 EShL
(2)
N Ep. 2R 2
s . i i (1 =-v7)
i=1 EsazhL
N "R1 ARi
2
p
121 JhL
(1)
N Ep. Ag 2
z 1 1 (]."‘J )
i=1 EsahL
@)
N Er AR. 2
Z i i (1-v)
i=1 E aohL (38)
s contd. .



N R Ri
N, = 2.
¢ i=1 - Pgahl
p (2) At
N R ARi :
N, = >
7 i=1 P a2 hL
s
(3)
N ‘R ARi
Ng = 2 3
j=1 ¢ a hL
s
' @) .
Where pRi ) ERi , ARi and AR. are the. density, Youngs modulus, area
th '

~ of cross section and r"™ moment of area of cross section about the skin median
for the ring stationed at x = X, along the shell generator, .
Frequency equation (36) is a sextic in the frequency parameter~&~ . As is
-observed in the next section its solution involves obviously a more complicated
analysis and more digital computer time. Moreover the sextic could not be solved
exactly in the mathematical sense. So if in this case (especially when tall cylindrical
shells are cbnsidered) the assumption of zero hoop and shear strain is made, the
ensuing analysis is simplified and the sextic is reduced to a quadratic in-.a~, which
in turn could be solved exactly. The procedure is as follows.
The reduced form of the modal displacement function (28) is considered.
This is substituted into the expressions for the strain and kinetic energies of the
shell and the ring as given in the Appendix [IJ . Then the Rayleigh-Ritz method

is applied to yield the frequency equation

A B B B12
& | |l=0 (39)
A Agg By Bys
where ‘
a4 2,2 {2 2, ,4.2 .2 } 2 .2
All .._'?gr-i-s_n '?\r+ n ?\r+2\1n (n” ~ 1) Il+2(1 v) {n .1) IZ}

+0f @ -1 (8t N, Mlz)
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SO
‘ . 4 2( 2 4 2 2. (B Ry )
N A i} _r I

Aqs r I5 + 8n {n A gt v(n l)p I \7 * —
. I J."

A3 .
2 .2 F 4 2 .2

+2 (1 -v ) - 1) —ﬁ-r- 161 +n @ - 17 (8l + N, M; M,)

4 2°2¢( 2 2 2,2 2 2
= U - - -
A22 ; + Bn M {n n. +2vn (n ~1) I3+2(l v) (n” -1) 14}
+at @?-n? ¢ B+N2M22)
2,2 ‘ 2 2 2
= X
Bll n {n +1) (1+N3 Ml) + T (I.2+N3 M3 )
: ‘ A
2,2 T 2 2
Blz = n (o +1) (IS+N3 MIMZ) + n‘; ( 7\1_ Iﬁ + ur N3 M3M4)
2.2 2 2 2
B22 = n (n +1)(1+N3M2)+_ w (I4+N3M4)

The equation (39) was derived by using the energy expression for the ring and the
shell as given by Johns and Allwood [9] . There the ring was symmetric and the rotary
inertia of the ring was also not taken into account, To complete the solution the
ring eccentricity and rotary inertia has been 'mclﬁded. Also in allowing for the
effect of zero hoop and shear strain for the ring stiffened shell the energy expressions
derived in the previous section have been used. Again employing the variational

technique by Rayleigh-Ritz a frequency e(juation similar to (39) results with

. ] 1 t 1 ! t
different elements A11 , A12 , A22, Bl-l , B12 . B22 . ,
[} 4 1 /
All A12 B11 B12
Al Al | * B! B || ? )
12 22 12 22
P 2, 4 _ 4. 2 2 2
A11 = A11+2n BA - n (o 1) NS M,
2 4
A, = A, t2niBa, L St e? -’ No M, M,

o
I

2 4 4 2 2 2
99 A22+2n BW - n (n -1) N5M2
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_ .2 2{ 2 2,2 4
By = Byt A M3. @n + )Ny +0" (0" +2) N, +n NS}

+n M7 { 3 - )N+ @ -3) @ - )N, + (a7 —1)21\18}

y 2 2 2 4
. = A
B12 rﬁrM3M4 {(211 +1)N6+n (n +2)N7+n NSI

+n2MlM2{(3 n)N +(n —3)(n -I)N +(n -1)

=
1

2 2
92 M4 ‘L(Zn +1)N +n (n +2)N +n N81
2

M, {(3 n)N + (o2 - 3) (n° - 1N, + @ - 1) N}

It should be obvious of course that these analyses may also be applied to

a clamped free shell by the simple expedient of putting ER , P, equal to zero.

R
Such results are shown in Table 1.
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3. ANALYTICAL RESULTS

3.1 General

wt

The m.ajor purpose of the present report is to show the dependence of the
natural frequencies of cylindrical shells on the geometrical and material properties
e.g. length-to-radius ratio (L/a), radius-to-thickness ratio (a/h), Youngs modulus (E),
density (p) etc.

As derived in the last section the algebraic equations solved here are of
1st, 2nd, 3rd, 4th and 6th degree. Equations of first, bsecond, third and fourth
degree can be solved exactly, whereas an iteration procedure has been adopted to
solve the sixth degree equation in & given by equation (36).

For the sextic, a specified set of shell géom etries and ring characteristics,
an assumed number of circumferential waves n, and a specified set of boundary
conditions at each end, is selected. The effect of specified boundary conditions at
each end is incorporated by choosing the data for the beam vibration functions, ¢r ‘I’r.
An iteration scheme is then used to compute & . Starting from some initial
estimate for the frequency parameter & , the determinant is evaluated for
successive values of A until there is a change in its sign, indicating that a zero has
been bracketed between two successive frequency parameter estimates. Regula
falsi procedure is then employed to locate the zero to some preselected accuracy.
The entire range of the problems of interest can be covered by varying the initial
input to the determinant, i.e. by changing a/h, L/a, v o, n, bR/a etc, The number
of iterations required for coﬁvergence'is greatly reduced if close initial estimates of
the frequency parameter are available. Here the solutions developed for the
clamped-free shell case have been used as initial estimates for the clamped-ring

stiffened shell case.

3.2 Clamped-Free Shell

3.2.1 General
For any fixed values of n and axial wave number m (see Fig. 2) there

are three natural frequencies corresponding to three different values of the
1 B1 ; C 1’

several orders of magnitude higher than the minimum value and hence the lowest

amplitude ratios A In general, two of these three frequencies are

value of frequency corresponding to mainly radial motion, is of structural interest.

-
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These higher frequencies will arise only if inplane as well as radial inertia terms
are retained in the equations of m(;tion . Although these higher frequencies are
not to be studied here, all three inertia terms have been retained in developing
the results presented herein. |

Also, for a fixed number of circumferential waves the frequency increases
monotonically with an increasing number of axial half waves. This holds for
entire range of shell parameters {(a/h, L/a, v ) and for all boundary conditions.
Because of this fact the Figs. 4 et seq. are all drawn for m =1, i.e. for the
fundamental longitudinal mode shape. '

The behaviour is quite different when the number of circumferential waves n
is varied as is indicated in Fig. 4. The value of n which corresponds to a mode |
shape having the minimum frequency depends strongly upon the length-to-radius
ratio of the shell. This fact is obvious from the F igs. 4 et.seq.

In order to direct attention to the significant findings of the present study, in
many cases only the frequency envelopes are examined. Frequency envelope is
lower bound to the frequency spectrum for a given value of a/h, and form =1
andn 1. - ' '

Figs. 4 - 5 which are based on the cubic equation (32) show the envelopes of
frequency parameter curves for constant values of circumferential wave number n
and length-to-radius ratio (L/a), indicated by heavy line in the graph. Fig. 4
corresponds to a/h = 200 and Fig. 5 to a/h = 100, It is to be noted that for shells
of large length-to-radius ratio (L/a) the minimum frequency wili coi:respond to .
n=1li.e. to swayin‘g oscillations. The values of L/a for which the change from
n=2ton=1takes place depend upon a/h. For a/h. = 20, this occurs for
L/a =8 to 10, for a/h = 5000, it occurs for L/a > 100.

Fig. 6 shows in more detail part of the frequency spectrum for n =1 (ox
swaying modes only). It is obvious that except for very short shells thé curve is
independent of the radius-to-thickness ratio, which may be deduced from the
governing equations easily. For swaying the long shell behaves more as a beam
and membrane action predom inates.over bending action of the shell wall.

The solid line represents the frequency specirum for a clamped-free shell as
found by the cubic frequency equation (32) and the dotted line is that due to the
quadratic frequency equation (40) for which the assumption of zero hoop and shear
strain was taken. It is clear from Fig. 6 that for long shells this assumption
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does not introduce any significant change in the frequency parameter but for short
shells it raises the frequency considerably.,

3.2.2., Effect of Zero hoop and shear

It is interesting to note that for tall shells the assumption of zero
hoop and shear strain expressed by equation (27) leads to considerable simplification
in the frequency equation as contemplated by Johns and Allwood [9] without intro-
ducing any significant error in the minimum natural frequency. The ovalling
frequency (n = 2) for a particular shell geometry is given in Table 1 émploying
various sets of mode shapes &etermined by equations {18), (19), (20), (23) with or
without zero hoop and shear strain. The order of the frequency equations in each
of these cases iz indicated and it is seen that with zero hoop and shear strain assumed,
the cubic and sextic equations are reduced to linear and quadratic forms. In both
these cases for this particular geometry the difference in the natural frequency is
less than a few tenth of a percent.

For different shell geometries of interest to the designer (as indicated in
Ref. [:15:]) of steel chimney the influence of zero hoop and shear strain is seen by
comparing Tables 2 and 3 for the sextic and quadratic frequency equations employing
Fliugge theory. For n = 1 the difference is neaﬂy 15 to 18% for all the shell
geometries considered but for n = 2 the maximum difference is nearly 14% for short
thin shells (e.g. L/a = 10, a/h = 300) whereas it is negligible for long shells.

In Flg 7 the frequency envelopes for a clamped-free shell are drawn for
different radius-to -thickness ratios (20, 100, 500, 5000). The continuous curves
represent the envelopes corresponding to the cubic frequency’ equation (32) and the
broken ones correspond to the quadratic frequency equation (40). As length-to- radius
ratio increases the results a;gree closely with the quadratic frequency results
. (equation (40)) being slightly higher than those for the cubic (32). For the shells
of small length-to-radius ratio the difference is more considerable. This increase
in frequency parameter ( 4) of the quadratic (40) over the cubic (32) may be
attributed mainly to the assumption of zero hoop and shear in the former analysis
which, clearly, for short shells raises the frequency parameter considerably.

The inclusion of the clamped-pinned characteristic beam function lPr in the
quadratic analysis has made no significant difference to the results obtained for the

clamped-free shell as was seen previously in the results of Table 1.

~
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3.2.3 Dependence of frequency on circumferential wave number

Figs. 4 and 5 showed the variation of frequency factor A with L/a

for various v'alues of n and at a given value of ]_:/a the dependence on n is seen to
~ be large.

Fig. 8 shows this dependence of the frequency factor A on the circumferential
wave number in an alternative way. The three different curves correspond to
three different values of L/a, (1, 10, 100) and for a/h = 100, 1t is clear that the
lowAer the length-to-radius ratio of the shell the higher the value of n corresponding
to the minimum frequency. ¥For L/a =1, the minimum frequéncy corresponds to
a breathing mode with n = 6 whereas for L/a = 10 the ovalling frequency with n = 2
is more critical and a value of L/a as 100 the sway frequency (n = 1) is the one which
is critical. Here the dotted curve is due to the quadratic (40) and the continuous
- curve is due to the cubic (32), The difference in the results from these two equations
is again more marked in case of low length-to-radius ratio than ih case of high
length-to-radius ratio. For high values of n the frequency parameter seems to be

independent of L/a which is shown in the studies of Reference [1] .

3.2.4. Dependence of frequency on axial wave number

Further study indicates that as m increases the frequency increases
with the lowest frequency spectrum being for m = 1. This is shown in Fig. 9. Also
in this figure the predicted results of the present theory are compared with measured
results of Ref [4] . The agreement appears to be quite satisfactory.

The diminishing influence of higher axial wave number m , at the higher values
of circumferential wave number n on the frequency péram eter is clearly seen here.

Fig. 10 also shows a co"mparison betv:feen the results from preseni: theory and
. measured frequency parameters from Ref. [3] . The agreement is again quite

good. . The two curves for each cylinder tested correspond tom =1, 2,

3.2.5. Detailed Results

The values of frequency parameters, for those shells which may be
of interest to the designers of chimneys (as indicated in Reference [15] ) are given
in form of table 2 - 3. Table 1 showed that the results from sextic frequency
equation (36) give the best approximation to the frequency parameter from all the
atnalyses considered in this paper at least for one geometry. Table 2 gives more
detailed sextic results and the corresponding results due to cubic frequency

equatioh (32). The approach in both these cases was based on Flugge theory.
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The sextic results ére lower than those of the cubic.

For n = 1 the numerical difference in the results of both analyses appeafs
to diminish as length-to-radius ratio (L/a) incré’ases but the proportional difference
remains essentially constant,

In the case of ovalling with n = 2 the agreement of both sets of results is
better for all a/h considered and particularly for large values of L/a. - For example
for L/a = 10 the difference between the two sets of results is less than a percent
but for L./a = 50 the difference in the values is almost negligible. Thus for a
clamped-free shell the inclusion 6f the mode lL'r(x)_ (equation (23) ) which raises

the order of the frequency equation from a cubic to a sextic has no major significant

- effect.

Table 3 gives the frequency parameters for the clamped-free shells using
identical mode shapes but the energy expression due to Fliigge theory in the one case
and those due to Timoshenko-Love in the other case. Previous studies (refer-
ences [7 & 8]) have shown that for some modes of practical cylindrical shells the
effect on frequency of using different energy expressions is very small, Comparing
the frequencies obtained with the different energy expressions the percentage
difference between the extreme values of A% for the modes chosen was less than
1 percent for all geometries considered (involving a wider range of values of L/a
and a/h than that shown in Tables 2 - 3) It is seen that this difference is even smaller
for those geometries considered in Table 3; being detectable only for low values
of L/a and a/h i.e. only for the values a/h = 50, n=1, L/a =10, 15 and a/h = 100,
n=2, L/a =10, Also shown in the Tables 2 - 3 are the values of frequency
parameter for an infinitely long shell (L/a= « ). For n =2 the increase in
frequency parameter as L./a decreases is a measure of the constraint effect of the
~ clamped base. Thus the error in calculating the ovalling frequency for a short

shell from the simple ring formula of equation (34) may be considerable.

3.3 Cylindrical Shell with Ring Stiffened Upper End -

3.3.1 General

Figure 11 shows frequency envelopes for a clamped-free shell
(indicated as a continuous curve) and for a shell with a clamped and a ring
stiffened upper end (indicated as a broken curve). Two values of a/h (= 100, S5000)
a;re taken and the ring characterist.ics are bR/a = .03 and dR/a =.09 (i.e. a

slender ring). 427



Clearly the ring has had a significant effect in raising the frequencies for
n > 2 as may also be seen by comparing Tables 2 and 4. For n =1 effect is to'
slightly lower the frequencies. . |

Reference [16] noted that the behaviour og such a shell can be considered in
the following three regions:

RegionI : where 0 € n < n,, the attached rings simply add mass to the system

and thus constitute more inertlia than stiffness so that the natural frequency of the
system is slightly lower than the corresponding frequency of unstiffened shell at least
for the fundamental mode. Comparing the Tables 2 - 3 with Tables 4 - 8 it is clear
that the frequency parameter for n = 1 is lowered by the addition of a stiffening ring.

RegionII : wheren, < n < n,, the attached ring contributes the dominant stiff-

ness, causing an abrtfpt upswee:; in the frequency spectrum as compared to an un-
stiffened shell. For thinner shells this rise is higher than for thicker shells as is
evident in Tables 4 - 7, For example in Tables 4 - 6 for eccentric ring for

L/a = 10, n = 2 the frequency parameter goes on decreasing for a/h = 50 - 200

and then it starts increasing for a/h = 250, ‘300.

Region IIT: wheren > n, the ring motion becomes so small, compared to inter
ring panel motion, that the frequency of the system approaches asymptotically to
that of a clamped-clamped panel, and the mode shape becomes predominantly one
of panel vibration. In this region, the equivalent orthotropic analysis are
evidently not applicable and the frequency curve may become flat and may have a

second minimum resulting in numerous resonances in a narrow frequency band.

1

3.3.2  Effect of zero hoop and shear strain

The 'effect of zero hoop and shear strain in the case of a ring stiffened

shell can be studied from the Tables 4 and 5 and Tables 6 and 7. Tables 4 and 6
~ correspond to the sextic frequency equation (36) and Tables 5 and 7 correspond to
the quadratic frequency equation (40). This quadratic is reduced from the sextic
by assuming zero hoop and shear strain. |

It is observed that this assumption increases the value of frequency parameter.
This increase is more marked for the shell of small length-to-radius ratio than for
the shells of large length-to-radius ratio (radius-to -thicknéss ratio being held
constant). From Tables 4 and 5 for the eccentric ring when a/h = 50 and n = 2, the
increase in frequency is 3.5% for L/a = 10 and 0. 15% for 1./a = 50. Secondly for

LY
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a/h =300 and n = 2, the increase in frequency due to this assumption is nearly
20% for L/a = 10 and 5 % for L/a = 50,

3.3.3 " Effect of Ring Mass

As shown in Figure 12 omitting the ring mass increases the
frequency parameter, This increase is considerable only for very short shells

and decreases rapidly with increasing length-to-radius ratio (L/a).

3.3.4  Effect of Ring Eccentricity

This effect can directly be studied by observing Tables 4 - 5, Table 4
gives the frequency parameter for sextic with eccentric ring (indicated by 'SFE') and
sextic with symmetric ring (indicated by 'SFS'). Table 5 gives similar results for
quadratic indicated 'QFE' and 'QFS’ for eccentric and symmetric ring respectively.

. The effect of eccentricity with the smaller ring (I), shown in Table 4, 5 is highly
significant in increasing the frequencies and should clearly be included in shell
analyses. Its effect increases with a/h and decreases with L/a. For example when

'L/a=10, n =2 and a/h = 300 the externally stiffened shell has a frequency almost
30% higher than the symmetrically stiffened shell. '

The corresponding results for the larger ring (II) as in Tables 6, 7 show less
beneficial effects of eccentricity in general. In particular eccentricity may be seen
to lower the frequency as compared to symmetrically stiffened shell.

The reasons for this have not yet been analysed in depth but it is believed that
the stiffness of this larger ring has been more than sufficient to cause the funda-
mental mode to approximate to that of a clamped-simply supported shell in which
case the end ring then makes a lafger contribution to the higher inertia than it does to the
stiffness and clearly higher the inerfia of the eccentric ring compared to the
 symmetric ring would then produce a lower shell frequency. |

Some further remarks about internal and external stiffening are given in
References [12, 17, 18] . '

It is not unreasonable to expect a shell internally ring stiffened to respond
differently from an externally stiffened shell. However it might be anticipated that
the differences between the internal and external ring stiffening would be small as
compared to their differences with a symmetrically placed ring stiffener if the

eccentricity is relatively small (less, say than 5% of the shell radius).
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Although the work of Hu, Gormley and Lindholm [16] indicates that there
is very little effect on the frequencies due to ring eccentricity, but the present
analysis-, the analyses due to Sewall and Naumann [4] Mikulas and McElman [11]
Egle and Soder [17]} and Forsberg I:lS] indicate that there is a definite effectlof
eccentricity. This problem needs to be examined further by the means of carefully
carried out experiments with integral or welded ring shell construction,

Table 9 shows the values of frequency parameters for clamped-simply
supported shells. This may be compared with the values in Tables 6, 7 and 8 for the
case of astiffer ring. It is seen that in case of sextic (Table 6) the values of
frequency parameter are slightly less than those of Table 9 for n = 2 case.
Whereas Tables 7 - § give values of frequency parameter & which are slightly
higher than Table 9 in case of ovalling (n = 2). It may be concluded that sextic
gives better results than other cases. For swaying mode (n = 1) the frequency
is greatly increased in case of clamped-supported shell in contrast to slight
decrease in frequency in case of clamped-ring stiffened shell as comparéd to the

clamped¥free shell.

3.3.5 Influence of Ring Stiffness

For a particular shell geometry described in Table 1 the effect of a

ring on the minimum frequency has been studied and the results are given in Table 10.
It is found for this particular shell that only a low value of ring stiffness is needed
to bring the natural frequency close to that which a very stiff ring would produce.
The maximum possible increas.:e in natural frequency of this shell with a very stiff
end ring over a shell with no ring is only about 25%. Observing the results in
Table 10 it is seen that as the ring stiffness increases the upper end amounts to
a simply supported end.

Figure 13 shows the frequency envelopes for a/h = 100, 5000. Continuous
R/a =, 003, dR/a = .009) whereas broken
curves correspond to more stiff ring (bR Ja =,03, dR /a

ring characteristics). It is seen that for thick shells (a/h = 100) a stiff ring has

curves correspond to less stiff ring (b

=,09, 10 times of first

considerable gain in frequency parameter over a less stiff ring in the entire range
of L/a (except for n = 1), where ring has prédominant inertia and not stiffness) but
for thin shells (a/h = 5000) the frequency parameter is more or less the same in

both cases. This disparity may again be attributed to the effect of ring mass.

~
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Figure 14 shows the dependence of frequency parameter on circumferential wave
number n with a particular ring (bR/a =,01, dR/a = ,{03) and for shells of a/h = 100
and I./a = 10;100. The broken curve corresponds to sextic (36) and continuous

curve to the quadratic highlighting again the effect of zero hoop and shear strain.
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4, COMPARISON WITH RESULTS FROM EXACT ANALYSIS

4,1 General

An exact solution approach for equations of motion has been
developed by Forsberg ELBJ for the case of ring stiffened cylindrical shells.
This approach is conceptually different from the one employed here. Brief

descriptions for this theory are given in the Apﬁendjx V.

In order to compare the results from the exact analysis and the
variational solution the following shell geometries and other parameters
were selected:

Radius -to -thickness ratio (a/h) has two values 250, 600, and for
each a/h there are two length-to-radius ratios i.e. 9, 12. Axial wave number
m takes values 1, 2, 3 and for each value of m circumferential wave number,

n varies from 0 to 10 in steps of 1. Poisson's ratio, v 1is.3.

4.1.1 CLAMPED-FREE SHELL:

These boundary conditions are typical of an unstiffened
chimney stack. A comparison of frequency parameters as computed by
the two approaches is given in Tables 11 and 12. The agreement between
the available results of these two theories is very satisfactory, especially
for the minimum natural frequency parameter, which in the case of the
present analysis is slightly lower, in all casés, than its counterpart
by Forsberg's exact analysis. The difference between the two results is
very low and in most cases it is only few tenths of a percent, e.g. for
a/h =600, L/a=12, m =3, n=3itisonly 0.2%. The maximum difference
in the lowest natural frequency parameter ia 2.5% for a/h = 250, L/a = 12,
m=2, n=3,

Differences between other freqﬁency parameters than the
minimum is also within 2% in most of the cases except the swaying frequency
parametex. The difference seems to be more pronounced in this case for

m » 2 as can be seen from tables 11 and 12.
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For the fundamental axial mode (m = 1) andn = 1, the
diffefence between the two results is not very pronounced and it decreases
with increasing I./a and a/h. For a/h = 250, L/a = 9 the difference is 1.1%
which is the same as for a/h = 600 and L/a=9. For a/h =250, L/a =12
the difference between the sway frequency parameters given by the exact
approach and the present variational approach is only about 0.4% and for
a/h =600, L/a = 12 it'is only 0. 35%,.

When m = 2 the difference between the two results is very
pronounced in contrast tom = 1. For a/h = 250, L./a = 9 it is nearly 13%
but for a/h = 250, L/a = 12 it is 7% showing that it decreases with increasing
L/a.

Figures 15 and 16 represent an alternative way of comparing
the results of the two theories. Two figures correspond to two different |
values of a/h i.e. Figure 15 corresponds to a/h = 250 and figure 16
corresponds to a/h = 600. Here also it is obvious from the frequency curves
from either sides of the minimum natural frequency that present variational
technique gives low values of frequency parameters than the "exact” theory
adopted by Forsberg [1§ . Also the overall agreement is quite good as
seen in the figures 15 and 16, In case ofm =2 for axisymmetric and sway
modes the difference in the frequency parameters is more pronounced but it
decreases with increasing I./a. For higher values of n there is virtually
no effect of a change in L./a or in the axial wave number m, also the two sets
of results agree very closely in that region,

4,1.2, CLAMPED-RING STIFFENED SHELLS

In case of the shell with clamped base and top stiffened by a
stiff elastic ring (breadth/shell radius = 0.1 and depth/shell radius = 0. 3)
the }esults of the two theories are seen compared in figures 17 and 18 and
in table 13. | |

In the case of sway (n = 1) oscillations the solution of both
theories agree very closely where the dominant ring inertia results in

reducing the frequency parameter. The results due to a sextic frequency
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equation in the authox's theory are slightly higher than Forsberg's [.8]
results by a maximum of about 5% in the cases considered for swaying
oscillations. |

In the case of the circumferential wave number n > 2 i.e.
for ovalling and breathing, the frequency parameters given by the sextic
frequency equation of present theoxy are lower than the corresponding
results given by Forsberg's (18} method. The frequency parameters
given by the quadratic frequency equation (which is obtained by reducing the
sextic due to the assumption of zero hoop and shear strain) is much closer
to the results given by the Forsberg 18] method than those from the sextic
frequency equation as can be seen in the figures 17 and 18. For ovalling
oscillations {n = 2) Forsberg's results lie in between the sextic and quadratic
frequency equations of the present theory. For n> 2 the results from the
present theory are slightly lower than Forsberg [i§ method. This may be
due to slight differences in the use of the particular ring theory, although
the basic shell theory used in both the cases in that due to Flugge. Forn>5
in the case if the given geometries the results of both the theories agree
very closely. _

It may be remarked, however, that the shell having one
end stiffened by a very stiff elastic ring may be approximated as having a
simply supported end. Thus the frequency parametexs found for a clamped-
ring stiffened shell will be nearly equal to, but not greater than, the clamped-
_simply supported shell-theoretically. The results of the sextic frequency
equations of the present theory for clamped-ring stiffened shell are always
lower than clamped-simply supported shell. But this is not true for the
reéults of quadratic frequency equation of the present theory and
Forsberg's method. This fact is observed by reading the table 13where, for
a clamped-ring stiffened shell ( ring: bR/a =, dR/a =.3), the results from
the sextic frequency equation of the present theory and Forsberg's theory [1§]
are compared with the results obtained for a clamped-simply supported shell

from the cubic frequency equation of the present theory. It is evident from

A-34-



table 13that the results of the sextic for a sufficiently stiff ring are very

near to, but lower than, those for the clameed-simply supported case.
Available results of Forsberg's theory are higher than those for the clamped-
simply supported case.

For the shells with clamped base and with an elastic ring at
the top and two intermediate rings of equal dimensions in case of L/a =9
and three intermediate equivalent rings in case of L/a =12, the curves are
given in figures 17 and 18, It is seen that in region I the swaying frequency
is lowered in both the cases. This is because the attached rings contribute
more inertia effect than stiffness effect. In region Il where 2.<n <8 the .
attached rings contribute the dominant stiffness decreasing with n, so that
the frequency parameter is much higher than that corresponding to the
clamped-free or clamped-ring stiffened shell. In region III, where n> 8,
tﬁe ring motion becomes so small compared to the inter-ring panel motion
that the frequency of the system approaches asymptotically to that of clamped-
ring stiffened shell.

Thus it is obvious that with many intermediate rings swaying
becomes more critical but ovalling or breathing osciliations may be avoided.
These results were obtained by using Forsberg analysis {1§] .

The major disadvantagé of the exact method by Forsberg [13:'
is that it must rely on an iterative technique to find zeros of a determinant.
When such a zero is bré.cketed, the eigenvalue can be accurately computed.
However there is no assurance that all of the roots of the system will be
located and if the eigenvalues are very closely spaced the technique employed
may well miss many pairs of roots without giving any indication that eigen-
values have been missed. This fact is obvious by lobking at the tables 11,
12, 13 where for this reason not all values of frequency parameters are
given using Forsberg analysis particularly form = 3. For the present
analysis . with a small finite number of degrees of freedom there are
well defined mathematical techniques for finding all of the roots of the system
within a specified interval. This fact is very much obvious if one looks at

the tables 11,-12, 13.
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Also, computer time involved in finding the exact solution
is very great per eigenvalue in Forsbérg's method. In the present analysis
when solving the quadratic and cubic frequency equations this is negligible
and a great number of frequency parameters can be calculated in seconds.
Even if we use a sextic the run time is much less as compared to the exact
solution because solutions corresponding to the quadratic frequency equations
give really good initial estimates of frequencies.

Thus for engineering applications and for determining the
variables discussed here the present analysis seems generally preferable
to the exact solution outlined by Forsberg {18 . Also the input data a/h, L/a
and v, m, n, and the ring characteristics (bR/a, dR/a) can be handled with
great ease and without any complication. It will be seen in a later section
that the predicted frequency results of the present analysis very well agree
with the test results. It must however be admitted that for the prediction
of internal stress resultants in the shells, Forsberg's method would be

more accurate than that of the present analyses.
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5. CONCLUSIONS

A theoretical analysis for the free vibration of clamped-free and clamped-
‘ring stiffened shells has been developed and implemented for digital computer
solution. Flow charts of the programs are given in the Appendix [1V] . The
computer used was an I.C, L, 1905. The analysis is capable of handling cylindrical
shells of arbitrary length-to-radius ratio (L/a) and radius-to -thickness ratio (a/h).
In the case of the stiffening ring it caters for such arbitrary ring characteristics
as ring breadth (bR) and ring depth (dR) and their arbitrary positioning on the shell.
Thus a range of shell geometries with or without stiffening rings of desired size
may be handled with convenience. Due consideration has been given to such effects
as:

(a) Choice of the appropriate shell equations of motion

(b) Choice of modal forms, influence of boundary cbnditions

(c¢) Rotary and inplane inertia effects

(d) Effect of zero hoop and shear strain

From the results of this study, the following conclusions appear to be valid.
1. Elementary beam vibration functions are satisfactory approximations to the
longitudinal components of the inode shapes of cylindrical shells involving clamped
- free ends or clamped-ring stiffened ends. .
2. The assumption of zero hoop and shear strain leads to considerable simplific-
ation in the analysis. In effect it lowers the degree of the frequency equétion to be
solved from. cubic to linear or from sextic to quadratic depending on the upper end
boundary condition. The influence on the frequency of this assumption is small
for tall shells, but for short'shells it can increase the frequencies .considerably.
Thus for engineering applications for tall shells such as chimneys this assumption
may be made so as to avoid undue complexity in the analysis without introducing
any significant error in the frequency. ,
3. For ring stiffened shells with a clamped base for modes involving swaying
oscillations (n = 1), the ring stiffness has little influence on the frequency. The
primary effect then is to add mass to the system and consequently to reduce the
frequency of the shell. The eccentricity effects are also negligible for the swaying
(n = 1) mode.

For modes involving higher number of circumferential waves there is a
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significant effect of the ring stiffness and the ring eccentricity also has a profound
influence on the frequency spectrum.

4. The ring rotary inertia, on the basis of the present study, appeafs to have
negligible effect.

5. The contributions of the more exact Flfigge shell theory show very little
effect on the frequency spectrum for the shell_s considered in this report. In the
author's opinion these minor refinements only increase the complexity of the
analysis with negligible increase in the accuracy in the results as compared with
the Timoshenko-Love theory. _

6. Comparison with exact analysis shows that 'a few results of the present
analysis are fractionally lower than exact results for the cases considered. The
reason for this may be computational error incurred in evaluating the quantities
involved e.g. the iﬁtegrals involving characteristic beam functions etc, and
overall computational erroxr. Though, as one may see, tllle trend has not been
for the worse. Also the exact analysis is not "exact" in the strictest sense of
the term.

The above discrepancy is more marked in the results for the clamped-ring
stiffened shell. The difference here may be attributed partly to the error in
computation and partly to the difference in the structural idealisation of ring
adopted in the two approaches. However, the problem remains unresolved and

will be studied later.
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, APPENDIX I

This appendix contains pertinent details of the analysis carried out by
Johns and Allwood in reference O] The problem concerns an investigation of the
vibration characteristics of a vertical, cantilevered shell, with its lower edge
restrained against displacement and its upper edge Supported on a stiff reinforcing
"ring (Fig. 3). The investigation was prompted by the recent collapse of such a
shell in the form of a tall, slender chimney stack when subjected to a high, sustained
- lateral wind. The stack was observed to oscillate in an ovalling mode of large

amplitude prior to collapse.

BASIC THEORY

Expression for the strain energy (US) and kinetic energy (TS) in a thin
uniform shell are given by Timoshenko-Love theory as:-
2
"L _ Esh { 2
u,

T *£ [, 21-v%)

X -2

v = (v.g +w)2 +
a .

_ 2
1 1 2 h 2 1 2
3 (1-v) (V,X+ T Us Y o+ o l:w’xx+ 34 (w,ee v,e)

2v Co2-v),. 2 |
A+ 7 Wi (W, gg v,_e) + 5 (W’xe v,x) :|} adedx (I.1)
a . a
2r 1,
T =J‘ J‘ ieh [ﬁ2+w}2+\ir2] a dedx o (1.2)
8 A s
0]

where displacements u, v, w are denoted in Figure 3.

The corresponding equations for UR and TR’ for a uniform, circular ring

at any position x = galong the above shell are

: 2| E_ A E_.I
U, = R R 2 R'R 2 ‘
R J’ [ 5 (V.5 +w)£ + = (W’ee - Vig )L ] ads (1.3) |

0 2a 2a4

f

T 2m °RER .2 .2 | |
R f 5 [{1 +v +€v] ade (I1.4)
A L. .
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In the analyses which follow it is assumed that any stiffening ring is
symmetrically disposed about the mid-plane of the shell and no effects due to ring

eccentricity are introduced. <

Vibration of Shells Fully Clamped at One End and Ring Stiffened at the Other

If is shown that
(a) simplified eighth order equations in w of the Donnell type are not
generally acceptable, _
(b) the effects of axial constraints are important (ref, 1),
(c) the assumﬁtion (or not) of zero axial slope (w, $ = 0) at x = O will
introduce little error;
(d) the assumption of zero hoop and shear strain for long shells can

probably be justified, i.e. relations

1 (1.5)
v, + — u, =0
a 0
may be assumed for tall shells, and these cause considerable
simplification to eqns. (I.1) and (I.3).
Assuming the above results and for a radial mode of the type
w = C f(x) cos n g sin wt, (I.6)

the following expressions can be obtained, by using equations (I.53), for the axial

and circumferential modes:

u = - 9—‘;’2-[ f'(x) cos nf sin wt (I.7)
n
C - .

vE T f(x) sin nd sin gt (I.8)

Substitution (I.6 - I.8) into equations (I.1) and (I.2) yields the following expressions

for the strain and kinetic energies of the shell:

3 29
EgLE () . 12 42 2 (1)
Ug = 73 73 73 Tl) X f2 7 X
24 (1 -v7) a (1-n") n"h n
2
2e“ v
+ = X+ X, 0 | (1.9)
(1-n")
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T = w'y L X, + X ; (1. 10)
s 2 n2 n%(14n°) 2 3
.where '
1 2
X, = f (f,..)" d
(o}
1 2
X2= f (f’;{)'dx’ .
o
1 :
2 .-
XS_ j‘ - dx .
o
X, = [ £ fi, d% and Py = a/L
4_f e anx-x/L,e-a
(o)

The strain and kinetic energies of the ring, which is at the end of the shell
corresponding to X = 1, are given by the following expressions assuming that the

centroid of the ring lies on the mid-plane of the shell:

E 7
U, = —R—I-‘—— (1 - n%)? [f- ] (1. 11)
R =1

2a

w21'r2. Aa

R (Hz )I:x=l]2 | - @iz

The function chosen for f (x) expressed in terms of X = x/L was

?

f=AX(R-3) +BX (X -6) (L. 13)

which satisfies the following boundary conditions:

x=0(X=0 u=v=w=w,_ =v, =0;
- X X

x =L E=1) u, = w, =0

These correspond to an encastre and axially -clamped base and approximately to
zero axial stress and edge moment at the ring~stiffened end.

Forsberg [1] shows that for a shell supported at both ends the minimum
naturél frequency is always associated with an axial half-wave length equal to the
length of the shell. The function given in equation (I.13) allows tﬁe half -wave

Iéngth to take a value larger than the shell length.
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The energies of the ring and shell given in equations (I.9 - I.12) have
been evaluated for the function‘(I. 13) yielding an expression for the natural frequency
s in terms of the constants & and B. The values of the constants have been
~determined to give the minimum value of frequency  and the result is given below

in terms of o, where o = E/-B + 2.5 ;

5 (1.14)
dZU +b20l + c2

2
o
8 n2(1 —n2)2 [ dl +b1a +cl ]
——5 I+
1+n

where B8= h2/12a2, and

d1 =4(R-f{)+e?(24q+6s)+128413,
b, = % (2q+3s),
3 2 a 4
c, =% € (q-s)+§- e p;
. - 2
TR B e
n (1+n™)
- 2
by= It T
n (l+n)
19 3 e2
2% B0 Y F T2
_ n (14n”)
where
e = a/L
12E, 1, (1 - 2) ’
R = R R( v
3
ESLh
R = PR AR
_pShL :
g = 2d-v) 1
n2 5n2(1+n2)
g
5(1-n)
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and o is obtained from the solution of quadratic

2 : '
a” (@b, -bid) + 2 (dc, - e d)+(bc, -cb)=0 (1. 15)

In case of practical steel chimneys of L/a of 20 ox more the radius-to-thickness
ratio is commonly greater than 100 and the minimum frequency in ovalling is
associated withn = 2, Chimneys have been observed ovalling in this mode when
subject to steady wind conditions creating an exciting force by vortex shedding.

If a shell of these proportions has no stiffening, equation (I.14) simplifies to
n2 (1 -'nz)2
(1+n2)

It may be seen that for values of the parameter R/e4p greater than 200 the

A={1+1.24e2(1+10e2p)} 8 (1. 16)

ring is sufficiently stiff to amount to a simple support and it may be shown generally

'~ that for this range of practical chimneys equation (I. 14) then simplifies to

2 2,2
‘ n (1-n7)
A =
{ 1+ 240p } 8 i 1.17)
(1+n")
For very long shells eqns. 1.14, I.16 and 117 all yield
b= sl @ -1/ (2+1) (. 18)

which is the well -known formula for 'ring’ circumferential vibration modes.
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APPENDIX II

Tables of Characteristic Functions Representing Normal Modes of Vibration

of a Beam.

In the following are given characteristic functions of beam vibration which
have been mainly used in the analyses. For each frequency there is a definite shape
in which the beam will deflect while vibrating harmonically; this shape is called a
normal mode of vibration of the beam. The mathematical expressions which define
the normal modes are called characteristic functions.

The purpose of this appendix is to provide tables of the characteristic
functions for the type of end condifions which are used in the analysis i.e.

(a) clamped-free (b) clamped-supported. Such tables are needed in obtaining
complete numerical solutions of the problem.

The detailed derivation, properties and numerical values of these characteristic
functions are tabulated in the book by Bishop and Johnson [1 4] . Only the relevant
data for these two types of boundary conditions will be presented in the following.

It is shown in the above reference [14] that each of the functions for a given set of

boundary conditions satisfies the differential equation

d4 ¢r 4 iv
= p. ¢ or ¢ = ¢ (11.1)
dx4 T T r r

It is also shown that the set of characteristic functions tbr(x), (r=1, 2, 3,....)
satisfy the so-called orthogonality relations, e.g. ’

I L

- ¢ b = '

T j; P @ 0 0 S o (I1.2)

where Grs is Kronecker delta. Consequently the set of function is orthogonal in

the interval 0 €£x €L
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DATA FOR CLAMPED-FREE BEAM

Characteristic function and its derivatives

"
'

¢ = - - i - gi
I‘(x) cosh p X —cosp X -cC, (sinh prx sinp_x )

1 dé¢
r ’
. _ = ¢ = si i - -
pr ™ - (x) = sinh P X + sin P X - ¢, (coshprx cosp_x )
2
1 d ¢r o (11. 3)
_— 7 = 'L (x} = cosh px + cos px=c_ (sinh p X + sin prx)
P dx
r
3 _ :
1 d ¢ ¢ .
—_—, — = (x) = sinhp x . _
13]:3 dx T r -sinpx-c, {cosh p X + cos prx)
Boundary values
¢ = ! =
(@ = ¥ (0) = 0
¢II - ¢ff, -
= 7wy = 0
P, and c.are given by the transcendental equations
coshprL cosprL +1 =0 (I1.4)
. sinhprL - sin prL (L5)
r coshp L +cosp_L ’
r r
DATA FOR CLAMPED-SUPPORTED BEAM '
Characteristic Funétions and its derivatives
] - - - . _ ai
r(x) cosh q X - cosq X dr (smhqrx sing_ X)
1 dwr ] |
-a-; = - ‘\Ur (x) = smhlqrx+ sinq_x - dr (coshqrx - cos qrx)
(11. 6)
1 dPu
—_ I = ¥ (x) = coshq x+cosq x -d_(sinhq_x + sing_x)
2 2 T T r r r
qr dx .
1 d3 Ipr 4 . :
-(-]—--3 | dx3 = 1IJr(x) = smhqrx -sing X - dr (coshqrx + <.:os qrx)
T

A -47-



Bpundary Values

I
O.
.

b (0) = ¥ (0)

(L) =¥ (L)

n
o

qr and dr are given by the transcendental equations
i - sinh = 0 1.7
sin qu cosh qu 31.n qu cos qu (I1.7)

p=1 - . 08
d = cotqL cothqr; | (11.8)

Values of P C. and q. c:Ir

r prL . qu dr

1 1.8751 041 | 0.7340 955 3.9266 023 | 1.00077730

2 4.6940 9113 | 1.0184 6644 7.0685 8275| 1.00000144

3 7.8547 5743 | 0.9992 2450 | 10.2101 7613{ 1.00000000

4 ]10.9955 4074 | 1.000033553 13.3517 6878 | 1.0000 0000

S | 14.1371 6839 | 0.9999985501 | 16.4933 6143 1.0000 0000
Forr > 35

pL=~ 2r-1) w2 QL = (4r+1) /4,

c = 1.0 o, dr ~ 1.0

Characteristic functions and their first derivatives are tabulated in the

Tables I1.1 - II.5 for these two cases.
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1

TABLE II.1

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

First Mode

x d d
— ) &7 1 ¢l " ' [bl
L 1 == 1 Y=
_ 1 Py dx 1 9 dx
0,00 0,00000 0.00000 0.00000 0.00000
0,02 0.00139 0,07397 0.,00600 0.15089
0,04 0.00552 0.14588 0,02333 3. 28940,
0.06 0,027, 0.2572 0.05114 0.41566
0.08 0.02168 0.28350 0,08834 0,52955
0,10 0.0335% 0.34921 0,13400 0.63116
0.172 0,04784, 0.41286 0.13715 0.72055
0.14 0.06449 047446 0, 24585 0.79728
0.16 6.08340 0. 53400 0.31214 0.86296
0.18 0.10452 0.59148 0. 38208 0.91623
0,20 0.12774 0.64692 0.45574 0.95776
0.22 €.15301 0.70031L 0.53221 0.98775
0.24 0.18024 0,75167 0.6105% 1.00643
0,26 0.2093 0.80100 0.63999 1.01410
0,28 0,24030 0.84832 0.76953 1.01105
0.3 0,21737 0,89364 0.34852 0.99764
0.32 0,30730 0.9396 0.92601 0.67427
0.3 0.34322 0.97831 1,001°9 2.94137
0,36 0.38065 Jl.01mm 1.07363 0,899.0
0.38 0.41952 1.05516 1.14233 0.24206
0.40 0.45977 1.09070 1.20675 0.79079
0,42 0.50131 1.12435 1,26626 0,72427
0,44 0.54408 1.15612 1.37032 0.65132
0,46 0.58200 1.18606 1.36841 0.57226
0.48 0,63301 1.21418 1,41005 0.43755
0,50 0.67905 1.24052 1.544%5 0,39794
0.52 0,72603 1,26512 1.47245 0.30410
0.54 0.77392 1,22801 1.49253 0.20675
0.56 0.82262 1,30924 1,50435 0.10681
0.58 0,8709 1.32884 1.50922 0.00440
0,60 0.92:27 1.34685 1,50550 - 0.07015%
0.62 0.97309 1,36334 1.493%3 - 0,20332
0.64 1.02451 1.31834 1.47357 - 0,073
0.66 1.076.6 1.39191 1.44537 - 0.2057
0.68 1.17889 1,40410 140013 - 0,512,
0,70 1.18175 1,41407 1,36:93 - 0.511A7
0.72 1.23500 1.42459 1,3131) - 0,70%M
0.7 1.58659 1.43302 1.2532% - 0.90117
0,76 1. 34047 1.44032 1,13741 - 0,78994
0.73 1. 39660 1,44656 2,11418 ~ 0.97420
0.80 1.45096° 1,45182 2.03457 - 1,05270
0.82 1.50549 1.45617 0.94329 - 1,17554
0.24 1,56016 1.45068 0.35795 - 1.19210
0.86 1.61496 1,45245 0.75194 = 1.25137
0.88 1.66985° 1,46455 0.65151 - 130443
0.90 1.72420 1.46607 0,557 - 1,34760
0.92 1.77920 1.46710 0,449 - 1,39673
0,94 1.233.483 1.46773 0.33952 - 1.42621
0.96 1.69953 1.46805 0.22752 - 1.42727
0.98 1.94494 1.46817 0.12410 - 1.44996
1.00 2,00000 1.46819 0.00000 - 1.45420
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N
TABLE II. 2
CHARACTERISTIC FUNCTIONS AND DERIVATIVES

Second Mode

o

d ' dy

X ¢, R , w1 %

L dx dx

Py - Eb)

0,00 0,06000 0.00W0 0, 00000 0.00000
0.02 0. 008573 0.1779 0.01904 0.206276
0.04 0.03301 0.3%62 0.07241 0.48557
0,06 0.0717¢ 0.48253 0.15446 0.66857
0,08 0.1230% 0.60754, 0.25958 0.81207
0,10 0.18526 0.71475 0,38223 0.91666
0.12 0.25670 0.80428 0.51697 0,93325
0,14 1 0,33573 0.67631 0.6585), 1.01310
0.16 0. 42070 0.93108 0,50176 1.00789
0.18 0,51002 0.,96892 0.94192 0.94966
0.20 0.60211 - 0,99020 1.07449 0.90088
0,22 0.6954, 0.99539 1.14534 0.804:41
0,24 0.78852 0.9%50% 1.30078 0.68345
0.26 0.,87992 0.95970 1.33759 D.54152
0.28 0.96127 0.92013 1.45308 0.33242
0.3 1.06227 0,80707 1.49510 0.21017
0.32 1.13002 0.80136 151208 0.0289,
0.34 1.707% 0.72389 1,5030% - 0.15704
0.% 1,26626 0.63565 1.46765 = 0.3,350
0.38 1.37141 0.53764 1.40611 - 0,52625
0.40 1. 36694 0.43004 1.31923 - = 0.70122
0.42 1., 40207 0. 31665 1.20839 - C.B8456
0.4 1.47619 0.19593 1.07550 - 1,01270
0.46 1.L87 0.06995 0.92292 - 1.3
0.8 1.43920 - 0.06012 0.75248 = 1.25090
0.50 1.4271 - 0,19307 0.57015 - 1.33577
0.52 1.4029%9 - 0.32772 0.37700 - 1.39515
0.5/ 1.35578 - 0.46291 0.17715 - 1.42770
0.56 1.31600 - 0.59748 - 0,0253% = 1.43265
0.58 1.25365 - 0.73034 - 0,22061 - 1.40978
0.60 1.17895 - 0,86040 - 0.42268 - 135944
0.62 1.09272 - 0.98667 - 0.60973 - 1.28256
0.64 0.9938/, ~ 1.1o821 - 0,73413 = 1.18038
0.66 0.88531 ~ 1.22416 - 0,942, - 1.05549
0.68 0.76419 = 1.33373 - 1.08158 - 0.90072
0.70 0.63410 - 1.4%24 1 . 1,19s382 - 0.7T612
0.72 0.49475 - 1.53113 - 1,29136 - 0.56793
0.7, 0.34687 ~ 1.61791 - 1.35388 - 0,37806
0.76 0.19123 - 1.69625 - 1.79858 - 0.18205
0.78 0.02865 - 1.765G2 - 1.41019 0.01800
0.80 - 0,34007 - 1.82082 - 1,79351 0.21752
0.82 - 03109 - 1.87901 - 1.3290 0.21256
0.8 = 0.49261 - 1.92267 - 1.277126 0.59923
0.86 - 0.674P4, - 1.9531 = 1.18004 0.77383
0.88 - 0,800 - 1.985%0 - 1.05919 0.9323
. 0.90 = 104750 - 2.00653 - 0.91715 1.07323
0.97 - 1,23600 - 2,02097 - 0.352%2 1.19203
0.94 - 142080 - 2,03002 ~ o521 1.08706
0,96 - 1.61704, - 2,004R3 - 0.27.06 1. 35629
0.98 - 180877 - 2.03666 - 019902 1.398%0
1.00 - 2,00000 - 2,03693 0.,00000 1,125
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TABLE IL.3
CHARACTERISTIC FUNCTIONS AND DERIVATIVES

Third Mode

L

d d P
x N USRS W B U B
L 3 Py dx 4 d5 dx
N 00000 " 0.00000 0,000
g'.gg 8:02339 8;3%2‘3 ‘c’,'°3"'§’§ 0. 26372
004 | 0.0cn 0.52972 0.2 0.85272
- 0,18727 N g * it
0,08 0.31238 0.86367 048676 0.97168
0.10 10.45614 0,95879 0.69037 1.01491
0.12 0.61120 1.00785 %g;gg; g-g*’fg";
0.14 0.77049 1.01291 Yoeens o"rmé?
0.16 0.92728 0.97655 133760 0.6 150
0.18 1.07535 0.90237 ety 54152
. 147476 0,30725
0,20 1.20901 0.79294 1.51147 001939
0.22 1.32324 0.65580 . 1.29419 - 0.2193/
0.24 1.41376 049235 e Z o s
0.2 1.27707 0. 31040 14002 9Bk
0.28 1.510% 0.11205 - 073504
1.12212 - 0.96520
0.3 1,51248 -~ 0.09041
09 1 isee i pcdan 0.90429 - 1.15556
0.65324, - 1.30107
0.34 1.41931 - 0.5002% 9450 s
0.% 1.3253 - 0.60422 0.31103 192
0.33 1.20196 - 0,87368 -0272 - 1.4333
. _ - 0.20470 - 1.41364
oo | e | e | ocomm o | ociam
. . ’ - 0.74558 « 1.20525
0,44 0.68568 - 1.27881 0 gaor Yo
0.6 0.47822 - 1,35704 Ry o
0.48 0.26103 - 1,20047 = .16 ~ 0.80234
0.50 0.0917 - 1.01%6 - 1.300%0 - 954726
0,52 ~ 0,18130 = 1.39004 1.21001 " o.p1818
0,54 - 0.7955% - 1,33188 7 141001 3.q1me
0.56 - 0.59202 - 124030 o e 0 T
0.58 - 0.78359 - 111723 = 1.2887 -5
0.60 | - 0.94753 - 0.96533 - 1.3 0.82507
0.62 | - 1.085% - 0.78757 s oy g
0.64 - 1.19758 - 0.58508 e Yo
0.66 .| = 1.2697 - 0,77310 e YT
0.68 - 1,31055 - 0.14479. it .
070 | - 1,318 0.0%85 - PRl R
0.72 - 1.28189 0.32872 o'béz"?" 1,599
0.7 - 1.21172 0.56380 papeeEid fipvit
0.7 - 1.20%15 0.7912 2 10450 e
0.78 - 0.96375 1.00656 2040s :
0.80 - 0.78975 1.20575 1.0 i
0.82 - 0.58594 1.38540 1.2120 . 00260
0.8, ~ 0.35563 1.54236 T s - 03y
0.86 - 0.10245 1.67629 PR oo
0.88 0.16974 1.78450 33072 .
0,50 0.45702 1.8685¢ R N
0.92 0.75558 1.92871 0.81373 - 235713
0.9 1.06189 1.96766 9.8133 A
0.96 1.37287 1.93392 o'iﬁtéi} = 3 390
0.68 1.68610 1.9972), 0. - L.
1.00 2,00000 " 1.99845 0.00000 = 14429
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- TABLE 1I.4

CHARACTERISTIC FUNCTIONS AND DERIVATIVES

.

Fourth Mode

d dy
X 5 s 1 ¢y ¥ P
L 4 Z p, dx 4 4 q, dx
. 4 4
0.00 0,00790 0.00000 0,00000 ©.00000
0,02 0.0447 0. 39147 0,06436 0.46278
0.0/ 0.1n519 0.68645 0,23451 0.78357
0.06 0.33974 088500 0.47104 0.96521
0.08 0.54301 0.99258 0.73820 1.00441
0.10 0.77002 1.011% 1.00204 0.94270
0,12 0,974, 0,944, 1,23237 0.70664
0,14 1.1825h - 0.21633 1.40407 0.50751
0.16 1.34077 0.627264, 1.49825 0.19041
0.1% 1.45292 0. 30230 1.50306 - 0.15704
0,20 1.70752 0.11017 1.41402 - 0,50621
0.22 0027 - 0.17201 1.23502 - 0. 854
0.24 1.42928 = 0.4462¢4 0.97582 - 1,10040
0,26 1.29634 ~ 0.73395 0.65324 - 1.30107
0,28 1.10643 - 0.98164 0.28879 - 1.41295
0.30 0.8671, - 1.1815¢ ~ 0,09274 - 1.42807
0,32 0.59073 - 1.372313 - 0.46510 ~ 1, 34455
0,3, 0, 268208 = 1.41368 - 0,80250 ~ 1.16772
0.2 = 0.0206°1 - 1.43351 - 1.08150 - 0.50963
0.31 - 0,337 - 1.33597 - 1.28266 - 0.58823
0.40 - 0.63112 = 1.27376 - 1,39201 - 0.22602
0.42 - 0.89330 - 110126 ~ 1,40200 0.15152
LA - 1,11166 - 0.87633 - 1.31209 0.51720
0.6 - 1.27%92 - 0.61115 - 1,12877 0.84697
0.48 - 1.37¢36 ~ 0.31690 - 0,86513 1.11580
0,50 - 141420 - 0.00819 - 0,537 1,705
0.52 = 1310 0.30012 - 0.17622 1.40210
0.54 - 1.721% 0.59316 0., 20000 1.39937
0.56 - 1237 0.85675 0,56222 1.29734
0.58 ~ 0.90954 1.07812 0.88466 1.10326
0.60 - 0.65299 1.24643 1.12475 0.83092
0.62 - 0.35594 1.35329 1.32217 0.49962
0.64 - 0.06264 1.39357 1.40213 - 0.13289
0.66 0.24191 1.36469 1.393% - 0.24329
0,68 0.53258 1.26772 1.27973 - 0,60226
.70 0,79478 1.10676 1.07546 - 0.91854
0.72 1.01518 0.83888 0.79497 - 1.36974
0.7 - 1.18225 0.62370 0.45614 - 1.733%02
0.76 1.78638 0.32290 0.0888, = 1.41146
1 0.18 1,32262 -~ 0.00039, - 0.28676 - 133486
0,80 1.23608 - 0.33228 - 0,64202 ~ 1.26010
0.52 1.176%7 - 0.65890 - 0.95176 - 1.04602
0.84 0.99762 - 0.96717 « 1,19405 - 075779
0.86 0.75%8 - 1.24552 ~ 1.35168 - 0.41585
0.88 0.45270 - 1.48463 - 1,41351 - 0.04443
0.90 0.10407 ~ 1.6720% ~ 1,37513 0,301
0,92 - 0.22172 - 1.82294 « 1.23928 0,68130
0.94 - 0.694M - 1.92012 - 1.01558 0.98/16
0.90 - 1.12317 - 1.97482 - 0,71%9 1.21727
0,92 - 1,56035 - 1,99672 = 0.37317 1.36409
1.00 - 2,00000 2,00007 0.00000 1.4
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TABLE 1IL.5
CHARACTERISTIC FUNCTIONS AND DERIVATIVES

il

Fifth Mode

ot

d d,
X ¢ 5 ¢/ 1 ¢5 v 5 o1 S
5 ‘
0.00 0.00000 0,00000 0.C0000 0.000C0
0.02 0.07241 0,48557 0.09685 0,55098
0,04 75958 0.81207 633974 0. 88607
Q.06 0,51697 0.98325 0.65851 1.01:11
0,08 0.80177 1.00789 0.98717 0.95000
0,10 2.07449 0,90087 1,26755 0.72628
0,12 1.30078 0.68346 1.45308 0.38243
0,14 1.45309 0.38243 1.51200 - 0.03274
0.16 1.51209 0.02895 1.423950 - 0.46599
0.18 1,16767 - 0,34348 1,208.0 < 0.86454
0.20 1,31925 - 0.70119 0.86619 - 1,18105
0,22 1,07553 - 1.01267 0.4423% - 1,37825
0.24 0.7535) - 1,250% - 0.02533 - 1.43261
0.26 0.37706 - 1.39507 - 0.48616 ~ 1,33565
0.28 - 0.02579 ~ 1,43257 - 0.89153 = 1.09954
0.0 - 0,42757 - 1.35934 - 1.19872 - 0.74602
0.32 - 0,73399 - 1,18045 = 1.37505 - 0.31360
0.3 - 1.08140 - 0,90954 - 1,40200 0,15152
0.2 - 1,23162 - 0,56770 - 1.2769¢ 0.59950
0,38 -~ 1.39826 - 0,1817 T e 1.01369 0.98227
0.40 - 1,39310 0.21794 w 0.64067 1.25871
0.42 - 1.27670 0,5%978 -~ 0.09828 1,39912
T0.44 - 1,05846 0.93381 0.26570 1.38846
0.46 - 0,75579 1,19304 0.70119 1.22792
0.8 - 0.35273 1.35757 1,06118 0.93487
0,50 0.0C170 1,412 1.30682 0.54093
0,52 0,39632 1.35855 T 1.4116) 0.0826)
0.54 0.7597% 1.19508 1.36423 - 0.37331
0,5 1.06317 0,93686 1.16977 - 0,79500
0.58 1.28253 0.60450 0.84919 - 1.13100
© 0,60 1.40051 0.22452 0.43706 - 1,34505
0.62 1.40786 -« 0,17276 - 0.02218 - 1.41408
0.6 1, 30418 - 0.55561 C = 0.47902 - 1.23063
0.66 1.09793 - 0,89337 - 088021 - 1,10371
0.68 0,80582 - 1,15589 = 1.19405 - 075779
0.70 0.45146 - 1,7306% « 1,37513 - 0,33015
0,72 0,06355 - 1.39446 - 140793 0.13%8
0.7 - 0,306, - 134448 - l.28892 0.58196
0.7 - 0.68526 - 1,18363 - 1.03091 , 0.96809
0.78 - 0,93631 - 0.92352 - 0,66175 1.24983
0.80 = 1,20090 - 0,58289 - 0,22123 1,39680
0.22 - 1,31086 - 0.13651 0.243)4 1.39315
0.34 - 1.30378 0.23723 0.68130 1.23928
0.86 - 1,17672. 0,65878 1.04600 0.95178
0.88 - 9,93411 1.05011 1.29790 0,56165
0.9 ~ 0.58301 1.38736 1.40985 0,110%94
0,92 - 0.15633 1.65332 1.3978 - 0,35170
0.94 0,33937 1.83959 1.,18201 = 0.77644
0.96 0.87658 1.94824 0.86678 = 1, 00745
0,98 1.43502 1.99300 0.45809 - 1.33797
1.00 2.00000 2,00000 0.00000 - 141421

A, -53-




L
v

APPENDIX III

In applying the Rayleigh-Ritz method it becomes necessary to evaluate
integrals containing the characteristic beam functions and their derivatives. This

' appendix gives the analytical expressions for the integrals, Ill, 12, I I

3 Ip I
(equation (37) ) encountered in the analysis. The orthogonality properties of

6

~ characteristic beam functions and other properties of the parameters involved in

these functions given in Appendix II have been used to arrxive at the following

expressions:
L ) '
. L 2
T = T f Py {f‘pr(x) d"} o
o)
- 2 [(1+c2)smh2 L - (Q-c?)sin2pL
ip L r Py r P (1I1. 1)

-2cr (costhIL + cos2prL) + 4cr (prLcr+5)

2
: - ~c2 i
+4(l+c ) sinhp Leosp L -4 (1l ~c2) coshp L s1nprL]

L
1 ’ 2
12 = Tf {dbr(x)} dx
o

= A 2y o X 2.
= 4PIL [(1+cr) sthprL (1 . ) sin ZprL
. : (1IL. 2)
, -2cr (costhrL+cos 2prL) + 4cr (prLcr - 3)
2

, o -
+4( —cr) coshprL smprL -4(1+c

" ) smhprL cos prL ]

1A 2 2
I, = fo q, { J‘@r(x) dx} dx
= —-!-- l+d2)s'nh2 L - l-cl2 in 2q L
- [( ) sinh 2 L - (1 - d7) sin 2q_ (II1. 3)

- 2 dr (costhIL + coqurL)+ 4dr (qudr +3)]
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L = "IE S {w'r..(x)}z'dx
8]

W

o1 2, 2
ko) [(l—l—dr)smh 2q_L - (1 - d) sin 2q L

- 2 dr (cosh 2qu+ coqurL) +4dr (qudr -1) :I

(I11. 4)
1 L
= e |4 v
I ol R COMM O
o}
) [ 1+c d ' l-c d
1 s 1 .
= — |3 =—— sinh(p_+q)L+3 =—— sinh(p_-q )L
L P. +qr r T P. -9, r °r
q +p_c_d p.-g.c. d
- -—r——r—£—£coshp L sing L-—I‘-—————-{HusinhchosqL
9 2 by r 2+ 2 r r
P+ 4, P +a;
p_+q_c_d q. -~ ppc.d
- -—r———i—ECOShQ»LSinp L. - E_ﬂ- sing Lcosp L
p2+q2 T T p2+q T by
r T T T
l-c¢ dr l+crd1_
+%-——sin(p +q)L+% ———sin(p_-q )L
pr+qr r °r P, -4, r °r
c_+d c d '
-y = sh{p +q )L -1% ~ I cosh (p. -q)L
2 T q cosn(p. T4, 2 T P, -4,
r °r r °r
qc +pd pc_ -qd )
+ Msinp L sinhq L - rr (coshg_L cosp L - 1)
2+, 2 T iy + 2 T T
Py +4q, Pr 74,
q.c +pd ’ pc_-qd
rr ‘rr . rr ‘rr
+ -—2-+——5— sinh prL sin qu + —2+—2— (coshprL cosqu -1)
P, T4, _ P, T4,
cr+dr c -dr
1 ‘ 1 -
2 37Tq cos(pr+qr)L+2 > cos(pr qr)L:I
r °r r r

(LIL. 5)
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L : '
1
= T J; [{prfrbr(X_)dX} {qrqur(X) dX}jI dx
1 [1 L+cd l-crdr
L : | s
= L ———— sinh(p_+q )L -2 ~——7—sinh(p -q)L
pr+qr r °r P. -4, r r
q.+p_c p_-qd
r ‘rr r ‘rr .
+ -—z—ri--smhprL co_squ 2+ 5 coshprL smqu
Pp T, P 79,
q -pcd p.+qcd
r ‘rrr . r rrr .
- _T—i" cosh pr%, smprL + ———z—;—iw smhqu coSs prL
P. *a,. : P. *q,
l+c.d 1-cd
+ 3 ———— sin (p -q)L-4 —— sin(p_+q) L
P.-d. r r p.ta. r r
C +dr c -d :
S | 1 -
S cosh (p_+q)L+3 > cosh (p.-q)L
T T r °r
pec -qd : qgc +pd
- _r_;__r__r sin prL sinh qu - i12—_1-.-—:;:((:oshqu cosprL-l)
P. +qr P. ta,.
pc -qgd qc +p.d
+ r2r _ er sinhprL sinqu- -—ré-r-—;]-'-(coshprL cosqu-l)
P +qr P +a,
C +d . [ 'd ’
-y 21 +q)L+3 cos(p_ -q )L
20 +q cos (Pr q, 2 b. q.
r °r r r
) z(qrcr-prdl)
)
Pr "4
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APPENDIX 1V

FLOW CHART OF MAIN COMPUTER PROGRAMME

Read

relevant
beam data

\ 4

Compute
Characteristic
Integrals

L3

L 4

Read
shell data &

Properties

No Rings

2

l

+ Yes

Read
Ring data -
& Propertie

L 4

A

-

Compute ‘ Regula-JFalsi Newton's or
Ring Method* Exact Methods
Parameters : to find 4 to find &

N,
>

F

T

Form Fre- :
quency Deter- r
minant £(a )

* Flow Chart for Regula-Falsi Method is given on following page.
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standard
sub routine

=

FLOW CHART FOR REGULA-FALSI

ITERATION PROCEDURE

to comptute
X =f(n

&

Compute
Elements of
f(a)

-4

Set IC=0
IG = -1
BK=aA

Read
initial Fay
increment §
cecuracve

e

Set
BK = FT
XA =XB

>0

=

Set
XB=X
FT=A

Set

IG

1

&7 BK

Set
"APR =
IC=IC+1

Compute
N

_(ET-BK)*XA
XB - XA

&

No Conver ~
F gence in
99 iterations
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APPENDIX V'

EXACT ANALYSIS FOR VIBRATION CHARACTERISTICS OF
CIRCULAR CYLINDRICAL SHELLS.

Following is the brief account of the exact analysis used by
Forsberg [18) for solution of natural frequéncies of ring-stiffened cylindrical
shells.
GENERAL COMMENTS ~ An analysis of the modal

characteristics of 1 tandem series of cylinders has been developed. . Each of
the component cylinders is assumed to have the same mean radius a, but
each may be of different length, have a different thickness and may be made
of a different material. Rings may be located at each of the juncture points
between cylinders as well as at both ends of' the tandem series. Each of these
rings is assumed to have its own set of axially-symmetric section properties
and may be eccentrically attached to the cylinder in the sense that the radius
of the cylinder need not be equal to the radius of the centroid of the ring
cross-section. Additionally, all rings must have a "compact cross-section"
in which the shear centre and the centroid coincide and the product of inertia
vanishes.

EQUATIONS OF MOTION FOR SHELLS WITHOUT RINGS

Consider a tandem series of cylinders joined directly (without
rings at the junctions). For each cylinder the general solution for modal

vibration can be written in the form

u A cos no
8 A snx sn § 0t
v = Z e BSn sinn® e I (v.1)
s=1
w C cos nb
sn

A.59.



For modal motion it c-an be shown that eac;h cylinder in the tandem series of
shells must have the same circumferentiha.l wave number n. The equation
used to describe the motion of the cylindrical shell segments are those given
by Fli:'gge; These equations have constant coefficients and are of the form
2 -y2 2 :
] [4] - e L %) v.2)
j j s Bt !

where ¢]_ are midsurface displacement components u, v, w and Lij represent
linear differential operators in x and 6. Substitution of expressions(V.1) into

the equations of motion (V.2) yields k matrix equations {one for each

cylinder) of the form

“sn
[aij:l 6sn = 0 (v.3)
1 '
_ where
“sn ~ Asn / Csn and E;sn - Bsn / Csn (V.4)

The elements aij of the kth matrix are functions of the circumferential wave
number, n, frequency, w, and the elastic and geometric parameters of the
kth cylinder. The solution to each of (V.3) will be non-trivial only if the
determinant of the coefficients vanishes (i.e., I aij I = 0). For each
component cylinder this condition leads to an eighth-order polynomial

vationin X
eq - sn

2

- 6) 6 0 -
S N o B A ggl).-’\sn + ggn) =0 (v.5)

sn sn ' sn sn ' sn
The roots provide the permissible values of xsn to be used in(V. 1) and once they
are determined one can reFurr; to (V.3) and obtain asn and Bsn' The 8k
complex constants CSn are evaluated by solving a system of 8k equations,
of which 8{k-1) represent compatibility of displacements, forces, and
moments between adjoining cylinders. The remaining 8 equations arise
from 4 specified boundary conditions at each end of the overall shell.

There are sixteen possible sets of homogeneous boundary

conditions which can be specified independently at each end of the shell.

A, 0.



7

These consist of all combinations of the following:

w =0 or S_x =Qx + (L/a) aMxe / 38 =0 (V.6a)
w/y, =0 or M_=0 (V. 6b)
u =20 or Nx = 0 (V.6c)
v=0 or T, =Ng- (/)M =0 (V.6d)

The detailed statement of these compatibilities and boundary conditions leads

directly to the matrix:

N Ist cyll 2nd cyl kth cyl _

[4x 8] 0 [ ¢, ]
[8 X 8] [8 X 8] ' S,

0 [8 x 8]

[sx8 o =0

[8x 8] [8x8]

0 [4x8] | CSkn .7

L

For a non-trivial solution, the determinant of the coefficients must vanish.
Since Asn in equation (V.1} dependsupon the eigenvalues ® of the determinant,

it is not possible to express the equation in a standard form (e.g.

(A -w 2‘B ) Y=0). Thus, at this point in the analysis a numerical
evaluation of the solution is introduced. Although a numerical solufién is
required to find the eigenvalues, the solution is exact in the same sense that

a numerical solution of the transcendental frequency equation for a beam yields
an exact solution.

One now selects a specified set of shell geometries, as assumed
number of circumferential -Waves n, and a specified set of boundary conditions
at each end. An iteration scheme is then used to find the eigenvalues. The
determinant is evaluated for successive values of the frequency until there is
a change in its sign, indicating that a zeroc has been bracketed between two
successive frequency estimates. Regula-falsi is employed to locate the

eigenvalue to some preselected accuracy. This method has been used to

- AslL.



compute eigenvalues which are less than .1% apart. After the eigenvalue is
determined the eigenvector is computed, The cigenvector is then substituted
~ into the equation system to check that the equations are satisfied to the

desired accuracy. If the eigenvectors do not check, computation is terminated.

EQUATIONS OF MOTION OF THE RING

The equation of motion for the rings can be written in terms
2} e

R’ VR’ uR and R’ The eccentricity and

the finite width, bR’ of the ring are included in the analysis.

When two cylindrical shells are joined by a ring, the forces

of four displacement quantities: w

and moments between the shells can be replaced by an equivalent force couple
system acting together with the ring inertia forces at the centroid of the
. ring cross section.

The displacements of the ring centroid and rotation of the
ring cross-section can be related to the displacements at the ends of the
adjoining shells by kinematic considerations. When the effect of the warping
of the ring cross-section due to torsion is ignored, the cross-section rotates
as a rigid body through the angle BR' |

When the ring centroid displacements are expressed in terms
of shell displacements, the force and moment compatibility relations for shell-
ring-shell junction can be written in terms of the shel} displacements at this
junction, Detailed analysis and explicit expression can be found in
reference |18] .

It is Séen that if the rings are present at a junction between
two cylinders, the elements of matrix of equation (V.7) become more involved,
but the size of the matrix is not expanded.

A comparison of the frequencies as computed by the

variational technique and exact approachis given in section 4 (pp. 32-36).

4. 62.



TABLE 1

EFFECT OF ZERO HOOP AND SHEAR STRAIN ON FREQUENCY OF A CLAMPED-FREE SHELL

{m=1; n=2) WITH VARIOUS MODIS

LENGTH = 150 ft.,

I

192
30

RADIUS = 5ft., THICKNESS =5/16 in. a/h
L/a

il

YOUNGS MODULUS = 30x 10° p.s.i.
DENSITY = 7.37x 10 ¥ 1b. - sec®, POISSON'S RATIO = .3

Rt

With hoop and Zero hoop and shear strain
: shear strain Reduced from ‘cubic & sextic Other mode shapes
FREQUENCY
Cubic - Sextic Linear Quadratic Quadratic Quartic
(32)* (36)* (33)* (40)* ' (I.15, I.14)* (31)*
AT X 102 .41179791 -41101781 .41329154 .41328979 . 41447447 .42488354
w2 - 2.3103 2.3059 2.3187 2.3186 2.3253 2.3837
(Hextz) :

* Refer to the number of equations in the text.
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TABLE 2.

1 :
FREQUENCY PARAMETER A2 (x 102) FOR -CLAMPED-FREE _SHELLS

SF : Sextic (Flugge Theory), CF : Cubic (Fligge Theory)
Length Radius-to -thickness ratio a/h
-to-
radius ratio 50 100 150 200 250 300
1/a n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2

10 SF 2.083511,7081 [ 2.0834 11.0351 }2.0834 .8540 t 2.0834) .7808 | 2.0834 .7445 | 2.0834 |. .7240
CF 2.2042 11,7226 | 2.2041 |1.0619 [2.2041 . 85871 2.2040] .8171 2.2040 L7826 | 2.2040 .7632

15 SF .9406 | 1.5867 » 9403 . 8351 .9405 .6001 L9405 | .4921 .9405 | .4331 . 9405 » 3973
CF L9984 1 1.5892 .9983 .8415 | .9983 .6096 .9983 | .5038 - . 9983 . 4464 .9983 { .4119

20 SF .532011.5632 | .5320 } .7953 | .5320} .5450 5320 . 4238 .5320 | .3339 .5320 | .3095
CF .5655 | 1.5638 .5654 . 7973 , 5054 . 9482 L5654 | 4281 .5654 . 3591 .00624 . 3154

25 SF .3414 11,5560 | .3414 | .7838 | .3414 .5288 .3414 1 . 4030 .3414 .3290 .3414 . 2907
CF .3631 ) 1.5561 L3630 | .7845 . 3630 .5300 .3630{ .4048 L3630 .3311 .3630 2832

30 SF .2374 | 1.5531 .2374 . 7794 .2374 .5227 L2374 .3952 .2374 .3194 L2374 . 2695
CF .2526  1,5531 . 2526 L7797 | .2526 | .5232 .2526] .3960 . 2526 . 3204 .2526 . 2706

35 'SF L1746 {1 1,5517 | 1746 | .7774 | .1746 | .5200 L1746 .3918 L1746 | .3152 L1746 1 .2645
CF ,1838 ] 1.5517 . 1858 . 7775 L1858 | .5202 L1858 .3921 .1858 L3156 .1858 .2650

40 SI¥ .133971.5509 } '.1339 ] .7764 | .1339 .5186 L1339 .3900 L1339 .3131 .1339 .2620
CFE L1423 11,5509 | .1423 | .7764 | .1423 . 5187 . 1423 .5}902 L1423 .3133 L1423 L2623

45 SF L1061 | 1.5504  .1061 .7758 | .1061 .5179 10611 .3891 L1061 3120 . 1061 . 2607
CF L1125 11,5504 L1125 L7758 L1125 .5179 .11257 .3891 | .1125 .3120 1125 . 2608

50 SF .0863 } 1.5501 . 0862 . 7755 . 0862 .5174 .0862 | .3885 . 0862 3113 L0862 . 2599
CF L0912 | 1.5501 L0912 | 7755 L0912 .5174 09121 3885 0912 | .3113 .0912 L2599

oo SF 0 1.5492 0 .7746 0 L5164 0 .3873 0 .3098 0 .2382
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. :
TABLE 3. . FREQUENCY PARAMETER &2 (x 102) FOR CLAMPED-FREE SHELLS

QF : Qua.dratic (Fltigge Theory), QT : Quadratic (Timoshenko-Love Theory)

Length Radius-to -thickness ratio a/h
..to_
" radius ratio 50 100 150 . 200 250 300

L/a n=1 n=2 n=1 n=2 n=1 n=2 n=1} n=2 n=1 n=2 n=1 ns=2

10 QF 2,4579 | 1.7528 | 2.4578 | 1.1094 | 2.4578 .9432 | 2.4578 | .8776 | 2.4578 . 8455 | 2.4578 . 8276
QT 2.4578 | 1.7528 [2.4578 | 1.1093 } 2.4578 | .9432 | 2.4578 | .8776 | 2.4578 | .8455 | 2.4378 | ,8276

15 ' QF 1.0994 [ 1.5958 {1.0993 } .8533 |1.0993 | .6256 | 1.0993 | .5230 | 1.0993 | .4679 | 1.0993 |..4351
QT 1.0993 [ 1.5958 [1.0993 ! .8533 |1.0993 | .6256 [ 1.0993 |.5230 | 1.0993 | .,4679 | 1.0993 | .4351

20 QF .6198 { 1.5660 { .6198 | .8013{ .6198 .5539 .6198 | .4353 .6198 | .3677 .6198 | .3251
QT .6198 | 1.5660 | .6198 | .8013| .6198 | .5539 .06198 | .4353 L6197 | .3677 .6917 | 3231

25 QF .3971 { 1.5570 | .3971 | .7861{ .3971 .5324 .3971 | .4079 | - .3971 . 3349 -3971 . 2876
QT .3971 1 1.5570 | .3971] .7861| .3971 .5324 L3971 | .4079 L3971 | .3349 .3971 .2876

30 QF .2759 | 1.5585 | .2759| .7805 | .2759 } .5244 .2759 | .3975 .2759 | .3223 L2759 | L2729
QT 2759 1 1.5535 | 2759} .7805 | ,2759 | .5244 .2759 | .3975 .2759 | .3223 L2759 | .2729

33 QF .2028 | 1.5519 [ .2028( .7780} .2028 |..5209 .2028 | .3929 .2028 | .3167 .2028 | .2663
QT .2028 { 1.5519 | .2028 | .7780 | .2028 | .5209 .2028 | .3929 .2028 | .3167 L2028 | L2663

40 QF L1553 §1.5510 | .15853 | .7767 | .1553 | .5191 .1553 | .3907 .1553 ] .3139 .1553 | .2630
' QT .15583 } 1.5510 § 1553 | .7767 |- .1553 | .5191 .1553 | . 3907 L1553 .3139 L1553 | .2630
45 QF . 1227 | 1.5505 L1227 L7760 L1227 .5181 .1227 |1 .3895 1227 .3124 »1227 L2612
QT L1227 1 1.5505 | -.1227 % .7760 % .1227 .5181 | . .1227 ) .3895 <1227 | .3124 1227 L2612

50 QF .0994 | 1.5501 | .0994 | .7756 | .0994 | .5176 .0994 {.3887 .0994 | ".3116 .0994 | .2602
QT .0994 | 1.,5501 | .0994} .7756) .0994 | .5176 .0994 | .3887 L0994 | .3116 L0994 | .2602
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TABLE 4. FREQUENCY PARAMETER AZ (x 102) FOR CLAMPED-RING STIFFENED SHELLS

RING I (bp/a=.0l , dp/a=.03)

SFE : Sextic (Fligge Theory) Eccentric Rings, SFS : Sextic (Flugge Theory) Symmetric Ring

Length Radius-to-thickness ratio a/h
-to- .
radius ratio 50 100 150 200 250 300
L/a n=1 n=2 n=1 | n=2 n = n=2 n=1 n=2 {n=1 n=2 n=1 n=2
10 SFE 2,0811} 1,7602 |2.0786 | 1.1445 |2.0761 1.0148 ] 2.0735 L9851 [2.0709 9864 | 2.0683 . 9990
SES 2.0812 1 1.7116 {2.0787 1,0557 |2.0762 .8939 | 2.0737 L8393 12,0712 [ .8206 | 2.0686 . 8167
15 SFE .9399 | 1.6274 | .9392 .9316 |- .9385 . 7563 . 9378 .7020°1 .9370 . 6883 .9363 |- .6904
SFS .9399 | 1.5895 . 9392 . 8328 L9385 ,6388 .9378 .5340 | .9371 .5182 . 9364 . 3047
20 SFE 0318 | 1,5935 § .5313 . 8664 | .5312 L6617 | .5309 .5830 | .5306 . 5496 .2303 .5331
) SFS 5318 | 1.5654 .D315 . 8093 .5312 .5765 .3309 .4763 | ,5306 4287 .5303 | .4062
25 SFE .3413 1 1.5783 L3411 . 8325 L3410 L6068 . 3408 .5087 | .3407 .4587 . 3405 4307
SFS .3413 11,5578 .3411 . 7949 .3410 .5538 . 3408 L4449 1 .3407 .3892 . 3405 .3392
30 SFE L2373 1.5691 . 2373 8114 L2372 .5721 L2371 L4614 .2370‘ 4007 .2369 .3641
SFS 23741 1.5547 .2373‘ . 7885 L2372 .5426 | .2371 L4279 | .2370 .3658 .2369 .3296
35 SFE 1746 | 1.5631 . 1745 . 7982 . 1744 5512 L1744 L4330 | .1743 . 3660 .1743 L3241
SFS§ L1746 1.5530 { .1745 . 7830 .1744 .5358 1 .1744 L4168 | .1743 . 3496 L1743 . 3085
40 SFE .1339( 1.5591 . 1339 L7901 | .1338 .5387 . 1338 4164 | 1338 . 3456 .1337 . 3003
SFS .1339 | 1.5521 .1339 .7827 | .1338 .5311 1338 .4089 | .1338 . 3382 . 1337 ,2931
45 SFE 1061 | 1.5563 . 1061 L7851 . 1060 .3312 L1060 | ,4065 | -.1060 .33.34 .1060 L2861
SFS L1061 | 1.5515 . 1061 7811 . 1060 .5276 . 1060 L4032 | L1060 3303 L1060 .2830
50 SFE .0862 | 1.5545 L0862 .7820 | . 0862 L5266 L0862 L4004 | .0861 .3259 . 0861 L2772
SFS .0862 | 1,5511 . 0862 L7799 . 0862 .5250 . 0862 .3991 | .0862 . 3248 .0861 . 2762
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TABLE 5. FREQUENCY PARAMETER A? (x 102) IOR CLAMPED-RING -STIFFENED SHELLS

RING I (bR/a_ =.01, dR/a = ,03)
QFE : Quadratic (Fligge Theory) Eccentric Ring, QFS : Quadratic (Flugge Theory) Symmetric Ring

-Lgsu

Length : ' Radius-to-thickness ratio a/h
-to-
radius ratio .50 100 150 + 200 - 250 300
L/a n=1 | n=2 | n=1{n=2 |n=1| n=2 [n=1 | n=2 | n=1|n=2 | n=} | n=2
10 QFE 2.4505 | 1.8217 | 2.4431 | 1.2534 |2.4358 [1.1535 | 2.4287 | 1.1452 |2.4218 | 1.1643 | 2.4145 [1,1931
QFS 2.4507 | 1.7560 | 2.4434 | 1.1288 |2.4363 | .9800 | 2.4292 | .9310 [2.4222 | .9146 | 2.4152 | .9115
15 QFE 1.0971 | 1.6465 | 1,0949 | ,9765 |1.0927 | .8353 | 1.0905 | .7916 {1.0883 | .7958 | 1.0862 | .8142
QFS 1.0972 | 1.5988 | 1.0950 { .8725 [1,0928 | .6667 | 1.0907 | .5879 {1.0885 | .5563 | 1.0864 | .5457
20 QFE .6188 | 1.6039 { .6179| .8954 | .6169 | .7123 | .6160 | .6542 | .6151 | .6391 .6142 | .6407
QFS - 6189 | 1.5684 | .6179{ .8169 | .6170 | .5891 | .6161 | .4937 | .6152 | .4505 .6143 | .4319
95 QFE 3966 | 1,5860 | .3961 | .8559 | .3956 | .6488 .3951 | .5685 | .3947 | .5338 .3942 | .5183
QFS .3966 | 1.5590 | .3961 | .7989 | .3956 | .5614 .3952 | ,4569 | .3947 | .4057 .3942 | .3803
30 QFE .2756 | 1.5756 | .2753 | .8302 | .2751 | .6047 2748 | .5068 | .2745 | .4567 .2742 | L4287
QFS 2756 | 1.5552 | .2753 | .7910 | .2751 | .5482 2748 | .4378 | .2745 | .3806 L2742 | .3494
35 QFE .2026 { 1,5684 | ,20247 .8123 | .2022 | .5743 2021 | .4646 } .2019 | .4048 .2017 | .3688
QFS -2026 | 1.5533 | .2024 | .7868 | .2022 | .5405 2021 | .4256 | .2019 | .3635 .2017 | .3272
10 QFE .1552 [ 1,5632 | ,1550 | .8000 | .1549 | .5545 | .1548 | .4377 | .1547 | .3718 .1546 | .3308
QFS .155211.5523 | 1550 | .7842 | .1549 { .5352 L1548 { .4168 | .1547 | .3505 1546 | .3099
45 QFE 1226 11.5595 | .1225 | .7920 | .1225 | .5419 1224 | 4209 | .1223 | .3512 L1222 | .3069
QFS 1226 1.5516 | .1225 | ,7824 | .1225 | .5312 1224 | .4099 |['.1223 | .3403 .1222 | .2964
50 QFE .0993 | 1.5569 | .0993 | .7868 | .0992 | .5340 | .0992 | ,4103 | . 0991 | .3382 .0990 | .2917
QFS .0993 [ 1.5512  .0993 | .7810 | .0992 | .5281 .0992 | 4045 | .0991 | .3326 .0990 | .2863
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TABLE 6. FREQUENCY PARAMETER A ¢ (x 102) FOR CLAMPED-RING STIFFENED SHELLS

SFE : Sextic (Flugge Theory) Eccentric Ring, SFS : Sextic (Fltigge Theory) Symmetric Ring.

T - » = ]
RING I (bp/a =.1, dp/a= .3

Length Radius-to-thickness ratio a/h
-to-

radius ratio 50 100 150 200 250 300
"L/a n=1 | n=21{ n=1| n=2|n=1 n=2 | n=1 |n=2 1| n=11} n=2 n=1 n=2
10 SFE 1,7376] 2.900%1 1.4900| 2.5847 | 1.3210 { 2.5446 1,1679 | 2.5421 | 1.1035 | 2.5471 1.0282 2.5531
SFS 1.7_824 3.0667| 1.5486 2.7915 | 1.3833 }{ 2.7549 1.2603 [ 2.7478 | 1.1647 | 2.7467 1.0879 | 2.7469
15 SFE .836511.9282 .7457 | 1.3741 L6766 | 1.2531 L6228 [ 1.2133 ] .579811.1978 9445 1:1916
SFS .851311.9664| .76811 1.4384 | .7024 | 1.3271 .6501 {1.2899 | .6075} 1.2744 .5722 1 1.2670
20 SFE .4888 | 1.6872 .4466 | 1.0098 | .41191{ .8290 . 3836 L7581 . 3601 . 7247 .3403 7 .7072
SFS 4952 | 1.6986 .4573 1 1.0341 .42501 .8613 .3980 | .7945 .3752 .7630 L3558 .7462
95 SFE .3197 | 1.6110| .2971 . 8807 | .2774 | .6639 L2607 | .5700 | .24641 .5218 . 2341 . 4945
SES .32301 1.6152 L3029 .8909 | .2849 | .6762 . 2692 .95889 .2556 | .5429 L2437 .5168
30 SKFE L2251 1 1.5815| .2118} .8285 | .1996 1} .5927 L1889 | .4844 | .1796 4 .4255 L1715 .3903
-SFS .227011.5833| .2153| .8333 | .2043 .6004 .1944 4946 1 L1857 | .4376 L1779 .4037
25 SFE (1671 | 1.5681 | .1586| .8048 | .1506 | .5593 | .1434 | .4425| .1370| .3768 | .1313| .3359
SFS L1683 1 1.5689 . 1609 . 8072 1537 1 .5634 1471 L4483 .1411 .3838 . 1357 . 3441
' 40 SFE .1290 | 1.5612 .1232 . 7929 L1177 1 .5422 L1126 .4207 .1080 . 3507 .1039 .3061
| SFS L1208 [ 1.5617 | .12487) ,7942 .1199 L9445 .1153 s4241 L1110 | .3549 L1071 .3112
45 SFE .1026 1 1.5573 L0986 .7864 .0946 .2328 L0909 | .4086 ( .0874 . 3359 . 0843 . 289
SFS .1032 [ 1.5576 , L0997 | L7872 1 .0961 .5342 .0928 | .4106 | .0897 | .3386 .0868 | .2923
50 SFE .0837 1 1.5550 | .0807| .7826 1 .0777 | .5274 0749 | L4015 7 07231 .3273 L0699 | .2788
SFS .0841 1.5352 . 0815 .7831 | .0789 .5283 . 0764 .4028 | .0740] .3290 0718 .2810
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QFE : Quadratic (Fligge Theory) Eccentric Ring ,

: L .
TABLE 7. FREQUENCY PARAMETER A * (x 102) FOR CLAMPED-RING STIFFENED SHELLS

RING T (bp/a =.1, dp/a = .3)

QFS: Quadratic (Flugge Theory) Symmetric Ring

Length Radius-to-thickness ratio a/h
-to - e

radius ratio 50 100 150 200 ‘ 230 . 300
L/a n=1 n=2 n=1)| n=2 n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2
10 QFE 1.8874 | 3.7780 | 1.5895 | 3.5005 |1.3987 | 3.4371 1.2632 | 3.4068 | 1,1607 | 3.3861 1.0797 | 3.3693
QFS 1.,9447 1 3.7710 ] 1.6573 | 3.5094 | 1.4681 | 3.4568 1.3315 | 3.4357 { 1.2271 {3.4236 1.1439 | 3.4150
15 QFE .9082 | 2.1963 | .791311.7177 | .7102 | 1.6124 .6497 | 1.5729'| .6024 |1.5534 .5641 {°1.5420
QFES .9291 ¢ 2.1963 | .8186{ 1.7193 { .7399; 1.6153 .6801 11,5770 ,6328 | 1.5586 .5941 | 1.5483
20 QFE .5336 ] 1.7866 § .4757}1.1629 | .4331 | 1.0036 .4003 | .9442 1 .3739} .9142 .3521 ] .8973
QES L5635 1.7869 | .4895 [ 1.1635 | " .4488 | 1.0064 .4168 | .9453 | .3908 | .9155 .369_1  . 8989
25 QFE .3511}1 11,6543} ,3181| .9548 | .2929} .7574 L2729 | L6747 | L2564 | .6327 .2426 | .6087
QFS .3565 | 1.6546 | .3261 ,9550 | .3023| .7577 L2830 .6751 | .2670} .6332 L2534 | .6092
30 QFE .248511.6030 | .2280 | .8673 | .2117 | .6447 L1985 | .5457 | .1875 | .4932 L1781 | .4622
QFS 2518 1,6032 | ,2330| .8674| .2178| .6448 .2052 | .5459 | .1946 | .4934 L1835 | .4624
35 QFE .185111,5799 ( .1715| .8266 | .1604 |- .5896 - 1512 | .4797 | L1435 | .4192 2N 1368 | .3823
QFS L1873 11.5800 [ .,1749 | .8267 | .1646 | .5897 L1559 | .4798 | .1485 | .4193 | .1420 | .3824
. 40 QFE .1433 1 1.5683 { .1337{ .8060| .1258| .5608 L1192 | 4440 .1135 ] .3780 .1085 | .3367
QFS .1448 1 1.5683 | ,1361| .8060| .1288] .5608 L1226 1 .4441 % .1172} .3780 .1124 ) .3368
45 QFE L1142} 1.5618 | .1072 | .7947 | .1014 | .5447 L0964 1 .4238 |..0921 | .3540 .0883 | .3097
' QFS L1152 1.5619 ¢ .1090 ] .7947 1 .1036| .5448 .0990 {1 .4238 | .0949 | .3541 L0913 | 3097
50 QFE .09311 1.5580 | .0879( .78811 .0835| .5353 .0797 { .4117 | .0763 | .33%96 .0733 | .2931
QFS .0939 | 1.5580 | .0892 1 .788! .0852 | .5354 L0816 | .4117 | .0785 | .3396 L0737 | L2931
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TABLE 8. FREQUENCY PARAMETER A2 (x 10°) FOR CLAMPED-RING STIFFENED SHELLS

RING I (b /a=.01, d;/a=.03), RING I (b/a=.l, dp/a=.3)

QTRI : Quadratic (Timoshenko-Love Theory) Symmetric Ring I, OTRII : Quadratic (Timoshenko-Love Theoxyv) Symmetric Ring II

Length Radius-to-thickness ratio a/h
_to_
radius ratio - 50 100 150 200 250 300
L/a n=1 |n=2 {n=1 | n=2 {n=1l n=2 n=1 {n=2 |n=1 n=2 n=1 | n=2
10 QTRI 2.4506 | 1.7559 |2.4434 | 1.1288 |2.4362 | .9800 | 2.4292 .9310 |2.4222 ] .9146 | 2.4152 | .9115
QTRIL 1.9448 | 3.7714%|1.6574 | 3.5108*|1.4682 |3.4589% | 1.3316 | 3.4386™|1,2272 |3.4273* | 1.1439 | 3.4194*
15 QTRI 1.0971 | 1.5987 |1.0950 | .8725 |1.0928 | .6667 | 1.0907 | .5879 {1.0885 | .5563 1.0864 | .5457
QTRII .9290 | 2.1963 | .8186 | 1.7194 | .7399 {1.6156 .6801 | 1.5774* .6328 }1.5591* .5941 | 1,5489*
20 QTRI .6188 | 1.5684 | .6179| .8169 | .6170 | .5891 L6161} .4937 | .6152 | .43505 ,0143 | .4319
QTRIL .5435 | 1.7869 | .48951 1.1635 | .4488 [1.0065 .4168 | .9454 { .3908 | .9156 .3691 | .8990*
25 QTRI .3966 | 1.,5590 | .3961 | .7989 | .3956 | .5614 .3952 | .4569 | .3947 | .4057 .3942 | .3803
QTRIL .3565|1.6546 | ,3261 | ,9551 | .3023 | 7577 L2830 L6751 | L2670 | .6332 .2534 | .6093
30 QTRI .2756 1 1.5552 | .2753 | .7910 | .2751 | .5482 L2748 | .4378 | .2745 | .3806 L2742 | .3494
QTRII .2518 | 1.6032 | .2330 | .8674 | .2178 | .06448 .2052 ] .5459 | .1946 | .4934 L1854 | .4624
35 QTRI .2026 | 1.5533 | ,2024 | .7868 | .2022 | ,5405 L2021 § .4256 | .2019 | .3645 .2017 | .3272
QTRIL L1873 {1.5800 | .1749 | .8267 | .1646 | .5897 L1559 | .4798 | .1485 | .4193 .1420 | .3824
40 QTRI .1552 | 1.5523 | .1550 ] .7842 | .1549 | .5332 L1548 | 4168 | .1547 | .3505 .1546 | .3099
QTRII .1448 [ 1.,5683 | .1361 | .8060°| .1288 | ,5608 L1226 | L4441 | L1172 | .3780 .1124 | ,3368
45 QTRI .1226 | 1.5516 .| 1225 | .7824 | .1225 | .53312 L1224 .4099 | .1223 | .3403 L1222 1 2064
QTRII {. .1152|1.5619 | 1090} .7947 | .1036 | .5448 L0990 | .4238 | .0949 | .3541 L0913 | .3097
'50 QTRI »0993 | 1.5512 | .0993 | .7810 .0992 1 .5281 .0992 | .4045 | .0991 | .3326 .0990 | .2863
QTRII .0039 | 1.5580 | ,0892 | .7881 | .0852 | .5354 .0816 | .4117 | .0785 { .3396 L0757 | .2931

* Though the sway frequency is minimum, frequency for n = 3

is lower than n = 2.
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FREQUENCY PARAMETER A ? (x 102) FOR CLAMPED-SIMPLY SUPPORTED SHELLS

TABLE 9.
Cubic Frequency Equation (Flugge Theory)
Length Radius-to-thickness ratio a/h
radi:;oljatio 30 100 150 200 250 300

L/a n=1| n=2 } n=1 [n=2 n=1| n=2 n=1 n=2 n=1 n=2 n=1 | n=2
10 7. 844§ 3.2440 | 7.8445] 2.9275 [7.8445] 2.8650 | 7.8444 | 2.8428 | 7.8444 | 2.8323 | 7.8444 | 2.8269
15 3.791012,0300 | 3.7908| 1.5011 [3.7908} 1.3812 | 3,7908 | 1.3367| 3.7908 | 1.3156 | 3.7908 | 1.3040
20 2.2050 | 1.7243 | 2.2049| 1.0659 | 2.2049| .8922 | 2.2049 _»8228 1 2.2049 7886 | 2.2049 | .7694
25 1.4345 | 1.6271 1.4345| .9077 | 1.4345] .6973 | 1.4345 .6067 | 1.4345 | .5598 | 1.4345| .5326
30 1.0054 [ 1.5894 | 1.0054| .8426 |1.0053| .6113 |1.0053 .5059 | 1.0053 | .4489 { 1.0053 | .4146
35 .7428 | 1.5724 . 7428 8128 | .7428] .5701{ .7428 L4556 | .7428 | *.3915 .7428 | 3517
46 .5708 11.5638 L2708 ,7977 | .5708 .5457 .5708 .4289 1 .5708 | .3602 .5708 | .3166

. 45 .4522 11,5589 L4522 .7894 | .4522| .5371 .4522 .4140 | .4522 | .3423 L4522 1 .2961
50 | .3669 |1.5561 L3669} .7846 | .3669| .5303 | .3669: L4051 1 ,3669 | .3316 .366% | .2838




TABLE 10

(ShelLGeométry is same as in Table 1)

o

Clamped ~Simp1y supported Shell

1
A% (510%) = .51851219

w/2m

= 2.

91 Hertzs

Clamped-Ring Stiffened Shell

Effect of Ring Stiffness on the Shell with various mode shapes . -

m =1 n=2 '
SEXTIC QUADRATIC QUADRATIC
01131}31'1\@ (36) * (39)* (1.15)
I Ai W2 5‘21'2 w/ 21 W27
x 10 (HERTZ) x 10 (HERTZ) | (HERTZ)
0.0 . 41101781 2.3059 . 41328963 2.3186 2,325
.96 . 48566582 2.7247 . 50009295 2.8056 2.785
1.91 . 48858661 2.7411 . 52660181 2.9544 2.944
3.83 . 49042674 2.7514 .54246953 3.0434 3. 640
7.622 | .49150295 2.7574 .55021507 3.0868 3.088
15.316 | .49228575 2.7618 .55403181 3.1082 3,120
6750.00 . 49402877 2.7716 . 55760417 3.1283 cevaes
| cee SN PR 3.135

* REFER TO NUMBER OF EQUATION IN THE TEXT.

A.72.
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Comparison of frequency parameter A2 (x 102) given by exact Forsberg Analysis with present theory

TABLE 11.
CLAMPED-FREE SHELL
ofh L/a=9 L/a =12
n m =1 m = 2 m =3 m=1 m_= 2 m = 3
Present | Forsberg Present |[Forsberg| Present|Forsberg|Present |Forsberg| Present |Forsberg} Present Forsberg
0 114.1715 37,4263 57.7934 10.6286 28.0697 43.3451
1{ 2.7001 | 2.6660 (14.2590 |12.4200 [31.4284 1.5465] 1.5530 8.6181] 7.9980 |20.5465
2 -9382 | .9510 | 5.2647 | 5.1780 13,7674 .5886] .5971 3.0220] 3.0660 | 8.1987
3 .9761 2.6969 | 2.7510 | 7.0861 L9105 .9101 l1.6933 1.7400 | 4.1538 -
41 1.7034 2,263212.2950 | 4.5125 1.6891 1.8944( 1.9080 | 2.9334
51 2,7281 2.9200 | 2.9260 3.9137 2.7223 2.6936] 2.7910 | 3.1735
6| 3.9942 4.0849 | 4.0760 | 4.5137 3.9905 4.0286( 4.0790 | 4.1867
7 | 5.4938 5.5530 15,7680 5.4906 5.5187} 5.5100 | 5.6034
8§ 1 7.2251 7.2730 7.4051 7.2221 7.2467 7.3042
9 9.1877 9.2310 9.3283 9.1848 9.2080 9.2543
10 |11.3814 [11.4226 11.5039 11.3785 11.4011 11.4423
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TABLE 12.

i
Comparison of frequency parameter A? (x 102) given by exact Forsberg Analysis with present theory

CLAMPED~FREE SHELL

%ﬁ): L/a = 9 L/a = 12
m =1 m =2 m =3 m =1 m =2 m =3

i Present |Forsberg| Present| Forsberg [Present| Forsberg| Present | Forsberg| Present Fdrsberg Present Forsberg
-0 [14.1715 37.4262 57.7933 10.6286 28.0697 43.3450

1 | 2.7001|2.6650 ]14.2589|12.2400 [31.4283 1;5465 1.5520 | 8.6180 20.5465

2 .8937| .9074 | 5.2556| 5.1060 13. 7629 .5157| .5258 | 3.0074} 3.0170| 8. 1925 "

3 .53571 .5635 2.5658| 2.5950 | 7.0315 .4358| .4384 | 1.4839| 1.5240 | 4.0675

4 L7428 ,7434 | 1.6353] 1.6720 | 4.2132 .7145Y L7143 | 1.0915( 1.1150| 2.4732

5 | 1.1455(1,1320 | 1.4938] 1.5130 | 2.9581 1.1371 1,2623] 1.2700 | 1.9259{1.9300

6 1.6672 1.8068} 1.8130 | 2.5586 1.6636 1.7129] 1.7140 | 2.0016

7 | 2.2903 2.3566( 2.3560 | 2.7247 2.2881 2.3132 2,4448

8 |3.0110 3.0498| 3.0460 | 3.2397 3. 0094 3.0257 3.0940

9 | 3.8285 3.8558| 3.8500 | 3.9648 3.8271 3.8397 3.8811

10 | 4.7424 4,7645 4, 8352 4.7411 4.7521 4.7811
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TABLE 13. Comparison of frequency parameter A2 (x 10

1

CR: Clamped-ring stiffened shell (Ring: bR/a =.1, dR/ a = .3) ; CS: Clamped-Simply supported shell

2) given by exact Forsbherg Analysis with present theory

(Sextic) (Cubic)
m=1 a/h = 250 a/h =600
L/a=9 L/a=12 L/a=9 L/a=12
i Present| Forsherg|Present | Present | Forsbherg| Present |Present |[Forsberg|Present| Present|Forsberg|Present.
CR CR CS CR CR Cs CR CR CS CR CR Cs
-0
1.3707 } 1.3080 | 9.3866 | 0.8731 | 0.8406 |5.6932 | 0.9554| 0.9063 | 9.3866 | 0.6217 | 0.5930 |5.6932
2 3.3519 | 3.6980 | 3.4596 | 1.9419 | 2.2180 |2.0022 | 3.3425| 3.7540 | 3.44691 1.9374 | 2.2640 1.9811
3 1.8573 12,2390 | 1.8938|1.2780 { 1.5010 |[1.2974 1;6809 2.2320 | 1.7099 | 1.0021 | 1.3550 1.0163
4 1.9440 12.1640 ] 1.9574 | 1.7726 1.7783 | 1.1871| 1.5890 | 1.2001 | 0.8867 | 1.036 }0.8925
5 2.8031 2.8103 | 2.74%6 2.7525 1.2954( 1.4960 (1.3031 [ 1.1883 | 1.2650 | 1.1914
| 6 4.0259 4,0326 { 4.0037 4.0065 | 1.7204 1.7273 | 1.6817 1.6846
7 [5.5109 5.5187 | 5.4991 5.5024 | 2.3105 2.3184 | 2.2954 2,2987
8 7.2355 7.2452 7.2284 7.2324 | 3.0177 3.0274 ‘3.0121 13,0162
9 9.1938 9.2058 | 9.1894 9.1945 | 3.8280 3,8400 | 3.8273 3.8324
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WIND-INDUCED OSCILLATIONS OF CIRCULAR CYLINDRICAL SHELLS

PART B

AN EXPERIMENTAL INVESTIGATION



ABSTRACT

Present study discusses the wind induced oscillations of tall chimneys
with the major concern being to study the vortex excited motion of tall
circular cylindrical shell structures in either the swaying (bending) or the
ovalling (breating) modes. . The possible relationships between these modal
natural frequencies and the frequency spectrum of the aerodynamic input
(in this case the frequency of shedding of a pair of vortices) has been discussed.

A large number of model tests have béen performed in the wind tunnel
at Loughborough University of Technology, on the shells clamped at the base
and free at the top. Model shells of different lengths and varying thickness
and diameter have been taken. Also a mechanical shaker has been used as
an excitation device. Measured frequencies are compared with those predicted
by the relevant structural vibration analyses given in Part A of this study. In |
some cases the effect of a stiffening ring at the free end is assessed. An
attempt has also been made to determine experimentally the structural
damping characteristics for various modes of vibration in some cases. Also
Fablon has been used to increase the structural damping, with some success,

in a few cases.
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NOTATION

LN

radius to shell mid-suxface

diameter to shell mid-surface

shell thickness and length

ring breadth and depth

number of axial “half waves"

number of circumferential waves

mid-surface displacement of the shell in the axial,
circumferential, and radial direction

axial and circumferential coordinates

Youngs modulus of the shell

stress resultants

Strouhal frequency (Hz)

wind speed

Strouhal number

Reyndlds number

integral value of critical relationship
measure of structural damping
measure of deflection (amplitude)
differences in heights of water levels in two
manometer tubes

inclination of manometer tubes
densities of the shell, air, and water
critical damping ratio

Poisson's ratio

circular frequency

natural frequency of the shell in Hz

fAvii.



1. INTRODUCTION

- 'The need to take winds into account in the design of civil engineering
structures has long been recognised. But in the past decade a number of
events in Britain have emphasised the destructive power of the wind. In
February 1962 disastrous gales in Yorkshire caused widespread structural
damage, particularly in thé Sheffield area where nearly two thixds of the
total dwellings were affected, some being damaged beyond repair, A similar
catastrophe occurred in January 1968 in Glasgow causing widespread destruction.
Also a subsequent gale in the Sheffield area in 1966 led to the collapse of
Ferrybridge Cooling Towers. These have drawn attention to the limitations
of the current knowledge on wind-induced instabilities. Even for such a
simple structure as the circular cylindrical shell, the stability criteria are
not completely defined for all types of wind loading.

In recent years there has been an increasing awareness of the need to
allow for the static and dynamic effects of wind on the design of civil
engineering and aerospace structures and there has been a useful cross-
fertilisation of ideas and information feedback between these branches of
engineering. ‘This is particularly evident in the number and scope of major
symposia, references ]:l, 2, 3] which have attracted meteorologists,
architects, civil engineers, aerodynamicists and aerospace structural
engineers. '

The main concern of the present study is that class of dynamic problems
resulting from excitation due to vortex shedding in case of circular cylindrical
shell structures. This study was prompted by the following recent full scale
ovalling experience: |

In 1964 during a typhoon, ovalling oscillations were observed on a
1501t high and 10ft diameter chimney. The chimney material was mild steel
of gauge 5/ 16 in. thick. The nature of the oscillations as recorded on film
was of an ovalling mode with n = 2 at a frequency of approximately 1.6 - 2,4 Hz.

After some time the sole stiffening ring at the free end of the chimney broke
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away from the basic shell whereupon the amplitude of the vibrations
increased considerably prior to collapse. |

It may be remarked that for a particulax structure a study ofwind
effects requires a prior knowledge of the maximum wind speeds at the
proposed site for the structure. Since it would be unusual for this precise
knowledge to be available it is necessary to infer it from meteorological
records often taken a considerable distance away. The designer must also
take account of local topography, prevailing wind directions, the variation
of wind speed with the heiglﬁt, the presence of other adjacent structures etc.,
and most importantly, the degree of turbulence in the wind.

Because of uncertainties in these various parameters recourse is often
had to wind-tunnel tests in which these parameters, especially wind profile
and turbulence, and structural flexibility are all modelled. Some of such -
work is reported in references [l, 2 and 3:]

The present report is a complementary study of that published in
reference [4] and given in greater detail in Part A. The purpose of this
study is to report comparisons of experimental frequencies and mode shapes
with corresponding analytical results of reference [4] for clamped-free and
clamped ring stiffened circular cylindrical shells.

The vortex shedding phenom enon and vortex induced oscillations
are first discussed followed by a brief summary of the analytical procedure
in [4]. - | This then is followed by details of the experimental investi-

gations and comparisons of experimental and analytical results.
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2. VORTEX SHEDDING PHENOMENON

2.1 VORTEX EXCITATION

The most common cause of oscillations of bluff shaped (e.g.
cylindrical) bodies in a fluid flow is vortex shedding. A simple idealised
physical explanation of the excitation due to vortices is as follows [5] {6] -

As a vortex is shed, it induces a circulation round the cylinder
in the_opposite direction to that of the shed vortex, as shown in Figure 1.
This temporarily increases the velocity on 6ne part of the cylinder and

decreases it on the other, both by an amount of v, and consequently a

1’
difference in the surface pressure on the cylinder is produced acting in a
direction across that of the flow. As the vortex passes downstream, its
effect on the cylinder is reduced and the resultant force decreases until
another vortex is shed, from the other side of the cylinder, and a force is
produced in the other direction. The cross flow force is therefore of the
same frequency as that of the shedding of a pair of vortices.

If the cylinder is flexible and free to oscillate, then large
amplitude motion may occur across the direction of the flowwhen the
frequency of shedding of a pair of vortices (N) is in resonance with its

natural frequency ().

2.2 ~ STROUHAL NUMBER vs REYNOLDS NUMBER

VResearch into vortex streets behind a circular cylinder dates from
the late 15th Century. In 1878 early experiments by Strouhal led to the
empirical correlation of the vortex shedding frequency N, the cylinder
diameter D, and the stream velocity V through the non-dimensional
Strouhal number

ND
5 = —=
N v (1)

Many workers have discussed this parameter and its dependence

on Reynolds number, and it appears that several distinct regions of Reynolds



number exist in which different phenomena occur. These various regions
are not separated by clear boundaries buﬁ by transition zones which can be
altered by individual experimental conditions. These regions are shown in
Figure 2, as symmetric, regular, irregular and supercritical defining the
nature of the vortex shedding phenomena.

It is with the irregular (sub-critical) and supercritical Reynolds Number
range {i.e. RN >300) that this report is primarily concerned but the inter-
vening transition zone around the critical Reynolds number (2 x 10° < RN <
2x 106) will also be discussed. Much of the data available on the aerodynamic

Strouhal number over the above Reynolds number range is shown in Figure 2.

2.2.1 SUBCRITICAL REGIME

In the subcritical Reynolds number region (300 < RN< 2x 105)
the boundary layer is laminar, its separation from the surface is not
appreciably affected by Reynolds number, and the Stouhal number in equation (1)
remains at an almost constant value of 0.2 for an infinite aspect ratio circular
cylinder. |

Experiments have shown that one consequence of periodic
vortex shedding has been the existence of a periodic force in a direction
normal to the wind stream. The frequency of this force when the cylinder is

stationary is given by a value of S = 0.2 in equation (1) but it appears that

for an oscillating cylinder there afe certain ranges of wind speed for which
the cylinder oscillations themsevles control the frequency. Thus Parkinson
has shown (Paper 18 - Ref. 2) that onset of oscillations can occur (if the
structural damping is sufficiently small) when the Strouhal frequency equals
the natural frequency of the cylinder and the instability which persists over
a range of wind speed (which also depends on the structural damping) will

do so with a frequency dominated by the natural frequency () and not by the
Strouhal frequency {N) corresponding to the particular wind speed.

The assumed 1 to 1 relationship between successive bending oscillations

at the natural frequency and the vortex shedding is given in Figure 3(a) but
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Figure 3(b) presents alternatively a 3 to 1 relationship which could result in
a lower critical wind speed. There is no experimental evidence for this
known to the author although, as mentioned in (iii) below, higher harmonies
of the Strouhal frequency are likely to be present which might produce an
apparently lower critical wind speed than would correspond to a value of

s = 0-2- | '

As well as lateral bending oscillations, it is possible, with
lightly damped plain cantilevers, for significant vibrations to develop in the
direction of the flow. These havé been reported to occur at a frequency
twice that of the lateral oscillations and this suggests that the periodic forces
associated with vortex shedding can have a significant streamwise component.
This may be explained as follows (reference [6h:

The force on a cylinder may be resolved into a mean (or time
averaged) drag force in the direction of the flow and a periodically fluctuating
force which does not act precisely across the direction of the flow but has
drag and side force components (Figure 1).. The fluctuating drag attains a
maximum value every time an individual vortex is shed and hence has the
same frequency as the shedding of single vortices. The crossflow force
attains a maximumn in one direction each time a vortex is shed from the other
side, and therefore has the same frequency as the shedding of a pair of
vortices, as shown in Figure 1(b}. Thus the fluctuating drag force has twice
the frequency of the fluctuating side force. The largest amplitudes in flow
direction occur when N'= 4 @ |

From the available data for the sub-critical regime it is
clear that the cylinder response to fluid dynamic forces frofn vortex shedding
is not strictly speaking a resonance effect since the cylinder motion alters
the flow field significantly.” The main conclusions for sub-critical flow are
summarised in paper 37 of reference [2] .

(i) cylinder motions increase the circulatory strength of developing

vortices,
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(ii)  cylinder motions increase th¢ two -dim ensionality of the

: flow field, i

(iii)  the dynamic lift contains higher harmonics of the Strouhal
frequency,

(iv)  striking flow field modulations can occur when the ratio of the
shell natural frequency to Strouhal frequency is between 0.8 and

1.1 but not close to unity.

2.2,2 SUPERCRITICAL REGIME.

Unfortunately most practical structures of interest operate

at Reynolds numbers up to and into the supercritical regime and the data
available for this region and the transition zone which precedes it have been
rather inconclusive. |

- According to some research workers they have found a marked
rise in SN above RN = 2 x 10° such that a value of SN = 0. 46 occurred at
RN = 1.5 x 10° whereas others have shown completely contradictory results
with values of SN < 0.2. Typical results are given in Figure 2 taken from
reference [7] where it is asserted that it is questionable whether periodicity
if.-vortex shedding still exists above RN =2x 105 and that only a wide frequency
band turbulence occurs. The evidence presented in Figure 2 certainly

6

indicates no discrete vortex shedding for 2 x 10S < RN <1.5 x 10" but for

1.5x 106 <R_N< 3 x 10° one might deduce that there is progressive decrease
in SN from 0.46 to 0.2. This would mean that a structure of bending
frequency 9 could experience a corresponding progressive increase in
Vcr (since Vcr = @D/Sp) with V and a continual condition of resonance of
increasing severity, due primarily to the consequent increase in dynamic
pressure., This condition of increasing amplitude with speed and no pronounced
single critical speed has been quoted elsewhere as evidence for the absence
of a discrete vortex shedding frequency but from the above argument that is
not necessarily proven. |

It is of interest that data has been presented by Chen [7]

in Figure 2 for a value of S, ® 0.2 in the supercritical region although he '

N
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proceeds to discount it based on his own experimental results.

The results of Fung [8] and Roshko [9] for a rigid
cylinder have shown no discrete frequency in the broad turbulence spectrum
for the transition range of Reynolds numbers although each spectrum in this

range has a peak at a value of S , which decreases inthis range from 0,17 to

0.05, These values imply a IOVI: effective forcing frequency in a broad
frequency band and if significant vibrations are to occur as a result .rhe
dynamic pressures must be sufficiently great and the structural damping
sufficiently low and the pos.sibility referred to earlier might then apply with
the effective Strouhal frequency lower than the natural frequency (i.e. N=3¢).
Roshko has also shown that a discrete frequency peak can occur for ‘
RN >3.5x 106 corresponding to SN = 0,267,

It is believed that the probable main causes for the dis-
agreements between vaxious research workers are the differences in end
effects and other three-dimensional effects and the fact that many of the
cylinders tested have been rigid,

Whén the cylinder is not held rigidly but can interaét with
the flow it would appear that the correlation length can increase markedly
when the phase of the vortex shedding is locked into synchronism along the
entire cylinder by the cylinder motion itself.

- 'The results of some recent experimerfts at N,P, L.
reference [10] showed that the presence of a free end can have significant
effects as the flow is entrained over the free end of the cylinder to pass down
the leeward face thereby causing a thickening of the wake and a consequent
decrease in the local vortex shedding frequency. This gives a wider spectral
peak to the overall oscillatory forces. The lower vortex shedding frequency

yields a value of ST - 16.



3. VORTEX-INDUCED OSCILLATIONS

Two types of wind~induced oscillations of chimneys have been
eXperienced in practice viz "sway" or cantilever type and "ovalling" (or
more appropriately "breathing" in case n > 2). These can both be caused

by periodic shedding of discrete vortices from the shell.

3.1 SWAYING OSCILLATIONS

The wind forces on a cylinder may be resolved into a mean drag
force in the direction of the flow and a periodically fluctuating force which does
not act precisely across the direction of the flow but has drag and side force
components (Figure 1). The fluctuating drag attains a méximum value every
time an individual vortex is shed and thus has the same frequency as the
shedding of single vortices. The crossflow force attains a maximum in one
direction each time a vortex is shed from the other side, and therefore has the
same frequency as the shedding of a pair of vortices, as shown in the lower
diagram in figure 1. Thus the fluctuating drag force has twice the periodic
frequency of the fluctuating side force. Thus the streamwise vibrations are
clearly caused by the stream-component of the vortex shedding periodic
force at a frequency twice the lateral component.

The swaying oscillation of the chimney as a cantilever beam
occurs primarily in a direction transverse to that of the wind and at the
natural frequency in bending of the structure, although under certain
conditions it is possiblé with lightly damped, plain, cylindrical cantilevers
for significant vibrations to develop in the direction of flow. Experiments
have shown that the onset of transverse bending oscillations can occur at a
wind speed (V) at which the frequency (N) of the shedding of a pair of
vortices, as determined by the expression S

N
natural frequency in bending ( ) of the cantilever i.e. when V=5 & D,

= ND/Vz.'- .2 equals the

The instability persists for a range of wind speeds dependent on the amount

of structural damping. The assumed 1 to 1 relationship between successive



bending oscillations and vortex shedding is given by Figure 3(a) but it should be

noted that Figure 3(b) presents a possible alternative whereby there is 23 to 1
relationship between the bending and vortex shedding frequencies resulting

in a lower critical wind speed.

3.2 OVALLING OSCILLATIONS

Ovalling oscillations have also been experienced on various
chimneys as reported by Scruton (Paper 24 of Ref. [1] ); Johns and Allwood
(Paper 28 of Ref. [3] ). From such results it has been suggested by
severai workers that the ovalling oclcurs at a wind speed such thata 2to 1
relationship exists between the ovalling natural frequency and the vortex
shedding frequency, see Fig. 4(a). However, this assumption has been
questioned in paper 28 of Ref. [3] and Fig. 4(b) shows that a 4 to 1 relation=
ship is also possible, if the axes of ovalling do in fact remain orthogonal with
the wind direction. Figs. 4(c), (d) show thata 1l to 1 or 3 to 1 relationship
is possible if the axes of ovalling mode are oriented at 45° to the wind
direction. Thus instead of the previous 2 to 1 relationship Fig. 4 shows a
possible 1to 1, 2to 1, 3to 1 or 4 to 1 relationship and even higher relation-
ships are possible from the same argument. If r is the value of this critical

relationship and S_. = 0.2 or 0.16 the critical wind speed is given by either

N
V=5 QD/r or V=6 gD/r (2)

where r = 1,' 2, 3, 4,...., signifying progressively lower critical ovalling
wind speeds. The lowest actual critical wind speed would depend upon the
structural damping present and on some parameter such as the ratio of
aerodynamic and structural stiffness. The results for the full scale chimney
described in paper 28 of Ref. [3] indicate a value of r = 1 as being most
likely rather than the value of r = 2 reported earlier.

Figs. 4(c) and (d) aie based on the possibility that the axes of
ovalling mode are not orthogonal wii:h the wind direction but are aligned with

the axes of resultant periodic surface pressure distribution which are not -
necessarily orthogonal to the wind.
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Evidence for this latter possibility is given by the fact that
significant streamwise swaying oscillations are possible at a frequency
twice that of the lateral oscillations Ref. [6] and by the form of the
measured pressure distribution shown in Paper 28 of Ref. [3] which is seen
to have a resultant close to a line 135° from the -stagnation line.

As will be discussed later the tests in the wind tunnel on model
stacks confirm the possibilty of various critical relationships as well as the

orientation of the axes of the ovalling from the wind direction.
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4. WIND -TUNNEL TESTS

Wind tunnel studies have been made at Loughborough University of

Technology on model stacks of different geometries to study the frequency
pattern critical wind speeds, the critical mode and its orientation to the wind

direction to determine the degree\of correlation with theoretical predictions.

4.1 DESCRIPTION OF THE WIND TUNNEL

The tunnel is of open jet working section 42 in. long by 34 in. wide.
Its maximum output in the effective range is a wind velocity of 102 ft. per sec.
at atmospheric pressure. The photograph of the test section can be seen in

the Figure 5.

4,2 CONSTRUCTION OF THE RIG AND MODELS

A circular stéel plate, with provision to take thin shells of diameter
4.8 in., 8in., 12in., was made. To ensure stability this was attached to a
fixed steel base as shown in photograph in Figure 5. Removable thick steel
rings were made to fix the bottom end of the shells of different diameters.

‘ To start with, the idea of attempting machining circular cylindrical
shells from tuhular stock material, was conceived. This method had the
advantage of avoiding any seam dislconti.nuity or joint in the shell. The
disadvantages that led to the abandonment of this idea,. are that it is restricted
to relatively small diameters; is very difficult to hold an acceptable tolerance
on the wall thickness dimensions for thin shells, and above all it is quite
expensive,

Subsequently, a successful attemnpt was made in forming circular
cylindrical shells from flat rolled sheet stock. The initial sheet stock can
be obtained with very good tolerance on the thickness dimension. This sheet
is then rolled into desired form and joined by one or two seams along a
generatrix of the shell. The size or the diameter of the shell is not restricted
as in case of machined shell. Complete shell models are relatively inex-
pensive. Thére are some discontinuity effects at each seam (as discussed

later) but these are considered to be minimal. Some non-circularity effects

are also present. Constructional technique is pictured in Fig. 14.
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4.3 INSTRUMENTATION

The detection and identification of vibratory modes in thin shells
has been a problem for experimentalists for years. The contact type sensors
very frequently influence the modal preference and for mobile probes can
cause modal rotation. Surface strain measuring techniques have been
affected by the large amplifude of vibrations which resulted in the breakage
of the oxrdinary strain 'gauges. Special strain gauges were used to detect the
signal of the oscillating chimney model in the tunnel.

The electronic equipment used in the test is shown in Figure 5.

A schematic representation of this type of instrumentation, as used in the
present investigation is shown in Figure 6.

The strain gauge output goes through a strain gauge bridge and
operational amplifier, connected with a d.c. power supply unit (20 volts),
and goes as input into the wave analyser and a double beam CRO. Wave analyser
is used to measure the correct frequency in Hertz.

Since there was no direct scale to measuré the wind velocity,
the equipment shown in Figure 7 was used for this purpose. The pitot-
static tube shown in Figure 5, with its end facing into the wind is connected
with the manometer. The differential pressure in inches of water is noted
here and the formula

-, |
e AV = P_gh sina S (3)

where

p . is air density

A
V  is wind velocity

Ow is density of water

g 1is acceleration due to gravity
h

- is difference in the height of water level in two tubes

o is angle of inclination of manometer tubes,
If hW is in inches and pA = ,00238 slugs/fts, pw =1.94 slugs/fts,
g=232.2 ft/secz, o = 30° the formula (3) reduces to:

Al
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v = J2184h, ft/sec (4)

+©

The control box on the right is provided to switch the wind tunnel
on and off and to control the wind speed. The maximum wind speed which

can be achieved in this tunnel is 70 miles/hour or IOé ft/sec.

4.4 GENERAL TEST PROCEDURE

The general test procedure was as follows:
1. The wind speed was slowly increased until a maximum oscillatory
signal was obtained from a strain gauge. |
2. Since the circumferential mode number n is of the order of 1 to 4
in the case of tall shells, it was determined by visual observation.
3. The model frequency was determined by using the wave analyser
4. Wind speed was determined by noting the differential pressure
in inches of water and using formula (4)

S. Wind speed was again increased to find the other modes.
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5. MODEL EXCITATION BY SHAKER

5.1 RIG DESCRIPTION

To start with the experimental rig shown in Figures 8 and 9 was

~ designed. It has 3 thick steel rings of diameters 12", 8", 4.8" fixed to the
wooden base which can take shells of respective diameters. The motion
sensing device is mounted on the screwed rod supported by the assembly of
four vertical rods fitted at the centre of the rig. The circumferential and
vertical traverse is made possible by the two wheels shown in Figure 9 which
are handled manually. The model stack is mounted on this rig with its lower
end clamped onto the base ring with the help of another 3" wide steel ring

which can be tightened as required to ensure a clamped end.

5.2 EXCITATION SYSTEM

The energy input device to the shell was originally an acoustic
exciter since this type is non-contacting which was thought to have advantage.
This was later replaced by an electromechanical shaker (seen sitting in
Figure 9). The shaker was not attached to the shell but allowed to rest
against it. In this configuration it was found that a more uniform vibration
pattern was produced with all the antinodes vibrating at equal amplitude.

The shaker is powered by an oscillator and amplifier. The oscillator is a
precision decade oscillator (shown in Figure 10, Muirhead-Wigan type D-890-
A Decade Oscillator) which can be varied in 0.1 Hz steps making the detection
of the resonances moxre accurate. The amplifier (see Figure 10) used has a

50 watt output which directly powers the shaker.

5.3 RESONANCE DETECTION SYSTEM

In this case se(reral motion sensing devices were tried and
abandoned for one reason or the other. A few are stated as follows:

For shell which is not circular the instrumentation system if
non-contacting will have a variable gap circumferentially which implies

tedious calibration problems. If the non-circularity is pronounced an
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instrument to be traversed circumferent{ally has to have its minimum gap
wheré it most closely approaches the shell with a consequent large gap
elsewhere. Apart from calibration problems - this large gap may cause
non-linearity and considerable weakening of the signal. '

Thus the‘capacitance device suffers frofn its size or its small
linear range, the pressure transducer responds too well to the acoustic
excitation system initially used and thereby makes it difficult to distinguish
the shell vibration modes. The mechanical (contacting) excitation system
has removed this last problem and so the pressure transducer was developed
and used. |

A further alternative scheme considered and tried without success
was the Doppler radar device, but this also suffered from the shell's non-
circularity and has been abandoned.

For the present system the equipment used is shown in the
Figure 10 and a schematic representation of this resonance detection system
and excitation system is shown in Figure 11. The inside of the shell is scanned
with a microphone (Acos MIC 43-3) mounted in a perspec holder. This
microphone was used finally in preference to any other because of its small
size, cheapness and availability. The inlet to the microphone of signals
due to the shell wall vibration is via a one inch long, 1 /8 inch diameter bore
steel tube. This tube is to confine to a smaller area of the portion of the
shell being monitored. The electric output from the microphone is fed to the
input of a double beamm CRO and a wave analyser (see Figure 10) via a screened
cable. The wave analyser filters the input at the excitation frequency and by
careful tuning the exact vibration frequency can be determined. The instrument
is fitted with a pair of output terminals which monitor the filtered signal.

The output goes through an amplifier to a chart recorder which give‘é the number
of circumferential waves when the shell is scanned by travelling the microphone
circumferentially.

The attempt has been made to make all tests as definitive and

sophistiéated as possible, e.g. to perfect the instrumentation system so as
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to measure circumferential and axial modes of vibration both under

t

mechanical vibration and wind excitation. ~ The o‘?served results of the tests

hawe been compared with the predicted results in later sections

1).

2)

3)

4)

5)

)

5.4 GENERAL TEST PROCEDURE -

In this case also the general test procedure was as follows:

The oscillator frequency was slowly increased until a maximum signal

was obtained from the microphone.

Longitudinal wave number, m, was obtained by traversing microphone
vertically with the help of the wheel shown in the right of Figure 9.
Number of circumferential waves, n, in the case when it is small can
actually be counted just by viewing the top of the vibrating model stack.
In the case when n is large the circumferential scanning is done by the
microphone and the value of n is counted on the chart recorder.
Alternatively voltage readings on the wave analyser scale can be
taken while scanning circumferentially. Nodes and antinodes correspond
to minimum and maximum scale readings, but oﬁe has to be very
careful in this case because due to shell irregularities when the signal
is very weak the difference between two readings (i.e. maximum and
minimum) is so small that it may be overlooked.

The model frequency is determined by proper tuning of the wave
analyser.

The measure of i.nherent structural damping is also obtained experi-

mentally by using the wave analyser which will be discussed later.

The degree of clamping afforded by the base rings (Figure 13) was
checked several times during the test as it was known that less than

a fully constrained base might give spurious results.
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6. COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS:

Table 1 shows the geometrical and structural properties of the models
tested in the wind tunnel and by excitatioﬁ with an electrodynamic shaker.
A notation for the cylinders tested in the wind tunnel is recognised by putting
letter 'T" before the number whereas for the shells tested with the electro-
dynamic shaker the letter 'S' precedes the number of the shell. Most of
the models tested were made out of aluminium alloy because of availability.
Two model steel stacks were also tested, one in the wind tunnel and the other
by exciting with electromechanical shaker. In the following sections discussion
is givenon the values of the frequency parameters and mode shapes for

different models."

6.1 MODEL SHELL EXCITATION BY SHAKER: RESULTS

As described in section 5 the model stacks were mounted on the
rig shown in figures 8 and 9 and excited by an electrodynamic shaker
powered by an oscillator and amplifier. The frequencies éorresponding to
different mode shapes, i.e. axial wave nufnber m and circumferential wave
number n have been determined and they are correlated with the correspond-
ing results predicted by the present theory reference [4] . The first three
fundamental axial modes i.e. m =1, 2, 3 have beén taken and associated
with each of these are various values of circumferential'wave number n,
i.e. n =0 (axisymmetric mode), n =1 (swaying mode), n = 2 (ovalling mode)
and n >2 (breathing modes). The calculated values of the frequencies are
given form =1, 2, 3 and n varying from O to 10 for each m. The measured
frequencies are given wherever possible. Experimental structural damping

has also been measured. The procedure for the same is as follows:
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6.1.1. MEASUREMENT OF EXPERIMENTAL STRUCTURAL
DAMPING:

The structural damping of the [ ‘/X max

shell is measured as shown in the diagram

given here. The relative deflection Xmax
and frequency £ are measured on the

wave analyser with scales shown on the

left and right respectively. The wave

Relative deflection X
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frequency Q
double beam CRO in figure 10. Then the frequency is reduced to & 1’ such

be:
[

analyser is seen sitting on the top of

that the net deflection now becomes A1ox Xmax' In the same way the
frequency then is increased from & to 92 to give net deflection equal to
1 e @ Q .
—_— ; - = AQ , ,
7 X Xmax Then if 2 1 the measure of structural damping
g=400/Q )

This can also be given in terms of critical damping ratio §=g/2. In the

tables it is given in terms of percentage i.e. g x 100.

6.1.2 MODEL SHELL ANALYSIS
Model shell SI is considered in table2. The calculated

analytical frequency is compared with the measured frequency. Measured
frequencies are the ones which could be found by exciting the shell. The
agreement seems to be quite good. The maximum difference in the calcu-
lated and measured frequencies is within 10%. The axisymmetric mode
could not be excited because of its high frequency; neither could the sway
mode i.e. bending oscillations. For higher values of n, the frequencies
corresponding to axial wavé numbers m =1, 2, 3 interfere with each

other and distinction becomes almost impossible. It was ohserved that for
lower frequencies corresponding to n = 2, 3, 4 the amplitude was significanf—
ly big but for higher values of n the amplitude was small as expected. The

structural damping for all the cases corresponding to various m's and n's
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is fairly uniform and its value (in terms of g) lies between 2% to 2.5% as
seen in table 2. Fig. 15 shows results Eor various modal frequencies.

An attempt was made to increase the structural damping of
this shell by spraying a 0.005 in. thick coat of self applied polyvinyl plastic
coating Vy coat CA90. The corresponding results for this shell are given
in table 2 marked with asterisks. It is seen that these results tend more to
decrease the frequencies than to increase the structural damping coefficients.
In other words this added "damping" probably does more harm than good by
decreasing the frequency with a negligible increase in the structural damping.
The decrease in frequency is caused probably by the added mass of the poly-
vinyl coat. To quote the advantages of this process, it was observed (which
is obvious in table 2) that some interferencé between the various modes was
stopped and it was possible to find a few more frequencies corresponding to
higher values of n and mm = 3 which were not possible for the original shell.
Since the coating was black the reflections from the surface showed quite
beautifully the number of axial and circumiferential waves which could then
be counted by looking at the shell.

Table 3 shows the comparison of analytical and experimental
frequencies of model shell SII. This is the shell which is shown in photographs
in figures 8, 9 and 12, In this case it was possible to get quite a number of
frequencies experimentally. The comparison here is‘very good. The maximum
difference is about 2%. In some cases the measured frequency is a little
higher than the predicted one but the trend is fairly consistent, Form =1,
the frequencies corresgonding ton =2 - 6 could be traced, for m = 2 those
corresponding to n = 3 - 7 and for m = 3 corresponding to n = 4 -~ 9 could be
traced. Fig. 16 shows results for various modal frequencies.

The circumferential nodal pattern for this shell is seen in the
photographs of figures 17 and 18. Figure 17 shows the number of circum -
ferential waves to be 3 (or 6 half waves) whereas figure 18 show n = 4 (or 8
circumferential halfwaves). Deflections are quite substantial as seen in these

pictures and they decrease with n. The good agreement between theory and
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experiment as is evident in table 3 over the entire test ranges of m and n

value is perhaps due to the fact that shelhl SII was very well constructed

and probably much better than shell SI. In this case the interference

between any two modal frequencies was not appreciable as in case of shell

SI and that is the reason why quite a few frequencies could be traced. These
tests as in every other case were repeated three times and experimentally
observed frequencies were identical in all the cases. It was essential to
ensure that the base of the model is perfectly clamped to ensure axial
constraint which is a very important boundary condition affecting the frequency.

Table 4 is the table of vélues of frequencies and structural
damping for the model shell SIII. As is seen on the table 4, not many
frequencies were traceable but the agreement otherwise appears to be
satisfactory. The difference in the analytical and measured values varies
from 5 to 10 percent. It is seen that the agreement becomes less good for
the higher modes.

This shell was also sprayed with polyvinyl coat (Vy coat CA90)
for the purpose of increasing structural damping. The layer was 0,01 in.
thick. Again it was found as in the case of model SI that this process
decreases frequency as much as 8% in some cases but the structural damping
is not very significantly increased. The coating also reduces the amplitude
of vibration and due to this fact not many frequencies were traceable as is
obvious in table 4.

Shell model SIV is analysed in table 5. The agreement'
between the predicted and measured values seems to be reasonable. The
calculated minimum frequency for the first fundamental axial mode (m = 1)
corresponding to n = 2 is nearly 8% higher than the observed frequency.
Otherwise, for all mi.e. m = 1, 2, 3 and associated n values the agreement
is fairly satisfactory, the difference being only of the order of 5%. It was
observed that as we increase the number of circumferential waves, n the mode
preferred is that due to higher axial wave number e.g. form =1,2 and

n = 4, the amplitude was bigger for m = 2 thanm = 1. Of course thisis a
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case when two modal frequencies are not very much different from each
other. |

Model SV, which is made up of . 028 in. thick steel, can be
compared to the similar aluminium model SIIT where the thickness was
.030 in, The frequencies are more or less the same because the .ratio P/E
is nearly the same in both the cases, as seen in table 6.

Here also the agreement is reasonable. The minimum
frequency for m = l corresponding to n = 2. gives the worst agreement. -
The measured and analytical values differ by about 12%,. The modes higher
than n = 5 could not be detected in the present system. _

Based on the detailed results presented in these tables, it
is possible to gain a more general insight into the vibration characteristics
of clamped-free cylindrical shells. Frequencies corresponding to the
axisymmetric case are generally very high in all cases. The swaying (n = 1)
frequency is also high and it was not pbssible to excite this with the help of
the electrodynamic shaker. Ovalling frequency (n = 2) for m = 1 is minimum
for all shells except SI where the frequency associated with n = 3 is minimum.
For the higher axial modes i.e. m = 2, 3 the number of circumferential
waves n corresponding to the minimum frequency increases. For example
for shell ST the minimum frequencies for the three axial modes m=1,2 3
correspond to 1;he number of circumferential waves n = 3, 4,5 respectively
and Ifor shell SV for m =1, 2, 3 minimum frequency corresponds to

n =2, 3, 4 respectively.

6.2 MODEL TESTS IN THE WIND-TUNNEL

6.2.1 GENERAL
| The most direct and reliable assessment of the wind-induced
oscillations of tall chimney stacks is to be derived from model tests in wind
tunnels. However it is seldom that a wind tunnel test can be devised in
which all the relevant parameters can be correctly represented and this

results in the uncertainties in the interpretation of the test results.
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Some of the models used are oscillatory replicas of the full
scale stacks with structural and dynamic' properties correctly scaled so as
to correspond to the full scale in the wind, In addition to model properties,
the properties associated with the wind (Reynolds number, shear and
turbulence) should also correctly be represented in the tunnel airstream.
These similarity requirements are too severe for all to be observed 1n
practice and necessary relaxations introduce uncertainties in the results.

Nevertheless, model tests do provide useful indications, and
while not always providing reliable quantitative predictions, they allow
development work on the prevention of whd—induced oscillations with
reasonable surety that a designwhich does not exhibit any form of instability in

the wind tunnel will be satisfactory in the full scale.

6.2.2 WIND TUNNEL TESTS: MODEL ANALYSIS

Wind tunnel model studies have been made in the
Loughborough University Open Jet Wind-tunnel. The geometrical and
structural properties of these shells are given in table 1. The description
of the tunnel and its associated equipment is givexi in the section 4.

Based on the theoretical vibration results the models were
designed to be excited in various modes according to equation (2).

Model Stack TI (L/a = 8.3 ) was designed to be excited by
the wind in the modes n = 2 and n = 3 because the frequencies for these two
modes are approximagely the same. It was observed oscillating in the
.mixed mode (n = 2, 3) with considerable amplitude as given in table 7 . A
value of r==3 was obtained (cf. equation 2).

Stack TII (L/a = 15) was designed only to vibrate in the
ovalling mode (n = 2). As seen in table 8 the frequency of oscillation is
very close to that predicted and a value of r=~3 was again obtained in this
case. This ovalling mode persisted with increase in wind speed and it was
not possible in this wind tunnel speed range to excite any other mode.

Stack TIII (L/a = 25) was designed in such a way that the

swaj}ing frequency and ovalling frequency were very close to each other
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and it was expected that they might be excited simultaneously but table 9
shows that ovalling commenced first at a wind speed of 39 fps with a value of
r=3. Afterwards at a wind speed of 59 fps and value of r~2 the swaying
mode (n = 1) is excited. At a wind speed of 64.5 fps the n = 3 mode was
excited with an approximate value of r=3.

It is seen fhat thé measured frequencies in the case of
ovalling and breathing {(n = 3) agree well with those predicted; the difference
being of the order of 4-5 percent. The swaying mode predicted frequency
is nearly equal to the measured value. Also the seam position affected the
preferred mode orientation though not its frequency. This was apparent
when after 3 tests the shell developed a crack near the seam due to‘fatigue
and started ovalling with axes at 45° to the wind. The amplitude grew much
larger and the frequency was reduced. This was true for the n = 3 case also.

The model stack TIV,when in the tunnel,behaved in a very
interesting manner. The shell started ovalling at a wind speed of 33.2 fps
with axes of oscillation being 45° to the wind direction as shown in the
photograph of figure 19, Table 10 analyses the behaviour of this model in
the wind. As is obvious the first ovalling commenced at a value of r=3
confirmed by figure 3(d). 'This was also cbserved by Johns and Allwood in
paper no. 28 of reference (3] . The justification they gave was that the
predicted orientation given in figures 3(c), (d), is suégested by some
measUremems taken at N.P. L., of the unsteady pressures acting on a
circular cylinder during vortex shedding. These show that the effective
centre of pressure of the circumferential distribution acts on the leeward
face of the cylinder close to a line 135°% from the stagnation line.

But as the wind speed was increased a gradual change in
the direction of axes was observed. At a wind speed of about 66 fps the
change was complete and the axes of oscillation were orthogonal to the wind |
direction as is evident from the photograph in figure 20. In this case the
value of r=~2 is obtained as predicted in figure 3(a) when the axes are

orthogonal.
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In this case as seen in figure 20 the amplitude of oscillation

was considerably big. This pefhaps caﬁsed the observed reduction in
frequency by about 2 Hz from the previous case when ovalling axes were at
45° to the wind. This was also observed by D. A, Evensen [1I] while
dealing with the effect of non-linearity on the vibrations of infinitely long
cylindrical shells. He remarks that in the case of both inextensional and
extensional vibrations the vibration frequency should decrease with amplitude.

The reduction in frequency may also be attributed to the
following factor. In the 3xd tesf the shell started tearing down its length
parallel to and near the seam. The split was about 6" - 8", This is
evident in tﬁe photograph of figure 20 by a corner in the right if one faces
the wind.  After splitting the shell started ovalling with axes orthogonal
to the wind at a comparatively lower windspeed of 60 fps and frequency 41 Hz.
Part reduction in frequency may be due to the fact that the torn shell was
less stiff. It can be remarked at this stage that the frequency reduction
was probably due to the combined effects of non-linearity due to large
amplitudes in the vibrations and of flexibility due to vertical split.

At a wind speed of about 85 fps the swaying was observed
but the amplitude was not very big. Swaying also commenced but not
very clearly inbetween the two stages of ovalling described above. It is
seen from the table 10 that the predicted and measured frequency compare
quite well. The difference being of the oxder of 4 to 6 percent.

. To account for the effect of structural damping on the Vw;find
induced vibrations an attempt was made to increase the damping of model
stack TIV by spraying on a 005" thick coat of polyvinyl (Vy coat CA 90).
During the tunnel test this coated stack started ovalling with axes at 45° to
tiqe wind at a slightly increased wind speed of 40 fps and reduced frequency
of 40. 8 Hz as compared to the plain stack TIV where the corresponding wind
speed and frequency were 35 fps and 43 Hz respectively. At a wind speed of
about 51 fps the amplitude grew quite big (about $") and the frequency came
down to 40.4 Hz. At a wind speed of 65 fps the ovalling amplitude became
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quite small. As the wind speed was increased the shell began to oscillate

in the sway mode (n = 1) with a fairly big amplitude of about .8 in. contrary
to its counterpart shell TIV which had then begun to oval again with axes
orthogonal to the wind at a speed of about 66 fps. The sway frequency of
this coated shell was measured as 31.6 Hz as compared to 33 Hz of the plain
shell. The amplitude of swaying grew quite large with increases in wind
speed to 75 fps. At a wind speed of about 85 fps the amplitude started to
decrease and the shell virtually stopped swaying at a wind speed of about

92 fps., The shell was almost flattened on the windward side at a wind speed
of 99 fps due to the high static pressure there.

Summing up one can see that the coating has not been very
effective in stopping the ovalling or swaying or even in bringing down the
amplitude of the vibrations for that matter. However it has changed the way
in which the shell behaved in the wind compared to the plain shell,

In the second attempt to damp this shell .005" thick white
Fablon was stuck over this pve coated shell. This model then was mounted
in the tunnel. As the wind speed was increased this shell did not oval (n = 2)
at all and at a wind speed of about 78 fps swaying oscillations (n = 1) were
observed with very much decreased amplitude of about .25 in. compared to
.8 in, for the pvc coated shell. At the top speed of the tunnel of about
100 fps the shell windward region distorted about 0.5 in. from a circular
cross-section to an elliptic one. |

| The natural frequency (ovalling) was found for this shell
By storing its transient response on to a storage oscilloscope. This frequency
was found to be 2r38.1 Hz as compared to 40. 8 Hz of pve coated and 43 Hz
of plain shell TIV.

In summing up it can be said that this fablon wrapped shell
has completely eliminated the ovalling (n = 2) mode. Fablon has only added
to the inertia and damping of the system but not to the stiffness, which can
be inferred from the reduced natural frequency of 38.1 Hz. This has also

decrcased the amplitude of the swaying oscillations by about 75 percent.
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The increased dampiﬁg may be due to the viscous adhesive on the Fablon
because painting with pvc did not make much difference, either in stoppingr
the ovalling or in reducing the amplitude of the oscillations.

Table 11 gives the results of the tunnel tests compared with
predicted results for the model stack TV. It was designed to oscillate in
the modes n = 2 and 3. At the wind speed of 40.5 fps the shell oscillated
in a breathing mode with n = 3 and at a wind speéd of 56 fps the amplitude
for this mode dies out. As the wind speed was increased the shell started
ovalling at 60 fps wind. It was observed that r&5 (reference eqﬁation (2))
in both these cases.

Model stack TVI analysed in table 12 was designed so as to
have ovalling (n = 2) and breathing with n = 3 frequencies nearly the same,
as can be seen from the predicted frequencies. It was expected that the
shell would oscillate with mixed modes i.e. n= 2 and n = 3 at the same time.
But in the test the breathing (n = 3) commenced first at about one fifth of the
predicted critical wind speed (i.e. at r=s5). The wind speed was 38 fps.

As the wind speed was increased the shell was trying to vibrate with n = 2
andn = 3 at the same time and at 59 fps the stack ovalled at the value of
r=3. As is obvious in table 12 the predicted and measured frequencies are
very close to each other the difference being of the order of 2 to 3%, |

The effect of seam was also observed on this shell. This
shell had two seams 180° apart. The above test was carried out when the
.two seams were in the wind direction. In a second test seams were placed
90° to the wind direction. This change in position did not affect the
frequencies but there was a slight increase in critical wind speeds e.g. from
38 to 44 for n = 3 mode and from 59 to 65 for n = 2 mode. This may be
remarked that although ovélling (n=2) frequency was lower than the n =3
mode the n = 3 mode was excited first and the n = 2 mode next.

Table 13 examines model stack TVII in the wind tunnel. The
model was designed to oscillate first with the n = 2 mode and then with the

n =3 mode, At a wind speed of about 30 fps the shell started ovalling.
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Ovalling persisted with increasing wind sgeed and the amplitude of the
oscillation grew bigger and was maximum at a wind speed of about 36.4 fps
causing a slight drop in frequency (from 23.2 to 22 Hz) due to a non-linearity
effect as in reference ]:11_] . A value of r«:3 applies in this case. As the
wiﬂd speed is increased the amplitude of ovalling decreases and at a wind
speed of about 52 fps the n = 3 mode appears and the amplitude grew big
reaching a maximum at a wind speed of about 60 fps causing again'a drop in
frequency of about 1 Hz. The shell was nearly flattened on the windward face
and the strain gauge was broken at this point. In the case of ovalling the
seam appeared to force a node at itself thbugh not a preferred position.

Model shell TVIII which is discussed in tablel4 was designed
to oscillate at various circumferential modes n =2, 3, 4. At a wind speed
of about 25 fps and r«:5 the mode n = 3 was excited. At an increased
wind speed of about 35 fps the shell started ovalling though the amplitude was
not very big. The ovalling axes were orthogonal to the wind direction with
T 24 approximately.

] At a wind speed 6f about 38 fps the shell was oscillating with
n= _4.‘and a value of r=~5. Increasing wind speed caused a sudden change.
At 45 fps wind the shell reverted back to a n = 3 mode, r=3, with amplitude
considerably large. The frequency of oscillation was decreased from 22.4
to 19 Hz due perhaps to a non-linearity effect. The sh¢ll was nearly ﬂatténed
at the windward face as the speed was increased. The predicted frequencies
were very close to measured values as seen in the table 14. The maximum
difference was of the order of 8%.

The steel shell TIX, counterpart if the Al-shell TV is
examined in table 15. This behaved quite differently. The oscillations in the
n = 3 mode occurred at a considerably higher speed of 72 fps (r# 3} instead of
40 fps (r=5) for the Al-shell. This then persisted for higher wind speeds and
at 81 fps the amplitude grew bigger and there was a drop in frequency from
58 to 56 Hz. The ovalling mode could never be excited on this shell unlike

the case of the Al-shell TV. This was perhaps due to differences in material
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properties, especially'the inherent structural damping. The frequency
measured was very close to predicted freauency as seen in table 15.

To study the effect of an elastic ring at the top end of the
shell a ring of dimensions bR =.125 and dR =, 125 was stuck on the top of
the shell TIII. This resulted in eliminating ovalling oscillations. The
swaying occurred at a slightly reduced frequency (49 Hz from 50 Hz) at a
slightly higher wind speed of about 65 fps than the shell TIII. The breathing
oscillations {n = 3) were observed at a wind speed of 72. 5 fps instead of
64.5 fps and the frequency is increased from 119 Hz to 124.6 Hz. Thus as
predict.ed by putting an elastic ring lowers sway frequency because of the

inertia of ring being predominant for the sway mode. But the frequency for

breathing oscillations (n = 3) is increased because of predominant ring stiffness.

6.2.3. WIND EFFECTS ON SHORT SHELLS

An attempt was made to measure the frequencies excited by
wind of short shells typical of storage tanks. Some tests were being performed
on such shells under another research programme to examine their static
stability in the wind. It was found that before buckling the shell oscillated
with a very small amplitude of vibration. The frequencies of these shells
were measured by strain gauge output as in case of the other models tested.
However the output was ‘recorded on magnetic tape and ’analysed to give the
. frequencies. For example two such shells are analysed below:

Geometry of the first model was L = 15 in. , a=7.51in. and
h=0.01in. Atawind épeed of about 58 fps the measured frequency was
102 Hz whereas the corresponding calculated minimum frequency for this
shell geornetr]} was 108 Hz for n = 7. The value of r is approximately of the
order of 12 - 14 ", Another frequency excited was 115 Hz at a wind speed of
74 fps and' the corresponding calculated frequency was 120 Hz for n = 8.

The value of r is then either 10 ox 12. As is evident calculated values are
only about 5% higher than measured ones.

The second shell tested had a geometry defined by L = 18 in.
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~a=7.5in. and h=0.01 in. This was excited at a wind speed of nearly 80 fps

4

and at a frequency of 90 Hz. The calculated minimum frequency in this case
was 89 Hz for n = 6 which is very close to the measured value. The value of r
is then either 7 or 9 (approximately). At a wind speed of 85 fps the frequency
recorded was 94 Hz as compared to 95 Hz by calculations for n = 7. The value
of r is about 7 or 9 in this case also.

The above examples show that the present vibration theory
is suitable for predicting the frequencies for tall stacks and also for short
shells representative of storage tanks. However the significance of the
parameter r in the latter case is questionéble and it may be argued that the
vibrations experienced on the short shells were due to either free stream
turbulence or unsteady pressures generated near to the free end of the short
shell. It is noteworthy though that the excited frequency did appear to increase
linearly with increase in wind speed suggesting a form of Strouhal Number
relationship. Since these results for wind-excited oscillations are thus
inconclusive the only conclusion to be fairly drawn is that the present vibration .

theory applies to shells of L/a >2,

6.3 PREVENTING INSTABILITY BY STRUCTURAL MEANS

In a previous section it was shown how a fablon coated model
stack reacted to the wind. This in fact resulted in completely cutting down
the ovalling and very significantly reducing the amplitudes in swaying
oscillations. . '

In general it may be remarked that if the critical wind speed in
the lowest mode of oscillations can be increased above the wind speed likely
to be encountered during the lifetime of the chimney stack, large amplitudes
of oscillatiohs will not occur. A design wind speed based on a short term
gust speed may be an over -estimate of the maximurn speed that a structure
will respond to, since it takes a few cycles of oscillations for the amplitude
to build up. Another way of increasing critical wind speed is to increase

the frequency of stack by stiffening it with the help of many intermediate rings.

The effect of such stiffening may be seen theoretically in the figures 17 and 18
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of reference [4] . But increase in the ovalling (n = 2} and some breathing
(n 2 3) frequencies is very significant as cZn be seen in these figures.

It should be noted, however, that increaéing the mass of the
structure majr not always be beneficial if it is subjected to vortex instability.
Because inertia effect reduces the natural frequencies and consequently the
critical wind speeds, thus making it possible that addition of mass may reduce
the critical speed in a certain mode from a level éutside the design wind speed
range to a level within it. .

There are several methods by Wﬁich the structural damping may
be increased. Active mechanical dampers produce a force on the structure
that opposes the aerodynamic force. A sensing device fitted to the structure
activates the mechanical force. Such a system is likely to be complex and to
need continual maintenance. ar

There are several types of simple passive dampers, which absorb
energy rather than produce an opposing force. Tuned and direct viscous and
friction dampers have been employed and are notable for durability and cheap-
ness. An interesting system consists of a chain, covered with rubber sleeve
and suspended with freedom to impact against a vertical channel. This is
fitted near an antinode of vibration of structure to have maximum effect.

The addition of guys to a free standing structure may not only
increase the natural frequencies but will usually increase the structural
damping.

It is often possible to design structures from the outset to have
a high structural damping. The addition of gunnite lining, for example, to a
steel stack increases its structural damping. In general, concrete, and
particularly brick structures, have a higher structural damping than steel
structures, and riveted or bolted construction has more damping than welded.

The helical strake device has been applied successfully to many
stacks. The most effective system consists of three thin, rectangular strakes
with a pitch of one revolution in SPand height of 0.10D to 0.13 D. Itis

usually sufficient to strake only the top one third of a stack to prevent
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instability in the fundar-nentaI mode., It should be noted that fitting of a smail
external duct to the outside of a straked s;:;.tck may impair the efficiency of the
system. The addition of strakes sufficiently increases the drag of the cylinder
at Reynolds number above the critical. Strakes have also been used to reduce
the oscillations due to enhancement of vortex instability caused by buffet.

- An alternative to the strake is provided by the fitting of a shroud.
. This consists of a perforated cylindrical shell seﬁarated from the cylinder
surface by a gap. A gap width of 0.12 D and an open area ratio 6f between
20 and 36% have been shown to be effective, Shrouds, like strakes, need
only be fitted at anti-nodes of the vibration mode.

The devices were tried and have been patented by N.P, L. and

more about them can be found in references [10, 12] .
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7.

CONCLUSIONS |

The study covers the wind-tunnel studies and shaker excited vibration

tests on model circular stacks. The test results are compared with analytical

-results calculated by using variational technique in Part A. The shell models

were made of Al-alloy and a couple also out of steel. The structural damping

of the model stacks has been measured experimentally. The attempt has been

to increase the structural damping by spraying a thin coat of polyvynil paint

on the model and also.by using .005" fablon wrapped round the shell.

From the observations of this study following conclusions appear to

be valid:

1.

20

Good agreement between theoreticai and test frequencies has been
observed.

It has been observed from model tests that for swaying and
particularly ovalling and breathing oscillations the measured critical
wind speed is lower than predicted wind speed, V =50 D for full scale.
Infactitisv=58D/r,r=1,2,3,.... It may be due to incompleteness
in similarity requirements, such as structural damping, material
difference, in the model tests and full scale experience.

A change in the direction of axes of oscillation to the wind can occur

as the wind speed is increased. In case of ovalling it has been
observed for a particﬁlar shell that first axes are at 45° to the wind

at a value of x = 3 and then they change directic;n orthogonal to the

wind at r = 2.

An increase in amplitude causes a slight reduction in frequency

- because perhaps of non-linearity effects.

The structural damping is not a function of mode shapes and was
observed to be nearly the same for Al and steel stacks for measured
range. Fablon coated model appeared to be significantly damped
because it eliminated ovalling and reduced the amplitude in swaying

by about 90% with a slight reduction in natural frequency due, perhaps,

to the added mass.
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6.

7.

Al elastic ring at the top controls ovalling (n = 2) but breathing
oscillations (n = 3) did occur at a slightly raised wind speed and
natural frequency.

It was found by the test performed later that there was only a very
small increase in the structural damping of the shell due to fablon

but perhaps enough to stop ovalling and reduce amplitude of oscillation
for other modes (n =1, 3 etc.). It may, however, be remarked

that the method of measuring the structural damping was not sénsitive

enough and an error of + 309 is possible to be incurred.
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TABLE 1, Geometrical and Structural Properties of the Models Tested
Cylinder | Length (L) | Radius (a) | Thickness (h) | Youngs Modulus | Poisson's | Mass density | Material
Notation in in in éfi) Ratio (V) 1b-secpz/in4
"+ 81 72 6 0.010 107 0.3 2.59 x 1074 Al
SII 69 6 0.023 107 0.3 2.59 x 1074 Al
sur 69 6 0.030 107 0.3 2.59 x 1074 Al
SIV 69 6 0.036 107 0.3 2.59 x 1074 Al
sV 69 6 0.028 3 x 107 0.3 7.37 x 1074 Steel
*TT 20 2.4 " 0.01 107 0.3 2,59 x 1074 Al
TI 36 2.4 0.01 107 0.3 2,59 x 1074 N
T 60 2.4 0.01 10 0.3 2.59 x 1074 Al
TIV 71 2.4 0.0l 107 0.3 2.59 x 1074 Al
v 36 4 0.01 107 0.3 2.59 x 1074 Al
TVI 46 4 0.01 107 0.3 2.59 x 1074 Al
TVII 71 4 0.01 107 0.3 2.59 x 1074 Al
TVII 70 6 0.01 107 0.3 2.59x 1074 Al
TIX 36 4 0.01 3x 10 0.3 7.37 x 1074 Steel

+ Letter 'S’ preceding the no. indicates that electromechanical shaker is used as excitation device.

*  Letter '"T' indicates the models tested in the L, U.T. Wind-Tunnel.
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TABLE 2. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SI)

m 1 2 3

n |Calculated | Measured Structural [Calculated | Measured | Structural Calculated | Measured Structural
frequency frequency Damping |frequency | frequency Damping frequency | frequency Damping

Hz Hz g x 100 Hz Hz g x 100 Hz Hz gx 100 .

0 579 - - . 1530 - - 2360 - -

1 84.3 - - 470 - - 1120 - -

2 28.1 26.3 2,28 164 - - 446 - -

3 23.7 21.0 2.1 80.9 76.8, 72.7* | 2,36, 2.38* 222 - -

4 38.9 37.3, 36.6* |. 2.4, 2.46% 59.5 56.9* 2.46* 135 - -

51 62.0 60.6 2.0 68.8 [69.2, 61.3%| 2.4, 2.44* | 105 | 99.8, 92.6*| 2.5, 2.5

6 90.7 86.9, 84.8* | 2.2, 2.4* 93.3 o1, 86* 2.4, 2.6* 109 105.3, 100*| 2.5, 2.6*

7 125 121.2, 113.7%| 2.5, 2.5*| 126 - - 133 125. 8* 2.5%

8 164 160. 4 2.3 - 165 - - 169 157.1* 2.6*

9 {209 - - 209 - - 211 - -

10 258 - - 260 - - 261 - -

* These values correspond to the shell SI coated with Vy coat CA 90.
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TABLE 3. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SII)
m 1 2 3
Calculated Measured Structural ) Calculated | Measured | Structural Calculated | Measured | Structural
n | frequency frequency Damping | frequency | frequency Damping frequency | frequency Damping
Hz Hz g x 100 Hz Hz g x 100 Hz Hz gx 100 -
0 | 604 - - 1600 - - 2460 - -
1 91.6 - - 507 - - 1200 - -
2 33.8 31.6 2.26 179 - - 483 - -
3 48.0 46.4 2.37 97.2 95.0 2.32 244 - -
4 88.3 86.0 2.5 - 102 100.1 2.1 167 163.8 2.42
5 | 142 144.0 2.27 147 147.8 2.22 171 170. 4 2.19°
6 208 208.5 2.26 210.7 208.6 2.21 221 217.8 2.17
7 | 287 - - 288 284.0 2.27 294 294.6 2,27
8 t 377 - - ~ 379 - - 382 389.0 2,0
9 480 - - 481 - - 484 492.0 2.24
10 | 594 - - 595 - - 598 - -
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TABLE 4. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SIII)

m 1 2 3
Calculated Measured Structural | Calculated | Measured | Structural Calculated | Measured Structural
n |frequency frequency Damping | frequency | frequency Damping frequency | frequency Damping
Hz Hz g x 100 Hz Hz gx 100 Hz Hz g x 100
0 | 604 - . 1600 - - 2460 - -
1 91.6 - - 507 - - 1200 - -
2 36.5 33.6, 30.5% | 2.12, 2.5* 179 - - 483 - -
3 61.5 [59.1, 55* | 2,06, 2.3* 105 [101.4, 92* | 2.36, 2.5* 248 239.0 2.3
4 115 110.6 2.3 126 119.6,114.6% 2.1, 2,3* 184 173.0, 170% | 2.3, 2:44*
5 | 185 - - 190 183.0 2.3 210 - {192.5,190.3*| 2.28,2.36*
6 272 - - 274 - - 283 267.8 2,32
7 374 - - 376 - - 381 - -
8 492 - - 494 - - 497 - -
9 | 626 - - 627 - - 630 - -
10 775 - - 777 - - 780 - -

* These values correspond to shell SIIT with .01 in. thick coat of Vy coat CA 90.




-0v-¢

TABLE 5. <Calculated and Measured Frequencies (Hz) of Clamped-~Free Shell (Model, SIV)
m 1 2 3
Calculated Measured Structural | Calculated | Measured | Structural Calculated | Measured Structural
n |frequency frequency Damping | frequency | frequency Damping frequency i frequency Damping
Hz Hz g x 100 Hz Hz g x 100 Hz Hz g x 100

0 604 - - 1600 - - 2460 - -

1 91.6 - - 507 - - 1200 - -

2 39.1 36.0 2.3 180 - - 484 - -

3 73.2 69.7 2.3 112 107 2,24 251 - -

4 138 132.5 2,27 148 140.6 2.35 1200 187.6 2.33
5 222 - - 226 217.5 2.36 245 . 240.8 2.!1

6 326 - - 329 - - 337 328 2,13
-7 449 - - 451 - - 456 o -

8 590 - - T 592 - - 596 - -

9 1751 - - 753 - - 756 - -
10 930 - - 932 - - 935 - -
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TABLE 6. Calculated and Measured Frequencies (Hz) of Clamped-Free Shell (Model, SV)
m 1 2 3
Calculated | Measured Structural | Calculated | Measured | Structural Calculated | Measured Structural
n | frequency frequency Damping | frequency | frequency Damping frequency | frequency Damping
Hz Hz gx 100 Hz Hz g x 100 Hz Hz g x 100
0 | 622 - - 1640 - - 2540 - -
1 94.3 - - 522 - - 1230 - -
2 36.7 32.3 2.4 184 - - 498 - -
3 59.3 54.2 2.4 106 100. 8 2.3 254 - -
4 111 100.1 2.39 123 113.9 2.46 184 176.9 A2.38
5 | 178 167.5 2,27 183 179.6 2.4 205, 186.1 2,43
6 261 - - 264 - - 273 - -
7 359 - - 361 - - 367 - -
8 473 - - - 474 - - 478 - -
9 601 - - 603 - - 606 - -
10 745 - - 746 - - 749 - -
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TABLE 7. Wind Tunnel Tests on Model Stack TI. (L/a=28.3 , a/h =240)
Circum- Predicted | Critical | Critical | Measured | Measured
ferential Freq.Q [ V=50D | V=60D | Frequency Wind
: Remarks
Wave number Speed ———
n (Hz) fps fps (Hz) ips
1 410.4 820.8 984.0 This shell, fairly short was designed in
2 142.1 284,2 342.0 138,137 110 such a way on the basis of theoretical
3 140.6 281,2 337.0 137,138 110 predictions that the minimum frequencies
4 242,2 484.4 582.0 corresponding to n = 2, 3 are nearly
5 387.3 774.6 930.0 identical, while testing the shell appeared
6 567.0 1133.8 1609.0 to oscillate at two modes at the same
7 779.7 1559.4 1870.0 time. As can be’seen from the table
8 1025 2051 2460.0 from predicted critical wind speeds and
9 1304 2608 3130.0 measured wind speed the value of r in
10 1615 3230 3875.0 equation (2) is nearly 3,
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Wind Tunnel Tests on Model Stack T II

TABLE 8. (L/a =15, a/h = 240)
Circum -~ Predicted | Critical | Critical | Measured | Measured
ferential Freq. @ |V =5gD | V=68D | Frequency| Wind L
Wave number Speed Remarks
" (Hz) fps fps - (Hz) fps This shell was designed to excite only n =2
1 136.0 972.0 396. 4 mode in the L. U, T, Wind tunnel. All other
9 62.0 124.0 148. 8 60.2 49.0 frequencies are quite distinct from each
3 126.3 952, 6 303. 1 other. As can be seen in the table the only
4' 239. 0 478.0 5736 excited mode was n = 2 and here also one
5 386.0 7790 926. 4 can See by comparison that the predicted
6 566. 0 1132.0 | 1358.4 critical Wind_ speed is nearly 3 times the )
7 779.0 1558.0 | 1869.6 measured wind speed thus r=3. Though
3 1025. 0 2049.0 | 2460.0 the shell started oscillating at a wind speed
9 1303. 0 2606.0 | 3127.2 of 40 f.p.s. as seen on the oscilloscope the
10 1614. 0 3229.0 | 3873, 6~ maximum deflection was achieved at a wind
' " speed of 49 f.p.s.
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TABLE 9. Wind Tunnel Tests on Model Stack TIII (L/a =25, a/h = 240)

T
]

Circum- Predicted | Critical { Critical | Measured { Measured
ferential Freq.@ [V =5qD{V=60D | Frequency| Wind
Wave number Speed
n (Hz) fps fps (Hz) fps
1 49.5 99.0 | 118.8 S0 59.2
2 46.8 93.5 112.3 45 39.0
3 124.7 249.3 299.3 119 64.5
4 238.6 477.2 572.6
5 385.7 771.5 925.7
6 565.8 | 1131.6 |1358.0
7 778.7 1557.4 {1869.0
8 1024. 4 2048.8 {2458.6
9 1303.0 | 2606.0 |3127.2
1614.2 | 3228.4 |3874.1

Remarks

This shell was designed to be excited in
3 modesn =1, 2, 3, which it does as
is evident here.

Here the values of r are different for
differentn. Forn=1, r= 2, forn= 2,
r=3andforn=3, r =5. The seam was
put at different directions to the wind and it
was found that although this does not affect
the frequency it does affect the preferred *
mode i.e. the angle which axes of vibration
make with wind direction. This is because
during the 4th test there developed a vertical
crack 4" long just near the seam. The
ovalling axes became 45° to the wind direction
which appeared to be the preferred mode
orientation. Also frequencies were reduced
slightly after this- for n = 2, it reduced to
44 from 45 and for n = 3 from 119 to 116,
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TABLE 10. Wind Tunnel Tests on Model Stack TIV. (L/a 29.6, a/h = 240)
Circum- |Predicted | Critical | Critical | Measured | Measured R ks
ferential Freq.Q V=5aD | V=62D | Frequency Wind Semar<s
Wave number : : Speed Tests on this shell brought out quite a few
n (Hz) fps fps (Hz) fps interesting features. The shell started
ovalling (n = 2) at a wind speed of 33.2 fps
with axes of oscillation being at 45° to wind
1 35.4 70.8 1 8.0 33 75.2 direction seen in figure 19. As the wind speed
2 45.4 90.9 169.0 43, 41* 34.6, 66.1% was increased there was a gradual change in
direction of axes of oscillation. Finally at a
fs 124.5 249.0 299.0 wind speed of about 66 fps the change was
4 238.5 477.0 572.4 complete and axes of ovalling were orthogonal
5 385.7 771. 4 925.7 to the wind as seen in figure 20. In b.etween
these two stages there was also swaying (n = 1).
6 565.8 1131.5 } 1358.0 As can be seen at lst stage r = 3 and at the
7 778.7 1557.3 | 1869.0 second stage r=2 with a bigger amplitude and
reduced frequency of 41 Hz from 43 at the
8 1024.4 2048.8 | 2458.6 first stage. In the 3rd test the shell started
9 1303.0 2605,0 | 3127.2 tearing off down the length near the seam, -
10 1614. 2 3228.3 | 3874.1 The split was about 6-8", z‘%fterwards shell
- vibrated more freely and with frequency and
critical wind speeds slightly reduced.

* Ovalling with axes orthogonal to wind direction at higher windspeed.
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TABLE Il. Wind Tunnel Tests on Model Stack TV. (L/a=9, a/h=400)
Circum- |Predicted | Critical | Critical | Measured | Measured
ferential Freq.® | V=5aD| V=6aD | Frequency Wind Remarks
Wave number _ Speed -
n (Hz) fps ips (Hz) fps
! 220.7 785.6 | 882.8 This shell was designed to be excited in
2 74.0 246.7 296.0 77.0 60.0 wind for n = 2, 3 modes. At the wind speed
- l L - Ll .
3 56.6 88.6 226.4 54.0 40.5 of 40.5 fps it was oscillating with n = 3 and
4 88. 4 294.5 353.6 at wind speed of 56 fps it was stopped and at
5 139.7 465.7 558.8 wind speed of 60 fps it started oscillating
6 204.2 680.5 816.8 with n = 2 mode i.e. ovalling.
7 280.7 935.6 | 1122.8 It is evident that the value of x=5 in both
8 369.1 1230.4 | 1476.4 . .
the cases as given by equation (2).
9 469.4 1564.5 | 1877.6
10 581.4 1938.0 | 2325.6
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Wind Tunnel Tests on Model Stack TVI (L/a = 11.5, a/h = 400)

TABLE 12.
Circum=~ Predicted| Critical | Critical | Measured | Measured
ferential Freq. 2 |V =58D |V=6QD | Frequency Wind Remarks
Wave number Speed
n (Hz) Ips fps (Hz) fps Based on theoretical predictions this shell was
designed to be excited withn=2andn=3
modes at the same time. In fact it first
! 137.3 457.8 549.2 started oscillating with n = 3 at about one-~
2 47.2 - 157.2 188.8 46.0 59.2 fifth of critical windspeed, i.e. with T=3J,
As the windspeed was increased the shell was
3 49‘6_ 165.3 198. 4 48.0 38.0 trying to vibrate withn = 2 and n = 3 at the
4 86.7 289.5 346.8 same time. At a wind speed of about 59 fps
- shell was ovalling with r=3. For this test
> 139.2 464.1 556.8 the two seams were in the wind direction, '
6 204.0 679.7 816.0 In the second test when the seams were at
7 280.5 935.1 | 1122.0 90° to the wind the frequency was not affected
but the critical speed was raised slightly, e.g.
8 369.0 1230.0 | 1476.0 from 38 to 44 for n = 3 and from 59 to 65 for
9 469.2 1564.0 | 1876.8 n=2.
10 581.2 1937.6 | 2324.8 Although the ovalling (n = 2) frequency was
‘ lower than the frequency forn=3then=3 -
mode was excited first and n = 2 mode next.
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TABLE 13. Wind Tunnel Tests on Model Stack TVII (L/a =17.75, a/h = 400)

Circum - Predicted | Critical | Critical | Measured { Measured
ferential Freq.Q |V=50D {V=6qD | Frequency Wind
Wave number Speed
n (Hz) ips fps (Hz) fps
1 58.5 195.1 .| 234.0
2 24.5 . 81.7 98.0 | 23.2, 22* | 30.4, 36.4*
3 45.7 152.3 182.8 43, 42* 52,25, 60.1*
4 86.1 286.9 344.4
S 139.0 463.1 556.0
6. 203.7 679.1 | 814.8
7 280.4 934.6 | 1121.6
8 368.8 1239.4 | 1475.2
9 469.1 1563.6 | 1876.4
10 581.2 1937.2 | 2324.8

Remarks

This shell was designed to oscillate with

n = 2 and then n = 3. - As can be seen it
ovals at a wind speed of 30. 4 fps and like
all other shells this mode persists with
increasing wind speed and at a wind speed
of about 36.4 fps when the amplitude is
maximum frequency appears to drop (from
23.2 Hz to 22 Hz). In this case r=<3, Seam
appeared to force a node there though not, .
preferred. )

With increase in wind speed the n = 3 mode
appears at a windspeed of about 52 fps. At

a wind speed of about 60 fps amplitude grows
very big for n = 3 and frequency drops from
43 Hz to 42 Hz. The shell was flattened on
the windward face and strain gauge broke

at this point.
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TABLE 14. Wind Tunnel Tests on Model Stack TVII (L/a =11.67, a/h = 600)
Circum~ Predicted| Critical | Critical | Measured | Measured
ferential Freq. 2 |V =3QD |V=60D | Frequency Wind Remarks
Wave number ' Speed —_—
n (Hz) fps fps (Hz) fps
This shell was designed to oscillate in 3
1 89.0 445.1 } 534.0 different modes n = 2, 3,4 in the wind -
tunnel. At 2 wind speed of about 25 fps shell
2 L . - L3 L
2 9.6 148.1 177.6 29.0 352 oscillated with n = 3. At a wind speed of
3 24,2 120.8 145.2 |22.4, 19* |25.6, 45.5*%| about 33 fps mode n = 3 stopped and n = 2 was
‘ ' excited at a wind speed of about 35 fps though
4 8.0 195.1 234.0 '.36' 0 37.7 the amplitude was not very big. The ovalling
S 62.0 310.0 372.0 axes were orthogonal to wind and re: 4 in
this case. As the wind speed was increased
6 90.7 453.3 S44.2 the shell started oscillating withn =4 at a
7 124.7 623.4 748.2 wind speed of about 38 fps. At a wind speed
' of about 45 fps the shell again reverted back
8 164.0 820.0 984.0 to the n = 3 mode. This time the frequency
9 208.5 1042,7 1251.0 was reduced from 22.4 Hz to 19 Hz and the
e amplitude was much bigger than in the
1.0 258.3 1291.7 1548.0 previous n = 3 case, The shell was almost
collapsed at the windward face.
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Wind Tunnel Tests on Model Stack TIX (L/a=9, a/h=400)

TABLE 15.
Circum- Predicted] Critical | Critical | Measured | Measured
ferential Freq.® |V=5a8D| V=60D | Frequency Wind Remarks
Wave number Speed —_—
n (Hz) fps fps (Hz) fps
1 ' 997.9 757, 4 908. 8 This steel shell behaved in the wind tunnel
2 76.9 254.0 304. 8 quite differently from its aluminium counter-
3 58.2 | 194.2 | 232.8 | 58, 56* | 72, g1 | PartshellTV.
4 91.0 303.3 364.0 This started oscillating at a much higher
5 144.0 479.5 576. 0 speed of 72 fps in the n = 3 mode and
6 210.2 700. 7 840. 8 frequency 58 Hz. This persisted for higher
7 289.0 963. 3 1156. 0 wind speeds and at a wind speed of about
8 380.0 1266.8 | 1520.0 81 fps the amplitude grew bigger and the
9 483.2 1610.8 | 1932.8 frequency reduced from S8 Hz to 56 Hz.
) Ovalling was not seen here at all in the given
10 598.6 1995.4 2394.4 speed range contrary to its Al-counter part
shell T V.
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Resultant Vortex
fluctuating

force
Flow

vi= velocity induced
round cylinder by

sheddi
Fluctuating edding of vortex.

\\______;
Vl""\h

The derivation of the vortex-induced fluctuating force.

The motion of a cylinder free to oscillate across the direction

of the flow when the velocity is_such_that Ki=$ .The

fluctuating drag has twice the frequency of the fluctuating
side (lift) force.
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| View of a Model Stack in the Wind Tunnel & Instrumentation
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FIG.7 Wind speed measuring device
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FIG.9 Shaker Installation & Vertical & Angular Moving Devices for the Microphone
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FIG. 13. Sketch showing dimensions of base ring and root clamping.
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FIG. 14 Constructional Techniques for Shells:

One or more joints type of shells.
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CIRCUMFERENTIAL WAVE NUMBER, n

FIG. 15 EXPERIMENTAL AND ANALYTICAL FREQUENCIES OF
‘ CLAMPED-FREE SHELL (MODEL SI)
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FIG.17 Pictorial View of Model Stack SII Oscillating with Three

Circumferential Full Waves (n=3)
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FIG.18 Pictorial

View of Model Stack SII Oscillating with Four

Circumferential Full Waves (n=4)
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FIG.19

Photograph Showing Ovalling Oscillations of Model Stack TIV

Stage1)
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FIG.20 Photograph Showing Ovalling Oscillations of Model Stack TIV (Stag



APPENDIX 1  (TT 7008)

EFFECT OF HELICAL STRAKES ON THE CYLINDER TIV

TESTED IN THE WIND

This cylinder when tested in the wind tunnel showed quite a few
interesting features which have been discussed briefly in Table 13 and shown
in Figures 19 and 20, '
Helical strakes, .25" wide and .5" deep were put on this cylinder on
upper one third height of the cylinder. This was first tried to make strakes
out of one piece material .25" wide and .5" deep. It was rather difficult to
bend these strakes to bring them to size where they will reasonably fit on the
body of the cylinder so this method of making one-piece strakes was abandoned.
The method which was successfully tried was that of glueing 9 strips, .25" wide
and . 052" thick, bent individually in the desired form of helical strakes.
Wind-tunnel tests were made and observations recorded were as follows:
There Was hardly any movement observed for this cylinder with strakes
at a wind speed of about 76f.p.s., unlike the plain model stack T IV which
ovalled significantly at this wind speed. At about 50f.p.s., wind speed,
ovalling was seen to commence though with a very small amplitude (=~ 0.1" of
oscillation which rose to about 0.15" at a wind speed of about 66f.p.s. At about
71f.p.s., of wind, transverse sway again with very small amplitude {= .1")
was observed which in no way can be compared with swa:ying amplitude observed
for the plain cylinder T IV which was of the order of 0.5" to 0.7". This
situation persisted with ihcreasing wind speeds and amplitude grew to about

.2" for a wind speed of 94f.p.s.
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APPENDIX TXI

Response of the Model Shell ST (PVC Coated) with One or Two
Lavers of 0.005" Thick Fablon “

- It has been remarked on page 35.that when shell TIV

(with 0.005" pvc coat and 0.005" thick fablon layer over its sur-
face) was tested in the wind tunnel the ovalling was virtually
stopped and swaying was observed with a very much reduced
amplitude and with a slight decrease in frequency. This was
attributed to the added structural damping due to the fablon
layer. An attempt has been made siﬁce, to assess the changes in
frequency and structural damping due to the addition of one or
two layers of 0.005" thick fablon on a pvc coated model stack
(SI) excited by an electromechanical shaker.

' It can be seen from table IT 1 and from the previous
results for shells (Table 5) that by adding a fablon layer there
is only a marginal increase 1n the structural damping factor and
an additional layer does not make any further gppreciable difference
in the results. Though the increase in damping over the shell
with no added fablon is small, it is perhaps sufficient to
decrease the amplitudes of oscillation and to stop the ovalling
of shell TIV in the wind tunnel. As is indicated in Table II 1,
the frequency of oscillation decreases due to added inertia
of fablon layers although the effect appears to.be greater than
would have been anticipated. o

It should be remarked however that the experimental tech-
nique involved in measuring the structural damping factor is
not as sensitive as one would wish and an error of + 30% is
possible in the quoted values.
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TABLE IT 1

-Ti- g

1 | 2 - 3
Measured Frequency (Hz) Measured Frequency (Hz)} Measured Frequency
Calculated (& damping) Calculated (& damping) Calculated (Hz) (& damping)
frequency _ frequency frequency
plain ST one layer two lavers plain ST one layer|two layers {plain SI |[one layerktwo layers
fablon fablon fablon fablon fablon fablen
84.3 - - 470 - - 1120 - -
28.1 21.2 20.2,(2.3) | 164 - - 445 -
23.7 20.6 21.0,(2.45) 80.9 72.8,(2.4 64.6,(2.4) 222 - 164.5{2.3)
38.9 36 - 59.5 50.7,(2.9; 50.5,(2.5) 135 - 100.2(2.2)
62 S8 - 68.8  165.2.(2.9 - . .. .A05 .m87,2£2.5lmliw4Lz,&L¢
N.B.- The damping values are quoted as per cent critical @nd are given inside parenthesis.







