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Abstract— The stabilization problem for a class of under-
actuated systems is solved. This is achieved via a novel back-
stepping based method that we call under-actuated back-
stepping. The method is developed for linear under-actuated
systems first and then extended to nonlinear systems via an
example. Numerical simulations are given to demonstrate the
effectiveness of the proposed under-actuated back-stepping
method.

I. INTRODUCTION

Under-actuation is a technical term describing systems (usu-
ally mechanical systems) with fewer control inputs than
degrees-of-freedom. In particular, the state of an under-
actuated mechanical system is unable to follow arbitrary
reference trajectories. As a result, when compared to the
control of fully-actuated (mechanical) system, the control
design for under-actuated systems is more challenging. One
of the broadly used methods to solve control problems
for under-actuated systems is based on the linearization
technique [1], [2]. Moreover, as energy is a fundamental
concept in the control of mechanical systems, “energy-
shaping control” (also known as Passivity-Based Control
(PBC)), first proposed by Takegaki et al. [3], is also a
popular way to control mechanical systems [4], [5]. The main
drawback of PBC is its difficult applicability, especially for
under-actuated systems. The paper [6] has utilized adaptive
control to deal with under-actuated systems, while the papers
[7], [8] have applied Lyapunov-based control to mechanical
systems. Finally, Sliding Mode Control (SMC) is another
method used to control mechanical systems [9]. However,
for many mechanical systems it is difficult to find a surface
suitable for the application of SMC. In addition, other control
techniques, such as optimal control [10] and hybrid and
switching-based control [11], [12], have also been used.
More recently, robust control has been exploited for the study
of mechanical systems to deal with model uncertainties,
nonholonomic constraints and disturbances [13], [14]. To
sum up, apart from linearization based control techniques, all
other methods have been mainly used to stabilize particular
classes of under-actuated systems.
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The back-stepping method, a well-known control design
technique developed in [15], [16], is a constructive method
to design stabilizers for classes of nonlinear systems. The
systems amenable to the application of back-stepping can be
written in the so-called feedback form

ẋ = fx(x) + gx(x)z,

ż = f(x, z) + g(x)u,
(1)

where x(t) ∈ Rn and z(t) ∈ Rm are the states and
u(t) ∈ Rm is the input. In addition, fx(x) : Rn −→
Rn, gx(x) : Rn −→ Rn×m, f(x, z) : Rn+m −→ Rm and
g(x, z) : Rn+m −→ Rm×m are smooth mappings. Under
the assumptions that det(g(x)) 6= 0 for all x ∈ Rn and ux
stabilizes the zero equilibrium of the subsystem

ẋ = fx(x) + gx(x)ux(x),

we can always find a state feedback controller u = u(x, z),
through back-stepping, such that the origin of the closed-
loop system is globally asymptotically stable [15], [16], [17],
[18]. Note that in this “fully-actuated” case, that is the case
in which the dimension of z and of u are the same, one can
select any stabilizer ux in the initial step of back-stepping.

The main contribution of the paper is as follows. The paper
proposes a novel method, the under-actuated back-stepping
method, which is inspired by standard back-stepping, to
solve the stabilization problem for classes of under-actuated
(mechanical) system. The proposed method is explained in
detail for linear time-invariant under-actuated systems first
and then the nonlinear extension is discussed via an example.

The rest of the paper is organized as follows. In Section II
the dynamics of two classes of linear under-actuated system
are given and the stabilization problem for these systems is
formulated. Solutions to the stated problems are presented
in Section III, in which the stability properties of the re-
sulting closed-loop systems with the controllers developed
by the proposed methodology are given. In addition, one
numerical example to illustrate how under-actuated back-
stepping works is provided. Section IV studies how the
design procedure developed for linear systems can be ex-
tended to nonlinear systems and uses the Inertia Wheel
Pendulum system to demonstrate the effectiveness of the
method. Finally, conclusions and suggestions for future work
are given in Section V.

II. PROBLEM STATEMENT

This section formulates the stabilization problem for two
classes of under-actuated linear systems. The under-actuated
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back-stepping based solutions for these stabilization prob-
lems is given in Section III.

The term under-actuated is used informally to denote systems
in cascaded form for which the number of input is strictly
less than half the number of states. These systems arise when
linearizing under-actuated mechanical systems.

Problem 1: Consider an under-actuated system, the dynam-
ics of which are described by the equations

ẋ = z,

ż = Ax+Bu,
(2)

with A ∈ Rn×n, B ∈ Rn×m, states x(t) ∈ Rn and z(t) ∈
Rn and input u(t) ∈ Rm, with 0 < m < n. Assume that
rank(B) = m hence, without loss of generality, let B =
[Im, 0m×(n−m)]

T . Find a controller

u = H1x+H2(z −Kx), (3)

with H1 ∈ Rm×n, H2 ∈ Rm×n and K ∈ Rn×n, such that
the closed-loop system (2)-(3) is asymptotically stable.

Problem 2: Consider an under-actuated system, the dynam-
ics of which are described by the equations

ẋ = Fx+Gz,

ż = Ax+ Ez +Bu,
(4)

with F ∈ Rn×n, G ∈ Rn×n, A ∈ Rn×n, E ∈ Rn×n, B ∈
Rn×m, states x(t) ∈ Rn and z(t) ∈ Rn and control input
u(t) ∈ Rm, with 0 < m < n. Assume that rank(B) = m
and det(G) 6= 0. Hence, without loss of generality, assume
that GB = [Im, 0

T
(n−m)×m]T . Find a controller

u = H1x+H2(Gz −Kx), (5)

with H1 ∈ Rm×n, H2 ∈ Rm×n and K ∈ Rn×n, such that
the closed-loop system (4)-(5) is asymptotically stable.

It is tacitly assumed that the system (2) and (4) are con-
trollable, hence these can be stabilized using a linear state
feedback. The goal of the paper is therefore not to merely
stabilize these systems, but to propose a modular design
inspired by back-stepping and hence applicable, in principle,
to nonlinear systems (see the example in Section IV).

III. MAIN RESULTS

In this section we give solutions to the Problems 1 and 2
stated in Section II. The corresponding under-actuated back-
stepping algorithms used to find the controllers are given
in Algorithms 1 and 2, respectively. Finally, an example is
given at the end of this section to show how the algorithms
work.

We begin with Problem 1, as the dynamics of system (2) can
be regarded as a special case of the dynamics of the systems
studied in Problem 2. Algorithm 1 can be used to find the
controller (3) and the existence of the matrix K is proved in
Lemma 1.

Algorithm 1: Solution To Problem 1
procedure UNDER-ACTUATED BACK-STEPPING
Step 1: Find a matrix K ∈ Rn×n such that the conditions

λ(K) ∈ C−, (6)

(K,B) controllable, (7)

J1(A−K2) = 0n×n, (8)

where

J1 =

[
0m×m 0m×(n−m)

0(n−m)×m I(n−m)×(n−m)

]
, (9)

hold.
Step 2: Set

H1 = −J2(A−K2), (10)

with
J2 = [Im×m, 0(n−m)×m].

Step 3: Select H2 such that

λ(−K +BH2) ∈ C−. (11)

end procedure

Lemma 1: Consider the system (2) with m = 1, yielding
B = [1, 0, 0, . . . , 0]T . Then there exists a matrix K such
that conditions (6) to (8) in Algorithm 1 hold.

Proof: The matrices A and K can be written as

A =

[
a11 A12

A21 A22

]
, K =

[
k11 K12

K21 K22

]
, (12)

where a11 ∈ R, AT12 ∈ Rn−1, A21 ∈ Rn−1, A22 ∈
R(n−1)×(n−1), k11 ∈ R, KT

12 ∈ Rn−1, K21 ∈ Rn−1

and K22 ∈ R(n−1)×(n−1). Since (A,B) is controllable,
then (A22, A21) is controllable. Hence, there is at least one
element of A21 which is nonzero. Without loss of generality,
we assume that the first element of A21, denoted as a2,1, is
nonzero.

Note that (7) is equivalent to controllability of (K22,K21).
Pick K22 and K21 to satisfy the above contrallability con-
dition. One such a choice is K21 = [α, 0, 0, . . . , 0]T , with
nonzero α, and

K22 =


β1,1 β1,2 · · · β1,n−1

β2,1 β2,2 · · · β2,n−1

...
...

...
...

βn−1,1 βn−1,2 · · · βn−1,n−1


with βi,j = 0, for all i 6= j and i 6= (j + 1), and βi,j 6= 0,
for all i = j and i = (j + 1). Exploiting (8) k11 and K12

can then be calculated as

k11 = (KT
21K21)−1KT

21[A21 −K22K21],

K12 = (KT
21K21)−1KT

21[A22 −K2
22].



Note that if β2,1 = 0 then the eigenvalues of the matrix K,
denoted as λ1, λ2, . . . , λn, are such that λ3 = β2,2, λ4 =
β3,3, . . . , λn = βn−1,n−1, and

λ1 + λ2 =
a2,1
α
, λ1λ2 =

a2,1β1,1
α

− a2,2,

where a2,2 denotes the element on the second row and second
column of the matrix A.

Selecting

β1,1 = −a2,2 − 1, βi,i < 0, ∀i ∈ {2, 3, . . . , n− 1},
α = −a2,1, βi+1,i 6= 0,∀i ∈ {2, 3, . . . , n− 2},

and noting that the eigenvalues are robust, i.e. their position
is only modified by a small change in parameters, one could
select β2,1 6= 0 and small to satisfy (6) and (7), hence the
claim.

Remark 1: Lemma 1 shows that K in Algorithm 1 exists in
the case m = 1. It is trivial to extend the result to the case
m ≥ 2.

The stability properties for the closed-loop system (2)-(3)
can then be summarized as follows.

Proposition 1: Consider the under-actuated system (2) con-
trolled with the feedback law given by (3) with K ∈
Rn×n, H1 ∈ Rm×n and H2 ∈ Rm×n as in Algorithm 1.
Then the closed-loop system (2)-(3) is asymptotically stable.

Proof: To begin with define the new variable ∆z as
∆z = z − Kx. Using the new variable ∆z the system (2)
can be rewritten as

ẋ =Kx+ ∆z,

∆̇z =(A−K2)x−K∆z +Bu.
(13)

Substituting the control law (3) into equations (13) yields

ẋ =Kx+ ∆z,

∆̇z =(A−K2 +BH1)x+ (BH2 −K)∆z.

By equations (8) and (10) one has

ẋ =Kx+ ∆z,

∆̇z =(BH2 −K)∆z.

The condition (7) implies that there exists H2 such that
(11) holds. Hence, there exists a symmetric positive definite
matrix Q such that

(BH2 −K)TQ+Q(BH2 −K) = −I.

Similarly, by condition (6), there exists a symmetric positive
definite matrix P such that

KTP + PK = −I.

Let ε be a sufficiently small positive constant. Consider the
Lyapunov function candidate

L(x, z) = εxTPx+ ∆zTQ∆z. (14)

Its time derivative along the trajectories of the closed-loop
system is such that

L̇ = ε(xTKT + ∆zT )Px+ εxTP (Kx+ ∆z)

+ ∆zT [(BH2 −K)TQ+Q(BH2 −K)]∆z

≤ εxT (KTP + PK)x+
ε

2
xTx+ 2ε∆zTPTP∆z

+ ∆zT [(BH2 −K)TQ+Q(BH2 −K)]∆z

≤ − ε

2
xTx− (1− 2εσ̄2

P )∆zT∆z,

where σ̄P denotes the maximum singular value of the matrix

P . Therefore, L̇ ≤ 0 for all 0 < ε <
1

2σ̄2
P

. In addition,

L̇ = 0⇐⇒ x = z = 0,

hence the claim.

Remark 2: If the system (2) is fully-actuated, i.e. m = n,
then trivially conditions (7) and (8) hold. Therefore, in Step 1
the matrix K only needs to satisfy condition (6), consistently
with standard back-stepping, i.e. any “stabilizing” feedback
can be selected in the initial step of back-stepping.

Problem 2 is a generalization of Problem 1 and can also
be solved using the under-actuated back-stepping method.
The steps of the control design are detailed in Algorithm 2.
The existence of the matrix K and the formal properties of
the closed-loop system (4)-(5) are given in Lemma 2 and
Proposition 2, respectively.

Algorithm 2: Solution To Problem 2
procedure UNDER-ACTUATED BACK-STEPPING
Step 1: Find a matrix K ∈ Rn×n such that the conditions

λ(F +K) ∈ C−, (15)

(GEG−1 −K,GB) controllable, (16)

J1[GA−K(F +K) +GEG−1K] = 0n×n, (17)

where

J1 =

[
0m×m 0m×(n−m)

0(n−m)×m I(n−m)×(n−m)

]
,

hold.
Step 2: Set

H1 = −J2[GA−K(F +K) +GEG−1K], (18)

with
J2 = [Im×m, 0(n−m)×m].

Step 3: Select H2 such that

λ(GEG−1 −K +GBH2) ∈ C−. (19)

end procedure

Lemma 2: Consider the system (4) with m = 1, yielding
B = [1, 0, 0, . . . , 0]T . Then there exists a matrix K such
that conditions (15) to (17) hold.



Proof: Similarly to the proof of Lemma 1, we rewrite
the matrices A and K as in (12) and the matrices E and F
as

E =

[
e11 E12

E21 E22

]
, F =

[
f11 F12

F21 F22

]
, (20)

where e11 ∈ R, ET12 ∈ Rn−1, E21 ∈ Rn−1, E22 ∈
R(n−1)×(n−1), f11 ∈ R, FT12 ∈ Rn−1, F21 ∈ Rn−1, F22 ∈
R(n−1)×(n−1). Since G is invertible, without loss of gener-
ality we can assume G = In. System (4) is controllable,
indicating that F11 F12 0Tn−1

F21 F22 In−1

A21 A22 E22

 ,
 1

0n−1

E21

 is controllable,

hence (E21 + F21) 6= 0n−1. Without loss of generality, we
can assume that its first element is nonzero. Choose K21 and
K22 such that E21 −K21 = [α, 0, 0, . . . , 0]T , with nonzero
α, and

E22 −K22 =


β1,1 β1,2 · · · β1,n−1

β2,1 β2, 2 · · · β2,n−1

...
...

...
...

βn−1,1 βn−1,2 · · · βn−1,n−1

 ,
with βi,j = 0, for all i 6= j and i 6= (j + 1). Exploiting (17)
k11 and K12 can then be calculated as

k11 = [(K21 − E21)T (K21 − E21)]−1(K21 − E21)T

× [A21 −K21f11 −K22F21 −K22K21 + E22K21],

K12 = [(K21 − E21)T (K21 − E21)]−1(K21 − E21)T

× [A22 −K21F12 −K22F22 −K2
22 + E22K22].

Let the eigenvalues of (F +K) be λ1, λ2, . . . , λn. Then by
choosing βi,i � 0, for all i ∈ {2, 3, . . . , n− 1} we have

λ1 + λ2 ≈
e2,1 + f2,1

α
β1,1 + e2,2 + f2,2

+
a2,1 − Σni=1(e2,ifi,1)

α
,

λ1λ2 ≈− β2
1,1 + (e2,2 + f2,2 −

e2,1 + f2,1
α

e2,2)β1,1

− a2,1 − Σni=1(e2,ifi,1)

α
β1,1 +

e2,1 + f2,1
α

f1,2e2,1

+
[a2,1 − Σni=1(e2,ifi,1)](e2,2 + f2,2)

α

+
e2,1 + f2,1

α

(
Σni=4(e2,iei,2)− a3,2 − e22,2

)
+
e2,1 + f2,1

α
e2,3(e3,2 − β2,1),

where ei,j and fi,j denote the element of the jth-column ith-
row of the matrix E and F , respectively, and λi ≈ −βi−1,i−1

for all i ∈ {3, 4, . . . , n}. Since e2,1 + f2,1 6= 0, it is always
possible to find α and β1,1 such that λ1 < 0 and λ2 < 0,
hence the claim.

Proposition 2: Consider the under-actuated system (4) with
the controller (5) with K ∈ Rn×n, H1 ∈ Rm×n and H2 ∈

Rm×n as in Algorithm 2. Then the zero equilibrium of the
closed-loop system is asymptotically stable.

Proof: To begin with define the new variable

∆z = Gz −Kx. (21)

Recall that G−1 exists since det(G) 6= 0. Using the new
variable ∆z the system (4) can be rewritten as

ẋ = (F +K)x+ ∆z,

∆̇z = [GA−K(F +K) +GEG−1K]x

+ (GEG−1 −K)∆z +GBu.

(22)

Substituting the control law (5), together with equations (18)
and (19) into the equation (22), yields

ẋ = (F +K)x+ ∆z,

∆̇z = (GEG−1 −K +GBH2)∆z.

The condition (16) implies that we can always find a matrix
H2 such that (19) holds. Similarly to the proof of Proposi-
tion 1, there exists matrices P and Q such that

P = PT > 0, Q = QT > 0,

MTQ+QM = −In,
(F +K)TP + P (F +K) = −In,

where M = GEG−1 −K +GBH2.

Again, let ε be a sufficiently small positive constant. Consider
the Lyapunov function candidate (14), the time derivative of
which along the trajectories of the closed-loop system is such
that

L̇ = ε[xT (F +K)T + ∆zT ]Px+ εxTP [(F +K)x+ ∆z]

+ ∆zT (GEG−1 −K +GBH2)TQ∆z

+ ∆zTQ(GEG−1 −K +GBH2)∆z

≤ εxT [(F +K)TP + P (F +K)]x+
ε

2
xTx

+ 2ε∆zTPTP∆z

+ ∆zT (GEG−1 −K +GBH2)TQ∆z

+ ∆zTQ(GEG−1 −K +GBH2)∆z

≤− ε

2
xTx− (1− 2εσ̄2

P )∆zT∆z ≤ 0,

where σ̄P is the maximum singular value of the matrix P ,
hence the claim.

Example 1: Consider the two degrees-of-freedom, under-
actuated linear system described by the equations

ẋ =

[
0 0
0 1

]
x+

[
1 0
0 1

]
z,

ż =

[
0 0
1 0

]
x+

[
0 1
0 0

]
z +

[
1
0

]
u,

(23)

with states x(t) ∈ R2 and z(t) ∈ R2 and input u(t) ∈ R.



According to Algorithm 2 the first step is to find a matrix K
satisfying conditions (15), (16) and (17). One such a choice
is given by

K =

[
0 4

−1

2
−2

]
,

yielding
H1 = [−1.5, −2].

Then H2 has to be chosen such that (19) holds. One such a
choice is given by

H2 = [−3, −10],

yielding the overall controller

u = H1x+H2

([
1 0
0 1

]
z −Kx

)
= [−6.5, −10]x+ [−3, −10]z.

(24)

IV. TOWARDS NONLINEAR UNDER-ACTUATED
BACK-STEPPING

In this section we discuss how the under-actuated back-
stepping method can be used to design stabilizers for non-
linear under-actuated systems. The dynamics of a class of
under-actuated mechanical systems can be described by the
equations

ẋ = z,

ż = A(x)x+ Ez +Bu,
(25)

where the states x(t) ∈ Rn and z(t) ∈ Rn denotes the
position and velocity vectors, respectively, while the input
u(t) ∈ Rm represents the force or torque vector. The map-
ping A(x) : Rn −→ Rn×n is smooth and B ∈ Rn×m and
E ∈ Rn×n are constant matrices. Assume that rank(B) = m
hence, without loss of generality, let B = [Im, 0T(n−m)×m]T .
To find a control law u(x, z) such that the zero equilibrium
of the closed-loop system is asymptotically stable we can
exploit the under-actuated back-stepping method developed.

The first step is to find the mappings K : Rn −→ Rn and
H2 : Rm −→ Rn such that the following properties hold.

P1)
∂(BH2(x)−K(x))

∂x
= 0n×n.

P2) The point x = 0 and ∆z = 0 are globally asymptoti-
cally stable equilibrium of the subsystems

ẋ = K(x),

and

∆̇z =

[
E − ∂K(x)

∂x
+BH2(x)

]
∆z,

uniformly in x, respectively.

P3) J1(A(x) +EK(x)− ∂K(x)

∂x
K(x)) = 0n×n, where J1

is defined as in (9).

The second step of the method requires, in this case, to
calculate H1 : Rm −→ Rn as

H1(x) = −J2(A(x) + EK(x)− ∂K(x)

∂x
K(x)),

where J2 is as given in (18).

Finally, globally asymptotic stability of the zero equilibrium
of the system (25) in closed-loop with the control law

u = H2(x)(z −K(x)) +H1(x)

can be proved by using a Lyapunov function candidate of
the form

L(x, z) = (z −K(x)x)TQ(x)(z −K(x)x) + εxTP (x)x,

with ε > 0 and sufficiently small and P : Rn −→ Rn×n and
Q : Rn −→ Rn×n positive definite.

The following example is used to illustrate how under-
actuated back-stepping can be applied to nonlinear systems.

Example 2: Consider an inertia wheel pendulum, the dy-
namics of which are described by the equations [1]

ẋ = z,

ż =

[
u,

(b2 − b1)M sinx1

]
,

(26)

where

M =
(m1l1 +m2l2)g

I1 +m1l21 +m2l22
, b1 =

1

I1 +m1l21 +m2l22
,

b2 =
1

I2
+

1

I1 +m1l21 +m2l22
, u = M sinx1 − b1τ

x = [q1, b2q1 + b1q2]T and z are states of the system, while
u is the control input. q1 and q2 represent the pendulum
angle and the wheel angle, respectively. Note that I1 and
I2 denote the moment of inertia of the pendulum around
its center of mass and the moment of inertia of the wheel
(plus actuator’s rotor), respectively; m1 and m2 represent the
mass of the rod and the mass of the inertia wheel plus the
mass of the actuator, respectively; l1 and l2 describes the
distance to the center of mass of the rod and the length of
the pendulum, respectively. In addition, τ denotes the torque
generated by the actuator acting between the wheel and the
pendulum, and g is the gravity constant. Suppose that the
parameter values are given as: b1 = 1.5/(kg × m2), b2 =
668.17/(kg ×m2),M = 74.0/s2.

Based on the analysis given in Section IV, the first step is
to find K(x) = [k1(x), k2(x)]T , where k1(x) : R2 → R and
k2(x) : R2 → R, and H2(x) such that P1) to P3) hold. One
such a choice for K(x) and ũ(x, z) , H(x)(z −K(x)) is
given by

k2(x) =
1

2
ln

1− 4
πx1 − tanh(x2)

1 + 4
πx1 − tanh(x2)

,

k1(x) =− π

2(ex2 + e−x2)2
ln

1− 4
πx1 − tanh(x2)

1 + 4
πx1 − tanh(x2)

− π

4

[
1− (

4

π
x1 + tanh(x2))2

]
M sinx1,

(27)
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Fig. 1: Time histories of the pendulum angle q1 and the
torque generated by the actuator τ for the inertia wheel
pendulum with the controller (31).

and

ũ(x, z) =
∂k2
∂x1

∆2 + ∆̇∗
1 − γ4(∆1 −∆∗

1) +
∂k1
x1

∆1

+
∂k1
x2

∆2,

(28)

where ∆1 = z1 − k1(x),∆2 = z2 − k2(x), γ4 > 0 and

∆∗
1 = −

∂k2
∂x2
∂k2
∂x1

∆2 − γ3∆2, (29)

with γ3 > 0, respectively. Note that ∂k2
∂x1

< 0, hence ∆∗
1 is

well-defined.

The second step is to calculate H1(x) as

H1(x) =
∂k1
∂x1

k1(x) +
∂k1
∂x2

k2(x), (30)

with k1 as given in (27).

Finally, the control input u to the system (26) is calculated
as

u = H1(x) + ũ(x, z), (31)

where H1(x) and ũ(x, z) are calculated in (30) and (28),
respectively.

Simulation results are given in Fig. 1 which shows that
the controller (31) based on the proposed under-actuated
back-stepping method is effective in stabilizing the zero
equilibrium of the inertia wheel pendulum. Furthermore, the
speed of convergence can be changed by choosing different
values of γ3 and γ4.

As illustrated by the examples, the key step of the under-
actuated back-stepping method is the first step of the Al-
gorithms 1 and 2. This restricts the selection of the initial

stabilizing controller: such a restriction is not present in
standard back-stepping.

V. CONCLUSIONS

This paper proposes a novel control method, the under-
actuated back-stepping method, to solve the stabilization
problem for classes of under-actuated systems. The technique
is studied in details for linear systems and its extension to
nonlinear under-actuated systems is briefly discussed. Two
numerical examples, one linear example given in Section III
and the other nonlinear one given in Section IV, show the ef-
fectiveness of the proposed method and its main features. In
future we will focus on the application of the under-actuated
back-stepping method on classes to nonlinear systems.
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