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A Method for Forming Distributed Beams in
Time Modulated Planar Arrays
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Abstract—The sidebands which originate in time modulated ar-
rays can be used for numerous applications, including multipath
signal separation and directional power transfer. In the present
paper, a method of simultaneously producing a series of beams
that are steered towards unique two-dimensional directions is
presented by developing the theory of time-modulated linear
arrays to time-modulated planar arrays. A planar array is
modelled as two linear arrays on orthogonal axes and the
binomial and Dolph-Chebyshev time-weighting distributions are
applied to a 5 × 5 element array. The output of the array is
shown in both the time and frequency domains.

Index Terms—Array Signal Processing, Beamforming, Planar
arrays, Time Modulation.

I. INTRODUCTION

The concept of Time Modulated Arrays (TMAs) was intro-
duced by Shanks and Bickmore [1], [2], and is a method of
beamforming by means of switching on and off elements in a
conventional antenna array. This process transfers the power
of an incoming or outgoing signal into a number of sidebands
whose separation is governed by the switching frequency. In
a receiver, the amount by which these bands are energised
depends on the signal incident angle and consequently it is
possible to determine this angle by analysis of the amplitude
of each sideband.

TMAs have received increased research interest in recent
years due to the switching methods being considerably less
complex than phase-shifting and amplitude weighting meth-
ods. Research into TMAs has started to spread to multiple
application domains such as signal processing [3] and com-
munications systems [4]. Research has mainly focused on
developing methods of controlling the array output.

Many different uses and techniques exist for Time-
Modulated Linear Arrays (TMLAs). Knowing the input re-
sponse or output powers and steering angles of sidebands are
of interest to applications such as directive power transfer
[5], [6], Direction of Arrival (DoA) finding systems [7]–
[11] and communications systems in multipath environments
[12]. These applications make use of a TMLA’s ability to
simultaneously create multiple beams that are responsive in
different angles relative to the array’s broadside.

A time-modulated alternative to element amplitude weight-
ing was demonstrated by Tong and Tennant [13]. It was shown
that by adjusting the amount of time that individual elements
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are turned on, the results correlated well to conventional array
weighting achieved by signal amplification. This technique
was demonstrated using well-known weighting distributions
such as the Dolph-Chebyshev distribution [14] for a single
axis.

It is possible to extend TMA concepts to Time Modulated
Planar Arrays (TMPAs). TMPAs have similar benefits to
TMLAs, however they have received relatively little research
effort. To date, research has mainly focused on reducing
the sidebands and sidelobes that occur during the switching
process [15]–[17]. The present paper extends on existing
knowledge by considering the case of multiple simultaneous
beams steered in two broadside angles.

Poli et al. [18] showed that the calculations and design
of TMPAs could be simplified by modelling the array as
a multiplication of two TMLAs on orthogonal axes, where
the signal’s position is given in terms of spherical coordinate
angles φ and θ. Applying weighting distributions using time
switching has also been applied in planar arrays [15], [19].
Since most of these works focus on reducing sidebands,
elements are usually switched on simultaneously to receive
a higher response at the centre frequencies.

The present paper develops the theory of a planar array
as two linear axes and incorporates it into an array with an
element-by-element switching pattern to produce a number of
distributed beams. Each of these beams are steered towards
a unique two-dimensional location and operate on different
harmonic frequencies; therefore, the theory can be used in
directional applications such as spatial filtering or DoA es-
timations. To make the planar array more easily comparable
to its linear counterpart, the angular position of the signal is
given in terms of broadside angles along orthogonal axes. The
theory is extended further by incorporating well known linear
array weighting systems into the planar array theory to show
that the sidelobes of each of these beams can be controlled.

Section II provides a brief overview of the theory behind
TMPAs. A switching order is provided for distributing multiple
simultaneous beams and a set of equations for determining
the steering angles of each harmonic in broadside angles and
their equivalent in φ and θ angles is provided. The theory is
concluded by demonstrating how these harmonic patterns can
be controlled whilst keeping the same steered direction. Sec-
tion III provides results obtained from a numerical simulation
of a TMPA in both the time and the frequency domain. Finally,
Section IV summarises the contribution of the paper.
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II. THEORY

A. Background

The planar uniform array factor of an M×N element array
equally spaced with distances dx and dy on the x and y axes
respectively can be derived from first principles and written
as [15]:

AF (θ, φ, t) =ejω0t
M−1∑
m=0

N−1∑
n=0

umn(t)

× ejk sin θ(mdx cosφ+ndy sinφ)

(1)

where ω0 is the angular frequency of the primary signal,
k is its wave number, φ and θ are the signal azimuth and
elevation angles respectively. umn(t) is the switching function
that turns each element either on or off in time which can be
mathematically defined by:

umn(t) =

{
1, τmn,on ≤ t < τmn,off

0, otherwise
(2)

where τmn,on and τmn,off represent the switch on and off
times for an element indexed by (m,n). This function can be
periodic with angular frequency ωs = 2π/Ts where Ts is the
time taken to complete the switching sequence. This can be
expressed as the sum of its Fourier coefficients with harmonic
numbers indexed by h:

umn(t) =

∞∑
h=−∞

Cmne
jhωst (3)

The coefficients Cmn can be calculated as:

Cmn =
1

Ts

∫ Ts

0

umn(t)e
−jhωstdt (4)

To simplify the beam steering equations, this can also be
modelled as the multiplication of two equations representing
the array factors of orthogonal linear axes having switching
functions um(t) and un(t) [18]. In the present paper, it is
assumed that the array is illuminated in the far field from the
two broadside angles βx and βy which are related to φ and θ
angles as shown in Fig. 1 by:

βx = sin−1 (sin θ cosφ) (5)

βy = sin−1 (sin θ sinφ) (6)

It can be shown that (1) can be expressed as:

AF (βx, βy, t) =e
jω0t

M−1∑
m=0

N−1∑
n=0

umn(t)

× ejk(mdx sin βx+ndy sin βy)

(7)

Observing that umn = um · un, it can be further shown that

AF (βx, βy, t) =e
jω0t

M−1∑
m=0

um(t)ejkmdx sin(βx)

×
N−1∑
n=0

un(t)e
jkndy sin(βy)

(8)

which will form the basis of predicting the steering angle of
each harmonic produced by the TMPA. The following sections
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Fig. 1. Coordinate system showing the relationship between x or y-axis
broadside angles (βx and βy) and spherical coordinate angles (φ and θ).
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Fig. 2. The array factor of the sidebands generated by a 5 element TMLA
when switched uniformly element-by-element down a single axis.

make use of this form to generate unique beam patterns across
the range of harmonics.

B. Generating Beams in Unique Directions

As described by Tong and Tennant [13], the sequential
switching of a linear array with periodic on times causes the
beams of sidebands to form in unique directions across a single
broadside axis. As shown in [9], the linear array switched in
this way with M elements laying on the x-axis and having
equal element weightings will generate several sidebands with
an array factor:

AF (βx, t) =
1

M

∞∑
h=−∞

ej(ω0+hωs)t sinc

(
πh

M

)

×
M−1∑
m=0

e2πjmrx[sin (βx)− h
Mrx

]

(9)

where sincχ is the non-normalised cardinal sine function and
rx is the ratio of element spacing dx to the wavelength λ.

Fig. 2 shows the array factor for each sideband in a five
element TMLA. These sideband beams each have a main lobe
that points to a unique direction relative to the broadside.
A second, independent TMLA can be used along the y-axis
in order to obtain two-dimensional data. If it is desirable to
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Fig. 3. The proposed switching order for an M ×N element array starting
at index 0.

use these beams simultaneously (e.g. for applications such as
DoA estimation), then the switching of the respective element
in each axis must also occur simultaneously and the output
of each array using this technique needs to be acquired and
analysed separately.

In the present paper, it is proposed that each of the elements
in a planar array are switched on then off in sequence, element-
by-element in the order i = 0, 1, 2, .., first by switching left to
right on the top row of elements, then continuing to the next
row until all elements have been switched once. This sequence
is shown in Fig. 3.

If the switching pattern is to be periodic, the definition
of Cmn can be obtained using (2) and (4). Since, Cmn
is independent of the element position, its definition for a
two-dimensional array with specific on times is the same
as a linear array having the same number of elements and
equivalent on times. Since the element index can be calculated
as i = (Mn) +m then Cmn can be calculated as:

Cmn(t) = sinc

(
πh

MN

)
e−

j2πh[(Mn)+m]
MN (10)

The normalised array factor for a planar array switched
in this manner is obtained by combining (3), (7) to obtain
the switching function in terms of the sum of its Fourier
components:

umn(t) =

∞∑
h=−∞

sinc

(
πh

MN

)
e−

2jπh[(Mn)+m]
MN ejhωst (11)

and then substituting this expression for umn(t) into (10) to

produce:

AF (βx, βy, t) =
1

MN

∞∑
h=−∞

ej(ω0+hωs)t sinc

(
πh

MN

)

×
M−1∑
m=0

N−1∑
n=0

e−
2πjh[(Mn)+m]

NM

× ejk(mdx sin βx+ndy sin βy)

(12)

In an array of M × N elements, it is expected that there
will be M × N different sidebands numbered in the range
of ±M×N2 . The switching of elements along the x-axis is M
times faster than the switching of elements along the y-axis.
As a consequence, changes in signal position along the x-
axis broadside will cause changes in power across a larger
frequency range than if the signal position were to change
across the y-axis broadside. When modelling these harmonics
to represent different axes hx will be in the range of ±M2 and
hy will be in the range of ±N2 . Assuming that hx and hy are
both integers within the ranges described, their relationship
with the actual sideband number h can be written as:

h = Nhx + hy (13)

For example in a 5× 5 element array, measuring the power
in the sideband h = 2 is the equivalent to measuring the
separated sidebands hx = 0 and hy = 2, however measuring
at h = 3 is equivalent of measuring the separated sidebands
hx = 1 and hy = −2. A normalised array factor using these
separated sidebands can be obtained and simplified to:

AF (βx, βy, t) =
1

MN

∞∑
h=−∞

ej(ω0+hωs)t sinc

(
πh

NM

)

×
M−1∑
m=0

e
2πjmrx

[
sin (βx)−

hx+hy/N

Mrx

]

×
N−1∑
n=0

e
2πjnry

[
sin (βy)−

hy
Nry

]
(14)

where ry is the ratio of the element spacing on the y-axis dy
to the wavelength λ of the signal.

Fig. 4 shows the main beam steering angles for each of the
sidebands originating from a 5×5 element array. It is important
to note that when using the above equations, |βx|+ |βy| ≤ 90◦

(the boundary of which is shown as a dotted line) and these co-
ordinates map to a single point on a hemisphere. The circled
points on the figure that lie beyond the dotted line indicate
beams that do not have a mappable point.

It can be seen that each sideband has a unique two dimen-
sional steering angle, but sets of beams may share the same
y-axis broadside angle. This is contrary to using the beams
of two independent TMLAs, where it is expected that the βx
and βy combinations would form a square grid. Switching
along two different axes using the sequence described has the
effect of skewing the positions of the faster switching axis (i.e.
the x-axis). Fig. 5 shows the differences in beam position and
amplitude along the x-axis when looking at different h values.

Whilst these beams are different in amplitude and position,
they share some of the same traits as would be found in a pair
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Fig. 4. Harmonic beam steering angles of a 5 × 5 element array under the
proposed switching scheme.

of orthogonal TMLAs. At the locations where each sideband
is maximised, all other sidebands are minimised. From (14) it
can be shown that for each sideband, these locations map to
unique combinations of βx and βy and these will occur at:

βy,max(hy) = sin−1
(
hy
ryN

)
(15)

βx,max(hx, hy) = sin−1
(
hx + hy/N

rxM

)
= sin−1

(
h

rxMN

)
(16)

The maximum amplitude of these beams normalised to the
main beam at the centre harmonic is:

max (AFh) = sinc

[
π (Nhx + hy)

MN

]
= sinc

(
πh

MN

)
(17)

Since the relative amplitude of each beam is known, then
each harmonic can be normalised during a post-processing
stage to have the same amplitude response across each side-
band.

C. Simultaneous Control of Sidelobes on Each Sideband

As shown by Tong and Tennant [13], so long as the on times
for each element are distributed evenly across the switching
sequence, the weighting for each element can be adjusted by
decreasing the total amount of time that it is switched on. Each
element is on for a fraction of its allocated time depending on
the weighting needed.

In an example, if three elements with equally distributed on
times required the weighting {1, 3, 1}, the switching period
would take place over nine quantised periods of time as shown
in Fig. 6. The first element would switch on for one period,
switch off and then wait two periods before switching to the

next element, where it is on for three more periods. After this,
it is switched off and the third element is switched on at the
same time for a single period. The pattern can then be repeated
after waiting an additional two periods. This switching pattern
can be in practice controlled by using RF switches.

In conventional planar arrays, the weighting of well known
distributions such as the binomial or Dolph-Chebyshev dis-
tributions can be calculated as a multiplication of two linear
array weighting distributions [20].

Just as in linear arrays, weighting distributions for TMPAs
may be realised by changing the amount of time that each
element is on for [18], [21]. If a function W (i) stipulates the
amount of on time needed for element i in the sequence of a
TMLA, then the weighting for each element in a planar array
with the switch sequence described in Section II-B is simply:

W (Mn+m) =W (m)×W (n) (18)

Fig. 7 shows the weighting needed to achieve either a
binomial, where the sidelobes are eliminated, or a Dolph-
Chebyshev array, where the sidelobes are set to a specific level
relative to the main beam. In this paper, it is proposed that one
element is on at any given time, and therefore weighting for
planar array using switching is similar to the linear example
shown in Fig. 6, but where the elements are switched in the
order shown in Fig. 3.

The binomial distribution for each element i on a single
axis with I elements can be calculated as:

W (i) =
I − 1!

[(I − 1)− i]!i! (19)

In the present paper, Bresler’s method [22] has been used to
calculate the individual Dolph-Chebyshev distribution weights.

III. NUMERICAL RESULTS

In this section a 5 × 5 element array has been simulated
using discrete-time sample generation and results including
array weighting techniques are discussed.

A source producing a single sinusoidal frequency of 1 GHz
was used, impinging on a 5× 5 isotropic element array with
inter-element spacing set at λ/2. Each element was sampled
for a specific amount of time before switching to the next
element in the sequence as shown in Fig. 3. The switching of
elements occurred at 250 MHz, creating a harmonic frequency
of 10 MHz and the power in each of these sidebands were
measured using DFTs. Although the switching on times of
elements remained fixed, three patterns were tested, where the
amount of time that each element is sampled varies depending
on the following weighting distributions:

1) Flat Array - Each element is sampled for the full amount
of time it is switched on, sampling of the next element
in the sequence occurs immediately after.

2) Binomial Array - Each element is sampled for a fraction
of the allocated time proportional to the values indicated
in Fig. 7(a).

3) Dolph-Chebyshev Array - Each element is sampled for a
fraction of the allocated time proportional to the values
indicated in Fig. 7(b).
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Fig. 5. The maximum possible response of selected sidebands when analysing different broadside axes. Negative hy values are not shown for clarity.
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Fig. 6. Switching times of a three element array with a weighting of {1, 3, 1}.
A bar indicates the time that a particular element is switched on.

1.00 4.00 6.00 4.00 1.00

4.00 16.0 24.0 16.0 4.00

6.00 24.0 36.0 24.0 6.00

4.00 16.0 24.0 16.0 4.00

1.00 4.00 6.00 4.00 1.00

(a)

9.65 15.5 18.6 15.5 9.65
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18.6 30.0 36.0 30.0 18.6

15.5 25.0 30.0 25.0 15.5

9.65 15.5 18.6 15.5 9.65

(b)

Fig. 7. Weighting distributions needed to achieve a 5×5 element (a) binomial
and (b) -20dB Dolph-Chebyshev array.

A. Time Domain

Fig. 8 shows the array output in the time domain when
the signal is directed towards the array at an angle of βx =
30◦, βy = 30◦ (this corresponds to φ = θ = 45◦). In the bino-
mial and Dolph-Chebyshev distributions it is straightforward

(a)

(b)

(c)

Fig. 8. Time domain output of a 5× 5 time-modulated array with different
weighting distributions: (a) flat, (b) binomial, (c) Dolph-Chebyshev.

to observe where switching occurs.
It can also be seen that in the Binomial distribution case,

the array spends more time switched off than on. The ratio of
on time to off time is 28.4%, which yields a relatively low
amount of received power. This ratio is significantly better in
the Dolph-Chebyshev distributed array, at 54.8%.

B. Frequency Domain

A set of 25 DFT Amplitudes were collected in the range
of 0.88-1.12 GHz (corresponding to each combination of x
and y axis harmonics) for each angular position of the source.
Fig. 9 shows the array response after performing a DFT at two
different harmonics.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Beam patterns of a 5 × 5 element array with three different time-
weighting distributions and two different scanning frequencies: (a) Flat (h =
0), (b) Flat (h = 6), (c) Binomial (h = 0), (d) Binomial (h = 6), (e)
Dolph-Chebyshev (h = 0), (f) Dolph-Chebyshev (h = 6).

At hx = 0, hy = 0 (h = 0), it is clear that the array is most
responsive at βx = 0◦, βy = 0◦, whereas at hx = 1, hy = 1
(h = 6), the point where the array is most responsive is at
βx = 28.69◦, βy = 23.58◦. The effects of the time weighting
are also in good agreement with the theory; in the binomial
distribution, the sidelobes have been completely eliminated
in every harmonic sideband, at the expense of producing a
larger beam-width. The Dolph-Chebyshev distribution has a
reduced level of side-lobes, and has a beam-width which is
only slightly larger than the flat distribution.

Table I shows the amplitudes relative to the maximum
possible power received by the array (i.e. at hx = hy = βx =
βy = 0) and the half-power broadside beam-widths. Since the
maximum amplitude at h = 0 should be equal to the ratio
of elements being on to elements being off (as mentioned in
Section III-A), the binomial distribution significantly reduces
the total power at the array. The slight discrepancies between

(a) (b)

Fig. 10. Normalised Beam patterns of a 5×5 element array at h = 0 for two
different time-weighting distributions. (a) Binomial, (b), Dolph-Chebyshev.

TABLE I
AMPLITUDES OF EACH PATTERN IN DECIBELS RELATIVE TO FLAT

DISTRIBUTION, AND THE HALF-POWER BEAM WIDTHS IN DEGREES.

Weighting Distrbution Maximum Amplitude (3 dB beam-width)
h = 0 h = 6

Flat 0.00 (21◦) -0.84 (23◦)
Binomial -10.92 (30◦) -11.41 (35◦)

Dolph-Chebyshev (-20 dB) -5.19 (24◦) -5.73 (27◦)

the maximum amplitude of the beams at h = 0 and the ratios
calculated in Section III-A are mainly due to the effects of
sampling in the simulation. Fig. 10 shows the response of the
central frequency when the incoming signal is amplified to
counteract this ratio (i.e. by 5.19 dB for Dolph-Chebyshev, and
10.92 dB for binomial), and highlights the useful properties
of each distribution when compared to the flat distribution.

From Table II it can be seen that the target sidelobe level
specified for the Dolph-Chebyshev array is only achieved at
the centre harmonic, the levels of each sidelobe have still
been greatly reduced, and only vary by small quantities.
Where only one unique beam per harmonic is desired, the
Dolph-Chebyshev distribution makes a good alternative to the
binomial distribution since the power received in the main
beam direction is significantly greater compared to the power
at its sidelobes or at the main beam of the binomial array in
the same sideband.

IV. CONCLUSIONS

A method of producing predictable simultaneous beam pat-
terns has been proposed and results of numerical simulations
have been given which show good agreement with the theory.
The results and the theory have assumed that the switching

TABLE II
SIDELOBE LEVELS OF EACH PATTERN IN DECIBELS. VALUES IN BRACKETS

INDICATE LEVELS RELATIVE TO THE PATTERN’S MAIN BEAM.

Weighting Distribution Sidelobe Amplitude
h = 0 h = 6

Flat -11.54 (-11.54) -12.56 (-11.72)
Binomial - -

Dolph-Chebyshev (-20 dB) -25.22 (-20.03) -23.54 (-17.81)
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between elements is ideal (e.g. instantaneous with no losses).
The realisation of non-ideal arrays requires careful design [23].

It has been demonstrated that switching a planar array
element-by-element is a simple way of obtaining unique beams
for each harmonic. Although a broadband signal is scattered
into different harmonics with different steering positions, these
can be predicted using (15) and (16), where each frequency
of the component signal will have a different value for rx and
ry .

Applying a binomial weighting to this switching pattern
gives a solution for when no sidelobes are desired. Due to the
ratios of on times between the corner and central elements,
much of the signal capturing time is spent receiving no power
at all, and thus the array captures a relatively small amount of
power. The Dolph-Chebyshev distribution offers a compromise
between obtaining low sidelobes and maximising power in the
main beam, just as it does with conventional arrays but for
each sideband.

It may also be beneficial to mirror the switching pattern or
rotate the switch axis, (i.e. starting from the bottom of the array
instead of the top) on the same array and route the signals
to a secondary output. Not only will this increase the time
efficiency of the array as described by [24] but the collection
of harmonic beams in this secondary output would be mirrored
compared to the first, allowing a processor to compare between
closely situated beams, or to tune into a signal’s position more
precisely.
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