
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

\UTHOR/FILING TITLE

------- -~"'--·- ft_~~l:l~-~'1-t _e_ ----------- ------

\CCESSION/COPY NO.

f5-2054jot
--------------- --------------- -----------------
/OL. NO. CLASS MARK

DEVELOPMENT OF AN INTERACTIVE COMPUTER GRAPHICS

SYSTEM WITH APPLICATION TO DATA FITTING

BY

BAKIR ABDUL RASOUL HASSAN AL-HASHEMY

B.Sc.(Leeds), M.Sc.(Wales)

A Doctoral Thesis submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy of the Loughborough University of Technology
May, 1978.

Supervisor: MR. G.N.C. GRANT

Department of Computer Studies

© B.A.R. Hassan Al-Hashemy, 1978.

Loughborough University

of Technoio·;;;y library

Pat• .. Oo.l:·1~
Class

Ace. 15 2 0 5 tl/o\ No.

DECLARATION

I declare that the following thesis is a record of

research work carried out by me, and that the thesis is

of my.own composition. I also certify that neither the

thesis nor the original work contained herein has been

submitted to this or any other institute for a degree •

.. ··

To My Family

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor,

Mr. G.N.C. Grant, to whom I am greatly indebted for his

advice and counsel throughout the period of my research and

for the thoughtful guidance he has supplied during the

preparation of this thesis.

I would also like to express my special thanks to

Professor D.J. Evans who has provided continual encouragement

and advice.

My thanks go to all the other members of the staff of

this department.

It is a pleasure to acknowledge Miss J.M. Briers for

her patience and diligence in typing this thesis.

Finally, my thanks to the Ministry of Higher Education

of Iraq for providing me with financial support.

CONTENTS

Chapter 1: INTRODUCTION •••• 0 •••••••• 0 0 ••• 0 ••••••••••• 0 0 • 0 ••••• 1

PART I: GRAPHICS SYSTEM

Chapter 2: A REVIEW OF FACILITIES FOR COMPUTER GRAPHICS 7

Chapter 3: INTERACTIVE INPUT AND RELATED PROGRAMMING
METHODOLOGY • • . • . . • . • • • • • 31

Chapter 4: GRAPHICS SYSTEM AND DATA STRUCTURE ORGANIZATION 48

Chapter 5: THE GRAPHICS SOFTWARE PACKAGE 'LIGHT' 0 ••••• 0 0 •••••• 0 63

PART II: APPLICATIONS

Chapter 6: INTERPOLATOR¥ DATA FITTING- IDF •••....•............ 104

Chapter 7: INTERACTIVE CONTOUR TRACING - ICT • 0 •••••• 0 0 • 0 • 0 ••••• 180

Chapter 8: TRIANGULAR MESH GENERATION- TMG•.•..••.... 224

Chapter 9: SUMMARY AND CONCLUSION> •......••...•.•..•.•..•.•..... 25 7

REFERENCES ••••• 0 •• 0 •• 0 • 0 •••••••••• 0 •• 0 • 0 ••••••• 0 0 0 0 • 0 0 ••• 0 0 •••• 265

APPENDICES •• 0 •••••• 0 ••••••• 0 0 0 •••• 0 0 ••••••• 0 •••••••••••••• 0 ••• 0 274

APPENDIX 1 - LIGHT-program listing •• 0 • 0 • 0 0 0 0 ••••• 0 •• 0 0 •• 0 275

APPENDIX 2 - IDF - program modules listing • 0 0 • 0 • 0 ••••• 0 •• 319

APPENDIX 3 - ICT - program listing ••• 0 ••• 0 ••••• 0 ••••• 0 • 0 •
447

APPENDIX 4 - TMG - program listing •••• 0 ••• 0 0 0 • 0 0 • 0 0 •• 0 •••
472

1

CHAPTER 1

INTRODUCTION

2

The first important manifestation of computer graphics was at

M.I.T. in 1963, when !van Sutherland demonstrated his SKETCHPAD system

on, the TX2 computer at Lincoln Laboratory. In this demonstration a

catho~ray tube was used in such a way that it generated geometric

figures and by using a light-pen, the figures on the screen could be

drawn and manipulated. Although he was preceded by some earlier

graphics hardware development (e.g. WHIRLWIND 1, 1950), it was Sutherland

who made the breakthrough in man-machine communication, to the extent

of interacting with a computer by means other than bits, numbers or

the omnipresent punched card. Following this work Project MAC was

initiated at M.I.T. in early 1964, involving the use of time-shared

terminals and later the display consoles. During the same period,

General Motors were developing their system DAC-1 (Design Augmented by

Computer), which involved the use of CRT displays: these subsequently

became the prototype of the IBM 2250 display.

The concepts of the computer-driven display, light-pen interaction

with the CRT trace, and time-sharing are adequate to make up the

technology of on-line computer graphics for drawing or drafting. In

the famous M.I.T. SKETCHPAD, a drawing was constructed of entities or

'instances' which could be manipulated and reproduced on the screen.

This demonstrated that the computer had an •understanding' of the

picture, could make calculations based on it, and display the result.

This concept is the basis for the extension of computer graphics into

several application areas such as computer-aided design, artificial

intelligence and information retrieval. For example, interactive

graphics displays can be used as a powerful tool in the computer-aided

design of products and systems. In many cases such displays provide an

ideal interface between man and machine; the designer can exercise

insight and judgement, while the computer undertakes involved

calculations and analyses at high speed.

In general terms, computer graphics means images generated by

computer, while interactive computer graphics means that the human

3

must be involved with the computer through these images. The scope of

computer graphics usage can vary in the level of sophistication involved,

and may be classified as follows:-

(i) Historically, conventional batch-processing computer system

first produced graphic output only via line printers,

incremental graph plotters, video displays, etc. These are

relatively expensive resources and graphic output is usually

off-lined into a faster peripheral (typically magnetic tape)

and consequently driving the plotter as a background job.

(ii) The introduction of time-sharing systems has made possible

the idea of interactive computing. Thus, conversational

input typically at a teletype terminal can be made to initiate

computer output, and in particular, graphics output on a

plotter or CRT. This is effectively 'semi-interactive

graphics', since the process is interactive but no graphical

input is involved.

(iii) The appearance of storage tube displays allowing a graphical

input capability (e.g. by means of cross-hair cursor), has

made it possible to build systems which enable the user to

incorporate graphical interaction. However, this type of

system still lacks the selective erasure capability which

allows dynamic interaction. Such systems could be designated

as 'static interactive graphics'. A wide range of scientific

4

applications which do not require dynamic interaction can

utilize such systems, if a well-designed graphic interface

and suitable interactive techniques are used.

(iv) The use of a refreshable display and some input device

(e.g. light-pen), allows change of the picture in dynamic

fashion in real time. It is often desirable to remove part

of the picture or change its position, thus requiring a

highly interactive graphics capability; this implies an

intelligent terminal with its own display processor and input

capability. With an increase in size and sophistication of

the display processor, the graphics sub-system can become

independent of the host computer, including its communication

front-end. Thus it is possible for some graphics systems to

be used as stand-alone configurations (for relatively small

app.lications) .

(v) With more general interactive graphics syste~where further

computing resources are needed, the display system would be

linked to a large machine which would provide the extra

facilities to run more extensive graphics problems. This

may require the computer to understand the picture which

the user has drawn on the screen. That is, the computer

must have a useful knowledge of the topology or the

connectivity of the picture as well as the coordinates of
IUld. stora.,e

significant points and elements. The programmingAphilosophy

required for this level of sophistication is necessarily

more involved.

•

5

Computer graphics, computer-based pictorial infonnation processing,

has appealed to computer designers and users since the early days.

Both hardware and software developments have continued to improve

graphical facilities, but the progress has been relatively slow. A

number of quite sophisticated systems have been designed and built,

but at a cost that makes them uneconomical for many users, and simply

not available to most. As yet less attention has been given to the

development of simple and relatively cheap systems, though the feasibility

of such systems have been explored in recent years. At the same time,

the need for graphics as a medium of information interchange has grown

tremendously. With this increasing demand for computer graphics,

terminal costs have reduced, allowing a wider use of terminals for

this purpose. Consequently the need for improved software techniques

for graphics has become apparent.

Therefor~, interactive computer graphics has changed considerably

over the past few years from an expensive, dedicated activity restricted

to a privileged few users to a relatively low-cost, time-shared activity

available to many users in most scientific/technical environments.

The aim of this work is to provide a graphical facility which is

relatively low-cost both in regard to capital cost and run time

overheads, and making efficient use of the available computing resources.

The system must be generally available, general-purpose, portable,

powerful and easily augmented by application programs in selected areas.

The display terminal available in the early stages of development was

the storage tube (Tektronix 4010). This display requires less software

and processor power for its support than does a refreshable display.

Admittedly, such a display limits the interaction and animation

capabilities of the system but for the average application programmer

6

such restrictions are not serious. The basic graphic software package

provided is made accessible to Fortran programmers while circumventing

some of the limitations of the language for graphics applications.

This work was also aimed at the possible exploitation of some

scientific application areas, in particular the use of man-machine

interaction in data-fitting problems as a starting point for many more

applications. Data-fitting is an area in which a batch processing

environment is especially frustrating, because intermediate results

and graphs of results provide additional insight and are needed in

order to proceed intelligently.

The work reported in this thesis is organized into two parts.

Part I presents a review study of the existing graphics facilities in

terms of hardware and software (Chapter 2), interactive input

techniques (Chapter 3) and the organization of graphics output processes

and applicati?n data structures (Chapter 4). Finally, in Part I, a

full account is presented concerning the development and implementation

of the basic graphics software package LIGHT. Part II contains a

detailed discussion of the implementation of several application

programs which employ the basic graphics software developed in Part I.

The applications cover the following problem areas:

(1) !nterpolatory ~ata fitting - IDF

(2) !nteractive fontour !racing - ICT

(3) Iriangular ~esh ~eneration - TMG

Finally, full program listing.sof the basic software and the application

modules are given in the Appendices accompanying this thesis.

PART I

G R A P H I C S S Y S T E M

CHAPTER 2

A REVIEW OF FACILITIES FOR COMPUTER GRAPHICS

1. INTRODUCTION

2. GRAPHICS HARDWARE

2.1 Hardcopy Output Devices
2.2 Graphical Displays
2.3 Input Devices
2.4 Graphical Terminal Configurations

· 3. GRAPHICS SOFTWARE

3.1 Structure of Graphics Software
3.2 Features of a Typical Graphics

Software Package

7

8

1. INTRODUCTION

A man-computer graphics system consists of the man (liveware),

the hardware and the programming (software). In general, the hardware

consists of a computer, a display driven by the computer, and input

devices which permit the user to give instructions and data to the

computer based on his evaluation of the picture (information)

displayed on the screen. The programming consists of the basic

system programs (e.g. UNIX system) and applica~ions programs which

permit the solution of specific problems. There is also the device

interface software which enables the user's program to communicate

with the display (e.g. LIGHT package, see Chapter 5).

It is immediately apparent that the hardware-programming system

must be considered in its entirety, since all portions interact to

provide the over all capability.

2. GRAPHICS HARDWARE

2.1 Hardcopy Output Devices

In an interactive terminal configuration some means of hardcopy

production is usually useful and often essential. Here, we briefly

mention the different types available:-

(i) Incremental Plotter

This is the most common graphical output hardcopy device. There

are now two main types of incremental plotter: drum and flatbed.

Paper on a drum plotter is supplied in a roll which is mounted at

the rear of the device. The paper then passes over the drum and is

either allowed to hang freely or, more usually, is wound onto a

take-up spool. A pen attachment is mounted above the drum and can

move across the width of the paper. The more advanced drum plotters

9

have multi-pen arrangements which are useful for plotting in several

colours.

Flatbed plotters are available in the form of a horizontal table,

or may be mounted. at a fixed angle to the horizontal. The pen is

suspended in a gantry arrangement which moves over the surface of

the paper.

All digital plotting is accomplished by drawing straight lines

in certain fixed directions. In the case of the drum plotter for

example, movement of the drum alone can cause a line to be drawn in

the direction of rotation of the drum, while movement of the pen

alone can cause a line to be drawn at right angles to the direction

of rotation of the drum.

In order to reduce the demand on the processor time of the

central computer caused by.excessive data throughput, off-line

plotting systems have been developed. A controller processes a

simplified form of the plotter input (which has been stored on

magnetic tape or disc), into the incremental steps required by the

plotter. The main drawback of the incremental plotters is their

low plotting speeds.

(ii) Electrostatic Plotter

This is an alternative to incremental plotters. Here the

.output is not in the form of line vectors, but in the form of small

dots. A dot may be 'drawn' only on a grid point and the distance

between grid points is of the same order as the length of an

incremental plotter step. The general arrangement of this plotter

consists of dielectric coated plotting paper which passes over a

writing head containing minute conducting styli which are

10

selectively able to deposit electrostatic charges on the paper. The

positions of the charge deposits become visible on passing through

a liquid toner suspension. Speeds of up to 1200 lines per minute

are obtainable·- comparable to the speed of a lineprinter for a

small or medium range computer configuration. It is possible with

the addition of an interface to a storage tube, to produce hardcopy

reproduction of the screen image on the plotter.

(iii) Microfilm Recorder

This is another alternative to the incremental plotter but is

commercially expensive. However, its speed makes it an economic

proposition if vast quantities of output need to be produced.

The most powerful microfilm recorder currently available is the

FR80 made by Information International Incorporated. Basically the

FR80 consists of an IIIlS computer which accepts data stored on

magnetic tape and displays the result on a high precision CRT.

Various cameras may be used to record the information displayed in

hardcopy form, on 35mm film, 16mm film or microfiche form.

2.2 Graphical Displays

Basically there are four types of graphical displays:-

(i)

(ii)

(iii)

(iv)

Direct view storage tube

Indirect view storage tube

Beam driven refresh display

R!!ster display

All the above types of displays rely on CRT-related technology for

electron beam generation and control; details of this may be found

in [1]. An electron beam, having struck a phosphor coated screen,

will cause the phosophor to glow for a short period,the intensity

11

level falling as time increases, The length of time that the glow

remains visible is termed the 'persistence' of the phosphor. In

order to maintain the image on the screen for longer periods it

must be redrawn and it is in the redrawing techniques that the

differences between the above displays are to be found.

Storage tubes are so named because a representation of the

screen image is stored in the form of an electric charge pattern

which is continuously copied to the screen. The storage device is

actually part of the display terminal, Refresh and raster display

on the other hand need some form of external storage device (display

file/buffer) from which to obtain the data to redraw the image.

Picture drawing on all types of display is accomplished by

referencing a notional grid, precisely as is done on a plotter. Each

grid point is addressable, though some may in effect lie outside the

screen dimensions and are therefore never visible. The more visible

points there are, the more accurate is the screen image, provided of

course that the resolution obtainable by the focusing mechanism of the

display is sufficient to enable adjacent points to be distinguishable

by eye. Each type of display is now described more fully.

(i) Direct view storage tube (e.g. Tektronix 4010)

The writing beam is not focused directly into the screen, but

onto a grid of fine wire situated immediately behind the screen and

coated with dielectric, on which a pattern of charge is deposited

and retained. This pattern is then effectively copied from the

storage tube to the screen by a continuous flood of slow moving

electrons. Selective erasure i.e. erasure of part of the image

without erasure of the whole, is virtually impossible using the

storage tube technique. Cqmplete erasure of the screen is

accomplished by applying a positive pulse of about half a second

duration to the storage grid. This has the side effect of

producing a visible flash across the entire screen.

(ii) Indirect view storage tube (e.g. Princeton 801)

12

This is a variation on the previous storage technique and allows

selective erasure. The image change is stored on a circular

target which is about an inch in diameter and composed of a wafer

of silicon and silicon oxide. The target is continuously scanned

in a raster fashion by an electron beam to give the screen image.

To remove part of the image, the target must be retraced in a

special mode along those vectors not required.

(iii) Beam driven refresh display (e.g. DEC GT42)

The alternative method of maintaining an image on the screen is

to redraw the picture before it has faded. The persistence of the

phosphor governs the rate at which the screen must be refreshed in

order to avoid flicker. For most phosphors used in CRT's designed

for interactive graphics, flicker will be avoided if the picture is

refreshed 30 or more times per second. Maintaining this rate has

two consequences:-

(a) high speed circuitry must be used to convert the digital

signal received from the computer to the analogue

signals required by the CRT.

(b) the data which describes the picture to be displayed

must be readily accessible.

The beam driven refresh display is a vector device which

obtains its data for drawing the picture from a 'display file'.

The display file is composed of 'display instructions', so named

because their form bears a close resemblance to machine instructions.

The set of instructions which may be used is called the •display

instruction set', the size of the set depending on the hardware

features of the display. For example, the DEC GT42 instruction

set basically comprises

set graphic mode

Jump

NO-OP

Load status Register A

Load status Register B

13

together with six data word formats that accompany the instructions:

character data format

short vector mode

long vector mode

point data mode

graph plot X(Y) mode

relative point mode

For further details see reference [2].

The instructions in the display file are executed autonomously

by the 'display processor unit' (DPU), and one such execution of all

instructions in the display file is termed a 'refresh cycle'. The

final instruction in the display file should be one of the two types:-

(a) an instruction to halt the DPU

(b) an instruction to direct the DPU to the first

instruction of the display file.

By adopting method (a), the DPU may be synchronised to the

internal clock of the host computer; a flag to restart the DPU is

set when a timing signal (or clock interrupt) is received. Thus at

the end of the refresh cycle there will be a pause before the next

cycle is started, the refresh cycle plus the pause being termed a

'frame'. The number of frames per second is known as the 'refresh

14

rate' and by the above synchronisation technique the refresh rate

may be maintained at a constant value provided that the relevant

clock interrupt is not received before the DPU has finished its

refresh cycle. If .this happens then the refresh rate must be

lowered with the possibility of picture flicker resulting. By

adopting method (b), the refresh rate is not constant but varies

according to the number of instructions in the display file. This

procedure is not normally adopted as problems are caused if the

display file manipulation is attempted while the DPU is executing

instructions.

(iv) Raster Display

The sequential scan refresh display, or raster display, can

use a standard domestic television monitor for its display screen.

The screen elements, corresponding to grid points, are sequentially

scanned, a double scan of alternate lines being adopted to reduce

flicker. Data is stored for each element in the order required by

the raster scan.

Finally,Table2.1 presents a comparison of the various graphics

display types discussed above, and Table 2.2 shows the hardware

feature of the Tekronix 4010, DEC GT42 and \lector~eneral. Table

2.3 presents an approximate cost of these hardware devices, circa

1976.

FEATURE

Picture drawing technique

Picture generation speed

Picture quality

Minimum line speed

Local memory requirements

Selective erasure

Time for complete
erasures

Capacity limitation

Intensity level

(i) Direct view
storage tube

Wire grid storage
copied to screen

Dependent on line
speed

Good

110 Baud

None

No

500 ms

Resolution

One only

DISPLAY TYPE

(ii) Indirect view
storage tube

Raster scan of
silicon target

Dependent on line
speed

Poor

110 Baud

None

Yes

400 ms

Resolution

Several

(iii) Beam-driven
refresh display

Continuous retrace of
display file

Fast

Good

1 M Baud

10 K bytes

Yes

20 ms

Beam driven speed

Several

TABLE 2.1: Comparison of Display Types

(iv) Raster scan
refresh display

Raster scan from
storage device or
memory

Fast

Poor (at present)

30 M Baud

100 K bytes

Yes

30 ms

Resolution

Several

Storage Tube Refresh Display

Feature Tektronix 4010 GT42 VG-3D3I

Lines: solid Yes Yes Yes

long dash ----- No Yes No

short dash -------- No Yes Yes

Dotted No No Yes

chained -·-·-·- No Yes Yes

Blinking: No Yes Yes

Characters: normal set 64 127 192

rotation No No Yes

italics No Yes by rotation

Intensity levels: 1 8 32

Intensity modulations: No No Yes

Transformation: rotation No No 3D

translation No No 3D

scaling No No 3D

Windowing: No No optional

Arc circle generator: No No optional
0'>

TABLE 2.2: Hardware Features

DRUM PLOTTERS;

CIL Midas (34 cm)

CIL Economist-! (92 cm)

FIATBED PLOTTERS:

Ferranti

ELECTROSTATIC PLOTTERS:

Sintrom 800 (8.5 inch) plotter

Sintrom 800A (8.5 inch) plotter/printer

MICROFILM PLOTTERS:

Ferranti

III FR80

DIRECT-VIEIV STORAGE TUBES:

Tektronix 4010

Tektronix 4010-l(hard copy unit compatible)

Tektronix 4051

INDIRECT-VIEIV STORAGE TUBES:

Princeton 801

REFRESH DISPLAYS:

GT42

IMLAC ODS-4/DINO system

Vector General Series 3

Vector General 3400

CDC 777 Cybergrahpic terminal

TABLE 2. 3: Approximate Costs of Hardware

17

£2050

£3750

from £27000

£4300

£4600

from £40,000

$210,000

from £3300

from £3700

from £5300

from £8000

£12000

£15410

from £27400

from £45500

£67100

18

2.3 Input Devices

For a display to be termed an interactive terminal it must have

some means of permitting its user to input data. Without this

facility the display is really an output only device. The various

input devices curr~ntly available are:

keyboard

function buttons (switches)

control dials

joystick, tracker ball and mouse

digitiser cursor

tablet and stylus

lightpen

storage tube graphical cursor

More detail on these devices may be found in (1]. However, a

detailed study of the associated programming techniques is presented

in the next chapter.

2.4 Various Graphical Terminal Configurations

Numerous designs of graphics display terminal configurations

are possible. This section presents some examples of these

configurations based upon the tasks assigned to each part of the

system. These tasks may be divided into the following categories as in

[4] :

(a) Display file maintenance - (DFM) for refresh display only.

(b) Interactive demand servicing (IDS).

(c) Extensive numerical calculation (EC).

Examples of terminal configurations;

(i) storage tube terminal

19

The nature of the storage tube makes it particularly suitable

for use as a remote terminal with no local processor. With this

configuration (Fig.2.1), there is no provision for any computation

to be done at the terminal site. A hardcopy unit at the terminal

site would enable plots of the screen to be obtained in about ten

seconds; this is therefore very useful additional equipment for such

a terminal.

(ii) storage tube terminal with a small processor

This configuration (Fig.2.2), is the obvious enhancement to (i)

providing some processing power at the terminal site. With appropriate

software, the processor is able to cope with a limited amount of

interactive demand servicing. A terminal providing just this system

in one pack~ge is the Tektronix 4051. In addition to the standard

Tektronix storage tube, this has a microprocessing unit for programming

in Basic, 8K-32K bytes of memory and a cartridge tape unit. The

Fortran version is the Tektronix 4081.

An interface is available which allows some direct storage

tubes (Tektronix 4010) to behave as a refresh display. The intensity

of the writing beam is reduced to prevent charge storage and is

focused onto the screen; this is called 'write through only'.

However, the performance of operation in this mode can not compete

with the more expensive refresh displays.

(iii) low cost refresh display having its own processor and core memory

Because of the need to refresh the screen image many times a

second, some core memory is required at the terminal site (Fig.2.3.)

to hold the display file (or equivalent). In addition, the display

STORAGE
TUBE

TERMINAL

Low speed

line

TH1E-SHARED
COHPUTER

e.g. Tektronix 4010 All IDS and EC

FIGURE 2.1: Storage Tube Configuration

,------·------- ---·--:
I I

STORAGE
TUBE

TERMINAL

High speed
line

SMALL
PROCESSOR

I

I
1 Some IDS

I

-- - - -------- --- -----
e.g. Tektronix 4051

Low speed

line

TIHE-SHARED
COMPUTER

Some IDS All EC

20

FIGURE 2.2: Storage Tube and Small Processor Configuration

21

file must be updated when necessary and this is best done by

providing a local processor, which can also be used for interactive

demand servicing. This type of terminal is supplied as one package

e.g. the DEC-GT42.

(iv) high cost refresh display with its own processor and core

storage directly interfaced to a mini-computer

This, (Fig.2.4), provides a multi-user environment (e.g. Vector

General 3400- PDP 11/45). The display's core and processor hold and

maintain the display file. The minicomputer can be dedicated to

interactive demand servicing. The extensive calculations which the

minicomputer could not reasonably cope with would be sent down the

link to the large computer for execution in batch mode.

3. GRAPHICS SOFTWARE

3.1 Structure of Graphics Software

In general there are three main and distinct 'layers' of

software (5] in any interactive graphical computer program:-

(i) the lowest level, that 'closest' to the hardware is called

'basic' software and consists largely, for a given application, of

a basic graphics package with its associated device drivers and

may include some simple data-structuring and file handling routines.

Parts of this basic software will of necessity, be written in

machine dependent code; transfer of an application system from one

host computer to another or from one graphical device to another

will thus affect this layer of software more than any other.

(ii) The middle· layer is known as 'general purpose' as this is

normally written with a whole range of application areas in mind.

.----------------.

REFRESH
DISPLAY

I
I

I

Low speed

line

TIME-SHARED
COMPUTER

22

Some IDS All EC

I

Direct
Interface

SHALL
PROCESSOR
AND CORE
MEMORY

I All DFM and some IDS
'----------------

e.g. DEC-GT42

FIGURE 2.3: Low Cost Refresh System Configuration

,--------------
1 I
I I

I
I
I
I

REFRESH
DISPLAY

Direct
Interface

SMALL
PROCESSOR

DFM ---------.------
e.g. Vector General

bi rectr-----,
1 MINI-
I COMPUTER line j!nter-L-___ __,
face

IDS

LARGE
COMPUTER

EC

FIGURE 2.4: High Cost Refresh System Configuration

23

Such general purpose routines are assembled from basic software

building blocks. Examples, in this layer are routines for messages,

menu display and removal, and ro'utines for utility purposes such as

clipping.

(iii) The top layer is the actual application program. This

software is built on both of the bottom two layers. In other words,

an application program will call basic routines directly or (usually)

via the general purpose routines. To operate a given application

program on a different computer, or a different graphical terminal

or under a different operating system, few changes should be needed

at this level in a well-designed, well-layered system.

A simplified schematic diagram of Fig.2.5 shows a typical

software package and the user program. Here we are considering the

simple configuration of a mainframe computer driving a graphical

display terminal. At the highest level there is the user program

which calls routines in the display software package. Those

routines of the package which are user-callable are known as 'front

end' routines, and these in turn call other routines which are not

user callable and are therefore termed 'back-end' routines. At

the lowest level there is the program known as the 'device driver'

whose function is:-

(a) translate simple instructions from backend into low

level instructions (i.e. machine code) which will

drive the graphical terminal.

(b) handle communication between the computer and display

terminal by sending instructions and data and (in the

case of an interactive terminal) by receiving and

interpreting data.

Fortran
or Assemble

or both

Display
software
package

i
Assembler

1

USER PROGRAM

CALLS

FRONT-END

(User callable routines)

1------------------
BACK-END

CALLS

DEVICE DRIVER

GRAPHIC
DISPLAY
TERMINAL

can be swapped
in/out of core

24

in a time-sharing
environment

i

main-frame
computer

core-resident

l

FIGURE 2.5: Simplified Schematic Diagram of a Typical Graphics Software

The device driver software communicates directly with the input/

output hardware of the computer and is of necessity written in

assembly language.

3.2 Features of a Trpical Graphics Software Package

3.2.1 Initialising the graphics package

The graphics software package must provide facilities for:

(i) device nomination

(ii) resetting to default values.

25

(i) Device nomination

Before any drawing can be made, the device has to be prepared

for drawing or character generation. If the package was designed

to operate under a 'closed' system, i.e. a dedicated computer and

one~reen, the device nomination may not be an explicit part of

the package; switching on the system will prepare the device for

calls from the graphics package. Nomination may involve clearing

the devices display file (and hence clearing the screen for a

refresh display) at the start of a run, but this is usually under

the control of a further subroutine.

(ii) Resetting

All graphics packages will have various defaults to simplify

initialisation, the number of these depending on the range of

facilities offered by the package. For plotting packages, these

are default axes, grid marks, curve resolution, maximum size of

allowable plot etc. For display-oriented packages there will also

be default settings for picture sensitivity, character size,

brightness, window size etc. In some existing packages such as

GINO-F [3] and GPGS [6] all default values are set in initialisation,

26

while other packages require, in addition to the setting of default

values, various preparatory calls before drawing can commence.

For example:

(a) Plotting package:

DISSPLA [7] requires a title, page border, definition

of physical origin and subplot area, plus axes types

and units.

(b) Other packages:

PICTURE SYSTEM [8] requires the refresh rate and the

time interval between updating the display file to be

specified as parameters to the initialising routine.

3.2.2 Picture generation

Picture generation routines form a large part of any graphics

package. These routines are used to drive indirectly the drawing

mechanism of the device through either assembly coded routines or

structured display file. These routines form part of the 'front

end' of the graphics package. Calls to routines are interpreted

by the graphics package into a series of calls to device driver

routines which the application programmer is not allowed to (nor

would wish to) access. In the case of a refresh device, the device

driver may be a separately running program interpreting the structure

of the current display file and regularly refreshing the screen

with the current picture.

We can divide picture generation calls into three classes:

(i) Basic drawing routines

These are routines which translate directly into device

driver calls, the most common of which is straight line drawing.

Graphical devices normally allow such drawing action as MOVE,LINE,

DOT and character with the addition of different line types,

intensities, pen sensitivity etc.

(ii) Multiple drawing routines

27

Multiple drawing routines are those routines which are a kind

of 'shorthand' for common objects, and replace a whole series of

calls to the more basic picture generation routines. These are

middle level routines provided by the package to simplify the work

of the programmer at the expense of the size of the package.

(iii) Complex drawing routines

These require much more preparation than multiple drawing

routines either by the package or by the programmer. An example is

CUPID [9] which has one complex drawing routine which plots a

graph or histogram, and the axes with annotation. Every parameter

(except the data file name) has a default value but can be altered

by calls pr~or to PLOT.

Graphics packages are designed with different users in mind

and for this reason provide fewer complex features and greater

control over basic line drawing. For example GINO-F and PICTURE

SYSTEM provide many more basic drawing routines than complex

routines. On the other hand DISSPLA and PLOT-10 [10] are designed

for plotting of graphical or other data under various systems of

axes and does not demand the programmer to write code to draw the

axes, tick marks, etc. Instead they provide subroutine calls to

simplify the programming when the drawing follows a fixed format.

3.2.3 Picture administration

This involves the segmentation of pictures, the setting of

picture parameters and picture manipulation.

28

(i) Picture Segmentation

This is the dividing up of a picture into segments and this is

only useful when the graphics package stores the picture represented

by lines and characters in some form of file. The segments may be

required for identification or to be used for building up complex

pictures in a similar manner to the usage of subroutines in Fortran.

Segments are used to obviate the necessity to regenerate the complete

picture when only one part is changed. The normal usage of this form

of segmentation is with the refresh device in which a lightpen is

used to identify some part of the whole picture. But it can also be

used with a storage-tube device where identification is made with

the cursor (requiring a search of the display file to locate the

picture from the coordinates). GINO-F offers the facility of

storing a picture segment either on discs or in local arrays to be

recalled when required.

(ii) Picture Parameters

These are used by graphics packages to give sections of code

hardware options such as picture intensity, lightpen sensitivity

etc. When picture segmentation is provided it is usual for each

segment to have a header containing the segment name (or number)

together with various picture parameters.

Packages that provide for altering these parameters contain

a varying number of routines. For example, GINO-F has a routine
" .1.; \\e<e...t

for each type of parameter while DISSPLA P"'";ks J..- routine· for eo.<l.. f'""".,..,ler

setting·

(iii) Picture Manipulation

This is concerned with the display file and thus applies to

display file based packages e.g. Picture Book (11]. Manipulation

usually involves deleting and copying of pictures, changing the

position of a picture, etc,

3.2.4 Transformation

Transformation facilities provided by various packages could

be divided into three categories:

(i) Linear Transformation

(ii) Windowing Transformation

(iii) Perspective Projection.

(i) Linear Transformation

29

The four primitive transformations that are applied to an

object in two or three-dimension are translation, scaling, rotation

and shear. These transformations are applied to the coordinates of

all points and end-points of lines forming the object. The basis

of these transformations is the 4x4 transformation matrix using

homogeneous coordinates. A typical package would usually provide

routines to update the current transformation matrix, using these

primitive transformations and producing more complex transformations.

(ii) Windowing Transformation

This is concerned with the mapping of the picture (object)

coordinates into the physical screen coordinates. One could assume

if all picture drawing would remain within the limit of the screen,

a large amount of coordinate checking could be removed from many

graphics packages. But when a linear transformation is applied,

for example, on an existing picture on the screen, it is very

likely that the transformed picture will have some of its lines

transformed off the screen. Hence, there is a need to clip the

lines to a rectangular area or a 'window' and then project the

30

clipped picture on to the display 'viewport'. Thus, a windowing

transformation has two phases, firstly to determine if a line

exceeds a window boundary, and secondly to calculate the cut-off

point. Routines such as clipping and viewing are usually provided

to facilitate these operations. Both would define how much of the

picture should be visible and where the visible portion should be

placed on the screen. Finally there is often the necessity for

zooming into a detailed part of a picture or placing several view

ports on one screen.

(iii) Perspective Projection

The combination of a perspective transformation with a

projection is often called a perspective projection. It represents

a transformation from three space to two space. Some packages,

for example GINO-F and PICTURE SYSTEM, provide the programmer with

transformation routines such as these, for greater control of viewing

of three-dimensional objects projected onto the plane of the display

screen.

CHAPTER 3

INTERACTIVE INPUT AND RELATED PROGRAMMING METHODOLOGY

1. INTRODUCTION

2. THE MAN-MACHINE DIALOGUE

3. INTERACTIVE INPUT SOFTWARE

3.1 Layers of input software
3.2 Interactive input facilities
3.3 Application program and Interactive input

4. INTERACTIVE INPUT DEVICES

4.1 Keyboard
4.2 Cross-hair cursor
4.3 Lightpen

31

32

1. INTRODUCTION

The organization of interactive input is probably the most important

factor in the design of an interactive graphics program. Well planned

man-machine communication is vital if the program is to be successfully

used.

In this chapter we develop and apply the philosophies underlying

graphical input techniques [12]. Initially, an attempt is made to

formulate conceptually the mechanics of man-machine interaction and the

different processes involved in the communication process. Then, the

practicality of these concepts is exploited in the field of software

techniques for interactive input, so that a better understanding of the

nature of man-machine interaction is obtained and subsequently used in

the development and design of interactive computer graphics systems.

These techniques would provide facilities in the basic graphics packages

for application programmers or could be used directly in the application

programs. This area has received considerable attention in various

contexts [13],[14].

Finally, a number of common input devices are examined separately,

and the different programming techniques that may be used with such

interactive input devices are highlighted. Most of these techniques

have been incorporated in the design of the interpolatory data fitting

packages in Chapter 6.

2. THE MAN-MACHINE DIALOGUE

The combination of man and machine can leave design decisions to

man and calculation to the machine (computer). The main distinction

between 'design decisions' and 'calculation' is that the latter are

readily programmed and the former are not, being a function of

33

experience. etc. The sharing of the work seems useful in many areas of

design and is efficiently achieved when the man-machine interface is

well-defined.

. ' Ross [15] po1nted out that the fundamental mechanics of communication

involve the transfer of 'atomic' components such as characters or numbers.

Therefore to convey an idea or a meaning from one body to another requires

(1) a process of analysis through semantic, syntactic and lexical phases

to define the stream of atomic components, (2) the transfer of these

components through a suitable medium, and (3) a process of synthesis to

reassemble the idea or meaning through lexical, syntactic and semantic

phases. These phases retain their identity even though the rate of

interaction may vary. In a telephone conversation where the atomic

components are the sound syllables, the sentences are short and the rate

of interaction is relatively high. Telegrams typically contain a single

whole message or request, a letter typically consists of a series of

requests, or pieces of information. Batch input to a computer corresponds

to a letter. Alreletype input command compares to a telegram and

'interactive graphics' compares to telephonic or face to face dialogue.

Therefore, conceptually we may recognise that there are three distinct

levels at which interaction could take place in an interactive graphics

system:·

(i) Lexical Level:- corresponds to interactive facilities in the

basic graphics package.

(ii) Syntactic Level:- corresponds to command languages in general.

(iii) Semantic Level:- corresponds typically to application programs.

Each level of processing of computer input and output corresponds to

processes of synthesis and analysis respectively. Corresponding

processes of analysis and synthesis occur in the brain of the operator.

Fig.3.1 illustrates these ideas, and Fig.3.2 relates these to the

different levels of program code used in a man-machine dialogue.

COMPUTE ~~

/ ~
~,

.,_., :;.
-5'-~·

COMPUTER c" .s-
~

.,f: INPUT TO OUTPUT FROM
COMPUTER COMPUTEn.

INTERACTIVE / ~
TERMINAL

"" ASSESS/ DECIDE ON
MAN INPUT

~ /TEXT "'" ~
;:.~, c" :;. ,(5'

-5'-~·
THINK .,.f .s-

FIGURE 3.1: Man-ComEuter Communication Processes

c
0

14

p

u
T

E

R

M

A

N

direction

,- - - - - - - - -
I

I ·- - - - - - - - - - - - - -
'words' of i

... -----------

'SEMANTIC'

'SYNTACTIC'

1 LEXICAL'

"---Transfer of atomic components

Pen hit/Button press/Type 'LEXICAL'

'SYNTACTIC'

'SEMANTIC'

application program

adjustments

I,

~--~--------~-~
general purpose

I

bas~ftware

Recognise words/Symbols

parts o context

FIGURE 3.2: Man-Comyuter Communication Processes and Program Code

package

p

R

0

G

R

A

M

36

3. INTERACTIVE INPUT SOFTWARE

Interactive graphics adds new dimensions to the more general

conceptual framework of man-machine communication. A variety of schemes

for interactive graphics are available today. The following discussion

describes the basic principles and requirements of interactive input.

3.1 Layers of Input Software

Figure 3.3 shows how input software can be divided conceptually into

three distinct layers corresponding to the three communication levels

mentioned previously.

Each annulus represents a piece of code and each circle represents

an interface. The user (operator) is considered to be at the centre

acting on the 'physical input device'. Input involves action by the

user, terminal and the interactive program.

(i) User - a physical operation, such as the press of

(ii) Terminal

a 'key' on a keyboard, or placing of a

lightpen over a picture element.

- the 'prompting' of the operator prior to

his physical action; the delivery of all

the data of input operations to the

program, e.g. a character, a picture part

plus x,y coordinate; and 'echoing' the

input data subsequently.

(iii) Interactive program - the organization of prompting, echoing and

the processing of the input received.

3.2 Interactive Input Facilities

Consider a program which needs some data value at a point from the

user before continuing execution. For example:

APPLICATION
~GRAI~-

/

/

/

I
I

I
\

\
\

\

............ -- -
/

37

SEMANTIC
PROCESS

\

\
\

\
VORDS I
YNTAriC
OKEN

/
I

I

FUNCTIONAL DEVIC
INTERFACE

PHYSICAL DEVICE
INTERFACE

FIGURE 3.3: Interfaces and Layers of Input Software

38

1. characters

2. picture segment number

3. x,y coordinate pairs

Input such as these are considered to be delivered by 'functional input

devices' which are conceptually more convenient for programmers. The

actual input data (such as a picture segment or coordinate pair) are

placed in an agreed format in a global or common area (e.g. COMMON in

Fortran). Ideally functional input devices are characterised by having:

(i) an identifying number such as 1,2,3, ••.•• etc.

(ii) a value or set of values generated by user action, with an

associated location or locations in the 'common' block where

the value(s) would be placed.

(iii) an associated physical device or devices such as keyboard key,

lightpen, or cross-hair cursor, from which the input actually

arrives; including a 'trigger' which actually causes the

dispatch of the input data.

(iv) a prompt to the user to announce the program's readiness for

functional input.

(v) an echo to the user to announce the recognition of his input.

Therefore, from these characteristics, one may conclude that interactive

input programming facilities should include the following actions:-

(a) attach physical devices to functional devices and specify

triggers;

(b) activate the required functional input devices;

(c) broadcast the various prompts associated with (b);

(d) send an echo to the user to confirm his input;

(e) request and wait for an event;

(f) read data from input devices.

These facilities have been variously combined in basic graphics packages

39

into a set of high level procedures. Some facilities are unavaiahle in

some packages, particular activities having been selected and fixed into

the low level code of the device driver or even incorporated into the

hardware of the physical input devices themselves (e.g. Tektronix 4010

cross-hairs cursor).

(a) attachment of physical devices to functional devices and specification

of 'triggers' : 9

Attachment needs to be largely by default. For example:-

~ Functional Devices Physical Devices Trigger

1 Single character Key on keyboard Key itself

2 Picture segment number Lightpen Sensing light

3 x,y pair Cross-hair cursor Pressing a key

The implementation of attachments requires 'mapping', which is usually

performed within device drivers, e.g. within a keyboard driver, keys

are mapped to characters. Mapping however may occur in a higher level

code, e.g. keyboard driver characters could be mapped into integers,

reals and valid character strings, which have been defined within the

driver or in data which is fed to it via an application program. This

mapping can be seen to be a process of lexical analysis. Physical

devices produce 'atomic components' of input, or 'lexical tokens'

(see Fig.3.3), or single characters or single picture segment numbers.

The mapping programs convert this stream of lexical tokens into syntactic

tokens or words. Each operable physical device must be considered as an

indivisible entity. This notion is important if we are to design high

performance man-machine operations into an application, and manage the

human factors properly. This is by no means always possible with

currently manufacturerd hardware and available basic graphics packages.

For example, a light pen is not necessarily just one physical device as

40

many assume; it is usually two - a light pen sensor plus some kind of

switch - each supplying an atomic component of input and each being

separately attachable or specifiable as triggers; Mapping programs may

be local to an installation or an application area. They may involve

trivial one-to-one mappings such as keyboard keys to characters; or one

to-many such as keyboard keys to sets of characters, x,y pairs; or many

to-one as shown below:-

1:1

1 :many

many:l

Physical Devices

Keyboard keys

Keyboard keys

Keyboard keys

Lightpen

Tablet scribe

Functional Devices

Characters

Characters

x,y pair

Function no.

--------------- Characters

Specification of triggers is not usually provided for by basic graphics

packages. It is the kind of thing that has usually been seen as a

characteristic of the physical device .and often brought to the functional

level without option. For.example, the cursor input routine in LIGHT

(see Chapter 5) is a direct mapping of thumbwheels to an x,y pair with

a particular trigger pre-specified.

(b) Activation of functional devices:

Activation of a functional input device will, through the physical

attachments, activate a set of physical devices. These physical devices

should then be highlighted in some way for the user.

(c) and (d) Broadcast of prompts and echoes:

Bleeps and Blinks from an interactive terminal are an essential part

41

of effective communication. As skill develops, direct response to prompts

become less observable, .indeed anticipation becomes more and more

noticeable with experienced users. However, the right bleeps and blinks

will then become an integral part of the continued success of the dialogue.

Referring back to (b) above the activation of the physical device may be

highlighted by prompts such as:

- a pair of cross-hairs on the display screen

- a bell on a keyboard

The operation of a device may be confirmed by echoes such as a small

marker on the display screen ..•• etc.

Successful operation of physical devices is recognisable by the

terminal user on a separate level from the successful acceptance of the

input by the software at the functional level. The feel of the terminal

device is an important aspect of user acceptability apart from the

confidence that the program is operating correctly.

(e) Request and wait for event:

It should be noted that an event as far as the user is concerned is

physical, e.g. the pressing of a key, or the turn of the thumbwheel (on

the Tektronix 4010). An event as far as the program is concerned, is all

that happens between passing control over to the user and control being

returned to the application program on an acceptable trigger.

(f) Read data from input devices:

Input data is placed in a common area which acts as a functional

input device buffer.

3.3 Application Program and Interactive Input

The semantic process of interpreting the meaning of communication ·

from the user is performed in the code of the application program. The

42

syntactic processes of synthesising a sentence from words and analysing

a sentence into words are often coded as an integral part of an

application program. This usually takes the form of a 'command language'.

Thus, the user of an interactive program must be provided with a set of

commands by which to control the execution path of an application program.

This approach induces modular program design and simplifies program over

lay control. These commands must fulfil two requirements: they should

control which processes are activated, and they should contain the data

associated with these processes. Thus, it is generally advisable to

define with precision the range of commands that the program will accept,

and to define the form or syntax of each command. By doing so, we have

defined a command language, the language 'spoken' by the user as he

operates the interactive program. As he addresses the computer in this

way, the computer addresses him, by means of displays and printed messages;

thus a dialogue is maintained. Fig. 3.4 shows diagramatically the

conceptual relationship between the command language and the application

program modules. These commands may be presented on the display in the

form of menus (tables), so that at any time the user can see what

commands are available to him. He can then point at a specific command

by the use of a device such as a lightpen or cross-hair cursor, and this

is conveyed to the application program for interpretation. A menu may

comprise one part which corresponds to the main modules of the application

program, and a second part providing command options such as 'zoom'.

An important facility that is sometimes overlooked in the design of

an interactive system, is a backup or recovery procedure. User mistakes

as well as program errors can cause extraordinary damage to data files.

·secause repairs can be costly in user and computer time, it is often

wise to provide a fail-safe option which enables the user to backup to

a point prior to the accident.

6

43

APPLICATION
PROGRAM MODULES

SYNTACTIC

FIGURE 3.4: Relationship Between Command Language

and Application Program Modules

44

4. INTERACTIVE INPUT DEVICES

The discussion here is concerned with some common input devices and

the role that each may play in an interactive environment.

4.1 Keyboard

All interactive graphical terminals have a non-graphical input

available through an ordinary keyboard similar to the teletype keyboard,

All character sets may be expected to include a Fortran character set.

Some terminals have keys which are purely 'local', and depression of

these does not send any data to the device driver, e.g. the Tektronix

4010 'Page' key erases the current display from the screen. Several

types of keyboard usage are possible:

(i) The most obvious use is probably for direct input in response to

program input statement:

e.g. READ(KEYBRD,lO)FILNAM
READ(KEYBRD,20)X

requires text
requires a numerical value

where KEYBRD is the channel number for the keyboard of the graphical

terminal. Experience has shown that the keyboard is the best device

for input of 'precise numerical values'. Techniques such as

'thermometer' (see virtual devices later), although conceptually

more sophisticated, offer no particular advantages over the keyboard

when the required input is in the form of known and precise values.

Keyboard input is also used to good effect to input any 'character

information' which cannot be predetermined·_ examples here are file

names or headings for plotted output. It is usual to precede the

input by an output message which tells the user that the machine is

now ready for his input and advises him on the nature of input that

is expected.

(ii) Another direct use of keyboard input is as a means of identifying

picture parts on the screen. If a name is displayed next to each

45

picture segment, the user may identify parts of the model simply

by typing the appropriate name. This technique has particular

significance in storage-tube graphics.

(iii) Selected keyboard characters can also be used effectively as

cursor terminators/triggers on storage-tube systems. The display

software package will usually pass to the application program

details about the cursor terminating characters used (e.g. using

ASCII or some other code) and this may be used as a switch to

control the program. Display of the cursor is usually a sufficient

prompt to the user that the input is required.

(iv) The keyboard input of groups of characters (to be interpreted as

command mnemonics, say) is well known to anyone who has used a

computer interactively for purposes such as text editing or file

manipulation (e.g. under Unix operation system on the PDP 11/40).

Input prompt characters such as "#" or "/" both orientate the user

and signify that input is awaited.

Finally, application systems which use the keyboard almost

exclusively as the input device have often been ergonomically preferable

as the user does not have to 'grope' from one input device to another.

The 'one device' input philosophy preserves a useful 'tactile continuity'.

A disadvantage, however, is the need for a (sometimes considerable) user

manual and the associated difficulties of user training.

4.2 Cross-hair Cursor

(i) The cursor can be used directly for input of screen coordinates.

For example when zooming part of a picture displayed on the screen,

a corner of the zoomed window could be indicated by the cursor.

Other similar functions which require qualitative judgement (e.g.

re-positioning of picture parts) can make direct use of cursor

coordinate input.

46

(ii) Coordinate input can be used for simple picture part identification;

but this is fast in operation and easy to organise only in

particular circumstances. In the case of a menu, for example,

it is easy to define a simple rectangular region inside which the

cursor must be if it is to identify a menu option. The identification

is simplified when the menu items are horizontal. A set of subroutines

for such menu operations are included, for example, in LIGHT.

(iii) Input coordinates can be scaled and combined to produce values for

such things as rotation angles, dimensions, etc. This usage may

require the display of a scale or dial on which the cursor is

positioned. The value associated with the current cursor position

(or one of its coordinates) may be displayed alongside. This simply

provides visual feedback and it can be usefully termed a •virtual

device'.

4. 3 Lightpen ·

In hardware operations the lightpen simply generates an interrupt

when it sees light, but for its application a wide variety of software

techniques have been developed.

(i) By means of suitable software (usually employing tracking cross)

a lightpen can be used to generate position data and thus be used

as a cursor.

(ii) The lightpen is used to identify pictures on the screen. The

popular use for this is the identification of menu options (light

buttons). The identification of pictures by lightpen is a powerful

technique that is easy to organise; the programmer normally chooses

the identifying numbers given to separate pictures in the display

file so that they may be rapidly identified later in his program.

(iii) Very powerful use of the lightpen relates to virtual devices. A

47

whole range of virtual devices can be coded using a lightpen as the

actual input device. A favourite device for generating numbers,

for example, is the 'light potentiometer' or 'thermometer' device,

which is in essence a scale on 1;hich the pen/ cross can be positioned.

Other devices exist which are usually designed to generate one input

value at a time, the need varying from one application area to

another. Within engineering design, for example, the user may wish

to do some airthmetic calculation, so a 'virtual calculator' in the

form of a pocket calculator keyboard is displayed on the screen and

is used in the ordinary way with the lightpen replacing the human

finger.

To end this section on interactive input devices, it is important to

mention that before any input is allowed, sufficient prompts should be

given to the user to signify the form of input expected of him. Such

prompts take the form of instructional or other messages or a command

option menu. ·The interactive input should be in some way echoed so that

the operator knows it has been accepted. For many major or irreversible

operations it is advisable to require first a choice from a CONFIRM/REJECT

menu. This reminds the user of the import of his accidently destroying a

file structure or erasing a picture from the screen.

CHAPTER 4

GRAPHICS SYSTEf1 AND DATA STRUCTURE ORGANISATION

1. INTRODUCTION

2. GRAPHICS INPUT/OUTPUT PROCESSES OF AN
APPLICATION PROGRAM

3. GRAPHICS OUTPUT PROCESS

4. DATA STRUCTURE FOR INTERACTIVE GRAPHICS

4.1 Basic Requirements
4.2 Simple array representation
4.3 Compound data structure

•

48

49

1. INTRODUCTION

The following describes the processes and data essential to a

graphics application program with particular reference to the

organization. of the graphic output process, both for refresh and

storage tube display systems. The importance of the graphics

application program data structure is also described in some detail.

2. GRAPHICS INPUT/OUTPUT PROCESSES OF AN APPLICATION PROGRAM

A simplified sketch of the processes and data necessary to the

operation of an application program is shown in Figure 4.1.

The input handler processes interrupts from the input devices

and provides the means for an application program to read data from

these devices. The input routines receive data from the input handler,

make appropriate changes to the application data structure and pass

control to other routines. The non-input/output routines are those

portions of the application program that do not directly involve

input or output (i.e. computational routines). The output routines

define the picture to be displayed, from the application data

structure. Effectively they define how these data may be visualised

for display purposes. The transformation and windowing routines are

capable of scaling, rotating and translating graphic information

. generated by the output routines. These routines also clip the

picture information against a rectangular boundary. A series of

different transformations are combined into a compound transformation

by concatenation. The display generator generally includes a vector

generator and character generator, which convert the transformation

and clipped information into signals suitable for the display's

deflection systems.

APPLICATION PROGRAM

' '
I I

~
I

I

INPUT INPUT 1NON-I/O :OUTPUT TRANSFORM-

ROUTIN~ROUTINES ROUTINES ATION AND DISPLAY
!HANDLER

' WINDOWING GENERATOR
. I I ROUTINES

~
'

INPUT DEVICES

APPLICATION
DATA
STRUCTURE

' -
FIGURE 4.1: Simplified Diagram of the Graphics Input/Output Processes

./

\.

'

DISPLAY

"' 0

"'

51

3. THE GRAPHIC OUTPUT PROCESS

If we now consider the output process in Figure 4.1 and assume

that the output routines pass graphic data directly to the display

screen via the transformation and windowing routines and the display

generator, then if these routines are executed once, the picture that

they define will flash onto the screen and disappear. But if we

arrange for output routines to be executed repeatedly at a sufficiently

high frequency the picture will be refreshed and will remain visible.

The output routines then perform the function of a 'viewing algorithm'

[1], presenting on the screen a continuous view of what is contained

in the application data structure. Whenever the data structure is

changed, the picture changes accordingly. If we wish to see a

different representation of the data, we can substitute a different

viewing algorithm by changing the output routine.

This concept of a 'viewing algorithm' is simple but difficult

to implement [16]. The problem lies in ensuring that the output

routines written by the application programmer execute rapidly enough

to keep the picture from flickering. Unless the routines are

extremely simple and the data structure quite small, flicker is

bound to occur.

However, with storage tube displays, the problem is partly

solved because of the inherent storage that cannot be selectively

erased. This is known as a 'picture store' and consequently the

output process would be modified as shown in Figure 4.2.

With a refresh display, however, it is desirable to provide

some means for selectively erasing parts of the picture. This we

can do by including a 'transformed display file', that contains

results of each transformation process and two sub-processes, one

I

< TRANSFORM- I DISPLAY PICTURE OUTPUT ATION AND GENERATION STORE ~ ROUTINES WINDOWING I --z ROUTINES I
I STORAGE TUBE
I - -- - - - - - - - - -

e.g. Tektronix 4010

- -!~LICATION
DATA
STRUCTURE ..

FIGURE 4.2: Storage Tube Output Process

- - - - -- -

DISPLAY

- --

)
-

<n
N

53

to build or generate display file code, and the other to traverse

the file for picture generation onto the display. The display file

may be divided into any number of logically distinct segments (e.g.

Picture Book on the GT42) that may be separately created and erased.

This configuration of the output processes for refresh display is

shown in Figure 4.3.

It is also possible to have a transformed display file with a

storage tube system, but here the display file is not of course used

to refresh the display. It can nevertheless perform a very useful

function in permitting part of the picture to be changed without the

need to transform the whole picture. Instead, just the altered

segment is re-constructed, then the screen is cleared and the entire

display file is re-transmitted.

Figures 4.2 and 4.3 show some part of the output process enclosed

by dotted lines to indicate that these sub-processes may be performed

by special hardware. In the case of the storage tube, the display

generator, picture store and the display combine together in one

hardware package, e.g. the Tektronix 4010.

The GT42 is an example of a programmable refresh display

capable of maintaining a segmented display file. It has a small

local processor POP 11/10 to control the display and a simple

monitor Picture Book [11] to generate and manipulate the

display file and pass back user input. A more advanced form of

refresh display would also include a hardware transformation

capability e.g. the Vector General.

In each of the above configurations, the application program

communicates with the graphics system by means of function calls.

Input functions pass data from the input devices to the program,

while output functions add line and text to the display file, modify

the transformation parameters and manipulate display file segments.

? k OUTPUT
-~.!~"~ ROUTINES

, AP~LlcATION
DATA

? STRUCTURE
~

e g Vector General
1-- ------------- ----,

v- . .
I
I
I
t
1 TRANSFORMATION
I PROCESSOR
I

I
I

TRANSFORM
ATION AND

~----+1 ~ WINDOWING
1 ROUTINES
I

I

DISPLAY
CODE

1---t!GENERA-
ITION

I
I
I

I

I - I I ~SFORMED I DISPLAY
~ DISPLAY FILE f--o-1 TRAVERSE 1---.j GENERATION

I.... I
I I

I 1
1 SIMPLE REFRESH DISPLAY •---------------- ---· ·-------------

e.g. GT42

FIGURE 4.3: Refresh D1splay

K DISPLAY)______,

ss

4. DATA STRUCTURE FOR INTERACTIVE GRAPHICS

4.1 Basic Requirements

The d~ta structure in a computer graphics system is important

for two reasons. Firstly, we make use of various kinds of data

organisation, when a graphics system based on display files is built.

For example, Picture Book [11] for the GT42 refresh display uses a

segmented display file and is conceptually structured into chapters,

pages and lines. The package also provides the user with a number of

functions for manipulating this structure. This kind of structure

must be relatively simple if a display processor is to be able to

trace through the file. Secondly, any interactive graphics program

must be capable of building and manipulating a d~tabase.

The design of such a database should be flexible, and allow

searching, accessing and updating to be performed quickly. The

degree of structuring used by the application program to describe a

picture, depends purely on the application itself.

The picture may have no particular structure, in which case it

is best described in terms of a set of point coordinates. In this

case it may suffice to use a simple list of the x,y coordinates of

the end-points of the straight lines which make up the drawing.

Examples of this sort of problem include contour lines and graph

plotting. Most pictures, however, have a definite structure;

points and lines which represent a separate object, for example,

are more closely associated than other points and lines in the

display. The most common way of structuring the points and lines

in a display is to associate them into sets. The application program

then deals, not with points and lines, but with sets; for example,

when a transformation (such as rotation or scaling) is applied to

a set, it is applied by implication to all the points and lines

56

which make up the set. Situations like this and others require

various degrees of complexity to be employed in their data structures,

resulting in systems with different degrees of interactive capability.

Conventional arrays and vectors, although they are very simple to

implement and easy to use, do not perform well in an interactive

situation. The reason for this is that they are essentially static

data structures, and do not expand or contract during a program's

execution. From this we can see that one of the most important

qualities to look for in a data structure for interactive use is

its ability to change during execution i.e. a dynamic structure.

Another important programming concept also relating to computer

graphics involves the connectivity between different objects

representing some geometric model.

The need to be able to identify, recall, and manipulate these

objects requires a well structured data model (database), which is

a convenient descriptive representation of the collection of objects

on the screen. Each object in the model may be described by a

data block (record). A data block consists of a fixed number of

contiguous storage words describing a particular entity or figure.

Thus, geometric figures represented by data blocks may be selectively

created, moved, copied and erased.

4.2 Simple Array Representation

Often we do not need data blocks to be completely flexible,

so it is possible to use the concept of array representation of figure

elements to serve as a display list. Assume that we are concerned

with only straight line segments, and that we wish to use a systematic

method of listing the lines for display or for certain basic operations.

Two possible representations may be used as illustrated in Figure 4.4.

LINE
XLINE(N ,K) LINEWK) ENDl END2 X y

LINE
K=l !K=z K=l K=2 NUMBER - - - -

- - - -
N Xl X2 Y1 Y2

1 - - - - - - - -

2 - - - - - - - -
or

3 - - - - - - - -

.

"""1/Vvv 'VV V A A. \.A . '1./'W' A AAA.
~vvv 'V

FIGURE 4.4: Array Representation of Lines

58

4.3 COMPOUND DATA STRUCTURE

If the data blocks are not stored contiguously in memory, the

procedure is more complicated. In this case, we use a list

structure in which data blocks or records are chained (connected)

together by pointers. A pointer, a word containing an address, is

a means of linking one data block with others in the data model.

Such a link list may logically connect data blocks which are

physically scattered arbitrarily throughout memory. In this way

the computer understands the relationship among the objects

represented by the data blocks and the relationship between the

objects and computation routines. A simple form of a link list

representing a physical object to be modelled is composed basically

of data blocks, and the basic relationship between the objects are

specified by means of pointers, (Figure 4.Sa). If the last block

in a list has a pointer to the first block in the list, then it is

called a ring list, (Figure 4.Sb). Usually one data block is

designated as the head of the ring, and sometimes pointers from

the other rings to the head block are useful.

Another arrangement which is sometimes useful is a set of two

way pointers, as shown in Figure 4.Sc.

This consists of a backward pointer corresponding to each

forward pointer, so that the program can traverse a sequence of

data blocks in either direction.

It is very easy to update a list or ring structure. For

insertion of a new data block, all that is required is to create

the new block at any convenient place in memory and rearrange the

pointer to include it in the list or ring. For deletion, the

pointer to this data block to be removed are made to point to the

next data block beyond the one to be removed and the unwanted

FIGURE 4.5a: Link List

Head block

FIGURE 4. Sb: Ring Structure

--1 I I ~ i-1 I ~ ~11 I ~ i I 11 °
FIGURE 4.5c: Link Structure with Two-ways Pointers

l/1
<0

data block may then be removed.

A more complex structure could be built from these basic

structures; examples include associative data structure and

hierarchical structure.

60

The assocmtive data structure can be used to relate objects

with similar properties even though their data blocks are scattered

through storage. We may define certain operators for manipulating

the structure e.g. collect objects into sets, assign attributes to

objects, delete objects and so forth. We must also devise a way of

implementing this structure; for instance we can use rings but this

is often inefficient. An alternative method is to use hash-coding

[17] i.e. storing and accessing data according to some function

(a hash function) of its data content. Some complex data structures

use hash coding techniques together with list structures.

In a hierarchical data structure objects are arranged so that

certain objects are subdivisions of another at a higher level in

the classification scheme. There are two possible forms of this

structure:

(i) A tree structure has an identification data block put at

the top of the tree; it has pointers to the second level; which in

turn have pointers to the third level data blocks, and so on.

(ii) The other hierarchial structure is similar to ·(i), but

it incorporates the concept of a ring. On one ring, there may be

branches from any data block to a logically related ring and so on.

This structure allows access from any data block to any other via

the rings. It is easy to update the structure, since nothing has

to be moved in storage; only pointers have to be changed. However,

the processing can become quite involved in a deletion operation,

especially in making sure that all pointer chains are properly

reconnected.

The cost for this more versatile<organization is the extra

overhead in storage caus7d by all the pointer chains. The use of

very general forms of a compound data structure with a single

system for a particular application is inherently inefficient,

since it requires excessive storage space and operating time. It

61

has therefore been customary to devise simpler data structures which

are tailored to each specific application. In this way storage

space, access time, and complexity are minimised, even though

considerable design and programming time may be required for

development of this data structure.

Typical problems that a generalised structure must be able

to resolve are:-

(i) An individual graphic object must be identifiable.

(ii) The relationship, hierarchical or otherwise, between

objects must be established.

(iii) Some properties may be shared by different objects,

and conversely objects may be allowed to have nrultiple

properties.

(iv) Since drawing may be modified, deleted or expanded in

interactive problem solving, data structures must allow

for dynamic growth and dynamic association.

The example in Figure 4.6 illustrates a hierarchical data

representation of the square (SQ) and circle (CR) using a ring

structure. A block, called 'FIG' associates the square and the

circle which is also reached from the square block. The centre

and radius of the circle are defined in block CR. All blocks may

be reached from any given block and the lines are defined in

separate blocks (Ll through L4). The end poin~of a line are

also defined as separate blocks and are actually subordinate to these

lines.

62

Pl Ll P2

SQ

L4 GR L2

P4 L3 P3

FIG

l
SQ CR

I l J l I 1

Ll L2 L3 L4

f 1 i . I t I

r J., I J. I L

Pl P2 P3 P4

T T T I .,. I

FIGURE 4.6: An Example of Ring Structure

63

CHAPTER 5

THE GRAPHICS SOFTWARE PACKAGE 'LIGHT'

1. INTRODUCTION

2. THE CURRENT ENVIRONMENT

2.1 Hard1~are Configuration
2.2 UNIX Software System

3. DESIGN CRITERIA

4. LOW COST DISPLAY TERMINAL

4.1 The Tektronix 4010
4.2 Operating Modes

5. STRUCTURE OF THE LIGHT PACKAGE

5.1 The Graphics Library
5.2 Organization

6. DESCRIPTION AND IMPLEMENTATION OF LIGHT

6.1 LIGHT-UNIX Software Interface
6.2 LIGIIT Proper
6.3 Basic Transformations

7. TilE GT42 IN EMULATOR MODE

64

1. INTRODUCTION

This chapter presents in detail the development and implementation

of the graphic software package LIGHT (~oughborough Interactive ~rap~ics

system for !ektronix 4010) under the UNIX time-sharing system on the

POP 11/40 mini-computer.

2. THE CURRENT ENVIRONMENT

2.1 Hardware Configuration

The hardware configuration on which LIGHT was developed consists of

the POP 11/40 mini-computer central processor unit (16-bit word) with

60K words of core store. The present installation has two moving heod

disc drives RKOS each of which provides 2.5 M bytes on a removable disc

cartridge. There is also a high-speed paper tape reader PRll, a

DECwriter console LA30 matrix printer, a storage tube graphics terminal

Tektronox 4010 and a variety of alphanumeric terminals:

7 x KSR33 and 2 x ASR33 teletype;

3 x Newbury Laboratories 7002 VDU's;

1 x Tektronix 4023 VDU.

Shortly after the development of LIGHT, a GT42 refresh display graphic

terminal was installed. This consists of POP 11/10 central processor

unit (CPU and store), display processor unit, communication interface,

keyboard unit, CRT display unit and a light pen. Figure 5.1 illustrates

this hardware configuration, part of which makes our graphics system.

2.2 UNIX Software System

UNIX time-sharing system has been operational since late 1976 on

the above-mentioned hardware configuration in this department. It is a

general-purpose, multi-user, interactive operating system which provides

1--

' :::;

2 x RK05
DISCS

2.5
M bytes

DEC-PAPER TAPE READER PDP 11/40
CENTRAL
PROCESSOR

60K WORD
CORE HEMORY

(HOST COMPUTER)

65
TERHINALS

,..... TTY

I
I
I
I
'

- TTY

K VDU

' I

VDU

DECWRITER

------- ----t-
r

f-- --- - --
GT42 REFRESH DISPLAY

CPU
PDP 11/10

" ~ REFRESH CRT J-
\ \.

I

.....
KEYBOARD .1---tliSPLAY PROCESSOR

~ LIGHT-PEN f

FIGURE 5; 1: Hardware Configuration

TEKTRONIX 4010
STORAGE TUBE

r--" STORAGE CRT

'---1 KEYBOARD

many facilities of a large system [18]. Among these features are:

(i) a hierarchical file system incorporating demountable

volumes,

(ii) system command language selectable on a per-user basis,

(iii) the ability to initiate asynchronous processes.

66

Besides the system proper, there are a number of major system programs

available, of which the following were used extensively in the

development of this work:

Assembler which resembles PAL-llR

Text editor based on 'QED'

Linking loader

·Fortran compiler.

User communication with UNIX is effected with the aid of a program

called 'Shell'. This is a command line interpreter; it reads lines

typed by the user and interprets them as requests to execute other

programs. Shell is also a command by itself and may be called

recursively to execute a series of other commands placed in a file.

The main feature of this system is a versatile, convenient file

system with complete integration between disc files and all input/output

devices. From the point of view of the user, there are three kinds of

files:-

(i) Ordinary file: contains whatever information is placed on

it, for example, Fortran programs or textual information.

(ii) Directory: is like an ordinary file except that only the

system can modify it. It provides the mapping between

the names of files and the files themselves. The file

system is a tree-structured hierarchy originating at a

root directory. Each user has a directory of his own;

he may also create subdirectories to contain groups of files

67

conveniently treated together. Any type of file can occur

at any level. At any given time a user process is associated

with a particular current directory. When the user program

wishes to open or create a file, it gives the system the

name of a file in the current directory or it gives a path

name which either specifies the absolute location in the

tree or the location relative to the current directory. A

system directory exists which contains all the programs

provided for general use [19]. File system protection

consists of associating with the file at time of creation

the name of the creator and permitting him to specify

whether he and others can read and write the file.

(iii) Special file: each I/0 device supported by UNIX is associated

with at least one such file. Special files are read and

written just like ordinary disc files, but a request to read

or·write results in activation of the associated device.

UNIX I/0 system supports a large number of device drivers,

which share a great many routines as well as a pool of buffers.

It is not necessary that the entire file system hierarchy resides on

the same device (e.g. disc pack). On our installation for instance, the

root directory resides on the system disc, and all users' files are

contained on another removable disc which is mounted by the system

initialisation program.

UNIX occupies 20.8K words of core memory, the rest (39.2K) being

available for user programs. The name of any executable program can be

•used as a command. This name is first searched for in the current

directory and if that fails, it is then searched for in a system library.

A myriad of commands are available including those for listing

directories, moving, copying and deleting files, and changing the

current directory. Another feature of the system is the ability to

initiate asynchronously executing processes from within a program or

from command level. The command interpreter creates a process to

execute the command and wait for its completion.

3. DESIGN CRITERIA

In general, the process of building a graphics system can be

described as follows:

(i) Choose the language on which to base the system

(ii) Design the functions or language extension

(iii) Write and document the software to perform the graphics

functions.

The first two steps constitute the design of what is sometimes

called a 'graphics language'. These graphics functions play a vital

68

part in determining the success or failure of the system; and should

give the programmer control over the system hardware/software. Some

systems are built in the form of a graphics package i.e. as a set of

functions or subroutines to be called by application programs written

in a high level language. An alternative approach is to design a

special programming language; this generally amounts to choosing an

existing language, and then extending and modifying it ~<here necessary

to perform certain graphics tasks. The first approach ~<as adopted in

building up the graphics package LIGHT. This offers greater flexibility;

if future experience indicates the need for additional functions, then

the appropriate function could be added more easily.

It is essential to make graphics systems not only inexpensive but

simple to program. The programmer, ~<hether novice or expert, should

find it as easy to ~<rite a graphical program as a no'l.-graphical one.

69

Therefore, the design of the graphics subroutines package 'LIGHT' was

influenced by several criteria. The fundamental aim was to provide the

user with an immediate, simple but powerful means of writing a graphics

application program. Thus, the package was written in a high level

language so that it would shield the programmer from the low.level

features of the hardware. Fortran was chosen because graphics display

systems are likely to be used for engineering and scientific applications,

and this is the most widely accepted programming language in these fields.

In addition, Fortran is also available on virtually every computer, which

makes the package to a certain extent portable. Hence, LIGHT was coded

in UNIX Fortran which is a subset of ANSI Fortran, and care was taken

to minimize the use of non-standard features. However, it is possible

to implement the package in a different language, since the set of

functions are carefully designed to be independent of any specific

language for its implementation.

Early i~ the design, it became apparent that LIQIT should provide

only general-purpose facilities for using the graphic display terminal.

For example, the subroutines should neither generate geometric figures

(e.g. circles, triangles, logic elements) nor impose constraints on the

structuring of modules, since the way in which geometric figures are

generated appears to be dependent on applications. However, for these

purposes, users can develop libraries of routines that are more in

accord with their needs. Another important factor in the design was to

assume a set of default conditions that an application programmer would

usually require. If he does not take positive action to change them,

these remain in effect throughout execution of his program. \Vhenever

default conditions are overridden the newly entered condition prevails

from that point on, rather than the default condition.

LIGHT also does not contain any data structure facilities nor does

it use a mandatory data structure for picture representation. These are

70

awkwardin that they force a user to think in a particular way, and tend

to be inefficient, especially in store requirements. This last

difficulty is exacerbated by the problems of dumping and restoring from

secondary storage. Further, no particular data structure is convenient

for even a majority of applications. Another reason for not having a

mandatory graphical data structure is that the complexity that would

result would prevent use of the software by non-specialists. The

following facilities are available under the software graphics package

LIGHT:-

1. Initialisation routines for setting the default values

2. The primitive graphics functions for point and line drawing

3. Character and text handling

4. Cursor and menu operations

5. Linear transformation and clipping

6. Simple perspective projection

7. Other utility routines.

Several hardware limitations had dictated the extent of the facilities

that were provided by LIGHT. For example, the available disc space was

limited because the computer resources were also distributed among up to

14 other time-sharing users working in other areas. In addition, the

amount of core store available to the graphics user would necessarily be

shared by LIGHT. Also, run-time response was noticeably slow, partly

due to the absence of floating point hardware. These and various other

constraints, involving both hardware and software, required that the

coding of the package be written efficiently. Since graphics is only a

part (usually a small part) of most applications it can only expect its

fair share of computing resources. Efficiency is not only a function of

implementation; it depends also on the design of the user interface.

When the software takes the form of a library of subroutines, the

71

function and form of each subroutine is important. Efficiency in terms

of computation time is largely a run-time issue although the form of

the library must be such that the package can always avoid unnecessary

comp~tation. H9wever, programs using floating point (FP) assume that

the FP processor is available, so the Fortran compiler generates code using

' these instructions. On our current configuration which does not have a

FP processor these instructions are trapped as 'illegal' and they are

interpreted by software routines linked into the object program. The

net effect of this is that although the programs run perfectly well they

are very slow and tend to impose a large overhead on the rest of the

system because of the huge number of interrupts that must be serviced.

Additionally the above software routines require disc space and loading

time.

4. LOW COST DISPLAY TERMINAL

4.1 The Tektronix 4010 Display Terminal

There is a growing demand for low cost computer graphics for small

scale computer users or for the user who would rather have easy access

to a somewhat less sophisticated console than have very limited access to

a more powerful but far more expensive device. Tektronix 4010 offers

this opportunity with its vector capabilities and character writing

speed (20]. Such terminals may be used both for time-sharing and for

solving conventional graphics problems at an affordable price. This

requires a set of functions to transmit line and text information to the

terminal in response to function calls generated by the application

program.

The real difficulty in using this sort of terminal lies in

compensating for its relatively poor performance which includes several

72

deficiencies; poor picture quality, unsatisfactory transmission rate and

in most cases, lack of selective erasure capability. The terminal uses

serial transmission, both for text and for graphics information. For

example, a vector is transmit~ed to the terminal as a special control

character followed by four characters specifying the length of the

vector. This use of character transmission greatly simplifies the task

of integrating these terminals into an existing time-shared system

(e.g. UNIX). The use of serial transmission generally imposes a fairly

severe limit on the speed at which pictures can be transmitted, for

speeds above 2400 baud (bits/second) are usually beyond the capacity of

the transmission line. The problem of lack of selective erasure combined

with the low transmission speed and poor time-shared response makes

dynamic graphics almost impracticable.

4.2 Operating Modes

The main'mode is character (Alpha) mode; in this mode data

characters received are interpreted either as characters to be plotted

or as ASCII control characters (e.g. carriage return, line feed)

depending on the status of the two high order bits. Certain control

characters have been given special meanings for performing special

functions: for example, 'GS' sets the terminal to graphics mode, 'US'

changes the terminal to Alpha mode. In graphic mode, data representing

X,Y coordinates are plotted (as points and lines) until the mode is

changed back to character/control mode. By ASCII convention, all

control characters are distinguished from graphics data characters, by

adding two high order (tag) bits in each byte of the latter. The 4010

has only one graphic mode and often uses a pair of characters for some

control functions e.g. ESC,FF to erase screen.

5. STRUCTURE OF THE LIGHT PACKAGE

5.1 The Graphics Library

73

The graphical aspects of an application appear in a program as

calls to subroutines to draw lines on the screen, output textual

information, raise the cross-hair cursor and develop menus, items of

which may be picked from the screen by the cursor. The LIGHT package

takes the form of a Fortran-callable library of subroutines, each of

which requires a minimal set of parameters. The graphics library was

written with few initial applications in mind, so that the main features

were immediately and continuously tested. The result is an easily-used

system that allows Fortran programmers to produce debugged interactive

graphics programs as readily as conventional batch processing programs.

Due to the dynamically changing requirements typical of graphics

application programs, it was important to make the facilities offered

by UNIX indirectly available to the graphics program through the use

of structured· library files. Consequently the system would automatically

decide which LIGHT subroutines should be loaded with the application

program into main store. Effectively the UNIX linking loader would

search the library exactly at the point it has encountered the call and

only those routines defining unresolved external references are loaded.

Therefore it is important that the order of the subroutines in the

library must be correct. That is, if a routine from a library references

another routine in the library, the referenced routine must appear after

the referencing routine in the library. All such references must be

resolvea before a load module can be executed. Every source file

representing a single library subroutine is compiled independently to

produce an object file. The group of the object files is then archived

into a single library file named 1 LIGHT 1 • This consists of 53 subfiles

each of which can be individually updated, replaced or deleted. The

74

library can be maintained by using the UNIX command 'AR' which is an

archive and library maintainer [19], allowing the user various options

such as copy, append, delete, replace and extract an object file from/to

the archive file LIGHT.

5.2 Organization

Functionally, the LIGHT subroutine package is organized into three

separate and distinct modules:

(i) LIGHT-UNIX software interface

(ii) LIGHT proper
(J<ome.,.,:c)

(iii) Basic~transformations

Each module has a certain task to accomplish offering the user various

facilities that he may require in his graphics application program.

These modules can be independently updated or modified without affecting

one another .. This modular design approach has an important consequence

for future extensions to the facilities currently offered by LIGHT. It

also provides some degree of device independence. Although this package

was intended primarily for the Tektronix 4010 display, it was designed

so that other graphics devices can be incorporated with limited

programming effort. This was apparent when LIGHT was easily extended

to run on the refresh display GT42 in Emulator mode (Appendix 1.8).

Moreover, the transformation module is completely device-independent and

without any modification it can be used directly with the Picture Book

package [11] designed for the GT42 refresh display.

The detailed description and implementation of each module will be

presented in the next section. A very large portion of LIGHT subroutines,

including all the user-callable routines are entirely written in standard

ANSI Fortran, and constitute the 'Front end'. These in turn call other

routines, which are not user callable and constitute the device /system

75

dependent part, and are termed the 'back end'. This is the.interface

between the front end and the device. It also provides the interface

between the front end and the machine/operating system as in our case

with PDP ll/40/UNIX. Because of this structure, a program containing

LIGHT routines can be considered to be in three parts. These are the

main program, LIGHT front-end, and LIGHT back-end routines as illustrated

in Figure 5.2. The total size of the main program will vary according

to its function.

All the information required by LIGHT is conveyed via subroutine

arguments and so programs may be no more than a series of Fortran calls.

Thus a Fortran programmer can introduce himself to graphics with minimal

effort. It is important to emphasise that LIGHT satisfies the basic

needs for creating graphics application programs. As mentioned earlier,

there is no data structure imposed by the package; thus any data

structure may·be defined by the calling program.

6. DESCRIPTION AND IMPLEMENTATION OF LIGHT

6.1 LIGHT-UNIX Software Interface

This provides the means of interfacing LIGHT package with the UNIX

system. Its primary objective was to facilitate the link between the

graphics library and UNIX I/0 system. This was desirable in order to

handle all I/0 of graphical information coded in single ASCII

characters; including special control characters to the Tektronix 4010

display terminal. This is not normally possible with the use of Fortran

I/0 alphanumeric string format.

In addition, under the existing environment the interface also

provides some utility routines that have been found to be useful in

76

- - - - - - - - - - -,

LIGHT PROPER
MODULE

k----.;---,4. 6 K WORDS

MAIN
PROGRAM
MODULES

? K

+ +

BASIC
TRANSFORMATION

3.4K W'OlillS.OJUlS---'--ll MODULE

FRONT END

I

I

I +

I- - ------

LIGHT - UNIX
INTERFACE
MODULE

+

1

I

I

DEVICE DEPEND- 1

ENT ROUTINES

L _____ _

BACK END

FIGURE 5.2: Structure of LIGHT Software Package

77

writing graphics programs. They enable the application programmer to

exploit some feature of the .UNIX file system, through Fortran calls

incorporated in his program. This software interface was implemented

using a number of UNIX system entries [21]. These allow the UNIX user

to communicate easily with the file system. This lowest possible user

level is'designed to avoid distinction between the various devices and

files and between direct and sequential access. No large 'access method'

routines are required to insulate the progranuner from the system calls;

in fact all user programs either call the system directly or use a small

library program, only few instructions long, which buffers a number of

characters and reads or writes them all at once. Their calling sequence

is usable either in assembly or C-language. Assembly language [22) was

naturally chosen, as UNIX Fortran permits calls to routines written in

assembly code using certain calling sequence conventions. It was not

possible to use the C-language portable library, because C-programs can

not communicate with Fortran programs in the current system environment.

The calling sequence convention used in coding these assembly

routines is as follows:

Save register R3,SP (stack pointer)

Arguments list (pointer to values) begins at 2(R3).

Entry name is name of function or subroutine followed by 11 11

1.

2.

3.

4.

s.

6.

First word after entry point is location of return value.

Second word after entry point is pointer to PDP-11 code body

Return is expedited by a 'Jump' to the global routine 'rctrn•.

The following assembly coded routines (Appendix 1.1) are essential to

support the running of LIGHT under UNIX:

(i) Input/Output single character routines

(ii) Cross-hair cursor graphics input routine

(iii) File overlaying routine

(iv) File deletion routine

78

These form part of the back-end which is machine/operating system

dependent.

(i) Input/Output Single Character Routines

These routines namely 1 INCHAR' and 'OCHAR' handle the I/0 transfer

between the LIGHT package and the display terminal through the use of

UNIX I/0 system calls. As mentioned previously UNIX treats I/0 devices

as special files in which reading and writing is done just like ordinary

disc files. A special scheme is available whereby device drivers may

provide the ability to transfer information directly between the user's

core image and the device without the use of large buffers. The method

involves setting up a character-type special file corresponding to the

'raw' mode. In this mode, every character is passed immediately to the

program without waiting for a full line.

The display terminal 4010 is treated normally as a teletype terminal

with asynchronous communication interface DLllE which supports most

common ASCII terminals. Under UNIX a disc file or device is associated

with a file descriptor, an integer between 0 and 9. It is used to

identify the file in subsequent read, write or other I/0 calls. The

file descriptors 'O' and '1' are designated for standard input and output

respectively. In coding these two Input/Output routines, the following

I/0 system calls [21] were employed:

GTTY:- This essentially stores the current STATUS information

of the terminal whose file descriptor is given in

register RO in a three words argument. The mode of the

terminal is contained in the third word which is saved

before the status of the terminal is changed to 'raw'

mode so that its normal mode can be restored after I/0

operations are carried out.

SIGNAL:-

STTY:-

79

This ensures that the terminal would restore to its

normal mode when an interrupt signal is generated by

some abnormal event, initiated by the user at the

terminal or by program error. Normally all such

signals cause termination of the program, unless

special action has been taken. In these routines the

label EXIT! specifies the address where the interrupt

is simulated. The normal status of the terminal is

subsequently restored.

This converts the mode of the terminal to raw mode

by setting the third status word to (octal) 000040,

and then restores it to its normal mode after I/0 is

accomplished.

READ/WRITE:- A single I/0 call produces direct transmission between

the terminal and user's read/write buffer, so that

raw I/0 is considerably more efficient when many

words are transmitted. These system calls require

two arguments:

(1) the user's buffer address, and

(2) the number of contiguous bytes, (in this

case, one). The number of characters

actually read or written is returned in

register RO •

(ii) Cross-Hair Cursor Graphics Input Routine

It is possible to exploit the Tektronix 4010 as an interactive

terminal, since it has a program controllable cross-hair feature and

therefore a graphics input capability. To make this easily available

to the user, this routine was developed using the UNIX I/0 system

entries for raising the cross-hair cursor and reading the digitized

80

coordinates. Again the same system calls as in (i) were invoked in raw

mode to implement this routine. The entry name of this routine is

'CURSON', which works as follows: . ..:

1. The cross-hair cursor is raised. This requires transmission of

two ASCII control characters ESC and SUB (27 and 26 in decimal

respectively) to the terminal. The user can then change the

cursor control to the desired intersection point.

2. When the user strikes a keyboard character, the character and

the coordinate location are sent to the computer. Consequently

five bytes of cursor information are read by this routine.

These graphics input bytes represent the keyboard character

plus a four byte sequence containing high and low order X, and

high and low order Y. Each byte contains the two tag bits plus

five binary bits. Each byte thus encodes to an ASCII character.

Figure 5.3 illustrates this computer response to graphics

input from the cross-hair cursor.

After the cursor information is read, the Alpha cursor returns to its

home location (top-left hand corner). The status of the terminal is

returned to 'cooked' (normal) mode.

(iii) File Overlaying Routine

The limited memory size of our machine has been quite successfully

offset by the development of a very easily used overlay capability. The

programmer need only divide his program into smaller modules to fit the

available core size. These modules could be stored on the disc as

'program files' which may subsequently be called and executed almost as

subroutines. When module segments are called from the disc, the new

segment with the help of UNIX system entry EXEC is loaded and executed.

The system call EXEC overlays the calling process with the named file and

7654321

HIGH Y
1

1
I

0
1

1
I I I I BYTE 4

LOW X
1

1
I

0 I 1 I I I I I BYTE 3

HIGH X 11 I 0 11 I I I I I BYTE 2

RESPONSE .TO COMPUTER

2. STRIKE KEY

FROM COMPUTER

ESC

81

CROSS-HAIR
CURSO'R CO-
ORDINATE
DATA

KEYBOARD
CHARACTER

FIGURE 5.3: Response to Computer Command and Cursor Control

82

then transfers to the beginning of the core image of the file. All

code and data in the process using EXEC is replaced from the named file,

but open files, current directory and interprocess relationships are

unaltered. Only if the call fails, for example when the file can not

be found or its execute-permission bit is not set, does a return take

place from the EXEC; it resembles a 'jump' machine instruction rather

than a subroutine call. The first argument to EXEC is a pointer to the

name of the file to be executed. The second is the address of a null

terminated list of pointers to arguments to be passed to the file. The

entry name of this routine is 'OVLAY'.

(iv) File Deletion Routine

This is another system entry in the UNIX file system. It removes

the entry for the named file passed as an argument from the current

directory. This .routine makes use of the system call UNLINK. It may be

useful in removing intermediate files created by application programs.

The entry name of this routine is 'FLRM'.

6.2 LIGIJT Proper

Efficiency and flexibility are key points when generating routines

to run graphics programs. The LIGHT module provides this capability

with a set of Fortran-callable subroutines which form the central part

of the LIGHT package. These routines support a wide range of applications

in an efficient and cost effective manner. The basic structure is

modular, thus providing access to individual features of the graphics

hardware and/or software. Through these routines the graphics program

has full control of the terminal character/vector generators and the

graphic input device. This facilitates the construction of displays

from basic graphic elements and program communication with the display

83

and console operator. The library subroutines are divided conceptually

into four categories:-

(i) Initialization

(ii) Point and line drawing

(iii) Character and text handling

(iv) Cursor and menu operations.

The functions of the subroutines for each category are summarized in

Table 5.1, (see also LIGHT-User Guide, Appendix 1.9).

TABLE 5.1: Basic LIGHT Subroutine Library

Category

(i) Initialization:

Subroutine

TXOPEN

TXCLER

Purpose

Sets up default values for

screen coordinates, menu

operation and character

position.

Clears the screen ready for

next display.

TXVPRT(XO,YO,Xl,Yl) Defines a physical 'view-

port' on the screen.

TXWIND(XO,YO,Xl,Yl) Defines a 'window' in

problem space and maps this

on to the viewport.

ALPHMD

GRPHMD

Switches the display terminal

to 'Alpha' mode for input/

output of Alphanumeric

information.

Switches the display terminal

to 'Graphic' mode and returns

to the previous beam position.

(ii) Point and Line drawing:

TXMOVE (X, Y)

TXMOVR(DX,DY)

Moves current beam position

to scaled point (X,Y) without

drawing.

Moves current beam position

through a displacement (DX,DY)

without drawing.

Category Subroutine

TXDRAW(X,Y)

TXDRWR(DX,DY)

(iii) Character and text handling:

TXGET(ICHAR)

TXPUT(ICHAR)

TXLINE(STRING,N)

MESSAG(TEXT)

TEXTUP(Filename,N)

INTGET(I)

SPOUT(TEXT)

DTEXT(X,Y,TEXT,N)

(iv) Cursor and menu operations:

(a) Cursor Control:

TXCURS (X, Y, I CHAR)

84

Purpose

Draws a visible straight line

from the current position to

point (X,Y).

Draws a visible displacement

(DX, DY) from the current beam

position.

Delivers into !CHAR a single

character entered by the user

from the keyboard.

Displays a character whose ASCII

code is !CHAR. Interprets TAB

as a space and RUBOUT as several

superimposed characters.

Inputs a line of characters

from the keyboard into the

array STRING and Echoes to the

screen. Deals with TAB and

RUBOUT as above.

Displays characters specified

as llolleri th string 'TEXT'.

Displays N lines of textual

information previously stored

in the named disc file.

Obtains the next input integer

from the keyboard.

Removes spaces, and other non

printable characters from the

Hollerith string TEXT.

Displays the Hollerith string

'TEXT' at scaled coordinate

point(X,Y) on the screen.

Sets the cross-hair cursor,

reads the cursor coordinate

position and the character

entered.

Category Subroutine

CURPOS(X,Y)

85

Purpose

Positions the Alpha cursor

at the specified point (X, Y).

CHTOXY(NLINE,NCHAR,IX,IY)

Converts character coordinate

(NLINE,NCI~R) to screen co

ordinate (IX,IY) of the bottom

left hand corner of the

character.

XYVOCH(IX,IY,NLINE,NCHAR,IA,IB)

Converts the screen coordinate

(IX,IY) to character coordinate

(NLINE, NCl~R) .

(b) Menu operation:

(i) Initialization

MNOPEN(X,Y,MNO) Announces that a menu is to

be displayed whose origin

(top-left hand corner) is at

screen coordinate(X,Y).

MNTEXT(TEXT,N,MNO) Displays the next menu item

'TEXT' of N characters.

MNPICK(I,ICHAR,MNO) Raises the cursor, allowing

the user to pick an item from

the menu, and returns the item

index in I.

MNDISP(TEXT,M,LEN,MNO)

FRAME(X,Y,NC)

Displays a complete menu

containing the TEXT of M items

Draws a rectangle round the

menu whose origin is at the

point (X,Y).

These routines (Appendix 1.2) are concerned with setting up the

display terminal before any subsequent output is directed to the display

by other calls. The Tektronix 4010 contains 1024xl024 addressable

points, of which 1024 by 781 are in the viewable area of the screen.

86

Default values for the display viewport anli window are set by TXOPEN

to contain 1024x781 addressable points; this was chosen because points

just above 780 may be•visible but marginal in qu(lli ty.

Routines TXVPRT and TXWIND are provided for further control of the

mapping between the problem space and the screen viewport. These two

routines 'effectively alter the default values and enable the user to

specify a rectangular area on the screen within which a picture is drawn.

The user is also provided with a routine (Tl{CLER) to clear the display;

this sets the terminal to Alpha-mode and returns the Alpha cursor to its

home position. In addition, the terminal can be set to graphic mode

(GRPHMD) or to Alpha-mode (ALPHMD) as appropriate. These routines would

enable the graphic program to output textual information to the screen

in the middle of drawing a picture, thus giving the user full control

of the terminal mode.

(ii) Point and Line Drawing

Display images are composed of basic visual elements (primitives)

which the terminal can generate. Essentially the only graphical

primitives that the programmer needs are functions to define points,

lines and displayed text strings. The main criteria in choosing a set

of primitive graphical functions are as follows:-

!. Clarity: the functions will often be used by relatively

inexperienced programmers, and should be as simple and

comprehensible as possible.

2. Convenience: the functions should permit all forms of point

and line-plotting and positioning both by relative and by

absolute coordinates.

3. Compactness: the set of functions should not be too large,

for this will enlarge the software system. Circles and other

87

more complex constructions should be provided outside this

set.

'
The basic functions for point and line plotting (Appendix 1. 3) are:

MODE
TYPE Absolute Relative

MOVE TXMOVE(X,Y) TXMOVR(DX,DY)

DRAW TXDRAW(X,Y) TXDRWR(DX,DY)

These routines in turn call upon two other routines XVPLOT and VPLOT

which constitute part of the 'back-end':

(a) XVPLOT:- This mainly converts the user specified coordinates

into physical screen (raster) coordinates in integer form.

It also checks against any attempt to output coordinates off

the screen. If this happens, an error message ('coordinate

off screen') is displayed, reminding the user to revise his

coordinate setting.

(b) VPLOT:- Graphic plotting information is sent to the terminal

in four byte sequences, each containing high and low order Y,

and high and low order X. Thus, this routine sets the terminal

to graphics mode by sending the ASCII control character GS(29

in decimal), followed by the four ASCII characters carrying the

graphic data for vector plotting. After a GS and the initial

four bytes have been sent to the 4010, additional bytes that

do not change (except for the low X bytclneed not be sent;

however, low Y bytes must be sent if high X byte has been

changed. The low X byte must be sent each time to cause the

point or vector to be drawn. Vectors are drawn from the old

address to the new address with the exception of the first

vector after entering the graphic mode. Figure 5.4 illustrates

the method of computing the four bytes. Each number is converted

88

Example of Desired Coordinate

X=SO Y=31

0 0 0 0 1 1 0 0 1 0 10 Bit Bina:ry 0 0 0 0 0 1 1 1 1 1
+Equivalent+

~~~~~~~ ~~~-r~~~~ 

HIGH X LOW X HIGH Y LOI~ Y 

4TH BYTE 

., 1 0 1 0 0 1 0 

3RD BYTE 

.la 
1 

1 0 0 0 0 1 

2ND BYTE 

1 1 1 1 1 1 1 ~ 

1ST BYTE 

0 1 0 0 0 0 0 

Tag bits T 1 
TO TEKTRONIX 4010 

FIGURE 5.4: Computing 4 bytes of data for X=SO and Y=31 



89 

to its 10-bit equivalent, which is divided into high and low 

5-bits. The bytes are then assembled as shown with two tag

bits added. 

(iii) Character and Text Handling 

A set of routines (Appendix 1.4) is provided by LIGHT, allowing 

the user to incorporate standard keyboard interaction in his graphics 

application program. Keyboard input, for example, can be used to good 

effect to inp~t textual information which cannot be predetermined. 

Textual output information can be used to prompt the user to perform 

a particular action and the application program is .instructed to 

wait for the user's response. Thus terminal users can communicate with 

an application program by means of alphanumeric Input/Output. The 

implementation of these routines makes extensive use of INCllAR and OCHAR, 

which transmit character information directly to the terminal in raw 

mode. The routines handle simple and composite input/output. Some 

special characters are also dealt with at the user level, for example, 

TAB is interpreted as a suitable number of spaces; RUBOUT is displayed 

as several superimposed characters, the deleted character being removed 

from the character string. 

(iv) Cursor and Menu Operations 

LIGHT provides the user with the facility to input and output 

graphical information. In addition to the standard keyboard interaction, 

the programmer can also incorporate graphical interaction via the curso~ 

Cursor input provides identification to the program of selected items on 

the display screen. The Tektronix 4010 graphic cursor described in 

section 6.l(ii) was programmed to read five graphic input bytes containing 

the cross-hair cursor coordinates and the input keyboard character. The 



conversion from graphic input bytes to numerical coordinates is a 

straight forward operation which is performed by the routine CURSET 

(Appendix 1.5) as 

X-coordinate = 32 (high X-32) + low X-32 

¥-coordinate = 32 (high Y-32) + low Y-32 

90 

The Fortran-callable subroutines provided in here fall into two 

kinds: 

(a) cursor control with routines to interpret screen coordinates 

as character positions. 

(b) Menu display and cursor choice therein. 

In (a) the routine TXCURS activates the cross-hair cursor by calling 

the CURSET routine. The returned v~lue of cursor location (X,Y) on the 

screen is tested for violation of the boundary limit specified by the 

current viewport, and if so, a warning message ('illegal cursor position') 

is displayed. The cursor coordinates are subsequently converted from 

screen to problem coordinates. Two other routines are also available 

(CHTOXY and XYVOCH) in (a) for relating the character coordinate (NLINE, 

NCHAR), pointed at by the cursor to screen coordinate (X,Y). Basically, 

the ¥-coordinate is mapped into the line number, and the X-coordinate 

corresponds to the character within the line. These routines are 

particular useful for graphical text editing. 

The routines in category (b) are concerned with the handling of user 

defined menus. They enable the programmer to display a menu anywhere on 

the screen (MNOPEN) and pass control to the terminal user (MNPICK). 

When a particular item is picked up from the menu by means of the cross

hair cursor, an arrow would be drawn adjacent to the selected item to 

indicate that the user request is accepted. However, if the horizontal 

cursor line is placed outside the valid item zone(s) (Figure 5.5) the 

cursor would return and no arrow would be drawn, allowing the user to 

try again. 



91 

6.3 Basic Transformation 

For the purpose of visualisation, graphical information is usually 

transformed so as to provide a particular view on a display, and 

further manipulation is sometimes desirable in order to enhance the 

visualisation in various ways. The transformation facilities in LIGHT 

may be considered as performing three basic functions:-

(a) Object orientation with respect to the selected coordinate 

system, e.g. rotation and translation, to obtain a 

particular view. 

(b) Relating the user's coordinate system to the display 

coordinate system. 

(c) Various types of projection and distortion such as 

perspective, isometric projection, etc. This is mainly 

used to aid the visualization of objects. There are other 

visualization techniques, such as hidden line removal (1), 

intensity modulation and shading. 

The transformation functions should be simple to use and efficient in 

execution. Luckily these two requirements do not conflict, as 

efficiency in transformation is gained by combining scaling, rotation, 

translation and perspective projection into a single matrix that applies 

to the end point coordinates of each line of a given object. 

The range of effects that can be produced by transformation is very 

large and is catered for in its generality by a vocabulary of basic 

transformations. The basic vocabulary is supplemented by some special 

routines (themselves using the basic routines) which provide facilities 

that are generally useful and that can be easily specified. Such 

routines include axonometric projection (parallel projection) and 

perspective viewing (point projection)· from any viewpoint. The use of 

homogeneous coordinates (x,y,z,t) to define three-dimensional objects 



92 

allows either 'affine' or perspective transformations to be applied with 

equal ease [23]. The three-dimensional point (or vector) corresponding 

to (x,y,z,t) is 

(X, y' Z) = cf.f•f) 
The generalised 4x4 transformation matrix based on such a 

homogeneous coordinate'representation is 

A= = -
which naturally partitions into four separate submatrices: 

(1) L(3x3) produces a linear transformation in the form of 

scaling, shearing and rotation. 

(2) T(lx3) row produces translation 

(3) P(3xl) column produces perspective transformation 

(4) S(lxl) single element produces overall scaling. 

When the vector [X Y Z 1] is transformed by the most general 4x4 

matrix A it will become the vector [x* y* z* t*] which is usually 

normalised to [X* Y* Z* 1], as shown mathematically by 

[X Y Z 1]*~ = (x* y* z* t•J~[X* Y* Z* 1] 

·The set of routines (Appendix 1.6) that produce these 

(5 .1) 

(5. 2) 

(5. 3) 

transformations are summarized in Table 5.2. These routines permit 

both two- and three-dimensional pictures to be transformed, and 

assumes the existence of two transformation matrices: 

RTM:- the previous reference transformation matrix 

TM:- the accumulated transformation matrix resulting from 

calls to any of the routines - TRANSL, SCALNG, ROTATE, 

PERSP and PROJCT. 

Both these matrices must be declared by the user in his program as 

COMMON/MATRIX/RTM(4,4),)M(4,4) 



93 

TABLE 5.2: Transformation Routines 

Category Subroutine Purpose 

1. Linear transformation: SCALING(SX,SY,SZ) Superimposes scale changes 

along the X,Y and Z axes 

as specified. 

ROTATE(RX,RY,RZ) 

TRANSL(TX,TY,TZ) 

Rotates about axes X,Y and Z 

by the angles RX,RY and RZ 

(degrees) in this order. 

Translate the current point 

(X,Y,Z) through the dis

placement TX,TY and TZ. 

2. Clipping(windowing): CLIP(CLINE,XO,YO,Xl,Yl,IREJ) 

3. Simple perspective projection: 

PERSP(PX,PY,PZ) 

PROJCT(NPLANE) 

4. Transformation control: 

SAVMAT(A) 

RESTOR(A) 

UNITY(A) 

SETMAT(A) 

. CON.CAT(A, B,N) 

The line CLINE is clipped 

to the rectangular window 

XO, YO, Xl, Yl, 

Sets up a perspective view 

where PX,PY and PZ are the 

reciprocals of the viewing 

distance from the planes YZ, 

ZX and XY respectively. 

Projects on a given NPLANE 

where NPLANE(l,2, or 3) 

specifies the coordinate 

plane of projection (i.e. 

x=O, y=O or z=O), 

-Saves a copy of the 

transformation matrix A into 

the stack, 

Restores the transformation 

matrix A from the stack. 

Sets the transformation 

matrix A to unit matrix. 

Sets the reference matrix 

RTM to A. 

Postmultiplies matrix(vector) 

A(NX4) by B(4X4) and leaves 

result in A. 



94 

The RTM matrix can be updated by the· accumulated matrix TM by 

concatenation (RTMxTM). The current transformation can be modified, reset, 

saved or suspended at any stage and TM is available to the user for 

inspection. The basic transformations are in general non-commutative and 

so there are inherent perils involved in combining them. Typically, an 

error in ordering transformations could result in the whole picture being 

outside the visible area. 

1. Linear Transformation 

These routines have an important role in building up a picture. If 

a picture part occurs more than once, in different orientations, it can 

be defined once and the other instances correctly oriented by use of 

these routines. 

Scaling:- The diagonal terms of the general 4x4 transformation matrix 

produce local and overall scaling. The routine SCALNG sets the 

first three diagonal terms which represent the local scaling 

with scale factors SX, SY and SZ. Consider the following 

transformation:· 

(X* Y* Z* 1] = (X Y Z 1] 

which shows the local scaling effect. 

Global scaling may be obtained by using the fourth 

diagonal element, i.e., 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 s 

(5.4) 

(5 .5) 



95 

which has the same e£fect as 

1 
0 0 0 s 

0 
1 

0 0 s (5. 5) 

0 0 1 
0 s 

0 0 0 1 

The matrix 1M is postmultiplied by the scaling 

trans£ormation matrix shown in (5. 4) • 

Rotation:- The rotation matrix is an orthogonal matrix. Thus the 

length of a line joining two points is invariant under 

this transformation, and in general the size of objects 

is unchanged by rotations. The routine ROTATE combines 

the effect of rotations through the' angles RX,RY and RZ 

(degrees) about x,y and z axes in this order in one 

single transformation matrix (Table 5.3) i.e., 

1 0 0 0 

[X* Y* Z* 1) = [X Y Z 1) 0 case sine 0 

0 -sine case 0 X 

0 0 0 1 

about x-axis 

cos<j> 0 -sin<j> 0 COSl/J sinljJ 0 0 

0 1 0 0 -sinljJ COStjJ 0 0 

sin<!> 0 
X 

0 1 cos<j> 0 0 0 
(5. 7) 

0 0 0 1 0 0 0 1 

about y-axis about z-axis 

The resulting transformation matrix simply reduces, with 

some trigonometric manipulatio~to a matrix whose elements 

consist of sines and cosines of the sums and differences 

of the angles as given in Table (5.3). This would involve 

much less computation time than a concatenation of the 

individual transformations. 



~ w 1 2 3 4 

1 1 
~[sin'(<j>+ljl) -sin(<j>-ljl)] -sin(<j>) 0 

z[cos(<j>+ljl)+cos(<j>-ljl)] 

ircos(e+ljl+<j>)-cos(e+ljl-<1>)+ i[sin(B+ljl+<j>)-sin(e+ljl-<1>) ~[sin(B+<j>)+sin(e-cp)] .. 0 

2 cos(6-ljl+<j>)-cos(6-ljl-<j>)]- -sin(6-ljl+<j>)+sin(6-ljl-<j>)] 

~[sin(6+1jl)sin(6-ljl)] ~[cos(6+1jl)+cos(6-1j1)] 

i£sin(6+1jl+<j>)-sin(e+ljl-<j>) 1 1 4[cos(6+1jl+<j>)-cos(e+ljl-<j>) z[cos(6+<j>)+cos(6-<j>)] 0 
3 +sin(6-ljl+<j>)-sin(6-ljl-<j>)] -cos(B-ljl+<j>+cos(e-ljl-<j>)] 

1 +2[cos(6+1jl)-cos(6-ljl)] +~[sin(6+1jl)-sin(6-ljl)] 

4 
' 0 0 0 1 

J 
' 

TABLE 5.3: The Elements of the Combined Rotation Matrix (4x4) 



97 

The fact that the three-dimensional rotations are non-

commutative must be kept in mind. However, a different 

order of rotations may be performed by using separate 

calls of the routine. 

Translation:- The transformation which translates a point (X,Y,Z) to a 

new point (X* Y* Z*) is 

1 0 0 0 

(X* Y* Z* 1] = [X Y Z 1] 0 1 0 0 (5. 8) 

0 0 1 0 

Tx T T 1 y z 

The routine TRANSL sets up the elements of the matrix 
., 

and performs the postmul tiplication of TM by this matrix. 

2. Clipping 

In practice, graphical devices such as the Tektronix 4010 display 

work with a bounded space; in addition, the user may wish to confine his 

picture to a prescribed window. We must either ensure by means of 

scaling that our object lies within the bounded region or we must exclude 

all parts which lie outside the region. The latter technique is called 

'scissoring' or clipping. This window may take any shape but it is 

usually rectangular. 

The routine CLIP provides the clipping of a given line to the 

rectangular boundary (Figure 5.6) defined by its opposite corner 

coordinates as (XO,YO) and (Xl,Yl). The coordinates of a given line's 

end points are first passed as input parameters to the routine, which 

then returns with the flag IREJ=O or 1 indicating whether the line is 

fully rejected or accepted. If IREJ=l then CLINE will contain the eo-

ordinates of clipped line end points. The clipping algorithm used in 



98 

implementing this routine has effectively· two parts:-

1. It determines whether the line lies entirely within the window, 

and if not, whether it can be trivially rejected as lying 

entirely outside the window (Figure 5.6a). Two function sub

routines (IREJCT and JACCPT) handle this test for total 

rejection or acceptance. 

Let us suppose the line AB joining (a1 ,a2) and (b 1 ,b 2) is to be 

clipped by the rectangle with opposite corners (XO,YO) and (Xl,Yl). 

A line is rejected if it lies completely to the left, to the 

right, above, or below this rectangle. Thus if 

xo '! max(a1,b1) 

or Xl li min (a1 ,b1) 
(5. 9) 

or YO <: max(a2,b2) 

or Yl li min(a2,b2) 

the line is rejected. If the line is not rejected by this 

test, we find whether it crosses a continued edge of the 

clipping rectangle. 

If XO > min(a1,b1) then the line crosses X = xo 

If Xl < max(a1 ,b1) then the line crosses X = Xl 

If YO > min(a2,b 2) then the line crosses y = YO 

If Y1 < max(a2,b2) then the line crosses y = Yl 

If none of the above is true, then the line lies totally 

within the clipping rectangle. Otherwise (i.e. the line crosses 

one of the continued edges) we conclude a new end point which 

needs to be investigated more closely. 

2. The coordinates of intersection points with the boundary may 

be computed either by using the simple concept of finding 

directly the intersection point of two straight lines or 

alternatively by the iterative method of subdivision [1] of the 



99 

line and throwing away the segment which lies off-window. 

The subdivision method was used here as it was considered to 

be more efficient. The line is subdivided at its midpoint, 

yielding two line segments (Figure 5.6b). The test of part 

(1) is then applied to each segment of the line separately. 

The search for an end point stops either when both halves of 

the line are rejected or when the mid point coincides with 

one of the edges of the window. Clipping to a rectangular 

two-dimensional region introduces extra flexibility e.g. 

logically separate pictures occupying different areas of the 

screen can be prevented from interfering with one another. 

In addition, it also facilitates zooming down to a number of 

levels and provides selective viewing of part of a large 

picture. 

3. Simple Perspective Projection 

As displays are two-dimensional devices we can draw only two-

dimensional projections of three-dimensional objects. The idea of 

projection onto the plane z=z0 can be expressed in the matrix form: 

11 0 0 0 

[X* Y* Z* 1] = [X Y LtJ 1] = [X Y Z 1] 

~ 
1 0 0 (5 .10) 
0 0 0 

0 ~ 1 

Note that the transformation matrix has a row of zero coefficients 

and is therefore singular. This is as one might expect, because 

if the matrix could be inverted it would mean that we could recover 

three-dimensional information from the two-dimensional drawing, and 

this is not usually possible. 

The user is provided with a routine PROJCT which would set up a 

transformation matrix for a specified projection plane. 



100 

~{ 
Item valid zones 

---- { ~-r-r--r-r-r-l...,...,...,..,~,.,....,...,j 
FIGURE 5.5: Menu Item Valid Zones 

FIGURE 5.6a: Rejection Test 

Xl,Yl 

XO,YO 

FIGURE 5.6b: Bisection of the Line 



101 

We now consider the relevance of the off-diagonal elements of the 

fourth column of the transformation matrix 

1 0 0 0 

[x* y* z* t*] - [X Y z 1] 0 1 0 0 = [X y z (l+P ZZ)] (5 .11) 

0 0 1 Pz 
0 0 0 1 

i.e., 

(X* Y* Z* 1] = X y z 1] (5.12) (l+P zz l+PzZ l+PzZ 

Under this transformation the origin (0 0 0 1] and the points at 

infinity on the x and y axes, namely [1 0 0 0] and [0 1 0 0] are 

unchanged. But the infinite point on the z-axis [O 0 1 0] is 

transformed into the finite point (0 0 1 Pz], i.e. after normalizing, 

the point (0 0 1/Pz 1]. Thus, lines which were parallel to the z-

direction before the transformation will now appear to pass through 

the point (0 0 1/Pz 1] which is sometimes called the 'vanishing point' 

of the perspective transformation. 

The user is provided with a call to routine PERSP which applies 

a perspective transformation. When we project this transformed view 

onto a plane we obtain 'perspective projection'. For each vanishing 

point of a perspective transformation there is a corresponding centre 

of projection which lies on the same axis at the same distance from 

the origin, but in the opposite direction. 

A transformation matrix of the form 

Sx C12 C13 0 

c12 Sy Cz3 o 

C31 C32 Sz o 

Tx Ty Tz 1 

followed by a non-perspective projection onto a plane is known as an 

'Axonometric projection'. It is in fact a perspective projection with 

vanishing points all at infinity. When the upper left-hand 3x3 matrix 

is orthogonal under this transformation the projection is said to be 



102 

'trimetric'. If t1<o of the axes in an axonometric projection are equally 

foreshortened when projected, the transformation is said to be 

be 'dimetric'. In an 'isometric'· projection all these axes are equally 

0 foreshortened, and usually at 120 to each other [23]. If the upper 

left-hand 3x3 is not orthogonal an axonometric projection is said to 

be an 'oblique' projection. 

4. Transformation Control 

These routines merely provide some facilities for manipulating 

transformation matrices. In particular, SAVMAT and RESTOR permit the 

user to save/restore transformations on/from the pushdown stack 

(defined by the package) at any time to facilitate di~play of 

hierarchical data. For example, a picture containing repeated symbols 

will involve concatenation of transformations; whenever concatenation 

is performed, the current transformation must be saved so that it can 

be restored after displaying the symbol. A one-dimensional array in 

the form of a pushdown stack is employed to perform the above two 

operations. The remaining routines perform tasks such as concatenation 

and initialization of transformations. 

7. THE GT42 IN EMULATOR MODE 

LIGHT subroutines may also be used. in conjunction with the GT42 

refresh display in Emulator mode as a Tektronix 4010. The Tektronix 

4010 Emulator program [24] accepts input from the DLllE communications 

interface and converts the characters into alpha or graphic data. This 

is displayed on the screen by adding the data in serial manner to a 

display file. The method by which incoming characters, including special-

function characters e.g. clear-screen, send cursor position, etc., are 

converted is the same as that of the Tektronix 4010. The cross-hair 

cursor and the thumbwheel is simulated on the GT42 as a tracking-cross 

which may be moved around the screen with the light pen. 



103 

PART I I 

A P P L I C A T I 0 N S 



CHAPTER 6 

INTERPOLATORY DATA FITTING - IDF 

1. INTRODUCTION 

2. THE IDF NUMERICAL ALGORITHMS 

2.1 Interpolation 
2.2 Global Polynomial (Newton Method) 
2.3 Piecewise Quintic Polynomial 
2.4 Cubic Spline Polynomial 

3. THE USER INTERFACE 

3.1 An Overall View of the System 
3,2 Function of the Various Displays 
3.3 Examples 

4. PROGRAM DESIGN 

4.1 · The Interactive Display Routines 
4.2 Program Modules 
4.3 Overlay Support 
4,4 Data Structure 

104 



105 

1. INTRODUCTION 

Data fitting in general has been used for many years in engineering 

applications. It occurs in machine tool control, in design problems 

and increasingly in computer graphical presentation of the numerical 

solution of physical problems, where numerical results would otherwise 

be difficult to interpret. 

In particular, interpolatory data fitting is a special area of the 

more general curve fitting process. With many problems, as a result of 

measurements or calculations, we obtain a set of data points corresponding 

to a function, and it is usually desirable to pass a 'smooth' curve 

through these points. 

It would be useful to distinguish between curve fitting and curve 

design. The former involves generation of a smooth curve for an already 

defined curve shape which is constrained to pass through specified data 

points. If the data points defining the curve shape contain some random 

errors, then they are fitted by a curve in some 'best' approximation 

sense, e.g. using least squares. On the other hand, the curve design 

problem is either to create ab initio a shape which satisfies some 

design constraint or to modify an existing mathematically defined shape. 

Many methods already exist for interpolating data, ranging from 

global polynomial interpolation to various piecewise polynomial inter

polation schemes, including cubic splines. For curve tracing, excellent 

results are achieved with these methods. llowever, they are usually 

ineffective for interactive curve design. This is due to the fact that 

control of the curve shape by numerical specification of both direction 

and magnitude of tangent vectors does not provide the feel required for 

curve design. In addition, the cubic curve fitting technique specifies 

a curve of unique order, which does not vary from spline to spline. In 

order to increase flexibility, more points must be input, creating more 



106 

splines. An alternative method of curve description has been described 

by Bezier (23]. This allows greater flexibility in the generation of 

desired shapes and gives a feel for the relationship between input and 

output. 

As indicated by Forrest (25], the contrast between curve fitting 

and design is analogous to that between the draughtsman's (physical) 

splines and french curves. 

Physically, a spline curve is obtained by bending a thin metal or 

wood lath round pins so. that the curve passes through the given data 

points and assumes a shape of minimum internal energy. In this case 

the draughtsman need only specify the data points and the spline will 

do the rest of the work. Using a french curve, however, the designer 

must select from a set of rigid curve templates a particular curve 

which will pass through a series of points, and the complete curve will 

be constructed in a piecewise manner from several such selections. 

The work reported in this chapter is concerned with the development 

and implementation of an interactive system using interpolatory curve 

fitting and in particular, cubic splines. Some applications require 

accurate and rapid graphical representation of known data where the 

technique of cubic spline fitting can be useful. For example, it can 

be particularly effective in an academic environment when used with low 

cost devices for graphicruoutput (e.g. Tektronix 4010) to display 

numerical results which must satisfy known mathematical and physical 

boundary conditions. 

Curves can be represented analytically in two basic forms, 

parametric and explicit. The use of explicit forms is largely confined 

to planar curves (i.e. two-dimensional) whereas the parametric form 

is easily extended to three-dimensional space curves. 



107 

Explicit form:- y = f(x) (6 .1) 

i 
Parametric form:- X = f(t) 

y = g(t) (6. 2) .. 
z = h(t) 

The parametric representation has several notable advantages 

over the non-parame.tric forms. Each set of coordinate values represents 

a unique point which can be computed by substitution of a single 

parametric value. It is possible to express a parametric curve in 

matrix form and to use identical algorithms for computing x,y and z. 

Thus we can describe the curve in such a way that the form of the 

mathematical expressions for x,y and z does not change according to 

the orientation of the coordinate axes. In the explicit form y=f(x) 

it may be convenient to describe a given curve with the axes in one 

orientation, though difficulties arise when f(x) is not single valued. 

The slope of an explicit curve will be infinite or zero if the curve 

is parallel to one of the axes. The problem of infinite numbers does 

not usually arise with the parametric representation. 

2. THE IDF NUMERICAL ALGORITHMS 

2.1 Interpolation 

From the classical theory it is known that a unique polynomial 

of degree n can be passed through n+l data points. Polynomials also 

have the advantage of being fairly easy to handle computationally. Also, 

such polynomials are continuously differentiable up to order n. This 

high degree of continuity might suggest a pleasing smooth behaviour, 

but often even the low-order derivatives are of such great magnitude 

that undesirable oscillations are displayed in the curve. One cause of 

the failure of polynomial interpolation to represent data properly is 



108 

the extreme dependency of the entire curve on each individual data 

point; a slight movement of a point even at one end can radically 

affect the curve shape. Visually one desires more local dependency. 

If a data point is altered slightly, the curve should adjust slightly 

in the neighbourhood of the point and be nearly unaffected away from 

the point. In an effort to decrease the curve's sensitivity to each 

data point, the set of functions known as polynomial splines was 

introduced by I.J. Schoenberg in 1946. Mathematically, a spline is 

a piecewise polynomial of degree n with continuity of order n-1 at the 

common joints between adjacent segments. 

The following sections contain the mathematical background of 

the numerical algorithms used in the implementation of the IDF system. 

These algorithms mainly employ cubic splines; however, two other 

algorithms are also included for comparison. One uses the Newton 

form of global polynomial (26] and the other uses a piecewise quintic 

polynomial [27]. The program listings of these algorithms is given 

in Appendix 2.1. 

2.2 Global Polynomial (Newton Form) 

A general method (classical) for constructing a global polynomial 

P (x) which fits a given function or data exactly at a number of 
n 

arbitrary spaced points (xi, i=O(l)n) is the Lagrange form 

or 

P (x) = 
n 

n n (x-x .) 
I [fCxkl JT ex -x.)l 

k=O J=O k J 
j;o!k 

n 
L f (xk) Lk (x) 

k=O 

Note the Lagrangian coefficients Lk(x) are independent of the 

function values and depend only on the set of points x. • A curve 
1 

passing through these points using this polynomial is smooth in 

(6. 3) 

(6 .4) 



109 

the sense of being maximally often differentiable. As the number of 

points increases, these polynomials .can oscillate strongly with a 

direct dependence on the arrangement of the points. 

The Lagrange representation has the defect that if other data 

points were added, then the new higher degree interpolating polynomial 

could not be obtained by easily modifying the previous one. Lagrange 

interpolation is also inefficient when several interpolations are 

required for the same data. A representation which does not have 

these disadvantages is the Newton form of interpolating polynomial 

Pn(x) = a0+(x-x0)a1+(x-x0)(x-x1)a2+ ..• +(x-x0) •.• (x-xn-l)a 
n 

~ is called the kth ordered divided difference and is usually 

expressed in the form 

a0 = f[x0 ] 

ak = f[x0 ,x1 , ... xk] k=l (1) n 

By comparison with the corresponding Lagrangian polynomial in (6.3) 

n f(xk) 
L [ n l 

k=O 1T (~-x.) 
j=O J 
j;lk 

In the divided difference form 

(6.5) 

(6. 6) 

(6.7) 

(6. 8) 

f[x0 ,x1, ••. ,xn•\,]-f[x0 ,x1, ••• ,xn,xal 
f[x0 ,x1, ••• ,x ,x ,X0 ] = (6.9) 

n a ~ ~-xe 

This leads to a systematic way of calculating the coefficients ak 

from the divided difference table: 



110 

fo 
fl-fO 

= fOl . Xl-xO 

fl f012 
f2-fl 

fl2 f0123 = 
x2-xl 

f2 fl23 f01234 
f3-f2 

f23 fl234 = 
x3-x2 

f3 f234 
f4-f3 

f34 = 
x4-x3 

x4 

This algorithm is suitable when interpolated values are required at a 

large number of points since only one evaluation of the table is 

performed. A single subroutine (NEWTON) was written to implement this 

algorithm. It involves firstly the computation of the coefficients 

for a given set of points, followed by a nested multiplication for 

each interpolation. 

The main objection to polynomial interpolation at a large number 

of points is that the calculation and evaluation of interpolating 

polynomials become costly and unreliable. 

The error of the interpolating polynomial Pn(x) is 

R (x) = f(x)-P (x) 
n n 

where f(x) is the function (given or implied) which corresponds 

to the data. 

It can be shown that 

R (x) = 
n 

.,.-----:::--1 "7 f(n+l) (~) 
(n+ 1) ! 

n 
Trcx-x.) 
i=O 1 

where ~is some point in the interval 'I' bounded by the largest and 

(6.10) 

(6 .11) 



111 

the smallest of the numbers x. and x. If we wish to give an estimate 
1 

of the error in approximating f(x) by P (x) we must know the magnitude 
n 

of f(n+l)(~) or its upper bound on the interval '!'. A small 

interpolation error over 'I' can usually be expected only if 

max 
xei 

and 
n 

max I Tllcx-x.) 
xei j=O J 

are small. 

It follows that the only way to guarantee a small error is to make 

the interval 'I' small. Since the interval over which f(x) is to 

be approximated is usually given in advance, this can be accomplished 

only by partitioning this interval into sufficiently small subintervals 

and approximating f(x) in each subinterval by a suitable low-order 

polynomial. This leads to 'piecewise polynomial interpolation'. The 

entire curve is produced by joining the curve segments together for 

given continuity conditions. 

2.3 Piecewise Quintic Polynomial Interpolation 

A method proposed by Maude (27] is developed here for interpolation 

from a given set of data points in the plane and for fitting a smooth 

curve to these points. It is based on a piecewise function composed 

of a set of polynomials applicable to successive intervals of.the 

given points. 

Basically, over any interval two local interpolating polynomials 

are found, and a weighted average is taken, the weight being a 

function of the independent variables, with suitable smoothing 

properties. 

In the case of a one-dimensional curve, two second order 

polynomials could be used in the range xn to xn+l as shown in 

Figure 6.1 

and 

Fn - fitting exactly fn-l'fn,fn+l 

Fn+l - fitting exactly fn,fn+l'fn+ 2 



112 

The function F and F 
1 

are combined by weight function W to obtain n n+ 

the new interpolating function F over the interval [x ,x 1] n n+ 

F = W F + (1-W)F l n n+ 

where W is a function of x such that 

W(xn) = 1 

W(xn+l) = 0 

(dW) = (dW) = O 
dx n dx n+l 

which ensures first and second derivative continuity in F. The 

weight function used to yield the desired smoothness is 

where 
x-x 

n X=-....:.:..-= 
xn+l-xn 

11x 
11x 

n 

The coefficients of the quintic polynomials generated by this 

algorithm for each interval are found as follows: 

First consider the two quadratic polynomials F and F 1 n n+ 

passing through the points a,b,c and b,c,d respectively as shown 

in Figure 6 .1. Then we have, 

b1X + 2 F = al + c1x n 

F + b2X 2 
= a2 + c2x n+l 

Therefore, the polynomial F is constructed by taking the weighted 

average of (6.15) and (6.16) as given in (6.12). This gives 

the 

F = 

quintic polynomial is 

2 F = A + BX + CX + 

(6 .12) 

(6.13) 

(6 .14) 

(6 .15) 

(6.16) 

(6 .17) 



where 

A = al D = 2(a1-a2)+3(b2-b1) 

B = bl E = 2(b1-b 2)+3(c2-c1) 

c = c1-3(a1-a2) F = 2(c1-c2) 

The coefficients in (6.18) are determined from the function values 

given at the abscissae x 1 ,x ,x 1 and x 2• 
n- n n+ n+ 

Now by substituting the given function values in (6.15), we 

obtain 

f n-1 

f 
n 

f n+l 

Similarly, substituting in (6.16), we have 

f 
n 

By solving equations (6.19) and (6,20) for a1,a2,b1 ,b 2,c1 and c2 

and substituting in equations (6.18), we obtain 

A = f D = -3T0 n 

B Dl+R2D2 E ST0 = R(l+R) = 

C = RD2-Dl F = -2T0 R(l+R) 
where 

Dl = f -f n n-1 

D2 = f -f n+l n 

D3 = f -f n+2 n+l 

To = S(l+S)Dl+R(l+R)D3-RS(2+R+S)D2 
RS(l+R)(l+S) 

11x n-1 11x n+l R = and s = 
11x 11x n n 

(R=S=l for equidistant data.points along the x-axis) 

113 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 



114 

The coefficients of the quintic polynomial in (6.21) determine 

uniquely the portion of the curve in the interval [xn,xn+l]. However, 

in order to determine the two end portions of the curve, an extra 

point is assumed to exist beyond each end of the curve as shown in 

Figure 6.2. Effectively, the introduction of these imaginary end 

points would determine the nature of the end conditions for the whole 

curve. Consequently, the 'D' values resulting from the new portion 

must be specified. The algorithm was adapted so that these values are 

made controllable by the user. Thus three forms of end condition were 

considered in order to give the user the choice to vary the boundary 

condition at each end as required. These end conditions are made 

analogous to those suggested by Spath [28] for cubic splines. These 

are as shown below: 

(i) 

(ii) 

(iii) 

End condition 

CLAMPED (* is specified) 

RELAXED 
2 
(~ = 0) 
dx2 

PARABOLIC 
2 
(~ = constant) 
di 

First end Last end 

user must specify user must specify 

the slope (as Dl) the slope (as D3) 

set Dl=D2 set D3=D2 

T
0 

= o T0 = o 

i.e. set Dl=2D2-D3 i.e. D3=2D2-Dl 

since R=S=l is R=S=l is 

assumed assumed 

A subroutine (PIECWS) was written to implement the above algorithm 

which fits a smooth curve to a given set of input data points in the 

x-y plane. 

·Another method was proposed by AKIMA [29]: this is based on a 

piecewise function composed of a set of polynomials, each of degree 



f(x) 115 

b F c Fn+l 
F d n 

I 
a I 

I 

I 

I fn-1 If If If 
I n 1 n+l I n+2 

I I I 
I I 
I I 
I 

X X X X X n-1 n n+l n+2 

FIGURE 6.1: Four Points Fitted with Two Quadratic Polynomials 
F and F 1 n n+ 

f(x) 

~03 

,,Y-- -j U< : 

," 101? I 
-'---t I I 

El 1 I 
I I 

I 
I 
I 
I 

xl x2 x3 

f(x) 

X 

I 
I 
I 

~-"3?-, 
r----"E2 

---.02 

I 01 
---1 

I 

I 

X X X n-2 n-1 n 

FIGURE 6.2: Addition of Extra Two Pointsat the Ends of the 
Curve 



116 

three with slope at the junction points locally determined under a 

geometrical condition. The slope is determined by the coordinates of 

five points, with the point in question as a centre point, and two 

points on each side of it; the resulting interpolation is independent 

of the axes used. 

In both methods each individual polynomial is determined locally 

and additional conditions are needed to fix the two ends. However, the 

Maude method does not evaluate the slope of the curve at each point 

and only uses four·points locally to determine each portion of the curve. 

2.4 Cubic Spline Polynomial Interpolation 

A cubic spline is a piecewise cubic polynomial, having the property 

of continuity of slope and curvature throughout its length. The use of 

cubic splines means that n-1 cubic polynomials are required for the data 

points (xk, f(xk)), k=l(l)n. Since a cubic is the lowest degree 

polynomial which can twist in space and have inflection points, cubic 

splines are commonly used for curve fitting. The use of low-degree 

polynomials reduces the computational requirements and reduces numerical 

instabilities that arise with higher order curves. Also, their use 

corresponds to minimization of the quantity 

J = J (f"(x))
2
dx (6. 23) 

subject to certain boundary conditions. Minimization of J approximates 

minimization of the integral of squared curvature K along the curve, 

which has the important physical justification that a thin flexible 

strip passed through the data points takes a configuration which 

minimises K. 

or 

Consider the cubic spline 

yk = fk (x) 

yk = fk(x) 

(6. 24) 

(6. 25) 



117 

This is the explicit form (non-parametric) of cubic spline function, 

since y is explicitly dependent on x. Therefore, a two-dimensional 

(planar) curve can be expressed as in (6.25), provided that the curve 

progresses from left to right. However, if ~is infinite at any point, 

this simple form would break down and must be replaced by the parametric 

form: 

= Akllt
3 

+ 

3 = Ekllt + 

(6.26) 

(6.27) 

The parameter t can be chosen at will as long as it increases steadily 

as we progress along the curve; but it is usually advantageous to make 

it approximately pro·portional to the arc length from the first point 

to the point in question. The other advantage of the parametric spline 

formulation is that it extends easily to three-dimensional problems. 

In such cases the z-coordinate is parametrically: 

z(t) = Pkt.t
3 

+ Qkt.t
2 

+ Rkllt + sk 

The problem is to determine the coefficients of the above 

equations for each interval, subject to first and second derivative 

(6.28) 

continuity conditions. Now consider an interval [xk,xk_,.
1
]. Six 

possible boundary conditions can be set (Figure 6.3) involving function 

values, slopes and second derivatives at both ends of the interval. 

Using the explicit form (6.25) these are given by: 

Yk = fk (xk) = D k 1 
= fk(xk+l) 

3 2 
+ Ckllxk + Dk yk+l = Akllxk + Bkllxk 

Yk_ = fk_ (xk) = c k 

yk+l = fk_(xk+l) 
2 

... 2Bkllxk + ck = 3Akl1Xk 
(6.29) 

y'' = k f"(x ) k k = 2Bk 

y" = f" (x ) = 6Akllxk + 2 Bk k+l k k+l 

From these boundary equations, the desired coefficients could be 

expressed in terms of the function values and two derivatives. In 



the first derivative form, the coefficients are: 

1 Ayk 
Yk_ + yk+l) -2 (-2- + 

llxk llxk 

1 (3 
llyk 

2Yk. - yk+l) llxk llxk -

Similarly in the second derivative form the coefficients are: 

1 
(y" - y") Mxk k+l k 

1 
Bk = 2 yk 

llyk 
ck = t>xk -

0k = yk 

1 ll ( " + 2y") 6 xk Yk+l k 

Therefore, in order to evaluate the coefficients, we need to 

determine either the first or the second derivatives by using the 

continuity conditions at the interior node points. 

Considering continuity in the first derivative, and using 

equations (6.29), we have 

Y};_l(xk) = Yk_(xk) 

which gives the coupling conditions 

(for k=2(l)n-l) 

118 

(6.30) 

(6.31) 

(6. 32) 

( 6. 33) 

By replacing the coefficients in equation (6.33) from equation (6.31), 

it yields the system of linear equations: 

for k=2(l)n-l, or in vector form: 

[llxk-l 2(llxk-l+llxk) llxk] 

for k=2(l)n-l. 

(6. 34) 

(6.35) 



119 

This represents n-2 simultaneous linear equations for then unknown 

Y" k" The two extra unknowns yl and y~ naturally arise from the absence 

of a continuity condition at the end points x1 and xn. Hence, the 

system of equations can be solved if the two boundary conditions are 

given and thus a unique cubic spline curve is determined. Similarly, 

app~ng second derivative continuity, we obtain n-2 simultaneous linear 

equations for n unknowns in yk as 

(Lix
1 

(6. 36) 

for k=2(l)n-l. 

Again, two extra conditions are required to obtain a unique cubic 

spline curve. 

The boundary conditions required by equations (6.35) and (6.36) 

could take different forms depending on the nature of the problem. 

Hence, the IDF system contains a set of program subroutines for 

generating cubic splines, allowing the user various options for 

specifying interactively the form of the end condition. The forms 

of end condition available at present are: 

(1) Prescribed first or second derivatives 

(2) Cyclic or anticyclic behaviour (30] 

(3) Variable end conditions 

Next let us consider the effect of the various forms of end condition 

on the system of linear equations (6,35) and (6.36). Since these 

equations are equivalent formulations of the same problem either form 

can be used. 



120 

(1) rrescribed First or Second Derivatives 

(i) First derivative end condition. 

In this case the values Yi and y~ at x1 and xn are available. 

These provide the two additional equations needed in (6.35) to solve 

By using equations (6.29) and (6.31) we arrive at the 

following two boundary equations: 
t.yl 

2L'>x y" + t.x y" = 6 (-- - y' ) 1 1 1 2 t.x1 1 

t.y 
t,xn-ly~-1 + 2t.xn-1Y~ = 6(y~ - t.xn-~) 

n-

The set of equations (6.35) together with (6.37) yields a system of 

linear equations whose n<n coefficient matrix ~ tridiagonal, 

symmetric, and diagonally dominant with positive diagonal elements. 

The coefficient matrix shown in (6.38) is clearly non-singular, thus 

guaranteeing the existence and uniqueness of the cubic spline for a 

given data set. 

2t.x1 t.xl 

t.xl 2 (t.x1+t.x2) t.x2 
' ' ' 

' ' ' ' ' ' ' ' 
' ' ' ' ' ' 

' ' ' t,x' 2 n-

' ' ' ' ' ' 
' ' 

' ' ' 
' 2(t,xn_;+t.xn-l) 

' ' 
t.x 1 n-

2t.x 
1 n-

The boundary values could be estimated approximately from the given 

data points defining the curve as 

and y' = 
n 

t.yn-1 
t.x 1 n-

The values of the slopes at both end are declared by the user. This 

(6. 37) 

(6. 38) 

form of boundary condition is sometimes termed by Engineers as clamped 

or encastred. 



121 

(ii) Second derivative end condition 

Two possible ways of specifying the second derivative boundary 

values are open to the user. 

(a) y" and y" are directly declared by the user, 
1 n Equations 

(6.35) are slightly rearranged as shown in (6.39) which has a (n-2)x(n-2) 

tridiagonal coefficient matrix and can be uniquely solved for 

Y" Y" 2 .. • • • · n-1 • 

2 ( llx
1 
+llx

2
) llx2 y" 2 Bl 

llx
2 

2 (llx2+t.x
3

) llx
3 

y" 
3 B2 

.... .... .... 
I ' .... .... .... I .... .... .... = .... .... .... 

' .... ' .... ' 
.... 

.... ' .... .... .... .... 
.... ' ' .... .... I 

llx n-2 2(llxn_;+llxn_ 1) y" B 
n-1 n 

where lly2 llyl 
Bl = 6(-- llx ) -llx1 y" 

' llx2 1 1 

lly lly 
B = 6 ( n-1 _ n-2) -llx y" n llx 1 llx 2 n-1 n n- n-

lly llyk 
and Bk = 6( k+l 

llx ) for k=2(l)n-1. 
llxk+l k 

For the special case where yl=y~=O, the cubic spline is said to 

have natural or relaxed boundary conditions. This natural spline 

ending should be used if for example the data is sinusoidal. 

(b) Sometimes boundary conditions of.the form: 

and vy" = Y" n-1 n 

are useful. In this case, though u and v are arbitrary scalars, 

they are in practice often taken equal to unity, thereby making 

the second derivatives at x1 and xn equal to those at x2 and xn-l 

respectively. This is often termed P-spline (30] in which the end 

segments are parabolic. Another common choice is to take u=v=l/2. 

(6.39) 

(6.40) 



122 

By substituting for Y'J. and Yz from (6. 40) into equation (6. 35), 

we obtain the slightly modified boundary equations: 

((2+u)t.x +2t.x )y"+t.x y" = 1 2 2 2 3 

t.y 
= 6 ( n-1 

t.x 1 n-

This means that the coefficient matrix in (6.39) is only modified 

in two places viz. the element at the top left and the element at 

the bottom right. The existence and uniqueness of cubic splines 

(6.41) 

with this boundary condition is ensured as long as u and v are chosen 

so that the matrix remains positive definite. This is guaranteed if 

't.x2 
- (2 ~ + 2) :; u < 00 

xl 
t.x 2 n-

- ( t.x + 2) :; v < oo 

n-1 

) 
The effect of these different boundary conditions on the shape 

of the curve would be mainly noticeable at the end intervals. 

In all the above cases, the Gaussian elimination process [28] 

was employed to solve the linear system of equations. The elements 

of the matrix and of the R.H.S. are only calculated at the place 

where they are required so as to save storage. 

(2) Cyclic or Anticyclic Behaviour 

(6.42) 

Cubic splines with periodic boundary conditions are particularly 

suitable for the representation of closed smooth curves or a portion 

of a curve which repeats at intervals. 

(i) Cyclic end condition in which the first and second derivatives 

at one end of the curve have the same values as those at the other end. 

Mathematically, these conditions are expressed as follows: 

/i)(x) = 
1 1 

y(i)(x) 
n n 

for i=O,l ,2 (6.43) 



Hence from equations (6.37) we obtain 

2 (llx +t>x ) y"+llx y11+Ax y" 1 n-1 1 1 2 n-1 n-1 

and for k=n-1 in equation (6.35), 

l>y 
t>x 2y" 2+2 (Lix 2+1\x l)y" l+t>x ly'l' = 6 ( n-1 n- n- n- n- n- n- t>x 1 

t>yn-2 
l>X ) 

n-2 n-

In matrix form, the system becomes 

2 (llxn-l +t>x1) t>x1 Llx n-1 y" 1 

t>x1 2 (t>x1 +t>x2) l>x2 Yz 
' ' ' .... ' ' ' .... ' ' ' ' ' ' ' ' ' .... ' ' ' ' ' ' 

' ' ' ' ' ' 
' ' ' ' ' 

l>x 1 n- l>x n-2 
2 (1\xn-2+1\xn-1) y" n-1 

where t>yl t>yn-l 
Bl = 6(-- l>X ) t>x1 n-1 

and Bk = 
i\yk llyk-1) 

for k=2(l)n-l 6(--
1\Xk Llxk-1 

The (n-l)x(n-1) coefficient matrix of (6.46) is not strictly 

123 

(6. 44) 

(6.45) 

Bl 

B2 

= (6.46) 

B n-1 

·tridiagonal and has off-diagonal entries in the corners of the first 

and last rows. This is a cyclic tridiagonal matrix and is positive 

definite. (The associated spline is useful for curves in which the 

first and last points are coincident). This system of equations 

(6.46) is solved by using the Normalised Periodic Tridiagonal Algorithm 

developed by Benson [31] from the matrix factorization method. 

The cyclic end condition can be used without the knowledge of 

the initial slope and the initial data point can be at any location 

on the closed curve. 

(ii) Anticyclic end condition is similar to the cyclic condition 

except that antisymmetry in both slope and curvature is imposed. The 

antisymmetry condition is expressed as 



124 

and 

n (xl) = 

Y"(x ) = 1 1 

-y' (x ) n n 

-y"(x ) 
n n 

} 
In this case, equations (6,36) which involve unknown yk will be used 

as a basis for the system of equations. 

From equations (6.29), we have 

and 

Using the second condition in (6.47), we can write from (6.48) 

Bl = 3An-16xn-l + Bn-1 

Substituting from (6.30) into (6.49), we obtain for k=l 

6x _
1 

6x
1 

= 3 (Mn llyl - 6x llyn-1) 
1 n-1 

and for k=n-1, using (6.36) we have 

6x 
6x 1y• 2+2(6x 2+6x 1)y' 1-6x 2y

1
• 

n- n- n- n- n- n-
= 3 ( n-llly + 

6x 2 n-2 
n-

In matrix form, the anticyclic cubic spline (n-l)x (n-1) 

coefficient matrix is represented as 

2(6x1+6xn_ 1) 6x 1 n- -6Xl 

6x2 2 (6x2+6x1) 6x1 .... .... .... .... .... .... ..... ..... .... 
..... ..... .... 

.... .... .... ..... .... .... .... ' ' ..... 
' ..... .... 

.... ..... ..... 

' ' ..... 
..... .... 

.... ....... 

-6X 6X n-1 
2 (6x '+6x ) 

n-2 n-1 n-2 

(3) Variable end conditions 

The above cubic spline algorithms allow the user to select the 

same (or related) forms of boundary condition at both ends. The 

variable end condition provides maximum control of the spline. This 

enables the user to specify different forms of boundary condition at 

(6.47) 

(6. 48) 

(6.49) 

(6.50) 

(6. 52) 



125 

each end of the curve. This set was suggested in the first place by 

Nutbourne [30]. In this paper the algorithm is based upon recurrence 

formulae which are·derived by relating the properties of the j+l • 
interval to the j interval. The algorithm discussed here is again 

based on a matrix approach which is valid for both the explicit and the 

parametric forms. 

Consider equation (6.36). When it is applied recursively at all 

interior points (k=2(l)n-l) the resultant coefficient matrix has 

·dimension (n-2)xn as shown in (6.53). 

End lr- ? - ,..., 
'ii -

yl 1 

t.x2 2(llx2+llx1) llx1 Y2 B2 

llx3 2 (llx3+t.x2) t.xl Y' B3 3 
' ' ' ' ' ' ' = ( 

' ' ' ·' ' ' ' ' ' 

6. 53) 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 2(t.xn-l:;.t.xn-2) t.x 
n-1 

t.x 
n-2 

B n-1 

2'- ? - .Y,' Jl -End 
n n 

where k=2(l)n-l 

The strategy of this algorithm is to construct the two boundary 

equations required to augment equations (6.53), Each boundary equation 

is formed independently using a particular end condition. Hence, the 

algorithm gives the user the ability to have full control over the 

form of the end condition required. As will be seen later (next 

section), this capability is provided through the appropriate selection 

of menu options. This variable end condition is.sometimes desirable if 

only a few points are known or if physical constraints require accurate 

control of the curve shape at the ends. 

The forms of the end conditions provided to set up the boundary 



126 

equations are given below: 

(i) Clamped. 

The first derivative is specified to have a certain 

value as mentioned before. This would simply mean that the two boundary 

equations are: 

Thus, in matrix form: 

rl 0 
-

' ' ' ' ' ' ' ' ' ' 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

0 1 
- -

(ii) Natural or Relaxed. 

and 

r I 
yl 

I 
I 
I 
I = 
I 
I 
I 

yl 
- n_ 

yl = B 
n n 

8-
1 

I 
I 
I 

I 
I 
I 

I 

B 
1!. 

This is defined as y"(x1)=y"(xn)=O. 

Using equations (6.29) and (6.30), we obtain the following two 

equations: 

and at x=x 
n 

In matrix form: 

-1 

' ' 
' 
' 

-

0.5 

' 
' ' 
' ' 

' 
' ' ' ' ' ' ' ' 

yl + 2yl 
n-1 n 

- r ~-
r 1 

yl 1.5x~ 
xl 

lly 

I I 
I I 

' I I 
' I = 

I ' I 
' I 

' ' 
I I 

' I ' I 

1 2 yl 
llyn-1 

J n 3 x lix 
- n-1_ 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 



127 

(iii) Parabolic 

This requires that the second derivative is constant 

over the entire end interval. That is, 

d2 
~ = constant or 
dx2 y"(x ) = y"(x ) 1 2 

Hence, using equation (6.29) and (6.30), we have 

i.e. 

Similarly 

In matrix 

'1 

' 

-

2B
1 

= 6A
1 

~x1 + 2B
1 

A = 0 
1 ~y 

y' + y' = 2 __ 1 
1 2 ~x1 

for the other end, we have 

y"(x ) = y" (x ) n-1 n 
~Yn-1 

y~-1 + y' = 2 n ~X n-1 

form, we get 

1 - -,-
yl 

' ' I 

' ' I ,, 
' ' ' I 

' ' " I 

' ' ' I 
' ' ' ' I 

' " ' ' 
I 

' 

1 1 y' n - I,..-

r- y1 -
2-

~xl 

I 
I 

= I 
I 

I 

I 

2 
~yn-1 
~X 

'- n-1 

Just to emphasise that the above end conditions do not have to be 

identical at each end of the spline, any permutation of the above 

three sets of end condition can be used without affecting the 

tridiagonal nature of the coefficient matrix. However, the following 

end condition would produce a non-tridiagonal matrix. 

(iv) Q-spline. 

This requires that the two adjacent segments at 

either end have a common cubic equation. This means that the second 

derivative at the end point and next two points are co1linear [30]. 

(6.59) 

(6.60) 

(6.61) 

The Q-spline predicts the final curvature from the two adjacent values: 



128 

this use of higher-order information would be useful in the absence of 

an alternative choice. 

Consider Figure 6.4. From the similarity of the triangles a c d 

and a b e we have the following equation: 

[y"(x )-y"(x )]t.x = [y"(x )-y"(x )]t.x 2 1 2 3 2 1 

Substitute into equation (6.62) from equations (6.29) and (6.30); 

we obtain 

t.xl 
yl+(l-(-))yl 1 t.x2 2 

and similarly for the other end 

t.x t.x 

2 
t.x (t.yl 

1 

t.x 

(6. 62) 

(6. 63) 

( n-2)2y 1 +(l-( n-2)2)y 1 +y 1 = 
- t.x n-2 t.x n-1 n n-1 n-1 

2 (t. ( n-2)21'. . ) 
t.x yn- t.x Yn-1 (6.64) 

n-1 n-1 · 

In matrix form: 
r t.x t.xl 2 

- r - r -

1-(-1)2 yl B1 1 -(~ 1 
t.x2 2 

' t.x2 2 (t.~2 +t.xl) t.xl ' yl B2 
' 2 ... ' .... 

I ' ... ' 0 I ... ' ' ..... I I ..... = ' ' ..... 
·' ' ... ' I I 

' ' ' ' '- I 

' I 
' .... ' ' I 

o, .... .... 

' I I 
' ' ... 

' .... I 

' 
6x 1 2(6xn_1+t.xn_ 2) t.x n-2 y~-1 B 

n-1 n-

(6.65) 

t.x t.x 
-( n-2)2 l-( n-2)2 1 yl B 6x 1 t.x 1 - ._n - ._n -- n- n-

where 
2 f>Xl 3 

B1 = -(6y -(-) 6y) t.x1 1 6x2 2 ' 

and B = k 
k=2(l)n-l. 

Again the Q-spline can be used at either or both ends. However, 

when this ending is used, it would produce a non-tridiagona1 matrix, 

and the tridiagonal Gaussian elimination used so far is no longer suitable. 



y=f(x) 

y"=f" (x) 

I 
I 

y' 
k 

y" k 

/ 
ly 

k 
I 

" yk+l .-- ----

FIGURE 6.3: Fitting Cubic Spline Polynomials 

y" lies on straight line 

X 

L-------~----------~~----------~--~x 

FIGURE 6.4: Q-Spline End Condition 

129 



130 

A modified version of Gaussian elimination developed by Evans [32] for 

.quindiagonal systems is used for solving the above equations with all 

possible combinations of boundary conditions. The algorithm was 

adapted to avoidanyunnecessary computation and storage due to zero 

elements of the two outer diagonals. 

3. THE USER INTERFACE 

3.1 An Overall View of the System 

The system described here allows a user to enter a set of data 

points into the computer either via a keyboard or from an on-line file 

(e.g. disc file), and interactively to specify .various ways of fitting, 

editing and displaying the curve on the Tekronix 4010 storage tube. 

Thus, the basic problem which is handled by this system is one in which 

the ~ser presents the machine with a finite set of data points and then 

manipulates these points until he obtains some curve which is satisfactory 

to him. The system may also be used as a tool to examine the problem 

of determining the minimum number of points needed to be able to 

represent a given input curve. It allows great flexibility in making 

changes in both input data and output curve interactively. Other uses 

are also possible as will become apparent in the subsequent discussion. 

When designing an interactive system, a very important consideration 

is the appearance of the system to the user. The system should be designed 

so that any user can understand what is happening and what is expected 

of him at each step. The development of an effective but simple man

machine interface is sometimes referred to as the 'human engineering' 

aspect of the system. Although the IDF system is a special purpose 

interactive system used by a selected group of users, it is designed 

with the above aim in mind. As a simple example, wo~ds used in menu 

options should be chosen so as to convey the same meaning to all varieties 



131 

of user and yet the message should be concise. The system provides 

checks on user input and reminders or instructional displays on user 

requests. Consequently, the user's interface is intended to provide 

the most natural and simple dialogue with the system. 

In the design of the IDF system, the user's needs are hopefully 

being anticipated by presenting him with different options in the form 

of a menu. Only those options (actions) that are legitimate at a 

particular step in the data-fitting process are presented for user 

selection. This avoids the entry of illegal requests which may 

require elaborate error procedures. 

Essentially, from the user point of view, the IDF system 

cohsists of a number of logically connected display images as 

depicted by the flowchart in Figure 6.5. Conceptually, the 

data-fitting represented by the various displays shown can be 

described as consisting of three basic phases: 

(1) Input specification, which includes the entry of 

data points and editing. 

(2) Numerical Computation required to produce the 

smooth curve. 

(3) Display of the resulting curve and other relevant 

information. 

Each stage would have a number of displays associated with it 

(some are optional) as illustrated by the dotted lines of 

Figure 6.5. 

Most displays in the system show the following menu 

options:-

The system response to each individual option is described 

+NEXT 
+PREVIOUS 
+HELP 
+RESTART 
+EXIT 



START 

,--- -i- (i)t 
I I 

INTRODUCTOR ---.t-r I - -
I [1] 

2) 
I PARAMETER I I 'I ENTRY I I I CHOICE OF [ 6] NUMERICAL I I 

I ALGORITHM I 
I [2] I 
I 1 I 

I 
I DATA I I 

ENTRY 
I I I [3] CALCULATE I 

I I 
FIT I 

I I 
DATA I I 

TABULATION 1- I ---- ----
I 
I [ 4] I 

I 
I I 
I DATA I 
I EDITING 
I [5] I 

I 
,j. I 

I POLYGONAL If- I 

I PLOT 
[6] I 

I , ______ 
-- I 

HELP 

FIGURE 6.5: IDF Displays Flowchart 

,_-- ---
I (3) 

I 
I 
I 
I 
I 
I 
I 

I 

I 
I DISPLAY 
I CURVE FHl 
I 

I 

I 

I 

I 

I 
I 
I 

I 

I -- -+ -

-- - - 1- --
I 

CURVE I 
DESIGN DIS- I 

PLAY I 
I 

TABLE OF 
INTERPOL!II'E I 
POINTS AND 
rOEFFICIENT I 

ERROR REFE- I 

RENCE CURVE I 
DISPLAY I 

CURVE I 

t--1 ZOOMING I 

DISPLAY ' 
I 

CURVE JOIN I 
jE-; DISPLAY 

I 

I 
CURVE I 

'---; SUPERIMPOSE I 
DISPLAY 

I 
I - - - - - - -

- e-- .... 
"' N 



below: 

(a) Move onto the next display. 

The current display is erased and the next one in 

sequence is brought up on the screen. 

(b) Move back to the previous display. 

The current display is erased and the preceeding 

one is called. 

(c) On-line help. 

When the user is seeking immediate advice on the 

system, this option would enable him to obtain the 

answer without the need to consult an external 

source. The resulting display HELP (Figure 6.8) 

provides the user with the following: 

(i) It describes briefly the functions of the 

various displays in their logical sequence 

as given in Figure 6.5. 

(ii) Each display in the list is made user 

selectable in the same manner as that of 

a menu option. Hence, it permits the user 

to transfer control to any point within the 

data-fitting process, and the appropriate 

display is brought up on the screen. 

However, the system does not allow transfer 

of control to points in the process that are 

not yet meaningful. For example, if a fit 

has not yet been computed, a transfer to 

'curve fit' display is meaningless. This 

branching out facility also enables the 

user to recover the state of the process, 

133 



if the system terminates due to program 

error or user's unexpected action. The 

recovery is simply accomplished by keying 

in the command 'HELP' which would set up the 

help display, and the user may resume thereafter. 

(iii) It also includes an option to produce a display 

containing the definition of all menu options 

used in the system (Figure 6.9). 

(d) Reset the current display to its initial state of 

134 

entry. ... !+RESTART I 
(e) Terminate the interactive session and prepare the 

system ready for next user. 

These command menu options are used for directional control 

over the disp~ay sequence, giving the user the justifiable feeling 

that he is in charge of the system operations. They allow the user 

freedom to progress through the program normally or go back and 

review any previous display. This relationship between man and 

terminal must be such that he finds its use natural, pleasant 

and efficient. 

Other specific options·appear in the display menu corresponding 

to the role of that particular display in the process. These 

options will be described in some detail in the next section. 

When an option is chosen from the menu, an arrow appears 

next to it, to indicate that a selection has been made. However, 

the option is not executed until the user has confirmed his choice 

by pressing the key Y(YES) in response to the message 'CONTINUE Y/N?'. 

This allows the user to change his mind and prevents inadvertent 

execution of undesirable options. 



3.2 Function of the Various Displays 

In what follows we describe the function of the displays 

corresponding to each of the boxes of the flow chart of Figure 6.5. 

This is illustrated by photographic reproduction of the screen as 

135 

seen by the user during a typical interactive session at the terminal. 

The snapshots will include examples from both the parametric and the 

explicit methods. The numbering used in the following paragraphs is 

identical to that of Figure 6.5. 

[1] Introductory 

This is the first display to appear on the screen (Figures 6.6 

and 6.7); it briefly describes the system and gives some general 

information regarding menu options. This initial display would be 

important for first time or occasional users and should be read 

carefully before proceeding to the next display in the sequence. 

In addition, the help displays (Figures 6.8 and 6.9) may also be 

regarded as supplementary to the introductory display. These 

displays effectively form an on-line user's guide to the IDF system. 

(2] Choice of numerical algorithm 

This display contains a list of currently available algorithms 

(Figures 6.10 and 6.11). By means of the cross-hair cursor, the 

user is able to select a suitable algorithm in conjunction with a 

particular type of end condition (see section 2.4). The boundary 

values will be declared in the parameter entry display. 

The modular design of the system permits the incorporation of 

other algorithms with minimum programming effort. 



136 

FIGURE 6.6: Introductory Display (Explicit) 

FIGURE 6.7: Introductory Display (Parametric) 



137 

FIGURE 6.8: The HELP Display 

FIGURE 6.9: List of the Menu Opt ions 



FIGURE 6.10: Choice of Numerical Algorithm and End 
Condition (Explicit) 

FIGURE 6.11: Choice of Numerical Algorithm and End 
Condit:i:on (Parametric) 

138 



139 

[3] Data entry 

After choosing the desired algorithm, the next step is to 

enter the data points into the system. There are two types of 

data source in this system. The first is external data which 

is entered either directly from the keyboard or a named disc 

file. The second is internal i.e. data from the immediately 

preceding problem. The latter is useful when slight variations 

of data or changes of algorithm/boundary condition are required. 

The user is presented with a 'data specification' menu 

(Figures 6.12 and 6.13) which contains options on the state, 

dimensionality and medium of data entry. The state of data 

options are: 

(a) Data is to be entered for the first time. 

(b) Data is to be used from the immediately 

preceding program run. 

The dimensionality is applicable in the case of parametric 

methods. 

(a) Plane curve, requiring (x,y) data. 

(b) Space curve, requiring (x,y,z) data. 

Data medium entry 

(a) Data is entered at the keyboard by typing the x-

coordinates separated by commas followed by the 

y-coordinates (and z-coordinates if applicable). 

(b) Data may also be entered from an on-line file, 

which must be named. This data file would have 

been created previously by a user program in the 

form of consecutive x,y pairs (or x,y,z triples). 

+1+2-DIMENj 

+1+3-DIMEN I 

+j+KEYBOARD I 



140 

FIGURE 6.12: Data Entry Specification (Explicit) 

l'IGURE 6.13: Data Entry Specification (l\1 rametric) 



141 

[4] Data tabulation and editing 

Once the data has been entered, the '+NEXT' display in the 

sequence presents the user with a table of the stored data points 

(Figure 6.14), This allows the user to check the input for 

possible errors and correct these before proceeding to the next 

display. 

Often the user may also wish to alter the input data points 

in some way. These alterations may include, for example 

(1) Selection of a subset of the data points. 

(2) Insertion of new data points. 

(3) Changing the order of the points in the set. 

(4) Modification of individual values. 

Data manipulation options relating particularly to this display 

are: 

(a) Data point editing. 

This generates an auxiliary display, containing a 

second level of menu options, permitting the user 

to correct, delete or insert data points in the 

existing set: 

An example of such use is illustrated in Figure 6,15, 

where two new data points have been inserted. A 

revised table of the data is shown in Figure 6.16 

+CORRECT 
+DELETE 

-r +INSERT 

which appears immediately after the editing operations. 

(b) The new data set may be stored on a named disc file 

using this option. The name of the file is entered 

from the keyboard in response to the system request 

1 FILE NAME?' 



FIGURE 6.14: Table of Input Data Points 

FIGURE 6.15: Data Editing with Insertion 

77~C.'i_i.rU: ~.16: '":'-:!.ble of t)3:~--~c:. P.< :~ .. t··~ 

'Jp-:::rnti.sr:. 

142 

; r 



143 

(c) This would sort the data in ascending order of x

values. It may be necessary, for example, when 

using the explicit form y=f(x), for which the x

data must be monotonically increasing. 

+I +SORT-X I 

[5] Polygonal plot 

This is an optional display which is included in the system. 

It can be ignored by passing control to the '+NEXT' display. 

It allows the user to produce a graphical plot of the input data 

points joined by a sequence of straight lines. Note that this is 

equivalent to fitting polynomials of lowe.st possible degree 

(y=A+Bx) to consecutive pairs of points. Although the oscillation 

of the interpolating function here is minimal, the first 

derivatives at the interior points are discontinuous, and the 

curve of course is not smooth. However, the purpose of this 

display is just to give the user an initial feel of the curve 

shape. It also allows him graphically to re-check the 

correctness and order of the input data before invoking the 

smoothing algorithm. 

The curve (in this case the polygon) is drawn within a 

pre-defined viewport. However, the limits of the plotting area 

can be controlled by the user interactively. The procedure 

would involve the use of the following options: 

(a) This would allow the user to set up the limits +l+DISP.ORG.\ 

required for the display axes, by typing the minimum 

and maximum values. As shown in Figures 6.17 and 6.18, 

the user is already informed about the corresponding 

data limits prior to his action. In this way he has 

control of the display proce~s. 



144 

FIGURE 6.17: Polygonal Plot of a Single-Valued Curve 

FIGURE 6.18: Polygonal Plot of a Multi-Valued Curve 



{b) When this option is selected, the actual drawing 

operation would take place. The input data points 

are plotted as plus {+) signs as shown. Note that 

if this option is selected without prior use of 

option (a), then the viewport limits would by default 

be set equal to the input data limits. 

[6] Parameter entry 

After the data has been entered, and then modified as 

desired, the '+NEXT' display on the screen is the parameter 

entry, shown in Figures 6.19 and 6.20. The user is provided 

here with a 'parameter specification' menu containing various 

options on each parameter. These are: 

(1) The data type. 

In pract;ce, the user could encounter a situation where 

the required curve has known discontinuities of slope or 

curvature at certain points. This situation is handled by the 

present system by allowing the user to partition the given set 

of points into several subsets (up to 5 at present) at the points 

of discontinuity. The subsets are specified separately at this 

stage. Consequently, the system would produce a smooth curve 

for each segment and join them internally so that the user is 

able to display the complete joined curve later. 

The parameter options provided are: 

(a) For a complete (non-partitioned) set of 

145 

data points. +I +COMPLETE 

(b) For partitioned data. The first subset FIRST-+ +SUBSET 

must be recognised separately for 

building the complete joined curve. 

Any other subset is identified as a 

subsequent subset. 

SUBSEQUENT +SUBSET 



FIGURE 6.19: Parameter Entry Display of Cubic Spline 
(Explicit) 

FIGURE 6.20: Parameter Entry Display of Cubic Spline 
(3-D Parametric): 

146 



(2) Choice of intermediate points. 

Graphical output devices for digital computers can only be 

used to a given (raster) resolution. A curve is drawn by 

specifying a series of raster points which approximate the curve, 

or by the start point of the curve and a series of increments. 

In either case the curve is represented by a series of straight 

.line segments. 

This option determines the number of straight line segments 

required in each data interval to draw an acceptably smooth curve. 

In order to determine this, three choices are provided: 

(a) The number of points per interval is specified via 

the keyboard. This number would be the same for 

each interval along the curve. However, the use of 

the same density of points in each interval can 

sometimes produce unsatisfactory results, since 

segments with higher curvature obviously require 

more points than others. 

147 

(b) This employs a built in algorithm to calculate the 

number of points necessary for each interval. This 

method is based on using the chord length of each 

interval relative to the total funicular polygon of 

the data points. The algorithm sets internally an 

upper limit to the total number of points (i.e. 

number of line segments required to draw the curve. 

A limit of 200 points is chosen to give a reasonable 

distribution of points over the display region 

(viewport) and avoids damaging the screen. A simple 

formula was derived for this to check the computed 

number of intermediate points, 

-+-I+DEFAULTj 



148 

200-N 
NI :;; N-1 (6. 66) 

where N is the number of data points. Typical values 

are given by the Table: 

N 2 10 50 lOO >lOO 

[max NI] 198 21 3 1 0 

(c) This choice allows the user to select visually the +!+CURSOR I 
intermediate points by means of the cursor, with 

full control over the smoothness of the trace. 

(3) Select the end condition. 

The algorithms listed in 3.2 [2]-Figures 6.10 and 6.11 

allow different ways of selecting the boundary conditions. In 

the most general case ('variable end condition') the available 

boundary condition options, as described in section 2.4, are + +CLAMPED 
+RELAXED 
+PARABOLA 
+Q"SPLINE 

The user must indicate the appropriate menu entry specifying 

the boundary condition for each end. In the example shown in 

Figures 6.19 and 6.20, the same form of condition is used at 

both ends. In general, however, the condition at end 1 can be 

specified independently of that at end 2, so that two different 

forms of condition are possible (e.g. '+CLAMPED' at end 1 and 

'+RELAXED' at end 2), 

Once the user has selected the required-parameter, the 

next step is to invoke the numerical algorithm to compute the 

interpolated curve by selecting the option '+NEXT' in the main 

menu. At this stage, the system message 'PLEASE WAIT, FIT IS 

BEING COMPUTED' is displayed since the number crunching involved 

would be relatively time-consuming (See Chapter 5). 



149 

[7] Curve Fit 

This display appears on the screen when the interpolated 

curve has been computed. The curve is drawn in the same way as 

illustrated in the polygon plot using the menu options '+GRAPH' 

and 1 +DISP.ORG.'. In the parametric case, three menu options 

are provided for this purpose, namely + +XY-GRAPH 
+XZ-GRAPH 
+ZY-GRAPH 

in order to enable the user to display an orthogonal projection 

of a three-dimensional curve. Examples of a two-dimensional 

curve are shown in Figures 6.21, 6.22 and 6.23, employing the 

. explicit and the parametric form respectively. 

A wide range of menu options are provided in this display 

for anticipating most user requirements in interpreting the 

resulting curve. These options enable the user to interrogate 

the computed curve or extract further information either in 

tabular form or by comparison with other related curves. 

(a) Axes marking. 

This tags the lines enclosing the viewport with 

scaling marks. Each line is divided into ten equal 

parts, hence producing a linear scale along the 

display axes. The actual plotting axes are displayed 

if the origin (0,0) falls within the defined window 

(Figure 6.2lb). The window limits are displayed at 

the bottom right-hand corner of the screen. 

(b) Reading the coordinates of a point. +I +COORDS ·I 
If the user requires to know the coordinates 

of a specific point in the data window, the cross-

hair cursor is located at the desired point. Then 

by pressing any key on the keyboard, the coordinate 



FIGURE 6.2la: A Two-dimensional Smooth Curve using the 
Explicit Form 

FIGURE 6.2lb: Curve Fit Display Showing the IJse of 
1 +AX-MARK 1 and 1 +COORDS 1 Optio·1s 

150 



FIGURE 6.22: A Two-dimensional Smooth Curve Using the 
Parametric form 

FIGURE 6.23: Same Data Points as Fig.6.2~ but in a 
Different Order 

151 



of that point would be displayed (Figure 6.2lb). 

This facility could be useful, for example, if the 

user wished to int~oduce other data points and re

examine the curve again. 

152 

(c) Saving an inte~olated curve on disc file -+SAVE I 
This option is used to store on a disc file for 

subsequent use the complete set of scaled points 

representing the smooth curve. The name of this file 

is entered through the keyboard in response to a 

system prompt. 

{d) Drawing a curve from a named disc file. +!+REDRAW I 
Interpolated curves previously stored on disc 

file can be redrawn for viewing together with other 

displayed curves. This facility may have a number 

of uses, in particular when the user wishes to 

investigate the effect of applying different forms 

of end condition. 

(e) Magnifying part of the screen. +j+ZOOM 

This is used to enlarge part of the screen. 

The zooming window is defined interactively by cursor 

input of any two diagonally opposite corners (Figure 

6.24a). Once this has been accomplished, the program 

will perform the necessary clipping and display the 

zoomed part (Figure 6.24b). 

(f) When this option is selected, the user will be +I+TABLE I 
presented with an ordered tabulation of the inte~olated 

and input data points (Figures 6.25a and 6.2Sb). The 

menu of this tabular display contains the following 

additional options: 



153 

FIGURE 6.24a: Using the '+ZOOM' Option 

FIGURE 6.24b: Display of the Zoomed Portion 



FIGURE 6.25a: Table of the Computed Data Points on the 
Smooth Curve of Fig. 6.2la 

FIGURE 6.25b: Table of the Comp~:tcd Data Point•on the 
Smooth Curve of I •,:. 6.22 

154 



155 

(1) This provides the user with a table of values + I+COEFFNTj 

of the computed polynomial coefficients for each 

data interval (Figures 6.26a, 6.26b and 6.26c) • • 
(2) Roll-by of tabular information. 

Sometimes it is not possible to accommodate 

the whole table on the available screen area. 

These options are used to control the display of 

a large numerical table (e.g. data points) by 

scrolling forward or back through the table page 

by page. 

(3) Hardcopy print of the numerical table can be 

+ +FORWARD 
+BACKWARD 

+I +HARDCOPYj 

obtained on one of the existing teletypes if this 

option is selected. This facility is easily 

extended to other hardcopy devices. 

(g) This option is specifically used for joining ..., +JOIN I 
partitioned curves, which have been previously defined 

in the parameter entry display. When the option is 

first selected, the system will internally append the 

data points representing the current displayed curve to 

the other segments, providing the user has already 

specified the appropriate data parameter. If the option 

is picked up for the second time, new display will be 

brought up on the screen, allowing the user to draw the 

complete joined curve. The two smooth curve segments 

shown in Figures 6.27a and 6.27b have been joined to 

produce the curve shown in Figure 6.27c, which includes 

an internal slope discontinuity. Figure 6.27d represents 

an enlargement (zoom) of the region surrounding the 

discontinuity point. 



FIGURE 6.26a: Computed Polynomial Coefficients of Fig.6.2la 
for Cubic Spline 

FIGURE 6.26b: Computed Polynomial Coefficients of the Cubic 
Spline (Parametric) for x of Fig.6.22 

FIGURE 6.26c: Computed Polynomial Coefficients of the Cubic 
Spline (Parametric) for y of Fig.6.22 

156 



FIGURE 6.27a: Segment 1 of the Joined Curve 

FIGURE 6.27b: Segment 2 of the Joined Curve 



FIGURE 6.27c: Display of the Joined Curve 
(Segment 1 and 2) 

FJ~URE 6.27d: A Zoomed Portion of t.hc ... 7oin~t! Cul~ve 
Near the D!.sc0ntbuity 

158 



159 

(h) A multiple display of a group of related curves can be ~+NGRAPH j 

generated using this option (Figure 6.28). For this 

purpose, every time. a smooth curve of the group is 
• 

produced this option is selected in order to inform 

the system of our intention. The superimposed curve 

display is generated when this option is immediately 

re-selected. The curves are labelled with consecutive 

numbers according to their generation sequence. Two 

additional options are provided: 

(1) It allows the user to remove a particular curve +!+DELETE I 
from the group. This is accomplished once the 

curve number has been typed in. 

(2) This erases the unwanted curve from the screen. +j+REFRESHj 

(i) When this option is selected, an auxiliary display is +j+CRV.DES.I 

generated. This display enables the user interactively 

by cursor input, to select intermediate points in each 

interval. By this means, the user is able to control 

the length of the elemental line segments, so that 

intervals with higher curvature would have shorter 

segments. Two examples of such displays are shown in 

Figures 6.29a and 6.29b. The use of this display can 

be exploited in two basic ways: 

(i) Starting from the displayed data points, the curve 

can be traced by progressing from one interval to 

another and drawing the line segments. 

~i) An existing traced curve can be visually improved 

if necessary by reconstructing individual segments. 



FIGURE 6.28 Multiple Display of Several Curves 

FIGURE 6.29a: Interactive Choice of Intermediate Points 
by Means of Cursor (Explicit) 

160 



The operations required to trace the curve are basically 

equivalent to the editing process i.e. delete or insert 

data'points. In other words, this is effectively 

graphical editing of the displayed curve. For this 

purpose two options are provided: 

161 

(1) Once this is selected, the cursor control is +j+ADD.PNTl 

returned back to the user enabling him to select 

intermediate points. This is accomplished by 

positioning the cursor at the desired intermediate 

point and by pressing a key (e.g. space bar) on the 

keyboard. The program would respond by drawing the 

desired line segment in that interval. In this way 

the user can progressively trace the curve or add 

new line segments between two existing points to 

obtain the required smoothness. 

(2) When. this option is selected, the user can use the +I+DEL.INTj 

cursor to point at a required interval and virtually 

3.3 Examples 

remove the entire line segments within this interval. 

The line segments are physically erased by using the 

'+REFRESH' option. 

Several examples of interpolated curves are illustrated in 

Figures 6.30-6.33 to demonstrate the effects of the various algorithms. 

(1) Figures 6.30a and 6.30b display the smooth curves passing 

through the same data points using the global and piecewise 

quintic polynomial interpolation methods. It can be seen 

clearly that the former method produces undesirable 



FIGURE 6.30a: Interpolated Curve using a Global 
(Newton) Polynomial 

FIGURE 6.30b: The Same JJata Points as b. "ig.6 .. 3Ca 

162 

Using Pieccwisc \~u.in"~;:,(: Po:~ .. D.orti(_:.~ ::l~·.,·~Tc·"' .·:;t:_~·n. 

(Maude) 



FIGURE 6.31: A Two-dimensional Spiral Curve with Relaxed 
End Condition 

FIGURE 6.32a: Cyclic End Condition 

FIGURE 6.32b: Anticyclic End Condition 

163 



FIGURE 6.33a: Three-dimensional Curve Projected on 
YX-plane 

FIGURE 6.33b: Three-dimensional Curve Projected on 
XZ-plane 

Threc-d:inensio:uJ_ '. 1 Y/2 

zy -r:J.n:r;r: 

. '~· 

164 



165 

oscillations in the curve in particular near the end points. 

(2) Figure 6.31 shows the result of using the two-dimensional 

parametric splines with natural (relaxed) end condition for 

a multivalued spiral function. 

(3) Figures 6.32a and 6.32b illustrate the use of two-dimensional 

parametric cubic splines with cyclic and anticyclic end 

conditions respectively. 

(4) Finally Figures 6.33a, 6.33b and 6.33c arise from the use of 

three-dimensional parametric splines with specified parametric 

slopes at both ends. The parameter entry display for this is 

shown in_ Figure 6.20. 

4. PROGRAM DESIGN 

The program development of this system was initially carried out 

under RSTS-11 time-sharing system using BASIC-PLUS. At that time no 

proper graphic software was available locally except a small set of 

primitiveroutineswritten in BASIC-PLUS to drive the Tektronix 4010. 

Since then UNIX has become operational and the LIGHT package developed; 

the entire system was rewritten in UNIX-FORTRAN and enhanced further 

by improving its design features. The system has been designed and 

implemented in a modular manner, so that additional capabilities can 

be easily incorporated; for example, new interpolating algorithms or 

some additional display images that would aid user interpretation of 

the results. Complete Fortran listings of the individual modules are 

presented in Appendices 2.2 and 2.3. 



166 

4.1 The Interactive Display Routines 

In designing such systems we are faced with a man-machine inter

action situation involving all the usual 'ergonomic problems. 

A program (routine) is termed to be interactive if it depends for 

its successful completion on the establishment of a dialogue between 

user and machine. Therefore, the designer has to resolve the problem 

of structuring the program so that a dialogue will take place. The 

form of this dialogue will be written into the program as an algorithm, 

the alternatives within that algorithm being selected as the result of 

information either supplied by the user, or deduced within the program 

itself. In an interactive program certain decisions involve a simple 

binary choice (yes or no), whilst others require the selection of a 

subset of actions from a given set of alternatives. What we have, then, 

is a complex algorithm involving man and machine at various stages. 

This will req~ire the breaking down of each stage into its constituent 

parts and looking at the ordering of these parts. Following this line 

of thinking, the IDF system basically consists of a number of inter

active display routines which generate the display images and provide 

the interactive capability at various stages of the data-fitting 

process illustrated in Figure 6.5. 

The experience of developing these routines under-lined the value, 

indeed the necessity, of an extensive use of subroutines. Although 

the complete package was written single-handed, the independent nature 

of the subroutines would have permitted a group of programmers to write 

and debug individual routines in parallel, once the definitions had 

been made. 

Program communication between these routines involves the normal 

use of the subroutine parameter mechanism or a COMMON data area. The 

interactive facilities of individual routines may be extended or modified 



167 

without affecting the others, providing each interface remains the 

same. Every interactive display routine sets up its own menu. The 

items (options) of the menu represent the various capabilities that 

a particular routine is programmed to handle. The text of the menu 

is defined as a hollerith string of characters in an array (e.g. MNTXT), 

declared as LOGICAL*!, in a DATA statement. This array type declaration 

in UNIX-FORTRAN resembles the BYTE type declaration used in DOS-FORTRAN (33]. 

It is often necessary to define a second menu in certain display 

routines so that a group of independent options are set in a separate 

menu which in turn is distinguished from the main menu (e.g. in parameter 

entry). This avoids the display of a large number of menu options in a 

single menu, which could·confuse the terminal user. 

The routine, having set the various default values, clears the 

screen (CALL TXCLER) in preparation for the next display image. 

Following this, it outputs the display title and often some information 

text instructing the user briefly on the various options or messages 

required for keyboard entry •. The menu is then displayed by issuing 

calls to the LIGHT menu handling routines, for example: 

CALL MNOPEN(875.,715.,1) 
CALL MNDISP(MNTXT,S,lO,l) 
CALL FRAME(870.,732.,5) 
CALL MNPICK(J,ICHAR,MNO) 

As a result the user is prompted by the immediate appearance of the 

' cross-hair cursor on the screen giving him control over the execution 

path of the routine through the selection of menu options. The user 

would now be ready to make his own choice from the menu, while the 

interactive routine is waiting to respond. The routine distinguishes 

between the two menus, when necessary, from the returned integer value 

in MNO(l or 2). The routine treats the two menus in slightly different 

ways. For example, all options picked up from the main menu must be 

confirmed by the user. This avoids or at least minimises incorrect 



168 

menu selection, which may cause the deletion of intermediate data files 

or overwriting the COMMON data area. On the other hand, options 

selected from the second menu have only a local effect and need not be 

confirmed. Their effect can be cancelled by selecting alternative 

options. 

As soon as the user has confirmed his selection, the routine 

branches to the appropriate code (or calls the appropriate routine) 

depending on which option of the menu is picked up. This simple transfer 

of control is often effected by a computed GOTO statement e.g. 

GOTO(l0,20,30 •••••• ),J 

where J is the option sequence number within the menu. Therefore the 

routine may invoke some special purpose subroutines to perform certain 

tasks which correspond to the user's request. If, however, the user 

has selected an option that requires a new display image to be brought 

up on the screen (e.g. '+NEXT' or '+PREVIOUS'), then control is returned 

to the main program calling sequence. 

4.2 Program Module 

The IDF package is divided into several program modules, each 

module being autonomous and self-contained. The reason is that the 

size of the core currently available is not large enough to incorporate 

the entire package as a single executable module. In fact, a constraint 

which was imposed at an early stage of the design was the ability to 

run the system on a machine having 16K words of user area. This of 

course improves the portability of the package. 

The absence of a direct overlaying scheme under UNIX, has led us 

to employ the simple facility provided by the LIGHT package through 

the subroutine call 'OVRLAY' discussed in Chapter 5. 



169 

Basically, each module has its own main program segment (driver 

program) monitoring user interaction with the system. This in turn 

controls the flow of logic between a set of display routines. The 

main program also passes control to other modules when required via 

the overlay routine, e.g. CALL OVRLAY(MODL2). Where MODL2 is the file 

name of the module which is to be brought from the disc into core and 

executed. Therefore, at any one time during the running of the system 

only one module is occupying the user area. A typical organisation of 

such a modular structure is illustrated in Figure 6.34. 

The organization of the package into separate modules, each 

independently performing a given set of tasks, has greatly simplified 

the actual development and implementation work. In particular, owing 

to the tree structure of the UNIX file system directory, it was possible 

to arrange the program source codes of each module as it develops under 

a separate subdirectory. This helps us to test and debug individual 

modules thoroughly before they are included in the package and re-tested. 

Data communication between modules is maintained via COMMON data 

areas. When the in-core module is overlayed by the new module, the 

COMMON data areas are no longer accessible to the new module, since all 

code and data of the old module is virtually replaced by the file 

containing the new module. Therefore, it was vital to save the COMMON 

data on a disc file before the new module is brought into core, and 

restore it immediately afterwards. These data files are created 

internally by the system at run time and eventually removed when the 

user decides to terminate the session by selecting the option '+EXIT'. 

Evidently, the reading and writing of these data files during the 

overlay operation could effect the response time of the system, and 

will also occupy a certain amount of disc space. llowever, these 

files have a useful function in providing a back-up facility in the 



DATA ENTRY 

DATA TABULATION 

(DRIVER) 

DATA EDlTII'IC. 

170 

INTRODUCTORY 

LIST OF 
ALGORITHM AND 
CHOICE THEREIN 

FIGURE 6.34: Program Organization of Module 1 of the IDF System 



event of user as well as program errors which can cause premature 

termination of the session. As mentioned in section 3, the user may 

recover the display image and subsequently resume the program by 

typing the command HELP at the keyboard. In this way, the data in 

the files are correctly despatched into program variables and stored 

back again into the COMMON data areas. 

There are basically two labelled COMMON data areas used to 

communicate between the different modules of the system: 

171 

(1) DATASUP: This contains the input information supplied by the 

user concerning the curve under investigation. The data points 

defining_the shape of the curve are held in one-dimensional 

array (X, Y, [ Z]), allowing up to SO points to be specified. 

The one-dimensional integer arrays (L,IH) are also used to 

contain the. linked list pointers. These are initialised and 

used in conjunction with the data point arrays to form a 

linked list data structure which is utilized in the data 

point edit operations. An array NPI is also used to hold 

the number of intermediate points required in each interval 

for actually drawing the smooth curve. Other variables are 

also used to contain input information such as the index of 

the selected algorithm, boundary values, •.. etc. 

(2) CURVEFIT: This contains the output results of the numerical 

algorithm applied. The complete set of the interpolated 

points representing the smooth curve are stored in the one

dimensional array (XCORD,YCORD,[ZCORD]). The computed 

polynomial coefficients are held in the two-dimensional 

array COEF. 

All modules share common library subroutines archived in 'EPLIB' 



172 

file. Program listings of the subroutines are given in Appendix 2.4. 

The functions of these subroutines fall into two categories: 

(1) read and write ope~ations of the common data areas into 

and from the data files. 

(2) utility display routines, including for example: 

- setting the display window and viewport. 

- marking the axes. 

reading the display origin coordinates from the keyboard. 

- reading input cursor coordinates off the screen. 

4.3 Overlay Support 

The present overlay structure requires that each single module 

should have a main program segment as shown in Figure 6.34. Note that 

here the 'driver program' (for each module) is essentially the same 

and this is obviously wasteful. A much better structure would be to 

have a control module or root segment module (as shown in Figure 6.35) 

which monitors user action on the screen and automatically overlays 

other modules when their associated options are picked up from the 

menu. Each overlayed module consists of a number of interactive 

display routines as shown. 

An investigation was made to find out the possibility of achieving 

such an overlay structure under UNIX. Since UNIX is a process-based 

operating system, in order to have the control module and any other 

module in core at any one time, we require two independently executing 

processes each having a separate core image. A new process can come 

into existe.nce only by use of the system call FORK [21). If FORK is 

executed by the control module as a process (parent), a new process 

(child) is created and its core image is a copy of that of the parent. 



173 

In the child, control returns directly from the FORK (i.e. to the 

instruction following the FORK), while in the parent, control is passed 

to the next instruction (i.e. a skip return): 

e.g. SYS FORK 
BR CHILD 

/CALL FORK OPERATION 
/RETURN HERE FOR CHILD 
/RETURN HERE FOR PARENT 

At label CHILD in the above example, we may execute code in the new 

process. Should we wish to overlay this process with a new child 

process, we execute an EXEC system call as part of the CHILD code, 

for example 

CHILD: 

SYS EXEC 

Parameters supplied with the EXtC system call specify the image to be 

overlayed. This image is overlayed and control passed to it. Meanwhile 

the parent process is continuing to run 'in parallel'. In the present 

case, we need to cause the parent to wait for the child to terminate 

since the parent is doing no more than interfacing with the user at 

command level. This is effected by using the system call WAIT. Hence 

the code for overlaying is:-

SYS FORK 
BR CHILD 
SYS WAIT 

CHILD SYS EXEC 

/CALL FORK OPERATION 
/RETURN HERE FOR CHILD 
/HERE FOR PARENT WAIT 
/FOR CHILD TO TERMINATE 

/OVERLAY NEW MODULE 

Hence, the child process core image can be overlayed by the appropriate 

module and control passed to it. 

The remaining problem is to provide a means of accessing data 

from the COMMON area. Since processes are normally swapped in and 

0ut of core and they are relocatable and totally independent, the 

COMMON data area in the control module (parent) is no longer 

accessible by the overlayed module (child). 



174 

There are operating systems which haye a built in overlay 

mechanism for handling such an overlay structure. As an example, the 

RSX-11 [34] assumes that the basic program unit executing under its 

environment is a task, which may consist of a program module or a set 

of program modules. The overlay structure consists of a single root 

segment and any number of overlay segments which share memory with one 

another. Any one of these ove;lays may likewise give rise to a number 

of tasks which further overlay one another Figure 6.36. In this 

example, A,B and C overlay each other as do the tasks belonging to A 

or B or C. All tasks at a given level (indicated by the arrows) share 

a COMMON area of memory. Considering any task at any level, it is 

possible for that task to access global data in any segment on a path 

between that task and the root. For example, in Figure 6.36 task D 

may reference any global data in task A or the root segment. Ultimately 

all tasks may reference global data in the ROOT segment and hence_ this 

may be used to store, amongst other things, shared data. The Fortran 

COMMON block may be included in this shared region, making it 

accessible to all other modules. Unfortunately, with the present 

environment (i.e. under UNIX), it is not possible to have a shared 

region between modules to hold the COMMON data. However, communication 

between the two processes can be accomplished by either using data 

.files as before or incorporating the system entry 'PIPE' which allows 

communication between processes. 

4.4 Data Structure 

Since this application has offered the user the facility of 

manipulating interactively the data points representing the curve, it 

requires a dynamically changing list of points. For this purpose, a 



CONTROL MODULE 
(ROOT SEGMENT), 

----- - -. r- --1 
I 
I 

I 

I 
I 
I 
I 

·-

MODULE1 

Interactive display 
routine 

I I 
I I 
I I 

I 
I 
I . I 

I I 

I 
MODULE 2 

I -----

I I I 
- - - _I 

FIGURE 6.35: The Proposed Overlay Structure 

ROOT 

A B 

FIGURE 6.36: Overlay Segments 

175 

1- --- - - -1 

MODULEn 

- -

c 



176 

simple form of linked list data structure was tailored for this 

application, so that anywhere in the list data points can be inserted, 

deleted or replaced by other points without disturbing the rest of 

the structure. 

These capabilities were provided as shown earlier in the data 

editing and the curve design displays. In the former, the user was 

able to alter freely the list of the input data points displayed in 

tabular form, whereas in the latter he was given the ability via the 

cursor to change the number of intermediate points required in each 

interval directly on the displayed curve. 

Therefore, both the input data points and the output points 

(computed smooth curve) are associated with pointers forming a linked 

list data structure. Basically, each element of the list consists of 

three (or four in the case of 3-D curves) data items as shown in 

Figure 6.37. 

When a data structure is implemented, it is not only necessary to 

design the structure of the data, but also the algorithms which can 

retrieve and manipulate the data and its internal relationships. An 

important choice to be made in designing such a system is the balance 

between structure and algorithm, because the two are usually 

'·complementary. 

The linked lists chosen for this application are partitioned into 

sublists, in order to avoid searching the whole list to look for a 

particular element when performing a certain operation. 

Consider first, the structure used in organizing the input data, 

as shown pictorially in Figure 6.38. The integer array IH holds the 

pointer to the start of each sublist which consists of a maximum of 

ten elements. A free list pointer is used to point at the list of 

unused elements. If a new element is required, it is taken from the 



177 

free list and conversely if an element i~ d~ed from the list, it 

is returned to the free list. 

A function subroutine INDEX is prov~ded to do the mapping between 

the sequence number of the data point in its display tabular form and 

that of its actual location in the array list. This function returns 

an integer value indicating the location of the required element in 

.the list. Three subroutines are also provided to handle the three 

basic edit operations on the list, namely deletion, insertion and 

correction. 

Now consider the linked list associated with the output data 

points. This has essentially the same structure except that the last 

element of each sublist is not connected to the first element of the 

next sublist, as shown in Figure 6.39. Basically, each sublist. 

!consists of an input point followed by the intermediate points for 

that interval. The operations carried out on this list are concerned 

mainly with the deletion and insertion of intermediate data points. 

Routines are provided to handle these operations, keeping track of the 

free list and doing the garbage collection. 

Finally, a data structure was also implemented for appending the 

segments of joined curves together. As this required a careful use 

of a set of array pointers showing precisely the start and end of each 

segment and their associated intermediate points. This structure is 

shown in Figure 6.40. The real arrays XJ and YJ contain the complete 

set of points for each segment. The integer arrays JJ3, JJ4 and IPNTR 

hold various items of information including number of intermediate 

points, start address of each segment and so on. 



partitioned 
array pointer 

0 I I I • I 
I 

r--' I 
I 
I 

....__ I 

i 

x-coordinate 

y-coordinate 

z-coordinate 

linkec! list . 
pointer to the 
next element 

178_· 

FIGURE 6.37: An Element of the Linked List Data Structure 

X y [Z] L 

I I 1- I i I l I j---~ 

1 

-

-~---1 } I I --------] 
FIGURE 6.38: Data Structure Used in the Data Point 

Editing Display 

INTVAL (Interval number) 

rJ XCORD YCORD [Z.CDRD] LINK 

u~i l J I f1 I I I =t··-1 I I ~ 

D i I I I ti I I I -t----1 I I 0 
FIGURE 6.39: Data Structure Used in the Curve 

Design Display . 



XJ YJ IPNTR 

seg.l 

seg.2 

seg.3 

r---i 

""--~ - .. v .. 1/vv J\1\; ~ 

JJ3 JJ4 

pointer to free location 
in XJ and YJ 

pointer to free 
location in this 
array 
no. of input data 
points in segment 1 

pointer to start 
; ..... ,., . , ... -
mediate points of seg.l 
no. of input; data 
point in segment 2 

pointer to start locatio 
of intermediate points 
of se g. 2 

' 

'IAI\NVVV VvvvwaJ 

FIGURE 6.40: Joined Curve Data Structure 

179 

o1nter 
loca 
this 
pd:lil 
star 
se gm 

poin 
star 
se gm 

to free 
tion in 
array 

ter to 
t of 
ent 1 

ter to 
t of 
ent 2 

pointer to free 
n in this locatio 

array 

con tain 
num her of 

ermediate 
nts in 

int 
poi 
eac 
of 

h interval 
seg.l 

con tain 
num her of 

ermediate 
nts in 

r- int 
poi 
eac 
of 

h interval 
seg. 2 



CHAPTER 7 

INTERACTIVE CONTOUR TRACING - ICT 

1. INTRODUCTION 

1.1 Application Area 
1.2 Contour Lines 
1.3 The Contouring Problem 
1.4 Regular Grid Techniques 

2. REVIEW OF SOME EXISTING METHODS 

2.1 Cottafava and Le Moli (36) 1969 
2.2 Rothwell (37) 1971 
2.3 Robinson and Scarton (38) 1972 
2.4 Mclain (39) 1974 
2.5 Sutcliffe (40) 1975 

3. DEGENERACY PROBLEM 

3.1 Node Degeneracy 
3.2 Cell Degeneracy 

4. AN IMPROVED METHOD 

4.1 Choice of the Interactive Method Used 
4.2 Description of the Algorithm 
4.3 Advantages 

5. THE INTERACTIVE DISPLAY PROGRAM 

6. PROGRAM IMPLEMENTATION 

180 



181 

1. INTRODUCTION 

1.1 Application Area 

The representation of surfaces in the two-dimensional plane by means 

of contour maps is in widespread use in science and engineering. Such 

maps have both quantitative and pictorial value and thus are frequently 

used for presentation of final results and as a research tool. 

The most common example is a contour map representing elevation as a 

function of position in a two-dimensional geographical region. Other 

position-dependent variables that are commonly represented in the form of 

contour maps are temperature (isotherms) and pressure (isobars). In some 

applications, contour maps may be used to facilitate visualisation of data 

even though an equation may exist that describes this data, for example, 

a plot of the equipotential lines around an electric dipole. Also, 

contour lines can be used to represent functions which are involved in 

some optimiza~ion process. 

1.2 Contour Lines 

Contour lines are usually defined as the lines of intersection 

between a given surface and a family of parallel surfaces, usually 

horizontal planes. This definition is ambiguous if the given surface 

has a horizontal portion at the same elevation as one of the horizontal 

planes. In order to overcome this difficulty Morse [35] defined the 

.following types of contour lines (Figure 7.1): 

(i) A positive (negative) contour line is a line connecting points 

all of the same elevation such that points adjacent to one 

side of the line are at higher (lower) elevation and points 

adjacent to other sides are at the same elevation or at a 

lower (higher) elevation. The usual contour line found on a 

contour map is the union of a positive and negative contour 



182 

line, both of the same elevation. A line is called a normal 

contour line if it is either a positive or a negative contour 

line. 

(ii) A maximum (minimum) contour line is a line connecting points 

all of the same elevation such that all points adjacent to 

either side of the line are at a lower (higher) elevation. 

Maximum and minimum contour lines are degenerate cases of the 

normal contour (Figure 7.2). 

The above definitions take care of all possible pathological situations 

in contouring. However, since these degene~ies are extremely rare and 

are not easily reproduced by finite computation of the functio~ they are 

not usually incorporated in a general-purpose contouring algorithm. The 

following two non-degenerate properties of contour lines are assumed in 

the subsequent work. 

(a) Different contour lines never cross. 

(b) Normal contour lines which do not intersect the boundary of 

the map are closed curves. 

1.3 The Contouring Problem 

Contouring is increasingly being implemented by computer with the 

aid of graph plotters and CRT displays. The object of contouring is to 

draw curves of constant value of a dependent variable {z), projected into 

the plane of two independent variables (x,y). Each contour is approximated 

by piecewise-continuous lines and the basic problem is that of locating 

and linking these line segments. 

The information (raw data) supplied will normally consist either of 

a finite number of values of the dependent variables (z.) at a set of 
1 

locations (x.,y.) -Figure 7.3- or an explicit or implicit mathematical 
1 1 

2 2 expression relating z to x and y e.g. z = expGl/4 [(x-5) +(y-5) )}. 



183. 

positive contour line 

------------~~------\-------negative contour 
line 

FIGURE 7.1: Resolving the Ambiguity 

FIGURE 7.2: Degenerate Contours 



In general, to trace a set of contour lines c.=f(x,y) for 
J 

184 

j=l,2, ••• ,m over a desired region, it is the usual practice to have a 

reference system or grid in order to keep track of the contours and the 

regions which have been explored. For this purpose at least two distinct 

approaches are possible: 

(i) Partitioning the region into triangles whose vertices are the 

known finite set of data points. This triangulation involves 

joining neighbouring data points by straight lines to form 

triangular plane segments (Figure 7.4). An algorithm must be 

included to form an optimal partitioning of the region into 

triangles. An optimal partition, Pitteway (43], is one in which 

for any point within any triangle, that point lies at least as 

close to one of the vertices of the triangle as to any other data 

point. The triangles must be assigned so that they are as nearly 

equilateral as possible. The addition of this possibly time-

consuming algorithm to the program constitutes the major dis-

advantage of the method. However, it may be useful where the data 

locations are fixed (though non-equispaced), such as a set of 

permanent observatories or recording stations. The triangles then 

can be established once for a number of contour applications. 

(ii) Superimposing ~ regular mesh ~ the region where it is used as a 

reference system. Most contouring algorithms make use of a 

rectangular grid (or net) imposed on the desired region (Figure 7.5). 

These algorithms are conceptually simpler and usually faster than 

those based on other reference systems. 

The overall problem of drawing contour lines from a given arbitrary 

set of data points involves two logically different stages:-



z 

xy-plane 

FIGURE 7.3: Finite Set of Data Points Given At Arbitrary Locations 

FIGURE 7.4: Triangular Partitioning 

8 
8 

~ 8 

8 s 

8 8 

FIGURE 7.5: Regular Rectangular Mesh Superimposed Over a Finite 
Set of Data Points 

185 



186 

(1) Interpolation, where for given n values z1 ,z2, ••• ,zn at the 

positions (x1,y1), (x2,y2) •.•. (xn,yn)' it is required to 

estimate a value of the function z = f(x,y) at an arbitrary 

new location. 

(2) Contour tracing, where for a given function f(x,y) which can 

be calculated at any arbitrary location, it is required to 

draw a set of contour lines f(x,y) =c. for prescribed c., 
J J 

j=l,2, ••• ,m. 

When a rectangular grid is used, the two stages would involve the 

interpolation from the raw data to the grid points and then the contouring 

of the grid data. 

An algorithm recently developed by Schagen [42] is based on the 

triangulation approach and interpolates from a set of arbitrary data 

points, using a generalised least-squares technique. The program has 

been implemented in Fortran on the ICL 19045 using an incremental plotter 

with GINO-F graphic software. 

The work reported in this chapter is mainly concerned with the 

development and implementation of an interactive contour tracing algorithm 

based on a rectangular grid using a gra~hic display terminal (Tektronix 

4010) and the local graphics package, LIGHT. The algorithm would trace 

the curve f(x,y) = c in a region in which there is a method of calculating 

the function. Several methods exist for estimating the function value 

at mesh and intermediate points from a set of arbitrary data points. 

For example Mclain [39] uses a weighted least-squares technique followed 

by local bicubic spline interpolation. Another method suggested by 

Powell [41] makes use of triangulated piecewise quadratic surface fitting. 



187 

1.4 Regular Grid Techniques 

For a given two-variable function z = f(x,y) over a rectangular 

domain R defined as a~b, c~y~d, the region of interest is discretised 

into. a rectangular grid. This produces a subdivision of the region into 

smaller rectangles with four adjacent nodes of the grid as vertices. 

Denoting each node by (i,j), a matrix [z(i,j)] can be defined. This 

regular grid provides an interface between the interpolation and contouring 

stages mentioned above, where the nodal values could be generated from the 

raw data at the interpolation stage. 

Once the grid values of the function are produced, the drawing of 

contour lines can be accomplished. Some of the details of a particular 

contouring algorithm may depend on the output device used for drawing 

the lines, but most of the principles involved are device-independent. 

No matter what output. device is employed, the solution could be achieved 

by two logical steps:-

(i) Computation of the coordinates of all the intersection points 

of each contour line and tho edges of every rectangle. 

(ii) Suitable linking of these points i.e. the organization of 

the drawing of all contour segments. 

These require two types of interpolation: 

(1) On the edges of each rectangle (i.e. step (i)) 

and (2) Within the rectangles themselves (i.e. step (ii)). 

The contour tracing algorithms can be divided into two categories 

depending how the above techniques are employed: 

(a) Grid-scan Techniques 

In this, step (i) above is completely exhausted as a whole, by 

scanning the entire region to find the intersection points. Then, 

using some criterion, to be established, the points found in step (i) 

are linked during the execution of step (ii). The methods using this 



188 

technique require the storage of all intersection points. However, the 

storage of the entire matrix z(i,j) can be avoided if all m contours 

are treated simultaneously, but the problem of labelling the different 

curves may become difficult to program. The simplest method is to 

search for intersection points by exploring all the rectangles in a 

chosen order e.g. row by row, and join each intersection pair in every 

rectangle. This is very simple to program but is impracticable and time

consuming. The slowness is due to the disjointed series of drawing 

movements involved and is exacerbated when a plotter is used. To minimize 

plotter pen motion, it is essential to plot each contour level continuously 

by ordering the intersection points in their natural sequence along the 

contour. Advantages of the method are rapid computation and simplicity 

of programming. 

(b) Contour-following Techniques 

One 'entry' point of the contour line is located and the line is 

followed until it ~xits from the region. The two steps mentioned 

earlier are thus performed together; i.e. continuous generation of 

segments of a single contour line. There ar~ accordingly, no difficulties 

in labelling the different lines, since they are found in succession. 

This technique requires the storage of the entire matrix z(i,j), if the 

function is empirical, or not easily calculated, but storage of the 

intersection points is not needed. The procedure would terminate upon 

closure of the line or intersection with region boundaries. The logic 

of such a method is necessarily more complex than the grid-scan technique, 

and may therefore require additional computer overheads. The scheme 

involves some difficulties concerning the identification of different 

branches of the same contour level, usually without any common point. 

In order to follow all the branches, another search is necessary to 

find at least one point for each of them. 



189 

Briefly, the procedure commences with a scan until a contour 

crossing is located. The contour is then followed to completion, and 

the scan continued. 

(i) Calculate and draw contour line segment in the rectangle where 

a crossing is located. 

(ii) If the contour is closed or has reached the boundary, return to 

scan for the next contour crossing; else continue. 

(iii) Determine into which of the adjoining rectangles the contour 

exits.. Return to (i) for this new rectangle. 

A method of preventing the redrawing of a contour when another 

portion of it is encountered by the scan must be included in the logic. 

This has been accomplished by making use of an auxiliary array to identify 

previously contoured lines. The fundamental advantages of contour

following techniques are the increased speed of plotting and the ease of 

adding contour labels. 

2. REVIEW OF SOME EXISTING METHODS 

The purpose of this section is to outline briefly the main features 

of some existing contour drawing algorithms which are based on a regular 

grid and to highlight their differences. All these algorithms basically 

retain the two logical steps (Section 1.4) which are required to draw the 

contour lines but the approach in each step varies slightly from one 

algorithm to another. Most of the algorithms below substantially employ 

a contour-following technique. 

2.1 Cottafava and Le Moli [36] 1969 

This method incorporates a preliminary step, searching for the points 

of intersection with edges, but without calculating or storing the 



190 

coordinates of these points, (requiring only that the matrix z(i,j) be 

stored). It finds the intersections by systematically exploring the 

edges of each rectangle. An edge, say, AB of the rectangle is 

intersected by the contour line z = c if c lies between the function 

values of the two adjacent nodes, i.e. if 

(7.1) 

The results of this test are stored in the array z(i,j) by recording 

for each pair of adjoining edges two binary variables specifying 

whether the corresponding intersections exist (Figure 7.6). In order 

to follow the contour line through the intersected edges, the algorithm 

has to accomplish the following two tasks: 

(i) The behaviour of the line in the interior of the rectangle and 

in the adjacent ones must be examined. If an edge of a rectangle 

(i,j) is intersected by a level line, then at least one other 

edge of·the rectangle (i,j) is intersected by the same contour 

line. A fixed order of edge inspection is used throughout the 

contour tracing. The following steps are made to follow the line: 

(1) Search in the chosen order for a rectangle edge with 

a stored intersection. 

(2) The stored intersection is cancelled to avoid meeting 

it again. 

(3) The intersection coordinates are calculated by linear 

interpolation. 

(4) The analysis continues for the rectangle adjacent to the 

intersected edge by repeating the same procedure from (1). 

In this way an ordered point set is constructed. The above 

procedure has examined the contour line from two viewpoints: 

the first is topological and involves verifying the existence 

of intersections and following the line; the second is numerical 



191 

and involves calculating the coordinates along the edges. Therefore, 

the contour is defined by a set of points on the edges. 

(ii) The behaviour of the line with regard to the whole domain must also 

be examined. This is divided into two parts: 

(1) Search for starting point from which to follow the contour 

line in (i). This is accomplished by scanning all the edges 

in the chosen order until a stored intersection is found and 

then following the branch until it stops. Scanning for new 

starting points on other branches is resumed from the 

interruption. 

(2) Search for the stop point of a line. If the contour line 

is closed the stop point can be obtained as a consequence 

of step (2) in (i). The following convention can be established: 

a line stops when no intersection is found during execution 

of step (1) in (i) or the region boundary has been reached. 

In the latter case, further investigation of the adjacent 

rectangles external to this boundary is considered to be 

necessary. This method is quite general and allows one to 

follow any contour line. 

2.2 Rothwell (37] 1972 

This is a simplified version of the algorithm described above. 

Often, a generalised tracing procedure is unnecessary and time consuming 

when some properties of function z(x,y) are known a priori, e.g. a level 

line has only one branch. In such cases, no preliminary operation is 

required and consequently the need for intersection storage is avoided. 

The procedure is as follows for a single contour line: 

(i) Search the grid lines for a set of points for which f(x,y)=c. 

To do this, some form of approximation to the function has to 

be made between the nodes. 



192. 

(ii) Having obtained the set of intersection points, join these 

points in some way to produce the contour, which in general 

will be in several discrete sections. 

The four edges of the region are searched for the start of an open 

contour. The contour is then traced through the region until another 

edge is found. When all the open contours have been traced, the interior 

of the mesh is searched for closed contours which are drawn similarly. 

As observed earlier, no intersection storage was needed. However, such 

storage has the following advantages: 

(I) It avoids finding an intersection repeatedly. 

(2) It allows following of the contour line to be easily stopped. 

(3) It allows different branches to be distinguished. The Cottafava 

and Le Moli step (ii) was required in order to identify different 

branches and the start and end of the contour line. 

2.3 Robinson and Scarton [38) 1972 

The procedure suggested here tackles the problem in slightly different 

form, but still retains the same structure. The object of this algorithm 

is to determine the possibility of finding more than one relative maximum 

occurring in z(i,j), which could give rise to several disjoint and highly 

convoluted curves at a given contour level. This algorithm is set up to 

accomplish the following tasks: 

(1) Examine the complete array z(i,j) at each contour level so that 

all curves (branches) are found. 

(2) Remember the position of all previously found and plotted lines 

so that the contours are not repeatedly redrawn. 

(3) Find successive points along a contour line and keep them in 

their proper order so that complicated contours are drawn correctly. 



193. 

(4) Have some means of deciding when all points in a contour have 

been found, and whether the curve is open or closed. 

The algorithm consists mainly of two parts which are carried out 

simultaneously. First, the rectangles are scanned to find the start 

point of a contour line, and the position is found more accurately using 

quadratic polynomial approximation on the four neighbouring points. The 

line is then followed by threading through the adjacent rectangle. The 

quadratic approximation which is incorporated here allows the use of a 

coarser grid of points and gives much improved results over linear 

interpolation, particularly in the neighbourhood of saddle points. 

The second part which is executed simultaneously is concerned with 

setting up a separate memory array. Each element of this integer array 

is identified with a rectangle by means of a simple code and contains all 

the necessary information concerning previously found contours. In 

particular, each element tells whether or not any contour points have 

been previously found along an edge of the corresponding rectangle. If 

any have been found, the total number of points and their locations are 

also stored. For each contour level, the whole memory array is initially 

set to indicate that no contour points have been found. Whenever a contour 

point is found along the edge of a rectangle, the corresponding element in 

the array is immediately recalculated to indicate this fact and to indicate 

on which side it was found. The information in the memory array is used 

for two purposes: 

(1) If a point is found, while scanning a rectangle to find a 

beginning point of a contour line, then the memory is checked 

to see if the point has previously been found. If it has, the 

point is ignored and the scanning proceeds. In this way, a 

contour line is only found and drawn once. 



194 

(2) When extending a contour line from rectangle to rectangle, 

the array is checked for previously found points in the new 

rectangle. If such points are foun~one of several alternatives 

will occur: 

(a) the routine will first check all remaining sides of the 

new rectangle for contour points. If one can be found 

which has not been previously used, the contour line is 

simply extended in that direction. 

(b) If no new points can be found, the algorithm checks to 

see if it is in the same rectangle as the beginning 

point of the line. If so the contour is assumed to be 

closed with the last point joining on to the first. If 

it is not the initial rectangle, the contour is assumed 

to be open, and iS then extended backwards from the 

starting point until no further points can be found. 

2.4 Mclain (39) 1974 

This avoids the program difficulties of recording which parts of 

which line have already been drawn as discussed in the above algorithms. 

The approach here, is a more direct one than is usually adopted above, 

e.g. Cottafava and Le Moli use an elaborate procedure for threading the 

contours. This procedure works as follows: 

The area under consideration is divided up into small rectangles 

within which the contour lines can be assumed to be uncomplicated, with 

no extremely sharp corners. Within each rectangle, to draw a contour 

line of height c of a function f(x,y), a zero of f(x,y)-c=O is first 

found along one of the sides. The contour is then traced through the 

rectangle by a series of steps in one of eight directions (N,NE,E,SE,etc.). 

This effectively results in further subdivision of the region into still 



195 

smaller rectangles called cells (Figure 7.7). The direction of the 

next step to be taken is chosen from one of three which depend on the 

direction of the previous step. The three steps (1,2,3) to be considered 

are one in the same direction as the previous and each of the other two 

in a direction at 45° to either side of this. For each point 1,2,3 the 

absolute value of f(x,y)-c is calculated and the point with minimum value 

found. This is the point chosen for the next step. This process is 

repeated until the contour line passes out of the rectangle. A record 

is kept of the x and y coordinates of the exit point. This is repeated 

for all roots along the side of the rectangle, first c~ecking them against 

the current list of exit points. (If they are members of this list then 

they are not used as starting points for tracing the contour inside the 

current rectangle). 

It may be observed that this algorithm fails to follow the contour 

line correctly in some circumstances. Consider for example a function 

which has a surface cross section shown in Figure 7.8, in the region of 

the indicated height. Applying the Mclain algorithm we have the choice 

of three function values - one on either side of the point where the 

true contour line crosses the surface i.e. (1), (3) and one (point (2)) 

in the bottom of a 'valley' to the right (Figure 7.8a). Since the 

algorithm only considers the absolute magnitude of the difference 

between the function values and contour line being drawn, point (2) 

is wrongly chosen. Once this step has been made, the algorithm may 

then have the choice of three values as in Figure 7.8b. Clearly 

point (1) is the point with smallest absolute difference and so will 

be chosen. Consequently, rather than the contour being traced, this 

valley is mistakenly followed. 

A solution which has been suggested [44) to this problem requires 

that the algorithm must detect the point when it starts following the 



196 

FIGURE 7.6: Cottafava and Le Moli Method 

3 1 

3 ,V, 
1\ I 

FIGURE 7.7: Mclain Algorithm 



197 

valley and stops the tracing at this point. The other end of the contour 

is then found when the other roots along the side of the rectangle are 

examined, and the rest of the contour will be traced from that end. It 

is possible to accomplish this at the stage where the algorithm has to 

choose between the three values of f(x,y)-c in the case when these values 

have the same sign. This involves quadratic interpolation of f(x,y)-c on 

the points (1),(2),(3) with local coordinates 0,+1,-1 respectively. A 

valley is detected if the roots of the quadratic are complex or if the 

absolute value of the smaller root is· not sufficiently close to zero. 

2.5 Sutcliffe [40) 1975 

Basically, this algorithm adopts a similar strategy to that suggested 

by Mclain above. Both methods trace the portion of the contour line 

directly within each rectangle without the need to perform some preliminary 

operation or record information regarding the entire region. Furthermore, 

a common feature of both algorithms is that during the actual drawing 

process, each rectangle is effectively subdivided into smaller rectangles 

which are referred to as cells (Figure 7.9). Only those cells in the 

neighbourhood of the contour line are examined. However, the main difference 

between the algorithms relates to the way in which the contour is traced. 

(i) The starting point of the contour line in this algorithm is 

taken as the middle of an interval which brackets the root of 

f(x,y)-c=O. Mclain, however, determines the starting point 

by finding more accurately the root of the equation f(x,y)-c=O 

along one side of the rectangle. 

(ii) The direction of the line segments to be drawn are determined 

according to the sign change of the function values at the 

corners of the cell. As a result a straight line is drawn to 

the middle of the cell side which shows a sign change of the 



3 

198 
I 

2 

contour 

height 

FIGURE 7.8a: Situation (showing choice of points) Where Error 
Will Occur 

3 

I 

FIGURE 7. Sb: Typical Choice of Points After Error Has 
Occurred 

. 

: V __ I 
I 

', ~ ' ' ' ,, 
' 

' / 

' / 

' / 

FIGURE 7.9: Sutcliffe Algorithm 

2 

contour 

height 



199 

function at its ends. Subsequently, this side is used as a 

baseline for the next cell and the process is repeated. This 

method avoids the problem which can arise in the Mclain 

algorithm where the contour is incorrectly traced in the 

neighbourhood of a valley. 

3. DEGENERACY PROBLEM 

Having reviewed some of the existing algorithms, it is essential to 

see how they tackle the problem of degeneracy that might occur. 

Degeneracy in this context is connected with the assumed function 

discretization, rather than any pathological function behaviour. The 

problem of degenerate nodes (corners) and degenerate cells described 

by Cottafava and Le Moli can be dealt with as follows. 

3.1 Node Degeneracy 

This arises when a contour line passes exactly through a grid 

point (Figure 7.10). Cottafava and Le Moli, Rothwell and Crane [45] 

all avoid this problem by scanning all the nodes and altering the 

associated values by a small amount so that the contour never passes 

through a node. Robinson and Scarton, on the other hand, use a slightly 

more sophisticated method (with more accurate root information) and make 

the next rectangle to be examined the one which is diagonally opposite 

the present one. However, Sutcliffe suggested that it is considerably 

easier to treat a zero value as if it is positive. This has the same 

effect as the scan above, as it can be simply achieved by writing a 

sign-finding function to produce only minus one (negative) or plus one 

(positive) •. Thus degenerate corners are effectively avoided. 



200 

3.2 Cell Degeneracy 

When a cell is intersected more than twice by the contour line, it 

is usually referred to as a degenerate cell (Figure 7.11). It should 

be noted that at most one intersection with each edge is assumed using 

test (7.1). Therefore a rectangular cell has no more than four inter

sections and in general there can be only two or four intersections. In 

the latter case, the problem of linking the four points arises. We may 

also observe the following: 

(1) We can not be sure which configuration is the correct one when 

the function values are only known at the four vertices. However, 

some interpolation criterion is usually applied within the 

interior of the degenerate cells. 

(2) In any degenerate cell, the function must have a minimum, 

maximum or saddle point. In the last case, the configuration 

in Figure 7.llb is the correct one if the contour level equals 

the value of the function at the saddle point. 

(3) In the complete domain there will be very few degenerate cells 

if (as is usually the case) the basic cell size is small. 

The problem of degenerate cells is slightly more complex than in (3.1). 

Cottafava and Le Moli argue that degenerate cells occur very rarely and 

that, when they do, it is unlikely that the case in Figure 7.llb is the 

correct interpretation. Consequently, their method interprets the 

situation as either (a) or (c), choosing between them by the way the 

rectangle is examined. Rothwell similarly only looks at cases in 

Figure 7.lla and Figure 7.llc, finds the direction of the two possibilities 

and chooses the one where the direction changes the least from the previous 

step. He also comments that no strategy can be accurate in all places, 

due to lack of information, and this was the one he found to be the best. 

Sutcliffe adopts a similar strategy to that of Rothwell. The curve tracing 



2Ql 

i,j 

FIGURE 7.10: Degenerate Node (i,j) 

(a) (b) (c) 

FIGURE 7.11: Degenerate Cells 



202 

is continued in the same direction as before if a degenerate cell is 

encountered: i.e. if the previous step was normal to the cell side, then 

the next step is straight across the cell, or if the previous step was 

diagonally across the cell, the next step should be a continuation of 

that diagonal. 

4. AN IMPROVED METHOD 

4.1 Choice of the Interactive Method Used 

After the preliminary study of. the different methods available, 

an algorithm was developed and implemented for interactive use on the 

display terminal. As we have seen in the review, many methods for contour 

tracing are based on a rectangular grid but their approaches vary greatly. 

For example, the method by Cottafva and Le Moli requires a preliminary 

operation to be performed on the entire region under consideration before 

actually commencing the drawing of contour lines. This produces a set of 

ordered intersection points which are finally fitted by a smooth curve or 

simply joined by straight lines. On the other hand, the methods suggested 

by Mclain and Sutcliffe adopt a more direct approach, where the contour 

line is traced within each grid rectangle without the need to examine the 

whole region and the use of extra storage. These latter methods have a 

more localised approach which gives the terminal user a feel of control 

over the tracing. Therefore this type of method is more easily adopted 

for interactive use. Furthermore, it is also possible to provide the 

user with the ability to control some of the basic parameters such as 

the choice of the domain boundary, the smoothness of the line drawn, 

choice of contour level •••• etc. Details of these parameter specifications 

become more apparent in the subsequent sections. The algorithm under 

discussion here belongs to this contour-following category of methods and 

represents an interactive refinement of the Mclain/Sutcliffe approach. 



203. 

4.2 Description of the Algorithm 

This algorithm traces the contour line f(x,y)=c in a domain over 

which there exists a method of calculating the function at any given 

point in the xy-plane. The region under consideration is divided up 

into rectangles, each of which is defined by: 

XMIN ~ X ~ XMAX, YMIN ~ Y ~ YMAX 

Each rectangle is further subdivided into small equilateral triangular 

cells during the tracing process. 

Now consider the procedure which traces the portion of a given 

contour level within a single rectangle of the region. 

(i) The four.sides of the rectangle are examined in some chosen 

order, searching for an interval (Figure 7.12) of length 'step' which 

brackets the root of f(x,y)-c=O. The value of step is set equal to 

l/2(xstep + ystep), where xstep and ystep can be specified 

interactively. by the user, preferably such that each rectangle is 

spanned by an integral number of xsteps or ysteps. [Note that other 

choices of 'step' could be used, e.g. 

(a) min(xstep, ystep) 

(b) xstep if an x side of the rectangle is being examined 

ystep 11 11 y 11 11 11 11 11 11 11 

The choice used here is more robust than (a) and is basically simpler 

to implement than (b)]. For each rectangle side, the search is performed 

by using repeated bisection and making use of the fact that the function 

will have opposite signs at either side of the root. Thus if a root is 

detected it will eventually be located to accuracy equal to 'step'. 

This accuracy is then improved further by (inverse) linear interpolation. 

Therefore, for the side on which x varies: 



204 

X = root 
XR.FL-XL.FR 

FL-FR 
(7.2) 

Similarly, for the side on which y-varies: 

y = root 
YR.FL-YL"FR 

FL-FR 
(7. 3) 

L step 

Having determined the intersection point, the display beam is moved to 

this position to start tracing the line within the current rectangle. 

The interval 'step' is also used as starting baseline for the equilateral 

triangular cell (Figure 7.13a) which is constructed on this side. 

(ii) Once the baseline has been determined the contour line would 

be followed by threading through the triangular partitioning which is 

constructed dynamically. The coordinate point of the third vertex (t) 

is found simply from:-

(7.4) 

13 Y = y +- xstep 
t !1. 2 

where 'step' is the length of each side of the cell (Figure 7.13b). 

The sign of f(x,y)-c at point 't' would determine uniquely which 

side of the cell the contour line will cut. This is simply indicated 

by a sign change along side '!l.t.' or 'rt.'. The crossing point is again 

calculated using linear interpolation, and a straight line segment is 

drawn from the previous beam position to this new point (p in Figure 

7.14a). This side (rt, say) is now used as the baseline for the new 

cell •tsr•, where the coordinates of s are determined by reflection of 

!1. in the side tr (Figure 7.14b), i.e. 

} (7.4) 



XMAX'YMAX 
~--------------~ 

y 

L-----..... x 
~nterval 1 

'step' 

FIGURE 7.12: A Single Rectangle of the Region Showing 
the Interval Along One Side 

t 

, 
--, , 
I 

s 

/; 
xt,yt 

xt,yt 

j 
{} 

"" ., 

205 

FIGURE 7.13a: Construction of the 
Triangular Cell on 
the Baseline 

FIGURE 7 .13b: A Typical 
Triangular 

xr,yr 

Cell 



I 
I 

I 
I 

I 

FIGURE 7 .14a: Tracing the Contour Through the Triangular Cells; 

t s 
~--------------~/ 

xm= l/2(x~_+xr) 
\~-----+------------

y m= 1/2 (yR. +y r) 

FIGURE 7.14b: Reflection of R. in the Side tt 

206 



207 

The triangulation process is repeated until the edge of the rectangle 

is reached. This triangular subdivision with interpolation permits the 

lengths of the beam/plotter movements to be relatively large without 

any severe changes in direction. Thus a relatively smooth continuous 

contour line is produced within the rectangle. 

(iii) When the edge of the rectangle is reached the point of exit 

is recorded. Each of the other sides of the rectangle are also searched 

for an interval containing the root which, when found, is checked against 

the list of recorded exit points for previously drawn contours in order 

to avoid tracing the line twice. If the root is not in the exit list 

then the program can enter the drawing loop as described above. Steps 

(i) and (ii) are repeated for each rectangle in the region. However, 

within the interactive environment provided, the user is able to select 

the appropriate rectangle from the mesh by means of the cross-hair cursor 

(see next section). 

4.3 Advantages 

This algorithm has achieved a number of improvements over those 

suggested by Mclain and Sutcliffe. These enhancements relate to the 

speed, smoothness and treatment of degeneracy and include the following: 

(i) Degenerate cells are avoided. In the Sutcliffe method, with 

a rectangle cell (Figure 7.15) ambiguity arises when all four sides 

show a sign change of f(x,y)-c, and further decisions are required to 

resolve such ambiguity. On the other hand, with the triangular cells 

the side to which the contour line would be drawn is uniquely determined 

once the sign of the third vertex is found. 

In general the use of elemental triangles ensures a unique piece1~ise 

planar approximation of f(x,y). This is not so when rectangular cells 

are used. 



208 

(ii) There is substantial reduction in the number of function 

evaluations needed while tracing the line. To check this assertion, a 

second version of the algorithm was implemented using rectangular cells, 

and run with several test functions. A comparison of the triangular and 

rectangular version is given in Table 7.1 which shows in nearly all cases 

a difference in function evaluations of at least 20%. Note further that 

the rectangular version also incorporates linear interpolation and would 

incur slightly fewer function evaluations than the Mclain/Sutcliffe method 

at the same level of discretization. 

This improvement becomes more significant when each function 

evaluation requires a large amount of computation. The overall speed of 

the program operation is therefore noticeably improved, particularly when 

using a small machine and sharing resources with other users. 

(iii) The degree of smoothness of contour lines becomes very important 

when graphic displays are used. The limited display area and screen 

relation require that the line drawn must be quite smooth in order to avoid 

overlapping contour lines which are close to each other. When the Sutcliffe 

algorithm was tried, it produced a curve with a noticeable ripple, which can 

be reduced only by making the cell size as small as possible, as the 

algorithm does not compute the intersection point accurately, but assumes 

that the mid-point is good enough. However since our method employs linear 

interpolation to compute the point of intersection, the resulting contour 

line has an acceptable smoothness even when the cell size is not 

particularly small. 

The way in which the curve is traced directly by these methods is 

considered to be more efficient than using an interpolation scheme such as 

a higher degree polynomial interpolation for fitting a set of ordered points 

defining the contour line. Even the use of splines can cause some problem 

especially at segments of very high curvature, which can occur particularly 

in the neighbourhood of stationary points. Although splines can alleviate 

part of the problem, they can still run into difficulties near for example 

saddle points, if insufficient discretization has been used. 



1. 

2. 

3. 

4. 

5. 

Function Contour Level Region (Min & Max X,Y) 

2 2 2 
(y-x ) + (1-x) 30 (-1,2) '(2,10) 

25 " 
20 " 
15 " 
10 " 
5 " 

2 2 2 2 
(y +x -1) +(x+y-1) 0.1302 (0.9,-0.4),(1.2,-0.2) 

0.1102 " 
0.0902 " 
0.0702 " 
0.0502 " 

2 2 
exp-((x-5) +(y-5) ) 0.1 (5,3.5),(6.5,4.5) 

2 2 
exp-((x+y-11) +(x-y) /10) 0.2 (6.5,4), (8,5) 

3 2 
8(4y+7) -9(4y+7) (2x+3)+3(4y+7)(2x+3) 500 (0,-0.5),(6,0.5) 

TABLE 7.1: Comparison in the Number of Function Evaluations Using 
the Rectangular & Triangular Subdivision Schemes 

164 

162 

160 

160 

156 

126 

60 

54 

42 

32 

20 

52 

36 

78 

140 

133 

138 

134 

130 

105 

56 

46 

34 

24 

15 

39 

27 

62 

"' 0 
<0 



210 

(iv) The Sutcliffe method assumes that the region under consideration 

should be divided into rectangles which are of a size such that the contour 

line only crosses any edge once. In practice, a situation could arise 

where for a chosen subdivision of the region, a contour line does cross 

an edge twice. This could happen for example in the neighbourhood of a 

saddle point (Figure 7.16). Further discreti~ation would incur considerable 

overheads and greatly increase the computing cost. However, the present 

algorithm takes care of such cases without resorting to additional root

finding procedures. (The usual sign test at the nodes of the rectangle 

would not yield any roots in this example). For example, as shown in 

Figure 7.16, if the sides of rectangle A(I,J) are intersected more than 

once, the algorithm keeps a record of the sides and traces the line inside 

this rectangle from each exit point. 

5. THE INTERACTIVE DISPLAY PROGRAM 

The algorithm developed here is made available to the user via the 

graphic display terminal (Tektronix 4010) in an interactive mode. 

Communication with the algorithm is maintained through a set of commands 

presented as menu options which comprise the user interface. Its aim is 

to provide the user with a direct and simple means of controlling the 

execution path of the algorithm in order to satisfy certain requirements. 

This kind of capability permits the user to take different courses of 

action while operating the program until the required result is obtained. 

The final objective is to enable the user to draw a set of contour 

lines f(x,y)=c of a given function z=f(x,y) over a region,with interactive 

control of the following: 

(1) The boundary of the region within which the set of contour 

lines are required. 



+1- +I-

-/+ 

+ L-----------------~+ 

FIGURE 7.15: Sign Changes at the Vertices 

A(I,J) 

FIGURE 7.16: Contour Line Crosses at Least One Rectangle 
Side Twice 

211 



212 

(2) The contour levels. 

(3) The size of the rectangular grid and the triangular cells which 

subdivide each rectangle. 

(4) The threading of the contour line from one rectangle to another, 

using the cross-hair cursor. The user can alternatively request 

this process to be completed automatically by ·the program 

(5) The zoom window which defines the part of the display requiring 

magnification. 

We now illustrate how the user can, with the aid of the keyboard 

and cross-hair cursor, control the algorithm to determine the boundary 

of the region for a given function. The program permits the user to 

start with two points which define the rectangular region. He would then 

be able to examine the region for any trace of the contour lines. If no 

trace is found, he could try a different set of boundaries and re-examine 

the region. The user could then iterate the above process until the 

boundary is satisfactorily defined for contouring. 

The graphics terminal provides two modes of communication between 

the user and the tracing algorithm. The first is the keyboard through 

which the user can enter boundary coordinates, grid information and the 

various contour heights. The second means of communication is the cross

hair cursor, which is used to select options from the menu and to identify 

appropriate rectangles for the algorithm. When an option is picked up, 

the program would invoke the appropriate routine which may prompt the 

user for keyboard entry and subsequent injection of the new parameter 

values into the algorithm. 

Essentially, the interactive program consists of two main display 

modes, each having a particular role during the user session at the 

terminal. The two displays are: 



213 

(i) Contour parameter entry: 

The ICT program is activated by typing the program name 'CONTOUR' 

at the terminal. As soon as the program runs, the screen would be 

cleared and the first display (Figure 7.17) appears. This contains 

short introductory remarks and two separate menus, each containing a 

set of options. 

(a) Program control menu. 

This has three options whose functions are mainly concerned 

with controlling the display image and the logic flow in the program. 

These options are similar to those mentioned in the IDF package 

(Chapter 6). 

(b) Contour parameter menu. 

When a parameter option is selected, the user would be 

prompted by a ~essage (appearing at the bottom of the screen), 

and the program waits for the user to make a keyboard entry in 

response to this message. If the options marked with an 

asterisk (*) are not selected, the program will set their 

values by default. 

+ +NEXT 
+RESTART 
+EXIT 

(1) The height of the contour line initially to be traced +!+CON.LEVELj 

can be specified at this display. However, this entry. 

could be postponed until the next display, so 

selection of this option is not compulsory. The 

function displayed in these photographs (Figures 

7.18-7.19) is 

2 2 2 
z = (y-x ) + (1-x) 

(Rosenbrock's 'Banana' function). 

(2) This is a compulsory item which the user must select +!+REGION 

in order to define the boundary of the region. The 



coordinates (X . ,Y . and X ,Y ) of the rectangular m1n m1n max max 

region are then keyed in response to a program prompt on 

the screen. 

REGION 

X ,Y . max m1n 

This has the effect of moving a window over the region 

within which the function can be evaluated and its 

contours displayed. The viewport size is fixed at 

750X750 screen rasters. 

214 

(3) The discretization of the region into a rectangular +I+G.WIDTHj 

grid is controlled through this option by sp~cifying 

the size of each side of the rectangle (X-WIDTH and 

Y-WIDTH). The program allows an upper limit of 30X30 

rectangles into which the region could be subdivided. 

In most cases this fine discretization of the region 

is unnecessary, since the algorithm further discretues 

each rectangle into smaller triangles whose minimum 

size is constrained by screen resolution. However, the 

program has a built-in default action if the user by-

passes the above option. This default subdivides the 

region into lSxlS squares of side 50 rasters, 

representing an adequate discretization. 

(4) This option would effectively control the size of the +j+X-Y STEPj 

triangle and hence the smoothness of the contour line. 

The size of X or Y-step must be chosen such that 

STEP = WIDTH/<integer> 



215' 

The default setting in this case is 

STEP = WIDTH/10 

(5) The grid generated would be drawn on the next display~ j+DISP.GRDJ 

(Figure 7.18), if the user has picked this option. 

The mesh would provide the user with some visual aid 

when interactively tracing the contour. In addition, 

it would be useful for reading the coordinates ·of the 

grid nodes when trying, for example, to re-define the 

region boundary. 

(ii) Contour lines display: 

This is the next main display generated by the program and~ +CON.LEVEL 
+X-STEP 

represents the final outcome of the algorithm. Two menus appear +Y-STEP 

on the screen, containing some options which appeared (and were 

described) in the previous display. The bottom menu effectively 

allows the user to vary the contour level in order to display the 

set of contours associated with the function in the region under 

consideration. Also,if necessary, the user can vary the degree 

of smoothness. (Figure 7.20b). 

The contour lines could be displayed in two different 

ways: 

(1) Interactively. ~I +CURSOR I 
This option is usually used in conjunction with the grid net 

drawn as in Figure 7.18 where the tracing of the contours is 

carried out interactively by means of the cursor. Here, the 

cursor is used as a pointing device for identifyingthe appropriate 

rectangle within which the contour (if it exists) is to be drawn. 

This is accomplished by positioning the cross-hair cursor inter-

section point anywhere inside the rectangle and by pressing any 



FIGURE 7.17: Contour Parameter Entry Display 

FIGURE 7.18: Tracing the Contour Line by Means of 
the Cross-llair Cursor 

splay elf !(OSC 

f(x)=(y-x 2) 2+(l-x) 2 

216 



key, say the space bar. If, however, the contour does not pass 

through this rectangle, the cursor control will be immediately 

returned back to the user and· he could try again. Once a 

rectangle is found to contain a portion of the contour line, 

the extrapolation of the line becomes easy and natural, as the 

user can recognise visually the direction of the contour. This 

scheme provides the user with the capability for searching through 

a given region until a trace of the line is found, and if necessary 

adjusting the boundary. It would also give the user the flexibility 

to stop tracing a particular contour level and proceed to the next 

one. 

(2) Automatically. 

The algorithm would thread the contour line through the 

rectangles of the region, when this option is picked up. The two 

examples shown in Figure 7.19 and Figure 7.20a are produced using 

this option. The contour lines represent the following two explicit 

functions: 

f(x,y) 

f(x,y) 

2 2 2 = (y-x ) + (1-x) --------- Fig.7.19 

2 2 2 2 = (y +x -1) + (y+x-1) ------- Fig.7.20 

As can be seen, the present algorithm produces visually smooth 

curves, and (in Figure 7.19) copes with sharp corners. It is also 

clear from the example in Figure 7.21 that this algorithm has 

successfully overcome the situation where the contour crosses the 

edge of the rectangle twice~without the need to discretize the 

region further. This situation has risen in Figure 7.21 near the 

saddle point at the contour level 0.1102. The use of this option 

is recommended when the user wishes to produce the final display of 

the set of contours, perhaps followed by photographs or other forms 

217 

of hardcopy. Finally, an additional menu option '+ZOOM' is provided, 



FIGURE 7.20a: Contour Display of the Function 
2 2 2 2 f(x)=(y +x -1) +(y+x+l) 

FIGURE 7.20b: Same as Fig.7.20a with Additional Contour 
Level and Variation of x/y Step 

218 



219 

FIGURE 7.21: Grid Lines Superimposed Showing the Contour 
Level .1102 (near the saddle point) Crossing 
the Rectangular Edge Twice 

FIGURE 7.22: The Zoom Display 



220 

allowing the user to blow up a selected portion of the region in order 

to gain a closer view of that portion (Figure 7.22). The zoomed area 

is determined by pointing (with the cursor) at two rectangles situated 

at opposite corners of the window. 

6. PROGRAM IMPLEMENTATION ( lntt.r~!>:~ Ca--~o ..... Tr..._c_;._J) 

The ICT program was implemented on the PDP 11/40 minicomputer 

operating under the UNIX system. The program is entirely written in 

Fortran IV, uses the graphic software package LIGHT and consists of two 

sets of subroutines controlled by a main segment. 

(i) The contouring algorithm subroutines (Appendix 3.1) 

(ii) The user interface subroutines (Appendix 3.2) 

The first set consists of four main subroutines together with three 

subsidary one~, forming the entire code of the main algorithm. The 

general flowcharts are shown in Figure 7.23 giving the logic flow of 

the algorithm. The second set consists mainly of two interactive display 

routines which organise the menus and handle the user interaction. These 

routines in turn call nine other subsidary subroutines used for setting 

up the prompting messages, interpreting user input and computing the 

appropriate scaling factors. 

The program design is highly modular, due firstly to the division 

of the two completely separate tasks the program has to perform, and 

secondly, the subroutine nature which enables future modification to be 

incorporated easily. 

In order to create the executable version of the program the user 

is required to include a Fortran function subroutine which returns the 

value of the function at any given point (X,Y). For example, if the 

function under investigation has an explicit form such as the one given 



in the examples above, the function subroutine would be 

FUNCTION F (X, Y) 

F=(X*X+Y*Y-l)**2+(X+Y-l)**2 

RETURN 

END 

221 

However, if the required function has values specified at some arbitrary 

data points, then the expressipn in the above example will be replaced 

by a body of code which would evaluate the function at a given point. 

Note that whatever form the body of the function would have, the function 

name used is F(X,Y), this being the actual name called by the 

ICT program. 

Having, specified the function evaluation routine, the user is 

provided with the 'shell' file which he could run to generate the 

executable module of the program 'CONTOUR'. The following UNIX keyboard 

commands are used for this purpose 

·"I. SH JCLTRI Create the contour program 

•t CONTOUR Run ICT program 

Another version (Appendix 3. 3) of the algorithm was implemented for 

comparison purposes, and uses rectangular cell subdivisions while 

tracing the contour line. For this the UNIX commands are 

'l. SH JCLREC 

·~ CONTOUR 



DCRVSD 

CHECK FOR THE EXISTENCE OF A 
ROOT ALONG THE SIDE OF THE 
RECTANGLE.IF ANY, SEARCH FOR 
THE INTERVAL (ROOT] 

N 

y 

CONSTRUCT THE TRIANGULAR CELL 
AND COMPUTE THE INTERSECTION 
POINT, USING LINEAR INTERPOLATION 

MOVE THE BEAM TO THE INTERSECTION 
POINT The tracing loop 

---------

(a) 

ESTABLISH WHICH SIDE OF THE TRI
ANGULAR CELL THE LINE WILL INTER
SECT USING THE SIGN CHANGE CRITERIA 

WHEN THE SIDE OF THE TRIANGLE IS 
DETERMINED DRAW A LINE TO THE POINT 
OF INTERSECTION AND USE THE NEW SIDE 
AS BASELINE FOR NEXT CELL (DLINE] 

N 

-------
RECORD EXIT POINT 

RETURN 

I 

222 

FIGURE 7.23: General Flowchart of the Contour Tracing Algorithm 



223 

ROOT c DLINE . ) 

. 

DETERMINE THE SIGN OF COMPUTE THE INTERSECTION 
THE FUNCTION AT BOTI1 POINT ALONG THE TRIANGLE 
ENDS OF THE RECTANGLE SIDE BY LINEAR INTER-
SIDE POLATION 

N 
DIFFERENT SIGN? . 

y 

SET WE LOGICAL SET THE 

VARIABLE TO TRUE · LOGICAL 
VARIABLE 

DRAW A SINGLE STRAIGHT 
LINE FROM THE PREVIOUS 
POINT TO WIS POINT OF 

TO INTERSECTION 
FALSE 

BY MEANS OF REPEATED 
BISECTION ON THE SIDE 
AN INTERVAL IS DETERMINED 
WHOSE LENGTH IS SET EQUAL 
TO (xstep+ystep)/2 SET UP THE COORDINATES 

OF THE NEW TRIANGULAR 
CELL 

SET UP THE COORDINATES 
OF THE END OF WE INTERVAL 
AND USE IT AS THE BASELINE 
FOR THE TRIANGULAR CELL RETURN 

'-·· 

' 

( RETURN 

(b) (c) 

FIGURE 7.23 (continued) 



CHAPTER 8 

TRIANGULAR MESH GENERATION - TMG 

1. INTRODUCTION 

2. RITZ FINITE-DIFFERENCE EQUATION 

3. ITERATIVE SOLUTION OF THE RITZ EQUATION 

4. AUTOMATIC MESH GENERATION 

4.1 Non-Uniform Triangulation 
4.2 Logical Diagram and the Boundary 

Input Data Format 

5 . TMG - PROGRAM 

5.1 Description of the Batch Program 
and its I/0 Data 

5.2 The Display Program 

224 



225 

1. INTRODUCTION 

A generalised finite element algorithm was proposed (46] for the 

solution of elliptic boundary-value problems using non-uniform 

triangular mesh systems. 

The above work is mainly concerned with triangulations in the plane 

with particular reference to the numerical solution of the Poisson 

equation, and the subsequent graphic display of the generated mesh and 

its associated equipotential lines. 

The program developed by Cardew (46] is an adaptation of Winslow's 

(47] for generating non-uniform triangulation with selective zoning in 

different areas. The versatility with which the problem boundaries can 

be represented in the mesh is one important feature; further, there is 

the unique facility for grading the mesh to suit special areas in the 

plane of solution. 

A wide variety of problems in mathematical physics can be formulated 

as the classical problem of solving the Poisson or Laplace equation. 

For example, the distribution of electric flux in a general, anisotropic 

medium is modelled by Poisson's equation: 

DiV(EV~) = -p 

where E is the permittivity, and p is the electric field charge 

density (source density). The boundary conditionsusually have 

two forms: 

and 

~ = ~i(x,y) 

~.(EV~) = 0 

'Dirichlet conditions' } 

'Neumann conditions' 

where n is the normal to the boundary at (x,y). Another example 

is Laplace's equation for the electric field in conducting media: 

Div(crV~) = 0 

where o is the conductivity. 

(8.1) 

(8.2) 

(8.3) 



If c is constant, equation (8 .1) may be rewritten in terms 

2 of operator V as: 

226 

(8. 4) 

The usual classical approach to solving the boundary-value problem 

by the method of finite-differences is to discretize the region 

into a uniform rectangular grid (Figure 8.1), 

Using Taylor series for obtaining the approximations to the 

" 2 . h b h . " 2 b 1 d b operator , 1n t e a eve, t e equat1on , u=p may e rep ace y 

the five point difference equation 

2 2 2 2 22 
[u1 +~ u2+u3+~ u4-2(a +l)u0 ] + O(h ) = p~ h (8.5) 

where h =h and h =~h. More accurate formulae can be found through 
X y 

the use of more complex molecules; for example, a nine-point 
I 

4 approximation on a square net involves an O(h ) local truncation 

error. However, using uniform equilateral triangulation with a 

seven-point mqlecule, the error term is also O(h
4
). With orthogonal 

X and Y axes the 'equilateral net' is defined by two intersecting 

sets of lines (Figure 8.2), the Land K lines, corresponding to the 

rows and columns of a square net. The logical origin of the 

triangulation is situated at the bottom-left corner and the convention 

is that there should always exist two neighbouring triangles at this 

point. If the spacing between adjacent points on the same row is h, 

then for the equilateral net the spacing between adjacent rows is ~h 

where ~=13/2. For ~~/372 the net will still be topologically 

equivalent to the equilateral net. Using Taylor expansions about 

0 (Figure 8,3), the seven-point difference approximation to V2u=p 

on a equilateral grid may be written as: 

(8 .6) 



227 

l 

2 0 

4 

3 . 

FIGURE 8.1: Five-Point Difference Molecule 

(a) Network (b) Rows CL-lines) (c) Column (K-lines) 

FIGURE 8.2: Triangular Network and Its Basic Elemen~ 
(Row and Column) 



228 

Aun~orm mesh is inefficient when the problem requires a more 

accurate solution in some regions than in others, since the smaller 

spacing required leads to wasteful computation over the less important 

regions. The use of an irregular mesh is therefore desirable. 

Moreover, with this flexibility it would be possible to arrange that 

mesh points lie precisely on the boundary. 

In the following sections we state the basic assumptions, difference 

equations and methods of solution used in the development of the program. 

Finally, a full account will be given with supporting examples of how 

to run the program and the subsequent interactive display program for 

observing the result. 

2. RITZ FINITE-DIFFERENCE EQUATIONS 

are: 

The basic assumptions of the finite-difference method made here 

(i) the boundaries and interfaces of the region R are approximated 

by straight-line segments. 

(ii) the region is triangulated 

(iii) the values of ~ are defined at triangle vertices, and ~ is 

assumed to vary linearly over each triangle. 

(iv) e and p are assumed to be constant over each triangle. 

The type of triangulation used here is topologically regular; i.e. it 

is topologically equivalent to an equilateral triangle array in which 

six triangles meet at every interior mesh point. Since any polygonal 

region can be triangulated, the method can be applied to regions of any 

shape and will produce· a mesh in which boundaries and interfaces lie 

entirely on mesh lines. This causes a considerable simplification of 

boundary conditions. 



Consider the numerical solution (48] of a generalised form of 

Poisson's equation within a two-dimensional domain R with given 

boundary condition. In particular, consider the second order, linear 

elliptic partial differential equation expressed as 

where (x,y)eR, a(x,y), c(x,y)>O. 

The boundary condition is 

o.4> + ~ = fl an 

= f 

where n is the direction of the normal derivative and o.,fl are 

piecewise continuous functions along the exterior closed boundary 

of R. The solution 4>,k and f are assumed to be continuous within R. 

A two-dimensional finite element may be defined as a polygonal 

subdomain of the domain R of a boundary-value problem. The potential 

within this subdomain is approximated by a polynomial interpolated 

229 

(8. 7) 

(8. 8) 

through the n vertices of the subdomain. The order of this interpolated 

polynomial is determined by n, e.g. a 'linear element' is a triangular 

subdomain in which the potential is approximated by a linear polynomial. 

The approximate solution u of the partial differential equation is 

represented by a polynomial function (usually linear) over each element 

with matching conditions on the inter-element boundaries. Each polynomial 

is defined by a number of coefficients or by the function value and its 

derivatives at certain points. Then by use of a classical result from 

the calculus of variations, we know that the solution of (8.7) is given 

by the function which minimizes the integral 

1 J J av 2 I(v) =- {a(-) + 
2 R ax 

av 2 2 
c (ay) + kv - 2fv }dxdy 

+ Jrcav+~v2 ) ds (8.9) 

over all functions with at least piecewise continuous first derivatives 



230 

which satisfy the same boundary conditions as ~. If we substitute u 

for v in the integral (8.9), I(u) becomes the sum of the integrals of 

the polynomials over the finite elements within the domain R. 

Given a triangulation of the region R based on the rows and columns 

shown in Figure 8.2, over which u is required at each triangle vertex, 

we can derive a set of difference equations from (8.9) by using the Ritz 

varational method. Basically, we express u as the continuous piecewise 

linear sum 
u = L u. a. (x,y) (8.10) 

i l. 1 

where u. is the value of u at the mesh point (x.,y.) and a.(x,y) is 
1 1 1 1 

a pyramid function with the properties: 

(i) a.(x.,y.) = 1 
1 1 1 

(ii) a. (x,y) = 0 for any point (x,y) lying on, or beyond the 
1 

hexagonal perimeter 123456, (Figure 8.3). 

(iii) a. varies linearly in each adjacent triangle. 
1 

We minimize I(u) by setting ;~ = 0 at each mesh point, thus 

obtaining a system of linear equations in the parameter u. of the 
1 

form: 
6 
L w (u -u ) + bp = 0 

q=l pq q p 

for all points PeR where b is a combination of boundary and source 
p 

terms and can be expressed as, 

= 
6 

I 
T =1 

q 

Aq is the area of the triangle T (Figure 8.4) and w is called 
q pq 

the coupling coefficient between the points P and Q and depends on 

(8.11) 

(8 .12) 

the geometric and material properties of the two triangles (Tq+l'Tq_ 1) 

having PQ as a common side. It could be shown that 



231 

2 l 

4 5 

FIGURE 8.3: The Computational Molecule 

FIGURE 8.4: Couplingof Triangular Elements 



232 

1 
wpq = 2CeT cose +l + 

q+l q 
(8.13) 

Equation (8.11) is the Ritz finite-difference equation using a general 

seven-point molecule. 

If the triangulation is uniform and equilateral and if the source 

term p is piecewise constant over the region of solution, equation (8.11) 

reduces to the seven-point regular hexagonal equation (8.6) derived 

from the Taylor series. 

Complete generality is present in the Ritz approximation (8.11) in 

the following respects: 

(i) the mesh may vary in any manner, though it must remain 

topologically regular. 

(ii) the source function p can vary in a piecewise manner 

between subregions of the problem. 

(iii) the coefficient functions may also vary in a piecewise 

manner between regions. 

If the mesh is approximately equilateral in certain zones, then the 

discretization error there will be O(h4). Clearly, there is more 

computational effort involved with using (8.11) than with the five-

point or seven-point equation resulting from Taylor series. This 

would appear to be the disadvantage of using a non-uniform net. 

However, the prime motive in employing (8.11) resides in the simplification 

introduced in the treatment of: 

(a) Composite material media 

(b) Complex boundaries 

and (c) Singular field points, where the mesh spacing may be 

reduced around such points. 



233 

3. ITERATIVE SOLUTION OF THE RITZ EQUATION 

The linear system of equations generated by repeatedly applying 

equation (8.11) to all mesh points can be expressed as: 

Au = b (8.14) 

Since each point of the network is coupled only to its neighbouring 

points A is a large order, sparse, positive definite, symmetric matrix 

containing the coupling coefficients w derived from (8.13) as elements pq 

banded around the main diagonal. In general the more complex the 

finite-difference molecule is, the wider the bandwidth becomes. The 

vector ~ is the required solution at the mesh points and ~ is a vector 

whose elements are combinations of boundary and source terms. 

Methods for inverting the system of linear equations may broadly 

be classified as either Direct or Indirect. In the direct method a 

finite number of computational steps are required for evaluating the 

solution, whilst in the indirect method an initial 'guess' is made 

for the solution which is subsequently improved upon in successive 

iterations. These cycles are terminated when the changes in u from 

one cycle to the next are negligibly small (convergence). 

The iterative methods of solution are almost invariably much 

simpler to program and often preferred to direct methods because they 

can cope with the sparsity of the matrix more effectively. Only the 

non-zero coefficients are used in the numerical algorithm involved and 

thus the computer storage usage is minimal. Further, the problem of 

rounding error growth is avoided. The iterative scheme used in this 

program involves splitting the matrix A in the following manner 

A = D - L - U (8.15) 

where Q is a diagonal matrix and L and ~ are strictly lower and 

upper triangular matrices respectively. Thus, rewriting the linear 



234 

system of equation (8.14) as 

CQ.-!J!:!. = .!:!. !:!. + b 

and introducing the iteration counter n, the Gauss-Seidel iterative 

scheme can be defined: 

u(n+l) = Q.-l(~!:!.(n+l) + .!:!.!:!.(n) + ~) 

The convergence of this method can be improved by introducing the 

parameter w into (8.17), which would result in the well known 

successive over-relaxation (S.O.R.) method as 

or alternatively, 
(n+l) 

u = L u (n) + b 
-w- -1A) 

where w is the over-relaxation parameter chosen to accelerate the 

convergence and 
-1 

~ = (Q.-w!) {w.!:!_ + (1-w)Q.} 

The matrix is ~sually generated from a simple computational molecule 

(8.16) 

(8 .17) 

(8.19) 

(Figure 8.3) rather than stored directly in the computer memory. Thus, 

only the approximations !:!.(n) are stored (requiring one vector of 

storage) and a mechanism (program) simulates the molecule's traverse 

of the network in some order during each iteration. For regular 

points of the net, the coupling coefficients are just stored once 

while for irregular or boundary points, each point is tagged and the 

associated coupling coefficients stored as lists. 

By choosing a suitable local ordering such as in Figure 8.3, and 

returning to equation (8.11) the corresponding S.O.R. formula is 

6 6 
u(n+l) = u(n) + w{( L w u(n,n+l) + b )/ L w -u(n)} 
p p q=l pq q p q=l pq p 

In each iteration cycle, the mesh 

the (n+l)th iterate replacing the 

points are swept in sequence with 

th . . n ~terat~ve component at up as 

soon as it is calculated. For symmetric, positive definite matrices, 

(8.20) 



the method is known to converge. The main point of interest is the 

choice of the over-relaxation factor w which minimises the spectral 

radius P(L ) and thus maximises the convergence rate. The optimum w 

value of w is 

-1 where A is the spectral radius p(Q (~+lO) of the related Jacobi 

operator. For a given w (less than wopt), we can express A as 

w+)l(L )-1 
A w = 

·'·'L:) r 
11 o (n+l) 11 iil (oin+l))2 

where ll(L ) = = w 11 o (n) 11 I ( o ~n)) 2 
l 

The error norm I lol I can be evaluated by forming'the sum of the 

235 

(8. 21) 

(8.22) 

squares of the residuals (errors) at all mesh points on the completion 

of each iteration. 

An under-relaxation parameter S is introduced in the actual 

formulae used in the program. This would prevent 

too rapidly from one iteration to the next (47). 

w opt 

This 

from changing 

is desirable 

since large changes in the value of wopt may seriously perturb the 

spectral radius ll(L ). The final formula used for the automatic 
w 

estimation of the wopt is 

w opt 
= S( 2 ) + 

l+D 

where wopt' is the previous value of wopt and p0 is a further 

damping term. 

(8. 23) 



236 

4. AUTOMATIC MESH GENERATION 

4.1 Non-uniform triangulation 

The generation of the non-uniform triangulation is performed through 

three main steps: 

(i) Generation of boundary tags and coordinates along all external and 

interface boundaries described in the input data. 

A tagging word (24 bits) is allocated to each mesh point (Figure 

8.Sa) in which is packed certain information relating to the disposition 

of the point w.r.t. the boundaries. The structure of this word is given 

by: 

(1) VTU and VTL are the region numbers of upper and lower cells 

associated with the point I (Figure 8.Sb). 

(2) C is the boundary code, where 

C=O if I is not on a boundary 

C=Z if I is on a boundary that is to be relaxed 

C=3 if I is on a non-relaxed boundary. 

(3) S is a side tag with the following interpretation: 

S=O if neither of the VU,VL lie along boundaries 

S=l if VU lies on a boundary 

S=Z if VL lies on a boundary 

S=3 if both VU,VL lie on a boundary. 

(ii) Assignment of region numbers to all cells. 

On completion of the first step (boundary points), a scan is made 

along each row of the mesh and the following action is performed: when 

the first point on this row is reached having a vertical side tag or 

the first point on the row above having a lower side tag, all following 

cells lying between the current mesh row and the one above are tagged 

with the current region number up to the next 'tagged side'; no further 



237 

tagging is performed until another side is found. Whenever a point is 

found with a side tag then this tag is erased. 

(iii) Generation of internal mesh coordinates. 

In order to reflect the relative importance and material properties 

of each region, the mesh for a given problem should also be composed of 

regions which can be zoned to different average mesh spacings, with the 

mesh spacing in each region varying smoothly. Thus the coordinates of 

the unspecified internal points are found through solving a 'pseudo-

potential' problem [47]. That is, the zoning problem is formulated as 

a potential problem, with the mesh lines playing the role of equi-

potentials. The triangular mesh generated is composed of three sets of 

straight lines (Figure 8.6) intersecting each other at 60°, of which any 

two sets are sufficient to define the mesh. 

Let one of these two sets be associated with a function ~(x,y) and 

the other witn a function ~(x,y), each satisfying the Laplace equations 

} (8.24) 

over each region with boundary conditions determined by the interface 

and boundary zoning. Solving (8.24), the intersecting 'equipotentials' 

~=constant and ~=constant, together with the third set drawn through 

the intersection points, form the desired triangle mesh. By inverting 

equations (8.24) and writing them in terms of x(~.~) and y(~.~), we 

find that (8.24) are transformed into inverse Laplace equations: 

2 2 
where ~=x ~+y ~· 

~x~~-2Sx~~ +yx~~ = 0 

~y~~-2Sy~~ + y~~ = 0 
2 2 

S=x~x~+y~y~ and y=x ~+y ~· 

} 
With meshes of a mild non-uniformity, equations (8.25) can be 

simplified, into a linear form i.e. 

(8.25) 



2 2 6 6 

c s VTU VTL 

FIGURE 8.5a: The Tag Word 

8 

Spares 

238 

vu 

VL 

FIGURE 8.5b: A Typical Cell 
Configuration 
with Point I 

lines of constant ~ 

' I ' I ' ' ' \ ' \. ' ' \ ' ' \ ' \ 
\ \ 2 1 

' \ 

' \ 
' \ 

\ ' \ 
\ ' \ I ' \ 

' ' ' 
' 

\ 

3 \ 

' ' 
' 

' ' ' \ 
\ \ 

' \ 

\ \ 

\ \ 

\ \ 

' 4 
\ 

\ 

\ 

\ 
\ 

' I \ 

I , I 

FIGURE 8.6: Pseudo.Equipotential Lines 

I 

I 
\ 

\ 6 

' 
' ' 

' 

' 5 

/'', 
\ 

' \ 

' 

' ' ' 

' 
' 

\ 
\ 

\ 

lines 
of 
constant 

4> 



xH +x.p.p 

YH +y.p.p = 0 

= 0 

) 
The difference equations corresponding to these two equations are: 

case (a): 

case (b): 

1 6 
xo = 6 I x. ; 

i=l 1 

1 4 
xo = 4 L X. ' 

i=l 1 

i.e. x
0

,y0 are simple averages of neighbouring coordinates. The 

type of zoning (case a or b) is specified in the input data for a 

region by a parameter z=l or 2. The above two difference equations 

are solved by the method of successive point over-relaxation in an 

analogous nammer to that of the Ritz equation (8.11). 

4.2 Logical Diagram and the Boundary Input Data Format 

A useful apparatus for arranging the disposition of boundary 

points is the logical diagram. The concept of the logical mapping is 

239 

(8. 26) 

(8. 27) 

useful in preparing the way for a description of the method of choosing 

the mesh layout for non-uniform triangulations. 

This section is intended to outline briefly the use of the logical 

diagram and the format for the description of the boundary points to 

define the region geometry which is input to the program. A typical 

example is shown in Figure 8.7. The rules in the preparation of this 

diagram are as follows: 

(i) Choose an equilateral net of sufficient degree of fineness to 

suit the problem in hand. 

(ii) Represent any straight boundary section along any desirable logical 

direction in this mesh. The length and orientation of this path will 

determine both the number of mesh points and the zoning of the mesh. 



B 

region 1 

p 
A f-----. 

' 
' 

' ,> 
.pl 

) 
\ 
I 

E 

c 

region 2 

~2 

' ' \ 

' \ 

' 

', 

\ 

' ' 

' \ 
' 

' \ 

' ' 

' ' \ 

' ' 

' 
I 
I 

0 ( 

' 
' ' ' ' 

F 
~----+-----------------------~10 

' 

FIGURE 8.7: Logical Diagram 

240 



241 

(iii) Simulate any 1 Reflection 1 (Neumman) condition for symmetry by 

introducing a row of 'Dummy' cells on one side of the section, e.g. 

FED of Figure 8.7. When the external boundaries of the region do not 

fit precisely a rectangular outline, an imaginary rectangular boundary 

is marked to complete the region. 

(iv) Curved sections (AF in Figure 8.7) can be represented by using the 

'logical arc' facility provided in the program. The centre of the arc 

is defined in the input data by the following quantities L0,K0 ,e0 

where (L0 ,K0) is the intersection point at the 'K' line and 'L' line 

through 0 and e0 is given as 

no. of mesh sides along the logical slant line 
Total no. of mesh sides along the logical arc 

(v) Code C=O for any internal point, 

C=l is used for any boundary point which is to be relaxed, 

C=2 for a boundary point which is not to be relaxed. 

The format for the description of each boundary point is (~,k,y, 

x,~,C), where~ and k are row and column numbers in the range (O,LMAX 

and O,KMAX), y and x are the coordinates of the boundary point, 

~ is the potential at that point and C is the code. 

The boundary input data to the problem is arranged in the following 

manner: 

If a boundary has the same constant code and potential (~,C) for a 

large number of consecutive points in the input data, then rather than 

repeating the code and potential at each point it would be useful to 

signal only 'changes' in parameters. A convention was adopted in which 

the first point to be presented for a boundary is preceded by a section 

with a code of unity and potential of zero. With this convention it is 



242 

only necessary to define (~,k,y,x) at this point. If the section 

following the first point has the same code and potential then it is 

only necessary to give the coordinate of the point at the end of this 

section; and so on for the remaining points. However, if at any stage 

the type or potential of the intermediate points (or the end points) of 

a following section changes, then prior to giving the coordinate of the 

next point, one introduces an alphabetic sentinel 'B' followed by the 

quantities c1 ,CE'~E where: 

cl: is the code for the intermediate points 

CE: is the code for the end point 

~E: is the potential at this point 

The following example illustrates the use of this scheme for . 

defining the geometry of a given region. In region 2 (Figure 8.7) the 

input data are defined by the following card images: 

1st card: 2 z2 e
2 

p2 

This card specifies the properties of region 2 where e2, Pz are the 

region constants and Z2 the zoning code (1 or 2, see section 4.l(iii)). 

2nd and subsequent cards: 

tEkEyExEB 1 2 ~ZtCkCyCxCB 2 2 ~ 2 t0k0y0x0 G 

Here the potential along ED is assumed zero. There is no need to 

repeat the first point to indicate closure of the region: the terminator 

G is used to signal this to the program. The data describing the arc 

AF of region 1 consists of an alphabetic sentinel A followed by the 

first point, the centre and the last point i.e. 

AtFkFyFxFtOkOeOtAkAyAxA 

A routine called GEOMETRY reads in the cards defining the geometry, in 

a free format so that spacing between the separate items on a card is 



243 

immaterial and so also is the number of items on the card. The only 

restriction on 'the layout of the data is that there should be at least 

two space characters between individual fields. 

5. THE TMG-PROGRAM 

The program was originally implemented on the ICL 19045 and the 

plotting part was performed off-line on an incremental plotter using 

the ICL graphic library routine HGPLOTT. Due to the limited computing 

resources available with a PDP 11/40 and the large amount of computing 

time required by the TMG program, it was not posssible to implement 

a fully interactive version of TMG on this machine. As a result the 

program is partitioned into two separate jobs. 

(i) the numerical computation is performed in Batch mode on 

the ICL machine, 

(ii) the plotting part is then carried out on the PDP 11/40 

machine using the LIGHT package on the graphic display 

and allowing the user a limited amount of interaction 

with the displayed picture. 

5.1 Description of the Batch Program and Its I/0 Data 

This program would carry out all the number crunching part of the 

process of generating the triangular mesh. It consists of the master 

or steering segment 'POISSON' and a number of subroutines performing 

the various computational tasks required by the program (see program 

listing Appendix 4 .1). The main course of action required in the 

processing of each task is illustrated in the block flowchart of 

Figure 8.8. A number of distinct problems can be treated in one 

execution of this program. For each problem the user must include the 

input data in the following order: 



244 

( START ) 

(a) INPUT 

READ GEOMETRY AND MATERIAL 
PROPERTIES FOR EACH REGION 

(b) TOPLGY 

INTERPOLATE COORDINATES AND 
POTENTIALS ON BOUNDARIES. 
TAG BOUNDARY POINTS AND 
INTERNAL CELLS 

(c) MESHRELXN 

CALCULATE THE COORDINATES OF 
INTERNAL POINTS BY ITERATIVE 
SOLUTION OF 'PSEUDO-
EQUIPOTENTIAL' PROBLEM 

(d) PARAM 

EVALUATE THE COUPLING 
COEFFICIENTS AND SOURCE TERMS 
FOR EACH DIFFERENCE EQUATION 

(e) RELX --
ITERATIVELY SOLVE THE SYSTEM 
OF LINEAR DIFFERENCE EQUATION 
(8. 9) 

PRE-PLOTTING (PLOTT)_ 

CONTROL COORDINATE OF MESH 
POINT AND EQUIPOTENTIAL 
SEGMENT. PRODUCE PAPER TAPE 
OUTPUT FOR DISPLAY PROGRAM 

( END ) 
FIGURE 8.8: The Off-li~e Batch Program - POISSON 



(a) Control data: these consist of five control cards carrying the 

following information in free format: 

Card I Number of problem. 

Card II 

Card III 

Card IV 

Title for the current problem. 

(1) a logical parameter (PLOTMESH) which assumes the 

value 'True' or 'False' according as the mesh 

lines are to be displayed or not. 

(2) a count (NEQPTL) of the number of equipotential 

lines to be displayed. 

(1) number of regions in the geometrical description 

of the problem (NREG). 

245 

(2) material and geometrical pr.operties to be ascribed 

to each region. This is usually fixed in number 

(equal to 4) e.g. region number, zoning code, 

permittivity, charge density. 

Card V The logical size of the mesh, KMAX,LMAX followed by 

the mesh parity. 

(b) Geometric data: this consists of an unspecified number of cards, 

each containing the material and geometric properties of each region 

followed by the boundary points and their potentials. The type of 

information and the data format of this input is fully described in 

section 4.2 above. 

The numerical results are dispatched to two types of output 

media: 

(i) line printer output which includes print out of some 

intermediate results regarding the acceleration factor and 

convergence rate together with coordinates of mesh points and 

their associated potentials for each row. 



246 

(ii) p~per tape punch. contains the coordinates of the mesh points 

and the equipotential line segments. The distinction between 

mesh and equipotential data is made by generating a code for 

each type. All mesh lines are tagged with code 1, whilst 

equipotential lines are tagged with code 2,3,4 ••• depending 

on the level. This paper tape data will be employed in the 

display program (see next section). 

The main subroutines of the program depicted by each block of the 

flowchart of Figure 8.8 are:-

(a) INPUT. 

Reads in the number of mesh rows and columns and the material and 

geometric data. The latter is read in free format by the routine GEOMETRY. 

(b) TOPLGY. 

Steers tbe processing of the geometric input data in the following 

manner. Between each pair of boundary points an entry is made to the 

routine BSET which interpolates the coordinates of the intermediate 

points and ascribe tags to these points and the last point of each 

section. The subroutine CODE is used by TOPLGY for examining any 

changes in the type of boundary code. If a marker denoting a curved 

(arc) section is encountered then entries are made to ARCSET and ARC, 

which in turn distribute the intermediate points by equal increments in 

polar angle. 

Following the generation of a region boundary, an entry is made to 

SETREGION for the tagging of internal mesh cells associated with this 

region. TOPLGY continues with the next region until finally all regions 

of the problem have been completely defined. 



247 

(c) MESHRELXN. 

The linear difference equations (8.27) are simultaneously solved 

by successive point over-relaxation. At each point of the relaxation 

sweep a check is made that the current point does not lie within a 

dummy region or on any boundary. If the point is internal then the 

region in which it lies is determined by extraction of the region tag 

for the upper cell at this point. 

(d) PARAM. 

This controls the process of evaluation of the coupling coefficients 

and source terms. Since the couplings and sources are linear combinations 

of the basic geometric and material properties within the cells, it will 

be obvious that a given coupling coefficient can be assembled by the 

contributions from cells at different stages of the sweep. All the 

evaluations are performed by the subroutine TERMS. 

(e) RELX. 

The system of linear Ritz difference equations (8.11) are solved 

by successive point over-relaxation. Initially, a starting value is 

chosen for the acceleration factor w t (1.5) and the iteration counter op 

ITN is set to zero. Following this a sweep is performed through all 

the points of successive rows • The sweep commences at the point (0,0) 

and proceeds to the end of the first row; this is repeated for the 

next row and so on. When the mesh sweep is completed the iteration 

counter ITN is updated and an entry is made to the routine SOR for a 

re-estimate of w t equation (8.23). op 

(f) The pre-plotting routine PLOTT. 

This routine organises and controls the generation of mesh and 

equipotential lines. The fundamental routines employed are respectively 



LINET and EQUPLT. Initially, a sweep is made through the mesh and 

the maximum and minimum coordinates (used for setting the display 

viewport later) and potentials are determined. The required equi

potential points are evaluated. Following this, a forward sweep is 

248 

made for all points on the first row (L=O), and the coordinates of the 

mesh lines are s7t off to be punched on the paper tape for later use 

with the display program. Still on the same row, a cellwise, backward 

sweep is performed; for each cell the vertical sides are also sent to 

the paper tape punch. These sweeps are repeated for all subsequent rows. 

5.2 The Display Program 

This essentially displays the triangular mesh and the equipotential 

lines of the problem region from the output paper tape data generated by 

the Batch program. It also provides a limited interactive capability 

with the display picture through the selection of menu options. 

Prior to running this program, the data on the paper tape must be 

read in and stored on disc file the name of which is specified by the 

user. For this purpose a small C-program (Appendix 4.2) was written 

for reading the paper tape data produced by the ICL machine and storing 

it on disc file on the PDP 11/40 machine. The program also removes 

unwanted characters from the data (e.g. null character, carriage return, 

parity bits) so that the format of the data stored is acceptable by 

UNIX-Fortran. In order to read the data, the paper tape is mounted 

on the PDP 11/40 paper tape reader and the following UNIX PIPE command 

[19] is used: 

{. PRTAPE</DEV/PR>AFILE 

(A pipe is simply a way to connect the output of one program to the 

input of another program, so the two run as a sequence of processes). 



249 

Here, the PRTAPE is the executable C-program module, and AFILE is the 

name of the disc file containing the final data. 

The display program (Appendix 4.2) consists of the main segment 

and three subroutines responsible for the plotting and controlling of 

various displays which include: 

(i) Triangular mesh of the problem region. 

(ii) Equipotential lines with or without the mesh. 

(iii) Zooming part of the display picture. 

The display program is generated by running the existing shell file: 

'/.SH JCL 

where JCL is the shell file containing all necessary UNIX command for 

compiling and linking the program with the LIGHT library subroutines. 

The executable module is named 'FINITE'; so the user would be required 

next to type in: 

'/.FINITE 

and the program will run under his control. 

The sequence of displays the user would encounter while running 

the program is best illustrated by means of an actual example. The 

problem region investigated in this example is concerned with the field 

distribution of an electron gun with its geometry and boundary potentials 

given in Figure 8.9. As soon as the program runs, the display image 

shown in Figure 8.10 appears on the screen. This display contains a 

short introductory remark followed by instructions for the user to make 

keyboard entries. The input data required by the program are: 

(1) Data file name 

(2) The limit of the data to be mapped on to the pre

specified viewport (i.e. minimum and maximum of 

x,y values). 



2 ___ ..,.3 

1 20 

x boundary ~oints 

R.,k,y,x 

1. 0,0,-25,-5 1500 
2. 20,0,25,-5 1500 
3. 20,3,25,0 1500 
4. 13,3,1.5,0 1525 
5. 13,11,2.5,8 1525 
6. 15,12,3.83,13.67 1525 
7. 15,18,6.5,25 1525 
8. 18,19,10.17,37.33 1525 
9. 18,25,17,62 1525 

10. 20,25,25,62 1500 
11. 20,27,25,65 1500 
12. 0,27,-25,65 1500 
13. 0,25,-25,62 1500 
14. 2,25,-17,62 1475 
15. 2,19,-10.17,37.33 1475 
16. 5,18,-6.5,25 1475 
17. 5, 12,-3.83,13,67 1475 
18. 7,11,-2.5,8 1475 
19. 7,3,-1.5,0 1475 
20. 0,3,-2.5,0 1500 

14 

Cards Input cards 

1. B 2 2 1500 0 0 -25 -5 20 0 25 -5 
2. 20 3 25 0 B 2 2 1525 13 3 1.5 0 
3. 13 11 2.5 8 15 12 3.83 13.67 
4. 15 18 6.5 25 18 19 10.17 37.33 

250 

10 11 

9 

13 12 

5. 18 25 17 62 B 2 2 1500 20 25 25 62 
6. 20 27 25 65 0 27 -25 65 
7. 0 25 -25 62 B 2 2 1475 2 25 -17 62 
8. 2 19 -10.17 37.33 
9. 5 18 -6.5 25 5 12 -3.83 13.67 
10. 7 11 -2.5 8 7 3 -1.5 0 
11. B 2 2 1500 0 3 -25 0 G 

FIGURE 8.9: Geometric Data for the Electron Gun Problem 



251 

Host of the menu options used throughout this program have the same 

function as those described in previous applications (e.g. IDF package). 

Once the user has completed the necessary keyboard entries, he 

can proceed to the '+NEXT' display. This is the main display of the 

program, and enables him to perform the following actions, through the 

selection of menu options provided: 

(a) ll'hen this option is picked up the triangular mesh 

generated would be displayed (Figure 8.11). 

Effectively the program reads the stored data one 

line at a time and draws the mesh. ll'hen the entire 

mesh is displayed, the program returns control to 

the user by the appearance of the cross-hair cursor; 

.. I+MESHI 

then the user may wish to proceed to take the next action. 

While the program reads the data, it stores the 

equipotential line coordinates on an array list so as 

to avoid the time-consuming operation of reading the 

data file again. 

(b) This option will cause the equipotential line to be .. I+EQUIP'Ll 

displayed. If the user wishes to plot these lines 

separately (Figure 8.12) he can do so by selecting 

the option '+RESTART' (which clears the screen) prior 

to this option. On the other hand, if combined 

displays of both the mesh and equipotential lines 

(Figure 8.13) are needed then the user would select 

this option directly. 

(c) This option allows a portion of the region to be 

enlarged. For example, Figure 8.14 shows that a 

zooned window is defined (by using the cursor and 

..j +ZOmll 



FIGURE 8.10: Introductory Display 

FIGURE 8.11: Triangular Mesh of the 'Electron Gun' 
Problem Region 

252 



FIGURE 8.12: Equipotentia1 Lines 

FIGURE 8.13: Triangular Mesh Superimposed By 
The Equipotentia1 Lines 

253 



selecting any two opposite corners of the rectangle) 

and Figure 8.15 shows the blown-up display of the window 

selected. 

254 

Another example is also shown in Figure 8.16 and Figure 8.17 of the 

field distribution in the region between two charged parallel conductors 

of finite width but infinite lengths. 



255 

FIGURE 8.14: Choosing the Zooming Window 

FIGURE 8.15: The Zoomed Portion of the Triangular Mesh 



FIGURE 8.16: Triangular Mesh of the Two Charged Parallel 
Conductors 

FIGURE S. 17: Same as the Above Example with r>tuipotentj_a]. 
Lines 

256 



257 

CHAPTER 9 

SU1·1~1ARY AND CONCLUSIONS 



258 

An initial study was made of the current state of hardware/software 

facilities in interactive computer graphics. This was a useful exercise 

in its own right, but was also motivated by the limited graphics support 

which was locally available at the start of this work. General-purpose 

graphics packages such as GINO-F were being marketed commercially but 

usually required too many resources for our mini-computer environment. 

It was apparent that in-house graphics software was needed to support a 

wide range of computer graphics applications, typically in the area of 

scientific computing, and to form the basis for developing a graphics 

laboratory. Consequently, the graphics software package LIGHT was then 

implemented as a set of Fortran-callable library subroutines, capable of 

driving the graphics display (Tektronix 4010) from the PDP 11/40 under 

UNIX time-sharing system. 

The scope of LIGHT was extended beyond the basic requirements to 

include three~dimensional transformations, simple perspective projection, 

menu operation and text handling capabilities; it was also made accessible from 

the GT42 refresh display operating in Emulator mode. At the same time 

the total core requirements of the LIGHT library were designed to be 

less than 8K words. 

Fortran was chosen because graphics systems are likely to be used 

for scientific and engineering applications. The use of Fortran also 

makes the package (and the application programs) portable except for 

the 'back end' which contains some assembly code and the terminal 

dependent routines. Because of the modular design of the package and 

the inclusion of the back end code in a separate module, the only code 

modification which would be needed in a different configuration is 

performed on this module alone. 

The Tektronix 4010 cross-hair cursor and keyboard can be used 

efficiently as input devices. LIGHT has provided various input graphics 



259 

capabilities activated from the keyboard or by a cursor position with 

single-character command or through 1nenu selection, each of which can 

be transmitted to the computer program during execution. Thus the 

application program can be written to incorporate such user interaction 

in a natural manner. 

Window/Viewport transformations have been introduced to ease the 

problem of coordinate system mapping. Graphic displays are generated 

by defining a coordinate system, scales, labelling and text generation. 

The scales are determined either automatically in order to fit a selected 

portion of the data or explicitly by the user. Where the data falls outside 

the screen viewport, a clipping (scissoring) routine is used to exclude 

all such extraneous elements. 

A variety of three-dimensional transformations have also been 

implemented, including rotation and perspective projection. The 

generation and storage of transformation matrices by LIGHT'effectively 

offers the application programmer a system of transformation control. 

The present capability of the graphic software can be extended to 

include hidden line removal and graphical data structure facilities; 

these could be valuable assets in a computer graphics laboratory. It 

would also be possible to implement a display-file based version of 

LIGHT. Here, the display file would not of course be used to refresh 

the display. However, it can serve a useful purpose in permitting part 

of the picture to be manipulated. Furthermore, some of the facilities 

provided by LIGHT can be easily incorporated into the locally available 

Picture Book package [11] used in conjunction with the GT42 either 

directly (transformation routines) or with slight modification (e.g. 

menu handling routines). 

LIGHT has shown its usefulness in a range of applications and for 

a wide variety of users. There is a good case for such a general purpose 



and efficient graphic software package which is accessible from a 

high-level language. The following application areas were exploited 

during the course of this work and made extensive use of LIGHT in an 

interactive environment. 

(i) Interpolatory Data Fitting - IDF 

260 

This provides a user interface for solving a certain class of 

data-fitting problems and is oriented toward the non-programmer. The 

'easy-to-use' design of the interaction embodied in IDF, and the 

inclusion of the ability to specify various end conditions give it the 

combination of simplicity and effectiveness necessary to a useful 

interactive problem-solving device. It consists of two separate 

packages (Explicit and Parameteric), each containing a number of 

overlayed modules and a library of numerical algorithms featuring mainly 

cubic spline interpolation methods. This set of algorithms has been 

enhanced and adapted for interactive use. Additionally, the user is 

offered a command menu, through which he would have full control over 

the execution path of the package, with on-line help and a large number 

of utility options for thorough examination of the interpolated curve. 

Several cubic splines were generated using spline algorithms for 

a variety of boundary conditions. This smooth interpolatory curve 

fitting system can serve a useful purpose for creating and displaying 

graphical information. When straight line vectors are used to connect 

the interpolated points, rapid and relatively inexpensive graphical 

output can be produced and modified interactively by the user. The 

controlled end condition specifications allow easier control over the 

final shape of the curve. However, this technique does not rival the 

methods of interactive curve design developed by Bezier [49) and 

Riesenfeld [50). However, when a few known data points are available, 



261 

and control of the curve through these points is desirable, the above 

type of algorithm can be useful. 

Some possible extensions and improvements that are possible in 

the IDF system are: 

(1) Extending the localised polynomial method to incorporate 

different weighting functions and the ability to select these 

weights interactively. 

(2) The addition of further algorithms, for example least squares 

cubic spline approximation. 

(3) For users with 'noisy' data the suggestion made in (2) could 

be developed further into a separate ~eneralised ~ata fitting 

package having the same philosophy and structure as IDF but 

incorporating for example least squares and minimax algorithms. 

(4) The addition of more display modes that would aid. user 

interpretation of the results. For example, one could display 

the first and second derivatives at the data points and at 

prescribed intermediate points. 
' 

(ii) Interactive Contour Tracing - ICT 

The basis of this program is a tracing algorithm for drawing 

the contour f(x,y)=constant in a region·over which there is a method 

of calculating the function. After some preliminary study of the 

available methods based on a regular mesh, an algorithm was developed 

from those which used a more localised tracing technique. This algorithm 

was adapted for interactive use on a display terminal, allowing the user 

to trace contours automatically or interactively. Some fundamental 

modifications were incorporated, providing improvements in smoothness, 

efficiency and the treatment of degeneracy. 



The generality and capability of this program can be extended 

further by providing the user with the option of tracing a set of 

contour lines for a given set of arbitrary points (or grid points). 

This would obviously require the inclusion of a routine which would 

estimate the function value of a given point (x,y) from the set of 

data points specified initially by the user. 

(iii) Triangular Mesh Generation - TMG 

262 

This program provides a graphics display and limited interactive 

facilities for the triangular mesh generation algorithm developed 

previously in conjunction with the solution of the Laplace or Poisson 

partial differential equation in an arbitrary two-dimensional region. 

Some development work was needed for modifying the original ICL 1900 

program and its output before subsequent interactive use on the PDP 11/40. 

This provides a display of the triangulated region, and the equipotential 

lines using interpolation techniques on the solution values at the mesh 

nodes. It also allows zooming into any subregion of interest. 

If more computing power were available on the PDP 11/40, the 

program would be entirely run on this machine with a fully interactive 

capability built into it. For example, it would then be possible to 

input and edit the geometric data describing the boundary of the region 

by means of cursor and keyboard entries. Furthermore, intermediate 

computational results could be displayed on request for examination by 

the user. 

A number of other application programs were successfully developed 

by other users using LIGHT, for example: 

(1) Displays for critical path analysis in an interactive graphics 

environment by Hargrave (51]. 



(2) Computer simulation of boundary layer growth and wake 

propagation on compressor cascade by Jamani [52]. 

The published photographs of the screen were produced from a 

domestic camera. However, a hardcopy device such as a pen-plotter 

would be a useful asset to the system. 

263 

For the modest investment in terms of both money and software 

development, the graphics systems developed in the course of this work 

have provided successful and useful tools for the average user. 

Moreover, they represent the basis of a graphics laboratory which 

could be used for future innovation in this field and its applications. 

The original aim of this project was centred on the data-fitting 

application of graphics. However, it will be observed that the scope 

of the work which is reported in this thesis has expanded considerably 

from the original idea. Further, it seems natural to suggest that 

there are other classes of numerical problem which can also benefit 

from the same kind of treatment. These may include: 

(1) Partial differential equations. Research on interactive 

graphical systems to represent the solution of partial 

differential equations would be very rewarding. Regions 

could be displayed and modified interactively and the 

corresponding results indicated graphically as well. 

(2) Numerical linear algebra. This area exemplifies problems 

whose intermediate results can be graphically presented for 

quick comprehension by the users. The condition of the 

coefficient matrix involved in the solution of systems of 

linear equations is a critical factor in the proficiency of 

various algorithms to obtain a satisfactory solution. There 

are various ways to examine the condition of a matrix. 



264 

Geometrical consideration yields a hyperellipsoid whose 

axes are inversely proportional to the eigenvalues of the 

matrix. Thus an elongated hyperellipsoid indicates bad 

conditioning whereas a near hypersphere indicates a well 

conditioned matrix. It is felt that an on-line user will be 

able to recognise and interpret a graphically presented 

hyperellipsoid more readily than a list of numbers. 



265 

REFERENCES 



(1] W.M. NEWMAN and R.F. SPROULL, 

'PrinaipZes of Interaative Computer Graphias', 

McGraw-Hill Computer Science Series, New York, 1973. 

(2] DEC - GT42, 

'User-Guide ManuaZ'. 

Digital Equipment Corporation, Massachusetts, 1975. 

(3] GINO-F MK2 Manual, 

CADC Cambridge, 1976. 

(4] P.R. DIMMER, 

'Graphias FaaiZities'. 

Interactive computer graph~cs for engineers, 

Leicester CAD Group, 1976. 

(5] D.P. BRADLY, 

(6] GPGS, 

'Basia Graphias Packages'. 

Interactive computer graphics for engineers, 

Leicester CAD Group, 1976. 

'Users TutoriaZ Referenae ManuaZ'. 

University of Mymegen, October 1975. 

(7] DISPLA, 

'Mini ManuaZ '• 

ISS Co. 1973. 

266 



267 

[8] EVANS and SUTHERLAND, 

'PiatUX'e System '• 

User Manual, 1974. 

[9] CUPID, 

'User Guide' Vo~.11, 

P.O. Research Department, Jan.l972. 

[10] PLOT-10, 

'Advanaed Graphias Users Manua~ ', 

Information Display Products, Tektronix, Mar.l972. 

[11] DEC - GT42, 

'Piatu:t'e Book', 

Ref~rence Manual, Digital Equipment Corporation, 1973. 

[12] G.A. BUTLIN, 

'Interaotive Input', 

Interactive computer graphics for engineers, 

Leicester CAD Group, 1976. 

[13] N.W. WISEMAN, H.U. LEMKE, and J.O. HILES, 
• • I 

'A New Approaah to GraphioaZ lfan-maahine Communwat-z,on , 

IEE International CAD, 1969. 

[14] J.D. FOLLEY and V.L. WALLACE, 

'The Art of Natu:t'a~ GraphiaaZ Man-maahine Conversation', 

Proceeding IEEE, Vol.62, No.4, 1974. 



[15] D. ROSS, 

'The AED approach to generaZised computer aided design', 

Proceedings ACM National Meeting, 1967. 

[16] W.M. NEWMAN and R.F. SPROULL, 

'An approach to graphics system design', 

Proceeding of IEEE, Vol.62, No.4, 1974. 

[17] R. WILLIAMS, 

268 

'A sW'Vey of data structures for computer graphics systems' • 

Computing Surveys, Vol.l, No.l, 1971. 

[18] D.M. RITCHIE and K. THOMPSON, 

'The UNIX time~haring system', 

Bell Laboratories, CACM, Vol.l7, No.7, 1974. 

[19] UNIX Programmer's Manual, 

COMMANDS, Internal Document, Section 1. 

Computer Studies Department, Loughborough University of Technology. 

[20] 'Tektronix 4010 Computer DispZay TerminaZ 1, 

User Manual, Tektronix Inc., 1972. 

[21] UNIX Programmer's Manual, 

SYSTEM CALLS, Internal Document, Section 2. 

Computer Studies Department, Loughborough University of Technology. 

[22] UNIX Assembler Reference Manual, 

Internal Document, Section I. 

Computer Studies Department, Loughborough University of Technology. 



[23] D.F. ROGERS a~d J.A. ADAMS, 

'MathematicaZ eZements for computer graphics', 

1976. 

[24] I. McNEIL, 

'Tektronix EmuZator ManuaZ ', 

DEC, 1976. 

[25] A.R. FORREST, 

269 

'Current deveZopment in the design and production of three

dimensionaZ curve objects', 

Proc.Roy.Soc., London, 1971. 

[26] P.W. WILLIAMS, 

'NvmericaZ Computation '• 

1972. 

[27] A.D. MAUDE, 

'InterpoZation - mainZy for graph pZotter', 

Computer Journal, Vol.16, No.l, 1973. 

[28] H. SPATH, 

'Sp Zine a Zgori thms for curvre and surfaces ', 

1974. 

[29] H. AKIMA, 

'A neuJ method of interpoZation and smooth curve fitting 

based on ZocaZ procedure', 

JACM, Vo1.17, No.4, 1970. 



[30] A.W. NUTBOURNE, 

'A aubia spZine paakage, Part 2'. 

Computer-Aided Design, Vol.S, No.l, 1973. 

[31] A. BENSON, 

270 

'The numeriaaZ soZution of partiaZ differentiaZ equations by 

finite differenae methods'. 

Ph.D. Thesis, 1969. 

[32] D.J. EVANS, 

'AZgorithm for the soZution of quindiagonaZ systems of 

Zinear equations'. 

Computer Studies Department, Loughborough University of 

Technology. Unpublished Notes. 

[33] DEC - DOS, 

'Fortran CompiZer and Objeat Time System'. 

Programmer's Manual, 1973. 

[34] RSX-11, 

'MuZti-tasking Operating System'. 

Digital Equipment Corporation. 

[35] S.P. MORSE, 

'Conaepts of use in aontour map proaessing'. 

Communications of ACM, Vol.l2, No.3, 1969. 



[36] G. COTTAFAVA and G. LE MOLl, 

'Automatic Contour Map', 

Communications of ACM, Vol.l2, No.7, 1969. 

[37] M.A. ROTHWELL, 

271 

'A computer program for the construction of Pole figures', 

J.Appl.Cryst. 1971. 

[38] E.L. ROBINSON and H.A. SCARTON, 

'Contor: A Fortran subroutine to plot smooth contours of a 

single-valued arbitrary three-dimensional surface', 

Journal of Computational Physics, 1972. 

[39] D.H. McLAIN, 

'Dr~ing contours from arbitrary data points', 

The Computer Journal, Vol.l7, No.4, 1974. 

[40] D.C. SUTCLIFFE, 

'An algorithm for drawing the curve f(x,y)=O', 

The Computer Journal, Vol.l9, No.3, 1975. 

[41] M.J.D. POWELL, 

'Piecewise quadratic surface fitting for contour plotting', 

Theoretical Physics Division, A.K.A.E.A. Research Group, 

Harwell, 1973. 

[42] I.P. SCHAGEN, 

'Contouring for arbitrary positioned data points', 

Computer Studies Department, Loughborough University of 

Technology, Internal Report No.60, 1977. 



[43] 1'-l.t •. lf. PIITEWAY, 

'Computer Graphics Research in an Academic Environment', 

Datafair 73 Conference Proceedings, Vol.2. 

[44] D.C. SUTCLIFFE, 

'A remark on a contouring algorithm', 

The Computer Journal, Vol.l9, No.4, 1975. 

[45] C.M. CRANE, 

'Contour plott-ing for functions specified at nodal points 

of an irregular mesh based on an arbitrary two parameter 

cocrdinate system', 

The Computer Journal, Vol.lS, 1972. 

272 

[46] G.E. CARDEW, 

'A Ri tz finite difference program for static field problems ', 

University of Sheffield, M.Sc. Thesis, 1971. 

[47] A.M. WINSLOW, 

'Nwnerical solution of the quasiZinear Poisson equation in 

a non-uniforn triangular mesh', 

The Journal of Computational Physics, 1967. 

[48] D.J. EVANS, 

'The analysis and application of sparse matrix algorithms 

in the finite element method', 

The Mathematics of Finite Elements and Applications, 

J.R. Whiteman, 1973. 



[49] P.E. BEZIER, 

'Example of an Existing System in the Motor Industry: 

The Unisurf System', 

Proc.Roy.Soc.(London), Vol. A321, pp.207-218, 1971. 

[50] R.F. RIESENFELD, 

'Berstein-Bezier Method for the Computer Aided Design of 

Free-Form Curves and Surfaces', 

Ph.D. Thesis, Syracuse University, 1973. 

[51] T. HARGRAVE, 

'Displays for critical path analysis in an interactive 

graphics environment', 

M.Sc. project 1977, Loughborough University of Technology. 

[52] S. JAMANI, 

'Computer simulation of boundary layer grooth and lilake 

propagation on compressor cascades', 

B.Sc. Final Year project 1978, Loughborough University of 

Te chno 1 o gy. (fri v .,(A. Com<W\\1"~<..>:>-I:i""')· 

273 



274 

APPENDICES 



275 

APPENDIX 1 

LIGHT - PROGRAM LISTING 



/ 
/ 

/ 

**~:ot:if1f·)t1f1f·:t1f-:-f-:.f:if.;ti-·.<!

'< AF'f-'Et!ll L< 1 • 1 " 
**************** 

/ Ll. GHT -UNl X INTERF"<CE ROUT HIES 
/ -'"'~·"M"-·""""""""""" ••••oNo "" uo ""''" ----~-··-- NN •~•No""""" •~• .. M ~.,,_,,_ 

/ 
I 
/THIS kOUTINE WOULD OUTPUT ,~ SirlGLE CH>',RACTEF( I'll H-IE i>CRt:EN 
iFORTR(<N c,~LL:- f~=OCHAF~ ( ll •••••• FUNCTION Cf1LL 
• GLOBL OCHM( • 
• ULOBL [(Eli;:N 

'JALUE 
.+:~ 

/LfJC.HlON OF RETURN 'H<LI.JE 
/POINTER TO EXECUIJ.ON Ctll.IE 
/POINTER Hl t1RG. LIST 

276 

HOV 2 <R.!.) r Rl 
ADD $2rR1 
MOV RlrCHAR 

/POINTS ,t,T THE 2ND WORI.I OF THE 1Nl FliER 
/SET CHt'=th: t1DRESS 

MOV $1. rRO 
SYS GlT'(;STMUS 
MOV GTAfUS+4,tJMCIDE 
SYB SIGNAL12;EXIT1 
BIC $26tST~ITUS+'t 

BIS $40•STA1US+~ 

MOV $1 rRO 
SYS STTn STATUS 
MOV $1 rRO 
!Wfl WRITE 

Cfi,;R: 0 
1 
MOV RO •VALUE 

EXITl: MOV OMODE,STMUS+tt 
MOV $1 •RO 
S'fS STTYtSTATUS 
JMP fi:ETRN 

.BSS 
VALUE: • =. +2 

/SET FILE DESCfilf'lUR 
/GET lERMINi\L ST.',TUS 
;SAVE OLD r10DE OF TTY 
/CON l'ROL C 
/CHr•RACTEf( t11JOE 
!SET f(f.JW MODE 

/~JET TERMINAL !·lODE 
;FILE DESClPTOR 1 FOR WRI'fE 
/WRITE CHr•R 
IWFFER M!RE:SS 

/RETI.IRN NO" dF CHAR WR .r f'f EN 
/IMCK TO OLD TERMHlf'lL STrtlU~l 

/cWACE FUR f(E:Tl.IRN v.~LUE "''tl INTEGER) 
STATUS: ·"'•+6 /TERMINAL STATUS •'•RG. 
OIIODE~ .=.+2 /OLD TTY Sl'''lUS liODE 
I 
/THIS ROUTINE INF'UT .~ SINGLE CHr•R FRuM llKlROINi, 401</ 
/FORTRAN CALL:- ICHAR"'HlCHAR <X> WHERE X IS DUt1MY f'f1R•~l1ETER 

.GLOBL INCH.~R. /DEFINliiON UF Ei~Tf(t 

.GLOBL RETRN /REFERENCE OF RETU~:N 

INCHAfi •. : iENmr f'OINT· 
VALUE /LOCi\ f J.tJN OF RETURN W'1LUE 
.+2 if'OINTER 10 EXECUTION CODES 
MOV $O,RO /SET F1LE VESCRIF'TOR 
SYS G'ITYiSTATIJS 
r\OV STr-t TUS+'t, Ol10DE 
C'''C wl ... 

BIB $40,sn~TUS+4 

BIC 110,STATUS+4 
MOV $O,RO 
SYB STTY ;sTftJ'US 
i10V $0, f(O 
SYS ti:EAD 
v;,LU£+2 
l. 
MOV $G•,HO 

/GET Tt.Rl1Hli'lL dH>IlJS <r10l!E/ 
. /SrWE OLD TERi1INAL MOLIE 
/CONlRUL C 
IS£1 IT i(J fMW tiODE 
/bWITCH LUIO OFF 
;FILE DE::lUUPTOR 
:'SET lERriHML tiODE 
/F'fiSS FlLE VESCRIPTOf( 
/READ ;, U·h~f(riGTEfi 

/Al)[lf(£SS OF CHAR JUSl f(Ltill 
/NO. Of' Cfi.'\R fi:lJ.,[I 



277 
EXITU MOV OMODErSTATUS+4 . 

SYS ST'l''(;STATUS 
Jhf' RETRN 

VALUE: .=.•A 
STATUS: .~.<·6 

O~iODE: .=.+2 
I 

:m:u;:T TU ENTRY TTY I"'ODE 
/~:lET TERMINAL MODE f•S BEFORE 
/RETURN TO 11AIN F'ROtTDLIRE 

/CONTAIN CHAR JUST f(Ef<D 
/STATUS WORD 
/OLD T'l"r MODE 

/SET Uf' CROSS-HAIRS CURSUf( W1UTINE 
• GLOBl. CURSON. /ENTRY NAME 
.GLOBL RETRN /RETURN 

CURSON.: 
V?iLUE: 
.+2 
MOV R3, Sft\lfJ<J 
~\QV $1rRO 

/SAVE f~E.t.HSTE:f\ 3 
/SET FILE DESCI~IPTOR 

SYS 
HOV 

GTTYiSTAl'US 
STATUS+4rOMODE 

/GET THE CURREIH TERMINo'>L S fiHUS 
/SAVE TEh:rtHML H()(>ES 

BIC $36rSTATUS+4 /SET TEf(MINAL MODES 
BIS $40rSTATUS+'I /SET Rf1W 1\0 DE 
MOV $1rRO 
SYS STTYiSTATUS /SET IHE NEW TERMINAL SToHUS 
MOV $lrRO 
SYS WRITEiSETCURSORi2 /SET UP CI(QSS HAIR CURSOR 

/f3ET COUNT TO FIVE ~iOV 

t: HOV 
SYS 
TST 
HOV 
TST 
MOVB 
SOB 
MOV 
SYS 
MOV 
SYS 
MOV 
MOV 
SYS 
HOV 
Jl1f' 

$5rR5 
$lrRO 
READiGETCURSOR;l 
<R3l+ 
<R3l rRl 
<Rll+ 
GETCURSORr <Rl> 
R5rlB 
$lrRO 
READ;GETCURSCJR;l 
UrRl 
WRlTEiHOHEi6 
OHODErSTo~TUS+4 
$lrRO 
STTY; STo~ TUS 
SAVER3rR3 
R£TRN 

I 

/REA[t A CHAR 
/SET ARGUI1ENT Ll!:lT POINTER 

if'UT ;,RGUME:Hf LIST 
I LOUP FHIE TII"'ES 

/INPUT FIVE CHARACTERS 

i t>ET (>Lf''Ht) CURSOR HOME 
/f(ESTORE ORIGHML MODE 

/I\ESTORE REGISTER 

.DAU• · 
SETCURSOR: 

.BYTE 
HOME: · .BYTE 

27.r26. i f'()f( SETTJtW UP CURf>Of( 
29. r55. r127. r32. r64. r3L/FUR RETURHIG TO ALF'HA MODE 

.. BSS 
VALUE: .=.+4 
STo'\lUS: 
OMODE: 
SAVER3: 

.:= .. +6 

.=.+2 

.= .. +2 
GET CURSOR: 

.• ~.:.+2 

/ 
/OVERLAY f'ROGRAHS MODULES 

.GLOBL OVLAY • 

O'JUtY.: 
• GLOBL RETRN 

VALUE 
.. -.-2 
MOV R3rRl 

1 
/WORK sp;~cE TO SAVE TERMHML 
iWORI\ SPACE TO SAVE TERtiiNAL 
/WORI\ ~;r·r"'CE TO SAVE H3 

1HOLD lNPlll' CHARo~CTER 

IF' ASS l t!G f'(-oRAtiEfLR 

ST. 
MODE 



TST mu+ 
MOV <R 1) r tMME 
MOV (Rl) ,r,RGS 
SYS EXEC 

NM1E: 0 

JMP f(E'lf':N 
• DAT,~ 

/ 

/F'{tSS THE tMMED FILL 
/"ET •'•RGUNENT TO NME 
/OVERL1W THE CALLING F'ROCES~> 

/ REMOVES .~ NAMED FILE FROM CURRENT Dli\E.Cl UR t 
.GLOBL FLRM • 

FLRI1.: 

NAME: 

Bee . ~~ 
VALUE: 

• GLOBL RETRN 

WtLUE 
+'' 

MOV R3rR1 
TST <Rll + 
MOV <RllrNAME 
SYS UNLINI\ 

0 
Jl•lf' RETRN 

.. =.+2 

/RH1fNE NAt1ED FILE FROI1 CURRENT 
/lliRE:C'TURY 

278 



c 
c 
c 
c 

~*****~**~***~** 
* Af'PENDIX 1.2 * 
11******** *'*** * * ·)f 

C INITiflLISATION ROUTINES 
c -----------···----·-------
c 
c 
c 
c *******"**INITIALISE THE fJISf'LAY DEVICECHit·kH;<·:Hiti<*·H·H·*·H·•H< 
c 

SUBROUTHJE TXOf'EN 
C THIS SETS l'HE DEFAULT WtLUES FOR DISF'LAY >•REr.t & GCf1l..ES OF 
C :<,'(. HHS ,~LSO DOES SOME HUTii\LISAl'luN CONCERNING !:>Cf(LEN 
C COORD I NtUES & MENU Of'ERA 1 IONS. 
C U.B. l'HIS SUBROUTINE MUST BE ISSUED f'>S THE FIRST Ci'>l..L UN lHE 
C f"ACI\r,GE. 

COI1HOH/AREA/~:c;,u: ( 12> 
COMMON/TOF'LHC/IXOR IG, 1 YORIG 
COhi10N/fiNGRF'H/MODE, LPOS, CliPOS 
CDI1MON/hMRIX/CTM<4•'tl ,TM<4•4> 
INTEGER CHF'OS 

C SET Ur' CODRDS.OF TOP L.H CHARACTER & SC:Al..l.ING 
SCALE<1>~o 

SC:f•LE < 2) =0 
SCALE (~l) ~·O 
SCALE (7) ~o 

SCALE<4l=780 
SCALE (8) ~'780 
SCALE(10)~780 

SCALE (12) ••700 
SCALE <3l ~'1023 
SCf1LE < t.) = 1023 
SCALE (9) ~.:1023 

SCALE <11 l =1023 
C BET UF' MENU ORIGIN. & CHARACTER U.NE f'OSll ION 

IXORIG=O 
IYORIG=7HO 
MODE =1 
LF'OS=O 1 
CHF'OS"•O 

C SET TRAN~iFOf(I1ATION 1
MMf(lX TO UNIT MMRJ::( 

CALL UNITY <CTMl 

c 

CALL UNITY <TMl 
RETURN 
END 1 

C * ****** ·Hll***** EfMSE THE SCREEN**********"**'<***~*'"" ·lt ** * 
c 

SUBROUTINE TXCLER 
C THIS CLEARS THE SCREEIJ 
C UUTF'Uf lWU ASCII CHARACTERS 
C ERt~SE SefiEEN AND RETURN TO (•Lf'HA tiODE 

S"OCHAR <27 l 
C GOES HOME 

c 

S"oCICHAR ( 12) 
h:ETURN 
um 

279 

c ·:tf*****'~***•>f1t1HHf SET ~~~ lJEF~NED (iRE{t l'i.S \'IEWf'OR f·;t·:ot*·:ot·!(··)(··):··~··~·)t·*1f·:.t·:.t1f·~·:tt.:.t·:of·.t1t* A··~·:t:ot 
c 



SUBROUTINE TXVF'RT<Xo,yo,x1,Yl) 
C THIS LIMIT THE EXTENT OF A DISPLAY TO A SELECTED AREA 
C OF THE SCREEN.IF PARAMETERS OUTSIDE AREA CALL IS IGNORED. 

COMMON/AREA/SCALE<12) 
C CHECK FOR ANY VIOLETION 

IF<XO.LT.O.OR.X1.GT.1023.0R.XO.GE.Xl.OR.YO.LT.O.OR.Y1.GT.780 
~ .OR.YO.GE.Y1l GOTO 1 

SCALE<1l,.XO 
SCALE(2l~YO 

SCALE(3)=X1 
SCALE (4) "Yl 
SCALE (11) =X1-XO 
SCALE <12) =Yl-YO 
RETURN 

1 CALL CURPOS<200.,500.) 
CALL ALPHMD 

c 

CALL MESSAG<"DRAWING OFF THE SPECIFIED VIEWF'ORT''") 
RETURN 
END 

280 

C ******************SET A WINDOW FOR GIVEN SC.~LLING OF THE DATA-H****** 
c 

SUBROUTINE TXWIND<Xo,yo,xt.YU 
C THE SCf•LES ARE SET SUCH THAT XO TO X IS MAPPED ONTO X-AXIS 
C OF DEFINED SCREEN AREA,SIMILARLY WITH YO TO Yl 

COMMON/AREA/SCALE<12) 
IF<XO.GE.X1.0R.YO.GE.Y1) GOTO 1 
SCALE(5)=XO 
SCALE<6>=X1 
SCALE<7>=YO 
SCALE (8) "Yl 
SCALE<9>=X1-XO 
SCALE(10)=Yl-YO 
RETURN 

1 CALL CURPOS (200. '500. ) 
CALL ALPHMD 
CALL HESSAG("DRAWING OFF THE Sf'ECIFIED WINDOW"") 
RETURN 
END 

C*************SET THE DISf'LAY Ill ALPHA MODE**************** 
c 

SUBROUTINE ALF'HMD 
C OUTPUT A SINGLE ASCII CHARACTER 

S=OCHAR ( 31) 
RETURN 
END 

c 
C**************f'UT THE TERMINAL IN GRAPHIC MODE************* 
c 

SUBROUTINE GRf'HMD 
COMMON/REHXY/IXX•IYY 

C RETURN TO PREVIOUS f'OSITOitl AND SET DISPLAY TO GRAPHIC MODE 
CALL Vf'LOT (0, IXX .IYY> 
RETURN 
END 

'• 



c 
c 
c 
c 

**************** 
* ,,f'F'ENDIX 1.3 * 
**************** 

C POINT AND LINE DRAWING ROUTINES 
c ---------------------~---------
c 
c 
c 

281 

C ************** DRAW A DARK OR BRIGHT VEClORillllllfil***·*"**********·.<·>*ll 
c 

SUBI~OUTINE Vf'LOT <I r IX r IY> 
C THIS IS DEVICE DEF'ENDENT ROUTINE 

COMMON/OLDBT/IOLDBT(4) 
DIMENSION 1V3<4) 

C CONVERT COORDINATES Xr Y INTO 4 BYTES INFORMATION 
1X1=IX/32 
IY1=1Y/32 

C SET CHARACTER STRING FOR GRAPHIC 
IV3 <1) =32+ lYl 
IV3(2)=96+IY-32liiY1 
IV3(3)~32+IX1 

IV3(4)=64+IX-32*IX1 
C DARK I BRIGHT VECTOR? 

IFLG=O 
IF<I.EQ.O)GOTO 3 

C HIGH Y 
IF<IV3<1>.NE.IOLDBT<1>>S=OCHAR<IV3(1)) 

C LOW Y 
IF< IV3 (2) • EO .IOLDBT (2)) GOTO 4 
1FLG=1· 
S"OCHAR ( IV3 <2>) 

C HIGH X 
4 IF<IV3(3).EO.IOLDBT<3)) GOTO 5 
C LOW Y SENT? 

IF<IFLG.E0.1) GOTO 6 
C SEND LOW Y ~ HIGH X 

S=OCHAR<IV3<2l) 
6 S=OCHAR <IV3 (3)) 
5 S=OCHAR<IV3<4>> 1 

GOTO 11 I . 

3 S=OCHAR<29) 
DO 2 J=1r4 

C OUTPUT POINT COORDINATES 
2 S=OCHAR <IV3 (J)) 
11 DO 7 K=1r4 
7 IOLDBT<Kl=IV3<Kl 

RETURN 
END 

c 
C**************SET CHARACTER POSITION ON THE SCREEN*************** 
c 

SUBROUTINE XVf'LOT <I r X, Y) 

C MOVE<I=Ol OR DRAW<I=1) TO <XtYl 
C AND ALSO SETS <LPOSrCHF'OSl CHARACTER F'OSITION ON THE SCREEN 

COMMON/AREA/SCALE<12) 
COMMON/MNGRf'H/MODEtLPOStCHF'OS 
COMMON/REMXY/IXXrlYY 
INTEfiER CHF'OS 

C WINDOWING 
IX~SCr~LE < 11) *<X-SCALE (5) l /SCALE (9) +SC<tLE < 1) 



IY~SCALE (12) * <Y-SCALE <7>) /SCALE <10) +SC>•LE <2> 
CALL XYVOCH <IX t IY tLf'OStCHPOSriAt Ill> 
MODE~1 

C CHECKS THE COORDINATES XtY NOT OFF THE SWEEN 
DIFl,.X-SCALE <5> 
DIF2=X-SCALE<6> 
DIF3=Y-SCALE(7) 
DIF4"Y-SCALE<6> 
If <DIFl. LT. 0 ... OR. DIF2.G'T. 0 •• OR. DIF3 .LT. 0 ... OR .lHF 4. GT. 0.) GOTU 2 

1 IF<I.EG.O) GOTO 3 
I XX., IX 
IYY=IY 

:5 Ct~LL VPLOT<I.IXtiY> 
RETURN 

C OUTPUT WARRING MESSAGE 
2 CALL VPLOT<Ot10t650) 

CALL ALF'HMD 
WRITE (6t60) 

60 FORMAT<"COORDINATES OFF SCREEN"> 
IF<I.EG.O> GOTO 3 
CALL GRPHMD 
GOTO 1 
END 

c 
C**************** MOVE THE BEAM TO ABSOUL TE X, '(Ill!·•*******·~**** 
c 

SUBROUTINE TXMOVE <X• Y> 
COMMON/RXY/RXtRY 

C RESET COMMON VARIABLES 
RX=X 
RY=Y 

C OUTF'UT MRI~ VECTOR 

c 

CALL XVF'LOT < 0 t X, Y> 
RETURN 
END 

C*********** MOVE RELATIVE *********·~~~~~·~******** ********* ~ 
c 

SUBROUTHIE TXMOVR<DXtDY> 
COMMON/RXY/RXtRY 

C UPDATE C011MON VARIABLES FOR RELATIVE MODE 
X=RX+DX 
Y=RY+DY 
RX=X 
RY=Y 

C OUTPUT DARI\ VECTOR OF LENGTH OX, DY 
CALL XVF'LOT<Ot Xr Y> 
RETURN 
END 

c 

282 

C ****lflf·oHIIIIIIlllflfDRAW ALINE TO Xt Y FROM CURRENT BEAM POSITION*****"'*** 
c. 

SUBROUTINE TXDRt~W <X, Y> 
COMMON/RXY/RXtRY 

C RESET COMMON VARIABLES 
f(X=X 
RY;'( 

C OUTPUT BRIGHT VECTOR 

c 

CALL XVPLOT <1 'X, Y> 
f(ETURN 
END 

.. 



C ************ DRAWS A LINE HI RELATVE MODE *"*"**'"***********'**H 
c 

SUBROUTINE TXDRWR<DX,DYl 
COMMON/RXY/RX,RY 

C UF'DATE COMMON VARIABLES FOR REUiTlVE MODE 
x~RX+DX 

Y=RY+DY 
RX=X 
RY~Y 

C OUTPUT BRIGHT VECTOR OF LENGTH DX,DY 
CALL XVF'LOT ( 1, X, Yl 
RETURN 
END 

.. 

1 

283 



c 
c 
c 
c 

1f * ****** ** * ·)f *** ·)f * APPENDIX 1.4 lf 

**************** 

C CHARACTER AND TEXT HANDLING ROUTINES 
c -------------------------------·-----
c 
c 
c 
c 

284 

Clllllllflflflflflflflflflf GET (t SINGLE CHARACTER FROH THE SCI(EENlflllflfltlf*i<lllfitlf·HlfU;;;; 
c 

SUBROUTINE TXGET <I CHAR> 
C DELIVER A SINGLE CHARACTER FROM SCREEN f-Xf'MWINfl 
C ANY ABBREVIATION AS REQUESTED IN /ABE:REV/ 

COMMON/ABBREV/NSf'EC rFSTCH rf'TRS < 1) 
INTEGER f'TRS •F'rCOL.ONrSf'ECHD•FSTCH 
INTEGER* 1 C (1 > 
EQUIVALENCE <C (1) •IISPEC> 
DATA F'•COL.ON/0,58/ 
IF<P.EQ.OlGOTO 1 

C f' IIONZERO MEf-tNS DELIVER tiEXT CHAR FROM (tBIJREV <fJTDP ttT :) 
4 ICHAR~C <P) 

P= P+1 
IF<ICHAR.NE.COLOtn GOTO 99 

C HEACHED COLON 
p =0 

C NORMAL USE HlCHR 
1 ICHAR=HICHAR <X> 

IF <tiSf'EC.EO.O> GOTO 99 
DO 2 J=1rNSF'EC 

2 IF <C<FSTCH+T> .EO.ICHAR>GOTO 3 
C tiO MATCH 
99 ICH,;R"IREM<ICHAR•128) 

RETURN 
3 P~f'TRS<J> 

c 

GOTO 4 
END 

C ************OUTPUT ASINGLE CHARACTER lO THE SCREEN***"**X*"**'"'*""** 
c 

SUBROUTHIE TXF'UT <!CHAR) 
C SEND C TO THE SCREEN,TAB IS INTEF'RETED AS A SUITABLE NUMBER 
C OF SPACES RUBOUT IS f'RINTED .~s FULL BLOCK OF fJOTS 

COI1MON/MIIGRPH/MODE, LPOS r CHPOS 

1 
2 
3 

COI1MON/ 10/ Itlr IOU T 
ltiTEGER CR•FF, TAB,RUBOtJT,SPACE. BACKSP ro~ <4), US rCHF'OS 
DATA CR•FF•TAB,RUBOUTrSF'ACE/13r12r9r127•32/ 
DATA BACt~Sf'•A (1) •A (2) •A <3) •A (4) •liSrLF /S,36• 73r ss, 72• 31 r 10/ 
I=ICHAR 
IF <MODE. NE. 0> s~OCHAR <US> 
MODE=O 
I=IREM<I•12S> 
IF<I.Eil.BACKSF'lCHPOS=CHf'OS-2 
IF <I.NE.FF> GOTOl 
Lf'OS,"O 
GOT02 
IF<I.tiE.CRl GOTO "1 _, 
CHf'OS=-1 
IF <I. NE.l.F> GOTO 31 
CHF'OS=-1 



GOTD 31 
100 Lf'fJS=LF'OS+1 

CHf'fJS=CHF'OS-1 
C TEST IF ON SCREEN 
31 IF <Lf'OS .Gl. 34 .OR .CHf'OS. GE. 7't l WRITE< IOUl r1 Ol 
10 FfJRMAT<"CHAR.OFF THE SCREEN") 
5 CHf'OS=CHF'OS+ 1 

IF<I.NE.TABl GOTO 4 
C TAB TO NEXT MULTIPLE OF 8 

S=OCHAR<Sf'ACEl 
IF<MOD<CHF'OS,Bl.NE.Ol GOTO 5 
GOTO 99 

4 IF<I.NE.RUBOUT> GOTO 6 
[If) 21 I=1•'• 

S=OCHAR<A<ll l 
s~OCHAR < BACKSF' l 

21 CONTINUE 
I"'Sf'ACE 

6 S" OCHAR < Il 
C GENERAfE A LF AFTER A CR <LF'S t~RE OTHERWISE IGNORED> 

IF<I.NE.CRl GOTO 99 
I=LF 
GO TU lOO 

99 RETURN 
END 

c 
C***"**'""*****INF'UT t~ LINE OF TEXT FROI1 lHE SCHEEH•·"**""H*"* 
c 

SUBROUTINE TXLHIE <STRINlhNl 
C INPUT ALINE OF CHARACTER FROM THE SCREEN INTO STRlNil<Nl 
C ECHO AND IJEAL WITH RUBOUTS 
C ENIJ OF INPUT WITH LF tCRtEOT 
C STRING GET ALL CHARS Hlf'UT INCLUDE TERMINMOR 

HlTEGERlfl STRIMHNl 
C f'TRS IS USED TO HOLD ttf'f'ARENT OFFSET OF CC)f(RECT CHAR 

HlTEGER f'TRS <72l tCR• BACKSF'tRUE:OlJT tSf'ACErLF rEOT, TAB 
fJATA CR' BACKSf', RUBOUT, SF'ttCE, LF, EO f, T ;,B 

~ /13t8t127t32t10t4P9/ 
NECHO=O 
~IEXTHl=1 

C MIN LOOf'. I 
100 CALL TXGET <K) . 

IF <K. EO. RUBOUT> GOTO 101 
STRING<NEXTINl=K 
f'TRS <NEXTitn =NECHO · 
NEXTIN=NEXTW+1 . J 
IF <K.EO.CR.OR.K.EO.EOT .Ofi:.K.EO.LFl GOTO S"l' 
IF<K.EO.TABl GOTO 102 

C ORJJWARY CHARARCTERtECHO AND LOOF' <IF ENOUGH Sf'ACEl 
NECHO=NECHO+l. 
CALL TXPUT <~O 
IF<NEXTIN.LT.MINO<N+1,72l) GOTO 100 

C FINISHED FOR SOME REASON 
99 STRING <NEXT HO =0 

F~ETURN 
C TAB-LOOP fJUTf'UTTI~IG SPACES 
102 NECHO=NECH0+1 

C f~UBOU'f 

CALL TXF'UT <Sf'{tCE) 
IF<MOD<NECI;IO•B> .tlE.Ol GOTO 102 
GOTO 100 

101 lF <NEXTIN.ECl.1l GOTO 1.00 

285 



NEXTJ:NcNEXTIN-1 
NBACf~"NECHO-PTRS HIEXT IN) 
DO 91 I"lrNllACK 

286 

91 CALL TXPUT<llACKSPl 
CALL TXf'UT <RUBOUT> 
CALL TXPUT<IJACI\Sf') 
DO 92 1=1 rNllf-ICK 

92 CALL TXf'UT<SPACE) 
GOTO 100 
END 

c 
C ************OUTPUT A GIVEN MESSAGE <END IN ZERO CIMRf<CTER> *****""*""**-"* 
c 

SUBROUTINE MESSAG <TEXT> 
C START THE MESSAGE WITH X FOR OUTF'UTlNG TO THE NEXT LINE 
C TEF~MINATE THE TEXT WITH '''' AS THE END OF THE tiESSAGE 

COMMON/MNGRf'H/MODErLPOSrC:HPOS 
COMMON/IO/INr lOUT 
HHEGERll1 TEXT<1) 
INTEGER PC ENT, HAT, CHF'OS 
DATA LFrf'CENTrHAT/10r3'7r94/ 
CHPOS=-1 
DO 1 1=1, 129 

J=TEXT<I> 
IF <J.Eil.HAT> RETURtl 
IF <J.Eil.PCENT> J=LF 

1 CALL TXF'UT < J) 
G ATTEtlf'T TO OUTPUT A MESSAGE MORE THAN 128 C:HARtiCTERS 

WRITE <I OUT, 10> 
10 FORMAT (",~TTEMPT TO OUTPUT A MESSc1GE MORE THAN 128 C:HAR{•CTE.RS") 

RETURN 
END . 

c 
C**U****lfli*OUTPUT TEXT UP ON THE SCREEN FROM '' F ILH**"'"*"***"*"'"' 
c 
C THIS lliSf'LAY TEXT FROM THE FILE tMMED 
C A HOLLERITH STIUUG AS FOR SETFIL 

SUBROUTINE TEXT UP <FILE, N> 
COMMON/10/IUr lOUT 
INTEGER ill. FILE <1) 

INTEGER BUFFER<?:!> 
REWIND 7 
CALL SETFIL <7 rFILE) 

C LOOP I~EADING FROM FILE 
2 DO 1 I=lrN 

READ<7r110) BUFFER 
110 FORMAT<72Al> 

WRITE <lOUT, 110) BUFFER 
1 CONTINUE 

c 

ENDFILE 7 
f(ETURN 
END 

C****lfli************GET AN INTEGER FROM THE SCii:EEtlliHlt·H***"" ""*H 
c 

SUBROUTitlE HHGET <I> 
C OllT.UN THE NEXT ltHEGER FROM SCf~EEN 

INTEGER*1 LitlE (8) 
INTEGER CHOrCH9 
DATA CHOrCH9/.48r57/ 
CALL TXLHIE<UNEr8>' · 
C~1LL Sf'OUT <LINE> 



l='O 
DO 10 K=1r8 

,!=LINE <Kl 
IF<J.LT .CHO.OI~.J.GT .CH9l GOTO 99 
J=J-CHO 
IF<I-32767l10rllr12 

11 IF<J.GE.7l GOTO 12 
10 I•llf10+J 
12 1:;:32767 
99 RETURN 

END 
c 
C*********·HlfREMOVE Sf'f.1CES FROM STRlNG*""**********Hld<lfHH 
c 

SUBROUTWE SPOUT <STRING) 
C ITS REMOVES SPACES AND OTHER NON-PRINTING CHo~RS FROM STRING 
C SUCH AS LINE FEEDSrCARRIAGE RETURNSro~ND E:OT' ~) FROM TEXT 

INTEGERlfl STRING<ll 
J=O 
DO 1 I=lrlOO 

2 J=J+l 
K=STRHIG (J) 
IF<K.LT.OlK=K+128 
IF<K.E0.32lGOTO 2 
IF<K.EQ.10.0R.K.EQ.13.0R.K.EU.4)GOTO 2 
STRING< I l =K 

1 IF<K.EU.Ol GOTO 3 
3 RETURN 

END 
c 

287 

C *************"***OUTPUT CHARACTER STRING f1T GIVEN COORDINATES~***H* 
c 

SUBROUT·INE DTEXT <Xr Y r TEXTrNl 
LOGICALlfl TEXT(Nl 
CALL- TXMOVE <Xr Yl 
CALL ALPHMD 

C OUTPUT THE STRING OF CHARACTERS IN TEXT 
WRITE (6r lOlTEXT 

10 FORMAT< 72f< 1l 
RETURN 
END 1 

l 



c 
c 
c 
c 

*** *1t*ifif7f1Bf1Bf·:tt.:ot:tf 

* ftf'F'ENDIX 1.5 * 
*1f ****** ** ***•)f•;t ·:iif. 

C CURSOR ftND MENU OF'ERftTIONS ROUTINES 
c ------·-··"·-··-·--.. ··----------------------
c 
c 
c 
C ***·)f********1BtEii:A.SE CROSS Hi~ IRS CURSOR*~'***·* ·Jf**1t* -:ot·Ai;t.;f~·.~·~·Jf-:.t X ·)f·)f ·:-t~.:.Lii 
c 

SUBROUTINE CURSETIXrYdCHARl 
C RETURNS Xr Y COORDINATES AND CHftR,~CTER TYF'ED 

S=CURSON <ICHARr IHIX1, ILOX1, HHn, ILOYl. i 
X•32*1IHIXI-321+ILOX1-32 
Y=32l<IIHIY1-321+ILOY1-32 
RETURN 
END 

c 
C********H***SEl Uf' THE CURSOR AND RETLJF:N i't C.H.~R~CTE~:*"*******"*"** 
c 

SUBROUTINE lXCURS IX' Y .X CHAR) 
C THIS DISPLAYS THE CROSS-HAIR CURSOR ON THE SCREEN 
C THEN f(ETURNS THE SCALED VALUE OF THE COORDINATES OF 
C HiE CURSOR IN Xr Y fttlD THE CHARACTER TYF'ED lNrF'UT IN I CHAR 

COMMON/MNGRF'H/MODE, Lf'OS, CHF·m; 
INTEGER CHF'OS 
GOMMON/AREA/SCALEI12l 

1 MODE"1 
CALL CURSET IXrYriCHARl 
I CHAR~ I REM I ICHARr 1~!81 

C CHECK CURSOR LOCATION ON THE SCI\EENr IF LllHSID UMJ:T GOBftCK 
IF<X.L T.SCALE (1) .OF:.X.GT .SCftLl!:l3l .m~. Y .LT.:3CALE <21 .OR. Y .GT. 

~ SCALEI4ll GOTO 2 
c 
C COI'IF'UTE SCALED VALUE 

X=SCALE (5) +<X-SCALE (1) l *SCALE 19) /SCALE <11l 
Y=SCALE 17) + IY··SCALE 12) ) *SCALE< 101 /SCf->LE < 121 
IX=X 
IY=Y 
GOTO 3 

2 CALl. ALPHMD 
Cftl.L MESSAGI"ILLEtl•~L CURSOR POSITION'''") 
GOTO 1 

3 CALL XYVCJCH<IXr IYrLPOSrCHF'OSriAr IBI 
RETURN 
END 

c 
C**************f'OSITION THE ftl.F'HA CURSOR**lH!**"'~*'***"****·~-~*"***'"* 
c 

SUBROUTINE CURF'OSIXrYI 
Cf>LL TXMOVE IX, Yl 

C SET THE DISF'l.AY TO ALF'HA MOL>E 
CALL f<LF'HMD 
RETURN 
END 

c 
C **************'" OF'EN A NEW MI::NlJ**·Hiotl!lill****'"**** 
c 

SUBROUTINE MNOF'EN <X' Y, t)NOl 
C SET UP ORI!liN FOR MENUrWHICii ANNOUCES !HAT (< MENU IS 

288 



C TO BE LilSf'Lr.YED WHOSE lUf' LEFTHAND CORNER U3 TO l:E .H SCt<EEN 
C COORDINATES <X,Yl AND MENU NUMBER MON 

c 

COMMON/MENUDA/XORIG (3), YORIG <3> •STEP •NLINES <3) 
IF'<HNO.EG.l) YORIG<2l=O. 
XORIG <HNO> =X 
YORIG <HNO> =Y 
STE.P~22. 

NLINES <MNO> "0 
RETURN 
END 

C *************OUTF'UT LINE OF MEtltJ TEXT****"*"***""**·-** 
c 

SUBROUTitlE MNTEXT <TEXT•tl•MNOl 
C f'LIT OUT THIS TEXT AS THE NEXT LINE OF ;, MENU 

COMMON/MENUDA/XORIG<3l•YORIG<3>•SlEf',NLHlES<3l 
C DEFINED BYTE ARRAY 

LOGICAL*l TEXT<N> 
C MOVE TO THE fJESIRED LOCATION 

Cr~LL TXHOVE <XORIG <MNO> • YORIG <MNO> -NLINES <MNOl l<STEF'l 
C SET TO ALPHA MODE 

CALL ALF'HMD 
c 
C OUTF'LIT MENUE ITEM 

WRITE<6r10l TEXT 
10 FORMAT <72Al) 

c 

NLINES <MNO> =NLINES <MNOl +1 
RETURN 
END 

C ***********·~* PICK AN ITEM FROM .~ MENU<<*l<l<·H***************.~****"** 
c 

SUBROUTINE MNF'ICK<I•ICHAR,MtlO> 
C SETS I TO. THE HWEX OF MENU ITEM CHOSEtlr I CHAR TO THAT TYPED 

COMMON/MEtlUDA/XORIG (3), YORIG <3> rSTEF'rNLINES <3> 

5 
3 

c 

1 CALL TXCLIRS <Xlr Yi.ICHAR> 
IF<Y1.GT.YORIG<2>+10l GOTO 5 
Mtl0~2 

GOT!J 3 
MN0=1 

' RF'OS"YORIG <MNO> -Y1 +14 
I= <iiF'OS+SlE~') /STEF' 
J'=MOD <Rf'OS r SlEf'l 
IF<J.LT .O>J=J+STEP 
IF ( I.LE.O.OR. I .GT .NLHlES <MNO> .OR .J.GT .14> fOTO l. 

C MARK THE MENU ITEM WITH ARROW 

c 

CALL TXMOVE<XORIG<MN0>-40. rY1l 
CALL TXDRAW <XORIG <MNO>, Y1) 
CALL TXDRf•W <XORIG <MNO> -20. r '(1 +1().) 
CALL TXMOVE<XORIG<MNO> rYll 
CALL TXDRAW <XORIG <MNO> -20., Yl··l.O. l 
RETURN 
END 

C ****"****·~DISPLAY A COMPLETE MENU r•T f'f(E (>SSIGNED ORIGHl*"****"***: 
c 

SUBROUTINE MNDISf' <TEXTr ITEMrLEN,MNO> 
LOGICAL*l TEXT<ll 
K'-'0 
fJO "77 I"l, ITEM 

C OUTPUT (•N ITEM OF THE MENU 

289 



Co~LL MNTEXT (TEXT (I +Kl , LEN, MNOl 
~~"K+LEN-1 

77 CONTINUE 

c 

RETURN 
END 

C ***.******"'·• llRAioJ FRtiAE ROUND THE TEXT MENUEUltlfifliH·.HliH**""*.""*"' 
c 

SUBROlJTINE FRMIE <Xh YliNCl 
C DRAWS RECTANGLE ROUND lHE MENU 

c,~LL TXMOVE(Xl.Yll 

c 

CALL TXDRAioJ<X1+145rYll 
CALL TXDRAioJ<Xl+l.45rY1-22*NCl 
CALL TXDRAioJ(XlrY1-22*NCl 
CALL TXDRAioJ<XlrYll 
RETURN 
END 

C***************** SET LINE AND CHAR f'OSJ:TION!tH!I·HHUlfii· . ..:tlf 
c 

SUBROUTINE XYVOCH <IXr IYrNLINErNCHARr IAr UH 
C THIS SETS <NLIIlE rtlCHARl AtlD ( IAriB> TO THE CHARACTER 
C HIDICATEB BY <XrYl (IND THE OFFSET RELf1TIVE TO ITS BLH CORNER 

COMMON/TOf'LHC/IXORIGriYORIG 
IA,MOD <IX-IXORIGr 14) 
IF<IA.LT.OliA=IA+14 
IB~MOD<IY-IYORIGr22l 

IF<IB.LT.OliB=IB+22 
NCHAR=<IX-IXORIGl/14 
NLINE"- <IYORIG-IY+21l 1:12 
1\ETURN 
END 

290 



c 
c 
c 
c 

*****'*'****;t***'* '* * >•f'f'Etm I X 1 • t. ~ 

*'***~*****')(***** 

C BASIC TRNJSFORMATIOtl ROUTINES 
c -------·--------·----------------
c 
c 
c 
C**********SCf1LE Uf' OR DOWN THE DATA**********·Hlt;<·o*··•~* 
c 

SUBROUTINE SCf1LNG <SX' S~ 'SZ) 
C:OMMON/MATRIX/CTM<4•4lrTM<4•4l 
DIMENSION TT<4•4l 

C SETS Uf' UNIT MATRIX 
Cf1LL LIIHTY <TT> 

C RESET THE Af'f'ROF'RIATE MATRIX ELEMENTS TO THE SPECIFIED f'{<RAMETERS 
TT<l•ll=SX 
TT<2r2l"SY 
TT <3r3) ==SZ 

C Llf'DATE THE TRANSFORMATION MATRIX 
CALL CONCAT<TM,TT,4l 
f~ETURN 

END 
c 
Cllli·H****·"*******TR?>NSLATION ROUTINE <2f! t, 3D>*****.*"'****''*·ollli·H 
c 

SUBROUTINE TRANSL<TX, TY, TZ) 
COMHON/MATRIX/CTM<4r4l>TM<4•4l 
DIMENSION TT Utr4l 

C SETS Uf' UNIT HATRIX 
CALL. UNITY <TTl 

C RESET TH~ Af'F'RfJF'RlttTE MATRIX ELEMENT TO THE SF'ECIFIED F'ARAMETERS 
TTUt>ll'"lX 
TT Utt 2) =TY 
TT<4,3l"TZ 

C Uf'DATE THE TRANSFORMATION MATRIX 
Cf1LL CONCAT <TM, TT' 4) 
RETURN 
END. 1 

c ' 
C***********ROTATE tl fMT.~ f'Ol.tiT ABOUT--xrr ,z W THI(;; OROER****"**."'** 
c 

SUBROUTINE ROTATE<RXrRY,RZ.l 
COMMON/MATRIX/CTM<4•4lrTM<4•4l 
IHMENSION TT<4r4) 

C CONVERT FROM DEGREE TO RADIANS 
D I V5"'57. 295779~) 
RX=RX/IHVS 
RY=RY/DIVS 
RZ"HZ/DIVS 

C SET THE tiNGLES IN RAIHNIS 
Al." fn+RZ 
Bl= f~Y-RZ 
A2,. RX+RZ 
f:2; RX-RZ 

· A~l,RX+RY 
B3•'f~:<--RY 

C•"RX+RZ+RY 
D""f(X+RZ-RY 
E=f(X-RZ+RY 

•, 

l 

291 



c 
C SET THE ELEMENTS OF THE ROTAION MATRI:< 

TT<1•1l~0.5li(COS<A1l+COS<B1l> 

TT<1•2>~0.5*<SIN<All-SIN<Blll 

TT<1•3l=-SIN<RYl 
TT <t.4l =0. 

292 

TT <2• 1l =0.25* <COS (Cl -COS ([t) +COS <El -COS <F> l -0.5ll <SIN Ut2) -SHI Ul2l) 
TT <2•2> =-0.25* <SHI<Dl-SitHCl +SIN <El -SIN (F) l +0.5ll <COS (ft2l +COS <B2l) 
TT (2r 3) "'0.5HSIN<A3)+SHHB3l) 

c 

TT<2•'t>=C•. 
TT <3• 1) ~'0.25* <SIN (Cl -Sill(!)) +SHHEl -SHI<F> l +0 .~l* <COS <A2l -Cflf3<B2l l 
TT <:3' 2l =0. 25* <COS <Cl -COS(!)) -COS <E) +COS <Fl l -0. 5* <SIN <A2l +SIN <B2l l 
TT<:~,:n =0.5* <COS <A3l+COS (!)3)) 
TT<3•4> =0. 
TT<'t•1l=O. 
TT<4•2l=O. 
TT <4•3> ~o. 
TT <4•4> =1. 
CALL CONCAT<TM,TT•4> 
RETURN 
END 

Cu*******CLIPS ALINE 
c 

TO SPECIFIED WINDOW BOUNDARIES*"****""'lflf** 

c 

c 

fJISPLAY FILE 
SUBROUTINE CLIP <CLINE ,xor yo, Xt. Yl.JREJl 
COMMON/LIHIT/S1rS2rS3,S4 
COMMON/LINES/SUBLIN<3•2> 
DIMENSION CLINE<2r2) •lSEG<2> 
HlTE:GER ENDPNT •lWOSEG 

C SET THE LIMIT----INITIALISATION 
ENDPNT='O 
Sl=XO 
S2=YO 
S3=Xl 
S4=Y1 

c 
C TEST FOR FULLY REJECTION/ACCEF'TAIICE---FIRST TIME 

XX1=CLINE<lr1l 
YY1=CLINE<ll2l 
XX2~CUNE <2•1> 
YY2~-'CUNE<2•2> 
I=IREJCT<XX1,YY1,XX2,YY2) 
IF<I.NE.1l GOTO 1 

c 
C FULLY REJECTED 

IREJ"O 
RETURN 

c 
C TEST FOR ftCCEPTANCE 
1 J=JftCCPT<XX1r'('(1,XX2rYY2l 

IF<J.NE.1l GOTO 2 
c 
C FULLY ACCEPTED 

rREJ~t 

RETURN 
c 
C NOT FULLY ACCE:f'TED----SUBDIVIED THE LINE 
2 CALL SUBDIV<XXlrYY1rXx2rYY2dSE()) 

GOTO <11112•13), ISEG<1l 



c 
C TEST FOR GtCH CONDITION 
C FIRST SEGMENT REJECTED 
11 GOT01104t14t151tiSEGI21 
c 
C SECOND SEGMENT ACCEPTED FULLY 
14 IFIENDF1IT.EQ.OI GOTO 16 
17 CLINEiltl>"SUBLitH3tll 

177 
C:LINE < 1, 21 =SlJBLIN <3, 21 
IF<TWOSEG.EQ.21 GOTO 31 
TWOSEG=O 
IREJ~1 

f\ETLIRN 

' 

16 CLINEiltll=SlJBLitH2tll 

c 

CLINE11t21=SUBLIN12•21 
CLINE<2•li=SUBLINI3t11 
C:LINE 12r21 =SUBLIN (3t2) 
GOTO 717 
ENDF'NT=1 
GOTO 17 

C NOT FULLY rtCCEF'TED 
15 XX1=SUBLit4<2r l.> 

YY1=SUBLIN<2t21 
XX2~SUBLIN <3 t1 I 
YY2=SUBLINI3t2l 

104 

188 

707 

c 

GOTO 2 
IF<ENDPNT.EQ.l.11 GOTO 188 
IF <TWOSEG.EU.11 GOTO 188 
CLINE <1, 1> "SUBL.IN <3, 1> 
CLINE <1 r:11 ='SUBLIN C:~ t21 
IF<TWOSEG.E0.21 GOTO 31 
IF<ENDPNT.NE.OI GOT() 1/'l 
IRE,J=O 
RETURN 
CLINE <2• 11 =SUBLIN <1, I. I 
CLINE 12• 21 =SUBLIN <1 r 21 
GOTO 177 
IF<TWOSEG.EU.2) GOTO 31 
IREJ"'O 
RETURN l 

C TEST FIRST SEGtiENT FULLY ACCEF'TF.:f! 
12 .IF<ISEG<21.NE.11 GOTO 2fj 

IF<EtlltPNT.NE.OI GOTO 19 
CLINE <lr11 =SUBLHHh 1l 
CLINE < 1 r 21 =SUBLIN < 1 r 21 

19 CLINE<2t11•SUBLIN<2r11 
CLWE 12t2l =SUBLIN <2• 21 
IF<TWOSEG.EU.2l GOTO 31 

717 IR£J=1 
RETURN 

25 IF <ENDF'NT.£0.01 GfJTO 3~3 

CL INE 12r 1 I '~SUBLIN <2• 1l 
CLINE <2 r:'l =SliBl..IN Cl, 21 
GOTO 15 

35 CLINE < 1t 1l =SUBLltH1 r 1l 
CLWE 11 r21 •SUBLW 11 r 21 
£Nl!f'NT=11 
GOlfJ 15 

c 
C TEST FIRST SEGMENT NOT FULL.'( (tCCEf'TED 

293 



13 IF<ISEI3<2l.NE.ll CiOTO 21· 
18 XX1•SUBLINC1•1) 

YY1~SUBLIN<h2l 

XX2~SUBLIN <2• 1) 

YY2~SUBLIN <2•2) 
GOTO 2 

21 IF<ISEI3<2l .Ea.2l GOTO '•1 
TWOSEG~2 

XX3=SUBLIN<2.tl 
YY:{~SUBLIN <2•2> 
XX4~SUBLIN (3' 1) 
YY4=SUBLIN(3,2l 
GOTO 18 

31 TWOSEG,~1 

XX1=,XX3 
YY1=YY3 
XX2"XX4 
YY2=YY4 
GOTO 2 

41 IF <ENDPNT .EO.l) GOTO El8 
ENDF'NT=1 
CLINE <2• 1) =SUBLitl <3• 1) 
CLINE <2•2> =SUBLIN <:l, 2) 
GOTO 18 

88 CLINE<bl>=SUBLitH3.tl 

c 

CLINE<1•2l=SUBLIN<3•2l 
GOTO 18 
END 

C****************SUBDIVID THE LINES AT ITS MIDPOINT*************·•*·• 
c 

SUBROUHIIE SUBDIV<XhY1•X2•Y2.ISl 
COMMON/LINES/SUBLIN<3,2) 
DIMENSION IS (2) 

C SET THE SUBDIVIDED f1RRAY LHIE 
SUBLIN (1.1) =Xl 
SUBLIN < t. 2) ~Yl 
SUBLIN<2• 1>=0.5* <X1+X2l 
SUBLIN<2•2l=0.5*<Y1+Y2l 
SUBLIN <3• 1> =X2 
SUBl.IN (3, 2) =Y2 

C TEST SEGMENTS FOR REJECTION/ACCEPTANCE 
DO 1 1\"·1.2 

294 

Il=IREJCT <SUBLitHK, 1) ,SUBLIN (I\, 2) .• SUBLHI (1\+1, 1> rSUBLHHK+t.2l) 
IF<Il.EQ.Ol GOTO 7 

C COMPLETE REJECTION OF A LIIIE 
IS<K>=1 
GOTO 1 

C TEST LINE FOR ACCEF'UINCE 
7 J1•JACCF'T<SUBLIN <K r 1> , SliBLIN <K r 2l r f:UBLUI<K+ 1 r 1) , SIJBLIII<K+1 r 2>) 

IF<Jl.EO.O> GOTO 8 
C LIIIE FULLY ACCEPTED 

IS<K>=2 
GOTO 1 

C LINE NOT FULLY ACCEPTED 
8 IS CK) =3 
C NEXT SEGMENT 
1 CONTINUE 

RETURN 
ENfJ 

c ·. 
C****************TEST CONDITION FllR LHIE REJECTION***"**''******"*"* 



( 
.. .. 

FUNCTION IREJCT<Xlr'fl.X2rY2) 
COMMON/LIMIT/51 rS2rS3rS4 
LOGICAL AlrBlrMrBB,cc,DD 

n"o 
DIFl.=Xl-Sl 
DIF2o•X2-Sl 
DIF3=Xl-S3 
DIF4=X:?.-S3 
A=ABS < X2- X 1.) 

1 Al•DIF1.LT.O •• AND.DIF2.LT.O 
Bl=DIF3.GT.O •• AND.DIF4.GT.O. 
AA•DIF1.LT.O •• AND.A.LT.0.005 
BB•DIF2.LT.O •• AND.A.LT.0.005 
CC=DIF3.GT .0 •• t<ND.A.LT .0.005 
DD•DIF4.GT .0 •• f<ND.r<.LT .0.005 

C TEST FOR LINE COMPLETELEY OUTSIDE THE l..Hlll/WITHIN ().OO~'i 

C TOLERANCE 
IF<Al.OR.Bl.OR.M.OR.Jlll.OR.CC .• OR.flfJ) GOTO 2 
N•,N+l 
IF <N.EU.:!) GOTO 3 

C SAME TEST FOR Y 
DIFl.••Yl··S2 
DIF2•Y2-S2 
DIF3=Yl-S4 
DIF4•Y2-S4 
f•=•~BS ( Y2- '( 1) 

GOTO 1 
C NOT REJECTED 
3 IREJCT=O 

RETURN 
C FULLY RLJECTED 

2 IREJCT=l 

c 

RETURN 
END 

C***************TEST FOR ;,cCEPTMlCE OF ;, LINE*'"**·***·*".*"*""******·"** 
c 

FUNCTION JACCPT <XI' Y1 •X27\'2) 
COMMotULIMIT/Sl rS2rS3rS4 
LOGICAL A,Jl 1 
Xll=Xl-Sl 
X22=X2-Sl. 
X3:5,~X1-S3 

·X44=X2-S3 
A•Xll. GE.O •• t<ND. X33.L.E. 0 •• ><ND. X22. GE. 0. :r•ND. X't4. LE. 0. 
'(ll•Yl-52 ' 
Y22::~Y2-S2 

y:~3=Y1-S4 

Y44=Y2-S4 
B=Yll. GE. O •• AND. n3.LE. 0 • .f<tW. Y22 .GE. 0 •• MW •. , '14. LE. 0. 
IF<A.AND.B> GOTO 1 

C NOT FULLY M:CEPTEB 
JACCF'T•O 
F:ETURN 

C FULLY 
1 

c 

t<CCEPTED 
Jf•CCPT•l 
RETURN 
END 

C *" "***·* *"" * ***** PREili"EC T I ve: TR~•NSFURtit~ T I ON*""",.,..,""""*"*"" ·•"" *" -~ 
c 

295 



BUBROUTINE f'·ERSf' <F'X r F'Y r F'Zl 
COMMON/MIHRIX/CTM Utr4l, HI C4r4) 
DIMENSION TTUorto) 

C SET MTRIX TT TO UNIT MATRIX 
CALL UNITY(TT) 
TT<1r4l=F'X 

c 

TT<2r'ol=f'Y 
TT<3r4l~F"Z 

CALL CONCAT <TMr TT r 4) 
RETURN 
END 

C****************** F"ROJECTION TRANSFORMATIOtl****************"'** 
c 

SUBROUTINE f'ROJCT <tlf'LANE l 
COMMON/MATRIX/CTH<4r4lrTM<4r4l 
DIMENSION TT <4r 4) 
Cf1LL UNITY <TTl 

C F'ROJECTION PLANE 
GOTO <1r2r3l rNf'Lf1NE 

1 TT<1r1l=O. 
GOTO 4 

2 TT<2•2>=0. 
GOTO 4 

3 TT<3r3l=O. 
4 CALL CONCAT<TMrTTr4) 

RETURN 
• EtlD 

c 
C**************SrWE ft MATRIX 4 BY 'I IN THE STi'•CK*'"'*''"''******·Hll* 
c 

SUBROUTINE SAVMAT<Al , 
COMMON/STACK/ISf'NTRr ST r~CK <64) 
COMMON/IO/IN,IOUT 
[IIMENSION fl(4r4l 
ISTKSZ=64 

C F'USH MATraX ELEMENT INTO THE STr;CK 
DO 2 J=lr4 

DO 3 I=lr4 
IF <ISF'NTR.EQ. ISTKSZl GOTO 1 
lSf'NTR=ISf'NTR+1 

3 STACK<ISf'NTRl=A<IrJl 
2 CONTINUE 

RETURN 
1 WRITE<IOUTr10l 
10 FORMAT<"STACK OVERFLOW"> 

RETURN 
EtlD 

c 
C***********"**·~RESTORE 4 fJ't' 4 MATRIX FROI'i THE E-;r,~CK*************** 
c 

SUBROUTINE RESTOR<Al 
COMMON/STACIVISHHRrSTt•CK <64) 
COMMON/IO/INr !OUT 
DIMENSION AC4r4l 

C POP MATRIX ELEMENTS fROM THE STACK ;,ND SAVE THEM IN A 
DO 2 J=lr4 
L='o-J+ l. 

DO ;5 I=1r4 
K=4-I+l 
IF< ISF'NTR. Ell. 0)' GOTO 1 
(t <t; r l. l =STi'•CK < ISPNTR) 

296 



3 ISF'NTR~ISF'NTR··l 

2 CONTINUE 
RETURN 

1 WRITE<IUUTr10l 
10 FORMT<"STACK UNDERFLOW") 

STOP 

c 

c 

RETURN 
END 

SUBROUTINE UNITY (f.l) 
lllt\ENSION A<4r4l 
DO 1 I=l.r4 

DO 2 J=lr 4 
{<(lrJl=O. 
lf'(l.EQ.J) {t(IrJ)=l. 

2 CONTINUE 
1 CONTINUE 

c 

I~ETURN 

END 

C****************SET CTM Mo'ITRIX TO AGlVEN MAHaXu*"**·H** 
c 

SUBROUTINE SETMAT<Al 
COMMON/MATRIX/CTM<4r4lrTM<4r4l 
DIMENSION A<4r4) 
DO 1 I=lr4 

DO 2 J~'lr't 
2 CTM <I rJ) =f·t< I ,,1) 

1 CONTINUE 

c 

RE'TURN. 
END 

Cli!UI"***************f'ERFORM MAlli:lX MULTlf'LlCATION*11lf·H·H*llllll***"*" 
c 

SIJBROIJTH4E CONCAT<A,BrNl 
DIMENSION A<Nr4l rll(4r4) rTT<'tr4l 

C f'OST-MULliF'LY ARRAY A BY B rAND RETURN THE RESULT lN A 
DO 1 I=1rN 

3 
2 
1 

DO 2 J=lr4 I 
TT<IrJl=O , · 

DO 3'·K=lr4 
TT<IrJl=TT<IrJ)+A<IrKl*B<KrJl 

CONTINUE 
CONTINUE· 
DO 5 J=1r4 

DO 6 I=1rN 
ft(lr-ll=TT<IrJl 

6 CONTH4UE 
5 CONTINUE 

~:ETURN 

END 

297 



c ***********"''"**** 
C « i'<l"f'EN fJ I X 1. 7 * 
c *~~************* 
c 
C MISCELLANEOUS ROUTINES 
c -------··-·-·-·-·----------
c 
c 
c 

298 

C *************'«<liOVERLAYS PROGRAM MODUL.ESJ<l<l<l<l!J<lt·>,c..:.J<;;li·>;;·•·•""* ·•·-''"';; .•··• 
c 

c 

SUBROUTINE OVRLfil' <FILENMl 
LOGICALi11 FILENM<10l 
W~OVLAY<FILENMl 

RETURN 
END 

C ****·~**"****"~** IT flEMOVES .~ NAMED FILE FRmt CURREHf lliRECTOf~Y**""" 

c 

c 

SUBROUTINE R~tFIL.E <NAME> 
LOGICAL*l NAME <10) 
W=FLRM <N.~ME) 
RETURN 
END 

C *******"****** OUTF'UT ERROR tiESSAGE****·-***"*."********'" 
c 

c 

SUBROUTINE WERROR<Il 
WRITE<6•1l I 

1 FORMAl"<" ERROR MESSAGE" .!5) 
RETURN 
END 

C '"****'"*****'" CftLCULATE REtiitiDAR**"' *"***'"*'"*"" *"""*""".""'"**'" :.t·•ll·> * 
c 

INTEGER FUNCTION IREM !I .Jl 
C GIVE POSITIVE REMANDER OF l/J (J)01 

lREM~MOD <I ,.J) 
IF<IREM.LT.Ol IREM~IREM+J 

RETURN 
END 



299 

APPENDIX 1.8 

INTRODUCTORY NOTES ON USING GT42 GRAPHICS SYSTEM 

AND THE EMULATOR 

1.'0 GT42 START UP PROCEDURE (i.e. Rom Bootstrap from PDP 11/10 console 
on the GT42) 

1) Check that the interface line is connected to the PDP 11/40. 

2) Determine that the GT42 power cord is connected to the appropriate 

electrical outlet. 

3) Turn the console key switch to POWER position. 

4) Turn the front panel ON-OFF/BRIGHTNESS switch fully counter 

clockwise and then i of the way in clockwise direction, the 

red power indicator should be on at this time. 

5) Press the console ENABLE/HALT switch down to halt the computer. 

6) Press the spring loaded START switch (on PDP 11/10 console) 

twice to reset the computer. 

7) Place 1660008 in the SWITCH REGISTER (SR). 

8) Press LOAD-ADDRESS to load this address. 

9) Return ENABLE/HALT switch to the up-most position. 

10) Press START switch. The Run light indicator should be on at 

this time. 

Once the cursor appears on the display screen, the user can proceed 

to log-on. 

2.0 DOWN LINE LOADER (DOWNLL) 

In order to load a program in the GT42 the user must be logged 

on the terminal. 



Loading Procedures of the Emulator 

To load a program the user has to type the command as shown 

below: 

downll < filename 

where filename = name of the program to be loaded down the line. 

/LIB/TK4010 Tek 4010 

This will load the Tektronix 4010 Emulator. 

3.0 SHUTTING DOWN GT42 

1) Logout on your terminal. 

2) Press ENABLE/HALF switch down to HALT the computer. 

3) Turn the ON-OFF/BRIGHTNESS to OFF. 

4) Turn the console key switch to OFF position. 

300 



301 

APPEND IX 1. 9 

LIGHT USER GUIDE 



302 
APPEND I X 1. 9 

LIGHT - USER GUIDE - (~oughborough ~nteractive ~rap~ics System for 

the Tektronix 4010); 

Introduction 

Graphics is the pictorial representation of information and has been 

extensively used as a medium of communications in engineering and other 

di~ciplines. In this context, we use the term graphics to mean 

'Interactive Computer Graphics'. 

LIGHT is basically a set of library subroutines 1~hich can be called 

from a FORTRAN application program on the PDP 11/40 computer, equipped 

with Tektronix 4010 display unit and operating under UNIX operating 

system. These subroutines provide the coupling between the application 

program, the Graphics console, and the user. Thus the programmer .can 

generate graphic displays with cross-hair cursor and keyboard inter

actions within his Fortran program. 

The Storage Tube 

The storage tube display (Tektronix 4010) enables the user to have 

relatively economical graphics access to a computer, compared with 

refreshable displays such as the GT42. 

The 4010 is a storage tube display together with a keyboard and 

character generator. The screen has 1,024 addressable points in the x

direction and 781 in the y-direction. A straight line segment is 

generated by hardware on the screen by specifying one end-point. In 

addition to graphic output of data, it is possible to input data by 

means of a cross-hair cursor. Once the cursor is positioned and any 

key is pressed, the co-ordinates of the cursor together with the 

character represented by the key are sent back to the computer. The 

ON/OFF switch for 4010 is located underneath the keyboard on the right-



hand side of the stand. 

It is very important, when drawing on the 4010, to ensure that 

repeated over-drawing of the same point or line is avoided as this 

will cause permanent damage to the display by burning holes through 

the screen phosphor. 

For more detail on the Tektronix 4010 see Reference [20] • 

Refreshable Display 

303 

LIGHT may also be used with the GT42 in Emulator Mode as a Tektronix. 

The package was carefully adapted in order to minimise the amount of 

flickering that may occur, because when the time taken to draw a complete 

"picture" exceeds 20 milliseconds then the display will flicker noticeably 

but the program operation is unaffected. Instead of the cross~hair cursor 

that appears on the Tektronix 4010, a tracking-cross and the light pen 

would have exactly the same effect and they can be used to simulate the 

function of the cross-hair cursor on the Tektronix 4010. 

For further details on the 'Emulator' see Reference [24] and for 

GT42 operation(see Appendix.l.S). 

Graphics Library Package 

The graphics system consists of the 4010 display, the PDP 11/40 

operating under UNIX, and a library of Fortran-callable subroutines. 

All that is required of the user is that he writes his/her application 

program in UNIX Fortran (a subset of ANSI) and incorporates the 

appropriate graphics subroutine calls. The "Back-end" modules, which 

drive the 4010 display and utilise UNIX, do not directly affect the user 

and are not described here. 

The Graphics library subroutines'are listed in the following 

categories: 



304 

1. Initialisation 

2. Point and line drawing 

3. Tranformation and simple perspective projection 

4. Character and text handling 

5. Cursor and menu operations 

6. Miscellaneous routines 

The facilities provided by this package extend far beyond the 

minimal set (typically 1,2 'and a function for text display) needed to 

use the display. They should prove to be useful over a wide range of 

applications. 

1.0 INITIALISATION 

Before any drawing can be made on the display terminal, the problem 

(or "picture") area and the screen (or display) area need to be defined 

by the user ?r by default. 

1.1 TXOPEN:- Assigns default values for the display viewport 

and window (0.,0.,1023.,780.) as a rectangle defined by the 

two corners (O,O) and (1023,780). This must precede any 

other graphics calls 

e.g. CALL TXOPEN 

1.2 TXCLER:- Clears (erases) the screen ready for the next 

display picture . 

e.g. CALL TXCLER 

1.3 TXVPRT(XO,YO,Xl,Yl):- Sets a display 'Viewport' as the 

rectangle defined by corners (XO,YO),(Xl,Yl) in terms of 

absolute screen co-ordinates (i.e. O~X0<x1~1023 and 

O~Y0<Y1080). 



The residual screen area can, of course, 

be used for other purposes, such as screen 

displaying messages and menus. 
viewport 

y 1 -- - - - r---''---, 

I 

x' 
0 

305 

1.4 TXWIND(XO,YO,Xl,Yl):- Sets a 'window' on the rectangle defined 

by corners (X0 ,Y0) and (X1,Y1) in problem space co-ordinates 

and maps this area onto the screen viewport. 

e.g. CALL TXVPRT(200.,100.,800.,400.) 

CALL TXWIND(-1,0.,1.,1.) 

This maps the window 

W {-l~X ~l,O~Y ~1} p p 
400---

onto the viewport 

V {200~X ~800,100~Y ~400} s s 
100---

1.5 ALPHMD,GRPHMD:-

window 1 problem 

,'~b space 

-;]! •t. 
I I I 
I I I 1 

_I I 

I I I I 
_•viewport I 

I 
I V 
I 
I 
I - • 

I 
: screen 

200 

; 
I 
I 
I 
I 

I 
' BOO 

ALPHMD: sets the display to Alpha mode so that the programmer 

may display textual information. 

GRPHMD: sets the display to Graphic mode. However, as will 

be seen in section 2.1 a call to TXMOVE will set 

the display to Graphic mode. 

Note: It is important to make sure that before the program 

is terminated, the display must be set in Alpha mode. 



306 

2.0 POINT AND LINE DRAWING 

Points and lines form the basic elements of graphic drawing. 

Separate routines are provided for drawing visible or invisible (Point 

movement) lines, from .the current beam (pen) position to a specified 

point, or through a given displacement. (These routines may be called 

the 'graphical primitives', as with aid of these routines the programmer 

could define his own procedures to draw shapes and symbols that he uses 

often). The co-ordinates and displacements which are used will normally 

be specified in the frame of reference of the application problem. 

2.1 TXMOVE(X,Y) or TXMOVR(DX,DY):-

TXMOVE(X,Y): Moves the current 'beam' position to the scaled 

point (X,Y) which is specified as an absolute 

point. 

TXMOVR(DX,DY):Moves the current 'beam' position through the 

relative displacement DX,DY in x,y direction. 

Note: the above two calls will automatically set the terminal 

to 'Graphic mode', and it is under programmer control to 

change the mode to 'Alpha mode'. See section 1.5 above. 

2.2 TXDRAW(X,Y),TXDRWR(DX,DY):-

TXDRAW(X,Y): Draws a visible line from the current 'beam' 

position to the scaled point (X,Y) in absolute 

co-ordinates, leaving the beam at X,Y. 

TXDRWR(DX,DY):Draws a visible displacement (DX,DY) from the 

current beam position 

e.g. Drawing a Triangle ABC 

CALL TXMOVE(0.,0.5.) 

CALL TXDRAW(O.,l.) or CALL TXDRWR(0.,0.5) 

CALL TXDRAW(-0.5,1.) or CALL TXDRWR(-0.5,0.) 

CALL TXDRAW(O.,O.S) or CALL TXDRWR(0.5,-0.5) 

B (0 ,1) 

A(O,!) 



Note: The systematic use of vector increments (i.e. 

displacement DX,DY) in constructing a picture symbol in the 

form of a subroutine is useful in displaying a picture with 

repeated symbols such as logic circuit elements. 

3.0 TRANSFORMATION AND SIMPLE PERSPECTIVE PROJECTION 

A variety of transformations are provided in this package to make 

it easy for the prograrnrner.to specify and select different views of a 

picture with different scales and orientations. The set of transformations 

routines could handle two and three dimension views and are capable of 

•scaling', 'translating' and •rotating' graphical information. They also 
' 

allow 'clipping' of those parts of a figure which fall outside a 

previously defined window. Note that for two dimensional transformations 

the z-parameter must be set to zero. 

The start of an object at any display instance is represented by 

an accumulated transformation matrix TM and a previous reference state 

is represented by the transformation matrix RTM. Both arrays must be 

declared by the user in the statement:-

COMMON/MATRIX/RTM(4,4),TM(4,4) 

Perspective views of 3-dimensional objects are useful in certain 

applications (e.g. architectural drawing). The use of homogeneous eo-

ordinates (x,y,z,t) to define 3-dimensional objects allows either 

'affine' or perspective transformations to be applied with equal ease. 

The 3-dimensional point (or vector) corresponding to (x,y,z,t) is 

(X,Y,Z) = Cf,f,fl. If tFO we usually normalise to t=l. 

3.1 LINEAR TRANSFORMATION:-

The general linear transformation from point (X, Y, Z] to 

[X*, Y*, Z*] is represented by 



308 

s c12 cl3 0 
[X* Y* Z* 1] [X y z 1] X = 

c21 sy c23 0 

c31 c32 s 0 z 
T T T 1 

X y z 

A user can therefore construct his own transformation(s) to 

suit his particular application. However, the most common 

operations which comprise any linear transformation are: 

scaling, translation, rotation, reflection and shear. These 

basic operations are available as library subroutines and 

may be called singly or in a prescribed sequence. Each 

subroutine call effectively defines a local matrix LTM which 

performs that particular transformation and is then 

concatenated in TM. 

new TM=TM * LTM 

Note: It is under the user's control whether he/she wants to 

update the RTM by concatenation i.e. 

new RTM=RTM * TM 

3.1.1 SCALNG(SX,SY,SZ):- Scales the current point (x,y,z) by the 

factors SX,SY,SZ. 

e. g. CALL. SCALNG (0. 5, 2.0 ,0.) 

causes shrinking in the x-direction and expansion in the y-

direction. 
s 0 0 0 

In general [X* Y* Z* 1] [ X Y Z 1] X = 0 s 0 0 y 
0 0 s 0 z 
0 0 0 1 

where [X* Y* Z* 1] are the transformed co-ordinates of 

the point [X Y Z 1]. 

3.1.2 TRANSL(TX,TY,TZ):- Translates the current point (X Y Z) 

through the displacement TX,TY,TZ. 



309 

e.g. a Triangle defined by its vertices (20,0), (60,0), 

(40,100) being translated 100 units to the right and 

10 units up, 

CALL TRANSL(lOO. ,10. ,0.) 

The resultant transformed points are (120,10), (160,10), 

(140' 110). 

3.1.3 ROTATE(RX,RY,RZ):- Rotation is assumed to be positive in a 

right-hand screw sense as one looks from the origin outward 

along the axis of rotation. The order in which the rotation 

is effected is 

(1) angle RX about ox 

(2) angle RY about OY 

(3) angle RZ about oz 

where RX,RY,RZ are specified in degrees. 

Note: rotations are not commutative. However, any order 

may be performed by using separate calls of the routine. 

e.g. 45° rotation about OY followed by 30° rotation about OX. 

CALL ROTATE(O. ,45. ,0.) 

CALL ROTATE(30.,0.,0.) 

(X* Y* Z* l]=[X Y Z 1] 1 0 

0 case 

0 -sine 

0 0 

0 

sine 

case 

0 

0 cos~ 0 

0 0 1 

0 sin~ 0 

1 0 0 

angle 8=RX angle 

about - ox about 

cosljJ sinljJ 0 

-sinljJ cosljJ 0 
X 

0 0 1 

0 0 0 

angle ljJ=RZ 

about - oz 

-sin~ 0 

0 0 

cos~ 0 

0 1 

~=RY 

-OY 

0 

0 

0 

1 



310 

3.2 WINDOWING AND VIEWING:-

These basic facilities were described in sections 1.3 and 

1.4. However, it is interesting to see that the combined 

window and viewport definitions constitute a linear (2-

dimensional) mapping of the problem area onto the screen and 

are effectively equivalent to two simple transformations, 

namely scaling and translation i.e. 

X=SX+T 
S X p X 

Y=SY+T s y p y 

In matrix form (suppressing the z component, which is unchaged) 

(X Y l]=[X Y 1] 
s s p p 

~xo~~o~-s 0 0 1 0 
y 
0 1 Tx Ty 1 

where X ,Y are screen co-ordinates s s 

and X ,Y are picture co-ordinates. . p p 

= [X Y 1] p p 

~X 0 0~ 0 s 0 
y 

T T 1 
X y 

e.g. the mapping W{-l~X ~l,O~Y ~l}+V{200a ~SOO,lOO~Y ~400} 
p p s s 

given in section 1.4 is represented by 

X = 300 X + 500 
s p 

y = 300 y + 100 s p 

and the (full) transformation matrix is 300 0 0 0 

0 300 0 0 

0 0 1 0 

500 100 0 1 

3.3 CLIP(CLINE,XO,YO,Xl,YlJREJ):-

This checks whether the current line segment AB defined by 

its end points in CLINE (array of 2x2) is cut by the current 

window boundary defined by XO,YO,Xl,Yl, and if so, returns 

in CLINE the co-ordinates of the intersection point'(s) A 1 B 1 

as shown. 



311 

If AB lies completely outside B 

the window <ho fl•g IREJ h «- B 

set to 0. Otherwise, (AB 
. ..,{9 
1S y 

A 1 
completely or partially 

accepted), IREJ=l. Thus, 

before using a primitive 

routine (i.e. MOVE or DRAW) 

the user normally calls 

CLIP in order to limit the 

extent of the picture to a 

desired window. This routine may be useful in zooming a 

part of a picture on the viewport chosen on the screen, and 

consequently enlarging that part. 

e.g. CALL CLIP (ALINE,-1.,-l.,l.,l.,IREJ) 

where the window limit is given as (-1,-1,1,1). 

3.4 SIMPLE PERSPECTIVE PROJECTION:-

In perspective geometry no two lines are parallel. Thus a 

perspective transformation is frequently associated with a 

projection onto a plane such as Z=c from a local centre of 

projection. The combination of perspective transformation 

with a projective transformation is often called 'perspective 

projection'. Therefore, a perspective projection represents 

a transformation from 3-space to 2-space. If the centre of 

projection is located at infinity, then the perspective 

projection is called 'Axonometric projection'. This type 

of projection is commonly used in engineering drawing. For 

perspective transformation the elements in the last column 

of the general 4x4 matrix mentioned above are not zero i.e. 



312 

1 0 0 p 
Where P ,P are the reciprocals of the X 

0 1 0 p X y 
y perspective viewing distances from the 

0 0 1 p 
planes y , respectively. z z x' xy 

0 0 0 1 z 

A perspective projection onto the z=O "viewing" plane is 

[x* y* z* t*]=[x y z 1] 1 0 0 p 1 0 0 0 
X 

0 1 0 p 0 1 0 0 y 
0 0 1 p 0 0 0 0 z 
0 0 0 1 0 0 0 1 

projection on z=O plane. 

3.4.1 PERSP(PX,PY,PZ):- A call to this routine would cause 

the perspective transformation to be performed. 

However, it can be seen that if the parameters PX,PY, 

PZ are all set to zero, the transformation matrix 

becomes a unit matrix, and any subsequent projection 

would be 'Axonometric projection'. 

e.g. CALL PERSP(O.,O.,l.) 

i.e. an object is viewed from a position 1 unit on the 

z-axis. Therefore points on the object at infinity 

parallel to z-axis are transformed to a finite point 

on the z-axis. 

3.4.2 PROJCT(NPLANE):- This performs the projective 

transformation from 3-space to 2-space. NPLANE 

(=1,2 or 3) specifies the co-ordinate plane (x=O, 

y=O or z=O) of projection. 

e.g. CALL PROJCT(3) 

3.5 TRANSFORMATION UTILITY ROUTINES:-

The following routines are provided for manipulating 

transformation matrices in several different ways:-



(1) Saving and Restoring a 4x4 matrix onto and from a 

stack respectively. 

313 

(2) Initialising a 4x4 matrix to unity or to a previously 

specified (transformation) matrix. 

(3) Concatenating an NX4 matrix with a 4x4 matrix. 

3.5.1 SAVMAT(A),RESTOR(A):- A one-dimensional stack is 

defined internally by the package. These routines can 

be useful when e.g. a sequence of transformations needs 

to be interrupted by some new transformations and is 

subsequently resumed. 

e.g. CALL SAVMAT(RTM) 

saves the reference transformation matrix (by push

down) on the stack. Subsequently the reference matrix 

can be restored to its original state by 

CALL RESTOR(RTM) 

This POPS UP the elements of the matrix from the stack 

and puts them into the RTM matrix. 

3.5.2 UNITY(A),SETMAT(A):-

UNITY(A): Initialises A(4,4) to unit matrix (4X4) 

SETMAT(A): Sets RTI4 (defined in COMMON/MATRIX/ .•. ) to A. 

3.5.3 CONCAT(A,B,N):- Concatenates matrix (or vector) 

A(NX4) with matrix B(4X4) by multiplication A*B, and 

leaves the result in A. 

4.0 CHARACTER AND TEXT HANDLING 

These routines should help users to incorporate standard keyboard 

interaction in their Fortran programs. 



314 

4.1 SIMPLE INPUT-OUTPUT:-

4.1.1 TXGET(ICHAR):- Inputs the next character from the 

keyboard into ICIIAR. Therefore, ICHAR would contain 

the ASCII equivalent of the character. 

4.1.2 TXPUT(ICHAR):- Outputs ASCII character (ICHAR) to the 

screen. TAB is interpreted as a suitable number of 

spaces. RUBOUT is printed as several superimposed 

characters. 

4.2 COMPOSITE INPUT-OUTPUT (TEXT HANDLING):-

4.2.1 TXLINE(STRING,N):- Inputs from the keyboard to the 

array STRING and echoes to the screen. STRING must 

be declared as logical*l array under 'UNIX' Fortran. 

N is the number of the array elements. 

If at any time the user types 'Rubout' the last 

character not yet deleted is overwritten on the screen 

and removed from STRING. Input continues until the 

user types CR, LF or EOT, or until there is no space 

left in STRING. On return STRING would contain the 

intended text. 

4.2.2 MESSAG(TEXT):- Outputs "TEXT" to the screen, where 

TEXT is a sequence of hollerith characters terminated 

by the character '•'. ·Any occurrences of '/.' are 

replaced by CR/LF (as it is convenient to start a 

message with "/.). 

e.g. CALL MESSAG("HELLO"") 

4.2.3 TEXTUP(FILENAME,N):- Displays the whole text of N 

lines from the named fiie. 

4.2.4 INTGET(I):- Inputs a (base 10 integer) number. 

(This uses. TXLINE to input and echo text). I is then 



315 

set to the binary equivalent of this integer. 

Conversion stops whenever a non-numeric digit is met. 

4.2.5 SPOUT(TEXT):- Removes spaces, line feeds, carriage 

returns, and EOT's from the TEXT parameter. 

4.2.6 DTEXT(X,Y,TEXT,N):- Displays the "TEXT" of N 

characters left-aligned on the scaled point (X,Y) of 

the previously-defined window. 

5.0 CURSOR AND MENU OPERATIONS:-

The following set of routines are for displaying menus and choice 

of cursor therein:-

5.1 MNOPEN(X,Y,MNO):-

Announces that a menu is to be displayed whose top left

hand corner is to be at screen co-ordinates X,Y. (MNO 

is the menu number (= 1 or 2) for the current display 

instance. At most two menus are allowed in the present 

implementation. 

e.g. CALL MNOPEN(800.,200.,1) 

5.2 MNTEXT(TEXT,N,MNO):-

Puts up text containing N characters as the next line 

of the menu MNO. 

e.g. CALL MNTEXT("ITEM",4,1) 

5.3 MNDISP(MNTXT,ITEMNO,LEN,MNO):- Displays a complete menu 

whose text is defined by a DATA statement as MNTXT, with 

number of items given by ITEMNO. LEN specifies the 

character length of each item. NMTXT must be declared 

in UNIX Fortran as a 'Logical*!' array. 

5.4 MNPICK(I,ICHAR,MNO):- Puts up the cursor and returns in 

I the index of the line chosen (i.e. Item number) by the 



316 

user, and the character (!CHAR) typed in. It retries 

until a valid line is picked up. The item picked up is 

marked by an arrow. 

5.5 TXCURS(X,Y,ICHAR):- Displays the cursor and returns the 

window co-ordinates of the cursor (X,Y) and the character 

(!CHAR) typed in •. This would enable the user to put 

graphical information into a program. 

5.6 CURPOS(X,Y):- Positions the 'Alpha' cursor at the 

specified window co-ordinates (X,Y) at which the user 

might display some textual information. (Note: this 

routine would make the Tektronix 4010 compatible with 

the GT42 operating as an emulated T4010). 

5.7 FRAME(X,Y,NC):- Closes the menu with a rectangle drawn 

round it, in order to distinguish it from other textual 

information that might appear on the screen. X,Y 

specifies the top left-hand corner of the rectangle, 

NC specifies the number of items in the menu. 

The following two routines interpret the screen co-ordinates as character 

positions and vice-Versa. 

5.8 CHTOXY(NLINE,NCHAR,IX,IY):- Converts the character co

ordinates to the screen co-ordinates of the bottom left

hand corner of the character. The character co-ordinates 

are represented by line number NLINE, and character 

number (in the line) NCHAR. 

5.9 XYVOC!i:IX,IY,NLINE,NCHAR,IA,IB) :- Given screen co

ordinates (IX,IY) this sets (NLINE,NCHAR) to indicate 

the corresponding character co-ordinates (the top left

hand character position 0,0). Also (IA,IB) are set to 

the position of this point within the indicated 



317 

character (in 0:13,0:21, the character itself being in 

0:10,0:14). 

' . 
I I I I 

> I 'o •..,. 
I j NCHAR 

• • 
~ _-_o_ TljiS IS ITt~ TEXT ,21-l-----, 

I I 
+ 1-- - - ;- 4- --.-- - - - 14 

I --- -- -1-- --- .J -,- - IY 
hlJI~ ~------_.,...._ - --- -- ,J_-

i
l --4> ___ 0 

.____ _ __,....__ _ __. 0 - - - -I.L~~..L_ __ 

0-+ IX 0 10 13 

screen Character zone 

6.0 MISCELLANEOUS 

6.1 OVRLAY(FILENAME):-

Overlays the calling process with the named file, then 

transfers control to the beginning of the core image 

of the file. There can be no return from the file since 

the calling core image is lost. Thus, application 

programs larger than the core memory available could be 

logically segmented into a number of smaller modules and 

linked by a sequence of overlays. 

6.2 RMFILE(FILENAME):- Removes the named file from the 

current directory. 

Note: the above two routines are 'UNIX' dependent. 

6.3 NERROR(I) :- Displays 'ERROR MESSAGE' and the value of 

I indicating the error number. 

6.4 IREM(I,J):- Returns the positive value of I mod J, where 

I,J are integers. 



318 

7,0 LINKING OF LIGHT LIBRARY SUBROUTINES WITH USER PROGRAM 

To incorporate the LIGHT subroutines in his program the user must 

type the following UNIX command 

FC USERPROG -LL 



319 

APPENDIX 2 

IDF - PROGRAM MODULES LISTING 



320 

APPENDIX 2.1 

THE NUMERICAL ALGORITHMS 



321 
c ••••••*********** 
C * AF'PEHDIX 2.11 * 
c ·······•********* 
c 
C THIS IS THE HAIN f'ROGRA/1 SEGHE.NT WHICH CALLS THE NUHERICAL ALGORITHHS 
C INCORPORATED IN THE EXPLICIT PACKAGE. 
c 
c 
c 
CM******* HAIN PROGRAM SEGMENT FOR INVOKING THE NUHERICAL ALGORITHMS**** 
c 

C011110N/IO/INriOUT 
C I/0 COI1I10N DATA AREA 

COHHON/DATSUP/NPSrNPI(50)riFREESrX<50>rY<50)rL<SO>riH<5>•11<5) 
& rHElHODr IHELPr IF'f.:EVr BOUND <2> rSUI:ISET r INU'Nl rlE <2> 

COHI10N/CIJRVEFIT/COEF<50r6) rXCORD<200) rYCORD<200> 
DATA 110DL2ri10DL4rDATSPrOUTCRVrJOINFL/"110D2" '"110D4", "DATSUf'FL • 

& r"OUTCRV"r"JONFLE"/ 
DATA 110DL5/"110D5"/ 
INTEGER SUBSET 
LOGICAL*l 110DL2<10)ri10DL4<10>•DA1SP<lO>rOU1CRV<lO>rJOINFL<lO> 
LOGICAL*l 110DL5<10) 
DIHENSION X0<50)rY0<50> 
CALL RDCOHl 
IN•5 
IOCJT•6 
CALL REI1LNK <X Or YO> 
CALL INTRPT<INTPNTrNPSrNPirXOrYO) 
CALL JOHSUIHIERRrLSU11) 
IF<IERR.EO.l)GOTO 2 
WRITE <IOUT rlO) 

10 FORHAT("PLEASE WAlTrFlT IS BEING COHPUTED"> 
NC•4 · 
GOT0<31r32r33r34r35r36r38)ri1ETHOD 

c 
C NEWTON DIVIDED DIFFERENCES HETHOD<THE CLASSICAL lNlERPOLATION> 
31 CALL NEW10N<NPSrNPlrXOrYOrXCORDrYCORDrCOEFri1ETHOD> 

NC•l 
GOTO 3 

c 
C PIECEWISE OUINTIC INT~f\'f'OlATION POLYNOMIAL <HAUD ALGORI1HII1) 
32 . CAUL PIECWS<NPS;NPirXOrYOrXCORDrYCORDrCOEFrBOUNDriEr11ElHOD) 

NC•6 ' 
GOTO 3 

c 
C CUBIC. SPLINE <2ND DERV. BOUNDARY ·cONDITION) 
33 CALL CUBICl<NPSrNPirXOrYOrXCORDrYCORDrCdEF,BOUNDri1ETHOD> 

GOTO 3 
c 
C CUBIC Sf'LINE <2ND DERV. BOUNDARY CONDITION *) 
34 CALL CUBIC2<NPSrNPlrXOrYOrXCORDrYCORDrCOEFrBOUNDrHETHOD> 

GOTO 3. 
c 
C CUBIC SPLINE <1ST DEF\'V. 90UNDARY CONDITION> 
35 CALL CUBIC3<NPSrNPirXOrYOrXCORDrYCORDrCOEfrBOUNDr11ETHOD> 

GOTO 3 
c 
C PERIODIC CUBIC SPLINE "CUBIC p• 
36 CALL CUBICP<NPSrNPirXOrYOrXCORDrYCORDrCOEFrBOUNDrHETHOD> 

GOTO 3 
c 



C CONTROL END CONDITION CUBIC SPLINE 
38 CALL CSPLEN<NPSrNPirXOrYOrXCORDrYCORDrCOEFrBOUNDriErHElHOD> 

GOTO 3 
30 STOP 
C CALL. NEXT HODEL FOR CUI\'V£ FIT 
3 IPREV=O 

CALL WRCOH1 
333 CALL WRCOH2<NPSrNPirNCl 

IF<INTPNT.NE.999) GOTO 99 
CALL OVRLAY(I10DL5) 

99 CALL OVRLAY<HODL4> 
C E:RROR HESSAGE DISPLAY 
2 IF'REV.,LSUH 

c 

CALL WRCot11 
CALL OVRLAY<HODL2> 
STOP 
END 

C ************NEWTON DIVIDED DIFFERENCE<GLO&All********** 
c 

SU&ROUTINE NEWTON<NrN1rX1rY1rXXrYYrCrHl 
DIHENSION N1(1)rX1<1>rY1<1>rXX<1>rYY<1>rC<50r6) 

C COHPUTE THE POLYNOMIAL COEFFICIENT 
N2"N-1 
DO 1 K"lrN2 
J .. N-K 
C<J+1r1)•(Y1<J+1l-Y1(J))/(X1<J+1)-X1(J)) 

1 CONTINUE 
55 cu.u •Y1(1) 

N3 .. N-2 
DO 2 J•loN3 
K•J+2 
DO 3 L&KrN 

I•N-L+K 
XXX•Xt<I>-Xt<I-<J+t>> 
C<Irl)•(C(Irll-c<I-lrl))/XXX 

3 CONTINUE 
2 CONTINUE 
C EVALUTE INTERPOLATION FUNCTION 
66 IP•t 

DO 4 l•lrN2 
T1=Xt<I+1l-X1<I> 
Rl•T 11 <Nt<I> +1) 
IP1•IP+N1 <1) +1 
XX <IP) •Xl <I) 
Z•Xl<I> 
XX<IPU•Xl<I+U 
YY <IP> =Yt< I> 
YY<IPU•Yl<I+U 
NU•Nl <1) 
DO 5 K•loNU 

XX <IP+K> aZ+Rl 
Z•Z+Rl 
A•C<NrU 
DO 7 L•hN2 
J=N-L 
AaC(Jol>+<Z-Xl<J))*A 

7 CONTINUE 
77 YY<IP+Kl•A 
5 CONTINUE 

IPaiP1 
4 CONTINUE 

322 



c 

RETURN 
END 

C *********PIECEWISE F~YNOHIAL INTERPOLATION******************* 
c 

SUBROUTINE PIECWS<NrN1rX1rY1rXXrYYrCrBriErH> 
DIMENSION N1(1)rX1<1>rY1<1>rXX<1>rYY<1>rB<1>rC<50r6>riE<1> 
CALL HAUDPW<NrX1rY1rBrCriE> 

C COHPUTE FUNCTION VALUES<I.E INTERPOLATED POINTS> 
CALL COHFI1<NrN1rX1rY1rXXrYYrCrH> 
RETURN 
END 

c 
C ***************PIECEWISE F~LYNOHIAL IN1ERPOLATION***************** 
C (HAUD tiETI«lD> 
c 

SUBROUTINE KAUDPW<NrXlrYlrBrCriE> 
DIMENSION X1<1>rY1(1)rB<l>oC(50r6)riE<1> 
IP.1 
N2'"N-1 
DO 1 1•1rN2 
1\ .. 1. 
s-1. 
F3•1. 
F1•.5 
F2•.5 
IF<IE<1>.GT.20> GOTO 20 
IB•l 
IEl .. IE<l>-10 
GOTO 30 

20 IB=O 
IElaiE(l)-20 

C 1ST INTREVAI.· rNOT EQUAL SPACING 
30 IF<IB.EQ.O •• AND.I.EO.l.>GOTO 21 
C LAST INTEI\~rNOT EQUAL SPACING 

IF<IB.EQ.O •• AND.I.EO.N2> GOTO 28 
C 1ST INTEI\'VAlrEOUAL Sf•ACING 

IF<IB.EQ.l •• AND.I.EQ.1.>GOTO 21 
C LAST INTERVAL•EOUAL SPACING 

IF<IB.EO.l •• AND.I.EQ.N2) GOTO 28 
IF<IB.EQ.l.>GOT~ 41 

C COMPUTE. RATIOS OF X-DIFF,RrS 
C IN ANY INTERVAL.OTHER THAN 1ST OR LAST 

E1=X1<I>-X1(I-1) 
E2=X1<I+1>-Xl<I> 
E3=Xl<I+2)-X1(I+1) 
R"'E1/E2 . 
S•E3/E2 
Fl•l./ <R* <R+l>) 
F2=1./ <S* <S+ll > 
F3=<R+S+2.>1<<R+1>•<S+1)) 

C COMPUTE THE DIFFERENCES 
41 D1=Yl<I>-Y1<I-1> 

D2=Y1<I+1>-Y1<I> 
D3•Y1<I+2>-Y1<I+1> 

111 TO=Fl*D1+F2*D3-F3*D2 
GOTO 51 

C COHPUT ·DIFFERENCE AT FIRST INTERVAL 
21 R=l. 

F1=.5 
E2•X1(I+1>-Xl<I> 
E3•X1 <I+2)-Xl <I+1) ', 

323 



SzE3/E2 
F2=1./(S1t <S+ll) 
F3•<R+S+2)/(<R+l)1t(S+1)) 
D2•Y1<I+1l-Y1<Il 
D3=Y1(I+2)-Yl(I+1) 
GOT0<61r62r63)riE1 

C ENCASTRED END CONDITION 
61 Dta(l(l) 

T1•D2-D1 
GOlO 111 

C RELAXED END CONDITION 
62 D1•D2 

Tl•O. 
GOTO tU 

C PARABOLIC END CONDITION 
Q3 TO=O. 

Dta2.ttD2-D3 
Tl•D3-D2 
GOTO 51 

C CH11F'UTE DIFFERENCES AT LASl INTERVAL 
28 Et•Xt<Il-Xt<I-ll 

E2=Xl<I+l)-Xl<Il 
RaE1/E2 
Fl•t.I<Rtt<R+l.)l 
S•t. 
F2•0.5 
F3•(R+S+2.)/((R+l.)II(S+1.)) 

31 Dl•Yl<Il-Yt<I-1) 
D2•Yt<I+1l-Yt(I) 
GOT0<71r72•73lriE(2) 

C ENCASTRED END CONDITION<LAST END) 
71 D3•8(2) 

GOTO tit 
C RELAXED END CONDITION 
72 D3•1J2 

GOTO Ut 
C PARABOLIC E.ND CONDITION 
73 TO•O. 

GOTO 51 
C COHPUTE THE DESI~~D COEFFICIENTS FOR EACH INTERVAL 
51 C<Irtl•Yl<U 

C(Ir2l•<Dt+D21tRIIR)ttF1 
IF <I .Ill:: .1) GOTO !55 
C<Ir3)•.511Tl 
GOTO 66 

55 C<I•3l•<D2ttR-DllttF1 
66 C<Ir4)a-3.ttTO 

C<Ir5) .. 5.ttTO 
C<Ir6)•-2.ttTO 

1 CONTINUE 

c 

RETURH 
END 

C ttllltiiUIIIIttllttCUBIC f'LINE (2ND DERV. BOUNDARY CONDITION> ttllllltltll*llltttll 
c 

SU~~TINE CUBIC1<NrN1rXlrY1rXXrYYrCr~•Hl 
DIMENSION Nl<llrX1<1lrY1<1lrXX<ll•YY<1lrC<50•6lrB<l>•Y2(50) 
CAlL GAUSSl<NrX1rYlrY2r8) 
CALL COEFNT<NrX1rY1rY2rC) 
CALL COHFIT<NrNlrXlrYlrXXrYYrCrHl 
RETURN 
END 

324 



c 
C *************** GAUSSIAN ELIMINATION FOR CUBIC 1 ************** 
c 

SUBROUTINE GAUSS1<NtX1tY1tY2t8) 
DIHENSION Xl<l> tY1<1>•Y2<1>•F<50)tG<50>tB<1> 
Y2<1>•B<1> 
Y2 <N) a£1(2) 
N1=N-1 
G<l>=O. 
F <1) eO. 
DO 2 K=t.N1 

J2=K+1 
H2=<X1(J2)-X1<K> 
R2=<Y1(J2>-Y1(K))/H2 
IF<K.EQ.1) GOlD 1 
Z=1./(2.*<H1+H2)-H1•G<J1)) 
G<K>=Z•H2 
H•6.* <R2-Rl> 
IF<K.E0.2>H=H-H1*Y2<1> 
IF<K.EO.N1>H=H-H2•Y2<N> 
F<K>•Z•<H-H1•F<J1)) 

1 J1aK 
Hl=H2 
Rl=R2 

2 CONTINUE 
Y2 <NU =F <NU 
IF<N1.LE.2> RETURN 
N2=N1-1 
DO 3 J1a2tN2 
K•N-J1 
Y2<K>•F<K>-G<K>•Y2<K+1> 

3 CONTINUE 

c 

RETURN 
END 

C *********CUBIC SF~INE<2ND DERV. BOUNDARY CONDITION)******* 
C CY2<1>-u•Y2(2) •• 4 •• VY2<N-1>=Y2<N>J 
c 

c 

SUBROUTINE cUBIC2<N•N1tX1tY1tXXtYYtCtBtH> 
DIHENSION N1<1~tX1(1)tY1(1)tXX<l>•YY<1>•C<SOt6)tB<l>•Y2<50> 

CALL GAUSS2<NtX1tYltY2t8) 
CALL COEFNT<NtX1tY1tY2tC) 
CALL COHFIT<NtN1tX1tY1tXXtYYtC;H> 
RETURN 
END 

C ***************CUBIC2 ••••• GAUSS2************************* 
c 

SUBROUTINE GAUSS2<NtXltY1tY2tB> 
DIHENSION X1 (1) tYl<U tY2<1hF(SO> tG<SO) tB<l> 
Nl.,N-1 
G <1> =0. 
F <1> =0. 
F2=2. 
DO 2 K•t.N1 
J2=K+1 

. H2=Xl<J2) -Xl (K) 
· R2=<Y1<J2)-Yl(K))/H2 

IF<K.EQ.H GOlD 1 
F1 1112. 
IF <K.EQ.2) F1•2.*B tu 

325 



IF<K.EO.N1lF2=2.•B<2l 
Z•1./((F1-G<J1ll*H1+F2•H2l 
G<K>•Z*H2 
F<Kl•ZW(6.w<R2-R1l-H1*F(J1ll 

1 J1"K 
H1.,H2 
R1•R2 

2 CONTINUE 
Y2 <Nll •F <NU 
IF<Nt.L£.2) GOTO 4 
N2•N1-1 
DO 3 J1a2rN2 
K-N-J1 
Y2<K>aF<K>-G<Kl*Y2<K+1l 

3 CONTINUE 
4 Y2<1>•B(1l•Y2<2l 

c 

Y2<N1l•B<2l*Y2<N1l 
RETURN 
END 

C **********CUBIC SPLIN£<1ST DERV. BOUNDARY CONDITION>********** 
c 

c 

SUBROUTINE CUBIC3<NrN1•X1,Y1•XX•YY•CrBrH) 
DIHENSION N1<1lrX1<1lrY1<1l•XX<llrYY<1lrC<50,6l•B<1lrY2<50l 
CALL GAUSSJ(N,X1rY1•Y2rBl 
CALL COEFN1(N,X1rY1rY2rCl 
CALL COHFIT<N,N1•X1•Y1•XX,YY,CrHl 
RETURN 
END 

C *************CUBIC 3 •• GAUSS3******************************* 
c 

SUBROUTINE GAUSSJ<NrX1rY1•Y2rBl 
DIMENSION X1<1lrY1<1lrY2<1lrB<1l•F<50l•G<50l 
Y2<1l•B<ll 
Y2<Nl•B<2) 
N1-N-1 
J1•1 
H1•0. 
F<t> •0. 
G<ll•O. 
R1•Y2<U 
DO 3 K•lrN 

IF<K.LE.N1l GOTO 1 
H2a0. 
R2•Y2<Nl 
GOTO 2 

1 J2•K+1 
H2-X1 (J2l-X1 <tO 
R2•<Yt<J2>-Y1<Kll/H2 

2. Z•1./(2.•<H1+H2l-H1•G<J1)) 
G<Kl•Z*H2 
F<K>•Z•<6.•<R2-R1l-H1*F<J1ll 
J1•K 
H1•H2 
Rt"'l\'2 

3 CONTINUE 
Y2!N>,.F<N> 
DO 4 J1=1rN1 
K=N-Jl 
Y2<Kl =F <I() -G <tO •Y2<KtU 

4 CONTINUE ' 

326 



c 

RETURN 
END 

C **********PERIODIC CUBIC SPLINE************************ 
c 

c 

SUeROUTINE CUBICP<N•NltX1tY1,XX,YY•C•B•M> 
DIMENSION N1<1ltX1<1>•Y1<1ltXX<1>tYY<l>,C<50t6),8(1l•Y2<50) 

CALL GAUSSP(N,X1tY1tY2t8) 
CALL COEFNT<NtX1tY1tY2tC) 
CALL COHFIT<NtN1tX1tYl•XX•YY,c,H> 
RETURN 
E.ND 

C ***************GAUSSf'*************************** 
c 

SUeROUTINE GAUSSf'<ti.XltY1tY2t8) 
C NORMALISED f'ERIODIC "TRIDIAGONAL • ALGORITHM FOR THE SOUL TION OF 
C FACTORISATION OF THE ARRAY A BY NORMALISED ALGORITHM 
C A SET Of' LINEAR EQUATION <REFC.DR. BENSON f'H.D THESIS> 
C COHPUTE D<1> TERE ARE N-1 UNKNOWN VALUES IN Y2<N-1l 2ND DERV. 
C WHERE A=Dl'TD WHICH FACTORISED INTO 

DIMENSION X1<1ltY1<1ltY2(50),8(1)•D<50>tE<50>•F<50) 
Q1•X1<2)-X1<1> 
D2•Xl<N>-X1<N-1> 
81•2.•<01+02> 
DU) =SORT (81) 

C COHPUTE ALL OTHER D'S UP TO D<N-2) 
N2=N-2 
DO 1 J•2tN2 
C1=X1<J>-X1<J-1) 
Q1•Cl 
D2=X1<J+1l-X1(J) 
81=2.•<01+02) 
D(J)cSQRT<B1-C1/D(J-1)) 

1 CONTINUE 
C COHPUTE E'S 

N3•N-3 
DO 2 J=1tN3 
C=Xl<J+l) -Xl<J) 
E<JlcCI<D<J>•D{J+1)) 

2 CONTINUE 
C Cotlf'UTE THE D<N-1> 'THE LAST IN THE FACTORISATION AS THERE AI\'E ONLY 
C N-1 UNKNOWN 

S1•1.+E<N-~>•E<N-~) 
. N5=N-5 

DO 3 J=N5,1t-1 
S1•1.+E<J>•E<J>•S1 

3 CONTINUE 
S2•1. 
DO 4 J=1tN3 

~ S2•S2•E<J> 
01=X1<N-1>-X1<N-2) 
C1•Q1 
Q2=X1<Nl-X1<N-1) 
C2.,02 

327 

81=2. * (Q1+Q2) 
D<N-1)=SQRT<B1-<C2/D(1))**2*S1-(C11D<N-2)+((-ll**<N-1)*S2*C2)/ 

~ D<l))i!li!12) 
E<N-2l=C11<D<N-2>•D<N-1)) 

C COMPUTE F' S 
F<1>•C21<D<ll*D<N-1l) 
DO 5 J=2•N2 



328 

5 F<Jl•-E<J-l>•F<J-1) 
C COMPUTE THE INTERMEDIATE SOULTION T'H=G•SOLVE FOR H AND STORE IN Y2(J) 
C WHEI\'£ G=K/D 

Rl"Yl <2>-Yl Ul 
R2•Yl<N>-Yl<N-ll 
Ql•X1<2l-X1<1> 
02•Xl<N>-Xl<N-1) 
K1•6.•<R1/Q1-R2/Q2) 
Y2 < 1> •Kl/D <1) 

DO 6 J=2•N2 
R1"Yl <J>-Yl <J-1) 
R2-Y1<J+1)-Y1(J) 
Ql•X1<Jl-X1<J-1) 
Q2-X1<J+1l-X1<J> 
K1=6.•<R2/Q2-R1/Q1) 
Y2<Jl=K1/D(Jl-E<J-1l*Y2<J-1) 

6 CONTINUE 
S=O. 

C cotiPUTE LAST H AS Y2 <N-1> 
DO 7 J•1•N2 

7 S•S+F(Jl*Y2(J) 
R1•Y1<N-1l-Y1<N-2) 
R2•Y1<N>-Y1<N-1l 
Q1•X1<N-1l-X1<N-2l 
02•Xl<Nl -Xl<N-1> 

· K1•6.*(1\'2/Q2-R1/Q1) 
Y2<N-1l•K1/DCN-1>-E<N-2>•Y2<N-2l-S 

C COHPUTE THE FINAL SOI.l..liON Y2(J) AS 2ND DERV 
DO 8 J•N2• 1r-1 

8 Y2<J>mY2<J>-E<Jl*Y2<J+1>-F<J>•Y2<N-1l 
N1•N-1 
DO 9 .J•1rN1 

9 Y2<J>•Y2<Jl/D(J) 

c 

Y2<N>•Y2<1> 
RETURN 
END 

C ********** COHPUTE POLYNOHIAL COEFFICIENTS ******************* 
c 

SUBROUTINE COEFNT<NrXlrY1rY2rC) 
DIHENSION X1<1lrY1(1lrY2<1lrC<50r6l 
N2•N-1 

C SPLINE COEFFICIENT F'ER INTEI\'VAL 
DO 1 1•1rN2 
T1•Xl<I+1l-X1<I> 
T2•Y1<I+1l-Y1<I> 
D1•Y2<I+1l-Y2<I> 
D2•Y2<I+1l+2.•Y2<I> 
C<I rl> "Y1 Cl) 
C<Ir2)aT2/T1-<T1*D2l/6. 
C <Ir3> •Y2(Il /2. 
C<Ir4)aU1/(6.•T1l 

1 CONTINUE 

c 

RETURN 
END 

C ********** COHPUTE FUNCTION VALUES **************************** 
c 

SUBROUTINE COHFIT<NrN1rX1rY1rXXrYYrCrHl 
DIHENSION N1(1)rX1(1lrY1<1lrXX<1lrYY<llrC<50,6l 
N2"'N-1 
IP•l 



C COHPUTE THE INTERPOLATED ORDINATES 
00 1 I"ltN2 

CALL INTPLT<IriPrN1rX1rY1rXXrYYoCrH) 
1 CONTINUE 

c 

RETURN 
END 

C*************EVALUATE THE INTERF~LANT FUNCTION VALUES********** 
c 

SUBROUTINE INTPLT <I r IPrNlrXl r Y1 ,'xxr YYoCrH) 
DIHENSION Nl<l>rX1(1)rY1<1lrXX<1)rYY<1>rC<SOt6) 
INTP,.N1 <I) 
T1•Xl(I+1>-X1<I> 
R1cl11<INTP+U 
IP1•IP+INTP+1 
Z•X1 <I> 
XX <IP> •X1 <I> 
XX <IPU .. Xl <1+1) 
yy <IP> •Yl<U 
YY <IP1) aY1 (1+1) 
00 2 J•1riNTP 

XX< IP+J) •Z+Rl 
Z•Z+Rl 
IF<H.EQ.2) GOTO 3 
T•Z-XX<IP) 
YY(IP+J)•C<Irl)+T*<C<Ir2)+TM<C<It3)+1•C<It4))) 

2 CONTINUE 
IP•IP1 
RETURH 

3 H-XX<IP1l-XX<IP> 

329 

T• <Z-XX <IP)) /H 
YY<IP+J)•C<lrl)+T•<C<Ir2l+TA<C<Ir3)+T•<C<Ir4>+T•<C<IrSl+T•C<Ir6))))) 
GOTO 2' 
END 

c 
C **************CUBIC SPLINE WITH VARIABLE END CONDITION************** 
c 

SUBROUTINE CSPLEN<NrN1rXlrY1rXXtYYtCoBriEtHl 
DIHENSION N1<1lrX1<1lrY1(1)rXX<llrYY<l>oC<SOt6lo8(1lriE(l) 
DIHENSION BX<SOlrCl<SOlrD<SOlrS<SO>rDX<SO> 
CAll. GEHXPR <N r Xt1r Yl r DX> 
Sl•DX<2l/DX<3l 
S2•DX<Nl/DX<N-1> 

C HAIN PROGIWI 

c 

.CALL GEHHAT<NrSlrS2rDXrBXrCloDriEoEXrA) 
CALL GENRHS<NrSl rS2rXt.Y1 rB~DXoSo IE> 
CALL GAUSSC<NrBXrClrDrSriEoEXrAl 
CALL ECCOEF<NrXlrYlrCrSrDX) 
CALL COHFIT<NrNlrXlrYlrXXrYYoCoHl 
RETURN 
END 

C *************GENERATE DX PARAMETER*********************** 
c 

1 

SUBROUTINE GENXPR<Nr~lrYlrDX> 
DIHENSION X1<1lrY1<1lrDX<1> 
D~<ll•O. 
Nl•N-1 
00 1 K•1rN1 

DX<K+1l .. X1(K+ll-Xl<K> 
CONTINUE 
RETURN ·. 



END 
c 
C **************GENERATE COEFFICIENTS HATRIX********************** 
c 

SUBROUTINE GENHAT<NtS1tS2tDXt8XtC1tDtiEtEXtA> 
DIMENSION DX<1lt8X(1ltC1<1ltDC1ltiE<1> 
N1•N-1 
BX<ll.,O. 
D<N>•O. 
C1<1>=1. 
Cl<N>•1. 
EX=O. 
A=O. 
GOTOC1t2t3t4ltiE<1> 

1 D<l>=O. 
GOTO 5 

2 D<1>=0.5 
G0105 

3 D<1>•1. 
GOTO 5 

4 0<1>•1.-51*51 
EX•-51•S1 

5 GOT0(6t7t8t9ltiE<2> 
6 BX<N>•O. 

GOTO 10 
7 ax <N> .. 2. 

C1<Nl.,4. 
GOTO 10 

8 BX<Nl•l. 
GOTO 10 

9 BX<Nl•l.-52*52 
A•-52*52 

10 DO 11 J~2,N1 
ax <J> .. ox <J-tt > 
C1<J>•2.•<DX<Jl+DX<J+1ll 
D<Jl•DX<Jl 

11 CONTINUE 

c 

li:ETURN 
END 

C ****************GENERATE R.H.5 ********************************** 
c 

SUBROUTINE GENRH5<Nt51t52tX1tY1t8tDXt5tiE> 
DIHEN5ION X1<1ltY1(1lt8C1ltDX(llt5(1ltiE(ll 
N1'*'1-1 
GOT0(1t2t3t4ltiE<1l 

1 6(1)•8(1) 
5<Nl•8(2) 
GOTO 5 

2 5<1>=<1.5/DX<2>>•<Y1<2l-Y1<1>> 
5<N>•<6./DX<N>>•<Y1<Nl-Y1<N-1)) 
GOTO 5 

3 S<l> = <2./DX <2»* <Yl <2>-Yl<l)) 
5<N>=<2./DX<N>>•<Y1<N>-Yl<N-1>> 
GOTO 5 

4 5(1l=<2./DX<2>>•<-Y1(1)+(1.+51**3l•Y1<2l-<51•*3>•Y1(3)) 
5<N)•(2./DX<N>>•<<52**3l•Y1<N-2l-<1.+52••3>•Yl<N-1)+Y1<Nll 

5 Do 11 I•2tN1 

330 

S(l)•3•<DX<l+1l•DX<I+1>•<Y1(Il-Y1<I-l))+DX<I>•DX<I>•<Y1<I+1l-Y1<Il)) 
S<Il•5(l)/(DX<I+ll•DX<I>> 

11 CONTINUE 
li:ETURN 



331 

END 
c 
C *************GAUSSIAN ELIHINATION FOR VARIABLE END CONDITION*********** 
C •ADAPTATION OF OUIN DIAGONAL HATRIX• 
C **REFC. PROFESSOR EVANS•• 
c 

SUBROUTINE GAUSSC<NoBXoC1oDoSoiE,EX•A> 
DIHENSION BX<1loC1(1loD<1loSC1loiEC1) 
N1•N-1 
Z•1./C1<1) 

~ D<1>•D<1>•Z 
SC1).,S<ll•Z 
IF<IEC1).EQ.4lEX•EX*Z 
DO 1 I•2oN1 
U•I-1 
I2•I+1 
Z•1./CC1<I>-BXCI>•D<I1>> 
IFCI.EQ.2)DCI>•<DCI>-BXCI>•EX>•Z 
IF<I.NE.2lD<I>•D<I>•Z 
S<l>•<S<I>-BX<I>•S<I1))*Z 
IF<I2.LT.N> GOTO 1 
S<I2l•S<I2l-A*S<I1l 
BX<I2>•BXCI2>-A•D<I1) 

1 CONTINUE 
S<N>•<S<N>-BX<Nl*S<N-1))/(C1<N>-BX<N>•D<N-1)) 
DO 2 K•1oN1 

I=N-K 
IF<I.NE.1>S<I>•S<I>-D<I>•S<I+1) 
IF<I.EQ.1lSCI)•S<I>-D<I>•S<I+1>-EX•S<I+2) 

2 CONTINUE 

c 

RETURN 
END 

C****************GENERATE COEFFICIENTS********************** 
C <WITH VARIABLE END CONDITION> 
c 

.. 
1 

c 

SUBROUTINE ECCOEF<NoX1oY1oCoSoDX) 
DIHENSION X1<1>oY1(1loCC50o6lo5(1)oDX(1) 
N1•N-1 
DO 1 I•t.N1 
C<I•1>•Y1<I> 1 
C<h2)•5(l) I 

C(Io3)•(J,/(DX<I+1>•DX<I+1>>>•<Y1<I+1l-Yl<I>>-<1.1DX<I+lll* 
<SCI+ll+2.•S<I>> 

. C<Io4)a-(2,/DX<I+l>••J>•<Y1CI+1>-Y1<I>>+<l.I<DX(I+ll*DX<I+1)))* 

CONTINUE 
RETURN 
END 

<S<I+U+S<I)) . 

C ************ COHPUTE INTERHEDIATE POINTS ********************* 
c 

SUBROUTINE INTRPT<INTPNToNoN1oXOoY0) 
DIHENSION N1<1)oX0<1loY0(1) 
N2&tf-1 
IF<INTPNT.LT.1l GOTO 101 
If' <INTF'NT .EQ. 999) RETURN 
DO 1 I•1oN2 

1 N1<I>•INTPNT 
RETURN ' 

101 W1•XO<Nl-XO(l) 
W2=YO <N> -YO < 1> 



W3=SORT<W1*W1+W2*W2) 
S"W3/100. 
DO 2 I•1•N2 

W1=XO<I+1> -XO(l) 
W2•YO<I+1)-YO<I> 
W3•SORT<W1*W1+W2*W2) 
Nl<I> •W31S-1. 
N5=<2oo-N>I<N-1) 
IF<N1<I>.GT.N5>Nl(l)mNS 

2 CONTINUE 

c 

RETURN 
END 

C**********SElS JOINED C~~ COHHON DATA******************* 
c ' 

SUBROUTINE JONSU&<ERR•LSUH) 
C JOIN COHHON DATA AREA AND INPUT COHHON DATA MEA 

332 

COHHON/JOIN/CJl <500> ;CJ2(500) ,J3(12) ,J4<100), lf'NTR<6> 
COHHON/DATSUP/NF·S,Nf'I (50>, IFREES,X <50), Y <SO> oL<SO>, IH<S> oH <5> 

~ •HETHOD• IHELP•IPREVoBOUND <2) oSUfsSET, INTF'NTo IE <2> 
INTEGER ERR•SUBSET 

C FIRST CURVE SEGHENl? 
IF<SUBSE1.EO.O.OR.SUBSET.E0.1> RETURN 
IF<IERROR(103>.NE.0) GOTO 3 

C READ THE JOIN CURVE COHHON DATA MEA 
CALL RDCOHJ 

3 HSUH=O 
N2:Nf'S-1 
00 1 I•1oN2 

1 HSUH:HSUH+NPI<I> 
HSUH'"HSUH+NF'S 
LSUH•HSUH+J3<1> 
IP1•J3' (1) 

IF<LSUH.GT.SOO> GOTO 400 
C CHECK FIRST POINT AS LAST POINT OF THE PREVIOUS SUBSET 

IF <X <IH (1)) .EO.CJ1 <IF'l>) RETURN 
C ADD ONE POINT TO PRESENT DATA POINTS 

L<IFREES> =IH<l) 
IH <1 >"I FREES 
X<IF~~ES>cCJ1<If'1) 

Y <I FREES) •CJ2 <If'l> 
NPS=Nf'S+l 
IFREES•IFREES+1 
NPI<Nf'S-1)=NPI<NPS-2) 

C SAVE JOIN CURVE COHHON DATA 
CALL WRCOHJ 
RETURN 

C ERROR HESSAG 
400 ERR•1 

RETURN 
END 



333 

c ***************** 
C • APPENDIX 2.12 • 
c ***************** 
c 
C THIS IS THE HAIN f'ROGRA/1 SEGMENT WHICH CALLS THE NUMERICAL ALGORITHMS 
C INCORPORATED IN THE f'AIWIElRIC PACKAGE. 
c ------------------c 
c 
C ******HAIN f'ROGRAH SEGHENl FOR INVOKING THE NUMERICAL ALGORITHMS ****** 
c 
c 

COMHON/IO/INtlOUT 
C INf'UT/OUTf'UT COHHON DATA AREA 

COHMON/DATSUf'/Nf'StNf'I<SOltiFREEStX<50lrY<50lrZ<SOlrL<50lriH<5lr 
6 H<5l rt1ETHODriHELPrif'REVrBOUND<6l rSUBSETriNTF'NlriE<2l 
6 tiD 

COHHON/CURVEFIT/XCOEF<50r4lrYCOEF<50r4lrZCOEF<50r4lrXCORD<200lr 
6 YCORD<200lrZCORD<200l,TCORD<200) 

DATA f'HODL2rf'HODL4rf'DTSf'rf'HODL5rF'HODL2" r "f'HODL4" r "F'DTSUF'FL • 
6 r "f'HODL5"/ 

INTEGER SUBSET 
LOGICAL•l f'HODL2<10lrPHODL4<10lrPDTSf'(10lrf'HODL5(10l 
DIMENSION X0<50l•Y0(50lrZ0<50lrT0<50l 
CALL f'RDCH1 
IN"5 
IOUT"6 
CALL PRHLNK<XOrYOrZOl 
CALL INTRPT<INTf'NTrNPSrNf'IrXOrYOrZOrTOtiDrHETHODl 
WRITE<IOUTr10) 

10 FORHA~<"f'LEASE WAITrFIT IS BEING COMPUTED") 
NC:o4 
GOT0<31r32r33r34r35lrHETHOD 

c 
C STANDARD PARAHETRIC CUBIC SPLINE<SECOND DERV.BOUNDARY CONDITION> 
31 CALL CUBPAR<NPS•NPitXOrYOrZOrTOrXCORDrYCORDrZCORDrTCORDr 
&XCOEFrYCOEFrZCOEFrBOUNDriDtKETHODl 

GOTO 3 
c 
C CYCLIC CUBIC Sf'LINE 1 
32 CALL CYCLIC<NfSrNf'IrXOrYOrZOrTO•XCORDrYCORDrZCORDrTCORDr 
6XCOEFrYCOEFrZCOEFriDrHETHODl · 

OOTO 3 
c 
C ANTICYCLIC CUBIC SPLINE ) 

· 33 CALL ANTCYC<NPStNPirXOrYOtZOrTOrXCORDrYCORDrZCORDrTCORDr 
&XCOEFrYCOEFrZCOEFriDrKETHODl 

OOTO 3 
c 
C CUBIC Sf'LINE VARIABLE END CONDITION 
34 CALL f'ARCUB (Nf'StNf'IrXOr YOrZOr TOrXCORDr YCORDrZCORDr lCORD• 
&XCOEFrYCOEFrZCOEFrBOUNDriEriDtHETHODl 
C CALL NEXT HODEL FOR CURVE FIT 
3 If'I\'EV=O 

CALL f'WI\'CH1 
333 CALL f~RCH2(Nf'S,Nf'IrNCriDl 

IF<IN1f'NT.E0.999.AND.ID.E0.2lCALL OVRLAY<f'HOOLSl 
CALL OVRLAY<PHODL4l 
CALL f'IJRCH1 
CALL OVRLAY <PHOOL2l ., 

35 s:roP 



334 

END 
c 
ClllllllllllllfiiiiiiCUBIC Sf'LINE WITH PARAMETRIC SECOND DERIVATIVES***H*llll* 
c 

SUBROUTINE CUBF'AR <NrN1rXF'r yp, Zf', T1, XXF'• yyp, ZZf', TTf'• XC, YC • ZC, ll 
~riDIHrH) 

DIHENSION N1(1) •Xf'<lhYf'(l) ,zf'<1l •Tl (1) rXXf'(1) •YYP<1> ,zzP<ll' 
~ TTf•(l) ,xc<S0,4> rYC(50r4) rZC<SOr4) rll(l) rC<2) 
C INTERF'OLATE FOR X 

C<l>=B<l> 
C<2>~B<4> 

CALL CUBIC1<N,N1 •Tl rXP•TTf'•XXF'oXC rC •Hl 
C INTERf'OLATE FOR Y 

C<l>=B<2l 
c (2) =8(5) 
CALL CUBIC1(NrN1rT1,YP,TTf'rYYP•YC,CrHl 

C INTERF~ATE FOR Z (3-Dl 
C<l>~B<3) 

C<2>=B<6> 

c 

IF<IDIH.EQ.3)CALL CUBIC1<NrN1rT1,ZF'rTTPrZZP,zc,C,Hl 
1\'ETURN 
END 

Cli*********CYCLIC CUBIC SF'LINE*************************** 
c 

SUBROUTINE CYCLIC<NrN1•Xf'•Yf'rZf'•T1rXXf'rYYf'•ZZf'rTTf'rXCrYCrZCrll 
&riDIH•tl> 

DIMENSION N1 (1) rXP<ll rYP <1> ,zp <1>, T1 <1>, XXP (1) r YYP (1) ,zzp (1) 

~rTTf'(1)•XC<50•4>,YC<50•4>rZC(50,4),8(1) 

CALL CUBICP<N•Nl•TlrXf'rTTP,XXf'•XC•Il•H> 
CALL CUBICP<N•N1•T1rYf'rTTPrYYf'•YCrB•H> 

C Tfft:E DIMENSION 

c 

IF <IDIH.EQ.3lCALL CUBICF•<N•N1, T1 ,zp, TTP,ZZf•, ZCrB•H> 
1\'ETURN 
END 

Cll*lllliiii***GAUSSIAN ELIHINATION FOR CYCLIC CURVES*************** 
c 

SUBI\~TINE GAUSSP<NrX•YrY2•B> 
DIMENSION X<1>,Y<l>,Y2<1>•F<SO>•G<SO>•H<50lrB<1> 
N1=N-1 
N2=N1-1 
J1=1 
G<l>=O. 
F <1)=0. 
H<ll=-1. 
H1=X <N> -X <Nl> 
W=H1 
H2=X<Nl>-X<N2) 
U=2.* <HHH2l 
R1=<Y<N>-Y<N1ll/H1 
R2=<Y<N1>-Y<N2ll/H2 
V=6.11(R1-R2) 
DO 2 K=t.N2 

J2=K+1 
. H2=X <J2) -X <Kl 
R2=<Y<J2>-Y<Kll/H2 
IF<K.EQ.1lGOTO 1 
U=U-W11H(J1) 
V=V-W11f'(J1) 
W=-G<J1)11W 



1 Z=l./(2.*<H1+H2l-H1*G<Jl)) 
G<IO•Z*H2 
H<K>~-Z*H<Jll*Hl 
F<Kl•Z*<6.*<R2-R1l~Hl*F<Jlll 
JlaK 
H1=H2 
Rl=R2 

2 CONTINUE 
H2aW+Hl 
Hl=<V-H2*F<N2ll/<u-H2*<G<N2l+H<N2))) 
Y2<Nll •Hl 
DO 3 J1=2•Nl 

K=N-Jl 
Y2<Kl=F<Kl-G<K>*Y2<K+ll-H<Kl*Hl 

3 , CONTINUE 
Y2<Nl=Y2<1l 
RETURN 
END 

c 
C *************** INTERPO~ATION •EV~UATE FUNCTION VALUES ********* 
c 

SUBROUTINE INTPLT<I•IP•Nl•Xl•Yl,xx,yy,c,Hl 
DIMENSION N1<1>•Xl(ll•Y1<1>•XX<ll•YY<ll•C<50•4> 
INTP=Nl <U 
IF<H.EQ.4) GOTO 3 
Tl•Xl<I+ll -Xl(l) 
Rl=Tl/ <INTP+ll 
Z•Xl (1) 

IP1=IP+INTP+l 
XX <If') =Xl < 1) 

XX <IPll •X1 <I+ll 
yy (If') •Y1 (I) 

YY<IPU=Yl<I+ll 
DO 2 J•t. INTP 

XX <IP+Jl =Z+Rl 
IF<H.EQ.4) GOTO 5 
ZaZ+Rl 
T•Z-XX<If'). 

6 YY<IP+JlaC<I•1l+T*<C<I,2l+T*<C<I•3l+T*C<I•4))) 
2 CONTINUE . 

IP•IPl I 
RETURN 

3 Z•O. 
R1•X1 <I+ll I <INTF'+ll 
GOTO 4 

5 T•Z+R1 

c 

Z•Z+R1 
GOTO 6 
END 

C**********ANTI CYCLIC CUBIC Sf'~INE*************************** 
c 

SUBROUTINE ANTCYC <N•Nl•Xf'• yp,zp, Tl ,xxp, YYF'tZZF'• TTf•,xc, ye, ZC 
6o•IDIHtHl 

DIMENSION Nl<ll tXf'<t) 'Yf'<l) tZf'<l), Tl<ll, XXF' <1) t YYP<1> tZZP (1) 

6o•TTP(1ltXC<50t4),YC(50t4l•ZC<SOt4l 

c 

~L CANTCY<N•Nl•Tl,Xf'•Tlf'•XXf',XC•H> 
CALL CANTCY <N•Nl, Tt. Yf't TTP• yyp, YC,Hl 
IF <IDIH.E0.3>C~L CANlCY <NtNl, T1, Zf', TTF'tZZP,zc,H> 
RE1URN 
END ·. 

335 



C*********** INTERF'Ol TE FOR EACH X/Y IZ AS IN PARAMETER T•u**** 
c 

c 

SUBROUTINE CANTCY<NrN1rX1rY1rXXrYY•C•M> 
DIMENSION N1<1>•X1<1>rY1<1>rXX<1>•YY<l>•C<50r4)rY2<SO> 
CALL ACGAUS<NrX1rY1rY2) 
CALL ANTCOF<NrN1rX1rY1rY2rXXrYYrC) 
RETURN 
END 

C*********GAUSSIAN ELIMINATION FOR ANTI CYCLIC CURVES****•** 
c 

SUB~~TINE ACGAUS<N•XrYrY2rB) 
DIMENSION X<1>rY<1>rY2<1>rV1<SO),W1<SO>rY1<50>•B<1> 
Vl <1> •0. 
loll (1)•0. 
S3=X<Nl/X(2) 
Z•1.1<2.11<1.+S3>l 
V1<2>=Z*S3 
W1<2l•-Z 
Y1<1>•Zli(3./X(2))li(S3li(Y(2)-Y(1))-(1./S3>•<Y<N>-Y<N-1>l> 
H=2.li(X<Nl+X<N-lll 
F•3.•<X<Nl**2*<Y<N-ll-Y<N-2ll+X<N-1l•*2li<Y<N>-Y<N-lll> 
F=FI<X<Nl11X<N-1ll 
G:O. 
N2:N-2 
DO 1 I•2rN2 

H=H-GIIW 1 <I > 
F•F-GliY1 <I-1 > 
Ga-V1 <I>•G 
Z•1.1<2.*<X<I+1)+X<I>l-X<I+ll*V1<I>> 
Vl <I+1>•0. 
W1<I~1la-211X(l+l)11Wl<I> 

B=3.li(X(I+1l**2*<Y<Il-Y<I-1ll+X<I>**2*<Y<I+1>-Y<I>>> 
B-BI<X<I+llliX(I)l 
Yl <Il•Zll <B-X <H1>liY1 <I-ll) 

1 CONTINUE 
H:H-<G+X<Nllli<Vl<N-ll+Wl<N-1>> 
Yl<N-ll•F-<G+X<Nl>*Yl<N-2> 
Y2<N-1l=Y1<N-1l/H 
Y2<N-2l •Y1 <N-2>-.Vl <N-1>11Y2<N-1> 
N3cN-3 
DO 2 I•1rN3 

J=N3+1-I 
Y2(J)•Y1<J>-V1<J+1l*Y2(J+1l-Wl<J+l)IIY2<N-1> 

2 CONTINUE 

c 

Y2<Nl=-Y2<1l 
RETURN 
E.ND 

C***********ANTICYCLIC COEFFICIENT & FUNCTION*****************•* 
c 

SUBROUTINE ANTCOF<NrN1rXlrY1rY2,XX•YYrCl 
DIMENSION N1<1lrX1<1lrY1<1lrY2<1>rXX<1l,YY<llrC(50r4> 
IP=l . 
N2"N-1 
DO 1 1"1 rN2 
. INTf'aNl< Il 

V=O. 
Rl•Xl <IHl I <INTF'Hl 
C<Irl>=Yl <I> 
C<Ir2l .. Y2<I> 
C<Ir3l=<3./X1<I+1>•*2>•<Y1<I+1>-Y1<I>>-

336 



~ <1./X1<1+1))!1(Y2(1+1>+2.*Y2<I>> 
C<l•4>=-<2./X1<1+1)**3)!1(Y1<1+1)-Yl<I>>+ 

~ <1./Xl(I+1>**2>*<Y2<1+1)+Y2<I>> 
IP1=lf'+INTP+1 
XX <IP> =Xl <I> 
XX<IP1l=X1<I+1> 
YY <IP> =Yl< I> 
YY <IP1> =Y1 <1+1 > 
DO 2 J=1•INTP 

T=V+R1 
XX< lf'+J) -=V+R1 
V=V+Rl 
YY <IP+J) =C <I, 1) +l* <C <I •2>+T* <C <I •3>+TIIC <I •4> >) 

2 CONTINUE 
lf'=IP1 

1 CONTINUE 

c 

RETURN 
END 

C********** CONTROL END CONDITON FOR PARAMETRIC CUBIC Sf'LINE********* 
c 

SUBROUTINE f'ARCUB <N, Nl, Xf', YP, Zf', T 1, XXP, YYF', ZZF', TTP, XC, YC, ZC 
~•BriE,IDII1rl1) 

DIMENSION N1<1) •Xf'(1),Yf'(1) ,zf'<1> ,n <1> •XXP<l) ,yyp(1) ,zzP<1> 
~.TTP(l),XC<50•4>•YC<50•4>rZC<50•4>•B<1>•IE<l)rC<2> 

C<U=B<l> 

c 

C<2>=B<4> 
CALL CSF'LEC <NrN1, T1 rXPr TTf•,xxp, xc,c, 1Erl1) 
C<U=B<2> 
C<2>=B<5> 
CALL CSf'LEC <NrN1 r T1, YPr TTF'r yyp, YC•C• 1Erl1) 
C<l>=B<3> 
C<2>=B.<6> 
IF<IDII1.EQ.3)CALL CSf'LEC<N•N1•Tl•Zf'•TTPrZZf'rZCtCtiErl1) 
RETURN 
END 

C **************CUBIC Sf'LINE CONTROL END CONDITIONuuu******** 
c 

SUBROUTINE CSF'LEC <NrN1rX1t YltXXr YYtCt Br IEtHl 
DIMENSION N1<1)i~1<1>tY1<1ltXX<l)tYY<llrC<50r4ltB<l>tiE<1> 
DIMENSION BX<yO)rC1<50)rD<SO>tS<SO> 
S1=X1(2)/X1(3) 
S2=X1 <N> /X1 <N-1> 

C MAIN F'ROGRAI1 CALLS 

c 

CALL GCOFI1T<NtS1•S2rX1tBXtClrDriE.EXrA) j 
CALL GENRHS<NrSl•S2tYltBrX1•StiE> · 
CALL GAUSEC<NrBXtC1rD•SrlErEXrA> 
CALL ECCOEF<NrY1tCtStX1) 
CALL COI1FIT<NtN1rX1tYl,XXtYYtCtl1) 
RETURN 
END 

C**********GEtiERATE f'ARAI1ETERS T *************·~**** 
c 

SUBROUTINE GENF~T<NtX1tY1tZ1rT1,IDII1rl1) 
DIMENSION X1<1>tY1<1>rZ1<1>rT1<1> 
T1 (1) =0. 
DO 1 K=2tN 

U=Xl <t»-Xi <K-1> 
V=Y1<K>-Y1(K-1> , 
IF<IDII1.EQ.3) Q-=Z1iK>-Zl<K-1> 

337 



D=U•U+V•V 
IF<IDIH.E0.3>D=D+O•Q 
D1=SQRT <D> 
IF<H.E0.3.0R.H.EQ.4) GOTO 2 
T1 <K> "T1 <K-1 l+D1 

1 CONTINUE 
RETURN 

2 T1 <K>=Dl 
GOTO 1 
END 

c 
C ************ COHF~TE INTERHEDIATE F~INTS ********************* 
c 

SUBROUTINE INTRPT<INTPNT•N•N1,X1,Y1.Z1,T1•IDIH•H> 
DIMENSION N1<1>•X1<1l•Y1<1>•Z1<1l•T1<1l 
CALL GENF'RT<N•XhYl.ZhThlDIH,Hl 
N2=N-1 
IF <INTF'NT .LT .1> GOTO' 101 
IF<INTPNT.EQ.999) GOTO 7 

55 DO 1 1•1•N2 
1 N1<I>•INTPNT 

IF<IFLAG.E0.999l INTPNT•999 
IFLAG"O 
li:ETURN 

101 · W1aXl<Nl-X1<ll 
W2=Yl <N> -Y1 U) 

IF<IDIH.EQ.3)W3=Z1<N>-Z1<1> 
D=W1•W1+W2*W2 
1F<IDIH.EQ.3)D=D+W3•W3 
Tl"SORT<D> 
S•TL/100. 
DO 2 I•l•N2 

Nl<I-> =T1 <I+l> /S-1. 
N5=<200-N)/(N-1> 
lF<N1<Il.GT.N5lN1<I>~N5 

2 CONTINUE 
RETURN 

7 1NTPNT"5 
1FLAG=999 
GOTO 55 
END 

338 



339 

APPENDIX 2.2 

THE IDF - EXPLICIT PACKAGE 



c ***************** 
C * APPENDIX 2.21 * 
c ***************** 
c 
C THIS HODULE HANDLES THE FOLLOWING INTERACTIVE DISPLAYS:-
C 1.IHTn~DUCTORY 

C 2.CHOICE OF THE NUMERICAL ALGORITHMS 
C 3.DATA ENTRY 
C 4.DATA TABULATION 
C S.DATA POINT EDITING 
c 
c 

.c 
C********* MAIN PROGARH-HODULE 1 ************** 
c 
C INPUT COHMOH DATA AREA 

COHMOH/DATSUP/Nf'SrHPI<50) riFREESrX<SO> rY<SO> rL<SO> riH<S> rM<S>, 
~ HETHODt IHELf'rlf'REVrBOUND <2> rSUBSETt IHTPNT, IE <2> 

COHMOH/IO/IHriOUT 
DATA HODL2tHELf'/"HOD2"r"HELP"/ 
LOGICAL*1 HODL2<10> rHELF'<lO> 
INTEGER SUBSET 
IH=S 
IOUT=6 
CALL lXOPEN 
IF<IERROR<103l.HE.O>GOTO 1 
CALL RDCOH1 
IF <IHELF'.NE.O> GOTO 55 
IF(If~EV.EQ.1) GOTO 21 

C CALL THE DISPLAY SEQUENCE FOR DATA ENTRY OH REQUEST 
1 CALL INTn~D<IC) 

GOT0<2r3000r1111>riC 
2 CALL HEHU<HETHODtiC> 

GOT0<10t1r3000t1111t1111>tiC 
10 CALL DATEHT<ICriA> 

GOT0(20r2r3000r1111t1111ltiC 
20 CALL DATHJIH<IAt IC> 

GOT0<100<>r10t40r1111t1111t3000t1111r1111lriC 
40 CALL EDIT<ICtlA) 
C RETURN TO DATA MANIPULATION DISPLAY 

IF<IC.GT.1> GOTO 20 
C NEXT DISPLAY IN TH€ SEQUENCE 
10<>0 If'REV"'O 

IHELP"O 
. CALL WRCOH1 

CALL OVRLAY <HODL2> '( 
C HELP DISPLAY 
3000 CALL WRCOH1 

CALL OVRLAY<HELP> 
C TERHIHATE THE PROGRAH 
1111 CALL EXIT 

STOP 
C LINK LIST UNCHAG£ 
21 IPREV=O 

lHELP"'O 
IA=111 
GOTO 20 

C RETURN FROM HELP DISPLAY 
55 GOT0<1r2r10r21)riHELf' 

END 
c 

340 



C ************INTRODUCTORY DISPLAY ************************"**** 
c 

SUBROUTINE INTROD<ICl 
COHHON /10/ INriOUT 

C HENU ITEMS 
DATA HNTXTr+ NEXT +HELP +EXIT "/ 
LOGICAL*1 HNTXT<30l 

C SET UP THE INTRODUCTORY TEXT AND HENU 
CALL TXCLER 

. CALL CURF'OS <1 • r 780. l 
CALL TEXTUF'<"INTEXT"r34l 
CALL HNOF'EN<875.r715.r1l 
CALL HNDISf'<HNTXTr3r10r1l 
CALL FRAHE<870.r733.r3l 

2 CALL HNPICK <Jr ICHAArHNOl 
22 CALL CONFRH<ICHARl 

IF<ICHAA.E0.78l GOTO 2 
IF<ICHAR.NE.89l GOTO 22 
IC•J 
RETURN 
END 

c 
C *********** CHOICE OF DATA FITTING ALGORITHH ******************* 
c 

SUBROUTINE HENU<HriCl 
C THIS RETURN THE ALGORITHH INDEX IN THE HENU 

COHHON /IO/INriOUT 
C t1ENU ITEH 

DATA HNTXT1 r+ NEXT + PREVIOUS+ HELP + RESTART + EXIT "/ 
LOGICAL*l HNTXT1<50l 

7 CALL TXCLER 
WRITE<IOUTr10l 

10 FORHAT<"INDICATE YOUR CHOICE OF ALGORITHIH:-"l 
CALL HNOPEN<B75.r715.r1l 

C OUTPUT ALGORITHH LIST 

341 

CALL DTEXT<20.r700.r"***EXf'liCIT PACKAGE FOR INTERPOLATORY DATA FITTING***"r: 
CALL DTEXT<70.r650~r"NUHERICAL ALGORITHHS&-"r22l 
CALL 11NDISf'<HNTXT1r5r10rll 
CALL FRAHE<S70.r733.r5l 
CALL HNOF'EN (60. r600. r '>) 

CALL HNTEXT<"l-GLOBALiPOLYNOHIAL INTERf'OLATION<NEWTON FORHl"r46l 
CALL HNTEXT<"2-PIECEWISE OUINTIC POLYNOHIAL INTERPOLATION 

~<VARIABLE END CONDITIONl"r69l 
CALL HNTEXT<"3-CUBIC Sf'LINE<SECOND DERIVATIVES nm CONDITION> • r48l 
CALL HNTEXT<"4-CUBIC SPLINE<SECOND DERIVATIVES END CONDITION<•ll"r51l 
CALL HNTEXT<"5-CUBIC SPLINE<FIRST DERIVATIVESTEND CONDITIONl"r47l 
CALL HNTEXT< • 6-CUBIC SPLINE <PERIODIC END CONDITION> • r38l 
CALL HNTEXT<"7-CUBIC SF~INE<VARIABLE END CONDITIONl"r38l 
CALL CURPOS<20.r300.l 
CALL ALPHHD 
WRITE<IOUTr888l 

888 FORHAT<47H* WHERE Y"CX1J~U*Y"CX2J ~ Y"CX<N-1lJ=V•Y"CX<NlJl 
C SET UP CURSOR FOR HENU CHOICE ~ CONFIRH 
1 CALL HNPICKCiriCHARrHNOl 

IF<HNO.EO.llGOTO 3 
H"I 
GOTO 1· 

3 CALL CONFRH<ICHAR> 
IF<ICHAR.E0.78l GOTO 1 
IF<ICHAR.NE.89l GOTO 3 
IF<I.E0.4lGOTO 7 
ICai 



c 

RETURN 
END 

C **************DATA ENTRY DISPLAY ROUTINE****************** 
c 

SUBROUTINE DATENT<ICtiAl 
COHHON /DATSUP/NPStNPI<50ltiFREEStX(50ltY<50ltL<SOltiH<S>•H<5) 

I. tHETHODtiHELPt If'REVtBOUND<2> tSUBSET, INTPNT tiE <2> 
COHHON /IO/INtiOUT 

C HENU ITEHS FOR THIS DISPLAY 

342 

DATA HNTXT1/"+ NEXT + PREVIOUS+ HELF' + RESTART + EXIT • / 
DATA HNTXT2/"+ NEW +OLD + + KEYBOARD+DISC FILE"/ 
LOGICAL*1 HNTXT1<50ltHNTXT2<50l 
INTEGER SUBSET 

C SET DISF~AY READY FOR DATA ENTRY 
23 CALL TXCLER 

WRITE <I OUT t10l 
10 FORHAT<"DATA ENTRY:-") 

CALL Cllli.'f'OS <1 • '625. l 
WRITE<IOUTt11l 

C OUTPUT INSTRUCTIONS FOR THE USER 
11 FORHAT<"SELECT THE APPROf'RIATE"/ 
I. "DATA SPECIFICATION(*)I-"///r1-STATE OF DATAI-"///"2-DATA"• 
1." HEDIUH ENTRY:-•) 

WRITE<IOUTt20l 
20 FORHATV//111/1/I//IIr* IF 'OLD' IS SELECTED YOU MAY f'ROCEED"/ 
I. " TO NEXT DISPLAY IHHEDIATELY .OTHERWISE "/ 
I. " YOU HUST SELECT THE DESIRED MEDIUH"l 

CALL HNOPEN<875.t715.,1l 
CALL KNDISf'<HNTXT1t5t10t1l 
CALL FRAHE<870.t733.t5l 

C DISF'LAY MENUtRAISE CURSOR AND WAIT FOR USER ACTION 
CALL HNOPEN<320.t515.t2l 
CALL KNDISP<MNTXT2t5t10t2l 
CALL FRAME<315.t535.t5l 
CALL TXMOVE<31S.t475.l 
CALL TXDRAW<460.t47S.l 
NFLAGoa1 
HD •0 
IS "0 

5 CALL HNPICK<JtiCHARtHNOl 
C TRANSFER CONTROL TO APPROPRIATE f•ROGRAH RESF'ONSE 

IF<HNO.E0.1l GOTO 2 
IF<IS.E0.2.0R.NFLAG.EO.O.OR.J.E0.3l GOTO 5 
IF<J.LT.3l GOTO 7 
11D"J 
CALL CURPOS<1.t400.l 

3 CALL HESSAG<"O NUMBER OF DATA f'OINTS<I1AX.50l?""l 
READ<INt30lN 

30 FORHAT<GO.Ol 
IF<N.GT.50.0R.N.LT.3l GOTO 3 
NPS=N 
IF<J.E0.5lGOTO 1010 

C INF'UT DATA f'OINTS FROM KEYBOARD 
WRITE<IOUTt40l 

40 FORHAT(/t"O X-COORDS.:-") 
.IF<IERROR<110l .NE.OlGOTO 100 

35 ~~AD<INt50l<X<Ilti'"1tNl 
50 FORHAT<SOGO.Ol 

WRl n: < lOUT• 70) 
70 FORHAT(/,"0 Y-COORDS.:-") 

IF<IEAA'OR<110l .NE.OlGOTO 110 



65 ~£AD<INr50> <Y<I>ri=1rN> 
IHELP=3 
GOTO 5 

100 WRilE<IOUTr105) 
105 FOI\'MAT<"ILLEGAL X-COORDS. r TRY MAIN"> 

ENDFILE 5 
GOTO 35 

110 WRITE<IOUTr115) 
115 FORHAT<*ILLEGAL Y-COORDS. r TRY AGoUN"l 

ENDFILE 5 
GOTO 65 

2 CALL CONFRH<ICHAR> 
IF<ICHAR.EQ.78) GOTO 5 
IF<ICHAR.NE.89lGOTO 2 
IF<J.ED.4>GOTO 23 
IF<NFLAG.ED.l.AND.J.EQ.l.AND.HD.ED.O> GOTO 5 
IC=J 
RETURN 

1010 IFLG=O 
C NEW DATA POINTS 

IA"O 
C INPUT DATA FROM DISC FILE 

CALL GETFLN<FILE> 
CALL READAT<FILErXrYrNF'SriFLG> 
IF<IFLG.EQ.1)GOTO 1010· 
IF<IFLG.ED.2>GOTO 3 
GOTO 5 

313 ENDFILE 5 
GOTO 3 

C NEW DATA POINTS 
7 IA=O 
C OLD DATA POJNTS 

IF<J.EQ.2liA=111 
IS=J 
IF<J.ED.2.AND.HD.GT.O> GOTO 5 
IF(J.EQ.2.AND.HD.EQ.0) GOTO 12 
IF (J.EQ.1> G.OTO 5 

12 NFLAG=O 
GOTO 5 
END 

c I 
C ***********DATA PO~NT TABULATION DISPLAY ROUTINE************** 
c 

SUBROUTINE DATHAN<IA.IC> 
C INF'UT COHHON DATA AREA . 

COHHON/DATSUP/NPSrNPI<50lriFREESrX<50)r~<50)rL<50)riH<5>rH<5> 

la rHETHODriHELPriPREVrBOUND<2>rSUBSETriNTPNTriE<2> 
COHHON/IO/INriOUT 

C MENU ITEMS 
DATA HNTXT/"+ NEXT + PREVIOUS+ EDIT + SORT-X i SoWE 

la+ HELP + RESTART+ EXIT "/ 
DIMENSION X0<50lrY0(50) 
LOGICAL*l HNTXT<SO> 
INTEGER SUBSETrS 

C OLD DATA f'OINTS? 
22 IF<IA.EQ.111)G0l07 
111 N=Nf'S-1 
C SET LINK LIST 

1 
DO 1 I=lrN 
L<I> =I+l 
l.(Nf'S)=O 
rFREES=Nf'S+l 

•, 

343 



DO 2 I"t.5 
2 H(I)mlOIII 

S•O 
DO 3 I=t.5 
IH<I>,.S•10H 

3 S•S+l 
C SET DISPLAY HENUtAND DATA POINT TABLE 
7 CALL TXCLER 

~ITE<IOUTtlO) 
10 FORHAT<.TABULATION OF DATAl-") 

CALL HNOF'EN < 875. , 715. t 1) 

CALL HNDISP<HNTXTt8t10r1) 
CALL FRAKE<870.t733.t8) 
CALL TABLE 
IHELP•4 

C PROHPT USER FOR CURSOR PICKING ACTION AND CONFIRH 
4 CALL HNPICK<JriCHARtHNO> 
77 CALL CONFRH<ICHAR) 

IF<ICHAR.E0.78lGOTO 4 
IF<ICHAR.N£.89) GOTO 77 
IF<J.EQ.4) GOTO 44 
IF<J.EQ.5) GOTO 444 
IF<J.EQ.7) GOTO 22 
IC•J 
RETURN 

C SORT DATA POINTS IN X 
44 CALL REHLNK<XOtYO> 

CALL SORTX<XOtYOtNf~) 
DO 101 I•1tNPS 
X <I) "XO<Il 
Y<I>•YO<I> 

101 CONTINUE 
GOTO 111 

C SAVE DATA POINT IN DISC FILE 
444 CALL REHLNK<XOtYO> 

CALL SAVE <XOt YOtNF'S) 
GOTO 4 
END 

c 
c **********•EDITOR DISF'LAYIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
c 

SUBROUTINE EDIT<ICtiAl 
COHHON/DATSUF'/NPStNPI <50) tiFREESrX<50) rY<50) tL<50) riH(5) tH<5l 

~ tHETHODtiHELPriPREVtBOUND<2ltSUBSETriNTPNTtiE<2> 
COHHON/IO/INriOUT 

C HENU ITEHS 
DATA HNTXT/•+ NEXT + PREVIOUS+ CORRECT + DELETE + INSERT 

~ RESTART+ EXIT •1 
DIHENSION A<3U 
INTEGER SUBSET 
LOGICALII1 HNTXT<70) 

1 CALL TXCLER 
WRITE<IOUTt10) 

10 FORHAT<.DATA POINTS EDITINGa-") 
C SET UP DISF'LAY HENU 

CALL HNOPEN<875.t715.r1) 
CALL HNDISP<HNTXTt7t10r1) 
CALL FRAHE<870.r733.,7> 

C RAISE CURSOR READY FOR USER INTERACTION AND CONFIRH ACTION 
77 CALL HNPICK<JriCHARtHNO> 
88 CALL CONFRH<ICHAR) 

IF<ICHAR.EQ.78> GOT0.77 

344 



IF<ICHAA.tiE.89> GOTO 88 
C ACTIVATE Af'f'ROF'RIATE ROUTINES OR OF'TIOtiS 

GOT0(30r30r40r50r60r1r70)rJ 
C NEXT/PREVIOUS DISPLAY 
30 CALL UPDATE 

IC =J 
GOTO 114 

C CORRECT DATA f'OINTS 
40 WRITE<IOUTr20> 
20 FORHAT(////"CORRECTIONI-") 
C PROI1T USER FOR INF'UTING EDIT INFORMATION 
~ CALL MESSAG("~ NUMBER OF DATA POINTS<HAX.10)?A") 

READ <INr45) M2 
45 FORHAT<GO.O> 

IF<M2.GT.10lGOTO 5 
221 WRITE<IOUTrSO> 
90 FORHAT<"t ENTER I r X r y;") 

LAST=3*M2+1 
IF<IERROR<110l.NE.OlGOTO 222 
READ<INr90><A<Ilri=1rLASTl 

90 FORMAT (30G0.0) 
A<LAST>=99 
CALL CORECT<Al 
CALL UPDATE 
GOTO 100 

C DELETE DATA POINTS 
50 WRITE<IOUTr110l 
110 FORHAT(////"DELETIONI-") 
C USER SUPPLIES EDIT-DELETE INPUT 
7 CALL MESSAG<"t NUMBER OF DATA f'OINT<HAX.30> ?"") 

READ <INr45l H2 

12:1 
130 

9 
11 

IF<H2.GT.30lGOTO 7 
WRITE <IOUT, 130) 
FORHAT<"t ENTER I IN DESCENDING ORDER:") 
LAST:M2+1 
IF<IERROR<110).NE.OlGOTO 333 
READ<INr90l<A<I>rlc1rLASTl 
A<LAST>=99 
IF<H2.E0.1>GOTO 11 
M1=H2-1 I 
DO 9 I=1rH1 , 
IF<A<I>.LT.A<I+1llGOTO 125 
CONTINUE 
CALL DELETE (A) 

CALL Uf'DA:rE 
GOTO 100 

C ADDITION DATA POINTS 
60 WRITE <I OUT r 150> 
150 FORHAT(////"INSERTIONI-") 

345 

155 CALL MESSAG<"t NUHBER OF DATA F'OINTS<HAX.1 PER INTERVALrTOTAL 10)?""> 

165 
170 

READ <INr45) H2 
IF<H2.GT.10) GOTO 155 
WRITE <I OUT, 170) 
FORHAT<"t ENTER I r X r Y IN DESCENDING ORDER!") 
LAST=3*M2+1 
IF<IERROR(1lOl.NE.OlGOTO 444 
~~AD<INr90l(A(Ilrl=1rLAST> 

A<LAST>,.99 
IF<H2.E0.1)GOTO 190 
U•ST1=3*M2-5 ·. DO 18 I=1rLAST1r3 
IF<A<I>.LT.A<I+3l> GOTO 165 



18 CONTINUE 
190 CALL ADD<A> 

CALL UPDATE 
100 lC=3 
114 IA=111 

RETURN 
222 LFLAG=l 
224 WRITE<IOUT,223) 
223 FORHAT<"WRONG ltlPUT I' TRY AGAIN") 

ENDFILE 5 
GOT0<221,125•165l•LFLAG 

333 LFLAG=2 
GOTO 224 

444 LFLAG=3 
GOTO 224 

70 STOP 
END 

c 
CW********* H E L P D I S P L A Y ******************* 
c 

C0/1110N/DATSUP/NF'S•NPI <50>, I FREES, X (50), Y <50) •L<:SOl, IH<5l •11 <5> 
~ ti1ETHOD,IHELP,IF'REV,BOUND<2ltSUBSETtiNTPNTtiE<2> 

C011110N/IO/IN•IOUT 
C HENU ITEMS •EXECUTABLE F'ROGRAH MODULES 

DATA MNTXT1t•+ PREVIOUS+ EXIT •; 

346 

DATA HODl1•110DL2tHODL3tMODL4,HODL5tMODL6tMODL7/"EXF'LICIT·,·HQD2• 
~,"HQDJ•,·HOD4•,·HOD:S","MOD6"t"MOD7"/ 

LOGICALW1 HNTXT1(20ltHODL1(10),HODL2<10ltMODL3(10l,MODL4<10> 
LOGICALWl HODL5<10lti10Dl6(10lti10DL7<10l 
IN=5 
IOUT=6 
CALL TXOPEN 
CALL RDCOM1 

C OUTPUT DISPLAY SEQUENCE NAMES IN MENU FORMAT 
1 CALL TXCLER 

WRITE<IOUTtlOl 
10 FORMAT<lOX•"**************** H E LP ********************"/ 
~ //5X' "THE FOLLOWING DISPLAY SEQUENCE CONSTITUTE THE COMPLETE" I 
~ 5X• "DATA FITTING f'ROCESS. "// 
~ sx,·you HAY ENTER ANY OF THESE DISPLAY BY USING THE CROSS-HAIR"/ 
~ 5Xt"CURSOR ON THE T4010 OR TRACKING CROSS WITH LIGHT-PEN ON THE GT42 1-"/) 

c.~L MNOPEN<50.,540.,1) 
CALL HNTEXT<"+ INTRODUCTI<>Na- BRIEFLY GIVING THE USE OF THE SYST 

u:H. "t5·H 
CALL HNTEXT<"+ ALGORITHMS!- LIST OF AVAILABLE INTERPOLATORY HETH 

~DS." t55l 
CALL" HNTEXT<•+ DATA ENTRYa- ENTER DATA POINTS INTO THE SYSTEM FR 

~OM DISC FL/KEYBD."t68) 
CALL MNTEXT("+ TABULATION OF DATA POINTSI- INCLUDES EDIT•SORT ~ 

l.SAVE DATA POINTS. "•68) 
CALL MNTEXT<"+ POLYGONAL PLOTI- DATA POINTS JOINED BY STRAIGHT L 

~IN£ SEGHENTS."t64) 
CALL MNTEXT("+ PARAMETER ENTRY:- PARA11ETERS REQUIRED BY PARTICUL 

~AR ALGORITHM •• r65) 
CALL MNTEXT<•+ CURVE FITI- DISF'LAY OF THE SHOOTH CURVE INCLUDES 

l.ZOOH OPTION •• ETC. "•69) 
CALL HNTEXT("+ CURVE I>ESIGN:- INTERMEDIATE POINTS SPECIFIED 

l. BY CURSOR POSITION. • r66) 
CALL HNTEXT<•+ TABLE OF INTERPOLATED POINTS:- INCLUDES OPTION FO 

~R COEFF.l.HARDCOPY."r70> 
CALL HNTEXT<"+ SUf'ER~f'OSED CURVE:- SIMULTANEOUS DISPLY OF SEVER 

l.AL CURVES."r63) 



347 

CALL MNTEXT<"+ ERROR REFFERENCE:- ERROR CURVE W.R.T. GLOML f"OLY 
t.NOMIAL INTERP •• ",67> 

CALL MNTEXT<"+ JOINED CURVES:- CONCATENATION OF SEVERAL SEGMENT 
t.OF CURVES.",60) 

CALL MNTEXT<"+ USAGE OF CONTROL COMMANDS:- LIST OF ALL COMMAND U 
t.SED HERE.",59) 

CALL MI-HEXT ("+ TERMINATE THE PROCESS:- EXIT FROM THE SYSTEM.", 47) 
2 CALL MNPICK (Z, ICHAR,HNO> 
3 CALL CONFRH<ICHAR) 

IF<ICHAR.EQ.78) GOTO 2 
IF<ICHAR.NE.89) GOTO 3 
IF<I.GT.4> GOTO 5 
IHELf'=I 

C READ lliE AF'f'ROf'RIATE MODULE INTO THE CORE READY FOR EXECUTION 
CALL WRCOMl 
CALL OVRLAY<MODLl> 

5 IF <I .GT .6) GOTO 6 
IHELf'=I-4 
CALL WRCOM1 
CALL OVRLAY<HODL2> 

6 If<I.LT.9.0R.I.GT.11) GOTO 7 
!HELP= I-S 
CALL WRCOM1 
CALL OVRLAY<HODL6> 

7 If<I.EQ.7) CALL OVRLAY<MODL4> 
If<I.EQ.8) CALL OVRLAY<MODL5> 
IF<I.EQ.12) CALL OVRLAY<HODL7> 
IF<I.NE.14> GOTO 133 
CfiLL EXIT 
STOP 

C GOTO NEXT DISPLAY•GIVING COHMAND USAGE t. OPTIONS 
133 CALL JXCLER 

CALL MNOPEN<875.,715.,1) 
CALL MNDISP <MNTXTlt2• 10• 1) 
CALL FRAME<870.,733.•2> 
CALL ALf'HMD 
CALL CURF'OS <1. '770.) 
CALL TEXTUP<"HELPTEXT"t28) 

22 CALL MNF'ICK (J, ICHAR,HNO> 
222 CALL CONFRM<ICHAR> 

IF <ICHAR.EQ. 78>·; GOTO 22 
IF<ICHAR.NE.g9) GOTO 222 
GOTO <1, 111) ,J 

111 CALL EXIT 
STOP 
END 

c 
C ***********EDIT-INSERT FUNCTION******************* 
c 

SUBROUTINE ADD<C> 
COMMON/DATSUf'/NPS,NPI<50),IfREES,X<50),y(50),L<50>•IH<5>,M<5>• 

t. METHODtiHELPtiPREVtDOUND<2>tSUBSET,INTPNT•IE<2> 
DIMENSION C (31) 
INTEGER SUBSET 

C ftDDS DATA POINT TO LINK LIST DATA STRUCTURE 
lf' = !FREES 
DO 3 I=lt31t3 

C CHECKS DATA POINT TABLE INDEX 
IF <C <I> .EQ. 99) GOTO 2 
If<C<I> .GT .IWS>GOTO 3 
IF<C<I> .EQ.O>GOT0 .. 4 
IC=C<I> 



C GET LINK LIST LOCATION Of THE DATA POINT AND SET LINK Af'f·ROf'RIATELY 
IS=> INDEX <IC> 
L <If') =>L<IS> 
L<IS)=>If' 
GOTO 5 

4 L<IF'> =IH<l) 
lH<1>=IP 

C ADD DATA POINTS TO FREE LOCATION IN THE LINK LIST 
5 X <If'> =C <I+l> 

Y<If'l=C<I+2) 
If'=If'+1 
NF'S=NF'S+1 

3 , CONTINUE 
C SET FREE LINK LIST POINTER 
2 IFREES=IP 

c 

RETURN 
END 

C ************EDIT - CORRECT FUNCTION************************ 
c 

SUBROUTINE CORECT<C> 
COMHON/DATSUP/NPSrNPI<SOlriFREESrX<SOlrY<SO>rL<SO)riH<S>rH<S> 

rHETHODriHELPriPREVrBOUND<2lrSUBSETriNTPNTriE<2> 
fJIHENSION C<31> 
INTEGER SUBSET 
DO 2 I=1r31r3 

C CHECKS DATA F~INTS TABLE INDEX 
IF<C<Il.EQ.99lGOT03 
IF<C<U.GT.Nf'S) GOTO 2 
IC=C <I> 

C GET LINK LIST LOCATION AND REPLACE DATA POINT 
K=INDEX <IC) 
X<K>=t:<I+1) 
Y <K> =C <1+2) 

2 CONTINUE 
3 RETURN 

END 
c 
C *************EDIT-DELETE FUNCTION********************** 
c 

SUBROUTINE DELETE<C> 
COHiiON/DATSUP/Nf'SrNf'I <SO> r IFREESrX <SO> r Y <SO> rL<SO> r IH (:5) rH <5) 

rHETHODriHELPriPREVrOOUND<2>rSUBSETriNTf'NTriE<2> 
DIHENSION C<1lrXO<SO>rYO<SOlrLO<SO> 
INTEGER SUBSET 
DO 1 I=lr31 

C CHECKS DATA F~INTS TABLE INDEX 
IF<C<Il.EQ.99>GOTO 3 
IF<C<I>.GT.NPS>GOTO 5 
lF<C<Il.EQ.1) GOTO 4 
IC=C<I)-1 
IS= INDEX <IC) 

C GET LINK LIST LOCATION AND DELETE DATA POINT 
L <IS> =L <L <IS>) 
GOTO 1 

5 NPS=NPS+l 
GOTO 1 

4 IH<l>=L<IH<ll> 
1 CONTINUE 
3 tiPS=Nf'S- I+ 1 

IFREES=IFREES-I+l 
C GARBAGE COLLECTION 

348 



lf'=IH < 1) 
DO 6 K=l>Nf'S 

XO <Kl =X <If') 
'(0 (K) =Y ( lf'l 
LO <~~) =K+l 
lf'=L<lf') 

6 CONTINUE 
DO 7 J=lrNf'S 

X(J) =XO (J) 
Y(Jl=YO<Jl 
L<Jl=LO(J) 

7 CONTINUE 
L<Nf'Sl=O 
IS=O 
DO 9 K=1r5 

IH<Kl"'lS*10+1 
IS=IS+1 

9 CONTINUE 

c . 

1\'ETURN 
END 

C **************KEYBOARD ENl'RY OF' F'ILE NAME****************** 
c 

SUBROUTINE GETF'LN<NAMEl 
C GET F'ILE tiAME I. SAVE IT IN ARRAY NAME 

INTEGER NAME<3l 
CALL MESSAG<"~ DATA F'ILE NAME<MAX.10 CHARACTERS>?~") 
READ<5r30lNAME 

30 FORMAT<2A4rA2l 
RETURN 
END 

c 
C ***********F'iNDS DATA f'OINT LOCATION IN THE LINK LIST************* 
c 

INTEGER FUNCTION INDEX<INX ) 
C INPUT COHMON DATA AREA 

COMMON/DATSUf'/Nf'SrNf'I<50lrlF'REESrX<50lrY<50lrL<50lrlH<5lr11(5) 
I. ri1ETHODr IHELF'r If'REVrBOUND<2l rSUBSET, ItHf'NTr lE <2) 

INTEGER SUBSET 
C F'IND LINK LIST PORTION? 

DO 1 l=1r5 ·: 
IF<M<Il.GE.INX~GOTO 2 

1 CONTINUE 
2 IS:IH(ll 
C COMf'UTE LOCATION 

INX=INX-<1-1)*10 
ltiX1=INX-1 
IF<INX1.EO.Ol GOTO 55 
DO 3 l=lr INX1 

3 IS=L<IS) 
55 INDEX=IS 

c 

RETURN 
END 

C **********DATA ENTRY FROH DISC F'ILE******************** 
c 

SUBROUTINE READAT<FLNAMErArBtNrlF') 
DIMENSION A<1lr8(1) 
INTEGER F'LNA(1£<3l 
REWIND 9 

C Of'EN INF'UT FILE 
CALL ·SETFIL<9rF'LNAMEl 

349 



IF<IERROR<103>.NE.O>GOTO 99 
C NUMBER OF POINT SUF'PLIED 

READ <9• 20) N1 , 
20 FORMAT<I2> 

IF<N.GT.N1>GOTO 100 
C INPUT THE DATA f'OINTS 

READ<9•10><A<I>•B<I>ii•1•N 
10 FORMAT<F12.4> 

ENDFILE 9 
RETURN 

99 ENDFILE 5 
101 IF=l 

100 

c 

I 

RETURN 
IF=2 
RETURN 
END 

C *************SAVE DATA f'OINTS ON DISC FILE****************** 
c 

SUBROUTINE SAVE<ArBrN) 
COMMON/IO/INriOUT 
INTEGER FILE<3> 
DIMENSION AC1)rBC1> 

C GET FILE NAME FROM THE USER THROUGH KEYBOARD 
WRITE<IOUTrlO) 

10 FORMAT(//////////60Xr"t FILE NAME?") 
CALL MESSAG <" ,,., 
READ<INr20>FILE 

20 FORMAT< 2A4rA2) 
C WRITE OUT DATA POINTS 

c 

CALL W~TDAT<FILErArBrN) 
RETURN 
ow 

350 

C ************** SORT IN X COORDINATES********************************** 
c 

SUBROUTINE SORTX<X1rY1•N> 
DIMENSION X1(1)rY1(1) 
N1=N-1 

C f'ERFOii:M THE SORT 
DO 3 I=lrN1 

DO 2 J=IrN1 
IF<X1<I>.LE.X1(J+1))G0TO 2 
Al=Xl (l) 
111=Y1<I> 
X1<U=X1<J+1) 
Yl<U =Yl<J+l) 
X1<J+l)=A1 
Y1 (J+l)=B1 

2 CONTINUE 
3 CONTINUE 

c 

RETURN 
END 

C ***********TABULATION OF DATA POINTS*********************** 
c 

SUBROUTINE TABLE 
C ItiPUT COHHON DATA AREA 

COMMON /DATSUf'/NPSrNPI<SO) r I FREES• X <SO) r Y <SO> rL<50) r IH (5) •M <5> 
~ rHETHOQriHELPrif'REVrBOUND<2>•SUBSETriNTPNT,IE<2> 

COMMON /IO/INriOUT 



INTEGER S1rS2rSUBSET 
CALL CURF'OS (2. r 710. > 

C OUTPUT DATA COLUMN HEADINGS 
WRITE<IOUTr10) 

10 FORMAT(" I"r7Xr"X<Il"r8X r"Y<Il"r7Xr" I"r5Xr"X<Il"r10Xr"Y<Il"/) 
S2=IH<1> 
S1=L<S2> . 
IF<S1.NE.O>GOT012 
WRITE<IOUTr11) X(52)rY<S2) 

11 FORMAT(" l"r2Xr2<E11.4r3X)) 
RETURN 

C OUTPUT TABLE ITEMS FROM LINK LIST 
12 DO 7 I=1r50r2 

J=I+1 
. WRITE<IOUTr20) IrX<S2> rY<S2) rJrX<Sl) rY<S1) 

20 FORMAT<I2r2Xr2<E11.4r3Xlri2r2Xr2<E11.4r3X>> 
S2.,L<S1> 
IF<S2.EQ.OlGOTO 15 
S1=L<S2> 
IF<S1.NE.O>GOTO 7 
I=I+2 
WRITE<IOUTr30) IrX<S2>rY<S2> 

30 FORMAT<I2r2Xr2<E11.4r3X)) 
GOTO 15 

7 CONTINUE 
15 RETURN 

END 
c 
C *************UPDATE LINK LIST AFTER AN EDITING Of'ERATION*********** 
c 

SUBROUTINE UPDATE 
C INF'UT COMMON AREA 

COHMON/DATSUP/NPSrNF'I<50>riFREESrX<50>rY<50lrL<50lriH<5>rM<5> 
& rMETHODriHELPriPREVrBOUND<2>rSUBSETriNTPNTriE<2> 

INTEGER SUBSET 
IR=IH<l> 
DO 1 J=2r5 

DO 2 K=lr10 
IR=L<IR> 

IF<IR.EQ.O)GOT03 
2 CONTINUE 1 

1• 
3 

IH<J>=IR 
CONTINUE 
RETURN 
END 

I . 

c ~ 
C **************OUTF~T DATA F~INT ON DISC FILE*************** 
c 

SUBROUTINE WRTDAT<FLNAMErArBrN> 
DIMENSION A<1>rB(1) 
INTEGER FLNAHE<3> 
REWIND 9 

C OPEN OUTF~T FILE 
CALL SETFIL(9rFLNAME> 

C STORE DATA POINT ON THE FILE 

20 

10 

WRITE<9r20>N 
FORHAT<I2> 
WRHE<9r10) <A<I> rB<I> ri=lrN) 
FORHAT<F12.4> 
ENDFILE 9 
RETURN 
END 

.. 

351 



c 
c 
c 
c 
C THIS MODULE 
c 
c 
c 
c 
c 

***************** 
* APPENDIX 2.22 * 
***************** 

HANDLES THE FOLLOWING INTERACTIVE DISPLAYS: 
1.POLYGONAL PLOT 
2.PARAHETER ENTRY 

C*********** HAiti PROGRAH-HODULE 2 *********************** 
c 
C INf'UT COHHON DATA AREA 

COHMON/DATSUP/NPSrNPI<SOlriFREESrX(50lrY(S0ltL<SOlrlH<SlrH<5l 
4 rHETHODr IHELF'df'REVrBOUND<2l rSUBSETr INl'PNT .XE <2> 

COHHON/IO/INriOUT 
C EXECUTABLE PROGRAM HODULE NAHES 

DATA HODL3rHELF'tHODL1rHOD3"' "HELP", "EXPLICIT"/ 
LOGICALlll HODLl <10> rHODL3<10) rHELF'<lOl 
INTEGER SUBSET 

C READ IN COMMON DATA FILE 
CALL RDCOH1 

C INITIALISE DISPLAY TERMINAL 
Cfll.L TXOf'EN 
IN=S 
IOUT=6 
IF<IHELF'.NE.Ol GOTO 6 
IF<IPREV.GT.ll GOTO 5 
IF<IPREV.EG.llGOTO 4 

C F'OL YGONAL DISPLAY 
3 CALL POLYGL<XrYrNf'SrlC) 
C PASS CONTROL 'tO APPROF'RIATE f'ART OF THE PROGRAM 

GOTO<lr2r20r20r20r20r25r20r30)riC 
C F'I\'EVIOUS DISPLAY 
2 If'REV=l 

IHELF'=O 
C SAVE INF'UT COHHON DATA AREA 

CALL WRCOH1 
CALL OVRLAY<HODL1l 

C BRINGS THE PARAMETER ENTRY DISF~AY 
1 CALL PARHET<HETHODrSUBSETriNTPNTr&OUNDrNPS.IE.XC) 

CALL CURF'OS(410.r780.) 
GOT0<10r3r2Sr1r30lriC 

C NEXT DISPLAY 
10 If'REV=O 

IHELF'=O 
CALL lilliiEOM <HODL3l 

C TERMINATE F'ROGRAH 
30 CALL EXIT 
20 STOf• 
4 If'REV=O 

IHELF'=O 
GOTO 1 

C HELP DISPLAY 
25 CALL WRCOH1 

CALL OVK~AY<HELP) 
STOf• 

S CALL ERRHES<IC) 
GOTO <1 r20lr IC 

C RETURN FROM HELF' 
6 GOT0(3rllriHELf' 

•, 

352 



END 
c 
C ***************** POLYGONAL F'LOT Of DATA POINTS*********"**** 
c 

SUBROUTINE f'OLYGL<ArBrNr IC> 
C PLOT THE DATA POINTS SUPPLIED AND JOINED WITH STRAIGHT LINES 

COHMON/IO/INriOUT 
C HENU ITEMS 

DATA HNTXT/"+ NEXT + f'REVIOUS+ GRAPH + COORDS. + LIISP.ORG+ 
l.AX. HARI<+ HELP + RESTART + EXIT "/ 

LOGICAL*l MNTXT<90) 
DIMENSION A(llrB<llrX0<50)rY0(50) 
EXTERNAL Pf'LOT . 

C PREPARE DISPLAY 
1 CI1LL TXCLER 

ICORD=O 
WRITE <IOUTr 10> 

10 FORM•~ T< • f'OL YGONAL PLOT :-• ) 
C OUTPUT MENU ITEMS 

CALL MNOF'EN (875. r 715. r 1) 

CALL HNDISP<HNTXTr9r10r1) 
Ct'LL FRAHE<870.r733.r9) 
CALL REHLNK<XOrYOl 

C FIND HAXIHU/1 ~ HINIHUM OF DATA POINTS 
CALL HINMAX<SlrS2rS3rS~rXOrYOrNl 

C SET Uf' CURSOR FOR USER ACTION 
2 CALL LHTARA 

CALL MNPICK<JriCHARrMNO) 
IF<J.EQ.4.AND.ICORD.EQ.2)GOT02 

C CONFIRM USER ACTION 
7 CALL CONFRH<ICHARl 

IF<IC~R.EQ.78lGOTO 2 
IF<ICHAR.NE.89) GOTO 7 
GOT0(20r20r3r4r5r6r20rlr20)rJ 

C BACK TO CALLING PROGRAM 
20 IC=J 

RETURN 
C GRAF'Il<PLOT THE CURVE> 
3 CALL DRAW<f'f'LOTrRrSlrS2rS3rS4rNl 

GOTO 2 
C DISPLAY CURSOR COORDINATE INPUT 
4 CALL DISCOR<ICORDrS1rS2rS3rS4> 

GOTO 2 . 
C DISPLAY ORIGIN 
5 CALL DISORG<SlrS2rS3rS~) 

GOTO 2 I 
C AXES HARKING 
6 CALL AXSMRK<SlrS2rS3rS4l 

GOT0.2 
END 

c 
C *************** PARAMETER DISPLAY ENTRY ************************* 
c 

SUBROUTINE PARHET <HrSUBT r INTF'NT r brNr IEr IC) 
COMMON/IO/INriOUT 

C MENU ITEMS 

353 

DA.TA HNTXTl/"+ NEXT + PREVIOUS+ HELP + RESTART + EXIT "/ 
D1HA HNTXT2/"+ COMPLETE+ SUBSET + SUBSET 

M SPECIFY + DEFAULT.+ CURSOR "I 
DATA Hl'llXTJ/"+ CLAMPED + RELAXED + f'ARABOLA+ Q-SPLINE"/ 
DATA HNTXT4/"+ EQ.SPA~E+ NE.SPACE "/ 
DATA MNTXTS/"+ BOUNDARY"/ 



LOOICAUil MNTXT1 <SOl tMNTXT2 (80) tMNTXT3 (40ltMNTXT4 (30), 
~ MNTXT5<10l 

INTEGER SUBT 
DIMENSION B(2ltiE<2l 

1 CALL TXCLER 
C SET DEFAULT VALUES 

SUBT=O. 
w~o 

INlPNT=O. 
B<l>=O. 
B<2>=0. 
IF<M.NE.2> GOTO 112 
IE <ll '"21 
IE<2>=1 
GOTO 1011 

112 IE<ll=1. 
IE<2l"1. 

C SET DISPLAY READY 
1011 WRITE<IOUTt10l 
10 FORHAT<"PARAMETER ENTRYI-"/) 

GOTO <101t102t103t104t105t106r108),M 
20 CALL CURPOS <1. '660. ) 

WRITE<IOUh21> 
C DISPLAY INSTRUCTIONS TO GUIDE THE USR 
21 FORHAT<"SELECT THE APPROPRIATE OPTION FROM THE "/ 
I. "FOLLOWING PARAMETER SPECIFICATION(!!) :-"Ill 
~ 6Xt"1-DATA TYF'EI-"/SX•"<FOR JOINING"r22Xr"FIRST"/ 
~ 9Xt"CURVESl"r22Xr"SUBSEQUENT"//6Xr"2-CHOICE OF INTERMEDIATE"/ 
~ 7Xr" POINTS REQUIRED FOR SMOOTH DRAWINOI-"//l 

IF<M.NE.7l OOTO 1220 

15 
1433 
1333 
I. 
~ 

WRITE <I OUT' 15) 
FORHAT<I~6Xt"3-SELECT THE CONDITION") 
WRITE<IOUTr1333l 
FORMAT<7X•" AT EACH END OF THE CURVE&-"/ 

SXr "N.BI-LEFT-HAND END TYF'E '1' "I 
11Xt" RIGHT-HAND END TYPE '2'"> 

GOTO 143 
1220 IF<M.NE.2l GOTO 1221 

WRITE<IOUTr14l 
14 FORMAT <16Xt"3- X-SPACING OF DATA POINTS SUF'F'LIED:-"/l 

WRITE<IOUTt16l 
16 FORHAT(/6Xr"4-INDICATE YOUR CHOICE OF END") 

6010 1433 
1221 IF<M.EQ.1.0R.H.EQ.6l GOTO 142 

WRITE<IOUTr22l 
22 FORHAT<I6Xt"3-80UNDARY CONDITION:-"//) 
143 WRITE<IOUTr7l 
7 FORHAT<I/11111/"ll IF NO Af'F'ROf'RIATE PARAMETER IS SELECTED • 
~ /"WHEN REQUIRED THEN DEFAULT VALUES ARE ASSUMED"> 
C DISPLAY CONTROL COMI1AND 

CALL MNOF'EN <875., 715. '1> 
CALL MNDISF'<MNTXT1t5r10t1l 
CALL FRAME<870.t733.t5l 
CALL MNOF·EN<670. t565. r2l 
CALL MNDISF'<HNTXT2r8t10t2l 
CALL DTEXT<810.r565.t'*'t1l 
CALL DTEXT<810.r455.•'*'•1l 
IF<M.NE.7) GOTO 919 
CALL MNDISF'<MNTXT3t4t10r2l 
CALL DTEXT<810.t365.t'*'•ll 
MF=12 
GOlD 88 

... 

354 



919 IF<M.NE.2l GOTO 99 

142 
1420 

99 

88 

CALL MNDISf'(MNTXT4r3r10r2) 
Cfd_L DTEXT<BlO.r365.r'*'•1> 
CALL HNDISF'<MNTXT3r3r10r2> 
CALL DTEXT<B10.r300.r'*'•l) 
MF=14 
GOTO BB 
WRITE<IOUTt1420l 
FORMAT V//) 
GOTO 113 
MF=7 
IF<H.E0.1.0R.H.EQ.6) GOTO BB 
CALL HNDISF'<HNTXT5•1•10t2) 
MF=9 
CALL FRAHE<663. t582. •MF> 
CALL TXHOVE<665.r505.) 
CALL TXDRAW(805.t505.) 
IF<H.EQ.1.0R.H.EQ.6) GOTO 2 
CALL TXHOV£<665.,420.> 
CALL TXDRAW<B05.t420.> 
IF<H.NE.2> GOTO 2 
CALL TXHOVE<665.t350.l 
CALL TXDRAW<B05.t350.> 

2 CALL HNf'ICK(JtiCHARtHNO> 
C WHICH MENU ? 

IF<HNO.EQ.2) GOTO 130 
C CONFIRM USER REQUEST 
5 CALL CONFRH<ICHARl 

IF<ICHAR.E0.78)GQTO 2 
IF<ICHAR.NE.S9)GOTO 5 
IF<J.EQ.4) GOTO 1 
If<H.N£o2) GOTO 707 
IF<IO.E0.10liE<1>=IE<ll+10 

707 
If<IQ.EQ.20.0R.IQ.EQ.OliE<1>=IE(ll+20 
IC=J 
RETURN 

C PARAMETER SPECIFICATION CONTROL 
130 GOT0<31t32r33t34t35t36t37t38,39t40•41t42t43t43),J 
C COMPLETE CURVE 
31 SUBT=O 

GOTO 2 
C CUK'IJE SEGHENT 
32 SUBT=1 

GOTO 2 

'• 
' 

C CURVE SEGHENT ~ SUBSEQUENT SUBT 
33 SU&T=2 
34 GOTO 2 
C USER SPECIFIED NUMBER OF INTERMEDIATE POINTS f'ER INTREVAL 
35 CALL CURf'OS<1.t220.> 
66 CALL HESSAG("~ NUMBER OF INTERPOLATED POINTS f'ER INTERVAL?"") 

If<IERfi~R(110>.NE.Ol GOTO 171 

77 

171 

187 
403 

READ< IN' 77> INTPNT 
FORHAT<GO.Ol 
ISUH=INTPNT•<N-l)+N 
If<ISUH.GT.200) GOTO 187 
GOTO 2 
ENDFILE 5 
GOTO 66 
WRITE< lOUT' 403) 
FORHAT<"TOTAL NUH&ER OF F~INT EXCEEDING LIHITrTRY AGAIN"> 
GOTO 66 

C DEFAULT Of'TIONS 

355 



36 INTF'NT=O 
GOT02 

C CURSOR 
37 INTF'NT=999 
38 GOT02 
C BOUNDARY CONDITION/X-Sf'ACING 
39 GOT0<2r399r139o139o139r2o391)of1 

GOTO 2 
391 IF<ICHAR.E0.49.0R.ICHAR.E0.50> GOTO 392 

GOTO 2 
392 ICHAR=ICHAR-48 

GOT0<272r202loiCHAR 
GOTO 2 

272 IE(1l=1 
C USER INf'UT BOUNDARY CONDITION 
2721 CALL CURf'OS(l. r195.) 
2120 CALL HESSAG("~ SLOf'E BOUNDARY VALUE<lST ENDl?""l 

IF<IERROR<110l.NE.Ol GOTO 2120 
READ<INr1110l B<1l 

1110 FORHAT<GO.Ol 
GOTO 2 

202 lE <2> =1 
2021 CALL CURf'OS(1.o170.l 
2110 CALL HESSAG("~ SLOF'E BOUNDARY VALUE<2ND ENDl?''") 

IF<IERROR<110l.NE.O> GOTO 2110 
READ<INr1110lB<2l 
GOTO 2 

399 I0=10 
GOTO 2 

139 CALL CURF'OS (1. r 195.) 
404 CALL HESSAG("~ BOUNDARY VALUE OF END f'OINT CONDITION?•'") 

IF<IERROR<110l.NE.OlGOTO 404 
READ<INr11>B<1lrB<2> 

11 FORHAT<2GO.Ol 
GOTO 2 

C NOT EGUAL Sf'ACING 
40 GOT0(2o444r2r2r2o2r411lrl1 
444 IQ=20 

41 
411 

GOTO 2 
GOT0(2o2o2o2o2o2r411)rH 
IF<ICHAR.E0.49liE<1)aJ-8 
IF<ICHAR.EQ.50liE(2)aJ-8 
GOTO 2 

42 GOT0<2r421o2r2r2r2o411)of1 
421 IF<ICHAR.EQ.49.0R.ICHAR.EQ.SO>GOTO 422 

GOTO 2 
422 ICHAR=ICHAR-48 

GOT0<4211r4222>riCHAR 
GOTO 2 

4211 IE<1>=J-11 
GOTO 2721 

4222 IE<2l=J-11 
GOTO 2021 

43 GOT0<2o431o2r2o2r2r2)ol1 
431 IF<ICHAR.E0.49>IE<1>=J-11 

IF<lCHAR.E0.50liE<2>=J-11 
GOTO 2 

101 WRITE<IOUTr111) 
C OUTf'Ul ALGORITHM TITLES 

'\ 

111 FORMAT<"*** GLOBAL f'OLYNOHIAL INTERf'OLATION<NEWTON FORHl***"l 
GOTO 20 '• 

102 WRITE<IOUTr122l 

356 



GOTO 20 
122 FORHAT <"***PIECEWISE QUINTIC f'OLYNOHIAL INTERf'OLATION***"/ 
~ 12Xo"<VARIABLE END CONqiTION)") 
103 WRITE<IOUTo133) 
133 FORHAT<" ** CUBIC SPLINE<SECOND uERIVATIVES END CONDITiml> **•> 

GOTO 20 
104 WRITE<IOUTo144) 

357 

144 FORHAT<.*** CUBIC SPLINE<SECOND DERIVATIVES END CONDITIQN(lf)) ***•) 
WRITE<IOUTo1404) 

1404 FORI1AT<60HWHERE y·cxtJ=U*Y•tX2J ~ y•cx<N-1> J=VlfY.CX<N> hSPECIFY U ~ V ) 
GOTO 20 

105 WRITE<IOUTo155) 
GOTO 20 

155 FORMAT<"*** CUBIC SPLINE <FIRST DERIVATIVES END CONDITION>***") 
106 WRITE<IOUTr166) 
166 FORHAT<"*** CUBIC SPLINE<PERIODIC END CONDITION) ***•) 

GOTO 20 
108 WRITE<IOUTo188) 
188 FORI1AT<"****CUBIC SPLINE <VARIABLE END CONDITION>****•> 

GOTO 20 
END 

c 
C ***************ERROR HESSAGE DISF'LAY***************************** 
c 

SUBROUTINE ERRHES<IC) 
COI1MON/IO/INoiOUT 

C HENU ITEI1S 

1 

120 
110 

DATA HNTXT/•+ F~EVIOUS+ HELP 
DATA DATSPrDATSUPFL •; 
LOGICAL*1 HNTX1'<40) rDATSP<lO) 
CALL TXCLER 
WRITE< lOUT, 20) 

+ RESTART + EXIT 

FORHAT<.ERROR HESSAGI-"/"TOO KANY F~INTS FOR JOINNING CURVEs·; 
- •WHICH EXCEED CORE LIHIT•/ 

·you KAY PROCEED BY TAKING THE FOLLOWING ACTION:-·; 
"EITHER 1- USE PREVIOUS COt\KAND TO GO BACK TO f'ARAI1ETER•/ 
•DISF'LAYoSO THAT TO ALTER NO.OF INTERHEDIATE f'OINTS. ·; 
•OR 2- USE HELP COHHAND IN ORDER TO BRANCH TO ANY•/ 
"DISPLAY rE.G DATA ENTRY OR DATA TABULATION DISPLAYS •• Ere·> 

CALL HNOf'EN<875.o:?60.r1) 
CALL 11NDISP<HNTXT;4,10o1) 
CALL FRAHE<B70.'o778.o4) 
CALL HNf'ICK<JoiCHARrHNO) 
IF<ICHAR.EQ.78) GOTO 110 
IF<ICHAR.NE.B9>GOTO 120 
GOTO (40r40o1o50)rJ 

C F~VIOUS DISPLAY 
40 IC=J 

so 

c 

RETURN 
CALL RHFILE <DATSf') 
STOF' 
END 

C ******** PLOT THE POLYGONAL OF DATA POINTSIIll***************l'*** 
c 

SUBROUTINE f'f'LOT <Ro SCL1 rSCL2oSCL3rSCL4 oN) 
C INPUT COHHON DATA 

COI1110N/DATSUF'/Nf'SoNPI<50) .X FREES oX (50) r Y (50) oL<SO> r IH<S) oH (5) 
4 oHETHODo IHELPr IPREVoBOUND(2) oSUBSET, INTF'NT oiE (2) 

DIHENSION X0<50)rY0<50) 
C REHOVES LINKS FROM I Nf'UT DATA . 

CALL REHLNK<XOoYO) 



DO 1 1=1rNF'S 
IF<I.EQ.1l GOTO 2 

C JOIN DATA f'OINT WITH LINE SEGMENTS 
CALL TXDRAW<XO<IlrYO(l)) 

2 CALL f'LUSGN<SCL1rSCL2rSCL3rSCL4rXO<I>rYO<I>> 
1 CALL l'XHOVE(XO<I> rYO<I)) 

RETURN 
END 

358 



c ***************** 
C * APPENDIX 2.23 * 
c ***************** 
c 
C THIS HOI'JULE HANDLES THE FOLLOWING INTERACTIVE DISf'LAYS:-
C 1.CURVE FIT 
C 2.CURVE ZOOM 
c ' 
c 
c 
C******** MAIN PROGRAM-MODULE 3 ************************ 
c 
C I/0 COMHON DATA AREA 

COMI10N/DATSUP/Nf'SrNf'I<50) r IFREESrX <SO> r Y(50) rL (50) r IH (5) •M <S> 
l. rMETHOD,IHELF'. IF'REV,BOUND<2> rSUBSETr lNTPNTr lE <2> 

COHMON/CURVEFIT/COEF<S0•6>rXCORD<200lrYCORD<200) 
COHHON/10/lN•lOUT 

C OVERLAY EXECUTABLE PROGRAM NAME 

359 

DATA MODL1rHODL2rHODLSrMODL6,MODL7/"EXPLICIT"•"tiOD2"•"MOD5"•"MOD6"• 
l."MOD7"/ 

DATA HELP/"HELP"/ 
INTEGER SUBSET 
LOGICAL*l HODL1<10),HQDL2(10)>MODL5<10),MQDL6<10)>M0DL7<10> 
LOGICAL*1 HELP<lO) 
CALL TXOPEN 

C READ I/0 COMMON DATA FILES 
CALL RDCOM1 
IF<METHOD.NE.l>GOTO 1110 
NC=1 
GOTO 21 

1110 IF<METHOD.NE.2>GOTO 11 
NC=6 · 
GOTO 21 

11 NC=4 
21 IN=5 

IOUT=6 
CALL RDCOM2<NPS•NPI,NC> 

C CALL CURVE DESIGN DISPLAY 
IF <INTF'NT .EO. 999> GOTO 111 

C CURVE FIT DISPLAY ., 
CALL CRVFIT<NPS•Nf'l>XCORD>YCORD,COEF•SUBSET•IC> 
GOT0(2>3r2>2>2r6r7>8r2>10>111r2r2•14>2>15r2r22>riC 

C PK~AM TERMINATION 
22 CALL EXIT 
2 STOP 
C F'REVIOUS DISPLAY 
3 If'REV=l 

IHELf'=O 
CALL WRCOMl 
CALL OVRLAY<MODL2> 

C COMPLETE TABLE OF INTERPOLATED DATA POINTS 
6 IF'REV=1 
100 IHELP=O 

CALL WRCOM1 
CALL OVRLAY<MODL6) 

C DISF~AY JOINED CURVE SEGMENTS 
7 IF'K'EV=O 

IHELf'=O 
CALL WRCOMl · 
CALL OVK'l.f11' <HODL7> 

C SUPERIMPOSED CURVES DISPLAY 



8 If'REV=3 
GOTO 100 

C ERROR REFERENCE 
10 If'REV=2 

GOTO 100 
C CURVE DESIGN DISF~AY 
111 IF'REV=O ' 

IHELP=O 
CALL WRCOH1 
CALL OVRLAY<HODL5> 

C ALGORITHM DISF~AY 
14 IPREV=O 

IHELP=O 
CALL WRCOH1 
CALL OVRLAY<HODLU 

C liELP DI~AY 
15 CALL WRCOH1 

c 

CALL OVRLAY <HELP) 
END 

C **************** CURVE FIT DI~Y ROUTINE ************************ 
c 

SUBROUTINE CRVFIT<NrN1oXXrYYrCrSUBTolC) 
COHHON/CURVES/NCRV<10)oXYSCL(4) 
COHHON/IO/INoiOUT 

C HENU ITEHS 
DATA HNTXTl/"+ NEXT + f'REVIOUS+ GRAPH + COORDS. + DISF'.ORG 

1.+ TABLES + JO Itl CRV+ NG!i:APH • I 
DATA HNTXT2/"+ ZOOH + ERRO.REF+ CRV.DES.+ SAVE + REDRAW 

1.+ HETHODS + AX. HARK+ HELP +RESTART+ EXIT "/ 
DIMENSION N1(1lrXX<1lrYY<1loC<50o6> 
LOGICAL*1 HNTXT1<80lrHNTXT2<100) 
EXTERNAL CF~OT 
IF<IERROR<103> .NE.O> GOTO 99 
CALL RDCRVS 

99 HSUH=O 
N2=N-1 

C cot1f•UTE TOTAL NUHBER OF INTERPOLATED f'OINTS 
DO 6 I=t.N2 

6 HSUH=HSUH+N1<I> 
HSUH=Hsuti+N 

1 CALL HINHAX<S1oS2oS3oS4oXXoYYrHSUH) 
CALL TXCLER 
ICORD=O 
..JON=O 
NG=1 

C SET UP CURVE FIT DISF~AY HENU 
WRITE<IOUTr10) 

10 FORHAT<"CURVE FIT;-") 
CALL HNOPEN<875.r715.r1) 
CALL HNDISF'<HNTXT1r8r10o1> 
CALL HNDISP<HNTXT2o10o10r1) 
CALL FRAHE<870.r733.r18) 

C SET Uf' CURSOR FOR USER CHOICE FROH THE HENU 
2 CALL LHT ARA 

CALL HNPICK<JriCHARrHNO> 
IF .(J.E0.4.AND. ICORD.EQ.2) GOTO 2 
IF<J.E0.8.AND.NG.EQ.2) GOTO 30 

17 CALL CONFRH<ICHAR> 
IF<ICHAR.EQ.78) GOTO 2 
IF<ICHAR.N£.89) GOTO t7 

C TRANSFER CONTROL ACCORDING TO USER CHOICE OF THE HENU 

360 



GOTO <30r30r3r4r5r30r7r8r9r30r30r11r12r30r15r30r1r30)rJ 
30 IC=J 

RETURN 
C DRAW THE CURVE 
3 CALL DRAW<C~LOTrRrS1rS2rS3rS4rHSUH) 

GOTO 2 
C CURSOR COORDINATE INF~T 
4 CALL DISCOR<ICORDrS1rS2rS3rS4) 

GOTO 2 
C DIS~UtY AXES ORIGIN 
5 CALL DISORG<S1rS2rS3rS4) 

GOTO 2 
C SAVE CURRENT CURVE ON DISC FILE 
11 CALL CRVSAV<XXrYYrNrN1rHSUHrS1rS2rS3rS4rJ) 

GOTO 2 
C ~LOT AURVE FROI1 NAMED FILE 
12 CALL REDRAW<XXrYYrNrN1rHSUHrS1rS2rS3rS4) 

GOTO 2 
C AXES HARKING 
15 CALL AXSHRK<SlrS2rS3rS4) 

GOTO 2 
C CURVE JOIN 
7 IF<SUBT.EQ.O)GOTO 2 

JON=JON+l 
IF<JON.EQ.2lGOTO 77 
CALL DTEXT<730.r585.r"JOIN DI~."r10) 
CALL SETJON(XXrYYrHSUHrNrNlrSUBT> 
GOTO 2 

C BACK TO CALLING ~ROGRAH 
77 IC=7 

RETURN 
C NGRAPH COMliAND FOR THE FIRST TIHE <I.E SAVE CURVE FOR LATER USE> 
8 CALL NGRAPH<NrN1rHSUH•XX,YYrS1rS2rS3rS4rJ) 

CALL WRCRVS 
NG=NG+1 
GOTO 2 

C ZOOI1ING 
9 CALL ZOOM<XXrYYrCrS1rS2rS3rS4riC> 

GOTO (1r31r90r90r90r90r90)riC 
90 IF<IC.EQ.3) IC=14 

IF<IC.EQ.5liC•1& 
IF<IC.EQ.4.0R,IC.EQ.6) STOP 
IF<IC.EQ.7)IC=18 

31 RETURN 
END 

c 
C ************** PLOTTING CURVE FIT **************************** 
c 

FUNCTION CF~OT<RrXOrYOrX1rY1rN) 
C I/0 COMMON DATA AREA 

COMMON/DATSUP/NF'SrNF'I <50), IFREESr X <SO),·; <50> rL (50), IH <5) rM(5) 

361 

~ rMETHODr IHELf'riF'REVrBOUND<2> rSUBSET' INTf'NT riE <2> 
COMMON/CURVEFIT/COEF<50r6)rXCORD(200lrYCORD<200) 
ItHEGER SUBSET r R 
If'=1 
IF=1 
I=1 

C PLOT SUF'f'LIED DATA POINTS 
3 C:I\LL f'LUSGN <XOr YOrXlr Y1 rXCORD<I>r YCORD (l)) 

CALL TXMOVE<XCORD<IlrYCORD<I>> 
IF <I.EQ .N> F;ETURN ·· 
If'1=If'+1 



IP2=IP+NPI <IF>+1 
C F'l.OT INTERF'OLATED POINTS BETWEEN THE INTERVALS 

DO 1 J=IP1 r If'2 
1 CALL TXDRAW<XCORD(JlrYCORD<J)) 

IP=If'2 

c 

IF=IF+l 
I=I+NPI <IF-1>+1 
GOTO 3 
END 

C************SAVES THE CURVE ON FILE FOR LATER USE******************* 
c 

SUBROUTINE CRVSAV<XXrYYrNrNlrHSUMrSCL1rSCL2rSCL3rSCL4rJ) 
DIHENSION XX<1)rYY(1)rN1<1> 
INTEGER FILE<3> 
N2=N-1 
IF<J.E0.8) GOTO 88 

C USER FILE NAHE ENTRY 
CALL CURPOS<10.r730.) 
CALL HESSAG<"FILE NAHE?A"l 
CALL GETFLN<FILE ) 
REWIND 9 

C OPEN AN OUTPUT FILE WITH USER SUF'LIED NAHE 
CALL SETFIL<9rFILE> 

88 WRITE<9r20lHSUHrN 
WRI1'E(9r30) <XX<I> rYY<I> ri•lrHSUHl 
WRITE<9r25l<Nl<I>ri•lrN2) 
WRITE<9r35lSCL1rSCL2rSCL3rSCL4 

25 FORHAT<I3> 
20 FORHAT <2I3) 
30 FORHAT<F11.4) 
35 FORHAT(4F11.4) 

c 

ENDFILE 9 
RETURN 
END 

C***************INPUT FILE NAHE************************** 
c 

SUBROUTINE GETFLN<NAHE> 
COHHON/IO/INriOUT 
INTEGER NAHE<3> 
READ<INr 10>NAHE 

10 FORHAT<2A4rA2> 
RETURN 
END 

c 
C *******SAVES CURVES FOR SUPERIHPOSED DISF'L.AY************** 
c 

SUBROUTINE NGRAf·H<NrNl rHSUHrXXr YYrSCL1 rSCL2rSCL3rSCL4rJ) 
C COHHON DATA AREA FOR SUF'ERIHF'OSED DISF'LAY 

COMMON/CURVES/NCRV<10lrXYSCL<4> 
C DISF'LAY HENU ITEHS 

DATA SUF'FLS/"CURVE1 CURVE2 CURVE3 CUh~4 CURVES 
~CURVE6 CURVE7 CURVES CURVE9 CURVE10 "/ 

LOGICAL*1 SUF'FLS<100) 
K=O 

C FIND FREE ENTRY 
DO 1 I=1r10 

IF<NCRV<I>.NE.99) GOTO 2 
K=K+9 

1 CONTINUE 
C HARK LAST FREE ENTRY 

362 



2 NCRV < I>. c99 
K=K+l 
REWIND 9 

C Of'EN INPUT FILE & SAVE THE CURVE · 
CALL SETFIL<9t5Uf'FLS (t()) 
CALL CRVSAV<XXtYYtNtN1tKSUHtSCL1tSCL2tSCL3tSCL4tJ) 

C FIRST CURVE 
IF<NCRV<1>.EG.99) GOTO 3 

C SET CURVE SCALLING 
XYSCL< 1) =SCL1 
XYSCLC2)=SCL2 
XYSCLC3>=SCL3 
XYSCLC4>=SCL4 

. GOTO 4 
C SUBSEQUENT CURVES ES SET THE DISPLAY SCALE 
3 IF<XYSCLC1l.GT.SCL1lXYSCL<1>=SCL1 

IF<XYSCL<2>.GT.SCL2lXYSCL<2>=SCL2 
IF<XYSCLC3).LT.SCL3lXYSCLC3)aSCL3 
IF<XYSCLC4l.LT.SCL4lXYSCL<4)aSCL4 

C CALL SUPERitlf'OSED DISPLAY COI1AND 
4 CALL DTEXT C725. t555. '"+ GRAPH"' 7> 

ENDFILE 9 
RETURN 
END 

c 
C *****llliii*SAVE INPUT C011110N DATA AREA FOR SUPERIHPOSED DISf'LAY****** 
c 

SUBROUTINE RDCJ;:VS 
COtiHON/CURVES/NCRVC10ltXYSCLC4) 
REWIND 7 
CALL SETFILC7t"SUPCRVES"l 
READC7t10l<NCRV<I>tic1r10l 
READC7t20)CXYSCL<I>ri•1r4) 

10 FORt1AT <I2> 
20 FORtiAT<F11.4> 

c 

ENDFILE 7 
RETURN 
END 

C*********f'LOT CURVE FROM DATA FILE ************************* c , 
SUBROUTINE REDRAW<XXrYYrNrN1tHSUHtSCL1tSCL2tSCL3tSCL4) 
COKHON/IO/INrlOUT 
DIMENSION XX<lltYY<1lrN1C1) 
INTEGER FILEC3) 

363 

CALL HESSAG (. I fiLE NAME?·'" ) 
CALL GETFLN<FILE) 
REWIND 9 
CALL SETFIL<9tFILE> 
READ<9r25ltiSUHrN 
N2=N-1 
READ<9r30) <XX<Il rYY<I> ri•hKSUH> 
READ<9t20) <N1Clltl•ltN2) 
READC9t35>SCL1tSCL2tSCL3tSCL4 

20 FORtiAT<I3) 
25 FORHAT<2I3) 
30 FORHATCF11.4) 
35 FORHATC4F11.4) 

CALL LHTSCLCSCL1tSCL2rSCL3tSCL4l 
CALL CPLOT<RtSCL1tSCL2tSCL3tSCL4tHSUH> 
ENDFILE 9 '. 
RETURN 



END 
c 
C **************SET JOIN CURVE INFORMATION************** 
c 

SUBROUTINE SETJON<XXrYYrMSUMrNrN1rSUBT) 
C JOIN COMMON DATA AREA 

COMMON/JOIN/CJ1<500)rCJ2(500)rJ3<12)rJ4<100>riPNTR<6> 
DIMENSION XX<1>rYY<l>rN1<1> 
INTEGER SUBT 
IF<IERROR<l03).NE.O> GOTO 7 

C READ THE JOIN COMMON DATA AREA 
CALL RDCOMJ 

7 IF<SUBT.E0.2> GOTO 1 
C SET ARRAY JOIN POINTERS 

J3(1)=1 
J3(2)=5 
J3(3)=N 
J3(4)=2 
J4(l>=N 
DO 2 I=2rN 

2 J4<I>=Nl<I-l> 
IPNTR < 1) =3 
IPNTR<2>=1 

C STORE THE JOIN CURVE FOR JOIN DlSf'LAY 
4 IP1=J3(1) 

DO 3 I=lrMSUM 
CJl<IPl>=XX<I> 
CJ2 < IPl > =YY <I> 
IP1=IP1+1 

3 CONTINUE 
J3 (1) "lf'1-1 

C WRITE OUT THE JOIN COMMON DATA AAEA IN OUTPUT FILE 
CALL WRCOMJ 
RETURN 

C SET POINTER AND SAVE DATA POINT OF THE SEGMENT 
1 J3<J3<2»=N 

J3(J3(2)+l)=J4(1)+1 
DO 6 I=2rN 

6 J4<J4(1)-1+I>=Nl<I-1) 

c 

J4 (1) =J4 (1) +N-1 
J3(2)=J3(2)+2 
IPNTR ( IPNTR < 1)) =J3 <1> 
IPNTR ( 1) •IPNTR <1 )+1 
GOTO 4 

. END 

C********SAVE COHMON DATA FOR THE SUPERIMPOSED DISF'LAX*"******* 
c 

SUBROUTINE WRCRVS 
COMMON/CURVES/NCRV(10)rXYSCL<4> 
REWIND 8 

C Of'EN AN OUTPUT FILE 
CALL SETFIL<Sr"SUPCRVES"> 
WRITE<Br10><NCRV<I>ri=lr10> 
WRITE<Br20)(XYSCL(I)ri=1r4) 

10 FORMAT<I2) 
20 FORMAT<F11.4) 

c 

ENDFILE 8 
RETURN 
END 

C ********ZOOM DISPLAY ROUTINE***************************** 

364 



365 

c 
SUBh~UTINE ZOOH<XXrYYrCrSCL1rSCL2rSCL3rSCL4riC> 

C INPUT COt1HON DATA AREA 
COMHON/DATSUP/Nf'SrNPI<50lriFREESrX<SOlrY<SOlrL<50lriH<5lrH<5> 

~ rHETHODr IHELPr If'REVrBOUND <2> rSU&SETr INTPNTr IE <2> 
COHHON/10/INriOUT 

C MENU ITEHS 
DATA HNTXT/"+ NEXT + F*EVIOUS+ METHODS + AX. HARK+ HELP 

~+RESTART+ EXIT "/ 
DIMENSION XX<1lrYY<1lrC<50r6lrX0(50lrYO<SOlrCX<2> 
LOGICAL*1 HNTXT<70) 

C REMOVES LINKS ~ SET WINDOW 
CALL REHLNK<XOrYO) 
CALL LHTSCL<SCL1rSCL2rSCL3rSCL4) 
DY=<SCL4-SCL2l/20 

C SET ZOOMING WINDOW 
DO 1 Ia1r2 

CALL TXCURS<CXXrCYYriCHAR> 
CX<I>.,CXX 

118 CDYl=CYY+DY 
CDY2=CYY-DY 
IF<CDY1.GT.SCL4.0R.CDY2.LT.SCL2) GOTO 117 
CALL TXHOVE<CXXrCDYl) 
CALL TXDRAW<CXXrCDY2) 
GOTO 1 

117 DY=DY/2. 
GOTO 118 

1 CONTINUE 
C SORT SHALLER CXX 

IF<CX(l).LT.CXX> GOTO 2 
ex <2> •ex < u 
CX(t>'!CXX 

C DETERMINE BETWEEN WHICH INTEF\Wil. THE ZOOMED CURVE IS? 
2 lFl=O 

I•i 
3 IF<CX<t>.LE.XX<I)) GOTO 4 

1F1=IF1+1 
I=I+NPI <IFU +1 
GOTO 3 
Kl .. I-Nf'I <IF1 )-1 
1F2-=0 ·1 
I=1 

5 IF<CX(2).LE.XX<I)) GOTO 6 
IF2=IF2+1 . 

· I•I+NPI <IF2l+1 
GOTO 5 

L2=K1+NPI<IF1)+1 · 
DO 7 I•KlrL2 
IF<CX<1).LE.XX<I)) GOTO 8 

7 CONTINUE 
8 K3=I-1 

L2=NPI<IF2)+1 
DO 9 I•1rL2 

Ll•K2-I+1 
IF<CX<2l.GT.XX<L1)) GOTO 11 

9 CONTINUE 
11 K4,.L1+1 
C SET THE ZOOI1ED DI~'LAY ~ MENU 

CALL TXCLER 
CALL ALF'HHD •. 
WRITE<IOUTr10) 



10 FORMAT<"ZOOHINGI-") 
CALL LHTARA 
CALL HNOf'EN ( 875. , 715. , 1> 
CALL HNDISP<HNTXTo7olOo1) 
CALL FRAHE<870.o733.o7> 
51.,XX<K3> 
53.,XX<K4> 
52.,YY(K3) 
54=52 
DO 50 l"'K3oK4 

IF<YY<I>.GT.54) 54gYY<I> 
IF<YY<I>.LT.S2> 52•YY<I> 

50 CONTINUE 
CALL LHT5CL(51oS2o53o54) 
CALL f'FRAHE<SlrS2rS3oS4) 

C DRAW THE ZOOHED CURVE 
L1=K1+Nf'I<IF1>+1 
L2=K2-NPI<IF2>-1 
IF<L2.LT.Ll> GOTO 77 
I"'L1 

C f'LOT THE 5Uf'PLIED POINTS IN THE ZOOHED PORTION 
66 CALL PLUSGN<51oS2oS3oS4oXX<I>rYY<I>> 

1Fl=IF1+1 
IF<I.EO.L2) GOTO 77 
I=I+NPI <IFl >+1 
GOTO 66 

77 CALL TXHOVE<XX<K3)oYY<K3>> 
L1=K4-1 
DO 88 I=K3oL1 

XXH=<XX(l)+XX<I+1))/2. 
DO 99 J"'1rNPS 

IF<XXH.LT.XO<J>> GOTO 111 
99 CONTINUE 
111 J1=J-1 

IF<HETHOD.EO.l> GOTO 888 
T•XXH-XO<Jl) 
IF<t1ETHOD.EQ.2 >GOTO 222 
YYti=C (Jlr 1> +T* <C <J1 r 2) +TII <C <Jlr 3> + 1'11C <Jlo 4) > ) 
GOTO 121 

222 T=TI<XO(J)-XO<J1)) 

366 

YYH=C (Jlo 1> +TII <C (J1r2)+ Tll <C <Jlr 3) + Tll <C <J1, 4HTII <C <J1, S> +.I.*C <Jl, 6) > >) > 
121 W1•YYti-S4 

W2=YYH-S2 
IF<Wl.GT.O.> YYti=S4 
IF<W2.LT.O.) YYH=S2 
CALL TXDRAW ( XXH' YYtl) 
CALL TXDRAW<XX<I+U rYY<I+1> > 

88 CONTINUE 
C DISF'LAY HENU 
202 CALL LHTARA 

CALL tiNPICK(JriCHARotiNO) 
17 CALL CONFRH<ICHAR> 

IF<ICHAR.EQ.78) GOTO 202 
IF<ICHAR.NE.89) GOTO 17 

C TRANSFER CONTROL ACCORDING TO USER CHOICE 
GOT0(414o414r414o404o414r2r414>rJ 

414 IC"'J 
RETURN 

C ltXES HARKING 
404 CltLL AX5HRK(51rS2rS3oS4> 

GOTO 202 '· 
888 tt?.,NP5-1 



{•=C <NF'S, 1) 
DO 808 LL=hN2 
JJ=NF'S-LL 
A=C<JJr1l+<XXH-XO<JJ))*A 

808 CONTINUE 
YYH=A 
GOTO 121 
END 

•, 

367 



c ***************** 
C * Af'f'ENDIX 2.24 * 
c ***************** 
c 
C THIS MODULE HANDLES THE CURVE DESIGN INTERACTIVE DISPLAY. 
c 
c 
c 
C ****** MAIN PROGRAH - HODULE 4 **************** 
c 
C INF'UT/OUTF'UT COHHON DATA AREA 

COHHON/DATSUP/NPSrNPI<50lriFREESrX<50lrY<50lrL<50lriH<5lrH<5l 
~ rHETHODriHELPriPREVrBOUND<2lrSUBSETriNTPNTriE<2> 

COHHON/CURVEFIT/COEF<50r6)rXCORD<2()())rYCORD<2()()) 
COHHON/IO/INriOUT 

C OVERLAY EXECUTABLE Pf\'OGRAH NAHES 
DATA HODL2rHODL4rHELP/"HOD2"r"HOD4"r"HELP"/ 
DIHENSION X0<50lrY0<50l 
LOGICAL*1 HODL2<10lrHODL4<10lrHELP<10l 
INTEGER SUBSET 
CALL TXOF'EN 

C READS THE COHHON DATA FILES 
11 CALL RDCOH1 

GOT0(1r2r3r3r3r3r3r3)rHETHOD 
1 NC=1 

GOTO 21 
2 NC=6 

GOTO 21 
3 NC=4 
21 IN=5 

IOUT•6 · 
CALL RDCOH2<NPSrNPlrNCl 
CALL REHLNK<XOrYOl 

C SET LINK LIST FOR THE INTERPOLATED POINTS 
CALL SETLNK<NPSrNPlriNTf'NT> 

C CURVE DESIGN DISPLAY 
CALL CURDES<NPSrNf'IrXOrYOrXCORDrYCORDriNTf'NTrHETHODrCOEFrlC) 
GOT0(4r5r6r6r6r6r6r6r6r9r11r8)riC 

6 STOP 
C NEXT DISPLAY 
4 IPREV=O 

IHELF'=O 
INTF'NT•O 
CALL WRCOH1 
CALL SWRCOH<NPSrNPirNCrXOrYO) 
CALL OVRLAY <HODL4l 

C PREVIOUS DISPLAY 
5 IPREV=l 

IHELF'=O 
CALL WRCOH1 
CALL OVRLAY<HODL2) 

C PF.'OGRAH TERHINATION 
8 CALL EXIT 

STOF' 
C HELP DISPLAY 
9 CALL WRCOH1 

c 

CALL SWRCOH<NPSrNF'IrNCrXOrYOl 
CALL OVRLAY <HELP> 
END 

C**************CURVE DESIGN DISF'LAY****************"*'~*****~~*'' 

368 



c 
SUBROUTINE CURDES<NrN1rXOrYOrXXrYYriNTPNTriArCriC> 

C LINK LIST COMMON Af\'EA 
COMHON/LNKLST/LINK<200lriNTVAL<50lrlFREEriFCNT 
COMHON/IO/INtiOUT 

C MENU ITEMS 
DATA 11NTXT/"+ NEXT + PREVIOUS+ DISf'.ORG+ GRAF'H i COORDS. 

369 

b+ ADD f'NTII+ DEL INTV+ REFRESH + AX. HARK+ HELP + RESTART + EXIT "/ 
DIMENSION N1<1lrX0<1lrY0(1lrXX<1ltYY<1>rC<50r6) 
LOGICALII1 HNTXT<120l 
EXTERNAL XPLOT 
CALL SUH<NrN1r11SUM) 
CALL HINHAX<S1rS2rS3rS4rXXrYYri1SUM) 
IZER0=1 

11 IF' <IZERO.EQ.O>INTPNT=999 
C SET Uf• THE DISPLAY 

CALL TXCLER 
ICORD=O 
WRITE<IOUTr10) 

10 FORMAT<"CURVE DESIGN:-") 
C OUTPUT MENU 

CALL HNOPEN<B75.r715.r1) 
CALL MNDISf'<MNTXTr12r10r1) 
CALL FRAME (870., 733.' 12) 

C DISPLAY INSTRUCTION FOR KEYBOARD COMMAND 
CALL DTEXT<B30.r447.r"*TYPE CAPT.I"r12l 
CALL DTEXT<B30.r42B.r"E-JOIN INTV."r12) 
CALL DTEXT<B30.r406.r"F-FINISH ADD"r12) 

2 CALL LMTARA 
C CHECK FOR REFRESH COMMAND 

IF<J.EQ.B) GOTO 34 
CALL KNPICK<JriCHARrMNO> 
IF<J.EQ.5.AND.ICORD.EQ.2)GOTO 2 

17 CALL CONFRM<ICHAR> 
IF<ICHAR.EQ.78)GOTO 12 
IF<ICHAR.NE.B9l GOTO 17 
GOT0(41r41r33r34r35r36r36r11r110r41r66r41)rJ 

12 J=O 

41 
GOTO 2 
IC=J 
RETURN 

C DISf'LAY ORIGIN 

•, 

33 CALL DISORG<St.S2r53r54l 
GOTO 2 

C PLOT THE GRAPH 
34 CALL DRAW<XPLOTrRrS1rS2rS3rS4rHSUMl 

J=O 
GOTO 2 

C AXES MARKING 
110 CALL AXSMRK<S1rS2rS3rS4l 

GOT02 
C CUfi~OR INPUT COORDINATES 
35 CALL DISCOR<ICORDrS1rS2rS3rS4l 

GOTO 2 
C ADD INTERMEDIATE POINTS INTERACTIVELLY USING 
C DETERMINE WHICH INTERVAL OF THE CURVE 
36 CALL LHTSCL<S1rS2rS3rS4l 
22 CALL TXCURS<CXrCYriCHARl 

IF<ICHAR.EQ.70l GOTO 2 
C GIVES THE INTERVAL NUMBER 

INTVNO=INO<CXrNrXOl 
C IGNORE IF INTERVAL NUMBER IS ZERO 

THE CURSOR 



If<INTVNO.EO.O> GOTO 22 
If(J.EQ.7) GOTO 37 
If <HITF'NT .EO. 999.AND. IZEI\'O.EQ.U GOTO 66 

61 INTPNT=O 

370 

C ftDDS INTERMEDIATE POINT TO THE LINK LIST AND UPDATE DATA f'OINTS ARRAY 
CALL ADDf'NT<NrN1tXOtYOtXXtYYtiNTVNOtiAtCXtlCHARtC) 
GOTO 22 

66 N2=N-1 
DO 16 I=ltN2 
INTVAL <I> =0 

16 NUI>=O 
If<J.EQ.11) GOTO 41 
IZERO=O 
GOTO 61 

C HAI\~ DELETED INTERVAL 
37 CALL DTEXT<CXtCYt"D"t1) 

CALL DELINT<INTVNOtNtN1> 
GOTO 2 
RETURN 
END 

c 
C********** ADD IN1ERMEDIATE F'OINT ******************* 
c 

SUBROUTINE ADDf'NT<NtN1tXOtYOrXXtYYtiNTVNOtiAtCXtiCHARtC) 
C LINK LIST COHHON DATA AREA 

COMHDN/LNKLST/LINK<20<>>tiNTVAL<50>riFREEtifCNT 
DIMENSION N1(1)tX0(1)tY0(1)tXX<1>tYY~1)tC<50t6) 

C CHECK FIRST TIME IN THE INTEI\~AL 

IF<INTVAL<INTVNO>.NE.O) GOTO 2 
C ENTER THE START f'OINT AND THE INTERMEDIATE POINT 

lNTVAL<INTVNO>•IfREE 
XX<IFREE>•XO<INTVNO) 
YY<IFREE>•YO<INTVNO> 

C CHECK END Of INTERVAL 
If<ICHAR.EQ.69) GOTO 7 
If<IFCNT.GT.1> GOTO 11 
LINK<IFREE>•IFREE+1 
CALL TXHOVE<XX<IFREE)tYY<IFREE>> 
IFREE=LINK<IFREE> 

5 LINK <IFREE> =0 
C COHPUTE INTERPOLATED POINT FI\'OH THE COEFFICIENTS 
6 CALL CXXYY<NrXOtYOtXXtYYtiNTVNOtiAtCXtCtiFI\~E) 

N1<INTVNO>•N1<INTVN0>+1 
IFREE=IFREE+1 
RETURN 

C COHf'ARE THE CURRENT CX WITH THE ALERADY IN THE TABLE 
2 IF<ICHAR.E0.69) GOTO 1 

NEXT=INTVAL<INTVNO> 
4 IF(CX.LT.XX<NEXT)) GOTO 3 

K=NEXT 
NEXT=LINK<NEXT> 
IF<NEXT.EQ.O) GOTO 41 
GOTO 4 

41 LINK<K>=IFREE 
CALL TXHOVE<XX<K>tYY<K>> 
IF<IFCNT.GT.O> GOTO 12 
GOTO 5 

C ADD POINT IN THE INTERVAL WHICH HAS GREATER VALUE f'OINT 
3 IF<IFCNT.GT.O>GOTO 16 

LINK<K>•IFREE 
LINK <IFREE> •NEXT ', 
CALL TXHOVE<XX<K>rYY<K)) 



GOTO 6 
C ADDITION INTO f'REVIOUSELY DELETED ITEI1 <CARBIGE COLLECTION> 
11 IFCNT=IFCNT-1 

12 

16 

CALL TXHOVE<XX<IFREE)rYY<IFREE>> 
K=LINK<LIHK<IFREE>> 
LINK<LINK<IFREE>>=O 
IFREE=LINK<IFREE> 
CALL CXXYY(NrXOrYOrXXrYYriNTVNOriArCXrCriFREE) 
IFREE=K 
IFCNT=IFCNT-1 
N1CINTVNO>=N1CINTVN0)+1 
RETURN 
CALL CXXYYCNrXOrYOrXXrYYriNTVNOriArCXrCriFREE> 
K=IFREE 
IFREE=LI~K<IFREE> 
LINK<K>=O 
GOTO 14 
CALL TXHOVE<XXCK>rYY<K>> 
CALL CXXYY<NrXOrYOrXXrYYriNTVNOriArCXrCriFREE> 
K1=LINK <IFREE> 
LINK <K> "'IrREE 
LINK< I FREE> =NEXT 
IFREE=K1 
GOTO 14 

C END OF INTERVAL WITH ONE OR MANY ENTERIES 
C FIND THE LAST ENTRY IN THIS INTERVAL<LINK=O> 
1 NEXT=INTVALCINTVNO> 

J=N1 <INTVN0>+1 
DO 9 L=lrJ 

IP=NEXT 
NEXT.,LINK <NEXT> 
IF<NEXT.EQ.O) GOT010 

9 CONTINUE 
10 CALL TXI10VE<XX<IP>rYY<IP>> 
a CALL TXDRAW<XO<INTVN0+1>rYOCINTVN0+1>> 

RETURN 
C NO INTERMEDIATE POINTS 
7 LINK<IFREE>=O 

IFREE=IFI\'EE+l 
CALL TXI10VE<XOCINTVNO>rYO<INTVN0)) 
GOTO a . 
END 

c 
CIIIIIIIIIIIIIIIIIIIIIICOI1PUTE INTERPOLATED f'OINTIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
c 

' 

SUBROUTINE CXXYY<NrXOrYOrXXrYYriNTVNOriA~CXrCriFREE> 
DIMENSION XO<l) rYO(l) rXX<t> rYY<l> rC<50r6> 
IF<IA.EQ.l) GOTO 3 
T=CX-XO ( INTVNO> 
XX <IFREE> =CX 
I=INTVNO 
IF<IA.EQ.2) GOTO 1 

C Sf'LINE METHOD 
YY<IFREE>=C(Ir1>+TII(C(Ir2)+TII(C(lr3)+TIIC(lr4))) 
GOTO 2 

C NEWTON DIVIDED DIFFERENCE 
3 N2=N-1 

A=C<Nr 1) 
DO 7 L=1rN2 
J=N-L 

7 A=C<Jr1>+<CX-XO(J))IIA 
YY<IFREE>=A 

371 



372 
GOTO 2 

C PIECEWISE POL YNOHIAL INTERf'OLATION <HAUD METHOD> 
1 T=TI<XO<INTVN0+1>-XO<INTVNO>> 

YY <I FREE> =C <I, 1) +T* <C <I r2l+T* <C <I r3l+ T* <C <Ir4l+ T* <C <I r5) +hC <I r6))))) 
2 CALL TXDRAW<XX<IFREElrYY<IFREE>> 

RETURN 
END 

c 
C********** DELETE UNWANTED INTE~~AL ***************** 

SUBROUTINE DELINT<INTVNOrNrN1) 
C011110N/LNKLST/LIM<<20<>lriNTVAL<50lriFREEriFCNT 
DIMENSION N1<1> 

C EHf'TY LIST? 
IF<INTVAL<INTVNOl.EQ.OlRETURN 

3 IF<IFCNT.NE.O>GOTO 1 
C FIRST DELETION 

NEXT=INTVAL<INTVNO> 
K=NEXT 
IF<LINK<NEXTl.EQ.OlGOTO 5 
N2=N1 <INTVNO> 
K=IZRLNK<N2rLINKrNEXT) 

5 LINK<Kl=IFREE 
IFREE=INTVAL<INTVNO> 

2 IFCNT=IFCNT+N1<INTVNOl+1 
INTVAL<INTVNO)=O 
Nl < INTVNO> =0 
~'ETU RN 

C DELETE OF MORE INTREVAL 
1 NEXT1=INTVAL<INTVNO> 

K1=NEXT1 
IF<LINK<NEXT1l.EQ.O) GOTO 6 
N2=Nl <INTVNO> 
K1=IZRLNK<N2rLINKrK1) 

6 NEXT2=IFREE 
K2=NEXT2 
N2=IFCNT-1 
IF<N2.EQ.O> GOT07 
K2=IZRLNK<N2rLINKrK2> 

7 K3=LINK<K2> 

c 

LINK <K2) =NEXTl 
LINK<K1>•K3 
GOTO 2 
END 

C ***********FINDS THE INTERVAL IN WHICH X CHOSEN********* 
c 

FUNCTION INO<CXrNrXO) 
DIMENSION XO (1) 
DO 1 I•lrN 

IF<CX.LT.XO<I>> GOTO 2 
1 CONTINUE 

I=1 
2 INO•I-1 

RETURN 
END 

C ***********FIND END OF THE INTREVAL FOR DELETION******************* 
FUNCTION IZRLNK<NrLKrNXT> 

1 

DIMENSION LK <1) 
DO 1 I=1rN 
NXT=LK<NXT> 
I ZRLNI< =NXT 
RETURN 

.. 



END 
c 
C ***********SET UP THE LINK LIST***************** 
c 

SUBROUTINE SETLNK<N•N1,INTPNT> 
COHHON/LNKLST/LINK<200),INTVAL<50l•IFREE•IFCNT 
DIHENSIOH Nl<ll 

C INTERMEDIATE f'OINTS Sf'ECIFIED PY CURSOR? 
IF<INTPNT.E0.999lGOTO 9 
INTVAL (1) a1 
ti2=N-1 

C SET POINTER TO THE START OF EACH INTERVAL 
00 1 I=2•N 

1 INTVAL<I>•INTVAL<I-1l+N1<I-1l+1 
K=1 

C SET LINKS 
DO 2 I=t.N2 

IF<N1<Il.NE.Ol GOTO 4 
LINK<Kl•O 
K=K+1 
GOTO 2 

4 N11•N1<Il+K-1 
DO 3 JsK•N11 

3 LINK(J)•J+1 
LINK<JlaO 
K•J+1 

2 CONTINUE 
CALL SUH<N•N1•HSUH> 

C SET FREE POINTER 
IFREEaHSIJt1+1 
GOTO 10 

C NO INTERMEDIATE POINT IS SPECIFIED 
9 IFR£Ea1 

IFCNTaO 
10 RETURN 

END 
c 
C ********* fiND TOTAL NUtiiJER OF' INTERPOLATED POINTS*X********** 
c 

1 

c 

SUBK~TINE SUH<N,N1•HSUH> 
DIHENSIOH N~ <1 l 
HSUH•O 
N2ooN-1 
00 1 Iat.N2 
HSUH•I1SUti+N1<I> 
11SU11=HSUH+N 
RETURN 
END 

C ***********SAVE 
c 

CURVE OH OUTPUT FILE************* 

c *****A SIHPLE LIST****** 
SUBROUTINE SWRCOI1<N•N1•NC,XO,YOl 

C OUTPUT COHHON DATA AREA 
COKHON/CURVEFIT/COEF<50,6l•XCORD<200>•YCORD<200l 
COMHON/LNKLST/LINK<200l,INTVAL<SO> 

'DIKENSION N1<1>•X0<1>•Y0<1l 
REWIND 8 

C Of'EN OUTF'UT FILE 
CALL SETFIL<B•"OUTFIT"l 
N2•N-1 .. 
WRITE<B•20l<<COEF<I•J),J•1•NC>•I=1•N2l . 

373 



DO 1 I=lrN2 
NEXT=INTVAL<I> 
N3=N1 <I>+l 

00 2 J"1tN3 
WRITE<8r10lXCORD<NEXTlrYCORD<NEXT> 
NEXT•LINK <NEXT> 

2 CONTINUE 
1 CONTINUE 

WRITE<8r10>XO<N>rYO<N> 
10 FORHAT<2F12.4) 
20 FORHAT<F12.4) 

c 

ENDFILE 8 
1\'ETURH 
END 

C*************PLOT THE DESIGNED CURVE*************** 
c 

SU&ROUTINE XPLOT<RrSCL1rSCL2rSCL3rSCL4rNSUH> 
C I/0 COHHON DATA AREAS 

COMHON/DATSUP/NPSrNPI<50>riFREESrX<50>rY(50)rL<50lriH<5>rK<5> 

374 

~ rKETHODriHELPriPREVr&OUND<2lrSU&SET<2>riNTPNTriE<2> 
COHKON/CURVEFIT/COEF(50r6)rXCORD<2<>0>rYCORD<200) 
COHKON/LNKLST/LINK<200lriNTVAL<50lriFREEriFCNT 
INTEGER SU&SET 
DIMENSION X0<50>rY0<50> 
CALL REKLNK<XOrYO> 
N2=NPS-1 

C OUTPUT SEGMENTS OF THE CURVE FOR EACH INTERVAL 
5 DO 1 I•1rN2 

NEXT=INTVAL<I> 
IF<NEXT.NE.O>GOTO 4 
K•I · 

· GOTO 11 
CALL PLUSGIHSCL1rSCL2rSCL3rSCL4rXCORD<NEXT>, YCORD<NEXT>) 
CALL TXHOVE<XCORD<NEXTlrYCORD<NEXT>> 
N11=NPI<I> 
IF<N11.NE.O>GOTO 3 
K"INTVAL <1+1> 
IF<K.NE.O> GOTO 6 
IF<NEXT.NE.O) GOT07 
K•I+1 
GOTO 11 

6 CALL TXDRAW<XCORD<K> rYCORD<K> >· 
GOTO 1 

3 DO 2 J•1rN11 
NEXT,.LINK <NEXT> 
CALL TXDRAW<XCORD<NEXTlrYCORD<NEXT>> 

2 CONTINUE 
7 K• I+l 

CALL TXDRAW<XO< KlrYO<K>> 
11 CALL PLUSGN<SCL1rSCL2rSCL3rSCL4rXO<KlrYO<K>> 

CALL TXKOVE<XO<KlrYO<K>> 
1 CONTINUE 

CALL PLUSGN<SCL1rSCL2rSCL3rSCL4rXO<I>rYO<I>> 
8 RETURN 

END 



c ***************** 
C * APPENDIX 2.25 * 
c ***************** 
c 
C THIS MODULE HANDLES THE FOLLOWING INTERACTIVE DISPLAYSI-
C 1. TABLE OF THE INTERPOLATED POit4TS 
C 2. TABLE OF THE f'OLYNOHIAL COEFFICIENTS 
C 3.ERROR REFERRENCE 
C 4.CURVE SUF·ERIHPOSE 
c 
c 
c 
C ***** 11AIN f·ROGRAH - HODULE 5 *****************il* 
c 
c 
C l/0 COHHON DATA AREA 

COHI'ION/DATSUP/NPSrNf'l <50) t IFREESrX (50), Y (50) rL <50), 1H(5) rH (5) 
I. rHETHODr IHELPr IPREVrBOUND(2) rSUBSET, INTPNTr IE <2> 

COHHON/CURVEFIT/COEF(50r6lrXCORD<200lrYCORD<200) 
COMHON/IO/INriOUT 

C OVERLAY EXECUTABLE f'ROGRAH NAHES 
DATA HODL2rHODL4rHODL1rHELf'/"HOD2"r"HOD4"r"EXPLICIT"r"HELf'"/ 
LOGICAL*1 HODL2<10l rHODL4<10) rHODL1 <10) rHELP<10) 
INTEGER SUBSET 
CALL TXOf'EN 

C READ I/0 FILES 
11 CALL RDCOH1 

GOT0(1r2r3r3r3r3r3r3)rHETHOD 
1 NC=1 

GOTO 21 
2 IIC=6 , 

GOTO 21 
3 NC=4 
21 IN=5 

IOUT=6 
CALL RDCOH2<NPSrNPirNC) 
IF<IHELP.NE.Ol GOTO 66 
GOT0<33r31r34lrif'REV 

C DISPLAY TABLE OF INTERPOLATED POINTS 
33 CALL· TABINT<NF~;NPirXCORDrYCORDriOUTriCl 
6 GOT0<51r52r59r54r59r59r57r33r58lriC 
C RETURN TO CURVE FIT DISPLAY 
51 IPREV=O 

IHELP=O 
CALL WRCOH1 ·~ 
CALL OVRLAY <HODL4l 

C RETURN TO THE PARAHETER ENTRH DISPLAY 
52 IPREV=1 

IHELP=O 
CALL WRCOH1 
CALL OVRLAY<HODL2) 

C OUTPUT COEFFICIENTS 
~~ CALL TABCOF<NPSrCOEFrHETHODriOUTriCl 

GOT0<51r33r59r59r59r57r54r58lriC 
C ERROR REFERENCE DISPLAY 
31 CALL ERRREF <NPSrNF'I rXCORDr YCORDrXr YrCOEF r I Cl 

GOT0<51r52r59r59r59r59r59r57r59r58)riC 
C SUF'ERIHF'OSED CURV~S DISPLAY 
34 CALL SUPIHP<NPSrNPirXCORDrYCORDriCl 

GOT0(51r52r59r59r59r~9r61r59r57r59r58)rlC 

C HELP DISPLAY 

375 



57 CALL WRCOH1 
CALL OVRLAY<HELP) 

C ALGORITHH DISPLAY 
61 If'REV=O 

C EXIT 

IHELP=O 
CALL WRCOH1 
CALL OVRLAY<HODL1> 

58 CALL EXIT 
59 STOP 
66 GOT0<33•34,31>•IHELP 

END 
c 
C ***********TABULATION OF INTERPOLATED POINTS****************** 
c 

SUBROUTINE TABINT<N•N1•XX•YY•IDEVriC> 
DIMENSION N1(1),XX<1>•YY<1>•IP<4> 

11 CALL OUTTIL<1•9•IDEV> 
C FIND THE TABLE SIZE 

CALL SUH<N•N1,HSUH> 
IF<HSUH.GT.50l GOTO 1 

C TABLE SIZE ONE OR LESS TfWl A f'AGE 
IROLLaO 
CALL OUTPGE<HSUH•1•XX•YY•IDEV> 
GOTO 12 

C TABLE SIZE IIORE THAN ONE f'AGE 
1 If'<ll=1 

IR0LL"1 
00 2 I"2•4 

2 If'<Il•If'<I-1>+50 
IS=1 

C FIND NUHBER OF f'AGES 4 THE REHAINDER 
HREH•IREH<KSUH•50) 
NPAGE•<HSUH-HREHl/50 

14 IFIFTY=50 
15 If'NTR=If'<IS> 

CALL OUTPGE<IFIFTY•If'NTR,XX•YY•IDEV> 
WRITE <IDEV, 20) 

20 FORHAT<t•••TO DISF'LAY THE NEXT/PREVIOUS f'AGE OF THE TABLE•/ 
t. NUSE THE FORWARD/BACKWARD AS Af'f'ROf'RIATE'") 
C SET UP CURSOR FOR USER SELECTION 
12 CALL HNf'ICK<J• ICHAR•HNO> 
17 CALL CONFRH<ICHAR> 

IF<ICHAR.EQ.78) GOTO 12 
IF <ICHAR.N£.89) GOTO 17 
GOT0(21r21r23r21•25r26•21r11•21),J 

C BACK TO THE HAIN f'ROORAI1 TO PROCESS OTHER COHHAND 
21 IC=J 

RETURN 
C HARDCOf'Y 
23 REWIND 7 

CALL SETFIL<7r./DEV/TTYH"> 
WRITE<7r30> . 

30 FORHAT<"COHF'LETE TABLE OF THE INTERPOLATED f'OINTS:-· > 
IFIFTY=HSUM 
If'NTR=If'<l> 
CALL OUTf'GE<IFIFTY,If'NTR•XXrYY•7> 
GOTO 12 

C TO ROLL THE TABLE<Fah~ARD> 
25 IF<IROLL.EG.O>GOTO 12 

IF<IS.EG.NPAGE.AND.HREH.GT.O>GOTO 31 
IF <IS.EG.NPAGE.OR. IS.GT .Nf•AGE>GOTO 12 

376 



IS=IS+1 
CALL OUTTIL<1t9tiDEV> 
GOTO 14 

C OUTPUT THE REHA I NDER 
31 IFIFTY=MREH 

IS=IS+1 
CALL OUTTIL(1t9tiDEV> 
GOTO 15 

C BACKWARD 
26 IF<IROLL .EQ.O) GOTO 12 

IF<IS.EQ.1) GOTO 12 
IS=IS-1 

c 

CALL OUTTIL<1•9•IDEV> 
GOTO 14 
END 

C*************** TABULATE COEFFICIENTS************************* 
c 

SUBROUTINE TABCOF<NtCtHETHODtiDEVtiC> 
DIMENSION C <50t6h If' (4) 

C OUTPUT PAGE HEADER 
11 CALL OUTTIL(2t8tiDEV> 

NC=N-1 
IF<NC.GT.20) GOTO 1 

C LESS THAN 20 tONE f'AGE OF TABLE 
IROLL=O 
CALL OUTCOF<NCt1tHETHODtCtiDEV) 
GOTO 2 

C GREATER THAN 20 tHORE THAN ONE PAGE OF TABLE 
1 IROLL=l 

IP<l> =1 
DO 7 1=2•4 

7 If'<I>=If'<I-1)+20 
IS=1 

C FIND NUBER Of PAGES AND THE REHINDAR 
NREtt•IREH<NCt20) 
NCPGE=<NC-NREH)/20 

14 N3=20 
15 If'NTR=If'<IS) 
12 CALL OUTCOF<N3tlf'NTRtHETHODtCtiDEV> 

WRITE<IDEVt20) ·. 
20 FORt1AT<I"*'T0 DISF1.AY THE NEXT/PREVIOUS f'AGE Of THE TABLE"/ 
& • USE THE FOI\'WARD/BACKWARD AS APPROPRIATE'") 
C USE CURSOR TO f'ICK Uf' HENU OPTIONS 
2 CALL HNF'ICK <J• ICHARtHtiO) 
17 CALL CONFRH<ICHAR) .'( 

IF<ICHAR.EQ.78) GOTO 2 
IF<ICHAR.NE.89) GOTO 17 
GOT0<21t21t23t24t25t21•11t21),J 

C OTHER COHHAND 
21 IC=J 

RETURN 
C HAADCOF'Y 
23 REWIND 7 

CALL SETFIL<7t"/DEV/TTYH"> 
WRITE<7t30) 

30 FORHAT<"POLNOHIAL COEFFICIENTSI-") 
N3=N-1 
IPNTR=If'(1) 
CALL OUTCOF <N3t If'NTRtHETHODtCt 7> 
GOTO 2 , 

C FORWARD COMMAND <TABLE PAGE ROLLING) 

377 



24 IF<I~~L.EQ.OlGOTO 2 
IF <IS.EQ.NCF'GE.AND.NREH.GT .0) GOTO 31 
IF <IS.EQ.NCf'GE.OR.IS.GT .NCf'GE> OOTO 2 
IS=lS+l 
CALL OUTTIL<2•B•lDEV> 
GOT014 

31 N3=NREH 
IS=IS+1 
CALL OUTTIL<2o8oiDEV> 
GOTO 15 

C J'JACI(WARD COHHAND 
25 IF<IROLL.EQ.O) GOTO 2 

IF<IS.EQ.1) GOTO 2 
IS=IS-1 

c 

CALL OUTTIL<2•8•IDEV> 
GOTO 14 
END 

C***********SUf'ERIHPOSED C~~E DISPLAY************************ 
c 

SUBROUTINE SUPIHf'<N•N1,XX•YY,ICl 
COHMON/CU~~ES/NCRV<10l•XYSCL<4> 

COMMON/10/IN•IOUT 
C NENU ITEHS 

378 

DATA HNTXT/"+ NEXT + PREVIOUS+ GRAPH + UISP.ORG+ UELETE* 
~+REFRESH+ HETHOD + AX. HARK+ HELP +RESTART+ EXIT "/ 

DATA SUF~LS/"CURVEl CURVE2 CURVE3 CURVE4 CURVE5 
6.CURVE6 CURVE7 CURVES CURVE9 CURVE10 "/ 

DIHENSION Nl<l>•XX<l>•YY<l> 
LOGICAL*l HNTXT(110),SUf'FLS<lO<>l 
CALL RDCRVS 

11 CALL TXCLER 
CALL SUH<N,Nt.HSUH) 

C SET UP F~OTTING SCALE 
S1=XYSCL <1) 
S2=XYSCL(2) 
S3=XYSCL<3) 
S4=XYSCL<4) 

C PREPARE THE DISPLAY 
WRITE <I OUT, 10) 

10 FORHAT<"SUF'ERIHPOSED CURVES:-") 
CALL HNOPEN<875.•715.,1> 
CALL HNDISP<HNTXTt11t10t1l 
CALL FRAHE<870.,733.t11l 
CALL ALPH/1D 
WRITE<IOUTt20l 

20 FORHAH/////////////62Xt"* TYPE IN"/62Xt "CURVE NO.") 
2 CALL LHTARA 
C CHECK FOR REFRESH 

IF<J.EQ.6) GOTO 23 
3 CALL HNPICK(JtiCHARtHNOl 

NFDELBICHAR-48 
IF<J.EQ.5.AND.NFDEL.GT.10.0R.J.EQ.5.AND.NFDEL.LT.ll OOTO 3 

17 CALL CONFRH<ICHAR> 
IF<ICHAR.EQ.78) GOTO 12 
rF<ICHAR.NE.B9l GOTO 17 
GOT0<21t21•23•24r25t11r21t27t21t11t21ltJ 

l.2 J=O 
GOTO 2 

21 IC=J 
~'ETURN •, 

C GRAPH/f\:EF~'ESH OPTION 



23 K=O 
CALL LHTSCL<S1tS2tS3rS41 
CALL PFRAHE<S1tS2tS3tS41 
DO 1 I=lr10 
REWIND 9 
IF<NCRV<II.NE.991 GOTO 22 
CALL SETFIL<9tSUPfLS<I+KII 

77 CALL SREDRW<NtN1tirXXtYYrHSUHtS1rS2tS3tS41 
22 K=K+9 
1 CONTINUE 

ENDFILE 9 
J=O 
GOTO 2 

C DISPLAY CURVE ORIGIN 
24 CALL DISORG<S1tS2rS3rS41 

GOTO 2 
C DELETE CURVE OPTION 
25 NCRV<NFDELI&O 

CALL WRCR\IS 
GOTO 2 

C AXES HARKING 
27 CALL AXSMRK<SltS2rS3tS41 

GOTO 2 
END 

c 
C**********ERROR REFERRENCE DISPLAY******************* 
c 

SUBROUTINE ERRREF<NtN1tXXtYYrX1oY1rCriCI 
COHKON/IO/INtiOUT 

C HEN.J ITEHS 
DATA HNTXT/"+ NEXT + f'REVIOUS+ GRAPH + COORDS. + DISF'.ORG 

6.+ ZOOH + AX. HARK+ HELF' + RESTART + EXIT "/ 
DATA HODL1/"EXPLICIT"/ 
LOGICAL*1 HNTXT(1001tHODL1(101 
DIMENSION N1<11tXX<11tYY<11tX1<11tY1(11tC<50•61tX0(501tY0<501 
EXTERNAL EPLOT 
CALL REHLNK<XOtYOI 

379 

C FIND THE DIFFERENCE OF THE ORDINATES W.R.T.NEWTON DIVIDED DIFF.HETHOD 
CALL NEWTRF<NtN1tXOtYOtXXtYYrCI 
CALL SUti<N, Nlt HSIJH I 

C SET lP THE ERJ;.'OR REFERRENCE DISPLAY 
CALL HINHAX<SltS2rS3tS4tXXtYYrHSUHI 

1 CALL TXCLER 
ICORD"'O 
WRITE<IOUTr101 

10 FORHAT<"ERROR REFRENCEI-"1 
CALL HNOPEN<875.t715. tll 
CALL HNDISP<HNTXTr10t10r11 
CALL FRAHE<870 •• 733.r101 

2 CALL LHTARA 
CALL HNPICK(JtiCHARtHNOI 
IF<J.E0.4.AND.ICORD.E0.21GOTO 2 

17 CALL CONFRH<ICHARI 
IF<ICHAR.E0.781 GOTO 2 
IF<ICHAR.NE.891 GOTO 17 
GOT0(31r31t33r34o35r36r37r31r1rJ11rJ 

31 IC=J 
44 RETURN 
C PLOT THE ERROR REFERENCE CUfi~ 
33 NC.,O 

CALL DRAW<EPLOTtNCrStrS2rS3rS4tHSUHI 
NC=O 



GOTO 2 
C INPUT CURSOR COORDINATES 
34 CALL DISCOR<ICORDrSlrS2rS3rS4) 

GOTO 2 
C DISPLAY AXES ORIGIN 
35 CALL DISORG<SlrS2rS3rS4> 

GOT02 
C CUI\'1/E ZOOH I NG 
36 CALL EZOOH<XXrYYrCrS1rS2rS3rS4riC> 

GOTO (44rlr45r99r99r99r99)riC 
45 IPREV=O 

CALL OVRLAY<HODLl) 
99 IF<IC.EQ.5> IC=7 

IF<IC.EQ.4.0R.IC.EQ.6>STOf' 
IF <IC.EQ. 7>IC=9 
GOTO 44 

C AXES HARKING 
37 CALL AXSHRK<SlrS2rS3rS4) 

GOTO 2 
END 

c 
C ***********CUI\'IIE PLOTTING ROUTINE******************** 
c 

FUNCTION Ef'LOT<NCrSCL1rSCL2rSCL3rSCL4tNSUH) 
C I/0 COHHON DATA AREA 

COHHON/DATSUP/Nf'StNPI (50), IFREESrX(50), Y (50) tL<50) riH <5> rH<5> 

380 

l. rHETHODt IHELPr IPREVr BOUND <2> rSUEISET, INTF'NT, IE <2> 
COHHON/CURVEFIT/COEr<50r6>rXCORD<200>rYCORD<200) 
DATA IDC/~123456789~/ 
LOGICAL*l IDC<9> 
IP=l 
Ir"1 
1=1 

C PLOT SUf'F~IED POINTS 
3 CALL f'LUSGN<SCLlrSCL2rSCL3tSCL4rXCORD<I>rYCORD<I>> 
2 CALL TXHOVE<XCORD<I>rYCORD<I>> 

Ir<I.EQ.NSUH)RETURN 
IP1"1P+1 
IP2=IP+NPI<Ir>+l 
DO 1 J=If'lr IP2 

1 CALL TXDRAW<XCORD<J>rYCORD(J)) 
Ir<Ir.NE.1.0R.NC.EQ.0) GOTO 4 

C CURVE NUHEIERING FOR SUf'ERIHf'OSED CURVES DISPLAY 
CALL DTEXT<XCORD<J-3)rYCORD<J-3>tiDC<NC)rl) 

4 IP=IP2 

c 

Ir=Ir+1 
I=I+Nf'I <Ir-1>+1 
GOTO 3 
END 

G****************ZOOHIN FOR SINGLE CURVE********************** 
c 

SUBROUTINE EZOOH<XXrYYrCrSCL1rSCL2rSCL3rSCL4riC> 
C INF~T COHHON DATA AREA 

COHI10N/DATSUf'/Nf'SrNPI (50) rlrREEStX <50>, Y (50) •L <50) r IH <5> tH(5) 
l. rHETHODr IHELPr If'REVrBOUND<2> tSUEISETr INTPNT, IE <2> 

COHHON/IO/INriOUT 
DATA HNTXT/"+ NEXT + PREVIOUS+ METHODS + AX. HARK+ HELP 

l.+ RESTART+ EXIT "/ 
DIHENSION XX<l) rYY<l> tCC50t6) tXO<SO> t'(0(50) tCX<2> 
LOGICAL*l HNTXT<70> 
CA!..L REHLNK<XOrYO> 



C SET WINDOW 
CALL LHTSCL<SCL1•SCL2•SCL3,SCL4> 
DY=<SCL4-SCL2>120 

· C SELECT WITH CURSOR F'ORTION OF CURVE TO BE ZOOtiED 
DO 1 I=h2 

CALL TXCURS<CXX,CYY,ICHAR> 
CX<I>=CXX 

118 CDY1=CYY+DY 
CDY2=CYY-DY 
IF<CDY1.GT.SCL4.0R.CDY2.LT.SCL2> GOTO 117 
CALL TXHOVE<CXX,CDY1> 
CALL TXDRAW<CXX.CDY2) 
GOTO 1 

117 DY=DY 12. 
GOTO 118 

1 CONTINUE 
C SORT SMALLER CXX 

IF<CX(1).LT.CXX> GOTO 2 
CX<2>=CX<1> 
CX<1> =CXX 

C DETERMINE WHICH INTERVAL 
2 IF1=0 

1=1 
3 IF<CX<1>.LE.XX<I>> GOTO 4 

IF1=IF1+1 
I=l+NPI <IF1l+1 
GOTO 3 

4 K1=I-NPI<IF1>-1 
IF2=0 
1=1 

S IF<CX<2>.LE.XX<I>> GOTO 6 
IF2=IF2+1 
I=I+NPI <IF2) +1 
GOTO S 

6 K2=I 
L2=K1+NF'I <IF1>+1 
00 7 I=Kl•L2 
IF<CX<1>.LE.XX<I>> GOTO 8 

7 CONTINUE 
8 K3=I-1 

L2=NPI <IF2> +1 
DO 9 Io•t.L2 

Ll=K2-I+l 
IF<CX<2>.GT.XX<L1>> GOTO 11 

9 CONTINUE 
11 K4=L1+1 
C SET UP THE ZOOHED DISPLAY 

CALL TXCLER 
CALL ALF'HHD 
WRITE<IOUT,10) 

10 FORHAT<"ZOOHING:-·) 
CALL LHTARA 
CALL HNOF'EN<87S.,71S.,1> 
CALL HNDISP<HNTXT•7•10•1> 
CALL FRAH£<870.,733.,7) 
Sl=XX<K3> 
S3=XX<K4> 
S2=YY<K3> 
S4=S2 
DO SO I=K3,K4 
IF<YY<I> .GT .S4) S4=vv'<I> 
IF<YY<I>.LT.S2> S2=YY<I> 

381 



50 CONTINUE 
CALL LHTSCL<S1tS2tS3tS4l 
CALL PFRAHE<S1tS2tS3tS4) 

C DRAW THE ZOOHED CURVE 
L1=K1+NPI<IF1)+1 
L2=K2-NPI<IF2>-1 
IF<L2.LT.L1l GOTO 77 
I=L1 

66 . CALL F~USGN<SltS2tS3tS4tXX<IltYY<Ill 
IF1=IF1+1 
IF<I.EO.L2l GOTO 77 
I=I+NPI <IF1l+1 
GOTO 66 

77 CALL TXHOVE<XX<K3l•YY<K3l> 
L1=K3+1 
DO 88 I=L1tK4 

121 CALL TXDRAW<XX<IltYY<I>> 
88 CONTINUE 
202 CALL LHTARA 

CALL HNPICK(JtiCHARtHNO) 
17 CALL CONFRH<ICHAR> 

IF<ICHAR.EQ.78) GOTO 202 
IF<ICHAR.NE.89) GOTO 17 
GOT0<414t414t414t404t414t2t414l•J 

C RETURING TO CALLING PROGRAH 
414 IC=J 

RETURN 
C AXES HARKING 
404 CALL AXSHRK<S1tS2tS3tS4) 

GOTO 202 
END 

c 
C ***************** NEWTON DIVIDED DIFFERENCE <GLOBLE>**************** 
c 

SUBROUTINE NEWTRF<NtN1tXl•Y1tXXtYYtC) 
DIHENSION N1<1ltX1(1ltY1(lltXX<1>•YY<1lrC(50t6) 

C COHPUTE THE POLYNOMIAL COEFFICIENT 
N2=N-1 
DO 1 K•t.N2 

J-N-K 
C(J+1t1)•(Y1<J+1l-Yl(J))/(X1(J+1l-X1(J)) 

1 CONTINUE 
55 C(lt1l •Y1<1l 

N3=N-2 
DO 2 J•t.N3 

K•J+2 
DO 3 L•KtN 

I=N-L+K 
XXX•X1<I>-Xl<I-<J+l)) 
C<Ir1l•<C<Ir1l-C(I-1t1))/XXX 

3 CONTINUE 
2 CONTINUE 
C EVALUTE INTERPOLATION FUNCTION 
66 IP•l 

DO 4 Iat.N2 
T1=X1(I+1l-X1<I> 
R1 .. T11<N1<I)+l> 
IP1•If'+N1 <I>+l 
XX<IP>•Xl<I> 
Z=X1 <I> 
XX<IPll=Xl<I+l> '• 
yy <If') =0 

382 



yy (lf•l) =0 
N11=N1 <I> 
DO 5 K=lrNll 

XX<If'+K)aZ+Rl 
Z=Z+Rl 
A=C<Nr1> 
DO 7 L=1 rN2 

J=N-L 
A=C<Jrl)+(Z-X1(J))IIA 

7 CONTINUE 
77 YY<IP+K>=A-YY<IP+K) 
5 CONTINUE 

IP=If'l 
4 CONTINUE 

c 

RETURN 
END 

C **************** OUTF'UT COEFFICIENTS************************ 
c 

SUBROUTINE OUTCOF<NCOEFriPNTRrMETHODrCriDEVl 
DIMENSION C<50r6) 
I=IPNTR 
CALL CURPOS<l.r580.) 
IF<METHOD.EQ.2) 60TO 1 

C OUTPUT TABLE HEADER 
WRITE< IDEVr 10> 

10 FORMAT<" I"r7Xr"Cl"r11Xr"C2"r11Xr"C3"r11Xr"C4"/) 
C OUPUT SF'LINE COEFFICIENTS SOFT/HARD COPY 
3 DO 5 J=1rNCOEF 

40 
5 

WRITE<IDEVr40lirC(IrllrC<Ir2lrC<Ir3lrC<Ir4l 
I"I+l 
FORKAT<I2r4<2XrE11.4l) 

CONTINUE 
GOTO 7 

C OUTFUT PIECEWISE POLYNOMIAL COEFFICIENTS 
1 WRITE<IDEVr20> 

383 

20 FORMAT(" I"r8Xr"Cl"r8Xr"C2"rBXr"C3"r10Xr"C4"r10Xr"C5"r9Xr"C6"/) 
DO 6 J=lrNCOEF 

WRITE<IDEVr50lirC<Ir1lrC<Ir2lrC<Ir3lrC<Ir4lrC<Ir5)rC<Ir6) 
I•I+1 

50 FORHAT<I2rE11.4r4(XrE11.4lrE11.4l 
6 CONTINUE 
7 RETURN 

END 
c 
C***************OUTPUT A PAGE OF THE TABLE*****It¥*********"******** 
c ' 

SUBROUTINE OUTF·GE <Nf'OINT, If'NT, XX, YY, lDEVl 
DIMENSION XX<llrYY<ll 
CALL CURf'OS <1 • , 710. l 

C OUFUT A PAGE OF TABLE OF THE INTERPOlATED POINTS 
WRITE <IDEVr 10> 

10 FORMAT(//" I"r7Xr"X<Il"rBXr"Y<I>"r7Xr" I"r5Xr"X<ll"rBXr"Y<Il"/) 
IF <NPOINT /2112.LT .Nf'OINT> GOTO 4 
IPNT1=If'NT+NPOINT/2 
60TO 2 

4 IPNTl=If'NT+Nf'OINT /2+1 
2. DO 3 I=2rNf'OINTr2 

WRITE <IDEVr20l If'NTrXX <IPNT>, YY <If'NT> rlPNTl, XX <IPNTll, YY <If'NT1l 
1F'NT=If'NT+1 
lf'NT1=IPNT1+1 
IF <I+1.NE.Nf'OINT> GOTO 3 



WRITE<IDEVt30) IPNTtXX<IPNT> tYY<IPNT> 
3 CONTINUE 
20 FORHAT<2<I2t2Xt2<E11.4t3X>>> 
30 FORHAT<I2t2Xt2<E11.4t3X>> 

RETURN 
END 

c 
C****************** OUTPUT THE TITLE OF THE DISPLAY******** 
C *******AND THE COHHAND HENU*************** 
c 

SUBROUTINE OUTTIL<ICtiTEHtiDEV> 
C HENU ITEHS 

384 

DATA HNTXTl/"+ NEXT + PREVIOUS+ HAADCOf'Y+ COEFF'NT+ FORWARD 
~+BACKWARD+ HELP +RESTART+ EXIT "/ 

DATA HNTXT2/"+ NEXT + PREVIOUS+ HARDCOPY+ FORWARD + BACt>.WARD 
~+ HELP + RESTART + EXIT "/ 

LOGICAL*l HNTXT1(90>•HNTXT2<80> 
CALL TXCLER 
IF<IC.EQ.2> GOTO 2 

C OUTF'UT THE INTERPOLATED f•OINTS 
WRITE ( IDEVt 10> 

10 FORHAT<"COHPLETE TABLE OF THE INTERPOLATED POINTS:-") 
GOTO 3 

2 WRITE<IDEVt20) 
20 FORHAT<I//" POLYNOMIAL COEFFICIENTS:-"////) 
3 CALL HNOPEN<875.,715.t1) 

IF<IC.E0.2> GOTO 22 
CALL HNDISP<HNTXT1,ITEttt10•1> 
GOTO 4 

22 CALL HNDISP<HNTXT2,ITEHt10,1> 
4 CALL FRAttE<870.,733.riTEH> 

RETURN. 
END 

c 
C ***********INF'UT COHttON DATA FOR SUf'ERIIif'OSED DISPLAY********** 
c 

SUBROUTINE RDCRVS 
COHttON/CURVES/NCRV <10> rXYSCL <4>. 
REWIND 7 
CALL SETFIL (7, "SUPCI\'VES") 
READ<7,10><NCRV<I>•I=1•10> 
READ(7,20><XYSCL<I>ti=1r4> 

10 FORHAT < I2) 
20 FORttAT<F11.4> 

c 

ENDFILE 7 
RETURN 
END 

C********** DISPLAY THE SUf'ERIHF'OSED CURVES********************** 
c 

SUBROUTINE SREDRW<N,N1tNCrXX,YYtHSUHrSCLltSCL2rSCL3,SCL4> 
DIHENSION N1<1>,XX<1>•YY<1> 
READ(9,25lHSUHrN 
N2zN-1 
READ<9,30l<XX<I>•YY<I>•I=ltHSUH> 
READ(9r20><Nl<I>•I=1rN2) 

3() FORHAT<F11.4) 
. 20 FORHAT <13) 
25 FORHAT<2I3> 

f'C~ Ef'LOT<NCrSCLl•SCL2,SCL3,SCL4,HSUH> 
RETURN ,. 
END 



C ********* FIND TOTAL NUMBER OF INTERPOLATED POINTS*X********** 
SUBROUTINE SUK(N,N1,HSUH) 
DIHENSION N1 <1) 
HSUH=O 
N2"'N-1 
DO 1 I=t.N2 

1 HSUK=HSUH-tN1<U 

c 

HSIJH=HSI.Itt+N 
RETURN 
END 

C***********WRITE COKHOH BLOCK CURVES************* 
c 

SUBROUTINE WRCRVS 
COHHON/CURVES/NCRV(10)•XYSCL(4) 
REWIND a 
CALL SETFIL<a,·sUPCRVES") 
WRITE<a•10)<NCRV(I),I=1•10) 
WRITE<a•20)(XYSCL(I),J=1•4) 

10 FORHAT<12) 
20 FORHAT<F11.4) 

ENDFILE a 
RETURN 
END 

385 



c ***************** 
C * APPENDIX 2.26 * 
c ***************** 
c 
C THIS HODULE HANDLES THE JOIN DISPLAY AND ITS SUBSEQUENT ZOOMING 
c 
c 
c 
C ********* MAIN PROGRAH - MODULE 6 **************** 
c 

COHHON/JOIN/CJ1(500)rCJ2(~00)rJ3<12)rJ4<100>riF~TR<6> 

COHHON/IO/INriOUT 
DATA t10DL4rt10DL1 rHELP/"MOD4• r •EXPLICIT• r •HELF·· I 
LOGICAL*l HODL4<10) rHODL1<10) rH£LF•<10) 
IN=5 
IOUT=6 
CALL TXOF'EN 
CALL RDCOHJ 
CALL JOIN<CJ1rCJ2rJ3rJ4riPNTRriC) 
GOT0(2r3r1r1r1r1r7r1r8r1rl)riC 

C PROGRAM TERMINATES 
1 CALL EXIT 
C NEXT DISPLAY 
2 STOP 
C PREVIOUS DISPLAY 
3 CALL OVRLAY <HODL4) 
C ALGORITHM DISPLAY 
7 If'REV=O 

IHELP=O 
CALL WRCOM1 
CALL OVRLAY<HOD1) 

C HELP DISPLAY 
8 CALL WRCOHJ 

c 

CALL OVRLAY<HELP) 
STOP 
END 

C***************JOIN DISPLAY*************************** 
c 

SUBI\"OUTINE JOIN<XJr YJrJJ3rJJ4r If'NTRr IC) 
COHHON/IO/INriOUT 

C HENU ITEMS 

386 

DATA HNTXT/•+ NEXT + F~EVIOUS+ GRAPH + COORDS. + UISP.ORG 
~+ ZOOM + METHOD + AX. HARK+ HELP . + RESTART + EXIT •1 

DIMENSION XJ(1)rYJ<1)rJJ3(1)rJJ4(1)riPNTR<1)tJt11<11) 
LOGICAL*l .t1NTXT<110) 
EXTERNAL JF'LOT 

C NUMBER Of CURVE SEGMENTS TO BE JOINED 
JMl <1) =IF'NTR (1)-2 
IT=O 
K=2*JM1<1) +1 

C COMPUTE TOTAL NUMBER Of·f'OINTS 
DO 1 I=3r~~r2 

JMl<I-1>=0 
K1=JJ3<1+1) 
K2=JJ3<I+1)+JJ3<I>-2 
DO 12 J=K1tK2 

JH1<I-1)=Jt11(I-1)+JJ4(J) 
12 CONTINUE 

JM1<I-1>=Jt11<I-1)+~J3<I> 

JM1 <I>=JJ3<I+1> 



IT=IT+JI11 <I-1) 
1 CONTINUE 

11SUI1=IT-JI11(1)+1 
C SCALES FOR F'LOTTING THE JOINED CURVES 

CALL 11IN11AX<S1,S2,S3,S4,XJ•YJ,HSUI1) 
11 CALL TXCLER 

ICORD=O 
WRITE<IOUT•10) 

10 fORHAT<"JOINED CURVES!-") 
C OUTPUT MENU 

CALL 11NOF'EN<B7S.,71S.,1) 
CALL 11NDISP<HNTXT,11•10,1) 
CALL FRAHE<B70.,733.,11) 

2 CALL LHT ARA 
C CURSOR CHOICE 

CALL HNPICK<J,ICHAR,HNO> 
If(J.E0.4.AND.ICORD.E0.2)GOTO 2 

17 CALL CONFRH<ICHAR> 
IF<ICHAR.E0.78) GOTO 2 
IF<ICHAR.NE.89) GOTO 17 
GOT0<21•21•23•24,25•26•21,28,21,11•21>•J 

21 IC=J 
F.:£ TURN 

C F'LOT THE CURVES 
23 CALL DRAJJ(JPLOT•R,St.S2,S3,S4.JH1) 

GOTO 2 
C CUI\'SOR INPUT COORDINATES 
24 CALL D1SCOR<ICORD,S1,S2•S3•S4> 

GOTO 2 
C DISPLAY ORIGIN 
25 CALL DISORG<S1,S2,S3,S4) 

GOTO 2 
C ZOOHING 
26 CALL JZOOH<JHt.XJ, '( J•JJ4, IF'NTR• St.S2,s3,S4.XC) 

GOT0<27•11•27•29,27•26•29>•IC 
GOT02 

C AXES HARKING 
28 CALL AXSHRK<S1,S2,S3,S4> 

GOTO 2 
29 STOP 
27 If<IC.E0.3)J.,7 ·, 

If<IC.ECI.S)J=9 
GOTO 21 
END 

c 
C***************ZOOHING IN JOINED CYRVES********~********** 
c 

SUBROUTINE JZOOH<JH1 ,xJ, YJ,J4, IF'NTR,SCL1 ,SCL2•SCL3,SCL4• IC) 
COHHON/10/IN,IOUT 
DATA HNTXT/"+ NEXT + PREVIOUS+ METHODS + AX. HARK+ HELP 

~+RESTART+ EXIT "/ 

387 

DIMENSION JH1<1) ,XJ<1> •YJ<1> .J4<1) •IF'NTR<1) ,cX<2> •LIH2> ,N11 <2> ,111 <2> 
LOGICAL*l 11NTXT<70> 
CALL LHTSCL<SCL1•SCL2•SCL3,SCL4) 
DY=<SCL4-SCL2)/20 
DO 1 I=t.2 
C.ALL TXCURS<CXX•CYY•ICHAR> 
CX<I> =CXX 
CALL TXHOVE<CXX,CYY+DY> 
CALL TXDRAW<CXX,CYY-DY> 

1 CONTINUE 
C SORT FOR SHALLER CXX 



IF<CX<1>.LT.CXX> GOTO 2 
ex <2> ~ex <1> 
CX(1) =CXX 

C DETERHINE WHICH SUBSET 
2 DO 11 J=1r2 

K=JHl <1) 
3 DO 4 I=1rK 

IF<I.EO.K> GOTO 5 
IF<CX<J>.LE.XJ<IPNTR<I+2>>> GOTO 5 

4 CONTINUE 
5 LB<J>=I 
11 CONTINUE 

DO 9 J=lt2 
Hl<J>=JH1<2*LB<J)) 
N11<J>=JH1<2*LB<J>+1) 

9 CONTINUE 
I=IPNTR<LB<l>+l) 
IF1=N11 <1>-1 

71 IF<CX<1>.GT.XJ(l)) GOTO 7 
K11=I 
K1=I-J4 <IFU-1 
GOTO 9 

7 IF1•IF1+1 
I=I+J4(IF1>+1 
GOTO 71 

9 I=IPNTR<LB<2>+1) 
IF2=N11<2)-1 

91 IF<CX<2>.GT. XJ<I>> GOTO 91 
K2=I 
GOTO 101 

91 IF2=IF2+1 
I=I+J4'( IF2) +1 
GOTO 91 

101 L2=K1+J4<IF1>+1 
DO 22 I•KltL2 
IF<CX(1).LE.XJ<I>> GOTO 23 

22 CONTINUE 
23 K3=I-1 

L2=J4 <IF2>+ 1 
DO 24 I•ltL2 
L1=K2-I+1 
IF<CX<2>.GT.XJ<L1>> GOTO 25 

24 CONTINUE 
25 K4"'L1 +1 
12 CALL TXCLER 

CALL ALPHHD 
WRITE<IOUTr20) 

20 FORHAT<.ZOOHINGI-") 
CALL LHTARA 
CALL HNOF'EN <975. r 715. r 1) 

CALL HNDISP<HNTXTr7r10r1) 
CALL FRAHE<970.r733.r7) 
Sl•XJ<K3) 
S3=XJ(K4) 
S2=YJ<K3) 
S4=S2 
DO 50 l=K3rK4 
IF<YJ<I>.GT.S4> S4=YJ<I> 
If' <YJ<I> .LT .S2> S2=YJ<I> 

50 CONTINUE 
C DRAW THE ZOOHED CURVE ', 

CALL LHTSCL<SlrS2rS3rS4> 

388 



CALL PFRAME<S1,S2,S3,S4l 
IF<K11.EO.K2l GOTO 45 
IF3=1 
If'<LB<ll .EQ.LB<2l .AND. IF3.EO.ll GOTO 31 

33 IF<LB<1l.EQ.LB(2)) GOTO 32 
N3=J4<Ifll+1 
L1=K1+N3 
L2=IPNTR<LB(1)+2) 
I=L1 

35 CALL PLlEGN<S1,S2,S3,S4,XJ<Il,YJ<Ill 
Ifl=Ifl+1 
IF<I.EO.L2) GOTO 66 
I=I+J4<Ifll+1 
GOTO 35 

66 LB(1)=LB<1>+1 
N11<1l=JH1<2*LB<ll+ll 
K1=L2 
GOTO 33 

32 N3=J4<IF1l+1 
LlcL2+N3 
N4•J4 <If2) +1 
L2=K2-N4 

40 IaLl 
37 CALL PLUSGN<S1,S2,S3,S4,XJ<Il•YJ<Il) 

Ifl=IF1+1 
IF<I.EO.L2l GOTO 45 
I=I+J4<1Fll+1 
GOTO 37 

31 N3=J4<1Fll+1 
Ll=K1+N3 
N4=J4 <IF2l+ 1 
L2=K2-N4 
GOTO 40 

45 CALL TXHOVE<XJ<K3>•YJ<K3ll 
L1aK3+1 
DO 55 l=Lt.K4 

55 CALL TXDRAW<XJ<l>•YJ<l)) 
202 CALL LHTARA 

CALL HNPlCK<J,ICHAR,HNOl 
17 CALL CONFRH<ICHAnl 

IF <ICHAR.EQ. 78,) GOTO 202 
IF<ICHAR.N£.89) GOTO 17 
GOT0(41•41•41•404r41r12r41)rJ 

41 lC=J 
RETURN 

C AXES HARKING 
404 CALL AXSHRK<Sl,S2rS3rS4) 

GOTO 202 
END 

c 
C*************** PLOT JOitiED CURVES********************* 
c 

SUBROUTINE Jf'LOT<R•SCU,SCL2•SCL3•SCL4,JH1) 
C JOIN COMMON DATA AREA 

COHHON/JOIN/CJ1<500) •CJ2<500l •J3 <12) ,_J4 (100), lf'NTR (6) 

DIMENSION JM1<1l 
J=3 
H=O 
K"JH1<1l 
DO 1 I=l•K 

~=H+JM1<J-1l-I+1 

•ll=JHl <Jl 

389 



lf'=IPNTR<I+1> 
IP1=IP 
Kl=IP 
If'l=Nl 

C OUTPUT SUPPLIED POINTS 
4 CALL f'LUSGN<SCL1tSCL2tSCL3tSCL4tCJ1<K1) tCJ2<K1» 

CALL TXHOVE<CJ1<Kl)tCJ2<K1>> 
IF<Kl.EQ.H) GOTO 3 
L11=1P1+1 
L22=IF'l+J4 <IFl> +1 

C OUTF'UT INTERPOLATED POINTS 
DO 2 Ll=L11tL22 

CALL TXDRAW<CJ1<Ll>tCJ2<L1>> 
2 CONTINUE 

IP1=L22 
IF1=IF1+1 
Kl=Kl+J4<IF1-1>+1 
GOTO 4 

3 J=J+2 
1 CONTINUE 

RETURN 
END 

" 

390 



391 

APPENDIX 2. 3 

THE IDF - PARAMETRIC PACKAGE 



c ***************** 
C * APPENDIX 2.31 * 
c ***************** 
c 
C THIS MODULE HANDLES THE FOLLOWING INTERACTIVE DISPLAYS:-
C 1. INTRODUCTORY 
C 2.CHOICE OF THE NUMERICAL ALGORITHM 
C 3.DATA ENTRY 
C 4.DATA TABULATION 
C S.DATA POINT EDITING 
c 
c 
c 
C ******** HAIN PROGRAM - HODULE 1 ************* 
c 
c 

392 

C INf'UT COHHON DATA AREA 
COHHON/DATSUP/NPStNPI<SO>•IFREEStX<SOltY<SOltZ<SO>•L<SO>•IH<Slt 

I. M<S> tMETHODt IHELP• IF'REVtBOUND (6) tSUBSETt INTPNT, IE <2> 
I. 'ID. 

COMHON/IO/INtiOUT 
DATA PHODL2tPHELP/"PHODL2"t"HELP"/ 
LOGICAL*1 PMODL2<10ltPHELP<10l 
INTEGER SUBSET 
IN=S 
IOUT"6 
CALL TXOPEN 

C READ INF'UT DATA IF NOT FOR THE FIRST TIH£ 
IF<IERROR<103).NE.OlGOTO 1 
CALL f'RDCM1 
IF<IHELP.NE.OlGOTO SS 
IF<IPREV.EQ.1) GOTO 21 

C CALL DISPLAYS SEQUENCE b-DATA ENTRY AND EDITING 
1 CALL INTROD<IC> 

GOT0<2t3000t1111l ~C 
2 CALL HENU<HETHODtlC~ 

GOT0<10tlt3000t1111tll11ltiC / 
CALL DATENT<ICtiA> "~---/ 10 

20 
GOT0<20t2t3000t1111t1111ltiC 
CALL DATHAN<IAriC> 
GOT0<1000t10t40t1111t1111t3000r1111t1111ltiC 

~0 CALL EDIT<ICtiA> 
C CALL BACK THE DATA MANIF'ILATION DISF'LAY 

IF<IC.GT.ll GOTO 20 
C NEXT DISPLAY IN SEQUENCE 
1000 IF'I\'EV"O 

IHELP=O 
CALL f'WRCM1 
Ct~L OVRLAY<f'MODL2l 

C HELF' DISF'LAY 
3000 CALL PWRCM1 

CALL OVRLAY<f'HELP> 
C TERMINATE PROGRAM 
1111 CALL f'EXIT 

STOP 
C LINK LIST UNCHANGED 
21 IPREV=O 

IHELP=O 
IA=111 
GOTO 20 

C RETURN F~~M HELP DISPLAY 
.. 



55 GOTO<lo2r10r21l riHELF' 
END 

c 
C ************INTRODUCTORY DISPLAY ***************************** 
c 

SUBROUTINE INTROD<IC> 
COMMON /IO/ INriOUT 

C HENU ITEMS 
DATA MNTXTt•+ NEXT + HELP 
LOGICAL*l HNTXT<30> 

C SET Uf' TH£ INTRODUCTORY DISPLAY 
CALL TXCLER 
CALL CURf•OS <1 • r 780. ) 
CALL TEXTUf'("f'RINTEXT"r3~) 
CALL HNOf'EN<87S.r71S.rl) 
CALL HNDISF'<HNTXTr3r10rl> 
CALL FRAME<870.r733.r3) 

2 CALL HNPICK<JriCHARrMNO> 
22 CALL CONFRM<ICHARl 

IF<ICHAR.EQ.78) GOTO 2 
IF<ICHAR.NE.89) GOTO 22 
IC=J 
1\'ETURN 
END 

c 

+ EXIT "I 

C**********DATA FITTING ALGORITHM******************** 
c 

SUBROUTINE MENU<MriC> 
C RETURNS ALGRITHM INDEX 

COMMON /IO/INriOUT 
C HENU ITEHS 

DATA HNTXTl t•+ NEXT 
LOGICAL*1 HNTXT1<SO> 

7 CALL TXCLER 

C OUTPUT TH£ ALGORITHM LIST 
WRITE<IOUTr10> 

+ PREVIOUS+ HELP + RESTART + EXIT 

10 FORHAT<.INDICATE YOUR CHOICE OF ALGORITHM:-") 
CALL HNOF'EN<875. r71S. r1> 
CALL DTEXT<20. r 700. r •***PARAMETRIC PACKAGE FOR INTERf'OLATORY 

~ DATA FITTING***"r55) 
CALL DTEXT<70.r6So.,•NUHERICAL ALGORITHHS:-"r22l 
CALL HNDISF'<HNTXT1r5r10r1> 
CALL FRAHE<870.r733.r5> 
CALL HNOF'EN<60.r600.r2> 

393 

CALL MNTEXT< •t-CUBIC Sf'LINE <f'AAAHETRIC SECOND LJERV. END CUNDIT Iml> • r 53) 
CALL MNTEXT("2-CUBIC SPLINE<CYCLIC END CONDITION)"r36) 
CALL HNTEXT<"3-CUBIC Sf'LINE<ANTICYCLIC END CONDITION> "r41) 
CALL MNTEXT<"~-CUBIC Sf•LINE<VARIABLE END CONDITION>"rJ9) 

C SET Uf' CURSOR FOR MENU CHOICE 
1 CALL MNF'ICK<I! ICHARrHNO> 

IF<HNO.EQ.l)GOTO 3 
M= I 
GOTO 1 

3 CALL CONFRM<ICHAR) 
IF<ICHAR.EQ.78) GOTO 1 
IF<ICHAA.NE.89> GOTO 3 
IF<I.EQ.4>GOTO 7 
IC=I 
RETURN 
END 

c 



394 

C***X********DATA ENTRY DHSF'LAY ROUTINE********************* 
c 

SUBROUTINE DATENT<ICriA> 
C DATA ENTRY DISPLAY 
C INF'UT COHHON DATA AREA 

COHI10N/DATSUF'/Nf'SrNPI <50) r IFREESrX (50) r Y (50) r Z (50) rL<50> r IH (5) 
rl1<5> rMETHODr IHELPr IPREVr BOUND<6> rSUBSET r INTPNT r lE <2> 

riD 
COMMON /10/INrlOUT 

C MENU ITEHS 
DATA HNTXTl/"+ NEXT + f'REVIOUS+ HELP 
DATA HNTXT2t•+ NEW + OLD 

+ KEYBOARD+DISC FILE•/ 
LOGICAL*l HHTXT1<50)rHNTXT2<BO> 
INTEGER SUBSET 

C SET UP DATA ENTRY DISF'LAY 
23 CALL TXCLER 

WRITE<IOUTrlO> 
10 FORHAT<.DATA ENTRY:-•) 
C OUTPUT INSTRUCTION TO THE USER 

CALL CURF'OS <1. '700. ) 
WRITE<IOUTr11) 

+ RESTART + EXIT 
+ 2-DIHEN.-t :;-DIHHl. 

11 FORHAT<.SELECT THE AF'PROPRIATE./"DATA SPECIFICATION(*)!-·) 
WRITE<IOUTr1222> 

1222 FORHAT(///2Xr·1-STATE OF DATAI-"///2Xr"2-0IMENSIONALITYI-"/// 
2Xr•3-DATA HEDIUH ENTRY:-") 

WRITE <I OUT r 20> 
20 FORHAT<I/////////////1"* IF 'OLD' IS SELECTED YOU HAY PROCEED"/ 
4 • TO NEXT DISPLAY IMMEDIATELY .OTHERWISE "/ 
& • YOU HUST SELECT THE DESII\'ED HEDIUtl" > 
C DISPLAY HENUrRAISE CURSOR 4 WAIT FOR USER ACTION 

CALL HNOPEN<875.r715.r1) 
CALL HNDISP<HNTXT1r5r10r1> 
CALL FRAH£(870.r733.r5) 
CALL HNOPEN<320.r600.r2) 
CALL HNDISP<HHTXT2r8r10r2) 
CALL FRAHE<315.r620.r8> 
CALL TXHOVE<315.r570.> 
CALL TXDRAW<460.r570.) 
CALL TXHOVE<315.~500.) 
CALL TXDRAW<460.r500.) 
NFLAG=l 
HD =0 
IS =0 

l 

5 CALL HNPICK<JriCHARrHNO> 
C FIRST OR SECOND MENU 

IF<HNO.EO.ll GOTO 2 
IF<IS.E0.2.0R.NFLAG.EO.O.OR.J.E0.3.0R.J.EQ.6) 
IF<J.LT.3> GOTO 7 
IF<J.LT.6> GOTO B 
HD=J 
CALL CURF'OS<1.r400.> 

GOTO 5 

3 CALL HESSAG<"~ NUMBER OF DATA POINTS<HAX.!iO>?"") 
READ<INr30>N 

30 FORHAT<GO.Ol 
IF<N.GT.50.0R.N.LT.3> GOTO 3 
tlPS=N 
IF<J.EO.B>GOTO 1010 
WRITE <I OUT r 40> 

40 FORHAT<Ir"~ X-COORDS.I-") 
IF<IERROR<llOl.NE.O>GOTO 100 

35 READ<INr50><X<I>ri=lrN> 

·; 



50 FORHAT<50G0.0) 
WRITE <I OUT, 70) 

70 FORHAT(/r"O Y-COORDS.:-") 
IF<IERROR(110l.NE.OlGOTO 110 

65 READ<INrSO)<Y<Ilrim1rN) 
IF<ID.NE.3) GOTO 333 
WRITE<IOUTr80l 

80 FORHAT(/r"O Z-COORDS.:-·) 
IF<IERROR<110l.NE.Ol GOTO 120 

75 READ<INr50l<Z<Ilri=1rN) 
333 IHELF'"3 

GOTO 5 
8 IF<J.E0.4) ID=2 

IF(J.EQ.5) ID=3 
GOTO 5 

100 WRITE <I OUT' 105) 
105 FORHAT<"ILLEGAL X-COORDS.rTRY AGAIN") 

ENDFILE 5 
GOTO 35 

110 WRITE<IOUTr115> 
115 FORHAT<"ILLEGAL Y-COORDS.rTRY AGAIN") 

ENDFILE 5 
GOTO 65 

120 WRITE<IOUTr118> 
118 FORHAT<"ILLEGAL Z-COORDS.rTRY AGAIN") 

ENDFILE 5 
GOTO 75 

2 CALL CONFRH<ICHAR> 
IF<ICHAR.EQ.78> GOTO 5 
IF<ICHAR.NE.89lGOTO 2 · 
IF(J.E0.4lGOTO 23 
IF<NFLAG.EQ.l.AND.J.E0.1.AND.HD.EQ.O) GOTO 5 
IC•J 
IF(J.E0.1.AND.ID.EQ.O) GOTO 5 
RETURN 

1010 IFLG=O 
C NEW DATA POINTS 

IA=O 
CALL GETFLN<FILE) 
CALL READAT <FILErXr YrZrNF'Sr IFLGr ID> 
IF<IFLG.E0.1lGOTO 1010 
IF<IFLG.E0.2lGOTO 3 
GOTO 5 

313 ENDFILE 5 
GOTO 3 

C NEW DATA f•OINTS 
7 IA•O 
C OLD DATA f'OINTS 

1F(J.EQ.2) IA•111 
IS=J 
IF(J.E0.2.AND.HD.GT.O) GOTO 5 
1F(J.E0.2.AND.HD.E0.0) GOTO 12 
IF(J.EQ.1) GOTO 5 

12 NFLAG=O 

c 

GOTO 5 
END 

C *************DATA f'OINTS TAilULATION DISf'LAY**************** 
c 

SUBROUTINE DATHAN<IAtiCl 
C INF'UT COMMON DATA AREA 

COHHON/DATSUf'/Nf'SrNf'I (50) • IFREEStX (50> • '((50>, Z (50) tL<50), IH(5) 

395 



396 

l. •11<5) •I1ETHOD.IHELP.tf·REV•Il0UND<6l ,SUIJSET.Xtnf'IIT• IE<2> 
l. •ID 

C011110N/IO/IN•IOUT 
C HENU ITEHS 

DATA HNTXTI"+ NEXT + PREVIOUS+ EDIT + SORT-X + SAVE 
l.+ HELP +RESTART + EXIT "/ 

DIMENSION XO<SO>,YO<SOl,Z0(50) 
LOGICAL*1 HNTXT<80) 
INTEGER SUIJSET•S 

C NEW/OLD? 
22 IF~IA.EQ.111lGOT07 

111 N*NPS-1 
C SET LINK LIST 

1.10 1 I=t.N 
1 L<ll•I+1 

L<NPS>=O 
IFREES=Nf'S+1 
DO 2 Iat.S 

2 H<I>•10*I 
S=O 
DO 3 I=t.S 

IH<I)cS•10+1 
3 S"S+1 
C SET DISF~AY HENU AND DATA POINTS TAilLE 
7 CALL TXCLER 

WRITE <lOUT• 10) 
10 FORHAT<"TABULATION OF DATAl-") 

CALL t1NOPEN<875.•715.,1) 
CALL t1NDISP<HNTXT•8•10•1l 
CALL FRAHE<870••733.,8l 
CALL TABLE 
1HELP•4 

C SET UP CURSOR HENU f•ICKING 
4 CALL HNF'ICK (J, ICHAR,HNOl 
77 CALL CONFRH<ICHARl 

lF<ICHAR.E0.78lGOTO 4 
IFCICHAR.NE.89l GOTO 77 
IF<J.E0.4l GOTO 44 
IF <J.EQ.Sl GOTO 444 · 
IF<J.E0.7) GOTQ 22 
IC,.J 
RETURN 

C SORT DATA POINTS IN X 
44 CALL PRHLNK<Xo,yo,zo> 

CALL SORTX<Xo,yo,zo,NPS•ID> 
DO 101 I•1•NPS ·r 

X<I>•XO<I> 
Y <Il•YO<I> 

C THREE-DIMENSIONS 
IF<ID.EQ.3l Z<Il=ZO<Il 

101 CONTINUE 
GOTO 111 

C SAVE DATA POINTS ON DISC FILE AS USER REQUEST 
444 CALL PRHLNK<xo,yo,zo> 

c 

CALL SAVE<Xo,yo,zo,NPS,IDl 
GOTO 4 
END 

C***********EDIT DISPLAY************************** 
c 

SUBROUTINE EDITCIC,{A) 
C INPUT C011HON DATA AREA 



COMMON/DATSUP/Nf'SrtlPIC50hlfREESrXC50l rYC50l rZC50l rl<50l rlH<5l r 
~ M (5) r MElHODr IHELPr IPREVr BOUND (6) r SUBSET r INTF'NT r lE <2> 
~ riD 

COMHON/10/INriOUT 
C MENU ITEMS 

DATA MNTXT/"+ NEXT + PREVIOUS+ CORRECT + DELETE + INSERl 
~+RESTART+ EXIT "/ 

DIMENSION AC41l 
INTEGER SUBSET 
LOGICAL*1 MNTXTC70l 

1 CALL TXCLER 
C SET UP DISPLAY 

WRITECIOUTr10) 
10 FORMATC"DATA POINTS EDiliNG:-") 

CALL MNOF·ENC875. r715. r 1l 
CALL MNDISF'<MNTXTr7r10rll 
CALL FRAHEC870.r733.r7) 

C RAISE CURSOR READY FOR USER INTERACTION 
77 CALL MNPICKCJriCHARrMNOl 
88 CALL CONFRH<ICHARl 

IFCICHAR.E0.78l GOTO 77 
IFCICHAR.NE.89l GOTO 88 

C TRANSFER CONTROL TO APPROPRIATE CODE IN THE PROGRAM 
GOTOC30r30r40r50r60r1r70)rJ 

30 CALL Uf'DATE 
C RETURN TO MAIN PROGRAM 

IC =J 
GOTO 114 

C CORRECT DATA POINTS 
40 WRITECIOUTr20l 
20 FORHATC////"CORRECTION:-·) 
C PROMPT USER FO~ INPUTING EDITTUIG UlFORMATION 
5 CALL MESSAGC"t NUMBER OF DATA POINTS<MAX.10l?""l 

READ<INr45l H2 
45 FORHATCGO.O) 

IF<M2.GT.10lGOTO 5 
221 IFCID.E0.3> WRilECIOUTr97) 

1FCID.E0.2l WRITE<IOUTr80l 
80 FORHAT<"t ENTER I r X r Yl") 
97 FORMAT<"~ ENTER I r X r Y • Z :") 

LAST=CID+1l*M2+1 
IF<IERRORC110l.NE.OlGOTO 222 
READCIN•90lCACilri=1•LASTl 

90 FORMAT C40GO. Ol 
ACLAST>=99 
CALL PCORCTCAl 
CALL UF'DATE 
G010 100 

C DELETE DATA POINTS 
50 WRITE<IOUTr110) 
110 FORHATC//1/"DELETION:-•) 
C USER INPUT DELETE INFORMATION 
7 CALL HESSAGC"t tlUMBER OF DATA POINTCMAX.30l?''") 

READ<INr45lH2 
IFCM2.GT.30lGOTO 7 

125 WRITE <I OUT r 130> 
130 FORHATC"~ ENTER I IN DESCENDING ORDER:") 

LAST=M2+1 
IFCIERRORC110>.NE.O>GOTO 333 
READCltlr90l <A <I> •l=l.LAST> 
A <LAST> =99 " 
IF<H2.EQ.1lGOTO 11 

397 



H1=H2-1 
DO 9 I=1rH1 

IF<A<Il.LT.A<I+1llGOTO 125 
9 CONTINUE 
11 CALL PDELET<A> 

CALL UPDATE 
GOTO 100 

C DATA POINTS INSERTION 
60 WRITE<IOUTr150) 
150 FORHAT(////*INSERTIONI-") 

398 

155 CALL HESSAG<"~ NUHBER OF DATA POINTS <HAX. 1 PER INTERVALrTOTAL 10?"") 
READ<INr<\5lH2 
IF<H2.GT.10) GOTO 155 

165 IF<ID.EQ.3lWRITE<IOUTr180) 
IF <ID.EQ.2l WRITE <IOUT r 170) 

170 FORHAT<"~ ENTER I ' X ' Y IN DESCENDING ORDER:") 
180 FORHAT<*~ ENTER I ' X , Y • Z IN DESCENDING ORDER:") 

LAST=<ID+1)*H2+1 
IF<IERROR<110l.NE.O>GOTO <\<\4 
READ<INr90l (A(Il •l=ltLASTl 
A<LASTl=99 
IF<H2.EQ.1lGOTO 190 
IFCID.EQ.3lLAST1=4•H2-7 
IF<ID.EQ.2lLAST1=3•H2-5 
ID1=ID+1 
DO 18 I=1•LAST1riD1 

IF<A<Il.LT.A<I+I~+l)) GOTO 165 
18 CONTINUE 
190 CALL PADD<Al 

CALL UPDATE 
100 IC=3 
114 IA=lll. 

RETURN 
222 LFLAG=1 
224 WRITE<IOUTt223l 
223 FORHAT<"WRONG INPUT I rTRY AGAitl") 

ENDFILE 5 
GOT0<221r125r16SltLFLAG 

333 LFLAG=2 
GOTO 224 

44<\ LFLAG=3 
GOTO 224 

70 STOP 
END 

c 
C********** H E L P D I S P l A Y *************lt***** 
c 
C INF'UT COHHON DATA AREA 

COHHON/DATSUP/NPSrNPI<50lriFREESrX<SOlrY<50),z<SOlrLC50lriH<Slr 
~ H<Sl rHETHODr IHELPr If'REVrBOUND <6) ,SUBSET r INTPNT, IE <2> 
~ riD 

COHHON/IO/INtiOUT 
C HENU ITEHS 

DATA HNTXT1r+ f'REVIOUS+ EXIT "/ 
C OVERLAY EXECUTABLE f'ROGRAH NALES 

DATA f'HODL1 'f'HODL2rf'HODL3rf'HODL4, PHODLSr f'HODL6rf'ARAHETRIC" 
~r"f'HODL2"r"f'HODL3"r"f'HODL4"r"PHODLS"r"f'HODL6"/ 

LOGICAL*1 HNTXT1 <20) rf'HODL1 <20l rf'HODL2<10l rPHODL3<10) 
LOGICAL•1 f'HODL4 <10l tf'HODL5<10l rf'HODL6 <10) 
IN=5 
IOUT=6 
CALL TXOPEN 



C GET INPUT FILE 
CALL PRDCI11 

1 CALL TXCLER 
C OUTPUT DISPLAYS TITLES 

WRITE (lOUT r 10) 
10 FORHAT (10Xr "**************** H E L f• ********************"/ 
~ //5Xr"THE FOLLOWING DISPLAY SEQUENCE CONSTITUTE THE COMPLETE"/ 
~ 5Xr"DATA FITTING PROCESS."// 

399 

~ 5Xr "YOU HAY ENTER ANY OF THESE DISPLAYS BY USltlG THE CROSS-HAIR"/ 
~ 5Xr"CURSOR ON THE T4010 OR TRACKING CROSS ON LIGHT PEN ON THE GT42 :-"/) 

CALL 11NOPEN<50.r540.r1) 
CALL HNTEXT("+ INTRODUCTION!- BRIEFLY GIVING THE USE OF THE SYST 

~EI1."r54) 
CALL HNTEXT ("+ ALGORITHMS I- LIST OF AVAILABLE INTERF'OLATORY HETH 

~ODS. • r55) 
CALL HNTEXT<"+ DATA ENTRYI- ENTER DATA POINTS INTO THE SYSTEM FR 

~OM DISC FL/KEYBD."r68) 
CALL HNTEXT<"+ TABULATION OF DATA POINTS:- INCLUDES EDITrSORT ~ 

~SAVE DATA POINTS."r68) 
CALL HNTEXT<"+ POLYGONAL f'LOTI- DATA POINTS JOINED BY STRAIGHT L 

~INE SEGHENTS."r64) 
CALL MNTEXT("+ PARAMETER ENTRY&- PARAHETERS REQUIRED BY PARTICUL 

'AR ALGORITHM."r65) 
CALL HNTEXT<"+ CURVE FIT:- DISPLAY OF THE SMOOTH CURVE INCLUDES 

~ZOOH OPTION •• ETC."r69) 
CALL HNTEXT ("+ CURVE DESIGN I- INTERHEDIATE f'OINTS SPECIFIED 

~ BY CURSOR POSITION."r66l 
CALL HNTEXT<"+ TABLE OF INTERF'OLATED POINTS:- ltlCLUDES OPTION FO 

~R COEFF.~HARDCOPY."r70) 

CALL MNTEXT<"+ SUPERIHF'OSED CURVE I- SIMULTANEOUS DISPLY OF SEVER 
~ CURVES"r63) 

CALL MNTEXT<"+ USAGE OF CONT!i:OL COHHAtlDSI- LIST OF ALL COMMAND U 
~SED HERE. • r59l 

CALL HNTEXT<"+ TERMINATE THE PROCESS:- EXIT FROM THE SYSTEM."r47l 
2 CALL HNPICK <I r I CHAR r HNOl 
3 CALL CONFRM<ICHARl 

IF<ICHAR.EQ.78) GOTO 2 
IF<ICHAR.NE.89) GOTO 3 
IF<I.GT.4l GOTO 5 

C OVERLAY THE APPROPRIATE MODULES 
IHELF'•I 
CALL PWRCM1 
CALL OVRLAY<PMODL1) 

5 IF<I.GT.6l GOTO 6 
IHELP=I-4 
CALL PWRCM1 
CALL OVRLAY<PMODL2> 

6 IF<I.LT.9.0R.I.GT.l0) GOTO 7 
IHELP=I-8 
CALL PWI\'CMl 
CALL OVRLAY (f'I10DL6) 

7 IF<I.EQ.7) CALL OVRLAY<Pl10DL4> 
IF<I.EQ.8) CALL OVRLAY(f'MODL5) 
IF<I.NE.12> GOTO 133 

C PROGRAM TERMINATE 
CALL PEX IT 
STOP 

C DISPLAY COMHAtlD USAGE DISPLAY 
133 CALL TXCLER 

CALL HNOPEN (875., 715., 1) 

CALL 11NDISP<HNTXT1t2rl0tll 
CALL FRAME<870.t733.t2l 



CALL ALF'HHD 
CALL CURPOS < 1 • '770. l 
CALL TEXTUf'(*PHELPTXT*t26l 

22 CALL HNPICK (J, I CHAR tHNOl · 
222 CALL CONFRH<ICHARl 

IF<ICHAR.E0.78l GOTO 22 
IF<ICHAR.NE.89) GOTO 222 
GOTO <lt 111ltJ 

111 CALL PEXIT 
STOf' 
END 

c 
C **********EDIT-INSERT FUNCTION**X************************** 
c 

SUBROUTINE PADD<C> 
C INPUT COHHON DATA AREA 

COHMON/DATSUP/NPStNPI<50ltiFREEStX<50ltY<50ltZ(50ltL(50ltiH<5lt 
~ H<5> tHETHODt IHELPt If'REVt BOUND (6) tSUBSET, HITPNT, 
~ IE<2ltiD 

DIHENSION C <41 l 
INTEGER SUBSET 

C ADD DATA f'OINTS AND UPDATE LINK LIST 
IP = IFREES 
ID1=ID+1 
DO 3 I=lt41tlD1 

C CHECK DATA POINTS TABLE INDEX 
IF<C<I>.E0.99) GOTO 2 
IF<C<Il .GT .Nf'SlGOTO 3 
IF<C<Il.EG.O>GOTO 4 
IC=C<I> 

C GET LINK LIST LOCATION OF THE DATA POINTS MID SET LINKS 
IS=INDEX<IC> 
L<IP>=L<IS) 
L<IS>=IP 
GOTO 5 
L<IP>=IH<t> 
IH<ll .. IP 

C NOW ADD POINT TO FREE LOCATION 
5 X(IPl=C<I+1l 

Y<IPl=C<I+2l 
C 3-DIHENSIONAL CURVE 

' IF <ID.EQ.3l Z <If') =C <1+3> 
IP•IP+1 
Nf'ScNPS+1 

3 CONTINUE 
C SET FREE LINK LIST POINTER 
2 IFREES=IP 

c 

RETURN 
END 

Clt**********EDIT - CORRECT***********X*************** 
c 

SUBROUTINE PCORCT<Cl 
C INPUT COHMON DATA AREA 

COHHON/DATSUP/NPStNPI<50ltiFREEStX(50ltY<50ltZ(50ltL<50ltiH<5lt 
& 11<5) tHETHODtlHELPt IF'REVt BOUND (6) tSUBSET, INTF'NTt 
~. IE<2ltiD 

DIHENSION C<41l 
INTEGER SUBSET 
1Dl=ID+1 
00 2 I=lt4t.ID1 

C CHECKS ENTRY OF CORRECTION OF DATA POINTS 

400 



IF<C<Il.E0.99lGOT03 
IF<C<Il.GT.NPSl GOTO 2 
IC=C <Il 

C GET LINK LIST LOCATION AND REPLACE f'OINT 
K=INDEX<ICl 
X<Kl=C<I+ll 
Y <K> ~c <I +2> 

C 3-D CUI\'\IE 
IF<ID.E0.3lZ<Kl=C<I+3l 

2 CONTINUE 
3 RETURN 

END 
c 
C************EDIT-DELETE**************************** 
c 

SUBROUTINE PDELET<Cl 
C INPUT COHHON DATA AREA 

COHHON/DATSUP/NPSrNPI<SOlriFREESrX<SOlrY<SOlrZ<SOlrL<50lriH<Slr 
& H<Sl rHETHODr IHELPr IPREVrBOUND (2) rSUBSET t INTf'NTt 
& IE<2lriD 

DIMENSION CC41lrXO<SOlrYO<SOlrZ0<50lrL0<50l 
INTEGER SUBSET 
DO 1 I=1r~1 

C CHECKS DATA POINTS TABLE INDEX 
IF<C<Il.E0.99lGOTO 3 
IFCC(Il.GT.NPSlGOTO 5 
IF<C<Il.E0.1l GOTO 4 
ICxC(Il-1 

C GET LINK LIST LOCATION AND DELETE DATA POINTS 
IS•INDEX(ICl 
L<ISl•L<L<ISll 
GOTO .1 

5 NPS•NPS+1 
GOTO 1 

4 IH<ll=L<IH<ll l 
1 CONTINUE 
3 NPS=NPS-I+1 

IFREES=IFREES-I+1 
C GARBAGE COLLECTION 

IP=IH <ll 
DO 6 K=ltNPS 

XO <K> =X <IPl 
YO<Kl•Y<IPl 
IF<ID.E0.3lZO<K>=Z<IPl 
LO<Kl=K+1 
IP=L<IPl 

6 CONTINUE 
DO 7 J=ltNf'S 

X<Jl=XOCJ) 
YCJl=YO(J) 
IF<ID.EQ.3lZ<Jl=ZO<Jl 
L(Jl=LO(J) 

7 CONTINUE 
L<Nf'Sl =0 
IS=O 
DO 9 K=1r5 

IH (10 =IS*10+1 
. IS=IS+1 

9 CO.'ITINUE 

c 

RETURN 
END 

401 



C ******************KEYBOARD ENTRY FILE NAHE******************* 
c 

SUBROUTINE GETFLN<NAHE> 
INTEGER NAHE<3> 

C GET FILE NAHE ~ SAVE IT IN AN INTEGER ARRAY 
CALL HESSAG(*~ DATA FILE NAHE<HAX.10 CHARACTERS)?•'*) 
READ(5t30)NAHE 

30 FORHAT<2A4tA2> 
RETURN 
END 

c 
C **************FINDS DATA f'OINT LOCATION ltl THE LINK LIST********** 
c 

INTEGER FUNCTION INDEX<INX ) 
C INPUT COHMON DATA AREA 

COHHON/DATSUP/NPStNF'I (50), I FREESt X (50), Y<50) ,z (50) tL<SO), IH<S>, 

402 

l H<5ltHETHODtiHELPtiPREVtBOUND<6),SUBSETtiNTPNTtiE<2> 
l •ID 

INTEGER SUBSET 
C FINDS WHICH PORTION OF THE LINK LIST? 

DO 1 Ja1t5 
IF<H<I>.GE.INX>GOTO 2 

1 CONTINUE 
2 IS=IH<I> 
C COMPUTE LOCATION 

INX=INX-<I-1>•10 
INX1=INX-1 
IF<INX1.EO.O> GOTO 55 
DO 3 Ialt INX1 

3 IS=L<IS) 
55 INDEX~IS 

c 

RETURN 
END 

C ***********DATA ENTRY FROH DISC FILE********************* 
c 

SUBROUTINE READAT<FLNAHEtAtBtCtNtiFtiDIH> 
DIMENSION A<1>•B<1>•C<1) 
INTEGER FLNAHE<3> 
1\'EWIND 9 

C OPEN INPUT FILE 
CALL SETFIL(9tFLNAHE) 
IF<IERROR(103)~NE.O>GOTO 99 

C NUMBER OD DATA POINTS 

20 
READ (9t20)N1 
FORHAT<I3) 
IF<N.GT.N1>GOTO 100 

C THREE - DIMENSIONS 
IF<IDIH.E0.3) GOT0333 
READ<9t10) <A<I> tiHI> ti=ltN> 
ENDFILE 9 
RETURN 

333 READ<9t10)(A(IltB<I>•C<I>•I=1tNl 
ENDFILE 9 
RETURN 

10 FORHAT<F12.4) 
99 ENDFILE 5 
101 IF=1 

RETURN 
100 IF=2 

RETURN 
END 



c 
C llllllllllttSAVE DATA POINTS ON DISC FILE*********************** 
c 

SUBROUTINE SAVE<AtB•C•N,IDIH> 
COHHON/IO/IN•IOUT 
INTEGER FILE(3) 
DIHENSION A<l>•B<l>•C<l> 

C GET FILE NAHE FROH THE USER THROUGH THE KEYBOAD 
WRITE<IQUT,10) 

10 FORHAT(//////////61X•"~FILE NAHE?"> 
CALL HESSAG < • 

READ<IN•20>FILE 
20 FORMAT< 2A4tA2> 
C OUTPUT DATA POINTS ON DISC FILE 

CALL WRTDAT<FlLE•A•B•C•N•IDIH> 
RETURN 
END 

c 
C•********SORT IN X COORDINATE************************ 
c 

SUBK~UTINE SORTX<X1•Yl,Zl•N•IDIH> 
DIHENSION X1<1>•Y1<1>•Z1<1> 
Nl=N-1 

C PERFORH QUICK SORT 
DO 3 I•t.Nl 

DO 2 J=I,N1 
IF<X1<I>.LE.X1<J+1))GOTO 2 
A1•X1 <I> 
B1=Y1 <I> 
IF<IDIH.E0.3)Cl•Z1<I> 
Xlil>•X1<J+1) 
Yl <I> •Yl (J+l> 
IF<IDIH.E0.3) Z1<I>=Z1<J+1> 
X1(J+1>.,A1 
Y1<J+1>=B1 

IF<IDIH.E0.3)Z1<J+1)cC1 
2 CONTINUE 
3 CONTINUE 

c 

K'ETURN 
END 

C************TABULATION OF DATA POINTS ROUTINE************* 
c 

SUBROUTINE TABLE 
C INPUT COHHON DATA AREA 

COHMON /DATSUP/NPS•Nf'I<50ltiFREES,X<50),Y(50>•Z<50),L(50),IH<5>• 

403 

I. M (5) ,METHOD.IHELP• IF'REV,BOUND (6) ,sUBSET, INTf'NTr lE <2> 
& .w 

COHHON /IO/IN•IOUT 
INTEGER S1,s2,SUBSET 
CALL CURf'OS<2.,710.) 

C 3-DIHENSION 
IF<ID.E0.3lGOTO 33 

C OUTPUT TITLE COLUMN 
WRITE<IOUT,10) 

10 FORMAT<" I",7x,·x<r>·,ax ,·v<r>"•7x.· r·.sx.·x<I>"•lox,·v<I>"I> 
GOTO 34 

33 WRITE<IOUTr40) 
40 FORMAT<" I" r3Xr"X<l> • r6Xr "Y<I> • ,sx,·z <I> • r3Xr • I" r3Xr "X <I>· r6Xr 
& "Y<I>",sx,·z<r>"> 
C GET STARTING POINTER 



34 S2=IH<H 

C 3-D 

S1=L<S2> 
IF<S1.NE.OlGOT012 

IF<ID.E0.3) GOTO 44 
WRITE<IOUT•11) X<S2>•Y<S2> 

11 FORMAT<" 1"•2X•2<E11.4•3X>> 
RETURN 

44 WRITE<IOUT,31>X<S2>•Y<S2>•Z<S2> 
31 FORMAT<" 1"•2<E9.2•X>•E9.2l> 

RETURN 
C OUTPUT TABLE ITEMS FROH THE LINK LIST 
12 DO 7 1~1,50•2 

J=I+1 
IF<ID.E0.3l GOTO 55 
WRITE<IOUT,20) l•X<S2>•Y<S2>•J•X<S1>•Y<S1> 

20 FORMAT<I2•2X•2<E11.4,3X>•I2•2X•2<E11.4•3X>> 
155 S2=L<S1> 

IF<S2.EO.O>GOTO 15 
s1~L<S2> 

IF<S1.NE,OlGOTO 7 
I•I+2 
IF<ID.E0.3) GOTO 333 
WRITE<IOUT•30l l•X<S2>•Y<S2l 

30 FORHAT<I2•2X•2<E11.4•3Xll 
GOTO 15 

7 CONTINUE 
15 RETURN 
55 WRITE<IOUT•120ll•X<S2l•Y<S2>•Z<S2l•J•X<Sll•Y<S1l•Z<S1> 
120 FORMAT<I2•2<E9.2•X>•E9.2•I2•2<E9.2•X>•E9.2l 

GOTO 155 
333 WRITEtiQUT,303)I,X<S2l•Y<S2>•Z<S2l 
303 FORMAT<I2•2<E9.2•X>•E9.2l 

GOTO 15 
END 

c 

404 

C tttttttt**ttttttttttUPDATE LINK LIST AFTER EDITINGtttttttttttttttttttt 
c 

SU~~TINE UPDATE 
C INPUT COHHON DATA ARE" 

COHHON/DATSUP/NPS,NPI<50l,IFREES,X<50>•Y<SO>•Z<50),L<SO>•IH<5l• 
& •H <5> •HETHOD• I HELP• If'REV• BOUND <6> •SUBSET, INTPNT, 
& IE<2>•ID 

INTEGER SUBSET 
IR.,IH<H 
DO 1 J~2•5 

DO 2 K"lrlO . 
IR=L<IR> 

IF<IR.EO.OlGOT03 
2 CONTINUE 

IH<J>=IR 
1 CONTINUE 
3 RETURN 

END 
c 
C tttttttttttttt SAVE DATA ON DISC FILE ******************************** 
c 

SUBROUTINE WRTDAT<FLNAHE•A•B•C•N•IDIH> 
DIMENSION A<1>•B<l>•C<1> 
INTEGER FLNAME<3l 
RE~'IND 9 

C OPEN OUTF'JT FILE 



CALL SETFIL<9rFLNAMEl 
WRlTE(9r20lN 

C 3-DIMENSION 
IF<IDIM.EQ.3l GOTO 333 
WRITE<9r10) at<Il rB<ll tl=1rNl 
ENDFILE 9 
RETURN 

333 WRITE<9r10l(A(llrB<IlrC<Ilrl=1rNl 
ENDFILE 9 
RETURN 

10 FORMAT<F12.4l 
20 FORMAT<I3l 

END 

405 



c 
c 
c 
c 

***************** 
* APPENDIX 2.32 * 
***************** 

C THIS HODULE HANDLES THE FOLLOWING INTERACTIVE DISPLAYS:-
C 1.POLYGONAL F~OT <2-D ONLY> 
C 2.PARAHETER ENTRY 
c 
c 
c 
C ********* HAIN PROGRAH - HODULE 2 ************* 
c 

406 

c 
c INPUT COHHON DATA AREA 

COHHON/DATSUP/NPSrNPI<SO>riFREESrX(50)rY<50>rZ<50>rL(50)riH<5>r 
H<S> rHETHODriHELPr IPREVritOUND (6) rSUBSET r INTPNT r lE <2> . 

riD 
COHHON/IO/INriOUT 

C OVERLAY EXECUTABLE PROGRAH NAHES 
DATA PHODL3rf'HODL1rPHELPrPHODL3"' "PARAHETRIC", "HELP"/ 
LOGICALI1 PHODL3(10>tPHODL1(20>rPHELP<10) 
INTEGER SUBSET 

C INPUT COHHON DATA 
CALL PRDCH1 
CALL TXOf'EN 

C TERHINAL INF'UT /OUTPUT CHANNEL 
IN"'5 
IOUT=6 
IF <I HELP. GT .1 > GOTO 6 
IF<IPREV.GT.1> GOTO 5 
IF<IPREV.ED.l.OR.ID.ED.3> GOTO 4 

C POLYGONAL DISPLAY 
3 CALL POLYGL<XtYtNF'SriC> 

GOT0<1t2t20t20t20t20r25t20t30)tiC 
C PREVIOUS DISPLAY 
2 IPREV•1 

IHELP=O 
CALL PWRCH1 
CALL OVRLAY <PHOQLl> 

C PARAHETER DISPLAY 
1 CALL f'ARHET <HETHODtSUBSET tiNTf'NTrBOUNDrNf'Sr I Er ID tiC> 

CALL CURPOS<410.r780.> 
GOTO<lOr31t25t1t30)tlC 

31 IF<ID.ED.2> GOTO 3 
GOTO 2 

C NEXT DISPLAY 
10 IPREV=O 

IHELP"'O 
C SAVE INPUT COHHON DATA 

CALL PWRCH1 
CALL OVI\~AY <f'HODL3) 

C PI\~RAH TERHINATE 
30 CALL f'EXIT 
20 STOP 
4 IPREV=O 

IHELP=O 
GOTO 1 

C HELF' DISPLAY 
25 CALL f'WRCH1 

CALL OVRLAY (f'HELf') ·· 
5 CALL ERRHES<IC> 



GOTO <1, 20> , IC 
C RETURN FROH HELP DISF~AY 
6 GOT0<3•1>,IHELP 

END 
c 
C tftlll************ POLYGONAL PLOT OF DATA POINTS•************* 
c 

SUBROUTINE POLYGL(ArB•N•IC) 
C PLOT THE DATA POINTS SUPPLIED AND JOINED THEH WITH STRAIGHT LINES 

COHHON/IO/IN•IOUT 
C Hf*«J ITEHS 

DATA HNTXTr+ NEXT + PREVIOUS+ GRAF'H + COORDS. + DISP.ORG+ 
~AX. HARK+ HELP +RESTART+ EXIT */ 

LOGICALlll HNTXT<90) 
DIHENSION A<l>rB<llrXO<SOlrYO<SO> 
EXTERNAL PF~OT 

C SET UP DISPLAY 
I CALL TXCLER 

ICORD=O 
WRITE<IOUT,10) 

10 FORHAT<*POLYGONAL PLOT a-*) 
C OOTf'UT HENU 

CALL HNOPEN<B75.r715.,1) 
CALL HNDISf'<HNTXTr9•10•1> 
CALL FRAHE<B70.,733.r9) 

C REHOVE LINKS 6. FIND SCALE VALUES 
CALL PRHLNK<XOrYO•ZO> 
CALL HINHAX<SlrS2,S3,S4,XO•YO,N) 

C SET UP CURSOR FOR USER HENU 
2 CALL LHTARA 

CALL HNF'ICK<J•ICHAR•HNO> 
IF<J.ED.4.AND.ICORD.ED.2)GOT02 

7 CALL CONFRH<ICHAR> 
IF<ICHAR.ED.78)GOTO 2 
IF<ICHAR.NE.89) GOTO 7 
GOT0<20•20•3•4r5r6•20•1•20),J 

C RETURN TO CALLING PROGRAH 
20 ICaJ 

RETURN 
C PLOT THE POLYGONAL OF THE DATA f'OINTS 
3 CALL DRAW<PPLOT•R,Sl,S2,S3rS4•N> 

GOTO 2 
C CURSOR INPUT COORDINATES 

4 CALL DISCOR<ICORDrSI•S2rS3rS4) 
GOTO 2 

C DISPLAY ORIGIN 
5 CALL DISORG<S1,S2rS3rS4) 

GOTO 2 
C AXES HARKING 
6 CALL AXSHRK<SlrS2•S3rS4) 

GOTO 2 
END 

c 
C *************** PARAHETER DISF'LAY ENTRY **"********************** 
c 

SUBROUTINE PARHET<HrSUBT,INTPNTrBrNriEriDIHriC> 
COHHON/IO/INriOUT 

C HENU ITEHS 

407 

DATA HNTXTl/*+ NEXT +PREVIOUS+ HELP + RESTART+ EXIT */ 
DATA HNTXT2/*+ SPECIFY+ DEFAULT + CURSOR */ 
DATA tiNTXT3r •. + CLAHf'ED + RELAXED + PARABOLA+ 0-SPLINE"/ 
DATA tiNTXT4/" + X-BOND'Y+ Y-BOND'Y+ Z-BOND'Y*/ 



LOGICAL*l MNTXT1<50),HNTXT2<30),MNTXT3<50),HNTXT4<40l 
INTEGER SUBT 
DIMENSION B<l>•IE<ll 

1 CALL TXCLER 
C DEFAULT VALUE SETTING 

INTPNT=O. 
DO 555 I=1.6 

S55 B<Il =0. 
112 IE<ll=l. 

C SET 
1011 
10 

IE<2l=l. 
UP THE DISPLAY 

WRITE <I OUT •10) 
FORMAT("PARAMETER ENTRYI-"/) 
GOTO <101•102•103r104)•M 

20 CALL CURPOS<1.,660.l 
C OUTPUT INSTRUCTION FOR USER TO TAKE APPI\'OPRIATE ACTIONS 

21 
a. 
a. 
a. 

15 
1433 
1333 
~ .. 

WRITE<IOUT,21) 
FORMAT<"SELECT THE APPROPRIATE OPTION FROM THE "/ 
"FOLLOWING PARAMETER SPECIFICATION<•> :-"/// 
6X,"1-CHOICE OF INTERMEDIATE"/ 
BX•"POINTS REQUIRED FOR SMOOTH DRAWING:-") 
IF<M.NE.4l GOTO 1221 
WRITE <IOUT •15) 
FORHAT(//6Xr"2-SELECT THE CONDITION") 
WRITE<IOUT,1333) 
FORMAT<7Xr" AT EACH END OF THE CURVE:-·; 

8Xr"N.B:- FIRST END , TYPE '1'"/ 
13Xr"SECOND END t TYPE '2'") 

GOTO H3 
1221 IF<M.E0.2.0R.M.EQ.3) GOTO 142 

WRITE <I OUT, 22) 
·22 FORMAT(/6Xr"2-BOUNDARY CONDITION:-"//) 
143 WRITE<IOUTr7l 

408 

7 FORHAT<////////////1"* IF NO APPROPRIATE f'ARAHETER IS SELECTED " 
' /"WHEN I\£0UIRED THEN DEFAULT VALUES ARE ASSUMED"> 
C DISPLAY CONTROL COMMAND MENU 

142 
1420 

CALL MNOPEN<875.,715.,1l 
CALL MNDISP<MNTXT1r5rl0r1l 
CALL FRAME<870 •• 733.,5l 
CALL HNOPEN(670, •565. •2> 
CALL HNDISP<MNTXT2r3r10r2l 
CALL DTEXT<810.r540.t'*'rll 
IF<M.NE.4l GOTO 99 
CALL MNDISP<MNTXT3r5t10•2> 
CALL DTEXT<810.,455.r'*'•1) 
MF=8 
GOTO 88 
WRITE<IOUTr1420l 
FORMAT <I Ill 
GOTO 143 

99 HF=3 
IF<M.E0.2.0R.M.E0.3l GOTO 88 
CALL MNDISP<MNTXT4•4•10,2) 
MF=7 

BB CALL FRAHE<670.,582.,MF) 
IF<M.E0.2.0R.M.EQ.3) GOTO 2 
CALL TXHOVE<670.,512.) 
CALL lXDRAW<810.,512.l 

C CUI\'SOR PICKING 
2 CALL MNPICK<J,ICHAR•MNOl 

:.F<MNO.E0.2l GOTO 130 
5 CALL CONFRM<ICHAR> 



IF<ICHAR.EQ.78>GOTO 2 
IF<ICHAR.NE.89)GOTO 5 
IF<J.EQ.~) GOTO 1 

707 IC=J 
RETURN 

C PARAMETER SPECIFICATION CONTROL 
130 GOT0<35t36t37t38t39t~t~1.~2ltJ 

C USER SPECIFIED NUMBER OF INTERMEDIATE POINTS PER INTREVAL 
35 CALL CURPOS<1.t360.> 
66 CALL MESSAG<"~ NUMBER OF INTERPOLATED POINTS PER INTERVAL?''") 

IF<IERROR<110>.NE.O> GOTO 171 
R£AD<INt77> INTF'NT 

77 FORHAT<GO.O> 
ISUH=INTPNT*<N-ll+N 
IF<ISUH.GT.200> GOTO 187 
GOTO 2 

171 ENDFILE 5 
GOTO 66 

187 WRITE<IOUTt~03) 
403 FQf.:MAT <"TOTAL NUMBER OF POINT EXCEEDING LIHITt TRY AGAIN"> 

GOTO 66 
C DEFALLT 
36 INTPNT=O 

GOT02 
C CURSOR 
37 INTPNT=999 
38 GOT02 
C BOUNDARY CONDITION 
39 GOT0(139t2t2t391t2ltM 

GOTO 2 
391 IF<ICHAR.EQ.~9.0R.ICHAR.EQ.50>GOTO 392 

GOT02 
392 ICHAR=ICHAR-~8 

GOT0<272t202ltiCHAR 
GOTO 2 

272 IE<1>•1 
2721 CALL CURPOS<1.t300.> 

409 

2120 IF<IDIH.EQ.3)CALL HESSAG("~ SLOPE OF XtYtZ W.R.T. T AS BOUNDARY 
& VALUE(1ST END>?n") 

IF<IDIH.EQ.2lCALL HESSAG<"t SLOPE OF XtY W.R.T. T AS BOUNDARY 
& VALUE<1ST END>?n") 

IF<IERROR<110l.NE.O> GOTO 2120 
READ<INt1110) B<1>•8<2>•B<3> 

1110 FORHAT<3GO.O> 
GOTO 2 

202 IE<2>=1 
2021 CALL CURPOS<1.t270.) 
2110 IF<IDIH.EQ.3>CALL HESSAG("t SLOP OF XtYtZ W,R.T. T AS BOUNDARY 
~ VALUE<2ND END>?n") 

IF<IDIH.EQ.2)CALL MESSAG<"~ SLOP OF XtY W.R. T T AS .BOUNDARY 
l VALUE<2ND END>?n") 

IF<IERROR<110) .llE.O> GOTO 2110 
READ<INt1110>B<1>tB<5lt8<6> 
GOTO 2 

139 CALL CURPOS<l.t300.> 
404 CALL HESSAG("t PARAMETRIC BOUNDARY VALUES AT BOTH END<D2X/Dl'2>?n") 

.IF<IERROR<llOl.NE.O>GOTO 404 
READ<INt11)8(1)t8(~) 

11 FORHAT<2G0.01 
GOTO 2 

40 GOTO <44~t2t2t 411t2l.tH 
444 CALL CURPOS<l.t270.) 



410 

HH CALL HESSAG("~ PARAMETRIC BOUNDARY VALUES AT BOTH END<D2Y/DT2)?····> 
IF<IERROR<110l.NE.Ol GOTO 4444 
READ<IN•11lB(2l•B<5l 
GOT02 

411 IF<ICHAR.E0.49>IE<1>=-l-4 
IF<ICHAR.E0.50liE<2>=J-4 
GOTO 2 

41 GOT0<421•2•2•411•2>•H 
421 CALL CURf'OS <1 • , 240. l 
4141 IF<IDIH.E0.2lGOTO 2 

CALL HESSAG("I PARAMETRIC BOUNDARY VALUES AT BOTH E~ID<D2Z/DT2l?M) 
IF<IERROR<110l.NE.Ol GOTO 4141 
READ<IN•11)B(3l•B<6> 
GOTO 2 

42 GOT0<2•2•2•411•2>•H 
GOTO 2 

101 WRITE<IOUT•111l 
Ill FORHAT<"*** STANDARD f'ARAHETRIC CUBIC Sf'LINE***"l 

GOTO 20 
102 WRITE<IOUT,122> 

GOTO 20 
122 FORMAT<"*** CYCLIC CUBIC Sf'LINE***"l 
103 WRITE<IOUT•133l 
133 FORHAT<"*** ANTICYCLIC CUBIC Sf'LINE ***"> 

GOTO 20 
104 WRITE<IOUT•144l 
IH FORMAT<"*** CUBIC SPLINE WITH VARIABLE END CONDITION***·> 

GOTO 20 
END 

c 
C fi*************ERROR MESSAGE DISPLAY***************************** 
c 

SUBROUTINE ERRHES<ICl 
COHHON/10/IN,IOUT 

C KENU ITEMS 
DATA HHTXT/"+ PREVIOUS+ HELP + RESTART+ EXIT "/ 
DATA DATSP/"DATSUPFL"/ 
LOGICAL•! HNTXT<40l ,DATSP<10) 

1 CALL TXCLER 
WRITE< lOUT' 20> 

20 FORHAT<"ERROR HCSSAG:-"/"TOO MANY POINTS FOR -IOINNING CURVES"/ 
l "WHICH .EXCEED CORE LIMIT"/ 
l "YOU HAY PROCEED BY TltKING THE FOLLOWING ACTION:-·; 
a. "EITHER 1- USE PREVIOUS COMMAND TO GO BACK lO PARAMETER"/ 
a. "DISF'LAY ,so THAT TO ALTER. NO.OF INTERMEDIATE POINTS."/ 
& "OR 2- USE HELP COMMAND IN OR~ER TO BRANCH TO ANY"/ 
& "DISf'LAY .E.G DATA ENTRY OR DATA TABULATION DISPLAYS •• ETC"l 

CALL HNOPEN<875.,760.•1> 
CALL HNDISP<HNTXT•4•10•1l 
CALL FRAHE(870.,778.•4> 

120 CALL HNPICI\(JiiCHAR,HNO> 
110 IF<ICHAR.E0.78) GOTO 110 

IF<ICHAR.NE.89lGOTO 120 
GOTO <40,40•1•50l•J 

C PREVIOUS DISPLAY 
40 IC=J 

RETURN 
50 CALL RHFILE<DATSPl 

STOP 
END 

c 
Cl u ******f'LOT THE POLYGONAL Of THE DA Ht f'OINTS************* 



c 
SUBROUTINE f•f'LOT <RrSCLl rSCL2rSCL3rSCL4rNl 

C INF~T COHHON DATA f'OINTS 
COI1HON/DATSUf'/Nf'SrNf'l (50) r lf'REESr X (50) , Y (50) r Z <50) , L<50) r IH (5) , 

l H(5)rHETHODriHELf'rlf'REVrSOUND<2lrSUBSETriNTf'NTriE<2l 
& riD 

DIHENSION X0(50lrY0(50) 
C REI10VES LINKS 

CALL f'RI1LNK <XO r YO> 
DO 1 l=lr Nf•S 

IF<I.EQ.l) GOTO 2 
CALL TXDRAW<XO<I>rYO<Ill 

2 CALL f'LUSGN<SCLlrSCL2rSCL3rSCL4rXO<IlrYO<ll) 
I CALL TXI10VE<XO<llrYO<I>> 

RETURN 
END 

.. 

411 



c 
c 
c 
c 

***************** 
* APPENDIX 2.33 * 
***************** 

C THIS HODULE 
c 
c 
c 
c 
c 

HANDLES THE FOLLOWING 
l.CURVE FIT 
2.CURVE ZOOH 

INTERACTIVE DISPLAYS:-

c 
c 

••***** HAIN PROGRAH - HODULE 3 **************** 

c 
c 

' ' 

1/0 COKHON DATA AREA 
COHHON/DATSUP/NPSrNPI<SOlrlFK~ESrX<SOlrY<SOlrZ<SOlrL<SOlriH<Slr 

11(5) ri1ETHODr lHELPr IPREVr BOUND (6) rSUBSET, INTF'NTr lE <2) 
riD 

COHHON/CURVEFIT/XCOEF<SOr4lrYCOEF<SOr4lrZCOEF<50r4lrXCORD<200)r 
YCORD<200lrZCORD<200lrTCORD<200) 

COI1110N/I0/1NrlOUT 
C OVERLAY EXECUTABLE PROGRAH HODULES 

DATA PHODLl rPHODL2rF'1101lL5rPI10DL6/"PARAI1ETRIC", "PI10DL2"' "PHODLS" 
lr"PKODL6"/ 

DATA PHELP/"HELP"/ 
INTEGER SUBSET 
LOGICAL*l f•HODLl (20) rf't10DL2<10) rPHODLS <10) rPI10DL6 (10) rPHELP<lOl 
CALL TXOPEN 

C READ 1/0 FILES 
CALL PRDCI11 

11 NC=4 
21 IN=S 

IOUT=6 
CALL PRDC112<tiPSrNF'IrNC.XDl 

C CURVE DESIGN DISPLAY ? 
IF<INTPNT.EQ.999l GOTO 111 

C CURVE FIT DISF~AY 
CALL CRVFIT <NPSrtiF'l rXCORDr YCORDrZCORDr lDr Iq 
GOT0<2r3r2r2r2r2r6r8r2r111r2r2r14r2r15r2r22lriC 

C PROGRAI1 TERMINATE 
2 2 CALL PEX IT ·~ 

2 STOP 
C PREVIOUS DISPLAY 
3 IPREV=1 

IHELP"'O 
t'.ALL PWRCI11 '( 
CALL OVRLAY<PHODL2l 

C TABULATION OF INTEI\'f'LOATED DATA POINTS DISPLAY 
' IPREV=1 
100 IHELP=O 

CALL PWRCI11 
CALL OVRLAY<PHODL6) 

C SUPERII1POSED CURVES DISPLAY 
8 IPREV=2 

GOTO 100 
C CURVE DESIGN DISPLAY 
Ill IPREV=O 

IHFLP=O 
t'.Al.L f'WRCI11 
CALL OVRLAY<PHODL5) 

14 IPI1EV=O 
IHELP=O 

412 



CALL PWRCI11 
CALL OVRL.AY<PI10Dl1l 

C HELP DISPLAY 
15 CALL f'WRCI11 

c 

CALL OVRLAY<PHELP) 
END 

C **************** CURVE FIT DISF'LAY ***************""******* c 
SUBROUTINE CRVFIT<N•N1•XX,yy,zz,IDII1•1Cl 
COI1110N/CURVES/tiCRV<10) •XYSCL<4) 
C011110N/IO/IN,IOUT 

C 11ENU ITEHS 
DATA 11NTXT1/"+ NEXT + PREVIOUS+ YX-GRAf'H+ XZ-GRAPH+ ZY-GRAf'H 

H COORDS. + TABLES + NGRAf'H + ZOOH -I 
DATA 11NTXT2/-+ CRV.DES.+ SAVE + REDRAW + HETHOD + AX. MARK 

l+ HELP +RESTART+ EXIT -; 
DII1ENSI0tl N1 (1) •XX<ll •YY<ll ,zZ<l) 
LOGICALll1 11NTXT1<90l•I1NTXT2<80) 
INTEGER R 
EXTERNAL CF'LOT 
IF<IERROR<103).NE.Ol GOTO 99 
CALL RDCRVS 

99 HSUH=O 
ti2=N-1 

C COIIPUTE TOTAL NUI1BER OF POINTS 
DO 6 I=t.N2 

' HSUM=I1SUH+N1< I) 
11SU11=11SUI1+N 

1 CALL 11ItiHAX<S1•52•S4,S5,XX,yy;I1SUI1) 
IF <IDIH.£0,3) CALL HINHAX <51 •53•54 ,s6,xx,zz,MSlJM) 
R=O 

101 CALL TXCLER 
ICORD=O 
NG=l 

C SET liP DISPLAY 
WRITE<IOUT,10) 

10 FORHAT<-CURVE FIT:--) 
CALL HNOPEN<875 •• 715.,1) 
CALL HNDISP<HNTXT1,9,10•1> 
CALL HNDISF'<MNTXT2•8•10,1) 
CALL FRAH£<870.,733.,17> 
IF<R.EO.O> GOTO 2 
GOT0<31•331•3331>•R 

C SET UP CURSOR PICKING 
2 CALL LMTARA 

CALL HNPICK<J,ICHAR•I1NO> 
IF<J.EQ.6.AND.ICORD.EQ.2) GOTO 2 
IF<J.E0.8.AND.NG.£0.2) GOTO 30 

17 CALL CONFRM<ICHAR> 
IF<ICHAR.£0.78) GOTO 2 
IF<ICHAR.N£.89) GOTO 17 
GOT0<30,30•3,33,333•4•30•8•9•30•11•12,30,15•30•1•30),J 

C NO CURSOR DESIGN FOR 3-D 
IF<J.EO.lO.AtiD.IDIH.E0.3) GOTO 2 

30 IC=J 
1\'ETURN 

C YX-GRAF'H PLANE PROJECliON 
3 IF<R.EO.O> GOTO 31 

R=i 

31 
GOTO 101 
R=l 

.. 

413 



SC1=S1 
SC2=S2 
SC3=S4 
SC4=SS 
GOTO 303 

C XZ-GRAF'H F'Lf<NE f'ROJECTlf!N 
33 IF<IDIH.E0.2) GOTO 2 

IF<R.EO.O) GOTO 331 
R=2 
GOTO 101 

331 R=2 
SC1=S3 
SC2,.S1 
SC3=S6 
SC4=S4 
GOTO 303 

C Z Y -GRAF'H f'LANE F'ROJECTI ON 
333 IF<IDIH.E0.2) GOTO 2 

IF<R.EO.Ol GOTO 3331 
R=3 
GOTO 101 

3331 R=3 
SC1=S2 
SC2=S3 
SC3=S5 
SC4=S6 
GOTO 303 

C DISPLAY ORIGIN 
303 CALL DISORG<SC1,SC2tSC3tSC4) 

CALL DRAW<CF'LOT•R,SC1,SC2tSC3,SC4•HSUH) 
GOTO 2 

C CURSOR COORDINATES 
4 IF<R.EQ.O) GOTO 2 

CALL DISCOR<ICORD,SC1,SC2,SC3•SC4> 
GOTO 2 

C SAVE CURVE 
11 IF<R.EO.Ol GOTO 2 

GOT0<51•52•53l•R 'I CALL CRVSAV<XX•YY•N•Nl•HSUH,SC1,SC2,SC3•SC4•J> 
GOTO 2 

52 CALL CRVSAV<zz,xx,N,Nl•HSUH,SC1tSC2,SC3,SC4•J> 
GOTO 2 

53 CALL CRVSAV<YY,zz,N,Nl•HSUH,SCl,SC2,SC3•SC4•J> 
GOTO 2 

C REDRAW A CURVE . 
12 CALL REDRAW<XX•YY,NtNloHSUHtSC1,SC2•SC3tSC4> 

GOTO 2 
C AXES HARKING 
IS IF<IDIH.E0.2.AND.R.EO.OlCALL AXSHRK<Sl,S2tS4,SSl 

IF<R.EO.O> GOTO 2 
CALL AXSHRK<SC1tSC2tSC3,SC4l 
GOTO 2 

C NGRAF'H COHHAND FOR THE FIRST TIHE <I.E SAVE CURVE FOR LATER USE) 

414 

8 IF(IDIH.E0.2.AND.R.EO.OlCALL NGRAf'H<NtN1,HSllHtXX•YY•SltS2,S4,S5,.J) 
IF<R.EQ.O) GOTO SOS 
GOTO<at,S2t83ltR 

81 CALL NGRAF'H<N•Nl•HSUH,XX,YY,SC1tSC2tSCJ,SC4tJl · 
GOTO 808 

82 CAL:_ NGRAf'H<No·NloHSUMt zz,xx,SC1o SC2,SCJ,SC4•J> 
eon aoa 

83 CALi.. NGRAF'H(NtNl •HSUM, YY ,zz,SC1 •E:C2,SC3,SC4 .J) 

GOTO SOS 



ItS CALL WRCR'JS 
NG=NG+1 
GOTO 2 

C ZOOHING 
9 

19 

119 

C CALL 

CALL LHTSCL<SC1rSC2rSC3rSC4) 
CALL TXCURS<XZ1rYZ1riCHAR) 
CALL TXCURS<XZ2rYZ2riCHAR> 
IF<XZ1.EQ.XZ2.0R.YZ1.ED.YZ2> GOTO 19 
CALL TXHOVE<XZ1rYZ1> 
CALL TXDRAlHXZ2rYZ1> 
CALL TXDRAW<XZ2rYZ2) 
CALL TXDRAW<XZ1rYZ2> 
CALL TXDRAW<XZlrYZl> 
CALL LHTARA 
CALL CONFRH<ICHAR> 
IF<ICHAR.EQ.78> GOTO 9 
IF<ICHAR.NE.89> GOTO 119 

ZOOH ROUTINE 
XHIN=AHIN1<XZ1rXZ2> 
XHAX=AHAX1<XZ1rXZ2> 
YHIN=AHIN1<YZ1rYZ2> 
YHAX=AHAX1<YZ1rYZ2> 
CALL PZOOH<RrHSUHrXHINrYHINrXHAXrYHAXriC> 
GOT0(1r30r109r109r109r109r109)riC 

109 IF<IC.EQ.3) IC=13 

c 

IF <IC.EQ.4.0R. IC.EQ.6) STOP 
IF <IC.EQ.S> IC=1S 
IF<IC.EQ.7)IC=17 
RETURN 
END 

CII***********ZQOHING INTO PARAMETRIC CUR'JESH*************** 
c 

SUBROUTINE f'ZOOH<IRrNf'NTrXHINrYHINrXHAXrYHAXriC> 
C OUTPUT COHHON DATA AREA 

COHHON/CUR'JEFlT/XCOEF<SOr4lrYCOEF<SOr4lrZCOEF<SOr4)rXCORD<200) 
l rYCORD<200>rZCORD<200>rTCORD<200) 

COHHON/IO/INriOUT 
C HENU ITEHS 

DATA 11NTXT/"+ NEXT + f·REVIOUS+ HETHOD + AX.HARK + HELP 
l+ RESTART+ EXIT "/ 

DIHENSION ZLINE<2r2) 
LOGICAL*1 HNTXT<70l 

C SET UP THE DISPLAY 
I CALL TXCLER 

CALL ALf'HHD 
WRITE <IOUT r 10> 

10 FORHAT("ZOOHINGJ-") 
CALL HNOPEN<87S.r71S.r1) 
CALL HNDISf'<HNTXTr7r10rll 
CALL FRAHE<870.r733.r7l 

C SET UP WINDOW ~ VIEWf'ORT 
CALL LHTSCL<XHINrYHINrXHAXrYHAXl 
CALL f'F'RAHE<XHINrYHINrXHAXrYHAX> 

C DRAW THE ZOOHED CURVE 
I=1 

1S GOT0<20r30r40>riR 
20 ZLINE<1r1l=XCORD<I> 

ZLINE<1r2l=YCORD<I> 
ZLI~E<2r1l=XCORD<I+1) 

ZLI~E<2r2l=YCORD<I+l.) .. 
GOTl 25 

415 



30 ZLINE<1,1):ZCORD<I> 
ZLINE<1•2l=XCORD<Il 
ZLINE <2• 1) :ZCORD <l+1l 
ZLINE<2•2l:XCORD<I+1l 
GOTO 25 

40 ZLINE(1,t):YCORD<I> 
ZLINE<1•2l:ZCORD<I> 
ZLINE<2•1l=YCORD<I+1l 
ZLINE<2•2l:ZCORD<I+1l 

C CLIP THE PORTION OF THE CURVE 
25 CALL CLIP<ZLINE,XHINrYHINrXHAXrYHAX,IREJ) 

IF<IREJ.EQ.O) GOTO 35 
CALL TXHOVE<ZLINE<1rllrZLINE<1r2ll 
CALL TXDRAW<ZLINEC2r1lrZLINE<2r2ll 

35 I=I+1 
IF <I. EQ. NPNT> GOTO 202 
GOTO 15 

C SET lJF' CURSOR 
202 CALL LHTARA 

CALL HNPICK<J,ICHARrHNO> 
17 CALL CONFRH<ICHAR> 

IFCICHAR.EQ.78l GOTO 202 
IF<ICHAR.NE.89) GOTO 17 
GOT0<414P414P414P404P414r1r414lrJ 

H4 IC=J 
RETURN 

C AXES HARKING 
404 CALL AXSHRK<XHIN,YHIN,XHAXrYHAX> 

GOTO 202 
END 

c 
C •*************'PLOTTING CURVE FIT **************************** 
c 

c 1/0 

' ' 
l 

3 
C PLOT 
lt 

20 

30 

6 

FUNCTION CPLOTCRrXOrYOrX1rY1rNl 
Cll1HON DATA AREA 

COHMON/DATSUP/Nf'S,NPI<50lriFREESrX<50lrY<50l,Z<50lrL<50lriHC5l 
rH (5) rHETHOD, IHELP, If'REVrBOUND (6) rSUBSET r INTF'NT r IE <2> 
,ID 

COHMON/CURVEFIT /XCOEF (50r4l, YCOEF <50r4l, ZCOEF <50r 4) r XCORD <200), 
YCORD <200 ). r ZCORD < 200 > r TCORD ( 200 l 

INTEGER SUBSETrR ' 
IP=1 
IF=1 
I=l 

I 

GOTO (10,20,30) •R 
SUF'PLIED POINTS 

CALL f'LUSGIUXO, YO,X1, Y.1 •XCORD <I l, YCORD <I>) 
CALL TXHOVE<XCORD<IlrYCORD<I>> 
GOTO 6 
CALL PLUSGN <XO, YO,Xlr Y.1 rZCORD <I l r XCORD <I> l 
CALL TXHOVE<ZCORD<I>,XCORD<Il) 
GOTO 6 
CALL PLUSGN<Xo,yo,XlrY1rYCORD<IlrlCORDCill 
CALL TXHOVE <YCORD <I lr ZCORD <I)) • 
IF<I.EQ.NlRETURN 
IF'l:IP+1 
IP2:If'+NPI <IFl+l. 
DO 1 J=If'1 rlf'2 

C BRAW INTERPOLATED LINE SEGHENTS ACCORDHlG TO f'ROJEC riON f'LANE 
GOT0<40r50r60lrR 

40 CALL TXDRAW <XCORD (J)·,·YCORfJ <J) l 
GOTO 1 

416 



50 CALL TXDRAW<ZCORD<J>tXCORD<J)) 
GOTO 1 

60 CALL TXDRAW<YCORD<J)tZCORD<J>> 
1 CONTINUE 

c 

IF'=IP2 
IF=IF+1 
I=I+Nf'I <IF-1> +1 
GOTO 3 
END 

CtfiHllllllllllllliSAVE THE CURVE ON FILE FOR LATER USE******************* 
c 

SUBROUTINE CRVSAV<XXtYYtNtN1tHSUHtSCL1tSCL2tSCL3tSCL4tJ) 
DIHENSION XX<l)tYY<1>tN1(1) 
INTEGER FILE (3) 
N2=N-1 
IF<J.EG.S> GOTO 88 

C 6£T FILE NAHE 
CALL CURF'OS<10.t730.) 
CALL HESSAG<"FILE NAHE?''") 
CALL GETFLN<FILE > 
REWIND 9 

C OPEN OUTPUT FILE 
CALL SETFIL<9tFILE> 

88 WRITE<9t20>HSUHtN 
WRITE<9t30)(XX<I>tYY<Ilti=ltHSUH) 
WRITE<9t25l<Nl<I>ti=1tN2> 
WRITE<9t35)SCL1tSCL2tSCL3tSCL4 

25 FORHAT<I3> 
20 FORHAT<2I3> 
30 FORHAT <,F11. 4) 
35 FORMAT<4F11.4l 

ENDFILE 9 
RETURN 
END 

Cllli************INF'UT FILE tiAHE************************** 
c 

SUBROUTINE GETFLN<NAHE> 
COHHON/IO/INtiOUT 
INTEGER tiAHE (3) 
READ <IN• 10) NAME 

10 FORHAT<2A4tA2) 
RETU!i:N 
END 

C t t t **********SUOERIHF'OSE Of'TlOtl 'NGRAf'H' ******************** 
c 

SUBROUTINE NGRAF'H<Nttl1tHSUHtXXtYYtSCL1tSCL2tSCL3tSCL4tJ) 
COHHON/CURVES/NCRV<10)tXYSCL<4> 

C DATA FILE NAHES FOR SUF'ERIHPOSED CURVES 
DATA SUF'FLS/"CURVE1 CURVE2 CURVE3 CURVE4 CURVE5 

UURVE6 CURVE? CURVES CURVE9 CURVE10 "/ 
LOGICAL•l SUF'FLS(100) 
K=O 

C FIND FREE ENTRY 

1 
2 

DO 1 I=lt10 
IF<NCRV<I>.NE.99) GOTO 2 
K=K+9 

CONTINUE 
NCf\'V (I> =99 
K=K+I 

.. 

417 



REWIND 9 
C OPEN OUTPUT fiLE FOR SAVING CURVES 

CALL SETfiL<9rSUPfLS<Kll 
CALL CRVSrW <XX, YY, thiU rHSUH rSCLl, SCL2, SCL3, SCL4, Jl 

C fiRST CURVE 
If<NCRV<ll.E0.99l GOTO 3 
XYSCL<ll=SCLl 
XYSCL<2l=SCL2 
XYSCL<3l=SCL3 
XYSCL<4l=SCL4 
OOTO 4 

C SUBSEQUENT CURVES 
C SET THE DISPLAY SCALES 
3 If<XYSCL(ll.OT.SCL1lXYSCL<ll=SCL1 

If<XYSCL(2l.GT.SCL2lXYSCL<2l=SCL2 
If<XYSCL<3l.LT.SCL3lXYSCL(3)=SCL3 
If<XYSCL<4l.LT.SCL4lXYSCL<4l=SCL4 

~ CALL DTEXT<725. r555. r"+ GRAF'H"r7l 
ENDFILE 9 
RETURN 
END 

c 
t III*******SAVE THE DATA ON A fiLE*************** 
c 

SUBROUTINE RDCRVS 
COHHON/CURVES/NCRV<10lrXYSCL<4l 
REWIND 7 
CALL SETFIL<7r "SUPCRVES"l 
READ<7r10) <NCRV<Il ri=lrlO> 
READ(7r20l(XYSCL<Ilri=lr4) 

10 fORHAT<~2) 

20 fORMAT<f11.4l 
RETURN 
END 

c 
t IIU********f'LOT CURVE fROH NAHED fiLE******************** 
c 

SUBROUTINE REDRAW<XXrYYrNrN1rHSUHrSCL1rSCL2rSCL3rSCL4) 
COHHON/IO/INriOUT 
DIMENSION XX<llrYY<llrNl<ll 
INTEGER fiLE<3lrR 

C INPUT fiLE NAHE 
CALL. HESSAG<" 
CALL GETFLN<FILE> 
REWIND 9 

C OPEN INPUT FILE 

20 
25 
30 
35 
C SET 

C PLOT 

CALL SETFIL<9rFILEl 
READ<9r25lHSUHrN 
N2=N-1 
READ(9r30> <XX<Il r'fY<I> rl=lrHSUHl 
READ<9r20l<Nl<Ilri=lrN2l 
READ<9r35lSCL1rSCL2rSCL3rSCL4 
FORHAT <I3> 
FORHAT<2I3l 
FORHAT<F11.4l 
FORHAT<4F11. 4) 

UP WINDOW SCALE 
CALL LHTSCL<SCL1rSCL2rSCL3rSCL4l 
R=l 

THE CURVE .. 
CALL CPLOT<RrSCL1rSCL2rSCL3rSCL.4rHSUHl 
ENDFILE 9 

418 

FILE NAHE?"" > 



t 

RETURN 
END 

C •***** SAVE SUF'ERIHF'OSE COHHON DATA AREA **"************ 
c 

SUBROUTINE WRCRVS 
COHHOti/CURVES/NCRV < 10) r XYSCL< 4) 
REWIND 7 

C OF~N OUTPUT FILE 
CALL SETFIL<7, "SUF'CRVES") 
WRITE<7r10><NCRV<I>ri=1r10> 
WRITE(7r20><XYSCL(I)ri=1r4) 

10 FORHAT<I2> 
20 FORHAT<F'11.4) 

ENDFILE 7 
RETURN 
END 

.. 

419 



c ***************** 
C * APPENDIX 2.34 * 
c ***************** 
c 
C THIS MODULE HANDLES THE CURVE DESIG~I IHTERACTIVE DISPLAY. 
c 
c 
c 
c ******** 
c 
c 

PROGRAM MODULE - MODULE 4 *************** 

c I/0 COMMON DATA AREA 

420 

COHMON/DATSUP/Nf'S•NPI <50)' IFREES•X <50) , Y<50l ,z <50> •L <eiOl .XH <5> 
,M (5) •METHOD, I HELP, IPREV,BOUND (6), SUBSET, INTF'NT, IE <2> 

•ID 
COHHON/CURVEFIT/XCOEF<50•4>•YCOEF<50•4>•ZCOEF<50•4> 

•XCORD<200>•YCORD<200l,ZCORD<200>•TCORD<200) 
COHHON/IO/IN,IOUT 

C OVERLAY EXECUTABLE PROGRAM NAME 

C READ 
11 
3 
21 

DATA PMODL2•f'MODL4•f'HELF'/"PMODL2", "f'MODL4", "HELP"/ 
DIMENSION X0<50l,Y0<50),z0<50>•T0<50) 
LOGICAL*l PMODL2(10) ;F·HODL4<10) •f'HELf'<lOl 
INTEGER SUBSET 
CALL TXOF'EN 

I/0 FILES FOR THE COHMON DATA AREA 
CALL PRDCHl 
NC=4 
IN=5 
IOUT=6 
CALL P~DCH2<Nf'S,NPI,NC,ID> 
CALL f'RI1l.NK<XO,yo,zO> 

C THE CURVE IS DISPLAYED WITH DEFAULT SETTING 
INTf'NT=O 
CALL GENPRT<Nf'S,xo,yo,zo,TO,ID,METHOD> 
CALL SETLNK <Nf'S,Nf'I, INTPNT> 

C DESIGN CURVE WITH CURSOR 
CALL CURDES <NF·S,Nf'I, xo, YO• TO• XCORD• YCORD, TCORD, INTf'NT •METHOD 

' •XCOEF,YCOEF,IC) 
GOT0<4•5•6•6•6•6;6,6•6•9•11•8),!C 

6 STOP 
C NEXT DISPLAY 
4 IPREV=O 

IHELP=O 
INTPNT=O 
CALL f'WRCMl 
CALL SWRCOM<Nf'S•Nf'X.NC,XO,YO> 
CALL OVRLAY<f'HODL4l 

C PREVIOUS DISPLAY 
5 IPREV=l 

IHELP=O 
CALL f'WRCMl 
CALL OVRLAY<f'MODL2l 

C PROGRAM TERMINATION 
8 CALL PEXIT 

STOP 
C HELP DISF'LAY 
9 CALL f'WRCHl 

c 

CALL SWRCOM <tlf'S,Nf'X.NC, XO, YO> 
CALL OVRU• Y < f'HELf' > 
END 



CU********CURSOR DESIGN DISPLAY******************** 
c 

SUBROUTINE CURDES<thN1 rXOr YOr TOr XXr YYr TT r INTf'tiT r IArXCr YCr IC) 
C LINK LIST 

COMMON/LNKLST/LINK<200)riNTVAL<50lriFREErlFCNT 
Cot1HON/IO/Itl r lOUT 

C MENU ITEMS 
DATA MNTXT/"+ NEXT + PREVIOUS+ DISP.ORG+ GRAPH + COORDS. 

421 

H ADD f'NT*+ DEL IIITV+ REFRESH + AX. HARK+ HELP + RESTART + EXIT "/ 
DIMENSION N1(1)tX0<1)tY0<1ltTO<llrXX<1>•YY<l>•TT<l>•XC<50t4lt 

l YC<50t4l 
LOGICAL*1 HNTXT<120) 
EXTERNAL XF'LOT 
CALL SUH<IItllltMSUH) 
CALL MINHAX<S1rS2tS3tS4rXXrYYrHSUH) 
S1=S1-<S3-S1)/20 
S2=S2-<S4-S2)/20 
IZERO=l 

11 IF<IZERO.EQ.O)INTPNT~999 

INTVN0=1 
C SET UP THE DISPLAY 

CALL TXCLER 
ICORD=O 
WRITE<IOUTt10) 

10 FORMAT<"CURVE DESIGN;-") 
C OUTPUT MENU ITEMS 

CALL MNOPEN<875.r715.,1l 
CALL MNDISP<MNTXTt12r10rl) 
CALL FRAME<870.r733.r12) 

C USER KEYBOARD COMMAND 
CALL DTEXT<828.r447.r"* TYPE CAPT.:"r13) 
CALL DTEXT<828.r428.r"E-JOIN INTV."r12l 
CALL DTEXT<B28.r406.r"F-FINISH INTV"r13) 
CALL DTEXT<828.r384.r"N-NEXT INTV."r12l 
CALL DTEXT<20.r30.r"$ USE INTERVAL SEQUENCE HARKED BY '$'"r37) 

2 CALL LHTARA 
C CHECK FOR REFRESH COMMAND 

IF<J.EQ.B) GOTO 34 
C CURSOR MENU PICKING 

CALL· MNF'ICK <Jr ICHARrMHOl 
IF<J.EQ.S.AND.ICORD.E0.2lGOTO 2 

17 CALL CONFRM<ICHARl 
IF<ICHAR.ED.78lGOTO 12 
IF<ICHAR.NE.89) GOTO 17 
GOT0<41t41t33r34r35•36r36r11r110;41r66r~1)rJ 

12 J=O 
GOTO 2 

H IC=J 
RETURN 

C DISF'LAY ORIGitl 
33 CALL DISORG<S1rS2rS3rS4) 

GOTO 2 
C PLOT THE GRAPH 
34 CALL DRAW<XPLOTtRrS1rS2rS3rS4rHSUM) 

J=O 
GOTO 2 

C AXES HARKING 
110 CALL AXSMRK<S1rS2rS3r54) 

GOT02 
C CURSOR INPUT COORDINATES , 
35 CALL TJISCOR <ICORDrS1 iS2rS3r54) 

r..OTO 2 



C ADD INTERMEDIATE POINTS ItlTERACTIVELL Y USING THE CURSOR 
36 CALL LMTSCL<Sl,S2•S3,S4l 
22 CALL TXCUf(S(CX,CY,ICHARl 

IF<ICHAR.EQ.70l GOTO 2 
C HOVE TO NEXT INTERVAL 

IF<ICHAR.EQ.78l GOTO 88 
IF<J.EQ.7) GOTO 37 
IF <INTPNT .EQ. 999 .AND. IZERO.EQ.1) GOTO 66 

61 INTF'NT=O 
CALL ADDF'NT <N•N1 ,xo, YO• TO,XX• yy, TT, INTVNO, lo'uCX,CY, ICHAR•XC, YCl 
GOTO 22 

66 N2=N-1 
DO 16 I=t.N2 

INTVAL < 1) =0 
16 Nl<I>=O 

IF<J.EQ.11l GOTO 41 
IZERO=O 
GOTO 61 

C HARK DELETED INTERVAL 
37 CALL DTEXT<CX,CY,"D"r1) 

CALL DELINT<INTVNOrNrN1l 
GOTO 22 

88 INTVNO=INTVN0+1 

c 

CALL DTEXT<XO<INTVNOlrYO<INTVNOlr"$"r1l 
GOTO 22 
END 

CttttttttttGENERATE PARAMETERS T****************** 
c 

SUBROUTINE GENPRT <NrXt. Yt. Z1 r T1 r IDIMrHl 
DIMENSION X1(1lrY1<1lrZ1(1)rT1(1) 
T1 (1) =0., 

C GENERATE T PARAMETER FOR COMPUTING THE INTERPOLATED f'OINTS 

1 

2 

c 

DO 1 K=2rN 
U=X1 <Kl-X1 <K-1> 
V=Y1 <Kl -Yl <K-1) 
IF<IDIM.EQ.3l Q=Zl<Kl-Z1<K-ll 
D=UtU+VtV 
IF<IDIM.EQ.3lD=D+QtQ 
D1=SQRT<Dl 
IF<M.EQ.3.0R.~.EQ.4) GOTO 2 
T1<K>=T1<K-ll+Dl 

CONTINUE 
RETURN 
T1 <K> =Dl 
GOTO 1 
END 

422 

C *************ADD INTERMEDITE f·OitlT ************************************ 
c 

SUBROUTINE ADDPNT <NrNlrXOr YOr TOr XXr YY r TT, INTVNOr IArCXrC'(r ICHARr 
~ XCrYC> 
C COHMON DAHt LINK LIST 

COMMON/LNKLST /LINK <200) r IIHVAL (50) r I FREEr IFCNT 
DIMENSION Nl <ll r XO <1) r YO <1) r TO <1) rXX <1>, YY <1) r lT <1>, XC <50 r ''l 

~ rYC<50r4l 
. C CHECK FIRST TIME IN THE INTERVAL 

IF <INT'JAL<INTVtlO) .NE.Ol GOTO 2 
C ENTER THE START POHH AND THE HHERMEDIATE POINT 

IN''\IAL <INTVNO> =I FREE 
:<X !FREE> "XO <INTVNO) 
'('( \ lFf~EEl ••YO ( INTVNO> 

• 



C CHECK WD Of INTERVAL 
IF<ICHAR.EQ.69l GOTO 7 
If ( IFCNT. GT .1) GOTO 11 
LlNK<IFREEl=lfREE+1 
Cf•LL TXHOVE <XX <IF REEl , YY <I FREE> ) 
IfREE=LINK<IFREEl 

S LINK<IFREEl=O 
C COKF'UTE THE HITERF'LOATED f'OINTS FROM THE CURSOR f'OSITotHNG 
6 CALL CXXYY <thXOr YOr TOr XX, YY, TT, INTVNOr IArCXrCY, XCr YCr !FREEr IERCl 

IF<IERC.EQ.1) GOTO 66 
N1<INTVNOl=N1<INTVNOl+1 
IFREE=IFREE+1 
RETURN 

C COHf'ARE THE CURRENT CX WITH THE ALERADY IN THE TABLE 
2 If<ICHAR.EQ.69) GOTO 1 

NEXT=WTVAL <ItlTVNOl 
C CHECK FOR RUtHNG BACK CURVE 

DXX=XX<NEXTl-XX<LINK<NEXTll 
If<DXX.GT.O.l GOTO 888 
DXO,~XO <INTVNOl -XO <ItiTVN0+1) 
If<DXO.G£.0.) GOTO 818 

4 DCX=CX-XX<NEXTl 
IF<DCX.LT.O.l GOTO 3 
K=NEXT 
NEXT=LINK <NEXT> 
If<NEXT.EQ.Ol GOTO 41 
GOTO 4 

41 LINK<Kl=IFREE 
CALL TXMOVE<XX<KlrYY<Kll 
If(IfCNT.GT.Ol GOTO 12 
GOTO 5 

C ADD POINT IN THE INTERVAL WHICH HAS GREATER VALUE POINT 
3 IF<IFCNT.GT.OlGOTO 16 

LINK<Kl=IFREE 
LINK <IF REEl =NEXT 
CALL TXHOVE<XX<KlrYY<Kll 
GOTO 6 

C ADDITION INTO PREVIOUSLY DELETED ITEM <CARBIGE COLLECTION> 
11 IFCNT=IfCtiT-1 

CALL TXHOVE<XX<IFREElrYY<IFREEll 
K=LINK<LINK<IFREEl) 
LINK<LINK<IFREEll=O 
IFREE=LINK<IFREEl 
CALL CXXYY <thXOr YOr TOrXXr YY' TTr HlTVtlfh IArCXrCY, XCr YCr !fREEr IERCl 
If<IERC.EQ.1) GOTO 66 
IFREE=K 

14 IFCNT•IFCNT-1 
111 ( ItiTVtiOl =ta < HHVNO> +1 
RETURN 

12 CfiLL CXXY'I <NrXOr YOr TOrXXr yy, TTr INTVNOr IArCX rC'(rXC, ye, I FREE, IERCl 
IF<IERC.EQ.1) GOTO 66 
K=IFREE 
IFREE=LHIK <I FREE> 
Lwr; uo =o 
GOTO 14 

16 CALL TXMOVE<XXCKlrYY<Kll 
C.ALL CXXYY <NrXOr yo, TOrXXr YY, TTr INH'NOr IfuCXrCY, XC, YCr IFREE, IERCl 
J.F<IERC.EQ.1) GOTO 66 
K1=LHIK <IF REEl 
LINK<Kl=IFREE 
LINK <I FREE> =NEXT 
IFREE=K1 

.. 

423 



GOTO 14 
C END OF INTERVAL WITH ONE OR HANY ENTERIES 
C FIND THE LAST ENTRY IN THIS INTERV,~L<l.INI(=Ol 

I NEXT=INTVAL<INTVNO> 

9 
I 0 
8 

J=N1 <INTVN0>+1 
DO 9 L=1rJ 
IP=NEXT 
NEXT=LINK <NEXT> 
lF<NEXT.EO.O> GOT010 
CONTINUE 
CALL TXMOVE <XX <I Ph YY <If')) 
CALL TXDRAW<XO<INTVt10+1) rYO<ItiTVN0+1>) 
RETURN 

C HO lNTERMEDllE POINTS 
7 LINK<lFREE>=O 

66 

lFREE=lFREE+1 
CALL TXMOVE<XO<INTVNO>rYO<INTVNQ)) 
GOTO 8 
IERC=O 
RETURN 

C RUHING BACK CURVE •••• CHECK FOR POINT FALL IN BETWEEN TWO 
C EXISTING POINTS OR LOOP ON IT SELF 
888 DCX=CX-XX<NEXT> 

118 

333 

C. CHECK 
808 
828 

IF<DCX.GT.O.> GOTO 808 
K:NEXT 
NEXT=LINK <NEXT> 
IF<NEXT.EO.O.AND.IFLAG.EQ.l) GOTO 333 
IF<NEXT.EQ.O) GOTO 41 
GOTO 888 
IFLAG=O 
GOTO 3 
IF F~INT STILL FALL IN OPPOSITE THE SUB INTERVAL 
IF<IFLAG.E0.1> GOTO 818 
DXO=XO<INTVN0+1)-XO<INTVNO) 
IF<DXO.LE.O.> GOTO 3 
DYl=ABS<YO<INTVNO>-CY> 
DY2=ABS<YO<INTVN0+1>-CY> 
DYY=DY1-DY2 
IF<DYY.LT.O> GOTO 3 
IF <DYY .EO.O. > RETURN 

C NOT THE FIRST FOUND SUB' lNTVAL 
IFLAG=l 
GOTO 818 
END 

c 
C 11 If 1 ******COMPUTE INTERPOLATED POINT***********~**** 
c 

424 

SUBROUTINE CXXYY<NrXOrYOrTOrXXrYYrTTrlNTVNOriArCXrCYrXCrYCriFREEriERC) 
DIMENSION X0(1)rY0<1>rT0<1>rXX<1>rYYC1)rTT<1>rXC<SOr4)rYC<SOr4) 

C DETEii:t1INE PARAMETER T FROM CXrCY 
l=INTVNO 
DX=CX-XO<I> 
DY=CY-YO<I> 
DD=DX•DX+DY•DY 
Tl=SORT<DD> 
IF<IA.GT.2> GOTO 1 
T=TO<l)+Tl 

I T=Tl 
IF<T.GT.TO<l+l)) GOTO 3 
XX <I FREE> =XC <I r 1> +T* <XC <I r2)+l* <XC <r r3) +T*XC <I r 4))) 
YY <I FREE> =YC <I r 1) +T* <YC <I r2) +Tll <YC <I r3) +TliYC <I, 4))) 
TT<IFREE>=T 



2 CALL TXDRAW <XX <I FREE>' 'tY <IFREEl l 
RETURN 

3 IERC=1 

c 

RETURN 
END 

c IIIIIIIIIIII****DELETE AN INTERVAL *************=************* 
c 

SUBROUTINE DELINT<INTVNO•N•Nl) 
COMMON/LNKLST/LINK<200),INTVAL(50),IFREE,IFCNT 
DitiENSION N1 (1) 

C EMPTY LIST? 
IF<INTVAL<INTVNOl.EO.OlRETURN 

3 IF<IFCNT.NE.OlGOTO 1 
C FIRST DELETION 

NEXT=INTVAL<INTVNO> 
K=NEXT 
IF<LINK<NEXTl.EO.OlGOTO 5 
N2=N1 <INTVNOl 
K=IZRLNK<N2,LINK,NEXT) 

5 LINK<Kl=IFREE 
IFREE=INTVAL<INTVNO) 

2 IFCNT=IFCNT+N1<INTVNOl+1 
INTVAL<INTVNO)=O' 
N1 <INTVNOl =0 
RETURN 

C DELETE OF MORE INTREVAL 
1 NEXT1=INTVAL<INTVNOl 

Kl=NEXT1 
IF<LINK<NEXTll.EO.Ol GOTO 6 
N2=N1 ( INTVNOl 
K1=IZRLNK<N2,LINK,K1> 

6 NEXT2=IFREE 
K2=NEXT2 
N2=IFCNT-1 
IF<N2.E0.0) GOT07 
K2=IZRLNK<N2,LINKtK2) 

7 K3=LINK<K2) 

c 

LINK<K2l=NEXT1 
LINK <Kl> =K3 
GOTO 2 
END 

C '**********FIND END OF THE INTREVAL FOR DELETION******************* 
c 

FUNCTION IZRLNK<N•LKtNXT) 
DIMENSION LK (1) 

DO 1 I=t.N 
1 NXT=LK<NXT> 

c 

IZRLNK=NXT 
RETURN 
END 

C•••••**********SET DATA STRl~TURE LINKS***************** 
c 

SUBROUTINE SETLNK <NrN1 r INTF'NT> 
COMMON/LNKLST/LINK(200)riNTVAL<50lriFREEriFCNT 
DIMENSION N1 (1) 

IF<INTF'NT.E0.999lGOTO 9 
INTVAL<ll =1 
N2=N-1 

.. 
DO 1 I=2•N 

425 



I ltfTVAL<ll =INTVAL<I-1HN1 <I-1)+1 
t<=1 
DO 2 I=lrN2 

IF(N1<I>.NE.O> GOTO 4 
LINK<IO=O 
K=K+l 
CiOTO 2 

4 N11=N1<I>+K-1 
C SET LINK LIST 

DO 3 J=KrNll 
3 LINK(J)=J+1 

L.INK <J> =0 
K"-1+1 

2 CONTINUE 
CALL SUH(NrN1rMSUH> 
IFREE=HSUH+1 
GOTO 10 

9 IFREE=1 
IFCNT=O 

10 RETURN 
Etm 

c 
C 11 ******OUTPUT 
c 

THE DESIGtlED CURVE**************** 

c *****A SIMPLE LIST****** 
SUBROUTINE SWRCOH(NrN1tNCrXOtY0) 

C OUTPUT COHHOtl DATA AREA 
COHHON/CURVEFIT/XCOEF(50t4ltYCOEF(50t4lrZCOEF<50r4) 

& tXCORD(200) tYCORD<200> rZCORD<200l tlCORD<200l 
C LINK LIST USED IN THE DESIGNED Pf\'OCESS 

COHHON/LNKLST/LINK<200>tiNTVAL<50> 
DIMENSION N1(1)tX0(1)rY0<1> 
REWIND 8 

C OPEN OUTF·UT FILE 

2 
1 

10 
20 

c 

CALL SETFIL <B• "f'OUTFilC" > 
N2=N-1 
WRITE<Bt20><<XCOEF<IrJ)tYCOEF<IrJ),J=1rNC>ri=1rN2) 
DO 1 I=1rN2 

NEXT=INTVAL<ll 
N3=N1 <I>+l 

DO 2 J=1rN3 
WRITE<BtlOlXCORD<NEXTltYCORD<NEXT>rTCORD<NEXT> 
NEXT=LINK <NEXT> 

CONTINUE 
CONTINUE 
WRITE <8r 10) XO <W r YO <N> r TCORD <NEXT+l) 
FORHAT<F12.4) 
FORMAT <F12.4> 
ENDFILE 8 
RETURN 
END 

CIf ********f'l.OT THE DESIGNED CURVE****************** 
c 

SUBROUTINE XPLOT<RrSCL1tSCL2rSCL3tSCL4rNSUH> 
C I/0 COHHOII f!A TA f1REA 

COHI10N/DAlSUP/NPStNf'I (50) tiFREESrX(50) r¥<501 rZ<SO> tL<50l tiH<5l 

426 

l rlt<5) rHETHODr IHELf't If'RE'.V,BOUND <6) ,SUBSET <21, WTf'tlT r lE <2> 
l rID 

COMHON/CURVEFIT /XCOEF <50r '•l r YCOEF <50r -\) r ZCOEF (50 r4) 
& rXCORD<200) tYCORDC100) •ZCORD<200l rlCORJ)(200) 
C Ll NK LIST 



COHHON/LNKLST/LitiK<200lrlNTVAL<50lrlFREErlFCtiT 
INTEGER SUBSET 
DIHENSION X0<50lrY0<50lrZ0<50l 
CALL f'RHLNK<XOrYOrZOl 
N2=Nf'S-1 
CALL DTEXT<X0(1lrYO<llr"$"r1) 

5 DO 1 I=1rN2 
NEXT=INTVAL <Il 
IF<NEXT.NE.OlGOTO 4 
K=l 
GOTO 11 
CALL f'LUSGN <SCL1 rSCL2 r SCL3 r SCL 4 r XCORD <NEXT> r YCORD <NEXT> l 
CALL TXHOVE<XCORD<NEXTlrYCORD<NEXTll 
Nll=Nf'I <Il 
IF<N11.NE.OlGOTO 3 
K=INTVAL(I+1) 
IF<K.NE.Ol GOTO 6 
IF<NEXT.NE.O) GOT07 
K=l+l 
GOTO 11 

6 CALL TXDRAW<XCORD<KlrYCORD<Kll 
GOTO 1 

3 DO 2 J=lrN11 
NEXT=LINK <NEXT> 
CALL TXDRAW<XCORD<NEXTlrYCORD<NEXTl) 

2 CmiTINUE 
7 K= I+l 

CALL TXDRAW<XO<KlrYO<Kll 
11 CALL f'LUSGN<SCL1rSCL2rSCL3rSCL4rXO<KlrYO<Kll 

rALL TXHOVE<XO<KlrYO<Kll 
I CONTINUE 

CALL f'LUSGN<SCL1rSCL2rSCL3rSCL4rXO<IlrYO<Ill 
8 RETURN 

END 
C ********* FIND TOTAL NUHBER OF INTERPOLATED f'OINTS*X********** 

SUBROUTINE SUH<NrNlrtiSUtll 
DIHENSION Nl<l> 
HSUM=O 
N2=N-1 
DO 1 I=1rN2 

I HSUH=HSUH+Nl<I> 
HSUI1=HSUH+N 
RETURN 
END 

.. 

427 



c ***************** 
C * Af'f'ENDIX 2.35 11 

c ***************** 
c 
C THIS MODULE HANDLES THE FOLLOWING INTERACTIVE DISPLtWS:-
C l.TABLE OF THE INTERPOLATED POINTS 
C 2.TABLE OF THE POLYNOMIAL COEFFICIENTS 
C 3.CURVE SUPERIMPOSE 
c 
c 
c 
C If**** MAIN PROGRAM - ttODULE 5 ************** 
c 
c 
C I/0 COttttON DATA AREA 

COMMON/DATSUP/Nf'SrNPI (50), IFREESrX (50), Y (50) ,z (50) rL<SO), IH (5) 

428 

rM <5> rMETHODr IHELPr IPREVrBOUND (6) rSUBSETriNTPNT riE (2) 
riD 

COtttiON/CURVEFIT/XCOEF<50r4)rYCOEF<50r4>rZCOEF(50r4)rXCORD(200) 
rYCORD<200lrZCORD<200lrTCORD<200) 

COHMON/IO/INriOUT 
C OVERLAY EXECUTABLE PROGRAM tWIES 

DATA PtiODL2rPMODL4 rPMODLl rf'HELP /"PHOLD2", "F'tiODL4., 
~"f'ARAMETRIC"r"HELP"/ 

C READ 
11 
3 
21 

LOGICAL*l PMOOL2 (10) rf'ttODL4 (10) rPMODL1<20> rf'HELP <10) 
INTEGER SUBSET 
CALL TXOf'EN 

I/0 DATA FILE 
CALL f'RDCM1 
NC;4 
IN:5 
IOUT=6 
CALL f'RDCM2<NPSrNf'IrtlCriD) 
IF<IHELP.NE.O>GOTO 66 
GOT0<33r34)riPREV 

C DISPLAY ItiTERPOLATE[I POINT AS TABLE 
33 CALL TABlNT<NPSrNF'I, XCORDr YCORDrZCORDr TCORDr lOUT, IC, ID) 
6 GOT0<51r52r59r54r59r59r57r33r58lriC · 
C tlEXT DISPLAY 
51 IPREV,.O 

IHELF·=o 
CALL PWRCM1 
CALL OVRLAY<PMODL4>· 

C PREVIOUS DISPLAY 
52 IPREV= 1 'f 

IHELP=O 
CALL PWRCM 1 
CALL OVRLAY<PMODL2) 

C DISPLAY TABLE OF THE COEFFICIENTS 
54 CALL TABCOF <NPSr XCOEFr YCOEFrZGOEF rtiETHODriOUT riC, ID) 

GOT0<51r33r59r59r59r59r59r59r57r54r58)riC 
C SUPERittPOSED CURVES 
H CALL SUP IMF' <Nf'SrNF'hXCORDr YCORDr IC) 

GOT0(51t52t59t59t59r59r61r59r57t59t58)riC 
C HELP DISPLAY 
57 CfiLL PWRCMl 

CALL OVRLftY <PHELf') 
C ALGORITHM DISf'LftY 
6 1 IPREV ~'o 

IHELP=O ·· 
CALL f'WRCMl 



CALL OVRLAY<PMODL1> 
C PROGRAM TERMINATION 
58 CALL PEXIT 
59 STOP 
C RETURN FROM HELP 
66 GOT0(33r34>riHELP 

END 
c 
C ***********TABULATION OF INTERPOLATED POINTS****************** 
c 

SUBROUTINE TABINT(NrN1rXXrYYrZZrTTriDEVriCriDIM> 
DIMENSION N1<1> rXX<l> rYY<1> rZZ<l> rTT<l> riP<B> 

11 CALL OUTTIL<1r9riDEVriCOEF> 
C FIND THE TABLE SIZE 

CALL SUM<NrN1rMSUM> 
IF<MSUM.GT.25) GOTO 1 

C TABLE SIZE ONE OR LESS THAN A f'AGE 
IROLL=O 
CALL OUTPGE<MSUMr1rXXrYYrZZrTTriDEVriDIM> 
GOTO 12 

C TABLE SIZE MORE THAN ONE PAGE 
1 IP<1>=1 

IROLL=1 
DO 2 I=2r8 

2 IP<I>=IP<I-1>+25 
IS=l 

C FIND NUMBER OF PAGES loo THE REMAitiDER 
MREM=IREM<HSUMr25) 
NPAGE=<MSUH-MREM)/25 

1~ ITWNFIF=25 
15 IPNTR=If' <IS> 

CALL OU1'f'GE <ITWNF'IFr If'NTRrXXr YY rZZr TT r IDEVr !DIM> 
WRITE <IDEVr20) 

20 FORHAT<I"*'TO DISF'LAY THE NEXT/PREVIOUS PAGE OF THE TABLE"/ 
4 "USE THE FORWARD/BACKWARD AS f1PPROPRIATE' ") 
C SET UP CURSOR FOR USER SELECTION 
12 CALL MNPICK <Jr ICHARrtiNO> 
17 CALL CONFRM<ICHo~R> 

IF<ICHAR.EQ.78) GOTO 12 
IF<ICHAR.NE.89> GOTO 17 
GOT0(21r21r23r21r25r26r21r11r21)rJ 

C BACK TO THE MAIN PROGRAM TO PROCESS OTHER COMMAND 
21 IC=J 

RETURN 
C HAADCOPY 
23 REWIND 7 

CALL SETFIL<7r"/DEV/TTYM") 
WRITE<7r30) 

30 FORI1AT("COMF'LETE TABLE OF THE INTERPOLATED f'OINTSI-") 
ITWNF'IF"HSUM 
IPNTR=If'<l) 
CALL OUTf'GE <ITWNFIFr lf'tHRrXXr YY r ZZr TT r 7r !DIM> 
GOTO 12 

C TO ROLL THE TABLE<FORWARD> 
25 IF <IROLL.EO.O> GOTCI 12 

IF<IS.EO.NPAGE.AND.HREH.GT.O>GOTO 31 
IF <IS.EQ.NPAGE.OR.IS.GT .tlf'AGE> GOTO 12 
IS=IS+l. 
CfoLL OUTTIL<1 r9r IDEVr ICOEF> 
GOTO 14 

C OUTPUT THE REMAINDER ·· 
31 ITWNFIF--MREM 

429 



IS'"IS+1 
CALL OUTTIL <1' 9, IDEV, ICOEF') 
GOTO 15 

C BACKWARD 
24 If<IROLL .ED.O> GOTO 12 

If<IS.ED.1> GOTO 12 
IS=IS-1 

c 

CALL OU1'TIL<1.9, IDEV, ICOEF> 
GOTO 14 
END 

Cttttttttttttttt TABULATE COEFFICIENTS************************* 
c 

SUBROUTINE TABCOF(N,xc,yc,zc,METHOD,IDEV,IC,IDIH) 
DIMENSION XC(50•4>•YC<S0,4),ZC(50•4>•IP<4> 
ICOEf=1 

C OUF'UT TABLE TITLES 
11- CALL OUTTIL<2•11,IDEV,ICOEF> 

NC=N-1 
IF<NC.GT.20) GOTO 1 

C LESS THAN 20,QNE PAGE Of TABLE 
IROLL=O 
IF<ICOEf.EQ.llCALL OUTCOF<NC•1•HETHQD,xC,IDEV> 
If<ICOEF.EQ.2)CALL OUTCOF<NC•1•HETHQD,YC,IDEV) 
If<ICOEf.EQ.3lCALL-OUTCOF<NC,1•METHOD,zC,IDEV> 
GOTO 2 

C GREATER THAN 20 •HORE THAN ONE f'AGE 
I IROLL=1 

IP<1)=1 
DO 7 I=2•4 

7 lf'(l>=lf'<l-1)+20 
IS=1 

C FIND NUBER Of PAGES AND THE REMAINDER 
NREH=IREH<NC•20> 
NCF'GE=<NC-NREH)/20 

14 
15 
12 

20 
l 

N3:20 
If'NTR=IP <IS> 
IF <ICOEf .ED.ll CALL OUTCOF <N3t lf'NTR,METHODtXC, IDEV> 
If<ICOEf.EQ.2)CALL OUTCOF<N3tiPNTR,METHOD•YCtiDEV> 
IF <ICOEF .ED.3>CALL OUTCOF' <N3t If'NTR•METHODtZC, IDEV) 
WRlTE(IDEVt20)· 
FORHAT<rt•TO DISPLAY THE NEXT /PREVIOUS PAGE OF THE TABLE"/ 

• USE THE fORWARD/BACKWARD AS Af'PROF'RIATE' ") 
C RAISE CURSOR 
2 CALL HNf'ICK (J, ICHARtHNO> 
17 CALL CONFRH<ICHAR> 

If<ICHAR.ED.78) GOTO 2 
If<ICHAR.NE.89) GOTO 17 

32 
GOT0(21,21t32•33•34r23t24r25r21tllr21)•J 
ICOEf=1 

33 
GOTO 11 
ICOEF=2 
GOTO 11 
IF<IDIH.ED.2> GOTO 2 
IC0Ef=3 
GOTO 11 

C 0 THER COHHAND 
21 IC=J 

R<=.:TURN 
C HARDCOFY 
23 '~EIJ I ND 7 

.· 
·CALL SETFIL<7r"/DEV/1'TYH"> 

430 



WRITE<7r77> 
77 fORMAT<I"PARAMETRIC COEFfiCIENTS Of XI-") 

CALL OUlCOf<NCr1rMETHODrXCr7> 
WRITE <7, BB> 

88 fORMAT(/"PARAMETRIC COEffiCIENTS Of Yl-") 
CALL OUTCOf (tlCr 1rMETHODr YCr 7) 
If<IDIM.E0.2> GOTO 2 
WRITE<7r99) 

99 fORMAT<I"PARAMETRIC COEffiCIENTS Of Zl-") 
CALL OUTCOf<NCrlrMETHODrZC.7) 
GOTO 2 

C f 0 RWAAD COMMAND (TABLE ROLLING> 
24 If<IROLL.EO.O>GOTO 2 

If <IS.EO.tlCPGE.AND.NREM.GT .0) GOTO 31 
If<IS.EO.NCF'GE.OR.IS.GT .NCF'GE> GOTO 2 
IS"IS+l 
CALL OUTTIL<2r11riDEVriCOEF> 
GOT014 

31 N3=-NREM 
IS=IS+1 
CALL OUTTIL<2r11riDEVriCOEF> 
GOTO 15 

C BACKWARD COMMAND 
25 IF<IROLL.EO.O> GOTO 2 

If<IS.E0.1) GOTO 2 
IS=IS-1 

c 

CALL OUTTIL<2rllriDEVriCOEF> 
GOTO 14 
END 

C 11 t UllllllllliSUF'ERIHF'OSED CURVE DISf'LAYllllllllllllllllllllllllllllll 
c 

SUBROUTINE SUf'IMP<NrNlrXXr yy, IC) 
COMMON/CURVES/NCRV<10lrXYSCL<4> 
COMMON/IO/INriOUT 

C HENU ITEMS 
DATA MNTXT /"+ NEXT + f•REVIOUS+ GRAPH + DISP.ORG+ DELETE* 

l+ REfRESH+ METHOD + AX. HARK+ HELP + RESTART+ EXIT "/ 
DATA SUf'FLS/"CURVE1 CURVE2 CURVE3 CURVE4 CURVES 

lCURVE6 CURVE? CURVES CURVE9 CURVE10 "/ 
DIMENSION N1<1>rXX<1lrYY<l> 
LOGICAL*l MtlTXT <110h5Uf'FLS <100) 
CALL RDCRVS 

11 CALL TXCLER 
CALL SUM<NrNlrMSLIM> 

C SET LlF' f'LOTTitlG SCALES 
Sl=XYSCL<l) 
S2=XYSCL<2> 
S3=-XYSCL<3> 
S4=XYSCL<4> 

C PREPARE THE DISPLAY 
WRITE <IOUTrlO> 

10 FORMAT <"SUPERIMPOSED CURVES:-·> 
CALL MNOf'EH<875.r715.rll 
CALL MNDISf' <MNTXT, 11 rlOrl > 
CALL fRAME<B70.r733.rll> 
Cfill ALF'HI1D 
!.'RITE <IOUTr20> 

20 fORMAT(/ I//I//I//I/162Xr "* TYF'E IN" /62X, "CURVE HO.") 
2 CALL LMTARA 
C CHECK FOR REFRESH 

IF<J.£0.6) GOTO 23 

431 



3 CALL HNF'ICK (J, ICHARtHNO> 
NFDEL=ICHAR-48 
IF<J.EQ.S.AND .• NFDEL.GT .9.0R.J.EQ.S.AND.t1FDEL.LT .1> GOTO 3 

1 7 CALL CONF'RH < I CHAR) 
IF<ICHAR.EQ.78> GOTO 12 
IF'<ICHAR.NE.89) GOTO 17 
GOT0<21t21t23t24t2St11t21t27t21t11t21)tJ 

12 J=O 
GOTO 2 

21 IC=J 
RETURN 

C 6RAPH/REF'RESH 
23 K=O 

CALL LHTSCL<S1tS2tS3tS4) 
CALL PFRAHE<S1tS2tS3tS4> 
DO 1 I=1t10 
REWIND 9 
IF<NCRV<I>.NE.99> GOTO 22 
CALL SETFIL<9t,SUPFLS(l+K)) 

77 CALL SREDRW<NtN1titXXtYYtHSUHtS1tS2tS3tS4> 
22 K=K+9 
I CONTINUE 

J=O 
GOTO 2 

C IISPLAY CURVE ORIGIN 
24 CALL DlSORG<S1tS2tS3tS4) 

GOTO 2 
C DELETE CURVE OPTION 
25 NCRV<NFDEL>=O 

CALL WRCRVS 
GOTO 2 

C AXES HARKING . 
27 CALL AXSHRK<S1tS2tS3tS4> 

GOTO 2 
END 

c 
C ************** PLOTTING CURVE FIT **************************** 
c 

FUNCTION EPLOT<NCtSCLltSCL2tSCL3tSCL4tNSUH> 
C 1/0 COHMON DATA AREA r 

COHHON/DATSUP/Nf'StNPI <50>, IFREEStX <50>, Y <50>, Z <SO> tL<SO>, IH <5> 
A. tH<S> tHETHODtiHELP.Xf'REVtllOUND<6> ,SUBSETtiNTPNTtiE<2> 
l tiD 

COHHON/CURVEFIT/XCOEF<SOt4)tYCOEF<SOt4)tZCOEF<50t4>tXCORD<200) 
l tYCORD(200)tZCORD<200>•T~RD<200) 

DATA IDC/"123456789"/ 
LOGICAL*l IDC<9> 
IP=l 
IF=1 
I=J 

C PLOT SUPF'LIED POINTS 
3 CALL PLUSGN<SCL1tSCL2tSCL3tSCL4tXCORD<I),YCORD<l)) 
2 CALL TXHOVE<XCORD<I>tYCORD<I>> 

IF<I.EG.NSUH)RETURN 
IPl=IP+l 
IP2=IP+Nf'I <IFl+l 
DO 1 J=If'lt IP2 

I CALL TXDRAW<XCORD(J)tYCORD<J>> 
IF OF .tiE.l.OR.NC.EU.O> GOTO 4 

C NUIIBER TliE CURVES • 
~.L DTEXT(XCORD<J-3)tYCORD<J-3)tlDC<NC>t1> 

4 If'"H'::' 

432 



c 

IF=IF+l 
I"'I+NPI <IF-1) +1 
GOTO 3 
END 

C **************** OUTPUT COEFFICIENTS************************ 
c 

SUBROUTINE OUTCOF <NCOEFo If•NTRoMETHODoCo IDEV> 
DIMENSION C<50o4) 
I=IF'NTR 
CALL CURPOS ( 1. , 580. ) 
WRITE<IDEVo10> 

C DISPLAY COLUHH TITLES 
10 FORHAT<M IMt7Xo"Cl"o11Xo"C2"t11Xo"C3"tl1Xt"C4"/) 
3 DO S J=loNCOEF 

WRITE<IDEVo40)IoC<Io1)oC(Ir2>rC<Io3)rC<Io4> 
I=I+l 

5 CONTINUE 
40 FORHATCI2o4<2XrE11.4)) 
7 RETURN 

END 
c 
Ctttttii********OUTPUT A PAGE OF THE TABLE************************* 
c 

SUBROUTINE OUTPGE<NPOINTriPNToXXrYYoZZorToiDEVoiDIH> 
DIMENSION XX<1>rYY<1>oZZ<l>rTT<1> 
CALL CURF'OS <1. '71 0 • > 
IF<IDIH.EQ.3>WRITE<IDEVo10> 
IFCIDIH.E0.2>WRITE<IDEVo12> 

10 FORHATC//" I"o7Xo"T<l>M•10Xr"X(I)"o9Xo"Y(I)",9Xo"Z<I)"/) 
12 FORHAT</IM l"o7Xo"T<l>M•10Xo"X<I>M•9Xo"Y<I>MI> 

433 

1 DO 3 I=ltNPOINT 
IF<IDIH.EQ.3)WRITE<IDEVo30)1PNTrTT<IPNT>oXXCIPNT>oYY<IPNT)rZZ<IPNT> 
IF <IDIH.EQ.2) WRITE <IDEVo20) lPNT t TT <IPNT> oXX <IPNT>, YY <If'NT> 
IPNT•IPNT+1 

3 CONTINUE 
20 FORHATC12t3Xt3CE11.4t3X)) 
30 FORHAT<I2t3Xt4CE11.4t3X>> 

RETURN 
END 

c 
Cttl*************** OUTPUT THE TITLE OF THE DISf'LAY******** 
c 
c *******AND THE COHHAND HENU*************** 

SUBROUTINE OUTTlL<ICtiTEHtiDEVtiCOEF> 
C IIENU ITEHS 

DATA HHTXT1/"+ NEXT + PREVIOUS+ HARDCOPY+ COEFF'NT+ FORWARD 
l+ BACKWARD+ HELP +RESTART+ EXIT "/ 

DATA HNTXT2/"+ NEXT + PREVIOUS+ X-COEF'N+ Y-COEf'N+ Z-COEF'N 
l+ HIIRIICOPY+ FORWARD + BACKWARD+ HELP + RESTART + EXIT • / 

10 

2 

20 
30 
40 

LOGlCALt1 HNTXT1(90ltHNTXT2(110> 
CALL TXCLER 
IF<IC.E0.2> GOTO 2 
WRITE<IDEV,10> 
FORHAT<"COHPLETE TABLE OF THE INTERPOLATED f'OINTSI-") 
GOTO 3 
IF<ICOEF.E0.1>WRITE<IDEVt20) 
IF<ICOEF.E0.2>WRITE<IDEVo30) 
IF<ICOEF.EQ.3)WRITE<IOEVt40) 
FORI'\AT<//1" F'AR~ETRIC X-COEFFICIENTS:-"///) 
FORHATU/1" PARAMETRIC Y-COEFFICIENTS:-"//1> 
FORHATU//" f'ARAHETRIC Z-COEFFICIENTS:-··///) 



C OUTPUT HENU 
3 f.ALL HNOf'EN(875. r715. r 1) 

IF<IC.EQ.2) GOTO 22 
CALL HNDISP<HNTXT1riTEHr10r1) 
GOTO 4 

22 CALL HNDISP<HNTXT2riTEHr10r1) 
4 CALL FRAHE(870.r733.riTEH) 

RETURN 
END 

c 
CttttttttttSAVE COHHON DATA AREA************** 
c 

SUBROUTINE RDCRVS 
COHMON/CURVES/NCRV<10)rXYSCL(4) 
REWIND 7 

C OPEN OUTPUT FILE 
CALL SETFIL<7r"SUF'CRVES") 
READ<7r10)<NCRV<I>ri=1r10) 
READ<7r20><XYSCL<I>ri~lr4) 

10 FORHAT<I2) 
20 FORHAT<F11.4) 

c 

ENDFILE 7 
RETURN 
END 

Ctttttttttt DISPLAY THE SUf'ERIHf'OSED CURVES********************** 
c 

SUBROUTINE SREDRW<NrN1rNCrXXrYYrHSUHrSCL1rSCL2rSCL3rSCL4> 
DIHENSION Nl(l)rXX<l>rYY<l> 
READ(9r25lHSUI1rN · 
N2=N-1 , 
READ<9r30><XX<I>rYY<I>ri=1rHSUH> 
READ<9r20><N1<I>ri=1rN2) 

30 FORHAT<F11.4) 
20 FORHAT<I3> 
25 FORHAT<213) 

c 

PC= Ef'LOT<NCrSCL1rSCL2rSCL3rSCL4rHSUH> 
li.'ETURN 
END 

C 11******* FIND TOTAL. NUHBER Of' INTERPOLATED f'OINTS*X********** 
c 

SUBROUTINE SUH<NrNlrHSUH> 
DIHENSION Nl <1) 
11SUI1=0 
N2=N-1 
00 1 I=lrN2 

I HSUM=11SU11+Nl<I> 

c 

HSUH=HSUM+N 
RETURN 
END 

Cllllttt*ltSAVE COHHON DATA FOR SUf'ERIHf'OSED CURVE DISf'LAY***** 
c 

SUBROUliNE WRCRVS 
COHMON/CURVES/NCRV<lO>rXYSCL(4) 
REWIND 8 
CALL SETFIL<Br "SUf'CRVEs·) 
WRITE<Br10) <tiCRV<I> ri=lrlO) 
WRITE<Br20> <XYSCL<I> r,I=1•4> 

10 FORHAT<I2> 
20 FORMAT<F11.4) 

434 



ENDFILE 8 
RETURN 
END 

.. 

435 



436 

APPENDIX 2.4 

THE COMMON LIBRARY SUBROUTINES 'EPLIB' 



c ***************** 
C * APPENDIX 2.40 * 
c ***************** 
c 
C THIS IS AN ARCHIVE LIBRARY SUBROUTINES USED BY BOTH PACKAGES. 
C THEY PROVIDES THE FOLLOWING FUNCTIONSI-

437 

C 1.HANDLES INF~T/OUTPUT FOR READING AND WRITING COMMON DATA AREA: 
C 2. UTILITY ROUTINES FOR DISPLAY IMAGES 
c 
c 
c 
c 
CI***********DRAWING AND HARKING THE AXES********************* 
c 
C SETS SCREEN AREA r SCALE AND CHECHS AXES POSITIONING 

SUBROUTINE AXSHRK<SCL1rSCL2rSCL3rSCL4) 
CALL LHTSCL<SCL1rSCL2rSCL3rSCL4) 
f'1=SCL1•SCL3 
f'2=SCL2•SCL4 
IF<f'1H1r12r12 

11 Pl=O 
GOTO 22 

12 Pt=SCLt 
22 IF(P2l111r112r112 
111 P2=0 

GOTO 33 
112 P2=SCL2 
33 IF<Pl.EQ.SCL1.AND.F'2.EQ.SCL2)GOTO 1 
C DRAW AXES 

CALL TXHOVE<P1rSCL4) 
CALL TXDRAW<P1rf'2) 
CALL TXDRAW (SCL3rf'2) 
IF<P1.NE.Ol GOT02 
CALL TXHOVE<P1rP2) 
CALL TXDRAW<SCL1rP2l 

2 IF<P2.NE.Ol GOTO 1 
CALL TXHOVE<P1rf'2) 
CALL TXDRAW<P1rSCL2) 

C HARKS THE AXES<10-DIVIpiON) 
1 CALL XYHARK<SCL1rSCL2rSCL3rSCL4) 

CALL LHTAAA 
C OUTPUT SCALE FACTORS 

c 

CALL XYVALU<SCL1rSCL2rSCL3rSCL4) 
RETURN 
END 'I 

C ********** OUTPUT A CONFIRMATION MESSAGE ************ 
c 

SUBROUTINE CONFRH<ICHAR) 
COHHON/IO/INriOUT 

C DISPLAY THE MESSAGE rRAISE THE CURSOR AND WAIT FOR ANSWER 
CALL CURPOS<SOO.r750.) 
WRITE<IOUTr10l 

10 FORHAT<"CONTINUE<Y/Nl?") 

c 

CALL TXCURS<X1rY1riCHARl 
RETURN 
END 

C **************READS CURSOR INPUT COORDINATES********************** 
c • 

SUBROUTINE DISCOR<ICDrSCL1rSCL2rSCL3rSCL4) 



COMHON/IO/INriOUT 
C ACTIVATE CURSOR OVER SPECIFIED SCREEN AREA 

CALL LMTSCL<SCL1rSCL2rSCL3rSCL4l 
CALL TXCURS<XlrYlriCHARl 
ICD=ICD+l 
CALL LMTARA 
IF<ICD.EO.llGOTO 15 

C OUTF~T CURSOR COORDINATES 
CALL CURPOS<l.r270.) 

11 WRITE<IOUTr10lX1rY1 
10 FORMAT<59Xr·x=·rE11.4/59Xr·Y=·rE11.4l 
2 RETURN 
15 CALL CURPOS(l.r310.) 

GOTO 11 
END 

c 
C ••************OUTPUTS DISF~AY ORIGIN ********************** 
c 

SUBROUTINE DISORG<SCL1rSCL2rSCL3rSCL4l 
COMMON/10/INriOUT 

C OUTF~T DISPLAY COORDINATS OF THE ORIGIN 
CALL CURPOS<1.r750.) 
WRITE<IOUTr20lSCL1rSCL2rSCL3rSCL4 

438 

20 FORMAT<18Xr"MIN<•rE11.4r·r•rE11.4r•l•/t8Xr"MAX<.rE11.4r"r·rE11.4r 
l ").) 

XO=SCL1 
YO=SCL2 
Xl=SCL3 
Yl=SCL4 

C PROMPT USER TO ENTER ALTERNATIVE ORIGIN COORDINATE 
25 CALL MESSAG(·~ DISPLAY AXES<MIN.~ MAX.l?~·> 

IF<IERROR<110l.NE.0) GOTO 333 
READ<INr30)SCL1rSCL2rSCL3rSCL4 

30 FORMAT<4GO.Ol 
C CHECK USER COORDINATES 

IF<SCL1.GT.SCL3.0R.SCL2.GT.SCL4l GOTO 25 
IF<SCL1.GT.XO.OR.SCL2.GT.YOl GOTO 25 
IF<SCL.3.LT .X1.0R.SCL4.LT .Yll GOTO 25 
RETURN 

333 ENDFILE 5 
GOTO 25 
END 

c 
C IIII************DRAWS A SPECIFIED PICTURE/C!JRVE*********** 
c 

SUBROUTINE DRAW<PICTURrRrXOrYOrXlrYlrNl 
C OUTPUT ROUTINE DEFINED AS EXTERNAL TO DRAW THE PICTURE/CURVE 

EXTERNAL PICTUR 
INTEGER R 

C SETS VIEWPORT rWINDOW AND DRAWS RECTANGULAR FRAME 
CALL LHTSCL<XOrYOrX1rY1) 

c 

CALL f'FRAHE<XOrYOrXlrYl) 
PC=PICTUR<RrXOrYOrX1rY1rN) 
RETURN 
END 

C ••***************EXIT AND DELETE ALL INTERMEDIATE FILES************ 
c 

SUBROUTINE EXIT 
C EXIT ROUTINE FOR THE EXPLICIT ROUTINE 

COMHON/CURVES/NCRV <lOh XYSCL (4) 
C FILES CONTIANING COMMON DATA AREAS 



DATA SUPCRVrDATSf'rOUTCRVrCOMJ/"SUPCRVES·,·DATSUf'FL·,·ouTFIT·, 
l"COKJON•t 
C FILES CONTIANING SUf'REIMf'OSED CURVES 

DATA ClrC2rC3rC4rC5rC6rC7rC8rC9/"CURVEl·,·cur.:VE2·,·cuRVE3· 
,,·cuRVE4",·cuRvEs·,·cuRVE6·,·cuRVE7·,·cuRvEa·,·cur.:vE9·t 

LOGICAL•l SUPCRV(lO> rDATSf'(lO> rOUTCRV<lO) rCOMJ(10> 
LOGICAL*l C1<10);C2<10ltC3<10lrC4<10ltC5<10ltC6<10lrC7(10> 

ltCB <10> rC9<10) 
C REMOVES UNWANTED FILES BEFORE TERMINATION 

CALL RMFILE<DATSf') 
CALL RHFILE<OUTCRV> 
CALL RMFILE<COHJ> 

C REMOVE SUPERIMPOSE CURVES 
CALL RHFILE<Cl) 

c 

CALL RHFILE<C2> 
CALL RMFILE<C3> 
CALL RHFILE<C4) 
CALL RHFILE<CS) 
CALL RHFILE(C6) 
CALL RHFILE<C7> 
CALL RHFILE<CS> 
CALL RHFILE<C9) 
CALL RHFILE<SUPCRV> 
RETURN 
END 

C **********•RESET VIEWf'ORT & WINDOW DEFAULT VALUES*************** 
c 

c 

SUBROUTINE LMTARA 
CALL TXVf'RT<O. rO. rl023. r780. > 
CALL TXWIND<O.rO.r1023.r780.) 
RETURN 
END 

C •••**********SETS UP SCREEN WINDOW ****************************** 
c 

c 

SUBROUTINE LMTSCL<SCLlrSCL2rSCL3rSCL4> 
CALL TXVF'RT <O. tO. r855. t 700. > 
CALL TXWIND<SCLlrSCL2rSCL3rSCL4> 
RETURN 
END 

•. 

C •********* SEARCH FOR MINIHUH & HAXIMUM VALUES OF XtY*********** 
c 

SUBROUTINE MINMAX (SCLlrSCL2tSCL3rSCL4rXl•.Yl•N> 
DIHENSION Xl(llrYl<l> l 
SCLl=Xl (1) 

SCL3~Xl (1) 

SCL2=Yl (1) 

SCL4=Y1<1) 
DO 2 I=2rN 

C TEST FOR MAXIHUH AND MINIHUH 
IF<Xl<Il.GT.SCL3) SCL3=Xl<I> 
IF<Xl<I>.LT.SCLl> SCLl•Xl<I> 
IF<Yl<I>.GT.SCL4) SCL4•Yl<I> 
IF<Yl<Il.LT.SCL2> SCL2=Yl<I> 

2 CONTINUE 

c 

RETURN 
END 

C •************EXIT AND DELETE'ALL INTERMEDIATE FILES*************** 
c 

439 



SUBROUTINE PEXIT 
C EXIT ROUTINE FOR THE PARAMETRIC PACKAGE 

COMMDN/CURVES/NCRV<10)rXYSCL<4> 
C FILES CONTAINING I/0 COHHON DATA AREAS 

DATA SUPCRVrPDATSf'rOUTCRV/"SUf'CRVES", "f'DTSUF'FL. r "f'OUTFITC" / 
C f'ILES CONTAINING SUf'ERIHf'OSED CURVES 

DATA C1rC2rC3rC4rC5rC6rC7rCBrC9/"CURVE1"r"CURVE2"t"CURVE3" 
lr"CURVE4"r"CURVE5"t"CURVE6"r"CURVE7"r"CURVEB"r"CURVE9"/ 

LOGICAL*1 SUF'Cf'-'V <10) tf'DATSf' <10> tOUTCRV <10) 

440 

LOGICAL*1 C1<10lrC2(10>rC3<10>rC4(10)rC5<10)rC6<10)rC7<10>rC8<10> 
a. tC9<10) 
C REHOVES UNWANTED FILES BEFORE TERHINATION 

CALL RHFILE<f'DATSf') 
CALL RHFILE<OUTCRV> 

C REHDVE SUf'ERIHf'OSE CURVES 
CALL RHFILE <Cl> 

c 

CALL RHFILE<C2> 
CALL RHFILE<C3> 
CALL RHFILE<C4> 
CALL RHFILE<C5) 
CALL RHFILE<C6) 
CALL RHFILE <C7> 
CALL RHFILE <CB> 
CALL RHFILE<C9) 
CALL RHFILE (SUf'CRV> 
RETURN 
END 

C************DRAWS A RRECTANGULAR FRAHE ROUND THE PICTURE********* 
c 

c 

SUBROUYINE PFRAHE<XOrYOrXlrYl> 
CALL TXHDVE<XOrYO> 
CALL TXDRAW<XOrYl) 
CALL TXDRAW<XlrYl> 
CALL TXDRAW<XltYO) 
CALL TXDRAW<XOrYO> 
RETURN 
END 

C ••******DRAWS A PLUS SIGN**************************************** 
c 

SUBROUTINE PLUSGN<SCLlrSCL2tSCL3rSCL4tXlrY1) 
C SETTING THE SIZE OF THE PLUS SIGN 

SCL5=<SCL3-SCL1)*51855 
SCL6•<SCL4-SCL2)*5/700 

C CLIP THE SIGN IF DRAWN ON THE EDGES OF THE VIEWPORT 
IF<Xl.NE.SCLl) GOTO 1 
Zl=Xl 
Z2=Xl+SCL5 
GOTO 3 

I IF<Xl.NE.SCL3> GOTO 2 
Zl=X1 
Z2 .. X1-SCL5 
r..oTo 3 

2 Zl=X1-SCL5 
Z2=Xl+SCL5 
IF<Z1.LT.SCL1>Zl=X1 
IF<Z2.GT.SCL3>Z2=X1 

C IRAWS THE PLUS SIGN 
3 C,ALL TXHOVE<Z1rY1> ,. 

CALL TXDRAW{Z2rY1> 
IF <Y1.NE.SCL2) GOTO 4 



Z3=Y1 
Z4=Y1+SCL6 
GOTO 6 

4 IF<Y1.NE.SCL4lGOTO 5 
Z3=Y1 
Z4=Y1-SCL6 
GOTO 6 
Z3=Y1+SCL6 
Z4=Y1-SCL6 
IF<Z4.LT.SCL2lZ4•Y1 
IF<Z3.GT.SCL4)Z3•Y1 

4 CALL TXHOVE<X1rZ3) 
CALL TXDRAW<X1rZ4l 
RETURN 
END 

c 
C •••********RESTORES INPUT COMMON DATA AREA***************** 
c 

SUBROUTINE PRDCH1 
C INFUT COMMON DATA AREA 

COHHON/DATSUP/NPSrNPI<5<>lriFREESrX<50lrY<50lrZ<50lrL<5<>lriH<5lr 

441 

& H (5) ri1ETH0Dr IHELPr IPREVrllOUND (6) rSUilSET r INTF'NT, IE <2) 
l riD 

INTEGER SUBSET 
REWIND 7 

C OPEN INF'UT FILE 
CALL SETFIL<7r"PDTSUF·FL") 
READ<7r10lNPSr IFREESri1ETHODr IHELPr IPREVrSUBSET r INTf'NT, ID 

10 FORHAT<Bl3) 
IF <ID.EQ.3lREAD<7r20l (Nf'I<I> rX <I> r Y <I> rZ<I> rL <I> r Ia1rNF'Sl 
IF<ID.EQ.2lREAD<7r20><NPI<IlrX<IlrY<IlrL(llrl=1rNPSl 

20 FORHAT<F10.4) 
READ<7r30l<IH<IlrH<Ilri•lr5) 
READ<7r40) <llOUND<Il ri=1r6) 
READ<7r30liE(1lriE<2l 

30 FORHAT<I3) 
40 FORHAT<6F6.2> 

c 

ENDF"ILE 7 
RETURN 
END 

t tii********RESTORE OUTPUT COHHON DATA AREA************** 
c 

SUBROUTINE PRDCH2<NrtllrNCr IDIH> 
C OUTPUT COiiHON DATA AREA ., 

COHHON/CURVEFIT/XCOEF<50r4lrYCOEF<50r4lrZCOEF<50r4lrXCORD<200lr 
l YCORD<200lrZCORD<200)rTCORD<200) 

DIMENSION N1 <1) 
REWIND 7 

t OPEN OUTPUT FILE 
CALL SETFIL(7r"POUTFITC") 
IISUH=O 
N2=N-1 
DO 1 I=lrN2 
IISUI1=11SUH+N1 ( Il 
tiSJ.j1=tiSUH+N 
IF<IDIH.E0.3)READ<7r10)((XCOEF<IrJlrYCOEF(IrJlrZCOEF<IrJ)rJ=lrNC)rl=1rN2) 
IF<IDIH.E0.2lREAD<7r10)((XCOEF<IrJlrYCOEF<IrJlrJ=1rNClri=1rN2l 

10 FORHAT<F12.4) 
IF<IDIH.E0.3)READ<7r20l<XCORD<IlrYCORD(IlrZCORD(IlrTCORD<Il 

l tl•lrtiSUH) •' 
IF<IDIH.EQ.2)READ(7r20)(XCORD(llrYCORD<IlrTCORD<Ilrin1rtiSUtll 



20 FORMAT<Fl2.4) 

c 

ENDFILE 7 
RETURN 
END 

C tttttttt REMOVES ALL LINKS AND PUT DATA INTO ARRAY LIST******H******* 
c 

SUBROUTINE PRMLNK<XltYltZl> 
C INPUT COMMON DATA AREA 

COMMON/DATSUP/NPStNP1<50>tlFREEStX<50)tY<50),z(50)tL(50),IH<5>• 

442 

l M<5) rMETHOlh IHELP.XPREVtllOUND<6) ,SUilSEh INTF'NT, lE <2> 
l riD 

DIMENSION Xl<l)rYl<l>,zt<l) 
INTEGER SUilSET 

C THREADS THROUGH THE LINK LIST AND COPY TO ARRAY LIST 
IP=IH<l) 
Xt<l>=X<IP> 
Y1 <1> =Y<IP> 
IF <ID.EQ.3) Zl (1) =Z <If') 
DO 1 1•2rNPS 
lf'"'L <IP> 
Xl <I> =X <IP> 
Yl< 1) .. y (JP) 
IF<ID.EQ.3)Zl<I>•Z<IP> 

1 CONTINUE 

c 

RETURN 
END 

C ttttttttttSAVE INPUT COMHON DATA AREA************** 
c 

SUBROUTINE PWRCH1 
C INPUT COHHON OATA AREA 

COHMON/DATSUf'/Nf'StNPI<50) r lFI\'EEStX (50) • Y (50) rZ <50) oL<50) r IH <5), 
l M<5>rHETHODriHELP,IPREVrllOUND<6)rSUBSET,INTPNTtiE<2> 
l riD 

INTEGER SUBSET 
REWIND 8 

C OPEN OUTF~T FILE 
CALL SETFIL<Br"PDTSUPFL") 
WRITE <Br 10> NPSr lFREESrHETHODr IHELF'r lPREVrSUBSET r INTF'NTr ID 

10 FORHAT(813) 
IF(lD.EQ.3)WRITE<B•20)(NPI<I>rX<l)rY<I>rZ(l),L(l)rl=l•NPS) 
IF<ID.E0.2>WRITE<B,20><NPI<I>rX<I>•Y<I)rL(I)rl=lrNPS) 

20 FORHAT<F10.4) 
WRITE<Br30)(JH(I)rM(l)rl=lr5) 
WRITE<ar40><BOUND<I)rl=lr6) 
WRITE<ar30>IE<l)riE(2) 

30 FORMAT<I3) 
40 FORHAT<6F6.2) 

c 

ENDFILE a 
RETURN 
END 

C tftttttttttSAVE OUTPUT COHHON DATA AREA*************** 
c 

SUilROUTltlE PWRCH2<N•Nt.NCtlDIH> 
C OUT~T COMMON DATA AREA 

COMHON/CURVEFIT /XCOEF <50r4), YCOEF (50, 4) ,zCOEF <50,4) •XCORD (2(10), 
I YCORD(200) ,zCORD(200) rTCCFD<200) 

DIMENSION Nl (1) 

REWIND a 
C OPEN OUTF~T FILE 



CALL SETFIL<Br·POUTFITC•) 
HSUH=O 
N2=N-1 
00 1 I=ltN2 
KSUH=t\Sllti+Nl <I> 

443 

tiSUH=I'ISUH+N 
IF<IDIH.E0.3lWRITE<Sr10l<<XCOEF<IrJltYCOEF<ItJltZCOEF<IrJ)tJ=ltNCltl=lt. 
IF<IDIH.E0.2>WRITE<St10><<XCOEF<ItJltYCOEF<ItJltJ=ltNClri=lrN2l 

10 FORHAT<F12.4) 
IF<IDIH.EQ.3lWRITE<Sr20l<XCORD<I>rYCORD<IlrZCORD<IltTCORD<I> 

& t1•1ttiSUH) 
IF<IDIH.E0.2lWRITE<Sr20) <XCORD<I>rYCORD<IlrTCORD<Ilri•ltHSUH> 

2t FORHAT<F12.4) 

c 

ENDFILE 8 
RETURN 
END 

C tttttttttRESTORES INPUT COHHON DATA AREA******************* 
c 

SUBROUTINE RDCOH1 
C INPUT COHHON DATA AREA 

COMHON/DATSUP/NPStNPI<50ltiFREESrX<50lrY<50lrL<50ltlH<5ltH(5lt 
& KETHODtiHELP•IPREVrBOUND<2ltSUBSETriNTPNTtiE<2> 

INTEGER SUBSET 
REWIND 7 

C OPEN AN INTERMEDIATE INPUT DATA FILE 
CALL SETFIL<7t.DATSUf'FL•) 
READ<7r10lNPStiFREEStHETHOD,IHELPtiPREVtSUBSETtiNTPNT 

10 FORHAT<7I3> 
READ<7r20l <NPI<IltX<IltY<Il rL<I> ti=1tNF'S) 

20 FORHAT!F10.4) 
READ<7r30lCIH<IlrH<Ilri•lt5) 
R£AD<7r40) BOUNDC1lrBOUND<2> 
READ<7r30liEC1lriE<2> 

Jt FORHAT<I3) 
U FORKAT<2F6.2> · 

ENDFILE 7 
RETURN 
END 

c 
C tutttttttttRESTORES OUTPUT COHHON DATA AREA*************** 
c 

SUBROUTINE RDCOH2<NrN1tNC) 
C OUTPUT COHHON DATA AREA 

COHHON/CURVEFIT/COEF<50r6ltXCORD<200ltYCORD<200> 
DIHENSIOH NI <1) 
REWIND 7 

C OPEN AN INTERMEDIATE OUTPUT FILE 
CALL SETFIL<7r•ouTFIT•> 
HSUH=O 
N2=N-1 
00 1 I"ltN2 

I HSUH=HSUH+Nl<I> 
KSUH=HSUH+N 
R£AD(7rlO><<COEF<IrJ)rJz1rNClti=1tN2l 

10 FORHAT<F12.4) 
R£AD<7r20l(XCORD<I>rYCORD<Ilri=1rHSUM) 

20 FORHAT(2f12.4l 

c 

ENDFILE 7 
li:ET~JRN 
END' 



Ctlfii*MIIIIIIItREAD COHHON AREA FOR JOIN************************ 
c 

SUBROUl'INE RDCOHJ 
C COHHON JOIN DATA AREA 

COMHON/JOIN/CJ1<500)rCJ2<500)rJ3<12lrJ4(100lriPNTR(6) 
REWIND 7 

C OPEN JOIN DATA FILE 
CALL SETFIL<7r"COHJON") 
READ<7r10)(J3(Ilri=1r12) 
READ<7r10l(IPNTR<Ilri=1r6) 
READ(7r10)L 
L=L+1 
READ<7r10)(J4(I)ri=1rLl 
K2=J3(1) 
READ<7r20)(CJ1<IlrCJ2(Ilria1rK2) 

10 FORHAT<I4) 
20 FORMAT<F11.4) 

c 

ENDFILE 7 
RETURN 
END 

444 

C ******** REMOVES ALL LINKS AND PUT DATA INTO ARRAY LIST************** 
c 

SUB~OUTINE REHLNK<X1rY1l 
C INPUT COHHON DATA AREA 

COHMON/DATSUP/NPSrNF'I<50lriFREESrX<50lrY<50lrL<50lriH<5lrH(5) 
l rHETHODriHELPriF~EVrBOUND<2lrSUBSETriNTF'NTriE<2> 

DIMENSION X1(1lrY1(1) 
INTEGER SUBSET 

C THREADS THROUGH THE LINK LIST AND COf'Y TO SIHF'LE LIST ARRAY 
IP=IH<ll 
x1 <1 > =x UP> 
Y1 <1> =Y (If') 
DO 1 I=2rNPS 

IF'=L<If') 
Xl<Il=X<If') 
Yl< 1) =Y< If') 

l CONTINUE 

c 

RET~N 
END 

C *********AXES HARKING ~ SCALLING************************** 
c 

SUBROUTINE SCALE<A1rA2rB1rB2riFLGrSCL1rSCL2rSCL3rSCL4) 
DO 1 Iclr9 

CALL f'LUSGN(SCLltSCL2rSCL3rSCL4rB1 rB2l 
IF<IFLG.E0.1lGOTO 2 
B1=Bl+A1 

l CONTINUE 
RETURN 

2 B2=B2+A2 

c 

GOTO 1 
END 

C ttttttttttttSAVE INPUT COHHON DATA AREA******************* 
c 

SUBROUTINE WRCOH1 
C INPUT COMMON DATA AREf1 

COHMON/DATSUP/NF'SrNPI (50) r IFREESr X (50), Y<SO> rL<50), IH <5) rH <5>, 
1 HElHODr IHELF'r If'REVrBOUND <2> rSUB3ET r INTF'NT r IE <2> 

INTEGER SUBSET : 
REWIND 8 



C OPEN AN INTERHEIJIATE INF'UT FILE 
CALL SETFIL<Bt "DATSlF'FL • > 
WRITE <B• 10> HPS, I FREESt HETHODt I HELP• IPREVtSUBSET, INTF'NT 

10 FORHAT<7I3) 
WRITE<Bt20) <NPI<U tX<IhY<IhL<U tl=t.Nf'S> 

20 FORHAT<F10.4) 
WRITE<Bt30><IH<I>•H<I>ti•1t5l 
WRITE<Bt40> BOUND<1>•&0UND<2> 
WRITE<Bt30>IE<1ltiE<2l 

31 FORHAT(I3) 
40 FORHAT<2F6.2> 

c 

ENDFILE B 
RETURN 
END 

C '*************SAVES OUTF~T COHHON DATA AREA*************** 
c 

SUBROUTINE WRCOH2<NtN1tNC) 
C OUTPUT COHHON DATA AREA 

COHHON/CURVEFIT/COEF<50t6ltXCORD<200ltYCORD<200> 
DIMENSION N1 <1> 
REWIND B 

C OPEN AN INTERMEDIATE OUT~T FILE 
CALL SETFIL<B•"OUTFIT") 
HSUH•O 
N2=N-1 
DO 1 I•1tN2 

I HSUH=HSUH+Nt<Il 
HSUH•HSUH+N 
WRITE<B•10l<<COEF<ItJ),J•ltNCltiat,N2> 

10 FORHAT<F12.4) 
WRITE<B•20l<XCORD<I>tYCORD<Ilti=1tHSUH> 

20 FORHAT<2F12.4) 

c 

ENDFILE B 
RETURN 
END 

Ctttt**************WRITE COHHON AREA FOR JOIN*********************** 
c 

SUBROUTINE WRCOHU 
C COHHON JOIN DATA AREA 

COHHON/JOIN/CJ1(500ltCJ2<500),J3(12ltJ4(100>•If'NTR<6> 
REWIND B 

C OPEN JOIN DATA FILE 

I 

10 
21 

CALL SETFIL(Bt"COHJON") ··~. 
WRITE<Bt10)(J3<Iltl•lt12) 
WRITE<Bt10l(If'NTR<Iltl•1•6> 
L=O 
Kl" lf'NTR < 1) -2 
Ja3 
DO 1 1•1tK1 
L-L+J3<Jl-1 
J=J+2 
CONTINUE 
WRITE <Bt 10> L 
L"L+1 
WRITE<B•10)(J4<ll•l•l•L> 
K2=J3(1) 
WRITE<St20l<CJ1<lltCJ2<Iltl•l•K2l 
FORHAT <14) 
FORHAT<F11.4) 
ENDFILE B 

.· 

445 



c 

RETURN 
END 

C ************HARKS THE GRAPH AXES*********************** 
c 

SUbROUTINE XYHARK<SCL1rSCL2rSCL3rSCL4) 
Al•<SCL3-SCL1)/10 
A2~<SCL4-SCL2l/10 

IFLG=O 
Bl=SCLl+Al 
B2=SCL2 

C URK THE AXES 
CALL SCALE<AlrA2r81r82rifLGrSCL1rSCL2rSCL3rSCL4l 
81•SCL1+A1 
92aSCL4 
CALL SCALE<AlrA2r81rB2rlfLGrSCL1rSCL2rSCL3rSCL4> 
IfLG•l 
Bl•SCLl 
B2•SCL2+A2 
CALL SCALE<A1rA2r81rB2rlfLGrSCL1rSCL2rSCL3rSCL4> 
B1=SCL3 
82=SCL2+A2 
CALL SCALE<A1rA2rB1rB2rlfLGrSCL1rSCL2rSCL3rSCL4> 
RETURN 
END 

446 

C ttt****** OUTPUT HAX & HIN Of X ,y AXES********************************** 
SUBROUTitiE XYVALU <SCL1rSCL2r SCL3r SCL4> 
COHHON/IO/INtiOUT 
CALL CU~(O.r185.) 
WRITE<IOUTr20) SCL1rSCL3rSCL2rSCL4 

20 FORHAT<04Xr"X-HIN."/60XrE11.4r65Xr"X-HAX."/60XrE11.4r65Xr"Y-HIN."/ 
4 60XrE11.4r65Xr"Y-HAX."/60XrE11.4) 

RETURN 
END 

r 

.. 



447 

APPENDIX 3 

ICT - PROGRAM LISTING 



448 

APPENDIX 3.1 
• 

THE CONTOURING ALGORITHM SUBROUTINES 



c **************** 
C * APPENDIX 3.1 * 
c **************** 
c 
C THIS IS THE CONTOUR TRACING ALGORITHM WHICH USES THE 
C TRIANGULAR CELL DISCRETIZATION.IT TRACES THE CONTOUR LINE 
C WITHIN AGIVEN RECTANGLEF THE REGION CONSIDERED. 
C THE ALGORITHM CONSISTS MAINLY OF FOUR SUBROUTINES TOGETHER 
C WITH OTHER TWO WHICH HANDLES THE SPECIAL CASE WHEN CONTOUR 
C CROSSES THE RECTANGLE EDGE TWICE.THE MAIN SUBROUTINE ARE: 
C "RECANG" ••••• TRACES THE CONTOUR FOR EACH SIDE OF RECTANGLE 
C "DCRVSD" ••••• FOLLOWS THE CONTOUR LINE WITHIN THE RECTANGLE 

449 

C "DLINE " ••••• CONSTRUCTS THE TRIANGULAR CELL AND DRAWS THE LINE 
C "ROOT " ••••• CHECK FOR THE EXISTENCE OF A ROOT ALONG AGIVEN SIDE 
c 
c 
c 
C***********TRACE THE CONTOUR IN ONE RECTANGLE*************** 

SUBROUTINE RECANG<XMINtXMAXtYMINtYMAXtXSTEPtYSTEPtCONTOURtii;J~ 
COMMON/LIMIT/XXltYYloXX2oYY2oXEXITC4)oYEXITC4)oiESIDC4)oCONTt 

& XXLoYYLoiTRACE 
C SET UP THE COORDINATES LIMIT 
C INITIALISE EXIT LIST •••• 

OF THE RECTANGLE IN QUESTION AND 

1 

XX1=XMIN 
YY1=YMIN 
XX2~XMAX 

YY2=YMAX 
CONT=CONTOUR 
MNSTEP=4.0•<XMAX+YMAX-XMIN-YMINl/CXSTEP+YSTEP> 
DO 1 I~1t4 

XEXIT<I>=O. 
YEXITCI)=O. 
IESIDCI>=O 

CONTINUE 
NEXITS=O 

C CHECK FOR SPECIAL RECTANGLE 

C SIDE 1 

CALL SPCREC(ISPoiioJJoCONTtMNSTEPoXSTEPoYSTEPoNEXITS) 
IFCISP.EQ.1) GOTO 2 

CALL DCRVSDCXMIN,YMINoXMAXoYMINoXSTEPoYSTEPoMNSTEPoNEXITSo1) 
C SIDE 2 

CALL DCRVSD<XMINoYMAXoXMAXoYMAXoXSTEPoYSTEPoMNSTEPoNEXITSo2) 
C SIDE 3 

CALL DCRVSD<XMINoYMINoXMINoYMAXoXSTEPtYSTEPoMNSTEPoNEXITSt3) 
C SIDE 4 . 

CALL DCRVSD<XMAXoYMINtXMAXtYMAXoXSTE~~YSTEPoMNSTEPoNEXITSo4) 
C TEST SPECIAL CASE WITH TWO EXITStAND SAVE EXIT COORDS. 
2 CALL TWOEXT<IIoJJoXSTEPoYSTEPoMNSTEP> 

RETURN 
END 

c 
C****************DRAWS THE CURVE FROM AGIVEN RECTANGLE SIDE********** 
c 

SUBROUTINE DCRVSDCX1tY1oX2oY2oXSoYStMtNtiSIDE> 
COMMON/LIMIT/XX1oYY1tXX2oYY2tXEXIT<4>•YEXIT<4>tiESIDC4)oCONTt 

& XXLoYYLtiTRACE 
COMMON/CORNERS/CNRLT(2)oCNRRT<2>oCNRLB<2>oiSIGNS(3),FUN(3) 
COMMON/STATCS/NStNEF1oNEF2 
DIMENSION CLD(2)tCRDC2)oCLU<2> 
LOGICAL RFOUND 



C CHECK FOR SPECIAL CASECTWO EXIT> 
IT=1 
IFCITRACE.EQ.2.0R.ITRACE.EQ.4) GOTO 33 

C FIND SINGLE ROOT ALONG THE GIVEN SIDE 
CALL ROOTCX1tV1oX2tV2oXStYStiSIDEtRFOUND> 
IF<RFOUNO.EQ •• FALSE.) RETURN 

C CHECK FOR EXIT POINTS 
33 DO 2 K=ltN 

XDIF=ABSCCNRLT<1>-XEXITCK)) 
VDIF=ABS<CNRLT<2>-VEXIT<K>> 
XVSTEP=XS+VS 
XVDIF=XDIF+VDIF-XVSTEP 
IFCXVDIF.LT.O.> RETURN 

2 CONTINUE 

450 

C MOVE BEAM TO THE LINEAR INTERPOLATED POINT OF THE FIRST BASE LINE 
C CHECK FOR SPECIAL CASE 

212 

IFCITRACE.EQ.2.0R.ITRACE.EQ.4) GOTO 333 
XLT=CNRLTC1) 
VLT•CNRLT(2) 
FLT=FUN(1) 
XRT=CNRRT(1) 
VRT=CNRRT<2> 
FRT=FUNC2) 
Xa(XRT*FLT-XLT*FRT)/CFLT-FRT) 
V=CVRT*FLT-VLT*FRT)/CFLT-FRT> 
CALL TXMOVE C X, V> 
XXL=X 
VVL=V 

C TRACE THE CURVE FURTHER IN THE CURRENT RECRANGLE 
333 DO 3 NSTEP=loM 

X3=CNRLBC1) 
V3=CNRLB(2) 
F3=F<X3oV3)-CONT 
FUNC3>.,.F3 

C RUN TIME STATISTICS 
NEF1=NEF1+1 
NS=NS+1 

ISIGNS<3>"'1 
IFCF3,LT.O.)ISIGNSC3)=-1 
CLDC1>•CNRLTC1) 
CLD (2) =CNRL T<2> 
CRD ( 1) =CNRRT (1) 

CRDC2>=CNRRTC2) 
CLU C 1) "'CNRLB C 1 ) 
CLUC2l=CNRLBC2) 
ICASE=O 

C TEST FOR WHICH SIDE CURVE CROSSES AND TEST FOR DEGENERATE CELL 
IFCISIGNSC3).NE.ISIGNS(1)) ICASE=ICASE+1 
IFCISIGNSC2>.NE.ISIGNSC3)) ICASE=ICASE+2 
GOTOC20o30>oiCASE 

C CURVE PASSES OUT LEFT HAND SIDE OF CELL 
20 FL=FUNC1) 

FR=FUNC3) 
CALL DLINECCLDtCLUoCRDtXLoVLoFLtFR) 
ISIGNSC2>=ISIGNSC3) 
FUNC2>=FUNC3) 
GOTO 7 

C CURVE P~SSES OUT OF RIGHT HAND SIDE OF CELL 
30 FL=FUNC3) 

FR=FUNC2) 
CALL DLINE<CLU,CRDoCLDtXLoVLoFL,FR) 
~SIGNSC1)•ISIGNS,3) 
I" UN C 1) =FUN C 3) ' 

7 XLD1=XL-XX1-0.001 
~LD2=XX2-XL-0.001 

YLD1=YL-VV1-0.001 



451 
YLD2=YY2-YL-0.001 
IFCYLD1.LT.O •• OR.YLD2.LT.O •• OR.XLD1.LT.O •• OR.XLD2.LT.O.> OOTO 

3 CONTINUE 
RETURN 

C SET EXIT POINTS 
9 IFCIT.EQ.1) OOTO 31 

N=N+1 
C MARK EXIT POINT SIDE FOR SPECIAL CASE 

WRITEC9t7777)NSTEP 
7777 FORMATCI3> 

IFCYLD1.LT.O.> IESIDCN>=1 
IFCYLD2.LT.O.) IESIDCN>~2 

IF<XLD1.LT.O.) IESIDCN>=3 
IFCXLD2.LT.O.) IESID<N>•4 
XEXIT<N>=XL 
YEXIT<N>=YL 
RETURN 

31 IT=O 

c 

OOTO 3 
END 

C************DRAW STAiOHT LINE IN A CELL******************* 
c 

SUBROUTINE DLINECCNRLtCNRRtCNROLtXtYtF1tF2> 
COMMON/CORNERS/CNRLTC2)tCNRRTC2)tCNRLB(2)tiSIONSC3>tFUNC3> 
COMMON/LIMIT/XX1tYY1tXX2tYY2tXEXITC4>tYEXITC4>tiESIDC4>tCONTt 

& XXLtYYLtiTRACE 
DIMENSION CNRL(1)tCNRRC1>tCNROLC1> 

C COMPUTE THE CONTOUR INTERSECTION POINT BY LINEAR INTERPOLATION 
XLT=CNRL(l) 
YLT=CNRLC2> 
XRT=CNRRCl> 
YRT=CNRR_(2) 
X•CXRT*F1-XLT*F2>1CF1-F2> 
Y=<YRT*F1-YLT*F2>1<F1-F2> 

C CLIP THE LINE IF NECESSARY 
22 CALL CCLIPCXtY> 

X XL= X 
YYL=Y 
CALL TXDRAWCXtY> 

C SET UP THE COORDINATE OF THE THIRD VERTEX OF NEXT CELL 
DO 1 I=1 t2 . 

CNRLBCI>=CNRRCI)+CNRLCI>-CNROLCI> 
CNRRTCI>=CNRRCI> 
CNRL T( I >=CNRL (I> 

1 CONTINUE 
RETURN 1 
END 

c 
C*********FINDS ASINOLE ROOT ALONG THE SIDE OF RECTANGLE******** 
c 

SUBROUTINE ROOTCX1tY1tX2tV2tXStVStiSIDEtRFOUND> 
COMMON/LIMIT/XX1tYY1tXX2tYY2tXEXITC4)tVEXITC4>tiESIDC4)tCONTt 

& XXLtVVLtiTRACE 
COMMON/CORNERS/CNRLTC2>tCNRRTC2)tCNRLBC2)tiSIGNSC3>tFUNC3) 
COMMON/STATCS/NStNEF1tNEF2 
LOGICAL RFOUND 

C COMPUTE FUNCTION VALUES AT BOTH ENDS OF THE RECTANGLE SIDE & 
C ADJUST THE SIGNS 

F1=FCX1 tYl>-CONT 
FUNC1>=F1 
ISIGNSC1>=1 ,. 
IFCF1.LT.O.) ISIGNSC1)=-1 
F2=FCX2tY2>-CONT 
FUNC2>=F2 

C RUN TIME STATISTICS 



NEF2=NEF2+2 
ISIGNS<2>=1 
IFCF2.LT.O.liSIGNSC2l=-1 

C IF EQUAL SIGN ,NO ROOT IS FOUND RETURN 
IFCISIGNSC1l.ED.ISIGNSC2ll GOTO 1 
RFOUND=.TRUE. 

C BY MEANS OF REPEATED BISECTION OF THE SIDE tDETERMINE 
C THE ENDS OF THE INTERVAL EITHER SIDE OF THE ROOT. 

STEP=CXS+YSl/2. 
IFCISIDE.GT.2) GOTO 2 

C X-VARIES 
NINTS=IFIXCCX2-X1)/STEP+.5) 
WINT=CX2-X1)/NINTS 
GOTO 3 

C V-VARIES 
2 NINTS=IFIXCCY2-Y1)/STEP+.5) 

WINT=CY2-Y1l/NINTS 
3 INTLR=O 

INTRR=NINTS 
7 INTC=IFIXCCINTLR+INTRRl/2+.5) 

IFCISIDE.GT.2l GOTO 8 
W=X1+INTC*WINT 
FW=FCWtY1>-CONT 
GOTO 9 

8 W=Y1+INTC*WINT 
FW=FCX1tWl-CONT 

C ADJUST THE SIGN OF THE APPROPRIATE ENDS 
9 ISIGNC=1 

IFCFW.LT.O.> ISIGNC=-1 
IFCISIGNS<1>.EQ.ISIGNC>GOTO 11 
INTRR=INTC 
FUNC2>=FW 

C RUN TIME STATISTICS 
111 NEF2=NEF2+1 

IF<<INTRR-INTLR).GT.1> GOTO 7 
C SET CORNER COORDINATES OF THE SIDE 

GOTO C10t10t20t20)tiSIDE 
11 INTLR=INTC 

FUNC l>=FW 
GOTO 111 

C SIDE 1 OR 2tSETTING THE TRIANGLE CELL COORDINATES ON 
C THE HORIZONTAL SIDES 
10 IFCISIDE.ED.1lXYS=0.866025*STEP 

IFCISIDE.EQ.2)XYS=-0.866025*STEP 
CNRLTC1>=X1+INTLR*WINT 
CNRLT(2l=Y1 
CNRRTC1>=CNRLTC1>+WINT 
CNRRTC2>=Y1 
CNRLB(1)=CCNRLTC1l+CNRRTC1ll/2. 
CNRLBC2l=Y1+XYS 
RETURN 

C SIDE 3 OR 4tSETTING UP THE TRIANGLE CELL COORDINATES ON 
C THE VERTICAL SIDES 
20 IFCISIDE.EQ.3) XYS=0.8660~5*STEP 

IF<ISIDE.EQ.4) XYS=-0.866025*STEP 
CNRLTC1l=X1 
CNRLTC2>=Y1+INTLR*WINT 
CNRRTC 1 >=X 1 
CNRRTC2>=CNRLTC2l+WINT 
CNRLBC 1> =X 1+XYS 
CNRLBC2>=<CNRLT(2)+CNRRTC2))/2. 
RETURN 

C ROOT NOT FOUND 
1 RFOUND=.FALSE. 

RETURN 
END 

4~L 



453 
c 
C************* CHECK SPECIAL CASE & P@OCESSES******************* 
c 

SUBROUTINE SPCRECCISPoiioJJoCONTOURoMNSTEPoXSTEPoVSTEPoNEXITS> 
COMMON/LIMIT/XX1oVV1oXX2oVV2oXEXITC4>oVEXITC4>oiESIDC4>oCONTt 

& XXLoVVLoiTRACE 
COMMON/SPCSD2/XE2C10>oVE2C10>oiROW2C10)oJCOL2C10>oiSD2C10)oiPNT 
COMMON/SPCSD4/XE4C2>oVE4(2)oiSD4 
COMMON/CORNERS/CNRLTC2loCNRRTC2)oCNRLBC2>oiSIGNSC3)o 

& FUNC3) 
COMMON/STATCS/NSoNEF1tNEF2 
STEP=CXSTEP+VSTEP)/2. 
XVS=0.866025*STEP 

C CHECK THE EXISTENCE OF TWO EXIT AND ON WHICH SIDE 
DO 1 K=1o10 

IFCISD2CK>.NE.2> GOTO 1 
IFCIROW2CK>.EQ.II.AND.JCOL2CK>.EQ.JJ) GOTO 5 

1 CONTINUE 
IFCISD4.EQ.4.0R.ISD4.EQ.1.0R.ISD4.EQ.3) GOTO 4 
ISP=O 
RETURN 

C TOW EXITS ON SIDE 2 oESTABLISH A CELL ALD TRACE CURVE 
5 DO 8 L=1o2 

CNRLTC1>=XE2CK>-STEP/2. 
CNRLTC2>•VE2CK> 
CNRRTC1>=XE2CK>+STEP/2. 
CNRRTC2)aVE2CK> 
CNRLBC1>•<CNRLTC1)+CNRRTC1>>12. 
CNRLBC2>=VE2CK>+XVS 
XL1=CNRLTC1> 
VL1=CNRLTC2) 
FL1=FCXL1oVL1>-CONT 
FUN(l>=FL1 
ISIGNSC1>=1 
IFCFL1.LT.O.) ISIGNSC1>=-1 
XR1:CNRRTC 1) 
VR1=CNRRTC2> 
FR1=FCXR1oVR1>-CONT 
FUNC2>,.FR1 

C RUN TIME STATISTICS 
NEF2=NEF2+2 

ISIONS<2>•1 
IFCFR1.LT.O.>•JSIGNSC2>=-1 
IF<ISIGNSC1>.NE.ISIGNSC2)) GOTO 117 
FDIF=ABSCFL1>-ABSCFR1> 
IFCFDIF.LT.O.>ISIGNSC1>=-ISIGNSC1> 
IFCFDIF.GE.O.>ISIGNSC2>=-ISIGNS<2> ) 

117 CALL TXMOVECXE2<K>oVE2CK>> 
ITRACE=2 
CALL DCRVSD(XX1oVV1oXX2oVV2oXSTEPoVSTEPoMNSTEPoNEXITSo2) 
ISD2<K>=O 
K=K+1 

8 CONTINUE 
ITRACE=O 
IF<ISD4.EQ.4)GOTO 4 
GOTO 10 

C TWO EXIT ON SIDE 4 
4 DO 9 L=1o2 

IFClSD4.EQ.1> GOTO 44 
CNR1,T< 1 >=XE4CL> 
CNR .T (2) =VE4 <L> -STEP/2. 
CNRI'T(l>=XE4<L> .. 
CNRRTC2>=VE4CL>+STEP/2. 
IFCISD4.EQ.4)CNRLBC1>=CNRLTC1)+XVS 
IFCISD4.EQ.3>CNRLBC1>=CNRL7•1>-XYS 
CNRLBC2)=CCNRLH2HS~:·•~~ Ci::- '···2. 



44 

77 

C RUN 

17 

GOTO 77 
CNRLT<1>=XE4<L>-STEP/2. 
CNRLT<2>=YE4CL> 
CNRRTC1>=XE4CL)+STEP/2. 
CNRRT<2>=YE4CL> 
CNRLBC1>=CCNRLT<1>+CNRRTC1))/2. 
CNRLBC2>=YE4CL)-XYS 
XL1=CNRLT<1> 
YL1=CNRL T<2> 
FL1=FCXL1oYL1)-CONT 
FUNC1>=FL1 
ISIGNS<1>"'1 
IFCFL1.LT.O.) ISIGNSC1>=-1 
XR1=CNRRT<1) 
YR1=CNRRT<2> 
FR1=F<XR1tVR1>-CONT 
FUN<2>=FR1 

TIME STATISTICS 
NEF2=NEF2+2 

ISIONS<2>=1 
IFCFR1.LT.O.) ISIGNSC2>=-1 
IFCISIONS<1>.NE.ISIGNSC2)) GOTO 17 
FDIF=ABSCFL1)-ABSCFR1> 
IFCFDIF.LT.O.>ISIGNSC1>=-ISIONSC1) 
IFCFDIF.GE.O.>ISIGNSC2>=-ISIONSC2> 
CALL TXMOVECXE4CL>tYE4CL)) 
ITRACE=4 

454 

9 
CALL DCRVSDCXX1tYY1tXX2tYY2oXSTEPtYSTEPtMNSTEPoNEXITStiSD4> 

CONTINUE 
ISD4=0 
ITRACE=O 

10 ISPa1 
RETURN 
END 

c 
C************** CHECK FOR TWO EXITS***************** 
c 

SUBROUTINE TWOEXT<IIoJJoXSTEPtYSTEPtMNSTEP> 
COMMON/LIMIT/XX1tYY1tXX2tYY2oXEXITC4)oYEXIT<4>oiESID<4>oCONTt 

& XXLtYYLtiTRACE 
COMMON/SPCSD2/XE2C10)oYE2C10>oiROW2C10)oJCOL2C10>oiSD2C10)oiPN1 
COMMON/SPCSD4/XE4C2)oYE4C2)tiSD4 
COMMON/REOION/S1tS2tS3tS4 
COMMON/STATCS/NStNEF1tNEF2 

C CHECK FOR SPECIAL CASE I.E CONTOUR LINE CROSSES SIDE TWICE 
IS1=0 
IS2=0 
IS3=0 
IS4=0 
DO 2 I1=1t4 

IFCIESIDCI1>.EQ.1) IS1=IS1+1 
IFCIESIDCI1>.EQ.2) IS2=IS2+1 
IF<IESIDCI1>.EQ.3) IS3=IS3+1 
IF<IESIDCI1).EQ.4) IS4=IS4+1 

2 CONTINUE 
IFCIS1.EQ.2) OOTO 1 
IFCIS2.EQ.2) OOTO 3 
IFCIS3.EQ.2) OOTO 4 
IFCIS4.EQ.2) GOTO 5 

6 RETURN 
C TWO EXIT ON SIDE 1 EXAMINE LIMIT 
1 IFCYY1.EQ.S2> RETURN 

GOTO 11 
C TWO EXIT ON SIDE 2 EXAMINE LIMIT 
3 IF<Yt2.EQ.S4) RETURN 

OOTO 17 



C TWO EXIT ON SIDE 3 EXAMINE LIMIT 
4 IF<XX1.EQ.S1) RETURN 

GOTO 11 
C TWO EXIT ON SIDE 4 EXAMINE LIMIT 
5 IF<XX2.EQ.S3) RETURN 
C CHECK FOR ROOT DETECTION FOR TOP & ADJACENT RECTANGLE 
17 IF<IS2.EQ.2) F1=F<XX1tVV2)-CONT 

IF<IS4.EQ.2) F1=F<XX2tVV1)-CONT 
ISN1=1 
IF<F1.LT.O.)ISN1=-1 
F2=F<XX2tVV2>-CONT 
ISN2=1 
IF<F2.LT.O.)ISN2=-1 
IF<IS2.EQ.2)YMAX1=2*VY2-YV1 
IF<IS4.EQ.2)XMAX1=2*XX2-XX1 
IF<IS2.EQ.2)F3=F<XX1tVMAX1)-CONT 
IF<IS4.EQ.2)F3=F<XMAX1tVY1>-CONT 
ISN3=1 
IF<F3.LT.O.)ISN3=-1 
IF<IS2.EQ.2) F4=F<XX2tVHAX1)-CONT 
IF<IS4.EQ.2) F4=F<XMAX1tYV2>-CONT 
ISN4=1 
NEF2=NEF2+4 
IF<F4.LT.O.>ISN4=-1 

455 

& 
IF<ISN1.NE.ISN2.0R.ISN3.NE.ISN4.0R.ISN1.NE.ISN3.0R.ISN2.NE.ISN4) 
RETURN 

C SAVE 

7 
19 

9 

C SAVE 
8 

THE EXIT POINTS SIDE 2 
IF<IS4.EQ.2) GOTO 8 
DO 7 I2=1, 10 

IF<IROW2<I2).NE.2) OOTO 19 
CONTINUE 
IFREE=I2 
DO 9 J1=;1,4 

IF<IESID·<Jl> .NE.2) GOTO 9 
XE2<IFREE)=XEXIT<J1) 
VE2<IFREE>=YEXIT(Jl) 
IROW2<IFREE>=II+1 
JCOL2<IFREE>=JJ 
ISD2<IFREE>=2 
IFREE=IFREE+1 

CONTINUE 
RETURN 

THE EXIT POINTS OF SIDE 4 
ISD4=4 
K=1 
DO 12 J2=1•4 

IF<IESID<J2>.NE.4) GOTO 12 
XE4<K>=XEXIT<J2) 
YE4 <K> =VEX IT <J2) 
K=K+1 

12 CONTINUE 
RETURN 

C SAVE & TRACE ON SIDE 1/3 
11 IF<IS1.EQ.2) GOTO 22 

X8AVE=XX2 
XX2=XX1 
XX1=2.*XX1-XSAVE 
I8D4=3 
GOTO 33 

22 VSAVE=VV2 
VY2=YV1 
VY1=2.*VV1-Y8AVE 
I8D4=1 .. 

33 K=1 
DO 14 J2=1 ,4 

IF<IESID<J2).EQ.1.0R.IESID<J2).EQ.3) GOTO 155 



155 

15 

14 

c 

GOTO 15 
XE4<K>=XEXIT<J2) 
VE4<K>=VEXIT<J2) 
K .. K+l 
XEXITCJ2)=0. 
VEXIT<J2)=0. 
IESID<J2)=0 

CONTINUE 
NEXITS=0 
CALL SPCREC(ISPtiitJJtCONTtMNSTEPtXSTEPtVSTEPtNEXITS) 
RETURN 
END 

456 

C*****************CLIP LINES OUTSIDE THE LIMIT******************* 
c 

SUBROUTINE CCLIP<X•V> 
C CLIPS THE LINE TO THE RECTANGULAR EDGE 
C USING THE CONCEPT OF FINDING THE INERSECTION POINT OF 
C TWO STRAIGHT LINES 

COMMON/LIMIT/XX1tVV1tXX2tVV2tXEXIT<4)tVEXIT<4>tiESI0(4)oCONTt 
& XXLtVVLtiTRACE 

XDIF1•X-XX1 
XDIF2=XX2-X 
VDIF1=V-VV1 
VOIF2=VV2-V 

C ANY INTERSECTION WITH EDGES ? 
IF<XDIF1.LT.O •• OR.XDIF2.LT.O •• OR.VDIF1.LT.O •• OR.VDIF2.LT.O.)GOTO 

RETURN 
C COMPUTE THE GRADIENT AND THE CONSTANT TERM OF THE EQUATION 
C OF THE STRAIGHT LINE 
1 SLOPE=<V-YVL)/(X-XXL) 

CONSTGVVL-SLOPE•XXL 
C CHECK WHICH SIDE? 

IF<XDIF1.LT.O.) GOTO 2 
IF<XDIF2.LT.O.> GOTO 3 
IF<VDIF1.LT.O.) GOTO 4 
IF<VDIF2.LT.O.) GOTO 5 
RETURN 

C X-DIRECTION 
2 X•XX1 
6 Y=SLOPE•X+CONST 

RETURN 
3 X=XX2 

GOTO 6 
4 Y•YY1 
7 X•<V-CONST)/SLOPE 

RETURN 
C V-DIRECTION 
5 Y=YY2 

OOTO 7 
END 



457 

APPENDIX 3.2 

THE USER INTERFACE SUBROUTINES 



c **************** 
C * APPENDIX 3.2 * 
c **************** 
c 
C THIS IS THE INTERACTIVE PROGRAM WHICH HANDLES THE DISPLAY 
C IMAGES GENERATED.IT CONSISTS OF THREE MAIN DISPLAYS: 
C 1.CONTOUR PARAMETER ENTRY 
C 2.CONTOUR TRACING 
C 3.ZOOMING 
c 
c 
c 
C*************MAIN PROGRAM SEGMENT******************** 
c 

COMMON/IO/INtiOUT 
COMMON/REGION/S1tS2tS3tS4 
COMMON/STATCS/NStNEF1tNEF2 
REWIND 9 
CALL SETFIL<9•"TTYI22") 
NS=O 
NEF1=0 
NEF2=0 
IN=5 
IOUT=6 

C PARAMETER ENTRY DISPLAY 
1 CALL CPARAM<CONTOURtXWtYWtXSTEPtYSTEPtiGtiC) 

GOT0<2•1•5>tiC 
C CONTOUR DRAWING 
2 CALL CDRAW<CONTOURtXWtYWtXSTEPtYSTEPtiGtiC> 

GOTO ( 1 • 5·• 5' 5' 5' 2 '5) 'I C 
C RUN TIME STATISTICS 
5 WRITE(9t7777>NStNEF1tNEF2 

458 

7777 FOR~AT<"TOTAL NO. OF STEP IN TRACING="•I6/"N0. OF FUNCTION 
& EVALUTION IN TRACING ONLY"' I6/"NO. OF FUNCTION EVALUATION 
& OTHER THAN IN TRACING"ti6) 

c 

CALL ALPHMD 
STOP 
END 

C**************CONTOUR·PARAMETER & INTRODUCTION DISPLAY************* 
c 

SUBROUTINE CPARAM<CONTOURtXWtYWtXSTEPtYSTEPtiGtiC> 
COMMON/IO/INtiOUT 
COMMON/REGION/S1tS2tS3tS4 
DATA MNTXT1/"+ NEXT + RESTART + EXIT 
DATA MNTXT2/"+CON.LEVEL + REGION 

& + XtY-STEP + DISP.GRD"/ 
LOGICAL*1 MNTXT1(30)tMNTXT2(90) 

C INITIALISATION 

1 
CALL TXOPEN 
CALL TXCLER 
ICONT=O 
IREG=O 
IWIDTH=O 
ISTEP=O 
IG=O 

C OUTPUT DISPLAY INSTRUCTION 
CALL TEXTUP<"CTXT"t10) 
CALL CURPOS<1.o510.).· 

"I 
+ G.WIDTH 



WRITECIOUTt20) 
20 FORMATC"CONTOUR PARAMETERl-"//) 

WRITE <I OUT' 30) 
30 FORMATC"1-CONTOUR LEVEL TO BE TRACED IN~TIALLV :-"// 
& "2-REGION COORDINATESCBOTTOM L.H. & TOP R.H.>"I 
& " ENTER MINIMUMCXtV) & MAXIMUMCXtV) :-"/ 
& "3-RECTANGULAR GRID SIZE FOR REGION"/ 
& " DISCRETISATION. ENTER X-WIDTH & V-WIDTH :-"/ 
& "4-STEP LENGTH USED IN TRACING THE CONTOUR"/ 
& " LINE. ENTER X-STEP & V-STEP 1-"/ 
& "5-DISPLAV GRID LINES :-"// 
& "NOTE:-NORMALV XtV-STEP<X•V-WIDTH<REGION SIZE"/ 
& "* DEFAULT VALUES! REGION SIZE • 15*WIDTH"/ 
& " WIDTH = 10*STEP") 

CALL MNOPENC875.t715.t1) 
CALL MNDISPCMNTXT1t3t10t1) 
CALL FRAMEC870.t733.t3) 
CALL MNOPEN(700.t450.t2) 
CALL MNDISPCMNTXT2t9t10t2) 
CALL FRAMEC695.t470.t9) 
X1=695. 
X2=840. 
V=430. 
DO 111 11.,1 '4 

CALL TXMOVECX1tV> 
CALL TXDRAWCX2tV> 
V=V-40. 

111 CONTINUE 
CALL DTEXTC850.t360.t"*"•1> 
CALL DTEXTC850.t320.t"*"•1> 

2 CALL MNPICKCJtiCHARtMNO) 
IFCMNO.EQ.2) GOTO 22 

5 CALL CONFRMCICHAR> 
IFCICHAR.EQ.78) GOTO 2 
IFCICHAR.NE.89) GOTO 5 _ 
IFCJ.EQ.2.0R.J.EQ.3) GOTO 212 
IFCICONT.EQ.O.OR.IREG.EQ.O) GOTO 2 
IFCIWIDTH.EQ.O) GOTO 77 

312 IFCISTEP.EQ.O) GOTO 88 
212 GOTOC11t1t15)tJ 
C NEXT 
11 ICaJ 

RETURN 
C CONTOUR PARAMETER 
22 GOTOC31t2t33t2t35t2t37t2t39),J 
C CONTOUR INITIAL LEVEL 
31 CALL CURPOSC1.t140.) 

CALL MESSAGC"£ CONTOUR LEVEL? "") 
READCINt40)CONTOUR 

40 FORMATCGO.O) 
ICONT=1 
GOTO 2 

C REGION COORDINATES 
33 CALL CURPOSC1.t118.) 

459 

CALL MESSAGC"£ REGION COORDINATEStMINCXtV) & MAXCXtV)? "") 
READCINt50)S1tS2tS3tS4 

50 FORMATC4G0.0) 
IREG-1 
GOTO 2 

C GRID WIDTH 
35 CALL CURPOS(1.t96.> 

CALL MESSAGC"£ GRID SIZE<X-WIDTH & V-WIDTH>? "") 
READCINt60)XWtVW 

60 FORMATC2G0.0) 
IWIDTH=1 
GOTO 2 



C X/Y STEP 
37 CALL CURPOS<1.t74.) 

CALL MESSAG<"£ X-STEP & V-STEP? A") 
READ<INt70>XSTEPtYSTEP 

70 FORMAT(200.0) 
ISTEP•1 
OCTO 2 

C DISPLAY GRID LINES 
39 IG=1 

GOTO 2 
C DEFAULT GRID WIDTH 
77 XW=<S3-S1)/15. 

YW=<S4-S2)/15. 
GOTO 312 

C DEFAULT X-STEP & V-STEP 
88 XSTEP=XW/10. 

YSTEP=YW/10. 
GOTO 212 

. 1:5 STOP 
END 

c 
C**************CONTOUR DISPLAY ROUTINE****************** 
c 

SUBROUTINE CDRAW<CONTOURtXWtYWtXSTEPtYSTEPtiGtiC) 
COMMON/REGION/S1tS2tS3tS4 
COMMON/GRID/NLXtNLYtXGRID<31)tYGRID<31) 
COMMON/IO/INtiOUT 

C DEFINE MENU ITEMS 
DATA MNTXT1/"+ PREVIOUS+ GRAPH + CURSOR *+ ZOOM 

&+ RESTART + EXIT "/ . 
DATA MNTXT2/"+CON.LEVEL+ X-STEP + V-STEP "/ 
DIMENSION CONLVL<11)tXSTP(11>tYSTP<11) 
LOGICAL*1 MNTXT1(70)tMNTXT2(30) 

11 ICONT=1 
ISTEP=1 

C DRAW GRID LINES & SET UP COMMAND MENU 

10 

4 

CALL TXCLER 
WRITE<IOUTt10) 
FORMAT("CONTOUR DISPLAY!-") 
CALL MNOPEN(875.t715.t1) 
CALL MNDISP<MNTXT1t7t10t1) 
CALL FRAME<870.t733,,7) 
CALL DTEXT(~80.t558.t"* TYPE F- FINISH"t16) 
CALL MNOPEN(875.t518.t2) 
CALL MNDISP<MNTXT2t3tl0t2) 
CALL FRAME<870.t536.,3> 
CALL CGRID<XWtYWtS1tS2tS3tS4tiG>) 
CALL LMTARA 
CALL MNPICK(JtiCHARtMNO> 
IF<MNO.EQ.2) GOTO 22 

C COMMAND CONFIRM 
17 CALL CONFRM<ICHAR> 

IF<ICHAR.EQ,78) GOTO 4 
IF(ICHAR.NE.89) GOTO 17 
GOT0<1t2t3t6t77t1t1),J 

C PREVIOUS/RESTART 
1 IC=J 

RETURN 
C GRAPH CONTOUR LINE BY SCANNING THE WHOLE REGION 
2 CALL GRAPH<XSTEPtYSTEPtXWtYWtCONTOURtS1tS2tS3tS4) 

IF(ICONT.GT.11)ICONT=11 
IF<ISTEP.GT.11)ISTEP=11 
CONLVL(ICONT)=CONTOUR 
ICONT=ICONT+1 
XSTP(ISTEP>=XSTEP 
YSTP(ISTEP>=YSTEP 

460 

+ GRID 



ISTEP=ISTEP+1 
GOTO 4 

C USE CURSOR TO TRACE THE CONTOUR LINE 
3 CALL LMTSCL<S1,S2•S3,S4) 

IFCICONT.GT.11)ICONT=11 
IFCISTEP.GT.11)ISTEP=11 
CONLVLCICONT>=CONTOUR 
ICONT=ICONT+1 
XSTPCISTEP)=XSTEP 
VSTPCISTEP>=VSTEP 
ISTEP=ISTEP+1 

7 CALL TXCURSCCX,cV,ICHAR) 
IFCICHAR.EQ.70) GOTO 4 

C FIND THE INDEX J 
J=INDEXGCCX•XGRID> 
XMIN=XGRID(J) 
XMAX=XGRIDCJ+l) 

C FIND ROW INDEX 
I=INDEXGCCV•VGRID) 
VMIN=VGRIDCI) 
VMAX=VGR ID CI + 1) 

C TRACE LINE IN THIS RECTANGLE 

461 

CALL RECANGCXMIN•XMAX•YMIN•VMAX•XSTEP,VSTEP•CONTOUR,I•J> 
GOTO 7 

C ZOOMING 
6 CALL ZOOMCXW,VW,XSTP,VSTP,CONLVL•IG,ICONT•IC> 

GOTOC11•5•8>•IC 
a IC=7 

RETURN 
C DRAW GRID LINES 
77 IG=1 

CALL CGRIDCXW,VW•S1,S2•S3,S4,IG> 
GOTO 4 

C CONTOUR PARAMETER 
22 GOTOC31•32,33),J 
C CONTOUR LEVEL 
31 CALL CLEVELCCONTOUR,ICONT> 

GOTO 4 
C X-STEP 
32 CALL XVSTEPCXSTEP,ISTEP> 

GOTO 4 
C V-STEP 
33 CALL XVSTEPCVSTEP•ISTEP> 

GOTO 4 
5 STOP 

END 
c 
C*************SET UP GRID LINES******************* 
c 

SUBROUTINE CGRID<XW,YW•S1,S2,S3,S4,IG> 
COMMON/GRID/NLX,NLV,XGRIDC31),yGRIDC31) 

C SET VIEWPORT & WINDOW 
CALL LMTSCLCS1,S2,S3,S4> 

C HORIZONTAL GRID LINES 
V=S2 
NLY=IFIXCCS4-S2)/YW+.5)+1 
DO 1 I=1, NLV 

IFCIG.EQ.O) GOTO 11 
CALL TXMOVE<S1,V> 
CALL TXDRAW(S3,V) 

11 VGRIDCI>=V 
V=V+YW 
VDIF=V-S4 
IFCVDIF.GT.O.) GOTO 3 

1 CONTINUE 
C VERTICAL GRID LlNJS 



3 

12 

2 
4 

c 

X=S1 
NLX=IFIXCCS3-S1)/XW+.5)+1 
DO 2 I=1tNLX 

IFCIG.EQ.O) GOTO 12 
CALL TXMOVECXtS2) 
CALL TXDRAWCXtS4) 
XGRID<I>=X 
X=X+XW 
XOIF=X-S3 
IFCXDIF.GT.O.) GOTO 4 

CONTINUE 
RETURN 
END 

C*********** CONTOUR LEVEL **************************** 
c 

SUBROUTINE CLEVELCCtK) 
COMMON/IO/INtiOUT 
IFCK.GT.10) K=10 
Y=450.-22.*CK-1) 
CALL CURPOSC7oO.tY) 
CALL MESSAG("£ CON.LEVEL?A") 
READ( INt 10)C 

10 FORMATCGO.O) 
RETURN 
END 

c 
C**********DRAW COMPLETE CONTOUR LINE*************** 
c 

462 

SUBROUTINE GRAPHCXSTEPtYSTEPtXWtYWtCONTOURtS1tS2tS3tS4> 
COMMON/GRID/NLXtNLYtXGRID<31>tYGRIDC31) 

C DRAWS CONTOUR LINE BY SCANNING THE WHOLE REGION 
CAL-L LMT5CL< 51 , 52 t 53 t 64) 
NLY1=NLY-1 
NLX1=NLX-1 
YMIN=S2 
YMAX=S2 
DO 10 I=1tNLY1 

YMIN=YMAX 
YMAX=YMAX+YW 
XMIN=S1 
XMAX=S1 
DO 20 J=1tNLX1 

XMIN=XMAX 
XMAX=XMAX+XW 

C DRAW SEGMENT OF THE CONTOUR LINE IN THE SPECIFIED RECTANGLE 
CALL RECANGCXMINtXMAXtYMINtYMAXtXSTEPtYSTEPtCONTOURtitJ: 

20 CONTINUE 
10 CONTINUE 

c 

RETURN 
END 

C************FIND I/J INDEX*************** 
c 

F~NCTION INDEXGCXYtA) 
D :MENS ION A< 1> 

C COMPUTE THE INDEX OF THE CHOSEN RECTANGLE 
DC 11 J1=1t20 

X (DIF=XY-A(J1) 
li'<XYDIF.LE.O.) GOTO 12 

11 COI\TINUE 
12 INDEXG=J1-1 

RETURN 
END 

c 
C************ X/V 



c 463 
SUBROUTINE XYSTEPCXYSPoiSTP) 
COMMON/IO/INoiOUT 
IF<ISTP.GT.10)ISTP=10 
Y=230.-22.*<ISTP-1> 
CALL CURPOSC760.oY) 
CALL MESSAG<"£ X/Y-STEP?A") 
READ<INolO>XYSP 

10 FORMAT<GO.O) 
RETURN 
END 

c 
C************** ZOOM PART OF THE CONTOUR LEVELS****X********** 
c 

SUBROUTINE ZOOMCXWoYWoXSTPoYSTPoCONLVLoiOoiCONToiC> 
COMMON/REOION/S1oS2oS3oS4 
COMMON/IO/INoiOUT 
COMMON/GRID/NLXoNLYoXGRIDC30)oYGRIDC30) 
DATA MNTXTl/"+ PREVIOUS+ RESTART + EXIT "/ 
DIMENSION XSTPC1>oYSTP<1)oCONLVLC1) 
LOGICAL*1 MNTXT1<30) 

C SET UP CURSOR TO PICK UP COORDS. OF ZOOMED REGION 
CALL LMTSCL<S1oS2oS3oS4) 
CALL TXCURSCZX1oZY1oiCHAR> 

1 CALL TXCURSCZX2oZY2oiCHAR> 
IF<ZX1.EQ.ZX2.0R.ZY1.EQ.ZY2) GOTO 1 
XJ1=AMIN1CZX1oZX2) 
XJ2=AMAX1<ZX1oZX2> 
YI1=AMIN1<ZY1oZY2> 
YI2=AMAX1CZY1tZY2> 
J1=INDEXO<XJltXGRID> 
J2=INDEXO<XJ2tXGRID> 
I1=INDEXOCYI1tYGRID> 
I2=INDEXG<YI2tYGRID> 
ZSCL1=XGRID<J1) 
ZSCL2=YGRID<Il> 
ZSCL3=XGRID<J2+1) 
ZSCL4=YGRIDCI2+1) 

3 CALL TXCLER 
CALL LMTARA 
WRITE< IOUTt 10) 

10 FORMATC"ZOOMINGa-") 
CALL MNOPENC875.t715.o1) 
CALL MNDISPCMNTXT1t3t10t1) 
CALL FRAMEC870.,733.o3> 
CALL CGRIDCXWoYWoZSCL1oZSCL2oZSCL3oZSCL4tiO> 
NCONT=ICONT-1 
DO 11 K1=1oNCONT 

XSTEP=XSTPCK1> 
YSTEP=YSTP<Kl) 
CONTOUR=CONLVL<K1> 
CALL GRAPH<XSTEPtYSTEPtXWtYWoCONTOURtZSCL1tZSCL2tZSCL3oZSCL4) 

11 CONTINUE 

20 
22 

CALL LMTARA 
CALL MNPICK<JoiCHARtMNO) 
CALL CONFRMCICHAR) 
IF<ICHAR.E0.78>GOTO 20 
IF<ICHAR.NE.89) OCTO 22 
GOT0(2o3o2)oJ 

C PREVIOUS/EXIT 
2 

c 

IC=.T 
RETLJllN 
END 

C**************** LIMIT GRAPHIC AREA ON YHESCREEN******•~••'*****~ 
c 



c 

SUBROUTINE LMTARA 
CALL TXVPRT<O.sO.s1023.s780.> 
CALL TXWIND<O.sO.s1023.s780.) 
RETURN 
END 

C************* LIMIT GRAPHIC SCALE "WINDOW"*************** 
c 

c 

SUBROUTINE LMTSCL(SCL1sSCL2sSCL3sSCL4> 
CALL TXVPRT<O.sO.s750.s750.) 
CALL TXWIND<SCL1sSCL2sSCL3sSCL4) 
RETURN 
END 

464 

C************** CONFIRM THE COMMAND************************* 
c 

SUBROUTINE CONFRH<ICHAR> 
COMMON/IO/INsiOUT 
CALL CURPOS(800.s750.) 
WRITE(IOUTs10) 

10 FORMAT<"CONTINUE(Y/N)?'') 
CALL TXCURS<X1sY1siCHAR> 
RETURN 
END 

·. 

' 



APPENDIX 3.3 

THE CONTOURING ALGORITHM SUBROUTINES USING 

THE RECTANGULAR SUBDIVISIONS 

465 



c **************** 
C * APPENDIX 3.3 * 
c **************** 
c 
C THIS IS THE SECOND VERSION OF THE CONTOUR TRACING ALGORITHM 
C USING THE RECTANGULAR CELL SUBDIVISION. 
c 
c 
c 

466 

C****************DRAWS THE CURVE FROM AGIVEN RECTANGLE SIDE********** 
c 

& 

& 

SUBROUTINE DCRVSDCX1oY1oX2oY2oXSoYSoMoNoiSIDE> 
COMMON/LIMIT/XX1oYY1oXX2oYY2oXEXITC4loYEXITC4loiESIDC4>oCONTo 

XXLoYYLoiTRACE 
COMMON/CORNERS/CNRLTC2>oCNRRTC2)oCNRLBC2loCNRRBC2>oiSIGNSC4> 

oFUNC4l 
COMMON/STATCS/NSoNEF1oNEF2 
DIMENSION CLDC2>oCRDC2>oCLUC2>oCRUC2> 
LOGICAL RFOUND 

C CHECK FOR SPECIAL CASE 
.IT=l 
IFCITRACE.EQ.2.0R.ITRACE.EQ.4) GOTO 33 

C FIND SINGLE ROOT ALONG THE GIVEN SIDE 
CALL ROOTCX1oY1oX2oY2oXSoYSoiSIDEoRFOUND> 
IFCRFOUND.EQ •• FALSE.l RETURN 

C CHECK FOR EXIT POINTS 
33 DO 2 K=loN 

2 

XDIF=ABSCCNRLTCll-XEXITCKll 
YDIF=ABSCCNRLTC2l-YEXITCK>> 
XYSTEP=XS+YS 
XYDIF=XDIF+YDIF-XYSTEP 
IFCXYD~F.LT.O.> RETURN 

CONTINUE 
IDIR=l 

C MOVE BEAM TO THE LINEAR INTERPOLATED POINT OF THE FIRST 
C BASE LINE 
C CHECK FOR SPECIAL CASE 

IFCITRACE.EQ.2.0R.ITRACE.EQ.4) GOTO 333 
XLT=CNRLTCl> 
YLT=CNRL TC2) 
FLT=FUNCll 
XRT .. CNRRTCl> 
YRT=CNRRTC2) 
FRT=FUNC2) 
IFCISIDE.GT.2> GOTO 22 

C COMPUTE X-COORDINATE BY INTERPOLATION ALONG THE EDGE 
X=CXRT*FLT-XLT*FRTl/CFLT-FRT> 
Y=YLT 
GOTO 212 

22 X=XLT 
C COMPUTE V-COORDINATE BY INTERPLOATION ALONG THE EDGE 

212 
Y=CYRT*FLT-YLT*FRT>/CFLT-FRT> 
CALL TXMOVECXoYl 
XXL=X 
YYLaY 

C TRACE THE CURVE FURTHER IN THE CURRENT RECRANGLE 
333 DO 3 NSTEP=loM 

X3,.CNRLBC1> 
Y3"-CNRLBC2> 
F3,,F C X3, V3) -CONT 
FUIH3>=F3 .. 
ISIGNSC3l=1 
IFCF3.LT.O.liSIGNSC3)=-1 
X4=CNRRBC1> 
Y4=CNRRBC2> 



F4=FCX4,Y4)-CONT 
FUN<4>=F4 

C RUN TIME STATISTICS 
NEF1=NEF1+2 
NS=NS+l 

ISIGNSC4>=1 
IFCF4.LT.O.>ISIGNSC4)•-1 
CLD<l>=CNRLTCl) 
CLDC2)=CNRLT(2) 
CRD <1 > :CNRRT <1 > 
CRDC2):CNRRT<2) 
CLU<l>=CNRLB(l) 
CLU(2)=CNRLBC2) 
CRU <1) "'CNRRB ( 1) 
CRU<2>=CNRRB(2) 
ICASE=O 

C TEST FOR WHICH SIDE CURVE CROSSES AND TEST FOR DEGENERATE 
C CELL <ICASE=6> 

IF<ISIGNS<3>.NE.ISIGNS<4>> 
IFCISIGNS(1).NE.ISIGNS<3>) 
IF<ISIGNSC2).NE.ISIGNSC4)) 
IF<ICASE.EQ.6) OCTO 4 
GOTOC10,20,30)•lCASE 

C CURVE PASSES OUT OF TOP OF CELL 
10 FL=FUN<3> 

FR=FUNC4) 

ICASE•ICASE+l 
ICASE=ICASE+2 
ICASE=ICASE+3 

CALL DLINE<CLU,CRUoCLD•CRD•XLoYLoFLoFR) 
ISIGNSC1>•ISIGNSC3) 
FUNC1)=FUNC3) 
ISIGNS(2)=1SIGNS(4) 
FUN<2>=FUN<4> 
IDIR=1 
GOTO 7 

C CURVE PASSES OUT LEFT HAND SIDE OF CELL 
20 FL=FUNC1> 

FR•FUNC3) 
CALL DLINE<CLDoCLUoCRDoCRUoXLoYLoFLoFR> 
ISIGNS<2>•ISIGNSC3) 
FUNC2)=FUNC3) 
IDIR=2 
GOTO 7 

C CURVE PASSES OUT OF RIG.HT HAND SIDE OF CELL 
30 FL=FUN(4) 

7 

FR=FUN<2> 
CALL DLINE<CRUoCRDoCLUoCLDoXLoVLoFLoFR> 
ISIGNSC1)=1SIGNS(4) 
FUN(l)=FUN<4> 
IDIR=3 
XLDl=XL-XXl-0.001 
XLD2=XX2-XL-0.001 
YLDl=YL-YYl-0.001 
YLD2=YY2-YL-0.001 

C REACHED THE EDGE THE RECTANGLE 

467 

3 
IFCYLD1.LT.O •• OR.YLD2.LT.O •• OR.XLD1.LT.O •• OR.XLD2.LT.O.) 

CONTINUE 
RETURN 

C SET EXIT POINTS 
9 IF<IT.EQ.l) GOTO 31 

N=N+l 
C MARK EXIT POINT SIDE FOR SPECIAL CASE 

7777 
WRITE<9o7777>NSTEP 
FORMAT ( I3) 
IFCYLDl.LT .0.) 
IFCYLD2.LT.O.> 
IFCXLDl.LT .0.) 
IF<XLD2.LT .0. > 

IESID<·N>=l 
IESID(NJ=2 
IESID<N>=3 
IESIDCNJ:4 

GOTO ~ 



XEXITCN)=>XL 
VEXIT<N>=>VL 
RETURN 

31 IT=>O 
GOTO 3 

C ICASE=>6 
4 GOT0<10t30t20)tiDIR 

RETURN 
END 

c 
C************DRAW STAIGHT LINE IN A CELL******************* 
c 

468 

SUBROUTINE DLINECCNRLtCNRRtCNROLtCNRORtXtVtF1tF2) 
COMMON/CORNERS/CNRLT<2>tCNRRT<2>•CNRLB(2)tCNRRB<2>•ISIGNS<4> 

& oFUN(4) 
COMMON/LIMIT/XX1tVV1tXX2oVV2oXEXIT<4>tVEXITC4)tiESID(4)oCONTo 

& XXLoVVLoiTRACE 
DIMENSION CNRLC1)tCNRR<1>oCNROL<1>tCNROR(1) 
XLT=CNRL<1> 
VLT=>CNRL(2) 
XRT=CNRR<l> 
VRT=CNRRC2) 
XDIF=XRT-XLT 
IF(XDIF.EQ.O.) GOTO 2 
X=>CXRT*F1-XLT*F2>1<F1-F2> 
Y=VLT 
GOTO 22 

2 X=XLT 
Y=<VRT*F1-YLT*F2)/(F1-F2) 

22 CALL CCLIP<XoV) 
XXL=>X 
YVL=>V 
CALL TXDRAW<X,V> 
DO 1 I.;,1o2 

CL=>CNRL<I> 
CR=CNRR<I> 
COL=CNROL <I) 
COR=>CNROR<I> 
CNRL T <I> =CL 
CNRRT (I> =>CR 
CNRLB<I>=2.*CL-COL 
CNRRB<I>=2.*CR-COR 

1 CONTINUE 

c 

RETURN 
END 

C*********FINDS ASINGLE ROOT ALONG THE SIDE OF RECTANGLE******** 
c 

SUBROUTINE ROOT<X1tV1tX2oV2tXStVStiSIDEtRFOUND> 
COMMON/LIMIT/XX1tVV1oXX2tVV2tXEXITC4)tVEXIT(4)tiESID(4)tCONTt 

& XXLtVVLoiTRACE 
COMMON/CORNERS/CNRLT<2>tCNRRT<2>oCNRLB<2>tCNRRB<2>tiSIGNSC4) 

& tFUN<4> 
COMMON/STATCS/NSoNEF1tNEF2 
LOGICAL RFOUND 

C TEST WHETHER THE CONTOUR LINE INTERSECT THE EDGE? 
Fl=>FCX1tV1>-CONT 
FUNC1>=F1 
I SIGNS (1) =1 
IF<F1.LT.O.) ISIGNS<l>=-1 

:F2=F < X2, ~ 2) -CONT 
FUN<2>=F2 

C RUN TIME STATISTICS 
NEF2=>NEF2+2 
ISIGNSC2)=1 
lF<F2.LT .0. >!SHiNS(?)"-'. 



C IF THE CONTOUR LINE DOES NOT INTERSECT RETURN WITH FALSE 
C VALUE 

IFCISIGNS<1>.EQ.ISIGNSC2)) GOTO 1 
RFOUND=.TRUE. 
IFCISIDE.GT.2> GOTO 2 
NINTS=IFIXCCX2-X1>1XS+.5) 
WINT=<X2-X1)/NINTS 
GOTO 3 

2 NINTS=IFIX<<Y2-Y1)/YS+.5) 
WINT=CY2-Y1)/NINTS 

3 INTLR=O 
INTRR=NINTS 

7 INTC=IFIX<CINTLR+INTRR>/2+.5) 
IFCISIDE.GT.2) GOTO 8 
W=X1+INTC*WINT 
FW=FCWtY1)-CONT 
GOTO 9 

8 W=Y1+INTC*WINT 
FW=FCX1tW)-CONT 

9 ISIGNC=1 
IF<FW.LT.O.) ISIGNC=-1 
IFCISIGNSC1>.EQ.ISIGNC)GOTO 11 
INTRR=INTC 
FUNC2)=FW 

C RUN TIME STATISTICS 
111 NEF2=NEF2+1 

IFCCINTRR-INTLR>.GT.1) GOTO 7 
C SET CORNER COORDINATES OF THE SIDE 

GOTO (10t10t20t20)tiSIDE 
11 INTLR=INTC 

FUNC1>=FW 
GOTO 111 

C SIDE 1 OR 2 
10 IFCISIDE.EQ.1)YSS=YS 

IFCISIDE.EQ.2)YSS=-YS 
CNRLT<1>=X1+INTLR*WINT 
CNRLTC2)=Y1 
CNRRTC1)=CNRLT<1>+WINT 
CNRRTC2)=Y1 
CNRLBC1>=CNRLTC1) 
CNRLB<2>=Y1+YSS 
CNRRB<1>=CNRRTC~) 
CNRRBC2)=Y1+YSS 
RETURN 

C SIDE 3 OR 4 
20 IFCISIDE.EQ.3) XSS=XS 

IFCISIDE.EQ.4) XSS=-XS 
CNRLT<1>=X1 
CNRLT<2>=Y1+INTLR*WINT 
CNRRTC1>=X1 
CNRRT<2>=CNRLT<2>+WINT 
CNRLB<1>=X1+XSS 
CNRLB(2)=CNRLT<2> 
CNRRB<1>=X1+XSS 
CNRRBC2)=CNRRTC2) 
RETURN 

C ROOT NOT FOUND 
1 RFOUND=.FALSE. 

c 

RETURN 
END 

469 

C•*********·•** CHECK SPECIAL CASE & P~OCESSES**********••·****•~• 
c 

SUBRO'.'T!NE SPCREC<ISPtii!JJ,CONTC'•r ·~·lSTEPtXSTEP, ,,;,·;::.c '.·~~·"'oS) 

COM!"'." . : ... \ r1I T I X X 1 , YY 1 , X X~ 1 YY2, XE X ·. . · • YE X IT ( 4) 1 : ':: .• ·· r:. •: .~ ~ '~;c.!: 1" t 

XXLtVYLtl>RACE 



470 

COMMON/SPCSD2/XE2C10loYE2(10loiROW2<10loJCOL2(10loiSD2<10lo 
& IPNTR 

COMMON/SPCSD4/XE4(2loYE4(2loiSD4 
COMMON/CORNERS/CNRLTC2loCNRRT<2loCNRLBC2loCNRRBC2loiSIGNSC4lo 

& FUNC4l 
COMMON/STATCS/NSoNEF1oNEF2 
DO 1 K=1 dO 

IF<ISD2CKl.NE.2l GOTO 1 
IFCIROW2<Kl.EQ.II.AND.JCOL2(Kl.EQ.JJ) GOTO 5 

1 CONTINUE 
IF<ISD4.EQ.4.0R.ISD4.EQ.1.0R.ISD4.EQ.3) GOTO 4 
ISP=O 
RETURN 

C TOW EXITS ON SIDE 2 oESTABLISH A CELL ALD TRACE CURVE 
5 DO 8 L=1o2 

CNRLTCll•XE2CKl-XSTEP/2. 
CNRL TC2l =YE2CKl 
CNRRTC1l•XE2CKl+XSTEP/2. 
CNRRTC2l .. YE2CKl 
CNRLBC1l•CNRLTC1l 
CNRLBC2l=YE2CKl+YSTEP 
CNRRBC1l=CNRRTC1l 
CNRRBC2l=CNRLBC2l 
XL1=CNRLTC1l 
YL1=CNRLTC2l 
FL1=FCXL1oYL1l-CONT 
FUNC1l=FL1 
I SIGNS C 1l at 
IFCFL1.LT.O.) ISIGNSC1)•-1 
XR1=CNRRTC1) 
YR1=CNRRTC2l 
FR1=FCXR1oYR1l-CONT 
FUNC2l=FR1 
NEF2=NEF2+2 
ISIGNSC2)=1 
IFCFR1.LT.O.) ISIGNSC2l=-1 
IFCISIGNSC1l.NE.ISIGNSC2ll GOTO 117 
FDIF=ABSCFL1l-ABSCFR1) 
IFCFDIF.LT.O.liSIGNSC1l=-ISIGNSC1l 
IFCFDIF.GE.O.liSIGNSC2l=-ISIGNSC2l 

117 CALL TXMOVECXE2CKloYE2CK)l 
ITRACE=2 
CALL DCRVSDCXX1oYY1oXX2oYY2oXSTEPoYSTEPoMNSTEPoNEXITSo2) 
ISD2CKl=O 
K=K+1 

8 CONTINUE 
ITRACE=O 
IFCISD4.EQ.4)GOTO 4 
GOTO 10 

C TWO EXIT ON SIDE 4/3/1 
4 DO 9 L=1o2 

IFCISD4.EQ.1) GOTO 44 
CNRLTOl=XE4CL) 
CNRLTC2l=YE4(LJ-YSTEP/2. 
CNRRTC 1 l=XE4(Ll 
CNRRTC2)=YE4CLl+YSTEP/2. 
IF<ISD4.EQ.4lCNRLBC1l=CNRLTC1l+XSTEP 
IF<ISD4.EQ.3lCNRLBC1l=CNRLTCll-XSTEP 
CNRLBC2l=CNRLTC2l 
CNRRBC1l=CNRLBC1l 
CNRRBC2)=CNRRTC2) 
GOTO 77 : 

44 CNRLT(ll=XE4CLl-XSTEP/2. 
CNRL TC 2) =YE4 ( L) 

CNRRTC1l=XE4tLJ+XSTEP/2. 
CNRRT<2l =YE4 (L) 



77 

17 

9 

10 

CNRLB(l)=CNRLT(1) 
CNRLB(2)=YE4(Ll-YSTEP 
CNRRB(l)=CNRRTC1) 
CNRRB(2)=CNRLBC2) 
XL1=CNRLT(l) 
YL1=CNRLT<2l 
FL1=FCXL1tYL1l-CDNT 
FUN< 1 >=FLl 
ISIGN5(1)=1 
IF<FL1.LT.O.l ISIGNSC1l=-1 
XR1=CNRRT<1l 
YR1=CNRRT<2> 
FR1=F<XR1oYR1l-CDNT 
FUNC2l=FR1 
NEF2=NEF2+2 
ISIGN5(2)=1 
IF<FR1.LT.O.) ISIGN5(2l=-1 
IF<ISIGNSC1l.NE.ISIGNS(2)) GDTD 17 
FDIF=ABS<FL1l-ABS<FR1> 
IFCFDIF.LT.O.liSIGNS<1>=-ISIGNSC1) 
IFCFDIF.GE.O.liSIGNSC2l=-ISIGN5(2l 
CALL TXMDVE<XE4<L>oYE4<L>> 
ITRACE=4 

471 

CALL DCRVSD<XX1tYY1tXX2tYY2tXSTEPoYSTEPtMNSTEPoNEXITStiSD4l 
CONTINUE 
1804=0 
ITRACE=O 
ISP=1 
RETURN 
END 

'y 
' 



472 

APPENDIX 4 

TMG - PROGRAM LISTING 



473 

APPENDIX 4.1 

TMG - BATCH PROGRAM 



Jt•ll BAKI1. 1 CUd>H1or'9 
~ll FUR 'f RAN 
RUN 1'd 0(;0 
Vt1LU~I~ 1 (j(IOv 

·~·· DIICUI1UJT SOUHC[ 
Pk!IGRAII(H352) 
CUiiPALT 
!JU'TplJl 2 "' l.PU 
OUlplJl 7 "' TPii 
tiH'UT 1 = CRO 
CllliPhESS JNTlGI:R AND LOGICAL 
u:;~ ~=/AHRAV 

EIHl 
~IA!,TEI< POI SSOt' 
LOGICAL ERRORii1AXHEAT1AXMAG1PLOT MESHr INT 
INTtGLR TVPEoBIT~PARITYITAij 
COhfiOI;/ KLP I KMA)( I UIAX I PAR IT V 
cwrior.tsTAGE/IIPROil 11 P 
CUHI;ON/ [RUR I E RROI!M 
COIII!Or./ TP/ TYPE 1 AXI-1AG 1 AXH EAT 
C01Hi!lllf SC/ zs I RS 
CUPfiOr.t!NDX/111I21131141K1rKliiA~IBIICILIMM~JJ(7)11R 1 1NT 

474 

3/S,/GH<200)1TITLE(80) 
1YBLK11A!NTEGRALIM(2)1RRIT~NGLISnURCE;COEFFIN~(2)1AI81CIT41HPIFP!5 

DIHtNL!ON PHI<650),TAG(6~0>rCPU<650,1CPR(650l,CPL(650),SCT<650> 
~ ,llCoSU) ,2(650) 
1,UUf(10),REOC(1014)1FILENAME(2)1PICNAME(2) 

READ(1 11 )IH>ROb 
Wk1T£\Z 1 20)NP~O& 

26 IUHMAT(40~1 THE NUMBEM OF PROBLEMS OH THIS RU~ IS 1lS 
112XI3b<1H"')) 

CALL l>UBUFC518U,BUF) 

t>U 5 IP=1•NPRLJii 
WklTf:l7 1 100) 

100 FOIHIAl <111 1111111/11 l 
REAOC1 16)T!Tlt: 

6 FURHAl(80A1) 
WHITfl~~7>JP1TITLE 

f F01i11Al(1HIJ 1 22h TITLE Of I'ROBLEM NO, IJ2,5X 
~~80A1/~8Xr82C1Ho:)) 

AXHEAl1AXHAGo:,FALSE, 
EHPORNo:.FALSE, 
RlADI,r2)PLUT HESH1NEOPTL1~S1RS 

i! FUflliAl(L114X.I012F0.0) 
RlADC1r3)NREG1NkEGC 

5 FlillliAl (21U) 
c A!_ L INpuT ( R E(j c IN RE G I N RE (j c Ill u F I ·~ p T) 
DU 25 lo:11NPT 
TAt..(llo:O 

25 r.PII(l),CPk(J)ICI'L(I),SCT(I)IPHI<l),l<(l>IZ<ll=O, 
10 tAI.L lOPLGVcRtGCINREGINR~GC~TAG,PHIINPTIRIZ) 

IF :.ERhORM)GOTtJS 
15 CALL MESH ~ELX~CREGC1NRfGrNREGC~TAG1R1Z1NPTl 

CA~L IARAMCREGC,NREGINREGCilAGIRIZICPlJ1CPRICPL1SCT1NPT1PHI) 
CAI.L hELX(TAGICPUrCPR1CPL1SCTIPHI1R1ZrNPT) 
CAlL PLOTT(RIZrPHIITAGINPTrNEOPTLIPLOT MESH) 
COI!Tl I.Ul 
STII~ 



1 FUI'IiAl(!Q) 
E ti I • 
Slll:i<OIJTINL Jt•ll·llTCREGCINREG1NREGC'I'BUF1NPT) 
LUCICAL HID 
I NTLc.LR PAl! ITV 

475 

r or! 1, o ''11 N li x 11 1 J 1 IC A R o 1 J J 1 M 1 E No 1 1 A 1 Ill , 1 c , L 1 K 1 1 1 < 6 > 1 1 G 1, 1 R , K K 
1/5'rtGt,(20U),CMARC80)/KLP~KMAXILMAX,PARITV 

PI f I L tJ ~ I 0 N Rt. GC ( ~ R f. G 1 N RE GC) 
~IMlNSIUN BUf(10) 

C HEAD t:UMHR lJF CIJLUMtJS A IlD kOiolSl ALSO THE flESH PARITV(•1 ll/ Z), (+1 ' 
Hl\!ln t1 )K~1AXIL11AX,PAIIITY 
NPl=<~MAX•1)*CLNAX+1) 

C CALCULATl tiUHBER OF POINTS IN MESH 
~RITEI~,ZU)NPTtKMAX,LMAX,PARITV 
FUIOIIAI (1Hiii80C1th)/37H TME TOTAL NUIIBER OF MESH POINTS IS tl5• 

11311. TtiEI<E AkE ,J],BH CULUMNS/I!H AND ,J], 
:12811 liUIJS, TlfE MESH PARITY IS .!3/80(1H•)) 

I G "1 
I Ctil\0"1 

10 PD 50 IR~:1,NR~G 
CUUSTMtTS Fl•f< RlGIOti ANt> neFINJNii IIOUttOARV POINTS ARE READ IN 

READ(1,5)1RF.GC(IR,I),I•1,NREGC) 
CALL LEOM~TRVCBUF) 
COtlT II<UE 
R t TU f~ f• 
FUHt,Al Cl!U) 
FOI!t.A I (410) 
FOntiAl C4EU.Ol 
EN() 
SUBkO~TINl Gf~~LTRVCaUF) 
LOGICA~ Ef•D 
C Ollli 0 t< /I N D'x /I , J , I CARD, J J , M, END 1 l A , I u, I C, L, K 'i I I ( 6) , I G 1 I R , K K 

1/ST/Gh(2QO),CMARC80) 
DIll~ N ~I 0 N C 0 Ut. T ( 1 0) , FM T C 5) , S N T L ( 3) , B U F ( 1 0) 
DATA CUUNTIXFLD,AFLD,EFLO,SNTL,BLANK,ALEFT/5HO 

~5H2 ,6H3 ,SH4 .~H) ,5H6 ,SH7 
15HXI ,5HA1) ,5HEn.O), 
1511A ,6HB 1 5HG 1 5H I 

t; A CAI\D ~lAY bE MJSSit-lG AT THIS 

, 5 H1 
1 5H8 

, 
,SH\1 

C tREE fIELD RlJUTihE;OB.IEcT•TIMt 
RHD<1t1lbUF 

,SH( 
POINT 
FOR~IA TS SET UP FOR ALPHANUMERIC FI~LD 

:; li 
1 

' 61J 

15 

F liHt1A 1 ( 10A8) 
REAi,J(:>,zlCHAR 
~RITEIZ,61i)ICARD,CHAR 
F0f:t;A1 <80A1) 

J 
F 0 hl: A 1( 1 0 H C A k P 110 " I 4 , !I X .1 H < ,110 A 1 , 2 H ) l 
I Ct~RD"' I CAkD+1 
Jll~1 

J J "1 
rtil•s: J A LSt. 
Fl11 (1 JI'ALlFT 
DO 45 1=1 1 110 
CALL LUtiPI:l(CHARCI) ,aLANK,J) 
GUTU(40,5)J 
GU"~(1U,55)IB 

ll3"i:: 
pu 15 Ko:1·3 
CAI L Cl)f1Pil(CHAk( I) ,SNTL (K) ,J) 
GU'i~(<0,1~)J 

CUI:TII·UE 



L"1 
ft11 ( 5 I F [ f L D 
Go··uz:> 

~0 !FIK,lU:3JEND;:,TRUE, 
F'1T\5)o::AFLD 
L"2 

'5 J=l/1\1 
F t1T ( 4) o:: X F L D 
lr · J ,fjt;, 0) GOTIJ35 
F 11"'" ( 2 i "Ill AN K 
IF'I.~iE,1)GnTu30 
FHT(3);:fJLANIC 
Fl-11 (4)=1llANI! 
GO"• UciJ 

Jti Ff1'<3>=C00NTCI) 
GOTU(>J 

3!i M=u·J•10 
I F lti) 1 u 0 , 1 0 0 I 1 0 5 

1\JO Ftl1(2n•cOUNT(J) 
FWr < 3i =COUNT ( 10) 
GUTIJ6!1 

1v5 Ft,Tii!)c;C:OUNT(J+1) 
FMT (3) "COUNT Hi) 

b5 R~AD<~IFMT)GMCIG) 
llfi IG=i!i+1 

IH~ND) RE1 URN 
G0TIJ5~ 

4u Jfi(!~JJ7,GT,1)18•1 
GOTU4J 

55 JJ=i 
4~ CU!iT I flUE 

GUToSv 
rtH> 
SU~kO~TINt CO~f(l1J 1 PHIIIG1SAME) 
LOGICAL SAME 
C 0 I I 110 I! I S T I G H ( I! 0 L ) 1 T EM IH 8 0 ) 
DATA bhDRY/SH~ I 
CALL tOMPII(hNDRVIGM(IG)III> 
IF(II,EQ~,)~ET~RN 

SAIIf"·FALEiE. 
lf1GIIliG+1).LT,O,,OR.GMCiG+Z),LT,0,)SAME•,TRU£, 
l"AilS\GHCIG•1)) 
J "tillS< GH (l G+Z)) 
PltlroGM<ICi+3) 
IG,.!G•4 
RETURN 
Ell!! 

SllURUUTINE TUPLGYCREGCINRtGINREGCITAG1PHI1NPT1R1Z) 
LOGICAL EHRUR 1SANE1SAMEO 
!NTEGLR BlT,ARCFINIPAAITYIPK(6),TAG(NPT) 
COiifiOI•/ STIG!IC~00) 1 TI!MP(80) /KLP/KMAXt LMAX1 I' ARI TV 
COflt;OI' I ERliR/ E IIRC•R 
1fi~~Xil11l2,13114115oi611AIIBIIC~L~K,PKIIGIIRtARCFIN 

476 

1/ ut K 1/ L 1 I I. z. K ~ I ~- z I R 1 I R 2 I z, I u. • L 0 I K 0. R 0 I z 0 I pH I 0 I pH 11 ·;pH I z I pH I A V 
1/ULK21LAOrkAOIRAOIZAOrTHETAOILAZIKA21RAXISIZAXIS7KKiTHETAIIA511A6 

o111 u1 ~ 1 oN 11 F G t c N R t; G 1 N 11 e G c > , R c N P" 1 zr N P r > , PH 1 c N P n 1 A c z > 
DATA 11RC ~E~TL,END GEOM1A/)HA 1SHG r5HFREE 15HFIXED/ 
IT 1-l)RJ"Z*(l/l!) 
IL" 1 

C kE(jiJ, LfiLP: 



PO 14!> IRP1,NMEG 
J0,JO•I1~'121!11 
Pli!ODO, 

CHECK FUI; Th~ TYPE OF BOUNDARY IF INDICATED, 
CALL ~ODE(IO·~O,PHIO,IG,SAMEO) 
15•'10 
lt>"JO 
PHIAV•PHI,,PHI.,PHIO 

C CHECK IF ARC COM~ENCES AT FIRST PT,a 
CALL LOMP8CGMCIG),ARC SENTLill) 
IF<JJ,EQ~~)GO TO SO 
12"2 
IG.,IG•1 

C FlkST RE~N. PT1 
lO L1,LO~'~GMCIG) 

K1, KO"GMC 10.1) 
R1• RO"GMCIG•2> 
21, zoa::GM r 1 h3> 
URITE<Z,5U5)1R,L0rKO,RO~ZOtACI6),A(I5),pHIO 

~05 FO~MA1(20HO FIRST PT OF REGION ~13 1 2X 1 3H (,ZI3~ 
a2F12~6,2X•A8,2X•A8,5X,F1lo~~1H)) 
"RITE<Z,501) 

501 F0RMAT(~7H SUBSEQUENT PTS1) 
lit JGIIIJG•4 
C CHECK FOk SU~CEEOING AACSI 

CALL CUHP8(QMCJG),AAC SENTL,II) 
Jf(JJ,EQ~Z) GO TO 31 
11"3 
GOT03t> 

C ALSO FOk END OF REGN, G!OM1 
31 CALL COMP8CGMCIG),END GEOM,Il) 

IF(JJ,EQ:Z>GO TO 'O 
11•2 

36 IGIIJG•1 
40 IF(I1.NE~Z)00T045 

LZ"LO 
KZIIKO 
RZ•RO 
:z~zo 
1~•10 
16"JO 
Plll2•f'HIO 
lf(SAMEO)PH11tPHJ2 
GOT048 

4~ CALL COOE(JS,I6,PHIZ,IG,SAHE) 
Jf(SAMe>PH11•PH12 
Jf(I2.EQ~~)00T0200 
L2~'~GM(IG) 
K2~GM(JG•0 
112"GH<IG+2) 
ZZc:GM<IG+l) 
WRl1~(2,502)L2•K2tR2,ZZtA(I6>•A<I5),PHI2 

~02 FOkHAT(5X•214,5X,2F12,6i~XoAb,zx,A8,5X,F12.6> 

477 

C LINEAR lNTEkPOLATION OF BOUNDARY POINTSI TAGGING OF POINTS AND SlOES 
48 CALL USET(R,Z,PHitTAGoNPT) 

JF<tRkOR)i{ETUIIN 
GQT0(~4,5~,100)11 

CLLLS AR( TAtiGE~ ~ITH THEIR APPROPRIArE REGION NUMBERS, 
55 CAlL ~ET HEGIQN(REGc,NREG,NAEGC,TAG,PHI,RrZ,NPT) 

Jf(f;:RI<OR)kETURN 



1~5 CO~TINOE 
RfTIIkN 

1!10 IGr:JG+4 
~00 CAI.L ARCS~T 

IF<tRkOR)IIETUiiN 
CALL ARC(TAGoPHJ,R,z,NPT) 
IF <ERHOit' RETU~N 

GllTO.S4 
EtW 

SUBkOUT!Nt aSETCRtZoP~J,TAG,NPT> 
LOGICAL EkROR 
IN1lGLR &IT,AMCFIN,PARITY,PK(6),TAG(NPT) 
INTEGlR BTC!i) 

478 

Clltlf!ON/ S T I GM C 500), TEMP ( 80 J I K LP I KMAX, LHAX, PAR 1 TV 
~/INDX/11,12,1S 1 14 1 1S,J6,JA,I8,JC:L,K,PK,JG,JR,ARCFIN 
~1BLK1/L1eLZ,K1,KZ,R1,RloZ1,z~,LOtK07AO,zO,PHIO,pHJ11PHIZ•PHIAV 
~1STAGLINPROaoiP/EROA/fRROR 

DIHENSION PHICNPT),R(NPT),ZCNPT) 
IT(J)11J,.Z*(II2) 

:i L2bLt"L4 
K21 RK, .. K, 
1Br:1 
L•K~>1 

CHECKING OF PERMITTED LOGICAL LINES IS CA~RJED OUT UNTIL LABEL 25, 
lf(L21,L£,Q)L~111 
If<KZ1,LE.Olk1111 
JFIL21,NE,Q)IBIIB+1 
IFI~Z1.NE,Q)I~IIB•2 
G0TO(~~Oe20o30125)1S 

Z~ lf((K'1"CL2+1)/2+(L1+1l/2),NE,O>IFCK21+L2/2•L1/2l400~20,400 
ZC ING~:~<KHAX•f>•L 

LMT11 Lt1 
G0,.03> 

30 INC.OK 
lMhKi::1 

3~ JBo::JB"1 
LMh I All S ( I.MT) 
IA~L2•CKMAX•1)tK2+1 
R<lAl 11 R2 
2CIAl"Z2 
PHI (JAhP1112 
PHIAV~PHIAV•PHI(JA) 
I3=i:S+1 

C rAG A ~OUNOARY POINT( DIRICHLET•2J FREE•1) 
CALL ~AGKCTAGCIA),J5,1) 
IFIK21)4Q,45 1 110 

4S lf(ITiL2))60 1 60,40 
C TAL A SIPE ON THE BOUNDARV(UPPER•1;LOWER•21 80TH•3) 
40 IFCt21,NE,O)CALL PACK(TAGCIA>,1+(1+L)/2,4> 
60 IFCLM1,EQ,1)GOT0180 

R2h<k~"R1)/LMT 
%21 R Uj!,.z1) I LMT 
P2\~(~HJ2~PHI1)/LMT 

C IN THIS L~OP PERFORM AFORIHENTIONED TAGGING OF POINtS AND SIPESf lLSO 
C INT[RP0LA1E COORDINATES AND POfENTIALS ~OR INTERMEDrATE PO!NTSOF LINE 

DO 105 JC•1 1 LhT"1 
JAo:JA'"iNC 
Jf(lB.EQ~3)1A~IA+lTCJC+L~)•(K+1lJ2 ... 



C 1\ l. L I· A C K (TAG C I A) , 16, 1 ) 
G~T0(~0,100,85)1B 

65 CALL ~ACK<TAGCIAlr2•1ABS(K+L)/2,4l 
GOT(J1v0 

90 JFtiTllC~L2),GT,O)CALL PACKCTAG<IA),lr4l 
100 R(IA)~k2~Jc•k21 

%<!Al"Z2rlC•Z~1 
PIIT(JA)PPHJ2•1C•P21 
PHlAV=PHIAV•PHICIA) 
J3rq3•1 

1!15 CO liT I ~UE 
180 IF<K21l130,120r110 
120 IF<IT<L1l)130r130r110 
110 IA=L1•(K~AX•1>•K1•1 
C TAG A SII>E 

IF<L21,NE,OlCALL PACKfTAG<IAl,1+<1•L)/2,4) 
1 ~0 ll1 "R2 

z1 =z2 
L 1 ~"L2 
K1 "K2 
Phl1oi'HI2 

135 ARI;f!U~O 
RETUR~ 

C m:F~=r.~===aAQ•a•••K•D•••••••aaa• 

C ER~O~ PHINT5)w 
2~0 W~ITE<~,1) 
1 FORhA1(40H1 CONN, ARCS ,SAHE LAND K, DIFF, C00ROS) 

EIH<OR", TRUE, 

~~0 
252 

4(10 
3 

RETURt~ 
GO TO (251 .135 1 252> 11 

IF<ARCFIN,EQ,O)GO TO 2~1 
IF(AB&(R2~R1),GT,1.E•12,0R,ABS<z2•Z1),GT.1.E•121GOT0210 
RETUR~ 
IJR IT E \Cl, 2> L 1 , L2, K 1 , IC 2 
FOIHIAT(12H1 NO NEW K,L,1.511 L1,L21K1,K0!•,413) 
ERilOR", TRUE, 
RETURN 
WRITE<2,3) L1 ,L2rK1 ,Kz 
F01li1AT(38ft1 L1oK1 AND LZrKi: NOT ON SAME LOG, I.IN/ 

~ 1311 L1•L2.~1rK2~,413) 
ERROR"•TiiUE, 
llETUR~ 
ENP 
SUDROUTIN~ ARCSET 
LOGICAL ERROR,SAME 
INTEGtR SW(6) 1 ARCFIN,PARITY 
C0MI10~/ERURfEkROR/ST&GE/NP~08,IP 

., 

479 

31ST/GM(500l,TEMPC80)/KLP/KMAXrLMAX,PARITV 
GIINDXII1•12,13rl4rl5,f6•1Arl8riC;L,KrSW,JG,IR•ARCFlN 
1IOLK11L1ti.2,K1rKZ•R1•R2•Z1rZ~,I.OoKOrRO•Z0rPH!OrPHI1iPHIZ•PHJAV 
ftt~I.K2/LAO•KAO,RAOrZAOrTHETAOrLA2•KA2,RAXJS,ZAXIS7KKiTHETAriAS•IA6 

IT<Il"l"2*(1/l!) 
Hff'P•1 .5707963 

C PREPAkE INPUT FUR ARC) 
C LOG\ Cl~1RE OF AHC) 
i!C10 LA!I"Gf1(1G) 

KAOo:G~l( I Ci+1) 
C LOG•, f<I<GLE) 

T 111: TAU" 11 FP h G 11 ( I G • 2) 
IF(THLTA0)205,400,Z10 



205 TH~TAVP~THETAV 
6W(6)"~ 
GOTU21:, 

21.0 SW(tl)111 
215 IGC"IG•3 

CALL COOE(J§,J6,PHJ2,1GC,SAME> 
!AS .. I :I 
IA6RICI 
JS, J6~"1A6 
IG;;:JGI; .. 3 
IFCSAME)PH11•PHJ2 

LA211GI'l(JG•3> 
KAeiiGM(Jii*ltl 
14 101 
IF<LA0,EQ,L11141114+1 
IF<PARITV,LT.0)14•14+2 
IF(IT<IIt)oNI,O)GOT0219 
KK•KAi: 
ff(KAO,NEoKA21GOT0415 
G0T02i:1 

219 IF<KAO,NEoK1)GOT0415 
KK'"K1 
lf(LA0,NE,LA2)GOT0405 

CALCULAT~ POINT COOROINAT!S AT LOGICAL CENTRE OF THE ARCi ALSO, 
CALCULATE LLNG~HS OF SEHI AK&SISET INITIAL POLAR ANGLE. 
221 GOTOCi:ZOI225•2i~•220)14 
220 RA011R1 

ZA011GM (J G•6) 
II'HETAPO, 
RAUS•GHC IG+51 
%AXJSPZ1 
G0TOZ30 

Z25 ~AQIIGM(JG+S) 
%AQIIZ1 
AAKJS~'R1 
'HETA"HFPI 
%AXIS"Gf1CI0.61 

C ERROR CH~CKS) 
230 RAXIS•RAXIS•RAO 

ZAXIS•ZAXIS.UO 
lf(LA2,EQ,L1)G0T0420 
1FiKAZ,EQ,K1)G0T0425 
IFCPAkiTVoEQ,O)GOT0430 
AETURf'j 

400 WR1TE(2,401) 
401 FONIIATC16H1 ZERO A~C ANGLE) 

G0T0500 
4u5 WklTEiZ,406) LAOoLA2 
406 F0fli!A1(12H1 LA0,Nf.LA2,214) 

GOT05110 
415 WRlTElZ,416)KK,KAO 
416 FOilfiAT<15tl1 J~j ARC,!<K,kAO.iniO 

GOT!JSU(I 
4~0 WklTEli:,4~1)LA2 
41:!1 FVI!fiAT(15H1 lt1 ARC,LA2•L1.1i!) 

GOT!J50l'. .. 

480 



425 WKITE~,,4,6)KA2 
426 FOIItiAl(16H1 ll! ARC 1 1<AZ•K1•dZ> 

GO""o5ll0 
4~0 WkiTE(,,431) 
431 FO!!tiA1113H1 HRO PARITY> 
~00 ERKOk~.TRUE. 

RE TURf; 
END 
SUbKOUTINE ARC(TAG,PHIIRIZINPT) 
LOGICAL ERROR 
INTLGlR BIT,A~CFINIPARITVISW(6),TAG(NPT) 

481 

COt;~IUN/ S T /GM C SOO) 1 TEHP (80 >I KLP /KHA)(, LHA X 1 PAR I TV 
1/bLK11L11L2,K1,K2,R11RZIZ1,zliLO;KO~RO,z01PHIO,PHI17PHIZ,P~IAV 
~1ULKZ/LAO•KAO,RAOIZAOITHETAO,LA2,KA21RAXIS,ZAXIS7KKiTHETA•IA5wiA6 
QllllDX/11~12,13•14•15,!6oiA•IB•ICiH,NISW,JG,JRIARCFIN 

21+0 

CO!-!ftOII/ EROR/ ERROR 
DIMEN~ION PHICNPT),R(NPT>IZCNPT) 
COiitiOfi/STAGe/NPROil 11 P 

JT(I)~I-2•<112) 
HfPh•1 ,5707963 
L•K=1 
LTilT,LA2rL1 
KTOT,.KA2•ol(1 
IFCLTUT:LT,O)LI•1 
Jf(KTUT~LT.O)k,•1 
K HJTI•l All SI KTOT) 
Li!~"L1 
LTPT•lAilSILTOT) 
KZ::K1 
IFCL1,NE:LAO>G0TO~OO 
SW<1 >•Z 
SW(j!)ISWC3),S~(4)1SWC,)•1 
LC•LAi! 
lf(SWI~)~EQ,2)LC•LC•L 

C SET INCRlMENT IN POLAR ANGLE)• 
OTHETA•ct~2•1T(I4))*(THETAO•HFPI*C1+PARJTY)/2)/LT0T 
I Do: L.1 

CALCULAT~ CUQRDINATkS ON-LOGICAL SLANT li~E OF THE ARC 
ZI+S LZ~<'LZ•L 

300 

3()6 

310 

K2=KZ•K•IABSC<1•K)/2~1TCID>> 
fHtiTAPTHETA•DTHETA 
AZo:RAXIS~S!NCTHETA>•RAO 
2Z~ZAXIStCOSCTHETA)+Zl0 
CALL bSETCR,Z,PHI•TAGINPT) 
JF C~;RkOR, RETURN 
JDii!D+1 
IF<L2·NE~LC)GOT0245 
Jf(SU~1)rZ>335,3061335 
SWC1 )A1 

SWC2),SU(3),SU(4)1SWCS>•Z 
A~FLOAT(KTOT>~LTOT/2. 
OTIIETAP(2*!TCI,)•1)•CTHETAO•HFPI*C1~PAR!TY)/2)/A 
~IX.,t;TuT-UOT/2 
lfiSU{4):1iQ.1)MX•MX•1 
IF1KK.GE~KAO.OR.KA2.G!,KAO>GOT0310 
11X=IiX~(1.,1T<LA0))*1TCL2) 
G01"u31) 
MX=IiX~(1rlTCL2))•1TCLA0) 

•• •' 



315 KC;oK2+J'1X•K 
JD~:Q 
1FiSW<3)~EQ,1)JF(MX)3J0,33U,l20 
IF<SW<65~~Q.2)JFCITCLill32UtS20,325 

320 I p~:'l 
CALCULATe COORDINATES ON ROW SfCTION OF ARC 
325 K2cK2•K ' 

IF<IP,F.Q~O)DTHETA~DTH!TA/2, 
~H[TA"THETA•DTHETA 
RZaRAXIS•SINCTHETA)+RAO 
%2~:ZAXIS•~OSCTHETA)+ZA0 
IF<ERkiJR)RETUI<N 
IF(JD,EQt0)DTHETA,2,•DTHETA 
CAlL bSETCR,Z,PHitTAGtNPT) 

330 IF<KZ.NE~KC)GOY0320 
IF<sw<z>•Z>335,Z40.335 

335 11,1i~ .. , 
!So:JA!'I 
16=1Ab 
L2FOGM(IG~~o3) 
KZ=GM (J G•4) 
R2,.GM(lG•!i) 
Z2aGH(JG+6) 
CALL bSET(R,ZtPHitTAGtNPT) 
lf(f:RkURlRETUiiN 
JG;JG•3 
AkCFIN111 
RE TU RI'< 
ENP 

&UaROUTJNf SET REGION<REGCtNREG,NREGC•TAGtPHitRIZ•NPT) 
IN1EGtR BIT,PARITY,ARCFIN,PK(6),TAG(NPT) 
LOGICAL ERROR 

482 

CONf!Otl/ KLP /ICMAX, LM4X, IIA RI TV I E ROR lE RllOR 
~llNOX/11oi2,1S,J4,15 1 16,1AtiB,IC,L,KiPK,!G,IRtARCFIN 
~IBLK11L11L2,K1rK2tR1,R2tZ1tZ~tLOtKOtRO•ZOrPHIOrPHI1iPHI2•PHIAV 
DIHEN~lON PHICNPT),RCNPT),~(NPTl 
OIM~NSION R!GC(NREG,N~EGC) 
IT(I)RJio2*(1/2) 

3Jio:REiiC (1 RI 1) 
55 LIIQ 

!A=1 
tiu=l A•KHAX•1 

5o K1,K2d1di!IIO 
IF<lT<L))9Q,6~,po 

C IS THE L~WE; SIDE ON A BOUNDARY ? 
65 IF<Uif(TAiiCIB)r4,0l,Gio2llfC1Z)80t8S,UO 

11 "1 
IFC12)7S'ji'0,15 

80 12=0 
GUTU7V 

IS(i I '"1 
C PACK I!EW CELL NO) 
7b CALL I'ACK(TAG(JQ),JR,3) 
C tRASL ANY LOWfk SIDE TAG, 
70 lf(l1oEQ~0)TAL(IB)•RIT(TAG(IB>,4,2) 
c 



IF CK1, fa: KMAX)GOT0115 
11 "0 
K2r::K2,.1 

C IS Tit~ UPPER SIDE ON A BOUNDARY? 
90 IFC~I1(TAU(IA)r4,0>,EQ,1)1FCI2)95,110r95 

11 .. , 
IF<I2)105•100,105 

95 le=o 
G0TU1ll0 

110 12•1 
C NEW TAG> 
105 CALL PACKCTAGCJA) 1 JR,2l 
C ~RASE ANY UPPER SIDE TAG, 
100 IFCJ1,EQ~0)TAG(IA)~BIT(TAGCIA),4,1) 

1Ar::JA,.1 
IF<K2.EQ~KMAX)GOT0115 
11 ;oO 
K1"K1•1 
GOT06!1 

115 IF<L.~Q.LHAX•1)GOT0120 
LAl•1 

1Bo:JB•1 
IA~IA•1 
GOT051> 

C SET A~ERAGE POTENTIAL POR REGION~ 
120 PHIAV"PHIAV/IS 

IF(PHIAVoEQ,Q,)PHIAVIO,S 
DQ 140 L~'~1,LHAX•1 
16A1'"J'I'[L) 
DD 140 KP1,KMAX•1 
IAAL*(KHAX•1>•K•1 
JORCL•11*(KMAX•1)+K+I6 
ltP(LM11*(KMAX+1)+K+I6 

lF<alT(TAG(JA),1,0),NI,O)G0T0140 

483 

C~ECK IF ALL CELLS AISOCIATID WITH AN INTERNAL POINT HAVE THI S4MI TAG 
PK(1)aQJT(TAG(JAit2•0) 
PK(2)"QIT(TAG(JB),~,OI 
PK<3)aBIT(TAG(IA•1>r2rO> 
PKC4)~BJT(TAGCIA•1),3,0) 
PKC5)"BITCTAG(IC)r2oOI 
PK<o>•BJT(TAGCJA),J,OI 
DO 13> 14"2,6 ., 
IFCPK<1>~NE,PK(I1))GOT0390 · 

135 CO liT 1 NUE 
IF(P~(1,,N&,IR)GOTO 140 

C GIVE PT~A REGN, NO, 
C SET APPROX~. fP POTL 

Plfi(lA)IIPHlAV 
fi(IA),Z(IA)IO, 

11t0 CONTlNUE 
K~TUI<N 

3~0 WRITEC2,3~1)PK,L,K 
J~1 FQkMAT<25H1 tRIANGLe LABELING ERRQR,6110t8H AT ROW 71z, 

18H COLUMN ,rz,1H,///) . ' 



484 

500 EHkUH~~THUE, 
RETUR" 
END 

.. 



10 

zo 
:so 

CHECI( 

l1 
34 

35 

61 
61t 

40 

SllaNO~TINt MESH RELXNfREGC,NREG,NREGCtTAG,R,Z,NPT) 
LOGICAL Pfl!~><T 
INTEG~R BIToAhCFJN,PAAITY,PK(6);TAGlNPT) 
C0HI10N/KLP/K~AX,LMAX,PARITY 

485 

, IBLK1/L1tL2tK1,KZ,oOLDRtDOLDZ,DNEWRtDNEWZ,LO,KOiSUMR,sUMZtEP$R 
1oEBSZ•Dk,DZ/BLK2/EIGJACR,IlGJACZ,EIGS0RRtEIGSO•Z11TORoETA0Z 
1/INDX/I,PRINT,ITN,I4oi5•1611A,IBIIC;L,K,PK,IGtlR;ARCFIN 

DIMENSION ReGc(NREG,NREGC)tRCNPT)iZfNPT),W(6) 

IT(l)"'l'"2•Cl/l.) 
CALL T lt1E ( T1) 
WRIH<l,10H1 
FOIHiAT(1H1,JOX,48(1H•'/30X, 

138H• T!H~ ON ENTRY T~ MIIH RELAKATION tA8J3H */30X 
~ 'j48(1 ~·)1/) 

11'il21<1 
PRltiT~'<, FAI.SE. 
IHl(IIPI/ ,25t!IIPT 
EPSCMF,00(/01 
EPSR,tPSh1; 
D0LDR•OOLDz;erGJACRoE!GJACliEIGSORRiEIGSORZ,ETAORiETA0Z•O• 

RHOR•RH0h1. 

I Tl41' 0 
DH~WRtDNEWZ,SUHRo6UMZtREiiOMXR,R&SIDMXZ•Oo 
DO 45 LR1tL11AX•1 
l51.'IT\L) 
DO 40 K•1 ~ KI~AX"1 
JAAL•<KHAX•1>•K+1 
IF POINT15 JN DUMMy REGION OR ON DIRICHLET aOUNDARV; 
lf,TA~(JA).eQ~O,OR,BJ?(TAG(IAI,1,0)~N~,Q)GOT040 
IR•RE~CCBITCTAGCIA),z,0>•4> 
r 6PI1 
JFCIR,EQ.1)16•1~15 
l8P!(L+1)*(KMAk+1)tK+I6 
tCw(L~1>•'KMAX*1)+K+J6 
lfl!R,EQ!a> GU TO 31 
DRP!RH~R•(CRCIB*1>•R(JS)+RCIA~1)+RCIA+1)+R(JC+1)+RCIC)) 

1 •,16o~6o6667~~ciA)) 
GOTU3t. 
DRRRH~R•CCRCJ&)+R(JA•1)+MCICl•RCIA+1))•n,25~R(JA)) 
RClA)WRCJ~)•Dk 
SUiiRII&Ut1R*R CIA) •R (I A> 
bN~WR~PHEWR+DK*PR 
IFI.N~T.PRJ~T)GflT03~ 
DRAABS(DR/RCIA)) ) 
JFiofl,GT.RE&lOtiXR)ReS!DMXIliiOR 
IFIJR,fQ'2)GOT0~1 · 
DZ~RHDZ•l,zCibt1)tZCI8)+ZCIA~1)+ZClA+1)+ZCIC+1)+ZCICl) 

1•i166~666VftZCIA)) 
GOT06'
DZ~RHVZ•C(ZCJB)+Z(JA~1)+ZCIC>*ZCIA+1))•n.Z58ZCIA>) 
%CIA)!II;:(It\,.I>Z 
SUHZ•5U11ZtZflA)•ZCJA) 
D~ijwz•D~EWZ+DZ*DZ 
IF(.N~T.P~INT)GOT040 
DZ~"US(DZIZCIA)) 

IFCoZ.~T~HESIDMXZ)RESIDMXZIIDZ 
CCI1T J IWE ... 



45 COWT!t;UE 
IF CPRlNTHOTOt.OO 
ITN,.ITii•1 
lf,ITH.GT~I~XH)G0f0390 
IlllO 

486 

IFCIT~oGTI1lCALL SOAC~NEWArDOLDR,SUMRIR~OR,EIGJACR,EIGSORR,ITAOR 
,·;EPSR) 

DO LD R" ll tl E 11 R 
If,EPSR,G~.EPSCHlGOTOB5 
1111+1 

55 LOIITINUE 
IF,ITN,GTV1lCALL SORCbNEWZrDOLDZ,SUHZrRHOZ,EIGJACZIEIGSORZ,eTAOZ 

1.EPSZ) 
D01.P211LlNEWZ 
JflEPSZ,G~.&P&CHlGOTo50 
llllh1 

SO COiiTIIiUE 
ITih1 I Ttjot1 

IF'I~I.i,2)GO TO 30 
l90 BRIN7•~TRUE: 

GO TO lO 
400 WRJTE<Z,401li,N,RESIDMXR,RESIDHX2iRHOR,AH0Z,EPSR,ePSZ 
lt01 FOQIIAH45110 'OTAL NO. OF ITERA?IONS IN MiiiH REI.XN IS 1 tt. 

~;35H )HAXIMUH R AND Z A!SJPUALS ARe: ~~F1i;6/ 
!I~H THE FINAL OVER•AELXN FACTORS ARE, ,ZF12,6 
t;,QH ANP 'H~ CONVERGENCE FACTORS ARE, ~ZF12.6) 

tALL Tlt1E(T1) 
WRJTE ( ~','11i) T1 

15 FOQI1AT(1~U,!OX,48C1H•l/30Mr 
~58H• TIMe ON fXIT FROM MISH RELAMATJON ,A81lH •130X 
1~41H1H .. l1/) · 

AUURN 
END 

&VBROUTJNfi PAMAHCREGC~NRIOrNREGCt,AG,R,z,cpU,C,R7CPLrSCT 
1~NBTIPHI) 

LOGICAl, INT 
INtEGER BJT,AWCFIN,PANITV,PK(6),TAGCNPT) 
CQMM0N/ST/OM(500),T!NPC80)/KLP/KMAX1~HAMIPARITV 

C0HMON/JNDX/I,,l2•13ii.~K,,K2riA•IB•IC•L•HH,JJC7~11RiiNT 
,JPI.K11AJNTEGRAL•H(Z)i~R,TRNGL•SOURCEoC0iFF•NN(Z),AIBiC•T4•HP•aP13 
2JPLK21~LCZ>,eoTTCS>,K~Cz),AA(Z) 
~lHEN&lON REGC(NREG,NM&GC)rCPU(NP,.)iCPRCNPT),C,L(NPT>•SCT(NPT) 

1rRCNPT),ZCNPTlrPHICNp') 
C TH6 COUPLING COEF~ICIENTS AND SOURCE TERMS ARE EVALUATED ICEL~WISEio 
C EACU C~LL CONTRIBUTES TO THREI ADJACENT COUPLINGS ANO SOURCES 

IT'Il"ll;.,2ttl/') 
C NON"STANDARO 

FI'Jp1, 
FPJ3"FPJ/J. 
L!'O 
IA~;1 
IEI;:;IA+MIAX"'1 

10 K1':K2110 
lf(IT(I,)),0,20!50 

CALCULATE cDHTRJpUTIO~ fRnH TNE LOWeR CEL~ AT POINT IB 
ZU If(TA~(IB),NE~G)CALL 'ERMS(CPUrCPR,CPL,scT,TAG,REGC7NREG,NReGCr 



J tn:q s•1 
If,K1.En:~hAX)GO TO 55 
K2=K2+1 

CMLCULAT~ T~~ CVNTRI~UTION JROM UPPeR CELL AT lA, 

487 

5u IFCTA~(!A),NE~O)CALL TERM8(CPUtCPRoCPLoSCToTAGtREGC1NREGoNReGCt 
1NPT,JAoi6tZ;R,ZoPHI) 

IA;•IA"'1 
lf,K2o~U.K~4X)GO TO 5J 
KhK1 +1 
GOT021i 

SS IFCL.~~.LHAX•1)RETURN 
LPL"'1 
1A~<IA+1 

lllP1!6+1 
GfJTu10 
END 

SUDkOUTINE TEkHSC&PU,CP~,CPL,SCToTAGoREOCtNREGoNREGC; 
~NPT,IoJ~K•RoZoPHI) 
!hT~G'R biToAWCFINoPARITYoPK(6),TAG(NPT) 
LO~ICAL AXMAGoAXHEAT,INT 
C0HHON/INDXI11,12il3ol4oK1t~Z,IA~IB;IC,LoMM,JJC?l;IRiiNT 
C O!HIOtj/ T PITY PE, AXMAO, AXH EAT 

mJKLP/KHAXwLHA.tPARITV 
11bLK11AINTEnRALoM(2)oRRoTMNGLoSOURCEoCOeFPoNNC2)oArBICoT4oH~,FPll 
,lbLK21LLC2l~COTTC3liK~(2)oAA(2) 

DIMeNGION k~GC(NRfG;NMEGC)tCPU(NPT);cPRCNPT),CPLCNPTioSCT(NPTt 
~1R(NPT)~ZCNPT)oPHI(NP') 

IT (I)" I ,.2H 11 i:) 
lh!T(IO 
I21fl+1 
I lR2•11 

C FIHD R~ij!O~ NUhAER OF CELL 
IR~blT(TA~Cil~ll~Ot 
lf,IRo~Q~Q)METURN 
IR111, 
T~NGL~0.5fPARITV•CRCIR)•C!CIAl 8 l(l2l)*RCI2l•<~Cll)wZIIA)) 

1+R,IA>•<%112>•Z(IB))) 
lflTRNijL:Le:1~Ew12lG0,060 
IF,RE~CCIR,3l~LE,O,)GOT050 

SOUkC~~FPl3•T~NGL*REG~(IRil) 
scrciA)•SCTtiA)+SOUAC! 1 

SC[(I~)•SCTCib)+S0URC8 
scrcr~)•SCTCI2)+SOURCI 

50 IFCRE~~CIH,2l~LE.1E~10)RE'URN 
COEFF~0.1l5•RfGC(lR 1 2,/TRNGL 

C MODIFICATIONS F~R AXIAL SYMMETRV(E:G~HEAT CONDUCTION AND MAGNITIC) 
lF,AXMAG)C0F.FFRt0EFP•l,/(N(IA)*R(IB)+R(t2)) 
!FCAXhE~T)COEFF~COEFF•CRCIAl+R(IZl+RCIB)l/3, 
A•,R(lA).R(!8))w+2+CZfiA)aZ(l8))+•2 
B~'RCIU)•RCI2))*+2+CZIIB>•ZCl2)l**2 
C•(RCIA>•RC!?.l)••2+<z<IAlaZCIZ)lt•2 
C0TT(1 )•(IIH~A) 
corrcn~acA.ra·O 
CUTT(~)a(AH•b) 

CIJij,RJaUTIOhS TU eO~PL!NG5Ce,G• PERMITTIVITV•cOTAqGENT OF ANGLE) 



6G 
65 

CPU(IA)~CPUCIA>•COEFF•COTT(l1+1) 
CPijCI)qCpk(Jl+CPEFF•COTTCIS> 
CPL(I~)aCPLCI~)+COEFF•COT?(3•2•J1) 
RETURN 
1JkiTEI~~6!i) 
F0BHA1 (40HO TRIANGLI ARI!A ZERO OR Nt;GATIVE 
R~TURN 
E tj D 

SUSROUTIN~ kELXCTAG,cPU,CPR1CPL,S£TiPHI~RIZ,NPT) 
LUGJCA~ PRINT 
INTEGfH TAGCNPT),PARJTViBIT 
c 011110 NI I ~ 0 X I pI! IIJ T I I R c N T i lA I Ill , I c 'j L I K ':1 I I T N 

H KLP I KIIAX'I UtA X 1 PAR ITV 
1/ULK11POLV.~NlW,SUM,ePS~WOPT10PHI7CPSUM 
11bLK2/~IG~AC,EIGS0R,ETA0 

DIHENSXON CPU(NPT)ICPR(NPT>ICPL(NPT),SCTCNPT>,PHICNPT) 
"'RIIiPT>aCN~T) 

ITII)PIJ .. j!t(JIIt) 
H1ll<40,~5*1iPT 
PU lriT", FA LS!, 
EI'S=1• 
ePsc .. ,ooooo, 
OULD~~TAO,E!GJAC,EJGSOR•O, 
RH0J•1.S 
IJUet•1 .s 
CA L L T ltl E (T 1 ) 
WRITE(~~400lTIIRHOI 

488 

) 

400 f0RMATC1Ho;• ENTRY AT 1 oA8riTO RELAXATION SOLUTION OF POISSON PI 
~4ROuLEM IU ·A ~O~.UNJFORM TRIANGULATfON, INITIAL VA~UE OF ACeELERAI 
q~TJON FACTOR fAKEN AS ,,F6,3) 

Ift'h•O 
S D~~~.~UM•O. 

~0 100 L,1,LHAX•1 
JI:;1 .. 1TCU 
lb0\HAX•1 >•L+1 
la•<KMAX*1l•CL+1)+t 
JC;; ( K11AX•1). ( LP1) ., 

10 lFCPfl!NT)WRlT~C~,?OlL 
70 F0~11AH1H0,1C11f•)/loH tROll ,Il,2H •I 1H 111(1H.)//6Xt1HR"i8Xt 

\\HZ,10X,tRESIOUAL POTtNTIAL MESH POINT COLUMN TAG 1 /J) 
DU 90 K~~.KMAX"1 
lAA!At~o1 
Jhlbt~o1 
IC;;It•1 

lf(TAij(JA),FQ~Q)GOT090 
lf,UIT(TAGCIA)r1,0),EQ,Z)qOT090 
CPSUH•CPU(!A)+CPL(Ja>•CPACIA•1)+CPU(IC)+CPL(IA)+CPR(lA) 
DPHI•WUPT~((C~U(IA)•PHICI1+1)+CPLClB)*PHI(IB>•CPR(lA•1)+PHIIJA~1l 

1tCRll<IC)•PH!CIC)+CPL(IAl•P"I(IC+1)+CPR(J-)•PHI(lA*1) 
1+SCT<IA))/CPSUh•PHIC!A)) 
PHI<IA)~PHJ(IA)+DPHI 
SUH~SUH+PHI(IA)*PHICIA) 
Dti~W•~~E~+DPHl•hPhl 
IFI.N~T;PMII,T)~OT090 
IF,PRI~T)HR!T~(2,40)RCI4>,ZCIA),OPHf1PHJ(IA),IA~KiTAG(IAl 

40 F08.iAT(1ktF6.S11X1F~.]15XoF1Z•6•SX,F1Z.6,SX,I615X116,SX,J6) 
9li CONTIIIUE 



1UO 
105 

~00 

1 5(1 

50 

9 

1'i9 

489 

CuNTII~UI: 
If ( I'R I NT) GI.JT1l5U 

IF,IT~.NE~OlCAL~ SORCnNEW,pULD,SUM,WOPT,£1GJACiEIOSOR,ETA0,1P5) 
OOI.D•IlNEW 
WRITE<Z,200)1fN,WOPT,IPS,eiGJAC,!IGSOR 
F0Rt1AT(2X,J! 1 5X,F12,6~5X,F1Z,6,10X,F1~,6o:iX,F12~6J 
lf(EPS.LT~EPSL)GOf015~ 
IT~P!TN~~o1 
IF,ITNoLTIIMX)GOT05 

I'BINTI'I, TtiUL 
GCiiTOS 
CALL TJttE(T1) 
WklTE cz•;sfia1 
F0~1tAH1H0,!0)(,48C1H•)/30l(• lt TIME ON (KIT FROM AELAXATID!f 

2~AU,3~ •130Xo48C1H•>II> 
REiTURI'l 
END 

SUbRUUTINE SOR(hN&W,DOLDISUH,WOPT,LAMDAoMU,HUO,EPS) 
R~AL LAMPA,~~,MUO 
DATA PIF~,RHUO,BETA/~,01,0oU1,0¥05/ 
Ees.SQRT(DWEW/SUH) 
11UIOSQRTC DNF.W/POLP) 
l~(AbS(MU~HUO),G~,nJPF) GOTO 50 
lf(HU,LE&WO~f~1.) GO'O SO 
LAHDAR(HU•UO~T~1,)/CWOPTtSQRT(HU)) 
lf.(LAI1PAoLT.1,)W0PT•IiTA*(Z,/(1~·SQRT(1,aLAMDA•LAMDA))~RH00) 

1+(\, .. II~TA)tUOPT 
HU0•11U 
RiTURN 
IHID 

SUftROUTINe PLOfTCR,ZoPHIIYAGINPT!NEQ~PLOT MESH, 
LOGICAL PLOT 11fSH ,FI~IT 
INIEG~K BlT,TAG(hPT>,PARIYY 
cOHH014/eLK2/L1 ,L2•K1 .~ZiR1,RZ,z,,zz,LO,KO,Ro,zo7PAIO'iPHJ1 IPIIIZ 
COHiiOII/Sfi\GI!/~PROBolll 

1/~LP/~HAXWLMAX,PARITV 
DIHEN~ION RCNPT)~Z~NP'),PMICNPT),IQ(20) 
ITCI)IIII,2•<tHI 
FIRST~<, FAI.U. 
00 9 1•, 'iN PT 
ZF,TAGCII>En,o)GOT09 
If H J RSTHiOTOS 
PHlllJN,PHIMAX•PHI(Il 
ZMJ N, ztiAXI!Z C I) 
RMIN,II~lAXIIR(I) 
~laST~<, TRUE',' 
GOT09 
PHIHIN•AMIN1(~HJMJN;PHJ(I)) 
Ptili!AXRAHAX\ CI'HWAX,PHI Cl)) 
ZMlN•AKJN1CZMIN,Z(ll) 
~Mih•AiiJN1(~MIN,R(J)) 
ZIIAX11AIIAX 1 C ZM AX, Z ( ll l 
IHIAXaA11AX1CRMAX,R(l)) 

CUNTl IJUJ; 

'1 
' 

WH1TE(~',199) 
FIJR~IAT (4'fH I1AXJMA ANP MINIMA OF PLOTTING QUANTITIES ) 



201 

, 3 

1 5 
20 
zs 
3u 

4() 

llO 

~RITEt~;200lZ~I~,RMJN,ZMAXtRMAX,PMIHIN,pHJMAX 
FOHMAT(4~H ZMIN RMIN ZMAX RMAX PHIMIN 

14F7,3•i!F9·,3) 
DPHJ•<PHIMAX"~HIMIN)/NEQ 
WHlTE<i!';201HHQ 

fDHMATI18N ~0. OF EQUPTLS IS,Jl) 
tJt:Q1 at1ErH1 
DU 13 12a1,11Ftl1 
tti(I2)~PHIMAX~(I2~1)•DPHI 

L"'O 
DO 15 K~:~1tK~AX 
IA:oL• (KhAI<+~ )•K 
CALL LI~Ef(~•IA•IA+1,RtZrTAG•NPT,PLOT MESH) 
IfiL"LhAX)]0,,5,25 
r.tlT.URN 
K17K2aiOIAK 
IAF(L"'1)*(K~AX*1) 
lll!111A+II.IIAX•1 
lf(IT(L))80;3&,80 
CALL ~lNETC3 1 IA 1 1B 1 R,!,TAG,NPT,PLOT MESH) 
K1o:K1"1 
JF(K1 )120,40.1•0 
IFCDP~I.GT,n.=A~D,BIT~TAG(IA•1),210),NE,0) 

RCALL tQlJPLTCIA"1•1A;IBrPHIIRrZ,NPT,EQ1NIQ1) 
'i'O 1AilA .. 1 

CALL LI~ET(4,!AtiB,A,ltTAQ,NPT,PLOT MeSH> 

K2'!K2"1 
IF'KZl120~81 ,b1 

81 lFCoPHI.GT.o.':At•O,BJTCTAGCIB•~),liO);NE,O) 
~CALL ~QUPLT(IArl8"1;1BtPHiiRrZtNPT,EQIN!Q1) 

110 ~~~10"1 , 
GO:rol~ 

1 2CI L"L~~<1 
G0T06 
fli ll 

490 

PHI MAXI 

' 

SUBRUUTlNf lQUPLTC!oJoK,PHI,R,ZoNPTIEQ,NEQ1) 
I N:teGI:R P6et!TL 
c o 11110111 n L r< 21 L 1 , L 2, 1<, , M 2 ~ R • , R z • z 1 , z 2 ,· L o 11c o, R n. z o i PH 1 o • PH 11 I PM IZ 
DIHEN5ION RCNPT),Z(NPf),P~I(NPT)tEQ(NEQ1l 
20;oz<n 
R01!fdl) 
ZhZ<J > 
RhRCJ) 
Z2r.z<~) 
R2i!R(Ii) 
PHlO:~f'HJCl) 
Phl1111'Hl Ill> 
PHJ2111'hJCK) 

45 If,PHIO~PHJ1)~0,55,55 
5L CALL l.NTCHN(Ru,zO,R1,!1oPHJO,PH!1l 
55 IF,PHl1PPh!Pl65o60,60 
65 CALL INTCHNCR1tZ1,R2,z2,P~I1,PH12l 

G0TIJ45 
60 DD 75 l2•1,NEU1 

JJ;ali:oto1 
PHlSal;Q(I~) 



CALL I tiT C PT ( P l1 I S , RA , Z A 1 R B 1 l B 1 PS E li TL) 
If(PSf-~TL)7~,75174 

74 CALL Ll~E(JJ,ZAtRA,za,RB) 
75 CUt4T lt•VE 

HTURr, 
E fj () 

SUUHO~TIN~ !NTCPT(PHI!IRAtlAIRB,ZB•IPSENTL) 

491 

C 0 Mf10 fj I ElL K 2 I I I ( 4) , R 1 , R l 'i Z 1 1 Z l, J J ( 2) '," R 0 t Z 0 , PH I 0 1 PH I 1 ';PH I 2 , PH U V 
IF(PHIS~PijJ0)10r10t20 

1C IFCPHIS~PHI2>Z0125,10 
zs PPO, 

GQTu3> 
3G P~(PHIS"PH!2)/(PHIO"PWI2> 
JS %A=l2+P•I20•Zc> 

RA~<H2•P• C flO,.R2) 
If(PHIS~PH!1)40,45,,0 

4C pa[pHIS~PHJ2)/(PHl1"PWl2) 
ZllFZ2•P•CI!hZ2) 
Rflli'H2"P•<R1,.R2) 
COT061i 

45 %1l;;;z1 
RllF1ii1 
GOTU611 

50 P~IPHIS,PH11)/(PHIOrPWI1) 

ho;z1•P•CIIlO•Z1) 
IIBFiR1"'P•CBO .. R1) 

6(! I PSEIITL•1 
REJ.URN 

20 JPSEhTL1110 
RETURI< 
ENII 

SUikOUT!Ne Llh~T<INDX;J,J,R1ZITAG•NPTtPLQT MESH) 
LOGICAL PLDT MESH 
IUTE,ER fAG(hPT>tBIT 

DIHEN~ION RCNPT),Z(NP') 
ITO>IIII,.2'1'< rte> 

t~ECK FOB POINTS IN OliMMV REGION, 
lf,TA~(J),EO.C,CR,TAGIJ),EQ,OlReTURN 

IFUNC•J~ITCI~~X) ' 
IJRlTE(i:!,800l NPT·.J,J,JNDXolfUNC 

800 F0BHAT(1H ,5110) 
IU~~lT(TA~(I~ITClNDXllt210) 
IJI"d 1 E (i:', 800 > · I U 
k"l 
lfCI~DX,GT,2)~~J.,1•ITIINDX) 
IL~BIT(TAG(k),3 1 0) 

C ORAW A MESH LINE, 
IF(PLPT Mesw.~R,CIU,N!oi~)>CALL L!NE(1,ZCil1R(l)1ZCJ)IRCJ)) 
ltfTIJHN 
et.D 

SUbROUT!N~ IN~C~N(RA,ZA,R~,z~~PHIA,PHlB) 



Z11 ZA 
~IliA 

PHhPHlA 
ZA!IZB 
RA;;F:B 
PHlA•fHIB 
%B';Z 
RbRh 
PHfL11PHI 
Rt!LJRI• 
EIIO 
SlJQkOUTitl~ Llf.IE<IoZ1 ,111 ,u,RZ) 
IJRlTE<7';11i)l1 ,R1 iZ2,R2d 
IJR1TEI2~111)z1,R1 ,Z2,A211 

1 D FOiiliAH4CF8, 3) ,zx.~:n 
REtURN 
END 

492 



493 

APPENDIX 4.2 

TMG - DISPLAY PROGRAM 



c **************** 
C * APPENDIX 4.2 * 
c **************** 
c 
C THIS IS THE DISPLAY PROGRAM USED IN PLOTTING THE TRIANGULAR 
C MESH AND EQUIPOTENTIAL LINES OF THE PROBLEM REGION. 
C IT GENERATES THE FOLLOWING DISPLAYSI-
C 1.INTRODUCTORY AND DATA ENTRY 
C 2.TRIANGULAR MESH AND EQUIPOTENTIAL LINES 
C 3.ZOOM 
c 
c 
c 
C *********** MAIN PROGRAM SEGMENT ************* 

COMMON/IO/INtiOUT 
INTEGER FNC3) 
IN=5 
IOUT=6 
CALL TXOPEN 

C INTRODUCTORY DISPLAY 
3 CALL DISP1CFNtiC> 

GOTOC1t2t2ltiC 
C TRIANGULAR MESH DISPLAY 
1 CALL DISP2CFNtiCtiZ> 

GOTOC2t3t2t2t2t2t2ltlC 
2 STOP 

END 
c 
C************INTRODUCTORY DISPLAY &DATA ENTRY ********* 

SUBROUTINE DISP1CFILNAMtNEXT> 
COMMON/IO/INtiOUT 
COMMON/.SCALINIJ/SCL1tSCL2tSCL3tSCL4 
DATA MNTXT/"+ NEXT + RESTART + EXIT "/ 
LOGICAL*l MNTXTC30) 
INTEGER FILNAMC3> 

15 CALL TXCLER 
C SET UP INSTRUCTION TO THE USER AND THE MENU OPTIONS 

CALL TEXTUPC"TXTFL1"t25> 
CALL MNOPENC875.t715.t1l 
CALL MNDISPCMNTXTt3t10t1) 
CALL FRAMEC870.t733.t3) 
CALL CURPOSC1.t150.) 
CALL ALPHMD 

C INPUT DATA FILE NAME 
20 CALL MESSADC"£ DATA FILE NAME?A") 

READCINt30lFILNAM y 
30 FORMATC2A4tA2) 

494 

40 CALL MESSAGC"£ ENTER PLOTTING SCALE LIMITCMIN.&MAX.OF XtYl?A•: 
IFCIERRORC110>.NE.O>GOTO 40 
READCINt50lSCL1tSCL2tSCL3tSCL4 

50 FORMATC4GO.O) 
2 CALL MNPICK(JtiCHARtMNO) 
5 CALL CONFRMCICHAR) 

IFCICHAR.EQ.78> GOTO 2 
IFCICHAR.NE.89) GOTO 5 
GOTO ( 60, 15 • 80) .J 

60 NEXT=J 
RETURN 

80 CALL ALPHMD 

.. 



c 

STOP 
END 

C***********DISPLAY 2 FOR PLOTTING ***************** 
SUBROUTINE DISP2CFILNAMoNEXToiZOOMl 
COMMON/IO/INoiOUT 
COMMON/SCALING/SCL1tSCL2oSCL3oSCL4 
COMMON/ZOMSCL/ZSCL1oZSCL2oZSCL3tZSCL4 

495 

DATA MNTXT/"+ NEXT + PREVIOUS+ EQUIP'L + MESH + ZOOM 
&+ RESTART + EXIT "/ 

DIMENSION XEQP1C1000)oYEQP1C1000)tXEQP2C1000)oYEQP2C1000) 
LOGICAL*1 MNTXTC70) 
INTEGER FILNAM(3)oFIRST 

C FIRST TIME DATA FILE IS READ 
FIRSTa1 

1 CALL TXCLER 
IZOOM=O 
WRITE C IOUTt 70) 

70 FORMATC..,TRIANGULAR MESH GENERATION!-") 
CALL MNOPENC875.t715.t1) 
CALL MNDISPCMNTXTt7t10o1) 
CALL FRAMEC870,t733.o7) 

2 CALL LMTARA 
CALL MNPICKCJtiCHARtMNO) 

5 CALL CONFRMCICHAR) 
IFCICHAR.EQ.78)GOTO 2 
IFCICHAR.NE.89) GOTO 5 
GOTOC21o21o23t22t24t1t21)oJ 
GOTO 2 

21 NEXT•J 
RETURN 

C GENERATE MESH 
22 K=1 

FIRST'"'2 
NEQPaO 
REWIND 9 
CALL SETFILC9oFILNAM> 
CALL LMTSCLCSCL1tSCL2tSCL3tSCL4) 

11 IFCIERRORC110>.NE.O> GOTO 200 
C INPUT LINE COORDINATES FROM THE DATA FILE 

READC9tlO>Z1tR1tZ2tR2tiEQP 
10 FORHATC4CF8,3)t2Xti2> 

IFCIEQP.EQ.1) GOTO 20 
C SAVE EQUIPOTENTIAL LINES COORDINATE 

XEQP1CK>•Z1 
YEQP1CK>•R1 
XEQP2CK),.Z2 
YEQP2<K>•R2 
K=K+1 
GOTO 11 

20 IFCJ.EQ,3) GOTO 11 
CALL TXMOVECZ1oR1) 
CALL TXDRAWCZ2tR2> 
GOTO 11 

200 IFCJ.EQ,3) GOTO 23 
IZ OOM= I ZOOM+ 2 
GOTO 2 

C GENERATE EQUIPOTENTAIL LINES 
23 • IFCFJRST.EQ.l> OOTO 22 

CALL LMTSCLCSCL1oSCL2tSCL3oSCL4> 
IZOOM=IZOOM+1 
K .. K-1 
DO 100 I=1oK , 

CALL TXMOVECXEQPlCI>tYEQP1<I>> 
CALL TXDRAWCXEQP2CI>tYEQP2CI)> 

100 CONTINUE 



GOTO 2 
RETURN 

C ZOOMING 
24 CALL LMTSCLCSCLloSCL2oSCL3oSCL4> 
C INPUT THE COORDINATES OF THE ZOOMING WINDOW 

CALL TXCURSCXZloYZltiCHAR> 
36 CALL TXCURSCXZ2oYZ2tiCHAR) 
C CHECK FOR TWO OPPOSITE CORNERS OF THE ZOOMED WINDOW 

IFCXZ1.EQ.XZ2.0R.YZ1.EQ.YZ2)GOTO 36 
C DRAW ZOOMED WINDOW 

CALL TXMOVECXZ1oYZ1> 
CALL TXDRAWCXZ2,YZ1> 
CALL TXDRAWCXZ2tYZ2) 
CALL TXDRAWCXZ1tYZ2) 
CALL TXDRAWCXZ1tYZ1> 
ZSCL1=AMIN1CXZ1tXZ2> 
ZSCL2=AMIN1CYZ1tYZ2> 
ZSCL3=AMAX1CXZ1tXZ2) 
ZSCL4=AMAX1CYZ1tYZ2) 
CALL LMTARA 

32 CALL CONFRMCICHAR> 
IFCICHAR.EQ.78) GOTO 24 
IFCICHAR.NE.89> GOTO 32 

C CALL ZOOM ROUTINE 
CALL ZOOMCFILNAMtiCtiZOOMtKtXEQP1tYEQP1tXEQP2tYEQP2> 
GOTOC1t42t42>•IC 

C PREVIOUS 
42 STOP 

END 

'* *' '* *' 

496 

I* THIS C-PROGRAM READS IN THE PAPER TAPE PRODUCED ON THE ICL 1904S *I 
I* MACHINE AND STORE ITS DATA ON FILE SPECIFIED BY THE USER USING ••• */ 
I* UNIX INPUT COMMAND: *I 
I* 7.PRTAPEC/DEV/PR>AFILE 
I* WHERE 'PRTAPE' IS THE NAME OF THE EXCUTABLE MODULE OF THIS 
I* AND AFILE IS THE NAME OF THE FILE INTO WHICH THE DATA WILL 
I* STORED*/ 

MAIN() { 
INT Il 
CHAR Cl 
WHILEC1H 

} 

I•READCOt&Ctl)l 
IFCC !~ 0) BREAK! 

c •& 01771 
WRITE< 1 , &C' 1> I 
WHILE Cl){ 

I= READCOt4Ct1)1 
I* END OF FILE *I 

IFCI == '\0' )BREAK! 

,, 

I* STRIP THE PARITY BIT FROM THE ICL PAPER TAPE *I 
c =& 01771 

I* NOCKS OUT THE NULL CHARACTERS WHICH SIGNIFY END OF STRING 
I* UNDER UNIX *I 

} 

} 

IFCC == '\O'>CONTINUEI 
I= WRITEC1t&Ct1)1 

*' PROGRAM*/ 

BE *' 

*' 






